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PREFACE 

Broadly speaking, an engineerle constant aim is the' creation of something 

which serves mankind In order to achieve his aim the*engineerjlas to tackle 
numerous problems arising between the time of conception. and. the final bringing 

into service of the product. To this end it is convenient to picture 'the process 

as divided into three stages., The first Stage is to recognise the existence of 

the real problem,  with its multitude of complexities and details, all at varying 

levels of importance..: The real problem is always too difficult to handle 

directly, and as an'aid to thinking, great simplifications are made. The simplified 

problem may be called the physical model,  in which only' the more important • 

aspects - of -the real problem are 4efillec4 .  The setting up .of a physical model 
• requires skill, judgement and, in most cases, experience with similar 

situations.-. It follows that the first physical model may at times be subject 

to subsequent variations and revisions. Finally, a mathematical model  is formulated 

this model attempts to describe, bymeans of mathematical equations, the behaviour 

of the physical model. For example, if the real problem is one of structural 

design, the unknowns in the final equations are usually design parameters such 

as stress, deflection, beam depth and so on. Thus the solution of the equations 

defines the behaviour of the physical model in terms of design parameters, but 

the degree to which these apply to the real problem depends on how well the 

physical model represents the real structure. Final design is achieved only 

after many cycles of appraisal, modifications to the physical model, refinements, 

re-evaluation, and so on. 

The above philosophy is generally applicable, indeed it is believed to be 

the only successful method of problem solving in any field, especially in 

engineering. 

This thesis is concerned with the problem of the behaviour of framed 

structures.. Throughout the wol-71‹ .., etphasis is placed on the geometry of the  

deformations  of the frame. 'Although it iS often not appreciated, the geometric 

• approach has dominated throughout the history' of structural engineering development. 

The reason for this is obvious, because once the deformations of a structure 

are known, other quantities like stresses, Strains, bending moments and so on l , 

are easily calcUlated. Another reason is that deformations, unlike forces 

(the alternative to a geometric approach is a force approach), can be pictured 

and drawn to Scale or sketched. Such a picture is readily obtained from 

experiments and one is always pleasantly surprised at how much information: 

can be drawn from but the simplest measurements of deformations. The author 

has experienced most '2:ccess from simply constructed, light and flexible models 

which, apart from being inexpensive, are easily deformed by hand, and the deformed 
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models are quickly sketched or traced. Frequently a wire or cardboard model 
may be used in order to gain a preliminary understanding of the deformations. 

Once a picture of the deformations of a structure has been formed in 

one's mind, the formulation of physical and mathematical models follows 
beld 

naturally. For example, in general all the members of a frameAin two directions, 

twist, and stretch or shorten, but quite often only one of these types of 

deformation is important. The physical model describing this type of behaviour 
is obvious. Nevertheless one must not lose sight of other possible deformations; 

these may need to be introduced as subsequent refinements. :  A good example of 

when the first physical model must be changed, is provided by the class of frames 

in which the member stretchings (or shortenings) are the primary deformations. 
Such frames are liable to instability, that is the deformed frame with its 

members remaining straight is not always stable, and the frame buckles under 

certain combinations of loading. When it does, then of course the bending 

deformations become most important, and the physical model must be modified 

to include these deformations as well as the member stretchings and shortenings. 

Instability of frames is One of the maintopics of this thesis. 

Undoubtedly most of the ideas about instability are based on the work of the 
great mathematiciaL Leonhare Euler, in the eighteenth century. It was Euler 

who first established a buckling condition for a simple uniform pin-ended 

column. These ideas have gradually been expanded to embrace a much wider 

field of structures such as buckling of frames, plates, shells, beam webs, and 

so on. However, it should not be forgotten that Euleris analysis is only a 

mathematical model of a much simplified physical model of a real column, and 

there is a danger of using the results of such an analysis in situations where 

it is no longer valid, even as a first approximation. Euler type buckling is 

defined by a bifurcation, or a number of bifurcations, on the load-deformation 

diagram for the structure; at each of these forks on the diagram the structure. 

deforms according to a consistent pattern, and under constant loading it suddenly 

deflects into some other pattern called the buckling mode; the corresponding 

loads are called the buckling or critical loads. This type of buckling is in 

fact a reasonable description of the behaviour of isolated columns and statically 

determinate frames, but in most other structures there exist influences which 

do.  not permit them to deflect under constant load, and their buckling behaviour 

cannot therefore be of the Euler type. Examples of this different buckling 

behaviour are shells and redundant frames; the latter are examined in this thesis. 
Generally speaking, Euler type buckling is the exception rather than the rule. 
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In addition, there is the question of the practical significance 

of the existence of some unstable state. In practice a structure always 

exhibits deformations other than those which are considered in the physical 
model. Among these are the deformations, which arise when the structure 

buckles, and their importance usually increases as the strUbture is subjected 

to greater primary deformations. :  When the additional deformations are 

included in the analysis, the calculated load carrying capacity of the 

structure is greatly affected, and may be far less than the buckling load 

predicted if they are ignored. 

Unfortunately, some of the above considerations are frequently neglected 

in current literature. Thus, although the problem of structural behaviour has 

been intensively investigated, there remains an untold number of questions. 

The author hopes that the work to follow herein may provide a useful attempt 

to pose important practical questions, and give a guide as to' how they may be 

answered, and hence promote a clearer understanding of the behaviour of 

structures, which is urgently needed by structural designers.-  

In conformity with the definition of an engineer's aim, as given 

earlier, the aim of this thesis is to investigate the problem of the behaviour 

of framed structures, with particular reference to elastic instability. 

Design is continually kept in mind as being the end product of this research, 

and wherever possible, design procedures are suggested. Some of these may 

not be unique, nor have they been proved in practice, but the author believes 

that the principles are soundly based on a reasonable understanding of 

structural behaviotr.. 
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SUMMARY 

CHAPTER ONE  begins with a preliminary examination of the" problem of 

instability of frames. This is followed by a brief description of the 

development of instability studies, starting with Eulerlb analysis of a 

pin-ended column and culminating with the now classical matrix analysis 

of rigidly jointed frames. A simple frame is analyzed in.order to show 

that the various methods of analysis all have the same physical and 

mathematical models but employ different methods of handling the mathematics. 

Experimental methods are discussed, and the chapter concludes with the 
formulation of a mathematical model suitable for the prediction Of frame 

behaviour. This model can be used to obtain an estimate of the load 

carrying of a frame, and hence it provides a useful design procedure. 

CHAPTER TWO  deals With the application of energy methods in structural analysis. 

The two types, Complementary energy and strain energy, are introduced by 

means of a simple example and it is clearly shown that they are equivalent 

to geoMetric and statical considerations respectively. :These ideas are 

extended and applied to some common beam problems, for which rapid approximate 

solutions are found. It is then shown that the classical matrix method of 

structural analysis, using joint displacements as unknowns, is equivalent 

to a strain energy approach, and this naturally leads to .S. powerful 

approximate method of solution. The method is applied to the analysis 

of a two-bay eight-storey building frame; and the results are compared 

with a computer solution. 

CHAPTER THREE proposes a new method for. the determination of buckling modes 

and loads of rigidly jointed frames.' The method is based on a strain energy 

analysis, and it is identified as a.linearization of the .usual stiffness 

matrix approach. This leads to a useful iterative numerical scheme. Proofs 

are given of Upper and lower bound theorems, and the method is applied to a 

number of frames, including a few in thr6e dimensions. Most of these 

analyses are checked by 'experimental measurements. 

.CHAPTER FOUR  extends the work into the analysis of redundant frames. The 

complementary energy method is proposed as the most convenient way of 

deriving the compatibility equations relating the member shortenings. A 

mathematical model is developed for the evaluation of the shortening of 

bent pin-ended members. The problem of buckling Of redundant frames is 

introduced by means of an analysis of a 'simple pin-jointed frame, and 

some useful ideas are brought to light. The following section presents some 



of the results of experimental work on the behaviour of redundant frames with 

rigid joints. It is shown that the buckling behaviour is not of the Euler 

type. An earlier definition of instability is therefore closely re-examined, 

and this leads to a new formulation of the problem. A general stability 

criterion is set up mathematically and applied to some simple singly-redundant 

frames, and the results are compared with measurements. In conclusion a 

method for predicting the behaviour of initially crooked redundant frames 

is developed and applied to a trivial example. 



NOTATION 

Symbols are defined when they first appear in the text. The general 

notation used is as follows; 

A  cross sectional area 

complementary energy 

Young's modulus 

f(or0r) 	stress 

torsion modulus 

second moment of area (or unit matrix) 

polar secon4 moment of area 

at 	 stiffness matrix 
member length 

bending moment 

axial force in a member 	 • 4 

Euler load of pin-ended member 

r = Eia 	radiu$ of gyration 

strain energy 

applied load 

X 	generalized force 

generalized displacement (or coordinate) 
y(or z) 	deflection 

A  member shortening (also sway) 
strain 

eP 	curvature 

A 	latent root 

to 	rotation 

,superscript to denote a matrix or vector. 
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CHAPTER ONE 

ELASTIC INSTABILITY OF FRAMES 

1.1 INTRODUCTION  

Instability of structures is a subject which has received a 

considerable amount of attention, originating with Buie/ 0 s analysis 

of the buckling of a pin-ended column, The classical approach developed 

by Euler also forms the foundation of the analysis of instability of 

structures. A structure is said to be in stable equilibrium when small 

changes in loading are accompanied by correspondingly small changes in 
the deformations. On the other hand, instability is associated with a 

state of unstable equilibrium when small changes in loading produce 

large changes in the deformations ultimately resulting in failure of 

the structure. Mathematically this definition of instability can be 

written as 

ay/aX 	 (1.1) 

where x is a generalized displacement and X is the corresponding generalized 

force. Inversely this becomes 

ax/ax = 0 	 (1.2) 

and this formal definition of instability is adopted in the work to 

follow; in practice it is easier to use than the former, which exhibits 

the difficulties of manipulating infinities. 

Broadly speaking failure of a structure by instability may be 

separated into two distinct classes. Firstly there is the failure brought 

about by large scale yielding of parts of the structure. When this occurs 

these parts continue to deform under constant or nearly constant load and 

may be thought of as hinges. As more hinges form the structure eventually 

becomes a mechanism and collapses as such, the load at which this occurs 

is known as the collapse load; the analysis of this type of instability 

is a complete study in its own right. 

Secondly, large deformations may take place in the elastic range 

of the material, if at some stage the structure can no longer support its 

loads due to its decreasing stiffness as the loads are increased. This 

type of instability is usually referred to as elastic buckling. 

So far the term 'structure' has been employed in its general 

sense, embracing frames, plates and shells, single machine elements 

and so on, This thesis is mainly concerned with instability of frames 

and in particular with the problems of elastic buckling of frames. 



Essentially this problem is the same as that posed by Euler, and in order 

to obtain a clear understanding.of what is involved, the fundamental ideas 

are recapitulated in the following sections. The treatment given in these 

sections is found in most textbooks on structural analysis but is included 

here for the sake of completeness. 

1.2 THE PIN-ENDED COLUMN 

Consider a pin-ended column AB initially straight, compressed by 

an axial force P as shown in figure 1.1. We ask ourselves if there exists 
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figure 1.1 - Din-ended column 

an equilibrium configuration other than the straight form. Supposing there 

is, let y = f(x) describe this configuration. Then the bending moment at 

the point (x, y) on the deflected centre line of the column is given by 

m = - py  (1.3) 

anticlockwise moments being considered positive. If the deflections y are 

small compared with the length of the column, the curvature is approximately 

given by 

T = d2  y/dx2 
	

(1.4) 

According to the usual assumptions in linear theory of bending of beams, the 

bending moment is related to the curvature by the expression 

M = EIO 
	

(1.5) 

Thus equation (1.3) becomes 

EI(d2y/dx2 ) + By = 0 
	

(1.6) 

The solution of this differential equation is 

y = a sin kx + b cos kx ; k 2  = 	(1.7) 



Use of the boundary conditions of zero end deflections reduces this to 

y = an sin kn 
x 
	

(1.8) 

where 	kn = ni1/1 ; n = 1 2, 3, . . . 

or y = 0 everywhere, this solution being trivial. It is seen that a 

deflected equilibrium configuration is possible only for certain discrete 

values of P given by 

Pn = n
2 ir2EI/12 

and the corresponding deflected shapes are of sinusoidal form 

y = a sin(n175ç/1) n 	n 

(1.9) 

1.10) 

where an  is undefined as to magnitude, although it is restricted by the 

approximate expression for the curvature and by the condition of linearity 

implied in equation (1.5). Pn  is called the nth. buckling load of the 

column and yn  is called the corresponding buckling mode. 

. This problem was first solved by Euler . some two hundred years ago 

and is still used today as the basis of all elastic instability studies' 

relating to frames. When n = 1 we have what is called the fundamental 

buckling condition, and Pi  =1EI/12  = Q is commonly known.as  the Euler 

load s  his being the smallest load at which the pin—ended column has an 
equilibrium configuration other than the straight form. For values of P 

less than Q the column is in equilibrium only in the straight form, at 
• P = Q the column is in neutral equilibrium, and at values of P greater than 

Q the column is in unstable equilibrium. The behaviour of this mathematical 
model of the column is indicated graphically in figure.(1.2) by two straight 

lines. 

LOAD 
(p) a., s in(irx/E) 

 

   

  

DEFLECTION ( ) 

figure 1.2 - load deformation diagram 



The buckling loads and modes for columns with other end conditions 

can be obtained by similar analyses, and in general it is possible to put 

the fundamental buckling load in the form 

P1 =1r2EI(e1) 2  

where (el) is called the effective length of the column,. that is the length 

of a pin-ended column having the same buckling load as the column under question. 

1.3 THE PRACTICAL COLUMN 

EulerLs.analysis, as set out in the previous section, is idealized in 

the sense that it implies perfect straightness of the column, ends completely 

free to .rotate, purely axial load (that is no eccentricity), uniformity of 

cross-section and homogeneity of the material. In practice such conditions 

are never realized, and the lack of these conditions is broadly classified 

under the heading of. initial imperfections..As a consequence of initial 

imperfections, a column under test will begin to deflect as soon as a load 

is applied and Euleris analysis is therefore no longer a reasonable 

representation of the behaviour of a practical column. The mathematical 

analysis can be improved to take into account some initial imperfections. 

such as eccentricity of loading, initial curvature and the effects of end 

moments,. and experiments have shown that for a large class of columns the 

behaviour under load can be fairly well predicted. If the ends of the 

column are pinned, (that is free to rotate,) it can be shown that as the 

ratio P/Q approaches unity the behaviour of an imperfect column is 

asymptotic to Euler's theory. This has led to the very useful experimental 

technique known as the Southwell plot, which is discussed in more detail in 

section (1.9). The Euler load is generally not reached in tests, unless 

there are some external restraints) since as the deflections tend to become 

large the strain in parts of the column exceeds the yield value.. How closely 

the Euler load can be approached depends on the magnitude of the imperfections. 
Despite the fact that the Euler load may not be reached in practice, it is 

and remains a useful result. The behaviour of a column under test is shown 
superimposed on the Euler mathematical model in figure (1.2). The various 

curves are for different magnitudes of initial crookedness and the post-yield 
regions are indicated by broken curves. The maximum load which the Column 

can carry is usually not much greater than the load to cause first yield. 
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1.4 DESIGN TECHNIQUES  

The estimation of allowable loads on columns can be done in 

several ways but only the more commonly used techniques are described 

here. 

(a) Euler stress formula 

The Euler stress, fE  is defined as 

fE = OVA =1r2EI/Al2  =V2E/(l/r) 2  (1.12) 

which is the direct axial stress at which the column buckles. It is 

also known as the critical stress. Expression (1.12) is shown graphically 

by the continuous curve in figure (1.3). The non-linearity of the stress 

FE  

Ur 

figure 1.3 - critical stress curve 

strain relation after the proportional limit reduces the critical stress, 

and the dashed curve gives the critical stress beyond this point. For 

design purposes the increase in critical stress above the yield stress 

is generally ignored, and the dotted line is used. For a given l/r, 

ratio the critical stress is read from the graph, and the allowable average 

stress is obtained by dividing the critical stress by a suitable factor 

of safety, which is taken either constant or a function of the l/r ratio. 

The major difficulty with this design method appears to be the selection 

of a factor of safety. This is because the behaviour of a column in practice 

is quite different from that predicted by the Euler theory. To overcome 

this difficulty a large factor of safety is used. 



(b) Design based on initial imperfections  

In this design technique the effects of initial imperfections are 

all replaced by a single initial curvature pattern. The function representing 

this pattern does not affect the calculations to any significant extent, and 

for simplicity a sine curve is generally used, that is the initial shape of 

the column is defined by 

yo = ao sin(iTx/1) 
	

(1.13) 

If y is the shape of the column when it carried an axial load P I  then 
equations (1.3) and (1.4) still hold, but the bending moment-curvature 

relation is changed to 

EI(1)-10 ) 	 (1.14) 

where 00  is the initial curvature. The differential equation is solved in 

the usual way, and the maximum extreme fibre stress occurring at the centre 

of the column is readily found to be 

1 
f  max = (P/A)[1 + A a0/(17P/Q)Z] ( 1. 15) 

where A is the cross sectional area and Z. is the section modulus'. Equating 

this to the yield stress, we obtain the well known Perry formula 

ft = PI/A = -efy  + (n+l)fE] .4- 1/[fy+ (n+1)fE3 2  —4 fy  fE.  (1.16) 

where PI is the load which will just cause first yield f in the extreme 

fibres, and fE  is the Euler stress as defined above. The quantity n is a 
measure of the magnitude of the imperfections and is defined by 

n = a0  v/r
2 	

(1.17) 

where v is the distance from the neutral axis to the extreme fibres, and 

r is the radius of gyration. n is usually specified as some fraction of 

the hr ratio, which is meant to allow for small inherent eccentricities 

as well as initial curvature. The allowable average stress is obtained by 

dividing fl by a factor of safety. 

(c) Empirical Formulas 

A third design technique is by the use of purely empirical 

formulas. These are of the form 
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(i) the Rankine formula, f = a/A+ b(l/r) 2] 

(ii) the Johnson parabolic formula, f = a - b(l/r) 2  

(jai) the straight line formula, 	f = a - b(l/r) 

In all cases f is the allowable average axial stress, and the constants 

a and b are chosen to fit experimental results. A factor of safety is 

also incorporated in these formulas. The use of these formulas is generally 

restricted to certain ranges of the 1/r ratio. 

* 

There are of course numerous arguments for or against the use 

of any particular design tecnaique. Present day design codes differ in 

opinion, but with sensibly chosen numerical values in the relevant 

formulas there is probably little difference in the end result, irrespective 

of which technique is used. It must be borne in mind that all the design 

formulas mentioned are in reality empirical,as each involves the selection 

of a factor of safety or other quantity, and these are obtained only by 

experiment and by experience of what has been proved to be safe. This 

is the basis of all design codes. 

If the column has end conditions other than pinned, the length 

1 in the design formulas is replaced by the effective length. 

1.5 DESIGN OF FRAMES 

So far the discussion of design methods has been restricted 

to isolated columns whose effective lengths are known or can be readily 

estimated. In the design of compression members of frames these design 

formulas are still applicable, provided the effective lengths of these 

members can be found. Since the end conditions are generally not known 

beforehand Some difficulty arises, and this is the real problem in frame 

design. De -Sign codes usually give a table of effective lengths for 

compression members with various end connections, but, although these 

are reliable, the designs are probably overconservative since attention 

i D focussed on individual members. If the frame has weak joints it is 

close to being pin-jointedl land the design of compression members on an 



individual basis should be adequate. However, most frames have rigid or 

nearly rigid joints, so that lateral deflections in any member affect the 

whole frame. The magnitude of the deflections depends on the stiffnesses 

of the joinbJ, which in turn depends on the conditions in the neighbouring 

members, and so on. Thus the concept of a buckling member is no longer 

useful, and the stability of the whole frame must be investigated and used 

in design, together with an overall factor of safety. 

Although it is possible to calculate the elastic buckling loads 

of frames, and hence the effective lengths, more numerical computation is 

required than is generally warranted for routine design office work, and 

therefore most frames are designed using empirical information from design 

codes, Here again the only justification seems to be the satisfactory 

performance of past designs. The designer is also faced with the question 

of economy; that is, the additional cost of non-standard member sizes, 

which may have to be used, could well exceed the savings on the "more 

efficient" design. 

The problem of frame design is discussed again in section 1.11), 

together with the author's proposal for improved design techniques. 

1.6 ELASTIC INSTABILITY OF FRAMES 

As for the pin-ended ColUMni the basic problem of elastic 
instability of frames is to find those loads, or combination of loads, 

fot.which.the frame has an equilibrium configuration other than that in 

which all members remain straight. If the frame has pinned joints, the 
buckling load Would be the smallest load at which one of the members 

carries its Eulet load, for then this member buckles on its own and 

cannot sustain an increase in load, thereby effectively rendering the 

frame a mechanism. If the frame is m,-fold statically indeterminate with 

respect to the axial forces In its members, then in general (m + 1) Members 

Must carry the Eider load when the frame buckles. For the time being, only 
statically determinate frames are considered; the buckling of redundant 

frames is treated in chapter four. The buckling mode in the statically 

determinate case i8 defined Simply by the deflected shape of the buckled 

member, that is a half sine wale. 

In practice the joints of a frame are nearly rigid, and the 

analysis of elastic instability becomes more difficult as the whole frame 

must be taken into account. Drastic simplifications are necessary to get 



a manageable mathematical model. These are common to all methods of 

attack and are described here in order to keep in mind the limitations 

of the analyses. For simplicity, only plane frames buckling in their 

plane are considered, but the arguments are readily extended into three 

dimensions. 

The first simplifying step is to replace the real frame by a 

physical model of the same dimensions, having its members perfectly 

straight initially, the centrelines of the members lie in one plane 

and intersect at the joints, the joints are perfectly rigid, and 
loads are applied at the joints only and in the plane of the frame .. 

It is also customary to neglect secondary bending moments arising from 

changes in the geometry of the frame due to the changes in the axial 

lengths of the members. The bending moments resulting from lateral 

deformation of the members are called primary bending moments.. It 

is clear that the, simplified model of the frame can be loaded so that 
the members remain straight. To define buckling of the physical 

model, the concept of an initial disturbance is useful. Suppose the 

frame is given a disturbance, exciting lateral deformations in the 

plane of the frame; if there is no other load on the frame it remains 

in stable equilibrium, and the deflected shape can be calculated by 

standard methods of analysis. If the disturbance is applied When the 

frame carries some load, additional bending moments arise as a result. 

of the axial forces in the members, and hence the deflections are 

increased, giving increased bending moments and so on. Equilibrium 

may be stable or unstable depending on the magnitude of the primary 

load. Obviously if this is small, equilibrium is stable but at' 

some discrete values of the primary load the additional deflections 

due to the axial forces in the members are just larger than those 

caused by the disturbance acting alone, and then the final deformations 

are undefined and the frame is said to buckle. Although the, 

magnitude of the deformations is undefined, the frame assumes a 

definite shape, called the buckling mode In general there exist 

several buckling modes, each associated with a different value of 

the primary load. In this definition of buckling it has been assumed 

that although the deformations are undefined as to magnitude, they are 

sufficiently small not to cause yielding, and that the usual small 

deflection theory is applicable. 

The basic problem of elastic instability is therefore the 

determination of loadings on the physical model for which an infinitesimal 

disturbance is sufficient to excite buckling. In actual frames, 

disturbances need not be introduced as the crookedness of the members, 
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eccentricity of loads and many other factors cause the members to 

deflect as soon as load is applied,in the same way as the pin-ended 

column in section (1.3). The behaviour of practical frames is discussed 

in more detail in sections (1.9) and (1.10). 

Several methods of solution are available; the more commonly 

used approaches are summarized in the following section, in a sequence 
designed to bring out the ideas leading up to the new method developed 

by the author in chapter three of this thesis. 

1.7 REVIEW OF EXISTING METHODS FOR THE DETERMINATION OF ELASTIC BUCKLING LOADS 

(a) Moment distribution.convergence as a stability criterion. 

This method is due to Hoff (reference 1), and is the result 
of the impact of the Hardy-Cross moment distribution method on structural 

analysis. A disturbing moment is applied at one joint of the frame, and 

the frame's response is determined by moment distribution. Hoff originally 

used the Berry functions (00), tabulated by Niles and Newell (reference 2), 
to calculate the stiffness and carry over factors of the members, but more 

recently these have been tabulated directly by Live sley and Chandler 

(reference 3). At loads below the critical, the moment distribution 
process converges, whereas at loads above the critical value the process 

diverges. The convergence of the moment distribution process is therefore 
a useful criterion of stability. If only a single disturbance is used, it 
is necessary to ensure that it does in fact excite a component of the buckling 

mode under consideration. In actual problems it is likely that the designer 

will want to take into account the initial curvatures in the members, lateral 

loading of the members and other effects, so that a disturbing moment is 

not needed to induce primary bending. This is perhaps the main advantage 

oEtbe:11,41T:method in that the primary bending moments and a check on the - 
stability 'are obtained by one computational process, although the nearness 

of the buckling load will in general not be established unless these 

calculations are repeated for other load values. 

On the other hand there are several major disadvantages to this 
method. Firstly, in some cases it is difficult to establish whether the 

distribution process is converging or. diverging. This can partly be 

overcome by changing the order of balancing the joints. Secondly, even 

if the buckling load is sandwiched closely, the method does not give the 

associated buckling mode directly, this must be computed separately. 

Thirdly, it is not possible to draw a graph to determine the buckling load 
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by extrapolation or interpolation. Finally, the Hoff method involves 

a considerable amount of numerical labour )  as in any practical frame 

it takes a long time for a disturbance at one joint to be distributed 

throughout the frame and even longer for the carry..overs to return to 

that joint. 

Gregory (reference 4) has shown that the amount of 

qomputation is considerably reduced by applying disturbing moments at 
all the joints rather than at only one joint. This is particularly so 

if the correct buckling mode can be pictured, for then the disturbances 

can be given the correct signs and ratios so as to excite the required 

buckling mode; model observations are almost always necessary to 

provide this picture. It is seen that this technique is very similar 
to that of taking into account the initial curvatures of the members. 

If the initial curvatures are chosen, on the basis of model tests or 

otherwise, to closely represent the final buckling mode, then the 

final bending moments will be very reliable for design purposes, and 

convergence (or divergence) of the distribution Procdis should be rapid. 

(b) Stiffness method 

Merchant (reference 5) developed a method which determines 

the moment M requited at a particular joint of the frame to produce a 
given rotation 6 at that joint. The stiffness K s  defined by 

M = Ke 	 (1.18) 

is calculated for a number of load values, and the lowest buckling 

load is that for which the stiffness first becomes zero. Although 

moment distribution is used in the numerical work, this method has 

the advantage of giving a graph such as in figure (1.4), and most 

of the difficulties mentioned in part (a) of this section do not 

exist, because we are now searching for a zero rather than an infinity. 

Nevertheless, Several distribution processes must be carried out to 

establish the form of the graph. There exist methods of estimating 

the lowest buckling load by extrapolation from but a . few points on 

the curve at relatively low loads at which the inherent difficulties 

of moment distribution are not so pronounced; these techniques are 

a valuable aid in obtaining a reliable estimate of. he buckling load. 

As in the Hoff method, the buckling mode must be computed separately. 
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figure 104 ,,_atiffness .graph 

(c) Matrix methods  

With the advent of electronic digital computers, matrix formulation 

of problems in structural analysis and related fields has become increasingly 
popular, Matrix methods are particularly suited to the problem of the 

determination of elastic buckling loads and modes of framed structures. 

When the matrix of the equations relating member end moments to 

the corresponding end slopes is set up s  the mathematical criterion for 

buckling is that the determinant of coefficients of M orovanishes. 
Essentially this is a generalization of Merchant's stiffness method; 

all the joints are rotated and the requirements of joint equilibrium 

give the joint moments necessary to produce these rotations. The stiffness 

s and carry over factor c) as tabulated by Livesley and Chandler )  (see also 

appendix A) relate the end moments to the end slopes by the equations 

MAE  = k(seA  + sc%) 

(1.19) 
MEA  = k(sC0A+ s 9B) 

where k = EI/li and the first subscript denotes the en 0 under consideration.. 

• For a plane frame consisting of say n joints, equations such as (1.19) are 

written down for each member, and the moments applied at the joints are obtained 
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by summation of the end moments of members connected at the 

respective joints. For example if members 1, 2 )  and 3 intersect 

at the rth. joint of the frame and this joint is rotated through 

a small angle er  as shown in figure (1.5)2  then the member 

end moments are 

mr1 = 1,c1 ( 81 er "1 el ) 

Mr2 = k2 (5261r 	82c2612 )  

Mr3  = k3 (s3611, 	s3c3603 ) 

(1.20) 

where 61 ) 192  2'63 are the rotations at the far ends of the respective 

members. For equilibrium of the joint an external moment 111, is required )  

3 

figure 1.1=  Group of members at a joint  

given by 

Mr =M r1 +M  r2 + M 
	

(1.21 ) 

which, after the substitution of equations (1.20) becomes of the form 

M=a 0r  +ar  01 +ar2  02  + ar3  e3 	(1.22) r 	rr 	l  

where the coefficients a depend on the k values of each member and 
upon the stability functions, s and sc of the members. Equations such 

as this are written for each joint, so that in general the follOwing 

system of equations is obtained 

1:4- = 1:4 	 (1.23) 
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where K is a symmetric matrix, called the stiffness matrix, the elements of 

which are a function of the stability functions of some or of all the members 

of the frame, M is the vector defining the joint moments, and 9is the vector 
defining the corresponding joint rotations. 

In general the mathematical model of the frame is undisturbed, so 

that M is a null vector, and equation (1.23) becomes 

= 
	

(1.24) 

A non—trivial solution exists only if the determinant of K :  that is IKI s is 

identically zero and then the rotations are undefined in magnitude, but they 

bear a definite ratio to each other. 

Thus )  mathematically speaking, the problem has been reduced to 

the determination of thoseload values for which IK I vanishes, and this is 

perhaps the most powerful method for the estimation of buckling loads and 

modes of framed structures. Here again several mathematical techniques are 

available )  but it suffices to describe only the more commonly used methods of 

solution. 

(i) Evaluation of the determinant  

The classical approach in this case is the obvious one, that is 
to evaluate the determinant at a number of load values. The buckling loads 

are then found graphically and the associated modes are calculated by setting 

an arbitrary rotation equal to unity and solving the equations for the 

remaining unknowns. For frames of any complexity the order of the determinant 

becomes high)  and this method is apt to become very tedious as well as 

inaccurate due to accumulating errors in the evaluation of the determinant. 

(ii) Latent roots of the stiffness matrix 

Gregory (reference 6) has shown that equation (1.23) is conveniently 
p.- 

solved by the extraction of latent roots and latent vectors of the matrix K. 
A latent rooti A , of Zis defined as 

A = m i/ei 	= 
	

2, 0 • ) n 
	

(1.25) 

From this definition it is seen that A represents a kind of generalised 
overall stiffness of the frame. Substitution of equation (1.25) into 

(1.23) yields 

- Al) 	 (1 .26) 
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where I is the unit matrix. That is, the matrix #.1Z.  is modified by 

subtracting A from each of the elements on the leading diagonal. 
As before, a non—trivial solution exists only if the determinant 

ri —All is identically zero, which is the condition used to calculate A . 
In general there exist n latent roots for a given (n x n) symmetric matrix )  

each associated with a different latent vector. 

At any of the buckling loads of the frame the determinant 

R I  itself vanishes, and the righthandside of equation (1.23) is zero s  

so that one of the latent roots of the matrix K also vanishes. It can 

be shown that at loads smaller than the lowest buckling load all the 

latent roots are positive, whence it follows that the lowest buckling 

load is that for which the smallest  latent root first becomes zero, and 

the associated buckling mode is the corresponding latent vector. The 

largest latent root of a matrix is readily extracted by a standard 
intensification process (see for example reference 7), and Gregory 

shows that this can be used to find the smallest latent root by what 

he calls a "parallel shift" of the latent roots, which is analogous 
)1 

to a transfer of origin, That is, if is the largest latent root 

of the matrix (R. — 	then the smallest latent root of K, Al  is 

given by 

A1  .  + g 	316  

and the lowest buckling load is found by graphing k i  against load 

to determine its first zero.. 

(1.27) 

The most important feature of Gregory's method is that 

the parallel shift does not change the latent vectors of K; hence 

the latent vector associated with the largest latent root of (I— gI) 

at the lowest buckling load is in fact the corresponding buckling 

mode. A further advantage of this method is that convergence of the 

intensification process is greatly enhanced by starting with a trial 

vector close to the buckling mode, and this can be obtained from tests 

on crude models of the frame, often a cardboard model is sufficient. 

Although it may seem that the extraction of two latent roots 

is required, the labour involved is but a little more than that of 

extracting one lbecause only a rough estimate of g is required; it is 

necessary only to ensure that the shift is numerically larger than the 

mean 'of A1 and g. 

g is the mangitude of the "shift" which is equal to the largest 

latent root of 
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(iii) McMinn's method 

McMinn (reference 8) calculates the lowest buckling load from the 

applied matrix Q  defined by 
^-_1 

Q = BD .i 	 (1.28) 

where BD is the matrix obtained from K by dividing each column by its 

element on the leading diagonal, and the elements on the leading diagonal 

are zero. The lowest buckling load in this case is the load at which the 
largest latent root of 'lequals -2. Although McMinn's modification of the 

stiffness matrix requires less work than Gregory's parallel shift, it suffers 

the disadvantage that the latent vector of 1 76 cd2responding to its largest 

latent root is not simply related to the buckling mode; the mode must be 

computed separately. This also necessitates the use of an unguided choice 
for the first trial vector in the intensification process. 

(d) Energy methods  

Rayleigh (reference 9) first conceived the idea of using assumed 

deflection curves in a strain energy integral, and minimizing this integral 

to calculate what he calls the "disposable parameters" involved in defining 

the curves. This method of approximate solution is used to solve a wide 

variety of problems; for example the buckling load of a pin-ended column 

may be calculated to any degree of accuracy by continually improving the 

assumption for the deflected shape (see for example reference 10). 

The Rayleigh method is readily extended to the stability analysis 

of frames. The buckled shape of each member is guessed, its strain energy 

is evaluated, and the results are summed to obtain the total strain energy 

of the frame. The strain energy of a single member, U is defined by (see 

chapter two) 
t 	a  0  Gs A 

jrtild0dx  iM de
A 
 -IMB  AB  A -Id  (1.29) 

0 0  0 	0  0 

where Ms the axial shortening due to bending and is given by 

A = 	(ay/dx> 2  dx 
0 

In the case of a linear moment curvature relation, the first term in 

equation (11.29) becomes 
E 
f Imdfdx = ifE4d+dr,. 	Eite dx = jEI(d2y/dx2) ax  

o o 

(1.30) 

( 1. 31) 
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If the loaded but undeflected state is chosen as energy reference 

datum, then under the assumption already made that P remains unaltered 
by the lateral deformations, the second term becomes 

P d= .4-Pjr(dy/dx) dx %2 
0 	 0 

(1.32) 

For the whole frame, the total strain energy is 
a ii 	t 	t. 	6;4 	es 

u = 
MVO rs 0 

{-i- j E I ( d 2y/ d x2  ) 2  dx .--IPS (dy/dx) 2dx —IM d 9 -INA  d6.0 	(1033) 

	

o 	0  AB 

It is seen that the first term in this summatiOn represents 

the internal strain energy of bending for the whole frame. The second 

term is the work done by the external loads on the frame, and it is 

readily shown that 
all 	 8. 

If P ,1 (4y/dx)2dx 	
r

i = i 	Wi  d6i  
mern erS 

where g i  is the deflection of the load W i  y and the summation extends 

over all the applied loads. Similarly, the summation involving the 

member end moments is equivalent to 

19; 

(1.34) 

( 1 .35) 

whichistheworkdonebythejointmomentslCby rotating the joints 
0 

through the small angles e. , the summation extending over all the 
joints. In the general analysis of the idealized mathematical model, 

the joints are undisturbed, and this term therefore vanishes. It 

remains then to specify the deflected shape of each member in terms 

of one parameter, or more in the Rayleigh—Ritz method, evaluate the 

necessary integrals, and minimize expression (1.33) with respect to 

the disposable parameters. This leads to a system of linear equations, 

and hence to the usual criterion that the determinant of coefficients 

must vanish for a non—zero solution of the parameters. 

1 ..8 THE BUCKLING OF A SIMPLE FRAME 

In order to obtain a deeper appreciation of the underlying 

principles in the analysis of elastic stability of frames, the 

fundamental buckling load and mode for the equilateral triangular 

frame shown in figure (1.6) will be calculated by the various methods 

discussed in the previous section. Although this frame has no practical 
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application it is one of the simplest to analyse. Figure (1.6a) shows 
• the antisymmetric buckling mode, and figure (1.6b) the symmetric mode, 

41111111111111111111111k 
E = con5kLm4  

Q fr2EVP 

= member 
/enyfh 

• 

co.) Aniisymmelric mode 

figure 1.6 = Buckling modes of equilateral triangular frame 

these being the first two possible buckling modes. The symbols in 

parentheses at the centres of the members are the axial loads in 

the members, compression being considered positive. In this problem 

it is convenient to treat P as the primary load parameter, and the 
lowest buckling load is denoted by 

Preliminary analysis 

Obviously the compresion members AB and BC have some 

restraint against rotation at the ends, so that P er  must be greater 
than ta, the Euler load of the members. Also, in the case of symmetric 
buckling, these members are equivalent to columns built—in at B, and 

partially restrained at A and C. If A and C were free to rotate, the 

buckling load would be 2.05Q, which is therefore a lower bound for 

symmetric buckling. For the anti—symmetric mode, MBA= MBC=  0,  
(since MBA= MBc  from antisymmetry, and their sum is zero for equilibrium 

joint 	so that the members AB and BC are equivalent to columns 

pinned at B, and having partial rotational restraint at A arid C. Thus 
P  cr must be less than 2.05 Q in the antisymmetric mode. 
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This preliminary analysis establishes that the fundamental 

buckling mode is antisymmetrical, and that P ar  lies between Q and 2,05Q. 

(a) Solution by the moment distribution convergence criterion  

Figure (1.7) shows the distribution and carry-over factors 

of the members, at the primary load P = Q. A disturbing moment of 100 

units is applied at joint B, and the distribution process is carried out 

in the table alongside figure (1.7), only half the calculations being 

449 = /00 

MAC C4 

-32.5 

-13.0 

8.4  

3.4 
-2.1 

- 0.8 

50 

—17-5-  

-1• 3 

4.4 

4184,0c 

M9 =2.8 

0. 3 

0.2. 

-0-/ 

TOTALS 36.0 - 3'.0 3. o 

FINAL MOMENTS SO. 0 - 50 . $0.0 

figure 1,7 - distribution and carry-over factors  

shown as they are antisymmetrical. It is seen that after joint A is 

balanced, and therefore also joint C I  there is an out of balance moment 

of 28 units at joint B p  and since this is less than the original disturbing 

moment of 100 units, the process is converging, so that P er  has not been 

exceeded, as was to be expected from the preliminary analysis. The out of 

balance moment of 28 units, when redistributed, obviously gives identical 

calculations decreased by the ratio 28/100, so that the final bending 

moments are easily obtained as the sum of an infinite geometric progression. 

At this load the balancing of joints A and C need not have been completed, 

as it can be seen after the first cycle that the process is convergent. 
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The distribution process is repeated for a primary load of 2Q in 

the following table, and in this case one cyole is sufficient to indicate 

divergence )  so that Per  has been exceeded. 

Mit= 100 

A44111 MAC . /148A , 

1235 SO 

- 	 33 -1202 -824 

_ 3 91t  

II 33 R 62 

Kizowing values of P both above and below P er  we can halve the 

interval between converging and diverging cases, thereby successively 

reducing the range until the desired accuracy is obtained. It is found, 

after four more distribution processes, that the buckling load is within 

the range 

1.60Q < Per  .< 1.65Q 

and for all practical purposes we can take Per  = 1 63Q. 

As mentioned earlier, the buckling mode is not obtained and 
must be computed separately. The best way to do this is to work from 

the bending moments calculated at a'load somewhat less than Per. At 

P = 1.6Q the bending moments are 

MBA  = M.Bc  = 50 units 

M = -MAC  = 1145 units = -MCA = MOB  AB  

The joint rotations are given by the equations 

(EI/1)6A  = 	[2 12MAB -4(11BA 
(EI/1)09/3  = 	[-'NMAB 414BA) 

where 0( , p are the Berry functions for member AB. Dropping the factor 

(6E1/1), and using the tables in Niles and Newell, we obtain 

= .1040 ;GB  = 2470 

As a check the calculations for member AC give 

eA =6 = -1020 
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Hence the buckling mode is approximately expressed by the ratio 

6A :0B : C 
	i."0 .376 

It can be seen that for a frame having several joints, considerable 
extra computation is needed to obtain the buckling mode. In this 
particular problem convergence or divergence is readily detected, 

but in more difficult frames this is not always the case, and it 

is usually necessary to perform additional tests such as altering 

the order of balancing the joints. This is especially important 

if the fundamental mode is not known. For example, if equal and opposite 

disturbing moments are applied to joints A and C of the equilateral 

triangular frame )  the symmetric mode is excited, and if the distribution 

is kept symmetrical it will be found to be convergent at loads greater 

than 1.63Q. Altering the order of balancing in this case reveals 
divergence, indicating that the fundame461 buckling load has been 

exceeded. 

(b) Solution by Merchantls stiffness method  

In this method joint B is rotated a unit amount, and its 

stiffness calculated, that is the moment at that joint. This is most 

easily carried out in the form of a relaxation table. Since individual' 
member end moments are not of interest, it is convenient to use the so 

called modified distribution factors, that is if an external moment M 
is applied at a jointi then the moments required at neighbouring joints 

to prevent their rotation are found by multiplying M by the appropriate 

modified distribution factors. These are shown alongside the relaxation 

table below. The first line in the table gives the moment required at 

RELAXATION TABLE 
Opera lion .61A 41_ 

6.517 

&sit-1601Am 2.19 2./q 

4o/once -2417 -2.1 

alislk -0. 36 -1.26 -0-56 

bal. o- s6 o-s6 
clis-f- 0. /# 0.32 0./4 

ba I -O./4t -0-14 

oh's/. -o.oit -o.og -0.09 

44 1 
dia. 

0, oil,  
0.0/ 0-02 

0.04 

0.0/ 
einal 

jo/i7i mome0,15 0.0/ 3.69 0.0/ 
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joint B to produce a unit rotation there. This is distributed in line (2), 

and at this stage eB  = 1 ; eA  =ec  = O. The moments at A and C are 

then balanced by equal and opposite external moments there, which in turn 

must be distributed, resulting in unbalance of A and C. These are again 

balanced and distributed, and so on until the out of balance moments are 

sufficiently small. Equations (1.19) are used to calculate the end moments, 

and the primary load is arbitrarily taken as 045Q* To the accuracy shown, 

the joint stiffness at P = 04,5Q is 5.59. Similar calculations at other 

load values give the stiffness plot shown in figure (1.8). from the graph s  

the buckling load is obtained as 

P  cr = 1,63Q 1 
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figure 1 8 — Stiffness for equilateral triangular frame  

which agrees with the value calculated before. The buckling mode in this 

case is also simple to calculate if it is remembered that the balancing of 

a joint implies a rotation there given by 

6m/rs 

where 61A is the moment to be balanced, and 2:s is the sum of the member 
stiffnesses at that joint 4 In this operation the other joints are prevented 
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from rotation, and the moments to do this are calculated using the 

modified distribution factors. At P = 1.63Q the sum of the balancing 

moments applied to joint A (and joint C) amounts to —23 units, and 

the sum of the stiffness of the members at A is 6.13 so that 

OA  ec  = —0.388 

Thus the buckling mode is given by 

eA : e B 	= —0.388 : 1 : —0.388 

This is probably more accurate than that obtained by Hoff's method 
in which the rotations can be calCulated only at a load less than critical 0 . 

in most problems the stiffness graph need not be plotted 

completely, as the lowest buckling load can be estimated fairly accurately 

by extrapolation. For example, linear extrapolation from the two points 

P = 0 05Q and P = 1.0Q gives P crt1.93Q. from the form of the graph it 
readily follows that Per  must in fact be less than this, and the 

calculation of a negative stiffness at P = 1.8Q confirms this. Linear 

extrapolation between 1.0Q and 108Q gives a lower bound, that is 

P cr
>1.58Q. Once three points on the graph have been found a much 

better estimate of P cr can be found by quadratic extrapolation, that 
is by drawing a parabola through the points. For the three points 

005Q, 100Q and 1.8Q this gives Pcr ;z1 •61c6 which is seen to be only 

1% different from the exact value r  

(c) Solution by matrix methods  

Denoting the stiffness and carry over factors of the compression 

members by s and c respectively, and those for the tension member by 0 and 

cl, the end moments are determined from equations (1.19), and summation at 

the joints gives the stiffness matrix as 

li = 

(s + si) 

sc 

stC 4  

so 

2s 

so 

00 

se 

(s+St) 

( 1.36) 

where the stability functions can be found in Livesley and Chandlerls 

tables (reference 3) as functions of the p/Q ratio of the members. 

(i) Zeros of determinant  

The determinant of most easily evaluated by setting up the 

matrix numerically, and expanding according to the rule of Sarrus for 
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third—order determinants. Figure (1.9) shows the plot of the value of the 

determinant, D against the load PI  a wide range being covered as a matter 

of interest. It is seen that the determinant vanishes at P = 1.63Q and at 

P Q 

200 

figure 1.9. 	of determinant for equilateral triangular frame  

P = 2.87Q, which are the buckling loads for the antisymmetric and symmetric 

modes respectively. To calculate the buckling modes corresponding to these 

At P = 1.63Q these loads it is necessary to solve the stiffness equations. 

equations are 

6•130A  + 3.010B  + 1.780c  = 0 

3.019A  + 20308% + 3.019c  = 0 

1.789A + 3.019B  + 6.1319c  = 0 

If eB  is put equal to unity, the solution of the equations is 
611, =6ic  = .40.382 

which defines, the buckling mode corresponding to P 	1.63Q. 
At P = 2.87Q the equations are 

1.679A  + 6.279B + 1.68 = 0 

6.279A  7.899B  + 6.279c  = 0 

1.689A  + 6.279B  + 1.679c  = 0 
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In this case it is found that if e, is equated to unity, the solution 
is undefined. This is because the determinant of any two of the 

equations is in fact zero s  which in turn means that the original third 

order determinant can be factorized, one factor giving the antisymmetric 

mode, and the other factor giving the symmetric mode. The symmetric mode 

has 6 — 0 and the solution of the above equations then becomes e B 	 A 	00, 
which defines this mode completely. 

(ii) Latent roots of the obif,fnefie matrix 

The latent roots of the matrix if are calculated from the 

ebndition that the determinant of the matrix (I r. AT) vanishes. From 

equations (1.36) it follows that for the frame under consideration, this 

condition is 

(s. .+-51  -,A)• 	so 	slo 

	

Sc 
	

(2s —A) 	SC 

	

Si Ci 	 Sc  (s + 

=0 
(1.37) 

Generally only the smallest latent root is of interest, and 

this can be found by Gregoryts parallel shift method. However, in this 

case it is easy to dEitermine all the latent roots by expanding the above 

determinant and solving the resulting cubic equation. Figure (1.10) shows 

figure 1'010 — Latent rots of equilateral tr4341ar frame  
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the latent roots plotted against load. It is seen that one of the roots 

vanishes at P = 1.63Q and one at P = 2.87Q, the first two buckling loads. 

The latent vectors corresponding to these loads are respectively 

B
• , 
• = -0.385 : 1 : -0.385 

. ‘). 	 — 	1 	0 	—1 

which represent the two modes shown in figure (1.6). These results agree 

with those obtained previously. 

(iii) McMinnTs Method 

At P = 0 the stiffness matrix is 

= 7.09 2.47 1.86 -1 
2.47 4.93 2.47 

2.47 7.09j 

Dividing each column by its element on the leading diagonal, and replacing 
--- the leading diagonal elements by zero, the mataIx BD 4  is obtained as 

0.262 0.501 

0.2621 

0.348 	0 	0.348  

0 

ari 	0 	0.501 

and hence the allied matrix Q becomes 
NW 

= BD-1  -I' = - -4 	0.501 	0.262 

0.348 	-1 	0.348 

	

0.262 0.501 	-4 

A standard :2!...ocess for extracting the largest latent root is given in 

reference 7, With (1 )  1 )  1) as a stArting vector )  six iterations give 
the vector 

u6 = (-0.678 y 1 2 -0.678) 

and the estimate of the largest latent root at this stage is -1.458. 

Two more steps give 

117 = (-0.681 	1 	-0.681) 

u8  = (-0.680 5 1 2 -0.680) 

Thus, to slide rule accuracy, the process has converged, and since the 

largeA latent root is numerically less than two, the buckling load has 
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not been exceeded. Similar calculations at P = 1.5Q and 1.8Q are 

sufficient to give a reasonable plot, from which the buckling load 
is obtained as 

P  cr = 1.63Q 

and the latent vector corresponding to this load is 

y 4.975 ) 1) 

which is seen to bear no simple relation to the buckling mode. 

(d) Solution to RayleighIsliathod 

The specification of the functional form for the assumed 

deflected shape is quite arbitrary, and in this case, glynomials 
are convenient. The simplest polynomials which can be fitted are 

Y = 4 Y0 [(ç/1) — (c/1) 2] for members AB and BC 

and 
	

= 4 Y0 [(c/1) — 2(x/1) 23 for member AC, (04;(x/l)4;i) 

These shapes correspond to the an*tsymmetric mode, and satisfy the 

boundary conditions of zero deflection at the joints, and also of 
compatibility of slopes at the joints. The disposable parameter, yo  

is the central deflection of the compression members. 

(1.38) 

The total strain energy of the frame is evaluated according 

to equation (1 - 33), and the condition for its minimum i expressed by 

the equation 

aWayo  = 384 y0E4/13  — 8 y0P/1 = 0 

whence, either (i) yo  = 0; that is the trivial solution, 

or 	(ii) P = 48(EI/12); in which case yo  is undefined. The 

latter solution is thus an estimate of the buckling load for the anti—

symmetric mode, and it can be shown (see for example reference 10) 

that this estimate is an upper bound, so that P cr 4:48E1/12. This 

is about three times the correct value, and the error is attributed 

to the inadequacy of the assumed shapes. As can be seen from equations 

(1.38), these assumed curves imply a constant curvature, and hence a 

constant bending moment, along the members, and obviously the joints 

are not in equilibrium momiott—wise. A better shape would be 

• y = yo  sin(r1/1) 	for AB and BC 	
(1.39) 

y 	sin(21W1) for AC • 
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These curves satisfy equilibrium at the joints, but in this case all 

member end moments are zero )which is also unrealistic. The estimate 

of the buckling load, obtained from minimum strain energy, is 39.5 (El/i2 ), 

which is little better than the previous estimate. 

The simplest polynomials which satisfy equilibrium at the joints, as well 

as compatibility of slopes and deflections, are 

y = (16y0/9)[(x/1) + 3(x/1) 2  — 7(x/1) 3  + 3(x/1) 4] for AB and BC 

y = (16y0/9)] (x/1) — 3(x/1)? + 2(x/1) 3] 	for AC ) (0.4(x/1)k) 

Minimum strain energy gives an upper bound for the buckling load, 

P <16,6 El/i2  = 1,68Q cr 
which is seen to be only about 3% high. Better estimates can be found by 

satisfying boundary conditions in higher derivatives, but the gain in 

accuracy is offset by the increase in the amount of computation. 

From the example just studied it is evident that all methods 

for the determination of buckling loads and modes are basically similar, 

the only differences being in the approach to the numerical computation. 

Hoffts method, using moment distribution, is in fact the relaxation solution 

of the flexibility matrix, that is the set of simultaneous equations in the 

member end moments, At the buckling load the determinant of coefficients 

vanishes, so that the solution is undefined for even the smallest disturbance, 

which means that the process must diverge at the buckling load. 

Merchantts method overcomes this by putting an arbitrary joint 

rotation equal to unity, and by keeping this constant, the successive 

distribution of out of balance joint moments yields a finite solution, and 

the moment at the disturbed joint becomes zero at the buckling load. The 

distribution process is readily seen to be equivalent to the relaxation 

solution for the remaining joint rotations in equations (1.23). 

The latiipt root method, as developed by Gregory, is a logical 

extension of Merchantt6;method. All the joints are rotated simultaneously, 

and the latent root .solution is essentially a linear combination of elementary 

(1.40) 
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Merchant type solutions, the "unit" rotation being adjusted to make the 

stiffness at all joints the same. 

McMinnIs method defies a physical explanation although 

undoubtedly this exists. 

Energy methods are generally approximate solutions, and the 

physical interpretation as given in most texts, leaves much to be 

desired. It is shown in the following chapter that energy methods are 

merely alternative devices for setting up equations of statics (strain 

energy) or geometry (complementary energy) ) and these equations are 
exact or approximate, depending on the nature of the simplifications 

which are necessarily made. 

As well as the methods mentioned above, various authors 

have proposed alternative solutions, notably Bolton, Waters, Allen 
(references 11, 12, 13 respectively.) Some authors suggest replacing ,  

the frame, or parts thereof, by groups of members, with various simplifying 

assumptions for the eng conditions, such as pinned ends or fixed ends. 

This is of course the simplification of an already simplified 

mathematical model of the real frame which can be a dangerous practice 
for obvious reasons. 

Irrespective of which method of analysis is finally decided 

upon, difficulties of one kind or another are bound to arise. geherally 
speaking it is a question of convenienCe of numerical solution and the 

ability to apply engineering judgment and intuition, keeping in mind 

firstly that engineers require quick reliable answers rather than 

accurate results, and secondly that the analysis of this mathematical 

model is but the first step in the assessment of the performance of a 

frame. 

1.9 THE PRACTICAL FRAME; EXPERIMENTAL METHODS  

The concept of buckling of the simplified mathematical model, 

as set out in the previous sections, is defined by means of an initial 

disturbance. In actual frames these disturbances need not necessarily 

be introduced, as the initial,imperfections such as initial curvatures, 

eccentricity of loads and many other factors are sufficient to excite 

lateral deformations as soon as load is applied. In fact the behaviour 

is. very similar to that of a pin ended column with initial curvature. 

Assuming that the initial crookedness of the isolated pin—ended colimn 

can be expressed as a linear combination of the buckling modes, that 

is'as the Fourier series 
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(1.11 a) 

•••• 30 - 
DO 

y  =Ea sin(npx/1) s  o nzi n 

then the differential equation of equilibrium (1.6) is modified to 

EI(d2y/dx2  d2yo/dx2) + Py = 0 

The solution of equation (1.42) gives the deflected shape under load as 

.0 a sin(nTx/1) n . 	.  
f PA21:1 

(1 .41) 

1.42) 

(1.43) 

Thus each component of the initial crookedness pattern is magnified by the 

ratio 1/(14/n2Q). As P approaches Q the first term dominates, and the 
deflected shape is closely approximated by the first term, that is 

y P.* al  sin (lbc/1. )/ (1 —PA) 

The central deflection is given by 

S e  = a1/(143,/Q) 

where al  is the initial central crookedness. This expression is shown 

graphically in figure (1.11a). The deflection is a hyperbolic function 
of the loaq P )  running away to infinity as P approaches Q.  Southwen 

. figure (1.11) 7 Southwell 'not  

(reference 14) first recognised this as a valuable tool for the experimental 

determination of the buckling loads of columns. In a test, the measured 
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deflection is (6 c  . al ), which shifts the hyperbola to pass through 

the origin. The plot of (6c  - 8.1 )/P against (6c  - 	is then a 

straight line of slope 1/Q and intercept a1/44 as shown in figure 
(1.11b). This graph is colw , nly known as the Southwell plot on 
deflection. 

The Southwell plot has been widely used for the experimental 
detIrmination of the elastic buckling loads of frames, and it works 

equally well for rotations, curvatures or indeed any deformation parameter 
which can be expressed in the form of equation (1.44)0  Gregory 

(reference 15) shows that it is convenient to use measured strains, 

and justifies the general use of the Southwell plot on the basis of 

numerous tests, some of which are verified analytically. A rigorous 

mathematical proof of the Southwell plot on plane or space frames has 
since been given by Ariaratnam (reference 16). In general, if y o  

represents the initial crookedness of the frame, then this can be 

expressed as a linear combination of the n buckling modes yl  y y2  y 
0 0 2  yn. That is 

y E a. y. o 	1 1 

If. A is used to denote a generalized load parameter, and A l  , A 2  , 
gas lA

n 
are the critical values of A , then the frame deflections 

y, under load A are given by 

Y = E aj yi/(1 - A/Ai) 

(145) 

(1,46) 

Thatiseachcmponentismgnifiedbytheratio1/(1/VX.)in the 

same way as the pin-ended column. Also, as A approaches the first 
buckling load )  A 1  say, the first term dominates, and a linear Sauthwell 
plot is obtained. Expression (1.46) can be differentiated, whence it 

is seen that the same expression also applies to rotations and curvatures. 

Gregory easo suggests the possibility of using the Southwell 
plot equation as a design formula, by equating the maximum strain to the 

yield strain, giving an equation similar to the Perry formula for the 

pin-ended column. This method is a definite improvement onthe design 

of frames by individual members using the pin-ended column formulas with 

guessed effective lengths. However, as Gregory points out, "a great deal 

of experimental work is required to determine, systematize and tabulate 

the variation ot1P(a crookedness parameter) and Acr  (the critical action 

causing elastic buckling) for many types of structures". 
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1.10 THE PRACTICAL FRAME; PREDICTED BEHAVIOUR 

The behaviour of a practical frame, and its load carrying capacity 

depend to a great extent on the magnitude of the initial imperfections, and 

to a lesser extent on the functional form of these imperfections. In most 

instances the load carrying capacity is considerably less than the calculated 

lowest buckling load )  so that the latter loses its importance somewhat. The 

designer ultimately wants to know how much load his frame can safely carry )  

and thus a satisfactory prediction of frame behaviour becomes increasingly 

important. 

In this section an attempt is made to develop a simplified 
mathematical model to predict the behaviour of an initially crooked frame 

under load, The treatment given is that of the author, Attention is focussed 

primarily on the joint rotations; once these are known, the deflected shape 

of every member can be plotted, and curvatures, strains, bending moments and 

stresses are directly inferred. The functional form of the initial crookedness 
pattern is chosen to resemble the fundamental buckling mode, and sinusoidal 

curves are used for simplicity. Single member equations are derived in the 

following paragraph )  and the equations for the whole frame are obtained by 

summation. 

Consider an initially crooked member deformed by an axial force P 

and end moments MAB  ) MBA as shown in figure (1.12). Assume that the initial 

crookedness can be expressed as a linear combination of the buckling modes )  

which in this case )  is the infinite Fourier series 

.0 
Yo  =Ean ein(nim/1) n.1 

(1.47) 
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The deflected shape under load P is given by thls function y = f(X) )  

yet to be determined. The bending moment at the point (x )  y) on the 

centreline of the deflected column )  M is given by 

m = -mAB [1-(x/1).]+ mu  (Y;/1)  Py  (1.48) 

and for linearly elastic material behaviour we have 

M = EI(d2y/dx2  d237./d 2 ) 

The solution of the resulting differential equation is 

y = Acos()1TX/1) + Bsin(f/51Wx/1) 	(MAB/P)(1—x/1) 

+ MB  (ç/1) ii ansin(nrx/l1)/(1—P/n2Q) 

where the constants A and B are determined from the boundary conditions 

that the deflection at the ends is zero )  and the slopes are ev eB 
respectively at A and B. This gives, after some manipulation )  

(1 

(1.50) 

A = 1113/P 

	

B = 	201 —(1%A/P)cosec 2o< ; 0(=  ; p= P/Q 

MAB 	(EI/1)(891 + sceL) 

MBA = (EI/I)(soql+ s obl) 

where 
ao 

	

: 	ni1an/i(1-13/n2Q) ; 9313  
net 

1-1/n2Q) 	(1052) 

It is seen that the expressions for the end moments are of the same form 

as for the initially straight column (see equations 1.19) )  the rotations 

being modified to indlude the effect of the initial curvature. At first 

sight it appears that the deflections are infinite at P = Q )  but this is 

not so; the terms in a l)  that is n = 1 )  are 

(s — sc)/(1—g/Q) 
	

( 1 .53 ) 

and the limit of this expression as P-0-Q can be shown to be Ir2/4., The 

summations in expressions (1.52) represent the initial end slopes 

corresponding to the various Fourier terms in (1.47), but magnified 

by the ratios n/(1—P/n2Q). 

In the analysis of a whole frame it is convenient to choose 

the Fourier coefficients in such a way that there is no initial lack 

of fit of angle between members at a joint )  and that the initial joint 
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rotations are in the same ratio as at buckling. Two coefficients per member 

suffice for this, and the magnitude of the imperfections can be chosen as 

the average measured value for the frame, or as an arbitrary fraction of the 

member lengths. Alternatively, the initial imperfections need not be in 
exactly the same ratio as at buckling, but can be chosen to resemble the 

buckling mode. Once the initial crookedness pattern has been formulated the 

member end foments can be found from equations (1.51), and summation at the 

joints gives the joint moments, In general there are no applied joint 

moments, and the following matrix equation is obtained 

. 	= (1.54) 

where IZ is the symmetric stiffness matrix which is identical to that for a 

frame with no crookedness, g is the vector deiining the joint rotations under 

load, and g o  is the vector defining the initial joint rotations, each 

component of which is magnified by the ratios appearing in equations (1.52). 

Equation (1.54) is solved for the joint rotations at various load values. 

As an example the behaviour of the equilateral triangular frame 

shown in figure (1.6) is predicted. The crookedness pattern chosen is that 

shown in figure (1.13) and the coefficients a l  3 a2  a3  are to be determined 

figure 1.13 — Crooked triangle 
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so.  that the initial joint rotations are in the same ratio as at buckling, 

that is 

(I771)(al + 2a2) = —0.3859 

(I7/1)(2a3 	) = .4438596  

(i771)(-9 + 2a2)= 1.00 eo  

Solution of these equations gives the Fourier coefficients as 

fraill = —00693t 

211'a2/1 = W0800  

2163/1 = —0 38590  

where G is the initial rotation at joint B. 

(1.56) 

(1 .57 ) 

S. 
When the frame carriel a load W the member end moments are 

given by 

MAB  = k[sellA  + scOBJ ; MBA  = k[sc9A  + seBI 

AC = k[sie ll + stcle i '  ]. MCA  = k[stcte ll+s9 11 A 	C 	A C 

MBc =k[tel 	sc O il() ; MOB = k[ sc 0;3+ Beg] 

where 

eAl = 9A  (iravi)/(i-p) (21ra2/1)/(1-)/4) 
= 	(21Ta3/1)/(1 +p/8) 

= e, (irao.)/(1-e) - (2/ra2/1)/(1-p/4) 
O fc  = Oc  (2//a3/1)/(1 +p) 

0 1 = 00  — 	(21ra2/1)/(114) 

/3= wi2/13- itEi 

The values of al ' a2 a3 are4.ven by equations (1.57). The end moments 

are summed at joints to obtain the joint moments, which are equated to 

zero and the resulting linear simultaneous equations are solved for the 

joint rotations; these results are plotted non—dimensionally in figure 

(1.14a) against the load parameter/0 . Superimposed on these graphs are 

the results obtained with a crookedness pattern of a half—sine wave in the 

compression members and a full sine wave in the tension member , that is 

(1 .58) 

(1.59) 

= al  sin(i)/l) 

y2  = a2  sin(271X71) 3 
	 (1.60) 
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figure 1.14 - Calculated behaviour  

with al = 2a2  = (1&)60  (referred to as pattern 2). As can be seen, the 

rotations in this case run away more rapidly than with the initial 
crookedness pattern 1; this is because the average crookedness is 

greater. The Southwell plots for the two sets of results are shown in 

figure (1.14b)0 These are almost linear, but show a slight tendency to 
a higher buckling mode at low loads indicating that the crookedness 
patterns contain a small portion of second and higher mode components. 

The two plots do not differ significantly from parallel, and from the 

inverse slopes the buckling load is obtained as 

.
= 1.64 

which is in excellent agreement with the result obtained in section 

(1.8). The intercepts give the first mode components of the initial 

rotations as 

(61)0 = 0 097e0 

(6/3 ) 0  = 0.300  

(6 )= 1 i3 

for pattern 1, and 	for pattern 2 
(C; ) = o.46e Bo 	o 
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Comparing these values with the initial rotations, it follows that 

the first pattern was predominantly first mode, whereas for the 

second pattern there is little agreement. It must be remembered 

that these results are not very reliable because the intercepts 

are relatively small. 

Figure (1.15) shows the measured behaviour of the rotations 

in a test on a model made from *in. x 1/in. mild steel strips 10.1 in. 

long. The central crookedness in the compression members was estimated 

to be 1/64 in. The flexural rigi4ity was determined by measurement of 
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figure 1.15 — re red hAhpvfnui,  

deflections of a simply supported beam with central load, giving 

El = 2220 lbs.in2 ; the calculated buckling load is 605 lbs. Rotations 

were measured by shining a beam of light on to mirrors glued to the 

joints and observing the movement of the image on a scale. The 

Southwell plots on the measured rotations are shown in figure (1.15b), 

and are seen to be nearly linear indicating a buckling mode of 575 

lbs. which is about 5% lower than the calculated value. From the 

intercepts of the Southwell plots the first mode components of the 

initial rotations are 
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(i 1V 0  = 0.29 degrees 

(913)z 0.17 degrees 

which are comparable with the measured central crookedness of 1/64 in. and 

a half sine Wave pattern giving 

(c o  = .(6)13 ) 0  = 0.28 degrees. 

With this value for e p the measured behaviour is compared non—dimensionally 

with the calculated behaviour in figure (1.14), which indicates reasonable 

agreement. It must be borne in mind that the above comparisons are rather 

superficial, as there is no rigorous basis for the choice of ec, to plot 
rotations in terms of 90 ; that is, any of the curves could be arbitrarily 

scaled horizontally. However the Southwell plots and the load carrying 

capacity are governed primarily by the upper limits of the curves, and 

these are asymptotic to the horizontal, so that any scaling has a 

relatively small effect on the load to produce a given deformation. 

It is also interesting to plot the variation of the ratio 

eB/611, against load. This is shown gov in figure (1.1 "or both 
crookedness patterns, and superimposed on these is the measured plot. 

As is to be expected, the predicted ratio O DA stays nearly constant 

at 0.385, the initial rotations being in the same ratio as at buckling. 

For crookedness pattern (2), consisting of a half sine wave in the 

compression members and a full sine wave in the tension member, the 

ratio varies almost linearly with load, but this linearity seems to 

be of little practical value, and it is most likely a coincidence. 

The measured variation is rather erratic at first, mainly because 

small errors in reading cause relatively large changes in the ratio. 

However, at loads approaching buckling, the ratio of the rotations tends 

to the value of 0.385 given by the calculated buckling mode. 

1,11, CONOIUDING REMARKS 

From the example studied in the previous section it is seen 

that the method of calculating the deformations of a loaded initially 

crooked frame can also be used to estimate the elastic buckling loads 

of frames, by means of a Sauthwell plot on calculated rotations. This 

technique was first introduced by Lundquiat (reference 17), who used 

moment distribution to calculate the rotation of some joint. However, 

the behaviour of a real frame is such that the buckling load is never 

reached in practice, so that the buckling load of a frame is not as 

01( 	see p. 42 for figure (1.16)., 
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important in this context as say, the load to cause first yield. These 

loads may differ widely, depending on the overall slenderness of the 

frame. Most frames have low slenderness ratios )  Vt in the vicinity 

of 100 )  and the load to cause first yield plays a dominant role. The 

yield load depends on the magnitude of the deformations )  which in turn 
depend mainly on the magnitude of the initial imperfections. For this 

reason it is a pity that in the literature so much attention has been 

paid to the evaluation of buckling loads, and that buckling modes are 

usually treated as secondary. It is the author's opinion that the 

buckling mode is of primary interest, since once this is known an analysis 

such as in the previous section is readily performed, and from this 

the engineer can extract the necessary information for design. 

However, as mentioned in section (1.5), a detailed analysis 

of the stability of a frame and of its behaviour under working loads for 

design purposes may not be warranted from the point of view of cost. 

If the frame is of minor importance or of the "one—off type", it would 

certainly be designed on the individual member basis, but if the frame 
is major )  or if there is to be a large number of them, a more detailed 

investigation should be carried out, and this will probably reward 

itself. Such a design can be based on the techniques described in 

the previous section, and the author suggests the following steps: 

(a) Design the frame on the basis of buckling of individual 

members, using code recommended effective length ratios crookedness 

parameter, and a permissible stress formula such as Perry—Robertson. 

(b) Estimate, by one of the methods outlined in section (1.7), 

the fundamental buckling load and mode of the preliminary design. 

(c) Impose an unfavourable crookedness pattern, for example 

a pattern resembling the fundamental buckling mode, and determine the 

behaviour of the frame up to say, first yield. This appears to be the 

most difficult step at this stage as there is insufficient data on which 

to base the selection of an overall crookedness parameter to describe the 

imperfections of the frame. However, resort can always be made to single 

column-data. 

(d) Calculate the factor of safety against yield. A refinement of 
this step is to calculate the factor of safety against total collapse, 

but this involves an analysis of the behaviour of the frame in the elasto-

plastic region. This region is not easy to handle, and since the reserve 

of strength above first yield'is usually small, the additional computation 
is not considered worthwhile, except for stiff. frames. 
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(e) 	Modify the preliminary design, by comparing the calculated factor 

of safety and the design factor of safety. Again, the latter may have to be 

chosen from single column data and recommendations, 

Steps (b), to (c) are then rOpeated until satisfactory agreement is obtained. 

Alternatively, the preliminary design can be modified after step (b). From 

the buckling load and mode of the preliminary design, the effective lengths 

of the members are easily calculated, and these can then be used to obtain 

the modified tembr sizes. 

A design along these lines is by no means to be classified as a 

better design, but it is felt that it is on a more realistic basis; that 

is, more attention is paid to the behaviour of the frame as a whole rather 

than the behaviour of individual members. In this context the technique 

described is merely the next step in frame design, 

Finally )  it must be stressed again that the mathematical models 

presented in this chapter describe only approximately the frame behaviour. 

Drastic simplifications were made to formulate thempand among the effects 

not taken into account are non-linearity, large deformations, secondary 

bending moments, initial stresses and yielding. All these affect the 

behaviour of the frame, and the mathematical model needs to be considerably 

refined to include these effects. At present such A complete study would 

be too difficult )  and since the additional effects are generally small, a 

knowledge of the buckling load and mode, together with a measure of the 

overall crookedness of a frame provides a reasonable picture of the 

fn-sne behaviouti. 

ADDITIONAL NOTES FOR CHAPTER ONE  

Section 1.4:  The numerical figures in the Perry formula are due to Professor 

Andrew Robertson who, as a result of exhaustive tests, showed that the 

Perry formula works well for pin-ended columns for an average value of 

n of 0.001 1/r, and he suggested the lower limit of 0.003 hr for design 

purposes. These figures, together with a factor of safety of 2.36, were 

subsequently recommended by the steel structures research committee (reference 

18). 

PectiOns 1.6, 1.7:  Ths history of the development of stability analysis for 

frames has been well sot out by Bleich (reference 19))  and a largo part of 

these'-'tJections is based on his book* 
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Lundquist appears to have been the first person to use moment 

distribution in stability analyses by what is now called "Lundquist's 

series criterion",„ In essence this method is the same as the moment 

distribution convergence criterion. Hoff proved, by a consideration 
of the total potential energy of the system, that convergence of the 

moment distribution is a necessary and sufficient condition for stability. 

REFERENCES 

1, 	N.J. Hoff, "The Analysis of Structures", Wiley (1956); p 294f 
2. 	A.S. Niles and J.S. Newell, "Airplane Structures" vol., 2, 

Wiley (1948 ); .  pp 72, 107 
30  11 0 K 0  Livesley and DO. Chandler )  "Stability Functions for 

Structural Frameworks", Manchester University Press (1956) 

M.S. Gregory, "The Buckling of Structures" Ph.D. Thesis, 

University of Tasmania (1960); p 32 

5. W. Merchant, "The Failure Load of Rigid Jointed Frameworks as 

influenced by Stability", The Structural Engineer (July 1954). 

6. M.S. Gregory, "Elastic Instability", Spon (1966). 

70 	S.J. McMinn, "Matrices for Structural Analysis", Spon (1962). 

8. S.J. McMinn, "The Determination of Critical Loads Of Plane 

Frames", The Structural Engineer (July 1961). 

9. J.W.S. Rayleigh, "The Theory of Sound" vol I, Dover (1945); 

see, for example p. 112. 

G. Temple and W.G. Bickley, "Rayleigh's Principle" O.U.P. 

(1933); p 95f 
11. 	A. Bolton, "A Quick Approximation to the Critical Load of Rigidly 

Jointed Frames", The Structural Engineer (March 1955). 

126 	H. Waters, "Direct Approximation to the Critical Loads of Rigidly 

Jointed Plane Structures", Civil Engineering and Public Works 

Review (February 1964). 

13. H.N. Allen, "The Estimation of the Critical Loads of Certain 

Frameworks", The Structural Engineer (April 1957). 

14. R.V. Southwell, "On the Analysis of Experimental Observations on 

Problems of Elastic Stability", Proc. Roy. Soc. A135, 601 (1932) 

15. M.S. Gregory, "The Use of Measured Strains to obtain Critical Loads", 

Civil Engineering and Public Works Review (Jan. 1960). 

16. S.T. Ariaratnam, "The Southwell Method for Predicting Critical 

Loads of Elastic Structures", Quarterly Jnl. of Mech. and App. 

Maths. vol XIV (1961); p 137 

17. E.E. Lundquist, "Stability of Structural Members under Axial Load", 

N.A.C.A. Tech. note No. 617 (Oct. 1937). 



'Q 
\ 0 

_ 

0—megsureol poinis 1 1.26' 

4/9A 0.6 1. 0 0. 4 

42 

18. 	A.J.S. Pippard and J.F. Baker, "The Analysis of Engineering 

Structures", Edward Arnold & Co. (1936). 

19* 	F. Bleich, "Buckling Strength of Metal Structures", McGraw—Hill Book 

Company Inc. (1952); P 193f. 

Additional references not specifically quoted: 

(a) E.E. Lundquist, "Principles of Moment Distribution applied to 

Stability of Structural Members", Proc. 5th International Congress 

of Applied Mechanics (1938). "A Method for Estimating the 

Critical Buckling Load for Structural Members", N.A.C.A. Tech. 

note No 717 (July 1939) 

(b) N.J. Hoff, "Stable and Unstable Equilibrium of Plane Frameworks", 
Journal of the Aeronautical Sciences, vol 8 (1940- 1941) 

"Stress Analysis of Aircraft Frameworks", Jnl. Roy. Aer. Soc. 

vol. 45 (1941). "The Proportioning of Aircraft Frameworks", 

Journal of the Aeronautical Sciences, vol 8 (1940-1941). 

(c) L.H. Donnell, "The Problem u.rElastic Stability", Part I of a 

symposium "Survey of problems of thin—walled structures" 

of the Aeronautics Division of the A.S.C.E., (June 1932). 

(d) M.S. Gregory, "Framed Structures: the Instability Problem", 

Proc I.C.E. (London) Vol 35 pp 451-473; Nov. 1966. 

figure 1.16 — Variation of ej I9A  



— 43 — 

CHAPTER TWO  

ENERGY METHODS 

	

2.1 	INTRODUCTION 

Energy methods have provided a useful tool for solving certain 

problems in structural analysis and related fields. Their use dates back 

to the days of Castigliano (1873), who developed what is now known as the 

principle of least work, for the analysis of statically indeterminate 

frameworks. Since then the use of energy principles has covered a wider 

field, and has been considerably consolidated. 

This chapter begins with a close examination of the fundamental 

ideas behind energy methods generally )  in order to obtain a better appreciation 
of their use and limitations. These elementary principles are demonstrated 

with the aid of a simple inelastic string model loaded with deadweights, and 

it is shown that the two distinct energy approaches, strain energy and 

complementary energy, are merely alternative techniques for deriving equations 

of statics and equations of geometrical compatibility respectively. Once 

this is established, more difficult problems can be attacked, continually 

keeping in mind the limitation of the equivalence just meniioned. 

Energy methods give no information not obtainable directly, 

either from statical or compatibility considerations, but their power lies 
in the ease with which approximate solutions can be found. In this chapter 

approximate solutions are derived for some standard beam problems, leading 

up to an iterative solution of large frames, such as, for example,multi—b4y, 
multi—storey building frames. 

	

2.2 	THE TWO TYPES OF ENERGY 

Consider a force P which moves through a distance 6 in the 
direction of the force; the variation of P with 6 is shown graphically 
in figure (2.1). The strain energy, U is defined as the area under the 

curve, that is 	6 

U = J- P a 
0 

(2.1) 

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

                      

figure 2.1  
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whereas the complementary energy is defined as the area to the left of the 

curve, that is 	
C == .16dP 	 (2.2) 

These areas are shown shaded in the figure. The relation between the force 

P and its displacement 6 can be quite arbitrary, and the energies exist 80 

long as the intogratiohe can be performed. 

In the reverse process we define the existence of the two energy 

functions U and C )  and by differentiation we see that 

dIT/d6 = P 	 (2.3) 

dC/dP = 6 	 (2,4) 

That is differentiation of strain (complementary) energy with respect to 

the displacement (force) gives the corresponding force (displacement). In 

other words there exists a duality between the two processes. The same 

principle applies to any "generalized force" or "action" and its corresponding 
Hgeneralized displacement" )  for example moment-rotation, stress-strain. 

From figure (2.1) it is readily seen that for a linear relation 

between the force P and its displacement 5 , the strain and complementary 
energies are equal, and can be interchanged at will. This has caused some 

donfuelOft ih the past. 

Ix the case of a system of generaliz- ed forces, the separate 

energies of the individual forces are summed over the whole system, and 

differentiation of the total strain energy with respect to some generalized 

displacement gives the corresponding generalized force,or vice-versa when 

complementary energy is used. However, in these cases it becomes necessary 

to define the dependence or otherwise of the forces and displacements involved 

in the energy integral )  as will be demonstrated in the following section. 

2.3 	ENERGY ANALYSIS OF A STRING MODEL 

In &aft to eMathiha the baeio ptiftaiplee uhdetlyitig the use of 
energy methods in structural analysis, consider the system shown in figure 

(2,2). This particular problem is treated by Southwell (reference 1), who 

bases his analysis on small deflection theory, but it is shown here that 

this restriction is not necessary. Essentially the system consists of a 

vertical string ABC supporting a weight 140 This string is displaced by a 

horizontal string BD, passed over a pulley to support another weight w. 

As the displacements vary, the latter string departs from its horizontal 

position, but in the experimental work carried out on this model the string 

was always kept horizontal by means of a Slip knot at B. 
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slip knob 

figure 2.2 — inelastic string model  

For simplicity in the analysis of this system, the string 

is assumed to be inelastic; under these conditions the displaced 

shape is wholly defined in terms of a single parameter, either x, the 

vertical displacement of weight w, or X, the vertical displacement of 

the weight W I  or 9 the inclination of the initially vertical string 

AB. 

(a) Analysis by statics 

Let T be the tension in part AB' of the displaced string. 

Then for equilibrium of the slip knot, we have 

H = 0 = — T sine + w 

EV = 0 = T cose+ W 

The solution of these equations for the angle 9 is obviously 
tame = w/W 

(2.5) 

(2.6) 

(2.7) 

The displacement of the weight w, x is given by 

x = 1 tane=(l/W)w 	(2.8) 

Alternatively, the unknown tension T can be eliminated directly by 

examining the equilibrium of the displaced string AB'C'. For the 

resultant moment about A, of all the forces acting on this string, to 

be zero, we must have 

M = 0 = Wx + wl 	 (2,9) 
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which gives -bhp same result as before. If the weight W I  supportedAby the 

vertical string ABC, is kept constant, then it follows that the displacement P 
of the weight w, x is linearly related to w, and it=is seen frOm;the above 

A. 
analysis that this linearity is independent of the magnitude r of the displacement, 

provided that the string Nis kept citizontal.‘„Bouthwellf_analyses the system 

by treating the vertical string as being displaced by horizontal Arcob:alied 
at fixed points along the string, in which case the vertical distance varies, 
so that the linear relation between x 	w holds only..forl,smallIdisplacements. 

--1--1 
, 

	

x 	'9: 	 _ 
For the purpose of this analksis, consider firstly-the-potential 

A 
energy of the weights W and w)  and -denii.6the total Strain energy.as 

U = "WdX + fw dx 

.There is no need in this problem to make a distinction between internal and 
external strain energy, rso,long r ras-theHdisplacementsand x are measured in 
the same direction as their corresponding forces W and w. For small variations 

6X, 6x of ,the displacements4ro,m44eireqtAiliWR viplee4jrthe ivziiation in 

total strain energy is 

	

u,..7. w ( 
	

(2.11) 

with the restriction that the variations are,to ,be , carried out -subject to.the ,  

requirements of gedmetrical á tibJi of"the-14Ariations 8f -displacements 0  
From figure (2.3) it is seen that these requirements are . 	 Ft 

 

(b) Strain energy. analysis 

(2.10) 

figure 2.3  
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=1 sec29 (0) 	; &X = — 1 secetandP(0) 	(2.12) 

the minus sign arises because 6X is opposite in direction to that of 
its corresponding force W. Alternatively we may write 

6x = 4.( & x)sin9 	(2.13) 

By equation (2.11), the variation in strain energy in terms of x is 

6u = — w( x) sin 0 + w( 6 x) 	 (2.14) 

the limit as 6x approvhes zero, this can be written 

au/ax = w sine+ w 	(2.15) 

[A complete derivative could be used in this case, because the strain 

energy can be expressed in terms of one parameter x, the single degree of 

freedom of the system]. For the strain energy to be a minimum, its derivative 

vanishes, that is 

Wsint9 + w = 0 	(2.16) 

Following the argument in section (2.2) of this chapter, this equation should 

represent the equation of equilibrium in the direction of differentiation, 

in this case in the horizontal direction. Comparison with the exact equation 

(2.5), shows that the equivalence is valid only if T = W, which is approximately 
true for small displacements. Similar expressions can be derived by differentiatio 

along different paths; for example, the variation in strain energy in terms of 

go is obtained from equations (2.11) and (2.12) as 

	

U = — WI sec 0 tan 0 ( Se )+ wl sec2e (SO) 	(2.17):,  

whence we obtain, in the limit 

aWae = 	secetane + wl see2e . _ 	(2.18) , 

When equated to zero, this leads to an approximate equation of eqtilibrium 

comparable to the moment equation (2.9) of the exact analysis. In this case 

the degree of approximation is found to be sin0tane, which is valid for 
small displacements. It is also interesting to derive the results from the 

'conservation of energy' equation. In this example the work done by the 

variable weight w as it moves down a distance x isibax, and the energy 

required to raise the constant weight W through a height X is WX, and the 

displacements are given by 

x = 1 tan e ; 	X = 1(sece-1) 	(2.19) 
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Conservation of energy requires 

iwl tame = Wl(sece— 1) 
	

(2.20) 

This equation, when solved for the angle 0 reduces to 

tan (9/2) = -(w/W) or tame= (w/W)[1 --(w/W) 2  1 	(2.21) 

Again this is a correct result when the displacements are small, but for large 

displacements this expression differs from those obtained from minimum strain 

energy equations. 

In all the above arguments the discrepancies are obvious; no account 
has been taken of the work done in sliding the knot to keep the string BD 

horizontal. In order to improve the strain energy analysis, this work should 

be included, and we are thus led to consider the following Dam energy expression 

U = iWdX 	iwdx + Tdt 	(2.22) 

where t is the displacement corresponding to the tension T in the inclined 

string. With this definition it is convenient to visualise the system as 
three forces concurrent at the point B, as shown in figure (2.4a). The equations 

of equilibrium relating these three forces can be derived from - minimum strain 

(a) 	 (b) 

figupe  2.4 

energy equations, provided that variations in the strain energy are carried 

out subject to the restricting equations of geotetrical compatibility. Since 

B is a point in a plane it has two degrees of freedom of movement, so that a 

small displacement of B from its equilibrium position can be expressed in 

terms of two independent parameters, such as EU and Sv shown in figure (204b). 
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The variations in the displacements x l  X and t of the respective 

forces w, W and T are obtained from this figure as 

= - 6 v 	; et = -( 6 u) sin 0 + ( v)cos 0 	(2.23) 

The variation in strain energy is 

bu w( x) w( Ex) +T( 6 t) 	 (2 24) 

Substitution of the restricting equations (2.23) gives 

Su = 

 

-W(v) + w(S11) 	T sine (6u) + T cog 9(v) 

FiOX this expression the equation of equilibrium in any direction can be 

obtained by suitably choosing Cu and gv, and passing to the limit to 

get derivatives of U, which are then equated to zero. For example, if 

Sv is put zero we obtain 

au/au = w — T sine= 0 	 (2.26) 

which is the correct equation of equilibrium in the horizontal direction. 
Similarly, to derive the equation of equilibrium in the direction of the 

force T, we impose a displacement in that direction by putting 

611. = -( 6t)sine ; 	6v.  = (St) cos9 	(2.27) 

This gives 
awat = - w sine - W cose + sin2 e + T cos2  = 0 

which is seen to be the correct equation of equilibrium in the direction 

of the inclined string. 

This method of strain energy of forces acting at a point always 
yields correct equations of equilibrium. However, the problem as posed 
required that the string BD remained horizontal. One way to visualize 
this in the above mathematical model is by fj_rst allowing B to rise, and 
then returning it to its original horizontal level by moving the point 
of support A in the direction of the inclined string AB. It is seen that 
the system has thus been made conservative'. Stilwell (reference 2) 
proposes an alternative conservative system by introducing a small pulley 
at the knot, and applying a moment to the pulley to keep the string 
horizontal; the work done on the pulley as it rotates is included in 
the strain endgy expression. 

(c) Complementary energy analysis  

With reference to figure (2.4), the complementary energy is 

defined as 
C = f21 dW + 17  x dw + J7  t dT 	(2.28) 

(2025) 
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Variations in complementary energy are to be carried out subject to the 

restricting equations of equilibrium. In this case there are three forces 

w )  W and T, of which w and W are independent; that is, a change in either 
does not affect the other. The third force T is not independent, but is 

related to w and W by the equations of equilibrium, and the complementary 

energy is to be differentiated subject to these restrictions. Taking )  for 

example, the derivative with respect to the variable weight w we find 

aCVaw = x + X(aN/aw) +t(aT/aw) 	(2.29) 

Since w and W are independent, N/aw = 0, and from equation (2.5) we find 

9T/aw = cosec 	 (2.30) 

whence we obtain 

aCiaw = x + t cosece= 0 	'(2.31) 

or 	t = - x sine 	 (2.32) 

This is seen to be the correct equation of geometrical compatibility of the 

displacements. In thesame manner we find 

t = - X cos 8 
	

( 2.33) 
which is also a correct result. Figure (2.5) shows the displacements x )  

X and t, the arrows indicating their positive directions, which are those 

of the corresponding forces. 

figure 2.5  

3E. 

Although the treatment given in this section is rather brief, 

the following important principles emerge clearly: 
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(i) Variations in strain energy, carried out subject to 

the requirements of geometrical compatibility, when 

equated to zero, are equivalent to equations of 

equilibrium. 

(ii)Variations in complementary energy, carried out subject 

to the requirements of statical equilibrium, when 

equated to zero, are equivalent to equations of 

geometrical compatibility. 

Care must be taken in both cases to define the independent parameters, 

and also to ensure the inclusion of those terms in the relevant energy 

expressions, which are to appear in the equations of equilibrium (or 

compatibility) to be derived from these expressions. In some problems 

erroneous results can be obtained from what appear to be valid energy 

expressions. A good example of this has been given by Oliver (reference 
3) :  where the complementary energy method applied to the pin-ended column 

gives the shortening twice its correct value. In general the only way to 

ensure the validity of an energy expression is to identify the equation 

of equilibrium (strain energy), or of compatibility (complementary energy), 

which it replaces, 

2.4 A STRAIN ENERGY METHOD APPLIED TO BEAMS 

In this section the basic ideas, developed on an inelastic 

string model, are extended to include elastic problems, such as bending 

of beams. The usual small deflection theory of beams neglects the effect 

of shear on the deflections; the same simplification is made in this 

section in evaluating the strain energy of deformed beams. Consider a 

small element of length ds of the beam, as shown in figure 2.6. The 

A to= load iver cod? lengA 
13  

- 1 

fiaure 26 — beam element  

1Y 

load on the beam is assumed to be expressible as 

w = f(x) 	 (204). 
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where x measures the position along the beam, and the positive direction of 

the load w is the same as the direction of the deflection, which in this 

case is taken according to the usual cartesian coordinate system. With 

this sign convention, bending moments are taken as positive when they 

produce a positive curvature, that is when d 2y/dx2 :>0. After bending, the 

element AB takes up the new position AtBi l  and if axial load an shear are 

neglected, the total strain energy -  of the element is given by 
V 

dU = J' MdW - f w ds dy 	.35) 
0 	0 

where is the angle through which the bending moment M rotates, that is 

is the change in slope over the length ds of the beam. In the irlastic 

string problem there was no need to define internal and external strain 

energies as separate quantities. However, in the present treatment this 

distinction must be made; thus, in the above expression fa the total 
strain energy, the first term represents the internal strain energy, that 

is the energy required to deform the element ds, while the second term is 

the work done by the load w, herein called the external strain energy. In 

terms of the curvature of the element, we have 

1,1= 41:1s 	 (2.36) 

whence it follows that 

dU = I' M dOds - w dy ds 	(2.37) 

Integration over the whole beam gives the total strain energy as e f 
u = 	( f' 	_ w dy)ds 	(2.38) 

0 0 	0 
where 1 denotes the length of the beam. In the case of a linear moment- 

curvature relation defined by 

M = EDP 	 (2.39) 

together with the usual approximation for the curvature, = d 2y/dx2  this 

expression reduces to 

f ( d2Y/dx2 ) 2 	f w dy] ds 	(2.40) 

It is interesting to apply the calculus of variations to this 

strain energy expression in order to establish its validity. Assuming 

y = y(x) is the correct deformed shape of the beam in its equilibrium 

position, consider another shape close to this. That is, define a 

variation in the deformed shape such that 

y + Sy = y 
	

(2.41) 

where is a function similar to y l  and o(  is a parameter which can be 

made as small as desired. Using equation (2.40), the variation in strain 



Expanding this expression, and neglecting the term in o( 2  , it is found 

that 

U = f[0(EI(d2  -• 	./ ax2  Ad2g/dx2 ) 	]cis 	 2.43) 

The first term, when integrated twice by parts, reduces to 

t  
fe(El. (d4y/dx4)ds kKEI1(d3y/dx3)] t kEI(dl/dx)(d2y/

d 
9

lo 	
(2.44) 

0 
The two expressions to be evaluated at the limits of integration, 0 and 1, 
can be made to vanish by suitably restricting the type of variation-as 

defined by 11 . When the variation is chosen so that the deformed shape 

(y +c(frt), and its first derivative, are correct at the boundary, then 1 

and (dil/dx) both vanish at the boundaries, and we are left with 

61.1 = o(WEI(d4y/dx2) -w]ds 	(2.45) 

In the limit, aso( tends to zero, thil can be Written as 

?Vac( = IHVEI(d4y/dx4) — w]ds 	(2.46) 

For the total strain energy to be a minimum, this expression must 

vanish. The only way in which this can be achieved for all possible 

types of variations (provided fl and its first derivative are zero at 

the boundaries), is for the expression in brackets to be zero at every 

point along the beam. That is, the strain energy is minimum when 

EI(d4y/dx4) 7 w = 0  (2.47) 
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energy is given by 

U + 6u = [ -h-EI(d2y/dx2  +(X d2//cbc2 ) 2  f w dy] ds 
0 

(2042) 

which is seen to be a valid equation of equilibrium, identical to that 

usually developed from elementary principles in small deflection theory. 

When the load consists of one or more point loads, the double 

integral expression for the work done by the loads is replaced by the 

summation of integrals 

Es [ 	Widyi] 
	

(2.48) 

where yi  denotes the deflection of the load W i , and the summation is 

applied over all the loads. , 

Having established the validity of the above strain energy 

expression, it may be used to solve beam problems, keeping in mind of course 

that the solution is of necessity limited to the same extent as the usual 

small deflection theory. One of the powers of energy methods is the ease 
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with which approximate solutions can be found, and this is demonstrated by 

analysing the deflected shapes of some simple beam problems commonly 

encountered. 

(a) Simply supported beam 

(i) Central concentrated load 

Consider a simply supported beam of uniform cross section El, 

span 1, carrying a concentrated load W at the centre of the span. 
Obviously the deflected shape is symmetrical about the centre of the 

span, so that any approximate function to be used in the strain energy 

should at least satisfy this requirement. In the variational treatment 

given above, it was stated that the approximate function and its first 
derivative should be "correct" at the boundaries, that is at the simply 

supported ends in this problem. However, returning to equation (2.44), 

it is seen that the expressions at the limits of integration also 

involve a term EI(d2y/dx2 ), which is the bending moment at the ends. 

At a simply supported, or at d free end this is zero, so that (1/dx) 

need not be zero there. 

The simplest approximate shape would be 

y = a1 sin(iN1) 

with the origin at one of the simple supports. The par4eter a l  is the 

deflection at the centre, and is to be chosen to make the total strain 

energy a minimum. The total strain energy is evaluated from equation 

(2.49) 

(2.40) as 	 a 
U = 	fr4E1/13  f Wdai 	2.50) 

Minimizing this with respect to a l 1  we find 

= 0 = a1 1r4EI/13  — W 	(2.51) 

This expression gives as an estimate for the central deflection 

al  = 2W13Art4EI 
	

(2.52) 

which differs by only about 2% from the more exact result of W1 3/48E1. 

Thus in this case minimum energy gives the maximum deflection sufficiently 

accurate for practical purposes. The correct deflected shape is given by 

y = a1[3(X/1) 4W1P] 	; o x 1/2 	(2.53) 

Using this in the strain energy equation, we naturally find the correct 

value for a
1. 

The approximate and exact functions are compared graphically 

in figure (2.7), and are seen to be very little different. Up to about 

1/3 span the approximate deflection is greater than the exact function, and 
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exaci shape. eq.*(2.53) 

0.2 	O. 	0.6 
	

04 	1.0 X/f 

figure 2.7 - Deflected shape of a simply supported beam 

in the middle third ofthe span the deflection is underestimated. 

The largest difference occurs at the centre. 

Although the deflected shape is a good fit, the slope is 

less so, and the curvature is even worse, so that the approximate 

function is not reliable for the purpose of calculating bending 

moments. This is due to the inherent loss of accuracy caused by 

differentiation. The maximum bending moment at the centre, as 

obtained from equations (2.49) and (2052), is 0.020W 1; compared 

with the accurate result of W1/4 1  this represents a difference of some 

25. 

(ii) Uniformly distributed load  

The same approximate function for the deflected shape, 

when used for the beam with a uniformly distributed load w per unit 

length, gives results which are even more accurate than in the 

concentrated central load case. The central deflection 'is obtained 

as 

a1 
= 4w14AW5EI ( 2054) 

which differs by only about 0.2% from the more accurate result. The 

maximum bending moment, calculated from the approximate shape,is 0,129w 1 2
2 

which is only about 3% different from the correct value. 

(iii) Non-symmetric cases  

When the beam is not symmetrically loaded, the symmetric 

half sine wave can still be used as an approximate expression for the 

deflected shape, but the results are generally no longer sufficiently 

accurate. In this case the assumed shape must be improved, and the 
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function which lends itself most easily to the evaluation of strain 

energy is the Fourier Series, and two terms usually give sufficient 

accuracy. Taking for example the case of a simply supported beam 
carrying a concentrated load W at a quarter span, we can assume , a 

deflected shape given by 

y = al  sinOrtx/1) a2  sin(29V1) 
The total strain energy corresponding to this shape is 6 

U=(r4t1/13 )(1-  a + 44) - S' W d& 
0 

where 6 is the deflection under the load, and is expressed it terms 
of the parameters a l  and a2  as 

6 = Eti/r2" + a
2 

(2.55) 

(2.56) 

(2.57) 

Minimization of the strain energy with respect to these parameters gives 
the two equations 

?u/aal  

at/a8.2  

1/13  - W/T7 t 0 

p4Eia2/13  w 
(2. 58) 

Using the values of al and 	as determined from these equations, in 

the assumed shape, the deflection under the load is found to be 

g= 9z3/817-4ti 	 (2.59) 

which differs by about 4% from the exact value. The MaXitUt deflection 

occurs at'a distance 0.451 from the support nearest the load, (compared 
with 0.441  computed by the exact method) and is W13/68.0EI which i8 1% 
greater than the exact value. 

From the above few simple examples it becomes evident that 

strain energy affords a quick and reliable method of computing beam 

deflections. The agreement with more exact theory in general depends 

on how well the approximate function for the deflected shape fits the 

problem. Usually sufficient accuracy can be achieved with a function 

which satisfies only the geometric boundary conditions, that is those 

relating to deflection and slope only. However, in some problems this 

is not enough, and boundary conditions in bending moments, must also be 

satisfied. In the simply supported beam problems these conditions are 

automatically fulfilled when using a Fourier sine series, since this has 

zero curvature, and hence bending moment, at the boundaries. When the 

simply supported beam is deformed by the action of moments applied at 

its ends, the Fourier sine series gives poor results as is seen in the 

next example. 
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(iv) End moments 

Consider the simply supported beam deformed by end moments 

MA , MB 1  and let the end slopes be 9A  ,9B. respectively. Proceeding 

in the same manner as in the previous example we find 

2  U = (r4EI/13 )(1- 	+ 4a ) _ (MA d 	s 

4  1  2  A A- 
M d 

•  B  B 
0  0 

(2.60 

where 	
eA = (ft/i)(81 	2a2 ) 	; eB 	2a2) 	(2.61) 

Minimization of the strain energy with respect to the parameters a l  

and a2 ' and subject to the restricting equations of geometry gives 

aU/aal  = 	El a1/13  -/NA/1 + 11-MB/1 = 0 	
(2.62) 

010a2  = 8114  El a2/13  - 21/MA/1 - 211MB/1= 0 

Substitution of al , a2  , as obtained from these equations, in equations 

(2.61), gives the solution in familiar form 

eA  = (1/2ft2EI)(5MA  - 314B ) 

eB  = (1/211EI)(_3mA4. 5MB ) 

whereas the exact solution is 

eA = (1/6EI)(2MA  - MB ) 

= (1/6EI)( _MA  2mB ) 

(2.63) 

( 2064 ) 

The coefficients in these two solutions differ by about 24% and 9% 

respectively, based on the accurate solution. The reason for the 

large discrepancies is, as e)plained above, due to the fact that the 

approximate shape has zero curvature at the ends, whereas the exact 

function has curvatures equal to -MA/EI and MB4i respectively. 

(b) Cantilever beam 

An approximate function for the deflected shape of a 

cantilever, which fits the boundary conditions up to and including 

the second derivative, is 

y = 81 [1- cos(VX/21)] 

with the origin taken at the built-in end. When used in the strain 

energy method this function gives satisfactory solutions for the 

concentrated load at the free end, and for the uniformly distributed 

load. If necessary, a second term, a2 [1-cos(37N/21)], can be added 

to the above function to gain more accuracy. 

(20 65) 
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(c) Beam built,-in at both ends 

A satisfactory approximate function for the deflected shape 

of a built-in beam is 

y = a1 [1- cos(217%/1) ] , 	(2.66) 

which is symmetric about the centre of the beam. For non-symmetric cases, 

a second term, a2 [cos(irrx/1) - cos(31/X/1) ), must be added. 

(d) Propped cantilever  

The simplest approximate function for the deflected shape of a 

propped cantilever, satisfying the boundary conditions up to and including 

the second derivative, is the single parameter function 

y= 
	

(cos(1rx/21) - cos(31*/21) ) 
	

(2.67) 

and this gives satisfactory results for the loadings commonly encountered. 

An additional term of the form, a2rcos(511V21) - cos(7/75c/21) ], 'will give 

more accurate results. 

From the above simple examples it is seen that quite reasonable 

estimates of the deflections can be obtained with the use of only one 

parameter in the guessed function defining the deflected shape. However in 

more complicated problems a one parameter energy solution often does not give 

sufficient accuracy, and it therefore becomes necessary to choose approximate 

functions for the deflected shape involving several parameters. These parameters 

are then determined so as to make the total strain energy a minimum, which is 

equivalent to satisfying all the equilibrium requirements on the average". 

In this section Fourier series were used ., because the integrals involved in 

the strain energy function are then easily evaluated. The results thus 

obtained were generally close to those obtained from the usual small deflection 

theory. Exact results could be found by using an infinite series, or the 

correct deflected shape if this is known. Once this has been established it 

is no longer necessary to evaluate. the strain energy integral, as the minimum 

strain energy equations can be set pp directly from equilibrium considerations, 

as is shown in the following section. 
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2.5 STRAIN ENERGY ANALYSIS OF STATICALLY INDETERMINATE FRAMES  

In this section it is shown that the analysis of statically 
indeterminate frameworks can conveniently be carried out using minimum 

strain energy principles. It is not a separate method of analysis, but 

merely an alternative technique for the derivation of the equations of 

equilibrium, which can equAlly well be set up directly. 

Following the classical method of analysis, attention is focussed 

on the deformations of the joints of the frame, and the loadings on the frame 

members are replaced by "fixed end moments" (see for example reference 4.) 

Thus the first problem is to determine the end moments which, in combination 

with the actual loading, produce no joint rotations. These end moments 

are then relaxed and the resulting rotations are the same as those 

produced by the loading itself. 

In order to solve the above problem by means of strain energy 

principles :  consider the beam shown in figure (2.8). -Let 9A , eB  be the 
end rotations, and M, 	be the respective end moments to produce these . 

figure 2.,8 

rotations, both quantities being measured in the anticlockwise sense. 

From elementary beam theory, the deflected shape of the beam is known 

to be a polynomial function, and the function 

y  = 10A[(x/1) -2(x/1) 	(ç/1) 33 + 18B[-(x/1) 2  + (x/l) 3] 	(2.68) 

satisfies the geometric boundary conditions of the problem, that is those 

relating to deflections and slopes. Having defined the shape in terms of 

the two end rotations, we can proceed in the usual manner, and minimize 

the total strain energy with respect to the free parameters. This case is 

the same as that in part 2.4(a) (iv) above, except for the difference in 

the functions describing the deflected shape of the beam. The equations 

of minimum strain energy are 
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au/a6111  , (El/1)(40A  + 260 - MA  = o  (2.69) 

au/30B  , (El/1)(26A  + 46p MB = o 

and these are seen to be the exact relationships, as was to be expected, 

since the exact shipe was used in the strain energy function. 

When analyzing a frame by the above method, the deflected shape 

of the whole frame must be specified, and this is done by using an expression 

such as (2.68) for each beam element in terms of its end rotations. If the 

joints of the frame can be assumed rigid then the end rotations are equal to 

the joint rotations, and thus the total number of parameters involved is equal  
to the number of joints in the frame. Since energies are additive, the 

minimum strain energy equAions for the whole frame are obtained by adding 

equations such as (2.69), and there is thus no need to evaluate the strain 
energy. Also, because the functions for the deflected shapes are exact, 

the solution of the final linear algebraic equations is also exact. 

So far only joint rotation has been considered, but the ideas 

are easily generalized to take into account joint translations. Also, no 

account has been taken of axial load effects which is customary and 

reasonable provided the axial loads are small compared witk the buckling 

loads of the members treated as pin-ended columns. 

2.6 	ITERATIVE SOLUTION 

The method of analysis outlined in the previous section is known 

as the deformation method. The final equations represent the conditions of 

equilibrium of the joints, in terms of the generalised joint displacements. 
As always, if the correct deflected Shape is used to evaluate the strain 

energy, the equations derived from minimum Strain energy principles are 

exact equations of equilibrium, and it would therefore seem that there 

is no advantage to be 4ined. Indeed this is so; one would derive the 

equations directly, and an exact solution of these equations is 

theoretically possible. However, even with the present high speed electronic . 
computers there is a limit to the number of equations which can'be handled; 

this limit depends on the size of the machine. The same applies if 

computations are to be done by hand. Should this be the case, then the 

engineer is once more faced with the problem of developing alternative. 

numerical techniques in order to obtain a satisfactory solution. Here 

again energy methods can provide an answer. The iterative solution 

presented in this section is that of the author, and is believed to be new. 
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Suppose that by some device one can obtain approximate 

values for some of the unknown generalized displacements, or 

approximate ratios for a group of unknowns in the analysis of a 

frame. If the exact values were known, there would be no problem, 

as any of the equations could be used to solve for the remaining 

unknowns, but if the values are approximate, then different solutions 
are obtained depending on which equations are used. Naturally the 

"best average" is sought, and strain energy principles, being an 

averaging process, can be' used . advantageously. The method is most 

easily understood by way of a simple example; a general proof follows 

readily. 

Consider the two storey rectangular portal frame shown in 

figure (2.9). The dimensions, 16ads and stiffnesses are of no significance, 

kai') 
columns:  El= 60,000 

roof': El=120,000 
beams  

Ploor: El 180,000 

figure 2.9 - Portal frame  

and are non-dimensional for convenience. The deflected frame is sketched 

in exaggerated scale, and the generalized joint displacements together with 

their generalized joint forces are written enclosed in parentheses; their 

positive directions are indicated by arrows. If axial load effects are 
t 

neglected, arid,,if deformations small then A
l
= A

l  
A 2 -- A2' 
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The equations of equilibrium are readily set up, and in matrix 

form they are 

%MP 
/MN 

(60) 48 -24 o -6o 0 -60 A1  H
1  2.4 

24 24 60 60 60 60 A 2 H
2 1.2 

o 60 2000 200 600 0 0 1  M1  -20 

60 60 200 1200 0 400 e2 M
2 -8 2.70) 

0 60 600 0 2000 200 641  M1 20 

60 60 0 400 200 1200 
1•11•••• 

et2 2_ 10 
MOO 

where the factor (60) represents the term (EI/1001). The generalized joint 

forces are obtained by adding algebraically the member fixed end moments 

and reactions, and negating the results. Using strain energy, the exact shape 

of each member is specified in terms of its end sways and rotations, its 

strain energy evaluated, and the total minimized. In this problem the 
parameters involved are the two sways and four rotations. The equations 

of minimum total strain energy are the same as (2.70), the first being 

au/at, = 0, the second au/m2  , 0 , and so on. There are only six 
equations in this problem, and their solution is readily found by hand 

computation. 

To obtain an approximate solution it is necessary to guess the 

magnitude of some of the unknowns. This is not easily done, but approximate 

ratios can be determined from the sketch of the deflected shape of the 

'portal frame. As a very crude approximation, we have 

(2.71) 

To use the six equations for obtaining the "best" solution for the three 

unknowns 41  01  2  01  2 we take linear combinations to reduce the number 
of equations to three. The correct combinations are those with the ratios 

the same as in equations (2.71), that is (E 1  + 2E2 ), (E3  + E4), (E5  +'E6), 

where E. refers to the ith equation. Justification for this is given in 

the following section. In matrix form these combinations are 

( 60 ) 	48 . 180 = r4.801 
180 

{I 

3600 

18011[Ni  

1000 	0 1  -28.0 (2.72) 

180 1000 3600 	O il  30.0 



- 63 - 

These equations are readily solved, giving 

A = 0.00232 

= -0.000272 	 (2.73) 

= 0.0000987 61 1  

To complete the solution, approximate values for the remaining three 

	

unknowns A  0  e l  2 	
must be found. This could be done by using the 

9  2 	2 
guessed ratios, but better values are obtained from the original 

equations of equilibrium (2.70), using the computed values of 

e  
2 	3 	as a partial solution. A satisfactory procedure 1 	1 	1 

is to solve the equations of equilibrium of those generalized joint 

forces related to the generalized joint displacements still to be 

determined. In this problem, after substituting equations (2.73) 

in the second, fourth and last of equations (2.70), and solving the resulting 

three equations for the remaining three unknowns, we find 

A2 = 0.00375 

e
2 =-0.0001735 

e' 	= 0.000109 2 

(2074) 

Thus equations (2.73) and (2.74) together constitute an approximate 

solution for the joint rotations and sways of the two storey portal 

frame. The solution was derived from minimum strain energy principles, 

using guessed ratios to reduce to final number of equations of equilibrium. 

Since the guessed ratios are only rough approximations, the 

above solution must be improved. Clearly an iterative scheme can be 

set up; from the first solution new ratios can be calculated, and 

the number of equations of equilibrium reduced to three as before, 

and so on. This gives as a second solution for the portal frame 

deformations 

A l  = 0.00294 

A 2 = 0.00447 

01  = -0.000313 

= -0.000170 
0997 

0.000e55 61 1 = 

0 12  = 0.000102 

(2.75) 
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The differences between this solution and the previous solution are not 

great, and a third iteration gives results which differ only slightly. 

The results of the iterative solution presented above are summarized 

in table (2.1), in which all values have been multiplied by a factor 

of 104. 

Deft, Approximate solutions exact 
solution 1 st 2nd 3rd 

Ai 23.2 29.4 30.0 30.0 

A2 37.5 44.7 45.3 44.9 

0 1  -2.72 -3.13 -3.18 -3.20 

e2 -1.74 -1.70 -1.68 -1.66 

el  1 0.987 0.997 1.08 1.18 

0'2  1.09 1.02 1.00 1.00 

Table 2,1 

As can be seen, satisfactory agreement is obtained with the second 

approximation, that is, after one iteration. A final check on the 

accuracy of the solution is to calculate the generalized joint forces 

corresponding to the generalized joint displacements as calculated. 

These are 

H1 = 2.35 (compared with 2.40 in the original equation) 

H2  = 1.202 (1.20) 

m = -20.0 (-20.00) 
1 

M2 = -8.03 (-8.00) 

M1 = 18.98 (20.00) 

M2 = 9.97 (10.00) 

which are within 5%, or less, of the applied forces and moments, so 

that the solution is satisfactory for practical purposes. 

(2.76) 

it- 

The advantage of the above approximate method for a solution 

of the deformations of the portal frame, is little or nothing. In this 

example a more accurate solution of the equations can be easily obtained 

by direct methods. However, as the number of equations increases, the 

method becomes more feasible. Attention is focussed throughout on the 

deformations, and frequently reasonable predictions as to the magnitude 
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of some of these can be made, for example with the aid of inexpensive 

flexible models. With this information available, fairly accurate 

results can be obtained, which, although approximate, are of considerable 
use. Furthermore, it is always possible to iterate towards a better 

solution. It is felt that convergence of the iterative scheme outlined 

above is inherent in structural problems,but a formal proof is lacking. 

2.7 PROOF OF LINEAR COMBINATIONS  METHOD 

The procedure for finding successive approximate solutions 

for the deformations by taking linear combinations of the equations of 

equilibrium, is readily generalized. With the usual simplifications, 
the deflected shape of any member can be specified in terms of its 

end displacements and rotations. In problems such as those in the 

previous section the exact shape of the deflected member is used, and 

hence the strain energy is also exact. The number of parameters 

equals the number of joint displacements and rotations, and the 

total strain energy, U can .be expressed as 

U= f(xi  , x2 	, • • 9 Xn ) (2.77) 

where xi  , x2 , 	9 XII  are the n generalized joint displacements. 

The values of these parameters whichaatisfy -the conditions of 

equilibrium are the same as those which make the total strain energy 

a minimum. For convenience, put 

= E. = 0 	 (2,78) 

the:Lis-the equation of equilibrium corresponding to the ith generalized . 

displacement x. Suppose that a group of the unknown parameters are 

expressed in terms of'a.single parameter, that is 

x.=r.X; 	i = 1, 2, . • • 2 ( 2.79 ) 

where the first m are chosen for argument's sake Only. The coefficients 

r1  are either known, or can be estimated approximately from, for example,. 

a model test. After making. the relevant substitutions in the strain 

energy expression, minimization is carried out with respect to the 

remaining parameters xi (i = m + 1, m + 2 	. 9  n), and the parameter 

'X defining the first m parameters. The equations of minimum total 

strain energy are the same as equations (2.78) in which the relations 

(2.79) have been substituted, except that the derivative of U with 
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respect to X becomes 
rn 

	

aUgX =Z(aU/ax.) (ax./ax) =Er. E. 	(2.80) L = i 	1 	1 	11 1 

This is seen to be a linear combination of the equations of equilibrium 

in the generalized forces corresponding to the generalized displacements 

in the group xi  = riX, with the coefficients r i  as "weighting factors" in 

the combination. From this it follows that the approximate solution emphasizes 

the more important generalized displacements, and for this reason it is better 

not to attempt to guess these, but rather those which are small in magnitude. 

The above argument has been presented on the basis of grouping 

some generalized displacement in terms of a single parameter X, using 

numericalvaluesforthecoefficientsr.;an extension of the argument to 

cater for several groups, each having its own parameter and coefficients :  
follows readily, and formal proof is not necessary. 

The use of numerical values for the coefficients enables the 

number of equations to be reduced, and a solution to be found. However, 

• this solution is only approximate, unless the correct values of the co-

efficients are used. In order to improve the solution new coefficients 

must be determined. Several processes suggest themselves; in the first 

place consider the procedure of the previous section, that is, the gewalized 

displacements which were originally guessed,are calculated from those 

equations of equilibrium in their corresponding generalized forces. This 

follows immediately from differentiation of the total strain energy with 

respect to the coefficients r i. Although this method is simple and 

justifiable, it suffers from the disadvantage that the number of equations 

to be solved could be almost as large as the original number. A way out 

of this difficulty is to treat only a certain number as unknowns, using 

the latest values of the remaining generalized displacements in the 

respective equations. It is not possible to describe all the possible 

methods, but whichever is used, it must be a step nearer the correct 

solution as long as the original equations of equilibrium are used, since 

ultimately the correct generalized displacements are those which satisfy 

these equations. 

In closing, it must be stressed again that the approximate 

method presented above is subject to the same simplifications as are 

usually made in structural analysis, so that the solution for the behaviour 

of the real structure is only as good as the mathematical model. In frame-

work problems the deformations are usually small, and putting A i  equal to 

A 1 in the portal frame of section (2.6) is quite safe. On the other 

hand, the neglect of axial load effects may be serious, especially if the 
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columns carry axial loads which are of appreciable magnitude compared 

with the Euler loads of the equivalent pin-ended columns. Fortunately 

this can be taken into account by a reduction in the stiffness co-

efficients of the members,as will be seen in the next chapter of this 

thesis. 

2.8 PHYSICAL INTERPRETATION  

A physical picture of the linear combinations technique is 

as follows: the solution for the n generalised displacements, by means 

of the equations of equilibrium in the corresponding generalized forces, 

can be thought of as a point in an n-dimensional space. By imposing 

relations between some of the displacements, the solution of the 

equations becomes restricted, and the point cannot be reached unless 
the guessed relations happen to be exact. Any number of solutions can 

be found, depending on which equations are used to calculate the 

remaining unknowns. This means that there exists a region of solutions 

rather than a point, and the "best" solution attainable is a point 

within this region which, in some sense, lies nearest the point 

representing the exact solution. The approximate solution may 

satisfy some of the equations of equilibrium, or, by using strain 

energy, it satisfies them.all . on the average,' by virtue of the 

linear combinations of the sOltionse Thus the process can be 
pictured as choosing that solution, out of all possibilities within 

the region, which mi4mizes some function of the distance between 
it and the point corresponding to the exact solution. 

In fact this picture applies to all strain energy processes; 

for example the pin-ended column, axially loaded, must satisfy at every 

point the differential equation 

M + Py = 0  (2.81) 

which is derived from equilibrium consideration. of an element. In 

this case the solution is a function rather than an n -dimensional 

vector, and again if the exact shape of the buckl ielV column is not 

known, approximate values for the buckling load can be determined 

from an approximate function y. Here again, any number of solutions 

for the buckling load are available depending on where the equation 

of equilibrium is satisfied. Using the linear combinations technique, 

the equations of equilibrium are weighted according to their corresponding 

displacements. Obviously the linear combination in this problem is of 

functional form,and may be expressed by the integral 

jr (m 	Py) 	y dx . 	 (2.82). 
0 
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Using the linear moment curvature relation M = EI(d 2y/dx2 ), we obtain, 

after integration by parts 	e 
Pfy2  dx -J7 EI(dy/dx) 2dx 

0 	0 

which is seen to be an alternative form of the strain energy expression. 

(2.83 

The more common form, 

fEI(d2y/dx2)hx — Pf(dy/dx) 2dx 	(2.84) 
0  0 

is obtained by using curvature, d2 Y/ Ax: 1  as the weighting function, rather 

than the deflection, y, as was done here. This type of problem, and many 

others, can be handled in the same manner, and it clearly demonstrates 

the power of energy methods in obtaining approximate solutions. 

It has been shown again that the strain energy method is not 

separate, but merely an alternative way of deriving the equations of 

equilibrium, either the correct equations or a linear combination of them. 
Any linear combination desired is possible and is treated by methods similar 

to the straightforward Rayleigh method once this fact is recognized. 

2.9 NUMERICAL EXAMPLE  

In order to test the feasibility of the linear combinations 

technique, the frame shown in figure (2.10) is analyzed. Shown in the 
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same figure are the applied fcirces and moments, together with the 

notation for the corresponding generalized displacements. The 

magnitudes indicated are purely artificial for the sake of this 

particular problem. Also, sway divided by storey height is used as 

a generalised displacement, together with the generalized force in 

the form of horizontal force times storey height. In this problem 

a convenient grouping of unknowns appears to be 

(a) sways in terms of the single parameter (A/h) 

(b) rotations in left column in terms of 	0 
(c)  

(d) 

II 	tt  central 

" right 

It 

As a first estimate of the relative magnitudes of the generalized 

displacements, the ratios in each group are assumed to increase 

sinusoidally, from zero at ground level to a maximum at roof level. 

Using the ratios thus defined the (32 x 32) stiffness matrix is 
I 	II 

reduced to a (4 x 4) involving the parameters 41/11, 0, 

whose solution is readily found. Improved ratios are then calculated, 
a group of eight at the time, using the corresponding equations of 

equilibrium together with the most ressent values for the other 24 

unknowns. The calculations are then repeated with the improved ratios. 

A /h -. 8 _ e l en 

4004 3.57 0.23 2.96 

(42.06) (3.51) (0.21) (2.79) 

3908 3,45 0.63 1.27 

(41.17) (3.41) (0.70) (1.36) 

38.0 4.38 1.25 0.65,  

(38.99) (4.52) (1.33) (0.51) 

3409 5.24 1.82 -0.25 

(35037) (5.50) (2000) (-0.50) 

30.4 6.09 2.43 -1010 

(30.32) (6.50) (2.67) (-1.50) 

24.6 6.96 2.95 -1.93 

(23.82) (7.51) (3.32) (-2.48) 

16.6 7.59 3.53 -2.72 

(15.92) (8.33) (3.96) (-3.48) 

7.40 8.81 3.60 -2.91 

(6.93) (9.26) (3.89) (-3.40) 

0 0 0 0 

figure 2 9.11 - Comparison of exact and approximate solutions  
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In this analysis reasonable convergence is obtained after only two 

iterations. The approximate solution is shown in figure (2.11), together 

with the results of an exact analysis carried out on the Elliott 503 

digital computer; the latter are enclosed in parentheses. As can be 

seen, the agreement between the two sets of results is reasonably close, 

taking into account that only two Lterations were carried out. Also it 

is evident that the rotations are greatest at ground level, decreasing 

gradually towards roof level. This is the direct opposite of the initial 

guessed form of the ratios, so that considerable improvement could be 

obtained with a better set of starting values. From the results, member 

end .:, hents and shears can be calculated, if needed, using equations 

(2.69). 

2010 CONCLUDING REMARKS 

In this chapter an attempt has been made to unify energy methods 

and classical methods of structural analysis. The emphasis has been on 

strain energy, which is equ:valent to the classical deformation method. A 

solution is derived from equations of equilibrium in terms of the 

deformations. It has been shown that these equations can be derived from 

minimum strain energy condiions, using the exact functional form for the 

deflected structure to evaluate the strain energy0 The technique is 

essentially the same as that known as the Rayleigh-Ritz method in that it 

uses more than one parameter to define shape; the single parameter method - 

is commonly attributed to Rayleigh. Having identified the validity of the 

strain energy method, the equations of equilibrium are usually set up 

directly. 

The power of the energy method lies in the ease with which 

approximate solutions can be found, and in this chapter a frame possessing 

a relatively large number of degrees of freedom was successfully analysed . 

using the linear combinations technique. This technique has been shown 

to satisfy certain groups of the equations of equilibrium "on the average", 

and leads to a reduced stiffness matrix. Convergence towards better 

approximate solutions is achieved by attempting to satisfy the individual 

equations of equilibrium, thus leading to improved functions for deriving 

approximate reduced stiffness matrices. Although the numerical example of 

the previous section is readily solved on an electronic computer, a foundation 

has been laid for attacking more complicated frameworks. Three-dimensional 

frameworks, for example, lead to a large number of equations, and their 

solution may be out of reach even for machines with large storages. It is 

felt that some attempt can be made to analyze such frames using the method 

described in this chapter. 
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CHAPTER THREE  

A NEW METHOD FOR  CALCULATING  BUCKLING MODES AND LOADS OF  FRAMES • 

3.1 INMODUCTION 

In chapter one a brief review was given of the various methods 

available fpr a determination of buckling modes and loads of frames. 

Anyone faced with the problem of the design of frames soon becomes aware 

of the computational difficulties involved in such a stability analysis. 
It was with this i4 ,mind that a simpler approach was sought. The basic 

problem and customary simplifications are as outlined in section (1.6), 

and it is shown in this chapter that the Rayleigh-Ritz method of strain 

energy lusing the same parameters as the classical eformation method, 

leads to a linearized form of the stiffness matrix. The linearized 

matrix is handled by the usual methods of matrix analysis and is 
shown to yield an upper bound for the buckling load. If desired, a 

lower bound can be obtained as well, using a graphical procedure. 

Successive approximations of the straight line Variation of the 

stiffness matrix quickly yield a reliable estiiate of the buckling 

behaviour. It is shown that considerable compttational savings are 

to be made by using basic geometric data, .obtainable from simple 

inexpensive models, in the standard iterative iii4trix procedures. 

3.2 DEVELOPMENT OF METHOD 

It can be seen from section (1.8d) th4t the buckling 

load calculated from a single parameter applicatlon of th Ray.leigh 

energy method.  is not reliable. This is so because the functional 

form, in 116rms of a single parameter, does not adequately describe 

the deflected shape of the buckled structure. To improve this 

situation, the specification of shape must be more flexible land 

this can be done by using more parameters. For convenience' 

parameters which have physical significance arelftgand these 

aie obviously the frame joint rotations and44ys'. This has the 

additional advantage that the conditions iof minimum strain energy 

are readily identified as equations of equilibrium involving the 

corr6sponding joint moments or forces. The method is developed on 

a simple two dimensional example and is generalized in the following 

section.. 

Consider again the equilateral triangular frame buckling 

in its plane. (see figure(1.6) ). The simplest polynomial function 

describing the shape of any member in terms of its end rotations is 

y = 1011[(x/1) - 2(x/1) 2  + (x/1) 31 + 16V-(x/1) 2  + (x/1) 31 '  (3.1) 
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This function satisfies the boundary condition of zero deflection at both 

ends, and it is known to be the exact shape of a simply supported beam 

deformed by end moments. Denoting by 9A
2  013 2  6b the joint rotations 

of the buckled triangular frame, a function such as (3.1) is fitted to the 

deflected shape of each member, and the total strain energy is evaluated 

according to equations (1.33). The following equations of minimum strain 

energy are obtained 

3u/a6111  = (EI/1)[(8 -2k)eA  + (2 +k)6133  + (2  - MA  = 0 

au/BOB  = (EI/1)[(2 + k)eA  4. (8 _8k)19 13.4. (2 +k) 9 0)  MB  = 0 

aU/a9c  = (EI/1)[(2-ik )OA  + (2 +k)O B+ (8 -2k)Oci - Mc  = 0 

in which MA ' MB' MC  are the applied joint moments, and k is a load 

parameter defined by 
k = P1

2
/30E 

(3.2) 

(3.3) 

For the undisturbed structure the joint moments are zero, so that the 

solution of equations (3.2) for the joint rotations is either the trivial 

zero solution, or the determinant of coefficients vanishes, in which case 

the ratios between the joint rotations are defined but the absolute magnitudes 

are undefined. That is, it is the usual eigenvalue problem; in this case 

the eigenvalues of k are measures of the buckling loads,and the eigenvectors 

represent the modes of buckling as defined by the joint rotations. In this 

problem there are three eigensolutions, obtained by expansion of the determinant: 

(i) k1 	0.762 	; 61A  eB  : 

(ii) k2  = 4.00 	; 	OB  

(iii) k3  = 5023 	; OA 	: eB  

0 

ec  

ec  

= 

= 

= 

-0.342 

1.00 

2.34 

: 

: 

: 

1 

0 

1 

: 

: 

: 

-0.342 

-1.00 

2.34 

(3.4) 

As can be seen, the first and third represent antisymmetric modes, the 

latter requiring a reversal of curvature in each member in order to maintain 

all rotations in the same sense. The second solution corresponds to a symmetric 

mode. The fundamental mode is the first solution, and equation (3.3) gives the 

buckling load as 

P  cr = 2209 El/i2  (3. 5 ) 

which is seen to be about 40% high (see section 108). In section (3.4) it is 

shown that the estimate for the lowest buckling load obtained by this method 

is of necessity an upper bound, so that equation (3.5) should rather be an 

illequality, that is 

(3.6) P< 2209 El/i2 cr 
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Unfortunately the same cannot be said about second and higher modes, 

except that the exact value of the largest buckling load is never 

exceeded; that is all the approximate buckling loads lie between 

the largest and the smallest. 

From the work of the previous chapter it follows that 

equations (3.2) should express the conditions of equilibrium in 

moments at the joints of the triangular frame. However, when the 

modes as determined above are used in the original deflection curves 

and the bending moment diagram drawn from the curvature diagram, it 

is found that these conditions are not satisfied. It follows that 

equations (3.2) are not exact, but only approximate, and therefore 

the guessed deflected shape is not correct. This is due to the effect 

of axial loads because it is known that the functions are exact for 

no axial load. However, a structure can be defined with an approximate 

distribution of stiffness for which the guessed shape coincides with 

the actual buckled shape and the equations of equilibriUm are then 

satisfied exactly for this new structure. 

Merchant (reference 1) has shown that when an approximate 

shape (which is correct at zero load) is used, the Rayleigh estimate 

of the buckling load is the same as would be obtained from the intercept 

on the zero load axis of the tangent to the stiffness curve at zero 

load. The approximate shape is defined in terms of a single disposable 
parameter, the same disturbance being used to plot the stiffness 

curve. As stated by Merchant, this gives unacceptable estimates of 

the buckling loads due to the sharp curvature of these graphs. 
Merchant also points out in the same paper that when use is made 

of a deflected shape which is correct at some load other than zero, 

a similar relation exists between the Rayleigh estimate of the 

buckling load and the intersection of the local tangent on the 

zero load axis. These ideas are generalized below. 

3.3 GENERAL ANALYSIS 

It was shown in the previous section that the minimum 

strain energy principle leads to a set of approximate equations 

of equilibrium of the same form as the exact equations which 

involve the stability functions s and sc. In matrix notation 

the approximate equations are 

ICE . 19= 	= 0 	 (3.7) 
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where R.E 
is the matrix involving elements which vary linearly with load 

AO 

(which will be called "energy coefficients"), and MI denotes the column 

vector of "energy moments" which, for the undisturbed structure becomes 

the null vector 6. 

Since the differential equations of minimum total strain energy 

are linear ;  the same results are obtained by summing the au/a& equations 
for all the members. Therefore, for the purpose of this analysis, it will 

be convenient to isolate any member such as AB from the frame, asin 

figure (3.1). 

A 
leng-th 
El =cons.ion4. 	!Meals 

figure 3.1 - Single member under axial load and end moments 

Sway is not considered because its effect can be inferred once the method 

has been established for the simpler case. At zero axial load the shape 

of the deflected member is as given by equation (3.1). Using this as an 

approximate shape when the member carries an axial load P, the strain 

energy is obtained as 

	

2 	 ) U = (2E1/1)(0 2  + 0 2  + 8
A  8B  ) 	(P1/30)(262A  28  

9
B 	A

9 
B' 	MAd  A - MB d  B AB  

(3.8) 

When this is minimized with respect to the joint rotations eA  , e B  

we find 

avaeA  = (EI/1)(so  eA  bo e B) MA  = 0 

au/aeB  = (El/1)(100 9A  ao e B ) - mB  = 0 

where 	
ao  = - 2112p /15 ; bo  = 2 + 1120 /30 

Q = 112E1/12  

These are seen to be approximate expressions for the end moments, which, 

it terms of Livesley and Chandler's stability, functions, are given by 

( 3.9 ) 

. (3.10 

MA  = (El/1)(89A +- 

MB  = (EI/1)(scell+ 5 eB ) 
 (3.11) 
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Comparison of the coefficients in equations (3.9) and (3.11) reveals that 

the linear variations ao and bo are tangent to their counterpart exact 

functions s and sc respectively 9  the point of tangency being ()= 0, 

for which the assumed shape is axact. This relation was discovered 

graphically, but may be checked by taking differences of the tabulated 

functions, or by differentiation. It has been shown by other authors 

(see for example reference 2) that the Rayleigh method gives an upper 

bound for the buckling load, or altermEtively, the Rayleigh estimate 

is the buckling load of a stiffer structure, whence it follows that 
the approximate stiffness must be greater than the exact stiffness. 

Since the latter is monotonically decreasing, the approximate 

stiffness curve must be tangent to the exact function. 

As regards the accuracy of the straight line approximations, 

the difference between the tangents and the exact transcendental curves 

is negligible in the range -0.44/04 0.2. The differences at p= 1 

are about 10% for s and 6% for sc :  and at higher values of y) the 

differences rapidly increase due to the increasing curvature of the 

exact functions. 

The principle of minimum strain energy thus leads to approximate 

equations of equilibrium, which are identified as such, and the co-

efficients in these equations are linear approximations to those in 

the corresponding exact equations using the stability functions s and 

sc. The approximations are exact at zero load, for which the assumed 

deflection curve is exact, and furthermore the straight line approximations 

are tangent to the exact functions. 

Obviously the straight line approximations derived above 

are not accurate enough over the range of axial loads commonly 

encountered in engineering designs, and impfwements must be found 

to render the method useful. The next step is obvious, that is, use 

a deflected shape which is correct at some load near the axial load 

in the member when the frame buckles, and a similar straight line 

variation is to be expected. It is shown in most textbooks that the 

exact deflected shape at any axial load is given by 

y = A cos(q611. x/i) + Bsin( V-13 iT x/1) 	(MA/P)(1 - )c/1) + mB()Vi) 	(312) 

where the constants A and B are determined from the boundary conditions. 

The use of this function in the strain energy method involves rather 

lengthy algebra, and for the purpose of this work it suffices to show 

how the straight line approximation arises again at one other value 

ofp ; the generality can then be safely inferred. Taking p= 1 gives 

a function which is relatively easy to manipulate, that is 



kri 
3.0 

•2. 5 

2.0 

1.5 

(sc) 

o. 6 	0.8 	1. 0 	. 	/. 4 	/ • e 

fi3O212_2,2 StralglIt_210...gtiarius_approximations  

- 77 - 

y = Acos(gx/1) + B sin(ITX/1) 	(14A/P)(1-4/1) + 1(x/1) 	3.13) 

and use of the boundary conditions in this case gives 

MA = MB = 072E1/41)0A  + 00 

A = (1/4) (6A +013) 
 

(3.14) 

B = (1/2 )(oak - 9,) 

Evaluation of the strain energy, and minimization with respect io the 

rotations eA 9 0B then leads to the relations 

 

900A  = (EI/1) (al  OA 	0B - MA  = 0 

 

= (EI/1)00 1 0A 	al  60 13 )  MB  = o 
	(3.15) 

where  
al = 04/32 4.1r2/8) (iy32 -11.2/0/0 

bl  = 014/32 -172/8) 4 (3112/8 -.114/32)10 

These coefficients can be shown to be tangent at = 1 to the s and sc 

ourves respectively, either by differentiation or by taking differences 

of the tabulated functions. The two sets of coefficients a o , bo  and al , 

b1 
are compared graphically with the exact functions in figure (3.2), 

and it is seen that the straight line approximations are sufficiently 

NNNN\  

\NNN 

( S ) N\N\NNN 

=Plo 
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accurate, for engineering purpose, within ranges extending 

considerably on either side of the points of tangency. 

It is now possible to generalize the abole two particular 

cases as follows: An approximate deflection curve is chosen by 

guessing a P/Q value; this function involves the joint rotations 

as disposable parameters, and minimization of the strain energy 

leads to approximate expressions for the end moments in the form 

ZU/00A  = (ia/1) (aGIA  + b9B ) - MA  = 0 

h/982  = (El/1) (b6,1A  + a9B ) - 	= 0 

in which the coefficients a and b are linear functions of the axial 

load, tangent to the exact s and sc functions at the guessed value 

of P/Q. Alternatively, equations (3.17) give the exact end moments 

for a member which approximates to the actual member by having a 

distribution of stiffness causing it to deflect into the assumed 

shape. If the guessed P/Q value is close to the correct value, 

say to within approximately - 0.2, then the difference between 

the tangents and the exact functions is negligible, and the 

l'energy moments" are sufficiently accurate. 

Although the linearization of the stability functions 

could have been done directly )  it is interesting to note that 

strain energy does just this without modifications, which provides 

a further example of the way in which energymethods provide an 
ordering of the calculation. 

The general problem of instability of frames can now be 

formulated in terms of the above mathematical model; that is, 

equations such as (3.17) are set up for each member,and the end 

moments aammed at the joints. This results in a system of equations 

of the form 

(3.17) 

=  mi  - -6  (3.18) 

in which the elements of the matrix K are linear functions of the 

P/Q ratios of the members. These equations are known to be approximations 

to the exact equations, and a solution for the buckling loads and 

modes is arrived at by setting the determinant of coefficients equal 

to zero, which corresponds to the undisturbed structure defined 

earlier. For statically determinate frames the axial load in each 

member is some fraction of the total load, so that each element of 

the energy stiffness matrix KE  is a linear function of the load; 

and the buckling loads are those values for'whidh the determinant 

vanishes. 
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The method just described is a logical development from 

the generalized stiffness method described in section (1.7 cii), 

but it shows the distinct advantage of having linearly varying 

elements in the stiffness matrix. This leads directly to an 

estimate of the buckling load. The accuracy of the solution can 

be judged by assessing the relative difference between the calculated 

buckling load and the initial guess to define shape. If this is poor, 

the calculated value can be used to define an improved shape and the 

calculations repeated. Thus the exact values of the buckling load 

and mode can be approached iteratively. 

3.4 UPPER AND LOWER BOUNDS 

Whenever approximate methods of analysis are used, it is 

desirable to know whether the results are above or below the values 

based on a more exact method of computation. It is shown in this 

section that the buckling loads calculated from the linearized 

stiffness matrix are upper bounds, that is they are unconservative. 

A proof of this follows readily in terms of Gregory's latent root 

plots (reference 3). A typical plot of the smallest latent root is 

shown in figure (3 9 3), W being a generalized load parameter. In 

general these plots are Concave towards the origin. The approximate 

stiffness matrix, derived from minimum strain energy principles, 

has elements which vary linearly with load, and the latent root 

plot for the linearized matrix i$ superimposed on the exact plot. 

figure 3 03  - Latent root plots 



From the tangent property of the individual elements of this matrix it 

is obvious that the two latent root plots are also tangent at the same 

value of the load, W say. The exact buckling load, W cr 
 is found 

from the intersection of the latent root curve on the load axis, 

and an approximate value Wir 
 is similarly determined. From figure 

c 
(3.2) it is seen that, whatever the trial value of P/Q, the linearized 

stiffness s of any member is always greater than the exact stiffness. 

Consequently the overall stiffness of the frame as a whole, of which 

the latent root is a measure, must also be everywhere greater than 

the exact stiffness or latent root, whence it follows that the latent 

:root of the linearized matrix vanishes at a higher load than the exact 

latent root. In other words, linearization of the stiffness matrix 

yields upper bounds for the buckling load, and this is true irrespective 

of whether the trial load Wo is greater than or less than the exact 

buckling load Wer . As explained previously, Wcr  can be approached 

iteratively from above by using the calculated upper bound WI r  or c 
a value somewhat less than this, as a new trial load in setting up a 

new linearized stiffness matrix from which a better value of the 

buckling load can be calculated. This repetitive process generally 

converges quite quickly, but in some problems it is desirable to 

have both an upper bound and a lower bound. In such cases the latent 

root plots provide a simple method. From figure (3.3) it can be seen 

that the plot corresponding to the linearized matrix is of necessity 
more nearly linear than the exact plot :  so that rather than constructing 

the entire curve, an estimate of the upper bound is determined from a 

linear interpolation or extrapolation from two points on the approximate 

stiffness curve. With one of these points reasonably close tothe 

upper bound, the loss of accuracy is usually small. The point P on 

the exact curve is then determined from an analysis of the exact 

stiffness matrix set up at W = 

A lower bound for the buckling load is obtained from the 

intersection on the load axis of the straight line through P parallel 

to the tangent to the approximate curve at Wi er  2 or alternatively, 

'parallel to the straight line through the two points used for 

extrapolation or interpolation. 

There are certain possibilities which do not yield true 

bounds for the buckling load, but if the following rules are observed 

the method is successful: 
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(±) The point of tangency between the approximate and exact. 

curves must lie above the load axis, this restriction 
can be verified by a few sketches. Mathematically this 

restriction is Wo < WI 	which is easily satisfied and cr 
verified by subsequent calculations. 

(ii) 	If W' r  is determined from two points on the approximate c 
curve ia must be an overestimate, and this can be achieved 

by extrapolation from two points both of which are above 

the load axis. This also ensures that the straight line 

through these points ie..) flatter than the corresponding 

portion of the exact curve below the load axis, thereby 

eliminating the possibility of the value taken to be a 

lower bound falling above the exact buckling load. 

True bounds are always obtained if WL, and the slope 

of the tangent are calculated accurately, provided of course that 

W
o is less than WI r

. However, much labour is saved and little c 
accuracy is lost by the linear extrapolation process. 

In some cases it may not be possible to fulfil all the 

above requirements, but there are several alternative techniques; 

for example if we interpolate from two points on the approximate .  

latent root fAarve, the.. estimate of the upper bound could fall below 

the exact buckling load. This becomes apparent in the next stage of 

. computation, for the point P then lies above the load axis. The 

first estimate is then treated as a lower bound and an upper bound 

is determined by the same procedure' as before, as long as it can 

be ,..-D,aured that the straight line through P is flatter than the 

corresponding portion of the exact curve above the load axis. 

The validity of these upper and lower bound techniques 

depends on the latent root curves being monotonically decreasing 

functions of load, with the approximate curve lying above the 

exact curve and tangent to it at W = W
o

. 
I
t is acceptable from 

a geometric point of view and has been proved, at least in part y  

by Merchant (reference 1), using the single joint disturbance as 

a stiffness criterion. 
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35 PHYSICAL INTERPRETATION OF THE LINEARIZED STIFFNESS APPROACH 

It has been shown that the buckling loads and modes are 

determined from a solution of the equations of equilibrium at the 

joints, namely 
ev 	1')VC 	Ap 

K 	=AX =0' (3.19) 

A/ 

where K is the exact stiffness matrix, a function of the load 101 2  and 

is the column vector defining the joint rotations (or generalized 

joint displacements) corresponding to thevjoint moments (or generalized 

joint forces), represented by the vector. 

The latent roots ,A, of the stiffness matrix are defined as 

the stiffnesses of the frame 4s a whole when it deforms in a mode 

given by the latent vectors of K. The frame first becomes unstable 

when one of the latent roots, the smallest vanishes; this is the 

fundamental buckling mode of the mathematical model of the frame, 

and it represents deformations to which the frame offers least 

resistance. Each element of the stiffness matrix depends on the 

stiffness s and carry over factor c of some or of. all the members 

of the frame, and these in turn are transcendental functions of the 

axial loads in the members. 

By a strain energy process the elements of the stiffness 

matrix are replaced by linear functions, and the equations of 

equilibrium become 

K
E  XI  = 	t =A Xt 

which are identifiable as approximations to the exact equations. 
Alternatively, these equations represent exactly the conditions of 

equilibrium at the joints of an approximate frame, namely one whose 

members have stiffness varying linearly with axial load. The 

linearized stiffness is tangent to the exact stiffness at some load, 

Wo say, so that the stiffness, of the approximate frame as a whole, 
as represented by the latent roots A of KE  , is also tangent to 

the stiffness of the actual frame. Because the individual member 

stiffnesses are greater than the exact stiffnesses, except at 

W = Wowhere they are equal, A' is also greater than A , and therefore 
vanishes at a higher load, that is the buckling load of the approximate 

frame is greater than the exact buckling load. Mathematically this is 

expressed by the inequality 

( 3.20 ) 

W '>w 141 cr 	cr (3.21) 



which becomes an equality when W or= Wo  for then each equals Wcr° 

A.  lower bound for the buckling load is determined from the 
condition of zero stiffness of a second approximate frame, in this case 

one whose members have stiffness varying linearly with axial load, at 

the same rate as the first, but reduced to give the exact value at 

W = WI
cr 
 instead of at W = W.0° 

By the same argument the smallest 

latent root of the linearized stiffness matrix for the second approximate 

frame vanishes at a load less than the exact buckling load, and we can 

write 

W I  <W cr 	Cr (3.22) 

which also becomes an equality when the point of tangency between the 

latent root curves lies on the load axis. 

This physical interpretation of the upper and lower bound 

technique is essentially a comparison method, similar to that of 
Temple and Bickley (reference 4) for the pit-ended column... An upper 
bound is obtained by comparison of the actual frame with a mathematical 

model whose members are stiffer. Its buckling load is therefore greater 

than that of the actual frame. SimilalPIVot lower bound is obtained by 

comparison with a less stiff mathematical model. Since the individual 

elements of the two linearized matrices are parallel, the curves of 

their latent roots against load are in general also parallel. The 

geometrical construction to find a lower bound makes uae only of the 

curve for the stiffer frame and one point on the exact curve, but the 

essential ideas are the same; it is merely a convenient numerical 

technique for those cases in which a lower bound is required. As 

stated before, the upper bound process alone can be used to converge 

towards the exact budkling load and mode. 

3.6 COMPUTATIONAL PROCEDURES 

Several numerical techniques suggest themselves to calculate 

the buckling load and mode from the linearized stiffness matrices. Some 

of these are briefly described in this section, and later applied to 

examples. 

(a) Latent  root plot  

This scheme was used at first as it appears to be the most 

profitable method of hand computation. The parallel shift method is 

used to calculate theshallest latent root for a number of load 

values, and the buckling load is determined graphically as the load 
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at whichthe smallest latent root is zero. The chief advantage of 

the linearized matrix in this method arises from the savings in 

computation, because the elements of the matrix are readily calculated, 

in contrast with the exact matrix whose setting up requires a much 

more extensive use of tables of stability functions. A further advantage 

is that the approximate latent root curve is more nearly linear, in 

fact quite often it is linear to sliderule accuracy, so that fewer points 

suffice to plot the curve. The buckling mode is obtained as the latent 

vector corresponding to the 'zero latent root. Convergence of the 

iterative technique to extract the smallest latent root is speeded 

up by using trial vectors resembling the buckling mode, and this 
information can be obtained from simple tests on inexpensive models, 
usually made of cardboard or wires. 

At first one might expect the latent root plot for the 

linearized stiffness matrix to vary exactly linearly with load. 

Unfortunately this is so only if the mode, or latent vector, is 

independent of load,whichis generally not the case. However in 

most problems the variation of mode with load is not seveie, so 

that the approximately calculated latent root does in fact vary more 
nearly linearly with load than the exact plot. 

Another possible feature of the linearized stiffness matrix 

is that the slope of the latent root plot be related to the latent roots 

of the matrix of the coefficients of load, but here again this is not 
the case unless the associated latent vectors of the two matrices are 

the same. Wittrick (reference 5) has shown that the slope of the plot 

at any load is given by 	expression 

9A/aW= 	B . n 
^, 

where x is the normalized latent vector, ; 111  is its transpose, and 21 
is the matrix of coefficients of load, that is B= 270W. This is the 

quickest available method for calculating the slope of the latent root 

plot, and this, together with the value of the latent root, gives an 

estimate of the buckling load which is usually only a little above the 

more accurate upper bound value. The technique can be used repetitively 

to calculate the upper bound exactly, the process being akin to the 

Newton method for solving equations of the type f(x) = 0 . 

(b) Matrix inver ion - multi lication 

The linearized equations of equilibrium (3.20) can be written 

in the form 

(3.23) 

- 	) 	= 	 (3.24) 
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ih which A, B are symmetric matrices, the elements of A being the 

intercept values of the linear approximations, and the elements 
no 

of B being the slope values. When both sides of this equation 

are multiplied by the inverse of 1% denoted by 2 :-.1 	and divided 

by the scalar load parameter W, we obtain 

—1 ^' (A .B 1/W I) 	x = 0 

where l' is the unit matrix. From this it is seen that the latent 

roots of the matrix (A B) are the reciprocals of the buckling 
loads, and the smallest buckling load therefore is obtained as the 

reciprocal of the largest latent root; the buckling modes are the 

associated latent vectors. A feature of this method is that all 

the buckling modes and loads are obtained, and the technique is 
advantageous if an electronic digital computer is available, but 

matrix inversion and 'multiplication by hand computation are to be 

avoided because of the large number of calculations in which there 

is no physical intuition to guide the human computers 

(3. 25) 

(c) Gravest mode intensification 

This method is described by Allen (reference 6), and is 

frequently used in problems involving linear algebraic equations of 

the type 

A. Svc = W(g e‘X) 	 (3.26) 

such as arise also in vibration studies. It is essentially similar 

to that above; some trial mode, represented by the vector 7, is 
substituted on the right hand side of equations (3.26) and a new 

mode is calculated by solving the equations thus obtained. This 

mode is then used in the original equations ,  again, and another mode 

is calculated, and so on. The process can be shown to converge towards 

the fundamental buckling mode. Once the mode has been determined 

reasonably accurately, it is an easy matter to calculate the buckling 

load, usually from the sod-called Rayleigh quotient, that is 

W = (A. x) .x/(B  cr 

 

 

(3.27) 

This expression is readily identified as a linear combination of all 

the equations of equilibrium, using the mode as the weighting function. 

It is also the equation of conservation of strain energy. Any errors in 

the mode increase the value for W cr p that is, the Rayleigh quotient 

provides an upper bound. 
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The rate of convergence to the gravest mode depends on the 

ratio of the first two buckling loads. Clearly if these two loads 

are close together, the convergence rate is extremely slow, and the 

equations need to be solved many times. Since the left hand side 

always remains the same, the process becomes inefficient, and it seems 

locical to solve these equations once and for all, which brings us 

again to the method of matrix inversion. 

(d) Iterative method  

A further simplification of the equations of equilibrium 

is affected by linearizing only the elements on the leading diagonal 

of the stiffness matrix, leaving the off diagonal elements constant 

at a reasonable load value. After dividing each equation by minus 

the coefficient of W on the diagonal, it is seen that the buckling 

loads can be obtained as the latent roots of the resulting matrix. 

However, frequently some of these are negative so that Gregory's 

shift method then yields the largest negative buckling load. An 
alternative procedure, overcoming this difficulty is to rearrange 

equations (3.24) in the form 

(C - i/w Z) 

where C and D are the matrices obtained from A and B by dividing each 

equation by W and by the value of the element of A on the leading 

diagonal. A trial value for W is then chosen andthe off diagonal 

elements are calculated, after which a new value for W is calculated 

as the reciprocal of the largest latent root of the resulting matrix. 

This is then used to modify the off-diagonal elements and the largest 

latent root is again extracted, and so on until agreement is reached. 

As before, the buckling mode is the associated latent vector. 

If the numerically largest latent root is negative in this 

method, a shift of the elements on the diagonal must be used in order 
to obtain the largest positive latent root. 

(3.28) 
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Any of the above or other techniques are useful for the 
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and Chandler's tables (reference 7)]. The linearized stability functions 

are shown in table (3.1) 

Member s sc . . 

AE, BC 6.28 - 6.14p 0.18 + 334( 

AB 4.28 - 1.81p 1.81 + 0.657f) 

AD, BC 4.00 ;100 

CD, DE 4.04 + 1.17/D 1.98 - 0.247/3  

Example:  for member AE 

the stiffness is 

s = 6.28 - 3.07 

= 6.28 - 6.14/7 

Table 3.1 - Linearized stability functions  

in which/0 is a general load parameter for the frame, in this case the 

P/9 ratio of member AB; the P/Q ratios of the remaining members bear 

the same ratio to pas do the axial forces since El and I are the same 

for all members. The linearized stiffness matrix is set up columnwise, 

by applying a unit rotation at each joint in turn; this can be done 

by adding the relevant stability functions shown in the table, and 

the result is 

(14.56 - 7.95p)(1.81 + 0.66p)( 	o  )(2.00 	)(0.18 + 3.340) 

(1.81 + 0.66()(l4.56- 7.95)0)(0.18 + 3.340)(2.00 	)( 	0 	) 

( 	0 	)(0.18 + 3.34(.)(l0.32- 4.98p)(1.98 - 0.25p)( 	0 	) 

(2.00 	)(2.00 	)(1.98 - 0.250(16.08 +2.34p)(1.98 - 0.2;0) 

(0.18 + 3.34p)(  0  )(  0  )(1.98 - 0.210)(10.32- 4.98,0) 

= 

(3.29) 

where the term (BI/1) has been dropped for convenience. 

From this (5 x 5) stiffness matrix with linear elements we can 

deduce five buckling modes each associated with a critical value of the 

parameterp for which the determinant vanishes. Obviously for a symmetrical 

structure symmetrically loaded the modes are either symmetric or antisymmetric, 

and for this reason these two possibilities are treated separately; this 

procedure has the additional advantage of leading to smaller matrices. 

(a) Antisymmetric mpdes  

The antisymmetric modes are characterized by the relations 

0 =  A'E -  C 

so that the matrix is reduced to one of third order and we obtain 

3.30) 

(16.37 

(0.18 

(2.00 

- 7.29P)(0.18 + 3.34p)(2.00 

+ 3.34p)(10.32- 4.98p)(1.98 

)(1.98  0.2)0(8.04 

- 0.25p) 

+ 1.17p) 

(3 .31) 
rce 
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where the last row has been divided by 2 to preserve symmetry of the 

matrix. 

In this particular case the determinant is readily handled by 

expansion, and, by equating the resulting cubic polynomial to zero, we 
obtain the buckling loads as the roots of the equation 

0 3  + 0.19p2  - 32.9()+ 42.2 = 0 	(3032) 

The lowest root corresponds to the fundamental antisymmetric buckling 

mode, and a trial and error solution gives 

= 1.37 

which is an upper bound for the first antisymmetric buckling load. 

The remaining two roots of the cubic equation are evit= 6.39, and 
(15 = -4. 83; the last of these represents a mode with the primary 

loading reversed. 

(3.33) 

(b) flriall2LEi2_022.1ftA 
These modes satisfy the relations 

eB  = - 0A  • e = _ e 	• 0 = 	(3034) 'E 	C' 	D 

and this information reduces the stiffness matrix to one of second 

order whose roots, obtained by expansion of the determinant, are 

p2  = 1.12 and p3  = 3.72 	(3.35) 

From the above two separate analyses it follows that the fundamental 

buckling mode of the Warren truss is symmetric, and an upper bound for 

its buckling load is 1.12. However, the first guess for this parameter 

was 1.00, and the difference between the tangents and the stability functions 

is very small over this range of load, so that the above result may be 

taken as exact to slide rule accuracy. 

Substitution of this value in equations (3.29) together with 

equations (3.34) gives the buckling mode as 

-1 : 0.812 : 0 	-0.812 (3.36) 

and the associated buckling load is 

W = 19.2 El/i2  cr (3.37) 
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3.8-  ROOF TRUSS BUCKLING IN ITS PLANE 

(a) Analysis 

This particular problem has been solved by various methods 

(see for example references 8 and 9), and it provides an excellent 

example of the power of the linearization method used in conjunction 

with model test information to speed up convergence of iterative 
latent rootextraction techniques. The truss, its loading and joint 

notation are shown in figure (3.5), and the member properties together 

Sigure 3.5 - Roof  truss 

with the axial. idkds are given in table (3.2). Young's modulus is - 
taken as that of mild steel, E = 30,000-k.s.i. 

Member 
1
(in.) 

T , 
(id') 

k =EI/1 
(in-kip) 

Q =WEI/12  
(kip) 

P 
(kip) 

P/Q. 

AB, A'B' 129.24 5.20 1207 92.1 4.44W 4.82w 

BC, BIC 129.24 5.20 1207 92.1 2.96W 3.21w 

AD, A'D' 120.00 4.40 1100 90.5 -4. 13W -4.56w 

DE, DIE 120.00 4.40 1100 90.5 -4.13W -4.56w 

BD, BID' 48.00 0.70 438 90.0 -1.00W -1.11w 

BE, B'E 129.24 1.96 455 34.8 1.48W , 4.26w 

CE 96.00 0.96 300 30.9 -2.10W -6.80w)  

Note w = W/100 

Table (3.2)  - Data for r22L1Eusa  
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For the 441rpose of setting up a linearized stiffness matrix, 

it remains to select a suitable trial load. Normally a reasonable 
estimate can be made based on engineering judgement; in this case for 

example a good guess would be the load to make the largest P/Q ratio 

(in compression) about 1.5. However, in order to demonstrate the upper 

and lower bound technique, a somewhat poorer value is used. It was 

pointed out in section (3 03) that the guessing of a P/Q ratio merely 

defines the deflected shape of a member in terms of its end slopes. 
In this context it is quite legitimate to use PA . ratios which do not 
conform to the primary load analysis, although this 1.0 of.course 

desirable in subsequent trials. The linearized stiffness matrix for 

the roof truss set up with P/Q = 1 in compression members and PA = 0 

in tension members, is given overleaf. 

From model tests it was found that the truss bucklas in an 
antisymmetric mode, and this valuable piece of information is used to 

reduce the matrix to one of order five, namely 

(

9560 	2190) ( 0 	')(2200 ) ( 61 

 

-393 01,7.1 (3830w 	/-1650'n/  

(2190 ) (14020 ) ( 	2 190)( 876 ) t 82 

+3830w 	-20400w 	+2550w -160w 	kt1270w 

( 0 ) (2190 
	5760 i 

+2550w) (-568014.A 0 ) (3

33060w) 

(2200 \ (876 :) ( 	)(10550 .  \(2200 )

-160w 	0 +13840w/ -16504/ 

( 0 ) (r,  825 	) .(: 	300 '4)(2200 \( ,6950 

	

+127O) 	-1650w) +4430w 

-9  - 

A 

 

 

eB 

9D 

9E 

 

(3.39) 

     

     

and the antisymmetryc onditions are expressed by the equations 

qkt - 	OB' = 0B ; 	= elb 

In deriving equations (3.39) from (3.38), and third and 

fifth rows of the final equations were divided by 2 to preserve symmetry 

of the matrix. 

Before embarking on the numerical solution of these equations 

it is well to review some of the basic properties of matrices: 

(3.40) 
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(i ) 

	

when the leading diagonal of a matrix dominates, that is 

when every term onthe leading diagonal is greater than 

the sum of the remaining terms in the same row or column, 

the determinant is positive, and the frame is therefore 

stable0 

if any of the terms on the leading diagonal are zero or 

negative, then the frame is unstable. 

. These facts are well known (see for example reference 10) and are 

useful aids in this type of problem especially because the elements 

are in linearized form, thus enabling quick estimates of both 

upper and lower bounds, which in turn provide a means of assessing 

whether or not the first guess to set up the equations was a "good"' 

one. From equations (3.39) it is seen that dominance of the leading 

diagonal ceases at about w = 0.28 in the second row 2  and a negative 

term- on the diagonal first appears at w = 0.69, also in the second 

row. Thus the determinant 'vanishes somewhere between these two 

limits. The middle of the range is w = 0.48, and this corresponds 

to PA ratios of 2.3, 1.55, 0.24 respectively in the compression 

members AB, BC, BE; this at once confirms that the first guess 
was poor, as it was intended to be. 

An upper bound for the buckling load is obtained by 
extrapolation from two points on the latent root curve above the 

load axis; from the above calculations, the points at w = 0.3 

and 0.4 should be adequate. The smallest latent roots at these 

points are extracted by a standard process using Gregory's 

parallel shift and using crude model measurements as a starting 

vector, that is 

eA 	e 	• e 	OD : 9E  k.o.5 : 1 	: 0.1 : -0.2 B 	C  

In both cases slide rule calculations give reasonable convergence 

(about 5%) after eight iterations, and at that stage a good estimate 

for the latent root can be obtained by the so-called Rayleigh quotient. 

The calculations give 

	

I- 	• 	= -0.388 : 0.737 : -1 : 0.019 : -0.113 A0.3  _ 1927 2  x03 . 
(3.41) 

Al 04  - 481 •  

	

- 	 x
04 

= -0.449 : 0.935 : -1 : 0.008 : -0.131 . . 
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Extrapolation from these two points gives an upper bound for the 
buckling load as 

wt r = 0.433 or 	= 43.3 kips. c 	cr 

the slope of the straight line through these points being -1446. 

The exact stiffness matrix is then set up at this load, 
and using the same value for the shift, and the vector extrapolated 

from (3.41) to start the iteration process, convergence is achieved 
in only four cycles, giving 

A  - 
- ,1200 0.433  

This represents the point P on the exact curve in figure (303), and 

the negative sign confirms that the load W = 4303 kips is an upper 
bound.. From the intersection on the load axis of the line through 

this point and of slope -1446, we obtain a lower bound of 3500 kips. 
Thus finally 

35.04 W<  43.3 kips cr 

The difference between these two bounds is about 20%, which is 
reasonable considering the poor guess to set up the linearized 

stiffness matrix. Also, from several examples solved by this 

method, it has been found that the mean of the two bounds is 

usually very close to the exact value for the buckling load, 

that is 

(3.42) 

(3.43) 

(3.44) 

Wcr 	3902 kips. 	 (3.45) 

This in in fact exactly the value quoted by McMinn (reference 9) 0  

Rather than repeating all the calculations with W = 39.2 
kips as a new trial load, improved bounds are obtained by calculating 
one additional point on the exact curve at W = 39.2 kips. From the 

exact stiffness matrix set up at this load the smallest latent root is 

calculated as 
A 	= 0.392 

This is negative so that 39.2 kips is an upper bound. A new lower 
bound is determined from the intersection on the load axis of the 

straight line through this point and having the same slope as the 

line used for extrapolation, i.e. -1446. This gives 

(3.46) 

38.84 Wcr<  39.2 kips. 	 (3.47) 
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The difference between these two values is only 1% so that the buckling 

load can be taken as the mean of the range, that is 

W
r  = 39.0 kips. c 

The buckling mode is approximately the latent vector of the stiffness 
matrix set up at W = 39.2, which is 

(3.48) 

OB 	: 8D  : OE  , -0.580 : 1 : -0.902 : 0.033 : -0.155 	(3.49) 

and 	= elk  61; = 913  3  = eb 

(b) Experimental work 

A model of the roof truss was made from 16SWG and 18SWG strips 

of mild steel plate cut to the required width. The spatial dimensions 

were scaled down by a factor of 12, and the second moments of area by 

apprdately a factor of 400,000. The El values of the model members 
were determined from measurement of deflections on simply supported, 
centrally loaded beams. Since the buckling load depends on the P/Q 

ratio of the members, the scale factor for the buckling load is given 

by 

R = ( Ti2E1/12 ) tual/( 92E1/12 )model ac  

The values of R for the individual members are shown in table (3 3)) 
from which it is seen that there is considerable variation, Nevertheless 

Member R 

AB, A'B' 2860 

BC, BIC 2860 

AD, AID' 2810 

DE, DIE 2810 

BD, BID ,  2340 
BE, BIE 2310 
CE 2340 

Average R = 2630 

Table 3.3 7  Scale factors 

the model is a fair approximation to the actual truss. Also in this 

scaling down of the roof truss no attention has been paid to the 

relative l/r ratios of the members; this could alter appreciably 

the measured behaviour. 
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The truss was loaded with deadweights, and the response was 

measured by means of Huggenberger tensometers, opposing pairs being 

located on members BC and B 1 C, and a single instrument on members 
AB and A'13', lack of space preVsnting the use of a pair on these 

members. The location of the gauges was chosen approximately at the 

points of greatest curvature, judged by eye. 

The Huggenberger gauges measure the total strain 6 ; the 

buckling component of the strain, E is determined from this by-allowing 

for the component due to the axial load, that is 

i 

where P is the axial load in the member, and A is its area. 

The Southwell plot on strains is the graph of (EVP) 

against E l  . A typical plot obtained from two opposing tensometers 

is shown in figures (3.6) and (3.7). The line P/EA in figure (3.6) 

nearly bisects the two strain plots, which is a partial check on the 

proper functioning of the gauges. The average of the tensile and 

compressive strains was used to derive the Southwell plot. In the 

(3.50) 

0.6 

Oaf 

O.R 

.k4/51.1 	. 	511 	. 	et  COn&A 
3 	0 

-0.3 -0.2 -04  0  OA aR 0.3 atom . 

figure 3.6 - Strain in member BIC  

OA  0.2 	0.3 X10-3  

figure 3.7 - Southwell plot 
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low- load region this plot is not linear, which is assumed to be due 

to initial imperfections of a kind tending to set the frame off in a 

higher buckling mode. From the linear pOrtion of the Southwell plot 

the buckling value of the axial load in member B'C is obtained as the 

inverse slope, and the buckling load for the frame is calculated from 

this as 

(Wcr )m0del = 14.6 lbs. 

The Southwell plots from the remaining tensometer readings gave the 

buckling load of the model as 14.9, 13.6, 13.3 lbs., the last two 

being for the single tensometers on members AB, A'B'. 

Taking the mean of these results we have as an estimate 

of the buckling load of the model 

(W)dl = 14.1 lbs. 

This value is related to the buckling load of the actual truss by the 

scale factor of table (3.3) which, for the whole frame, averages to 

2630. However, since the behaviour of the frame depends to a greater 

extent on the stiffness of the compression members, it seems better 

to take the average value for the compression members only, that is 

2680. This gives the buckling load for the actual truss as 

. 37.8 kips. cr 

which is in excellent agreement with the predicted value of 39.0 kips. 

The model collpased in the test at a load of just over 

13 lbs. Subsequent measurements revealed a severe local thinning of 

member AB at approximately one quarter of its length from A, and the 

failure is attributed to this. Nevertheless the load applied covers a 

sufficient portion of the buckling load to justify the use of Sauthwell 

plots. 

(3.51) 

( 3.52 ) 

(3.53) 
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TWO-STOREY RECTANGULAR PORTAL FRAME  

As an example involving sidesway, consider the buckling in 

its plane of the frame shown in figure (3.8). The generalized displacements 

together with their corresponding generalized forces at the joints are 

El = constant 

h = 1 

Axial loads are shown in 

parentheses at the centres 

of the members. 

figure ).8 - Portal frame 

included in the figure, six in all. 

In problems involving away, the P/Q ratio in the members 

is usually considerably less than unity and a value of 0.5 is a 

convenient one for setting up the linearized stiffness matrix. 

Proceeding in the usual way, we obtain the following linear 

coefficients 

o 

( 6.02 

2.00 ) 

o 

( 12.1 

3.04,0J 

( 1.97 
k.+0.455p / 

Writing this in matrix notation, and equating to zero the disturbing 

forces, we put this in the form 

= 	• l*c* 
	

(3.55; 



= 0.357 -0.014 0.026 -0.014 0.949 ' 	0.026 

-0.446 :2.12 -0.003 0.065 -0.003 0.065 

0.091 -0.718 0.285 -0.103 -0.053 -0.003 

0.709 -0.820 -0.144 0.204 0.040 -0.078 

0.091 -0.718 -0.053 -0.003 0.285 -0.103 

0.709 -0.820 0.040 -0.078 -0.144 0.204 

(143) A /1 1 
A 2/1 

0 1 
9 2 
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in which SE is the vector of the generalized joint displitcements and A and 
Bare the component matrices in equations (3054)0  The solution of equations 

(3055) is contained in the equation 

(10 = (11=1 7):; 	(. 3.56) 

'9 1 	el 	; 912 

in which A denotes the inverse of the matrix A. This solution is most 

easily achieved by Gaussian elimination, details of which are found in 
most standard textbooks on numerical methods. In this case we obtain 

From physical considerations this matrix should possess a number of 

reciprocity relations; in this case there are 16, for example the 

effect of 01  : on 02  should be the same as the effect of 9i on 92 , 
1 and the effect of A on 8 should be the same as A on e and so on. 1 	1 	1 

Although these equalities were not obtained due to rounding-off errors, 

they have been included in equations (3.57) by averaging the differences, 

which in no case amounted to more than 3%. 

The fundamental buckling load is seen to be the reciprocal of 

the largest latent root of the matrix in (3.57) and the mode is the 

associated latent vector. 

On a crude cardboard model the mode was observed to be antisymmetric, 

that is 

= 2 
	 (3.58) 

Using this information, the above (6 x 6) matrix is reduced to the (4 x 4) 

matrix 

(i/p) 

A2/1 

91 

2 _ 

0.949 

-0.446 

0.091 

0.709 

0.357 

2.12 

-0.718 

-0.820 

-0.028 

-0.006 

00232 

-0.104 

0.052 

0.130 

-0.106 

0.126 

A 1 /1 

A 2/1 

9 2 - 

(3. 59) 



Rough measurements on the model gave the modal vector approximately as 

	

(0.4 	1 	-0.5 	-0.3) 	(3.60) 

Multiplying this into the matrix (3.59) we obtain the vector 

1.908 	(0.386 	1 	-0.402 	-0.274) 
	

(3.61) 

where the factor 1.908 is chosen merely to reduce the largest element 

of the vector to unity so that the vector can be ttompared with the 

previous vector. This factor is also an estimate of the latent root 

at this stage. Continuing the process, we find in succession the vectors 

1.916 

1.919 

1.922 

1924. 
1924. 

(0.376 

(0.370 

(0.366 

(0.364 
(0.363 

1 

1 

1 
1 

1 

-0.390 

-0.388 

-0.387 
-0.386 

-0.386 

-0.281) 

-0.286) 

-0.288) 
-0.290 

-0.290) 

(3.62) 

Thus the process has converged after only six iterations, the fundamental 

buckling mode being the last vector, and the corresponding buckling load 

is the reciprocal of the largest latent root, that is 

Pcr = 1/1.924 = 0.520 	 (3.63) 

As a check on the arithmetic, the above mode is substituted in the equation 

of conservation of energy, (see equation 3.27) using the matrices A and B 

of equation (3.55), yielding 

0 fcr =.521  

which agrees with the previous value. 

(3.64) 

It is to be noted that in this example the condition of symmetry 

could have been fed in at an earlier stage, namely after setting up the 

complete (6 x 6) stiffness matrix. This reduces it to a (4 x 4) matrix, 

which would save a considerable amount of arithmetic in deriving the 
^' matrix (A ' . B). 

3.10 TETRAHEDRAL FRAME 

As an introduction to buckling in three dimensions, the stability 

of the tetrahedral frame of figure (3.9) is investigated. The frame is 

supported in the horizontal plane ABC, and loaded vertically at the apex 0. 

All members are of equal length 1, and they are of circular cross section, 

so that the bending stiffness El is the same in all directions. The axial 

forces are shown in parentheses at the member centres. • 



El = constant; 

GJ = constant, 
2  Q = EI/12  

k = (El/1); r =GJ/EI 

n is a vector I co -planar 

with OAC, and perpendicu] 

to OC. 

figure 3.9 - Tetrahedral frame 

(a) Analysis  
The buckling mode of this frame is specified by three rotations at 

each of the joints; for convenience in setting up the stiffness matrix, the 

rotations are chosen so that the vectors representing them lie along the axes 

of the members framing into the joint, the positive directions being away 

from the joint according to the right hand screw rule. Notation is by means 

of doubly subscripted variables, the first subscript denotes the joint and 

the second subscript deontes the direction of the rotation vector. 

As the frame deforms, the members twist as well as bend, and the 

bending is non-planar unless the rotation vectors at opposite ends are co-

planar. 

The stiffness matrix is most easily set up by applying each of the 

twelve rotations in turn. The unit rotation vector is resolved into directions 
along and perpendicular to each of the members meeting at the joint. The former 

rotation produces equal and opposite end torques T A 1  TB which are expressed 

in terms of the twist by means of the relation 

T=. (G.J/1)(1) 	 (3.65) 

where GJ is the torsional stiffness, and cp is the angle of twist. The 
rotation vector perpendicular to the member produces bending in the plane 

perpendicular to that vector, and the bending moments MA , MB  are determined 

from the usual relations 

MA  = (EI/1)(s(?) 

MB = (EI/1)(sc lii 
(3.66) 
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where s and sc are the stability functions, linearized at some trial load, 

and If is the angle of bending. The end Moments and torques are resolved 

back - into the directions of the rotation vectors, and summation gives the 

moment vectors corresponding to the joint rotations. The, angles involved 

in the resolution of rotations and moments are mostly either 30
0  or 600 .. 

One other angle is needed, this is the angle between a vector which is 

. perpendicular to one of, and co-planar with, three members making up a 

,plane and the Vector along the member not lying in the same plane; e.g. 

angle uuin figure (309) between OB and the vector riwhich lies in the 

plane OAC and which is penpendicular to OC. The cosine of this angle 

is ( 1/5/6). 

It is obvious that the buckling load for this tetrahedral frame 

must be such as to produce a (P/Q) ratio somewhere between 1.0 and 2.05 

In the compression members. Thus a trial load of P = 1.5Q ought to be a 

good one. For this value the linearized stability functions are 

5+1, = 4.86 - 2.27p ; 8_1)/3  = 4.04 4- 0.390e 

sc+p  = 1.366+ l000y ; 80.4)/3  = 1.980- 0.082f 

The following calculations give an indication of how eapily the stiffness 

matrix is set up; for example for a unit rotation eu, with all other 

rotations zero, we have 

4) OA = 1  

+0B = 410C 	YOB - WOO - 11.5/2  
The end moments an torques are 

TAO= TOA= r kkA '0A ksp 9' OA; mA0 = k sci.p  1.1r6A  

tr TBO= TOB= r 140B ; mOB= ks+PV0B; mB0 = k sc+poB  

sc T CO= TOC= r 140C ; mOc=  ks 	= k+p 'roc; mco 	piroc 

All other torques and end moments are zero because ,,they involve only rotations 

which are zero. The joint moments areobtained by summation as follows: 

MOA= TOA4  TOB 4  TOO+ °m0A+6/2  m0B447/2m0C = k(1.50r + 7.29 - 3.41r ) 

moB=e0A+ ToB ti T00+(376m
OA

+ 
 ° m0B1-°/6m0C = k(1.25r + 1.22 - 0.568f) 

MOC4T0A4  TOB 	TOC47/6m0.11447/6 m0B+  ° 1110C = k(1.25r + 1.22 - 0.5616) 

MAO= • +O AO AO Dm AO 

MA= ITA0 43/6  mA0 

MAC= 1-TAO +67- 6  mA0 

= k(1000r) 

= k(0.50r) 

= k(0.50r) 

(3.67 



= T 

 

BO  BO 

M..  = e BO +1372  BO BA  

m
BC 

= BO 4/6 mB0 2  

pl = T 

	

CO 	CO 

+072 mC0 MCA =, ea)  

= 	14.7! 

 

MOB  mC0 

= . k(9.50r) 

= k(0.25r +1.02 +0.754p) 

= k(0.25r +0.34 +0.252p) 

= k(0.50r) 	(3.67 
dontid.) 

= k(0.25r + 1.02 +0.754 

= k(0'025r + 0.34 +0.2520 
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This completes one column of the stiffness matrix. Similar calculations for 

the remaining rotations give .  the complete linearized stiffness matrix, which 

is not shown here for reasons of insufficient space ona single page. Several 

of the columns of the matrix can be written down by a cyclic interchange 

of the subscript of.the variables in earlier columns, and an interesting 

point is that there are only eleven different elements, each occurring 

several times within the matrix. 

From thestson a light wire model it was found that the frame 

lwitles symmetrically in the following manner: 

• 

90A AO = 	; 90C = -90B ; 9C0 = -14B0 

= -6 BC = -9BA 	9A0 = -9AB 
(3.68) 

This information is used to reduce the linearized stiffness matrix to one 

of fifth order namely: 

/6.25 	( 0.683 X 0.335) (-0.174 V-0.857 
t._2.84)Vo.5o2p 	J -0.2521))\--0.754e 

0.683) ( 5.63 )(-0.328 ) 	X-1.328 
Vo.5o2e)V.842eA+0.021( 0 	0 0 335 +0.062 

(0.335)f_0.328\(5.42 k 5.42 	1.185 X1.513 
4.0.021p)V0.647()+o.ii 8p +0.098p 

(-0.174 )( 0.335  )( 1.185 )(  6.03 V 1.715 
-0.252()) 	+0.118p -1.348(A-0.568p 

(-0.857 )(-1.328)(1.513 )(. 1.715 	7.01 

-1-0.062p) +0.098p ...o.568() -1.410 

0 

9 

9,30 
	 (3.69) 

°BA 

0 

Alma 	 ••■■• 

In these equations the measured numerical value of 0.670 for r has been 

used, and the factor k = El/1 has been cancelled. To determine the buckling 

mode and load these equations are rearranged by dividing each equation by 

minus io times the constant term of the element on the leading diagonalaiving 



e0B 

eAB  

eBO 

e BA 

0.454 

• 

-0.0892 

-0.1212p 

0.0617p 

0..0417 

+0.0289p 

0.1076 

+0.1223p 

-0.0805 

-0.1093P 

0.1497 

-0.0038 

+0.0605p 

-0.0556p 

-0.0088 

+0.1892p 

-0.0536p 

-0.0037 

+0.0582p 

-0.1193 

-0.0196 
...0.1966p 

-0.0139 

-0.216p 

0.0403 

+0.0278p 

-0. 0595P 

-0.0218 

-0.218p 

0.224 

0.0810 

-0.244P 

0.1207 

+0.1361p 

-0.0110 

+0.234P 

-0.0180 

-0.279p 

0.0942 

-0.284 

0.201 
°BC 

(3.70) 

GOB 

eAB  

eB0 

°BA 

eBC 

■•■•••/ 
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In these equations, p is the inverse load parameter, (140), so that 

the fundamental buckling mode corresponds to the largest value of p 

satisfying equations (3.70). This can be determined iteratively as 

follows: a guessed value of p is inserted on the left hand side of 

the equations which are then seen to be a formulation of the usual 

latent root problems. The largest latent root of the matrix is then 

extracted by the usual process, and if this does not agree with the 

guessed value it is used as a new value, and so on until satisfactory 

agreement is reached. 

The stiffness matrix of equations (3.69) was derived for 

P= 1.5, and this value is also used as a starting point in the above 

scheme. With p = (111.5), the matrix on the left side of equations 

(3.70) becomes: 

-0.1700 

r0
0.454 

-0.412 

0.0610 

0.1891 

-0.1534 

0.1497 

0.0365 

-0.0371 

0.1174 

-0.0358 

0.0351 

-0.1193 

-0.1506 

-0.1579 

0.0588 

-0.0397 

-0.1672 

0.224 

-0.0817 

(3.71: 

0.212 

0.1451 

-0.204 

-0.0951 

0.201 

As a starting vector in the largest latent root extraction proted4re 

we use results of rough measurements on the model, that is 

	

(1 	 -0.2 	-0.2 

and compute in succession the vectors 

	

0.604 	(1 	-0.229 	-0.237 

	

0.606 	(1 	-0.243 	-0.230 

	

0.606 	(1 	-0.252 	-0.232 

0.1 

0.121 

0.143 

0.153 

0.5) 

0.479) 

0.462) 

0.459) 

(3.72 
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At this stage the process has already converged satisfactorily, and the 

largest latent root equals 0.606 which is about 10% below the guessed 

value 0.667. The new value of p is substituted in equations (3.70) and 

the extraction process is continued with the last vector as a starting 

point. After three iterations it is found that the value of p is 0.598 

which differs only 1.3% from the previous value. However, one more cycle 

is performed and a further two iterations to extract the largest latent 

root agree to within 1%. The value of p obtained is 0.597 so that the 

buckling load is 

per  = 1/0.597 = 1.675 

or 	= 40.5 El/i2 
	

(3.73) 

and the buckling mode is given by the ratios 

e0B 	eAB 	6E30 	e  : 	eBA 	BC : 	= 1 : -0.262 : -0.212 : 0.170 :0.436 (3.7/ 

Although the value of 1.675 for the load parameter is an upper bound, it 

does not differ significantly from the trial value 1050; the errors due 

to the linearization of the stability functions over this range are 

negligible. As a check on computations, the buckling mode (3.74) is 

substituted in the equation of Conservation of energy using the original 

matrices X and of equations (3.69); this gives pa  = 1.660 which is 

almost the same as above. 

(b) Model Testis  

A model of the tetrahedral frame was constructed from 1/8 in. diameter 

bronze welding rods )  17.9 in. long. El and GJ were measured from bending 
and torsion tests, and verified by vibration tests. The two tests agreed 

to within 2%, and the average values obtained were 

	

El = 203 lb e 1n2 	GJ = 136 lb.1n2 0 

giving r = GJ/EI = 0.670. 

Based on simple elastic theory this value corresponds to a Poisson ratio 

of 0.49 which seems rather high. However, tests on similar rods gave 

Poisson ratios as high as 0.72 in some instances, which is of course 

impossible according to theory. Some of these rods were examined under 

the microscope, and it was found that the outer circular layer, about 

0.005 in. thick, exhibited a much finer crystal structure than the body 

of the material. It is suspected that this layer has a lower stiffness; 

thig would lower GJ proportionately more than El, and hence the high 

apparent Poisson ratio. A 3/16in. diameter rod was tested and gave 

El = 915 lbs.in2 , GJ = 530 1b.in2 ; these figures correspond to a 



-0—member OC 
-a- member- OA 
-o- member-05 

2 

e-P/EA 

.5 
10X10 

-13 

6 
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Poisson ratio of 0.72. The rod was then turned down in a lathe to 

1/8in0 diameter, and this had stiffnesses El = 160 1b0in2, GJ=118 lb ein2 0 , 

which gives a Poisson ratio of 0.36. This test confirms the effect 
of the weak outer layer on the standard bronze welding rods. 

The tetrahedral frame was set up on flexible rubber supports, 

and Huggenberger tensometers were located approximately at the centres 

of the compression members, orientated in planes in which the bending 

was judged by eye to be maximum. The results are shown graphically in 

figure (110) together with the Southwell plots on strains. These are 

It 	6 	
8  X10-4 10 0 

P/EA 

(a) Strain readings 

4 	6 

6 1  P/EA 

(b) Southwell plot 

X10 

close to linear and the buckling load,obtained from the average inverse 

slopes, is 

(W
cr ) exp = 26.1 lbs. 

The calculated value of the buckling load is, from equation (3.73) with 

El = 203 lb 0 in2  and 1 = 17.9 in., 

(W ) cr CALC = 25.7 lbs. 
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The two results are in excellent agreement. Also, the toughly measured 

mode, used as a starting vector in the calculations, does not differ 

greatly from calculated mode. 

3.11 LATERAL BUCKLING OF THROUGH*BRIDGES  

Lateral stability of trusses is a subject which has received 

a considerable amount of attention. One of the earliest attempts at this 

problem was by Engesser (reference 11), who treats the compression chord 

of the truss as a uniform bar under axial load P. Lateral restraint is 

provided by linear springs spaced at equal iutervals along the bar. 

Assuming that the buckled shape of the bar is a series of half-sine 

waves of equal length v, Engesser shows that the buckling load is given 
by 

F
cr = 2 Vic EIJs 
	

( 3 .75) 

where EI c is the flexural rigidity of the compression chord -, k is the 

spring stiffness, and s is the spring spacing. This formula, although 

it is based on a crude model, has the merits of simplicity, and it has 
been shown by Bleich to work well provided the half wave length v is 

greater than 1.8 times the spring spacing. In trusses, the lateral 

restraint is provided by the web members rather than springs, and .diffidulties 

arise in assessing the "equivalent spring" stiffness. The web members also 

provide some rotational restraint and this is not considered in Engesser's 
mathematical model, nor is the twisting of the compression chord. 'These 

deficiencies, together with the fact that the analysis applies only to 

constant axial load- chords, form a serious objection to the use of the 

simple formula. 

Timoshenko (reference 12) provides an improved mathematical model 

by taking intoaccount the variation in axial load along the compression 

chord, such as arises when the truss is loaded uniformly. Twisting of the 

compression chord and rotational restrairlt of the web members are still 

neglected, while the lateral restraint is replaced by a continuous elastic 

. foundation. Again, difficulties arise in practice to estimate the !modulus' 

of this foundation. An infinite Fourier series is used to define the buckled 

shape,and the Fourier coefficients are determined from miniMum strain energy 

conditions. Quite reasonable estimates of the buckling load are obtained 

from only two terms in the series, but the accuracy, depends to a large 

extent on the accuracy of the calculated equivalent foundation modulus. 
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More recently, Horne (reference 13) presented an analysis 

of lateral stability of tPa'aes which considers the truss as a whole 

unit, rather than just the compression chord as was done by Engesser 

and Timoshenko. 'Horne's analysis takes into account lateral bending 

and twisting of the compression chord and web members, but only 

twisting of the tension chord; lateral bending of the tension chord 

is neglected, justifiably, .since it is usually small due to the 
large restraint provided by floorbeams and by the deck. 

Unfortunately Home's results apply only to uniform compression 

6. ,.Tds under uniform axial load, but Some modified results are 

presented,  for the application to bon-uniform cases. 

The above methods, and also several others not mentioned, 
give an approximate solution for the buckling mode and load of 

trusses. It is difficult to assess their degress of accuracy due 

to the complicated nature of the simplifications made in deriving 

the mathematical modeir; some of the simplifications result in a 

mathematical model which is stiffer than the actual frame, while 

others have a weakening effect. Then again, a strain energy 

analysis usually leads to an upper bound for the buckling load 

of the mathematical model, but with the uncertainty of whether . 

this is stiffer or weaker than the actual truss, it is not 

possible to predict whether the results are safe or unsafe. 

A more exact analysis must necessarily take into 
account the interaction between all the members of the truss, 

together with their stiffness variation with axial load. 

Livesley (reference 14) developed a general computer programme 

for the analysis of structures based on the deformation method. 

This takes into account the above factors and can be used to 

calculate the buckling load and mode of through truss bridges )  

although there is a restriction on the number of joints in the 

frame; the number depends on the storage capacity of the 

machine available. A similar approach is proposed by Schmidt 
and Stevens (reference 15), who present a comparison with 

experimental results and also with an "equivalent elastic 

line theory" for a six bay Warren truss. 

The complete stiffness matrix for this type of structure' 

is generally of high order, and manual computation is out of 

question. However, by using the linear combinations technique 

developed in section (2.7) of this thesis, the number of 

equations is reduced to as few as desired, and by linearizing 

the elements of the stiffness matrix, the buckling load and mode 
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are readily estimated with a slide rule or desk calculator as the 

computing medium. With inexpensive model tests as a guide, the 

important joint displacements and rotations are singled out, and the 

. remainder are grouped as ratios under one or more parameters, Model 

tests are also used to advantage in defining simple functions to 

determine the weighting ratios in the individual groups. In a 

sense this technique is similar to the simplified analysis 

of Engesser and Timoahenko, but differs from them in not neglecting 

the less important deformations of the buckled trues. The buckling 

load, obtained as a .solution of the reduced stiffness matrix, is an 

upper bound, but with good weighting ratios and a reasonable first 

guess to linearize the member stiffnesses, the discrepancy should 

not be large. . 

3.12 TWO-BAY WARREN TRUSS THROUGH-BRIDGE 

As an introductory example, the stability of the bridge 

model shown in figure (3.11) is analyzed. All members are for 

fi.e.2.,11.entslordeiru nodel 

simplicity of the same circular cross section. The bridge is supported 

at the four lower chord end points, and each truss carries a load W at 

the centre of the lower chord and in the plane of the truss. 

A rigorous analysis of this frame requires, in order to 

specify its deformed shape completely, six generalized displacements 

at each joint, namely three translations and three rotations, giving 

a total of sixty deformation parameters for the entire frame. 
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However, some of these can be eliminated and others neglected; from 

the conditions of support the translations at the four corners of 

support are zero, in-plane deformations are negligible, and, assuming 

that the deck is braced, the sidesways of lower chord joints are zero,. 

(In the tests conducted on a model the latter condition was achieved 

by tying cotton threads diagonally across the deck). These simplifications 

are common to most methods of attack on this kind of problem. 

(a) Analysis  

Even With the above simplifications, there remain a total of 

twenty-four generalized displacements to describe the buckled shape of 
the bridge model, namely two rotations at each joint, and a lateral 

displacement at each upper chord joint. Model observations indicated 

that the bridge as a whole buckles symmetrically about its longitudinal 

centreline, and that each truss buckles antisymmetrically out of its 

plane. It is assumed in the following analysis that this is the 

fundamental buckling mode, and six parameters are sufficient to 

describe this mode. These consist of five rotations and one dis- 

placement, as shown in figure (3.12) in which the axial forces are 

also given in parentheses at the centres of the members. Taking 
P = oo6Q as a trial load, where Q is the Euler load of the truss members, 

P = W/V5 
Note: The deformations 

of the other truss are 

equal and opposite to 

these. 

figure 2„,12 Joint rotations and sw 

the linearized stiffness matrix is set up in the manner outlined 

in the previous section. The ratio GJ/EI = 0.835 is used to 

express torques in terms of (El/1), and after dividing some rows 

of the matrix by 2, we obtain the symmetric matrix 



(7.26 V-1 

0. 220p,)+0 

-1.401 / 5 

0. 679p)1 

- 0.139 )(-1 
001 22(3f¼0 

-1.206 y1 

- 0.211pAto 

1.994 )( 
0.140pf 

.401 )(-0.139 )(-1.206 ( 1.994 \ /-0.377 

.679p) +0.122/0)L-0.211p) 	L+0.068p) 

.70 \ (-1.206 \( 1.252 ( 0 )( 0.653 

.174 L-0.2110 L+0.366p) 	0 	\-0.117p) 

.206 	( 9.31 	(-0.013 (-0.133 ( 1.574 .  

.2111)) \-1.186p)\-1-1.1721V \-0.0580 \-0.146p) 

.252 \ (-0.013 \ 8.19 	( 1.205 	1.303 \ 

.366e)L,+1.172p)-0.31op) \-oolop) \-0.018p) 

0 )(-00133 V1.205 ( 6.45 V 0.375 

0 ) -0.058/) _0.1011) V0.8941)iVo.o57p) 

0.377'\f 0.653 ( 1.574 y1.303 	0.375 	0.75341 

+0.068p) -0.117(D) -0.146eA-0.018e) ,+0.057r)) -0.38122 

der 

+1 	0 

0 

+2 

(3.76) 

u.)2  
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In these equations the load parameter/0 is the P/Q ratio of the compression 

members. It is anticipated that the buckling mode is dominated by the sway 

componentA and for this reason the last element is calculated to five 

significant figures, which is probably more than is warranted by taking 

differences of the tabulated stability functions to determine the linear 

approximations. 

In this example the buckling load is determined by Gregory's 

method; a plot of the smallest latent root against the load parameter 

is shown in figure (3.13), and this is seen to be linear to within the 

accuracy of calculations. From the intersection on the load axis the 
k09-84 buckling 34mtsat is obtained as 

01. = 0.611 itt (3.77) 

 

figure 3.13 - Latent root nlot for bridge model  

 



which is known to be an upper bound, but seeing that it is close to the 

trial value of 0.6, it may be taken as exact. In terms of the applied 

load W this gives 

W = 10.5 El/i2 cr 

The buckling mode is taken as the latent vector corresponding to the 

smallest latent root at = 0.6, which is 

(3.78) 

129 
 

2 
:

2 	3 2 
OD 	: 4) :A 	0.019 : 	-0.185 :-O.112 : -0.050: 1 

1 	1  
( 3.79) 

(b) Model tests 

A test model of the through bridge was made having 8 in. long 

truss members and 10 in.floorbeams r  all of 1/16 in. diameter bronze 

welding rods. These light sections were chosen deliberately so that 

the frame could be deformed easily by hand, and the large deformations 

observed permitted a qualitative statement to be made regarding the 

buckling mode which was used in the analysis. Due to the great 

flexibility of this light frame, measuring equipment such as dial 

gauges and Huggenberger tensometers are out of question, and sways 

on the loaded model were measured with a ruler. Since the maximum 

deflections were of the order of 1 inch this simple method proved to 

be sufficiently accurate. It was found that the two outward sways were 

very nearly equal but considerably larger than the inward sways which 

were also nearly equal. The average values are shown in figure (3.14), 

together with the Southwell plots. The latter are seen to be linear 
and parallel to within 1%. From the average slope the buckling load 

was found to be 

W = 2.14 lbs. 
cr, 

Measurement with straight edges and a protractor, with the model 

loaded at 2.05 lbs., gave the buckling mode approximately as 

:4 	W2  t 4)3  : 42  %z" 0 : -1/8 : -1/5 : -1/1O:1/20:1 

which agrees well with the calculated mode. 

A similar piece of, bronze welding rod, when tested in 

tension gave the Young's modulus as E = 1704 x 106 pes.i., whence 
El = 12.62 lb.in2 . El was also measured directly from bending tests 

giving an average value of 12.76 lb.in2. Taking EI = 12.7 lb.in2 op 

the predicted buckling load is, by equation (3.78) 

W = 2.08 lbs 0  cr 

which is in good agreement with the measured value of 2.14 lbs. 



figure 3.14 - Measured swan 

(c) Computer programs 

In a discussion on a publication relating to the work in 

this chapter (reference 16), it was pointed out to the author that 

the calculated buckling load of the two bay Warren truss bridge is 

in error by some 12%. After subsequent private communication it was 

decided to check the calculations in this section by means of the 

electronic digital computing facility. Firstly a program was written 

to determine the buCkling modes and loads of the bridge model by 
extracting all the latent roots and vectors of the matrix (A .B), 
where and are the matrices of equations (3.76),. The program 
used was a standard library procedure which required these matrices 

to be read in as data. The results obtained were identical to those 
calculated on a slide rule; this meant that the matrices themselves 

were in error. A second program was then developed in which the matrix 

elements were generated in the machine and produced as output. Surprisingly 

these matrices agreed fairly closely to those set up by hand as can be seen 

in the following "matrix", in which the differences are expressed as 
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percentages of the exact values; the upper figures are the percentage 
000. 

errors in matrix A, while the lower figures are the percentage errors 

(0.00) 

0.21 

0.31\ (0.07) 

0006) 0.12) symmetric 

0.16\ poon /0.04\ 
0.021 \poo8) V).06/ 

0.07\ (0.03 /6.34) (0.07\ 

0.08) k0.06) k0.18) (3.80) 

0.09\ /0.001 /0.28 

2.29

) 	

) 

(0.91\ (0.03\ 

1.93) 0.00) U.54) k.0.50) 0.38) 

0.05)  (0.06) (4.46) 

0.,0 4  

(0.12) (0.3 7)  (0.00 3) 

0.03 0.01 0.31 0.11 	0.014 

in the matrix IL The correct matrices were then re-used as data for 

the first program to calculate the fundamental buckling mode and load. 

The results obtained were 

411  : 1.01 	W2  :03 : A2  = 0.020 : -00128 : -0.177 : -00110 : -0.051: 1(3.8 

pc, 2 0.689  (3082) 

As can be seen the mode differs little from the one calculated by hand, 
while the buckling load is 12% larger, as was indicated in the discussion 

cited above. 

From these calculations we may conclude that the buckling load 

of this particular frame is very sensitive to small changes in individual 

member stiffnesses,. since the incorrect matrices of equations (3.79) 

could be regarded as correct matrices for a similar frame with slightly 

changed member properties. On the other hand these changes have little 

effect on the buckling mode. 

A third computer program was written to investigate in more 

detail the properties of the latent roots and vectors, and at the same 

time to check the accuracy of the linearization technique. The complete 

(24 x 24) stiffness matrix was generated in the machine using the exact 

stability functions. All its latent roots and vectors were extracted 

for a number of load values using a standard procedure, and the six 

smallest roots were printed as output. These are plotted against the 
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load parameter p in figure (3.15). It is interesting to note the multiple 

intersection points between the curves. Also l the latent vectors ssociated 

with the two least latent roots at low loads Lici not represent the 

3.0 

2.0 

A 
4.0 

0 0.1 	02 	0:3 	0:4 

figure 3.15 - Latent roots of (24 x 24) exact stiffness matrix 

fundamental or second buckling mode. That is, at low loads there are 

deformation patterns to which the frame offers a low stiffness, but 

these stiffnesses decrease only slowly with increasing load and are 

therefore not responsible for buckling. The deformation pattern of 

the first and second buckling modes have relatively higher stiffnesses 

at low loads, but deterioriate much more quickly and vanish earlier. 

From the intersection of the latent root plots on the load axis the 
first and second buckling loads are obtained as 

Ocr)1 = 0.688 ; ( Per ) 2  = 0.800 

The buckling modes are the latent vectors corresponding to the 

associated latent roots at these loads respectively. By interpolation 

between plotted points these are obtained as 

(3.83) 

(0 1 :W1 42 	:03 :A2 )mode 1= 0.020: 

( °1 :(.1A 42 :W2 43 °A2)mode2 0.015: 

-0.128: -0.177: -0.110: -0.051: 	1 

-0.074: -0.166: -0.121: -0.039: 1 
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In both modes the trusses deform,antisymmettically, so that 

51 ; 	 = 02 ; 	= 	; 	= 	; 	= 

The first mode is symmetrical about the bridge centreline while the 

second mode is antisymmetrical; this checks the simplifying statements 

made in part (a) of this section in order to reduce the number of 

unknowns to six. To the accuracy shown, the first mode calculated 
from the exact (24 x 24) stiffness matrix is identical to the approximate 

modt obtained from the linearized stiffness matrices. The second 

mode differs little from the first, the main change being a reduction 

in the tension chord deformations 4) 1  ,Lu i  ,0 3  . This is so because 
in the antisymmetric mode the floor beams have a reversal of curvature 

in the centre, and therefore offer more restraint to the truss. In - 

the test model the floor beams were made of the same material as the 

truss members, but one and a quarter times as long. Consequently 

the resistance offered to the truss deformations at the deck level 

is small. Thus, although the stiffness of the floorbeams is trebled 

in the antisymmetric case, the overall buckling modes do not differ 

much. By the same token the two buckling loads are close together. 

(d) Additional tests 

From the extensive analytical treatment it is evident that 

the buckling load is sensitive to small changes in member properties, 

so that, in order to predict the budding load reliably, the flexural 

and torsional stiffness of every member need to be known accurately. 

Four members were cut from the model and subjected to tension, bending, 

torsion and vibration tests to determine their El and GJ values. The 

results were sufficiently close to warrant the use of the same values' 

for each member. The average values obtained were 

El = 12.20 lb 0 in2  ; GJ = 7.16 lbsin2 . -  

This gives the ratio GJ/EI = 0.587 1  whereas a value of 0.835 was used 

in previous calculations. Repeating the analysis with this value, the 

buckling load is obtained as 

or 

--- 
which is close to the measured value of 2014 lb. It is perhaps 

disturbing to note that the measured value is higher than the calculated 

value; however taking ihto account the sensitivity of the calculated 

value, the difference cannot be regarded as significant. 

Pc/. — 00630 

Wcr = 2.05 lbs. 
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3.13 EIGHT BAY THROUGH TRUSS BRIDGE 

To conclude this chapter, a more realistic frame such as that 

in figure (3.16) is analyzed for stability; the buckling mode and load 

are estimated using linearized stability functions and simple polynomial 

functions to describe approximately the buckled shape. The results are 

compared with experimental work, and the merits of the alternative 

analytical approaches are briefly discussed. 

(a) Description of model 
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figure 3.16 - Through truss bridge 

The tension and compression chords of the model were uniform 

and continuous, each 3/16 in, diameter bronze welding rod. The web was 
made by bending 1/8in. diameter bronze welding rod to about 1/8 in 0  

radius, so that, when assembled, the centrelinesof tiw members intersected. 

Connecting the two trusses were floor beams made of 3/16 in. diameter bronze 

welding rods; these were connected below the tension chord so that some 

small eccentricity existed, but this was not deemed serious. All joints 

were silver soldered, and the finished model had a maximum initial 

crookedness of approximately 1/16 inch in the compression chords, the 

pattern being roughly in a half-wave form in each truss, and the two 

trusses were crooked in opposite senses. The whole bridge also exhibited 

a substantial amount of overall sidesway, but this was almost wholly 

eliminated by the diagonal bracing which was used to prevent swaying of 

the bridge during loading. The bridge was supported by resting it on the 

end floorbeams; knife edges were placed at one end, and rollers at the 

other end, so that the ends could approach each other fairly free of restraint 
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during the deformation of the. bridge. Load, in the form of deadweights, 

was applied through wire hooks looped around the central floor beam 

in the planes of the trusses. 

(b) Analysis  

In both Engesser's and Timoshenko's treatments )  an estimate 

of the equivalent spring stiffness is required. This can be obtained 

by considering a typical panel as in figure (3.17). The stiffness k 

is the force H required to produce unit lateral deflection 6 at the 
top chord joint. Clearly the panel shown deforms symmetrically about 

both the bridge centreline and about the panel centreline. Thus neither 

the floorbeams nor the tension chords twist. As a first approximation 

assume that the top chord joint is of the ball-type; this simplification 

means that the opposing diagonals and the floorbeam connecting them each 

figure 3.17 - Isolated panel  

behave as a rectangular portal frame as shown in figure (3.18), each 

carrying half of the force H. From an analysis of this frame, the 

stiffness k is readily obtained as 

k =H/E = 247.2[1/3EI1  + b/2EI 213 	(3.85) 

figure 3.18 
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where EI1, EI2  are the flexural rigidities of the diagonal and floorbeam 

respectively. Inserting the numerical values for this truss (see 

appendix), we find 

k = 3.40 lb/inch 	 (3.86) 

This estimate can be improved somewhat by treating the panel as a unit. 

The joint rotations are shown in figure (3.17), in which the double 

symmetry has been taken into account. Analysing the frame by the 

usual deformatim method, we obtain the equations of equilibrium, in 

terms of the rotations W 2, 62 / U)1 and the sway 8 . Solution of 

thee equations gives the stiffness as 

k = H/S = 4.16 lb/inch 
	

(3.87) 

which is about 20% larger than the first e$timate. 

Neither of the above two mathematical.models takes into account 
the variation in stiffness of the members due to their axial loads. However 

this should not be a serious defect because the decrease in stiffness of the 

compression diagonal would be largely balanced by the increase in stiffness 

of the tension diagonal, and the tension chord itself does not deform. 

The calculations also Osume that the panel deforms freely 
on its own, that is the restraint from neighbouring panels is neglected. 

Another estimate for the spring stiffness can be determined by assuming 

an infinite restraint from the neighbouring panels, so that the deformations 

at the tension chord joints would be zero. Using this information in the 

equilibrium equations it is found that the spring stiffness is 

k= 6.28 lb/inch 
	

(3.88) 

It is clear from the above analysis that a considerable range 

of values for k can be calculated, depending on the simplifying assumptions 

made in setting up appropriate mathematical models. Nevertheless equations 

(3.87) and (3.88) can be taken as lower and upper limits respectively. 

Engesseris model:- the buckling mode is assumed to be a series of equal 

half-sine waves of length v, given by 

v=Tr(EIs/k) e 	 (3.89) 

where s is the "spring" spacing. Using the numerical values for this 

truss, and the lower value, k = 4.16 lb/inch, we find 

v = 18.9 ins. (17.1) 	 (3.90) 
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This is about three times the spring spacing, so that in fact Engesser's 

model predicts that the compression chord as a whole buckles approximately 

into two half waves, which is the antisymmetric mode as observed during 

tests on the model (see figure 3.16). However, this predicted mode is a 
poor fit to the observed mode in that slope and curvature at the ends 

ought to be close to zero. The buckling load predicted by Engesser's 

model is 

P  cr = 2 IET-17; = 50.4 lbs. (61.8) 
where P cr is the axial load in the compression chord and which is assumed 
to be constant. The central loading actually used produces an axial 

compression which increases towards the centre; using the above value 

as an average, the buckling load is given by 

(3.9 1 ) 

W = P r/1026 = 40.0 lbs. (49.0) cr 	c. 

The buckling mode and load may be recalculated using the upper limit of 

the spring stiffness, k = 6.28 lb/inch. These values are shown enclosed 
in parentheses alongside those determined for the lower limit of the 

spring stiffness. 

Timoshenko's model:  in this model the change in axial load along the 

compression chord is taken into account,and the springs are replaced by 

an equivalent elastic foundation of modulus /3= k/s (see figure 3.19). 

The axial load is assumed to vary continuously, and for the loading in 

(3. 92) 

 

figure 3.19 - Column under uniformly distributed axial load 

on an elastic foundation  

figure (3.16) this is seen to be a uniformly distributed axial load of 

intensity q per unit length. Denoting the deformed shape of the 

compression chord by the function y = y(x)„ the total strain energy 

is evaluated from the expression 

 

(1.93) 
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- - work done by the load 	= 	q x(dy/dx) 2  d.x + 2 q(1-x)(dy/dx) 2dx 0 Uw   

1 = length of column 

The function y is approximated by a Fourier series, and the coefficients are 

determined from the conditions of minimum total strain energy. Assuming an 
antisymmetrical buckling mode, the simplest approximate function is the one 

parameter Fourier term 

y = a2 sin(217X/1) 

Using the value k = 4.16 lb/inch, we find that the minimum total strain 

energy condition gives a buckling load of 

2 	1, 
q = 40.21i El/i3 _ — 0.092 W cr 	cr 

(3.94) 

(3.95) 

whence Wcr  = 53.4 lbs. 

The use of an additional term a
4 

sin (411V1 ) to describe the buckling mode, 

gives a value Wcr= 51.0 lbs., which is only 5% smaller than the previous 

value, so that it is not necessary to extend the Fourier series further. 

The buckling mode is given by the ratio 

a2 	a4  = 1 :0.13 
	

(3.96) 

When the higher value of k is used we find 

W 	63.3 lbs. 	 (3.97) 

a, : a4 = 1 : 0.21 

From this analysis it is reasonably supposed that the buckling load lies 

somewhere between 51.0 and 63.3 lbs. Unfortunately the predicted buckling 

mode still does not satisfy the observed end conditions. 

Home's analysis:  Following the calculations for the general solution 

proposed by Horne, the buckling mode is found to be antisymmetric, as in 

the previous models, and the buckling load is calculated as 

P cr = 79.1 lbs. 

Here again the axial load is constant over the entire length and using 

it as an average value we have 

W = 79.1/1.26 = 62.7 lbs. cr 

(3.98) 

(3.99) 

Deformation method:-  The complete stiffness matrix for the bridge model 

is of order (84 x 84), taking into account the sway bracing of the deck, 

the support conditions, and the fact that the in-plane deformations are 

separable. A manual method of solution of such a large number of equations 

in which 

UB = strain energy of bending = 
f'

i , EI( 2  i y/ ) 
UF= strain energy of foundation = -h- .1 y2dx 
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is out of question, even if the double symmetry conditions were 

used to reduce the number of unknowns to 21. However, with the 

aiYito!' the technique developed in chapter two, the number of unknowns 

is reduced to as few as can be managed, and calculations are speeded 

up by using linearized approximations for the stability functions. 

Obviously the buckling Mode is dominated by the lateral 

deflections of the compression chord, that is by the sways of the 

joints, so that it is best to leave these as separate parameters in 
the equations of equilibrium. The remaining generalized joint 

displacements,for one truss, are conveniently, grouped as follows: 

(i) all compression chord rotations in terms of the parameter r 1 , 

(ii) all compression chord twists in terms of the parameter re  

(iii) all tension chord rotations in terms of the parameter r 31  

(iv) all tension chord twists in terms of the parameter re  

Thus without the use of the symmetry conditions we would be left with 

24 unknowns; however, using the symmetry conditions this number is 

reduced to 8, and solution by manual methods is possible. 

During model tests it was observed that the tension chord 

rotations were negligible, so that as a further simplification these 

are made zero. For the purpose of defining the ratios of the generalized 

displacements in the above groups, it is convenient to fit a simple 

function to the buckled shape of the compression chord. From the 

sketch in figure (3.16) it is seen that as a first approximation 

the following boundary conditions apply:— 

(i) at x = 0, z = 0, dz/dx = 0, d2z/dx2  = 0 

(ii) at x = 1/2, z = 0, d 2z/dx4  = 0 

where z = z(x) is the lateral deflection of the compression chord. A 

fifth order polynomial satisfies these conditions, and by differentiation 

we obtain the approximate function for, the compression chord joint 

rotations 

(3.100 ) 

= dz/dx = r1(x/1) 2 [3-14(x/1) + 15(x/1) 2] 	(3.101) 

from which the ratios are determined as 

00  :01  : 2  : 4 3  = r1(0 : 0.593 : 0.407 :--t.00) (3.102) 

It was also observed that the compression chord twist varied almost 

proportionally to the lateral deflection, so that 

w = r2(x/1) 3{2— 7(x/1) + 6(x/1) 21 	(30103) 
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whence we obtain the ratios 

1.0
0 

:CU1 :(AJ :CV3 = r(0 : p.286 : 1.00 : 0.703) 

Assuming - a similar expression for the tension chord twists; we find 

1116  :W7  = r4(0 : 0.206 : 0.846 : 1.00) 

At this stage the buckled shape of the bridge has been specified in 
terms of the six generalized displacements A l , 112  2 A3 	ri , r2 , r4. 

The corresponding generalized forces are denoted by F1 , F,, F v, R„ Rn , 

R respectively. The first three of these are obtained directly as the 

sum of the shear forces at joints 1, 2 and 3, whereas the last three are 

determined as the weighted sums of the moments at all the joints, the • 
weighting factors being the relative joint rotations as defined by the 

ratios in equations (3.102), (3.104), and (3.105). The member shears 

and end moments are a function of their P/Q ratios, and for convenience 

these functions are linearized. The load at which to linearize the 

stability functions should preferably be close to the buckling load, 

and the simple Engesser formula provides a quick estimate; in this 
example Wo  is chosen as 45 lbs., which is about midway between the 
values obtained above. The stiffness mb.trix is set up'by applying 

each generalized. joint displacement in turn, computing the end moments 

and shears, from which the generalized joint forces are obtained by 

summation, taking due account of the weighting factors. The final 
equations are 

	 k1830 :)( 0  X 372 y 96.2) ( 177 •\ 1 
-.12100w +8010w 	-278w c-11.2w -  +170W) 

 

(-1830 	4/440 V-1831 y-1458y 337 \ ( 311 

.4.8010w) -20150wA.+12050A-14404 -39.2w) 

( 0  ) (-1831 )( 6280 V-1289 \( 237 	( 168 

+120501.1 -42400wA+18594W705w) ..,-31 7w) 

(

372) (-1458 \ . (-1289 	2200V 0 \(52.8\ 

-278w k+14404 +1859w) -.3980w) k.-50.8w) +2.51,r1 

(

(96.2\( 337 ) 23 7 y 0 \i 473 \ 122\ 
-11.2w) \-39. 2w) k.-27.5w)-50.8w) -140w) +1081,1) 

( 177) (311 ) 168 ) ( 52. 8V 122\( 786\ 

+170w 	+9.8w 	-317w +205wA+108w) -156w) 

A2/1 

r1 

r2 

    

    

    

(3.106) 
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in which w = W x 10-3 2 and 1 is the panel length. The parameters, sway 

divided by panel length, are used rather than sway by itself, so that 
all unknowns have the dimension of rotation. 

The buckling mode and load are determined from the condition; 

that the right hand side of equations (3.106) vanishes. Denoting by": 

the matrix of constants on the left hand side of the equations, and by 

(Z) the matrix of coefficients of w, the equations are written in the 
form 

, 	,^-  
c1/10 .x=B. x 	 (3.107) 

• where Si.  is the solution vector. The solution of equations (3.107), as 

obtained by Gaussian elimination, is 

10810 	10894 	3.39 	0.294 	-0.0019 	0.0235 AO = (11w) A1/1 
1.049 	9.63 	9084 	1.311 

-1.131 	2.70 	13025 	0.781 

	

0.0484 	0.1226 A3/1 	All 

-2.52 r--  

	

7.00 	12.91 	3.05 	0.1039 	0.1400 

2.13 	-7.45 	-12.74 	-10093 	

0.0415 	0.1120 42/1

0.200 	-0.417 

0.455 	-4.13 	-5.99 	-00815 	-0.263 	0.1831 	

:1 	r 

2 
rzi_ 	

A2/1 

r 1 

2 

r4 _  

(3.108) 

In this form it follows that the fundamental buckling load is the reciprocal 

of the largest latent root of the above matrix, and the buckling mode is the 
associated latent vector. From rough measurements on the loaded model the 

mode is approximately given by the vector 

(0.3: 	1.0 : 	0.7 	: 	1.0 	-1.0 	-0.5) 

Using this as a starting vector in the standard iteration process we obtain 

in succession the vectors 

(00280 : 0.994 : 0.679 : 1.000 : -0.930 : -0.486) 18.16 

(0.278 : 0.993 : 0.674 : 1.000 : -0.925 : -0.486) 17.89 (3.109) 
(00277 : 0.992 : 0.670 : 1.000 : -0.924 : -0.486) 17.84 

(0.278 : 0.993 : 0.670 : 10000 : -0.922 : -0.486) 17.76 

As can be seen the process has converged rapidly; this is because a good 

starting vector was used. The last vector is thus the buckling mode, and 

an estimate of the buckling load is 

W = 1000/17.76 = 56.3 lbs. cr  

A check on this value is obtained from the conservation of energy equation. 
that is 	• 

Wcr = 1000 (A. x). x/(B, x) ox 
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where A and 1: are the matrices of equations (3.106), and x is the vector 
representing the buckling mode. This gives 

W = 1000 (1092/20,190) = 54.1 lbs. cr  

This value is known to be an upper bound but it should be close to the 

exact solution of equations (3.106). It must be remembered that these 

equations are approximate in two senses. Firstly there is the approximation 

arising from the linearization of the stability functions; however, since 

the calculated value of 54.1 lbs. is close to the trial load of 45 lbs., 

these errors may be neglected. Secondly there are errors in the .assumed 

shape of the buckled bridge, as expressed by the ratios of rotations 

(equations 3.102, 3.104, 3.105). These ratios could be improved in a 
manner similar to that suggested in chapter two but in this case it is not 

warranted because the ratios fit the observed mode. 

(c) Experimental verification 

This particular model is sufficiently stiff to allow the 

use of Huggenberger tensometers for measuring strains. Three opposing 

pairs were used, and located approximately at points of maximum 

curvature, as judged by eye, which occurred about midway between 

joints two and three (see figure 3.16). Figure (3.20) shows the 

measured strains and their Southwell plots. The Southwell plots 

are seen to be almost linear, exhibiting a slight tendency to a higher .  

Strain plots figure 3.20 Southwell plots  
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mode component at low loads. From the average inverse slope we obtain 

P  cr = 84.4 lbs. 

W = 51.0 lbs0 
whence 	cr 

This agrees very well with the calculated value of 54.1 lbs, which is 

known to be somewhat high. The predicted buckling mode is also close 

to the measured mode as can be judged from the relatively few 

iterations which were necessary to extract the largest latent root. 
The differences range from about five to ten percent. 

(d) Comparison of Resulta 

The following table summarizes the results of this section, 

from which it is seen that, as far as the buckling load is concerned, 

Buckling Load (lbs.) Duckling Mode 

Engesser 40.0-49.0 .-------**---.. 	.•e  

Timoshenko 51.0- 63.3  

Horne 62.7 

Deformation method 54.1 --------- 

Measured 51.0 -----  

Table 3.4 

there is little difference between the methods. It is rather surprising 

that Engesserts formula predicts a low value for the buckling load. 

This could be due to the fact that the formula applies to the constant 

axial load problem which is then used as an average. 

In all cases an antisymmettic mode is predicted for the 

compression chord deflections but the first three do not satisfy 

the end conditions. Since the first three mathematical models are 

based on these assumed functions for the buckling mode, one would 

expect the calculated buckling loads to be high. This is indeed the 

case in Home's analysis, but some compensation must occur in 

Engesser . and Timoshenkols models, since these neglect the rotational 

restraint of the diagonals on the compression chord. 

(3.112) 
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3.14 CONCLUDING REMARKS 

The most important feature of the new method presented in 

this chapter is the linearization of the stiffness matrix, the advantages 

of which have been clearly demonstrated. Attention is focussed on the 

buckling mode, and this is determined iteratively, using information 

from simple models (often a cardboard model is sufficient) to speed 

up the calculations. Once the buckling uode is known, the buckling 

load is readily calculated as some property associated with the mode, 

such as a latent root of the stiffness matrix for example. 

The accuracy of the linearization method depends on the 

trial load used to setup the approximate stiffness matrix, and 
usually this can be estimated fairly closely beforehand. Should 

it be necessary, a second linearization can be carried out using 

the previously calculated buckling load as a guide in selecting 

a new trial load. Alternatively, more accuracy is alhieved by 

using more terms in the Taylor's series expansion for the stability 

functions. This has been done by Firt (reference 17), but the 

resulting matrix equation leads to considerably more complicated 

manipulations, and it seems that there is little advantage over the 

simple linearization. 

It has been shown that the deformation method of analyzing 

elastic instability also lends itself well to three-dimensional 

buckling problems. In the examples chosen the members were of 

circular sections for which every cross-sectional axis is a principal 

axis. This means that joint rotations can be resolved into any 

convenient direction. The only complication for non-circular members 

is that the rotations must be resolved into the principal axes of the 

members. Also, for some sections, it may be necessary to take into 

account the effect of axial load on the torsional stiffness. However, 

these modifications present no difficulties, and the basic principles 

remain otherwise unchanged. 

Most of the emphasis in this chapter has been on manual 

methods of computation, but it should be pointed out that electronic 

digital computors are a powerfUl aid in this type of work; a glimpse 

of their use was given in the extensive analysis of the two-bay Warren 

truss through-bridge. 
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throughAPPENDIX - PropaDtie of 8-bay 	bridge,  

Flexural rigidities: top and bait= chords, El = 915 lb.in2 

diagonals, 	El = 194 lb e 1n2 

floorbeams, 	ET = 915 lb o in
2 

torsional rigidities: top and bottom chords :  GJ = 530 lb.in2  

diagonals, 	GJ = 124 lb.in2  

floorbeams, 	GJ = 530 lb.in2  
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CHAPTER FOUR - THE BEHAVIOUR OF OVERBRACED FRAMES 

4.1 INTRODUCTION 

The previous chapter dealt with the behaviour of so called 

statically determinate frames. 'Statically determinate' in this 
context means that the axial forces in the members can be determined 

from a statical analysis alone. This definition implies two major , 

simplifications; firstly, the deformations of the frame are assumed. 

negligible in comparison with the overall frame dimensions, and 

secondly the effects of bending are neglected in setting up those 

equations of statics used to calculate the axial forces. The first 

simplification means that we can use the original frame geometry to 

resolve forces at the joints for the purpose of setting up the equations 

of equilibrium of the joints. Another implication is that member 
lengths may be changed, by small amounts of course, without altering 

the axial force distribution. The second simplification is seen to 

be equivalent to the assumption of pinned connections between members., 

In practice the joints of a frame are usually welded and are 

therefore more nearly rigid, so that the members carry bending 

moments and shear forces in addition to axial loads. These bending 

actions cannot be determined from statics alone so that most 'statically 

determinate' frames are in fact statically indeterminate. A better 

description for such frames is 'statically determinate with respect 

to its axial force distribution'. 

In the present chapter it is proposed to study the behaviour 

of frames for which the axial forces in the members cannot be 

calculated from statical considerations alone. Such frames are 

called 'statically indeterminate', 'redundant' or 'hyperstatic', 

but for reasons explained above the term loverbrEicedi is preferable. 

(see reference 1). Broadly speaking, this condition arises when the 

frame has redundant members or supports. 

In order to calculate the axial forces in the members of an 

overbraced frame additional information is required ,and it is evident 

that this is in the form of a compatibility condition relatimg the 

member lengths. That is, it is the changes in member lengths, however 

small these may be, which govern the axial force distribution. When 

bending of the members is neglected, the changes in length can be 

expressed in terms of the joint translations alone, and the axial . 
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forces are computed using ordinary linear elastic theory. This is called 

the linearly elastic force distribution, and it is a reasonable 

description of the behaviour of ovsrbraced frames provided bending 

deformations are small enough to be neglected °  However, as for 

statically determinate frames, there exists a possibility of buckling 

and then the bending deformations certainly cannot be neglected. Also, 

any frame possesses initial crookedness so that bending occurs right 

from the start, and as loading progresses the bending deformations grow 

at an increasing rate. Due to bending the chord lengths of the members 

change by amounts which are often comparable in magnitude to those produced 

by the direct axial strains; in fact for slender frames the latter is 

usually much smaller. The total changes in lengths must meet the 

compatibility requirement, and to achieve this the axial forces in 

the members change. Thus, whereas in statically determinate frames these 

forces remain substantially in constant proportion, the axial force 

distribution in overbraced frames varies continually. This means that 

the designer's task becomes considerably more difficult since he must 

now also estimate the axial force distribution before he can determine 

'member stiffnesses which he needs in order to assess bending effects. 

Furthermore there is the problem of prestrain within the frame. 

Undoubtedly this exists in all overbraced frames, and the question 

is whether or not it can be controlled, with a view to improving the 

frame behaviour under load. 

4.2 REVIEW 

In comparison with the bulk of literature on buckling of 

statically determinate frames, little has been written about the behaviour 

of redundant or overbraced frames. To the author's knowledge the earliest 

contribution is that of Masur (reference 2) 2  who concludes that when the 

non-linearity of the axial force distribution is taken into account, the 

ultimate buckling load is usually greater and never less than the value 

obtained by using the linearly elastic axial force distribution. The 

latter value he calls the buckling load, and the increase in load is 
referred to as the post -buckling strength . Maeur shows that the ultimate 

load, if it exists and if no yielding occurs, is characterized by the 

equations 

= 0 

'af/BAi  = 0 
	

( 4.1 ) 

in which f is the determinant associated with the usual stiffness matrix, 

and A1 (i = 1, 2, . 	„ m) are the parameters defining the m redundant 
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axial forces. The first of these equations is the familiar zero stiffness 

criterion, while the second equation is a modification of the compatibility 

relations involving the changes in member chord lengths, including the 

member shortenings due to bending. Masur also shows that the elastic 

ultimate load is independent of prestrain, although he does mention 
that prestraining affects the behaviour up to the ultimate load, especially 

if yielding occurs. 

Giudici (reference 3) also considers the non-linearity of the 

axial force distribution, and he introduces the concept of an interaction 

curve, applicable to singly-redundant frames but which can be extended to 

multi-redundant frames. The interaction curve for singly-redundant frames 

is the locus of points in the W..19, plane for which the determinant of the 

stiffness matrix is zero; that is, it gives the buckling load corresponding 
to any given value of the redundant force. A Method for predicting the 

loading path.iaproposed, and by superimposing this on the interaction 

curve Giudici finds 'an estimate for the buckling load. This load is 

an improvement to the value calculated on the basis of a linear force. 

distribution, but it provides no measure of the ultimate load. Giudici 

stresses the fact that the behaviour of redundant frames is highly 

dependent on initial crookedness and prestrain, and he concludes that 

the difficulty in predicting the behaviour is a lack of knowledge about 

member shortenings due to bending. 

More recently, Murray (reference 1) developed an alternative 

mathematical criterion for the determination of the ultimate load, He 

shows that at the ultimate load both the frame stiffness and its derivative, 

with respect to the distribution of axial forces in the members are zero. 

This criterion was derived experimentally, but was justified mathematically 

by Schmidt (reference 4) in a subsequent discussion on Murray's work. In 

order to calculate the ultimate load from this criterion Murray plots curves 

of joint stiffness against redundant force for different load values, the 

ultimate load being the value at which the stiffness curve just touches the 

line of zero stiffness.. Basically this technique is similar to Giudici's 

interaction curve; the only difference is a variation in the presentation. 

It is evident that Murray's criterion is satisfied by a maximum on Giudici's 

interaction curve. 

So far the discussion has been confined to elastic buckling ,  

behaviour, which occurs only in very slender frames. Investigations by 

Stevens and Lay (reference 5) have shown that for overbraced frames with 

low nominal slenderness ratios (l/r of the order of 100), the behaviour 
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can be satisfactorily predicted using simple "elastic-fully plastic" type 

curves to describe the axial load-axial shortening behaviour of the 

, individual members. This is so because the shortenings due to bending 

• can be neglected in the elastic ranges of such comparatively stiff 

• members. Similar investigations have been reported by Neal and Griffiths 

(reference 6) who tested frames with nominal slenderness ratios in the 

range 104-225. They followed a method due to Ziegler to predict the 

behaviour, using axial load-axial deformation relations measured in 

previous tests on similar members. 

* 

The above brief review is included for completeness' sake. 

Together with some of the remarks made in the introduction it provides 

a reasonable picture of the problem and the present state of knowledge. 

In this chapter some aspects of the problem are investigated, 

mainly from a qualitative point of view, and a quantitive analysis is 

introduced for some relatively slender frames in which buckling effects 

become appreciable before yielding occurs. 

4.3 STATICAL INDETERMINACY OF FRAMES 

It is perhaps well,,at the outset, to clarify the meaning of 

the term 'statical indeterminacy' when used within the context of the 

present chapter. In simple terms, the degree of statical indeterminacy 

of any structure is the number of unknown generalized forces, (that is, 

force, moment, torque, etc.) both internal and external, minus the 

number of independent equations of statical equilibrium relating these 

unknowns. A general method for calculating the degree of indeterminacy 

has been developed by Henderson and Bickley, an outline of which is 

given in reference 7, but the following approach is believed to be 

simpler. Consider a single member, not necessarily straight, as in 

figure (4.1). In general there are six actions at each end of the 

member; these consist of three forces (one axial force and two shear 

forces) and three moments (two bending moments and one torque). Apart from 

the external loads, which are presumed to be known, the foundations 

exert unknown forces on the frame. The number of these support 

rtactions (including moments) are readily counted, so that the total 
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figure 4.1 - Forces on a_gingle  member 

number of unknown forces, U is given by 

U = 12 m S 

where m is the number of members, and S is the number of support 

reactions. 

The number of equations of equilibrium is derived in 

a similar manner. Firstly, for the equilibrium of each member 

six equations apply, namely 

EX =Ey =EZ = 

ZM=EM=:.E.M= 0 x 	y 	z 

where the symbols have their usual meaning. Thus effectively the 

number of unknowns per member is reduced to six. Secondly, treating 

the joints as rigid bodies, a further six equations of equilibrium 

are written for each joint. Third4, somewhere in the frame certain 

actions may be released; for example a ball and socket connection 

releases all three moments. Each release provides an additional 

equation, so that the total number of equations, E is given by 

(4.2) 

(4.3) 

E = 6m + 6j + r 	 (4.4) 

where j is the number of joints, and r is the number of releases. 

The degree of statical indeterminacy is therefore found from the 

equation 
n = U 	E = (6m + S) 	(6j + r) 

	
(4.5) 
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This general equation applies to space frames. In the case of a plane 

frame we find 

n = (3m + S) - (3j + r) 	(4.6) 

When the frame is pinjointed, there is a further simplification in that 

there is Only one unknown per member, that is an axial force, and only 

the first three of equations (4.3) apply. We are then left with the 

familiar equations for the degree of statical indeterminacy with respect 

to the axial force distribution 

n = m + S - 3j (Apr space frames) 

n = m + S - 2j (for plane frames) 

the above equations we must have in general 

6 (for space frames) 
or 	 (4.8) S .".3 (for plane frames) 
since otherwise the frame is unstable, that is it can translate or rotate 

as a rigid body. When S = 6(or 3) the support reactions can be determined 

separately from the equations of equilibrium of the frame as a whole, and 

the frame is said to be supported in a statically determinate, or simply 

supported manner; S - 6(or 3) is called the degree of external indeterminacy. 

In this analysis a joint is defined as a point where two or more 

members meet, or where a member runs into a foundation. Care must be taken 

in performing the analysis that no part of the frame is in itself a mechanism; 

this may occur, and if the remainder of the frame is sufficiently indeterminate 

the general formula for calculating the degree of indeterminacy leads to 

erroneous results. An example of this is shown in figure (4.2), in which 

it is seen that the degree of statical indeterminacy for the entire frame is 

(4.7) 

pari ABCD: 

rn= 3 

	

I 	 i 	 =4 

	

HI 	 lia 	 J r- 4 

	

• 	 liXa 	va ... rt, -1 

Note: o = ball join& 

whole crame: 
m=6 
S .6 
j =6 
I..  tt 

.*. n=2 

figure 4.2  

two, whereas part ABCD on its own has an indeterminacy of -1 and is therefore 

a mechanism of one degree of freedom. 
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4.4 THE USE OF COMPLEMENTARY ENERGY IN THE ANALYSIS OF OVERBRACED FRAMES 

Since the axial forces in the members of an overbraced frame 

cannot be determined from a statical analysis alone, additional 

- information must be sought. It is fairly obvious that the required 

information is in the form of compatibility relations, and complementary 

energy methods provide a convenient means of deriving this type of 

equation. For example, consider the frame shown in figure (4.3)) 

which is singly-redundant with respect to its axial force 

distribution. Let BD be the redundant member, and let R be its 

axial force. Imagine this member to be cut and treat R as an external 

EA conslan4 

figure 4.3 - Singly-redundant frame  

 

force actingacross the Cut. A primary force analysis then gives the 

axial forces in all the members in terms of the applied load W and the 

redundant force R; these are shown in the figure, compression being 

taken as positive. This neglects bending but even when bending 

deformations are quite large it is still reasonable to ignore the 

effects of the resulting shear forces in the axial force analysis. 

The complementary energy of the simplified system, C 

is defined as 

C =246.11  dP. -f W  g dW 16R dR 1.  

where the summation applies over all the members of the frame. Si is 

the amount by which the ends of member i approach each other, and P i  

• is the compressive axial force in the member; 6 w is the displacement 

of the applied load W, and S R  is opening of the cut in the redundant 

member. According to the rules enunciated in chapter two, the 

(4.9) 
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complementary energy may be differentiated with respect to the independent 

force parameters, in this case W and R I  provided that the differentiation 

is carried out subject to the restrictions imposed by the equations of 

equilibrium. In-this problem the equations of equilibrium are of the form 

P. := a. W + bi  R 1 
(4.10) 

where a_ and b. are constants determined from the primary force analysis, 

as in figure (4.3);•  they depend only on the frame geometry. Differentiating(3 )  

we have 

C/aR .74[ 6 1 (P1/911)] -6 R  = 0 
cralAr 	[ Si (BpjAw)] -S w. = 

Using the information in figure (4.3) to evaluate the terms ZPV2R and 

1)POW we get 

- 6AB/0  - 6AD/G - 6cD/G + 6 BD + &AC 	= 

(4.11) 

E 6 	6  _ 0(4.12) 
-SAB 	 AC 	W- 

A word of explanation is required here to distinguish between SBD  and 8 R  

the former represents the shortening of member BD and this is made up of 

the shortenings of the two halves separated by the cut. The opening of 

the cut, 6 R,  is an independent quantity. Thus the first of equations 

(4.12) may be thought of as giving the gap across the cut, and solution 

of the problem is achieved by equating 6 R  to zero which signifies the fact 

that the member shortenings are compatible. 

Equations (4.12) can of course be derived from an entirely 

geometric argument. Denoting by (uA  , VA)  and (up, up) the horizontal 

and vertical displacements of joints A and D respectively, we have for 

small displacements 

SAB = uA 

SAC = uA/G vA/f7  

6AD = VA vD 

60D = uD 

6BD = uE/f  VD/ 

(4.13) 

Waere vA — - 6 	Elimination of u ,  ' ; u VD  from these relations gives W° 	A D 
equations (4.12). 

In order to use the compatibility equations to find the axial 

force distribution, we must define a relation between member shortening 

and axial load P. If bending deformations are small enough to be neglected 
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is a function of P only and we write 

G. r(P) 	 (4.14) 

where the function f can be obtained from direct tension and compression 

tests. The usual simplification at this stage is to use the linear 

function 

i;= Pl/EA 	 (4.15) 

where 1 is the member length, A its cross-sectional area (assumed 
uniform), and E is Young's modulus of the material. Also it is 

customary to use the same relation for both tension and compression. 

Substitution of the relevant information for the frame in figure (403), 

yields linear equations in R and C w, whose solution is 

R = -0 0626W 	 (4.16) 
g w  = 2.14 Wl/Elei. 

The final force distribution is given in figure (4.4)0 

t0.55114/ 
figure (4.4) - Linearly elastic axial force distribution 

Any overbraced frame can be handled in a similar manner. There 

are always as many equations of compatibility as there are redundant 

members, and complementary energy principles can be used to derive 

these equations. Final solution is achieved by specifying a P-S 

relation for each member. When the P-6 relations are linear, 

the final equations are also linear and therefore easy to solve. 

When the P.6 relations are non-linear, the final equations are usually 

too complex to solve analytically, and one needs to use approximate or 

iterative techniques to obtain a solution. A useful device is to fit 

a piecewise linear function-to the P-6 relation. In some cases the 

final non-linear equations may have extraneous solutions,but these 

can usually be detected from a physical point of view, and discarded. 
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When bending deformations are important, as in slender frames, 

the total shortening of a member may be Written in the form 

f(P) + 	 (4.17) 

where f(P) is the shortening due to the axial load effect (see equation 4.14 

above), and A is the shortening due to bending. Denoting by y o  and y 

respectively the unloaded and loaded bent shapes, then we have, for small 

deflections 	f 

A = 	r (dy/dx)2dx 	(dyc7dx)2dx 	 (4.18) 

Thus it is seen that in order to calculate this term we need to know both 

the initial crookedness, yo  and the deflected shape under load, y. When 

the frame has pinned joints, bending in any member can take place 
independently of other members, provided the result ing shortenings are 

compatible. In such instances it is Vsasonable to use isolated pin-ended 

column relations as is shown in the following sections. In a rigidly 

jointed frame however, bending in any one member is distributed throughout 

the frame, and the deflected shape under load: depends on the restraints 

of neighbouring members, which in tuna depend.on their ,deflectioni and axial 
load, and so on. In other words the axial force distribution is a function 

of the deflected shapes of all the members'which themselves are functions 

of initial crookedness and of the axial force distribution which we want ' 

to calculate. It is precisely this interdependence which makes an analytical ., 

solution to the problem of the behaviour of overbraced frames so intractable. 

4.5 THE BENDING SHORTENING OF PIN!-ENDED MEMBERS 

Before extending the analysis of frame behaviour by taking into 

account initial crookedness, a simple mathematical model is developed for 

the determination of the bending shortening of isolated pin-ended members. 

Suppose that the initial crookedness pattern of a pin-ended column can be 

expressed in terms of the infinite Fourier series 

y =t a sin(m/1) 0 h = 1 n 

In chapter one it was shown that under load P the deflie,* shape, y is . 
given by the series 

(4.20) 

(4.19) 

ao 
Y = 	sin(nrx/1)/(1-P/n2Q) yo2 n 
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where Q = 112E1/12  is the Euler load of the column. From these expressions 

the shortening due to bending is obtained as 

A= 	(dy/dx) 2dx 	(dy 
0
/dx) 2dx 

o  
(4.21) 

2 	ry 	1 -1  = t (1 2r a /41)W- P/n
2  Q)

2 
 1i 1 r1=1 

Usually we find a
1 

). a
2 
7,  a

3 	
. 	and as P reaches a-  reasonable roe°  

proportion of Q the first term in this series dominates, so that as 
a first approximation the bending shortening is given by 

A ( V 2a12/41) [1/(1-P/Q) 2  - 1] 

Also, as a further simplification, the same expression, with P replaced 

by -P, may be used to calculate the bending shortening of a tension 

member. In frames the bending shortening of tension members is usually 

small, so that this simplification, although crude, introduces no great 

errors. 

( 4. 22) 

An estimate of the order of magnitude of the bending shortening 

is obtained by expanding the term in brackets and replacing Q by 

1?EI/12  = 1T2E4/(1/r) 2 ; this gives 

A= i(a1/1) 2 (1/r) 2 [(2- P/Q)/(1-P/Q) 2](Pl/EA) 	(4. 23) 

where r is the radius of gyration of the cross section. For most columns 

the initial crookedness is some fraction of its length, a figure of 1/400 

being in frequent use for design purposes. Thus for common engineering 

structures, with l/r ratios in the vicinity of 100, we have 

A [ ( 2-P/Q)/64(1 -P/Q) 
21 (Pl/EA) 	(4.24) 

whence it is seen that for P/Q ratios less than about 0.5 the above term 

amounts to no more than about 10% of the elastic axial load shortening 

Pl/EA. On the other hand, for very slender frames l/r may be of the order 

of 400 or more, in which case at a P/Q ratio of about 1/3 the bending 

shortening becomes of the same order as the axial load shortening. 

The above analysis is of course restricted to linearly 

elastic material behaviour. After yielding occurs the shortening 

expression will be quite different. However, in this thesis only 

elastic effects are examined. 
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When analysing a pin-jointed frame with initially crooked metbers, 

use is made of the mathematics developed above. For this purpose equation 

(4.23) presents the most convenient form for the bending shortening, since 

the total shortening is then given by 

6= Pl/EA +4N =  (Pl/EA)(1 + kc) 	(4.25), 

where k = i(a1/1) 2 (1/r) 2  

and c = (2-P/Q)/(1-P/Q) 2 . 

In this form the total shortening is made pseudo-linear by treating c as a 

constant. The complementary energy of the member then becomes 

C = fEdP = (1 + kc)(P21/2EA) 	(4.26) 

and when this is differentiated with respect to some unknown force parameter 

X, we get 

ac/'x= (1 + ke)(WEA)( 0/øx) 	(4.27) 

The term (Pl/EA) ( 	 x) arises in the usual straight member analysis, so 

that the term (1 + kc) may be regarded as a correction factor, that is 

ac/ax = (correction factor) x (CM)line ar (4.28) 

An example of the use of this relation is given in the next section. 

4.6 THE BEHAVIOUR OF PIN-JOINTED OVERBRACED FRAMES  

Although pin-jointed frames rarely exist in practice, it is enlightening 

to study their behaviour, firstly because it helps to formulate and understand the 

problem of rigidly jointed olierbraced frames, and secondly the mathematics involved 
is sufficiently simple to handle by manual methods of computation. Consider 

the pin-jointed frame shown in figure (4.5); it is seen to be statically 
indeterminate to the first degree with respect to the axial forces in its 

members. For simplicity all members are uniform and of the same cross-section. 

(a) Initially straight members  

In the first instance bending is neglected, that is the members are 

assumed to be perfectly straight initially. The axial forces in the members 

are indicated in the figure in terms of W and R, BD being treated as the 

redundant member whose axial force is R. A complementary energy analysis 

is carried out in table (4.1) below. Summation of the partial derivatives 

of the complementary energy (sixth column), gives the opening across the cut as 

g R  = (1/AE)[ 1/2.  W + (2 +11-2) ft] 
	

(4.29) 
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axial stiffness = EA 

flexural rigidity = El 

member lengths: 

AB, BC, CD, DA: 1 
AC, BD: al 

Q = euler load of side members 

2  =TrEi/a.2  

figure (4.5) - A pin-jointed overbraced frame  

Member axial 
stiffness 

length Axial 
force 

compoener.  
g= ;:,21/2AE aC/?R I' 

AB AE 1 -R/ff R21/4AE - R1/2AE 00207W W/a4/2a- 

BC tt 1 	't -R/V7 It tt tt It 

CD n 1 %.11/0 it it n n 

DA n 1 -1/0 n n n n 

BD it 21 R 2 	Ar- R 1/1/2AE IT Rl/AE -00293W Q/2 -W 

AC it 21 W+ R ( R OraE 1T.(W+1)1/AE 00707W Q12 

Table 461- Complementary energy analysis 

For compatibility to be satisfied, this quantity must vanish; the redundant 

force is calculated from this condition as 

R = - 0.293 W 
	

(4.30) 

The above value of R is used to determine the axial forces in the members; 

these are given in the next to last column of the table. 

Let us now examine the possible behaviour of this frame as it 

is loaded. Since the members are initially straight, they remain straight, 

and all deformations and axial forces increase linearly with the applied 

load W; this could continue.until yielding occurs. However, during this 

process one or more members may reach its Euler load, that is the load at 

which it would buckle if it were an isolated pin-ended column. In this 
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problem member AC first reaches its Nler load, Q/2 (Q = Euler load of side 
members), when the applied load has a value Q4/r. But the deflections of 

member AC cannot run away in the lugial sense because this involves a large 

shortening of the distance AC, and tither members of the frame do not 

permit it to do so. Nevertheless member AC cannot be expected to take a 

further increase in load, so that theremainder of the frame subsequently 

behaves as a statically determinate frame carrying a load W together with 

a consta4t force of Q/2 in member AC. The new, axial force distribution is 
now independent of member shortenings and can thwebe calculated from stati 

alone; the member forces after the redistribution are given in the last 
column, headed PI, in table (461). 

When one more member reaches its Euler load (in this case members 

AB, BC, CD and DA do so simultaneously), it can deflect under constant load 

because its shortening is independent of other members. That is, deflections 

in all side members, and in member AC, can now increase freely, and compatibility 

of member shortenings is maintained while the deflections progress, In other 

words, the frame as a whole has reached its buckling load at which it will 

ultimately collapse. For this frame the buckling load, W 	is given by 

Q = Pt AB = W /a — Q/2a  (4.31) ult 

whence = 1 D91 Q Wult 
which is seen to be about 2.7 times the load at which member AC on its own 

would buckle if the remaining members did not restrain its shortening. 

(402) 

The complete behaviour of the frame is pictured in figure (4.6) 

in which the lateral deflection of member AC at loads above W = Q42-  is 

indicated by a broken curve, because in this region it tries to buckle but 

its shortening is restrained by the other members whose shortenings continue 
to increase linearly with load. Since the shortening due to bending is 

proportional to the square of lateral deflections, it can be argued that 

the curve is parabolic. This also satisfies the "buckling criterion" 

for member AC, that is 

u/a4 = 0 	 (4.33) 

with the restriction that 4 must be zero. In other words the lateral 

deflection curve of member AC exhibits an instantaneous bifurcation 

point but it continues to rise until the frame as a whole buckles. 
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Summing up, a pin-jointed overbraced frame with initially: 

straight members behaves similarly to a statically determinate 

frame. The members of such a frame act independently of each other 
except with regard to the axial shortenings. When an individual .  

member reaches its Euler load sthe load-lateral deflection 

characteristic exhibits a zero slope tangent, but immediately curves 

upwards again because the shortening is restrained by other 

members. LariO :deflections, and hence shortenings, can occur only 

once a sufficient number of members have attained their buckling 

loads. The necessary number is one more than the degree of 

statical indeterminacy with respect to the axial force distribution, 

since the remainder of the frame is then in effect a mechanism in 

which the joints can approach or move away from each other 

compatibly, without upsetting statical equilibrium in axial forces. 

In conolusion it should not be foiliptten that the above 

argument is restrated to small deflections in the usual meaning 

of the phrase. Large deflections introduce other non-linearities 

into the mathematical model, even if the material remains elastic, 

but any more refined mathematics which takes 14110 into account 

becomes too involved for practical use. For example, large 

deflection theory applied to a pin-ended column leads to 

elliptic integrals, and the load deflection characteristic can be 

shown to curve slightly upwards. A similar behaviour is to be 

expected for frames. However, practical frames are usually so 

stiff that yielding occurs before deflections become large, so 
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that for practical purposes the use of small deflection theory should 

be adequate. 

(b) Initially crooked members  

The simple mathematical model developed above is of course 

inadequate to describe the behaviour of a real pin-jointed overbraced 
frame. Initial crookedness of the members, eccentric connections, and 

many other factors result in a behaviour 4hich is markedly different from 

the straight-line represOntation depicted in figure (4.6b). The members 

of the real frame begin to deflect as soon as load is applied, but 

whereas in statically determinate pip-jointed frames this is possible 

without changing the axial forces in the members, a redundant frame's 

behaviour is determined to a large extent by the axial shortenings of 

the member, and these in turn are governed by the magnitude and pattern 

of initial crookedness. Thus a foreknowledge of crookedness in redundant 

frames is of even more importance than in statically determinate frames. 

It has been shown (see chapter one) that the behaviour of statically 

determinate frames is reasonably well described by hyperbolic load-
deflection curves, and this is a valuable experimental tool, the 
linear Southwell plot. An important question at this stage is, can 

the behaviour of a redundant frame be described by a linear Southwell 

slot? It is shown in this chapter that the answer to this question is, 
±n general, in the negative, although it is suspected that in certain 

cases a near linear Southwell plot is obtained. 
I 

* 

In order to examine quantitatively the effect of initial 

crookedness on the elastic behaviour of the pin-jointed frame in figure 

(4.5), assume a half-sine wave initial crookedness pattern of magnitude 

a1 = 1/400 for all members, where 1 is the respective member length. 

Also, make the l/r ratio of the side members equal to 200; the 

ratio for the diagonal members is then 2001r2. Having assigned 

numerical values to these quantities, the total shortening of the 

members can be calculated from equation (4.25) if the axial force 

is known. The total shortenings are then substituted in the equation 

of compatibility, which results in a non-linear equation for the 

unknown force R in terms of the applied load:W. In general this 

equation must be solved by trial and error for various values of 

W. However, the compatibility equation can be linearized by using 
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equation (4.28) for the total shortening as follows: for any value 

of W guess a value of R (for example using linear theory), so that 

correction factors for all the members can be calculated; if these 

are temporarily treated as constant then the resulting equation of 

compatibility is pseudo-linear and the solution for R is used as a 
new trial value, and so on until agreement is obtained. A sample 

calculation, for W = 0441, is given in table (4.2), in which 

R = -0.117Q is used as a first guess. Summation of the C/911 terms 

Member k /if 00/9 hri). P/Q FA . 1+kc 	IOC/CI 
AB,BC,CD,DA 0.0625 0.500R --0.707R/Q 0.083 2.28 1.142 0.571R 

BD 0.125 1.414R 2.00 R/Q -04234 1.47 1.184 1.676R 
AC 0.125 1.414(W +R) 2.00(W+R)/Q 0.566 7.62 1.953 2.76R + 

1 0 1141 

Table 4.2  

for all the members gives the linear equation 

(1/EA)[6.72R + lolica . 0 

whence 
R = -0.164Q 

Using this as a new trial value, and.so , on we obtain in succession 

the values 

R = -0.150Q, 	-44153Q 

which is seen to have converged reasonably well after only three cycles. 

However :  at higher applied loads Int, the correction factors are much 

higher and it is quicker to use the average value of R as a new guess; 

the first guess can of course be obtained by ext4°400Iation of the R-W 

graph. 

The complete curve up to W = 1.8Q is shown in figure (4.7), 

together with that obtained by using an initial crookedness of 1/1000 

in all the members. As can be seen, the latter adheres more closely 

to the straight lines OX, XY obtained when the members are initially 

straight. Ultimately both curves approach the intersection of these 

two straight lines, which is the ultimate buckling load. A third 

curve is calculated for which the side members have a much lag 
initial crookedness (1/100) than the diagonal members (1/400). 
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figure 4.7 = Loading paths for various initial imperfections. 

In this case the non-linear loading path is seen to vary first on one side 

and then on the other side of the straight lines obtained when bending is 

neglected. 

Lastly, the effect of prestrain is examined; broadly speaking this 

is another kind of initial imperfection, and it is most easily pictured as an 

initial lack of fit of the members. For example, suppose member BD is initially 

too short by an amount E ; then it must be tensioned with a force Ro  say, 

before it can be connected, and this will strain the other members. The 

resulting axial forces can be computed from the equation of compatibility 

by putting 6. 11  equal to - E 1  and W equal to zero. When the members are 

initially straight, this gives 

(1/EA)(2 + 2V2) Ro  . -6 	 (4.34) 

whence we obtain 

R
o = -0.207 EA4/1 
 

(4.35) 

In terms of the non-dimensional force r = R/Q, this becomes 

ro = -0.207(1/1yr) 2(6/1) = -838(E/1) 
 

( 4. 36 ) 
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When E is taken as 1/1000, ro  = -0.838. Similarly, when there is an 
applied load W, or non-dimensionally w = W/Q 1, we find 

r = -0.838 -0.293w 	 (4.37) 

The loading path is therefore moved downwards by an amount -0.838; 

this is indicated by the two straight lines O'X'Y in figure (4.7). 

The frame's ultimate buckling load remains the same. 

When the members Eire initially crooked as well, the 
term 6 = 1/1000 is again included in the final compatibility equation, 

and the usual terms are multiplied by their respective correction 

factors, successively iterating towards a solution as before. The 
loading path thus obtained ii also shown in figure (4.7), in which 

it is seen to be close to lihear in the early stages having a slope 

slightly less than 0.293. After a load w = 1.2 is reached, the 
curve drops rapidly and curves towards the point Y at which the side 

members and member AC have a P/Q ratio of unity. 

Knowing the axial loads in the members for all values of 

applied load W, the central lateral deflections of the members are 
calculated from 

( 4.38) a= a1/( 1-P/Q) 

When these are plotted against the axial load P in the member, the 

Southwell plot is linear and gives the Euler load of the member, which, 

to..vv,42 

2.0 

figure 4.8 - Central deflection of members AB, BC, CD, DA 
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on its own, is of little use. It could be used to determine the frame 

buckling load by extrapolating the P-W curve to P = Q, but as an experimental 

tool this is obviously not very satisfactory. For this reason the 

deflections calculated above are plotted against applied load. The 

results are given in non-dimensional form in figures (4.8) and (4.9) 

for the various cases of initial crookedness and prestrain dealt with 
above. Clearly these curves all approach some asymptote. It is interesting 

figure 4.9 - Central deflection of member AC 

to note that the deflections of member AC at first appear to run away 

at some low value of applied load but then the curves start to rise again. 

This type of behaviour is to be expected, and is explained by returning to 

figure (4.6b) which indicates the behaviour if all the members are initially 
straight. The tendency is not evident when the frame is prestrained; 

possibly because both AB and AC now "buckle" almost simultaneously when 

the members have no crookedness (see figure 4.7). Figures (4.10) and 

(4.11) show the Southwell plots on the central deflections of the compression 

members. Thosiii for members AB, BC, CD, DA are slightly convex upwards when , 

the deflections are small, the greater the initial crookedness the more 

pronounced is the curve. However, after the deflections reach a magnitude 

of about 1/100, the plots are close to linear. Using the average slope of 

the linear portions of the graphs, the buckling load is estimated as 

w = 1.88 cr 
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figure 4.10 - Southwell plots for members AB,BC,CD,DA 

figure 4,11 - Southwell plots for member AC  
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the largest variation being -0,08. It is worthwhile noting that the 

behaviour of the frame with initial prestrain gives a Southwell plot 

which is almost wholly linear. Its inverse slope it 1,90, which agrees 

with the buckling load predicted when the members are assumed to be 

initially straight. 

The Southwell plots on the central deflections of member AC, 

the critical member, are extremely curved but they seem to flatten out 

towards a straight line. The inverse slopes of the latter portions give 

an average value for the buckling load 

w = 1.91 Cr 

with the largest variation being +0.09. It also appears that the very 

early portions of the graphs are reasonably well described by straight 

lines. Of these, the case with a small initial crookedness of 411000 

in all members, has an inverse slope of about 0.74, which is close to 

the value at which 00 linearial force distribution first intersects 

the interaction diagram, OXY in figure (4.7). The remaining cases 

without prestrain have inverse slopes of 0,87 and 1.04 respectively, 

The prestrain case is again interesting in that its Sauthwell plot 

for member AC consists of two almost linear portions. When the 

deflections are less than about 1/100, the inverse slope has a 

value of 1.60, whereas the remainder has an inverse slope of 1,85. 
Inspection of the loading path for this case (see figure 4.7), 

shows that up to about w = 1.2 the path is almost linear. Extending 

this it is found to intersect the interaction diagram at w = 1.50, 

which is close to the value of 1.60 obtained above. 

(c) Load carrying capacity 

Although this chapter is primarily concerned with the 

elastic behaviour of overbraced frames, the above analyses provide 

sufficient information to comment on the load carrying capacity of 

this particular frame. Since the frame is relatively slender, the 

limit of the elastic range, that is the load to cause first yield $  

ought.to provide a close timate of the ultimate load which the 

frame clan support. For each member, the axial load to 'cause first 

yield is readily calculated, and the corresponding applied load Wy  

is inferred from the plotted loading paths. In these computations 

the frame members are taken to be of 1 in xi in. Cross section, 

with a Young's modulus E of 30 x 106 p.s.i. and the length of the 

sides of the frame is taken to be 28,8 in. so that the vr  ratio 
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is 200 )  as used in the analysis. Table (4.3) below summarizes the 

results for the four cases of initial crookedness and prestrain; the 

yield strain is taken as 0.0012. As can be seen, there is 

Case (a1 ) 1631 (a1 ) AC prestrain (lbs) (lbs) (lbs) forces at 	e Id i 

(ins.) (ins.) ,--- 
(Py)1(13 (Py )AC  W Y PA % PAC -- 

I 0.0720 0.1020 none 3050 1630 5640 2830 1630 

II 0.0288 0.0407 none 3410 1755 6120 3410 1755 

III 0.288 0.102 none 2050 1630 3640 1440 1630 

IV 0.0720 0.102 yes 3050 1630 .595P ..  3050 1615 

Table L.3 — Loads to cause first yield of 36.000 psi. 

comparatively little difference in load to cause first yield in the 

various cases, except that when the initial crookedness in members AB, 

BC, CD and DA is very large (1/100). This is explained by the fact 

that the loading paths beyond W = 5500 lbs. all lie very close to one 

another. For cOmparison s  the elastic ultimate buckling load of this 

frame is 

w.u1t = 7090 lbs. 

which is about 25% in excess of the load to cause first yield in case 

which is appropriately regarded as the design. 

(4;39) 

It is also interesting to compare the above loads with the 

working load obtained by designing the frame on an individual member 
basis, and, as is almost universal practice, on the assumption of a 

linear loading path. Using a factor of safety of 2.0 against first 

yield in individual members, the safe working load is 1150 lb. when 

there is no prestrain. Member AC governs the design in this case. 

On the other hand, in the case of prestrain (see figure 4.7), member 

AB would be overloaded without any applied load, so that this particular / 

amount of prestrain would not be considered practical when designing the 

frame on an individual member basis and on a linear loading path. The 

best that can be done on this basis is to choose a prestrain so that all 

compression members reach their allowable axial forces. If R o  is the 

pre straining force then we want 
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l 	Ww  PAB. = PBC = PCD = PDA = 1525bs, = -0.707 R0  +0.293  (4.40) 

and P .  = 815 lbs, 	+ 0.707 W AC 	Ro  w  

where W is the safe working load, based on a factor of safety of 2.0 in 

individual members. Solving these equations we find 

Ro = -1285 lbs. ; Ww  = 2970 lbs. 	(4.41) 

In case IV, table 4.3, the prestraining force Ro  is -2600 lbs., 

and this is close to optimum because it is seen that,0 compression members 
yield nearly simultaneously. Thus it follows that the'nopp.linearity - of the 
loading path may hiye a considerable influence on the ?most favourable' 

pattern of prestrain. 

4.7 THE MEASURED BEHAVIOUR OF RIGIDLY JOINTED OVERBRACED FRAMES 

The previous section was aimed at the establishment of a simple 
mathematical model to describe the behaviour of pin-jointed overbraced 

frames. Due to the difficulty of making truly pinned connections in 

practice, an experimental verification was not attempted. Practical 

frames have rigid or nearly rigid joints, and any analysis for the 
1 

corresponding pin-jointed frames provides little indication of their 

behaviour, 

This section presents the results of the measurement of the 
behaviour of some simple overbraced frames with rigid joints. Only 

simple measurements are taken, the main aim being to establish whether 

or not buckling in the usual sense does occur, and if so whether or not 

the SoUthwell plot Can be used to measure the buckling load.. 

(a) Three bar frame  

One of the simplest redundant frames is the three bar frame 
shown in figure (4612). This particular frame was made from clockspring 

steel members measuring 0.500 in. x 0.0275 in. in cross section. The 

frame was loaded vertically with deadweights, and the central deflections 

of the members were measured to 0.01 in, with a rule: No attempt was made 

to measure the : akial forces in the members. In the first test the members 

were rigidly_ clamped to a stiff supporting base, while in the second test 

the base connections were pinned, 

Figure (4,13) shows the central deflection of member AD plotted 

against the applied load W with the Sauthwell plot superimposed on it. 
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For both the fixed base and pinned bum tests the Southwell plots 

are very nearly linear over the whole range, indicating the existence of 

qlastic buckling loads. From the inverse slopes the ultimate buckling 

loads are estimated as 

Wu/t 
= 12.2 lbs. for the fixed base case 

and 
	

Wult = 5 '8 lbs. for the pinned base case. 

figure 4.1, Southwell plots on lateral deflections  
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Since the Southwell plot for this particular frame behaviour 

is almost wholly linear, it is suspected that there is little redistribution 

of axial forces in the members as the frame is loaded. This is verified 

mathematically in section (4.10). 

(b) Triangulated Frame 

This frame, whose geometry is shown in figure (444),  was made 

of -him,. x 1/8 in.. mild steel members, the major axes lying in the plane 

of the frame to ensure planar buckling. The leading dimension I was 

16 inches, giving a nominal slenderness ratio 1/r o. 	Due to 

measured El = 2350 lb.in2. 

Euler load of side members Q = 90,7 lbs. 

S=.11.1k,k- 

• space limitations only two pairs of Huggenberger tensometers could 

be attached ta the frame; these were located approximately at the 

centres of members AB and AC. 

Figure (4.15) shows the measured'bendinestrains plotted against 

applied load Wg. It is seen from these graphs that at low loads the 

curvatures appear to be asymptotic to some load, but subsequently the 

curves rise again and run away at a much higher load. This behaviour 

is very similar to that predicted for the pinjointed frame in figure 

(4.9). It suggests that the initial portion of the loading path is 

approximately linear, and the first apparent asymptote is some measure 

of where this portion of the loading path, when extrapolated, intersects 

the interaction aurve. 

Obviously the above behaviour cannot be described by a 

linear Southwell plot over the entire range of measurements, but the 

two asymptates may be estimated by assuming the above curves to be made 

up of two Wrperbolic portions separated by a transition region, as shown 
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constructed in the usual way, and are seen to be reasonably linear, 

the average inverse slope giving an apparent buckling load of 380 lbs. 

Beyond the transition regions a Southwell—type plot is constructed by 

graphing (E  —  against E where (6 0 , Wo ) is the point 

defining the start of the final hyperbola. For member AB this was 

taken as 500 lbs., and for member AC as 400 lbs. These two plots 

are also close to linear )  having inverse slopes of 430 lbs and 

460 lbs. respectively. Adding to these the respective W o  values, 

we get 930 lbs. and 860 lbs0  or an average of 900 lbs., for the 

elastic ultimate load of the frame. The ot)gepved buckling mode 

is superimposed in figure (4.14.) 

In this particular test the graphs of curvature against 
load exhibited fairly well defined transition regions y  and the curves 

were reasonably described by two aparate linear Southwell plot 

equations. However, in general. the transition from the initial 

apparent buckling condition to the ultimate elastic buckling 

behaviour is likely to be much more gradual,. in whiCh Case it would 

be difficult to fit a linear Southgell plot type equation, It is 
impossible at this stage to establish definite behaviour patterns 

for redundant frames; 4 large variety of frames would need to be 

tested and the results correlated. At the same time, mat,ematical 

models predicting the behaviour need, to be formulated, and it seems 

that a Southwell plot type of equation )  which has proved to be 

extremely powerful for statically determinate frames, may often 

be kpoor fiti, The main factor responsible for this is the non04 

linearity of the loading qth, which in turn depends on the magnitude 

and form of the initial crookedness, the slenderness of the members, 

and on the amount of pre strain existing in the unloaded frame. 

Practical frames usually have fairly stocky members, and the 

non—linearity is probably not so pronounced i For this type of 
• 

frame the behaviour would be governed primarily by he initial 

buckling load and mode, for which the methods described in earlier 

chapters of this thesis are quite adequate. However, for more 

slender frames the ultimate eiAtitiC buckling load and mode control 

the behaviour. Since the ultimate elastic buckling load y  if it 

exists, may be very much higher than the initial buckling load, an 

interesting question arises as to whether to design a given frame 

using slender or stocky members., 
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448 THE ELASTIC BUCKLING LoADs. OF RIGIDLY JOINTED OVERBRACED FRAMES 

In this section it is proposed to examine a method for the 

prediction of the elastic buckling loads and modes for overbraced frames 

with rigid joints. The basic definition of instability is identical to 

that adopted in chapter one, that is 

'ax/ax = o 	 (4.42) 

where X is a generalized force acting on the frame, and x is the 

generalized displacement corresponding to X. For clarity in what 

follows this definition requires careful interpretation. According 

to customary instability studies, the frame is assumed to be "perfect" 

initially so that an equilibrium state with all members remaining 
straight is always possible. There are, however, certain discrete 

loading systems, at which the straight form is not stable. At these 

loads any infinitesimal disturbance can excite large deformations, 

and the frame is said to buckle. The usual mathematical treatment 

assumes that the buckling deflections are small compared with the 

overall frame dimensions so that equation (4.42) should, more 

properly, be written as 

( Box)x,0 = 0 

This equation states that the load-lateral deflection graph exhibits 

a horizontal bifurcation, but it does not define the complete curve. 

The abbve small deflection theory works well even if the deflections 

are quite large, and certainly so in the working range of practical 

engineering structures. Hence the restriction x-'0 can for all 

practical purposes )  be removed and the load-deflection graph is in 

fact closelv approximated to a horizontal straight line over the 

range of deflections comnnnly encountered. 

For statically determinate frames the above condition 

is fulfilled when the frame stiffness is zero, since there are no 

other restrictions on the magnitudes of the deflections. However )  

for overbraced frames, the deflections must also satisfy the 

compatibility equations relating the changes in member lengths. 

While the members remain approximately straight, these changes 

in length are practically independent of the bending dirlections, 

and by complementary energy methods it can be shown that the 

loading path is linear. Under these conditions the overbraced 

framets behaviour is identical to that of a statically determinate 

(4.43) 
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frame, and the critical load and its associated mode can be computed by 

methods described in earlier chapters Of this thesis. 

The subsequent behaviour is quite different because the 

deformations of the overbraced frame cannot, in general, run away at 

the critical load unless, by chance, the compatibility equations are 

also satisfied for large de16ctions, in which case the member shortenings 
are dominated by the portions due to bending. In general the compatibility 

equations are not satisfied at the critical load and mode. To achieve 

compatibility, the axial forces in the members redistribute themselves, 

and this redistribution alters the critical load and mode )  and so on. 

The complete behaviour is difficult to trace, but it appears that some 
kind of ultimate load at which the frame buckles elastically still exists. 

As Masur (reference 2) has shown, the ultimate load is usually greater 

and never less than the critical load, so that the behaviour of an over.. 
braced frame is of the form shown in figure (4.17). 

From this figure it is seen that a possible definition for 

ultimate buckling is 
= 0 	 (4.44) 

figure 4.17 - The behaviour of an overbraced frame 

This definition is adopted in the work to follow. It L assumed 
that the members are initially straight and behave elastically all the way, 

and that, although bending deflections are tending to the infinite, small 

deflection theory is still applicable. For simplicity the argument is 

confined to plane frames buckling in their plane. As a further simplification 

it is assumed that the bending moments arising from the changes in member 

lengths are negligible, and that the shears have no effect on the axial forces 

in the members. 
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Consider any general plane frame having m redundant members 

(or supports), and let R1  2 R , • • • NI  be the axial forces in 

these members. The magnitudes of these forces are determined by cutting 

these members and equating to zero the total incompatibilities across 

the cuts. As shown in section (4.4),  complementary energy provides 

an elegant method of deriving the compatibility equations. The 

complementary energy of the frame, C is defined as 
all 	Ft m p 

C = 	dP 	SS dw 	dR. 
mem ers 	i 	W 	5=i 	j 

where 	shortening (t the ith frame member 

P.:7-a.xial force in the itk member (compression positive) 

-. displacement of W Sw  - 
W = applied load 
g i  = opening across the cut in the jth redundant member s  

The first summation is applied over all the members of the frame, 

including the redundant members; as mentioned in section (4.4) 0  

the shortening of a cut redundant member is the SUM of the shortenings 

of the two halves. The above complementary energy integral may be 

differentiated with respect to the independent forces W, RI  m 
whence we obtain the compatibility conditions 

ac/aw =Z 1  (api/al- 6 w  = 0 

ac/aRj 	(api/aRA. 	= 0 ; (j = 1 0  2, . • #111  ) 

In order to obtain the coefficients ?)POW and apixj 0  we need to 
express the axial force L„ in the members as functions of W and of the 

redundant forces R1 R2  $ 	Re These are readily deduced from 

a primary force analysis. Neglecting the change on frame geometry due 

to the deformations, the force in the ith member can be written as 

P. .7... a. W + 2: b . R. a. 	a. 

(4.45) 

(4.46) 

( 4.47 ) 

where the coefficients a., b. depend only on the overall frame geometry. .1 	ij 
From equation (4447) we obtain 

api/aw = ai  
Pi/?1=ti  = 

(4.48) 

so that the compatibility equations become 

6 W — Zi ai 6 i 
8 	=I. b. sc. 	; 	= 1 $  2, . ij 

( 4.49) 
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The first of these equations gives the deflection of the load in terms 

of the individual member shortenings )  while the second set of equations 

gives the openings across the cuts in the redundant members. The latter 

set is used to evaluate the redundant forces, but in order to do so it is 

necessary to specify a relation between the axial force and shortening 

for each member. When the members are eieitic and when there is no 

bending, we can write 

6 i = (p0A) 1 	(4 5o) 

which f  on substitution into the compatibility equations, leads to 

linear algebraic equations to solve for each R. in terms of W. If 

there is no initial prestrain, each & is zero s  otherwise it will 

have some value (see section 4.6b). 

Having determined the redundant forces, equations (4.47) 

are used to express the axial flies in the members in terms of W 

only, and it is seen that the axial forces are in constant proportion. 

Hence it follows that the frame with all its members remaining straight 

is in equilibrium for all values of W, and it remains to investigate 

its stability. As in chapter one, this is most conveniently done by 

applying ams11 disturbances, i4 the form of infinites4*1 moments at 

the joints)  exciting lateral deflections, In the limit, as deflections 
tend to zero, equations (4.50) remain approximately valid )  so that the 
axial forces may be calculated as above. The usual equations of 

equilibrium in terms of the joint rotations are then set up by the 

stiffness method giving, in the usual matrix notation s  

(4.51) 

where di is the vector defining the joint rotations, K is the stiffness 

matrix, and SM is the vector defining the infinitesimal disturbing 
moments. In the limit as SM becomes the null vector, this analysis 
leads to the familiar zero determinant criterion 

al = o 	 (4.52) 

or the zero latent root criterion 

A = 0  

Either of these equations may be used to calculate the buckling 

modes and loads, that is the buckling loads for zero deformations 

(Win figure (4.17) ). 
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In order to determine the ultimate load, or buckling load 

for "large" deformations, that is it5 in figure (4.12), the above 

analysis must be modified to include the effect of the member 

shortenings due to the bending deflections. Under these conditions 

it seems reasonable to neglect the axial shortening Pi/AE and the 

initial prestrain (if any), so that the shortening of the ith member 
becomes 

&i 	f (dyi/dx) 2dx 
where yi  is the deflected shape. In chapter one it was shown that 

the deflected shape is 

y = A sin( (16 Try/l) + B cos ( 	I1x/1) + cx + D 

where ()=. P/Q:  and A l  B :  C :  D are constants to be determined from 

the boundary conditions; the subscript i has been dropped for 

convenience. The boundary conditions are 

(4.54) 

( 4 55) 

(y) x=0  = 	= 0 ; 	 ; (dy/dx) x71=01 	(4d56) 

which gives the shortening as 

= (-1/n2)[i F (612  + e2 ) F e 8 1 0 	1 2 o 1 

where F1  and F2  are functions off) , and can be shown to be the 

derivatives of the stability functions s and sc respectively, that is 

(457) 

F1  = ds/dp 	; 	F2  = d(sc)/dp 
	 (40 5a) 

where 	s 	/4(1—w) w; sc = i-r2p/4(1=w) 
	

(4.59) 

w = pc cotcx ; 	=(rr/2)+17) ; 	= p/Q 
	

(4.60 

Thus the shortening for "infinite" deflections is seen to be a non-

linear function of the axial load in the member, and, as well as this, 

the expression contains the quadratic terms of the member end slopes 

D o and 19 1° 

Using the expression (4.57), the compatibility equations 

for "infinite" deflections become 

(9 2  + 2) + F e e 1(b. 	= oi 	2i oi 	; 	= 1 2,...,m) (4.61) 

By virtue of joint rigidity, the member end slopes 

oi 
and  A

li are equal to the relevant joint rotations, and these 

in turn satisfy the stiffness equations at the ultimate load, that is 

K 	= 	 (4062) 
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The problem then is to solve equations (4.61),  (4.62), simultaneously, for 

the lowest value of W and the corresponding values of the redundant forces, 

for then the frame has buckled, or can buckle, because the frame stiffness 

is zero so that large deflections are possible, and the large deflections 

satisfy the compatibility equations, 

As can be seen, the coltatibility equations cannot be solved 

independently for the redundant forces since the expressions contain 

also the joint rotations, that is the redundant forces depend on the 

buckling modem  Once the mode has been determined, the compatibility 

equatims can be solved for the redundant forces. In general some 

iterative scheme must be adopted, and except for very simple frames, 
the computations are usually too ntmerous to be performed by manual 

methods *  

The above compatibility equations may be changed into a 

slightly simpler form, similar to that proposed by Masur (see equations 

4,1) by substitution of the memberts moment-slope relations, 

Mo  = (El/1)(s B o  + so el) 	
(4.63) 

141  = (El/1)(8c% 	s el) 

By definition, 90  and e l  are imposed rotations, so that at this stage 
they are independent of the axial loads in the members, that is independent 
of W 2  RI  , R2  p 4 4 	Rm  , and therefore we have 

BM0/aRj  = (EI/1) ( 00  a ilaRi  + el  3 sc/aRi ) 	(464) 

lyali j  = t1/1) ( 903 sc/3R i  + el.  a 	Ri ) 

But s and sc are explicit functions ofp so that 

a s/a R i  = (ds/dp)(ap/aR i ) = F1  (i/p Q)(BF/aR j ) 	 (465) 

asq/a Rj  = etc, 

Substituting Q = 112EI/? we get 

aMJaR = (1/n2)(00  F1  +01 F2)(aF/aRi ) 	
(466) 

3141/3Ri  = (l/W2 )(e0  F2  +01  F1 )(Wallj ) 

where F1  and F2 are defined by equations (4.58). Comparing these equations 

with the expression for the bending shortening, it follows that 

(P/3R) =44010 (aM0/alij ) + el(alyaRj )] 
	

(4.67) 
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This is in fact the contabution of any limber towards the opening of 

the jth cut. Summation over all the members of the frame gives the 

total opening which / 4'or cOmpatibility af member shortenings, is zero. 
Using the fact ttlatoidihe sum of the end members connected at a joint 

equals the appli jont moment, this summation reduces to 

4-01  (ami/aRi ) i.ri92(?m2/aRi )  4 6vi On  OMn/aR (4.68) 

where e 1 ) 62 	, en are the joint rotations, and M1, M2 , . • , M 11  
are the joint moments which must be .applied to maintain these rotations. 

The generalized frame stiffness is defined as the latent root of the 
stiffness matrix, that is 

A = m 	m/92 	4 4 = M ie 
1 1 	n 

whence we obtain 

ni/a,RJ  =611 (0/alli ) ; h1011.1  = e2 (aA/aR j ) ; etc. 

Hence the compatibility equations reduce to 

3A /dRj) joits e 
	

(4.71) 
or simply 	aivgi  = 0 

That is, the member shortenings for "infinite" deflections are ccatible 

when the derivatives of the generalized frame stiffness with respect to 

the redundant forces are zero. This criterion is a generalization of 

that developed by Murray (reference 1). The argument is valid only if 

the shortening due to axial strain /  Pl/AE, is negligible compared with 

the bending shortening. This is a reasonable simplification when the 

frame has buckled at its ultimate load. Thus finally /  the ultimate 

elastic buckling mode and load are characterized by the equations 

(4. 69 ) 

(4.70) 

A = 0 
 

(4.72) 

B A/311j= 0 	; (j = 1, 	• 

where Ais a latent root of the stiffness matrix which is associated 

with a latent vector or buckling mode. In gehIrml there may be several 

modes which satisfy the above equations or there may not be any 

Furthermore it seems possible that the ultimate buckling mode is not 

necessarily the one which has the lowest stiffness over the entire 

range of applied loads, since the latent root plots can cross 

(see for example figure 3.15). Obviously these considoritions give 

rise to computational difficulties. A large number of frames tkeeds 

to be analyzed and the results checked by model tests to assess the 

reliability of the above equations. Although the equations in their 
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present form are not used in this thesis )  the following iterative scheme )  

backed by a reasonable picture of the mode from observations of simple 

inexpensive models, appears to be an attractive method of finding a 
solution: 

(a) take a trail value for the ultimate load W 

(b) guess values of the redundant forces R1  R2, • • • Rm 

(c) calculate the axial forces in the members 

(d) set up the stiffness matrix 

(e) extract the latent roots and vector . 	the stiffness 
matrix 

(f) for each mode in turn set up the compatibility equations. 

This is most easily done by Wittrickts method (reference 

5 chapter 3), that is 

= eT 	9 

where ais the normalized latent vector )
T its transpose, 

and K is the matrix whose elements are the derivatives 

with respect to R of the elements of K. In general the 

compatibility equations are not satisfied. 

(g) linearize the compatibility equations by using the first 

two terms in Taylorts series for the derivatives 42 the 

elements of K J ; this involves the use of second derivatives 

of s and sc. 
(h) assuming the modes remain constant )  solve the linearized 

equations for the increments 6R1  6R2)• • 0 811m  in 

the redundant forces. 

(i) repeat steps (c) to (h) until reasonable agreement is 

obtained. The sign of the smallest latent root at this 

stage indicates whether or not the ultimate load has been 

reached. Once the buckling mode has been established it 

is not necessary to calculate all the latent roots and 

vectors )  but only that corresponding to the correct mode. 

It should also be kept in mind that a compatibility 

solution need not exist for every latent vector; 4.4 

example of this is seen in the following section. 
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4‘9- FRAMES WITH ONE DEGREE OF STATICAL INDETERMINACY  

In the case of a frame which has only one degree of statical 

indeterminacy with respect to the axial forces in its members, the 

solution for the ultimate elastic buckling loads and modes is relatively 

straightforward, and can be performed graphically. Denoting by R the 

single redundant force, then the latent root of the stiffness matrix 

corresponding to any particular latent vector or mode can be represented 
by a function of the two variables W and R, that is 

= 	R ) 	 (4.73) 

This function can be visualized as a surface in space. For convenience 

W and R are measured in a horizontal plane and A is measured as the 
height of the surface above or below this plane. When the frame buckles 

in any mode, the latent root corresponding to iie mode under investigation 

vanishes, and this condition is satisfied by the intersection of the 

surface with the W- R plane. The curve so defined in the W-R plane is 

readily calculated, and this is what Giudici (reference 3) calls the 

interaction curve. It is the locus of simultaneous values of W and R 

for which the frame stiffness is zero. Simple examples of interaction 

curves have already been given in section (4.6). The interaction curve 

in general may be of any shape, and there is of course a curve associated 

with each buckling mode of the frame. Figure (4.18) depicts a typical 

example. Since the frame stiffness is zero on the interaction curve, the 

initial buckling load Wel, is obtained as the intersection of the linear 

loading path R = kW (assuming the members do not bend) on the interaction 

curve, as in the figure. The ultimate elastic buckling load must, in 

addition to lying on the interaction curve, satisfy the compatibility 

equation for "large" deflections, that is 

?A/all = 0 

Along thi, interaction curve, from any point to a neighbouring point we have 

dA. 0 = (aA/aW)dW + (aVaR)d.R 	 (4.74) 

whence we obtain 

M/aR = (A/aw)(a.w/cift) 
	

( 4.75 ) 

and since (aA/aw) =(deflection of W 0, we find that WOR is zero when 

(dW/dR)w=wult  = 0 
	

(4.76) 



°Jo 
4. 

WniCr... 

I  /43  

40. tlh 

V/ AP 

figure 4.18 Typical interaction curve 
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That is the ultimate elastic buckling load is the peak of the interaction 

curve. 

The interaction curve thus provides a useful means of 

determining both the initial and ultimate elastic buckling loa4s, 

The associated modes are also readily obtained by interpolating 

between two calculated points one on either side of the respective 

load. At the same time the curve gives an indication as to which way 

the axial forces are most likely to redistribute themselves in a test. 

4.10 EXAMPLES OF INTERACTION CURVES 

(a) Three bar frame  

As a simple example consider the frames shown in figure 

(4.19), which have the same overall dimensions but different base 

connections. All members are of the same length, material and cross 

section, and buckling is confined to the plane. Member AC is 

vertical and load is applied vertically. The measured behaviour of 

these frames wlas given in section (4.7). 

Member AC is arbitrarily designated as the redundant 

member and R is the axial force in it. From a primary force analysis 

we obtata the axial forces in the members as 

P3 = P1 = 
	

; 	P2 = R 
	

(4.77) 

compression being taken as positive. 
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(i) Fixed Bases 
	

(ii) Pinned Bases 
figure 4.19  

• (i) Fixed bases 

In this case joint A only can rotate, and if e is the 
angle of rotation then the moment required to produce e is 

M = (EI/1)(8.1  4. 82  4.) 	 (4.78) 
where Si  y 82  2 53  are the stiffness coefficients of the respective 

members. The frame stiffness, or latent root, in this case is therefore 

siiOy 
A= M= 	EI/1)( al 	s2  + 53 ) 	(4079) 

SinceP=13 .we have 5 3 - - Si $ and the interaction curve is defined 
1 	3   

by A = 0 which then becomes .  

28
1 

+ 8
2 = 

0 
 

(4.80 

This equation can be solved by inspection of the tabulated stability 

functions. Working non-dimensionally, we put 

101 = P1/Q ; w = W/Q ; r = R/Q = 02  (4.81) 

By fixing r, that is f12 , the value of 52  is read from tables; 

equation (4.80) gives si  = -0.552 $1  and the tables are entered again 

to determine the corresponding e l  value; the value of w is calculated 
from equation (4,77) as 

w = 	1)1 +:r 

Figure (4.20) shows the interaction curve for positive values of w only. 

(4.82) 



(4.83) 

In this case all joints can rotate, but since the bases are 

pinned we have 
;= - rt: 	3 

(ii) Pinned bases 
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where 0 is the rotation of joint A, and C 1 , c2  ) c3  are the carry-over 

factors of the respective Members. The Moment required at A to nroduce 

these rotations then becomes 

M = (EI/1)[8 1 (1k4) + 	+  

= (EI/1)(q+ 	S.  j) 

where s" is a function which is also tabulated direCtly. Again sit= sit- 3 1 
and the interaction curve for the frame with pinned base connections is 

therefore given by 
1.1,  U 

s
2 

2s  =0  (4.85) 

which is solved in the same manner as before. 

(iii) Completely pin-jointed  

When the members meeting at A are also free to rotate relatively )  

the interaction curve degenerates to two straight lines given by 

that is 

= 	= 1 	; P2- 1  

	

W r =Y 	r= 1 
(4486 ) 

These are also shown in figure (4.20). 

It is interesting to note that all three ihtetactiOn curves are 

(4 .84 ) 

figure 4.20 - Interaction curves for_three bar fraine 



    

(2s1 4352 ) 81 0 1  s 1 c 1 
 

s
1
c
1 	(41 45•  s2+s3) 83°3 

°-s2c2 
V5s2c 2  

s1c1 	
,s3C3 	

( si 4gs2+ 83) T5 s2c2 

1/5" s
2
c2 	3115 s2 T5S2c2 	fS2c2 

— 169 — 

similar in shape, but that there is a decrease in size as more pinned 

joints are introduced. On the basis of a linearly elastic analysis 

with no bending 2 the compatibility equations are satisfied by the 

relation 

R = W/2 

Superimposing this linear loading path on the interaction curves, we see 

that it very nearly passes through the peaks of the curves. This suggests 

that the actual loading path in a measured test might also be close to 
plot 

linear, which explains why a good linear SouthwelVwas obtained in the 

model tests (see section 4.7)0 

From the peaks of the interaction curves the predicted 

ultimate elastic buckling loads for these frames are 

Wult 
= 4,98Q for the fixed—base frame, 

and 
	

Wult = 2.43Q for the pinned—base frame. 

Inserting the numerical values of Q given in figure (4012)3 the predicted 

values are respectively 11.85 lbs. and 5.55 lbs. These are in good 
agreement with the measured values 12.2 lbs. and 5.8 lbso 

(b) Triangulated frame  

As a second example, the frame show A below is analysed and 

its interaction curve drawn. Treating member AD as redundant, and 

denoting by R its axial force, the axial forces in the remaining 
members are found to be as given in the figure. The stiffness matrix for 

this frame is 

(4.87) 

—M 

MB  

Mc  

MD 

= (El/1) 

  

0 

(4.88 ) 

e
D 
 0 
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1 = length of outside members 
El = constant 

Q = 172E1/12  

figure 4.21 Triangulated frame  

where s and sc are stability functions, the subscripts of which denote 

the respective members as shown in the figure by encircled numerals. 

For this (4 x 4) stiffness matrix there exist in general four latent 

roots corresponding to four latent vectors, each of which represents a 

possible mode of buckling. The interaction curves are loci of points 

in the W-R plane for which the respective latent roots are zero. In 

order to plot these )  a digital computer program was written, The 

procedure adopted was to select various W values and extract the latent 

roots and vectors at several values of R, the limits being chosen so 

that the F/Q ratio in any member was always less than 4. from these 
results graphs of latent roots against R were plotted with W as a parameteG 

These graphs are of similar form; a typical ,set is shown in figure 

(4.22). The modes corresponding to the latent roots are sketched in 

figure (4,23). From the graphs in figure (4.22) we can locate the points 
at which the latent roots are zero, and hence the interaction curves can 
be drawn. These are shown in figure (4.24)0  The interaction curves for 

modes 1 and 2 are seen to intersect at w = 0. In fact at w = 0 	two 

latent root plots shown in figure (4.22) coincide for all values of r. 

The interaction curve for mode 3 intersects both the other two, and 
within the range of calculated points it does not exhibit a peak. 

Mode 4 does not have any zero stiffness in the range covered. 

For comparison, the interaction curve for the frame with all joints 

pinned is also shown. 
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figure 4022 — Graphs of latent roots 

mode 1 mode 2 mode 3 mode 4, 

figure 4.23 — Modes associated with latent roots of figure 4.22 

From the curves drawn it is seen that the ultimate buckling 

deformations are in mode 1 )  which agrees with that observed in model 

tests. The ultimate elastic buckling load yas given by the peak of the 

interaction curve is 

Wtat = 9.75Q 
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figure 4.24 - Interaction curves  

Inserting the numerical value for Q given in figure (4.14), we get 

Wu,
t 

= 885 lbs. 

which is in good agreement with the measured value of 900 lbs. The 

agreement is perhaps not as good as it looks, because the measured 

value is accurate to only about 5%. 

The predicted initial buckling load is found from the 

intersection of the linear loading path on the interaction curve, 

that is 

W = 5 010Q = 463 lbs 0  
cr 

which is to be compared with a measured value of 380 lbs. However 

the predicted value does not allow for prestrain, which has the effect 

of shifting the loading path either to the left or to the right, and 

hence a different point of intersection results. Also the loading 

path in a real test is non-linear, which again ihfluences the initial 

behaviour. These aspects are discussed in the following sections& 
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Another point of interest arising from the above interaction 

curves 1,s the question of how the actual loading path passes through the 

interaption curve for mode 1 At this point the frame stiffness is zero 
but only against deformations of the type mode 3, whereas the stiffness 

against mode 1 type deformations is still positive. Also, the frame 

first begins to deform into mode 1 so that it is more likely to continue 

to do so, unless there is some influence strong enough to make it change 

to mode 3. This might have occurred for example if mode 3 had a lower 

peak than mode 1. 

4.11 THE BEHAVIOUR OF INITIALLY CROOKED OVERBRACED FRAMES  

As for statically determinate frames, or indeed any 

structure, a knowledge of the buckling loads and modes alone is not 

sufficient for design. Such knowledge provides only a picture of the 
behaviour of an oversimplified mathematical model of the real frame, 

one which is initially perfect. The ideal behaviour of the "peliect" 

model is pictured in figure (4.25). At low loads the frame is in 

stable equilibrium with all the members remaining straight. At some 

ult 

\kr 

 

  

lateral de1?(ec Lwi  

figure 4.25. 

load, Wcr 	form2 the straight 	first becomes unstable but only against 

small deflections. A8 load is increased the deflections increase, 

rapidly at first, but the rate of increase gradually decreases. At 

a still later stage the rate of increase in deflections begins to rise 

again, and eventually becomes infinite at the ultimate load, Wult ' 
at which the frame must collapse. 
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The real frame possesses initial crookedness so that it begins 

to deform as soon as load is applied. If the magnitude of the imperfections 

is small, its behaviour follows closely that of the perfect frame, but in 

general, the larger the crookedness the more it departs from the latter, 

somewhat as given by the curves in the figure. Also the material of the 

real frame behaves elastically only for a limited range, up to a yield 

point say, and in most designs one tries to keep well within the range. 

Ultimately the designer is interested in the factor of safe0 against 

total collapse that is the ratio of collapse load to working load. 

In chapter one it was shown that the behaviour of a 

statically determinate frame is reasonably well described by .a linear 

Southwell plot equation. This provides a convenient design method; 

assuMiAg an initial crookedness pattern similar to the buckling mode )  
the deflections under load are obtained as the initial deflections 

multiplied by the ratio 1/(1-0 cr ). It is therefore relatively 

simple to trace the frame behaviour, and hence to estimate the load 

to cause first yield. For statically determinate frames the collapse 

load is usually only slightly higher than the load to cause first 

xrield, and this criterion thus provides a useful design tool. 

However, for overbraced frames the situation is more 

complicated. In general, the behaviour of an overbraced frame 

cannot be described by a linear Southwell plot and the simple 
design method is lost. The reason for this is that the loading 

path for an overbraced frame is non—linear l that is the axial 

forces in the members do not remain in constant proportion to 

one another &  As mentioned earlier, the main factors affecting 

the severity of the non—linearity are (a) the mode and magnitude 

of initial imperfections (including prestrain), (b) the ratio 

Wt /Wcr 2 
and (c) the slenderness of the frame members. If ul  

these factors are favourable then the departure from the linear 

loading path can be neglected. 

Most practical frames have relatively low slenderness 

ratios, and for these frames the member shortenings are dominated by 

the axial strain rather than by bending effects, so that the analysis 

of section (4.8) breaks down. For these frames the compatibility 

conditions are approximately satisfied by a linear loading path, and 

yielding occurs before the departure from linearity becomes appreciable. 

Hence these frames are ltkeV to behave similarly to statically 

determinate frames, and the design method described in chapter one, 

with Wcr as in figure (4.25) as the buckling load, can be usei up to 
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first yield. As soon as a member yields it is reoso*P.abie to assume 

that its axial load subsequently remains constant. A new axial force 

distribution can then be colonial , : from modified compatibility• 

equations, Ad the analysis is continued, and so on until a sufficient 
number of members has yielded so that the frame can collapse as a 

mechanism. Obviously 	+ 1) members need to yield for the frame to 

become a mechanism. 

A design based on the above simplifications, although 

conservative, is undoubtedly crude, but a detailed technique taking 

into account more of the important factors is likely to be too 

complicated for routine design office work. In the foll7c77ing 

section an attempt is made to formulate a mathematical model for a 

more detailed prediction of the behaviour of initially crooked 

overbraced frames. 

4612 THE ANALYSIS OF INITIALLY CROOKED OVERBRACED FRAMES 

The main difficulty in the analysis of overbraced frames 

lies in the treatment of the compatibility equations :  from which 

the loading path is determined. A knowledge of the axial force 

,distribution is necessary for the calculation of frame stiffness 

and hence the deformations. Unfortunately the compatibility 

equations contain quadratic terms in the deformations as well ad 

non—linear force terms (see equation 4.61), so that neither can 
be determined independently of the other. However, this type of 

situation is very common to engineering problems, and frequently 

a solution can be obtained by trial and error, iterative or 

graphical methods, or other such powerful techniques. 

In this sectiorr it is proposed to set up the necessary 

equations for general analysis, and a graphical solution is 

presented for a very simple singly—redundant system. Parts of 

the argument are repetitions of ideas presented already in chapter • 

one, but are again included in order to stress the limitations of 
the mathematical model. 

Consider first a single member isolated from the frame. 

At zero load the member is bent into a shape y o  soy, which is assumed 

to be expressible as the infinite Fourier series 
00 

yo = ( l/fr)  
1 
 0 sin(n1) n=n (4.89) 
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figure 4.26 

where the choice of the parameters e n  (end slopes) will become apparent 

later. When the frame is loaded, the compressive axial force in the isolated 

member is P I  the end slopes are eA  p e B , and the end moments are MA , MB  

whence the end shears are obtained as (IA A  + MB)/1. The deflected shape y is 
to be determined. At any point (x ly) on the centreline of the deflected 

member, the bending moment is given by 

M = -MA( 1  -X/1) MB(/1) - PY 	(4.90 ) 

and if linearly elastic material behaviour is assumed, we can write 

M = El x (change in curvature) 

= El ( d2y/dx2 d2y0/dx2 ) 

These two equations combine into a single linear differential equation, whose 

solution is 

y = A sin( 1151W1) + B cos (T7Irx/1) 0;  (MA/P)(1-x/1) + (MB/P)(x/1) 

+ (1/10 	[ Onsin(nx/1)/(14n2)] 

where p= P/Q ; Q =112E1/12  

The constants A and B are determined from the boundary conditions of zero 

deflection at the ends. When the end slopes are also introduced we find 

that the end moments are given by the equations 

(4.91) 

(4.92) 

where 

MA  = (EI/1)[(011  + seed — (s 	)46 

MB  = (EI/1)[(sc911  + sOB) + (s —sc)00  

150  = A1315,..  [n6,01-fVn2)] 

(Pe = 1E)4,6, 
[MV(i _f/n2)1 

(4.93) 

(4.94) 

These expressions for the end moments contain 

slopes AA, I9B, , together with the terms 0 o' 
corresponding to the Fourier terms, magnified 

the usual terms in the final end 

04ch are the initial end slopes 
2  by the ratios 4/(116). 
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The axial shortening due to bending, is given by 

A 	(dy/dx) 2dx 4 0( (dy0/dx) 2dx 
0 	0 

Using equations (4.89) and (4.92) this gives, after a lengthy 

manipulation 

A= _(l/n2)f*Fl (81A2  +6V)  (3; - ( s-sc)°; ( e; 9B 

—(r2/4)cri  
where F 1  and F2  are the derivatives of the stability functions s and sc 

respectively (see equations 4.58), and 

= A ,3152.. [Vno-f62 ) 23 

°±I • 
v . n=2, 41 6 1 .4[9n/n(1.0n2)23 

co 
Cl _ Ti n2 0  2n  E lio_ein2)2.4 3 

oD 
elt  =  

•
i  [118r1(1•-.P/n2 )3 

ol0  • 

e; = 1913.- 	[(*-1)211t/(1.0n2)]  

The total shortening, 6 is obtained by adding to the above the term 
Pl/EA, that is 

6= Pl/EA +A 

(4.95) 

( 4.96 ) 

(4.97) 

(4.98) 

When the above equations are to be used in frame analysis, 

the first step is to decide on the overall crookedness of the frame. 

Since there is little, if any, information regarding the type and 

pattern of crookedness to be expected, this te*:is not easy. Consequently, 

whatever is done, one must try to make conservative estimates °  As in 

chapter one, it seems reasonable to focus attention on joint rotations, 

and to assume that the initial crookedness can be expressed in terms of 

the initial joint rotations. The relative magnitudes of these 

rotations are chosen to resemble the ultimate buckling mode. This 

leaves the overall magnitude of the frame crookedness as a free 

parameter which, if desired, can be expressed as a fraction of 

representative member lengths and rbigted to the initial rotations. 
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Once the magnitudes of the initial joint rotations have been fixed, there 

remains the question of the deflected shapes of individual members. However, 

it is thought that this is rather less important than the assigning of a 

pattern and magnitude of crookedness, so that any reasonable shape, having 

end slopes corresponding to the relevant joint rotations, will suffice. 

This can be achieved by using the Eirst two Fourier terms in equation 

(409),  for any member, and the two coefficients are readily calculated 

from the boundary conditions. 

Under load, the membeis of the frame deflect further and strain 

longitti4nally. The final joint rotatiOns and axial fOrce distribution 

are calculated from the equations of equilibrium and of compatibility. 

As before, let there be m redundant members and assume that the shear 

forces arising from bending are negligible compared with the axial 

forces. Then the axial force in each member is expressed in terms of 

the applied load W and the redundant forces R 1  y R2  $ • 	Rm  from 

a simple primary force analysis. We can then set up the joint 

equilibrium equations using the single member relations of the type 

(4.93). These equations are of the form 

K 	0 = 90 	 (4.99) 

where -11 is the usual (n x n) stiffnesS matrix whose elements are 
functions of W and R1 	• 	R; • r) is the vector whose elements ° 	m 	, 
are the final joint rotations, and 0 0  is a vector whosb elements 
are the initial joint rotations modified according to the factors 

appearing in eqUations (4.93). 

The compatibility equations are tost easily derived by 
complementary energy methods as described earlier, and when equationa 

Such as (4.98) are introduced, they become of the form 

A gi 2  + B. 	. 	+ C. Ei 2  + D = 0 • (j = 1$ 2 $  • . 	(4.100) j 	a 	j b 	j 

where A B C
'  
. D are functibhe Of W and R1 	. R; D represents J' 3 	 n 	j 

the linear term corresponding to the axial shortenings of the metbers. 

Equations (4.99) and (4.100) together provide a solution for the n unknovin 

joint rotations and the t unknown redundant fOrdeet. 

Clearly a direct solution of either set of unknowns is not 

possible. To obtain a solution one must iterate. If an axial force 

distribution is assumed, the joint equilibrium equations (4.99) reduce 

to an ordinary linear set which may be solved by classical methods. 



- 179 - 

These rotations, together with the assumed axial forces, do not in 

general satisfy compatibility. The force terms in the compatibility 

equations can be linearized, and by holding the rotations constant, 
the resulting linear equations are solved for improved values of the 

forces. This process is continued until satisfactory agreement is 

reached. It is not known whether this process converges. 

4.13 A WORKED EXAMPLE  

In order to demonstrate the technique developed above, 

the simple "frame" shown in figure (4.27) is analyzed. In this 

case there is only one joint rotation, that of joint A, and one 

(4.1 o 1 ) 

(4.102) 

both members have the same 

cross section; slenderness 
ratio of 

ABIl/r= 314 

figure 4.27  

redundant member. The buckled shape is as shown in the figure, 

and the initially crooked shape is taken to be similar, with 00 

as the initial misalignment of joint A. Using the first two 

terms of a Fourier series to represent the initial crookedness 

of the members, we find 

(y0 )1 = (1/11')[ -i90  sin(frx/1) +i-e o  sin(21Tx/1)] 

(Y0 ) 2  = (1/M)[i% sin(21/1) +1/800sin(411V1)] 

Under load the rotation of joint A increases to e , and the member 
axial forces are I

'1 
and P

2 where 

13 1 	W R  

P2 = R 

Working non—dimensionally, we put w = 1,1/Q; r = R/qii  . pl/Q1;  
02  . 132/010 where Q1  =1hI/12  = Euler load of member AB; Q 2  = 44E1/12  

= Euler load of member AC. 

Thus we obtain 	
1)1 = 	r 

(4.103) 

The member end moments are obtained from equations (4.93) and summation 
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at joint A gives 

(s 	282 )19=190 [2(8 1 —si c i )/(1-P1)+2(s 1 +s i c i )/(11q/4)+(s2.4e2c201—( 2 ) 
(4.104) 

where s and se are the stability functions, the subscripts denoting the 

respective memlers. 

The compatibility equation for this frame is 

P
1 
 1/EA + 6 = P 1/2EA +.62 1 	2 

where
'1 

and
2 
are the bending shortenings, which are calculated from 

equation (4.96)6 

(4.105) 

In this simple problem a graphical solution is most convenient. 

For any value of w select various r values, calculate p i  and /D2  fripm 

(4.103), from tables read off the values of s i 1  c l , 82 , c2 and hence 
calculate the rotation 0 from (4.104). The bending shortenings are then 

calculated from (4.96), and the discontinuity across the cut is given by 

£ = (P 1 1/EA 
	

(P21/ 2EA + L 2 ) 
	

(4.106) 

The solution is thus obtained by graphing Lagainst r and locating the zero. 

In the numerical work, r I;lues are chosen to lie within the limits of the 
interaction curve. Figure (4.28) shows the form of the curve obtained. 

The graph runs away rapidly near the interaction curve limits, and there is 

is x10-4 

r=R/6, 
io 	, lL 

:41  

111  
-10 

-15 
f.41 

fi_o_LEL.4„2EL„pisloatinuitz_grap_. 

+(e2+s2c2 )/(1—p2/4)] . 



CODE: 
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an intermediate point of inflection. The form of the graphs remains 

substantially similar at other values of w and e 

From a set of the above graphs the zeros are located, and 

hence the loading path can be plotted. This is shown in figure (4.29) 

for various values of initial crookedness. The interaction curve is 

also shown. The loading baths for this frame do not curve greatly. 

figure 4.29 - Loading oaths  

Initially the curves are very close to the linear path r = 0.667w, 

and as the load increases they head towards the peak of the interaction 

curve which represents the ultimate buckling condition. It is , 

interesting to note that some of the curves show a point of inflection 

just before reaching the peak. 

Inspection of the form of the incompatibility graph 

suggests that the iterative technique outlined in the previous section 

ahould - converge. The method was programmed for the electronic computer 

so that the results obtained manually could be checked. The iterative 

procedure for handling the compatibility equation was based on the 

straightforward Newton method of linearisation„ using a straight 

line through the origin and the peak of the interaction curve as a 

first guess. This method did not work at high loads; failure resulted 
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because the points of inflectibn on the incompatibility graphs gradually-  tove 

below the axis so that after a while the first step in the iterative schpme 

gives an 	value which lies outside the litits of the interaction curve. 

Once outside these limits, the iterative seheme diverges or oscillates 

indefinitely. This eventuality was subsequently prevented by the inclusion 

of a subroutine into the computer program to modify the first guess of r 

if an iterated value fell outside the interaction curve. Difficulties of 

this kind or another are bound to arise ih tost analyses of OVerbraced Pramps; 
the above notes are included as a typical example. However, it should usually 

be possible to overcome them by a suitable re=arrangement of the computations *  

Knowing the loading path which satisfies the compatibility equation, 

it io an easy matter to calculate the rotation of joint A0  Figure (400) 

shows the rotation plotted against load f6r the various values of initial 

crookedness. The Southwell plots calculated from these curves are shogn 

in figure (4.31). As is to be expected, because the loading paths are 
reasonably close to linear, the Southwell plots do not exhibit transition 

regions of the type encountered earlier, but are, to the accuracy of 

calculations, almost straight lines and parallel. The ultimate buckling 

load, as obtained from the inverse slope, is wult  = 10.65, which agrees 

with the value given by the peak of the interaction curve 

figure_400 	rotatiOn V4o.lbad 



flgure 4.31 - Calculated Southtellsigts. 

414 THE EFFECT OF FRESTRAIN 

As mentioned earlier, pre strain can be regarded as a kind of 

imperfection which, like initial crookedness, has a considerable effect 

on the frame's behaviour. Prestrain arises whenever the initial member 

lengths are incompatible. This is caused by errors in cutting to length, 

bending during handling, temperature expansion and other factors. Most 

of these factors are uncontrollable but need to be taken into account 

in design, or some provision must be made for their control, for example' 

by building into the frame a number or turnbuckles, 

It was shown in section (4.6) that the main effect of 

prestrain on the loading path is a shift of origin. For this reason 

it is obvious that the ultimate buckling modes and loads are independent 

of prestrain. However, the initial buckling modes and loads are affected 

by prestrain, as can be seen from figure (4.18), and it should be 

possible to arrange a prestraining pattern to increase W cr  ori, in some cases, 

make it the same as the ultimate buckling load. Referring to figure (4. 25)) 
such a system is clearly advantageous in practice because it helps to 

delay the onset of large deformations, which ultimately cause yield, 

and hence govern the load carrying capacity of the frame. 

The analysis of initially crooked overbraced frames with 

prestrain is in essence no more difficult than that outlined in 

section (4.12). All that needs to be done is to modify the compatibility 
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equations by the inclusion of terms representing the initial lack of fit 

[for comparison see section (406b) ]. The difficult part is the 

assessment of the magnitudes and directions of the initial discontinuities. 

When there is no provision to control prestrain, such as in the usual 

construction, the initial lack of fit is random, and it is quite likely 

to produce an unfavourable strain pattern which may considerably reduce 

the useful working range of the structure. On the other hand when 

control is provided, one can devise a pre strain pattern to optimize the 

working range. Also, in contrast with statically determinate frames, 

it should be possible to suppress first and perhaps higher modes, 

thereby forcing the frame to deflect into a mode associated with 

much higher buckling loads, both initially and ultimately. The 

deformations then grow less rapidly resulting in an increased load 

carrying capacitya  

4015 CONCLUDING,UMARKS 

Although the work presented in this chapter merely touches 

the surface of a wide and challenging field in structural instability 

studies, it has brought to light certain aspects of sufficient 
importance to warrant a brief recapitulation. Firstly, the loading 

path of an overbraced frame; that is the variation of axial forces 

in its members, is non-linear even though the material behaviour is 

linearly elastic. The extent and form of the non-linearity depends 

on both the magnitude and pattern of the initial crookedness. The 

loading path is predictable when the axial force-shortening relations 

for the members are known, and this in turn requires a knowledge of 

the initially crooked shape and of the deflected shape under load. 

The pressing need is for a simple but adequate mathematical model 

to describe the shortening behaviour, and the relations used in 

this chapter are but a short step in that direction. 

As a result of the non-linear loading path the behaviour 

of an overbraced frame cannot, in general, be described by a linear 

Southwell plot. Nevertheless the.deformations grow at an ever 

increasing rate with load, and it has been shown that some kind 

of limiting asymptote exists. As the asymptote is approached, 

the Southwell plot tends to straighten, and the inverse slope 

of this portion provides an estimate of the framels elastic 

ultimate buckling load. It is suspected that in some cases more 

nearly linear Southwell type plots can be obtained by graphing 

deformation divided by some function of load against deformation. 
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This function is probably related to the non-linear loading path, 
but due to the latterls variability it is not possible to lay down 

general rules. Some simple functions have been tried in an attempt 

to straighten the non-linear Southwell plots obtained in experiments, 

but these met with very restricted success. In other cases certain 

parts of the loading path are approximately linear. Under these 

circumstances the Southwell plots over these regions are also 

substantially linear. However, the equations describing such 

linear portions appear at this stage to be of questio&ble 

Prestrain is another kind of imperfection which alters the 

loading path, predominantly by a shift of origin but also in form. 

The ultimate buckling load is unaffected, but the initial buckling 

load may change appreciably. Since the latter governs the frame 
behaviour initially, it follows that by increasing it, the deformations 

can be kept low, which is exactly what the designer wantSn 

As far as design of overbraced frames is concerned, the 

author is of the opinion that the 'individual member design' method 

is generally overconservative.; This method uses the linear loading 

path obtained by neglectingthe'lpending shortenings, and hence the 

initial buckling load and a linear Southwell plot are its basis. 

The next step in design is to take into account overall frame 

deformations-, as in chapter one, but ultimately the only satisfactory 

method-is to include the non-linear loading path, and.incorporate 
prestrain as a means of optimizing the frame behaviour. However, 

until, simpler coifittational procedures are developed such a detailed 
method is beyond the facilities of the average design office. Perhaps 

after analyzing many and varied types of frame it will be possible to 

gather the information, into concise semiempirical rules. 
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APPENDIX  . Stability functions series 

The following series, far which the author is indebted to 

Professor J.J. Koch, are useful for the calculation of the stability 

functions s and sc and its derivatives. Consider a uniform column, 

carrying an axial load P 2  deformed by endmoments MA  and mB. 
Neglecting initial crookedness we obtain the deflected shape as 
(see chapter one) 

y = cl  sin(41x/1) + c2  cos (11"x/1) 	(MA/P)(1-x/1) + MB (x/1) 

	

where ()= P/Q Q = 1/2E1/12 	El = flexural rigidity; and c l  and 

02 are constants determined by the boundary conditions of zero . 

deflection at both ends. Introducing the end slopes eA  and 0 132  

we obtain the moment-slope relations 

MA  = (El/1)(s eA  .ce) 

MB  = (EI/1)(speA  + OE) 

where s and sc are given by the expressions 

s = WP/4(1-43 +LI) 	sc = [0),/4(1-44 -4LPJ 

in which W= ex coto( ; 	1r /2 
An alternative approach is to guess the deflected shape in terms of 

floating parameters and minimize the strain energy to evaluate the 

parameters. The strain energy is defined as 
F 4  0 A 	08 

U = J. 	dx 	PdA 17  MA  deA  4MB  de B 
0 0 	0 	0 	0 

where (I) and M are the curvature and bending moment respectively at 
any point along the column and A is the total shortening. Assume 
that the deflected shape, as given by equation Al, can be expressed 

as the infinite Fourier series 

y = 	an  sin(nfix/l) 	(A5) 

where the parameters an(n =1, 2, . . 	) are to be determined from 

the condition that the strain energy is a minimum. The above series 

already satisfies the boundary conditions of zero and deflections. 

From equation A4 the minimum energy conditions are 

aU/aah  = I'  mo4v3a  P(øQ/aah) MA(aelaan) 142 (' 19B/aan) = 0 	(A6) 

For small deflections and linearly elastic material behaviour we can 

put 

A = Jr (dy/dx-) 2dx 	4' = d2y/dx2  ; M = E14? 	(A7) 

(A2) 

(A3) 

(A4) 



- 188 - 

and from equation A5 the end slopes are obtained as 

= (dy/dx) x=0  = (r/1) 	n an  ; 8/3  . (dy/dx)..1  =(1/1) g (-1) n  n an(A8) 

From equations A6, A7 and A8 an  is obtained as 

an  = (212/113E1)[ MA  + (-1) n  MB)/n(n2..p) 	(49)  

Using this expression in equations A8 to determine the end slopes and invel"ting 

the result, equations similar to A2 are obtained and hence the following series 

for the stability functions s and sc: 

= _12_. 1A/(A2 B2) 	; 	sc  = 411.21/(A2 
	

(A10) 

where 	A = 1:71  1/(n? 	; 	B 
	

(A11) 

More rapidly convergent series are obtained by using the facts that 

1/(n2 	= 1/n2 (Vn2 (n2  

ti  1/n2  =4/6 	; °nt (-1) 11/n2  = -1/12 

This process may be continued but it is not considered worthwhile. A 

slight rearrangement of equations A10 gives the following expressions 

from which s and sc are obtained by addition and subtraction 

(A1-2) 

where 

s + sc = 1/[1/6 	sc = . 1/[i+ (4 

	

(4Pseven/R'2)] 	esadd/ 	(A13)R.2)  
cO 

522-  / 2/ 	\  
2 -2 l/n (n 	(A14) S  = even 	n=2,4,6,... 1/n kn

2  -p i  ; %cid=  n=1,3,5,... 

The derivatives of the stability functions are obtained as 

ds/de+ d(sc)/dr -4(s+sc)2 S ven/11 	ds/cif-  d(sc)/dr 4(s-sc)2s lodd/m2 (A15) 
oo oo 

where s 	- 	 (A16) 
even 	 6 1 .0. 1  - Z-- 	/(n2-0 2  

8odd n=1,3,5 9 ..1/(n2-0 2  

and the second derivatives are given by the expressions 

d2s/di2  + d2(sc)/de =  2[ds/dp+ d(sc)/d 	- 8(s+sc) 2  slTren/ 	(A17)  
($ c) 

d2Ald1$2 ,... -4e00/1?-;"2t49-'d(so)/dp1 2  -8(s-sc) 2sAd/11 
(s-sc) 

where slt 	= 52-  - 	1/(n2-0 .3 	; 	s i t = 2E:  -1/(n2-0 3 	(A18) 
.0 

even n=2,4,6 1 6.0 odd n=1 1 3,5,090 


