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SUMMARY

This thesis introduces a new method of adaptive control: Non-
Parametric Model-Reference Adaptive-Control (NP-MRAC). The
method relies on estimating the shape of the Finite Impulse
Response (FIR) of the plant and the FIR of the controller rather
than determining the plant and the controller parameters. An FIR
adaptive filter was used to identify the FIR of the plant and calcu-
late the FIR of the controller. The NP-MRAC was studied both by
digital simulation on the NEC-APC-3 computer and by real-time
hybrid-simulation on the TMS320C20 signal processor.

In this thesis, the NP-MRAC employed the LMS algorithm as an
adaptive algorithm. This algorithm is simple, yet performs satis-
factorily. The NP-MRAC, using the LMS algorithm, has excellent
adaption capabilities in the presence of both parameter variations
and time delay variations. It also allows for closed-loop pole
placement and because there are no restrictions on closed-loop
zeros, good set-point tracking can be achieved by a suitable choice
of the reference-model.

The scheme’s major limitations are relatively slow rate of con-
vergence and sensitivity to variations in the eigenvalue spread, de-
fined as the ratio of the maximum to minimum eigenvalue of the
correlation matrix of the FIR adaptive filter input signal. However
the NP-MRAC should have great potential in applications where
time-delay and parameter variations are relatively gradual, as it
is generally known that FIR filters are more robust than their re-

cursive Infinite Impulse Response IR counterpart.
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Chapter 1
INTRODUCTION

1.1 CONTRIBUTIONS

The contributions of this thesis are:

* The development of the theory of a Non-Parametric Model
Reference Adaptive Control (NP-MRAC)

* Simulation of the NP-MRAC on a plant with time-varying pa-
rameters as .weII as time-varying time-delay.

* Implementation of the closed-loop NP-MRAC on a TMS320C20
signal processing chip to control in real-time a plant with time-
varying parameters and time delay .

* Part of this thesis formed the basis of a paper on "Model-
Reference Adaptive Control using an FIR controller" which was
represented at the IFAC Work shop on Robust Adaptive Control on
22-24 August 1988 at Newcastle, Australia.

1.2 ADAPTIVE CONTROL SYSTEMS

An adaptive control system is a system whose parameter is ad-
justable in such a way that it attempts to avoid degradation of the
dynamic performance of a control system when environmental
variations occur.This is usually the case in many practical situa-
tions, e.g.

The dynamic behavior of an aircraft depends on its altitude and
speed .

The dynamic behavior of a dc motor varies with the moment of
inertia and the friction of the load. This situation occurs in a

variety of applications such as rolling mills, machine tools ,etc.
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In adaptive control, it is desired to control the plant input such
that the plant output signal follows a desired output response. In
general, the plant parameters are unknown or time-varying.
Therefore to design such a system we first have to identify the
plant then to generate a controller . The adaptive control system
,then, consists of two functions, they are the plant parameter es-
timations and the controller parameter estimations.

Many different approaches to adaptive control have been pro-
posed in the literature. However they can be grouped into two
classes. They are the Self Tuning Adaptive Control (STAC) ,see
Astrom et all (1977) and the Model Reference Adaptive Control
(MRAC), see e.g., Laudau(1979).’

1.2.1 The self-tunin d ive control (STAC

The concept of the STAC is illustrated in figure 1.2.1-1 in
which a parameter estimation technique is used to identify the un-
known parameters of the plant. These estimated parameters are
then used to design an optimum controller. This approach of using
the estimated parameters as if they were the true parameters for
the purpose of controller design is called the “certainty equiva-
lence principle”.

The STAC closed loop system is nonlinear and time varying. It
can be thought of as having two loops. The inner loop consists of
the plant and a series linear time-varying controller. The parame-
ters of this controller are adjusted by the outer loop, which is
composed of the recursive parameter estimator and the controller

synthesis.
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Figure 1.2.1-1 Block diagram of a self-tuning

The STAC is very flexible with respect to the system identifi-
cation package and the controller synthesis package. Many differ-
ent identification schemes may be used e.g. gradient projection,
least squares, extended least squares, generalized least squares,
maximum likelihood, instrumental variables, extended Kalman fil--
tering. Various controller synthesis methods have also been re-
ported in the literature e.g. phase and gain margins, pole place-

ment, minimum variance, detuned minimum variance, linear qua- .

-

adaptive control (STAC).

dratic Gaussian.

1.2.2 The model reference adaptive control(MRAC)

The MRAC was originally developed for servo problems and is

shown in figure 1.2.2-1,
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Figure 1.2.2-1 Block diagram of a Model-Reference
Adaptive Control (MRAC).

The performance specifications are given in terms of a refer-
ence model, which determines how the plant output ideally should
be in response to the reference command signal. Notice that the
reference model is part of the control system. Again a system em-
ploying MRAC can be thought of as consisting of two loops. The
inner loop is an ordiﬁary control composed of the plant and a series
linear time varying controller. The parameters of this controller
are adjusted by the outer loop in such a way that the error between
the model output and the plant output becomes small. The key prob-
lem is to determine the adjustment mechanism so that a stable

system is obtained which brings the error to zero.



1. A NON-PARAMETRI MODEL-REFERENCE ADAPTIVE
CONTROL (NP-MRAC)

Both the STA and MRAC have flexibility in dealing with a
variety of plants with unknown parameters and ability to keep the
desired closed-loop dynamic behavior in an adaptive mode. But be-
cause they are mainly based on plant parameter estimation, there-
fore several problems limit the application of plant with time-
varying parameters and time-varying time-delay. These problems
are listed below:

(1) Parameter-adaptive controllers yield in many cases large
variations of the process input signal during the adaptation phase
(Iserman and Lachmann,1985).

(2) Unknown time-varying time-delay is difficult to identify
the plant parameters under the assumption of a known constant
time delay (Pupeikis 1985, Kaminskas 1979).

Many on-line procedures capable of tracking time-varying time-
delay plant have been introduced. However they over-parameterize
the discrete model (Bokor and Keviczky 1985, Kurz and Goedecke
1981). An on-line identification method proposed by Gawthrop and
Nihtila (1985) is limited to systems with small time-delay and
known dynamics.

(3) In estimating the plant parameters, unstable zeros are
often introduced (M’Saad, Ortega and Landau, 1985). These zeros
can not be canceled, hence good tracking is difficult to be achieved.

This thesis presents a new method of a Non-Parametric Model-
Reference Adaptive Control (NP-MRAC), that is conceptually very
simple and does not suffer from the above drawbacks. The method

relies on determining the shape of an impulse response of the plant
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rather than the plant parameters.

The NP-MRAC is based on the well known Least-Mean-Square
(LMS) algorithm . The LMS algorithm (Widrow and Stearns, 1985)
was normally applied to the adaptive equalization of communica-
tion channels and now apply the same principle to effect a model
reference adaptive control. Since its inception by the Bell System
group (Gersho, 1969; Lucky,1967; Sondhi, 1967), the LMS algorithm
has always been implemented in a hybrid mode, i.e. the signal on
analog form passes through a series of taps of a delay line and the
taps are adjusted digitally.

However, the advent of high speed microprocessors such as the
8086/80186/80286 and their numeric co-processor made it possi-
ble to implement the series of the 30-tap delay line in real time to
effect a model-reference adaptive control (Tran,1986).

The research work was carried on from the above principle and
applied to a model-reference adaptive control. The Non-
Parametric Model Reference Adaptive Control (NP-MRAC) was in-
troduced . This work shows by simulation studies and real-
time hybrid simulations that the LMS algorithm can be used ef-
fectively in the NP-MRAC. The NP-MRAC was implemented using a
high speed signal processor chip, the Texas Instrument

TMS320C20.

1.4 THESIS OUTLINE

This thesis contains 5 other chapters in addition to present one.
Below is a brief outline of them.

CHAPTER 2 discuses an FIR adaptive filter , the LMS algorithm,
the convergence of the weight vector and the method of a Non-

Parametric Plant Identification (NP-PI) and an open loop Non-
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Parametric Model-Reference Adaptive Control (NP-MRAC).

CHAPTER 3 presents the conditions of a reference-input signal.
Simulations on the NP-Pl and the open loop NP-MRAC are included.

CHAPTER 4 represents the closed-loop Non-Parametric
Model-Reference Adaptive Control with two methods of model-
reference selection. Simulations on a plant with time-delay and
parameter variation are observed. So does the ability of set-
point tracking of the system . The control of a type-1 plant is
also discussed.

CHAPTER 5 shows an implementation of the closed loop NP-
MRAC on the TMS320C20 signal processing. The chapter
contains a TMS320C20 introduction, hardware introduction, soft-
ware controller program summary, laboratory results and soft-
ware descriptions.

CHAPTER 6 summarizes the contributions , discusses briefly
the Recursive Least Square (RLS) algorithm technique applied to
the NP-MRAC and gives possible extensions to the work as
motivation for further work.

APPENDIX A shows the discrete impulse response of the second
order system.

APPENDIX B contains the listing of all the Fortran 77 programs
written for this thesis.

APPENDIX C details in the modification of the floating point
routine.

APPENDIX D contains the listing of all the TMS320C20 programs
written for the hybrid simulation.

APPENDIX E contains the paper on “Model-Reference Adaptive

Control using an FIR controller”.



CHAPTER 2
THE LEAST MEAN SQUARE ALGORITHM

The theory of a Non-Parametric Model Reference Adaptive
Control ( NP-MRAC ) is built around a Finite Impuise Response (FIR)
adaptive filter. The FIR of such a filter is defined by a set of tap
weights. In this work, for updating the tap weights of the FIR
adaptive filter, the Least Mean Square (LMS) algorithm is used.

This chapter is divided into 3 major parts :

Section 2.1 introduces the FIR adaptive filter and the Least-
Mean-Square (LMS) algorithm. The convergence of the mean
weight-vector of the FIR adaptive filter , which is adjusted using
the LMS algorithm and the gradient search by the method of steep-
est descent, is also discussed.

Section 2.2 shows how the FIR adaptive filter can be applied to
effect plant identification . Discussion on the convergence of the
mean of the weight-vector of the FIR adaptive filter in this iden-
tification process is included.

Section 2.3 modifies the LMS algorithm so that it can be used as
an adaptive controller in a model-reference adaptive control ; this
principle is known as the filtered-X LMS algorithm. The conver-
gence of the mean of the weight vector of the FIR adaptive filter

by means of the filtered-X LMS algorithm is also studied.

2.1 DERIVATION OF THE LMS ALGORITHM

Our purpose here is to introduce the LMS algorithm and to de-
scribe the performance characteristics of the LMS algorithm ap-

plied to adjust the weight vector of the FIR adaptive filter .

8



2.1.1 The performance function:

The FIR adaptive filter is fundamental té our design . It con-
sists of two basic parts

(1) an FIR filter with L adjustable tap weights whose val-

ues at time f are denoted by w,,, w » W, _,, and

Lgr o
(2) a mechanism for adjusting these tap weights in an adap-
tive manner.

The FIR filter consists of a set of delay-line elements (each of
which is represented by the unit-delay operator 2'1) and a cotrre-
sponding set of adjustable coefficients, which are interconnected
in the manner shown in figure 2.1.1-1. The input signals to the

variable weights are the signals at the delay-line taps. At time ¢k,

these signals are defined as x,,x,_,,...,x,_,,, -where L is a

number of the taps. These signals are sequential samples taken at
k,k—1,... k— L+ 1 going back in time through the sequence of
data samples and they are group together to form an input signal

vector

T

X, =[x, X,_peeer X ] (21.1-1)

P Vk-L+1
the subscript k is used as a time index.

Similarly we define the tap-weight vector as

T
W, =Wy Wy oo s Wi_q ) (2.1.1-2)
Each sample of the input signal vector is multiplied by a corre-

sponding set of adjustable tap weights w,,, w,,,... , w to

L-1k?

produce an output signal denoted by y,.



FIR adaptive filter

=1 Z—]

LMS algorithm

Figure 2.1.1-1 The FIR adaptive filter
using a tapped-delay line.

During the filtering process, the output of the FIR adaptive fil-

ter , y, .is compared with the desired response output d, to pro-

duce an estimation error ¢, . Hence we have

e, =d, -y,
then
e, =d —X,W,
or
e, =d -W, X, 2.1.1-3)

Since we do not vary W, in the next discussion, therefore for

convenience we now drop the subscript £ from the weight vector,
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W . If the tap-input vector , X, ,and the desired response output,

dk, are stationary, then the mean-square error f , which is de-

finedas & = E[ef] , attime k is given by

& =El[e}]
2 T T T
= E[d-2E[d X" W + W E[X X W
E=E[d]-2PW +W RW 2.11-4)
k

where P is the cross-correlation vector between the tap input

vector , Xk ,and the desired response ,dk, which is known as

P=E[dX,]
P=El[dx,dx, ,...dx,_,. 1 (2.1.1-5)

and R is the auto-correlation matrix of the tap-input vector

Xk, which is defined as

T

R=E[X,X,] _

2
Xk XeXe_1 I N T A
2
R=E X 1% Xieoi X1 Xe—L+1 2.1.1-6)
2
| Xmp+1 % Ke—ne1Xe-1 X L+1 A

From equation (2.1.1-4) ,we visualize the dependence of the

mean-squared error 5 , on the elements of the tap-weight vector
W as a bowl-shaped surface with an unique minimum. We refer to
this surface as the error-performance surface of the FIR adaptive
filter. The adaptive process has the task of continually seeking the

bottom (minimum point) of this surface. At the minimum point of

11



the error-peformance surface, the tap-weight vector is designated

as the optimum value , W".

2.1.2 Gradient search and th imal weight vector :

The optimum weight vector can be sought out by gradient tech-
niques, which is discussed in this section.

The gradient of the mean-square-error performance surface,
designated by V , can be obtained by differentiating (2.1.1-4) to

obtain the column vector.

gl x& %
| ow,” ow,”" ow

T

} (21.2-1)
L-1

The input signal and desired response are assumed to be

stationary ergodic which are independent of W,, hence both R

and P are not function of W . Therefore , V can be calculated as

V =2RW -2P 2.L2-2)
To obtain the minimum mean-square error ,the gradient must
be at zero ( V= 0) and the weight vector W is set at its optimal

value W' . Hence,
2RW ™ =2P =0

Assuming that R is non-singular , the optimal weight vector

W (also known as the Weiner weight vector) is then found as
W =R 'P (2.1.2-3)
The requirement that an FIR adaptive filter has to satisfy is to
find a solution f‘or its tap-weight vector that satisfies the equa-
tion (2.1.2-3). One way of doing this would be to solve this equa-
tion by some analytical means. Although, this procedure is quite

straightforward, nevertheless, it presents serious computational

12



difficulties, especially when the filter contains a-large number of
tap weights. An alternative procedure is to use the method of

steepest descent .

2.1. radient search b he method of stee {1 de-

scent

To find the minimum value of the mean-squared error, ¢

min ’
by the method of steepest descent , the tap-weight vector is ad-

justed in the direction of the negative of the gradient ( -V, ) at

each step. The updated value of the tap-weight vector ,at the k+1j[h
sampling ,is computed by using the simple recursive relation
W, =W, +u(-V) 2.1.3-1)

where [l is a positive real constant that regulates the step size .
By substituting equation (2.1.2-2) for the gradient term in
equation (2.1.3-1), we compute thfa updated value of the tap-weight
vector W, , by using the simple recursive relation
W, .. =W, +2u(-RW + P) (2.1.3-1b)
Equation (2.1.3-1b) then describes the mathematical formulation ‘
of the steepest-descent algorithm. To determine the condition for
the stability of the steepest-descent algorithm, we follow Widrow

and Stearns(1985).

Substituting equation (2.1.2-3) into equation (2.1.3-1b) we have
W, =W, +2uRW - W)
W,,,= I -2 RW  +2uRW"  (2.1.3-2)

Equation(2.1.3-2) is solved by transforming to the principal

coordinate system. We begin the analysis by defining a weight-er-

ror vector. at time k as V, =W, - W, equation (2.1.3-2) then

13



becomes

1

Vi * W= —2uR)WV ,+ W =2 uRW" +2 uRW"
V., = —2uR)V, (2.1.3-3)

We define V', as

Vi=Q'V, (2.1.3-4)

where O is the eigenvector matrix of R.
Substituting equation (2.1.3-4) into equation (2.1.3-3), we now

have
QV,’:+1 = (I —2,uR)QV: (2.1.3-5)

Multiplying both sides of equation (2.1.3-5) by Q ', we have

QQV,, =0 ( -2uR)QV,
Vi=0 (-2uR)QV;
=@ 10 -2u0 ROV,
but Q_IRQ = A where A is the eigenvalue matrix of R (The prop-
erty of eigenvalues and eigenvectors) and A is a diagonal matrix

which is defined as

1
&
]

0
2
0
0

},OOO

===

Then , we have

Vi, =U =2uAV,
Since there is no cross-coupling in the principal-coordinate

14 N\



system , we have
Vi=( -2u8), (21.3-7)
Because the product of two diagonal matrices is just the matrix

of products of corresponding elements , therefore

(1-2u1)" 0 0 ]
k 0 1-2pA) 0
I -2u8 = 0 0 0
0 0 0

k

i 0 0 ves (1_2‘Ll/,{«L_1) ]

*
W, andW" are column vectors of L elements ,thereforeV
*
and V, are also column vectors of [ elements .

We define the elements of these vectors as v}, and v‘lfo , re-
spectively ,where i =0,1,...,L—-1.

Hence,
v o= (-2 ph)v, (2.1.3-8)

Since W, is the sum of V, and W', therefore to guarantee

the stability of the steepest-descent algorithm, we must have

lim (1-2p4)" 0

0
k — oo
0 lim 1-2pa)" 0
0 0 0 =0
0 0 0
0 0 ... lim a-2ur,_ )"
2.1.3-9)

15



In this form , we see that the convergence condition is

satisfied by choosing MU so that:

-1<1-2pA <1 for all i =0,1,...,L-1.
The eigenva‘lues of the correlation matrix R are all real and posi-
tive because R is real , symmetric and in general positive definite
(Widrow,1985). It therefore follows that the necessary and suffi-
cient condition for the convergence or stability of the steepest-
descent algorithm is that the step size parameter U satisfy the

following condition:
0< p< - (2. 1.3 - 10)

where Amsx is the largest eingenvalue of R.
If this condition is satisfied, it follows from equation (2.1.3-7)

that
lim V,=0 (2.1.3-11)

k— o

Now if we substitute (equation 2.1.3-4) in which

V:c: Q—LVk
-1 ) *
= Q (Wk— w )
into equation (2.1.3-11) , we find that

lim W, =W’ (2.1.3-12)

k— o0

Equation (2.1.3-12) shows that if the condition in (2.1.3-10) is
satisfied then the steepest-descent method will guarantee the

weight vector to converge to its minimum.

2.2 THE LMS ALGORITHM FOR PLANT IDENTIFICATION
If it were possible to make exact measurements of the gradient

vector at each iteration, and if the step-size parameter (U is suit-
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able chosen, then the tap-weight vector computed by using the
method of steepest descent would indeed converge to the optimum
solution. In reality, however, exact measurements of the gradient
vector are not possible, and the gradient vector must be estimated
from the available data. On other words, the tap-weight vector is
updated in accordance with an algorithm that adapts to the incom-
ing data. One such algorithm ,that is used in this work , is the
Least Mean Square (LMS) algorithm (Widrow and Hoff,1960). A sig-
nificant feature of the LMS algorithm is its simplicity; it does not
require measurements of the correlation functions, nor does it re-
quire matrix inversion.

This section describes an application of the FIR adaptive

filter to plant identification using the LMS algorithm.

2.2.1 The method

Figure 2.2-1 shows how the schematic configuration of the FIR
adaptive filter is used in the plant identification. Both the un-

known plant and the FIR adaptive filter are driven by the same

input , x,. Our aim in this application is to predict an unknown

FIR of the plant through the minimization of the mean square
error, & = E[e}] , where the estimation error , e, , is produced
by the difference between the plant output and output of the FIR

adaptive filter. At the kth iteration , the estimation error ¢, is

non-zero, implying that the filter output deviates from the refer-

ence-model output. In an attempt to account for this deviation, the
estimation error e, is used as the input to an adaptive control al-

gorithm, whereby it controls the corrections applied to the indi-

17



vidual tap weights in the FIR filter. As a result, the tap weights of

the filter have a new set of values for use on the next iteration.

Thus , at the k + llh iteration, a new filter output is produced, and
with it a new value for the estimation error. The operation de-
scribed is then repeated. This process is continued for a suffi-
ciently large number of iterations (starting at iteration k=0),

until the deviation of the model from the unknown dynamic plant,
measured by the estimation error e , becomes sufficiently small.
This method of determining the FIR of the plant is referred to as
the Non-Parametric Plant Identification (NP-PI).

In figure 2.2-1( see next page) , we define the weight vector of

the FIR adaptive filter as W, . Then ,we have :

e,=d,— X,W, (22.1-1)
where
T
X, =[x X1 Xpgseee s Xp_p il (22.1-2)
and
W, =Wy 0o Wy oo s Wy, ] (2.2.1-3)

18
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Figure 2.2-1: Block diagram of the NP-P|.

To develop the LMS algorithm , at each iteration in the adaptive

process , we take a gradient estimate , V

. of the form:
oe’, de,
aM}O aM)O
Vk= : =2e) :
e’ de,
B awL—l_ _aWL—l_
Vk=—2eka (2.2.1-4)

and the weights are adjusted in the direction of the negative gra-
dient at each step ,by definition , we have

Wea=W,-uv,

W, =W, +2ue X, (2.2.1-5)

where [ is a constant that regulates the step size .

Equation (2.2.1-5) is called the LMS algorithm, which is used to
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adjust the weight vector of the FIR adaptive filter throughout this

work.

2.2.2 nvergen fthe weight v r

In this section , we will study the convergence of the LMS algo-
rithm as applied to plant identification.

To examine LMS convergence ,we first note that the
gradient estimate in equation(2.2.1-4) can readily be shown to be
unbiased when the weight vector is held constant. The expected

i

value of equation (2.2.1-4) with W, held equalto W is
E[V, ]1=-2E[eX,]

=—2E[d,X,- X X,W]
=—2(P - RW)
=2(RW - P)

and from equation (2.1.2-2) we have

A

E[V. 1=V (2.2.2-1)

k

Since the expected value Vk is equal to the true gradient V,

A

Vkmust be an unbiased estimate. However, with the weight

vector changing at each iteration , we need to examine the weight
vector convergence , as follows .

From equation (2.2.1-5) we can see that the weight vector
W, is a function only of the past -input vectors
Xe—rL+1> Xe—r+2s---» Xp_1» X, . For stationary input processes we
have W is independent of X, , because successive input vectors

are independent over time . Therefore taking the expected value

of both sides of equation(2.2.1-5) yields
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EW, , 1=EW,(]+2UE[e X,] (2.2.2-2)
=EW])+2u{Ed,X]- EX XW,U1}
=EW,]+2u{P - REW ]}

EW, 1= -2uR)EW ]+2uP (2.2.2-13)

EW, 1= -2uR)EW ]+ 2uRW" (2.2.2-4)

(as from equation (2.1.2-3)W" = R_lP).
Equation (2.2.2-4) has just the expected form of equation
(2.1.8-2) , which was solved by changing to the principal-axis

coordinate system. Using expected values , the solution is
EV=0 -2uMN'V, (2.2.2-5)
where V: is the weight vector, W, , in the principal-axis system,

A is the diagonal eigenvalue matrix of R, and V; is the initial

weight vector in the principal-axis system.

Therefore , as k increases without bound , thé expected
weight vector in equation (2.2.2-5) reaches the optimum
solution(i.e., zero in the principal-axis system) only if the right
hand side of the equation converges to zero. We have seen in
section (2.1.3) that such convergence is guaranteed only if

1
A

max

O< u< 2.2.2-6)

where Amax is the largest eigenvalue of R.
Hence the LMS algorithm based on the steepest-descent gradi-
ent searching method will control the taps of the FIR filter to its

optimum value.

2.2.3 The weight vector of the FIR adaptive filter in
plant identification
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If the input signal, x, ,is assumed to be a stationary ergodic

2
white sequence with variance , & ,then from equation (2.1.1-5)

and (2.1.1-6) we have

P=58G (2.2.3-1)
R=61 (2.2.3-2)
where
G =18 8 8 > 81o1] (2.2.2-3)

G is called the unit impulse response of the plant and

80> &> &> --- » & _, are constant parameters of G .

The optimum weight vector , W~ , in equation (2.1.2-3) then be-

comes
W'=R'P
2 -1 2
=0 1) (06G)
W= G (2.2.3—4)

which shows that the weight setting of the FIR adaptive filter
matches with the plant unit impulse response.

So, if the input signal is stationary ergodic white sequence and
condition (2.2.2-6) is satisfied, then the LMS steepest-descent
method will guarantee that the shape of the weight vector of the

FIR adaptive filter converges to a true plant FIR.

2.3 THE FILTERED-X LMS ALGORITHM FOR AN OPEN LOOP
MODEL REFERENCE ADAPTIVE CONTROL |

The LMS algorithm of the form as in equation (2.2.1-5) has to be
modified to apply into model-reference adaptive control. The re-
quired modification is known as the filtered-X LMS algorithm,

(Widrow and Stearns 1985).
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2.3.1 The filtered-X LM lgorithm

As we have seen in section (2.2.1) for plant identification that
to control tap-weights of the FIR adaptive filter, the estimation
error e, is used as the input to an adaptive control algorithm. The
LMS algorithm adjusts the tap-weight vector in the form of equa-

tion (2.2.1-5) which is rewritten here for convenient,
W, =W, +2ue X, (2.3.1-1)

where [ is a constant and e, is the difference between the plant

output ( d,) and the FIR adaptive filter output (WTXk). i.e.,
e,=d -W' X, (2.3.1-2)
This principle was illustrated in figure 2.2-1.
However , to apply the LMS algorithm and the FIR adaptive filter
to model-reference adaptive control , the requirement is to devel-
op a controller in the form of the FIR adaptive filter to control the

plant so that its output signal, ¢,, follows the model-reference

output signal , d,. This principle is illustrated in figure 2.3.1-1.

X
k FIR Yk e
— > ant
filter > Hp(a)
adaptive algorithm <
(LMS)

Figure2.3.1-1 The FIR filter applied to
model reference adaptive control.

Figure 2.3.1-1 shows that when the LMS algorithm is applied to
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a model-reference adaptive control, the signal e, is not the error

at the FIR filter output, but at the plant output (e, = d, — c,) .

Now, if we define the pulse transfer function of the plant as a

rational function in the shift operator g (for more detail, see

chapter 3), H,(gq), then the plant output, ¢, , can be written as
c,= Hy(q)u, (2.3.1-3)
where u, is the plant input signal .

Then we have
e,=d,— ¢
=d, - H,(q)u,
But u, is the output of the FIR filter, whose weight vector is W,
therefore ,
u,= WkTXk
Hence
e,=d, — HP(Q)(W:Xk)
e,=d,~ W, (H()X,) (2.3.1—4)
As seen from equation (2.3.1-4), in model-reference adaptive

control the error e, is the difference between the desired refer-

ence-model response d, and plant output signal in the form of

WZ(HP(q)Xk), whereas in plant identification the error e, is the

difference between the plant response d, and and the FIR adaptive

filter output WTXk :

Therefore to be able to apply to model-reference adaptive con-
trol, the LMS algorithm , in the form of equation (2.3.1-1), has to

be modified as .
Wk+1=Wk+2/.tek(H,,(q)Xk) (2.3.1-5)
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where H,(g)X, is the plant output vector subject to the plant

input vector X,.

Alternatively, this modification can also be derived by taking

the gradient estimate as in equation (2.2.1-4) which is

v : oe;, o oe’, 5
k aWO ’ aw1 , aWL—I
with e, as given in equation (2.3.1-4).
Then we have
e’ | e,
A awo aWo
V.= ¢ =2e,|
e’ de,
| awL—lJ L aWL—1, ’
Vk:—Zek[Hp(q)Xk] (23.1-6)

T
where X =[x X 15 X, 104l

W=y Wi W1y T
and using the method of steepeAst descent, we obtain

Wea=W,—uv,

Wea=W, +2pe[H(@)X,]
This equation is exactly as same as equation (2.3.1-5) and is known
as the filtered-X LMS algorithm. It is used to adjust the weight
vector of the controller in the model reference adaptive control
and the method is named as an open-loop Non-Parametric Model

Reference Adaptive Control (NP-MRAC).

| Figure 2.3.1-2 illustrates mathematically how the NP-MRAC is

realized.
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plant identification

Copy the weight vector of ' FIR .
filter 1 mt? ’Eh_e_n_n_agie_fl]:te_r _____ ! filter 1 :
- T : -
' 15 LMS
' FIR controller g _a_]E;o_rjt_hfn_ _ _unhoise | +
N Bttt ! +
= : > FIR ~+—>  plant —(‘5—-—>
! - filter?2 P Uy C
: : t :
: | Y , -
1 mage LMS ' ek )r
T filter f Lalgorithm [
> REFERENCE MODEL ¥
(open loop TF) dy

Figure 2.3.1-2: Block diagram of the open 1oop NP-MRAC.

As seen in this figure , the open loop NP-MRAC uses two adap-
tive FIR filters whose weight vectors are adjusted by the LMS al-
gorithm : one (FIR filter1) to identify the FIR of the plant and the
other (FIR filter2) to control the plant .

The weight vector of the FIR filter 1 is transferred into the

image filter. The input signal, x_, is now modified by the image

k!

filter to produce the signal f, .This signal,f, , and the error sig-

K k’

nal,e, , are used by the LMS algorithm to adjust the weight vector

k)

of the FIR controller.

2.3.2 CONVERGENCE OF THE WEIGHT VECTOR

In this section we will discuss on the convergence of the tap-
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setting of the controller FIR filter which is based on the filterred-
X LMS algorithm applying to Non_Parametric Model-Reference
Adaptive Control (NP-MRAC).
Let
G =08y 8- r8 1] (2.3.2-1)
be the plant unit impulse response vector.

Let

M=[mg,m,..,m_,] (2.3.2-2)
be the reference-model unit impulse response vector.

Let

W o=y, w,o Wy, 1 (2.3.2-3)
be the controller weight vector.

Without loss of generality, we can assume that the length of
vectors G ,M and W is L , which is a maximum number of
non-zero samples of the impulse response of the plant, model and
controller respectively(as seen in equations 2.3.2-1, 2.3.2-2 and
2.3.2-3).

We define an input signal vector as

T
X, =[x, x, X greees X p, ) (2.3.2-4)
Then the FIR controller output signal is
u,= X,W
or -
w,=Ww X, (2.3.2-5)

and we define an output signal vector as
T
U=[u, uy_seee s Uy_p 4] (2.3.2-6)

The FIR model output signal is
d=X,M
or
d=M X, (2.3.2-7)
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The plant output signal is
T
.= G

~

y.,=G

The error signal e, is defined as

Uk
X W
X, W

T

Xk—L+1WJ

e,=4d, — Yy,

Hence

or

Now let

then we have

2

8

(2.3.2-8)

(2.3.2-9)

(2.3.2 - 10)

(2.3.2-10b)



Xw
T
£=Ed1-2E|aG" | XV
T
L _Xk—L+1W__ _
] o .
G X, G X,
T Y
+W'E G X,_, G X,_, W
T T
__G Xk—L+1_ _G Xk—L+1_ a
(2.3.2 - 11)
- -
G X,
T
£=E[d1-2E|d, |© X W
T
_ | _G Xk—L+1_ n
- ar T
G X, G X,
T T
cwiE[|O Xer |G X | |
T T
__G Xk—L+l_ __G Xk—L+1_
(2.3.2-12)
E=E[d]-2P'W + W' RW (2.3.2 - 13)
where
-, L
G X,
G'X
P=E|ld |~ “e (2.3.2-14)
T
L _G Xk—L+l__
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and

- - T
¢'x, |6"x, il
T T
R=E||C Xt |G Xic (2.3.2~15)
T r
__G Xk—L+1_LG Xk—L+1_ a

Differentiating equation (2.3.2-13) , we obtain

dg
7~ =2RW —2P . (2.3.2-16)

Now solving for the optimum weight vector, we have
W'=R'P (2.3.2-17)
The result of equation (2.3.2-17) indicates that optimum weight
vector of the controller using the NP-MRAC method can be found by
the gradient techniques.
Same principle as section (2.2.1) , at each iteration in the adap-

tive process, we take a gradient estimate of the form:

. de’>  Ode* ot T
V =] , e s ]
£ Tow, ow, w,_,
then
T 7
G'x,
2 G X
V o=—2¢)0 Fe- (2.3.2-18)
r
G Xk—L+l_

To show that the weight vector converges to its minimum,

first we can show that the gradient is unbiased, as follows.
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E|V,|=-2k|e)F X (2.3.2-19)

k—~L+1]

and from equation (2.3.2-10), we obtain

- ) N -

G'X, ¢'x, |
. G X G X
E[Vk]:—ZE d, - ket w kel (2.3.2 -20)
r 7
AN _G Xk—L+1_ )_G Xk—L+1__
v o ) PN
G'x, ¢'x, |l¢"x,
T T T
EI:V }:_ZE de Xk—l _ G Xk—l G Xk-l W
k. . . .
T T T
A _G Xk-L+1_ _G Xk—L+1__G Xk—L+1_ ya
(2.3.2-21)
Hence,
E[VJ:ZRW —-2P (2.3.2-22)

=V

where P and R are defined in equation (2.3.2-14) and (2.3.2-15),

respectively.

Equation (2.3.2-22) shows that the expected value Vk is equal
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A

to the true gradient V. Therefore Vk must be unbiased estimate.

Next we will examine the weight vector convergence.

Let us assume that we know exactly plant impulse response (G),

then the filtered-X LMS algorithm (in the form of equation 2.3.1-5)

can be rewritten as

W

k+1

=W, +2ue|

Taking the expecting weight vector of this equation ,

E[Wk+1] =EW, 1+2uE

we have
G'X,
G X,_,
T
_G Xk—L+1__
(2.3.2-23)

e, is as defined as in equation (2.3.2-9) and the controller

weight vector is set at W,c . Thus , we have
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" T
G' X,
G X

k-1

EW,,]=EW]+2uE|M X,

r
L O X
L wix G X,
W, x, , ||G'X

k-1

-2 UE|G

T T
k Xk—L+l__ _G Xk—L+1J i

(2.3.2 - 24)

or

EW, ]=EW]+2uE|M X

— 2 LE 1 | EW ]

L L k-L+11L k-L+1]

(2.3.2-125)
EW, ]=U-2uRE [W,]+2uP (2.3.2-26)
where P and R are as defined as in equation (2.3.2-14) and
(2.3.2-15) , respectively. Substituting P = RW’ (from equation
2.3.2-17) into equation (2.3.2-26) , we have
E[W,,]=U -2uR)E [W,] +2uRW’
This equation has the same form as equation (2.1.3-2), there-

fore it leads to a conclusion that the weight vector of the control-

33



ler in the NP-MRAC will converge to its minimum if a condition

O< u< ll

max

is satisfied.

In this section the convergence of the tap-setting was exam-
ined under the assumption that the plant FIR was exactly known. In
the situation where the plant FIR is not known, then an error will
be introduced. For this case, the proof for convergence of the fil-
tered-X LMS aigorithm is not available yet. However simulation
studies seem to show that the Non-Parametric Model-Reference
Adaptive Control (NP-MRAC) does converge to the correct value.
This is evident in chapter 3 where simulation studies of both the

NP-Pl and the NP-MRAC are presented.
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CHAPTER 3

NP-PI AND NP-MRAC SIMULATIONS
ON THE NEC-APC3 COMPUTER

In chapter 2, we have seen the theory of applying the FIR adap-
tive filter to Non-Parametric Plant Identification (NP-PI) and Non-
Parametric Model-Referénce Adaptive Control (NP-MRAC) . In this
chapter we will demonstrate its effectiveness by simulation .

The test input signal, a pseudorandom binary signal, used in the
simulations is discussed in section 3.1. Simulation studies are ob-
served for the NP-PI in section 3.2 and for the NP-MRAC in section
3.3. All simulations were done on the NEC-APC-3 computer. All
programs were written in Fortran 77 and their listings are includ-

ed in the appendix B.

3.1 TEST INPUT SIGNALS

It has been shown in chapter two that the shape of the weight
vector of the FIR filter would match with the shape of the FIR of
the plant, only if the input signal to the FIR filter is a stationary
wide-band white signal. The Pseudorandom Binary Signal (PRBS),
though bandlimitted has characteristics which are close to a wide-
band white signal (Speedy, Brown and Goodwin1970). In this work,
unless specified otherwise PRBS was chosen as a test input
signal throughout the simulations and the experiments. The PRBS
is a periodic binary signal in which the switching between one
level and the other takes place in a random manner, but is discre-

tised in time by allowing the switching to take place only at mul-
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tiples of period,T . A typical waveform of the PRBS is shown in

figure 3.1-1.
PRBS

A

+a

) time
T |27 ‘4T 5T | 6T 8T

Figure 3.1-1 A typical section of a PRBS.

The auto-correlation of the PRBS is shown in figure 3.1-2. The
function consists of an infinite series of triangular spikes cen-
tered at 7= kLT for k=—oc,...,—1,0,1,... +0,

where [, is the number of elements in one period of the PRBS.

¢x(T) A A

T

JY A O WY A A W

Figure 3.1-2 Auto-Correlation Function of an N-bit PRBS
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The principle of generation of the PRBS has been presented by
many authors . In this work a 10-bit PRBS generated by the soft-
ware was used. The software consisted of the simulation of at10-
bit shift register and an exclusive-or gate. The generation scheme
is illustrated in figure 3.1-3. The signal is obtained from the 10'[h

stage output of the shift register.

10-bit shift register

™ 1123456789 |10—>

x (k —10)
| x(k) = /I
x(k -7 ®x(k —10)\

Figure 3.1-3 The principle of generation a 10-bit PRBS.

x(k =7)

At the kth iteration, the output of the exclusive or is
x(k)=x(k-7) @ x(k-10) 3.1-1)
where @ denotes as the exclusive-or operation .

At the (k+1)th iteration, the contents of the shift registers
are displaced to the right by one register, with the contents of
the first register being replaced by x(k), and with the contents
of the tenth register x(k —10) being output as an element of the
PRBS. This result scheme produces a PRBS with L=1023 ( = 21 0-1)
elements in one period.

The PRBS subroutine was written in Fortran 77, and its listing

is included in the appendix B.

3.2 A NON-PARAMETRIC PLANT IDENTIFICATION (NP-PI
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3.2.1 Plant models
Dynamic plants whether mechanical, electrical, thermal, hy-
draulic, economic, biological, etc., can be characterized by differ-
ential equations. For instance, a linear time-invariant plant can be
defined by the following differential equation
(n) (n—-1) .
aqy+a y +...+a,_,y+ay=

(m) (m=1) .
by x +b, x +..+b, _,x+byx (n=>m)

(3.21-1)
where 1y is the output of the plant, x is the input of the plant,
and a; and b; (where 0<i<n and 0<j < m ) are constants .

In control theory, a transfer functions is used to characterize
the input-output relationshi‘p of the linear continuous-time time-
invariant plant. It is defined to be the ratio of the Laplace trans-
form of the output signal to the Laplace t(ansform of the input
signal, under the assumption that all initial conditions are zero.
The transfer function of the plant represented by equation (3.2.1-
1) is then obtained by taking the Laplace traﬁsforms of both sides
of this equation , under the assumption that all initial conditions
are zero. This is known as a continuous-time transfer function and

is represented as /

Transfer function P(s)=

y(s) bys"+bs"'+...+b, s+b,
x(s)  as"+as 4. +a,_,s+a,

(3.21-2)

In this thesis, the FIR adaptive filter is realized in digital com-
puter software, therefore for simulation studies the transfer

function of the plant has to be discretized. Below is the descrip-
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tion of the méthod to derive the discrete-time transfer function
from the continuous-time transfer function.

The continuous-time transfer function of the plant is dis-
critized by applying a Z-transform. The Z-transform has the same
relationship to the linear time-invariant discrete-time plant as
the Laplace transform has to the linear time-invariant continuous-
time plant. The simple substitution

z=¢e7 (3.2.1-3)
converts the Laplace transform to the Z-transform.

In computer control, a Digital to Analog (DA) converter is con-
structed so that it holds the analog signal constant until a new
conversion is commanded. This structure can be modeled as a Zero

Order Hold (ZOH) data-extrapolator. Its transfer function is

1 _ =T
Poon(5) = —+— 3.2.1-4)

where T is the sampling interval.

Hence the resulting transfer function of the process including

the ZOH data-extrapolator can be written as

P(s)= P, (s)P(s)
or
T bys"+bs" T+ +b, _ s+ Db

P(s) = (E=—&)(

m

3.21-5
as"+as"'+...+a,_,s+ a, ) | )

Using equation (3.2.1-3) , the discrete-time transfer function is

then described as
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by+ bz '+ ...+ bz "
A ——— (3.2.1-6)

* -1 * _—
—alz —CIZZ - .. — Q. z

n

P(z)= I

where P (z) represents a discrete-time transfer function of

the plant which is represented as in equation (3.2.1-2).
d, and b:. (where 0< i <nand 0< j < m) are discrete-

time constants of the plant .

Thus all poles in an s-plane of the plant are transferred into z-
plane by equation (3.2.1-3).

Another way of the representation of the input-output relation-
ship of the-linear discrete-time time-invariant plant is by using
shift operators. Shift-operators for discrete-time plants are
equivalent to the use of differential operators for continuous-time

plants. The back-ward shift-operator is defined as
g'f(k)=Ff(k-1) 3.2.1-7)

where {f(k):k= —oo,...,=1,0,1,... .4} is the infinite
discrete sequence,

and k is atime index where the sampling period , T, is chosen
as a time unit.

The discrete-time transfer function is then obtained using a
state-space method. The state-space model including the ZOH de-

vice can be described using shift-operator, which is written as

—m

Py b by+ b g ' +...+ bnq
V="x, T l-dq'-aq*-..-dq"

(3.2.1-38)

where P*(CI) represents a discrete-time transfer function of the

plant which is represented as in equation (3.2.1-2).

Yy and x, are the sampled output signal, y, and
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input signal, x;
d, and b*j (where 0<i<n and 0<j < m ) are equivalent to

d, and b*j in equation (3.2.1-6) .

In this chapter, plants to be identified were first selected as
the continuous-time transfer-fuction. Then they were converted to
the discrete-time transfer function, using the ZOH . The discrete-

time transfer function was used for simulation.

3.2.2 Simulations of the NP-PI
Figure 3.2.2-1 shows the schematic configuration of an FIR

adaptive filter used in the plant identification as discussed in

chapter 2.
Plant Identification
. T T
I S0 FIRfilter
I
' il
I
| LMS
. > algorithm
N
Xk
*—> Plant

Figure 3.2.2-1: Block diagram of the NP-P|.

Simulations were done on two types of second order plants : one
with complex poles and the other with two real poles. The number

of taps of the FIR adaptive filter was adjustable. The simulation
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results are attached here.
The first plant’s continuous-time transfer-function was se-

lected as

2

w
P = - 3.22-1
(s sS4+ 28w, s + wh ( )

where £ =0.1 and w,=2

The sampling period was TS=O.2 seconds. Using the ZOH equiva-

lence , its discrete-time transfer-function was

0.1517314 ' - 0. 0000034 >
1-—1.7713884 ' + 0. 92311642

P(ghH= (3.22-2)

This plant was simulated on the NEC-APC-3 to test the ability
of the FIR adaptive filter to track the shape of the impulse re-
sponse of the plant.

Figure 3.2.2-2 shows the tap values of a 120-tap FIR filter and
the impulse response of the plant. It was simulated using PRBS as
a test input signal. (The mathematical model of the impulse re-
sponse of the plant is discussed in the appendix B).

Figure 3.2.2-3 is similar to figure 3.2.2-2 . However, it was
simulated using a square wave signal as the test input signal.

It is clear from these figures that the PRBS is a better signal
to identify the plant, as properties of the PRBS are approximately

same as the white noise (refer to section 3.1).
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The following two pages are figures 3.2.2-2 and 3.2.2-3 , which
show /

the shape of the weight vector of the 120-tap FIR
adaptive filter , X , and

the finite impulse response of the plant, {3

The first graph ,figure 3.2.2-2 |, was plotted for the NP-PI with
the PRBS using as the test input signal.

The second graph ,figure 3.2.2-3 , was plotted for the NP-PI
with square wave (period of 800 iterations) as the test input sig-
nal.

Both simulations were done with U = 0.002 . The graphs are
the response of the system after the end of the first PRBS period

(1023 iterations).
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Figures 3.2.2-4a and 3.2.3-4b show the tap values after conver-
gence of the 40-tap FIR filter and the 80-tap FIR filter respective-
ly using the PRBS as the plant input. These simulations show that a
better result can be obtained by using the FIR adaptive filter with

more taps.
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The following two pages are figure 3.2.2-4 , which shows
the shape of the weight vector of the FIR adaptive
filter , X , and

the finite impulse response of the plant, = . .

The first graph, figure 3.2.2-4a, was plotted for the NP-PI with
the 40-tap FIR adaptive filter.

The second graph,figure 3.2.2-4b, was plotted for the NP-PI
with the 80-tap FIR adaptive filter.

Both simulations were done with 1 = 0.002. The graphs are
the response of the system after the end of the first PRBS period
(1023 iterations).
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The second plant is represented in continuous-time ‘transfer

function by

1 A
0.135s+1)(3.87s +1)

P(s) = (3.22-3)

Its discrete-time transfer function,With the sampling period Ts =
0.2 seconds, becomes
0. 8248215q"1 + 0. 0147311q‘2

—1y _
P4 ) =17 Tea3aaq 7+ 0. 20380682 %2~

The simulations using the 80-tap FIR adaptive filter. Figures
3.2.2-5 and 3.2.2-6 show PRBS as the test input signal and square

waveform as the test input signal,respectively.
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The following two pages are figures 3.2.2-5 and 3.2.2-6, which
show

the shape of the weight vector of the 80-tap FIR adap-
tive filter, X , and

the finite impulse response of the plant , [d

The first graph,figure 3.2.2-5 ,was plotted for the NP-PIl with
PRBS as the test input signal. The graphs are the response of the
system after the end of the first PRBS period (1023 iterations).

The second graph,figure 3.2.2-6 , was plotted for the NP-PI
with square wave (period of 800 iterations) as the test input sig-
nal. The graphs are the response of the system after the end of the
third PRBS period (2400 iterations).

Both simulations were done with U = 0.002.

47



Z+3 670

VIEHNN JU)

8’e L°0

s’e

v'o

£°09

L e

g -

n——

g1

S°1

8°e

§°2

8°E

S°€E

2°Y

S°

9°s

INILL3S dUl




Z+3 6°0 e e L8 9°p S°9 b0 £°0 P2 - 1°0
uaﬂaaaaaaaaaamaaaaaa . . )
a n
* L LT L S
Xy xx X% Bogg X,
%236 3050 303 X X% aaaaa Xx
aasa xlx
aaa X
By X
o x
@ x
B x
[ IR
B %
EEKX
aax
a%
oX
ax
0
Wx

Wy
By

@

2°t

S°1

s°¢

B°E

S'e

8

SV

Z-3

ONILL3S dHl




PEN L P__NON-PARAMETRI MODEL-REFERENCE
ADAPTIVE CONTROL (NP-MRBRAC)
Figure 3.3-1 illustrates the position of the LMS algorithm in the
open loop NP-MRAC which was discussed in chapter 2. The adap-
tive control scheme was simulated using a 40-tap FIR adaptive fil-

ter to identify the plant and to generate the controller.

plant identification

Copy the weight vector of ' T FIR
filter 1 into the image filter > filter 1
:- T ; A
, SILMS
 FIR controller . Lelgorithm |
ki LT R L :
: : | riterz | rup | Pt
1 : 3 '
; | 4 , ~
[ Tmage LMS : e ¥
> . > . <!
CLfiter [ lewgorithm [ oo ioop %)
_ e

> REFERENCE MODEL
(open loop TF)

Figure 3.3-1: Block diagram of the open loop NP-MRAC.

Plant with parameter variation and time delay variation was
simulated on the digital computer as follow.

(i) To test for parameter variation the transfer function of the
plant was initially set as in equations (3.3-1). The change in plant
parameter was simulated by changing the transfer function to
equation (3.3-2). The two discrete transfer functions were select-
ed so that the overshoot was 40% for the first one (equation 3.3-1)
and 140% for the second one (equation 3.3-2).
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0.22(¢ ' +2g %+ g¥Hq?
1-0.75¢ ' +0.64q°>

plg = (3.3-1)

249 (¢~ 0.8¢7)
1-0.1g'-0.42¢77
where d, =3

plg = (3.3-2)

Figure 3.3-2 demonstrates the ability of the open loop NP-MRAC
to control the plant with parameter variation. The plant was
switched from equation (3.3-1) to (3.3-2). The reference model
pulse transfer function (equation 3.3-3) was selected in the dis-

crete form such that its overshoot was 16%.

0.03g°+2¢ %+ q’
1-1.53¢""'+0.669 2

M(qghH= (3.3-3)
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The following two pages is figure 3.3-2, which shows
the step response of the uncompensated plant, X ,

compensated plant, I<) , and reference model, 4

The first graph was plotted for the plant with the transfer
function of equation (3.3-1) which was plotted after 9 periods of
the PRBS, and

the second graph was plotted for the plant with the transfer
function of equation (3.3-2) which was plotted 6 periods of the
PRBS after the change in parameters of the plant.

Both simulations were done with U= pu, =0.00004.
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(i) For time delay variation, figure (3.3-3) demonstrates the
ability of the open loop NP-MRAC to control the plant with time

delay variation. The plant’s transfer function was given by

equation (3.3-2 ) with time delay (dp) switched from 3 to 7,

while the model pulse transfer function was given in the discrete

form as in equation (3.3-4).

0.25¢™ "
Z 4 +0.25¢"

M(q'l):l (3.3-4)

Tap values of the FIR adaptive controller are shown in figure
(3.3-4) . Observation shows that as time delay of the plant was in-
creased from 3 to 7 sampling time units, the tap values shifted 4
units to the left. This indicates that in the NP-MRAC, for large
time delay variations the shape of the taps of the FIR filter will be
easier to adapt and the NP-MRAC is more stable then the Self
Tuning Controller (STC). Because in STC, to allow for large time
delay variation, a large number of parameters must be estimated
as the order of the numerator polynomial is increased by an upper
limit of the time delay. Further, due to round off error in computa-
tion, estimation of zero parameters of the numerator polynomial
becomes difficult hence imperfect pole-zero cancellation may take

place which gives rise to instability.
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The following two pages is figure 3.3-3 ,which shows
the step response of the uncompensated plant, X ,

compensated plant, Ef , and reference model, ¢

The first graph is the plot of the response of the plant with 3
sampling time unit of the time-delay after 9 periods of the PRBS.

The second graph is the plot of the response of the plant 6 peri-
ods of PRBS after its time-delay changed from 3 ton 7 sampling
time unit.

Both simulations were done with U = 0.00004.
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The following two pages is figure 3.3-4 , which shows
the tap setting of the FIR adaptive filter using as the

controller to the plant with time delay variation.

The first graph was plotted , when the time delay of the plant
was 3 units.

The second graph was plotted , when the time delay of the plant
was 7 units.

They are the shape of the controller’s tap values for the com-

pensated plant in figure 3.3-3.
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Simulations indicate that the open loop NP-MRAC based on the
FIR adaptive filter and the LMS algorithm has excellent adaptation
capabilities in the presence of both parameter and time delay vari-
ations. However the main drawback of this scheme is its relative
slowness to detect additive noise as described beIO\;v. The plant is
often subjected to disturbance and hence an additive noise is in-
troduced at the plant output (known as a plant noise, as shown in

figure 3.3-1. Therefore, even though the NP-MRAC is .used to esti-

mate the error, e, , to actuate the adaptive process thereby closing

K
the feedback loop (namely an outer loop, see figure 3.3-1), we still
refer to it as the open loop NP-MRAC, because the the adaptive
process is slow to detected the plant noise. To overcome the above
drawback, in the next chapter the plant feedback is applied, the
new system then known as a closed-loop NP-MRAC. An advantage
of the closed-loop NP-MRAC is that the use of the feedback makes

its response relatively insensitive to external disturbances.
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CHAPTER 4

CLOSED LOOP NON PARAMETRIC -
MODEL REFERENCE ADAPTIVE CONTROL

So far we have seen the method and simulation results of the
open loop NP-MRAC. Although the theory of the closed loop NP-
MRAC has not yet been developed , simulation studies (will be
discussed later in this chapter) have shown that an FIR adaptive
filter can be applied to a model-reference adaptive control in a
closed loop form.

This chapter will describe the simulation studies of the NP-
MRAC applied/to a closed loop system. The method is discussed in
section 4.1. The .excellent adaptation capabilities of the closed
loop NP-MRAC in the presence of both parameter and time delay
variation is demonstrated in section 4.2. The closed loop NP-MRAC
has good set point tracking property, because it can both allow for
closed loop pole placement and place no restrictions on the closed
loop zeros. The set point tracking property is demonstrated in sec-
tion 4.3.

To handle a plant which includes integrators, small modifica-
tion of the NP-MRAC is required. In section 4.4, the modification is

discussed and also simulation study is included.

4.1 THE CLOSED LOOP NP-MRAC:
The NP-MRAC that has been discussed in chapter 2 and chapter 3
refers to as an open loop system. Because the system consists of

only one loop , namely outer locop, that adjusts the controller
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weight vector in such a way that the error, e between the plant

output and reference model output becomes small; the inner loop
consisting of the plant and the linear feedback controller is left
out. In this section, the closed loop NP-MRAC which includes both

outer loop and inner loop is introduced.

plant identification
..| FIR :
Copy the weight vector 1 filtert :
of filter 1 into filter3 . A : _
Ay SN IS le—
i FIR controller ' _?]?O_r_]t_h[n_ ' !'noise |+
rFr==== , TS~~~ ----°-° h | +
. >| FIR L o> —6—T—¢>
: fiterz | 10 | M C\
] \ .
v : _
Image LMS ; % X
Lfilter [T lalgorithm [< O
Lo - .-/ J \

+
dg

> REFERENCE MODEL
(closed loop TF)

Figure 4.1-1: Block diagram of the closed loop NP-MRAC
using a ref. model with closed loop transfer function

Figures 4.1-1 and 4.1-2 illustrate the closed loop NP-MRAC. As

shown, the plant output signal is feedback to the system and is
subtracted from the input signal; the difference (xk=rk-ck) then
passes through the adaptive controller.

The reference model can be chosen to have either the closed

loop transfer function or the open loop transfer function char-

acteristic. When the closed loop transfer function model is used ,
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the input signal, Floo is applied to the model. This is illustrated in

figure 4.1-1. If on the other hand the open loop transfer function

model is used, then the difference ( X, =M Cp ) is applied to the

reference model , as seen in figure 4.1-2.

plant identification

Copy the weight vector ' FIR
of filter 1 into filter3 > tilter |
. : A
- ¢ LS
Ck tFIR controller . e_ﬂ_go_rjt_h_m_ o
Xy T T T T T 7 '
SO—e- : > FIR et byt
1 ' h 1
: Y :
' | Image LMS :

| filter fk' algorithm
!. ...................

> REFERENCE MODEL
(open loop TF)

Figure 4.1-2: Block diagram of the closed loop NP-MRAC
using a reference model with open loop transfer function

4.2 TRACKING ABILITY OF THE CLOSED LOOP NP-MRAC TO
THE PLANT WITH BOTH PARAMETER AND TIME DELAY
VARIATIONS:

The closed loop NP-MRAC was simulated using the FIR adaptive
filter with 40 taps for both the plant identification and the con-
troller synthesis . '

A - The ability to track plant with parameter variation was

observed on the closed loop NP-MRAC. The reference model was se-

lected so that its closed loop pole is stable and is placed at q=0.8.
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The closed loop transfer function of the reference model , as-
shown in figure 4.1-1, was selected in the discrete-time transfer
function

MY = 0.066]_5 ’
(q )—1 4.2-1)

-0.8¢"
The open loop transfer function reference model, as shown in

figure 4.2-2, was selected

0. 064~
1-0.84'-0.06g"°

M(qg"= (4.2-2)

Two continuous-time transfer functions were selected as

8.5
(s+2)(s +4s +4.25)

P(s) = (4.2-3)

and
2

w
P(s)= " 42-4
A(5) S+ 26w, s+ W ( )

Where E=0.1 and w,=2

They were sampled at TS=O.25. Their discrete time transfer func-

tions were
1 0. 00842q‘1 + 0. 0250061‘2 + 0. 004619q‘3
Plg )=+ 1 e 5 (4.2-5)
1-2.0043g" " + 1. 34345¢q 0.30119%4¢
and
1 0. 1517314[l - 0. OOOOOSq'2
PAq =17 (4.2-6)

—1.771388¢" ' + 0. 9231164 >

The output responses of the model and the plant to a square
wave input are shown in figures 4.2-1 and 4.2-2 for model equa-
tion (4.2-1) and equation (4.2-2), respectively. The following sa-

lient points are noted :
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(1) The first period is the output of the compensated plant
whose transfer function was selected as in equation (4.2-5).

(2) The second period is the output of the plant when its
transfer function was switched from equation (4.2-5) to (4.2-6)
and the weight vector of the FIR controller (FIR filter-2) hadn’t yet
been adapted.

(3) The third period is the output of the plant, when the
weight vector of the FIR controller readjusted itself to control the

plant with the new transfer function (equation 4.2-6).
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The following two pages are figures 4.2-1 and 4.2-2 ,

“The output responses of the model and the plant to a
square wave input”.

The first graph (figure 4.2-1) was plotted for the closed loop
NP-MRAC with the closed loop reference model of equation 4.2-1.

The second graph (figure 4.2-2) was plotted for the closed loop
NP-MRAC with the open loop referénce model of equation 4.2-2.

Both simulations were done with tt= pu, = 0.002.
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B-The ability to track plant with both parameter and time delay
variations was tested on the closed loop NP-MRAC, whose ref-

erence model was represented in a closed-loop transfer-func-
tion form (figure 4.1-1). The plant transfer function was

switched from equation (4.2-7) to (4.2-8).

2.5
(s+D(s+s+125)

P (s) = (4.2-17)

8.5 e %°
(s+2)(s +4s +4.25)

Ps)= (4.2-8)

Their discrete-time transfer functions, sampled at a sampling

rate of Ts=0.23 , were as in equation (4.2-9) and (4.2-10), respec-
tively.

i 0. 003014 ' + 0. 010884 * + 0. 002474 *
P(g )= -1 2 — 4.2-9)
1-2.59233q"" +2.27083q¢ “ — 0. 67032¢q

b -1y 0-0084297% +0.025004 " +0. 0046194 ¢
X9 )= 125 00434 + 1. 3434542 — 0, 3011944

4.2 -10)
The closed-loop reference-model transfer function in the con-

tinuous time was

G(s)
M(S) =1 G0 His)

H(s)=1
and G(s)=

— 0. 8s

(3.87s + 1)(0. 135 + 1)
4.2 -11)

Its discrete-time transfer function with sampling period Ts= 0.2s
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was
0.02494 % + 0. 01474 ®

— 1y _
M(4 )= 12116184 +0.20154 2+ 0. 02494 5 + 0. 01474 °
4.2 -12)

A square wave signal plus PRBS (standard deviation of 1.34
units) was applied as the input signal. The plant and model re-
sponses are shown in figure 4.2-3. Figure 4.2-4 shows that there
is no excessive control action present in the input to the plant
at the instants when change in plant parameters take place . As .
in figures 4.2-1 and 4.2-2, these graphs show the response of the
plant at three different periods. In the first period , the transfer
‘function of the plant was as in equation (4.2-9) and the controller
vector had converged. In the second period, the transfer function of
the plant had changed to equation (4.2-10) but the controller
weight vecétor function had not yet converged . In the third period
the controller weight vector function had converged and the trans-

fer function of the plant was as in equation (4.2-10).
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The following page is figure 4.2-3.

“ The auto correlation function of the plant noise
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The following two pages are figures 4.2-4 and 4.2-5 .

“The ability of the closed loop NP-MRAC with closed
loop reference model to adapt a plant with both parameter
and time delay variation”.

The first graph (figure 4.2-3) shows the plant and model re-
sponse due to a square wave input signal.

The second graph (figure 4.2-4) shows the plant control input

signal.

Simulation was done with 1 =0.000005 and u, =0.0003.
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4.3 SET POINT TRACKING PROPERTY

The closed loop NP-MRAC can also be designed to have good set
point tracking property . By selecting a reference model whose
gain is unity over all frequencies of interest present in the input
signal, the LMS algorithm will adjust the FIR controller tap
setting so that the tracking errors are minimized.

The plant transfer function was selected as

exp(=0.35)(s—5)
PO == DG+

4.3-1)

It was sampled at a sampling interval of 0.1 seconds. lts discrete-

time transfer function was

0.0601g % - 0.1012¢°°
—1.6457¢" "+ 0. 6703g >

P(q‘1)=1 (4.3-2)

Simulations were done for both open loop and closed loop

methods of model selection. The closed loop poles were placed
at s=-2 and s=-4 ( i.e., q1=0.81908 and q2=0.67002) . In this
way the closed loop reference-model transfer-function was as in

equation (4.3-3) and the open loop reference model transfer func-

tion was as in equation (4.3-4).

Miqh = 0. 02985¢°° 4313
(4 )_1—1.4891q'1+0.5488q"2 (4.3-3)
and
Meah = 0. 029854 ° 43_4
()= 1-1.4891g '+ 0.5488¢7% - 0. 029854 ° (4.3-4)
The reference input signal was selected as
r(t) = exp(-0.4t)sin(2t) (4.3-5)

The set point tracking behavior is shown in figures (4.3-1) and
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(4.3-2); corresponding to 2 types of model-selection represented
as in equations (4.3.3) and (4.3.4) , respectively. For this
demonstration we selected the same plant, the same test input
signal and the same closed loop poles as used by Liu and Sinha
(1987) on a self tuning controller with pole zero placement of
the error transfer function , the output of their model is shown in
figure 4.3.3. In this way, the behavior of the closed loop NP-MRAC
may be compared with the behavior of Liu’s and Sinha’s method.
As seen from figures 4.3-1,4.3-2 and 4.3-3, they all track the ref-
erence signal well. However, in Liu and Sinha ‘s case, the
disadvantages are that the reference signal must be known in
advance and be Laplace transformable. In addition, the time
delay of the plant has to be precisely determined. But in the
closed loop NP-MRAC, the prior knowledge of the time-delay of the
plant is not a necessity, although some information about the plant
characteristics would be helpful when choosing the reference
model time delay and the number of taps for the FIR adaptive fil-

ter.
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The following two pages are figures 4.3-1 and 4.3-2.

“The output responses of the compensated plant and
the reference model due to the reference input signal of
equation (4.3-5)",

The third page is figure 4.3-3 .

“The output response of the plant and the reference
input signal”. .

The first graph (figure 4.3-1) was plotted for the closed loop
NP-MRAC with the closed loop reference model pf equation 4.3-3.

The second graph (figure 4.3-2) was plotted for the closed loop
NP-MRAC with the open loop reference model of equation 4.3-4.

Both simulations were done with fi= p,=0.0001.

The third graph (figure 4.3-3) is a copy of the graph of the de-
terministic quadratic control with pole/zero placement in error

transfer function drawn by Liu and Sinha (1987).
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4.4 THE NP-MRAC TO CONTROL A PLANT WHICH INCLUDES
INT ATOR

In chapter 3 we saw the method of the representation of the
transfer function of a dynamic plant. There are many ways to in-
terpret the polynomials of the transfer function, however we re-
strict our discussions to a plant of type-0 and a plant of type-n.
The type-0 plant is a plant which does not have poles at the origin
of the s-plane ( s #0 ) , while the type-n plant has n poles at the
origin i.e., the plant has n integrators. So the continuous-time

transfer function of any type-n plant can be written as
_ 1
P.(s)= ?( Po(s)) (4.4 -1)

where P/(s) isthe type-0 transfer function of the plant; both

P,(s) and P,(s) have the form of equation (3.2.1-2). As described

in section (3.2), all poles of P(s) are transferred into z-domain by
equation z=es-r ,50 that a pole s=0 will be transferred into z=1.
Since the coefficients of the plant discrete-time transfer function
polynomials , represented either in the z-notation or in the g-nota-
tion ,is the same. Hence, the type-n plant transfer function can be

written in discrete-time as

L__(P(q") (4.4-2)

P(qg = m

where Po(q‘l) is the discrete-time transfer function of a type-0

plant. Both P (g7") and Py(g~') have the form of equation
(3.2.1-5).
Chapter 2 has shown that with wide band input signal, the shape

of the FIR adaptive filter weight vector will match the shape of
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the plant impulse response, if the tap length of the FIR adaptive
filter is long enough to cover the impulse response of the plant.
However , the length of the impulse response of the plant with in-
tegrators (type-n) goes to infinity. Therefore to obtain the same
shape as the type-n plant impulse response, the FIR adaptive filter
must have infinite number of taps. For type-n plant , the NP-MRAC
technique must then be modified to handle this problem. Figure
4.4-1 and figure 4.4-2 illustrate a necessary modification. For this
case, the outpuft of the FIR controller passes through the block hav-

ing a transfer function of (1-q'1 )n. The plant control input signal

now becomes (1-q-1 )" u -

plant identification

Copy the weight vector ' = '
o MerlIntotheimese __[PLsitert [
: 1 :
> LMS |
FIR controller ] -a_]?o_rjt_h[n_ .
................... .

> FIR Ll il prant >
filter2 !

3

LMS
fk' algorithm

> REFERENCE MODEL |
(closed loop TF) dy

Figure 4.4-1 Block diagram of the closed 1oop NP-MRAC
with the closed loop reference model used to control a
type-n plant.
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plant identification

Copy the weight vector

.| FIR
of filter1 into the image ™1 filtert
filter Tttt [ A
; ,J, LMS
Ck ' FIR controller L _ei]gomthm
N - === === - e === === N
k X !
+EE k: | s FIR __:_._)( —l)n_>
: : filter2 | ru [t 170
' : ) ;
: 4 ,
! Image LMS '
o> > . !
' filter fk algorithm |

> REFERENCE MODEL
(open loop TF)

Figure 4.4-2 Block diagram of the closed loop NP-MRAC
with the open Toop reference model used to control a
type—-n plant.

The above closed loop NP-MRAC of figure 4.4-2 was simulated
on a type-1 plant with transfer function
8.5

P = iP5 v 405 (AT

The plant was sampled at a sampling rate (TS) of 0.2 seconds

and its discrete-time transfer function was

ety = O 000784 ' + 0. 00298¢~ % + 0. 003874 % — 0. 000024 *
(4°) = 123 004264 + 3. 347769 2 = 1. 644694 * + 0. 301194
(4.4 — 4)

The open loop transfer function reference model was selected

such that its closed loop pole was at q=0.8 . Its discrete time
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transfer function was

) 0. 06¢~
M(q 1)=1

~ 0.8 '—0.064°°

(4.4-5)

The compensated plant and the reference model output signals
are displayed in figure 4.4-3.

This chapter has shown, by simulations, the adaptation ability
of the closed loop NP-MRAC in many common industrial environ-
ments: plants with parameter and time delay variations. The next
chapter will also demonstrate, by real-time hybrid simulations,

the effectiveness of the closed loop NP-MRAC.

71



The following page is figure 4.4-3.

“The output responses of the model and the type-1
plant due to a square wave input”.

Simulation was done with U = 0.00004; it was plotted after 6
periods of the PRBS.
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Chapter 5

IMPLEMENTATION OF A CLOSED-LOOP
NP-MRAC ON THE TMS320C20

In the past decade there has been an accelerated growth in the
application of microprocessors in a variety of control 'systems.
However they suffer from speed and data storage problems.

To overcome the data storage problem, in 1983, A.L. Dexter de-
scribed Self-tuning control algorithm for single-chip microcom-
puter implementation. The control program was written in Intel
8022 assembly language and is 1100 bytes in length. The time
taken by program execution limited the sampling interval to a
minimum of approximately 100 msec. However, the drawback of
this simplified self-tunner is its inability to deal with unknown or
varying time delay.

To overcome the speed problem , in 1982, G. Fromme repre-
sented two procedures for optimizing control parameters for
high sampling frequency in the order of 1kHz (or 1 millisecond
sampling period). However, the controller parameters are adjusted
off-line or in larger intervals.

Sheirah, Malik and Hope introduced an on-line computational
self-tuning regulatof , with the ability to deal with varying plant
parameters. Unfortunately, limited processing power and limited
availability of data storage limits its application. As on-line
controller synthesis requires the solution of a large set of
simultaneous equations to allow the varying time delay, hence a
large number of parameters has to be estimated. Thus the

computation time is large. Therefore the processing capacity is
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limited to slow processes. The example given in their paper, a
self tuning regulator of a third order system, was implemented on
an Intel 8085 microprocessor using a 32-bit floating-point
arithmetic. This system required around 4 kbytes of ROM and 0.5
kbytes of RAM. The computation time was about 230 msec per iter-
ation. Even after modifying the algorithm to reduce the sampling
period to about 35 msec, the controller converged rather slowly
since the new algorithm performed plant identification routine in
every 15 samples. The NP-MRAC overcomes both the above prob-
Iems.V

This chapter will discuss in detail the implementation of the
NP-MRAC on a TMS320C20 signal processor. The TMS320C20 signal
processing chip is introduced in section 5.1. A brief discussion of
the NP-MRAC hardware is given in section 5.2. The controller pro-
gram is presented in section 5.3. The NP-MRAC was implemented on
the TMS320C20 and it was used to control a plant which was set-
up on an analog computer. The simulation results are displayed in
section 5.4. Software details are included in section 5.5. This sec-
tion is written to help a reader to follow the program, listed in the

appendix D.

5.1 INTRODUCTION TO TMS320C20 SIGNAL PROCESSING
CHIP

Texas instruments introduced the digital signal processor,

TMS32010, in 1983. Since then many versions of the TMS320 were
introduced. In this research work, the 2nd generation of the device,
TMS320C20 microprocessor was used.

The Texas Instrument TMS320C20, due to its architecture ,has

several beneficial features for implementing digital control
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system elements speed and instruction set. Some of these are

outlined in this section.

5.1.1 Flexibilit

Two large on-chip RAM blocks [544 words] are configurable
either as separate program and data blocks or as two
contiguous data blocks. The program and data memory reside in
two separate address blocks. This permits a full overlap of
instruction fetch and execution .

The TMS320 architecture also allows transfers between pro-
gram and data blocks, thereby increasing the flexibility of the
device. This performance permits coefficients stored in program
memory to be read into the RAM, eliminating the need for a
separate coefficient ROM.

Most of the processor 's program instructions execute in a
single machine cycle from either fast external program memory or
on-chip program RAM. The flexibility of the TMS32020 also
allows it to communicate to slower off-chip memories or
peripherals by using the Ready signal ; instruction then becomes

multicycle.

5.1.2 Internal hardware

Multipliers and shifters in the TMS320 family are hardware
implemented functions .

Hardware shifters are located in the Arithmetic Logic Unit
(ALU), connected to the output of the multiplier and the accumula-
tor.

These features enable the TMS family to operate at a consider-

ably greater speed compared to many other processors. For exam-
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ple, the hardware multiplier performs signed or unsigned 16x16 bit
multiplication in a single 200 nanosecond cycle, whereas for ex-
ample the Intel 8086 performs the same operation in 6500 nano-

seconds, i.e. 32.5 times slower.

unit

The TMS32020 provides a register file containing five
auxiliary registers (ARO-AR4). These auxiliary registers may be
used for indirect addressing of data memory or for temporary data
storage.

The auxiliary register file (ARO-AR4) is connected to the
Auxiliary Register Arithmetic Unit (ARAU), shown in fig. (5.1.3-1).
The ARAU may auto-index the current auxiliary register while the
data memory location is being addressed. Indexing may be per-
formed either by +1/-1 or by the contents of ARO . As a result,
accessing tables of information does not require the Central
Arithmetic Logic Unit (CALU) for address manipulation , thus

freeing the CALU for other operations.
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-B} Auxiliary Register 4 (AR4) (16)
] Auxiliary Register 3 (AR3) (16) AUXILIARY AUXILIARY
o ; 3 REGISTER | 3 .|REGISTER
P Auxiliary Register 2 (AR2) (16) —<—p0INTER =N 5 UFFER
L[4 Auxiliary Register 1 (AR1) (16) (ARP) (3) (ARB)(3)
[ Auxiliary Register 0 (ARO) (16) Z< 2~
164~
e 16
e 16
IN B ouT IN A
16 | AUXILIARY REGISTER ARITHMETIC UNIT P A
o (ARAU) (16) 3 3
AUXILIARY REGISTER FILE BUS (AFB) P n
16 ¥ 3 LSB 3 LSE
Sz N7
|'v DATA BUS |
16
| PROGRAM BUS |
Figure 5.1.3-1: Auxiliary Register File.
-poin ra-

tions

The TMS32020 instruction set contains special instruc-
tions for fast floating-point operaiions. A normalization (NORM)
instruction is available to normalize fixed-point numbers. The
Load Accumulator (LACT) with shift specified by the T
register instruction is available to denormalizes a floating-
point number.

These special instruction sets (and many others) make float-
ing-point operations extremely fast at a speed comparable to
some dedicated floating-point processors. Using the IEEE standard

for the 23-bit mantissa and 8-bit exponent floating point format,
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the TMS32020 performs a floating point multiplication in 7.8
microseconds, a floating-point addition in 15.4 microseconds and
a floating point division in 22.8 microseconds. For comparison ,
the Intel 8086 performs floating point multiplication in 2
milliseconds which is 600 times slower. Even with a help of a
hardware function units 8087 numeric data processor (NDP),
floating point multiplication performs in 27 microseconds which

is 8 times slower.

5.1.5 System Control

The TMS32020 provides special control operations such as an
on-chip timer and a repeat counter.

A memory-mapped 16-bit timer was used for synchronous sam-
pling clock in the closed loop NP-MRAC to sample the plant .

The TMS32020 design includes a repeat counter that allows
a single instruction to be performed up to 256 times. The repeat
feature is used with instruction such as block moves (BLKP,

BLKD).

5.2 A MICROPROCESSOR BLOCK DIAGRAM FOR THE NP-MRAC

The microprocessor-controlied system is schematically de-
scribed in figure (5.2-1). The output from the plant, c(t) , is a con-
tinuous signal. The signal c(t) passes through the input low-pass
filter (LPF) and the sample and hold circuit. It is then converted

into digitél form by the Analog to Digital (A/D) converter. The

converted signal, C) is now interpreted as a sequence of number

and is represented in a 12-bit fixed point format. It is then pro-

cessed by the Central Processing Unit (CPU) and a new sequence of
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number , u is generated. The digital output signal , u is used to

control an external plant . It is referred to as a plant control input

signal. Signal u, is first stored in Digital to Analog (D/A) output

buffers, then converted to an analog signal by a D/A converter and

filtered by a low pass filter before it is passed to the external

plant.
4 , ™)
Microprocessor controller system (0
u
D/A D/A “output
buffers LPF
S
Yk
CPU 7 _
=S system bus
Plant
Cx G(s)
R R
oMl | A A/D
M buffers
c(t)
sampie | input
TIMER A/D F_ & hold IG— LPF |‘I
\. J

Figure 5.2-1: A microprocessor—-based Control System.

The events are synchronized by the real-time clock at a sam-
pling time Ts, which is controlled by the timer of the microproces-
sor. ROM contains the fixed part of the controller program and
RAM contains the variable data.

In this work the components of the experiments were Analog
Interface board (AIB), Software Development System (SWDS) and

the IBM-AT computer. Figure 5.2-1 only represents the functional
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block diagram of the closed loop NP-MRAC implemented on the mi-
croprocessor. The detail of hardware are covered in the TMS320
User’s Guide Book.

5.3 CONTROLLER PROGRAM

The controller program , for the closed loop NP-MRAC was
written in TMS320C20 assembly language and is 1.8K 16-bit
words in length. The number of the taps of the controller FIR fil-
ter, as well as the number of the taps of the plant identification
FIR filter, are programmable and the maximum number of taps is
fixed at 40. The number of iterations and the sampling period are
programmable . The minimum sampling period is approximately 10
milliseconds for the closed loop NP-MRAC with 40-tap FIR plant
identification and 40-tap FIR controller .

The software is composed of 7 routines. Following is a brief
description of them (detail explanation will be given later):

(1) “initialize routine” This routine disables/enables
interrupts , loads system parameters into data memory and
initializes the registers.

(2) “floating point conversion (FXFL) routine” This routine
converts an output of the D/A into a 23-bit mantissa and an 8-bit
exponent .

(3) “floating point addition (FADD) and multiplication (FMULT)
routines” These routines are for floating point additions and mul-
tiplications. They were provided in the TMS320 software librar-
ies. However they were modified to suit this application (For de-
tails of the modifications please refer to the appendix C).

(4) “plant identification (PIDTFY) routine” This routine calcu-
lates the shape of the finite impulse response of the plant .

(5) “LMS controller routine” This routine filters the input
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signal of the controller and adjusts the weight vector of the con-
troller . The filtering is done by calling a subroutine PREFTR. This
routine will be explained in detail in section 5.5.5.

(6) “fixed-point conversion (FLFX) routine” This routine
converts a controller output signal ,which is in a floating point
format, into a fixed point format and sends it to the D/A converter.

(7) “reference model routine” This routine calculates the

output signal, d,, of the model .

k’

Following is a brief description of the controller program
(please read this part in conjunction with the block diagram of the
closed loop NP-MRAC in figure 5.3-1, and the flow-chart in figure

5.3-2).

In the beginning of each K" sampling period the digital plant
output, c,, is represented by a 12-bit fixed point format. To com-
municate with the NP-MRAC controller software, the floating
point conversion routine (FXFL), is called which converts this
signal into the standard floating-point format.

To determine the error signal, e, , the plant output signal ( ¢,)
is compared with the model reference output signal ( d,). Now the

parameter, 2pue,, where MU is a constant , is calculated and
stored in the RAM (memory location NO2UE) .

The Central Processing Unit (CPU) then calls the plant
identification routine (PIDTFY) which predicts the shape of the-
FIR of the plant by calculating new values for the weight vector,
W ,. The weight vector , W, , is used by the Image Filter in PREFTR

subroutine (please see below).

The CPU now calls the subroutine (PREFTR). The PREFTR

81



subroutine is the Image Filter which filters the input signal

x,=r,— c,. The output of this filter at k" iteration is

k k

Fo=2W, %, for 0<i<L-1
where L is number of taps of the FIR controller.

f.is then stored in the RAM (memory locations from >CA4 to

>CA7). The LMS algorithm uses the output , f,, of the Image Filter
and parameter 2 ,Uek to adjust the weight vector of the FIR con-

troller . The CPU updates the weight vector of the FIR controller
(FIR filter-2) by the LMS algorithm using the equation (5.3-1).

W, =W, t2uef,_; for 0<i<L-1 5.3-1)
where L is the number of taps.
Now the signal X, passes through the FIR controller. The con-
trol signal is calculated using the equation (5.3-2).
u,=dw, x,_; for 0<i<L-1 (5.3-2)
where w,, is the value that obtains from equation (5.3-1).
The u, , at present, is represented in floating point format. It is
then passed through the fixed point conversion routine (FLFX). This
routine produces an output signal ,u, , in the 12-bit fixed point
format which is then used to control the external plant.
u, is sent to the plant through the 12-bit D-A converter.

The CPU then waits for the next sampling period to restart
the process.
Figure (5.3-2) shows the block diagram of the control program

described above.
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Figure 5.3-1: Block diagram of the closed 1Toop NP-MRAC
using a ref. model with closed loop transfer function
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send a clock signal
at a sampling rate Ts

7
read plant output signal
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Figure 5.3-2: An overall performance block diagram.
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5.4 TESTING THE SYSTEM WITH A PLANT IMPLEMENTED ON
THE ANAL M E

The laboratory experiment was conducted by setting up the
equipment as shown in figure (5.4-1). They were an analog-com-
puter, the TMS320 Analog Interface Board (AIB) and the TMS320
Software Development System (SWDS) plugged into an IIBM-AT
backplane computer. The digital control program was interrupt-
driven, controlled by the on-chip timer register (TIM) inside the
TMS320c20 signal processing chip, which was controlled by the
IBM computer. The interrupt was programed to occur at the sam-

pling rate .The program and data were stored in the SWDS static
RAM.

USER'S —P| AnALoG
TERMINAL ANALOG COMPUTER.
(IBM=-AT) OUTPUT
POWER ANALOG INPUT
SUPPLY
TMS320C20 EMULATION TMS320C10
SWDS CABLE AlB

Figure 5.4-1: Laboratory set-up experiment
block diagram.

In the experiment the sampling period was set at 20 msec. The

plant transfer-function was switched from
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_ 8.5 ~
P = (7 + 45 +4.25) (5-4-1

to

4.0
$£+0.8s+4.0

These plants were set up on the analog computer. The details of the

P(s)=

5.4-2)

set-up are shown in figures 5.4-2 and 5.4-3.
The reference-model transfer-function was selected such that
its closed loop pole was kept at q=0.8. Its discrete transfer func-

tion is then as shown in equation (5.4-3).

0.06g >

M(q_l)=1—_Wq_1

(5.4-3)

The output response of this reference-model to a square wave

input is shown in figure (5.4-4).
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Figure 5.4-2: Block diagram for the first plant on the
analog computer.

<d—

@).8 'QEOA
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Figure 5.4-3: Block diagram for the second plant on the
analog computer.
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The following page is figure 5.4-4
“The output response of the reference model to a square

wave input”.
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Simulation was done with [ = u, = 0.004 and using the PRBS

as an input signal during the adaptive process. However, for ease of
comparison the output response of the plant was recorded due to a

square wave input signal. They are explained as below.

The output response of the plant with transfer function P1(s)

(equation 5.4-1) to an square wave input when the taps of the FIR
controller converged was recorded after 6 period of the PRBS, and

it is shown in figure (5.4-5). The plant was then switched to the

second form P2(s). The square wave response of the new plant

with the old tap-setting of the FIR controller was recorded as
shown in figure (5.4-6) . It shows that due to plant parameter
variation, the system oscillated drastically. This is due to the

fact that the second order transfer function (equation 5.4-2) has a

damping factor & of 0.2 and the percentage overshoot is 53%
The tap-setting of the FIR controller filter then readjusted itself
to a new set of tap-controller in 6 period of the PRBS. Figure (5.4-
7) shows the output response of the plant to an square wave input
when the new value of the tap-setting of the controller had con-
verged . This demonstrates the effectiveness of the closed-loop
NP-MRAC in real time application.

Details of the experiment set-up are shown in figures 5.4-

8, 5.4-9 and 5.4-10 .
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The following page is figure 5.4-5, 5.4-6, 5.4-7.

“The output response of the plant to an square wave
input”.

The first graph ,figure 5.4-5, has a vertical scale of 0.1V/cm
and the horizontal scale of 0.5sec/cm. (each square is 1cm2)

The second graph ,figure 5.4-6, has a vertical scale of 0.2V/cm
and the horizontal scale of 0.5sec/cm. (each square is 1cm2)

The third graph ,figure 5.4-7, has a vertical scale of 0.1V/cm

and the horizontal scale of 0.5sec/cm. (each square is 1cm2)

All simulations were done with = u, = 0.004 and using

PRBS as the input signal during the adaptive process.
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The following page is figure 5.4-8, 5.4-9, 5.4-10.
“The setup of the experiment”.
The first picture , figure 5.4-8 , shows an overall set-up exper-
iment.
The second picture , figure 5.4-9, shows an analog computer.
The third picture , figure 5.4-10, shows an Analog Interface
Board (AIB).

o1



T
TITTITEITY

————— et
3% V=

14




5.5 SOFTWARE DESCRIPTION

This section contains the detail description of the programs
written in TMS320C20, listed in the appendix D. Hence, it is writ-
ten for a reader who wish to go into very fine information and it is
advised to be read in conjunction with the program and the
TMS320C20 User's Guide . The routines described are as follow:
the initialization routine, the floating-point conversion routine,
the floating-point addition and multiplication routines, the plant
identification routine, the LMS controller routine, the fixed-point

conversion routine, and the reference-model routine.

5.5.1 Initialization routine
The initialization routine is used
(i) to initialize an analog interface board (AIB).
(ii) to store system parameters into data memories . The

parameters are speed adaptation of the FIR controller ( K) ,

speed adaptation of the FIR plant identification ( u,), sampling
period (Ts) and FIR tap delay length ( L). These parameters are pro-

grammable and they can be selected by the user.

(iii) to transfer constants and coefficients which are stored
in program memories into data memories.

(iv) to enable timer interrupt (TINT) to control a sam-
pling period.

(v) to define initial conditions of the test input signal
(PRBS) , plant control input signal (#,), plant output signal (c,)
, FIR controller tap weight vector ( W ) and FIR plant identifica-

tion tap weight vector ( W, ). These parameters are changeable.

Please refer to appendix D for the setting procedure.
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5.5.2 Floati Point C ion Routi (EXE] tine)

The plant output signal has a voitage range of (-10v..+10v).
The analog input signal in this range can be digitally represented
using the 12-bit A-D. The corresponding outpdt of A/D is defined
in the range of (-1..+1).

The FXFL routine is used to

(1) amplify the output of the A/D converter (to increase the
accuracy of the calculation);

(2)convert the A/D output signal to the standard floating-
point format which is defined by the TMS software package. This
format will be explained later in this section.

The output of the A/D is represeﬁted in a binary form whose
most significant-bit (MSB) is known as a 1-bit sign field (s) and
other 11 bits are known as an 11-bit fraction field (f). This is

represented as shown in figure (5.5.2-1).

BIT |BIT [BIT BIT
11 10 9 “ . 0
SIGN
BIT FRACTION FIELD (f)
(S)
¢— D

Figure 5.5.2-1: A 12-bit A/D binary number.

To scale up the output of the A/D to the range (-8 to +8), it is
multiplied by 23. The value of 12-bit binary number X is then

represented by the formula
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X=(-1)s+1*23*0_f
where s can be either one or zero
and f varies from >000 to >7FF".

The TMS floating-point routines require the input floating-
point numbers to have a format of four 16-bit fields. This format
is shown in figure (5.5.2-2) in which A and B are the input float-
ing-point numbers and C is the resultant output of A and B. In this
form, the value of a binary floating-point number X is represented

as

S. xn €
(-1)7*0.11  f 2

where s, fms’ f, _and e are as shown as in figure 5.5.2-2.

Is
Numbers are required to be represented in a two’s complement
form.
The 12-bit digital signal , which is stored in the A/D buffers,
is converted into this standard binary floating-point format by
the floating-point conversion routine (FXFL routine). Its flow

chart diagram is shown . in figure (5.5.2-3).

1. > means hexadecimal number
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Bit ASIGN/BSIGN
number: 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

sign s (0000 if positive or FFFF if negative)

AEXP/BEXP

Bit

number: 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O
exponent e

Bit AHI/BHI(normalized)

humber: 15 14 13 12 1110 9 8 7 6 5 43 2 10
0| 1| fms(mostsignificant 14 bits)

Bit ALO/BLO
number: 15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 O

0 f]s(leastsignificanwbits) O 00 0 0O

_ CSIGN
Bit
number:15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

sign s (0000 if positive or FFFF if negative)

Bit CEXP

humber:15 14 13 12 1110 9 8 7 6 S 4 3 2 1 O
exponent e

Bit CH!I (normalized)

number: 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

0 1 frps (most significant 14 bits)

Bit CLO
humber: 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

f1s (least significant 16 bits)

Figure 5.5.2-2 Floating—-Point Format.
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12-bit plant output
digital signal

—b (FIXPT,

yes

!

(BEXP) = ¢

<7

(FIXPT)and >8000
test (MSB) : sign bit

no

<

(BSIGN) = FFFF

it

(ACC) and >4000
test a second : MSB

(BSIGN) = 0000
take CMPL(FIXPT)

(FIXPT) —b (ACC)
(ACC) AND >2000

yes

\l/

(FIXPT) — (BHI)
CLEAR (BLO)

N,

N
v,

2 —D (BEXP)
(FIXPT) —p (ACC)
SFL (ACC) once
(ACC) — (BHI)
CLEAR (BLO)

(FIXPT) —b (ACC)
(ACC) AND >1000

no

B

1 —b> (BEXP)

Yes

(FIXPT) —d (ACC)
(ACC) AND >0800

(FIXPT)—D (ACC)
SFL (ACC) twice
(ACC) —b (BHI)
CLEAR (BLO)

(r‘ead next page ]

Figure 5.5.2-3: The floating-point conversion routine .
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Gountinue from previous page )

0 —b(BEXP)
(FIXPT) —p (ACC)
Z 0% no B SFL (ACC) 3 times
— (ACC) —p (BHI)
Ves CLEAR (BLO)

NZ
(FIXPT) —» (ACC)

(ACC) AND >0400 @

-1—p (BEXP)
no (FIXPT) —p (ACC)
=07 SFL (ACC) 4 times
— (ACC) —p(BHI)
yes CLEAR (BLO)

NZ
(FIXPT) —b (ACC)

(ACC) AND 50200 @

— no -2 —D(BEXP)
GoD M (FIXPT) —b (ACC)
SFL (ACC) 5 times
Ve (ACC) —b (BHI)

CLEAR (BLO)
(FIXPT) —b (ACC)
(ACC) AND >0100

no
Z07) N -3—s (BEXP)
yes (FIXPT) —p (ACC)
— SFL (ACC) 6 times
(FIXPT) —B (ACC) (ACC) —p(BHI)
(ACC) AND >0080 CLEAR (BLO)

L

(read next page )

Figure 5.5.2-3(continue): The floating-point conversion
routine (FXFL).
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(countinue from previous page )

no -4—>b (BEXP)
=07 DY (FIXPT) —(ACC)
SFL (ACC) 7 times
yes (ACC) —p(BHI)
CLEAR (BLO)

(FIXPT) —» (ACC)
(ACC) AND >0040

no “S_D (BEXP)
=0?) D (FIXPT) —B(ACC)
SFL (ACC) 8 times
yes (ACC) —(BHI)
NG CLEAR (BLO)

(FIXPT) — (ACC)
(ACC) AND >0020

&

— no -6 —p(BEXP)
GoD Dl (FIXPT) —b (ACC)
SFL (ACC) 9 times
vyes (ACC) —b (BHI)

CLEAR (BLO)

(FIXPT) —b (ACC)
(ACC) AND >0010

&

no
=02 Dt _7—p (BEXP)
yes (FIXPT) —p (ACC)

SFL (ACC) 10 times
CLEAR (BEXP) (ACC) —p (BHI)
CLEAR (BHI) CLEAR (BLO)

CLEAR (BLO)

7

Figure 5.5.2-3(continue): The floating-point conversion
routine (FXFL).
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Floating point addition and multiplication routines were provid-
ed in the TMS libraries. The original software had fault in it. The
TMS floating point addition and multiplication routines were cor-
rected and modified to suit our applications. Details of
modifications are shown in the appendix C. To minimize the
execution time of the floating-point arithmetic, the two
floating-point numbers A and B and the resultant output floating-
point number C are represented in the format that is shown in
figure (5.5.2-2).

Before executing the routine, the numbers A and B are stored
at the fixed memory locations(>60 to >63 and >64 to >67, re-
spectively ). The result of the floating-point arithmetic is stored
in C memory locations(>68 to >6B). This can then be transferred
into any other desirable memory locations.

Flow chart diagrams are included in the three following sec-

tions (5.5.4 , 5.5.5 and 5.5.6 ). Due to word processor festrictions

in flow-chart diagrams, W is represented as Wp(k+1) .

pk+1

5.5.4 Plant Identification Routine (PIDTFY routine)

The plant identification routine ( memory address >5D1 to
>714) is used to identify a finite impulse response of the plant.
This is a portion of the model-reference adaptive contro!l and its
block diagram is shown in figure (5.5.4-1).

The adaptive filter tap length is fixed at 40 . At each
iteration, the tap weight vector, W, ,, is updated by the recur-

sive equations (5.5.4-1) and (5.5.4-2) (as seen in chapter 2).
W =W, +2uéu, 5.5.4-1)

pk+1 ™
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T
where W, = [W, 00 Wy i 1 oo s Wy 141]

Plant Identification

~ ~
FIR filter
(Wp)
i
N LMS 1 ; -
d algorithm S o
_ Y,
noise c
Uk 5| Controlled L P%+ K
| Plant

Figure 5.5.4-1: Plant identification routine
block diagram.

€, is the error function at the k" sampled iteration,
¢,=c,~UW,, (5.5.4-2)
T
where U, =[u,, Wy_y5 oo s Uy_p 1]
Equations 5.5.4-1 and 5.5.4-2 show that, at each iteration we

first calculate ¢,,then 2pu,¢, then 2u,e\u, and finaly W, ..

Each floating-point number is represented by the 4-memory lo-

cation format. Hence each element of the predicted FIR tap weight

vector of the plant , ka , plant control input signal vector , U,

and plant output signal vector , C, , are all required 4-memory lo-

k 3
cations for each element of these vectors. (We define
Ce=[Cw Chopp -+ > C_141] ). These vectors located as shown in

figure (5.5.4-2).
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40-tap FIR Plant control Plant output

plant input signal signal
(Wp) (U) / (Ck)
Address Wp Address U ) Address Cg -
>A00/3 Wp0 >9F7/4 Uy >1EA7/4 Ck
>A04/7 wp | >9F3/0 Ug—1 >IEA3/0 | ¢ _;
>A98/B W >857/4 |u >1EQ07/4 |C
p38 k-38 k-38
>ASC/F >95B/8 >IEOB/8 |c
"P2o k-34 k-39

Figure 5.5.4-2 : The arrangement of plant tap—-setting
vector (Wp),plant control signal vector (Uk) and plant
output signal (Ck).

The flow chart diagram of the plant identification routine,
PIDTFY, the C2UE and the CALPP subroutines (see following pages)
are shown in figures (5.5.4-3), (5.5.4-4a) and (5.5.4-4b) respec-

tively. The C2UE subroutine calculates 2 u,e, and stores a re-

sult in the RAM ( "P2UE" memory). The CALPP subroutine calcu-

lates 2 u,e,u then w and stores an updated-tap

k—i pik+1

element ,w,;, , into its reserve RAM locations. ( u,_; and
W,ir+1 are the ith-element of the control input vector, U,, and

the weight vector W, ,, respectively.)
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Initialize parameters.

Call C2UEP

\l/

\/

Call CALPP : to update a plant identification
tap-setting element - Wp(i) at k+ 1 iteration.

i=1+1

yes

i<407?

no

Re-initialize parameters.

\|/

Figuren5.5.4-3: The Plant Identification routine (PIDTFY)
flow chart diagram.,
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at k iteration

CLEAR OUTPUT (OUT = 0)

0 —> (OUTPUT'S SIGN)
0 —> (OUTPUT'S HI)
0 3 (OUTPUT'S LO)
0 —> (OUTPUT'S EXP)

CALCULATE : OUT = sum{(Wp(i)*U(k-1)}
for 0<=1i=<39 & i is an integer.

temp(i) = Wp(i)*u(k-i
OUT =0UT + temp(i)
i=i+1

yes
i<40
no

Calculate 2 up e
Store 2 up e in the memory named P2UE

Figure 5.5.4-4a: The C2UEp subbroutine
flow chart diagram.

Note in this diagram 2 u,e, is represented by 2 up e .
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at k iteration ,
at i element .

Calculate Temp = (2 upe Y*U(k-1)

Transfer u(k-1) into A memory location.
Transfer the content of (P2UE) into B memory location.
Call FMULT : to calculate Temp = (2 upe )*u(k-1).
Temp value is then stored in a C memory location

Calculate a tap-setting element of a plant
FIR idntification , Wp(i) at k+ 1 iteration.

Transfer Temp into A memory location,

Transfer Wp(1i) - at k iteration - into B memory location.

Call FADD : to update Wp(i) - at k+ 1 iteration - using the LMS
algorithm.
Wp(i)-at k+ 1 iteration- is stored in a C memory
location.

Transfer the content of C (i.e. Wp(i) value) into the Wp(i) memory.

i=1+1 ; next element of the plant identification weight vector.

\l/

Figure 5.5.4-4b: The CALPP subroutine;
to update a plant tap-setting element.

Note in this diagram 2 u,e, is represented by 2 up e.
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{

5.5.5 LMS controller Routine (FIR controller)

The LMS controller routine is the heart of the FIR controller
software . Its block diagram is shown in figure (5.5.5-1). It is
used to adjust the FIR controller tap-setting. Parameter MU and

the controller tap-lerngth , L, are programmable .

¢ Plant output signal-
feedback to the system

Ck Control signal-
r\>< Xy sent to the plant
| 3N
V\J l W u
rk + k
T Adjusts <
tap-setting Ck| -
e 4
— B LMS % k7N
Wp ¢ | algorithm Es/
k +
dy
Model-reference
output signal Do

Figure 5.5.5-1: An FIR LMS controller
block diagram.

The routine in every iteration performs the following calcula-

tions:

(i) 1t calculates
2 ue, where e,=d, - c,
d, is a model reference output signal at the kth iteration.

c, is an plant output signal at the k"h iteration.
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(ii) 1t determines the. FIR plant tap-setting , W p, ( calls the
plant identification routine PIDTFY).

T . .
(iii) It calculates f,= W _ X, where x,=r,—c,; x,is a first

element of vector X, , then using the LMS algorithm adjusts the

FIR controller tap-setting.

(iv) It updates the controller tap-vector by calculating
T
a=Q2ue)W,X,) thenw,,  ,=w;, +a
for 0<i<L-1 5.5.5-1)
LMS controller routine calculations are as following :

-Step 1 calculates Zue,C where M is a constant and e, is an
error signal between the model reference output signal and the
plant output signal. The C2UE is used to perform this step . It is a
sub-routine of the LMS controller routine . The C2UE sub-routine
flow-chart diagram is shown in figure 5.5.5-3 .

In this diagram :

k is a time index; i is varied from 0 to L-1 and L is set at 40.

2 ue, is represented by 2up e .

e,, c,and d, are represented by e, ¢ and d , respectively.

-Step 2 calculates the weight vector of the FIR plant identifi-
cation filter, W, (using PIDTFY routine). This routine has been

discussed in section 5.5-4.

-Step 3 calculates the output signal of the image filter ( refer

to figure 5.3-1 ). The tap setting W ,, calculated in step 2, is now

used to calculate the output signal of the image fiiter , f, ,where
fi= W:Xk and X, is the input vector of the filter. The process is
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shown in figure (5.5.5-4).
The flow chart diagram for this subroutine is shown in figure

(5.5.5-5) .
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Initialize:  clear (Uk) F'_ Atk teration

Calculate x(k—-1) = r(k-1i) - c(k-1) using FADD & FNEG routines
Calculate W(i)*x(k-1) = Temp
Calculate uk = uk + temp

Re-initialize parameters.
Call MODEL routine to calculate
model-reference output signal (dk).
Call FLFX routine to convert
4-fields of 16-bit uk floating-point format
into a 12-bit fixed-point format.
Send control signal uk to a plant
[dle: wating for starting of a next sampling period.
Read plant output signal ck
ina 12-bit fixed-point format.
Call FXFL routine to convert ck from fixed-point
format to floating-point format.
Calculatee =d -c¢ using FADD & FNEG routines.
Calculate 2 ( ue ) using FMULT routine.

Store 2 ue in memory location "NO2UE" at >24B..>24E

N/

Figure 5.5.5-3:The C2UE routine flow chart diagram.
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< plant output signal ( feedback)

c Copy Wp - from plant identification data

|
Xk —1 k-1 | -1 —1[ X k=(L-1)

|
X | X1_ 1 | X
k - k-1 k

o X (X wp_ (X

1 T

Figure 5.5.5-4: A FIR tapped-delay line.

-Step 4 calculates W The CALP subroutine calculates each

k+1°

element w,,  (where 0<i<39) of the 40-tap-control-weight-vector

(W,). ltis calculated as in equation (5.5.5-2). (refer to chapter 2)
W, ..=W, +2ueF, (5.5.5-2)

T
where W, =[Wop Wps oo s Wag ]

and Fk=[fksfk_1"'°’fk—39]T

The 2 e, is calculated from step 1 and is stored in the memo-

k+1

ry locations "NO2UE" .

Vectors W and F, are located as shown in figure (5.5.5-6).
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40-tap FIR Pre-filter

controller output
(Wk) signal (Fk)
Address | Wi Address F "
>B00/3 W >CA7/4 f K
>B04/7 W >CA3/0 f k=1
>B98/B >C07/4 f
Y38 k-38
>B9C/F w39 >COB/8 f K- 3d

Figure 5.5.5-6: Relationship between
W, and Fy memories.

The flow-chart diagram of the CALP subroutine is as shown
in figure (5.5.5-7).
The final flow chart for the LMS controller is in figure(5.5.5-8).
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i element,
k iteration.

Initialize address of
w(i) and f(k-1) locations.

7

Calculate Temp = (2 up e )*f(k-1)
using FMULT routine.
Update w(i) =w(i) + Temp
using FADD routine.

7

Re-initialize parameters:
increment w address by 4,
decrement f address by 4.

N
RETURN

Figure 5.5.5-7: The CALP subroutine
flow chart diagram.

Note in this diagram 2 e, is represented by 2 up e .
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INITIALISE:

1= AIB port.

2- move (PM) to (DM).

3- enable interrupt (timer Ts = 0.02seconds).
4- clear pre-filter output signal ,fk, locations.
o- clear plant control signal,uk.

6~ clear 40-tap FIR controller,

7~ initialise 40-tap plant identification.

Y

read number of periods and number of taps.

AGAIN
)V|

PRDIN

Y

1- Initialize counter.
2- Call C2ue ; tocalculate 2ue
3- Call PIDTFY ; to identify an FIR plant
& to update 40-tap.
4~ Call PREFTR ; to pass signal xk through a prefilter
S- 1o update 40 taps of an adaptive controller;
using weight 1oop.

Y

Weight

i=1
Call CALP ; to calculate Wk+1(i)
i=1i+1

= ®_ yes

Y
Re-initialize DPM

no _ _
023iteration’ ves

<<dperiod? > yes

Figure 5.5.5-8: A LMS controller flow chart diagram.
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Fixed-poj ' ' in

The external plant is in real-time therefore the digital control
input signal must be converted to an analog form. The 12-bit
D/A converter is used to convert a 12-bit digital signal to its
analog signal.

However the LMS controller routine calculates the plant control

input signal (u,) in the four-memory 16-bit floating-point format.

The fixed-point conversion routine was therefore written to
communicate between the LMS controller routine and the D/A
converter. (It is located from memory address >812 to >835).

In section 5.5-2 we have seen that by the means of the 12-
bit A/D the external plant sends its analogue output signal to the
digital controller. So here in order to make the same scalling
factor, the floating point number from the range

-23x0.111 1111 1111, +23x0.111 1111 1111)
must be converted into the fixed-point format of

(0111 1111 1111 XXXX , 1000 0000 0000 XXXX)

The fixed-point conversion routine [FLFX routine] converts the
plant control input signal (%,) which is represented in the float-

ing point format, into the system standard 12-bit fixed-point
format. The memory locations of a digital control input signal

(u,) are from >9F4 to >9F7. After conversion into the system 12-

bit format, its signal is stored in the FIXPT memory location , at
>7C address. It is then transmitted to the plant through the 12-
bit D-A converter using the "OUT" instruction.

These memory locations are set up as in figure (5.5.6-1).

The flow-chart diagram of the FLFX routine is shown in figure
(5.5.6-2).

113



15 14 .. 0

Address
0000 OR FFFF

Sign >9F4

1S5 14 . . 0
EXP  >9FS exponent e

1S 14 . . 0
HI - >9F6 O 1| fmostsignificant 14 bits
mantissa

15 14 . . 5.« 0
Lo >9F7 0| f least significant 9 bits | 0-- 0
mantissa

The 4-field 16-bit control signal

sign-bit
15 14 - . 4 3 2
tor0 11-bit data (f) x| x

The 12-bit fixed-point control signal

Figure S5.5.6-1: Control signal memory arrangements.
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Initialze parameters

(AR4)=fixpt ; fixpt is an address of a 12-bit fixedpoint data
(AR3)=>9F5 ;>9F5 is an address of Uk exponent (e)

!

Calculate Temp = Uk exponent subtracts 3
using FADD & FNEG routines.

Check MSB of Temp

(Temp AND >8000).

yes /Jx
(Temp>=0) " 1ep = g7

N

no
(Temp<0)

_ , CMPL (Temp) (Temp)
(Uk HI mantissa) — (fixpt) (UK HI mantissa)_D—KACC)

SFR ACC (Temp) times
(ACC) —p (fixpt)

&
Test positive or negative number

>9F4 —» (AR3)
>9F4 —» (ACC)

Yes
positive number

&

CMPL (fixpt)
l RETURN

Figure 5.5.6-2: The FLFX routine flow chart diagram.

no
negative number

(ACC) = 07
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5.5.7 Ref Model Routi (MODEI tine)

A reference model can be implemented either in discrete or
in continuous form. In our system, we used a discrete model.
The reference model routine (MODEL routine), was written for
this application.

The reference model routine reads in numerator and denomina-
tor coefficients of the model pulse transfer function and
calculates its output signal subject to the reference input signal.

This subroutine is located from memory address >4D8 to >5D0

and performs the standard transfer function form of

(ag' + bgH)q ‘"
1+ cg '+ dg D

M(gh=

where a, b, ¢, d are constant and d,, are time-delays.
d, was set at 4, however it can be easily modified to

implement a suitable model time delay.
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Chapter 6
CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this thesis the Non-Parametric Model-Reference Adaptive
Control (NP-MRAC) method is used to control a single-input single-
output linear plant. By simulation on the NEC-APC-3 computer
(chapters 3 and 4 ) and real-time hybrid simulation on the
TMS320C20 signal processor (chapter 5) it has been shown that the
Least Mean Square (LMS) algorithm can be used to effect a Non-
Parametric Model Reference Adaptive Control (NP-MRAC).

The FIR adaptive filter is used to carry out the two functions in
the NP-MRAC (refer to section 3.3 and 4.1). They are

(1) to determine the shape of the impulse response of the un-
known or time-varying plant rather than the plant parameters,

(2) to adjust the shape of the finite impulse response of the
controller rather than to determine the controller's parameters.

The first function is referred to as the Non-Parametric Plant
Identification (NP-Pl). In this function, the tap-weight vector of
the FIR adaptive filter (FIR filter 1)\ is adjusted so that it matches
with the plant impulse response. This is done by using an estima-
tion error (the difference between the plant output and the FIR
adaptive filter) as the input to the LMS identification algorithm .
The FIR adaptive filter uses only feed-forward multipliers, there-
fore it is always stable as long as the step size parameter U sat:

isfy the condition

1
0< U< 7 — (6.1-1)

max
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where A.. is the largest eigenvalue of the correlation matrix of
the tap input vector , R.

In the NP-PI method, it is not required to determine the plant pa-
rameters. Therefore, when the plant has both parameter and time
delay variations , the NP-MRAC does not face same problems as the
STC and MRAC face when the plant has both parameter and time

delay variations. (refer to chapter 1 and 3).

The second function causes the error signal, e,, (between the
model output, d,, and the plant output, ¢,) to minimize so that the

compensated plant output response matches with the reference
model output response. In this function, the tap weight vector of
the FIR adaptive filter (FIR filter 2) is adjusted by using both the

error estimation (e,=d, — c,) and the tap-weight vector of the

plant identification FIR filter (calculated from the first function)
as the input to the LMS adaptive algorithm.

There are two types of NP-MRAC methods: an open loop NP-
MRAC and a closed loop NP-MRAC . The theory of the open loop NP-
MRAC is discussed in chapter 2 .Similar to the NP-P| method, the
open loop NP-MRAC method uses only feed-forward multipliers,
therefore it is always stable under the condition of equation (6.1-
1). In the case of the closed loop NP-MRAC method the theory is
not yet explored, however the simulations show that the system is
stable. (refer to chapter 4 and 5.)

This thesis has shown the effectiveness of the NP-MRAC based
on the LMS algorithm. Simulations were done for the NP-PI, the
open loop NP-MRAC and the closed loop NP-MRAC, using the NEC-
APC-3 computer. Simulation results have shown that the NP-MRAC

can well handle the plant with both parameter variation and time
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delay variation. Good set point tracking property can also be
achieved since zero cancellation is not involved in this method. The
LMS algorithm is simple, therefore it is easy to be implemented on
a microprocessor to control a plant in real-time. The closed loop
NP-MRAC was implemented on the TMS320C20 signal processor to
control a plant in real time. The plant with parameter variation
was built on an analog computer. The program was written in
TMS320C20 assembly’language, with 1.8K word length. The control
program was able to handle a minimum sampling period of 10ms
for the 40-tap FIR adaptive filter. This sampling period could be
reduce even further if any later version of a TMS320 was imple-
mented (eg., TMS320C25 or TMS320C30) . Thus the NP-MRAC based
on the LMS algorithm is a superior scheme to control a fast plant.

As mentioned , the LMS algorithm was used as an adaptive al-
gorithm for the NP-MRAC in this thesis. The LMS algorithm does
not require measurements of the pertinent correlation function,
nor does it require matrix inversion. It was selected as an adaptive
algorithm because of its simplicity.

The principal parameters that affect the response of the LMS
algorithm are: the step size of the parameter, U, the number of
taps of the FIR adaptive filter, L, and the eigenvalues of the corre-
lation matrix of the tap input vector. The third factor is required
for the effective operation of the algorithm. However when the
eigenvalue spread is large , the LMS algorithm slows down since it
requires a large number of iterations to converge. (Widrow and
Stearn, 1985) . This is the main drawback of the LMS algorithm
when applied to the NP-MRAC. This problem needs further investi-
gation. We suggest that the least-square (LS) algorithm may be

applied to the NP-MRAC.
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6.2 A NP- IN l A ARE
A ITHM

Briefly, the LMS algorithm is derived from averages witH the
result that one filter (optimum in a probabilistic sense) is ob-
tained for all the operational environment (assuming the input sig-
nal is stationary in a wide-sense ). On the other hand, the method
of Recursive Least Squares (RLS) yields a different filter for each
collection of input data (Haykin S., 1986).

In the RLS algorithm, the index of performance which consists
of the sum of weighted error squares is minimized. (the error is
defined in chapter 2). The derivation of the RLS algorithm relies on
a basic result in linear algebra known as the matrix-inversion
lemma. An important feature of the RLS algorithm is that it utiliz-
es all the information contained in the input data, extending back
to the instant of time when the algorithm is initiated. The result-
ing rate of convergence is therefore typically an order of magni-
tude faster than the simple LMS algorithm. This improvement in
performance, however, is achieved at the expense of large increase
in computational complexity.

Included in this section is the result of the gimulation of the
Non-Parametric Plant ldentification NP-Pl using LS algorithm
based on U-D factorization by Bierman and Thornton (see Astrom
and Wittenmark,1984).

The continuous-time transfer function plant ,to be controlled,

was selected as

W,

s°+ 28w, s + Wl
where & =0.2 and w,=2

P(s) = (6.2-1)
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With a sampling period of 0.2 seconds, the discrete time transfer

function was
0. 218849q‘l -0. O72953q‘2

—1y _
P(a) = 17 7062484 " + 0. 8521444

(6.2-2)

The simulation were done on the NEC-APC-3 computer using the
40-tap FIR adaptive filter.

Figure (6.2-1) shows the shape of the tap-weight vector and the
Finite Impulse Response (FIR) of the plant. In this thesis the theory
of the NP-MRAC based on the LS algorithm is not discussed.
However the convergence of the least square methods is explained
in many Control or Adaptive Filter text books (e.g.,. Astrom and
Wittenmark-1985, Haykin S. -1989). Simulation of the NP-PI meth-
od shows that the LS algorithm is ideal for adjusting the FIR adap-
tive filter applied in the NP-MRAC. The proof and demonstration of

this are left to an interested reader.
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The following page is figure (6.2-1).
“ The shape of the tap-weight vector, [ X] and the Finite
impulse Response (FIR) of the plant [R] ”
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6.3 FUTURE WORK

Although, the NP-MRAC based on the LMS algorithm has good ad-
aptation capability, further studies are still required before the
method can be implemented widely. Below is a list of few sugges-
tions for future work on this topic.

(1) The proof for convergence of the closed loop NP-MRAC using
the LMS algorithm should be developed.

(2) The NP-MRAC using the LMS algorithm has been successful
when used to control the plant whose characteristic function was
set up on an analog computer (chapter 5). To make the theory useful
in industry the tests should include a real plant as a controlled el-
ement.

(3) The major drawback of the LMS algorithm is that its conver-
gence rate is rather slow, while the Recursive-Least-Square (RLS)
algorithm promises a fast rate of convergence. Despite the fact
that RLS computation is rath‘er complex, it is an ideal algorithm
for the NP-MRAC where the plant sampling period is not a critical
element. The NP-MRAC using the RLS algorithm provides a scope

for further studies.
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APPENDIX A

Impul n f -

A second-order system which was used in this thesis has a con-

tinuous pulse transfer function of the form :

W,

s+ 28w,s + W

H(s) =

where 0<&<1,

The impulse response of this system in a discrete form is given

by (Katsuhiko Ogata, 1970, Mayhan,1983)

h,= ﬁ{sin(wm/l - 52) kT }e_ éw"kTuk
where

B 1 :k20
““Zlo : k<0

and k is a time index.



APPENDIX B

This appendix contains three programs , which was written in Fortran 77. They were used to test the Non-
Parametric Plant ldentification and the Non-Parametric Model Reference Adaptive Contro! by simulations on the

NEC-APC-3 computer (refer to chapter 3 and chapter 4).

This program was written for the Non-Parametric Plant Identification simulations (chapter 3).

INTEGER 1.J,H,L M,Q,B,STEP,TERM.A,PERIOD,C,S,P.K,0,01
INTEGER X(10),Y0(1143),REF(1148)

REAL TIME,U,WN,E,T,F0,F1,F2,F3,F4,F5

REAL D(1143),W(120),IDEAL{120),UNIT(120),WAV(1 20)
REAL HZSQ(103),0UTPLN(103),DSQ(103),0UTSQ(1143)

COMMON/STORE1/REF
COMMON/STORE2/D
COMMON/STORE3/L
COMMON/STORE4/W
COMMON/STORES/WN,E, T
COMMON/STORE6/U
COMMON/STORE7/0UTSQ
COMMON/STORES/WAV

(o]

VARIABLES FOR PLOTTING
LOGICAL TED,TED2

CHARACTER*25 FNAME HZNAME VTNAME, ,FNAME2,HZ2NAME ,VT2NAME
CHARACTER"1 KEY,KEY2

OPEN(100,FILE= 'WEIGHT" STATUS="NEW)

READ INFORMATIONS OF A REFERENCE MODEL
WRITE(*,5)

5 FORMAT(//.3X, TYPE IN W,E,T")
READ(*,YWN,E,T

[sNeNeNe)

WN=20
E=0.1
T=0.2

STEP =10
READ INFORMATION OF CONDITIONS OF A LMS ALG.

OO0

WRITE(*,15)
15 FORMAT(/,3X,HOW MANY PERIODS ?, NCHOICE?,STEP?)
READ(*,*)PERIOD,NCHOICE,STEP
WRITE(*,17)
17 FORMAT(/,3X,'HOW MANY TAPS ?)
READ(*.*)L
WRITE(*,19)
19 FORMAT(/,3X,U?")
READ(*,")U

C GENERATE PRBS

C STORE 10 INITIAL VALUES INPUT
DO201=1,10
X(l) = STEP

20 CONTINUE )

DO 60 J =1, 1023
Yo(J) = X(10)
C  SHIFT VALUES TO THE RIGHT
DO 25 H =2,10
X(12-H) = X(11-H)
25 CONTINUE
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TAKE EXCLUSIVE 10TH & 7TH TERMS

NOTE SINCE VALUES ARE ALREADY SHIFTED
THUS 7TH TERM NOW INDEED 8TH TERM
AND YO(J) IS A 10TH TERM

OO0

TERM = STEP*STEP
IF (YO(J)*X(8) .EQ. TERM) GOTO 30
X(1) = STEP
GOTO 40
30  X(1) = -STEP
40 CONTINUE
60 CONTINUE

DO62S=1 L
W(S)=0.0
ouTsQ(s) = 0.0
Y0(1023+8) = YO(S)
IDEAL(S) = WIMP(S-1)
UNIT(S) =1.0'S

62 CONTINUE

IF (NCHOICE .EQ. 1) THEN
REF(1) = YO(1)
REF(2) = Y0(2)

ENDIF

IF (NCHOICE EQ. 2) THEN
REF(1) = STEP
REF(2) = STEP

ENDIF

CALCULATE DESIRE VALUES
FNUM1 = 0.218848

FNUM2 = -0.072953

DEN1 =-1.706248

DEN2 = 0852144

QOO0 0

FNUM1 = 0.151731
FNUM2 = -0.000003
DEN1 =-1.771388
DEN2 = 0.923116

D{1) = 0.0
D{2) = 0.0
DO 65 M=3,1023+L
IF (NCHOICE .EQ. 1) REF(M) = YO(M)
IF (NCHOICE EQ. 2) THEN
IF (M .LT. 400+L) .OR. (M .GT. 800+L)) THEN
REF(M) = STEP
ELSE
REF(M) = -STEP
ENDIF
ENDIF

D(M) = FNUM1*REF(M-1)+FNUM2* REF(M-2)
+ -DEN1*D(M-1)-DEN2*D(M-2)
65 CONTINUE

DO 67 13 = 1,PERIOD
DOe6l2=1,L
66 OUTSQ(I2) = OUTSQ(1023+i2)
CALL WEIGHT

DO 70 1=1,103
11 = (L+1)+((1-1)*10)
HzsQ(l) = (1-1)*1.0
OUTPLN(}) = OUTSQ(I1)
DSQ(l) = D(M)

70 CONTINUE

PRINT TAPS' OUTPUT VALUES
CALCULATE ALL IDEAL WEIGHTS VALUE
USING DISCRETE IMPULSE FUNCTION

o000
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C AND PRINT RESULTS OF TAPS BY USING LMS ALG.

DO140Q=1L
WRITE(*,150)Q.W(Q),IDEAL(Q), WAV (Q)
WRITE(100,150)Q,W(Q),IDEAL(Q), WAV(Q)

150 FORMAT(/,3X,'AT *,13," W , IDEAL,WAV *,3F12.8)
140 CONTINUE

C PLOT TAPS' VALUES
FNAME =FIRPAR'
CALL QOPEN(FNAME)
CALL QFRAME(1)

TED =.TRUE.
CALL QRANGE(UNIT W L, TED)
CALL QRANGE(UNIT,IDEAL,L,TED)
HZNAME = TAP NUMBER'
VTNAME = TAP SETTING'
CALL QXYAXES(HZNAME VTNAME)
CALL QMARK(UNIT,W,L,1,5,1)
CALL QMARK(UNIT,IDEAL,L,2,6,1)
READ(*,230)KEY

230 FORMAT(A1)
CALL QCLOSE

C PLOT TAPS VALUES
FNAME ='FIRAVPAR'
CALL QOPEN(FNAME)
CALL QFRAME(1)
TED = TRUE.
CALL QRANGE(UNIT,WAV,L,TED)
CALL QRANGE(UNIT,IDEAL,L,TED)
HZNAME = TAP NUMBER'
VTNAME = 'AVERAGE TAP SETTING'
CALL QXYAXES(HZNAME VTNAME)
CALL QMARK(UNIT,WAV,L,1,5,1)
CALL QMARK(UNIT,IDEAL,L,2,6,1)
READ(*,232)KEY

232 FORMAT(A1)
CALL QCLOSE

C %D °%%° °%%%° °° °° °° °° °0 0%° °° Ll °° 00 °° °° °° b%o °° Oo °D n° °° °° 0° 00 °° e° Oo °%° °° c° °° °° °° CJ

C PLOT TAPS' VALUES
IF (NCHOICE .EQ. 2) THEN
FNAME2 ~'SQRESP"
CALL QOPEN(FNAME2)
CALL QFRAME(1)
TED2 = TRUE.
CALL QRANGE(HZSQ,0UTPLN,103,TED2)
CALL QRANGE(HZSQ,DSQ,103,TED2)
HZ2NAME = 'NUMBER OF [TERATIONS'
VT2NAME = 'SQUARE RESPONSE'
CALL QXYAXES(HZ2NAME, VT2NAME)
CALL QPLOT(HZSQ,OUTPLN,103,1,1)
CALL QPLOT(HZSQ,DSQ,103,2,1)
READ(*,231)KEY2

231 FORMAT(A1)
CALL QCLOSE
ENDIF

67 CONTINUE

c %%%%%%%%%0 O%o °0 l)°A°/°° °D °° °° Qo °0 °° °0 Oo °%° °° o° °%° °° °° Oo °%° °° °0 °° °° °° °° °° OD/C'
CLOSE(100)
CLOSE(12)
STOP
END

C CALCULATE WEIGHT FUNCTION USING L.M.S. THEOREM
SUBROUTINE WEIGHT
INTEGER L.C K,BH,REF(1143)
REAL U,W(120),0UTSQ(1143),D(1143),WAV(120)
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COMMON/STORE1/REF
COMMON/STORE2/D
COMMON/STORE3/L
COMMON/STORE4/W
COMMON/STORE6&/U
COMMON/STORE7/OUTSQ
COMMON/STORES/WAV

DO201=1,L
20 WAV(l) = 0.0
DO 40 K=L+1,1023+L
OUTSQ(K) = TAP(K)
ERROR = D(K)- OUTSQ(K)
DO30B=1,L
W(B) = W(B) + 2*U*ERROR*REF(K-B+1)
WAV(B) = WAV(B) + W(B)/1023
30 CONTINUE
40 CONTINUE

RETURN
END

C CALCULTATE TAP OUTPUT VALUES
REAL FUNCTION TAP(K)
INTEGER A,L,REF(1143)
REAL OUT,W(120)
COMMON/STORE1/REF
COMMON/STORES/L
COMMON/STORE4/W

OUT=0.0
DO 20 A = KK-L+1,-1
OUT = OUT + (REF(A)*W(K-A+1))
20 CONTINUE
TAP = OUT
RETURN
END

C CALCULATE ALL WEIGHTS VALUES
C USING DISCRETE IMPULSE FUNCTION

REAL FUNCTION WIMP(K)
REAL F1,E.T.WN
COMMON/STORESWN,E,T

F1 = SQRT(1-E*E)
WIMP = WN*T/F1*SIN(WN*F1°K*T)*EXP(-E*WN*K*T)
RETURN

END

This program was written for the open loop Non-Parametric Model Reference Adaptive Control
simulations (chapter 3).

INTEGER H,B,0b, TERM,A,PERIOD,C
INTEGER HH,CC

INTEGER X(1023).Y0{1066) AA,AAA AB AC

REAL Y(1066),WK0(40),NSEFTOR

REAL ST(100),ST0(100),INST,INST1,INST2

REAL HTIME(100),UNIT(40),U,TS,NOISE(1066),IDEN(1086)
REAL YC(1066),W(40),0UTPLT(10686),DF(1066),er(102)

REAL TERMO(1066), TERM1(1066), TERM2(1066)

REAL OUTP(102),DFP(102) , KP,TP,KM,TM

REAL  NUMFO,NUMF1,NUMF2,MNUMFO,MNUMF1,MNUMF2

REAL denf1,denf2,MDENF1,MDENF2

REAL FCTORO,MFCTOROWNP,EP,F1P,F2P F3P,F4P

REAL WNM,EM,F1M,F2M,F3M,FaM

real  NST(200),NSTM(200),NST0(200),NINST ,NINST1,NINST2,GM,GP
REAL PLTNSE(102)

REAL HZ(1023),HZP(102),SUMTAPS,modgain

REAL WP(40),WPAV(40)
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REAL hn(200), WAV/(40)

INTEGER PRD1,prd2

REAL PLTOUT(78),PLTDF(78),TAPC(2,78),HZPIN(78)
REAL FINST(100),FINST1(100),FINST2(100)

INTEGER D1,D3,AC0,AD,AE AFAG

C VARIABLES FOR PLOTTING
LOGICAL TED,TED22,TED3,TED4,TED5
CHARACTER*25 FNAME , HZNAME ,VTNAME
CHARACTER*®25 FNAME3,HZ3,VT3,FNAM4,H4NAME, V4NAME FNAMES HZ5,VT5
CHARACTER®*25 F22NAME ,H22NAME ,V22NAME
CHARACTER"1 KEY KEY22,KEY3,KEY5
CHARACTER*50 NSTNAME,MODNAME ,NSTONAME
CHARACTER*'3 NAMEBO,NAMEB1,NAMEB2,NAMEA1,NAMEA2
CHARACTER*60 TLE3,TLE32,TLE33,TLE4

COMMON/STORE 1/K,IDELAY
COMMON/STORE2/TERMO,TERM1,TERM2,0UTPLT
COMMON/STORES3/L

COMMON/STORE4/W,YC

COMMON/STORE6/MDELAY,INIT

COMMON/STORE7/DF NOISE,WK0,IDEN,Y,WP,UP,WPAV
COMMON/STORES/HZ, WAV
COMMON/STORES/U,NUMFO,NUMF1,NUMF2, MNUMFO MNUM
+ MNUM F2, DENF1,DENF2,MDENF1,MDENF2,NSEFTOR, TS

OPEN(10,FILE='FBKOUT",STATUS="NEW')
open(12,file="data’,status="new')

C INFORMATONS OF DESIRED MODEL
C ASKFOR INFORMATIONS OF A PLANT MODELING

WRITE(*,11)

11 FORMAT(/.3X,GP?,GM?)
READ(*,)GP,GM
WRITE(*,13)

13 FORMAT(/,3X, INIT & NSEFTOR ?')

READ(*,*)INIT,NSEFTOR

C LMS ADAPTIVE FILTER INFORMATIONS
WRITE(*,15)

15 FORMAT(/,3X,'PRD1,prd2, PERIODS ?')
READ(*,*)PRD1,prd2,PERIOD
L=40
WRITE(*,17)

17 FORMAT(/,3X,TS? ,U? ,UP?)
READ(*,*)TS,U,UP
WRITE(*,19)

19 FORMAT(/,3X,NSTEP?, NCHOICE?)
READ(*,*)NSTEP,NCHOICE

C GENERATE PRBS
C STORE 10 INITIAL VALUES INPUT
DO 20 I=1,10
20  X(l) = NSTEP
DO 40 J=1,1023
Yo(J) = X(10)
C SHIFT VALUES TO THE RIGHT
DO 32 H=2,10
82 X(12-H) = X(11-H)

TERM = NSTEP**2
IF (YO(J)*X(8).EQ.TERM} GOTO 30
X(1) = NSTEP
GOTO 40

30  X(1) = -NSTEP

40 CONTINUE

DO 62 |=1,L+3 >
62 YO(1023+l) = YO(l)
DO61 =1L
WP(l) = 0.0
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wko(l}= 0.0
61 CONTINUE

DO 63 | = 1,1066
IF (NCHOICE .EQ. 1) YC(l) = YO(!)
IF (NCHOICE EQ. 2) THEN
IF { {1 .LT. 400+L+3) .OR. (1 .GT. 800+L+3) ) THEN

YC(l) = NSTEP
ELSE
YC(l) = -NSTEP
ENDIF
ENDIF
63 CONTINUE

NUMFO = 0.22361
NUMF1 = 2*NUMFo
NUMF2 = NUMFO
DENF1 = -0.74776
DENF2 = 0.64222

MNUMFO = 0.03356
MNUMF1 = 2*'MNUMFO
MNUMF2 = MNUMFO
MDENF1 =-1.5302
MDENF2 = 0.66443

DO 66 ML=1,L+3
NOISE(ML) = RND(INIT)*NSEFTOR
TERMO(ML) = 0.0
TERM1(ML) = 0.0
TERM2(ML) = 0.0
DF(ML) = NOISE(ML)
OUTPLT(ML)= NOISE(ML)
IDEN(ML) = NOISE(ML)
66 CONTINUE
WRITE(*,67)
67 FORMAT(/,3X,'IDELAY? MDELAY ')
READ(*,*)IDELAY,MDELAY
CALL WEIGHT
WRITE(*,69)
69 FORMAT(/,3X,’ PERIOD 1)
WRITE(10,97)GP,GM,NSEFTOR
97 FORMAT(/.3X,GP 'F5.2; GM'F5.2; NSEFTOR'F5.2)
WRITE(10,96)PERIOD,TS,U
96 FORMAT(/.3X,PERIOD ‘13, TS'F7.4, U"F15.10)
WRITE(10,85)NSTEP,NCHOICE
95 FORMAT(/,3X,NSTEP,NCHOICE *,213)

C REPEAT LOOP

DO 175 A=2,PRD1

DO 173 MA=1,L43
TERMO(MA) = TERMO(1023+MA)
TERM1{MA) = TERM1(1023+MA)
TERM2(MA) = TERM2(1023+MA)
YC(MA) = YC(1023+MA)

* OUTPLT(MA)= OUTPLT(1023+MA)
IDEN(MA) = IDEN(1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)

173 CONTINUE
CALL WEIGHT
WRITE(*,169)A
169 FORMAT{/,3X,” PERIOD *,13)
175 CONTINUE

GOTO 200
C REPEAT LOOP
C MEMORISE PLANT PARAMETERS
C CHANGE PARAMETERS OF A PLANT

201 NUMF0=0.0
NUMF1{ = 2.4°'GP
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NUMF2 = -1.92°GP
DENF1 = -0.1 ‘
DENF2 = -0.42

DO 186 A=prd1+1,PRD2
DO 174 MA=1,L+3
TERMO(MA) = TERMO0(1023+MA)
TERM1(MA) = TERM1(1023+MA)
TERM2(MA) = TERM2(1023+MA)
YC(MA) =YC(1023+MA)
OUTPLT{MA)= OUTPLT(1023+MA)
IDEN{MA) = IDEN(1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)
174 CONTINUE
CALL WEIGHT
WRITE(*,171)A
171 FORMAT{/,3X,' PERIOD ",13)
186 CONTINUE

GOTO 200
C REPEAT LOOP
C PLANT CHANGES BACK TO ITS ORIGINAL PARAMETERS

202 NUMFO = 0.22361
NUMF1 = 2*NUMFO
NUMF2 = NUMFO
DENF1 =-0.74776
DENF2 = 0.64222

DO 75 A<PRD2+1,PERIOD
DO 73 MA =143
TERMO(MA) = TERMO(1023+MA)
TERM1(MA) = TERM1{1023+MA)
TERM2(MA) = TERM2(1023+MA)
YC(MA) = YC(1023+MA)
OUTPLT(MA)= OUTPLT{1023+MA)
IDEN(MA) = IDEN(1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)
73 CONTINUE
CALL WEIGHT
WRITE(* 70)A
70 FORMAT(/3X.’' PERIOD 'I3)
75 CONTINUE
200 DO 132 I =1,L
132 UNIT(IT)=IIl

SUMTAPS = 0.0
DO 135113 = 1,L

135 SUMTAPS = SUMTAPS + WAV(lI3)
WRITE(10,94)SUMTAPS

94 FORMAT(/,3X,'SUMTAPS *,F15.10)

DO 136114 =1L
136  WAV(ll4) = WAV(I14)/SUMTAPS

c %%%%%%%%0 ﬂo °° °° O%o °° °0 °° °° °e °%° °° °° °° °° °° Oo °° °0 °° Oo °° Oo °° °0 °° °° 0° °0 Oo o

C PLOT TAPS' VALUES

FNAME =TAPS'
CALL QOPEN(FNAME)
CALL QFRAME(1)
TED = TRUE.
CALL QRANGE(UNIT,WAV,40,TED)
HZNAME = TAP NUMBER'
VTNAME = 'VALUES OF TAP SETTING'
CALL QXYAXES(HZNAME VTNAME)
CALL QMARK(UNIT,WAV,40,1,2,1)
READ(*,131)KEY

131 FORMAT(A1)
CALL QCLOSE
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C PLOT PLANT FIR PARAMETERS
ENAME ='PLNFIR"
CALL QOPEN(FNAME)
CALL QFRAME(1)
TED = .TRUE.
CALL QRANGE(UNIT,WPAV 40,TED)
HZNAME = ‘PLANT FIR PARAMETER NUMBER'
VTNAME = 'VALUES OF PLANT FIR PARAMETERS'
CALL QXYAXES(HZNAME VTNAME)
CALL QMARK(UNIT,WPAV,40,1,2,1)
READ(*,133)KEY

133 FORMAT(A1)
CALL QCLOSE

DO 141 1=1,102
1 = 1+(I-1)*10
HZP(l) =HZ(11)
PLTNSE(!)= NOISE(I1)
outp(l} = outplt(l1)
dfp(l) = df(l1)
C er(l) = dfp(l)-outp(l)
141 CONTINUE

(OB A A A A A A A S Ay A A A A A P T A A A A A

C PLOT STEP RESPONSE FOR CLOSED LOOP FEEDBACK CONTROL SYSTEM

F22NAME = 'OUT&MOD'
CALL QOPEN({F22NAME)
CALL QFRAME(1)
TED22 = TRUE. ,
CALL QRANGE(HZP,OUTP,102,TED22)
CALL QRANGE(HZP,DFP,102,TED22)
H22NAME = TIME IN SEC’
V22NAME = 'OUTPUT WAVEFORMS'
CALL QXYAXES(H22NAME,V22NAME)
CALL QPLOT(HZP,OUTP,102,1,1)
CALL QPLOT(HZP,DFP,102,2,2)
READ(*,147)KEY22

147 FORMAT(A1)
CALL QCLOSE

IF (A LE. PRD2 ) GOTO 201
IF (A .LE. PERIOD) GOTO 202
C INITIALISE

DO 251 | = 1,MDELAY
NSTM(l)= 0.0
NST(}) = 0.0
ST(l) =0.0
NSTO(l)= 0.0

251 CONTINUE

C NOFEEDBACK Square RESPONSE

DO1451=1,L

145 W(l) = WAV(l)
NST(IDELAY+1) = NUMFO*W(1)
NINST1 = W(1)
NINST = W(1)+W(2)

NST(IDELAY +2) = NUMFO*NINST +NUMF1*NINST1-DENF1*NST(IDELAY+1)

DO 253 10=3,L
NINST2 = NINST1
NINST1 = NINST
NINST = NINST + W(I0)

NST(IDELAY+I0) = NUMFO*NINST+NUMF1*NINST1+NUMF2*NINST2

+ -DENF1*NST(IDELAY+l0-1) - DENF2*NST(IDELAY+I0-2)
253 CONTINUE
NST(IDELAY +L+1) = NUMFO*NINST+NUMF1*NINST+NUMF2*NINST1
+ -DENF1*NST(IDELAY+L)-DENF2*NST(IDELAY+L-1)
DO 255 11=L+2,100+idelay
NST(I1) = (NUMFO+NUMF1+NUMF2)*NINST
+ -DENF1*NST(l1-1)-DENF2*NST(!1-2)
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255 CONTINUE

do 257 i=1,l
ninst2 = ninst1
ninsti = ninst
ninst = ninst-w(i)
nst(100+idelay+i) = numfo*ninst+numf1*ninst1 +numf2*ninst2

+ -denf1*nst(100+idelay+i-1)-denf2*nst(100+idelay+i-2)

257 continue
nst{100+idelay+I+1)=(numf0+numf1)*minst+numf2*ninst1 '

+ -denf1*nst(100+idelay+l)-denf2*nst(100+idelay+l-1)
nst(100+idelay+l+2)=(numfO+numf1+numf2)*ninst
+ -denf1*nst(100+idelay+l+1)-denf2*nst(100+idelay+l)

do 259 i1 = [+100+idelay+3,200
nst(i1) = (numfO+numf1+numf2)*ninst-denf1*nst(11-1)
+ -denf2*nst(i1-2)
259 continue

C MODEL
NSTM{MDELAY+1) = MNUMFO
NSTM(MDELAY +2) = MNUMFO+MNUMF1-MDENF1*NSTM(MDELAY+1)
DO 261 12=3+MDELAY,100+mdelay
NSTM(12)=(MNUMFO+MNUMF 1 +MNUMF2)
+ -MDENF1*NSTM(12-1)-MDENF2*NSTM(12-2)
261 CONTINUE
nstm(mdelay+101) = mnumf1+mnumf2-mdenf1*nstm{mdelay+100)
+ -mdenf2*nstm(mdelay+99)
nstm(mdelay+102) = mnumf2-mdenf1*nstm(mdelay+101)
+ -mdenf2*nstm(mdelay+100)
do 263 i2 = mdelay+103,200
nstm(i2) = -mdenf1*nstm(i2-1)-mdenf2*nstm(i2-2)
263 continue

NSTO(IDELAY+1) = NUMFO
NSTO({IDELAY+2) = NUMFO+NUMF1-DENF1*NSTO(IDELAY+1)
DO 101 12=3+IDELAY,100+idelay
NSTO(12)=(NUMFO0+NUMF1+NUMF2)
+ -DENF1*NSTO0(I2-1)-DENF2*NST0(l2-2)
101 CONTINUE
nstO(ldelay+101) = numf{4+numf2-denf1*nsto(idelay+100)
+ -denf2*nst0(Idelay+99)
nst0(ldelay+102) = numf2-denf1*nst0(ldelay+101)
+ -denf2*nst0(ldelay+100)
do 110 i2 = Idelay+103,200
nsto(i2) = -denf1*nst0(i2-1)-denf2*nst0(i2-2)
110 continue

do 10i = 1,200
hn{i)=i"ts
10 continue

C STEP RESPONSE OF A SYSTEM WITH NO FEEDBACK
FNAMES = 'SOQRESP'
CALL QOPEN(FNAME3)
CALL QFRAME(1)
TED3 = TRUE.
CALL QRANGE(Hn,NST,200,TED3)
CALL QRANGE(Hn,NSTM,200,TED3)
HZ3 = 'TIME IN SECONDS'
VT3 = 'STEP RESPONSE'
CALL QXYAXES(HZ3,VT3)
CALL QPLOT(Hn NST,200,1,LSTYLE)
CALL QPLOT({Hn,NSTM,200,1,LSTYLE)
READ(*,160)KEY3
160 FORMAT(A1)
CALL QCLOSE

C  mmmeeemeeeeaas B AL LT TR ET LR PP
C STEP RESPONSE OF A SYSTEM WITH NO FEEDBACK
FNAMES ='STRESP'
CALL QOPEN(FNAMES)
CALL QFRAME(1)



TEDS = .TRUE.
CALL QRANGE(Hn,NST,100,TEDS)
CALL QRANGE(Hn,NSTM,100,TEDS)
CALL QRANGE(HN,NSTO0,100,TEDS)
HZ5 = TIME IN SECONDS'
VTS = 'STEP RESPONSE’
CALL QXYAXES(HZ5,VTS)
CALL QPLOT(Hn,NST,100,1,1)
CALL QPLOT(Hn,NSTM,100,1,1)
CALL QPLOT(HN,NST0,100,1,1)
READ(*,112)KEY5

112 FORMAT(A1)
CALL QCLOSE

WRITE(*,161)SUMTAPS

161 FORMAT(/,3X,'SUMTAPS ='F15.5)
CLOSE(10)
close(12)

STOP
END

.
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C CALCULATE WEIGHT FUNCTION USING L.M.S THEOREM

SUBROUTINE WEIGHT

INTEGER B.AE,AA

REAL Y(1066),WKO0(40),WK1(40),WK2(40),NOISE(1066),NSEFTOR
REAL U,W(40),YC(1066),0UTPLT(1066),IDEN(1066)

REAL DF(1066),NUMFO0,NUMF1,NUMF2, MNUMF0,MNUMF 1, MNUMF2
REAL DENF1,DENF2,MDENF1 , MDENF2,HZ(1023)

REAL TERMO(1066), TERM1(1066), TERM2(1066)

REAL WP(40),WPAV(40),WAV(40)

COMMON/STORE 1/K,IDELAY
COMMON/STORE2/TERMO,TERM1,TERM2,0UTPLT
COMMON/STORES3/L

COMMON/STORE4/W,YC

COMMON/STORE6/MDELAY,INIT
COMMON/STORE7/DF NOISE ,WKO,IDEN,Y,WP,UP,WPAV
COMMON/STORES8/HZ, WAV
COMMON/STORES/U,NUMFO,NUMF 1,NUMF2,MNUMFO,MNUMF1,
+ MNUMF2 DENF1,DENF2,MDENF1,MDENF2,NSEFTOR, TS

C CALCULATE WEIGHTS

DO211=1L
WAV(l) = 0.0
WPAV()) = 0.0

21 CONTINUE

—=

DO 40 K=1.+4,1023+L+3
TERM2(K) = TERM1(K-1)
TERM1(K) = TERMO(K-1)
DO 421=1,L
42 W()=WKo(f)
TERMO(K) = PLT(K)
NOISE(K) = RND({INIT)*"NSEFTOR
OUTPLT(K)= NUMFO*TERMO(K-IDELAY)+NUMF1‘TERM1(K-IDELAY)
+  +NUMF2‘TERM2(K-IDELAY)-DENF1*OUTPLT(K-1)-DENF2*OUTPLT(K-2)
+ +NOISE(K)

OuUT = 0.0
DO 16 I = K,K-L+1,-1
OUT = OUT + (TERMO(I)*WP(K-1+1))
16 CONTINUE
ER = OUTPLT(K) - OUT

DO151=1,L
WP(l) = WP(l) + 2*UP*ER‘TERMO(K-1+1)
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WPAV(I) = WPAV(l) + (WP(1)/1023)
15 CONTINUE

IDEN(K) = 0.0
DO 141=1,.L
14 IDEN(K) = IDEN(K) + WP{I)*YC(K-1+1)

22 DF(K) = MNUMFO*YC(K-MDELAY)+MNUMF1*YC(K-1-MDELAY)
+  +MNUMF2*YC(K-2-MDELAY)-MDENF 1*DF(K-1)
+ -MDENF2*DF (K- 2)

91 DO 30B=1,L
WKO(B)=WKO(B) + 2°U*(DF(K)-OUTPLT(K))*IDEN(K-B+1)
WAV(B)=WAV(B) + WKO(B)/1023

30 CONTINUE

HZ(K-43) = (K-43)*1.0
40 CONTINUE

RETURN
END

O A A A A A A A A S A A Ay A P P A P R A S

C CALCULATE TAP OUTPUT VALUES
REAL FUNCTION PLT(K)
INTEGERA,L
REAL OUT,W(40),YC(1066)

COMMON/STORES3/L
COMMON/STORE4/W,YC

OUT = 0.0
DO 20 A=K,K-L+1,-1
OUT = OUT + (YC(A)*W(K-A+1))
20 CONTINUE
PLT = OUT
RETURN
END

O o A T A A A T Ay A o A A O A A A A I A A A A 2

C GENERATE NOISE
REAL FUNCTION RND(IS)
IS = MOD(193°IS,37447)
RND-= {(IS/37447.0)-0.5)
RETURN
END

This program was written for the closed loop Non-Parametric Model Reference Adaptive Control sim-
ulations (chapter 4).

INTEGER 1,J,S,KC,K H,L,M,bb,TERM,PERIOD,STEP,IA,CHOICE

INTEGER HH, I, MM,CC,MDELAY NPDELAY

INTEGER X(1023),Y0(1066),AA,AAA,AB,AC, ML ,MN,MA,MB,INIT

REAL Y(1066),WK0(40),FCTR

REAL ST(200),8T0(200),INST,INST1,INST2,NSEFTOR,WAV(40)
REAL HTIME(200),UNIT(40),U,TS,NOISE(1066),IDEN(1066)

REAL YC(1066),W(40),OUTPLT(1066),DF(1066)

REAL TERMO(1066), TERM1(1066), TERM2(1066), TERM3(1066)

REAL NUM1,NUM2,NUM3,MNUM4,mnum5,MNUM6,WP(40),WPAV(40)
REAL den1,den2,DEN3,MDEN1,MDEN2

REAL FCTOROMFCTORO,WNP,EP,F1P,F2P,F3P,F4P,hsq(200)

real NST(500),NSTM(500),NST0(200) ,NINST,NINST1,NINST2
INTEGER 10,11,12,HHH,HH1,112,1i1,113,114 -
REAL HZ(1023),modgain
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REAL HZSQ(107),0UTSQ(107),DFSQ(107),INCNT(642)HZIN(642)
INTEGER IRLS,JRLS NRLS,PRD1,prd2,INPUT

REAL HZP(103),TAP1(103),TAP11(103).TAP21(103), TAP31(103)
REAL TAP41(103),YY(1066)

INTEGER JC,JC2
REAL HST(500)

INTEGER D1,D02,D3,AC0,AD,AE AF,AG
C VARIABLES FOR PLOTTING
LOGICAL TED,TED12,tedST,TEDSQ,tedrf, TEDCNT,TEDP,TEDT
CHARACTER*25 FNAME, HZNAME ,VTNAME FNAME 12 HNAME VNAME ,FNAMEP
CHARACTER*25 fnameST,hZST,fnamerf,hzrf virf, HZPNAME VTPNAME
CHARACTER*25 FSQ,HZSQNAME VTSQ,FCNTIN,HZCNT ,VTCNT
CHARACTER*25 vTST,HZT ,VTT,FNAMET
CHARACTER*1 KEY,KEY12,keyST,KEYSQ,keyrf, KEYCNT,KEYP, KEYT
CHARACTER'20 NAME1,NAME11,NAME21,NAME31,NAM41
CHARACTER®60 TITLE,TLE12,TITP

COMMON/STORE1/K,NPDELAY

COMMON/STORE2/TERMO,TERM1, TERM2,TERM3,OUTPLT
COMMON/STORES3/L

COMMON/STORE4/W,YC

COMMON/STORE6/MDELAY,INIT,IA,PERIOD
COMMON/STORE7/NOISE, WKO0,WAV IDEN,U,NSEFTOR,WPAV WP,UP
COMMON/STORES8/HZ,HZP,TAP1,TAP11,TAP21,TAP31,TAP41
COMMON/STORES/NUM1,NUM2,NUM3,DEN1,DEN2,DEN3,YY ,GM,FCTR,DF,
+ MNUM4,MNUMS,MNUMS6,MDEN1,MDEN2 , TS

OPEN(10,FILE='FBKOUT',STATUS='NEW)

C INFORMATONS OF DESIRED MODEL
C ASKFOR INFORMATIONS OF A PLANT MODELING

WRITE(*,5)
FORMAT{/,3X,'INIT,CHOICE nplant?)
READ(*,*)INIT,CHOICE,nplant

WRITE(*.7)

FORMAT(/,3X,’ FCTR , U ,NSEFTOR?,TS?,UP,GM")
READ(*,*)FCTR,U,NSEFTOR,TS,UP.GM

€ LMS ADAPTIVE FILTER INFORMATIONS
WRITE(*.9)

FORMAT(/,3X,'PRD1,prd2, PERIODS ?)
READ(*,*)PRD1,prd2,PERIOD

(&)

~

©

L =40

WRITE(*,11)
11 FORMAT(/,3X,' NPDELAY,MDELAY ?)
READ(*,")NPDELAY,MDELAY

WRITE(*,13)

13 FORMAT{(/,3X,' STEP ?")
READ(*,")STEP

C e m e emmemeccmeccccamecmmememeceee—e——————
CALL SLTPLT(CHOICE,nplant)
write(*,14)num1,num2,num3,den1,den2,den3

14 format(/,3x,'num,den= ',6f10.7)

C GENERATE PRBS
C STORE 10 INITIAL VALUES INPUT
DO 20 1=1,10
X(ly = STEP
20 CONTINUE

DO 60 J=1,1023
YO(J) = X(10)
C SHIFT VALUES TO THE RIGHT
DO 32 H=2,10
X(12-H) = X(11-H)
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32 CONTINUE
TERM = STEP**2
IF (YO(J)*X(8).EQ.TERM) GOTO 30
X(1) = STEP
GOTO 40
30 X(1) =-STEP
40 CONTINUE
60 CONTINUE
DO 62 S=1,L+3
Y0(1023+S) = YO(S)
62 CONTINUE
DO611=1,L
WKo(l) = 0.0
WP(l) =0.0
61 CONTINUE

C CALCULATE PRBS OUTPUT FROM A RC LOWPASS FILTER
C BANDWIDTH = FC/2

YY(1) = 0.0
DO 163 KC=2,1023+L+3
YY(KC) = 0.6*°YY(KC-1)+0.2*(YO(KC)*FCTR)+0.2*(YO(KC-1)*FCTR)
163 CONTINUE

MNUM4 = 0.0597*GM
MNUMS = 0.0

MNUMS = 0.0

MDENT = -1.4891
MDEN2 = 0.5488

10 wnte(10,18)mnum4,MNUMS5,mden1,mden2
18 format(/,3x,'mnum,mden ',4{10.7)

DO 66 ML = 1,143
NOISE(ML) = RND(INIT)*NSEFTOR
OUTPLT(ML)= NOISE(ML)
IDEN(ML) = NOISE(ML)
TERMO(ML) = 0.0
TERM1(ML) = 0.0
TERM2(ML) = 0.0
TERMS(ML) = 0.0
YC(ML) = YY(ML) - OUTPLT(ML)

66 CONTINUE

CALL WEIGHT
WRITE(*,69)

69 FORMAT(/,3X.' PERIOD 1')
WRITE(10,99)CHOICE, NPDELAY,MDELAY

89 FORMAT(/,3X, 'CHOICE *,13NPDELAY,MDELAY *,213)
WRITE(10,96)PERIOD,TS,U

96 FORMAT(/,3X,PERIOD I3, TS "F7.4, U'F15.10)
WRITE(10,95)STEP,FCTR.NSEFTOR

95 FORMAT(/,3X,’ STEP *13,FCTR,NSEFTOR ',2F10.8)

DO 21 IJ = 1,107
W1 =1 + (iJ-1)*10
INCNT(1J) = TERMO(IJ1)
HZIN() =W * TS

21 CONTINUE

C REPEAT LOOP

DO 175 IA=2,PRDA

DO 173 MA=1,L+3
TERMO(MA) = TERMO(1023+MA)
TERM1(MA) = TERM1(1023+MA)
TERM2(MA) = TERM2(1023+MA)
TERM3(MA) = TERM3(1023+MA)
YC(MA) =YC(1023+MA)
OUTPLT(MA)= OUTPLT(1023+MA)
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IDEN(MA) = IDEN(1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)

173 CONTINUE
CALL WEIGHT
WRITE(*,169)IA
169 FORMAT(/,3X, PERIOD *,13)
175 CONTINUE

DO 22 14 = 1,107
W1 =1+ (iJ-1)*10
2 = 107 + I
INCNT(1J2) = TERMO(K1)
HZIN(2) =1J2 * TS
22 CONTINUE

GOTO 199

o

C REPEAT LOOP

C MEMORISE PLANT PARAMETERS

201 irem6 = idelay

irem7 = mdelay
|IREM8 = CHOICE
FREM9 = U

C CHANGE PARAMETERS OF A PLANT
WRITE(*,77)

77 FORMAT(/,3X,'NPDELAY ?,MDELAY ,choice ?,nplant? ")
READ(*,")NPDELAY ,MDELAY ,choice,nplant
WRITE(*,78)

78 FORMAT(/,3X,'U ?)

READ(*,*)U

CALL SLTPLT(CHOICE nplant)
DO 186 [A=prd1+1,PRD2
DO 174 MA=1,L+3
TERMO({MA) = TERM0(1023+MA)
TERM1{MA) = TERM1(1023+MA)
TERM2(MA) = TERM2(1023+MA)
TERM3(MA) = TERM3(1023+MA)
YC(MA) = YC(1023+MA)
OUTPLT(MA)= OUTPLT(1023+MA)
IDEN(MA) = IDEN{1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)
174 CONTINUE
CALL WEIGHT
IF (1A .EQ. PRD1+1) THEN
DO 23 IJ = 1,107
W1 =1+ (iJ-1)*10
2 =214 + I
INCNT(lJ2) = TERMO(IJ1)
HZIN(2) =1J2 * TS
23 CONTINUE
ENDIF
WRITE(*,171}IA
171 FORMAT{/.3X,’ PERIOD *,I3)
186 CONTINUE
DO 24 IJ = 1,107
W1 =1 + (iJ-1)*10
2 =321 + 14
INCNT(1J2) = TERMO(1J1)
HZIN(lJ2) = 1J2 * TS
24 CONTINUE
GOTO 200

C REPEAT LOOP
C PLANT CHANGES BACK TO ITS ORIGINAL PARAMETERS
202 idelay = iremé

mdelay = irem7

choice = irem8

nplant = irem9

U =FREMS
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CALL SLTPLT(CHOICE,nplant)

DO 75 1A=PRD2+1,PERIOD
DO 73 MA =143
TERMO(MA) = TERMO(1023+MA)
TERM1(MA) = TERM1(1023+MA)
TERM2(MA) = TERM2(1023+MA)
TERM3{MA) = TERM3(1023+MA)
YC(MA) = YC(1023+MA)
OUTPLT(MA)= OUTPLT(1023+MA)
IDEN(MA) = IDEN({1023+MA)
NOISE(MA) = NOISE(1023+MA)
DF(MA) = DF(1023+MA)
73 CONTINUE
CALL WEIGHT

IF (1A .EQ. PRD2+1) THEN
DO 25 lJ = 1,107
W1 =1+ (id-1)*10
M2 = 428 + 1J
INCNT(1J2) = TERMO(IJ1)
HZIN(W2) =1J2* TS
25 CONTINUE
ENDIF
71 WRITE(*.79)IA
79 FORMAT(/.3X.' PERIOD ',I3)
75 CONTINUE

DO 26 IJ = 1,107
1 =1 + (id-1)*10
1J2 = 535 + IJ
INCNT(1J2) = TERMO(IJ1)
HZIN(W2) =2 * TS

26 CONTINUE

C PLOT TAP

199 FNAME12 = ‘TAP'
CALL QOPEN(FNAME12)
CALL QFRAME(1)
TLE12 = * INDIVIDUAL TAP PLOT'
CALL QTEXT(TLE12,20,12000,31000)
TED12 = TRUE.
CALL QRANGE(HZP,TAP1,103,TED12)
CALL QRANGE(HZP,TAP11,103,TED12)
CALL QRANGE(HZP.TAP21,103,TED12)
CALL QRANGE(HZP,TAP31,103,TED12)
HNAME = TIME IN SECONDS'
VNAME = ‘TAP1,6,11,21,31"
CALL QXYAXES(HNAME VNAME)
CALL QPLOT(HZP,TAP1,103,1,1)
CALL QPLOT(HZP,TAP11,103,1,1)
CALL QPLOT(HZP,TAP21,103,1,1)
CALL QPLOT(HZP,TAP31,103,1,1)
READ{*,145)KEY12

145 FORMAT(A1)
CALL QCLOSE

200 DO 132 Il =1,L

UNIT(I)=II*TS
132 CONTINUE

SUMTAPS = 0.0
SUMP =0.0
DO 135103=1,L
SUMTAPS = SUMTAPS + WAV(II3)
SUMP = SUMP + WPAV(lI3)
135 CONTINUE
WRITE(10,94)SUMTAPS,SUMP

94 FORMAT(/,3X,'SUMTAPS,SUMP ',2F15 10)

C PLOT TAPS' VALUES
FNAME =TAPS'
CALL QOPEN(FNAME)
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CALL QFRAME(1)
TITLE='VALUES OF TAPS SETTING'
CALL QTEXT(TITLE,22,12000,31000)
TED = TRUE.
CALL QRANGE(UNIT,WAV,40,TED)
HZNAME = ‘'NO OF TAPS'
VTNAME = TAPS SETTING'
CALL QXYAXES(HZNAME VTNAME)
CALL QMARK(UNIT,WAV,40,1,2,1)
READ(*,131)KEY

131 FORMAT(A1)
CALL QCLOSE

C PLOT TAPS VALUES
FNAMEP =TAPSP'
CALL QOPEN(FNAMEP)
CALL QFRAME(1)
TITP="VALUES OF PLANT TAPS*
CALL QTEXT(TITP,22,12000,31000)
TEDP = TRUE.
CALL QRANGE(UNIT, WPAV,40,TEDP)
HZPNAME = 'NO OF TAPS'
VTPNAME = TAPS SETTING'
CALL QXYAXES(HZPNAME,VTPNAME)
CALL QMARK(UNIT,WPAV,40,1,2,1)
READ(*,170)KEYP

170 FORMAT(A1)
CALL QCLOSE

C °°°°°°°°°°°°%°°°°°°°°°D°B°D°°°D°°°°°°°°°° Ooooﬂo°°oooo°°°°°°°°°°°°°°°°D°°°D°O° o°o°o

C INITIALISE

DO 263 KC=1,150

IF (CHOICE .EQ. 1) THEN
Y(KC) = exp(-0.4*(kc*ts))*sin(2*kc*ts)/GM

ENDIF

IF ((CHOICE .EQ. 2) .AND. (KC .LE.75)) THEN
y(KC) = KC*FCTR/GM

ENDIF

IF ((CHOICE .EQ. 2) .AND. (KC .GT. 75)) THEN
Y(KC) = (2.0*Y(75))-KC*fctr/GM

ENDIF
263 CONTINUE
DO2641=1,6

DO 255 KC = 1,150
Y(KC+!*150) = Y(KC)
255 CONTINUE
264 CONTINUE

DO 256 | = 1,16
Y(1+1050) = Y(I+134)
256 CONTINUE

C FEEDBACK STEP RESPONSE
DO 149 | =1 ,NPDELAY
nst(l) = 0.0
NSTO(l)= 0.0
149 CONTINUE
NST(NPDELAY+1) = NUM1*WAV(1)*Y(1)
NINST1 = WAV(1)*Y(1)
NINST = WAV(1)*(Y(2)-NST(2)) + WAV(2)*(Y(1)-NST(1))
NST(NPDELAY+2) = NUM1*NINST+NUM2*NINST1-DEN1*NST{(NPDELAY +1)
+ - DEN2*NST(NPDELAY)
DO 151 10=NPDELAY+3,500
NINST2 = NINST1
NINST1 = NINST
NINST =0.0
DO1641=1,L
IF ({10 - | -NPDELAY + 1) .GT. 0) THEN
NINST = NINST+WAV(I)*(Y(10-I-NPDELAY+1)-NST(l0-I-NPDELAY +1))
ELSE
GOTO 164
ENDIF
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164 CONTINUE
NST(10) = NUM1*NINST+NUM2*NINST1+NUM3*NINST2
+ - DEN1*NST(10-1) - DEN2*NST(I0-2)

151 CONTINUE

-C MODEL
DO 150 | = 1,MDELAY
NSTM(l) = 0.0
150 CONTINUE
NSTM(MDELAY+1) = MNUMA4*Y(1)
NSTM(MDELAY+2) = MNUM4*Y(2) + MNUMS5*Y(1)-MDEN1*NSTM(MDELAY+1)
DO 153 12-MDELAY 43,500
NSTM(I2) = MNUM4*Y(12-MDELAY) + MNUMS*Y (12-MDELAY-1)

+ + MNUME6*Y(I2-MDELAY-2)
+ - MDEN1*NSTM(I2-1)-MDEN2*NSTM(I2-2)
153 CONTINUE

NSTO(NPDELAY+1) = 0.0
NSTO(NPDELAY+2) = NUM2*y(1) - DEN1*NSTO(NPDELAY-1)
DO 155 | = NPDELAY+3 ,200
NSTO(l) = NUM2*y(i-2-NPDELAY+1) + NUM3*y(I-3-NPDELAY+1)
+ - DEN1*NSTO(l-1) - DEN2°NSTO(I-2)
155 CONTINUE
DO 154 | = 1,500
HST(l) = I'TS
154 CONTINUE

C PLOT OPEN LOOP STEP RESPONSE
C FORA CLOSED LOOP FEEDBACK CONTROL SYSTEM
FNAMEST = 'STRESP'
CALL QOPEN(FNAMEST)
CALL QFRAME(1)
TEDST = .TRUE.
CALL QRANGE(HST,NST,500,TEDST)
CALL QRANGE(HST,NSTM,500,TEDST)
HZST = TIME IN SEC'
VTST = "OUTPUT WAVEFORMS'
CALL QXYAXES(HZST,VTST)
CALL QPLOT(HST,NST,500,1,1)
CALL QPLOT(HST,NSTM,500,2,1)
READ(*,147)KEYST
147 FORMAT(A1)
CALL QCLOSE
FNAME rf = 'out&rf’
CALL QOPEN(FNAMETrf)
CALL QFRAME(1)
TEDRF = .TRUE.
CALL QRANGE(HST,NST,500,TEDRF)
CALL QRANGE(HST,Y,500,TEDRF)
HZRF = 'TIME IN SEC'
VTRF ="'OUTPUT & REF-SIGNAL WAVEFORMS'
CALL QXYAXES(HZRF VTRF)
CALL QPLOT(HST,NST,500,1,1)
CALL QPLOT(HST,Y,500,2,1)
READ(*,148)KEYRF
148 FORMAT(A1)
CALL QCLOSE

DO 286 IJ = 1,107
W1 =1 + (IJ-1)*10
HZSQ() = W1*TS
oUTSQ(l) = OUTPLT(K)
DFSQ(LJ) = DF(lJ1)
286 CONTINUE

C SQUARE RESPONSE OF A SYSTEM
FSQ ="SQRESP"
CALL QOPEN(FSQ)
CALL QFRAME(1)
TEDSQ = .TRUE.
CALL QRANGE(HZSQ,0UTSQ,107,TEDSQ)
CALL QRANGE(HZSQ,DFSQ,107,TEDSQ)
HZSQNAME = TIME IN SEC'
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VTSQ ="SQUARE RESPONSE'
CALL QXYAXES(HZSQNAME VTSQ)
CALL QPLOT(HZSQ,0UTSQ,107,1,1)
CALL QPLOT(HZSQ,DFSQ,107,2,1)
READ(*,290)KEYSQ

280 FORMAT(A1)
CALL QCLOSE

FCNTIN ="CNTIN'
CALL QOPEN(FCNTIN)
CALL QFRAME(1)
TEDCNT = TRUE.
CALL QRANGE(HZIN,INCNT,642,TEDCNT)
HZCNT = TIME IN SEC'
VTCNT = 'CONTROL INPUT SIGNAL'
CALL QXYAXES(HZCNT,VTCNT)
CALL QPLOT(HZIN,INCNT,642,1,1)
READ(*,289)KEYCNT

289 FORMAT(A1)
CALL QCLOSE

WRITE(*,161)SUMTAPS

161 FORMAT(/,3X,'SUMTAPS =*F15.5)
IF (IA .LE. PRD2) GOTO 201
IF (A LE. PERIOD) GOTO 202
CLOSE(10)
STOP
END

C %°o°o°e°o°e°o°o° °°°0°°°°°°°°°°°°°°°°°°°°°°% o°o°o°o°o°o°o°a°o°o°o°o%°o°o°o°o°o°o

C CALCULATE WEIGHT FUNCTION USING L M S THEOREM

SUBROUTINE WEIGHT

INTEGER L,K,B,AEAA

INTEGER B00,B11,B22,NPDELAY ,MDELAY,INIT,IA,PERIOD

REAL YY(1066),WK0(40),NOISE(1066),NSEFTOR

REAL U,W(40),YC(1066),OUTPLT(1066),IDEN(1066)

REAL DF(1066),NUM1,NUM2,NUM3,MNUM4,MNUM5,MNUM6E,WAV(40)
REAL DEN1,DEN2,DEN3,HZ(1023)

REAL MDEN1,MDEN2,WPAV(40),WP(40)

REAL TERMO(1066),TERM1(1066), TERM2(1066), TERM3(1066)
REAL HZP(103),TAP1(103),TAP11(103),TAP21(103), TAP31(103)
REAL TAP41(103),sumtaps

COMMON/STORE 1/K NPDELAY
COMMON/STORE2/TERMO,TERM1,TERM2,TERM3,QUTPLT
COMMON/STORES/L

COMMON/STORE4/W,YC

COMMON/STORE&/MDELAY INIT,JA,PERIOD

COMMON/STORE7/NOISE, , WKO0,WAV,IDEN,U,NSEFTOR,WPAV WP,UP
COMMON/STORES8/HZ HZP, TAP1,TAP11,TAP21,TAP31,TAP41
COMMON/STORES/NUM1,NUM2,NUM3,DEN1,DEN2,DEN3,YY,GM,FCTR,DF,
+ MNUM4,MNUMS,MNUMS,MDEN1,MDEN2,TS

C CALCULATE WEIGHTS
DO201=1L
WAV(I) = 0.0
WPAV(l)= 0.0
20  CONTINUE

DO 40 K=L+4,1023+L+3
TERM3(K) = TERM2(K-1)
TERM2(K) = TERM1(K-1)
TERM1(K) = TERMO(K-1)
NOISE(k) = RND(INIT)*NSEFTOR
OUTPLT(K)= NUM1*TERM1(K-NPDELAY)+NUM2‘TERM2(K-NPDELAY)
+ +NUMB3'TERM3(K-NPDELAY)
+ -DEN1*OUTPLT(K-1)-DEN2*OUTPLT(K-2)-DEN3*OUTPLT(K-3)
+ +NOISE(K)
YC(K) = YY(K) - OUTPLT(K)
DO421=1,L
42 W(l) = WKO(l)
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TERMO(K) = PLT(K)
OUT = 0.0
DO 121=K,K-L+1,-1

OUT = OUT + (TERMO(I)*WP(K-1+1))

12 CONTINUE

ER = OUTPLT{K) - OUT
DO131=1L
WP(l) =WP(l) + 2°UP*ER*TERMO(K-1+1)
WPAV(I) = WPAV(I) + (WP(1)/1023)

13 CONTINUE

IDEN(K) = 0.0
DO141=1,L
IDEN(K) = IDEN(K) + WP(1)*YC{K-1+1)

14 CONTINUE

DF{K) = MNUM4*YY(K-MDELAY) + MNUM5*YY(K-MDELAY-1)
+ + MNUMB*YY(K-MDELAY-2)
+ - MDEN1*DF(K-1) - MDEN2*DF(K-2)
DO 30 B=1,L
WKO(B)=WKO(B) + 2°U*(DF(K)-OUTPLT(K))*IDEN(K-B+1)
WAV(B)=WAV(B) + { WKO(B)/1023)

30 CONTINUE

IF (MOD(K-43,10) .EQ. 0) THEN
1= ((K-43)/10) + 1
TAP1(l) = WKO(1)
TAP11(l)= WKO(11)
TAP21(l)= WKO(21)
TAP31(l)= WKO(31)
TAP41(l)= WKO(41)
HZP(l) = (K-43) * TS

ENDIF

HZ(K-43) = (K-43)*TS

40 CONTINUE

RETURN
END

SUBROUTINE SLTPLT(l,nplant)
REAL NUM1,NUM2,NUM3,DEN1,DEN2,DEN3,GP,YY(1066),GMFCTR
REAL DF(1066), MNUM4 MNUMS, MNUM6 MDEN1,MDEN2,TS
INTEGER MDELAY,INIT,IA,PERIOD

COMMON/STORE6/MDELAY,INIT,IA,PERIOD
COMMON/STORES/NUM1,NUM2,NUM3,DEN1,DEN2,DEN3,YY ,GM,FCTR,DF,
+  MNUM4,MNUMS5 MNUM6,MDEN1,MDEN2,TS
if (nplant .eq. 1) then

numi = 0.0

num2 = 0.0601

num3 = -0.1012

den1 =-1.6457

den2 = 0.6703

den3 =0.0
else

NUM1 =0.0

NUM2 =24

NUM3 =-0.8'2.4

DEN1 = -0.1

DEN2 =-0.42

DEN3 =0.0
endif
DO 17 Il = 1, MDELAY

DF(ll) = 0.0

17 CONTINUE

DF(MDELAY-+1) = MNUM4*YY(1)
DF(MDELAY+2) = MNUM4*YY(2) + MNUM5*YY(1) - MDEN1*DF(MDELAY+1)
DO 16 Il = MDELAY+3 , L+3

DF(H) = MNUM4*YY/([I-MDELAY) + MNUMS*YY(Il-MDELAY-1)
+ + MNUM6*YY(Il-MDELAY-2)
+ - MDEN1*DF{Il-1) - MDEN2*DF(II-2)

16 CONTINUE

RETURN
END
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C CALCULATE TAP OUTPUT VALUES
REAL FUNCTION PLT(K)
INTEGER AL
REAL OUT,W(40),YC(1066)

COMMON/STORES/L
COMMON/STORE4/W,YC

OUT=0.0
DO 20 A=K,K-L+1,-1
20 OUT = OUT + (YC(A)*W(K-A+1))
PLT = OUT
RETURN
END

C %oo%%%oo%%%%%%°o°n%%°o°o°o%°e° o°o%°o°e°o%%%°o°o°o°o°o°o%°o°o°o°o°o
C GENERATE NOISE

REAL FUNCTION RND(IS)

IS = MOD(193°lS,37447)

RND-= ((1S/37447.0)-0.5)

RETURN

END
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APPENDIX C

The floating point addition routine which is shown in the
“Floating-Point Arithmetic with the TMS32020” booklet cannot add

two numbers, whose exponents’s difference by more than >F !, when
it is written in the binary floating-point as discussed in chapter 5.
For example, to add a= 0.00000059 with b=0.10222959 , if using
the floating point addition routine which is written in the above
booklet , the result ¢ of the addition routine will be 0.14078356. In
this example , it occurs that the 4-bit values of the floating point a
is ASIGN = >0000 , AEXP = >FFEC , AHI= >4EF3, ALO = >5200 and the
4-bit values of the floating point b is BSIGN = >0000 , BEXP = >FFFE ,
BHI = >3457 , BLO = >6FC0. The TMS32020 addition routine gives the
result ¢ of CSIGN = >0000 , CEXP = >FFFE , CHI = >4814 and CLO =
>C880. To avoid this faulty, the floating point addition routine was

rewritten and the listing is attached in the appendix D.

The floating point multiplication routine which is provided
from the “Floating-Point Arithmetic with the TMS832020” booklet is

also need to modify; since it has no detection on overflow calcula-
tion. The floating point multiplication was modified and its listing

is attached in the appendix D

1. > means hexadecimal ; >F=15 in decimal



APPENDIX D

This appendix contains the TMS320C20 program for testing the closed loop Model Reference Adaptive Control
hybrid simulation.

This program was written for the closed loop Non-Parametric Modal Reference Adaptive Control hy-
brid simulations
(chaptsr 5).

NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86036 15:12:22 06-20-88
PAGE 0001

0001 0000

0002 0000

0003 0000

0004 0000

0005 0000

0006 0060 AORG >60

0007 0060

0008 0060

0009 ‘DPM

0010 0060

0011 0060 0060 ASIGN DATA >60
0012 0061 0061 AEXP DATA >61
0013 0062 0062 AHI DATA >62
0014 0063 0063 ALO DATA =63
0015 0064 0064 BSIGN DATA >64
0016 0065 0065 BEXP DATA >65
0017 0066 0066 BHI DATA >66
0018 0067 0067 BLO DATA >67
0019 0068 0068 CSIGN DATA >68
0020 0069 0069 CEXP DATA >89
0021 006A 006A CHI DATA >6A
0022 006B 006B CLO DATA >6B
0023 006C 006C D DATA >6C

0024 006D 006D ONE DATA >86D
0025 006E 006E TEMP DATA >6E
0026 006F 006F THREE DATA >6F
0027 0070 0070 SIXT DATA >70
0028 0071 0071 RESID DATA >71
0029 0072 0072 TTEEN DATA 72
0030 0073 0073 THI DATA >73
0031 0074 0074 NEGONE DATA >74
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0032 00750075 TLO DATA >75

0033 0076

0034 *u = 0.004
0035 0076 0000 U DATA >0000

0036 0077 FFF9 U2  DATA >FFFS

0037 0078 4188 U3  DATA >4189

0038 0079 1B80 U4 DATA >1B80O

0039 007A

0040 007A

0041 007A 0000 NEGD DATA >0

0042 007B 61A8 PRDTM DATA >61A8 Ts=0.02sec.
0043 007C 0000 FIXPT DATAO

0044 007D FFFF NEGS  DATA >FFFF

0045

0046 0200 AORG >200

0047 0200 FF80 B START
0201 0250

0048 0202

0049 0202 ODA8 STORE1 DATA >0DA8  starting adress of y(40)

0050 0203 02A8 STORE2 DATA >02A8 0DS9C-029C = >B00
starting address of taps

0051 0204 0000 STORE3 DATA O

0052 0205 0BO0O STORE4 DATA >0B00  Sstarting address of taps

0053 0206 0DA8 STORE5 DATA >0DA8 memorized store1

0054 0207 02A8 STORE6 DATA >02A8 memarized store2

0055 0208 0028 NOTAPS DATA 40

0056 0209 0027 CNTAPS DATA 38

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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0057 020A 03FF COUNT DATA 1023
0058 020B 0000 CNST2 DATA >0000 number 2
0059 020C 0002 CNST22 DATA >0002
0060 020D 4000 CNST23 DATA >4000
0061 020E 0000 CNST24 DATA >0000
0062 020F

0063 020F 0000 CNST1  DATA >0000 0.01
0064 0210 FFFA CNST12 DATA >FFFA
0065 0211 51EB CNST13 DATA >51EB
0066 0212 4280 CNST14 DATA >4280
0067 0213

0068 0213 0000 REMAR2 DATA 0
0069 0214 0000 STORE7 DATAO
0070 0215 0B00 STRE44 DATA >0B00
0071 0216 0A00 WPADDR DATA >A00
0072 0217

0073

0074 0217

00750217 0005 PRD DATAS

0076 0218 0000 REMARO DATA 0 ~
0077 0219

0078 ' *GM=03
0079 0219 0000 MNUMS5 DATA >0000
0080 021A FFFC MNUMS52 DATA >FFFC
0081 021B 7AE1 MNUM53 DATA >7AE1
0082 021C 23C0 MNUM54 DATA >23C0
0083 021D

0084 021D

0085 021D 0000 MNUM6 DATTA >0000
0086 021E 0000 MNUM62 DATA >0000
0087 021F 0000 MNUM63 DATA >0000
0088 0220 0000 MNUMé64 DATA >0000
0089 0221

0090 0221 0000 MDEN1 DATA >0000
0091 0222 0000 MDEN12 DATA >0000
0092 0223 6666 MDEN13 DATA >6666
0093 0224 3300 MDEN14 DATA >3300
0094 0225

0095 0225 0000 MDEN2 DATA 0000
0096 0226 0000 MDEN22 DATA >0000
0097 0227 0000 MDEN23 DATA >0000

D2



0098 0228 0000 MDEN24 DATA >0000

0099 0229

0100 0229 0004
0101 022A 0000
0102 022B 0000
0103 022C 0000
0104 022D 0000
0105 022E

0106

0107 022E 0000

0108 022F FFF9 UP2 DATA >FFF9
UP3 DATA >4189
UP4 DATA >1B80

0109 0230 4189
0110 0231 1B80
0111 0232

0112 0232 0000

CNST4 DATA 4

MEM DATA >0

MEM2 DATA >0
MEM3 DATA >0
MEM4 DATA >0

UP DATA >0000

OUTt1 DATA >0000
0113 0233 0000 OUT2 DATA >0000

‘up = 0.004

NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

0114 0234 0000
0115 0235 0000
0116 0236

0117 0236 09F4
0118 0237 0000
0119 0238 0A00
0120 0239

0121 0239 0000
0122 023A 0000
0123 023B 0000
0124 023C 0000
0125 023D

0126 023D 0000
0127 023E 0000
0128 023F 0000
0129 0240 0000
0130 0241

0131 0241 0000
0132 0242 0000
0133 0243 0000
0134 0244 0000
0135 0245

0136 0245 0CA4
0137 0246 1EA4
0138 0247 0000
0139 0248

0140 0248 0000
0141 0249 0000
0142 024A 0000
0143 024B 0000
0144 024C

0145 024C 0000
0146 024D 0000
0147 024E 0000
0148 024F 0000
0149 0250

0150

0151 0250 CE04
0152 0261 CAFF
0153 0252 6000
0154 0253 E300
0155 0254 E100
0156 0255

0157 0255 CAFE
0168 0256 6000
0159 0257 EC00
0160 0258

0161

0162 0258

0163 0258 5588
0164 0259 D000

025A 0076

OUT3 DATA >0000
OUT4 DATA >0000

CNTLST DATA >9F4

UKB DATA 0

PTAPS DATA >A00

DK21 DATA >0
DK22 DATA >0
DK23 DATA >0
DK24 DATA >0

DK11 DATA >0
DK12 DATA >0

DK13 DATA >0
DK14 DATA >0
DKt DATA >0
DK2 DATA >0
DK3 DATA >0
DK4 DATA >0

LST DATA >CA4
CLMEM DATA >1EA4

FKB DATA O

NO2UE DATAO
NO2UE2 DATA 0
NO2UE3 DATAO
NO2UE4 DATA ©

P2UE DATA O
P2UE2 DATAO
P2UE3 DATA O
P2UE4 DATA O

START CNFD
LACK >FF
SACLO

OuT 03
ouT 01

LACK >FE
SACLO
ouT 0,0

LARP ARO
LRLK AR0,>76

‘initialise AIB

*move data from pm to dm
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<

0165 025B CB07 RPTK >7

0166 025C FCA0  BLKP >76,*+
025D 0076

0167 025E D000  LRLK AR0,>202
025F 0202

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

PAGE 0004

0168 0260 CB4D RPTK 77
0169 0261 FCA0  BLKP >202,*+

0262 0202
0170 0263
0171 *set up for interrupt service routine
0172 0263
0173 0263 207B LAC PRDTM
0174 0264 6003 SACL >03
0175 0265 6002 SACL >02
0176 0266 CA0O8 LACK 8
0177 0267 4D04 OR >04
0178 0268 6004 SACL >04
0179 0269 CE00  EINT
0180 026A
0181 ‘clear prbs(-2),prbs(-1)
0182 026A D000 LRLK AR0,>CF8

026B 0CF8
0183 026C CA00 ZAC
0184 026D CBO7 RPTK7
0185 026E 60A0 SACL *+,0
0186 026F
0187 ‘clear f(k-41)..f(k)
0188 026F D000 LRLK AR0,>C00

0270 0C00
0189 0271 CACO ZAC
0190 0272 CBA7 RPTK 167
0191 0273 60A0 SACL *+,0
0192 0274
0193 *clear u(k-41)..u(k)
0194 0274 D000 LRLK AR0,>950

' 0275 0950

0185 0276 CA00 ZAC
0196 0277 CBA7 RPTK 167
0197 0278 60A0 SACL *+,0
0198 0279
0199 *clear c(K-41)..c(K)
0200 0279 D000 LRLK ARO0,>1E00

027A 1E00
0201 027B CA0O0 ZAC
0202 027C CBA7 RPTK 167
0203 027D 60A0 SACL *+,0
0204 027E
0205 *clear 40 controller taps
0206 027E D000 LRLK AR0,>B00

027F 0B0OO
0207 0280 CAO0 ZAC
0208 0281 CBSF RPTK 159
0209 0282 60A0 SACL *+,0
0210 0283
0211 *set 0.01 for the first plant

02120283 5588 LARP3

0213 0284 D300 LRLK AR3,CNST1
0285 020F

0214 0286 D400 LRLK AR4,>A00
0287 0A00

0215 0288 20AC LAC *+,0,AR4

0216 0289 60AB  SACL “+,0,AR3
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0217 028A 20AC LAC *‘+,0,AR4
0218 028B 60AB  SACL *+,0,AR3
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0219 028C 20AC

0220 028D 60AB

0221 028E 20AC

0222 028F 60A8

0223 0290

0224 0290

0225

0226 0290 D000
0291 0A04

0227 0292 CB9B

0228 0293 FDAO
0294 0A00

0229 0295

0230 0295 5588

0231 0296 D300
0297 0217

0232 0298 3080

0233 0299

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR0

*set 0.01 for 39 plant's taps
LRLK ARO,>A04
RPTK 155
BLKD >A00,*+
LARP 3
LRLK AR3,PRD

LAR ARO,*

0234 0299 D300 AGAIN LRLK AR3,REMARO

029A 0218
0235 029B 7080
0236 029C

SAR ARO,*

0237 029C 558C PRDIN LARP 4

0238 029D D400
029E 0209
0239 029F 3280

0240 02A0

0241 02A0

0242 02A0 FE80
02A1 02E6

0243 02A2 FEBO
02A3 05D1

0244 02A4 FEBO
02A5 0441

0245 02A6

LRLK AR4,CNTAPS

LAR AR2* ‘= AR4

CALL C2UE
CALL PIDTFY

CALL PREFTR

0246 02A6 FEB0 WEIGHT CALL CALP

02A7 O3E8
0247
0248 02A8 558A
0249 02A9 FB90
02AA 02A6
0250 02AB
0251
0252 02AB D200
02AC 0204
0253 02AD CA00
0254 02AE 60A0
0255 02AF
0256
0257
0258 02AF
0259 02AF D400
02B0 0B0O
0260 02B1 74A0
0261 02B2

NOSIDT

0262

0263 02B2 2080

0264 02B3 D002
02B4 0004

0265 02BS 60AC

0266 02B6 D400
0287 0202

0267 02B8 6080

0268 02B9

0269

0270 02B9 D400
02BA 020A

0271 02BB 3189

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

* count for number of taps
LARP 2
BANZ WEIGHT,*-

* re-initialise store3 as zero
LRLK AR2,STORE3

ZAC
SACL *+,0

* re-initialise store4 as >b00
* BLKD >211,*+

LRLK AR4,>B00

SAR AR4,*+ *~AR2;(AR2)-STORE4

15:12:22 06-20-88
PAGE 0006

.

increment k by 1
LAC *0
ADLK 4

SACL *+,0,AR4
LRLK AR4,STORE1

SACL ‘0

* count for a period
LRLK AR4,COUNT

LAR AR1,*,AR1
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0272 02BC 559C MAR *‘-,AR4

0273 02BD 7189 SAR AR1,*,AR1

0274 02BE

0275 02BE

0276 02BE FB8B BANZ PRDIN,*,AR3
02BF 029C

0277 02C0

0278 02C0 D300 LRLK AR3,STORE1
02C1 0202

0279 02C2CB15 RPTK 21

0280 02C3 FCAO0  BLKP »202,*+
02C4 0202

0281 02C5 D300 LRLK AR3,REMARO
02C6 0218

0282 02C7 3088 LAR ARO,*,ARO

0283 02C8 FB9B BANZ AGAIN,*-,AR3
02C9 0299

0284 02CA

0285 02CA 558C LARP 4

0286 02CB C127 LARK AR1,39

0287 02CC D200 LRLK AR2,>BA0
02CD 0BAO

0288 02CE D400  LRLK AR4,>B00
02CF 0B0O

0289 02D0

0280 02D0 55A0 NEXT MAR “+

0291 02D1 2080 LAC *

0292 02D2 D004 ANDK >8000 test a msb
02D3 8000
0293 02D4 F680 BZ UNCH
02D5 02DF
0294 02D6 20A0 LAC *+ if negative take 2nd compl

0295 02D7 CE27 CMPL

0296 02D8 6060 SACL >60

0297 02D9 20AA LAC *+,0,AR2

0298 02DA 4B60 RPT >60

0299 02DB CE19 SFR

0300 02DC 60AC  SACL *+,0,AR4

0301 02DD FFA9 B FTAPS,*+,AR1
02DE 02E3

0302 02DF

0303 *for exp = 0 only

0304 02DF 56A0 UNCH MAR “+

0305 02E0 20AA LAC *+,0,AR2

NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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0306 02E1 60AC  SACL *+,0,AR4
0307 02E2 55A9 MAR *+,AR1
0308 02E3 FBSC FTAPS BANZ NEXT,*-,AR4

02E4 02D0

0309 02E5

0310 02E5 5500 NOP

0311 02E6

0312 *CAL PROCEDURE

0313 02E6

0314 02E6

0315 ‘we need to use ar2 in this procedure while (ar2)
must not b

0316 *altered in a main body . So we keep its value in
memory loc

0317 ‘remar2

0318 02E6 D400 C2UE LRLK AR4,REMAR2
02E7 0213

0319 02E8 558C LARP 4

0320 02E9 7280 SAR AR2,*

0321 02EA
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0322 02EA D400
02EB 0208
0323 02EC 3280
0324 02ED D400
02EE 0950
0325 02EF CBA3
0326 02F0 FDAO
02F1 0954

0327 02F2

0328

0329 02F2 D400
02F3 09F4

0330 02F4 CA00

0331 02F5 CB03

0332 02F6 60A0

0333 02F7

0334

0335 02F7 D400
02F8 1EQ0

0336 02F9 CBA3

0337 02FA FDAO
02FB 1E04

0338 02FC

0339

0340

0341

LRLK AR4,CNTAPS

LAR AR2,*
LRLK AR4,>950

RPTK 163
BLKD >954,*+

.

clear >9F4
LRLK AR4,>9F4

ZAC
RPTK 3
SACL *+

¢ update x(k)..x(k-40)
LRLK AR4,>1E00

RPTK 163
BLKD >1E04,*+

* initial y(a-1)

read contents in extended memory
address

pointed by ar3 and store in asign

0342 02FC D400 OUTL LRLK AR4,STORE1

02FD 0202
0343 02FE 338B
0344 02FF C460
0345 0300 20AC
0346 0301 60AB
0347 0302 20AC
0348 0303 60AB
0349 0304 20AC
0350 0305 60AB
0351 0306 20AC
0352 0307 60A0
0353 0308

NO$IDT

0354 0308
0355 0308 D400
0309 0246
0356 030A 338B
0357 030B C464
0358 030C 20AC
0359 030D 60AB
0360 030E 20AC
0361 030F 60AB
0362 0310 20AC
0363 0311 60AB
0364 0312 20AC
0365 0313 60AB
0366 0314
0367 0314 FE80
0315 0715
0368 0316 FE80
0317 0719
0368 0318
0370
0371 0318 5588
0372 0319 C460
0373 031A C368
0374 0318 20AC
0375 031C 60AB
0376 031D 20AC
0377 031E 60AB
0378 031F 20AC

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

LAR AR3,*,AR3
LARK AR4,ASIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC ‘+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0

15:12:22 06-20-88
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LRLK AR4,CLMEM

LAR ARS3,*,AR3
LARK AR4,BSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FNEG

CALL FADD

*transfer (¢) to (a)

LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN

LAC *+,0,AR4

SACL *+,0,AR3

LAC *“+,0,AR4

SACL *+,0,AR3

LAC *+,0,AR4
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0379 0320 60AB
0380 0321 20AC
0381 0322 CE19
0382 0323 D004
0324 7FCO
0383 0325 60A0
0384 0326
0385
0386 0326 D400
0327 0215
0387 0328 338B
0388 0329 C464
0389 032A 20AC
0390 032B 60AB
0391 032C 20AC
0392 032D 60AB
0393 032E 20AC
0394 032F 60AB
0395 0330 20AC
0396 0331 60AB
0397 0332
03398
0399 0332 FE80
0333 07DB
0400 0334
0401 0334 558B
0402 0335 C460
0403 0336 C368
0404 0337 20AC

SACL *+,0,AR3
LAC *+,0,AR4
SFR
ANDK >7FCO

SACL *+,0

LRLK AR4,STRE44

LAR AR3,",AR3
LARK AR4,BSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3

CALL FMULT

LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN
LAC *+,0,AR4

* W(K-A+1)

* Y(A-1)*W(K-A+1)

NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86036 15:12:22 06-20-88

0405 0338 60AB
0406 0339 20AC
0407 033A 60AB
0408 033B 20AC
0409 033C 60AB
0410 033D 20AC
0411 033E CE19
0412 033F D004
0340 7FCO
0413 0341 60AB
0414 0342
0415
0416 0342 D300
0343 09F4
0417 0344 20AC
0418 0345 60AB
0419 0346 20AC
0420 0347 60AB
0421 0348 20AC
0422 0348 60AB
0423 034A 20AC
0424 034B 60AB
0425 034C FE8O
034D 0719
0426 034E 558B
0427 034F
0428
0429 034F D400
0350 09F4
0430 0351 C368
0431 0352 20AC
0432 0353 60AB
0433 0354 20AC
0434 0355 60AB
0435 0356 20AC
0436 0357 60AB
0437 0358 20AC
0438 0359 CE19
0439 035A D004

PAGE 0009

SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO

SACL *+,0,AR3

LRLK AR3,>9F4

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
CALL FADD

LARP 3

LRLK AR4,>9F4

LARK AR3,CSIGN
LAC *+,0,AR4
SACL “+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO0

* OUT1+(Y(A-1)*W(K-A+1))

* store results in >9F4
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0358 7FCO
0440 035C 60A0
0441 035D
0442
0443 035D D400

035E 0202
0444 035F 2080
0445 0360 D003

0361 0004
0446 0362 6080
0447 0363
0448
0449 0363 D400

0364 0246
0450 0365 2080
0451 0366 D003

0367 0004
0452 0368 6080

NOS$IDT 32020

0453 0369

0454

0455 0369 D400
036A 0215

0456 036B 2080

0457 036C D002
036D 0004

0458 036E 6080

0459 036F

0460

0461 036F 558A

0462 0370 FB9C
0371 02FC

0463 0372

0464 0372

0465

0466 0372 D300
0373 0B0O

0467 0374 7380

0468 0375

0469 0375

0470

0471 0375 D400
0376 0202

0472 0377 FD8BO
0378 0206

0473 0379

0474 0379

0475

0476 0379 D400
037A 0246

0477 0378 D300
037C 1EA4

0478 037D 7380

0479 037E

0480

0481 037E FEB0
037F 04D8

0482 0380

0483 0380 558B

0484 0381 D300
0382 0241

0485 0383 C460

0486 0384 20AC

0487 0385 60AB

0488 0386 20AC

0489 0387 60AB

0490 0388 20AC

0491 0389 60AB

0492 038A 20AC

SACL *+,0

LRLK AR4,STORE1

LAC *,0
SBLK 4

SACL*,0

LRLK AR4,CLMEM

LAC 0
SBLK 4

SACL *,0

LRLK AR4,STRE44

LAC *,0
ADLK 4

SACL *

LARP 2

BANZ OUTL,*-,AR4

LRLK AR3,>B00

SAR AR3,*

LRLK AR4,STORE1

BLKD >206,*

LRLK AR4,CLMEM
LRLK AR3,>1EA4

SAR AR3,*

CALL MODEL

LARP 3
LRLK AR3,DK1

LARK AR4,ASIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4

*

»

reduced a by 1

reduced outk by 1

FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
PAGE 0010

increment weight by 1

count for a loop

re-initialise

re-initialise STORE1

re-initialise clmem

D(k)
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0493 038B 60AB

0494 038C

0485

0496 038C D300
038D 09F4

0497 038E FE80
038F 0812

NOS$IDT 32020

0498 0390 CE1F
0499 0391 FE80
0392 0836
0500 0393
0501
0502 0393 5588
0503 0394 D400
0395 1EA4
0504 0396 D300
0397 0064
0505 0398 20AC
0506 0399 60AB
0507 039A 20AC
0508 039B 60AB
0509 033C 20AC
0510 039D 60AB
0511 039E 20AC
0512 039F 60AB
0513 03A0
0514
0515 03A0 FEB0
03A1 0715
0516 03A2 FE80
03A3 0719
0517 03A4
0518 03A4 558B
0519 03A5 C460
0520 03A6 C368
0521 03A7 20AC
0522 03A8 60AB
0523 03A9 20AC
0524 03AA 60AB
0525 03AB 20AC
0526 03AC 60AB
0527 03AD 20AC
0528 03AE CE19
0529 03AF D004
03B0 7FCO
0530 03B1 60AB
0531 03B2
0532 03B2 C376
0533 03B3 20AC
0534 03B4 60AB
0535 03B5 20AC
0536 03B6 60AB
0537 0387 20AC
0538 03B8 60AB
0539 03B9 20AC
0540 03BA 60AB
0541 03BB
0542 03BB FE80
03BC 07DB
0543 03BD 558B
0544 03BE C460
0545 03BF C368
0546 03C0 20AC
0547 03C1 60AB

NOSIDT

SACL *+,0,AR3

LRLK AR3,>9F4

CALL FLFX

IDLE
CALL FXFL

LARP 3
LRLK AR4,>1EA4

LRLK AR3,BSIGN

LAC *+,0,AR4"
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4

SACL *+,0,AR3
LAC *+,0,AR4

SACL *+,0,AR3

CALL FNEG

CALL FADD

LARP 3

LARK AR4,ASIGN
LARK AR3,CSIGN
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO

SACL *+,0,AR3

LARK AR3,U
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FMULT

LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3

PAGE 0011

PAGE 0012

FAMILY MACRO ASSEMBLER PC 1.1 86.036

‘read plant output & store in B

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

out1(k)

send B to >1ea4

* ER(k)
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0548 03C2 20AC LAC *+,0,AR4
0549 03C3 60AB  SACL *+,0,AR3
0550 03C4 20AC  LAC *+,0,AR4
0551 03C5 60AB  SACL *+,0,AR3
0552 03C6 20AC  LAC *+,0,AR4
0553 03C7 CE19 SFR
0554 03C8 D004 ANDK >7FCO
03C9 7FCO
0555 03CA 60AB  SACL *+,0,AR3
0556 03CB
0557
0558 03CB D300 LRLK AR3,CNST2
03CC 020B
0559 03CD C464 LARK AR4,BSIGN
0560 03CE 20AC LAC *+,0,AR4
0561 03CF 60AB  SACL *+,0,AR3
0562 03D0 20AC  LAC *+,0,AR4
0563 03D1 60AB  SACL *+,0,AR3
0564 03D2 20AC LAC *+,0,AR4
0565 03D3 60AB  SACL *+,0,AR3
0566 03D4 20AC  LAC *+,0,AR4
0567 03D5 60AB  SACL “+,0,AR3
0568 03D6
0569 03D6 FE80  CALL FMULT
03D7 07DB
0570 03D8
0571 03D8 558B LARP 3
0572 03D9 D400 LRLK AR4,NO2UE
03DA 0248
0573 03DB C368 LARK AR3,CSIGN
0574 03DC 20AC LAC *+,0,AR4
0575 03DD 60AB  SACL *+,0,AR3
0576 03DE 20AC LAC *+,0,AR4
0577 03DF 60AB  SACL *+,0,AR3
0578 03E0 20AC LAC *+,0,AR4
0579 03E1 60AB  SACL *+,0,AR3
0580 03E2 20AC  LAC *+,0,AR4
0581 03E3CE19 SFR
0582 03E4 D004 ANDK >7FCO
03E5 7FCO
0583 03E6 60A0  SACL *+,0
0584 03E7
0585 03E7 CE26 RET
0586 03E8
0587 03E8
0588 * F(K-B)
0589 * B =1 INITIALLY
0590 03E8 558C CALP LARP 4
0591 03E9 D400 LRLK AR4,LST
03EA 0245
0592 03EB 208B LAC *,0,AR3
0593 03EC D300 LRLK AR3,STORES3
03ED 0204
0594 03EE 1080 SUB *,0
0595 03EF D300 LRLK AR3,FKB
03F0 0247
0596 03F1 608C  SACL *,0,AR4
NOS$IDT
0597 03F2
0598 03F2 D400 LRLK AR4,FKB
03F3 0247
0599 03F4 338B LAR AR3,*,AR3
0600 03F5 C460 LARK AR4,ASIGN
0601 03F6 20AC LAC *+,0,AR4
0602 03F7 60AB  SACL *+,0,AR3
0603 03F8 20AC LAC *+,0,AR4
0604 03F9 60AB  SACL *+,0,AR3
0605 03FA 20AC  LAC *+,0,AR4
0606 03FB 60AB  SACL *+,0,AR3

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036
PAGE 0013

move constant 2 to Bs’
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0607 03FC 20AC
0608 03FD 60AB
0609 03FE
0610
0611 03FE D300
03FF 0248
0612 0400 20AC
0613 0401 60AB
0614 0402 20AC
0615 0403 60AB
0616 0404 20AC
0617 0405 60AB
0618 0406 20AC
0619 0407 60A0
0620 0408
0621 0408 FE80
0409 07DB
0622 040A
0623 040A 5588
0624 040B C460
0625 040C C368
0626 040D 20AC
0627 040E 60AB
0628 040F 20AC
0629 0410 60AB
0630 0411 20AC
0631 0412 60AB
0632 0413 20AC
0633 0414 CE19
0634 0415 D004
0416 7FCO
0635 0417 60A0
0636 0418
0637
0638 0418 D400
0419 0205
0639 041A 3388
0640 041B C464
0641 041C 20AC
0642 041D 60AB
0643 041F 20AC
0644 041F 60AB
0645 0420 20AC
0646 0421 60AB
0647 0422 20AC
0648 0423 60AB

LAC “+,0,AR4
SACL *+,0,AR3

LRLK AR3,NO2UE

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0

CALL FMULT

LARP 3

LARK AR4,ASIGN
LARK AR3,CSIGN
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFR

ANDK >7FC0

SACL *+,0

LRLK AR4,STORE4

LAR ARS3,*,AR3
LARK AR4,BSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

no2ue

* weight initially at >0b00

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

0649 0424
0650 0424 FE80
0425 0719
0651 0426 558B
0652
0653 0427 D300
0428 0205
0654 0429 3480
0655 042A C368
0656 042B 20AC
0657 042C 60AB
0658 042D 20AC
0659 042E 60AB
0660 042F 20AC
0661 0430 60AB
0662 0431 20AC
0663 0432 CE19
0664 0433 D004
0434 7FCO
0665 0435 60A0
0666 0436
0667

PAGE 0014

CALL FADD
LARP 3
LRLK ARS3,STORE4

LAR AR4,"
LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SFR

ANDK >7FC0

SACL *+,0

* update values of weights

¢ increment b

D12



0668 0436 D400
0437 0204
0669 0438 2080
0670 0439 D002
043A 0004
0671 043B 60A0

0672 043C

0673

0674 043C 2080
0675 043D D002

043E 0004

0676 043F 6080
0677 0440 CE26
0678 0441

0679 0441

0680 0441

0681 0441 D400 PREETR LRLK AR4,REMAR2

0442 0213
0682 0443 558C
0683 0444 7280
0684 0445
0685 0445 D400

0446 0209
0686 0447 3280
0687 0448 D400

0449 0C00
0688 044A CBA3
0689 044B FDAO

044C 0C04
0690 044D
0691
0692 044D D400

044E 0CA4
0693 044F CA00
0694 0450 CB03

LRLK AR4,STORE3

LAC *,0
ADLK 4

SACL *+
LAC *0
ADLK 4

SACL *
RET

LARP 4
SAR AR2,*

LRLK AR4,CNTAPS

LAR AR2,*
LRLK AR4,>C00

RPTK 163
BLKD >C04,*+

LRLK AR4,>CA4

ZAC
RPTK 3

* and weight position

* clear >CA4

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

0695 0451 60A0
0696 0452

0697

0698

0699

0700 0452 D400 OUTFTR LRLK AR4,STORE1

0453 0202
0701 0454 3388
0702 0455 C460
0703 0456 20AC
0704 0457 60AB
0705 0458 20AC
0706 0459 60AB
0707 045A 20AC
0708 045B 60AB

0709 045C 20AC

0710 045D 60A0
0711 045E

0712 045E

0713 045E D400

045F 0246

0714 0460 338B
0715 0461 C464
0716 0462 20AC
0717 0463 60AB
0718 0464 20AC
0719 0465 60AB
0720 0466 20AC
0721 0467 60AB
0722 0468 20AC
0723 0469 60AB
0724 046A

PAGE 0015

SACL *+

LAR AR3,*,AR3
LARK AR4,ASIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0

LRLK AR4,CLMEM

LAR ARS3,*,AR3
LARK AR4,BSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3

* initial y(a-1)
* read contents in extended memory

address

* pointed by ar3 and store in asign

D13



0725 046A FE80
046B 0715
0726 046C FE80
046D 0719
0727 046E
0728
0729 046E 558B
0730 046F C460
0731 0470 C368
0732 0471 20AC
0733 0472 60AB
0734 0473 20AC
0735 0474 60AB
0736 0475 20AC
0737 0476 60AB
0738 0477 20AC
0739 0478 CE19
0740 0479 D004
047A 7FCO
0741 047B 60A0
0742 047C
0743
0744 047C D400
047D 0216
0745 047E 338B

CALL FNEG

CALL FADD

LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SFR

ANDK >7FCO

SACL *+,0

LRLK AR4,WPADDR

LAR ARS3,*,AR3

‘transfer (c) to (a)

* W(K-A+1)

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

0746 047F C464
0747 0480 20AC
0748 0481 60AB
0749 0482 20AC
0750 0483 60AB
0751 0484 20AC
0752 0485 60AB
0753 0486 20AC
0754 0487 60AB
0755 0488
0756
0757 0488 FE80
0489 07DB
0758 048A
0758 048A 558B
0760 048B C460
0761 048C C368
0762 048D 20AC
0763 048E 60AB
0764 048F 20AC
0765 0490 60AB
0766 0491 20AC
0767 0492 60AB
0768 0493 20AC
0769 0494 CE19
0770 0495 D004
0496 7FCO
0771 0497 60AB
0772 0498
0773
0774 0498 D300
0499 0CA4
0775 049A 20AC
0776 049B 60AB
0777 049C 20AC
0778 049D 60AB
0779 049E 20AC
0780 049F 60AB
0781 04A0 20AC
0782 04A1 60AB
0783 04A2 FE80
04A3 0719
0784 04A4 558B

PAGE 0016

LARK AR4,BSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL “+,0,AR3

CALL FMULT

LARP 3

LARK AR4,ASIGN
LARK AR3,CSIGN
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO

SACL “+,0,AR3

LRLK AR3,>CA4

LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
CALL FADD

LARP 3

* Y(A-1)*W(K-A+1)

* (CA8)+(Y(A-1)*"W(K-A+1))
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0785 04A5
0786
0787 04A5 D400
04A6 0CA4
0788 04A7 C368
0789 04A8 20AC
0790 04A9 60AB
0791 04AA 20AC
0792 04AB 60AB
0793 04AC 20AC
0794 04AD 60AB
0795 04AE 20AC
0796 04AF CE19
0797 04B0 D004

NOSIDT

0481 7FCO
0798 04B2 60A0
0799 04B3
0800
0801 04B3 D400

04B4 0202
0802 04B5 2080
0803 04B6 D003

04B7 0004
0804 04B8 6080
0805 04B9
0806
0807 04B9 D400

04BA 0246
0808 04BB 2080
0809 04BC D003

04BD 0004
0810 04BE 6080
0811 04BF
0812
0813 04BF D400

04C0 0216
0814 04C1 2080
0815 04C2 D002

04C3 0004
0816 04C4 6080
0817 04C5
0818
0819 04C5 558A
0820 04C6 FBSC

04C7 0452
0821 04C8
0822
0823 04C8 D300

04C9 0A00
0824 04CA 7380
0825 04CB D400

04CC 0202
0826 04CD FD8o

04CE 0206
0827 04CF
0828
0829 04CF D400

04D0 0246
0830 04D1 D300

04D2 1EA4
0831 04D3 7380
0832 04D4
0833
0834 04D4 D400

04D5 0213
0835 04D6 3280
0836 04D7
0837 04D7 CE26

LRLK AR4,>CA4

LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4

SFR

ANDK >7FCO0

SACL *+,0

LRLK AR4,STORE1

LAC *0
SBLK 4

SACL *,0

LRLK AR4,CLMEM

LAC %0
SBLK 4

SACL *,0

LRLK AR4,WPADDR

LAC 0
ADLK 4

SACL *

LARP 2

BANZ OUTFTR,*-,AR4

LRLK AR3,>A00

SAR ARS,*
LRLK AR4,STORE1

BLKD >206,*

LRLK AR4,CLMEM
LRLK AR3,>1EA4

SAR AR3,*

LRLK AR4,REMAR2

LAR AR2,*

RET

»

3

.

.

store results in >CA4

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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reduced a by 1

reduced outk by 1

increment weight by 1

count for a loop

re-initialise

re-initialise CLMEM

return ar2's memory
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0838 04D8
0839 04D8

0840 04D8 C460 MODEL LARK AR4,ASIGN

NOS$IDT

0841 04D9 D300
04DA 021D
0842 04DB 558B
0843 04DC 20AC
0844 04DD 60AB
0845 04DE 20AC
0846 04DF 60AB
0847 04E0 20AC
0848 04E1 60AB
0849 04E2 20AC
0850 04E3 60A8

0851 04E4

0852

0853 04E4 C464

0854 04E5 DOOO
04E6 0206

0855 04E7 338B

0856 04E8 CB17

0857 04E9 5590

0858 04EA

0859 04EA 20AC

0860 04EB 60AB

0861 04EC 20AC

0862 04ED 60AB

0863 04EE 20AC

0864 04EF 60AB

0865 04F0 20AC

0866 04F1 60A8

0867 04F2

0868

0869 04F2 7380

0870
0871
0872 04F3 FE80
04F4 07DB
0873 04F5
0874
0875 04F5 558B
0876 04F6 D400
04F7 022A
0877 04F8 C368
0878 04FS 20AC
0879 04FA 60AB
0880 04FB 20AC
0881 04FC 60AB
0882 04FD 20AC
0883 04FE 60AB
0884 04FF 20AC
0885 0500 CE19
0886 0501 D004
0502 7FCO
0887 0503 60AB
0888 0504
0889
0890 0504 C460
0891 0505 D300
0506 0219
NO$IDT

0892 0507 20AC
0893 0508 60AB
0894 0509 20AC
0895 050A 60AB

PAGE 0018

LRLK AR3,MNUM6

LARP 3

LAC *+,0,AR4 (20E) LOAD INTOACC
SACL “+,0,AR3 (ACC) LOAD INTO ASIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR0

LARK AR4,BSIGN

LRLK ARO,STORES

LAR AR3,*,AR3
RPTK 23
MAR *-

LAC *+,0,AR4
SACL *+,0,AR3
LAC °*+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR0

SAR AR3,*

CALL FMULT

LARP 3
LRLK AR4,MEM

LARK AR3,CSIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC °*+,0,AR4
SFR
ANDK >7FCO

SACL *+,0,AR3

LARK AR4,ASIGN

* TRANSFER CONTENTS IN CS' TO MEMS'

LRLK AR3,MNUMS

LAC *+,0,AR4 (20A)=(ACC)
SACL *+,0,AR3 (ACC)=(ASIGN)

LAC *+,0,AR4
SACL *+,0,AR3

PAGE 0019

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

* Y(K-2)

*ARO

15:12:22 06-20-88

update Yk memories

*ARC;(AR0)=STOREY ADDRESS
* (AR3)=(PRE-STOREY)+4
* Y(K-2)*NUM2

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

* NUM1
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0896 0508 20AC

0897 050C 60AB

0898 050D 20AC

0899 050E 60A8

0900 050F

0901 050F

0902

0903

0904 050F D000
0510 0206

0905 0511 3388

0906 0512 20AC

0907 0513 60AB

0908 0514 20AC

0909 0515 60AB

0910 0516 20AC

0911 0517 60AB

0912 0518 20AC

0913 0519 60AB

0914 051A

0915 051A

0916

0917 051A CBOF

0918 051B 55A0

0918 051C 5588

0920 051D 7380

0921

0922 051E

0923 051E

0924 051E FE80
051F 07DB

0925 0520

0926

0927

0928 0520 C460

0929 0521 C368

0930 0522 558B

0931 0523 20AC

0932 0524 60AB

0933 0525 20AC

0934 0526 60AB

0935 0527 20AC

0936 0528 60AB

0937 0529 20AC

0938 052A CE19

0939 052B D004
052C 7FCO

0940 052D 60AB

0941 052E

0942 052E

0943

0944

0945 052E D300

LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL “+,0,AR0

LRLK ARO,STORES

LAR AR3,*,AR3 *ARO

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3

RPTK 15
MAR *+
LARP 0
SAR AR3,*

CALL FMULT

LARK AR4,ASIGN
LARK AR3,CSIGN
LARP 3

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SFR

ANDK »>7FCO

SACL “+,0,AR3

LRLK AR3,MEM

© Y(k-1)
* LARK AR4,BSIGN BSIGN = ASIGN +4

* update Yk memories

*ARO;(AR0)=STOREY' ADDRESS
* (AR3)=(PRE-STOREY)+4

* TRANSFER CONTENTS INCS' TO AS'
¢ Y(k-1)*num1

* Y(k-1)*num1+Y(k-2)*num2
* LARK AR4,BSIGN BSIGN = ASIGN+4

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

052F 022A
0946 0530 20AC
0947 0531 60AB
0948 0532 20AC
0949 0533 60AB
0950 0534 20AC
0951 0535 60AB
0952 0536 20AC
0953 0537 60A0
0954 0538
0955 0538 FE80

0539 0719
0956 053A 558B
0957
0958 053B D400

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0

CALL FADD
LARP 3

LRLK AR4,MEM

* TRANSFER CONTENTS IN CS' TO MEMS'
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053C 022A
0959 053D C368
0960 053E 20AC
0961 053F 60AB
0962 0540 20AC
0963 0541 60AB
0964 0542 20AC
0965 0543 60AB
0966 0544 20AC
0967 0545 CE19
0968 0546 D004
0547 7FCO
0969 0548 60AB
0970 0549
0971 0549
0972 0549
0973 0549
0974
0975 0549
0976 0549 C460
0977 054A D300
054B 0221
0978 054C 20AC
0979 054D 60AB
0980 054E 20AC
0981 054F 60AB
0982 0550 20AC
0983 0551 60AB
0984 0552 20AC
0985 0553 60AB
0086 0554
0987 0554
0988
0989 0554 D300
0555 023D
0990 0556 20AC
0991 0557 60AB
0992 0558 20AC
0993 0559 60AB

0994 055A 20AC

0995 055B 60AB
0996 055C 20AC

LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO

SACL *+,0,AR3

LARK AR4,ASIGN

LRLK AR3,MDEN1

LAC *+,0,AR4 (212)=(ACC)
SACL *+,0,AR3 (ACC)=(ASIGN)

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

LRLK AR3,DK11

LAC *“+,0,AR4
SACL *+,0,AR3
LAC *“+,0,AR4
SACL “+,0,AR3

LAC *+,0,AR4

SACL *+,0,AR3
LAC “+,0,AR4

* DEN1

* D(k-1)
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0997 055D 60A0

0998 055E

0999 055E

1000 055E FE80
055F 07DB

1001 0560

1002

1003

1004 0560 C460

1005 0561 C368

1006 0562 558B

1007 0563 20AC

1008 0564 60AB

1009 0565 20AC

1010 0566 60AB

1011 0567 20AC

1012 0568 60AB

1013 0569 20AC

1014 056A CE19

1015 056B D004
056C 7FCO

1016 056D 60AB

1017 056E

1018 056E

10189

SACL *+,0

CALL FMULT

LARK AR4,ASIGN
LARK AR3,CSIGN
LARP 3

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SFR

ANDK >7FCO

SACL *+,0,AR3

* TRANSFER CONTENTS IN CS' TO AS'
* F{k-1)*den1

¢ Y(k)*'numO+Y(k-1)*num1t+Y{k-2)*num2
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1020
1021 056E C464
1022 056F D300
0570 022A
1023 0571 20AC
1024 0572 60AB
1025 0573 20AC
1026 0574 60AB
1027 0575 20AC
1028 0576 60AB
1029 0677 20AC
1030 0578 60A0
1031 0579
1032 0579 FE80
057A 0719
1033 0578 5588
1034
1035 057C D400
057D 022A
1036 057E C368
1037 057F 20AC
1038 0580 60AB
1039 0581 20AC
1040 0582 60AB
1041 0583 20AC
1042 0584 60AB
1043 0585 20AC
1044 0586 CE19
1045 0587 D004
0588 7FCO
1046 0589 60AB
1047 058A

NOS$IDT 32020

1048 058A

1048

1050 058A

1051 058A C460

1052 0588 D300
058C 0225

1053 058D 20AC

1054 058E 60AB

1055 058F 20AC

1056 0590 60AB

1057 0591 20AC

1058 0592 60AB

1059 0593 20AC

1060 0594 60AB

1061 0595

1062 0595

1063

1064 0595 D300
0596 0239

1065 0597 20AC

1066 0598 60AB

1067 0599 20AC

1068 059A 60AB

1068 059B 20AC

1070 059C 60AB

1071 059D 20AC

1072 0S9E 60A0

1073 059F

1074 059F

1075 059F FE80
05A0 07DB

1076 05A1

1077

1078

1079 05A1 C460

1080 05A2 C368

* -F(k-1)*den1
LARK AR4,BSIGN
LRLK AR3,MEM

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0

CALL FADD

LARP 3
* TRANSFER CONTENTS IN CS' TO MEMS'
LRLK AR4,MEM

LARK AR3,CSIGN
LAC “+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4

SFR

ANDK >7FCO

SACL *+,0,AR3

FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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¢ MDEN2

LARK AR4,ASIGN
LRLK AR3,MDEN2

LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

* D(k-2)
LRLK AR3,DK21

LAC *+,0,AR4
SACL *+,0,AR3
LAC °+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0

CALL FMULT

* TRANSFER CONTENTS IN CS' TO AS'
* D{k-2)*den2

LARK AR4,ASIGN

LARK AR3,CSIGN
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1081 05A3 558B LARP 3
1082 05A4 20AC LAC *+,0,AR4
1083 05A5 60AB  SACL *+,0,AR3
1084 05A6 20AC LAC *+,0,AR4
1085 05A7 60AB  SACL *+,0,AR3
1086 05A8 20AC LAC *+,0,AR4
1087 05A9 60AB  SACL *+,0,AR3
1088 05AA 20AC LAC *+,0,AR4
1089 05AB CE19 SFR
1090 05AC D004 ANDK >7FCO
05AD 7FCO
1091 05AE 60AB  SACL *+,0,AR3
1092 05AF
1093 * D(K) =
1094 * Y(k)*numO+Y(k-1)*'num1+Y(k-2)*num2
1095 * +D(k-1)*den1+D(k-2)*den2
1096 05AF C464 LARK AR4,BSIGN
1097 05B0 D300 LRLK AR3,MEM
05B1 022A
1098 05B2 20AC LAC *+,0,AR4
1099 056B3 60AB SACL *+,0,AR3
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1100 05B4 20AC LAC *+,0,AR4
1101 05B5 60AB  SACL *+,0,AR3
1102 05B6 20AC LAC *+,0,AR4
1103 05B7 60AB SACL *+,0,AR3
1104 05B8 20AC LAC *+,0,AR4
1105 05B9 60A0 SACL *+,0
1106 05BA
1107 05BA FE80 CALL FADD
05BB 0719
1108 05BC
1109 05BC 556B LARP 3
1110 * TRANSFER CONTENTS IN CS' TO DKS'
1111 05BD D400 LRLK AR4,DK1
05BE 0241
1112 05BF C368 LARK AR3,CSIGN
1113 05C0 20AC LAC *+,0,AR4
1114 05C1 60AB  SACL *+,0,AR3
1115 05C2 20AC LAC “+,0,AR4
1116 05C3 60AB  SACL *+,0,AR3
1117 05C4 20AC LAC *+,0,AR4
1118 05C5 60AB  SACL *+,0,AR3
1119 05C6 20AC LAC *“+,0,AR4
1120 05C7 CE18 SFR
1121 05C8 D004 ANDK >7FCO
05C9 7FCO
1122 05CA 60A0  SACL *+,0
1123 05CB
1124 05CB D400 LRLK AR4,DK21
05CC 0239
1125 05CD CB07 RPTK?7
1126 05CE FDAO BLKD DK11,*+
05CF 023D
1127 05D0
1128 05D0O CE26 RET
1129 05D1
1130 05D1 D400 PIDTFY LRLK AR4,CNTAPS
05D2 0209
1131 05D3 3280 LAR AR2,’ *AR4 (ar2) = (cntaps) = 39
1132 05D4
1133 05D4 FE80 CALL C2UEP
05D5 05E9
1134 05D6
1135 05D6 FE80 WGHGT2 CALL CALPP
05D7 06BA
1136 05D8
1137 05D8
1138 * COUNT FOR NUMBER OF TAPS

D20



1139 05D8 558A

1140 05D9 FBSO
05DA 05D6

1141 05DB

1142

1143 05DB D200
05DC 0204

LARP 2
BANZ WGHGT2,*-

* RE-INITIALISE STORE3 AS ZERO
LRLK AR2,STORE3 .

1144 05DD CA00 ZAC

1145 05DE 6080

1146 05DF

SACL *,0 *AR2 (AR2)=204; 205
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1147

1148 05DF D200
05E0 0238

1148 05E1 D300
05E2 0A00

1150 05E3 7380

1151 05E4

1152 05E4

1153 05E4 558C

1164

1155 05E5 D400
05E6 0213

1156 05E7 3280

1157 05E8

. 1158 05E8 CE26

1159 05E9

1160

1161 05E9

1162 O5E9

1163

1164

1165

1166 O5E9

- 1167
1168
1169
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* RE-INITIALISE PTAPS
LRLK AR2,PTAPS

LRLK AR3,>A00

SAR ARS,*

LARP 4

return ar2's memory
LRLK AR4,REMAR2

LAR AR2,*
RET
*CAL PROCEDURE
*clear contents of output memory locations
‘by stored "directly” a smallest positive value in their dma
*NOTAPS = 40
‘we need to use ar2 in this procedure while (ar2) must not be

‘altered in 2 main body . So we keep its value in memory loc
*‘remar2

1170 05E9 D400 C2UEP LRLK AR4,REMAR2

05EA 0213
1171 05EB 558C
1172 05EC 7280
1173
1174 05ED
1175 05ED D400

O5EE 0209
1176 05EF 3280
1177 05F0
1178
1179 05F0
1180 05F0 D400

05F1 0232
1181 05F2 CA00
1182 05F3 CB03
1183 05F4 60A0
1184 05F5
1185
1186
1187

LARP 4

SAR AR2,* *AR4 (ar2) is put into
* this memory location

LRLK AR4,CNTAPS

LAR AR2,* ) *AR4 (ar2) = (cntaps) = 39
‘clear taps

LRLK AR4,0UT1

ZAC

RPTK 3

SACL *+

* INITIAL Y(A-1)

* READ CONTENTS IN EXTENDED MEMORY ADRRESS
* POINTED BY AR3 AND STORE IN ASIGN

1188 05F5 D400 OUTL2 LRLK AR4,CNTLST [UK .. UK-39]

05F6 0236
1189 05F7 2088
1180 05F8 D300

05F9 0204
1191 05FA 1080
1192 05FB D300

05FC 0237
1193 05FD 608C
1194 O5FE D400

LAC *,0,AR3
LRLK AR3,STORE3

SuB *“,0
LRLK AR3,UKB

SACL *,0,AR4
LRLK AR4,UKB
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O5FF 0237
1195 0600 338B
1196 0601
1197 0601 C460
1198 0602
1199 0602 20AC
1200 0603 60AB
1201 0604 20AC
1202 0605 60AB
1203 0606 20AC
1204 0607 60AB
1205 0608 20AC
1206 0609 60A0
1207 060A
1208
1209 060A D400

060B 0238
1210 060C 3388
1211 060D C464
1212 060E
1213 060E 20AC
1214 060F 60AB
1215 0610 20AC
1216 0611 60AB
1217 0612 20AC
1218 0613 60AB
1219 0614 20AC
1220 0615 60AB
1221 0616
1222 0616
1223
1224 0616 FE80

0617 07DB
1225 0618 5588
1226 0619
1227
1228 0618 C460
1229 061A C368
1230 061B 20AC
1231 061C 60AB
1232 061D 20AC
1233 061E 60AB
1234 061F 20AC
1235 0620 60AB
1236 0621 20AC
1237 0622 CE19
1238 0623 D004

0624 7FCO
1239 0625 60AB
1240 0626
1244
1242 0626
1243
1244 0626 D300

0627 0232
1245 0628
1246
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1247 0628 20AC
1248 0629 60AB
1249 062A 20AC
1250 062B 60AB
1251 062C 20AC
1252 062D 60AB
1253 062E 20AC
1254 062F 60AB
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LAR AR3,*,AR3
LARK AR4,ASIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0

LRLK AR4,PTAPS

LAR ARS3,*,AR3
LARK AR4,BSIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FMULT

LARP 3

LARK AR4,ASIGN
LARK AR3,CSIGN
LAC *+0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+0AR4
SFR .

ANDK >7FCO

SACL *+,0,AR3

LRLK AR3,0UT1

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036
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LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

15:12:22 06-20-88
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* W(K-A+1)

* Y(A-1)*W(K-A+1)

* TRANSFER CONTENTS IN CS' TO AS'

* OUT1+(Y(A-1)*W(K-A+1))

* LARK AR4,BSIGN

*block transfer

16:12:22 06-20-88
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1255 0630

1256 0630 FE80
0631 0719

1257 0632 558B

1258 0633

1259

1260 0633 D400
0634 0232

1261 0635 C368

1262 0636

1263

1264 0636 20AC

1265 0637 60AB

1266 0638 20AC

1267 0639 60AB

1268 063A 20AC

1269'063B 60AB

1270 063C 20AC

1271 063D QE1 9

1272 063E D004
063F 7FCO

1273 0640 60A0

1274 0641

1275

1276 0641 D400
0642 0204

CALL FADD
LARP 3

* STORE RESULTS IN OUT1
LRLK AR4,0UT1

LARK AR3,CSIGN

*block transfer
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFR
ANDK >7FCO

SACL *+,0

increment b
LRLK AR4,STORE3

1277 0643 2080 LAC *,0
1278 0644 D002 ADLK 4
0645 0004
1279 0646 60A0 SACL *+
1280 0647
1281 * INCREMENT WEIGHT BY 1
1282 0647 D400 LRLK AR4,PTAPS
0648 0238
1283 0649 2080 LAC *,0 *AR4;(ACC)=(214)
1284 064A D002 ADLK 4 UPDATE
064B 0004
1285 064C 6080 SACL * *AR4;(ACC)=(214)
1286 064D
1287 * COUNT FOR A LOOP
1288 064D 558A LARP 2
1289 064E FBSC BANZ OUTL2,*- AR4
064F 05F5
1290 * END OF CALCULATION OUTL2
1291 0650
1292 * RE-INITIALISE PTAPS
1293 0650 D300 LRLK AR3,>A00 (AR3)=A00
0651 0A00
1294 0652 7380 SAR ARS3,* ‘=AR4,(AR4)=PTAPS;(PTAPS)=>A00
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1295 0653
1296 * re-initialise store3
1297 0653 D400 LRLK AR4,STORE3
0654 0204
1298 0655 CAO0 ZAC
1299 0656 6080 SACL *,0
1300 0657
1301 * RETURN AR2'S MEMORY
1302 0657 D400 LRLK AR4,REMAR2
0658 0213
1303 0659 3280 LAR AR2,* *‘AR4
1304 065A
1305 * DK-1
1306 065A 5588 LARP 3
1307 065B D300 LRLK AR3,>1EA4
065C 1EA4
1308 065D C460 LARK AR4,ASIGN

1309 065E 20AC
1310 065F 60AB

LAC *+,0,AR4
SACL *+,0,AR3
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1311 0660 20AC
1312 0661 60AB
1313 0662 20AC
1314 0663 60AB
1315 0664 20AC
1316 0665 60AB
1317 0666
1318
1319 0666
1320 0666 C464
1321 0667 D300
0668 0232
1322 0669
1323
1324 0669 20AC
1325 066A 60AB
1326 066B 20AC
1327 066C 60AB
1328 066D 20AC
1329 066E 60AB
1330 066F 20AC
1331 0670 60AB
1332 0671
1333
1334 0671 FE80
0672 0715
1335 0673 FE80
0674 0719
1336 0675 556B
1337
1338 0676 C460
1339 0677 C368
1340 0678 20AC
1341 0679 60AB
1342 067A 20AC
1343 067B 60AB
1344 067C 20AC
1345 067D 60AB
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1346 067E 20AC
1347 067F CE19
1348 0680 D004
0681 7FCO
1349 0682 60AB
1350 0683
1351
1352 0683 D300
0684 022E
1353 0685
1354
1355 0685 20AC
1356 0686 60AB
1357 0687 20AC
1358 0688 60AB
1359 0689 20AC
1360 068A 60AB
1361 068B 20AC
1362 068C 60AB
1363 068D
1364 068D FE80
068E 07DB
1365 068F 558B
1366
1367 0690 C460
1368 0691 C368
1369 0692 20AC
1370 0693 60AB
1371 0694 20AC
1372 0695 60AB

LAC *“+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

LARK AR4,BSIGN
LRLK AR3,0UT1

LAC *+,0,AR4
SACL “+,0,AR3
LAC *“+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FNEG
CALL FADD
LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN
LAC *+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

LAC *+,0,AR4
SFR
ANDK >7FC0

SACL *+,0,AR3

LRLK AR3,UP

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0.AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FMULT
LARP 3

LARK AR4,ASIGN

LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

* OUT1(K-1)

‘block transfer

* ER(K-1)

*transfer contents in c's to a's

* LARK AR4,BSIGN

* block transfer

‘transfer contents in cs' to as’
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1373 0696 20AC
1374 0697 60AB
1375 0698 20AC
1376 0699 CE19
1377 069A D004
069B 7FCO
1378 069C 60AB
1379 069D
1380
1381 069D
1382 069D D300
069E 0208
1383 069F C464
1384 06A0
1385 06A0 20AC
1386 06A1 60AB
1387 06A2 20AC
1388 06A3 60AB
1389 06A4 20AC
1390 06A5 60AB
1391 06A6 20AC
1392 06A7 60AB

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFR

ANDK >7FCO

SACL *+,0,AR3

LRLK AR3,CNST2
LARK AR4,BSIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

* MOVE CONTANT 2 TO BS'

1393 06A8
1394 06A8 FE80 CALL FMULT
06A9 07DB
1395 06AA 558B LARP 3
1396 *transfer contents in cs’' to no2ues’
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1397 06AB D400  LRLK AR4,P2UE
06AC 024C
1398 06AD C368 LARK AR3,CSIGN
1390 0B6AE 20AC  LAC *+,0,AR4
1400 0O6AF 60AB  SACL *+,0,AR3
1401 06B0 20AC  LAC *+,0,AR4
1402 06B1 60AB  SACL *+,0,AR3
1403 06B2 20AC  LAC *+,0,AR4
1404 06B3 60AB  SACL *+,0,AR3
1405 06B4 20AC  LAC *+,0,AR4
1406 06B5 CE19  SFR
1407 06B6 D004  ANDK >7FCO
06B7 7FCO
1408 06B8 60A0  SACL *+,0
1409 06B9 CE26 RET
1410 06BA
1411 06BA 558C CALPP LARP 4
1412 * Y(K-B)
1413 * B =1 INITIALLY
1414 06BB :
1415 06BB D400 LRLK AR4,CNTLST [UK .. UK-39]
06BC 0236
1416 06BD 2088  LAC *,0,AR3
1417 06BE D300 LRLK AR3,STORE3
06BF 0204
1418 06C0 1080 SUB *,0
1419 06C1 D300 LALK AR3,UK8
06C2 0237
1420 06C3 608C  SACL *,0,AR4
1421 06C4 D400  LRLK AR4,UKB
06C5 0237
1422 06C6 338B  LAR ARS3,*.AR3
1423 06C7
1424 06C7 C460 LARK AR4,ASIGN
1425 06C8 20AC  LAC *+,0,AR4
1426 06C9 60AB  SACL *+,0,AR3
1427 06CA 20AC  LAC *+,0,AR4
1428 06CB 60AB  SACL *+,0,AR3
1429 06CC 20AC  LAC “+,0,AR4
1430 06CD 60AB  SACL *+,0,AR3
1431 06CE 20AC  LAC *+,0,AR4
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1432 06CF 60AB
1433 06D0
1434 06D0 D300
06D1 024C
1435 06D2 20AC
1436 06D3 60AB
1437 06D4 20AC
1438 06D5 60AB
1439 06D6 20AC
1440 06D7 60AB
1441 06D8 20AC
1442 06D9 60AB
1443 06DA
1444 06DA FE80
06DB 07DB
1445 06DC 558B

NOS$IDT 32020

1446
1447 06DD C460
1448 06DE C368
1449 06DF 20AC
1450 06E0 60AB
1451 06E1 20AC
1452 06E2 60AB
1453 06E3 20AC
1454 06E4 60AB
1455 06E5 20AC
1456 06E6 CE19
1457 06E7 D004
06E8 7FCO
1458 06E9 60A0
1459 06EA
1460
1461 06EA
1462 06EA D400
06EB 0238
1463 06EC 338B
1464 06ED C464
1465 06EE
1466 06EE 20AC
1467 06EF 60AB
1468 06F0 20AC
1469 06F 1 60AB
1470 06F2 20AC
1471 06F3 60AB
1472 06F4 20AC
1473 06F5 60AB
1474 06F6
1475 06F6 FE80
06F7 0719
1476 06F8 558B
1477
1478
1479 06F9 D300
06FA 0238
1480 06FB 3480
1481 06FC Ca68
1482 06FD
1483
1484 06FD 20AC
1485 06FE 60AB
1486 06FF 20AC
1487 0700 60AB
1488 0701 20AC
1488 0702 60AB
1490 0703 20AC
1491 0704 CE19
1492 0705 D004
0706 7FCO

SACL *+,0,AR3
LRLK AR3,P2UE

LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FMULT

LARP 3
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LARK AR4,ASIGN
LARK AR3,CSIGN
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFR
ANDK >7FCO0

SACL *+,0

LRLK AR4,PTAPS

LAR AR3,*,AR3
LARK AR4,BSIGN

‘AR4

LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3

CALL FADD

LARP 3

LRLK AR3,PTAPS
LAR AR4,” AR3?
LARK AR3,CSIGN

LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFR
ANDK >7FCO

*transfer contents in cs' to as’

* WEIGHT INITIALLY AT >0A00

* UPDATE VALUES OF WEIGHTS
* MOVE CONTENTS OF CSIGN TO TAPS LOCATION

*block transfer
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1493 0707 60A0  SACL *+,0
1494 0708
1495 * INCREMENT B
1496 0708 D400 LRLK AR4,STORE3
0709 0204
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1497 070A 2080 LAC *,0 *AR4
1498 070B D002 ADLK 4

070C 0004
1499 070D 6080 SACL *
1500 070E
1501 * AND WEIGHT POSITION
1502 070E D400 LRLK AR4,PTAPS

070F 0238
1503 0710 2080 LAC *,0 *AR4 (ar4) = store4 adress
1504 0711 D002 ADLK 4

0712 0004
1505 07136080 SACL* *‘AR4
1506 0714 CE26 RET
1507 0715
1508 0715
1509 0715
1510 0715
1511 * DEFINE FLOATING CALCULATION PROCEDURES
1512 0715
1513 0715
1514 0715 2064 FNEG LAC BSIGN
1515 0716 CE27 CMPL
1516 0717 6064 SACL BSIGN
1517 0718 CE26 RET
1518 0719
1 51 9 IE A R E R R R R R R R R R R R R R R R R R R R R N R R RN
1520 *
1521 * THIS IS A FLOATING-POINT ADDITION ROUTINE WHICH
1522 * IMPLEMENTS THE [EEE PROPOSED FLOATING-POINT FORMAT
1523 * ON THE TMS32020.
1524 .
1525 .
1526 o
1527 * INITIAL FORMAT (ALL 16 BIT WORDS)
1528 R G
1529 * | ALLOOR1 | ASIGN (0 OR -1)
1630 G e
1531 *
1532 R Rt
1533 * |0j. 18BITS |  AHI (NORMALIZED)
1534 * o memmememeeieeees
1535 *
1536 R
1537 * |0] 9BITS |--0-| ALO
1538 L L L LT L LT
1538 ¢
1540 b e
1541 ¢ | AEXP (-127 TO 128)
1542 T
1543 ¢
1544 * TO CORRESPOND WITH IEEE FORMAT,
1545 * INPUTO.1F*2** (E + 1)
1546 * INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E.
1547 *
1548 * THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT
1549 * EXCEPT THAT FOR CLO WE HAVE:
1550 *

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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1551 R
1552 * | 18BITS | CLO
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1553 ‘

1554 ¢
1555 * ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS
1556 * BEEN TRUNCATED.
1557 ¢
1 558 (A R R R I R R R R R R R R R Y R R N R R R RN N R RN N
1559 ¢ ’
1560 * WORST CASE (EXCLUDING INITIALIZATION AND 1/0):
1561 * 15.4 MICROSECONDS.
1562 ¢ THIS TIMING INCLUDES THE NORMALIZATION.
1563 * WORDS OF PROGRAM MEMORY: 170
1564 v
1 565 IR I R R R R R R R I I I IIIIIYT™ ™"
1566 ¢
1567 ¢
1568 ¢
1569 * INITIALIZATION
1570 v
1571 ¢
1572 *
1573 ¢
1574 0719
15765 0719 CE07 FADD SSXM SET SIGN EXTENSION.
1576 071A 5588 LARP O
1577 071B D000 LRLK ARO,0 CLEAR EXPONENT REGISTER.
071C 0000
1578 071D CA01 LACK 1
1579 071E 606D SACLONE ONE =1
1580 071F CA10 LACK 16
1581 0720 6070 SACL SIXT
1582 0721 CA03 LACK 3
1583 0722 606F SACL THREE
1584 0723 CAOD LACK 13
1585 0724 6072 SACL TTEEN
1586 ¢
1587 .
1588 * BEGIN FLOATING POINT ADD
1589 *
1590 b
1591 0725 2061 UPADD LAC AEXP FIND LARGEST NUMBER.
1592 0726 1065 SUB BEXP
1593 0727 606C SACL D
1594 0728 F680 BZ AEQB IF EXPONENTS ARE THE SAME, JUMP TO AEQB.
0729 0750
1595 072A F380 BLZ ALTB IF A IS LESS THAN B, JUMP TO ALTB.
072B 075A
1596
1597 072C CE23 AGTB NEG
1508 072D 0070 ADD SIXT D = (16-D)
1599 072E 606C SACLD
1600 072F
1601 072F F480 BGEZ CONT1
0730 073E
1602 0731
1603 * transferatocwhenb<<a
NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88

1604 0731 C468
1605 0732 C360
1606 0733 558B
1607 0734 20AC
1608 0735 60AB
1609 0736 20AC
1610 0737 60AB
1611 0738 20AC
1612 0739 60AB
1613 073A 20AC
1614 073B CE18
1615 073C 60AB
1616 073D CE26

PAGE 0033

LARK AR4,CSIGN
LARK AR3,ASIGN
LARP 3

LAC *+,0,AR4
SACL *+,0,AR3
LAC “+,0,AR4
SACL “+,0,AR3
LAC *+,0,AR4
SACL *+,0,AR3
LAC *+,0,AR4
SFL

SACL *+,0,AR3
RET

D28



1617 073E

1618 073E 3C6C CONT1 LT D

1619 073F 2060
1620 0740 6068
1621 0741 2061

1622 0742 6069
1623 0743 4266
1624 0744 6866
1625 0745 6071

1626 0746 4267
1627 0747 CE18
1628 0748 6867
1629 0749 2067
1630 074A 4D71
1631 074B 6067
1632 074C 2163
1633 074D 6063

LAC ASIGN
SACL CSIGN
LAC AEXP
SACL CEXP
LACT BHI
SACH BHI
SACL RESID
LACT BLO
SFL
SACHBLO
LAC BLO
OR RESID
SACL BLO
LAC ALO,1
SACL ALO

1634 074EFF80 B CHKSGN

074F 077B
1635

1636 0750 2060 AEQB LAC ASIGN

1637 0751 6068 SACL CSIGN
1638 0752 2163 LAC ALO1
1639 0753 6063 SACL ALO
1640 0754 2167 LAC BLO,1
1641 0755 6067 SACL BLO

1642 0756 2061 LAC AEXP
1643 0757 6069 SACL CEXP
1644 0758 FF80 B CHKSGN

0759 077B

1645

1646 075A 0070 ALTB ADD SIXT
1647 075B 606C SACL D

1648 075C

1649 075C F480 BGEZ CONT2

075D 076B

1650 075E

1651

1652 075E C468 LARK AR4,CSIGN
1653 075F C364 LARK AR3,BSIGN
1654 0760 5588 LARP 3

1655 0761 20AC  LAC *+,0,AR4
1656 0762 60AB  SACL *+,0,AR3
1657 0763 20AC LAC *+,0,AR4
NOS$IDT

1658 0764 60AB  SACL *+,0,AR3
1659 0765 20AC LAC *+,0,AR4
1660 0766 60AB  SACL *+,0,AR3
1661 0767 20AC LAC *+,0,AR4
1662 0768 CE18 SFL

1663 0769 60AB  SACL *+,0,AR3
1664 076A CE26 RET

1665 076B

1666 076B

1667 076B 3C6C CONT2 LT D
1668 076C 2064 LAC BSIGN
1669 076D 6068 SACL CSIGN
1670 076E 2065 LAC BEXP

1671 076F 6069 SACL CEXP
1672 0770 4262 LACT AHI

1673 0771 6862 SACH AHI

1674 07726071 SACL RESID
1675 0773 4263 LACT ALO

1676 0774 CE18  SFL

1677 07756863 SACH ALO
1678 0776 2063 LAC ALO

1678 0777 4D7¢ OR RESID
1680 0778 6063 SACL ALO

1681 0779 2167 LAC BLO,1
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A 1S LARGER THAN B.
THEREFORE, CSIGN = ASIGN.
ALIGN THE B MANTISSA.
BHI IS SHIFTED RIGHT "D" TIMES.
RESIDUAL BITS MUST BE MAINTAINED.
BLO IS SHIFTED RIGHT "D" TIMES.
MSB (THE 0) IS SHIFTED AWAY.
GET BITS THAT WERE SHIFTED FROM BHI.
GET RID OF EXTRA BIT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

IF SIGNS ARE THE SAME, CSIGN = ASIGN

ALIGN MANTISSAS.

SET C EXPONENT = A EXPONENT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

D =(16-D)

* transfer b to cwhen b >> a

15:12:22 06-20-88

B IS THE BIGGEST NUMBER.

THEREFORE, LET THE SIGN OF C =BSIGN.
SET C EXPONENT =B EXPONENT.

AHI GETS SHIFTED "D" TIMES.
MAINTAIN EXTRA BITS.

ALO GETS SHIFTED "D" TIMES.

MSB (THE 0) IS SHIFTED AWAY.

GET RESIDUAL BITS.

GET RID OF EXTRA BIT.
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1682 077A 6067
1683

1684 077B 2060 CHKSGN LAC ASIGN

1685 077C 1064 SUB BSIGN
1686 077D F680 BZ ADNOW
077E 07AC
1687 077F F380 BLZ AISNEG
0780 078F
1688 0781 4062 BISNEG ZALH AHI
1689 0782 4963 ADDS ALO
1690 0783 4567 SUBS BLO
1691 0784 4466 SUBH BHI
16920785 F680 BZ CZERO
0786 079D
1693 0787 F380 BLZ CNEG
0788 07A4
1694 0789 686A SACH CHI
1695 078A 606B  SACL CLO
1696 078B CA00 ZAC
1697 078C 6068 SACL CSIGN
1698 078DFF80 B NORMAL
078E 0786
1699 078F 4066 AISNEG ZALH BHI
1700 0790 4967 ADDS BLO
1701 0791 4563 SUBS ALO
1702 0792 4462 SUBH AHI
1703 0793 F680 BZ CZERO
0794 079D
1704 0795 F380 BLZ CNEG
0796 07A4
1705 0797 686A SACH CHi
1706 0798 6068  SACL CLO
1707 0799 CA00 ZAC
NO$IDT
1708 079A 6068 SACL CSIGN
1709 079BFF80 B NORMAL
079C 07B6
1710
1711 079D CA00 CZERO ZAC
1712 079E 6069 SACL CEXP
1713 079F 6068 SACL CSIGN
1714 07A0 606A SACL CHIl
171507A16068 SACL CLO
1716 07A2FF80 B AROUND
07A3 07DA
1717
1718 07A4 CE1B CNEG ABS
1719 07A5686A SACH CHI
1720 07A6 606B SACL CLO
1721 07A7 D001  LALK >FFFF
07A8 FFFF
1722 07A9 6068 SACL CSIGN
172307AAFF80 B NORMAL
07AB 07B6
1724
1725 07AC 4062 ADNOW ZALH AHI
1726 07AD 4963 ADDS ALO
1727 07AE 4967 ADDS BLO
1728 07AF 4866 ADDH BHI
1729 07B0 686A SACH CHI
1730 07B1 606B  SACL CLO
1731 07B2 F0B0 BV OVFLOW
07B3 07C8
1732 07B4 F680 BZ CZERO
07B5 079D
1733
1734
1735

1736 07B6 206A NORMAL LAC CHI

SACL BLO

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

CHECK THE SIGNS.

IF THEY ARE THE SAME, JUST ADD.

DO (|Al - |B]),
SINCEB <0 AND A>0.

GO AND NORMALIZE RESULT.

DO ([B] - A,
SINCEA<0 AND B>0.

15:12:22 06-20-88
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GO AND NORMALIZE RESULTS.

HERE, ONLY IF RESULT = 0.

OUTPUT A ZERO.

HERE, IF RESULT IS NEGATIVE.

GO NORMALIZE RESULT.

IF SIGNS ARE THE SAME, JUST ADD.

DID AN OVERFLOW OCCUR?

ISRESULT=0?

* NORMALIZE

DOES CHI HAVE THE MSB?
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1737 0787 F680
0788 07BF
1738 07B9 406A
1739 07BA 496B
1740 07BB 4B72
1741 07BC CEA2

BZ LO1

ZALH CHI
ADDS CLO
RPT TTEEN
NORM

IF YES, NORMALIZE RESULT.

WILL PERFORM 14 "NORMS"

174207BDFF80 B OUTPUT
07BE 07D4

1743 07BF 406B LO1 ZALHCLO

1744 07CO D000 LRLK ARO,16
07C1 0010

174507C2 F380 BLZ NOFLOW
07C3 07D1

1746 07C4 4B72 RPT TTEEN

1747 07C5 CEA2 NORM

174807C6 FF80 B OUTPUT
07C7 07D4

1783 07DA CE26 AROUND RET
1784 07DB
1785 07DB
1786

1787 .
1788 .
1789 .
1790 .
1791 .
1792

1793 .
1794
1795
1796 ‘<
1797 .
1798 .

ON THE TMS32020.

ALLOOR1 |

GO OUTPUT RESULTS.

HERE IF CLO HAS MSB.
OFFSET EXPONENT BY 16.

DID BIT SEARCH CAUSE OVERFLOW?
IF NOT, NORMALIZE RESULT.

GO OUTPUT RESULT.

1749
1750
1751 * FINISHED WITH NORMALIZATION
1752 ’
1753 * HERE ONLY IF OVERFLOW OCCURRED DURING ADDITION
NO$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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1754
1755
1756 07C8 CE0O6 OVFLOW RSXM RESET SIGN EXTENSION TO SHIFT RIGHT.
1757 07C9 CE19 SFR SHIFT RIGHT.
1758 07CA 686A SACH CHI STORE NORMALIZED MANTISSA.
1759 07CB 606B SACL CLO
1760 07CC 2069 LAC CEXP DECREMENT EXPONENT.
1761 07CD 006D ADD ONE
1762 07CE 6068 SACL CEXP
1763 07CF FF80 B AROUND GO OUTPUT RESULTS.
07D0 07DA
1764 *
1765 * OVERLOW OCCURRED DURING BIT SEARCH
1766 ‘
1767 07D1 5580 NOFLOW MAR *- DECREMENT EXPONENT.
1768 07D2 CEO6 RSXM RSXM FOR LOGICAL RIGHT SHIFT.
. 1769 07D3 CE19 SFR PERFORM RIGHT SHIFT.
1770
1771
1772 * TAKE CARE OF EXPONENT & NORMALIZED MANTISSA,
1773 * THEN OUTPUT RESULTS.
1774
1775
1776 07D4 706E OUTPUT SAR ARO,TEMP HERE AFTER NORMALIZATION.
1777 07D5686A SACH CHI SAVE NORMALIZED MANTISSA.
1778 07D6 606B  SACL CLO
177907D7 2069 LAC CEXP ADJUST EXPONENT.
1780 07D8 106E  SUB TEMP
1781 07D9 6068 SACL CEXP
1782 *

I N N R R R R R R R R R R X P R SN R RSN ]

THIS IS A FLOATING-POINT MULTIPLICATION ROUTINE WHICH
IMPLEMENTS THE IEEE PROPOSED FLOATING-POINT FORMAT

L R R R R R Ry A I X R Y  F R R R R N

* INITIAL FORMAT (ALL 16-BIT WORDS)
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1799 *

1800 * 10l. 15BITS |  AHI (NORMALIZED)
1801 L
1802 .
1803 e
1804 * 0] 9BITS|-0-] ALO
1805 e
1806 .
1807 f e
1808 ) | AEXP (-127 TO 128)
1809 L
NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:22 06-20-88
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1810 .
1811 * TO CORRESPOND WITH IEEE FORMAT,
1812 ¢ INPUTO0.1F*2** (E + 1)
1813 * INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E.
1814 .
1815 * THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT
1816 * EXCEPT THAT FOR CLO WE HAVE:
1817 .
1818 e
1819 * | 16BITS | CLO
1820 LU
1821 .
1822 * ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS
1823 * BEEN TRUNCATED.
1824 .
1 825 IR A R R R R R R RN E R R R R E R R R R R N R R R NN NN NN R R NN
1826 .
1827 * WORST CASE (EXCLUDING INITIALIZATION AND 1/0):
1828 * 7.8 MICROSECONDS.
1829 * THIS TIMING INCLUDES THE NORMALIZATION.
1830 * WORDS OF PROGRAM MEMORY: 60
1831 .
1 832 I E R R E R R R R R R R R R R E R R R R R R R R R R N R E R R R RN NN )
1833 .
1834 .
1835 * INITIALIZATION
1836 .
1837 .
1838 .
1839 07DB CE07 FMULT SSXM SET SIGN EXTENSION.
1840 07DC D000 LRLK AR0,0 CLEAR EXPONENT REGISTER.
07DD 0000
1841 07DE 5588 LARP 0
1842 07DF D001 LALK >FFFF
07E0 FFFF
1843 07E1 6074 SACL NEGONE NEGONE = -1
1844 .
1845 .
1846 * BEGIN FLOATING-POINT MULTIPLICATION.
1847 .
1848
1849 07E2 2061 UPMUL LAC AEXP ADD EXPONENTS.
1850 07E3 0065 ADD BEXP
1851 07E4 6069 SACL CEXP
1852
1853 07E53C63 LT ALO FIRST PRODUCT (ALO * BHI)
1854 07E6 3866 MPY BHI
1855 07E7 CE14 PAC
1866 07E8 6873 SACH THI
1857 07E9 6075 SACL TLO
1858
1859 07EA 3C62 LT AHI SECOND PRODUCT (AHI * BLO)
1860 O7EB 3867 MPY BLO
1861
1862 07EC CE15 APAC HAS EFFECT OF (AHI * BLO + ALO * BHI) * 2 ** -15.
1863 07ED CE15 APAC
1864
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1865 O7EE 4873 ADDH THI
1866 O7EF 4975 ADDS TLO
1867 07F0 6873 SACH TH!
1868
'1869 07F1 3866 MPY BHI (AHI * BHI)
1870 07F2 CE14 PAC
1871 07F3 4973 ADDS THI
1872
1873 07F4 696A  SACH CHI,1 GET RID OF EXTRA SIGN BITS.
1874 07F5 616B  SACL CLO,1
1875
1876 07F6 FS80 BNZ OK IS RESULT ZERO?
07F7 O07FC
1877 07F8 CA0O0 ZAC
1878 07F96069 SACL CEXP
1879 07FAFF80 B SETSIN
07FB 0805
1880
1881 07FC 406A OK ZALH CHI NORMALIZE AND WRAP UP.

1882 07FD 496B ADDS CLO

1883 07FE CEA2 NORM

1884 07FF 686A SACH CHI

1885 0800 606B SACL CLO

1886 0801 706E SAR ARO,TEMP

1887 0802 2069 LAC CEXP

1888 0803 106E  SUB TEMP

1889 0804 6069 SACL CEXP

1890

1891 0805 4160 SETSIN ZALS ASIGN WHAT IS SIGN OF RESULT?

1892 0806 4C64 XOR BSIGN

1893 0807 F580 BNZ NEG
0808 080D

1894 0809 CAO0 ZAC

1895 080A 6068 SACL CSIGN

1896 080B FF80 B OUTMUL
080C 080F

1897 080D 2074 NEG LAC NEGONE

1898 080E 6068 SACL CSIGN

1899 080F

1900 080F FO80 OUTMUL BV COV
0810 0811

1901 0811 CE26 COV  RET

1902 0812

1903 0812

1804 0812

1905 0812 D400 FLFX LRLK AR4,FIXPT
0813 007C

1906 0814 55A0 MAR *+

1907 0815 2080 LAC *

1908 0816 D003 SBLK 3

0817 0003

1909 0818 D004  ANDK >8000
0819 8000

1910 081A F680° BZ UNCH1
081B 0827

1911 081C 20A0 LAC ‘*+ -
1912 081D D003 SBLK 3
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081E 0003
1913 081F CE27 CMPL
1814 0820 606E = SACL TEMP
1915 0821 20AC LAC *“+,0,AR4
1916 0822 4B6E RPT TEMP
19170823 CE19 SFR
1918 0824 6080 SACL *,0
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19190825 FF8C B SIGN,",AR4
0826 082A

1920 0827

1921 0827 55A0 UNCH1 MAR *+

1922 0828 20AC LAC *+,0,AR4

1923 0829 6080 SACL *

1924 082A

1925 082A D300 SIGN LRLK AR3,>9F4
082B 09F4

1926 082C 558B LARP 3

1927 082D 208C LAC *,0,AR4

1928 082E F580 BNZ ESUB
082F 0835

1929 0830 D400 LRLK AR4,FIXPT
0831 007C

1930 0832 2080 LAC *

1931 0833 CE27 CMPL

1932 0834 6080 SACL *

1933 0835

1934 0835 CE26 ESUB RET

1935 0836

1936 0836

1937 0836

1938 0836 CA03 FXFL' LACK 3

1939 0837 6065 SACL BEXP

1940 0838 207C LAC FIXPT

1941 0839 D004 ANDK >8000

083A 8000

1942 083B F680 BZ NEG1 MSB=0 IS NEGATIVE
083C 0844

1943 083D

1944 083D CAO0 ZAC MSB=1 IS POSITIVE

1945 083E 6064 SACL BSIGN
1946 083F 207C LAC FIXPT
1947 0840 CE27 CMPL ITS MAGNITUDE IS A COMP.
1948 0841 607C SACL FIXPT
1949 0842 FF80 B MAG

0843 0846
1950 0844
1951 0844 207D NEG1 LAC NEGS
1952 0845 6064 SACL BSIGN
1953 0846
1954 0846 207C MAG LAC FIXPT
1955 0847 D004 ANDK >4000

0848 4000
1956 0849 F680 BZ NEXT1
084A 084F
1957 084B 207C  LAC FIXPT (INFX)=01XX ...X ; (INEXP)=3

1958 084C 6066 SACL BHI
1959 084D FF80 B FINCVT
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084E 08EQ
1960 084F
1961 084F 207C NEXT1 LAC FIXPT
1962 0850 D004  ANDK >2000
0851 2000
1963 0852 F680 BZ NEXT2
0853 085D
1964 0854 2065 LAC BEXP (FIXPT)=001X ...X
1965 0855 D003 SBLK 1 (AEXP)=2
0856 0001

1966 0857 6065 SACL BEXP
1967 0858 207C LAC FIXPT
1968 0858 CE18  SFL
1969 085A 6066 SACL BHI
1970085B FF80 B FINCVT
085C 08E9
1971 085D
1972 085D 207C NEXT2 LAC FIXPT

D34



1973 085E D004 ANDK >1000

085F 1000
1974 0860 F680 BZ NEXT3

0861 086C '
1975 0862 2065 LAC BEXP (FIXPT)=0001 ...X
1976 0863 D003 SBLK 2 (AEXP)=1

0864 0002

1977 0865 6065 SACL BEXP
1978 0866 207C LAC FIXPT
1979 0867 CBO1 RPTK 1
1980 0868 CE18 SFL
1981 0869 6066 SACL BHI
1982 086A FF80 B FINCVT
086B 08E9
1983 086C
1984 086C 207C NEXT3 LAC FIXPT
1985 086D D004  ANDK >0800

086E 0800
1986 086F F680 BZ NEXT4
0870 0878
1987 0871 2065 LAC BEXP (FIXPT)=0000 1XXX
1988 0872 D003 SBLK 3 (AEXP)=0
0873 0003

1989 0874 6065 SACL BEXP

1990 0875 207C LAC FIXPT

1991 0876 CB02 RPTK 2

1992 0877 CE18 SFL

1993 0878 6066 SACL BHI

1994 0879 FF80 B FINCVT
087A 08E9

1895 087B

1996 087B

1997 087B 207C NEXT4 LAC FIXPT

1998 087C D004  ANDK >0400

087D 0400
1999 087E F680 BZ NEXTS

087F 088A
2000 0880 2065 LAC BEXP (FIXPT)=0000 01XX
2001 0881 D003 SBLK 4 (AEXP)=-1

NOS$IDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86036 15:12:22 06-20-88
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0882 0004
2002 0883 6065 SACL BEXP
2003 0884 207C LAC FIXPT
2004 0885CB03 RPTK 3
2005 0886 CE18  SFL
2006 0887 6066 SACL BHI
2007 0888 FF80 B FINCVT
0889 08ES
2008 088A
2009 088A
2010 088A 207C NEXTS LAC FIXPT
2011 088B D004 ANDK >0200

088C 0200
2012 088D F680 BZ NEXT6

088E 0899
2013 088F 2065 LAC BEXP (FIXPT)=0000 001X
2014 0890 D003 SBLK S (AEXP)=-2

0891 0005

2015 0892 6065 SACL BEXP

2016 0893 207C LAC FIXPT

20170894 CB0O4 RPTK 4

2018 0895 CE18  SFL

2019 0896 6066 SACL BHI

2020 0897 FF80 B FINCVT
0898 08ES

2021 0899

2022 0899

2023 0899 207C NEXT6 LAC FIXPT

2024 089A D004 ANDK >0100

D35



089B 0100
2025 089C F680
089D 08A8
2026 089E 2065
2027 089F D003
08A0 0006
2028 08A1 6065
2029 08A2 207C
2030 08A3 CB05
2031 08A4 CE18
2032 08AS5 6066
2033 08A6 FF80
08A7 08E9
2034 08A8
2035 08A8
2036 08A8 207C
2037 08A9 D004
08AA 0080
2038 08AB F680
08AC 08B7
2039 08AD 2065
2040 08AE D003
08AF 0007
2041 08B0 6065
2042 08B1 207C
2043 08B2 CBO6
2044 08B3 CE18
2045 08B4 6066

NO$IDT

2046 08B5 FF80
08B6 08E9

2047 08B7

2048 08B7

BZ NEXT7

LAC BEXP
SBLK 6

SACL BEXP
LAC FIXPT
RPTK 5
SFL

SACL BH!
B FINCVT

NEXT7 LAC FIXPT

ANDK >0080

BZ NEXT8

LAC BEXP
SBLK 7

SACL BEXP
LAC FIXPT
RPTK 6
SFL

SACL BHI

32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036

(FIXPT)=0000 0001 X..X
(AEXP)=-3

(FIXPT)=0000 0000 1XXX
(AEXP)=-4

15:12:22 06-20-88
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B FINCVT

2049 08B7 207C NEXT8 LAC FIXPT

2050 0888 D004
08B9 0040
2051 08BA F680
08BB 08C6
2052 08BC 2065
2053 088D D003
08BE 0008
2054 08BF 6065
2055 08C0 207C
2056 08C1 CBO7
2057 08C2 CE18
2058 08C3 6066
2059 08C4 FF80
08C5 08E9

2060 08C6
2061 08C6
2062 08C6 207C
2063 08C7 D004
08C8 0020
2064 08C9 F680
08CA 08D5
2065 08CB 2065
2066 08CC D003
08CD 0009
2067 08CE 6065
2068 08CF 207C
2069 08D0 CB08
2070 08D1 CE18
2071 08D2 6066
2072 08D3 FF80
08D4 08E9
2073 08D5
2074 08D5
2075 08D5 207C
2076 08D6 D004

ANDK >0040

BZ NEXT9

LAC BEXP
SBLK 8

SACL BEXP
LAC FIXPT
RPTK 7
SFL

SACL BHI
B FINCVT

NEXT9 LAC FIXPT

ANDK >0020

BZ NEXT10

LAC BEXP
SBLK 9

SACL BEXP
LAC FIXPT
RPTK 8
SFL

SACL BHI
B FINCVT

NEXT10 LAC FIXPT

ANDK >0010

(FIXPT)=0000 0000 01XX
(AEXP)=-5

(FIXPT)=0000 0000 001X
(AEXP)=-6
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08D7 0010
2077 08D8 F680 BZ NEXT11

08D9 08E4
2078 08DA 2065 LAC BEXP (FIXPT)=0000 0000 0001
2079 08DB D003  SBLK >A {AEXP)=-7

08DC 000A

2080 08DD 6065 SACL BEXP

2081 08DE 207C  LAC FIXPT

2082 08DF CB0O8 RPTK 9

2083 0B8EO CE18  SFL

2084 08E1 6066 SACL BHI

208508E2FF80 B FINCVT
08E3 08E9

2086 08E4

2087 08E4 CAO0 NEXT11 ZAC

2088 0BE5 60656 SACL BEXP

2089 08E6 6066 SACL BHI
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2090 0BE7 6067 SACL BLO
2091 08E8
2092 08E8
2093 08E8 CE26 RET
2094 08E9
2095 08E9
2096 08E9 CA00 FINCVT ZAC
2097 08EA 6067 SACL BLO
2098 08EB CE26 RET
2099 08EC
2100 08EC
2101 08EC
2102 08EC 558C ISR LARP 4
2103 08ED D400  LRLK AR4,FIXPT
08EE 007C
2104 0BEF E280 OUT *,2 *AR4 (AR4)=FIXPT
2105 08F0 FAB0 ALOOP BIOZ ALOOP1
08F1 08F4
2106 08F2FF80 B ALOOP
08F3 08F0
2107 08F4

2108 08F4 8280 ALOOP1 IN *.2
2109 08F5 CE0O0  EINT
211008F6 CE26 RET

2111 08F7

2112 08F7

2113 END

NO ERRORS, NO WARNINGS

NOSIDT 32020 FAMILY MACRO ASSEMBLER PC 1.1 86.036 15:12:52 06-20-88
PAGE 0044

0001 0000
NO ERRORS, NO WARNINGS
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APPENDIX E

This appendix contains the paper on "Model- Reference Adaptive
Control using an FIR controller" which was represented at the IFAC
Work shop on Robust Adaptive Control on 22-24 August 1988 at

Newcastle, Australia.



MODEL REFERENCE ADAPTIVE CONTROL USING AN F.I.R. CONTROLLER .

H.M.T. Tran and G. The

Department of Electrical Engineering, University of Tasmania,

GPO Box 252C, Hobart, Australia

Abstract. This paper discusses the theory and implementation of an adaptive
controller which can track plant with time-varying parameters as well as time-varying
transport delay. It also allows for closed-loop pole placement and, because there

are no restrictions on closed~loop zeros,-good set-point tracking can be achieved., The
scheme 1s based on the well-known least-mean-square algorithm to generate a finite
impulse response (F.I.R.) controller and can therefore be implemented readily using
one of the new generation signal processor chips.

Keywords. Adaptive control; time-varying systems; least-mean-square algorithm;

digital signal processor.

INTRODUCTION

Self-tuning controllers based on pole-zero place-
ment design have been developed for many years
(Astrom and Wittenmark, 1980; Wellstead, Prager
and Zanker, 1979; Wellstead and Sanoff, 1981).

The motivation for the pole-placement self-

tuning principle stems from the observation that

a control engineer can easily relate pole locations
to closed loop transient performance. However
self-tuning controllerssuffer from a number of
weaknesses, notably:

(1) zero~placement is difficult to achieve due
to the fact that cancellation of plant zeros out-
side the unit circle is not possible. Therefore
the controller generally has poor servo-tracking
properties without the use of an adaptive feed-
forward compensator.

(it) large changes in plant parameters frequently
result in excessive changes in the control inmput
and when control limits are imposed, as is usually
the case in a practical situation, the self-tuning
algorithm may loose control.

(iii) identification of a plant with variable
deadtime requires over-parameterization of the
model with the inherent sensitivity problems.

A new appreach for the design of controllers and
self-tuning regulators to allow closed-loop pole
placement with better set-polnt tracking has
recently been reported (Liu and Sinha, 1987;
Puthenpura and Macgregor, 1987). However it is
restricted to applications where the reference
signal varlations are Laplace-transformable and
known in advance.

In this paper we look at the well-known least-mean-

square (LMS) algorithm (Widrow and Stearms, 1985)
as normally applied to the adaptive equalisation
of communication channels and apply the same
principle to effect a model reference adaptive
control. Since its inception bythe Bell System
group (Gersho, 1969; Lucky, 1967; Sondhi, 1967).,
the LMS algorithm has always been implemented in

a hybrid mode, i.e. the signal in analogue form
passes through a series of delay lines and the
taps are adjusted digitally. However, the advent

of high-speed microprocessors such as the 8086/
80186/80286 and their numeric co-processors made
it possible to implement a 30-tap F.I.R. adaptive
equaliser digitally in real time (Tran, 1986).

Our investigations are motivated by the introduc-
tion of the latest high-speed signal processing
chip, the Texas Instrument TMS320C25, which has an
ultra high-speed multiplier and barrel shifter.
Whereas self-tuning algorithm requires repeated
divisions as well as multiplications, the LMS
algorithn requires only repeated multiplications
and therefore the TMS320 family of signal pro-
cessors lend themselves ideally for this applica-
tion, The TMS320C25 can carry out a 64-tap F.I.R.
filtering at a sampling period of 8 microsecond
(125 nanosec. per tap).

LMS ADAPTIVE EQUALISATION/IDENTIFICATION

Figure 1 shows the schematic configuration of an
LMS adaptive equaliser, where it 1s desired to make
the equaliser output, cy, follow the desired out-
put, dy. By defining

= T
S R Y m
W= (v, v, .. w T )
k o Y1 cresee W
and using the subscript k to denote the kth
sampled value, we define the error as:
T
e = 4 - KWy 3

and, because the mean-square-error cost function
(E(eﬁ)) is a quadratic function of the weights, wk
we can use the following recursive equation

W - wk + 2ue, (4)

k+1 kxk



to seek for the minimum point. Widrow and Stearns
(1985) showed that this method is stable and
convergent if and only if

0 <wue« 1/)‘max (5

where *max 1s the largest eigen value of the auto-
correlation matrix of the input signal

T
R = E(xkxk } (6)

The LMS adaptive filter can also be used to
identify the F.I.R. parameters of an unknown plant.
This method is shown in figure 2 and it is shown
in the appendix that if the input is an un-
correlated sequence, then the filter taps will
converge towards the true plant F.I.R. parameters.

OPEN-LOOP MODEL REFERENCE ADAPTIVE
CONTROL

Figure 3 1llustrates how the LMS algorithm can be
used in a model-reference adaptive control in an
open loop fashion (Widrow and Stearns, (1985).
Note that the LMS algorithm is used twice per
iteration. First, the LMS algorithm is used to
determine the F.I.R. plant model approximation,
P(z), of the plant, P(z). Next, this P(z) is used
to pre-filter the input xi before it is used by
the LMS algorithm to adjust the F.I.R. controller
parameters. The reference model, M(z), must have
at least as long a time delay as the maximum time
delay anticipated in the plant, P(z). Given that
the F.I.R. filter has a sufficient number of taps,
when the adaptive process converges, the output

of the controller-plant combination will match
that of the reference model in a least-mean-square
sense.

Such an adaptive control scheme was simulated using
a 40-tap F.I.R. filter to identify the plant and

to realise the controller. A pseudo random binary
sequence with a standard deviation of 1.34 units
was used as the dither signal, while the plant
noise standard deviation was kept at 0.29 units.

To test the ability of the system to track plant
variation the plant pulse transfer function was
switched from

0.22361 (1422 422, Pp
1-0.747762" 40.642222 72

Pl(Z) =

to

2.4(z 1-0.8272),"Dp
1-0. 12" 40,4222

p,(2) = ®

with Dp = 3, while the reference model pulse
transfer function was kept at

0.03356(142z" 42”2y, Pm

z) = = =)
1-1.53022"140.664432

(9

with D = 5, Figure 4 shows the unit step response
of the compensated plant and the model.

Next the system was tested in the presence of
time delay variation. The plant pulse transfer
function was given by equation (8) but with the
deadtime switched from D, = 3 to Dp = 7 while the
model pulse transfer function was given by:

0.25.7 11

M(z) = =i —
l-z "40,25z

(10)

2

Figure 5 shows the unit step responses of the com~
pensated plant and the model. .

CLOSED LOOP MODEL REFERENCE ADAPTIVE
CONTROL

Figure 6 shows a scheme for the closed loop model
reference adaptive control. The desired closed
loop behaviour of the plant must be represented
by the model, which in the simulation was set to

6

% 0.1472"

.024922+,01472"

M(z)= =
+.20152

1 g (D

1-1.1618z +.0249z"

while the plant transfer function was switched
from

P C .003012" +,010882 2+.0024723
1 (2= -1 -2 -3 (12
1-2.59233z2" '42.2708322-.67032z
to
.00842244.0250025+.0046192
P, (z)= (13

1-2,0043z2" 41343452 %-.3011942"2

A square wave signal plus p.r.b.s. dither was
applied to the reference input and the plant and
model responses are shown in figure 7. Figure 8
shows that there 1s no excessive control action
present in the input to the plant at the instants
changes in plant parameters take place.

ADAPTIVE CONTROL WITH SIGNAL TRACKING

PROPERTIES
Our purpose here is to show how the LMS adaptive
controller of figure 6 can be used to give the
system good setpoint tracking characteristics.
By selecting a reference model whose gain is
unity over all frequencies of interest present
in the input signal, the LMS algorithm will
adjust the F.I.R. controller parameters so that
tracking errors are minimised. The selection of
the transfer function must be carried out
judicially, because increasing the closed loop
system bandwidth will be accompanied by excessive
control effort if the plant bandwidth is not
adequate.

For this demonstration we used the same test
signal as used by Liu and Sinha (1987):

e, = exp(-0.04k)sin(0.2k) (14)

k
The plant pulse transfer function is given by:
.0601z4~. 1012272
1-1.64572" +.67032"

P(z) = 5 (15)



The desired closed loop behaviour of the plant 1is
represented by the model

.029852">

M(z) = oy —
1-1,4891z "+,54882

) (16)

so that, while obtaining good tracking of the re-
ference signal, the closed-loop poles are placed
at z; = 0.81908 and at z = 0.67002. The setpoint
tracking behaviour of the model-reference adaptive
control system using an LMS adaptive scheme is
shown in figure 9. Simulation results show that
this scheme handles reference signal following
problems well even in the presence of variations
in plant parameters and variations in time delay.
This may be compared with the behaviour of a self-
tuning controller with pole-zero placement of the
error transfer function (Liu and Sinha, 1987),
shown in figure 10. However in the latter case
the reference signal must be known in advance and
be Laplace transformable, and in addition the time
delay of the plant needs to be precisely deter-
mined.

LMS ADAPTIVE CONTROL USING THE TMS320C20

The LMS closed-loop model adaptive control can be
easily implemented using a 1TMS320 digital signal
processor. In this section a TMS320C20 Software
Development System (SWDS) plugged into a IBM-AT
backplane is used for plant simulation and to
implement a model reference adaptive control using
a F.I.R. controller. The software is composed of
five modules: initialisation routine, floating
point conversion routine, plant identification
routine, LMS controller routine and fixed point
conversion routine.

The initialisation routine disables/enables
interrupts, loads data memory with system para-
meters and injtialises the registers. The float-
ing point conversion routine converts an analogue
sample into a 23-bit mantissa and an 8 bit ex-
ponent (Crowell, 1985), The plant identification
routine samples the plant input/output and update
the F.I.R. plant model. The LMS controller
routine prefilters the input signal and adjusts
the F.1.R. controller parameters. The fixed point
conversion routine converts the controller output
into fixed point format and sends it to the D/A
converter. All routines are written in TMS320C20
assembly language. The plant pulse transfer
function is given by:

.022361(l+22_1+z_2) an
1-.774782" 4. 6644322

P(z) =

The desired closed loop behaviour of the plant is
represented by the model

.03356 (14227

-2
+2 +2 ) (18)
1-1,53022

M(z) = =3
+.664432

Figure 11 shows the unit step responses of the
compensated plant and the model. The complete
model reference adaptive control program for this
particular example uses a 40-tap F.I1.R. controller
and takes 7 msec per iteration. This can be re-
duced to 3.0 msec 1if a TMS320C25 chip were used.
Further work is currently proceeding to test the
algorithm in a full hybrid mode.

CONCLUSIONS

The theory and implementation of a special type
of model reference adaptive controller in the
light of the latest developments in signal
processing technology has been presented. The
method is computationally simple. This paper
shows by simulation studies that the LMS algorithm
can be effectively used in a model reference
adaptive F.I.R. controller to control a plant in
a closed loop configuration. It has excellent
adaptation capabilities in the presence of both
parameters and dead time variations, It is not
necessary to know a priory the time delay of the
plant, although some knowledge of the plant
characteristics would be helpful when choosing
the model dead time and the number of taps on the
F.I.R. filter. By a suitable choice of the re-
ference model, it can be designed to have good
servo-tracking properties. The main drawback of
the scheme is the long time required before the
taps converge to the best values. However the
adaptive F.I1.R. controller should have great
potential in application where the dead time and
parameter variations are relatively gradual, as
it is generally known that F.I.R. filters are
more robust than their recursive I.I1.R. counter-
part.,
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APPENDIX

d From equation (3) the mean square error is given
by:

T, + v Tau (19)

2 ; 2
J-E(ek}-E(dk)—ZPkk R

where the cross correlation vector between input
and the desired response is defined as:

T
P = E{dkxk, dkxk-l' ene dkxk-L+1} (20)

and the fnput auto correlation matrix is given
by:

LT
R = E(kak } (21)

To obtain the minimum of the mean square error
we set the gradient of J to zero:

grad J = ZRkwk - 2Pk =0 (22)

If the input xp is assumed to be a statiomary
ergodic white sequence with variance o?, then
the subscript k can be dropped and we have:

R = o1 (23)
P =02 (24)

where the plant sampled unit impulse response is
given by:

G = lggs 8)s Bpe =oee gy )" (25)

Equation (22) then becomes:
W=g (26)

which shows that the F.I.R. controller matches
with the plant unit impulse response.



Figure 1. 1.M.S. adaptive equaliser.
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Figure 3. Open loop model reference adaptive control,
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