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PREFACE

Broadly speaking, an engineerfs:constant aim is the: creatien of semething
which serves mankind;; In order to achieve his-aim the engineer has te tackle
numerous- problems arising between the time of conceptien and the final bringing
inte service of the product;_;To this end it is convenient to picture~the process
as divided inte three stages. The first stage is to recognise the existence of
.‘ the real problem, with‘its multitude of complexities and details, alljat varying

levels of importanceLf The real problem is always too difficult te handle
directly, and as an’aid to thinking, great simplifications are made. The simplified

problem may be called the physical model, in which only: the mere important -

aspects of ‘the real problem are defined“"The setting up of a physical medel
requires sklll, Judgement and, in most cases, ‘experience with s1m11ar B
situatiens: It follews that the flrst phys1cal model may at times be subJect

to subsequent variatiens and rev131ons._ Flnally, a mathematical medel is formulatedj

this model attempts to descrlbe, by means of mathematlcal equatlons, the behaviour
of the physical model... For example, if the real problem is one of structural
design,:the unknowns in the final equations are usually design parameters- such

as stress, deflection, beam depth and so on.r'Thus the solution of thefequations
defines the behaviour of the physical medel in terms of des1gn parameters, but -
the degree to which these apply to the real preblem depends on how well the

physlcal model represents the real structure, Final design is achieved only
after many cycles of appralsal, modlflcatlons to the physical model, reflnements,

re-evaluation, and se on.

The above philesephy is generally appllcable, 1ndeed it is believed to be
the only successful methed of problem solv1ng in any fleld espe01ally in

engineering,

This thesis is concerned with the problem of.the behaviour of framed

structures, - Throughout the work, emphasis is placed on the geometry ef the

deformations of the frame, Altheugh it i$ often not appreciated, the geometrlc

B approach has domlnated throughout the nlstory of structural englneerlng development,

The reason for this is eobvious, because once the deformations of a structure

| are’ known, other quantltles like stresses, strains, bending moments and so on,.
are eas1ly calculated Anether reason is that deformatiens, unlike forces

(the alternative to a geemetric approach is a force approach), can be pictured
and drawn to scale or sketched Such a picture is readily obtained from R |
experiments and one is always pleasantly surprised at how much infermation

can be drawn from but the s1mplest measurements of deformations. The author
has experienced most ci-ccess from s1mply constructed, light and flexible medels

which, apart frem being 1nexpen31ve, are easily deformed by hand, and the deformed
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models are quickly sketched or traced. Frequently a wire or cardboard model

may be used in order to gain a preliminary understanding of the deformations,

Once a picture of the deformations of a structure has been formed in
one's mind, the formulation of physical and mathematical models gollows
be
naturally. For example, in general all the members of a frameAgn two directions,

twist, and stretch or shorten, but quite often only one of these types of

deformation is important. The physical model descrlblng this type of behaviour
is obvious. Nevertheless one must not lose 31ght of other. possible deformations;
these may. need to be introduced as subsequent refinements., A goed example of

when the first physical model must be changed, is provided by the class of frames

in which the member stretchings (or shortenings) are the primary deformations,
Such frames are liable to instability, that is the deformed frame with its
membersbremaining straight is not always stable, and the frame buckles under
certain combinations of loading, When if does, then of course the bending
deformations become most important, and the physical model must be modified

to include these deformations as well as the member stretchings and sheftenings.

Instability of frames is 6ne of the maintopics of this thesis,-
Undoubtedly most of the ideas about instability are based on the work of the
greet mathematiciai. Leonharcd Euler, in the eighteenth century. It was Euler
who first established a buckling condition for a simple uniform pin-ended
column; These ideas have gradually been expanded to émbrace a much wider
field of structures such as buckling of frames, plates, shells, beam webs,‘and
so on, However, it should not be forgotten that Euler's analysis is only- a ’
mathematical model of a much simplified physical model of a real column, and
there is a danger of using the results of such an analysis in situatione where
it is no longer valid, even as a first approximation. Euler type bucklithis,
defined by a bifurcation, or a number of bifurcations, on the load;defermatiOn
diagram for the structure; at each of these forks on the diagram the structure.
deforms accordlng to a consistent pattern, and under constant loading it suddenly
deflects into some other pattern called the buckling mede; the corresponding
loads are called the buckling or critical loads. This type of buckling is;iﬁ
fact a reasonable description of the behaviour of isolated columns and statically
determinate frames, but in most other structures there exist influences which. ‘
do not permit them to deflect under constant load, and their buckling behaviour
cannot therefore be of the Euler type. Examples of this different buckling
behaviour are shells and redundant frames; the latter are examined in this thesis,
Generally speaking, Euler type buckling is the exception rather than the rule,
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In addition, there is the questlon of the practical significance

of the existence of some unstable state. In practice a structure always

exhibits deformations other than those which are considered in the physical
mcdel' Ameng these are the deformatlons which arise when the structure -
buckles, and their 1mportance usually 1ncreases as the structure is subJected
to .greater primary deformatlons.; When the additional deformations are.
included in the analysis, the- calculated load carrying capacity of the
structure is greatly affected, and may be far less than the buckling load
predlcted if they are ignored.

-Unfortunately, some of the above considerations are frequently neglected
in current literature.' Thus, although the problem of structural behaviour has

been intensively investigated, there remains an untold number of questions.

The author hopes that the work te follow herein may provide a useful attempt
te pose important practical questions, and give a guide as to how they may be
answered, and hence promote a clearer understanding of the behavieur of

structures, which is urgently needed by structural designers,:

In conformity with the definition of an engineer's aim, as given
earlier, the aim of this thesis is to investigate the problem of.the behaviour
of framed structures, with particular reference to elastic instability.

Deéign is centinually kept in mind as being the end product of this research,

and wherever possible, design procedures are suggested. Some of these may

nof be unique, nor have they been'proved in practice, but the author believcs

. that the principles are soundly baséd en a reasonable understanding of
sffuctural behaviolr, '
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SUMMARY

CHAPTER ONE begins with a preliminary examinatien of the problem of
instability of framés; This is followed by a brief description of the
development of instability studies, startlng with Buler's analys1s of a
pin-ended column and culmlnatlng with the now classical matrix analysis

of rigidly jointed frames. A simple frame is analyzed in order to show

that the various methods of analysis all have the same physical and
mathematical models but employ different methods of handling the mathematics,
Experimental methods are discussed, and the chapter concludes with the
formulation of a mathematical model suitable for the prediction of frame
behavioﬁr.‘ This model can be used to obtain an estimate of the load

carrying of a frame, and hence it provides a useful design procedure,

CHAPTER TWO deals ﬁith the application of energy methods in structural analysis.
The two‘types, COmplementary energy and strain energy, are introduced by

means of a simple example and it is clearly shown‘that they are quivalent

’_to geometric and statical con31deratlons respectively. - These ideas_aré'
.extended and applled to some common beam problems, for which'rapid approximate
solutions are found., It is then shown that the classical matrix method of
structural analysié, using joint displacements as unknowns, is equivalent

to a strain energy'approach, and this naturally'leads to -a powerful

approximate method of solutien., The méthod.is applied.to the analysis

of a two-bay eight-storey building frame% and the results are compared

with a computer  solution. .

CHAPTER THREE proposes a new method for. the determination of buckling modes
and loads of rigidly jointed frames. The method is baSed on a strain‘enefgy
wnalysis, and it is identified as a linearization of the usual stiffness
matrix approach. This 1eads to a useful iterative numerical scheme.‘ Proofs
are given of upper and lower bound theorems, and the method is applled to a
number of frames, including a few in. three dimensions. Most of these

analyses are cheoked by -experimental measurements.

- CHAPTER FOUR extends the work into the analysis of redundant frames, »The_

complementary ehergy method is proposed aé‘the most cenvenient way of.

deriving the compatibility equations relating the member shortenings., A |
mathematical model is developed for the.évaluaﬁion_of the shortening of
bent pin-ended members. The problem of buckling of redundant frames is
intreduced by means of an analyéis of a éimple pin-jointed frame, and

some useful ideas are brought to light. The following section presents some
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of the results of experimental work on the behaviour of redundant frames with

rigid joints. It is shown that the buckling behaviour is not of the Euler

type. An earlier definition of instability is therefore closely re-examined,
and this leads to a new formulation of the problem, A general stability
criterion is set up méthematically and applied to some simple singly-redundant
frames, and the results are compared with measurements, In conclusion a
method for predicting the behaviour of initially crooked redundant frames

is developed and gpplied to a trivial example,



Symbols are defined when they first appear in the text.

(ix)
NOTATION

notation used 1s as follows:

A
C
E
floro)

= {1/a

MoOpbd = O OH OO WHOR NEIY H O

e
—~
[o}
H
N

S~

€

Q:D > m D>

cross sectional area

complementary energy

Young's modulus

stress

torsion modulus

second moment of area (or unit matrix)

polar second moment of area

stiffness matrix

member length

bending moment

axial force in a member

Euler load of pin-ended member
radius of gyration

strain energy

applied load

generalized force

generalized displacement (or coordinate)
deflection;

member shortening (also sway)
strain

curvature

latent root

rotation

“superscript to denote a matrix or vector,

The general
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CHAPTER ONE

ELASTIC INSTABILITY OF FRAMES

1.1 INTRODUCTION

Instability of structures is a subject which has received a
considerable amount of attention, originating with Euler’s analysis
of the buckling of a pin-ended columne The classical approach developed
by Euler also forms the foundation of the analysis of instability of '
structures., 4 structure is said to be in stable equilibrium when small -
changes in loading are accompanied by corréspondingly small changes in
the deférmatioﬁs,; On the other hand, instability is associated with a
state of unstable equilibrium when small changes in loading produce
large changes in the deformations ultimately resulting in failure of
the structure., Mathematically this definition of instability can be
written as .

x/dX =e0 . ; | (1.1)

where x is a generalized displacement and X is the correéponding generalized

force, Inversely this becomes
9%/3x = 0 (1:2)

and this formal definition of instability is adopted in-the work te
follow; in practice it is easier to use than the former, which exhibits

the difficulties of manipulating infinities,-

Broadly speaking failure of a structure by instability may be
separated into two distinect classes, Firstly there is‘the failure brought
about -by large scale yielding of parts of the structure. When this occurs
thése parts continue to deform under constant or nearly constant load and
may be thought of as hinges;ﬁ As more hinges form the structure eventually
becomes a mechanism and collapses as such, the load at which this occurs
is known as the collgpse load; the analysis of this type of instability

is a complete study in its own right,

Secondly, large deformations may take place in the elastic range
of the material, if at some -stage the structure can no longer sﬁpport its
loads due to its decreasing stiffness as the loads are increased, This

type of instability is usually referred to as elastic buckling.

So far the term 'structure' has been employed in its general
sense, embracing frames, plates and shells, single machine elements
and so on, This thesis is mainly concerned with instability of frames

and in particular with the problems of elastic buckling of frames.



Essentially this problem is the same as that posed by Euler, and in order

to obtain a clear understénding‘of what is involved, the fundamental ideas
are recapituiated in the following sections, The treatment gi&en in these
sections is found in most textbooks on structural analysis but is included

here for the sake 6f completeness.

1.2 THE PIN-ENDED COLUMN

Consider a pin-ended column AB initially straight, compressed by

an axial force P as shown in figure 1.1. We ask ourselves if there exists

figure 1,1 = pin-ended. column

an equilibrium'configuration other than the straight form, Supposing there
is, let y = f(x) describe this configuration., Then the bending moment at
the point (x, y) on the deflected centre line of the column is given by

M=«~Py. | | - (1.3)

anticlockwise moments being considered positive, If the deflections y are
small compared with the length of the column, the curvature is approximately
given by , _
= 4%v/dx? A
¢ = d%y/dx : (144)

According to the usual assumptions in linear theory of bending ef beams, the
bending moment is related to the curvature by the expression

Thus equation (1.3) becomes , .
EI(d%/dx?) + Py = 0 | (1.6)

The solution of this differential equation is

y = a sin kx + b cos kx ; k° = B/EI (1.7)



Use of the boundary conditions of zero end deflections reduces this to
y =& sin‘kn x : (1.8)

where | i k nﬂ/l y n= 1, 2, 3, e o o

n

or y = O everywhere, this solution being trivial, It is seen that a
deflected equilibrium configuration is possible only for certain discrete

values of P given by

P = 02 rE1/1° (1.9)

and the corresponding deflected shapes are of sinusoidal form

yﬁ = &, sin(nMx/1) | ,(1°1O)

where a, is undefined as to magnitude, éithough it is restricted by the
approximate expression for the curvature and by the condition of linearity
implied in equation (1.5). P, is called the nth, buckling load of the
column and y, is c;lled the corresponding buckling mode,

. This problem was first solved by Euler some two hundred years ago
and is still used today as the basis of all elastic instability studies -
relating to fremes. When n = 1 we have what is called the fundamental
buckling condition, and P, =ﬂ2EI/12 = Q is commonly known.as the Euler

load, this being the smallest load at which the pin-ended column has an
equij.ibrimn configuratioen other than the lst'rai'ght form. For values of P
less than Q the column is in equilibrium only in the straight form, at
P = Q the column is in neutral equilibrium, and at values of P greater than-
Q the colum is in unstable equilibrium. The behaviour of this mathematical
model of the column is indicated graphically in figure (1.2) by two straight
lines,
LOAD
(P)
Q

y=a,sinfwx/L)

DEFLECTION (Y)

figure 1,2 - load deformstion diagrem



The buckling loads and modes for columns with other end conditions
can be obtained by similar analyses, and in general it is possible to put
the fundamental buckling load in the form

=1PEI(e1)? o (1.11)

where (el) is called the effective length of the column, that is the length

of a pin-ended column having the same buckling load as the celumn under question,

1,3 THE PRACTICAL COLUMN

Euler's . analysis, es set out in the previous section, is idealized in
the sense that it implies perfect straightness of the column, ends completely
free to rotate, purely axial load (that is no eccentricity), uniformity of = ..
cross-section and homogeneity of the material, In practice such conditions.
are never realized, and the lack of these conditions is broadly classified

under the heading of. 1n1t1al 1mperfectlons. As a consequence of initial _'

" imperfections, a column under test will begin to deflect as soon as a load
is applied and Euler's analysis is therefore no longer a reasonable
representation of the behaviour of a practlcal column, The mathematlcal
analysis can be improved to take intoe account some initial imperfections

such as eccentricity of loading, initial curvature and the effects of end

moments, and experiments have shown that for a large class of columns the
behaviour under load can be fairly well predicted. If the ends'of the

column are pinned, (that is free to rotate, ) it can be shown that as the
ratio P/Q approaches unity the behaviour of an imperfect column is |
asymptotlc to Euler s theory. This has led to the very useful experimental
technique known as the Southwell plot, which is discussed in more detail in
section (1.9). The Euler load is generally not reached in tests, unless
there are some external restraints, since as the deflections tend to become
large the strain in parts of the column exceeds the yield value. How closely
the Euler load can be approached depends on the magnitude of the imperfections,
Despite the fact that the Buler load may not be reached in practice, it is
and remains a useful result, The behaviour of a column under test is shown
superimposed on the Euler mathematical model in flgure. (1‘.2).. The various
curves are for different magnitudes of initial croockedness and the post-yield
regions are indicated by broken curves, The maximum -load which the column

can carry is usually not much greater than the load to cause first yield°



1,4 DESIGN TECHNIQUES

The estimation of allowable loads on columns can be dene in
several ways but only the more commonly used techniques are described

here,

(a) EPEuler stress formula

The Euler stress, fj is defined as

£5 = Q/A:TrZEI/Alz =7Y2E/(l/r)2 , ‘ (1.12)

which is the direct axigl stress at which the column buckles, It is

. also known as the critical stress. Expression (1.12) is shown graphically
by the continuous curve in figure (1.3)s The non-linearity of the stress

~7

o/r.

figure 1,3 - critical stress curve ‘

strain relation after the proportional limit reduces the critical stress,
and the dashed curve gives the critical stfess‘beyond thiS'point.: For
design purpeses the increase in critical stress above the yield stress

is generally ignored, and the dotted line is used, For a given 1/r,

ratie the critical stress is ?ead from the graph, and the allowable average
stress is obtained by dividing the critical stress by a suitable facter -
of safety, which is taken either constant or a function of the 1/r ratio.
The major difficulty with this design method appears to be the selection

of a facter of safety. This is because the behaviour of a column in practice

is quite‘differenﬂ from that predicted by the Euler theory. To overcome
this difficulty a large factor of safety is used,-



(b) Desgign based on initial imperfections

In this design technique the effects of initial imperfections are
all replaced by a-single initizl curvature pattern., The function representing
this pattern does not affect the calculations to any significant extent, and
for simplicity a sine curve is generally used, that is thé initial shape of

the column is defined by

J, = a, sinfrx/1) | | (1a3)

If y is the shape of the column when it carried an axial load P, then
equations (1;3) and (1.4) still hold, but the bending'moment—curvature

relation is changed to

M = EI($-. ) o (1.14)

where ¢o is the initial curvature, The differential equation is selved in

the usual way, and the maximum extreme fibre stress occurrihg at the.centre
of the column is readily found to be
_ | , |
£ = (¢/0)1 + 4a/(1-p/Q).2] (1.15)

max

where A is the cross sectional area and Z is the section modulus, Equating

this to the yield stress, we obtain the well known Perry formula

£1 = P.'/A = L[fy + (n+1)£5] -%l/[fy+ (n+1)fE]2 -4 £ £y (1A.16)

where P' is the load which will just cause first yield £, in the extreme

Y
fibres, and fp is the Euler stress as defined above, The quantity n is a

measure of the magnitude of the imperfections and is defined by

n=a v/r2 A | (1.17)

where v is the distance from the neutral axisqto the extreme fibres, and
r is the radius of gyration, n is usually specified as some fraction of
the 1/r ratio, which is meant to allew for small inherent eccentricities
as well as initial curvature, The allowable average stress is obtained by

dividing f£' by a factor of safety. -

(c) Empirical Formulag

A third design technique is by the use of purely empirical
formulas., These are of the form '
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y |
(1) the Rankine formula, £ = g/[}+ b(1/r)?] |
(ii) the Johnson pgarabelic formula, f = a - b(l/r)2

a - b(1/r)

(1ii) the straight line formula, = f

In all cases f is the allowable average axial stress, and the constants
a and b are chosen to fit experimental results. A& factor of safety is
also incorporated in these formulas. The use of these formulas is generally

restricted to certain ranges of the 1/r ratio,

There are of course numerous arguments for or against the use
of any particular design techaique., Present day design codes differ in
opinion, but with sensibly chosen numerical values in the relevant |
formulas there is probably little difference in the end result, irreépecti?e.
of which technique is used., It must be borne in mind that all the design
formulas mentioned are in reality empirical,as each invelves the selection
of é factor of safety or other quantity, and these are obtained oniy by
experiment and by experience of what has been proved to be safe. This

is the basis of all design codes.

If the column has end conditions other than pinned, the length .
1 in the design formulas is replaced by.the effective 1ength;

1.5 DESIGN OF FRAMES

So far the discussion of design methods has been restricted
to iselated columns whose effective lengths are known or can be readily
estimated. In the design of compression members of frames these design
formulas are still applicable, provided the effective lengths of these
members can be found, Since the end conditions are generally noet known |
beforehand some difficultyiérises, and this is the real'problem in frame
design. Design codes usually give a table of effective lengths for
compression members with various end connections, but, although these
are reliable, the designs are probably overconservative since attention
jg focussed on individual members. If the frame has weak joints it is

close to being pln-jointed,,ﬁand the design of compression members on an



individual basis should be adequate. However, most frames haﬁe_rigid or
nearly rigid joints, so that lateral deflections in any member affect the
whole frame, The magnitude of the deflections depends on the stiffnesseés
of the joimt s, which in turn depends on the conditions in the neighbouring
members, and so on. Thus the concept of a buckling member is no longer
useful, and the stability of the whole frame must be 1nvest1gated and used
in design, together with an overall factor of safety.

Although it is poSsible to calcuiate the elastic buckling loads-.
of frames, and hence the effective lengths, more numerical computation is-
reQuired than is generally warranted for routine design office work, and
therefore most frames are designed using empirical»ihformation from design -
codes, Here again the only justification seems to be the satisfactory
performance of past designs; The designer is also faced with the questien
of economy; ﬁhat is, the additional cost of non-standard member sizes;
which may have to be used, could well exceed the saVinés on the "more

efficient" design.

The problem of frame design is discussed again in section (1.11),
together with the author's proposal for improved'design techniques,

1,6 ELASTIC INSTABILITY OF FRAMES

As for the p1n-ended column, the basic problem of elastic
instability of frames is to find those loads, or cembination of 1oads,
for which. the frame has an equilibrium conflguratlon other than that in. -
which all members remain straight. If the frame has pinned joints,vthe _ B
buckling load would be the smallest load at which one of the members
carries its Euler load, for then this member buckles on its own and
cannot sustain an'increase in load, thereby effectively rendering the
frame a mechanism, If the frame is m-fold statically indeterminate with
respect to the axial forces in its members, then in general (m + 1) nembers
must carry the Euler load wheh the frame buckles, For the time being, only
statically deteérminate frames are considered; the buckling of redundant
frames is treated in chapter four., The buckling mode in the statically
determinate case is defined simply by the deflected shape of the buckled

member, that is a hdalf sine wave.

In practice the joints of a frame are nearly rigid, and the
analysis'of_elastic ingtability becomes more difficult as the whole frame

must be taken into account. Drastic simplifications are necessary to get
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a manageable mathematical model. These are common to all metheds of
attack and are described here in order to keep in mind the limitations

of the analyses, For simplicity, only plane frames buckling in their
‘ ‘ :

plane are considered, but the arguments are readily extended into three
dimensions, ’ '

' The first simplifying step is to replace the real frame by a
physical model of the same dimensions, having its members perfectly

straight initially, the centrelines of the members lie in one plane

and intersect at the joints, the joints are perfectly rigid, and
loads are applied at the joints only and in the plane of the frame,

It is also custemary to neglect secondary bending moments arising from
changes in the geometry of the frame due to the changes in the axial
lengths of the members, The bending moments resulting from lateral

deformation of the members are called primary bending'momepts;. It

is clear that the simplified model of the frame can be loaded so that
the members remain straight., To define buckling of the physical
model, the concept of an initial disturbance is useful., Suppose the
frame is given a disturbanCe, exciting lateral deformations in the
plane of the frame; if there is no other load on the frame it remains
in stable equilibrium, and the deflected shape can be calculated by
standard ﬁethdds of analysis, If the disturbance is applied when the
frame carries some load, additional bending moments arise és a result
of the axial forces in the members, and hence the deflections are
increased, giving increased bending moments and so on. Equilibrium
may be stable or unstable depending on the magnitude of the primary
load. Obviously if this is smail, equilibrium is stable but at:

some discrete values of the primary load the additional deflectionsg
due to the axial forces in the members are just larger than those
caused by the disturbance acting alene, and then the final deformations
are undefined and the frame is said to buckle, Although the

magnitude of the deformations is undefined, the frame assumes a .
definite‘shape, called the bﬁCkling mode, In general there exist
several buckling modes, each associated with a different value of

the primary load. In this definition of buckling it has been assumed
that although the deformations are undefined as to magnitude, they are
sufficiently small not to cause yielding, and that the usualnsmall
deflectioen theory is applicablé.

The basic problem of elastic instability is therefore the

determination of loadings on the physical model for which an infinitesimal
‘disturbance is sufficient to excite buckling, In actual frames,

disturbances need not be introduced as the crookedness of the members,
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eccentricity of loads and many other factors cause the members to
deflect as soon as load is applied,in the same way as the pin—ended'
column in section (1.3). The behaviour of practiCal frames is discussed

in more detail in sections (1.9) and (1.10).

Several methods of solution are available; the more commonly
used approaches are summarized in the following section, in a sequence
designed to bring out the ideas leading up to the new method developed
by the author in chapter three of this thesis,

1,7 REVIEW OF EXISTING METHODS FOR THE DETERMINATION OF ELASTIC BUCKLING LOADS

(a) Moment distribution convergence as a stability criterion.

This method is due to Hoff (reference 1),'and is the result
of the impact of the Hardy-Cross moment distribution method on structural
analysis. A disturbing moment is applied at one joint of the frame, and

the frame's response is determined by moment distribution. Heff originally

used the Berry functions (x,(), tabulated by Niles and Newell (reference 2),
to calculate the stiffness and carry over factors of the members, but more
recently these have been tabulated directly by Livesley and Chandler
(reference 3), At loads beldw'the critical, the moment distribution

process converges, whereas at loads above the critical valﬁe the process
diverges. The convergence of the moment distribution process is therefore

a useful criterion of stability. If only a single disturbance is used, it

is necessary to ensure that it does in fact excite a companent of the‘bucklihg
mode under consideration., In actual problems it is likely that the desigﬁer
will want to take into account the initial curvatures in the members, lateral
loadlng of the members and other effects, so that a dlsturblng moment is
not‘needed to induce primary bending. This is perhaps the main advantage
ofﬁﬁhe;§§?f‘method in that the primary bending moments and a check on the
stabiiity are obtained by one computational process, although the nearness
of the buckling load will in general not be established unless these

calculations are repeated for other load values.

On the other hand there aré several major disadvantages to this
methods: Firstly, in some cages it is difficult to establish whether the
@gtribution process is converging or diverging. This can partly be
overcome by changing the order of balancing the jointss Secondly, even
if the buckling load is sandwiched closely, the method does not give the
assoclated buckling mode directly, this must be computed separately,
Thirdly, it is not possible to draw a graph to determine the buckling load
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by extrapolation or interpolation, Finally, the Hoff method involves
a considerable amount of numerical labour, as in any practical frame
it takes a long time for a disfurbance at one joint to be distributed

thrioughout the'ffame, and even longer for the carry=overs to return to
that joints '

Gregory (reference 4) has shown that the amount of
<Ymputation is considerably reduced by applying disturbing moments at
all the joints rather than at only one joints This is pdrticularly so
if the correct buckling mode can be pictufed,‘for then the disturbances
can be given the correct signs and ratios so as to excite the required
buckling mode; model observations are almost always necessary to
provide this picture, It is seen that this technique is very similar
to that of taking into account the initial curvatures of the membersy
If the initial curvatures are chosen, on the basis of model tests or
otherwise, to closely represent the final buckling mode, then the
final bending moments will be very reliable for design purposes, and

convergence (or divergence) of the distribution proceds should be rapids

(b) Stiffness method

Merchant (reference 5) developed a method which determines

the moment M required at a particular joint of the frame to produce a
given rotation & at that joint. The stiffness K, defined by

M=K®6

is calculated for a number of load values, and the lowest buckling
load is that for which the stiffness first becomes zero. Although
moment distribution is used in the nﬁmerical worky, this method has
the advantage of giving a graph such as in figure (1.4), and most

of the difficulties mentioned in part (a) of this section do not _
exist, because we are now searching for a zero rather than an infinity,
Nevertheless; several distributlon processes must be carried out to
establish the form of the graph,: There exist methods of estimating
the lowest buckling load by extrapolation from but a few points on
the curve at relatively low loads at which the inherent difficulties
of moment distribution are not so pronounced; these techniques are

a valuable aid in obtaining a reliable estimate of. the buckling load.

As in the Hoff method, the buckling mode must be computed separately.

.~

e
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K =M/8

figure 1.4 = stiffness graph

(¢) Matrix methodsg

With the advent of electronic digital computers, matrix formulation
of problems in structural analysis and related fields has become increasingly
popular, Matrix methods are particularly suited to the problem of the

determination of elastic buckling loads and modes of framed structures.

When the matrix of the equations relating member end moments to
the corresponding end slopes is set up, the mathematical criterion for
buckling is that the determinant of coefficients of M or @ vanishes,
Essentially this is a generalization of Merchant's stiffness method;
all the joints are rotated and the requirements of Jjoint equilibrium
give the joint moments necessary to produce these rotations. The stiffness
s and carry over factor c; as tabulated by Livesley and Chandler, (see also

appendix A) relate the end moments to the end slopes by the equations

Mg = k(sék + chB)

(1.19
Mg, = k(chA+ s 0g) )

where k = EI/1; and the first subscript denotes the end under considerations -
. For a plane frame consisting of say n joints, equations such as (1.19) are

written down for each member, and the moments applied at the joints are obtained



by summation of the end moments of members connected at the
respective joints. For example if members 1; 2, and 3 intersect
at the rth, joint of the frame and this joint is rotated throug"’fr
a small angle Qr, as shown in figure (1.5), then the member

end moments are

M., = kq(s,8, + 5,0,6)
M, = ks, e + 8,0,0,) | (1420)

Mr3 = k (s 6, + 830393)

where 91 26> ,'93 are the rotations at the far ends of the respective
members, For equilibrium of the joint an externgl moment Mr 1s required,

1
2
3
figure 1,45 = Group of members at a Joint
given by
Mo=M o+ M+ M, (1.21)

which, after the substitution of equations (1420), becomes of the form '

Mr = arrer * a’r‘le‘l * a':c*'292 * ar393 (1.22)
where the coefficients a depend on the k values of each member and

upon the stability functions, s and sc of the members. Equations such

as this are written for each joint, so that in general the follﬁWlng

system of equations is obtained

’ﬁ:’i -"’6 (1¢23)
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where K is a symmetric matrix, called the stiffness matrix, the elements of
which are a function lof the stability functions of some or of all the members
of the frame, M is the vector defining the joint moments, and 8is the vector

defining the corresponding joint rotations.

In general the mathematical model of the frame is undisturbed, so
that M is a null vector, and equation (1.23) becomes

K .6 =20 (1.24)

4 non-trivial solution exists only if the determinant of K, that is |§] y is
identically zero and then the rotations are undefined in magnitude, but they

bear a definite ratio to each other.

‘Thus, mathematically speaking, the problem has been reduced to
the determination of thoseload values for which Iﬁw vanishes, and this is
perhaps the most powerful method for the estimation of buckling loads and
modes of framed structures, Here.égaih several mathematical techniques are

available, but it sufficesto describe only the more commonly used methods of
solution,

(1) Evaluation of the determinant

The classical approach in this case is the obvious one, that is
to evaluate the determinant at a number of load valuess The buckling loadé _
are then found graphically and the associated modes are calculated by setting
an arbitrary rotation equal to unity and solving the equations for the :
remaining unknowns., For frames of any complexity the order of the determinant
becomes high, and this method is apt to become very tedious as weli as

inaccurate due to accumulating errors in the evaluation of the determinant,

(11) Latent roots of the stiffness matrix

Gregory (reference 6) has shown that equation (1.23) is conveniently
solved by the extraction of latent roots and latent vectors of the matrix K.
A latent root, A, of K is defined as

A=M/8, 5 1=1,2, 40404 (1.25)

From this definition it is seen that A represents a kind of generalised
overall stiffness of the frame, Substitution of equation (1.25) into
(1.23) yields '

-~

(X =AT) .6= D | (1426)
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where 1 is the unit matrlx. That 1is, Qhe matrix K is modified by
subtracting A from each of the elements on the leading dlagonal.
As before, a non~trivial golution exists only if the determinant

|% —4\5[ is identically zero, which is the condition used to calculate A .

In general there exist n latent roots for a given (n x n) symmetric matrix,
each associated with a different latent vector, ‘

At any of the buckling loads of the frame the determinant
lK| itgelf vanishes, and the righthandside of equatlon (1.23) is zero,
so that one of the latent roots of the matrix X also vanishes, It can
be shown that at loads smaller than the lowest buckling load all the
latent roots are positive, whence it follows that the lowest buckling
load is that for which the gmallest latent root first becomes zero, and

the associated buckling mode is the corresponding latent vector, The

largest latent root of a matrix is readily extracted by a standard
intensification process (see for example reference 7), and Gregofy
shows that this can be used to find the smallest latent root by what
he calls a "parallel shift" of the latggt roots, which is analogous
to & transfer of origin, That is, if X is the largest latent root
of the matrix (K - gI), then the smallest latent root of K A is
given by

/\1 = /\1 + g * (1»27)
and the lowest buckling load is found by graphlng A1 against load

to determlne its first zero,

The most important feature of Gregory's method is that
the parallel shift does not change the latent vectors of E} hence
the latent vector associated with the largest latent root of,(i'—Agiy.
at the lowest buckling load is in fact the corresponding buckling
mode, A further advantage of this method is that cénvergence of the
intensification process is greatly enhanced by starting with a trial
vector cloge to the,buckling mode, and this can be obtained from tests

on crude models of the frame, often a cardboard model is sufficiente

Although it may seem that the extraction of two latent roots
~ is required, the labour involved is but a little more than that of
extractlng one,because only a rough estimate of g is requlred, it is
necessary only to ensure that the shift is numerically larger than the
mean ‘of A and g,

¥ g is the mangitude of the "shift" which is equal to the largest
latent root of ﬁ;
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(1ii) McMinn's method

McMinn (reference 8) calculates the lowest buckling load from the
applied matrix § defined by

§=8".7T (1.28)
where 53'1 is the matrix obtained from‘E'by dividing each column by its
element on the leading diagonaly; and the elements on the leading diagonal

are zero, The lowest buckling load in this case is the load at which the
largest latent root of a'equals =2+ Although McMinn's modification of the
stiffness matrix requires less work than Gregory's parallel shift, it suffers
the disadvantage that the latent vector of'a'cd:responding to ité largest
latent root is not simply related to the buckling mode; the mode must be
computed separately,' This also necessitates the use of an unguided choice

for the first trial vector in the intensification processe

(d) Energy methods

Rayleigh (reference 9) first conceived the idea of using assumed
deflection curves in a strain energy integral, and minimizing this intégral
to calculate what he calls the "disposable parameters" involved in defining
the curves. This method of approximate solution is used to solve a wide
variety of problems; for example the buckling load of a pin-ended column

may be calculated to any degree of accuracy by continually improving the
agsumption for the deflected shape (see for example reference 10).

The Rayleigh method is readily extended to the stability analysis
of fremes. The buckled shape of each member is guessed, its strain energy
is evaluated, and the results are summed to obtain the total strain energy
of the frame., The strain energy of a single member, U is defined by (see
chapter two)

s 8

g 6
U =ffMd¢dx -deA-fMAB 48, -fM]'BA d6; (1.29)

o 0

where Ais the axial shortening due to bending and is given by

4 .
a=4[lay/e)? ax | (1.30)

In the case of a linear moment curvature relation, the first term in

equation ({129) becomes

) { { {
f fmdx - f fzwd‘i’dx‘“é:% J EId? dx = %JEI(dzy/dxz)%x (1.31)
o 0 [/ (7}

’ o o0
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If the loaded but undeflected state is chosen as energy reference
datum, then under the assumption already made that P remains unaltered

by the lateral deformations, the second term becomesg

a 4
..fp dA= .-—{;Pf(dy/dx)zdx (1.32)
[~] [~]
For the whole frame, the total strain energy is
all g 5 ’ \4 2 On 6
U= EI(d“y/dx?)~dx ~5P dx)“dx -~ M dG—-d} 1a
=5 {a[myetio o[ ar/aen [ 0 -[ig, 8] (.3

. It is seen that the first term in this summatian represents
the internal strain energy of bending for the whole frame. The second
term is the work done by the external loads on the frame, and it is

readily shown that
all !

5 |
mem{;{% J (ay/ax)%ax} = { fu, o, | (30

where Si is the deflection of the load W; , and the summation extends
over all the applied loads., Similarly, the summation involving the

member end moments is equivalent to
&
M, 46, 1a
RILELT (1:35)
o .

which is the work done by the joint moments Mj by rotating the joints
through the small angles 9j » the summation extending over all the
joints. In the general analysis of the idealized mathematical model,
the joints are undisturbed, and this term therefore vanishes. It
remaing then to specify the deflected shape of each member in terms

of one parameter, or more in the Rayleigh~Ritz method, evaluate the
necessary integrals, and minimize expression (1,33) with respect to
the disposable parameters, This leads to a sys@em of linear equations,
and hence to the usual criterion that the determinant of coefficients

must vanish for a non-zero solution of the parametersy

1.8 THE BUCKLING OF A SIMPLE FRAME

In order to obtain a deeper gppréciation of the underlying
principles in the analysié of elastic stability of frames, the
fundamental buckling load and mode for the equilateral triangular
frame shown in figure (1.6) will be calculated by the various methods
discussed in the previous section, Although this frame has no practical



- 18 =

application it is one of the simplest to analyse. Figure (1.6a) shows
" the antisymmetric buckling mode, and figure (1.6Db) the symmetric mode,

BP

El= constant

Q= 17'&5//1‘e

(P) (P) length

=P/2)

A

|

@ Antisymmetric modle o (b) Symmetric mode

figure 1,6 -~ Buckling modes of equilateral trianguler frame

these being the first two possible buckling modes, The symbols in
parjentheses at the centres of the members are the axial loads in
the members, compression being considered positive. In this problem

it is conveénient to treat P as the primary load parameter, and the
lowest buckling load is denoted by P

Preliminary analysig

Obviously the compresion members AB and BC have some
restraint against rotation at the ends, so that Pcr must be greater A
than Q, the Buler load of the members. Alsa, in the case of symmetric
buckling, these members are equivalent to columns built-in at B, and
partially restrained at A and C, If A ana. C were free to rotate, the
buckiing load would be 2,05Qy which is thereforé a lower bound for
symmetric buckling, For the anti-symmetric mode, M]3 2= MBC= 0,
(since MBA= MBC from antisymmetry, and their sum is zero for equilibrium
FT joint é), so that the members AB and BC are equivalent to columns
pinned at B, and having partial rotational restraint at A add C, Thus

Pcr must be less than 2,05 Q in the antisymmetric mode,
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This preliminary analysis establishes that the fUndamentgl
buckling mode is antisymmetricel, and that Pcr lies between Q and 2,05Q.

(a) Solution by the moment distribution convergence criterion

Figure (1.7) shows the distribution and carry-over factors
of the members, at the primary load P = Q. A disturbing moment of 100
units is applied at joint B, and the distribution process is carried out
in the table alongside figure (1.7), only half the calculations being

MB=/00
5Q e b
- MAB*,‘C@ MAc,CA Men, e
50 | |50
' -13.0 | 4-6

kb | g4 |-I3

3.4 | 03

-1:3 |22 |01

|08 |M,=28
0.3 | 0.5
0.2
-2l |-e- L

TOTALS 36.0 |-36-0]36.0

FINAL MOMENTS| 50.0 |-50.0| 50.0

figure 1,7 — digtribution and carry-over factors

shown as they are antisymmetrical; ‘It is seen that after joint A is
balanced, and therefore also joint C, there is an out of balance moment

of 28 units at joint B, and since this is less than the original disturbing
moment of 100 units, the process is converging, so that Pcr has not been
exceeded, as was to be expected from the preliminary analysis, The out of
balance moment of 28 units, when redistributed, obviously gives identical
calculations decreased by the ratio 28/100, so that the final bending
moments are easily obtained as the sum of an infinite geometric proéqu&ibn.
At thig load the balancing of joints A and C need not have been completed,
as it can be seen after the first cycle that the process is convergent,
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The distribution process is repeated for a primary load of 2Q in
the following table, and in this case one cyqle is sufficient to.indicate
divergence, so that P_ has been exceeded.

Mg= 100
Mg | Mac | Moaa
1235 50

- 33 |-/202 |-824

|- 394
/" 383 | Q62

Kuowing values of P both above and below Pcr s we can halve the
interval between converging and diverging cases, thereby successively
reducing the range until the desired accuracy is obtained. It is found,

after four more distribution processes, that the buckling load is within
the range ’

| 1.60Q < P < 1.65Q .

and for all practical purposes we can take P . = 1,63Qs
As mentioned earlier; the buckling mode is not obtained and
must be computed separately. The best way to do this is to work from

the bending moments calculated at a load somewhat less than Pcr‘ At
P = 1.6Q the bending moments are

MBA = MBC = 50 units

MAB = _MAC = 1145 units = -M,, = M

CA CB

The joint rotations are given by the equations

(E1/1)6, = 7 [2pM,5 —o0t,]
(E1/1)6, = % [,y + 2pM )]

where o ,f3 are the Berry functions for member AB, Dropping the factor
(6EI/1), and using the tables in Niles and Newell, we obtain

6, = ~1040 ; 6 = 2470

As a checky the calculations for member AC give

6A :ec = <1020
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Hence the buckling mode is approximately expressed by the ratio

6 :6, :0

A B C = —'00376 s 1 H ~O.376

It can be geen that for a frame having several joints, considerable

. extra computation is needed to obtain the buckling mode. In this
particular problem convergencé or divergence is readily detecﬁed,

but in more difficult frames this is not always the case, and it

is usually necessary to perform additional tests such as altering

the order of balancing the joints. This is especially important

if the fundamental mode is not known, For example, if equal and opposite
disturbing moments are applied to joints A and C of the equilateral
triangular frame, the symmetric mode is excited, and if the distribution

is kept symmetrical it will be found to be convergent at 1oad's..greater
than 1.63Q. Altering the order of balancing in this case reveals
dlvergence ’ 1ndlcating that the mndamen‘l'.al buckllng load has been

: exqeeded.

(b) Solution by Merchant's gtiffness method

In this method joint B is rotated a unit amount, and its
stiffness calculated, .that is the moment at that joint. This is most

eagily carried out in the form of a relaxation table, Since individual
member end moments are not of interest, it is convenient to use the so
called modified distribution factors, that is if an external moment M
is applied at a joint; then the moments required at neighbouring joints
to prevent their rotation are found by multiplying M by the appropriate .
modified distribution factors. These are shown alongside the relaxation

table below. The first line in the table gives the moment required at

RELAXATION TABLE
| Operation | Ma | Ma | Me:
bg =1/ | 6-59
distribvtion | 2.19 | 214
balance -2.19 -2./g
dist.  |-0.56 |-1.26 -0.56
bal. 0-54 0-56
- d/ist- o-14 |0.32 | O-14
modiFied distribution Factors bal. -0-/4 _0./4
dlist. -0.04 |-0.08 |-0-04
bal. 0.04 0.04
dist.  |9.0/ |0-02] 0.0/
oA omenss| 0- 01 | 5.59 | 0.01
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joint B to produce a unit rotation there. This is distributed in line (2),

and at this stage GB =1 GA

then balanced by equal and opposite external moments there, which in turn

==6b = 0a The moments at A and C are

must be distributed, resulting in unbalance of A and C, These are again
balanced and distributed; and so on until the out of balance moments are
sufficiently smalls Equations (1.19) are used to calculate the end moments,
and the primary load is arbitrarily taken as 0.5Q. To the accuracy shown,
the joint stiffness at P = 0,5Q is 5,59, Similar calCulations at other
load values give the stiffness plot shown in figure (1+8). From the graph,
the buckling load is obtained as

= 1163Q
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fioure 1.8 -_Stiffhe s for equilateral trisngular frame

which agrees with the value calculated before, The buckling mode in this
case is also simple to calculate if it is remembered that the balancing of
a Joint implies a rotation there given by '

6=8M/5s

where &M is the moment to be balanced, and 2 s is the sum of the member
stiffnesses at that joint. In this operation the other joints are-prévented



from rotation, and the moments to do this are calculated using the
modified distribution factors, At P = 1,63Q the sum of the balancing .
moments applied o joint A (and joint C) amounts to =2,38 units, and

the sum of the stiffness of the members at A is 6.13, so that
6, = 6, = ~0a388
Thus the buckling mode is given by

GA :GB _zec = ~0s388 : 1 3 ~0.388

This is probably more accurate than that obtained by Hoff's methoed,
in which the rotations can be calculated only at & load less than criticals

In most problems the stiffness graph need not be plotted
completely, as the lowest buckling load can be estimated fairly accurately
by extrapolation, For example, linear extrapolation from the two points
P = 0,5Q and P = 1,0Q gives P A 1,93 From the form of the graph it
readily follows that Pcr mast in fact be less than this, and the
calculation of a negative stiffness at P = 1.,8Q confirms this. Linear
extrapolation between 1,0Q and 1,8Q gives a lower bound, that is
Pmr>1‘58Q° Once three points on the graph have been found a much
better estimate of Pcr can be found by quadratic extrapolation, that
is by drawing a parabola through the points. For the three points
005Q, 1.0Q and 1.8Q this gives Pcr$=1.61Q, which is seen to be only
1% different from the exact values

(¢) Solution by matrix methods

Denoting the stiffness and carry over factors of the compression
members by s and ¢ respectively, and those for the tension member by s'!' and
¢!, the end moments are determined from equations (1.19), and summation at

the joints gives the stiffness matrix as

(s + 8') sc glet ]
X = sc 28 sc (1.36)
stet? sc (stat)

where the stability functions can be found in Livesley and Chandler's
tables (reference 3) as functions of the P/Q ratio of the members,

(1) Zeros of determinant

The determinant of most easily evaluated by setting up the

matrix numerically, and expanding according to the rule of Sarrus for
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third-order determinants. Figure (1.9) shows the plot of the value of the
determinant, D against the load P, a wide range being covered as a matter

of interests It is seen that the determinant vanishes at P = 1.63Q and at

500 : e oo e
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figure 1,9 = Value of determinant for equilateral triasngular frame
P = 2.87Q, which are the buckling loads for the antisymmetric and symmetric

modes respectively, To calculate the buckling modes corresponding to these
loads it is necessary to solve the stiffness equations. At P = 1.63Q these

equations are

]

6.139A + 3-019B + 1.7850 0

3.016A + 20309B + 3.0190

Il
o

|
(@]

10789A + 30019B + 601390 =
If GB is put equal to unity, the solution of the equations is

which_ defines. the buckling mode corresponding to P o = 1.63Qa
At P = 2,87Q the equations are

1...679A + 6,27GB + 1_.689C =0

I
(@

6.279A - 7-899B * 6&2790 =
1.686, + 6,270 + 1.670, =

l
o
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In this case it is found that if GB is equated to unity, the solution

”

A

10

is undefined, This is because the determinant of any two of the

equations is in fact zero, which in turn means that the original third
order determinant can be factorized, one factor giﬁing the antisymmetrie
mode, and the other factor giving the symmetric mode, The symmetric mode
has 9B = Oy and the solution of the above e@uations then becomeg Gh = - 02

which defines this mode completelys

(ii) Latent roots of the gtiffness matrix

The latent roots of the natrix X are calculated from the
¢ondition that the determinant of the matrix (X = AT) vanishes. From
equations (1436) it follows that for the frame under consideration, this

condition ig

(.48t =A) sc glet | =0
- sc (28 ~A) sc | (1437)
gtet | sc (s + gtal)

Generally only the smallest latent root is of interest, and
this can be found by Gregory's parallel shift method. However, in this
case it is easy to détermine all the latent roots by expanding the above
determinant and solv%ng the resulting cubic equation, Figure (1,10) shows

hs\\\\*k;\;:;* ) ' | | B

N
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the latent roots plotted against load. It is seen that one of the roots
vanishes at P = 1,63Q and one at P = 2.87Q, the first two buckling loads.

The latent vectors corresponding to these loads are respectively

: 0 1B = ;0,385 1 1 =0,385

C
:>D
(os)
«

!

. L’.‘ ) — . .
and | QA :8p bC = 1 : 0 : =1

which represent the two modes shown in figure (1.6). These results agree

with those obtained previously.

(iii) McMinn's Method

At P = 0 the stiffness matrix is

~ = "1
K = | 7,09 247 1.86

2.7 493 2u47

1486 2ol 7«09

Dividing each column by its element on the leading diagonal, and repiacing

the leading diagonal elements by zero, the matxix BD‘1 is obtained as

st = [o 0.501 0,262 ]
04348 0 0,348
| 0,262 00501 0 |
and hence the allied matrix d becomes
T=6" F=[ 1 o501 0.262)
0.348 =1 0.348
| 00262 0,501 = ~1

4 standard -rocess for extracting the largest latent root is given in
reference 7, With (1, 1, 1) as a sturting vector, six iterations give
the vector B

116 = (—036’78 s 1 s _O..678) K
and the estimate of the largest latent root at this stage is -1.:58.

Two more steps give

u.7 = (—00681 [} 1 ] —00681)
u.8 = (—00680 5 1 [y —00680)

Thus, to slide rule accuracy, the process has converged, and since the
largect latent root is numerically less than two, the buckling load has
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not been exceeded, Similar calculations at P = 1.5Q and 1.8Q are

sufficient to give a reasonable plot, from which the buckling load
1ls obtained as '

Pcr = 1:63Q

and the latent vector corresponding to this load is
(1 5 04975 4 1)
which is seen to bear no simple relation to the buckling mode,

(d) Solution to Rayleigh'g yethod

The specification of the functional form for the assumed

deflected shape is quite arbitrary, and in this case,bgélynomials
are convenient, The simplest polynomials which can be fitted are

y=4 Yo[(x/l) - (x/l)z] for members AB and BC |
and y =4 YO[(JQ/I) - 2(:{/1)2] for member AC, (0<(x/1)<%) (1.38)

L
These shapes correspond to the ani%symmetric mode, and satisfy the
boundary conditions of zero deflection at the joints, and also of
compatibility of slopes-at the joints, The disposable parameter, Yo

is the central deflection of the compression members,

The total strain energy of the frame is evaluated according
to equation (1.33), and the condition for its minimum i expressed by

the equation
a'U/ayo = 38/ y.GEI/13 -8y P/1=0

whence, either (i) Yo = 05 that is the trivial solution,

or (ii) P = 48(EI/12); in which case ¥, is undefined. The
latter solution is thus an estimate of the buckling load for the anti-
symmetric mode, and it can be shown (see for example reference 10)

that this estimate is an upper bound, so that Pcr‘<48EI/12. This

is about three times the correct value, and the error is attributed

to the inadequacy of the assumed shapeSg- As can be seen from equations
(1.38), these assumed curves imply a constant curvature, and hence a
conétant bending moment; along the members, and obviously the joints

are not in equilibrium momeht-wise. A better shape would be

y = y, sin(mx/1) for AB and BC

(1.39)
vy 3y, sin(2my/1) for AC .
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These curves satisfy\equilibrium at the joints, but in this case all
mémber end moments are zero,which is also unrealistic, The'estimate

of the buckling load, obtained from minimum strain energy, is 39.5 (El/lz),
which is 1ittle better than the previous estimates

The simplest polynomials which satisfy equilibrium at the joints, as well

as compatibility of slopes and deflections, are

y = (165 /NL(x/1) + 3(x/1)? = 7(x/1)> + 3(x/1)4] for AB and BC

y = (165 /9] (/1) = 3(x/1)F + 2(x/1)7] for AC,(0<(%/1)<%)

Minimum strain enérgy gives an upper bound for the buckling load,
R _ 1.
Pcr<‘l6.6 EI/1% = 1.68Q

which is seen to be only about 3% high. Better estimates can be found by
satisfying boundary conditions in higher derivatives, but the gain in

accuracy is offset by the increase in the amount of comﬁutation.

From the example just studied it is evident that all methods
for the determination of buckling loads and modes are basically similar,
the only differences being in the approach to the numerical computation,
Hoff's method, using moment distribution; is in fact the relaxation solution
of the flexibility matrix, that is the set of simultaneous equations in the
member end momentse At the buckling load the determinant of coefficients
vanishes, so that the solution is undefined for even the smallest disturbancs,

which means that the process must diverge at the buckling load,

T

Merchant!s method overcomes this by putting an arbitrary joint
rotation equal to unity, and by keeping this constant, the successive
distribution of out of balance joint moments yields a finite solution, and
the moment at the disturbed joint becomes zero at the buckling lbad. The
distribution process is readily seen to be equivalent to the relaxation

solution for the remaining joint rotations in equations (1423)e

The latﬁnt root method, as developed by Gregory, is a logical
extension of Merchanttd method, All the joints are rotated simultaneously,

and the latent root solution is egsentially a linear combination of elementary
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Merchant type solutions, the "unit" rotation being adjusted to make the
stiffness at all joints the same,

McMinn's method defies a physical explanation although
undoubtedly this exists,

Energy methods are generally approximate solutions, and the
physical interpretation as given in most texts, leaves much to be
desired. It is shown in the following chapter that energy methods are

merely alternative devices for getting up equations of statics (strain

energy) or geometry (complementary energy) s and these equations are
exact or approximate, depending on the nature of the simplifications

which are necessarily made,

As well as the methods mentioned above, various authors

have proposed alternative solutions, notably Bolton, Waters, Allen
(references 11, 125 13 respectively,) Some authors suggest replacing‘v

the frame, or parts thereof, by groups of members, with various simpl%ﬁying
assumptions for the end conditions, such as pinned ends or fixed ends,

This ig of course the éimplification of an already simplified

mathematical model of. the real frame which can be a dangeious précticé

for obvious reasonse | |

Irrespective of which method of analysis is finally decided
upon, difficulties of one kind or another are bound to arise, Ggherally
speaking it is a question of convenience of numerical solution and the
ability to apply engineering judgment and intuition, keeping in mind
firstly that engineers fequire quick reliable answers rather than
accurate resulis, and secondly that the analysis of this mathematical
model is but the first step in the assessment of the performance of a

frames

109 IHE PRACTICAL FRAME; EXPERIMENTAL METHODS

The concept of buckling of the simplified mathematical model,
as set out in the previous sections, is defined by means of an initial
disturbance, In actual frames these disturbances need not necessarily
be introduced, as the initial imperfections such as initial curvatures,
edcentricity of loads and many other factors are sufficient to excite
lateral deformations as soon as load is applied. In fact the behaviour
ig. very similar to that of a pin ended column with initial curvature.
Assuming that the initial crookedness of the isolated pin-ended column
can be expressed as a linear combination of the buckling modes, that
is as the Fourier series
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Yo =Zan sin(nmx/1) (1e41)
n=19 .
then the differential equation of equilibrium (1.6) is modified to
2 T 2 —n R
EI(d%y/dx" = d%y /ax?) + By = 0 . (1e42)

The solution of equation (1.42) gi%res the deflected shape under load as

2 &y sin(mme/1) ' S
¥ :; -7/ | _(1543)

Thus each _component‘ of the initial ‘crookedness;'pattern 1s magnified by the
ratio 1/(1-B/nQ). As P approaches Q the first term dominates, and the
deflected shape is closely approximated by the first term, that is

y & a sin(my/1)/(1-B/Q) (144)
The central deflection is'given by |
6, = a/(1-2/Q)

where &y 1s the initial central crookedness, - This expression is shown

graphically in figure (1.11a), The deflection is a hyperbolic function
of the loaq P, running away to infinity as P approaches Qs Southwell

QF === s e e

<
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i central defld. (§ measuvred defia (s -

ol %) - A T

figure (1,11) - Southwell Plot

(reference 14) first recognised this as a valuable tool for the experimental
determination of the buckling loads of columns. In a test, the measured
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deflection is (6, = a4 )y which shifts the hyperbola to pass through
the origin, The plot of (8 - a1)/P against ( dT> is then a

straight line of slope 1/Q and 1ntercept a1/Q, ag shown in figure
(16110). This graph is com@pnly known as the Southwell plot on

deflectlon.

The Southwell plot has been wi&ély used for the experimental
det?rmination of the elastic buckling loads of frames, and it works

~equ411y well for rotations, curvatures or indeed any deformation parameter
which can be expressed in the form of equation (1.44)e Gregory

(reference 15) shows that it is convenient to use measured strains;

and justifies the general use of the Southwell plot on the basis of
numerous tests, some of which are verified analytlcally. A rigorous
mathematical proof of the Southwell plot on plane or space frames has
since been given by Ariaratnam (reference 16), In general, if Vo
represents the initial crookedness of the frame, then this can be
expressed as a linear combination of the n buckling modes Y1295 »

oo a3 e That is

Vo =285 V3 - (1.45)

If A is used to denote a generalized load paﬁameter,,and A1 3 ‘kz s
o v e 3 An are the critical values of A s then the frame deflections
y» under load A, are given by

= Z 84 yi/(1“’\/)‘i) | : (1646)

3

That is each component is magnified by the ratio 1/(1= A/ Ai) in the
game way as the pin-ended column, Also, as A approaches the first
buckling load, A 1 S8, the first term dominates, and a linear Southwell
plot is obtained. Expression (1.46) can be differentiated, whence it

is seen that the same expresgsion also applies to rotations and curvatures. |

Gregory also suggests the possibility of using the Southwell
plot equation as a‘&esign formula, by equating the maximum strain to the
yield strain, giving an equation similar to the Perry formula for the
pin-ended column, This method is a definite improvement on the design
of frames by individual members using the pin-ended coluﬁn formulas with
guessed effective lengths. However, as Gregory poihts out, "a great deal
of experimental work is required to determine, systematize and tabulate
the variation of ¢ (a crookedness parameter) and A {the critical action

causing elastic buckling) for many types of structures",



- 32 =~

1,10 THE PRACTICAL FRAME; PREDICTED BEHAVIOUR

The behaviour of a practical frame, and its load carrying capacity
depend to a greaﬁ extent on the magnitude of the initial imperfections, and
to a lesser extent on the functional form of these imperfections. In most

instances the load carrying capacity is considerably less than the calculated

lowest buckling load, so that the latter loges its importance somewhat. The
designer ultimately wants to know how much load his frame can safely carry,
and thus a satisfactory prediction of frame behaviour becomes increasingly

important,

In this section an attempt is made to develop a simplified
mathematical model to predict the behaviour of an initially crooked frame
under load., The treatment given is that of the author. Attention is focussed
primarily on the joint rotations; once these are known, the deflected shape
of every member can be plotted, and curvatures, straihs, bending moments and
‘stresses are directly inferred, The functional form of the initial crookedness
pattern is chosen to resemble the fundamental buckling mode, and sinusoidal
curves are used for simplicity. Single member equations are derived in the
following paragraph, and the equations for the whole frame are obtained by

summation,

_ Congider an initially crooked member deformed by an axial force P
and end moments M, , My, as shown in figure (1.12). Assume that the initial’
crookedness can be expressed as a linear combination of the buckling modes,

M,

8 BA

For egui/ibrium of whole column, M s*M, A)/Z

figure 1,12
which, in this case, is the infinite Fourier geries

Z a sin(nm;/l) (1447)

pot B



- 33 =

The deflected shape under load P is given by the function y = f(x),
yet to be determined, The bending moment at the point (x, y) on the
centreline of the deflected column, M is given by

M= M 1-(/1)] + My, (/1) = By (148)

and for linkarly elastic material behaviour we have )
M = EI(d%/dx® = d% o/‘dxz.) (1}_.-.'@)
The solution Qf the resulting differential equation is
y = Acos(Px/1) + Bsin(Pm/1) = (M,5/P)(1-x/1) (1.50)
gy (/1) + T otn(omy/2)/ (1-2/2)

where the constants A and B are determined from the boundary conditions
that the deflection at the ends is zero, ahd the slopes are OA’ S

respectively at A and B, This gives, after some manipulation,

MAB/P

B = ~Acot 20¢ ~(M;,/P)cosec 20 ; x=3WIP 5 0= P/Q

A

15 = (E/1)(s) + scl) | (1051)
(EI/1)(sc 911'+ séy')

=,
]

o
=

6 56y =2 nm/1(1-/nQ) 5 0 =6 =) (=1)" nfe /1(1-F/nq) (1052)

n=
It 1s seen that the expressions for the end moments are of the same form
as for the initially straight column (see equations 1419), the rotations
being modified to indlude ’the effect of the initial curvature, At first
sight it appears that the deflections are infinite at P = Q, but this is
not so; the terms in 843 that is n =1, are

(s = sc)/(1-F/Q) (1.53)

and the limit of this expression as P-+Q can be shown to be 17'2/4.' The
summations in expressions (1+52) represent the initial end slopes
corresponding to the various Fourier terms in (1s47), but magnified
by the ratios n/(1-P/n%Q).

In the analysis of a whole frame it is convenient to choose
the Fourier coéfficients in such a way that there i1s no initial lack

of fit of angle between members at a joint, and that the initial joint
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rotations are in the same ratio as at buckling., Two coefficients per member
gsuffice for this, and the magnitude of the imperfections can be chosen as
the average measured value for the frame, or as an arbitrary fraction of the
member lengths, Alternatively, the initial imperfections need not be in
exactly the same ratio as at buckling, but can be chosen to resemble the
buckling mode, Once the initial crookedness pattern has been formulated the
member end goments can be found from equations (1+51), and summation at the
Joints gives the joint moments. In general there are no applied joint
moments; and the following matrix equation is obtained

K +6=6 (1e54)

where K is the symmetric stiffness matrix which is identical to that for a
frame with no crookedness, § is the vector deiining the joint rotations under
load, and gg)is the vector defining the initial joint rotations, each
component, of which is magnified by the ratios appearing in equations (1.52)e
Equation (1,54) is solved for the joint rotations at various load values,

As an example, the behaviour of the equilateral triangular frame
shown in figure (1.6) is predicteds The crookedness pattern chosen is that

shown in figure (1,13), and the coefficients 8y 3 8, 3 a5 are to be determined

Y=Y, = dﬂ sin(mx/L)+a, sin(mx/t)
y, = @, sin(21x/E)
¢1.55)

flgure 1,13 = Crooked triangle
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so that the initial joint rotations are in the same ratio as at buckling,

that is
(M/1)(aq + 2a,)
(M71)(2a, )
(’n’/_l)(-a.] + 23

1

2)

Solution of these equations gives the Fourier

fra1/1 = ~0,6936,
2Ma,/1 = 043086
2.1@3/} = ~0,3856,

where 90 is the initial rotation at joint B,

s .
When the frame carried a load W the member end moments are

given by
= k[s0, + sc] - k[s08, + s6))
MAB—kseA+scB ;M.BA—kscA+sB
: , oo
Mo = k[gQ!-+ s‘c’Gé]; Moy = k[s*c*9A+sZkJ

M'BC =k[‘s'6]; + sc O'é] H MCB k[sc 9']34- Beg]

wiere
6 =6, - (Ma,/1)/(1=p)- (2ma/1)/ (=)
9X =6, - (2Ma,/1)/(1 +p/8)
Op = 0y + (1a,/1)/(1=p) ~ (2M,/1)/(1-p/4)
B = 6 = (2m3/1)/(1 +p/e)
8 = 8 ~ (aq/1)/(1=p) = (2May/1)/ (1~/4)
p= W12/{3 0751 |

—0.38590

coefficients as

(1.56)

(1.57)

(1.58)

(1.59)

The values of a1 s 8y 5 a5 are given by equations (1;5’7 )e The end moments

are summed at joints to obtain the joint moments, which are equated to

zero and the resulting linear simultaneous equations' are solved for the

joint roﬁations; these results are plotted non-dimensionally in figure

(1.14a) against the load parameter /.) » oSuperimposed on these - graphs are

the results obtained with a crookedness pattern of a half-sine wave in the

compression members and a full sine wave in the tension member, that is

vy = 8y sin(rx/1)

T2

a, sin(2m%/1)

(1.60)
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figure 1,14 = Calculated behaviour

- with aq = 2a2 = (LﬂT)EB (referred to as pattern 2), As can be seen, the

rotations in this case run away more rapidly than with the initial

crookedness pattern 1; +this is because the average crookedness is

greater, The Southwell plots for the two sets of results are shown in

figure (1.14b). These are almost linear, but show a slight tendency to
a higher buckling mode at low loads indicating that the crookedness

patterns contain a small portion of second and higher mode components,

The two plots do not differ significantly from parallel, and from the

i nverse slopes the buckling load is obtained as

~ _ .
T T .'—' 1964

I c

which is in excellent agreement with the result obtained in section

(18). ‘The intercepts give the first mode components of

rotations as

8 = —

(8)), = 0,976, (8,), =
- . for pattern 1, and .

: (6B)O = 0036‘70 » (UB)O =

the initial

1513c6

O°4656

for pattern 2
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Comparing these values with the initial rotations, it follows that
the first pattern was predominantly first mode, whereas for the
second pattern thére is little agreement, It must be remembered
that these results are not very reliable because the intercepts
are relatively small,

Figure (1.15) shows the measured behaviour of the rotations
in a test on a model made from 4in, x 1/8in. mild steel strips 10.1 in.

long. = The central crookedness in the compression members was estimated
to be 1/64 in. The flexural rigidity was determined by measurement of

fi
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deflections of a simply supported beam with central load, giving

EI = 2220 1bs.in2; the calculated buckling load is 605 lbs. Rotations
were measured by shining a beam of light on to mirrors glued to the
joints and obgerving the movement of the image on a scale. The
Southwell plots on the measured rotations are shown in figure (1.15b),
and are seen to be nearly linear indicating a buckling mode of 575

lbs. which is about 5% lower than the calculated value. From the
intercepts of the Southwell plots the first mode components of the

initial rotations are



0429 degrees

(),

(QB) = 0,17 degrees

(o]

which are comparable with the measured central crookedness of 1/64, in. and

a half sine wave pattern giving

<6k)0 :.~(9B>0Aé 6.28 degreess

With this value for 90, the measured behaviour is compared non-dimensionally
with the calculated behaviour in figure (1.14), which indicates reasonable
agreement, It must be borne in mind that the above comparisons are rather
superficial, as there is no rigorous basis for the choice of 90 to plot
rotations in terms of '905 that is, any of the curves could be arbitrarily
scaled horizontally., However the Southwell plots and the load carrying
capacity are governed primarily by the upper limits of the curves, and

these are asymptotic to the horizontal, so that any scaling has a

relatively small effect on the load to produce a given deformation.

It is also interesting to plot the wveriation of the ratio
0,/6, against load. This is shown == in figure (1a16¥z0r both
crookedness patterns, and superimposed on these is the measured plot,
As is to be expected, the predicted ratio QB/éh stays nearly constant
at 0385, the initial rotations being in the same ratio as at buckling,
For crookedness pattern (2), consisting of a half sine wave in the
compression members and & full gine wave in the tension member, the
ratio varies almost linearly with load, but this linearity seems to
be of little practical value, and it is most likely a coincidence,
The measured variation is rather erratic at first, mainly because
gmall errors in reading cause relatively large changes in the ratio,.
However, at loads approaching buckling, the ratio of the rotations tends
to the value of 04385 given by the calculated buckling mode,

1e11, CONGLUDING REMARKS

From the example studied in the previous section it is seen
that the method of calculating the deformations of a loaded initially
crooked frame can also be used to éstimate the elastic buckling loads
of frames, by means of a Southwell plot on calculated rotations. This
technique was first introduced by Lundquisﬁ (reference 17), who used
‘moment distribution to calculate the rotation of some joint, However,
thé behaviour of a real frame is such that the buckling load is never
" reached in practice, so that the buckling load of a frame is not as

¥ 506 pa 42 for figure (1.16)«
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important in this context as say, the load to cause first yield., These
loads may differ widely, depending on the overall slenderness of the
frame, Most frames have low slenderness ratios, 1/# in the vicinity

of 100, and the load to cause first yield plays a dominant role. The
yield load depends on the magnitude of the deformations, which in turn.

depend mainly on the magnitude of the initial imperfections. For this
reason it is a pity that in the literature so much attention has been
paid to the evaluation of buckling loads, and that buckling modes.are
usually treated as secondary. It is the author's opinion that the
buckling mode is of primary interest, since once this is known an analysis
such as in the previous section is readily performed, and from thig

the engineer can extract the necessary information for deéign.

However, as mentioned in section (1.5); a detailed analysis
of the stability of a frame and of its behaviour under working loads for
design purposes may not be warranted from the point of view of cost,

If the frame is of minor importance or of the "one—off type", it would .
certainly be designed on the individual member basis, but if the frame
is major, or if there is to be a large number of them, a more detailed
investigation should be carried out, and this will probably reward
itself, Such a design can be based on the techniques described in

the previous section, and the author suggests the following steps:

(a) Degign the frame on the basis of buckling of individual
members, using code recommended effective length ratiogy crookedness

parameter, and a permissible stress formula such as Perry-Robertson,

(b) Estimate, by one of the methods outlined in section (1.7),
the fundamental buckling load and mode of the preliminary design.

(c) Impose an unfavourable crookedness pattern, for example

a pattern resembling the fundamental buckling mode, and determine the
behaviour of the frame up to say, first yield, This appears to, be the
most difficult sﬁep at this stage as there is insufficient data on which
to base the selection of an overall crockedness parameter to describe the
imperfections of the frame. However, resort can always be made to single
column: data.

(a) Calculate the factor of safety against yield, A refinement of
this step is to calculate the factor of safety against total collapse,

but this involves an analysis of the behaviour of the frame in the elasto-
plastic region. This region is not eésy to handle, and since the reserve
of strength above first yield is usually small, the addltlonal computatlon
is not considered worthwhile, except for stiff frames,
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(o) Modify the preliminary design, by comparing the calculated factor
of safety and the design factor of safety. Again, the latter may have to be

chosen from single column data and recommendationss

Steps (b), to (c) are then rppeated until satisfactory agreement is obtained.
Mternatively, the preliminary design can be modified after step (b)e From
the buckling logd and mode of the preliminary design, the effective lengths
. of the members are easily calculated, and these can then be used to obtain
the modified membgr sizes. | |

A des1gn along these lines is by no means to be classifled as a
better d691gn, but it is felt that it is on a more realistic basis; that
1ls, more attentlon is pald to the behaviour of the frame as a whole rather
thap the behaviour of individual members. In this context the technique |
described is merely the next step in frame design,

Finally, it must be stressed again that the ﬁathematical models
presented in this chapter describe only approximately the frame behaviours
Drastic simplifications were made to formulate them,and among the effects
not taken into account are non-linearity, large deformations, secondary
bending moments,‘initial stresses and yielding. A1l these affect the
behaviour of the frame, and the mathematical model needs to be considerably
‘refined to include these effects. At present such a complete study would
be too dlfflcult, and since the additional effects are generally small, a
knowledge of the buckling load and mode, together with a measure of the

overall crookedness of a frame, provides a reasonable plcture of the

frame behaviour,

ADDITIONAL NOTES FOR CHAPTER ONE

Section 144¢ The numerical figures in the Perry formula are due to Professor
Andrew Robertson who, as a result of exhaustive tests, showed that the

Perry formula works well for pin-ended columns for an average value of

n of 0,001 1/r, and he suggested the lower limit of 0,003 1/r for design
purposeses These figures, together with a factor of safety of 2.36, were
subsequently recommended by the steel structures research committee (reference
18). ‘

Sections 146, 1.7: Ths history of the development of stability analysis for
frames has been well set out by Bleich (reference 19), and a large part of
these ¢gctions is based on his books ’
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Tundquist appears to have been the first person to use moment
distribution in stability analyses by what is now called "Lundquist's
series criterion", In essence thig method is the same as the moment
distribution convergence criterion. Hoff proved; by a consideration
of the total potential energy of the system, that convergence of the

moment distribution is a necessary and sufficient condition for stability,
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CHAPTER TWO

ENERGY METHODS

2e1 | INTRODUCTION

Energy methods have provided a useful tool for solving certain
problems in structural analysis and related fields. Their use dates back
to the days of Castigliano (1873), who developed what is now known as the
principle of least work, for the analysis of statically indeterminate
frameworks., Since then the use of energy principleé has covered a wider

field, and has been considerably consolidated,

. This chapter begins with a close examination of the fundamental
ideas behind energy methods generally, in order to obtain a better appreciation
of their use and limitations. These elementary principles are demonstrated
with the aid of a simple inelastic string model loaded with deadweights, and
it is shown that the two distinct energy approaches, strain energy and
complementary energy, are merely alternative techniques for deriving equations
of statics and equations of geometrical compatibility respéctively. Once
this is established, more difficult problems can be attacked, continually

keeping in mind the limitation of the eq&ivalence just menﬁioned.
Energy methods give no information not obtainable directly,

either from statical or compatibility considerations, but their power lies
in the ease with which approximate solutions can be founds In this chapter
approximate solutionslare derived for some standard beam problems, leading
up to an iterative solution of large frames, such as, for example,multi-bay,
multi-storey building frames. ‘

2,2 THE TWO_TYPES OF ENERGY

Consider a force P which moves through a distance § in the
direction of the force; the variation of P with § is shown graphically
in figure (2.1). The strain energy, U is defined as the area under the
curve, that is §

U = (2.1)

Q

e = e e — L2 v)
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figure 2,1
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whereas the complementary energy is defined ag the area to the left of the
curve, that is P )
G Ejkd? (2.2)
0 .

These areas are shown shaded in the figure., The relation between the force
P and its displacement & can be quite arbitrary, and the energies exist so
long as the integrations can be performeds

In the reverse process we define the existéence of the two énergy
funetions U and C, and by differentiation we see that ‘

du/dé = P (2.3)

dc/dp = 6 (244)

That is, differentiation of strain (COmpiémentary) energy with respect to

the displacement (force) gives the corresponding force (displacement). In
other words there exists a duality between the two processes. The same
principle applies to any "generalized force" or "action" and its corresponding
"generalized displacement", for example moment-rotation, stress-strain,

From figure (2.1) it is readily seen that for a linear relation
between the force P and its displacement & , the strain and complementary
energies are equal, and can be interchanged at wills This has caused some
confusion in the pasts

In the case of a system of generalized forces, the separate
energies of the individual forées are summed over the wholé system, and
differentiation of the total strain energy with respect to some generalized
displacement gives the corresponding generalized force,or vice-versa when
complementary energy is use&. However, in these cases it becomes necessary
to define the dependence or otherwise of the forces and displacements involved
in the energy integral, as will be demonstrated in the following section.

2.3 ENERGY ANALYSIS OF A STRING MODEL

In ovder to examine the basic principles underlying the iuse of
energy methods in structural analysis, consider the system shown in figure
(2.2), This particular problem is treated by Southwell (reference 1), who
bases his analysis on small deflection theory, but it is shown here that
this restriction is not necessary., Essentially the system consists of a
vertical string ABC supporting a weight W, This string is displaced by a
horizontal string BD, passed over a pulley to support another weight w.
As the displacements vary, the latter string departs from its horizontal
position, but in the expériméﬁtal work carried out on this model the string
was always kept horizontal by means of a slip knot at Bs

LSRR b
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f£i e 2.2 —~ dinelagtic string model

» For simplicity in the analysis of this system, the string
is assumed to be inelastic; under these conditions the displaced

shape 15 wholly defined in terms of a gingle parameter, either x, the
vertical displacement of weight w, or X, the vertical displacement of
the weight W, or 8 , the inclination of the initially vertical string

.

(a) Analysis by statics

Let T be the tension in part AB' of the digplaced string.

Then for equilibrium of the glip knot, we have

2u
2V

0=-T ginf@+ w

1l

0

- T cog@+ W

The solution of these equations for the angle @ is obviously

tan@ = w/W

The displacement of the weight w, x is given by

x =1 tan@=(I/Ww

Alternatively, the unknown tension T can be eliminated directly by
examining the equilibrium of the displaced string AB*C'. For the
resultant moment about A, of all the forces acting on this string, to
be zero, we must have

' ZM=0=w=Wx+ul

(2.5)
(2.6)

(2.7)

(2.8)

(2.9)
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which gives the same result as before, If the welght W, supported\by the
vertical string ABC, is kept constant, then 1t follows that the dlsplacement

of the weight w, x is linearly related to w, and it- 1s seoggfromnthe above
analysis that this llnearlty 1s 1ndependent of the magnltuderof the displacement,
provided that the string BD is kg‘pt hOI‘lf)Ontal ‘1 Sout.hwellﬂanalyses the system
by treatlng the vertical string as belné displaced by horlzontal forces'applled
at f:.xed points along the string, in which case the vertlcal dlstance varies,

so that the linear relation between x and w holds only for* ,small !dlsplacements.

1 el
(b) Strain energy analysis ﬁ{”“i”"“j“”‘ : * i ,I'D -

| \&l \
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For the purpose of thls analys:Ls s cons:Lder firstly- the- potentlal

energy of the weights W and w, and’ deflne the total straln energy as

X .
U= deX + fw dx (2.10)

0 0
.There is no need in this problem to make a distinction between internal and

external strain enerey, 1#9.giong a8 the Jieplacenents £,and x are measured in
the same direction as their corresponding forces W and w. For small variations
8X, &x of the displacements from their equilibrium vglues, the veriation in
total straidenergy is ... . . B ST I SR
SUu=w(EX) .+ w(bx) - . . , (2.11)

with the restriction that the »'Variat‘ions are to\be' -carried out- fsubject to ‘the-

From figure (2.3) it is seen that these requirements are ' B
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§x = 1 secd (66) ; §X==1 secltanf(66) (2412)

the minus sign arises because §X is opposite in direction to that of
its corresponding force W, Alternatively we may write

6X = &(€x)sinb : C(2413)
By equation (2,11), the variation in strain energy in terms of x is

§U = - W(6 x)sinB + w(6 x) (2.14)

In the limit as §x approaches zero, this can be written

9U/9x =~ W sinb+ v o (2.15)

[A4 complete derivative could be used in this case s because the strain
energy can be expressed in terms of one parameter x, the single degree of

freedom of the system]. For the gtrain energy to be a minimum, its derivative

vanishes, that is

- Wsin@+w=0 (2.16)

Following the argument in section (2.2) of this chapter, this equation should
represent the equation of equilibrium in the direction of differentiation,

in this case in the horizontal direction, Comparison with the exact equation
(2.5), shows that the equivalence is valid only if T = W, which is approximately
true for small displacements, Similar expressioﬂs can be derivedlby differentiatio
élong different paths; for example, the variation in strain eneréy in terms of
§6 is obtained from equations (2,11) and (2,12) as

U = -_W?L secOtan0 (0 )+ wl sec?d (56) (2°17)1:i
whence we obtain, in the limit {
2U/36 = W1 secOtan® + wl secze.A_..A.;_‘é,.,_k,.x ( 2°135

When equated to zero, this leads to an approximate equation of equilibrium
comparable to the moment equation (2.9) of the exact analysis. In this case
the degree of approximation is found to be sin= tand , which is valid for
small displacements. It is also interesting to derive the results from the
'conservation of energy' equation., In this example the work done by the
variable weight w as it moves down a distance x is $wx, and the energy
required to raise the constant weight W through a height X is WX, and the
displacements are given by 2

x=1tanb ; X = 1(secéd -1) /(2.19)



Conservation of energy requires _
3wl tan® = Wi(secB- 1) - (2.20)

This equation, when solved for the angle & , reduces to
tan (6/2) =) or tan@= (w/W)[1 - $(u/W)?] (2.21)

Again this is a correct result when the displacements are small, but for large
displacements this expression differs from those obtained from minimum strain

energy equationsge

In all the sbove arguments the diserepancies are obvious; no account
has been taken of the work done in sliding the knot to keep the string BD
horizontal. In order to improve the strain energy analysis, this work should

be included, and we are thus led to consider the following ‘rain energy expression
x

X
U= fwax +fwdx +j:ndt (2.22)
0 ] (7] '
where t is the displacement corresponding to the tension T in the inclined
string, With this definition it is convenient to visualise the system as

three forces concurrent at the point B, as shown in figure (2.4a). The equations

of equilibrium relating these three forces can be derived from minimum strain

_ﬂkgﬁgfwA }gw
- ) n
Sl
@) - :
figure 2.4

energy equations, provided that variations in the strain emergy are carried

Yw _ - B

out subject to the restricting equations of geometrical compatibility,' Since
B is a point in a plane it has two degrees of freedom of movement, so that a
small displacement of B from its equilibrium position can be expressed in

terms of two independent parameters, such as §u and &v shown in figure (2.4b).
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The variations in the displacements xy X and t of the respective

forces wy, W and T are obtained from this figure as
fx= 6u ; X ==-6v ; 6t =o(6u) sin@+ (Ev)cos® (2.23)

The variation in strain energy is

EU=W(6X)+ w(bx) +I(6t) . (R624)
Substitution of the restricting equations (2.23) gives

U = -W(bv) + w(@®u) = T sin@(fu) + T césQ(SV)  (2.25)

From this expression the equation of equilibrium in any direction can be
obtained by suitably choosging £u and £v, ‘and passing to the limit to

get derivatives of U, which are then equated to zero, For example, if

$§v is put zero we obtain
dUBu = w-T sinf=0 . - (2.26)

which is the correct eqﬁation of equilibrium in the horizontal direction,
Similarly, to derive the equation of equilibrium in the direction of the

force T, we impose a displacement in that direction by putting
fu=~(bt)sin® ; &v = (6t) cos@ (2627)

This gives
2

9U/dt = — w sinB - W cos + ¥ 8in®@ + T cos® = 0
which is seen to be the correct equation of equilibrium in the direction

of the inclined string,

This method of strain energy of forces acting at a point always
yields correct equations of equilibrium, However, the problem as posed
required that the string BD remained horizontal. One way to visualize
this in the above mathematical model is by first allowing B to rise, and
then returning it to its original horizontal level by moving the point
of suppert A in the direction of the inclined string AB, It is seen that
the system has thus been made conservative, Stilwell (reference 2)
proposes an alternative conservative system by introducing a small pulley
at the knot, and applying a moment to the pulley to keep the string
horizontal; +the work done on the pulley as it rotates is included in

the strain enefgy expression,

(c)' Complementary energy analysis

With reference to figure‘(2.4), the complementary energy is

defined as w w T
c:f&dw +fxdw +§t ar (2,28)
0 0 °
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Variations in complementary energy are to be carried out subject to the
restricting equatiens of equilibrium, In this case there are three forces
wy Wand T, of which w and W are independent; that is, a change in either
does not affect the other, The third force T is not independent, but is
related to w and W by the equations of equilibrium, and the complementary
energy is to be differentiated subject to these restrictions, Taking, for

example, the derivative with respect to the variable weight w, we find

aCAw = x + X(W/w) +t(9T/dw) (2,29)

Since w and W are independent, 9W/3w = 0, and from equation (2.5) we find

- 9T/dw = cosecB (2.30)
whence we obtain
90/3w = x + 1t cosecB@= 0 (2.31)
or t =

- X 5in@ : (_2.32>

This is seen to be the correct equation of geometrical compatibility of the

displacements, In the same manner we find
=~ X cos @ ' (2433)

which is also a correct result, Figure (2,5) shows the displacements x,
X and t, the arrows indicating their positive directions, which- are those

of the correspending forces.

Although the treatment given in this section is rather brief,

the following important principles emerge clearly:
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(i) Variations in strain energy, carried out subject to
the requirements of geometrical compatibility, when
equated to zero, are equivalent to equations of

equilibrium,

(1i) Variations in complementary energy, carried out subject
to the requirements of statical equilibrium, when
equated to zero, are equivalent to equations of .

geometrical compatibility.

Care must be taken in both cases to define the independent parameters,
and also to ensure the inclusion of those terms in the relevant energy
expregsions, which are to appear in the equations of equilibrium (or
compatibility) to be derived from these expressions, In some problems
erroneous results can be obtained from what appear to be valid energy
expressions, A good example of this has been given by Oliver (reference
3), where the complementary energy method applied to the pin-ended column
gives the shortening twice its correct value. In general the only way to
ensure the validity of an energy expression is to identify the equation
of equilibrium (strain energy), or of compatibility (complementary energy),
which it replaces,

204 A STRAIN ENERGY METHOD APPLIED TO BEAMS

In this section the basic ideas, developed on an inelastic
string model, are extended to include elastic problems, such as bending
of beams. The usual small deflectiohlﬁheory of beams neglects the effect
of shear on the deflections; the same simplification is made in this
section in evaluating the strain energy of deformed beams., Consider a

small element of length ds of the beam, as shown in figure 2.6, The

o /-*”'"' X

figure 2,6 ~ beam element

load on the beam is agsumed to be ekpressible as

w = £(x) o (2.34)
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where x measures the position along the beam, and the positive direction of
the load w is the same as the direction of the deflection, which in this
case 1s taken according to the usual cartesian coordinate system; With
this sign convention, bending moments are taken as positive when they
produce a pesitive curvature, that is when dzy/dx2>>0; After bending, the
element AB takes up the new position A'B', and if axial load and shear are
-neglected, the total strain-energy of the element is given by '

fqu; fw s dy (2,35)
where ylis the angle through which the bendlng moment M rotates, that is

is the change in slope over the length ds of the beam. In the ipelastic
string problem there was no need to define internal and external strain
energies as separate quantities, However, in the present treatment this
distinction must be made; thus, in the above expression fux the total
strain energy, the first term represents the internal strain energy, that
is the energy required te deform the element ds, while the second term is
the work done by the load w, herein called the external strain energy; In

terms of the curvature qS of the element, we have

Y= ¢ds  (2436)

whence it follews that ¢ -y
' au = IM d¢ ds = fw dy ds (2.37)
0

Integration over the whole beam glves the total strain energy as

U= f( fMdé fw dy)ds (2.38)

where 1 denotes the length of the beam. In the case of a linear moment-
curvature relefion defined by

M=Ep , (2.39)
together with the usual‘approximatien for the curvature, ¢ = dzj/dx2 s this

expressien reduces to

y
:f[ﬁEI(d‘?Y/dXz)z - fw dylds (2.40)
[}

(]

It is interesting to apply the calculus of variations to this
strain energy expression in order to establish its validity. Assuming
y = y(x) is the correct deformed shape of the beam in its equilibrium
position, consider another shape close to this, That is, define a

variation in the deformed shape such that

i

y+ Sy =y v (2.41)

where q.ls a function similar to y, and X is a parameter which can be

made as small as desired. Using equation (2. 40), the variation in straln



energy is given by {

Yo
U+6U = !)[—éEI(dzy/dx2 +kdq/ax)? - fw dylds (2.42)
0

Expanding this expression, and neglecting the term in & ? s 1t is found
that {
5u = [Tasn@y/ad)@y/ad) -uy las (2.43)
0
The first term, when integrated twice by parts, reduces to

b s I 2, a2t
f«EI (d%/dx*)ds = [«Elvl(d v/dx )]‘.> ¥ BXEI(d»[/dx)(d y/dx )]o (R044)
[+ ) »
The two expressions to be evaluated at the limits of integration, 0 and 1,

can be made to vanish by suitably restricting the type of variation as
defined hw'n o When the variation is chosen se that the deformed shape
(y f-“dl), and its first derivative, are correct at the boundary, then N
and (d7/dx) both vanish at the boundaries, and we are left with

P |
§U = «fvl[EI(d4y/dx2) -} ds  (2645)
[

In the limit, as& tends to zero, th;i can be written as

0U/dxX = r q[EI(d4y/dx4) - wlds (R.46)
A _

For the total strain energy to be a minimum, this expression must
vanish., The only way in which this can be achieved for all possible
types of variations (provided q.and its first derivative are zero at
the boundaries), is for the expression in brackets to be zero at every

point aleng the beam, ‘That is, the strain energy is minimum when

El(d4y/ax®) =w=0 = o (2.47)

which is seen to be a valid equation of equilibrium, identical to that

usually developed from elementary principles in small deflection theory. .

When the load consists of one or more point loads, the double
integral expression for the work done by the loads is replaced by the

summation of integrals all Y,

[ fwidy.]. . ©(2.48)

where vi denotes the deflection of the load Wi, and the summation is

applied over all the loads.

‘Having established the validity of the above strain energy
expression, it may be used to solve beam problems, keeping in mind of course
that the solution is of necessity limited to the same extent as the usual

small deflection theory. One of the powers of energy methods is the ease
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with which appreximate solutions can be found, and this is demonstrated by
analysing the deflected shapes of some simple beam problems commonly

encountered,

(a) Simply supported beam

(i) Central concentrated lead

Consider a simply supported beam of uniform cross sectioen EI,
span 1, carrying a concentrated lead W at the centre of the span,
Obviously the deflected shape is symmetrical about the centre of the
span, so that any approximate function te be used in the strain energy
should at least satisfy this requirement, In the variational treatment
given above, it was stated that the approximate function and its first
derivative should be "correct" at the boundaries, that is at the simply
supported ends in this problem. Hewever, returning to equation (2.44),,
it is seen that the expressions at the limits of integration also
inveolve a term EI(dzy/dxz), which is the bending moment at the ends.

At a simply supported, or at a free end, this is zero, so that (dq/dx)
need not be zero there,

The simplest approximate shape would be

y = a; sin(fi%/1) (2.49)
with the origin at one of the simple supports. The parsfeter a, is the
deflection at the centre, and is to be chosen te make the total strain

energy a minimum, The total strain energy is evaluated from equation
- (2.40) as |

_ a,

U= f2ntEy/1? - [ v, (2.50)
0

Minimizing this with respect to aq 5 We find

30/dag = 0 = % & WHE/2° - W (2.51)

This expression gives as an estimate for the central deflection
aq = 2W13/4?'4'EI (2.52)

which differs by only about 2% from the more exact result of W13/48EI.
Thus in this case minimum energy gives the maximum deflection sufficiently

accurate for practical purposes. The correct deflected shape is given by
v =al3(/1) = 4(x/1)2] 5 o< x<1/2 - (2.53)

Using this in the strain energy equation, we naturally find the correct
value for 8qe The approximate and exact functions are compared graphically
in figure (2.7), and are seen to be very little different, Up to about

1/3 span the approximate deflection is greater than the exact function, and
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in the middle third of the span the deflection is underestimated.

The largest difference occurs at the centre,

1

Although the deflected shape is a géod fit, the slope is
less so, and the curvature is even worse, so that the'approximate
function is net reliable for the purpese of calculating bending
"~ moments, This is due to the inherent loss of acguracy caused by

differentiation, The maximum bending moment at the centre, as
obtained from equations (2.49) and (2.52), is 0.020W 1; compared

with the accurate result of W1/, this represents a difference of some

2548,

(ii) Uniformly distributed load

The same approximate function for the deflected shape,

when used for the beam with a unifermly distributed load W per unit
 length, gives results which are even more accurate than ih the
concentrated central load case, The central deflection:iis obtained

as

'= Ll%M’El - o (2.54)

whlch dlffers by only about 0.2% from the more accurate result. The
maximum bending moment, calculated from the approx1mate shape,is 05129w 12,

which is only about 3% dlfferent from the correct value°

(111) Non-symmetric cases

When the beam is not symmetrlcally loaded, the symmetric
half sine wave can stlll be used as an approximate expression for the

deflected shape, but the results are generally no longer sufficiently

accurate, In this case the assumed shape must be improved, and the
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function which lends itself most easily to the evaluation of strain
accuracy., Taking for example the case of a simply supported beam
carrying a concentrated load W at a quarter span, we can assume' a

deflected shape given by

y = a, sin(rx/1) + a, sin(2%/1) (2.55)
The total strain energy corresponding to this shape is :
U= (WE/2) (4 o2 + 4e) - W as (2.56)
0 :

where § is the deflection under the load, and is expressed in terms
of the parameters aq and a, as
6= %/"5 +a, (2.57)

Minimization of the strain energy with respect to these parameters gives

the two equations

A/dey = $0Ela /17 = W/VZ = 0
o, ’ (2.58)
3/ds, = 8PEIa,/1° - W =0
Using the values of aq and a, 5 a8 determined from these équations, in
the assumed shape, the deflection under the load is found to be
5 = qu1 /8 phur (2.59)

which differs by about 14% from the exact value. The maximim deflection
occurs at'a distance 0.451 from the support nearest the load, (compared
with 0,441 computed by the exact method) and is W1%/68,0EI which is 1%
greater than the exact value, | ' 3

| From the above few simple examples it becomes evident that
strain energy affords a quick and reliable method of computing beam
deflections. The agreement with more exact theory in general depends
on how well the approximate function for the deflected shape fits the
'problem. Usually sufficient accuracy can be achieved with a function
which satisfies only the geometric boundary conditions, that is those
relating to deflection and slope only. However, in some problems this
is not enough, and boundary conditions in bending moments, must also be
satisfied, In the gimply supported beam problems these conditions are
automatically fulfilled when using a Fourier sine series, since this has
zero curvature, and hence bending moment, at the boundaries., When the
simply supported beam is deformed by the action of moments applied at
its ends, the FOurief gine series gives poor results as is seen in the

next example,



(iv) End moments

Consider the simply supported beam deformed by end moments
MA’ MB , and let the end slopes be 9A , 9 respectively, Proceeding

in the same manner as in the previous example we flnd

- (PEY/1%) (3 a +432) - M , 46, - fM a6,

where

6, = (W/l)(aT; 2a,) 5 Op= (M1)(-ay + 2a,)

Minimizatien of the strain energy with respect to the parameters &,

and ay 5 and subject to the restricting equations of geometry gives

U/da; = 3 BT a,/17 ~MM,/1 + FMp/1 = 0

3U/day = 81 BL a /17 - 2M,/1 - 2M /1= 0

Substitution of a1 , a, , as obtained from these equations, in equations

(2,61), gives the selution in familiar form

6

p = (/208D (5, - 31;)

g

5 = (1/20°ET) (-3, + 5M)

whereas the exact selution is

6, = (1/€6E1) (M, - Mp)

The coefficients in these two solutions differ by about 24% and 9%
respectively, based on the accurate solution. The reason for the
large discrepancies is, as explained above, due to the fact that the
approximate shape has zero curvature at the ends, whereas the exact

function has curvatures equal to —MA/EI and MB/EI respectively,

(b) Cantilever beam

An approximate function for the deflected shape of a
cantilever, which fits the boundary conditions up to and including

the second derivative, is
y = a;[1~ cos(mx/21)]

with the origin taken at the.built—in end, When used in the strain

energy method this function gives satisfactory solutions for the

concentrated load at the free end, and for the uniformly distributed

load. If necessary, a second term, 52[15003(3n§/21)], can be added

to the above function to gain more accuracy,.

(2.60)

(2061)

(2,62)

(2.63)

(2.64)

(2.65)



(c) Beam built-in at both endg

A satisfactory approximate function for the deflected shape
of a built-in Leam is
y = a1[1- cos(2m/1) 1 | , (2.66)

which is symmetric about the centre of the beam. For non-symmetric cases,.
a second term, az[cos(nx/l) ~ cos(3mx/1) 1, must be added,

(d) Propped cantilever

The simplest approximate function for the deflected shape of a
propped cantilever, satisfying the’boundary conditions up to and including

the second derivative, is the single parameter function

v = a,[cosma/21) - cos(3my/21) ] - (2.67)

and this gives satisfactory results for the loadings commonly encountered,
An additional term of the form, az[cos(5ﬂ3/2l) - cos(7mx/21) ],‘will give

more accurate results.

From the above simple examples it is seen that quite reasonable
estimates of the deflections can be obtained with the use of only one
parameter in the guessed function defining the deflected shape, However in
more complicated problems a one parameter energy solution often does not give
sufficient accuracy, and it therefofe becomes necessary to choose approximate
functions for the deflected shape involving several parameters., These parameters
are then determined sb as to make the total strain energy a minimum, which is
equivalent to satisfying all the equilibrium requirements "on the average",
In this section Fourier series were used, because the integrals involved in
the strain energy function are then easily evaluated, The results thus
obtained were generally close to those obtained from the usual small deflection
theory. Exact results could be found by using an infinite series, or the
correct deflected shape if this is known., Once this has been established it
is no longer necessarj to evaluaﬁé.the strain energy integral, as the minimum
strain energy equations can be'ééﬁ #p directly from equilibrium considerations,
as is shown in the following section,
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2,5 STRAIN- ENERGY ANALYSIS OF STATICALLY INDETERMINATE FRAMES

In this section it is shown that the analysis of statically
indeterminate frameworks can conveniently be carried out using minimum
strain energy principles, It is not a separate method of analysis, but

merely an alternative technique for the derivatien of the equations of

equilibrium, which can equally well be set ub directly,

Following the classical method of analysis, attention is focussed
on the deformations of the joints of the frame, and the loadings on the frame
members aie replaced by "fixed end moments" (see for example reference 4.)
Thus the first problem is to determine thé end moements which, in combination
with the actual loading, produce no joint rotations, These end moments

are then relaxed and the resulting rotations are the same as those

produced by the loading itself,

In order to solve the above problem by means of strain energy
principles, consider the beam shown in figure (2.8). -Let 8, » O be the
end rotatiens, and MA’ My be the respective end moments to produce these .

M
X4

A =Y —— {—8
R —5

figure 2,8

rotations, both quantities being measured in the anticlockwise sense.
From elementary beam theory, the deflected shape of the beam is known
to be a polynemial function, and the function

7 = 10, (1) 2612 + ()% + 160~/ + (/1) . (2.68)

satisfies the.geometiic boundary conditiens of the problem, that is those
relating to deflections and slopes. Having defined the shape in terms of
the twoe end rétations, we can proceed in the usual manner, and minimize
the total strain energy with respect to the free parameters, This case is
the same as that in part 2.4(a) (iv) above, except for the differénce in
the functions describing the deflected shape of the beam,

.The equations
of minimum strain energy are S OR '
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Z)U/aeA = (E1/1)(48, + 28,) - M, = 0 (2.69)

au/aoB = (EI/1)(,29A + 49B) - Mp =0

and these are seen to be the exact relationships, as was to be expected,

since the exact shipe was used in the strain energy function,.

When analyzing a frame by the abovée method, the deflected shape
of the whole frame must be specified, and this is done by using an expression
such as (2,68) for each beam element in terms of its end rotations, If the
joints of the frame can be assumed rigid then the end rotations are‘equal to
the joint rotations, and thus the total number of parameters involved is equal
to the number of joints in the frame, Since energies are additive, the
minimum strain energy equ:tions for the whole frame are obtained by adding
equations such as (2.69), and there is thus no need to evaluate the strain
energy., Also, because the functions for the deflected shapes are exact,

the solution of the final linear algebraic equations is also exact.

_ So far enly joint rotation has been considered, but the ideas
are easily generalized to take into account joint translatiens. Also, no
account has been taken of axial lead effects which is customary and

reasonable provided the axial loads are small compared with the buckling

loads of the members treated as pin-ended columns,

2:6 ITERATIVE SOLUTION

The method of analysis outlined in the previous section is known
as the deformation methed, The final equations represent the conditions of
equilibrium of the joints, in terms of the generalised joint displacements;
As always, if the correct deflected shape is used to evaluate the strain
energy, the equations derived from minimum strain energy principles are
exact equations of equilibrium, and it would therefore seem that there
is no advantage to be :hined, Indeed this is so; one would derive the
equations directly, and an exact solution of these equations is
theoretically possible, However, even with the present high speed electronic
computers there is a 1imit to the number of equations which can ‘be handled;
this limit depends on the size of the machine, The same applies if
computations are to be done by hand, Should this be the case, then the
engineer is once more faced with the problem of developing alternative
numerical techniques in order to obtain a satisfactory solution, Here
again energy methods can provide an answer., The iterative solution

presented in this section is that of the author, and is believed to be new,
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Suppose that by some device ene can obtain atpproximate
values for some of the unknown generalized displacements, or
approximate ratios for a group of unknowns in the analysis of a
frame;‘ If the exact values were known; there would be no problem,

as any of the equations could be used to solve for the remaining

unknowns, but if the values are approximate, then different éolutions
are obtained depending on which equations are used, Naturally the
"best aVerage" is sought, and strain energy principles, being an
averaging process, can be used advantageously., The method is most
easily understood by way of a simple example; a general proof follows
‘readily, | ‘

Congider the two storey rectangular portal frame shown in
figure (2.9). Theldimensions, loads and stiffnesses are of no significance,

\\f
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. g i @1]’,_&) e ——— ._
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figure 2,9 - Portal frame

and ‘are non-dimensional for convenience. The deflected frame is sketched
in exaggerated scale, and the genéra.lized joint displacements together with
their genera‘lized. joint forces are written ehclosed in parentheses; their
positive di_rections are indicated by arrows, If axial load effects are

neglected, and.if deformations small, then A; = 4 1 .A; = Az,
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The equations of equilibrium are readily set up, and in matrix

form they are

- A - 7 -
(60)} 48 =24 0 -60 0 -60 A1 = H1 = 2ok
.2/, 2, 60 60 60 60 |14, H, 1.2
0 60 2000 200 600 0 61 M, -20
60 60 200 1200 © 400 92 M, -8 _(2.'70)
0 60 600 0 2000 200 || 6! M 20
60 60 0 400 200 1200 _9,2 M'-J 10 |

where the factor (60) represents the term (EI/1001), The generalized joint
forces are obtained by adding algebraically the member fixed end moments

and reactions, and negating the results, Using strain energy, the exact shape
of cach member is specified in terms of its end sways and rotations, its
strain ehergy evaluated, and the total minimized. Ih this problem the
parameters involved are the two sways and four rotations, The equations

of minimum total strain energy are the same as (2,70), the first being

dU/04, = 0, the second 3U/342 =0, and so on, There are only six
equations in this problem, and their solution is readily found by hand
computation,

To obtain an approximate solution it is necessary to guess the
magnitude of some of the unknowns. This is not easily done, but approximate

ratios can be determined from the sketch of the deflected shape of the
‘portal frame, As a very crude approximation, we have

A2 P 2A1

9, = 9'1 (2.71)
, -~

9, = 91

To use the six equations for obtaining the "best" solution for the three

'
unknowns 41 s 91 s 91 s> we take linear combinations to reduce the number
of equations to three, The correct combinations are those with the ratios

the same as in equations (2.71), that is (E1 + 2E2), (E3 + EA), (E5 + E6),
where Ei refers to the ith equation.‘ Justification for this is given in

the following section. In matrix form these combinations are

(60) | 48 180 180 {|A, | = | 4.80 ‘
180 3600 1000410, -28,0 (2,72)
180 1000 3600|| 8" 30,0
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These equations are readily solved, giving

A1 = 0,00232
| = =0,000272
]

6. = 0,0000987

1

To complete the solution, approximate values for the remaining three
unknowns &, , 92 , 92' must be found, This could be done by using the
guessed raties, but better values are obtained from the original
equations of equilibrium (2,70), using the computed values of

A,] ,91 ’ 9,'] as a partial solutien, A satisfactory procedure
is to selve the equations of equilibrium ef these generalized joint
forces related to the generalized joint displacements still to be
determined, In this problem, after substituting equétions (2,73)

(2.73)

in the second, fourth and last of equations (2,70), and solving the resulting

three equatidns for the remaining three unknowns, we find

A2 = 0,00375
92 =;o.ooo1735
6; = 0,000109

Thus equations (2,73) and (2.74) together constitute an approximate

solution for the joint rotations and sways of the two sterey portal

frame., The solution was derived from minimum strain energy principles,

(2.74)

using guessed ratios to reduce to final number of equations of equilibrium,

Since the guessed ratios are only. rough approximations, the
above solution must be improved. Clearly an iterative scheme can be
set up; from the first solution new raties can be calculated, and
the mmber of equations of equilibrium reduced to three as before,

and so on, This gives as a second solution for the portal frame

deformations

A1 = 0,00294

Az = 00004—47

91 = -0,000313

92 = =0,000170
! 0997

91 = 0,000FF

0. = 0,000102

N

(2.75)
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The differences between this solution and the previous solution are not
great, and a third iteration gives results which differ only slightly.
The results of the iterative solution presented above are summarized
in taz;e (2.1), in which all values have been multiplied by a factor
of 107,

Def Approximate solutiens exact.

* 15t ond [ ord solution
4, 23.2 2944 30,0 30,0
A, 37.5 | 4T | 453 | 449
9, =2,72 | =3.13 | =3.18 | =3.20
6, 174 | 170 | =1.68 | -1.66
@, | 0.987 | 0,997 | 1.08 | 1.18
6, | 1.09 | 1,02 | 1.00 | 1.00

Table 2.1

As can be seen, satisfactory égreement is obtained with the second
approximation, that is, after one iteration. A final check on the
accuracy of the solutien is to calculate the generalized joint forces
corresponding to the generalized jeint displacements as calculated.
These are

Hy = 2.35 (compared with 2.40 in the original equation)

Hy = 1,202 (1,20)

M, = -20.0 (~20.00)

M, = -8,03 (-8.00)

M, = 18,98 (20,00)
9.97 (10,00)

z.—\
I

which are within 5%, or less, of the applied forces and moments, so

that the solution is satisfactory fer practical purposes,

The advantage of the above approximate methed for a selution
of the deformations of the pertal frame, is little or nothing. In this
example a more accurate solutidn of the equatiens can be easily obtained
by direct methods. However, as the number of equations increases, the
method becemes mere feasible, Attention is focussed throughout on the

deformations, and frequently reasonable predictions as to the magnitude

(2.76)
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of some of these can be made, for example with the aid of inexpensive
flexible moedels, With this information available, fairly accurate
results can be obtained, which, although approximate, are of considerable
use, Furthermore, it is always possible to iterate towards a better
solutien. It is felt that convergence of the iterative scheme outlined

above is inherent in structural problems,but a formal proef is lacking;

2.7 PROOF OF LINEAR COMBINATIONS METHOD

The procedure for finding successive approximate solutions
for the deformatiohs by taking linear combinations of the equations of
equilibrium, is readily generalized, With the usual simplifications,
the deflected shape of any member can be specified in terms of its
end displacements and rotations. In problems such as those in the
previous section the exact shape of the deflected member is used, and
hence the strain energy is also exact., The number of parameters
equals the number of joint displacements and rotafions, and the

total strain energy,.U can .be expressed as

= £(x; 5 X g 0 0wy X) | (2.77)

where Xy 5 X2 5 e o oo g Xy
The values of these parameters which satisfy the conditions of

are the n generalized joint displacements. .

equilibrium are the same as those which make the total strain energy

a minimum, For convenience, put

9/9x, = E; =0 o o (2,78)

that is -the equation of equilibrium corresponding to the ith generalized .
displacement X3 o Suppese that a group of the unknown parameters are

expressed in terms of 'a single parameter, that is

Xi :I‘i X ; i = .], 2,A. ‘.. ° 9 m | (2079)

where the first m aré chosen for argument's sake only. The coefficients
r, are either known, or can be estimated approximately from, for example, .
a model test., After meking the relevant substitutions in the strain
energy expression, minimizatien is carried out with respect to the

remaining parameters xi(i =m+1,m+ 2, .., n), and the parameter

‘X defining the first m parameters., The equations of minimum total

strain energy are the same as equations (2.78) in which the relations
(2.79) have been substituted, except that the derivative of U with



respect to X becomes

dU/oX =§1 (au/ox, ) (axi/ax)

m :
~Z1ri El (2080)
= .

This is seen to be a linear combination of the equations of equilibrium

in the generalized forces corresponding to the generalized displacements

in the group x, = riX, with the coefficients r, as "weighting factors" in

the combination, From this it follows that the approximate solution emphasizes
the more important generalized displacements, and for this reason it is better

not to attempt to guess these, but rather those which are small in magnitude.

The above argument has been presented on the basis of grouping

some generalized displacement in terms of a single parameter X, using

numerical values for the coefficients r;; an extension of the argument to
cater for several groups, each having its own parameter and coefficients,

follows readily, and formal proof is not necessary,

The use of numerical values for the coefficients enables the
number of equations te be reduced, and a solution to be found. However,
this solution is only approximate, unleés the correct values of the co-
efficients are used, In order to improve the solution new coefficients
must be determined., Several processes suggest themselves; in the first

place consider the procedure of the previous section, that is, the genpecralized

displacements which were originally guessed,are calculated from those
equations of equilibrium in their corresponding generalized forces. This
follows immediately from differentiation of the total‘strain energy with
respect to thercoefficients T Although this method is simple and
justifiable, it suffers from the disadvantage that the number of equations
to be solved could be almost‘as large as the original number., A way out
of this difficulty is to treat only a certain number as unknowns,'using
the latest values of the remaining‘generalized displacements in the
respective equations. It is not possible to describe all.the possible
methods, but whichever is used, it must be a step nearer the correct
solution as long as the original equations of equilibrium are used, since
ultimately the correct generalized displacements are those which satisfy

these equations,

In closing, it must be stressed again that the approximate
method presented above is subject to the same simplifications as are
usually made iﬁ structurai analysis, so that the solution fer the behaviour
of the real structure is only as good as the mathematical model. In frame-
work problems the défor’mations are usually small, and putting A',] equal to

A1 in the portal frame of section (2.6) is quite safe. On the other
hand, the neglect of axial load effects may be serious, especially if the
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columns.carry axial loads which are of appreciable magnitude compared
with the Euler loads of the equivalent pin-ended columns. Fortunately
this can be taken into account by a reduction in the stiffness co-
efficients of the members;as will be seen in the next chaptef of this
“thesis, |

2,8 PHYSICAL INTERPRETATION

A physical picture of the linear combinations technique is
as follews: the solution for the n generalised displacements, by means
of the equations of equilibrium in the corresponding generélized forces,
can be thought of as a point in an n-dimeﬁsional space, By imposing
reiations between some of the displacements, the solution of the
equations becomes restricted, and the peint cannot be reached unless
the guessed relations happen to be exact. Any number of solutions can
be found, depending on which équations are.used to calculate the |
remaining unknowns, This means that there exists a region of solutions
rather than a point, and the "best" solution attainable is a point
within this region which, in some sense, lies nearest the point
representing the exact solution. The approximate solution may
satisfy some of the equations of equilibrium;'or, by using strain
energy, it satisfies them-all on the average, by virtue of the
linear combinations of the solutions, Thus the process can be
pictured as choosing that solution, out of all possibilities within

the region, which_minimizes some function of the distance between

it and the point corresperding to the exact solutien,

In fact this picture applies to all strain energy processes;
for example the pin-ended column, axially loaded, must satisfy at every

point the differential equation

M+ Py =0 | | (2.81)

which is derived from equilibrium consideration. of an element, In

this case the solutien is a function rather than an n-dimensional

vector, and again if the exact shape of the buckfgﬁ"c¢1umn is not

known, approximate values for the buckling load can be determined

from an approximate function y., - Here again, any number of solutions

for the buckling load are_availéble’depending on where the equation

of equilibrium is satisfied. Using the linear cembinations technique,

the equations of equilibrium are weighted according to their corresponding
displacements, Obviously the linear combinatien in this problem is of

functional ferm,and may be egpresSed by the integral

Joem iy e
J B
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Using the linear moment curvature relation M = EI(dzy/dXZ), we obtain,

after integration by parts I4 l
Pfy2 dx _f EI(dy/dx)%dx (2.83
° .
which is seen to be an alternative form of the strain energy expression,
The more common form, ! .
‘ f)EI(d2y/dx2)%x - Pf (dy/dx)_zdx (2.84)
0

gL 4
is obtained by using curvature, dZY/ dx)}2 'y as the weighting function, rather
than the deflection, y, as was done here, This type of problem, and many
others, can be handled in the same manner, and it clearly demonstrates

the power of energy methods in obtaining approximate solutions,
It has been shown again that the strain energy method is not
separate, but merely an alternative way of deriving the equations of

- equilibrium, either the correct equations or a linear combination of them,
Any linear combination desired is possible and is treated by methods similar

to the straightforward Rayleigh method once this fact is recognized.

2.9 NUMERICAL EXAMPLE

In order to test the feasibility of the linear combinations

technique, the frame shown in figure (2.10) is analyzed. Shown in the

i 1

hHy =10 %Ms="30 yMg=0 st=3°
8g/h -/98 -/Gé' -1 93" :

h“7 =20‘ \M7=-lfo \M7“’o )M7”=lf0

A7/h V’/97 _‘/97| i 67 1
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5 ~ eg ~ 95 05

hH,=20 | WM, =—4o M, '=0 m,'=yo0 EI/i:Xa
8/h 18, _/@4' 46,
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—
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figure 2,10 - Two;bay, eight-storey building frame
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same figure are the applied fcfrces and moments, together with the
notation for the corresponding generalized displacements., The
magnitudes indicated are purely artificial for the sake of this
particular problem; Also, sway divided by storey height is used as
a generalised displacement, together with the generalized force in
the form of horizontal force times storey height. In‘this problem

a convenient grouping of unknowns appears to be

(a) sways in terms of the single parameter (A /h)

(b) rotatiens in left column in terms of 6
(c) ] " central n 1" 6;
(d) " " right " n O

As a first estimate of the relative magnitudes of the generaligzed
displacements, the ratios in each group are assumed to increase
sinusoidally, from zero at ground level to a maximum at roof level,
Using the ratios thus defined the (32 x 32) stiffness matrix is
reduced to a (4 x 4) involving the parameters 4/h, 6, 9', 8"

whose solution is readily found. Improved ratios are then calculated,
a group of eight at the time, using the corresponding equations of
equilibrium together with the most regent values for‘the other 24

unknowns, The calculations are then repeated with the improved ratios,

A/n | -8 -e' 6"
0ok | 3,57 0623 2,96
(42.06) | (3.51) (0.21) (2,79)
39,8 | 3.45 0.63 1427
(41.17) | (3:41) (0.70) (1.36)
38,0 | 4.38 1025 0.65
(38.99) | (4.52) | (1.33) | (0.51)
3.9 | 5.24 T.82 20.25
(35.37) | (5.50) | (2,00) | (-0,50)
3004 | 6409 2.43 =110
(30.32) | (6.50) | (2.67) | (-1.50)
24.6 | 6,96 2.95 -1.93
(23.82) | (7.51) | (3.32) | (-2.48)
16,6 | 7.59 3,53 -2.72
(15,92) | (8.33) | (3.96) | (-3.48)
7.20 | 8.81 3.60 2,97
(6.93) | (9.26) | (3.89) | (-3.40)
0 0 0 0

7YY i 77

figure 2011 - Comparison of exact and approximate solutions.
i l
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In this analysis reasonable convergence is obtained after only two
iterations, The approximate solution is shown in figure (2.11), together
with the results of an exact analysis carried out on the Elliott 503
digital computer; the latter are enclosed in parentheses, As can be
seen, .the agreement between the two sets of results is reasonably close,

taking into account that only two iterations were carried out, Also it

is evident that the rotations are greatest at ground level, decreasing
gradually towards roof level, This is the direct opposite of the initial Nt
guessed form of the ratios, so that considerable improvement could be

obtained with a better set of starting values. From the results, member

end ..:wents and shears can be calculated, if needed, using equations . By

(2069) ] . 4“?

2,10 CONCLUDING REMARKS o 3

In this chapter an attempt has been made to unify energy methods o

Ty

and classical methods of structural analysis. The emphasis has been on

strain energy, which is equ’valent to the classical deformation method, A
solution is derived from equations of equilibrium in terms of the ﬁf
deformations. It has been shown that these equations can be derived from
minimum strain energy condiions, using the exact functional form for the ]
deflected structure to evaluate the strain energy. The technique is : T
essentially the same as that known as the Rayleigh-Riiz method in that it

PPN Chen

uses more than one parameter to define shape; the single parameter method
is commonly attributed to Rayleigh. Having identified the validity of the

strain energy method, the equations of equilibrium are usually set up A

directly,

The power of the energy method lies in the ease with which
approximate solutions can be found, and in this chapter a frame possessing

a relatively large number of degrees of freedom was successfully analysed

L 2e st o axs s

using the linear combinations technique, This technique has been shown

to satisfy certain groups of the equations of equilibrium "on the average",
and leads to a reduced stiffness matrix. Convergence towards better
approximate solutions is achieved by attempting to satisfy the individual
equatiohs of equilibrium, thus leading to improved functions for deriving
approximate reduced stiffness matrices., Although the numerical example of
the pfevious section is readily solved on an electronic computer, a foundation
has been laid for attacking more complicated frameworks. Three~dimensional
frameworks, for example, lead to a large number of equations, and their
solution may be out of reach even for machines with large storages. It is
felt that some attempt can be made to analyze such frames using the method

described in this chapter,
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CHAPTER THREE

A NEW METHOD FOR CALCULATING BUCKLING MODES AND LOADS OF FRAMES

3,1 INTKODUCTION

In chapter one a brief review was given of the various methods
available for a determination of buckling modes and loads of frames.
Anyone faced with the problem of the design of frames soon becomes aware
of the computational difficulties involved in such a stability analysis,
It was with this ig,mind that a simpler approach was sought., The basic
_problem and customary simplifications are as outlined in section (1.6),
and it is shown in this chapter that the Rayleigh-Ritz method of strain
energy ,using the same parameters as the classical #eformation method,

‘leads to a linearized form of the stiffhess matrix, The linearized
matrix is handled by the usual methods of matrix analysis and is
shown to yield an upper bound for'the buckling load, If desired, a
lower bound can be obtained as well, using a graphical procedure.
Successive approximations of the straight line variation of the
stiffness matrix quickly yield a reliable estimate of the buckling
behaviour. It is shown that considerable compi@tational savings are
to be made by using basic geometric data, obtaimnable from simple ’

inexpensive models, in the standard iterative'ﬁ%@rix procedures, '

3.2 DEVELOPMENT OF METHOD

It can be seen from section (1.8d) th%t the buckling
load calculated from a single parameter application of the Rayleigh
energy method is not reliable. This is so because the functional
form, in #®rms of a single parameter, does not adequately describe
the deflected shape of the buckled structure., To improve this
sitﬁation, the sPecificafion of shape must be more flexible,and
this can be done by using more parameters. For conveniepcg;"
parameters which have physical significance_are?@ﬂoéé@,’énd these
aré obviously the frame joint rotations angggﬁays3..Tﬁis.has the
additional advantage that the conditions qfiminimﬁm strain energy
are readily identified as equations of eqﬁilibrium involving the
: corqésponding joint moments or forces. The method is developed on
a simple two dimensional example and is generalized in the following

section, -

Consider again the equilateral triangular frame buckling
in its plane. (see figure(1.6) ). The simplest polynomial function

describing the shape of any member in terms of its end rotations is

y = 10,[(x/1) - 2/1)% + (w1)7] + 18,[~(x/1)? + (x/1)7) - (3.1)
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This function satisfies the boundary condition of zero deflection at both
ends, and it is known to be the exact shape of a simply supported beam
deformed by end moments, Denoting by Gk ) 6% ’ 5% the joint rotations .-
of the buckled triangular frame, a function such as (3.1) is fitted to the
deflected shape of each member, and the total strain energy is evaluated

according to equations (1,33). The following equations of minimum strain

energy are obtained

(E/1)[(8 -2k), + (2 +k)8, + (2 u;ik')ec] - M, =

aU/'c)GA = ' =0
3U/8; = (EI/l)L(z + k)9, + (8 -gk)dg+ (2 +k_) 6ol ~Mz =0 (3.2)
9U/26, = (EL/1)[(2-3k )8, + (2 +k)O 4+ (8 -2%)8 ] - Mg =0
in'which'MA » Mg, M, are the applied joint moments, and k is a load
parameter defined by ,
| k = P1°/30EI (3.3)

For the undisturbed structure the joint moments are zero, so that the

solution of équations (3.2) for the joint rotations is either the trivial

zero solution, or the determinant of coefficients vanishes, in which case

the ratios between the joint rotations are defined but the absolute magnitudes

are undefined, That is, it is the usual eigenvalue problem; in this case

the eigenvalues of k are measures of the buckling loads,and the eigenvectors
represent the modes of buckling as defined by the joint rotations. In this

problem there are three eigensolutiens, obtained by expansion of the determinant:

(1) k, = 0.762 ; 6, ""913 : GC = =0,342 1 1 =0.342

(11) k&, 400 3 6, : By 6, 1,00 0 : -1,00 (3.4)

(iii) kg 5.23 5 6, : By :60 2,34, ¢+ 1 2,34

As can be seen, the first and third represent antisymmetric modes, the

latter requiring a reversal of curvature in each member in order to maintain

all rotations in the same sense. The second solution corresponds to a symmetric
mode, The fundamental mode is the first solutien, and equation (3.3) gives the
buckling load as

_ 2
P . = 229 EI/1 (3.5)

which is seen to be about 40% high (see section 1.8). In section (3.4) it is
shown that the estimate for the lowest Buckling load obtained by_this method
is of necessity an upper bound, so that equation (3.5) should rather be an

ipequality, that is
P__< 22,9 EI/1° | (3.6)
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Unfortunately the same cannot be said about second and higher modes,

except that the exact value of the largest buckling load is never

exceeded; that is all the approximate buckling loads lie between
the largest and the smallest.

From the werk of the previous chapter it follows that
equations (3.2) should express the cenditiens of equilibrium in
moments at the joints of the triangular frame, However, when the

modes as determined above are used in the original deflection curves

and the bending moment diagram drawn from the curvature diagram, it

is found that these conditions are not satisfied. It follows that
equations (3.2) are not exact, but only approximate, and therefore
the guessed deflected shape is not correct. This is due to the effect

of axial loads because it is known that the functions are exact for

no axial load. However, a structure can be defined with an approximate
distribution of stiffness for which the guessed shape coincides with
the actual buckled shape and the equations of equilibrium are then

satisfied exactly for this new structure.

Merchant (reference 1) has shown that when an approximate
shape (which is correct at zero load) is used, the Rayleigh estimate
of the buckling load is the same as would be obtained from the intercept

on the zero load axis of the tangent to the stiffness curve at zero

load, The approximate shape is defined in terms of a single disposable
pafameter, the same disturbance being used to plot the stiffness
curve, As stated by Merchant, this gives unacceptable estimates of
the buckling loads due to the sharp curvature of these graphs.,
Merchant also points out in the same paper that when use is made

of a deflected shape which is correct at some load other than zero,

a similar relation exists between the Rayleigh estimate of the
buckling load and the intersection of the local tangent on the

zero load axis., These ideas are generalized below,

3.3 GENERAL ANATLYSIS

It was shown in the previous section that the minimum
strain energy principle leads to a set of approximate equations
of equilibrium of the same form as the exact equations which
invelve the stability functions s and sc. In matrix notation

the‘approxhnate equations are

~

KE.§=: ﬁ' = 6

(3.7)
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where ?{E is the matrix involving elements which vaf,y linearly with lead
(which will be called "energy coefficients"), and M' denotes the column
vector of "energy moments" which, for the undisturbed structure, becomes
the null vector O. ' |

Since the differential eqﬁations of minimum total strain energy

are linear, the same results are obtained by suming the 8U/2¢ equations
for all the members. Therefore, for' the purpose of this analysis, it will
be convenient to isolate any member such as AB from the frame, as in

 figure (3.1).

My - . ' A4f+ﬂﬂg
P, ) F;\ [

P

A7/ x | B

,eng'”) = 2 68 M
MA+M8 : 8

E) =constant

A

figure 3,1 - Single member under axial load and end momentg

Sway is not considered because its effect can be inferred once the method
has been established for the simpler case. At zero axial load the shape

of the deflected member is as given by equation (3.1). Using this as an

appréximate shape when the member carries an axial load P, the strain

energy is obtained as™" "

- 2 2 2
U= (2B1/1)(6% +05 + 6, 8,) - (PL/30) (26 + 285 - 6,0;) - M,d , - Mgd
(3.8)
When this is minimized with respect to the joint rotations QA s GE
we find
au/aeA = (EI/l)(ao eA + boeB) -M, =0
(3.9)
au/aeB = (EI/1)(bo GA + aOOB) -My =0
where 5 - 5
ao=4-2np/15 5 by =2+0°p/30
' (3010)
p=Pa ;@ =7E1/1°
These are seen to be approximate expressions for the end moments, which,
in terms of Livesley and Chandler's stability functions, are given by
M, = (E1/1) (86 + scfy)
(3.11)

(EI/l)(scOA-'- s GB)

i
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Comparison of the coefficients in equations'(3.9) and (3.11) reveals that

the linear variations a, and bo are tangent to their counterpart exact
functions s and sc respectively, the point of tangency being /9:: 0,
for which the assumed shape is axact. This relation was discovered
graphically, but may be checked by taking differences of the tabulated
functions, or by differentiation. It has been shown by other authors
(see for example reference 2) that the Rayleigh method glves an upper
bound for the buckling lead, or alter&atlvely, the Raylelgh estimate

is the buckling load of a stiffer structure, whence it follows that
the approximate stiffness must be greater than the exact stiffness.
Since the latter is monotonically decreasing, the approximate

stiffness curve must be tangent to the exact function,

As regards the accuracy of the straight line approximations,

the difference between the tangents and the exact transcendental curves
1s negligible in the range <0.4 £ /J < 0,2, The differences at Q=1
are about 10% for s and 6% for sc, and at higher values of/O‘the
differences rapidly increase due to the increasing curvature of the

exact functions,

. The principle of minimum strain energy thus leads to approximate
equations of equilibrium, which are identified as such, and the co-
efficients in these equations are linear approximations to those in

-the corresponding exact equations using the stability functions s and
sc. The approximations are‘exact at zero load, for which the assumed

deflection curve is exact, and furthermore the straight line approximations

are tangent to the exact functiéns.

Obviously the straight line approximations derived above-
are not accurate enough over the range of aiial loads commonly
encountered in engineering designs, and impsovements must be  found
to render the method useful, The next step is obvious, that is, use
a deflected shape which is correct at some load near the axial load
in the member when the frame buckles, and a similar straight line
variation is to be expected, It is shown in most textbooks that the
exact deflected shape at any axial load is given by

y=4 cos(\lf)fn x/1) + Bsin( ‘[an'x/l) = (My/P)(1- %/1) + MB(x/1) (312)

where the constants A and B are determined from the boundary conditions,
The use of this function in the strain energy method 1nvolves rather
lengthy algebra, and for the purpose of this work it suffxxas to show
how the straight line approximation arises again at one other value
of,o ;3 the generality can then be safely inferred. Taking ﬁ)z 1 gives
a function which is relatively easy to manipulate, that is .
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= Acos(mx/1) + B sin(mrx/1) - (MA/P)(1_X/1) + Mg(x/l
and use of the boundary conditions in this case gives
2 ;
My = Mp = (TEL/41) (6, +8p)

A= (1/4) (6, +&;)
B = (1/2 )(6y &)

Evaluation of the strain energy, and minimization with respect to the

rotations B, , O then leads to the relations

I
(@]

aU/26, - (E_[/l)(al + by 9B) - M,

2U/d0p = (EI/?L)(b1 eA + a, OB) ~ My

i
O

where

(/32 +0/8) - (/32 - 1%/8)p
by = (/32 -m/8) + (/8 ~/32)p

a

These coefficients can be shown to be tangent at/O:: 1 to the s and sc
Surves respectively, either by differentiation or by taking differences
of the tabulated functions. The two sets of coefficients a,s bo and aq,
b, are compared graphically with the exact functions in figure (3.2),

and it is seen that the straight line approximations are sufficiently

.1'_.0.

(6,50)

3.0}
. z.s-
R-0
1.5}
1.0}

0.6

3.13)

(3;14)

(3.15)

0" 0.2 oon 0.6 0.8 7.0 T2 r” G 7@
figure 3.2 — Straight line stiffnegs spproximgtions

,a?‘\ /0=F7b
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accurate, for engineering purposes, within ranges extendlng

consmderably on either side of the points of tangency.

It is now possible to generalize the abo§e two particular
cases as follows: An approximate deflection curve is chosen by
guessing a P/Q value; this function involves the joint rotatiens
as disposable parameters, and minimization of the strain energy

leads to approximate expressions for the end moments in the form

9U/08, = (R1/1) (af, + b8;) - M, =0
(3.17)

I
o

3U/365 = (EI/1) (06, + aGB) -

in which the eoefficients a and b are linear functions of the axial

‘load, tangent to the exact s and sc functions at the guessed value
of P/Q. Alternatively, equations (3,17) give the exact end moments
- for a member which approximates to the actual member by hating a
distribution of stiffness causing it to deflect inte the assumed
shape, If the guessed B/Q value is close toe the correct value,

say to within approximately : 0.2, then the difference between

the tangents and the exact functions is negligible, and the

"energy moments" are sufflclently accurate,

Although the linearization of the stability functions
could have been done directly, it is interesting to note that
strain energy does just tlis without modifications, which provides
a further example of the way in which energy methods provide an
ordering of the calculation,

The general problem of instability of frames can now be
formulated in terms of the above mathematical model; that is,
equations such as (3.17) afe set up for each member,and the end
moments summed at the joints. This results in a system of equations
of the form ' '
Kp .6= M = T . | (3.18)

in which the elements of the matrix K are linear functions of the

P/Q ratios of the members. These: equatlons are known to be approx1matlons
to the exact equations, ahd a solution for the buckling loads and

modes is arrived at by setting the determinant of coefficients equal

to zero, which cerresponds to the undisturbed sthucture defined

earlier, For statically determinate frames the axial load in each

member 1s some fraction of the total load, so that each element of

the energy stiffness matrix KE is a linear fUnctlon of the load,

. and the buckling loads are those values for whlch the determlnant

. vanishes, .
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’ The method just described is a logical development from
the generalized stiffness method described in section (1,7 cii),
but- it' shows the distinct advantage of having linearly.varying
elements in the stiffness matrix, This leads directly to an

estimate of the buckling load. The accuracy of the solution can

be judged by assessing the relative difference between the calculated’
~ buckling load and the initial guess to define shape, If this is poor,
the calculated value can be used to define an improved shape and the
calculations repeated. Thus the exact values of the buckling load

and mode can be approached iteratively.

304 UPPER_AND LOWER BOUNDS

Whenever approximate methods of analysis are used, it is
desirable to know whether the results are above or below the values
based on a moere exact method of computatidn.v It is shown in this
section that the buckling loads calculated from the linearized
stiffness matrix are upper bounds, that is they are unconservative,
A proof of this follows readily in térms of Gregory's latent root
plots (reference 3}. A typical plot of the smallest latent root is
shown in figure (3,3), W being a generalized load parameter. In

general these plots are concave towards the origin, The approximate

stiffness matrix, derived from minimum strain energy principles,
has elements which vary linearly with load, and the latent root

plot for the linearized matrix is superimposed on the exact plot.

A

Figure 3,3 - Latent root plots



From the tangent property of the individual'elements of this matrix it
is obvious that the two latent reot plots are also tangent at the same
value of the load, Wo say. The exact buckling load, Wcr is found
from the intersection of the latent rdot curve on the load axis,

and an approximate value W' is s1m11arly determined. From figure
(3.2) it is seen that, whatever the trial vglue of P/Q, the linearized
stiffness s of any member is always greater than the exget stiffness,
Consequently the overall stiffness of the frame as a whole, of which
the latent root is a measure, must also:be everywhere greater than '
the exact stiffness or latent root, whence it follows thét the latent
Toot of the 1inearized matrix vanishes at a higher load than the exact
latent root.’ In other words, linearization of the stiffness matrix

yields upper bounds for the buckling load, and this is true irrespective

of whether the trial load W is greater than or less than the exact

buckling load Wcr. As explained previously, W _ can be approached

iteratively from above by using the calculatedczpper bound W' , OT

a value somewhat less than this, as a new trial lead in settlng up a
new linearized stlffness matrix from which a better value of the
buckling load can be calculated. This repetitive process generally
converges quite quickly, but in some problems it is desirable to

have both an upper bound and a lowef bound, In such cases the latent

root plots provide a simple methed. From figure (3.3) it can be seen
that the plot corresponding to the linearized matrix is of necessity

mere nearly linear than the exact plot, so that rather than constructing"
the entire curve, an estimate of the ﬁppef bound is determined from a
linear interpolation or extfapolation frem two points on the approximate
stiffness cﬁrve. With one of these peints reaéonably close to the

upper bound, the loss of accuracy is usually‘small.' The point P on

the exact curve is then determined from an analysis of the exact

stiffness matrix set up at W = Wér

A lower bound for the buckling load is obtained from the
intersection on the load axis of the straight line through P parallel
to the tangent to the approximate curve at W! op ? OF alternatively,
parallel to the stralght line through the two p01nts used for

extrapolatlon or interpolation.

There are certain possibilities which do not yield true
bounds for the buckling leoad, but if the following rules are observed
the method is successful: '
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(1) The point of tangency between the approximate and exact.

curves must lie above the load axis; this restriction
can be verified by a few sketches, Mathematically this
restriction is Wo'< Wér s which is easily satisfied and

verified by subsequent calculations.

(ii) If W!  is determined from two points on the approximate
curve ig must be an overestimate, and this can be achieved
by extrapolation from two points both of which are above '
the load axis. This also ensures that the straight line
through these points iy flatter than the corresponding
portion of the exact curve below the load axis, thereby
eliminating the possibility of the vaiue taken to be a
lower bound falling above the exact buckling load,

True bounds are always obtained if Wér and the slope
of the tangent are calculated accurately, provided of course that

WO is less than Wér. However, much labour is saved and little

accuracy is lost by the linear extrapolation process.

In some cases it may not be possible to fulfil all the
above requirements, but there are several alternative techniques; -
for example if we interpolate from two points on the approximate
latent root surve, the.estimate of the upper bound could fall below

the exact buckling load. This becomes apparent in the next stage of

. computation, for the point P then lies above the load axis. The

first estimate is then treated as a lower bound and an upper bound
is determined by the same procedure as before, as long as it can
be .mgured that the straight line through P is flatter than the

corresponding portion of the exact curve above the load axis,

The validity of these upper and lower bound techniques
depends on the latent root'curves'being monotonically decreasing
functions of load, with the approximate curve lying above the
exact curve and tangent to it at W = Wo.“It is acceptable from
a geometric point of view and has been proved, at least in part,
by Merchant (reference 1), using the single joint disturbance as

a stiffness criterion,
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3;5 PHYSICAL INTERPRETATION OF THE LINEARIZED STIFFNESS APPROACH

It has been shown that the buckling loads and modes are
determined from a seolution of the equations of equilibrium at the
joints, namely

K X=4 =A% =7

"X

where K is the exact stiffness matrix, a function of the load W, and
X is the column vector defining the joint rotations (or generalized

JOlnt dlsplacements) corresponding to the?301nt moments (or generallzed

joint forces), represented by the vector #, -

The latent roots A 'of the stiffness matrix are defined as
the stlffnesses of the frame qs a whole when it deforms in a mode
given by the latent vectors of K The frame first becomes unstable
when one of the latent roots, the smallest vanishes; this is the
fundaﬁental buckling mode of the mathematical model of the frame,
and if represents defermationsfbé which the frame offers least

resistance, Bach element of the stiffness matrix depends en the

stiffness s and carry over fagter ¢ of some or of. all the members
of the frame, and these in turn are transcendental functions of the '

axial loads in the members.

By a strain energy process the elements of the stiffness
matrix are replaced by linear functions, and the equations of
equilibrium become %

" I~ ~
" _ | — [
g o X'= u =Ax! = 0

which are identifiable as approximations to the exact ed_uations.
Alternatively, these equations represent exactly the conditions of
equilibrium at the joints of an approximate frame, namely one whose
members have stiffness varying linearly with axial load. The
linearized stiffness is tangent to the exact stiffness at some loead,
Wo say, so that the stiffness of the apprefimate frame as a whole,

as represented by the latent roots A;'Aof KE 5, is also tangent to

the stiffness of the actual frame. Because the individual member
stiffnesses are greater than the exact stiffnesses, except at

W= wswhere they are equal, A' is also greater than A , and therefore
vanishes at a higher leoad, that is the buckling lead of the approximate
frame is greater than the exact buckling load, Mathematically this is
expressed by the inequality '

1
wCI‘ > wC:I'

(3.19)

(3.20)

(3.21)
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which becomes an equality when wcrz o ? for then each equals wcr’

A lower bound for the buckling load is determined from the
condition of zero stiffness of a second approximate frame, in this case
one whose members have stiffness varying linearly with axial load, at
the same rate as the first, but reduced to give the exact value at
W= W' 1nstead of at W = W By the same argument the smallest
latent root of the llnearlzed stiffness matrix for the second approx1mate
frame vanishes at a load less than the exact buckling load, and we can
write -

Wile W - - (3.22)

cr cr

which also becomes an equality when the point of tangency between the

- latent root curves lies on the load axis.

This physical interpretation ef the upper and lower bound

technique is essentially a comparison method, similar to that of
Temple and Bickley (reference 4) for the pin-ended column, - An upper
bound is obtained by comparison of the actual frame with a mathematical
model whose members are stiffer. Its buckling load is'therefore greater
than that of the actual frame. Simiiariy,a lower bound is obtained by
comparison with a less stiff mathematical model. Since the individual
elements of the two linearized matrices are parallel, the curves of
their latent roots against load are in general also parallel,: The
geametrical construction to find a lower bound makes use bnly of the
curve for the stiffer frame and one poeint on the exact curve, but the
essential ideas are the same; it is merely a convenient numerical
technique for those cases in which a lower bound is required. As
Stated before,‘the'upper bound process alone can be used to converge

towards the,exact'buéiling load and mode, °

3.6 COMPUTATIONAL PROCEDURES

Several numerical techniques suggest themselves to calculate
the buckling load and mode from the linearized stiffness matrices. Some
of these are briefly described in this section, and later applied to

examples,

(a) Latent root plot

This scheme was used aﬁ first as it appearé to be the most
profitable method of hand computation. The parallel shift method is
used to calculate the smallest latent root for a number of load

values, and the buckling load is determined graphically as the load
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at which £he smallest latent root is zero. The chief advantage of

the linearized matrix in this method arises from the savings in
éomputation, because the elements of the matrix are readily calculated,
in contrast with the exact matrix whose setting up requires a much

more extensive use of tables of stébility functions, A further advantage
is that the approximate latent reot curve is more nearly linear, in

fact quite often it is linear to sliderule acéuracy, so that fewer points
suffice to plot the curve, The buckling mede is obtained as the latent
vector corresponding to the zero latent root. Convergence of the

iterative technique to extract the smallest latent root is speeded

up by using trial vectors resembling the buckling mode, and this
information can be obtained from simple tests on inexpensive models,

usually made of cardboard or wires.

At first one might expect the latent root plot for the
linearized stiffness matrix to vary exactly linearly with load.
Unfértunately this is so only if the mede, or latent vector, is

independent of load,wliich is generally not the case., However in

most problems the variatien of mode with lead is not severe, so
that the approximately calculated latent root does in fact vary more
nearly linearly with load than the exact plot. .

Another p0531b1e feature of the linearized stiffness matrlx
is that the slope of the latent root plot be related to the latent roots

of the matrix of the coefficients of load, but here again this is not_
the case unless the associated latent vectors of the two matrices are

the éame. Wittrick (reference 5) has shown that the slope of the plot
at any load is given by the expression |

~

e d e .

Now=%".5.% (3.23)

n n : . S
N ~r ‘

where x is the normalized latent vector, ng is its transpose, and B

is the matrlx of coefficients of load, that is B = aﬁyaw. Thig is the

quickest available method for calculating the slope of the latent root

plot, and this, together with the value of the latent root, gives an

estimate of the buckling load which is usually only a little above the

more accurate upper bound value, The technique can be used repetitively

to calculate the upper bound exactly, the process being akin te the

Newton method for solving equations of the type f(x) =0,

(b) Matrix inversion - multiplication _
The linearized equations of equilibrium (3.20) can be written
in the form

E-wd) . %=0 , (3.24)
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in which K; glare symmetric matrices, the elements of K.being the
intercept values of the linear approximations, and the elements
of g'being the slope values. When both sides of this equation
are multiplied by the inverse of‘x, denoted by XL1 , and divided -
by the scalar load parameter W, we obtain

i o d (e d P
wLB~1mI . ¥ =70

where E'ls the unit matrlx. From thls it is seen that the latent
roots of the matrix (47 13 B) are the re01procals of the buckling
loads, and the smallest buckling load therefore is obtained as the
reciprocal of the largest latent root; the buckling modes are the
assoclated latent vectors. A feature of this method is that all
the buckling modes and loads are obtained, and the technique is
advantageous if an electronic digital computer is available, but
matrix inversion and multiplication by hand computation are to be

avoided because of the large-number of calculations in which there
is no physical intuition to guide the human computer,

(¢) Gravest mode intensification

This method is described by Allen (reference 6), and is
frequently used in problems involvihg linear algebraic equatiens of

the type ' : _
. ~ ~ ~ e

Ao x = W(B 4 x)

such as arise also in vibration studies. It is essentially similar

to that above; some trial mode, represented by the vector 3{‘, is

substituted on the right hand side of equations (3.26) and a new

mode is calculated by solving the equations thus obtained. This

mode is then used in the original equations again, and another mode

is calculated, and so on, The process can be shown to converge towards-

the fundamental buckling mode, Once the mode has been determined

reasonably accurately, it is an easy matter to calculate the buckling

load, usually from the so<called Rayleigh quotient, that is
W= (0% HELD X

cr

This expression is readily identified as a linear combination of all

the equations of equilibrium, using the mode X as the weighting function,

It is also the equation of conservation of strain energy. Any errors in

the mode increase the value for wcr’ that is, the Rayleigh quotient

provides an upper bound,

(3.25)

(3.26)

(3.27)
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The ﬁﬁte of convergence to the gravest mode depends on the
rotio of the first two buckling loads. Clearly if these two loads
are close together, the convergence rate is extremely slow, and the
equations need to be solved many times, Since the left hand side
always remains the same, the process becomes inefficient,.and it seems
locical to solve these equations once and fdr all, which brings us

again to the method of matrix inversien.

(d) Iterative method

A further simplification of the equations of equilibrium

is affected by linearizing only the elements on the leading diagonal
of the stiffness matrix, leaving the off diagonal elements constaht
at a reasonable load value. After dividing each equation by minus
the coefficient of W on the diagonal, it is seen that the buckling
loads can be obtained as the latent roots of the resulting matrix,

‘However, frequently some of tliese are negative so that Gregory's

shift method then yields the largest negative buckling lead, An
alternative‘procedure, overcoming this difficulty is to rearrange
equations (3.24) in the form
C-1uTD) .%=70

~o o~ ~ ~ ,
where C and D are the matrices obtained from A and B by dividing each
equation by W and by the value of the element of‘K on the leading
diagonal, A trial value for W is then chesen andthe off diagonal
elements are calculated, after which a new value for W is calculated
as the reciprocal of the largest latent root of the resulting matrix,
This is then used to modify the off-diagonal elements and the largest
latent root is again extracted, and so on until agreement is reached.

As before, the buckling mode is the associated latent vector.

If the numerically largest latent root is negative in this

method, a shift of the elements on the diagonal must be used in order
to obtain the largest positive latent root.

(3,28)
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and Chandler's tables (reference 7)]. The linearized stability functions
are shown in table (3.1) .

Member ] sc
AE, BC | 6.28 = 6,140 | 0.18 + 3,3, | Example: for member AE
AB Le28 = 1,810 | 1.81 + 0.6570P| the stiffness is

AD, BC | 4.00 £400 s = 6,28 - 3,07 (F/Q) g
CD, DE 4004 1017p 1098 ol 0.247/) —— 6.28 - 6.14p

+

Table 3,1

Linearized stability functions .

in which/O is a general load parameter for the frame, iﬁ this case the
R/? ratio of member AB; the P/Q ratios of the remaining members bear

the same ratio to /Daas do the axial forces since EI and 1 are the same

for all members. The linearized stiffness matrix is set up columnwise,
by applying a unit rotation at each joint in turn; this can be dene

by adding the relevant stability functions shown in the table, and

the result is

K= [(14.56 - 7.950)(1.81 + 0,660 (0 )(2.00 )(0.18 + 3.340)
(1.81 + 0.660) (14.56- 7,950)(0.18 + 3.3400)(2.00 o )
(0 )(0418 + 3.340) (10.32- 4.980)(1.98 - 0.250)( O . )| (3 o)
(2.00 )(2.00 )(1.98 - 0.250) (16,08 +2.340)(1.98 ~ 0.25p)
(0,18 + 3.34p)( 0 ) o )(1.98 - 0.250)(10.32- 4.98p)

where the term (EI/1) has been dropped for convenience.

From this (5 x 5) stiffness matrix with linear elements we can
deduce five buckling modes each associated with a critical value of the
parameter/3 for which the determinant vanishes. Obviously for a symmetrical
structure symmetrically loaded the modes are either symmetric or antisymmetric,
and for this reason these two possibilities are treated separately; this

procedure has the additional advantage of leading to smaller matrices.

(a) Antisymmetric modes

The antisymmetric modes are characterized by the relations

5 O = 6 (3.30)

so that the matrix is reduced to one of third order and we obtain

Kg= [(16.37 - 7.290)(0.18 + 3.340) (2.00 |
(0,18 + 3.340)(10.32- 4.980)(1.98 - 0.250) | (3.31)
(2.00 )(1.98 - 0.25p) (8,04 + 1.17) '
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where the last row has been divided by 2 to preserve symmetry of the
matrix,

In this particular case the determinant is readily handled by
- expansion, ‘and, by equating the resulting cubic polynomial to zero, we
obtain the buckling loads as the roots of the equation

/.)3 + o,‘19p2 - 3290+ 422 = 0 o (3.32)

The lowest root correspends to the fundamental antisymmetric buckling
" ‘mode, and a trial and error solution gives

Py =137 | (3.33)

which is an upper bound for the first antisymmetric buckling load.

The remaining two roots of the cubic equation are /%4= 6039, and
f% = =4¢83; the last of these represents a mode with the primary

loading reversed,

(b) Symmetric medes

These modes satisfy the relations

Op=- 6, ; 65=-6, ; b =0 (3.34)

and this information reduces the stiffness matrix to one of second

order whose roots, obtained by expansion of the determinant, are

fy=1.12 and P, =3.72 ' (3.35)

From the above two separate analyses itfféllows'that the fundamental

buckling mode of the Warren truss is symmetric, and an upper bound for

its buckling load is 1.12., However, the first guess for this parameter

was 1,00, and the difference between the tangents and the stability functions .
. is very small over this range of load, so that the above result may Be

taken as exact to slide rule accuracy.

Substitution of this value in equations (3.29) together with
equations (3.34) gives the buckling mode as

8, eh : B 9 :@p = 1 ¢ -1 : 0,812 : 0 3 -0.812 (3.36)

and the associated buckling lead is

_ 2
W, = 19.2 EI/1 , (3.37)

e i
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3.8 ROOF TRUSS BUCKLING IN ITS PLANE

(a) ‘Analysis

This particular problem has been solved by various methods
.(see for example references 8 and 9), and it provides an excellent
example of the power of the linearization method used in conjunction
with model test information to speed up convergence of iterative
latent root extractien techniques, Thé truss, itshloading and joint

notation are shown in figure (3.5), and the member properties together

01W
o.1W ¢ 0aW
B B‘

A Al
z>¢ “E| D
L v T
W W W

figure 3,5 - Rgggltgugg

 wi£h the axial.iBst are given in table (3.2). Young's modulus is
taken as that of mild steel, E = 30,000 k.s.i.

1 T k =EI/1 Q =1FEL/1° | P '%?'grytl.
Member .| (in.) (in@) (in-kip) (kip) (kip) |
AB, A'B' | 129.2, | 5.20 1207 92,1 Lol | LoB2u
BC, B!C 129.24 | 5.20 1207 92.1 2.96W | 3.21w
AD, A'D' | 120,00 | 4.40 1100 90.5 Lo 13U [ ~4e 56w
DE, D'E 120,00 | 4ok 1100 90.5 wbyo1 W | ~4o 56w
BD, B'D! 48,00 | 0,70 438 90,0 ~1,00W [ =1.11w
BE, B'E 129.24 | 1,96 | 455 3448 1 48W | 4o26w
CE 96,00 | 0,96 300 30.9 =2, 10W | =6,80w)

Note w = W/100

Table (3,2) — Data for reof trus
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For the purpese of setting up a linearized stiffness matrix,
it remains to select a suitable trial load. Normally a reasonable
estimate can be made based on engineering judgement; in this case for
example a good guess would be the load to make the largest P/Q ratio
(in compression) about 1.5, However, in order to demonstrate the uppér
and lower bound technique, a somewhat poorer velue is used, It was
pointed out in section (3,3) that the guessing of a E/Q ratio merely
defines the deflected shape of a member in terms of its end slopes.

In this context it is quite legitimate to use PYQ ratios which do not |
confoerm to the primary leoad analysis, although this 18 of course
desirable in subsequent trials. The linearized stiffness matrix for

the roof truss set up with P/Q = 1 in compression members and P/Q=0

in tension members, is given overleaf,

From model tests it was found that the truss buckles in an
antisymmetric mode, and this valuable piece of information is used to

reduce the matrix to one of order five, namgly
~ ~ e |
Kook = /9560 ) ( 2190 ( )( 2200 o) 9A
\~3930w/ \+3830w ~1650w
2190 /14020 ) 2190 ) 0
+3830w) \ -20400u) \+2550u 160w +12’70w B |
2190 ) 5760 )(300) 9
( 0 +2550w ~5680w -336u )| ° (3.39)
2200 > ( 10550 (200 0 '
~1650w J \ -160w +13840w -165 D

)( 825 ) ( 300 2200 6950 \ 9
+1270w -336w ) \~1650w ‘+443o»9L E

and the antisymmetry c onditions are expressed by the equations

6'=6, ; 0,=6; ; =6 (3.40)

In deriving equations (3.39) from (3.38), and third and
fifth rows of the final equations were divided by 2 to preserve symmetry
of the matrix,

Before embarking on the numerical solution of these equations

it is well to review some of the basic properties of matrices:
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(i) when the leading diagonal of a matrix dominates, that is
when every term onthe leading diagonal is greater than
the sum of the remaining terms in the same row or column,

the determinant is positive, and the frame is therefore
stable,

(i) if any of the terms on the leadingvdiagonal are zero or

negative, then the frame is unstable.

These facts are well known (see for example reference 10) and are
useful aids in this type of problem especially because the elements
are in linearized form, thus enabling quick estimates of both

upper and lower bounds, which in £urnvprovide a means of assessing
whether or not the first guess to set up the equations was a "good"
one, From equations (3.39) it is seen that dominance of the leading
diagonal ceases at about w = 0,28 in the second row, and a negatiVe .
term on the diagonal first appears at w = 0,69, also in the second

row. Thus the determinant vanishes somewhere between these two

I4mits. The middle of the range is w = 0.48, and this corfesponds
to P/Q ratios of 2.3, 1.55, 0.24 respectively in the compression
members AB, BC, BE; this at once confirms that the first guess

was poor, as it was intended to be,

An upper bound for the buckling load is obtained by
extrapolation from two points en the latent root curve above the
load axis; from the above calculations, the points at w = 0,3
and 0.4 should be adequate. The smallest latent roots at these
points are extracted by a standard proceés using Gregory's -
parallel shift and using crude model measurements as a starting
vector, that is

0 R0 1 ¢ <1 i 0.1 't =0.2

| 6 6. :6, : QD g

A * 7B C
In both cases slide rule calculations give reasonable convergence
(about 5%) after eight iterations, and at that stage a good estimate
for the latent root can be obtained by the so-called Rayleigh quotient.,

The calculations give

t ~l :

A .=1927 3 %, . = 0,388 : 0,737 -1 : 0.019 : -0.113

| | (3.41) -
: 0.008 : -00131

o

°

W
i

o
J
-

f ~ >'.
Ao, = 481 5 Xy, = =00449 & 0,935
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Extrapolation from these two points gives an upper bound for the
buckling load as

wér = 00433 or Wér = 4303 kips,

the slope of the straight line through these points being -1446,

The exact stiffness matrix is thenset up at this load,
and using the samebvalue,fof the shift, and the vector extrapelated
from (3,41) to start the iteration process, convergence is achieved

in only four cycles, giving

A

0.433 = ~1200

This represents the point P on the exact curve in figure (3.3), and

the negative sign confirms that the load W = 43.3 kips is an upper
bound.: From the 1ntersect1c>n on the load axis of the line through -
this point and of slope -1446, we obtain a lower bound of 35,0 kips.
Thus finally '

3500( Wcr< 4303 kipS

The' difference between these two bounds is about 20%, which is
reasonable considering the poor guess to set up the linearized
stiffness matrix, Also, ‘from several examples solved by this
method, it has been found that the mean of the two bounds is
usually very cleose to the exact value for the bucklingvload,
that is _
Wcr = 3992 kipse

This in in fact exactly the value Quotedrby McMinn (reference 9),

Rather than repeating all the calculations with W = 39.2
kips gs a new trial load, improved bounds are obtaihed by calculating
one additional point on the exact curve at W = 39.2 kips., From the
exact stiffness matrix set up at this load the smallest latent root is
calculated as

A0,392 == 5%

This is negative so that 39.2 kips is an upper bound. A new lower
bound is determined from the intersection on the leoad axis of the
straight line through this point and hav1ng the same slope as the

line used for extrapolation, i.e. =1446., This glves

3808‘< ch‘< 3902 kipso

(3.42)

(3.43)

(3.44)

(3.45)

(5,46)

(3.47)
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The difference between these two values is only 1% so that the buckling
load can be taken as the mean of the range, that is

W_ = 39.0 kips. (3.48)

The buckling mode is approximately the latent vector of the stiffness
matrix set up at W = 39,2, which is

b 16, 8y 0 =-0.580 11 :-0,902 s 0,033 : ~0.155 (3.49)

(b) Experimental work

A model of the roof truss was made from 16SWG and 18SWG strips
of mild steel plate cut tothe required width. The spatial dimensions

were scaled down by a facter of 12, and the second mements of area by

approximately a factor of 400,000, The EI values of the model members
were determined from measurement of deflections en simply supported,
centrally loaded beams. Since the buckling load depends on the R/Q
ratio of the members, the scale factor for the buckling load is given
by

R = ( 7B1/1°) ( 7PE1/1%)

actuel/ model

The. values of R for the individual members are shown in table (3.3),

from which it is seen that there is considerable variation. Nevertheless

Member R

AB, A'B! 2860 ‘ |

BC, B!'C 2860 - Average R = 2630
AD, A'D' | 2810 |

DE, D'E 2810

BD, B'D! 2340

BE, B'E 2310

CE | 2340

Table 3,3 - Scale factorg

the model is a fair approximation to the actual truss. Also in this
scaling down of the reof truss no attention has been paid to the

relative 1/r ratios of the members, this could alter appreciably
the measured behav1our.
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The truss was loaded with deadweights, and the response was
measured by means of Huggenberger tensometers, opposing'pairs being
located on members BC and B'C, and a single instrument on members
AB and A'B'y lack of space pr@?énting the use of a péir on these
members, The location of the gauges was chosen approximately at the

points of greatest curvature, judged by eye.

The Huggenberger gauges measure the total strain & ; the

buckling component of the strain, €'is determined from this by -allowing
for the component due .to the axial load, that is

g-et P/EA - : o -~ (3.50)

where P is the axial load in the member, and A is its area,

The Southwell plot on strains is the graph of (g'/P)
against . A typical plot obtained from two opposing tensometers
is shown in figures (3.6) and (3.7). The line P/EA in figure (3.6)
nearly bisects the two strain plets, which is a partial check on the
proper functioning of the gauges. The average of the tensile and

compressive strains was used to derive the Seouthwell plot. In the

B.flbs.)

ast
k1.0 X10 |-
Clbs™) '

(¢ '—P)(.=A)/P

e
e
—

o-4}

OR}

! comp— !
L £ comp= \ . . £

fens=
i \ , . . -3 . —
03 -02 01 O 01 O0RZ 03 O0-4x0 . 0.1 0.2 0.3 x1p°3

figure 3,6 - Strain in member B'C figure —_ Southwell plot
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low load region this plot is npt.iinear, which is assumed to be due

to initial imperfections of a kind tending to set the frame off in a
| higher'buckling mode, From the linear portion of the Southwell plot
the buckling value of the axial load in member B'C is obtained as the

inverse slope, and the buckling load for the frame is calculated from
this as

W )

cr’/model " 1446 }bs.

The Southwell plots from the remaining tensometer readings gave the
buckling load of the model as 14.9, 13.6, 13.3 lbs., the last two

being for the single tensometers on members AB, A'B',

Taking the mean of these results we have as an estimate

of the buckling load of the model

(Wcr)model = 141 1bse

This value is related to the buckling load of the actual truss by the
scale factor of table (3.3) which, for the whole frame, averages to

2630, However, since the behaviour of the frame depends to a greater

extent on the stiffness of the compression members, it seems better
to take the average value for the compression members only, that is
2680, This gives the buckling load for the actual truss as

.Wcr. = 37.8 kips.

which is in excellent agreement with the predicted value of 39.0 kips.

The model collpased in the test at a load of just over
13 1bs. Subsequent measurements revealed a severe local thinning of
member AB at approximately one quarter of its length from A, and the
failure is attributed to this, Nevertheless the load applied covers a
sufficient portien of the buckling load to justify the use of Southwell
plots,

(3,51)

(3.52)

(3.53)
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3,9 TWO-STOREY RECTANGULAR PORTAT, FRAME

As an example invelving sidesway, consider the buckling in
its plane of the frame shown in figure (3.8), The generalized displacements

together with their corresponding generalized forces at the joints are

P P 1 EI = constant
(HE,A‘)# )’(M,,G,) * Mng&) h =1
4+ ) - Axial loads are shown in
' , parentheses at the centres
- (P) (P of the members.
P
ﬂ(}h ,A1)> j’«)ol) )(Mq;eq)
0 -
. (0)
0 (P (P)
l D S
77T 7777

figure 3.8 - Portal frame

included in the figure, six in all,

In problems involving sway, the P/Q ratio in the members
is usually considerably less than unity and a value of 0.5 is a
convenient one for setting up the linearized stiffness matrix.

Proceeding in the usual way, we obtain the following linear

coefficients
() () Co ) (o) 00 ()
Lzz:op ) (62) (o) (42 ()

() (

(

+1,06

o) (

6,02

1,06

) (-

12.1
3.04(7

) (: 97
+04455

(J) (

) () (.

) (

04455

)

)

A

Writing this in matrix notation, and equatlng to zero the disturbing

forces, we put this in the form

~ ~n e
A, x= B.x

(25 (559 (i) :z,,> (¢ ) (o]
(o) G G Co ) () ()
-6,02 6,02 97

(3.55.
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in which X is the vector of the ‘generalized joint dispfiécements and & and

B are the component matrices in equations (3.54).

(3.55) is contained in the equation

in which Il denotes the inverse of the matrix'i.

~

ap) %= (&

B). x

The solution of equations

(3.56)

This solution is mest

easily achieved by Gaussian elimination, details of which are found in

most standard textbooks on numerical methods.

(1/p)

From physical considerations this matrix should possess a number of

A1/l

0,949
-0.446

0.709
0,091

0,709

reciprocity relations;

effect of @

00091’

0.357
2.2
-0.718
-0.820
-0.718

-0.820

~0.014
~0,003

0,285
0,144
~-0,053

0,040

0,026

0,065

’00103
0,204
~0,003

"'000’78

In this case we obtain

-0.014

-0,003

-0,053  =0,003
0,040 =0.078
00285 _00103

-00144

0,026

0,065

(3.57)

0,204

in this case there are 16, for example the

, on 02,should be the same as the effect of 6f on 8

1
2?

and the effect of A1 on 91 should be the same as A1 on 9; and so on.
Although these equalities were not obtained due to rounding-eff errors,
they have been included in equations (3.57) by averaging the differences,

which in no case amounted to more than 3%,

the largest latent root of the matrix in (3,57), and the mode is the

The fundamental buckling load is seen to be the reciprodal of

associated latent vector,

On a crude cardboard model the mode was observed to be antisymmetric, .

that is

i
0, =

6,

(3.58)

Using this information, the above (6 x 6) matrix is reduced to the (4 x 4)
matrix

(1/p)

A1/1

A2/1

9

6

0.949
-00446
0.091

A2

L9:709

0,357
2,12
-0.718

-0.820

-0.028  0.052] [A,/1]
~0.006 0,130 A2/1
0,232 -0.106] |8

0,104 - 0,126 | |8, _|

(3.59)
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Rough measurements on the model gave the modal vector approximately as

(04 1 0.5 -0.3) (3.60)

Multiplying this into the matrix (3,59) we obtain the vector

1.908 (0,386 1 -0,402 ~0.274) (3.61)

where the facter 1,908 is chosen merely to reduce the largest element
of the vector to unity so that the vector can be §ompared with the
previous vectoer, This factor is also an estimate of the latent root

at  this stage. Continuing the precess, we find in succession the vectors

1.916 (0,376 1 -0,390 -0,281)
1,919 (0.370 1 -0,388 -0,286)

C 1922 (0.36 1 0,387 -0.288) (3.62).
1,924 . (0,364 1 -0.386 . =04290)
1,924 (0,363 1 -0.386 -0.290)

Thus the process has converged dfter only six iterations, the fundamental
buckling mode being the last vector, and the corresponding buckling load
is the reciprocal of the largest latent root, that is

Lop = 1/1:924 = 04520 | (3.63)

As a check on the arithmetic, the above mode is substituted in the equation
- ’r~ ~
of conservation of energy, (see equation 3.27) using the matrices A and B

of equation (3.55), yielding

Loy = 04521 _ (3.64)

which agrees with the previous value,

It is to be noted that in this example the condition of symmetry
could have been fed in at an earlier stage, namely after setting up the
complete (6 x 6) stiffness matrix. This reduces it to a (4 x 4) matrix,
which would save a considerable amount of arithmetic in deriving the
matrix (2;1.‘5)0

3,10 TETRAHEDRAL FRAME

As an introduction to buckling in three dimensions, the stability
of the tetrahedral frame of figure (3.9) is investigated. The frame is
supported in the herizental plane ABC, and loaded vertically at the épex Oo
A1l members are of equal length 1, and they are of circular cross secﬁion,
so that the bending stiffness EI is the same in all directions. The axial

forces are shown in parentheses at the member centres,




EI = constant;
GJ = constant,
Q= %E1/1%

k = (EI/1); r =GJ/EIL

T is a vector,co-planar
with OAC, and perpendicul
to OC,

figure - Tetrahedral frame

(a) Analysis
The buckling mode of this frame is specified by three rotations at
each of the joints; for convenience in setting up the stiffness matrix, the

rotations are chosen so that the vectors representing them lie along the axes

of the members framing into the joint, the positive directions being away
from the joint according to the right hand screw rule. Notation is by means
of doubly subscripted variables, the first subscript denotes the joint and

the second subscript deentes the direction of the rotatien vector,

As tbe frame deforms, the mémbers twist as well as bend, and the
bending is non-planar unless the rotation vectors at opposite ends are co-
planar, ' _ | , | ,

The stiffness matrix is most easily set up by applying each of the
twelve rotations in turn. The unit rotation vector is resolved into directions
along and perpendipular 1;,0 each of the members meeting at the joint. The former
rotation produces equal and opposite end torques TA s TB , which are expressed

in terms of the twist by means of the relatioen

T = (6/1)$ (3.65)
where GJ is the torsional stiffness, and ¢ is the anglefof twist., The

rotation vector perpendicular to the member produces bending in the plane
perpendicular to thatlvector, and the bending moments MA’ Mg are determined

from the usual relations

QMY )

' ﬁw,t&mﬁAn&k #

(5/1)(sy)
(EI/1)(scy)

My

(3.66)

o
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where s and sc are the stability functions, linearized at some trial load,

and y is the angle of bending, The end moments and torques are resolved

back into the dlrectlons of the rotation vectors, and summatlon glves the
moment vectors corresponding to the joint rotatiens, The,angles involved
in the resolution of rotations and moments are mostly either 30° or 60°,
One other angle is needed, this is the angle between a vector which is
perpendicular te one of, and co-planar with, three members making up a
.plane and the ‘vector along the member not lying in the same plane; e. g;
angle w in figure (3.9) between OB and the vector 7 which lies in the
plane OAC and which is pempendicular to OC. The cesine of this angle

is ( V3/6).
' It is obvious that the buckling load for this tefrahedral frame
mist be such as to produce a (P/Q) ratio somewhere between 1.0 and 2,05

- %n the compression members, Thus a trial load of P = 1,5Q ought to be a
good one., For this value the linearizéd stability functiens are

S+P 4986 - 252’7P ; S—P/3 = 4.04 + 0.390P

+P 1.366+ 1,00qp H sc_P/3 = 1.980- 0.0S%p

sC

The following calculations give an indicatien of how e&pily the stiffness
matrix is set up; for example for a umit rdtatiorl GOA) with all other

rotations zero, we have
$op =1 i Wop =0
$op = b = % i Yo =Yoo = 17/2
0B ~ Toc ~ 2 5 YoB “Toc ~

The end moments and terques are

Tpo™ Toa™ * Mbon 5 moy= koipPops Myo =k scpoy
5= To5= T ¥Pop 5 Top= ks,pWops Mo = ¥ 5,5 Yop

Too= To= T Mg 5 oo ks,p¥oci Mco = ¥ Cpfoc

A11 other torques and end moments are zero because they involve enly rotations

which are zero, The joint moments-are obtained by summation as follows:

/ - 1 1 — .
Mou= Topgt Top *F Togt Omg,+V3/2 myp+V3/2my, = k(1,507 + 7.29 - 3.41p)

Mop=2Toa* Top % Toct V¥ 6mOA* 0 myp+V3/6myg

Mo Tont® Top + Tog V3 6mpy+V3/6 mpp+ 0 myg

k(1,257 + 1.22 - 0.568/3)

k(1,257 + 1,22 ~ 0.5680)

MAO: TAO + 0 on . S EIER L h = k(1 Ooor) » (3°67
Myp= 3T, +V3/6 myg ‘ = k(0,50r)
My 2Ty *V¥/6 myg = k(0.50r).
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k(0.507)

%0 = Tmo =
My = 3Ty +V3/2 g, = k(0,251 +1.02 +0.754(0)
Moo = 315, +VB/6 mgg , = %(0.257 +0.34 +0.25200)
M., =T = k(0,50r) (3.67
Co ~ Co | | cont 'd. )
Moy = 3T +13/2 mg, = k(0,251 + 1,02 +0.754p)
M., = =

by . .
o = Tgo *V3/6 mg k(0,257 + 0,34 +0.252)
This completes one column of the stiffness matrix. Similar calculations for

the remaining rotations give the complete linearized stiffness matrix, which

is not shown here for reasens of insufficient space ona single page. Several
of the columns of the matrix can be written down by a cyclic interchange

of the subscript of the variables in earlier columns, and an interesting
point is that there are only eleven different elements, each occurring

several times within the matfix.

From tRestson a light wire model it was found that the frame
muckles symmetrically in the following manner: '

) ;s 8., = -l;BO

800 =60 =0 35 6=~ co
o (3.68)
6. =-8 -0 _éiB

BC 3 0oy =8y 5 Gy =

This information is used to reduce the linearized stiffness matrix to one

of fifth order namely:

6.25 ) (o .683 (0.335) =0,174 \[-0.857 8 | = | o
-2.8 +04502() -0.2520)\-0.7540,
0,683 ) 5,63 Y\ [~0.328 ) ( _ 1,328 6,5 0
+0., 50 <-o 8420\ +0.021 °°335 +0,062
<o°335) (—0.328 )(5 e42 )( 1.185 )(1 513\l ol (3.69)
+0,021 +0 647P +0,1180/\¢+0, 098p
—0.174)< 0 335 (1 .185 ( 6.03 )( 715 \|| O, 0
’-0.252{3 | #0118/ \~1.3480/\-0. 568)
|f-0.857 \ /-1.328 ) 1.513 ) 1715 Y 7.01 \|| g 0
‘-_00754() ("'09062? +00098 "'O 568 —1 0410 BC

In these equations the measured numerical value of 0,670 for r has been
used, and the factor k = EI/1 has been cancelled. To determine the buckling
mode and load these equations are rearranged by dividing each equation by

minus f)times the constant term of the element on the leading diagonal)ining
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0e454 -0,0805 0.0403 01207
—000536p ' eOB :p GOB
' ~0,1093p +0,0278p +0,1361p ,
~0,0892 ~0,0037 ~0,0110 |[Byg 6,5
—o.1212p 221497 0, 0582p ~0°0595P 4o, 2340
-0,0038 -0,0218  -0.0180
0,0617p . . o 6 C
+0,0605p -0.1193 -0,218p =0.279p 50 50
0,0417 -0,0196 000942 "GBA 85,
+0,0289p ~0°095P g 1066p 0024 0. 28ip
0.1076  -0.0088  -0.0139 0,081 850 0.,
+0,1223p  +0.1892p 0.216p ~0.24p  0°%0 B

In these equatioens, p is the inverse load parameter, (140), S0 that
the fundamental buckling mode corresponds toe the largest value of p
satisfying equations (3.70). This can be determined iteratively as
follows: a guessed value of p is inserted on the left hand side of
the equations which are then seen to be a formulation of the usual
latent root problems. The largest latent root of the matrix is then
extracted by the usual process, and if this does not agree with the
guessed value it is used as a new value, and so on until satisfactory

agreement is reached.

The stiffness matrix of equations (3.69) was derived for
f=1.5, and this value is also used as a starting point in the above
scheme, With p = (141.5), the matrix on the left side of equations
(3.70) becomes:

04454 ~0,1534 ~0.0358 0.0588 0.212 |
-0,1700 0.1497 0,0351 -0.0397  0.1451
~0,0412 0.0365 -0.1193 -0.1672  =0.204

0,0610 =0,0371 -0.1506 0.224 -0.0951

0.1891 0.1174 ~0.1579 -0,0817 0,201

As a starting vector in the largest latent reot extraction procedure

we use results of rough measurements on the model, that is
(1 -002 -0,2 0,1 0.5)
and compute in succession the vectors

0,604 (1 ~00229 -0,237 0,121 0.479)
0,606 (1 -0.243 -0,230 0,143 - 0.462)
0.606 (1 =04252 -0.232 0.153 0.459)

(3.70)

(3,71)

(3,72



- 104 -

At this stage the process has already converged satisfactorily, and the
largest latent root equals 0,606 which is about 10% below the guessed
value 0,667. The new value of p is substituted in equations (3,70) and
the  extraction process is continued with the last vector as a starting
point., After three iterations it is found that the value of p is 0.598
which differs only 1.3% from the previous value. However, one more cycle
is performed and a further two iterations to extract the largest latent

root agree to within 1%. The wslue of p obtained is 0.597 so that the
buckling load is

1/0.597 = 1,675
J0.5 B /12 (3.73)

ahd the buckling mode is given by the ratios

GOB : QAB :AGBO : eBA : BBC =1 § «0,262 : =0.,212 : 0,170 :O°436.(3°7‘

[ex

cr

or

Although the value of 1.675 for the load parameter is an upper bound, it
does not differ significantly from the trial value 1.50; the errors due
to the linearization of the stability functions over this range are

negligible. As a check on computations, the buckling mode (3.74) is

substituted in the equation of congervation of energy using the original
matrices A and B of equations (3.69); this gives f%r = 1,660 which is
almost the same as above,

(b) Model Test

A model of the tetrahedral frame was constructed from‘1/8 in, diameter
bronze welding rods, 17,9 in. long. EI and GJ were measured from bending
and torsion tests, and verified by vibration tests. The two tests agreed

to within 2%, and the average values obtained were

EI = 203 1b.in® ; GJ = 136 1b.in%,

giving r = GJ/EI = 0,670,

Based on simple elastic theory this value cerresponds to a Poisson ratio
of 0,49 which seems rather high, However, tests on similar rods gave
Poisson ratios as high as 0.72 in some instances, which is of course
impossible according to theory, Some of these rods were examined under
the microscope, and itAwas found that the outer circular layer, about
0.005 in. thick, exhibited a much finer crystal structure than the body
of the material., It is suspected that this layer'has a lower stiffness;
thie would lower GJ proportionately more than EI, and hence the high
apparént Poisson‘ratiof A 3/T6in. diameter rod was tested and gave

EI = 915 1bs.in2 s, GJ = 530 lb.in2; these figures correspond to a
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.Poisson ratio of 0,72, The rod was then turned down in a lathe to

1/8in.’ diameter, and this had stiffnesses EI = 160 1b,in°, GJ=118 1b.in%.,

which gives a Poisson ratie of 0,36, This test confirms the effect

of the weak outer layer on the standard bronze welding rods,

The tetrahedral frame was set up on flexible rubber supports s
and Huggenberger tensometers were located approximately at the centres
of the coempression members, orientated in planes in which the bending

was judged by eye to be maximum, The results are shown graphically in

figure (3,10) together with the Southwell plots on strains., These are

L 42 -
£-PleA
. 1)
-0 40X 10
L@ -8

—o—member OC
—a— member OA 3
—~o—- member 08

-2
2 4 ¢ % % 10 0 2 " 6 § s
X10 s
&'-p/EA e plea X1
(a) Strain readings (b) Southwell plot

close to linear and the buckling load,obtained from the average inverse
slopes, is

(ww)exp = 26,1 1lbs,

The calculated value of the buckling load is, from equatien (3.73) with
EI = 203 1b.in® and 1 = 17.9 in.,

(WCI')CALC = 2507 1bse
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The twe results are in excellent agreement, A4lso, the roughly measured
mode, used as a starting vector in the calculations, does not differ

greatly from calculated mode,

3.11 LATERAL BUCKLING OF THROUGH--BRIDGES

Lateral stability of'trusses isa subject which has received
a considerable amouny of attention. -One of the earliest aftempts at this
problem was by Engesser (reference 11), who treats the compression chord
of the truss‘és a uniform bar under axial load P, Lateral restraint is
provided by linear springs spaced at equal imtervals aloeng the bar,
Aasuming that the buckled sﬁape of the baf is a series of half-sine

waves of equal length v, Engesser shows that the buckling load is given

by ‘ |
' P =2 Vk EI/s (3.75)

where EI, is the flexural rigidity of the compression chord, k ié the
spring stiffness, and s is the spring spacing. This formula, although
it is based on a crude model, has the merits of simplicity, and it has

been shown by Bleich to work well prévided the half wave length v is
greater than 1.8 times the spring spacing. In trusses, the lateral
restraint is provided by the web members rather than springs, and difficulties

arise in assessing the "equivalent spring" stiffness. The web members also

provide some rotational restraint and this is not considered in Engesser's
mathematical modely nor is the twiéting of the compression chord; 'These
deficiencies, together with the fact that the analysis applies only te
constant axial load chords, form a serious objectioh to the use of the
simple formula, ' '

Timoshenko (reference 12) provides an improved mathematical model
by taking into account the variation in axial load along the compression
chord, such as arises when the truss is loadéd uniformly. Twisting of the
compression chord and rotational restraint of the web members are still
neglected, while the lateral ‘restraint is replaced by a continuous elastic
: fbuﬁdation. Again, difficulties arise in practice to estimate the 'modulus’
of this foundatioﬁ. An infinite Fourier series is used to define the buckled'
shape,and the Fourier coefficients are determined from minimum strain energy
conditionse Quite reasonable estimates of the buckling load are obtained
from.only two terms in the serles, but the accuracy, depends to a large

extent on the accuracy of the calculated egquivalent foundation modulus,
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More recentiy; Hérne (referenca 13) presented an analysis
of lateral stability of irdsges which considers the truss as a whole
unit, rather ?hﬁﬁ just the compression chord as was done by Engesser
and Timoahenka; ‘Horne's analysis takes into account lateral bénding
and twisting of the compression chord and web members, but only

twisting of the tension chord; lateral bending of the tension chord

is neglected, justifiably, since it is usually small due to the
large restraint provided by floorbeams and by the déck;
Unfortunately Horne's results apply only te uniform compression
¢kords under uniform axial load, but some modified results are

presented for the application to wpn-uniferm cases,

The sbove methods, and also several ethers not mentioned,
give an aﬁproximate solution for the buckling mode and load of
trusses., It is difficult to assess their degress of accuracy due
to the complicated nature of the simplifications made in deriving
the mathematical models ; some of the simplifications result in a
mathematical model which is stiffer than the actual frame, while
others have a weakening effect, Then again, a strain energy
analysis usually leads to an upper bound for the buckling load
of the mathematical model, but with the uncertainty of whether .
this is stiffer or weaker than the actual truss, it is not

possible to predict whether the results are safe or unsafe.

A more exact analysis must necessarily take into
account the interaction between all the members of the truss,
together with their stiffness variation with axial load.
Livesley (reference 14) developed a general computer programme
for the analysis of structures based on the deformation method,
This takes into account the above factors and can be used to
calculate the buckling load and mode of through truss bridges,
although there is a restriction on the number of joints in the
frame; the number depends on the storage capacity of the
machine available, A similar approach is proposed by Schmidt
and Stevens (reference 15), who present a comparison with
experimental results and also with an "equivalent elastic

line theory" for a six bay Warren truss,

The complete stiffness matrix for this type of structure
is generally of high order, and manual computation is out of
question, However, by using the linear combinations technique
developed in section (2.7) of this thesis, the number of
equations is reduced to as few as desired, and by linearizing

the elements of the stiffness matrix, the buckling load and mode
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are‘readily estimated with a slide rule or desk calculator as the
computing medium, With inexpensive model tests as a guide, the
important joint diSplacements and rotations are singled out, and the
remainder are grouped as ratios under one or more parameters, Model
tests are also used to advantage in defining simple functions to
determine the weighting ratios in the individual groupé. In a
sense this technique is similar to the simplified analysis

of Engesser and Timoshenko, but differs from them in not neglecting

the less important deformations of the buckled truss. The buckling

load, obtained as a solution of the reduced stiffness matrix, is an
upper bound, but with good weighting ratios and a reasonable first
guess to linearize the member stiffnésses, the discrepancy should

not be large.

3,12 TWO-BAY WARREN TRUSS THROUGH-BRIDGE

As an introductory example, the stability of the bridge
model shown in figure (3,11) is analyzed. All members are for

figure 3,11 = Warren trugs bridge model

simplicity of the same circular cross section, The bridge is supported
at the four lower chord end points, and each truss carries a load W at

the centre of the lower chord and in the plane of the truss,

A rigorous anaiysis of this frame requires, in order to
specify its deformed shape completely, six generalized displacements
at each joint, namely three translations and three rotations, giving

a total of sixty deformation parameters for the entire frame.,
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However, some of these can be @liminated and others neglected; from

the conditions of support the translations at the four corners of

suppoft are zero, in~plane deformations arelnegligible, and, assuming

that the deck is braced, the’sidesways of lower chord joints are zero,

(In the tests conducted on a model the latter condition was achieved

by tying cotton threads diagonally across the deck). These simplifications
are common to most methods of attack on this kind of problem,

(a) Analysis

Even with the above simplifications, there remain a total of

twenty-four generalized displacements to describe the buckled shape of
the bridge model, namely two rotations at each joint, and a lateral
displacement at each upper chord joint. Model observations indicated
that the bridge as a whole buckles symmetrically about its longitudinal
centreline, and that each truss buckles antisymmetrically out of its
plane, It is assumed in the following analysis that this is the
fundamental buckling mode, and six parameters are sufficient to
describe this mode, These consist of five rotations and one dis~
placement, as shown in figure (3.12) in which the axial forces are

also given in parentheses at the centres of the members, Taking

P =0.,6Q as a trial load, where Q is the Euler load of the truss members,

' P=uW\V3
Ad’a Q,:’#a Note: The deformations
€ |@8; wy O] $*=°%4=-w,z of the other truss are
P) equal and epposite to
' these,
" /P P\ :¢s P (P
A A =¢,
wy Wy=0 wg= -,
—— ———— —
@ (- PR) 3 (~P2)

figure 3,12 - Joint rotations and sways

the linearized stiffness matrix is set up in the manner outlined
in the previous section. The ratio GJ/EI = 0,835 is used to
express torques in terms of (EI/1), and after dividing some rows

of the matrix by 2, we obtain the symmetric matrix
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1 994p) <-o.377—_[¢1- - N

I .26\ [=1.401 -0.139) 1,206
Oe 220 +0, 679F +O.122 =0.211 -0.140 +0.068ﬁ
1, 401>

< . 1,206)(1 252) 0.653) w, 0
\+0. 679, .174(3) 0.211(%) \#0. 3663, o.117p

~0. 139) ~1,206 9.3'1 (o .013 )(-o 133)( 1.574 ) ¢2 _
\0. 1220, -0.211) -1.1860)\#1.172/\~0.058p) \-0.146p 1°

(3.76)
-1.206 \ (1,252 \ (~0,013 / 8,19 (1.205 ( 1.303 ) W 0
\o =211/ \#0. 36602 <+1 172)(-0 310()) ~0.101p/ \-0.018p 2
2994 ( -o 133 <1.205 ) ( 6.45 )( 0.375 ) ¢ 0
Co 140 ) -o .058p/\-0.101(0/ \#0.894p/ \#0.057p>
~06377 0. 653 1 5’74) 1,303 )( 0.375 )( 0.75341 ||p 0
$0,0680/ \-0. 117{3 -0.146p (o 018/ \+0.057P/ \-0.38122p 1.

In these equations the load parameter A is the P/Q ratio of the compression
members., It is anticipated that the buckling mode is dominated by the sway
component A -, and for ‘this reason the last element is calculated to five
significant figures, which is probably more than is warranted by teking -
differences of the tabulated stability functions to determine the linear

approximations,

In this example the buckling load is determined by Gregory's
method; a plot of the smallest latent root against the load parameter
is shown in figure (3.13), and this is seen to be linear to within the
accuracy of calculations. From the intersection on the load axis the
buckling ;g:%g:h is obtainéd* as

P = 0,611 (3.77)

figure 3,13 -~ Latent root plot for bridge model
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which is known to be an upper bound, but seeing that it is clese to the

trial value of 0.6, it may be taken as exact. In terms of the applied
load W this gives

- 2 | - | '
W, = 1045 EI/1 | (3.78)

The buckling mode is taken as the latent #ector corresponding to the

smallest latent root at = 0.6, which is

129
¢ rw ¢, W, : 4>3:A2 = 0,019 : -0.2%9: -0,185 : -0.112 : -o.o5c(>: 1 )
' 3.79

(b) Model tests

A test model of the through bridge was made having 8 in, long
truss members and 10 in,floorbeams, all of 1/16 in. diameter bronze
welding rods, These light sections were chosen deliberately so that
the frame could be deformed easily by hand, and the large_deformationé
observed permitted a qualitative statement to be made regarding the
buckling mode which was used in the analysis. Due to the great
flexibility of this light frame, measuring equipment such as dial
gauges and Huggenberger tensometers are out%of question, and sways
on thg loaded model were measured with a ruler, Since the maximum
deflections were of the order of 1 inch this simple method proved to
be sufficiently accurate. It was found that the two outward sways were
very nearly equal but considerably larger than the inward sways which
were also nearly equal. The average values are shown in figure (3.14),
together with the Southwell plots. The latter are seen to be linear
and parallel to within 1%, From the average slope the buckling load
was found to be ' ‘

Wcr’= 2,14 lbs,

Measurement with straight edges and a protractor, with the model

loaded at 2,05 1bs., gave the buckling mode approximately as
¢1 : W, :4)2 : W, z¢3 1A, & 0 : =1/8 : -1/5 1 =1/10:~1/2031
which agrees well with the calculated mode,

A gimilar piecé of, bronze welding rod, when tested in

6

tension gave the Young's modulus as E = 17.4 x 10° p.s.i., whence
- EI = 12,62 lb.in2o EI was also measured directly from bending tests
giving an average value of 12.76 1b.in®. Taking EI = 12.7 1b.in%,

the predicted buckling load is, by equation (3.78)
W = 2,08 1bs,
cr

which is in good agreement with the measured value of 2.14 1bs,
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w(lbs.)

0.

A(ins) _A(ins)
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0 o'.z o:l; o.'s 0:8 1.0 0 0R 0.4 06 0.8 1.0

figure 3,14 = Measured sways

(¢) Computer programs

In a discussion on a publication relating to the work in
this chapter (refere%ce 16), it was pointed out to the author that
the calculated buckling load of the two ba& Warren truss bridge is
in error by some 12%. After subsequent private communication it was
decided to check the calculations in this section by means of the
electronic digital computing facility. Firstly a program was written
to determine the buckling modes and loads of the bridge model by
extracting all the latent roots and vectors of the matrix (A—1.%),
where A and B are the matrices of equations (3,76). The program
used was a standard library procedure which required these matrices
to be read in as data. The results obtained were identical to those
calculated on a slide rule; this meant that the matrices themselves
were in error. A second program was then developed in which the matrix
elements were generated in the machine and produced as output. Surprisingly
these matrices agreed fairly closely to those set up by hand as can be seen

in the following "matrix", in which the differences are expressed as
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percentages of the exact values; the upper figures are the percentage

~
errors in matrix A, while the lower fiigures are the percentage errors

ro.oo>
\0.21

/0,31) “(0007)

k0°06 0.12 symmetric

0,16> <?°o7> (0.04)

\0.02/ \0.08/ \0.06 |

(0,07 0003) <6.34) 0,07) . .
@,os) (0.06 0,18 (2,29 | (3.80)

(o.o9> (0.00) (0,28) (0,91> (0.03)
1.93/ \0.00/ \0.54/ \0.50/ \0.38
0,05 o.oe) 4.46) (0.12) (0,37) (0.003)
(o,oz, (oooz 0,01 0,31 0.11/. \0.014

in the matrix %o The correct matrices were then re-used as data for

the first program to calculate the fundamental buckling mede and load.

The results obtained were

AR AR

P

As can be seen the mode differs little from the one calculated »by hand,

while the buckling load is 12% larger, as was indicated in the discussion

i

0,020 : =0.128 : 0,177 ¢ =0,110 : «0,051: 1(3.8

0,689 (3.8)

cited above,

From these calculations we may conclude that the buckling load
of this particular frame is very sensitive to small changes in individual
member stiffnesses, since the incorrect matrices of equations (3.79)
could be regarded és correct matrices for a similar frame with slightly
changed member properties° On the other hand these changes have little

effect on the buckling mode,

A third computer program was written to in&estigate in more
-detail the properties of the latent roots and vectors, and at the same
time to check the accuracy of the linearization technique. The complete
(24 x 24) stiffness matrix was generated in the machine using the exact
stability functions. All its latent roots and vectors were extracted
for a number of load values using a standard procedure, and the six

smallest roots were printed as output. These are plotted against the
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load parameter /) in figure (3.15). It is interesting to note the multiple
intersection points between the curves, Also,the latent vectors ssociated

with the two least latent roots at low loads da not represent the

A |
4.0}
3.0 )

2.0

1.0

-10

figure 3,15 - Latent roots of (24 x 24) exact stiffness matrix

fundamentak or second buckling mode, That is, at low loads there are
deformation patterns to which the frame offers a low stiffness,'but
these stiffnesses decrease only slowly with increasing load and are
therefore not responsible for buckling, The deformation pattern of
the first and second buckling modes have relatively higher stiffnesses
at low loads, but deterioriate much more quickly and vanish earlier,

From the intersection of the latent root plots on the load sxis th

first and second buckling loads are obtained as -
(RN, =0.688 5 (), = 0.800 ' (3.83)

The buckling modes are the latent vectors corresponding to the

associated latent roots at these loads respectively, By interpolation

between plotted points these are obtained as

(¢, W ¢, :w, :¢3 th,)  qe 1= 00020 =0,128: -0.177: =0,110t -0,051+ 1
| (3.84)

(W =, 2w, :py :4) = 0,015 ~0.074+ -0,166: ~0.121: ~0,039: 1
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In both modes the trusses deform antisymmetrically, so that

b=b, 56, =0, ;W= W W= 00

The first mode is symmetrical about the bridge centreline while the
second mode is antisymmetrical; this checks the simplifying statements

made in part (a) of this section in order to reduce the number of

unknowns to six., To the accuracy shown, the first mode calculated

from the exact (24 x 24) stiffness matrix is identical to the approximate
mode obtained from the linearized stiffness matrices, The second

mode differs little from the first, the main change being a reduction

in the tension chord deformations ¢1 s Wq ,¢ 3 o This is so because

in‘the antisymmetric mode the floor beams have a reversal of curvature
in the centre, and therefore offer more restraint to the truss. In -
the test model the floor beams were made of the same material as the
truss members, but one and a quarter times as long., Consequently

the resistance offered toAthe truss deformations at the deck level

is small, Thus,‘although the stiffness of the floorbeams is trebled

in the antisymmetric case, the overall buckling modes do not differ

much, By the same token the two buckling loads are close together. -

(d) Additional tests

From the extensive analytical treatment it is evident that
the buckling load is sensitive to small changes in member properties,
so that, in order to predict the buckling load reliably, the flexurél
and torsional stiffness of every member need to be known accurately,
Four members were cut from the model and subjected to tension, bending,
torsion and vibration tests to determine their EI and GJ values., The
results were sufficiently close to warrant the use of the same values’

for each member, The average values obtained were
EI = 12,20 1bein? ; GJ = 7.16 1bsin®.
This gives the ratio GJ/EI = 0,587, whereas a value of 0.835 was used

in previous calculations. Repeating the analysis with this value; the

buckling load is obtained as

Fer
o = 2:05 1bs,

0,630 !

or

“which is close to the measured valwe of 2.14 1b. It is pérhaps
disturbing to note that the measured value is higher than the calculated
value; however taking ihto account the sensitivity of the calculated

value, the difference cahnot bé’regarded as significant.
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3.13 EIGHT BAY THROUGH TRUSS BRIDGE

To conclude this chapter, a more realistic frame such as that
in figure (3.16) is analyzed for stability; the buckling mode and load
are estimated using linearized stability functions and simple polynomial
functions to describe appfoximately the buckled shape. The results are
compared with experimental work, and the merits of the alternative

analytical approaches are briefly discussed,

(a) Description of model
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figure 3,16 = Through truss bridge

The tension and compression-chords of the model were uniform

and continuous, each 3/16 in. diameter bronze welding rod., The web was
made by bending 1/8in, diameter bronze welding rod to about 1/8 in,

radius, so that, when assembled, the centrelinesof the members intersected.
Connecting the two trusses were floor beams made of 3/16’in. diameter bronze
welding rods; these were connected below the tension chord so that some
small eccentricity existed, but this was not deemed serious. All joints
were silver sol&ered, and the finished model had a maximum initialf
crookedness of approximately 1/16 inch in the compression chords, the
pattern being roughly in a half-wave form in each truss, and the two
trusses were crooked in opposite senses., The whole bridge also exhibited
a substantial amount of overall sidesway, but this was almost wholly
eliminated by the diagonal bracing which was used to prevent swaying of
the bridge during léading. The bridge was supported by resting it on the
end floorbeams; knife edges were placed at one end, and rollers at the

other end, so that the ends could approach each other fairly free of restraint
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during the deformation of the bridge. Load, in the form of deadweights,
was applied through wire hooks looped around the central floor beam
in the planes of the trusses,

(b) Analysis

In both Engesser's and Timoshenko's treatments, an estimate
of the equivalent spring stiffness is required. This can be obtained
by considering a typical panel as in figure (3.17). The stiffness k
is the force H required to produce unit lateral deflection § at the
top chord joint, Clearly the panel shown deforms symmetricelly about
both the bridge centreline and about the panel centreline. Thus neither
the floorbeams nor the tension chords twist. As a first approximation
agsume that the top chord joint is of the ball-type; this simplification

means that the opposing diagonals and the floorbeam connecting them each

figure 3,17 - Isolated panel

behave as a rectangular portal frame as shown in figure (3.18), each
carrying half of the force H, From an analysis of this frame, the

stiffness k is readily obtained as
k =H/§ = 2f1P[1/381, + b/2BL} (3.85)
5 ' 6
H_/z ' l H/2
\
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where EIq, EI2 are the flexural rigidities of the diagonal and floorbeam
respectively, Inserting the numerical values for this truss (see

appendix), we find A
k = 3,40 1b/inch ' (3.86)

This estimate can be improved somewhat by treating the panel as a unit,
The joint rotations are shown in figure (3.17), in which the double
symmetry has been taken into account. Analysing the frame by the

usual deformatidi,method, we obtain the equations of equilibrium, in

terns of the rotations W, 6, , W, and the sway § . Solution of
these equations gives the stiffness as
k = H/6 = 416 1b/inch (3.87)

which is about 20% larger than the first egtimate.

Neither of the above two mathematical models takes into account
the variation in stiffness of the members due to their axial loads. However
this should not be a serious defect because the decrease in stiffness of the
compression diagonal would be largely balanced by the increase in stiffness
of the tension diagonal, and the tensioh chord itself dpes not deform,

The calculations also gsgume that the panel deforms freely
on its own, that is the restraint from neighbouring panels is neglected,
Another estimate for the spring stiffness can be determined by assuming
an infinite restraint from the neighbouring panels, so that the deformations
at the tension chord joints would be zero., Using this information in the

equilibrium equations it is found that the spring stiffness is

% = 6.28 1b/inch - - (3.88)

It is clear from the above analysis that a comsiderable range
of values for k can be calculated, depending on the simplifying assumptions
. made in setting up appropriate mathematical models, Nevertheless equations

(3.87) and (3.88) can be taken as lower and upper limits respectively.

Engegser's model := the buckling mode is assumed to be a series of equal

half-sine waves of length v, given by

v :1T(EIs/k)%' | “ (3.89)

where s is the "spring".spacingb Using the numerical values for this

truss, and the lower value, k = 4,16 1b/inch, we find

v = 18,9 ins. (17.1) © (3.90)
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This is about three times the spring spacing, so that in fact Engesser's
model predicts that the compression chord as a whole buckles approximately
into two half waves, which is the antisymmetric mode as observed during
tests on the model (see figure 3.16). However, this predicted mode is a
poor fit to the observed mode in that slope and curvature at the ends

ought to be close to zero, The buckling load predicted by Engesser's
model is

P, = 2 VEI ¥/s = 5004 1bs, (61.8) 0 (3.91)

where Pcr is the axial load in the compression chord and which is assumed
to be constant, The central loading actually used produces an axial
compression which increases towards the centre; using the above value

as an average, the buckling load is given by

W, = chﬂ 026 = 40,0 1bs. (49,0) (3.,92)

The buckling mode and load may be recalculated using the upper limit of
the spring stiffness, k = 6,28 1b/inch., These values are shown enclosed
in parentheses alongside those determined for the lower limit of the

spring stiffness.

Timoshenko's model: in this model the change in axial load along the

compression chord is taken into account,and the springs are replaced by
an equivalent elastic foundation of modulus /3: k/s (see figure 3.19).
The axial load is assumed to vary continuously, and for the loading in

figure 3,19 — Column under uniformly. distributed axial load

on an elastic foundation

figure (3.16) this is seen to be a uniformly distributed axial load of
intensity q per unit length., Denoting the deformed shape of the
compression chord by the function y = y(x), the total strain energy

is evaluated from the expression

U= UB + UF - UW ' ‘ (‘%093)
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in which !

U = strain energy of bending = %iEI(izy/dxz)z dx

Up = strain energy of foundation 7-%-f{3y2dx {

U, = work done by the load =%fq§wﬂwﬂw+%fquqxwmﬂ%x
1 = length of column ° R

The function y is approximated by a Fourier series, and the coefficients are
determined from the conditions of minimum total strain energy, Assuming an
antisymmetrical buckling mode, the simplest approximate function is the one

parameter Fourier term

= a, sin(2Mx/1) (3.94)
Using the value k = 4,16 1b/inch, we find that the minimum total strain

energy condition gives a buckling load of
a, = 40.2M° EI/27 = 0,092 W (3.95)

whence Wcr = 53,4 1lbs,
The use of an additional term a, sin (4mx/1) to describe the buckling mode,
gives a value wcr= 51,0 1bs., which is only 5% smaller than the previous

value, so that it is not necessary to extend the Fourier series further.

The buckling mode is given by the ratio

ay 13, =13 0,13 B (3,96).
When the higher value of k is used we find _ _
W, = 63.3 1bs, (3.97)

as H a4 =1 ¢ 0,21

From this analysis it is reasonably supposed that the buckling load lies
somewhere between 51,0 and 63,3 1lbs. Unfortunately the predicted buckling

mode still does not satisfy the observed end conditions,

Horne's analysis:s uFollowing the calculations for the general solution
proposed by Horne, the buckling mode is found to be antisymmetric, as in

the previous models, and the buckling load is calculated as

P =179.1 lbs, : (3.98)

¢

Here again the axial load is constant over the entire length and using

it as an average value we have

W = 79.1/1.26 = 62,7 1bs. | (3.99)

Deformation method:- The complete stiffness matrix for the bridge model
is of order (84 x 84), taking into account the sway bracing of the deck,
the support conditions, and the fact that the in-plane deformations are

separable, A manual method of solution of such a large number of equations
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is out of question, even if the double eymmetfy conditions were
used to reduce the number of unknowns to 21, However, with the
aiw of the technique develobed in ehapter two, the number of unknowns

is reduced to as few as can be managed, and calculations are speeded

up by using linearized approximations for the stability functions,

Obviously the buckling mode is dominated by the lateral
deflections of the compression chord, that is by the sways of the
joints, so that it is best to leave these as separate parameters in
the equations of equilibrium, The remaining generalized joint

displacements,for one truss, are conveniently. grouped as follows:

(1) - all compression chord rotations in terms of the parameter Ty
(ii) all compression chord twists in terms of the parameter r.,
(1ii) all tension chord rotations in terms of the parameter Tss
(iv) all tension chord twists in terms of the parameter T)e

Thus without the use of the symmetry conditions we would be left with
2/, unknowns; however, using the symmetry conditions this number is

reduced to 8, and solution by manual methods is possible,

During model tests it was observed that the tension chord
rotations were negligible, so that as a further simplification these
are made gero, For fhe purpose of defining the ratios of the generalized
displacements in the above groups, it is convenient to fit a simple
function to the buckled shape of the compression chord, From the
sketch in figure (3.16) it is seen that as a first approximation
the following‘boundary conditions apply:-
(1) at x = 0, z = 0, dg/dx = 0, dz/dx* = 0

(3.100)
(ii) at x = 1/2, z = 0, dz/dx> = 0 '

where z = z(x) is the lateral deflection of the compression chord, A
fifth order polynomial satisfies these conditions, and by differentiation
we obtain the approximate function for the compression chord joint

rotations

¢ = az/ax = v (x/1)2[3-14(x/1) + 15(x/1)3] (3.101)
from which the ratiog are determined as
bo @ ¢, : 5 =17q(0 1 0,593 : 0,407 :=1.00) (3.102)

It was also observed that the compression chord twist varied almost
proportionally to the lateral deflection, so that

w = ro(x/1)%[2- 7(x/1) + 6(x/1)?] - (3.103)
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whence we obtain the ratios
wo P W, ;w2 :wB;rz(O

Assuming a similar expression for the tension chord twists, we find

: 0,286 : 1,00 : 0.703)

uz'; u@

At this stage the buckled shape of the bridge has been specified in
terms of the six geheralized diéplacements Aq, A2 ) A3 s

:w6 :w,7 = r4(0 : 0,206 : 0.846 : 1.00)

Ty To, rA.

The corresponding generalized forces are denoted by F&, F,, F,, R1, 09
] ~

R4 respectively. The first three of these are obtained directly as the

sum of the shear forces at joints 1, 2 and 3, whereas the last three are
determined as the weighted sums of the moments at all the joints, the -
weighting-factofs being the relative joint rotations as defined by the
(3.102), (3.104), and (3.105). The member shears

and end moments are a function of their P/Q ratios, and for convenience

ratios in equations

The load at which to linearize the
stability functions should preferably be close to the buckling load,

and the simple Engesser formula prov1des a quick estimate; in this
example W, is chosen as 45 1bs., which is about midway between the

these functions are linearized.

values obtained above., The stiffness matrix is set up by applying
each generalized -joint displacement in turn, computing the end moments

and shears, from which the generalized joint forces are obtained by

]

summation, taking due account of the weighting factors, The final
equations are
. o L
-1830>< 0 )( 372) 96.2 (177) A/ = F,1
1
-12100w/ \+8010w, 278w -11 2w/ \+170
(—1830 ( 1831 \(=1458 (337 ) (311 A2/1 F,1
+8010w/ \-20150u/\+12050W\¢# 1440w/ \-39.2w/ \+9.8w.
( )(—1831@)(6280 1289 )( )( 168) A3/1 P
+1205 =47400wA+185%uw/\ =27 . 5 -317 3
J( 372) -1458)(1289 (2200)( )(52 8) N P
278u) \+1440u +1859w) 3980w/ \~50. 80/ \s2.5u/|[ 1
(962)(337 )(237 )( ) 473) (122 - R
=392/ \~27.50/\=50,8/ \=1400) \+108w 2 2
177 (311 ) (168)(52.8)( 122) ( ’786) . R
' +170u 317u) \#2.5u/\+108w) \-156u/|} % 4

(3.104)

(3.105)

(3.106)
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3

in which w =W x 10~ , and 1 is the panel length, The parameters, sway

divided by panel length, are used rather than sway by itself, so that

all unknowns have the dimension of rotation,

The buckling mode and load are determined from the condition;
that the right hand side of equations (3.106) vanishes. Denoting by A
the matrix of constants on the left hand side of the equations, and by
(:ﬁ) the matrix of coefficients of w, the equations are written in the
form ' . ' .
(/WL %=B.% - (3.107)
where X is the solution vecfor° The solution of equations (3;107), as

obtained by Gaussian elimination, is

1810 1,895 3.9 0,294 -0,0019  0.0235|| A /1= (1/w) | A /1)

1,049 9.63 9.84 1,311 0,0415  0,1120{| A,/1 4,/1
~16131 2,70 13425 0,781 0,048,  0.1226 Ag/l lg/d
-2.52 7.00 12,91 3,05 0.1039 - 0.1400|| =, r,

2,13 “Ted5  =12.74  =1.093 0.200  -0.417 || r, r,
|_0.455 ~4o13 ~5499 -0.815 -0,263 0°T§El‘__r4;_ __ré_

(3.108)

In this form it follows that the fundamental buckling load is the reciprocal

of the largest latent root of the above matrix, and the buckling mode is the
associated latent vector, From rough measurements on the loaded model the

mode is approximately given by the vector
(003: 190 H Oo7 : 100 H "1 oo : -005)

Using this as a starting vector in the standard iteration process we obtain

in succession the wvectors

(0,280 @ 0,994 @ 0.679 ¢ 1,000 : ~0,930 : . -0,486) 18,16
(0,278 ¢ 0,993 ¢  0.674 ¢ 1,000 : =0,925 : =0.486) 17,89 .
(06277 ¢ 0,992 ¢ 0,670 : 1,000 : '=0,924 : -0.486) 17.84
(0s278 & 06993 ¢ 0,670 : 1,000 : =0,922 : -0,486) 17,76

(3.109)

As can be seen the process has converged rapidly; this is because a good

starting vector was used. The last vector is thus the buckling mode, and

an estimate of the buckling load is

W, . = 1000/17,76 = 56,3 1bs.
A check on this value is obtained from the conservation of energy equation
that is - .

W = 1000 (& %). %/(B. %) X
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)

where & and B are the matrices of equétions (3.106), and X is the vector

representing the buckling mode. This gives
W_. = 1000 (1092/20,190) = 54,1 1bs. (3.111)

This value is known to be an upper bound but it should be close to the

exact solution of equationé (3.106). It must be remembered that these
equations are approximate in‘fwo senses, Firstly there is the approximation
arising from the linearization of the stability functions; however, since
the calculated value of 54.1 lbs. is close to the trial load of 45 lbs.,
these errors may be neglected. Secondly there are errors in the . assumed
shape of the buckled bridge, as expressed by the ratios of rotations
(equations 3,102, 3,104, 3,105). These ratios could be improved in a

manner similar to thay suggestéd‘in chapter two but in this case it is not

warranted because the_rétios fit the observed mode,

(c) Experimental verification

This particular model is sufficiently stiff to allow the
use of Huggenberger tensometers for measuring strains. Three opposing
pairs were used, and located approximately at points of maximum
curvature, as judged by eye, which occurred abdut midway between
joints two and three (see figure 3.16). Figure (3.20) shows the
measured strains and their Southwell plots. The Southwell plots

are seen to be almost linear, exhibiting a slight tendency to a higher
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figure 3,20



" mode component at low loads,

whence
This agrees very well with the calculated value of 54.1 lbs. which is

P
cr

known to be somewhat high.

W
cr
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8.4 1S,

51.0 1bs,

The predicted buckling mode is also close

From the average inverse slope we obtain -

to the measured mode as can be judged from the relatively few

iterations which were necessary to extract the largest latent root.

The differences range from about five to ten percent;

(d)

from which it is seen that, as far as the buckling load is concerned,

there is 1little difference between the methods.
that Engesser's formula predicts a low value for
This could be due to the fact that the formula applies to the constant

Comparison of Results

The following table summarizes the results of this section,

Buckling Load (1bs,)

Buckling Mode

Engesser 40,0 — 49,0 z’)——_i\‘-___,—f!

Timoshenko 51,0 — 63.3 -

Horne 62,7 —_——

Deformation method 5401 ——

Measured 51.0 —T e
Table 3.4

It is rather surprising

the buckling load.

axial load problem which is then used as an average,.

In all cases an antisymmetric mode is predicted for the

compression chord deflections but the first three do not satisfy

the end conditions.

Since the first three mathematical models are

based on these assumed functions for the buckling mode, one would

expect the calculated buckling loads to be high,

This is indeed the

case in Horne's analysis, but some compensation must occur in

Engesser and Timoshenko's models, since these neglect the rotatibnal

restraint of the diagonals on the compression chord,

(3.112)
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3,14 CONCLUDING REMARKS

The most important feature of the new method presented in

this chapter is the linearization of the stiffness matrix, the advantages

of which have been clearly demonstrated. Attention is focussed on the
buckling mode, and this is determined iteratively, using information
from simple models (often a cardboard model is sufficient) to speed
up the calculations., Once the buckling mode is known, the buckling
load is.readily calculated as some property associated with the mode,

such as a latent root of the stiffness matrix for example,

/

The accuracy of the linearization method dépends on the
trial load usad to set up the approximate stiffness matrix, and
usualiy this can be estimated fairly closely beforehand. Should
it be necessary, a second linearization can be carried out using

the previously calculated buckling load as a guide in selecting

a new trial load, Alternatively, more accuracy is gzhieved by
using more terms in the Taylor's series expansion for the stability
functions, This has been done by Firt (reference 17), but the
resulting matrix equation leads to considerably more complicated
manipulations, and it seems that there is little advantage over the

simple linearization,

It has been shown that the deformation method of analyzing
elastic instability also lends itself well to three~dimensional
buckling problems. In the examples chosen the members were of
circular sections for which every cross-sectional axis is a principal'
axis, This means that joint rotations can be resolved into.any
convenient direction. The only complication for non~circular members
is that the rotations must be resolved into the principal axes of the
members., Also, for some sections, it may'be necessary to teke into
account the effect of axial load on the torsional stiffness. However;

these modifications present no difficulties, and the basic principles
remain otherwise unchanged, '

Most of the emphasis in this chapter has been on manual
methods of computation, but it should be pointed out that electronic
digital computors are a powerful aid in this type of work; a glimpse
of their use was given in the extensive analysié of the two-bay Warren
truss through~bridge,
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APPENDIX - Properties of 8-bay through bridge

Flexural rigidities: top and botbtom chords, EI = 915 1b,in®
diagonals,  EI = 194 1lb.in
floorbeams,  EI = 915 1b,in

torsional rigidiﬁies: top and bottom chords, GJ = 530 lb.in2
diagonals, GJ = 124 lb.in2
floorbeams,  GJ = 530 1b.in®

REFERENCES

(1) W, Merchant, "A Connection between Rayleigh's Principle and
Stiffness Methods for determining Critical Loads",

Proc. 9th Int. Cong. App. Mech., Brussels (1957).
(2) G. Temple and S.W. Bickley, "Rayleigh's Principle", p 29f.,
0.U.P., (1933)

(3) M.S. Gregory, "Framed Structures: the Instability Problem",.
Proc. I.C.E.(London), Vol 35, pp 451-473 (Nove1966)s

(4) see reference 2

(5) N.H. Wittrick, "Rate of Change of Eigenvalues", Jnl. Roy. Aer,
Soc., vol 66. p 590, (Sept. 1962)

(6) D.N. deG, Allen, "Relaxation Methods in Engineering & Science",
 p 158f., McGraw-Hill (1954).

(7) R.K. Livesley and D.B. Chandler, "Stability Functions for Structural

Frameworks", Manchester University Press, (1956).
(8) see reference (7), p 5ff.

(9) S.J. McMinn, "The Determination of the Critical Loads of Plane Frames'",
The Struct, Eng., (July, 1961),

(10) 8.J. McMinn, "Matrices for Structural Analysis", p. 182f , Spon (1962),

(11) F. Bleich, "Buckling Strength of Metal Structures", p 274~274, McGraw-Hill,
(1952)

(12) S.P. Timoshenko and J.M. Gere, "Theory of Elastic Stability", p 108f.
McGraw-Hill, (2nd ed. 1961). '

(13) M.R. Horne, "The Elastic Lateral Stability of Trusses", The Struct. Eng.,
(May 1960).,

(14) R.K. Livesley, "The Application of an Electronic Digital Computer to
some Problems of Structural Analysis?,;?thStruct, Eng.,
(Jan. 1956). S |




- 128 -

(15) L.C. Schmidt and L.K. Stevens, "Elastic Critical Loads of Laterally
Braced Trusses", Trans. I.E. Aust,, vol, CE7,

No. 2, (Oct, 1965)..

(16) F. van der Woude, "The Elastic Instability of Frames", Int., Jnl. Mech,
Sci., vol 7, No. 11, p 747-757, (Dec, 1965) [see also
discussion: Int., Inl, Mech, Sci., vol., 8 No 6,
p. 465 (June, 1966) 1.

(17) V. Firt, "Bigenvibration and Stability of Bridges and Structures", .
Publ. Int. Assoc, Bridge Struct. Eng., Vol 23,
p 127f., (1963).



= 129 =

CHAPTER FOUR -~ THE BEHAVIOUR OF OVERBRACED FRAMES

Lo1 INTRODUCTION

The previous chapter dealt with the behaviour of so called

statically determinate frames, 'Statically determinate' in this
context means that the axial forces in the members can be determined
from a statical analysis alone, This definition implies two major ‘
simplifications; firstly, the deformations of the frame are assumed
negligible in comparison with the overall frame dimensions, and
secondly the effects of bending are neglected in setting up those
equations of statics used to calculate the axial forces, The first
simplification means that we can use the original frame geometry to

resolve forces at the joints for the purpose of setting up the equations

of equilibrium of the joints., Another implication is that member
lengths may be changed, by small amounts of course, without altering
the axial force distribution., The second simplification is seen to

be equivalent to the assumption of pinned connections between members,

In practice the joints of a frame are usually welded and are
therefore more nearly rigid, so that the members carry bending
moments and shear forces in addition to axial loads. These bending
actions cannot be determined from statics alone so that most 'statically
determinate'! frames are in fact statically indeterminate, A better
description for such frames is 'statically determinate with respecﬁ

to its axial force distribution!,

In the present chapter it is proposed to study the behaviour
of frames for which the axial forces in the members cannot be
calculated from statical considerations alone, Such frames are
called 'statically indeterminate!, ‘redundant' or ’hypefstatic',
but for reasons explained above the term ‘overbrqced‘ is preferable
(see reference 1), Broadly speaking, this condition arises when the

frame has redundant members or supports.

In order to calculate the axial forces in the members of an
overbraced frame additional information is required ,and it is evident
that this is in the form of a compatibility condition relsting the
member lengths, That is, it is the changes in member lengths, however
small these may be, which govern the axial force distribution, When
bending of the members is neglected, the changes in length can be

expreséed in terms of the joint translations alone, and the axial
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forces are computed using ordinary linear elastic theory, This is called

{

the linearly elastic force distribution, and it is a reasonable

description of the behaviour of overbraced frames provided bending
deformations are small enough o be neglected, However, as for
statically determinate frames, there exists a possibility of buckling
and then the bending deformations certainly cannot be neglected, Also,
any frame possesses initial crookedness so that bending occurs right
from ‘the start, and as loading progresses the bending deformations grow
at an increasing rate., Due to bending the chord lengths of the members
change by amounts which are often comparable in magnitude to those produced
by the direct axial strains; in fact for slender frames the latter is
usually much smaller, The total changes in lengths must meet the
compatibility requirement, and to achieve this the axial forces in

the members change, Thus, whereas in statically determinate frames these
forces remain substantially in constant proportion, the axial force
distribution in overbraced frames varies continually, This means that
the designer's task becomes considerably more difficult since he must
now also estimate the axial force distribution before he can determine
‘member stiffnesses which he needs in order to assess bending effects,

- Furthermore there is the problem of prestrain within the frame,
Undoubtedly this eiists in all overbraced frames, and the question

is whether or not it can be controlled, with a view to improving the

frame behaviour under load,

Lo REVIEW

In comparison with the bulk of literature on buckling of
statically determinate frames; little has been written about the behaviour
of redundsent or overbraced frames, To the author's knowledge the earliest
contribution is that of Masur (reference 2), who concludes that when the
non-linearity of the axial force disfribution is taken into account, the
ultimate buckling load is usually greater and never less than the value
obtained by using the linearly elastic axial force distribution, The
latter value he calls the buckling load, and the increase in load is
referred to as the post-buckling strength , Masur shows that the ultimate
load, if it exists and if no yielding occurs, is characterized by the
equations

£=0

(4e1)
3f/3/\i

]
o

in which f is the determinant associated with the usual stiffness matrix,

and Ai (i=1,2, 0 0o , m) are the parameters defining the m redundant
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axial forces, The first of these equations is the familiar zero stiffness
criterion, while the second equation is a modification of the compatibility
relations involving the changes in member chord lengths, including the

member shortenings due to bending, Masur also shows that the elastic

ultimate load is independent of prestrain, although he does mention
that prestraining affects the behaviour up to the ultimate load, especially
if yielding occurs,

Giudici (reference 3) also congiders the nonmlineérity of the
axial force distribution, and he introduces the concept of an interaction
curve, applicable to singly-redundant frames but which éan be extended to
milti-redundant frames. The interaction curve for singly-redundant frames

is the locus of points in the W-R plane for which the determinant of the

stiffness matrix is zero; that is, it gives the buckling load corresponding
to any given value of the redundant force, A method for predicting the
loading path.ig proposed, and by superimposing this on the interactien

curve Giudici finds an estimate for the buckling load. This load is

an improvement to the value calculated onithe basis of a linear force.
distribuﬁién, but it provides no measure of the ultimate load, Giudici
stresses the fact that the behaviour of redundant frames is highly

dependent on initial crookedness and prestrain, and he concludes that

the difficulty in predicting the behaviour is a lack of know]_.edge about
member shortenings due to bending.

More recently, Murray (reference 1) developed an alternative
mathematical criterion for the determination of the ultimate load. He
shows that at the ultimate load both the frame stiffness and its derivative
with respect to the distributien of axial forces in the members are zero,
This criterion was derived experimentally, but was justified mathematicaily
by Schmidt (reference 4) in a subsequent discussion on Murray's work., In
order to calculate the ultimate load from this criterion Murray plets curves
<of.joint stiffness against redundant force for different load values, the
ultimate load being'the value at which the stiffness curve just touches the
line of zero stiffness, Basically this technique is similar to Giudici's
interaction curve; the only difference is a variation in the presentation;
It is evident that Murray's criterion is satisfied by a maximum on Giudici's

interaction curve,

So far the discussion has been confined to elastic buckling
behaviour, which occurs only in very slender frames. Investigations by
Stevens and Lay (reference 5) have shown that for overbraced frames with

low nominal slenderness ratios (1/r of the order of 100), the behaviour
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can be satisfactorily predicted using simple "elastic—fully plastic" type
curves to describe the axial load-axial shortening behaviour of the

.g;h be neglected in the elastic ranges of such comparatively stiff

"~ members, Similar investigations have been reported by Neal and Griffiths
(reference 6) who tested frames with nominal slenderness ratios in the
range 104=-225, They followed a method due to Ziegler to predict the
behaviour, using axial load-axial deformation relations measured in

previous tests on similar members,

The above brief review is included for completeness' sake.
Together with some of the remarks made in the introduction it provides

a reasonable picture of the problem and the present state of knowledge.

In this chapter some aspects of the problem are investigated,
mainly from a qualitative point of view, and a quantitive analysis is
introduced for some relatively slender frames in which buckling effects

become appreciable before yielding occurs,

4e3 STATICAL INDETERMINACY OF FRAMES

- It is perhaps well, at the outset, to clarify the meaning of
the term 'statical indeterminacy'! when used within the context of the
present chapter. In simple terms, the degree of statical indeterminacy
of any structure is the number of unknown generalized forces, (that is,
force, moment, torgue, etc,) both internal and external, minus the
number of independent equations of statical equilibrium relating these
unknowns, A general method for calculating the degree of indeterminacy
has been developed by Henderson and Bickley, an outline of which is
given in reference-7, but the following approaéh is believed to be
gimpler, Consider a single member, not necessarily straight, as in
figure (4.1). In general there are six g%ctions at each end of the
member; these consist of three forces (one axial force and two shear
forces) and three moments (two bending moments and one torque). Apart from
the external loads, which are presumed to be known, the foundations
exert unknown forces on the frame. The number of these'support ’

reactions (including moments) are readily counted, so that the total
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figure 4,1 - Forces on a gingle member

number of unknown forces, U is given by

U=12m+ 8 (4o2)

where m is the number of members, and S is the number of support

reactions,.

The number of equations of equilibrium is derived in
a similar manner. Firstly, for the equilibrium of each member
six equations apply, namely
2 X=2XY=%¥2=0
(43)
Z Mx: S My:: > MZ: 0

where the symbols have their usual meaning., Thus effectively the
number of unknowns per member is reduced to six, Secondly, treating
the joints as rigid bodies, a further six equations of equilibrium
are written for each joint, Thirdly, somewh%re in the frame certain
actions may be released; for example a ball and socket connection
releases all three moments, Each release provides an additional

equation, so that the total number of equations, E is given by

E=6n+6j+r (hok)

where j is the number of joints, and r is the number of releases.

The degree of statical indeterminacy is therefore found from the

equation

n=U<E=(ém+8) -~ (6j +r) (4.5)
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This general equation applies to space frames. In the case of a plane

frame we find

n=(3n+8) - (3j+r) (4.6)

When the frame is pinjoihted, there is a further simplification in that
there is only one unknown per member, that is an axial force, and only
the first three of equations (4.3) apply. We are then left with the
familiar equations for the degree of statical indeterminacy with respect

to the axial force distribution

n=m+ 8 - 3j (for space frames)
(447)
n=m+ S - 2j (for plane frames)
It the above equations we must have in general
S 2 6 (for space frames) 5
or (4.8)

S 23 (for plane frames) _
since otherwise the frame is unstable, that is it can translate or rotate
as a rigid body. When S = 6(or 3) the support reactions can be determined
separately from the equations of equilibrium of the frame as a whole, and
the frame is said to be supporﬁed in a statically determinate, or simply

supported manner; S - 6(or 3) is called the degree of external indeterminacy;”

In this analysis a joiht is defined as a point where two or more
members meet, or where a member runs into a foundation. Care must be taken
in performing the analysis that no part of the frame is in itself a mechanism;
this may occur, and if the remainder of the frame is sufficiently indeterminate
the general formula for calculating the degree of indeterminacy leads to
erroneous results. An example-of this is shown in figure (4.2), in which

it is seen that the degree of statical indeterminacy for the entire frame is

8 C B _
whole frame: ; pad ABCD:
=¢ | ‘ ‘m=3
rg=2 » J " 0! S=u
LETIY il YR 133
v,
e =R A 2 e -1
2N b "1 Note: o=ball joink
> 777, 777077
(A

figure 4.2
two, whereas part ABCD on its own has an indeterminacy of -1 and is therefore

a mechanism of one degree of freedom.,
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Lo/ THE USE OF COMPLEMENTARY ENERGY IN THE ANALYSIS OF OVERBRACED FRAMES

Since the axial forces in the members of an overbraced frame
cannot be determined from a statical analysis alone, additional
- information must be-sought., It is fairly obvious that the required
information is in the form of cbmpatibility relations, and complementary
energy methods provide a convenient means of deriving this type of
equation, For example, consider the frame shown in figure (4.3),

which is singly-redundant with respect'to its axial force

distribution, Let BD be the redundant member, and let R be its
axial force, Imagine this member te be'cut and treat R as an external

Y LI (717 A
NS |
«33 _ EA = constant
N |
3
no joint here”” \ Ry

45°y G R/ §us’
c D

f

figure 4,3 - Singly-redundant frame

forpejggping'aéross the cut, A primary force analysis then gives the
axial forces in all the members in terms of the applied load W and the
redundant force R; these are shown in the figure, compression being
taken as positive. This neglects bendihg but even when bending
deformations are quite large it is still reasonable to ignore the

effects of the resulting shear forces in the axial force analysis,

The complementary energy of the simplified system, C

‘R w R
c =Zfsi ap, ~f8w W - fSR dR
v 0 [~] o

where the summation applies over all the members of the frame. Sj_is'

is defined as

the amount by which the ends of member i approach each other, and Pi
- is the compressive axial force in the member; b, is the displacement
of the applied load W, and SR is opening of the cut in the redundant

member, According to the rules enunciated in chapter two, the

(4.9)
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complementary energy may be differentiated with respect to the independent
force parameters, in this case W and R, provided that the differentiation
is carried out éubject to the restrictions imposed by the equations of

equilibrium, In-this problem the equations of equilibrium are of the form
P, =a, W+b;R | (4.10)

where a; and bi are constants determined from the primary force analysis,

as in figure (4.3); they depend only on the frame geometry, Differentiatingc,
we have -
ac/oR =Z[ 6, (ap,/8R)] -6, =0

v (4.11)
ac/ow =Z[ §, (p;0W)] -6, =0 |

Using the information in figure (4o3) to evaluate the terms 3Pi/3R and
9Pi/3W we get . '
-85/V2 =81 /V2 - b /N2 + 85y + 8 ~6p=0

-5

_ .12)
AB +V2 6, -6,z Ou&’

| A word of explanation is required here to distinguish between SBD and SR;
the former represents the shortening of member BD and this is made up of
the shortenings of the two halves separated by the cut., The 6pening of
the cut, § R is an independent quantity. Thus the first of equations
(4+12) may be thought of as giving the gap across the cut, and solution

of the problem is achieved by equating SR to zero which signifies the fact

that the member shortenings are compatible,

Equations (4.12) can of course be derived from an entirely
geometric argument. Denoting by (uA , vA) and (up, uD) the horizontal
and vertical displacements of joints A and D respectively, we have for

small displacements

Uy

uA/ﬁ + VA/ﬁ (4.13)

on
1l

8ap = Va = Vp
b = » &

CACERACEY

wiiere Vi = $W° Elimination of uA, ups vy from these relations gives

I}

8BD

equations (4.12),
In order to use the compatibility equations to find the axial
force distribution, we must define a relation between member shortening

and axial load P, If bending deformations are small enough to be neglected
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is a function of P only and we write

6= r(p) (4o14)

where the function f can be obtained from direct tension and compression
tests. The usual simplification at this stage is to use the linear

function

b= p1/EA | (4015)

where 1 is the member length, A its cross-sectional area (assumed
uniform), and B is Young's modulus of the material, Also it is
customary to use the same relation for both tension and compression,
Substitution of the relevant information for the frame in figure (4o3),

yields linear equations in R and 8BP whose solution is

R = =0,626W . (416)
§, = 2.14 W1/EA
The final force distribution is given in figure (4e4)
T@##RW'
w
_‘w a . (-0.558W)
/ T -
63 g;
«
3
[ S
s hd
XY
\ qb
w_4 (0.44RW)
1o.sssw

figure (4.4) - Linearly elasgtic axial force distribution

Any overbraced frame can be handled in a similar manner, There
are always as many equations of compatibility as there are redundant
members, and complementary energy principles can be used to derive
these equations. Final solution is achieved by specifying a P-§ ‘
relation for each member. When the P-§ relations are linear,
the final equations are also linear and therefore easy to solve,

When the P-§& relations are non-linear, the final equations are usually
too éomplex to solve analytically, and one needs to use apprdximate or
iterative techniques to obtain a solution, A useful device is to fit

a plecewise linear function to the P-§ relation., In some cases the
final non-linear equations may have extraneous solutions,but these

can usually be detected from a physical point of view, and discarded.
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When bending deformations are important, as in slender frames,

the total shortening of a member may be written in the form

§=r(p) + 4 , (4.17)

where f(P) is the shortening due to the axial load effect (see ‘equation 4.14
above), and A is the shortening due to bending. Denoting by Yo and y
respectively the unloaded and loaded bent shapes, then we have, for small

deflections . ? )
a=3 [ (ay/en?ax 4 § (ay Jan)ex (4.18)
0 []

Thus it 'is seen that in order to calculate this term we need to know both
the initial crookedness, Yo and the deflected shape under load, y. When
the frame has pinned joints, bending in any member can take place
independently of other members, provided the resultiﬁg shbf%éﬁings aré
compatible. In guech instances it 1s ®easonable to use isolated pin-ended
column relations as is shown in the following se.c;cio;ns. In a rigidly
jointed frame however, bending in any one member is distributed throughout
the frame, and the deflected shape under load: depends on the restraints

of neighbouring members, which in turm dependson their:-deflectiong and axial
load, and so on. In other words the axlal force distribution is a function
of the deflected shapes of all the members which themselves are functions

of initial crookedness and of the axial force distribution which we want

to calculate, It is precisely this interdependence which makes an analytica';l.‘,_

golution to the problem of the behaviour of overbraced frames so intractable,

4.5 THE BENDING SHORTENING OF PIN-ENDED MEMBERS

Before extending the analysis of frame behaviour by taking into
account initial crookedness, a simple mathematical model is developed for

the determination of the bending shortening of isolated pin—ended members.

Suppose that the initial crookedness pattern of a pin-ended column can be

expressed in terms of the infinite Fourier series

-

v, :é a, sin(nmx/1) 'A (4.19)

In chapter one it was shown that under load P the deflgdsd shape, y is
given by the series o _

y :é a, sin(nmc/l)/(1-P/n2Q) | _ (z:zo)
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where Q = ﬂ2E1/12 is the Euler load of the column, From these expressions

the shortening due to bending is obtained as

{ 4
A= —g—j; (ay/dx)?dx - %L (dyo/dX)de (4.21)
= 5 (%)l 22 - 17

n=1
Usually we find 817 8,7 a3>° o o o 5 and as P reaches a reasonable
proportion of Q the first term in this series dominates,so that as

a first approximation the bending shortening is given by
Ax (n2%2/40)[1/(1-8/Q)% ~ 1] (4.22)

Also, as a further simplification, the same expression, with P replaced
by ~P, may be used to calculate the bending shortening of a tension

member. In frames the bending shortening of tension members is usually
small, so that this simplification, although crude, introduces no great

errors,

An estimate of the order of magnitude of the bending shortening

is obtained by expanding the term in brackets and replacing Q by
17(21‘.21/12 = T(ZEA/(l/r)Z;' this gives

A = Ha,/1)(1/r) (2~ 2/Q)/(1-2/0)7] (71/BA) (4:23)

where r is the radius of gyration of the cross section. For most columns
the initial crookedness is some fraction of its length, a figure of 1/400.
being in frequent use for design purposes., Thus for common engineering

structures, with 1/r ratios in the vicinity of 100, we have

A = [ (2-P/Q)/64(1-P/Q)?] (P1/EA) (4224)

whence it is seen that for P/Q ratios less than about 0.5 the above term
amounts to no more than about 10% of the elastic axial load shortening
P1/EA. On the other hand, for very slender frames 1/r may be of the order
of 400 or more, in which case at a P/Q ratio of about 1/3 the bending

shortening becomes of the same order as the axial load shortening,

The above'analysis is of course restricted to linearly
elastic material behaviour. After yielding occurs the shortening
expression will be quite different. However, in this thesis only

lelastic effects are examined,
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When analysing a pin-jointed frame with initially crooked members,
use is made of the mathematics developed above. For this purpose equation
(4+23) présents the most convenient form for the bending shortening, since

" the total shortening is then given by
§=rP1/BA +A = (PL/EA)(1 + ke) (4425).

1l

where k

Ha/1)%(1/0)%
(2-/Q)/(1-/Q)%.

and ¢

In this form the total shortening is made pseudo-linear by treating c as a

constant. The complementary energy of the member then becomes

) P
C = f«S dP = (1 + ke)(P®1/2EA) (4.26)

and when this is differentiated with respect to some unknown force parameter

X, we get
90/9% = (1 + ke)(P1/EA)( 3B/ 93) (4:27)

The term (P1/EA) ( 9P/ 9X) arises in the usual straight member analysis, so
that the term (1 + kc) may be regarded as a correction factor, that is

dC/dX = (correction factor) x (9C/3X) (4.28)

linear

An example of the use of this relation is given in the next section,

4.6 THE BEHAVIOUR OF PIN~JOINTED OVERBRACED FRAMES

“hlthough pin=jointed frames rarely exist in practice, it is enlightening
to study their behaviour, firstly because it helps ﬁB formulate and understand the
problem of rigidly jointed owerbraced ffa.mes, and secondly the mathematics involved
is sufficiently simple to h;ﬁdle by manual methods of compﬁtation, Consider
the pin-jointed frame shown in figure (4.5); it is seen to be statically
indeterminate to the first degree with respect to the axial forces in its

members, For simplicity all members are uniform and of the same cross-section,

(a) Initially straight members

In the first instance bending is neglected, that is the members are
assumed to be perfectly straight initially. The axial forces in the members
are indicated in the figure in terms of W and R, BD being treated as the
redundant member whose axial force is Ri. A complementary energy analysis
is carried out in table (451) below, Summation of the partigl deriVatives

of the complementary energy (sixth column), gives the opening across the cut as

§p = (I/AE)[VZ W + (2 +V2) R] (4+29)
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axial stiffness
flexural rigidity

member lengthg:

4B, BC, CD,

AC,

1l
B

EI

DA: 1
BD: V21

Q = euler load of side members

Ak
figure (4.5) - A pin-jointed overbrﬁced'frqgg
Member | axial length | Axial | COMPsS0CTe |
stiffness force | C= P1/2AE 9C/9R P P!

AB AE 1 ~R/V2 'R21/4AE~ R1/2AE 0a207W W/V’é'-o/z\fé
BC " 1 -R/V3 " n " 0

CD " 1 “.R/VZ 0 n " "
DA n 1 -R/V§ N n’ n ft

BD n 21 R R%1/V2AE Y2 RI/AE  |-0,293w| @/2 -W

AC m 21 W R | (WRY }/VRAE | YE(w+1)1/AE| 0707 | @/2

Table 4o]1~ Complementary energy analysisg

For compatibility to be.satisfied, this quantity must vanish; the redundant
force is calculated from this condition as

R==0.,2093W

(4430)

The above value of R is used to determine the axial forces in the members;

these are given in the next to last column of the tablea

Let us now examine the possible behaviour of this frame as it

ié/lgaded, Since the members are initially straight, they remain straight,

and all
load W;
process

deformations and axial forces increase linearly with the applied

this could continue until yielding occurs.

However, during this

one or more members may reach its Euler load, that is the load at

which it would buckle if it were an isolated pin-ended column,

In this
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problem member AC first reaches its Eylgr load, Q/2 (Q = Euler load of side
members), when the applied load hag a vélue Q/V2. But the deflections' of
member AC cannot run away in the/us&al'sense because this involves a large
shortening of the distance AC, andriﬁﬁqther members of the frame do not
permit it to do so. Nevertheless member AC cannot be expected to take a
further increase in load, so that the remainder of the frame subsequently
behaves is a statically determinate frame carrying a load W together with

a cohstaﬂt force of Q/2 in member AC. The new, gxigl force distribution is
now independent of membef shortenings and can ﬁhue'be calculated from statite
alope; the member forces after the redistribution are given in the lasgt .
column, headed P', in table (4o1)e | -

When one more member reaches its Euler load (in this case'membgrs
AB, BC, CD and DA do so simultaneously), it can deflect under constant iéédv
because its shortening is independent of other members, That is, deflections
in all side members, and in member AC, can now increase freely, and compatibility
of member shortenings is maintained while the deflections progress. In other
words, the frame as a whole has reached its buckling load at which it will
ultimately collapse. For this frame the buckling load, W % is given by

ul
Q= Py =W,/ 12 -¢22 (4.31)

whence wult 191 Q@ - | (4e3R)

which is seen to be about 2,7 times the load at which member AC on its own

would buckle if the remaining members did not restrain its shortening,

The complete behaviour of the frame is pictured in figure (4,6)
in which the lateral deflection of member AC at loads above W = GVV§ is
indicated by a broken curve, because in this region it tries to buckle but
its shortening is restrained by the other members whose shortenings continue
to increase linearly with load, Since the shortening due to bending is
proportional to the square of lateral deflections, it can be argued that
the curve is parabolic, This also satisfies the "buckling criterion"
for member AC, that is

dM/AA =0 (4e33)

with the restriction that A must be zero., In other words the lateral
deflection curve of member AC exhibits an instantaneous bifurcation

point but it continues to rise until the frame as a whole buckles,
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Summing up, a pin-jointed overbraced frame with igigially:
straight members behaves gimilarly to a statically determinate
freme. The members of such a frame act independently of each other
except with regard to the axial shortenings. When an individual
member reaches its Euler loadythe load-lateral deflection
characteristic exhibits a zero slope tangent, but immediately curves
upwards again because the shortening is restrained by other
mem bersa Largéudeflections, and hence shortenings, can occur only
once a sufficient number of members have attained their buckling
loads., The necessary number is one more than the degree of ’
statical indeterminacy with regpect to the axial force distribution,
since the remainder of the frame is then in effect a mechanism in
which the joints can approach or move away from each other

compatibly, without upsetting statical equilibrium in axial forces.

In cop¢lusion it should not be forgotten that the above
argument is restrgkted to small deflections in the usﬁal meaning
of the phrase. Large deflections introduce other non-linearities
into the mathematical model,-even if the material remains elagtic,
but any more refined mathematics which takes t&@éiinto account
becomes too involved for practical use. For example, 1arge'
deflection theory applied to a pin-ended column leads to
elliptic integrals, and the load deflection characteristic can be
shown to curve slightly upwards., A similar behaviour is to be
expected for framdés, However, practical frames are usually so
stiff that yielding occurs before deflections become large, so
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that for practical purposes the use of small deflection theory should
be adequate,

(b) Initially crooked members
The simple mathematical model developed above is of course

inadequate to describe the behaviour of a real pin-jointed overbraced
frame, Initial crookedness of the members, eccentric connections, and
many other factors result in a behaviour whieh is markedly different from
the straight-line represgntation depicted in figure (4.6b). The members
of the real frame begin to deflect as soon as load is applied, but
whereas in statically determinate pin-jointed frames this is possible

without changing the axial forces in the members, a redundant frame's

behaviour is determined to a large extent by the axial shortenings of

the member, and these in turn are governed by the magnitude and pattern
of initial crookedness. Thus a foreknowledge of crookedness in redundant
frames is of even more importance than in statically determinate frames.

It has been shown (see chapter one) that the behaviour of statically

determinate frames is reasonably well described by hyperbolic load-
deflection curves, and this is a valuable experimental tool, the.
linear Southwell plot. An important question at this stage is; can
the behaviour of a redundant frame be described by a linear Southwell
plot? It is shown in this chapter that the answer to this question is,
in general, in the negative, although it is suspected that in certain
cases a near linear Southwell plot is obtained,

In order to examine quantitatively the effect of initial )
crookedness on the elastic behaviour of the pin-jointed frame in figure
(4s5), assume a half-sine wave initial crookedness pattern of magnitude
a, = 1/400 for all members, where 1 is the respecﬁive member length.,
Also, make the 1/r ratio of the side members equal to 200; the
ratio for the diagonal members is then 200 V2. Having assigned
numerical values to these quahtities, the total shortening of the
members can be calculated from equation (4LoR5) if the gxial force
is known, The total shortenings are then substituted in the equation
of compatibility, which results in a non-linear equation for the
unknown force R in terms of the applied logd W, In general this
equation must be solved by trial and error for various values of

We However, the compatibility equation can be linearized by using
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equation (4.28) for the total shortening as follows: for any value
of W guess a value of R (for example using linear theory), so that
correction factors for all the members can be calculated; if these
are temporarily treated as constant then the resulting equation of
compatibility is pseudo~linear and the solution for R is used as a
new trial value, and so on until agreement is obtained., A sample
calculation, for W = 0,4Q, is given in table (4.2); in which

R = -0,117Q is used as a first guess, Summation of the 9C/dR terms

Member k Af(%/m}hb. F/Q Qe |1+%e [QGR)
AB,BC,CD,DA | 0,0625 | 0,500R -0,707R/Q 0083[2.28 | 1.142 [0.571R
BD 04125 | 1.41/4R 2,00 R/Q ~04234 {147 | 14184 |1,676R
AC 0,125 | 1.414(W 4R) | 2,00(W+R)/Q | 0,566 |7+62 | 1:953 |R.76R +
1,119
Table 4g2

for all the members gives the linear equation

(1/EA)[6.72R + 1.11Q = ©

whence R = -0.164Q
Using this as a new trial value, and so:on we obtain in succession
the values '

R = -0,150Q, -0,154Q; -0.153Q

which is seen to have converged reasonably well after only three cycles,
However, at higher applied loads W, the correction factors are much
higher and it is quicker to use the average value of R as a new guess;
the first guess can of course be obtained by extFapslation of the R-W

graphe - '

The complete curve up to W = 1+8Q is shown in figure (4.7);
together with that obtained by using an initial crookednesgs of 1/1000
in all the members, As can be seen, the latter adheres more closely
to the straight lines OX, XY obtained when the members are initially
straight. Ultimately both curves approach the intersection of these
~ two straight lines, which is the ultimate buckling loads A4 third
curve is calculated for which the side members have a mﬁéﬁwiaqur
initial crookedness (1/100) than the diaéonal“ﬁémbers (1/400).H
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figure 4.7 —~ Loading paths for various initial imperfections.

In this case the non-linear loading path is seen to vary first on one side

and then on the other side of the straight lines obtained when bending is
neglected,

Lastly, the effect of prestrain is examined; broadly speaking this
is another kind of initial imperfection, and it is most easily pictured as an
initial lack of fit of the members., For eiample, suppose member BD is initially
too short by an amount £ ; then it muist be tensioned with a force Ro sayy
before it can be connected; and this will strain the other members. The

resulting axial forces can be computed from the equation of compatibility
by putting SR equal to = & , and W equal to zero. When the members are

initially straight, this gives
(1/EA)(2 + 2V2) R_ = -€ (4034)

whence we obtain
R, = -0.207 EAE/1 (4e35)

In terms of the non-dimensional force r = R/Q, this becomes

ry = =0.207(1/r)*(€/1) = -838(€/1) (4236)
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When € is taken as 1/1000, r, = ~0.838, Similarly, when there is an
applied load W, or non-dimensionally w = W/Q, we find

r = -04838 "00293W

The 1oading path is therefore moved downwards by an amount ~0,838;
this is indicated by the two straight lines 0'X'Y in figure (4o7)s
The frame's ultimate buckling load remains the same,

When the members dre initially crooked as well, the
term & = 1/1000 is again included in the final compatibility equation,
and the usual terms are multiplied by their respective correction
factors, successively iterating towards a solution as before, The
loading path thus obtained ié also shown in figure (4.7), in which
it is seen to be close to'liﬁear in the early stages having a slope
slightly less than 0,293, After a load w = 1.2 is reached, the
curve drops rapidly and curvés towards the point Y at which the side

members and member AC have a P/Q ratio of unity.

Knowing the axial loads in the members for all values of

~ applied load W, the central lateral deflections of the members are
:qalculated from

a= a1/(1-P/Q)

When these are plotted against the axial load P in the member, the
Southwell plot is linear and gives the Euler load of the member, which,

UJ’=W/Q.

2.0F

1'5'

CODE: see fiqure (4-7)
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figure /o8 - Central deflection of members AB, BC, CD, DA

(4o37)

(4.38)



on its own, is of little use., It could be used to determine the frame
buckling load by extrapolating the P-W curve to P = Q, but as an experimental
tool this is obviously not very satisfactory, For this reason the
deflections cal#ulated above are plotted against applied load. The

results are given in non-dimensional form in figures (4.8) and (4.9)

for the various cases of initial crookedness and prestrain dealt with

above. Clearly these curves all approa¢h some asymptote. It is interesting

w:W/Q

RO}

1.5}

10

CODE: see Figure (4.7)
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a/ff

- 0 R 3 hkxwo™*

figure 4.9 - Central deflection of member AC

to note that the deflections of member AC at first appear to run away

at some low value of applied load but then the curves start t6 rise agains
This type of behaviour is to be expected, and is explained by returning to
figure (4.6b) which indicates the behaviour if all the members are initially
straight, The tendency is not evident when the frame is prestrained;
possibly because both AB and AC now "buckle" almost simultaneously when

the members have no crookedness (see figure 4.7). Figures (4.10) and

(4e11) show the Southwell plots on the central deflections of the compressioh
members. Thosg for members AB, BC, CD, DA are slightly convex upwards when
the deflections are small, the greater the initial crookedness the more '
pronounced is'the curve, However, after the deflections reach a magnitude
of about 1/100, the plots are close to linear. Using the average slope of
the linear portions of the graphs, the buckling load is estimated as.

Wop = 1,88
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the largest variation being -0,08. It is worthwhile noting that the
behaviour of.the frame with initial prestrain gives a Southwell plot
which is almost wholly linear. Its inverse slope ii 1,90, which agrees
with the buckling load predicted when the members are assumed to be
initially straight,

The Southwell plots on the central deflections of member AC,
the cpitical member, are extremely curved but they seem to flatten out
towards a straight line, The inverse slopes of the latter portions give

an average value for the buckling load

Wop = 191

with the largest variation being +0.09, It also appears that the very
early portions of the graphs are reasonably well described by straight
lines. Of these, fhe.case with a small initial crookedness of lfHOOO
in all members, has an inverse slope of about 0,74, which is close to
the value at which thé linear.zkial force distribution first intersects
the interaction diagram, OXY in figure (4.7). The remaining cases
without prestrain have inverse slopes of 0,87 and 1404 respectively,
The prestrain case is again interesting in that its Southwell plot

for member AC consists of two almost linear portions. When the

deflections are less than about 1/100, the inverse slope has a

value of 1.60, whereas the remainder has an inverse slope of 1,85,
Inspection of the loading path for this case (see figure 4.7),

shows. that up to about w = 1.2 the path is almost linear. Extending
this it is found to intersect the interaction diagram at w = 1.50,
which is close to the value of 1,60 obtained above.

(¢) load carrying capacity

Although this chapter is primarily concerned with the
elastic behaviour of overbraced frames, the above analyses provide
sufficient information to comment on the load carrying capacity of
this particular frame, Since the frame is relatively slender, the
limit of the elastic range, that is the load to cause first yield,
ought .to provide a close.:2timate of the ultimate load which the
frame chn support. For each member the ézial load toﬁ?ause'first
yield is readily calculated, and the corresponding applied load WY
is inferred from the plotted loading paths. In these computations
the frame members are taken to be of 1 in. x % in., Etross section,
with a Young's modulus E of 30 x 106 PeSoi, and the length of the;
sides of the frame is taken to be 28.8 in. so that the 1/r ratio
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is 200, as used in the analysis, Table (4e¢3) below summarizes the
results for the four cases of initial crookedness and prestrain; the

yield strain is taken as 040012, As can be seen, there is

Case | (a;),5 | (a),q | prestrain Elb§.) %b§) (Los) | axial Forces
(ins.) | (inse) Py AB y’/AC y PAﬁ Re

I |0.0720 {0.,1020 | none 3050 | 1630 | 5640 | 2830 | 1630

II | 0.,0288 | 050407 | none 3410 1755 6120 | 3410 | 1755

III | 0,288 |0.102 none 2050 1630 3640 | 1440 | 1630

IV | 040720 | 0,102 yes 3050 1630 | - 595€| 3050 | 1615
Table 4e3 - Loads to cause first yield of 36,000 psis

comparatively little difference in load to cause first yield in the
various cases, except that when the initial crookedness in members AB,
BC, CD and DA is very large (1/100). This is explained by the fact
that the loading paths beyond W = 5500 lbs. all lie very close to one
another, For cmparison, the elastic ultimate buckling load of this
frame is

W [ 14= 7090 1bs. | (4039)

which is about 25% in excess of the load to cause first yield in case I,

which is appropriately regarded as the design.

It is also interesting to compare the above loads with the
working load obtained by designing the frame on an individual member
basis, and, as is almost universal practice, on the assumption of a
linear loading path. Using a factor of safety of 2.0 against first
yield in individual members, the safe working load is 1150 1lb. when
there is no prestrain. Member AC governs the design in this cases
On the other hand, in the case of prestrain (see figure 4.7), member ‘
AB would be overloaded without any applied load, so that this particular,{*
amount of prestrain would not be considered practical when designing.tﬁgf
- frame on an individual member basis and ona linear loading path. ‘The
best that can be done on this basis is to choose a prestrain so that all
compression members reach their allowable axial forces. If Ro is the

prestraining force then we want
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Pyg = Pgg = Pop = Ppy = 1525 1bs,. = 0,707 R +0.293 W, (4240)
and Pyo = 815 lbs, = R + 05707 W,

where Ww is the safe working load, based on a factor of safety of 2.0 in

individual members, Solving these equations we find

Ry =-1285 1bs. ; W, = 2970 1bs, (4et)

In case IV, table 4.3, the prestraining force Ro is -2600 1bs;,

and this is close to optimum because it is seen thatfégi compression members
yield nearly simultaneouslys Thus it follows that the ‘nop=~linearity of the
loading path may pa&e a considerable influence on the 'most favourable!

pattern of prestrains

4e7 THE MEASURED BEHAVIOUR OF RIGIDLY JOINTED QOVERBRACED FRAMES

The previous section was aimed at the establishment of a simple
mathematical model to describe the behaviour of pin-jointed overbraced
fremes, Due to the difficulty of making truly pinned connections in
practice, an experimental verification was not attempted, Practical
fyames have rigid or nearly rigid joints, and any analysis for the
cbrresponding pin~jointed frames provides little indication of their

behaviour;

This section presents the results of the meagurement of the
behaviour of some simple overbraced frames with rigid joints, Only
simple measurements are taken, the main aim being to establish whether
or not buckiing in the usual sense does occur, and if so whether or not

the Southwell plot can be used tc measure the buckling loada

(a) Three. bar frame

One of the simplest redundant frames is the three bar frame
shown in figure (4s12). This particular frame was made from clockspring
steel members measuring 0,500 in. x 0,0275 in. in cross section, The
frame was loaded vertically with deaéﬁeights, and the central deflections
of the members were measured to 0,01 in, with a rule. No attempt was made
to measure the?akial forces in the members, In the first test the membefs
were rigidlx,clambed to a stiff Supporting Ease,'while in the second test

the base connections were pinned,

Figure (4e13) shows the central deflection of member AD plotted
against the applied load W, with the Southwell plot superimposed on it



~ 153 =

measured EI = 26,0 1byin®
all members are of equal
length -
w member AC is vertical w
KL A Y ‘A%
1=10 ~

Q= 2038163 /’
/

!
{
{
|
!
{
1.
|
\
1
1
1

c » "
(a) Fixed bases - (b) Pinned bases

o

§,’_~Lﬁul‘e_ Lel2 ~ Three bar frame

For both the fixed base and pinned hhme tests the Southwell plots

are very nearly linear over the whole range, indicating the existence of
glastic buckling loadss From the inverse slopes the ultimate buckling
loads are estimated as

wul’o = 1242 1bs, for the fixed base case
and W

548 1bs. for the pinned base cas’e;

ult
S/ 1z pw(lbs)
(in-ib") gm0
ffo
o BT
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Pioure Le13 - Southwell plots on lateral deflection
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Since the Southwell plot for this particular frame behaviour
is almost wholly linear, it is suspected that there is little redistribution
of axial forces in the members as the framé is loaded, This is verified

mathematically in section (4e10)e

(b) Irisngulated Frame

This frame, whose geometry is shown in figure (4QTA), was made
of ¥in, x 1/8 in, mild steel members, the major axes lying in the plane
of the frame to ensure planar buckling, The leading dimension 1 was
16 inches, giving a nominal slenderness ratio 1/r of.about-450, Due to

neasured EI = 2350 1b.in~,

Euler load of side members Q = 90,7 lbs.

gpace limitations only two pairs of Huggenberger tensometers could
be attached to the frame; these were located approximately at the

centres of members AB and AC,

Figure (4o15) shows the measured’ bending ‘strains plotted against
applied load W, It is seen from these graphs that at low loads the
curvatures appear to be asymptotic to some load, but subsequently the
curves rise again and run away at a much higher load. This behaviour
is very similar to that predicted for the pinjointed frame in figure
(4e9)s It suggests that the initial portion of the loading path is
approximately linear, and the first apparent agymptote is spme measure
of where this portion'of the loading path, when extrapolated, intersects

the interaction curve,

Obviously the above- behaviour cannot be described by a
linear Southwell plot over the entire range of measurements, but the
two asymptiotes may be estimated by assuming the above curves to be made
up of two_hyperbolic portions separated by a transition region, as shown
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constructed in the usual way, and are seen to be reasonably linear,
the average inverse slope giving an apparent buckling load of 380 1bs.
Beyond the transition regions a Southwell-type plot is constructed by
graphing (& =€ )/ (W - wo) against € , where (€ o’ W,) is the point
defining the start of the final hyperbola, For member AB this was
taken as 500 lbsa, and for member AC as 400 lbss These two plots

are also close to linear, having inverse slopes of 430 1lbs, and
460 1bsa respectively, Adding to these the respective Wo values,
we get 930 1lbs. and 860 lbss or an average of 900 1bs, for the
elastic ultimate load of the frame, The obsefved buckling mode
is superimposed in figure (4s14..) |

In this particular test the graphs of curvature against
load exhibited fairly well defined transition regions, and the curves
were reasonably described by two sgparate linear Southwell plot
equations, However, in general the transition from the initial
apparent buckling condition to the ultimate elastic buckling
behaviour is 1ikely to be much morg gradual, in which case it would
be difficult to fit a linear Southyell plot type equation; It is
impossible at this stage to establish definite behavioﬁr patterns
for redundant frames; a large variety of frames would need to be
tested and the results correlateds At the same time, matWematical
models predicting the behdviour need.to be formulated,'ahd it seems
that a Southwell plot type of equation, which has proved to be
extremely powerful for statically determinate frames, may often
be a.poor fiti The main factor responsible for this is the non~
linearity of the loading %%th, which in turn depends on the magnitude
and form of the initial crookedness, the slenderness of the members,
and on the amount of prestrain existing in the unloaded frame,
Practical frames usually have fairly stocky members, and the

non-linearity is probably not so pronouncedy For this type of
frame the behaviour would be governed primarily by %he initial
buckling load and mode, for which the methods described in earlier
chapters of this thesis are quite adequate, However, for more
slender frames the ultimate eia&tic buckling load and mode control
the behaviour, Since the ultimate elastic buckling load, if it
existey may be very much higher than the initial buckling load, an
interesting question arises as to whether to design a given frame

using slender or stocky members,
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448 THE ELASTIC BUCKLING LOADS OF RIGIDLY‘JOINTED,QVERBRACED~FBAMES

In this section it is proposed to examine a method for the

prediction of the elastic buckling loads and modes for overbraced frames
with rigid jointgs .The basic definition Qf instebility is identical to

that adopted in chapter one, that is
Wex =0

where X 1s a geéneralized force acting on the frame, and x is the
generalized displacement corresponding to X, For claiity in what
follows this definition requires careful interpretation. According

to customary instability studies, the frame is assumed.to be "perfect™

initiglly, so that an equilibrium state with all members remaining
straight is always possible, There are, however, certain discrete
loading systems. at which the straight form is not stable. At these
loads any infinitesimal disturbance can excite large deformations,
and the frame is said to buckles The usual mathematical treatment
assumes that the buckling deflections are small compared with the
overall frame dimensions so that equation (4.42) should, more
properly, be written as

( BX/ax)X*o =0

Thig equation states that the load~lateral deflection graph exhibits
a horizontal bifurcatioh, but it does not define the complete curve.
The abh?a small deflection theory works well even if the deflections
are quiﬁe 1Arge, and certainly 80 in the working range of practical
engineering structuress Hence the restriction x-+0 can, for all
practical purposes, be removed and the load-deflection graph is in
fact closely approximated to a horizontal straight line over the
range of dellections commonly encounterede '

For statically determinate frames the above condition
is fulfilled when the frame stiffness is zero, since there are no
other restrictions on the magnitudes of the deflections. However,
for. overbraced frames, the deflections must also satisfy the
compatibility equations relating the changes in member lengthss
While the members remain approximately straight; these changes
in length are practically independent of the bending d@flections,
and by complementary energy methods it can be shown that the
loading path is lineaf;- Under thege conditions the overbraced

framets behaviour is identical to that of a statically determinate

(4ah2)

(4ak3)
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frame, and the critical load and its associated mode can be computed by

methods described in earlier chapters of this thesise

The subsequent behaviour is quite different because the
deformations of the overbraced frame cannot, in general, run away at
the critical load unlessy by chance, the compatibility equations are
also satisfied for large défibctions, in which case the member shortenings
are dominated by the portions due to bendinge In general the compatibility
equations are not satisfied at the critical load and mode. To achieve
compatibility, the axial forces in the members redistribute themselves,
and this redistribution alters the critical load and mode, and so on,
The complete behaviour is difficult to trace, but it appears that some
kind of ultimate load at which the frame buckles elastically still existsa
As Masur (reference 2) has shown, the ultimate load is usually greater
and never less than the critical load, so that the behaviour of an overw

braced frame is of the form shown in figure (4ul17)e

From this figure it is seen that a possible definition for
ultimate buckling is
| (8%/2x) =0 - (4add)

x =bending defleclion

fi e 17 ~ The bshavi ﬁr of an overbraced frame

Thds definition is adopted in the work to follow. It s assumed
that the membérs are initially straight and behave elastically all the way,
and that, although bending deflections are tending to the infinite, small
deflection theory is still applicable. For simplicity the argument is
confined to plane frames buckling in their plane, As a further simplification
it is assumed that the bending moments arising from the changes in member
lengths are negligible, and that the shears have no effect on the axial forces

in the memberss



Consider any general plane frame having m redundant members
(or supports), and let Ry sRys e o s R, be the axial forces in
these members, The magnitudes of these forces are determined by cutting
these members and equating to zero the total incompatibilities across
the cutg, As shown in section (4.4), complementary energy provides
an elegant method of deriving the compatibility equations. ~The

complementary energy of the frame, C is defined as
' all

P : w m R; : | .
C= mem%ers {jvsi dPig'; jsw Gy "'J; 53. de (Lok5)
0 ° 0

shortening f the ith frame member

n

where Si
P,
1

axial force in the ith member (compression positive)

I

SW displacement of W

W applied load

s opening acrogs the cut in the jth redundant member,
J

The first summation is applied QVer all the members of the frame,
including the redundant members; as mentioned in section (Lal)s
the shortening of a cut redundant member is the sum of the shortenings
of the two halves. The above complementary energy integral may be

differentiated with respect to the independent forées W, R1 p Rz,..,R-,

m
whéence we obtain the compatibility conditions

0

I

C/0W = zigsi (aPi/a':f)z_ GWI

(4atb)
30/2R, =Zi,{8i (bPi/aRj%— 6,205 (1=1,2 «0om)

In order to obtain the coefficients ¢Pi/9W and aPi/aij s we need to

express the axial forcei in the members as functions of W and of the

redundant forces R1 , R2 5 4 e & Rm“ These are readily deduced from

avprimary force analysiss Neglecting the change on frame Ageometry due

to the deformationsg, the force in the ith member can be written as

where the coefficients 8ss bij’ depend only on the overall frame geometry.
From equation (4s47) we obtain '

aPi/aw = &i (4.48)

ZPi/aRj = bij .
so that the compatibility equations become

Su gty | (4049)
Sj =zi bijgi 5 (j = 15 2’ a e » ,m)
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The first of these equations gives the deflection of the load in terms
of the individual member shortenings, while the second set of equations
gives the openings across the cuts in the redundant members. The latter
set 1s used to evaluate the redundant forces, but in order to do so it is
necessary to. specify a relation between the axial force and shortening
for each member, When the members are elgftic and when there is no

bending, we can write
6, = (P1/EA), (4450)

which, on substitution into the compatibility equations, leads to
linear algebraic equations to solve for each R, in terms of W, If
there 1s no initial prestrain, each 8j is zero, otherwise it will

have some value (see section 4.6b).

Having determined the redundant forces, equations (4+47)
are used to express the axial fdrdes in the members in terms of W
only, and it is seen that the axial forces are in congtant proportion;
Hence it follows that the frame with all its members remaining straight
is in equilibrium for all values of W, and it remains to investigate
its stability, As in chapter one, this is most conveniently done by
applying small disturbances, iu the form of infinitesidal moments at
the jointsy éxciting lateral deflectionss In the limit, as deflections
tend to zero; equations (4,50) remain approximately valid, so that the
axial forces may be calculated as above, The usual equations of
equilibrium in terms of the joint rotations are then set up by the

stiffness method giving, in the usual matrix notation;

M=K .8 |, (4a51)
where 8 is the vector defining the joint rotations,‘§ is the stiffness
matrix, and &M is the vector defining the infinitesimal disturbing

) ~/
moments. In the limit as 6M becomes the mull vector, this analysis

leads to the familiar zero determinant criterion
Ikl = o | (4452)

or the gero latent root criterion

A = 0 ) (4053) ,

Either of these equations may be used to calculate the buckling
modes and loads, that is the buckling loads for zero deformations
(Wcrin figure (4417) Do |
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In order to determine the ultimate load, or buckling load
for "large" deformations, that is w‘u‘fb in figure (4.12), the above
anglysis must be modified to include the effect of the member
shortenings due to the bending deflections. Under these conditions
it seems reasonable to neglect the axial shortening P1/AE and the

initial prestrain (if any), so that 2the shortening of the ith member

§,=% i (85, /dx)*ax

becomes

where s is the deflected shape. In chapter one it was shown that
the deflected shape ig

Y=ASin(fi""’x/l)+Bcos(Vfé’ll'x/l)+cx+D

where (2= B/Q, and A, B, C, D are constants to be determined from

the boundary conditions; the subscript i has been dropped for

convenience, The boundary conditions are

(y)x-:O = (y)le =0 3 (d'Y/dx)X:O = 90 s (dY/dX)x:f# 91

which gives the shortening as

= (-1/m)[% 7, (62 + 0%) F, 66,

where F,] and F2 are functions of 0, and can be shown to be the
derivatives of the stability functions s and sc respectively, that is

F, = ds/dp Fy = d(sc)/dp
where s = 163/4(1-«) +wy sc =1T%J/4(1-—w) W

W= coteX o(:(’lT/Z)Vf’ 5 [=PF/Q
Thus the shortening for "infinite" deflections is seen to be a non-
linear function of the axial load in the member, and, as well as this,

the expression contains the quadratic terms of the member end slopes
60 and 91.

Using the expression (4.57), the compatibility equations

for Minfinite" deflections become

T, § ot (6.2 +0,2) 4 5,0 0,, 0,105, )} =05 (5= 125m050)

By virtue of joint rigidity, the member end slopes
eoi and 911 are equal to the relevant joint rotations, and these
in turn satisfy the stiffness equations at the ultimate load, that is

X ,0= 0

(4;54)

(4;55)

(4456)

(4.57)

(4?58)
(4459)
(4s60)

(4061)

(4ab2)
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The problem then is to solve equations (4e61), (4462), similtaneously, for
the lowest value of W and the corresponding values of the redundant forces,
for then the frame has buckled, or can buckle, because the frame stiffness

ig zero so that large deflections are possible, and the large deflections

satisfy the compatibility equationss

As can be seen, the cempatibility equations cannot be solved
independently for the redundant fbrces gsince the expressions contain
also the joint rotations, that is the redundant forces depend on the
buckling mode;’ Once the mode has been determined, the compatibility
equationb can be solved for the redundant forces., In general some
iterative scheme must be adopted, and except for very simple frames;
the computations are usually too numeréus to be performed by manual
methodsy

The above compatibility equations may be changed into a

slightly simpler form, similar to that proposed by Masur (see equations
Ls1) by substitution of the member's moment~slope relationsa

M
]

!

By definition, 65 and ej_are-imposed rotations, so that at this étage

I

(EI/1)(s @, + sc8.)
/1) (s + sc Uy §4§63)>-

(EI/l)(scGo + 8 ‘91)

they are independent of the axial loads in the members, that is independent
of W, RT' s R2 s 5 « » 5 By , and therefore we have

M /0R, = (B1/1)( 0, 25/aR, + 6, Dac/oRy) (6]

Ny /R, = a1/1) 0,250/0R; + 6, 35/2R)) |
‘Dut s and sc ave explicit functions of P so that

25/3R, = (as/ep) (ap/oRy) = ¥, (1/p QY @BAR,) i)

dsc/ 9 R;] = ete,
Substituting Q = MEL/T" , we get

M fOR, = (1/“2)(90 F, +0, F,)(2%/2R,) (66

/ARy = (14R2)(9, F, +0, F,])(QP/ZR:])

where F1 and F2 are defined by equations (4.58)s Comparing these equations
with the expression for the bending shortening, it follows that

‘5(3P/3Rj) -.:_%[GO(EMO/DRJ.) + Bl(aMl/aRj)] (4o67)
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Thig is in fact the contribution of any member towards the opening of
the jth cut, Summation over gll the méﬁbers of the frame gives-the

total opening whlch, for compatlb:.lity &{' member shortenings, is Zero.
Using the fact th
equals the appli‘éﬁ?,]oint moment s this summetion reduces to

46, (31, /9R,) 38, (01,/0R, ) w 4 + o 46, (2 /3R,) =0 - (4e68)

':;‘.L,*,he ‘sum of the end members connected at a joint

where 9,1 s 92 2 0 ¢ o Gn are the joint rotations, and Mq, M2, .o ’ Mn
are the joint moments which must be .applied' to maintain these rotations,.
The generalized frame stiffnesgs is defined ag the latent root of the

stiffness matrix, . that is

A= /0y =My/B, ="u v o=, /B (4469)
whence we obtain
A, /0R 4 =6, (aA/aRj) ; EMQ/JRj = GZ(EA/aRj) jetes (470)
Hence the compatibility equations reduce to"
aAﬁRj> Jon.ntse =0 ‘ (4a71)
or simply ' MR 5=

That is, the member shortenings for "infinite" deflections are ccuyjatible
when the derivatives of the generalized frame stiffness with respect to
the redundant forces are zero., Thig criterion is a generalization of
that developed by Murray (reference 1). The argument is valid only if
the shortening due to axial strain, P1/AE, is negligibié compared with
the bending shorteninge This is a reasonable'simplification when the
frame has buckled at its ultimate load. Thus finally, the ultimate
elagtic buckling mode and load:are characterized by the equations

A=0 | | _ (4;72)
3)\/3Rj= 0 3 (j =.1., 2’ ._a a » >f‘m)

where A is a latent root of the stiffness matrix which is associated
with a latent vector or buckling mode, In- géﬁ@ral there may be several
modes which satisfy the above equations or there may not be any,
Furthermore it seems possible that the ultimate buckling mode is not
necessarily the one which has the lowest stiffness over the entire

range of applied loads, since the latent root plots can cross

(see for example figure 3.15)e Obviously these congiciérhtions give

rise to computational difficulties, A large number of frames ﬁeeds »
to be analyzed and the results checked by model tests to assess the
reliability of the above equationgs Although the equations in their
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present form are not used in this thesis, the following iterative scheme,
backed by a reasonable picture of the mode from observations of simple
inexpensive models, appears to be an attractive method of finding a
solution: » ' |
take a trail value for the ultimate load W
guess values of the redundant forces Ry , R2, RN Rm
calculate the axial forces in the members

(d) set up the stiffness matrix K
(o) eéxtract the latent roots and vector:s of the stiffness

matrix

P
(3
~— N e

(f) for each mode in turn set up the compatibility equations;
This is most easily done by Wittrick's method (reference
5 chapter 3), that is

3A/3Rj = 0T, ﬁj )
) A

whefe 6'is the normalized latent vector, BT its transpose,
and %j is the matrix whose elements are the derivatives
with respect to Rj of the elements of Ki In general the
compatibility equations are not satisfied,

(g) 1linearize the compatibility equations by using the first
two terms in Taylor's series for the derivatives QE.the

~o

elements of Kj; this involves the use of second derivativ4s
of s and &c,

(h) assuming the modes remain constant, solve the linearized
equations for the increments SIH,»SRZ, PR SRm in
the redundant forces,

(1) repeat steps (¢) to (h) until reasonable agreement is
obtained, The sign of the smallest latent root at this
stage indicates whether or not the ultimate load has been
reached, Once the buckling mode has been established it
is not necegsary to calculate all the latent roots and
vectors, but only that corresponding to the correct modeg
It should also be kept in mind that a compatibility
solution need not exist for every latent vector; au

example of this 1s seen in the following sections



4s9 FRAMES WITH ONE DEGREE OF STATICAL INDETERMINACY

In the case of a frame which has only one degree of statical
indeterminacy with respect to the axial forces in its members, the
solution for the ultimate elastic buckling loads and modes is relatively

straightforward, and can be performed graphically, Denoting by R the

single redundant force, then the_latent root of the stiffness matrix
corresponding to any particular latent vector or mode can be represented
by a function of the two variables W and R, that is

A = AGH, R) (4273)

This function can be visualized as a surface in space., For convenience
W and R are measured in a horizontal plane and A is measured as the
height of the surface above or below this plane, When the frame buckles
in any mode, the latent root corresponding to iiie mode under investigatim
~ vanishes, and this condition is satisfied by the intergection of the
surface with the W~ R planes The curve so defined in the W-R plane is
readily calculated, and this is what Giudici (referenceIB) calls the
interaction curve., It is the locus of simultaneous values of W and R

~ for which the frame stiffness is zero, Simple examples of interaction
curves have already been given in section (4s6). The interaction curve
in general may be of any shapse, and there is of course a curve associated
with each buckling mode of the frame. Figure (4618) depicts a typical
examples, Since the frame gtiffness is zero on the interaction curve, the
initial buckling load Wcr is obtained as the intersection of the linear
loading path R = kW (assuming the members do not bend) on the interaction
curve, as in the figure, The ultimate elastic buckling load must, in
addition to lying on the interaction curvé, satisfy the compatibility

equation for "large" deflections, that is

9A/aR = 0
Aong thb interaction curve, from any point to a neighbouring point; we have
| dh= 0 = (INAW)aw + (aA/aﬁ)dR‘ o (474)
whence we obtain , | )
VIR = ..-(a)\/aw)(dw/:.gig) | (4475)

and since (VW) =(deflection of W# 0, we find that dA/AR is zero when

(dW/dR)wzwult =0 . | (4a76)
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That is the ultimate elastic buckling load is the peak of the interaction

curves

y
S
\YY) "
Q-
W _ [/ _ __
M@h_- /
R//<(\
O
AR
9.
X
/-0
/
/
,"
i/
R

figure 4,18 = Typical interaction curye

The interaction curve thus provides a useful means of
determining both the initial and ultimate elastic:buckling 1oads;
 The associated modes are also readily obtained by interpolating
between two calculated points one on either side of the respective
load, At the same time the curve gives an indication as to which wey t

the axial forces are most likely to redistribute themselves in a teste

Le10 EXAMPLES OF INTERACTION CURVES
(a) Three bar frame

As a simple example consider the frames shown in figure
(4Le19), which have the same overall dimensions but different base
connections, All members are of the same length, material and cross
" section, and buckling is confined‘to the plane., Member AC is
vertical and load is applied vertically. The measured behaviour of

these frames was given in section (4.7)e

Member AC is arbitrarily designated as the redundant
member and R is the axial force in it, From a primary force analysis

we obtala the axial forces in the members as

P3=P = (WR)M® = ; P,=R (477)

compression being taken as positive.



(i) Fixed Bages (i1) Pinned Bages

(4) Fixed bases
In this case joint A only can rotate, and if 6 is the
angle of rotation then the moment required to produce & is
M= (B/1)(s1 + s, + ) (4078)
where Sq s 8y 3 S3 are the stiffness coefficients of the respective
members, The frame stiffness, or latent root, in this case is therefore
sirgly |
A= Wk = (EI/l)(s] s, + 33) (4a79)
Since F% = EH, we have 89 = 81 » and the interaction curve is defined
by A=0 which then becomes

s, + 8, =0 (4.80)

This equation can be solved by inspection of the tabulated stability

functions., Working non-dimensionally, we put
P =P/Q 5 w=WQ 5 T=RA= P, (481)

By fixing r, that is ﬁb, the value of 8, is read from tables;
equation (4.80) gives s1 = ~005525 and the tables are entered again
to determine the corresponding /31 value; the value of w is calculated

from equation (4.77) as

w= \2 Py +r (4.82)

Figure (4.20) shows the interaction curve for positive values of w only,
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(ii) Pinned bases

In this case all joints can rotate, but since the bases are

pinned we have

BB = ~cy0 90 = -0 GD: = - 039 (4a83)

where 8 is the rotation of joint 4, and'c1, Cy 5 Cg are the carry-over
factors of the respective members. The moment required at A to produce

these rotations then becomes

S NN NP |
(B/1)lsy(1-c7) + &, (1=)) + 8(1wc)) ] (4484)
(EL/1)(s," + sz"+'-s_3) |

M

where s'' is a function which is also tabulated directly. Again s§'= sits
and the interaction curve for the frame with pinned base connections is '

therefore given by
11 1

28, *+s, =0 (4485)
which is solved in the same manner as befqres

(iii) Completely pin-jointed

When the members meeting at A are also free to rotate relatively,

the interaction curve degenerates to two straight lines given by

P3=Py = 1 5 fp=1

(4286)
that is wer =Y2 ;3 r= 1

These are also shown in figure (4.20).

It is intéresting to note that all three interaction curves are

figure 4,20 - Interaction curves for three bar frane




- 169

gsimilar in shape, but that there is a decrease in size as more pinned
joints are introduced., On the basis of a linearly elastic analysis
with no bending,the compatibility equations are satisfied by the

relation -
R = W/2 (4a87)

Superimposing this linear loading path on the interaction curves, we see
that it very nearly passes through the peaks of the curves. This suggests
that the actual loading path in a measured test might also be close to
linear, which explains why a good linear Southwellﬂ%ngobtained in the
model tests (see section 4.7)e

From the peaks of the interaction curves the predicted
ultimate elastic buckling loads for these frames are

Wﬁit = Le98Q for the fixed-base frame,
and » Wult = 2.43Q for the pinned—base.frame;

Inserting the numerical values of Q given in figure (4s12), the predicted
values are respectively 11.85 1lbs. and 5,55 lbs. These are in good
agreement with the measured values 12,2 1lbs., and 5.8 lbse

(b) Triangulated frame

As a second example, the frame showp below is analysed and
its interaction curve drawn. Treating member AD as redundant, and
denoting by R its axial force, the axial forces in the remaining
members are found to be as given in the figure, The stiffness matrix for

this frame is

ity]= (E/2] (2ey#13s,) 30, %1% oy, |[6] =[]
My 84 (8198 s5%s3) 8504 Veye, || 65| |0 (ag8)
M, 8¢, 8403 (81 ﬂ552+s3) V§szc2 90 0
34_ !?EECQ , V?szc2 ‘ V3 8,8, kVE) 8, LG OA
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length of outside members
constant

1PEI/12

figure 4,21 = Triangulated frame

where s and sc are stability functions, the subscripts of which denote
the respective members as shown in the figure by eéncircled numer'als,

For this (4 x 4) stiffness matrix there exist in general four latent .
roots corresponding to four latent vectors, each of which represents a
possible mode of buckling, The interaction qurves'are loci of points

in the W-R plane for which the respective latent roots are zero. In
order to plot these, a digital computer prograi was written, The
procedure adopted was to select various W values and extract the latent
roots and vectors at sevéral values of R, the limits being chbsen so

that the P/Q ratio- in-any- -member -was always léss than L. Frém these ‘
results graphs of latent roots against R were plotted with W as a parameteﬁ '
These graphs are of 31m11ar-fbrm, a typical set is shown in flgure
(4#22)s The modes corresponding to ‘the latent roots are sketched in
figure (4.23). From the graphs in figure (4s22) we can locate the points
at which the latent roots are zero, and hence the interaction curves can
be drawn. These are shown in figure (4e24)s The interacﬁibﬁ-curveslfqr
modes 1 and 2 are seen to intersect at w = 0, In fact at w =0 = - ‘two
latent root plots shown in figure (4.22) coincide for all values of r.
The interaction curve for mode 3 intersects both thé:othéf_ﬁwo; and
within the range of calculated points it does not exhibit & pesk.

Mode 4 does nof have any zero stiffnéss in the range covered,

For comparison, the interaction curve for the frame w1th all joints

pinned is also shown.‘
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figure 22 ~ Grk hs of latent root

figure 4,23 — Modes associated.with latent roots of figure 4,22

‘From the curves drawn it is seen that the ultimate buckling
deformations are in mode 1, which agrees with that observed in model
tests, The ultimate elastic buckling loadyas given by the peak of the
interaction curve is ' '

wult = 9.75Q
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Inserting the numerical value for Q given in figure (4o14), we get

Wﬁlt = 885 lbs,

which is in good agreement with the measured value of 900 1lbs. The

agreement is perhaps not gs good as it looks, because the measured
value is accurate to only about 5%.

that is

which is to be compared with a measured value of 380 lbs.

The predicted initial buckling load is found from the

intersection of the linear loading path on the interaction curve,

W
cr

= 501OQ = 463 1bSa

However

the predicted value does not allow for prestrain, which has the effect

of shifting the loading path either to the left or to the right, and

hence a different point of intersection results.

Also the loading

path in a real test is non-linear, which again ihfluences the initial

behaviour,

These aspects are discussed in the following sectionss

r-R/R
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Another point of interest arising from the above interaction
curves is the question of how the actual loading path passes through the
interaghion curve for mode 3 At this point the frame stiffness is zero
but oniy against deformations of the type mode 3, whereas the stiffness
against mode 1 type deformations is still positive, Also, the frame
first begins to deform into mode 1 so that it is more likely to continue
to do sb, unless there>is some influence strong enough to make it change
to mode 3, This might have occurred for example if mode 3 had a 1owér
peak than mode 1,

4o11 THE BEHAVIOUR OF INITIALLY CROOKED OVERBRACED FRAMES

As for statically determinate frames, or indeed any

structure, a knowledge of the buckling loads and modes alone is not
sufficient for design, Such knowledge provides only a picture of the
behaviour of an oversimplified mathematical model of the real frame,
one which is initially perfect. The ideal behaviour of the "perféct“
model is pictured in figure (4.25)s At low loads the frame is in

stable equilibrium with all the members remaining straight., At some

lateral defiection

fi e Agl5

load, wcr s the straight form first becomes unstable but only against
small deflections, As load is increased the deflections increase,
rapidly at first, but the rate of increase gradually decreases. Ab

a still later stage the rate of increase in deflections begins to rise
-again, and eventually becomes infinite at the ultimate load, Wul s
at which the frame must collapses
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The real frame possesses initial crookedness so that itlbégihs :
to deform as soon as load is applied. If the magnitude of the imperfectipns
is small, its behaviour follows closely that of the perfect frame, but 1n

general, the larger the crookedness the more it departs from the latter,
somewhat as given by the curves in the figure, Also the material of the
real frame behaves elastically only for a limited range; up to a yield
point say, and in most designs one tries to keep well within the ranée; .
Ultimately the designer is interested in the factor of safdty against ,
total collapse, that is the ratio of collapse load to working load;_

In chapter one it was shown that the behaviour of a
statically determinate frame ig reasonably well described by .a linear

Southwell plot equation. This provides a convenient design method;

assu@ing an initial crookedness pattern similar to the buckling mode@
the. deflections under load are obtained as the initial deflections‘_.
multiplied by the ratio 1/(1-W/Wcr). It is therefore relatively A
simple to trace the frame behaviour, and hence to estimate the load
to cause first yield. For statically determinate frames the collapse
load is usually only'slightly highef than the load to cause first

yield, and this criterion thus provides a useful d esign toole

However,'forvoverbraced frames the situation is more

.complicated. In general, the behaviour of an overbraced frame

cannot be described by a linear Southwell plot, and the simple
design method is lost, The reason for this is that the loading
path for an overbraced frame is non—llnear,'that is the axial
forces in the members do not remain in constant proportion to

one another, As mentioned earlier, the main factors affecting

the severity of the non=linearity are (a) the mode and magnitude
of initial imperfections (including prestrain), (b) the ratio
Wult/wcr s and (c) the slenderness of the frame members. If
these factors are favourable then the departure from the linear
loading path can be neglecteds '

Most practical frames have relatively low slenderness
ratios, and for these frames the member- shortenings are dominated by |
the axial strain rather than by bending effects, so that the analysis
of section (4.8) breaks down., For these frames the compatibility
conditions are approximately satisfied by a linear loading path, and
yielding occurs before the departure from linearity becomes appreciablé.“
Hence these frames are likely to behave similarly to statically | A
determinate frames, and the design method described in chapter one,

with wcr as in figure (4.25) as the buckling load, can be used up to
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first yield. As soon as a member yields it is reason:ible to assume
.that its axial load subsequently remains constart. A‘new axial force
distribution can then be calcnlaﬁﬁf from modified compatibility
equations,aid the analysis is continued, and so on until a sufficient
number of memberé hag yilelded so that the frame can collapse as a
mechanism, Obviously (m + 1) members need to yield for the frame to.

become a mechanism,

A design based on the above simplifications, although
conser&ative, is undoubtedly crude, but a detailed technique taking
into account more of the important factofs is likely to be too
complicated for routine design office works, In the follciring
section an attempt is made to formulate a mathematical model for a
more detailed prediction of the behaviour of initially crooked

overbraced framese

o12 THE ANALYSIS OF INITIALLY CROOKED OVERBRACED FRAMES

The main difficulty in the analysis of overbraced frameé
lies in the treatment of the compatibility equations, from which -
the loading path is determined, A knowledge of the axial force
,distriﬁution is necessary for the calculation of frame stiffness
and hence the deformationé. Unfortunately the compatibility
’equations contain quadratic terms in the deformations as well ag
non~linear force terms (sgee equation 4.61), so that neither can
be determined independently of the other, However, this type pf
situation is very common to engineering problems, and frequently
a solution can be oWtf@ined by trial and error, iterative or

graphical methods, or other such powerful techniquesa

In this sectiorn it is proposed to set up the necessary
equations for general analysis, and a graphical solution is
presented for a very simple singly-redundant systems Parts of

the argument are repetitions of ideas presented already in chapter -
» one, but are again included in order to stress the limitations of
the mathematical model,

Consider first a single member isolated from the frame.
At zero load the member is bent into a shape Vo says which is assumed

to be expressible as the infinite Fourier series
o0

yo = (/M) &5 8, sin(umx/1) (4.89)



figure 4,26

where the choice of the parameters 911 (end slopes) will become apparent
later. When the frame is loaded, the compressive axial force in the isolated

member is P, the end slopes are 9A s pr and the end moments are MA’ MB ,

whence the end shears are obtained as (MA + MB)/l. The deflected shape y is.
to be determined, At any point (x,y) on the centreline of the deflected

member, the bending moment is given by
M= M, (1-x/1) + Mp(x/1) - By  (4490)
and if linearly elastic material behaviour is assumed, we can write

M

EI x (change in curvature)
BT (d%y/ax? - d%y /dx?)

These two equations combine into a single linear differential equation, whose

(4491)

1]

golution is
v = A sin( \prx/1) + B cos (\ffmx/l - (,/P) (1-x/1) + (M/P)(x/1) |
(1) > [ 8 sin(nre/1)/ (1/n%)] (4292) -

. n=1
whers =P/Q ; Q=mEI/1?
The constants A and B are determined from the boundary conditions of zero

deflection at the ends, When the end slopes are also introduced we find

that the end moments are given by the equations

A = EI/l)[(qB + scly ) = (s -sc)¢ - (s + sc)4)e ] (4a93)
My = (EI/l)[(SCQk + 80p) + (s -sc)¢o - (s #+ SC)¢e ] |
where ¢o _ ié%,B,S,.g [nqu1-fyn2)] : (4.94)

o0

b= 2.0, [n8,/(1-/n2)]

These expressions for the end moments contain the usual terms in the final ehd
slopes 6 9B 5 together’with the terms ¢ ¢ Which are the 1n1t1a1 end slopes
correspondlng to the Fourier terms, magnifled by the ratios n/(1—fyn )a
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The ax1al shortening due to bending, A»lS given by

f (dy/dx)%ax - —g—f (dy/dx) ax (4.95)
(]

Using equations (4.89) and (4.92) this gives, after a lengthy
- manipulation

t t 1 1 ! 1 8
A= -(m3E, (82 +62) + 1,8, 0 - (s-30)0,(6) -6)) ~(s+00)0,(6,+6))
"2 (4296)
(1 /4)0'13
where F1 and F2 are the derivatives of the stability functions s and sc

respectively (see equations 4.58), and

o0
2
o-0 = 5’3’5’00[61,1/11(1—‘/)/132) ]
0, = Z2,,6,.0/201-P/52)2)
w .
L= L 2202 [/(-pP)Ral (4a97)

8 = 6, 2 [n8/(1-p/n%)]

By = 0~ =, [(-1)ng/(1-p/n)]

The total shortening, § is obtained by adding to the above the term
P1/EA, that is - ,
$=P1/EA +A » (4298)

When the above equations are to be used in frame analysis,
the first step is to decide on the overall crookedness of the frame,
Since there ig little, if any, information regarding the type and
pattern of crookedness to be expected, this tagg;ié not easy. Consequently,
whatever is done, one must try to make conservat&ve estimates, As in
chapter one, it seems reasonable to focus attention on joint rotations,
and to assume that the initial crookedness can be expressed in terms of
the initial joint rotations, The relative magnitudes of these
rotations are chosen to resemble the ultimate buckling mode., This
leaves the overall magnitude of the frame crookedness as a free
parameter which, if desired, can be expressed as a fraction of

representative member lengths and relaied to the 1n1t1al rotations,
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Once the magnitudes of the initial joint rotations have been fixed, there
refains the question of the deflected shapés of individual members. Hoiever,
it is thought that this is rather 1éss important than the assigning of a
pattern and magnitude of crookedness, so that any reasonable shape, having
end slopes corrésponding to the relevant joint rotations, will suffice,
This can bé achieved by using the first two Fouriér terms in equation .
(£§89%r£0r any member, and the two coefficients are readily calculated
from the boundary conditions,
, Under load, the members of the frame deflect further and strain
longitudinally, The final joint rotations and axial force distribution
are calculated from the eqﬁations of equilibrium and of compatibilitya
As before, let there be m redgndant.mémbers and assume that the shéar
forces ariging from bending are negligible compared with the axial
forces. Then the axial force in each membér is expressed in terms of
the applied load W and the redundant forces Ry s R2 y o vy Rm from
& simple primary forcé analysiss We can then set up the joint
equilibrium equations using the sihgle member relations of the type
(4:93). These equations are of the form
K b= 8, (4x99)
where K is the usual (n x n) stiffness matrix whose elements are
functions of W and R1 s s 6 6 Rm; 5’%9 the vector whose elements
are the final joint rotations, and 90 is a vector whoeh eélements
are the initial joint rotatioéns modified according to the factors
appearing in equations (4s93)e |
The compatibility equations are most easily derived by
complementary energy methods as described earlier, and when equations
such as (4.98) are introduced, they becomé of the form
Iy 92 48,8.0 +0C,0%+D,20 5 (321,25 »esgsn) (4a100)
where Aj’ Bj’ Cj” Dj are functions of W and R1 4 . . Rn; Dj répregents
the linear term corresponding to the axial shortenings of the meiibersa
Equations (4499) and (4.100) together provide a solution for the n unknowh
joint rotations and the m unknown redindant forcesgs

Clearly a diPeet solution of either set of unknéwns is not
possible, To obtain a solution one imust iterate, If an axial force
distribution is assumed, the joint équilibrium equations (4.99) reduce

to an ordinary linear set which may be solved by classical méthodsa



- 179 -

These rotations, together with the assumed axial forces, do not in
general satisfy compatibility. The force terms in the compati}aility
equations can be linearized, and by holding the rotations constant,
the resulting linear equations are solved for improved values of the
forces, This process is continued until satisfactory agreement is

reached. It is not known whether this process convergesa

4Lel13 A WORKED EXAMPLE

In order to demonstrate the technique developed above,

the simple "frame" shown in figure (4.27) is analyzed. In this

case therd is only one joint rotation, that of joint A, and one

Ay both members have the game
“e ction; slenderness
P,= ,
- - R) N _ BA ratio of
WA x N _ N 4B,1/r= 314
4————[/2 —] J
figure 4,2

redundant member. The buckled shape is as shown in the figure,
and the initially crooked shape is taken to be similar, with 6 o
as the initial misalignment of joint A. Using the first two
terms of a Fourier series to represent the initial crookedness

of the members, we find

(1/m) (36, sin(x/1) +1 6  sin(2mx/1)]

(y,)1

(4a107)
(y5), = (L)[46, sin(2rx/1) +1/86 sin(ifrz/1)]
Under load the rotation of joint A increases to 8 , and the member
axial forces are AP,] and P2 s where
P1=w-—’R (40102)
| Py =R
Working non-dimensionally, we put w = W/Q; r = R/Q1 5P, =F /Q;
. 2 1 1 12 2
ro = Pz/%, where Q, =’n2EI/1 = Euler load of member AB; Q, = 40 EI/1
= Euler load of member AC.
Thus we obtain _ _
p=vw-=r
(42103
o = o/ 4. )

The member end moments are obtained from equations (4,93) and summation
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at joint A gives
(s, + 28,)8=6 [2(s,~s,0,)/ (1=P1)+2(s *s,¢,)/ (1-4/4)+ (s mzse, (/ (1-,)

(4104)
+(52+8202)/(1-P2/4)] .
where s and sc are the stability functions, the subscripts denoting the
respective members.
The compatibility equation for this frame is
P,L/EA + A = Py1/28A + 4, (44105)

where AH and AQ are the bending shortenings, which are calculated from

equation (4496)s

In this simple problem a graphical solution is most convenient,
For any value of w select various r values, calculate /91 and /92 frpm
(4.103), from tables read off the values of s, , ¢;, 8y, ) and hence
calculate the rotation 8 from (4.104). The bending shortenings are then
calculated from (4.96), and the discontinuity across the cut is gi&en by

€ = (pq1/EA +A1) ~ (P,1/2EA + A,) (4.506)

 The solution is thus obtained by graphing £ against r and locating the zeroa
In the numerical work, r e¥lues are chosen to lie within the limits of the
interaction curve., Figure (4.28) shows the form of the curve obtained.

The graph runs away rapidly near the interaction curve limits, and there is
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figure 4e28 - Discontinuity graph
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an intermediate point of inflection. The form of the graphs remains

substantially similar at other values of w and 90.

From a set of the above graphs the zeros are located, and

hence the loading path can be plotted. This is shown in figure (4.29)
for various values of initial crookedness. The interaction curve is

also shown, The loading baths for this frame do not curve greatly.

figure 4e29 - Loading paths

Initially the curves are very close to the linear path r = 00667ﬁ,

and as the load increases they head towards the peak of the interaction
curve which represents the ultimate buckling condition. It is
interesting to note that éome of the curves show a point of inflection

just before reaching the peaks

Inspection of the form of the incompatibility graph
suggests that the iterative technique outlined in the previous section
'ShOuld‘converge, The method was programmed for the electronic computer
so that the results obtained manually could be checked, The iterative
procedure for handling the compatibility equation was based on the
straightforward Newton method of linearisation, using a straight
line through the origin and the peak ofrthe interaction curve as a

first guess., This wethod did not work at high loads; failure resulted
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because the points of inflection on the incompatibility graphs gradually fove
below the axis so that after a while the first step in the iterative scheme
gives an r- value which lies outside the liiits of the interaction citrves

Once outside these limits, the iterative scheme diverges or oscillates
indefinitely, This eventuality was siibsegiiently prevented by the inclusion

of & subroutine into the computer program to modify the first gliess of v

if an iterated value fell outside the interaction ciirve, Difficulties of

this kind or another are bound to arise in fost analyses of overbraced frames;
~ the above rotes are included as a typical example. However, it should ustially

be possible to overcorie them by & suitable re-arrangsment of the compitationss

Knowing the loading path which satisfiés the compatibility equation,

it i§ an eagy matter to calculate the rotation of joint A, Figure (4s30)
shows the rotation plotted against load for the various values of initial
crookedness. The Soiithwell plots calciilated from these curves are shown
in figure (4.31). As is to be expected, because the loading paths are
reasonably close to linear, the Southwell plots do not exhibit trarsition
regions of the type encountered earlier, biit are; to the accuracy of
calciilations, almost straight.iines and parallel. The ultimate buckling
load; as obtained from the inverse slope, is Vg T 10465, which agrees
with the value givern by the peak of the interaétion curves

ur

10

CODE: see Figire (4:29)
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figure 4o31 ~ Calculated Southwell plots

boll, THE EFFECT OF PRESTRAIN

As mentioned earlier, prestrain can be regarded as a kind of
imperfection which, like initial crookedness, has a considerable effect
on the frame's behaviour, Prestrain arises whenever the initial member
lengths are incompatible. This is caused by errors in cutting to length,
bending during handling, temperature expansion and other factors. Most
of these factors are uncontrollable but need to be taken into account
in design, or some provision must be made for their control, for example’

by building into the frame a number or turnbuckles,

_ It was shown in section (4.6) that the main effect of
prestrain on the loading path is a shift of origin, For this reason
it is obvious that the ultimate buckling modes and loads are independent
of prestrain, However, the initial buckling modes and loads are affected
by prestrain; as can be seen from figure (4.18), and it should be
possible to arrange a prestraining pattern to increase Wcr or; in some casesg,
make it the same as the ultimate buckling load. Referring to figure (4,25),
such a system is clearly advantageous in practice because it helps to
delay the onset of large deformations; which ultimately cause yield,

and hence govern the load carrying capacity of the frame,

The analysis of initially crooked overbraced frames with
prestrain is in essence no more difficult than that outlined in
section (4e12). All that needs to be done is to modify the compatibility
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equations by the inclusion of terms fepresenting the initial lack of fit
[for comparison see section (4.6b) ]. The difficult part is the
assesgment of the magnitudes and directions of the initial discontinuities;
When there is no provision to control prestrain, such as in the usual
construction, the initial lack of fit is random, and it is quite likely
‘to produce an unfavourable strain pattern which may considerably reduce
the useful working range of the structure, On the other hand when
control is provided, one can devise a prestrain pattern to optimize the
working range, Also, in contrast with statically determinate frames,

it should be possible to suppress first and perhaps higher modes,
thereby forcing the frame to deflect into a mode asgociated with

much higher buckling loads, both initially and ultimately. The
deformations then grow less rapidly resulting in an increasged load

carrying capacitye

La15 CONCLUDING.EEMARKS

Although the work presented in this chapter merely touches
the surface of a wide and challenging field in structural ingtability

studies, it has brought to light certain aspects of sufficient
importance tblwarrant a brief recapitulation, Firstly, the loading
path of an overbraced frame; that is the variation of axial forces
in its members, is non-linear even though the material behaviour is
linearly elastic, The extent and form of the non-linearity depends
on both the magnitude and pattern of the initial crookednesse The
loading path is predictable when the axial force~shortening relations
for the members are known, and this in turn requires a knowledge of
the initially crooked shape and of the deflected shape under loads
The pressing need is for a simple but adequate mathematical model
to describe the shortening behaviour, and the relations used in

this chapter are but a short step in that direction,

As a result of the non~linear loading path the behaviour
of an overbraced frame cannot, in general,lbe described by a linear
Southwell plot. Nevertheless th&jdeformations grow at an ever
increasing rate with load, and it has been shown that some kind
of limiting agymptote exists, As the asymptote is approached,
the Southwell plot tends to straighten, and the inverse slope

~of this portion provides an estimate of the frame's elastic
ultimate buckling load, It is suspected that in some cases more
nearly linear Southwell type plots can be obtained by gréphing

deformation divided by some function of load against deformations.
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This function is probably related to the non-linear loading path,
but due to the latter's variability it is not possible to lay down
general rules, Some simple functions have been tried in an attempt
to straighten the non-linear Southwell plots obtained in experiments,
but these met with very restricted success, In other cases certain
parts of the loading path are approximately linear, Under these.
circumstances the Southwell plots over these regions. are also

substéntially linear, However, the equations describing such

linear portions appear at this stage to be of questionable~va1ue;

Prestrain is another kind of imperfection which alters the
loading path, predominantly by a shift of origin but also in form,
The ultimate buckling load is unaffected, but the initial buckling

load may change appreciably, Since the latter governs the frame
behaviour initially, it follows that by increasing it, the deformations

can be kept 16w, which is exactly what the designér wantse

As far as design of overbraced frames is concerned, the
author is of the opinion that the 'individual member design' method
is generally overcqnservative; This method uses the linear loading
path obtéined_by neglecﬁing;the“bending shortenings, and hence the
initial buckling load and a linear Southwell plot are its basis,

The next step in design is to take into account overall frame
deformations; as in chapter one, but ultimately the only satisfactory
method is to. include the non-linear loading path, and.incorporate
prestrain as a means of optimizing the frame behavioura. However,
until.simpler cotiputational procedures are developed such a detailed
meﬁhod is beyoﬁd.the facilities of the average design office, Perhaps
after analyzing many and varied types of frame it will be possible to

gather the information into concise semimempirical rulesa
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APPENDIX. ~ Stability functions series

The following series, fr which the author is indebted to
Professor J.J. Koch, are useful for the calculation of the stability
functions s and sc and its derivatives, Consider a uniform column,
carrying an axial load P, deformed by endmoments M.A and MB'
Neglecting initial crookedness we obtain the deflected shape as

(see chapter one)

y = ¢, sin(fpmx/1) + c, cos (Px/1) - (4,/P)(1-x/1) + My(x/1)
where 0= PF/Q ; Q = ‘H'ZEI/ZL2 ; EI = flexural rigidity; and c, and
cz'arevconstants determined by the boundary conditions of 2610

deflection at toth ends. Introducing the end slopes eA and OB,

we obtain the moment-slope relations

M, = (ET/1)(s 9A + sceB)
My = (EI/l)(sACGA + 86p)

where s and sc are given by the expressions

= [0Pp/4(1=0)] +w 5 so = FPp/4(1-0)] ~w
in which W=scot ‘5 x= W2
An alternative approach is to guess the deflected shape in terms of

floating parameters and minimize the strain energy to evaluate the
parameters. The straln energy is defined as

U = ijcwdx -[PdA f éA JMBdG

where ¢ and M are the curvature and bendlng moment respectively at
any point along the column and A is the total shortening. Assume
that the deflected shapey as given by equation A1, can be expressed
as the infinite Fourier series

o0
zg; a sin(nfrx/1)

y= n=1

where the parameters a (n =1, 2y + « « ) are to be determined from
the condition that the strain energy is a minimum, The above geries
already satisfieg the boundary conditions of zero and deflections,.

From equation A4 the minimum energy conditions are
9U/da = fM(att/aan")dx ~ P(38/da,) - 1p(08 /22 ) - M;(98/da ) = O
°

For small deflections and linearly elastic material behaviour we can
put {
A=1 ¢ . _ ‘b
—zf(dy/dx)dx; = d%/dx* ; M =EI

(A1)

(42)

(43)

(84)

(45)

(46)

(A7)
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and from equation A5 the end slopes are obtained as

= (dy/ax),_o= /1) Zna ; 6= (ay/ax), g =(72) 2. (-1)" n a_(88)

From equations A6, A7 and A8 a , 1s obtained as A
~ 2
a, = (2%PEDL M, + (<) Mgl /n(n® p) (49)

Using this expression in equations A8 to determine the end slopes and inveEting
the result, equations similar to A2 are obtained and hence the following series
for the stability functions s and sc: '

_%/<A2'; B (410)

s=-%4i12A/(A2—-}32) ;3 sc =
where A= IL;%; ‘1/(n‘.'2 —-(3) ; B = n—‘l (1YY (n —-/J) (a11)

More rapidly convergent series are obtained by using the facts that

/(2 o) = V/x + /a0 p) | )
Z /2 =26 5 Z ()Ye? = /12

This process may be continued but it is not congidered worthwhile, A4
slight rearrangement of equations A10 gives the following expressions

from which s and sc are obtained by addition and subtraction

s + sc = 1/[1/6 +(4{Jseve /n'2)] ; s~ sc =,1/[%~+ (4psadd/4r2)] (413)

O o0
o2 20,2\ . DI 20,2
where Seven = =2 153650 1/n(n —{3) 5 Sadd™ n=1.3,5,... »1/n (n -P) (A14)

The derivatives of the stability functions are obtained as

ds/d{>+ d(sc)/d(>= ~4(s+sc)? ever/'n‘ ; ds/d(J— sc /d(Jz ~4(s-sc)%s? dd/'n' (A15)
Z 20)* (416)

sl4g = n=1’3,5“'1/(n =)

o0

N 2.0 .
Where Seven n:2,456,0001/(n f» ?

and the second derivatives are given by the expressions

d?”S/d()2 + dZ(SC)/d(o = 2[dS/C‘£:£(SC)_/dQJ -~ 8(s+sc)? s"en/')r ; (417)
dzs/‘d’:f2 ~d (sc)/d’o? = zfds/d()- d(sc)/u@] -8(s-sc)2s” /'n’

o (s 5c)

where s'?! . = 2 - 1/(n2-'-(3)3 5 s'' = Z 1/(n2-(3)3 | (A18)

aven n:2,4,6,aoo odd n:1,335,’5°




