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ABSTRACT 

In basing the school curriculum on the view that some 

value can be attributed to knowledge most arguments have 

centred on either the contingent consequences of studying 

particular disciplines, the claim that knowledge can be 

differentiated into distinct forms and that all students 

should be introduced to them, or the claim that some 

knowledge can be valued for its own sake or for its power 

in developing the mind. In the case of mathematics 

common justifications given for teaching it are that it is 

useful, that it promotes intellectual development or that 

it is intrinsically worthwhile. 

/ But a recent view argues that some knowledge is 
I 

(i) 

valuable because it provides people with such an understand-

ing that allows them to reflect on questions concerning the 

nature and meaning of life and to be in a position to best 

determine what they will do with their lives. The role 

that mathematics plays here is investigated by an examin­

ation of the nature and foundations of mathematical 

knowledge. Dominant views on mathematics have nearly all 

stressed its a priori nature but they all have serious 

objections to them. By a comparison with vi·ews on the 

nature of scientific change a recent view on the nature of 

mathematical knowledge has been articulated that describes 

it to be in a process of evolution. At any particular 

time there exists a mathematical prac~ice which consists of 

a language component, a metamathematical view component, 



and sets of accepted reasonings, questions and statements. 

The mathematical pra~tice of today has evolved from a set 

of beliefs about simple manipulations of physical objects 

and consists of idealized ways of operating on the world. 

It is concluded that while all students should be 

introduced to the minimal mathematical language that is 

useful to everyone they should also come to understand 

the cultural significances of mathematics as it has 

evolved through.man's attempts to solve problems within 

his environment. This comes through a study of the 

influences that mathematics has had on different cultures 

and the way that man has looked to mathematics as 

providing a method of solution to problems within his 

culture. Unlike earlier justifications given for 

teaching mathematics the justification based on the 

cultural significances of mathematics centres on al~ fiY.e 

components of the mathematical practice of tae day and 

provides important considerations for the structure and 

presentation of mathematics courses in schools. 

\11/ 
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CHAPTER I 

THE PROBLEM OF THE PLACE OF MATHEMATICS ON THE CURRICULUM 

Nature of the Problem 

Whenever there is debate over the purposes of education 

and the value of particular educational activities, it becomes 

important to look at the traditional subject disciplines, like 

mathematics, and the claims made for their placement on the 

curriculum. For in the case of mathematics, the value 

judgements we make regarding such things as reforms to 

traditional curricula, the selection of mathematical topics, 

and the best methods of instruction, are all related to the 

fundamental concerns of why we value mathematical knowledge and 

the justification we can give for teaching mathematics in 

schools. 

In a discussion on the aims of teaching mathematics at a 

meeting of the British Association for the Advancement of 

Science, held at Glasgow in 1901, a Professor J. Perry said: 

The·etudy-of Mathematics_began because it was 
useful, continues because it is useful and is 
valuable to the world because of the useful­
ness of its results, while the mathematicians, 
who determine what the teacher will do, hold 
that the subject should be studied for its own 
sake. -

(Quoted in Griffiths and Howson, 1974, p. 17) 

1. 

Seventy years later there was no apparent change in the purposes 

of studying mathematics, as the Assistant Masters Association in 

England said: 

There is a twofold p.urpose in the study of 
mathematics. Firstly, and of prime importance, 
is the pursuit of the subject for its own worth • 
••• Secondly, ••• we must regard mathematics as 



a study of a service subject to science, 
technology, commerce, politics and 
economics, and even the arts. 
(Assistant Masters Association, 1973, p. 205) 

More recently, the justifications given for the teaching of 

mathematics have increased in number though great importance 

is still attached to the usefulness to which the knowledge can 

be put. As K. Selkirk says: 

The teaching.,of mathematics in'-sc-hools may 
be- justified ·in a number of ways. It is, 
for ~xample, part of the cultural background 
of our civilisation, and as such should rank 
with art, music, literature and similar 
aspects of our heritage. Again it is a 
logical and efficient system of deduction and 
this may well transfer-to problems outside 
the immediate area of the subject. The 
justification which appeals particularly to 
those whose primary interests lie outside the 
subject is_, however, that it is useful. At 
a time when the limitations of our pational 
and global resource~ are only too painfully 
apparent, this usefulness must be a major 
justification for the teaching of-the subject 
in schools and for its important share in the 
total.school curriculum. 

(In M. Cornelius (ed.) , 1982, p. -186) 

But these comments leave important problems unresolved. 

While we might agree, for example, that all students should be 

taught the mathematics that will be useful to them later on in 

life, we are still left with the problem of deciding what 

mathematics is useful to all people. It might be that the 

amount of mathematics that is useful to_all people is so 

minimal that it requires very little time at all on the 

curriculum. And if we are to argue that .students should be 

taught the mathematics that will be, useful to them in their 

future occupations then we -must confront the problem of 

predicting the future fo~ these students and deciding whether 

the mathematical knowledge they need is. ·not better taught "on 

the job" or in specific -vocational trainin9 institutions. 

2. 



The claim that mathematics should be studied for its own 

sake is unclear. Does it mean that people enjoy studying 
I 

mathematics and that, therefore, it is worthwhile pursuing_? 

If so, how does one answer the student who says that he 

doesn't enjoy studying it and that, therefore, it is not 

worthwhile? If one is to claim that, irrespective of any 

preference of the learner, mathematics is an intrinsically 

worthwhile activity and should be studied by all students, 
' 

thert we must decide on what makes it intrinsically worth-

while. Why can we claim that mathematical knowledge is 

valuable to all people without any reference to the use to 

which they can put that knowledge? 

If it is claimed that mathematics should be studied by 

all students because it develops the mind and promotes 

intellectual development, then it must be clearly established 

in what ways mathematical knowledge is neces.sary for 

intellectual development to proceed. Are all paths to 

intellectual development, for example, dependent upon a 

certain minimal training in mathematics? 

Finally, if mathematics is ranked with activities like 

art, music and literature, then why is this sufficient reason 

for requiring all students to study it at school? Why 

should schools be concerned about the cultural significances 

of mathematics? 

The answers to these questions are important because the 

reasons we give for teaching mathematics in schools have 

implications for how we teach it as well as for the selection 

of content of mathematics courses. But a critical examin-

3. 



ation of the claims for the justi£ication for teaching 

mathematics must· be based on views·about the value of 

knowledge in general, and the nature and value of mathemat-

.'ical -knowledge in particular. Is there a strict dichotomy 

·of knowledge into that which is val,uable becaus·e of its 

extrinsic usefulness, and that-which is valuable because of 

-its intrinsic worthwhileness? Are there other value 

categories of knowledge and, if so, what are they? What 

is the nature of mathematical kn~w1edge? Why should 

mathematics constitute part of the compulsory curriculum? 

It is the purpose of--this dissertation to investigate these 

questions from the philosophical perspective and to argue 

for the inclusion of mathematics in the curriculum, based 

on a view of the·nature.of man, the nature of mathematical 
. -

knowledge, ·and the.cultural significances of mathematics. 

Such a view, it is shown,- will have radical implications 

for the mathematics. curriculum. 

Outline of the Argument 

Chapter II is concerned with arguments for basing the 

curriculum on particular notions of the worthwhileness .of 

knowledge. It considers the claim.that some subjects are 

valuable because of their contingent consequences, the claim 

that the areas of knowledge represented by certain subjects 

are distinct forms of knowledge, and the claim that some 

subjects themselves possess intrinsic worthwhileness. 

~inding objections to .all these views, an argument is then 

considered which rejects the dichotomy of knowledge into 

that which is instrumentally useful-and that which is 

4. 



intrinsically worthwhile; but which gives value to some 

knowledge in assisting people to acquire a 11 world view" and 

make reasoned decisions about what they will do with their 

lives. 

s. 

Given that argument it is then reasonable to ask what 

it is about mathematics that allows it to serve that purpose. 

So Chapter III is related to questions concerning the nature 

and foundations of mathematics. The dominant 20th century 

views on the nature of mathematics, stemming from the· 

earlier works of philosophers such as Leibniz and Kant and 

even back earlier to Plato and Aristotle, are all found to 

have serious objections to t:nem. This is because, it is 

argued, they all regard mathematics as something that is 

unchanging with time. A recent thesis is presented which 

considers mathematics to be'in a process.of evolution and 

constituting a particular element of the culture at a 

particular time. This view then provides the basis for an 

examination of the cultural significances of mathematics. 

In Chapter IV some of the common justifications given 

for teaching mathematics are considered; namely, that it is 

useful, that it is intrinsically worthwhile, and that it 

promotes intellectual development. These justifications are · 

found to be inadequate. A justification based on the 

cultural significances of mathematics is then presented 

together with some important considerations for school 

mathematics courses. 



CHAPTER II 

THE VALUE OF KNOWLEDGE 

The aim of this chapter is to show the development of an 

argument which contends that we can choose a curriculum based 

on a particular notion of the worthwhileness of knowledge. 

In the first section the case for such an argument is 

established by considering firstly the views of those who 

maintain that such judgements of worthwhileness cannot or 

should not be made. Then there follows an examination of the 

utilitarian view that the promotion of happiness is the sole 

criterion under which man's actions, including curriculum 

choice, are to be judged worthwhile or not; and the 

pragmatist's view that sees knowledge as something that is 

acquired by man as he struggles to control his environment. 

Finally, in this section, consideration is given to the view 

that while educators should not make final judgements of 

worthwhileness.they should, in fact, design the curriculum in 

such a way that enables students to do so. 

All these arguments are found to have objections to them 

and so the fo·llowing section considers various attempts mad,e 

.by theorists to give some value to knowledge and which should 

serve as a basis for curriculum design. The first approach 

6. 

· considered is one which attributes worthwhileness to certain 

subjects based on the contingent consequences of those subjects; 

the contingent consequences being a list of specific objectives 

that, it is argued, students ought to attain. The second 

approach considers the justification for a curriculum based on . 



a view of knowledge that distinguishes distinct forms of 

knowledge. It is claimed that the curriculum should be 

designed so as to introduce students to these distinct forms. 

A third approach is to claim that some subjects possess 

intrinsic worthwhileness and so they are to be valued for 

their own sake. Some subjects might be deemed intrinsically 

worthwhile, for example, because they_ involve a higher degree 

of intellectual functioning or because they are concerned 

with truth and rationality. 

All the views are found to be inadequate as they stand 

and a~ argument is ~hen presented which contends that we are 

wrong to regard all knowledge as being either instrumentally 
. 

useful or as an end in itself. Some knowledge, it is argued, 

is valuable because it helps people determine their own ends 

by acquiring an understanding of things in a way that allows 

them to make reasoned decisions about what aims to set 

themselves and_ what th_ey are to do with their lives. 

Furthermore, the knowledge that does that, it is claimed, is 

found in the traditional disciplines as they have evolved 

across generations and cultures and with the contributions of 

many scholars in the various fields. 

This argument then provides the basis for a critical 

examination of the traditional subject disciplines, like 

mathematics, in ~rder to elucidate their nature and their 

influence within different societies and cultures, and to 

consider what implications this might have for the curriculum. 

7. 
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Establishing the Argument 

(i) There is a view of values, found in the works of 

philosophers like David Hume in the 18th century and A.J. Ayer 

in the 20th century, that considers all value judgements to be 

simply expressions of emotion. Hurne maintained that reason 

alone cannot decide moral questions but that most people have 

a "moral sentiment" that is used to make decisions. The 

moral sentiment is pleasant if it is a feeling-of approval and 

unpleasant if it is one of disapproval. Ayer's view, first 

argued in 1936, is that statements which cannot be verified by 

observation or analysis have no meaning. True statements are 

verifiable propositions and statements which are not verifiable 

are meaningless. Therefore, there is no way to decide between 

different value judgements. To say ''.stealing is wrong 11 is 

simply to express a feeling and the statement cannot be proven 

in any sense si~ce it contains no verifiable proposition. 

Ayer maintains that this same analysis holds for all types of 

value judgements. 

This emotivist view then, in relation to questions of 

curriculum, would maintain that there is no rational basis for 

choosing the elements of a curriculum. To say that something 

ought to be included in the curriculum is simply to express a 

feeling that others may or may not have. No reasons can be 

given, however, to justify such inclusion. 

But while it may be difficult to find reasons for including 

something in the curriculum, this is not to say that there are 

none and the emotivist's point of view does have certain flaws 

within it. 
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Firstly, it is possible for our emotions and qur value 

judgements not to coincide. One can say, "I feel like doing 

something but I know it is wrong", or "I don't want to do 

this but I know I ought to." While .some emotivists might 

simply claim that there is a conflict of emotions here, it 

would seem that such occasions ought not to arise if our value 

judgements were just a reflection of our emotions. Secondly, 

we recognize that our emotions can change over time, whereas 

the value judgements we are attempting to make are based upon 

premises that we believe are unchangeable. When we make the 

value judgement that to steal is wrong, we are implying that 

it always will be, even if in the future in a particular 

situation, under the influence of drugs say, we adopt the 

attitude that to steal is an acceptable form of behaviour. 

Thirdly, the emotivist's philosophy is based upon the judge­

ment of the truth of propositions in only two ways, by 

observations and analysis. But there is ·no reason to accept 

that these·- are the only ways of attesting to the truth of all 

propositions. The emotivist has not shown, for example, 

that there cannot be reasoning about values. 

(ii) The argument that one ought not to decide what goes 

into a curriculum is closely allied with the general area of 

what is called "child-centred" education. It is -based upon 

a particular view of the child and the right of the child to 

determine what he or she will study. 

J.J. Rousseau's thinking, for example, is reflected in 

his fictionalised account of the child Emile, published in ., 

1762, and involves· an analogy with nature. Rousseau argues 



that if left to ·himself Emile will become what nature 

intended him to become. No coercion nor prompting is 

needed, but only support. If nurtured correctly Emile will 

grow up to be physically and intellectually what was ideally 

intended for him at birth. To direct. his thinking in any 

.LU• 

way would be "to substitute authority for reason in his mind" 

and make him "the victim of other people's opinions" 

(Quoted in Boyd, 1956, p. 73). Late+, Friedrich Froebe! 

(see Lilley, (ed.) 1967) expanded Rousseau's views to 

develop a direct analogy with nature. The teachers in 

charge of their pupils should be like gardeners tending their 

plants, providing them with the best possible environment for 

growth and then allowing nature to follow its course. 

A.S. Neill was not only a writer but also a practitioner 

in the field o{ education and his school, Summer.hill,_ was 

meant to reflect his educational thought. His arguments 

centre around the freedom of the child to learn. It is the 

right of the child to choose what and when to study. This 

rigqt of the child outweighs any arguments claiming the 

worthwhileness of studying a particular subject at a 

particular time. If the child wishes to study the subject 

then he will decide when to do so. 

There are criticisms, however, which can be directed 

towards the views of writers such as Rousseau, Froebe! and 

Neill. Firstly, as for the analogy with growing plants, it 

is easy to see a flower or a plant grow with the minimum of 

guidance and to explain that it is nature's way. It is 

very easy, but misleading, to say the same should be so of 
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human beings, both physically and intellectually. The 

knowledge, attitudes and skills that can be acquired by a 

child in society do not occur naturally. The culture that 

man has created is very complex and deliberate guidance 

into it is required. To allow "nature's way" and not to 

attempt to direct his passage into society, is to leave the 

child open to detrimental influences. Secondly, if one 

does have reasoned views on what a child ought to know and 

knowledge of the capabilities of the child, and i"f one has 

reasoned views on how knowledge ought to be attained, then 

.one should attempt to make certain that such knowledge is 

acquired. To allow the child always to make decisions on 

what and when to study leaves the child open to a choice 

based upon a misunderstanding of the available possibilities. 

(iii) The premise of utilitarianism is that what matters 

most is a world in which everyone is happy·. Therefore, 

man's actions ought to be about minimizing pain and 

maximizing pleasure. This philosophy was developed in the 

1800s by Jeremy Bentham and John Stuart Mill and one recent 

educationalist, Robin Barrow, has based his educational 

thoughton the utilitarian premise: 

Education should seek to develop 
individuals in such a way that they are 
in a position to gain happiness for 
themselves, while contributing to the 
happiness of others, in a social 
setting that is designed to maintain and 
promote the happiness oe all so far as 
possible. 

(Barrow, 1976, p. 84) 

Barrow does not believe that an ideal state will be 

attained where everybody achieves maximum pleasure, as he 



points out in answering critics such as Macintyre (1964). 

What matters is that man ought to be striving for such a 

state of affairs and that when decisions have to be made 

they ought to be based on the utilitarian premise. 

Apart from the fact that the ideal state is not with 

us and may never be with us there are other difficulties 

with the utilitarian premise. Firstly, in claiming that 

pleasure should be distributed among all men, rather than a 

small number of men being supremely happy, the utilitarian 

'is claiming that he attaches importance to the principle of 

distributive justice. Barrow admits this, but in so doing 

he clearly values this principle too and not just the sum 

total of human happiness. 

Secondly, since utilitarians claim their premise to be 

true, and not just something to be arbitrarily -accepted'· 

they also commit themselves to valuing the truth as well as 

happiness. 

Some utilitarians also get into difficulties when they 

claim that some activities, such as studying science, are 

more valuable than others, such as playing darts, given that 

each activity promotes the same amount of pleasure. A 

person m'.3-y be drawn to pursue a -Certain activity.be.cause he 

feels it is important in some way. He-may feel as if 

pursuing a particular scientific project is important, for 

example, because it will help him solve problems that·he 

believes ought to be solved. Such problems may not even be 

understood by the majority of people and their solution may 

contribute nothing to the sum total of the happiness of 

12. 



society. So too a person may study philosophy because he 

believes it is helping him to answer questions that have 

concerned' him and that he feels he needs to answer. The 

time spent on such activities may give him little or no 

pleasure but he is still drawn to them. Some criterion, 

other than the utilitarian one, must be used to decide on 

the worth of these various activities, thus' contradicting 

the premise that maximizing pleasure is all that matters. 

The utilitarian premise is rejected then as the sole 

criterion for determining which subjects should constitute 

the curriculum. That is not to say that we do not value 

happiness, but that we do not accept that simply valuing 

happiness is enough· to select the content of the curriculum. 

We shall show the development of an argument which claims 

-some knowledge as being valuable for reasons other than 

simply promoting happiness. 

(iv) A wniter who has had a great impact upon educational 

practice in the 20th century is John Dewey. His pragmatic 

philosophy rejects the dichotomy between knowledge and 

experience. The pragmatist believes man's inte~ligence is 

a tool used by man to control his environment. To learn 

something significant about the wo~ld we must do more than 

operate logically upon what appear to be self-evident truths. 

We must transform the environment as a response to problems 

that need resolution. Thought does provide hypothetical 

ideas in response to the problems but these ideas are tested 

in action .• 



The process of learning from experience is thus an 

active process. The learner locates and defines a problem 

to be solved, collects pertinent data through observation 

and reasoning and decides on possible solutions before 

finally testing them. And for Dewey it is the quality of 

experience that is important. So in directing his comments 

to educators he says: 

It is his (the educator's] business to 
arrange for the kind of experiences 
which, while they do not repel the 
student, but rather engage his 
activities are, neverthele.ss, more than 
immediately enjoyable since they 
promote having desirable future 
experiences •••• Wholly independent of 
desire or intent, every experience 
lives on in further experiences. 

(Dewey, 1938, p. 16) 

For Dewey there is only one kind of knowledge; ·a 

knowledge that may be termed either moral or scientific. 

Moral science: 

••• is ineradicably emoirical, not 
theological nor metaphysical nor 
mathematical •••• Hence physics, 
chemistry, history, statistics, 
engineering science, are a part of 
disciplined moral knowledge so far as 
they enable us to understand the 
conditions and agencies through which 
man lives, and on account of which he 
forms and executes his plans. Moral 
science is not something with a 
separate province. It is physical, -
biological and historic knowledge placed 
in a human context where it will 
illuminate and guide the activities of 
men. 

(Dewey, 1922, pp. 295-6) 

So kndwledge itself nas no intrinsic worth. It is something 

that is acquired by man as he grapples with problems in his 

environment and eventually comes to solve these problems. 



.L~. 

There is no division into different types or forms of 

knowledge. There are no absolute or universal truths that 

are of different kinds. Experience and problem situations 

have forced man to use and develop the power of thought to 

control his environment. 

For pragmatists like Dewey then the curriculum is a 

process as much as a distinct body of subject matter. 

Dewey does not reject what might be called traditional 

disciplines such as mathematics and history, but claims 

that the student should draw upon his reflections in these 

areas to help solve the problems he has encountered. They 

have no usefulness in their own right, only in their ability 

to enrich the life of the student and enable him to solve 

the problems. 

Dewey's position and the pragmatic philosophy-in 

general do have serious objections,- however. Firstly, the 

pragmatist is in difficulties. because the reasoning behind 

his philosophical position is surely theoretical and not 

practical. It is difficult to see how he can arrive at a 

philosophical position other than through theoretical 

reasoning as distinct from practical reasoning. And yet 

this distinction is what the pragmatist disclaims. 

Secondly, in claiming that the quality of experience is 

important, Dewey says that the experience is meant to lead 

on to other rewarding experiences: 

Hence the central problem of an education 
based upon experience is to select the 
kind of present experiences that live 
fruitfully and creatively in subsequent 
experiences. 

(Dewey, 1938, pp. 16-17) 



Education can be identified with growth, not just physically 

but intellectually and morally. The objection is that one 

must specify the directionsin which present experiences will 

lead the learner. For isn't it also true that some people, 

such as criminals, may find some experiences rewarding for 

themselves but that do not appeal to the rest of the 

community? Dewey's answer to that is that while a man may 

acquire great skill as a criminal through a series of 

experiences the question is whether this will affect his 

growth in general: 

Does this form of growth create conditions 
for further growth, or does it set up 
conditions tha,t shut off the person who 
has grown in this particular direction 
from the occasions, stimuli and opport­
unities for continuing growth in new 
directions? What is the 'effect of growth 
in a special direction upon the attitudes 
and habits which alone 9pen up avenues for 
development in other lines? 

( ibid • ' p • 2 9 ) 

But even so it is difficult to see how the educator-, 

mindful Gf the fact that different experiences are conducive 

to growth in different directions, can escape making 

qualitative judgements. , Ultimately he must be able to 

decide between the worthwhileness of different experiences. 

Finally, ~t is difficult to see how all intellectual 

activities can follow the same J?attern of the experimental. 

sciences. How, for example, can history be fitted into the 

same experimental patterns? But whether it is true or not, 

it is necessary for the pragmatist to furnish reasons for 

regarding them as the same, just as it is necessary for 

those who claim there are distinct types of activities to 

show how they are distinct. 

16. 



(v) A different approach has been adopted by J.P. :vhite 

in his book Towards a Compulsory Curriculum .(1973}, where he 

presents his argument that education ought-to be about 

providing people with the knowledge that enables them to 

make meaningful choices between different activities and 

different ways of life. Educators do no~ make the final 

judgement of worthwh·ileness but -design the-curriculum.to 

enable the students to do so. - Surprising1y, White bas.es 

his argument for a compulsory curriculum on the concept of 

liberty. "Any infringement of liberty is prima facie 

morally unjustifiable" (ib;__d_., p. 5}. But it is only 

prima f acie wrong to stop people doing what they want to do 

for there may· be. considerations which override this 

principle-.- So what is needed is an .examination of the 

.kinds of considerations which might .justify an interference 

with liberty. White claims that considerations of a 

person's own good as well as the good of others may justify 

such an interference • In relation to education: 

••• it·would be right to constrain a 
child to learn such and such only if (a) 
he is likely to be harmed if he does not 
do so, or (b) other people are likely to 
be harmed. 

(ibid.' p. 6) 

Case (a) is central.to White's _argument. 

The problem now is.to identify, from·all the possible 

activities to be understood by learning, those activities 

that are likely to harm the child if he is not constrained 

to learn them. To this end White makes an important 

distinction between the questions, "What kinds of activities 

17. 



are worthwhile in themselves?" and "Wha't kinds of activities 

are educationally worthwhile?" History and mathematics may 

not be intrinsically valuable for everyone but they may be 

educationally valuable. The educational value of an 

activity is not determined by any value intrinsic to the 

activity itself but by the nature of the activity. 

White thus divides activities into two categories in 

which: 

(1) no understanding of what it is to 
want X is logically possible without 
engaging in X 

(2) some understanding of what ~t is to 
want X is logically possible without 
engaging in X. 

(ibid., p. 26) 

The activities of the first category must be part of a 

compulsory curriculum because if the student is not 

18. 

compulsorily introduced to them he will have no understanding 

of what it is to study them and, therefore, will not be able 

to make a reasoned choice as to whether he will pursue them 

or not. In this category White includes subjects such as 

pure mathematics, communication in general, engaging in the 

(exact) physical sciences, appreciating works of art, and 

philosophizing. 

The same justification cannot be given for the activit-

ies of the second category, however, which includes speaking 

a foreign language, playing organized games, cookery, 

painting pictures and writing poetry, as examples. These 

activities are not compulsory but are offered only as 

options. While it is important for all students to know 

what these activities are, it is not necessary for students 
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to engage in them since this is not needed to understand 

what it is to want to pursue them. 

In his book White does consider some objections to the 

theory, such as whether it is clearly evident what activities 

belong to which category, and whether one is not simply 

advocating one's subjective preference for autonomy in 

designing the curriculum. But M.A.B. Degenhardt raises 

furthe·r serious objections to the theory. For the learner: 

Does not coming to understand any serious 
activity involve coming to feel something 
of its 'call' or 'urgency'? Would we 
not be sceptical of one who said 'Oh, I 
know what there is in.that poetry 
business (or science, or history, or 
music): I think I'll 'give it a miss'? 
Certainly it would be odd if someone said 
'In my early twenties I decided to be 
interested in philosophy'. For people 
just.do not relate to serious activities 
in this way. 

(Degenhardt, 1982~ p. 79) 

And for the teacher: 

It is generally thought that a good 
teacher must care passionately for his 
subject, evidencing this passion and 
getting pupils to share it. But who 
could sustain such passion if he saw 
himself as merely offering a smorgasbrod 
of pursuits to be sampled and then freely 
chosen or rejected? Does not good 
teaching presuppose a more positive 
conviction of the worth of what we teach? 

( ibid o I P o 8 Q ) 

Such comments call on us to rethink our views on knowledge 

and to establish what ultimate value we can give to it. Can 

knowledge be divided into two kinds; knowledge that is useful 

and knowledge that is intrinsically valuable in some way? 

Later, in this chapter, we see that this dichotomy is reje~ted 
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by Degenhardt; that it overlooks a third possibility, that 

some knowledge is not necessarily extrinsically useful nor 

intrinsically worthwhile, but is what Degenhardt calls 

"serious" or "significant" knowledge. Not only that, what 

makes it serious or significant is based on a view of the 

nature of man as well as a view of the nature of knowledge. 

Some knowledge is valuable because it serves a distinctively 

human enterprise. 

Contingent Consequences 

In the previous section we sought to establish the 

argument that we can choose a particular curriculum based on 

the worthwhileness of knowledge by considering the views of 

those who argue that such judgements are not possible or 

that they ought not- to be made. Such views were found 

wanting as they stand. In this section we consider the 

views of some who maintain that worthwhileness can be 

' 
attributed to certain disciplines, but that the worthwhile-

ness of such disciplines is related to the contingent 

consequences of pursuing them. In trying to be quite 

specific about the design of a curriculum, two recent 

writers have attempted to list a set of specific objectives 

that students ought to attain, and then to select those 

discipli?es which assist in the attainment of those specific 

objectives. Such a method has been adopted by s. Nisbet 

(1957) in his book Purpose in the Curriculum and by the 

highly influential Taxonomy of Educational Objectives edited 

by B.S. Bloom (1956). 



Nisbet classifies the "practical Objectives of education" 

that a teacher might realistically achieve into two groups. 

The first group, labelled "Adjustment to Environment", 

consists of skills, culture, home membership, occupation, 

leisure, and active citizenship. The second group, labelled 

"Personal Growth", consists of the physical, aesthetic, 

social, spiritual, intellectual, and moral development of the 

individual. 

Nisbet explains: 

Such a list is comprehensive enough to 
include most of what has been claimed as 
important in education, whatever the 
ultimate philosophy of those who make 
the claims, and yet detailed enough to 
provide guidance and illumination for 
the practical person, whatever specific 
functions he may have to perform. 

(Nisbet, 1~57, p. 14) 

He then examines the conventional curriculum subjects in turn 

and considers how many of the objectives are, in fact, 

contributed to by a study of. those subjects., 

Bloom's taxonomy is more detailed but the intention is 

the same as Nisbet's. Three domains are specified; the 

cognitive, the affective, and the psychomotor. Within each 

domain certain objectives are cqtegorized and sub-categorized. 

For example, the cognitive domain is categorized into such 

things as knowledge of specifics, knowledge of criteria,. 

application, analysis and evaluation. Some categories.in 

the affective domain are awareness, willingness to ~espond, 

and satisfaction in response. 

There are, however, two main criticisms that can be 

directed towards both Nisbet's and Bloom's approach. The 



first is to do with the list of objectives. While both 

writers agree that there may be some disagreement as to what 

the list of objectives should consist of, their final list 

is more of one achieved by consensus than by rational 

argument. Nisbet, for example, was concerned about high-

level aims such as "to facilitate complete living" and "to 

promote the highest intellectual or moral development of the 

pupil". He was equally concerned about specific practical 

aims such as "to produce Macbeth" and "to make first year 

Latin interesting". He therefore set out to produce a 

comprehensive list of "intermediate practical objectives". 
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But it is not enough simply to specify a list of object­

ives that is hoped will gain acceptance by a majority'of 

people. The objectives must be clearly stated and argued 

for. 

While Nisbet's description of high-level or ultimate 

aims may be vague this does not mean that the aims should be 

dismissed. If there are ultimate aims then these aims 

should be clarified such that clear teaching objectives may 

be developed. To introduce "intermediate practical 

objectives" does not clarify ultimate aims and until these 

ultimate aims are clarified then there is much room for dis-

agreement about the practical objectives. The same 

vagueness that characterises Nisbet's high-level aims' 

contributes to disagreement as to the value of the pr-actical 

objectives. 

The second point of criticism is to do with what is 

said about the various 'subjects. The approach is to draw 

attention to the contingent consequences of each subject. 



The study of science, Nisbet maintains, contributes to 

spiritual development, and arithmetic and mathematics 

contribute to moral development. When noting that in 

arithmetic the answer is right or wrong he says: 

Virtue, in the form of persistence and 
concentration, is rewarded by a correct 
answer : ,vice, in the shape of careless-

. ness or listlessness or laziness, ~s 
punished quite.simply by a wrong answer. 

(ibid., p. 83) 

The point is that, whether one agrees with the contingent 

consequences or not, the subjects are being fustified by 

considerations which have nothing to do with the subjects 
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themselves. If there is good reason for studying mathematics, 

irrespective of any other subject being studied, then there 

must be something about the nature of mathematics that is 

distinct from any other subject and that ~hich makes it 

worthw~ile for the student to study. Considering contingent 

consequences does nothing to aid in the selection of subjects 

for inclusion in a curriculum. If different subjects have 

the same contingent consequences then there is no reason for 

necessarily valuing any one of them above any other. 

We must, therefore, look at the subject itself, to seek 

out what is unique to that subject and to argue for its 

inclusion in the curriculum as con~ributing to the achieve­

ment of clear ultimate aims. 

Forms of Knowledge 

Instead of considering contingent consequences, a 

different approach has been adopted .by P. Hirst in attempting 

to justify a curriculum based on a view of knowledge that 



distinguishes distinct forms of knowledge-_ (see Hirst, 1974). 

Hirst 'originally identified eight forms but in subsequent 

revision has listed seven (see Hirst and Peters, 1970). 
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These forms are logic- and mathematics, the physical sciences, 

the.knowledge of our own and other minds, moral knowledge, 

aesthetic knowledge, religious knowledge, and.philosophical 

knowledge. The. important claim is that these forms are 

distinguishable by four cri ter-ia: 

(a) He first claims that each form involves concepts that 

are peculiar in character to the form. 

(b) In each form the concepts provide a.network of 

relationships g~ving the form a distinctive logical 

structure. 

(c) Each form has expressions that are-"testable against 

experience", the criteria on which the tests are 

based being unique to that form. 

(d) Finally, the forms have a distinctive methodology 

for testing their expressions. 

Thus the truth of propositions in different forms of· 

knowledge is established in quite logiqally distinct ways. 

Hirst's thesis ties in with a view of knowledge as 

reflecting the different ways we experience the world and the 

different ways we use language to communicate ideas, rather 

than a view of knowledge that is meant to reflect the true 

nature of the world. A liberal education is one which 

gives an understanding of the distinct forms of knowledge and, 

therefore, the curriculum should be so designed as to 

introduce students to "the distinct forms. 



Many of Hirst's critics have concentrated on the 

epistemological arguments in his thesis (see, for example, 

Gribble (1970), Phillips (1971), Hindess (1972) and Warnock 

(1977)). Barrow (1976), on the other hand, has rejected 

Hirst's view but developed his own, arguing that there are 

only two distinct forms; namely, the empirical and the 

philosophical. These forms are based on two distinct 

valida~ion procedures. In the empirical form the truth or 

falsehood of propositions is arrived at by a combination of 

logic~and reference to empirical evidence. In the 

philo~ophical form the truth or falsehood of propositions 

can only be determined by logical reasoning. Barrow also 

suggests that there are two basic "interpretive attitudes" 

to the world; the religious and the scientific, and a 
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number of distinct "kinds of awareness". So the truth or 

falsity of every statement, according to Barrow, can be 

determined by reference to one of two validation procedures. 

The two interpretive attitudes represent two distinct 

fundamental conceptions of how the world and existence is to 

be explained. And the kinds of awareness refer to different 

kinds of feeling that can be aroused when contemplating 

yarticular phenomena. There can pe situations where people 

have either a moral, aesthetic, religious or scientific 

awareness, for example. Even someone with a r~ligious 

interpretive attitude may still have a scientific awareness 

provoked by a particular situation. 

The type of epistemological criticism directed at 

Hirst's thesis could also be directed at Barrow's. The 



important point that is implied by such views of knowledge, 

however, is that if someone knows how to set about assessing 

whether a proposition in one of the forms is true, then he 

is familiar with the kind of procedure necessary to 

establish the truth of other propositions in that form. 

He may not be able to give an answer, not having studied the 

required topic, but he knows the kind of procedure required 

to establish an answer. 

The concern of this dissertation is with the implic~ 

ations for curricula and schooling. If we accept that 

certain propositions do, in fa?t, reflect di~ferent ways we 

experience the world, and, in so doing, reflect different 

kinds of knowledge, then we must ask whether this, in 

itself, implies that all children should be initiated into 

the different forms. Is R.F. Dearden (1968) right, for 

example, in taki~g Hirst's thesis and developing "forms of 

understanding" that primary school children ought to be 

introduced to, simply because they can be categorized 

according to Hirst's selection criteria? If not, what 

other arguments can be put forward justifying initiation into 

the forms? 

Finally, we must ask of the importanqeof content. If 

there is only one method o~ assessing the truth within each 

form does that mean that it doesn't really matter what 

content is presented in each form, only that the method of 

assessing truth is acquired? And if the content is 

important, under what criteria is it to be selected~ If 

Hirst's thesis is correct one would have to be able to 



identify concepts as belonging to particular forms before 

deciding on the criteria to be used to test the expressions 

in which the concepts ·appear. 

In drawing attention to a criticis~ of Hirst's work by 

R.K. Elliott (1975), M.A.B. Degenhardt (1982) considers 

these problems under three themes. 

Powers of the mind. One conclusion from Hirst's work 
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might be that in order to develop one's powers of the mind 

one needs to be first initiated into the forms of knowledge. 

This implies that a person would somehow be totally un­

knowledgeable of all things around him; that he would not 

be able to make any operations in the mind after experiencing 

the world through his senses, unless he was initiated into 

the forms. But this underrates the nature of the learner 

whose powers of mind and ability to understand are present 

before any introduction to the forms is initiated. It could 

be argued that the forms of knowledge have, in fact, 

developed from human beings being able to retain what they 

perceive with their senses, and to organize that information 

in some way, in seeking to understand those concepts that 

their minds apprehend. 

Critique of the disciplines. Degenhardt observes that 

mastery of a discipline does not necessarily improve one's 

understanding of the subject matter of that discipline. He 

gives the example of the mathematicized nature of physics, 

where experts in the field have difficulty in relating that 

to physical reality, the assumed subject matter of physics. 

While such doubts can be raised about any discipline Elliott 



concludes: 

These considerations suggest a task which 
properly beiongs to Philosophy of 
Education, namely enquiry into the 
character of the disciplines with a view 
to assessing their educational value. 
It is less than just to give .a student an 
education which encourages him to take 
enthusiastically to a discipline whose 
true character is not what it is proclaimed 
to be. 

(Elliott, 1975, p. 61) 

For example, does one arrive at an awareness and understand-

ing of people's minds by pursuing courses in psychology_) 

that consist of elaborate mathematical relationships 

between arbitrarily defined factors? Elliott argues that 

each form of knowledge, as identified by Hirst, is a 

distinct systematic study but which also is an extension of 

what he calls a corresponding ''common area of everyday 

knowledge 11
• It may be that the understanding of people's 

minds that one wishes to acquire is found in this common 

everyday knowledge. 

What matters most? Under this heading Degenhardt 

considers the question of how the content of the forms might 

be selected. If one selects the content guided only by 
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what best exemplifies the distinctive ,nature of the discipline 

then. the discipline itself could suffer. It does not follow 

that those things that best exemplify the logical features of 

a form of knowledge a:r;e the important things- for. people to 

know about in that form. We still lack criteria for 

selecting worthwhile knowledge. 

Intrinsic Worthwhileness 

Instead of arguing then that certain subjects are worth-

while pursuing because they contribute to the attainment of 

certain specified objectives, or because they represent a 
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distinct form of knowledge some writers have argued that 

some subjects are worth studying because those subjects have 

some intrinsic worthwhileness. 

Before considering some of these ideas a distinction 

must first be made between the intrinsic worthwhileness· of 

engaging in the study of a particular,subject and the 

intrinsic worthwhileness of mastering a subject or attaining 

knowledge in that subject. As an example of the first case, 

we might consider that studying mathematics-and trying to 

come to understand a mathematical concept is worthwhile in 

itself, irrespective of whether one succeeds in that endeavour 

or not. What we are concerned about, however, is the 

intrinsic worthwhileness of attaining knowledge in a-

particular discipline and judging whether success in one 

activity is more worthwhile than success·in any other. 

The question to be asked is, what reasons ,·Lrel:ated to the 

nature of a particular subject, can be given when claiming 

that some subjects are more intrinsically worthwhile than 

others? G.H. Bantock (1963) insists that some subjects are 

intrinsically worthwhile and are more valuable because their 

understanding involves a high-er degree of intellectual 

functioning. He says: 

the fact that ••• some subjects make 
more demands on human beings, require, for 
their mastery, a more complex human 
organization and finally produce more 
valuable consequences is inescapable. 

(Bantock, 1963, p. 94, ~ootnote) 

The point is, however, that while mastering higher ~athematics, 

or appreciating poetry,_may require more complex intellectual 

functioning than playing football, it has to be shown that the 



consequ~nces of doing so are, in fact, valuable. It may be 

th_at_ the complex intellectual functioning that is required 

to engage in· higher mathematics say, is valuable only in 

allowing one to engage in higher mathematics and nothing 

else. The fact that certain subjects may require a more 

complex intellectual functioning does not show that those 

subjects., in themselves, are necessarily wor:thwhile. 

A different approach has been· adopted by R.S. Peters in 

his book Ethics and Education (1966). While he has 

subsequently expressed doubts, about the arguments expressed 

in that book (see, for example, Peters' chapter in Hirst 

(ed.) (1983) pp. 30-61) his views there have evoked much 

discussion. 

In the book Peters a::gues 'that education involves the 

inttiation of ·ethers into worthwhile activities and that the 

activities that are educationally worthwhile are valued for 

their own sake. The first problem he considers is to 

determine what· makes some· activities more wo_rthwhile than 

others. What makes mathematics and history more worthwhile 

, pursuing than football or billiards say? The first step in 

answering that question is to establish that there are in 

fact fundamental differences between activities like 

mathematics and football that do not exist between billiards 

and football or between mathematics and history. Both 

billiards and mathematics may be "disinterested, civilized 

and skilful pursuits", yet mathematics.seems to earn a place 

on the school curriculum ahead of billiards. 
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Firstly, in arguing for a fundamental difference between 



certain activities, consideration could be given to the 

object of the activity. Some activities, like eating, have 

limits imposed upon them due to bodily conditions. Also, 

some activities are competitive. When one person acquires 

money there is less for others. But in theoretical 

activities, Peters argues, the object of pursuit, be it 

truth or creation of beauty, is not under anybody's 

possession and no one is prevented from pursuing truth or 

creating beauty if others are involved in it. There is 

something permanent about the object. of these theoretical 

activities. 

j J.. 

Theoretical activities can also be differentiated from 

other activities in respect of the opportunities they provide 

for skill and discrimination. Card games or football have 

a conventional objective which can be attained in many ways. 

But, says Peters, "truth is not an object that can be 

attained; it is an aegis under which there must always be 

progressive development." So there must be opportunities 

for "fresh discrimination and judgement and for the develop­

ment of further skills". (Peters, 1966, P· 158) 

A third consideration is to do with the cognitive nature 

of the activities. Knowledge can be involved in games and 

pastimes, but this is limited to the end of the activity. 

One can be knowledgeable of the rules of bridge but the 

purpose is to compete and win at the game. Theoretical 

activities, on the other hand, have a wide ranging cognitive 

content. In science and literature there is a hug.e amount 

to know and that knowledge contributes to how one views other 



things. So while they may be like games in being dis-

interested pursuits, sometimes pursued for intrinsic values, 

they are given a value that is not given to mere games or 

pastimes: 

They are "serious" and cannot be 
considered merely as if they were 
particularly delectable pastimes, 
because they consist largely in the 
explanation, assessment, and illumin­
ation of the different facets of life. 
They thus insensibly change a man's 
view of the world. 

(ibid •. , p. 160) 
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The problem now to be considered is why, when answering 

seriously the question "Why do this rath.er than that?", would 

someone choose those activities that are "serious" or 

"theoretical"? Merely establishing that certain activities 

are fundamentally different from others does not explain why 

some of them are more worthy of pursuit. 

Peters claims 'firstly that this question can only be 

seriously asked by people who have some conception of what 

the different choices are and that this" ••• has been formed 

in the main by the differentiated forms of understanding that 

have been developed" (ibid., p. 161). Thus, the very 

activities that have been differentiated as having wide-

ranging cognitive content are the ones that are· necessary to 

answer t!i.e question "Why do th-is rather than that?"-

Secondly, Peters' "serious" activities can be distinguished 

from other activities by their concern with truth. They are 

concerned with truth just as the person who asks the question 

"Why do this rather than that?" is concerned with the truth. 

It is argued that these "serious" activities, as well as being 
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necessary in answering the question 11 Why do this rather than 

that?", are also involved in asking it. 

For Peters, truth and rationality are among th~ 

ultimate human valu€s, and so he is led to a justification 

for "serious" activities based on a view of the nature of 

man as well as the characteristics that determine these 

"serious" activities. 

In assessing Peters' arguments Degenhardt (1982) 

indicates that some people can engage in "serious" activities 

for reasons other than because the activities are deemed to 

be about truth and rationality. They pursue them because 

in some way they find them interesting and important. 

People do not just decide to do something because it is about 

truth and rationality. Instrumental reasons aside, they 

decide to pursue certain activities because somehow those 

activities help them in solving particular problems that they 

consider troublesome but important in their lives. They 

give the person different ways of viewing problems that that 

person feels important to consider. For Degenhardt the 

question is why do people find some problems in life 

important to consider and why are some activities helpful in 

giving people answers to those important problems? 

Yet part of the point of Peters' insist­
ence on the seriousness of serious activ­
ities is that they are not just pleasing 
embellishments added to life, but are 
somehow part of what life is, or ought to 
be, all about. We need, it seems, to 
ref er to more than knowledge and rational­
ity to work out why this should be. 

He says: 

(0egenhardt, 1982, p. 60) 



World Views and the Value of Knowledge 

In the preceding sections we have considered the ways 

that various thinkers have attempted to give some sort of 

worth to knowledge and what implications.their ideas might 

have for the curriculum. In each case we have found that 
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there are serious objections. In this section we present 

the ideas of M.A.B. Degenhardt who, in his book Education 

and the Value of Knowledge argues that we are wrong to 

regard knowledge as being either instrumentally useful or as 

an end in itself. He argues that this overlooks a third 

possibility, a way of valuing some knowledge that is related 

to a distinct view about the nature of man. 

Degenhardt tackles the question of what constitutes a 

worthwhile curriculum by considering three ideas. Firstly, 

he rejects the dichotomy between knowledge as a means to an 

end and knowledge as an end in itself. A third possibility, 

he claims, is that some knowledge is valuable because it 

helps us to determine our ends. Secondly, the view of man 

as a free agent in the world enables him to decide what ends 

he sets himself and these ends are best determined by first 

acquiring a world view; that is, having some understanding 

of the nature of the world and the nature of man in that 

world. Such a view, he claims, should not be generated 

individually but should be socially inherited. So, thirdly, he 

argues for the great evolved bodies of knowledge to be 

central to the content of the curriculum, in that, as they 

have evolved across generations and cultures, they have 

become "more rigorous and self-critical, less parochial, and 

much enriched from the achievements of many thinkei;s" 

(Degenhardt, 1982, p. 89). 
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. In support of his argument for the rejection of the 

dichotomy between knowledge as a means to an end and knowledge 

as an end in i.tself, he lists several ambiguities. Firstly, 

when one talks of knowledge being good in itself, it is not 

clear whether one is talking of the good in possessing the 

knowledge or the good in pursuing it. While pursuing 

knowledge may be worthwhile under some criteria, it should not 

be confused with the value inherent in possessing that 

knowledge. 

Secondly, Degenhardt considers the ambiguity between the 

intrinsic worth attached to an individual person poss·essing 

knowledge and the intrinsic worth of the total knowledge 

possessed by humans existing and growing. 

A third ambiguity concerns the claim that an introduction 

into the various forms of knowledge nurtures those qualities 

of mind that are valued. For example, an introduction into 

mathematics, it might be argued, develops sound deductive 

reasoning. But it is not clear where we can separate the 

qualities of mind from the subject. That is, to be able to 

engage ~n sound deductive reasoning, it might be claimed, is 

to be able to do mathematics and does not- follow from it. 

A fourth ambiguity concerns the different ways in which 

knowledge can be pursued for ends that are distinct from that 

knowledge. For example, a mathematician who engages in 

mathematics in order to solve practical problems involved 

with the construction of bridges may be said to be less 

concerned with mathematical knowledge as such, than someone 

who engages in mathematics in order to arrive at hitherto 
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unknown solutions to mathematical problems. On the other 

hand, the first mathematician may be said to be more concerned 

with mathematical knowledge than someone who studies the 

subject simply to acquire qu~lifications to enhance his job 

promotion prospects. 

Finally, Degenhardt points out that it is absurd to think 

that all knowledge can be thought of as intrinsically good. 

There is much pointless data, the lack of knowledge of which 

would not seriously disadvantag.e anyone. 

Therefore, the claim is that inherent worth cannot be 

attributed to all knowledge or any knowledge, but only to 

bodies of "serious" or "significant" knowledge. This 

seriousness puts knowledge into a third value category: 

It is not valuable as an end in itself, 
for it is serious or significant in so 
far as it makes a difference to how one 
lives. But neither is it useful, for 
it is not knowledge that is to be used 
to some further end. Rather, it is 
the kind of knowledge that helps us to 
determine our ends. By this I mean 
that it gives us that picture or under­
standing of things in terms of which we 
can decide what to do with our lives, 
what aims to set ourselves, what ends to 
live for. 

(ibid. , p. 8 5) 

So.while he·gives value to some knowledge, he is also 

tying~this value to a particular view of the nature of man as 

a free agent. That is, man is able to make decisions for 

himself about how he will conduct his life and what ends he 

will strive for. Such ends are determined after one has 

acquired a world view; an understanding of man, his world, 
-

and the universe. The acquisition of such a world view 

cannot be done individually, but i~ done as ideas are socially 
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inherited through education, both planned and unplanned. 

And how one is to behave in that world, and what ends are to 

be strived for, can only be done in the light of the culture 

that has been passed on. Thus, says Degenhardt: 

Given this, it must surely follow that 
we should educate human beings into 
such a cultural inheritance as will 
best fit them for the distinctively 
human enterprise of working out what 
sorts of human beings they are to make 
of themselves. 

(ibid., p. 88) 

It is, therefore, the traditional bodies of knowledge that 

have educational importance because they help man reflect on 

questions concerning the nature and meaning of life. And as 

they have evolved across generations and cultures with the 

contributions of a great many thinkers, they offer the best 

that can be given in allowing one to develop a world view and 

to determine one's ends. The· arg~ment is then for a 

curriculum that offers the evolved bodies of knowledge, not 

just as technical disciplines designed for instrumental 

usefulness, but as a means to reflect on the achievements of 

other thinkers, and in answering questions about man, his 

world, and the universe. 

One criticism of this argument might be that it is too 

idealistic. To say that human beings ought to be educated 

into a cultural,inheritance that will best enable them to 

work out what they are to do with their lives, is like 

claiming that everyone ought to be free from hunger; people. 

will agree in principle but doubt that it is possible. Some 

people may not be in any position to determine their own 

·ends, irrespective of the knowledge they have acquired, so 
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the curriculum ought to be based on preparing people for the life 

they wil+· lead rather than the life they decide to lead. A 

student might find himself in a position where he has 

determined what he would like to do with his life but is 

unable to follow that course. Ought he not, therefore, be 

in the best position to seek fulfilment in the life that has 

been determined for him? 

In reply, there can be no doubt that many students will 

have aspirations, determined partly by the influence of 

schooling and studying particular subjects, that will not 

achieve fruition. The view that man ought to be educated 

to be in the best position to determine his own ends is 

based on a particular notion of human nature; namely, the 

ability of the human being to act freely on the world and 

where choice is inevitable; but only within the limits 

imposed by society. So the human being who has determined 

his own ends but is unable to follow that path ought to be 

able to see why he is unable to do so by understanding the 

constraints that are imposed upon him. Someone who is in 

the best position to determine his own ends could only be 

said to be in the best position if those ends are possible 

within the limits imposed. 

A second criticism of Degenhardt's position might be 

that the programme is not practical. Given the different 

psychological make-up of students, are there methods of 

instruction that will enable them to understand and reflect 

on the different disciplines in the same way; a way that 

best fits all of them to determine their own ends? And, if 

not, how are we to cater for individual differences? Also, 



does the arg,ument suggest that there are two -distinct ways 

of loo~ing at the disciplines? One can achieve technical 

mastery in a subject, like mathematics say, without any 

understanding of the nature of matheMatics or its cultural 

.significances. But is it clear that one could have such.an 

understanding of the subject without first coming to master 

its technical side? Can one fully appreciate the effect 
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that the calculus has had on society since the 1600s, for 

example, without first understanding the mathematical concepts 

involved in differentiation and integration? 

Clearly, to begin to answer these sorts of-questions, 

one is going to have to look closely at the specific 

disciplines; firstly, from the philosophical perspective, to 

elucidate their nature and foundational concepts; and, 

secondly, from a cultural perspective, to determine the 

influence that the discipline has had on society and the 

forces within society that have influenced the growth of the 

discipline. Only then will one be able to argue for or 

against the practicability of the progra:mrrte for the various 

disciplines. 

The next chapter is concerned then with a critical 

exa:rnination of various theories ·on the '·nature of mathematics. 

and the way forces within society have influenced the 

evolution of mathematical concepts. 



CHAPTER III 

THE NATURE OF MATHEMATICS 

The aim of this chapter is to show the development of a 

theory about mathematical knowledge which breaks with 

traditional thinking about the nature of mathematics. 

Dominant philosophies have nearly all stressed the a pr,iori 

nature of mathematics. Mathematical knowledge is regarded 

as different in kind from scientific knowledge in that it 

can be obtained without the use of the senses. This 

aprioris~ view has been the basis of the traditional schools 

of thought regarding the nature and foundations of 

mathematics. These traditional philosophies have all been 

disputed at times but alternative philosophies have not been 

fully articulated. P. Kitcher (1983) has now developed a 

theory of mathematical knowledge which rejects mathematical 

apriorism. 

To show the development of Kitcher's theory this chapter 

starts with a consideration of the older views of Plato and 

Aristotle and the 19th century views of Leibniz and Kant 
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which anticipated the three dominant a priori philosophies of 

mathematics in the 20th century; namely, formalism, intuition­

ism and logicism. J.S. Mill's 19th century empiricist view 

of mathematics is also considered here. 

The three dominant philosophies are then examined in 

some detail and it is concluded that while they do give some 

insight into the activities of mathematicians, they are not 

adequate in their description of the nature of mathematical 
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knowledge. It is argued that this is because they view 

mathematics as something that is unchanging with time, 

whereas a consideration of historical episodes suggests that 

mathematics is in a process of evolution, and that the 

mathematical knowledge we have today has evolyed in response 

to practical problems within different cultures and with the 

need to generalize and make rigorous the symbolic mathematical 

language that is being used. 

It is shown how Kitcher's comparison of mathematical 

change with theories of scientific change, and his re­

assessment of Mill's earlier empi_ricist view of mathematics, 

provide the basis for a theory of mathematical knowledge that 

accounts for its evolution from basic manipulations in the 

environment to the mathematics that we have today. For 

Kitcher, mathematics is a theory about the possibilities that 

exist in the physical world. 

Finally, the last section of this chapter considers the 

example of the calculus from 1650 to 1900 and illustrates its 

developmen~ in line with Kitcher's .theory of mathematical 

change. 

Earlier Views 

(i) Plato held that it was an intellectual task of man· to 

distinguish appearance from reality. The appearance of the 

world around him, gained through sense experience, was ever 

changing, whereas reality, which could not be apprehended by 

the senses,was unchanging. This view was articulated by 

Plato in what is called his Theory of Forms and originated out 
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of certain general ideas that featured in dialectical disputes. 

In ·any disputation one ultimately must make clear the concepts 

involved. When there is argument over whether, say, honesty 

is a virtue, we are dealing with concepts of honesty and 

·virtuousness which have to be made clear. Similarly, when we 

talk of someone's honesty improving, we are comparing that 

.person's standard of honesty to some ideal standard which is 

regarded as unchangeable through time. Our understanding of 

these ideal standards is not seemingly dependent upon our 

senses. When we observe phenomena we might readily agree 

that if our eyesight was sharper we would see things clearer 

and have a better knowledge of them, but general notions of 

honesty and virtuousness are not seemingly apprehended by the 

senses, and when we attain certainties about them, even if 

only negative ones, we do so by argument. 

Through such considerations, and particularly with his 

mathematical orientation, Plato was led to develop the Theory 

of Forms. Geometrical truths about triangles were not 

thought of as just truths of particular triangles drawn on 

paper or in the sand, but as truths of all possible triangles. 

Geometry and arithmetic were regarded as studies of certain 

realities that do not have the imprecision of things tha~ 

occur in the everyday world. Plato noted that dialectical 

disputes were also concerned with concepts that have only 

imperfect representations in the everyday world. So that to 

argue that honesty is a virtue is to argue about the concepts 

of honesty and virtuousness that do exist, but not -in the 

everyday world. Whereas our everyday world contains examples 

of triangularity, honesty and virtuousness, the Forms of 
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triangularity, honesty and virtuousness exist permanently and 

independently of man, and in a world that is not apprehended 

by the senses. 

Some of the Forms became the domain of mathematicians. 

Oneness, twoness, point, line, circle, for example, are 

mathematical Forms and dots and marks.drawn on paper are only 

approximations to these Forms. Not only that, there are also 

relationships between the Forms, and it is the job of the 

nathematician to discover them, just as others may seek to 

discover relationships between objects in the physical world. 

Instead of relying on his senses, however, the mathematician 

relies on his reason. 

This view of mathematics appeals to some mathematicians, 

as Korner says: 

••• Platonism is a natural 'philosophical 
inclination of mathematicians, in parti9ular 
those who think of themselves as the 
discoverers of new truths rather than of new 
ways of putting old ones or as making 
explicit logical consequences that were 
already implicit! 

(Korner, 1960, p. 15) 

The proposition, that one plus two equals three, states a 

reiationship between the Forms of "oneness", "twoness" and 

"threeness", and is true independent of anything we can s·ense 

in the physical world. By reason the mathematician can 

discover this truth of mathematics. Similarly, the 

proposition, that any two straight lines which are not 

parallel, intersect at one point, states a relationship 

between the Forms of "line" and •!point 11 and no physical 

demonstration is needed to judge the truth of this proposition. 



It is important to note that Plato did not idealize his 

Forns from the physical world and sense experiences. He 

·did· not, for example, idealize the Form "circle" froM t!le 

·~any instances of circularity that he sensed in the physic~l 

worlc. The Form ~·circle" does exist, is permanent and is 

·not apprehended ~by the· sense~-. · All emp~·rical exa!11ples of 

circularity are only approximations 'to this Form. 
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(ii) Unlike Plato, Aristotle's philosophy stemmed from a 

biological orientation where he looked at different life forms· 

and asked what the function of them was. For him, what 

distinguished man from other life forms was man's rationality, 

and what was good for man was exercising his reason in the 

pursµit of knowledge. 

Aristotle rejected Plato's distinction between the world 

of physical objects and the world of ideal Forms. · The 

subject matter of mathematics is not ideal Forms that exist 

independently from objects in the everyday world, rather the 

.subject matter is what can be abstracted from what we perceive 

in the world. For Aristotle, the form or essence of an 

object is as much a part of it as its physical matter. The 

essence of "circularity" does not exist independently from 

circular objects but can only be abstracted by man from 

examples of circular _objects. The distinction between 

mathematical and physical definitions can be distinguished by 

the example of "curve", which specifies no matter, and "snub", 

which specifies the curved matter, a nose. The mathematical 

definition "curve" is abstracted from the physical definition 

"snub". The subject matter of mathematics is then the 



result of such abstractions and these mathematical objects 

are, in some sense, in the things from which they are 

abstracted. 

This notion of abstraction from physical objects avoids 

one criticism of Platonism; namely, if there is an ideal 

Form of threeness say, then what is the status of "three" 

when it occurs twice in the proposition 11 three plus three 

equ~ls six"? For Aristotle this is no problem, as th~ 

abstracted mathematical object "three" can occur as many 

times as required. The work of the mathematician then is 

to idealize the relationships between mathematical objects, 

these objects being abstracted from the physical world. 
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An example of the importance of Aristotle's thought to 

later views on mathematics can be demonstrated by considering 

his ideas on infinity. The notion of infinity has caused 

considerable difficulties in much recent work on the 

foundations of mathematics. 

Aristotle distinguished between two notions of the 

infinite, the actual and the potential. If we consider the 

sequence of natural numbers 1, 2, 3, ••.• and the possibility 

of always obtaining the next member in the sequence and of 

proceeding as far as we want to, then we have the notion of 

the potential infinite. We never obtain a complete sequence 

of all the natural numbers, but we are not stopped from going 

as far as we like. This, however, is in contrast to the 

notion of the actual infinite, where the natural nurr~ers are 

deemed.to be given in totality. Under this notion there 

exists a set, the elements of which are all the natural 
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numbers. Aristotle favoured the use of the potential 

infinite and much of modern mathematics needs only this 

notion of infinity. The use of the notion of actual 

infinity, however, produces many antimonies (paradoxes). 

An example will be considered in the section on logicism, 

later in this chapter. 

(iii) Unlike Plato and Aristotle, Leibniz does not take 

mathematical propositions to be about anything, neither mind-

independent eternal objects nor abstractions from the 

physical world. He maintains that mathematical statements 

are true by virtue of the fact that their denial would be 

impos'Sible. 

He identifies two kinds of truths, those of reasoning 

and those of fact. Truths of reasoning are necessarily 

true by the impossibility of their denial. The denial of 

truths of fact, however, is possible. Their truth is 

contingent. 

Consider two examples. The proposition that, if A is 
\ 

greater than B and B is greater than C, then A is greater 

than C; is a truth of reasoning. It would be impossible 

for A not to be greater than C under these constraints. 

But the proposition that all metals expand on heating, is 

a truth of fact and its denial is possible. It's just that 

no metal is known not to expand on heating. Leibniz thus 

regards the truths of mathematics akin to the truths of logic 

and, in this sense, he foreshadows the modern movement of 

logicisrn, which maintains that all mathematics is reducible 

to logic., 



The relationship between pure and applied mathematics is 

tied up in what for Leibniz is "the best of all possible 

worlds". As a proposition in pure mathematics, "One plus 

one equals two" is true for its denial is impossible. The 

proposition "One apple plus one apple makes two apples" is 

true in this world, for anything else would not be true in 

the best of all possible worlds that could be created. 

(iv) While Kant rejects Leibniz's dichotomy of propositions 

between those of reasoning and those of fact, he is concerned 

about the different ways of knowing. In his book Critique 

of Pure Reason he says: 

It is therefore a question which requires 
close investigation, and is not answered 
at first sight - whether there exists a 
knowledge altogether independent of 
experience, and even of all sensuous 
impressions. Knowledge of this kind is 
called a priori, in contradistinction to 
empirical knowledge, which has its sources 
a posteriori, that is, in experience. 

(Kant; Trans. by Meiklejohn; 1964, p. 25) 

Kant then develops a three way classification of propositions. 

(a) Some propositions he describes as being analytic in 

that their denial is self-contradictory. The truth of these 

propositions can be shown py analysing the terms and concepts 

involved in-the propositions. An example is the proposition 

"All bachelors are unmarried". Nothing, other than the 

meanings of the terms involved in the proposition, is needed 

to judge its truth. These propositions correspond to 

Leibniz's propositions of reasoning. For Leibniz, all pure 

mathematical propositions are of this form. 

(b) Kant then describes sane propositions as being 

4~. 



synthetic a posteriori. That is, they do describe a state 

of affairs in the physical world and their truth is judged by 

sense perceptions. An example of this type of proposition 

is "My pen is blue 11
• The denial of this proposition is not 

self-contradictory and the truth of it is judged by using 

the senses. 

(c) Finally, Kant considers some propositions as being 

synthetic a priori. These propositions describe a state of 

affairs in the phy~ical world but they are not deemed true by 

use of the senses, but by reasoning. They are necessary 
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conditions for the possibility of objective experience. That 

is, they are necessary in that if any proposition about the 

physical world is true they too must be true. 

Kant was concerned about synthetic a priori judgements 

because he believed that we make these types of judgements in 

physics and metaphysics as well as in mathematics. The 

propol:?ition "In all changes of the material world the quantity 

of matter remains unchanged" is deemed to be synthetic, in 

telling us something about the phy~ical world, and a priori, 

in that we make this judgement before experiencing every 

change. So too the proposition "All men are free to choose" 

is deemed to be synthetic because it gives us new knowledge 

about all men, and a priori, in that we make the judgement 

before experiencing all men. 

Yet there is still the doubt of how we can make judgements 

about the state of affairs of the physical world without first 

experiencing that world. To solve this problem Kant 
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hypothesized a new relationship between the mind and its 

objects. He did not regard the mind as passively receiving 

information from the objects. He regarded the mind as 

active and doing something with the objects it experiences, 

so that the mind imposes its way of knowing upon the objects. 

Thinking involves not only receiving impressions through the 

senses but also making judgements about what is experienced. 

The mind has the power to make judgements without first 

experiencing the world. 

In describing the propositions of pure mathematics as 

being synthetic a priori, Kant introduces another classific­

ation. He distinguishes between discursive synthetic 

a priori propositions, which give an ordering of notions (for 

·example, causality), and intuitive synthetic a priori 

propositions, which are concerned with the structure of 

perceptions. To this latter group, he claims, belong the 

propositions of pure mathematics. 

Kant's argument can then be summarized as follows. 

Being in space and time is a necessary condition for the 

possibility of perception. The subject matter of pure 

mathematics is the structure of space and time free from 

enpirical material. The propositions of pure mathematic~ 

are structures of perception, synthetic in describing space 

and time, but a priori in describing the unchanging nature of 

space and time and in not requiring any sense experiences -to 

judge their truth. For ~ant the mathematical proposition~ 

"Two plus three equals five" is synthetic and a oriori. The 

logical possibility of alternatives is not denied (and, 
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therefore, the proposition is not analytic), but any other 

alternative would not be a description of perceptual space 

and time. 

But Kant's philosophy of mathematics went further than 

simply describing space and time. He was concerned about 

the possibilities that exist in space and time and the 

distinction between a oriori constructions and postulations. 

The concept of a ten dimensional sphere, for example, can be 

postulated and a geometry of· ten dimensions can be developed 

and shown to be be self-consistent. That is, axioms, and 

propositions can be formulated leading to results which do 

not contain self-contradictions. The a priori construction 

of a ten dimensional sphere, however, is not possible, whereas 

the a priori construction, and not mere postulation, of a 

perfect three dimensional sphere is possible. 

The subject matter of pure mathematics then becomes the 

structure of space and time and the possibilities of 

constructions within it. The subject matter of applied 

mathematics becomes the structure of space and time and the 

actual material filling it. 

(v) In contrast to Kant's a priori nature of mathematics, 

John Stuart Mill argues that all our knowledge is empirical. 

To the question; "Are synthetic a priori j udger.ients possible?" 

he answers in the negative. Firstly, he rejects the abstract 

notion attributed to nuIDbers: 

All numbers must be numbers of something: 
there are no such things as numbers in 
the abstract. Ten must mean ten bodies, 
or ten sounds, or ten beatings of the pulse. 

(Mill, 1973, p. 254) 



And just as numbers reFer to things we experience the basic 

axioms of mathematics are not necessary truths but laws we 

accept, based on our experience: 

That things equal to the same thing are 
equal to one another, and that two 
straight lines whi.ch. have once inter­
sected one another continue to diverge, 
are inductive truths; resting, ••• on 
the fact that they have been perpetually 
perceived to be true, and never once 
found to be false. 

(ibid.' p. 609) 

He thus maintained that the axioms of mathematics were 

inductive generalizations based on a large number of instances. 

In this sense they were the same as scientific hypotheses, the 

difference being one of degree and not kind. The subject 

matter of mathematics is more general than any other science 

and its propositions have been tested for many more times than 

the propositions in other sciences. But, according to Mill, 

we are unjustified in thinking that mathematical propositions 

are, therefore, qualitatively different from the hypotheses of 

other sciences. 

Mill's philosophy of mathematics has been attacked from 

many quarters. Principally, the attacks came at a time when 

the three _so-called tradit~onalist schools of thought on the 

foundations of mathematics flourished in the late 19th century 

and into the 20th_century. These three a priori philosophical 

positions; formalism, intuitionism, and logicism, will be 

examined later in the chapter. In a paper on the foundations 

of arithmetic, first published in 1884, G. Frege maintained 

that Mill did not distinguish between mathematical propositions 

and the use to which they could be put: 



Mill always confuses the applications that 
can be made of an arithmetical proposition, 
which often are physical and do presuppose 
observed facts, with the pure mathematical 
proposition itself. 

(Frege, 1968, p. 13) 

And A.J. Ayer (1975), making use of Kant.•-s dictum that 

though all our knowledge begins with experience, this does 

not mean that it all arises out of experience, claims that 

Mill fails to distinguish between knowing mathematical 

truths and coming to know them: 

We may come to dis cover them through an 
inductive process; but once we have 
apprehended them we see that they are 
necessarily true, that they hold good for 
every conceivable instance. 

(Ayer, 1975, p. 318) 

He argues that we will never find an example to refute 

mathematical axioms because they are true by definition. 

They are analytic statements or tautologies. 

. , 
Some philosophers have been more sympathetic to Mills 

position, however. w.v. Quine says that perhaps in Mills 

time classical mathematics did lie closer to experience than 

it does now, noting that the infinitistic reaches of set 

theory, which are so remote from our experiences, were not 

explored then (see Quine, in Benacerraf and Putnam (eds.), 

1983, p. 355). In a cautious note Quine says that it is 

the relationship between mathematics and the empirical 

sciences that is important: 

I am concerned to urge the empirical 
character of logic and mathematics no more 
than the unempirical character of theoret­
ical physics; it is rather their kinship 
that I am urging, and a doctrine of 
gradualism. 

(Quine, 1970, p. 100) 
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Mills philosophy is an important consideration then 

because it is the rejection of his empiricist position and 

the acceptance of the a priori nature of mathematics that 

saw the flourishing of the three traditionalist schools of 

thought on the foundations of mathematics. But, in 

addition, when these three philosophical positions were 

found to have serious objections to them, some modern day 

·philosophers sought to re-examine Mills work. (See, for 

example,.H.Lehman(l979) and P. Kitcher (1983)). ·They re­

assessed Mills position by highlighting the difficulties 

of using language to convey meanings, and recently Kitcher 

(1983) has rejected the a priori nature of mathematics and 

developed his own "defensible" empiricist philosophy of 

mathematics. Before considering Kitcher's arguments, 

however, we will first look at the three traditionalist 

theories. 

. . 

Dominant·2oth· century views 

During the first half of this century there were three· 

main schools of thought regarding the nature and foundations 

of mathematics; namely, formalism, intuitionism, and 

logicism. This was not to say that all theorists ascribed 

to one of these theories but, rather, it represented a 

classification of the different ideas of those who worked 

in the area of the philosophy of mathematics. These ideas 

had their origins in the earlier work of Leibniz and ~ant 

and, to a lesser extent, Plato and Aristotle. Formalists 

and intuitionists acknowledged the influence of Kant•s· 

philosophy of mathematics while rejecting that of Leibniz, 
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but formalism and intuitionism subsequently evolved to 

differ in quite important ways. Logicists, on the other 

hand, were influenced by the tradition of Leibniz in 

regarding mathematical propositions as analytic, and 

demonstrating their truth by applying the principles of 

logic. 
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It must be noted that a strict three-way classification 

oversimplifies what is a very complex area of study. Each· 

class has many sub-varieties and different writers in each 

class often disagree with one another. It is possible, 

however, to indicate and critically examine the·main 

features of the three theories. 

Formalism 

Strict formalism is the view that mathematics is the 

formal (that is, rule-governed) manipulation of symbols and 

nothing else. Mathematics then consists of a list of terms, 

a list of operations which are modes of combination for 

forming a new term in the list from a set of given terms in 

the list, certain elementary propositions (axioms) which are 

stated to be true unconditionally, and rules of procedure 

for the derivation of further propositions from the axioms. 

D. Hilbert is regarded as the founder of the formalist 

movement, and developed the view in the course of research 

into the theorems and axioms of Euclidean geometry. The 

formalist system was first used by him in the paper "The 

foundations of mathernatics 11 published in 1928, but he is not 

regarded as a _strict formalist, holding that the finite 

combinatorial part of mathematics is meaningful and true. 

(see Hilbert, in oenacerraf and Putnam (eds.), 1983, p. 183). 
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For example, he would maintain that the proposition 

11 1 + 2 = 3" is within a formal system but that it does have 

meaning and is true outside that system. Accounts of the 

strict formalist position, which denies that any mathematical 

statement has a truth value, can be found in H. Curry (1951) 

and A. Robinson (1965). 

- Strict formalism rejects the idea that mathematics is· 

about mind-independent eternal objects, and it rejects the 

view that it is about constructions in the_ mind. To the 

strict formalist there is no subject matter to mathematics at 

all, it is simply a series of manipulations of symbols. The 

theorems in mathematics are developed. by applying the axioms 

to the list of terms and the list of operations. In plane 

geometry, for instance, we have the terms 11 point 11 and 

"straight line 11 and the axiom "Through any two points there 

exists exactly one straight line". But we might equally 

have definec;l the terms 11 glm11 and "gam blyp" and the axiom 

11 Through any two glms there exists exactly one gam blyp". 

Irrespective of the mental image engendered, what is meaning­

ful is to apply the given axioms to the given terms in the 

correct way. 

But while it may appear that mathematicians merely 

manipulate symbols according to pre-assigned rules, there are 

objections that do not allow us to accept this as an adequate 

account of the nature of mathematics. 

Firstly, one requirement of any formal system must be 

that the system is consistent. This means that the system 

cannot allow a propositio-n 11 p" and its negation "not p" to be 
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c;lerived within the system, thus asserting both "p" and "not 

p" to be true in the system. But in 1931 K. Godel proved 

that a specific contradiction can always be deduced from any 

proof of the impossibility of the occurrence of contradictions 

in a formal system. (Discussions_of Godel's paper can be 

found in R. Wilder (1965), s. Korner (1960) and M. Black 

-, 19 33) l 

Secondly, for someone who has done any mathematics at 

all, it is_not simply an arbitrary manipulation of symbols. 

When grappling with a mathematical problem one is not simply 

dealing with symbols, but ideas and constructions .in the mind. 

Such constructions may eventually be symbolized but they are 

talked about and discussed in ways which suggest they are more 

than simply symbols used by mathematicians. To the 

mathematician such mental constructions are very real. Two 

distinct proofs of a theorem may use quite different symbols 

while still embodying the same ideas or mental constructions. 

The mathematician can see beyond the symbols and can give 

meaning to the ideas represented by the symbols. 

-A further criticism of formalism is that if mathematics 

is just a game played with symbols, why is it so useful in 

predicting outcomes of events in the physical-world? And why 

do we choose some axioms and not others? If it is sheer 

arbitrariness then there is a difficulty in explaining how 

formulae such as v = u + at do approximate to such a degree 

the empirical result of the velocity of an object with.a 

certain acceleration after a certain time. The usefulness of 

mathematics suggests that something other than an arbitrary 



collection of terms and axioms goes into it. 

Likewise the nature of inference in mathematical systems 

needs to be explained. It seems clear that the signs we 

use, such as -.1 (negation) and = (equality) , have meaning 

outside the formal system of mathematics. We accept the 

inference that if a = b then a + 1 = b + 1, but we would not 

accept the inference that if a= b then a+ 1 = b + 2; 

whereas, presumably, such an axiom could occur in some 

formalised system. It has to be explained why some axioms 

appear to have meaning and are useful while others appear to 

have no meaning at all·. 

Fo~malism is rejected then as an adequate philosophy of 

mathematics in that it offers no explanation as to the 

usefulness of mathematics, and in that it denies the 

existence of mental constructions, which are not formal and 

not symbolic, but do have structure and, to the mathematician, 

are real. 

Intuitionism 

The intuitionist's view of mathematics is that it 

consists solely of .mental (intuitive) constructions. 

Mathematics is thus a production of the human mind. The 

existence of mathematical objects can only be guaranteed if 

they can be determined by thought, and the properties of 

mat~ematical objects are only properties if they can be 

discerned by thought. The symbolic mathematical language 

that is used is simply a device for communicating thoughts 

and allowing oneself, or others, to follow mathematical ideas. 

The fundamental tenets of intuitionism were first formulated 
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by L.E.J. Brouwer, following his inaugural address at the 

University of Amsterdam in 1912 (see Brouwer, 1913). More 

recent introductions to the intuitionist philosophy of 

mathematics are by A. Heyting (1956) and M. Dummett (1977). 

Like the formalist, the intuitionist does not accept 

that mathematics is about mind-independent eternal objects. 

But unlike the formalist, the intuitionist· recognizes the 
{ 

-
ability of the person to perform certain constructions in 

the mind. Initially this consists of the construction of 

unity and then the series of natural numbers. All 

mathematics is then buil~ upon these initial constructions. 

A..~d to quote Brouwer: 

••• neither the ordinary language nor any 
symbolic language can have any other role 
than that of serving as a nonmathematical 
auxiliary, to assist the mathematical 
memory, or to enable different individuals 
to build up the same set. 
(Brouwer, in Benacerraf and Putnam (eds), 

1983, p. 81) 

So the only mathematics that is done is done by a series of 

constructions in the mind. The logic engendered by the 

manipulation of symbols is a product of mathematics, and 

with ordinary language it is the _means of communicating ideas 

so that others may effect the same mental constructions. 

The mathematical logic of intuitionism is different from 

~lassical logic. In classical logic the existence of an 

entity can be proved by showing that the assumption of its 

non-existence leads to a contradiction. In intuitionistic 

logic the entity whose existence is to be proved must be 

shown to be constructible. Consider an intuitionistic 

proposition P as the record of a construction: 



P I have effected a construction A in my mind._ 

The intuitionistic negation --,p is also a construction. 

It is not saying that I have not constructed P; rather: 

--rP : I have effected a construction B in my 

mind which deduces a contradiction in 

that the construction A is brought to an 

end. 
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What is important is that they are both constructions and it 

need not be the case that one of them has occurred. Tnus 

the intuitionist does not accept that all propositions can 

be characterized as being true or not true. 

Consider an example. 1f' is the non-recurring decimal 

3.14159--~ •• 
A 

We calculate TI in the following way. Expand 

lf until we have a sequence of 100 suceessive zeros. 

Suppose the first run of 100 successive zeros starts in the 
A 

nth digit. If n is odd, let lfterminate in its nth digit. 
A 

If n is even, let 1f have a 1 in the (n + 1) st digit and then 
I\ 

terminate. So if n is odd then Tf is less than lf. If n 
A 

is even then lf is greater than TI· If no successive 100 
;\ If 

zeros ever occurs then lf = rr. Now let Q = lT- rr .. The 

question is whether Q is positive, negative or zero. Now Q 

is a real number, and the law of the excluded middle maintains 

that it must be positive negative or zero. But the 

"' intuitionist does not accept this. 1f and Q have not been 

constructed in the rnind'since it is not known if there is a 

sequence of 100 successive zeros in the expansion of 1r. To 

the intuitionist, the proposition: 

P : Q is positive 



is not true, nor false but meaningless. 

The proponents of intuitionism saw its success in 

removing many of the paradoxes that so plagued the early 

infinite set theorists in mathematics. Bertrand Russell 

defined a set as abnormal if it contained itself as one of 

its elements and normal if it did not. As an example of an 

abnormal set consider "The set of all objects describable in 

exactly eleven English words". Russell then considered the 

set N of all normal sets. Is N ~bnormal or normal? If N 

is normal then it is one of the set of all normal sets and 

hence is an element o~ N. But this means N is abnormal. 

Conversely, if N is abnormal then it is one of its own 

elements, which are all normal sets. Hence N is normal. 

The intuitionist removes the paradox by claiming that 

if he cannot construct in his mind a set that has itself as 

a merrher, then talk of them is meaningless and is not·a part 

of mathematics. The beauty of the intuitionist programm~ 

then is that it does not produce ideas and concepts that the 

mind cannot accept. 

There are criticisms, however, which suggest that 

intuitionism is not an adequate philosophy of mathematics. 
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In describing matnematical activity as intuitive constructions_ 

the intuitionist denies that the inner experience refers to 

any external reality. · But in so doing the mathematician then 

gives up the most powerful motivation for his work - to seek 

truth that can be publicly validated. A mathematician is not 

interested in intuitive Gonstructions for their own sake but· 

for the new truths they enable him to find. As Goodman says: 



Just as the constructions lie behind the 
symbols and give them their interest and 
meaning, so there is something behind . 
the constructions - mathematical truth. 

(Goodman, 1979, p. 545} 

The mathematician is not free to take any arbitrary set of 

rules and apply them to his mental constructions. 

Mathematical rigour is a restriction on that freedom, and 

mathematical truth does not exist in the mind of the 

mathematician. When we evaluate a mathematical argument we 

determine whether the argument works - that is, whether it 

convinces us of the truth of its conclusion. 

One critic of the intuitionist programme is L. 

61. 

Wittgenstein. He seeks to explain the nature of mathematical 

truth through the collective behaviour of the people who use 

the rules, and as originating from simple manipulations of 

objects in the environment. Firstly, he argues that 

understanding mathematics is not just a mental state but an 

ability to do something; namely, an ability to apply what the 

person claims to know. This overt behaviour is necessary 

before claiming understanding in mathematics. Wittgenstein 

says: 

We are trying to get hold of the mental 
process of understanding which seems to 
be hidden behind the coarser and 
therefore more readily visible 
accompaniments [the overt behaviours]. 
But we do not succeed; or rather, it . 
does not get as far as a real attempt. 
For even supposing I had found something 
that happened in all those cases of 
understanding, - why should it be the 
understanding? 

(Wittgenstein, 1978, p. 60} 

Secondly, Wittgenstein argues that the process of 

inference is something that need not happen "in the head". 



Inferring consists in the transition from one assertion to 

another, but: 

Misled by the special use of the verb 
'infer' we readily imagine that inferring 
is a peculiar activity, a process in the 
medium of the understanding, as it were a 
brewing of the vapour out of which the 
deduction arises. But let's look at 
what happens here. - There is a transition 
from one proposition to another via ·other 
propositions, ••• This may go on""""'Ori paper, 
orally, or 'in the head'. - The conclusion 
may however also be drawn in such a way 
that the one proposition is uttered after 
the other, without any such process; ••• 

(Wittgenstein, 1967, p. 5) 

Wittgenstein then goes on to argue that the mental constr-

uctions cannot serve as a foundation for mathematical 

inference because they cannot give us a way of deciding 

whether the inferences are correct or not. When multiply-

ing, for example, different people may have different mental 

constructions but "the correct multiplication is the pattern 

of the way we all work" (ibid., p. 95). And " • • • ' calcula t-

ing right' does not mean calculating with a clear understand-

ing or smoothly; it means calculating like this" (ibid., 

p. 180). So the criteria of what is right or wrong are 

established on the basis of the collective behaviour of those 

who use the rules. So correct inference is simply the way 

we all do in fact infer. "This is use and custom among us, 

or a fact of our natural history" (ibid., p. 20) • 

The problem is, however, that there is never going to be 

perfect agreement on how to infer and if people disagree and 

infer differently there needs to be a way of deciding which 

process of inference is correct. Wittgenstein's answer is 

that the rules of inference we accept are not just arbitrary 

62. 



but are'influenced by empirical conditions. The origins 

of our mathematical practices are found in the simple 

processes of counting objects and comparing sets of objects 

in the environ~ent. These simple processes provide the 

genesis of mathematical truth. 

This then leads to a further objection to intuitionism; 

that it has nothing to say about the growth of mathematics 

and about cultural significances. If mathematics is simply 

constructs of the mind, what is the nature of the higher 

mathematics that has developed today and that did not exist 

100 or 1000 years ago? Accounts of historical episodes in 

mathematics indicate that for certain periods of time 

mathematics develops cumulatively. The theory of the 

calculus today can be seen to have developed from the initial 

work of Newton and Leibniz in the 1600s, even though some of 

the symbolic language that we use today would have been 

unknown to ·them. The language involved with limits, for 

0 .j. 

example, was developed following the problems Newton, Leibniz 

and their followers had dealing with "infinitesimals". This 

symbolic language is regarded as essential for a full under­

standing of the calculus as we know it today. Any philosophy 

~f mathematics should give an account of why this language has 

developed the way it has and is not simply an arbitrary system 

chosen to represent mental constructions. It must also 

explain why this language is regarded as a better system for 

expressing the mental constructions involved in the calculus 

than the one originally used. 

Logicism 

Logicism is the view that mathematics consists of certain 

truths and the arguments that establish those truths, of the 
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formal manipulations of symbols that express those arguments 

and truths, and of nothing else. The logicist denies that 

there is any subject matter to which mathematical truths 

refer. They are simply true by their own internal structure; 

that is, they are analytic. If one had complete knowledge 

of logical propositions then one could deduce through logical 

means all the theorems in mathematics. 

one giant tautology. 

Mathematics becomes 

Logicism has made a great contribution to mathematics, 

as a lot of mathematics as we know it is just logic, and 

logicism has given the impetus to simplify and unify basic 

mathematic'al notions. But rather than simply stating a 

belief that all mathematics is just logic, logicists, like G. 

Frege (1964, 1968), B. Russell (1903, 1919) and R. Carrtap 

(1931), have attempted to demonstrate that a system.of logic 

could, in fact, generate the theorems of mathematics. One 

would start with a list of fundamental logical laws and a 

list of permissible methods to deduce the truth or falsity of 

propositions. The symbolic expressions ~arking the first 

stages of the deduction would only be logical symbols. A 

system of· logical concepts to be employed for the logicist's 

thesis has been given by Carnap (1931) and is summarized in 

the following tables. 
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Concepts from propositional ca_lculus 

Concept Symbols ·Read 

The negation of a 

sentence p ,.....,, p not p 

The disjunction of 

two sentences p v q p or q 

The conjunction of 

two sentences p.q p and q 

Implication p::) q if p then q 

Concepts from functional calculus 

Concept Symbols Read 

Property f belongs 

to object a f (a) f of a 

Property f belongs For every x, 

to· every object (x) f(x) f of x 

f belongs to at 'There is an x 

least one object (gx) f ( x) such that f of 

Concept of identity 

Concept 

a and b are the names 

of the same object 

Symbols 

.a= b 

Carnap then goes on to say: 

I 

It is the logicist· thesis, then, that 
the logical concepts just given suffice 
to define all mathematical concepts, 
that over and above them no specifically 
mathematical concepts are required for 
the construction of mathematics. 

Read 

a is b 

(Carnap, in Benacerraf and Putnam (eds.), 
198'.3, po42) 

x 
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If we accept the logicist's thesis, then some form of 

transition is needed to get from the logical symbolization to 

a more familiar notation such as 1 + 2 = 3, and for the-

logicist, this involves the use of definition. Russell 

uses definition as a notational device where one symbol 

stands for another symbol or combinations of symbols. His 

definition of the number 2, for example, is a case in point. 

Initially the symbol 2m{f) is defined to mean that at least 

two objects fall under the concept f in the following way 

(where "= 11 is read 11 means by definition 11
) : Df 

2m(f) = Df (3x) (~y>'[..-<x = y). f(x).f(y)J 

This is read: there is an x and there is a y such tha,t x is 

not identical with y, and f belongs to x and f belongs to y. 

Similarly, we can define 3 (f), 4 (f) and so on. m m The number 

two is then defined: 

which reads: ·at least· two, but not at least three, objects fall 

under f. In like manner all the natural numbers can be 

defined, as well as negative integers, fractions, real and 

complex numbers, and the operations of addition, subtraction, 

multiplication and division, and eventually the concepts in 

higher mathematics such as convergence, limit, differentiai, 

integral and so ·on. 

The next part of the logicist's programme is to show that 

the theorems of mathematics can be derived from logical axioms 

through logical deductions. Thus, every sentence in 

mathematics, involving mathematical symbols, should be 
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translated into a sentence containing logical symbols and 

should be proved in logic. But the logicist's programme 

raises serious objections that suggest that logicism is not 

an adequate philosophy of mathematics. 

Firstly, the logicist claims that he is not discovering 

mathematical structures by proving their existence, but 

constructing them by definition. In discussing real numbers, 

for example, Carnap says of the logicist: 

~ ••• through explicit definitions, he 
produces logical constructions that have, 
by virtue of these definitions, the usual 
properties of the real numbers.<-

(ibid.' p. 44) 

But what is not clear here is the relationship between the 

logical constructions and the "usual properties of the real 

numbers". How do we know the usual properties of the real 

numbers? Russell's definitions are mere notational devices, 

where one symbol stands for a combination of symbols. But 

when giving a definition two things stand out. Firstly, it 

is implied that what is defined is worthy of consider'ation. 

It would be possible to define all sorts of new concepts 

using different combinations of logical symbols, but why do 

we choose the ones we do, and why do we consider them 

important? Secondly, it is hard to envisage a situation 

where one would wish to define something that one did not 

have some prior idea about. The definition of the natural 

numbers is a case in point. The question should be asked as 

to whether it is possible to have no knowledge of what we 

mean by natural numbers, to read and understand the_logicist's 

definition, and then to assert that one did now know what 

natural numbers were. We are still left with the belief that 
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the logicist's definition does refer to something, some 

concept that we can grasp without any knowledge of the 

logicist's programme. Logicism does not explain the nature 
-

of these natural numbers, nor how we can acquire such 

knowledge about them. 

The second objection to logicism concerns the view that 

all the theorems of mathematics can be derived from logical 

axioms through i'ogical deductions. This view holds that 

every sentence in mathematics involving mathematical symbols 

can be translated into a sentence containing logical symbols 

and can be proved in logic. For the elementary theorems of 

arithmetic this is easily shown, but it has also been shown 

that some theorems in mathematics require special axioms 

known as the Axiom of Infinity and the Axiom of Choice. 

The Axiom of Infinity states that to any class of n 

elements there exists a class of n + 1 elements. That means 

we can always add an element to a set that is not already 

contained in it. This then stipulates the existence of 

infinitely many elements, for we never reach the stage of not 

being able to add one more element to the class. The Axiom 

of Choice states that if ol is any collection of sets 

{A,B,C, ••• } and no set in ot, is empty then there exists a set 

z consisting of precisely one element from A, one element 

from B, and so on. This axiom is qui~e plausible if ol is 

finite but since the axiom is stated for any collection of 

sets one must take on faith the possibility of forming such a 

set z if °'- is infinite. Not only may t:>/., be infinite, it 

may be infinite and non-denumerable; that is, it may be 

incapable of being_put in a one-to-one correspondence with 



the natural numbers. 

The point is that some theorems of mathematics use 

these axioms for their proofs. While some phil~sophers 

accept them as principles of logic others do not. c. 

Hempel says: 

All the theorems.- of._ mathematics can 
be deduced from those definitions [of 
concepts of mathematics] by means of 
the principles of logic (including the 
axioms of infinity and choice). 
(Hempel, in Benacerraf and Putnam (eds), 

1983, p.389) 

But in a cautioning note he draws attention to the 

paradoxes that are found when the axioms of infinity and 

choice are included as principles of logic. And s. Korner 

says, in relation to Russell's definition of number: 

He -not only ·-defines- every __ natural 
number n as having a unique successor 

-n + 1, but has to assume as a non­
logical -hypothesis the axiom of 
infinity ••• The programme was to 
reduce mathematics to logic and not to 
logic plus non-logical hypotheses. 

(K5rner, 1960, p.59) 

To avoid the paradoxes, Russell introduced his Axiom 

of Reducibility and his Theory of Types, which did not 

allow elements of sets to be the sets themselves. But the 

final outcome was to base the foundations of mathematics 

not on logic, in the sense, of the rules of correct 

reasoning, but on logic plus axioms which were needed in 

order to justify the.notion of mathematics that we already 

had. In this sense it was a failure and drew Russell to 

despair: 

•••• after some twenty years of very 
arduous toil, I came to the conclusion 
that there was nothing more that I 



could do in the way of making mathematical 
knowledge indubitable. 
(Russell, as quoted in Davis and Hersh, 

1981, p.333) 

Attacking logicism from another angle, Se Korner (1960) 

/Ve 

argues that it is a mistake to attempt to show that mathematics 

is reducible to logic by virtue of its logical character. His 

position is that mathematics and logic have the same structure 

and yet are two separate fields of study. They are two 

separate a priori disciplines. Whereas logic has no subject 

matter, mathematics does, though not in the same sense, say, as 

zoology. For mathematics the subject matter is obtained by 

postulation. One can postulate the existence of Euclidean 

points and lines, for example, and then derive results from the 

nature of these postulated entities. The nature of the 

derivation of these results parallels the nature of derivation 

of results in logic. 

The Evolution of Mathematics 

In the previous sections we looked at some of the ideas 

of those who attempted to answer the question "What is 

mathematics about?" We considered Plato's mind-independent 

Forms, Aristotle's abstractions, Kant's synthetic a priori 

knowledge, and Leibniz' s claim that ma.thematics is not about 

anything at all. For the formalist it is the symbolic 

language and its associated rules that is mathematics, for the 

intuitionist it is the mental constructions, and for the 

logicist mathematics is just one giant tautology. 

Finding serious objections to all these points of view we 

might then wonder whether it is possible to give an answer to 

the question "What is mathematics? 11 If we assume that 

mathematics is something absolute, unchanging with place and 



time, 'then we may believe that eventually we will be able to 

give a precise answer. Bu~ a consideration of historical 

and cultural factors suggests that the nature of mathematics 

is notso absolute. When we take mathematics to be one 

particular element of a culture at a particular time it is 

possible to get a clearer picture of the nature of that 

activity. 

Now the activities of man are not dependent upon being 

characterized under a particular label such as "mathematics". 

It is in the nature of man to engage in particular activities 

and some of them are grouped together and assigned the name 

"mathematics" to distinguish between them and other 

activities within the culture. The activiti'es are. passed on· 

from one generation to another and across cultures, and are 

greatly influenced by other cultural elements such as 

agriculture, warfare, philosophy, physics, astronomy and so 

on. 

The work of the formalists, intuitionists and logicists 

all give some. insight into the activities of mathematicians, 

but instead of trying_ to give a precise answer to the 

question "What is mathematics?" we should be seeking to 

explain how certain activities of man have become grouped 

to~ether, how these activities have been passed on from 

culture to culture and generation to generation, and, in so 

doing, have evolved to what we call the mathematics of today. 

In his.book Proofs and Refutations published post­

humously in 1976, Imre Lakatos sets out a dia~ogue between a 

teacher and a class of students who are discussing the 

Euler-Descartes formula for polyhedra: 

V-E+F";::2-

71. 



72. 

where V is the number of vertices of the polyhedron, 

E is the number of edges, 

F is the number of faces. 

The teacher presents the proof of the formula, whereby the 

polyhedron is stretched out on a planeo The students 

follow up with a series of counter-examples and the proof of 

the formula is corrected and elaborated. The development · 

so presented by_ Lakatos is seen by him to be a model for the 

development of mathematics in general. His argument is 

that the development does not consist of the accumulation of 

undeniable truths but.consists of a series of conjectures 

and attempts made to prove them (by reducing them to other 

conjectures), or by attempts made to produce counter-examples. 

In this book and the paper "Infinite regress and the 

foundations of mathematics" (1962), he draws heavily on K. 

Popper's philosophy of science (see Popper, 1959, 1974). 

He admits to a theory of mathematical fallibility holding 

that mathematics is a science that grows by a process of 

successive criticism and refinements of theories and the 

advancement of new and competing theories: 

The lo~ical theor¥ of mathematics is 
an exciting, sophisticated speculation, 
like any scientific theory. It is an 
empiricist theory and thus can be either 
shown to be false of can remain conjectural 
for ever. 

(Lakatos: 1962, p.178) 

What is now needed is a philosophy of mathematics that is 

made explicit and that seeks to establish what mathematics is 

about and what forces operate to advance new theories. 



In this section we consider mathematics as a cultural 

system and develop the argument of a recent view,- by P. 

Kitcher, that regards it as growing and evolving through a 

series of rational transitions to the present day. Then in 

the next section we look at a particular historical episode; 

the development of mathematical analysis from 1650 to 1900; 

and see how changes occurred in response to the needs of the 

mathematics that was a part of the culture of the time. 
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(i) A consideration of the cultural influences on 

mathematics derives its impetus from a study of mathematical 

history and the relationship between mathematics and other 

elements of the culture. ~. Kline (1962) and (1972) , R. 

Wilder ~1965), (1975) and (1981), and R. Marks (ed) (1964)_ 

for example, all-stress the dependence of mathematics on the 

cultural life of the civilization which nourished it. The 

classical period of Greek culture from 600 B.C. to 300 B.C. 

and the rational quality of its philosophy and its sculptural 

·and architectural ideals, is compared to the. concern of the 

mathematicians of that age to reason abstractly and to 

contemplate the ideal. Practically minded Rome, and its 

concern with administration and-conquest, produced little 

that was truly creative and original (See Kline, 1972, pp. 

11-12). And so the general character of an age is seen to 

be closely related to its mathematical activity. 

mathematics has attained an extraordinary range and 

applicability. 

In our age 

While a study of these historical episodes suggests an 

intimate relationship between mathematics and other cultural 



elements, it is necessary to delve deeper and to try and find 

the forces within cultures that influence the shape of 

mathematics and that cause it to change. Two principal 

factors emerge; the nature of the problems to be solved, 

and the nature of the symbolic language that is being used. 

Much of the algebra that we use today, for example, in 

studying the theorems of mathema~ics, was unknown to the 

early Greek matpematicians. But there was no reason for the 

Greeks to develop any new symbolism for problems that had 

already been handled satisfactorily by geometrical methods. 

External forces were also at play. When mechanical gadgets 

began to appear in Greek, culture, such as siphons, fire 

engines and "an automatic machine for sprinkling holy water 

when a five-drachma coin was inserted" (Kline, 1972, p.62), 

the society no longer looked to mathematics for solutions to 

its problems. As Wilder says: 

One. can justifiably conclude that it was 
tho.se cultural stresses, external to 
mathematics, that came to dominate the 
course' of evolution of the entire Western 
culture, which were chiefly the cause for 
the gradual dying out of Hellenic 
mathematics. And that, as happened 
later during an era of ingenious 
mechanical experimentation in France, 
ideas having great potential 'died on the 
vine' because of a lack of demand for 
them in the cultural environment. To 
put it another way, science had more than 
satisfied the demands created by the 
cultural stresses of the period. 

(Wilder, 1975, p.155). 

To take another example, for most of its history 

mathematics avoided the use of the notion of infinity. Even 

Euclid's basic axiom said "Every line can be extended" rather 

than "Every Line is infinitely long". Similarly he proved 



that "Given any finite set of prime numbers there is another 

prime not in the set" rather than "There are infinitely many 

primes". But the study of wave motion in acoustics and 
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heat theory and the like, led to a consideration of 

trigonometric series, which further led to questions concern­

ing the foundations of ana~ysis that could only be explained 

by considering infinite_collections. What proved to be 

troublesome for mathematics and was avoided for so long could 

not-stand up against the cultural forces of the day. This 

ultimately led the German mathematician G. Cantor to develop 

his theory of the so-called transfinite numbers, and a new 

branch of mathematics took hold as it offered new ways of 

looking at troublesome !undamental problems. Such became 

the importance of the concept of infinity to mathematics that, 

in 1949, H. Weyl was led to call mathematics "the science of 

the infinite" (Weyl, 1949, p.66). 

We might now ask whether some theory can be given that 

provides an explanation as to how mathematical change occurs. 

Wiider (1975) lists eleven forces that are discernible in the 

development of mathematics. These he labels environmental 

stress (physical and cultural), hereditary stress, symboliz­

ation, diffusion, abstraction, generalization, consolidation, 

diversification, cultural lag,' cultural resistance, and 

selection. Problems in the environment, for example, 

suggest new problems in mathematics to be investigated. 

Hereditary stresses describe forces that operate within 

current mathematical practices, like the challenge to solve 

previously unsolved problems, and- the subsequent need for 

the creation of new concepts. New sym}:)ols are sometimes 



needed to describe new concepts and these concepts are 

sometimes diffused from one mathematical field to another in 

order to 'fill a need in the receiving field. Attempts are 

then made to generalize the results and to consolidate 

diverse mathematical systems by encompassing them under one 

system. Cultural lag and cultural resistance then describe 

the forces operating within communities of mathematicians 

that prompts them to continue with previously tried methods 

and current symbol, usage. Selection then comes into play 

when a choice has to be made among many competing ways of 

describing solutions to problems and the concepts and 

symbols involved. Wilder later takes these forces as the 

basis for twenty three laws governing the evolution of 

mathematics (1981). More recently however, P. Kitcher 

(1983) has given a view of the nature of mathematics that 

does not argue for its absoluteness, that accounts for the 

role of the human agent in its formulation, and that explains 

the growth of mathematics through a series of rational 

changes. It is to these views that we now turn. 

(ii) Kitcher rejects the view that mathematical knowledge 

is a priori knowledge and starts with the thesis that 

mathematics is descriptive of the structure of the physical 

world that we perceive through our senses. He begins by 

claiming that children learn the meaning of the terms set, 

number, addition, and the like, by initially eng~ging in the 

activities of collecting, segregating objects and so on. 

Rather than seeing this as a way of acquiring some knowledge 

of abstract objects, he sees the simple arithmetical truths 
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as true in virtue of these operations: 

•••• we might consider arithmetic to be 
true in virtue not of what we can do to 
the world but rather of what the world 
will let us do to it. 

(Kitcher, 1983, p.108} 

But if the only arithmetical truths are those that we 

perform then how do we explain the apparent truth of the 

proposition 1000 + 3000 = 4000 without having physically 

performed some segregation and collection of objects? 

Kitcher's answer is that mathematics is an "idealizing 

theory". The truths of arithmetic are those ideal 

operations performed by an ideal agent. The important 

point is that one arrives at a conception of those ideal 

operations only through actual operations with" actual 

objects. It-is this reaction with the physical world then 

upon which all of mathematics is derived, and in doing the 

mathematics that, we do we are describing a possible state 

of affairs of the world: 

I propose.that the view that 
mathematics describes the structure of 
reality should be articulated as the 
claim that mathematics describes the 
ope~ational activity of an ideal 
subject ••• · 

(ibid. , p .111) 

Such a view gives rise to questions concerning the 
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distinction between mathematics and science. If arithmetic 

is the idealization of manipulations of objects say, and the 

theory of the laws of ideal gases is the idealization of the 

properties of actual gases, why is arithmetic part of 

mathematics and the theory of ideal gases part of physical 

science? The key here is the role of the human agent. 



Arithmetic is the idealization of actions, such as grouping 

and matching, that human beings make. The theory of the 

laws of ideal gases is an idealization of the way gases 

react under certain conditions. Mathematics, as distinct 

from science, is the idealization of the possible outcomes 

that can occur when a human agent engages in the operations 

of collecting, grouping, matching and so on, with the 

physical environment. 

While we have concentrated the discussion on arith­

metic, in an analagous manner, Kitcher derives the basis of 

geometrical knowledge from the observations ~nd manipul-

ations of shapes in the physical world. The idealization 

of such possible manipulations leads to the propositions of 

geometry. 

Previously, in this chapter, it was noted that J.S. 
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Mill attempted to lay the foundations of mathematics in the 

empirical sciences and this brought much criticism from 

philosophers like Frege the logicist. Kitcher, however, 

re-examines Mill's work and, in fact, develops his programme 

around the language of Mill's arithmetic. Primitive 

notions such as one-operation, successor of an operation, 

additions of operations and matchability are used to develop 

the axioms of Mill's arithmetic, and the results we use in 

our familiar idealized arithmetic of the natural numbers. 

In like manner, Kitcher develops the axioms of the real 

numbers and the axioms of geometry. 

To summarize, Kitcher's main argument, backed by his 

developed programme of Mill's arithmet1c, claims that, 



initially, our mathematical knowledge is obtained by 

physically manipulating the world and describing the 

manipulations. It is because of this that he describes 

mathematics as being empirically based. Mathematics is not 
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about mind-independent objects, nor is it about constructions 

in the mind. Mathematics is an idealization. It is about 

the possibilities of ideal manipulations by ideal agents. 

But more is needed to explain the development of 

mathematics. If there is nothing else to the story then why 

didn't the ancient Greeks know the mathematics we know today? 

Presumably we both start with the same crude manipulations. 

There is evidently more to the story and something which 

Kitcher takes up. He takes our current knowledge to be 

explained by the transmission of knowledge from one society 

to its successor and from the society to the individual, and 

as for the manipulation and observation of physical objects, 

he says: 

Since I. claim that the_ knowledge of the 
mathematical tradition is grounded in 
the experiences of those who initiated 
the tradition, what I have offered can 
best be regarded as an attempt to explain 
how the arithmetical knowledge of our 
remote ancestors might have been obtained.-

(ibid., p.119) 

Then, in order to develop a theory that explains how 

mathematics has evolved from these crude beginnings, he 

compares changes in mathematics to theories of change in 

science by examining recent philosophies of science. By 

looking at particular episodes in the history of mathematics, 

he then illustrates his theory of mathematickl change and 

shows how mathematics has evolved through a series of 
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rational transitions. In order to follow his argument 

then, we first look at recent theories of scientific change. 

(iii) A simplified empiricist view of science is that it 

involves a set of observations and a set of theoretical 

- statements inferred from these observations. As science 

develo,ps, the set of observations accumulates and the 

theoretical statements are·modified to account for the new 

observations. The presumption is that without new 

observations science would be static. However, this 

simplified view of science is one that is rejected in 

recent philosophies and is rejected by Kitcher. 

The work of K. Popper and T. Kuhn has served as a 

springboard for a new way of looking at science. Popper's 

first views were published in 1934· in his· book The Logic of 

Scientific Discovery _(E~glish edition 1959). He claims 

that the difficulties of inductive logic, of moving from 

the particular-to the general, are insurmountable. No 

amount of observations can justify one's belief in 

theoretical statements. Popper's rejection of induction 

thus led him to reject the verification of theories. 

Theories of the world are.not discovered in the sense that 

observations of s'ingular events lead to ;them, nor are they 

verified in the sense that once put they can be shown to ~e · 

true by observing singular events. For Popper hypotheses 

can only be "corroborated": 

tnstead of discussing ·t~.e - 'probability' 
of a hypothesis we should try to assess 
what tests, what trials, it has withstood; 
that is, we should try to assess how far 
it has been able to prove its fitness to 



survive by standing up to tests. In 
brief, we should try to assess how far 
it has been 'corroborated'. 

(Popper, 1974, p.251) 

The power of the h~po~heses is assessed by their ability to 

account for previous observations and their ability to stand 

up to tests of rejection. 

Kuhn's work makes a distinction between what he terms 

"normal" science and revolutionary elements in the develop-

ment of science. He-says: 

••• 'normal science' means research. firmly 
based-upon one or more past scientific 
achievements, achievements that some 
particular scientific community 
acknowledges for a time as supplying 
the foundations for its further 
practice. 

(Kuhn, 1962, p.10) 

Revolutionary elements, such as the transition from 

Aristotle's view of cosmology to Copernican cosmology, and 

the transition from Newtonian physics to the theory of 

relativity, occur as anomalies arise within the practice of 

"normal" science. Questions need to be asked in different 

ways and quite often a new language and accepted procedures 

of reasoning are needed to answer-the questions. This 

often involves a new outlook on the nature of science. 

Revolutionary methods gain their approval by the scientific 

community accepting their ability to e~plain hitherto 

unexplained problems. But the introduction of a new 

language and reasoning poses new problems that become part 

of "normal" science. New observations are made and new 

hypotheses are considered. Scientific change is thus 

thought of as ·occurring through additional observations and 

also through internal stresses caused by the.new language 

and reasoning. For Kitcher these same procedures-can 
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account for changes in mathematics. 

An anticipated objection to Kitcher's view is that it 

appears that mathematical theories have a higher rate of 

survival than scientific theories. The reply is that this 

is due to the nature of the different theories. In 

hypothesizing, the scientist is attempting to arrive at the 

correct theory of explanation. The mathematician is:.· offering 

an idealization of what is pos.sible in the physical world. 

Kitcher contends that our basic mathematical knowledge 

is derived perceptually and then grows through our attempts 

to idealize the possibilities of the physical world. So 

mathematics consists of idealized theories of ways in which 

we can operate on the world. This way of idealizing becomes 

what Kitcher calls a "mathematical practice" and consists of 

five components. These comp?nents are identified as: 

L - a language component, 

M - a set of metamathematical views, 

Q - a set of accepted. q.ues tions , 

R - a set of accepted reasonings, 

s - a set of accepted statements. 

He introduces the symbol <L,M,Q,R,S) to stand for an 

arbitrary mathematical practice and says: 

The problem of accounting ·for the growth 
of mathematical knowledge becomes that of 
understanding what makes a transition 
from a practice (L,M,Q,R,S) to an 
immediately succeeding practice 
(L' ,M' ,Q' ,R' ,s'> a rational transition. 

(Kitcher, 1983, p.164) 

Consider now the five components in turn. 



(a) The language component~ There are at least three ways 

in which rational change occurs in the language component of 

a mathematical practice. Firstly, there are simple 

notational changes in symbols, where new symbols are 

introduced to stand for accepted concepts. Secondly, there 

are examples of disputes arising in mathematics due to 

different meanings being attached to the same word or symbol. 

The resolution of such disputes involves ~ change in the 

language so that the different concepts under discussion can 

be referred to by distinct words and symbols. Thir,dly, in 

attempting to think about problems in a different way, one.is 

forced to introduce symbols that appear to have no referents. 

In Cantor's work on number theory and transfinite numbers, 

for e;xample, he introduced the . symbol "ur" to stand for the 

first number immediately following the series 1, 2, 3, ., ••• 

And i = ~l is introduced to stand for the solution to the 

. 2 1 0 equation x + = . 

(b) The metamathematical views. The metamathematics of a 

practice includes the standards of proof, the scope of 

mathematics and the ~elative value of particular types of 

inquiry. These views of a practice become most evident 

when other transitions suggest a revolution is under way. 

( c) The.accepted questions. The set of accepted questions 

are formulated in the language of the practice and are 

regarded as unanswered and worth answering. They may be 

instrumentally worthwhile answering because their solution 

will aid the solution of other proolems in mathematics and 
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science. Alternatively, they may not appear to have 

immediate instrumental value but do have clear cut answers. 

An example would be the question "Are there only a finite 

number of twin primes? 11 
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(d) The accepted reasonings. The set of accepted 

reasonings is the sequence of statements that the 

mathematicians put fonrard in support of the statements they 

assert. These accepted reasonings are ultimately connected 

to the metamathematical views of the practice. 

( e) The accepted statements. The set of accepted state-

ments is the set of sentences, formulated in the mathematical 

language of the practice, to which all conversant readers 

would asse~t. The types of changes that could occur here 

involve a reformulation of statements in iine .with changes in 

the language. For example, before the division of numbers 

into real and complex, mathematicians would have assented to 

the statement "There is no number whose square is -1." Now 

mathematicians deny that statement. The accepted reformul­

ation is "There is no real number whose square is -1." The 

thing to which the word "number'' refers has changed. 

To summarize Kitcher's view then, a rational change in 

one of the components of a mathematical practice is intimate­

ly tied to the current view of the other components and more 

often than not involves changes in them too. In particular, 

for a certain mathematical practice, a method is proposed 

for answering certain questions. This introduces a new 

language which advances new statements and threatens existing 
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statements. It may also advance new ways of reasoning. 

However, the proposal for change is accepted because of its 

power in answering important questions, and the practice is 

extended to encompass it. While the search for new 

methods of rigorous reasoning begins, involving changes in 

the language, prior metamathematical _views.may be overthrown. 

The resultant product is a mathematical practice which may 

appear completely different from that which initiated the 

process. A rational transition has occurred. 

Before examining a particular case-in the history of 

mathematics, we conclude this section by matching what we 

have said about rational mathematical change to the question 

.of how people have the mathematical knowledge that they do. 

Given the orthodox philosophical position that knowledge is 

warranted tr~e belief, Kitcher's view is that most cases of 

mathematical belief are warranted in virtue of them having 

been explici t~ly taught by a community authority, or by 

virtue of having derived them by types of inference that 

have been explicitly taught. Kitcher then envisages a 

chain of communities beginning with a community whose 

beliefs are perceptually warranted. He thus sees the 

growth of mathematical knowledge as a process by which: 

•••• a scattered set of beliefs about 
manipulations of physical objects, gives 
rise to a succession of multi-faceted 
practices through rational transitions, 
leading ultimately to the mathematics of 
today. 

(ibid., p.226) 

Thus, to judge the individual~s claim to having mathematical 

knowledge is to judge the coimnunity authority's claim that 



the mathematical beliefs it has are warranted. For Kitcher 

they are warranted because they have been derived initially 

from beliefs that are perceptually warranted; that is, 

from physical manipulations of the environment; and via 

transitions that are rational. 

A Case Study: Analysis from 1650 to 1900 

Present day mathematical analysis originated from the 

calculus of the 17th century. The development of calculus 

independently by Newton and Leibniz introduced a new 

language into mathematics, accompanied by new reasonings, 
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new statements and new questions. But their work was 

accepted for it gave answers to questions that mathematicians 

had been asking for years before that. These questions 

involved such things,as finding the tangents to curves, 

computing areas, and finding the maxima and minima of 

functions. The techniques of differentiation and 

integration, developed by Newton and Leibniz, led to 

algorithms for the solution of many of these problems. The 

power to answer questions was great enough for the new / 

language and reasonings to be accepted. What followed can 

be viewed as a series of transitions, a~ the components of 

the mathematical practice of the time changed to encompass 

this new way of successfully dealing with previously 

unsolved problem~. 

Newton introduced the notions of fluent and fluxion. 

A fluent is any quantity which is in the process of 

changing, and the fluxion is its rate.of change. The 



problem becomes one of determining the fluxion given the 

fluent (differentiation) , and determining the fluent given 

the fluxion (integration). 

As an example, imagine a particle moving along the 

3 curve y = x where y denotes the position of the particle at 

time x. Assume that through a small interval of time, f) , 

the velocity remains constant. In this time y increases to 

y + y e and x increases to x + x e . Then 

This says the 

y + ye = (x + x a) 3 

3 x +.ye= (x + . e 3 x ) 

y 

, 
:l. 
• x 

(x . e 3 3 + x ) - x = e 
2• •2f) 2 3x x9 + 3xx + 83 

= 

2. = 3x x 

3x 2 = 

as we can omit terms containing 
$ since they are infinitesimally 
small. 

velocity at time x is 3x 2 
• But questions remain 

concerning the reasonings behind the method. Why can we 

assume that fluxions remain constant through a small interval 

of time? Why are we allowed to neglect some terms? Either 

B equals zero or it does not. If it does then we cannot 

divide by it, and if it doesn't then the terms 3xx2e 
are not zero and cannot be omitted • 

2 and(} 

. Leibniz's work developed in a similar way, except that 

he did not adopt a kinematic approach and his symbolism was 



different. But he effectively arrived at the same 

conclusion. If Y = x
3 h ~ 3 2 

t en dx = x • From the work of 

Newton and Leibniz the techniques of differentiation and 

integration were developed and many important results were 

found. Leibniz and his followers found that they could 

compute the sums of. infinite series. For example, 

1 1 "fr 

{. 2 dx = 
.1 + x 4 

1 
But the power series expansion of i- + x 2 was known to be 

2 4 6 
1 - x + x - x + ••••• and integrating this term by term 

gives 
1 

1 1 1 1 

~ 2 dx = 1 - + + . . . . . 
1 + x 3 5 7 

Therefore, 
1T 

1 1. 1 1 = - -+ '":" - + . . . . . 
4 3 5 7 

The power o.f the new language and reasonings in 

answering certain problems assured their acceptance, even 

though there were some anomalies. For example, Leibniz 

claimed that 

---
1
-- = 1 - x + x

2 
- x

3 
1 + x + ••••• 

Putting x = 1 gives: 

1 2 = 1 - 1 + 1 - 1 + ••••• 

But surely 1 - 1 + 1 - 1 + ••• = ( 1 - 1) + ( 1 - 1) + 

= 0 + 0 + 

= 0 

. ~ . 

or, 1 - 1 + 1 .... 1 + 1 - • • • = 1 - ( 1 - 1) - ( 1 - 1) - ••• 

1 0 - 0 - ••• 

= 1 
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In attempting to explain the anomaly, Euler writing some 

forty years after Leibniz, suggests that the expansion 

1 ! x = 1 - x + x2 - x3 + ••• holds only when x < 1, if x 

is positive. 

The work of Newton and his successors followed a 

different path to Leibniz's. In 1734 Berkeley wrote a 

scathing criticism of Newton's work demanding more rigour 

(see Boyer, 1~59, pp.224-9). He claimed that while the 

methods were successful, no explanation for their success 

had been given. This call was answered by- a large number 

of writings, providing a geometrical interpretation of the 

algebraic techniques employed. It was reasonable for 

Newton's successors to do so, given their metamathematical 

views of the time and the criticisms levelled against their 

work. But Berkeley 1 s· criticisms on the foundations of 

Newton's work had long term consequences. For Leibniz's 

successors on the continent the criticisms took second place 

to the algebraic interpretation of the calculus and its 

power in answering questions. And, as Kitcher puts it: 

Priding_ itself on its rigor and its 
maintenance of a proper geometric·a1 
approach to mathematics, the British 
mathematical community fell further 
and further behind. 

(Kitcher, 1983, p.240) 

In the 1820s Cauchy introduced the algebraic concept 

of a limit to tackle the problems of the calculus. 

When the values successively_· 
attributed to the same variable 
approach indefinitely a fixed value, 
eventually differing from it by as 
little as one could wish, that fixed 
value is called the limit of all 
others. 
(Cauchy, translated by Birkhoff, 1973, 

P• 2) 
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An infinitesimal was then defined to be a variable ,that has 

zero as its limit. The notions of continuous functions, 

derivatives and convergent and divergent series, which had 

been used extensively by Euler and his cont~mporaries, could 

now be given a more rigorous definition in terms of limits. 

The important point is that Cauchy was not concerned about 

rigour for rigour's sake but for the use of convergent 

series in answering questions that were considered important 

in the mathematical practice of the day. Such questions 

centred around the work done on vibrating strings and 

Fourier's work on representing some functions as the sum of 

trigonometric functions. The problem then became one of 
I 

whether any function could be given a trigo,nometric series 

representation. So, rather than proceeding as a response 

to a call for securer foundations to mathematics, as 

Kitcher says: 

•••• I think that examination of this 
episode will underscore my thesis that 
foundational work is not usually 
undertaken by mathematicians because 
of apriorist epistemological ideas, 
but because of mathematical needs. 

(Kitcher, 1983, p.246) 

The power of Cauchy's work in answering important 
I 

questions in the mathematical practice of the time led to a 

flurry of writing. But.the original work itself provided 

inconsistencies both in language and results. Cauchy's 

use of infinit~simals as constants led to prob1ems and his 

solution to the Fourier problem was not complete. Abel, 

for example, in 1826 showed that there existed an infinite 

series of continuous functions that was not everywhere 

continuous. 
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S . 1 s· 2 1 . in x - 2 in x + 3 Sin 3x - ••• 

is not continuous at each value of x = (2m + 1)1T. 

It was left to Weierstrass to introduce a formulation 

of the limit that banished the troublesome talk of 

infini tesirnals ._ . / Cauchy·' s criterion for convergence was 

formulated in Weierstrass's terminology as: 

00 

L_ u1 · is convergent i-f and only if 

i = 1 

for all E > O there is an N such 

that, for all r > O, l~:: ui < £. 

The 1860s and 1870s saw a proliferation of theorems in 

analysis by Weierstrass and his students and Weierstrass's 

formulation is now common to all elementary textbooks on 

analysis. 

Cauchy's work also led to Dedekind's analysis of the 

continuity of the real numbers, providing a transition from 

the geometrical interpretation of considering real numbers 

as spread out on a straight line, to a purely algebraic one. 

Dedekind introduced the notion of a "cut", which is a 

separation of the real numbers into two classes A and B such 

that for an x and y, if x belongs to A and y belongs to B 

then x < y. A cut, designated by (A,B) , is uniquely 

determined by a real number. 

This new language allowed the derivation of familiar 

theorems about real numbers as well as some limit existence 



theorems that Callchy had failed to prove, such as the result 

that a monotonically increasing sequence, bounded above, is 

convergent. Furthermore, Dedekind's work itself raised 

questions concerning the existence of sets which were taken 

up by Cantor and others at the end of the 19th century. 

For Kitcher, the transition.-- from one mathematical 

practice to another does not follow from a response to 

epistemological aims, but to the needs of mathematical 

research. The calculus of Newton and Leibniz was warranted 

because it was a procedure that answered important questions 

in the mathematical practice of the time. Successive 

investigations were prompted by the use to which the 

calculus could be put. The new language and accepted 

reasonings satisfied the needs of research while spawning 

new questions and new problems of rigour. Axioms and 
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definitions were accepted because they systematized previous_ly 

accepted problem solutions, and studies in the foundations 

of mathematics were motivated by the pragmatic concerns of 

working mathematicians. 

To conclude then, this case study has illustrated 

Kitcher's theory by noting some of the rational transitions 

that occurred to make the mathematical practice of 1900 

different from the one of 1650. The next chapter considers 

the implications that this theory about the nature and 

evolution of mathematics might have for the school 

curriculum. Common justifications given for teaching 

mathematics need to be re-assessed in light of the views 

developed in Chapter II on the value of knowledge.and the 
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, 
views developed in this chapter on the nature of mathematics. 

The role that mathematics plays in allowing people to 

develop a world view and be in the best position to determine 

their own ends must be articulated. 



CHAPTER IV 

CURRICULUM CONSIDERATIONS AND CONCLUSIONS 

In Chapter II, M.A.B. Degenhardt's argument, which 

contends that a curriculwn ought to be chosen based on a 

particular notion of the worthwhileness of knowledge, was 

developed. The idea that some knowledge is valuable in 

educating human beings into a cultural inheritance that puts 

them in the best position to work out what to do with their 

lives, involves developing a "world view" by studying the 

traditional evolved bodies of knowledge. 

In Chapter III, the nature of mathematical knowledge in 

particular was considered, and the chapter concluded with P. 

Kitcher's argument that mathematics began as crude manipul­

ations by man and his attempts to describe those manipul­

ations. The a priori nature of mathematics was rejected 

and replaced by Kitcher's "defensible empiricism". 

Mathematics, it was argued, is an idealization, about the 

possibilities of ideal manipulations by ideal agents. A 

mathematical practice consists of a language component, a 

metamathematical view component, and sets of accepted 

questions, reasonings and statements. Such a practice is 

passed on from one community to another but is subject to 

rational transitions. These transitions occur in response 

to the practice's power in answering important questions of 

the day and in the subsequent work in making rigorous other 

components within the practice. 

In this chapter some implications of the conclusions 

reached so far are considered. The important point is 
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that in most schools mathematics forms part of the 

compulsory curriculum for a great deal of time, and we 

first need to look at the justifications given for teaching 

so much mathematics to so many students. The justific­

ations first considered, and rejected, are the claims that 

so much mathematics ought to be taught to all students 

based on i-ts usefulness, ;i. ts intrinsic worthwhileness, and 

its power in developing the mind. It is then argued that 

mathematics, by its very nature and its cultural 

significances, can contribute to human beings ·developing a 

world view, and thereby put them in a better position to 

determine their own ends. Finally, some implications that 

such a justification for teaching mathematics might have on 

the school curriculum are considered. 

Common Justifications Given for Teaching Mathematics 

(i) One justification given for teaching mathematics is 

that mathematics is useful. In order to examine this 

argument it is necessary to look at the various ways in 

which mathematics might be claimed to be useful. 

(a) It might be claimed, for instance, that studying 

algebra in grade 9 is useful because it will be used in 

studying calculus in grade 11. Of course the objection is 

that no justification is given for studying calculus in 

grade 11. Ultimately, the justification, in terms of 

usefulness, must lie outside the subject. 

(b) A second claim might be that mathematics ought 

to be studied because it is useful in other subjects. 

Technical subjects apply the rules of measurement and ratio, 
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for example. The graphical representation of data and the 

·determination of statistics, such as mean, median and mode, 

are useful in the social sciences.· And calculus is used 

in calculating rates of change in physics. In Chapter III 

we saw that a mathematical practice evolved from crude 

manipulations of objects and as a response to questions 
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that were thought to be important in some way. The view 

that mathematics is the language describing the possibilities. 

of time and space and the view that science is about forming 

and testing hypotheses about the nature of time and space 

clearly implies that mathematics is useful to scientists. 

Two questions remain however. Firstly, can we 

establish that science,.or any other subject where 

mathematics is useful, is itself worthwhile? Secondly, is 

mathematics necessary for acquiring knowledge in that 

subject? If it can be shown that the subject is worthwhile, 

but that mathematics is not necessary for acquiring 

knowledge-in that subject, then there is no justification 

here for making mathematics compulsory. The claim that 

mathematics ought to be studied on the grounds that it is 

useful in other subjects simply forces us to look at the 

value of those other subjects, and the necessity of 

mathematics in acquiring knowledge in those subjects. It 

is not in itself, however, a justification for teaching so 

much mathematics to all students. 

{c) A third claim might be that mathematics is useful 

for people in their employment. It is true that many jobs 

require a lot of mathematics and perhaps all jobs require 

some mathematic$. Highly skilled careers in technology 



quite obviously use a lot of mathematics, since technology 

has developed from man's manipulation of the environment, 

and the language component of a mathematical practice 
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describes those manipulations. But while some mathematical 

knowledge may be necessary for some jobs, the compulsion in 

studying mathematics would demand that the mathematics 

taught is necessary for all students in whatever job they 

secured. -It is not difficu-lt to think of many positions 

where very little mathematics is used. So, in attempting 

to justify mathematics for all on the grounds that it will 

be used by all in future occupations, we have arrived at a 

minimal amount of knowledge that warrants very little time 

at all on the curriculum, certainly not the current amount 

of time spent in most schools. 

Another objection: to be considered is that if the 

mathematics required for certain jobs is quite specific, and 

if it is valued only for its usefulness in those jobs, then 

while it ought to be a part of job training it need not 

occur at school. In fact it can be argued that such 

mathematical knowledge is better taught 11 on the job" and by 

practitioners in the field, where the user can see 

immediately the use to which the mathematical knowledge can 

be put. For any given class of mathematics students at 

school, there is a large range of occupations that those 

students might end up in. It is impractical to present to 

all students all the specific mathematics that they might 

use in such a large occupational range. 

(d) A fourth claim of usefulness might be that 

mathematics is useful for everyday living. That is to say, 



that in the daily activities that one concerns oneself with, 

there is some mathematics to be used. And this is clearly 

so. The simple manipulation of objects and the communic­

ation of ideas requires us to use the language that has 

evolved to describe those operations. This includes the 

basic operations of counting, adding, subtracting, multi­

plying and dividing, and the ability to read and understand· 

the presentation of information from tables and graphs. 
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Such mathematical knowledge is worthwhile on the grounds that 

without it one would not be in the best position to 

participate in the community as we know it. The ability to 

handle simple financial transactions, for example, would be 

regarded as essential for all members of the community, and 

the ability to understand economic issues on a wider scale 

when· deciding how to vote at elections would be regarded as 

highly desirable. It.--seems ~easonable to expect that schools 

ought to be about the.business of compulsorily introducing 

students to this language. But the question is whether this 

requires the current amount of time spent on mathematics. 

Such mathematical knowledge that is useful for everyday 

living is acquired by most people well before the end of 

compulsory education. 

So while accepting that some mathematics is useful to 

all ·people and that some people use a lot of mathematics, we 

reject the claim that the justification for teaching 

mathematics for the current length of time to all students is 

based on the usefulness of mathematics. 

(ii) A second justification given for teaching mathematics 



to a'll is that it is intrinsically worthwhile; that 

mathematical knowledge is valuable for its own sake. 

If intrinsic worthwhileness is simply a matter of 

individual psychology, whereby the learner claims to like 
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doing mathematics and that's all, then there can be no claim 

here for/teaching mathematics to-everyone. Someone-who 

does not like doing mathematics can equally claim that 'it is 

not intrinsically worthwhile and that there is no justific-

ation in studying ite The justification for teaching 

mathematics to all, based on its intrinsiCTlworthwhileness, 

must centre on the natu_re of mathematics and what-:-- makes it 

an intrinsic worthwhile activity irrespective of any 

preference of the learner. 

But then is it the knowledge of the accepted mathemat-

ical statements of the practice couched in the practice's 

language that is valued? For instance, is simply knowing 

that 11 4 + 2 = 6" or that 

"Jx ln x dx = 
x2 
2 (ln x - ~) + c 

for some constant c" 

intrinsically worthwhile? Quite clearly many mathematical 

statements would not be valuable without an understanding of 

the ~easoning behind the statements and_ an ability to arrive 

at the mathematical statements by using the practice's 

reasonings. But the question remains as to why this is 

intrinsically worthwhile and justifies the teaching of 

mathematics to all. 

In Chapter II, arguments for basing the school 

curriculum on the intrinsic worthwhileness of some subjects 



were considered. G.H. Bantock (1963) argued that some 

subjects are more valuable than others because their -

understanding involves a higher degree of intellectual 

functioning. R.S. Peters (1966 and (ed.) 1973) argued 
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that some subjects are intrinsically worthwhile because they 

are concerned with truth and rationality. But these 

positions were found to have serious objections as .they 

stande If we claim that mathematics ought to be on the 

school curriculum for all students then we must present an 

arg?ment based on the educational value of mathematics. 

Some activities may be intrinsically worthwhile but form no 

part of the school curriculum, while other activities, such 

as writing and using calculators, may be deemed to be highly 

worthwhile educationally while possessing little or no 

intrinsic worthwhileness. So the claim that pursuing and 

possessing mathematical knowledge are intrinsically worth­

while activities is rejected as a justification for teaching 

mathematics to all. 

(iii) A third justification given for teaching mathematics 

to all is that it develops the mind or promotes intellectual 

development. The value of mathematical knowledge lies 

outside of the usefulness to which the knowledge can be put 

and the intrinsic worthwhileness of simply possessing or 

pursuing the knowledge. If P. Hirst's thesis is correct, 

and there are distinct forms of knowledge, then it may be 

argued that there are distinct kinds of developed minds. A 

mind can be highly developed in the sphere of moral knowledge, 

for example, but quite undeveloped in the field of the 
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physical sciences. If there are logically distinct forms 

of knowledge, and if a developed mind is defined to be a 

mind developed in any one or more of those distinct forms, 

then it is not necessary for all students to study 

mathematics to develop their minds. To justify mathematics 

learning for all, on the grounds that it does develop the 

mind, implies that one values a developed mind and that 

mathematical learning is necessary for the mind to develop. 

It is appropriate, therefore, to consider the arguments which 

contend that mathematics is necessary for the mind to 

develop. 

(a) It may be argued, for instance, that the more 

mathematical sentences in the mathematical practice that are 

accumulated in the mind, the more developed the mind is. 

But it is difficult to see how we can place value on a mind 

which simply possesses these statements and allows one to 

write them out on demand, as it were. We would hold, at 

least, that one should arrive at the sentences through 

accepted reasonings and see how they are used to solve the 

accepted questions of the mathematical practice. But even 

so, we would still be left with the problem of explaining 

why we value such a mind with ~his abilityo 

(b) If we argue that mathematics is needed to develop 

the mind in general, then we are saying that mathematical 

knowledge is somehow needed in order that development 

proceeds in other areas. This sort of argument would 

contend that while there may be distinct forms of knowledge 

that can be developed in the mind independently, mathematics 

is granted a highe~ status, in that all other forms are 



dependent upon it. Arguments granting this higher status 

.to mathematics might centre around the logical processes 

involved in mathematics. But as we saw in Chapter III, a 

mathematical practice is not just logic, even though its 

reasonings may well apply logical principles. Mathematics 

is an idealization of the possibilities existing within 

time and space and it attempts to form generalizations by 

describing these possibilities in the language of the 

practice. It is this very generalization, however, that 
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makes it appear that mathematics is required for all spheres 
' ' 

of intellectual development. But the sorts of reasonings 

that are required in other areas of intellectual development 

can be acquired within that subject and with no prior 

knowledge of the mathematical practice of the day. 

(c) Instead of arg~ing that mathematical knowledge is 

necessary for developing the mind, we might simply argue 

that it is helpful in other areas of intellectual develop-

ment. This is to suggest that development in mathematics 

might somehow be transferred to other areas of development. 

The attractiveness of this argument s~ems from a view of 

mathematics as being about problem solving in the abstract, 

where training in mathematics is regarded as acquiring 

problem solving·techniques which can be transferred to· other 

disciplines. There are, however, objections to this 

argument •. 

Firstly mathematics is about something. It is not 

problem solving in the abstract. It is about the possibil-

ities that exist in time and space and it is about learning 

a particular language of mathematics that describes those 
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possibilities. Secondly, there is no conclusive 

psychological evidence for the transfer of learning. (See, 

for example, the earlier paper by R.M. Gagne in H.F. 

Clarizio et al. (eds.), 1981, pp.117-126, and papers by J. 

Baron, J.R. Hayes and D. Meichenbaum in S.F. Chipman et al. 

(eds.), 1985, pp.365-426.) It has been easy to show that 

so~e people solve problems more easily than do others, but· 

it has not been easy to show the transference of problem 

solving. Deliberate attempts "to teach students to think" 

have not been successful. Certainly there is no clear 

evidence that mathematics training is necessary for develop­

ment in other intellectual areas. 

Thirdly, even if it is true that there is some transfer 

between different disciplines,· the task should be to 

establish what sort of a developed mind one hopes to promote, 

and then to teach specifically for it. If mathematics is 

to be valued for its role in intellectual development then 

the sorts of reasons given could range from the view that 

mathematical knowledge is necessary for any kind of develop­

ment to proceed, to the view that a mind developed in 

mathematics alone is sufficient to claim intellectual develop-

ment. The psychological evidence, and P. Hirst's thesis on 

forms of knowledge, suggests that mathematical knowledge is 

not necessary for development in other areas ·and we have not 

yet established in what sense having mathematical knowledge 

contributes to the promotion of a developed mind. 

So the claim that mathematics develops the mind or 

promotes intellectual development is also rejected as a 

justification for teaching mathematics to all. In the next 



section we focus on arguments based on the cultural 

significances of mathematics. It is shown that these 

arguments are warranted given the views developed so far on 

the value of knowledge and the nature of mathematical 

practices. 

The Cultural Importance of Mathematics 

So far in this chapter we have attempted to give some 

justification for teaching a lot of mathematics to all 

students and considered arguments in light of our views on 

the nature of mathematics. Mathematics is an e:vorv:tng body 

of knowledge which, at any particular time, constitutes a 

mathematical practice, consisting of a set of accepted 
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statements in a mathematical language. These statements are 

arrived at by certain accepted reasonings. A mathematical 

practice also has important questions that may be unanswered 

and certain metamathematical views that illustrate the s~ope 

of mathematics and the nature of particular types of 

mathematical inquiry. So far our claims for justification 

have centred on only thre'e of the components of a mathematical 

practice. We have considered the use to which statements can 

be put, thee intrinsic worth of possessing statements in the 

language of the practice, and the value that the statements, 

the langu~ge and the reasonings of the practice have in 

developing the mind. Such justifications were found wanting. 

The fourth kind of justification that is argued for here 

considers all five components of a mathematical practice, and 

shows how mathematics teaching can be justified from the point 

of view of the cultural importance of mathematics. 
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In order to do that, it is necessary, firstly, to 

clarify what is meant by the term - "culture". The word 

has been used in many different contexts, sometimes 

synonomous with the word. "society" as in "Australian 

culture", or sometimes meaning one refined in tastes and 

manners as in "a c'ultured gentleman". The word is used 

here to mean that, at any particular time, a given society 

possess~s a __ '~q~~ture .. which is a collection of customs 

rituals and beliefs, and different languages; spoken, 

written and symbolized in different ways; that allow 

communication of ideas between members of the society. It 

is argued that mathematics has been culturally important in 

that it has contributed to the way individuals have inter-· 

preted the world by influencing their beliefs, their problem 

solving techniques and the language they have used to 

communicate ideas. 
' 

,(i) Firstly, we could argue that mathematics is itself one 

of many great cultural achievements and not to be aware of 

these achievements is not to have an understanding of the 

culture. But this in itself is not enough for it doesn't 

take into-account our view of the nature of mathematics. 

The formalist, and his view-that mathematics is simply the 

formal manipulation of symbols; the intuitionist, an~ his 

view that mathematics is the manipulation of symbols together 

with mental constructions; and the logicist, who regarQ.s 

mathematics as one giant tautology; all could look at the 

mathematics we have today and claim it as a great cultural 

achievement. We have argued, though, for the evolution of 

mathematics through rational transitions and the development 
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of a language and accepted reasonings that answered important 

questions within the culture. The mathematical practice 

also had with it metamathematical views on the scope of 

mathematics. To regard mathematics simply as an impressive 

cultural achievement in its own right is not to understand 

how mathematics has influenced the evolution of other aspects 

of the culture, and how the problems. considered important 

within a culture have influenced the evolution of mathematics. 

-~dvances made in mathematics are importantly linked to 

advances made in other parts of the culture. 

(ii) So the second point to be made is that to fully under­

stand how ~ culture evolved one must be able to understand 

how the evolution of mathematics has been a part of that wider 

cultural evolution. To justify the place of mathematics on 

the curriculum by this argument would have radical 

consequences for the content of mathematics courses. Rather 

than simply presenting a language of mathematics and a set of 

statements, one would have to present, from an historical 

perspective, an account of how individuals have influenced 

aspects of the culture by their work in mathematics. For 

example, the study of projective geometry by Pascal and 

Desar9ues in the early 1600s was influenced by painters' 

attempts to construct an optical system of perspective. 

Navigators then used this projective geometry to design new 

map projections. And the writings of Descartes, Galileo and 

Newton in a precise logical style, free from metaphor and 

symbolism, influenced the prose style of many literary 

scholars in the late 1600s and early 1700s. To come to 

understand mathematics in this way is quite different from 

"doing" the mathematics of the present day, which means using 
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the language and reasonings of the current practice to answer 

previously solved problems and arrive at al-ready known 

statements. It is one thing to be able to "do" problems in 

dynamics and another to be able to understand how the work of 

Newton and Leibniz contributed greatly to our understanding 

of the motion of moving objects. 

(iii) The third point to be made is in relation to the meta-

mathematical views associated with a mathematical practice, 

and the power and scope of mathematics as perceived within the 

culture. At particular times in history, man has looked to 

the current mathematical practice and seen within it a mode of 

thinking that he has applied to other elements, of the culture. 

The success of mathematics in answering important questions in 

the physical sciences, for instance, not only affected the 

mathematical practice of the day, it also influenced man's 

thinking in other areas such as the social sciences and art. 

The economists of the 18th century, for example, sought to 

"mathematize" economic theory. Thomas Malthus and David 

Ricardo attempted to identify the factors that influenced 

economic life and to discover natural laws of economy. When 

' this failed, economists concentrated on specific phenomena. 

where they applied their mathematical techniques to deduce 

conclusions. The modern movement now has seen a massive 

amount of symbolism used to describe and predict economic 

behaviour. But in attempting to provide natural laws of 

economy it can only be said that, so far, mathematics has 

failed. The activities of man and the factors that influence 

his behaviour have not been neatly packaged and predicted with 

certainty. But this very fact has also influenced 



mathematical activity. The idea of nature being unpredict-

able and composed of chance events has seen a rise in the 

mathematical theories of probability and statistics. 
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The important point is that the mathematical practice 

of the day becomes' culturally important partly in light of 

the metamathematical view associated with it. While its 

scope may prove to be limited, and while it may not be 

successful in its application to all other elements of the 

cµlture, the fact that man has looked to the mathematical 

mode of thinking as an answer to various problems, is in 

itself significant. An understanding of the culture would 

not be complete unless one had an understanding of the 

various ways man has attempted to answer problems ·within the 

culture. 

The aim of this chapter was to cqnsider the nature of 

mathematics and to argue for its inclusion in the curriculum 

because of its contribution in allowing human beings to 

develop a world view and determine their own ends. It has 

not been argued that there is a "mathematical view" of the 

world but, rather, a view that takes in the achievements of 

mathematics together with other human endeavours.· If we 

want students to develop a world view and be in the best 

possible position to decide what to do with their lives, then 

students ought to be introduced to the combined achievements 

of these endeavours. If one is to have a world view then it 

would be deficient if it lacked knowledge of how mathematics 

has influenced culture. But it would also be deficient if 

it saw mathematics as an isolated element of the culture that 



develops in its own right without the influence of other 

cultural forces. 

CONCLUSIONS 

The conclusions reached can be summarized as follows: 
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1. While the mathematical philosophies of formalism, 

intuitionism and logicism all give some insight into the 

activities of mathematicians, the nature of mathematics 

is that it consists of idealized theories of ways we can 

operate on the world and, at any particular time, 

constitutes a mathematical practice with the following 

five components: 

(a) a language component, 

(b) a set of metamathematical views, 

( c) a set of accepted questions, 

( d) a set of accepted reasonings, 

( e) a set of accepted statements. 

2. Mathematics has evolved from a set of beliefs about 

simple manipulations of physical objects, and through a 

series of rational transitions, to the mathematical 

practice of today. 

3. There is a language and a set of accepted reasonings in 

today's mathematical practice, that is useful to 

everyone and that all students ought to be initiated into. 

This includes basic numeracy, operations with numbers and 

fractions, and the ability to read and interpret the 

presentation of-data in tables, graphs and simple 

formulae. 



4. All students should come to see mathematics not as a 

fixed body of knowledge 'to be discovered, but one that 

has evolved and continues to evolve as man attempts to 

understand the nature of his environment. 
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5. All students should be initiated into the influence that 

mathematics has had on our culture: firstly, by the 

contribution it has already made to the solution of 

problems posed within the culture; and secondly, by the 

way man has sought to use it in 'other endeavours. 

DISCUSSION 

The implications that these conclusions might have for 

the mathematics curriculum will be considered by looking at 

the case of the .calculus, whose evolution to analysis from 

Newton's and Leibniz'$ initial work was shown in Chapter III. 

There is. a lar9e proportion of students who do not reach the 

stage of studying the calculus in their school years, and a 

significant proportion who proceed well beyond it, but in 

most countries students in the advanced levels are presented 

with an introduction to the calculus in their final years of 

schooling. The arguments considered below, however, could 

~e modified and 'applied to other topics within mathematics 

syllabuses. 

We saw that Newton's and Leibniz's work was motivated by 

practical problems and was accepted_ into the mathematical 

practice of the day because it was successful in answering 

important questions within the practice. The call for 

rigorous reasoning then led to Cauchy's work on limits, and 

Weierstrass's work on the terminology led to a new language 
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. 
within the practice. Dedekind followed by an analysis 0£ 

the real numbers in algebraic form and Cantor was led to 

investigate problems associated with sets. But in teaching 

the calculus these topics are frequently presented in the 

reverse order. Real numbers are studied early in the course, 

some def.ini tions of concepts are given, and theorems follow 

concerning limits. A definition of the derivative is given 

and some rules for finding derivatives are proved. Finally, 

some questions are posed with the view Of demonstrating the 

power of the technique in solving practical problems. 

In general, the presentation of the material within any 

topic is designed with a view of passing on the .mathematical 

language component of the mathematical practice. Students 

are graded into levels on their ability to use this 

mathematical language and they pass on to the next set of 

work by showing an understanding of the langaage and an 

ability to use the associated reasonings within the practice. 

It is not intended that students "rediscover" mathematics as 

it were, by confronting them with the problems that Newton and 

Leibniz were confronted with, and for them to derive success-

fully the new mathematical practice. Once the rigour of the 

language has been arrived at the material. is presented in the 

most expedient way. From no experience at all of the 

calculus students acquire, within weeks, a language that took 

decades to evolve after Newton's and Leibniz's initial work. 

What is missing, however, is a study of the forces behind the 

transition to a new mathematical practice. 

At this point we can consider a possiole criticism. It 

·might be said that it is not practicable to design a 



curriculum in order that all students come to see the 

cultural significances of mathematics. Many teachers might 

argue that it is difficult enough to get some students to 

undersband the language and reasonings of the current 
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mathematical practice and to apply them to simple problems, 

without even beginning to think about explaining the develop­

ment of the language and reasonings, the practical problems 

that influenced their development_ and the effect they have. 

had on other aspects of the culture. 

In reply it is agreed that some students will be able to 

grasp cultural significances easier than others. Just as 

students differ in their abilities in the present subjects so 

they will in any future courses. But the fact that students 

do differ in their ability to understand concepts within the 

current mathematical practice does not render impracticable 

any programme designed to explain the cultural significances 

of mathematics. What is required is a programme that takes 

into account these individual differences. · What has to be 

decided is the question of when to present an account of the 

significance of mathematical knowledge and how to incorporate 

it into the curriculum • Should it be part of each 
. 

mathematics lesson? Should it be combined with a study of 

the value of other disciplines such as science or history? 

Other factors to be considered concern the preparation of 

teachers and how a study of the cultural significances of 

mathematics is to be incorporated into their training. But 

while such concerns indicate' that much thought is needed to 

develop a system whereby the cultural significances of 

mathematics form an integral part of the mathematics 
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curricqlum,- they do not, in themselves, show that the 

programine is impracticable. 

Now if we are to argue for a curriculum that should be 

presented to all students then we must ask to what extent the 

current mathematics courses suffice. The higher level 

syllabuses are a preparation ground for a community of 

scholars to engage in pursuing significant questions in the 

practice, but lower levels become "watered down" versions of 

this type, by selecting a language component that is 

presumably easier to understand (though not for all students) , 

and with a view to showing the applicability of the language 

to "real life" situations, which more often than not never 

occur to students after they leave school. From a recent 

publication: 

Most teachers are,aware that-when thesj 
subjects [mathematics and the sciences 
are presented as theoretical and abstract 
studies many students are put off, and 
only those students with a special 
inclination towards the subjects bother 
to pursue them. This cannot be allowed 
to continue, given the role that the 
subjects play in the world. All students 
should continue studies in mathematics and 
science as long as possible. The range 
of mathematical and scientific studies -
should be extended to cover their 
applications in daily life and the work­
place, and to cover also· a wider range of 
student abilities. 
(Education Department of Tasmania: 1986, p.12) 

But as we have argued, the amount of mathematics that can be 

seen to be useful to all students in daily life involves no 

more than basic numeracy and the ability to read and ~nterpret 

presentations of data. Instead of "watered down" versions of 

higher level syllabuses, all students should be presented with 



a study of the cultural forces behind the development of 

mathematics and its relationship to other areas of human 

endeavour. For those with the interest and ability to 

pursue a study of the language and reasonings of the 

mathematical practice, then the current syllabuses exist 

with the specialist teachers in the field. Advances in 

mathematics occur as a response to cultural forces and much 

new mathematics is supplied by scholars in many other fields, 

such as the sciences, engineering and computer technology. 
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It ought to be the goal of mathematics educators firstly, to 

ensure as far as possible, that all students come to an 

understanding of the nature of mathematics, its evolution and 

cultural significances; and secondly, to prepare, through 

the expertise of specialist mathematics teachers, that 

community of scholars which contains the practitioners of 

the future in the new mathematical practice. 
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