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(1)
ABSTRACT

In basing the school curriculum on the view that some
value can be attributed to knowledge most arguments have
centred on either the contingent consequences of studying
particular disciplines, the claim that knowledge can be
differentiated into distinct forms and that all students
should be introduced to them, or the claim that some
knowledge can be valued for its own sake or for its power
in developing the mind. In the case of mathematics
common justifications given for teaching it are that it is
useful, that it promotes intellectual development or that

it is intrinsically worthwhile.

But a recent view argues that some kpowfédge is
valuable because it provides people with such an understand-
ing that allows them to reflect on questions concerning the
nature and meaning of life and to be in a position to best
determine what they will dq with their lives. The role
that mathematics plays here is investigated by an examin-
ation of the nature and foundations of mathematical
knowledge. Dominant views on mathematics have nearly all
stressed its a ériori nature but they all have serious
objections to them. By a comparison with views on the
nature of scientific change a recent view on the nature of
mathematical knowledge has been articulated that describes
it to be in a process of evolution. At any particular
time there exists a mathematical practice which consists of

a language component, a metamathematical view component,



and sets of accepted reasonings, questions and statements.
The mathematical practice of today has evolved from a set
of beliefs about simple manipulations of physical objects

and consists of idealized ways of operating on the world.

It is concluded that while all students should be
introduced to the minimal mathematical language that is
useful to everyone they should also come to understand
the cultural significances of mathematics as it has
evolved through man's attempts to solve problems within
his environment. This comes through a study of the
influences that mathematics has had on different cultures
and the way that man has looked to mathematics as
providing a methéd of solution to problems within his
culture. Unlike earlier justifications given for
teaching mathematics the justification based on the
cultural significances of mathematics centres on all five
components of the mathematical practice of the day and
provides important considerations for the structure and

presentation of mathematics courses in schools.
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CHAPTER I

THE PROBLEM OF THE PLACE OF MATHEMATICS ON THE CURRICULUM

Nature of the Problem

Whenever there is debate over the purposes of education
and the value of particular educational activities, it becomes
important to look at the traditional subject disciplines, like
mathematics, and the claims made for their placement on the
curriculum, For in the case of mathematics, the value
judgements we make regarding such things as reforms to
traditional curricula, the selection of mathematical topics,

- and the best methods of instruction, are all related to the
~ fundamental concerns of why we value mathematical knowledge and
the justification we can give for teaching mathematics in

schools.

In a discussion on the aims of teaching mathematics at a
meeting of the British Association for the Advancement of

Science, held at Glasgow in 1901, a Professor J. Perry said:

The ‘&tudy of Mathematics began because it was
useful, continues because it is useful and is
valuable to the world because of the useful-
ness of its results, while the mathematicians,
who determine what the teacher will do, hold
that the subject should be studied for its own
sake. -

(Quoted in Griffiths and Howson, 1974, p. 17)

Seventy years later there was no apparent change in the purposes
of studying mathematics, as the Assistant Masters Association in

England said:

There is a twofold purpose in the study of

mathematics. Firstly, and of prime importance,
is the pursuit of the subject for its own worth.
... Secondly, ... we must regard mathematics as



a study of a service subject to science,
technology, commerce, politics and
economics, and even the arts.

(Assistant Masters Association, 1973, p. 205)

More recently, the justifications given for the teaching of
mathematics have increased in number though great importance
is still attached to the usefulness to which the knowledge can

be put. As K. Selkirk says:

The teaching.of mathematics in schools may
be justified 'in a number of ways. It is,
for example, part of the cultural background
of our civilisation, and as such should rank
with art, music, literature and similar
aspects of our heritage. Again it is a
logical and efficient system of deduction and
this may well transfer to problems outside
the immediate area of the subject. The
justification which appeals particularly to
those whose primary interests lie outside the
subject is, however, that it is useful. At
a time when the limitations of our national
and global resources are only too painfully
apparent, this usefulness must be a major
justification for the teaching of the subject
in schools and for its important share in the
total school curriculum.

(In M. Cornelius (ed.), 1982, p. 186)

But these comments leave impdrtant problems unresolved.
While we might agree, for example, that all students should be
taught the mathematics that will be useful to them later on in
life, we are still left with the problem of deciding what
mathematics is useful to all people. I£ might be that the
amount of mathematics that is useful to .all people is so
minimal that it requires very little time at all on the
curriculum. And if we are to argue that students should be
taught the mathematics that will be useful to them in their
future occupations then we must confront the problem of
predicting the future for these students and deciding whether
the mathematical knowledge they need is.not better taught "on

the job" or in specific vocational training institutions.



The claim that mathematics should be studied for itshown
sake is unclear. Does it mean that people enjoy studying
mathematiés and that, therefore, it is worthwhile pursuing?
If so, how does one answer the student who says that he
doesn't enjoy studying it and that, therefore, it is not
worthwhile? If one is to claim that, irrespective of any
preference of the learner; mathematics is an intrinsically
worthwhile activity and should be studied by all students,
then we must decide on what makes it intrinsically worth-
while. Why can we claim that mathematical knowledge is
valuable to all people without any reference to the use to

which they can put that knowledge?

If it is claimed that mathematics should be studied by
all students because it develops the mind and promotes
intellectual development, then it must be clearly established
in what ways mathematical knowledge is necessary for
intellectual development to proceed. AAre all paths to
intellectuél development, for example, dependent upon a

certain minimal training in mathematics?

Finally, if mathematics is ranked with acti&ities like
art, music and literature, then why is this sufficient reason
for requiring all students to study it at school? Why
should schools be concerned about the cultural significances

of mathematics?

The answers to these questions are important because the
reasons we give for teaching mathematics in schools have
implications for how we teach it as well as for the selection

of content of mathematics courses. But a critical examin-



ation of the claims for the justification for teaching
mathematics must~5e based on views -about the value of .
knowledge in general, and the nature and value of mathemat-
‘ical knowledge in particular. Is there a strict dichotomy
'of knowledge into that which is valuable because of its
extrinsic usefulness,hand that which is valuable because of
-its intrinsic w§rthwhileness? Are there other value
categdries of knowledge and, if so, what are they? What
is the nature of mathematical knowledge?  Why should
mathematics constitute part of the compulsory curriculum?
It is tﬁe purpose of -this dissértation to investigate these
questions from the philosophical perspective and to afgue
for the inclusion of mathematics in the curriculum, based
on a view of the 'nature. of man, the nature of mathematical
knowlédge,’and the . cultural significances of mathematics.
éuch a view, it is shown, will have radical implications

for the mathematics. curriculum.

Outline of the Argument

Chapter II is concerned with arguments for basing the
curriculum on particular notions of the worthwhileness of
knowledge. It considers the claim that some subjects are
valuable because of their confingent consequences, the claim
that the areas of knowledge represented by certain subjects
are distinct forms of knowledge, and the claim that some ‘
subjects themselves possess intrinsic worthwhileness.
Finding objections to all these views, an argument is thén
considered which rejects the dichotomy of knowledge into

‘that which is instrumentally useful-and that which is



intrinsically worthwhile; but which gives value to some
knowledge in assisting people to acquire a "world view" and
make reasoned decisions about what they will do with their

lives.

Given that argument it is then reasonable to ask what
it is about mathematics that allows it to serve that purpose.
So Chapter III is related to qdestions concerning the nature
and foundations of mathematics. The dominant 20th century
views on the nature of mathematics, stemming from the
earlier works of philosophers such as Leibniz and Kant and
even back earlier to Plato and Aristotle, are all found to
have serious objections to them. This is because, it is
argued, they all regard mathematics as something that is
unchanging with time. A recent thesis is presented which
considers mathematics to be in a process of evolution and
constituting a particular element of the culture at a
particular time. This view then provides the basis for an

examination of the cultural significances of mathematics.

In Chapter IV some of the common justifications given
for teaching mathematics are considered; namely, that it is
useful, that it is intrinsically worthwhile, and that it
promotes intellectual development. These justifications are
found to be inadequate. A justification based on the
cultural significances of mathematics is then presented
together with some important considerations for school

mathematics courses.



CHAPTER II

THE VALUE OF KNOWLEDGE

The aim of this chapter is to show the development of an
argument which contends that we can choose a curriculum based
on a particular notion of the worthwhileness of knowledge.

In the first section the case for such an argument is
established by considering firstly the views of those who
maintain that such judgements of worthwhileness cannot or
should not be made. Then there follows an examination of the
utilitarian view that the promotion of happiness is the sole
criterion under ﬁhich man's actions, including curriculum
choice, are to be judged worthwhile or not; and the
pragmatist's view that sees knowledge as something that is
acqu;red by man as he struggles to control his environment.
Finally, in this section, consideration is given to the view
that while educators should not make final judgements of
worthwhileness they should, in fact, design the curriculum in

such a way that enables students to do so.

All these arguments are found to have objections to them
and so the following section considers various attempts made
by theorists to give some value to knowledge and which should
serve as a basis fof curriculum design. The first approach

"considered is one which attributes worthwhileness to certain

subjects based on the contingent consequences of those subjects:;

the contingent consequences being a list of specific objectives

that, it is argued, students ought to attain. The second

approach considers the justification for a curriculum based on .



a view of knowledge that distinguishes distinct forms of
knowledge. It is claimed that the curriculum should be
designed so as to introduce students to these distinct forms.
A third approach is to claim that some subjects possess
intrinsic worthwhileness and so they are to be valued for
their own sake. Some subjects might be deemed intrinsically
worthwhile, for example, because they. involve a higher degree
of intellectual functioning of because they are concerned

with truth and rationality.

All the views are found to be inadequate as they stand
and an argument is then presented which contends that we are
wrong to regard all knowledge as being either instrumentally
useful or as an end in itself. Some knbwledge, it is argued,
is valuable because it helps people determine their own ends
by acquiring an understanding of things in a way that allows
them to méke reasoned decisions about what aims to set
theﬁselves and what they are to do with their lives.
Furthermore, the knowledge that does that, it is claimed, is
found in the traditional disciplines as they have evolved
across generations and cultures and with the contributibns of

many scholars in the various fields.

This argument then provides the basis for a critical
examination of the traditional subject disciplines, like
matheﬁatics, in order to elucidate their nature and their
influence within different societies and cultures, and to

consider what implications this might have for the curriculum.



Establishing the Argument

(i) There is a view of wvalues, found in the works of
philosophers like David Hume in the 18th century and A.J. Ayer
in the 20th century, that considers all value judgements to be
simply expressions of emotion. Hume maintained that reason
alone cannot decide moral questions but that most people have

a "moral sentiment" that is used to make decisions. The

moral sentiment is pleasant if it is a feeling -of approval and
unpleasant if it is one of disapproval. Ayer's view, first
argued in 1936, is that statements which cannot be verified by
observation or‘analysis have no meaning. True statements are
verifiable propositions and statements which are not verifiable
are meaningless. Therefore, there is no way to decide between
different value judgements. To say "stealing is wrong" is
simply to express a feeling and the statement cannot be proven
in any sense since it contains no verifiable proposition.

Ayer maintains that this same analysis holds for all types of

value judgements. ) |

This emotivist view then, in relation to questions of
curriculum, would maintain that there is no rational basis for
choosing the elements of a curriculum. To say that something
ought to be included in the curriculum is simply to express a
feeling that others may or may not have. No reasons can be

given, however, to justify such inclusion.

But while it may be difficult to find reasons for including
something in the curriculum, this is not to say that there are
none and the emotivist's point of view does have certain flaws

within it.



Firstly, it is possible for our emotions and our value
judgements not to coincide. One can say, "I feel like doing
something but I know it is wrong", or "I don't want to do
this but I know I ought to." While some emotivists might _
simply claim that there is a conflict of emotions here, it
would seem that such occasions ought not to arise if our value
judgements were just a reflection of our emotions. Secondly,
we recognize that our emotions can change over time, whereas
the value judgements we are attempting to make are based upén
premises that we believe are unchangeable. When we make tﬁe
value judgement that to steal is wrong, we are implying that
it always will be, even if in the future in a particular
situation, under the influence of drugs say, we adopt the
attitude that to steal is an acceptable form of behaviour.
Thirdly, the emotivist's philosophy is based upon the judge-
ment of the truth of propositions in only two ways, by
observations and analysis. But there is no reason to accept
that these- are the only ways of attesting to the truth of all
propositions. The emotivist has not shown, for example,

that there cannot be reasoning about values.

(ii) The argument that one ought not to decide what goes

into a curriculum is closely allied with the general area of
what is called "child-centred" education. It is based upon
a particular view of the child and the right of the child to

determine what he or she will study.

J.J. Rousseau's thinking, for example, is reflected in
his fictionalised account of the child Emile, published in

1762, and involves:'an analogy with nature. Rousseau argues
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that if left to himself Emile will become what nature
intended him to become. No coercion nor prompting is
needed, but-only support. If nurtured correctly Emile will
érow ué to be physically and intellectually what was ideally
intended for him at birth. To direct his thinking in any
way would be "to substitute authority for reason in his mind"
and make him "the victim of other people's opinions"

(Quoted in Boyd, 1956, p. 73). Later, Friedrich Froebel
(see Lilley, (ed.) 1967) expanded Rousseau's views to
develop a direct analogy with nature. The teachers in
charge of their pupils should be like gardeners tending their

plants, providing them with the best possible environment for

growth and then allowing nature to follow its course.

A.S. Neill was not only a writer but also a practitioner
in the field of education and his school, Summerhill, was
meant to reflect his educational thought. His arguments
centre around the freedom of the child to learn. It is the
right of the child to choose what and when to study. This
right of the child outweighs any arguments claiming the
worthwhileness of studying a particular subject at a
particular time. If the child wishes to study the subject

then he will decide when to do so.

There are criticisms, however, which can be directed
towards the views of writers such as Rousseau, Froebel and
Neill. Firstly, as for the analogy with growing plants, it
is easy to see a flower or a plant grow with the minimum of
guidance and to explain that it is nature's way. It is

very easy, but misleading, to say the same should be so of
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human beings, both physically and intellectually. The
knowledge, attitudes and skills that can be acquired by a
child in society do not occur naturally. The culture that
man has created is very complex and deliberate guidance
into it is required. To allow “nature's way" and not to
attempt to direct his passage into society, is to leave the
child open to detrimental influences. Secondly, if one
does have reasoned views on what a child ought to know and
knowledge of the capabilities of the child, and if one has
reasoned views on how knowledge-ought to be attained, then
.one should attempt to make certain that such knowledge is
acquired. To allow the child always to make decisions on
what and when to study leaves the child opeh to a choice

based upon a misunderstanding of the available possibilities.

(iii) The premise of ut;litarianism is that what matters
most is a world in which everyone is happy. Therefore,
man's actions ought to be about minimizing pain and
maximizing pleasure. This philosophy was developed in the
1800s by Jeremy Bentham and John Stuart Mill and one recent
educationalist, Robin Barrow, hasybased his educational

thoughton the utilitarian premise:

Education should seek to develop
individuals in such a way that they are
in a position to gain happiness for
themselves, while contributing to the
happiness of others, in a social
setting that is designed to maintain and
promote the happiness of all so far as
possible.

(Barrow, 1976, p. 84)

Barrow does not believe that an ideal state will be

attained where everybody achieves maximum pleasure, as he



points out in answering critics such as MacIntyre (1964).
What matters is that man ought to be striving for such a
state of affairs and that when decisions have to be made

they ought to be based on the utilitarian premise.

Apart from the fact that the ideal state is not with
us and may never be with us there are other difficulties
with the utilitarian premise. Firstly, in claiming that
pleasure should be distributed among all men, rather than a
small number of men being supremely happy, the utilitarian
'is claiming that he attaches importance to the principle of
distributive justice. Barrow admits this, but in so doing
he clearly values this principle too and not just the sum

total of human happiness.

Secondly, since utilitarians claim their premise to be
true, and not just something to be arbitrarily accepted,
they also commit themselves to valuing the truth as well as

happiness.

Some utilitarians also get into difficulties when they
claim that some activities, such as studying science, are
" more valuable than others, such as playing darts, given that
each activity promotes the same amount of pleasure. A
person may be drawn to pursue a certain activity because he
feels it is important in some way. He may feel as\if
’pursuing a particular scientific project is important, for
éxample, because it will help him solve problems that he
believes ought to be solvedp Such problems may not even be
understood by the majorityvof people and their solution may

contribute nothing to the sum total of the happiness of

12,
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society. So too a person may study philosophy because he
believes it is helping him to answer questions that have
concerned him and that he feels he needs to answer. The
time spent on such activities may give<him little or no
pleasure but he is still drawn to them. Some criterion,
other than the utilitarian one, must be used to decide on
the worth of these various activities, thus contradicting

the premise that maximizing pleasure is all that matters. .

The utilitarian premise is rejected then as the sole
criterion for determining which subjects should constitute
the curriculum. That is not to say that we do not value
happiness, but that we do not accept that simply wvaluing
happiness is enough to select the content of the curriculum.
We shall show the development of an argument which claims
-some knowledge as being valuable for reasons other than

simply promoting happiness.

(iv) A writer who has had a great impact upon educational
practice in the 20th century is John Dewey. His pragmatic
philosophy rejects the dichotomy between knowledge and
experience. The pragmatist believes man's intelligence is
a tool used by man to control his environment. To learn
something significant about the world we must do more than
operate logically upon what appear to be self-evident truths.
We must transform the environment as a response to’problems
that need resolution. Thought does provide hypothetical
ideas in response to the problems but these ideas are tested

in action.
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The process of learning from experience is thus an

active process. The learner locates and defines a problem

to be solved, collects pertinent data through observation

and reasoning and decides on possible solutions before

finally testing them. And for Dewey it is the quality of

experience that is important. SO0 in directing his comments

to educators he says:’

It is his [the educator's] business to
arrange for the kind of experiences
which, while they do not repel the
student, but rather engage his
activities are, nevertheless, more than
immediately enjoyable since they
promote having desirable future
experiences.... Wholly independent of
desire or intent, every experience
lives on in further experiences.
(Dewey, 1938, p. 16)

For Dewey there is only one kind of knowledge; ‘a

knowledge that may be termed either moral or scientific.

Moral science:

«e« is ineradicably empirical, not
theological nor metaphysical nor
mathematical.... Hence physics,
chemistry, history, statistics,
engineering science, are a part of
disciplined moral knowledge so far as
they enable us to understand the
conditions and agencies through which
man lives, and on account of which he
forms and executes his plans. Moral
science is not something with a
separate province. It is physical, °
biological and historic knowledge placed
in a human context where it will
illuminate and guide the activities of
men.

(Dewey, 1922, pp. 295-6)

So knowledge itself has no intrinsic worth.

It is something

that is acquired by man as he grapples with problems in his

environment and eventually comes to solve these problems.
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There is no division into different types or forms of
knowledge. There are no absolute or uniyersal truths that
are of different kinds. Experience and problém situations
have forced man to use and develop the power of thought to

control his environment.

For pragmatists like Dewey then the curriculum is a
process as much as a distinct body of subject ﬁatter.
Dewey does not reject what might be called traditional
disciplines such as mathematics and history, but claims
that the student should draw upon his reflections in these
areas to help solve the problems he has encountered. They
have no usefulness in their own right, only in their ability
to enrich the life of the student and enable him to solve

the problems.

Dewey's position and the pragmatic philosophy -in
general do have serious objections, however. Firsfly, the
pragmatist is in difficulties because the reasoning behind
his philosophical position is surely theoretical and not
practical. It is difficﬁlt to see how he can arrive at a
philosophical position other than through theoretical
reasoning as distinct from practical reasoning. And yet

this distinction is what the pragmatist disclaims.

Secondly, in claiming that the quality of experience is
important, Dewey says that the experience is meant to lead

on to other rewarding experiences:

Hence the central problem of an education
based upon experience is to select the
kind of present experiences that live
fruitfully and creatively in subsequent
experiences.

(Dewey, 1938, pp. 16-17)



16.

Education can be identified with growth, not just physically
but intellectually and morally. The objection is that one
must specify the directionsin which present experiences will
lead the learner. For isn't it also true that some people,
such as criminals, may find some experiences rewarding for
themselves but that do not appeal to the rest of the
community? Dewey's answer to that is that while a man may |
acquire great skill as a criminal through a series of
experiences the question is whether this will affect his

growth in general:

Does this form of growth create conditions

for further growth, or does it set up

conditions that shut off the person who

has grown in this particular direction

from the occasions, stimuli and opport-

unities for continuing growth in new

directions? What is the ‘effect of growth

in a special direction upon the attitudes

and habits which alone open up avenues for

development in other lines?

(ibid., p. 29)

But even so it is difficult to see how the educator,
mindful of the fact that different experiences are conducive
to growth in different directions, can escape making
qualitative judgements, - Ultimately he must be able to

decide between the worthwhileness of different experiences.

Finally, it is difficult to see how all intellectﬁal
activities can follow the same pattern of the experimental
sciences. How, for e;ample, can history be fitted into the
same experimental patterns? But whether it is true or not,
it is necessary for the pragmatist to furnish reasons for
regarding them as the same, just as it is nécessary for
those who claim there are distinct types of activities to

show how they are distinct.



(v) A different approach has been adopted by J.P. White

" in his book Towards a Compulsory Curriculum .(1973), where he

presents his argument that education ought to be about

providing people with the knoﬁledge that enabies them to
make meaningful choices between different activities and
different ways of life. Educators do not make the final
judgement of worthwhileness but .design the.curriculum to
enable the students to do so.  Surprisingly, White bases

his argument for a compulsory curriculum on the concept of

liberty. "Any infringement of liberty is prima facie
morally unjustifiable" (ibid., p. 5). But it is only

prima facie wrong to stop people doing what they want to do

for there may be considerations which override this
principlef_ So what is needed is an examination of the
kinds of considerations which might justify an interference
with liberty. White claims‘that considerations of a
per;on's own good as well as the good of others may justify

such an interference. In relation to education:

+++ it -would be right to constrain a
child to learn such and such only if (a)
he is likely to be harmed if he does not
do so, or (b) other people are likely to
be harmed.

(ibid., p. 6)

Case (a) is central to White's argument.

The problem now is.to identify, from-all the possible
activities to be understood by learning, those activities
that are likely to harm the child if he is not constrained
to learn them. To this end White makes an important

distinction between the questions, "What kinds of activities
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are worthwhile in themselves?" and "What kinds of activities
are educationally worthwhile?" History and mathematics may
not be intrinsically valuable for everyone but they may be
educationally valuable. The educational value of an
activity is not determined by any value intrinsic to the

activity itself but by the nature of the activity.

White thus divides activities into two categories in

which:

(1) no understanding of what it is to
want X is logically possible without
engaging in X
(2) some understanding of what it is to
want X is logically possible without
engaging in X. .
(ibid., p. 26)
The activities of the first category must be part of a
compulsory curriculum because if the student is not
compulsorily introduced to them he will have no understanding
of what it is to study them and, therefore, will not be able
to make a reasoned choice as to whether he will pursue them
or not.  In this category White includes subjects such as
pure mathematics, communication in general, engaging in the

(exact) physical sciences, appreciating works of art, and

philosophizing.

The same jusfification cannot be given for the activit-
‘ies of the second category, however, which includes speaking
a foreign language, playing organized games, cookery,
painting pictures and writing poetry, as examples. These
activities are not compulsory but are offered only as
options. While it is important for all students to know

what these activities are, it is not necessary for students
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to engage in them since this is not needed to understand

what it is to want to pursue them.

In his book White does consider some objections to the
theory, such as whether it is clearly evident what activities
belong to which category, and whether one is not simply
advocating one}s subjective preference for autonomy in
designing the curriculum. But M.A.B. Degenhardt raises

further serious objections to the theory. For the learner:

Does not coming to understand any serious
activity involve coming to feel something
of its 'call' or 'urgency'? Would we
not be sceptical of one who said 'Oh, I
know what there is in.that poetry
business (or science, or history, or
music) : I think I'll give it a miss'?
Certainly it would be odd if someone said
'In my early twenties I decided to be
interested in philosophy'. For people
just do not relate to serious activities
in this way. ,
(Degerthardt, 1982, p. 79)

and for phe teacher:

It is generally thought that a good
teacher must care passionately for his
subject, evidencing this passion and
getting pupils to share it. But who
could sustain such passion if he saw
himself as merely offering a smorgasbrod
of pursuits to be sampled and then freely
chosen or rejected? Does not good
teaching presuppose a more positive
conviction of the worth of what we teach?
(ibid., p. 80)

Such comments call on us to rethink our views on knowledge
and to establish what ultimate value we can give to it. Can
knowledge be divided into two kinds; knowledge that is useful
and knowledge that is intrinsically valuable in some way?

Later, in this chapter, we see that this dichotomy is rejected
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by Degenhardt; that it overlooks a third possibility, that
some knowledge is not necessarily extrinsically useful nor
intrinsically worthwhile, but is what Degenhardt calls
"serious" or "significant" knowledge. Not only that, what
makes it serious or significant is based on a view of the
nature of man as well as a view of the nature of knowledge.
Some knowledge is valuable because it serves a distiﬁctively

human enterprise.

Contingent Conseguences

In the previous section we sought to establish the
argument that we can choose a particular curriculum based on o
the worthwhileness of knowledge by considering the views of
those who argue that such judgements are not possible or
that they ought not. to be made. Such views were found
wanting as they stand. In this section we consider the
views of some who maintain that worthwhileness can be
attributed to cértain disciplines, but that the Qorfhwhile-
ness of such disciplines is related to the contingent
consequences of pursuing them. In trying to be quite
specific about the design of a curriculum, two recent
writers have attempted to list a set of specific objectives
that students ought to attain, and then to select those
disciplines which assist in the attainment of those specific
objectives. Such a method has been adopted by S. Nisbet

(1957) in his book Purpose in the Curriculum and by the

highly influential Taxonomy of Educational Objectives edited

by B.S. Bloom (1956).



Nisbet classifies the "practical objectives of education”
that a teacher might realistically achieve into two groups.
The first group, labelled "Adjustmeﬁt to Environment",
consists of skills, culture, home membership, occupation,
leisure, and active citizenship. The second group, labelled
"Personal Growth", consists of the physical, aesthetic,
social, spiritual, intellectual, and moral development of the

individual.
Nisbet explains:

Such a list is comprehensive enough to
include most of what has been claimed as
important in education, whatever the
ultimate philosophy of those who make
the claims, and yet detailed enough to
provide guidance and illumination for
the practical person, whatever specific
functions he may have to perform.
(Nisbet, 1957, p. 14)
He then examines the conventional curriculum subjects in turn
and considers how many of the objectives are, in fact,

contributed to by a study of those subjects..

Bloom's taxonomy is more detailed but the intention is
the same as Nisbet's. Three domains are specified; the
cognitive, the affective, and the psychomotor. Within each
domain certain objectives are Eategorized and sub-categorizéd.
For example, the cogni;ive domain is categorized into such
things as knowledge of specifics, knowledge of criteria,
application, analysis and evaluation. Some categories in
the affective domain are awareness, willingness to respond,

and satisfaction in response.

There are, however, two main criticisms that can be

directed towards both Nisbet's and Bloom's approach. The



first is to do with the l;st of objectives. While both
writers agree that there may be some disagreement as to what
the list of objectives should consist of, their final list
is more of one achieved by consensus than by rational
argument. Nisbet, for example, was concerned about high-
level aims such as "to facilitate complete living" and "to .
promote the highest intellectual or moral development of the
pupil”. He was equally concerned about specific practical
aims such as "to produce Macbhbeth" and "to make first year
Latin interesting”. He therefore set out to produce a

comprehensive list of "intermediate practical objectives".

22.

But it is not enough simply to specify a list of object-

ives that is hoped will gain acceptance by a majority of
people. The objectives must be clearly stated and argued

for.

While Nisbet's description of high-level or ultimate
aims may be vague this does not mean that the aims should be
dismissed. If there are ultimate aims then the;e aims
should be clarified such that clear teaéhing objectives may
be developed. To introduce "intermediate practical
objectives" does not clarify ultimate aims and until these
ultimate aims are clarified then there is much room for dis-
agreement about the practical objectives. The same
vagueness that characterises Nisbet's high-ievel aims’

contributes to disagreement as to the value of the practical

objectives.

The second point of criticism is to do with what is
said about the various subjects. The approach is to draw

attention to the contingent consequences of each subject.
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The study of science, Nisbet maintains, contributes to
spiritual development, and arithmetic and mathematics
contribute to moral development. When noting that in

arithmetic the answer is right or wrong he says:

Virtue, in the form of persistence and
concentration, is rewarded by a correct
answer : Vice, in the shape of careless-
. ness or listlessness or laziness, is
punished quite simply by a wrong answer.
(ibid., p. 83)
The point is that, whether one agrees with the contingent
consequences or not, the subjects are being justified by
considerations which have nothing to do with the subjects
themselves. If there is good reason for studying mathematics,
irrespective of any other subject being studied, then there
must be something about the nature of mathematics that is
distinct from any other subject and that which makes it
worthwhile for the student to study. Considering contingent
consequences does nothing to aid in the selection of subjects
for inclusion in a curriculum. If different subjects have

the same contingent consequences then there is no reason for

necessarily valuing any one of them above any other.

We must, therefore, look at the subject itself, to seek
out what is unique to that subject and to argue for its
inclusion in the curriculum as contributing to the achieve-

ment of clear ultimate aims.

Forms qf Knowledge
Instead of considering contingent consequences, a
different approach has been adopted by P. Hirst in attempting

to justify a curriculum based on a view of knowledge that
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distinguishes distinct forﬁs of knowledge. (see Hirst, 1974).
Hirst'or;ginally identified eight forms but in subsequent
revision has listed seven (see Hirst and Peters, 1970).

These forms are logic and mathematics, the physical sciences,
the‘knowledge of our own and other minds, moral knowledge,
aesthetic knowledge, religious knowledge, and.philosophical
*knowledge. The important claim is that these forms are

distinguishable by four criteria:

(a) He first claims that each form involves concepts that
are peculiar in character to the form.

(b) In each form the concepts provide a.network of
relationships giving the form a distinctive logical
structure.

(c) - Each form has expressions that are "testable against
experience”", the criteria on which the tests are
based being unique to that form.

(d) Finally, the forms have a distinctive methodology

for testing their expressions.

" Thus the truth of propositions in different forms of-

knowledge is established in quite logically diétinct ways.

Hirst's thesis ties in with a view of knowledge as
reflecting the different ways we experience the world and the
different ways we use language to communicate ideas, rather
than -a view of knowledge that is meant to reflect the true
nature of the world. A liberal education is one which
gives an understanding of the distinct forms of knowledge and,
therefore, the curricilum should be so designed as to

introduce students to ‘the distinct forms.
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Many of Hirsﬁ's critics have concentrated on the
epistemological arguments in his thesis (see, for example,
Gribble (1970), Phillips (1971), Hindess (1972) and Warnock
(1977)). Barrow (1976), on the other hand, has rejected
" Hirst's view but developed his own, arguing that there are
only two distinct forms; namely, the empirical and the
philosophical. These forms are based on two distinct
validation procedures. In the empirical form the truth or
falsehood of propositions is arrived at by a combination of
logic:and reference to empirical evidence. In the
philosophical form the truth or falsehood of propositions
can only be determined by logical reasoning. Barrow also
suggests that there are two basic "interpretive attitudes"
to the world; the religious and the scientific, and a
number of distinct "kinds of awareness". So the truth or
falsity of every statement, according to Barrow, can be .
determined by reference to one of two validation procedu;es.
The two interbretive attitudes represenf two distinct
fundamental conceptions of how the world and existence is to
be explained. And the kinds of awareness refer to different
kinds of feeling that can be aroused when contemplating
particular phenomena. There can be situations where people
have either a moral, aesthetic, religious or-scientific
awareness, for example. Even someone with a religious
interpretive attitude may still have a scientific awareness

provoked by a particular situation.

The type of epistemological criticism directed at

Hirst's thesis could also be directed at Barrow's. The
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important point that is implied by such views of knowledge,
however, is that if someone knows how to set about assessing
whether a proposition in one of the forms is true, then he
is familiar with the kind of procedure necessary to
establish the truth of other propositions in that form.

He may not be able to give an answer, not having studied the
required topic, but he knows the kind of procedure required

to establish an answer. -

The concern of this dissertation is with the implic-
ations for curricula and schooling. If we accept that
certain propositions do, in fact, reflect different ways we
experience the world, and, in so doing, reflect different
kinds of knowledge, then we must ask whether this, in
itself, implies that all children should be initiated into
the different forms. Is R.F. Dearden (1968) right, for
example, in taking Hirst's thesis and developing "forms of
understanding” that primary school children ought to be
introduced to, simply because they can be categorized
according to Hirst's selection criteria? If not, what
other arguments can be put forward justifying initiation into

the forms?

Finally, we must ask of the importanceof content. If
there is only one method of assessing the truth within each
form does that mean that it doésn't really matter what
content is presented in each form, only éhat the method of
assessing truth is acquired? And if the content is
important, under what criteria is it to be selected. If

Hirst's thesis is correct one would have to be able to
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identify concepts as belonging to particular forms before
deciding on the criteria to be used to test the expressions

in which the concepts appear.

In drawing attention to a criticism of Hirst's work by
R.K. Elliott (1975), M.A.B. Degenhardt (1982) considers

these problems under three themes.

Powers of the mind. One conclusion from Hirst's work

might be that in order to develop one's powers of the mind
one needs to be first initiated into the forms of knowledge.
This implies that a person would somehow be totally un-
knowledgeable of all things around him; that he would not

be able to make any operations in the mind after experiencing
the world through his seﬁses, unless he was initiated into
the forms. But this underrates the nature of the learner
whose powers of mind and ability to understand are present
before any introduction to the forms is initiated. It could
be argued that the forms of knowledge have, in fact,
developed from human beings being able to retain what they
perceive with their senses, and to organize that information
in some Qay, in seeking to understand those concepts that

their minds apprehend.

Critigque of the disciplines. Degenhardt observes that

mastery of a discipline does not necessarily improve one's
understanding of the subject matter of that discipline. He
gives the example of the mathematicized nature of physics,
where experts in the field have difficulty in relating that
to physical reality, the assumed subject matter of physics.

While such doubts can be raised about any discipline Elliott
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concludes:

These considerations suggest a task which

properly belongs to Philosophy of

Education, namely enquiry into the

character of the disciplines with a view

to assessing their educational value.

It is less than just to give a student an

education which encourages him to take

enthusiastically to a discipline whose

true character is not what it is proclaimed

to be. ‘

(Elliott, 1975, p. 61)

For example, does one arrive at an awareness and understand-
ing of people's minds by pursuing courses in psychology ,
that consist of elaborate mathematical relationships
between arbitrarily defined factors? Elliott argues that
each form of knowledge, as identified by Hirst, is a
distinct systematic study but which also is an extension of
what he calls a corresponding “common area of everyday
knowledge”. It may be that the understanding of people's
minds that one wishes to acquire is found in this common

everyday knowledge.

What matters most? Under this heading Degenhardt

considers the question of how the content of the forms might
be selected. If one selects the content guided only by

what best exemplifies the distinctive nature of the discipline
then. the discipline itself could suffer. It does not follow
that those things that best exemplify ;he logical features of
a form of knowledge are the important thinés'for.people to
know about in that form. We still lack criteria for

selecting worthwhile knowledge.

Intrinsic Worthwhileness

Instead of arguing then that certain subjects are worth-
while pursuing because they contribute to the attainment of

certain specified objectives, or because they represent a
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‘ ‘distinct form of knowledge some writers have argued that
some subjects are worth studying because those subjects have

‘'some intrinsic worthwhileness.

Before considering some of these ideas a distinction
must first be made between the intrinsic worthwhileness of
engaging in the study of a particular .subject and the
intrinsic worthwhileness of mastering a subject or attaining
knowledge in that subject. As an example of the first case,
we might consider that studying mathematics-and trying to
come to understand a mathematical concept is worthwhile in
itself, irrespective of whether one succeeds in that endeavour
or not. What we are concerned about, however, is the
intrinsic worthwhileness of attaining knowledge in a-
particular discipiine and judging whether success in o6ne

activity is more worthwhile than success in any other.

The question to be asked is, what reasons,.related to the
nature of a particular subject, can be given when claiﬁing |
that some subjects are more intrinsically worthwhile than
others? G.ﬁ. Bantock (1963) insists that some subjects are
intrinsically worthwhile and are more valuable because their

understanding involves a higher degree of intellectual

functioning. He says:

... the fact that ... some subjects make
more demands on human beings, require, for
their mastery, a more complex human
organization and finally produce more
valuable consequences is inescapable.
(Bantock, 1963, p. 94, footnote)

The point is, however, that while mastering higher mathematics,
or appreciating poetry, may require more complex intellectual

functioning than playing football, it has to be shown that the
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consequences of doing so are, in fact, valuable. It may be
th§t1the complex intellectual functioning that is required
to engage in higher mathematics say, is valuable only in

" allowing one t5 engage in higher mathematics and nothing
else. The fact that certain subjects may require a more
coﬁplex intellectual functioning does not show that those

subjects, in themselves, are necessarily worthwhile.

A different approach has been adopted by R.S. Peters in

his book Ethics and Education (1966). While he has

subsequently expressed doubts. about the arguments expressed
in that book (see, for example, Peters' chapter in Hirst
(ed.) (1983) pp. 30-61l) his views there have evoked much

discussion.

In the book Peters argues ‘that edﬁcation involves the -
initiation of ‘6thers into worthwhilevactivities and that the
‘aétivities that are educationallf worthwhile are valued for
their own sake. The first problem he considers is to
determine what makes some activities more worthwhile than
others. What makes mathematics and history more worthwhile
pursuing than football or billiards say? The first step in
answering that question is to establish that there are in
fact fundameﬁtal differences between activities like
mathematics and football that do not exist between billiards
and football or between mathematics and history. Both
billiards and mathematics may be "disinterested, civilized
and skilful pursuits", yet mathematics seems to eérn a place

on the school curriculum ahead of billiards.

Firstly, in arguing for a fundamental difference between
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certain activities, consideration could be given to the
object of the activity. Some activities, like eating, have
limits imposed upon them due to bodiiy conditions. Also,
some activities are competitive. When one person acquires
money there is less for others. But in theoretical
activities, Peters argues, the object of pursuit, be it
truth or creation of beauty, is not under anybody's
possession and no one is prevented from pursuing truth or
creating beauty if others are involved in it. There is
something permanent about the object of these theoretical

activities.

Theoretical activities can also be differentiated from
other activities in respect of the opportunities they provide
for skill and discrimination. Card games or football have
a conventional objective which can be attained in many ways.
But, says Peters, "truth is not an object that can be
attained; it is an aegis under which there must always be
progressive development.” So there must be opportunities
for "fresh discrimination and judgement and for the develop-

ment of further skills". (Peters, 1966, p. 158)

A third consideration is to do with the cognitive nature
of the activities. Knowledge can be involved in games and
pastimes, but this is limited to the end of the activity.

One can be knowledgeable of the rules of bridge but the
pufpose is to compete and win at the game. Theoretical
activities, on the other hand, have a wide ranging cognitive
content. In science and literature there is a huge amount

to know and that knowledge contributes to how one views other
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things. So while they may be like games in being dis-
interested pursuits, sometimes pursued for intrinsic values,
they are given a value that is not given to mere games or

pastimes:

They are "serious" and cannot be
considered merely as if they were
particularly delectable pastimes,
because they consist largely in the
explanation, assessment, and illumin-
ation of the different facets of life.
They thus insensibly change a man's
view of the world.

(ibid., p. 160)

The problem now to be considered is why, when answering
seriously the question "Why do this rather ﬁhan that?", would
someone choose those activities that are "serious" or
"theoretical"? Merely establishing that certain activities
are fundamentally different from others does not expdain why

some of them are more worthy of pursuit.

Peters claims firstly that. this question can only be
sefiously asked by people who have some conception of what
the different choices are and that this "... has been formed
in the main by the differentiated forms of understanding that
have been developed" (ibid., p. 161). Thus, the very
activities that have been differentiated as having wide-

ranging cognitive content are the ones that are necessary to

answer the question "Why do this rather than that?"

Secondly, Peters' "serious" activities can be distinguished
from other activities by their concern with truth. They are
concerned with truth just as the person who asks the question
"Why do this rather than that?" is concerned with thé iruth.

It is argued that these "serious" activities, as well as being
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necessary in answering the question "Why do this rather than

that?", are also involved in asking it.

For Peters, truth and rationality are among the
ultimate human values, and so he is led to a justification
for "serious" activities based on a view of the nature of
man as well as the characteristics that determine these

"serious” activities.

In assessing Peters' arguments Degenhardt (1982)
indicates that some people can engage in "serious" activities
for reasons other than because the activities are deemed to
be about truth and rationality. They pursue them because
in some way they find them interesting and important.

People do not just decide to do something because it is about
truth and rationality. Instrumental reasons aside, they
decide to pursue certain activities because somehow -those
activities help ﬁhem in solving particular problems that they
consider troublesome but important in their 1lives. They
give the person different ways of viewing problems that that
person feels important to consider. For Degenhardt the
qguestion is why do people find some problems in life
important to consider and why are some activities helpful in

giving people answers to those important problems? He says:

Yet part of the point of Peters' insist-
ence on the seriousness of serious activ-
ities is that they are not just pleasing
embellishments added to life, but are
somehow part of what life is, or ought to
be, all abhout. We need, it seems, to
refer to more than knowledge and rational-
ity to work out why this should be.
(Regenhardt, 1982, p. 60)
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World Views and the Value of Knowledge

In the preceding sections we have considered the ways
that various thinkers have attempted to give some sort‘of
worth to knowledge and what implications their ideas might
have for the curriculum. In each case we have found that
there are serious objections. In this section we present
the ideas of M.A.B. Degenhardt who, in his book Education

and the Value of Knowledge argques that we are wrong to

regard knowledge as being either instrumentally useful or as
an end in itself. He argues that this overlooks a third

possibility, a way of valuing some knowledge that is related

to a distinct view about the nature of man.

Degenhardt tackles the question of what constitutes a
worthwhile curriculum by considering three ideas. Firstly,
he rejects the dichotomy between knowledge as a means to an
end and knowledge as an end in itself. A third possibility,
he claims, is that some knowledge is valuable because it
helps us to determine our ends. Secondly, the view of man
as a free agent in the world enables him to decide what ends
he sets himself and these ends are best determined by first
acquiring a world view; that is, having some understanding
of the nature of the world and the nature of man in that
world. Such a view, he claims, should not be generated
individually but should be socially inherited. So, thirdly, he
argues for the great evolved bodies of knowledge to be
central to the content of the curriculum, in that, as they
have evolved across generations and cultures, they have
become "more rigorous and self-critical, less parochial, and

_much enriched from the achievements of many thinkess"

(Degenhardt, 1982, p. 89).
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In support of his argument for the rejection of\the
dichotomy between knowledge as a means to an end and knowledge
as an end in itself, he lists several ambiguities. Firstly,
when one talks of knowledge being good in itself, it is not
clear whether one is talking of the good in possessing the
knowledge or the good in pursuing it. While pursuing
knowledge may be worthwhile under some criteria, it should not
be confused with the value inherent in possessing that

knowledge.

)

Secondly, Degenhardt considers the ambiguity between the
intrinsic worth attached to an individual person possessing
knowledge and the intrinsic worth of the total knowledge

possessed by humans existing and growing.

A third ambiguity'concerns the claim that an introduction
into the various forms of knowledge nurtures those qualities
of mind that are valued. For example, an introduction into
mathematics, it might be argued, develops sound deductive
reasoning. But it is not clear where we can separate the
qualities of mind from the subject. That is, to be able to
engage in sound deductive reasoning, it might be claimed, is

to be able to do mathematics and does not follow from it.

A fourth ambiguity concerns the diffgrent ways in which'
knowledge can be pursued for ends that are distinct from that
knowledge. For example, a mathematician who engages in
mathematics in order to solve practical problems involved
with the construction of bridges may be said to be less
concerned with mathematical knowledge as such, than someone

who engages in mathematics in order to arrive at hitherto



unknown solutions to mathematical problems. On the other
hand, the first mathematician may be said to be more concerned
with mathematical knowledge than someone who studies the
subject simply to acquire qualifications to enhance his job

promotion prospects.

Finally, Degenhardt points out that it is absurd to think
that all knowledge can be thought of as intrinsically good.
There is much pointless data, the lack of knowledge of which

would not seriously disadvantage anyone.

Therefore, the claim is that inherent worth cannot be
attributed to all knowledge or any knowledge, but only to
bodies of "serious" or "significant" knowledge. This

seriousness puts knowledge into a third value category:

It is not valuable as an end in itself,
for it is serious or significant in so
far as it makes a difference to how one
lives. But neither is it useful, for
it is not knowledge that is to be used
to some further end. Rather, it is
the kind of knowledge that helps us to
determine our ends. By this I mean
that it gives us that picture or under-
standing of things in terms of which we
can decide what to do with our lives,
what aims to set ourselves, what ends to
live for.

(ibid., p. 85)

So while he gives value to some knowledge, he is also
tying:-this value to a particular view of the nature of man as
a free agent. That is, man is able to make decisions for
himself about how he will conduct his life énd what ends he
will strive for. Such ends are determined after one has
acquired a world view; an understanding of man, his world,
and the universe: The acduisition of such a world view

cannot be done individually, but is done as ideas are socially
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inherited through education, both planned and unplanned.
And how one is to behave in that world, and what ends are to
be strived for, can only be done in the light of the culture

that has been passed on. Thus, says Degenhardt:

Given this, it must surely follow that

we should educate human beings into

such a cultural inheritance as will

best fit them for the distinctively

human enterprise of working out what

sorts of human beings they are to make

of themselves.

(ibid., p. 88)

It is, therefore, the traditional bodies of knowledge that
have educational importance because they help man reflect on
questions concerning the nature and meaning of life. And as
they have evolved across generations and cultures with the
contributions of a great many thinkers, they offer the best
‘that can be given in allowing one to develop a world view and
to determine one's ends. The argument is then for a
curriculum that offers the evolved bodies of knowledge, not
just as technical disciplines designed for instrumental
usefulness, but as a means to reflect on the achievements of

other thinkers, and in answering questions about man, his

world, and the universe.

One criticism of this argument might be that it is too
idealistic. To séy that human beings ought to be educated
into a cultural-inheritance that will best enable them to
work owut what they are to do with their lives, is like
claiming that everyone ought to be free from hunger; people.
will agree in principle but doubt that it is possible. Some
people may not be in any position to determine their own

"ends, irrespective of the knowledge they have acquired, so
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the curriculum ought to be based on preparing people for the life
they will' lead rather than the life they decide to lead. A
student might find himself in a position where he has

determined what he would like to do with his life but is

unable to follow that course. Ought he not, therefore, be

in the best position to seek fulfilment in the life that has

been determined for him?

In reply, there can be no doubt that many students will
have aspirations, determined partly by the influence of
schooling and studying pafticular subjects, that will not
achieve fruition. i‘ The view that man ought to be educated
to be in the best position to determine his own ends is
based on a particular notion of human nature; namely, the
ability of the human being to act freely on the world and
where choice is inevitable; but only within the limits
imposed by society. So the human being who has determined
his own ends but is unable to follow that path ought to be
able to see why he is unable to do so by understanding the
constraints that are imposed upon him. Someone who is in
the best position to determine his own ends could only be

said to be in the best position if those ends are possible

within the limits imposed.

A second criticism of Degenhardt's position might be
that the programme is not practical. Given the different
psychological make-up of students, are there methods of
instruction that will enable them to understand and reflect
on the different disciplines in the same way; a way that
best fits all of them to determine their own ends? And, if

not, how are we to cater for individual differences? Also,
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does the argument suggest that there are two -distinct ways

of looking at the disciplines? One caﬁ achieve technical
mastery in a subject, like mathematics say, without any
undérstanding of the nature of mathematics or its cultural
_significances. But is it clear that one could have such: an
understanding of the subject without first coming to master
its technical side? Can one fully appreciate the effect

that the ca;culus has had on society since the 1600s, for
example, without first understanding the mathematical concepts

involved in differentiation and integration?

Clearly, to begin to answer these sorts of questions,
one is going to have to look closely at the specific
disciplines; firstly, from the philosophical perspective, to
elucidate their nature and foundational concepts; and,
secondly, from a cultural perspective, to determine the
"influence that the discipline has had on society and the
forces within society that have influenced the growth of the
discipline. Only then will one be able to argue for or
against the practicability of the programme for the various
disciplines.

The next chapter is concerned then with a critical
examination of various theories -on the 'nature of mathematics.
and the way forces within society have influenced the

evolution of mathematical concepts.
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CHAPTER III

THE NATURE OF MATHEMATICS

The aim of this chapter is to show the development of a
theory about mathematical knowledge which breaks with
traditional thinking about the nature of mathematics.
Dominant philosophies have nearly all stressed the a B;iori
nature of mathematics. Mathematical knowledge is regarded
as different in kind from scientific knowledge in that it
can be obtained without the use of thé senses. This
apriorist view has been the basis of the traditional schools
of thought fegarding the nature and foundations of
mathematics. These traditional philosophies have all been
disputed at tiﬁes but alternative philosophies have not been
fully articulated. P. Kitcher (1983) has now developed a
theory of mathematical knowledge which rejects mathematical

apriorism.

To show the development of XKitcher's theory this chapter
starts with a consideration of the older views of Plato and
Aristotle and the 19th century views of Leibniz and Kant
which anticipated the three dominant a priori philosophies of
mathematics in the 20th century:; namely, formalism, intuition-
ism and logicism. J.S. Mill's 19th century empiricist view

of mathematics is also considered here.

The three dominant philosophies are then examined in
some detail and it is concluded that while they do give some
insight into the activities of mathematicians, they are not

adequate in their description of the nature of mathematical
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knowledge. It is argued that this is because they view
mathematics as something that is unchanging with time,

whereas a consideration of historical episodes suggests that
mathematics is in a process of evolution, and that the
mathematical knowledge we have today has evolved in response
to practical problems within different cultures and with the
need to generalize and make rigorous the symbolic mathematical

language that is being used.

It is shown how Kitcher's comparison of mathematical
change with theories of scientific change, and his re-
assessment of Mill's earlier empiricist view of mathematics,
provide the basis for a theory of mathematical knowledge that
accounts for its evolution from basic manipulations in the
environment to the m;thematics that we have today. For
Kitcher, mathematics is a theory about the possibilities that

- exist in the physical world.

Finally, the last section of this chapter considers the
example of the calculus from 1650 to 1900 and illustrates its
development in line with Kitcher's theory of mathematical

change.

Earlier Views

(i) Plato held that it was an intellectual task of man' to

distinguish appearance from reality. The appearance of the
world around him, gained through sense experience, was ever

changing, whereas reality, which could not be apprehended by
the senses,was unchanging. This view was articulated by

Plato in what is called his Theory of Forms and originated out
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of certain general ideas that featured in dialectical disputes.
In -any disputation one ultimately must make clear the concepts
involved. When there is argument over whether, say, honesty
is a virtue, we are dealing with concepts of honesty and
"virtuousness which have to be made clear. Similarly, when we
talk of someone's honesty improving, we are comparing that
.person's standard of honesty to some ideal standard which is
regarded as unchangeable through time. Our understanding qf
these ideal standards is not seemingly dependent upon our
senses. When we observe phenomena we might readily agree
that if our eyesight was sharper we would see things clearer
and have a better knowledge of them, but general notions of
honesty and virtuousness are not seemingly apprehended by the
senses, and when we attain certainties about them, even if

only negative ones, we do so by argument.

[

Through such considerations, and particularly with his
mathematical orientation, Plato was led to develop the Theory
of Forms. Geometrical truths about triangles were not
thought of as just truths of particular triangles drawn on
paper or in the sand, but as truths of all possible triangles.
Geometry and arithmetic were regarded as studies of certain
realities that do not have the imprecision of things that
occur in the everyday world. Plato noted that dialecticél
disputes were also concerned with concepts that have only
imperfect representationé in the everyday world. So that to
argue that honesty is_a virtue is to argque about the concepts
of'honesty and virtuousness that do exist, but not -in the
everyday world. Whereas our everyday world contains examples

of triangularity, honesty and virtuousness, the Forms of
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triangularity, honesty and virtuousness exist permanently and
independently of man, and in a world that is not apprehended

by the senses.

Some of the Forms became éhe domain of mathematicians.
Oneness, twoness, point, line, circle, for examplé, are
mathematical Forms and dots and marks.drawn on paper are only
approximations to these Forms. Not only that, there are also
relationships between the Forms, and it is the job of the
mathematician to discover them, just as others may seek to
discover relationships between objects in the physical world.
Instead of relying on his senses, however, the mathematician

relies on his reason.

This view of mathematics appeals to some mathematicians,

as KOrner says:

««. Platonism is a natural philosophical

inclination of mathematicians, in particular

those who think of themselves as the

discoverers of new truths rather than of new

ways of putting old ones or as making

explicit logical consequences that were

already implicit, .

(Korner, 1960, p. 15)

The proposition, that one plus two equals three, states a
relationship between the Forms of "oneness", "twoness" and
"threeness", and is true independent of anything we can sense
in the physical world. By reason the mathematician can
discover this truth of mathematics. Similarly; the
proposition, that any two straight lines which are not
parallel, intersect at one point, states a relationship

between the Forms of "line" and "point" and no physical

demonstration is needed to judge the truth of this proposition.
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It is important to note that Plato did not idealize his
Forms from the physical world and sense experiences. He
-did not, for example, idealize the Form "circle" fronm the
" many instancés of circularity that he sensed in the physical
worlgé. The Form "circle" does exist, is permanent and is
‘'not apprehended -by the senses. ~ All empirical examples of

- circularity are only approximations to this Form.

'(ii) Unlike Plato, Aristotle's philosophy stemmed from a
bioclogical orientation where he looked at different life forms-
and asked what the function of them was. For him, what
distinguiéhed man from other life forms was man's rationality,
and what was good for man was exercising his reason in the

pursuit of knowledge. . .

Aristotle rejected Plato's distinction between the world -
of physical objects and the world of ideal Forms. The
subject matter of ﬁathematics is not ideal Formg that exist
independently from objects in the everyday world, rather the
.subject matter is what can be abstracted from what we perceive
in the world. For Aristotle, the form or essence of an »
object is as much a part of it as its physical matter. The
essence of "circularity" does-not exist independently from
circular objects but can only be abstracted by man from
examples of circular objects. The distinction between
mathematical and physical definitions can be distinguished by

the example of "curve", which specifies no matter, and "snub",
which specifies the curved matter, a nose. The mathematical
definition "curve" is abstracted from the physical definition

"snub". The éubject matter of mathematics is then the
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result of such abstractions and these mathematical objects
are, in some sense, in the things from which they are

abstracted.

This notion of abstraction from physical objects avoids
one criticism of Platonism; namely, if there is an ideal
Form of threeness say, then what is the status of "three"
when it occurs twice in the proposition "three plus three
equals six"? For Aristotle this is no problem, as the
abstracted mathematical object "three" can occur as many
times as required. The work of the mathematician then is
to idealize the relationships between mathematical objectsh

these objects being abstracted from the physical world.

An example of the importance of Aristotle's thought to
later views on mathematics can be demonstrated by considering
his ideas on infinity.  The notion of infinity has caused
considerable difficulties in much recent work on the

foundations of mathematics.

Aristotle distinguished between two notions of the
infinite, the actual and the potential. I1f we consider the
sequence of natural numbers 1, 2, 3, .... and the possibility
of always obtaining the next member in the sequence and of
proceeding as far as we want to, then we have the notion of ,
the potential infinite. We never obtain a complete séqueqce
of all the natural numbers, but we are not stopped from going
as far as we like. This, however; is in contrast to the
notion of the actual infinite, where the natural numbers are
deemed to be given in totality. Under this notion there

exists a set, the elements of which are all the natural
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numbers. Aristotle favoured the use of the potential
infinite and much of modern mathematics needs only this
notion of infinity. The use of the notion of actuall
infinity, however, produces many antimonies (paradoxes).
An example will be considered in the section on logicism,

later in this chapter.

(iii)' Unlike Plato and Aristotle, Leibniz does not take
mathematical propositions to be about anything, neither mind-
independent eternal objects nor abstractions from the
physical world. He maintains that mathematical statements
are true by virtue of the fact that their denial would be

impossible.

He identifies two kinds of truths, those of reasoning
and those of fact. Truths of reasoning are necessarily
true by the impossibility of their denial. The denial of
truths of fact, however, is possible. Their truth is

contingent.

Consider two examples. The proposition that, if A is
greater than B and B is greater than C, then A is greater
than C; 1is a truth of reasoning. It would be impossible
for A not to be greater than C under these constraints.

But the proposition that all metals expand on heating, is
a truth of fact and its denial is possible. It's just that
no metal is known not to expand on heating. Leibniz thus
regards the truths of mathematics akin to the truths of logic
and, in this sense, he foreshadows the modern movement of
logicism, which maintains that all mathematics is reducible

to logic,



The relationship between pure and applied mathematics is
tied up in what for Leibniz is "the best of all possible
worlds". As a proposition in pure mathematics, "One plus
one equals two" is true for its denial is impossible. The
proposition "One apple plus one apple makes two applés" is
true in this world, for anything else would not be true in

the best of all possible worlds that could be created.

(iv) While Kant rejects Leibniz's dichotomy of propositions
between those of reasoning and those of fact, he is concerned
about the different ways of knowing. In his book Critique

of Pure Reason he says:

It is therefore a question which requires
close investigation, and is not answered
at first sight - whether there exists a
knowledge altogether independent of
experience, and even of all sensuous
impressions. Knowledge of this kind is
called a priori, in contradistinction to
empirical knowledge, which has its sources
a posteriori, that is, in experience.

(Kant; Trans. by Meiklejohn; 1964, p. 25)

Kant then develops a three way classification of propositions.

(a) Some propositions he describes as being analytic in
that their denial is self-contradictory. The truth of these
propositions can be shown by analysing the terms and concepts
involved in- the propositions. An example is the proposition
"All bachelors are unﬁarried“. Nothing, other than the
meanings of the terms involved in the proposition, is needed
to judge its truth. These propositions correspond to
Leibniz's propositions of reasoning. For Leibniz, all pure

mathematical propositions are of this form.

(b) Xant then describes some propositions as being

47.
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synthetic a posteriori. That is, they do describe a state

of affairs in the physical world and their truth is judged by
sense perceptions. ~ An example of this type of proposition
is "My pen is blue". The denial of this proposition is not
self-contradictory and the truth of it is judged by using

~ the senses.

(c) Finally, Kant considers some propositions as being
synthetic a priori. These propositions describe a state of
affairs in the physical world but they are not deemed true by
use of the senses, but by reasoning. They are necessary
conditions for the possibility of objective experience. That
is, they are necessary in that if any proposition about the

physical world is true they too must be true.

Kant was concerned about synthetic a priori judgements
because he believed that we make these types of judgements in
physics and metaphysics as well as in mathematics. The
proposition "In all changes of the material world the quantity
of matter remains unchanged" is deemed to be synthetic, in
telling us something about the physical world, and a priori,
in that we make this judgement before experiencing every
change. So too the proposition "All men are free to choose"
is deemed to be synthetic because it gives us new knowledge
about all men, and a priori, in that we make the judgement

before experiencing all men.

Yet there is still the doubt of how we can make judgements
about the state of affairs of the physical world without first

experiencing that world. To solve this problem Kant
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hypothesized a new relationship between the mind and its
objects. He did not regard the mind as passively receiviné
information from the objects. He regarded the mind as
active and doing something with the objects it experiences,
so that the mind imposes its way of knowing upon the objects.
Thinking involves not only receiving impressions through the
senses but also making judgements about what is experienced.
The mind has the power to make judgements without first

experiencing the world.

In'describing the propositions of pure mathematics‘as
being synthetic a priori, Kant introduces another classific-
ation. He distinguishes between discursive synthetic
a priori propositions, which give an ordering of notions (for
.example, causality), and intuitive synthetic a priori
propositions, which are concerned with the structure of

perceptions. To this latter group, he claims, belong the

propositions of pure mathematics.

Kant's argument can then be summarized as follows.
Being in space and time is a necessary condition for the
possibility of perception. The subject matter of pure
mathematics is the structure of space and time free from
empirical material. The propositions of pure mathematics
are structures of perception, synthetic in describing space
and time, but a priori in describing the unchanging nature of

space and time and in not requiring any sense experiences to

judge their truth.' For Kant the mathematical proposition -
"Two plus three equals five" is synthetic and a priori. The

logical possibility of alternatives is not denied (and,
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therefore, the proposition is not analytic), but any other
alternative would not be a description of perceptual space

and time.

But Kant's philosophy of mathematics went further than
simply describing space and time. He was concerned about
the possibilities that exist in space and time and the
distinction between a priori constructions and postulations.
The concept of a ten dimensional sphere, for example, can be
postulated and a geometry of ten dimensions can be developed
and shown to be be self-consistent. That is, axioms, and
propositions can be formulated leading to results which do
not contain self-contradictions. The a priori construction
of a ten dimensional sphere, however, is not possible, whereas
the a priori construction, and not mere postulation, of a

perfect three dimensional sphere is possible.

The subject matter of pure mathematics then becomes the
structure of space and time and the possibilities of
constructions within it. The subject matter of applied
mathematics becomes the structure of space and time and the

actual material filling it.

(v) In contrast to Kant's a priori nature of mathematics,
John Stuart Mill argues that all our knowledge is empirical.
To the question; "Are synthetic a priori judgements possible?”
he answers in the negative. Firstly, he rejects the abstract

notion attributed to numbers:

All numbers must be numbers of something:

there are no such things as numbers in

the abstract. Ten must mean ten bodies,

or ten sounds, or ten beatings of the pulse.
(Mill, 1973, p. 254)
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And just as numbers refer to things we experience the basic
axioms of mathematics are not necessary truths but laws we

accept, based on our experience:

That things equal to the same thing are

equal to one another, and that two

straight lines which. have once inter-

sected one another continue to diverge,

are inductive truths; resting, ... on

the fact that they have been perpetually

perceived to be true, and never once

found to be false.

(ibid., p. 609)

He thus maintained that the axioms of mathematics were
inductive generalizations based on a large number of instances.
In this sense they were the same as scientific hypotheses, the
difference being one of degree and not kind. The subject
matter of mathematics is more general than any other science
and its propositions have been tested for many more times than
the propositions in other sciences. But, according to Mill,
we are unjustified in thinking that mathematical propositions

are, therefore, qualitatively different from the hypotheses of -

other sciences.

Mill's philosophy of mathematics has been attacked from
many quarters. Principally, the attacks came at a time when
the three so-called traditionalist schools of thought on the
foundations of mathematics flourished in the late 19th centufy
and into the 20th century. Theée three a priori philosophical
positions; formalism, intuitionism, and logicism, will be
examined later in the chapter. In a paper on the foundations
of arithmetic, first published in 1884, G. Frege maintained
that Mill did not distinguish bétween mathematical propositions

and the use to which they could be put:
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Mill always confuses the applications that

can be made of an arithmetical proposition,

which often are physical and do presuppose

observed facts, with the pure mathematical

proposition itself.

(Frege, 1968, p. 13)

And A.J. Ayer (1975), making use of Kant's dictum that
though all our knowledge begins with experience, this does
not mean that it all arises out of experience, claims that
Mill fails to distinguish between knowing mathematical

truths and coming to know them:

We may come to discover them through an
_inductive process; but once we have
apprehended them we see that they are
necessarily true, that they hold good for
every conceivable instance.
(Ayer, 1975, p. 318)
He argues that we will never find an example to refute
mathematical axioms because they are true by definition.

They are analytic statements orﬂtautologies.

Some philosophers have been more sympathetic to Mills
position, however. W.V. Quine says that perhaps in Mills
éime classical mathematics did lie closer to experience than
it does now, noting that the infinitistic reaches of set
theory, which are so remote from our experiences, wereqnot
explored then (see Quine, in Benacerraf and Putnam (eds.),
1983, p. 355). In a cautious note Quine says that it is
the relationship between mathematics and the empirical

sciences that is important:

I am concerned to urge the empirical
character of logic and mathematics no more
than the unempirical character of theoret-
ical physics; it is rather their kinship
that I am urging, and a doctrine of
gradualism.

(Quine, 1970, p. 100)
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Mill% philosophy is an important cénsideratioﬁ then -
because it is the rejection of his empiricist position and
the acceptance of the a priori nature of mathematics tﬁat
saw the flourishing of the three traditi9nalist schools of
thought on the foundations of mathematiés. But, in
addition, when these three philosophical positions were
found to have serious objections to them, some modern day
philosophers sought to re-examine Mills work. _'(See, for
example,~H.Lehman(l979) and P. Kitcher (1983)). ‘They ?e-
assessed Mills position by highlighting the difficulties
of‘using language to convey meanings, and recently Kitcher
(1983) has rejecﬁed the a priori nature of mathematics and
developed his own "defensibleée" empiricist philosophy of
mathematics. Before considering Kitcher's arguments,
however, we will first look at the three traditionalist

theories.

Dbﬁiﬁant"éOth‘century,views

During the first half of this century there were three’
main schools of thought regarding the nature and foundations
of mathematics; namely, formalism, intuitioﬁism, and
logicism.' This was not to say that all theorists ascribed
to one of these theories~but, rather, it represented a
clasgification of the different ideas of those who yorked
in the area of the philosophy of mathematics. These ideas
had their origins in the earlier work of Leibniz and Kant
and, to a lesser extent, Plato and Aristotle. Formalists
and intuitionists acknowledged the influence of Kant's"

philosophy of mathematics while rejecting that of Leibniz,
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but formalism and intuitionism subsequently evolved to
differ in gquite important ways. Logicists, on the other
hand, were influenced by the tradition of Leibniz in
regarding mathematical propositions as analytic, and
demonstrating their truth by applying the principles of

logic.

It must be noted that a strict three-way classification
oversimplifies what is a very complex area of study. Each
class has many sub-varieties and different writers in each
class often disagree with one another. It is possible,
however, to indicate and critically examine the main

features of the three theories.

Formalism

Strict formalism is the view that mathematics is the
formal (that is, rule-governed) manipulation of symbols and
nothing else. Mathematics then consists of a list of terms,
a list of operations which are modes of combination for
forming a new term in the list from a set of given terms in
the list, certain elementary propositions (axioms) which are
stated to be true unconditionally, and rules of procedure
for the derivation of further pfopositions from the axioms.
D. Hilbert is regarded as the founder of the formalist
movement, and developed the view in the course of research
into the theorems and’axioms of Euclidean gecmetry. The
formalist system was first used by him in the paper "The
foundatioﬁs of mathematics" published in 1928, but he is not
regarded as a strict formalist, holding that the finite ”
combinatorial part of mathematics is meaningful and true.

(see Hilbert, in Benacerraf and Putnam (eds.), 1983, p. 183).



For example, he would maintain that the proposition

"1 + 2 = 3" is within a formal system but that it does have
meaning and is true outside that system. Accounts of the
strict formalist position, which denies that any mathematical
statement has a truth value, can be found in H. Curry (1951)

and A. Robinson (1965).

" Strict formalism rejects the idea that mathematics is"
about mind-independent eternal objects, and it-rejects the
view that it is about copstructions in the mind. To the
strict formalist there is.no subject matter to mathematics at
all, it is simply a series of manipulations of symbols. The
theorems in mathematics are developed by applying the axioms
to the list of tgrms and the list of operations. In plane
geometry, for instance, we have the terms "point" and
"straight line" and the axiom "Through any two points there
exists exactly one straight line". But we might equally
have defined the terms "glm" and "gam blyp" and the axiom
"Through any two glms there exists exactly one gam blyp".
Irrespective of the mental image engendered, what is meaning-
ful is to apply the given axioms to the given terms in the

correct way.

But while it may appear that mathematicians merely
manipulate symbols according to pre-assigned rules, there are
objections that dc not allow us to accept this as an adequate

account of the nature of mathematics.

Firstly, one requirement of any formal system must be
that the system is consistent. This means that the system

cannot allow a proposition "p" and its negation "not p" to be
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derived within the system, thus asserting both "p" and "not

p" to be true in the system. But in 1931 K. G8del proved
that a specific contradiction can always be deduced from any
proof of the impossibility of the occurrence of contradictions
in a formal system. (Discussions of Godel's paper can be

found in R. Wilder (1965), S. Kdérner (1960) and M. Black

(1933))

Secondly, for someone who has done any mathematics at
éll, it is not simply an arbitrary manipulation of symbols.
When grappling with a mathematical problem one is not simply
dealing with symbols, but ideas and constructions in the mind.
Such constructions may eventually be symbolized but they are
talked about and discussed in ways which suggest they are more
than simply symbols used by mathematicians. To the
mathematician such mental constructions are very real. Two
distinct proofs of a theorem may use quite different symbols
while still embodying the same ideas or mental constructions.
The mathematician can see beyond the symbols and can give

meaning to the ideas represented by the symbols.

.A further criticism of formalism is that if mathematics
is just a game played with symbols, why is it so useful in
predicting outcomes of events in the physical- -world? And why
do we choose some axioms and not others? If it is sheer
arbitrariness then there is a difficulty in explaining how
formulae such as v = u + at do approximate to such a degree
the empirical result of the velocity of an object with a
certain acceleration after a certain time. The usefulness of

mathematics suggests that something other than an arbitrary
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collection of terms and axioms goes into it.

Likewise the nature of inference in mathematical systems

needs to be explained. It seems clear that the signs we
use, such as ~~ (negation) and = (equality), have meaning
outside the formal system of mathematics. We accept the

inference that if a = b then a + 1 = b + 1, but we would not
accept the inference that if a = b then a + 1 =.b + 2;
whereas, presumably, such an axiom could occur in some
formalised system. It has to be explained why some axioms
appear to have meaning and are useful while others appear to

have no meaning at all.

Formalism is rejected then as an adequate philosophy of
mathematics in thét it offers no explanation as to the
usefulness of mathematics, and in that it denies the
existence of mental constructions, which are not formal and
not symbolic, but do have structure and, to the mathematician,

are real.

Intuitionism

The intuitionist's view of mathematics is that it
consists solely of mental (intuitive) constructions.
Mathematics is thus a production of the humanlmind. The
existence of mathematicai objeéts can only be guaranteed if
they can be determined by thought, and the broperties of
mathematical objects are only properties if they can be
discerned by thought. The symbolic mathematical language
that is used is simply a device for communicating thoughts
and allowing oneself, or others, to follow mathematical ideas.

The fundamental tenets of intuitionism were first formulated
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by L.E.J. Brouwer, following his inaugural address at the
University of Amsterdam in 1912 (see Brouwer, 1913). More
recent introductions to the intuitionist philosophy of

mathematics are by A. Heyting (1956) and M. Dummett (1977).

Like the formalist, the intuitionist does not accept
that mathematics is about mind-independent eternal objects.
But unlike the formalist, the intuitionist'recognizes{the
abiliéy of the person to perform certain constructions in
the mind. Initially this consists of the construction of
unity and then the series of natural numbers. All
mathematics is then built upon these initial constructions.

And to quote Brouwer:

... neither the ordinary language nor any

symbolic language can have any other role

than that of serving as a nonmathematical

_auxiliary, to assist the mathematical

memory or to enable different individuals

to build up the same set.

(Brouwer, in Benacerraf and Putnam (eds),

1983, p. 81)

So the only mathematics that is done is done by a series of
constructions in the mind. The logic engendered by the
manipulation of symbols is a product of mathematics, and
with ordinary language it is the means of communicating ideas

so that others may effect the same mental constructions.

The mathematical logic of intuitionism is different from
‘classical iogic. In classical logic the existence of an
entity can be proved by showing that the assumption of its
non-existence leads to a contradiction. In intuitionistic
logic the entity whose existence is to be proved must be
shown to be constructible. Consider an intuitionistic

proposition P as the record of a construction:
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P : I have effected a construction A in my mind.

The intuitionistic negation —m1 P is also a construction.
It is not saying that I have not constructed P; rather:
—tP : I have effected a construction B in my
mind which deduces a contradiction in
that the construction A is brought to an
end. ’
What is important is that they are both constructions and it
need not be the case that one of them has occurred. THus
the intuitionist does not accept that all propositions can

be characterized as being true or not true.

Consider an example. T is the non-recurring decimal

3.14159.... We calculateiﬁ'in the following way. Expand

TJf until we have a sequence of 100 suceessive zeros.
Suppose the first run of 100 successive zeros starts in the
nth digit. If n is odd, let ffterminate in its nth digit.
If n is even, let 'ﬁ'have a 1l in the (n + 1l)st digit and then
terminate. So if n is odd then 'ﬁ'is less than J[. Ifn
is even then ‘ffis greater than TJ. If no successive 100
zeros ever occurs then 'ﬁ'= 7. DNow let Q = -ﬁ'— T. The
question is whether Q is positive, negative or zero. Now Q
,is a real number, and the law of the excluded middle maintains
that it must be positive negative or zero. But the
intuitionist does not accept this. f% and Q have not been
constructed in the mind 'since it is not known if there is a

sequence of 100 successive zeros in the expansion of TI. To

the intuitionist, the proposition:

P : Q is positive
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is not true, nor false but meaningless.

The proponents of intuitionism saw its success in
removing many of the paradoxes that so plagued the early
infinite set theorists in mathematics. Bertrand Russell
defined a set as abnormal if it contained itself as one of
its elements and normal if it did not. As an example of an
abnormal set consider "The set of all objects describable in
exactly eleven English words". Russell then considered the
set N of all normal sets. Is N abnormal or normal? If N
is normal then it is one of the set of all normal sets and
hence is an element of N. But this means N is abnormal.
Conversely, if N is abnormal then it is one of its own

elements, which are all normal sets. Hence N is normal.

The intuitionist removes the paradox by claiming that
if he cannot construct in his mind a set that has itself as
a member, then talk of them is meaningless and is not 'a part
of mathematics. The beauty of the intuitionist programme
then is that it does not produce ideas and concepts that the

mind cannot accept.

There are criticisms, however, which suggest that
intuitionism is not an adequate philosophy of mathematics.
In describiﬂg mathiematical activity as intuitive constructions.
 the intuitionist denies that the inner experience refers to
any external reality.- But in so doing the mathematician then
gives up the most powerful motivation for his work - to seek
truth that can be publicly validated. A mathematician is not
interested in intuitive constructions for their own sake but -

for the new truths they enable him to find. As Goodman says:
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Just as the constructions lie behind the

symbols and give them their interest and

meaning, so there is something behind

the constructions - mathematical truth.

(Goodman, 1979, p. 545)

The mathematician is not free to take any arbitrary set of
rules and apply them to his mental constructions.
Mathematical rigour is a restriction on that freedom, and
mathematical truth does not exist in the mind of the
mathematician. When we evaluate a mathematical argument we

determine whether the argument works - that is, whether it

convinces us of the truth of its conclusion.

One critic of the intuitionist programme is L.
Wittgenstein. He seeks to explain the nature of mathematical
truth through the collective behaviour of the people who use
the rules, and as originating from simple manipulations of
objects in the environment. Firstly, he argues that
understanding mathematics is not just a mental state but an
ability to do something; namely, an ability to apply what the
person claims to know. This overt behaviour is necessary
before claiming understandéding in mathematics. Wittgenstein

says:

We are trying to get hold of the mental
process of understanding which seems to
be hidden behind the coarser and
therefore more readily visible
accompaniments [the overt behavioursl.
But we do not succeed; or rather, it .
does not get as far as a real attempt.
For even supposing I had found something
that happened in all those cases of
understanding, - why should it be the
understanding?

(Wittgenstein, 1978, p. 60)

Secondly, Wittgenstein argues that the process of

inference is something that need not happen "in the head".
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Inferring consists in the transition from one assertion to

another, but:

Misled by the special use of the verb

'infer' we readily imagine that inferring

is a peculiar activity, a process in the

medium of the understanding, as it were a

brewing of the vapour out of which the

deduction arises. But let's look at

what happens here. - There is a transition

from one proposition to another wia other

propositions, ... This may go on on paper,

orally, or 'in the head'. - The conclusion

may however also be drawn in such a way

that the one proposition is uttered after

the other, without any such process; ...

(Wittgenstein, 1967, p. 5)

Wittgenstein then goes on to argue that the mental constr-
uctions cannot serve as a foundation for mathematical
inference because they cannot give us a way of deciding
whether the inferences are correct or not. When multiply-
ing, for example, different people may have different mental
constructions but "the correct multiplication is the pattern
of the way we all work" (ibid., p. 95). And "... 'calculat-
ing right' does not mean calculating with a clear understand-
ing or smoothly; it means calculating like this" (ibid.,
p. 180). So the criteria of what is right or wrong are
established on the basis of the collective behaviour of those
who use the rules. So correct inference is simply the way

we all cdo in fact infer. "This is use and custom among us,

or a fact of our natural history" (ibid., p. 20).

The problem is, however, that there is never going to be
perfect agreement on how to infer and if people disagree and
infer differently there needs to be a way of deciding which
process of inference is correct. Wittgenstein's answer is

that the rules of inference we accept are not just arbitrary

62.
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but are influenced by empirical conditions. The origins
of our mathematical practices are found in the simplé
processes of counting objects and comparing sets of objects
in the environment. These simple processes provide the

genesis of mathematical truth.

This then leads to a further objection to intuitionism;
that it has nothing to say about the growth of mathematics
and about cultural significances. If mathematics is simply
constructs of the mind, what is the nature of the higher
mathematics that has developed today and that did not exist
100 or 1000 years ago? Accounts of historical episodes in
mathematics indicate that for certain periods of time
mathematics develops cumulatively. The theory of the
calculus today can be seen to have developed from the initial
work of Newton and Leibniz in the 1600s, even though some of
the symbolic language that we use today would have been
unknown to -them. The language involved with limits, for
example, was developed following the problems Newton, Leibniz

and their followers had dealing with "infinitesimals". This
symbolic language is regarded as essential for a full under-
standing of ﬁhe calculus as we know it today. Any philosophy
of mathematics should give an account of why this language has
developed the way it has and is not simply an arbitrary system
chosen to represent mental constructions. It must also
explain why this language is regarded as a better system for

expressing the mental constructions involved in the calculus

than the one originally used.

Logicism
Logicism is the view that mathematics consists of certain

truths and the arguments that establish those truths, of the
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formal manipulations of symbols that express those arguments
and truths, and of nothing else. The logicisé denies that
there is any subject matter to which mathematical truths'
refer. They are simply true by their own internal structure;
that is, they are analytic. If one had complete knowledge
of logical propositions then one could deduce through logical
means all the theorems in mathematics. Mathematics becomes

one giant tautology.

Logicism has made a great contribution to mathematics,
as a lot of mathematics as we know it is just logic, and
logicism has given the impetus to simplify and unify basic
mathematical notions. . But rather than simply stéting a
belief that all mathematics is just logic, logicists, like G.
Frege (1964, 1968), B. Russell (1903, 1919) and R. Carnap |
(1931) , have attempted to demonstrate that a system.of logic
could, in fact, generate the theorems of mathematics. One
would start with a list of fundamental logical laws and a
list of permissible methods to deduce the truth or falsity of
pr0positipns. The symbolic expressions marking the first
stages of the deduction would only be logical symbols. A
system of  logical concepts to be employed for the logicist's
thesis has been given by Carnap (1931) and is summarized in

the following tables.



Concepts from propositional calculus

Concept ' Symbols Read

The negation of a
sentence p ~ P not p

The disjunction of
two sentences p Vg p or g

The conjunction of
two sentences p.g p and q

Implication P> g if p then g

Concepts from functional calculus

Concept Symbols Read

Property f belongs

to object a f(a) f of a

Property f belongs For every x,

to  every object (x) £(x) f of x

f belongs to at ‘There is an x
least one object (Fx) £(x) . such that f of x

Concept of identity

Concept Symbols Read
a and b are the names a=>b a is b

of the same object

Carnap then goes on to say:

It is the logicist  thesis, then, that

the logical concepts just given suffice

to define all mathematical concepts,

that over and above them no specifically

mathematical concepts are required for

the construction of mathematics.

(Carnap, in Benacerraf and Putnam (eds.),
1983, p.42)
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If we accept the logicist's thesis, then some form of
transition is needed to get from the logical symbolization to
a more familiar notation such as 1 + 2 = 3, and for the
logicist, this involves the use of definition. Russell
uses definition as a notational device where one symbol
stands for another symbol or combinations of symbols. His
definition of the number 2, for example, is a case in point.
Initially the symbol Zm(f) is defined to mean that at least

two objects fall under the concept f in the following way

(where "= Df

is read "means by definition"):

2 (£) = o @0 aEn[~x=y9. £60.£]

This is read: there is an x and there is a y such that x is
not identical with y, and £ belongs to x and f belongs to y.
Similarly, we can define 3m(f), 4m(f) and so on. The number

two is then defined:

2(f) = DEf Zm(f).ﬁd3m(f)

which reads: ' at least two, but not at least three, objects fall
under f£. In like manner all the natural numbers can be
defined, as well as negative integers, fractions, real and
complex numbers, and the operations of addition, subtraction,
multiplication and division, and eventually the concepts in
higher mathematics such as convergence, limit, differential,

integral and so on.

The next part of the logicist's programme is to show that
the theorems of mathematics can be derived from logical axioms
through logical deductions. Thus, every sentence in

mathematics, involving mathematical symbols, should be
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translated into a sentence containing logical symbols and
should be proved in logic. But the logicist's programme
raises serious objections that suggest that logicism is not

an adequate philosophy of mathematics.

Firstly, the logicist claims that he is not discovering
mathematical structures by proving their existence, but
constructing them by definition. 1In discussing real numbers,

for example, Carnap says of the logicist:

P thfough explicit definitions, he

produces logical constructions that have,

by virtue of these definitions, the usual

properties of the real numbers. -

(ibid., p.44)

But what is not clear here is the relationship between the
logical constructions and the "usual properties of the real
numbers". How do we know the ﬁsual properties of the real
numbers? Russéll;s definitions are mere notational devices,
where one symbol stands for a combination of symbols. But
when giving a definition two things stand out. Firstly, it
is implied that what is defined is worthy of consideration.
It would be possible to define all sorts of new concepts
using different combinations of logical symbols; but why do
we choose the ones we do, and why do we consider them
important? Secondly, it is hard to envisage a situation
where one would wish to define something that one did not
have some prior idea about. The definition of.the natural
numbers is a case in point. The question should be asked as
to whether it is possible to have no knowledge of what we
mean by natural numbers, to read and understand the logicist's

definition, and then to assert that one did now know what

natural numbers were. We are still left with the belief that
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the logicist's definition does refer to something, some
concept that we can grasp without any knowledge of the
logicist's programme. Logicism does not explain the nature
of these natural numbers, nor how we can acquire such

knowledge about them.

The second objection to logicism concerns the view that
all the theorems of mathematics can be derived from logical
axioms through logical deductions. This view holds that
every sentence in mathematics involving mathematical symbols
can be translated into a sentence containing logical symbols
and can be proved in logic. For the elementary theorems of
arithmetic this is easily shown, but it has also been shown
that some theorems in mathematics require special axioms

known as the Axiom of Infinity and the Axiom of Choice.

The Axiom of Infinity states that to any class of n
elements there exists a class of n + 1 elements. That means
we can always add an element to a set that is not already
contained in it. This then stipulates the existence of
infinitely many elements, for we never reach the stage of not
being able to add one more element to the class. The Axiom
of Choice states that if ol is any collection of sets
{A,B,C,..i} and no set in of is empty then there exists a set
Z consisting of precisely one element from A, one element
from B, and so on. This axiom is quite plausible if £ is
finite but since the axiom is stated for any collection of
sets one must take on faith the possibility of forming such a
set 2 if of is infinite. Not only may ¢/ be infinite, it
may be infinite and non-denumerable; that is,'it may be

incapable of being.put in a one-to-one correspondence with
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the natural numbers.

The point is that some theorems of mathematics use
these axioms for their proofs. While some philosophers
accept them as principles of logic others do not. C.

Hempel says:

All the theorems-of. mathematics can
be deduced from those definitions [of

concepts of mathematics] by means of

the principles of logic (including the

axioms of infinity and choice).

(Hempel, in Benacerraf and Putnam (eds),
1983, p.389)

But in a cautioning note he draws attention to the
paradoxes that are found when the axioms of infinity and
choice are included as principles of logic. And S. Korner

says, in relation to Russell's definition of number:

He not only defines. every natural
number n as having a unique successor
‘n + 1, but has to assume as a non-
logical ‘hypothesis the axiom of
infinity... The programme was to
reduce mathematics to logic and not to
logic plus non-logical hypotheses.
(K8rner, 1960, p.59)

To avoid the paradoxes, Russell introduced his Axiom
of Reducibility and his Theory of Types, which did not
allow elements of sets to bé the sets themselves. But the
final outcome was to baée the foundations of mathematics
not on logic, in the sense of the rules of correct
reasoning, but on logic plus axioms which were needed in
order to justify the . notion of mathematics that we already
had. In this sense it was a failure and drew Russell to

despair:

«e.. after some twenty years of very
arduous toil, I came to the conclusion
that there was nothing more that I
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could do in the way of making mathematical

knowledge indubitable.

(Russell, as guoted in Davis and Hersh,
1981, p.333)

Attacking logicism from another angle, S. Korner (1960)
argues that it is a mistake to attempt to show that mathematics
is reducible to logic by virtue of its logical character. His
position is that mathematics and logic have the same structure
and yet are two separate fields of study. They are two
separate a priori disciplines. Whereas logic has no subject
matter, mathematics does, though not in the same sense, say, as
zoology. For mathematics the subject matter is obtained by
postulation. One can postulate the existence of Euclidean
points and lines, for example, and then derive results from the
nature of these postulated entities. The nature of the
derivation of these results parallels the nature of derivation

of results in logic.

The Evolution of Mathematics

In the previous sections we looked at some of the ideas
of those who attempted to answer the question "What is
mathematics about?" We considered Plato's mind-independent
Forms, Aristotle's abstractions, Kant's synthetic a priori
knowledge, and Leibniz's claim that mathematics is not about
anything at all. For the formalist it is the symbolic
language and its associated rules that is mathematics, for the
intuitionist it is the mental constructions, and for the

logicist mathematics is just one giant tautology.

Finding serious objections to all these points of view we
might then wonder whether it is possible to give an answer to
the question "What is mathematics?" If we assume that

mathematics is something absolute, unchanging with place and



time, then we may believe that eventually we will be able to
give a precise answer. But a consideration of historical
and cultural factors suggests that the nature of mathematics
is notso absolute. When we take mathematics to be one
particular element of a culture at a particular time it is
possible to get a clearer picture of the nature of that
activity.

Now the activities of man are not dependent upon being
chéracterized under a particular label such as "mathematics".
It is in the natﬁre of man to engage in particular activities
and some of them are grouped together and assigned the name
"mathematics” to distinguish between them and other
activities within the culture. The activities are passed on
from oneée generation to another and across cultures, and are
greatly influenced by other cultural elements such as
agriculture, warfare, philosophy, physics, astronomy and so'

on.

The work 6f the formalists, intuitionists and logicists
all give some.insigﬁt into the activities of mathematicians,
but instead of trying to give a precise answer to the .
question "What is mathematics?" we should be seeking to
explain how certain activities of man have become grouped
together, how these activities have been passed on from
cultqre to cultuferand generation to generation, and, in so

doing, have evolved to what we call the mathematics of today.

In his book Proofs and Refutations published post-

humously in 1976, Imre Lakatos sets out a dia;ogue between a
teacher and a class of students who are discussing the
Euler-Descartes formula for polyhedra:

V-E'f-F'!'-'Z



where V is the number of vertices of the polyhedron,
E is the number of edges,

F is the number of faces.

The teacher presents the proof of the formula, whereby the
polyhedron is stretched out on a plane. The students
follow up with a series of counter-examples and the proof of
the formula is corrected and elaborated. The development
so presented by Lakatos is seen by him to be a model for the
development of mathematics in general. His argument is
that the development does not consist of the accumulation of
undeniable truths but.consists of a series of conjectures

and attempts made to prove them (by reducing them to other
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conjectures), or by attempts made to produce counter-examples.

In this book and the paper "Infinite regress and the
foundations of mathematics" (1962), he draws heavily on K.
Popper's philosophy of science (see Popper, 1959, 1974).
He admits to a theory of mathematical fallibility holding
that mathematics is a science that grows by a process of
successive criticism and refinements of theories and the

advancement of new and competing theories:

The logical theory of mathematics is
an exciting, sophisticated speculation,
like any scientific theory. It is an
empiricist theory and thus can be either
shown to be false of can remain conjectural
for ever.

(Lakatos: 1962, p.178)

What is now needed is a philosophy of mathematics that is
made explicit and that seeks to establish what mathematics is

about and what forces operate to advance new theories.
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In this section we consider mathematics as a cultural -
system and develop tﬁe argument of a recent view, by P.
Kitcher, that regards it as growing and evolvigg through a
series of rational transitions to the presené day. Then in
the next section we look at a particular historical episode;
the development of mathemafical analysis from 1650 to 1900;
and see how changes occurred in response to the needs of the

mathematics that was a part of the culture of the time.

(1) A consideration of the cultural influences on
mathematics derives its impetus from a study of mathematical
hisfory and the relationship between mathematics and other
elements of the culture. M. Kline (1962) and (1972), R.
Wilder (1965), (1975) and (1981), and R. Marks (ed) (1964)
for example, all'stress'the dependence of mathematics on the
_cultural life of the civilization which nourished it. The
classical period of Greek culture from 600 B.C. to 300 B.C.
and the rational quality of its philosophy and its sculptural
-and architectural ideals, is compared to the‘concérn of the
mathematicians of that age to reason abstractly and to
contemplate the ideal. Practically minded Rome, and its
concern with administration and. conquest, produced little
that was truly qreative and original (See Kline, 1972, pp.
11-12). And so the general character of an age is seen to
be closely related to its mathematical activity. In our age
mathematics has attained an extraordinary range and

applicability.

While a study of these historical episodes suggests an

intimate relationship between mathematics and other cultural
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elements, it is necessary to delve deeper and to try and find
the forces within cultures that influence the shape of
mathematics and that cause it to change. Two principal
factors emerge; the nature of the problems to be solved,

and the nature of the symbolic language that is being used.
Much of the algebra that we use today, for examplé, in
studying the theorems of mathematics, was unknown to the
early Greek matpematiciaﬁs. But there was no reason for the
Greeks to develop any new symbolism for problems that had
already been handled satisfactorily by geometrical methods.
External forces were also at play. When mechanical gadgets
Began to appeaf in Greek culture, such as siphons, fire
engines and "an automatic machine for sprinkling holy water
when a five-drachma coin was inserted" (Kline, 1972, p.62),
the society no longer looked to mathematics for solutions to

its problems. As Wilder says:

One. can justifiably conclude that it was
" those cultural stresses, external to
mathematics, that came to dominate the
course' of evolution of the entire Western
culture, which were chiefly the cause for
the gradual dying out of Hellenic
mathematics. And that, as happened
later during an era of ingenious
mechanical experimentation in France,
ideas having great potential 'died on the
vine' because of a lack of demand for
them in the cultural environment. To
put it another way, science had more than
satisfied the demands created by the
cultural stresses of the period.
(Wilder, 1975, p.l1l55).

To take another example, for most of its history
mathematics avoided the use of the notion of infinity. Even
Euclid's basic axiom said "Every line can be extended" rather

than "Every line is infinitely long". Similarly he proved
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that "Given any finite set of prime numbers there is another
prime not in the ;et" rather than "There are infinitely many
primes". But the study of wave motion in acoustics and

heat theory and the like, led to a consideration of
trigonometric series, which further led to questions concern-
ing the foundations of analysis that could only be explained
by considering infinite collections. What proved to be
traublesome for mathematics and was avoided for so long could
not-stand up against the cultural forces of the day. This
ultimately led the German mathematician G. Cantor to develop
his theory of the so-called transfinite numbers, and a new
branch of mathematics took hold as it offered new ways of
looking at troublesome fundamental problems. Such became
the importance of the concept of infinity to mathematics that,
in 1949, H. Weyl was led to call mathematics "the science of

the infinite" (Weyl, 1949, p.66).

We might now ask whether some theory can be given that
provides an explanation as to how mathematical change occurs.
Wilder (1975) lists eleven forces that are discernible in the
development of’mathematics. These he labels environmental
stress (physical and cultural), hereditafy stress, symboliz-
ation, diffusion, abstraction, generalization, consolidation,
diversification, cultural lag,’' cultural resistance, and
selection. Problems in the environment, for examplé,
suggest new problems in mathematics to be-investigated.
Hereéditary stresses describe forces that operate within
current mathematical practices, like the chalienge to scolve
previously unsolved problems, and- the subsequent need for

the creation of new concepts. New symbols are sometimes



needed to describe new concepts and these concepts are
sometimes diffused from one mathematical field to another in
order to fill a need in the receiving field. Attempts are
then made to generalize the results and to consolidaté
diverse mathematical systems by encompassing them under one
system. Cultural lag and cultural resistance then describe
the forces operating within communities of mathematicians
that prompts them to continue with previously tried methods
and current symbol usage. Selection then comes into play
when a choice has to be made among many competing ways of
describing solutions to problems and the concepts and
symbols inQoived. Wilder later takes these forces as the
basis for twenty three laws governing the evolution of
mathematics (1981). More recently howgver, P. Kitcher
(1983) has given a view of the nature of mathematics that
does not argue for its absoluteness, that accounts for the
role of the human agent in its formulation, and that explains
the growth of m&thematics through a series of rational

changes. It is to these views that we now turhn.

(ii) Kitcher rejects the view that mathematical knowledge
is a priori knowledge and starts with the thesis that
mathematics is descriptive of the structure of the physical
world that we perceive through our senses. He begins by
claiming that children learn the meaning of the terms set,
number, addition, and the like, by initially engaging in the
activities of collecting, segregating objects and so on.
Rather than seeing this as a way of acquiring some knowledge

of abstract objects, he sees the simple arithmetical truths

76.
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as true in virtue of these operations:

«.... we might consider arithmetic to be
true in virtue not of what we can do to
the world but rather of what the world

will let us do to it.
(Kitcher, 1983, p.108)

But if the only arithmetical truths are those that we
perform then how do we explain the apparent truth of the
proposition 1000 + 3000 = 4000 without having physically
performed some segregation and collection of objects?
Kitcher's answer is that mathematics is an "idealizing
theory". The truths of arithmetic are those ideal
operations performed by an ideal agent. The important
point is that one arrives at a conception of those ideal
operations only through actual operations with actual
objects. It -is this reaction with the physical world then
upon which all of mathematics is derived, and in doing the
mathematics that we do we are describing a possible state

<

of affairs of the world:

I propose that the view that
mathematics describes the structure of
reality should be articulated as the
claim that mathematics describes the
operational activity of an ideal
subject...- )
(ibid., p.111)

Such a view gives rise to questions concerning the
distinction between mathematics and science. If arithmetic
is the idealization.of manipulations of objects say, and the
theory of the laws of ideal gases is the idealization of the
properties of actual gases, why is arithmetic part of
mathematics and the theory of ideal gases part of physical

science? The key here is the role of the human agent.
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Arithmetic is the idealization of actions, such aé grouping
and matching, that human beings make. The theory of the
laws of ideal gases is an idealization of the way gases
react under certain conditions. Mathematics, as distinct
from science, is the idealization of the possible outcomes
that can occur when a human agent engages in the Operatiohs
of collecting, groﬁping, métching and so on, with the

physical environment.

While we have concentratéd the discussion on arith-
metic, in an analagous manner, Kitcher derives the basis of.
geometrical knowledge from the observations and manipul-
ations of shapes in the physical world. The idealization
of such possible manipulations leads to the propositions of

geometry.

Previously, in this chapter, it was noted that J.S.
Mill éttempted to lay the foundations of mathematics in the
empirical sciences and this brought much criticism from
philosophers like Frege the logicist. Kitcher, however,
re-examines Mill's work and, in fact, develops his programme
around the language of Mill's arithmetic. Primitive

notions such as one-operation, successor of an operation,

additions of operations and matchability are used to develop

the axioms of Mill's arithmetic, and the results we use in
our familiar idealized arithmetic of the natural numbers.
In like manner, Kitcher develops the axioms of the real

numbers and the axioms of geometry.

To summarize, Kitcher's main argument, backed by his

developed programme of Mill's arithmetic, claims that,
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initially, our mathematical knowledge is obtained by
physically manipulating the world and describing the
manipulations. It is because of this that he describes
mathematics as being empirically based. Mathematics is not
about mind-independent objects, nor is it about constructions
in the mind. Mathematics is an idealization, It is about

the possibilities of ideal manipulations by ideal agents.

But more is needed to explain the development of
mathematics. If there is nothing else to the story then why
didn't the ancient Greeks know the mathematics we know today?
Presumably we both start with the same crude manipulations.
There is evidently more to the story and something which
Kitche; takes up. He takes our current knowledge to be
explained by the transmission of knowledge from one society
to its successor and from the society to the individual, and

as for the manipulation and observation of physical objects,

he says:

Since I claim that the knowledge of the

mathematical tradition is grounded in

the experiences of those who initiated

the tradition, what I have offered can

best be regarded as an attempt to explain

how the arithmetical knowledge of our

remote ancestors might have been obtained.’

(ibid., p.119)

Then, in order to develop a theory that explains how
mathematics has evolved from these crude beginnings, he
compares changes in mathematics to theories of change in
science by examining recent philosophies of science. By
looking at particular episodes in the history of mathematics,
he then illustrates his theory of mathematical change and

shows how mathematics has evolved through a series of
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rational transitions. In order to follow his argument

then, we first look at recent theories of scientific change.

(iii) A simplified empiricist view of science is that it
involves a set of observations and a set of theoretical

- statements inferred from these observations. As science
ae§eldps, ﬁhe set of observatiéns accumulates aﬁd the
theoretical statements are modified to account for the new
observations. The presumption is that without new
observations science would be static. However, this
simplified view of science is one that is rejected in

recent philosophies and is rejected by Kitcher.

The work of K. Popper and T. Kuhn has served as a
springboard for a new way of looking at science. Popper's‘

first views were published in 1934 in his' book The Logic of

Scientific Discovery (English edition 1959). He claims

that the difficulties of inductive logic, of moving from
the particular to the general, are insurmountable. No
amount of observations can justify one's belief in
theoretical statements. Popper's rejection of induction
thus led him to reject the verification of theories.
Theories of the world are. not discovered in the sense that
observations of singular events lead to 'them, nor are they
verified in the sense that once put they can be shown to be-
true by observing singular events, For Popper hypotheses

can only be "corroborated":

Instead of discussing the: 'probability’
of a hypothesis we should try to assess
what tests, what trials, it has withstood;
that is, we should try to assess how far
it has been able to prove its fitness to
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survive by standing up to tests. In
brief, we should try to assess how far

it has been 'corroborated'.
(Popper, 1974, p.251)
The power of the hypotheses is assessed by their ability to
account for previous observations and their ability to stand

up to tests of rejection.

Kuhn's work makes a distinction between what he terms
"normal" science and revolutionary elements in the develop-

ment of science. He .says:

... 'normal science' means research. firmly

based upon one or more past scientific

achievements, achievements that some

particular scientific community

acknowledges for a time as supplying

the foundations for its further

practice.

(Kuhn, 1962, p.1l0)

Revolutionary elements, such as the transition from
Aristotle's view of cosmology to Copernican cosmology, and
the transition from Newtonian physics to the theory of
relativity, occur as anomalies arise within the practice of
"normal" science. Questions need to be asked in different
ways and quite often a new language and accepted procedures
of reasoning are needed to answer the questions. This
often involves a new outlook on the nature of science.
Revolutionary methods gain their approval by the scientific
community accepting their ability to explain hitherto
unexplained problems. But the introduction of a new
language and reasoning poses new problems that become part
of "normal” science. New observations are made and new
hypotheses are considered. Scientific change is thus
thought of as occurring through additional observations and

also throﬁgh internal stresses caused by the .new language

and reasoning. For Kitcher these same procedures-can
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account for changes in mathematics.

An anticipated objection to Kitcher's view is that it
appears that mathematical theories have a higher rate of
survival than scientific theories. - The reply is that this
is due to the nature of the different theories. In
hypothesizing, the scientist is attempting to arrive at the
correct theory of explanation. The mathematician is- offering

an idealization of what is possible in the physical world.

Kitcher contends that our basic mathematical knowledge
is derived perceptually and then grows through our attempts
to idealize the possibilities of the physical world. So
mathematics consists of idealized theories of ways‘in-which
we can operate on the world. This way of idealizing becomes
what Kitcher calls a "mathematical practice" and consists of

five components. These components are identified as:

- a language component,
- a set of metamathematical views,

set of accepted questions,

s I © B S
|
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- a set of accepted reasonings,

S - a set of accepted statements.

He introduces the symbol <L,M,Q,R,S> to stand for an

arbitrary mathematical practice and says:

The problem of accounting for the growth
of mathematical knowledge becomes that of
understanding what makes a transition
from a practice <L,M,Q,R,S> to an
immediately succeeding practice
<L.',M',Q',R',S'> a rational transition.
(Kitcher, 1983, p.l64)

Consider now the five components in turn.



(a) The language component:, There are at least three ways

in which rational change occurs in the language component of
a mathematical practice. Firstly, there are simple
notational changes in symbols, where new symbols are
introduced to stand for accepted concepts. Secondly, there
are examples of disputes arising in mathematics due to
different meanings being attached to the same word or symbol.
The resolution of such disputes involves a change in the
language so that the different concepts under discussion can
be referred to by distinct words and symbols. Thirdly, in
attempting to think about problems in a different way, one. is
forced to introduce symbols that appear to have no referents.
In Cantor's work on number theory and transfinite numbers, ‘
for example, he introduced the symbol "w" to stand for the
first number immediately following the series 1,2,3,....

And i = 4f:1 is introduced to stand for the solution to the

eqguation x2 + 1=0.

(b) The metamathematical views. The metamathematics of a
practice includes the standards of proof, the ;cope of
mathematics and the relative value of particular types of
inquiry. These views of a practice become most evident

when other transitions suggest a revolution is under way.

(c) The accepted guestions. The set of accepted questions

are formulated in the language of the practice and are
regarded as unanswered and worth answering. They may be
instrumentally worthwhile answering because their solution

will aid the solution of other problems in mathematics and

83.
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science. Alternatively, they may not appear to have
immediate instrumental value but do have clear cut answers.
An example would be the question "Are there only a finite

number of twin primes?"

\

(d) The accepted reasonings. The set of accepted

reasonings is the sequence of statements that the
mathematicians put forward in support of the statements they
assert. These accepted reasonings are ultimately connected

to the metamathematical views of the practice.

(e) The accepted statements. The set of accepﬁed state-

ments is the set of sentences, formulated in the mathematical
language of the practice, to which all conversant readers
would assent. The types of changes that could occur here
involve a reformulation of statements in line with changes in
the language. For example; before the division of numbers
into real and complex, mathematicians would have assented to
the statement "There is no number Qhose square is -1." Now
mathematicians deny that statement. The accepted reformul-
ation is "There is no real number whose square is -1." The

thing to which the word "number" refers has changed.

To summarize Kitcher's view then, a rational chande in
one of the components of a mathematical practice is intimate-
ly tied to the current view of the other components and more
often than not involves changes in them too. In particular,
for a certain mathematical practice, a method is proposed
for answering certain questions. This introduces a new

language which advances new statements and threatens existing
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’ statements. It may also advance new ways of reésoning.
However, the proposal for change is accepted because of its
power in answering important questions, and the practice is
extended to encompass it. While the search for new

methods of rigorous reasoning begins, involving changes in
the language, prior metamathematical views.may be overthrown.
The resultant product is a mathematical practice which ﬁay
appear completely different from that which initiated the

process. A rational transition has occurred.

Before examining a particular casé'in the history of
mathematics, we conclude this section by matching what we
have said about rational mathematical change to the question
0of how people have the mathematical knowledge that they do.
Given the orthodox philosophical position that knowledge is
warranted true belief, Kitcher's view is that most cases of
mathematical belief are warranted in virtue of them having
been explicitly taught by a community authority, or by
virtue of having derived them by types of inference that
have been explicitly taught. Kitcher then envisages a
chain of communities beginning with a community whose
beliefs are perceptually warranted. He thus sees the

growth of mathematical knowledge as a process by which:

.+++ & scattered set of beliefs about
manipulations of physical objects, gives
rise to a succession of multi-faceted
practices through rational transitions,
leading ultimately to the mathematics of
today.

(ibid., p.226)

Thus, to judge the individual'!s claim to having mathematical

knowledge is to judge the community authority's claim that
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the mathematical beliefs it has are warranted. For Kitcher
they are warranted because they have been derived initially
from beliefs that are perceptually warranted; that is,

from physical manipulations of the environment; and via

transitions that are rational.

A Case Study: Analysis from 1650 to 1900

Present day mathematical analysis originated from the
calculus of the 17th century. The development of calculus
independently by Newton and Leibniz introduced a new
language into mathematics, accompanied by new reasonings,
new statements and new questions. But their work was
accepted for it gave answers to questions that mathematicians
had been asking for years before that. These questions
involved such things as finding the tangents to curves,
computing areas, and finding the maxima and minima of
functions. The techniques of differentiation and
integration, developed by Newton and Leibniz, led to
algorithms for the solution of many of these problems. The
power to answer questions was great enough for the new -
language and reasonings to be accepted. what followed cén
be viewed as a series of transitions, as the components of
the mathematical practice of the time changed to encompass
this new way of successfully dealing with previously

unsolved problems.

Newton introduced the notions of fluent and fluxion.
A fluent is any quantity which is in the process of

changing, and the fluxion is its rate of change. The
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problem becomes one of determining the fluxion given the
fluent (differentiation), and determining the fluent given

the fluxion (integration).

As an example, imagine a particle moving along the
curve y = x3 where y denotes the position of the particle at
time x. Assume that through a small interval of time,‘ e,
the velocity remains constant. In this time y increases to

y + v and x increases to x + x 8. Then

y +y0 (x + iEQ)B
x3+fr9=(x+}'<9)3
3

=(x+;'<9)3—x
Y ]

3x%%0 + %202 + 6°

= 3x%x% + 3x%°0 + 62

= 3x2>'< as we can omit terms containing
@ since they are infinitesimally
small.
¢
X = 3x2
X

This says the velocity at time x is 3x2. But questions remain
concerning the reasonings behind the method. Why can we
assume that fluxions remain constant through a small interwval
of time? Why are we allowed to neglect some terms? Either
e equals zero or it does not. If it does then we cannot
divide by it, and if it doesn't then the terms 3xx%0 and @2

are not zero and cannot be omitted.

. Leibniz's work developed in a similar way, except that

he did not adopt a kinematic approach and his symbolism was
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conclusion.

integration were developed and many important results were

found.

Ify =

X
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3x".
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But he effectively arrived at the same
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Newton and Leibniz the techniques of differentiation and

Leibniz and his followers found that they could

compute the sums of- infinite series.
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In attempting to expléin the anomaly, Euler writing some
forty years after Leibniz, suggests that the ekpansion
T—%—; =1-x+x?-x>+ ... holds only when x £ 1, if x

is positive.

The work of Newton and his successors followed a
different path to Leibniz's. In 1734 Berkeley wrote a
scathing criticism of Newton's work demanding more rigour
(see Boyer, 1959, pp.224-9). He claimed that while the
methods were successful, no explanation for their success
had been given. This call was answered by a large number
of writings, providing a geometrical interpretation of the
algebraic techniques employed. It was reasonable for
Newton's successors to do so, given their metamathematical
views of the time and the criticisms levelled against their
work. But Berkeley's criticisms on the foundations of
Newton's work had long term consequences. For Leibniz's
successors on the continent the criticisms took second place
to the algebraic interpretation of the calculus and its

power in answering questions. And, as Kitcher puts it:

Priding itself on its rigor and its
maintenance of a proper geometrical
approach to mathematics, the British
mathematical community fell further
and further behind.

(Kitcher, 1983, p.240)

In the 1820s Cauchy introduced the algebraic concept

of a limit to tackle the problems of the calculus.

When the values successively -
attributed to the same variable
approach indefinitely a fixed value,
eventually differing from it by as
little as one could wish, that fixed
value is called the limit of all
others. ‘
(Cauchy, translated by Birkhoff, 1973,
p.2)
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An infinitesimal was then defined to be a variable that has
zero as its limit. The notions of continuous functions,
derivatives and convergent and divergent series, which had
been used extensively by Euler and his contemporaries, could
now be given a more rigorous definition in terms of limits.
The important point is that Cauchy was not concerned about
rigour for rigour's sake but for the use of convergent
series in answéring questidns that were considered important
in the mathematical practice of the day. Such questions
centred around the work done on vibrating strings and
Fourier's work on representing some functiops as the sum of
trigonometric functions. The problém then became one of
whether any function could be given a‘trigonometric series
representation. So, rather than proceeding as a response
to a call for securer foundations to mathematics, as

Kitcher says:

«ee+« I think that examination of this
episode will underscore my thesis that
foundational work is not usually
undertaken by mathematicians because
of apriorist epistemological ideas,
but because of mathematical needs.
(Kitcher, 1983, p.246)

The power of Cauéhy's work in answering important
questions in the mathematical practice of the time led to a
flurry of writing. But.the original work itself provided
inconsistencies both in language and results. Cauchy's
use of infinitesimals as constants led to problems and his
solution to the Fourier problem was not complete. Abel,
for example, in 1826 showed that there existed an infinite
series of continuous functions that was not everywhefe

continuous.
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Sin x - = Sin 2x + % Sin 3x - ...

NI

is not continuous at each value of x = (2m + l)TT.

It was left to Weierstrass to introduce a formulation
of the limit that banished the troublesome talk of
infinitesimals. .. Cauchy's criterion for convergence was

formulated in Weierstrass's terminology as:

o
E u, is convergent if and only if
i=1
for all £ > O there is an N such
N+ r

that, for all r > O, E | < g

i=N

The 1860s and 1870s saw a proliferation of theorems in
analysis by Weierstrass and his students and Weierstrass's
formulation is now common to all elementary textbooks on

analysis.

Cauchy's work also led to Dedekind's analysis of the
continuity of the real numbers, providing a transition from '
the geometrical interpretation of considering real numbers
as spread out on a-straight line, to a purely algebraic one.
Dedekind introduced the notion of a "cut", which is a
separation of the real numbers into two classes A and B such
that for an X and y, if x belongs to A and y belongs to B
then x { vy. A cut, designated by (A,B), is uniquely

determined by a real number.

This new language allowed the derivation of familiar

theorems about real numbers as well as some limit existence
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theorems that Caunchy had failed to prove, such as the result
that a monotonically increasing sequence, bounded above, is
convergent. Furthermore, Dedekind's work itself raised
guestions concerning the existence of sets which were taken

up by Cantor and others at the end of the 19th century.

For Kitcher, the transition - from one mathematical
practice to another does not follow from a response to
epistemological aims, but to the needs of mathematical
research. The calculus of Newton and Leibniz was warranted
because it was a procedure that answered important questions
in the mathematical practice of the time. Successive
investigations were prompted by the use to which the
calculus could be put. The new language and accepted
reasonings satisfied the needs of research while spawning
new questions and new problems of rigour. Axioms and
definitions were accepted because they systematized previously
accepted problem solutions, and studies in the foundations
of mathematics were motivated by the pragmatic concerns of

working mathematicians.

To conclgde then, this case study has illustrated
Kitcher's theory by noting some of the rational transitions
that occurred to make the mathematical practice of 1900
different from the one of 1650. The next chapter considers
the implications that this theory about the nétﬁre and
evolution of mathematics might have for the school
curriculum. Common justifications given for teaching
mathematics need to be re-assessed in light of the views

developed in Chapter II on the value of knowledge and the



views developed in this chapter on the nature of mathematics.
The role that mathematics plays in allowing people to
develop a world view and be in the best position to determine

their own ends must be articulated.



CHAPTER 1V

CURRICULUM CONSIDERATIONS AND CONCLUSIONS

In Chapter II, M.A.B. Degenhardt's argument, which
contends that a curriculum ought to be chosen based on a
particular notion of the worthwhileness of knowledge, was
deveIOped. The idea that some knowledge is valuable in
educating human beings into a éultural inheritance that puts
them in the best position to work out what to do with their
lives, involves developing a "world view" by studying the

traditional evolved bodies of knowledge.

In Chapter III, the nature of mathematical knowledge in
particular was considered, and the chapter concluded with P.
Kitcher's argument that mathematics began as crude manipul-
ations by man and his attempts to describe those manipul-

ations. The a priori nature of mathematics was rejected
and replaced by Kitcher's "defensible empiricism".
Mathematics, it was argued, is an idealization, about the
possibilities of ideal manipulations by ideal agents. A
mathematical practice consists of a lanquage component, a
metamathematical view component, and sets of accepted
qﬁestions, reasonings and statements. Such a practice is
passed on from one community to another but is subject to
rational transitions. These transitions occur in response
to the practice's power in answering important questions of
the day and in the subsequent work in making rigorous other

components within the practice.

In this chapter some implications of the conclusions

reached so far are considered. The iﬁportant point is
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that in most schools mathematics forms part of the
compulsory curriculum for a great deal of time, and we
first need to look at the justifications given for teaching
so much mathematics to so many students. The justific-
ations first considered, and rejected, are the claims that
so much mathematics ought to be taught to all students
based on its usefulness, its intrinsic worthwhileness, and
its power in developing the mind. It is then argued that
mathematics, by its ver& nature and its cultural
significances, can contribute to human beings developing a
world view, and thereby put them in a better position to
determiﬁe their own ends. Finally, some implications that
such a justification for teaching mathematics might have on

the school curriculum are considered.

Common Justifications Given for Teaching Mathematics

(1) One justification given for teaching mathematics is
that mathematics is useful. In order to examine this
argument it is necessary to look at the various ways in

which mathematics might be claimed to be useful.

(a) It might be claimed, for instance, that studying
algebra in grade 9 is useful because it will be used in
studying calculus in grade 1l1l. 0f course the objection is
that no justification is given for studying calculus in
grade 11. Ultimately, the justification, in terms of

usefulness, must lie outside the subject.

(b) A second claim might be that mathematics ought
to be studied because it is useful in other subjects.

Technical subjects apply the rules of measurement and ratio,
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for example. The graphical representation of data and the
‘determination of statistics, such as mean, median and mode,
are useful in the social sciences.’ And calculus is used

in calculating rates of change in physics. In Chapter III
we saw that a mathematical practice evolved from crude
manipulations of objects and as a response to questions

that were thought to be important in some way. The view
that matﬂematics is the language describing-;he possibilities
of time and space and the view that science is about forming
and testing hypotheses about the nature of time and space

clearly implies that mathematics is useful to scientists,

Two questions remain however. Firstly, can we
establish that science, or any other subject where
mathematics is useful, is itself worthwhile? Secondly, is
mathematics necessary for acquiring knowledge in that
subject? If it can be shown that the subject is worthwhile,
but that mathematics is not necessary for acquiring
knowledge -in that subject, then there is no justification
here for making mathematics compulsory. The claim that
mathematics ought to be studied on.the grounds that it is
useful in other subjects simply forces us to look at the
value of those other subjects, and the necessity of
mathematics in acquiring knowledge in those subjects. It
is not in itself, however, a justification for teaching so

much mathematics to all students.

(c) A third claim might be that mathematics is useful
for people in their employment. It is true that many jobs
require a lot of mathematics and perhaps all jobs require

some mathematics. Highly skilled careers in technology
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quite obviously use a lot of mathematics, since technology
has developed from man's manipulation of the environment,
and the language component of a mathematical practice
describes those manipulations. But while some mathematical
knowledge may be necessary for some jobs, the compulsion in
studying mathematics would demand that the mathematics
taught is necessary for all students in whatever job they
secured. It is not difficult to think of many positions
where very little mathematics is used. So, in attempting
to justify mathematics for all on the grounds that it will
be used by all in future occupations, we have arrived at a
minimal amount of knowledge that warrants very little time
at all on the curriculum, certainly not the current amount

of time spent in most schools.

Another objection. to be considered is that if the
mathematics required for certain jobs is quite specific, and
if it is valued only for its usefulness in those jobs, then
while it ought to be a part of job training it need not
occur at school. In fact it can be arqued that such
mathematical knowledge is better taught "on the job" and by
practitioners in the field, where the user can see
immediately the use to which the mathematical knowledge can
be put. For any given class of mathematics students at
school, there is a large range of occupations that those
students might end up in. It is impractical to present to
all students all the specific mathgmatics that they might

use in such a large occupational range.

(d) A fourth claim of usefulness might be that

mathematics is useful for everyday living. That is to say,
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that in the daily activities that one concerns oneself with,\
there is some mathematics to be used. And this is clearly
so. The simple manipulation of objects and the communic-
ation of ideas requires us to use the language that has
evolved to describe those operations. This includes the
basic operations of counting, adding, subtracting, multi-
plying and dividing, and the ability to read and understand -
the presentation of information from tables and graphs.

Such mathematical knowledge is worthwhile on the grounds that
Qithout it one would not be in the best position to
participate in the community as we know it. The ability to
handle simple financial transactioﬁs, for example, would be
regarded as essential for all members of the community, and
the ability to understand economic issues on a wider scale
when deciding how to vote at elections would be regarded as
highly desirable. It -seems reasonable to expect that schools
ought to be about the business of compulsorily introducing‘
students to this language. But the question is whether this
requires the current amount of time spent on mathematics.
Such mathematical knowledge that is useful for everyday
living is acquired by most people well before the end of

compulsory education.

So while accepting that some maéhematics is useful to
all people and that some people use a lot of mathematics, we
reject the claim that the justification for teaching
mathematics for the current length of time to all students is

based on the usefulness of mathematics.

(ii) A second justification given for teaching mathematics
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to all is that it is intrinsically worthwhile; that

mathematical knowledge is valuable for its own sake.

If intrinsic worthwhi;eness is simply a matter of
individual psychology, whereby the learner claims to like
doing mathematics aﬁd that's all, then there can be no claim
here for -teaching mathematics to- everyone. Someone- who
does not like doing mathematics can equélly claim that it is
not intrinsically worthwhile and that there is no justific-
ation in studying it. The justification for teaching
mathematics to all, based on its intrinsic’) worthwhileness,
must centre on the nature of mathematics and what . makes it
an intrinsic worthwhile activity irrespective of any

preference of the learner.

But then is it the knowledge of the accepted mathemat-
ical statements of the practice couched in the practice's
language that is valued? For instance, is simply knowing
that "4 + 2 = 6" or that

2
(lnx-% +C

j—x ln x dx

~f X

for some constant C"
intrinsically worthwhile? Quite clearly many mathematical
statements would not be valuable without an understanding of
the reasoning behind the statements and an ability to arrive
at the mathematical statements by using the practice's
reasonings. But the gquestion remains as to why this is .
intrinsically worthwhile and justifies the teaching of

mathematics to all.

In Chapter II, arguments for basing the school

curriculum on the intrinsic worthwhileness of some subjects
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were considered. G.H. Bantock (1963) argued that some
subjects are more valuable than others because their
understanding involves a higher degree of intellectual
functioning. R.S. Peters (1966 and (ed.) 1973) argued

that some subjects are intrinsically worthwhile because they
are concerned with truth and rationality. But these
positions were found to have serious objections as .they
stand. If we claim that mathematics ought to be on the
school curriculum for all students then we must present an
argument based on the educational value of mathematics.

Some activities may be intrinsically worthwhile but form no
part of the school curriculum, while other activities, such
as writing and using calculators, may be deemed to be highly
worthwhile educationally while possessing little or no
intrinsic worthwhileness. So the claim that pursuing and
possessing mathematical knowledge are intrinsically worth-
while activities is rejected as a justification for teaching

mathematics to all.

(iii) A third justification given for teaching mathematics

to all is that it develops the mind or promotes intellectual
development. The value of mathematical knowledge lies
outside of the usefulness to which the knowledge can be put
and the intrinsic worthwhileness of simply possessing or
pursuing the knowledge. If P. Hirst's thesis is correct,

and there are distinct forms of knowledge, then it may be
argued that there are distinct kinds of developed minds. A
mind can be highly developed in the sphere of moral knowledge,

for example, but quite undeveloped in the field of the
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physical sciences. If there are logically distinct forms

of knowledge, and if a developed mind is defined to be a

mind developed in any one or more of those distinct forms,
then it is not necessary for all students to study
mathematics to develop their minds. To justify mathematics
learning for all, on the grounds that it does develop the
mind, implies that one values a developed mind and that
mathematical learning is necessary for the mind to develop.
It is appropriate, therefore, to consider the arguments which
contend that mathematics is necessary for the mind to

develop.

(a) It may be argued, for instance, that the more
mathematical sentences in the mathematical practice that are
accumulated in the mind, the more developed the mind is.

But it is difficult to see how we can place value on a mind
which simply possesses these statements and allows one to
write them out on demand, as it were. We would hold, at
least, that one should arrive at the sentences through
accepted reasonings and see how they are used to solve the
accepted questions of the mathematical practice. But even
so, we would still be left with the problem of explaining

why we value such a mind with this ability.

(b) If we argue that mathematics is needed to develop
the mind in general, then we are saying that mathematical
knowledge is somehow needed in order that development
proceeds in other areas. This sort of argument would
contend that while there may be distinct forms of knowledge
that can be developed in the mind independently, mathematics

is granted a higher status, in that all other forms are
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dependent upon it. Arguments granting this higher status

. to mathematics might centre around the logical processes
involved in mathematics. But as we saw in Chapter III, a
mathematical practice is not just logic, even though its
reasonings may well apply logical principles. Mathematics
is an idealization of the possibilities existing within

time and space and it attempts to form generalizations by
describing these possibilities in the language of the -
practice. It is this very generalization, however, that
makes it appear that mathematics is required for all spheres
of intellectual development. But the sorts of reasonings
that are required in other areas of intellectual development
can be acquired within that subject and with no prior |

knowledge of the mathematical practice of the‘day.

(c) Instead of arguing that mathematical knowledge is
necessary for developing the mind, we migh£ simply argue
that it is helpful in other areas of intellectual develop-
ment;_ This is to suggest that development in mathematics
might somehow be transferred to other areas of development.
The attractiveness of this argument stems from a view of
mathematics as being about problem éolving in the abstract,
where training in mathematics is regarded as acquiringA
problem solving techniques which can be transferred to other
disciplines. There are, however, objections to this

argument.

Firstly mathematics is about something. It is not
problem solving in the abstract. It is about the possibil-
ities that exist in time and space and it is about learning

a particular language of mathematics that describes those
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possibilities. Secondly, there is no conclusive
psychological evidence for the transfer of learning. (See,
for example, the earlier paper by R.M. Gagné in H.F.
Clarizio et al. (eds.), 1981, pp.l117-126, and papers by J.
Baron, J.R. Hayes and D. Meichenbaum in S.F. Chipman et al.
(eds.), 1985, pp.365-426.) It has been easy to show that
some people solve problems more easily than do others, but’
it has not been easy to show the transference of problem
solving. Deliberate attempts "to teach students to think"
have not been successful. Certainly there is no clear
evidence that mathematics training is necessary for develop-

ment in other intellectual areas.

Thirdly, even if it is true that there is some transfer
between different disciplines, the task should be to
establish what sort of a developed mind one hopes to promote,
and then to teach specifically for it. If mathematics is
to be valued for its role in intellectual development then
the sorts of reasons given could range from the view that
mathematical knowledge is necessary for any kind of develop-
ment to proceed, to the view that a mind developed ip
mathematics alone is sufficient to claim intellectuai develop-
ment. The psychological evidence, and P. Hirst's thesis on
forms of knowledge, suggests that mathematical knowledge is
not necessary for development in other»areaS'and we have not
yet established in what sense having mathematical knowledge

.contributes to the promotion of a developed mind.

So the claim that mathematics develops the mind or
promotes intellectual development is also rejected as a

justification for teaching mathematics to all. In the next
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section we focus on arguments based on the cultural
significances of mathematics. It is shown that these
arguments are warranted given the views devéloped so far on
the value of knowleage and the nature of mathematical

practices.

The qutural Importance of Mathematics

So far in this chapter we have attempted to give some
justification for teaching a lot of mathematics to all
students and considered arguments in light of our views on
the nature of mathematics. Mathematics is an evoIving body
of knowledge which, at any particular time, constitutes a
mathematical practice, consisting of a set of accepted
statements in a mathematical language. These statements are
arrived at by certain accepted reasonings. A mathematical
practice also has important questions that may be unanswered
and certain metamathematical views that illustrate the scope
of mathematics and the nature of particular types of
mathematical inquiry. So far our claims for jﬁstification
have centred on only three of the components of a ﬁathematical
practice. We have considered the use to which étatements can
Ibe put, the intrinsic worth of possessing statements in the
lanéuage of the practice, and the value that the statements,
the language and the reasonings of the practice have in
developing the mind. Such justifications were found wanting.
The fourth kind of justification that is argued for here
considers all five components of a mathematical practice, and
shows how mathematics teaching can be justified from the point

of view of the cultural importance of mathematics.
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In order to do that, it is necessary, firstly, to
clarify what is meant by the term - "culture". The word
has been used in many different contexts, sometimes
synonomous with the word "society" as in "Australian
culture"”, or sometimes meaning one refined in tastes and
manners as in "a cultured gentleman". The word is used
here to mean that, at any particular time, a given society
possesses a "culture” which is‘a'collection_of customs
rituals and beliefs, ahd different languages; spoken,
written and symbolized in different ways; that allow
communication of ideas between members of the society. It
is argued that mathematics has been culturally important in
that it has contributed to the way individuals have inter-
preted the world by influencing their beliefs, their problem
solving techniques and the language they have used to

communicate ideas.

(i) Firstly, we could argue that mathematics is itself one
of many great cultural achievements and not to be aware of
these achievements is not to have an understanding of the
culture. But this in itself is not enough for it doesn't
take into-account our view of the nature of mathematics.
The formalist, and his view that mathematics is simply the
formal manipulation of symbols; the intuitionist, and his
view that mathematics is the manipulation of symbols fogether
with mental constructions; and the logicist, who regards
mathematics as one giant tautology; all could look at the
mathematics we have today and claim it as a great cultural
achievement. We have argued, though, for the’évolution of

mathematics through rational transitions and the development
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of a language and accepted reasonings that answered important
guestions within the culture. The mathematical practice
also had with it metamathematical views on the scope of
mathematics. To regard mathematics simply as an impressive
cultural achievement in its own right is not to understand
how mathematics has influenced the evolution of other aspects
of the culture, and how the problems considered important
within a culture have influenced the evolution of mathematics.
Advances made in mathematics are importantly linked to

[}

advances made in other parts of the culture.

(ii) So the second point to be made is that to fully under-
stand how &1 culture evolved one must be able to understand
how the evolution of mathematics has been a part of that wider
cultural evolution. To justify the place of mathematics on
the curriculum by this argument would have radical
consequences for the content of mathematics courses. Rather
than simply presenting a language of mathematics and a set of
statements, one would have to present, from an historical
perspective, an account of how individuals have influenced
aspects of the cul;ure by their work in mathematics. For
example, the study of projective geometry by Pascal and
Desargues in the early 1600s was influenced by painters'
attempts to construct an optical system of perspective.
Navigators then used this projective geometry to design new
map projections. And the writings of Descartes, Galileo and
Newton in a precise logical style, free from metaphor and
symbolism, influenced the prose style of many literary
scholars in the late 1600s and early 1700s. To come to
understand mathematics in this way is quite different from

"doing" the mathematics of the present day, which means using
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the language and reasonings of the current practice to answer
previously solved problems and arrive at already known
statements. It is one thing to be able to "do" problems in
dynamics and another to be able to understand how the work of
Newton and Leibniz contributed greatly to our understanding

of the motion of moving objects.

(iii) The third point to be made is in relation to the meta-
mathematical views associated with a mathematical practice,
and the power and scope of mathematics as perceived within the
culture. At particular times in history, man has looked to
the current mathematical practice and seen within it a mode of
thinking that he has applied to other elements of the culture.
The success of mathematics in answering important gquestions in
the physical sciences, for instance, not only affected the
mathematical practice of the day, it also influenced man's
thinking in other areas such‘as the social sciences and art.
The economists of the 18th century, for example, sought to
"mathematize" economic theory. Thomas Malthus and David
Ricardo attempted to identify the factors that influenced
economic life and to discover natural laws of economy. When
this failed, economists concentrated on specific pheﬁomena,
where they applied their mathematical techniques to deduce
conclu;ions. The modern movement now has seen a massive
amount of symbolism used to describe and predict economic
behaviour. But in attempting to provide natural laws of
economy it can only be said that, so far, mathematics has
failed. The activities of man and the f;ctors that influence
his behaviour have not been neatly packaged and predicted with

certainty. But this very fact has also influenced
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mathematical activity. The idea of nature being unpredict-
able and composed of chance events has seen a rise in the

mathematical theories of probability and statistics.

The important point is that the mathematical practice
of the day becomes culturally important partly in light of
the metamathematical view associated with it. While its
scope may prove to be limited, and while it may not be
successful in its application to all other elements of the
culture, the fact that man has looked to the mathematical
mode of thinking as an answer to various problems, is in
itself significant. An understanding of the culture would
not be complete unless one had an understanding of the
various ways man has attempted to answer probléms'within the

culture.

The aim of this chapter was to consider the nature of
mathematics and to argue for its inclusion in the curriculum
because of its contribution in allowing human beings to
develop a world view and determine their own ends. It has
not been argued that there is a "mathematical view" of the
wérld but, rather, a view that takes in the achievements of
mathematics together with other human endeavours. If we
want students to develop a world view and be in the best
possible position to decide what to do with their lives, then
students ought to-be introduced to the combined achievements
of these endeavours. If one is to have a world view then it
would be deficient if it lacked knowledge of how mathematics
has influenced culture. But it would also be deficient if

it saw mathematics as an isolated element of the culture that

v
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develops in its own right without the influence of other

cultural forces.

CONCLUSIONS

The conclusions reached can be summarized as follows:

1. While the mathematical philosophies of formalism,
intuitionism and logicism all give some insight into the
activities of mathematicians, the nature of mathematics
is that it consists of idealized theories of ways we can
operate on the world and, at any particular time,
constitutes a mathematical practice with the following
five components:

(a) a ;anguage component,

(b) a set of metamathematical views,
(c) a set of accepted questions,

(d) a set of accepted reasonings,

(e) a set of accepted statements.

2. Mathematics has evolved from a set of beliefs about
simple manipulations of physical objects, and through a
series of rational transitions, to the mathematical

practice of today.

3. There is a language and a set of gccepted reasonings in
today's mathematical practice, that is useful to
everyone and that all students ought to be initiated into.
Thi$ includes basic numeracy, operations with numberé and
fractions, and the ability to read and interpret the
presentation of-data in tables, graphs and simple

formulae.
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4, All students should come to see mathematics not as a
fixed body of knowledge to be discovered, but one that
has evolved and continues to evolve as man attempts to

understand the nature of his environment.

5. All students should be initiated into the influence that
mathematics has had on our culture; firstly, by the
contribution it has already made to the solution of
problems posed within the culture; and secondly, by the

way man has sought to use it in other endeavours.

DISCUSSION

The implications that these conclusions might have for
the mathematics curriculum will be considered by looking at
the case of the calculus, whose evolution to analysis from
Newton's and Leibniz's initial work was shown in Chapter III.
There is a large proportion of students who do not reach the
stage of studying the calculus in their school years, and a
significant proportion who proceed well beyond it, but in
most countries students in the advanced levels are presented
with an introduction to the calculus in their final years of
schooling. The arguments considered below, however, could
be modified and applied to other topics within mathematics

syllabuses.

We saw that Newton's and Leibniz's work was motivated by
practical problems and was accepted. into the mathematical
practice of the day because it was successful in answering
important questions within the practice. The call for
rigorous reasoning then led to Cauchy's work on limits, and -

Weierstrass's work on the terminology led to a new language
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within the practice. Dedekind followed by an analysis of
the real numbers in algebraic form and Cantor was led to
investigate problems associated with sets. But in teaching
the calculus these topics are frequently presented in the
reverse order. Real numbers are studied early in the course,
some definitions of concepts are given, and theorems follow
concerning limits. A definition of the derivative is given
and some rules for finding derivatives are proved. Finally,
some questions are posed with the view 6f demonstrating the

power of the technique in solving practical problems.

In general, the presentation of the material within any
topic is designed with a view of passing on the mathematical
language component of the mathematical practice. Students
are graded into levels on their ability to use this
mathematical language and they pass on to the next set of
work by showing an understanding of the language and an
ability to use the associated reasonings within the practice.
It is not intended that students "rediscover" mathematics as
it were, by confronting them with the problems that Newton and
Leibniz were confronted with, and for them to derive success-
fully the new mathematical practice. 6nce the rigour of the
language has been arrived at the material is presented in the
most expedient way. From no experience at all of the
calculus students acquire, within weeks, a language that took
decades to evolve after Newton's and Leibniz's initial work.
What is missing, however, is a study of the forces behind the

transition to a new mathematical practice.

At this point we can consider a possible criticism. It

‘might be said that it is not practicable to design a



112.

curriculum in order that all students come to see the
cultural significances of mathematics. Many teachers might
argue that it is difficult enough to get some students to
understand the language and reasonings of the current
mathematical practicé and to apply them to simple problems,
without even beginning to think about explaining the develop-
ment of thé language and reasonings, the practical problems
£hat influenced their development_énd the effect they have.

had on other aspects of the culture.

In reply it is agreed that some students Qill be able to
grasp cultural significances easier than others. Just as
students differ in their abilities in the present subjects so
they will in any future courses. But the fact that students
do differ in their ability to understand concepts within the
current mathematical practice does not render impracticable
- any programme designed to explain the cultural significances
of mathematics. What is required is a programme that takes
into account these individual differences. ' What has to be
decided is the question of when to present an account of the
significance of mathematiéal knowledge and how to incorporate
it into the curriculum. Should it be part of each
mathematics lesson? Should it be combined with a study of
the value of other disciplines such as science or history?
Other factors to be considered concern the preparation of
teachers and how a study of the cultural significances of
mathematics is to be incorporated into their training. But
while such concerns indicate that much thought is needed to
develop a system whereby the cultural significances of

mathematics form an integral part of the mathematics
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curriculum, they do not, in themselves, show that the

programme is impracticable.

Now if we are to argue for a curriculum that should be
presented to all students then we must ask to what extent the
currént mathematics courses suffice. The higher level
syllabuses are a preparation ground for a community of
scholars to engage in pursuing significan£ questions in the
practice, but lower levels become “watered down" versions of
this type, by selecting a lanquage component that is
presumably easier to understand (though not for all students),
and with a view to showing the applicability of the language
to "real life" situations, which more often than not never

occur to students after they leave school. From a recent

publication:

Most teachers are:aware that when thes
subjects [mathematics and the sciences

are presented as theoretical and abstract
studies many students are put off, and
only those students with a special
inclination towards the subjects bother

to pursue them. This cannot be allowed
to continue, given the role that the
subjects play in the world. All students
should continue studies in mathematics and
science as long as possible. The range
of mathematical and scientific studies
should be extended to cover their
applications in daily life and the work-
place, and to cover also-a wider range of
student abilities.

(Education Department of Tasmania: 1986, p.1l2)

But as we have argued, the amount of mathematics that can be
seen to be useful to all students in daily life involves no
more than basic numeracy and the ability to read and interpret
presentations of data. Instead of "watered down" versions of

higher level syllabuses, all students should be presented with
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a studf of the cultural forces behind the development of
mathematics and its relationship to other areas of human
endeavour. For those with the interest and ability to
pursue a study of the language and reasonings of the
mathematical practice, then the current'syllabuses exist

with the specialist teachers in the field. Advances in
mathematics occur as a response to cultural fofces and much
new mathematics is supplied by scholars in many other fields,
such as the sciences, engineering and computer technology.

It ought to be the goal of mathematics educators firstly, to
ensure as far as possible, that all students come to an
understanding of the nature of mathematics, its evolution and
cultural significances; and secondly, to prepare, through
the expertise of specialist mathematics teachers, that
community of scholars which contains the practitioners of

‘the future in the new mathematical practice.
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