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ABSTRACT 

The idea that two vascular routes exist within, or closely associated with, skeletal 

muscle (nutritive and non-nutritive blood flow) dates back to early last century 

(1900's). Recent work in the past decade or two in our laboratory as well as 

contributions by other researchers has shed more light on the anatomical nature and 

functional role of the skeletal muscle vasculature and shown how changes to the blood 

flow distribution within skeletal muscle occur during different physiological states, 

e.g. exercise and insulin resistance. 

Until recently, an effective and non-invasive method to measure the proportion of 

nutritive to non-nutritive blood flow within muscle did not exist. Such a method 

would prove invaluable as a general technique to assess the blood flow distribution 

within skeletal muscle and would have definite clinical application. Recent studies 

from this research group have focussed on investigating the use of 1-methylxanthine 

(1-MX) metabolism as an indicator of nutritive flow, or capillary recruitment, within 

skeletal muscle. It has been shown that capillary recruitment increases during insulin 

infusion in viva and this increase is blocked when acute insulin resistance is induced 

by a methyl serotonin, an agent known to direct muscle blood flow to the non-nutritive 

route. 

This project had two main aims. Firstly, to further investigate the use of the 1-MX 

method in insulin resistant rats in viva (tumour necrosis factor a, TNF), and in hindimb 

perfusion (sciatic nerve stimulation and sciatic nerve severance). Secondly, to develop 

a new technique for the measurement of nutritive and non-nutritive blood flow based 

on laser Doppler flowmetry (LDF), in the hope that concordance between the two 

methods (1-MX andLDF) would be attained. 

Under conditions of insulin resistance in viva induced by 3 hour infusion of TNF ( +/­

insulin), 1-MX metabolism (capillary flow) and total femoral blood flow were 

decreased as compared with insulin alone. In rat hindlimb perfusion, sciatic nerve 

stimulated rats (causing contraction of the calf muscle group) resulted in increased 

xx 



1-MX metabolism by the working muscles. Sciatic nerve severance, a rat model of 

insulin resistance, did not cause any changes in 1-MX metabolism and so the insulin 

resistance observed in this model did not appear to be a caused by changes in blood 

flow distribution. 

Changes seen in LDF signal under a number of conditions were similar to the changes 

seen in 1..:MX metabolism. During rat hindimb blood perfusion, vasoconstrictors 

known to increase and decrease nutritive and non-nutritive blood flow in skeletal 

muscle produced corresponding changes in laser Doppler signal. In addition, in vivo 

where insulin is known to increase capillary recruitment as measured by 1-MX 

metabolism, the LDF signal increased. Epinephrine, which produces large increases in 

total blood flow to the hindlimb but does not stimulate glucose uptake, produced no 

change in capillary recruitment or LDF. 

Overall, the study was successful and the two main aims were accomplished. 

Application of the 1-MX method was extended and concordance with LDF was 

achieved. Both methods, with certain limitations and assumptions would appear to be 

capable of detecting changes in capillary recruitment or nutritive blood flow in skeletal 

;muscle. 

xxi 



CHAPTERl 

General Introduction 

1.1 Early Evidence for Two Circulatory Routes in Skeletal Muscle 

Studies by a number of groups, particularly through the middle of last century, led to 

the idea that two distinct blood flow pathways exist within skeletal muscle (Barcroft 

1963, Barlow et al. 1961, Pappenheimer 1941, Walder 1953, Walder 1955). Of these 

two pathways, one was thought to lead to capillaries that were in intimate contact 

with the muscle fibres while the other flow route went to a region without any 

significant nutrient delivery. The majority of the evidence available was based 

around the fact that total blood flow into muscle did not correlate with: 

a) metabolic or heat transfer processes or 

b) clearance of radioactive substances which were either infused or injected 

intramuscularly. 

One particular study by Pappenheimer, published in 1945 clearly demonstrated that 

flow and metabolism are not always directly related (Pappenheimer 1941). Using the 

isolated constant-pressure perfused dog hindlimb or gastrocnemius muscle, 

Pappenheimer showed that when blood flow was reduced by stimulation of . 

vasoconstrictor nerves, the A-V 0 2 difference decreased. Conversely, if blood flow 

was reduced to the same extent using low dose epinephrine, the A-V 0 2 difference· 

increased. Further to this, even though the flow rates were decreased to the same 

degree, the difference in temperature between the arterial and venous blood was 

increased with epinephrine but decreased with nerve stimulation (Pappenheimer 

1941). Pappenheimer concluded from this work that the oxygen saturation of the 

venous blood from resting muscle was not simply a measure of metabolic rate, but an 

indicator of the blood flow heterogeneity within the muscle. 

A number of other studies, where workers attempted to measure muscle blood flow 

using the clearance of radioactive markers, led to similar conclusions to those of 

1 



Pappenheimer (Barlow et al. 1958, Walder 1955). Since the effects observed were 

not consistent with commonly held theories on muscle microcirculation, and were not 

attributable to direct effects on skeletal muscle metabolism, an explanation for the 

heterogeneity of isotope clearance rates was required. One postulation was that 

skeletal muscle contained arteriovenous anastomoses, similar to those seen in rabbit's 

ears, and cat's stomachs, which were 50 to 100 µm in diameter. However, further 

work denied the presence of large shunts in skeletal muscle. This evidence included 

failure to pass injected wax microspheres of 20, 30 or 40 µm either under basal 

conditions or during stimulation of vasodilator nerves (Piiper and Rosell 1961). Also, 

an extensive microscopic examination of skeletal muscle by Hammersen in 1970 did 

not find any evidence of arteriovenous shunts in muscle from a number of 

mammalian species including dogs, monkeys and rabbits (Hammersen 1970), even 

though another researcher claimed they existed in human skeletal muscle vascular 

beds (Saunders et al. 1957). 

1.2 Location of Non-Nutritive Capillaries 

Since published data still suggested the presence of a non-nutritive flow route for 

. blood flow within skeletal muscle, there must be a way of limiting nutrient exchange 

between these non-nutritive capillaries and the muscle fibres. However, at this point 

in time, the possibility that these shunt vessels were not located within the skeletal 

muscle, but away from the majority of the_ muscle capillaries (nutritive capillaries) 

had not been considered. It seems that Zweifach and Metz (Zweifach and Metz 1955) 

were the first to elude to "preferential capillary channels at the edge of the spino­

trapezius muscle of the rat". Later, the idea of a dual circulatory system within 

skeletal muscle was published (Barlow et al. 1959). In this model, one branch of the 

circulatory system was to provide nutrients and hormones to the muscle cells, and the 

second part of this circulation was to supply the septa and tendons of the muscle. 

Grant and Payling Wright lent further support to this notion a decade later, when they 

produced evidence of "non-nutritive" vessels located in connective tissue rather than 

intimately associated with muscle fibres (Grant and Wright 1970). Their experiments 

involved visualising the blood vessels of the tibial tendon of the biceps femoris 

muscle in the rat while it was under anaesthesia. They reported the existence of 

numerous capillary channels (within the tibial tendon region) which linked the arterial 
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blood flow to the venous, thereby bypassing the muscle fibres themselves (Grant and 

Wright 1970). These capillaries were dilated by acetylcholine and histamine but 

constricted by norepinephrine or epinephrine and did not respond to body temperature 

changes, and therefore were unlikely to be directly involved in body temperature 

regulation. 

Studies by Lindbom, Arfors and colleagues, published during the 1980's, focussed on 

the use of the rabbit tenuissimus muscle. This muscle is ideal for studying the 

microcirculation in skeletal muscle since it is easily accessed and transparent enough 

to visualise the vasculature within it (Borgstrom et al. 1988, Lindbom and Arfors 

1984, Lindbom and Arfors 1985). The authors reported that the transver~e arterioles 

supplied both the capillaries in the muscle tissue proper and in the adjacent 

connective tissue. A diagram showing the vascular arrangement of the rabbit 

tenuissimus muscle is shown in Figure 1-1. Thus, the muscle capillary network and 

the connective tissue ca~illaries next to them, appear to be functioning in parallel with 

each other. Using intravital microscopy to measure microvascular blood flow at two 

points (from the beginning of the transverse arteriole, and at a point immediately after 

the last terminal arteriole supplying the muscle capillaries but preceding the 

beginning of the connective tissue vessels) on a number of transverse arterioles, it 

became clear that it was possible to switch the proportion of flow going to each 

capillary network (muscle or connective tissue) by altering the physiological 

conditions. For example, changes in the environmental (muscle bathing solution) 

oxygen tension were found to alter the proportion of flow tb connective tissue. When 

the oxygen tension was low, 44% of the flow was moving through the connective 

tissue, whereas if the oxygen tension was increased, 95% of the, flow went through 

these vessels. However, since this muscle is not uniform in thickness and only 

around 67% of the transverse arterioles supplied the connective tissue, the authors 

concluded that a conservative estimate of connective tissue blood flow at rest would 

be approximately 10-20% of total muscle blood flow. 

3 



Muscle Connective 
tissue 

Figure 1.1 Vascular arrangement of the rabbit tenuissimus muscle. 

The transverse arteriole provides blood to both the capillaries in the muscle tissue 

proper and the adjacent connective tissue (modified from Borgstrom et al. 1988). 

Further work from these researchers using the rabbit tenuissimus muscle revealed that 

topically applied isoproterenol (13-adrenergic agent) led to redistribution of flow from 

muscle into the adjacent connective tissue (Borgstrom et al. 1988). This observation 

was pivotal, since it proved that blood flow between the two vascular routes was 

controlled by vasoactive agents (Clark et al. 1998). 



One question, which comes to mind at this point, is whether other skeletal muscles, 

which are cylindrical in nature, display the same vascular arrangement as the rabbit 

tenuissimus muscle. Myrhage and Eriksson have shown that the vascular anatomy of 

the tenuissimus muscle exists as a basic unit in hindleg musculature. In fact, this 

arrangement of the vasculature has been seen in several muscles of different species, 

including the rat (Eriksson and Myrhage 1972, Grant and Wright 1970), cat (Myrhage 

and Eriksson 1980), and monkey (Hammersen 1970). Furthermore, recent studies 

from our laboratory suggest that these connective tissue vessels may be nutritive for­

connective tissue and the associated fat adipocytes, even though they are non­

nutritive for the muscle itself (Clerk et al. 2000). This is possible since fat cells have 

significantly lower metabolic requirements than muscle but higher potential for 

hydrolysing circulating triglyceride. 

1.3 Vasoconstrictors are Capable of Controlling Muscle Metabolism 

Work from this group over the past decade using the perfused rat hindlimb technique 

has produced new insights into the control of skeletal muscle metabolism. In 

particular, the discovery that vasoactive agents are capable of altering skeletal muscle 

metabolism and performance by their effects upon the vasculature. Most of these 

substances are vasoconstrictors which act to increase the perfusion pressure in the 

perfused rat hindlimb and they have been classified into one of two types, depending 

on whether they generally increase (Type A) or decrease (Type B) muscle 

metabolism. Type A vasoconstrictors, for example: angiotensin II, low dose 

norepinephrine ( < 100 nM), vasopressin, low dose vanilloids and low frequency 

nerve stimulation (listed in Table 1-1), result in increased oxygen consumption 

(Colquhoun et al. 1988), glycerol (Clark et al. 1994), lactate (Hettiarachchi et al, 

1992), urate and uracil (Clark et al. 1990) release (see Table 1-2). In addition, some 

Type A vasoconstrictors such as angiotensin II, are capable of increasing aerobic 

tension development, contraction-mediated oxygen uptake and 2-deoxyglucose 

uptake by plantaris, gastrocnemius red and white muscles during electrical tetanic 

stimulation of the hindlimb (Rattigan et al. 1996). 
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Table 1-1 Classification of vasoconstrictors into Type A or Type B categories 

using their effects in the constant-flow perfused rat hindlimb (modified from 

Clark et al. 1995). 

Type A Vasconstrictors 

Low dose norepinephrine ( <100 nM) 

Angiotensin II 

Phenylephrine 

Vasopressin 

Capsaicin ( < 1.0 µM) 

Sympathetic nerve stimulation(< 4 Hz) 

Type B Vasoconstrictors 

High dose norepinephrine (> 100 nM) 

Serotonin 

Capsaicin (> 1.0 µM) 

Sympathetic nerve stimulation(> 4 Hz) 

Those vasoconstrictors, which are capable of producing a similar increase in 

perfusion pressure but with an accompanying decrease in metabolism, are referred to 

as Type B vasoconstrictors (examples listed in Table 1-1). These vasconstrictors 

result in decreased oxygen consumption (Dora et al. 1991), glycerol (Clark et al. 

1995), lactate (Hettiarachchi et al. 1992), urate and uracil efflux (Table 1-2) (Clark et 

al. 1995). Among those to be classified as Type B vasoconstrictors include serotonin 

(5-HT), high dose norepinephrine (> 100 nM), high frequency sciatic nerve 

stimulation and high dose vanilloids (Clark et al. 1995). Type B vasoconstrictors also 

decrease insulin-mediated glucose uptake (Rattigan et al. 1993, Rattigan et al. 1995), 

aerobic tension development and contraction-mediated oxygen uptake (Dora et al. 

1994). 
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Table 1-2 Summary of the effects of Type A and B vasoconstrictors in the 

constant-flow perfused rat hindlimb. 

Type A TypeB 
vasoconstriction vasoconstriction 

Perfusion pressure 1' 1' 
Oxygen uptake 1' 1' 
Lactate efflux 1' ~ 

Glycerol efflux 1' ~ 

Urate/uracil efflux 1' ~ 

Insulin mediated glucose uptake 1' ~ 

Aerobic muscle contraction 1' ~ 

Anaerobic muscle contraction 

Perfusate distribution volume 1' ~ 

FloW' & volume in tendon vessels ~ 1' 
Metabolism of infused 1-MX 1' ~ 

Since all , perfusions were performed under conditions of constant total flow, the 

effects observed are solely due to the vascular action of the vasoconstrictor to switch 

flow from one route into another, as opposed to direct actions on the skeletal muscle. 

To prove this point, the metabolic effects were shown to be reversed by infusion of a 

vasodilator to abolish the increased pressure (Colquhoun et al. 1990, Colquhoun et al. 

1988, Hettiarachchi et al. 1992, Rattigan et al. 1995) even though different 

vasoconstrictors used different mechanisms of action on the vasculature. To further 

emphasise that the metabolic action of the vasoconstrictors was simply due to their 

ability to vasoconstrict the vessels, isolated incubated muscles were used. These 

muscles rely on diffusion to obtain their nutrients and oxygen from the surroundings. 

Therefore, when Type A and B vasoconstrictors were added to their incubation 
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buffer, there was no effect on muscle insulin-mediated glucose uptake or contractility 

(Dora et al. 1994, Rattigan et al. 1993, Rattigan et al. 1995). 

Another important point to note is that Type A and B vasoconstrictors appear to act at 

different vascular receptor sites. In addition, the sites responsible for Type A and B 

vasoconstriction can be distinguished by their metabolic requirements for 

constriction. Type A vasoconstrictors rely on the presence of extracellular calcium 

and removal of this, or inhibition of oxidative metabolism (using cyanide, azide or 

anoxic perfusion) abolishes their action, whereas Type B vasoconstrictors are not 

affected by these conditions (Clark et al. 1994, Dora et al. 1992). 

In an attempt to explain the opposite metabolic effects of Type A and Type B 

vasoconstrictors, work focussed on looking at the skeletal muscle vasculature. One 

possible explanation for the differing metabolic effects seen, could be that flow 

switches between red and white muscles, skin, adipose tissue and bone, which all 

have differing metabolic requirements. However, studies using fluorescent 

microspheres to determine blood flow distribution between tissues, show that Type 

B-mediated inhibition of oxygen consumption did not correlate with any changes to 

perfusate flow distribution, either between different muscle fibre types or between 

muscle and bone, skin or adipose tissue (Rattigan et al. 1997a). It was concluded 

from this that the changes in vascular flow route seen with Type B vasoconstriction 
' 

are likely to be occurring within the muscle tissue itself leading to reduction in 

functional capillary surf ace area available for nutrient artd gas exchange (Rattigan et 

al. 1995). 

1.4 Possible Reasons for the Existence of Two Flow Routes in Skeletal Muscle 

1.4.1 Under Resting Conditions: 

One important area, is the consequences of, and possible reasons for, having a second 

(non-nutritive) flow route exist within skeletal muscle. In order to answer this 

question we must consider the possible functions of such a system. One possibility is 

that regulation of the proportion of total flow that passes through the nutritive and 

non-nutritive route could be involved in control of the body's basal metabolic rate 
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(Clark et al. 2000). So, basal energy consumption (as measured by oxygen uptake 

and lactate output) would increase as the proportion of total flow that is nutritive 

increases. Opposingly, basal metabolism would decrease as the proportion of 

nutritive flow decreases (Clark et al. 2000). As mentioned above, there are a number 

of vasomodulators, which act at specific sites along the vascular tree of muscle, 

thereby controlling the proportion of nutritive to non-nutritive flow within the muscle 

tissue. Under conditions of constant total flow, such as that seen in the constant-flow 

perfused rat hindlimb, vasoconstriction leading to reduced flow within the nutritive 

route would conversely result in a proportional increase in non-nutritive flow and vice 

versa. In a more physiological situation where constant pressure predominates, 

vasoconstriction of the non-nutritive route, for example, may not necessarily increase 

flow in the nutritive pathway, but it is likely that the proportion of nutritive flow will 

increase (Clark et al. 2000). In this situation, basal energy consumption will not 

increase whereas if vasoconstrictor activity is at sites leading to nutritive flow routes, 

then basal metabolism will decrease. Knowing this, it seems likely that when blood 

pressure is maintained constant in viva, basal metabolism can be controlled, to an 

extent, by vasoconstrictors controlling blood flow entry into the nutritive route. 

Further to this, vasodilators that control access to the nutritive flow route by opposing 

this vasoconstriction will play a major part in the basal metabolic rate for resting 

muscle. One possible reason for the existence of this non-nutritive route could be 

because it allows conservation of energy expenditure by the organism, thus conferring 

an evolutionary advantage over others of the same species. Yet to be examined is 

whether thyroid hormones and other agents capable of altering resting metabolism in 

muscle are able to do so by altering the proportion of nutritive to non-nutritive flow 

as well as by direct effects upon muscle metabolism (Clark et al. 2000). 

Another possible reason for having two vascular flow routes within muscle is fuel 

partitioning. As mentioned briefly earlier, the non-nutritive vessels appear to be 

supplying blood flow to connective tissue and the adipocytes associated with this area 

(Clerk et al. 2000). In a situation where a high proportion of nutritive flow 

predominates, hormones and nutrients are supplied to the muscle cells and the overall 

metabolism of the muscle is elevated. Conversely, when flow is largely non-nutritive 

in nature, nutrients are delivered mainly to the connective tissue and fat cells of the 

muscle. By supplying these cells with an abundance of nutrients, glucose, insulin and 
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triglycerides, the flow distribution is favouring the growth of fat cells and an overall 

lower basal metabolic rate. Furthermore, long term maintenance of this 

predominantly non-nutritive flow could lead to extensive fat cell deposition (Clerk et 

al. 2000). 

1.4.2 During exercise: 

On commencement of exercise, an increase in skeletal muscle blood flow occurs to 

supply adequate nutrients to the muscle while it is working, and to remove the waste 

products released. It is possible that the non-nutritive flow route provides a flow 

reserve, which when required can be used to amplify nutrient delivery and the exit of 

wastes (Clark et al. 1998). It is well accepted that during exercise, the blood flow to 

skeletal muscle increases under the influence of elevated sympathetic nervous system 

activity and elevated cardiac output by diversion of blood flow away from organs and 

tissues not immediately requiring a large amount of ~ow (e.g. gut), to the skeletal 

muscle (Segal 1992). This described amplification of blood flow would be over and 

above the increases in total flow seen during exercise. At this point in time the ratio 

of nutritive to non-nutritive flow in muscle at rest is unclear. From the data of 

Lindbom and Arf ors using the rabbit tenuissimus muscle model (Lindbom and Arf ors 

1984), the ratio of nutritive:non-nutritive flow could be as high as 30:70 at rest. 

However, a more conservative position was reached by these authors_ stating that the 

ratio was closer to 80:20. Other work using the hydrogen clearance method suggests 

that the nutritive:non-nutritive flow ratio is as low as 0.16 in muscle at rest (Harrison 

et al. 1990). 

Since a number of authors claim that not all capillaries are perfused under resting 

conditions (Harrison et al. 1990), it would be possible for an increase in the nutritive 

to non-nutritive flow ratio to occur during exercise, independent of changes in non­

nutritive flow, simply by increasing total flow (Clark et al. 1998). When exercise 

reaches a maximal state, nutritive flow is likely to be at its maximum capacity and 

non-nutritive flow would be minimal. A study by Harrison et al (1990) discusses the 

possibility that the non-nutritive flow route provides a flow reserve that can be 

recruited during exercise. As such, this flow reserve allows for amplification of 

nutrient (02, glucose etc) delivery and product (lactate, H+ etc) removal (Clark et al. 
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1998, Harrison et al. 1990). A schematic diagram of the possible amplification which 

can occur within the two vascular flow pathways during exercise is shown in Figure 

1-2. In Figure 1-2(i), we assume that the nutritive:non-nutritive flow ratio is 50:50 at 

rest. As exercise starts, the ratio changes as a result of three influences in particular. 

Firstly, sympathetic nervous system vasoconstrictor activity increases leading to a 

change in ratio from 50:50 to 95:5 resulting in a nutritive amplification of 1.9 (via a 

Type A response, Clark et al. 1995). Secondly, total blood flow to the muscle 

increases by at least 3-fold due to increased cardiac output during exercise giving a 

total amplification of 5.7 (3 x 1.9). Thirdly, metabolic vasodilators released at the 

onset and throughout the duration of the exercise also contribute to increased blood 

flow to muscle nutritive capillaries (Clark et al. 1998). If the true resting situation is 

more like that depicted in Figure l-2(ii), as predicted by Lindbom and Arfors (1984) 

and Harrison et al. (1990), as well as work from our laboratory in the perfused rat 

hindlimb, then the potential for amplification becomes even larger. 

High sympathetic vasoconstrictor activity (in the region of• 5 Hz), reminiscent of a 

Type B vasoconstrictor effect, is reported to increase non-nutritive flow, while 

decreasing the nutritive flow (Hall et al. 1997, Mulvany and Aalkjaer 1990). 

Furthermore, Type B vasoconstrictors decrease aerobic muscle contractility (Dora et 

al. 1994). Thus, Figure 1-2 includes the proposed scenario when high sympathetic 

vasoconstrictor activity is present in combination with exercise. The result of this 

situation would be decreased nutritive blood flow and a corresponding decline in 

performance (Clark et al. 1998). To compound this negative situation, metabolic 

vasodilators do not affect these vasoconstrictor sites (Dora et al. 1994). 

i 
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Figure 1-2 Possible method of amplifying nutrient delivery during exercise. 

S = shunt or non-nutritive route; M = muscle nutritive capillaries; N/NN = 
nutritive/non-nutritive flow ratio; Amplf = amplification of muscle nutritive flow 

relative to basal nutritive flow. The numbers represent flow rates in arbitrary units of 

measurement. The N/NN was set at 1.0 (i) or 0.43 (ii) based on data from Lindbom 

and Arfors (1984). * Note that the release of metabolic vasodilators during exercise 

is partly responsible for the increase in M from 95 to 285 (Figure reproduced from 

Clark et al. 1998) 
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Since blood flow to muscle remains elevated even after exercise has ceased, the 

proportion of nutritive to non-nutritive flow may play an important role in the 

recovery of muscle from exercise by allowing removal of waste products and supply 

of required nutrients to replenish the depleted energy stores. There have been a 

number of reports where post exercise metabolism is significantly elevated for 

extended periods (Bahr and Maehlum 1986, Bahr and Sejersted 1991, Borsheim et al. 

1994, Ullrich and Yeater 1997). This phenomenon has not been explained by others 

and may result from exercise induced increases in the proportion of nutritive:non­

nutritive flow, thus resetting the basal metabolic rate. 

1.5 Non-Nutritive Flow Route Measurement 

A number of research groups, including our own, have attempted to measure nutritive 

and non-nutritive flow. Friedman appears to be the first to attempt the measurement 

of non-nutritive flow and his method involved using indicator dilution patterns of 

infused marker substances to determine differing blood flow volumes (Friedman 

1966, Friedman 1968, Friedman 1971). Radioactively labelled albumin was used to 

determine total blood flow and 86Rb used to derive the volume of non-nutritional 

blood flow. This method relied on two assumptions. Firstly, that rubidium was 

unable to exchange with the tissue while passing through the non-nutdtive route, 

where extraction was low, and secondly, that capillary permeability to rubidium was 

unlimited. Friedman estimated from this work that the volume of non-nutritive blood 

flow in the whole leg of a dog was 75% of the total blood volume (Friedman 1966). 

One limitation to this work however, was that Friedman did not take into account the 

blood flow to the skin of the leg. A number of approaches by others have involved 

measurement of nutritive flow and total flow by studies determining the removal of 

intramuscularly injected radioactive markers, and then estimating that non-nutritive 

flow made up the difference (Clark et al. 2000). 

One of the main problems in the search for a method to measure non-nutritive flow is 

the fact that little evidence is available as to the characteristics of the non-nutritive 

vessels, thus making it difficult to devise methods capable of distinguishing flow to 

these vessels from total flow. Since studies by others have pointed toward the 

muscle-associated connective tissue and tendon vessels as the location for non-

13 



nutritive capillaries (Barlow et al. 1961, Grant and Wright 1970), Newman and others 

from this laboratory measured flow to connective tissue in the constant-flow perfused 

rat hindlimb (Newman et al. 1997). The perfused leg was positioned under the a 

surf ace fluorimeter probe with the tibial tendon vessels of the biceps femoris muscle 

exposed, so that the signal strength could be monitor~d during infused pulses of 

fluorescein isothiocyanate dextran. In addition to this work, in a separate experiment 

the leg was set up in the same way underneath the objective lens of an inverted 

microscope for photography of the vasculature when pulses of India ink were infused 

(Newman et al. 1997). Steady state measurements were taken during infusion with 

vehicle, noradrenaline (Type A vasoconstrictor) or serotonin (Type B 

vasoconstrictor). Under the influence of noradrenaline, perfusion pressure and 

oxygen uptake both increased as expected, but the fluorescence signal from the 

tendon vessels decreased. Furthermore, the diameter of the India ink filled vessels 

diminished indicating that the tendon vessels had indeed decreased in diameter. As 

expected, serotonin decreased oxygen uptake with an accompanying increase in 

perfusion pressure. The tendon fluorescence signal increased in association with the 

serotonin infusion and an increase in tendon vessel diameter was clearly seen using 

photomicroscopy (Newman et al. 1997). Examining a range of concentrations of NE, 

as well as serotonin, a reciprocal relationship (shown in Figure 1-3) between resting 

muscle metabolism (as represented by oxygen , uptake) as controlled by 

vasoconstrictors, and flow through muscle tendon vessels was apparent. This study 

supports earlier studies by Barlow et al. (1961) and Grant et al. (1970) a number of 

years ago. Another important point to take from this work is that tendon vessel flow 

does not stop completely, even when the nutritive flow is very high. 
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Figure 1-3 Relationship between muscle tendon vessel flow and oxygen uptake 

(as influenced by infusion of vasoconstrictors). 

All experiments were conducted using the constant-flow perfused rat hindlimb with 

the addition of varying concentrations of either noradrenaline (e), serotonin C•) or 

vehicle (0). Determination of tendon vessel flow was by measuring the fluorescence 

signal strength of infused fluorescein isothiocyanate-labelled dextran (Mr 150,000) 

over the tibial tendon region of the biceps femoris muscle. Figure was reproduced 

from Clark et al. (2000) and was constructed using data from Newman et al. (1997). 
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A recently published study by Clerk and others (2000) has provided important 

information about the non-nutritive flow route and perhaps a method of measuring 

relative flow in it (Clerk et al. 2000). Initially this study was focussed on assessing 

the effect of low nutritive flow (with corresponding high non-nutritive flow) on the 

clearance of triglyceride in the form of a chylomicron emulsion. This work was 

performed in the perfused rat hindlimb and results unexpectedly showed that 

clearance was increased in a predominantly non-nutritive flow situation. The findings 

suggest that lipoprotein lipase was more concentrated in the non-nutritive route than 

the nutritive route (Clerk et al. 2000). This begins to make sense in that it has been 

postulated (as mentioned previously in this introduction) that the non-nutritive flow 

route is involved in nourishing the fat cells located around the connective tissue of 

muscle, particularly in the area of the perimysium and epimysium (Myrhage and 

Eriksson 1980). 

The work discussed above provides further evidence that the vessels termed 'non­

nutriti ve' are located in the connective tissue closely assqciated with each muscle. 

Evidence suggests that these non-nutritive vessels are low resistance and high 

capacitance in character and thus capable of carrying a large amount of flow when the 

muscle is at rest. One point to note is that even though these connective tissue vessels 

may be larger than the nutrient supplying capillaries within the muscle, they are still 

incapable of allowing passage of 15 µm microspheres through them (Rattigan et al. 

1997a). 

1.6 Nutritive Flow Route Measurement 

A number of early methods to measure nutritive flow in muscle were aimed at 

determining the proportion of total flow that was nutritive. Some of these techniques 

included hydrogen washout (Nakamura et al. 1972), clearance of 133Xe from an 

intramuscular injection site (Hudlicka 1969, Kjellmer et al. 1967, Sejrsen and 

Tonnesen 1968), intravital microscopy as discussed earlier in this chapter .(Lindbom 

and Arfors 1984), and local hydrogen clearance with microflow assessment (Harrison 

et al. 1990). Results using most these methods indicated that non-nutritive flow is 

likely to predominate under resting conditions. Further to this, in some situations, 

total flow increased with either an increase or no change to nutritive flow (Hudlicka 
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1973). Freis et al. found that during exercise, both nutritive and non-nutritive flow 

increased (Freis and Schnapper 1958). Another study by Brod et al. showed that 

under conditions of emotional stress, total blood flow increased without any 

corresponding change in nutritive flow (Brod et al. 1966). 

1.7 1-Methylxanthine Metabolism and Measurement of Capillary Recruitment 

Work in this laboratory over the past few years has been focussed on the search for 

new methods to measure nutritive and non-nutritive flow in skeletal muscle. While 

these methods are initially being developed in rats, their future application in the 

clinical setting for assessment of microvascular function has been kept strongly in 

mind. 

As discussed in Section 1.3, Type A and B vasoconstrictors are capable of changing 

the capillary flow distribution within skeletal muscle through their action on the 

vasculature. When nutritive flow is decreased by the addition of a Type B 

vasoconstrictor, such as serotonin (5-HT); flow is redirected into predominantly non­

nutritive vessels where nutrient and gas exchange are limited ~ue to the nature of 

these vessels. Effectively the capillary exposure has diminished due to the blood 

flowing predominantly through non-nutritive vessels, rather than through nutritive 

capillaries where nutrient exchange is free to occur. Knowing this, the next step was 

to find a way of measuring the capillary flow, thereby assessing changes in nutritive 

flow under different physiological conditions. One method developed in this 

laboratory for the measurement of nutritive flow is 1-methylxanthine metabolism. 1 ~ 

Methylxanthine is a substrate for the capillary endothelial enzyme, xanthine oxidase 

(XO), which converts it to 1-methylurate. Xanthine oxidase is widely distributed 

within mammalian tissues, with high levels of expression in the liver and intestine 

(Parks and Granger 1986), as well as detectable activities in the heart, spleen, kidney 

and skeletal muscle (Jarasch et al. 1986). Immunohistochemical studies by Jarasch et 

al. (1986), and later by Hellsten et al. (Hellsten et al. 1997), 'demonstrated that 

xanthine oxidase is located primarily in the cytoplasm of capillary endothelial cells of 

a variety of tissues, i1wluding skeletal muscle (Jarasch et al. 1986). Since the 

endothelium of larger vessels of skeletal muscle contains only minor amounts of 
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xanthine oxidase it was reasoned that measurement ·of 1-MX metabolism by XO 

could provide a way of determining capillary blood flow within skeletal muscle. 

Initial work on the development of the 1-MX metabolism method was performed in 

the perfused rat hindlimb under conditions of constant total flow (Rattigan et al. 

1997a). The metabolism of 1-MX under control conditions was compared with the 

metabolism in the presence of serotonin, a Type B vasoconstrictor. 1-MX itself has 

no haemodynamic effect upon the perfused rat hindlimb and the sum of the perfusate 

levels of 1-MX and 1-MU was always quantitative (100 ± 5%) during the duration of 

the experiment (Rattigan et al. 1997a). To check whether the metabolism of 1-MX 

was solely due to XO, a specific inhibitor of the enzyme, allopurinol, was infused into 

the hindlimb (Emmerson et al. 1987). This inhibitor completely blocked the 

conversion of 1-MX to 1-MU as did xanthine, a competing substrate for XO 

(Rattigan et al. 1997a). This study showed that 1-MX metabolism decreased in the 

presence of 5-HT, a vasoconstrictor proposed to decrease muscle metabolism by 

diverting flow away from the nutritive capillaries of muscle into the larger, non­

nutritive capillaries, which are not involved in nutrient exchange with the muscle 

(Rattigan et al. 1997a). 

Direct action of 5-HT on XO itself was ruled out, since there was no change to 

muscle XO in vitro, whether 5-HT was present or not in isolated muscle incubations 

(Rattigan et al. 1997a). Kinetics studies of the purified enzyme form milk fat globule 

indicated the Km for 1-MX to be 7.6 µM. On this basis changes in the rate of 

metabolism of 1-MX were likely to be indicative of changes in enzyme exposure, 

possibly capillary recruitment (nutritive flow). 

One shortcoming of the 1-MX method is its inability to measure an increase in 

nutritive flow in the perfused rat hindlimb as a result of Type A vasoconstriction. 

Despite significant increases in oxygen consumption in the presence of a Type A 

vasconstrictor, no significant increase in 1-MX metabolism is observed. A possible 

reason for this is that during Type A vasoconstriction, the concomitant release of 

endogenous xanthines inhibits 1-MX metabolism (Rattigan et al. 1997a). Xanthine, a 
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purine released endogenously, is capable of inhibiting 1-MX conversion to 1-MU by 

competitively inhibiting XO. 

An obvious application of the 1-MX method was its use in vivo. Most of the recent 

evidence in the literature supports the idea that insulin is capable of increasing total 

blood flow to the muscle (Baron 1994). Furthermore, it has been proposed that 

insulin's action to increase total blood flow could partially account for insulin's ability 

to stimulate glucose uptake by increasing the delivery of glucose to the muscle cells 

(Baron and Brechtel 1993b). Rattigan et al. (1997) proposed that insulin not only 

increases total blood flow to the muscle, it also increases the capillary recruitment 

(nutritive flow) within the muscle itself (Rattigan et al. 1997b). To test this 

hypothesis, 1-MX was· infused into anaesthetised rats under control conditions, and in 

the presence of insulin under euglycaemic hyperinsulinaemic clamp conditions 

(Rattigan et al. 1997b). As with the perfused rat hindlimb, 1-MX alone had no 

vasoactive action and there were no changes in haemodynamic parameters such as 

arterial blood pressure, heart rate, femoral blood flow, or hindleg vascular resistance 

(Rattigan et al. 1997b). Results showed that 1-MX metabolism increased in the 

presence of insulin in vivo (Rattigan et al. 1997b), again suggestive of increased 

nutritive flow or capillary recruitment. Also, these changes could not be accounted 

for by the increase in total blood flow to the hindleg, since similar increases in total 

flow induced by epinephrine infusion, did not produce any change in 1-MX 

metabolism. Further to this, insulin itself did not directly affect the activity of XO 

when incubated with muscles in vitro (Rattigan et al. 1997b). 

A second study in vivo by Rattigan et al. (1999) focussed on the effect of infusion of 

a Type B vasoconstrictor, a-methyl serotonin on insulin responsiveness(Rattigan et 

al. 1999). a-Methyl serotonin was used since its actions are restricted to the 

vasculature and it has no direct effects on muscle metabolism itself (Rattigan et al. 

1999). In addition to the insulin resistance of glucose uptake, insulin was prevented 

from increasing 1-MX metabolism when a-methyl serotonin was present (Rattigan et 

al. 1999). This work demonstrates that vasoconstriction by such agents in muscle 

prevents normal insulin recruitment of capillary flow, resulting in impairment of 
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muscle glucose uptake and contributing to the insulin resistance observed in viva 

(Rattigan et al. 1999). 

Overall, results thus far, have suggested that changes in 1-MX metabolism both in 

perfused muscle studies and in viva are indicative of changes in capillary recruitment 

(albeit nutritive flow). Key questions that now emerge are: firstly, is the 1-MX 

technique robust enough to be more widely applicable and secondly, can another 

independent method be developed to provide concordance. 

1.8 Laser Doppler Flowmetry as a Tool for Measuring Relative Nutritive and 

Non-Nutritive Flow 

One limit to the 1-MX metabolism method is that it does not allow a quantitative 

assessment of nutritive flow particularly when there is a concomitant increase of 

endogenously released purines, and is limited to detecting only changes in an indirect 

manner. There is a need to develop a more direct measurement of nutritive and non­

nutritive flow that could also present confirmation of findings using the 1-MX 

method. Laser Doppler flowmetry could be useful for measuring these changes. A 

search of the literature shows that most of the work performed using laser Doppler 

flowmetry (LDF) was focussed on measuring skin microvascular flow under a variety 

·of different situations. These situations include altered blood glucose, blood insulin 

and C-peptide levels (Forst et al. 1998), infused insulin-like growth factor-1 (IGF-1) 

(Franzeck et al. 1995), peripheral nerve transection (Gonzalez-Darder and Segura­

Pastor 1994) and diabetes (Stansberry et al. 1997). Another application for which 

LDF has proven useful is assessment of tissue graft perfusion (Emi et al. 1996). Of 

interest to our group was the fact that a number of workers have used LDF in an 

attempt to assess different parameters of muscle blood flow. Gustafsson et al. (1994) 

investigated the characteristics of the microcirculatory blood flow within skeletal 

muscle during adenosine infusion by using LDF (Gustafsson et al. 1994), while 

Skjeldal et al. (1993) used LDF to evaluate skeletal muscle perfusion before and after 

acute hindlimb ischaemia in rats (Skjeldal et al. 1993). One particular publication by 

Kuznetsova et al. (1998) prompted this laboratory to focus on laser Doppler 

flowmetry as a possible method for measuring nutritive and non-nutritive flow within 

skeletal muscle (Kuznetsova et al. 1998). In that study, ganglionic-blocked 
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anaesthetised rats were used to examine the relationship between total flow (as 

measured by radioactive microsphere entrapment) and apparent muscle nutritive flow 

(measured by LDF) when a selection of vasoactive agents were administered 

(Kuznetsova et al. 1998). Upon infusion of phenylephrine or angiotensin II, a distinct 

increase in muscle vascular resistance was seen. Along with this, no change in 

muscle blood flow occurred, but a significant increase in LDF signal was observed 

(Kuznetsova et al. 1998). Similarly, isoproterenol, a vasodilator, produced a marked 

increase in muscle blood flow, while muscle vascular resistance and muscle nutritive 

flow (as measured by LDF) were significantly decreased. Despite other explanations 

which could account for these results, it appears likely that the two Type A 

vasconstrictors (phenylephrine and angiotensin II, see Table 1-1 above) have each 

produced effects in vivo involving a selective increase in muscle nutritive flow which 

are consistent with previous data found using the perfus~d rat hindlimb. Furthermore, 

the vasodilator, isoproterenol appears to have increased flow to the non-nutritive 

route at the expense of flow to the nutritive pathway (Clark et al. 2000). Previous 

data (Colquhoun et al. 1990) indicates that Type A vasoconstriction is opposed by 

isoproterenol in the constant-flow perfused rat hindlimb. This is thought to occur by 

relaxing constricted sites in the vasculature, which reduce flow to non-nutritive 

routes. As indicated by Rattigan et al. (Rattigan et al. 1997a), microspheres do not 

appear to be suitable for distinguishing between nutritive and non-nutritive routes in 

muscle. In addition, serotonin, and other agents capable of inhibiting oxygen uptake 

and metabolism generally, do not alter the distribution of 15 µm fluorescent 

microspheres (Rattigan et al. 1997a). 

Based on the evidence available from work in this laboratory over the last few years, 

it would seem likely that Kuznetsova et al. (1998) were in fact measuring nutritive 

flow in muscle using LDF. My intent was thus to explore this notion and to assess 

the application of LDF for use as a method to measure nutritive and perhaps non­

nutritive flow in skeletal muscle. 
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1.9 Aims of the Present Study 

The present study had two main aims: 

1. to further explore the use of 1-methylxanthine as a method for measuring 

changes in nutritive flow in skeletal muscle under normal physiological 

situations (e.g. exercise), pathophysiological conditions (tumour necrosis 

factor-a administration) and as a result of sciatic nerve severance). 

2. to investigate the use of laser Doppler flowmetry as method of measuring 

nutritive and non-nutritive flow in hindlimb perfusion and in viva. 
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CHAPTER2 

Materials and Methods 

2.1 Rat Hindlimb Perfusion Studies 

2:1.1 Animals 

Male hooded Wistar rats (180-205 g) were raised on a commercial diet (Gibsons, 

Hobart) containing 21.4% protein, 4.6% lipid, 68% carbohydrate, and 6% crude fibre 

with added vitamins and minerals together with water ad libitum. Rats were housed 

at a constant temperature of 21 ± 1°C in a 12h/12h light-dark cycle. All procedures 

adopted and experiments undertaken were approved by the University of Tasmania 

Ethics Committee in accordance with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes (1990). 

2.1.2 General Surgical Procedures 

The surgical and perfusion procedures were essentially as described by others 

(Ruderman et al. 1971) with modifications by Colquhoun et al. (Colquhoun et al. 

1988). Briefly, animals were anaesthetized via an intra-peritoneal injection of 

pentobarbital sodium (60 mg.kg-1 body weight) and the tail and tarsus of the perfused 

legs tied off firmly. An incision was made along the midline of the abdomen and the 

epigastric vessels and the iliolumbar vessels all ligated. Following this the testicles 

were ligated and removed. Ligatures were then placed around the duodenum and the 

rectum, and the gut was excised. For those experiments where only one hindleg was 

perfused ·(LDF, sciatic nerve stimulation) flow was directed exclusively to either the 

right or left limb and prevented from entering the contralateral leg by ligation of the 

left common iliac artery and vein. Prior to cannulation of the abdominal aorta and 

vena cava, heparin (1000 I.U.kg-1 body weight) was injected into the vena cava. A 

further' ligature was placed around the abdomen (at the level of the L3-L4 vertebrae 

region) to prevent access of the perfusate to the muscles of the back. 
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The rat was then connected to the perfusion apparatus and killed with a lethal intra­

cardiac injection of sodium pentobarbital. A pictorial view of the surgical ligations is 

shown in Figure 2-1. 

Vena Cava 
Aorta 
Renal Vessels 
Superior mesenteric artery 
First ligature pair 
Second ligature pair 

Iliolumbar vessels 
Internal spermatic vessels 
Ureter 
Common iliac vessels 
Inferior mesenteric vessels 
Superficial epigastric 
External iliac vessels 
Hypogastric vessels 
Seminal vesicles 
Bladder 
Foot 
Tail 

Figure 2-1 Pictorial view of perfused hindlimb surgical ligations. 

Modified from Dora (Dora 1993) (see above for further details). 

2.1.3 Peifusion Media 

2.1.3.l Erythrocyte-Free Hindlimb Perfusions 

The perfusion medium used for the erythrocyte-free hindlimb perfusions was a 

modified Krebs-Henseleit bicarbonate buffer containing 4% bovine serum albumin 
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(BSA, fraction V; Boehringer Mannheim, Australia), 8.3 mM glucose, 2.54 mM 

CaClz, 118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2P04, 1.2 mM MgS04, and 25 mM 

NaHC03• Once made, the perfusion buffer was filtered using a 0.45 µm pore filter 

under pressure to ensure that it was free of any particulate matter. The buffer was 

maintained at a pH of 7.4 by saturation with 95% 02-5% C02 

2.1.3.2 Red Blood Cell Peifusions 

The perfusion medium consisted of a modified Krebs-Henseleit buffer as described 

above, containing 5% BSA. This was combined with washed bovine erythrocytes to 

give a final haematocrit of 38%. Heparin (0.2 ml.L-1
) and pyruvate (0.1 g.L-1

) were 

added to blood mixture. The fresh bovine erythrocytes were washed three times 

using saline (0.9% NaCl) and filtered through four layers of pre-washed cheesecloth. 

They were then washed twice more in saline and then stored in Krebs-Benseleit 

bicarbonate buffer gassed with 95% 0 2-5% C02 at 4°C until use. Erythrocytes were 

never more than 3 days old when used. As with previous similar studies ((Rattigan et 

al. 1996), this perfusion medium resulted in minimal oedema. 

2.1.4 General Peifusion Procedure 

Perfusions conducted on sciatic nerve severed rats were performed at 32°C in a 

temperature-controlled cabinet with erythrocyte-free medium (as described above) 

delivered at a constant flow rate of 13 ml.min-1 (for two hindlimb perfusions, this is 

equivalent to 0.43 ml.min-1.g-1 muscle which is higher than physiological flow rates 

in viva) (James et al. 1986). The buffer reservoir was kept on ice and continuously 

stirred, whilst being gassed with 95% 0 2-5% C02. Perfusate was then pumped at a 

constant flow rate by a peristaltic pump (Masterflex, Cole-Palmer, USA) to a heat 

exchanger coil where the temperature was brought to 32°C prior to passing through a 

silastic lung, also gassed with 95% 0 2-5% C02. Venous oxygen tension was 

continuously monitored using a thermostatically controlled~(32°C) in-line Clark-type 

oxygen electrode (0.5 ml capacity). Arterial perfusion pressure was monitored 

continuously via a pressure transducer located proximally to the aorta. Recording of 

P02 and pressure was performed continually by either a dual pen chart recorder 

(Omniscribe series 05000) or an IBM compatible PC computer with WINDAQ data 

acquisition software (DATAQ Instruments). All agent infusions were performed 
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using a peristaltic pump (LKB Microperpex). A typical perfusion apparatus setup is 

shown in Figure 2-2. 

TEMPERATtTRE-CONTROLLED CABINET 
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Figure 2-2 Perfusion apparatus for the constant-flow perfusions. 

Reproduced from Dora (Dora 1993). 

2.1.4.1 Calculation of Oxygen Uptake. 

The oxygen electrode was calibrated before and after each perfusion using 100% 

oxygen and air. Arterial P02 (Pa02) was determined by joining up the arterial and 

venous cannulae to bypass the perfused tissue, but with the same length of 

polyethylene tubing so that any loss to the atmosphere was constant. The oxygen 

uptake (V02) of the perfused tissue was calculated from the difference between Pa02 

and venous P02 (Pv02), the flow rate, and the perfused muscle mass, whilst taking 

into account the Bunsen coefficient at 32°C according to the following equation: 
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1.3499 x (Pa02-Pv02) x flow rate (ml/min) x 60 (ml/h) 

1000 ml x perfused tissue (g) 

where 1.3499 (µmol.L- 1.mmHg-l) is the Bunsen coefficient for oxygen solubility in 

human plasma at 32°C ((Christoforides et al. 1969) (Bunsen coefficient = 1.256 at 

37°C, 1.508 at 25°C) and perfused muscle mass is assumed to be 1/lih of body mass 

in 180-200 g rats ((Ruderman et al. 1971). 

2.1.5 Blood Peifusion Procedure 

The perfusion medium was equilibrated with 95% air-5% C02) at 4°C to enable 

normal saturation of the erythrocytes with oxygen. Gassed perfusate then entered a 

temperature -controlled cabinet (37°C) at a constant flow rate. The arterial perfusate 

was temperature equilibrated (37°C) by passage through an in-line heat exchanger 

and water-jacketed arterial line. To ensure a constant arterial oxygen concentration, 

the perfusate was further equilibrated with 95% air-5% C02 by passage through a 

silastic tube oxygenator before entering the hindlimb. 

2.1.5.1 Determination of Oxygen Consumption in Blood Perfusions 

The total oxygen content of perfusate samples was determined in the sciatic nerve 

stimulation experiments (Chapter 3) using the TasCon oxygen content analyser 

(manufactured by the Physiology Department, University of Tasmania). For the LDF 

experiments (Chapter 4) oxygen content was determined using an in-line A-Vox · 

oxygen analyser (A-Vox Systems Inc, San Antonio, Texas). Oxygen consumption 

was calculated as described in the respective chapters. 
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2.2 In Vivo Studies 

2.2.1 Animals 

Male hooded Wistar rats or male Wistar rats were cared for as above. 

2.2.2 General Surgical Procedures 

Rats were anaesthetized using pentobarbital sodium (50 mg.kg-1 body weight) and 

had polyethylene cannulas (PE-50, Intramedic®) surgically implanted into the carotid 

artery, for arterial sampling and measurement of blood pressure (pressure transducer 

Transpac IV, Abbott Critical Systems) and into both jugular veins continuous 

infusion of anaesthetic and other intravenous infusions. A tracheotomy tube was 

inserted, and the animal allowed to spontaneously breathe room air throughout the 

course of the experiment. Small incisions (1.5 cm) were made in the skin overlaying 

the ·femoral vessels of each leg, and the femoral artery was separated from the 

femoral vein and saphenous nerve. The epigastric vessels were then ligated, and an 

ultrasonic flow probe (Transonic Systems, VB series 0.5 mm) was positioned around 

the femoral artery of the right leg just distal to the rectus abdominus muscle. The 

cavity in the leg surrounding the probe was filled with lubricating jelly (H-R, 

Mohawk Medical Supply, Utica, NY) to provide acoustic coupling to the probe. The 

probe was then connected to the flow meter (Model T106 ultrasonic volume flow 

meter, Transonic Systems). This was in turn interfaced with an IBM compatible PC 

computer which acquired the data (at a sampling frequency of 100 Hz) for femoral 

blood flow, heart rate and blood pressure using WINDAQ data acquisition software 

(DATAQ Instruments). The surgical procedure generally lasted approximately 30 

min and then the animals were maintained under anaesthesia for the duration of the 

experiment using a continual infusion of pentobarbital sodium (0.6 mg.min-1.kg-1
). 

The femoral vein of the left leg was used for venous sampling, using an insulin 

syringe with an attached 29G needle (Becton Dickinson). A duplicate venous sample 

(V) was taken only on completion of the experiment to prevent alteration of the blood 

flow from the hindlimb due to sampling, and to minimize the effects of blood loss. 

The total blood volume withdrawn from the animals before the final arterial and 

venous samples did not exceed 1.5 ml and was easily compensated by the volume of 
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fluid infused. The body temperature was maintained using a water-jacketed platform 

and a heating lamp positioned above the rat. 

2.2.3 Euglycaemic Hyperinsulinaemic Clamp 

Once the surgery was completed, a 60 min equilibration period was allowed so that 

leg blood flow and blood pressure could become stable and constant. Rats were then 

allocated into experimental groups, control or euglycaemic hyp~rinsulinaemic clamp. 

All infusion volumes in control groups were matched to the volumes of insulin (10 

mU.min-1.kg-1
) (Humulin R, Eli Lilly, Indianapolis, IN) and glucose infused in the 

clamp animals. Glucose (30% w/v solution) was infused to maintain blood glucose 

levels at or -above basal level (approximately 5 mM) whilst infusing insulin for a 

period of 120 min (unless otherwise stated). 

2.2.4 1-Methylxanthine Infusion during In Vivo Experiments 

Since 1-methylxanthine (1-MX, Sigma Aldrich Inc) clearance was very rapid, it was 

necessary to partially inhibit the activity of xanthine oxidase (Rattigan et al. 1997b ). 

To do this, an injection of a specific xanthine oxidase inhibitor, allopurinol 

(Emmerson et al. 1987) (10 µmole.kg-1
) was administered as a bolus dose 5 minutes 

prior to commencing the 1-MX infusion (0.4 mg.min-1.kg-1
, dissolved in saline). This 

' 
allowed constant arterial concentrations of 1-MX to be maintained throughout the 

experiment. 

2.2.5 Glucose Assay 

A glucose analyser (Yellow Springs Instruments, Model 2300 Stat plus) was used to 

determine whole blood glucose and plasma glucose (by the glucose oxidase method) 

during and at the conclusion of the insulin clamp. A sample volume of 25 µl was 

required for each determination. 

2.2.6 Insulin ELIZA Assay 

Human insulin levels at the end of the euglycaemic insulin clamp were determined 

from arterial plasma samples by ELIZA assay (Dako Diagnostics Ltd, UK), using 

human insulin standards. 
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2.2.7 TNF ELIZA Assay 

Arterial plasma TNF levels at the end of each experiment were determined by ELIZA 

assay (OptEIA TM Rat TNF-a Set, Pharmingen, USA) using recombinant rat TNF 

standards. 

2.2.8 Data Analysis 

All data is expressed as means ± SE. Mean femoral blood flow, mean heart rate and 

mean arterial blood pressure were calculated from 5 second subsamples of the data, 

representing approximately 500 flow and pressure measurements every 15 min. 

Vascular resistance in the hindleg was calculated as mean arterial blood pressure in 

millimetres of mercury divided by femoral blood flow in millilitres per minute and 

expressed as resistance units (RUs). Glucose uptake in the hindlimb :was calculated 

from A-V glucose difference and multiplied by femoral blood flow and expressed as 

µmol.min-1
• The 1-MX disappearance was calculated from A-V plasma 1-MX 

difference and multiplied by femoral blood flow (corrected for the volume. accessible 

to 1-MX, 0.871, determined from plasma concentrations obtained after additions of 

standard 1-MX to whole blood) and expressed as nmoles.min-1
• 

2.3 Analytical Methods 

2.3.1 1-Methylxanthine Analysis by HPLC 

2.3.1.1 Treatment of Perfusate Samples 

Perfusate samples (1.0 ml) from hindlimb·perfusions were mixed with 0.2 ml of 2 M 

perchloric acid (PCA) to precipitate proteins and left on ice for 5 min. If the samples 

were collected from a blood perfusion, the sample was immediately centrifuged for 

15 sec at 8000 x g to remove the red blood cells before mixing .with PCA. PCA 

treated samples were then centrifuged at 8000 x g for 10 min and the supernatant 

neutralised using 2.5 M K2C03. Samples were then stored at -20°C till assayed using 

HPLC. 
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2.3.1.2 Treatment of In Vivo Blood Samples 

Duplicate arterial (A) and venous (V) samples (300 µl) were taken at the end of the 

experiment and placed on ice. These blood samples were immediately centrifuged 

and 100 µl of plasma mixed with 20 µl of 2 M PCA. The PCA treated samples were 

then stored at -20°C until assayed for 1-MX. When required, samples were thawed 

on ice, centrifuged for 10 min and the supernatant used to determine 1-MX, 

allopurinol and oxypurinol concentrations as described previously ((Rattigan et al. 

1997b, Rattigan et al. 1999). 

2.3.1.3 HPLC Analysis of Purines 

Analysis of purines was by reverse-phase High Performance Liquid Chromatography 

(HPLC) essentially as described previously ((Rattigan et al. 1997a, Wynants et al. 

1987). 

2.3.2 2-Deoxyglucose Uptake 

2.3.2.l Hindlimb Perfusions 

The hindlimb was allowed to equilibrate to a steady state of perfusion pressure and 

Pv02• Insulin (0.4 U.mr1 in saline) (Actrapid Insulin, Novo Nordisk) was infused at 

a rate of 1 in 200 for 25 min into the perfusion line immediately prior to a small 

continuously mixed bubble trap to give a final concentration of 2 mU:mr1
. In 

addition, 2-deoxy-D-[1-3H]glucose (2DG) (10 µCi.mr1; 15 Ci.mmor1
; NEN Research 

Products) and [U-14C]sucrose (3.14µCi.ml- 1
; 552 mCi.mmor1; NEN Research 

Products) in 2 mM sucrose/0.9% NaCl were infused at 35-40 µl.min. 

Following the conclusion of the perfusion, the soleus, extensor digitorum longus 

(EDL), plantaris, gastrocnemius red and gastrocnemius white and tibialis anterior 

were dissected apart, weighed and then freeze dried for approximately 48 hours. The 

dry samples were then weighed and transferred into larger vials. Next, each sample 

was rehydrated using 150 µl of distilled water and 1 ml of Soluene-350 tissue 

solubiliser (0.5 M Quartemary ammonium hydroxide in Toluene, Packard USA) was 

added to each vial. The samples were then placed in a 50°C water bath to facilitate 

their solubilisation. Once dissolv~d, 100 µl of glacial acetic acid was added to each 

31 



vial of solubilised muscle to neutralise the basic Soluene. Scintillant (15 ml; 

Biodegradable Counting Scintillant-BCA, Amersham USA) was added to each vial 

and radioactive counts (disintegrations per minute, dpm) were determined using a 

scintillation counter (Beckman LS3801, USA). Perfusate samples (200 µl) were also 

counted after adding 3 ml of scintiallant to ~ach vial. 

Insulin-mediated 2DG uptake, as represented by R'g was calculated using the 

following equation:,, 

2 x [3H dpm in muscle-(14C dpm in muscle x 3H dpm.!14C dpm. ratio in perfusate)] 

dry wt muscle (g)x (3H dpm. per ml perfusate /µmoles glucose per ml perfusate) 

2.3.2.2 In Vivo Experiments 

At 45 min prior to the completion of the experiment, a 50-µCi bolus of 2-deoxy-D­

[2,6-3H]glucose (2DG; specific activity= 44.0 Ci.mmor1
, Amersham Life Science) in 

saline was administered. Plasma samples (20 µl) were collected at 15, 30 and 45 min 

to determine plasma clearance of the radioactivity. At the conclusion of the 

experiment, the soleus and plantaris muscles were removed, clamp frozen in liquid 

nitrogen and stored at -80°C until assayed for 2DG uptake. 

The frozen soleus and plantaris muscles were ground under liquid nitrogen and 

homogenised using an Ultra Turrax™. Free and phosphorylated 2DG were separated 

by ion exchange chromatography using an anion exchange resin (AG1-X8) (James et 

al. 1985, Kraegen et al. 1985). Scintillant (15 ml) was added to each radioactive 

sample and radioactivity determined as above. From this measurement and a 

knowledge of plasma glucose and the time course of plasma 2DG disappearance, R'g, 

which reflects glucose uptake into the muscle, was calculated as previously described 

in detail by others (James et al. 1985, Kraegen et al. 1985). 
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2.3.3 Measurement of Total Flow by Microsphere Entrapment 

2.3.3.1 Hindlimb Perfusion 

Microsphere entrapment can be used to determine total flow to the hindleg during the 

hindlimb perfusion technique. This technique was used both in the sciatic nerve 

severance work and in the sciatic nerve stimulated rats to ascertain the distribution of 

microspheres in the hindlimb. 

These experiments were usually performed as a separate study, but under the same 

conditions, in order to compare experimental (sciatic nerve severed and sciatic nerve 

stimulated rats) and control animals (sham-operated or non-sciatic nerve stimulated 

rats). 

Ten minutes before the end of the respective experiment, a bolus dose of 400,000 

(200,000 in the case of the sciatic nerve stimulation work since it only involves a 

single hindlimb) yellow-green 15 µM FluoSpheres® (Fluorescent Microsphere 

Resource Centre, University of Washington, Seattle) was injected immediately prior 

to the arterial cannula. This injection was performed over a period of 10 seconds to 

minimise any interruptions to the normal perfusate flow and pressure. During this 

final 10 min of the experiment, the venous perfusate was collected in order to 

ascertain the number of microspheres which passed through the hindlimb. 

2.3.3.2 Microsphere Distribution Assay 

Following the conclusion of the experiment, all hindlimb muscles and remaining 

muscle and tissue below the abdominal ligation were dissected free from the rat 

(where only a single hindlimb was perfused, tissues were removed from the 

contralateral unperfused leg to confirm that flow had not moved past the ligatures). 

All tissues were briefly blotted and weighed, transferred to 50 ml centrifuge tubes, 

and digested using the method of Van Oosterhout et al ((Van Oosterhout et al. 1995) 

with modifications as described in Rattigan et al. (Rattigan et al: 1997a). Each 

muscle was digested by heating at 58-60°C for approximately 3 h in 5-10 volumes of 

2 M ethanolic KOH (2 M KOH in 95% ethanol) containing 0.5% Tween-80 (Sigma). 

Once dissolved, the homogenate was centrifuged for 20 min at 2000 x g (IEC 

centrifuge) to collect the microspheres at the base of the tube. The pellet was then 
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washed in 10 ml of 0.25% Tween-80 solution, followed by distilled water alone. 

After the final wash, as much of the supernatant as possible was removed without 

disturbing the pellet. The microsphere pellet in each tube was then resuspended in 5 

ml of Cellosolve® (2-ethoxyethyl. acetate, Aldrich Chemical Co Inc) and left 

overnight at 4 °C to allow complete dissolution of the microspheres, releasing the 

lipophilic fluorescent dye. The samples were vortexed, centrifuged (2000 x g, 20 

min) and the supernatant carefully removed for fluorescence determination. The 

fluorescence intensity of the organic phase was measured against a solvent blank 

using an Aminco-Bowman Spectrophotofluorimeter with excitation and emission 

settings at 495 nm and 510 nm, respectively. In order to calculate the microsphere 

numbers per sample, the fluorescence reading was referenced to a standard curve, 

which was produced by diluting a known amount of microspheres in the solvent. 
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CHAPTER3 

The Effect of Exercise from Sciatic Nerve Stimulation on 

1-MX Metabolism in the Perfused Rat Hindlimb. 

3.1 Introduction 

As described in the first chapter, there are two methods currently being developed in 

this laboratory for measurement of nutritive flow within skeletal muscle, laser 

Doppler flowmetry and 1-MX metabolism. The 1-MX meth0d involves infusion of 

an endogenous substrate for capillary endothelial xanthine oxidase, 1-MX, and 

measurement of its metabolism by HPLC. 

It is generally accepted that there is a marked increase in functional capillary surface 

area as a result of capillary recruitment within skeletal muscle during exercise (Segal 

1992). In the isolated perfused rat hindlimb, sciatic nerve stimulation leads to 

vasodilation with increased V02, particularly if the hindlimb has pre-existing vascular 

tone caused by the presence of a vasoconstrictor (Colquhoun et al. 1990). Any 

change in capillary flow (recruitment) should be reflected by changes in 1-MX 

metabolism. Thus, the aim of this chapter was to investigate the effect of exercise (in 

the form of sciatic nerve stimulation), which is known to increase nutritive flow in the 

constant-flow perfused rat hindlimb, on 1-MX metabolism. A positive outcome lends 

further support to the use of 1-MX as ah indicator of changes in capillary surface 

area. 

3.2 Methods 

3.2.1 Sciatic Nerve Exposure for Stimulation 

Following an equilibration period of 30 min, the skin was removed from the inner and 

outer thigh of the right hindlimb to expose the femoral vein and sciatic nerve in the 

flank. The sciatic nerve was cut to allow positioning of the distal cut end in a suction 
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electrode. The knee was secured at the level of the tibiopatellar ligament, and the 

Achilles tendon was attached to a Harvard Apparatus isometric transducer, allowing 

transmission of tension development from the calf muscle groups. Voltage across the 

electrodes was monitored on a cathode ray oscilloscope (Telequipment DM64) and 

tension development was recorded during contraction on a Y okagawa 3056 chart 

recorder. 

3.2.2 Hindlimb Perfusions 

Specific details for hindlimb perfusions are given in Section 2.1. Perfusion pressure 

was monitored. Following 30 min equilibration at 4 ml.min-1
, the perfusate flow rate 

was increased to 15.0 ± 0.1 ml.min-1 (equivalent to 0.95 ± 0.01 ml.min-1.g-1 muscle) 

for the remainder of the experiment (see Figure 3-1 for experimental protocol). At 

the same time, 5 mM 1-MX was infused into the perfusion line (at 1 in 200 of the 

perfusate flow rate) proximal to a small stirred bubble trap and the arterial cannula to 

give a final concentration of 25 µM. 

Prior to contraction, the resting length of the muscle was adjusted to attain maximal 

active tension on stimulation. Sciatic nerve stimulation was then commenced using 

200 ms trains of 0.1 ms pulses at 100 Hz every 2 seconds at 6 V to attain full fibre 

recruitment (Rattigan et al. 1996) for the last 15 min of the perfusion. 

Arterial samples were taken at the beginning (5 min) and on completion of the 

experiment (55 min) for analysis of lactate and purines. Venous samples were also 

collected at 5, 15, 25, 35, 45, 50 and 55 min from the vena cava for determination of 

lactate and purines. At 55 min, an additional venous sample was obtained from the 

femoral vein of the working hindlimb while still being stimulated. This was done 

using a syringe fitted with a 26 G needle. Duplicates of all samples were taken in 

airtight glass syringes for analysis of oxygen content. 
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Figure 3-1 Experimental protocol for sciatic nerve stimulation experiments. 

Flow rate in the first 30 min (equilibration period) was 4 ml.min-1
. From time= 0 

onwards, the flow rate was 15 ml.min-1
. 

3.2.3 Measurement and Calculation of Oxygen Uptake 

The total oxygen content of perfusate samples was determined using a galvanic cell 

oxygen analyser (TasCon oxygen content analyser manufactured by the Physiology 

Department, University of Tasmania). The rates of oxygen uptake were calculated 

from arterio-venous difference and flow rate, and were expressed per gram of 

perfused muscle, as estimated previously (Dora et al. 1992). 

3.2.4 Muscle Incubations 

To assess whether contraction directly affected xanthine oxidase activity, soleus (30 ± 

1.5 mg) and extensor digitorum longus (31.7 ± 0.7 mg) muscles were dissected frcmi 

10 rats weighing 65-70 g and incubated at 37°C in Krebs-B:enseleit buffer containing 

5 mM HEPES, pH 7.4,_ 5 mM pyruvate, 35 mM mannitol and 1.27 mM CaC12. 

Animals no greater than this size were- essential so that muscles did not exceed the 

size where diffusion of oxygen became limiting (Bonen et al. 1994). After pre­

incubation for 30 min, 5 soleus and 5 EDL muscles were subject to field stimulation 
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using the identical conditions as for the hindlimb calf muscle group above. 

Stimulation was continued for 15 min. As controls, 5 soleus and 5 EDL muscles 

were incubated without stimulation for a total of 45 min. Muscles were stored at -

80°C until assays could be conducted. 

3.2.5 Xanthine Oxidase Activity 

Xanthine oxidase activity was measured at 293 nm and 37°C in 50 mM phosphate 

buffer, pH 7.4, containing 0.1 mM EDTA essentially as described by others (Wajner 

and Harkness 1989)s. Commercially available (Sigma Chemical· Co.) buttermilk 

xanthine oxidase (2.0 units.mg-1
) was used to construct direct linear plots for the 

determination on Km and Vmax for xanthine (XAN). and 1-MX. 

3.2.6 Statistical Analysis 

Unpaired Student's t-test was used to test the hypothesis that there was no difference 

between sets of data. For the time courses, one way repeated measures analysis of 

variance (ANOV A) was performed and when a significant difference was found, 

multiple comparisons (Dunnett's method) were made by comparing with the time 

point just prior to exercise (35 min). Significant differences were recognised at P < 

0.05. 

3.3 Results 

3.3.1 Changes to Total Blood Flow 

Figure 3-2 shows the effect of contraction of the calf muscle group on the distribution 

of flow to various muscles of the calf and thigh of the perfused leg. As a result of 

exercise there was a significant increase in flow to several muscles of the group, 

including soleus, plantaris, and the gastrocpemius red and white. In addition, total 

flow to the calf was increased as a ~esult of exercise from 5.20 ± 0.78% (n = 5+ to 

12.11±1.38% (n = 7), representing a 2.3-fold increase (P < 0.01). This was balanced 

by a decrease in the flow to the thigh muscles: 24.01±1.79% (n = 5) without exercise 

and 18.01 ± 2.75% (n = 7) with exercise. This decrease was not significantly 

different for the whole thigh, but there was a significant decrease in the vastus and 

quadriceps/adductor muscle groups with exercise. 
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Figure 3-2 Effect of exercise on the distribution of fluorescent microspheres to the calf and thigh muscles in the perfused rat hindlimb. 

Conditions of rest (open bars) or during contraction of the calf muscle group (filled bars) are shown. Microspheres were recovered from the 

soleus (Sol), plantaris (Plan), gastrocnemius red (GR), gastrocnemius white (GW), tibialis (Tib ), extensor digitorum longus (EDL), remaining 

calf muscles (RC), vastus group (Vas), adductor/quadriceps group (A/Q) and remaining thigh muscles (RT). Values are mean± SE (n = 5 for 

rest and n = 7 for contracting). * P < 0.05, ** P < 0.01, compared to resting blood flow. 



Flow to all the muscle and other tissues of the hindlimb were also calculated and 

these are shown in Table 3-1. There was no significant difference in any of the 

tissues studied between rest and exercise. As total flow to the hindlimb was 15 

ml.min-1
, muscle received an average total flow of 0.49 ml.min-1.g-1 and this did not 

change as a result of exercise. 

Table 3-1. Distribution of fluorescent microspheres in the perfused rat hindlimb 

to various tissues as percentage of total recovered. 

Tissue Rest Exercise 

Total muscle 48.5 ±1.9 44.9 ± 1.5 

Bone 27.5 ± 2.7 30.8 ± 1.3 

WAT 3.3 ±0.6 2.4 ± 0.4 

Skin 7.1±0.9 4.8 ± 1.0 

Viscera 10.7 ± 1.2 11.8±1.3 

Remainder 0.7 ± 0.2 0.7 ±0.2 

Contralateral leg 1.7 ± 0.6 4.0 ± 1.3 

Perfusate 0.6 ± 0.1 0.7 ± 0.1 

A bolus of 200 OOO yellow-green 15µm FluoSheresValues® was injected at rest or 

during exercise. Perfusate and various tissues were sampled for microsphere content. 

Values are expressed as a percentage of the total number injected and are means ± 

SE; n = 5 rest and n = 7 for exercise. 

3.3.2 Perfusion Pressure, Oxygen Uptake and Lactate Release 

Perfusion pressure was monitored continuously throughout the experiment, however, 

discrete points were taken to correspond with samples collected for analysis of 

oxygen, lactate and purine content. Figure 3-3 shows data for perfusion pressure, 
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V02 and lactate release before and during exercise. Statistical analysis by one-way 

repeated measures ANOV A (with comparison to the 35 min time point using 

Dunnett's method) showed that exercise.causes a significant rise in V02 and lactate 

release, but not pressure. 

3.3.3 1-MX Metabolism 

Figure 3-4 shows the time course for the metabolism of 1-MX by the perfused 

hindlimb. Fifteen minutes was required for equilibration of the 1-MX metabolism 

during exercise. After this time the recovery of 1-MX + 1-MU was quantitative 

(-100% ). Contraction of the calf muscle group (representing -15% of the total 

hindlimb muscles) had no significant effect on the conversion of 1-MX. Indeed, 

using the same statistical test as for the previous figure, exercise caused no change in 

any of the three parameters. 

3.3.4 Metabolism of the Working Muscles 

Figure 3-5 shows data for oxygen uptake, lactate release and 1-MX metabolism 

particular to the working muscles in which flow had increased as a result of sciatic 

nerve-mediated contraction. Data for resting hindlimb and non-working muscles of 

the stimulated hindlimb are included for comparison. The data for non-working 

muscles during exercise were calculated by the difference between the total rate of 

release (in µmol.h- 1
) from the working hindlimb and working muscles and then 

relating this back to the mass of the non-working muscles. In this study, the average 

mass for the total hindlimb muscles and working muscles were 17.14 and 2.63g, 

respectively. Hence, the average non-working muscle mass was 14.51g. V02 and 

lactate release both showed an increase across the whole hindlimb dunng exercise, 

whereas the increased conversion rate of 1-MX to 1-MU was only observed in the 

working muscle when the perfusate was sampled from the vein draining the working 

muscle and the increase in flow to those muscles was taken into account. These 

metabolic changes were only occurring in the working muscles as there was no 

difference between the data for the resting hindlimb and the non-working muscles. 

Also samples taken from the femoral vein of non-stimulated hindlimbs showed the 

same conversion of 1-MX to 1-MU as resting hindlimb. 
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Figure 3-3 Effect of exercise on perfusion pressure (a), oxygen uptake (b) and 

lactate release (c) in the perfused rat hindlimb. 

Period of contraction of the calf muscle group is indicated by the filled bar. Values 

are mean± SE (n = 6). Comparisons were made to the 35 min (pre-exercise) time 

point using Dunnett's method after one-way repeated measures analysis of variance. 

*P<0.05. 
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Figure 3-4 Effect of exercise on the ratio of 1-MU:l-l\1X (a), recovery of 1-MU + 

l-l\1X (b) and conversion rate of 1-MX to 1-MU (c) in the perfused rat hindlimb. 

Period of contraction of the calf muscle group is indicated by the filled bar. Values 

are mean ± SE (n = 6). Comparisons were made to the 35 min time point using 

Dunnett's method after one-way repeated measures analysis of variance. * P < 0.05. 
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Figure 3-5 Effect of exercise on metabolism in the perfused rat hindlimb. 

Values were determined from Figures 3-3 and 3-4 at 35 min and 55 min as well as the 

femoral vein samples taken at 55 min and regional blood flow estimates from Figure 

3-2 as detailed in the text. Values were calculated from 'arterio-venous differences 

across the whole hindlimb during rest conditions (Resting hindlimb ), across the 

whole hindlimb during contraction of the calf muscle group (Working hindlimb ), 

across the calf muscle group as it was contracting (Working muscles) and across the 

non-working muscles perfused muscles of the same leg (Non-working muscles). 

Values are mean ± SE (n = 6). ** P < 0.01, *** P < 0.001, compared to resting 

hindlimb. 
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The concentration of purines in the venous sample from the working hindlimb, the 

resting hindlimb and from the working muscles, is shown in Table 3-2. At rest, 

adenosine and inosine levels were below the detectable level of 0.05 µM. During 

exercise, inosine release from the whole hindlimb increased into the detectable range 

and samples from the working muscle showed increased concentrations of inosine 

and the other measurable purines. In addition, adenosine levels became detectable. 

Table 3-2. Venous concentration (µM) of purines in the perfused rat hindlimb. 

Purine Resting hindlimb Working hindlimb Working muscle 

Adenosine N.D. N.D. 1.02±0.23 

Inosine N.D. 0.61±0.10 2.25±0.41 

Hypoxanthine 0.50±0.17 0.76±0.13 2.63±0.6** 

Xanthine 0.29±0.10 0.50±0.07 1.78±0.51 * 

Uric acid 5.63±0.91 7.55±0.58 14.71±1.14*** 

For the resting and working hindlimb values, venous samples were taken from the 

vena cava at times 35 and 55 min respectively. For the working muscle values (calf 

muscle group), venous samples were taken from the femoral vein after time 55 min. 

Values are means ± SE; n = 6, except for adenosine (n = 4 ). Working hindlimb and 

working muscle values were compared to resting hindlimb values by unpaired 

Student's t-test * P < 0.05, ** P < 0.01, *** P < 0.001. N.D. not detectable. 

3.3.5 Xanthine Oxidase Activity 

Values for xanthine oxidase activity in unstimulated soleus and EDL muscles were 

0.032 ± 0.04 and 0.040 ± 0.002 units.g(wet wtr1
, respectively. Stimulation for 15 

min did not significantly alter these values (soleus: 0.039 ± 0.009 and EDL: 0.039 ± 
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0.007 units.g(wet wtr1
• For 20 milliunits of the purified enzyme, the V max for 

xanthine (VmaxXAN) and 1-MX (Vmaxl-MX) were 17.8 and 35.0 nmol.min-1 and the Km 

for xanthine (Km XAN) and 1-MX (KmI-MX) were 2.6 and 7.6 µM respectively (direct 

linear plots; data not shown). 

3.4 Discussion 

This study appears to be the first report where the metabolism of an exogenously 

applied non-physiological substrate is increased irt association . with muscle 

contraction. Perhaps most importantly, since the recovery of both substrate and 

product is quantitative, it is clear that the substrate does not become involved in the 

energy metabolism of the muscle itself and thus the increased conversion reflects a 

change external to the muscle. As xanthine oxidase is predominantly located in the 

endothelial cells that constitute the capillaries (Jarasch et al. 1986), it seems likely the 

increased conversion of 1-MX to 1-MU results from increased exposure to the 

enzyme, in tum, resulting from the increase in functional capillary surface area owing 

to increased muscle contractile activity (Segal 1992). Thus, the present findings 

further support the use of 1-MX for assessing the change in capillary recruitment in 

muscle and the general principle that capillary endothelial enzymes may be targeted 

for such studies. 

1-MX metabolism has been previously shown in this laboratory to parallel V02 in the 

perfused hindlimb. In this study, 1-MX metabolism was decreased by the 

vasoconstrictor, serotonin (Rattigan et al. 1997a). Serotonin is thought to decrease 

·functional capillary surface area and thus nutritive (capillary) flow in muscle as part 

of its action to inhibit oxygen uptake, lactate output and metabolism generally (Clark 

et al. 1995, Dora et al. 1994). In that study (Rattigan et al. 1997a), total hindlimb 

flow was constant and there was no change in flow to individual muscles, nor to the 

distribution of flow between muscle and non-muscle tissue. As such, this suggests 

that both nutritive and non-nutritive vascular routes are within each muscle where 

non-nutritive vessels may involve closely associated connective tissue (Borgstrom et 

al. 1988, Myrhage and Eriksson 1980). 
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Whereas there are other possibilities to explain the presently observed increase in 1-

MX conversion that may involve processes other than increased exposure to xanthine 

oxidase, these seem unlikely. Thus, an increase in 1-MX conversion to 1-MU could 

result from an increase in total flow to the calf muscle if the concentration gradient 

from artery to vein was lowered. Equally if blood flow velocity was able to influence 

the conversion of 1-MX to 1-MU a change in total flow rate to the resting hindlimb 

should 'alter the rate of conversion. To check these possibilities, control experiments 

were conducted where total flow was increased from 4 to 15 ml.min-1 and blood 

samples were taken before and after the flow change to analyse arteriovenous 
I 

differences in 1-MX and 1-MU. Results showed that 1-MX metabolism was not 

affected by total flow change. 

A second possibility is that exercise directly activated xanthine oxidase leading to an 

increase in 1-MX conversion. However, the activity of xanthine oxidase was not -

affected by prior contraction of incubated soleus and EDL muscles. Th~refore it is 

unlikely that activation of the enzyme has occurred in the perfused muscle during 

exercise. The data therefore support the notion that the conversion of 1-MX is a valid 

indicator of exposure to xanthine oxidase .and hence an indicator of increased 

functional capillary surf ace area. 

It should be noted that the perfused rat hindlimb preparation has no significant 

functional sympathetic nerve activity input to regulate flow during exercise. In 

addition, the isolated perfused rat hindlimb is considered to have low vascular tone, at 

least at rest (Folkow et al. 1974). However, the observation that exercise increased 

flow to working muscles and increased the metabolism of 1-MX suggests that either 

some basal tone controlling access to muscle capillaries is present or the intrinsic 

resistance is higher for the nutritive capillary network than the non-nutritive 

functional shunts. Clearly, the resistance owing to either process is overcome by 

locally released vasodilators (Ballard et al. 1987, Joyner and Dietz 1997, Lash 1996), 

and the vascular pumping action (Lash 1996, Laughlin 1987, Tschakovsky et al. 

1996) of working muscle. For a system of constant total flow this would mean that 

flow increases in working muscle at the expense of flow from non-working regions, 

particularly as the perfusion pressure remained constant (Figure 3-3). Decreased flow 

to non-working muscles during exercise has been reported to occur in viva (Asanoi et 
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al. 1992, Maeda et al. 1997, Musch and Poole 1996), although not necessarily in all 

non-working muscles (Ahlborg et al. 1975, Maeda et al. 1997). The mechanism for 

this is not known, but may involve direct vasoconstriction mediated by the 

endothelium (Jarasch et al. 1986, Maeda et al. 1997) or sympathetic and neural 

factors (Jacobsen et al. 1994). 

We have recently postulated that the non-nutritive flow present in resting muscle may 

provide an opportunity for flow amplification to nutritive capillaries of muscle during 

exercise (see Chapter 1) (Clark et al. 1998). Thus if non-nutritive flow was 80% at 

rest and nutritive flow 20%, switching the entire flow to nutritive by increased 

sympathetic outflow, would lead to a 5-fold amplification without any change in total 

blood flow to muscle. Further increases in total flow owing to increased cardiac 

output would further add to the amplification. 

Table 3-2 shows that adenosine, a putative endogenous dilator from working muscle 

(~allard et al. 1987) was elevated in perfusate sampled from the femoral vein. As 

adenosine is rapidly converted by the perfused hindlimb to inosine, hypoxanthine, 

xanthine and uric acid (Richards 1993), it is possible that the large r~lease of purine 

breakdowfl products found in the perfusate from working muscle have originated 

from locally released adenosine. If this is the case then the increase in endogenous 

purine breakdown products in perfusate of working muscle origin are likely to have 

had an inhibitory influence on the metabolism of 1-MX. Previous studies (Rattigan et 

al. 1997a) have shown that xanthine (XAN) inhibited the conversion of 1-MX to 1-

MU by the perfused rat hindlimb. The potential inhibition of 1-MX conversion by 

endogenously released XAN can be calculated using the determined values for Km 

and Vmax at 37°C for XAN and 1-MX in the following equation for competitive 

inhibition (Comish-Bowden 1979): 

V max l-MX[l-MX] 

48 



where [1-MX] and [XAN] are the concentrations of 1-MX and xanthine, respectively. 

If the values for [XAN] (0.29 µM) and [l-MX] (25 µM) during resting conditions are 

used in this equation, then the rate of conversion is 26.2 nmol.min-1
• This rate falls to · 

23.1 nmol.min-1 for working muscle conditions ([XAN] = 1.78 µM), a decrease of 

12%. Thus, a change in XAN concentration from 0.29 to 1.78 µM depresses the 

conversion of 1-MX to 1-MU and the observed value for 1-MU:l-MX of 0.8 would 

correspond to 1.05 had the concentrations of XAN remained unchanged. These 

calculations are conservative, as values for XAN are those of the venous perfusate 

concentrations. The actual concentrations of XAN exposed to the enzyme could be 

higher as most of the XAN has been converted to uric acid by the time the blood was 

sampled at the venous outflow (Table 3-2). Also, both xanthine and hypoxanthine are 

naturally-occurring substrates for xanthine oxidase and would inhibit exogenously 

added 1-MX metabolism in a competitive manner. Indeed in a previous study, we 

have shown that constant infusion of 16 µM xanthine inhibited the conversion of 23 

µM 1-MX by 16%. Therefore, the increase in 1-MX conversion of 2.5-fold may be 

an underestimate of the actual extent of capillary recruitment. Application of more 

direct methods such as laser Doppler flowmetry or contrast enhanced ultrasound with 

micro-bubbles may reveal the extent of this underestimation. 

Finally, it is important to note that the stimulation protocol used in this study results 

in an early fatiguing of Type II fibres leaving a plateau of sustained aerobic tension. 

Thus, the pattern of fibre recruitment differs from that occurring wlth voluntary 

activity with muscles rich in Type I and IIA fibres initially recruited at low levels of 

activity. Consequently, venous blood samples taken from the working muscles 

cannot discriminate between effects occurring in fibres of different types, between 

fibres that fatigue at different rates, or indeed fibres that have different dependencies 

on purine metabolism. Thus, the values for 1-MX conversion reflect the end result of 

all processes. 

In summary, 1-MX metabolism was found to increase in association with increased 

V02 and lactate production in working muscle. This, together with previous findings 

where 1-MX metabolism decreased in association with decreased V02 owing to 
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vascular shunting by serotonin (Rattigan et al. 1997a), suggests that 1-MX may be a 

useful indicator of changes in functional capillary surface area when changes in V02 

are difficult to determine or result from non-vascular events (e.g. uncoupling of 

oxidative phosphorylation). 
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CHAPTER4 

The Effect of NE and SHT on Laser Doppler Flowmetry in 

Blood Perfusion 

4.1 Introduction 

As described in previous chapters, research from our laboratory using the constant­

flow perfused rat hindlimb has shown that skeletal muscle metabolism may be 

controlled by vasomodulators that act to alter flow distribution within muscle (Clark 

et al. 1995). These vasomodulators can be classified into two main groups, Type A 

and Type B vasoconstrictors. Type A vasoconstrictors act to increase metabolism 

(e.g. oxygen uptake and lactate release and contractile performance) by redirecting 

flow from a non-nutritive route to nutritive capillaries within muscle (Newman et al. 

1996). Conversely, Type B vasoconstrictors, have the ~pposite effect on muscle 

metabolism. These findings suggest that vasoconstrictors are capable of controlling 

skeletal muscle metabolism by altering the proportion of nutritive to non-nutritive 

flow without altering total flow to the muscle. Nutritive vessels are considered to be 

those in direct contact with skeletal muscle cells (Hudlicka 1973). However, the 

nature of the non-nutritive route is unclear and there is only limited evidence 

available as to their anatomical nature. There appears to be two possibilities. One 

theory (as discussed in Chapter 1) is that the non-n.utritive vessels are located in 

connective tissue and septa closely associated with muscle tissue. This is supported 

by recent data' showing that vessel flow measured in the tibia! tendon of the biceps 

femoris was inversely related to resting muscle metabolism (Newman et al. 1997). 

The other possibility is the non-nutritive route may be made up of relatively short 

capillaries which are located throughout the muscle, but due to the nature of their 

capillary walls only allow minimal nutrient exchange. 

So far the only method we have available for measuring changes in nutritive flow 

within muscle under different conditions is 1-MX metabolism. Due to the limitations 

with the 1-MX method, we decided to develop a non-invasive method for 

measurement of nutritive and non-nutritive flow within skeletal muscle. Laser 
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Doppler flowmetry is thought to measure microvascular perfusion but whether it can 

selectively detect nutritive flow in the presence of non-nutritive flow in a constant 

total flow preparation is unknown thus far. Thus, in this study we have compared 

muscle LDF signal changes, using macro surface and implantable micro probes 

positioned either on or within the hindlimb skeletal muscle. The responses to 

changes in total flow and to vasoconstrictors that are known to alter hindlimb skeletal 

muscle by altering the proportion of nutritive to non-nutritive flow were 

characterised. 

4.2 Methods 

4.2.1 Hindlimb Perfusions 

Hindlimb perfusions were conducted essentially as described previously in Chapter 2 

using hooded Wistar rats (205 + 5 g body weight). Modifications included two heat 

exchangers (as opposed to one), and a small magnetically stirred bubble trap (0.5 ml 

capacity, with an injection port) immediately prior to the arterial cannula. Perfusion 

medium contained washed bovine red blood cells (38% haematocrit) and is gassed 

with 95% air, 5% C02• The arterial perfusate temperature was maintained at 37°C. 

In addition the rat was placed on a water-jacketed platform heated to 37°C, so that the 

hindlimb temperature could be maintained at 35-37°C, and the entire apparatus 

including the rat was contained within a heat controlled cabinet at 37°C. Only one 

hindlimb was perfused. All perfusions were conducted at a constant flow rate of 4.0 

± 0.1 ml.min-1 (or 0.27 ± 0.01 ml.min-1.g-1 muscle) when either norepinephrine (NE) 

or serotonin (5-Hf) was injected. However, to hasten complete removal of preceding 

doses, flow was momentarily increased to 8 ml.min-1 for 2 min. This also improved 

the reproducibility of subsequent identical doses. 

4.2.2 Laser Doppler Flowmetry 

4.2.2.1 Surface Measurements 

Previous studies using fluorescent microspheres for determining regional flow 

(Rattigan et al. 1997a) have suggested that the muscles of the thigh and hip, of which 

the biceps femoris constitutes approximately 17% (Delp and Duan 1996), receive 
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flow at approximately 76% of the total hindlimb rate (or 0.20 ± 0.02 ml.min-1.g-1
). A 

small hole (approximately 4 mm diameter) was made in the middle of the biceps 

femoris corresponding to the point "bf" in Figure 4-1 and the exposed area covered by 

thin plastic wrap (e.g. Saran Wrap®) to prevent drying. The hindlimb was clamped 

by the foot so that the laser Doppler flow probe (Perimed PF 2, operating wavelength 

of 632 nm) could be positioned over the centre of the hole in the skin. For the 

measurement of red cell flux, the probe was placed vertically above and 

approximately 1 mm from the surface of the muscle. The probe comprised three 

fibres, each 800 µm diameter with one for illumination and two for detection. 

Settings on the detector unit were 4 kHz (gain setting 10) with a time constant of 3 

sec, unless otherwise indicated. The signal (0-5 volts) was continuously recorded on 

an IBM compatible PC using a DI-190 I/O module and WINDAQ software. The data 

are expressed as volts. For each perfusion "biological zero" was determined by 

switching off the perfusion pump for 5 min and waiting until venous perfusate flow 

ceased, with the LDF probe still in position. 
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Figure 4-1 General areas chosen for positioning of LDF probe either on or 

impaled into muscles of the perfused rat hindlimb. 

The macro LDF probe (3 x 0.8 mm) was always positioned over the biceps femoris 

(bf) through a hole in the skin. The micro optic fibre probe (0.26 mm diameter) was 

inserted through a small incision in the skin in the approximate positions shown on 

either the tibialis (tib), vastus (vs), biceps femoris (bf), or gastrocnemius (gs) 

muscles. 

4.2.2.2 Within Muscle Measurements 

A Moor Instruments Lab Server and Lab Satellite fitted with two PlOM master 

probes was used with two PlOs TCG 260 µm slave probes each fitted with TCG fixed 
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fibres. The operational wavelength of the laser light source was 780 nm. The fibre 

consisted of a single core of optic fibre (200 µm diameter) surrounded by a protective 

flexible outer sheath. The fibre was found to be sufficiently robust as to be able to be 

inserted into the muscle unaided by prior needle puncture. Measurements were made 

using the PO setting (moorLAB V36 embedded software). This setting scales the raw 

LD flux output by a factor of 10-fold and was used to improve the quality of the 

recorded signal. Subsequently, LD values were scaled to express the results in 

perfusion units (PU) by a factor from measurements made on the manufacturer's 

calibration fluid for each probe. Small incisions were made into the skin covering the 

mid-region of any two of the tibialis, vastus, gastrocnemius or biceps femoris (Figure 

4-1) of the perfused l~g and the two probes inserted. The procedure for insertion of 

each probe involved initial puncturing of the epimysium and muscle body to a depth 

of approximately 2 mm with the probe at right angles to the muscle surface, followed 

by rotation of the probe through 90° to be parallel to the longitudinal direction of the 

muscle fibres. The probe was then inserted a further 6 mm and taped in place. This 

procedure avoided wounding and only 4 of the 97 sites were considered corrupted 

due to bleeding. Indeed, as pointed out by Oberg (Oberg 1990), by using very thin 

optical fibres (50-200 µm), the trauma can be minimal with little disturbance to blood 

flow. After completion of the perfusion the final placemeqts were confirmed by 

surgical examination. In some animals the probes were repositioned in other muscles 

up to two additional times. This allowed assessment of as many as six different sites 

per hindlimb. The LDF signal (0-5 volts) was continuously recorded on an IBM 

compatible PC using a DI-190 I/O module and WINDAQ® software. The data are 

expressed as perfusion units (PU), to be consistent with the manufacturer's 

recommendations and to be distinguished from those of the surf ace probe which 

differed in size and operating wavelength. Biological zero was not subtracted from 

any of the data shown. 

4.2.3 Vasoconstrictor Infusions 

To determine the linearity of LDF response, perfusion flow rate was varied from 4.0 

through 6.0 to 8.0 ml.min-1 and LDF signal recorded. With flow set at 4 ml.min-1, 

administration of norepinephrine (NE, 0 - 0.3 nmol), angiotensin II (0.3 nmol), 

vasopressin (0.03 nmol), or serotonin (5-HT, 0 - 3 nmol) was made as a 12.5 or 25 µl 
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bolus (over 2 sec) into the stirred injection port. In some experiments constant 

infusions of NE (85 nM) or 5-HT (850 nM) were made by infusing into the injection 

port a concentrated stock solution of each agent at 1.7% of the perfusate flow rate. 

4.2.4 Measurement of Oxygen Uptake 

Perfusate entering and leaving the hindlimb was passed through an in-line A-Vox 

Analyser (A-Vox Systems Inc, San Antonio, Texas) and the signal continuously 

recorded using WINDAQ software. V02 was then calculated using the following 

equation: 

V02 (µmol.h- 1.g-1
) = A-V 02 (ml 0 2/lOOml) x flow rate (ml/min) x 321.43 

rat weight (g) 

4.2.5 Microscopy 

In some experiments, the skinned leg of an anaesthetised rat was positioned on the 

stage of an inverted microscope (Nikon Diaphot) so that the vessels under the probe 

could be confirmed as muscle capillary network, devoid of any major vessels. 

4.2.6 Statistical Analysis 

Data were analysed using Sigma Stat™ (Jandel Scientific). For comparison of basal 

signal strength for nutritive, non-nutritive, and mixed sites, unpaired analysis 

(Student's t-test) was used. For' effects of vasoconstrictors and flow, paired analysis 

(Student's t-test) was used. 

4.3 Results 

4.3.1 Surface Measurements 

Since the macro laser Doppler flow probe was designed primarily for measurement of 
I 

human skin blood flow, it was necessary to establish the suitability of the method for 

perfused rat hindlimb studies. Others have shown that capillary red cell velocity in 

resting muscle does not exceed 1 mm.s-1 for a blood flow of 0.05 ml.min-1.g-1 (Tyml 
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1987), thus at a flow rate of 0.27 ml.min-1.g-1 as used in the present perfusions, cell 

velocities should be less than the critical limit of 8 mm.s-1
• Secondly, the flux signal 

remained constant when the probe to tissue distance was varied from 0 to 1.5 mm and 

thus slight movements of the perfused hindlimb in relation to the probe would not be 

expected to affect the signal. Thirdly, positioning of the probe was important and it 

was placed in the same location in the centre of the anterior end of the biceps femoris 

in each experiment. Without exception this site always behaved the same, displaying 

increased signal response to NE and decreased signal response to 5-HT injection. 

"Other sites responded differently. Thus, from a total of 28 sites involving 11 in the 

centre of the biceps femoris (all responding as above), 8 on the tibialis anterior and 9 

on the tibialis tendon of the biceps femoris, 20 responded as above, 3 responded in an 

opposite manner (NE inhibitory and 5-HT stimulatory) and 5 appeared as 

intermediate with no response to either NE or 5-HT. Fourthly, the LDF signal was 

linear for flow rates between 1 and 10 ml.min-1 (r = 0.833; P < 0.001, n = 59). At 

flow rates above this, the critical red cell velocity of 8 mm.s-1 is likely to have been 

exceeded. 

A time course from a typical experiment is shpwn in Figure 4-2 where the LDF signal 

of the surf ace of the biceps femoris muscle vessels was measured as well as perfusion 

pressure and oxygen uptake (V02) for the entire hindlimb during successive 

injections (25 µl) of 300 pmol NE and 3 nmol 5-HT. NE (300 pmol), equivalent to a 

peak concentration of 15-50 nM (estimated from injection and perfusion flow rates), 

increased LDF signal in association with increased perfusion pressure and a 

stimulation of oxygen uptake. Values for LDF and oxygen uptake returned to basal 

approximately 3 min following NE injection. 5-HT (3 nmol), equivalent to a peak 

concentration of 150-500 nM, decreased LDF signal in association with increased 

perfusion pressure and an inhibition of hindlimb oxygen uptake. 

Figure 4-3 shows a positive correlation (r = 0.909 and P < 0.001) for change in 

oxygen uptake as a function of change in LDF signal from a number of experiments-­

where the dose of injected norepinephrine ranged from 50 to 300 pmol, and of 

serotonin from 1 to 3 nmol. 
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Figure 4-2 Typical trace recorded using macro surface probe. 

Figure shows LDF signal from muscle capillaries at the centre of the anterior end of 

the biceps femoris (A), afterial perfusion pressure (B) and oxygen uptake (C) 

following injection of 300 pmol NE and 3 nmol 5-HT into the constant-flow 

perfused rat hindlimb. Biological zero has not been subtracted. 
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Figure 4-3 Relationship between peak change in oxygen uptake and LDF 

signal from the surface macro probe for the <:onstant-flow perfused 

rat hindlimb. 

Symbols: (•) NE, (0) vehicle, (•) 5-HT. 

4:3.2 Implantable Probes 

1.5 

The macro probe (total diameter including housing was 6 mm) could not be impaled 

into the muscle without serious tissue disruption and as indicated above, provided the 

probe was positioned over muscle, only NE-positive sites were observed. Thus to 

investigate signal changes at higher spatial resolution micro implanable probes were 

used. Figure 4-4 shows the properties of LDF signal from randomly positioned micro 

probes placed in either the tibialis, vastus, biceps femoris, or gastrocnemius muscles. 

The majority of sites responded positively to norepinephrine (Figure 4-4A) with an 
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increase in LDF signal of greater than 5 % of basal, but some clearly responded 

negatively with a decrease in LDF signal (decreasing by more than 5% of basal). In 

addition, there was a group that did not respond (i.e. less than ± 5% of basal signal). 

Figure 4-4B shows the responses of these sites to serotonin. Again, three types of 

response were discemable with the majority responding negatively to serotonin and 

two other groups where the response was positive (signal increasing) or showing no 

change. Invariably the sites that responded positively to norepinephrine were those 

that responded negatively to serotonin. These sites have been designated as "NE­

positive". The other two types of site are designated "NE-negative" or "mixed" 

depending upon whether the LDF signal decreased in response to NE and increased in 

response to 5-HT, or showed less than 5% change to either vasoconstrictor. It is 

important to note that although norepinephrine and serotonin each cause a pressure 

rise (vasoconstriction), they have opposite effects. on metabolism, reflected by a 

stimulation or inhibition of oxygen uptake, respectively. 

Characteristic traces of NE-positive, NE-negative sites and mixed are shown in 

Figure 4-5. NE positive sites showed-LDF signal changes in parallel to oxygen 

uptake, i.e. increases and decreases with NE and 5-HT, respectively. NE-negative 

showed LDF signal changes opposite to oxygen uptake. For the total of 97 sites 

examined 56.7% were found to be NE-positive, 16.5% NE-negative and 24.7% 

mixed. Only 2.1 % were corrupted due t<,J bleeding. Table 4-1 also shows that basal 

LDF signal strength was gr~ater at NE-negative sites than either NE-positive or 

mixed sites and all three sites responded significantly to a doubling of flow rate from 

4 to 8 ml.min-1. Although not shown by the data of Table 4-1, a break down of the 

data revealed there were differences between the muscle types with basal signal from 

NE-positive sites in tibialis (24.7 ± 2.2; n = 28) similar to gastrocnemius (21.7 ± 4.5; 

n = 12) but greater than either biceps femoris (12.9 ± 2.3, P < 0.01) or vastus (12.4 ± 

2.8 PU; n = 9, P < 0.02). 
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Figure 4-4 Distribution of LDF signal changes from implanted micro probes. 

Values obtained after NE (A) or 5-HT (B) were expressed as a percentage of the 

basal signal and grouped in intervals of 10% starting from+ 5% and - 5%. 
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Table 4-1 Properties of LDF signal from randomly positioned muscle micro 

probes 

Site identity Fraction of Basal Signal 

NE-positive 

NE-negative 

Mixed 

Total, 

% 

56.7 

16.5 

24.7 

Corrupted 2.1 

at4ml/min, 

PU 

20.7 ± 1.8 

33.2 ± 5.4# 

22.3 ± 2.7 

Range, 

PU 

Signal at 

8 ml/min, 

PU 

n 

3.4 - 61.9 35.8 ± 3.4* 47 

10.4 - 87.4 53.7 ± 10.5* 16 

5.0 - 60.l 35.7 ± 6.1 * 22 

Sites were classified as NE-positive, NE-negative or mixed depending on responses 

to the vasoconstrictors NE and 5-HT as shown in Figure. 4-4. Those deemed as 

"corrupted" resulted from bleeding at the point of probe insertion. A total of 97 sites 

were assessed from 35 hindlimb perfusions involving sites on each of the tibialis, 

vastus, biceps femoris, and gastrocnemius muscles. Response to flow was assessed 

when flow was increased from 4 to 8 ml.min-1
• Otherwise, flow was maintained 

constant at 4ml.min-1
• Values are expressed in perfusion units and are means ± SE; *, 

P< 0.05 relative to basal. #, P< 0.05 relative to 'NE-positive'. Biological zero has not 

been subtracted. 
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Figure 4-5 LDF tracings for NE-positive (A), NE-negative (B) and mixed (C) 

sites from impaled micro probes. 

Bolus injections of 3 nmol of NE or 5-HT were made as shown during perfusion of 

the rat hindlimb at constant total flow and sites classified as described in the text. 

Perfusion pressure as well as arterio-venous oxygen difference for the whole 

hindlimb were also recorded. Tracings are representative of the groups whose 'n' 

values are given in Table 4-1. 

Table 4-2 summarises the response of NE-positive sites to flow and vasoconstrictors, 

including 5-HT, NE, vasopressin and angiotensin II. Whole body oxygen uptake as 

well as perfusion pressure are also shown. Increasing the pump flow rate 

progressively from 4, through 6 to 8 ml.min-1 increased the LDF signal from 14.2 ± 

1.0 to 22.8 ± 1.4 PU. Allowing for a biological zero of approximately 7.4, the 

increase due to flow represents a 2-fold increase. Whole hindlimb oxygen uptake and 
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perfusion pressure increased by 29.4% and 65.3%, respectively. Three of the 

vasoconstrictors, NE, vasopressin, and angiotensin II each increased LDF signal 

parallel to their effects on oxygen uptake. 5-HT inhibited both and in many cases the 

signal strength due to 5-HT was indistinguishable from biological zero for that site. 

Table 4-2 Characteristics of the NE-positive sites. 

Flow, Additions PeakLDF, PeakV02 Peak pressure, 

ml/min PU µmol/h/g mmHg 

4 none 14.2 ± 1.0 (8) 43.5 ± 1.4 (8) 32.6 ± 1.8 (9) 

6 none 18.8 ± 1.2 (8)* 51.6 ± 1.9 (8)* 43.7 ± 1.7 (9)* 

8 none 22.8 ± 1.4 (8)* 54.6 ± 2.4 (8)* 53.9 ± 1.9 (9)* 

4 none 15.2 ± 1.2 (9) 44.1 ± 1.3 (9) 32.6 ± 2.0 (9) 

4 5-HT 6.5 ± 0.7 (9)* 31.8 ± 1.7 (9)* 104.8 ± 15.5 (9)* 

4 none 15.3 ± 1.0 (9) 44.1 ± 1.5 (9) 33.7 ± 1.8 (9) 

4 NE 31.0 ± 5.3 (9)* 56.4 ± 2.6 (9)* 59 ± 5.1 (9)* 

4 none 15.5 ± 0.8 (8) 43.5 ± 1.6 (9) 35.3 ± 2.2 (8) 

4 AVP 40.3 ± 10.3 (8)* 53.7 ± 2.9 (9)* 69.9 ± 5.3 (8)* 

4 none 13.9 ± 1.0 (9) 43.4 ± 2.0 (7) 34.2 ± 2.3 (8) 

4 All 35.5 ± 4.0 (9) 51.8 ± 2.3 (7)* 47.9 ± 7.2 (8)* 

Sites identified as NE-positive in initial assessment were further assessed in response 

to flow change and to bolus injections of serotonin (5-HT, 3 nmol), norepinephrine 

(NE, 3 nmol), arginine vasopressin (A VP, 30 pmol) or angiotensin II (All, 300 pmol). 

Values are mean± SE;*, P < 0.05 relative to 4ml.min-1 "none". LDF values have not 

been corrected for biological zero. 
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4.3.3 Sustained Infusions 

Figures 4-6 and 4-7 show the effects of sustained infusions of NE or 5-HT on LDF 

signal from NE-positive and NE-negative sites. Traces for oxygen uptake and 

perfusion pressure are also shown. As with bolus injections, the changes in LDF 

signal at NE-positive sites closely paralleled changes in oxygen uptake. Thus, for NE 

there was an increase LDF signal soon after the rise in pressure and accompanying 

the rise in oxygen uptake. The initial transient increase in LDF signal at NE-positive 

sites was not always present but was always followed by a plateau until the NE was 

withdrawn and then all three, pressure, oxygen uptake and LDF signal reversed to 

return to baseline values within 5 min. The LDF signal at the NE-negative sites 

followed much the same pattern but in the opposite direction. 

4.3.4 Biological Zero 

LDF signal was recorded after the pump had been stopped and venous flow had 

ceased completely. This occurred within 5 min and was conducted wherever possible 

for each of the two probes at the end of the perfusion. The mean value± SE for 38 

sites was 7 .64 ± 0.66 (range 3.92 - 17 .87) PU. When expressed as a percentage of the 

basal signal this represented 40.6 ± 2.8%, indicating that the biological zero in these 

experiments more closely represented a constant fraction of the basal signal than a 

constant absolute value. As argued recently, residual movement of the arrested blood 

cells constitutes a major component of the biological zero along with movements of 

other aggregates in the tissue matrix (Leahy et al. 1999). For these reasons biological 

zero has not been subtracted from any value obtained. 
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Figure 4-6 LDF tracing from NE-positive (top, left) and NE-negative (bottom, 

left) sites using micro impaled probes following the constant infusion of 83 nM 

norepinephrine (filled bar). 

Hindlimbs were perfused at constant total flow and an infusion of a stock solution of 

5 µM NE introduced for the period shown. Representative tracings for perfusion 

pressure, as well as oxygen uptake for the whole hindlimb are also shown. 
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Figure 4-7 LDF tracing from NE-positive (top, left) and NE-negative (bottom, 

left) sites using micro implanted probes following the constant infusion of 750 

nM serotonin (filled bar). 

Hindlimbs were perfused at constant total flow and an infusion of a stock solution of 

50 µM 5-HT introduced for the period shown. Representative tracings for perfusion 

pressure, as well as oxygen uptake for the whole hindlimb are shown. 

4.4 Discussion 

The main finding emerging·from this section work was the heterogeneity of sites 

identified from micro LDF probes placed at random in various muscles in the 

perfused rat hindlimb. This heterogeneity was not detected with the much larger 

surface probe unless the probe was moved to regions where tendon vessels were 

apparent. Using the micro probes, three characteristic types of site were seen when 

the hindlimb was injected with bolus amounts of the vasoconstrictors NE or 5-HT. 
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Some sites responded with increased LDF signal from NE and decreased LDF signal 

from 5-HT and were designated as 'NE-positive'. Those responding with decreased 

LDF signal from NE and increased LDF signal from 5-.HT were designated as 'NE­

negative'. Other sites failing to respond to either NE or 5-HT were termed 'mixed'. 

Since the vasoconstrictors, NE and 5-HT have been previously described as 

increasing or decreasing muscle nutritive flow based on their respective effects to 

stimulate or decrease muscle metabolism (Clark et al. 1995), it is proposed that the 

NE-positive sites are located in the nutritive vascular route. Similarly, NE and 5-HT 

have previously been shown to decrease or increase, respectively, putative non­

nutritive flow in tibial tendon vessels of the biceps femoris (Newman et al. 1997), the 

NE-negative sites reflect the positioning of the probe in the non-nutritive vascular 

route. A 'mixed' site could represent a location where nutritive and non-nutritive sites 

are both present so that a positive response from one is obscured by a negative 

response of similar magnitude from the other. Indeed, close inspection of mixed 

traces (e.g. Figure 4-5C). shows LDF signal fluctuation at the points where NE and 5-

HT were injected. It is unlikely that mixed sites were where there was no blood flow 

as increasing the flow from 4 to 8 ml.min-1 significantly increased LDF signal at these 

sites {Table 4-1) and the basal LDF signal was greater than biological zero. 

In addition to their differing character with respect to responses to the 

vasoconstrictors NE and 5-HT, two other differences were detected. Firstly, the 

proportion of sites assessed favoured NE-positive over NE-negative by a factor of 

56.7% to 16.5%, or approximately 3.5:1. The ratio may be closer to 2.4:1 if it is 

assumed that mixed sites comprise equal proportions of NE-positive (nutritive) and 

NE-negative (non-nutritive) components. Secondly, NE-negative sites generally 

showed a higher basal LDF signal than NE-positive sites {Table 4-1). Together these 

additional properties suggest that non-nutritive vessels are relatively fewer than 

nutritive, and are lower resistance with higher capacitance. 

Anatomical models of the muscle microvasculature depicted by Lindbom and Arf ors 

and their colleagues (Borgstrom et al. 1988) as well as those of Myrhage and 

Eriksson (Myrhage and Eriksson 1980) provide a possible explanation for the close 

co-existence of nutritive and non-nutritive sites within the muscle body. Detailed 
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drawings of the microvasculature of the rabbit tenuissimus muscle (Borgstrom et al. 

1988) show feed arteries that branch to supply transverse arterioles which in tum 

cross the muscle body to firstly supply terminal arterioles and capillaries of the 

muscle and then to end in vessels supplying the connective tissue (N.B. in this 

depiction the muscle is flat). Thus, two vascular networks operate in parallel. A 

number of studies using intravital microscopy have shown that relative flow in the 

two networks can be influenced by various physiologically relevant agents and 

conditions (Borgstrom et al. 1988, Lindbom 1986, Lindbom and Arfors 1985) that 

redistribute flow consistent with the two regions representing the nutritive and non­

nutritive routes of muscle (Clark et al. 1998). For the tenuissimus muscle the region 

containing nutritive capillaries is approximately 3000 µm wide and somewhat less for 

the non-nutritive (Lindbom and Arfors 1984). Thus a LDF probe of 200 µm diameter 

could be placed to detect exclusively one or the other route. For muscles other than 
' 

the tenuissimus that are cylindrical, the same vascular arrangement is observed 

.(Myrhage and Eriksson 1980), but now the transverse arteriole radiates out from the 

centre of the muscle fibril and the connective tissue vessels are contained in the 

perimysium. The dimensions are similar but because of the cylindrical nature of the 

perimysium the probability of positioning a 200 µm probe to measure non-nutritive 

flow exclusively would be less than for the tenuissimus. In addition, the probability 

of receiving a mixed signal would be greater. The data presented in this chapter are 

not inconsistent with this vascular arrangement. 

When studying this data, it must be kept in mind that the geometrical arrangement of 

the vasculature may influence the LDF signal. Work has been done in this laboratory 

using polymer tubes of 250, 100 and 50 µm internal diameter (Clark et al. 2000). By 

investigating the LDF signal seen with various arrangements of the polymer tubing, 

the effect of vessel arrangement within muscle can be assessed. Signal strength was 

greatest from the smallest tube and least from the largest tube. Furthermore, if a 

single tube (100 µm) was doubled back on itself to cross the field of measurement 

three times, the LDF signal at any flow rate was approximately 3-fold greater than 

that for the same tube crossing the field of measurement only once. If a constant 

amount of flow was switched from flowing through five tubes in the field of 

measurement to one tube in a manifold of five tubes, there was a progressive increase 
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in signal. Thus it can be deemed that LDF signal derives predominantly from non­

vectorial cell speed and less from cell number. So even when total flow remains 

constant, LDF signal strength increases as tube diameter decreases, as the flow is 

switched from a single to a multiple pass tube that crosses the field of measurement 

more than once, or as the number of tubes being perfused decreases (Clark et al. 

2000). This data may explain the effects of vasoconstrictors in muscle in that an 

increase in LDF signal induced by NE may derive from switching of flow from larger 

to smaller vessels within the field of measurement, rather than switching flow to 

vessels outside the field of measurement such as those in connective tissue. On 

balance however, the data would favour the latter of these two possibilities, and 

certainly rule out the likelihood of NE recruiting capillary flow from vessels already 

carrying flow within the field of measurement. In addition, the existence of a 

heterogeneity of sites with opposite responses to NE would support the notion that 

NE is mediating the movement of flow from one site to the other. 5-HT would be 

mediating the opposite. 
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. Figure 4-8 Polymer tube studies in vitro 

A, models used were (Left hand panel) three tubes of differing diameter, 50, 100, and 

250 µm; (Upper right hand panel) lOOµm tube in single pass or triple pass array; 

(Lower right hand panel) five tube manifold of lOOµm tubes. The circle indicates the 

position of the LDF probe (not to scale). B, Effect of flow rate on LDF signal for 

three different tube sizes of 50 (•), 100 (•) and 250 µm (£.) as shown in A (Left 

hand panel). The hematocrit was 3%. C, Effect of flow rate on LDF signal for single 

pass (•) or triple pass (•) lOOµm tubes as shown in A (Upper right hand panel). 

The hematocrit was 3%. D, Effect of changing the number of tubes of a five tube 

manifold carrying flow on LDF signal. Red cell containing perfusate (9% hematocrit) 

was delivered at constant-flow (120µ1.h- 1
) to a manifold of five equal lOOµm (ID) 

tubes that could be blocked or opened by fitted taps. LDF signal was recorded 
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simultaneously for all five tubes using the model as shown in Panel A (Lower right 

hand panel). Taps were Opened or closed at random to direct flow to 1,2,3,4, or 5 of 

the capillaries. Mean± SE values are shown for n = 6 determinations for each of B, 

C, and D. Error bars, when not visible, are within the symbols. Reproduced from 

Clark et al. (Clark et al. 2000). 

There are relatively few studies deploying intramuscular micro LDF probes (Oberg 

1990) and no one has addressed the issue of heterogeneity of response to 

vasoconstrictors. There are, however, a number of studies were larger LDF probes 

have been used on the surf ace of skinned muscle similar to the one we report herein. 

The larger surf ace probe records frequency changes from much larger volumes of 

tissue, in many cases approaching 1 mm3 and therefore penetrates considerably below 

the surface. Of particular interest are muscle blood flow studies where total and 

regional flow have been manipulated by pharmacological agents. The findings 

suggest that the surface LDF probes detect predominantly flow we would characterize 

as nutritive. In one such study (Gustafsson et al. 1993), adenosine was infused into 

anaesthetised rabbits . Mean arterial blood pressure decreased, there was an increase 

in flow heterogeneity, a decrease in local oxygen consumption (vastus medialis) and a 

decrease in LDF signal in the same region on the contralateral leg. The authors 

concluded that adenosine had caused a marked reduction in capillary flow with 

increased tissue oxygenation. Our studies using the constant-flow perfused rat 

hindlimb show that vasodilators, such as adenosine, strongly oppose the effect of 

Type A (cf. Type B) vasoconstrictors such as NE and redirect flow from the nutritive 

to the non-nutritive route (Clark et al. 1994). 

In a study by (Kuznetsova et al. 1998), muscle surface LDF signal was recorded from 

the biceps femoris muscle of anaesthetised rats that had been injected with 

chlorisondamine chloride, an autonomic blocking agent that blocks nicotinic 

ganglionic transmission, as well as the j31-blocker, atenolol. Total muscle blood flow 

was assessed with radioactive microspheres. Infusion of angiotensin II or 

phenylephrine increased LDF signal without affecting total muscle blood flow. In a 

separate series of experiments, isoproterenol decreased LDF signal despite a large 
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increase in total blood flow. These findings are consistent with our observations in 

the constant-flow perfused rat hindlimb where angiotensin II and phenylephrine are 

both Type A vasoconstrictors and increase oxygen uptake, increasing nutritive flow. 

Furthermore, isoproterenol has been found to be a vasodilator which opposes Type A 

vasoconstriction and redirects flow from the nutritive to the non-nutritive route. Thus 

oxygen uptake is inhibited (Clark et al. 1994). 

In skeletal muscle of the rat, LDF signal has been shown to correlate well with other 

measurements of flow, such as radioactive microspheres or electromagnetic 

flowmetry, each of which measure volume flow (Smits et al. 1986). However, as 

pointed out by Kuznetsova et al. (Kuznetsova et al. 1998), the linear correlation may 

not apply if tissue perfusion, estimated by LDF, changes without any significant 

ch:;mge in volume flow to an organ. In fact the principal made by these authors was 

that certain types of vasoconstrictors, as outlined above, were able to cause a 

d,issociation between volume blood flow and LDF signal. Kuznetsova et al. 

(Kuznetsova et al. 1998) were of the view that changes in LDF signal accompanying 

changes in vascular tone were best explained by changes in red cell velocity. Thus 

agents such as isoproterenol, that decrease LDF signal in the light of increased total 

blood flow do so by decreasing red cell velocity, the result of decreased arteriolar­

venular pressure gradient. 

In our perfused hindlimb system, total flow was maintained constant and we have 

previously shown, using microspheres, that agents such as 5-HT do not alter total 

flow between muscles of high and low oxidative capacity, or between muscle and 

non-muscle tissue (Newman et al. 1997). The fact that 5-HT infusion results in a 

marked decrease in oxygen uptake, a change in flow pattern ((Newman et al. 1996) 

and an increase in flow in connective tissue and tendon vessels (Newman et al. 1997), 

suggests that 5-HT acts to redirect flow from nutritive capillaries to non-nutritive 

vessels, which may include tendon vessels. Takemiya and Maeda (Takemiya and 

Maeda 1988) have reported that at rest blood flow in the tendon of tibialis anterior, 

gastrocnemius, and soleus exceeds that of the same muscles by a factor of approx. 2-

fold. In addition, they showed that norepinephrine, or exercise, decreased tendon 

vessel flow and that exercise-mediated decrease in tendon vessel flow occurred in 

conjunction with increased muscle flow. Together their findings also imply that 
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blood flow can be switched from either of the two routes to match demand. 

However, while the changes in LDF signal at nutritive sites correlate with changes in 

putative nutritive flow deduced from changes in metabolism, there may be other 

explanations to account for the change in LDF signal that we have observed in 

perfused muscle. One possibility concerns the redistribution of flow within each 

muscle. For example, during exercise blood flow to the high oxidative portion of 

gastrocnemius muscle is substantially increased and flow to the low oxidative portion 

of the same muscle is decreased (Laughlin and Armstrong 1982, Laughlin and 

Armstrong 1983). This serves to illustrate that flow within the same muscle can be 

differentially controlled by exercise and this phenomenon may extend to 

vasoconstrictors. Thus, since the cranial portion of the biceps femoris is less 

oxidative than the caudal portion (as indicated by citrate synthase activity) and is 

composed of a greater portion of Type IIB fibers (Delp and Duan 1996), it is possible 

that NE could increase flow to the caudal portion of the biceps femoris, resulting in 

higher perfusion of oxidative fibers and greater oxygen consumption. Conversely, 5-

HT could increase perfusion of the cranial portion of the biceps femoris, resulting in 

increased flow to low oxidative fibers and correspondingly, diminished oxygen 

con.sumption. Alternatively, and as suggested from previous studies (Newman et al. 

1996), it is possible that 'flow redistribution between vessels of a different geometry 

within the same region may have occurred. 

The proportion by which vasoconstrictors were able to alter muscle metabolism 

during constant infusion (oxygen uptake was stimulated by 69.5% by NE and 

inhibited by 29.5% by 5-HT) was similar to the amount that they changed flow 

indicated by LDF signal at the NE-positive sites ( NE= +51 %; 5-HT= -61 %). It 

would therefore seem likely that redistribution of flow between the 'nutritive' (NE­

positive) route and nearby connective tissue (such as the perimysium, epimysium or 

tendon), albeit the 'non-nutritive' (NE-negative) route, could account for the observed 

changes in metabolism as argued previously (Clark et al. 1995, Clark et al. 1998). 

Finally, LDF probe dimensions may be important in determining the nature of the 

signal received. The surface LDF probe used in this study had a detector surface area 

of approx. 1 mm2 (two optical fibers of 800 µm diameter each) and when placed on 

the surface detected signal from a volume of approx. lmm3 of tissue. When 
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positioned on the center of the anterior end of the biceps femoris the signal appeared 

to be only of one kind, responding positively to NE and negatively to 5-HT. This 

contrasts with measurements using a much smaller probe (0.03 mm2
) inserted in the 

muscle, where LDF signals were heterogeneous with some responding as above (i.e. 

NE-positive), some responding in an opposite manner to the above (i.e. NE-negative), 

and some failing to respond (mixed). With the smaller probe it was also noted that the 

NE-positive sites outnumbered the other two by approx. 3: 1. Thus it appears likely 

that the larger probe receives signal from a mixture of sites that convey a character 

that is predominantly NE-positive. Alternatively, NE-negative sites may not located 

near the surf ace of the muscle, although for various reasons alluded to above this is 

unlikely. 

In summary, micro LDF probes when positioned randomly in the body of a number 

of hindlimb muscles identify sites that differ in their response to vasoconstrictors. 

This heterogeneity is not visible to larger probes on the muscle surface. Over half of 

the sites show properties consistent with a nutritive role for muscle met!'lbolism. Non­

nutritive sites are present but at a lower proportion and nearly a quarter of the sites are 

likely to represent a mixture of both nutritive and non-nutritive. Non-nutritive sites 

show a higher basal signal. 
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CHAPTERS 

Insulin Stimulates Laser Doppler Flow Signal In Vivo 

Consistent with Nutritive Flow Recruitment 

5.1 Introduction 

Skeletal muscle accounts for 80-90% of insulin-mediated glucose disposal and an 

impairment of this appears to be pathogenetically involved in the insulin resistance of 

obesity, hypertension and type II diabetes. There has been considerable interest lately 

in reports that insulin has a haemodynamic vasodilatory effect as part of its action to 

increase glucose uptake by skeletal muscle. This vascular effect of insulin appears to 

be impaired in obesity and type II diabetes. There is ongoing controversy as to 

whether or not glucose and insulin delivery, or skeletal muscle blood flow, plays an 

important role in determining overall rates of insulin-mediated glucose disposal 

(Baron et al. 1991, Yki-Jarvinen and Utriainen 1998). 

In addition to insulin's putative vasodilatory action in skeletal muscle, animal studies 

have shown that insulin also mediates an increase in capillary recruitment, that may 

be independent of the changes in total blood flow (Rattigan et al. 1997b). Moreover, 

this laboratory has recently shown that when capillary recruitment is prevented in 

vivo, an acute insulin resistant state is induced (Rattigan et al. 1999). However, since 

the method used for assessing capillary recruitment in both of those studies (i.e. 1-

MX metabolism) was indirect, laser Doppler flowmetry has been used in the present 

study to measure capillary perfusion in vivo. Chapter 4 explored the use of laser 

Doppler flowmetry in the perfused rat hindlimb under conditions of constant flow. 

This knowledge is now applied to measurement of changes in LDF signal during the 

hyperinsulinaemic euglycaemic clamp in vivo. Epinephrine was also included as it is 

known to increase total blood flow to the leg without increasing nutritive (capillary) 

flow (Rattigan et al. 1997b). 
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5.2 Methods 

5.2.1 Laser Doppler Studies In Vivo 

Male Wistar rats weighing approximately 300 g were used for all experiments 

described in this chapter. The hyperinsulinaemic euglycaemic clamp was used as 

described in detail in Chapter 2. Insulin (10 mU.min~1 .kg-1), epinephrine (0.125 

µg.min- 1.kg-1
) or saline, as well as glucose (to maintain blood glucose at 5 mM) were 

infused via a jugular cannula. 

The rat hindlimb was skinned and covered with thin plastic wrap to avoid drying out. 

Hindlimb muscle LDF signal was determined using a scanning LDF (Lisca Li PIM 

1.0, Laser Doppler Perfusion Imager) at baseline before saline, insulin or epinephrine 

and at one hour after the commencement of infusion of saline or insulin and 15 min 

after epinephrine. Positioning of the scanner was made using the knee as a reference. 

This ensured that the area and orientation were identical between animals. Triplicate 

scans of the hindlimb were made, each taking 5 min to complete and timed to occur 5 

min before, on and 5 min after the times designated above. Each scan was viewed on 

screen and analysed using the manufacturer's operational software to give average 

perfusion units (volts) of the area analysed. To assess muscle perfusion a square of 

225 mm2 (15 mm x 15 mm) in the top left hand comer of each scan and covering 

mostly muscle (biceps femoris) was analysed. Means from triplicate analyses before 

and after addition of saline (control), insulin, or epinephrine were used for 

comparison. The scanning probe covered a total area of approximately 900 mm.2 

(30mm x 30 mm) of skinned thigh muscles. 

A stationary LDF probe (Perimed Periflux PF 4001 with Master Probe 418) was also 

used and signals were recorded continuously throughout the experiment. The 

stationary probe was positioned over a 4 mm.2 area of skinned biceps femoris, in an 

identical position to that used in the perfused hindlimb studies (see Chapter 4). 
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5.3 Results 

5.3.l Glucose Metabolism During the Insulin Clamps 

As seen with similar experiments by this research group (Rattigan et al. 1997b, 

Rattigan et al. 1999) there was no significant difference in arterial glucose 

concentrations between saline and insulin animals either before commencement of 

infusions or at the end of the experiment (data not shown). Insulin increased glucose 

infusion rate from zero to a maximum of 130 ± 7 µmol.min· 1.kg-1 (23.42 mg.min-1.kg-

1) (n = 11; 5 scanning and 6 stationary LDF probe) at the end of the clamp (2 hours). 

The time course was similar to previously (Rattigan et al. 1997b), so that following 1 

hour of insulin, glucose infusion had already reached the maximum. 

5.3.2 Clamp Experiments for LDF Signal by Scanning Probe 

Figure 5-1 shows that insulin tended to increase femoral blood flow (29 ± 6%) but at 

1 hour after commencement this was not yet a significant change (as opposed to the 2 

hour insulin-mediated increase in femoral blood flow seen in Rattigan et al. (Rattigan 

et al. 1997b). However, at this same time point insulin had markedly increased the 

scanning LDF signal over the biceps femoris (top left hand square within the field of 

measurement (see Figure 5-2) by 62 ± 8% (P < 0.05; n = 5). Saline infusion controls 

showed no increase in either femoral blood flow or scanning LDF signal over the 

biceps femoris at 1 hour (P > 0.05; n = 4) (Figure 5-1). 

Epinephrine is a faster acting agent than insulin and as noted previously (Rattigan et 

al. 1997b) increases femoral blood flow. In the present studies epinephrine (0.125 

µg.min- 1.kg-1
) increased femoral blood flow by 37 ± 5% (P < 0.05; n = 3) at 15 min. 

Despite this effect, scanning LDF signal was unchanged (4 ± 8%; P > 0.05) (Figure 5-

1). The rise in LDF signal was greater with insulin than either epinephrine or saline 

(P < 0.05; ANOV A). 

Representative scans for a saline control and an insulin clamp at 1 hour are shown in 

Figure 5-2. Settings on the scanner were high resolution, threshold voltage 5.30 and 

64 x 64 pixels. Since the average area scanned was 900 mm2 each pixel represented 

approximately 0.2 mm2
• Analysis of the total scanned area and of the connective 

tissue region around the knee failed to reveal an effect of insulin on those scans where 
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a significant increase in muscle signal due to insulin had occurred. Thus values 

before and after insulin were 1.13 ± 0.25 and 1.26 ± 0.22 volts (P > 0.05; total area) 

and 2.51±0.35 and 2.69 ± 0.37 volts (P > 0.05; connective tissue). 
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Figure 5-1 Total femoral blood flow and scanning LDF measurement of lateral surface of thigh muscles of anaesthetised rats following 

insulin/glucose, epinephrine or saline infusions. 

Reproduced from Clark et al. (Clark et al. 2000). 
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Figure 5-2 (previous page) Representative scans of LDF before (A) and after (B) 

insulin in the same animal. 

The area analysed by the scanning LDF is demonstrated by the red square in (C). The 

position of the stationary probe is shown as: (e ), in (C). Colour coding to indicate 

relative perfusion is as follows: 

(• ) > 1.59; (• ), 1.59; ( ), 1.27; (• ), 0.95; (• ), 0.64; (• ) < 0.32 volts. 

Reproduced from Clark et al. (Clark et al. 2000). 

5.3.3 Stationary LDF Probe 

The stationary probe was positioned over the centre of the anterior end of the biceps 

femoris muscle as in the perfused hindlimb studies in the previous chapter (Chapter 

4). The signal was continuously recorded and mean values are shown in Figure 5-3 

for the 0 - 80 min period following commencement of insulin infusion. For the 

stationary LDF probe experiments, insulin increased femoral blood flow (66%, n = 6; 

P < 0.05) and LDF signal 47 ± 12% (P < 0.05) relative to saline controls (n = 5) 

which did not affect FBF. Epinephrine also increases femoral blood flow (39%) but 

LDF signal did not change significantly (-0.3%; Figure 5-3). Figure 5-3 shows the 

time courses for insulin-mediated changes in femoral blood flow (upper panel) and 

LDF signal (lower panel). The change in LDF signal was significant at 20 min and 

preceded the increase in femoral blood flow that occurred at 60 min. 
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Figure 5-3 Time course for changes in femoral blood flow (A) and for stationary 

probe LDF signal (B) during a hyperinsulinaemic euglycaemic clamp. 

Reproduced from Clark et al. (Clark et al. 2000). 
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5.4 Discussion 

The main finding emerging from this study was the increase in muscle surface LDF 

signal mediated by insulin. This would appear to reflect an increase in nutritive flow 

in muscle consistent with the previously reported increase in capillary recruitment 

determined by increased metabolism of the marker substrate 1-methylxanthine 

(Rattigan et al. 1997b). The notion that insulin has led to an increase iri nutritive 

flow, or muscle capillary flow, is based on the strong correlation observed between 

LDF signal from similarly placed probes and oxygen uptake as altered by two 

different vasconstrictors, NE and 5-HT in the constant flow perfused rat hindlimb as 

discussed in Chapter 4. 

The increase in nutritive flow by insulin is independent of changes in total leg blood 

flow as detected by the flow probe positioned around the femoral artery. Thus, 

epinephrine which increased total flow had no effect on the LDF signal. In addition, 

time course studies using the stationary probe indicated that the LDF signal had 

increased at least 30 min before there was a significant increase in femoral flow. An 

increase in nutritive flow due to insulin without an increase in total flow implies that 

flow has been redistributed from another route that may not be visible to the LDF 

probe. This may be because of the position or size of the probe. Comparison with 

the perfused rat hindlimb work in Chapter 4 is helpful in considering these issues. 

Although almost fully dilated, the isolated perfused hindlimb preparation responds to 

vasoconstrictors by either increasing or decreasing metabolism. Vasoconstrictors that 

increase metabolism in the constant flow preparation do so by redirecting flow from a 

non-nutritive route located in the closely associated connective tissue of the 

perimysium and related sheaths. Some of the vessels are visible and relatively free 

from a background of muscle nutritive capillaries. One study, has shown that the 

vasoconstrictor, NE, that increased overall hindlimb metabolism, redirected flow 

from these vessels to the muscle nutritive route (Newman et al. 1997). Accordingly, 

it would seem likely from the present study that insulin has acted similarly to redirect 

flow from the non-nutritive route to the nutritive route. Since insulin does not affect 

blood pressure within this time frame (Rattigan et al. 1997b), recruitment of nutritive 

flow at the expense of non-nutritive flow would appear to involve a combination of 

84 



vasodilatory and vasoconstrictor activity. There are reports of both of these activities 

of insulin in association with glucose in vivo (Renaud.in et al. 1998). 

The present findings in the rat in vivo show that insulin increased femoral blood flow 

and increased LDF signal and epinephrine, despite similar changes in femoral blood 

flow, did not increase LDF signal. These results are similar to our previously 

reported increase in capillary recruitment as measured by 1-MX metabolism in viva in 

the presence of insulin (Rattigan et al. 1997b). In that study, 1-MX metabolism was 

increased as a result of insulin action to increase capillary recruitment or nutritive 

flow. A large part of this conclusion rested on prior knowledge that 1-MX 

metabolism in the perfused rat hindlimb closely parallels changes in nutritive flow 

(see Chapter 3) (Rattigan et al. 1997a, Youd et al. ·1999). Similarly Chapter 4 clearly 

shows that LDF signal changes in parallel to changes in nutritive flow. Thus, an 

increase in muscle LDF signal due to insulin and independent of changes in total flow 

support the contention that insulin increases capillary recruitment in human skeletal 

muscle (Baron et al. 1993a) and the observation that insulin increases blood volume 

in human muscle (Raitakari et al. 1995). In conclusion, insulin acts in viva to 

stimulate LDF signal consistent with capillary recruitment as part of its effect to 

increase muscle glucose uptake. The recruitment may be independent of changes in 

total· blood flow as epinephrine, which aiso increased femoral blood flow, did not 

increase LDF signal. The present findings support previous observations by our 

group of increases in capillary recruitment in muscle as measured by 1-MX 

metabolism. 

This work has implications for clinical diagnostics. Use of LDF probes will be 

developed for measurement of muscle blood flow in humans. It will be necessary to 

use implantable intramuscular probes (as described in Chapter 4). Unfortunately, 

current implantable probes are not suited to this application, since these probes are 

not strong enough in intensity to sample from a large enough area within the skeletal 

muscle test area to obtain a true indication of the muscle perfusion. Such applications 

will have to wait upon the design of more suitable implantable probes. 
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CHAPTER6 

Sciatic Nerve Severance-Induced Insulin Resistance in 

Muscle Without Loss of Capillary Exposure. 

6.1 Introduction 

Increased capillary recruitment due to insulin action may play a key role in increasing 

both insulin and glucose access to muscle and therefore glucose uptake by this tissue. 

As mentioned previously in this thesis, use of the 1-methylxanthine method has 

shown that insulin acts in viva to increase capillary recruitment (Rattigan et al. · 

1997b). In addition, the increase in capillary recruitment may be independent of 

changes in total blood flow as the latter can be manipulated by agents such as 

epinephrine, without changes in capillary recruitment (Rattigan et al. 1997b). 

Moreover, if capillary recruitment is prevented by pharmacological intervention 

(Rattigan et al. 1999) or by TNF (see Chapter 7), insulin-mediated glucose uptake is 

also markedly blocked, with up to 60% of the latter possibly attributed to accessing. 

Similarly, in the perfused rat hindlimb pharmacological intervention to reduce 

nutritive flow and increase non-nutritive flow in a constant-flow preparation, gave 

rise to a marked reduction in insulin-mediated glucose uptake (Rattigan et al. 1993). 

Characteristics of the sciatic nerve severed model are that the onset of insulin 

resistance is rapid and reproducible. Muscles originally innervated by the sciatic 

nerve (including the gastrocnemius red ~nd white, tibialis anterior •. plantaris, extensor 

digitorum longus, soleus and parts of the thigh muscle group, i.e. the semitendinosus, 

biceps femoris, semimembranosus and adductor magorus (Snell 1992)) each become 

insulin resistant to varying degrees. Since the sciatic nerve contains vasomotor fibres 

in association with the motor neurons (Schmalbruch 1986), it is likely that severance 

could lead to rapid blood flow changes to, and within, the previously innervated 

muscles. Accordingly, in the present study we have tested the hypothesis that sciatic 

nerve severance leads to a rapid change in regional blood flow in formerly innervated 

muscles, which by denying access for insulin and glucose contributes to the insulin 

resistance. The isolated perfused hindquarter was used where the denervated leg 
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could be directly compared to the contra lateral control leg (nerve intact) in terms of 

insulin-mediated glucose uptake as well as alterations in capillary exposure 

(metabolism of 1-MX) and total blood flow (microspheres). 

6.2 Methods 

6.2.1 Sciatic Nerve Severance Surgical Procedure 

Rats were anaesthetized for sciatic nerve severance with an intra-peritoneal injection 

of ketamine (lOmg.lOOg-1 body weight) mixed with xylazine (lmg.lOOg-1 body 

weight) in 0.9% saline. A small incision of approximately 0.5 cm was made in the 

thigh of the left leg and the muscles were separated to expose the sciatic nerve, as 

described in Burant et al. (1984). A section (approximately 3 mm) of the sciatic 

nerve was then removed, the skin sutured over and the wound dusted with topical 

antibiotic powder (Apex Laboratories, Australia). Sham-operated animals underwent 

the same operative procedure, except the sciatic nerve was only visualized (without 

severance) before closing the wound. Denervated animals were sham operated on 

their contra-lateral legs for all two hindlimb perfusions and control animals were 

sham operated on both legs. Animals were then allowed to recover for the chosen 

period of time before the hindlimb perfusions were performed (i.e. 3 h or 24 h). 

6.2.2 Hindlimb Perfusions 

Generally, all hindlimb perfusions were conducted essentially as described in Chapter 

2 using 180-200 g hooded Wistar rats. Both hindlimbs were perfused in all 

experiments. Experiments to determine insulin-mediated 2DG uptake (see Section 

2.3.2) were performed in separate animals from perfusions to 4etermine total flow 

distribution using fluorescent microspheres and measurement of 1-MX metabolism 

(capillary exposure). 

Experiments to determine microsphere distribution and 1-MX metabolism in the 

presence of 2 mU.mr1 insulin were performed in the same animal. Commencing 
I 

immediately after equilibration (t = 0 min), a solution of 1-MX was infused for the 

remainder of the experiment (65 min) to give a final concentration of 23 µM. Insulin 

was infused at t = 40 min to g~ve a final concentration of 2 mU.mr1
. Fluorescent 
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microspheres were injected as a bolus over a period of 10 sec (as described in Section 

2.3.3.1) starting at t = 60 min. Vena cava samples were taken at t = 20, 30, 40, 50, 60 

and 65 min as well as femoral vein samples at 65 min. This latter sampling was done 

using a syringe fitted with a 26 G needle. At the end of the perfusion the muscles 

were removed and processed to determine microsphere content as described in 

Section 2.3.3.2. 

6.2.3 Statistical Analysis 

The significance of difference between treatments was tested by one-way analysis of 

variance and least-significant difference analysis. Values of P < 0.05 were taken as 

significant. 

6.3 Results 

6.3.1 2-Deoxyglucose Uptake 

Figure 6-1 shows data for 2-deoxyglucose (2DG) uptake conducted 24 hours after 

denervation. The EDL, soleus, plantaris, gastrocnemius white and tibialis muscles of 

the denervated leg were found to be insulin resistant when compared to the 

corresponding muscles of the contra-lateral sham operated leg. Although a trend was 

also apparent for the gastrocnemius red muscle, this was not significant. Data from 

the right and left hindlimbs of control animals in which both legs had undergone 

sham operations are also shown. 2DG uptake for corresponding muscles from either 

leg was the same and no different from the contra-lateral (CL) leg. These 

experiments were conducted in case denervating one leg of the test animals restricted 

mobility resulting in changes in the contra-lateral leg from under-use, or alternatively, 

load-bearing was shifted to the CL leg so that in either case the CL leg was no longer 

a true control. For the majority of the muscles a trend was apparent suggesting that 

the CL leg may have been affected to be intermediate between denervation and true 

controls. This trend, although not statistically significant, was most apparent for all 

of the muscles sampled except the gastrocnemius white. 

Combining the results for all six muscles showed that denervation significantly 

reduced insulin-mediated glucose uptake from 530 ± 70 to 362 ± 40 µmol.h- 1.g-1 (P < 
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0.05; n = 5). Uptake by sham operated legs in control animals did not differ between 

legs and was approximately 680 ± 80 µmol.h- 1.g-1
• This did not differ from uptake by 

CL legs 

Assessment of insulin-mediated uptake of 2DG into individual muscles as soon as 3 

hours after denervation suggested rapid onset of the change. R'g for the plantaris 

muscle of DL was 30 ± 2 compared to 39 ± 3 µmol.h- 1.g-1 (P < 0.05, n = 4) and other 

muscles were close to significance. 
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Figure 6-1 Effect of 24 hour sciatic nerve severance on 2-deoxyglucose uptake 

by individual muscles of the perfused hindlimb. 

Denervation of one leg (open bar) was conducted 24 hours prior to perfusing both 

legs. The contra-lateral leg (solid bar) underwent a sham operation. In separate 

control animals each leg, left and right (grey bars) underwent sham operations. 

Values are means± SE for n = 5. *, P < 0.05 when compared to contra-lateral leg 
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6.3.2 1-Methylxanthine Metabolism and Fluorescent Microsphere Distribution 

Figure 6-2 shows the time course for a representative experiment involving 1-MX and 

insulin infusions a~d the injection of a bolus of microspheres. The hindquarter was 

perfused at constant flow throughout (0.43 ml.min-1.g-1 muscle; 13 ml.min-1
) and the 

perfusion pressure remained constant at 27 ± 2 mmHg for the period 0 to 40 min. 

Oxygen uptake was also constant throughout this period at 9.0 ± 0.6 µmol.h- 1.g-1 

muscle. Since the isolated hindquarter is essentially fully dilated (Lindinger and 

Hawke 1999) the vasodilatory action of insulin (or indeed any vasodilator) is not 

evident under these conditions and the perfusion pressure and hence vascular 

resistance did not change. Thus pressure remained constant throughout the insulin 

infusion ( 40-65 min). Oxygen uptake was stimulated to a small degree by insulin, 

increasing from 9.0 ± 0.6 to 10.7 ± 0.8 µmol.h- 1.g-1 muscle by t = 60 min. Perfusion 

pressure underwent a transient drop during microsphere injection, but then returned to 

the original value. Oxygen uptake was slightly stimulated due to the injection of 

microspheres. 

The perfused rat hindlimb, that was denervated 24 hours earlier, was clearly insulin 

resistant to uptake of glucose analogues (Figure 6-1). However, the same hindlimbs 

did not show any large changes with regard to total flow (Figure 6-3). Denervation 

also had no effect on blood flow to intact, innervated tissues (including white adipose 

tissue, skin, the foot, bone), or indeed the entire leg, when compared to the CL (non­

denervated) leg (Figure 6-3). 
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Figure 6-2 Representative trace for time course changes in oxygen uptake and 

perfusion pressure for hindlimb perfusions. 

Infusions of 1-MX and insulin and an injection of a bolus of fluorescent microspheres 

were made at the times shown (n = 5). 
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Figure 6-3 Perfusate flow in the denervated and contra-lateral control leg of the perfused hindquarter from microsphere entrapment. 

Legs underwent denervation (solid bars), sham operation 24 hours prior to being perfused. Insulin was present at 2 mU.mr1
. Microsphere (15 

µm) content of each muscle was assessed at the end of each perfusion as shown in Figure 6-2. Summated values are shown in the right hand 

panel. Values are means± SE for n = 5. 



- 15 :!!: 
:i. -c 
0 

:,;:::; 
ea 12 .... -c 
G) 
() 
c 
0 9 () 

>< 
:!!: 

I ,... 
6 

-"';" tp 
8 "';" 

c 
E . 
0 
E 
c - 6 
G) -ea .... 
c 
0 ·c;; 4 .... 
~ c 
0 
() 

>< 2 
:E 

I ,... 

0 10 20 30 40 50 60 70 80 

Time (min) 

Figure 6-4 Time course for the metabolism of infused _1-MX. 

1-MX was infused during hindlimb perfusion to reach a final concentration of 23 µM 

starting at t = 0 min. Insulin (2 mU.mr1
) infusion was commenced at 40 min. 

Samples of perfusate were taken from the vena cava (0) (draining both legs) until the 

end of the experiment (t = 65 min), at which time perfusate was sampled from the 

femoral vein close to the exit point from the calf muscle group. (•) = denervated leg 

and ( ) = non-denervated leg. 1-MX conversion rates were calculated from vena 

cava 1-MU concentration and the total hindlimb flow rate (pump rate) or from 

femoral vein 1-MU concentration and flow deduced from microsphere entrapment for 

the calf muscle group. Values are means ± SE for n = 5 expenments. 
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Figure 6-4 shows data for 1-MX metabolism as an index of capillary exposure. 

Approximately 20 min after commencement of infusion of 23 µM 1-MX, a steady 

state rate of metabolism was reached, corresponding to a venous perfusate 

concentration of 12 µM 1-MX (Note: venous perfusate samples are from the vena 

cava which drains both the DL and CL). This was similar to the equilibrium value 

reported previously for perfusions conducted at the lower temperature of 25°C 

(Rattigan et al 1997). Insulin infusion for 40 min did not change the perfusate 

concentration of 1-MX and thus was concluded not to have altered the total capillary 

exposure of 1-MX. At the end of the perfusion a sample was taken from the venous 

blood draining the denervated muscles of the DL and compared with comparable 

samples from CL. Figure 6-4 shows that the 1-MX concentration was the same for 

each (DL and CL) and did not differ from that of the entire hindlimb. Although 

calculated rates of 1-MX metabolism appeared somewhat higher (not significant) 

from the calf muscle groups (DL and CL) than for the whole hindquarter, this may 

have been due to higher muscle flow when compared to the hindquarter as a whole. 

6.4 Discussion 

Using the two hindlimb (hindquarter) perfusion technique we have shown that prior 
I 

severance of the sciatic nerve of one hindlimb gave rise to a marked insulin resistance 

in formerly innervated muscles. The onset was rapid and was initially detected in the 

plantaris at 3 hours and in most other muscles, including the EDL, SOL, GW, TIB as 

well as the PLAN at 24 hours after surgery. In addition, there was a trend, although 

not significant, for insulin sensitivity to be reduced in muscles of the contra-lateral leg 

when compared to animals where both legs had undergone sham operations, possibly 

reflecting an effect of less use over the 24 hour period. Most importantly, the insulin 

resistance occurred without any detectable change in haemodynamic parameters. 

Thus, 1-MX metabolism, a surrogate indicator of capillary exposure, did not differ 

between denervated and contra-lateral legs. Furthermore, microsphere distribution, as 

an index of total flow, was similar in all muscles, white adipose tissue, skin, foot and 

bone of the denervated leg when compared to the contra-lateral leg. Overall these 

findings suggest that prior denervation did not affect the distribution of perfusate flow 

either between muscles, between muscle and non-muscle tissue, or within muscles. 

Thus insulin resistance from denervation is likely to be of cellular origin. 
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Insulin resistance following sciatic nerve severance has been confirmed at three 

levels, in viva, in perfusion and with isolated incubated muscles. At the first level, 

Turinsky (Turinsky 1987a, Turinsky 1987b) and Turinsky et al. (Turinsky et al. 

1990) demonstrated insulin resistance in viva by intravenous infusions of 2-

deoxyglucose and insulin into rats under anaesthesia. The studies showed that insulin 

stimulated 2-DG uptake by soleus and plantaris muscles of the denervated leg were 

decreased by as much as 80%, as early as 3-6 h past-denervation when compared to 

the contra-lateral sham muscles. At the second level, perfusion studies by Megeney 

et al. (Megeney et al. 1995) using the two hindlimb perfused preparation showed that 

insulin-mediated 3-0-methylglucose transport was decreased by approximately 35% 

in muscles of the denervated leg when compared to companion muscles of the contra­

lateral control leg 3 days after surgery. At the third level, isolated soleus muscles 

were shown to be insulin resistant in incubation by a number of research groups 

including Burant et al. (Burant et al. 1984), Sowell et al. (Sowell et al. 1991, Sowell 

et al. 1988) and Henriksen et al. (Henriksen et al. 1991). From insulin dose response 

curves for 2DG uptake or 3-0-methylglucose uptake, insulin resistance characterised 

by a decreased responsiveness to maximum insulin, was observed in muscles 

removed from the animal as soon as 24 h after denervation. At two of these levels (in 

viva and in perfusion) changes to either total blood flow to, or within, muscle could 

explain the insulin resistance by affecting the access of insulin and glucose to the 

muscle fibres. In this respect a number of early papers (including Ederstrom et al and 

references therein) had reported major changes in peripheral blood flow following 

denervation (Ederstrom et al. 1956). These changes were characterised by increased 

flow through the affected part, seen particularly in the larger vessels followed by a 

progressive decrease as the vessels (smaller) regained tone (Wiedeman 1968). Some 

workers suggested that the increase in blood volume was attributable to reduced 

sympathetic vasoconstrictor tone that initially becomes evident 2 or so days after 

damage (Herbert and Hood 1997, Midrio et al. 1992). Wiedeman (1968) argued that 

these changes caused a redistribution of the site of regulation of flow through 

capillary nets, in tum implying an effect on access for insulin and nutrients. There is 

also indirect evidence from denervated skeletal muscle of quadriplegic patients where 

whole body insulin-mediated glucose utilization is reduced by 43%, yet basal and 

insulin-mediated uptake of 3-0-methylglucose uptake in isolated vastus lateralis 

strips is normal (Aksnes et al. 1996). Morphological assessment of those same 
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muscle samples indicated a decreased ratio of capillaries: muscle fibres when 

compared to age-matched healthy controls. Arguments against a role of blood flow 

contributing to the insulin resistance by affecting insulin access would come from 

studies with isolated incubated muscles. Insulin resistance is marked in isolated 

muscles (Burant et al. 1984) when incubated with insulin and analogues of glucose. 

Since incubated muscle depends on access for hormones and substrates by diffusion 

and not by the normal vascular route, changes in micro- or macro-vascular flow 

patterns, that might be present in viva or during hindlimb perfusion, can have little 

bearing. The only way in which an initial haemodynamic change could possibly 

impinge is through inducing rapid changes in gene expression in the interval between 

surgery and experimentation (e.g. depressed GLUT4 at 3 days after denervation, 

Henriksen et al. 1991). However, it is unlikely that major changes in protein level of 

expression could have occurred within 24 h, or even 3 h, after surgery. 

In view of the present findings it would now seem likely that the insulin resistance is 

of muscle cell origin. Indeed a number of workers have examined insulin receptor 

status post-denervation and are convinced that resistance is attributable to a post­

receptor defect (Sowell et al. 1989). These workers reasoned that the defect lies in 

either the signal transmission mechanism between receptor and the glucose 

transporter system, or at the level of the glucose transporter. At the time and because 

multiple insulin-sensitive pathways, including glucose transport (Burant et al. 1984, 

Forsayeth and Gould 1982, Sowell et al. 1989, Turinsky 1987a), amino acid transport 

(Forsayeth and Gould 1982, Turinsky 1987b), and glucose-independent activation of 

glycogen synthase (Burant et al. 1984, Smith et al. 1988) were affected by 

denervation, they argued that the simplest mechanism to account for the insulin 

resistance was one involving a defect at an early common step in insulin's 

intracellular cascade. 

To date, haemodynamic changes occurring with denervation have been restricted to 

changes in total flow where measurements were conducted in viva using 

microspheres (Turinsky et al. 1998). In that work (Turinsky et al. 1998) blood flow 

24 h after denervation was increased in soleus, plantaris, and gastrocnemius muscles 

by 63, 323, and 304% when compared to corresponding sham muscles, respectively. 

Insulin response in terms of 2DG uptake was decreased by 80, 71 and 50%, in the 
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same muscles. The authors concluded that changes in blood flow did not contribute 

to the development of insulin resistance in denervated muscles. 

In summary, this study shows that despite the rapid onset of insulin resistance in 

terms of 2DG uptake into individual muscles, this does not appear to be due to 

denervation affecting haemodynamic parameters within the skeletal muscle. 

Alternatively, insulin in vivo could stimulate sympathetic nerve activity in intact 

animals in contrast to in vitro. 
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CHAPTER7 

Acute Impairment of Insulin-Mediated Capillary 

Recruitment and Glucose Uptake in Rat Skeletal Muscle In 

Vivo by TNFa 

7.1 Introduction 

The inflammatory cytokine, tumour necrosis factor a. (TNF) is expressed in both 

adipose tissue and skeletal ·muscle, and many animal models of obesity and insulin 

resistance are associated with significantly higher levels of TNF mRNA and protein 

compared to their lean counterparts (Hotamisligil et al. 1993). Similar data has been 

seen recently in humans with obesity and insulin resistance (Hotamisligil et al. 1995, 

Saghizadeh et al. 1996). There is also some evidence for causality. For example, 

infusion of a TNF receptor (TNFR) IgG fusion protein was found to neutralise TNF 

in vivo and improve insulin action in genetically obese and insulin resistant zucker 

rats (Hotamisligil et al. 1993). Also, infusion of insulin resistant animals with a 

soluble TNF-binding protein improved in vivo insulin action (Hotamisligil and 

Spiegelman 1994). Furthermore, genetically obese mice lacking either or both of the 

TNF receptors, p55 and p75, are more insulin sensitive than those still possessing 

them (Hotamisligil 1999). In humans, TNF is also thought to be strongly linked to 

the development of the insulin resistance in obesity and type II diabetes. In 

particular, TNF has been implicated as the cause of the insulin resistance observed in 

septic, cancer and surgical patients (Michie et al. 1988, Offner et al. 1990). 
\ 

Attempts to induce muscle insulin resistance by TNF administration have led to 

mixed success and the mechanism by which TNF may cause insulin resistance is not 

clear. Administration of TNF to anaesthetised rats over 3 hour under clamp 

conditions markedly reduced insulin-mediated uptake of 2-deoxyglucose by muscle 

(Ling et al. 1994). At the isolated cellular level, it has been shown that 3-5 days 

exposure of 3T3-Ll or 3T3-F442A adipocytes to TNF causes reductions in insulin 

receptor and insulin receptor substrate- I tyrosine phosphorylation in response to a 
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maximal dose of insulin (Guo and Donner 1996, Hotamisligil et al. 1994). Yet other 

researchers have shown that 3-4 days of exposure of 3T3-Ll adipocytes to TNF gives 

rise to large decreases in GLUT4, insulin receptor and insulin receptor substrate-I 

mRNA and protein (Stephens et al. 1997, Stephens and Pekala 1991). Shorter 

exposure times have also been claimed to decrease insulin-stimulated tyrosine 

phosphorylation of the insulin receptor and insulin receptor substrate-1 in Pao 

hepatoma cells (Feinstein et al. 1993, Kanety et al. 1995) and NIH3T3 fibroblasts 

(Kroder et al. 1996) as well as a decrease in insulin-stimulated glucose transport in 

L6 myocytes (Begum and Ragolia 1996). However, direct effects of TNF on muscle 

rather than cell lines are less certain. Recently Nolte et al ((Nolte et al. 1998) showed 

that exposure of isolated soleus muscles to 6 nmol.L-1 TNF for 45 min had no effe~t 

on insulin-stimulated tyrosine phosphorylation of the insulin receptor or insulin 

receptor substrate-1 or on phosphatidylinositol 3-kinase association with the insulin 

receptor substrate-1. More importantly, incubation of epitrochlearis and soleus 

muscles with 6 nmol.L-1 TNF for 45 minor 4 hours, or epitrochlearis muscles with 2 

nmol.L-1 for 8 hours had no effect on insulin-stimulated 2-deoxyglucose uptake. 

Studies in this laboratory, as well as others, have shown that in addition to its many 

direct metabolic actions on skeletal muscle, insulin also has haemodynamic effects 

that may increase access of insulin and glucose to muscle (Baron and Clark 1997, 

Rattigan et al. 1997b, Yki-Jarvinen and Utriainen 1998). Insulin's haemodynamic 

effects comprise two components. One is concerned with increasing the total blood 

flow to skeletal muscle via a nitric oxide (NO)-dependent vasodilation (Steinberg et 

al. 1996). Thus if a nitric oxide synthase inhibitor was present, insulin-mediated 

glucose uptake was blocked by about 30% (Baron and Clark 1997). The second 

involves an increase in capillary recruitment (or nutritive flow) within skeletal muscle 

(Rattigan et al. 1997b). Measurement of capillary exposure (or nutritive flow) was 

assessed using 1-MX metabolism. Metabolism of this exogenously added substrate 

for capillary endothelial xanthine oxidase was shown to increase in the presence of 

insulin (Rattigan et al. 1997b). In addition, if a-methyl serotonin (a met5HT), an 

agent that prevented capillary recruitment was administered, the ability of insulin to 

increase either total blood flow or capillary recruitment was markedly impaired and 

insulin-mediated glucose uptake was blocked by 60% (Rattigan et al. 1999). Thus, 
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on the one hand mindful of the strong association of TNF with insulin resistance in 

viva, and on the other with the failure of TNF to cause insulin resistance when 

incubated with isolated muscles, we undertook the present study to assess whether 

TNF could induce insulin resistance in viva by influencing haemodynamic 

parameters. 

7.2 Methods 

7.2.1 Experimental Procedures 

Male rats (245 ± 3 g) were anaesthetised and underwent surgery as described in 

Chapter 2. Once the surgery was complete and the rat had equilibrated, animals were 

allocated into either control (saline or TNF alone) as shown in Protocol A (Figure 7-

1 ), or euglycaemic insulin clamp (insulin alone or TNF +insulin) group (Protocol B, 

Figure 7-1) (n = 6-10 in each group). Saline and TNF infusions were matched to the 

volumes of insulin and glucose infused during the clamp. TNF (mouse recombinant, 

Sigma Aldrich Inc) was dissolved in saline and 0.1 % bovine serum albumin. 1-MX 

infusion (0.4 mg.min-1.kg-1
) was commenced at 60 min prior to the end of the 

experiment and a bolus dose of [3H]2DG administered for measurement of 2DG 

uptake as described in Chapter 2. 

7.2.2 Statistical Analysis 

In order to ascertain differences between treatment groups at the end of the 

experiment (120 min), one way analysis of variance (ANOV A) was used. When a 

significant difference (P < 0.05) was fou~d, Dunnett's test was used to determine 

which times were significantly different from saline control (for femoral blood flow, 

arterial blood pressure, femoral vascular resistance, arterial glucose and 1-MX, 

hindleg glucose extraction and uptake and hindleg 1-MX extraction and 

disappearance). Pairwise comparisons were made using the Student-Newman-Keuls 

Method. An unpaired student's t-test was used to determine whether there was a 

significant difference (P < 0.05) between the glucose infusion rates at the conclusion 

of the experiments. The t-test was also used to test whether the arterial plasma TNF 

concentrations were significantly different between the treatments. All tests were 

performed using the SigmaStat™ statistical program (Jandel Software Corp.). 
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Figure 7-1 Study design. 

In both the control (Protocol A) and the euglycaemic clamp groups (Protocol B), 

either saline or TNF infusion was commenced at time= -60 min. During protocol B, 

insulin infusion was started at time = 0 min. Duplicate arterial and femoral venous 

plasma samples were collected at 120 min, as indicated by "El@, for HPLC analysis 

and plasma glucose determinations. Arterial samples for glucose determinations are 

indicated by •. Venous infusions are indicated by the bars. 
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7.3 Results 

7.3. l Haemodynamic Effects 

Figure 7-2 shows the femoral blood flow (FBF), mean arterial blood pressure and 

hindleg vascular resistance following saline or TNF infusions and following insulin 

or TNF plus insulin infusions at the completion of the experiment (120 min). TNF 

infusion alone had no significant effect on any of these haemodynamic parameters, 

although it did significantly (P < 0.05) decrease heart rate compared with saline 

infusion (350 ± 8 v's 391 ± 13 bpm). Insulin infusion alone caused a significant 

increase (70%) in femoral blood flow (0.91±0.11to1.51±0.14 ml.min-1
) by the end 

of the experiment. Since blood pressure was unchanged this corresponded to a 35% 

decrease in hindleg vascular resistance. The insulin-mediated increase in femoral 

blood flow and decrease in hindleg vascular resistance was completely prevented 

during infusion with TNF. 

7.3.2 Glucose Metabolism 

There was no significant difference in arterial blood glucose concentration between 

any of the treatment groups at either the beginning of the experiment (time= 0 min) 

or at the end (time= 120 min). During the euglycaemic insulin-clamp experiments, 

arterial blood glucose was maintained at or above basal values by infusion of glucose. 

At the conclusion of the experiment, the whole body glucose infusion rate required to 

maintain euglycaemia during the insulin alone infusions (22.5 ± 0.4 mg.min-1.kg-1
) 

was significantly higher (17%) (P < 0.001) compared to the TNF +insulin infusions 

(18.6 ± 0.4 mg.min-1.kg-1
). 

Arterial plasma insulin concentrations in the insulin treated animals (1226 ± 118 pM) 

were not significantly different from the insulin+ TNF (1388 ± 107 pM) infused rats 

at the end of the clamp. 

Hindleg glucose extraction and uptake were significantly increased during the 

euglycaemic insulin clamps (Figure 7-3). TNF infusion alone had no effect upon 

either hindleg glucose extraction or uptake, but significantly decreased both the 

insulin-mediated hindleg glucose extraction (by 21 %) and uptake (by 47%). This 
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latter effect may be even greater as there was no significant difference between the 

hindleg glucose uptake during the TNF + insulin infusions and the saline or TNF 

alone experiments; TNF blocked extraction and flow were each contributory. 
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7.3.3 Arterial Plasma TNF levels 

Arterial plasma TNF concentrations in the TNF infusion only group (1404.3 ± 210.6 

pg.mr1
) were not significantly different from the TNF +insulin animals (1270.4 ± 

216.9 pg.mr1
) (P = 0.67). Animals infused with insulin only (and not infused with 

TNF) had arterial plasma TNF values of 14.2 ± 7.9 pg.ml-1
, and these were 

significantly lower than the TNF-infused animals (P < 0.001). The level of TNF in 

saline infused rats was generally undetectable. 

7.3.4 [3 HJ 2-Deoxyglucose Uptake 

[3H] 2-deoxyglucose (2DG) was administered for the final 45 min of each 

experiment. Figure 7-4 shows uptake values for soleus and plantaris muscles 

removed at the completion. TNF alone tended to cause a small decrease in 2DG 

uptake in both the soleus and plantaris muscles, but this was not significant. Insulin 

infusion alone resulted in a marked increase in 2DG uptake in both the soleus (5.7-

fold; from 1.9 ± 0.4 to 11.0 ± 0.4; P < 0.001) and plantaris (6.3-fold; from 1.2 ± 0.1 to 

7.6 ± 0.6; P < 0.01). However, when combined with TNF infusion, the insulin­

mediated increase in 2DG uptake by both soleus and plantaris muscles was 

si~ificantly blocked (43% and 57%, respectively). 
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Figure 7 -4 [3H] 2-deoxyglucose uptake values for soleus and plantaris muscle. 

Values are means± SE for 5-6 animals in each group. * Significantly different (P < 

0.05) from saline values, # Significantly different from insulin alone. 

7.3.5 1-MX Metabolism 

No significant difference was found between the experimental groups in arterial 

plasma concentrations of 1-MX (Figure 7-5) or oxypurinol (P = 0.51 and P = 0.41 

respectively), the metabolite of allopurinol and inhibitor of xanthine oxidase. Insulin 

infusions alone significantly increased hindleg 1-MX metabolism (Figure 7-5). This 

resulted from the combined trend of insulin to increase 1-MX extraction and marked 

effect to increase femoral blood flow (Figure 7-2). When TNF was combined with 

the insulin, the increase in 1-MX metabolism was completely abolished. TNF 

infusion alone did not affect 1-MX metabolism. 
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Figure 7-5 Systemic and hindleg 1-MX values of control groups (saline or TNF alone) and euglycaemic insulin clamp groups (insulin 

alone or insulin + TNF) at 120 min. 

Values are means± SE for 6 - 10 animals in each group. *Significantly different (P < 0.05) from saline values. 
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7.4 Discussion 

Two findings emerge from this study. Firstly, acute administration of TNF led to 

marked insulin resistance with decreased insulin-mediated 2DG uptake by individual 

muscles, decreased hindlimb glucose uptake and decreased whole body glucose 

infusion. Secondly, the inhibitory effect of TNF appears to be wholly haemodynamic 

in that insulin-mediated increases in femoral blood flow and capillary recruitment 

were totally blocked. Most striking was the effect of TNF on insulin-mediated 

increases in capillary recruitment as measured by 1-MX metabolism. This substrate 

has been used by this research group in two previous studies in vivo (Rattigan et al. 

1997b, Rattigan et al. 1999) as a marker for capillary (nutritive flow) in muscle. In 

addition, it has been shown that in the constant flow perfused rat hindlimb 1-MX 

metabolism is decreased when the proportion of nutritive:non-nutritive flow is 

decreased pharmacologically (Rattigan et al. 1997a) and increased when the ratio is 

increased, for example, with exercise (see Chapter 3). In addition, we have shown in 

vivo that insulin increases the metabolism of 1-MX independently of changes in total 

flow, leading to the conclusion that insulin mediates an' increase in capillary 

recruitment as part of its action to increase glucose uptake by muscle. Moreover, in a 

recent study we have shown that the vasoconstrictor, a-methyl serotonin, which 

decreased the proportion of nutritive flow in perfused muscle, caused an acute state of 

insulin resistance in vivo. Thus insulin-mediated increases in femoral blood flow, 

hindleg glucose uptake and hindleg 1-MX disappearances were all markedly inhibited 

(Rattigan et al. 1999). Indeed there are striking similarities between the effects of a­

methyl serotonin in that study and the effects of TNF in the present study, suggesting 

that the mechanisms may be similar. From isolated perfused hindlimb studies 

(Newman and Clark 1999), and the increase in blood pressure in vivo (Rattigan et al. 

1999), it would appear likely that a-methyl serotonin acts in vivo to constrict vessels 

preventing access to the nutritive capillaries and thereby preventing insulin's action to 

recruit capillaries. TNF, however, does not increase blood pressure in the way which 

a-methyl serotonin does and so its effects are unlikely to involve a redistribution of 

blood flow to the detriment of insulin's action to recruit capillaries. Rather, the effect 

of TNF, directly or indirectly, is more likely to involve an inhibitory effect at the 

level of signal transduction. Candidate targets include tyrosine phosphorylation of 

the insulin receptor or insulin receptor substrate-I, or the association of 
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phosphatidylinositol 3-phosphate kinase with phosphorylated insulin receptor 

substrate-1 (Nolte et al. 1998). Most favored among these is the activation of p55 

and/or p75 TNF receptor leading to IRS-1 serine phosphorylation that then blocks 

insulin signalling (Hotamisligil 1999). What is not clear is whether the effects of 

TNF occur at the skeletal muscle cell where a putative vasodilator capable of 

increasing capillary recruitment might be released or at the vascular tissue where 

insulin may act directly to enhance flow. These issues are beyond the scope of the 

present study and may only be resolved when tissue specific receptor deleted animals 

are compared. It is unlikelythat TNF directly inhibits xanthine oxidase, as there was 

no effect of TNF on hindleg 1-MX disappearance when added alone (Figure 7-5). 

The finding that TNF administration prior to and during the hyperinsulinaemic 

euglycaemic clamp causes insulin resistance is not new and has been shown by others 

(Ling et al. 1994). In that study TNF was administered initially as a 10 µg.kg· 1 bolus 

followed by a continuous infusion of 10 µg.kg-1 over 3 hours. Thus a total of 20 

µg.kg- 1 was administered. In the present study, we infused 0.5 µg.kg- 1 per hour over 

3 hours, giving rise to a total of 1.5 µg.kg- 1
• This is perhaps more physiological, 

given that mini osmotic pump delivery of TNF at 0.5 µg.kg- 1 per hour for 4-5 days 

has been shown to give a serum concentration of 309 ± 47 pg.m1-1 (Miles et al. 1997), 

which compares favourably with serum levels of around 200 pg.mr1 for genetically 

obese insµlin resistant animals (Kimura et al. 1998). In humans the levels of TNF in 

serum are somewhat lower. For example, TNF serum levels in Type II diabetics (90 

± 10 pg.ml-1
), and obese patients (78 ± 12 pg.mr1

) and control subjects (20 ± 8 pg.ml-

1) (Winkler et al. 1998), altho~gh, levels in patients with peritoneal adhesions after 

abdominal surgery are as high as 261±88 pg.ml-1 (Saba et al. 1998). 

At first glance the present findings might seem at odds with the recent report by Nolte 

et al. ((Nolte et al. 1998) that exposure of isolated incubated muscles to TNF (up to 6 

nmol.L-1 or 102 ng.m1-1 for 4 hours) had no effect on insulin signaling or insulin­

mediated glucose uptake. This may mean that the inhibitory effects of TNF on 

insulin action are targeted exclusively at the vascular tissue, which is a minor 

component of incubated muscles and if modified could not affect insulin action which 

reaches the muscle by diffusion in this preparation. 
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In conclusion, acute administration of TNF causes insulin resistance in muscle and 

may involve effects exerted directly or indirectly at the vascular level to prevent 

insulin action to increase total limb blood flow and capillary recruitment. These two 

effects of insulin are likely to be separate as increasing limb blood flow (Rattigan et 

al. 1997b) does not necessarily increase capillary (nutritive) flow. Finally, the 

findings suggest that at least 50% of the increase in muscle glucose uptake due to 

insulin is mediated by a haemodynamic contribution involving capillary recruitment. 
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CHAPTERS 

Final Discussion 

8.1 Summary of Thesis 

The most recognisable action of insulin is to increase glucose uptake into skeletal 

muscle, by increasing glucose transporter translocation to the plasma membrane and 

activation of downstream glucose metabolic pathways (Kahn 1994). In recent times, 

a number of studies have reported that in addition to its metabolic action to increase 

muscle glucose uptake, insulin has a haemodynamic effect upon the vasculature to 

increase total blood flow to the muscle (Baron 1994). However, some dispute these 

findings, claiming no blood flow increase occurs within skeletal muscle in the 

presence of insulin (DeFronzo et al. 1981, Jackson et al. 1986, Natali et al. 1990, 

Richter et al. 1989). Other researchers support the notion that insulin possesses this 

capability, but there is debate as to whether or not this flow increase is simply a 

phenomenon that occurs at higher than physiological insulin doses, or when the 

subject is exposed to insulin for a long period of time (Yki-Jarvinen and Utriainen 

1998). Furthermore, it is contentious whether or not the insulin-mediated increase in 

total flow is actually involved in the determining overall rates of insulin-stimulated 

glucose disposal (Laine et al. 1998). If it were, then an increase in total blood flow to 

a limb should result in a corresponding increase in glucose uptake. To this end, 

Baron et al. (1991, 1994) demonstrated that insulin induced a dose-dependent 

increase in leg blood flow that closely paralleled its effect on leg muscle glucose 

uptake (Baron et al. 1991, Baron et al. 1994). Furthermore, this relationship held in 

patients who were obese or suffered from NIDDM, but the magnitude of each effect 

of insulin was decreased (Baron 1994, Laakso et al. 1992). In addition to this, 

impaired insulin-mediated increases in total blood flow have been noted in patients 

with hypertension (Baron et al. 1993a), obesity (Baron et al. 1990), NIDDM (Laakso 

et al. 1992), IDDM (Baron et al. 1991), and aging (Meneilly et al. 1995). 

All of the studies mentioned so far in this chapter measured only total blood flow into 

skeletal muscle and they did not investigate the possibility that changes in blood flow 
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distribution could occur within the muscle itself. It was not realised that insulin could 

have other haemodynamic actions until Rattigan et al. (1997) published a paper 

showing that insulin not only increased total blood flow within skeletal muscle, but 

also stimulated metabolism of 1-MX, a putative indicator of capillary recruitment 

within the muscle (Rattigan et al. 1997b). However the increase in capillary 

recruitment may not be the result of increased total flow as similar increases in total 

flow induced using epinephrine were not accompanied by increases in 1-MX 

metabolism or glucose uptake (Rattigan et al. 1997b). In addition, the increase in 

capillary recruitment appeared to account for a significant part of the insulin­

mediated increase in glucose uptake into skeletal muscle. Thus, when a state of acute 

insulin resistance was induced in rats in vivo using the vasoconstrictor, a-methyl 

serotonin, insulin-mediated glucose uptake was significantly decreased. Furthermore, 

the insulin-stimulated increase in total blood flow was abolished and insulin's ability 

, to increase 1-MX metabolism was almost entirely removed (Rattigan et al. 1999). 

As mentioned previously in this thesis, the method used to measure capillary 

recruitment in these studies by Rattigan et al. (1997, 1999) was based on specific 

metabolism of 1-methylxanthine by capillary endothelial xanthine oxidase. The work 

presented in this thesis makes several advances to this knowledge by (a) consolidating 

the applicability of the 1-MX method for capillary recruitment and by (b) introducing 

a second techniq~e (laser Doppler flowmetry) for the measurement of capillary 

recruitment (nutritive flow) within skeletal muscle, suitable for use in both in 

hindlimb perfusion and in vivo. Chapter 3 shows that exercise in skeletal muscle (as 

induced via sciatic nerve stimulation) gave rise to an increase in 1-MX metabolism. 

Since muscle exercise is known to lead to substantial increases in capillary 

recruitment, this strengthened the proposition that 1-MX metabolism was indeed an 

index of capillary recruitment. 

Armed with the information that 1-MX metabolism is now likely to be a valid 

indicator of capillary recruitment, a further advance was made concerning TNF­

induced insulin resistance (see Chapter 7). TNF infusion produced an insulin 

resistant state in rats in vivo within 3 hours. Not only was the insulin-mediated 

increase in total flow prevented from occurring, but also the insulin-mediated 
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capillary recruitment was completely prevented. Thus, it is likely that TNF exerts its 

effect by acting directly or indirectly upon the vasculature to prevent insulin's action 

to increase capillary recruitment and total hindleg blood flow. 

Not all of the models of insulin resistance investigated so far can be explained by 

impaired haemodynamics. Sciatic nerve severance (see Chapter 6) leads to an insulin 

resistant state in perfusion as early as 3 hours post-surgery. However, no change was 

seen in either total flow to muscle (as measured by fluorescent microsphere 

entrapment) or nutritive flow (as measured by 1-MX metabolism). Thus 

haemodynamic changes would not appear to account for the insulin resistance caused 

by severing the sciatic nerve. 

The need for other methods to support the findings obtained using the 1-MX method 

prompted the investigation of laser Doppler flowmetry (LDF) as a possible means of 

measuring nutritive and non-nutritive flow in perfusion (see Chapter 4) and in viva 

(see Chapter 5). Also, work by collaborators in the United States to adapt the 1-MX 

method for use in human subjects has commenced. However, at this time, it is 

premature to discuss the findings in this thesis. 

Early laser Doppler flowmetry equipment was developed mainly to study 

microvascular flow in superficial tissue layers, and the majority of the literature 

reports the use of LDF for measurement of cutaneous perfusion (Forst et al. 1998, 

Gonzalez-Darder and Segura-Pastor 1994, Holloway and Watkins 1977). Those 

studies aimed to measure the changes in perfusion of the skin capillaries under a 

variety of conditions. However, there are a number of studies where LDF is 

purported to measure microvascular perfusion in muscle (Leahy et al. 1999). One 

study published in 1987 reports a method for monitoring blood flow within muscle 

using-insertable single-fibre LDF probes (Salerud and Oberg 1987). Further to this, 

Cai et al. (1996) modified the LDF probes to minimise the trauma to muscle tissue 

upon insertion of the LDF probe (Cai et al. 1996). Another study reported that 

changes in local tissue perfusion, of the exposed rabbit tenuissimus muscle, induced 

by various stimuli could be quantitated using high-resolution LDF (Linden et al. 

1995). Thus, those studies and others (Skjeldal et al. 1993, Tyml and Ellis 1985) 

concluded that LDF can be used to measure muscle perfusion. However, work from 
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Kuznetsova et al. (Kuznetsova et al. 1998) and from this laboratory using stationary 

LDF probes, insertable LDF probes and scanning LDF systems (see Chapters 4 and 

5) all suggest that LDF is specifically measuring the distribution of capillary blood 

flow within muscle. As discussed in Chapter 4, the larger surface probes were unable 

to distinguish between regions of nutritive and non-nutritive flow due to their size and 

the average signal reflected predominantly nutritive flow. In contrast, the smaller, 

impaled microprobes showed a distinct heterogeneity in their response depending on 

whether they were inserted into a 'nutritive' or 'non-nutritive' site, or indeed a mixture 

of the two. An important advance as a result of this work is the demonstration of 

differing patterns of flow, albeit nutritive and non-nutritive flow, within skeletal 

muscle. These discrete sites are seen upon insertion of the impaled microprobes and 

the findings support the results seen using the 1-MX method. Chapter 5 demonstrates 

that when insulin is present in viva, there is a significant increase in nutritive flow as 

measured using LDF. Figure 9-1 shows a correlation between data obtained by 

Rattigan et al. (Rattigan et al. 1997b) using the 1-MX metabolism to measure changes 

in capillary recruitment due to insulin, epinephrine and saline, and data presented in 

this thesis (Chapter 5) showing changes in LDF under the same conditions in viva. 

Thus, application of both the 1-MX method and LDF appear to be indicating similar 

outcomes. Furthermore, LDF is capable of measuring these changes in a more direct 

manner than 1-MX metabolism. 
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Figure 8-1 Correlation between 1-MX disappearance and LDF in vivo in the 

presence of insulin (•), epinephrine (0) or saline (e). 

8.2 Other Studies 

Early work in rats in vivo shows that changes in capillary perfusion within muscle can 

be measured using contrast-enhanced ultrasound. Relative blood volume during a 

steady state of insulin infusion was significantly higher than that observed during 

infusion of saline alone (see Table 8-1) (personal communication, Jonathan Lindner, 

University of Virginia Medical Centre, Charlottesville, USA). The relative 

microvascular blood volume is significantly increased during the course of the 

experiment of in both saline (P < 0.05) and insulin-treated (P < 0.001) animals. 

However, the size of the increase is much smaller in animals infused with saline than 

those infused with insulin. Post-infusion, there is a significant increase in relative 

capillary blood volume in insulin-treated rats compared with the saline group (P < 
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0.05). This increase in relative muscle blood volume corresponded with significant 

insulin-mediated increases in 1-MX metabolism seen in the same animals. 

Table 8-1 Change in relative microvascular blood volume due to infusion of 

either insulin or saline, as measured using contrast-enhanced ultrasound of the 

rat hindleg. 

Saline infusion 

Insulin infusion 

Relative Blood Volume 

(Basal) 

4.7±0.7 

4.1±1.7 

Relative Blood Volume 

(Post infusion) 

7.9 ± 2.0* 

12.5 ± 3.3** # 

Values are means± SD. *, P < 0.05 relative to basal. **, P < 0.001 relative to basal. 

#' P < 0.05 relative to saline post infusion (Student's t test). Personal communication 

from Jonathan Lindner, University of Virginia Medical Centre, Charlottesville, USA. 

Similar data to that presented above can be seen from work by Coggins et al. using 

the human forearm clamp model (Coggins et al. 1999). In an attempt to measure 

insulin-mediated changes in capillary flow distribution in human skeletal muscle, 

Coggins et al. (1999) used contrast-enhanced ultrasound to measure microvascular 

blood volume (Coggins et al. 1999). Microvascular flow velocity was also 

determined from the relationship between the ultrasound pulsing interval and video 

intensity during constant intravenous infusion of albumin microbubbles. Results 

showed that upon infusion of a physiological dose of insulin or saline for 3 hours, 

there was a significant increase in glucose uptake as compared with saline controls. 

Furthermore, insulin also led to a significant increase in microvascular volume (MV 

VOL) and decreased microvascular velocity (MV VEL), without significantly 

increasing total forearm blood flow as shown in Table 8-2 (Coggins et al. 1999). 

Their data further supports the rat data communicated by Lindner (see above) and 
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work using LDF and 1-MX showing that insulin administration leads to increased 

capillary recruitment within skeletal muscle in viva in rats. 

Table 8-2 Changes in microvascular volume (MV VOL) and velocity (MV 

VEL), forearm blood flow, and glucose uptake as a result of forearm insulin 

infusion in healthy human subjects. 

Glucose [Insulin] MVVOL MVVEL Forearm 

uptake blood flow 

µmoVmin/lOOml µU/ml mVmin 
- - - - - - --- - - - - - - ---- - -- -- ---

Time Ohr 3hr Ohr 3hr Ohr 3hr Ohr 3hr Ohr 3hr 

Insulin 1.2 3.6* 5 58* 14 22* 0.32 0.16* 66 86 

Saline 1.4 1.4 4 4 13 14 0.25 0.2 63 71 

Values shown are the means from 10 subjects (6 infused with insulin and 4 with 

saline). *, P < 0.05 versus 0 hr. Reproduced from Coggins et al. (Coggins et al. 

1999). 

Another area which warrants further study is the possibility that other methods 

targeted at measuring capillary blood flow distribution within skeletal muscle may be 

developed using the same principles as the 1-MX method is based on. Infusion of 

substances that, like 1-MX, are metabolised by capillary enzymes could be used to 

measure nutritive flow in muscle. Examples of possible candidates include 

angiotensin-converting enzyme (ACE) which is located in the endothelial cells of 

skeletal muscle capillaries (Schaufelberger et al. 1998), and alkaline phosphatase. 

Similarly, methods aimed at measuring non-nutritive flow could involve targeting 

connective tissue enzymes, such as UDP glucosyl transferase, or enzymes involved in 

collagen synthesis. Another enzyme to measure non-nutritive flow has already been 

investigated recently by Clerk et al. (2000). That study demonstrated that during a 

state of high non-nutritive flow (produced by serotonin infusion) where oxygen 
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consumption was decreased, triglyceride hydrolysis was significantly enhanced as 

shown in Table 8-3 (Clerk et al. 2000). This indicates that lipoprotein lipase activity 

is greater when non-nutritive flow predominates and appears to be attributable to 

resident adipocytes located on the non-nutritive connective tissue vessels (Clerk et al. 

2000). 

Table 8-3 Effect of serotonin on triglyceride (TO) hydrolysis, V02 and perfusion 

pressure in the perfused rat hindlimb at constant-flow 

Control Serotonin 

TG hydrolysis (nmol FFNh/g) 184 ± 28 602 ± 132* 

V02 (µmol/g/h) 16.7 ± 0.6 10.2 ± 1.0# 

Perfusion pressure (mmHg) 70.6 ± 5 170 ± 27* 

Perfusions were performed at constant-flow. Values are means± SE. *, P < 0.05; #' 

P < 0.001 for serotonin v's control. Table modified from Clerk et al. (Clerk et al. 

2000). 

9.3 Towards the Future 

The most important point emerging from this thesis is the congruence between two 

independent methods to measure capillary recruitment within skeletal muscle. 

Agents known to increase nutritive flow in perfusion also show an increase in LDF 

signal. Conversely, agents known to decrease nutritive flow in perfusion, result in a 

decrease in LDF signal and a decline in 1-MX metabolism. Furthermore, in vivo 

under hyperinsulinaemic euglycaemic clamp conditions, insulin increases both 1-MX 

metabolism and LDF signal. 
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Further development of both the 1-methylxanthine metabolism method and laser 

Doppler flowmetry for use in human subjects will pave the way for application of 

these techniques in the clinical setting. In order to be applicable for humans studies, 

the LDF probe would have to be redesigned to incorporate the properties of the 

currently used surface probe for measuring signals from no less than 1 mm3
, and be 

suitable for implantation. With this attended to, it will be possible to assess insulin­

mediated muscle haemodynamic responses using LDF. These methods, together with 

additional techniques including contrast-enhanced ultrasound, could be used 

clinically to monitor the state of microvascular perfusion or nutritive flow in obese, 

hypertensive or Type II diabetic patients. 
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