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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterised 

by dysfunction and degeneration of motor neurons innervating skeletal muscle. ALS 

patients experience progressive muscle weakness and atrophy, leading to paralysis and 

death within 3-5 years of diagnosis. The mechanisms underlying neurodegeneration in 

ALS are unknown; studies of patient tissue and of transgenic mouse models of ALS 

have implicated oxidative stress, neuroinflammation, aberrant RNA metabolism, 

excitotoxicity, protein misfolding, autophagy and proteasome dysfunction, and 

intracellular transport deficits in disease processes.  

Current ALS therapeutics can only extend lifespan by a matter of months, so it is vital 

that novel therapeutic targets and therapeutic molecules are identified.  The many 

putative “triggers” of ALS are predicted to converge upon common mechanisms of 

degeneration, with oxidative stress being identified as one of the major pathological 

hallmarks of ALS. Therapeutics capable of modulating oxidative stress and preventing 

neuronal death may be of value in treating human ALS.  

In this thesis, the temporal correlations between microglial activation, development of 

pathological alterations in the spinal cord, and functional decline, were explored in the 

transgenic SOD1 mouse model of ALS (carrying the ALS-linked mutant human Cu,Zn-

superoxide dismutase gene SOD1
G93A

), with non-transgenic (WT) mice used as 

controls. The ability of three putative therapeutic compounds for ALS – Gemals, 

metallothionein-2 protein, and Emtin peptides – to increase survival time in SOD1 mice 

was also examined. 

Pathological alterations in motor neurons preceded an increase in microglial numbers, 

suggesting microglial activation occurs as a reactive response to neuronal degeneration 

or dysfunction. Microglial activation occurred concurrently with disease onset at 14 

weeks of age, but preceded the development of overt functional deficits around 18 

weeks of age. Interestingly, microglial activation was associated with an increase in the 

number of microglia expressing the M2-like, putative neuroprotective, marker arginase1 

(Arg1), and to a lesser extent with an increase in the number of microglia expressing the 

M1-like, putative neurotoxic, marker inducible nitric oxide synthase (iNOS). These data 

suggest the concurrent presence of ongoing neuroprotective and neuroinflammatory 

processes in the spinal cord of SOD1 mice; microglial activation may not be a primary 
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cause of neurodegeneration, but may drive disease progression after onset. Additionally, 

the expression of the antioxidant protein metallothionein-1/2 (MT-1/2) increased from 

18 weeks of age, possibly in response to oxidative stress or neuronal degeneration.  

Gemals, an antioxidant and anti-inflammatory combination therapy, has been previously 

shown to extend the lifespan of an ALS rat model, but has not been tested in ALS mice. 

Here, Gemals was administered subcutaneously to SOD1 mice from the age of 

symptom onset through to disease endpoint. No significant changes in survival time 

were identified in Gemals-treated SOD1 mice compared to controls, indicating that 

Gemals treatment may be less effective when administered after symptom onset.  

MT-1/2 protein has previously shown both antioxidant and neuroprotective properties, 

and its ablation in SOD1 mice has been shown to accelerate disease progression. In this 

study, SOD1 mice were treated with MT2 injections, and/or with treadmill running 

exercise to upregulate endogenous MT-1/2. MT2 treatment slightly but significantly 

delayed disease onset, and tended to increase survival time, in SOD1 mice, whereas 

treadmill running exercise had little effect. However, the mechanism of action for MT2 

is as yet unknown – preliminary data suggest that MT2 treatment did not substantially 

prevent spinal cord motor neuron degeneration or muscle endplate denervation.    

Peptide derivatives of MT-1/2, termed Emtins, have previously displayed similar 

neuroprotective properties to their parent MT-1/2 protein in vitro and in vivo, and 

additionally can readily cross the blood-brain barrier. Emtins were administered 

subcutaneously to SOD1 mice from the onset of disease symptoms, resulting in 

increased survival time compared to control mice, although this result was not 

significant due to a smaller number of animals used during this trial. These data indicate 

that both MT2 and Emtins have pro-survival effects in the SOD1 mice. Emtin peptides 

are thought to have limited metal-binding and antioxidant properties; however, both 

MT-1/2 and Emtins are known to interact with low-density lipoprotein receptor-related 

proteins (LRPs) and activate the Akt pathway, leading to increased cellular survival. It 

is possible that the pro-survival effects of MT2 and Emtins seen in these studies were 

mediated through LRP binding and activation of downstream pathways. MT2 and 

Emtins show potential as therapeutic molecules for ALS, but more work is required to 

elucidate the mechanism of action.     
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1.1 Motor neuron disease 

1.1.1 An overview of the motor system 

Motor neurons are the nerve cells that transmit electrical impulses from motor control 

areas of the brain to skeletal muscles in order to effect voluntary movement. An upper 

motor neuron has its cell body located within Layer V of the primary motor cortex and 

extends its axon to the brainstem via the corticobulbar tract, or to the spinal cord via the 

corticospinal tract, where a glutaminergic synapse is made with a lower motor neuron 

cell body (Figure 1.1). Lower motor neurons, located within either the brainstem motor 

nuclei or Rexed lamina IX of the spinal cord ventral horn, project their axon out of the 

central nervous system and effect target skeletal muscle contraction via the release of 

acetylcholine at the neuromuscular junction (Ravits et al. 2013) (Figure 1.1). 

For voluntary movement of skeletal muscles, the entire pathway from motor cortex to 

muscle must be intact. Motor neuron disease is characterised by the progressive 

dysfunction and death of upper or lower motor neurons, and the resulting progressive 

loss of voluntary movement of skeletal muscles (Ravits et al. 2013).   

1.1.2 Types of motor neuron disease 

Motor neuron diseases comprise a variety of syndromes and diseases caused by 

degeneration in either the upper or lower, or both upper and lower, motor neurons. The 

most common form of adult-onset motor neuron disease is amyotrophic lateral sclerosis 

(ALS) which involves degeneration of both upper and lower motor neurons, and was 

first described by the French neurologist Charcot in the 19
th

 century (Siddique & 

Ajroud-Driss 2011). Other motor neuron diseases may involve only the upper or lower 

motor neurons, such as primary lateral sclerosis (PLS) and progressive muscular 

atrophy (PMA) respectively. Although PLS and PMA are associated with slower 

progression rates and longer survival times than ALS, (Visser et al. 2007; Talman et al. 

2009; Wijesekera et al. 2009), many patients initially diagnosed with a pure upper or 

lower motor neuron disease go on to develop signs of involvement of both motor 

neuron populations (Visser et al. 2007; Kim et al. 2009), suggesting ALS lies at the 

centre of a spectrum of motor neuron diseases. As ALS is both the most common form 

of adult-onset motor neuron disease, and is thought to be at the centre of a continuum of 

upper and lower motor neuron disorders, this thesis will focus primarily on ALS.   
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Figure 1.1 Overview of the motor system 

Upper motor neurons have a cell body located in the primary motor cortex grey matter, 

with their axons extending to either the brainstem or the spinal cord via the 

corticobulbar or corticospinal tracts, respectively. Lower motoe neurons innervating the 

head and neck have their cell bodies located in brainstem motor nuclei, and their axons 

travel via the cranial nerves to the bulbar skeletal musculature. Lower motor neurons 

innervating the trunk and limbs have their cell bodies located in the spinal cord ventral 

horn, and their axons travel to the axial and limb skeletal musculature via peripheral 

nerves. Upper motor neurons release glutamate onto lower motor neurons at the 

synapse, while lower motor neurons release acetylcholine onto nicotinic receptors at the 

neuromuscular junction. 
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1.2 Amyotrophic lateral sclerosis 

1.2.1 Clinical features and disease course 

ALS typically presents as a focal muscle weakness, seen in the limbs in two thirds of 

patients and in the bulbar region in one third of patients, which worsens with time 

(Logroscino et al. 2010; Kiernan et al. 2011; Al-Chalabi et al. 2012). Regardless of the 

site of presentation, the symptoms of motor neuron (MN) degeneration – spasticity, 

clonic reflexes, and psuedobulbar affect from upper MN loss, and muscle weakness, 

atrophy, and fasciculations from lower MN loss – spread progressively through the 

body (Walker 1990; Brooks 1994).  

As MNs degenerate, ALS patients lose control over voluntary skeletal muscle 

movement, resulting in progressive inability to generate limb movement, and also 

causing difficulties in swallowing, speech, and breathing. In addition to motor 

impairment, ALS patients may show impaired executive or cognitive function, or 

behavioural changes; some ALS patients meet the clinical criteria for frontotemporal 

dementia (Lomen-Hoerth et al. 2003; Witgert et al. 2010). Sensory neurons are affected 

to a much lesser extent than motor neurons (Kawamura et al. 1981; Gregory et al. 

1993). ALS ultimately leads to death from failure of the respiratory muscles, with most 

patients only surviving 3-5 years from diagnosis (Al-Chalabi et al. 2012).  

1.2.2 Diagnosis 

A diagnosis of ALS is made according to the modified El Escorial criteria, and requires 

signs of both upper and lower motor neuron degeneration upon clinical, 

electophysiological or neuropathologic examination, with evidence of symptom 

progression over time (Brooks 1994; Brooks et al. 2000; de Carvalho et al. 2008). 

Extensive clinical, neuroimaging and laboratory investigations are required to rule out 

disorders mimicking ALS, which can include polyneuropathies, endocrine 

abnormalities, physical injury to the nervous system, malignancies, exposure to 

exogenous toxins, vasculitis and myelopathies (Kiernan et al. 2011). A recent study 

indicated that average time from symptom onset to diagnosis was over 12 months 

(Logroscino et al. 2010). While less than 10% of patients with diagnoses of ALS are re-

diagnosed with an ALS mimic syndrome, some of these mimic syndromes can be 

effectively treated – making a correct diagnosis extremely important (Ross et al. 1998; 

Traynor et al. 2000).  
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1.2.3 Prevalence and risk factors 

ALS affects 2-3 people per 100,000 each year, with a prevalence of 4-8 people per 

100,000. Onset is most common between 50-65 years of age, and ALS is slightly more 

common in males than females (Logroscino et al. 2010; Kiernan et al. 2011). 

Environmental and lifestyle risk factors such as pesticide, cyanobacteria, or heavy metal 

exposure, electric shock, smoking, and high levels of leisure-time physical activity, are 

associated with increased ALS risk (Das et al. 2012; Huisman et al. 2013; Trojsi et al. 

2013). Approximately 5-10% of all ALS cases have a family history (familial ALS, 

FALS), as opposed to no family history of ALS (sporadic ALS, SALS). Mutations in a 

number of genes are known to cause familial ALS or inherited ALS-like disorders, and 

polymorphisms in a number of genes have been shown in genome-wide association 

studies to increase the risk of developing SALS (Table 1.1); their possible roles in ALS 

aetiology are discussed in section 1.3. Geographical foci such as Guam and the Japanese 

Kii peninsula have historically shown high incidence rates of the 

ALS/parkinsonism/dementia complex (McGeer & Steele 2011; Kaji et al. 2012), 

suggesting that ALS could be caused by a common genetic or environmental factor. 

1.2.4 Prognosis and treatment strategies 

ALS is currently incurable, and invariably fatal, with the average lifespan only 3-5 years 

from symptom onset. The only drug currently available for treatment of ALS is the 

glutamate blocker, Riluzole (Bensimon et al. 1994; Georgoulopoulou et al. 2013). 

However, the average patient can expect a survival increase of only 3-6 months from 

using Riluzole, and the survival-promoting effects of Riluzole are greater for patients 

with bulbar-onset ALS, and less for those with limb-onset ALS (Bensimon et al. 1994). 

Given that Riluzole does not provide a cure for ALS, treatments are based around the 

amelioration of symptoms in order to maintain quality of life for the patient, often in the 

context of a multidisciplinary clinic (Simmons 2005; Mayadev et al. 2008). 

Interventions such as artificial ventilation can increase survival time (Miller et al. 2009; 

Spataro et al. 2012), while percutaneous endoscopic gastrostomy can maintain nutrition 

despite bulbar difficulties (Spataro et al. 2011).  However, it is clear that novel 

treatments for ALS are required to halt the disease processes and improve outcomes for 

patients. However, as the underlying aetiology of ALS is not yet known, more research 

into the mechanisms of motor neuron degeneration is required. The known pathological 

features of ALS, and a mouse model mimicking human ALS, are discussed overleaf.  
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1.2.5 Pathological features of ALS 

End-stage CNS pathology in ALS patients reveals four pathological hallmarks of ALS. 

First, the extensive loss of motor neuron cell bodies in layer V of the motor cortex, in 

the brainstem motor nuclei, and in the spinal cord anterior horns; motor neuron 

degeneration is thought to resemble programmed cell death rather than necrosis (Martin 

2010). Second, axonal degeneration in CNS white matter tracts such as the corpus 

callosum, medullary pyramids, and corticospinal tract; and also in ventral roots and 

peripheral nerves. Third, the presence of ubiquitinated protein aggregates in 

degenerating motor neurons (Lowe et al. 1989) in four neuropathological patterns: (1) 

SALS and most non-SOD1-linked FALS cases show aggregates containing ubiquitin 

and TDP43; (2) SOD1-linked FALS aggregates contain SOD1 but not TDP43; (3) FUS-

linked ALS aggregates can be basophilic inclusions, or contain FUS but not TDP43; (4) 

C9orf72-linked ALS aggregates contain ubiquitin and TDP43, and may also contain 

p62 and ubiquilin2 (Ravits et al. 2013). Fourth, widespread activation of glial cells can 

be seen in the spinal cord and motor cortex (Kamo et al. 1987; Schiffer et al. 1996). A 

mouse model of ALS, discussed below, is commonly used to examine mechanisms of 

motor neuron degeneration.    

1.2.6 Mouse models of ALS 

1.2.6.1 The SOD1 mouse model of ALS 

Sequence alterations in Cu,Zn-superoxide dismutase (SOD1) were the first mutations to 

be linked with familial ALS (Rosen et al. 1993). Transgenic mice, expressing high 

levels of the mutant human SOD1 protein with a glycine to alanine amino acid 

substitution at position 93 (SOD1
G93A

 mice; hereafter, the term ‘SOD1 mice’ refers to 

this mutation unless otherwise specified), mimic the pathological and clinical hallmarks 

of human ALS (Gurney et al. 1994). Clinically, SOD1 mice develop progressive motor 

deficits characterised by hindlimb weakness, muscle atrophy, and gradual paralysis 

(Gurney et al. 1994). Pathologically, SOD1 mice show extensive degeneration of spinal 

cord motor neuron cell bodies, axonal degeneration in the lateral motor columns, ventral 

roots, and peripheral nerves, and denervation at the neuromuscular junction (Gurney et 

al. 1994). Given the similarities of the SOD1 mouse to both familial and sporadic ALS 

patients, SOD1 mice have been widely used to examine the molecular pathology of 

motor neuron degeneration, and to perform pre-clinical testing of potential therapeutic 
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compounds for human ALS. However, it must be noted that no compounds which gave 

positive effects in the SOD1 mouse model have gone on to perform equally well in 

clinical trials (Benatar 2007). Putative mechanisms of SOD1-mediated ALS will be 

discussed in the aetiology section (Chapter 1.3).   

1.2.6.2 The TDP43 mouse model of ALS 

TDP43 was identified as a major component of ubiquitinated protein aggregates in the 

central nervous system of sporadic ALS patients, non-SOD1-linked familial ALS 

patients, and frontotemporal dementia patients (Neumann et al. 2006; Sreedharan et al. 

2008; Ravits et al. 2013). As TDP43 may represent a common pathway between the 

familial and sporadic forms of ALS, the development of a mouse model of TDP43-

based pathology may be a big step forward for ALS research. However, development of 

an ALS mouse model based on TDP43 has encountered some complications. Mouse 

models expressing prion promoter-driven high levels of human TDP43 with the A315T 

mutation (Prp-hTDP43-A315T) show a loss of motor function and premature death 

(Wegorzewska et al. 2009). However, the full motor phenotype of the Prp-hTPD43-

A315T mouse was thought to be masked by the early development of gastrointestinal 

problems (Esmaeili et al. 2013). A recent study showed intestinal motility problems in 

Prp-hTDP43-A315T mice leading to premature death, and showed that when these 

deficits were alleviated by allowing mice to eat a nutrient gel diet, rather than standard 

laboratory chow, these mice survived for longer and developed pronounced 

neurodegeneration (Herdewyn et al. 2014). The mechanisms by which the 

overexpressed Prp-hTDP43-A315T exerts its toxic actions are not yet known; the 

overexpression of TDP43 appears to lead to aberrant mRNA splicing, potentially 

affecting thousands of downstream gene products, including many genes required for 

synaptic function (Lagier-Tourenne et al. 2012; Xu et al. 2013). Interestingly, the 

TDP43-based ALS mouse model appears to show upper motor neuron pathology more 

readily than lower motor neuron pathology (Igaz et al. 2011; Herdewyn et al. 2014). 

The TDP43 mouse model will provide a complementary model for the current SOD1 

mouse model, and the use of both models side by side will help to determine the 

mechanisms underlying upper and lower motor neuron degeneration. 
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1.3 Etiology of ALS 

The exact causative mechanisms underlying motor neuron degeneration in ALS are not 

currently known. Combined evidence from ALS patients, SOD1 ALS mouse models, 

and cell culture models have implicated a wide range of cellular processes in ALS 

pathology. In this section, the possible contributions of these pathways to the molecular 

pathogenesis of ALS will be discussed. These cellular events include oxidative stress, 

glial activation and neuroinflammation, mitochondrial dysfunction, RNA processing, 

excitotoxicity, protein aggregation and protein degradation dysfunction, and 

intracellular transport deficits. Possible convergence points between different 

pathological mechanisms will also be discussed. 

 

1.3.1 Genetic evidence for molecular pathologies in ALS 

Although only 10% of ALS cases show a heritable component, both sporadic and 

familial ALS share similar clinical and pathological characteristics. The identification of 

mutations causative for familial ALS also contributes to the understanding of pathways 

potentially involved in sporadic disease (Al-Chalabi et al. 2012). Mutations linked to 

various juvenile-onset or adult-onset familial ALS are present in a range of genes; a list 

of genes with contributions to various forms of FALS has been compiled in Table 1.1. 

A full list of genes involved in ALS, as well as ALS-associated risk factors from 

genome-wide association studies, can be found at www.alsod.iop.kcl.ac.uk.  

The genes listed in Table 1.1 have been loosely grouped according to their most well-

understood functions. The genes associated with familial ALS, which in some cases 

have also been associated with sporadic ALS, represent pathways with functions in 

antioxidant response, intracellular transport (encompassing axonal transport and vesicle 

trafficking), protein degradation by the proteasome and by autophagy, RNA processing 

and metabolism, and maintenance of the cytoskeletal protein network (Al-Chalabi et al. 

2012). The involvement of these genes in familial ALS gives clues to the 

pathophysiology of ALS. The current hypotheses on ALS aetiology, encompassing the 

pathways represented by the genetic risk factors listed in Table 1.1, will be discussed in 

more detail in subsequent sections on disease aetiology. 

http://www.alsod.iop.kcl.ac.uk/
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Table 1.1 Genes associated with familial amyotrophic lateral sclerosis 

Gene Gene product (abbreviation) Normal function Mutations are known to cause:  %patients with mutations* 

FALS SALS 

SOD1 Cu,Zn-superoxide dismutase (SOD1) Antioxidant FALS 12% 2-7% 

DCTN1 Dynactin-1 (DCTN1) Axonal transport Familial PMA   

ALS2 Alsin Vesicle trafficking Familial juvenile-onset PLS   

OPTN Optineurin (OPTN) Vesicle trafficking Familial juvenile-onset ALS <1% <1% 

VAPB Vesicle-associated membrane protein 

(synaptobrevin)-associated protein B (VAPB) 

Vesicle trafficking 

ER stress 

FALS   

FIG4 Fig4 homologue, SAC1 lipid phosphatase domain 

containing (S. cerevisiae) (FIG4) 

Vesicle trafficking 

 

FALS; CMT   

VCP Valosin-containing protein (VCP) Protein degradation FALS; IBMPFD 1% 1% 

UBQLN2 Ubiquilin 2 (UBQLN2) Protein degradation FALS <1% <1% 

SQSTM1 Sequestosome 1 (p62) Protein degradation FALS 1% <1% 

SIGMAR1 Sigma non-opioid intracellular receptor 1 

(SIGMAR1) 

ER stress Familial juvenile-onset ALS   

TARDBP TAR-DNA binding protein 43 (TDP43) RNA processing FALS; FTD 4% 1% 

FUS Fused in sarcoma (FUS) RNA processing 

DNA damage response 

FALS 4% 1% 

TAF15 TAF15 RNA polymerase II, TATA box binding 

protein-associated factor, 68kDa (TAF15) 

RNA processing FALS   

ELP3 Elongation protein 3 (ELP3) RNA processing Increased risk of sporadic ALS   
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Table 1.1 (continued) 

Gene Gene product (abbreviation) Normal function Mutations are known to cause:  %patients with mutations* 

FALS SALS 

SETX Senataxin (SETX) RNA processing 

DNA damage response 

Familial juvenile-onset ALS; 

hereditary ataxia 

  

ANG Angiogenin (ANG) Blood vessel formation 

Neuronal protection 

RNAse function 

FALS; increased risk of SALS   

PFN1 Profilin 1 (PFN1) Cytoskeletal network FALS <1% <1% 

PON Paraoxonase (PON) Detoxification of toxins Increased risk of SALS   

NEFH Neurofilament heavy chain (NEFH) Cytoskeletal network FALS; increased risk of SALS   

DAO D-amino-acid oxidase (DAO) Serine metabolism FALS; increased risk of SALS   

SPG11 Spastic paraplegia 11, spatacsin Axonal development 

DNA damage repair 

Familial juvenile-onset ALS   

C9orf72 Chromosome 9 open reading frame 72 (C9orf72) Unknown FALS; FTD 40% 7% 

ALS, amyotrophic lateral sclerosis; CMT, Charcot-Marie-Tooth disease; FALS, familial ALS; FTD, frontotemporal dementia; IBMPFD, inclusion body myopathy and 

Paget’s disease of bone with frontotemporal dementia; PLS, primary lateral sclerosis; PMA, progressive muscular atrophy; SALS, sporadic ALS. *Percentage of ALS cases 

explained by mutations in the given gene (please note: many genes have been associated with ALS, but these gene alterations occur in few patients, and therefore the 

occurrence of these genes in sporadic and familial ALS is likely to be infrequent (<1%); the known percentages for well-investigated genes are presented here). Source: Table 

adapted from information found in the ALSoD database (www.alsod.iop.kcl.ac.uk) and published papers (Schymick et al. 2007; Lill et al. 2011; Al-Chalabi et al. 2012; 

Renton et al. 2014). 

http://www.alsod.iop.kcl.ac.uk/
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1.3.2 Oxidative stress 

1.3.2.1 Reactive oxygen species and oxidative damage 

The mediators of oxidative damage to macromolecules are reactive oxygen species 

(ROS) such as hydroxyl and superoxide radicals. Endogenous ROS are formed during 

normal cellular metabolism; a major source of endogenous superoxide radicals is 

electron leakage from the mitochondrial respiratory chain during oxidative 

phosphorylation (Mates et al. 1999). Superoxide can react with nitric oxide (NO) to 

form peroxynitrite (ONOO-), another highly-reactive species. ROS can cause oxidative 

damage to a variety of cellular macromolecules. Oxidative damage to DNA, left 

unrepaired, can give rise to mutations in the DNA sequence or block transcription from 

the affected gene (Cooke et al. 2003). Oxidative damage to mRNA leads to reduced 

protein expression from the affected sequence (Chang et al. 2008). Protein oxidation 

and nitration, through the reaction of peroxynitrite with tyrosine amino acid residues to 

form nitrotyrosine, can alter protein structure and function (Radi 2013).  

Mammalian cells have a complex array of endogenous antioxidants and antioxidant 

enzymes, to prevent macromolecules from oxidative damage (Mates et al. 1999). 

Antioxidant enzymes include cytosolic Cu,Zn-superoxide dismutase (SOD1) and 

mitochondrial-localised Mn-superoxide dismutase (SOD2), which catalyse the 

conversion of superoxide to hydrogen peroxide; cytosolic catalase, glutathione 

peroxidase, and peroxiredoxin enzymes can then degrade hydrogen peroxide to water 

and molecular oxygen (Mates et al. 1999). A number of endogenous antioxidant 

compounds, such as vitamins A, C, and E, β-carotene, glutathione, and the 

metallothionein (MT) protein family, are potent intracellular scavengers of ROS (Mates 

et al. 1999). Oxidative stress occurs when the endogenous protection mechanisms are 

overwhelmed, resulting in oxidative damage to lipids, nucleic acids and proteins.  

1.3.2.2 Oxidative stress in ALS 

Increased markers of oxidative damage to macromolecules are present in both ALS 

patients and ALS rodent models. ALS patient CNS tissue shows marked evidence of 

carbonyl and nitrotyrosine protein modifications (Bowling et al. 1993; Shaw et al. 

1995; Beal et al. 1997; Ferrante et al. 1997; Sasaki et al. 2000), lipid peroxidation 

(Ferrante et al. 1997; Shibata et al. 2001), DNA damage (Ferrante et al. 1997) and 

mRNA damage (Chang et al. 2008). Markers of oxidative damage can also be found in 
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the cerebrospinal fluid (CSF), plasma and urine of ALS patients (Oteiza et al. 1997; 

Smith et al. 1998; Bogdanov et al. 2000). Markers of oxidative damage are similarly 

elevated in the central nervous system of SOD1 mice (Andrus et al. 1998; Chang et al. 

2008). In particular, lipid peroxidation occurs very early in disease progression in SOD1 

mice (Hall et al. 1998a). The occurrence of oxidative stress is a common factor between 

patients with familial and sporadic ALS, and also in ALS model mice, suggesting an 

important role of oxidative stress in the pathophysiology of ALS.  

1.3.2.3 Oxidative stress mediated by mutant SOD1 protein 

The identification of SOD1 as the first ALS-associated protein was a major driver for 

investigating the role of oxidative stress in ALS (Rosen et al. 1993). Over 170 ALS-

associated mutations have been identified to date in SOD1, accounting for 

approximately 20% of familial ALS cases. The normal function of SOD1 is to catalyse 

the dismutation of superoxide radicals into hydrogen peroxide, and it was initially 

thought that oxidative stress might result from a loss of SOD1 function upon mutation 

(Rosen et al. 1993). The loss of dismutase function may contribute to oxidative stress in 

patients with SOD1-linked FALS (Bowling et al. 1993; Browne et al. 1998). However, 

many ALS-associated mutant SOD1 proteins show minimal changes in dismutase 

activity, suggesting that an aberrant gain of function rather than a loss of function may 

be responsible for SOD1-mediated toxicity (Borchelt et al. 1994; Borchelt et al. 1995; 

Bowling et al. 1995; Rabizadeh et al. 1995). This view is strengthened by the fact that 

SOD1-deficient mice do not develop the same symptoms of motor neuron disease as 

transgenic mice expressing mutant SOD1 protein (Reaume et al. 1996). Given that 

oxidative stress is commonly observed both in ALS patients and in mice expressing 

high levels of mutant SOD1, the question arose as to whether the mutant SOD1 protein 

itself could catalyse the formation of ROS.  

There is some evidence to suggest that the mutant SOD1 protein participates in 

oxidative damage. Many ALS-associated SOD1 mutations result in structural changes 

to the protein (Deng et al. 1993; Wang et al. 2002), with mutant SOD1 showing 

reduced metal-binding ability compared to wild-type SOD1 (Lyons et al. 1996; 

Hayward et al. 2002; Das & Plotkin 2013). Structural changes to the SOD1 protein may 

expose the bound metal ions to novel substrates, resulting in metal-catalysed formation 

of reactive oxygen species (Beckman et al. 1993; Kitamura et al. 2011). Alternatively, it 
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has been demonstrated that metal-deficient mutant SOD1 species have an increased 

capacity for nitration of tyrosine residues with peroxynitrite (Ischiropoulos et al. 1992; 

Crow et al. 1997). Interestingly, oxidised wild type SOD1 protein also shows increased 

peroxidase-mediated nitration of tyrosine residues (Crow et al. 1997). In SOD1 mice, 

SOD1 proteins themselves are highly susceptible to oxidation (Andrus et al. 1998), 

indicating that under conditions of oxidative stress, oxidation of mutant or wild type 

SOD1 may change its function from a ROS scavenger to a mediator of oxidative 

damage, exacerbating disease processes. The metal status of SOD1 also appears 

important, with both zinc-deficient mutant SOD1 and zinc-deficient wild type SOD1 

protein inducing apoptosis in cultured motor neurons (Estevez et al. 1999).  

1.3.2.4 Nitric oxide synthesis in ALS 

Nitric oxide plays an important role in regulating blood flow and synaptic plasticitiy in 

the central nervous system (Iadecola et al. 1994; Holscher 1997). However, nitric oxide 

is also involved in oxidative damage through protein tyrosine nitration by peroxynitrite 

(Drechsel et al. 2012); formation of nitrotyrosine can alter protein enzymatic activity 

and increase the propensity of a protein to aggregate (Reynolds et al. 2007).  

Nitric oxide is synthesised from L-arginine by one of three nitric oxide synthase (NOS) 

enzymes: endothelial NOS (eNOS), neuron-specific NOS (nNOS), or inducible NOS 

(iNOS). eNOS and nNOS are constituitively expressed in endothelial cells and neurons, 

respectively, whereas iNOS expression is induced in glial cells in response to 

inflammatory cytokines or tissue damage (Murphy 2000). Upregulation of nNOS and 

iNOS in neurons and glial cells, respectively, has been observed in the spinal cord of 

ALS patients (Phul et al. 2000; Sasaki et al. 2000). iNOS was also observed in 

degenerating motor neurons, while nNOS expression has been observed in glial cells 

(Sasaki et al. 2000; Anneser et al. 2001). The induction of iNOS and nNOS in both 

neurons and glia indicates scope for increased nitric oxide production in both neuronal 

and glial cells, potentially increasing peroxynitrite formation and protein nitration.  

SOD1 mice show a depletion of nNOS-positive motor neurons (Lee et al. 2009). The 

loss of nNOS-positive motor neurons suggests that lower nNOS expression may confer 

a survival advantage when mutant SOD1 is expressed, possibly due to a lower rate of 

peroxynitrite formation and less oxidative damage to proteins in nNOS-negative motor 

neurons. Additionally, the increased expression of iNOS in glial cells of SOD1 mice 
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(Almer et al. 1999; Lee et al. 2009) may lead to increased NO synthesis in the ALS 

spinal cord. Microglial activation, and the increased production of NO due to alterations 

in the expression of the L-arginine-metabolising enzymes, iNOS and arginase 1 (Arg1), 

will be discussed in more detail in section 1.3.3.2.    

Thus, in both ALS patients and SOD1 mice, the increased production of nitric oxide 

may mediate increased oxidative damage to motor neurons. However, the cytotoxicity 

generated by mutant SOD1 in primary motor neuron cultures and in NSC34 motor 

neuron-like cells cannot be abrogated by inhibition of nitric oxide synthase, indicating 

that SOD1-mediated toxicity is not entirely explained by the formation of peroxynitrite 

species (Doroudchi et al. 2001; Cookson et al. 2002). 

1.3.2.5 The role of mitochondrial dysfunction in oxidative stress 

Mitochondria may play multiple roles in the pathogenesis of ALS, via oxidative stress, 

energy production, apoptosis, and interactions with misfolded SOD1 proteins. In 

relation to oxidative stress, mitochondria are a major source of cellular superoxide; 

superoxide is produced by the reaction of oxygen molecules with electrons which have 

escaped the respiratory electron transport chain (ETC) during oxidative phosphorylation 

(Mates et al. 1999). Inhibition of ETC components can increase the production of 

superoxide radicals, by causing upstream electron carriers to become fully reduced and 

unable to accept electrons from subsequent substrates, increasing electron leakage 

(Pelicano et al. 2003; Turrens 2003). Oxidative damage to ETC proteins can inhibit 

respiration, increasing the amount of superoxide produced and further damaging the 

respiratory chain proteins in a detrimental feedback cycle (Palacios-Callender et al. 

2004). Altered function of the mitochondria and of respiratory enzyme complexes has 

been reported in ALS patients and SOD1 mouse models – the possible role of 

mitochondria in ALS pathogenesis will be explored further in section 1.3.4.  

1.3.2.6 Oxidative stress and exposure to environmental toxins 

Exposures to pesticides and heavy metals are thought to be risk factors for developing 

ALS (Das et al. 2012; Trojsi et al. 2013). The toxicity of various pesticides has been 

linked to cholinesterase inhibition, but is increasingly also linked to oxidative stress 

(Banerjee et al. 2001; Turrens 2003). Similarly, the toxicity of heavy metal exposure is 

partly linked to redox-active and antioxidant-depleting properties of the metal in excess 

(Ercal et al. 2001). Genetic variants in PON genes, encoding paraoxonase enzymes 
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involved in the detoxification of organophosphate pesticides and the prevention of lipid 

oxidation (Shih et al. 1998), are associated with the development of sporadic ALS 

(Saeed et al. 2006; Slowik et al. 2006). Polymorphisms in glutathione synthetase, an 

enzyme which modulates production of the antioxidant glutathione, increased the risk of 

ALS under conditions of exposure to metals or solvents (Morahan et al. 2007). Thus, 

excessive exposure to environmental toxins, or the failure to appropriately detoxify 

toxic compounds, could be linked with the development of ALS due to oxidative stress.  

1.3.2.7 The Nrf2-ARE antioxidant response pathway in ALS 

A key cellular response to oxidative stress is mediated via the translocation of the 

transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus, 

where Nrf2 binds to antioxidant-responsive elements (AREs) in the promoter region of 

antioxidant genes and promotes their transcription (Joshi & Johnson 2012). Genes under 

Nrf2-ARE control include enzymes involved in redox regulation such as superoxide 

dismutase, catalase, peroxiredoxin, thioredoxin, sulfiredoxin, and enzymes for 

glutathione synthesis (Joshi & Johnson 2012). The antioxidant protein metallothionein 

(MT), while containing an ARE sequence in its promoter region, is activated more 

strongly by the related Nrf1 transcription factor than by Nrf2 (Ohtsuji et al. 2008).  

In ALS patient spinal cord motor neurons, Nrf2 mRNA and protein levels were reduced 

compared with those of controls (Sarlette et al. 2008). Expression of mutant SOD1 in 

embryonic neurons depleted Nrf2-controlled glutathione synthesis enzymes and 

increased susceptibility to apoptosis induced by nerve growth factor/p75 signalling 

(Pehar et al. 2007). Interestingly, expression of mutant TDP43 in NSC34 cells 

prevented Nrf2-ARE-mediated induction of antioxidant genes (Duan et al. 2010), 

indicating that reduced oxidative stress responses may contribute to cell death in ALS.  

It is worth noting that the Nrf2-ARE pathways are activated more strongly in astrocytes 

than in neurons, but induction of Nrf2-ARE-mediated genes in astrocytes confers 

protection to neurons (Johnson et al. 2008). The role of astrocytes in ALS will be 

discussed further in section 1.3.3 on glia and neuroinflammation.     

From the evidence presented above, it appears that oxidative stress is involved in 

multiple aspects of ALS pathology. The convergence between oxidative stress and other 

potential pathogenic mechanisms in ALS will be discussed further in section 1.3.9.  
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1.3.3 Glial activation and neuroinflammation 

The mechanisms of neurodegeneration in ALS were originally thought to be cell-

autonomous; that is, intrinsic to the motor neurons themselves. However, there is 

increasing evidence to support the non-cell-autonomous hypothesis, that the 

involvement of non-neuronal cells is a central driver in disease pathology in ALS. 

Neuroinflammation, involving activation of both astrocytes and microglia, controls the 

production of neuroprotective or pro-inflammatory components and may modulate 

motor neuron degeneration in ALS. ALS patients show indications of 

neuroinflammation such as increased cytokine levels in the CSF (Sekizawa et al. 1998; 

Ilzecka et al. 2002), activation of astrocytes and microglia (Evans et al. 2013), and 

infiltration of immune cells from the systemic circulation (Kawamata et al. 1992).  

1.3.3.1 Astrocytes 

Astrocytes are glial cells which normally provide trophic support and maintain optimum 

conditions in the CNS for neuronal growth and survival (Vargas & Johnson 2010). 

Extensive astrogliosis is found in the brain and spinal cord of ALS patients (Kushner et 

al. 1991; Schiffer et al. 1996) and SOD1 mouse models of ALS (Wong et al. 1995; 

Bruijn et al. 1997b; Hall et al. 1998b). Astrogliosis is the abnormal proliferation of 

astrocytes, usually induced by neuronal damage; these proliferating astrocytes form a 

glial scar and produce growth-inhibitory extracellular matrix molecules (Fitch & Silver 

2008). While astrogliosis in ALS was initially thought to be a reactive response 

triggered by the presence of degenerating neurons, some SOD1 animal models of ALS 

have shown astrogliosis preceding motor neuron loss (Wong et al. 1995; Bruijn et al. 

1997b); suggesting that astrocytes may play an active role in neuronal degeneration in 

SOD1-mediated ALS (Vargas & Johnson 2010).  

SOD1-expressing astrocytes can induce motor neuron death in co-cultures (Nagai et al. 

2007) and when transplanted into WT mouse spinal cord in vivo (Papadeas et al. 2011). 

While astrocyte-specific expression of mutant SOD1 protein is not sufficient to induce 

an ALS phenotype (Gong et al. 2000), astrocyte-specific knockdown of mutant SOD1 

expression can delay disease onset in SOD1
G85R

 mice (Wang et al. 2011a) and affect the 

rate of disease progression in SOD1
G37R

 mice (Yamanaka et al. 2008). The difference 

between the two SOD1 mouse models may be due to differences in dismutase activity 

of the SOD1
G86R

 and SOD1
G37R

 mutant proteins (Wang et al. 2011a). Interestingly, 
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cultured astrocytes derived from both sporadic and familial ALS patients can induce 

motor neuron cell death, indicating a common link between SOD1-FALS and sporadic 

ALS (Haidet-Phillips et al. 2011; Meyer et al. 2014). 

SOD1-mediated pathology in SOD1 mice is not limited to motor neurons; SOD1-

positive inclusions can be observed in both motor neurons and astrocytes (Watanabe et 

al. 2001). The same pathological changes caused by mutant SOD1 expression in motor 

neurons, such as oxidative stress, mitochondrial dysfunction, dysregulation of protein 

homeostasis, and inhibition of intracellular transport, could easily be present in SOD1-

expressing astrocytes, and may disrupt normal astrocyte function. Activated astrocytes, 

or astrocytes expressing mutant SOD1 protein, show changes in protein expression 

which may contribute to motor neuron degeneration, as outlined below. 

Astrocytes expressing mutant SOD1 show a decrease in global protein secretion, 

indicating possible impairment of normal trophic support for motor neurons (Benkler et 

al. 2013). However, SOD1 astrocytes secrete increased amounts of mutant SOD1 

protein; this exosome-secreted SOD1 is internalised into motor neurons and causes 

toxicity, although the toxicity of other additional soluble astrocyte-released factors 

cannot be ruled out (Nagai et al. 2007; Basso et al. 2013). Activated astrocytes show 

decreased expression of glutamate reuptake transporters, which may exacerbate 

excitotoxicity in ALS (Bruijn et al. 1997b; Howland et al. 2002). Reactive astrocytes 

show increased production of neuroinflammatory molecules such as iNOS and nitric 

oxide (Cassina et al. 2002; Barbeito et al. 2004), cyclooxygenase and prostaglandins 

(Yiangou et al. 2006), nerve growth factor (Pehar et al. 2004), and pro-inflammatory 

cytokines (Hensley et al. 2006; Lee et al. 2013a), with detrimental effects on the health 

of motor neurons (Cassina et al. 2002; Barbeito et al. 2004; Okuno et al. 2004). 

Reactive astrocytes in ALS also show increased production of Fas ligand and nerve 

growth factor, which may trigger cell death in Fas-expressing or p75 neurotrophin 

receptor-expressing motor neurons (Vargas & Johnson 2010). The neuroinflammatory 

factors produced by astrocytes may play a direct role in motor neuron damage, or may 

cause activation of microglia and exacerbate neuroinflammation (Wang et al. 2011b). 

Thus, there are multiple possible mechanisms by which astrocytes may contribute to 

motor neuron degeneration. 
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1.3.3.2 Microglia 

Microglia are the resident immune cells of the central nervous system. Resting 

microglia constantly sense their environment and are rapidly activated in response to 

cytokines, chemokines, cellular debris, pathogen motifs such as LPS, and factors 

released by degenerating neurons (Dewil et al. 2007; Kraft & Harry 2011). Activated 

microglia can produce variable amounts of growth factors, cytokines, and reactive 

oxygen species, depending on the activating stimulus (Appel et al. 2011).  

Microglial proliferation and activation is widespread in the spinal cord tissue of ALS 

patients (Kawamata et al. 1992; Appel et al. 1993; Henkel et al. 2004), and also in 

SOD1 rat (Graber et al. 2010) and mouse (Hall et al. 1998b; Almer et al. 1999; 

Alexianu et al. 2001) ALS models. Some SOD1 rodent models show microglial 

activation preceding the onset of disease symptoms, implicating a possible causative 

role for neuroinflammation in the development of ALS (Alexianu et al. 2001; Graber et 

al. 2010). Replacement of SOD1
G93A

 microglia with wild type microglia by bone 

marrow transfer, or by microglia-specific knockdown of the mutant SOD1 transgene, 

increases survival time but does not alter disease onset (Boillee et al. 2006; Lee et al. 

2012), indicating that microglial SOD1 expression and microglial activation may 

accelerate the rate of disease progression after onset. However, ablation of proliferating 

microglia from SOD1 mice also caused an exacerbation of disease progression, 

indicating a protective role for microglia in ALS (Audet et al. 2012).  

These seemingly dual neuroprotective and pro-inflammatory roles for microglia may be 

explained by different phenotypes of microglial activation (Appel et al. 2011). As 

occurs with macrophages, microglia can adopt either an M1-like neurotoxic phenotype, 

or an M2-like neuroprotective phenotype, depending on the stimulus inducing 

microglial activation (Evans et al. 2013). The M1 phenotype is characterised by 

increased production of reactive oxygen species such as NO and pro-inflammatory 

cytokines such as TNFα and IL-6, and reduced production of growth factors and anti-

inflammatory cytokines; conversely, the M2 phenotype is characterised by increased 

production of BDNF and anti-inflammatory cytokines such as TGFβ and IL-10, and 

decreased production of pro-inflammatory cytokines (Appel et al. 2011). However, 

these M1 and M2 phenotypes likely exist on a spectrum of possible phenotypes rather 

than as a ‘pure M1’ or ‘pure M2’ phenotype, with the ultimate pro- or anti-
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inflammatory output of individual microglia based on their relative expression of 

protein markers and cytokines, and their reactive oxygen species production.  

In SOD1 mice, recent reports suggest that the M2 microglial phenotype appears to 

prevail until disease onset, and the M1 microglial phenotype appears predominant 

throughout the rapidly-progressing phase of disease (Beers et al. 2011b; Liao et al. 

2012). Cultured microglia expressing SOD1 show increased production of superoxide 

(Ferraiuolo et al. 2011) and decreased neuroprotective abilities (Sargsyan et al. 2011), 

indicating that expression of mutant SOD1 may push microglia towards an M1 

neurotoxic phenotype. In addition, activation of cultured microglia by extracellular or 

motor neuron-secreted mutant SOD1 increases microglial TNFα and ROS production; 

in turn, the factors produced by these SOD1-activated microglia are cytotoxic to motor 

neurons (Urushitani et al. 2006; Roberts et al. 2013).  

The toxicity of activated microglia to motor neurons may involve the production of NO 

(Thonhoff et al. 2012). Two enzymes involved in the metabolism of L-arginine, 

Arginase1 (Arg1) and iNOS, control NO production from microglia; increasing 

expression of Arg1 reduces NO production, while increasing expression of iNOS 

increases NO production (Andrew & Mayer 1999; Gobert et al. 2000; Ash 2004). M1-

activated microglia produce more NO than M2-activated microglia (Lewis et al. 2012a); 

the M2 phenotype displays higher levels of Arg1 and lower levels of iNOS, while the 

M1 phenotype displays lower levels of Arg1 and higher levels of iNOS (Colton 2009). 

Therefore, Arg1 and iNOS are putative markers of the microglial activation phenotype.   

The M1/M2 activation status of spinal cord microglia in SOD1 mice is also influenced 

by infiltrating T-cells (Beers et al. 2008), with T-regulatory cells promoting the 

neuroprotective M2 microglial phenotype (Beers et al. 2011a). The modulation of CNS 

microglial phenotype by T cells from the systemic circulation indicates that the 

peripheral immune system may play a role in determining microglial activation in ALS 

mice. Interestingly, ALS patients show alterations in circulating immune components 

such as plasma cytokine levels (Houi et al. 2002; Cereda et al. 2008) and T lymphocyte 

levels (Banerjee et al. 2008), which would suggest alterations of the adaptive immune 

system in ALS. 

Together these data suggest that neuroinflammation, mediated by astrocytes, microglia, 

and infiltrating immune cells, may prove detrimental to motor neurons in ALS.   
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1.3.4 Mitochondrial dysfunction  

Mitochondria are responsible for oxidative phosphorylation, intracellular calcium 

buffering, lipid metabolism, and regulation of apoptosis (Karbowski & Neutzner 2012). 

Damage to the mitochondria or the electron transport chain (ETC) results in a loss of 

ATP production (Berg et al. 2002), increased ROS production (Turrens 2003), loss of 

intracellular calcium buffering (Ferraiuolo et al. 2011), collapse of mitochondrial 

membrane potential, and ultimately cell death via apoptosis (Beltran et al. 2002). In 

ALS, mitochondrial alterations may be present in both motor neurons and muscle fibres.  

1.3.4.1 Mitochondrial alterations in ALS motor neurons 

ALS patients show reduced mitochondrial numbers in spinal cord motor neurons, and 

exhibit axonal clustering of mitochondria compared with controls (Sasaki & Iwata 

1996; Wiedemann et al. 2002). Spinal cord mitochondria from ALS patients are 

reported to have reduced levels and activity of electron transport chain protein 

complexes (Borthwick et al. 1999; Wiedemann et al. 2002; Ilieva et al. 2007); in some 

ALS patients, this may be explained by alterations in the mitochondrial DNA encoding 

ETC subunit proteins (Dhaliwal & Grewal 2000; Wiedemann et al. 2002).  

SOD1 mouse models of ALS show mitochondrial vacuolation and degeneration in 

spinal cord motor neurons (Wong et al. 1995; Kong & Xu 1998), with activation of the 

mitochondrial permeability transition pore thought to play a role in mitochondrial 

damage (Martin 2010). Spinal cord mitochondria from SOD1 rodents also show 

decreased ETC activity and increased ROS production, even preceding disease onset 

(Browne et al. 1998; Jung et al. 2002; Panov et al. 2011). Decreased ETC activity in 

symptomatic SOD1 mice is thought to result from decreased respiratory capacity, rather 

than uncoupling of the ETC from ATP synthesis (De Vos et al. 2012). Interestingly, 

there are reports of increased respiratory activity in the frontal and motor cortices of 

patients with SOD1-linked familial ALS (Bowling et al. 1993; Browne et al. 1998), 

which may indicate that disease processes differ between human and rodent SOD1-

linked ALS.  

1.3.4.2 Mitochondrial alterations in ALS muscle 

Mitochondria from the muscle tissue of ALS patients show impaired respiratory 

function, with reduced activity of ETC enzymes (Wiedemann et al. 1998; Krasnianski 

et al. 2005; Crugnola et al. 2010). Deficits in muscle mitochondrial function may be 
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minor at early stages of disease, but increase as the disease progresses (Echaniz-Laguna 

et al. 2002; Echaniz-Laguna et al. 2006). An energy deficit in skeletal muscle may 

induce denervation of neuromuscular junctions (Dupuis et al. 2004; Dupuis et al. 2009).  

Mitochondrial dysfunction and disorganisation has also been reported in the muscle of 

several animal model systems expressing ALS-related proteins. ATP production was 

decreased in isolated muscles from SOD1 mice (Leclerc et al. 2001; Derave et al. 

2003), with a pre-symptomatic upregulation of mRNA for alternative ATP-generating 

pathways in SOD1
G86R

 mice indicating a possible compensatory response to 

mitochondrial dysfunction (Gonzalez de Aguilar et al. 2008). Additionally, ALS-

associated mutations in vesicle-associated membrane protein (synaptobrevin)-associated 

protein B (VAPB) prevent the secretion of its major sperm protein domain from 

Drosophila melanogaster neurons (Tsuda et al. 2008); the loss of this secreted ligand 

leads to motor impairment in Caenorhabditis elegans due to altered mitochondrial 

positioning and function in the muscle (Han et al. 2013); thus, alterations in muscle 

mitochondrial function may predispose to ALS.  

1.3.4.3 Interaction between mutant SOD1 and mitochondria 

Two SOD isoforms are normally present in the mitochondria to detoxify superoxide 

radicals produced by the ETC: SOD1 in the intermembrane space, and SOD2 (Mn-

SOD) in the mitochondrial matrix (Turrens 2003). However, ALS-linked mutant SOD1 

shows abnormal binding to the cytosolic face of the outer mitochondrial membrane 

(MM) (Mattiazzi et al. 2002; Liu et al. 2004; Ferri et al. 2006; Vande Velde et al. 

2008), and to the inner MM in the intermembrane space (Mattiazzi et al. 2002; 

Ahtoniemi et al. 2008), with detrimental effects on mitochondrial function. Mutant 

SOD1 bound to the inner MM may produce ROS which damage ETC components 

(Ahtoniemi et al. 2008), potentially inhibiting respiration. Oligomeric forms of mutant 

SOD1 are associated with induction of apoptosis when bound to the outer MM are 

(Rabizadeh et al. 1995). Mutant TDP43 also causes mitochondrial injury in NSC34 

cells (Duan et al. 2010), indicating a possible shared mechanism between SOD1- and 

TDP43-mediated ALS. 

Thus, evidence from both ALS patients and ALS mouse models indicates that 

pathogenesis of ALS may be due to disruption of mitochondrial function in either motor 

neurons or skeletal muscle.   
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1.3.5 RNA processing dysfunction 

Sporadic ALS patients show widespread changes in motor neuron gene expression and 

mRNA splicing (Rabin et al. 2010). A number of RNA-processing proteins are 

associated with ALS and other motor neuron diseases, as discussed below.   

1.3.5.1 TDP43 and FUS 

TAR-DNA binding protein 43 (TDP43) and fused in sarcoma (FUS) are both 

DNA/RNA binding proteins which are major components of ubiquitinated protein 

inclusions in ALS and in frontotemporal dementia (FTD) (Neumann et al. 2006; 

Kwiatkowski et al. 2009; Vance et al. 2009). Mutations in TDP43 and FUS are 

associated with both familial and sporadic forms of ALS (Sreedharan et al. 2008; 

Kwiatkowski et al. 2009; Vance et al. 2009). TDP43 and FUS are usually localised to 

the nucleus, and have roles in multiple aspects of RNA processing such as transcription, 

exon splicing, microRNA biogenesis, and mRNA transport and stabilisation (Strong et 

al. 2007; Lagier-Tourenne & Cleveland 2009; Buratti et al. 2010). ALS-associated 

mutations cause mislocalisation of TDP43 and FUS to the cytoplasm, with their 

subsequent aggregation (Kabashi et al. 2008; Winton et al. 2008; Igaz et al. 2009; 

Kwiatkowski et al. 2009; Vance et al. 2009). Cytoplasmic aggregation of ALS-linked 

mutant TDP43 or FUS implies the development of pathology in ALS by either 

impairment of normal RNA processing, or sequestration of RNA and RNA-binding 

components in the cytoplasm (Siddique & Ajroud-Driss 2011; Lagier-Tourenne et al. 

2012). 

TDP43 and FUS are involved in the processing of thousands of pre-mRNA transcripts 

(Polymenidou et al. 2011), and regulate splicing of several genes involved in neuronal 

differentiation, survival, and synaptic function (Polymenidou et al. 2011; Tollervey et 

al. 2011; Lagier-Tourenne et al. 2012). TDP43 and FUS also show roles in stabilisation 

of mRNA for transport down the axon for localised protein translation (Kanai et al. 

2004; Wang et al. 2008; Fallini et al. 2012). Additionally, FUS plays a role in DNA 

damage repair (DDR) by recruiting DDR proteins to the sites of double-stranded breaks 

(Rulten et al. 2013; Wang et al. 2013). Aggregated pathological TDP43 proteins, and C-

terminal TDP43 fragments, appear hyperphosporylated and insoluble (Neumann et al. 

2006; Kabashi et al. 2008; Winton et al. 2008; Igaz et al. 2009), supporting the idea that 
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the loss normal TDP43 RNA-processing function may lead to the development of ALS 

(Polymenidou et al. 2011), 

However, aggregated cytoplasmic TDP43 displays aberrant interactions with other 

cytoplasmic components (Ravits et al. 2013), and may sequester essential RNA-

processing components such as heterogeneous nuclear ribonuclear proteins, with which 

TDP43 would normally associate in a spliceosome complex (Buratti et al. 2005). 

TDP43 aggregation may indirectly affect RNA processing by sequestration of other 

RNA-processing proteins. Thus, the loss of RNA-binding function by TDP43 and FUS, 

or their sequestration of other RNA-binding components in the cytoplasm, may play a 

role in ALS pathogenesis.  

1.3.5.2 Other RNA-binding proteins associated with motor neuron diseases  

Several proteins with various functions in RNA metabolism are associated with the 

development of motor neuron diseases other than ALS.  

Mutations in senataxin (SETX), a DNA/RNA helicase with roles in the initiation and 

termination of mRNA transcription, the resolution of DNA /RNA hybrids, and mRNA 

splicing (Suraweera et al. 2009; Skourti-Stathaki et al. 2011; Bennett et al. 2013; Yuce 

& West 2013), are associated with childhood- and juvenile-onset forms of ALS and 

hereditary ataxia (Chen et al. 2004; Moreira et al. 2004). Varying lengths of poly-

glutamine repeat expansions in the RNA-binding protein, Ataxin2, lead to 

spinocerebellar ataxia type 2 and increased risk for sporadic ALS (Imbert et al. 1996; 

Pulst et al. 1996; Sanpei et al. 1996; Elden et al. 2010). Angiogenin, mutations in which 

are associated with ALS (Greenway et al. 2004), requires its RNAse activity to provide 

neuroprotection in response to stress (Aparicio-Erriu & Prehn 2012). Reduced 

expression of survival of motor neuron (SMN) protein, required for the formation of 

small nuclear ribonucleoproteins in the spliceosome complex, causes spinal muscular 

atrophy (Lefebvre et al. 1995; Fischer et al. 2011). Variations in the FUS-related RNA-

processing protein, TAF15, are linked with ALS risk (Ticozzi et al. 2011).  

Finally, the ALS/FTD-associated hexanucleotide repeat expansion in C9orf72 produces 

repeat-containing RNA, which forms nuclear RNA foci (DeJesus-Hernandez et al. 

2011). These foci sequester RNA-binding proteins and prevent normal RNA processing, 

causing cellular toxicity (Lee et al. 2013b).  
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Together, these data suggest a role for impaired RNA processing in ALS aetiology.  

1.3.6 Excitotoxicity 

In the motor system, signals are transmitted from upper to lower motor neurons through 

the release of the neurotransmitter glutamate from the pre-synaptic membrane. 

Glutamate activates glutamate receptors on the lower motor neuron, allowing influx of 

calcium into the cell. Calcium activates many intracellular pathways, so intracellular 

calcium levels are tightly controlled. Excitotoxicity is the excessive stimulation of 

ionotropic glutamate receptors, overloading intraneuronal calcium-buffering capacity 

and leading to cell death through calcium-dependent pathways (Ferraiuolo et al. 2011; 

Bae et al. 2013). Excitotoxicity is implicated in ALS pathogenesis, with increased levels 

of neuronal calcium reported in ALS patients (Siklos et al. 1996).  

Furthermore, the only effective drug which can mildly slow disease progression in ALS 

patients is Riluzole (Bensimon et al. 1994), a drug which is thought to act by altering 

multiple aspects of glutamate dynamics around the synapse (Martin et al. 1993; 

Lamanauskas & Nistri 2008; Cheah et al. 2010). Together, these data suggest that 

excitotoxicity plays an aetiological role in ALS. Glutamate excitotoxicity in ALS could 

be mediated by deficits in glutamate-reuptake proteins, by excessive glutamate release 

from upper motor neurons, or by intrinsic factors specific to motor neurons. 

1.3.6.1 Deficits in glutamate handling 

In line with deficits in glutamate handling, the distribution of glutamate appears to be 

altered in ALS. ALS patients show elevated levels of glutamate in both CSF (Rothstein 

et al. 1990) and plasma (Plaitakis et al. 1988), but show decreased glutamate levels 

within the spinal cord tissue, implicating redistribution of glutamate from the 

intracellular to the extracellular compartment (Plaitakis et al. 1988).  

Glutamate is normally cleared from the synaptic cleft by astrocytes expressing the 

glutamate transporter, excitatory amino acid transporter 2 (EAAT2). The glial 

expression of EAAT2 was reduced in the spinal cord of ALS patients (Rothstein et al. 

1995), and the expression level of the mouse EAAT2 homologue was reduced in the 

SOD1 mouse spinal cord (Bendotti et al. 2001). These data indicate that faulty 

glutamate reuptake from the synaptic cleft in ALS may be responsible for the increased 
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levels of glutamate in ALS CSF, potentially leading to excitotoxicity in ALS via 

excessive activation of glutamate receptors on the post-synaptic membrane.  

1.3.6.2 Excessive glutamate release and glutamate receptor stimulation 

In line with excessive glutamate release from upper motor neurons, cortical motor 

neurons exhibit hyperexcitability (Bae et al. 2013). Excessive firing of upper motor 

neurons would lead to increased glutamate levels in the synaptic cleft, chronically 

stimulating glutamate receptors on lower motor neurons and potentially leading to 

excitotoxicity. The hyperexcitability of motor neurons could be due to loss of inhibitory 

synaptic inputs from cortical or spinal interneurons (Sunico et al. 2011; Turner & 

Kiernan 2012; Bae et al. 2013).  

Excitotoxicity may be exacerbated in ALS by elevated levels of the NMDA receptor co-

agonist, D-serine, which have been reported in both SOD1 mouse and ALS patient 

spinal cord (Sasabe et al. 2007). Familial ALS in some patients is associated with 

mutations in D-amino oxidase, which normally degrades D-serine (Mitchell et al. 

2010), strengthening an association between excitotoxicity and ALS. 

Additionally, the diet of the Chamorro people of the Mariana Islands can be high in 

cyanobacteria-derived glutamate receptor agonist and excitotoxin, β-methylamino-L-

alanine, implicating the dietary ingestion of an environmental excitotoxin  in the 

historical high prevalence of ALS in Guam (Papapetropoulos 2007; Chiu et al. 2011).  

1.3.6.3 Motor neuron-specific vulnerability to excitotoxicity 

Motor neurons may be specifically vulnerable to glutamate-mediated excitotoxicity. 

This may be partly due to low expression of calcium-binding proteins, which might 

limit ability of motor neurons to handle a large calcium influx (Appel et al. 2001). 

Motor neurons express low levels of the calcium-impermeable GluR2 AMPA receptor 

subunit (Kawahara et al. 2003). Additionally, motor neurons in ALS show deficient 

editing of the GluR2 AMPA receptor subunit mRNA at the Q/R site, resulting in ALS-

affected motor neurons expressing calcium-permeable AMPA receptors (Kawahara et 

al. 2004; Kwak & Kawahara 2005). These motor neuron-specific factors may 

predispose motor neurons to excitotoxic cell death, and underlie the selective 

degeneration of motor neurons and the relative sparing of sensory neurons in ALS (Van 

Den Bosch et al. 2000).  
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Therefore, multiple lines of evidence suggest excitotoxicity as a possible mechanism for 

motor neuron degeneration in ALS.  
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1.3.7 Protein misfolding and protein degradation pathways 

1.3.7.1 Misfolded proteins in ALS 

Ubiquitinated protein aggregates are a pathological hallmark of both sporadic and 

familial ALS. Polyubiquitin chains target misfolded proteins for degradation through 

the proteasome or via autophagy. The protein products of many ALS-related genes are 

found within ubiquitinated aggregates in the cytoplasm of motor neurons in ALS, 

notably SOD1, TDP43, FUS, p62, OPTN, UBQLN2 and neurofilaments (Ravits et al. 

2013). ALS-linked mutations in SOD1 and TDP43 proteins increase their propensity for 

misfolding and aggregation (Bruijn et al. 1998; Johnston et al. 2000; Wang et al. 2002; 

Furukawa & O'Halloran 2005; Johnson et al. 2009). In addition, the ALS-associated 

C9orf72 repeat expansion (DeJesus-Hernandez et al. 2011) produces RNA which 

undergoes repeat-associated non-ATG translation (Zu et al. 2011) to produce dipeptide 

repeat proteins, which form cytoplasmic aggregates (Mori et al. 2013).  

Misfolded and aggregated proteins could perturb normal neuronal metabolism in a 

number of ways. The aggregation of proteins into cytoplasmic inclusions may impair 

the normal function of the aggregated proteins, sequester other protein or mRNA 

species which interact with the aggregated proteins, or overwhelm protein degradation 

mechanisms (Blokhuis et al. 2013). Mammalian cells have several mechanisms for 

dealing with the presence of unfolded proteins. Misfolded proteins in the endoplasmic 

reticulum (ER) trigger ER stress responses, while ubiquitinated proteins in the 

cytoplasm are degraded by the proteasome or through autophagy (Xu et al. 2005). Some 

proteins found in ALS aggregates have normal functions in protein degradation 

pathways, such as p62, OPTN, and UBQLN2 (Fecto & Siddique 2011). The formation 

of aggregates containing ubiquitinated proteins, including those with roles in protein 

degradation pathways, links faults in protein degradation pathways with the 

development of ALS pathology (Fecto & Siddique 2011).  

1.3.7.2 ER stress and the unfolded protein response 

The ER is an important site for the folding of nascent polypeptides (Schroder 2008). 

Accumulation of unfolded proteins within the ER (ER stress) triggers a series of events 

intended to clear the ER of unfolded proteins, the unfolded protein response (UPR) (Xu 

et al. 2005). Initially, the UPR upregulates protein chaperones involved in protein 

folding, and promotes removal of unfolded proteins from the ER for degradation by the 
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proteasome; however, prolonged ER stress triggers pro-apoptotic pathways (Xu et al. 

2005). Induction of the UPR, and of apoptotic mediators, can be observed in the spinal 

cords of sporadic ALS patients and SOD1 rodents (Ilieva et al. 2007; Atkin et al. 2008). 

Mutations in VCP, a protein which mediates removal of misfolded proteins from the ER 

for degradation (Raasi & Wolf 2007; Yang et al. 2013), are associated with familial 

ALS (Johnson et al. 2010). VAPB, whose mutations are also associated with ALS 

(Nishimura et al. 2004), is thought to induce the UPR in response to ER stress 

(Kanekura et al. 2006; Suzuki et al. 2009; Chen et al. 2010). Mutations in SIGMAR1, 

another ER-stress-modulating protein, have been implicated in familial ALS (Al-Saif et 

al. 2011; Ha et al. 2011), although a recent study suggests that SIGMAR1 mutations 

segregate closely with c9orf72 expansions (Belzil et al. 2013). Impairment of UPR 

pathways may exacerbate ER stress and induce cell death in ALS.  

1.3.7.3 The ubiquitin-proteasome system and the autophagy system 

The proteasome complex mediates the unfolding and degradation of polyubiquitinated 

proteins (Jung & Grune 2013), while autophagy engulfs protein aggregates and 

organelles in membrane-bound vesicles for degradation through fusion with lysosomes 

(Chen et al. 2012). Autophagy degrades long-lived proteins, but excessively-induced 

autophagy can lead to autophagic cell death (Nagley et al. 2010; Chen et al. 2012). 

Several proteins whose mutations are associated with ALS are involved in protein 

degradation pathways. VCP is required for the maturation of autophagic vesicles (Ju et 

al. 2009). UBQLN2 binds to polyubiquitin chains and to the proteasome, directing the 

degradation of ubiquitinated proteins (Deng et al. 2011); ubiquilins are also required for 

the formation of autophagic vesicles (N'Diaye et al. 2009). p62 is also involved in the 

transport of ubiquitinated proteins to the proteasome and to autophagic vesicles 

(Seibenhener et al. 2004; Pankiv et al. 2007; Fecto et al. 2011). Charged multivesicular 

body protein 2B (CHMP2B) acts in an endosomal sorting complex in the formation of 

multivesicular bodies in autophagy (Parkinson et al. 2006; Rusten & Simonsen 2008). 

FIG4 may mediate formation and clearance of autophagic vesicles (Chow et al. 2009; 

Ferguson et al. 2009), while OPTN functions as an adaptor molecule facilitating 

autophagosome-lysosome fusion (Maruyama et al. 2010; Tumbarello et al. 2013).  As 

multiple genes involved in ER stress and protein degradation pathways show ALS-

linked mutations, accumulation of misfolded proteins and protein degradation pathway 

dysfunction could play a role in ALS pathogenesis.  



______________________________________________Chapter 1 – Literature Review 

______________________________________________________________________ 

______________________________________________________________________ 
 

29 

 

1.3.8 Intracellular transport deficits  

Intracellular transport to deliver cellular components to their required location is a vital 

function for all living cells; motor neurons, however, have a particularly high demand 

for intracellular transport in order to sustain the distal portions of their long axons 

(Collard et al. 1995). Deficits in axonal transport may result in insufficient distal 

delivery of organelles and proteins required for axonal maintenance and synaptic 

function, insufficient recycling of faulty synaptic components, and blockage of trophic 

factor signalling pathways (Breuer et al. 1987). The delivery of cytoskeletal proteins, 

and their proper assembly at the distal axon, is essential for axonal maintenance in 

motor neurons (Lariviere & Julien 2004). At the cell body, transport deficits may 

interfere with ER-Golgi transport and with autophagy. Trafficking of organelles, 

vesicles, and proteins around the cell body and along axons is mediated by molecular 

motor proteins moving along cytoskeletal protein tracks (Hirokawa 1998). Intracellular 

transport deficits appear to play a role in the pathophysiology of ALS – both 

anterograde and retrograde axonal transport are decreased in ALS patients (Breuer et al. 

1987; Sasaki & Iwata 1996), and SOD1 and TDP43 mouse models of ALS also show 

impairment of axonal transport (Zhang et al. 1997; Murakami et al. 2001; Magrane et 

al. 2013).  

1.3.8.1 Molecular motor proteins in ALS 

Dyneins and kinesins are the motor proteins responsible for retrograde and anterograde 

transport, respectively. The dynein molecular motor is a large complex of proteins 

including dynein subunits and dynactin, which plays a role in facilitating interaction 

between the dynein motor, the cargo and the microtubule track (Waterman-Storer et al. 

1995; Waterman-Storer et al. 1997). Both ALS patients and SOD1 mice show 

decreased levels of dynactin mRNA (Kuzma-Kozakiewicz et al. 2013b), and mutations 

of dynactin subunits cause a slowly-progressive MN disease in humans (Puls et al. 

2003; Munch et al. 2004) and in mice (Hafezparast et al. 2003; Laird et al. 2008). 

Additionally, ALS patients show lower expression of kinesin family proteins than 

controls (Pantelidou et al. 2007; Kuzma-Kozakiewicz et al. 2013a), showing that ALS 

may be associated with the disruption of both retrograde and anterograde transport. The 

mutant SOD1 protein may interact with kinesin-associated proteins or with subunits of 

the dynein/dynactin complex (Ligon et al. 2005; Zhang et al. 2007; Tateno et al. 2009), 

disrupting their normal roles in axonal transport.   
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1.3.8.2 Cytoskeletal protein alterations in ALS 

Cytoskeletal elements in motor neurons comprise microtubules, intermediate filaments, 

and actin microfilaments, and alterations to these proteins are associated with ALS.  

1.3.8.2.1 Microtubule alterations 

Microtubules provide structural support for the neuron and form the network along 

which molecular motor proteins move, but may become destabilised in ALS. 

Microtubule-associated proteins (MAPs), which stabilise microtubules, are 

downregulated or show production of aberrant isoforms in SALS patients (Binet & 

Meininger 1988; Jiang et al. 2005), while aberrant isoform production and increased 

phosphorylation of the MAP tau are observed in SOD1 mouse models (Farah et al. 

2003; Usarek et al. 2006). Disruptions of the microtubule cytoskeleton may play a role 

in ALS, through the loss of cytoskeletal structure or the inhibition of axonal transport.  

1.3.8.2.2 Intermediate filament alterations 

Intermediate filament proteins – neurofilaments, peripherin, and α-internexin – anchor 

organelles, maintain cytoarchitecture, and prevent tension on the axon (Szaro & Strong 

2010). The correct expression level and phosphorylation status of peripherin and of the 

neurofilament triplet protein subunits are important for the normal formation of 

neurofilament networks (Straube-West et al. 1996; Beaulieu et al. 2000; Robertson et 

al. 2001). Intermediate filaments are normally moved down the axon via anterograde 

axonal transport, but are frequently observed in motor neuron cell body inclusions and 

in proximal axonal spheroids in ALS patients (Migheli et al. 1993) and SOD1 mice 

(King et al. 2011), suggesting improper intermediate filament trafficking in ALS.      

Mutations in neurofilament and peripherin genes are associated with a small number of 

sporadic ALS patients; these mutations may promote intermediate filament aggregation 

and impair axonal transport, through aberrant isoform production or through 

hyperphosphorylation (Figlewicz et al. 1994; Al-Chalabi et al. 1999; Gros-Louis et al. 

2004; Leung et al. 2004; Xiao et al. 2008). Expression of aberrant neurofilament 

isoforms in mice leads to neurofilament aggregation and motor neuron degeneration 

(Cote et al. 1993; Lee et al. 1994; Collard et al. 1995). The presence of accumulated 

neurofilaments in the proximal axon may impair the process of axonal transport as a 

whole, by sequestering motor proteins or by physically blocking the axon (Zhang et al. 

1997).  
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1.3.8.3 Vesicle trafficking deficits in ALS 

Several proteins involved in vesicle transport and intracellular protein trafficking are 

associated with ALS (Ferraiuolo et al. 2011; Soo et al. 2011). ALS patient motor 

neurons show fragmentation of the Golgi apparatus, indicating possible disruption of 

the intracellular protein shuttling pathways (Gonatas et al. 1992; Okamoto et al. 2010). 

Many ALS-associated gene mutations are in proteins involved in vesicle trafficking.  

Actin filaments and their associated myosin motor proteins, as well as microtubules and 

their dynein/kinesin motor proteins, facilitate transport of membrane-bound vesicles 

between intracellular compartments (Chevalier-Larsen & Holzbaur 2006; Laird et al. 

2008). Mutations in profilin1, a protein required for actin filament formation, are 

associated with familial ALS (Wu et al. 2012). Mutations in alsin, a protein involved in 

endosomal trafficking and fusion, and actin cytoskeleton rearrangement in growth cones 

(Topp et al. 2004), are linked to juvenile-onset primary lateral sclerosis (Yang et al. 

2001). FIG4, a phosphoinositide phosphatase which mediates the retrograde trafficking 

of endosomal vesicles to the Golgi network, shows mutations in sporadic and familial 

ALS patients (Chow et al. 2009). Mutations in OPTN were identified in familial and 

sporadic ALS patients (Maruyama et al. 2010); OPTN is involved in vesicle and 

lysosome trafficking, and protein secretion from the Golgi apparatus, in conjunction 

with Rab8 and myosin IV proteins (Sahlender et al. 2005). 

VAPB is an integral membrane protein which localises to the ER and to ER-Golgi 

intermediates, and is involved in vesicle transport (Skehel et al. 2000; Tran et al. 2012). 

Mutations in VAPB are associated with ALS, and VAPB expression may be reduced in 

the motor neurons of ALS patients (Nishimura et al. 2004; Teuling et al. 2007). 

Mutations in VAPB may perturb its interaction with microtubules, disorder the ER, 

contribute to the fragmentation of the Golgi apparatus and prevent transport of proteins 

on the ER-Golgi axis (Mitne-Neto et al. 2007; Teuling et al. 2007; Gkogkas et al. 2008; 

Fasana et al. 2010; Papiani et al. 2012). Additionally, expression of mutant SOD1 

inhibits the classical ER-Golgi secretory pathway (Atkin et al. 2013), and the normal 

function of C9orf72 may relate to membrane trafficking (Levine et al. 2013). 

Thus, several proteins involved in ALS have vital functions in both axonal transport and 

intracellular protein and vesicle trafficking, suggesting transport deficits contribute to 

the pathophysiology of ALS.  
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1.3.9 Convergent pathological mechanisms in ALS aetiology 

The major pathophysiologies involved in ALS are oxidative stress, neuroinflammation 

and glial activation, mitochondrial dysfunction, RNA processing, excitotoxicity, protein 

aggregation and dysfunction of protein degradation, and inhibition of intracellular 

transport. The presence of multiple molecular mechanisms causing similar phenotypes 

suggests a downstream convergence of mechanisms (Ravits et al. 2013). While each 

possible cause of ALS has been considered separately in the previous sections, these 

cellular processes are in reality interwoven, with alterations in a given pathway having 

downstream effects on other ALS-related pathways. This section will attempt to outline 

some of the convergence points which may be related to ALS pathophysiology.   

1.3.9.1 Oxidative stress as a convergence point 

Oxidative stress is intricately linked to a number of other pathways affected in ALS, 

occurring either upstream of, or as a consequence of, other ALS-associated pathways. 

First, oxidative stress could contribute to protein aggregation. Protein oxidation and 

nitration can increase the propensity of proteins such as SOD1 to aggregate and can 

induce improper neurofilament assembly and aggregation (Chou et al. 1996; Crow et al. 

1997; Sasaki et al. 2000; McLean & Robertson 2011). An oxidative environment may 

also promote the formation of protein aggregates through inter-molecular disulphide 

bond formation (Banci et al. 2008), with protein aggregation placing pressure on the 

proteasome and autophagy systems. Oxidative stress can cause ER stress (Soo et al. 

2011); interestingly, mutant proteins undergoing several rounds of oxidative folding in 

the ER due to their incorrect folding may increase the production of ROS from the ER 

as well as triggering ER stress (Schroder 2008).  

Second, oxidative stress is both an upstream cause of and a downstream effect of 

mitochondrial dysfunction. Oxidative damage can inhibit the mitochondrial respiratory 

chain enzymes, causing mitochondrial dysfunction (Poderoso et al. 1996; Drechsel et 

al. 2012), and contributing to mitochondrial permeability transition pore opening and 

apoptosis (Chernyak 1997). In turn, respiratory chain inhibition increases the formation 

of reactive oxygen species and further contributes to oxidative stress (Turrens 2003).  

Third, oxidative stress is linked to excitotoxicity. Oxidative damage to the glutamate 

reuptake transporter EAAT2 in astrocytes may inactivate the receptor, prevent 

glutamate clearance from the synaptic cleft, and contribute to excitotoxicity (Trotti et al. 
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1999). Stimulation of NMDA receptors can induce the production of superoxide 

radicals (Lafon-Cazal et al. 1993; Al-Chalabi et al. 1995), and elevated calcium 

concentration can cause isolated mitochondria to produce hydroxyl radicals (Dykens 

1994), providing a link between excitotoxicity and oxidative stress. 

Fourth, oxidative stress may play a role in glial cell activation. Nitric oxide is a key 

effector of astrocyte-mediated toxicity to motor neurons (Ferri et al. 2004; Vargas & 

Johnson 2010), while Fas ligand released from activated astrocytes causes ROS-

mediated damge in motor neurons through respiratory chain inhibition (Beltran et al. 

2002). Oxidative stress also acts as a trigger for neuroinflammation (Mates et al. 1999).  

Fifth, protein and RNA oxidation may contribute to global protein dysregulation and 

dysfunction. Oxidative or nitrative damage to proteins can alter normal protein structure 

and function (Reynolds et al. 2007); oxidative stress could conceivably impact on any 

of the other pathways involved in ALS by oxidative damage to the relevant proteins. As 

mentioned earlier, mRNA oxidation can prevent normal protein expression (Chang et 

al. 2008); uncontrolled oxidative stress therefore has the potential to alter the expression 

levels of proteins involved in multiple cellular pathways.  

Much of the information on ALS-associated pathways comes from research on animal 

models expressing mutant SOD1 protein, so it is reasonable to question their validity 

when applied to non-SOD1 ALS. However, the gain of toxic properties by oxidised 

wild-type SOD1 protein (Deng et al. 2006; Furukawa et al. 2006; Ezzi et al. 2007), and 

production of oxidative stress associated with mutant TDP43 (Duan et al. 2010), 

suggest that motor neurons in both sporadic ALS and SOD1-mediated familial ALS 

may experience common degenerative pathways downstream of mutant or oxidatively-

damaged SOD1 protein, further implicating oxidative stress in the pathogensis of ALS. 

1.3.9.2 Mitochondrial dysfunction as a convergence point 

Mitochondrial dysfunction is closely linked to oxidative stress, as outlined above, but is 

also linked to excitotoxicity and to activation of the autophagy system. Increased 

calcium levels from excitotoxic stimuli contribute to mitochondrial dysfunction, loss of 

the electrochemical gradient across the inner mitochondrial membrane, mitochondrial 

permeability transition pore formation, and apoptosis (Martin 2010). The autophagy 

system functions in mitochondrial quality control, by degrading damaged mitochondria 
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to limit their production of ROS (Dodson et al. 2013). Widespread dysfunction of 

mitochondria may overwhelm the normal capacity of the autophagy system, and impair 

the autophagy-mediated degradation of protein aggregates.  

Mitochondrial dysfunction and the associated loss of ATP production can impair 

energy-dependent cellular processes necessary for normal cellular function; in motor 

neurons, the energy demands are large due to the large cytoplasmic volume and the 

requirement to maintain appropriate axonal transport to and from the neuromuscular 

junction (Ferraiuolo et al. 2011; Ludolph et al. 2012). The energy deficit created by 

dysfunction of mitochondria could potentially impact on any of the ATP-dependent 

cellular processes which are linked with ALS.  

1.3.9.3 Excitotoxicity as a convergence point 

The role of excitotoxicity and elevated calcium levels have been discussed in the 

context of oxidative stress and mitochondrial dysfunction; but intracellular calcium 

levels also modulate other pathways related to ALS. Intracellular calcium levels are a 

regulator of axonal transport, with elevated calcium dissociating molecular motors from 

microtubules (Breuer & Atkinson 1988a, 1988b; Morotz et al. 2012). Neurofilament 

phosphorylation and aggregation can also be mediated by glutamate-stimulated 

activation of calcium-sensitive kinases (Al-Chalabi et al. 1995; Takeuchi et al. 2005), 

implicating excitotoxicity as a potential upstream mechanism of impaired intracellular 

transport. Additionally, excitotoxicity and calcium dysregulation can induce ER stress 

and autophagy (Tarabal et al. 2005; Ilieva et al. 2007; Soo et al. 2011), possibly due to 

dysfunction of calcium-sensitive folding proteins within the ER (Prell et al. 2013).  

1.3.9.4 Glial activation as a convergence point 

Astrocytes are intricately linked with excitotoxicity due to their modulation of the 

expression of glutamate reuptake transporters (Vargas & Johnson 2010). Interactions 

between glial cells and motor axons may underlie the formation of axonal spheroids 

(King et al. 2011) – microglial activation in culture induces both the accumulation of 

neurofilaments and the decrease of axonal transport by molecular motors, through the 

activation of NMDA receptors (Takeuchi et al. 2005). TNFα can also disrupt kinesin 

function, by activation of intracellular kinase pathways (De Vos et al. 2000).  
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1.3.9.5 Intracellular transport as a convergence point 

Intracellular transport impairments in ALS may be linked to functional deficits in the 

axon terminal, excitotoxicity and protein degradation impairment. Impaired intracellular 

transport of mitochondria and other essential synaptic components to the axon terminal 

may result in an energy deficit or impaired function at the neuromuscular junction, 

causing the axon terminal to detach from the muscle in a ‘dying-back’ mechanism 

(Cozzolino & Carri 2012). It is possible that altered intracellular trafficking pathways 

may result in reduced internalisation of glutamate receptors from the post-synaptic 

membrane, contributing to excitotoxicity (Hirling 2009). Motor proteins contribute to 

the trafficking of autophagic vesicles, and thus play a role in autophagic clearance of 

misfolded and aggregated proteins (Soo et al. 2011; Ikenaka et al. 2013).  

1.3.9.6 Protein degradation pathways as convergence points 

The argument for protein aggregation and protein degradation pathways as a common 

downstream pathway is led by the ubiquitous presence of aggregated proteins in ALS, 

and the presence of ALS-associated mutations in a number of genes encoding protein 

degradation pathway proteins (Fecto & Siddique 2011). The accumulation of misfolded 

proteins, and resultant ER stress, could alter ER-mitochondrial calcium dynamics, 

making motor neurons more susceptible to excitotoxic stress (Ferraiuolo et al. 2011).  

1.3.9.7 RNA processing as a convergence point 

Deficits in RNA processing could impact a wide range of ALS-associated pathways. In 

particular, TDP43 and FUS appear to regulate splicing of several genes encoding ALS-

associated, autophagy-related proteins – CHMP2B, FIG4, OPTN, VAPB, and VCP 

(Ling et al. 2013). Aberrant astrocytic RNA processing may additionally impair the 

function of the EAAT2 astrocytic glutamate transporter, contributing to glutamate 

excitotoxicity (Lin et al. 1998). In addition, oxidative stress and ER stress may increase 

the formation of neuronal stress granules, sequestering RNA-binding proteins and their 

associated RNAs into aggregates (Kedersha et al. 1999; Bentmann et al. 2013; Walker 

et al. 2013). Pathological events resulting in irreversible protein aggregation in stress 

granules, or inability to reverse stress granule formation, may result in TDP43- or FUS-

containing aggregates in ALS (Ling et al. 2013). 
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1.3.9.8 Summary of convergence points 

In summary, many pathways appear to be involved in the disease pathogenesis of ALS, 

and there is much cross-talk between the various pathways involved. However, as 

outlined above through the convergence of ALS-linked pathways, oxidative stress does 

appear to stand out as a highly involved pathway. Oxidative stress is a potential cause of 

mitochondrial dysfunction, protein aggregation, ER stress, autophagy and glial 

activation; oxidative stress is also produced downstream of mitochondrial dysfunction, 

glial activation, and ER stress. The oxidative stress seen in mouse models of ALS and in 

ALS patients may be a primary initiator of disease processes or a downstream 

consequence of disease processes. The targeting of oxidative stress may therefore be an 

efficient way to 1) prevent primary oxidative damage to motor neurons and their 

organelles, and 2) prevent the downstream oxidative damage caused by upstream 

aetiological events such as mitochondrial dysfunction. Antioxidant-based therapies may 

be useful in preventing damage to cells and organelles in ALS. 
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1.4 Therapeutic strategies to combat ALS 

As demonstrated by the multitude of convergence points in ALS (section 1.3.9), there 

are many pathways that are thought to be involved in ALS aetiology and many possible 

therapeutic strategies to combat these pathways. Multi-functional therapeutic strategies, 

involving compound mixtures or compounds known to have multiple functions, may be 

the best approach in providing a treatment for ALS. Some potential therapeutic options 

in the treatment of ALS, namely Gemals compound, metallothionein protein, and Emtin 

peptide derivatives of metallothionein, are discussed briefly below.  

1.4.1 Gemals 

Gemals is a cocktail of small molecules – fatty acids, amino acids, vitamins, and 

antioxidants – that has been shown to have beneficial effects on the survival of a SOD1 

rats, but has not yet been tested in SOD1 mice (Nicaise et al. 2008). Gemals is a kind of 

‘Endotherapia’ therapy, intended to have antioxidant, immunomodulatory, and 

neuroprotective activity for the amelioration of complex neurodegenerative disease 

(Geffard et al. 2010). The compounds comprising Gemals are listed in Table 3.1, and 

the chemical composition of the drug mixture is detailed in Table 3.2.  

1.4.2 Metallothionein and Emtins 

Metallothioneins (MTs) are small, metal-binding proteins rich in cysteine residues 

(Aschner 1996). MT proteins act as potent antioxidants (Thornalley & Vasak 1985), and 

the MT-1 and MT-2 isoforms (MT-1/2) are known to have neuroprotective properties:  

MT-1/2 is upregulated by astrocytes and secreted extracellularly in response to neuronal 

damage (Chung et al. 2008a); extracellularly applied MT-1/2 promotes neurite 

outgrowth in vitro (Chung et al. 2003; Kohler et al. 2003) and in vivo after neuronal 

injury (Chung et al. 2003; Fitzgerald et al. 2007). MT-1/2 is known to be protective in 

the context of ALS: genetic alteration of MT-1/2 levels in SOD1 mice show a positive 

correlation between MT-1/2 expression and survival time (Nagano et al. 2001; 

Puttaparthi et al. 2002; Tokuda et al. 2013). Therefore, administration of MT-2 may be 

able to increase survival time in SOD1 mice. Emtins are peptide derivatives of the 

human MT2 protein that show similar neuroprotective properties to the parent MT2 

molecule (Ambjorn et al. 2008; Asmussen et al. 2009a; Sonn et al. 2010). Emtins have 

an additional advantage of readily being able to cross the intact blood-brain barrier 

(Sonn et al. 2010), and may also be appropriate therapeutic molecules for ALS.  
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1.5 Research questions and aims 

Given the many pathways involved in the aetiology of ALS, multi-purpose therapeutics 

which have some component addressing oxidative stress may provide the best defence 

for motor neurons against the development of ALS pathology. In seeking to understand 

which therapeutic targets might be important in ALS, the contribution of microglial 

phenotype to oxidative stress, through the production of nitric oxide, should be further 

investigated. In addition, given that oxidative stress is a common pathology between 

sporadic and familial ALS, multi-functional therapies with some antioxidant properties 

such as Gemals and metallothionein treatment should be trialled in SOD1 mice as 

potential treatments for ALS.   

 

Research Question 1:  

How does the expression of the neuroinflammatory markers, Arg1 and 

iNOS, change over time in SOD1 mice and what does this tell us about 

the role of neuroinflammation and oxidative stress in ALS pathogenesis? 

 

Aim 1: To characterise spinal cord microglia changes in Arg1 and iNOS expression 

over time in SOD1 mice, and to temporally correlate these changes with 

development of pathology in motor neurons, induction of oxidative stress 

responses, and functional decline over time. This aim is addressed in Chapter 2.  

 

Aim 2: To establish baseline measures of functional decline in SOD1 mice over time, to 

determine measures of disease progression for later pre-clinical studies. This 

aim is addressed in Chapter 2. 
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Research Question 2:  

Will treatment with an antioxidant therapy for ALS, Gemals, extend 

survival time and prevent the decline of functional ability in SOD1 mice? 

 

Aim 3: To examine the effects of Gemals treatment on SOD1 mice in a pre-clinical 

study, with treatment starting from the age of disease onset and continuing until 

disease endpoint, with survival and maintenance of functional ability as outcome 

measures. This aim is addressed in Chapter 3.  

 

 

Research Question 3:  

Will treatment with the neuroprotective protein MT2, or its  

peptide derivatives, or increasing spinal cord MT levels through  

treadmill exercise, extend survival time and prevent the  

decline of functional ability in SOD1 mice? 

 

Aim 4: To examine the effects of pre-symptomatic MT2 administration, or treadmill 

exercise, on disease onset and survival time in SOD1 mice. This aim is 

addressed in Chapter 4.  

 

Aim 5: To examine the effects of post-symptom-onset administration of the MT2 

derivatives, Emtin peptides, on survival time in SOD1 mice. This aim is 

addressed in Chapter 5. 
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Characterisation of neuroinflammatory and 

functional changes over time in SOD1 mice 
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2.1 Background  

2.1.1 Microglial activation status in ALS 

Microglial activation is a major pathology in the spinal cord of ALS patients and SOD1 

mice, as discussed in Chapter 1. Microglial activation is commonly seen in the spinal 

cord of SOD1 animal models at disease onset, and increases with disease progression 

(Hall et al. 1998b; Almer et al. 1999; Chiu et al. 2008; Gowing et al. 2008; Beers et al. 

2011b; Yang et al. 2011), although microglial activation has also been demonstrated to 

precede disease onset in some studies (Alexianu et al. 2001; Graber et al. 2010; Sanagi 

et al. 2010). Microglial activation may play an active role in disease progression, as 

replacing SOD1 microglia with WT microglia in SOD1 mice modulated the rate of 

disease progression (Boillee et al. 2006; Lee et al. 2012). SOD1 mice are thought to 

show a biphasic pattern of disease symptoms, with a brief plateau after onset where 

symptoms progress slowly, followed by a more rapid decline in functional ability (Beers 

et al. 2011a). This switch, from slowly-progressing to rapidly-progressing phases of 

disease, is thought to correspond to a switch between anti-inflammatory and pro-

inflammatory phenotypes of microglial activation (Beers et al. 2011b; Liao et al. 2012).  

Microglia can show two phenotypes of activation, which are best characterised by 

protein expression and cytokine production. The M1-like, neurotoxic, pro-inflammatory 

phenotype of microglial activation is characterised by the elevated expression of pro-

inflammatory cytokines and production of reactive oxygen species and nitric oxide 

(NO); whereas the M2-like, neuroprotective, anti-inflammatory phenotype of microglial 

activation is characterised by increased expression of anti-inflammatory cytokines and 

reduced production of free radicals (Colton 2009; Appel et al. 2011).   

The microglial production of NO is a key factor in the toxicity of activated microglia to 

motor neurons (Zhao et al. 2004; Zhao et al. 2006; Thonhoff et al. 2012). Microglial 

production of NO is controlled by the inducible nitric oxide synthase enzyme (iNOS), 

which converts L-arginine to L-citrulline, producing NO in the process (Andrew & 

Mayer 1999). L-arginine, the iNOS substrate, is also metabolised by another enzyme, 

arginase-1 (Arg1), which converts L-arginine to L-ornithine and urea but does not 

produce NO (Ash 2004). The relative expression of these two L-arginine-metabolising 

enzymes, iNOS and Arg1, determines how much NO will be produced from a given cell 

(Gobert et al. 2000). Accordingly, high levels of Arg1 and low levels of iNOS are 
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associated with the M2-like, neuroprotective microglial phenotype, while high levels of 

iNOS and low levels of Arg1 are associated with the M1-like, neurotoxic microglial 

phenotype (Colton 2009). 

The reported switch between M2-like and M1-like microglial phenotypes in mouse 

models of ALS has mainly been investigated using cytokine mRNA expression levels 

(Beers et al. 2011a). It is therefore of interest to determine whether changes in iNOS 

and Arg1 protein expression also occur over time in the microglia of SOD1 mice, and 

how these changes are temporally related to the development of motor neuron pathology 

and functional deterioration, as any such protein changes may be reflective of a change 

in microglial phenotype. As oxidative damage from microglial-produced NO is thought 

to injure motor neurons, the expression of the antioxidant-response protein, 

metallothionein-1/2 (MT-1/2), should also be examined in the spinal cord of SOD1 

mice to examine the evolution of oxidative stress over the disease course. The timing of 

oxidative stress response induction may relate to the production of NO by microglia, 

which in turn may be increased by any shift from an M2-type (Arg1-expressing) 

microglial phenotype to an M1-type (iNOS-expressing) microglial phenotype.       

 

2.1.2 Measuring disease progression in SOD1 mice 

As the underlying aetiology of ALS is as yet unknown, current therapeutic strategies 

involve addressing the known pathologies which occur in ALS patients and SOD1 

mouse models, such as oxidative stress and neuroinflammation. Addressing these 

pathologies may limit disease processes, and slow disease progression. It is therefore 

necessary to track the functional decline in SOD1 mice over time, in order to evaluate 

any beneficial effects of therapeutic compounds. The age of onset, rate of symptom 

progression, and survival times vary in SOD1 mice according to the level of mutant 

SOD1 protein expression, gender, and genetic background strain (Alexander et al. 2004; 

Heiman-Patterson et al. 2005; Acevedo-Arozena et al. 2011; Bame et al. 2012).  

The SOD1 colony maintained at the University of Tasmania expresses the SOD1 

transgene on a congenic C57BL/6 background. As this colony was to be used for 

evaluation of potential disease therapeutics (see Chapters 3, 4 and 5), it was necessary to 

establish baseline measurements of functional decline over time.  
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2.1.3 Aims and hypothesis 

This study had two aims. First, to characterise the spinal cord microglia changes in 

Arg1 and iNOS expression over time in SOD1 mice, and to examine these changes in 

the temporal context of the appearance of pathological changes in motor neurons, 

induction of oxidative stress responses, and onset of functional deficits in SOD1 mice. 

Second, to establish baseline measures of functional decline in SOD1 mice compared to 

their wild-type littermates which could be used in future studies to monitor disease 

onset and progression.   

Hypothesis: Microglia will shift their expression of L-arginine metabolising 

enzymes with disease onset: prior to disease onset, the expression of Arg1 will be 

prevalent, while the expression of iNOS will be prevalent after disease onset, 

indicating a shift in the spectrum of microglial phenotypes from an M2-

predominant to an M1-predominant phenotype in the lumbar spinal cord of SOD1 

mice.  

Two cohorts of SOD1 mice and their WT littermates were examined in this chapter. 

Spinal cord samples were obtained from the first cohort at various ages between 6 and 

25 weeks of age, and these samples were immunostained for the glial markers Iba1, 

tomato lectin, and GFAP, for the M1/M2 markers Arg1 and iNOS, for the pathological 

markers ubiquitin, neurofilament, and protein from the human SOD1 transgene, and for 

the antioxidant protein MT-1/2. The second cohort of SOD1 and WT mice were 

monitored for body weight, stride pattern, wire hang duration ability, and neurological 

score between 6 and 25 weeks of age, in order to characterise functional aspects of 

disease progression.   
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2.2 Methods 

2.2.1 Animal ethics 

All procedures and protocols involving animals were approved by the University of 

Tasmania’s Animal Ethics Committee (permit numbers A10995 and A11958) and were 

carried out in accordance with the Australian Code of Practice for the Care and Use of 

Animals for Scientific Purposes.   

 

2.2.2 Maintenance and genotyping of SOD1 mice 

2.2.2.1 Strain and colony maintenance 

High copy-number founder SOD1 mice, expressing the human SOD1
G93A

 transgene on 

a C57Bl/6J background, were originally obtained from The Jackson Laboratory (B6.Cg-

Tg(SOD1*G93A)1Gur/J, Strain #004435, ME, USA) and a breeding colony of 

heterozygotes was maintained by the University of Tasmania Animal Services. Animals 

were housed in OptiMICE cages (Animal Care Systems, CO, USA) in a controlled 

environment with a 12 hour light/dark cycle and a temperature range of 21-23°C. All 

mice had access to standard laboratory rodent chow and water ad libitum. As SOD1 

mice experienced progressive paresis with disease progression, food pellets were placed 

directly on cage bedding at later stages of disease to ensure continued nutrition.    

2.2.2.2 Genotyping 

Mice carrying the SOD1 transgene, and their non-transgenic wild type (WT) littermates, 

were identified by polymerase chain reaction (PCR) and gel electrophoresis, and copy 

number homogeneity was assessed by quantitative real time PCR (qPCR).  

2.2.2.2.1 DNA extraction 

Tail-tip samples were collected upon weaning by University of Tasmania Animal 

Services staff. Genomic DNA was extracted using the GenElute Mammalian Genomic 

DNA Miniprep Kit (Sigma-Aldrich, NSW, Australia) according to the manufacturer’s 

instructions, with the exception that all centrifugation steps were performed in a 

benchtop microcentrifuge (Heraeus Biofuge Pico) at 10,000g.     
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2.2.2.2.2 PCR and gel electrophoresis for the presence of the SOD1
G93A

 transgene: 

PCR reactions (12.75µL) were prepared containing 1x GoTaq Green Master Mix 

(Promega, WI, USA), 1µL of genomic DNA template, nuclease-free water (Qiagen, 

VIC, Australia), and 0.39µM forward and reverse primers for either the human SOD1 

(hSOD1) or the murine interleukin-2 gene (mIL-2) (GeneWorks, SA, Australia) (Table 

2.1). 

PCR was performed using a Corbett Research thermocycler (Qiagen). Reactions were 

held at 95°C for 3 minutes, then cycled through 95°C for 30 seconds, 60°C for 30 

seconds and 72°C for 30 seconds (35 cycles), then held at 72°C for 5 minutes, 30°C for 

3 minutes and 24°C for 30 seconds. PCR products were transferred to an agarose gel for 

electrophoresis, containing 1% w/v agarose (Bioline, NSW, Australia) and 0.01% v/v 

SYBR-Safe (Life Technologies, CA, USA) in tris-acetate-EDTA (TAE) buffer (40mM 

tris [Sigma-Aldrich], 20mM acetic acid [Merck Millipore, VIC, Australia], 1mM 

ethylenediaminetetraacetic acid [EDTA] disodium salt [Sigma-Aldrich]). The PCR 

products were electrophoresed in TAE buffer for 30 minutes at 100V using a Horizon58 

electrophoresis rig (Biometra, NI, Germany) and PowerPac power source (BioRad, CA, 

USA), and band presence/absence was assessed under UV light in a gel doc imager 

(BioRad). SOD1 mice showed a PCR product from both the mIL-2 and the hSOD1 

reactions, while WT mice showed only a PCR product from the mIL-2 reaction (Table 

2.1). Positive controls (SOD1), negative controls (WT) and no-template controls were 

included in each PCR run. SOD1 mice were then assessed for transgene copy number.  

2.2.2.2.3 qPCR for SOD1
G93A

 transgene copy number 

Homogeneity of transgene copy number in the genomic DNA of SOD1 mice was 

assessed using multiplex quantitative PCR. qPCR reactions (12.5µL) contained 1x 

KAPA ProbeFast Universal Master Mix (KAPA Biosystems, MA, USA), 0.15µM 

forward and reverse primers for human SOD1 (hSOD1), 0.50µM forward and reverse 

primers for murine apolipoprotein-B (mApoB), 0.16µM labelled oligonucleotide probes 

for hSOD1 and mApoB (Table 2.1) (GeneWorks), and nuclease-free water (Qiagen). 

qPCR was performed using a RotorGene Q real-time PCR cycler (Qiagen) – reactions 

were held at 95°C for 5 minutes, and cycled through 95°C for 15 seconds and 60°C for 

15 seconds (45 cycles); a ramped melt curve from 60°C to 99°C was then performed. 

Positive (SOD1), negative (WT) and no-template controls were included with each run. 

All SOD1 samples were run in triplicate.  
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The relative take-off points of the hSOD1 and mApoB fluorescence curves were 

compared using the comparative quantitation tool in the RotorGene Q Series software 

v2.0.2 (Qiagen). The delta-CT (ΔCT) value, representing the difference in the take-off 

points for the hSOD1 and mApoB curves (measured as the number of cycles), was 

compared to that of SOD1 positive control DNA. Average ΔCT values for all mice were 

recorded, for inclusion in statistical analyses of survival if necessary; SOD1 mice 

showing very low ΔCT values were excluded from trials. 

 

Table 2.1 Primers and probes for genotyping and copy number check 

Primers for PCR / gel electrophoresis genotyping 

Gene Primers PCR product 

hSOD1 
F: 5’-caccaagtagacaggctctc-3’ 

R: 5’-cagtaaccttagttccgcag-3’ 

321bp from last intron
1
  

 

mIL-2 
F: 5’-ctaggccacagaattgaaagatct-3’  

R: 5’-gtaggtggaaattctagcatcatcc-3’ 

324bp from exon 3
2
  

 

Reagents for qPCR copy number check 

Gene Primers PCR product 

hSOD1 
F: 5’-gggaagctgttgtcccaag-3’ 

R: 5’-caaggggaggtaaaagagagc-3’ 
88bp from last intron 

mApoB 
F: 5’-cacgtgggctccagcatt-3’ 

R: 5’-tcaccagtcatttctgcctttg-3’  
74bp from exon 26 

Gene Labelled oligonucleotide probe 

hSOD1 6-FAM-ctgcatctggttcttgcaaaacacca-BHQ-1                    

mApoB HEX-ccaatggtcgggcactgctcaa-BHQ-1 

1
(Rosen et al. 1993); 

2
(Schorle et al. 1991) 

 

2.2.3 Spinal cord changes between SOD1 and WT mice 

Characterisation of spinal cord changes between SOD1 and WT mice was carried out 

under ethics permit A11958. To examine temporal changes in oxidative and microglial 

markers in the spinal cord of SOD1 mice, a tissue library of spinal cord samples from 

SOD1 and WT mice from 6 to 25 weeks of age was created by Dr Bill Bennett.  
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2.2.3.1 Preparation of a time series of spinal cord tissue 

Lumbar spinal cord samples were obtained from SOD1 mice and WT mice at 6, 10, 14, 

18 and 22 weeks of age. Three animals per genotype per time point were used, with the 

exception of 2 WT mice at 6 weeks of age and 4 SOD1 and 4 WT mice at 22 weeks of 

age. A mixture of male and female mice was used. Spinal cords of three SOD1 mice 

were obtained at disease endpoint (a 20% reduction of their pre-disease maximum body 

weight, at 24.8±0.1 weeks of age); three WT mice at 25-26 weeks of age were used as a 

comparison for endpoint SOD1 mice.  

At the appropriate time point, animals were deeply anaesthetised with sodium 

pentobarbitone (60mg/kg, i.p.). When all reflexes were absent, mice were transcardially 

perfused with 10mL of 10mM phosphate-buffered saline (PBS; 2mM sodium phosphate 

monobasic; 8mM sodium phosphate dibasic, 154mM sodium chloride [all Sigma-

Aldrich]; pH 7.4) followed by 20mL of 4% w/v paraformaldehyde (PFA, Sigma-

Aldrich) in PBS. The T12-L1 vertebrae, containing the L2-L5 lumbar spinal cord 

segment, were dissected and post-fixed in 4% w/v PFA overnight at 4°C, then stored in 

PBS with 0.01% w/v sodium azide (Fluka, Sigma-Aldrich). The cervical vertebrae, 

containing the cervical spinal cord, were collected from a subset of mice (2 WT and 2 

SOD1 mice at 10 weeks of age, 3 WT and 2 SOD1 mice at 14 weeks of age, and 3 WT 

and 3 SOD1 mice at 18 and 22 weeks of age).    

The vertebrae surrounding the spinal cord were decalcified by incubation of the sample 

in fast decalcification solution (5% v/v nitric acid [Fluka, Sigma-Aldrich] with 0.05% 

w/v urea [Sigma-Aldrich] in distilled water) for 2 hours at room temperature; 

decalcified samples were washed thoroughly with distilled water, then stored in 50-70% 

ethanol until being dehydrated and embedded in paraffin wax using an automated tissue 

processor (Leica Biosystems ASP200-S, NSW, Australia). Wax sections (5µm) were 

cut on a microtome (Microm HM325, BW, Germany), mounted on Flex slides (Dako, 

CA, USA), dried at 37°C overnight and then stored at room temperature. Prior to 

immunohistochemistry, paraffin-embedded sections were dewaxed in two changes of 

xylene, and rehydrated through a series of graded ethanols to distilled water.     

2.2.3.2 Immunostaining of SOD1 and WT spinal cord tissue 

Normal goat serum (NGS), Mouse on Mouse immunolabelling (MOM) kit, 3,3’-

diaminobenzidine substrate (DAB), biotin/streptaviding blocking kit, and biotinylated 
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Lycopersicon esculentum (tomato) lectin were all obtained from Vector Laboratories 

(CA, USA). Primary antibodies were obtained from various sources (Table 2.2). 

AlexaFluor (AF)-conjugated secondary antibodies, AF-conjugated streptavidins and 

Nuclear Yellow (NY) dye were obtained from Molecular Probes (Life Technologies). 

Unless otherwise specified, all steps were carried out at room temperature in a 

humidified light-safe chamber; buffer solutions for antibodies and washing were either 

PBS or PBS containing 0.05% v/v Tween-20 (Sigma-Aldrich) (PBS-T) unless otherwise 

specified; slides were washed in buffer solution between each immunolabelling step. 

2.2.3.2.1 Microglia and inflammatory markers 

Microglia were labelled with an antibody against ionised calcium binding adaptor 

molecule 1 (Iba1) (Imai et al. 1996), or with tomato lectin (TL) (Herbert et al. 2012) 

(Table 2.2). Tomato lectin binds (N-acetylglucosamine)2-4 residues, and in addition to 

microglia also appeared to label endothelial cells and motor neurons, which could be 

identified as such by their different morphology.  

To detect Iba1, citrate buffer antigen retrieval was employed. Slides were immersed in a 

10mM citrate buffer (2mM citric acid, 8mM sodium citrate [both from Sigma-Aldrich], 

pH 6) and heated in a pressure cooker (Russell Hobbs, VIC, Australia) at 100% power 

for 6 minutes followed by 60% power for 14 minutes, then allowed to cool. Sections 

were then blocked in 10% v/v NGS for 1 hour, incubated with rabbit anti-Iba1 (1:500) 

for 2 hours, biotinylated goat-anti-rabbit (1:500) for 1 hour, and streptavidin-AF488 

(1:500) for 1 hour; nuclei were stained with NY (1:10000) for 15 minutes.  

Tomato lectin labelling was carried out in conjunction with immunolabelling for 

putative markers of microglial status, Arg1 (M2-like microglia) and iNOS (M1-like 

microglia) (Colton 2009). Citrate buffer antigen retrieval, as above, was required for 

Arg1 immunoreactivity but not that of iNOS. The MOM kit was used according to the 

manufacturer’s instructions for Arg1 or iNOS detection. Slides were blocked with 

MOM blocking reagent for 1 hour, then rinsed in PBS and incubated with MOM diluent 

for 5 minutes. The diluent was removed but the section was not washed in buffer; 

primary antibody was applied in fresh MOM diluent and incubated either overnight at 

4°C (Arg1, 1:100) or for 2 hours at room temperature (iNOS, 1:100). Primary antibody 

was detected by incubation with MOM biotinylated anti-mouse secondary antibody 

(1:250) for 20 minutes and streptavidin-AF488 (1:500) for 1 hour. Any free 



_________________________Chapter 2 – Neuroinflammatory and functional changes 

______________________________________________________________________ 

______________________________________________________________________ 
 

49 

 

streptavidin-binding sites were then blocked with either the biotin/streptavidin blocking 

kit as per the manufacturer’s recommendations, or with avidin and biotin solutions as 

follows: sections were incubated in diluted, filtered egg white solution (1 egg white in 

80-100mL distilled water) for 20 minutes, washed in water, incubated with 0.001% w/v 

biotin (Sigma-Aldrich) solution for 20 minutes, and washed in water again. Sections 

were then incubated with biotinylated tomato lectin (1:500) for 1 hour and with 

streptavidin-AF594 (1:500) for 2 hours; nuclei were stained with NY (1:10000) for 15 

minutes, and slides were coverslipped with fluorescence mounting medium (Dako).   

2.2.3.2.2 Pathological, astroglial, and oxidative stress markers 

For qualitative analysis, pathological alterations in motor neurons were detected using 

antibodies against ubiquitin (Ubi, 1:1000), dephosphorylated neurofilaments (SMI32, 

1:500), and human SOD1 protein (hSOD1, 1:500); astrocytes were detected using an 

antibody against glial fibrillary acidic protein (GFAP, 1:1000) (Table 2.2). Sections 

were blocked with 5% v/v NGS for 1 hour, incubated with the appropriate primary 

antibody for 1 hour, then with goat anti-mouse-AF or goat anti-rabbit-AF secondary 

antibody (1:500) for 1 hour and with NY (1:10000) for 15 minutes, then coverslipped 

with fluorescence mounting medium (Dako).  

For quantitative analysis, the antioxidant protein MT-1/2 was detected using DAB 

immunohistochemistry. The MT-1 and MT-2 isoforms are structurally and functionally 

similar (West et al. 2008); an antibody recognizing both isoforms (MT-1/2, Table 2.2) 

was used. Endogenous peroxidases were quenched with 3% hydrogen peroxide (Sigma-

Aldrich) in PBS for 20 minutes. Sections were blocked with MOM kit blocking reagent 

for 1 hour, incubated with MOM diluent for 5 minutes followed by mouse anti-MT-1/2 

(MT, 1:300, Table 2.2) in MOM diluent for 1 hour. Primary antibody was detected with 

biotinylated MOM anti-mouse-IgGs (1:250) in MOM diluent for 10 minutes and HRP-

conjugated streptavidin (1:1000) for 1 hour. The sections were exposed to DAB for 1 

minute, then counterstained with nuclear fast red for 3 minutes, dehydrated with graded 

alcohols, cleared in xylene and coverslipped with Pertex mounting medium. 

Double immunolabelling was performed sequentially using the above procedures where 

appropriate; for double immunolabelling of GFAP and MT-1/2, the quenching step was 

omitted from the MT-1/2 procedure, and the biotinylated MOM anti-mouse secondary 

was detected with AF-conjugated streptavidin instead of HRP-conjugated streptavidin.  
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2.2.3.2.3 Image analysis and cell counts 

Fluorescence images were captured on an Olympus BX50 microscope (Olympus, VIC, 

Australia) and CoolSNAP-HQ2 camera (Photometrics, AZ, USA) using NIS-Elements 

software (Nikon Instruments, NY, USA). Bright field images were captured using a 

Leica DM2500 microscope and DFC495 camera (Leica Biosystems, NSW, Australia).  

To quantify the microglial markers Iba1, TL, Arg1 and iNOS, immunostaining was 

performed on 3 sections from each lumbar spinal cord, separated by a minimum 

distance of 45µm. The spinal cord ventral horn (VH) was defined as the region of grey 

matter on the ventral side of a horizontal line crossing through the central canal, 

bounded by a vertical line through the sagittal plane. VH images for cell counts were 

taken at 400x magnification and cells were counted using ImageJ software (National 

Institutes of Health, MD, USA) and Adobe CS6 (Adobe Systems Incorporated, CA, 

USA). Counts from the right and left ventral horns of each section were averaged and 

divided by the area in square millimetres. To avoid pseudoreplication, the average count 

from three sections was used as a single measurement per animal for statistical analysis.  

Semi-quantitative analysis of the expression level of Arg1 and iNOS was performed in a 

subset of SOD1 microglia. For both Arg1 and iNOS, one section was randomly selected 

from each animal at 6 weeks (n=3) and 22 weeks of age (n=4). The cell bodies of eight 

microglia, showing the strongest Arg1 or iNOS staining in these sections, were outlined 

in ImageJ, and the percentage area occupied by positive Arg1 or iNOS labelling was 

calculated. To account for variations in intensity and background between sections, 

positive labelling in 8-bit black and white images was defined as any pixels having a 

grey value greater than 3.5 standard deviations above the mean grey value of the image.  

To quantify the number of MT-1/2 positive cells, immunostaining was performed on 

one section from the lumbar spinal cord of each animal. MT-1/2-positive cell bodies 

were counted in each spinal cord region outlined in the diagram shown in Figure 2.7A. 

 At each time point, SOD1 and WT counts were compared using an independent 

samples t-test. A Welch t-test correction was applied if Levene’s test showed that the 

variance in WT and SOD1 measurements was substantially different. Data are presented 

as mean ± standard error of the mean, and the statistical test used for the comparison is 

indicated (t-test = independent samples t-test for equal variances; Welch t-test = 

independent samples t-test for unequal variances), with p<0.05 considered significant.  



_________________________Chapter 2 – Neuroinflammatory and functional changes 

______________________________________________________________________ 

______________________________________________________________________ 
 

51 

 

 

Table 2.2 Antibodies used for immunostaining of mouse spinal cord 

Antibody target Cell type 
Species and type 

(clone) 

Company 

(catalogue 

number) 

Dephosphorylated 

neurofilaments (SMI32) 

Motor 

neurons 

Mouse monoclonal 

IgG1 (SMI32) 

Covance, NJ, USA 

(SMI-32R) 

    

Ubiquitin (Ubi1) - Rabbit polyclonal 
Dako, CA, USA 

(Z0458) 

    

Human Cu,Zn-superoxide 

dismutase (hSOD1) 
- Rabbit polyclonal 

Abcam, MA, USA 

(ab52590) 

    

Glial fibrillary acid protein  

(GFAP) 
Astrocytes Rabbit polyclonal 

Dako, CA, USA 

(Z0334) 

    

(N-acetylglucosamine)2-4 

residues (TL)  

Microglia; 

endothelium 

Biotinylated lectin 

from Lycopersicum 

esculentum; tomato 

lectin 

Vector 

Laboratories, CA, 

USA (B1175) 

    

Ionised calcium-binding 

adaptor molecule1 (Iba1) 
Microglia Rabbit polyclonal 

Wako, Osaka, 

Japan (019-19741) 

    

Arginase1 (Arg1) - 
Mouse monoclonal 

IgG1 (E-2) 

Santa Cruz 

Biotechnology, 

CA, USA  

(sc-271430) 

    

Inducible nitric oxide 

synthase (iNOS) 
- 

Mouse monoclonal 

IgG1 (C-11) 

Santa Cruz 

Biotechnology, 

CA, USA  

(sc-7271) 

    

Metallothionein-1/2  

(MT-1/2) 
- 

Mouse monoclonal 

IgG1 (E9) 

Dako, CA, USA 

(M0639) 
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2.2.4 Functional characterisation of SOD1 and WT mice 

The functional characterisation of SOD1 and WT mice was carried out under ethics 

permit A10995. A cohort of female SOD1 mice (n=17) and their female WT littermates 

(n=13) was assessed for changes in body weight, stride pattern, wire hang duration and 

neurological score rating over time. Mice in this cohort ranged from 5-13 weeks of age 

when measurements were commenced, and all mice were followed through to disease 

endpoint in SOD1 mice (23-25 weeks of age) and up to 28 weeks of age in WT mice.  

2.2.4.1 Survival time and humane endpoint 

As SOD1 mice are known to display progressive paralysis with disease progression 

(Gurney et al. 1994), a humane endpoint was employed in order to prevent a slow death 

by starvation due to inability to feed. Disease endpoint was considered to have been 

reached when mice displayed the earliest of either 1) a drop in body weight to 80% of 

pre-disease maximum body weight, or 2) inability to right themselves within 30 seconds 

of being placed on their back (Solomon et al. 2011). Having reached disease endpoint, 

mice were euthanised with carbon dioxide (2 litres/minute; 10 minutes).  

2.2.4.2 Body weight measurements 

Body weight, measured in grams, was recorded at least twice each week for each 

mouse, and more frequently in SOD1 mice approaching disease endpoint.  

2.2.4.3 Stride pattern testing 

Stride pattern testing was performed weekly. Nontoxic BodyArt face paint (Global 

Colours, NSW, Australia), diluted to a thin consistency with water, was placed on the 

front (red) and hind (blue) paws of a gently-restrained mouse. The mouse was then 

allowed to walk along a 7cm x 60cm strip of white paper bounded on each side by 

10cm-high plastic barriers, leaving a trail of paw prints from which various measures 

could be recorded.  The mouse’s feet were rinsed in water and dried in a tissue-lined 

cage; the mouse was then returned to its home cage. A detailed diagram of stride pattern 

testing setup is included in the Appendix. If the initial walk did not yield a clear set of 

prints, the procedure was repeated once more, and the most consistent pattern from the 

two attempts was used for measurement. 

Parameters measured from the stride pattern test were stride length (distance between 

consecutive rear paw prints on the same side), hind-base width (distance between right 
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and left hind paws), front-base width (distance between right and left front paws) and 

uniformity measurement (difference in placement of the hind paw compared with that of 

the front paw from the previous step) (Figure 2.11A,B). From each stride pattern test 

strip, stride length and uniformity were measured for 1-3 steps on the right and the left 

sides, and hind-base width and front-base width were measured for 1-3 steps.   

2.2.4.4 Wire hang duration testing  

The wire hang duration test was assessed weekly as an indicator of muscle strength. 

Mice were placed on the wire bars (1mm diameter) of a large transport cage lid, which 

was gently inverted and suspended approximately 20cm over a foam pad (Appendix 1). 

Mice were able to move about freely on the inverted bars in a 250cm
2
 area for the 

duration of the test. The wire hang duration was recorded as the time the mouse could 

remain suspended from the bars while inverted, before releasing the bars and dropping 

onto the foam pad below. The longest wire hang duration of three attempts was 

recorded for analysis, with a maximum possible value of 60 seconds.      

2.2.4.5 Neurological scoring 

Visible signs of neurological deficit in SOD1 mice were assessed at least twice weekly 

according to neurological score criteria (Table 2.3) developed by the ALS Therapy 

Development Institute (ALSTDI, MA, USA) (Scott et al. 2008).  

 

Table 2.3 Neurological score criteria 

Score Score Criteria 

NS=0 Full extension of hind legs away from lateral midline when mouse is 

suspended by its tail, and mouse can hold this for 2 seconds. 

NS=1 Collapse or partial collapse of leg extension towards lateral midline, 

or trembling of hind legs, during tail suspension. 

NS=2 Toes curl under at least twice during walking of 12 inches, or any 

part of foot is dragging along cage bottom/table. 

NS=3 Rigid paralysis or minimal joint movement, foot not being used for 

forward motion. 

NS=4 Mouse cannot right itself within 30 seconds from either side. 

NS, neurological score. 
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2.2.4.6 Statistical methods for analysis of functional data 

All statistical analyses were carried out in either IBM SPSS Statistics, version 20 (IBM 

Corporation, NY, USA) or Stata IC, version 12.1 (StataCorp LP, TX, USA). All data 

are presented as mean ± standard error of the mean unless otherwise specified, with 

p<0.05 considered significant.  

Mean and median survival times were evaluated using Kaplan-Meier survival analysis. 

The influence of transgene copy number (ΔCT value from genotyping) on survival time 

was examined using Cox proportional hazards (CPH) regression, and was reported as 

the hazard ratio for reaching endpoint (HR, equal to e
β
) and 95% confidence interval for 

the hazard ratio (95% CI).      

To avoid pseudoreplication, stride pattern parameters (stride length, uniformity, front-

base width and hind-base width) were averaged to give a single measurement per mouse 

per week for each parameter; values for WT and SOD1 mice were then compared using 

the Mann-Whitney U test (MWU) for non-parametric data. Similarly, average body 

weight and the maximum wire hang duration times for WT and SOD1 mice were 

compared using the MWU. Maximum body weight and the age at which the maximum 

body weight was reached could be calculated.   

Additionally, an exploration of body weight analysis using linear mixed modelling was 

conducted. A linear mixed model contains both ‘fixed’ effects and ‘random’ effects: 

fixed effects alter the value of the mean, whereas random effects alter the amount of 

variation around the mean. Mixed models can be particularly useful in longitudinal 

experiments where repeated measurements are made on the same experimental subjects 

over time. For example, genotype is expected to affect the value of the body weight 

measurement, so genotype would be included as a fixed effect. In contrast, giving 

identifiers to each individual mouse in the dataset, and including these identifiers in 

random effects, allows variation around the overall body weight mean to be partly 

explained due to unique changes over time for individual mice. This allocation of 

variance results in a better model fit to the data, and allows differences between 

genotypes or treatment groups to be identified, despite differences in starting body 

weight and rate of change over time between individual mice in each group.  
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The steps taken for model fitting are included in Supplementary Data 1 and 

Supplementary Data 2, with the final model demonstrated in the results. 

In modelling SOD1 and WT body weight, a random slope and random intercept were 

included, allowing for unique starting body weights and unique rates of weight gain and 

loss over time for individual mice. Age in days was used as a fixed effect, allowing 

inclusion of all daily body weight measurements, rather than using a weekly average for 

each mouse. Age
2
 and Age

3
 fixed effects were sequentially added to the model, to 

examine whether their inclusion resulted in a better model fit to the observed data than a 

linear trajectory alone. Model fit was evaluated by examining log-likelihood (as -2LL, 

in smaller-is-better format) values between models with and without the covariate being 

tested; the covariate was considered to give a significantly better model fit if a 

significant result (p<0.05) was obtained from the right-tailed chi-squared test of the 

difference in log-likelihood between models (i.e., if χ
2
(LR, df) <0.05, where LR 

(likelihood ratio) = -2LLmodel without covariate - -2LLmodel with covariate; df = dfmodel with covariate – 

dfmodel without covariate). 

To examine at what age the body weight trajectories for SOD1 and WT mice became 

significantly different, the final model was centred at a range of Age values, and the 

intercept parameter p-value was recorded. The intercept parameter p-value gives a direct 

test of whether the two curves differ in body weight value as they cross the intercept 

(where ‘Age’=0); this is normally of no use then looking at body weight because weight 

at birth was outside the range of recorded raw data. However, when the model was 

centred by substituting, for example, Age for (Age-50), the intercept parameter p-value 

gives a direct test of whether the SOD1 and WT body weights are different at 50 days of 

age. By centring at a range of Age values (between 80 and 110 days), the age at which 

SOD1 and WT body weight estimates were significantly different could be obtained.    

The non-linear combination of estimators (nlcom) procedure (Stata IC, StataCorp LP) 

was used to provide point estimates for maximum body weight of SOD1 mice and age 

at which the maximum body weight was reached. The estimates from the linear mixed 

model / non-linear combination of estimators could then be compared with those 

generated from the averaged data alone.  
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2.3 Results 

2.3.1 Cellular changes over time in SOD1 mouse spinal cord 

2.3.1.1 Total microglial numbers 

The microglial markers Iba1 and TL both indicated an increase in the number of 

microglia over time in SOD1 mice, but not in WT mice (Figure 2.1A-E). In the lumbar 

spinal cord VH, SOD1 mice had more Iba1-positive microglia than WT mice from 18 

weeks of age (SOD1 178±7 vs. WT 85±26 microglia/mm
2
, t-test p=0.025) and 

thereafter (Figure 2.1D). TL labelling proved more sensitive, indicating differences 

between the SOD1 and WT VH microglia from 14 weeks of age (SOD1 208±9 vs. WT 

169±8 microglia/mm
2
, t-test p=0.034), although these differences were more substantial 

from 18 weeks of age onwards (Figure 2.1E).    

2.3.1.2 Changes in inflammatory marker expression over time 

The number of TL-positive microglia expressing the M2 marker Arg1 or the M1 marker 

iNOS were counted in the lumbar and cervical spinal cord regions. 

2.3.1.2.1 Expression of Arg1 and iNOS in lumbar ventral horn microglia 

Within the lumbar spinal cord VH, a subset of TL-positive microglial cells expressed 

Arg1 (Figure 2.2). The proportion of Arg1-positive and Arg1-negative microglia stayed 

relatively constant in WT mice over time, with more Arg1-negative than Arg1-positive 

microglia present at all time points (Welch t-test p=0.079 at 6 weeks; t-test p<0.05 at 

10-25 weeks) (Figure 2.2A-C, G). Few Arg1-positive microglia were observed at 6 and 

10 weeks of age in the SOD1 VH; however, the number of Arg1-positive microglia 

(arrows in Figure 2.2B,E,F) increased from 14 weeks of age, while the number of Arg1-

negative microglia did not change substantially with time (Figure 2.2D-F, H). By 22 

and 25 weeks of age, many more Arg1-positive than Arg1-negative microglia were 

present in the SOD1 VH (22 weeks, 286±29 Arg1-positive vs. 157±22 Arg1-negative 

microglia/mm
2
, t-test p=0.006; 25 weeks, 377±24 Arg1-positive vs. 180±27 Arg1-

negative microglia/mm
2
, t-test p=0.005) (Figure 2.2H). These changes represent an 18-

fold increase in Arg1-expressing microglia between 10 weeks of age (21±3 Arg1-

positive microglia/mm
2
) and 25 weeks of age (377±24 Arg1-positive microglia/mm

2
) in 

the lumbar spinal cord VH. Additionally, the percentage of total microglia expressing 

Arg1 increased from 14% at 10 weeks of age to 65% at 22 weeks of age (Figure 2.5F).  
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Figure 2.1 Microglia in the lumbar spinal cord of SOD1 mice over time 

Tomato lectin binds to both endothelial cells (asterisks, A,B) and microglial cells 

(arrowhead, B). The number of microglia increased over time in the lumbar spinal cord 

of SOD1 mice, as measured by both Iba1 immunoreactivity (D) and tomato lectin 

labelling (A-C, E). SOD1 mice showed greater numbers of Iba1-positive microglia than 

WT mice from 18 weeks of age (D), and greater numbers of tomato lectin-positive 

microglia than WT mice from 14 weeks of age (E). Scale bar 20µm. *p<0.05, **p<0.01, 

***p<0.001. Iba1, ionised calcium-binding adaptor molecule 1; TL, tomato lectin; NY, 

Nuclear Yellow. Error bars represent standard error of the mean. 
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Figure 2.2 Arg1-positive microglia in the lumbar spinal cord ventral horn 

Arg1 immunolabelling in tomato lectin-positive microglia is shown in the WT (A-C, G) 

and SOD1 (D-F, H) lumbar spinal cord ventral horn at 6 weeks (A,D), 14 weeks (B,E), 

and 22 weeks (C,F) of age. WT mice show few Arg1-positive microglia (arrows, B,C) 

throughout the time series (G), while SOD1 mice show an increasing number of Arg1-

positive microglia (arrows, E,F; inset in E shows Arg1 labelling) from 14-18 weeks of 

age (H). Scale bar 10µm for A-F, 6.7μm for inset in E. *p<0.05, **p<0.01, ***p<0.001. 

Arg1, arginase1; TL, tomato lectin; NY, Nuclear Yellow. Error bars represent standard 

error of the mean.  
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A subset of microglia within the lumbar ventral horn showed iNOS expression (Figure 

2.3). More iNOS-negative than iNOS-positive microglia were present in the WT lumbar 

VH at all time points (Welch t-test p=0.126 at 6 weeks; t-test p<0.05 at 10-25 weeks) 

(Figure 2.3A-C, G). The number of iNOS-positive microglia increased from 14 weeks 

of age in the SOD1 lumbar VH (Figure 2.3D-F, H; arrow in Figure 2.3F). Additionally 

in SOD1 mice, the number of iNOS-negative microglia increased from 18 weeks of age 

onwards (Figure 2.3H; arrowheads in Figure 2.3E,F). Due to the concomitant increase 

in both iNOS-positive and iNOS-negative microglia, the SOD1 VH contained more 

iNOS-negative than iNOS-positive microglia at all time points (t-test p<0.05 from 6 to 

22 weeks; t-test p=0.069 at 25 weeks) (Figure 2.3H).  

The number of iNOS-positive microglia increased approximately 8-fold between 10 

weeks of age (15±8 iNOS-positive microglia/mm
2
) and 22 weeks of age (116±18 iNOS-

positive microglia/mm
2
) (Figure 2.3H). The percentage of microglia expressing iNOS 

increased from 8% at 10 weeks of age to 33% at 22 weeks of age (Figure 2.5F). 

When the numbers of Arg1-positive microglia (Figure 2.2H) and iNOS-positive 

microglia (Figure 2.3H) in the SOD1 lumbar spinal cord ventral horn are compared, the 

numbers of Arg1-positive microglia were greater than those of iNOS-positive microglia 

as the disease progressed over time. 

2.3.1.2.2 Expression level of Arg1 and iNOS in SOD1 lumbar VH microglia 

Ventral horn microglia from randomly-selected lumbar spinal cord sections (see 

methods) showed an increase in the percentage area occupied by Arg1 or iNOS 

immunoreactivity between 6 weeks and 22 weeks of age (Figure 2.4A-E). Arg1 

immunoreactivity occupied approximately 6% of microglial cell body area at 6 weeks of 

age, which increased five-fold to approximately 30% of the cell body area at 22 weeks 

of age (Figure 2.4A,B,E). iNOS immunoreactivity was present in less than 1% of the 

cell body area at 6 weeks of age, which increased 25-fold to around 5% at 22 weeks of 

age (Figure 2.4C-E). These data indicate that in addition to the increase in the number 

of Arg1-expressing and iNOS-expressing microglial cells (Figure 2.2, Figure 2.3), the 

expression level of Arg1 and iNOS protein also increases over time in SOD1 lumbar 

spinal cord VH microglia. 
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Figure 2.3 iNOS-positive microglia in the lumbar spinal cord ventral horn 

iNOS immunolabelling in tomato lectin-positive microglia is shown in WT (A-C, G) 

and SOD1 (D-F, H) lumbar spinal cord at 6 (A,D), 14 (B,E), and 22 (C,F) weeks of age. 

WT mice show few iNOS-positive microglia at any time point (G), while SOD1 mice 

show an increase in both iNOS-positive (arrow, F; inset in F shows iNOS labelling) and 

iNOS-negative (arrowheads, E,F) microglia over time (H). Scale bar 10µm for A-F, 

6.7μm for inset in F. *p<0.05, **p<0.01, ***p<0.001. iNOS, inducible nitric oxide 

synthase; TL, tomato lectin; NY, Nuclear Yellow. Error bars represent standard error of 

the mean.  
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Figure 2.4 Percentage area occupied by Arg1 or iNOS immunoreactivity in SOD1 

lumbar spinal cord microglia 

The percentage area of the microglial cell body occupied by Arg1 (A,B) or iNOS (C,D) 

immunoreactivity was examined at 6 (A,C) and 22 weeks (B,D) of age in a subset of 

microglia displaying the strongest immunoreactivity. The percentage of cell body area 

occupied by Arg1 was higher at 22 weeks than at 6 weeks; the percentage of cell body 

area occupied by iNOS was also higher at 22 weeks than at 6 weeks (E). Scale bar 

10µm in A-D. *** p<0.001. TL, tomato lectin; Arg1, arginase1; iNOS, inducible nitric 

oxide synthase; NY, Nuclear Yellow. Error bars represent standard error of the mean. 
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2.3.1.2.3 Expression of Arg1 and iNOS in cervical ventral horn microglia 

Motor weakness in the SOD1 mice is first detectable in the hindlimbs, with later 

involvement of the forelimbs (Kuntz et al. 2000); thus, the lumbar spinal cord was the 

primary focus in this study. However, a brief comparison of microglial Arg1 and iNOS 

expression was made in the cervical spinal cord of WT and SOD1 mice from 10 to 22 

weeks of age, to examine any temporal differences in expression of these inflammatory 

markers between the lumbar and cervical spinal cord which may correlate with later 

involvement of the forelimb muscles. 

Similar to the lumbar spinal cord, there were more Arg1-negative microglia than Arg1-

positive microglia at all time points in the WT cervical spinal cord VH (Welch t-test 

p=0.120 at 10 weeks; t-test p<0.05 at 14-22 weeks) (Figure 2.5A). In the SOD1 cervical 

VH, there were equal numbers of Arg1-positive and Arg1-negative microglia from 10-

18 weeks of age (Figure 2.5B). At 22 weeks of age, there were more Arg1-positive than 

Arg1-negative microglia (265±39 Arg1-positive microglia/mm
2
 vs. 71±22 Arg1-

negative microglia/mm
2
, t-test p=0.012). In contrast, the number of Arg1-negative 

microglia remained constant in the SOD1 cervical VH from 10 to 22 weeks of age 

(Figure 2.5B). The SOD1 cervical VH also showed an increase in the percentage of 

microglia expressing Arg1 over time, from 45% at 10 weeks of age to 79% at 22 weeks 

of age (Figure 2.5E).  

Microglial iNOS expression in the cervical spinal cord remained fairly constant over 

time in the WT VH, with more iNOS-negative than iNOS-positive microglia at all time 

points (Welch t-test p<0.05 at 10 weeks; t-test p<0.05 from 14 to 22 weeks), despite a 

slight increase in iNOS-positive microglia over time (Figure 2.5C). In the SOD1 ventral 

horn, both the number of iNOS-positive and iNOS-negative microglia increased over 

time (Figure 2.5D). There were more iNOS-negative than iNOS-positive microglia in 

the SOD1 mice at each time point (Figure 2.5D), however these differences did not 

reach statistical significance (Welch t-test p=0.051-0.076 from 10 to 22 weeks). The 

percentage of SOD1 cervical VH microglia expressing iNOS increased from 11% at 10 

weeks of age to 24% at 18 weeks of age, then slightly decreased to 20% at 22 weeks of 

age (Figure 2.5E). Similar to the lumbar spinal cord, more cervical microglia were 

Arg1-positive than iNOS-positive (Figure 2.5E). 
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Figure 2.5 Arg1 and iNOS expression in cervical spinal cord ventral horn 

microglia 

In WT mice the majority of tomato lectin-positive microglia are negative for Arg1 (A) 

and for iNOS (C). In the SOD1 cervical ventral horn, there are equivalent numbers of 

Arg1-positive and Arg1-negative microglia until 22 weeks of age, when Arg1-positive 

microglia are more prevalent (B). In SOD1 mice, the numbers of both iNOS-positive 

and iNOS-negative microglia increase over time (D). A higher percentage of microglia 

in both the cervical (E) and lumbar (F) spinal cord express Arg1 than iNOS at later time 

points. *p<0.05, **p<0.01, ***p<0.001. Error bars represent standard error of the mean. 
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2.3.1.3 Neurofilament, ubiquitin and hSOD1 labelling over time 

To examine timing of degenerative changes in SOD1 motor neurons, immunolabelling 

for dephosphorylated neurofilaments (SMI32), ubiquitinated inclusions (Ubi), and 

protein produced from the human SOD1 transgene (hSOD1) was performed in the 

lumbar spinal cord VH of SOD1 and WT mice. Changes over time in SOD1 spinal cord 

were not present in WT spinal cord, unless otherwise specified below.  

  Diffuse ubiquitin immunolabelling was present in motor neuron nuclei in both 

SOD1 and WT lumbar VH at all time points examined (Figure 2.6A-C, I). The SOD1 

lumbar VH showed ubiquitin-positive inclusions (arrows, Figure 2.6A-C) in the cell 

bodies of SMI32-positive motor neurons as early as 6 weeks of age (Figure 2.6A), and 

in both motor neuron somas and in the neuropil from 10 weeks of age (Figure 2.6B). 

The number of ubiquitinated inclusions in the lumbar spinal cord increased over time; at 

25 weeks of age, the SOD1 VH showed many large ubiquitin-positive inclusions which 

were not located within SMI32-positive cell bodies (arrow, Figure 2.6C). These 

ubiquitinated inclusions may be present within neuritic processes, glial cells, or the 

remnants of degenerating neurons. No inclusions were found in WT VH (Figure 2.6I). 

SMI32 labelled motor neuron somas and processes within the neuropil (Figure 2.6A-F, 

I). SMI32-encircled vacuoles developed in the cytoplasm of SOD1 motor neurons from 

10 weeks of age (asterisks, Figure 2.6B); at 14 weeks of age, some of these cytoplasmic 

vacuoles contained hSOD1 protein (asterisk, Figure 2.6E). SMI32 formed ring-like, 

annular structures in the neuropil from 10 weeks of age (arrowheads, Figure 2.6B,C). 

Interestingly, while some hSOD1 was present in a diffuse cytoplasmic pattern in motor 

neurons at 6 weeks of age (Figure 2.6D), hSOD1 also formed ring-like, annular 

structures in the neuropil from 6 weeks of age onwards (chevrons, Figure 2.6D-F). At 

14 weeks of age, some hSOD1-positive annular structures partially colocalised with 

SMI32-positive annular structures (inset, Figure 2.6E; magnified in Figure 2.6G). The 

size and complexity of both SMI32-positive and hSOD1-positive annular structures 

increased with time; at 22 weeks of age, large, complex annular structures positive for 

SMI32, hSOD1, or both, were present in the SOD1 lumbar spinal cord ventral horn 

(inset, Figure 2.6F; magnified in Figure 2.6H). The presence of annular structures, 

particularly in a grouped arrangement (as seen in Figure 2.6F,H) may indicate internal 

partitioning or vacuolisation of motor neuron axons or somas. No neurofilament 

alterations were present in the motor neurons of the WT lumbar VH (Figure 2.6I).   
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Figure 2.6 Ubiquitin, SMI32, and hSOD1 labelling in the SOD1 lumbar spinal cord 

Motor neurons showed cytoplasmic ubiquitinated inclusions from 6 weeks of age 

(arrow, A), and ubiquitin aggregates in the neuropil from 10 weeks of age (arrows, 

B,C). SMI32-edged vacuoles were present in the cytoplasm from 10 weeks of age 

(asterisks, B), some of which contained hSOD1 protein from 14 weeks of age (asterisk, 

E). SMI32-positive annular structures were also present in the neuropil from 10 weeks 

of age (arrowheads, B). hSOD1 protein formed annular structures in the neuropil from 6 

weeks of age (chevrons, D-F); these were closely associated or colocalised with SMI32-

positive annular structures from 14 weeks of age (arrowhead, G). Annular structures in 

the neuropil, consisting of hSOD1 and/or SMI32, increased in size and complexity with 

disease progression, and at 22 weeks of age some annular structures showed 

colocalisation between SMI32 and hSOD1 (arrowhead, H). Wild type (WT) mice 

showed no ubiquitinated aggregates or neurofilament abnormalities at 25 weeks of age. 

Scale bar 10µm for A-F, I; 5µm for G,H. hSOD1, protein produced from the 

SOD1G93A transgene; NY, Nuclear Yellow; SMI32, dephosphorylated neurofilament 

medium chain; Ubi, ubiquitin.  



_________________________Chapter 2 – Neuroinflammatory and functional changes 

______________________________________________________________________ 

______________________________________________________________________ 
 

66 

 

2.3.1.4 Changes in MT-1/2 over time 

2.3.1.4.1 Metallothionein-1/2 immunoreactivity 

Immunostaining for metallothionein-1/2 isoforms (MT-1/2) revealed that expression of 

MT-1/2 was quite varied between individual mice. Despite this variation, WT and 

SOD1 mice showed differences in MT-1/2 expression over time (Figure 2.7A-J).The 

density of MT-1/2-positive cells was evaluated in the ventral horn and dorsal horn grey 

matter, and in the dorsal and the ventral/lateral white matter, as outlined in Figure 2.7A. 

MT-1/2 expression in the ventral horn grey matter of WT mice was generally quite low, 

with the exception of 14 weeks of age when many MT-1/2-positive cells were counted 

in the VH (Figure 2.7B,C,G). In SOD1 mice, few MT-1/2-positive cells were observed 

in the VH at 6, 10, and 14 weeks of age (Figure 2.7D). However, there was a marked 

increase in the density of MT-1/2-positive cells in the VH of SOD1 mice compared to 

WT mice at 18, 22, and 25 weeks of age (18wks, WT 3±2 vs. SOD1 141±35 MT-1/2-

positive cells/mm
2
, Welch T-test p=0.059; 22wks, WT 17±1 vs. SOD1 253±16 MT-1/2-

positive cells/mm
2
, T-test p=0.001; 25wks, WT 22±21 vs. SOD1 156±11 MT-1/2-

positive cells/mm
2
, T-test p=0.005) (Figure 2.7G). In addition to the increase in MT-

1/2-positive cells in the SOD1 VH, some diffuse staining with no apparent cellular 

localisation was also seen in the VH parenchyma; this diffuse immunoreactivity was 

absent in WT mice (Figure 2.7B-F).   

In the dorsal horn of WT mice, MT-1/2-positive cells and diffuse MT-1/2 

immunoreactivity were predominantly present in lamina II-III near the most dorsal 

portion of the dorsal horn, although the intensity of immunolabelling in this region 

varied amongst WT mice (Figure 2.7B,C). In SOD1 mice, MT-1/2 immunoreactivity at 

the top of the dorsal horn appeared either absent or present to a lesser extent than in age-

matched WT mice; however, from approximately 18 weeks of age onwards, the number 

of MT-1/2-positive cells in the lower half of the dorsal horn increased in SOD1 mice 

but not in WT mice (Figure 2.7B-F). Diffuse MT-1/2 immunoreactivity in the lower 

half of the ventral horn was also noted from 18 weeks of age in SOD1 mice but not in 

WT mice. Overall quantitation of MT-1/2-positive cells in the dorsal horn revealed 

more MT-1/2-positive cells in the WT dorsal horn than SOD1 dorsal horn at 6 weeks of 

age (WT 107±18 vs. SOD1 6±4 MT-1/2-positive cells/mm
2
, T-test p=0.006), but no 

significant differences at other time points.  
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MT-1/2 immunoreactivity in the white matter showed no significant differences 

between WT and SOD1 mice at any time point (Figure 2.7B-E, I,J), due to variable 

staining between individual mice. Qualitatively, WT mice showed slightly more MT-

1/2-positive cells in the white matter tracts than SOD1 mice at 6-14 weeks of age 

(Figure 2.7I,J). This was not the case at 18-25 weeks of age, when the numbers of MT-

1/2-positive cells in the white matter tracts appeared either equivalent between WT and 

SOD1 mice, or were higher in SOD1 than WT mice (Figure 2.7I,J). However, the high 

variation in white matter MT-1/2 immunolabelling in both WT and SOD1 mice means 

few conclusions about the dynamics of MT-1/2 change in white matter can be drawn 

from this data, and indicates that the changes observed in grey matter MT-1/2 

expression may be more important than changes in white matter MT-1/2 expression.  

2.3.1.4.2 Astrocytic localisation of MT 

Noting that the number of MT-positive cells increased over time, the localisation of 

MT-1/2 in astrocytes was examined. Qualitative examination of GFAP 

immunolabelling indicated that the number of reactive astrocytes appeared to increase 

with disease progression. At 6 weeks of age, astrocyte cell bodies and some processes 

were noted in the grey matter (Figure 2.8A), while extensive staining of astrocyte 

processes was seen within the white matter. The number of astrocytes in the ventral 

horn grey matter appeared to increase progressively between 6 and 22 weeks of age 

(Figure 2.8A-C). The increase in astrocyte numbers was also accompanied by a slight 

change in morphology, with astrocytes at 22 weeks of age showing slightly larger cell 

bodies and thicker processes than those at earlier time points (Figure 2.8C).  

At 18 weeks of age, when the numbers of MT-1/2-positive cells were increased (Figure 

2.7), MT-1/2 was predominantly expressed in GFAP-positive astrocytes (Figure 2.8D, 

shown here in the lumbar spinal cord white matter). Some MT-1/2 immunoreactivity in 

the ventral horn did not colocalise with GFAP (data not shown), indicating that MT-1/2 

may be expressed in other glial cells such as microglia.  
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Figure 2.7 MT-1/2 immunoreactivity in the SOD1 and WT spinal cord 

Line drawing of spinal cord regions (A; not to scale; dh, dorsal horn; vh, ventral horn; 

dwm, dorsal white matter; vlwm, ventral and lateral white matter). The density of MT-

1/2 -positive (MT-pos) cells did not change substantially in WT mice between 6 (B) and 

22 (C) weeks of age, but increased in SOD1 mice between 6 and 22 weeks of age (D-F). 

MT-1/2 increased in the SOD1 ventral horn from 18 weeks of age (G), and in the dorsal 

horn at 22 weeks of age (H), but did not change substantially in the white matter (I, J). 

Scale bars 100µm for B-F. **p<0.01. Error bars represent standard error of the mean. 
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Figure 2.8 Astrocytic expression of MT-1/2 in the lumbar spinal cord of SOD1 

mice 

The number of astrocytes appeared to increase over time in the lumbar spinal cord 

ventral horn of SOD1 mice (A-C). MT-1/2 expression (D, left panel) was 

predominantly seen in GFAP-positive astrocytes (D, middle panel; merged image 

shown in D, right panel), pictured above at 18 weeks of age in the SOD1 lumbar spinal 

cord white matter. In the ventral horn of 18-week-old SOD1 mouse lumbar spinal cord, 

MT-1/2 expression was seen in GFAP-positive astrocytes (E, arrowhead in left and right 

panels), yet some MT-1/2 expression was observed in cells which did not label with 

GFAP (E, arrows in left and right panels). Scale bar 20µm for A-D, 10µm for E. GFAP, 

glial fibrillary acidic protein; MT, metallothionein-1/2; NY, Nuclear Yellow.  
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2.3.2 Functional changes over time in SOD1 mice 

2.3.2.1 Survival 

In this cohort, the ethics-approved disease endpoint was measured as either the loss of 

20% from maximum body weight, or the inability of the mouse to right itself within 30 

seconds of being placed on its side, whichever occurred earlier. All SOD1 mice in this 

cohort reached the body weight endpoint before a loss of their righting reflex, and 

therefore the body weight endpoint was used for survival analysis. As determined by 

Kaplan-Meier analysis, average survival time for SOD1 mice was 163.8±2.1 days; 

median survival time was 166.0±1.5 days (Figure 2.9). All WT mice remained healthy 

past the endpoint ages of their SOD1 littermates. 

CPH regression was used to assess the effect of SOD1
G93A

 transgene copy number 

(using the ΔCT value) on survival times. Survival time was not significantly associated 

with the ΔCT value (HR 2.452, 95% CI 0.071-84.488, p=0.609); perhaps due to the 

small range of ΔCT values recorded for the functional cohort (range 4.62-5.26), which 

would indicate relatively small variations in transgene copy number within this cohort. 

However, copy number could be included in future survival analyses to minimise the 

effect of any copy number variations.           

 

2.3.2.2 Body weight 

2.3.2.2.1 Body weight averages 

Body weight rose continuously for WT mice throughout the duration of the study 

(Figure 2.10A). In contrast, the SOD1 mice displayed a characteristic curved body 

weight trajectory, achieving average maximal weight (21.0±0.3g) at the average age of 

114.1±3.1 days (approximately 16.3 weeks) (Figure 2.10A). The curved body weight 

trajectory in SOD1 mice likely represents growth during the pre-symptomatic phase of 

disease, with a subsequent reduction in body weight after disease onset due to loss of 

muscle mass as part of the disease processes. The average body weight of SOD1 mice 

was significantly lower than that of WT mice at 14 weeks of age (SOD1 20.0±0.2g vs. 

WT 21.0±0.5g, MWU p=0.035) and remained lower than that of WT mice until disease 

endpoint (Figure 2.10A).  
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Figure 2.9 Kaplan-Meier survival curve for SOD1 and WT mice 

Disease endpoint was measured as a loss of 20% from pre-disease maximum body 

weight. Survival times for SOD1 mice ranged from 144-177 days, while WT mice 

remained healthy throughout the study period.    
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Figure 2.10 Body weights of SOD1 and WT mice over time 

Body weight averages (A) were lower for SOD1 mice than WT mice from 14 weeks of 

age onwards, with SOD1 mice reaching maximum body weight at approximately 16 

weeks of age. Body weight trajectory estimates from linear mixed modelling (B, lines, 

from parameters in Table 2.4) appeared a good fit to the raw data (B, data points). 

*p<0.05, **p<0.01, ***p<0.001. Error bars represent standard error of the mean.   
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2.3.2.2.2 Body weight trajectories with linear mixed modelling 

Linear mixed modelling was explored as a way to model the curved body weight 

trajectory of SOD1 mice. Stepwise addition of fixed effects (Age in days, Age
2
, Age

3
) 

and random effects (intercept and slope, accounting for different starting body weights 

and different rates of change over time for different mice), assessment of model fit at 

each step, and variance-covariance matrix estimates for random effects, are detailed in 

Supplementary Data 2. The body weight trajectory of SOD1 mice fits more closely to a 

cubic curve than a quadratic curve (see Supplementary Data 2). The final linear mixed 

model has fixed effects of the form Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
, 

where each β coefficient has a unique value for WT and SOD1 groups (Table 2.4), 

confirming that body weight trajectory in SOD1 mice is altered from that of WT mice. 

When the body weight estimates calculated using these coefficient values are graphed, 

the model confirms the increase in WT body weight over time, and the curved body 

weight trajectory of SOD1 mice (Table 2.4, Figure 2.10B).  

 

Table 2.4 Parameter estimates from linear mixed model of body weight trajectory 

Fixed effects parameter 
Parameter estimates (β) 

p-value* 
WT SOD1 

Intercept (β0) 14.50 14.69 0.868 

Age (β1) 0.128 0.062 0.012 

Age
2
 (β2) -8.53x10

-4
 2.43x10

-4
 <0.001 

Age
3
 (β3) 2.28x10

-6
 -3.19x10

-6
 <0.001 

*p-value for whether the parameter estimates were significantly different between WT and SOD1 mice. 

Coefficient estimates correspond to the equation Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 

 

The age at which the two trajectory curves diverged was investigated by centring the 

model at various values of Age; SOD1 body weights became significantly lower than 

WT body weights from 99 days (14 weeks) of age onwards (p=0.045). Using the β 

estimates in the nlcom procedure (Stata IC), the point estimate for maximum body 

weight in SOD1 mice was calculated to be 20.0±1.1g, occurring at 110±2 days of age 

(around 15.7 weeks). These estimates are close to those calculated manually from the 

raw body weight data (21.0±0.3g, at 114±3 days of age, approximately 16.3 weeks).  
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2.3.2.3 Stride pattern testing 

2.3.2.3.1 Stride Length 

The stride length of WT mice stayed constant over time, with only a small decrease 

around 22-24 weeks of age (Figure 2.11A,B,E). From around 17 weeks of age onwards, 

the stride length of SOD1 mice declined markedly (Figure 2.11C-E). SOD1 stride 

length was significantly lower than WT stride length from 18 weeks of age onwards 

(SOD1 18wk 5.2±1.0cm vs. WT 18wk 5.9±0.8cm, MWU p=0.021) (Figure 2.11E). 

2.3.2.3.2 Uniformity 

The uniformity measurement, indicating any disparity between placement of the hind 

paw compared to where the front paw was placed on the previous step (Figure 2.11A), 

differed between WT and SOD1 mice over time. WT mice maintained a consistent 

uniformity measurement of less than 0.5cm over time; whereas uniformity measurement 

increased in SOD1 mice over time (Figure 2.11A-D, F). SOD1 mice showed a larger 

uniformity measurement than WT mice from 18 weeks of age (SOD1 0.7±0.1cm vs. 

WT 0.3±0.1cm, MWU p=0.002) onwards (Figure 2.11F). These data indicate that when 

walking forwards, WT mice were consistently able to bring the hind paw forwards to 

place it within 0.5cm of where the front paw had been on the previous step; however, 

SOD1 mice were increasingly unable to bring the hind paw forwards. The increasing 

uniformity measurement and decreasing stride length over time in the SOD1 mice likely 

reflect diminishing muscle strength in SOD1 mice as the disease progressed.  

2.3.2.3.3 Front-base width and hind-base width 

Front-base width was significantly greater in WT mice than in SOD1 mice at 17 weeks 

and 24 weeks of age (p=0.037 and p=0.034, respectively), however there was no 

consistent difference between WT and SOD1 mice over time (Figure 2.11B,G).  

Measurements of hind-base width appeared variable, with no consistent pattern of 

change between WT and SOD1 mice over time (Figure 2.11B,H). Hind-base width was 

greater for WT mice than SOD1 mice at 10, 11, 14, and 15 weeks of age (p<0.05), but 

between these time points there was no significant difference between WT and SOD1 

hind-base width (Figure 2.11H). Although measurements of hind-base width in SOD1 

mice remained within the range of measurements obtained at earlier time points, they 

showed a gradual decline from 21-24 weeks of age, such that at these time points the 

hind-base width was greater for WT mice than SOD1 mice (p<0.05) (Figure 2.11H).  
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Figure 2.11 Stride pattern testing in SOD1 and WT mice 

Representative stride patterns from WT mice at 16 (A) and 20 (B) weeks of age, and 

from SOD1 mice at 16 (C) and 19 (D) weeks of age, with hind paws in blue and front 

paws in red. SL, stride length; U, uniformity; FBW, front-base width; HBW, hind-base 

width (A,B). SOD1 mice showed decreasing stride length (E) and increasing uniformity 

measurement (F) with age compared to WT mice; front-base width (G) and hind-base 

width (H) did not differ substantially between WT and SOD1 mice over time. Scale bar 

1cm for A-D. *p<0.05, p<0.01, #p<0.001. Error bars show standard error of the mean. 
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2.3.2.4 Wire hang duration 

Wire hang duration, up to a maximum of 60 seconds, was maintained throughout the 

study in WT mice but declined over time in SOD1 mice (Figure 2.12).  

Out of the 13 WT mice, 4/13 (31%) attained the 60-second maximum on every attempt, 

while 9/13 WT mice (69%) showed durations of less than 60 seconds on at least one 

occasion. These sub-maximal results for WT mice can be attributed to either a training 

effect, where wire hang duration increased up to 60 seconds with experience (see 

Appendix 1); or to single-week lapses in hang duration, where WT mice would attain 

less than 60 seconds in a particular week but would return to consistently attaining 60 

seconds in the following weeks. In contrast to WT mice, only 12/17 SOD1 mice (71%) 

ever attained the maximum wire hang duration of 60 seconds; 5/17 SOD1 mice (29%) 

were unable to maintain hang duration for 60 seconds at any time point measured.  

All SOD1 mice displayed reduced wire hang duration as the disease progressed over 

time (Figure 2.12). In the 12 SOD1 mice attaining 60-second wire hang durations, the 

average age at which they were no longer able to maintain the maximum hang duration 

was 114.5±2.4 days of age (approximately 16 weeks of age). SOD1 mice attained a 

significantly lower average wire hang duration than WT mice at 15 weeks of age (42±5 

seconds vs. 58±2 seconds respectively, MWU p=0.012) and thereafter. The average age 

at which SOD1 mice could only hold on for 30 seconds, half of the maximum time, was 

126.3±2.4 days (approximately 18 weeks of age). By 20 weeks of age, SOD1 mice 

could only hang onto the wire bars for less than 10 seconds, representing a clear 

decrease in muscle strength between 15 and 20 weeks of age (Figure 2.12).  
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Figure 2.12 Wire hang duration in SOD1 and WT mice 

After an initial training period, WT mice were able to maintain the maximum wire hang 

duration of 60 seconds throughout the study; SOD1 mice showed a marked decrease in 

wire hang duration from 15 weeks of age onwards. *p<0.05, ***p<0.001. Error bars 

represent standard error of the mean.  
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2.3.2.5 Neurological scoring 

The neurological scoring system employed for this analysis ranged from a neurological 

score (NS) of NS=0 (no symptoms) through to NS=4 (inability to right within 30 

seconds of being placed on side) (Table 2.3). SOD1 mice showed an increase in 

neurological score rating with time, from NS=0 to NS=3 (Figure 2.13). As previously 

mentioned, all SOD1 mice reached their body weight endpoint before reaching the 

righting endpoint.  Upon reaching the body weight endpoint, 1/17 SOD1 mice (6%) 

were scored as NS=1, 10/17 SOD1 mice (59%) were scored as NS=2, and 4/17 SOD1 

mice (24%) were scored as NS=3; endpoint data on neurological score were not 

recorded for 2/17 SOD1 mice. Thus, no SOD1 mice were ever rated as NS=4.  

WT mice were generally rated as NS=0; however, some WT mice were rated as NS=1 

at some time points (Figure 2.13). This may be attributable to the author’s strict 

interpretation of the neurological scoring criteria at NS=1, where the criteria are 

‘Collapse or partial collapse of leg extension towards lateral midline, or trembling of 

hind legs, during tail suspension’ (Table 2.3). Gradual movement of the hind limbs 

during tail suspension might have been interpreted as partial collapse, perhaps caused 

by muscle relaxation in WT mice rather than lack of muscular strength. To ensure that 

NS=1 was assessed in the SOD1 mice as a true indicator of disease onset, disease onset 

was considered to be the point at which the mouse was consistently rated as NS=1, or 

higher, upon every examination. The average age at which SOD1 mice consistently 

displayed symptoms (NS=1) was 110.5±3.3 days, or approximately 15.8 weeks of age.  

There appeared to be a substantial interval between the ages at which SOD1 mice 

reached NS=1 and NS=2; the average age at which SOD1 mice reached NS=2 was 

160.7±2.6 days, or approximately 22.9 weeks of age. Within this interval, observation 

of the mice identified some features of disease which were not described within the 

neurological system used here. As disease progressed, the SOD1 mice appeared to 

display an altered gait pattern in which the legs tended to splay outwards while walking, 

with the hindquarters being lower than those of WT mice – perhaps due to decreased 

muscle strength in the hind limbs. In the ALSTDI criteria (Table 2.3), altered gait as 

required for NS=2 is quite a severe change, with mice dragging their feet and toes along 

the bench only when within a few weeks of disease endpoint (Figure 2.13).  
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Figure 2.13 Neurological scoring in SOD1 and WT mice 

At each week of age, the percentage of mice rated as a particular neurological score 

(NS=0 through NS=3) is indicated. WT mice were rated as either NS=0 or NS=1 

throughout the study (A), whereas SOD1 mice showed a progression from NS=0 (no 

symptoms) through to NS=3 (hindlimb paralysis), indicating increasing neurological 

motor deficits over time in SOD1 mice.    
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2.4 Discussion 

The findings in this chapter show that the number of Arg1-positive microglia and iNOS-

positive microglia increased in the SOD1 lumbar spinal cord from 14 weeks of age 

(Figure 2.1 to Figure 2.5), while ubiquitinated inclusions were  present in SOD1 motor 

neurons from as early as 6 weeks of age (Figure 2.6). Functional deficits in SOD1 mice 

developed from 14 weeks of age onwards (Figure 2.9 to Figure 2.13). The number of 

MT-1/2-positive cells increased from 18-22 weeks of age (Figure 2.7). Thus, motor 

neuron pathology precedes microglial activation and functional decline, while 

microglial activation becomes apparent around the time of symptom onset.  

2.4.1 The relationship between microglial activation and disease progression 

The results of the present study demonstrated a substantial increase in the number of 

microglia in the lumbar spinal cord of SOD1 mice, starting from 14 weeks of age and 

continuing to increase with time (Figure 2.1) The increase in microglial numbers starts 

from 14 weeks of age, concurrent with the onset of disease symptoms, as measured by 

decreased body weight in SOD1 mice compared to their WT littermates. This study 

confirms previous observations that activated microglia are increased in the SOD1 

spinal cord at disease onset, and increase in number throughout disease progression 

(Almer et al. 1999; Chiu et al. 2008; Gowing et al. 2008; Beers et al. 2011b; Yang et al. 

2011). However, a few previous studies have identified a pre-symptomatic increase in 

microglial number in SOD1 mice (Alexianu et al. 2001), SOD1
G93A

 rats (Graber et al. 

2010), and SOD1
H46R

 rats (Sanagi et al. 2010). Earlier apparent activation of microglia 

in these three studies may be due to the use of a different, perhaps more sensitive, 

microglial marker CD11b (Alexianu et al. 2001); or alternatively the disease course in 

SOD1 rodent models may show subtle differences depending on species, transgene 

copy number, or activity level of the mutant SOD1 protein (Pan et al. 2012).  

Pathological changes in motor neurons, including the presence of ubiquitinated 

aggregates and the formation of SOD1-positive annular structures, were observed from 

6 weeks of age onwards, well before the increase in microglia was first detected at 14 

weeks of age (Figure 2.6). The timing of these changes suggests that the increase in 

spinal cord microglia is a reactive response to neuronal dysfunction or degeneration, 

rather than a primary initiator of neuronal damage. However, microglial activation may 

play a key role in modulating disease progression after disease onset (Boillee et al. 
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2006; Beers et al. 2011a; Beers et al. 2011b; Audet et al. 2012). Indeed, we observed 

that SOD1 mice developed overt functional changes in stride pattern from 18 weeks of 

age, four weeks after the initial increase in lumbar spinal cord microglia (Figure 2.1, 

Figure 2.11). Thus, the increase in microglial number preceded the transition into a 

rapidly-progressing phase of disease, where functional ability rapidly declined.  

 

2.4.2 Microglial phenotype in SOD1 mice 

In spinal cord tissue from ALS patients and SOD1 rodents, activated microglia can form 

aggregates in close proximity to motor neurons (Alexianu et al. 2001; Henkel et al. 

2004; Sanagi et al. 2010), suggesting that any microglial activation will directly affect 

motor neurons. As M1-like and M2-like microglial phenotypes appear to be an 

important determinant of disease progression in SOD1 mice (Beers et al. 2011b), SOD1 

lumbar spinal cord ventral horn microglia were characterised through their expression 

of putative M1/M2 markers iNOS and Arg1, respectively (Colton 2009).  

2.4.2.1 Lumbar spinal cord Arg1 and iNOS expression 

In this study it was expected that the lumbar spinal cord microglia in SOD1 mice would 

show a shift in the spectrum of their activation phenotype, from Arg1-predominant to 

iNOS-predominant, in line with other studies which have suggested an M2-to-M1 shift 

over time (Beers et al. 2011a; Beers et al. 2011b; Liao et al. 2012). However, the 

current study found that both Arg1-positive and iNOS-positive microglia increased in 

number with disease progression (Figure 2.2, Figure 2.3). The number of Arg1-positive 

lumbar spinal cord microglia increased at disease onset, and continued to increase with 

disease progression, such that the number of Arg1-expressing microglia increased 18-

fold between the pre-symptomatic stage and disease endpoint (Figure 2.2). Less than 

20% of microglia expressed Arg1 at the pre-symptomatic stage, but this figure rose to 

over 60% at disease endpoint (Figure 2.5F). The increase in Arg1-expressing microglia 

may suggest an increase in the number of microglia displaying an M2-like 

neuroprotective phenotype.  

However, the number of iNOS-positive lumbar spinal cord microglia also increased 

from disease onset, with a 7-fold increase in microglia expressing iNOS between the 

pre-symptomatic stage and disease endpoint (Figure 2.3). Less than 10% of microglia 
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expressed iNOS at pre-symptomatic stages, with this figure rising to over 30% at 22 

weeks of age (Figure 2.5F). It was noted that the increase in iNOS-positive microglia 

was also accompanied by an increase in the number of iNOS-negative microglia (Figure 

2.3); in the absence of double-immunostaining for Arg1 and iNOS together, one may 

speculate that these iNOS-negative microglia showed an M2-like, possibly Arg1-

positive, phenotype. Despite the reported M2-to-M1 shift in microglial phenotype in 

SOD1 spinal cord (Liao et al. 2012), two studies have shown the maintenance of M2 

markers and M2-like characteristics in SOD1 microglia at disease endpoint (Chiu et al. 

2008; Tada et al. 2011); consequently, the concept of microglia retaining some of their 

neuroprotective function throughout disease progression is not unprecedented. 

A semi-quantitative analysis of Arg1 and iNOS immunoreactivity in individual 

microglia indicated that both Arg1 and iNOS expression levels were increased during 

disease progression (Figure 2.4). The percentage area occupied by Arg1 

immunoreactivity increased approximately 5-fold between 6 and 22 weeks of age, yet 

the percentage area occupied by iNOS immunoreactivity increased approximately 25-

fold between 6 and 22 weeks of age due to the small amount expressed at 6 weeks of 

age (Figure 2.4). Although these data would hint that the percentage area occupied by 

Arg1 appears greater than that occupied by iNOS (Figure 2.4), the absolute levels of 

Arg1 and iNOS protein cannot be reliably compared by immunohistochemistry intensity 

due to different antibody-antigen binding strengths. These data do suggest that iNOS 

shows a greater fold increase than Arg1 between 6 and 22 weeks of age.  

The increasing number of iNOS-positive microglia seen in the present study, along with 

the large fold increase in iNOS immunoreactivity, may represent an increase in M1 

neurotoxic microglia, which could increase the production of toxic factors such as nitric 

oxide within the spinal cord (Appel et al. 2011). In contrast, the continuing increase in 

Arg1-positive microglia may represent an ongoing attempt by M2 neuroprotective 

microglia to limit tissue damage and neuronal degeneration (Colton 2009; Henkel et al. 

2009). The increase in iNOS-positive microglia, while lesser in magnitude than the 

increase in Arg1-positive microglia, may result in a higher net production of nitric oxide 

in the lumbar spinal cord ventral horn, with deleterious effects on the surrounding motor 

neurons. Thus, the results of this study show evidence of concomitant neurotoxic and 

neuroprotective processes in SOD1 spinal cord microglia.  
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2.4.2.2 Cervical spinal cord Arg1 and iNOS expression 

The expression of Arg1 and iNOS was examined in the cervical spinal cord of SOD1 

mice aged 10 to 22 weeks, to determine whether differences in microglial phenotype 

between the lumbar and cervical regions may explain the later involvement of the 

forelimbs in SOD1 mice (Kuntz et al. 2000).  

In the cervical spinal cord ventral horn of SOD1 mice, the number of Arg1-positive 

microglia was increased at 22 weeks of age, while the number of microglia expressing 

iNOS also increased slightly over time (Figure 2.5). Although these trends were similar 

to those seen in the lumbar spinal cord, three pieces of data indicate that the cervical 

spinal cord may present a slightly M2-skewed microglial environment compared with 

the lumbar spinal cord. First, at 10 weeks of age, there were equivalent numbers of 

Arg1-positive and Arg1-negative microglia in the cervical spinal cord, whereas in the 

lumbar spinal cord the majority of microglia did not express Arg1. Second, at 22 weeks 

of age, the cervical spinal cord shows a higher percentage of microglia expressing Arg1 

(79%) than the lumbar spinal cord (64%). Third, at 22 weeks of age, the cervical spinal 

cord shows a lower percentage of microglia expressing iNOS (24%) than the lumbar 

spinal cord (32%). These slight differences indicate that neuroprotective M2-phenotype 

microglia may be more prevalent in the cervical spinal cord than the lumbar spinal cord 

at pre-symptomatic stages of disease, and that the activation state of cervical microglia 

at 22 weeks of age involves greater numbers of microglia expressing of the M2 marker 

Arg1, and lower numbers of microglia expressing the M1 marker iNOS.  

These results are in line with a previous study showing early upregulation of M2 

markers in the cervical spinal cord of SOD1 mice (Beers et al. 2011b). From the current 

study, it is difficult to elucidate whether the apparently less-inflammatory microglial 

environment in the spinal cord is due to a reduced reactive response from decreased or 

delayed neuronal degeneration, or whether the relative prevalence of M2-phenotype 

microglia directly provides a protective environment, delaying neuronal dysfunction 

and degeneration. However, comparing ubiquitin pathology at 10 weeks of age in the 

lumbar spinal cord (aggregates in the motor neuron somas and in the neuropil; Figure 

2.6) and the cervical spinal cord (aggregates in the motor neuron somas, and mostly 

absent from the neuropil) (Lewis et al. 2014) indicates that the microglial expression of 

inflammatory markers may be influenced by the prevalence of ubiquitinated aggregates.     
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2.4.2.3 Technical limitations to discussion of microglial phenotype 

The results from the present study do not show a shift from Arg1-predominant, M2-like 

phenotype to an iNOS-predominant, M1-like phenotype over time, and as such differ 

slightly from previously reported studies. M2 markers such as Ym1 and MCP-1 have 

previously been reported as upregulated in the SOD1 spinal cord during the early, slow-

progressing phase of disease (Beers et al. 2011a; Beers et al. 2011b), with a subsequent 

downregulation of M2 markers, and upregulation of M1 markers such as TNFα, IL-6 

and NOX2 during the rapidly-progressive disease phase (Almer et al. 1999; Yoshihara 

et al. 2002; Gowing et al. 2009; Beers et al. 2011a; Beers et al. 2011b; Liao et al. 

2012). The differences between the current study and these previous studies may be due 

to the use of protein markers rather than mRNA markers of M1/M2 microglial 

phenotype.  

There are both positive and negative aspects to the use of protein markers rather than 

mRNA analysis. While analysis of spinal cord mRNA can provide an excellent 

overview of the proteins cells are capable of producing, not all mRNAs may be 

effectively translated into protein. Furthermore, analysis of mRNA from homogenised 

spinal cord cannot determine the subcellular localisation of specific mRNAs. While 

microglia are likely to be the primary cell type for cytokine production within the spinal 

cord, other cell types including astrocytes, infiltrating immune cells, and even motor 

neurons may also produce cytokines and inflammatory markers; the use of mRNA from 

homogenised spinal cord alone may limit interpretation of protein expression in 

microglia. Indeed, Arg1 expression in motor neurons was observed in the current study 

(data not shown). Immunolabelling allows cell-specific localisation of inflammatory 

markers, ensuring that the results are specific to microglia.  

Conversely, while the use of immunostaining allows identification of cell-specific 

protein expression, persistent antibody cross-reactivity when attempting double-

labelling for Arg1 and iNOS (both mouse monoclonals) meant that the relative 

expression of Arg1 and iNOS within specific cells could not be compared. As Arg1 and 

iNOS are inversely regulated in CNS glia (Bonaparte et al. 2006), it could be assumed 

that cells expressing Arg1 expressed low levels of iNOS, and vice versa – however, it is 

likely that some, but not all, Arg1-positive microglia also express iNOS. Thus, not all 

Arg1-positive microglia may show a neuroprotective phenotype. While the presence of 
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a higher percentage of microglia expressing Arg1 than iNOS does suggest an M2-

predominant, anti-inflammatory environment in the SOD1 spinal cord, this 

interpretation is over-simplistic without the consideration of additional M1 and M2 

markers. It is also possible that the expression of Arg1 and iNOS may not correlate 

directly with M2 and M1 phenotypes. The ideal analysis of microglial phenotypes 

would combine mRNA data, protein immunohistochemistry, and cytokine profiles of 

the SOD1 spinal cord.  

 

2.4.3 Pathological changes in SOD1 motor neurons 

The timing of motor neuron pathology in the SOD1 lumbar spinal cord was examined 

with immunostaining for neurofilaments, ubiquitin and hSOD1. Pathological alterations 

in lumbar motor neurons were seen from as early as 6 weeks of age (Figure 2.6), well 

before the development of microgliosis in the lumbar spinal cord (Figure 2.1). The 

current study confirms previous results showing pre-symptomatic presence of 

ubiquitianted aggregates and vacuolar neurofilament pathology in the SOD1 spinal cord 

(Bruijn et al. 1997a; Vinsant et al. 2013), indicating that the initial increase in microglia 

is likely a neuroprotective response to neuronal degeneration.    

From 6 weeks of age onwards, vacuolar pathology involving both hSOD1 and 

neurofilaments develops in spinal cord motor neurons (Figure 2.6). The source of these 

‘empty’ vacuoles may be due to the breakdown of the Golgi apparatus or the swelling of 

mitochondria (Vinsant et al. 2013), or due to direct effects of mutant SOD1 on 

neurofilament proteins. The formation of ring-like structures in the neuropil, which are 

positive for either hSOD1 or dephosphorylated neurofilament medium chain (SMI32), 

and sometimes both, suggests a direct role for the mutant SOD1 in vacuole formation by 

neurofilament modification. SOD1-mediated protein nitration by nitric oxide may be 

one such detrimental way for SOD1 to disrupt neurofilament formation (Bruijn et al. 

1997a). As neurofilament content normally regulates axonal calibre (Hoffman et al. 

1984; Perrot et al. 2007), it is possible that aberrant accumulations of neurofilament 

protein are misinterpreted as a local stimulus for expansion of axon, creating a vacuole.  

Additionally, the appearance of neuronal pathology precedes the onset of functional 

deficits by several weeks in this study. This is consistent with previous studies showing 

pre-symptomatic degenerative changes at the neuronal cell body well before loss of 
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function, due to compensatory re-innervation of muscle fibres by surviving motor 

neurons (Frey et al. 2000; Nandedkar et al. 2010; Vinsant et al. 2013).  

 

2.4.4 Increasing expression of the antioxidant response protein, MT-1/2 

Increasing iNOS expression in microglia may contribute to the production of nitric 

oxide, and in turn the production of peroxynitrite, in the spinal cord of SOD1 mice. The 

expression of the protein metallothionein-1/2 was examined as a measure of the 

antioxidant response taking place in spinal cord glia. In the lumbar spinal cord, an 

increase in MT-1/2-expressing glial cells was seen in the ventral horn from 18 weeks of 

age (Figure 2.7). The amount of diffuse MT-1/2 immunostaining also qualitatively 

increased from 18 weeks of age in SOD1 mice (Figure 2.7), indicating a possible 

increase in both MT-1/2 expression and MT-1/2 secretion into the extracellular space.  

The increase in MT-1/2 expression with disease progression confirms previous studies 

showing increased MT-1/2 production in the SOD1 spinal cord over time (Gong & 

Elliott 2000; Nagano et al. 2001; Tokuda et al. 2007; Tokuda et al. 2013). However, the 

current study was only able to detect increased MT-1/2 in the ventral horn from 18 

weeks of age onwards, while previous studies have all demonstrated pre-symptomatic 

MT-1/2 increases (Gong & Elliott 2000; Nagano et al. 2001; Tokuda et al. 2007; 

Tokuda et al. 2013). The earlier increase in MT-1/2 seen in previous studies may be due 

to differences in genetic background strain of SOD1 mice – a congenic B6 background 

was used in the current study, compared to a hybrid B6SJL background used in previous 

studies (Gong & Elliott 2000; Nagano et al. 2001; Tokuda et al. 2007; Tokuda et al. 

2013). Alternatively, the earlier detection of MT-1/2 in previous studies may be due to 

the use of more sensitive detection techniques such as radioimmunoassay (Nagano et al. 

2001). The increased production of MT-1/2 during only the symptomatic stage of 

disease in the current study (Figure 2.7) does not negate the presence of oxidative stress 

in pre-symptomatic SOD1 mice, as MT-1/2 is only one of many antioxidant response 

proteins (Mates et al. 1999; Ahsan et al. 2009). The post-symptomatic increase in MT-

1/2 may indicate the presence of detrimental oxidative stresses at later phases of disease.  

The upregulation of MT-1/2 from 18 weeks of age (Figure 2.7) does correlate with the 

increase in microglial activation in the lumbar spinal cord, and occurs around the time 

that overt functional deficits in SOD1 stride pattern were detected (Figure 2.11). 
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Together, these data suggest that the increasing number of iNOS-expressing ventral 

horn microglia increases total NO synthesis; the increased NO- or peroxynitrite-

mediated oxidative stress may damage motor neurons, causing overt functional deficits, 

and inducing expression of MT-1/2 in astrocytes.  

Alternatively, the role of MT-1/2 in SOD1 mice may be more complex than purely 

providing an antioxidant response. MT-1/2 show neuroprotective properties, which will 

be further discussed in Chapter 4, as well as antioxidant properties. Astrocytes increase 

MT-1/2 production upon cortical neuronal injury, and MT-1/2 is secreted from 

astrocytes onto surrounding neurons to elicit pro-survival and pro-outgrowth effects 

(Chung et al. 2008b). In SOD1 mice, the increase in MT-1/2 expression could be in 

response to widespread neuronal degeneration in the later stages of disease from 18 to 

25 weeks of age, as a possible attempt to protect motor neurons from degeneration.    

While MT-1/2 immunoreactivity was mainly colocalised with the astrocyte marker 

GFAP (Figure 2.8), some glial MT-1/2 labelling was not colocalised with GFAP (data 

not shown). In the SOD1 spinal cord, MT-1/2 was originally thought to be expressed 

only in astrocytes (Gong & Elliott 2000); however, a recent publication demonstrated 

MT-1/2 in SOD1 microglia as well as astrocytes (Tokuda et al. 2013). The small 

amount of non-GFAP-associated MT-1/2 immunostaining in the present study (data not 

shown) could be present in microglia. Future studies could examine whether microglial 

MT-1/2 expression may attenuate microglial ROS production, and consequently 

correlate with neuroprotective rather than neurotoxic microglial phenotypes.      

There are some limitations to the interpretation of MT-1/2 induction as an antioxidant or 

neuroprotective response. As mentioned above, MT-1/2 is induced in response to 

neuronal injury; MT-1/2 induction is additionally controlled by the presence of metal 

ions, cytokines, and corticosteroids (Richards et al. 1984; Cousins & Leinart 1988). The 

increased astrocytic MT-1/2 in the SOD1 spinal cord could reflect metal 

dyshomeostasis, which has been proposed as a possible mechanism of ALS (Roos et al. 

2006), or the presence of inflammatory cytokines due to increasing microglial activation 

and T-cell infiltration (Beers et al. 2011a). Alternatively, as the number of astrocytes 

appeared to increase over time in the SOD1 lumbar spinal cord in the present study 

(Figure 2.8), and as astrogliosis has been reported previously in SOD1 mice (Vargas & 

Johnson 2010), the increased amount of MT-1/2 in the spinal cord may purely reflect 
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the increasing number of astrocytes. Regardless of the multiple possible mediators of 

MT-1/2 upregulation, the presence of diffuse MT-1/2 immunoreactivity indicates that 

MT-1/2 is released into the extracellular space of the SOD1 lumbar spinal cord and may 

comprise an attempt at astrocyte-mediated neuroprotection. The protective effects of 

MT-1/2 in SOD1 mice will be further explored in Chapter 4.  

 

2.4.5 Functional decline  

As expected, the present study confirmed the decline in functional ability over time in 

SOD1 mice (Gurney et al. 1994). SOD1 mice showed lower body weights than wild-

type mice from 14 weeks of age (Figure 2.10), deficits in wire hang duration from 15 

weeks of age (Figure 2.12), observable neurological deficits from 16 weeks of age 

(Figure 2.13), and altered stride pattern from 18 weeks of age (Figure 2.11). Thus, 

disease onset was detected around 14 to 15 weeks of age in this study. The timing of 

disease onset is considered a conservative estimate compared to other studies using the 

SOD1 mouse on a congenic B6 background, which found the earliest appearance of 

disease symptoms at around 11 weeks of age (Beers et al. 2011a; Beers et al. 2011b).   

2.4.5.1 The use of mixed modelling to assess body weight peak 

In this study a slightly novel approach to measuring disease onset was used – mixed 

modelling was used to generate a curve to model the body weight trajectory of SOD1 

mice, and the age at which maximum body weight was reached was estimated using 

calculus. This method was compared with the calculation of weekly averages. Both the 

average body weight, and the trajectory estimated with mixed modelling, showed 

differences between SOD1 and WT mice from 14 weeks of age (Figure 2.10). The 

model-derived estimated maximum body weight, and the model-derived age at which 

the maximum body weight occurs, were similar to those calculated from the raw data.  

The mixed model has both advantages and disadvantages over weekly body weight 

averages. The advantages are that: the mixed model allows all recorded body weight 

measurements, even taken on a daily basis, to be used instead of creating a weekly 

average for each mouse; and that the mixed model is able to assign some of the variance 

in the data to variations over time for individual mice, reducing the residual variance 

and increasing statistical power to detect differences between treatment or genotype 
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groups (Murnane & Willett 2011). The disadvantage of a mixed model is that if the 

model is not fitted correctly, the estimates generated by the model will not be an 

accurate reflection of the true data. However, the body weight trajectories of SOD1 

mice appear to be well modelled by a cubic function (Figure 2.10), with a cubic 

function showing superior model fit over a quadratic function (Supplementary Data 1). 

Thus, mixed modelling may be a novel method of increasing statistical power in studies 

which examine body weight measurements in the same mice over time.       

2.4.5.2 Comparison of tests for functional deficits 

Functional decline in SOD1 mice was evident in wire hang duration times prior to 

becoming evident in stride pattern (Figure 2.11, Figure 2.12). This earlier detection 

using the wire hang test may be due to the nature of each task – maintaining grip on 

suspended wire bars requires constant muscle activation, whereas walking along a strip 

of paper likely requires less muscle strength, and has the advantage that each limb gets a 

transient rest period while it is in the stationary phase of walking.  

The wire hang duration, or paw grip endurance, test has been used previously to assess 

functional ability and muscle strength in SOD1 mice, with deficits in wire hang duration 

ability found as early as 12 weeks of age (Weydt et al. 2003). In the present study, wire 

hang duration was tested to a maximum of 60 seconds, compared with a maximum of 

90 seconds in previous studies (Weydt et al. 2003). The use of a longer test time may 

pick up earlier changes in muscle strength, as increasing the hang time requires an 

increased amount of strength and endurance.  

Computerised treadmill analysis of SOD1 gait pattern indicates that changes between 

SOD1 and WT mice occur as early as 8 weeks of age (Wooley et al. 2005); however, in 

the current study differences between SOD1 and WT mice only became apparent from 

18 weeks of age onwards (Figure 2.11). The late change in stride lengths observed here 

are consistent with those observed in other studies using non-treadmill-based footprint 

analysis (Gurney et al. 1994; Knippenberg et al. 2010). These data indicate that 

measurements of stance and stride times during treadmill running (Wooley et al. 2005) 

provide a much more sensitive measure of dysfunction than measurement of stride 

length on paper. However, the late decline in stride length may correspond to the 

rapidly-progressing phase of disease, where motor units are lost without compensatory 
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re-innervation in the muscle; stride length may be useful in monitoring disease 

progression during this phase.  

In this study we report increasing uniformity measure in SOD1 mice; that is, reduced 

ability of hindlimb musculature to move the leg in a forward motion during stepping, 

such that the hindlimb placement falls short of front limb placement on the previous 

step (Figure 2.11). To our knowledge, this measure has not been previously reported in 

SOD1 mice and, like the late change in stride length, may be an appropriate measure of 

measuring the effect of therapeutic interventions on the late phase of disease. 

2.4.5.3 Neurological scoring system  

The neurological scoring system employed in this study, designed by the ALSTDI, was 

used to assess neurological deficits present in SOD1 mice through observation. The 

ALSTDI scoring system allows only five possible neurological scores: no symptoms 

(NS=0), mild symptoms at disease onset (NS=1), dragging of feet due to loss of muscle 

strength (NS=2), rigid paralysis or minimal movement (NS=3), and inability to right 

(NS=4) (Scott et al. 2008). SOD1 mice showed a progressive increase in the 

neurological score rating throughout disease progression (Figure 2.13); however, of the 

four neurological scores observed in this study (NS=0-3), there was a substantial time 

gap between a rating of NS=1 and a rating of NS=2 (see text, Chapter 2.3.2.5). During 

the period when a given mouse was rated NS=1, alterations in gait could be observed 

which did not meet the criteria for a rating of NS=2. Additionally, some WT mice were 

also rated as NS=1 – possibly due to mis-interpretation of the neurological score criteria 

to include any inwards collapse of the legs upon tail suspension, as sometimes occurred 

in WT mice – but no WT mice showed gait abnormalities as seen in SOD1 mice. A 

neurological scoring system with more specific detail around gait abnormalities, such as 

the Beers/Appel/Simpson/Henkel (BASH) scoring system (Beers et al. 2011b), may be 

more appropriate for detailed comparison of neurological symptoms present after 

disease onset in SOD1 mice.  

Although the NS=2 rating was reached rather late in disease progression, a rating of 

NS=2 with dragging feet, or toes curling under while walking, was easily identified and 

may be a useful tool for measuring the age at which mice develop overt difficulties 

maintaining normal hindlimb function.        
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2.4.5.4 Functional measures of disease progression for evaluating therapeutics 

Peak body weight, and the inability to maintain wire hang duration for 60 seconds, may 

be used to evaluate disease onset in future cohorts of SOD1 mice. Changes in stride 

length, uniformity measure, wire hang duration, body weight, and neurological score 

rating (foot dragging), may be useful for monitoring disease progression over time in 

SOD1 mice.  

 

2.4.6 Summary and conclusions  

There are four main findings of this study:  

First, the increase in microglial numbers does not precede onset of disease symptoms 

but does precede the development of overt functional deficits;  

Second, the number of Arg1-positive microglia and the number of iNOS-positive 

microglia both increase in the SOD1 lumbar spinal cord over time, suggesting ongoing 

conflicting actions of neuroprotective and neurotoxic microglia; 

Third, cervical spinal cord microglia show more common expression of Arg1 and less 

common expression of iNOS than the lumbar spinal cord, indicating that a more M2-

like inflammatory environment may be responsible for the later involvement of the 

forelimbs; 

Fourth, the antioxidant protein MT-1/2 is increased after disease onset, possibly induced 

by neuronal damage, or by the release of free radical species or inflammatory cytokines 

from activated microglia.   

These findings implicate microglial activation and microglial phenotype as contributors 

to the degeneration of motor neurons after disease onset. It is likely that microglial 

activation occurs as a result of early changes in dysfunctional or degenerating motor 

neurons, with microglial activation then affecting disease progression (Beers et al. 

2006; Liao et al. 2012). Microglial activation in the spinal cord involved increased 

numbers of cells expressing the M2 marker Arg1, and increased numbers of cells 

expressing the M1 marker iNOS, showing that both neurotoxic and neuroprotective 

processes are ongoing within the spinal cord of SOD1 mice.  
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The results presented here highlight the need to use a panel of inflammatory markers to 

determine microglial phenotype. Although this study showed a predominance of Arg1-

expressing microglia, the phenotype of each individual cell will depend on the balance 

of Arg1/iNOS expression and on cytokine expression. The ideal study of microglial 

phenotype would combine mRNA, protein, and cytokine expression profiles.  

The modulation of microglial activation remains a key target for ameliorating disease in 

ALS patients (Beers et al. 2008; Chiu et al. 2008; Pollari et al. 2011; Lee et al. 2012). 

Pro-inflammatory microglial activation, as seen by the increasing number of iNOS-

positive microglia, likely causes neuronal damage regardless of an increase in anti-

inflammatory microglial activation as seen by Arg1 expression in this study. It is likely 

that the detrimental effects of an M2-to-M1 microglial phenotype switch come 

primarily from the gain of toxic properties in M1 microglia, but may also involve the 

loss of protective properties in M2 microglia. As such, potential ALS therapies designed 

to modulate microglial activation should concentrate on the reduction of the pro-

inflammatory phenotype and the promotion of the anti-inflammatory phenotype. 

Modulation of microglial immune responses remains an important target for 

ameliorating disease symptoms and slowing the rate of disease progression in ALS.   
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Chapter 3  

 

The effects of Gemals compound in SOD1 mice 
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3.1 Background 

3.1.1 The need for multi-action therapies in ALS 

Clinical trials of single-drug interventions in ALS patients have shown little efficacy 

(Gordon & Meininger 2011). In addition, single-drug studies which were successful in 

SOD1 mice have not translated into successful clinical trials in ALS patients (Benatar 

2007). As mentioned in Chapter 1, the etiology of ALS is thought to be highly complex, 

with evidence of multiple pathological changes present. These changes include 

oxidative stress and marked activation of glial cells, in both ALS patients and SOD1 

mice. The multifactorial aetiology of ALS indicates that a single therapeutic compound 

may not be sufficient to successfully address the multiple aspects of ALS pathology. 

Therefore, multifactorial or multi-action therapies may have more success as effective 

therapeutics for preventing neuronal death in ALS.  

 

3.1.2 Endotherapia – a drug cocktail of small molecules 

One such drug cocktail under consideration for an ALS treatment is known as 

Endotherapia, a mixture of small molecules each conjugated to poly-L-lysine (PLL) 

(Geffard et al. 2010). The mixture of small molecules consists of fatty acids, amino 

acids, antioxidant compounds, and vitamins, thought to have neuroprotective, 

antioxidant, and immunomodulatory activity (Geffard et al. 2010). Additionally, while 

the role of chronic infection in neurodegeneration is controversial (Nicolson 2008), the 

fatty acids in Endotherapia may prevent bacterial adhesion to reduce chronic infections 

(Geffard et al. 2010). The multiple potential actions of Endotherapia could affect 

several pathways at once, and thus would have more chance of ameliorating complex 

neurodegenerative diseases. Endotherapia complexes have been tested in the 

neurodegenerative diseases multiple sclerosis (MS) and ALS, using an MS-tailored 

Endotherapia mixture of 19 compounds, named ‘GEMSP’ (Mangas et al. 2006), and an 

ALS-tailored Endotherapia mixture containing 25 compounds, named ‘Gemals’ 

(Nicaise et al. 2008); 12 compounds are common to both GEMSP and Gemals. The 

base components of Gemals, along with information on their functions, are listed in 

Table 3.1. The composition of formulated Gemals, where the components are linked to 

PLL in various combinations, is listed in Table 3.2. 
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Table 3.1 Functional categories of Gemals components 

Constituent Molecule type; function 

Oleic acid Unsaturated fatty acid; antioxidant, anti-inflammatory 

Thioctic acid Dithiol; antioxidant 

Myristic acid Saturated fatty acid  

Palmitic acid Saturated fatty acid  

Lauric acid Saturated fatty acid; anti-inflammatory 

Linoleic acid Unsaturated fatty acid; antioxidant, anti-inflammatory 

Palmitoleic acid Unsaturated fatty acid; anti-inflammatory 

Caprylic acid Saturated fatty acid  

T-T-Farnesyl-L.Cysteine Amino acid derivative;  

Cholesterol Sterol; anti-inflammatory 

L. Cysteine Amino acid; antioxidant 

Taurine  Amino acid derivative; antioxidant, neuroprotective 

L. Methionine Amino acid; antioxidant, anti-inflammatory 

L. Glutathione Tripeptide; antioxidant 

Alpha-tocopherol-succinate Vitamin E; antioxidant 

Ascorbic acid Vitamin C; antioxidant 

Coenzyme Q10 Respiratory chain component; antioxidant, anti-

inflammatory, neuroprotective 

Retinoic acid Vitamin A derivative; antioxidant, anti-inflammatory, 

neuroprotection 

Pantothenic acid Vitamin B5; antioxidant, anti-inflammatory, 

neuroprotection 

Biotin Vitamin B7; essential coenzyme for carboxylases 

Uric acid Organic acid; antioxidant 

Agmatine Amino acid derivative; antioxidant, anti-inflammatory, 

neuroprotective 

Glucosamine Monosaccharide; antioxidant, anti-inflammatory, 

neuroprotective 
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Table 3.2 Gemals components and their concentration in the current study 

Constituent Concentration 

Oleic acid – PLL – Thioctic acid 66µM 

Oleic acid – PLL – Myristic acid 66µM 

Oleic acid – PLL – Palmitic acid 66µM 

Oleic acid – PLL – Lauric acid 66µM 

Oleic acid – PLL – Linoleic acid 66µM 

Oleic acid – PLL – Palmitoleic acid 66µM 

Lauric acid – PLL – Caprylic acid 66µM 

T-T-Farnesyl-L.Cysteine – PLL – Palmitic acid 66µM 

Cholesterol – PLL – Oleic acid 66µM 

L. Cysteine – RG – PLL  66µM 

L. Cysteine – GA – PLL  66µM 

Taurine – RG – PLL  66µM 

Taurine – GA – PLL  66µM 

L. Methionine – RG – PLL  66µM 

L. Methionine – GA – PLL  66µM 

L. Glutathione – RG – PLL  66µM 

Alpha-tocopherol-succinate – PLL 20µM 

Ascorbic acid – PLL  20µM 

Oleic acid – PLL – Coenzyme Q10 20µM 

Oleic acid – PLL – Retinoic acid 20µM 

Pantothenic acid – PLL  20µM 

Biotin – PLL  20µM 

Uric acid – F – PLL 66µM 

Agmatine – RG – PLL  66µM 

Glucosamine – GA – PLL  66µM 

PLL, conjugated to poly-L-lysine; RG, reduced glutaraldehyde linkage; GA, glutaric anhydride linkage; 

F, formaldehyde linkage.  
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3.1.2.1 Endotherapia as a treatment for multiple sclerosis 

The therapeutic effects of Endotherapia have been examined in a rat model of MS and 

in MS patients. The Endotherapia mixture, GEMSP, was able to reduce brain leukocyte 

infiltration across the blood-brain barrier (BBB) after induction of acute experimental 

autoimmune encephalomyelitis (EAE) in rats, but did not diminish the short-term 

neurological symptoms of acute EAE (Mangas et al. 2006). However, in a chronic EAE 

rat model, GEMSP treatment abolished clinical symptoms of nerve damage (Mangas et 

al. 2008), indicating that GEMSP is capable of modulating clinical outcomes in rats in a 

chronic EAE model of multiple sclerosis.  

The use of GEMSP has also been extended beyond rat models of MS, with two open 

clinical trials conducted using Endotherapia compounds. In the first, small, open clinical 

trial, most MS patients treated with GEMSP for 6 months experienced a stabilisation 

(55% of patients) or an amelioration (18% of patients) of disease symptoms (Geffard et 

al. 2010). In the second, larger, open clinical trial, over two thirds of MS patients 

receiving an Endotherapia mixture of PLL-conjugated compounds (exact composition 

unknown, patent pending as of Geffard et al. 2010) showed positive outcomes, with 

35% showing ameliorated disability scores, 17% showing stabilisation of disease, and 

20% showing a lower rate of disease progression than the expanded disability status 

score (EDSS) worldwide reference rate (Geffard et al. 2010). Thus, Endotherapia 

compounds appear to show beneficial effects in slowing disease progression in MS 

patients, with the caveat that these studies did not use an untreated control group. As 

GEMSP and Endotherapia contain multiple compounds, it is unclear whether 

Endotherapia acts through immunomodulatory or direct neuroprotective mechanisms.  

3.1.2.2 Endotherapia as a treatment for ALS 

Endotherapia compounds have also been tested in a rat model of ALS and in ALS 

patients. An Endotherapia mixture of PLL-conjugated compounds known as Gemals 

(Table 3.2) delayed disease onset, delayed body weight decline, delayed the onset of 

limb paralysis and increased survival time when administered pre-symptomatically in a 

SOD1 rat model of ALS (Nicaise et al. 2008). Gemals-treated SOD1 rats also tended to 

maintain motor performance, maintain compound muscle action potentials, and showed 

lower spontaneous muscle activity than vehicle-treated SOD1 rats (Nicaise et al. 2008). 

However, the effect of Gemals when administration was started from the onset of 

disease symptoms has not been investigated.  
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In addition, a Gemals-like Endotherapia compound (exact composition unknown, patent 

pending as of Geffard et al. 2010) was tested in a small, open clinical trial of 12 ALS 

patients (Geffard et al. 2010). Endotherapia-treated ALS patients showed a decreased 

loss of functional capacity on the ALS assessment questionnaire (ALSAQ-40) 

compared with the worldwide ALSAQ-40 reference score (Geffard et al. 2010). Thus, 

preliminary studies of Endotherapia suggest that the drug mixture is not detrimental in 

ALS patients and may even have beneficial effects – however, the absence of a control 

group from the study relies on the assumption that the worldwide ALSAQ-40 reference 

score has not changed over time. Given that these preliminary studies hint that 

Endotherapia may have some positive effects, a randomised, controlled trial would 

provide stronger evidence for a protective effect in ALS patients. Despite its evaluation 

in SOD1 rat models and in ALS patients, the Endotherpia mixture ‘Gemals’ is yet to be 

tested in the commonly-used SOD1 mouse model of ALS.  

 

3.1.3 Aims and hypothesis 

The aim of this chapter was to examine the ability of Gemals compound (Nicaise et al. 

2008) to extend the survival of SOD1 mice when administered after symptom onset, 

compared against untreated control mice.  

Hypothesis: Administration of Gemals to SOD1 mice after disease onset would 

slow disease progression and increase survival time.   

A cohort of SOD1 mice were treated from 100 days of age with Gemals or a vehicle 

control, and were compared in terms of survival, body weight, rotarod performance and 

grip strength over time.  
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3.2 Methods 

3.2.1 Animals 

All procedures and protocols involving animals were approved by the University of 

Tasmania’s Animal Ethics Committee (permit number A12234). Transgenic SOD1 

mice were genotyped and copy number was determined by qPCR at weaning, according 

to the procedure in Chapter 2. Upon genotyping at weaning, gender-paired SOD1 

littermates were identified, with a total of 14 female pairs and 16 male pairs (a total of 

60 mice, born over a 51-day period) used in the current study. All mice were housed in 

standard housing conditions as described in Chapter 2; mice were co-housed with their 

paired littermate, with the only exception when male mice fought with each other and 

were subsequently singly housed. As each littermate pair sequentially reached 95-100 

days of age, each mouse was weighed, and allocated to receive either Gemals or 

vehicle; allocation of littermate pairs between treatment groups was performed on the 

basis of keeping the average body weight each treatment group as close as possible 

(Scott et al. 2008). Copy number, body weight at start of treatment, and age at start of 

treatment were not different in Gemals and vehicle treatment groups, although starting 

body weight was higher in male mice than female mice (Table 3.3). From 20 weeks of 

age onwards, mice were given bacon-flavoured NutraGel cubes in their home cages to 

ensure adequate nutrition and hydration as mice continued through disease progression.  

 

Table 3.3 Cohort demographics at start of treatment 

 Female SOD1 mice Male SOD1 mice 

Factor Gemals Vehicle Gemals Vehicle 

Number (n) 14 14 15* 16 

Copy number (ΔCT) 5.41 ± 0.09 5.53 ± 0.04 5.35 ± 0.05 5.44 ± 0.07 

Body weight 19.6 ± 0.1 19.6 ± 0.1 26.3 ± 0.1 26.3 ± 0.1 

Age (days) 101.1 ± 0.4 101.1 ± 0.4 100.9 ± 0.3 100.9 ± 0.3 

No significant difference in cohort parameters at the start of treatment (copy number, body weight at start 

of treatment). *One of pair was WT; hence 16 male pairs started but the data from the WT was discarded. 
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3.2.2 Drug and dosage schedule 

Lyophilised Gemals was obtained from Gemacbio S.A. (Cenon, France) and was 

resuspended in filter-sterilised PBS at 2.5mg/mL. Gemals-treated mice were injected 

subcutaneously with 100µL resuspended Gemals per mouse (250µg/mouse, equivalent 

to between 10mg/kg and 12.5mg/kg for a 20-25g mouse), 5 days per week, from 

approximately 100 days of age through to disease endpoint. Vehicle control mice 

received an equivalent volume of filter-sterilised PBS. The final concentrations of 

individual components within the 2.5mg/mL Gemals suspension are listed in Table 3.2. 

Injections were carried out under light isoflurane (Attane, Bayer AG, NRW, Germany) 

anaesthesia (The Stinger Anaesthesia Machine, Advanced Anaesthesia Specialists, 

NSW, Australia; 3.5% isoflurane in 2L/min oxygen). The injection site was varied over 

the dorsal back surface and flanks, to minimise any irritation due to repeated injections. 

 

3.2.3 Outcome measures 

3.2.3.1 Survival time 

Survival time was initially measured as the age at which mice had lost 20% of their 

peak body weight. However, in line with the growing preference in the ALS field for 

the use of a function endpoint rather than a body weight endpoint, ethics approval was 

sought and obtained to use loss of the righting reflex (the animal’s normal ability to 

right itself within 30 seconds of being placed on its back) as the disease endpoint. Thus, 

part way through the trial the endpoint measure was changed. A breakdown of the 

survival outcomes for the 60 mice in this trial is given in Table 3.4. For the first 10 mice 

to reach endpoint in the study, only weights endpoint data was collected.  

In order to use all available data, separate survival analyses were carried out using the 

age at the loss of the righting reflex, and the age at loss of 20% from peak body weight. 

For animals with only one endpoint measure recorded (e.g. weight loss endpoint), the 

data was censored at the time of this endpoint for the purposes of analysis of the 

alternative endpoint measure (e.g. righting reflex endpoint analysis).  

Survival curves and average survival time (mean ± standard error of the mean) were 

compared using Kaplan-Meier analysis with the Log Rank test. Factors (categorical 

independent variables) and covariates (continuous independent variables) influencing 
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survival time were examined using Cox proportional hazards regression, and were 

reported as hazard ratios (HR) with 95% confidence interval (CI). 

 

Table 3.4 Numbers of SOD1 mice through trial 

  Female mice Male mice 

Number of mice (n) Gemals Vehicle Gemals Vehicle 

Allocated to trial 14 14 16 16 

Removed from trial     

             Incorrect genotype 0 0 1 0 

Survival data censored     

             Died under anaesthesia 0 0 0 2 

             Culled due to lesion 1 1* 1 1* 

             Found dead in cage   2 1* 

Endpoint conditions     

             Earliest of righting or weights 2 1 3 4 

             Righting only 11 12 9 7 

*culled due to littermate partner affected 

 

3.2.3.2 Body weight 

Body weight was recorded at least twice weekly; after the age of 18 weeks, body weight 

was recorded daily. Body weights were analysed separately for each gender, with 

Gemals-treated and saline-treated mice compared using T-tests at each week of age, 

with a Welch T-test correction applied if Levene’s test showed that variances were 

substantially different between groups.     

3.2.3.3 Rotarod performance 

Motor performance was assessed weekly from 100 days of age, using a 5-lane mouse 

rotarod (Rotarod Advanced for 5 mice, TSE Systems, Hesse, Germany). From 

approximately 85-90 days of age, mice were acclimatised to the Rotarod (three once-

daily sessions of 5 minutes, with the drum rotating at 3 revolutions per minute [rpm]); 

and subsequently trained to stay on the accelerating drum (at least two once-daily 

sessions where the drum accelerated from 3rpm to 16rpm over 3 minutes).  
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On the day preceding the weekly Rotarod test, mice were given a practice session where 

the drum rotated at 3rpm for 1 minute, then accelerated from 3rpm to 16rpm over 3 

minutes. On the day of the test, mice were given a 5-minute warm up session on the 

Rotarod at 3rpm, then had a 10-minute break, then went through the acceleration 

protocol where the speed was increased from 3rpm to 16rpm over 3 minutes. The speed 

at which mice could not stay on the rotating drum was recorded. Mice which could not 

stay on the Rotarod due to advancing disease were given the minimum score of falling 

at 3rpm. Average speeds at which falls occurred were compared separately for female 

and male mice, with Gemals-treated and vehicle-treated mice compared by T-tests at 

each week of age, with appropriate corrections for unequal variances where necessary.       

3.2.3.4 Grip strength 

Hindlimb grip strength was measured using a grip strength (force) meter (Columbus 

Instruments, OH, USA). A single grip strength meter, with a triangular bar for mice, 

was mounted above bench level on a spacer arm and platform. Mice were scruffed and 

were allowed to grab the bar with their hind paws, then moved away from the grip 

strength apparatus until they let go of the bar, with the maximum force of three attempts 

recorded in newtons (N). Grip strengths were analysed separately for male and female 

mice, and experimental groups were compared by T-tests with appropriate correction 

for unequal variances where necessary. 
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3.3 Results 

3.3.1 Adverse effects 

3.3.1.1 Reaction to drug 

Most mice injected with the Gemals compound showed an adverse reaction within 5-10 

minutes of injection. Affected mice showed reduced mobility within the cage, tending 

to stay in one corner and sometimes adopting a hunched position. The drug appears to 

cause irritation, with mice sometimes scratching at the injury site and in the worst cases 

giving continuous shudders / shrugs of the shoulders while maintaining the hunched 

position. None of these symptoms were seen in vehicle-treated mice. Some particulate 

matter remained following resuspension of Gemals in PBS. A batch of Gemals was 

therefore centrifuged to remove particulates which might cause irritation after injection; 

however, the particulate-free Gemals elicited the same reaction as seen with 

resuspended Gemals, indicating a soluble component was causing the adverse reaction.  

Topical application of lignocaine and bupivacaine, either with Gemals injection or at 90 

minutes prior to Gemals injection, was not effective at reducing the adverse reaction, 

nor was injection of meloxicam together with Gemals effective at reducing the reaction; 

however, injecting meloxicam 60-90 minutes prior to Gemals injection suppressed most 

of the adverse response (Data from Dr Bill Bennett). Subcutaneous injection of 

meloxicam (5mg/kg, 40-60µL of 1:1 meloxicam:saline) was therefore performed 

approximately 60 minutes prior to injection with either Gemals or vehicle.      

3.3.1.2 Development of skin lesions   

In some Gemals-treated mice, the skin around the injection site appeared to become 

tough and fibrotic. A number of mice also developed isolated open wounds or lesions, 

which were initially observed on male mice and were attributed to fighting, but also 

appeared in female mice. Lesions occurred almost exclusively in Gemals-treated mice 

(6/14 female and 6/15 male Gemals-treated mice); lesions were rarely seen in vehicle-

treated mice (1/14 female and 0/16 male vehicle-treated mice). Lesions occurred on the 

skin of the flanks, back, or shoulders/neck, although one female mouse showed a lesion 

on the forelimb, and one male mouse showed a lesion at the base of the tail, both 

located far from any sites of drug injection. To treat these lesions, mice were placed 

under light isoflurane anaesthesia; the lesion was swabbed with sterile saline and had 
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betadine (Sanofi-Aventis, povidone-iodine antiseptic ointment) applied. If the skin 

surrounding the lesion site appeared irritated, imflamol (Apex Laboratories, broad 

spectrum anti-bacterial, anti-inflammatory, anti-fungal ointment) was applied. 

Treatment was applied daily while the lesion was present. Most lesions healed within 

4±1 days of appearance; two mice developed a lesion at 2-3 days before disease 

endpoint, which did not resolve by disease endpoint. Three mice developed a lesion on 

two separate occasions; in these mice, the first lesion was small and healed quickly, 

while on the second occasion the lesion was larger. The lesion appeared severe in two of 

these mice developing a second lesion, and these two mice were culled, along with their 

respective paired littermates (Table 3.4).  

The aetiology of these lesions is unclear. While some lesions may be possibly 

attributable to fighting between mice, lesions developed primarily in Gemals-treated 

mice, and were most common on the flanks, back and shoulders where Gemals 

injections took place. It is possible that the meloxicam injection did not completely 

relieve the irritant effect of Gemals injections, so the lesion may have been caused by 

excessive grooming or scratching of the injection site. Even more so, the analgesic 

effects of the meloxicam may have removed painful stimuli from excessive scratching, 

leading to more scratching and exacerbation of the lesion.     

 

3.3.2 Survival 

3.3.2.1 Kaplan-Meier analysis 

Kaplan-Meier was used to assess the effect of a single variable, such as Gemals 

treatment vs. vehicle treatment, or male vs. female gender, on survival outcomes.  

3.3.2.1.1 Kaplan-Meier analysis: Loss of righting reflex 

The average age at which righting reflex was lost was not different between Gemals-

treated and vehicle-treated mice (Gemals 171.2±2.9 days vs. vehicle 172.8±2.9 days, 

p=0.762) (Figure 3.1A), nor between female and male mice (female 172.4±2.8 days vs. 

male 171.1±3.0 days, p=0.706) (Figure 3.1B). Gemals treatment did not affect survival 

time in either female or male mice when each gender was considered separately (males: 

Gemals 167.7±1.6 days vs. vehicle 175.6±5.5 days, p=0.156; females: Gemals 

173.1±4.9 days vs. vehicle 171.8±3.0 days, p=0.307) (Figure 3.1C,D).  
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Figure 3.1 Kaplan-Meier survival curves for loss of the righting reflex 

The loss of the righting reflex reflects the age at which mice were no longer able to right 

within 30 seconds of being placed on their side. Kaplan-Meier survival curves were not 

significantly different between Gemals-treated mice and vehicle-treated mice (A), nor 

between female mice and male mice (B). Gemals treatment did not substantially alter 

retention of the righting reflex in male (C) or female (D) mice. Vertical dashes represent 

censored data points.   
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Figure 3.2 Kaplan-Meier survival curves for loss of 20% from peak body weight 

The survival curves for the age at which SOD1 mice had lost 20% from their pre-

disease maximum body weight were not significantly different between Gemals-treated 

mice and vehicle-treated mice (A). Female mice showed significantly longer times to 

loss of 20% body weight than male mice (B). No significant effect of Gemals treatment 

was seen in either male (C) or female (D) mice. Vertical dashes represent censored data 

points. BW, body weight.  
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3.3.2.1.2 Kaplan-Meier analysis: Loss of 20% body weight 

The age at which mice had lost 20% of their body weight was not different between 

Gemals-treated mice and vehicle-treated mice (Gemals 178.7±3.8 days vs. 172.2±1.8 

days, p=0.132) (Figure 3.2A). However, female mice displayed a delayed loss of 20% 

body weight compared to male mice (females 179.0±2.8 days vs. males 169.2±1.9 days, 

p=0.023) (Figure 3.2B). Considering male and female mice separately, Gemals showed 

no effect on the loss of 20% body weight compared to the vehicle control (females: 

Gemals 181.2±4.5 days vs. vehicle 175.5±2.1 days, p=0.228; males: Gemals 171.1±3.0 

days vs. vehicle 168.2±2.7 days, p=0.294) (Figure 3.2C,D).  

3.3.2.2 Cox proportional hazards regression analysis 

CPH regression was used to assess the effects of gender, Gemals treatment and possible 

covariates (copy number ΔCT, starting body weight, maximum body weight, and access 

to Nutragel cubes) on survival.  

3.3.2.2.1 Cox proportional hazards regression: Loss of righting reflex 

In univariable analyses, none of the factors and covariates tested (gender, Gemals 

treatment, copy number, starting and maximum body weights, and access to Nutragel 

cubes) showed any significant effect on the loss of the righting reflex (Table 3.5). 

Multivariable analysis including both gender and Gemals treatment also revealed no 

significant effects on loss of the righting reflex (Table 3.5). However, inclusion of an 

interaction term between gender and Gemals treatment revealed a significant interaction 

term (p=0.048, Table 3.5), indicating that the effect of Gemals on the loss of the 

righting reflex was different between male and female mice. Survival curves showing 

effects of Gemals treatment in male mice reveal a higher percentage of Gemals-treated 

male mice than vehicle-treated male mice surviving between 150-170 days of age, and a 

higher percentage of vehicle-treated than Gemals-treated male mice surviving between 

170-190 days of age (Figure 3.1C). This pattern is indeed reversed for female mice 

(Figure 3.1D), with a higher percentage of Gemals-treated female mice than vehicle-

treated female mice surviving between 150-170 days of age, and fewer Gemals-treated 

than vehicle-treated female mice surviving between 170-190 days of age. Thus, while 

Gemals did not show an increase in survival in either gender, Gemals treatment exerted 

different effects on the survival curves of female and male mice. However, this 

interaction drifted out of statistical significance when adjusted for other covariates 

which may influence survival (p=0.056, Table 3.5).  
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Table 3.5 Cox proportional hazards regression model for reaching disease 

endpoint: Righting reflex endpoint 

Factor(s) in the CPH model 
Loss of Righting Reflex 

HR (95% CI), p-value 

Univariable analyses
1
  

    Gender (female) 0.888 (0.471, 1.675), p=0.714 

    Treatment (Gemals) 1.097 (0.589, 2.043), p=0.769 

    Copy number (ΔCT) 1.066 (0.278, 4.093), p=0.926 

    Starting body weight 1.010 (0.919, 1.110), p=0.832 

    Maximum body weight  1.004 (0.915, 1.102), p=0.927 

    Access to Nutragel 1.141 (0.259, 5.018), p=0.861 

  

Multivariable analysis
2
  

    Gender (female) 0.860 (0.447, 1.657), p=0.653 

    Treatment (Gemals) 1.137 (0.599, 2.159), p=0.695 

  

Multivariable analysis, including interaction
3
 

    Gender (female) 1.659 (0.653, 4.216), p=0.288 

    Treatment (Gemals) 2.603 (0.927, 7.310), p=0.069 

    Gender*Treatment 0.243 (0.060, 0.990), p=0.048 

  

Multivariable analysis, including interaction, adjusted
4
 

    Gender (female) 0.255 (0.017, 3.884), p=0.325 

    Treatment (Gemals) 2.406 (0.833, 6.955), p=0.105 

    Gender*Treatment 0.239 (0.055, 1.035), p=0.056 

1
Univariable analyses were carried out with models containing only one of the following factors: Gender 

(male/female), Treatment (Gemals/vehicle), or access to Nutragel (yes/no); or with one of the following 

covariates: copy number (ΔCT), starting body weight, or maximum body weight. 
2
Multivariable analysis 

includes both Gender and Treatment as factors.  
3
Multivariable analysis includes Gender, Treatment, and 

a Gender*Treatment interaction term as factors. 
4
Adjusted multivariable analysis contains Gender, 

Treatment, Gender*Treatment, copy number, starting body weight, maximum body weight, and access to 

Nutragel; HRs for Gender, Treatment, and Gender*Treatment are therefore adjusted for copy number, 

starting body weight, maximum body weight, and access to Nutragel. 
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3.3.2.2.2 Cox proportional hazards regression: Loss of 20% body weight 

In contrast to the loss of the righting reflex, univariable analysis found that gender 

(p=0.030), starting body weight (p=0.037), maximum body weight (p=0.021), and 

access to Nutragel (p<0.001) influenced the loss of 20% from peak body weight (Table 

3.6). In multivariable analysis, the survival-promoting effect of female gender persisted 

upon adjustment for Gemals treatment (HRfemale=0.383, 95% CI 0.154-0.951, p=0.039) 

(Table 3.6). When a gender*treatment interaction was included in the multivariable 

analysis for body weight endpoints, the interaction term was not significant (p=0.777, 

Table 3.6), indicating that Gemals affected survival time no differently in female mice 

than in male mice. When the multivariable analysis (excluding the non-significant 

gender*treatment interaction term) was adjusted for other covariates, the only factor 

independently associated with increased survival times was access to Nutragel cubes 

(HRNutragel=0.060, 95% CI 0.013-0.268, p<0.001) (Table 3.6).  

These data indicate that mice with access to Nutragel cubes showed a slower loss of 

body weight than mice without access to Nutragel cubes. Interestingly, access to 

Nutragel cubes had no effect on the loss of righting reflex (Table 3.5) – perhaps 

indicating that access to continued easy nutrition maintained body weight but did not 

maintain muscle function, and suggesting that a major component in body weight 

survival analysis is hydration status which is maintained by the use of Nutragel cubes. 

Alternatively, the correlation may be due to changes in trial design at the early stages – 

the mice enrolled earliest in the trial did not have access to Nutragel cubes, and also had 

their survival times measured solely under the weight loss endpoint.  

Overall, survival data indicate that Gemals-treated mice showed no significant increase 

in survival time compared to that of vehicle-treated mice, as measured by either the loss 

of 20% body weight or the loss of the righting reflex.  

  



__________________________________Chapter 3 – Gemals treatment in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

110 

 

Table 3.6 Cox proportional hazards regression model for reaching disease 

endpoint: Body weight endpoint 

Factor(s) in CPH model 
Loss of 20% Body Weight 

HR (95% CI), p-value 

Univariable analyses
1
  

    Gender (female) 0.365 (0.146, 0.909), p=0.030 

    Treatment (Gemals) 0.516 (0.213, 1.252), p=0.143 

    Copy number (ΔCT) 1.229 (0.222, 6.083), p=0.813 

    Starting body weight 1.152 (1.008, 1.317), p=0.037 

    Maximum body weight  1.168 (1.023, 1.334), p=0.021 

    Access to Nutragel 0.064 (0.018, 0.221), p<0.001 

  

Multivariable analysis
2
  

    Gender (female) 0.383 (0.154, 0.951), p=0.039 

    Treatment (Gemals) 0.548 (0.224, 1.335), p=0.185 

  

Multivariable analysis
3
  

    Gender (female) 0.417 (0.141, 1.235), p=0.115 

    Treatment (Gemals) 0.619 (0.183, 2.099), p=0.442 

    Gender*Treatment 0.771 (0.128, 4.311), p=0.777 

  

Multivariable analysis, adjusted
4
  

    Gender (female) 0.601 (0.010, 36.438), p=0.808 

    Treatment (Gemals) 0.538 (0.214, 1.353), p=0.188 

    Access to Nutragel 0.066 (0.016, 0.280), p<0.001 

1
Univariable analyses were carried out with models containing only one of the following factors: Gender 

(male/female), Treatment (Gemals/vehicle), or access to Nutragel (yes/no); or with one of the following 

covariates: copy number (ΔCT), starting body weight, or maximum body weight. 
2
Multivariable analysis 

includes both Gender and Treatment as factors.  
3
Multivariable analysis includes Gender, Treatment, and 

a Gender*Treatment interaction term as factors.  
4
Adjusted multivariable analysis contains Gender, 

Treatment, copy number, starting body weight, maximum body weight, and access to Nutragel; HRs for 

Gender, Treatment, and Access to Nutragel are therefore adjusted for copy number, starting body weight, 

and maximum body weight. 
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3.3.3 Body weights 

Weekly body weight averages were calculated for all mice. As expected, male mice 

showed higher body weights than female mice at all ages (Figure 3.3). Average body 

weights were not different between Gemals-treated mice and vehicle-treated mice at any 

age, for either male or female mice (Figure 3.3A,B). When body weights were 

expressed as a percentage of maximum attained by each mouse, there was a slight trend 

for higher percentage body weights in Gemals-treated female mice than vehicle-treated 

female mice between 23-27 weeks of age (Figure 3.4A). Body weight percentages did 

not differ between Gemals-treated and vehicle-treated male SOD1 mice (Figure 3.4B).  

As an aside, a transient stabilisation of body weight was seen in all mice at 20-21 weeks 

of age (Figure 3.3, Figure 3.4), corresponding to the age at which mice first had access 

to bacon-flavoured Nutragel cubes in addition to their normal ad libitum food; this 

temporary attenuation of body weight loss may be due to increased overall food intake. 

 

3.3.4 Rotarod performance 

Mice were trained on the Rotarod one to two weeks prior to testing; most mice never 

attained the maximum possible rotarod performance of 16rpm, so future studies should 

commence Rotarod training well before the onset of disease symptoms.  

Rotarod performance was similar between Gemals-treated and vehicle-treated mice at 

most time points. Female Gemals-treated mice showed better Rotarod performance than 

vehicle-treated female mice at 23 weeks of age (speed at fall: Gemals 8.9±1.2 rpm vs. 

vehicle 5.4±0.9 rpm, p=0.033) and showed a trend towards better Rotarod performance 

at 24 weeks of age (speed at fall: Gemals 8.1±1.5 rpm vs. vehicle 4.7±0.9 rpm, p=0.086) 

(Figure 3.5A). Male Gemals-treated mice showed a slightly better Rotarod performance 

at 16-18 weeks of age; this tended towards significance at 17 weeks of age (speed at 

fall: Gemals 10.5±0.7 rpm vs. vehicle 8.6±0.6 rpm, p=0.050) (Figure 3.5B).  

Gemals treatment produced some transient improvements in Rotarod performance for 

both male and female mice at certain time points mentioned above. Gemals treatment 

may help to maintain Rotarod performance and therefore retain motor function in 

female mice at 23 and 24 weeks of age; however, these effects were not continued out 

past 24 weeks of age and additionally were not observed in male mice. 
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Figure 3.3 Average body weights for Gemals-treated and control mice over time 

Body weight declined with disease progression over time in all SOD1 mice. No 

significant changes were observed in the body weights of female mice (A) or male mice 

(B) when treated with Gemals compared to vehicle alone. Bacon-flavoured Nutragel 

cubes were placed in cages from 20 weeks of age (arrow, A,B), leading to a slight 

increase or temporary stabilisation in body weight at 21 weeks of age, likely due to 

increased food intake. Error bars represent standard error of the mean. 
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Figure 3.4 Percentage body weights in Gemals-treated and vehicle mice 

Percentage of maximum body weight was calculated for both female (A) and male (B) 

mice. Percentage body weight was not significantly different between Gemals-treated 

and vehicle-treated female mice, although Gemals-treated female mice appeared to have 

slightly higher body weights than vehicle-treated female mice at 25-26 weeks of age 

(A). Body weight percentages were not different between Gemals-treated and vehicle-

treated male mice (B). A temporary stabilisation of body weight percentage was noted 

at 21 weeks of age, following the introduction of Nutragel cubes to the home cages at 

20 weeks of age (arrow, A,B). Error bars represent standard error of the mean.  
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Figure 3.5 Rotarod performance in Gemals-treated and control mice 

Rotarod performance, measured as the speed at which mice could not stay on the 

Rotarod drum during acceleration from 3rpm to 16rpm, declined with time in all SOD1 

mice. Gemals-treated female mice showed better Rotarod performance than vehicle-

treated female mice at 23-24 weeks of age (A), while  Gemals-treated male mice 

showed better Rotarod performance than vehicle-treated mice at 16-18 weeks of age 

(B). However, these improvements were not continued throughout the disease course in 

either female or male Gemals-treated mice. *p<0.05, t-test. Error bars represent 

standard error of the mean.  
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3.3.5 Grip strength 

Hindlimb grip strength showed high variability in both male and female mice (Figure 

3.6A,B), and did not demonstrate a clear decrease over time as the disease progressed. 

In female SOD1 mice, vehicle-treated mice had a stronger grip strength than Gemals-

treated mice at 21 weeks of age (Gemals 0.022±0.007N vs. vehicle 0.036±0.007N, T-

test p=0.010), while Gemals-treated mice had a stronger grip strength than vehicle-

treated mice at 22 weeks of age (Gemals 0.034±0.010N vs. vehicle 0.021±0.008N, T-

test p=0.045) (Figure 3.6A). In male SOD1 mice, Gemals treatment did not significantly 

affect grip strength (Figure 3.6B).  

Grip strength was measured sporadically throughout the study, at constant dates rather 

than constant ages in the SOD1 mice; therefore, not all mice were measured at each 

weekly time point. In order to reduce the amount of variability in the data set, grip 

strength data were collected into age bins (13-15 weeks, 16-18 weeks, 19-21 weeks, 22-

24 weeks, 25-27 weeks; Figure 3.6C,D) for analysis, averaging data from the same 

animal where necessary to avoid pseudoreplication. However, similar to the weekly age 

data (Figure 3.6A,B), binned grip strength data showed no substantial decrease over 

time for either male or female Gemals-treated or vehicle-treated SOD1 mice (Figure 

3.6C,D). 

The lack of a substantial change over time, in any group of SOD1 mice, indicates that 

grip strength as measured here may not be a reliable indicator of decreasing muscle 

strength due to disease progression. Mice were not pre-trained in this muscle strength 

test, as it was thought to be a natural response of mice to grip the bar. However, it is 

possible that the mice habituated to the testing procedure over the course of the disease, 

and that increased technique and ability to grip the bar compensated for a lack of muscle 

strength. This may explain the lack of decline in grip strength over time. As with the 

Rotarod, earlier habituation to this grip strength test may allow more accurate recording 

of change in muscle strength over time in SOD1 mice.  
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Figure 3.6 Grip strength in Gemals-treated and control mice over time 

Grip strength measurements (in newtons, N) varied over time and showed no clear 

pattern for either female (A) or male (B) mice. The only differences between Gemals-

treated and vehicle-treated SOD1 mice occurred in female mice; vehicle-treated mice 

showed a higher grip strength at 21 weeks of age, while Gemals-treated mice showed a 

higher grip strength at 22 weeks of age (A). Grouping of data into categories each 

spanning three weeks (C,D) did not reveal any differences in grip strength between 

Gemals-treated and vehicle-treated female (C) or male (D) mice. *p<0.05. Error bars 

represent standard error of the mean.  
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3.4 Discussion 

3.4.1 Summary of results 

Male and female SOD1 mice were treated with Gemals compound or a control vehicle, 

with treatment commencing at 100 days of age, after the onset of disease symptoms. 

Gemals treatment did not significantly affect survival time for either male or female 

SOD1 mice (Figure 3.1, Figure 3.2); nor did Gemals treatment show substantial effects 

on the decline of body weight and rotarod performance over time (Figure 3.3, Figure 

3.4, Figure 3.5). However, the Gemals treatment was not well tolerated, with irritation 

after administration and the gradual development of skin lesions (see section 3.3.1), and 

these issues may have confounded any beneficial effects of the drug.  

 

3.4.2 Comparison of the present study with previous Endotherapia studies 

A previous study of Gemals in ALS rodent models tested the pre-symptomatic effects of 

Gemals in the SOD1
G93A

 rat model (Nicaise et al. 2008). Three experimental groups 

were used – a control group, a low-dose Gemals group, and a high-dose Gemals group, 

each containing 8-11 animals. Nicaise and colleagues found that pre-symptomatic 

Gemals treatment significantly delayed onset of disease symptoms (hindlimb paresis) 

and increased survival time in a dose-dependent manner, with survival time extended by 

up to 18% by the higher dosage (Nicaise et al. 2008). Additionally, a Gemals-like 

compound has been tested in a small open clinical trial of ALS patients – this small trial 

reported positive outcomes in the ALS functional rating score (ALSFRS) of treated 

patients compared against a worldwide reference ALSFRS score (Geffard et al. 2010). 

In contrast, the present study found no significant effect on survival time when Gemals 

was administered after disease onset in SOD1 mice (Figure 3.1, Figure 3.2).  

There are two main possibilities as to why Gemals showed no survival effects in the 

present study. The first possibility is that the administration of an antioxidant therapy 

after the onset of disease is ineffective at halting disease processes. The second 

possibility is that the presence of several confounding factors in this study, such as the 

irritation following injection and the need to administer an analgesic, may have 

obscured any beneficial effect of Gemals treatment on survival.  
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3.4.3 Antioxidants as a therapeutic strategy for ALS 

Oxidative stress appears to be a convergence point for several ALS-related pathologies, 

as discussed in Chapter 1. The components of Gemals are designed to limit oxidative 

stress and neuroinflammation (Nicaise et al. 2008; Geffard et al. 2010). The 

administration of Gemals to pre-symptomatic SOD1 rats increased survival time 

(Nicaise et al. 2008), but Gemals treatment after the onset of disease symptoms did not 

increase survival time in the current study. This discrepancy could indicate that the 

timing of antioxidant therapy is important in the treatment of SOD1-mediated ALS.  

Disease processes in SOD1 motor neurons are generally accepted to start long before 

the onset of disease symptoms (Vinsant et al. 2013); indeed, the results of Chapter 2 

showed that ubiquitinated inclusions were present 8 weeks prior to the earliest disease 

symptoms. Oxidative stress may be a key disease process in ALS, and signs of 

oxidative stress are present in SOD1 mice before the development of disease symptoms 

(Hall et al. 1998a). Oxidative stress is linked into several other pathologies, such as 

protein aggregation, mitochondrial dysfunction, excitotoxicity, and glial activation 

(Barber & Shaw 2010); see section on convergent pathology (section 1.3.9). It may be 

the case that the downstream effects of oxidative stress, such as the formation of protein 

aggregates and the dysfunction of mitochondria, cannot be remedied by the amelioration 

of the oxidative stress itself. In line with this theory, antioxidant compounds such as 

vitamin E and N-acetyl-L-cysteine have shown benefits when administered before 

symptom onset in SOD1 mice, but showed no effects on survival in ALS patients 

(Gibson & Bromberg 2012). It is possible that Gemals reduced oxidative stress but did 

not protect motor neurons from degeneration. 

The amelioration of oxidative stress early in the disease course may have beneficial 

effects for the survival of motor neurons; however, in the absence of biochemical 

markers for pre-symptomatic testing for ALS, therapies which can be used after the 

onset of disease symptoms in ALS patients are required. Treatment of oxidative stress 

should be incorporated as part of a multi-action therapy targeting multiple cellular 

pathways, with the aims of simultaneously reducing oxidative stress, increasing 

clearance of aggregated proteins, attenuating glial activation, and increasing motor 

neuron survival. The data generated from this study may not be a true reflection of the 

potential of Gemals to ameliorate disease due to the presence of confounding factors, as 

explained in the following section.  
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3.4.4 Confounding effects in the current study 

3.4.4.1 Lesions and irritation 

Gemals did not appear to be well tolerated in this study, with mice showing irritation at 

the injection site and adopting a hunched demeanour, usually indicative of pain or 

illness, within minutes of the Gemals injection. These symptoms were not observed in 

mice injected with vehicle alone. Some Gemals-treated mice also developed skin 

lesions. The positioning of the skin lesions, mostly seen on the flank or shoulders but in 

some instances occurring at the base of the tail or on the forelimb, indicates that the 

lesions may have been a result of scratching at the lesion site, or possibly a result of 

excessive grooming due to stress in these animals. Both restraint stress and elevated 

corticosterone levels are associated with accelerated disease progression and shortened 

survival times in SOD1 mice (Fidler et al. 2011), and thus, any stressful effects of 

irritation and/or lesion development in Gemals-treated mice may have masked 

neuroprotective effects of Gemals.  

The source of irritation in the Gemals mixture has not been determined. The study by 

Nicaise and colleagues in 2008 reported no such irritation or adverse response to 

subcutaneous injection of Gemals in SOD1 rats, and sublingual Endotherapia 

compounds are reported to have few side effects in humans (Geffard et al. 2010). The 

concentration of injected Gemals compound in the present study was 2.5mg/mL, while 

the highest concentration injected in the Nicaise study was 3.75mg/mL, which was 

reported to be well tolerated (Nicaise et al. 2008).  

Mice and rats may show different tolerance doses for specific Gemals components, 

which may help to explain the irritation seen in mice in the current study but not 

reported in the Nicaise (2008) study. Additionally, it is possible that the dosage of 

Gemals may have been slightly higher in the present study than in the Nicaise (2008) 

study of Gemals in SOD1 rats. Nicaise and colleagues used a dose of 1.87mg/rat/day, 

equivalent to 9.4mg/kg for a 200g rat, and 7.5mg/kg for a 250g rat. If the body weight 

of SOD1 rats was generally greater than these estimates, the 10mg/kg dosage for mice 

in the current study may result in a greater dose compared to the Nicaise (2008) study.  

A difference between the Nicaise (2008) study and the present study was the choice of 

vehicle – saline in the study by Nicaise and colleagues, and phosphate-buffered saline in 

the present study. However, as the same irritation was observed when saline was used 
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as a vehicle in the present study (data not shown), it is unlikely that the choice of 

vehicle contributes to the irritation. The Gemals compound is mostly soluble, with a few 

suspended particles. However, centrifugation to remove these insoluble particles did not 

remove the irritation caused by Gemals treatment, indicating that the responsible 

component was soluble (data from Dr Bill Bennett). It is unclear whether the irritation 

seen in this study is a phenomenon specific to mice, or whether some kind of 

contamination had occurred in the preparation of the Gemals compound for injection. 

Future work with the Gemals compound in mice should carefully monitor mice for 

symptoms of irritation, and examine whether the dosage or concentration of specific 

components in the Gemals mixture requires adjustments for use in mice.    

3.4.4.2 Administration of meloxicam 

Administration of meloxicam at 60-90 minutes prior to administration of Gemals was 

effective at ameliorating Gemals-induced irritation. Meloxicam preferentially inhibits 

cyclooxygenase2 (COX2), resulting in decreased COX2-mediated synthesis of the 

inflammatory mediators prostaglandins (Engelhardt et al. 1996), and relief from 

inflammatory pain (Hilario et al. 2006). Importantly in the context of this study, COX2 

may play a role in neuroinflammation in ALS. COX2 is upregulated in the spinal cord 

of both ALS patients (Yasojima et al. 2001; Kiaei et al. 2005) and SOD1 mice (Almer 

et al. 1999; McGeer & McGeer 2002; Okuno et al. 2004). Pre-symptomatic treatment 

with COX2 inhibitors delays disease onset and extends survival in SOD1 mice 

(Drachman et al. 2002; Pompl et al. 2003; Klivenyi et al. 2004); it is therefore possible 

that inhibition of COX2 activity by meloxicam in this study affected disease 

progression in our cohort of mice. Drachman (2002), Pompl (2003), and Klivenyi 

(2004) all studied the effects of diet-based COX2 inhibition in SOD1 mice. Drachman 

used  the COX2-selective inhibitor celecoxib at 1500ppm (1500mg/kg) in feed, 

“equivalent to 400-800mg/day in humans” (Drachman et al. 2002) (approximately 5-

10mg/kg/day for a 75kg adult) and saw a reduction in prostaglandin E2 (PGE2) 

production (a marker of COX2 activity) in the SOD1 spinal cord down to the levels of 

the WT spinal cord (Drachman et al. 2002). Similarly, Pompl used nimesulide at 

1500ppm in feed and reduced SOD1 spinal PGE2 production down to WT levels 

(Pompl et al. 2003). Klivenyi used 0.012% (120ppm) celecoxib or 0.005% (50ppm) 

rofecoxib in feed, and saw reduced PGE2 production in the SOD1 spinal cord, although 

the levels were still slightly higer than those of WT mice (Klivenyi et al. 2004). SOD1 
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mice in the present study were administered meloxicam, a COX2-selective inhibitor, 

subcutaneously at 5mg/kg body weight. This would be at least equivalent to, if not 

greater than, the same milligram dosage given for celecoxib in the study by Drachman 

(2002), with the meloxicam likely more bioavailable given its subcutaneous rather than 

oral delivery in the present study. If Gemals were to act through a COX2-dependent 

pathway, any Gemals-mediated protective effects may have been masked by the use of 

meloxicam in both Gemals-treated and vehicle-treated SOD1 mice. In this situation, the 

dose of meloxicam used in the present study would be sufficient to reduce COX2 

activity levels in the SOD1 spinal cord back down to those of WT mice. Therefore, 

there may be no scope for the components of Gemals to further reduce COX2 activity 

beyond the reduction carried out by meloxicam. This may explain why no survival 

effects were observed with Gemals treatment in the current study.  

In line with this theory, several Gemals components are saturated or unsaturated fatty 

acids (Table 3.1), which have the capacity to modulate COX2 activity (Lee et al. 2001; 

Ringbom et al. 2001). Saturated fatty acids increase COX2 activity, whereas 

unsaturated fatty acids inhibit COX2 activity (Lee et al. 2001; Ringbom et al. 2001). 

Although COX2 inhibition appears beneficial for SOD1 mice as described above, 

downstream prostaglandin products of COX2 activity can also show neuroprotective 

effects (Bilak et al. 2004; Consilvio et al. 2004). As Gemals contains both kinds of fatty 

acids, it is unclear whether Gemals would inhibit COX2 activity via unsaturated fatty 

acids, reducing the production of inflammatory prostaglandins; or instead promote 

COX2 activity via saturated fatty acids, potentially increasing the production of 

neuroprotective prostaglandins (Bilak et al. 2004); the former is the more likely option. 

Regardless of the direction of the effects of Gemals on COX2 activity, COX2 inhibition 

by meloxicam administration could have masked any neuroprotective effects of Gemals 

from being detected in the current study.  

3.4.4.3 Nutritional supplementation 

Bacon-flavoured Nutragel cubes were given to SOD1 mice from 18 weeks of age, to 

ensure easy access to nutrition and hydration as disease progressed and functional 

ability declined. As the Nutragel only became available after the trial had started, some 

mice did not have access to Nutragel during the trial period. Access to Nutragel 

influenced the time at which mice reached their body weight endpoint (20% loss from 

peak body weight), but had no effect on the ability of SOD1 mice to right themselves 
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(Table 3.5). While this effect can be accounted for in statistical analyses, any dietary 

supplementation needs to be kept constant between all mice in future studies.  

3.4.5 Species differences 

The absence of a Gemals-mediated survival increase in this study is likely due to the 

post-onset treatment and confounding factors discussed above, and less likely due to 

differences between mouse models of ALS, rat models of ALS, and human ALS 

patients. Both SOD1 mice and SOD1 rats over-express SOD1
G93A

 protein, such that 

SOD1 activity increases four-fold in SOD1 mice (Gurney et al. 1994) and three-fold in 

SOD1 rats (Nagai et al. 2001), and the pathogenic processes and disease course are 

similar between rat and mouse models. It therefore seems unlikely that Endotherapia 

compounds should show robust increased survival when used pre-symptomatically in 

SOD1 rats, and appear to show positive effects in an open clinical trial of ALS patients, 

but not influence survival in SOD1 mice as observed in the present study. It is possible 

that the higher SOD1 expression and activity (Gurney et al. 1994; Nagai et al. 2001) 

results in a more aggressive disease process in SOD1 mice than SOD1 rats, and may 

indicate that the pathogenic processes in SOD1 rats are a closer echo of those seen in 

ALS patients.  

It is possible that Endotherapia, a multi-action mixture, has different effects in the ALS 

patients and in rodent models. While the evidence for chronic bacterial infection as a 

causative factor in ALS is not comprehensive (Nicolson 2008), the fatty acid 

components of Endotherapia are intended to sequester bacterial cell wall moieties which 

would normally be used for attachment to cell membranes (Geffard et al. 2010). If such 

chronic infections were present in some, or all, of the small ALS patient cohort used for 

the open clinical trial, the putative anti-infection, antioxidant, and anti-inflammatory 

properties of Endotherapia may contribute to the positive outcome observed (Geffard et 

al. 2010). It seems unlikely that such environmentally-acquired infections would occur 

in SOD1 animal models, considering that most laboratory animals are kept in sterile 

environments, and therefore the effects of Gemals compounds in SOD1 animals are 

limited to its antioxidant and anti-inflammatory properties. Once again, the differing 

effects of Gemals in rats and mice may come down to the differences in disease severity 

and timing of administration in relation to the dynamics of oxidative stress.  
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3.4.6 Summary and conclusions  

In conclusion, this study found no survival effect of Gemals in SOD1 mice when 

administered after symptom onset. This may be due to oxidative stress in the pre-

symptomatic phase setting up pathogenic pathways such as protein aggregation which 

cannot be ameliorated by treating oxidative stress alone; or may be due to the presence 

of confounding factors such as the administration of meloxicam to alleviate irritation 

caused by Gemals injection.  

The fact that we also administered meloxicam and in this study saw no change in 

disease outcome measures that could be attributed to Gemals treatment, hints that the 

beneficial effect of Gemals seen in the previous study (Nicaise et al. 2008) may involve 

a COX2-dependent mechanism of action. Future work on this compound should include 

identification of the component causing irritation to mice, and further investigation of 

the mechanism of action in the SOD1 rat spinal cord.  

Endotherapia has previously shown promise in an open clinical trial of ALS patients; 

yet without a control group, the results of the open trial cannot be distinguished from 

any drift in the ALSAQ-40 reference rate over time (Geffard et al. 2010). For its further 

development as a potential therapeutic for ALS, Endotherapia should be trialled using a 

traditional clinical trial design series: first, a safety trial to ensure no adverse events 

occur in human ALS patients; and second, a double-blind, randomised clinical trial to 

look at drug efficacy.  
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4.1 Background  

Multiple pathologies are present in ALS, and thus multi-action drugs are needed to 

address multiple aspects of the disease process. Oxidative stress has already been 

addressed as a key pathology (see Chapter 1, section 1.3.9). The protein 

metallothionein-1/2 (MT-1/2), which is upregulated in SOD1 mice (see Chapter 2), 

plays multiple roles in neuronal protection and response to oxidative stress, and may be 

an appropriate multi-action therapeutic compound for the treatment of ALS.  

 

4.1.1 Metallothioneins 

4.1.1.1 Structure and function of metallothioneins 

Metallothioneins (MTs) are a highly conserved family of small, metal-binding proteins 

(Hamer 1986; Aschner 1996). There are four mammalian MT isoforms, MT-1 to MT-4, 

which share a similar structure comprising two metal-binding domains and a central 

linker region (Figure 4.1) (Hamer 1986). MT proteins are rich in cysteine residues, used 

for the coordination of zinc, copper, and cadmium in vivo, as well as iron, lead, silver, 

gold, platinum, arsenic, and bismuth in vitro (Kagi & Valee 1960; Good & Vasak 1986; 

Ngu & Stillman 2006). The cysteine residues can also bind reactive oxygen species in 

preference to metal ions under conditions of oxidative stress, conferring potent 

antioxidant properties on MT proteins (Thornalley & Vasak 1985).  

The MT-1 and MT-2 isoforms, considered to be functionally similar and sometimes 

referred to as a single ‘MT-1/2’ isoform, are expressed at low levels in most body 

tissues but are absent from neurons (Chung et al. 2003). MT-3 is expressed only in the 

central nervous system (Palmiter et al. 1992), while MT-4 is expressed only in stratified 

squamous epithelia (Quaife et al. 1994). MT-1/2 is the most well-characterised isoform 

of the MT family, and shows neuroprotective properties in a range of contexts as will be 

discussed below. Expression of MT-1/2 is increased in response to high levels of metal 

ions such as zinc and copper (Richards et al. 1984; Suzuki & Koizumi 2000), oxidative 

stress (Campagne et al. 2000), glucocorticoids (Richards et al. 1984), and the presence 

of inflammatory cytokines such as IL-1 (Cousins & Leinart 1988). Astrocytes are the 

major source of MT-1/2 within the central nervous system, and can rapidly induce MT-

1/2 expression in response to neuronal damage, and secrete MT-1/2 to act 



_________________________Chapter 4 – MT2 and exercise treatments in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

126 

 

extracellularly on surrounding neurons (Chung et al. 2004; Chung et al. 2008b). The 

expression of MT-1/2 in response to these cellular stresses implicates MT-1/2 in metal 

homeostasis, cellular defenses against oxidative stress, and neuroprotection (Michalska 

& Choo 1993; Aschner 1996; West et al. 2008; Blindauer & Leszczyszyn 2010).  

4.1.1.2 Growth-promoting and neuroprotective roles of MT-1/2 

MT-1/2 shows growth-promoting and neuroprotective roles in both in vitro and in vivo 

paradigms. MT-1/2 promotes neurite outgrowth when applied to cultured cortical, 

dopaminergic, hippocampal, and cerebellar granule neurons; and promotes reactive 

sprouting in response to axon bundle transection (Chung et al. 2003; Kohler et al. 2003; 

Asmussen et al. 2009b). In vivo, MT-1/2 promotes regenerative axonal sprouting after a 

focal brain injury (Chung et al. 2003), and optic nerve regeneration following axonal 

transection (Fitzgerald et al. 2007). In terms of neuroprotection, MT-1/2 promotes 

survival of dopaminergic and hippocampal neurons from 6-hydroxydopamine and β-

amyloid toxicity, respectively (Kohler et al. 2003). MT-1/2 promotes neuronal survival 

in mice following ischaemia/reperfusion injury (van Lookeren Campagne et al. 1999; 

Trendelenburg et al. 2002) and focal brain injury, as well as reduction of the glial scar 

and increased wound healing in the latter injury (Chung et al. 2003). MT-1/2 also 

promotes neuronal survival in mouse models of Parkinson’s disease (Ebadi et al. 2005) 

and Alzheimer’s disease (Manso et al. 2011).   

4.1.1.3 Mechanisms of MT-1/2-mediated neuroprotection 

Extracellular MT-1/2 interacts with neurons via the low-density lipoprotein receptor-

related proteins, LRP1 and LRP2, on neuronal cell bodies (Fitzgerald et al. 2007; 

Ambjorn et al. 2008; Chung et al. 2008b). The interactions between MT-1/2 and LRPs 

promote neurite outgrowth and neuronal survival via activation of the intracellular 

growth-promoting and pro-survival PI3K, MAPK, Akt, and CREB pathways (Fitzgerald 

et al. 2007; Ambjorn et al. 2008; Asmussen et al. 2009b). MT-1/2 may also be 

internalised into neurons by its interaction with LRPs (Chung et al. 2008b), and if able 

to avoid lysosomal degradation, could play an intracellular role in ROS scavenging and 

intracellular metal homeostasis. Internalised MT-1/2 may additionally protect against 

apoptosis via an interaction of the apo-MT protein with the tumour suppressor protein 

p53 (Ostrakhovitch et al. 2006; Ruttkay-Nedecky et al. 2013). MT-1/2 also shows a role 

in modulating glial cell activation and neuroinflammation, by suppressing astrogliosis 

and microglial reactivity following cortical needlestick injury (Chung et al. 2003).  
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Figure 4.1 The structure and sequence of MT2 

 (A) A stylised diagram of MT2 protein, binding seven divalent metal ions in two 

clusters, is shown here. All MT proteins share the same basic structure: a C-terminal 

metal-binding domain (α domain) and an N-terminal metal-binding domain (β domain), 

joined by a short linker region (Hamer 1986). The abundant cysteine residues in MT, 

shown as blue circles, coordinate metal-binding in thiolate clusters. One MT molecule 

may bind up to seven divalent metal ions (as shown above) or twelve monovalent metal 

ions. Amino acids are labelled with standard single-letter notation. (B) A schematic 

diagram (adapted from Fischer and Davie 1998) showing the coordination of divalent 

metal ions in two thiolate clusters through bonds from direct (blue) and bridging (green) 

cysteine sulfur (S) ligands.  
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4.1.1.4 MT-1/2 in ALS 

Alterations in CNS levels of MT-1/2 in ALS patients are unclear. An early study 

indicated increased MT-1/2 immunoreactivity in ALS patient spinal cord (Sillevis Smitt 

et al. 1994), while a subsequent study indicated no consistent change in mRNA levels 

for several MT-1/2 genes in ALS patients (Blaauwgeers et al. 1996). A more recent 

study indicated that MT-1/2 protein levels were reduced in ALS spinal cord at end-stage 

(Hozumi et al. 2008). However, MT-1/2 protein levels are consistently reported as 

increased in the spinal cord of SOD1 mouse models of ALS compared with controls 

(Gong & Elliott 2000; Tokuda et al. 2007; Tokuda et al. 2013), and this is consistent 

with the results from Chapter 2 of this thesis. Upregulation of MT-1/2 with disease 

progression may be in response to oxidative stress in ALS tissue, but also may play a 

role in protecting motor neurons from toxicity. Genetic ablation of MT-1/2 in SOD1 

mice shortened survival times and hastened disease progression (Nagano et al. 2001; 

Puttaparthi et al. 2002), while SOD1 mice over-expressing MT-1/2 showed delayed 

disease onset and lengthened survival times (Tokuda et al. 2013). Thus, MT-1/2 appears 

to play a protective role in ALS and is a suitable candidiate therapeutic for testing in 

SOD1 mice. Although our laboratory previously showed minimal CNS entry of injected 

MT2 through the intact BBB (Lewis et al. 2012b), the SOD1 mouse BBB is known to 

be compromised from early in the disease course (Garbuzova-Davis et al. 2007), 

increasing the likelihood of successful CNS delivery of injected therapeutic compounds.  

4.1.2 Exercise in ALS 

The relationship between exercise and ALS is complex, with exercise having been 

implicated as both a cause and a potential therapy for ALS. Some epidemiological 

studies have indicated that increased vocational and leisure-time or sport-related 

physical activity has been linked with an increased ALS risk (Beghi et al. 2010; 

Huisman et al. 2013), and clusters of ALS have been observed amongst those with high 

occupational levels of physical activity, such as athletes (Chio et al. 2009; Lehman et al. 

2012) and military personnel (Weisskopf et al. 2005). However, it is unclear whether 

these increased risks are due to physical activity itself, genetic factors predisposing to 

fitness, or shared environmental exposures (Cox et al. 2009; Chio & Mora 2012). 

Conversely, a number of small studies indicate a therapeutic benefit of exercise in ALS 

patients (Drory et al. 2001; Dal Bello-Haas et al. 2007; Sanjak et al. 2010), although 

any positive effects of exercise on slowing disease progression are yet to be confirmed 
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by a large, randomised controlled trial (Dal Bello-Haas et al. 2008). The potential for 

exercise to modulate survival of SOD1 mice has been explored with wheel running, 

treadmill running and swimming paradigms, but consensus on the effects of exercise is 

still lacking within the literature. Daily wheel running showed a non-significant increase 

in survival times of SOD1 mice (Liebetanz et al. 2004), while most studies on 

moderate-intensity treadmill exercise showed increased survival times (Kirkinezos et al. 

2003; Kaspar et al. 2005; Carreras et al. 2010). However, an alternate study found 

increased survival in SOD1 mice undergoing swimming exercise, but no benefit from 

treadmill running (Deforges et al. 2009). In addition, high-intensity treadmill running 

showed a detrimental effect on SOD1 mouse survival times (Mahoney et al. 2004). 

Thus, the duration, intensity, and type of exercise appeared to affect how exercise 

modulates survival in SOD1 mouse models of ALS. 

4.1.3 Aims and hypothesis 

As described in section 4.1.1.3, MT-1/2 appears neuroprotective via a range of 

mechanisms which could include ROS scavenging, preventing apoptosis, modulating 

glial reactivity, and activating neuronal signalling pathways; MT-1/2 protein is therefore 

a suitable candidate therapeutic for ALS. Interestingly, moderate-intensity treadmill 

running exercise has been shown to upregulate MT-1/2 in the spinal cord of non-

transgenic mice (Hashimoto et al. 2009). It is possible that the protective effects of 

treadmill exercise in SOD1 mice may be due to increased production of the 

neuroprotective MT-1/2 protein in the spinal cord. This study aims to test the protective 

effects of MT-1/2 in SOD1 mice, via administration of exogenous MT-2A protein (the 

most common MT-1/2 isoform), or via upregulation of endogenous MT-1/2 by exercise.  

Hypothesis: Pre-symptomatic administration of exogenous MT-2A protein, and/or 

treadmill running exercise, will improve functional and survival outcomes in SOD1 

mice compared with untreated controls.  

This longitudinal study was designed to monitor disease onset, disease progression, and 

survival time in a cohort of female SOD1 mice. The cohort was split into 4 treatment 

groups in a 2x2 design, with mice receiving either: treadmill exercise alone; MT-2A 

treatment alone; treadmill exercise and MT2 treatment; or no treatment 

(vehicle/sedentary control). A factorial approach was used in order to identify any 

synergistic effects of concurrent MT-2A treatment and treadmill running. 
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4.2 Methods 

4.2.1 Animals 

All procedures and protocols involving animals were approved by the University of 

Tasmania’s Animal Ethics Committee (permit number A10995). SOD1 mice were 

housed and genotyped according to the protocols in Chapter 2.  

4.2.2 Treatments 

Female SOD1 mice were assigned to one of four treatment groups in a 2x2 design 

(n=13-16/group). Mice received two simultaneous treatments: 1) administration of MT2 

protein, or saline control; and 2) treadmill exercise, or sedentary control. The treatment 

groups were MT2+Exercise, Saline+Exercise, MT2+Sedentary, and Saline+Sedentary. 

All treatments started at 6 weeks of age, during the pre-symptomatic stage of disease, 

and stopped after 16 weeks of age (Figure 4.2). Copy number, age at start of treatment, 

and starting body weight did not differ between treatment groups (Table 4.1). 

 

Table 4.1 Characteristics of SOD1 mice at start of treatment 

Treatment Group n Copy number 

(ΔCT) 

Age at start 

(days) 

Starting 

weight (g) 

MT2/Exercise 14 5.33 ± 0.07 46.7 ± 1.2 17.7 ± 0.4 

MT2/Sedentary 14 5.33 ± 0.08 46.9 ± 1.2 17.6 ± 0.3 

Saline/Exercise 14 5.31 ± 0.05 47.7 ± 1.1 17.4 ± 0.2 

Saline/Sedentary 16 5.31 ± 0.05 48.6 ± 1.2 17.3 ± 0.3 

Omnibus one-way ANOVA: Copy number, p=0.994; Age at start, p=0.665; Starting weight, p=0.790.  

 

4.2.2.1 MT2 administration 

Lyohilised, purified rabbit-liver Zn7-metallothionein-2A (MT2; >98% purity by HPLC, 

Bestenbalt LLC, Tallinn, Harjumaa, Estonia), was dissolved in 0.9% sterile saline 

solution for injection. MT2 treatment consisted of twice-weekly intramuscular 

injections of 10mg MT2/kg body weight, giving a weekly total dose of 20mg MT2/kg. 

MT2 solution, or sterile saline for control mice, was injected into the caudal thigh 

musculature via a 31-gauge needle, with a maximum volume of 30µL per injection, 

under light isoflurane (Attane) anaesthesia (3.5% isoflurane in 2L/min oxygen flow). 



_________________________Chapter 4 – MT2 and exercise treatments in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

131 

 

4.2.2.2 Treadmill running exercise 

Exercised mice were exercised five days per week on a mouse treadmill (Exer 3/6, 

Columbus Instruments, OH, USA). Daily sessions consisted of a warm-up (5min, 

0m/min to 10m/min) followed by constant speed exercise (25min, 10m/min), and a 

cool-down (1min, 10m/min to 0m/min), performed between 9am and 12noon as much 

as practicable. Sedentary controls spent 25 minutes on the stationary treadmill, to try to 

control any effects of environmental enrichment due to a novel treadmill environment.       

4.2.3 Outcome measures 

4.2.3.1 Functional assessments 

Stride pattern testing and wire hang duration (Chapter 2) were tested weekly, and body 

weight at least twice weekly, in all mice throughout the treatment period, and in those 

mice followed through to disease endpoint (Figure 4.2). Weekly average stride length, 

uniformity, body weight, percentage body weight, and wire hang duration ability were 

compared using two-way ANOVA, with MT2/saline and exercise/sedentary as factors. 

All data are reported as mean ± standard error of the mean; F tests of fixed effects in the 

two-way ANOVA are also reported. Linear mixed modelling was also used to model 

body weight trajectories over time (see Chapter 2), and the non-linear combination of 

estimators (nlcom) procedure in StataIC was used to estimate age at which maximum 

body weight was attained (mean ± standard error for each group). Point estimates of age 

at maximum body weight were compared between treatment groups using Z scores. 

p<0.05 was considered significant in all analyses. 

4.2.3.2  Histological and immunostaining analyses 

At 17 weeks of age, 3-4 mice per group were sacrificed for histological analysis 

(MT2/Exercise n=3, MT2/Sedentary n=3, Saline/Exercise n=4, Saline/Sedentary n=4) 

(Figure 4.2), and perfused with 4% PFA (see Chapter 2). The lumbar spinal cord was 

decalcified, embedded in paraffin, and microtome-sectioned at 5µm; the hindlimb calf 

musculature was post-fixed in 4% w/v PFA in PBS at 4°C, cryoprotected in 10% and 

30% w/v sucrose (Sigma-Aldrich) in PBS, embedded in OCT cryomatrix (Sakura 

Finetek, Tokyo, Japan) and cryostat-sectioned (Leica) at 80µm onto slides; excess 

cryomatrix was removed with PBS prior to immunolabelling. Spinal cord sections were 

dewaxed in xylene and rehydrated through graded alcohols prior to labelling, and also 

quenched with 3% H2O2 in PBS (20 minutes) prior to DAB immunohistochemistry. 
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Figure 4.2 Experimental design for the MT2 and/or exercise trial 

Female SOD1 mice were divided into 4 treatment groups at 6 weeks of age. Treatment 

with MT2 (MT-2A 10mg/kg i.m., twice per week) or treadmill running exercise 

(10m/min, 30min, 5 days per week), or both, was carried out from 6 to 16 weeks of age 

(n=13-16 per group). Body weight, stride pattern testing, and wire hang duration were 

measured at least weekly from 6 weeks of age through to disease endpoint. At 17 weeks 

of age, at least 3 mice in each treatment group were sacrificed for histological analysis 

of spinal cord motor neuron, microglia, and astrocyte numbers, spinal cord MT-1/2 

levels, and  neuromuscular junction innervation. Ten mice in each treatment group were 

followed for survival analysis, with disease endpoint measured as a loss of 20% from 

peak body weight. 
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4.2.3.2.1 Nissl stain 

Eight to ten sections per spinal cord, each separated by a minimum distance of 40µm, 

were incubated with cresyl violet solution (1% w/v cresyl fast violet, acidified with 

0.25% v/v acetic acid [both Sigma-Aldrich]) for 30 minutes, then washed in slowly-

running water until dye no long leached from the sections. Slides were then passed 

through 95% ethanol for 4 minutes, 100% ethanol for 2 minutes, incubated in xylene, 

passed through 100% ethanol and incubated with cajeput oil for 3 minutes, then rinsed 

twice in xylene and coverslipped using Pertex mounting medium (Leica).  

4.2.3.2.2 MT-1/2 immunohistochemistry 

Immunolabelling for MT-1/2 was performed as described in Chapter 2, with the 

exception that the primary mouse anti-MT-1/2 antibody was used at 1:750. MT-1/2-

positive cells were counted in the lumbar spinal cord ventral horn, dorsal horn, dorsal 

white matter, corticospinal tract, and ventral/lateral white matter (see Figure 4.10A). 

4.2.3.2.3 Tomato lectin labelling 

Tomato lectin (TL) labelling was performed to label microglial cells. Three lumbar 

spinal cord sections from each mouse, each separated by a minimum distance of 80µm, 

were blocked and incubated with biotinylated TL as described in Chapter 2. TL was 

detected with stretapvidin-HRP (Life Technologies, 1:1000 for 1 hour in PBS) and 

DAB substrate (Vector Laboratories, 1 minute); sections were counterstained with 

nuclear fast red, dehydrated and coverslipped using Pertex.  

4.2.3.2.4 GFAP immunohistochemistry 

Three lumbar spinal cord sections from each mouse, each separated by a minimum 

distance of 80µm, were blocked and incubated with anti-GFAP antibody as described in 

Chapter 2. The primary antibody was detected with HRP-conjugated goat anti-rabbit 

antibody (1:1000 for 1 hour, Dako) and DAB substrate (Vector Laboratories) for 1 

minute. All sections were counterstained and coverslipped as above.  

4.2.3.2.5 Neuromuscular junction counts 

To examine neuromuscular junction (NMJ) innervation, colocalisation between 

nicotinic acetylcholine receptors and neuronal markers was examined. Cryosections of 

calf and gastrocnemius musculature (80µm) were incubated with α-bungarotoxin-

AF594 (αBTx [Life Technologies], 1:200 for 45 minutes), washed with PBS, then fixed 

with ice-cold methanol for 5 minutes. After 2 PBS washes, the tissue was permeabilised 
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by a 2-hour incubation with 0.3% TritonX-100 in PBS, then washed twice in PBS. A 

cocktail of primary antibodies against neuronal markers (mouse anti-dephosphorylated 

neurofilament SMI32 1:500, mouse anti-phosphorylated neurofilament SMI312 1:750 

[Covance], mouse anti-synaptophysin 1:500 [Santa Cruz Biotechnology] and mouse 

anti-tau 1:500 [Santa Cruz Biotechnology]) was applied O/N at RT. Primary antibodies 

were detected with goat anti-mouse-AF488 (1:500 for 2 hours); nuclei were stained 

with Nuclear Yellow (1:10000 for 15 minutes). Muscle sections were coverslipped in 

aqueous mounting medium and examined under a fluorescence microscope (Olympus) 

for colocalisation between αBTx and neuronal markers. An innervated NMJ was scored 

as having any colocalisation between neuronal markers and αBTx labelling. For each 

animal, the innervation status of at least 100 NMJs was scored.  

4.2.3.2.6 Counts and statistical analysis 

DAB-stained slides were imaged under bright field microscopy (Leica Biosystems). 

Cell counts for motor neurons, MT-1/2-positive cells, and TL-positive cells were carried 

out in ImageJ (NIH). GFAP labelling was thresholded in the HSB colour space (hue, 

stop 83-84; saturation, pass 0-112; brightness, pass 170-255) in ImageJ, and quantified 

as a percentage area showing positive immunoreactivity in each region (see Figure 

4.12F). Statistical analysis of all histological markers was carried out in SPSS, using 

one-way and two-way ANOVA to check for differences between treatment groups. 

4.2.3.3 Survival 

Survival time, measured as the earliest of either a loss of 20% from maximum recorded 

body weight or inability of a mouse to right within 30 seconds of being placed on its 

side, was analysed in SPSS using Kaplan-Meier analysis and Cox proportional hazards 

regression. Of 58 treated mice (Table 4.1), four mice died prior to disease endpoint – 

two Saline+Sedentary mice died under anaesthesia, and one MT2+Exercise mouse and 

one MT2+Sedentary mouse were found deceased in their cages unexpectedly. 

Examination by the animal welfare officer was unable to isolate a cause of death, but it 

is possible that these two mice died due to complications from intramuscular injections. 

These four unexpected deaths in the cohort represent a rate of 7%, a rate slightly lower 

than the 10% observed in previous SOD1 studies (Scott et al. 2008). After removing 

mice for histological analyses, and accounting for unexpected deaths, ten mice per 

treatment group (40 of the original 58) provided data for survival analysis.   
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4.3 Results 

4.3.1 Survival 

Survival time was recorded as the earliest of either the mouse losing 20% from its pre-

disease maximum body weight, or the inability to right within 30 seconds. Four SOD1 

mice (10%) reached their righting endpoint prior to their weight endpoint; 34 SOD1 

mice (85%) displayed a 20% loss of peak body weight while still able to right within 30 

seconds. Two SOD1 mice (5%) were culled just prior to disease endpoint due to 1) a 

mistake with ear ID clips and 2) an eye infection; data from these mice were censored 

appropriately in the survival analyses. Kaplan-Meier survival curves were plotted, and 

interactions between MT2 treatment and exercise were analysed using CPH analysis.   

4.3.1.1 Kaplan-Meier survival analysis 

Kaplan-Meier survival curves, with each treatment group plotted separately, indicate 

that MT2-treated mice (red lines) showed a more right-shifted survival curve with 

longer survival times than saline-treated mice (blue lines) (Figure 4.3A). Survival 

curves for exercised mice (solid lines) and sedentary mice (dashed lines) were 

approximately equal, although a very slight right-shift for exercised mice could be 

observed (Figure 4.3A). Average survival time estimates from Kaplan-Meier analysis 

were Saline+Sedentary 165.6±2.7 days, Saline+Exercise 168.0±2.3 days, 

MT2+Sedentary 170.5±1.8 days, and MT2+Exercise 172.7±1.8 days. Differences 

between the four individual treatment groups did not reach statistical significance (Log 

Rank test, p=0.146). Kaplan-Meier analysis was also used to split the mice on the basis 

of MT2 treatment or exercise treatment; MT2-treated mice showed longer survival 

times than saline-treated mice (Log-Rank test p=0.070; Figure 4.3B), whereas exercised 

and sedentary mice showed similar survival times (Log-rank test p=0.147; Figure 4.3C). 

4.3.1.2 Cox proportional hazards regression 

Cox proportional hazards regression (CPH) was used to examine the effects of exercise 

and MT2 treatment separately. Univariable CPH modelling showed that the hazard rate 

for MT2-treated mice was reduced compared to saline-treated mice, and the hazard rate 

for exercised mice was slightly reduced compared to sedentary mice (Table 4.2). Copy 

number, age at start of treatment, starting body weight, maximum body weight, and age 

at maximum body weight had negligible effects on survival (Table 4.2).   
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Figure 4.3 Kaplan-Meier survival curves for MT2-treated and exercised SOD1 

mice  

Comparing all four treatment groups (A) revealed that MT2-treated mice (red lines) 

showed right-shifted survival curves compared to saline-treated mice (blue lines), while 

exercised mice (solid lines) showed slightly right-shifted survival curves compared to 

sedentary mice (dashed lines); there were no significant differences between the four 

treatment groups. When MT2 treatment was compared with saline, regardless of 

exercise status (B), MT2-treated mice showed longer survival times than saline-treated 

mice. When exercise was compared with remaining sedentary, regardless of MT2 status 

(C), the survival curves showed few differences between exercised and sedentary mice. 

Vertical dashes represent censored data points. 
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Multivariable CPH regression, including both MT2 and exercise treatment, indicated 

that the hazard rate for MT2-treated mice was reduced by approximately 45% compared 

to saline-treated mice, and this effect approached statistical significance (HRMT2=0.556, 

95% CI 0.284-1.091, p=0.088). The hazard rate for exercise-treated mice was reduced 

by approximately 35% compared to sedentary mice, although this was not significant 

(HRexercise=0.626, 95% CI 0.318-1.230, p=0.174) (Table 4.2). The associations between 

MT2 treatment and reduced hazard ratio, and exercise and reduced hazard ratio, became 

stronger when the multivariable model was adjusted for possible confounders copy 

number, age at start of treatment, starting body weight, maximum body weight, and age 

at maximum body weight (Table 4.2). The results of survival analyses show that MT2 

treatment increases survival time by approximately 5 days (around 3% of SOD1 mouse 

lifespan), and that these effects approach statistical significance.       

 

Table 4.2 Cox proportional hazards regression model for disease endpoint 

Factor(s) in CPH model HR (95% CI) p-value 

Univariable analysis
1
   

            MT2 0.555 (0.283, 1.089) 0.087 

            Exercise 0.624 (0.318, 1.226) 0.171 

            Copy number (ΔCT) 0.911 (0.271, 3.065) 0.880 

            Age at start 1.009 (0.933, 1.092) 0.817 

            Starting weight 1.096 (0.836, 1.436) 0.506 

            Maximum body weight 1.067 (0.825, 1.380) 0.624 

            Age at maximum body weight
#
 0.992 (0.975, 1.009) 0.342 

Multivariable analysis
2
   

            MT2 0.556 (0.284, 1.091) 0.088 

            Exercise 0.626 (0.318, 1.230) 0.174 

Multivariable analysis, adjusted
3
   

            MT2 0.351 (0.149, 0.828) 0.017 

            Exercise 0.531 (0.259, 1.088) 0.084 

1
Univariable analysis contains the listed factor/covariate. 

2
Multivariable analysis contains both exercise 

and MT2. 
3
Multivariable analysis contains exercise, MT2, and possible confounders copy number, age at 

start of treatment, starting body weight, maximum body weight and age at maximum body weight. 
#
If 

maximum body weight was achieved on more than one occasion, the largest age was used in the analysis.  
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4.3.2 Body weight 

4.3.2.1 Average body weight per week 

The body weight trajectories of SOD1 mice were curved, with all SOD1 mice showing 

weight gain from 6 to approximately 18 weeks of age, and weight loss therafter (Figure 

4.4A). MT2-treated mice appeared to have higher average body weight than saline-

treated mice at 17-22 weeks of age (Figure 4.4A); however, body weights differences 

between treatment groups were not significant by one or two-way ANOVA.  

4.3.2.2 Linear mixed modelling of body weight 

The MT2/saline treatment and the exercise/sedentary status of SOD1 mice both 

contributed to the fit of the model, such that the model fit the raw data better when these 

factors were included rather than excluded (Supplementary Data 3). The model fit was 

not improved by including interaction terms (MT2*exercise) (Supplementary Data 3); 

thus, the final model, with parameters outlined in Table 4.3, contained no interaction 

term (for full model specification, see Model 3, Supplementary Data 3). 

The results of the linear mixed model give a set of parameters for the equation  

Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
, where each β coefficient has a unique 

value for each SOD1 treatment group (listed in Table 4.3). The β coefficients for MT2-

treated mice were significantly different from those of saline-treated mice, whereas the 

β coefficients for exercised mice were not significantly different from those of 

sedentary mice (Supplementary Data 3). When graphed, the body weight trajectory 

curves indicated that MT2-treated mice (red lines) showed slightly higher body weights 

than saline-treated control mice (blue lines) at 120-140 days of age (Figure 4.4B).  

 

Table 4.3 Parameter estimates from linear mixed modelling of body weight 

Fixed effects 

parameter
1
 

Saline + 

Sedentary 

Saline + 

Exercise 

MT2 + 

Sedentary 

MT2 +  

Exercise 

Intercept (β0) 17.36 17.39 17.78 17.81 

Age (β1)  2.10 x 10
-2

  1.89 x 10
-2

 -4.33 x 10
-3

 -6.40 x 10
-3

 

Age
2
 (β2)  4.78 x 10

-4
  4.30 x 10

-4
  9.88 x 10

-4
  9.39 x 10

-4
 

Age
3
 (β3) -5.55 x 10

-6
 -4.74 x 10

-6
 -8.13 x 10

-6
 -7.32 x 10

-6
 

1
For equation: Body weight = β0 + β1*Age + β2*Age2 + β3*Age3, where Age = Age, centered at 42 days.   
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Figure 4.4 Body weight averages and modelled body weight trajectories in MT2-

treated and exercised SOD1 mice over time 

Average body weight at each age week (A) was not significantly different between 

treatment groups. Linear mixed model body weight trajectories (B) for MT2-treated (red 

lines), saline-treated (blue lines), exercised (solid lines), and sedentary (dashed lines) 

SOD1 mice are shown, corresponding to parameter estimates from Table 4.3. Model-

based nlcom estimates of maximum body weight did not differ between treatment 

groups (C). Model-based nlcom estimates of the age at maximum body weight (D; 

arrows in B) showed later age at maximum body weight in MT2-treated mice than in  

saline-treated mice. *p<0.05 **p<0.01 ***p<0.001. Sed., sedentary; Ex., exercise. Error 

bars represent standard error of the mean (A) or of the nlcom point estimate (C,D). 
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4.3.2.3 Estimation of maximum body weight, and age at maximum body weight, 

from mixed model parameters using nlcom 

From the mixed model parameters for each group, point estimates of the maximum 

body weight and the age at maximum body weight were calculated. MT2-treated mice 

had a slightly higher peak body weight than saline-treated mice, although this was not 

significant (Figure 4.4C). The age at which mice reached maximum body weight (point 

estimate ± standard error) was 116.4±1.4 days in Saline+Sedentary mice, 119.6±1.5 

days in Saline+Exercise mice, 120.8±1.1 days in MT2+Sedentary mice, and 124.0±1.2 

days in MT2+Exercise mice (Figure 4.4D; arrows in Figure 4.4B).  

MT2+Exercise and MT2+Sedentary mice reached maximum body weight at a later age 

than Saline+Sedentary mice (p<0.05). MT2+Exercise mice also reached maximum body 

weight at a later age than Saline+Exercise and MT2+Sedentary mice (p<0.05) (Figure 

4.4D). This indicated that MT2-treated mice reached their maximum body weight, a 

proxy of disease onset, slightly later than saline-treated mice. This was not due to 

differences in maximum body weight attained (Figure 4.4), nor due to differences in the 

amount of weight gained between starting treatment and reaching maximum body 

weight (weight gains: Saline+Sedentary 2.5±0.3g, Saline+Exercise 2.6±0.3g, 

MT2+Sedentary 2.7±0.3g, MT2+Exercise 2.4±0.2g; p>0.4 by one-way and two-way 

ANOVA). Thus, it would appear that MT2 treatment slightly delays disease onset.  

4.3.2.4 Percentages body weight by week. 

Interestingly, the body weight trajectories for exercised mice (solid lines) appeared to 

decline less steeply than those of sedentary mice (dashed lines) (Figure 4.4B). To 

determine whether any treatment had an effect on body weight decline over time, the 

ages at which mice reached 95, 90, and 85% of their maximum body weight were 

examined. Body weights were converted to a percentage of each mouse’s maximum 

body weight, and percentage body weights were compared at each week using two-way 

ANOVA, including an MT2*exercise interaction term. At 22 weeks of age, exercise and 

MT2 treatment appeared to act together to produce the highest percentage of maximum 

body weight remaining (MT2+Exercise 92±1%, MT2+Sedentary 88±1%, 

Saline+Exercise 89±1%, Saline+Sedentary 90±1%; while main effects were not 

significant, FMT2*exercise(1,34)=5.065, p=0.031). At 24 weeks of age, exercised mice 

showed higher percentage body weights than sedentary mice (MT2+Exercise 83±1%, 
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MT2+Sedentary 82±1%, Saline+Exercise 85±1%, Saline+Sedentary 81±2%;  

Fexercise(1,20)=5.655, p=0.027) (Figure 4.5A). However, these changes were not 

consistent throughout the disease course (Figure 4.5A).  

The ages at which mice reached 95%, 90% and 85% of their maximum body weight 

were also examined using survival analysis; Kaplan-Meier survival curves are provided 

in Figure 4.5B, while CPH regression was used for statistical analysis. Exercised mice 

had a reduced hazard ratio for reaching 95% body weight compared to sedentary mice 

(HR(95%BW)Exercise=0.468, 95% CI 0.238-0.918, p=0.027, adjusted for MT2 

treatment), indicating that exercised mice stayed above 95% of their maximum body 

weight for longer than sedentary mice (Figure 4.5B, left panel). MT2-treated mice 

tended towards a reduced hazard ratio for reaching 90% of peak body weight compared 

to saline-treated mice (HR(90%BW)MT2=0.511, 95% CI  0.255-1.021, p=0.057, adjusted 

for exercise), indicating that MT2-treated mice stayed above 90% of their maximum 

body weight for slightly longer than saline-treated mice. Examination of the Kaplan-

Meier survival curves indicates this effect is driven mainly by maintenance of >90% 

body weight in MT2+Exercise mice (Figure 4.5B, middle panel). There were no 

differences between treatment groups for the age at reaching 85% body weight (Figure 

4.5B, right panel).     

In summary, MT2 treatment appears to affect the body weight of SOD1 mice, with a 

slightly later age at disease onset compared to saline-treated mice.  

 

4.3.3 Stride pattern 

The stride pattern parameters, stride length and uniformity measurement (see Figure 

2.11A,B), were measured weekly in all treatment groups.   

4.3.3.1 Stride length 

Stride length decreased over time in all SOD1 mice (Figure 4.6A). Stride lengths were 

similar between treatment groups at most weekly time points, although 

Saline+Sedentary mice tended to have shorter stride lengths than other treatment groups 

at 16, 18, 19 and 20 weeks of age (Figure 4.6A). At 12 and 14 weeks of age, exercised 

mice showed longer stride lengths than sedentary mice (12 weeks: Fexercise(1,50)=6.153, 

p=0.017); 14 weeks: Fexercise(1,48)=6.356, p=0.014).  
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Figure 4.5 Percentage body weights of MT2-treated and exercised SOD1 mice 

MT2+Exercise mice showed slightly higher retention of percentage body weight at 22 

weeks of age, while exercised mice displayed higher body weight percentages than 

sedentary mice at 24 weeks of age (A). Kaplan-Meier curves for falling below 95%, 

90%, and 85% percent of maximum body weight (B) show that exercised mice appeared 

to drop below 95% of maximum body weight later than sedentary mice (B, left panel), 

and MT2+Exercise mice appeared the last to drop below 90% of maximum body weight 

(B, middle panel). *p<0.05 MT2+Exercise mice vs. all other groups, #p<0.05 exercised 

mice vs. sedentary mice. BW, body weight; MT+Ex, MT2+Exercise; MT+Sed, 

MT2+Sedentary; S+Ex, Saline+Exercise; S+Sed, Sedentary+Saline. Vertical dashes in 

B represent censored data. Error bars represent standard error of the mean. 
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At 16 weeks of age, exercised mice had a slightly longer stride length than sedentary 

mice (Fexercise(1,39)=3.951, p=0.054); although the main effect for MT2 was not 

significant (FMT2(1,39)=0.486, p=0.490), there was a significant interaction between 

MT2 and exercise (FMT2*exercise(1,39)=4.179, p=0.048), indicating that the effect of 

exercise was not the same for mice receiving MT2 and mice receiving saline. 

Examining stride length averages confirmed that at 16 weeks of age, Saline+Exercise 

mice had a longer stride length than Saline+Sedentary mice, but there was no difference 

in stride length between MT2+Exercise mice and MT2+Sedentary mice. However, this 

effect was not maintained at 17 or 18 weeks of age. At 19 weeks of age, exercised mice 

again showed longer stride lengths than sedentary mice (Fexercise(1,36)=7.864, p=0.008).  

At 20 weeks of age, MT2-treated mice showed longer stride lengths than saline-treated 

mice (FMT2(1,32)=5.833, p=0.022), and exercised mice showed longer stride lengths 

than sedentary mice (Fexercise (1,32)=6.453, p=0.016). However, the interaction term was 

also significant (Fexercise*MT2(1,32)=5.175, p=0.030), with average values indicating that 

MT2+Exercise mice had no further increase in stride length above that seen by either 

treatment applied individually, i.e. MT2+Exercise stride length was no different to 

either Saline+Exercise or MT2+Sedentary stride length. At 23 weeks of age, exercised 

mice showed longer stride lengths than sedentary mice (Fexercise (1,24)=8.060, p=0.009) 

4.3.3.2 Uniformity: 

Uniformity measurements increased over time in SOD1 mice (Figure 4.6B). Uniformity 

measurements were relatively constant between treatment groups (Figure 4.6B), 

although slight differences were noted at 19 and 20 weeks of age where MT2-treated 

mice (red lines) appeared to have smaller uniformity measures than saline-treated mice 

(blue lines). At 9 weeks of age, exercised mice showed increased uniformity measures 

compared to sedentary mice (Fexercise(1,51)=11.971, p=0.001), although uniformity 

measures between all mice subsequently remained similar until 19 weeks of age. At 19 

weeks of age, MT2-treated mice showed lower uniformity measures than saline-treated 

mice (FMT2(1,36)=4.675, p=0.037). A similar trend for decreased uniformity in MT2-

treated mice was present at 20 weeks of age, but this did not reach statistical 

significance (p=0.077). Thus, both exercise and MT2 treatment appear to have slight 

effects on stride pattern – at select time points, exercise and MT2 both appeared to 

maintain stride length, while MT2 treatment appeared to promote lower uniformity 

values, although these effects were not consistent throughout disease progression. 
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Figure 4.6 Stride pattern in MT2-treated and exercised SOD1 mice 

Stride length, the distance between consecutive hind paw prints (A), and uniformity 

measure, the distance between placement of the front paw and subsequent hind paw 

placement when passing over the same spot (B), were similar between treatment groups. 

Stride length appears shortest in Saline+Sedentary mice at 18-20 weeks, while 

uniformity appears longer in saline-treated mice than MT2-treated mice at 19-20 weeks 

of age. *p<0.05 exercised mice vs. sedentary mice; #p<0.05 Saline+Exercise mice vs. 

Saline+Sedentary mice;†p<0.05 Saline+Sedentary vs. all other groups; ‡p<0.05 MT2-

treated mice vs. saline-treated mice. Error bars represent standard error of the mean.    
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4.3.4 Wire hang duration 

The wire hang duration testing revealed a large amount of variation within treatment 

groups (Figure 4.7A). Two-way ANOVA revealed only a significant interaction 

between exercise and MT2 at 17 weeks of age (Fexercise*MT2(1,35)=6.502, p=0.015), 

indicating that the effect of MT2 treatment on wire hang duration varied depending on 

whether the mice were exercised or not. Specifically, the average wire hang values 

indicated that MT2+Exercise mice had a slightly longer wire hang duration than 

Saline+Exercise mice at 17 weeks of age, but MT2+Sedentary mice in fact had a shorter 

wire hang duration than Saline+Sedentary mice at 17 weeks of age (Figure 4.7A).   

From the 40 mice which were measured from 6 weeks of age until endpoint, 32 

recorded the maximum wire hang duration of 60 seconds on at least one time point. 

Eight of the 40 mice (20%) were unable to hang on for 60 seconds at any time point; by 

group, these were 1 x MT2+Exercise, 2 x Saline+Exercise, 4 x MT2+Sedentary, and 1 x 

Saline+Sedentary. Amongst the 32 mice which attained a wire hang duration of 60 

seconds, there were no differences between treatment groups for 1) the age at mice were 

no longer able to consistently hold on for 60 seconds (Figure 4.7B), 2) the age at which 

mice were no longer able to consistently hold on for 30 seconds (Figure 4.7C), and 3) 

the age at which mice were unable to grip the bars, i.e. wire hang duration = 0 seconds 

(Figure 4.7D). Amongst all 40 mice, even those which did not attain a wire hang 

duration of 60 seconds at any time point, there was no difference between treatment 

groups in the age at which mice were able to hold on for less than 50% of their 

maximum attained hang duration (Figure 4.7E).    

 

4.3.5 Nissl staining 

The number of Nissl-stained motor neurons present in the lumbar spinal cord ventral 

horn at 17 weeks of age, after the 10 weeks of MT2 and/or exercise treatment, was 

counted and compared between treatment groups. The number of motor neurons 

remaining at 17 weeks of age was not different between the four treatment groups 

(Figure 4.8). The number of large, vacuolated, degenerating motor neurons present in 

the ventral horn was likewise not different between treatment groups (data not shown). 

These data indicate that neither exercise nor MT2 treatment were particularly effective 

at preventing motor neuron degeneration in the pre-symptomatic period.   
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Figure 4.7 Wire hang duration in MT2-treated and exercised SOD1 mice 

Average wire hang durations were similar between experimental groups at all time 

points (A). In mice which recorded the maximum of 60 seconds’ hang duration at any 

time point, no between-group differences were seen in the age at which mice were 

subsequently unable to hang on for 60 seconds (B), unable to hang on for 30 seconds 

(C), or unable to grip bars at all (D). Amongst all mice, including those which did not 

record 60 seconds’ grip duration at any time point, there was no difference in the age at 

which mice were unable to hang on for 50% of their maximum time (E). WH, wire hang 

duration. Error bars represent standard error of the mean. 
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Figure 4.8 Nissl-stained motor neurons in the ventral horn of MT2-treated and 

exercised SOD1 mice 

The number of motor neurons (MNs) remaining in the spinal cord ventral horn of 

Saline+Sedentary (A), Saline+Exercise (B), MT2+Sedentary (C), and MT2+Exercise 

(D) mice was not different at 17 weeks of age (E). Scale bar 50µm for A-D. Error bars 

in E represent standard error of the mean. 
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4.3.6 MT-1/2 immunostaining 

MT-1/2 was observed within glial cells in both the white and grey matter of all SOD1 

mice (Figure 4.9A-D). The number of MT-1/2-positive cells in the different spinal cord 

regions (Figure 4.10A) was compared between treatment groups. The numbers of MT-

1/2-positive cell bodies in both the dorsal and ventral/lateral white matter columns 

appeared to increase slightly with exercise but not with MT2 treatment (Figure 

4.10B,C). In the ventral horn grey matter, Saline+Exercise mice showed the largest 

number of MT-1/2-positive cells, although MT2+Exercise mice showed no increase in 

MT-1/2-positive cells compared to MT2+Sedentary mice (Figure 4.10D). However, 

there were no significant changes as assessed by two-way ANOVA. Few MT-1/2-

positive cells were observed in the corticospinal tract white matter and in the dorsal 

horn grey matter (Figure 4.10E,F). 

4.3.7 GFAP immunostaining 

Quantification of GFAP immunolabelling in different spinal cord regions (Figure 

4.11A-D, Figure 4.12F) revealed that that percentage area of the ventral horn grey 

matter, dorsal horn grey matter, corticospinal tract white matter, and dorsal column 

white matter occupied by GFAP immunoreactivity appeared to be increased by exercise 

(Figure 4.12A-E). The exercise-mediated increase in percentage area occupied by 

GFAP immunoreactivity was only significant in the dorsal column (Fexercise(1,9)=5.881, 

p=0.038) (Figure 4.12D). In contrast, MT2 treatment did not affect GFAP 

immunoreactivity in any region. 

4.3.8 Tomato lectin labelling 

Quantification of ventral horn microglial cells revealed a slight, but not significant, 

increase in Saline+Exercise mice compared to Saline+Sedentary mice (Figure 4.13). 

Neither MT2 nor exercise treatment appeared able to attenuate microglial activation.  

 

4.3.9 Neuromuscular junction innervation 

The percentage of innervated neuromuscular junctions in skeletal muscle from each 

treatment group was compared. No treatment appeared to significantly change the 

percentage of neuromuscular junctions innervated by motor axons (Figure 4.14). 

Neither MT2 treatment nor exercise was able to prevent muscle denervation in SOD1 

mice (Figure 4.14).  



_________________________Chapter 4 – MT2 and exercise treatments in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

149 

 

 

Figure 4.9 Representative images of MT-1/2 immunoreactivity in the spinal cord of 

MT2-treated and exercised SOD1 mice.  

Representative images of the MT-1/2 immunoreactivity (DAB chromogen, positive 

immunoreactivity gives a brown precipitate). Representative images are shown from the 

spinal cord of Saline+Sedentary (A), Saline+Exercise (B), MT2+Sedentary (C) and 

MT2+Exercise (D) mice. Black lines denote region dividers (see Figure 4.10A). Scale 

bar is 150µm in A-D. Quantitation of MT-1/2-positive cells is presented in Figure 4.10.  
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Figure 4.10 MT-1/2 immunostaining in MT2-treated and exercised SOD1 mice 

MT-1/2-positive (‘MT-positive’) cells in different regions of the spinal cord (line 

drawing, A) were counted. The number of MT-1/2-positive cells in the white matter 

increased slightly with exercise but not with MT2 treatment (B,C). In the grey matter, 

exercise appeared to increase the number of MT-1/2-positive cells in saline-treated mice 

only (D). Few MT-1/2-positive cells were seen in the corticospinal tract or in the dorsal 

horn (E,F). dwm, dorsal column white matter; cst, corticospinal tract; dh, dorsal horn; 

vh, ventral horn; vlwm, ventral and lateral white matter; Ex., exercise; Sed., sedentary. 

Error bars represent standard error of the mean. 
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Figure 4.11 Representative images of GFAP immunoreactivity in the spinal cord of 

MT2-treated and exercised SOD1 mice.  

Representative images of GFAP immunostaining with DAB chromogen are shown here 

for Saline+Sedentary (A), Saline+Exercise (B), MT2+Sedentary (C) and MT2+Exercise 

(D) treatment groups of SOD1 mice. Quantitation was performed and is presented in 

Figure 4.12. Scale bar is 150µm in A-D. Magenta lines denote regions in which GFAP-

positive immunoreactivity was quantitated (see Figure 4.12F). 
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Figure 4.12 GFAP immunoreactivity in MT2-treated and exercised SOD1 mice 

The astrocyte marker, GFAP, was detected by immunolabelling, and the amount of 

GFAP immunoreactivity (GFAP IR) was quantified using ImageJ and expressed as a 

percentage area of each spinal cord region (line drawing, F) displaying positive 

immunoreactivity. The percentage area displaying GFAP IR appeared to increase 

slightly with exercise in the ventral horn (A) and dorsal horn (B) grey matter, and in the 

dorsal (D) and corticospinal tract (E) white matter; no differences were seen in the 

ventral and lateral white matter with exercise (C). *p<0.05. dwm, dorsal column white 

matter; cst, corticospinal tract; dh, dorsal horn; vh, ventral horn; vlwm, ventral and 

lateral white matter; Ex., exercise; Sed., sedentary. Error bars represent standard error of 

the mean. 
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Figure 4.13 Tomato lectin labelling in MT2-treated and exercised SOD1 mice 

Representative images of tomato lectin staining, labelling both blood vessels and 

microglia, are shown for the lumbar spinal cord of SOD1 mice in all four treatment 

groups (A-D). The number of microglial cells in the ventral horn was not significantly 

different between treatment groups at 17 weeks of age (E). However, the number of 

microglia did appear to increase slightly in response to exercise in saline-treated mice 

only. Error bars represent standard error of the mean. Scale bar is 150µm in A-D. 



_________________________Chapter 4 – MT2 and exercise treatments in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

154 

 

 

Figure 4.14 Neuromuscular junction innervation in MT2-treated and exercised 

SOD1 mice 

Innervation was examined as colocalisation between α-bungarotoxin (“BT”) and a 

cocktail of neuronal antibodies (synaptophysin, SMI32, SMI312, and tau, “Axon”). 

Examples of co-localisation between the axonal markers and α-bungarotoxin are given 

in panels A-C. Neuromuscular junctions either showed full or partial innervation via 

colocalisation between the two markers (A,B) or showed no colocalisation (C). Neither 

MT2 treatment nor exercise were able to significantly prevent denervation at the 

neuromuscular junction (NMJ) by 17 weeks of age (D). Error bars represent standard 

error of the mean. 
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4.4 Discussion 

In this study, pre-symptomatic treatment with metallothionein-2A (MT2) and/or 

treadmill exercise were examined as potential therapies for delaying disease onset, 

ameliorating functional decline and increasing survival time in SOD1 mice. Pre-

symptomatic MT2 treatment delayed disease onset as measured by the timing of peak 

body weight, and showed positive but non-significant effects on survival time (Figure 

4.3, Figure 4.4). In contrast, pre-symptomatic treadmill exercise did not alter disease 

onset or survival time. Neither treatment substantially ameliorated disease progression 

as measured by stride pattern and wire hang duration (Figure 4.6, Figure 4.7). The 

mechanism of action for the MT2-mediated delay in disease onset and increase in 

survival remains as yet unknown, with no overt differences in motor neuron numbers, 

glial activation, or neuromuscular junction innervation as measured in this study (Figure 

4.8, Figure 4.12, Figure 4.13, Figure 4.14). Potential mechanisms by which MT2 could 

maintain motor units, and strategies to maximise the protective effect of MT2 in future 

studies, are discussed below.   

 

4.4.1 Metallothionein-2 as a potential therapeutic for ALS 

The results of the current study show a delayed disease onset for MT2-treated mice, and 

a slight increase in survival time. These results are consistent with genetic studies 

showing that ablation of MT-1/2 leads to an accelerated disease progression and 

reduced survival in SOD1 mice (Nagano et al. 2001; Puttaparthi et al. 2002), while 

global over-expression of MT1 protein delayed the onset of disease symptoms and 

increased survival time in SOD1 mice (Tokuda et al. 2013). MT-1/2 has multiple 

putative functions as an antioxidant, a response to metal dyshomeostasis, and as a 

neuroprotectant following neuronal injury (West et al. 2008). 

An advantageous feature of MT2 protein as a therapeutic for ALS is its multiple actions, 

which could counter multiple possible pathogenic processes in ALS. Conversely, this 

same feature makes it difficult to elucidate the exact mechanism of action by which 

MT2 may confer therapeutic benefits in SOD1 mice. As MT-1/2 can be internalised into 

cortical neurons (Chung et al. 2008b), the known intracellular and extracellular 

neuroprotective roles of MT-1/2, and how these properties may confer a protective role 

in ALS, will be discussed in the following sections.   
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4.4.1.1 Possible intracellular neuroprotective functions of MT2 in neurons 

4.4.1.1.1 The antioxidant role of MT2 

Oxidative stress appears to be central to ALS pathology (Barber & Shaw 2010). MT-1/2 

shows potent antioxidant activity, and is able to release its metal ions in order to bind 

and sequester reactive oxygen species such as superoxide and hydroxyl radicals 

(Thornalley & Vasak 1985; Abel & de Ruiter 1989). MT-1/2 is also able to bind NO 

and peroxynitrite in vitro, but as this interaction is suppressed by physiological levels of 

reduced glutathione, it is as yet unclear whether MT-1/2 can sequester harmful NO and 

peroxynitrite species in vivo (Khatai et al. 2004). An MT2-mediated reduction of 

oxidative stress in the pre-symptomatic phase of SOD1 mice may delay the 

accumulation of oxidatively-damaged proteins and mRNA, preventing the development 

of downstream disease-related pathologies such as protein aggregation. The putative 

role of MT2 in scavenging NO and peroxynitrite would be very interesting to examine 

in more detail in ALS, due to the observed induction of iNOS in SOD1 spinal cord 

microglia with disease progression (see Chapter 2), and the reports of protein tyrosine 

nitration in ALS (Sasaki et al. 2000).     

4.4.1.1.2 The role of MT2 in metal homeostasis 

MT2 is a metal-binding protein, with each MT2 molecule capable of binding up to 7 

divalent metal ions or up to 12 monovalent metal ions, through thiol linkages on 

cysteine residues (Hamer 1986) (Figure 4.1). Sporadic ALS has been associated with 

exposure to heavy metals in epidemiological studies (Trojsi et al. 2013), while 

laboratory studies have showed higher levels of heavy metals in the spinal cord motor 

neurons of ALS patients than non-ALS controls (Pamphlett & Kum Jew 2013). 

Elevated levels of copper, zinc, magnesium, iron, cadmium, lead, aluminium, 

manganese, vanadium and uranium have been identified in the CSF and serum of ALS 

patients in various studies (Hozumi et al. 2011; Roos et al. 2013), suggesting that 

environmental exposures to metals, or dyshomeostasis of physiological metals such as 

zinc and copper, may contribute to the development of ALS.  

Elevated levels of redox-active metals, such as copper, are particularly damaging in the 

nervous system via the aberrant production of reactive oxygen species (Scheiber et al. 

2014). The presence of elevated copper levels may also apply to familial ALS, with 

SOD1 mice showing a shift towards copper accumulation in the spinal cord by 
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alteration of copper-trafficking pathways (Tokuda et al. 2009). One potential 

neuroprotective role of MT2 may be to sequester free copper ions and prevent metal-

mediated production of ROS; a previous study has shown a similar MT isoform, MT-3, 

is able to exchange its bound zinc ions for copper ions, silencing the redox-active 

copper ions (Meloni et al. 2007). Indeed, over-expression of MT1 in SOD1 mice 

normalises elevated levels of copper in the SOD1 spinal cord (Tokuda et al. 2013).  

An alternative, more speculative, action for MT2 may be ensuring correct metallation of 

mutant SOD1 protein. The metallation status of SOD1 modulates its neurotoxic 

properties (Banci et al. 2008), with mutant SOD1 proteins and zinc-deficient wild-type 

SOD1 protein showing similar propensity for aggregation and activation of ER stress 

responses (Rakhit et al. 2002; Homma et al. 2013). Zinc-loaded MT-1/2 is thought to be 

involved in the supply of zinc ions for zinc-binding proteins such as the MTF-1 

transcription factor (Zhang et al. 2003); if MT2 were able to facilitate the constitution of 

nascent mutant SOD1 with zinc, the aggregation of mutant SOD1 may be attenuated 

(Lelie et al. 2011).  

Thus, the metal-binding abilities of MT2 may mediate its beneficial effects in SOD1 

mice (Tokuda et al. 2013). This result would be in line with other copper-modulating 

compounds also having shown beneficial effects in the SOD1 mouse model of ALS 

(Soon et al. 2011; Parker et al. 2012).  

4.4.1.1.3 Internalisation via low-density lipoprotein receptor related proteins 

In order for MT2 to elicit intracellular effects, MT2 must be internalised into motor 

neurons. MT-1/2 is known to be internalised by transmembrane low-density lipoprotein 

receptor-related proteins (LRP1 and LRP2) by endocytosis in both kidney tubule cells 

(Erfurt et al. 2003; Klassen et al. 2004) and cultured cortical neurons (Chung et al. 

2008b). Preliminary data indicates that motor neurons in the mouse spinal cord express 

LRP2 (Nicholas Blackburn, unpublished observations). LRP1- and LRP2-mediated 

endocytosis is thought to be mostly clathrin-dependent, leading to lysosomal 

degradation of endosome contents (Harasaki et al. 2005; Buchackert et al. 2012). The 

metals bound to endosomal MT2 may become liberated upon the fusion with 

lysosomes, due to the drop in pH; these free metals may enter the cytosol (Hao et al. 

2007) and may stimulate the synthesis of new MT-1/2 molecules (Richards et al. 1984), 

with the overall effect of raising cellular MT-1/2 levels.  
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More speculatively, LRP1 can be recruited for caveolae-mediated endocytosis in 

adipocytes and hepatocytes (Zhang et al. 2004; Kanai et al. 2014); if these mechanisms 

are also present in motor neurons, it may be possible that an LRP1-MT2 complex could 

be internalised via non-classical endocytosis involving caveolae or lipid rafts (Hao et al. 

2007), potentially avoiding the lysosomal degradation pathway (Kiss & Botos 2009). 

Regardless of whether MT2 enters the cell intact, or releases its metals upon lysosomal 

degradation to stimulate de novo MT-1/2 synthesis, the intracellular level of MT-1/2 is 

likely to be increased upon LRP-mediated internalisation of MT2.  

4.4.1.2 Possible extracellular neuroprotective action of MT2 on neurons  

MT-1/2 is known to act extracellularly on neuronal cell bodies to induce neurite 

outgrowth through interaction with LRP1 and LRP2 (Fitzgerald et al. 2007; Chung et 

al. 2008b). The cytoplasmic portion of LRP1 protein contains signal transduction 

motifs, and is potentially involved in both endocytosis and intracellular signalling 

(Boucher & Gotthardt 2004). Thus, the interaction between MT2 and LRPs may induce 

neuroprotection via the activation of downstream signalling pathways, in addition to the 

intracellular roles for LRP-internalised MT2 discussed above.  

In cerebellar granule neurons, MT-1/2-LRP interactions activate pro-survival and pro-

outgrowth PI3K/Akt and MAPK/ERK pathways (Dudek et al. 1997; Chang & Karin 

2001), activate the pro-survival transcription factor CREB (Walton & Dragunow 2000), 

and dephosphorylate the pro-apoptotic factor Jun (Ham et al. 2000). Hence, LRP-

mediated activation of pro-survival and pro-outgrowth pathways upon MT2 binding 

may represent a possible pathway for maintaining neuronal function in ALS.  

4.4.1.3 A role for MT2 at the neuromuscular junction? 

The combined intraneuronal and extracellular actions of MT-1/2 provide a putative 

mechanism by which motor neurons are protected, and disease onset is delayed, by 

MT2 treatment in SOD1 mice. However, no differences in the number of Nissl-stained 

motor neurons were seen between MT2-treated and control SOD1 mice at 17 weeks of 

age (Figure 4.8), indicating that the actions of MT2 did not prevent death of motor 

neuron cell bodies, or indicating that little data about neuronal health can be gleaned 

from the Nissl stain alone. Markers of neuronal apoptotic status, such as the presence of 

cleaved caspases, should also be examined in MT2-treated and exercised SOD1 mice, in 

order to give more detail about the potential mechanism of action of MT2.  
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Given no obvious protection of motor neuron cell bodies, it is possible that MT2 

affected the motor unit at the neuromuscular junction (NMJ). The stimulation of LRPs 

by MT-1/2 induces neurite outgrowth in cultured neurons, and reactive sprouting in 

injured neurons (Chung et al. 2003; Fitzgerald et al. 2007). Motor neurons in ALS 

demonstrate compensatory plasticity at the NMJ, with re-innervation of denervated 

NMJs by neighbouring motor units in order to maintain function (Stalberg et al. 1975; 

Gurney et al. 1994). Any MT2-mediated increase in sprouting at the distal motor axon 

might enhance compensatory re-innervation, maintaining muscular connections and 

delaying the loss of body weight caused by denervation and muscle atrophy.  

The current study showed no difference in the percentage of innervated neuromuscular 

junctions between treatment groups (Figure 4.14), which would argue against increased 

re-innervation by MT2 treatment. However, this study only looked at the percentage of 

NMJs showing any neuronal innervation; a more detailed assessment of the degree of 

colocalisation between pre- and post-synaptic NMJ components in individual NMJs 

may help to detect differences between treatment groups. Intriguingly, another member 

of the LRP family, LRP4, is involved in neuromuscular junction formation and 

maintenance through agrin and Musk signalling (Kim et al. 2008; Zhang et al. 2008); 

one could speculate that MT2, if found to be a ligand of LRP4, might play a direct role 

in neuromuscular junction dynamics at the muscle. 

4.4.1.4 A role for MT2 in regulating glial phenotype? 

Activation of astrocytes and microglia is a pathological feature of ALS (see Chapter 1 

and Chapter 2). MT-1/2 may play a role in modulating astrocytic activation in cell 

culture and in response to focal brain injury (Chung et al. 2003; Leung et al. 2010). 

MT-1/2 may also modulate microglial activation and attenuate development of a 

neurotoxic microglial phenotype (Potter et al. 2007; Chung et al. 2009), and affect the 

phenotype of circulating monocytes (Pankhurst et al. 2011). Over-expression of MT1 in 

SOD1 mice has been reported to ameliorate astrocytic pathology (Tokuda et al. 2013). 

While there were no differences between astroglial and microglial numbers measured in 

MT2-treated and control SOD1 mice at the conclusion of treatment in the current study 

(Figure 4.12, Figure 4.13), markers of M1 and M2 microglial phenotypes were not 

examined in MT2-treated mice, and might provide clues as to the action of MT2 in 

SOD1 mice.  
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4.4.1.5 Timing and delivery of MT 

In this study, pre-symptomatic MT2 treatment delayed disease onset and slightly 

increased survival time. However, the magnitude of the MT2-induced changes was 

small: disease onset was delayed by approximately 4%, while survival time was 

increased by approximately 3%. The small effect of MT2 may be due to the timing of 

treatment in this study, or due to insufficient delivery of MT2 to the CNS. Had MT2 

treatment been maintained until disease endpoint, rather than stopping after 16 weeks of 

age, the effects of MT2 treatment on survival time may have been more pronounced. In 

particular, it was recently reported that the over-expression of MT1 in SOD1 mice was 

particularly effective in extending the duration of the later phase of disease; measured 

between the loss of 10% from peak body weight and disease endpoint (Tokuda et al. 

2013). Therefore, continued MT2 injections during the symptomatic stage of disease 

may have resulted in significant improvements in SOD1 survival.  

Alternatively, intramuscular injection may not efficiently deliver MT2 to the CNS. MT2 

rapidly enters the circulation after intramuscular injection, but does not readily enter the 

CNS when the BBB is intact, and is cleared through the renal system (Lewis et al. 

2012b). SOD1 mice show evidence of compromised BBB integrity in both pre-

symptomatic and symptomatic stages of disease (Garbuzova-Davis et al. 2007; Zhong 

et al. 2008), potentially facilitating the CNS entry of systemically-administered 

therapeutics such as MT2. The number of MT-1/2-positive cells in the spinal cord was 

not significantly greater after MT2 administration (Figure 4.10); however, the diffuse 

immunoreactivity thought to be extracellular MT-1/2 was not quantified in this study, 

and future work will determine whether MT2 administration increases extracellular MT-

1/2 levels. The beneficial survival effects seen by Tokuda (2013) upon MT1 over-

expression in SOD1 mice, where spinal cord MT1 levels were consistently elevated, 

were not seen to the same extent in the current study; exogenous MT2 injection may 

provide only transient elevations in spinal cord MT2 levels.  

Given that the number of MT-1/2-positive cells was not drastically increased following 

intramuscular MT2 treatment in this study, yet some positive effects on survival and 

disease onset were seen, the non-CNS activity of MT2 may need further exploration. As 

disease onset and survival parameters are both linked to body weight, it could be 

suggested that MT2 has some effect on body weight which is independent of CNS 

motor neuron counts or muscular innervation and mass. However, this is unlikely to be 
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the case, as Figure 4.4 shows that MT2-treated mice had virtually identical body 

weights compared with saline-treated mice between 6 and 14 weeks of age, during the 

treatment window in which MT2 was administered – this argues against a generalised 

body weight increase caused by MT2. Rather, after 14 weeks of age, MT2-treated mice 

retained their body weight slightly longer than saline-treated mice, delaying the muscle 

mass loss caused by disease processes (Figure 4.4). MT-1/2 expression is known to 

protect cardiac muscle after ischaemia/reperfusion injury (Wang et al. 2006); we may 

speculate that the injected MT2 in this study did have some direct protection on the 

skeletal muscles in the SOD1 hindlimb, but whether the protective mechanisms in 

cardiac muscle are also present in skeletal muscle are unknown.        

To avoid the issue of insufficient MT2 delivery to the CNS, it may be possible to use 

small peptides based on the sequence of human MT2 as therapeutics for ALS. These 

peptides, termed ‘Emtins’, show effects on the outgrowth of cortical neurons similar to 

those seen with MT-1/2, and have the added advantage of being BBB-permeable 

(Ambjorn et al. 2008; Asmussen et al. 2009a; Sonn et al. 2010). The use of Emtin 

peptides in SOD1 mice will be explored in Chapter 5.  

 

4.4.2 Exercise as a potential therapy for ALS 

The role of exercise in ALS is controversial – on one hand, high levels of physical 

activity are correlated with the development of ALS in epidemiological studies (Beghi 

et al. 2010; Huisman et al. 2013), and on the other hand there are numerous case studies 

and small trials showing that exercise therapy may help to ameliorate disease 

progression to a small extent in ALS patients (Bohannon 1983; Johnson 1988; Dal 

Bello-Haas et al. 2007; Sanjak et al. 2010). In the current study, pre-symptomatic 

treadmill exercise had no significant impact on disease onset and survival time in 

female SOD1 mice, showing neither beneficial nor detrimental effects. However, 

exercised mice did show slightly increased stride length compared to sedentary mice at 

a few select time points in disease progression (Figure 4.6). Although this increase in 

stride length is not clear evidence of a protective effect, this suggests that moderate 

treadmill exercise is, at least, not detrimental to SOD1 mice.  
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4.4.2.1 Previous exercise studies in ALS mice 

Previous studies of exercise in SOD1 mice have shown varying outcomes, depending on 

the type of exercise, the intensity of the exercise, mouse gender, and whether or not the 

effects of environmental enrichment were controlled for. Generally, moderate-intensity 

treadmill exercise has shown marginal to moderate beneficial effects on survival time, 

disease onset, and functional parameters when started pre-symptomatically in SOD1 

mice (Kirkinezos et al. 2003; Veldink et al. 2003; Liebetanz et al. 2004; Sorrells et al. 

2009; Carreras et al. 2010).  

Wheel-running exercise and swimming exercise have also shown beneficial effects for 

survival of SOD1 mice (Kaspar et al. 2005; Deforges et al. 2009; Sorrells et al. 2009), 

with wheel-running mice showing increased survival even when exercise was started 

around the onset of disease symptoms (Kaspar et al. 2005). In contrast, high-intensity or 

forced exercise has shown detrimental effects on survival in SOD1 mice (Mahoney et 

al. 2004). The exercise intensity in the present study was designated as ‘moderate’ – 

similar to that used in two previous studies which showed beneficially effects of 

exercise in SOD1 mice (Kirkinezos et al. 2003; Carreras et al. 2010). However, mindful 

that forced running had a detrimental effect on SOD1 mouse survival (Mahoney et al. 

2004), mice in the current study were encouraged but not forced to keep running on the 

treadmill – thus, the exercise intensity may not have been high enough to elicit 

protective effects. 

Environmental enrichment may also contribute to the apparent effects of exercise seen 

in previous studies – SOD1 mice exposed to a novel exercise environment, without 

undergoing exercise, showed longer survival times than mice not exposed to the novel 

environment (Sorrells et al. 2009; Gerber et al. 2012). In a treadmill exercise study 

which controlled for environmental enrichment by placing mouse on a stationary 

treadmill, no effect of exercise was seen on survival of SOD1 mice (Deforges et al. 

2009). The current study also controlled for effects of environmental enrichment by 

placing mice on a stationary treadmill, and saw no significant effects of exercise on 

survival times. Thus environmental enrichment may play some role in determining 

survival time, although the biochemical mechanisms behind these effects remain to be 

elucidated.   
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Gender and background strain, and interactions between the two, are known to affect 

SOD1 mouse survival time (Heiman-Patterson et al. 2005). Most previous studies on 

exercise in SOD1 mice involved mice with expression of the SOD1 transgene on a 

hybrid B6SJL genetic background, and most studies looked at the effects of exercise in 

male mice alone, with a few looking at a mix of male and female mice. Previous studies 

involving both female and male SOD1 mice have shown differing responses to exercise 

between the genders: three studies indicate male SOD1 mice respond more strongly to 

exercise than their female counterparts, regardless of whether exercise has a beneficial 

effect (Kirkinezos et al. 2003; Kaspar et al. 2005) or a detrimental effect (Mahoney et 

al. 2004). In contrast, another study showed exercise had a beneficial effect on survival 

in female but not male SOD1 mice (Veldink et al. 2003). To the best of my knowledge, 

the current study is the first to examine the effect of exercise in female SOD1 mice on a 

congenic B6 genetic background. As male mice were not tested in the present study, 

there may be an unknown effect of gender, or an interaction between gender and genetic 

background, which results in female SOD1 mice on a congenic B6 background being 

unresponsive to exercise treatment.   

To further examine the effects of exercise in female SOD1 mice on a congenic B6 

background, adaptations of the skeletal muscle to exercise should be examined in detail. 

As mentioned previously, the percentage innervation of neuromuscular junctions in the 

muscle was not significantly different between treatment groups (Figure 4.14). 

However, one of the beneficial effects of swimming exercise in SOD1 mice is the 

conversion of muscle fibre types from fast-twitch fibres to slow-twitch fibres (Deforges 

et al. 2009); slow-twitch fibres are more resistant to denervation and atrophy in SOD1-

mediated ALS than fast-twitch fibres (Hegedus et al. 2008). Analysis of the muscle 

fibre type profile of exercised and non-exercised female SOD1 mice might help to 

determine whether moderate-intensity treadmill exercise does induce a protective 

conversion of muscle fibre types in SOD1 muscle.  

4.4.2.2 Exercise and MT-1/2 induction 

Part of the original rationale for examining exercise was the apparent upregulation of 

MT-1/2 in response to exercise in wild-type mouse spinal cord (Hashimoto et al. 2009). 

In the present study, the number of spinal cord MT-1/2-positive cells appeared slightly 

higher in the ventral/lateral and dorsal white matter compared to sedentary controls, but 

these changes were not significant and were not present in the ventral horn (Figure 
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4.10). While the quantitative level of MT-1/2 expression was not directly tested in this 

study (for example, with western blotting or RT-PCR), Hashimoto and colleagues 

(2009) saw a widespread increase in both the total spinal cord MT-1/2 levels and in the 

number of cells displaying strong MT-1/2 immunoreactivity following a two week 

treadmill exercise program in WT mice (Hashimoto et al. 2009). Although it cannot be 

definitively stated that exercise failed to increase MT-1/2 levels in the current study due 

to the lack of direct testing by western blot, the fact that the number of MT-1/2-positive 

cells did not drastically increase with exercise hints that exercise at the intensity used in 

the current study may not be sufficient to increase the production of MT-1/2 in the 

spinal cord above that seen with increased duration of disease (Chapter 2, Figure 2.7). 

The lack of MT-1/2 upregulation with exercise in the current study may correlate with 

the minimal effects of exercise on survival time; however, MT-1/2 is unlikely to be the 

sole factor responsible for any exercise-mediated increase in SOD1 survival. Several 

other factors, indcluding muscle fibre type switching (Deforges et al. 2009), or the 

production of BDNF and IGF1 (Kaspar et al. 2005; Carreras et al. 2010) are likely 

responsible for the exercise-mediated increase in survival time seen in previous studies 

(McCrate & Kaspar 2008).  

Interestingly, a possible interaction might exist between MT2 and exercise which does 

not involve upregulation of MT-1/2 in the spinal cord. The age at disease onset, as 

calculated from linear mixed modelling, was later in exercised MT2-treated mice than 

in sedentary MT2-treated mice, but was not affected by exercise in saline-treated mice 

(Figure 4.4D). Exercise has been reported to enhance LRP2 expression at the choroid 

plexus, to transport circulating IGF1 into the brain (Carro et al. 2005). As LRP2 is also 

a receptor for MT2 protein (Klassen et al. 2004), exercise may also facilitate the entry 

of MT2 into the central nervous system. As mentioned previously, examination of the 

spinal cord diffuse MT-1/2 immunolabelling, thought to represent extracellular MT-1/2, 

may determine whether exercise facilitates spinal cord entry of circulating MT2.  

4.4.2.3 Exercise in ALS patients 

The majority of studies in SOD1 mouse models of ALS show slight beneficial effects of 

moderate-intensity exercise. These correspond well with several small studies showing 

slight delays in disease progression in ALS patients treated with exercise-based 

therapies, with few adverse effects (Drory et al. 2001; Dal Bello-Haas et al. 2007; Lui 
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& Byl 2009; Sanjak et al. 2010). Exercise and physical therapy have been implicated as 

an important component of multidisciplinary care for ALS patients, in order to 

strengthen remaining muscles, maintain range of motion, and help combat stiffness and 

cramping in affected muscles (de Almeida et al. 2012; Skalsky & McDonald 2012; 

Arbesman & Sheard 2014).  

The potential beneficial effects of exercise in ALS patients are in contrast to 

epidemiological studies implicating high levels of physical activity as a risk factor for 

ALS (Beghi et al. 2010; Lehman et al. 2012; Huisman et al. 2013). However, the 

absence of a dose-response effect for increasing levels of exercise somewhat attenuates 

direct causality between physical activity and ALS (Huisman et al. 2013). An alternate 

theory proposes that the genetic profiles which naturally confer some higher level of 

body fitness may also predispose to ALS (Chio & Mora 2012; Mattsson et al. 2012). 

Thus, rather than physical activity directly causing ALS, it may be that those with a 

genetic risk profile conferring susceptibility to ALS are also more likely to engage in 

exercise-based leisure-time activities, or lean towards careers involving physical 

exertion such as professional sports (Lehman et al. 2012) or military service (Weisskopf 

et al. 2005).  

 

4.4.3 Summary and conclusions 

In summary, this proof-of-concept study reports that pre-symptomatic MT2 treatment 

resulted in a slight delay in disease onset and tended to increase survival time in female 

SOD1 mice, while exercise failed to show significant effects on disease onset or 

survival. No consistent synergistic effects were observed between MT2 treatment and 

exercise in SOD1 mice.  

The current study showed no detrimental effects of moderate-intensity treadmill 

exercise on SOD1 mice, and is consistent with the concept that physical exercise is not 

causative of ALS; rather, as-yet-unknown genetic factors may predispose to both a 

lifestyle involving high levels of physical activity, and the development of ALS. In this 

context, low-intensity to moderate-intensity exercise may be beneficial for ALS patients 

by providing a minor neuroprotective effect, and for maintaining strength and range of 

motion around affected muscle groups. However, caution should be used to avoid 

strenuous exercise which could potentially accelerate disease progression.  
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While MT2 has a solid theoretical basis for attenuating multiple pathological pathways 

present in ALS, the small magnitude of the effects may be due to the timing and 

delivery method of MT2 administration. Administration of MT2 directly to the central 

nervous system through intracerebroventricular injection or intrathecal pump, or via 

viral delivery, to deliver a consistent amount of MT2, may produce more pronounced 

effects on SOD1 mouse survival. Additionally, treatment beginning after the onset of 

disease symptoms is needed to confirm the survival-extending properties of MT2 and 

evaluate the use of MT2 as a potential therapeutic molecule for human ALS. To this 

end, the effects of a peptide analogue of MT2 will be discussed in Chapter 5.  
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Chapter 5  

 

Emtin peptides as therapeutic molecules  

in SOD1 mice – a pilot study 
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5.1 Background 

5.1.1 Emtin peptides 

Metallothionein-2 (MT2) provides a promising therapeutic candidate for extending 

survival when administered pre-symptomatically to SOD1 mice, as discussed in the 

previous chapter. However, MT2 does not readily access the CNS when injected either 

intraperitoneally or intramuscularly (Lewis et al. 2012b). Emtin peptides, synthetic 

derivatives of MT2, are able to cross the BBB and have similar in vitro effects to MT2 

protein (Ambjorn et al. 2008; Asmussen et al. 2009a; Sonn et al. 2010). Thus, Emtin 

peptides may present a therapeutic alternative to MT2 protein.  

5.1.1.1 Emtin structure 

Each of the Emtin peptide monomers consists of 14 amino acids, with the sequence 

derived from the human MT2A protein (Swiss Protein Database P02795). Four Emtin 

peptides have been synthesised (Schafer-N, Copenhagen, Denmark) to date: EmtinBn, 

based on the MT2 β-domain N-terminal sequence; EmtinB, based on the MT2 β-domain 

C-terminal sequence; EmtinAn, based on the MT2 α-domain N-terminal sequence; and 

EmtinAc, based on the MT2 α-domain C-terminal sequence (Table 5.1) (Ambjorn et al. 

2008; Asmussen et al. 2009a). Some of the cysteine residues in the parent MT2 protein 

sequence have been replaced with serine residues in the corresponding Emtin peptide, 

as indicated in Table 5.1, to prevent cysteine/disulphide-mediated crosslinking of Emtin 

peptides in solution (Asmussen et al. 2009a).  

 

Table 5.1 Amino acid sequences of human MT2A protein and Emtin peptides 

 Human MT2A sequence Monomeric Emtin sequence 

EmtinAc* 45-AQGCICKGASDKCS AQGSICKGASDKSS 

EmtinAn 30-KKSCCSCCPVGCAK KKSSCSCSPVGSAK 

EmtinB* 15-CAGSCKCKECKCTS SAGSCKCKESKSTS 

EmtinBn 1-MDPNCSCAAGDSCT MDPNCSCAAGDSST 

*EmtinAc and EmtinB were tested in the present study. The portion of human MT2A isoform protein 

sequence (Swiss Protein Database P02795) on which each Emtin peptide sequence was based is provided 

for comparison; replacement of cysteine residues in the MT2A sequence with serine residues in the Emtin 

sequence is denoted by bold, underlined text.  
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Emtin peptides can be synthesised either as monomers, dimers (two identical monomers 

coupled to a lysine residue) or tetramers (four identical monomers coupled to a lysine 

backbone) (Figure 5.1). The probable structure of Emtin tetramers, as predicted by 

PROFASI protein folding simulation, appeared to be unstructured (Ambjorn et al. 

2008). The currently-published literature relates solely to tetrameric Emtin peptides; 

hereafter, the generic term ‘Emtin’ relates to tetrameric Emtin peptides unless otherwise 

specified.    

5.1.1.2  Properties of Emtin peptides 

Due to the replacement of cysteine residues with serine residues, the Emtin peptides 

may be less able to bind metals and sequester reactive oxygen species than the MT2 

protein from which their sequence is derived (Ambjorn et al. 2008). Despite these 

differences, the Emtins exhibit similar neuroprotective properties to the MT2 protein. 

All four Emtin peptides prevent cultured cerebellar granule neurons (CGNs) from 

undergoing apoptosis in response to potassium withdrawal from the medium (Ambjorn 

et al. 2008; Asmussen et al. 2009a). EmtinB also protected cultured hippocampal 

neurons from kainic acid excitotoxicity in vitro, and attenuated seizure severity and 

hippocampal neuron death induced by kainic acid treatment of mice (Sonn et al. 2010). 

In addition, EmtinAc, EmtinAn, and EmtinB were able to induce neurite outgrowth in 

cultured CGNs (Ambjorn et al. 2008; Asmussen et al. 2009a). These data show that 

Emtin peptides, like MT-1/2, can increase survival of neurons exposed to toxic insults 

and can also promote neurite outgrowth.  

Extracellular MT-1/2 exerts its growth-promoting and survival effects via the LRP 

proteins low-density lipoprotein receptor-related proteins (LRP1 and LRP2) (Fitzgerald 

et al. 2007; Chung et al. 2008b). The outgrowth and survival effects of EmtinAc, 

EmtinBn, and EmtinB, but not of EmtinAc, were blocked by receptor-associated protein 

(RAP), a chaperone and competitive inhibitor of LRPs, and EmtinB binding to both 

LRP1 and LRP2 has been demonstrated in vitro (Ambjorn et al. 2008; Asmussen et al. 

2009a). The binding of EmtinB, EmtinAc, and EmtinAn to LRPs induces the 

downstream activation of MAPK, Akt, and CREB (Ambjorn et al. 2008; Asmussen et 

al. 2009a); these are the same neuroprotective pathways activated by MT2-LRP 

interactions, indicating common neuroprotective mechanisms between MT2 and Emtins 

(Asmussen et al. 2009b).   
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Figure 5.1 Structure of monomeric, dimeric and tetrameric Emtin peptides 

A schematic diagram of the structure of monomeric, dimeric, and tetrameric emtin 

peptides is given. Monomeric Emtin peptides consist of a single peptide chain, here 

labelled ‘Emtin’, with the amino acid sequence of EmtinAc, EmtinAn, EmtinB, or 

EmtinBn as shown in Table 5.1. Dimeric Emtin peptides consist of two identical 

monomeric Emtin peptides joined to a single lysine. Tetrameric Emtin peptides consist 

of four identical monomeric Emtin peptides joined to a three-lysine backbone, or can be 

thought of as two dimeric Emtin peptides joined together via a third lysine. Tetrameric 

EmtinAc and tetrameric EmtinB were used in the current study. This diagram is based 

on the molecular structure of dendrimeric peptides reported by Pankratova and 

colleagues (Pankratova et al. 2010).  
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5.1.2 Aims and hypothesis 

The ability of EmtinB to penetrate the CNS after subcutaneous injection (Sonn et al. 

2010), makes Emtin peptides suitable as CNS-targeted therapeutic molecules. Given 

that the Emtin peptides display similar neuroprotective properties to MT2, and act 

through the same receptors, the Emtin peptides may also exert protective effects in a 

mouse model of ALS. The aim of this study was to examine survival in Emtin-treated 

and control SOD1 mice, to determine whether Emtin administration after disease onset 

could increase survival time in SOD1 mice.  

Hypothesis: Administration of EmtinAc or EmtinB from the age of symptom onset 

until disease endpoint will increase survival time in female SOD1 mice.  

In this pilot study, a small cohort of female SOD1 mice were divided into three 

treatment groups, receiving either EmtinAc, EmtinB, or vehicle control injections from 

95 days of age until disease endpoint. Survival time and functional outcomes were 

measured as the primary outcomes of this pilot study. Additionally, a preliminary screen 

of post-injection Emtin distribution was carried out. 
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5.2 Methods 

All procedures and protocols involving animals were approved by the University of 

Tasmania’s Animal Ethics Committee (ethics permit numbers A10995 and A11958). 

SOD1 mice were genotyped and maintained as described in Chapter 2.  

 

5.2.1 Pilot study for survival in the SOD1 mice with tetrameric Emtin 

5.2.1.1 Administration of emtins 

Tetrameric Emtin peptides (EmtinAc or EmtinB) were dissolved in filter-sterilised 

MilliQ water at 4mg/mL for injection. Eighteen female SOD1 mice were split into three 

treatment groups (n=6/group): one group received EmtinAc; one group received 

EmtinB; and one group received vehicle (MilliQ water) alone. Treatment with Emtin or 

vehicle commenced at approximately 95 days of age (Table 5.2), with treatment 

continuing until the mice reached disease endpoint. The dosage was 10µg Emtin per 

gram body weight three times weekly, giving a total dosage of 30mg/kg/week (approx. 

600µg/20g mouse/week); injections of 4mg/mL Emtin solution were given 

subcutaneously via insulin syringes with 31-gauge needles, with control mice receiving 

the equivalent volume of filter-sterilised MilliQ water. No differences in copy number 

(ΔCT), age at start of treatment, or starting body weight, were observed between 

treatment groups (Table 5.2). 

 

Table 5.2. Cohort characteristics at start of treatment 

Treatment n Copy number (ΔCT) Age (days) Starting Weight (g) 

Control 6 5.29 ± 0.11 94.8 ± 0.2 19.5 ± 0.3 

EmtinAc 6 5.29 ± 0.07 94.7 ± 0.7 19.3 ± 0.4 

EmtinB 6 5.27 ± 0.03 96.0 ± 0.7 19.5 ± 0.5 

No significant difference in cohort parameters at the start of treatment (copy number, age at start). 

 

5.2.1.2 Outcome measures and statistical analyses 

Body weight and neurological score were recorded at least twice weekly, and more 

frequently towards disease endpoint. Survival time was assessed as the loss of 20% 

from peak body weight, and was analysed using Kaplan-Meier survival curves and Cox 
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proportional hazards regression. Stride pattern (see Figure 2.11A-D) was recorded 

weekly until mice could no longer provide a measureable pattern. Body weight and 

stride pattern were also examined in age-matched non-transgenic (WT) littermates 

receiving subcutaneous injections of vehicle only (n=6).  

Body weight and stride pattern were averaged per week per animal and analysed by 

ANOVA and Tukey’s post-hoc test with adjustments for inequality of variance (Welch 

ANOVA omnibus test with Tamhane’s post-hoc test) or non-normality (Kruskal Wallis 

non-parametric test with Bonferroni-corrected Mann Whitney U as a post-hoc test) as 

appropriate. Additionally, body weight was analysed using the linear mixed modelling 

method outlined in Chapter 2.  

During the course of the experiment, three mice received one dosage of the incorrect 

drug (e.g. EmtinAc instead of EmtinB). Data for these three mice (two in the EmtinAc-

treatment group and one in the vehicle-treatment group) recorded after the age of 

incorrect treatment were not used for statistical analyses of stride length or body weight, 

and were censored for survival analysis.    

5.2.1.3 Nissl Stain for motor neuron number at endpoint: 

Upon reaching disease endpoint, mice were transcardially perfused with PBS and 4% 

PFA as described in Chapter 2 – briefly, the lumbar spinal cord (T12-L1 vertebrae) was 

removed, decalcified, embedded in paraffin and sectioned at 5µm. As some mice were 

censored prior to disease endpoint (see above), and some mice could not be perfused 

upon disease endpoint due to time constraints, spinal cords were collected from five 

vehicle-treated SOD1 mice, three EmtinAc-treated SOD1 mice, and five EmtinB-treated 

mice. 

Nissl staining was performed as per Chapter 4, with slight modifications – briefly, 

sections were immersed in Cresyl violet solution for 30 minutes, passed through 70%, 

95% and 100% ethanol, cleared in xylene and coverslipped with DPX mounting 

medium. Images were captured on a light microscope with attached camera (Leica). The 

number of α-motor neurons remaining in the lumbar spinal cord was counted in three 

5µm sections from the lumbar spinal cord of each animal; these were averaged to give 

one measurement per mouse to avoid pseudoreplication.  
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5.2.2 Distribution of injected biotinylated dimeric EmtinB 

To determine whether the Emtin peptides were acting upon the central nervous system, 

the presence or absence of dimeric EmtinB (d-EmtinB) in serum and cortical brain 

parenchyma was examined after subcutaneous injection.  

5.2.2.1 Preparation of biotinylated d-EmtinB 

d-EmtinB peptide was biotinylated using the ImmunoProbe biotinylation kit (Sigma-

Aldrich) as per the manufacturer’s instructions (performed by Ms Emma Eaton) and 

reconstituted at 2.5mg/mL in sterile PBS.  

5.2.2.2 d-EmtinB administration and sample collection 

 Biotinylated d-EmtinB was administered at 10mg/kg body weight to two SOD1 and 

two WT mice at 14 weeks of age; one SOD1 and two WT mice received an equivalent 

volume of vehicle alone. All subcutaneous injections were performed using an insulin 

syringe with 31-gauge needle, under light isoflurane anaesthesia.  

At 1 hour post-injection, a urine sample was able to be collected from 2 of 7 mice (two 

SOD1 mice: one d-EmtinB-injected, and one PBS-injected); all mice were then deeply 

anaesthetised with sodium pentobarbitone (100mg/kg, i.p.). When all reflexes were 

absent, the thoracic cavity was opened for transcardiac perfusion with PBS alone. Prior 

to insertion of the perfusion line, approximately 100uL whole blood was withdrawn 

from the left ventricle via an insulin syringe and 22-gauge needle under gentle pressure 

so as not to collapse the chamber walls; the collected blood was transferred to a 

microcentrifuge tube (Axygen Maxymum Recovery, Corning Life Science, MA, USA) 

and left to clot at room temperature. The mouse was then perfused with PBS until the 

liver paled and the foot-pads became white. The spinal cord and the cerebral cortices 

were dissected out and snap-frozen in liquid nitrogen, then stored at -80°C. The serum 

sample was prepared by removal of clotted proteins by centrifugation at 16060g for 10 

minutes at 4°C in a benchtop microcentrifuge (Heraeus Biofuge Pico), and the 

supernatant (serum) was stored at -20°C until analysis.  

5.2.2.3 Sample prepration and western blotting 

Tissue lysates were prepared by homogenisation using an Ultra-Turrax rotor-stator 

homogenisation device (IKA Werke GmbH & Co, BW, Germany). Cortex and spinal 

cord tissues were immersed in 1mL ice-cold tissue lysis buffer (50mM Tris-HCl, 
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150mM NaCl, 1% v/v Igepal CA630, 0.5% w/v sodium deoxycholate, 1mM EDTA, 

0.1% w/v sodium dodecyl sulphate [all Sigma-Aldrich], pH 7.4, with 1 protease 

inhibitor tablet added to each 10mL lysis buffer [cOmplete Mini, EDTA-free, Roche 

Applied Science, IN, USA]) and homogenised with 3 x 10 second pulses using the 

Ultra-Turrax at setting 4, each separated by 30-60 seconds on ice, then centrifuged at 

16060g for 10min in a benchtop microcentrifuge. The supernatant, containing cytosolic 

proteins, was retained for analysis and stored at -20°C.  

A BCA assay for total protein concentration (Pierce BCA Protein Assay Kit, Thermo 

Scientific, IL, USA) was performed according to the manufacturer’s instructions, to 

ensure equal amounts of total protein were loaded for each sample. Following the BCA 

assay, cortical tissue homogenate samples were made up to 21µL with MilliQ water and 

were combined with 9µL reducing sample buffer (0.45M Tris-HCl pH 6.8, 3.5% w/v 

SDS, 18% v/v glycerol, 0.02% w/v bromophenol blue, 18% v/v β-mercaptoethanol [all 

Sigma-Aldrich]). One microliter of each urine sample was added to 20µL MilliQ water 

and combined with 9µL reducing sample buffer. To avoid possible coagulation of high-

concentration serum proteins, serum samples were mixed 1:1 with reducing sample 

buffer; all samples were heated to 60°C for 5 minutes and then to 90°C for 5 minutes to 

solubilise proteins.  

Western blotting was performed using the NuPAGE X-Cell system (Life Technologies); 

the protein samples and 5µL SeeBlue Plus2 protein ladder (Life Technologies) were 

loaded onto pre-cast NuPAGE 10% bis-tris acrylamide gels, and subjected to gel 

electrophoresis at 150V for 45 minutes in 1X NuPAGE MES running buffer with 

500µL NuPAGE antioxidant added to the upper chamber. The proteins were then 

transferred to nitrocellulose membrane (Thermo Scientific) at 30V for 45 minutes in 

transfer buffer (25mM Trizma base [Sigma-Aldrich], 190mM glycine [Sigma-Aldrich], 

20% v/v methanol [Merck Millipore]). The membrane was blocked with 5% non-fat 

milk powder in PBS-T for 1 hour with shaking at room temperature, washed, and 

incubated with HRP-conjugated streptavidin (1:2000) for 1 hour. Biotinylated d-EmtinB 

was visualised with SuperSignal West Dura chemiluminescent substrate (Thermo 

Scientific) using a Chemi-Smart 5000 imaging system (Vilber Lourmat, IDF, France).        
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5.3 Results 

5.3.1 Treatment of SOD1 mice with Emtin 

5.3.1.1 Emtin treatment slightly delays disease endpoint 

All SOD1 mice reached endpoint between 152 and 177 days of age. Kaplan-Meier 

analysis revealed a slight right-shift in the survival curves of EmtinAc- and EmtinB-

treated mice, indicating delayed endpoint ages compared with vehicle-treated mice 

(Figure 5.2A), although these curves were not significantly different (p=0.105, Log 

Rank test in Kaplan-Meier analysis). On average, mice receiving either EmtinAc or 

EmtinB reached endpoint approximately 5% later than mice receiving vehicle alone 

(EmtinAc 170.5±2.8 days, EmtinB 169.3±2.7 days, control 161.2±2.9 days; Figure 

5.2B). Similarly, EmtinAc- and EmtinB-treated mice displayed a longer median 

survival time compared with vehicle-treated mice (EmtinAc 168.0±4.5 days, EmtinB 

169.0±3.7 days, control 162.0±8.0 days, data not shown). However, these differences in 

mean and median survival times were not significantly different between treatment 

groups.  

CPH regression revealed that the hazard ratio for reaching disease endpoint was reduced 

for mice receiving either EmtinAc treatment or EmtinB treatment compared with 

vehicle controls, indicating an increased survival time for Emtin-treated mice (Table 

5.3). These hazard ratios (HR) approached, but did not reach, statistical significance 

(HREmtinAc=0.226, 95% CI 0.044-1.155, p=0.074; HREmtinB=0.253, 95% CI 0.055-1.164, 

p=0.078).  

In order to examine whether any other factors were affecting survival in this cohort, the 

age at start of treatment, weight at start of treatment, and copy number were analysed 

with CPH analysis; none of these covariates had a significant effect on survival time 

(Table 5.3). Accordingly, the association of Emtin treatment with reduced odds ratio of 

reaching endpoint persisted when the model was adjusted for age at the start of 

treatment, weight at the start of treatment and copy number (Table 5.3).  
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Figure 5.2 Survival in Emtin-treated and control SOD1 mice 

Treatment with EmtinAc or EmtinB from symptom onset shifted Kaplan-Meier survival 

curves to the right (A). The average survival times for EmtinAc-treated or EmtinB-

treated mice were slightly longer than vehicle-treated control mice (B). Vertical dashes 

represent censored data. Error bars represent standard error of the mean. 
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Table 5.3 Cox proportional hazards regression for reaching disease endpoint 

Factor HR (95% CI) p-value 

Univariable analysis   

         Emtin treatment
1
  0.152 

                      EmtinAc
2
 0.226 (0.044-1.155) 0.074 

                      EmtinB
2
 0.253 (0.055-1.164) 0.078 

         Age at start 0.951 (0.617-1.464) 0.818 

         Copy number 0.352 (0.005-27.118) 0.637 

         Weight at start 1.442 (0.776-2.681) 0.247 

   

Multivariable analysis
3
   

         Emtin treatment
1
  0.126 

                      EmtinAc
2
 0.193 (0.035-1.059) 0.058 

                      EmtinB
2
 0.237 (0.048-1.165) 0.076 

1
Multi-level categorical variable, overall p-value given; 

2
Subgroups of categorical variable ‘Emtin’. 

3
Adjusted for age at start of treatment, weight at start of treatment, and copy number. 

 

5.3.1.2 Body weight 

Body weight was measured at least twice per week throughout the experiment. As 

previously mentioned, starting body weight did not differ between Emtin-treated and 

vehicle-treated mice (Table 5.2). Maximum body weight, weekly averages, and body 

weight trajectory over time are discussed below. 

5.3.1.2.1 Maximum body weight 

The average maximum body weight attained by these mice was not different between 

treatment groups, although vehicle-treated mice showed a slightly higher maximum 

body weight compared with Emtin-treated mice (EmtinAc 20.0±0.3g, EmtinB 20.6±0.7, 

vehicle 21.0±0.4g, ANOVA omnibus p=0.37). The age at which maximum body weight 

was reached was not different between treatment groups (EmtinAc 116.2±6.3 days, 

EmtinB 122.5±6.8 days, vehicle 124.7±5.4 days, ANOVA omnibus p=0.61). As 

treatment was only started at 95 days of age (approximately 14 weeks of age), large 

changes in disease onset as measured by the age of maximum body weight were not 

expected between treatment groups.  
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Figure 5.3 Body weight averages and body weight mixed model trajectories in 

Emtin-treated and control SOD1 mice  

Weekly body weight averages (A) were not significantly different between Emtin-

treated and control SOD1 mice. EmtinB and control SOD1 mice showed lower body 

weights than WT mice from 19 weeks of age, whereas all SOD1 mice showed lower 

body weights than WT mice from 20 weeks of age onwards (A). Body weight 

trajectories (B) for each treatment group of SOD1 mice were plotted from linear mixed 

modelling parameters (Table 5.4), showing a wider, flatter trajectory curve for Emtin-

treated SOD1 mice compared to control SOD1 mice. *p<0.05 EmtinAc vs WT, #p<0.05 

EmtinB vs. WT, †p<0.05 vehicle vs. WT. Error bars represent standard error of the 

mean. 

75.00
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P AP
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5.3.1.2.2 Average body weight per week 

Average body weight increased over time in WT mice, while the body weight of SOD1 

mice peaked at approximately 17 weeks of age regardless of treatment, and declined 

thereafter (Figure 5.3). Average body weight was not different between SOD1 treatment 

groups at any of the time points measured (p>0.05) (Figure 5.3). However, EmtinAc-

treated mice appeared to have the lowest body weights of any group from 14-17 weeks 

of age (14wks: EmtinAc 19.0±0.3g vs. WT 20.3±0.3g, Tamhane p=0.032; 15wks: 

EmtinAc 19.1±0.3g vs. WT 20.4±0.3g, Tamhane p=0.047) (Figure 5.3A). At 19 weeks 

of age, EmtinAc-treated and EmtinB-treated SOD1 mice showed lower body weights 

than WT mice (WT 21.2±0.3g; WT vs. EmtinAc 19.0±0.4g, Tukey p=0.003; WT vs. 

EmtinB 19.6±0.5g, Tukey p=0.034); while from 20 weeks onwards, all groups of SOD1 

mice showed lower body weights than WT mice (Figure 5.3A).  

5.3.1.2.3 Linear mixed modelling of body weight 

Body weight trajectories of Emtin-treated and control SOD1 mice were examined by 

linear mixed modelling. In the absence of pre-symptomatic body weight measures, a 

quadratic curve was fitted, as a cubic curve could not be reliably modelled. The model 

included the intercept, Age and Age
2
 as fixed factors, and a random intercept and slope 

as random factors (for full model specification, see Supplementary Data 4). The linear 

mixed model gives a set of parameters for the equation Body weight = β0 + β1*Age + 

β2*Age
2
, where each β coefficient has a unique value for the control, EmtinAc-treated, 

and EmtinB-treated groups (listed in Table 5.4). The body weight trajectory parameters 

differed significantly between Emtin-treated mice and control mice (Supplementary 

Data 4). When graphed, the body weight curves showed a wider, flatter body weight 

trajectory for Emtin-treated mice than control mice (Figure 5.3), possibly indicating that 

Emtin-treated mice lose body weight at a slower rate than control mice. 

 

 Table 5.4 Parameter estimates from linear mixed model of body weight trajectory 

Fixed effects 

parameter
1
 

Vehicle EmtinAc EmtinB 

Intercept (β0) -4.449 3.095 3.585 

Age (β1) 4.20 x 10
-1

 2.77 x 10
-1

 2.80 x 10
-1

 

Age
2
 (β2) -1.80 x 10

-3
 -1.20 x 10

-3
 -1.22 x 10

-3
 

1
Parameter estimates for the equation Body weight = β0 + β1*Age + β2*Age

2
, where Age = age in days 
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5.3.1.2.4 Percentage body weights 

As the three treatment groups of SOD1 mice showed no significant differences in 

average weekly body weights (Figure 5.3A), the percentage body weights were 

examined. Percentage body weights were not significantly different between Emtin-

treated and vehicle-treated SOD1 mice, although vehicle-treated mice showed the 

lowest percentage body weight at 21 weeks of age of any group (Figure 5.4A).  

As the disease endpoint, measured as reaching 80% of peak body weight, was slightly 

delayed in Emtin-treated SOD1 mice (Figure 5.2), the age at which SOD1 mice reached 

95%, 90%, and 85% of their maximum body weight was also examined (Figure 5.4B). 

Although Kaplan-Meier analysis revealed no significant differences between treatment 

groups, survival curves showed that vehicle-treated mice reached 85% of their 

maximum body weight slightly earlier than Emtin-treated mice (Figure 5.4B). The mean 

age at which Emtin-treated mice reached 90% and 85% of maximum body weight was 

slightly later than those of vehicle-treated mice; the same was true for the median age of 

reaching 95%, 90%, and 85% of maximum body weight (Table 5.5), however these 

changes were not statistically significant. 

 

Table 5.5 Average and median ages at which 95, 90, and 85% of maximum body 

weight were reached  

 Treatment 95% BW 90% BW 85% BW 

 Vehicle 140.8 ± 2.7 151.3 ± 2.0 158.2 ± 2.6 

Mean age 

(days) 
EmtinAc 140.8 ± 1.2 156.5 ± 1.6 164.3 ± 0.9 

 EmtinB 142.2 ± 3.7 156.0 ± 2.6 165.2 ± 3.2 
     

 Vehicle 136.0 ± 2.0 149.0 ± 2.0 156.0 ± 5.5 

Median age 

(days) 
EmtinAc 140.0 ± 1.8 155.0 ± 2.5 164.0 ± 1.5 

 EmtinB 140.0 ± 6.7 153.0 ± 3.1 164.0 ± 1.2 

 

Thus, both linear mixed modelling of Emtin-treated and control SOD1 mouse body 

weight trajectories, and analysis of the age at which 95%, 90%, and 85% of maximum 

body weight were reached, suggested that Emtin-treated mice may retain body weight 

slightly longer than control mice. These differences did not reach statistical 

significance, which may be due to the small cohort size used in this study.  
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Figure 5.4 Percentage body weights in Emtin-treated and control SOD1 mice 

Vehicle-treated (control) SOD1 mice showed the lowest percentage body weight at 21 

weeks of age, although there were no significant differences in percentage body weight 

weekly averages (A). Kaplan-Meier analysis was carried out on the age at which mice 

reached  95% (B, left-hand panel), 90% (B, middle panel), and 85% (B, right-hand 

panel) of their maximum body weight. There appeared to be a slight tendency for 

vehicle-treated mice to reach 90% and 85% of their maximum body weight slightly 

earlier than EmtinAc-treated or EmtinB-treated mice (B). maxBW, maximum body 

weight; LR, Log-Rank test in Kaplan-Meier analysis. Error bars represent standard error 

of the mean. 
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5.3.1.3 Stride Test 

Stride length and uniformity were measured weekly. As expected, the stride length and 

uniformity of WT mice did not change substantially over time, whereas SOD1 mice 

showed decreasing stride length and increasing uniformity with age (Figure 5.5). The 

stride length and uniformity of SOD1 mice did not differ by treatment group at the start 

of treatment (Table 5.6). 

5.3.1.3.1 Stride length 

Average stride length did not differ between Emtin-treated and control SOD1 mice 

throughout the experiment (Figure 5.5A). Compared to WT mice, control SOD1 mice 

were the first to show a significantly lower stride length, at 17 weeks of age (control 

6.0±0.1cm vs. WT 7.0±0.4cm, Tukey p=0.023). Control and EmtinB-treated SOD1 

mice had shorter stride lengths than WT mice at 18 weeks of age (WT 6.8±0.2cm: vs. 

control 5.5±0.3cm, Tukey p=0.002; vs. EmtinB 5.8±0.2cm, Tukey p=0.017), and all 

SOD1 mice showed a shorter stride length than WT mice thereafter (Figure 5.5A), 

although this was not significant for any group at 19 weeks of age due to larger 

variances at this time point (ANOVA omnibus p=0.103). The maximum stride length 

attained by SOD1 mice was not different between treatment groups, although EmtinAc-

treated mice attained their maximum stride length later than control mice (Tukey 

p=0.043, Table 5.6); these results suggest that EmtinAc, but not EmtinB, was able to 

delay the onset of functional deficits as measured by maintenance of stride length to a 

greater age than control SOD1 mice.  

 

Table 5.6 Starting and maximal stride pattern measurements 

 

Treatment 

 

n 

Starting 

stride length 

(cm) 

Maximum 

stride length 

(cm) 

Age at maximum 

stride length 

(days) 

Starting 

uniformity 

(cm) 

Vehicle 6 6.0 ± 0.2 6.8 ± 0.2 114.7 ± 2.4 0.2 ± 0.1 

EmtinAc 6 6.1 ± 0.2 6.6 ± 0.2   126.2 ± 3.9* 0.3 ± 0.1 

EmtinB 6 6.0 ± 0.3 6.7 ± 0.2 116.7 ± 2.6 0.3 ± 0.1 

*Significantly different from vehicle, Tukey p=0.043. 
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To examine the loss of stride length from the recorded maximum, the percentage of 

maximum stride length attained over time was calculated. WT mice show a slight 

decrease in percentage stride length over time, from an average of 93±3% of maximum 

at 15 weeks of age to 77±4% of maximum at 24 weeks of age (Figure 5.5B). SOD1 

mice showed a far more substantial decrease in percentage stride length, from 

approximately 95% of maximum at 15 weeks of age down to just above 30% of 

maximum at 24 weeks of age (Figure 5.5B).  

There were no significant differences between SOD1 treatment groups throughout the 

time course; however, at 20 weeks of age, only control SOD1 mice showed a 

significantly lower percentage stride length than WT mice (WT 88±3% vs. control 

67±6%, Tukey p=0.044) (Figure 5.5B). At 21 weeks of age, both control mice and 

EmtinB-treated mice displayed a lower percentage stride length than WT mice (WT 

86±5%; vs. control 51±5%, Tukey p=0.002; vs. EmtinB 53±7%, Tukey p=0.003) 

(Figure 5.5B). By 22 weeks of age, the percentage of maximum stride length was lower 

than WT for all SOD1 treatment groups (WT 82±5%; vs. control 47±5%, Tukey 

p<0.001; vs. EmtinA 50±5%, Tukey p=0.002; vs. EmtinB 43±5%, Tukey p<0.001) 

(Figure 5.5B). Treatment with EmtinAc, but not EmtinB, appeared to slightly delay the 

loss of stride length as a percentage of maximum.   

5.3.1.3.2 Uniformity 

Uniformity measurements at the start of treatment did not differ between SOD1 

treatment groups (Table 5.6). Average uniformity measurement was not significantly 

different between SOD1 treatment groups over time (Figure 5.5C). At 18 weeks of age, 

only vehicle-treated SOD1 mice showed a larger uniformity measurement than WT 

mice (WT 0.3±0.1cm vs. vehicle 0.7±0.1cm, Tukey p=0.017). At all successive time 

points, all SOD1 mice showed a larger uniformity measurement than WT mice (Figure 

5.5C). As a larger uniformity measurement indicates increasing dysfunction and 

inability to move the hind limbs in a forward motion, the slightly earlier increase in the 

control mice may indicate that treatment with EmtinAc or EmtinB resulted in initially 

slightly better maintenance of hindlimb function than control SOD1 mice. However, as 

disease progressed, neither EmtinAc nor EmtinB treatment was able to significantly 

delay the increase in uniformity measure.    
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Figure 5.5 Stride pattern measurements in Emtin-treated and control SOD1 mice  

Stride length (A), percentage of maximum stride length (B), and uniformity (C) were 

not significantly different between EmtinAc-treated, EmtinB-treated, and control SOD1 

mice over time. SOD1 treatment groups varied at the age which they diverged from WT 

mice in stride length (A; control at 17 weeks of age, EmtinB at 18 weeks of age, 

EmtinAc at 20 weeks of age), percentage stride length (B; control at 20 weeks of age, 

EmtinB at 21 weeks of age, EmtinAc at 22 weeks of age), and uniformity measure (C; 

control at 18 weeks of age, EmtinAc and EmtinB at 19 weeks of age). *p<0.05 EmtinAc 

vs WT, #p<0.05 EmtinB vs WT, †p<0.05 vehicle vs WT mice. Error bars represent 

standard error of the mean. 
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5.3.1.4 Neurological Score 

Neurological scoring (NS) was conducted according to the guidelines laid out in 

Chapter 2 (Table 2.3). As SOD1 mice were already displaying early disease symptoms 

upon arrival at the facility, the age of onset (NS=1) could not be determined. 

Additionally, most SOD1 mice reached disease endpoint (80% of maximum body 

weight) before reaching hindlimb paralysis (NS=3), so the age at paralysis could not be 

determined.  

To examine disease progression in Emtin-treated and vehicle-treated SOD1 mice, the 

age at which SOD1 mice reached NS=2 (foot-dragging, Table 2.3) was analysed using 

Kaplan-Meier analysis. Survival curves for NS=2 showed a slight right-shift for 

EmtinB-treated mice compared to vehicle-treated mice (Figure 5.6A), indicating that 

EmtinB-treated mice show profound gait abnormalities at a slightly later age than 

vehicle-treated mice.  

Accordingly, the average age at reaching NS=2 was slightly higher for EmtinAc-treated 

mice (164.7±3.7 days) and EmtinB-treated mice (168.0±5.9 days) than for vehicle-

treated mice (158.0±5.3 days), although these differences were statistically significant 

(ANOVA omnibus p=0.407).   

 

5.3.2 Endpoint Motor Neuron Numbers 

At endpoint (20% loss from peak body weight), spinal cord samples were taken from 

SOD1 mice to count the number of motor neurons remaining in the ventral horn. There 

were no significant differences between treatment groups, although EmtinAc-treated 

mice showed the lowest number of motor neurons remaining (Figure 5.7).  

To account for any variation in size of the ventral horn between sections, the number of 

motor neurons within a single field of view within the ventral horn was also counted, 

and showed the same pattern as shown in Figure 5.7 (data not shown).  
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Figure 5.6 Age at which Emtin-treated and control SOD1 mice reach neurological 

score NS=2  

Figure 5.6 Age at which Emtin-treated and control SOD1 mice reach neurological score 

NS=2. Using Kaplan-Meier survival curves to measure time-to-event data for SOD1 

mice reaching NS=2 (Toes curl under at least twice during walking of 12 inches, or any 

part of foot is dragging along cage bottom/table, Table 2.3), the survival curve for 

EmtinB-treated mice is lightly right-shifted compared to the survival curve for vehicle-

treated mice (A). EmtinAc-treated and EmtinB-treated mice reached NS=2 at a slightly 

higher average age than vehicle-treated mice (B). Vertical dashes represent censored 

data. Error bars represent standard error of the mean. 
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Figure 5.7 Motor neurons in the ventral horn at endpoint  

The number of motor neurons remaining in the ventral horn of Emtin-treated and 

vehicle-treated mice was examined. Panels A-C show Nissl-stained motor neurons 

remaining in the ventral horn at disease endpoint in vehicle-treated (A), EmtinAc-

treated (B) and EmtinB-treated (C) SOD1 mice. Quantitation of remaining motor 

neurons (D) showed that EmtinAc-treated mice had fewer motor neurons remaining 

than vehicle-treated and EmtinB-treated SOD1 mice at endpoint, however this was not 

significantly different between groups. Error bars represent standard error of the mean. 

Scale bar 40µm for A-C. 
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5.3.3 Distribution of biotinylated d-EmtinB 

Biotinylated dimeric EmtinB (d-EmtinB) was injected subcutaneously into SOD1 and 

WT mice to examine its distribution in the serum and in the brain. Western blotting to 

detect biotinylated d-EmtinB, using HRP-conjugated streptavidin, showed the presence 

of d-EmtinB in the serum of both WT and SOD1 mice within an hour of injection 

(Figure 5.8A). Mice injected with a vehicle control (PBS) showed no such bands 

(Figure 5.8A). In the brain, no clear d-EmtinB signal could be seen at 1 hour after 

injection (Figure 5.8B), although the multiple non-specific bands observed in the brain 

homogenates may prevent detection of d-EmtinB. Only two urine samples were able to 

be collected; both were from SOD1 mice, one injected with biotinylated d-EmtinB and 

one injected with vehicle alone. A strong signal was observed in the urine of the d-

EmtinB-injected SOD1 mouse (Figure 5.8B), and was absent from the vehicle-injected 

mouse (Figure 5.8A), indicating that at least some of the injected d-EmtinB may be 

cleared through the kidneys within one hour of subcutaneous injection. 

Biotinylated d-EmtinB, with an apparent molecular weight of approximately 4kDa 

(Figure 5.8A, B, arrow) also appears at approximately 6-8kDa (Figure 5.8A, B, 

arrowhead) and in serum samples, at approximately 20kDa (Figure 5.8A, asterisk). 

These higher molecular weight bands suggest that biotinylated d-EmtinB could form 

oligomeric species in solution or in vivo, or may form a complex with other proteins.  
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Figure 5.8 Distribution of biotinylated d-EmtinB in serum and brain samples 

Western blot assayed the presence of biotinylated EmtinB dimer (d-EmtinB) in serum 

(A) and brain homogenate (B) of wild type or SOD1 mice at one hour after 

subcutaneous injection of d-EmtinB injection (EB) or vehicle (-). A positive control 

(5ng biotinylated d-EmtinB, 5ng EB) was run on each gel (A,B), and resolved at an 

apparent molecular weight of approximately 4kDa (arrow, A, B), also showing a band 

around 6-8kDa (arrowhead, A, B). d-EmtinB was present in serum at one hour after 

injection in either WT or SOD1 mice (4kDa, arrow; 6-8kDa, arrowhead; ~20kDa, 

asterisk; A). d-EmtinB was not detected in the brain at one hour after injection in WT or 

SOD1 mice (B); however, multiple non-specific signals seen in all brain samples (B) 

may reduce the chance of identifying changes between d-EmtinB-injected and vehicle-

injected mice. One SOD1 mouse injected with d-EmtinB showed a strong positive 

signal in the urine at 1 hour after injection (SOD1 urine, B), compared to no signal in 

urine from a vehicle-injected SOD1 mouse (SOD1 urine, A). 



___________________________________Chapter 5 – Emtin treatment in SOD1 mice 

______________________________________________________________________ 

______________________________________________________________________ 
 

191 

 

5.4 Discussion 

5.4.1 Summary of effects of Emtin peptides 

Emtin peptides are tetrameric peptides based on the sequence of human metallothionein 

protein (Figure 5.1). In this study, EmtinAc or EmtinB peptides were administered to a 

small pilot cohort of female SOD1 mice, from 95 days of age until disease endpoint. 

Emtin treatment may delay the loss of body weight in SOD1 mice, as measured by 

survival time, body weight mixed modelling, and analysis of percentage body weights 

(Figure 5.2, Figure 5.3, Figure 5.4). EmtinAc treatment may delay the loss of stride 

length (Figure 5.5), while EmtinB appears to delay the onset of more severe 

neurological score rating (Figure 5.6). These effects indicate that administration of 

Emtin peptides may be able to increase survival time and maintain hindlimb function in 

a small cohort of SOD1 mice, despite treatment only starting around disease onset.  

 

5.4.2 Mechanism of action of Emtin peptides 

The delayed loss of body weight and maintenance of hindlimb function in Emtin-treated 

SOD1 mice may indicate that Emtin peptides play a role in maintaining neuromuscular 

connections and preventing muscular atrophy. Previous studies on the actions of Emtin 

peptides in cell culture may provide some insight into possible mechanisms for 

neuroprotection in the current study. In cerebellar granule neuron cultures, both 

EmtinAc and EmtinB are able to promote neurite outgrowth and prevent apoptosis in 

response to potassium withdrawal stress, via interaction with LRPs and activation of the 

MAPK and PI3K/Akt intracellular signalling pathways (Dudek et al. 1997; Chang & 

Karin 2001; Ambjorn et al. 2008; Asmussen et al. 2009a). In the current study, Emtin 

peptides may activate these same pathways in motor neurons in order to elicit motor 

neuron protection against cell death processes, or promote regenerative sprouting at the 

muscle. The number of motor neurons remaining at disease endpoint was not different 

between Emtin-treated and vehicle-treated mice (Figure 5.7); however, it is difficult to 

directly compare the number of motor neurons due to the different ages (endpoints) at 

which the spinal cord samples were obtained. Future examination of the neuromuscular 

junction architecture may determine whether increased sprouting or innervation at the 

muscle is responsible for the slight Emtin-mediated delay in disease endpoint (Figure 

5.2) and maintenance of muscle function (Figure 5.5).     
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5.4.3 Comparison of mechanism of action of Emtin and MT2 

In Chapter 4, pre-symptomatic treatment with MT2 was able to significantly delay 

disease onset and slightly delay disease endpoint, while in this chapter, treatment with 

Emtin from symptom onset onwards showed a trend for increasing survival time. The 

Emtin peptides are MT2 derivatives, and neuroprotective mechanisms of action utilising 

LRP receptors are shared between both MT-1/2 protein and Emtin peptides in cell 

culture (Ambjorn et al. 2008; Asmussen et al. 2009a). However, the replacement of 

cysteine residues in MT2 for serine residues in Emtin peptides (Table 5.1), performed to 

prevent intra- and inter-peptide cysteine linkages forming, may limit the metal-binding 

and antioxidant ability of Emtin peptides (Asmussen et al. 2009a). The MT-1/2 protein 

binds metal ions via its cysteine residues (Ruttkay-Nedecky et al. 2013), so although 

there is no published literature on the metal-binding capacity of Emtin peptides, it is 

likely that Emtins peptides will show reduced metal-binding ability due to the 

replacement of cysteine residues with serine residues. MT-1/2 also uses its cysteine 

residues for its antioxidant capacity (Ruttkay-Nedecky et al. 2013), so it is likely that 

Emtin peptides will display little ability to sequester reactive oxygen species. It is 

therefore likely that the protective effects of Emtin peptides seen in the current study are 

due to the interaction between Emtin peptides and their LRP receptors (Asmussen et al. 

2009a), whereas the protective effects of MT2 administration seen in Chapter 4 may be 

either due to interaction between MT2 and LRP receptors, or due to the metal-binding 

and antioxidant capacities of the MT2 protein.   

 

5.4.4 Delivery of EmtinB to the central nervous system 

After a single subcutaneous injection of biotinylated d-EmtinB, d-EmtinB was observed 

in the serum and urine but was not found in brain homogenate (Figure 5.8). These data 

may indicate that biotinylated d-EmtinB peptides do not enter the brain tissue of the 

central nervous system at one hour post-injection. A previous study showed the 

presence of biotinylated EmtinB in the cerebrospinal fluid at one hour after injection 

(Sonn et al. 2010). The differing results between the current study and that of Sonn and 

colleagues (2010) may be due to the peptide administered, the dosage, and differences 

in sampling the central nervous system, as discussed below.  
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Instead of administering EmtinB tetramer peptide at 20mg/kg (Sonn et al. 2010), 

dimeric EmtinB peptide at 10mg/kg was administered in the current study. It is possible 

that the dose of 10mg/kg is too low to be detectable in brain homogenate at one hour 

after injection, or that the kinetics of dimeric and tetrameric EmtinB delivery to the 

CNS are slightly different and thus entry to the CNS was not seen at the one hour 

timepoint in the current study.  

It is also possible that biotinylated d-EmtinB, with 2-3 molecules of biotin attached on 

spacer arms away from the peptide, may show altered steric interactions with 

mechanisms which may normally mediate the delivery of EmtinB across the blood-

brain barrier. Sonn (2010) used EmtinB containing a single biotinylated site, causing 

minimal alterations from the kinetics of non-biotinylated EmtinB. It is likely that LRPs 

at the choroid plexus (Carro et al. 2005) allow transport of EmtinB from the blood into 

the CSF (Sonn et al. 2010). Another option for differing results between the current 

study and the Sonn (2010) study is that dimeric EmtinB peptides may show a weaker 

interaction with LRPs than tetrameric EmtinB peptides, and therefore may not be 

transported as efficiently into the CNS.  

Additionally, Sonn and colleagues (2010) studied the presence of EmtinB in CSF, 

whereas the current study examined whole brain homogenates for the presence of 

EmtinB. As the contribution of CSF to protein levels in whole brain homogenate may 

be minimal, due to loss of CSF during perfusion and dissection, the absence of 

detectable levels of biotinylated d-EmtinB in brain homogenates do not directly rule out 

its presence in the CSF in the present study. As the neuroprotective actions of EmtinB 

can be triggered by extracellular interactions between EmtinB and its LRP receptors 

(Ambjorn et al. 2008), extracellular or CSF EmtinB may still elicit protective effects 

despite not being internalised into neurons.   

The presence of EmtinB in the urine at one hour after injection indicates that dimeric 

EmtinB is readily cleared from the circulation through the kidneys in the present study. 

The presence of EmtinB in the urine matches that of MT2, which is also present in the 

kidney and urine after i.p. injection (Lewis et al. 2012b). Future studies examining 

administration of either EmtinB or MT2 must determine how much of the active 

molecule is lost through the kidneys in order to determine strategies for successful CNS 

penetration.  
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Multiple d-EmtinB bands, possibly representing oligomeric or aggregated forms of the 

injected peptide, were observed in the serum at one hour after injection. Care must be 

taken in future studies to avoid the formation of high molecular weight aggregates of 

Emtin peptides in solution, for two reasons: first, these aggregates may not properly 

interact with LRP receptors and may not activate the correct intracellular pathways; 

second, delivery of aggregated peptides to the CNS may place undue stress on motor 

neurons in SOD1 mice which are already under stress due to aggregated proteins 

(Watanabe et al. 2001).   

 

5.4.5 Summary and conclusions 

In summary, Emtin peptides administered from symptom onset onwards appear to show 

increased survival times, and slight retention of hindlimb function, in a small cohort of 

female SOD1 mice. The effects of Emtin peptides approach statistical significance, 

despite the small numbers (n=6 for each group) involved in this pilot study, and despite 

the treatment only being started around the point of disease onset. Emtin peptides 

appear to be a promising candidate for further development as a therapeutic for human 

ALS. Future work should involve a larger cohort of SOD1 mice in accordance with 

consensus guidelines for pre-clinical SOD1 trials, and should also involve analysis of 

motor neuron protection and neuromuscular junction innervation in a subset of SOD1 

mice, to determine the mechanism of action of Emtin peptides.  
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6.1 The need for novel ALS therapeutics 

Amyotrophic lateral sclerosis is a neurodegenerative disease of the motor system, with a 

complex aetiology potentially involving many cellular pathways, with oxidative stress, 

neuroinflammation, RNA metabolism, and protein degradation dysfunction featuring 

most prominently amongst possible aetiologies. The search for an effective  therapeutic 

molecule for preventing motor neuron degeneration has so far not been successful, with 

the only approved drug treatment for ALS, Riluzole, only extending lifespan by a matter 

of months (Bensimon et al. 1994).   

The work contained within this thesis uses a mouse model of ALS to explore a link 

between microglial activation and oxidative stress via nitric oxide metabolism, and to 

trial the ability of three therapeutic compounds to extend lifespan in the mouse model. 

Here, the results of each chapter will be reviewed in the context of attempting to 

understand the disease mechanisms contributing to disease in the mouse model of ALS.  
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6.2 Microglial activation in ALS 

Microglial activation has been implicated in the progression of ALS, with SOD1 mice 

showing pre-symptomatic and post-symptom-onset microglial activation, and ALS 

patients showing microglial activation in post-mortem spinal cord (Hall et al. 1998b; 

Alexianu et al. 2001; Henkel et al. 2004). In Chapter 2, the temporal relationships 

between microglial activation, development of neuronal pathology, and functional 

decline in SOD1 mice were examined. Consistent with previous studies, it was shown 

that microglial activation coincided with disease onset, but preceded the development of 

overt functional deficits, indicating that microglial activation may accelerate disease 

progression.  

While previous studies have indicated a swing towards M1 neurotoxic microglia as 

disease progresses(Liao et al. 2012), examination of arginine-metabolising enzymes and 

putative M1/M2 markers in the current study, Arg1 and iNOS, indicated that both pro-

inflammatory and anti-inflammatory phenotypes of microglia are present in the lumbar 

spinal cord of symptomatic SOD1 mice. These data may represent ongoing conflict 

between neuroinflammatory states – M2 neuroprotective microglia may attempt to 

dampen inflammation to prevent further neuronal damage, while M1 neurotoxic 

microglia may induce motor neuron damage, in part through increased expression of 

iNOS and increased NO synthesis (Zhao et al. 2004). Slight changes in the 

inflammatory environment of the lumbar and cervical spinal cords, characterised by a 

slightly more M2-like environment in the cervical region, may account for the relative 

sparing of the cervical region compared to the lumbar region (Beers et al. 2011b).  

Therapeutics aimed at inhibiting neuroinflammation have been trialled with positive 

results in SOD1 mice, yet showed no effect, or had detrimental effects, when translated 

into human ALS clinical trials (Bowerman et al. 2013). The data from clinical trials 

reinforce the dual role of microglia in neurodegenerative disease, with ongoing 

neuroprotective functions in addition to neurotoxic functions; inhibiting microglial 

activation may deplete any neuroprotection provided to motor neurons by microglia 

with an M2-like phenotype. The ongoing expression of Arg1, as described in SOD1 

microglia in Chapter 2 of this thesis, correlates with ongoing neuroprotective functions 

of activated microglia in ALS. Additionally, the importance of microglial activation in 

ALS is underlined by a recent study implicating a mutation in the triggering receptor 
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expressed by myeloid cells 2 (TREM2) protein, involved in microglial phagocytosis of 

cellular debris, as a risk factor for sporadic ALS (Neumann & Takahashi 2007; Cady et 

al. 2014). It is therefore critical that more research into microglial activation in 

neuroinflammation is carried out, in order to determine how best to eliminate neurotoxic 

microglial function while retaining neuroprotective function. Future work should aim to 

identify mediators of the molecular switch between neuroprotective and neurotoxic 

microglial phenotypes, and examine the bidirectional signalling between activated 

microglia and motor neurons. Further elucidation of microglial-mediated disease 

mechanisms in ALS may identify novel targets for therapeutic intervention.  
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6.3 Antioxidant treatments for ALS 

Oxidative stress is intricately linked to ALS, either as a potential primary cause of 

disease or as an effector of other upstream pathogenic mechanisms (see convergent 

pathology, section 1.3.9). 

Two of the potential ALS therapeutics used in this thesis, Gemals and MT2, are thought 

to act at least in part via antioxidant mechanisms. In Chapter 4, pre-symptomatic 

treatment with MT2 protein resulted in a slight delay in disease onset as measured by 

peak body weight, and tended to increase survival time. In Chapter 3, treatment with 

Gemals from after symptom onset until disease endpoint did not show a significant 

effect on survival time in a large cohort of SOD1 mice. However, it must be noted that 

several confounding factors in the Gemals trial, such as the development and treatment 

of irritation and skin lesions, may have prevented a protective effect of the Gemals 

compound from being detected.  

Setting aside confounding factors in the Gemals trial, the results from the Gemals trial 

and the MT2 trial suggest that oxidative stress-directed treatments may only be effective 

at slowing disease processes during the pre-symptomatic stage of disease. Indeed, the 

only other study examining the effect of Gemals in ALS rodent models showed an 

increase in survival time when Gemals was administered during the pre-symptomatic 

stage of disease (Nicaise et al. 2008).  

If treating oxidative stress in the pre-symptomatic stage is able to delay disease, but 

treatment of oxidative stress after symptom onset has little effect, it is possible that 

oxidative stress is a key mechanistic event in ALS pathogenesis, but may cause a 

cascade of downstream pathological mechanisms, such as mitochondrial dysfunction or 

protein aggregation, which cannot be reversed by removing the initial oxidative insult. 

To effectively treat such a situation, antioxidant compounds which slow the 

development of pathology would need to be used in conjunction with drugs which may 

provide neuronal protection or promote the degradation of damaged mitochondria and 

aggregated proteins, preventing the formation of downstream products and facilitating 

the removal of altered cellular components.   

In SOD1 mice, drugs with an antioxidant mechanism of action show the most promising 

effects for treatment after disease onset (Benatar 2007). However, a Cochrane review of 
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antioxidant therapies in ALS patients showed that antioxidants have little beneficial 

effect on survival (Orrell et al. 2007). More recently, an open trial of Gemals in a small 

group of ALS patients did indicate positive preliminary results of this compound in 

patients (Geffard et al. 2010). The Geffard (2010) study could indicate that Gemals 

exerts a protective effect due to its multiple putative mechanisms of action, rather than 

purely due to its antioxidant function (Geffard et al. 2010). If future work on Gemals is 

to take place in SOD1 mice, care should be taken to isolate the component/s causing 

irritation, to prevent the development of skin lesions and prevent the need for 

confounding analgesic treatment in further trials. Like Gemals, MT2 has multiple 

putative mechanisms by which it could induce protection of motor neurons, rather than 

a purely antioxidant mechanism.  

Oxidative stress is known to be present in sporadic and familial ALS cases (Ferrante et 

al. 1997), yet the treatments used in thesis that were based around the amelioration of 

oxidative stress did not show robust beneficial effects. Based on the common presence 

of oxidative stress in sporadic and familial disease (Ferrante et al. 1997), I would 

therefore have expected that, had the treatments shown robust effects in SOD1 mice, 

these treatments would have been translatable into potential therapies for human ALS 

patients. However, as these treatments showed no substantial effects in SOD1 mice, it is 

unclear whether these oxidation-targeted therapeutics in their current form would hold 

any benefit for ALS patients. More research into the mechanisms of oxidative stress-

mediated damage in motor neurons should be performed in order to determine whether 

oxidative stress is a primary factor causing neuronal degeneration, or purely a 

downstream byproduct of another degenerative process. It is possible that the pathology 

seen in SOD1 mice, including oxidative stress, is limited to animals and patients with 

SOD1-linked disease. Indeed, only SOD1-linked familial ALS cases show SOD1 

protein aggregation in spinal cord motor neurons; SOD1 aggregates are not found in 

non-SOD1-linked familial ALS, and only rarely seen in sporadic ALS cases (Bosco et 

al. 2010; Ravits et al. 2013).  

The targeting of other common pathologies in ALS, such as the presence of TDP43 in 

sporadic and virtually all non-SOD1 familial ALS cases, may provide more benefit in 

developing broad-spectrum therapeutics for ALS patients regardless of genetic or 

sporadic aetiology. 



_______________________________Chapter 6 – Concluding remarks and future work 

______________________________________________________________________ 

______________________________________________________________________ 
 

201 

 

6.4 MT2 and its derivatives as putative ALS therapeutics 

The multipurpose neuroprotective protein metallothionein-1/2 (MT-1/2), and its 

derivatives, have been discussed in Chapters 2, 4, and 5. The amount of MT-1/2 in the 

spinal cord of SOD1 mice increases with disease progression, with the increased MT-

1/2 production mainly mediated by astrocytes. Pre-symptomatic treatment with MT2 

injections, but not with an exercise regime, delayed disease onset as measured by 

maximum body weight, and tended to increase survival times in SOD1 mice. A small 

pilot study of the MT2 derivative peptides, Emtins, showed a tendency for Emtin 

treatment to increase survival time even when administered after the onset of disease 

symptoms. Thus, it appears that MT-1/2 plays a neuroprotective role, and MT2 or its 

derivatives may be suitable for further development as therapeutic compounds for 

human ALS.  

However, the mechanism of action for MT2 and Emtin peptides remains to be 

elucidated. MT2 is known to have several neuroprotective functions, with putative 

intracellular roles in ameliorating oxidative stress, correcting metal dyshomeostasis, and 

preventing apoptosis. As an extracellular ligand of the LRP receptors, MT-1/2 induces 

intracellular pathways involved in neurite outgrowth and neuronal survival, such as the 

PI3K/Akt pathway. In comparison, Emtin peptides are also known to induce neuronal 

survival and outgrowth via LRP receptors, but are not metallated. Thus, in principle 

Emtin peptides have less metal-binding capacity than MT-1/2, indicating that the trend 

of Emtins to increase survival time in SOD1 mice is likely more to do with LRP binding 

rather than any antioxidant or metal-homeostatic capacity of Emtin peptides.  

The current lack of biomarkers for ALS in the pre-symptomatic phase means that 

treatments should ideally be effective from after the onset of disease symptoms. Emtin 

peptides, tested in a small cohort of SOD1 mice, showed some improvement in survival 

time when administered after the onset of disease symptoms, and therefore could 

represent a potential therapeutic for human ALS. Future work on the Emtin peptides 

should first employ a large pre-clinical study in SOD1 mice and rats, to ensure that the 

effects seen in this small pilot study can be replicated in a larger cohort, and to establish 

dose-dependent effects on survival. Cell culture work, eliciting the effects and 

mechanisms of action of Emtins on cultured motor neurons, could help to further 

evaluate these peptides as potential therapeutic molecules for human ALS.   
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6.5 The SOD1 model of ALS 

The SOD1 mouse model of ALS is the most commonly-used animal model for human 

ALS. While the SOD1 model has undoubtedly been useful in describing mechanisms of 

motor neuron degeneration, its relevance to human sporadic ALS has been questioned. 

Although human ALS and rodent SOD1-mediated ALS show clinical and pathological 

similarities, SOD1-mutation-mediated ALS accounts for only 2-3% of human ALS 

cases, and the exact mechanisms of neuronal degeneration in SOD1 mice and human 

ALS patients may differ (Martin et al. 2007). It is therefore important to consider 

whether results obtained from pre-clinical trials in the SOD1 mouse can be effectively 

translated to sporadic ALS. Differences between human sporadic ALS and rodent 

SOD1-mediated ALS may account for the robust effects of several ALS therapeutic 

molecules when tested in SOD1 mice, but the failure of these same compounds when 

introduced into clinical trials (Benatar 2007).   

A final common pathway between SOD1-mediated ALS, non-SOD1 FALS, and 

sporadic ALS has not been definitively identified, although as discussed in Chapter 1, 

oxidative stress may form one such convergence point. The more recent discoveries of 

RNA processing, protein degradation dysfunction, and hexanucleotide repeats in 

C9orf72 may provide more mechanistic insight into the disease processes of ALS. In 

particular, elucidating the mechanism of action of TDP43-mediated ALS will prove 

valuable for the future study of sporadic ALS and FTD.  
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6.6 Thesis summary 

Chapter 1 identifies oxidative stress and neuroinflammation as key pathologies in the 

aetiology of ALS, with oxidative stress in particular acting as a convergence point 

between several putative ALS causes either as a primary insult or as a consequence of 

upstream pathology.  

Chapter 2 has identified that the increase in microglial cells in the SOD1 spinal cord 

ventral horn is largely associated with an increase in microglia expressing the M2-type 

marker Arg1, although a smaller concomitant increase in microglia expressing the M1-

type marker, iNOS, was also observed. These changes indicate duelling pro- and anti-

inflammatory processes occurring in the spinal cord of SOD1 mice. An increase in MT-

1/2 levels, thought to be a neuroprotective response to degenerating motor neurons, was 

also observed over time.  

Chapter 3 trialled the antioxidant compound Gemals as a treatment in post-symptomatic 

SOD1 mice, yet found no significant effects on survival time. However, confounding 

factors in this study may limit its interpretation in terms of the effectiveness of Gemals 

treatment.  

Chapter 4 trialled the neuroprotective protein MT2, and treadmill exercise, as pre-

symptomatic treatments in SOD1 mice, with an increase in survival time observed for 

MT2-treated SOD1 mice but not exercise-treated SOD1 mice.  

Chapter 5 explored a pilot study of the MT2 derivatives, Emtin peptides, administered 

after symptom onset in SOD1 mice. Emtin peptides showed a small increase in survival 

time, although this effect was not significant in this small cohort. However, Emtin 

peptides may represent a promising candidate for further development into a therapeutic 

molecule for increasing neuronal survival in ALS.  

Therapeutics targeting multiple aspects of pathology in ALS are required in order to 

maintain surviving motor neurons and limit functional decline in ALS. Similarly, it is 

clear that more research into the basic mechanisms of ALS, and methods for early 

detection of ALS, are required in order to effectively treat this devastating 

neurodegenerative disease. 
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Supplementary Data 

Supplementary Data 1: General notes on model fitting 

Linear mixed models were fitted in SPSS Statistics 20 (IBM), using the following 

conditions for likelihood estimation: 

Maximum iterations = 100 

Maximum step-halvings = 10 

Log-likelihood convergence = Absolute (0) 

Parameter convergence = Absolute (0.000001) 

Hessian convergence = Absolute (0) 

Maximum scoring steps = 1 

Singularity tolerance = 0.000000000001 

Type III sum of squares was used for fixed effects 

Variance/covariance matrix (G) structure = unstructured 

When fitting each model, maximum likelihood (ML) estimation was used to check the 

improved fit of fixed effects, by comparing log likelihoods (as -2LL, in smaller-is-better 

format) with a chi squared test (χ
2
) with degrees of freedom (df) equal to the number of 

parameters differing between models.  

Restricted maximum likelihood (REML) estimation was used to check the improved fit 

of random effects, by comparing restricted log likelihoods (-2RLL) as above.  

Both ML and REML log likelihoods (-2LL and -2RLL, respectively) are reported for 

the relevant models; however, it should be noted that the model specifications (fixed 

effects and covariance parameter estimates) are reported as obtained from ML 

estimation rather than REML estimation.  
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Supplementary Data 2: Fitting a linear mixed model to SOD1 and WT 

body weight trajectories 

Fixed effects of the final model (Model 6, below) are summarised in Chapter 2, Table 

2.4 and Figure 2.10.  

Factors: Age = Age in days, continuous covariate; Genotype = dummy-coded binary 

variable, where 0 = WT and 1 = SOD1; interaction parameters between eg. 

Genotype*Age are therefore only applicable to SOD1 mice. 

Model 1: Linear trajectory, no random effects 

Body weightij = β0 + β1*Age + εij         (εij = errors for subject i at age j, εij ~ iid N(0,σ
2
)) 

Factors:  Fixed factors: Intercept, Age 

Random factors: (none) 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 17.964030 17.624058 18.304002 <0.001 

Age (β1) 0.020006 0.017121 0.022890 <0.001 

 

Estimates of covariance parameters: 

Parameter Estimate Std. Error 

Residual 2.944904 0.119976 

Model fit (fixed effects):  -2LL = 4721.134 

 

Model 2: Quadratic trajectory, no random effects 

Body weightij = β0 + β1*Age + β2*Age
2
 + εij 

Factors:  Fixed factors: Intercept, Age, Age
2
 

Random factors: (none) 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 14.681763 13.720716 15.642811 <0.001 

Age (β1) 0.083179 0.065600 0.100759 <0.001 

Age
2
 (β2) -0.00277 -0.000354 -0.000201 <0.001 

 

Estimates of covariance parameters: 

Parameter Estimate Std. Error 

Residual 2.825273 0.115102 

Model fit (fixed effects):  -2LL = 4671.161 

  Difference from Model 1 = χ
2
(4721.134 - 4671.161, df=1), p<0.001 

 The quadratic model (Model 2) fits the data significantly better than the linear model 

(Model 1).  
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Model 3: Cubic trajectory, no random effects 

Body weightij = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + εij 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
 

Random factors: (none) 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 3.759549 1.183858 6.335241 0.004 

Age (β1) 0.413304 0.338744 0.487863 <0.001 

Age
2
 (β2) -0.003348 -0.004028 -0.002669 <0.001 

Age
3
 (β3) 0.000009 0.000007 0.000011 <0.001 

 

Estimates of covariance parameters: 

Parameter Estimate Std. Error 

Residual 2.650180 0.107968 

 

Model fit (fixed effects):  -2LL = 4595.068 

  Difference from Model 2 = χ
2
(4671.161 – 4595.068, df=1), p<0.001 

  

The cubic model (Model 3) fits the data significantly better than the quadratic model 

(Model 2). 

 

Model fit (random effects):  -2RLL = 4653.988 

 

Model 4: Cubic trajectory, random intercept 

Body weightij = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + εij + ui  

εij = within-subject variance = errors for subject i at age j, εij ~ N(0,σ
2
) 

ui = between-subject variance = variance around intercept for subject i, ui ~ N (0, σ0
2
) 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
 

Random factors: Intercept 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 6.738034 5.229137 8.246931 <0.001 

Age (β1) 0.337954 0.297155 0.378752 <0.001 

Age
2
 (β2) -0.002716 -0.003089 -0.002343 <0.001 

Age
3
 (β3) 0.000007 0.000006 0.000008 <0.001 

 

Estimates of covariance parameters: 

Parameter Estimate Std. Error 

Residual 0.771785 0.031843 

Intercept (subject=ID) 2.232236 0.582854 
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Model fit (fixed effects):  -2LL (log likelihood) = 3249.436 

Model fit (random effects): -2RLL (log likelihood) = 3309.259 

  Difference from Model 3 = χ
2
(4653.988 – 3309.259, df=1), p<0.001 

  

Unique starting body weights for each mouse (random intercept, Model 4) account for a 

significant portion of the overall variance in the cubic model, giving a significantly 

better model fit than when no randomeffects are included (Model 3). 

 

Model 5: Cubic trajectory, random intercept and slope 

Body weightij = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + εij + u0i + u1i*Age 

εij = within-subject variance = errors for subject i at age j, εij ~ N(0,σ
2
) 

u0i = between-subject variance = variance around intercept for subject i  

u1i = between-subject variance = variance around slope for subject i  

ui = [
   
   
] ~ N (0, G) G = [

          
          

]    

n.b. G, a 2x2 matrix for two random effects (intercept and slope), is unstructured 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 11.010998 9.664808 12.357188 <0.001 

Age (β1) 0.217180 0.184939 0.249421 <0.001 

Age
2
 (β2) -0.001570 -0.001852 -0.001289 <0.001 

Age
3
 (β3) 0.000004 0.000003 0.000004 <0.001 

 

Estimates of covariance parameters: (G) 

Parameter  Estimate Std. Error 

Residual  0.368620 0.015413 

Intercept + Age      

(subject=ID)     

                               

Var.(Intercept); σ
2

u0 4.385741 1.216009 

Covar.(Intercept, slope); σ u0,u1 -0.039050 0.012020 

Var.(slope); σ
2

u1 0.000531 0.000143 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix, G. 

 

Model fit (fixed effects):  -2LL (log likelihood) = 2484.105 

Model fit (random effects): -2RLL (log likelihood) = 2541.979 

  Difference from Model 4 = χ
2
(3309.259 – 2541.979, df=2), p<0.001 

Including both unique starting body weights and unique rates of change over time for 

individual mice (random intercept and slope, Model 5) accounts for a significant 

portion of the overall variance in the cubic model, giving a significantly better model fit 

than when random intercept is included as the only random effect (Model 4). 
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Model 6: Cubic trajectory, random intercept and slope, with genotype  

(final model; a summary of fixed effects parameters is presented in Chapter 2) 

Body weightij = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + β4*Genotype + β5*Genotype*Age 

+ β6*Genotype*Age
2
 + β7*Genotype*Age

3
 + εij + u0i + u1i*Age 

εij = within-subject variance = errors for subject i at age j, εij ~ N(0,σ
2
) 

u0i = between-subject variance = variance around intercept for subject i  

u1i = between-subject variance = variance around slope for subject i  

ui = [
   
   
] ~ N (0, G) G = [

          
          

]    

n.b. G, a 2x2 matrix for two random effects (intercept and slope), is unstructured 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
, Genotype, Age*Genotype, 

Age
2
*Genotype, Age

3
*Genotype 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper p-value 

Intercept (β0) 14.504774 12.957579 16.051968 <0.001 

Age (β1) 0.128064 0.093210 0.162919 <0.001 

Age
2
 (β2) -0.000853 -0.001157 -0.000549 <0.001 

Age
3
 (β3) 0.000002 0.000001 0.000003 <0.001 

Genotype (β4) 0.182480 -1.973811 2.338771 0.868 

Genotype*Age (β5) -0.066064 -0.117532 -0.014596 0.012 

Genotype*Age
2
 (β6) 0.001096 0.000626 0.001565 <0.001 

Genotype*Age
3
 (β7) -0.000005 -0.000007 -0.000004 <0.001 

 

Estimates of covariance parameters: (G) 

Parameter  Estimate Std. Error 

Residual  0.219971 0.009216 

Intercept + Age      

(subject=ID)            

 

Var.(Intercept); σ
2

u0 2.771801 0.770205 

Covar.(Intercept, slope); σ u0,u1 -0.011721 0.004209 

Var.(slope); σ
2

u1 0.000104 0.000031 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix, G. 

 

Model fit: (fixed effects):  -2LL (log likelihood) = 1843.907 

   Difference from model 1 = χ
2
(2484.105 – 1843.907, df=4), p<0.001 

   Including genotype in the model (Model 6) significantly improved the 

   model fit to the data compared to the cubic model excluding genotype as 

   a factor (Model 5). 

Model fit (random effects): -2RLL (log likelihood) = 1958.998  
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Supplementary Data 3: Fitting a mixed model to body weight 

trajectories of MT2-treated and exercised SOD1 mice 

Fixed effects of the final model (Model 3, below) are summarised in Chapter 4, Table 

4.3 and Figure 4.4. 

Factors:  

Age = Age in days, continuous covariate, censored at 42 days (6 weeks of age, start of 

treatment). 

Exercise = dummy-coded binary variable, where exercised SOD1 mice = 1 and 

sedentary SOD1 mice = 0. 

Drug = dummy-coded binary variable, where MT2-treated SOD1 mice = 1  and 

vehicle-treated SOD1 = 0.   

The process of model fitting was carried out as described in Supplementary Data 2. For 

brevity, a summary of model fit to determine model shape is provided below.  

Summary of model fitting: 

Model 

trajectory 

Random 

effects 

-2LL 

(ML) 

-2RLL 

(REML) 

Fit improvement 

Linear - 6551.276  - 

Quadratic - 6060.683  Fixed effects: p<0.001 vs. linear 

model 

Cubic - 6000.729 6064.434 Fixed effects: p<0.001 vs. quadratic 

model 

Cubic Intercept  3121.209 Random effects: p<0.001 from 

cubic model with no random effects 

Cubic 

(Model 1) 

Intercept, 

slope 

 2818.106 Random effects: p<0.001 from 

model with random intercept alone 

 

 

 

Model 1: Cubic trajectory, random intercept and slope  

Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + εij + u0i + u1i*Age  

(see Supplementary Data 2 for error term notation) 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 17.576294 17.262493 17.890096 <0.001 

Age (β1) 0.007678 0.000911 0.014446 0.026 

Age
2
 (β2) 0.000705 0.000592 0.000819 <0.001 

Age
3
 (β3) -0.000006 -0.000007 -0.000006 <0.001 

 

Estimates of covariance parameters: 

Parameter  Estimate Std. Error 
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Residual  0.204463 0.006897 

Intercept + Age      

(subject=ID)            

                                 

Var.(Intercept) 1.273455 0.241583 

Covar.(Intercept, slope) -0.002332 0.001178 

Var.(slope) 0.000048 0.000011 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 2754.600 

  

Model 2: Cubic trajectory, random intercept and slope, with Exercise parameters 

Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + β4*Exercise + β5*Exercise*Age  

   + β6*Exercise*Age
2
 + β7*Exercise*Age

3
 + εij + u0i + u1i*Age 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
, Exercise, Exercise*Age, 

Exercise*Age
2
, Exercise*Age

3
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper p-value 

Intercept (β0) 17.558523 17.122241 17.994804 <0.001 

Age (β1) 0.008845 -0.000642 0.018333 0.068 

Age
2
 (β2) 0.000730 0.000569 0.000890 <0.001 

Age
3
 (β3) -0.000007 -0.000008 -0.000006 <0.001 

Exercise (β4) 0.048568 -0.578484 0.675621 0.878 

Exercise*Age (β5) -0.003474 -0.016889 0.009940 0.612 

Exercise*Age
2
 (β6) -0.000025 -0.000250 0.000199 0.824 

Exercise*Age
3
 (β7) 0.000001 0.000000 0.000002 0.220 

 

Estimates of covariance parameters:  

Parameter  Estimate Std. Error 

Residual  0.200393 0.006760 

Intercept + Age      

(subject=ID)            

                                 

Var.(Intercept) 1.272323 0.241299 

Covar.(Intercept, slope) -0.002310 0.001172 

Var.(slope) 0.000048 0.000011 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 2718.779 

  Difference from model 1 = χ
2
(2754.600 – 2718.779, df=4), p<0.001 

Including Exercise as a factor in the body weight model improved the model fit, as 

measured by decreasing -2LL values, yet the parameter estimates for exercised mice 

(β4-β7) were not significantly different from those of sedentary mice. Thus, while 

exercise/sedentary status contributed to explaining some of the variation between 

treatment groups, the body weight trajectories of exercised and sedentary mice did not 

differ significantly.  
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Model 3: Cubic trajectory, random intercept and slope, with Exercise 

(exercise/sedentary) and Drug (MT2/vehicle) parameters 

Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + β4*Exercise + β5*Exercise*Age  

   + β6*Exercise*Age
2
 + β7*Exercise*Age

3
 + β8*Drug+ β9*Drug*Age  

   + β10*Drug*Age
2
 + β11*Drug*Age

3
 + εij + u0i + u1i*Age 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
, Exercise, Exercise*Age, 

Exercise*Age
2
, Exercise*Age

3
, Drug, Drug*Age, Drug*Age

2
, 

Drug*Age
3
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper p-value 

Intercept (β0) 17.363634 16.837901 17.889367 <0.001 

Age (β1) 0.021013 0.009705 0.032322 <0.001 

Age
2
 (β2) 0.000478 0.000285 0.000671 <0.001 

Age
3
 (β3) -0.000006 -0.000007 -0.000005 <0.001 

Exercise (β4) 0.023367 -0.604711 0.651446 0.941 

Exercise*Age (β5) -0.002076 -0.015401 0.011250 0.760 

Exercise*Age
2
 (β6) -0.000049 -0.000273 0.000175 0.669 

Exercise*Age
3
 (β7) 0.000001 0.000000 0.000002 0.151 

Drug (β8) 0.418199 -0.210027 1.046425 0.189 

Drug*Age (β9) -0.025340 -0.038716 -0.011964 <0.001 

Drug*Age
2
 (β10) 0.000510 0.000285 0.000735 <0.001 

Drug*Age
3
 (β11) -0.000003 -0.000004 -0.000001 <0.001 

 

Estimates of covariance parameters:  

Parameter  Estimate Std. Error 

Residual  0.198360 0.006693 

Intercept + Age      

(subject=ID)            

                                 

Var.(Intercept) 1.276821 0.242147 

Covar.(Intercept, slope) -0.002386 0.001147 

Var.(slope) 0.000045 0.000010 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 2697.062 

  Difference from model 2 = χ
2
(2718.779 – 2697.062, df=4), p<0.001 

Including Drug as a factor in the body weight model improved the model fit, as 

measured by decreasing -2LL values. The parameter estimates for MT2-treated mice 

differed from those of vehicle-treated mice, indicating that the body weight trajectories 

of MT2-treated mice were significantly different compared to vehicle-treated mice.  
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Model 4: Cubic trajectory, random intercept and slope, with Exercise 

(exercise/sedentary), Drug (MT2/vehicle), and Exercise*Drug parameters 

Body weight = β0 + β1*Age + β2*Age
2
 + β3*Age

3
 + β4*Exercise + β5*Exercise*Age  

   + β6*Exercise*Age
2
 + β7*Exercise*Age

3
 + β8*Drug+ β9*Drug*Age  

   + β10*Drug*Age
2
 + β11*Drug*Age

3
 + β12*Exercise*Drug  

   + β13*Drug*Age + β14*Drug*Age
2
 + β15*Drug*Age

3
 + εij + u0i  

   + u1i*Age 

Factors:  Fixed factors: Intercept, Age, Age
2
, Age

3
, Exercise, Exercise*Age, 

Exercise*Age
2
, Exercise*Age

3
, Drug, Drug*Age, Drug*Age

2
, 

Drug*Age
3
, Exercise*Drug, Exercise*Drug*Age, Exercise*Drug*Age

2
, 

Exercise*Drug*Age
3
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, 

lower 

95% CI, 

upper 

p-value 

Intercept (β0) 17.311491 16.714817 17.908166 <0.001 

Age (β1) 0.022860 0.009924 0.035796 0.001 

Age
2
 (β2) 0.000470 0.000248 0.000693 <0.001 

Age
3
 (β3) -0.000006 -0.000007 -0.000004 <0.001 

Exercise (β4) 0.135588 -0.737744 1.008921 0.758 

Exercise*Age (β5) -0.006105 -0.024843 0.012633 0.523 

Exercise*Age
2
 (β6) -0.000027 -0.000347 0.000293 0.867 

Exercise*Age
3
 (β7) 0.000001 -0.000001 0.000002 0.316 

Drug (β8) 0.536375 -0.337797 1.410548 0.225 

Drug*Age (β9) -0.029863 -0.048782 -0.010945 0.001 

Drug*Age
2
 (β10) 0.000541 0.000221 0.000861 0.001 

Drug*Age
3
 (β11) -0.000003 -0.000004 -0.000001 0.001 

Exercise*Drug (β12) -0.243375 -1.498343 1.011594 0.700 

Exercise*Drug*Age (β13) 0.009398 -0.017341 0.036136 0.491 

Exercise*Drug*Age
2
 (β14) -0.000068 -0.000518 0.000382 0.767 

Exercise*Drug*Age
3
 (β15) 0.000000 -0.000002 0.000002 0.929 

 

Estimates of covariance parameters:  

Parameter  Estimate Std. Error 

Residual  0.198192 0.006687 

Intercept + Age      

(subject=ID)            

                                 

Var.(Intercept) 1.272228 0.241323 

Covar.(Intercept, slope) -0.002334 0.001139 

Var.(slope) 0.000044 0.000010 
Var., variance; Covar., covariance; corresponding to the random effects variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 2695.162 

  Difference from model 3 = χ
2
(2697.062 – 2695.162, df=4), p=0.754 

 The addition of interaction terms between Exercise*Drug did not improve the fit of the 

model to the data, indicating that no synergistic effects were present between exercise 

treatment and MT2 treatment. As a result, the final model presented in Chapter 4 was 

Model 3, above, containing Exercise parameters and Drug parameters, but without 

including an interaction term.  
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Supplementary Data 4: Fitting a mixed model to body weight 

trajectories of Emtin-treated and control SOD1 mice 

Fixed effects of the final model (Model 2, below) are summarised in Chapter 5, Table 

5.4 and Figure 5.3. 

Factors:  

Age = Age in days, continuous covariate 

Treatment = dummy-coded categorical variable; 

‘EmtinAc’ is encoded by EmtinAc-treated SOD1 mice = 1 and control SOD1 mice = 0. 

‘EmtinB’ is encoded by EmtinB-treated SOD1 mice = 1 and control SOD1 mice = 0. 

The process of model fitting was carried out as described in Supplementary Data 2. For 

brevity, a summary of model fit to determine model shape is provided below.  

Summary of model fitting: 

Model 

trajectory 

Random 

effects 

-2LL 

(ML) 

-2RLL 

(REML) 

Fit improvement 

Linear - 1717.129  - 

Quadratic - 1584.622 1615.791 Fixed effects: p<0.001 vs. linear 

model 

Cubic - 1583.377  Fixed effects: p=0.264 vs. quadratic 

model; no improvement in fit 

Quadratic Intercept  826.631 Random effects: p<0.001 vs. 

quadratic model with no random 

effects 

Quadratic 

(Model 1) 

Intercept, 

slope 

722.235 751.726 Random effects: p<0.001 vs. model 

with random intercept alone 

 

 

Model 1: Quadratic trajectory, random intercept and slope 

Body weight = β0 + β1*Age + β2*Age
2
 + εij + u0i + u1i*Age 

(see Supplementary Data 2 for error term notation) 

Factors:  Fixed factors: Intercept, Age, Age
2
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper Sig (p-value) 

Intercept (β0) 1.520609 -0.189412 3.230630 0.081 

Age (β1) 0.312842 0.289456 0.336228 <0.001 

Age
2
 (β2) -0.001329 -0.001417 -0.001241 <0.001 

 

Estimates of covariance parameters: 

Parameter  Estimate Std. Error 

Residual  0.181894 0.011626 

Intercept + Age      Var.(Intercept) 3.474587 1.237779 
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(subject=ID)            

                                 

Covar.(Intercept, slope) -0.015722 0.006300 

Var.(slope) 0.000094 0.000037 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 722.235 

 

Model 2: Quadratic trajectory, random intercept and slope, with Treatment 

(EmtinAc/EmtinB) parameters 

Body weight = β0 + β1*Age + β2*Age
2
 + β3*EmtinAc + β4*EmtinAc*Age  

   + β5*EmtinAc*Age
2
 + β6*EmtinB + β7*EmtinB*Age  

   + β8*EmtinB*Age
2
 + εij + u0i + u1i*Age 

(see Supplementary Data 2 for error term notation) 

Factors:  Fixed factors: Intercept, Age, Age
2
, EmtinAc, EmtinAc*Age, 

EmtinAc*Age
2
, EmtinB, EmtinB*Age, EmtinB*Age

2
 

Random factors: Intercept, slope 

Estimates of fixed effects: 

Parameter Estimate (β) 95% CI, lower 95% CI, upper p-value 

Intercept (β0) -4.449126 -7.501088 -1.397165 0.004 

Age (β1) 0.420456 0.376231 0.464681 <0.001 

Age
2
 (β2) -0.001774 -0.001943 -0.001604 <0.0001 

EmtinAc (β3) 7.543884 3.421179 11.666589 <0.001 

EmtinAc*Age (β4) -0.143378 -0.202179 -0.084577 <0.001 

EmtinAc*Age
2
 (β5) 0.000596 0.000372 0.000821 <0.001 

EmtinB (β6) 8.034302 3.981721 12.086882 <0.001 

EmtinB*Age (β7) -0.140318 -0.197457 -0.083178 <0.001 

EmtinB*Age
2
 (β8) 0.000578 0.000362 0.000794 <0.001 

 

Estimates of covariance parameters: 

Parameter  Estimate Std. Error 

Residual  0.168984 0.010795 

Intercept + Age      

(subject=ID)            

                                 

Var.(Intercept) 2.730534 0.982709 

Covar.(Intercept, slope) -0.012786 0.005322 

Var.(slope) 0.000087 0.000034 

Var., variance; Covar., covariance; corresponding to the random effects 

variance/covariance matrix. 

Model fit (fixed effects):  -2LL (log likelihood) = 684.849 

   Difference from Model 1 = χ
2
(722.235 – 684.849, df=6), p<0.001 

The addition of Treatment (EmtinAc, EmtinB) parameters to the model explained a 

significant portion of the variation as seen by decreasing -2LL values. The parameter 

estimates for EmtinAc-treated and EmtinB-treated SOD1 mice were significantly 

different from those of control SOD1 mice, indicating that treatment with Emtin 

peptides significantly affected body weight trajectory over time. 
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Appendix 

Behavioural testing procedures for mouse motor phenotype 

This document is not a task risk assessment, nor a standard operating procedure.  

All investigators attempting these procedures must have prior training in animal 

handling. 

 

Stride test 

One mouse at a time was removed from its home cage and placed on a transport cage 

lid, then scruffed with the left (or preferred) hand of the investigator. Scruffing should 

attempt to gather as much skin as possible in order to limit limb movement when 

applying paint to the paws. With the mouse scruffed, paint which had been diluted to a 

thin consistency with water was applied to the paws with a paintbrush – blue for hind 

paws and red for front paws. The mouse was then placed onto the start of the strip 

between the dividers, and walked along the strip of paper between the dividers towards 

the wire basket. Upon entering the wire basket, the mouse was retrieved by its tail, and 

had its paws dipped into the petri dish containing water in order to remove paint, then 

was transferred into a tissue-lined cage to dry the feet. The mouse was then returned to 

its home cage.  

 

 

 

Rotarod 

Coordinated motor performance was assessed using a 5-lane mouse rotarod (TSE 

Systems). Mice were acclimatised to the rotarod from approximately 85-90 days of age, 

with three once-daily sessions. Each acclimatisation session consisted of 5 minutes on 

the rotarod drum at a constant speed of 3rpm – while the mice were learning to stay on 

the rotating drum, they were partly supported to stay on the drum, and prevented from 



______________________________________________________________Appendix 

______________________________________________________________________ 

______________________________________________________________________ 
 

241 

 

falling off the drum, by the investigator placing their hand below the drum to as a 

platform and safety net. The mice were then trained to stay on the accelerating rotarod, 

with at least two once-daily sessions consisting of a 3rpm-16rpm acceleration over 3 

minutes. In testing sessions, the speed at which mice were unable to stay on the rotating 

drum during an acceleration from 3rpm-16rpm over 3 minutes was recorded. As few 

mice achieved the maximum score of staying on the rotarod up to 16rpm, future studies 

using the rotarod should commence training prior to the onset of disease symptoms.  

 

Grip strength meter 

Grip strength was measured in newtons (N) with a grip strength meter (Columbus 

Instruments) mounted on a stand. Each mouse was scruffed, held over the grip strength 

meter equipped with triangular bar, and moved backwards at a constant speed, gripping 

the bar with its hind paws and generating a maximum force measurement. The 

maximum force recorded from three attempts was used for analysis.  

 

Wire hang duration test 

To perform wire hang duration testing, mice were removed from their home cage, and 

placed on a wire cage lid. The cage lid was then gently inverted and held approximately 

20cm above a large transport cage with foam padding at the bottom (A, below). The 

mouse gripped onto the bars (B, below), while the cage lid was held inverted for a 

maximum of 60 seconds. The latency to fall, from the best of three attempts, was 

recorded as the wire hang duration.  

 

As an interesting aside, it was noted that the first 3-4 weeks of testing were highly 

variable for both genotypes. The home cages for all mice featured a clear plastic lid 

rather than metal bars – the only wire structure in the home cage would be the food 

hopper, so these mice effectively had no prior training in gripping an inverted set of 

wire bars. The first few weeks of testing may have effectively only served as a training 

period, hence the variable measurements obtained. For future use of the wire hang 

duration test, it would be recommended to train mice in the wire hang duration 

procedure for a period of some weeks prior to recording data for analysis.   

 

  

 


