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ABSTRACT 

Caves represent one of few remaining isolated planetary habitats, in terms of human 

impact and characterisation of microbial biodiversity. Caves are unique environments 

characterised by little or no light, low levels of organic nutrients, high mineral 

concentrations and a stable microclimate providing ecological niches for highly specialised 

organisms. Caves are not uniform environments in terms of geological and geochemical 

characteristics, as they can vary from one to the other, eg. rock type, method of formation, 

length, depth, number of openings to the surface, presence or absence of active streamways, 

degree of impact by human visitation etc. Furthermore, on a smaller scale, various 

microhabitats, with vast differences in community structure can exist within caves. Culture 

studies point to the dominance of actinomycetes in caves and reveals great taxonomic 

diversity within actinomycetes isolated. However it is widely accepted that only - 1 % of 

microbes are cultured in the laboratory. Culture-independent methods are being 

increasingly used to describe the composition of microbial communities and reveal 

significantly broader diversity than culture-based studies. Nevertheless, to date our 

knowledge of bacterial communities in caves is largely due to culture studies. Based on the 

literature available, this study was initially aimed at examining culturable vs. non-culturable 

diversity of actinomycetes in Entrance and Loons Caves and to gain an increased 

understanding of the composition of cave microbial communities employing classical 

isolation and advanced molecular detection methods. 

As the study progressed the focus evolved as it became apparent that actinomycetes 

dominated only very specific habitats, the dry sediment in Entrance Cave, and represented 

only a minor fraction of the microbial biodiversity of most other microhabitats studied. 

Entrance Cave dry sediments and inactive (dry) speleothems produced a higher number of 

actinomycete isolates compared to saturated sediments and wet formations from Entrance 

and Loons Caves. This was reinforced by the actinomycetes being the second most abundant 

group (26.8%) detected in clone analysis of the dry Entrance sediment and low abundances 

(4-16%) detected in saturated sediments from both Entrance and Loons Caves. Sediment 

phylotypes and isolates identified in this study closely resemble species associated with 

oligotrophic, chemolithotrophic and heterotrophic lifestyles indicating that these 

communities survive by utilising a combination of metabolic pathways. Bacteria involved in 

the nitrogen and sulfur cycles were important members of all sediment communities along 

with hydrogen-oxidising bacteria. Pair-wise comparisons of sediment communities 

demonstrated that they were more similar to each other within individual cave systems, 

Entrance and Loons, rather than between microhabitat types (dry vs. wet sediment) though 

saturated sediment from Entrance Cave did show a higher degree of similarity in 

community composition to Loons Cave samples than the dry sediment from Entrance Cave. 

Saturated sediments were dominated by oligotrophs able to fix atmospheric gases, 

methanotrophs and had a high proportion of rare phylotypes most likely representing new 
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lineages related to microbes detected in anaerobic, anoxic environments, but low 

abundances of heterotrophic microbes. 

Geornicrobiological activities are no longer underestimated since studies have 

shown that bacterial metabolism may lead to mineral precipitation or dissolution. Questions 

remain as to the identity of these microbes and whether they are actively involved in 

speleothem formation, or simply buried during mineral precipitation. Results demonstrated 

a marked difference between sediment communities and those associated with calcite 

speleothem and calcite mat samples. Results of ESEM and XRD analysis demonstrated that 

calcite speleothem samples ME3 and MXl are true calcite moonrnilk (mondmilch). 

Phylogenetic analyses and isolation results demonstrated the unique composition of the 

microbial communities associated with moonrnilk deposits, predominantly composed of 

nitrogen-fixing ~-Proteobacteria and psychrotrophic heterotrophic CFBs and to a lesser 

extent, heterotrophic actinomycetes. Despite XRD and ESEM analysis showing similar calcite 

composition and crystal morphology, phylogenetic results indicated that sample ME2 

represented a very different rnicrohabitat to moonmilk samples, dominated by oligotrophic 

a.-Proteobacteria and heterotrophic actinomycetes composing 84.2% of the total diversity. 

Phylogenetic analyses and biodiversity indices reveal the striking similarities between 

moonmilk samples from both Entrance and Exit Caves and the uniqueness of the calcite mat 

in Entrance Cave. The one similarity in composition between all three calcite communities 

was the presence of members of the Pseudonocardineae in particular of the genus 

Saccharothrix, in all calcite samples. 

165 rRNA gene sequencing of cave isolates detected high levels of diversity and 

novelty, particularly of moonrnilk isolates. A total of two putatively novel genera (within the 

CFBs and Actinobacteria) and 18 putatively novel species (of genera: Paracoccus, 

Actinoplanes I Couchioplanes, Micromonospora, Amycolatopsis, Saccharothrix, Bacillus, 

Paenibacillus, Methylobacterium, Porphyrobacter, Sphingomonas, Alcaligenes, Stenotrophomonas, 

Xanthomonas) were identified. 

This study represents the first reported culture-independent analysis of moonrnilk 

microbial communities globally and of cave sediment communities in the Southern 

Hemisphere. Information gained from this study and the discovery of actively growing 

microbial communities appearing to precipitate CaC03 provides focus for important future 

studies and represents a unique opportunity to examine the nature and extent of complex 

microbe-mineral interactions in the formation of speleothems and implications for cave 

management. The biodiversity described acts as a baseline for assessing environmental 

impacts and to identify factors influencing microbial biodiversity. 

5 



ACKNOWLEDGEMENTS 

I would like to sincerely thank the following people: 

The University of Tasmania, Australian Biological Resources Study and Tasmanian Institute 

of Agricultural Research for funding that not only made this project possible but also 

allowed the work to be presented at several conferences, both nationally and internationally. 

National Parks and Wildlife Service, Tasmania, for in-kind support of the project including 

permits, data and advice. 

Supervisors, Dr. David Nichols and Dr. Kevin Sanderson, for managing to capture my 

interest in the project, open doors for me and remain focused to the end. 

Tom McMeekin, Tom Ross, Mark Brown, Adam Smolenski, Sharee McCammon, David 

Steele, Ralph Bottril, Susan Turner, Olivier Brassiant, Jill Rowling, Bill Cohen, Brendon 

Bateman and particularly John Bowman and Diana Northup, for technical expertise, 

excellent advice and helping me find direction when needed. 

The School of Agricultural Science, particularly the fantastic Microbiology Group, for 

providing endless opportunities, support and so many fond and entertaining memories. 

Including, but not solely, Kathleen Shaw, Guy Abel, Andrew Bisset, Matthew Smith, Shane 

Powell, Liv McQuestin, Laurie Parkinson, Andy Measham, Jane Weatherly, Heather Haines 

and Jimmy Twin. Special thanks to Lyndal Mellefont, Kristen Stirling and Craig Shadbolt. 

On a personal note, I am truly amazed at the overwhelming support from everyone in my 

life, I value that friendship more than you'll ever realise. There are so many people to thank, 

but special notes to, Kriss and Sarah Lawler, Mark van den Berg, Mark Jones, Nat Doran, 

Hill-Streeters Andy Wilson, Lee-Roy Evans and Kath Fearnley-Sander, Bee Hart, the 

Marauders, especially my girls and Sonya Enkleman, and for keeping me sane all these 

years, Tracey Brewer and Miss Holly Taylor. 

My wonderful extended family for so much love, support and unquestioning faith that I will 

succeed. My parents, Lorraine and Peter van de Kamp, my siblings, Jas, Brad, Laura and 

Steven, and their partners, Megs, Bridg and Justie, who never quite understood why I stayed 

at 'school' for so long, but have always been there for me. 

Finally, and certainly not least of all, Brendon, who always does what he can to help, has put 

up with me over these last few months without complaining (much©) and most of all is so 

full of support for the next stage of the journey. Thank you. 

6 



TABLE OF CONTENTS 

MICROBIAL BIODIVERSITY IN TASMANIAN CAVES ................................... 1 

SECTION 1: ..................................................................................................................... 9 

LITERATURE REVIEW - MICROBIAL ECOLOGY OF CAVES ........................ 9 

1.1 MICROBIAL ECOLOGY ........................................................................................................ 9 
1.1.1 OBJECTIVES OF MICROBIAL ECOLOGY .............................................................................. 9 
1.1.2 METHODS IN MICROBIAL ECOLOGY AND TAXONOMY .................................................... 10 
1.1.2.1 BIODIVERSITY ............................................................................................................... 10 
1.1.2.2 COMMUNITYFlNGERPRINTING ...................................................................................... 12 
1.1.2.3 ECOLOGICALF'UNCTION ................................................................................................ 13 
1.1.3 LIMITATIONS OF METHODS .............................................................................................. 16 
1.2 CAVES ................................................................................................................................. 19 
1.2.l SPELEOGENESIS: CAVEFORMATION ................................................................................ 19 
1.2.2 SPELEOTHEMS: CAVE DECORATION ................................................................................ 20 
1.2.3 CAVE ENVIRONMENT ....................................................................................................... 21 
1.2.4 SPELEOLOGY: CA VE STUDY ............................................................................................. 22 
1.3 MICROBIAL BIODIVERSITY AND ECOLOGY OF CAVES ••••••••••••••••••••••••••••••••••••••••••••••••••• 24 
1.3.1 CHEMOLITHOAUTOTROPHIC SYSTEMS ............................................................................. 25 
1.3.1.1 SULFUR-BASED SYSTEMS .............................................................................................. 25 
1.3.1.2 IRON, MANGANESE, NITRITE, AND OTHER SYSTEMS .................................................... 27 
1.3.2 HETEROTROPHIC SYSTEMS .............................................................................................. 29 
1.3.3 ACTINOMYCETES IN CAVES ............................................................................................. 31 
1.3.3.l ACTINOBACTERIA .......................................................................................................... 36 
1.3.3.2 ACTINOMYCETES ........................................................................................................... 36 
1.3.3.3 ACTINOMYCETE TAXONOMY ........................................................................................ 37 
1.3.3.4 ACTINOMYCETE ECOLOGY ............................................................................................ 38 
1.4 GEOMICROBIOLOGY •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 40 
1.4. l GEOMICROBIOLOGY IN CAVES ......................................................................................... 40 
1.4.2 MICROBIALLY MEDIATED CAC03 PRECIPITATION ........................................................ .43 
1.4.3 MOONMILK ....................................................................................................................... 46 
1.5 SIGNIFICANCE .................................................................................................................... 52 
1.5.1 BIODIVERSITY AND CONSERVATION VALUE ................................................................... 52 
1.5.2 BIOPROSPECTING .............................................................................................................. 53 
1.5.3 BIOREMEDIATION ............................................................................................................. 54 
1.5.4 BIODETERIORATION & BIOMINERALISATION PROCESSES ............................................... 55 
1.5.4. l PALAEOLITHIC FRESCOES AND ROCK ART IN HYPOGEAN ENVIRONMENTS ................. 55 

,_ 1.5.4.2 MONUMENTS ................................................................................................................. 56 
1.5.5 MANAGEMENT ISSUES ...................................................................................................... 57 
1.6 CONCLUSION •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 59 ? 

7 



SECTION 2: ................................................................................................................... 61 

MICROBIAL BIODIVERSITY IN TASMANIAN CAVES ................................. 61 

CHAPTER 1: INTRODUCTION ...................................................................................................... 61 
CHAPTER 2: MATERIALS AND METHODS •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 65 
2.1 SITE DESCRIPTION AND SAMPLE COLLECTION .................................................................... 65 

2.1.1 ENTRANCE-EXIT CA VE SYSTEM ······················································································ 65 
2.1.2 LOONS CAVE .................................................................................................................... 65 
2.1.3 SAMPLE COLLECTION ....................................................................................................... 66 
2.2 MICROSCOPY ANDMINERALOGY ........................................................................................ 68 
2.2.1 ESEM AND X-RAY ELEMENTAL MICROANALYSIS ..............•.................•..................... ~ ... 68 
2.2.2 X-RAY DIFFRACTION ANALYSIS ...................................................................................... 68 
2.3 ISOLATION AND IDENTIFICATION OF MICROBES ................................................................. 69 
2.3. l ISOLATION AND CULTURING OF MICROBES ...................................................................... 69 
2.3.2 16S RRNA GENE SEQUENCING AND PHYLOGENETIC ANALYSIS OF ISOLATES ................. 70 
2.3.2. l EXTRACTION OF NUCLEIC ACIDS AND PURIFICATION ....•.....•........................................ 70 
2.3.2.2 l 6S RRNA GENE PCR AMPLIFICATION AND PURIFICATION .......................................... 72 
2.3.2.3 16S RRNA GENE SEQUENCING······················································································ 73 
2.3.2.4 PHYLOGENETIC ANALYSIS ............................................................................................ 74 
2.4 MOLECULAR ANALYSIS OF SEDIMENTS AND MOONMILK .................................................. 75 
2.4.1 EXTRACTION AND PURIFICATION OF NUCLEIC ACIDS FROM ENVIRONMENTAL SAMPLES 75 
2.4.2 DGGE ............................................................................................................................... 77 

2.4.3 CLONE LIBRARY ANALYSIS ····························································································· 79 
2.4.4 PHYLOGENETIC AND BIODIVERSITY ANALYSIS ................................................................ 81 
CHAPTER 3: RESULTS AND DISCUSSION •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 83 
3.1 MICROSCOPY AND MINERALOGY ........................................................................................ 83 
3.2 METHOD DEVELOPMENT FOR CALCITE MOONMILK SAMPLES ........................................... 86 
3.3 PHYLOGENETIC DIVERSITY OVERVIEW .................................................................. , ........... 89 
3.4 ISOLATION OF NOVEL CA VE MICROBES ........................................................................... 130 
3.5 DIFFERENCES INMICROHABITATCOMMUNITY STRUCTURE ........................•................... 132 
3.6 CULTURABLE VS. NON-CULTURABLE DIVERSITY ............................................................. 138 

3.7 METABOLIC/ECOLOGICAL COMPARISONS ........................................................................ 143 
3.8 COMPARISON WITH OTHER CA VE ENVIRONMENTS ........................................................... 148 
CHAPTER 4: CONCLUDING REMARKS ..•.•...••........••.............•••...................•...........•••...........•••. 155 

REFERENCES ............................................................................................................. 159 

APPENDICES ............................................................................................................. 187 

APPENDIX 1: MEDIA PREPARATION AND RECIPES ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 187 
MEDIA PREPARATION ................................................................................................................. 187 
CULTURE MEDIA ........................................................................................................................ 187 
APPENDIX 2: CRYOPRESERV ATION PROTOCOL •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 189 

8 



1.1 Microbial Ecology 

SECTIONl: 

LITERATURE REVIEW -MICROBIAL ECOLOGY OF CAVES 

1.1 Microbial Ecology 

1.1.1 Objectives of Microbial Ecology 

Microbial ecology can be defined as investigating the impact of biodiversity on the 

structure and function of microbial communities and the ecosystem as a whole. According to 

Siering (1998) the questions directing much of the research in microbial ecology are theoretically 

quite simple: i) what are the numbers and identities of microorganisms in a given sample, ii) 

what are their activities and their role in ecosystem maintenance, iii) what genes are present to 

encode the activities of interest, iv) are the genes being expressed (i.e., transcribed), and are 

those transcripts translated and processed into active proteins, and v) what controls the rate of 

transcription and translation for environmentally significant genes, and can we measure these 

rates in situ? Much of the recent advances in the field of microbial ecology focuses on addressing 

the first question, microbial biodiversity, or, determining the identity of the organisms present 

in a given community. 

Microbial biodiversity is greater than the diversity of any other group of organisms. 

Higher life forms rely on bacterial processes for their survival. Microorganisms are responsible 

for diverse metabolic functions that affect soil, plant and animal health, for example, nutrient 

cycling, organic matter formation and decomposition, soil structure formation, and plant growth 

promotion. Microbial biodiversity has received particular attention in areas where industrial 

applications are evident, such as for marine, medical, and food biotechnology, and where 

microbial activity has important implications for Earth's climate and for the bioremediation of 

polluted sites (Morris et al. 2002). 

Different habitats may be characterised by a particular food source, substrate type, 

micro-climate, or a combination of these. Some organisms are entirely restricted to a certain 
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1.1 Microbial Ecology 

habitat whilst others, referred to as cosmopolitan species, range widely across a variety of 

habitats. Each of these environments/microhabitats has its own characteristics which preclude 

generalisations about the conditions of life in one being carried over to the others in most 

instances, and which select for bacteria adapted to their own micro-climate. 

Enhancing knowledge of bacterial biodiversity and ecological function provides baseline 

information for conservation and sustainable development. 

1.1.2 Methods in Microbial Ecology and Taxonomy 

The study of microbial processes in an ecosystem is a multifaceted affair requiring 

attack from many angles and utilising a wide variety of techniques (Brown, 2000). Studies of 

biodiversity, characterising the composition of microbial communities in a given environment, 

can largely be a descriptive endeavour, but a necessary first step in determining the nature of 

biodiversity and its impact on ecological processes. 

1.1.2.1 Biodiversity 

Traditionally, microbial populations have been described in terms of isolating pure 

cultures and investigating a wide range of phenotypic traits, many of which are related to the 

practical interest in the habitat studied (eg. phenotypic characteristics of psychrophiles in 

Antarctica; Nichols et al. 1993, 1999). Biodiversity studies focusing on phylogenetic or taxonomic 

comparisons of microorganims reflect the historical tribulations surrounding the complexities of 

defining a bacterial species and the relatedness among individuals of different genotypes 

(Morris et al. 2002). Phylogenetic classification of bacteria is based on ancestral relationships 

(Woese, 1987). Surprisingly the term 'phylogeny' is rarely defined precisely (Young, 2001). A 

central outcome of phylogenetic classification is that taxa be monophyletic, ie. members of a 

taxon under consideration share the same common ancestor. A further requirement is that taxa 

sharing more recent common ancestry are considered to be more closely related to one another 

than they are to other taxa (Lincoln et al. 1998 in Young, 2001). 
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1.1 Microbial Ecology 

A study of microbial biodiversity publications by Morris & co-workers (2002), found 

that over the last 25 years, DNA-based characterisation techniques, in particular those based on 

targeted DNA sequences, have had the dominant role in studies of microbial relationships or in 

the search for new taxa, relative to other morphological or biochemical techniques. By the early 

1980s, several studies had shown that ribosomal RNA (rRNA) held promise for phylogenetic 

reconstruction (Fox et al. 1980) and by the end of the decade, analysis of universally conserved 

nucleic acid sequences (particularly those of the small subunit rRNA gene) had become a 

powerful tool for microbial taxonomy, allowing identification of specific taxa on the basis of 

only a single gene sequence (Woese et al. 1990). In the 1990's, this approach had become the 

principal method of establishing phylogenetic relationships among the prokaryotes; today, it is 

more likely that a 165 rRNA gene sequence will be the first piece of data collected for unknown 

organisms, rather than a Gram stain (Lilburn & Garrity, 2004). Though rRNA methods are now 

commonplace it is worthwhile to quickly review the basis for this. 

There are several reasons to focus on rRNAs to characterise microbial diversity and infer 

phylogenetic relationships. Olsen et al. (1986) summarised these as follows: i) rRNAs, as key 

elements of the protein-synthesising machinery, are present, and functionally and evolutionarily 

homologous, in all organisms, ii) rRNAs are ancient molecules, and conservation of function 

dictates conservation in overall structure thus, homologous rRNAs are readily identifiable by 

their size, iii) nucleotide sequences are also conserved allowing comparisons between different 

organisms and also providing convenient hybridisation targets for cloning and primer directed 

sequencing techniques, iv) rRNAs constitute a significant component of the cellular mass in 

actively growing cells (-104 ribosomes per actively growing E. coli cell; Siering, 1998) and are 

readily detected, isolated and sequenced from all types of organisms, v) rRNAs provide 

sufficient sequence information to permit statistically significant comparisons, vi) rRNA genes 

lack artefacts of lateral transfer between contemporaneous organisms. Thus, relationships 

between rRNAs reflect evolutionary relationships of the organisms. Conservation of function 

dictates a conservation of structure such that most of the rRNA molecule is conserved among 

the most divergent or organisms. Although different portions of the molecule evolve at different 
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1.1 Microbial Ecology 

rates resulting in hypervariable domains as well as highly conserved domains. Their resistance 

to evolutionary change allows the entire phylogenetic span of ancient and modern prokaryotes 

to be analysed simultaneously. However it has been shown that the resolution power of rRNA 

sequences is limited when closely related organisms that diverged at almost the same time are 

being examined (Woese, 1987; Fox et al. 1992). 

It has been estimated that less than 1 % of the total bacterial population in a given 

environment have been successfully isolated (Amann et al. 1995). The advent of culture­

independent molecular methods, especially rRNA-based techniques, led to an explosion of 

microbial biodiversity papers starting in the late 1980s. Much of what is known is based on 

distinguishing different organisms as represented by their extracted and polymerase chain 

reaction (PCR) amplified nucleic acids without actually culturing them or having any direct 

knowledge of their morphology, physiology or ecology (Kemp & Aller, 2004). 

PCR amplification of nucleic acids extracted from environmental samples (eg. soil, 

water, ice) is at present the most powerful cultivation-independent technique. PCR facilitates the 

sensitive and fast detection of low amounts of specific gene fragments. This is of particular 

importance to this study as subsurface environments are, in general, characterised by low 

biomass which releases low amounts of nucleic acids upon extraction (Chandler et al. 1998). 

Microbial diversity and identity can be estimated by cloning, sequencing and phylogenetic 

analysis of 16S rRNA amplified genes. Clone analysis, more often than not, results in sequences 

corresponding to previously uncharacterised and often unexpected lineages. An explosion of 

culture-independent studies of diversity in a wide range of microbial habitats in the past 15 

years has resulted in a large database of more than 62 OOO 16S rRNA gene sequences providing a 

high resolution framework for phylogenetic analysis. 

1.1.2.2 Community Fingerprinting 

Community fingerprints, may be of use when trying to snapshot the diversity of a 

population or to follow changes in microbial communities that result from natural community 

succession, or environmental or anthropogenic perturbation. With specialised computer 
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software fingerprints can be databased and subjected to multivariate statistical analyses (eg. 

Roling et al. 2000; Dunbar et al. 2001). Computer assisted analysis allows the comparison of 

different profiles with each other and the establishment of relationships between fingerprints 

and environmental conditions (Roling & van Verseveld, 2002). Thus community fingerprinting 

is more efficient (eg. cost, time) than more detailed clone library analysis when attempting high 

throughput or comparisons of several communities. Several 16S rRNA gene-based techniques 

have been used to fingerprint microbial communities, examples of which include, denaturing or 

temperature gradient gel electrophoresis (DGGE/TGGE), terminal restriction fragment length 

polymorphism (T-RFLP), and fluorescent in situ hybridisation (FISH). 

Although relatively new, DGGE/TGGE is an increasingly popular molecular tool to 

analyse general patterns of community diversity in microbial ecology. In DGGE/TGGE, 16S 

rRNA gene fragments are separated on the basis of differences in their melting behaviour 

resulting in a pattern of bands on a gel (Muyzer & Smalla, 1998). Theoretically, each band 

represents a unique sequence and therefore a unique species (Powell et al. 2003). In T-RFLP, 

fluorescently labelled PCR products are digested with restriction enzymes and separated using 

automated sequencing technology. T-RFLP offers some important advantages over other 

fingerprint techniques, its resolution is higher and direct reference can be made to the 16S rRNA 

gene sequence database (Tiedje et al. 1999; Marsh et al. 2000). The application of FISH to 

microbial systems provides a way to detect and enumerate microorganisms in natural systems 

without culturing (eg. Giovannoni et al. 1988; Delong et al. 1989; Amann et al. 1990, 1991). FISH is 

a technique whereby fluorescently labelled DNA probes are annealed to a target sequence in 

nucleic acids of fixed cells. Probes have been used capable of identifying bacteria at varying 

levels of taxonomic hierarchy. 

1.1.2.3 Ecological Function 

By phylogenetically aligning an organism to its next nearest cultivated relative, we may 

shed light on the metabolic and physiological processes that are occurring (Pace, 1997). However 

caution is advised when considering the results of these studies as comparisons can only be 
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made when there is a high degree of sequence similarity between the identified phylotypes and 

known cultivated species, although even closely related organisms can show distinct 

physiological differences (Achenbach & Coates, 2000). For many clone sequences, no closely 

related cultivated species are known and until recently, linking most 16S rRNA gene 

information to function and ecological processes was dependent on culturing studies. Relatively 

new nucleic acid-based techniques, such as stable isotope probing (Radajewski et al. 2000) and 

bromodeoxyuridine labelling (Urbach et al. 1999), are beginning to emerge in the literature, 

allowing specific microbial processes and functions to be related to individual members of 

microbial communities in a cultivation-independent manner (Roling & van Verseveld, 2002). 

These techniques rely on the synthesis of labelled DNA by microorganisms that grow in 

response to a specific stimulus and the subsequent separation of this labelled DNA from the 

pool of total DNA. 

The use of biomarkers in combination with stable isotope analysis (eg. 13C) is one 

example of these relatively new culture-independent approaches to function analysis in 

microbial ecology. Biomarkers are compounds that have a biological specificity in that they are 

produced only by a limited group of organisms (eg. fatty acids, ether lipids). Natural abundance 

isotope ratios of biomarkers can be used to study organic matter sources utilised by microbes in 

complex ecosystems and for identifying specific groups of bacteria like methanotrophs 

(Boschker & Middelburg, 2002). Addition of labelled substrates in combination with biomarker 

analysis enables direct identification of microbes involved in specific processes and also allows 

for the incorporation of bacteria into food web studies (Boschker & Niddelburg, 2002). Similarly, 

FISH performed with rRNA-targeted oligonucleotide probes and microautoradiography can be 

used to analyse structure and function of bacterial communities. Lee et al. (1999) demonstrated 

the potential of this method by visualising the uptake of organic and inorganic radiolabelled 

substrates in probe-defined microbial populations. 

To understand the role of a microorganism in a geochemical process, detection and 

identification of the microorganism in an environment in which the process is occurring is 

essential. Although demonstrating the presence of an organism in an environment where the 
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process is occurring does not mean the detected organism is important in the process of interest 

(Siering, 1998). One ultimately needs to correlate the distribution and abundance of the 

organisms with the presence of the activity and the presence of any genes and gene products 

(functional genes) involved in the process. If functional genes known to be involved in a 

particular process have been identified, isolated, characterised and sequenced, it is possible to 

use this information to develop PCR primers for amplifying the gene of interest from indigenous 

bacteria in natural samples. Hutchens et al. (2004) used DNA-based stable isotope probing and 

functional gene analysis of groundwater and mat material from Movile Cave to identify 

methane-assimilating populations and results suggest that aerobic methanotrophs 

(Methylomonas, Methylococcus, Methylocystis/Methylosinus strains) actively convert CH4 into 

complex organic compounds and thus help sustain a diverse community of microbes in this 

closed ecosystem. This richness of methanotrophs was not revealed by RFLP analysis of the 16S 

rRNA gene clone library alone, demonstrating the benefits of constructing both 16S rRNA gene 

and functional gene libraries (Hutchens et al. 2004). Probing also increased already existing 

knowledge of microbial diversity in Movile Cave to include relatives of the cultivated and 

uncultivated members of the alpha, beta and gamma Proteobacteria, members of the 

Acidobacterium division. 

Amplifying and sequencing functional genes from organisms present in environmental 

samples allows us to investigate the distribution, evolutionary relationships, and diversity of 

functionally analogous genes (Siering, 1998). To prove a gene of interest is responsible for a 

process you must be able to detect expression of the gene in situ and correlate changes in gene 

expression with changes in the associated activity, for example detecting and quantifying the 

presence of particular messenger RNA (mRNA). This is often challenging due to the low 

quantities and very short lifespan of mRNA. Furthermore, gene expression studies require prior 

information, including transcript size and stability as well as expected levels of transcript 

present, which is not always available (Siering, 1998). Recent advances to increase detection 

sensitivities of gene expression rely on a form of PCR known as reverse transcriptase-PCR (RT­

PCR). Reverse transcriptase is used to synthesise a single stranded DNA copy (cDNA) of the 
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RNA template then the complementary strand of the cDNA is synthesised and the double­

stranded DNA molecule is subsequently amplified by normal PCR amplification. 

1.1.3 Limitations of Methods 

rRNA gene surveys have enormously extended the boundaries of microbial diversity, 

but caution should be exercised when relying entirely on such an approach. In a detailed 

culture-dependent survey of bacterial diversity in a wide range of deep-sea sediments, Li et al. 

(1999) isolated 75 different actinomycetes; however very few actinomycete sequences were 

cloned from these same samples in a later study (Colquhoun et al. 1998a,b, 2000). 

The isolation of members of complex microbial communities as cultures also has 

significant advantages over culture-independent molecular approaches given the inability to 

identify with certainty the ecological, metabolic or physiological potential from novel molecular 

sequence data (Atalan et al. 2000). It is most probable that the inability of microbiologists to 

culture the majority of microbes in the laboratory results from the use of cultivation media that 

does not resemble natural conditions or perhaps that some strains are interdependent (Wagner 

et al. 1993). There is a trend emerging amongst microbial ecologists to continue to develop new 

culture methods and media to attempt to cultivate novel taxa from so-called "unculturable" 

groups of bacteria. In particular, Sait et al. (2002) and Joseph et al. (2003) had great success 

culturing from Australian soils numerous phylogenetically novel microbes (the "Ellin" isolates) 

belonging to previously uncultured groups using relatively simple cultivation methods. 

Regardless, it is indisputable that culture-independent studies based on obtaining 16S rRNA 

genes directly from the environment by broad-specificity primer PCR and cloning have greatly 

improved our understanding of microbial diversity. 

PCR-based surveys also have a number of recognised, inherent limitations. The quality 

of extracted nucleic acids may be compromised by problems of shearing, degradation due to the 

presence of contaminating nucleases, or contamination with humics or other substances known 

to inhibit subsequent molecular biological manipulations. Techniques must be optimised for 
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each type of environmental sample. Unfortunately, most methods for the extraction of nucleic 

acids from environmental samples lack a quantitative component; little data exists on the 

efficiencies of bacterial lysis and how these lysis efficiencies are affected by the complex matrix 

of biological and non-biological material within different sample types (Siering, 1998). 

Unfortunately PCR does not necessarily occur in an accurate and unbiased fashion. A 

primary concern in amplifying 16S rRNA genes from mixed samples is the formation of 

chimeric sequences from the artifactual joining of 16S rRNA gene sequences of two organisms 

(Liesack et al. 1991; Kopczynski et al. 1994) or from distinct copies of rRNA genes within the 

genome of a single organism (Wang & Wang, 1997). Such chimeric sequences occur at variable 

frequencies ranging from4.l-20% (Robison-Cox et al.1995) to 8.8-32% (Wang & Wang, 1997) 

and, therefore, should not be ignored. There are computational methods available to detect these 

artefacts (Robison-Cox et al. 1995; Komatsoulis & Waterman, 1997; Maidek et al. 1997), although 

all methods fail to detect some chimeras, especially those from closely related sequences, or 

misclassify non-chimeras as being chimeric. Hugenholtz & Hubert (2003) found during a recent 

collation within the public databases that, despite precautions taken, a surprising number of 

chimeric 16S rRNA gene sequences from molecular phylogenetic surveys were detectable. 

However, by being vigilant and using several available methods rather than a single method, 

such inaccuracies can be decreased. 

A separate issue is PCR bias, that genes are not equally amplified from all organisms 

(Reysenbach et al. 1992; Suzuki & Giovannoni, 1996). This is one of the major drawbacks to 

developing quantitative PCR methods. Template bias is sometimes due to variable energetics in 

primer annealing and DNA denaturation due to G+C content in the template or primer DNA, in 

other instances causes for bias have not been identified (Suzuki & Giovannoni, 1996). Genome 

size and the number of different copies of rRNA genes within a given genome have also been 

shown to result in differential amplification of rRNA genes from mixed community DNA 

(Farrelly et al. 1995). These parameters are unknown for the majority of organisms present in a 

given sample, thus Farrelly et al. (1995) contended that it is impossible to accurately quantify 

compositions of microbial communities by analysing clone libraries from amplified 16S rRNA 
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genes. Clone library analysis provides useful phylogenetic information that is reflective of 

community composition and relative distributions of organisms. However, small sample sizes 

prevent adequate representation of microbial community phylotypes because of cost and labour 

limitations. Community fingerprinting methods can alleviate these issues. 

Although useful for quick comparisons of multiple communities, the drawbacks to 

fingerprint-based methods include a lack of resolution provided by gel-based separation and 

also difficulty in assigning phylogenetic information to the complex banding patterns that are 

usually obtained. With fingerprinting techniques, phylogenetic inference is most effective when 

only a single bacterial division or smaller group is addressed and is far less useful when the 

entire bacterial community is profiled (Dunbar et al. 2001). A combination of the two methods, 

fingerprinting and detailed clone analysis would be a more comprehensive way to study 

community composition. 
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1.2 Caves 

Spaces below the Earth's surface range in size from microfissures to hundreds of 

kilometres in length and theoretically most have no natural human-accessible entrances (Curl, 

1966 in Northup & Lavoie, 2001). A cave is defined as any natural space below the surface that 

extends beyond the twilight zone and that is accessible to humans (Hill & Forti, 1986). Caves can 

be classified in several ways, particularly by the type of rock and method of formation (Palmer, 

1991). The most common types of caves are those formed in carbonate rocks. Other types of 

caves are usually limited in extent and include those in gypsum, granite, quartz and sandstone. 

1.2.1 Speleogenesis: Cave Fonnation 

The birth of a cave system is referred to as speleogenesis (Ford & Cullingford, 1976). The 

gradual solution of carbonate rocks, usually taking several millions of years, results in a wide 

spectrum of landforms, collectively known as "karst" and caves are one of the most common 

examples of this process. Carbonate rocks, such as limestone, are derived from the accumulation 

of marine organisms (shells, corals etc) and as sediments on the sea floor. These marine 

sediments consolidate over a long period of time and may be subsequently uplifted forming 

parts of the landmass of many regions of the world. Carbonate rocks contain carbonate minerals 

such as calcium carbonate (CaC03), often enriched with magnesium or iron and that are easily 

dissolved by acids, even very weak solutions of acid. 

Dissolution processes in carbonate rocks are due to the natural action of water. It occurs 

as: i) surface water run off, flowing over impervious cap rock that lies above the more porous 

carbonate rock then flowing into carbonate, (swallet); ii) from a surface stream draining another 

rock surface further upstream, then entering the carbonate rock, (streamsink); or iii) rain water 

seeping through forest mulch and soils into the carbonate rock below (percolation water) (Ford 

& Cullingford, 1976). These "charged" or "aggressive" waters are slightly acidic and penetrate 

through points of weakness in the rock (eg. cracks, joints, bedding planes). Run off water or 
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stream water also has a forceful action of erosion, corrosion and abrasion due to gravity, water 

mass or volume, and its sediment load of fine sands or gravels, which increases the magnitude 

of the dissolution process. The effect of seepage or percolating water is also ~ided by a number 

of factors. Rainwater contains dissolved carbon dioxide (C02) from the atmosphere forming a 

weak carbonic acid. This acidity is further strengthened by absorption of C02 from microbes and 

various humic or tannic acids from plant matter in the soil. Sulphuric acid sometimes derived 

from presence of sulphides in the soils, limestone or dolomite adds to the acidity of the water. 

As the acidic water reaches the water table, it stays in contact with the carbonate causing further 

dissolution of CaC03. This process is referred to as carbonic acid-driven speleogenesis. 

Limestone caves may also be derived from a second process referred to as sulfuric acid-driven 

speleogenesis. Hydrogen sulfide rises along fissures until it encounters the oxygenated zone and 

forms sulfuric acid that dissolves the surrounding carbonate rock (Hill, 1990). 

1.2.2 Speleothems: Cave Decoration 

A cave, at constant temperature and invaded by percolating solutions carrying various 

substances, forms an excellent environment for the slow deposition of minerals (Ford & 

Cullingford, 1976). One of the most commonly known aspects of caves is their visual beauty, 

due to their natural, internal formations, often referred to as cave decoration. These formations 

are secondary mineral deposits on the ceiling, floor and walls of a cave and are called 

"speleothems". Most caves have enough openings to allow air movement, which evaporates 

some of the moisture and allows the precipitation of carbonate minerals from the seeping waters 

to form speleothems. Their creation depends on a number of factors: i) amount of seepage 

waters entering the ground above the cave, ii) type of rocks in and around the cave, iii) type of 

dissolved materials contained in the water as it enters the cave, and iv) the cave environment, 

(eg. amount of moisture in the air, amount of air flow through the cave, cave temperature). 

Formations are precipitated very slowly; it may take one hundred to one hundred and 

fifty years to form 2.5 cm of material and the slow growth and nearly constant conditions in 
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caves results in these mineral deposits displaying spectacular crystal development (Ford & 

Cullingford, 1976). The colouration of speleothems varies depending on the mineral 

composition of the carbonate rocks (eg. white or cream for almost pure CaC03, to yellowish or 

dark brown due to the presence of limonite, or red/ orange hues from dissolved iron, or blue 

hues from manganese). The colour variations and the various crystal configurations create the 

beautiful wonderland of this subterranean world. 

Hill & Forti (1986) recognised 38 "official" speleothem types, with numerous subtypes 

and varieties, (Eg. stalactites, stalagmites, flowstones, rimstone pools and moonmilk) and 

described over 250 different minerals found in caves. Of special interest is moonmilk, a widely 

distributed, secondary formation and refers to the very hydrated white spongy /pasty or 

powdery masses found coating walls and speleothems in caves. It is composed of several 

carbonate minerals, predominately calcite. The wet pasty forms of moonmilk are so striking that 

some special explanation for their origin seems to be necessary, since calcite in cave 

environments usually has a completely different habit, hard and crystalline (Ford & Cullingford, 

1976). 

1.2.3 Cave Environment 

Cave environments are strongly buffered against daily, seasonal and long-term climate 

changes occurring on the surface providing stable, sheltered and moist refuges for organisms. 

The terrestrial cave environment is strongly zonal, with four major zones recognised; entrance, 

twilight, transition, and deep zone. The entrance zone is where the surface and underground 

environments meet. Beyond the entrance is the twilight zone where light still penetrates but 

progressively diminishes to zero. The transition zone is completely dark but the environmental 

effects from the surface are still felt. In the deep zone, environmental conditions are relatively 

stable, with fairly constant air and water temperatures (approximately the mean annual surface 

temperature) and the relative humidity near saturation resulting in an extremely low rate of 
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evaporation (Barr & Holsinger, 1985 in Eberhard, 1999). Note that conditions may be less stable 

surrounding active, surface-fed streamways or passages near internal cave entrances. 

The extent of the different zones depends on the size, shape and location of the 

entrance(s), on the-configuration of the cave passages and on the subterranean water/moisture 

supply (Howarth, 1988). The boundary between the transition and deep zones can be dynamic, 

changing on a seasonal or even daily basis, as air is pushed into, and pulled out of caves in 

response to changes in air density related to temperature and barometric fluctuations on the 

surface (Howarth, 1980). In temperate regions during summer, it is usually warmer outside the 

caves than inside, whereas in winter the reverse is true, generally resulting in a net movement of 

water vapour into caves during summer and out of caves during winter. Unlike the earth's 

surface, caves are not subject to the same weathering processes so what is found inside them 

often represents a different "snapshot" of the earth's history than would otherwise be available 

from the surface (http://www.speleonics.com.au; maintained by J. Rowling). 

1.2.4 Speleology: Cave Study 

The study of caves is called "speleology", and the study of life forms in caves, 

''biospeleology". The main focus of biospeleologists is the deep, dark zone, also referred to as 

the hypogean environment, due to the highly specialised organisms found there. Hypogean 

environments are not restricted to caves, but include any system of crevices and fissures deeper 

than the soil layer. In caves, the hypogean domain is most conveniently open to study by man. 

The hypogean domain may also be artificially penetrated for study particularly by mines and 

wells, both of which often yield hypogean organisms (Ford & Cullingford, 1976). These 

ecosystems are exposed to extreme environmental stresses and may be based on inorganic 

energy sources rather than sunlight. The limiting environmental characteristics of caves, little or 

no light, low levels of organic nutrients, high mineral concentrations and a stable microclimate, 

provide ecological niches for highly specialised organisms. Historically, macroscopic life was the 

primary source of interest for study in caves. However recently biospeleologists have turned 
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their attention to the microscopic life in these systems, revealing unique microbial ecosystems 

(eg. Cunningham et al. 1995; Sarbu et al. 1996; Jones 2001; Holmes et al. 2001; Schabereiter­

Gurtner et al. 2002; Northup et al. 2003; Barton et al. 2004). 
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1.3 Microbial Biodiversity and Ecology of Caves 

Caves are severely resource limited due to the absence of light that precludes primary 

production of organic material by photosynthetic organisms (Northup & Lavoie, 2001). Even so, 

microorganisms are widely distributed in caves and include bacteria, archaea, yeasts, fungi, and 

algae. Researchers proposed that the role of microbes in caves is to serve as a food source for 

higher trophic levels (eg. Dickson, 1979); however it was typically believed that microbes could 

not provide adequate energy to support a large and diverse ecosystem. In contrast, the work of 

Sarbu et al. (1996) in Movile Cave, Romania, and Vlasceanu et al. (2000) in Frasassi Caves, Italy, 

suggest that chemoautotrophic, sulfur-based microbial communities can generate enough 

energy as primary producers to sustain complex cave ecosystems. These caves receive little or 

no surface-derived organic material, but instead microbially reduced sulfur compounds in the 

cave waters provide the energy for carbon dioxide fixation (Mattison et al. 1998). The work in 

Movile Cave provided evidence of the first terrestrial microbial community known to be 

chemoautotrophically-based (Sarbu et al. 1996). 

Culture-independent 165 rRNA gene sequence analyses have opened the way to study 

bacterial communities in environmental samples without prior cultivation and have revealed a 

significantly broader diversity than culture-based studies in many environments over the last 25 

years (Amann et al. 1995; Head et al. 1998; Hugenholtz et al. 1998). Nevertheless, to date our 

knowledge of bacterial communities in caves has been largely due to culture studies (eg. Groth 

et al. 1999a; Laiz et al. 1999). As discussed in Section 1.1.2.3, phylogenetic analyses can be used to 

hint at the ecological functions of uncultivated phylotypes obtained from molecular analyses. 

The recent influx of molecular analyses of cave microhabitats (Eg. Holmes et al. 2001; 

Schabereiter-Gurtner et al. 2002; Northup et al. 2003; Barton et al. 2004; Chelius & Moore, 2004; 

Schabereiter-Gurtner et al. 2004) have attempted to do just this; elucidating the roles of bacteria 

in caves, how they survive, interact with, and affect, their environment. 
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1.3.1 Chemolithoautotrophic Systems 

In cave ecosystems with little or no exogenous organic input, the rich variety of redox 

interfaces allows primary growth of chemolithotrophic (eg. ammonium-, nitrite-, sulfur-, 

manganese- or iron- oxidising) bacteria (Northup & Lavoie, 2001). Several studies of 

chemolithotrophic communities have been reported in the literature and have demonstrated that 

these bacteria play an important role in some cave ecosystems, acting as primary producers and 

supporting growth of heterotrophic microbes ( eg. Sarbu et al. 1996). These subsurface microbial 

communities are based on chemolithoautotrophic energy processing where life does not depend 

directly upon energy and organic carbon from photosynthesis (Stevens & McKinley, 1995). 

1.3.1.1 Sulfur-based Systems 

Caves containing hydrogen sulfide-rich springs represent less than 10% of all known 

caves globally (Summers Engel et al. 2003). These caves serve as access points into sulfidic 

groundwater aquifers, typically associated with geothermal regions and oil-field basins, which 

play an important role in global sulfur cycling. The microbial communities colonising sulfidic 

cave habitats are of particular interest due to their chemolithoautotrophic metabolism that can 

sustain a high biomass and rich complex ecosystems in the subsurface (Sarbu et al. 1996; Angert 

et al. 1998; Hose, 1999) and their geomicrobiological impact, for example sulphuric acid-driven 

speleogenesis (Engel et al. 2001; Vlasceanu et al. 2000). 

Frasassi Cave, Italy, and Cueva de Villa Luz, Mexico, are sulfidic cave systems where 

sulfuric acid drips from the walls and deadly levels of hydrogen sulfide and carbon monoxide 

are emitted from springs. Yet amidst these hostile conditions a rich and diverse ecosystem of 

invertebrates and microorganisms are alive and well. Biofilms consisting of extreme acidophiles 

grow on thick crusts of gypsum and elemental sulfur on the cave walls. Clone library analysis of 

the Frasassi biofilm revealed at least 2 strains belonging to the genera Thiobacillus and 

Sulfobacillus (Vlasceanu et al. 2000). An acid producing strain of Thiobacillus was also cultivated 

from the Frasassi biofilm. A defining feature of members of the Thiobacillus genus is their ability 
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to gain energy from the oxidation of reduced sulfur compounds and resulting production of 

sulfuric acid. Stable carbon isotope analysis revealed that the wall biofilms in Frasassi Cave are 

isotopically light. Terrestrial isopods living on the cave walls showed peculiar isotopic values 

markedly different from the rest of the invertebrates inhabiting the cave, implying that they are 

feeding on these biofilms (Vlasceanu et al. 2000). These results imply that the cave food-web is 

based on organic matter produced chemoautotrophically in situ by sulfur-oxidising microbes 

forming mats that cover the bottom and the mudbanks of the streams and the walls of the cave, 

similar to the microbial mats of the sulfidic springs of Movile Cave, Romania (Vlasceanu et al. 

2000). 

Microbially generated acid formed in the Frasassi biofilms diffuses through the gypsum 

to the carbonate surface or drips from the tips of the microbial biofilms onto exposed carbonate 

surfaces, causing rock dissolution (Vlasceanu et al. 2000). Summers-Engel et al. (2001) 

investigated microbial diversity in mats from hydrogen sulfide rich waters and cave wall 

biofilms in Cesspool Cave, Virginia, and pure cultures of Thiobacillus spp. isolated from this mat, 

demonstrated the ability to corrode CaC03 (Summers-Engel et al. 2001). Corrosion of CaC03 

substrata causes subsequent gypsum precipitation. Substrate dissolution can be beneficial to 

microbes due to the release of nutrients such as nitrogen and phosphorus in oligotrophic 

habitats (Rogers et al. 1998), but rock dissolution can also be detrimental in the case of carbonates 

because of pH fluctuations, and in other rocks due to the release of toxic compounds, including 

aluminium or trace elements (Engel et al. 2001). 

The formation of caves in limestone bedrock was traditionally considered to be driven 

by carbonic acid dissolution of carbonate, as discussed in Section 1.2.1. In contrast the formation 

of Carlsbad Cavern and Lechuguilla Cave, New Mexico, and Movile Cave, Romania, is 

inconsistent with this model of speleogenesis. Hill (1990) suggested that in caves where 

hydrogen sulfide-rich waters are present, the production and activity of sulfuric acid might be 

the primary cause of carbonate dissolution. Initially it was assumed to be a nonbiological 

process, the sulfuric acid resulting from the chemical oxidation of hydrogen sulfide. Parker & 

Jackson (1965), however, presented evidence that sulfuric acid production may be mediated by 
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Thiobacillus spp. Since then, several studies have confirmed the significant role of acid produced 

by sulfur-oxidising bacteria in the dissolution of limestone suggesting that the colonisation and 

metabolic activity of these bacteria may be enhancing cave enlargement (Engel et al. 2001; 

Vlasceanu et al. 2000). 

1.3.1.2 Iron, Manganese, Nitrite, and other Systems 

Microorganisms living at the interface between the host rock and cave passages can 

utilise reduced compounds in the host rock. Caves formed by the dissolution of limestone by 

carbonic acid are often enriched in iron, manganese and nitrogen and studies have yielded 

circumstantial evidence for chemolithoautotrophy by iron-, manganese- and nitrogen- oxidisers 

in these systems (Northup et al. 2000, 2003; Holmes et al. 2001). Unusual aquatic formations, 

mantles of mucus and biological material associated with crystalline material, in submerged 

passages of the Nullabor Caves, Australia contain a high proportion of phylogenetically novel 

sequence types and a high relative abundance (approximately 12%), of Nitrospira relatives, 

showing most similarity to autotrophic nitrite-oxidising bacteria (Nitrospira moscoviensis). 

Holmes et al. (2001) concluded that this community structure, the presence of nitrite in the 

water, and the apparent absence of aquatic macrofauna, indicate biochemically novel, 

chemoautotrophic communities dependant on nitrite oxidation. 

Lechuguilla Cave, New Mexico, is an immense ancient cave in near pristine condition, 

an extremely low nutrient environment with, however, sulfur, iron, and manganese deposits 

harbouring diverse microbial life (Northup et al. 2003). 16S rRNA gene clone analysis of 

corrosion residues (ferromanganese deposits) showed the presence of known iron- and 

manganese- oxidising/reducing bacteria including phylotypes of the genera, Hyphomicrobium, 

Pedomicrobium, Leptospirillum, Stenotrophomonas and Pantoea (Northup et al. 2003). Black 

ferromanganese sediments in Vantului Cave, Romania, contain Hyphomicrobium spp., 

Pedomicrobium fusiforme and Pedomicrobium mangancum, known to mediate the oxidation and 

precipitation of manganese (Manolache & Onac, 2000). Northup et al. (2003) suggested that these 

diverse communities of microbes inhabiting ferromanganese deposits seem to exist by utilising 
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manganese and iron from the bedrock and that the ferromanganese deposits represent, at least 

in part, the end-product of microbially assisted dissolution and leaching of the underlying host 

carbonate, and enrichment of iron and manganese through microbial oxidation (Northup et al. 

2000). 

Literature on oligotrophic cave communities subsisting in regions of nutrient scarcity is 

still sparse and the majority of these investigations have concentrated on communities sustained 

by a specific and measurable energy input, whether from sulfide, nitrite or surface organic input 

(eg. Sarbu et al. 1996; Angert et al. 1998; Holmes et al. 2001). Barton et al. (2004) investigated 

microbial diversity in Fairy Cave, Colorado, looking at a wall community in the absence of 

observable energy sources. Their studies revealed a larger diversity in an oligotrophic 

environment than originally thought (phylotypes from 4 different divisions, Proteobacteria, 

Actinobacteria, Cytophagales and the low G+C Gram-positive bacteria). The limestone bedrock of 

Fairy Cave is almost pure CaC03, (>97.5%) with no significant reduced metal compounds 

available to act as electron donors and any metal ions that are present in the cave system were 

likely deposited by the rich mineral waters that formed the cave system (Barton et al. 2004). 

Metabolic analyses suggested that the community subsists using a complex metabolic network 

with input from trace organics within the environment or fixation of atmospheric gases using 

lithotrophic metabolism (Barton et al. 2004). 

A common theme was observed in cultivated relatives of the cloned phylotypes from 

Fairy Cave, the fixation of atmospheric gases or the use of aromatic carbon compounds. The 

source of atmospheric gases is obvious, while the potential carbon sources may be the inorganic 

constituents of water filtering into the cave system. Previous research has suggested that cave 

waters contain dissolved organic matter from the soil, primarily phenolic compounds and lignin 

(Saiz-Jimenez & Hermosin, 1999). These compounds can be utilised as carbon sources by many 

of the species related to those found in Fairy Cave. Similar mechanisms of lithotrophy have been 

suggested for other cave systems (eg. Cunningham et al. 1995). Northup et al. (2000) also 

suggested that reduced metals, such as magnesium and iron, within the limestone matrix of 
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Lechuguilla Cave provide a sufficient source of electron donors for growth, which may further 

require the presence of atmospheric organic molecules as a carbon source. 

In contrast to the molecular evidence, generally few chemolithoautotrophic bacteria in 

caves have been detected by cultivation as well as by PCR-based studies (Sarbu et al. 1996; 

Vlasceanu et al. 2000; Engel et al. 2001; Holmes et al. 2001). As discussed in Section 1.3.1, 

molecular analyses revealed unexpected dominance of mostly uncultured groups, (eg. Epsilon 

Proteobacteria in sulfidic springs of Lower Kane and Parker Caves). The majority of 

chemoautotrophic species isolated from caves belong to, the sulphur- and sulphide-oxidising 

genera, (Thiobacillus, Thiosphaera, Thiothrix, Thiomicrospira, Beggiatoa, Achromatium, Sulfobacillus 

and Thioalcalovibrio); the sulphate-reducing Desulfovibrio sp.; the iron-oxidising Leptospirrillum 

ferrooxidans and Thiobacillus ferrooxidans; the manganese- and iron-oxidising genus Leptothrix and 

nitrifiers such as Nitrobacter sp. (Schabereiter-Gurtner et al. 2002). Culture-independent analyses 

of Fairy Cave revealed a community distribution of phylotypes unique from previous 

observations in oligotrophic caves using cultivation, suggesting that many of the species 

identified are sufficiently adapted to the oligotrophic lifestyle and thus remain resistant to 

cultivation using standard techniques (Barton et al. 2004). 

1.3.2 Heterotrophic Systems 

Cave microbial communities usually rely on allochthonous input of organic matter 

transported from the surface (Groth et al. 1999a). In caves, animals and visitors can provide large 

amounts of organic input facilitating heterotrophic life (Hose et al. 2000; Groth & Saiz-Jimenez, 

1999). Culture-dependent studies have focused on heterotrophic caves with allochtonous input 

of organic matter demonstrating that heterotrophic bacteria often dominate these communities 

(Groth & Saiz-Jimenez, 1999). Many microbes identified from deep caves are similar to surface 

forms and are probably transported into caves by water, air, sediment and animals (Saiz­

Jimenez 2001; Schabereiter-Gurtner et al. 2002a, b). Actinomycetes are the most abundant 
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heterotrophic Gram-positive bacteria to be isolated from these caves particularly streptomycete, 

nocardioform and coryneform actinomycetes (Groth et al. 1999a). 

Organic input may also be dissolved in the seepage/ dripping waters or as particulate 

organic matter carried in by active or periodic flooding of a subterranean streamway 

(Schabereiter et al. 2002). High sulphate and nitrate concentrations have been found in dripping 

waters in Tito Bustillo and other Spanish and Italian caves (Hoyos et al. 1999) which, in addition 

to the concentrations of iron, manganese and other elements found in cave rocks, supports 

heterotrophic bacteria involved in the nitrogen, sulphur, iron and manganese cycles. Laiz et al. 

(1999) investigated the microbial diversity of dripping waters of Altamira Cave, Spain. Water 

communities were not dominated by actinomycetes but contained low proportions of Gram­

positive bacteria, and were mainly composed of Gram-negative rods and cocci (Enterobacteriaceae 

and Vibrionaceae; genera Aeromonas and Acinetobacter). Compounding this, in an earlier study of 

dripping waters in Altamira Cave carried out by Somavilla et al. (1978) Bacillus and Pseudomonas 

appeared to be the most abundant genera, followed by Flavobacterium and Erwinia. In 

comparison, isolations from ceiling rock of Altamira Cave resulted mainly in Gram-positive 

Streptomyces spp. The absence of culturable actinomycetes in dripping waters agrees with the 

observations of Kolbel-Boelke et al. (1988). They found very few actinomycetes in 60 water and 

sediment samples clearly demonstrating that dripping water communities are very different to 

those of cave rock though both are heterotrophic based systems. 

Wind Cave, South Dakota, is a heterotrophic detritus-based limestone cave. Clone 

library analysis by Chelius & Moore (2004) illustrated that Gamma Proteobacteria and 

Acidobacterza predominated water-saturated sediments in the dark zone. Furthermore, most of 

the microbial sequences were not related to known chemolithoautotrophs, therefore it was 

concluded that this particular community is likely detritus-based, where allochthonous energy 

and carbon are transported into the cave by infiltrating waters. Although some clones resembled 

sequences from other caves, they found that no cave-specific bacterial community was evident. 

Clones mostly resembled those from soil, freshwater, plant associated and polluted 

environments (Chelius & Moore, 2004). Conversely, culture studies of the same sediments from 
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Wind Cave produced representatives of only the actinomycetes and Proteobacteria (Alpha, Beta 

and Gamma) though clone analysis indicated that these were relatively minor components of 

the microbial community (Chelius & Moore, 2004). Most isolates were related to other cultivated 

members and sequences retrieved from soil and various polluted environments. It is important 

to note that Wind Cave is also a show cave, impacted by humans and lighted for tours, but this 

study still represents baseline data. Although in general molecular analyses reveal them as 

relatively minor representatives of cave communities, actinomycetes are still the most dominant 

group of bacteria isolated from caves (Schabereiter-Gurtner et al. 2002; Chelius & Moore, 2004). 

1.3.3 Actinomycetes in Caves 

Results of studies in caves of China, Korea, Northern Spain, and Southern Italy have 

demonstrated that actinomycetes are not only the most abundant bacteria isolated from these 

caves, but also reveal a great taxonomic diversity (Groth et al. 1999a,b; Groth & Saiz-Jimenez, 

1999). Several new species of actinomycetes have been described from hypogean environments 

(Lee et al. 2000a,b,c; Lee et al. 2001) including three new genera, Knoellia sinensis gen. nov., sp. 

nov. and Knoellia subterranean sp. nov, and Beutenbergia cavernae gen. nov., sp. nov., isolated from 

sediment sampled from Reed Flute Cave, China (Groth et al. 2002, 1999b); Hongia koreensis gen. 

nov., sp. nov., isolated from sediment in a gold mine cave of Korea (Lee et al. 2000). Three novel 

species were also described from the gold mine cave in Korea, Pseudonocardia kongjuensis sp. nov. 

and Saccharothrix violacea sp. nov., and S. albidocapillata comb. nov (Lee et al. 2000, 2001). 

However, little has been published about the cave environments that these novel species have 

been described from. 

Caves are not uniform environments in terms of geological and geochemical 

characteristics, as they can vary from one to the other, eg. rock type, method of formation, 

length, depth, number of openings to the surface, presence or absence of active streamways, 

degree of impact by human visitation etc. Furthermore, on a smaller scale, various 

microhabitats, with vast differences in community structure can exist within caves. It seems 
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fairly widely accepted that dry cave substrate typically yields a higher proportion of 

actinomycetes than does dripping water and wet sediment (Kolbel-Boelke et al. 1988; Laiz et al. 

1999). Somavilla et al. (1978) did not culture actinomycetes from the air of Altamira and La 

Pasiega Caves, whereas Arroyo & Arroyo (1996) found actinomycetes from contact plates from 

the floor, walls, and ceilings of the same cave. 

Limestone caves and lava tube caves often contain wonderful displays of filamentous 

actinomycetes that may cover entire ceilings and walls of caves giving a 'silvered' appearance. 

Probably many of the discrete lichen-like colonies frequently noted on walls and formations in 

the dark zone may be actinomycetes of the genus Streptomyces since they often have the 

powdery appearance and characteristic earthy odour common to cultures of this genus. It has 

also been suggested that the abundant Streptomyces in caves is probably responsible for the 

earthy smell of caving (Caumartin, 1963 in Ford & Cullingford, 1976). Streptomyces and Nocardia 

are the most common, and abundant, groups isolated from caves (Arroyo & Arroyo, 1996). 

Streptomyces species are particularly abundant though this may be due to their easy growth in 

the laboratory. 

The majority of the work on actinomycetes in hypogean environments has been 

conducted in Altamira, Tito Bustillo, La Garma, and Llonin caves, Spain, and Grotta dei Cervi, 

Italy all of which have spectacular galleries with paleolithic rock art paintings (Groth & Saiz­

Jimenez, 1999; Groth et al. 1999a, 2001; Laiz et al. 1999, 2000). Groth et al. (1999a) reviewed the 

growth of actinomycetes on the ceiling and walls in Altamira and Tito Bustillo caves isolating 

approximately 350 strains. Actinomycete growth was distributed all over the caves and could be 

observed on the active stalactites, on upper and lower parts of the rock wall and in the cave 

soils. Large parts of the cave's rock surfaces were covered by macroscopic colonies (1-2 mm) 

visible to the naked eye and direct isolation from these colonies resulted solely in Streptomyces 

xanthophaeus. However culture-independent DGGE analyses detected 14 separate bands 

representing other species, most of them closely related to uncultured bacteria affiliated with 

Proteobacteria, Acidobacteria, Cytophaga-Flavobacteria-Bacteroides group (CFBs) and Actinobacteria 

(Schabereiter-Gurtner et al. 2002). 
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Samples of active stalactites, wall concretions and rocks from the walls and ceilings of 

the galleries have been investigated and a high number of isolates obtained. Most abundant 

were genera of the actinomycetes, particularly Streptomyces especially from rock walls and soils. 

Other genera isolated included Nocardia, Nocardioides, Saccharothrix, Amycolatopsis, 

Brevibacterium, Rhodococcus, Aureobacterium, and members of the family Micrococcaceae. However, 

in stalactites, the most abundant species isolated belonged to the low G+C Gram-positive 

bacteria of the genus Bacillus, although the most conspicuous and visible to the naked eye were 

actinomycetes of the genera, Agromyces, Amycolatopsis, Arthrobacter, Nocardiopsis, Rhodococcus, 

and Streptomyces (Groth et al. 2001). These microorganisms are able to colonise the bare rock 

surfaces utilising organics in dripping water. Apart from published novel species from caves, 

most other papers characterise cave strains to the genus level only as they use morphological 

and biochemical means of identification rather than phylogeny. At present it is therefore 

difficult to make comparisons at the species level between cave environments. 

Culture-dependent studies have focused on typical heterotrophic microbes from the 

surface and have mostly come from so called "show caves" open to the public and which are 

heavily impacted by humans. There is an apparent correlation between the number of visitors 

and diversity of bacteria. The higher the number of visitors the higher the diversity of isolated 

strains, as indicated by the data obtained in Tito Bustillo and Altamira caves (Groth et al. 1999a). 

Altamira Cave revealed a great taxonomic diversity with predominant isolates belonging to 

Streptomyces, Nocardia, Nocardioides, Saccharothrix, Amycolatopsis, Brevibacterium, Rhodococcus, 

Aureobacterium, and members of the family Micrococcaceae (Groth et al. 1999a). Caves with 

restricted access, Llonin and La Garma, yielded lower diversity. This increasing diversity is 

likely associated with lighting, which promotes the growth of phototrophic microorganisms, 

and also the introduction of organic matter by visitors into the ecosystem (AriflO & Saiz-Jimenez 

1996). Thus one could argue that it is the public nature of these caves that tend to heterotrophy 

dominated by actinomycetes, rather than it being a general trend in cave systems with 

allochthonous input of organic matter. However, Grotta dei Cervi shows similar colonisation 

patterns to Altamira Cave, in spite of the fact that this cave was discovered more recently in 1970 
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(91 years later than Altamira) and visitation is restricted to scientific purposes (as in Llonin and 

La Carma), the biodiversity was surprisingly high. This is perhaps due to the appreciably high 

input of organic matter present in Grotta dei Cervi in the form of bat guano, promoting 

heterotrophy and dominance of actinomycetes. 

The study of cultivated microbes in these caves has revealed only a minor and not very 

representative proportion of the cave microbial populations. Gram-positive bacteria identified in 

Llonin, La Carma, Altamira, and Tito Bustillo Caves by culture-independent techniques is 

relatively low ( <30 %), though Gram-positive bacteria, and in particular actinomycetes were the 

dominating isolates obtained from cultivation (eg. Groth & Saiz-Jimenez, 1999; Schabereiter­

Gurtner et al. 2002). More recently DGGE community fingerprinting combined with 

phylogenetic analyses used to investigate samples from paintings and surrounding rock in 

Altamira and Tito Bustillo revealed greater taxonomic diversity detecting unknown and 

unexpected bacterial groups, particularly the Proteobacteria, Acidobacteria division, CFBs, 

actinomycetes, green non-sulfur bacteria and Planctomycetes. DGGE analysis of paintings in 

Llonin and La Carma caves (Schabereiter-Gurtner et al. 2004) also illustrated a high biodiversity 

of chemolithotrophic, as well as heterotrophic, bacteria; the most abundant groups found were 

the Proteobacteria, actinomycetes and Acidobacteria. This data compared to results from Altamira 

and Tito Bustillo caves revealed similarities in the bacterial community components, especially 

in the high abundance of the Acidobacteria and Rhizobiaceae, and ammonia- and sulfur-oxidisers 

(Schabereiter et al. 2002). Which is interesting in that Llonin and La Carma are restricted visitor 

access for research purposes only whereas Altamira and Tito Bustillo are open to the public. 

These studies have revealed diverse and unknown microbial colonisation on the paintings in 

contrast to previous culture-dependant investigations. 

In the past, the study of microbial communities and biogeochemical processes in 

hypogean environments is mainly related to the fact that microbes affect cultural heritage 

properties that humans wish to protect (Groth & Saiz-Jimenez, 1999) and we owe much of our 

initial knowledge of cave microbiota to these studies. The role of actinomycetes in the 

deterioration of paintings and frescoes in hypogean environments (not just caves, but crypts, 
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tombs and underground churches) has been emphasised by many investigations (eg. Monte & 

Ferrari, 1993; Groth & Saiz-Jimenez, 1999; Groth et al. 1999a). Actinomycetes are known to 

destroy wall paintings by the excretion of organic and inorganic metabolic products 

(Schabereiter-Gurtner et al. 2004). The first actinomycetes identified as degraders of rock art 

were Streptomyces rectus fiexibilis, S. griseolus, S.cinereoruber, S.vinaceus, S.albus and Nocardia sp. 

(Giacobini et al. 1988). 

Though the role of actinomycetes in rock art is highly recognised, it is interesting that 

they haven't been isolated from works of art, except those located in hypogean environments 

(eg. caves, crypts, grottos and tombs) (Giacobini et al. 1988). Atlanterra Shelter, Spain, contains 

rock art paintings made with iron oxides. The shelter is exposed to terrestrial environmental 

fluctuations. The bacteria isolated from Atlanterra Shelter seem to constitute a homogenous 

community with abundance of Bacillus strains, very different to actinomycete dominated 

communities found in rock art paintings from karstic hypogean environments (Groth & Saiz­

Jimenez, 1999; Laiz et al. 1999; Gonzalez et al. 1999). All isolated Bacillus strains were able to 

reduce hematite which is significant due to the fact that Fe(ill)-(hydr)oxides are the most 

abundant pigments in rock art. This work demonstrates that actinomycetes are not alone in their 

role as biodeteriogens of rock art, however they do seem to be the dominant group in hypogean 

environments, perhaps indicating favourable selective pressures in the cave environment. 

A number of actinomycetes isolated from caves have the ability to produce various 

types of crystals. Studies in Altamira and Tito Bustillo Caves demonstrate that the host-rock, 

cave formations and rock art are coated by dense networks of bacteria, mainly actinomycetes 

and these bacteria can induce constructive (calcification, crystalline precipitates) and destructive 

(irregular etching, spiky calcite) fabrics. Because of this ability it has been proposed that these 

bacteria and others are directly or indirectly involved in constructive biomineralisation 

processes in caves (Laiz et al. 1999; Barton et al. 2001; Canaveras et al. 2001; Groth et al. 2001; 

Jones, 2001). Little is known concerning the distribution, population dynamics, growth rates and 

biogeochemical processes of actinomycetes in caves, in spite of the fact that they seem to 

constitute a significant part of the "culturable" microbial population of these habitats. A 
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prerequisite for the study of the role of actinomycetes in biogeochemical processes is the 

isolation and identification of these organisms (Groth et al. 1999a). 

1.3.3.1 Actinobacteria 

Stackebrandt et al. (1997) proposed a new hierarchic classification system, Actinobacteria 

classis nov. for the actinomycete line of descent, wholly defined by the phylogenetic analysis of 

small subunit 165 rRNA gene sequences. The Actinobacteria is comprised of high-G+C content 

Gram-positive bacteria with a common ancestry and includes Subclasses Acidimicrobidae, 

Rubrobacteridae, Coriobacteridae, Sphaerobacteridae and Actinobacteridae. The Order Actinomycetales 

(actinomycetes) is within the Subclass Actinobacteridae. It is important to note here that quite 

often the actinomycetes are referred to simply as Actinobacteria, which, although fundamentally 

correct, is misleading, as the Class Actinobacteria encompasses a broader range of taxa than the 

Actinomycetales alone. For the purpose of this study the term actinomycete(s) will be used to 

describe only members of the Class Actinobacteria, Subclass Actinobacteridae, Order 

Actinomycetales. 

1.3.3.2 Actinomycetes 

Actinomycetes are Gram-positive bacteria which form branching hyphae at some stage 

of their development and may produce a spore bearing mycelium (McCarthy & Williams, 1990). 

They are aerobic saprophytes and are widely distributed in nature (Goodfellow & Williams, 

1983) mainly found in soil where they manufacture enzymes which degrade complex molecules 

and play a major role in decomposition of organic matter (Lechevalier & Lechevalier, 1985). 

These organisms are selected for in environments characterised by oligotrophic conditions, low 

water activities and high concentrations of CaC03. Hyphal actinomycetes are typically slow 

growing and their spores can remain viable for a number of years in unfavourable conditions; 

the exact length of time for which they can survive is uncertain. Although predominantly soil 

bacteria, actinomycetes have been isolated from a wide variety of environments, including 
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freshwater, lake sediments, rivers, streams, marine environments, salt marshes, fodder and 

related materials, and air (Loyd, 1969; Cross, 1981; Hirsch & McCann-McCormick, 1985; Labeda 

& Shearer, 1990). Actinomycetes have also been isolated from extreme environments such as; ice, 

sediments and air in Antarctica, and, as discussed previously, rock surfaces and sediments in 

cave environments (Eg. Cameron et al. 1976; Groth et al. 1999a,b). 

1.3.3.3 Actinomycete Taxonomy 

Over 150 genera of actinomycetes have been isolated from soils. The exact composition 

and phylogenetic boundaries of the actinomycetes has remained open to question and 

modification due to continued development and application of new taxonomic classifications. 

Early attempts at taxonomic classification of actinomycetes were based on morphological and 

pigmentation characteristics of the sporing bodies and substrate mycelia, which is a useful but 

arbitrary approach to classification and not based on the phylogenetic relationships between 

different species (Williams et al. 1983). Variation in biochemical and physiological properties 

were incorporated into actinomycete taxonomy, however these new data alone could not be 

used to devise a satisfactory phylogenetically based taxonomy (Embley & Stackebrandt, 1994). 

The rich chemical, morphological and physiological diversity of phylogenetically closely related 

genera of actinomycetes makes the description of families and higher taxa so broad that they 

become meaningless for the description of the enclosed taxa (Stackebrandt et al. 1997). 

The application of molecular techniques based on variations in nucleic acid sequences 

between different bacteria, especially 165 rRNA gene sequencing, has had a dramatic impact on 

actinomycete systematics. It was soon discovered that some morphological characteristics given 

greater weight in earlier studies, such as the ability to form spores, were not reliable in a 

phylogenetic system of classification (Stackebrandt et al. 1981). Almost any description based on 

morphology or physiology would have exceptions and actinomycete taxonomy now relies 

heavily on molecular comparisons (Ensign, 1992). The only phenetic characteristics shared by all 

members of the actinomycetes is a relatively high level of guanine (G) and cytosine (C) as a 
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percentage of total DNA (>55%) (Goodfellow, 1989). Actinomycete taxonomy is still under 

development and more taxonomic information needs to be collected in all fields in order to 

develop a phylogenetic system of classification with confidence (Holloway, 1997). To determine 

a phylogenetic classification of actinomycete which is both true and practical it is necessary to 

employ a polyphasic approach, employing a combination of molecular, chemical and numerical 

taxonomic methods (Murray et al. 1990). 

1.3.3.4 Actinomycete Ecology 

As soil bacteria, actinomycetes contribute significantly to the turnover of complex 

biopolymers, such as lignocellulose, hemicellulose, pectin, keratin and chitin (Williams et al. 

1984). Additionally nitrogen-fixing actinomycetes of the genus Frankia have one of the broadest 

host ranges known, forming root nodule symbioses in more than 200 species of flowering plants 

(Huss-Danell et al. 1997). Actinomycetes can be recovered from most soils in relatively high 

numbers although this may not give an accurate picture of proportions of active bacteria in the 

soil because most of the colonies are probably isolated from spores (Williams, 1978). Streptomyces 

and Arthrobacter are ubiquitous in soil and are the most numerous of the actinomycetes 

(Goodfellow & Williams, 1983). The next most common actinomycetes are, in descending order, 

members of the genera Micromonospora, Actinoplanes, Actinomadura, and Nocardia (Lechevalier & 

Lechevalier, 1985). 

Although soil is the main habitat of the actinomycetes, they can be isolated from 

humans, animals, plants, waste water, food products, stones, buildings and works of art (eg. 

Groth & Saiz-Jimenez, 1999). Despite intensive studies there are still many gaps in our 

knowledge of the role played by actinomycetes in soil processes (Goodfellow & Williams, 1983). 

Caves are unique environments characterised by little or no light, low levels of organic 

nutrients, and a stable, but cool to cold, microclimate. Russell, (1990), hypothesised that it is not 

necessary for a microbe to function at optimal rates as long as it can compete effectively in its 
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particular environment. It may be quite advantageous for cave bacteria to metabolise 

submaximally and have long generation times in nutrient poor environments. 

Actinomycetes are well known for their ability to grow on nutrient poor media 

(Lechevalier & Lechevalier, 1985) and streptomycetes can exist for extended periods of time as 

arthrospores that germinate in the occasional presence of nutrients (Goodfellow & Williams, 

1983). Low temperatures are not a limiting factor for actinomycete growth. Suzuki et al. (1997) 

described an obligately psychrophilic actinomycete (Cryobacterium psychrophilum), and Xu et al. 

(1996) reported actinomycete populations in cool areas of China, with average temperatures of 

5° C or below 0° C, where Streptomyces spp. constituted up to 97% and 83%, respectively, of the 

total heterotrophic count. Some were psychrophiles with an optimum growth temperature of 

10-15° C. Groth & Saiz-Jimenez (1999) suggested that growth of actinomycetes in hypogean 

environments might result from the association of two factors: low temperatures and high 

relative humidity. These environmental conditions, together with nutrient availability and 

nature of organic matter are recognised to be important factors controlling the activity of 

actinomycetes in caves. 
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1.4 Geomicrobiology 

Geomicrobiology is the term given to studies of the microbe-mineral interface, including 

microbial weathering and sedimentation processes, microbial roles in formation and 

degradation of minerals, mineralisation of organic matter, subsurface microbiology, 

biogeochemical cycling of elements, and bioremediation. Microorganisms are important active 

and passive promotors of redox reactions that influence geological formations (Ehrlich, 1999). 

There is extensive literature demonstrating the influence of microorganisms in mineral 

formation from non-cave environments for a wide variety of minerals including, carbonates, 

oxides, phosphates, sulfides, and silicates (Fortin et al. 1997). Bacteria may produce minerals as a 

result of growth. Cell walls have chemically reactive sites that bind dissolved mineral-forming 

elements allowing nucleation and growth of crystals from an oversaturated solution to occur 

(Groth et al. 2001). Alternatively, mineral precipitation may result from metabolic activities of 

bacteria. Bacterial activity may simply trigger a change in solution chemistry that leads to 

oversaturation and mineral precipitation. In biological processes, oversaturation is considered 

an important prerequisite for the precipitation of minerals from solution (Fortin et al. 1997). 

Although Gonzalez-Munoz et al. (1996), suggested that this is merely incidental and the critical 

point is the participation of cellular membranes in inducing nucleation. Caves can be used as 

experimental study systems for geomicrobiology, not because they are strange, but because they 

are simple and often locally abundant, allowing for replicate studies (Northup & Lavoie, 2001). 

While geomicrobiology in general has received substantial interest in the last decade, one 

unresolved issue is the involvement of microbial activity in the dissolution of, or formation of 

speleothems in caves (Barton et al. 2001). 

1.4.1 Geomicrobiology in Caves 

Caves are nutrient-limited environments containing a variety of redox interfaces and 

they provide an accessible window into subsurface environments in which to study 

precipitation and dissolution processes and products (Northup & Lavoie, 2001). A variety of 
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precipitation and dissolution processes results in the deposition of carbonate speleothems, 

silicates, iron and manganese oxides, sulfur compounds and nitrites and the break down of 

limestone walls resulting in corrosion residues. Geomicrobiological activities in caves are no 

longer underestimated since studies have shown that bacterial metabolism can affect these 

mineral precipitation and dissolution processes (Cai\.averas et al. 2001; Northup & Lavoie (2001). 

Studies of microorganisms in caves have been predominantly descriptive, as illustrated in 

Section 1.3, with only a few experimental studies reported although increased interest in 

microbe-mineral interactions in caves is emerging. 

Microbially influenced corrosion or dissolution of mineral surfaces can occur through 

mechanical attack, the secretion of enzymes, and organic and mineral acids (eg. Sulfuric acid). 

Microbially mediated reactions can generate considerable acidity that can dissolve cave walls 

and speleothems. Possible microbially influenced corrosion include limestone corrosion residues 

composed of iron and manganese oxides and clays (eg. Lechuguilla and Spider Caves, New 

Mexico; Northup & Lavoie, 2001; Northup et al. 2003), and sulfuric acid speleogenesis and cave 

enlargement (eg. Movile Cave, Romania, and Cueva de Villa Luz, Mexico; Vlasceanu et al. 2000). 

Microbially induced mineralisation is documented in the formation of carbonates, moonmilk, 

silicates, clays, iron and manganese oxides, sulfur, and saltpeter. For example, sulfate generated 

by sulfur I sulfide-oxidising bacteria can be used as an electron-acceptor by sulfate reducers. This 

reaction produces bicarbonate that can complex with calcium, resulting in the precipitation of 

calcite in the form of subaqueous mantles (eg. Weebubbie Cave, Nullabor, Australia) (Contos et 

al. 2001). There is no clear idea as to the significance of biological involvement in speleothem 

formation, however, there are clues. 

Studies of cave geomicrobiology are largely still qualitative in nature. Barton et al. (2001) 

and Jones (2001) offered critical guidelines for the biogenicity of 'objects' visualised in cave 

deposits: they must, be found in a liveable environment, show complex form, show 

representations by numerous specimens, be members of a multicomponent assemblage, show 

morphological variability, reproduction by biological means, exhibit a range of degradation, 

organic residues and exhibit biogenic isotopic features. Various microbiological techniques have 
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been used to illustrate that microbes are present in most spelean environments and commonly 

modify the composition of the fluids and/ or influence precipitation of various minerals, 

including calcite (e.g. Melim et al. 2001). Classical isolation combined with molecular 

phylogenetic techniques reveals the presence of microbial communities associated with 

speleothems (Caiiaveras et al. 1999). Enrichment experiments with microorganisms cultured 

from cave environments have aided in identifying dissolution and precipitation abilities of these 

cave microbes (eg. Groth et al. 1999a) and stable isotope techniques has provided information on 

the microbial contribution to processes of mineral formation (eg. Hose et al. 2000) and ecosystem 

bioenergenetics (eg. Sarbu et al. 1996). 

Most bacteria in nature live as part of dynamic metabolically interactive assemblages, 

commonly referred to as biofilms, found covering most solid substrates (rocks, plants, man­

made structures) (Douglas & Douglas, 2000). The primary techniques for examination of 

biological material on mineral surfaces are transmission electron microscopy (TEM), scanning 

electron microscopy (SEM), atomic force microscopy and environmental scanning microscopy 

(ESEM) (Siering, 1998). Previous studies by Ray et al. (1997) and Douglas & Douglas, (2000) have 

shown the worth of ESEM for investigations of microbe-mineral relationships in natural 

microbial communities. Though SEM has been an important tool used to study cave microbial 

carbonates (Northup & Lavoie, 2001), ESEM allows the viewing of fully hydrated specimens that 

have not undergone structural or chemical alterations imposed by the extensive procedures 

necessary for viewing biological specimens in high vacuum necessary for conventional SEM. 

Besides allowing visualisation of microorganisms in their natural form and as intact 

assemblages, ESEM also detects elements, especially those lighter that Si, which tend to be lost 

or masked by the processes used to prepare samples for conventional SEM (Douglas & Douglas, 

2000). 

The biogenicity of mineral-associated, purportedly biological features can be 

questionable and extremely difficult to resolve (Barton et al. 2001). Microbial activity has been 

directly or indirectly linked to the formation of many different minerals, however most 

geomicrobiology studies have focused their attention on the microbiological processes that are 
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associated with the development of carbonate deposits. Even with this focus, our knowledge of 

the microbial involvement in these processes has been limited by, i) the fact that there are few 

studies that have approached the issue from a geological perspective, ii) the fact that many 

geological studies of older deposits assume abiogenicity, iii) the fact that most geologists lack 

formal microbiological training, and iv) the scale of observation (Jones, 2001). 

CaC03 speleothems predominate in most caves, and microbial studies have been 

conducted on stalactites, stalagmites, helictites, moonmilk, pool fingers and cave pearls. 

Microorganisms have been found fossilised in carbonate speleothems (Jones & Motyka, 1987; 

Polyak & Cokendolpher, 1992; Jones & Kahle, 1995; Melim et al. 2001). Fungi, algae and bacteria 

have all been implicated in the precipitation of carbonate dripstone in caves (Went, 1969; 

Danielli & Edington, 1983). There is much evidence for rich and diverse chemoautotrophic and 

heterotrophic communities in caves (eg. Angert, et al. 1998; Sarbu, et al. 1996), it remains unclear 

however, what role, if any, these communities play in speleothem formation 

1.4.2 Microbially Mediated CaC03 Precipitation 

As some of the most abundant minerals on earth, carbonates are ubiquitous and highly 

reactive components of natural environments. Carbonate minerals play important parts in 

global carbon cycling, alkalinity generation, cycling of major and trace elements, and transfer of 

matter among oceans the continents and the atmosphere (Warren et al. 2001). Understanding 

carbonate precipitation has wide ranging implications from interpretation of biogeochemical 

cycles, potential impact of increased atmospheric concentrations of C02 or reactive transport of 

radionuclides and trace metals in contaminated aquifers. 

Bacterial precipitation of CaC03has been reported in a variety of environments including 

hot springs, tidal mats and caves. It has been known since Boquet et al. (1973) that most 

heterotrophic soil bacteria can induce CaC03 precipitation. Phillips & Self (1987) demonstrated 

that in soils with a high calcite concentration needle fibre-calcite formed within fungal mycelia 

and also encrusted rod-shaped microbes. Chafetz (1994) reported research carried out in the 
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field and laboratory conditions to demonstrate beyond doubt that CaC03 precipitation occurring 

within microbial mats was a process controlled by living bacteria and does not occur when the 

bacteria are dead, even in the presence of other living microorganisms. 

Bacteria and fungi can precipitate CaC03 extracellularly through a variety of processes 

that include photosynthesis, ammonification, denitrification, sulfate reduction, and aerobic 

sulfide oxidation (Ehrlich, 1996; Castanier et al. 1999; Riding, 2000). Castanier et al. (1999) 

proposed biologically mediated or active precipitation of CaC03 where carbonate particles are 

produced by ionic exchanges through the cell membrane of heterotrophic bacteria in an 

environment enriched in organic matter. Initially, this involves the adsorption of Ca2+ and 

Mg2+ ions to negatively charged cell surfaces and the cell then acts as a nucleation site. 

Subsequent CaC03 precipitation may be active or purely inorganic. Riding (2000) noted that 

microbial production of extracellular polymeric substances (EPS), which trap sediments, is often 

critical to the creation of microbial carbonates. Terrestrial oncoids (microbially formed carbonate 

constructions from dolestones, Cayman Islands) developed when calcifying filaments and 

spores trapped and bound detritus within the associated mucus (Jones, 1991). These resemble 

cave pearls, a speleothem that has been suggested to have a microbial association during 

formation (Gradzinski, 1997). 

More recent studies have attempted to identify the factors that control the contribution 

of microorganisms to carbonate precipitation. Further progress in this field has been made in 

non-cave environments. Van Lith et al. (2003) found that only pure cultures of metabolising 

sulphate-reducing bacteria, isolated from hypersaline lagoons in Brazil, induced calcium­

dolomite and high magnesium-calcite precipitates indicating that the carbonate nucleation takes 

place in the locally changed microenvironment around the bacterial cells. Dittrich et al. (2004) 

showed that picocyanobacteria were involved in fast and effective calcite precipitation in an 

oligotrophic lake. Whether by saturation or nucleation they observed small calcite crystals 

produced by eukaryotic picoplankton whereas cyanobacterial picoplankton produced micritic 

carbonate indicating that different cells may induce very different, distinct precipitation 

processes. 
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As previously discussed, geological formations in caves (speleothems) like stalagmites 

and stalactites, are mineral depositions formed by precipitation of carbonates from ground 

water. Extensive documentation of microbial precipitation of CaC03 exists in non-cave 

literature, biogenic carbonates in particular have been studied since the late 19th century (eg. 

stromatolites; Chafetz & Buczynski, 1992). Microorganisms are believed to affect carbonate 

precipitation both through affecting local geochemical conditions and by serving as potential 

nucleation sites for mineral formation (McGenity & Sellwood, 1999). In natural environments, 

the primary means by which microorganisms promote CaC03 precipitation is by metabolic 

processes that increase alkalinity (Fujita et al. 2000). However, investigators have not established 

whether cave carbonate material has a similar origin. 

Some of the most intriguing work on cave fungi associated with speleothem formation 

was conducted by Went (1969). The author made the interesting discovery that the growth of 

stalactites in Lehman Caves, Eastern Nevada, was associated with a fungus, Cephalosporium 

lainellaecola. This discovery was made using a special microscope mounted horizontally on an 

adjustable bracket sliding along a vertical steel bar so that stalactites could be observed in situ 

within the cave. He found that fungal hyphae occurred in a drop of water at the end of a straw 

stalactite and that strings of tiny calcite crystals tended to form along them. The hyphae not only 

functioned as crystallisation nuclei but also prevented the crystals from being removed with the 

falling drops. Perhaps actinomycete filaments act in the same way. Actinomycetes isolated from 

either dripping waters or rock in Altamira Cave showed the ability to produce crystals and 

therefore could play a role in the deposition of CaC03 polymorphs on the rock surface (Laiz et al. 

1999). Although there is no known role for CaC03 in bacterial metabolism, certain organisms 

precipitate calcite during their growth (Buczynski & Chafetz, 1990). Groth et al. (2001), found 

that 45% of isolates from stalagmites in Grotta dei Cervi, Porto Badisco, Italy were able to 

precipitate CaC03 in culture medium. Organisms such as Achromatium oxaliferum contain 

internal calcite inclusions during growth (Head et al, 1996). There is also an established role for 

bacteria in the nucleation of CaC03 precipitation for stromatolite formation (Ehrlich 1999; Laval 

et al. 2000). 
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Various experiments have shown that bacteria may be replaced or encrusted by 

inorganic materials resulting in the fossil preservation of bacterial morphology. There are 

reports of bacteria preserved in carbonate rocks (Folk 1993; Jones 1995; Trewin & Knoll 1999) 

and a few reports of iron-oxidising bacteria preserved in carbonate speleothems in caves (Polyak 

& Cokendolpher, 1992). However, although microfossils have been identified in carbonate 

speleothems, no direct connection with active precipitation processes in the formation of these 

features has been demonstrated. Bacterially induced changes in solution chemistry can be a 

passive process (eg. stromatolites; Chafetz & Buczynski, 1992). Evidence that microbes play a 

role in the formation of cave carbonates is still largely circumstantial and based on their physical 

presence. The question still remains whether the organisms identified are actively involved in 

speleothem formation, or simply buried during mineral precipitation (Polyak & Cokendolpher, 

1992). Of special interest is the speleothem moonmilk. As discussed in Section 1.2.2, the wet 

pasty forms of moonmilk are so striking that some special explanation for their origin seems to 

be necessary. Caii.averas et al. (1999) suggested that bacteria present in caves may play a role in 

the formation of moonmilk deposits as microbial communities predominantly composed of 

different species of the genus Streptomyces were found in association with hydromagnesite and 

needle-fiber aragonite deposits in Altamira Cave. 

1.4.3 Moonmilk 

Moonmilk is a widely distributed, secondary formation and refers to the very hydrated 

white spongy /pasty or powdery masses found coating walls and speleothems in caves. It is not 

a mineral, it is a speleothem. It is often described as having a cottage cheese-like consistency and 

may be composed of several carbonate minerals. The historical term Mondmilch (=calcite 

moonmilk) is related to the proper type locality, the cave Mondmilchloch from South-Pilatus 

near Lucerne, Switzerland. Mondmilch was first mentioned by Agricola (1546, p. 194) and 

described by Gesner (1555) after visiting the cave Mondmilchloch (Fischer, 1988). This was 

without consideration of the actual mineral composition of the deposits. Moonmilk became well 
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known throughout Europe and used as a medication (Scheuchzer, 1752; in Fischer, 1988). In the 

161
h and 11'1" centuries, physicians in Europe used dried moonmilk from caves as a dressing for 

wounds. Apparently moonmilk would stop the bleeding and act as a dehydrating agent. 

However, some also believed it had curative properties. It is rather interesting that modem 

research or theories have discovered bacteria associated with moonmilk include actinomycetes 

that, as previously discussed, possess antibiotic properties. 

Many descriptions of moonmilk are not only related to calcite growth, although the 

original term mondmilch from the cave Mondmilchloch refers to calcite precipitation and does 

not represent the phenomenon for speleothems in general. Hill & Forti (1986) suggested that 

texture rather than composition is implied by the term 'mondmilch'. Fischer (1988) defined 

mondmilch as a calcite microcrystalline or needle-crystalline speleothem with a minimum 

calcite content of 90 % weight, for the purpose of distinguishing true calcite mondmilch from 

other carbonate speleothems (< 90 % weight calcite) and other subterranean deposits, (eg. 

ferromanganese, sulfates, phosphates, silicates). The mineralogy and crystallography of 

potential mondmilch samples can be easily proved using X-Ray Diffraction Analysis (XRD) and 

scanning electron microscopy (SEM) methods (Fischer, 1988). Numerous synonyms in different 

languages exist for mondmilch, including the English version moonmilk. 

True calcite moonmilk (mondmilch) has been found in many caves all over the world 

and appears to be particularly abundant in caves of cool temperature and high humidity. In 

warmer semi-arid regions limestones contain significant amounts of magnesium and moonmilk 

deposits may consist of a number of magnesium minerals including hydromagnesite, magnesite, 

huntite or dolomite (Moore & Nicholas, 1964). In Australian caves moonmilk has been 

documented in a variety of forms including, thin dry wall coatings, white cheese-like pasty 

forms at the bottom of rimstone pools or wall niche deposits, stalactites, cauliflower-like 

deposits and fluffy fungus-like forms in Jenolan Cave, NSW (http:/ /www.speleonics.com.au; 

maintained by J. Rowling). The origin of moonmilk deposits is highly contested among the 

literature. Hill & Forti (1986) cite four main theories as to the origin of moonmilk: i) freezing in 

ice caves, ii) precipitation from groundwater in which there is an agent which prevents the 
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crystals from growing large, (the theory preferred by Hill & Forti), iii) a disintegration product 

of bedrock, and iv) a by-product of the life cycle of various microorganisms. Each of these 

theories taken individually has its pros and cons as an explanation for the development of 

moonmilk. 

White (1976) suggested that moonmilk in alpine caves may be precipitated chemically at 

low temperatures as hydrated carbonates, however these forms are only stable at low 

temperatures. Also freezing in alpine icy caves does not explain the occurrence of temperate and 

tropical moonmilk. Rapid precipitation of substances will generally result in small crystal size 

and this occurs near cave entrances where precipitation is due to both outgassing C02 and 

evaporation of water (http:/ /www.speleonics.com.au; maintained by J. Rowling). It also occurs 

where gypsum is being produced. However, this does not explain the pasty textured moonmilk 

or that speleothems in cave entrances are hard and crystalline and quite unlike moonmilk. 

Moonmilk is usually considered a depositional product. However, Hill & Forti (1986) 

suggested it can also form by corrosion processes. It is suggested that moonmilk could be a 

product of microbial metabolism which could biochemically corrode underlying bedrock. There 

are of course various types of bedrock and numerous disintegration processes that can occur 

within caves and though calcite deposits may be formed, they do not have the pasty texture that 

moonmilk is famous for. One common cause of bedrock disintegration is bat guano 

(http:/ /www.speleonics.com.au; maintained by J. Rowling). It has been suggested that the thin 

films of moonmilk may be a result of bat guano bedrock disintegration, however this would not 

explain the moonmilk films in Entrance Cave, Tasmania, Australia, as there are no bats 

inhabiting Tasmanian caves due to cool air temperatures. Gradzinski et al. (1997) concluded that 

moonmilk deposits from several caves in Poland might be the result of microbial degradation of 

the host rock, as well as, or in place of microbially mediated precipitation of calcite. Conversely, 

in Spider Cave, New Mexico, SEM pictures of the microcrystals that make up moonmilk do not 

show the evidence of weathering that would be expected if microbial corrosion routinely 

resulted in moonmilk production (Northup & Lavoie, 2001). 
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It is generally accepted that moonmilk might be the by-product of the life-cycle of 

various microbes, although the question remains whether the organisms identified are actively 

involved or simply buried during mineral precipitation. A number of organisms have been 

isolated from cave environments and shown to precipitate CaC03 in the laboratory (Danielli & 

Edington, 1983; Groth et al. 2001). One very interesting point, a thick wall-niche deposit of 

moonmilk in J enolan Cave is recorded as having been damaged by a person's hand print to at 

least 1 cm depth, yet 8 years later the print is/was no longer visible 

(http:/ /www.speleonics.com.au; maintained by J. Rowling). Given the long length of time for 

usual speleothem growth (1 inch in 100-150 years; Section 1.2.2) this prompts the question as to 

whether the moonmilk was "alive" or not. Putative cells and an organic matrix can be frequently 

seen in moonmilk samples with SEM or in thin sections, but not in all cases. A wide range of 

microbes, particularly bacteria, streptomycetes but also fungi, algae and protozoa, can be 

cultured from moonmilk often in high densities (Northup et al. 2000). 

Williams (1959) inoculated moonmilk samples from several caves in South Wales into 

various nutritional media and isolated eight species of heterotrophic bacteria belonging to the 

genera Bacillus, Micrococcus, Bacterium, and Streptomyces. In one culture a Gram-negative rod, a 

thiobacteria, was detected with the ability to produce CaC03 in crystalline forms similar to those 

found in moonmilk. Danielli & Edington (1983) isolated a wide range of colony types (mostly 

Gram-negative cells) from moonmilk collected from caves in Wales and calcite precipitation was 

a common factor of these isolates. These authors suggested that cells were using the organic salt 

anion for energy and dumping the calcium as a waste product. When the calcium exceeded the 

solubility threshold, precipitation resulted. CaC03 encrusted cells then served as a nucleation 

site for further crystal formation. Gradzinski et al. (1997) proposed stages in the progressive 

formation of moonmilk where cells and an organic matrix first provide a structural framework; 

then, active bacterial cells are calcified and the extracellular organic matrix fills the remaining 

space with calcite. Although there is no known benefit of CaC03 precipitation in bacterial 

metabolism, detoxification of calcium has been suggested (Northup & Lavoie, 2001). 
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A very interesting cave phenomena usually associated with moonmilk deposits is the 

white/ grey silvered films which are covered in reflective dots and usually occur on walls and 

ceilings within the Twilight to Dark Zones of limestone caves and lava tube caves Gones, 1995) 

Although there are no published works that this author could find, it seems to be widely 

accepted that the white/ grey coating is colonies of actinomycetes. The surface of these colonies 

is hydrophobic but the filamentous structures are hydrophilic and the droplets are attached to 

the end of these filaments. Lake & Rowling (pers. comm. J. Rowling, Aristocrat Technologies 

Australia, 2004) collected some liquid from colonies at Jenolan Caves and investigated the 

mineral aspects of the liquid, and found that it was almost entirely calcite. These investigators 

postulated that perhaps these actinomycetes contributed to moonmilk deposits. The ability to 

form CaC03 polymorphs seems widely distributed among environmental actinomycetes; 19 out 

of 31 cave strains isolated and tested by Laiz et al. (1999) produced a considerable amounts of 

crystals in both solid and liquid media. 

Microbial precipitation does not explain all forms of moonmilk. It is likely that there 

may be abiotic forms as well. An extensive survey of moonmilk deposits from high-altitude 

caves in the Italian Alps revealed no evidence of microbial involvement in calcite precipitation. 

A review of factors contributing to the formation of moonmilk deposits in these alpine caves 

includes elevation and temperature, along with surface cover of soils and conifer forests and 

with low discharge rates of seepage water and high humidity (Borsato et al. 2000). However, the 

majority of samples were from fossil deposits (Borsato et al. 2000). Given the wide variability of 

minerals that may form moomilk it is not surprising that several mechanisms, biotic and abiotic, 

have been proposed for its formation, one or more of which may be involved in the deposition 

of moonmilk in a particular form or particular type of cave. 

Biotic and abiotic hypotheses for the formation of moonmilk do not need to be mutually 

exclusive (Northup & Lavoie, 2001). Given the variety of mineral types involved and the range 

of physicochemical conditions, microbes are clearly involved in the formation of moonmilk by 

dissolution or by serving as nucleation sites in some cases, but they may play a minor or 

negligible role in other cases. Friedman & Sanders (1978) noted that "Purely inorganic chemical 
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reactions can take place only where simple organisms are totally absent. At the surface of the 

earth, environments devoid of such organisms are uncommon." That same observation is true 

for subsurface environments. Studies of dissolution and precipitation of carbonates, moonmilk, 

silicates, clays, iron and manganese oxides, sulfur, and saltpetre in caves span only a few 

decades. A variety of organisms with biogenic potential have been discovered and some 

fascinating systems and environments have been described from caves. These studies provide 

insights into biomineralisation in general, and in the formation of speleothems in particular 

(Northup & Lavoie, 2001). 
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1.5 Significance 

1.5.1 Biodiversity and Conservation Value 

Biodiversity is the variety of all life forms: the different plants, animals and 

microorganisms, their genes and the ecosystems to which they belong. Australia is one of the 

most biologically diverse countries in the world with a large portion of its species found 

nowhere else in the world (1/5 of the world's diversity). Biodiversity underpins the processes 

that make life possible. Healthy ecosystems are necessary for maintaining and regulating 

atmospheric quality, climate, fresh water, marine productivity, soil formation, cycling of 

nutrients and waste disposal. Thus we depend on biodiversity for our survival and quality of 

life. 

At the 1992 Earth Summit in Rio de Janeiro, world leaders agreed on a comprehensive 

strategy for "sustainable development", meeting our needs while ensuring that we leave a 

healthy and viable world for future generations (Department of Environment and Heritage, 

Australian Biological Resources Study website; http:/ /www.deh.gov.au/biodiversity I abrs/). 

One of the key agreements adopted at Rio was the Convention on Biological Diversity setting 

commitments to sustainable development. The two main goals established by the Convention 

were the conservation of biodiversity and the sustainable use of its components. The most 

significant impediment to the conservation and management of biodiversity is our lack of 

knowledge of it and the effects of human population and activities on it. Accordingly, a 

taxonomic perspective is necessary to conserve biodiversity and achieve sustainable 

development. 

A taxonomic perspective includes providing underlying taxonomic knowledge of 

biodiversity and the environmental factors influencing species distribution in microhabitats. 

Providing baseline information on the composition and distribution of cave microbial 

communities is essential to aid the conservation of cave microbial communities from human 

impacts. 
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1.5.2 Bioprospecting 

A critical element in drug discovery based on microbial extracts is the isolation of 

unexploited groups of microorganisms that are at the same time good producers of secondary 

metabolites. Together with their importance in soil ecology, actinomycetes are best known as a 

source of antibiotics. This became apparent in 1940, following Selman Waksman's seminal 

discovery of acti.nomycin (Waksman & Woodruff, 1940) and was fully realised by the 1980s 

when acti.nomycetes accounted for almost 70% of the world's naturally occurring antibiotics 

(Okami & Hotta, 1988). Acti.nomycetes, represent an important source of biologically active 

compounds whose members have unparalleled ability to produce diverse secondary 

metabolites. These molecules present original and unexpected structure and are selective 

inhibitors of their molecular targets' (Donadio et al. 2002). Thus acti.nomycetes are a group of 

high economic, social and health significance. 

In the past two decades there has been a decline in the discovery of new lead 

compounds from common soil-derived actinomycetes as culture extracts yield unacceptably 

high numbers of previously described metabolites (Mincer et al. 2002). Natural products 

continue to be a potent source of novel drugs and other bioactive compounds despite the 

I 

emergence of combinatorial chemistry. The important attributes of natural products are their 

molecular diversity, still very much greater than that of combinatorial libraries, and their 

biological functionality (Nisbet & Moore, 1997). For this reason cultivation of rare or novel 

actinomycete taxa has become a major focus in the search for the next generation of 

pharmaceutical agents (Bull et al. 2000). The pharmaceutical industry has a strong interest in the 

acquisition of novel acti.nomycete biodiversity in the search for new lead compounds. There is 

strong incentive therefore to discover novel microbes whether it is done by exploiting molecular 

biology and/ or by exploring unusual biotopes (Colquhuon et al. 2000). Due to this interest 

significant biodiversity has been targeted and described from accessible environments. Williams 

et al. (1993) stated that one approach to the isolation of novel acti.nomycetes is to concentrate on 

understudied environments or substrates while using appropriate selective isolation techniques 

or to investigate habitats in which one or more of the environmental factors (eg. temperature, 
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pH, aeration, or osmotic stress) are extreme. This has lead to the strategic targeting of extreme or 

unusual ecosystems. The importance of this area of rest:;arch has been recognised by the 

international research community, for example by recent EU funding of a new initiative at the 

University of Newcastle upon Tyne ("New Approaches to the Discovery of Novel Bioactive 

Compounds from Natural Actinomycete Communities"). 

Caves are unique ecosystems exposed to extreme environmental stresses. The limiting 

environmental characteristics of caves, little or no light, low levels of organic nutrients, high 

mineral concentrations and a stable microclimate, provide ecological niches for highly 

specialised and very diverse microbiota. Preliminary investigations of microbes isolated from 

the most remote and least human-impacted regions of Lechuguilla Cave, New Mexico, have 

highlighted their potential as sources of anti-cancer treatments, because of their ability to kill 

breast cancer cells (Northup & Mallory, 1998). Novel actinomycetes isolated from caves 

represent an important, potentially valuable biotechnological resource for the screening and 

discovery of novel bioactive compounds due to their origin from a unique and as yet poorly 

studied environment. 

1.5.3 Bioremediation 

Microbial biodiversity is a reservoir of resources that remains relatively untapped. 

Microbes are the only life-forms that have been encountered in the deeper regions of the earths 

crust. Subsurface microbes with novel metabolic properties may be of potential value to 

industry for applications in bioremediation and biotechnology (eg. Gold, 1992; Boone et al. 1995; 

Stevens & McKinley 1995; Bale et al. 1997; Krumholz et al. 1997, 1999; Chandler et al. 1998; 

Whitman et al. 1998; Kieft et al. 1999; Takai & Horikoshi, 1999). In spite of recent findings, many 

of these microbial habitats remain poorly characterised mainly due to difficulties associated with 

access and sampling. Caves provide an accessible point of entry to the shallow subsurface. 

Throughout.the world, organic and inorganic substances leach into the subsurface as a 

result of human activities and accidents, for example agricultural pesticides, landfill leachate. 
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There, the chemicals pose direct or indirect threats to the environment and to increasingly scarce 

drinking water resources. At many contaminated sites the subsurface is able to attenuate 

pollutants that, potentially, lowers the costs of remediation. Natural attenuation comprises a 

wide range of processes of which the principle mediators are the microbiological component, 

which is responsible for intrinsic bioremediation, and can decrease the mass and toxicity of the 

contaminants by transforming or mineralising pollutants and is, therefore the most important 

(Christensen et al. 2001; Roling & van Verseveld, 2002). Of particular relevance is the ability of 

subsurface microbes to induce formation of CaC03 minerals which presents an opportunity to 

develop and in situ bioremediation techniques for groundwater contaminated with divalent 

metals or radionuclides (Fujita et al. 2000). Reliance on intrinsic bioremediation requires methods 

to monitor the process. Knowledge of the subsurface geology and hydrology, microbial ecology 

and degradation processes can be used to monitor the potential and capacity for intrinsic 

bioremediation in the subsurface. 

1.5.4 Biodeterioration & Biomzneralisation Processes 

1.5.4.1 Palaeolithic Frescoes and Rock Art in Hypogean Environments 

It is now well recognised that wall paintings can be severely damaged by microbial 

growth (Ciferri, 1999). It has been reported in the literature that pigment formation, crystal 

growth and other types of biodeterioration processes related to microbial activity affect rock 

paintings and frescoes in cave environments. In studies on the bacterial community associated 

with such deterioration, members of the actinomycetes both previously cultured and novel, are 

frequently cultivated (Sorlini et al. 1987; Weirich, 1989; Petushkova et al. 1990; Altenburger et al. 

1996, 2002; Rolleke et al. 1996; Groth et al. 1999a; Wieser et al. 1999; Gurtner et al. 2000; Heyrman 

& Swings, 2001; Gurtner et al. 2001; Heyrman et al. 2002). Studies in Altamira and Tito Bustillo 

Caves, Spain, demonstrate that rock art paintings are coated by dense networks of bacteria, 

mainly actinomycetes. Identified damage includes: i) covering (scattered coloured spots, whitish 

powdery patinas, staining) of paintings by the microbial communities themselves and/ or by 
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their metabolic activity (including biofilms and bio-induced precipitates); ii) chemical alteration, 

such as microbial mediated dissolution; and iii) mechanical alteration, such as rock substrate 

breakdown. 

Bacteria can use organic compounds from the paint layer as growth substrates, 

producing acids, which cause discolouration of the paint or changes in its consistency. For 

example, iron-enriched pigments in rock art act as a substrate for attachment and a mineral 

supply for growth. In favourable conditions the bacteria present can change the colour of the 

paintings from the reddish yellow hues characteristic of iron pigments to a dark yellowish 

colour as a result of microbial metabolism. As noted previously in Section 1.4, some cave 

bacteria may play an important role in the precipitation and/ or deposition of CaC03 

speleothems. Many of the actinomycetes isolated from caves are able to precipitate CaC03 

crystals. These bacteria can induce constructive (calcification, crystalline precipitates) and 

destructive (irregular etching, spiky calcite) fabrics on the paintings and/ or surrounding rock. 

Microbes can penetrate into the painting and its bedrock resulting in mechanical destruction of 

the cultural heritage (dissolution, etching of the host rock). In a study by Ca:fi.averas et al. (1999) a 

Streptomyces xanthophaeus strain isolated from Tito Bustillo Cave walls was inoculated onto 

stalactite slices which showed pitting formation after only three months of culture in the 

laboratory illustrating a bacterially mediated calcite dissolution process. Because of this ability it 

has been proposed that these bacteria and others are directly or indirectly involved in 

constructive and destructive biomineralisation processes in caves (Laiz et al. 1999). 

1.5.4.2 Monuments 

Interestingly, a group of geomicrobiologists in Spain are following a unique view of 

biomineralisation processes by suggesting using bacterially induced carbonate mineralisation as 

a novel and environmentally friendly strategy for conservation of ornamental stone monuments. 

Increasing environmental pollution in urban areas has been endangering the survival of 

56 



1.5 Significance 

carbonate stones in monuments and statuary for many decades. Numerous conservation 

treahnents have been applied for the protection and consolidation of these works of art. Most of 

them, however, either release dangerous gases during curing or show very little efficacy. There 

have been a number of studies looking at biomineralisation processes, particularly bio-mediated 

calcite precipitation, for monumental stone conservation (Di Bonaventura et al. 1999; Tiano et al. 

1999; Urzi et al. 1999), for example, Myxococcus xanthus -induced CaC03 precipitation efficiently 

protects and consolidates porous ornamental limestone. (Rodriguez-Navarro et al. 2003). Calcite­

precipitating cave isolates have the potential to contribute in this area. 

1.5.5 Management Issues 

Cave environments are generally quite stable. Diurnal changes have little effect on the 

cave microclimate. Similarly, seasonal variations in temperature and humidity are relatively 

minor. Air movement is regulated largely by cave morphology and if present, by the active 

watercourse. There are low numbers of macroscopic living organisms in caves, mostly insects 

and spiders. In such a stable environment, microbial growth is the main threat to the 

preservation of the cave environment. The effects of microbial growth are exacerbated by human 

impact both on the external cave environment (eg. pollution, changed land use) and by visiting 

the caves. Visitation produces a more direct and pronounced effect. Visitors produce variations 

in environmental conditions and increase microbial dispersal and colonisation, Humans can 

introduce foreign organisms from the surface environment that can establish in caves and they 

leave behind organic material (lint, hair, skin flakes etc) that provide a rich nutrient source for 

the proliferation of micro-organisms. 

There are implications for Heritage Management in the case of hypogean environments 

containing Palaeolithic rock art. Pigment formation, crystal growth and other types of 

biodeterioration processes related to microbial activity affect rock paintings and frescoes in cave 

environments. These bacteria induce constructive effects such as calcification, crystalline 
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precipitates, covering) and/ or destructive fabrics such as irregular etching, spiky calcite, 

substrate break-down and dissolution. 

There are also implications for cave management issues include the impacts of changes 

in hydrology, cave sediment contamination on speleothems, and tourist cave lighting upon the 

natural microbial communities existing within cave microhabitats. Whether microbial 

communities are actively or passively involved in speleothem formation, disruptions to the 

natural communities will have an effect on the health and continued formation of speleothems 

and cave systems. 
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1.6 Conclusion 

Cave environments represent one of few remaining isolated planetary habitats, in terms 

of human impact and the characterisation of novel microbial diversity. In the past, the study of 

microbial communities and biogeochemical processes in hypogean environments is mainly 

related to the fact that microbes affect cultural heritage properties that humans wish to protect 

and we owe much of our initial knowledge of cave microbiota to these studies. These studies 

may not necessarily reflect the biodiversity in 'natural' cave systems ie. those that are not 

heavily impacted by tourism. Compounding this, culture-based studies often have no 16S rRNA 

gene sequence data for isolates. Most published studies use morphological and biochemical 

means of identification, rather than phylogeny, to characterise cave strains to the genus level 

only. Thus it is difficult to make detailed comparisons at the species level between cave 

environments. Sequence data is available for described novel species from caves, however, little 

has been published about the cave environments that these novel species were isolated from. 

It is widely accepted that only - 1 % of microbes are cultured in the laboratory. Culture­

independent methods are being increasingly used.to describe the composition of microbial 

communities and reveal significantly broader diversity than culture-based studies. Nevertheless, 

to date our knowledge of bacterial communities in caves is largely due to culture-based studies. 

The past decade has seen a rapid increase in published investigations of microbial ecology in 

caves. However, the diverse range of types of caves (Eg. sulfur caves, carbonate caves, aquatic 

caves, tourist/show caves, restricted access caves) and microhabitats (Eg. acidic biofilms on 

walls, filamentous microbial mats in sulfur waters, aquatic microbial mantles, Palaeolithic rock 

art, cave walls, ferromanganese deposits, sediments) studied and the geographic separation of 

sites (Romania, Italy, Australia, Mexico, Spain, North America) makes it difficult to draw many 

comparisons or conclusions about cave microbial diversity (Eg. Sarbu et al. 1996; Angert et al. 

1998; Vlasceanu et al. 2000; Holmes et al. 2001; Summers-Engel et al. 2001; Schabereiter-Gurtner et 

al. 2002, 2004; Northup et al. 2003; Chelius & Moore, 2004; Barton et al. 2004). Despite this recent 

expansion of our knowledge, literature on cave microbial communities, their distribution and 
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taxonomic diversity, is limited and restricted to only a few caves world-wide, predominately in 

the northern hemisphere. In the southern hemisphere investigations of microbial diversity in 

caves is represented by only one publication. Holmes et al. (2001) investigated microbial 

diversity in unusual aquatic formations, mantles of mucus and biological material associated 

with crystalline material in submerged passages in the Nullabor Caves, Australia; a very unique 

microhabitat thus most likely not representative of general cave microbial biodiversity in the 

southern hemisphere. Molecular techniques are only recently being applied to 

geomicrobiological questions in hypogean environments (Eg. ferromanganese residues in 

Lechuguilla Cave; Northup et al. 2003), and as yet there are no published culture-dependent 

reports of microbial communities associated with moonmilk deposits. 

The description of the composition of microbial communities is an important starting 

point in studies of microbial biodiversity and sets the stage for fundamental studies concerning 

how these populations function (Morris et al. 2002). The microbial diversity of as yet poorly 

studied environments is being increasingly explored by molecular detection methods (eg. 

Eppard et al. 1996; Rheims et al. 1996, 1998; Sarbu et al. 1996; Vlasceanu et al. 2000; Holmes et al. 

2001; Summers-Engel et al. 2001; Schabereiter-Gurtner et al. 2002, 2004; Northup et al. 2003). 

While molecular methods are valuable tools in characterising the microflora, isolation and 

culturing are still required for describing the microbial diversity, especially in the case of novel 

taxa (Palleroni, 1997). 
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SECTION 2: 

MICROBIAL BIODIVERSITY IN TASMANIAN CAVES 

Chapter 1: Introduction 

Some of the deepest, longest and most beautiful caves in Australia are found in 

Tasmania. Tasmanian caves are of mixed character (wet/muddy vs. dry) and range from 

commercially used caves to new or unexplored caves. Due to our southerly latitude, the caves in 

Tasmania are colder and wetter than elsewhere in Australia with temperatures ranging as low 

as 4-7 °C. An interesting point to note is that there are no bats in Tasmanian caves, probably due 

to the cool air temperature in these caves. The Ida Bay Karst area is located in southern 

Tasmania, mostly within the Tasmanian Wilderness World Heritage Area {Figure 1.1). Most of 

the karst retains native vegetation cover, which is wet sclerophyll forest and rainforest. The Ida 

Bay Karst developed in Ordovician Gordon limestone from 510 to 439 million years ago (Mya), 

outcropping between 50 and 300 m above sea level. Cave development is substantial, with more 

than 140 cave entrances and in excess of 20 km of mapped passage, and predominantly CaC03 

speleothems (Eberhard, 1999). The extensive cave systems in this region have a long and 

complex history of development, with Cainozoic (65 MYA to present) cold climate change 

exerting a major influence (Goede, 1968; Kiernan, 1982). Environmental conditions within the 

cave systems are thought to have changed little since they formed, except for periodic glacial 

sediment inclusion. 
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Chapter 1: Introduction 

Figure 1.1: Map of Tasmania depicting the World Heritage Area and Ida Bay karst 
region. Entrance-Exit Cave system and Loons Cave are located in the Ida Bay karst. 
Overlay detailing geology of Tasmania, including calcerous sediments of the 
Ida Bay karst region. 

Data provided by National Parks and Wildlife Service Tasmania. 
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Chapter 1: Introduction 

Figure 1.1: Map of Tasmania depicting the World Heritage Area and Ida Bay karst 
region. Entrance-Exit Cave system and Loons Cave are located in the Ida Bay karst. 
Overlay detailing geology of Tasmania, including calcerous sediments of the 
Ida Bay karst region. 

Data provided by National Parks and Wildlife Service Tasmania. 

Ida Bay karst: 
Entrance-Exit Cave 
Loons Cave 
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Chapter 1: Introduction 

The biological importance of the Ida Bay caves has been recognised for more than 100 

years, beginning with an article published in Scientific American describing the spectacular glow 

worm display in Entrance Cave (Anon. 1895 in Eberhard, 1999). Over the years, many rare and 

endemic obligate cave fauna have been discovered and described from Ida Bay caves resulting 

in this region being widely recognised as containing one of the more diverse and significant 

assemblages of cave fauna in Australia's temperate zone (Richards & Oilier, 1976). 

The Entrance-Exit Cave System is a site of high biological significance, the most 

outstanding biological feature of the caves being the glow worm display. The Entrance Cave 

subsystem, in particular, is the type locality for many obligate cave dwelling fauna (Richards & 

Oilier, 1976). Near the entrance and extending for some distance into Entrance Cave there is a 

very significant cave fill deposit consisting of a conglomerate of rounded boulders and pebbles 

set in a fine matrix and thoroughly indurated. This deposit has not been studied in detail but an 

intelligent guess is that it is sediment of glacial times, when solifluction was prevalent but 

running water was much reduced (Richards & Oilier, 1976). The significant feature is that this 

, deposit extends to roof level which possibly means it blocked the cave completely at one stage 

allowing 'evolution' in isolation and has since been largely removed by subsequent stream 

action (Richards & Oilier, 1976). 

Loons Cave, although very dose in proximity, is a very different system to the Entrance­

Exit Cave System. Loons Cave essentially consists of a single, narrow, low energy stream 

passage that appears to be fed primarily by waters of seepage origin not a streamway 

originating from the surface (Household & Spate, 1990). The cave is reasonably well decorated 

with speleothems that are generally massive and robust. Loons Cave is commonly used as an 

"outdoor experience" locality for school and recreational groups and is therefore a site of high 

human impact in contrast to the majority of the Entrance - Exit Cave system. 

Deposits of moonmilk are a common feature of many Tasmanian caves (Goede, 1988). 

Despite their abundance they are amongst the least studied and understood of any of the cave 
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deposits. Very large moonmilk deposits are evident in Exit Cave occurring as a uniform or 

botryoidal layer that covers stalactites, cave walls, ceilings and floors. Entrance Cave is also 

known to have moonmilk deposits although on a much smaller scale than Exit Cave. Within the 

Entrance Chamber of Entrance Cave, just beyond the cave mouth, large white mats with silvered 

droplets (similar to those described in Section 1.4.3) are visible on the ceiling rock. These have 

been anecdotally described as being actinomycete colonies by enthusiastic cavers, though this 

has previously not been investigated. The white mats are visible past the Twilight Zone of the 

cave and in the Dark Zone, however not to the same extent. Although there are no moonmilk 

speleothems in Entrance Cave per se, it was discovered during the course of this study that there 

are large deposits of moonmilk beneath the sediment throughout the cave. 

The focus of this research was the characterisation of microbial biodiversity from 

Tasmanian caves (Entrance-Exit Cave system and Loons Cave) in 3 microhabitats; sediments, 

speleothems and moonmilk deposits. Isolation of pure cultures reveals only a minor fraction (-

1 %) of the actual biodiversity in an environment. Culture-independent 16S rRNA gene sequence 

analyses have opened the way to study bacterial communities in environmental samples 

without prior cultivation and reveal a significantly broader diversity than culture-based studies 

(Amann et al. 1995; Head et al. 1998; Hugenholtz et al. 1998). Bacterial diversity in Tasmanian 

caves have not been investigated using culture-independent techniques and to date there is no 

published culture-independent study on moonmilk worldwide. Thus classical isolation and 

molecular detection methods (DGGE, 16S rRNA gene clone library analysis) were used to 

compare culturable vs. non-culturable biodiversity, particularly of the actinomycetes who 

appear to dominate isolations from culture-based studies of heterotrophic cave systems. To 

expand our knowledge of cave microbial diversity, phylogenetic analysis was used to determine 

diversity at the species level and to infer ecological function where possible. The biodiversity 

described acts as a baseline for assessing environmental impacts and also identifying factors 

influencing microbial diversity. 
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Chapter 2: Materials and Methods 

2.1 Site description and sample collection 

2.1.1 Entrance-Exit Cave System 

The Entrance Cave subsystem has a simple cave opening where Mystery Creek goes 

underground and is located approximately 2 km from Ida Bay, along the South Lune Road. The 

cave follows the course of Mystery Creek entering the north side of Marble Hill, also known as 

Caves Hill, at an elevation of 115 m (Richards and Oilier, 1976). The cave floor is a riverbed, 

covered with large boulders and cobbles. Water and nutrients are contributed to the lower level 

passages by the active inflow stream Mystery Creek, whereas the upper level passages are dry. 

Mystery Creek re-emerges via a non-negotiable route into Exit Cave and a subterranean section 

of the D'Entrecasteaux River draining out of the south side of Marble Hill. Exit Cave is the 

longest cave in Australia with greater than 15 km of passages, generally large sized. Mystery 

Creek is also an important inflow stream to the Exit Cave subsystem, contributing water and 

nutrients. There are also many smaller feeder passages in the Exit Cave subsystem with low 

energy streams and more than 100 other known caves in the Ida Bay karst that are 

predominantly vertical shaft caves on the slopes of Marble Hill and connect with the Exit Cave 

subsystem at depth. 

2.1.2 Loons Cave 

Loons Cave essentially consists of a single, narrow, low energy stream passage that 

appears to be fed primarily by waters of seepage origin (Household & Spate, 1990). The natural, 

undisturbed substrate in this stream consists of a lightly cemented veneer of pebbles overlying a 

deep unconsolidated mass of fine clay sediment. The effect of repeated trampling on this 

sensitive veneer has caused its breakage and collapse into the underlying soft sediments, 
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resulting in the formation of deep muddy pools. Parts of the stream substrate remain in original, 

pristine condition where it crosses underneath sections of passage inaccessible to people. 

2.1.3 Sample Collection 

Samples were collected from Entrance, Exit and Loons caves, concentrating on three 

microhabitats; floor sediments, speleothems and moonmilk deposits. Sites were chosen with 

minimal contamination factors and to reduce impact of our sampling to a minimum. Samples 

were collected to the side of the main paths to avoid contamination from trampling of cavers 

and 'clean' speleothems and moonmilk were chosen with no visible human impact or handling 

(e.g. mud smears, hand prints etc.). Samples were collected under the provisions of permit 

number ES 01147 issued by National Parks and Wildlife Service, Tasmania. 

Sediment sampling consisted of collecting approximately 10 g/sample using a sterile 

teaspoon and placing into individual sterile plastic bags. Sterile swabs (EUROTUBO® Collection 

Swabs; I.A.S.A) moistened with sterile double distilled water (ddHP) were used to sample from 

spel~othems. To collect moonmilk deposits, MEl and 3, in Entrance Cave, the upper layer of 

sediment was scraped away with a sterile teaspoon and sterile 15 mL falcon tubes (REDLINE 

Scientific Pty. Ltd.) were inserted into the deposit. The tubes were withdrawn from the deposit 

approximately half full and capped immediately. Similarly, samples were collected from 

moonmilk speleothems in Exit Cave, MXl, by inserting sterile 15 mL falcon tubes into the 

formation till they hit the 'hard' speleothem surface, withdrawing and capping immediately. 

Samples of the white mat, ME2, in Entrance Cave were collected by inserting glass slides 

between the mat and mud or substrate rock. The slides were placed on wet tissue paper within 

closed petri dishes to keep them hydrated. Samples were transported to the laboratory on ice 

and stored at 4 °C until processed. Sample locations and descriptions are listed in Table 2.1. 
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Table 2.1: Identity, location and description of samples collected from Entrance, Exit and Loons Caves 

Sample* Cave and sample location Descnption 

SEl Entrance Cave, Big Stalagmite Cavern; Dark Zone Dry sediment from indentation, 1.2 ms above floor, Big StalStalagmite. 

SE2 '"' Wet sediment from front drainage region of flow form by Big Stalagmite 

SLl Loons Cave, "Tarpit", Dark Zone Dry sediment from left hand sidewall deposit above flood zone. 

SL2 1111 Wet sediment from bottom of 1 m deep permanent mudhole. 

SPE3 Entrance, Big Stalagmite; Dark Zone Swab, droplet on shelf roof, nght hand side of passage. 

SPES un Swab, wet flow form, right corner of passage entry. 

SPE7 un Swab, Big Stalagmite, dry surface, 1.5 m above floor. 

SPElO Entrance, Big Flow form; Twilight Zone Swab, moonmilk mat on cave roof. 

SPE12 Entrance, left hand platform; Twilight Zone Swab, old dry flow form. 

SPL2 Loons, First Aven; Dark Zone Swab, large dnp stone under aven. 

SPL3 Loons, dry platform past first Aven; Dark Zone Swab, red droplet on fungal mycelia. 

SPL6 Loons, Lower entrance crawl; Twilight Zone Swab, sloping surface among small stalagmites. 

SPL8 Loons, Sump; Dark Zone Swab, cream flowstone surface. 

SPL9 1111 Swab, carrot stalactite. 

SPL12 1111 Swab, cream flowstone pools. 

MEl Entrance Cave, Cave Mouth; Light Zone Moonmilk beneath sediment of boulder 

ME2 Entrance Cave, Entrance Chamber; Twilight Zone White mat on ceiling mud and rock 

ME3 Entrance Cave, Second Chamber; Dark Zone Moonm1lk beneath sediment cave floor 

MXl Exit Cave, Ballroom Chamber; Dark Zone Stalactite with thick coating of moonmilk 

*Samples catalogued using the following code: the first character(s) represent the m1crohabitat (S =sediment, SP = speleothem, M = moonmilk), the last 
character represents the cave (E =Entrance, X =Exit, L =Loons). Number 1s indicative of the site that samples were collected from. All samples collected 
by Jodie van de Kamp and Dr David Nichols, with base support from Dr. Kevin Sanderson during 2001 and 2002 Permit number ES 01147 issued by 
National Parks and Wildlife Service, Tasmania. 
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Chapter 2: Materials and Methods 

2.2 Microscopy and Mineralogy 

2.2.1 ESEM and X-Ray Elemental Microanalysis 

ESEM was used to visualise microbes within the moonmilk matrix. Fresh, unfixed 

samples were viewed by ESEM approximately 4 h after collection. Small pieces of moonmilk 

were removed from the glass slides or falcon tubes using a sterile scalpel blade and placed on 

aluminium SEM stubs for viewing by ESEM 2020 (Phillips, Australia). The elemental 

composition of specimens was obtained by means of X-Ray Microanalysis (pers. comm. David 

Steele, University of Tasmania, 2002). 

2.2.2 X-Ray Diffraction Analysis 

Mineralogical compositions of moonmilk were determined by X-Ray Diffraction (XRD) 

Analysis. Moonmilk samples were prepared by drying, grinding to <-10-75 µm and pressing 

into a 25 mm diameter aluminium sample holder. The samples were run on an automated 

Philips X-Ray Diffractometer system: PW 1729 generator, PW 1050 goniometer, PW 1710 

microprocessor, with nickel-filtered copper radiation at 40 kV /30 mA, a graphite PW 1752 

monochromator, sample spinner and a PW 1711 sealed gas filled proportional detector. The PW 

1710 system is driven by software packages, "Visual XRD v 2.6" (Diffraction Technology, 

Australia) and "PW 1710 for Windows" (CSIRO, Australia), with plotting software, "XPLOT for 

Windows" (CSIRO, Australia) and "Traces v 5.1" (Diffraction Technology, Australia). 

Interpretation was mostly by manual methods. Samples were calibrated with an internal 

standard of natural quartz. The semi-quantitative mineralogy was determined by manual 

search-match methods using a series of prepared standards (pers. comm. Ralph Bottril, Mineral 

Resources Tasmania, 2003). 
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2.3 Isolation and Identification of Microbes 

2.3.1 Isolation and culturing of microbes 

Microbes were isolated from sediments using selective isolation procedures developed 

by the Antarctic Microbiology Group (University of Tasmania). Approximately 5 g of sediment 

was transferred into a sterile petri dish and left open in a laminar flow (Gelman Sciences, 

Australia) overnight to dry. Sediments were ground to an even consistency using a sterile 

mortar and pestle and then divided into two equal portions by weight; one untreated control 

sample (overnight drying and incubation at room temperature for 2 h; OD) and one treated 

sample (overnight drying and subjected to a heat treatment of 70 °C for 2 h; ODM. Samples were 

transferred to individual McCartney bottles containing 9 mL of sterile dd H20 and placed on a 

tube roller (Luckham Ltd.) for 30 min to mix. 

Microbes were isolated from moonmilk using a modified version of an isolation 

procedure developed by Olivier Braissant (pers. comm. Universite de Neuchatel, Germany, 

2002). Similarly to sediments, up to 5 g of moonmilk (moonmilk being very light in comparison 

to sediments) was weighed into petri dishes, dried overnight, ground, and divided into four 

equal portions by weight. Samples were subjected to one of four different treatments by 

transferring to individual McCartney bottles containing either: 1) 5% acetic acid (CH3COOH) in 

0.01 M MgS04.7HzO; 2) 1 % acetic acid in O.OlM MgS04.7H20; 3) 1 mM 

Ethylenediaminetetraacetic Acid (EDTA); or 4) 0.1 mM EDTA. Samples were then placed on a 

tube roller for 30 min to mix. 

Dilution series to 10·3 were prepared for sediment and moonmilk samples (initial bottle 

10°) and 0.1 mL of each dilution spread plated in duplicate on selective media that favours the 

growth of actinomycetes; Starch-Casein Agar (SC) (Kuster & Williams, 1964), Arginine-Vitamin 

Agar (AV) (Nonomura & Ohara, 1969), Marine Agar (MA) (Oxoid 2216) and R2A Agar (R2A) 

(Oxoid CM 906) and non-selective agar for moonmilk samples only; 1/2 strength Tryptone Soya 

Agar (1/2 TSA) (Oxoid CM 129) (see Appendix 1 for culture media recipes and preparation). 

Swab samples were directly streaked onto the above selective media immediately on return 
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from sampling trips. Plates were left to dry in a laminar flow for 30 min. Plates were sealed with 

0 2 permeable parafilm (American National Can™, USA) and duplicates .incubated at 25 °C 

(within optimal temperature range for isolation of actinomycete) and 10 °C (representing the 

cave environment) for 2-4 wk or until there was sufficient growth of colonies. After .incubation, 

actinomycete-like colonies were selected from the primary plates and sub-cultured on Oatmeal 

Agar (OA) (Williams & Wellington, 1982) (see Appendix 1). For moonmilk samples, non­

actinomycete-like colonies were also selected and subcultured on 1/2 TSA. Secondary plates 

were .incubated at 25 °C for approx. 1 wk. All further sub-culturing was conducted as described 

until pure isolates were obtained. Isolates were cryopreserved (see Appendix 2 for protocol) in 

replicate for long-term preservation and future use. 

2.3.2 165 rRNA gene sequencing and phylogenetic analysis of isolates 

2.3.2.1 Extraction of nucleic acids and purification 

Genomic DNA was extracted using a method modified from Marmur (1961). Culture 

biomass was harvested by scraping with a sterile loop. Cells were resuspended in sterile 1.5 mL 

microcentrifuge tubes (Eppendorf; Greiner Bio-one) with 400 µL saline-EDTA (pH 8) and 

vortexed (MT 17 Vortex; CHILTERN) to mix. 50 µL of lysozyme (40 mg mL-1
; AMRESCO) was 

added and the tubes .incubated for 30 m.in at 55 °C in a M20 waterbath (LAUDA). 20 µL of 

proteinase K (10 mg mL·1; SIGMA) was added and the tubes again .incubated for 15 m.in at 55 °C 

and 20 µL of 25% (w /v) sodium dodecylsulphate (SDS) (SIGMA) for a further 30 m.in at 55 °C. 

Tubes were mixed by vortexing between each incubation step. Samples were then subjected to a 

freeze/thaw step by incubation at-20 °C overnight and thawing at 55 °C for 30 min. Cell debris 

was separated from aqueous DNA solution by centrifugation at 14000 rpm x 5 m.in, 4 °C in a 

bench top Eppendorf Centrifuge 5417 R (Laboratory Supply Australia Pty. Ltd.). The 

supernatant (approx. 400 µL) was transferred to a new sterile microcentrifuge tube. DNA was 

extracted twice by adding an equal volume of 25:1 (vol/vol) chloroform-isoamyl alcohol 
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{SIGMA), followed by vortexing and centrifugation at 14000 rpm x 10 min, 4 °C. The aqueous 

phase was transferred to a new, sterile microcentrifuge tube each time. DNA was further 

purified using the Prep-a-Gene® DNA Purification Kit (Bio-Rad) reagents and protocol. DNA 

products were stored at -20 °C. 

2.3.2.2 Agarose gel electrophoresis 

To analyse extracted nucleic acids they were fractionated by electrophoresis through 1.0-

1.5% (w /v) agarose (AMRESCO) gels with 0.5 µg/mL ethidium bromide (EtBr) in Tris-acetate 

EDTA buffer (40 mM Tris-acetate; 1 mM disodium EDTA; pH 8) {TAE), in a mini-gel apparatus 

(Horizon 58, Horizontal Gel Electrophoresis, BRL). 5 µL of DNA product was mixed with 3 µL 

of 6x gel loading buffer (0.25% bromophenol blue; 0.25% xylene cyanol FF; 40% sucrose) and 

loaded into the gel. To determine the size of nucleic acid fragments, samples were run alongside 

5 µL of the DNA molecular weight marker HyperLadder I (Bioline). Electrophoresis was carried 

out using a Power Pack 300 power supply (Bio-Rad) at 80 V for 30 min. The DNA/EtBr complex 

was visualised under short wavelength ultra-violet radiation on an electronic ultraviolet light 

transilluminator (Ultra. Lum. Inc.). 

2.3.2.3 Determination of DNA concentration 

The concentration of DNA and PCR solutions (DNAconc) was determined by measuring 

absorbance at 260 nm using a spectrophotometer (Pharmica) and calculated using the following 

equation: 

DNAconc (mg mL-1 = µg µL-1
) = (A260 x 50 µg mL-1 x D) / 1000 µg mL-1 

Where D = dilution factor 
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2.3.2.2 165 rRNA gene PCR amplification and purification 

The 165 rRNA gene fragment was amplified by Polymerase Chain Reaction (PCR) from 

extracted genomic nucleic acids using two universal primers, 10 forward and 1500 reverse 

(5tackebrandt et al. 1991) (Table 2.2). These primers were used as they gave thorough coverage 

of the three hypervariable regions in the 165 rRNA gene fragment (5tackebrandt et al. 1991). PCR 

was performed using the Hot5tarTaq™ PCR Master Mix Kit (QlAGEN) reagents and protocol. 

PCR reactions consisted of: 

Hot5tarTaq Master Mix 
Primer 5' (50 pmol) 
Primer 3' (50 pmol) 
Q-5olution* 
Template DNN' 
ddH20 to total volume 

25µL 
2µL 
2µL 

2.5 µL 
__l__g1 
50 µL 

* Q-Solution changes the melting behaviour of DNA and was used for PCR reactions that did not 
work well under standard conditions. 
A Amount of template DNA added to PCR mix varied depending on the concentration of the 
DNA, however in most cases 2 µL was sufficient. 

PCR reactions were carried out in a PTC - 200 Peltier Thermal Cycler (MJ Research) using the 

following parameters: 

Initial activation step: 
3-step cycling: 
Denaturation: 
Annealing: 
Extension: 
Number of cycles: 
Final extension: 

15min 

lmin 
lmin 
3min 

30 
lOmin 

95 °C 

94°C 
52 °C 
72 °C 

72 °C* 

*The final extension step is prolonged to 10 min to allow full extension of any partly amplified 
DNA fractions. 

PCR fragments were purified using the Prep-a-Gene® DNA Purification Kit (Bio-Rad) reagents 

and protocol. PCR products were electrophoresed as described previously to ensure fragments 

of the correct size were obtained, and to determine quantity and quality. PCR products were 

stored at -20 °C. 
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2.3.2.3 165 rRNA gene sequencing 

PCR products were sequenced directly using the CEQ 2000 Dye Terminator Cycle 

Sequencing (DTSC) Quick Start Kit (Beckman Coulter) reagents and modified protocol. For 

initial identification of microbes universal primer 519 forward (Stackebrandt et al. 1991) (Table 

2.2) was used for amplification. To obtain full sequence information of selected isolates, 

universal primers 10 forward and 1500 reverse were also used. Sequence reactions consisted of: 

DTCS Quick Start Master Mix 
Primer (5 pmol) 
Template PCR* 
ddHzO to total volume 

2µL 
1 µL 
XµL 

10 µL 

*According to Template Preparation Table in CEQ 2000 DTSC protocol. 

Amplification parameters were: 

Denaturation: 
Annealing: 
Extension: 

96 °C 
50 °C 
60 °C 

Number of cycles: 35 

20 sec 
20 sec 
4min 

Amplification reactions were purified by ethanol (EtOH) precipitation according to the CEQ 

2000 DTCS protocol. Subsequent electrophoresis and analysis was performed using an 

automated CEQ™ 2000XL Genetic Analysis System (Beckman Coulter). In most cases, 16S rRNA 

gene fragment sequences spanned nucleotide positions 519-1540 (E.coli equivalent). Entire 16S 

rRNA gene sequences spanning nucleotide positions 10-1540 were obtained for novel isolates. 

73 



Chapter 2: Materials and Methods 

Table 2.2: Primers used for PCR amplification and sequencmg of 165 rRNA gene fragments. 

Pruner 
(Reference) 
10 (f) 
(Stackebrandt et al. 1991). 
1500 (r) 
(Stackebrandt et al. 1991). 
519 (f) 
(Stackebrandt et al. 1991). 
1392 (r) with GC clamp 
(Ferris et al. 1996) 
907 (f) 
(Santegoeds et al. 1998) 
pUCIM13 (f) 
(Promega) 
pUCIM13 (r) 
(Promega) 

Bindmg 
Region• 
10-29 

1520-1540 

519-536 

1406-1392 

907-926 

NIA 

NIA 

Primer Sequence (5' to 3') 

GAG TIT GAT CCT GGC TCA G 

AGA AAG GAG GTG ATC CAG CC 

CAG CMG CCG CGG TAA TAC 

CGC CCG CCG CGC CCC GCG CCC GGC CCG CCG CCC CCG 
CCC CAC GGG CGG TGT GTA C 
GGC AGT TAA GGA AAC TCA AA 

GTA AAA CGA CGG CCA GT 

CAG GAA ACA GCT ATG AC 

•Number is based on the Escher1chia coli numbering system from Brosius et al. 1981 

2.3.2.4 Phylogenetic Analysis 

Sequence electrophoretograms were examined using the program CHROMAS 

(http: I /www.technelysium.com.au/ chromas.html) in order to resolve any ambiguous base 

positions. 16S rRNA gene sequences were initially analysed using the National Center for 

Biotechnology Information (NCBI) database, Genbank, BLAST tool 

(http://www.ncbi.nlm.nih.gov/blast/blast.cgi; Altschul et al. 1997) to identify related sequences 

available in public databases and to determine phylogenetic groupings of sequences. For 

phylogenetic analysis, sequences were aligned using the program BioEdit 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html; Hall, 2001) for comparison with validly 

described and published sequences of representative members of the actinomycete obtained 

from NCBI GenBank. Distance matrices and phylogenetic dendrograms using the neighbour-

joining method were generated using programs DNADIST and NEIGHBOUR of the PHYLIP 

3.573c package (Felsenstein, 1993). 
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2.4 Molecular Analysis of Sediments and Moonmilk 

2.4.1 Extraction and purification of nucleic acids from environmental samples 

2.4.1.1 Sediments 

Total nucleic acids was extracted from sediment following a method modified from 

Purdy et al. (1996). Approximately 0.5 g of sediment was aseptically transferred to a 2 mL screw­

cap microcentrifuge tube (Astral Scientific) containing 0.5 g of 0.1 mm diameter zirconia-silica 

beads (Biospec Products) and suspended in 700 µL 120 mM sodium phosphate buffer (pH 8.0) 

(Na2HP04), 500 µL Tris-equilibrated phenol (pH 8.0) (AMRESCO), 50 µL 20% (w /v) SDS and 1 

% acid-washed polyvinyl-polypyrrolidone (PVP) (AMRESCO). To lyse the soil microbes, the 

sample was disrupted in a mini-beadbeater (Biospec Products) at 3 800 rpm for 3 x 30 sec pulses, 

with a 30 sec incubation on ice between pulses. Cell debris was separated from aqueous DNA 

solution by centrifugation at 12000 rpm x 2 min, 4 °C. The supernatant was transferred to a new 

sterile microcentrifuge tube and incubated on ice. The pellet was resuspended in 700 µL 120 mM 

Na2HP04 Buffer (pH 8.0) to extract residual nucleic acids from the sample. Cell disruption and 

centrifugation was repeated as described and the supernatant removed and pooled with the first 

extraction. Nucleic acids were precipitated by adding 0.1 volumes of 3M sodium acetate (pH 4.6) 

(NaOAc) and 2 volumes of cold absolute EtOH followed by incubation at -20 °C for at least 30 

min, preferably overnight. The supernatant was removed after centrifugation at 14 OOO rpm x 30 

min, 4 °C. The DNA pellet was washed twice in 3~0 µL cold 70% EtOH, with further 

centrifugation at 14 OOO rpm x 5 min, 4 °C. After removing the supernatant the pellet was 

allowed to air dry in a laminar flow hood and subsequently resuspended in 40 µL sterile ddH20. 

2.4.1.2 Moonmilk 

Nucleic acids were extracted by a procedure developed for this study, modified from 

Miller et al. (1999); the Phosphate, SDS, Chloroform-Bead Beater method (PSC-B) (pers. comm. 

Susan Turner, University of Auckland, New Zealand, 2003). Approximately 0.5 g of moonmilk 

was aseptically transferred to a 2 mL screw-cap microcentrifuge tube containing 0.5 g of 0.1 mm 
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diameter zirconia-silica beads (Biospec Products) and 300 µL 100 mM Na2HP04 (pH 8.0) and 

resuspended by vortexing. 30 µL lysozyme (50 mg mL-1
) was added and the tubes incubated at 

37 °C for 30 min, followed by a further incubation at 65 °C for 60 min to enhance lysis of the 

cells. Following incubation, 300 µL of SDS lysis buffer (100 mM NaCl, 500 mM Tris pH8, 10% 

SDS) was added and the tubes inverted to mix, followed by adding 300 µL chloroform-isoamyl 

alcohol (24:1; v /v) (SIGMA). Samples were mechanically lysed by bead-beating at 4 OOO rpm for 

2 x 40 sec pulses, with a 40 sec incubation on ice between pulses. Cell debris was pelleted from 

aqueous DNA solution by centrifugation at 12000 rpm x 5 min, 4 °C. The supernatant, 

approximately 650 µL, was transferred to a new sterile microcentrifuge tube with 360 µL 7M 

ammonium acetate (NH40Ac). Tubes were inverted to mix and centrifuged at 12000 rpm x 5 

min, 4 °C to separate the phases. The clear supernatant (approximately 580 µL) was transferred 

to a new sterile microcentrifuge tube and the lower organic phase, with the SDS forming a gel­

like substance, discarded. 0.54 volumes (approx. 315 µL) of isopropanol (SIGMA) was added 

and the tubes incubated at room temperature for 15 min. After incubation tubes were 

centrifuged at 12000 rpm x 5 min, 4 °C to pellet the DNA. The supernatant was discarded and 

the pellet washed twice with 1 mL 70% EtOH, centrifugation at 12000 rpm x 5 min, 4 °C, and the 

supernatant discarded. The pellet was allowed to air dry in a laminar flow hood before 

resuspending in 50 µL sterile ddH20. Additional purification of sediment and moonmilk DNA 

samples was performed using the CHROMA SPIN™ Columns DNA Purification Kit 

(CLONTECH Laboratories Inc.) reagents and protocol. DNA quality and quantity was analysed 

as described in Section 2.3.2.3. 
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2.4.2 DGGE 

DGGE was conducted on four sediment samples and three moonmilk samples (SEl, 

SE2, SLl and SL2; ME2, ME3 and MXl; refer to Table 2.1) in accordance with a protocol 

developed by Powell et al. (2003). A standard control mix consisting of 5 ng µ1·1 each of genomic 

DNA extracts from four strains grown routinely in our laboratory and chosen because they 

denatured at a range of different denaturant concentrations was also used as a control and for 

comparisons between gels. The 165 rRNA gene fragment was amplified by PCR using the 

Advantage® 2 Polymerase Mix (CLONTECH Laboratories Inc.) reagents and protocol with 

Universal primers 907 forward (Santegoeds et al. 1998) and 1392 reverse (Ferris et al. 1996) with a 

GC clamp (Ferris et al. 1996). 

Reactions consisted of: 

10 x Buffer 
50 x dNTP Mix (10 mM each) 
Primer 5' (10 pmol) 
Primer 3' (10 pmol) 
50 x Advantage 2 Polymerase Mix 
Template DNA" 
ddH20 to total volume 

5µL 
1 µL 
1 µL 
1 µL 
1 µL 

ill 
50 µL 

" Amount of template DNA added to PCR mix varied depending on the concentration of the 
DNA, however in most cases 1 µL was sufficient. 

77 



Chapter 2: Materials and Methods 

The touchdown thermal cycling parameters were: 

Initial denaturation step: 5 min 94 °C 

1"1 3-step cycling: 
Denaturation: lmin 94°C 
Annealing: 1 min 65 °C 
(decreasing by 1 °C each cycle) 
Extension: 3 min 72 °C 

Number of cycles: 

znd 3-step cycling: 
Denaturation: 
Annealing: 
Extension: 

Number of cycles:. 

Final extension: 

10 

lmin 
lmin 
2min 

20 

4min 

94°C 
55 °C 
72 °C 

72 °C* 

*The final extension step is prolonged to 4 min to allow full extension of any partly amplified 
DNA fractions. 

DGGE was conducted using a D-Code Universal Mutation Detection System (Bio-Rad). 

Half the volume of PCR products were run on 6% (w /v) acrylamide gels with a denaturing 

gradient of 20-80% (where 100% dentaurant is 7 M urea and 40% formamide). Gels were run at 

80 V for 16 hat 60 °C in 1 x TAE (40 mM Tris, 20 mM sodium acetate, 1 mM EDTA). Standards 

were run on either side of the gel and the outside lanes were not used. In order to obtain even 

heat distribution throughout the tank, the entire tank was placed on a magnetic stirring plate. 

Gels were stained in 1:1000 Sybergold (Molecular Probes) in the dark with gentle shaking for 

approximately 20 min. Gels were washed once with deionised H20 and destained with 

deionised H20 for 20 min before viewing on a UV transilluminator (UVP Inc.). Single bands 

were excised from the gel using a sterile scalpel blade and resuspended in ddH20 in sterile 

microcentrifuge tube for 16S rRNA gene sequence analysis. Gel photos were scanned in and 

viewed with the UTHSCSA ImageTool program, developed at the Health Science Centre 

(University of Texas, San Antonio, TX, USA) and available on the internet 

(ftp:/ /maxrad6.uthscsa.edu). Best banding patterns were obtained by enhancing the contrast 

and greyscale of the images. The 16S rRNA gene fragment was amplified and purified from 

78 



Chapter 2: Materials and Methods 

eluted bands as previously described in Section 2.3.2.4 using the HotStarTaq™ PCR Master Mix 

Kit (QIAGEN) reagents and protocol with the exception that DGGE primers 907 (£) and 1392 (r) 

with a GC clamp were used, and 1 µL of the eluted DGGE band was directly added to the PCR 

mix. DGGE PCR products were directly sequenced as described in Section 2.3.2.4 using DGGE 

primer 907 (£) and subjected to phylogenetic analysis as described in Section 2.3.2.5. 

2.4.3 Clone Library Analysis 

2.4.3.1 165 rRNA gene PCR amplification, ligation and clone library construction. 

Clone libraries were generated from four sediment samples and three mo~nmilk 

samples (SEl, SE2, SLl and SL2; ME2, ME3 and MXl; refer to Table 2.1). The 16S rRNA gene 

fragment was amplified as described for DGGE analysis (Section 2.4.2) with universal primers, 

519 forward and 1500 reverse (Stackebrandt et al. 1991) (Table 2.2). Reactions consisted of: 

10 x Buffer 
50 x dNTP Mix (10 mM each) 
Primer 5' (50 pmol) 
Primer 3' (50 pmol) 
50 x Advantage 2 Polymerase Mix 
Template DNA" 
ddH20 to total volume 

5µL 
1 µL 
1 µL 
1 µL 
1 µL 

ill 
50 µL 

" Amount of template DNA added to PCR mix varied depending on the concentration of the 
DNA, however in most cases 1 µL was sufficient. 

Thermal cycling parameters were: 

Initial denaturation step: 

3-step cycling: 
Denaturation: 
Annealing: 
Extension: 

Number of cycles: 

Final extension: 

15min 

lmin 
lmin 
lmin 

30 

5min 

95 °C 

94°C 
50 °C 
72 °C 

72 °C* 

*The final extension step is prolonged to 5 rnin to allow full extension of any partly amplified 
DNA fractions. 
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PCR fragments were purified using the UltraClean™ PCR Clean-up DNA Purification Kit 

(MoBio Laboratories Inc.) and analysed for size and concentration as described in Section 2.3.2.3. 

16S rRNA gene PCR frcigments were ligated using the pGEM® -T Easy Vector System I 

Kit (Promega) reagents and protocol. Ligation reactions were subjected to an overnight 

incubation at 4 °C to produce the maximum number of transformants. Transformation of 

ligation products was performed using the Epicurian Coli® XL2-Blue Ultracompetent Cells 

(Stratagene) reagents and protocol. Transformants were screened using blue-white colony 

colour selection. Aliquots (50 µL and 100 µL) of the transformation mixture were plated on Luria 

Broth agar plates containing 100 µg mL·1 ampicillin (SIGMA) (LB-Amp) and coated with 100 µL 

0.1 M iso-propyl-beta-D-thio-galactopyranoside (120 mg mL-1
) (IPTG) (SIGMA) and 20 µL 5-

bromo-4-chloro-3-indoyl-beta-D-thio-galactopyranoside (50 mg mL-1
) (X-gal) (SIGMA) (see 

Appendix 1). Plates were incubated overnight for 16-20 hat 37 °C. Colonies containing 

recombinant plasmids with the 16S rRNA gene fragment appear white, whereas colonies 

containing un-recombinant colonies appear blue. Appr~ximately 150 white colonies from each 

library were sub-cultured to LB-Amp plates and re-incubated overnight at 37 °C. 

2.4.3.2 Restriction Fragment Length Polymorphism screening and 165 rRNA gene sequencing of clones 

Recombinant plasmids were extracted and purified from transformed cells using the 

UltraClean™ Mini Plasmid Prep Kit (Mo Bio Laboratories Inc.) reagents and protocol. Plasmids 

were electrophoresed in a 1 % (w /v) agarose gel, 80 V x 40 min (see Section 2.3.2.2) to confirm 

they contained the 16S rRNA gene insert. Recombinant plasmid DNA were confirmed by 

correlation of their position on the gel with a plasmid known to contain the correct size insert. 

Plasmids containing an insert of the correct size were further screened by Restriction Fragment 

Length Polymorphism (RFLP) analysis. Restriction digests were performed on plasmids by 

separate incubation with the restriction nucleases Hinfl (New England Biolabs) and Rsal (New 

England Biolabs) and accompanying buffers (New England Biolabs) at 37 °C for 3-4 h. Digests 

were fractionated by electrophoresis on 3% (w /v) agarose gels, 100 V x 3 h, (see Section 2.3.2.2) 

resulting in characteristic banding patterns allowing the diversity and abundance of cloned 
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phylotypes to be approximated. Clones exhibiting diverse banding patterns (including 2-4 

duplicate clones possessing the same RFLP pattern) were selected at random for sequencing. 

Clones were sequenced as described in Section 2.3.2.4 with the exception that plasmid templates 

were subjected to a pre-heat treatment and primers pUC/Ml3 forward and reverse were used 

for amplification (Promega) (see Table 2.2). Binding sites for these primers are located on the 

pGEM® -T Vector, positioned either side of the insert. The pre-heat treatment consisted of 

diluting the template with water to the appropriate concentration, heating to 96 °C for 1 min in a 

PTC - 200 Peltier Thermal Cycler (MJ Research), and cooling to room temperature before adding 

the remainder of the sequencing-reaction components. In most cases, 16S rRNA gene clones 

were entirely sequenced with the sequences spanning nucleotide positions 519 - 1540 (E. coli 

equivalent). 

2.4.4 Phylogenetic and biodiversity analysis 

Phylogenetic analysis was conducted as described in Section 2.3.2.4 with the exception 

that the Ribosomal Database Project II (RDP) CHIMERA-CHECK program 

(http:/ /rdp.cme msu edu/; Maidak et al. 2001) was used to detect PCR-amplified hybrid 

sequences. In addition, potential chimeras were determined from inconsistencies in branching 

order. Chimerical clones detected were not included in subsequent phylogenetic or biodiversity 

' 
analyses. For calculation of diversity indices, the libraries were normalised to 50 clones using the 

rarefaction method (Simberloff, 1972) by utilising the program RAREFACT.FOR written by C. J. 

Krebs (University of British Columbia) and which is available through the internet 

(http://www2.biology.ualberta.ca/jbrzusto/rarefact.php). 

81 



Chapter 2: Materials and Methods 

Estimates of Diversity (H) were determined using the Shannon-Weaver (or Shannon-

Weiner) Index (Krebs, 1989). H' is given by the formula: 

k 
H' = n log n - L N log N 

i=l 
n 

where k is the total number of unique phylotypes, n is the total number of clones and N is the 

number of observations of each phylotype (i). 

Measures of dominance concentration were determined using the Simpson Index (SI) 

(Krebs, 1989). SI' is given by the formula: 

k 
SI'= L Ni ( Ni - 1 ) 

i = 1 

n(n-1) 

Equitability indices (JJ were based on Shannon-Weaver index data. J' is given by the 

formula: 

Where H max is equal to log k. 

]'= H' 
Hmax 

Biodiversity coverage ( C) (Mullins et al. 1995) was derived by the formula: 

C=l-l!!J 
N 

Where ni is the number of phylotypes containing only one clone, and N is the total number of 

clones. 

Pairwise comparisons of clone libraries were carried out using the Similarity Coefficient 

(S) (Odum, 1971). Sis derived from the formula: 

S=2C 
A+B 

Where A and B are the number of phylotypes in libraries A and B respectively, and C is the 

number of shared phylotypes. 
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Chapter 3: Results and Discussion 

3.1 Microscopy and Mineralogy 

Putative moonmilk samples were collected from an extensive speleothemic deposit in 

the dark zone of Exit Cave (MXl) and white mat-like material on the ceiling rock of Entrance 

Cave within the twilight zone (ME2). During the course of this study large moonmilk-like 

deposits were found beneath sediment in Entrance Cave (MEI, ME3) and analysed for 

comparison. ESEM with X-Ray Microanalysis was employed to investigate the microbe-mineral 

interface of moonmilk samples. 

The samples collected from the ceiling of Entrance Cave (ME2) exhibited distinct, 

isolated areas of thin white material on the muddy rock surface (Figure 3.2; A). X-Ray 

microanalysis of this material (Figure 3.1; A, B) revealed high levels of silicon and aluminium 

suggesting a day-type mud and high levels of carbon and oxygen suggesting areas of organic 

material. Figure 3.2 (B) illustrates that the isolated areas of white material on the mud surface 

from ME2 contained a crystalline character associated with biological growth of hyphal material. 

In the dark zone of Lechuguilla Cave CaC03-mineralised organic filaments have been reported 

(Cunningham et al. 1995). High magnification of the mat demonstrated the presence of hyphae­

forming microorganisms with segmented hyphae of width 0.5-1 µm, consistent in size and 

morphology with filamentous actinomycetes. Non-biological (crystalline) structures were 

evident both beneath the mat of hyphal growth and also encrusting individual hyphae. Putative 

cells and an organic matrix can be frequently seen in moonmilk samples with SEM or in thin 

sections, but not in all cases (Northup et al. 2000). Biological material or cells were not evident in 

ESEM analysis of moonmilk samples ME3 or MXl, though CYBR staining confirmed the 

presence of DNA in the samples (data not shown). 
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Si 

0 0 

a 

Figure 3.1: X-Ray microanalysis spectra of sample ME2 from the ceiling rock in the twilight zone of Entrance Cave. 
(A) Spectra of mud containing high levels of silicon, oxygen and aluminium consistent with a clay-type mud. (B) Spectra 
of mat sample ME2, illustrating the presence of organic material, indicated by high levels of carbon and oxygen. 

For the purpose of distinguishing mondmilch from other carbonate speleothems, 

Fischer (1988) defined true calcite moonmilk as a calcite microcrystalline or needle-crystalline 

speleothem with a minimum calcite content of 90 % weight. ESEM of samples MXl and the 

crystalline areas of ME2 (Figure 3.3) shows the needle-fibre crystalline characteristics of the 

calcite (confirmed by X-Ray microanalysis, data not shown). XRD studies revealed that the 

mineralogical composition of moonmilk samples from both Entrance Cave and Exit Cave were 

almost identical (Table 3.1). Moonmilk samples consisted predominantly (85-100%) of calcite 

(Ca03), with trace amounts of quartz, mica (clay, most likely illite) and hydrated iron oxide, 

goethite [oc-FeO(OH)]. 

Table 3.1: X-Ray Diffraction analysis of moonmilk samples from Entrance Cave, ME2 and ME3, and Exit Cave, MXl. 
Approximate mineralogy recorded as % weight. 

Sample Calcite Quartz Mica* Goethite 

ME2 85 3 10 2 

ME3 100 

MXl 100 

•Probably illite. 
Note: Peak overlap may interfere with identifications and quantifications. Minerals present in trace amounts may not be 
detected. 
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Figure 3.2: Photographs and ESEM pictures of cave sample ME2 showing biological hyphal material and calcite 
encrusted hyphae. 
(A) White mat with reflective droplets on ceiling of Entrance Cave (ME2). B-F: ESEM images of sample ME2. (B) Mat of 
microbial growth on the ceiling. (Q Oumps of hyphae encrusted with calcite and uncalcified hyphae on the 
surrounding mud. ESEM images of calcite encrusted microbial filaments at high magnification. (D) Detailed view 
illustrating different degrees of encrustation exhibited by hyphae. (E) Detailed view of calcite encrusted hyphae. (F) 
Segmented hyphae, width approx. 0.5-1 µrn. 
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Figure 3.3: ESEM images of moonmilk samples illustrating microcrystalline, needle-fibre form of CaC03 crystals 
(confirmed by X-Ray microanalysis, data not shown). 
(A) Sample ME2 from Entrance Cave. (B) Sample MXl from Exit Cave. 

XRD and ESEM results indicate that samples MEI, 3 and MXl are true calcite moonrnilk 

(98-100% CaC03). Sample ME2 had a slightly lower calcite composition (85%). The thin, mat-like 

nature of this sample from the ceiling of Entrance Cave made it difficult to collect samples from 

just the white material and inevitably some of the clay layer (2-3mm thick) on the ceiling was 

collected too, perhaps accounting for the higher clay content (10 %) of this sample 

3.2 Method Development for Calcite Moonmilk Samples 

It has previously been suggested that DNA extraction from environmental samples 

containing high levels of CaC03 is problematic (Guthrie et al. 2000; Northup, pers. comm. 2001). 

Initial clone analysis of samples ME2, ME3 and MXl, that have high calcite content (85-100%) as 

demonstrated by XRD analysis, (Section 3.1) resulted in a single phylotype most closely related 

to y-Proteobacteria, Pseudomonas fluorescens. Isolations also proved to be problematic initially 

producing almost pure cultures of Bosea thiooxidans. Though these organisms were dominant 

components of the calcite-based microbial communities (Table 3.2), ESEM results depicting 

hyphal organisms indicated that these results were not necessarily representative of the true 

diversity. DNA extraction methods and cultivation procedures rely on the bacterial cells being 

readily released from their environmental matrix. Current DNA extraction protocols for 
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molecular analyses are poorly adapted for lithic or encrusted microbial communities due mostly 

to the hard, usually cemented nature of the mineral matrix (Wade & Garcia-Pichel, 2003). 

Guthrie et al. (2000) suggested that as DNA was released from coral matrices it was adsorbed by 

the calcite minerals resulting in very low quantities of DNA being recovered. A significant 

portion of this study was directed at method development to enhance DNA extraction and 

cultivation procedures for calcite cave samples. 

A comparison of three DNA extraction protocols was undertaken: a modified protocol 

from Purdy et al. (1996) utilised for cave sediments in this study, the protocol from Guthrie et al. 

(2000) which was successful for coral samples, and a modified protocol from Miller et al. (1999), 

the Phosphate, SDS, Chloroform-Bead Beater method (PSC-B) which was successful with pure 

opal-A silica sinter samples (pers. comm. Dr. Susan Turner, University of Auckland, 2003). 

DGGE analysis of PCR amplified 165 rRNA gene from DNA product of the three extraction 

protocols was used to determine which method was most appropriate. PCR product resulting 

from the modified PSC-B DNA extraction displayed the highest degree of diversity in the 

banding pattern for all samples (Figure 3.4). Thus this protocol was utilised for further clone 

library analysis. 

35% 

65% 

ME3 ME2 ME3 ME2 

Figure 3.4: 165 rRNA gene DGGE community fingerprint of Entrance Cave moonmilk samples, ME2 and ME3. 
(A) DNA extraction using PSC-B method. (B) DNA extraction using Guthrie et al. (2000) coral method. 
Illustrates the greater diversity of banding patterns for DNA extracted using PSC-B method. 
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Microbes were isolated from moonmilk using a modified version of an isolation 

procedure developed by Olivier Braissant (pers. comm. Universite de Neuchatel, Germany, 

2002). Calcite samples were subjected to one of five different treatments to dissolve the 

carbonate and free bacterial cells for cultivation: 

1) 5% acetic acid (CH3COOH) in 0.01 M MgS04.7H20 

2) 1 % acetic acid in O.OlM MgS04.7Hz0 

3) 1 mM Ethylenediaminetetraacetic Acid (EDTA) 

4) 0.1 mM EDTA 

5) ddH20 (control) 

The 1 % acetic acid and lmM EDTA treatments produced the greatest number of different colony 

morphology types on primary isolation plates (data not shown). The 0.1 mM EDTA and ddH20 

treatments resulted in far fewer colonies and only a limited number of colony morphologies on 

isolation plates, indicating that these treatments did not sufficiently separate the cells from the 

calcite matrix. The 5% acetic acid treatment produced the least number of colonies on primary 

plates possibly due to the acid being bacteriocidal at this concentration. It is recognised that the 

application of EDTA and acetic acid solutio.ns may have introduced unknown degrees of bias to 

the resulting isolations. However, as it was necessary to dissolve the carbonate to obtain greater 

diversity in isolations, this bias was unavoidable. 
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3.3 Phylogenetic Diversity Overview 

165 rRNA gene clone libraries were constructed from D~\JA extracted from four 

sediment samples (SEl, SE2, SLl and SL2) and three moonmilk samples (ME2, ME3 and MXl). 

Libraries were constructed with universal primers. Approximately 100-120 clones per library 

were screened by analysis of RFLP patterns and selected representatives of novel RFLP patterns 

were sequenced. Sequences greater than 500 base pairs (bp) were included in phylogenetic 

analysis. Groups of two or more highly related sequences (~ 98% sequence identity) were 

considered to belong to the same sequence type designated a phylotype. From a total of 488 

nonchimeric clones analysed from seven libraries, 148 phylotypes were defined affiliated with 

the domain Bacteria. A total of 43 phylotypes were found in two or more libraries. Table 3.2 

provides a summary of the representative sequences and their phylogenetic affiliations. The 

majority of clones fell into three major phylogenetic groups: the Proteobacteria (dominating all 

samples), the high G+C Gram-positive Actinobacteria, and the Cytophaga-Flavobacterium­

Bacteroides (CFB) group. DGGE and subsequent 165 rRNA gene sequencing of bands was used 

to analyse moonmilk samples for comparison to clone library results. DGGE was also applied to 

sediment samples however the greater species diversity from sediments made the accurate 

defining of individual bands for sequencing difficult, a common result for sediment samples. 

Common banding patterns between samples indicate common community representatives. A 

total of six major bands present in moonmilk samples were sequenced and phylogenetically 

aligned with the a-Proteobacteria, Actinobacteria and CFBs. 

Cultures were isolated from four sediment and three moonmilk samples and from 

swabs of speleothems in Entrance and Loons Caves to investigate culturable diversity (see Table 

2.1 for sample locations). Sediment sites were chosen away from main pathways in the dark 

zone of the caves and covering a range of sediment types from two caves of different character: 

Entrance Cave (SEl - dry sediment, SE2 - saturated sediment) and Loons Cave (SLl - dry 

sediment, SL2 - saturated sediment). Moonmilk samples were chosen to include two cave types 

(Entrance and Exit) and cover a range of forms, speleothemic (MXl), mat-like (ME2) an~ floor 
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deposit (ME3). Selective procedures and media favouring actinomycete growth were applied to 

sediment and speleothem samples whereas non-selective procedures and media were used for 

moonmilk samples. Gross morphology was used to discard duplicate cultures and isolates 

displaying novel morphology were identified using 165 rRNA gene sequencing and 

phylogenetic analysis. Groups of two or more highly related sequences (:::: 97.5% identical) were 

considered to belong to the same species in accordance with the definition of a bacterial species 

(Goebel & Stackebrandt, 1994; Vandamme et al. 1996). A total of 302 isolates belonging to 39 

genera were sequenced, mostly belonging to the order Actinomycetales. Table 3.3 summarises the 

phylogenetic affiliations of representative isolates. The majority of actinomycete isolates from all 

samples belonged to the Streptomycineae, Pseudonocardineae, Corynebacterineae and Micrococcineae. 

Isolates from moonmilk samples belonged to the Actinomycetales, Firmicutes, Proteobacteria and 

CFB groups. 

90 



Cha2ter 3: Results and Discussion 

Table 3.2: Summary of Phylotype* Abundance and Phylogenetic Affiliations 
from Cave Microhabitats 

PHYLOTYPEA NEAREST TAXON (% IDENTITY)8 ABUNDANCE IN MICROHABITATc 

SEl SE2 SLl SL2 ME2 ME3 MXl 
D 

BACTERIA 
a-Proteobacteria 
Caulobacterales Caulobacteraceae 
ME30021 Nztrobacteria hamadamenszs AY569007 (93.9%) 1 
MON0045 Brevundzmonas alba AJ227785 (94.6%) 1 1 
CAVOOOl Brevundzmonas alba AJ227785 (98.2%) 7 1 2 
DMONl Brevundzmonas alba AJ227785 (98.2%) -./ -./ -./ 
Rhizobiales Beijerinckiaceae 
MX10051 Methylocella palustrzs Y17144 (89.1%) 4 

Bradyrhizobiaceae 
ME20020 Bradyrhzzobzum japomcum AF363150 (98.2%) 3 
CAV0002 Bosea thiooxzdans X81044 (99.8%) 2 4 14 1 
DMON2 Bosea thzooxzdans X81044 (99.8%) -./ -./ 
MX10048 Bosea thzooxzdans X81044 (90%) 1 
5120043 Afipm masszlzenszs AY029562 (95.1 %) 2 
MX10021 Afipm genosp 9 U87780 (99.2%) 1 
CAV0008 Rhodopseudomonas palustrzs D12700 (93.7%) 2 2 1 

Brucellaceae 
5120011 Ochrobactrum anthropz U70978 (94.2%) 1 

Hyphomicrobiaceae 
ME20041 Hyphomzcrobzum sulfomvorans AF235089 (93.8%) 1 
5ED0019 Hyphomzcrobium vulgare X53182 (91.9%) 1 1 1 
5110054 Devosza rzboflavma AY512822 (99.6%) 1 2 

Methylobacteriaceae 
5E10044 Methylobacterzum extorquens 120847 (91.1 % ) 1 

Phyllobactenaceae 
5E20001 Phyllobacterium myrsznacearum AJ011330 (99.2%) 2 1 1 
ME20015 Ammobacter mzgataenszs AJ011761 (96.1 %) 1 

Rhizobiaceae 
MX10017 Rhizobium gzardmn U86344 (99.1 %) 1 
Rhodobacterales Rhodobacteriaceae 
5120056 Rhodobacter azotoformans D70846 (97%) 1 
MX10016 Rhodobacter sphaeroides D16424 (98.4%) 1 
5E10043 Amarzcoccus macauenszs U88042 (85.7%) 1 
5PE008 Paracoccus solventzvorans AY014175 (??%) 
Sphingomonadales 
5E10056 Sphingomonas aerolata AJ429240 (97.5%) 1 
MON0003 Sphmgomonas phyllosphaerae AY453855 (97.1 %) 1 1 
CAV0009 Sphingopyxzs alaskensisAF378795 (94.2%) 1 2 2 5 1 
DMON3 Sphzngopyxzs alaskenszsAF378795 (93%) -./ -./ 

f3-Proteobacteria 
Burkholderiales Acaligenaceae 
5120039 Derxza gummosa (91.6%) 1 3 
5E20024 Bordetella pertussis AF366576 (91.4%) 1 

Burkholderiaceae 
5110008 Burkholderia sordidicola AF512827 (92.9%) 4 
5110014 Limnobacter thiooxidans AJ289885 (89.2%) 1 2 
CAV0003 Pandorea apzsta AF139172 (93.1 %) 2 1 1 

Commamonadaceae 
CAV0004 Hydrogenophaga defluvzi AJ585993 (94.3%) 1 2 1 
5120003 Hydrogenophaga palleromz AF019073 (98.7%) 1 
MX10008 Delftia tsuruhatenszs A Y302438 (97.3%) 1 
MONOOlO Polaromonas vacuolata U14585 (95 7%) 1 3 
5110033 Varzovorax paradoxus AJ420329 (99.3%) 1 
5120010 Aczdovorax valerzanellae AJ431731 (96.1 %) 1 
5E20028 Ottowia thzooxydans AJ537466 (92.4%) 1 

Oxalobacteraceae 
CAV0005 Janthmobacter agarzczdamnosum Y08845 (98.3%) 2 2 4 3 
MON0015 Masszlza timonae U54470 (97.5%) 5 4 
CAV0006 Duganella vzolaceusniger AY376163 (97%) 1 5 5 
ME30010 Oxalobacter formzgenes U49758 (96 3%) 1 1 
CAV0021 Herbaspirzllum f!:zsmgense AJ238358 (??) 2 3 1 
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PHYLOTYPEA NEARESTTAXON (% IDENTITY)8 ABUNDANCE IN MICROHABITATc 

SEl SE2 SLl SL2 ME2 ME3 MXl 
D 

Hydrogenophilales Hydrogenophilaceae 
5110010 Thzobaczllus denitrificans AJ243144 (94.5%) 2 
Methylophilales Methylophilaceae 
SL00008 Methylophilus leismgerz AF250333 (97.8%) 2 5 
SE20011 Methylophilus freyburgenszs AJ517772 (93.3%) 8 
SL00038 Methylovorus mays AY486132 (94.3%) 3 8 
Nitrosomonadales Nitrosomonadaceae 
SL20020 Nitrosospira brzensis AY123800 (90.2%) 4 
Unclassified 
SED0039 Thzobacter subterraneus AB180657 (89%) 1 1 

&-Protea bacteria 
Desulfuromonadales Desulfuromonadaceae 
MON0018 Desulfuromonas thiophzla Y11560 (90%) 1 1 1 

Geobacteraceae 
SE10098 Geobacter pelophzlus U96918 (91 % ) 1 
Desulfoarculales Desulfoarculaceae 
SL0043 Nztrospma gracilis L35504 (92%) 2 2 1 

y-Proteobacteria 
Acidithiobacillales Acidothiobacillaceae 
SE10004 Aczdothiobacillus ferroxzdans AJ457808 (98%) 2 
Alteromonadales Alteromonadaceae 
SED0012 Marmo bacterium georgzense AB021408 (99%) 1 1 
Chromatiales Chromatiaceae 
SED0017 Nztrosococcus oceanz AF363287 (91 % ) 3 1 
SL10022 Nztrosococcus oceani AF363287 (90%) 1 
SEDOOlO Thzocapsa roseoperscma Y12303 (93%) 3 1 
SE10089 Thzobaczllus prosperus AY034139 (94%) 1 

Ectothiorhodospiraceae 
SE10058 Thioalkalivibrio thzocyanodenztrzficans AY360060 6 

(92%) 
Enterobacterales 
SED0008 Photorhabdus luminescens D78005 (95%) 9 9 2 
Legionellales 
SE10003 Legzonella londmzenszs Z49728 (94%) 1 
Methylococcales 
SE10021 Methylococcus capsulatus X72770 (90%) 1 
ME30011 Methylococcus capsulatus X72770 (91 % ) 1 
Pseudomonadales 
CAVOOll Pseudomonas fluorescens AF094729 (98%) 1 3 2 4 3 
SE20012 Pseudomonas putida AF094743 (98%) 2 
SE20021 Pseudomonas angu1!11sept1ca X99540 (98%) 1 
MX10050 Uncultured bacterium clone Cll-Kll AJ421116 1 

(95%) 
Moraxellaceae 

ME30060 Acinetobacter 7ohnsoni1 Z93440 (94%) 2 
Thwtrichales Thiotrichaceae 
SE20006 Achromabum oxahferum L48227 (93%) 1 
Xanthomonadales 
SE10045 Lysobacter gummosus AB161361 (97%) 2 
SE10044 Lutezmonas mephitzs AJ012228 (97%) 1 
SL10051 Frauterza aurantza AJ010481 (95%) 1 
SED0009 Hydrogenocarbophaga effusa AY363244 (93%) 1 2 1 
CAV0030 Pseudoxanthomonas mexzcana AF273082 (96%) 1 1 1 

Actinobacteria 
Actinobacterideae 
Actinomycetales Corynebacterineae 
ME20019 Nocardza carnea X80607 (99%) 3 2 2 
ME20104 Nocardza corynebacterozdes X80615 (94%) 2 

Micrococcineae 
MEX005 Arthrobacter chlorophenolzcus AF102267 (96%) 
DMON4 Arthrobacter chlorophenolzcus AF102267 (96%) -./ -./ -./ 
CAV0027 Arthrobacter pascens X80740 (99%) 1 2 2 2 
CAV0046 Arthrobacter ox't.dans X83408 (99%) 1 2 
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PHYLOTYPEA NEAREST TAXON (% IDENTITY)8 ABUNDANCE IN MICROHABITATc 

SEl SE2 SLl SL2 ME2 ME3 MXl 
D 

SL20016 Arthrobacter psychrolactzcus AF134183 (98%) 1 
MON021 Knoellza subterranea AJ294413 (99%) 3 1 1 2 

Pseudonocardineae 
ME20021 Pseudonocardza asaccharolytzca Y08536 (95%) 3 
SL10013 Actznobispora alamniphila AF325726 (96%) 1 
ME20012 Amycolatopszs fastzdiosa AJ400710 (96%) 1 
ME20103 Amycolatopszs sulphurea AJ293756 (96.5%) 2 
ME20081 Saccharothrix coeruleofusca AF114805 (95%) 1 
CAVOOlO Saccharothrix texasenszs AF350247 (97%) 2 1 1 4 
MON0007 Saccharothrix cryophilzs AF114806 (95%) 4 2 3 
DMON5 Saccharothrix cryophilis AF114806 (95%) -.J -.J -.J 
MON0018 Lentzea albidocapillata X84321 (96%) 1 
SE10086 Lechevalierz aerocolonzgenes AY196703 (88%) 1 
SL20046 Kzbdelosporangium phillipznense AJ512464 (95%) 1 

Propionibacterineae 
CAV0023 Propionzbacterium acnes AB042288 (98%) 1 1 
SED0051 Nocardioides fulvus AF005016 (94%) 1 2 
MX10002 Nocardioides sp. LMG20237 AJ316318 (92%) 1 
MX10032 Pzmelobacter simplex 278212 (98%) 1 

Micromonosporineae 
SL10009 Micromonospora echznoaurantzaca X92618 (98%) 1 
ME20061 Actznoplanes cyaneus AB036997 (95%) 1 
MX10039 Virgosporangzum ochraceum AB006167 (91 % ) 2 

Frankineae 
SE0098 Frankza sp. 2 2 
SE10039 Blastococcus saxobsuiens AJ316570 (90%) 1 

Streptomycineae 
SL10019 Streptomyces caviscabies AF112160 (99%) 2 1 1 
ME20022 Streptomyces subrutilis X80825 (97%) 1 2 
ME30039 Streptomyces sangl1er1 AY094364 (98%) 1 
ME20033 Streptomyces vwlaceoruber AF503492 (98%) 1 
SE00050 Streptomyces yunnanenszs AF346818 (91 %) 1 1 
CAV0015 Streptomyces macrosporus 268099 (90%) 1 2 
ME20041 Streptomyces rutgersenszs 276688 (99%) 1 
SE10028 Streptomyces galzlaeus AB045878 (98%) 1 
SL10055 Kitasatospora medwcidzca U93324 (97%) 1 
Rubrobacterideae 
ME30059 Thermoleophilum minutum AJ458464 (89%) 1 
ME30009 Thermoleophzlum album AJ458463 (93%) 1 
Sphaerobacterideae 
SE10001 Sphaerobacter thermophilus AJ420142 (90%) 1 
Unclassified Actinobacteria 
SE10060 Cand1datus Mzcrothrzx parvzcella X89774 (91 %) 2 1 

Firmicutes 
SL10009 Ruminococcus flavefaczens X85097 (91 %) 2 
MX10063 Bacillus subtilus AB042061 (99%) 1 1 
ME20098 Sporosarczna ureae AF202057 (98%) 2 

Cytophaga-Flavobacteria-Bacteroides 
Bacteroidetes 
Flavobacteriales Flavobacteriacea 
MX10045 Cryomorpha ignava AF170738 (92%) 1 
SL10003 Flavobacterza ferrugzneum M62798 (96%) 1 
SL10020 Flavobacterium columnare M58781 (93.3%) 1 
CAV0015 Flavobacterza lzmicola AB075230 (98%) 1 2 6 8 
ME30007 Flavobacterza lzmzcola AB075230 (93%) 2 
CAV0018 Flavobacterza leeana AB180738 (98%) 2 3 1 1 10 

DMON6 Flavobactena leeana AB180738 (98%) -.J -.J 

CAV0030 Antarctic bacterium R-7933 AJ440987 (97.1 %) 1 1 

Sphingobacteriales Sphingobacteriaceae 
MON0015 Pedobacter cryconztzs AJ438170 (97%) 2 1 
ME30041 Sphzngobacterzum faeczum AJ438176 (93.4%) 3 
Bacteroidales 
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PHYLOTYPEA NEARESTTAXON (% IDENTITY)8 ABUNDANCE IN MICROHABITATc 

SEl SE2 SLl SL2 ME2 ME3 MXl 
D 

SL0019 Flexibacter tructuosus M5S7S9 (92%) 1 1 
SL10002 Uncultured bacterium clone C44K17 AJ297617 1 

(92.9%) 
CAV0026 Bacteroidetes bacterium Mo-0.2plat-K3 AJ622SSS 1 1 1 

(90.9%) 

Acidobacteria 
ME20061 Uncultured bacterium DADOS Y12597 (97%) 1 
MON0045 Uncultured bacterium DADOS Y12597 (94%) 2 2 
ME20013 Uncultured bacterium DADOS Y12597 (90%) 2 
ME20020 Bactenum Ellin6075 AY234727 (94%) 1 
ME20050 Bacterium Ellm6075 A Y234727 (91 %) 1 
SL20005 Bacterium Ellin6071 AY234723 (95%) 1 
SL10020 Bactenum Ellin52S9 AY234640 (S9%) 1 

Planctomycetales 
SE10039 Planctomyces braszlzenszs AJ231190 (90%) 5 
CAV0062 Planctomyces marzs AJ231184 (90.4%) 4 2 1 1 
SED0061 Pzrellula staleyz AJ2311S3 (96%) 2 1 2 2 
SE0051 Pzrellula sp. XS1947 (SS S%) 3 1 
SED0047 Planctomycete str.292 AJ2311S2 (S7.2%) 2 1 1 
SL10061 BacteriumDR2A-7G19 AB127S5S (91.2%) 1 
ME30013 Gemmata-like str. C1uq14 AF239693 (Sl.9%) 2 

Chloroflexi (green nonsulfur) 
ME20011 Caldilznea aerophzla AB067647(S6.4%) 2 
SE0037 Caldilznea aerophzla AB067647 (90%) 1 1 
MX10044 Dehalococcoides ethenogenes AF00492S (95.6%) 1 
MX10041 Anaerolznea thermophzla AB046413 (91.9%) 1 
ME30006 Urudentified bacterium strain BD3-16 AB015556 1 

(S6.9%) 

Verrucomicrobia 
SE10094 Uncultured verrucomicrob1um DEVOlO 2 

AJ401127 (92%); 
Verrucomzcrobza spinosum X90515 (S6.5%) 

SE10006 Opitutus sp VeSm13 X99392 (91.S%) 1 

OP10 
SL20004 Uncultured bactenum SJA-176 AJ009504 (S6%) 1 
SL20017 Uncultured bacterium GC55 AJ27104S (90.2%) 1 
Gemrnatimonadetes 
SL20096 Gemmatzmonas aurantiaca AB072735 (S7 6%) 3 
SL20036 Bactenum Ellm 5301 AY234652 (S7.S%) 2 

ARCHAEA 
Crenarchaeota 
SL20017 Uncultured archaeon WSB-11 AB055993 (91.S%) 1 

Desulf!!:.rococcus amy_loly_tzcus AF250331 (75%) 
Total:# phylotypes 40 34 39 39 31 29 40 
(#clones) (72) (60) (68) (68) (71) (61) (75) 

*Phylotypes represented m sed!IIlent and moommlk samples (CAV) Phylotypes represented in sediments of Entrance and Loons Caves 
(SED). 
Phylotypes represented m more than one moonmilk sample (MON) DGGE bands from moonmilk (DMON); presence(.../), absence(-). 
A A umque sequence or group of highly related sequences (> 98% identical) cous1dered to belong to the same sequence type. 
8 Inferred from drrect sequence comparison to representative sequences on GENBANK. Access10n numbers given 
c No of clones m phylotype represented m each nucrohabitat studied based on drrect sequence comparisons or inferred from RFLP patterns 
0 Microhabitats represented by samples. SE! (dry sediment, Entrance Cave), SE2 (wet sediment, Entrance Cave), SL! (dry sediment, Loons 
Cave), SL2 (wet sediment, Loons Cave), ME2 (calcite mat, Entrance Cave), ME3 (moonnulk, Entrance Cave), and 
MXl (moonmlik, Exit Cave). 
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Proteobacteria 

The Proteobacteria were the most commonly sampled group (35.2-76.5% of clones) 

present within the cave samples. Representatives of the alpha (a), beta(~), gamma (y) and delta 

(8) subclasses were detected in varying proportions in the clone libraries. No epsilon (c) 

Proteobacteria clones were detected in this study. 

a-Proteobacteria 

A total of 81 clones representing 24 phylotypes were affiliated with the a-Proteobacteria 

and representatives were detected in all libraries (Table 3.2). Three DGGE bands (DMONl, 2 

and 3) affiliated with the a-Proteobacteria were present in all 3 moonmilk samples. Isolates from 

sediment, speleothems and moonmilk were also affiliated with the a-Proteobacteria. Figure 3.5 

displays an evolutionary distance dendrogram of representatives of the a subclass and 

associated cave clones, DGGE bands and isolates. 

The most pronounced clade was the Rhizobiales consisting of 15 phylotypes from all 

samples affiliated with Beijerinckiaceae, Bradyrhizobiaceae, Brucellaceae, Hyphomicrobiaceae, 

Methylobacteriaceae, Phyllobacteriaceae and the Rhizobiaceae. The most dominant phylotype present 

in high numbers in both Loons sediments and all moonmilk samples (CA V0002) was most 

closely related to Bosea thiooxidans (99.8% sequence similarity), a thiosulfate oxidiser (Das et al. 

1996). The isolation of a strain of Bosea thiooxidans and the presence of 14 clones of this phylotype 

in the Entrance mat material indicates that this is a major component (19.71 %) of the total 

microbial community. The Bosea thiooxidans phylotype was also detected in all moonmilk 

samples by DGGE analysis (band DMONl). A number of clones were affiliated with 

methylotrophic taxa (phylotypes MX10051, ME20041, SED0019, SE10044) including 

representatives of the genera Methylobacterium, Methylocella, and Hyphomicrobium. Phylotypes 

ME20041 and SED0019 formed a deep lineage within the Hyphomicrobiaceae. A novel pink­

pigmented Methylobacterium sp. was isolated from moonmilk and phylotypes branching with 

genera Methylobacterium and Methylocella were detected in Entrance sediment and moonmilk 

from Exit. Phylotype MX10051, consisting of four clones, formed a deep branching lineage 
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within the Beijerinckiaceae affiliated loosely with Methylocella paulstris (89.1 % sequence 

similarity). M. palustris is a methanotrophic acidophile isolated from peat wetlands (Dedysh et 

al. 2003). Other members of the Bezjerinckiaceae are free-living aerobic nitrogen-fixing bacteria 

(eg. Beijerinckia) which grow well in acidic soils. Sediment phylotypes were also affiliated with 

nitrogen-fixing bacteria including those usually associated with plant nodules (eg. Rhizobium, 

Bradyrhizobium) (Young & Haukka, 1996). 

The second clade of interest is the Caulobacterales. Phylotype SL20021 was affiliated with 

Nitrobacter sp., a facultative nitrifying chemolithotroph (Zare et al. 2003; published in database 

only), detected in saturated sediment from Loons but not detected in dry sediment from Loons 

or Entrance samples. Phylotypes affiliated with Brevundimonas sp. were detected in all 

moonmilk samples. MON0045 was most closely related to Brevundimonas alba (98.2%), a 

prosthecate oligotroph (Abraham et al. 1999), and present in particularly high numbers in 

sample ME2 (-10% of total community). Prosthecae are narrow extensions of the bacterial cell 

wall containing cytoplasm and it has been proposed that these structures confer a variety of 

benefits to aerobic heterotrophic bacteria including mechanisms for attachment to solid 

substrates and enhanced respiration and nutrient uptake (Hedlund et al. 1996). Brevundimonas 

alba was also present in the DGGE analysis (band DMON2) and isolated from all moonmilk 

samples, reinforcing its ubiquity in moonmilk. 

Members of the Sphingomonadales were detected in sediments and moonmilk samples. 

Particularly, phylotype CAV0009 most closely related to Sphingopyxis alaskensis (94.2%) was 

detected in all samples except for SLl and was detected in DGGE analysis (DMON3). Putatively 

novel members of the genus Sphingomonas and Sphingopyxis were also isolated from sediments 

(SEEOOS) and moonmilk (MAE322). Members of the Sphingomonadales are oligotrophic and 

found in nutrient limited subsurface environments where they metabolise a large number of 

aromatic compounds (Fredrickson et al. 1995 Balkwill et al. 1997; Barton et al. 2004). Such 

metabolic diversity has led to the identification of members of this genus in numerous starved 

environments including distilled waters and oligotrophic marine ecosystems (Balkwill et al. 
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1997). A novel Porphyrobacter sp. was isolated from moonmilk (MEE338). Members of the 

Porphyrobacter are aerobic and photosynthetic bacteria. 

Three phylotypes and one isolate clustered within the Rhodobacterales lineage. Two 

phylotypes from moonmilk (MX10016) and Loons sediment (SL20056) were affiliated with 

phototrophic Rhodobacter sp. A third phylotype SE10043 from Entrance sediment was loosely 

affiliated (85.7% sequence similarity) with members of the genera Amaricoccus, isolated from 

activated sludge. A novel methylotroph from the Rhodobacterales lineage, Paracoccus sp., was 

isolated from a speleothem in Entrance Cave. Paracoccus sp. can utilise methylamine and methyl 

formamide (Urakami et al. 1990). 

97 



Chapter 3: Results and Discussion 

.---------- My.wcoccusjulvus A1233917 

L--c======== EscherCf:h"Wc~f.JMl/~uni AF3'l20'JI 
ComaTTWnas lts/osleroni Ml 1224 

..---------- Riclieltsia pr<MlazekiiM21789 

0.1 

..---- Phenylobacterium immobile Yl8216 

DM§!J:iJooc1er hcnricii AB016846 
MONllll4_'i 

Br~~,k alba A1227755 
BrevundiTTWnas sp. AP-2AY145541 

~~ria hamadaniensis AY569007 
ME30021 

SoningolJ'lxls witf/ariensis AJ416410 
Soh~~l/askensis AF378795 
Marine arCl!c deep sea bactemrn FDI 0 
MONOOO:l 
Arctic sea ice bacterilDn ARK0016 AF468353 

'"--~-o~-~-~-~g£~0f!1l!e,,anean All02~14 
PorohvrO&u:ttr neustonensis AF465838 
Porp/ryrobacler donR.haensis 

Snhinpnmmvu nhvlln<nhnnnP. A Y 4'\'IR~-~ 
SohineoTTWnas asaccharolvtica Y09639 
Spe!'XVfS!f mtlonis ABOS.5863 

CA VIOOS. SE10056 
SphinR,omonas aero/a/a A1429240 

..__..--- Afipia gmoop.9 U87780 
SL20011 MX10021 
Bruce/la melitensis A1585368 
Ochrobaclrum anlhropi U70'J78 

MEZOOZ2 
MP.tnrh.imhium nmnrnlvl~ A.1?71 ~ 
CA VI3..14. ME~l)OlS 
Aminohac/er n11P<Jlatn.<l< AJOl 1761 
Aminobacter aminovorans AJOl 1762 

Nanobaclerium san11uineum X98418 
PhyJ~100/,1'iun1 myrsinacearum AJOl 1330 

Rhiz.obiun1 giardinii U86.'44 
MX10017 

11 

Caulobacterales 

Spl!i11gobacterales 

Rhizobiales 

Rltodoba.cterales 

Figure 3.5: Phylogenetic dendrogram illustrating the evolutionary relationship between cave taxa and members of the a­
Proteobacteria. The dendrogram was constructed from an alignment of 1000 nucleotide pa;itions. Distances were 
calculated in DNADIST and trees were inferred by the neighbour-joining method. Tltem1oprotei1s te11ax was used as the 
outgroup species. The scale bar indicates 10% sequence divergence. 
Colour Code: Black = Clone sequences, Blue = DGGE sequences, Brown = Isolate sequences. 
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~ Proteobacteria 

Clones affiliated with the ~-Proteobacteria were the most abundant group detected in 

this study (102 sequences) and were distributed fairly evenly between sample sites SE2, SLl, 

SL2, ME3 and MXl contributing approximately 25-34% to the total diversity sampled (Table 3.2). 

In comparison however, no ~-Proteobacteria were detected from sites SEl or ME2. 

Phylotypes affiliated with the ~-Proteobacteria are depicted in Figure 3.6, clustering 

with known chemolithotrophs, particularly hydrogen utilising bacteria, thiosulfate oxidisers, 

and nitrogen-fixing bacteria. Most phylotypes clustered within the Order Burkholderiales. Several 

sequences obtained from both sediment and moonrnilk were closely related (94-99.3% sequence 

similarity) to members of the Commamonadaceae, particularly the Acidovorax group, including 

the genera Acidovorax, Variovorax, Polaromonas, and Hydrogenophaga. DGGE analysis also 

detected a member of the Hydrogenophaga in ME3 and MXl (DMON4). A novel Acaligenes sp. 

(MEE109) was isolated from moonmilk. Members of the Commamonadaceae and Acaligenaceae are 

aerobic chemoorganotrophs and some strains are capable of chemolithoautotrophy utilising 

hydrogen as an energy source. Nitrogen-fixation has been reported for some genera, eg. 

Burkholderia, Derxia and Hydrogenophaga (Willems et al. 1991). Phylotypes from sediment and 

moonmilk were distantly related to members of thiosulfate oxidising genera Thiobacillus, 

Limnobacter, Ottowia and Delftia (eg. Spring et al. 2001). A number of clones from moonmilk 

samples were distributed within five phylotypes affiliated with the Oxalobacteraceae, showing 

close relationships (>96%) with the genera fanthinobacter, Massilia, Duganella, Oxalobacter and 

Herbaspirillum. A number of members of the Oxalobacter group are nitrogen-fixing bacteria 

associated with plants (Valverde et al. 2003). Members of one genus Duganella are also reported 

to have chitinolytic properties, most likely associated with the breakdown of organic matter. The 

Oxalobacteriaceae appear to be a dominant component of the true calcite moonmilk microbial 

communities sampled accounting for 24% and 18% of samples ME3 and MXl, respectively. 

Further evidence of this is the presence of DGGE band DMON6 clustering withfanthinobacter 

phylotypes. 
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Phylotypes affiliated with the Methylophilales dominated the sediment samples, 

particularly the saturated sediments from Entrance and Loons Cave. SE20011, most closely 

related to Methylophilus freyburgensis (93.3% sequence similarity) accounts for 13% of the 

sampled microbial community in saturated sediment from Entrance Cave. Members of the 

Methylophilus genus are methanol utilising. SL00038 most closely related to Methylovorus mays 

(94.3% sequence similarity) accounts for 18% of the observed microbial community in saturated 

sediment from Loons Cave. Members of the Methylovorus are aerobic obligate methylotrophs 

associated with plants (Doronina et al. 2000). A single phylotype (SL20020) from saturated Loons 

sediment grouped with the ammonia-oxidising species Nitrosospira briensis (90.2%). 

c5- Proteobacteria 

Clones affiliated with the o-Proteobacteria were detected in all samples. This phylum 

encompasses sulfate- and sulfide-reducers that are morphologically diverse and obligate 

anaerobes. Six clones were distributed among three phylotypes (Table 3.2), thus the o­

Proteobacteria were a minor, though ubiquitous component of the microbial communities 

sampled. Two types of sulfate-reducers are recognised, those species that reduce sulfate to 

hydrogen sulfide (H2S) (eg. Desulfovibrio, Desulfomonas, Desulfotomaculum, Desulfobulbus) and 

those that reduce sulfate to sulfide (eg. Desulfobacter, Desulfococcus, Desulfosarcina, Desulfonema). 

Two phylotypes formed separate deep branching lineages within the Desulfuromonadales (Figure 

3.7). MON0018 was detected in all moonmilk samples and represents a putatively novel lineage 

forming a monophyletic clade with the genus Desulfuromonas (90% sequence similarity to 

Desulfuromonas thiophila). Members of this genus are obligate sulfate-reducers and widespread in 

terrestrial and aquatic environments that become anoxic as a result of microbial decomposition 

processes (Finster et al. 1997). Phylotype SED0098 present in sediment samples SE2, SLl and SL2 

were affiliated with sulfur- and iron- reducing members of the Geobacteraceae. A third phylotype 

SE10043 detected in sample SEl, formed a deep branching lineage within the Desulfoarculaceae. 

The closest cultured relative to this clone was nitrite-oxidiser Nitrospina gracilis. 
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Figure 3.6: Phylogenetic dendrogram illustrating the evolutionary relationship between cave taxa and members of the {3-
Proteobacteria. The dendrogram was constructed from an alignment of 1000 nucleotide positions. Distances were calculated 
in DNADIST and trees were inferred by the neighbour-joining method. Thennoproteus te11a.x was used as the outgroup 
species. The scale bar indicates 10% sequence divergence. 
Colour Code: Black =Clone sequences, Blue = DGGE sequences, Brown = Isolate sequences. 
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r-Proteobacteria 

A total of 77 clones in 22 phylotypes were affiliated with the y-Proteobacteria. Figure 3.8 

illustrates the phylogenetic distribution of y-phylotypes. The y-Proteobacteria dominated 

Entrance sediments SEl and SE2 representing 29.6% and 26.2%, respectively, of the diversity 

sampled and also represented a significant component of sample SLl (21.8%) (Table 3.2). Several 

sequences from Entrance sediment SEl clustered within the Order Chromatiales, whose members 
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are predominantly phototrophic and includes sulfur-, H2S- and thiosulfate- and nitrite-oxidising 

autotrophic genera Nitrosococcus, Thioalkalivibrio, Thioploca, Beggiatoa. Some cultured 

representatives are capable of utilising atmospheric C02 as a carbon source for growth in dark 

conditions. SEl clones affiliated with the Chromatiales represent 19% of total diversity sampled 

thus inferring that these are a dominant component of the community. SE10058, consisting of six 

clones, was affiliated with Thioalkalivibrio thiocyanodenitrificans (92% sequence similarity) an 

obligate sulfur-oxidising/ nitrifying chemolithoautotroph. Two phylotypes distantly related to 

autotrophic denitrifyer species Nitrosococcus oceani (90-91 % sequence similarity) were detected in 

both Loons and Entrance sediment. Phylotype SEDOOlO, also detected in both Entrance and 

Loons sediment clustered with Thiocapsa roseoperscina, a thiosulfate-oxidiser. 

The Pseudomonads (Pseudomonadales and Xanthomonadales) are a diverse group of 

aerobic chemoheterotrophs that never show fermentative metabolism. Some members are 

chemolithotrophic using H2 and CO as sole electron donors and some members can use nitrate 

as an electron donor. Within the Pseudomonadales, a number of sequences, distributed in four 

phylotypes, from sediments and moonmilk clustered with the genus Pseudomonas, most closely 

related to members of the fluorescent sub-group (P. fluorescens, P.putida, and P.aeruginosa) and a 

single phylotype from moonmilk clustered with Acinetobacter. Pseudomonads have simple 

nutritional requirements, the most striking feature being a versatile metabolic lifestyle and the 

ability to metabolise a range of substrates including numerous aromatic compounds as the sole 

carbon and energy source. 

Several clones were distributed amongst five phylotypes showing high sequence 

similarity (95-97%) with denitrifying genera of the Xanthomonadales, (Lysobacter, Luteimonas, 

Frauteria, Hydrogenocarboniphaga, Pseudoxanthomonas) and a novel Xanthomonas sp. was isolated 

from moonmilk. Xanthomonadales are also ecologically important in soil and water and are 

probably responsible for degradation of many soluble compounds derived from the breakdown 

of plant and animal materials in oxic environments (eg. Lysobacter sp. can lyse both bacteria and 

fungi through array of lytic enzymes). A second novel Xanthomonad was isolated from 

moonmilk, the closest cultured relative being Stenotrophomonas maltophilia, which is also the 
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closest relative of clones of novel iron-oxidising bacteria (Emerson & Moyer, 1997). Rice et al. 

(1995) also found that S.maltophilia studied in biofilms showed exceptionally adhesive and 

corrosive properties. 

Phylotype SED0008 from sediment samples SE2, SLl and 2, clustered with the Enteric 

bacteria, a homogenous, facultatively aerobic, group within y-Proteobacteria. This phylotype 

was numerically significant in that it contained nine clones from SE2 and SLl, and 2 clones from 

SL2. Phylogenetically, it was most closely related to both Photorhabdus luminescens and 

Escherichia coli strain 5.1. P.luminescens is a symbiotic bacteria and E.coli is able to grow on a wide 

variety of carbon and energy sources. 

Other minor components of the y-Proteobacteria clones include, a phylotype (SE20006) 

closely related to Achromatium oxaliferum (93%) a sulfur-oxidiser that has sulfur and calcite 

inclusions within the cell, detected in Entrance sediment. Phylotypes, SE10021 and ME30011, 

were distantly affiliated (90-91 %) with Methylococcus capsulatus, a methane dependant bacteria. 

SE10004 was closely related to Acidothiobacillus ferroxidans (98%) a ubiquitously distributed 

chemolithotroph that derives energy from reduced sulfur compounds or by oxidising ferrous 

iron to ferric iron (Kelly & Wood, 2000). Aferroxidans is also capable of autotrophic growth by 

C02 fixation. No y-Proteobacteria clones were detected in sample ME2 or in DGGE analysis. 
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Figure 3.8: Phylogenetic dendrogram illustrating the evolutionary relationship between cave taxa aud members of the y­
Proteobacteria. The dendrogram was constructed from au aligmnent of 1000 nucleotide positions. Distances were 
calculated in DNADIST and trees were inferred by the neighbour-joining method. Themwproteus te11ax was used as the 
outgroup species. The scale bar indicates 10% sequence divergence. 
Colour Code: Black = Clone sequences, Brown = Isolate sequences. 
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Actinobacteria 

The Actinobacteria were the second most commonly sampled group overall behind the 13-

Proteobacteria though not always the second most abundant group in individual libraries. 

Unlike the 13-Proteobacteria, phylotypes affiliated with the Actinobacteria were detected in all 

sediment and moonmilk samples. A total of 85 clones were distributed among 37 phylotypes 

illustrating the broad diversity of Actinobacteria sampled in this study (Table 3.2). Particularly, 

the Actinobacteria were the second most abundant group in sediment sample SEl and mat 

sample ME2, both from Entrance Cave, composing 36.6% and 26.8%, respectively, of the total 

sampled clonal diversity. DGGE analysis revealed two Actinobacteria taxa in moonmilk samples, 

DMON6 and DMON7 (Table 3.2). Isolations from sediments, speleothems and moonmilk 

samples were dominated by Actinobacteria resulting in cultured representatives from 14 genera, 

including one putatively novel genus and five putatively novel species (Table 3.3). 

The Pseudonocardineae dominated the clone libraries and revealed great diversity. A total 

of ten phylotypes were detected (Figure 3.9) and were particularly abundant in calcite sample 

ME2 with 6 phylotypes consisting of 15 clones. Several sequences from sediment and moonmilk 

were affiliated with the genus Saccharothrix most closely related to various described species. 

17% of the total diversity sampled in ME2 were affiliated with Saccharothrix species illustrating 

the dominance of this taxa in the calcite samples. DGGE analysis also revealed the presence of 

Saccharothrix sp. in calcite moonmilk samples (DMON5). Saccharothrix sp. were isolated from 

moonmilk and sediment, including S.albidocapillate, S.cryophilus and S.violacea. S. violacea is a 

chemoorganotrophic strict aerobe that was isolated from soils inside a gold mine cave in Korea 

(Lee et al. 2000) and has been detected in other caves (Schabereiter-Gurtner et al. 2002, 2004; 

Northup et al. 2003). A novel Amycolatopsis sp. was isolated from sediment from Entrance Cave. 

Clones and isolates affiliated with the genera Micromonospora, Couchioplanes and Actinoplanes 

were also present from sediments and moonmilk. Sequences clustering within the 

Propionibacterineae were detected in sediment and moonmilk samples (Figure 3.9). A phylotype 

closely related to Propionibacterium acnes (98%), a common human skin commensal, is probably a 

contaminant. Clones related to Nocardioides fulvus (94% sequence similarity) and Pimelobacter 
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simplex (98%) were detected in sediment and calcite samples. Members of the Nocardioides are 

oligotrophic and able to support growth on a wide variety of substrates (Yoon et al. 1999). A 

single sequence only distantly related to Blastococcus saxobsidens (90%) within the Frankineae was 

detected in Entrance Cave sediment. Several members of the Frankineae including Blastococcus, 

have been isolated from monuments. Several sequences detected in Entrance sediments were 

distantly related to the genus Frankia. Frankia sp., are nitrogen-fixing bacteria usually associated 

with plants. 
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Flgare 3.8: Phylogenetic dendrogram illustrating the evolutionary relationship between cave taxa and members of the 
Actinomycetaks. The dendrogram was constructed from an alignment of 1000 nucleotide positions. Distances were 
calculated in DNADIST and trees were inferred by the neighbour-joining method. Bifidobacteriwn bifidum was used as 
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Figure 3.10 is a phylogenetic dendrogram of the Microccineae and Con;nebacterineae. 

These bacteria are among the most common organisms isolated from caves. Several strains of 

Arthrobacter were isolated from cave sediment and moorunilk. One group of Arthrobacter 

moorunilk isolates were related to Arthrobacter chlorophenolicus (96% similarity). This is a 

putatively novel cave species that was also represented in DGGE analysis (DMON4). 

Arthrobacter is one of the main genera of Micrococcineae, and consists mainly of soil organisms. 

109 



Chapter 3: Results and Discussion 

Arthrobacter sp. are remarkably resistant to desiccation and starvation, despite not forming 

spores and demonstrate considerable nutritional versatility including the ability to decompose a 

variety of organic compounds. Members of the Arthrobacter have previously been observed in 

caves demonstrating survival by means of nitrogen fixation or the use of organic substrates as 

the sole source of carbon and energy, and remain resistant to prolonged periods of nutrient 

limitation (Barton et al. 2004). A phylotype very closely related to Knoellia subterranea (99%) was 

detected in sample ME3 and was also isolated from sample ME2. Knoellia sinensis and Knoellia 

subterranea, were recently isolated from sediment in Reed Flute Cave in China (Groth et al. 2002). 

Two phylotypes affiliated with the genus Nocardia were detected in sample ME2, ME20019 being 

almost identical to N.carnea (99%) and ME20104 being more distantly related to 

N.corynebacteroides (94%) perhaps representing a novel species of the Nocardia. Coryneform 

bacteria, Nocardia and Rhodococcus, are soil organisms sometimes utilising hydrocarbons. Species 

of these genera are known to degrade organic matter and are able to decompose 

environmentally hazardous chemical compounds. Several Nocardia and Rhodococcus sp. were 

isolated from all sediment and moonmilk samples and although Rhodococcus sp. were not 

detected in culture-independent analyses. Members of the genus Rhodococcus show a remarkable 

degree of metabolic diversity and currently are used as whole-cell biocatalysts in several 

industrial processes (Hughes et al. 1998). 

Phylotypes affiliated with the Streptomyces were ubiquitous in cave samples (Figure 

3.11). Members of the Streptomyces dominated isolations from sediment and moonmilk 

accounting for approximately 60% of isolates obtained. These isolates represented 10 species of 

Streptomyces (Table 3.3) The most common species isolated were S. subrutilus and S. caviscabies. S. 

subrutilus was detected in all sediment, speleothem and moonmilk samples and clones 

clustering with this lineage were detected in Entrance sediment and calcite mat material, ME2. S. 

caviscabies was isolated from all samples except for ME2. It was also detected in Loons sediment 

and moonmilk samples. The genus Streptomyces encompasses a large number of recognised 

species. Streptomyces are the most common soil bacteria along with the Arthrobacter. Members of 

the Streptomyces favour alkaline to neutral, well drained soils such as sandy loams or soils 
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covering limestone. Limestone caves and lava tube caves often contain wonderful displays of 

filamentous actinomycetes that may cover entire ceilings and walls of caves giving a 'silvered' 

appearance (similar to sample ME2). Probably many of the discrete lichen-like colonies 

frequently noted on walls and formations in the dark zone may be Streptomyces species since 

they often have the powdery appearance and characteristic earthy odour common to cultures of 

this genus. Several of the isolates from sediments and moonmilk in this study had this powdery 

appearance and earthy odour. It has also been suggested that the abundant Streptomyces in caves 

is probably responsible for the earthy smell of caving (Caumartin, 1963 in Ford & Cullingford, 

1976). 
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Figure 3.11: Phylogenetic dendrogram illustrating the evolutionruy relationship between cave taxa and members of 
the Streptomycineae. The dendrogram was constructed from an alignment of 1000 nucleotide positions. Distances 
were calculated in DNADIST and trees were inferred by the neighbour·joining method. Bifidobacterium hifidum was 
used as the outgroup species. The scale bar indicates I 0% sequence divergence. 
Colour Code: Black = Clone sequences, Brown = Isolate sequences. 
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Four phylotypes were detected clustering within the Actinobacteria but not affiliated with the 

Actinomycetales. Figure 3.12 is a phylogenetic dendrogram of Actinobacteria subclasses 

Rubrobacterideae and Sphaerobacterideae and unclassified Actinobacteria. Described members of the 

Rubrobacterideae are largely thermophilic (eg. Thermoleophilum minutum, Thermoleophilum album, 

Rubrobacter radiotolerans). Two clones, from moonmilk samples, were loosely affiliated with 

members of the thermophilic genus Thermoleophilum (89-93%) forming a monophyletic radiation 

within the Rubrobacterideae and perhaps representing cold-adapted members of this taxa. The 

Rubrobacterideae are a broad monophyletic group within the Actinobacteria consisting of to date 

largely uncultivated organisms (Rheims et al. 1996). Culture-independent studies have detected 

members of this group as ubiquitous and an ecologically significant radiation of the 

Actinobacteria, inhabiting a diverse array of environments including peat bog (Rheims et al. 

1996), forest soil (Liesack & Stackebrandt, 1992), geothermal soil (Fuhrman et al. 1993), paddy 

and soybean fields (Ueda et al. 1995) and marine habitats (Fuhrman et al. 1993). Within the 

unclassified Actinobacteria, 2 clones from Entrance sediment, SEl, were distantly related to 

Candidatus Microthrix parvicella (91 %). Microthrix parvicella is a filamentous organism isolated 

from an activated sewage treatment plant. One sequence, also from SEl, was loosely affiliated 

with thermophile Sphaerobacter thermophilus. 

As confirmed in this study, actinomycetes are the most common and abundant group 

isolated from caves samples and are detected consistently, though in moderate numbers, in 

culture-independent studies. Streptomyces species are particularly abundant and in some cases, 

can be found as apparently monospecific colonies (Arroyo & Arroyo, 1996). A number of 

actinomycetes isolated from caves have the ability to produce various types of crystals. Studies 

in Altamira and Tito Bustillo Caves demonstrate that the host-rock (bedrock), cave formations 

and rock art paintings are coated by dense networks of bacteria, mainly actinomycetes and these 

bacteria can induce constructive (calcification, crystalline precipitates) and destructive (irregular 

etching, spiky calcite) fabrics. Because of this ability it has been proposed that these bacteria and 

others are directly or indirectly involved in constructive biomineralisation processes in caves 

(Laiz et al. 1999; Barton et al. 2001; Canaveras et al. 2001; Groth et al. 2001; Jones, 2001). Little is 
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known concerning the distribution, population dynamics, growth rates and biogeochernical 

processes of Actinobacteria in caves, in spite of the fact that they seem to constitute a significant 

part of the "culturable" microbial population of these habitats. A prerequisite for the study of 

the role of actinomycetes in biogeochemical processes is the isolation and identification of these 

organisms (Groth et al. 1999a) . 
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Finnicutes 

Few clones in this study were affiliated with the Finnicutes (low G+C Gram-positive 

bacteria). A total of five sequences distributed in three phylotypes were detected (Table 3.2). In 

contrast, 17 moorunilk isolates distributed across seven strains were identified as members of 

the genera Bacillus, Paenibacillus and Sporosarcina. Figure 3.13 illustrates the phylogenetic 

relationships of phylotypes and cave isolates to cultivated members of the Firmicutes. Two 

phylotypes were detected in moomnilk samples. MX10063 was closely related (99%) to Bacillus 

subtilus, also isolated from samples ME3 and MXl. Remaining Bacillus species isolated include B. 

simplex, B. pumilus, B. indicus, and B. mycoides, cultured from all moomnilk samples (Figure 3.13). 

Bacillus sp. are aerobic, endospore forming and mainly found in soil. ME20098 was affiliated 

with Sporosarcina ureae and strains of this microbe were isolated from sample ME2 and ME3. 

Members of the genus Sporosarcina are strictly aerobic. S. ureae is common in soils with urea 

input and is perhaps an important ecological degrader of urea. A single phylotype affiliated 

with Finnicutes was detected in sediment, SL10009, showing a distant relationship (91%) to 

Ruminococcus flavescians, usually detected as a symbiont in the gut of animals. 
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Figure 3.13: Phylogenetic dendrogtam illustrating the evolutionary relationship between cave taxa and members of the 
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Figure 3.14: Phylogenetic dendrogram illustrating the evolutionaiy relationship between cave taxa and members of the 
Cytoplraga-Flexi.bacter-Bacteroides group. The dendrogram was constructed from an alignment of 1000 nucleotide 
positions. Distances were calculated in DNADIST and trees were inferred by the neighbour-joining method. Then11oproteus 
tenax was used as the outgroup species. The scale bar indicates 10% sequence divergence. 
Colour Code: Black= Clone sequences. Blue = DGGE sequences. Brown = Isolate sequences. 

CFB Group 

A total of 65 clones distributed in 14 phylotypes were affiliated with the CFBs (Table 

3.2). The CFBs were the second most abundant major phyla detected in moonm.ilk samples ME3 

and MX1. Several of these sequences clustered with psychrophilic Flavobacteriaceae (Figure 3.14) 

that are represented by various aerobic and heterotrophic genera. Several sequences from both 

samples ME3 and MX1 were closely related to Flavobacteria limicola (98%) a psychrophilic, 

organic polymer degrader (Tama.ki et al. 2003). This phylotype was present in DGGE analysis 
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and represented 10-12% of the total diversity sampled in the moonmilk clone libraries, 

demonstrating its dominance in these habitats. A novel Flavobacteria sp. was isolated from 

moonmilk sample ME3 clustering with the F. leeana-Iike sequences. A single sequence MX10045 

showed distant similarity (92%) to Cryomorpha ignava a cold-adapted, strict aerobe isolated from 

Antarctic quartz stone subliths (Bowman et al. 2003). Phylotypes ME30011 and MON0015 from 

moonmilk clustered with psychrophilic members of the Sphingobacteriales, genera 

Sphingobacterium and Pedobacter (Figure 3.14). Phylotype ME30011 represented by three clones 

was related to Pedobacter cryconitis, a facultative psychrophile isolated from an alpine glacier 

(Margesin et al. 2003). Phylotype MON0015 was affiliated with Sphingobacterium faecium. A 

number of uncultured glacier and sub-glacial sediment clones (FJS and FX clone groups) 

clustered with moonmilk phylotypes identified in this study, inferring the presence of cold­

adapted taxa in these samples. 

Three phylotypes clustered within the Bacteroides group. SL0019 branched with 

Flexibacter tructuosus (92% sequence similarity). Phylotype CA V0026, detected in sediment and 

moonmilk samples from Entrance Cave, is distantly related to uncultured Bacteroides bacterium 

Mo-0.2plat-K3, detected in freshwater. Phylotype SL10028 was not closely affiliated with any 

described taxa, however it clustered with a group of uncultured bacterial clones from 

Palaeolithic rock art in Spanish and Italian caves within the Bacteroides clade (Figure 3.14). The 

Bacteroides group includes a mixture of physiological types such as strictly anaerobic Bacteroides 

and aerobic gliding bacteriCJ. such as Flexibacter. Bacteria with gliding motility have no flagella 

but are able to move when in contact with surfaces. 

Acidobacteria 

A total of 11 clones affiliated with the Acidobacteria were detected in the cave samples. 

Most clones form a monophyletic clade within sub-Phylum A of the Acidobacteria showing 

varying degrees of similarity to uncultured bacterium DA008 (90-94%), a clone from grassland 

soils (Figure 3.15). These sequences were retrieved from moonmilk samples, particularly sample 

ME2 (5 clones). The remaining sequences were affiliated with Ellin isolates from Australian soils 
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(Sait et al. 2002; Joseph et al. 2003) within sub-Phyla C and D. Though the Ellin group represents 

cultured members, these have not been described to date thus no information is available about 

their physiology or metabolism. The Acidobacteria are a relatively cosmopolitan group, widely 

distributed in the environment though in general are highly correlated with the soil habitat. 

(Hugenholtz et al. 1998). The division was defined by Ludwig et al. (1997) on the basis of cloned 

165 sequences from soil, freshwater sediments and activated sludge in many geographic 

locations and its members are thought to be ecologically significant in many ecosystems. 

However it is a poorly studied division thus far, consisting of only a few cultured 

representatives: Acidobacterium capsulatum an acidophilic chemoorganotroph from acid mineral 

environment (Kishimoto et al. 1991), Geothrix fermentans an iron-reducing bacteria from a 

hydrocarbon contaminated aquifer (Coates, 1999), and Holophaga foetida a homoacetogenic 

bacterium degrading methoxylated aromatic compounds (Liesack et al. 1994). 
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Figure 3.15': Phylogenetic dendrogram 1llustratmg the evoluuonary relat10nsh1p between cave ta\.a and members of the 
Ac1dobacterza The dendrogram was con;tructed from an alignment of 1000 nncleoude posmons Distances were calculated 
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Planctomycetales 

A total of 31 clones affiliated with the Planctomycetales were detected in sediment and 

moorunilk samples (Figure 3.16). The majority of these clones belonged to six deeply branching 

phylotypes within the genera Planctomyces, Pirellula and Gemmata, showing distant (87.2-90% 

similarity) relationships to cultured members. This is not suprising as the intralineage 

phylogenetic depth of the Planctomycetales was recently expanded to 30.6% (Chouari et al. 2003). 

One phylotype (SED0047) detected in all sediments, was closely related to Pirellula staleyi (96%). 

Four cultured genera, consisting of seven species overall, have been described to date, 

Planctomyces, Pirellula, Gemmata and Isophaera (eg. Schlesner, 1986; Giovannoni et al. 1987; 

Schlesner 1989). All these organisms are aerobic chemoheterotrophs. Knowledge of this group is 

limited because of the relatively few species that have been obtained in pure culture. 

Membership of the planctomycete group has been extended not only to chemoorganotrophs and 

obligate or facultative aerobes but also to obligate anaerobes, autotrophs and phototrophs, 

demonstrating diverse metabolic properties within this line of descent (Fuerst, 1995; Miskin et al. 

1999). For example, a planctomycete was found to be responsible for anaerobic oxidation of 

ammonia (Strous et al. 1999). All Planctomycetales were originally isolated from aquatic habitats 

as diverse as acid bogs and sewage treatment plants though culture-independent studies have 

revealed the presence of Planctomycetales in more diverse environments including marine, 

sediment, anoxic bioreactors, anoxic sediments and caves (DeLong et al. 1993; Godon et al. 1997; 

Holmes et al. 2001; Tay et al. 2001; Chouari et al. 2003). The Planctomycetales were a significant 

component of Entrance Cave dry sediment being the third most abundant group detected in 

sample SEl (22.5%) whereas in all other samples they constituted a relatively minor component 

of the community (1-8%). 
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Figure 3.16: Phylogenenc dendrogram tllustratmg the evolutmnary relauonslnp between cave ta"'<a and members of the 
Planctomycetales, Venucomicrobia and Chlorof/ex1 dmsrnns The dendrogram was wnstructed from an altgmnent of 
1000 nucleol!de posinous Distances were calc1tlated m DNADIST and trees "ere mferred by the ne1ghbour-1ommg 
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Chloroflexi (green non-sulfur bacteria) 

Clones affiliated with the Chloroflexi (green non-sulfur) bacteria were detected in 

Planctomycetales 

Verrucom1crohia 

Chlorojlexi 

Entrance Cave sediments and moonrnilk samples (Figure 3.16). Members of the Chloroflexi are 

filamentous and exhibit gliding motility. Chloroflexus, though a phototroph, can grow 

chemoorganotrophically in the dark under aerobic conditions. Many members of this group 

digest cellulose or chitin and are widespread in soil and water. Two phylotypes detected in 

moonrnilk samples (ME30006 and MX10041) were deeply branched within an, until recently, 
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uncultivated lineage of Chloroflexi bacteria, sub-phyla I. Sekiguchi et al. (2003) described 

Anaerolinea thermophila and Caldilinea aerophila, thin filamentous thermophilic microbes found in 

abundance in methanogenic granular sludges, representing this lineage. Sub-phyla I is the most 

diverse of divisions in the Chlorofiexi with sequences derived from hot springs, subsurface 

environments, aerobic and anaerobic waste water treatment sludges and contaminated aquifers, 

which hints at its ecological and physiological breadth (Chandler et al. 1998; Hugenholtz et al. 

1998; Sekiguchi et al. 2003). A novel lineage represented by two phylotypes detected in 

moonmilk samples (ME20011 and MX10044) forms a monophyletic clade with sub-phyla II 

representatives. Dehalococcoides ethenogenes an anaerobe is?lated from activated sludge, able to 

reductively dechlorinate tetrachloroethane, a common contaminant of groundwater is the most 

closely related cultured representative of this group (Maymo-Gatell et al. 1999). 

Verrucomicrobia 

Two sequences from the Entrance Cave dry sediment sample (SE10094 and SE10006) 

were phylogenetically affiliated with the Verrucomicrobia (Figure 3.16). The division 

Verrucomicrobia contains very few cultured representatives but a large number and diverse range 

of clones from extremely diverse environments including forest soil (Liesack & Stackebrandt, 

1992), soybean and rice paddy fields (Ueda et al. 1995); lake (Hiorns et al. 1997); and marine 

(Fuhrman et al. 1993) environments. This diversity prompted Hugenholtz et al. (1998) to declare 

they represent a ubiquitous branch of the domain Bacteria. SE10094 was most closely related to 

uncultured verrucomicrobium clone DEVlO (92% sequence similarity). The only cultured 

member of this lineage is Verrucomicrobium spinosum (86.5% sequence similarity to SL10094), an 

aerobic oligotrophic and chemoheterotrophic prosthecate bacteria (Staley, 1968). SE10006 was 

phylogenetically affiliated with a relatively newly described genus of the Verrucomicrobia, 

Opitutus (Chin et al. 2001). SE10006 was most closely related to Opitutus sp. VeSm13 (91.8%) a 

novel obligately anaerobic ultramicrobium isolated from anoxic rice paddy soil Ganssen et al. 

1997). 
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The Verrucomicrobia are often a numerically ~bundant component of soil microbial 

communities; Buckley & Schmidt (2001) found that the Verrucomicrobia contributed -1.9 % of 

diversity in 85 soil samples analysed. However no clones affiliated with Verrucomicrobia were 

detected in sediment samples SE2, SLl or SL2, or any moonmilk samples. Statistically significant 

variations in verrucomicrobial rRNA gene abundance can be explained by changes in soil 

moisture content (Buckley & Schmidt, 2001), perhaps explaining the absence of Verrucomicrobia 

in the more saturated sediments and moonmilk samples in this study. 

OP10 

Phylotypes SL20004 and SL20017 were affiliated with Candidate division OPlO (Figure 

3.17). Clone analysis of sediments from Opal Pool, a hot spring in Yellowstone National Park, 

yielded representatives of 12 novel lineages designated the OP 1-12 Candidate Divisions 

(Hugenholtz, 1998). The Loons Caves phylotypes are deep branching representing putatively 

novel lineages. SL20004 is most closely related to uncultured bacterium SJA-176 (86%) and 

SL20017 is most closely related to uncultured bacterium GC55 (90.2%) detected from a full-scale 

activated sludge plant (Dalevi et al. 2001). Candidate Division OPlO consists entirely of 

environmental sequence data with no reported cultivated members to date thus nothing is 

known of their metabolic or physiological activities. OPlO phylotypes have been detected in 

hydrocarbon contaminated soil suggesting that this lineage may represent an ecologically 

significant group (Hugenholtz et al. 1998). 

Gemmatimonadetes 

Two phylotypes, SL20096 (three clones) and SL20036, detected in Loons Cave sediment 

samples were phylogenetically affiliated with the Gemmatimonadetes (Figure 3.17). The 

Gemmatimonadetes is a new phylum consisting of one described species, Gemmatimonas aurantiaca 

(Zhang et al. 2003) and numerous environmental sequences. G. aurantiaca is a Gram-negative 

aerobic polyphosphate-accumulating microbe. Despite there being only one described species, 

recently Joseph et al. (2003) were able to isolate a number of Gemmatimonadete species from 
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Australian soils (Ellin isolates). Prior to the description of G. aurantiaca the environmental clones 

in this phylum were designated the candidate division BD and have been found in soils and 

activated sludge (Hugenholtz et al. 2001), deep sea sediments (Li et al. 1999) and Antarctic 

sediment (Bowman & McCuaig, 2003). SL10036 and SL20033 were only distantly related to G. 

aurantiaca (86.5-87.5% sequence similarity) and formed a deeply branching monophyletic clade 

within the Gemmatamonadetes most likely representing a new group. This low sequence identity 

is not uncommon in this phylum. Environmental sequence data suggests that members of this 

phylum are widespread in nature and have a phylogenetic breadth (19% 16S rRNA gene 

sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% 

divergence) (Zhang et al. 2003). 
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Nitrospira 

One phylotype from saturated Loons sediment, SL20060, was similar to Nitrospira sp. 

All known members of Nitrospira are obligate nitrite-oxidising chemolithoautotrophs (Ehrlich et 

al. 1995). Sequence information for clone SL20060 was only 300 bp in length and not included in 

further phylogenetic analysis. 
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Figure 3.18: Phylogenetic dendrogram illustratmg the evolu!Ionary relauonslnp between cave clone SL20017 and 
members of the Crenarchaeota. The dendrogram was constructed from an alignment of 1 OOO nucleotide positions. 
Distances were calculated m DNADIST and trees were mferred by the ne1ghbour-Jommg method. Methanobactenum 
fomuc1cum was used as the outgroup species. The scale bar indicates 10% sequence divergence. 

Archaea 

One archaeal clone sequence, SL20017, was detected from saturated sediment from 

Loons Cave (Figure 3.18). SL20017 is a deeply branching novel lineage only distantly related to 

cultured Crenarchaeota, Desulfurococcus amylolyticus; (75% sequence similarity) and most closely 

related to uncultured archaeon clones, WSB-11 (91.8%), OS-4 and AM-17 from wetland soils 

(published only in datebase; Utsumi et al. 2001). All cultured Crenarchaeota including, 

Desulfurococcus amylolyticus, are extreme thermophiles found in high temperature environments 

(>80 °C). In recent years, nonthermophilic Crenarchaeota sequences have been detected from low 

to moderate temperature (1.5 to 32 °C) terrestrial and aquatic environments (-1.5 to 32 °C). 

Mesophilic Crenarchaeota sequences were first reported from the Pacific Ocean (Fuhrman et al. 
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1992). To date there have been no reports of successful laboratory pure cultivation of mesophilic 

Crenarchaeota and nothing is known of their physiology and biochemistry (Northup et al. 2003). 

There are four main clusters of mesophilic Crenarchaeota (Marine Group I, Freshwater cluster, 

Terrestrial Group and FFSB cluster) that form a distinct lineage from thermophilic Crenarchaota. 

Recently it has been proposed that a fifth cluster within the mesophilic Crenarchaeota clade is 

distinct and unique to the subsurface environment (three clones from South African gold mine 

waters; SAGMA clones) (Takai et al. 2001). 

Clone SL20017 and the wetland soil clones do not branch with mesophilic sequences but 

rather form a separate clade more closely related to thermophilic Crenarchaeota. Almost all of the 

cultivated thermophilic Crenarchaeota are obligate anaerobes with sulfur-dependent metabolisms 

(Buckley et al. 1998). The great phylogenetic distance of SL20017 to any cultured members of the 

Crenarchaeota makes it difficult to infer any metabolic properties of this clone. 

There have been few reports of archaeal cave communities at circumneutral pH, though 

those reported are suprisingly abundant and diverse including representatives of mesophilic 

Crenarchaeota most closely related to organisms from marine or soil habitats, and 'Group 2' 

Euryarchaeota (Mattison et al. 1998; Northup et al. 2003; Chelius & Moore, 2004). Overall, reported 

Crenarchaeota sequences detected in cave environments cluster with those found in waters from 

a South African gold mine (SAGMA clones) (Takai et al. 2001) even though they have been 

detected from very different microhabitats, ferromanganese corrosion residues in Lechuguilla 

Cave, New Mexico (Northup et al. 2003) and saturated sediment from Wind Cave, South Dakota 

(Chelius & Moore, 2004). SL20017 does not align closely with any SAGMA or cave archaeal 

sequences. To draw too many conclusions on archaeal diversity on the basis of one clone 

sequence is too presumptive. This study would benefit from further culture-independent 

investigations employing Archaea-specific primers, as used in the previously mentioned cave 

studies, to target the archaeal portions of the microbial community. 
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Table 3.3: Taxonomic affiliations of cave isolates as determined by 165 rRNA gene sequencing. 
Presence of an isolate in a microhabitat represented as(+) 

Isolate Taxonomic Identiftcahon or Nearest Cultivated SEE SPE SEL SPL ME2 ME3 MXl* 
Neighbour for Putatively Novel Species (%16S 
rRNA gene seguence sirmlan!}'.) 
ACTINOBACTERIA 
Micrococcineae 

CAVI333 Agrococcus 1enensis (98.43%) + 
CAVI349 Agromyces ramosum (98.79%) + 
CAVI005 Arthrobacter chlorophenolzcus (97.5%) + + + + + + + 
CAVI318 Arthrobacter pascens (99 .72%) + + + 
CA VI315, 002 Brachybacterium paraconglomeratum (98.69%) + + 
CAVI125 Brevibactenum iodinum (98.65%) + 
CAVI207 Knoellia sznensis (98.40%) + + + + 
CAVI006 Knoellza subterranean (98.34%) + + + 
CAVI117 Kocuria rosea (98.53%) + 

Corynebacterineae 
CAVI002 Nocardiaflumznea group (99.68%) + + + + + + + 
CAVI203 Rhodococcus erythropolzs (99.42%) 
CAVI104 Rhodococcus globerulus (99.27%) + + 
CAVI321 Rhodococcus wratislavensis (98.51 %) + 
CAVI306 Tsukamurella pulmonis (98.00%) + 

Pseudonocardineae 
CAVI0035 Amycolatopsis sp. nov. (A. sulphurea 96.90%) + 
CAVI018 Saccharothrzx sp. nov. (S albidocapillata 96.89%) + 
CAVI0051 Saccharothrzx cryophilus (98.23%) + + + 
CAVI312 Gen. Nov. [Saccharothrix violacea(92.94%); Lentzea + 

fiavoverrucosispora (92.93%)] 
Micromonosporineae 

CAVI0009 Couchioplanes caeruleus (96.65%); Actinoplanes + 
brasiliensis (96.95%) 

CAVI0023 Micromonospora sp. nov. (M purpureochromgenes + 
96.82%) 
Streptomycineae 

CAVI004 Streptomyces aureus (99.50%) + 
CAVI308 Streptomyces beijzangensis (99.15%) + 
CA VI025, 116, Streptomyces caviscabies (99.08-99.82%) + + + + + 
010, 
CA VI313, 019, Streptomyces caviscabies (97.76%) + + + 
001 
CAVI314 Streptomyces chattanoogensis (98.34%) + 
CAVI004 Streptomyces sp. nov. (S.clavulzgerus 97.37%) + 
CAVI328 Streptomyces microstreptospora (99 .10%) + 
CAVI231 Streptomyces sanglzeri (98.43%) + 
CA VI204, 003, Streptomyces subrutilus (98.02-99.86%) + + + + + + + 
002, 006, 106 
CAVI105 Streptomyces violceoruber (98.18%) 
CA VI005, 317 Kitasatospora mediocidica (97.57%) + + 

Firmicutes 
CAVI322 Bacillus sp. nov. (B cohnii 94.62%) + 
CAVI102 Bacillus sp nov. (B. pumilus 97.5%) + 
CAVI257 Bacillus cibus (99%) + 
CAVI007 Bacillus mycoides (97.5%) + 
CA VI008, 323, Bacillus simplex (98.25%) + + + + 
275 
CAVI320 Bacillus subtilus (98.75%) + 
CAVI309 Paenzbacillus sp. nov. (P. gramznis 97.47%) + 
CAVI319 Sporosarczna sp. nov. (S. macmurdoensis 97.34%) + 
CAVI106 Sporosarcina ureae (98.93%) + 

CFBs 
CAVI311 Flavobacterzum leeana (97.35%) + + 
CAVI120 Flavobacterzum psychrolimnae (98.20%) + + 
CAVI329 Gen. Nov. [Sphzngobacterzum multivorum (94.18%); + 

Pedobacter cryconztzs (95.15%)] 
CAVI339 Gen. Nov. [Sphzngobacterzum multivorum (95.90%), + 

Pedobacter cryconitis (96.49%)] 
CAVI317 Pedobacter cryconztzs (98.36%) + 

a-Proteobacteria 

Continued on next page 29 
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CAVI334 
CAVI210 
CAVI302 
CAVI326 
CAVI005 
CAVI322 
CAVI008 
CAVI338 

CAVI109 
CAVIlll 

CAVIllO 
CAVI335 

Ammobacter ni1gataens1s (99 .31 % ) 
Bosea thwox1dans (99.67%) 
Brevundimonas alba (99.07%) 
Methylobacterzum sp. nov. (M.fuj1sawaense 95.45%) 
Sphmgomonas sp. nov. (S. aerolata 97.34%) 
Sphmgomonas sp. nov. (S. melonzs 96.03%) 
Paracoccus sp. nov. (P solvent1vorans 96.13%) 
Porphyrobacter sp. nov. (P nuestonens1s 97.20%) 
P.. Proteobacteria 
Acal1genes sp. nov. (A.faecalzs 96.05%) 
Acalzgenes sp. nov. (A. faecalzs 97.22%) 
~Proteobacteria 
Stenotrophomonas sp. nov. (S maltophila 97.21 %) 
Xanthomonas sp. nov (X cameestris 95.12%) 

+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 
+ 

+ 

+ 

* Microhab1tats represented by samples: SEE (sediment, Entrance Cave), SPE (speleothems, Entrance Cave), SEL (sediment, Loons 
Cave), SPL (speleothems, Loons Cave), ME2 (calcite mat, Entrance Cave), ME3 (moommlk, Entrance Cave), 
and MXl (moomrulk, Exit Cave). 

3.4 Isolation of Novel Cave Microbes 

Cultures were isolated from sediment, speleothem and moorunilk samples from 

Entrance-Exit Caves and Loons Cave to investigate culturable diversity (discussed in Section 3.2 

and 3.5) and to determine the novelty of cave microbes. Caves are unique ecosystems exposed to 

extreme environmental stresses. The limiting environmental characteristics of caves, little or no 

light, low levels of organic nutrients, high mineral concentrations and a stable microclimate, 

provide ecological niches for highly specialised and very diverse microbiota. Thus, this study 

attempted to identify putatively novel cave microbiota. In accordance with the definition of a 

bacterial species, cave isolates with 2".: 97.5% 16S rRNA gene sequence similarity to validly 

described microorganisms were considered to belong to the same species (Stackebrandt & 

Goebel, 1994; Vandamme et al. 1996). Table 3.3 summarises the phylogenetic affiliations of 

representative isolates including putatively novel species and genera. A total of two putatively 

novel genera and 18 putatively novel species were identified. 

Sediment and speleothem isolations were selective for actinomycetes, accordingly, 

actinomycetes dominated the culture collection. However, three non-actinomycete isolates were 

identified including a putatively novel Paracoccus sp. isolated from a speleothem in Entrance 

Cave. The majority of cave isolates from sediments and speleothems in both Entrance and Loons 

Caves proved to be cosmopolitan members of the actinomycetes, particularly of the genera 

Streptomyces, Arthrobacter and Nocardia. A number of novel actinomycete isolates were detected 

130 



Chapter 3: Results and Discussion 

from Entrance Cave sediments. One novel species, CA VI009 is phylogenetically most closely 

related to species from two genera, the Actinoplanes and Couchioplanes (Table 3.3). The 

boundaries of these genera is not clearly defined, Actinoplanes brasiliensis clusters with 

Couchioplanes caeruleus rather than with other members of the Actinoplanes and isolate CA VI009 

clusters within this clade (Figure 3.9b). Further characterisation of this novel cave isolate 

represents an opportunity to clarify the taxonomic positions of these species. Novel 

Micromonospora sp. and Amycolatopsis sp. were also isolated from Entrance sediments and a 

novel Saccharothrix sp. was isolated from a speleothem in Entrance Cave. 

Moonmilk isolations (which were non-selective) produced the most novelty, particularly 

from the Firmicutes, Proteobacteria, and CFBs. This result is not surprising given the uniqueness 

of the moonmilk habitat and the paucity of published studies of moonmilk microbes. Several 

isolates from all moonmilk samples belonged to the Gram-positive Firmicutes, particularly of the 

genus Bacillus (Table 3.3). There were four isolates deemed putatively novel species: two Bacillus 

sp. most closely related to B. cohnii and B. pumilus, a novel Paenibacillus sp. and a novel 

Sporosarcina sp. most closely related to Sporosarcina macmurdoensis. The novel Sporosarcina sp. 

was closely related to an uncultured permafrost bacteria (Figure 3.14), indicating that this isolate 

is most likely a cold-adapted bacterium. Of the Proteobacteria, eight novel species were isolated 

(Table 3.3). From the a-Proteobacteria a novel Methylobacterium sp., Porphyrobacter sp., and two 

Sphingomonas sp., were detected. Two novel Alcaligenes sp. of the ~-Proteobacteria and a novel 

Stenotrophomonas sp. and Xanthomonas sp. of the y-Proteobacteria were also isolated. 

Demonstrating the novelty of the moonmilk cultures, members of two putatively novel genera 

were isolated. From sample ME3 two isolates, CA VI339 and CA VI329, most likely representing 

individual species (>2.5% sequence dissimilarity), clustered on a distinct branch within the 

Sphingobacteriales of the CFBs (Figure 3.14). An uncultured bacterium detected in a karstic 

aquifer also branched within this clade. Isolates CA VI339 and 329 showed only 94-95% sequence 

similarity to Pedobacter sp. and Sphingobacterium sp., indicating that these two isolates from 

moonmilk may represent two species of a new genera within this lineage. Sample ME2, the 

calcite mat, produced an isolate, CA VI218 that clustered within the Pseudonocardineae but was 
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only distantly related to described members (Figure 3.9). CA VI218 showed the highest similarity 

(-92%) to Saccharothrix violacea and Lentzea fiavoverrucosispora most likely representing a new 

genus within this lineage. 

The definition of a bacterial species used in this study (2 97.5% sequence similarity) is 

considered by some to be too conservative, especially in the case of highly related species of 

genera like Streptomyces. Also, 16S rRNA gene results are not sufficient alone to define a new 

bacterial genus or species. Further morphological, biochemical and physiological testing, and 

further genetic characterisation (% G+C, DNA:DNA hybridisation) is needed to validly describe 

these putatively novel cave microbiota. 

3.5 Differences in Microhabitat Community Structure 

Measures of diversity were determined followed normalisation of the clone libraries 

using the rarefaction method. Indices indicating biodiversity coverage (C), diversity (Shannon­

Weaver index H'). dominance (Simpson index SI'), and eveness (J') are displayed in Table 3.4. 

Biodiversity coverage (C) (Mullins et al. 1995) measures the portion of a clone library of infinite 

size that would be sampled by the smaller clone library obtained. The coverage of biodiversity 

was quite high for all libraries, ranging from 67.6 to 81.3% and particularly high for calcite-based 

samples (76.1-81.3%). 
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Table 3.4: Biodiversity indices for cave sediment and moonmilk samples. 

Sample c H' SI' J' 

SEl 71.8% 1.527 0.022 0.953 

SE2 70.5% 1.400 0.030 0.914 

SLl 70.5% 1.501 0.025 0.944 

SL2 67.6% 1.494 0.025 0.939 

ME2 76.1% 1.325 0.058 0.889 

ME3 77.4% 1.379 0.024 0.943 

MXl 81.3% 1.467 0.044 0.993 

Estimates of Diversity (H') were determined using the Shannon-Weaver (or Shannon­

Weiner) Index (Krebs, 1989). This index measures the average degree of uncertainty 

(synonymous with diversity) of predicting the species (or phylotype) of a given individual 

picked at random from a community. Diversity measures were high for all samples illustrating 

the diverse nature of cave microbial communities. Diversity was higher for the dry sediments 

from Entrance and Loons Caves (1.527 and 1.501 respectively) than the wet sediments (1.400 and 

1.494 respectively). Dry cave substrate typically yields a higher proportion of Actinobacteria than 

does dripping water and wet sediment (Kolbel-Boelke et al. 1988; Laiz et al. 1999). Perhaps the 

discrepancy in diversity measures may reflect the absence of high numbers of Actinobacteria 

from wet sediment. Dominance values were fairly low for all samples (0.022 to 0.058) and 

consequently eveness values were high (0.889 to 0.993). Measures of dominance concentration 

were determined using the Simpson Index (SI') (Krebs, 1989). This index is based on the 

probability of drawing a pair of individuals of the same species from a sample. Equitability 

indices (J') were based on Shannon-Weaver index data. This index measures the eveness with 

which individuals are distributed among the species present in a sample. Though all dominance 

values were comparatively low, the highest values were seen for the calcite mat sample ME2 
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(0.058), reflecting the high percentage of clones distributed among a few phylotypes (eg. Bosea 

sp., Brevundimonas sp.; Table 3.2) 

There are many ecological diversity measures, but their suitability for use with highly 

diverse bacterial communities is unclear and seldom considered (Hill et al. 2003). Inherent 

limitations of molecular techniques, including extraction efficiency and PCR bias, mean that 

measures of abundance, diversity and richness may not be strictly accurate reflections of the 

actual community structure. Species abundance models are useful, irrespective of coverage, 

because they address the whole distribution of a sample, aiding comparison by revealing overall 

trends as well as specific changes in particular abundance classes. Bengtsson (1998) cautions that 

it is na'ive to contemplate that one single number - species richness, a diversity, the number of 

functional groups, or connection - can capture the complex relationships between many species 

and the functions performed by these interactions in soil. The indices may reveal more if applied 

to smaller, more homogenous habitats where a reasonable level of coverage may be obtained. 

However, any estimates of microbial diversity must acknowledge the inability of 

microbiologists to satisfactorily define a bacterial species. 

A graph of the distribution or abundance of major cloned phylogenetic groups (Figure 

3.19) further highlights the similarities and differences in community composition over the 

range of samples, microhabitats, examined. Examination of the rRNA genes recovered from soil 

microbial communities at diverse sites reveal that eight bacterial groups are present in the 

majority of soil microbial communities: the a-, f3-, and y-Proteobacteria, the Actinobacteria, the 

CFBS, the Acidobacteria, the Planctomycetales and the Verrucomicrobia (Buckley & Schmidt, 2001). 

Cave sediment samples in this study were characterised by the presence of these typical 

terrestrial bacteria though in different abundances to other terrestrial environments (Figure 

3.19). All clonal samples are dominated by the super-phyla Proteobacteria (39.4-77% of total 

diversity), however there are marked differences in the distribution of diversity between the a-, 

f3-, y- and o-divisions. Sample SEl showed striking differences to samples SE2, SLl and SL2. The 

latter were dominated by the f3- (24.6 %, 32.4% and 34.8%) and y- (26.2%, 25% and 14.1%) 

Proteobacteria whereas SEl was dominated by the y-Proteobacteria (29.6%) and the f3-
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Proteobacteria were not detected. The second striking difference is the abundance of 

Actinobacteria (26.8%) and Planctomycetales (22.5%) in sample SEl compared to their 

comparatively lower presence in other sediments. Sample SEl is a dry sediment sample from 

Entrance Cave and whereas samples SE2 and SL2 are saturated sediment samples which is the 

most probable explanation for the differences in community structure. Sample site SLl, though 

above the water line and chosen for its dry nature, is still likely to be more hydrated than sample 

SEl due to the 'wet' nature of Loons Cave. The saturated sediment from Loons is more diverse 

than all other samples with members of 12 major phylogenetic groups being detected in 

comparison to 8-9 in other cave samples (Figure 3.19). A number of minor components detected 

in sample SL2 were not detected in other samples (eg. Gemmatimonadetes, Candidate Division 

OPlO, Nitrospira and Crenarchaeota). These tended to be 'rare' phylotypes consisting of one clone 

and representing putatively novel lineages within divisions with few or no cultivated 

representatives (Figure 3.17, Figure 3.18). Members of these divisions are often detected in 

saturated, anoxic environments (eg. wetland soils, deep sea sediments, activated sludge). 

Sample ME2, from the ceiling rock of Entrance Cave, displayed a very different 

community composition to all other samples, in particular, very different to calcite moonmilk 

samples ME3 and MXl. The a-Proteobacteria and Actinobacteria completely dominated the 

diversity sampled from ME2 (47.1 % and 37.1 % respectively). Within these major phyla, clones 

are distributed between few phylotypes within the genera Brevundimonas and Bosea and 

Saccharothrix (Table 3.2) illustrating the simplicity of this mat-like microbial community. 
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Figure 3.19: Comparison of community structure between cave microhabitats. 
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The abundances of various cloned prokaryote groups in sediment and moonmilk samples from Entrance-Exit Cave 
system and Loons Cave calculated as percent of total clones. SEl - dry sediment, Entrance Cave. SE2 - saturated 
sediment, Entrance Cave. SLl - dry sediment, Loons Cave. SL2 - saturated sediment, Loons Cave. ME2 - calcite mat, 
Entrance Cave. ME3 - moonmilk, Entrance Cave. 
MXl - moonmilk, Exit Cave. 

Calcite moonmilk samples ME3 and MXl show remarkable similarities in community 

structure (Figure 3.19) though being derived from geographically separated sites in Entrance 

and Exit caves. Also, their habit is quite different, ME3 was sampled from a moonmilk deposit 

beneath sediment, whereas MXl was sampled from a moonmilk-coated stalactite. Both samples 

are dominated by the ~-Proteobacteria (33.9% and 26.7% respectively), particularly the 

Oxalobacteriaceae (Figure 3.6) whereas no ~-Proteobacteria taxa were detected in sample ME2. 

Surprisingly, the second most abundant group in ME3 and MXl were the CFB (22.6% and 28% ), 

reinforced by the isolation of a number of Flavobacteriaceae moonmilk samples (Figure 3.15) 

however the CFB group were present in very low numbers in the mat material ME2 (1.4 % ). The 

fundamental difference between cave sediments and moonmilk samples was that the CFBs were 
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a comparatively minor component of cave sediment microbial diversity (2.8-9.8%). The 

Actinobacteria, historically thought to be a major component of moonmilk based on culture­

dependent and microscopical studies, were the third most abundant clonal group (17.7% and 

13.3%) though dominating the isolations (Table.3.3). The single similarity between sample ME2 

and ME3 and MXl is the dominance of phylotypes affiliated with the Pseudonocardineae and 

Micrococcineae (Table 3.2). The y-Proteobacteria were present in moderate numbers in sample 

ME3 and MXl (12.9% and 6.7%) however not detected in sample ME2, again highlighting the 

differences between ME2 and moonmilk samples. 

Pairwise comparisons of clone libraries were carried out using the Similarity Coefficient 

(S) (Odum, 1971) which illustrates that the biodiversity of all sampl~s overlap, ie. share 

phylotypes, to some extent (Table 3.5). Moonmilk samples ME3 and MXl showed the highest 

similarity of comparisons (0.493). These samples shared 17 phylotypes reflecting the similarity of 

moonmilk microbial community composition in both Entrance and Exit Cave. The lowest 

similarity values were seen between sample ME2 and the Loons Cave sediment (0.086), sharing 

only three phylotypes. Sample ME2 was also distinct from Entrance Cave sediment (0.141 and 

0.154) and moonmilk samples (0.133 and 0.141), highlighting the unique nature of the microbial 

community inhabiting the calcite mat. Sediment samples from Entrance Cave, SEl and SE2 

shared a high number of phylotypes (15) as reflected by the high comparison value (0.405). 

Similarly Loons Cave sediments shared 15 phylotypes reflected in the high similarity value 

(0.385). Similarity values between Entrance and Loons Cave sediments are much lower 

indicating that the microbial communities are more similar within the individual cave systems 

them they are between similar habitats. 
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Table 3.5: Pairwise comparisons of cave sediment* and moonmilk* clone library phylotype 
composition. 

SE1 SE2 SLl SL2 ME2 ME3 MX1 
SE1 1.000 
SE2 0.405 1.000 
SLl 0.177 0.356 1.000 
SL2 0.152 0.247 0.385 1.000 
ME2 0.141 0.154 0.086 0.086 1.000 
ME3 0.203 0.159 0.118 0.147 0.133 1.000 
MX1 0.100 0.162 0.228 0.228 0.141 0.493 1.000 

* SEl - dry sedunent, Entrance Cave. SE2- saturated sediment, Entrance Cave. 511 - dry sediment, Loons Cave. SL2 -
saturated sediment, Loons Cave. ME2- calcite mat, Entrance Cave. ME3 - moonmilk, Entrance Cave. MXl - moonmilk, 
Exit Cave. 

3.6 Culturable vs. Non-culturable Diversity 

It is widely recognised that culture-dependent techniques are limited and it has been 

estimated that less than 1 % of the microorganisms in an environment are readily cultivated in 

the laboratory using standard techniques (Amann et al. 1995). The use of culture-independent 

molecular techniques to identify unculturable microbial species has vastly expanded our 

knowledge and understanding of microbial diversity (Pace, 1997). However, phylogenetic 

information does not necessarily impart information on the functional potential or in situ 

activities of microorganisms demonstrating an apparent need for characterising novel genera in 

pure culture to understand their functional role in the ecosystem. Actinobacteria are the most 

abundantly isolated group of bacteria from almost all published cave culture studies (except 

sulfur caves) of sediments, rock, speleofuems and rock art, seeming to demonstrate their 

dominance in these habitats (Groth et al. l999a; Groth & Saiz-Jimenez, 1999, Chelius & Moore, 

2004). However, the apparent dominance of Actinobacteria in these habitats appears to be an 

artefact of culture-dependent studies. It has repeatedly been demonstrated in culture-

independent studies of the same sites, that Actinobacteria do not dominate, and are a minor, to 

moderate at best, component of the community (Groth et al. l999a; Groth et al. 2001; 

Schabereiter-Gurtner et al. 2002a, b; Chelius & Moore, 2004). The discrepancies between culture-

dependent and culture-independent studies in relation to actinomycete abundance are not 
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restricted to cave environments. Li et al. (1999) isolated 75 different actinomycetes from marine 

samples; however very few actinomycete sequences were cloned from these same samples in a 

later study (Colquhoun et al. 2000; 1998a,b). Thus, this study endeavoured to determine how 

consistent concurrent culture-dependent versus culture-independent results were within the 

Actinomycetales, rather than at the whole community level, by selectively isolating these bacteria 

from sediments and speleothems from Entrance and Loons Caves. 

Actinomycetes were cultivated from all sediments using the selective procedures 

detailed in Section 2. Primary plates were dominated by actinomycete-like colonies with diverse 

morphologies and 165 rRNA gene sequencing revealed that isolates were distributed over eight 

genera. Approximately 60% of isolates were of the genus Streptomyces belonging to only a few 

species (Figure 3.11). Nocardia sp. were the next most abundantly isolated. Other genera isolated 

but in relatively low numbers were, Arthrobacter, Knoellia, Micromonospora, 

Couchioplanes/Actinoplanes, Amycolatopsis and Saccharothrix. In contrast, though phylotypes 

affiliated with all these genera were detected in sediments, the relative abundances were not the 

same (Table 3.2). Most obviously, phylotypes affiliated with Streptomyces did not account for 

60% of actinomycete diversity. Other taxa, not detected by cultivation, were detected in the 

clone analysis, eg. Frankia sp., Blastococcus sp., and Rhodococcus. These results demonstrate that 

culture studies of cave sediments, which we know are not representative at the whole 

community level, do not give a true representation of the actinomycete diversity either. Thus the 

observed cultured actinomycete diversity is more likely due to the ease with which members of 

the Actinomycetales can be cultured, eg. Streptomyces generally being the most easily cultivated 

actinomycete and thus represented by 60% of isolation results in this study. 

There are very few published culture studies of moonmilk samples and no culture­

independent reports. Thus non-selective procedures were used to investigate culturable vs. non­

culturable diversity at the whole community level of moonmilk samples. Mostly novel isolates 

of the a-, 13- and y-Proteobacteria and CFBs and previously described Firmicutes dominated the 

culture collection of samples ME3 and MXl, rather than actinomycetes. Information on 

moonmilk microbial communities is scarce though isolations from moonmilk from several caves 
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in South Wales produced eight species of heterotrophic bacteria belonging to the genera Bacillus, 

Micrococcus, Bacterium, and Streptomyces and moonrnilk consisting of a silicate gel in Nikitsky 

Catacomb, Moscow, produced Flavobacterium sp., Alcaligenes sp. and Arthrobacter sp. (Williams, 

1959; Semikolennykh, 1997). Speleothem dripping waters are probably a similar microhabitat to 

the very hydrated nature of moonmilk. Laiz et al. (1999) investigated the microbial diversity of 

dripping waters of Altamira Cave, Spain. Water communities were not dominated by 

actinomycetes but contained low proportions of Gram-positive bacteria, and were mainly 

composed of Gram-negative rods and cocci (Enterobacteriaceae and Vibrionaceae; genera 

Aeromonas and Acinetobacter). Compounding this, in an earlier study of dripping waters in 

Altamira Cave carried out by Somavilla et al. (1978) Bacillus and Pseudomonas appeared to be the 

most abundant genera, followed by Flavobacterium and Erwinia. The absence of culturable 

actinomycetes in dripping waters agrees with the observations of Kolbel-Boelke et al. (1988). 

They found very few actinomycetes in 60 water samples clearly demonstrating that dripping 

water communities are very different to those of cave rock though both are heterotrophic based 

systems. This trend was reflected in the clone library analysis; moonmilk libraries being 

dominated by ~-Proteobacteria and CFB clones, accounting for more than 50% of the diversity 

sampled in total (Table 3.2, Figure 3.19). The Actinobacteria were far less dominant, (13-17% of 

diversity). An anomaly in clone and DGGE analysis was the absence of sequences related to 

Bacillus species, though these were cultivated in great numbers from all moonmilk samples. PCR 

bias against Gram-positive, low G+C bacteria (Firmicutes) and the work of Laiz et al. (2003) who 

found that Bacillus species were not easily separated in DGGE analyses because of co-migration 

of bands which may explain this anomaly. 

In contrast to moonmilk samples ME3 and MXl, isolations from sample ME2 were 

dominated by actinomycetes. This is not surprising given the abundance of clones affiliated with 

the Actinobacteria (37.1 %) and the networks of hyphal organisms visualised with ESEM. Which 

further demonstrates the uniqueness of the microbial community in the calcite mat in Entrance 

Cave. The one common trend between the culture-dependent and culture-independent studies 

of the calcite mat and moonmilk microbial communities is the striking consistency between 
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isolations, clone phylotypes and DGGE phylotypes of the Actinomycetales (as previously 

demonstrated for sediment samples) and the CFBs and a.-Proteobacteria. Saccharothrix cryophilus, 

Arthrobacter chlorophenolicus, Brevundimonas alba, Bosea thiooxidans and Sphingomonas sp. were 

detected in the isolations, clone libraries and DGGE analysis of all three samples. Flavobacteria 

leeana-like microbes were detected in isolations, clone libraries and DGGE analysis of moonmilk 

samples ME3 and MXl (CFBs were only a minor component of sample ME2). 

Most published studies of isolations in caves have been performed using standard 

isolation procedures and incubation at 28 °C (Groth et al. 1999a, 2001; Laiz et al. 1999, 2000). 

However, the constant low temperatures throughout the year in most studied caves suggests the 

possibility of an indigenous pychrophilic microflora, adapted to low temperatures, that could be 

overlooked using standard microbiological procedures with incubation at higher temperatures. 

Laiz et al. (2003) isolated bacteria from sediments of Tito Bustillo, Llonin and La Garma Caves at 

a variety of temperatures from 5 - 45° C and investigated their temperature ranges for growth. 

They found that isolated bacteria were psychrotrophs (Morita, 1975) or psychrotolerants, as 

most of them could grow at 5° C. No isolates had an optimum growth temperature below 20° C 

and therefore could not be considered true psychrophiles. The main difference in diversity of 

isolated bacteria with the use of different isolation temperatures concerned the recoverability of 

actinomycetes (Laiz et al. 2003). For example, at 13° Conly six actinomycete strains were isolated 

from Tito Bustillo though the diversity of non- actinomycete sp. increased in comparison to 

isolations at higher temperatures. At 28° C the number of actinomycete strains isolated was 

tripled, indicating that the isolation of actinomycetes diversity is temperature-dependent. Thus 

Laiz et al. suggests the need to use low temperatures to detect maximum diversity of culturable 

bacteria other than actinomycetes and higher temperatures to detect maximum diversity of 

actinomycetes. Isolations in this study were carried out at 25 °C to detect maximum diversity of 

actinomycetes and at 10 °C to mimic the cave environment. Similarly to the results of Laiz et al. 

(2003), most actinomycete diversity was detected in isolations from the calcite sample ME2 

incubated at 25 °C whereas, at 10 °C only two colony morphologies were detected, one 

identified as Bosea thiooxidans. Conversely, there was no detectable difference between 
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incubation temperatures and colonies isolated for moonmilk samples ME3 and MXl; 

Proteobacteria, CFBs and Firmicutes dominated all isolations reinforcing their dominance in 

moonmilk samples. 

Through the course of isolation studies of moonmilk samples, a flaw was detected in 

earlier sediment and speleothem culture studies. Hyphal soil actinomycetes often show 

distinctive morphologies that can aid in identification to the generic level. These morphological 

characteristics include presence of aerial spores or mycelia that aids detection of "actinomycete­

like" colonies on primary plates. Culture studies of sediments and speleothems were aimed at 

sub-culturing only actinomycete-like colonies whereas culture studies of moonmilk samples 

were aimed at sub-culturing all different colonies. 165 rRNA gene sequencing revealed that 

many moonmilk colonies deemed "non-actinomycete-like" were actually actinomycetes (in 

particular members of the Micrococcineae and Corynebacterineae). Thus, a portion of the culturable 

actinomycete diversity may have been over-looked in isolations from cave sediments and 

speleothems. 

The well recognised discrepancies between culturable and non-culturable diversity has 

limited our understanding of species diversity in natural bacterial communities. Plating leads to 

an overestimation of the number of spore-forming bacteria with respect to quiescent vegetative 

forms; the later are less easily cultured but readily detected by culture-independent techniques 

(Laiz et al., 2003). Members of the Actinobacteria have established a wide ecological distribution 

and survive long periods of nutrient deprivation by producing endospores, which allows their 

ready cultivation in favourable conditions and the presence of available nutrients. However, the 

majority of oligotrophic organisms don't employ such sophisticated techniques to survive 

extreme nutrient deprivation, but simply grow and reproduce continuously at an exceedingly 

slow rate (Koch, 1997). A problem with cultivation of oligotrophs therefore comes with the 

assumption that the rate-limiting step in bacterial growth is simply nutrient availability, and not 

the ability of the cell itself to grow. The sudden addition of excess nutrients through cultivation 

methods to organisms adapted to nutrient limitation, may result in rapid cell death via osmotic 

swelling (Koch, 1997) thus many of these oligotrophic species cannot be easily cultivated using 
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standard techniques. Thus microbiologists need to work on developing culturing methods that 

better mimic the in situ chemical and physical parameters faced by microbes in the real world. 

This limitation has been partially overcome by the advances of culture-independent techniques 

which have revealed surprisingly high levels of novel biodiversity. Some of these groups 

previously undetected by cultivation have emerged as numerically abundant and seemingly 

important ecological groups (eg. Acidobacteria). The limited number or absence of cultivated 

members of these groups restricts our understanding of their role in the environment. Parallel 

studies of laboratory cultures strongly complement molecular ecological investigations. Recent 

advances by Sait et al. (2002) and Joseph et al. (2003) have shown that many of the previously 

uncultured lineages can be isolated using relatively simple media (Eg. the Ellin isolates of the 

Acidobacteria, Verrucomicrobia, Gemmatimonadetes and novel members of already well 

characterised phyla, Proteobacteria and Actinobacteria). 

3.7 Metabolic/Ecological Comparisons 

By phylogenetically aligning an organism to its next nearest cultivated relative, we may 

shed light on the metabolic and physiological processes that are occurring (Pace 1997). However 

such comparisons can only be made when there is a high degree of sequence similarity between 

the identified phylotypes and known cultivated species (Achenback & Coates, 2000). Caves are 

severely resource limited due to the absence of light that precludes primary production of 

organic material by photosynthetic organisms (Northup & Lavoie, 2001). In cave ecosystems 

with little or no exogenous organic input, the rich variety of redox interfaces allows primary 

growth of chemolithotrophic (eg. ammonium-, nitrite-, sulfur-, manganese- or iron- oxidising) 

bacteria (Northup & Lavoie, 2001). Chemolithotrophs are physiologically united by their ability 

to utilise inorganic electron donors as energy sources. Most chemolithotrophs are also capable of 

autotrophic growth. The best studied chemolithotrophs are those capable of oxidising reduced 

sulfur and nitrogen compounds and the hydrogen-oxidising bacteria. 
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Chemolithotrophic growth on reduced sulfur compounds is a property of a diverse 

group of bacteria many of which were identified in clone analysis of both sediment and 

moonmilk samples in this study, particularly members of the Chromatiales that dominated the 

dry sediment from Entrance Cave. Sulfur-oxidisers mostly oxidise reduced sulfer compounds 

like sulfide and thiosulfate. The calcite mat-like material from Entrance Cave was dominated by 

a phylotype closely related to Bosea thiooxidans, thiosulfate-oxidiser, which was also isolated 

from this site. Sulfur-oxidising bacteria play a role in the dissolution of limestone in caves with 

hydrogen-rich waters, contributing to cave enlargement. The extent to which bacteria contribute 

to the corrosion of limestone and to the enlargement of existing caves remains uncertain. The 

sulfide needed by sulfur-oxidisers can be derived from sulfate- or sulfur-reducing bacteria 

associated with sulfur-oxidising bacteria. The o-Proteobacteria consists of sulfate and sulfur­

reducing bacteria. These microbes are obligately anaerobic and morphologically diverse. They 

are widespread in terrestrial and aquatic environments that become anoxic as a result of 

microbial decomposition processes, for example, Desulfovibrio species are common in 

waterlogged soils like Loons sediments, containing abundant organic material and sufficient 

levels of sulfate. The activity of sulfate-reducing bacteria leads to the production of large 

amounts of H2S. Some sulfate-reducers also display the ability to grow chemolithotrophically 

using ferrous iron at acid pH, eg. Acidithiobacillus ferrooxidans, sequences related to this species 

were detected in Entrance sediment. 

A number of the Proteobacteria are nitrifying bacteria able to grow on reduced 

inorganic nitrogen compounds. No chemolithotroph is known to carry out the complete 

oxidation of ammonia to nitrate thus nitrification of ammonia in nature results from the 

sequential action of two separate groups of organisms: the ammonia-oxidising bacteria, 

nitrosifyers (eg. Nitrosomonas sp., Nitrosococcus sp., Nitrosospira sp.) and the nitrite-oxidising 

bacteria nitrifyers (eg. Nitrobacter sp., Nitrospina sp., Nitrococcus sp., Nitrospira sp.). Most 

nitrofyers are obligate chemolithotrophs and able to grow when provided with C02 as the sole 

carbon source. Nitrifyers are wide spread in soil and water though usually more abundant in 

neutral or alkaline habitats as acidity results in inhibition of nitrification. High identity values 
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with cultivated members of these groups, particularly members of the Pseudomonads and 

Xanthomondales, may indicate that bacteria detected in all cave sediments and moonmilk 

analysed in this study may play a role in the nitrogen cycle. Clone analysis also revealed 

affiliations with aerobic nitrogen-fixing bacteria in cave sediments, including plant-associated 

genera (eg. Rhizobium, Bradyrhizobzum, Frankia) and free-living genera (eg. Derxia and 

Beijerinckia). Interestingly, plant-associated nitrogen-fixers of the Oxalobacteriaceae and 

Burkholderiaceae were particularly dominant in Loons sediments and moonmilk speleothems. 

The waterway in Loons Cave is thought to be primarily fed by seepage waters through the 

ceiling rock. Filtration waters are also involved with the development of speleothems. The 

significant presence of plant-associated nitrogen-fixers in these samples may be a result of 

bacteria filtering with seepage waters into the cave systems from the surface soils. 

Chemolithotrophic hydrogen-oxidising bacteria, including representatives in the genera 

Pseudomonas, Paracoccous and Acaligenes, Hydrogenophaga, Acidovorax and Arthrobacter, are 

capable of growing with H2 as the sole electron donor and 0 2 as the electron acceptor. Most 

hydrogen-oxidising bacteria are facultative and can also grow as chemoorganotrophs with 

organic compounds as energy sources. This represents the major distinction between hydrogen­

oxidisers and the nitrifyers and sulfur bacteria as most representatives of these groups are 

obligately chemolithotrophic and growth does not occur in the absence of the inorganic energy 

source. By contrast, the hydrogen chemolithotrophs can switch between chemolithotrophy and 

chemoorganotrophy and presumably do so in nature as nutritional conditions warrant. Several 

sequences obtained from both sediment and moorunilk were related to hydrogen-oxidising 

bacteria, particularly of the Acidovorax group and novel Paracoccus and Acaligenes species were 

isolated from a speleothem and moorunilk, respectively. 

Early researchers proposed that the role of microbes in caves is to serve as a food source 

for higher trophic levels (Dickson, 1979). However it was typically believed that microbes could 

not provide adequate energy to support a large and diverse ecosystem. The work of Sarbu et al. 

(1996) in Movile Cave, Romania, and by Vlasceanu et al. (2000) in Frasassi Caves, Italy, suggest 

that chemoautotrophic, sulfur-based microbial communities can generate enough energy as 
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primary producers to sustain complex cave ecosystems. Thus it is proposed that the 

chemolithotrophic and oligotrophic bacteria identified in this study may support the abundant 

heterotrophic microbial life detected in all samples. However, heterotrophic cave microbial 

communities usually rely on allochthonous input of organic matter transported from the surface 

(Groth et al. 1999a). Animals and visitors can provide large amounts of organic input facilitating 

heterotrophic life. Organic input may also be dissolved in the seepage/ dripping waters or as 

particulate organic matter carried in by active or periodic flooding of a subterranean streamway 

(Schabereiter et al. 2002). Previous research has suggested that cave waters contain dissolved 

organic matter from the soil, primarily phenolic compounds and lignin (Saiz-Jimenez & 

Hermosin, 1999). These compounds can be utilised as carbon sources by many of the species 

related to those identified in this study. High sulphate and nitrate concentrations have been 

found in dripping waters in Tito Bustillo and other Spanish and Italian caves (Hoyos et al. 1999) 

which, in addition to the concentrations of iron, manganese and other elements found in cave 

rocks, probably supports heterotrophic bacteria including members of the Actinobacteria, that 

were dominant members of the dry sediment and calcite mat microbial communities in Entrance 

Cave, and members of the Flavobacteriaceae that were dominate community components of 

moonmilk samples. 

In oligotrophic environments there are no obvious sources of exogenous energy sources 

(eg. surface organics, sulfide or nitrite). A common theme was observed in cultivated relatives of 

identified phylotypes in this study: the fixation of atmospheric gases or the use of aromatic 

carbon compounds. Within the a-Proteobacteria phylotypes related to species able to fix 

atmospheric gases (eg. Sphingomonadales, Brevundimonas sp., Hyphomicrobium sp. and 

Methylobacterium sp.), were particularly abundant in the calcite mat from Entrance Cave and 

were also detected in Loons sediments and moonmilk samples. Several sequences showing high 

sequence similarity with oligotrophic bacteria of the Sphingomonadales were detected in the 

calcite mat from Entrance Cave. Methylotrophs are chemoorganotrophs that utilise carbon 

compounds more reduced than C02, are widespread in aquatic and terrestrial environments and 

include representatives of the genera Methylobacterium, Methylocella, and Hyphomicrobium. 
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Hutchens et al. (2004) used DNA-based stable isotope probing and functional gene analysis of 

groundwater and mat material from Movile Cave to identify methane-assimilating populations 

and results suggest that aerobic methanotrophs (Methylomonas, Methylococcus, 

Methylocystis/Methylosinus strains) actively converted CH4 into complex organic compounds and 

thus helped sustain a diverse community of microbes in this closed ecosystem. Hyphomicrobium 

spp. are able to use atmospheric methyl-halides as their sole source of carbon and energy and 

are also able to oxidise manganese (McAnulla et al. 2001). A novel pink-pigmented 

Methylobacterium sp. was isolated from moonmilk. Methylobacterium carry out Type I 

formaldehyde assimilation and this activity has previously been described in oligotrophic 

bacterial communities living on limestone masonry (Hanson & Hanson, 1996). The source of 

atmospheric gasses is clear, while the potential carbon sources may be the organic constituents 

of water filtering into the cave system. Northup et al. (2000) suggested that reduced metals such 

as magnesium and iron within the limestone matrix of Lechuguilla Cave provide sufficient 

source of electron donors for growth, which may further require the presence of atmospheric 

organic molecules as a carbon source. Similar mechanisms of lithotrophy have been suggested in 

other cave systems (Cunningham et al. 1995). However, moonmilk samples from Entrance and 

Exit Caves are almost pure CaC03 (-98-100%) with no significant presence of reduced metal 

compounds available to act as electron donors. Similarly, the Leadville limestone bedrock of 

Fairy Cave, Colorado, is almost pure CaC03 (97.5%). Barton et al. (2004) suggested that any 

metal ions present in Fairy Cave were likely deposited by the rich mineral waters that formed 

the cave system. 

The physiological response of bacteria to temperature is critical for the regulation of 

biogeochemical processes. Moonmilk samples were found to harbour an abundant microflora of 

phylotypes and isolates closely related to described psychrotrophs which is not surprising given 

the near constant cold temperatures (7-10 °C) in Tasmanian caves. As discussed previously, Laiz 

et al. (2003) investigated temperature ranges of cave microbiota finding that though they were 

able to grow at 5 °C, growth optima were above 20 °C which indicates psychrotolerant growth, 

not true psychrophilic growth. There are conflicting views as to the effect of cold environmental 
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temperatures on the in situ chemolithotrophic metabolic rates of psychrotolerant bacteria. Zhang 

et al. (1999) found that as a physiological adaptation of natural microbial populations to the 

permanently cold deep Pacific marine sediments and Alaskan tundra permafrost, reduction of 

ferric iron utilising organic acids or hydrogen as electron donors, was fastest at 10 °C than at 25 

°C, indicating that microbial iron reduction is likely widespread in cold environments. 

Conversely, sulfate-reducing bacterium Desulfobacterium autotrophicum responded to low 

temperatures by reducing metabolic activities, which agrees with in situ activities measured in 

field studies and was suggested to reflect a common physiological principle of psychrotolerant 

bacteria (Rabus et al. 2002). Arnosti et al. (1998) found that rates of organic carbon mineralisation 

were always higher at temperatures above ambient environmental temperatures in Arctic and 

temperate sediments. However, as the mean environmental temperature dropped, the optimal 

temperature also dropped, suggesting that organic carbon turnover in the cold Arctic was not 

actually intrinsically slower than in temperate environments. One study of metabolic activities 

related to in situ temperatures for cave microbiota demonstrated that carbon utilisation was 

found to be more efficient at lower temperatures (13 °C) suggesting that these bacteria were 

adapted to live at lower temperatures than their optimal (Laiz et al. 2003). It is widely accepted 

that psychrotrophs are able to metabolise at lower than optimum temperatures and thus are able 

to continue growth in cold environments. Whether these organisms are metabolising at 

optimum rates at in situ temperatures remains unclear. 

3.8 Comparison with other Cave Environments 

Literature on cave microbial communities, their taxonomic diversity and distribution, is 

limited and restricted to a few caves worldwide. Culture-independent analyses have opened the 

way to study microbial diversity in environmental samples without prior cultivation more often 

than not revealing surprising diversity. Nevertheless, until recently, our knowledge of bacterial 

communities in caves has been largely due to culture-dependent studies. The beginning of this 

century has seen an influx of culture-independent diversity analyses of cave environments 
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enormously increasing our knowledge of cave microbial diversity. However, with the diverse 

range of types of caves (eg. sulfur caves, carbonate caves, aquatic caves, tourist/show caves, 

restricted access caves) and microhabitats (eg. acidic biofilms on walls, filamentous microbial 

mats in sulfur waters, aquatic microbial mantles, Palaeolithic rock art, cave walls, 

ferromanganese deposits, sediments) studied and the geographic separation of sites (Romania, 

Italy, Australia, Mexico, Spain, North America) it can be difficult to draw comparisons or 

conclusions about cave microbial diversity (eg. Sarbu et al. 1996; Angert et al. 1998; Vlasceanu et 

al. 2000; Holmes et al. 2001; Summers-Engel et al. 2001; Schabereiter-Gurtner et al. 2002, 2004; 

Northup et al. 2003; Chelius & Moore, 2004; Barton et al. 2004). 

BLAST comparisons of sequences obtained in this study to the GENBANK database 

consistently yielded high similarity with several DGGE sequences from the Proteobacteria, 

Actinobacteria, CFBs, Acidobacteria, Planctomycetales and Chloroflexi, detected in the analysis of 

rock art and surrounding cave surfaces in Spanish and Italian caves (Schabereiter-Gurtner et al. 

2002, 2004). Universal primers 341£ and 907r were used in the DGGE studies by Schabereiter­

Gurtner & colleagues whereas primers 519f and 1492r were used in this study, thus there was 

only a 3-400 bp overlap between sequences obtained in either studies. Determining exact 

phylogenetic relationships between the rock art phylotypes and the clones from this study was 

often difficult and the DGGE sequences were removed from subsequent phylogenetic analysis. 

Chelius & Moore (2004) stated that because few exhaustive studies of microbial 

community structure in caves have been conducted, habitat-specific trends are difficult to detect. 

Although some clones they obtained from saturated cave sediments in Wind Cave resembled 

sequences from other caves, they found that no cave-specific bacterial community was evident. 

Clones mostly resembled those from soil, freshwater, plant associated and polluted 

environments and most isolates were related to other cultivated members and sequences 

retrieved from soil and various polluted environments (Chelius & Moore, 2004). Similarly, aside 

from the cave rock art DGGE sequences, few cave sequences resulted from BLAST searches of 

the clones from this study. However, rather than being a function of the paucity of studies, it's 

hypothesised that perhaps these trends are difficult to elucidate due to the overwhelming 
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quantities of data available. With the explosion of culture-independent studies in the past 15 

years, to date, more than 62 OOO sequences are available from public databases. Thirty seven 

division-level lineages have been detected (Hugenholtz et al. 1998), almost a third of which are 

not represented by cultured microorganisms. This provides a high resolution framework for the 

assignation of novel sequences obtained in 16S rRNA gene libraries constructed from 

environmental diversity surveys but perhaps disguises the phylogenetic groupings consistently 

found in caves. Results from this study indicate that there are some general and more specific 

trends apparent in cave samples. 

There is much evidence for rich and diverse chemoautotrophic and heterotrophic 

microbial communities in caves. Several studies of chemolithotrophic cave microbial 

communities that do not depend directly upon energy and organic carbon from photosynthesis, 

have been reported and its been demonstrated that these bacteria play an important role in some 

cave ecosystems, acting as primary producers and supporting growth of heterotrophic microbes 

(eg. Sarbu et al. 1996). High sulfate and nitrate concentrations have been found in dripping 

waters in Spanish and Italian caves (Hoyos et al. 1999; Van Grieken et al., 1999; Holmes et al. 

2001) which, in addition to the concentrations of iron, manganese and other elements found in 

the cave fully support the finding of bacteria involved in the nitrogen, sulphur, iron and 

manganese cycles. Members of the Proteobacteria dominate all culture-independent analyses of -

cave environments, including this study. Sulfur- and sulfide- oxidisers, iron- and manganese­

oxidisers, sulfate-reducers and nitrifiers and denitrifyers appear abundant in caves. Nullabor 

Caves were found to have a high abundance of Nitrospira clones suggesting chemoautotrophic 

communities dependent on nitrite-oxidation (Holmes et al. 2001). A number of clones grouping 

with Nitrospira sp. were also found in ferromanganese deposits in Lechuguilla (Northup et al. 

2003) and in Llonin, La Garma and Tito Bustillo Caves in association with Palaeolithic rock art 

(Schabereiter et al. 2002, 2004). Schabereiter-Gurtner et al. (2002) found ammonia oxidisers such 

as Nitrosospira sp., and Nitrosococcus sp., in Tito Bustillo Cave. Clone library analysis by Chelius 

& Moore (2004) illustrated that y-Proteobacteria and predominated water-saturated sediments in 

the dark zone of Wind Cave. A number of alpha phylotypes which grouped into two 'fixer' 
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clades are common in caves (eg. Chromatiales, Hyphomicrobium, Chelatobacter and Rhizobium). 

These phylotypes are related to species able to fix atmospheric gases. Members of the 

Comamonadaceae, particularly of the Acidovorax group have been detected in high numbers in 

ferromanganese residues of Lechuguilla and cave rock art (Northup et al. 2003; Schabereiter et 

al., 2004) and were particularly dominant in Loons Cave sediment and moonmilk. 

The Acidobacteria have been detected as one of the most abundant groups of microbes in 

recent culture-independent analyses of a number of cave rock art sites and saturated sediment in 

Wind Cave (Schabereiter-Gurtner et al. 2002, 2004; Chelius & Moore, 2004). Oones affiliated with 

the Acidobacteria were detected in most samples in this study (except for SEl) but in low 

numbers (1.5-3.2%). Both Wind Cave and the cave rock art sites are 'show' caves open to the 

public. With few cultured representatives of this group, little is known about ecology of 

Acidobacteria. Perhaps the increased colonisation of Acidobacteria in show caves compared to 

more restricted access caves is due to the anthropogenic impacts and increased nutrient load 

connected with visitors to the caves. Minor representations of the Planctomycetales, the Chloroflexi 

(green non-sulfur), particularly of the Dehalococcoides lineage, the Verrucomicrobia and the 

Gemmatimonadetes (previously Candidate division BD), have been detected in a variety of cave 

environments (aquatic formations in Nullabor caves, Holmes et al. 2001; rock art and cave walls 

in Altamira and Tito Bustillo Caves, Schabereiter et al. 2002, 2004; saturated sediments in Wind 

Cave, Chelius & Moore, 2004) mostly displaying low similarities to known, cultivated relatives 

of these groups suggesting new lineages. One point of interest is the high numbers (previously 

unreported for cave sediments) of the Planctomycetales (22.5%) in sediment sample SEl from 

Entrance Cave. The Planctomycetales were considered to be of limited environmental importance, 

but molecular microbial ecology has demonstrated that these bacteria are ubiquitous, 

metabolically diverse and constitute a representative part of the natural bacteria population in 

diverse environments (Hugenholtz et al. 1998). 

A significant result of this study is the abundance of cloned members of the CFBs in 

moonmilk samples ME3 and MXl (Figure 3.19). As previously stated, the CFBs, particularly 

Flavobacteriaceae, were the second most abundant phyla in sampled moonmilk diversity. DGGE 
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and isolation results also confirm the dominant presence of these microbes (Figure 3.14). CFBs 

have rarely been identified in previous cave studies (cultured or uncultured), and when present 

are as minor components showing low similarity identities with known Cytophagales members 

(Schabereiter-Gurtner et al. 2002; Chelius & Moore, 2004; Barton et al. 2004). Previous studies 

identifying CFBs in caves have been based on sediment samples. Similarly, sediments from 

Entrance and Loons Caves also displayed low CFB abundances (2.8-9.8%}. Due to the absence of 

any published culture-independent analysis of moonmilk, it is impossible to determine whether 

the dominance of CFB phylotypes is a general trend. Although isolations from moonmilk 

consisting of a silicate gel in Nikitsky Catacomb, Moscow, produced Flavobacterium sp., 

(Semikolennykh, 1997). 

Culture-dependent studies have focused on caves with allochtonous input of organic 

matter demonstrating that heterotrophic bacteria dominate these microbial communities (Groth 

& Saiz-Jimenez, 1999). Actinomycetes are the most abundant bacteria to be isolated from 

heterotrophic cave systems, and have demonstrated great taxonomic diversity. Interestingly, in 

most papers the recognition of this biodiversity, that is the identification of cave isolates, has 

been through chemotaxonomic analysis only to the genus level. This has resulted in a lack of 16S 

rRNA gene sequences of cave isolates in public databases, making it difficult to compare and 

contrast biodiversity at the species level between other studied cave systems. Nevertheless we 

can still determine trends at the genus level. 

The most abundant actinomycetes isolated from caves are the streptomycete, 

nocardioform and coryneform actinomycetes (eg. Groth et al. l999a; Chelius & Moore, 2004). 

Samples of sediments, active stalactites, wall concretions and rocks from the walls and ceilings 

of various caves have been investigated and a high number of isolates obtained. Most abundant 

were the genera, Streptomyces, Nocardia, Nocardioides, Brevibacterium! Rhodococcus, and members 

of the family Micrococcaceae. Similarly, in this study, members of the genera Streptomyces, 

Nocardia, Arthrobacter and Rhodococcus were repeatedly cultivated in high numbers from 

sediment, speleothem and moonmilk samples from Entrance, Exit and Loons Caves (Table 3.3). 

Also isolated in this study, though less frequently, were Agromyces sp., Agrococcus sp., Knoellia 
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sp., Brevibacterium sp., and Brachybacterium sp. (Table 3.3). Members of the Pseudonocardineae, 

particularly of the genera, Lentzea, Saccharothrix, and Amycolatopsis, were the most abundantly 

isolated and culture-independently detected group of Actinobacteria from walls and rock art in 

La Garma and Llonin caves (Schabereiter-Gurtner et al. 2004) and also from calcite-based 

samples in this study. 

Many microbes identified from deep caves are similar to surface forms and are probably 

transported into caves by water, air, sediment and animals (Groth et al. 1999a; Groth et al. 2001; 

Saiz-Jimenez 2001; Schabereiter-Gurtner et al. 2002a, b; Chelius & Moore, 2004) as reflected by 

the high sequence identity of isolates and clones to already cultured and cosmopolitan 

representatives of this group. However, recent findings and the results of this study have 

revealed the presence of actinomycete species so far only detected in caves. Knoellia sinensis and 

Knoellia subterranean, isolated from sediment in Reed Flute Cave in China (Groth et al. 2002) was 

isolated and clones detected in cave sediment from Entrance Cave and all moonmilk clone 

libraries. Saccharothrix violacea isolated from a gold mine cave in China (Lee et al. 2000) was 

detected in clone analysis and isolated from sediment and moonmilk samples from Entrance 

Cave and DGGE analysis of moonmilk and has also been detected in ferromanganese deposits 

in Lechuguilla and cave rock art. Recent studies have emphasised the unique nature of the 

bacterial and archaeal assemblages found in geographically separated and distinct 'types' of 

caves (Holmes et al. 2001; Schabereiter-Gurtner et al. 2002, 2004; Northup et al. 2003; Barton et al. 

2004; Chelius & Moore, 2004). For example, a large proportion of the Crenarchaeota sequences 

detected in Lechuguilla Cave ferromanganese deposits and saturated sediments from Wind 

Cave closely resembled sequences from a South African gold mine (SAGMA clones which 

showed great phylogenetic diversity to uncultivated members) (Takai et al. 2001; Northup et al. 

2003; Chelius & Moore, 2004). Given the distance between North America and South Africa, it is 

unlikely that the archaeal assemblages are as similar by chance or by recent colonisation. A more 

plausible explanation is that the archaeal clones isolated from these sites evolved within a 

common subsurface environment, a conjecture supported by the geologic history of the 

respective regions and recent work on SAGMA clones (Chelius & Moore, 2004). Thus, in the 
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same way members of the genera Knoellia, Lentzea and Saccharothrix may represent indigenous 

cave microbiota present in a wide variety of global subterranean environments. Although it is 

not clear whether these trends represent convergent evolution at different geographical sites or 

whether these taxa represent remnants of ancient forms that existed when the continents were 

joined as the global super-continent, Pangea which formed over 600 million years ago (Mya) and 

began to separate approximately 400 Mya. 
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Chapter 4: Concluding Remarks 

Over the last 15 years it has definitely been established that large and diverse microbial 

populations are active to great depths in the terrestrial subsurface and below the sea floor. One 

of the most compelling questions is the mechanism of supply of nutrients to subsurface 

populations. Both heterotrophic organisms that consume deeply buried ancient carbon and 

chemolithotrophic organisms that harness geochemical energy of reactive rocks have been 

documented in the subsurface. However abundant organisms do not exist everywhere in the 

subsurface, making it clear that a better understanding of the ecology of the subsurface 

ecosystems is needed to predict the abundance and significance of the subsurface biosphere. 

Caves are not uniform environments in terms of geological and geochemical 

characteristics, as they can vary from one to the other, eg. rock type, method of formation, 

length, depth, number of openings to the surface, presence or absence of active streamways, 

degree of impact by human visitation etc. Furthermore, on a smaller scale, various 

microhabitats, with vast differences in community structure can exist within caves. Despite 

many recent advances in the field, literature on cave microbial diversity is still scarce and very 

few general trends have been detected. Literature on microbial diversity in caves has indicated 

that actinomycetes dominate culture studies. The majority of the work on actinomycetes in 

hypogean environments has been conducted in Altamira, Tito Bustillo, La Garma, and Llonin 

caves, Spain, and Grotta dei Cervi, Italy all of which have spectacular galleries with Palaeolithic 

rock art paintings, and more recently, in Wind Cave, Dakota, all of which are open to the public 

(Groth & Saiz-Jimenez, 1999; Groth et al. 1999a, 2001; Laiz et al. 1999, 2000; Chelius & Moore, 

2004). Culture-independent analyses in all of these show caves indicate that actinomycetes are 

not the most dominant member of the microbial communities. 

Based on the literature available, this study was initially aimed at detecting novel 

actinomycete diversity. However, as the study progressed the focus evolved as it became 

apparent that actinomycetes dominated only very specific habitats, the dry sediment and the 

calcite mat in Entrance Cave, and represented only a minor fraction of most other microhabitats 
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studied. Entrance Cave dry sediments and inactive (dry) speleothems produced a higher 

number of actinomycete isolates compared to saturated sediments and wet formations from 

Entrance and Loons Cave which was reinforced by the actinomycetes being the second most 

abundant group (26.8%) detected in clone analysis of the dry Entrance sediment and low 

abundances ( 4-16%) detected in saturated sediments from both Entrance and Loons caves. Many 

actinomycetes are obligate aerobes and prefer moderate levels of moisture rather than 

waterlogged soils (Williams et al. 1972) and it seems fairly widely accepted that dry cave 

substrate typically yields a higher proportion of actinomycetes than does dripping water and 

wet sediment (Kolbel-Boelke et al. 1988; Laiz et al. 1999). Actinomycetes dominated isolations 

from the calcite mat in Entrance, and were a major component of the clone analysis, which is not 

surprising given the results of ESEM studies showing extensive networks of hyphal organisms 

that compose the mat. Moonmilk samples in comparison were not dominated by actinomycetes. 

As a result of this work, it is hypothesised that the dominance of actinomycetes in the cave 

literature is due to the caves that these culture studies have been conducted in being show caves 

open to the public, providing increased allochtonous input, together with the organics available 

in the paint layers of rock art, leading to a proliferation of heterotrophic organisms. Secondly, it 

may be a function of the ease, rather than dominance, with which some actinomycetes can be 

cultured in the laboratory compared to other indigenous cave bacteria. 

The Entrance-Exit Cave System and Loons Cave offer contrasting opportunities with 

regard to the search for novel microbial biodiversity, as do sediment samples versus moonmilk. 

Sediment phylotypes and isolates identified in this study closely resemble species associated 

with oligotrophic, chemolithotrophic and heterotrophic lifestyles indicating that these 

communities survive by utilising a combination of metabolic pathways. Bacteria involved in the 

nitrogen and sulfur cycles were important members of all sediments along with hydrogen­

oxidising bacteria. These oligotrophic and chemolithotrophic members of sediment communities 

probably provide energy for the heterotrophic members of the community. Pair-wise 

comparisons of sediment communities demonstrated that they were more similar to each other 

within individual cave systems, Entrance and Loons, rather than between microhabitat types 
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(dry vs. wet sediment). Indicating that the type of cave system does have an effect on the 

observed biodiversity, probably a reflection of differing factors such as nutrient supply. For 

example, in Entrance Cave there is the active inflow stream, Mystery Creek, which would bring 

exogenous inputs of nutrients into the system whereas Loons is fed primarily by ultra-filtered 

seep waters. The wet sediment from Entrance Cave did show a higher degree of similarity in 

community composition to Loons Cave samples than the dry sediment from Entrance Cave 

indicating that the water content of the sediment also has an affect on the distribution. Saturated 

sediments were dominated by oligotrophs able to fix atmospheric gases and methanotrophs and 

had a high proportion of rare phylotypes most likely representing new lineages related to 

microbes detected in anaerobic, anoxic environments, but low abundances of heterotrophic 

microbes. 

Results also demonstrated a marked difference between sediment communities and 

calcite communities. One of the more significant findings in this study was the work with 

moonmilk. Results of ESEM and XRD analysis demonstrated that samples ME3 and MXl are 

true calcite moonmilk (mondmilch). Phylogenetic analyses and isolation results demonstrated 

the unique composition of the microbial communities associated with moonmilk deposits. These 

were predominantly composed of nitrogen-fixing ~-Proteobacteria and psychrotrophic 

heterotrophic CFBs and to a lesser extent, heterotrophic Actmobacteria. This study also revealed 

the dominant presence of cold-adapted (psychrotrophic) aerobic heterotrophic CFBs in 

moonmilk samples, indicating that this bacterial community survives utilising nitrite and 

organic material probably dissolved in the cave dripping waters. Phylogenetic analyses and 

biodiversity indices reveal the striking similarities between moonmilk samples from both 

Entrance and Exit Caves and the uniqueness of the calcite mat in Entrance Cave. Despite XRD 

and ESEM analysis showing similar calcite composition and crystal morphology, phylogenetic 

results indicated that sample ME2 represented a very different microhabitat to moonmilk 

samples. The mat-like material of site ME2 was dominated by oligotrophic a-Proteobacteria and 

Actinobacteria composing 84.2% of the total diversity. Though mostly a heterotrophic, 

community, members of the genus Saccharothrzx, present in high numbers in the calcite mat, are 
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chemoorganotrophic. Metabolic analyses suggested that the community subsists using a 

complex metabolic network with input from trace organics within the environment or fixation of 

atmospheric gases using lithotrophic metabolism. 

ESEM investigations of the ceiling rock and moon milk illustrated networks of hyphal 

bacteria involved with CaC03 crystallisation. The one significant similarity between the 

moonmilk samples and mat material was the dominance of Saccharothrix sp. in the clone library, 

DGGE analysis and isolation results for all samples indicating that members of this genus are a 

dominant member of cave calcite microhabitats. Caii.averas et al. (1999) isolated a Saccharothrix 

sp. from calcite which grew very slowly and formed a deep black soluble pigment on oatmeal 

agar and developed a white aerial mycelium which turned grey with age. This morphology is 

similar to a culture isolated from samples ME2, ME3 and MXl and identified as Saccharothrix 

cryophilis. A clone phylotype and DGGE band also present in all samples were most closely 

related to this organism also perhaps indicating that these organisms are involved in calcite 

precipitation. 

This study represents the first reported culture-independent analysis of moonmilk 

microbial communities globally and of cave sediment communities in the Southern Hemisphere. 

Studies of microbial biodiversity are a fundamental starting point for further research into 

ecosystem function. This project has provided critical baseline information on the composition 

and distribution of microbial communities in a variety of cave microhabitats and provides a 

focus for future studies of ecological function such as the microbial contribution to geochemical 

cycling and mineral precipitation and deposition in the subsurface biosphere. This study has 

taken significant steps in identifying the microorganisms present in cave environments, and this 

research now needs to be taken to the next level, ie. what are these bacteria doing and what role 

do they play in the ecosystem? Cross-disciplinary studies are needed which correlate the 

presence and distribution of microorganisms with a comprehensive analysis of the habitat at the 

scale in which microbes function to attempt to understand the daunting complexities of the 

interactions between microbes and minerals. 
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Media Preparation 

Culture media was prepared as per manufacturers instructions unless otherwise stated. 

Addition of supplements was as per manufacturers instructions or as described in this section. 

Where necessary pH was modified by the addition of O.lM NaOH or O.lM HCl as required. All 

water used in the preparation of media was prepared by glass distillation of tap water. 

Sterilisation was by autoclaving at 121°C at 15 psi for 20 min (unless otherwise specified) or in 

the case of non-sterile, heat sensitive supplements by filter sterilisation. After autoclaving, agar 

medium was cooled to 55 °C prior to pouring plates. Media were stored at 4 °C for up to 4 wk. 

Media containing antibiotics was stored in the dark at 4 °C for up to 2 wk. 

Culture Media 

Starch-Casein Agar (SC); (Kuster & Williams, 1964). 

10 g soluble starch, 0.3 g casein, 2 g KN03, 2 g NaCl, 2 g K2HP04, 0.05 g MgS04.7H20, 0.02 g 

CaC03, 0.01gFeS04.7HzO,15gagar,1000 mL distilled water, adjust to pH 7.0-7.2, autoclave for 

20 min at 121 °C, cool to -55 °C, add 10 mL Nystatin. 

Arginine -Vitamin Agar (AV) (Nonomura & Ohara, 1969). 

0.3 g L-Arginine, 1 g glucose, 1 g glycerol, 0.3 g K2HP04, 0.2 g MgS04.7HzO, 0.3 g NaCl, 15 g 

agar, 1000 mL distilled water, autoclave for 20 min at 121 °C, cool to -55 °C, add 10 mL Nystatin, 

5 mL vitamin solution, 5 mL mineral solution. 

Marine Agar (MA) 

37.4 g Marine broth (Oxoid 2216), 15 g agar, 1000 mL distilled water, autoclave for 20 min at 121 

°C, cool to -55 °C, add 10 mL Nystatin. 
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R2A Agar (R2A) 

18.1 g R2A agar (Oxoid CM 906), 1000 mL distilled water, autoclave for 20 min at 121 °C, cool to 

-55 °C, add 10 mL Nystatin. 

1/2 Strength Tryptone Soya Agar (1/2 TSA) 

15 g TSA Broth (Oxoid CM 129), 15 g agar, 1000 mL distilled water, autoclave for 20 min at 121 

°C, cool to -55 °C, add 10 mL Nystatin. 

Oatmeal Agar (OA) (Williams & Wellington, 1982). 

20 g commercial blended oats, 800 mL distilled water, autoclave for 30 min at 121 °C, cool to 

room temperature with occasional vigorous shaking; add 1 g yeast extract, 1 mL mineral 

solution, 15 g agar, 200 mL distilled water, autoclave for 20 min at 121 °C, cool to -55 °C, add 10 

mL Nystatin. 

Luria Broth Agar with Ampicillin (LB-AMP) 

10 g Bacto®-tryptone, 5 g Bacto®-yeast extract, 5 g NaCl, 15 g agar, 1000 mL distilled water, 

adjust to pH 7.0, autoclave for 20 min at 121 °C, cool to -55 °C, add ampicillin to a final 

concentration of 100 µg mL·1
• 

Supplements 

Nystatin 
0.1 g Nystatin (SIGMA), 20.0 mL Methanol, filter sterilise and store at 4 °C. 

AV and OA Mineral Solution 
2.0 g Fez(S04).H20, 0.2 g CuS04.5H20, 0.2 g ZnS04.7H20, 0.2 g MnS04.7H20, 200 mL distilled 
water, filter sterilise and store at 4 °C. 

AV Vitamin Solution 
0.1 g Thiamine Hydrochloride, 0.1gRiboflavin,0.1gNicotimamide,0.1 g Pyridoxine 
Hydrochloride, 0.1 g Inositol, 0.1 g Calcium Pantotheenate, 0.1 g Para-Aminobenzoic Acid, 0.05 
g Biotin, 200 mL distilled water, filter sterilise and store at 4 °C. 

0.1 M iso-propyl-beta-D-thio-galactopyranoside (IPTG) 
1.2 g IPTG, 50 mL ddH20, filter-sterilise and store at 4 °C. 

5-bromo-4-chloro-3-indoyl-beta-D-thio-galactopyranoside (X-Gal) 
100 mg X-Gal, 2 mL N,N' -dimethyl-formamide, cover with foil and store at-20 °C. 
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Protocol for Freeze-Drying Bacterial Cultures 
(pers. comm. Carol Mancuso Nichols, University of Tasmania, 2003) 

1) Subculture pure isolate onto solid media and incubate long enough to ensure a good cover of 
growth. 

2) Prepare labels with Strain Identification on one side and date on the other. Make sure ink will 
not run when wet. Prepare 4-5 ampoules for each strain. 

3) Place these labels into glass ampoule (Borosilicate - approx 8mm diam X 105 mm long). Plug 
ampoule with small piece of cotton wool, rolled for easy removal and replacement. 

4) Place ampoules into paper Sterilope for autoclaving and autoclave at 121 °C for 20 min. 

5) Prepare 50 ml 1/2 strength seawater (25 ml deionized water+ 25 ml seawater (or equivalent). 
Autoclave at 121 °C for 20 min. Prepare 50 ml 20% (w:v) solution of skim milk in deionized 
water and autoclave at 108 °C for 30 min. After cooling combine the solutions. 

6) Aseptically, using the skim milk solution, prepare a suspension of cells from agar plate. Add 
0.5 ml to each ampoule and replace cotton plug. Try to avoid dripping suspension down the 
inside of the ampoule, if possible. 

7) Place ampoule into circular rack for vacuum centrifugation [Speedivac Centrifigal Freeze 
Drier, Model 5PS, Edwards High Vacuum, Ltd, Sussex, England], which spins the ampoules that 
are placed under a glass dome. Turn on vacuum. The centrifugation keeps the liquid milk/ cells 
from boiling up under vacuum. 

8) After 2 hrs, turn off centrifuge and continue drying for a further 6-8 hrs. 

9) When the contents of the ampoules is dried, remove ampoules. Using air I gas mix, draw out 
ampoules in flame so that the section of the ampoule below 2 from the top and above 5-6 cm 
from the bottom is a narrow capillary. 

10) Carefully place ampoule on the 48 port manifold of the freeze-drier. Turn on vacuum. Leave 
for 1-2 hrs to ensure vacuum. 

11) Holding ampoule at the bottom, use flame to seal ampoule at the narrow section while 
pulling it gently away from the manifold. Ensure the system is still under vacuum before 
proceeding. Use flame to round any sharp/pointy ends on the ampoule. 

12) Open ampoule and add 0.5 ml liquid media. Streak onto agar plate to check for viability and 
purity. 

Bacterial cultures stored at -70°C. Cultures maintained in duplicate, with one set held for 
subculture purposes only. Vials were placed at -20°C for 24 hrs before transfer to -70°C for 
storage up to 7 years. 
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