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Abstract 

In this thesis I introduce a new approach to the automated analysis of the 
reduction behaviour of A-calculus terms. This new approach improves on earlier 
analysers in several ways, not least in its treatment of higher-order terms and 
polymorphism, two notably troublesome issues. 

In addition, this thesis introduces a stronger notion of reduction behaviour 
than strictness. This concept, called strong head neededness, forms the basis for 
a new notation for describing the reduction behaviour of terms. This notation 
is a kind of type, elements of which are built using a Boolean algebra of function 
type constructors. Thus the form of the methodology proposed is that of a type 
system. 

Consideration is given to a variety of type assignment systems for the new 
type system. This supports the hypothesis that the approach proposed is suit-
able as a framework for building a range of analyses. Having established this 
framework it is then a matter of engineering to determine the appropriate trade 
off between information derived and performance achieved. 

An investigation is conducted into the formal semantics of all the constructs 
introduced. In particular, the investigation proves a range of soundness and 
completeness results. Also examined is the semantics of the new notion of type 
and the development of a model for reduction types. The model is of interest in 
its own right, as it gives further insight into the reduction behaviour of A-terms. 

The thesis includes detailed implementations of all the type assignment 
systems and ascertains the correctness of these implementations. 
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Chapter 1 

Introduction 

1.1 Functional Languages and Static Analysis 
Functional languages are closely related to the A-calculusl—for the most part 
they may be considered as "syntactically sugared" versions of this calculus. 
Functional languages may be divided into two classes: strict and non-strict. 
Strict languages typically employ a call-by-value left-to-right evaluation strat-
egy for arguments to functions. Non-strict languages employ a graphical form 
of call-by-name evaluation strategy, in which once the value of an argument is 
calculated this value replaces the expression representing the argument. This 
ensures that an argument is reduced at most once in the evaluation of the func-
tion call. (This latter strategy is often known as a "lazy" evaluation strategy). 

Each of these methods of evaluation has an associated cost. The most 
serious cost is in the case of strict languages: certain expressions which may 
reasonably be expected to have a defined value fail to have such a value in this 
evaluation scheme. This is because under the call-by-value scheme an argument 
to a function is evaluated whether or not it is required by the function. This 
forces the programmer to bear the additional burden of having always to ensure 
explicitly the finiteness of any argument passed to a function.' 

In the case of a non-strict language the cost incurred is in the implemen-
tation of the language. Each time the value of an argument is requested in 
such a language it is necessary to first test whether or not the argument has 
been evaluated. If it has not been evaluated, then its value must be computed, 
otherwise its value can be immediately looked up. Thus, if a value is definitely 
required then the call-by-value strategy is more "lazy" than the lazy strategy 
in the sense that less work is required to implement it. 

However, it is possible to have the best of both schemes if the program is 

'The A-calculus is described in a later section of this chapter. 
2The case for non-strict languages is argued in greater detail by Turner [65] and 

Hughes [34]. 
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analysed so as to determine exactly which arguments are required and which 
are not required. With this information a compiler can transform the program 
to use a mixed evaluation strategy: it can use the call-by-name strategy for 
arguments which are not required and the call-by-value strategy for those that 
are required. 

Unfortunately, things are not quite so simple. The problem of determining 
which arguments are required in an arbitrary program is reducible to the halting 
problem. Hence, this task is undecidable in general. The phrase "in general" 
does offer some hope: can an analysis technique be found which determines a 
high proportion of the arguments which are definitely required or are definitely 
not required? Moreover, can such a technique be found which is reasonably 
economical with time? 

In this thesis, I examine the first question afresh. Although good answers 
to this question have been found, 3  no satisfactory answer to the combination 
of these questions has been found. My goal has been to introduce and explore 
a new method for performing such an analysis. This new method returns very 
precise information about higher-order terms. The major departure from other 
analysis techniques is the use of a form of type to express intensional proper-
ties of functions. Traditionally, types have been used to express extensional 
information about functions: what their inputs are and what their outputs are. 
My addition to this concept involves types containing extra information about 
the functions with which they are associated. This additional information is 
whether or not an argument to a function is actually used in an essential way 
to produce the output of the function. 

A further use for an analysis technique such as is described in this thesis 
is that of allowing the parallel evaluation of a program written in a non-strict 
language. The restriction to only evaluating an argument when it is determined 
that it is required during the evaluation of the function call enforces a sequential 
evaluation strategy. If it is known that the argument is required before the 
function call is actually made, then the evaluation of the argument may be 
rescheduled by the compiler to occur at an earlier time. 

There is an alternative method for conducting the parallel evaluation of 
a program written in a non-strict language, but discussion of this method is 
delayed until Chapter 2. 

In this chapter some preliminary subjects are reviewed which are required 
in order to understand the rest of the thesis. At the end of the chapter is a 
guide to reading the thesis. 

3See the section on related work in Chapter 7 for more details. 
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1.2 A-Calculus 
This section serves to remind the reader of some well known concepts associated 
with the A-calculus. It is recommended that the reader at least briefly peruse 
this section. 

1.2.1 A-terms 
Definition 1.2.1 (A-terms) 
Let X = { 	...} be a set of term variables, then the set A of A-terms is 
inductively defined to be the smallest set containing X which is closed under 
function application and abstraction, namely 

• if M E A and N E A then MN E A and 

• if x E X and N E A then Ax.N E A. 

Following the usual conventions, application associates to the left, and the 
scope of an abstraction is as far to the right as possible. Parentheses will often 
be omitted where these conventions make clear the intended meaning. Also, a 
term of the form (Axi .Ax2 . • • • Axn .N) will often be written as (\x1  x2  • • xn .N). 

Definition 1.2.2 
In a A-term (Ax.N) the object Ax is the binder of the term, and x in Ax is the 
binding occurrence of x. A variable x occurs bound in a term M if M has a 
subterm (Ax.N) and x occurs in N, in which case the term N is the scope of 
this binding occurrence of x. A variable x occurs free in M if it is a subterm 
of M, and occurs outside the scope of any binding occurrence of x. The set 
of all free variables of a term M is denoted by FV(M). The set of all bound 
variables of a term M is denoted by BV(M). 

Barendregt [3] describes the following useful variation on the set of A-terms: 

Definition 1.2.3 
1. The set of contexts is defined as the least set satisfying: 

• x E X implies x is a context, 

• is a context, and 

• if C10 and C20 are contexts, then so are C 1  []C2 [] and Ax.Ci • 

2. If C0 is a context and M E A, then C[M] E A is that term which results 
by replacing each occurrence of in CO by M. 

3. A head context is any context of the form Ax i 	Mn , m, n > 0. 
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By convention terms which are identical modulo change of bound variables 
are identified. Essentially, it is now the de Bruijn representation (see Baren-
dregt [3], Appendix C) of terms which will be used in the rest of this work, 
though the above more readable notation for terms will be adhered to in the 
naive way. The symbol will be used to denote syntactic identity, modulo this 
convention. If M C[N], then write N C M and say N is a subterm of M. 
Similarly defined N is a proper subterm of M (notation N C M), if N C M, 
but N 0 M. 

Substitution on .X-terms can now be defined in a straightforward manner: 

1. x[x := N] N, 

2. y[x := N] y (y x), 

3. (MN)[x := N] (M[x := N])(N[x := N]), and 

4. (Ay.N)[x := N] Ay.N[x := N]. 

Note that in the last case above no "confusion of bound variables" can occur 
by the convention concerning bound variables described above. 

Definition 1.2.4 
The rules of A-reduction are: 

(13) (Ax .N)M pAr[x := M] and 

(77) if x FV(N), then ()ix.Nx)—>nN. 

If a A-term M has the form of any of the left-hand sides of these rules, then M 
is a (/3 or n)-redex. If a term contains no /3-redexes then it is in /3-normal form 
(and similarly for 77- and /371-normal forms). Let the reflexive, transitive closure 
of —)r3 be denoted by (and similarly for and the reflexive, transitive 
and symmetric closure of ->0 be denoted by =0 (similarly =n ), this relation 
being called (3-conversion. 

From now on only /3-reduction will be considered unless explicitly indicated 
otherwise, and so "reduction" will mean 13-reduction, "redex" will mean P-redex 
and "normal form" will mean fl-normal form. 

The following is standard, see Chapter 3 of Barendregt [3]. A notion of 
reduction, R, is a binary relation on A. 

Definition 1.2.5 
Let R be a notion of reduction. 

1. R satisfies the diamond property if for all M, M1  and M2: M R M1  and 
M R M2 implies there exists M3 such that M1  R M3 and M2 R M3 • 



Axioms 

Rules 

M = M 	(Ax.M)N = M[x := N] 

M=N  
N=M 

M=N   
MZ = NZ 

M=N   
Ax.M = Ax.N 

M=N N=L 
M=L 

M=N   
ZM = ZN 
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Figure 1: The Theory A 

2. R is Church-Rosser if its compatible'', reflexive and transitive closure 
satisfies the diamond property. 

Theorem 1.2.6 
/3 is Church -Rosser. 

Proof 
This is shown several times in Barendregt [3]. See any of Theorem 3.2.8, The-
orem 11.1.10, Corollary 11.2.29 or Corollary 14.2.4 (the simplest). 0 

1.2.2 The Theory A 
The theory A is axiomatised in Figure 1. Write A 1- M=NifM= N is a 
consequent of this deduction system. The following well-known result expresses 
the relationship between the theory A and the notion of /3-conversion: 

Proposition 1.2.7 (Barendregt [3], Proposition 3.2.1) 
AFM=Niff M=0N. 

This Proposition is essential in relating the results of Chapter 2 to those of 
Chapter 4. 

4 See Definition 3.1.1.(i) of Barendregt [3] for the definition of a compatible relation. 
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1.2.3 Head Reduction 
The concept of head normal form plays a central role in the A-calculus, in 
particular, a term has a head normal form if it is solvable, see Barendregt [3] 
pp41-42 for discussion. Associated with the notion of head normal form is 
a particular reduction strategy known as head reduction. In Chapter 2, head 
reduction is used to define a property called strong head need edness. This 
property is chosen as a test bed for the idea of using types as the notation for 
performing analyses of terms proposed by this thesis. 

Definition 1.2.8 
A subterm N of a term M is at the head of M if 

• M N, or 

• M Ax.N' and N is at the head of N', or 

• M 24: N1 N2 and N is at the head of N1. 

Suppose M is not in normal form. The leftmost redex of M is the redex whose 
binder is to the left of the binder of every other redex in M. The leftmost 
redex, R, of M is a head redex of M if R is at the head of M. M is in head 
normal form if it has no head redex. The head reduction path of a term M is 
a sequence of reduction steps in which every redex which is reduced is a head- 
redex. Suppose M has a head redex, then write M 	, if M' results from 
M by contraction of the head redex of M. Let 	be the transitive, reflexive 
closure of the least relation generated by 

The opposite of head reduction is internal reduction, i.e., M—NN if no 
head redex is contracted in this reduction path from M to N. 

1.2.4 Labelled Reduction and Descendants 
The following is taken from Klop [40], see also Barendregt [3]. 

Definition 1.2.9 
Let A be a set of symbols, called labels. The labelled A-terms, AA, are induc-
tively defined by 

• xa E AA, for all x E X and a E 

• A, B E AA implies (AB)a E AA, for all a E A, and 

• A E AA  implies (As.A)a E AA, for all x E X and a E A. 
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A E AA may also be written as MI where M E A is obtained from A by erasing 
all the labels and I is a map from the set of occurrences of subterms of M to 
labels such that I(M) is A. The map / is called a labeling of M. 

A notion of reduction can be formulated for the labelled terms. Firstly, 
labelled substitution is defined by 

• xa[x := B] B, 

• ya[x := 	E y, y x, 

• (AA')a[x := B] ((A[x := B])(Alx := Bll) a , and 

• (Ay.A)a[x := B] E (Ay.A[x := B]r. (By the variable convention it is 
not necessary to specify x y). 

Now the reduction relation can be generated from the schema 

: (()x.A)aB) b 	A[x := 13]. 

Suppose M—N, then the descendants of some subterm M' of M can be 
found in N (if any exist), by marking M' and following it through the reduction 
from M to N. More formally: 

Definition 1.2.10 
Suppose M—>oAr by contraction of a redex R. Let I be a labeling of M. Then 
R and I uniquely determine a corresponding labelled reduction, M/-40, NJ , 
for some labeling J of N. 

A labeling is initial if the labels it assigns to distinct subterm occurrences 
of a term are distinct. Let / be an initial labeling (assume A is sufficiently 
large). Let P be a subterm occurrence of M and Q be a subterm occurrence 
of N, then Q is a descendent of P if J(Q) = I(P). This concept generalises to 
—4+ in the obvious fashion. 

Any descendent of a redex, R, is itself a redex, and is called a residual. This 
is so since if R is contracted in M—,pN, then clearly R has no descendants in 
N. A redex R of a term M is erased in a particular reduction path of M to a 
term N if no residual of R is contracted on this reduction path and there is no 
residual of R in N. 

1.2.5 Some Common Combinators 
In this subsection names are given to some combinators which are frequently 
used in this thesis. Firstly, a combinator is a closed )-term. All of the coin-
binators presented here may be found in Barendregt [3] and the reader should 
refer to that work for further discussion. 
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Three well known combinators are S, K and I. These have the following 
definitions: 

• S Afgx.fx(gx); 

• K Axy.x; and 

• I Ax.x. 

The simplest example of a function incorporating a self application is to -=- 
Ax.xx. From this term is constructed the simplest unsolvable term: f/ 
An example of an unsolvable term which becomes progressively longer with 
each reduction step taken is 9 3  a' (Ax.xxx)Ax.xxx. 

The two best known fixpoint combinators are Y A f .(Ax. f(xx))Ax f (xx) 
(due to Curry) and e (Ax (xxf))Axf.f(xxf) (due to Turing). 

1.3 Curry Types and Type Deduction 
In this section a brief introduction to type deduction systems is given. The type 
deduction system studied here, the Curry type system, is the simplest system 
for assigning types to (a fragment of) the A-calculus. A much more complete 
discussion of this and other type systems is given in Hindley and Seldin [30]. 

The basic philosophy of Curry's type system is to avoid building the notion 
of type into the terms themselves. This approach preserves the operator ori-
ented flavour of the A-calculus, as opposed to a set-oriented view of functions 
as particular sets of pairs. Thus it is quite possible for an operator such as 
Ax.x to have many types, rather than requiring an identity for each type. (For 
more polemic on this point see Barendregt [3] and Hindley and Seldin [30]). 

The main goal of this thesis is to extend Curry's style of describing the 
extensional behaviour of A-terms to include a description of their reduction 
behaviour. Thus the question asked is not just "what terms may be accepted 
as input?", but instead the question is "what terms may be accepted as input 
and how are they used to compute the result?". 

Curry's approach is to specify a type deduction system in which types may 
be assigned to terms according to a logic specified in a natural deduction style 
(Gentzen [63]). Below is given a description of Curry's system. 

1.3.1 The Curry Type System 
Let r.„ be a sufficiently large set of type variables. (The initial lowercase Greek 
letters a, fl, ... are used to range over type variables). The set of Curry types 
T, ranged over by a and T, is inductively defined to be the least set satisfying: 

• a E Tv  implies a E T, and 



VAR 	Ax  U {x : cr} 	: 

APP A I- : a T A F- N2 : a 
A F N1 /V2 : T 

Az  U {x: o-} N : T  
ABS Al- Ax.N : 	r 
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Figure 2: Curry's system for Type Deduction 

• a, T E T implies a r E T. 

Clearly, in order to assign types to A-terms, types must be assumed for free 
variables of the term. A type assumption for Curry's deduction system is a 
term of the form x: a, where x is a term variable and a is a Curry type. 5  

Statements of Curry's logic6  are written as 

A I- M: r, 

where A is a set of type assumptions in which no term variable occurs more 
than once, M is a term and 7 is a Curry type. Such a statement may be 
read as "M has type r in context A". An assumption set containing no type 
assumption of the form x: a, for any type a, is denoted by A. 

Curry's type deduction system is specified by one axiom and two rules, as 
detailed in Figure 2. Note the correspondence between the structure of A-terms 
and the structure of the proofs resulting from the use of this type deduction 
system. Hindley and Seldin [30] develop this theme further, see Sections 14C, 
14D, 15C and 15D of that work. 

1.4 A Guide to Reading this Thesis 
Since this is a fairly long document with many technical results, some advice 
is appropriate on how to read the report. To start with, all of the current 
chapter should be read. In Chapter 2 it would be best to read all sections 
through to the end of Section 2.3, with Section 2.4 being left for later. This 
will introduce the reader to strong head neededness, but leave the examination 

'Curry originally wrote assumptions as oz (see [18]), though the notation chosen here has 
become widely used in recent times. 

6The word "logic" is used interchangeably with the phrase "type deduction system". 
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of the properties of strong head neededness until later. Section 2.5 contains the 
concluding remarks for this chapter. 

In Chapter 3, Section 3.1 introduces and motivates Boolean Reduction 
Types and so this should be read on a first pass of the report. Then Sec-
tion 3.2 studies the case of a Curry-style type deduction system for Boolean 
Reduction Types. Within this section, Section 3.2.6 could be omitted on an 
initial reading. Sections 3.3 and 3.4, which give two more case studies of type 
deduction for Boolean Reduction Types, may be left for a later reading. 

Within Chapter 4, on the semantics of the various constructs introduced 
in this thesis, all sections after Section 4.2.2 may be omitted on first read-
ing. These latter sections present the semantics of forms of Boolean Reduction 
Types which are introduced in the case studies of Sections 3.3 and 3.4; establish 
a connection between strong head neededness and Boolean Reduction Types 
and prove the correctness of all the type deduction systems. 

Following the theme of concentrating only on the Curry-style system, in 
Chapter 5 read Sections 5.1 and 5.2. 

At this stage the reader will have seen most of the major innovations of this 
thesis and have witnessed a complete development of the analysis methodology 
for one particular type system. The only major omission in the reading was a 
study of the semantic correctness proofs for the simplest system of logic and 
the semantic connection between strong head neededness, Boolean Reduction 
Types and the applicative behaviour of terms (Section 4.3). The reader could 
now go back to Section 2.4 and commence from there a more detailed reading 
of Chapters 2 through 5. Alternatively, the reader could press on and read 
Chapter 6. This chapter contains several extensions to the work already pre-
sented, though some of these extensions use or discuss material from parts of 
the report which the reader will have omitted on this first reading. 

1.4.1 Plan of this Thesis 
The thesis is divided into chapters which deal with the following topics: 

• strong head neededness, 

• Reduction Types and type deduction systems, 

• semantics, 

• implementation, and 

• extensions. 

Figure 3 is a graphical picture of the structure of Chapters 2 through 5. In this 
Figure each number within a box is the number of a section or subsection from 
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2.1 4.1 

2.3 4.2 
2.4 3.1 4.2.2 4.2.3 4.2.4 

3.1.1 4.3 

3.2 3.3 3.4 4.4 

4.5 
5.1.3 

5.2 5.3 5.4 

Figure 3: A Diagram of the Structure of the Thesis 

the report. A box which is placed directly on top of a second box is meant 
to be read before the second box. Boxes placed side by side are relatively in-
dependent of each other, though for didactic purposes there is a left-to-right 
preference. Lines joining boxes indicate that these sections are linked by im-
portant theorems. In reading the paragraphs below it may prove useful to refer 
to this Figure. 

In Section 2.1 the concept of strong head neededness is introduced and 
motivated. This leads onto Section 2.3 in which a notion which is the opposite 
of strong head neededness is introduced, namely irrelevance.' Then Section 2.4 
examines these properties in further detail. 

In Section 3.1 the concept of Boolean Reduction Types is introduced and mo-
tivated. Section 3.1.1 contains an overview of Boolean algebras—these are used 
in the definition of Boolean Reduction Types. Then Sections 3.2 through 3.4 
each describe a case study (in some detail) of the use of Boolean Reduction 
Types in a type deduction system. 

Up until this point no formal connection between strong head neededness 
and Boolean Reduction Types has been established. This is achieved in Chap-
ter 4. Section 4.1 commences this chapter by introducing models of )-terms. 
This is followed by Section 4.2 in which models of Boolean Reduction Types are 
constructed. In this section is first constructed a formal link between the strong 
head neededness and irrelevance of Chapter 2 and models of terms. Then, in 
the three concurrent sections 4.2.2 through 4.2.4, semantics are given to the 
three forms of Boolean Reduction Type introduced in Sections 3.2 through 3.4. 
Section 4.3 relates the semantics given to Boolean Reduction Types to the con-
cept of strong head neededness, making use of the connection between strong 
head neededness and models of terms already shown, as well as results from 

71n Chapter 6 it is shown how these two concepts are really part of a continuum. 
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Section 2.4. Sections 4.4 and 4.5 prove that the type deduction systems de-
scribed in Sections 3.2 through 3.4 are semantically correct. 

With the logics of type deduction for Boolean Reduction Types shown to 
be correct Chapter 5 proceeds to provide algorithms so as to allow the auto-
matic inference of Boolean Reduction Types for terms. Section 5.1.3 describes 
an algorithm for solving equations in a Boolean algebra. This is followed, in 
Sections 5.2 through 5.4, by implementations corresponding to each of the type 
deduction systems of Sections 3.2 through 3.4. Within each of Sections 5.2, 5.3 
and 5.4 the algorithms described are proved to be correct with respect to the 
appropriate type deduction system. Thus the semantic correctness of these 
algorithms is shown, since it is already known that the type deduction systems 
are semantically correct. 

Chapter 6 (not shown in the Figure) contains a number of extensions to 
the work introduced in earlier chapters. In particular, analysis techniques are 
given for certain constructs which commonly occur in programming languages, 
such as constants and data structures. In addition, some discussion is given of 
a natural generalisation of Boolean Reduction Types. 

Finally, Chapter 7 contains an overview of related work and a summary of 
the results of the thesis. Indeed, this summary is a good place to start for the 
reader interested in a slightly more detailed overview of the thesis than has 
been given in this section. 



Chapter 2 

Strong Head Neededness and 
Irrelevance 

In this Chapter strong head neededness is introduced and examined. Strong 
head neededness is a slight variation on a property commonly explored in other 
works called strictness (defined below). Strong head neededness is similar to 
the notion of head neededness proposed by Barendregt et al [5]. 

An important reason for considering strong head neededness rather than 
head neededness or strictness is the parallel reduction strategy known as spec-
ulative evaluation, see Partridge [53]. This strategy is based on the idea of 
evaluating arguments to terms even when it is not known whether they are 
required. Non-strict semantics are preserved by terminating the evaluation of 
an argument as soon as it becomes known that the argument is not required. 

As shown by Proposition 2.1.4 below, an implementation which performs 
parallel evaluation based on the notion of head neededness or strictness may 
needlessly evaluate certain sub-expressions of a non-terminating expression. 
This is because all redexes of a non-terminating expression are considered to 
be head needed and so in a parallel machine all of the redexes will be evalu-
ated. Of course, it is trivial to see that it is semantically safe to perform this 
extra evaluation, at least for sequential implementations. However, in paral-
lel implementations employing speculative evaluation, the designation of these 
sub-expressions as required for the computation might cause premature over-
loading of the machine. Strong head neededness on the other hand, determines 
exactly which redexes are required—even in a non-terminating term. Hence, 
this work introduces and examines this sharper notion of neededness. 

As an example of this phenomenon, consider the term 

Ax.S2. 

Now head neededness (strictness) determines that the argument to this func- 
tion is required, whereas strong head neededness determines that it is not 
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required. If this term is applied to an argument, M, (suppose computing M 
requires a large amount of memory), then head neededness will indicate that 
the evaluation of M should commence at the highest priority. Furthermore, 
if the expression (Ax.f/) M occurs in a speculative context, then initiating the 
computation of M is particularly undesirable. In the case of strong head need-
edness, the evaluation of M will proceed at a lower (speculative) priority.' 

This chapter starts by introducing strong head neededness and comparing 
it with head neededness (strictness). Then some different ways of expressing 
the concept are introduced—chiefly to allow the concept to be assigned to non-
redex terms. Strong head neededness has a natural dual, namely irrelevance, 
and this is also introduced in this chapter. After this, a section is given which 
establishes many properties concerning strong head neededness. In particular 
its relation is explored with reduction and conversion. 

2.1 Strong Head Neededness 
Firstly, the new property: 

Definition 2.1.1 (Strong Head Neededness) 
Suppose R is a redex of M, then R is strongly head needed in M if the head 
reduction path of M reduces a residual of R. 

In contrast: 

Definition 2.1.2 (Barendregt et al [5]) 
Suppose R is a redex of M, then R is head needed in M if every reduction path 
of M to head normal form reduces a residual of R. 

Terms which cannot be reduced to head normal form are identified with 
the symbol I. A function f is strict on its argument if f± ...L. The process 
of determining whether a function is strict is referred to as strictness analy-
sis. Similarly the process of determining whether a redex is head needed is 
referred to as head neededness analysis. By Proposition 5.1 of Barendregt et 
al [5] (due to H. Mulder), strictness analysis is equivalent to head neededness 
analysis, since a function is strict on its argument if the function head needs 
its argument. 

Note that the notion of strongly head neededness introduced above is a some-
what sharper notion than that of head neededness, as introduced by Barendregt 
et al [5]. Suppose R E A is a redex, then in the case of a function such as 
where SI 	(Ay.yy)(Ay.yy), it is vacuously true that R in (Ax.n)R is head 
needed. In contrast, R is not strongly head needed in (Ax.C2)R, since R is 

'In fact, for this particular example the analysis technique introduced in the following 
chapter would determine that M is not required at all. 



2.2 VARIATIONS 	 15 

never reduced in the head reduction path of (Ax.Si)R. (The difference between 
these two concepts arises entirely when the term involved does not have a head 
normal form). 

Lemma 2.1.3 (Theorem 3.6 (ii) of Barendregt et al [5]) 
Let R be a redex in M E A and M be solvable, then R is head needed if a 
residual of R is contracted on the head reduction path of M. 

Now the following is easily shown. 

Proposition 2.1.4 
Let M E A and R C M be a redex. 

1. If M is solvable, then R is strongly head needed in M if R is head needed 
in M. 

2. If M is not solvable, then if R is any redex in M, then R is a head needed 
redex in M. 

Proof 
For part 1 the result follows by the Lemma. Part 2 is trivial. 0 

The second part of this proposition demonstrates that every redex of a non-
terminating expression is designated as head needed. The same cannot be said 
for strong head neededness which can distinguish redexes which are required 
even in a non-terminating expression. This extra information is expected to be 
important for parallel machines using a speculative evaluation strategy. This 
is because speculative evaluation is implemented using a priority scheme for 
choosing which redexes to reduce (Partridge [53]). Thus, marking extra redexes 
of a non-terminating term as demanded will cause these redexes to be given 
greater or equal preference to other tasks at the same priority level. Naturally 
this phenomenon should be minimised, and it is strong head neededness which 
appears to best fit the requirements. 

2.2 Variations 
The following variations on Definition 2.1.1 are sometimes useful. The main 
utility of these is the ability to talk of the strong head neededness of terms 
which are not redexes. 

Definition 2.2.1 
Suppose R 	NI  N2 , then N1  strongly head needs its argument, N2 if a de- 
scendent of N2 occurs at the head of some term on the head reduction path of 
R. 
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Definition 2.2.2 
Let N E A. For an arbitrary M C N, M is strongly head needed in N if a 
descendent of M occurs at the head of some term on the head reduction path 
of N. 

These definitions of strong head neededness are related as follows: 

Proposition 2.2.3 
Let R E A be a redex and M E A. 

I. M is strongly head needed in CPI/1 2  if R is strongly head needed in C[R], 
and 

2. N1  N2 strongly head needs its argument N2 iff N2 is strongly head needed 
in NI N2 • 

Proof 
Note that a residual is just a special kind of descendent, then the results are 
immediate. 0 

2.3 Irrelevance 
The opposite of strong head neededness is irrelevance: 

Definition 2.3.1 
M is irrelevant in N if M is not strongly head needed in N. 

Lemma 2.3.2 (Barendregt [3], Lemma 11.4.6) 
If M-opN, then 3P.M,,hP-NN. 3  

Proposition 2.3.3 
VM, N.C[M] = C[N] implies VP.P is irrelevant in C[P]. 

Proof 
By the Church-Rosser Theorem for /3-reduction, C[M] = C[N] implies there 
exists Z E A such that C[M]-0Z44--#C[N]. Since this is true for all M and N, 
all descendents of both M and N must be erased in each Z. 4  By the Lemma, 
there exists P E A such that C[M]--*hP—oiZ and again there exists P' E A 
such that C[N]—RhP'—"Z.  Suppose that a residual of M (and hence of N) is 
reduced on the head reduction path from C[M] to P (C[N] to P'), then set 
M fl and N S/ 3 to arrive at a contradiction. (Since it 0 03  and if either 
occurs at the head of some term then neither may be erased in any reduction 
of that term). 0 

2Contexts are defined in Chapter 1. 
is internal reduction, as defined in Chapter 1. 

4The notion of erasure is defined in Chapter 1. 
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2.4 Properties 
In this section the relations between reduction, conversion and strong head 
neededness are explored. The work of Barendregt et al [5] serves as a suitable 
structure upon which to base the following investigation. Some additional 
results are also developed outside this structure, in particular the preservation 
of the strong head neededness of a subexpression which is not contracted during 
a fl-conversion (Proposition 2.4.10). 

The main results used outside of this present chapter are Proposition 2.4.10, 
Corollary 2.4.8 and Theorem 2.4.15. The latter theorem establishes the unsur-
prising result that determining strong head neededness is in general undecid-
able. 

Definition 2.4.1 
A reduction path is a (possibly infinite) sequence of terms, Mo , 	such 
that M0—>I3M1—+0 .. Reduction paths will be denoted by the calligraphic 
letters R.,S. 

Let 111.— f3N by contraction of a redex R C M and S : M-00AP, then 
the projection of R by S is obtained by contracting all residuals of R in N' 
after reduction S has occurred. This can be generalised to the projection of 
a reduction path R. : M-00N1  by another path $ : M-0,3N2  in the obvious 
manner. In Klop [40] it is shown that as a consequence of the Church-Rosser 
property for /3 that the projection of a sequence R. by a sequence S always ends 
in exactly the same term as the projection of $ by 7Z. 

Lemma 2.4.2 (Barendregt et al [5], Proposition 2.6) 
Let 7Z : M—M' and S : M-00N be two reduction paths. Suppose R C M 
is a redex none of whose residuals are contracted in $ and let R' C M' be a 
residual of R after the reduction R., then no residual of R' is contracted in the 
projection of 7Z by S. 

Theorem 2.4.3 
Let M—)+,01F and let S be a redex in M and S' be a residual of S in M', then 
S is not strongly head needed in M implies S' is not strongly head needed in 
M'. (Equivalently, S' is strongly head needed in M' implies S is strongly head 
needed in M). 

Proof 
S not strongly head needed implies that no residual of S is contracted in the 
(possibly infinite) head reduction of M. Then the result follows by iterated use 
of Lemma 2.4.2. 0 

Theorem 2.4.4 
Let R be a redex in M, then R is strongly head needed in M if some residual 
of R is contracted in the head reduction of M. 
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Proof 
The "if" part is immediate from the definition of strong head neededness. For 
the "only if" part, the result follows from Theorem 2.4.3. 0 

The above result can be summarised as: R is strongly head needed in M 
if R is not erased in the head reduction of M if R has a residual in the head 
reduction of M which is a head redex. 

Let S C M' be a redex and M' results from M by contraction of a redex 
R, then S is created in M.-40M' if S is not a residual of a redex in M. 

Proposition 2.4.5 
Suppose M—>oM' by contraction of a redex R in M. If Q is a strongly head 
needed redex in M' created by this contraction, then R is strongly head needed 
in M. 
Proof 
Suppose R is not strongly head needed in M. Since Q is strongly head needed 
in M' it has some residual Q' which is contracted in the head reduction of M'. 
Since the head reduction of M' is the projection of the reduction of R by the 
head reduction of M, Q' is a residual of a redex in the head reduction of M. 
Then by Proposition 2.8 (ii) of Barendregt et al [5] Q is not created, which is 
a contradiction. 0 

Definition 2.4.6 
Let SHN(M) = {N E AIM pM 1 ; N is strongly head needed in M'}. 

Lemma 2.4.7 
M—RoN implies SHN(M) D SHN(N). 

Proof 
The case M already in head normal form is trivial. Suppose M not in head 
normal form. 

Consider the case M-40N by contraction of the head redex of M. Then 
the result is immediate by definition of SHN(M). 

Consider the case M--+pN by contraction of a non-head redex of M. Then 
the result follows by Proposition 2.4.5. 

The result now follows by induction on the reduction path M-N. 0 

Corollary 2.4.8 
Let M-noN, then if R is the head redex of N, then R is strongly head needed 
in M. 

Proof 
By Lemma 2.4.7. 0 
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Proposition 2.4.9 
Suppose R is a strongly head needed redex of M and suppose M,pAr and 
no residual of R is contracted in this reduction. Then R has a strongly head 
needed residual in N. 

Proof 
Immediate by Lemma 2.4.7 and Theorem 2.4.4. 0 

Write M1=f3M2 without contracting M if 3Z E A.M1-00Z, M2f3Z and no 
residual of M is contracted in either of these reductions.' 

Proposition 2.4.10 
Suppose Mi =aM2 without contracting M, then M strongly head needed in Mi 
implies M strongly head needed in M2 

Proof 
By definition, 3Z E A.1t41 0Z, M2 -00Z and no residual of M is contracted in 
either of these reductions. Hence, the result follows by application of Proposi-
tion 2.4.9 to both reductions. 0 

Lemma 2.4.11 
Suppose R and S are redexes such that R is a subterm of S and S is a subterm 
of M, then R is strongly head needed in M implies S is strongly head needed 
in M. 
Proof 
Suppose S is not strongly head needed in M, then no residual of S is contracted 
in the head reduction of M. Since S is to the left of R (and the same is true 
for residuals of S and R, see Barendregt et al [5]), it follows that no residual 
of R is contracted in the head reduction of M. By Theorem 2.4.3, R is not 
strongly head needed in M. 0 

Proposition 2.4.12 
Let M--pAr by contraction of a redex R in M, and S be a strongly head needed 
redex in M. Suppose R is not strongly head needed, then S has a strongly head 
needed residual S' in N. 

Proof 
If S is multiplied by contracting R, then by Lemma 2.4.11 R is strongly head 
needed, which is a contradiction. So S' is the unique residual of S in N. By 
Proposition 2.4.9 S' is strongly head needed. 0 

Proposition 2.4.13 
If M= r3N, then R strongly head needed in MR implies R strongly head needed 
in NR. 

5 Note that this includes the cases where M C M1 and/or M C M2 
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Proof 
By the Church-Rosser Theorem for 	M—opP and N--.+,3P, for some P E 
A. Thus MR— PR and NR— PR. By Proposition 2.4.9 R strongly head 
needed in MR implies R strongly head needed in PR and hence in NR by 
Theorem 2.4.3. 0 

Proposition 2.4.14 
If M=hN, then R strongly head needed in MR implies R strongly head needed 
in NR. 
Proof 
Similar to the proof of Proposition 2.4.13 (simply replace —>p and —op by --4h 
and -4+11 , respectively, and note that 	implies M—+aN). 0 

Theorem 2.4.15 
1. It is undecidable whether a redex in some term is strongly head needed. 

2. It is undecidable whether a redex in some term is irrelevant. 

Proof 
1. By the definition of strong head neededness, R is strongly head needed 

in MR if there exists a head context C[] such that MR---RhC[R], i.e., 
MR=hC[R]. Now the result follows by Proposition 2.4.14 since deter-
mining MR=hC[R] is undecidable. 

2. By part 1. 

2.5 Discussion 
In this Chapter a new notion of subterms required to be contracted in the 
reduction of a term has been introduced. This new notion has certain advan-
tages over previous ideas in that it gives a finer analysis of the properties of 
unsolvable terms—an advantage expected to have particular relevance to those 
parallel systems incorporating speculative evaluation. 

A very precise characterisation of the new notion of strong head neededness 
has also been given, and in particular with respect to /3-conversion. This will 
prove to be of considerable value in Chapter 4. 

As in the case of strictness analysis the property that is to be analysed is not 
in general decidable. Thus, in practice only approximations to the complete 
information will be decidably determinable. 

In the following chapter a notation for identifying strongly head needed 
arguments of (functional) terms is introduced. Also introduced are several type 
assignment systems for deducing elements of this notation for certain terms. 



2.5 DISCUSSION 	 21 

(The correctness of these systems is considered in Chapter 4). Clearly, by 
the above result any system which gives complete information for all terms 
will itself be undecidable. Such a system is presented at end of the following 
chapter, but first some decidable (restricted) systems are investigated. 



Chapter 3 

Reduction Types and Type 
Assignment 

This chapter introduces an original notation for describing the reduction be-
haviour of A-terms. This notation is a form of type and is described in the first 
of the four parts of this chapter. The remaining sections of the chapter are 
dedicated to a number of type assignment systems which associate to partic-
ular terms a range of possible types. The treatment is semantically informal 
as Chapter 4 is dedicated to the semantics of all constructs introduced in the 
current chapter. 

Each of the three case studies of type deduction systems for Boolean Re-
duction Types takes a similar form. First, the particular sets of types are in-
troduced and motivated. Second, the system for type deductions is presented 
and discussed. Finally, a study is conducted of the relationship between the 
type deductions systems and /6-conversion. 

3.1 Introduction to Reduction Types 
In this section the new notation will be introduced for describing the reduc-
tion behaviour of )-terms. This notation is informally based on the ideas of 
strong head neededness and irrelevance from Chapter 2. The formal connection 
between these concepts is investigated in Chapter 4. 

Terms which strongly head need their argument (Definition 2.2.1) will be 
assigned a type of the form a =l T, for some a and T. (Read this type as "cr 
strongly head needed-to T" ). One example would be the identity function,' 
which may be assigned the type a . Note that this type contains both 

iFunctions are identified with the equivalence classes of terms representing them. By 
abuse of language, terms will themselves be called "functions" on occasion. 
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strong head neededness information as well as all the information of a conven-
tional type, and so is a true extension of conventional types. 

Similarly, functions which make no use of their argument ("are constant on 
their argument") will be assigned a type of the form a -4+ T. (Read this type as 
"a constant-to r"). An example of such a function is x.y). Also K Ax.Ay.x 
should be assigned the type a = T -0+ a, for some types a and r. 

However, the examples above are of a particularly simple nature—these 
properties are apparent for the terms above independent of the context in which 
they are used. If the context in which a term occurs is never taken account of, 
then this results in a substantially less interesting formalism. Thus the context 
in which a term occurs must also be expressible in the proposed notation. For 
example, the type a = r will also be assigned to terms which only strongly 
head need their argument (of type a) when the term is applied in sequence to 
some or all other arguments indicated by the type r. 

Consider a function such as (A f f x). This function strongly head needs its 
argument as (A f. fx)M—PhMx. In the reduction sequence 

f x)()y .y)—P h(Ay .y)x—Phx , 

it can be seen that the functional argument to Of f x) strongly head needs its 
argument and therefore the type of (ALM in this instance may be reasonably 
written as (a = a) a. In contrast, in the reduction sequence 

(A f f x)(Ax .y)—P h(Ax .y)x hy,  , 

the functional argument of (Af.fx) has a constant type and so the type of 
(A f f x) in this instance may be written as (a -0+ 13) = )6. 

There are two things to note about these two types for (Af.fx). Firstly, 
both of these types for Of f x) tell us that it strongly head needs its argument. 
Hence, the second function type constructor in both types is the strongly head 
needed function type constructor. Secondly, both types disagree on the first 
function type constructor. While it is easy to decide which is correct given the 
argument to (A f f x), the problem arises as to what type should be given to 
(A f f x) when no argument is present. It is of course still desirable that if an 
argument is eventually given to (A f f x), then the appropriate one of the two 
types for Of f x) given above should be derivable. This problem is solved by 
the introduction of variable function type constructors (or "variable arrows"), 
which are denoted by an arrow with a subscripted number. Thus the type of 
(A f f x) can be written, for any variable function type constructor —pi, where i 
is some natural number, as 

(a —Pi #) = /3. 

This type states that 
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• (A f f x) is a function, 

• that its argument is also a function, 

• that this functional argument takes an argument which is possibly inde-
pendent of its result type, 

• that the result type of the functional argument is the same as the result 
type of (A f f x), 

• that the functional argument to (A f f x) may have any strong head need-
edness property, and 

• that (A f f x) strongly head needs its argument. 

((a 	/3) = /3 may be read "a function which takes a functional argument of 
type a variable-i-to # which is strongly head needed-to /3"). 

Consider the function (A fgx.f(gx)). To capture the kind of reduction in-
formation implicit in this term, the function type constructors are extended 
to a Boolean algebra of function type constructors. So function type construc-
tors may now be Boolean expressions built from the function type constructors 
introduced above. Thus the type for this term may be concisely expressed as: 

(P 	r) 	P) 	c• 	A 	r • 

Now it can be seen that the type 

(p 	r) 	p) = o = T 

may also be assigned to this term. This reduction type says that S strongly 
head needs all three of its arguments—a fact which is only true if the first and 
second arguments to this term are both functions which strongly head need 
their respective arguments. Here the proposed formalism precisely captures 
the additional requirements of context-sensitivity, as is transparent from the 
structure of the more general type given to (A f gr. f (gx)) above. 

An equivalent statement is true for types of the form a -4 T. That is, 
this type will be assigned to a term which is constant on its first argument 
whenever this is made true by the application of the term to sufficient terms, 
these terms being of an appropriate type as indicated by a -4 T. The definition 
of "sufficient" will depend on the form of the type itself. 

Similarly, functions such as S (A f gx. f x(gx)) have very much more com-
plex reduction behaviours, but these can be concisely expressed using an V 
operation in conjunction with an A operation in the reduction type. A suitable 
type for S is 

(P 	--4j r) =  (p 	a) -4; p 	V(--4j A ->k)) T. 
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xAx = x 
xAl = 

xVy = yVx 
x = 

(xVy)Az = .(xAz)V(yAz) 	(x V y)V z 	x V (y Vz)  
xAy = yAx 	 xV x = x 

(xAy)Az = xA(yAz) 	
x V 0 = x 
x V 1 = 1 

x A 0 = 0 
= 0 
= 1 

-i(x A y) = -ix V 
-i(x V y) 	A 

• 

Figure 4: The Axioms of a Boolean Algebra 

The nice thing about this notation is the natural way it expresses informa-
tion about higher-order usage of terms and the equally natural way it informs us 
about the polymorphic and context-sensitive attributes of a term's strong head 
neededness information. Indeed, it is conceivable that a most general Boolean 
Reduction Type might be assignable to a term and that this most general type 
contains all the possible behaviours of the term. As will be seen such most 
general types do exist in all of the type assignment systems that are considered 
in this thesis (see Chapter 5). 

The formal meaning of reduction types is discussed in detail in Chapter 4. 

3.1.1 Boolean Algebras 
From the examples above it can be seen that a Boolean algebra of function 
type constructors is required to concisely describe the dependency relations 
between subterms of a term. In this Boolean algebra, #. plays the role of the 
distinguished element 1 of a traditional Boolean algebra and plays the role of 
the 0 element. Although the negation operator, has not yet entered into any 
of the examples, it is useful to include it, as was illustrated in Wright [72, 74], 
see also Chapter 6. 

A Boolean algebra is a set B containing distinguished elements 0 (the zero 
element) and 1 (the unit element) under the operations A, V and where for 
all x, y and z E B the axioms of Figure 4 are satisfied. Let =BA denote the 
"=" operation over Boolean algebras defined in this Figure. 

Function type constructors are built from a set of basic function type con-
structors called arrows: 

Definition 3.1.1 (Arrows) 
The set of arrows is = Ag U Ay , where 
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• the ground arrows (Ag) are 	-0+ }, and 

• the variable arrows (&.,), also called arrow variables, are {—+ i , 	...}. 

The arrow 	is called the strong head needed arrow and the arrow -4 is called 
the constant arrow. 

Following Martin and Nipkow [45], write T(B, A, V, for the Boolean al-
gebra over B generated by A, V and 

Definition 3.1.2 (Arrow Expressions) 
Let V be a set of arrows, then the Boolean algebra of arrow expressions over 
V is By = T(V, A, V, The set of arrow expressions is Bp, the set of ground 
arrow expressions is Bp g  and the set of variable arrow expressions is Bat,. 

In the following, arrow expressions of various kinds will be considered modulo 
=BA and the letters b, b', 	, b i , b2  ... will be used to range over them. 

3.2 Curry-style Type Assignment 
The first type assignment system introduced for Boolean Reduction Types is 
one in the style of Curry's system for F-deducibility (Curry and Feys [18]). This 
relatively simple system illustrates some features of the more sophisticated 
type assignment systems to come. In particular, the treatment of variable 
strong head neededness functions is elucidated, and this treatment will remain 
essentially unchanged in later type assignment systems. 

In the following subsection the set of types for this type deduction sys-
tem are defined. After this subsection the rules for forming deductions within 
the Curry-style system are presented and discussed. Then several example de-
ductions are described in detail, these demonstrating the main features of the 
deduction system and its use. 

The next subsection discusses several extensions which arise due to the 
unique nature of the type deduction systems presented. Some limitations of the 
system are discussed and some observations are made regarding the relationship 
of the terms which may be assigned a type in the Curry-style systems for 
deducing Boolean Reduction Types and certain other sets of terms. 

The final major subsection presents an investigation of the relationship 
between the present type deduction systems and /6-reduction and /8-expansion. 
This subsection is of great importance for the following chapter in which the 
semantics are examined of the various constructs introduced in this chapter. 

3.2.1 Preliminaries 
Firstly, the set of admissible types is defined: 
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Definition 3.2.1 
Let V be a set of arrow expressions, then the set of Abstract Simple Boolean 
Reduction Types, T, 2  is inductively defined to be the least set satisfying: 

1. a E Tv  implies cx E Tg, a.nd 

2. uET , rETandbEVimpliesobTE T. 

By instantiating V in the above definition many different sets of types 
may be generated. (Since this work is concerned with strong head neededness 
information only BA, Ag , {} and {-0+} will considered as instances of V). 
The set of Simple Boolean Reduction Types is T. The set of ground Boolean 
Reduction Types is Tc°9  . The set of hereditarily strongly head needed types is 
T 1  and the set of hereditarily irrelevant types is T 1 . The set of free type 
and arrow variables of a type or, written FV(cr), is the set of all of the type and 
arrow variables occurring in cr. 

A type assumption is a statement of the form x : r, where x E X and 
T E TGY, for V = BA, Ag , or {-0+}. An assumption set is simply a set 
of type assumptions, with the restriction that no term variable occurs more 
than once in the assumption set. The letter A (possibly with subscripts) will 
be used to denote an arbitrary assumption set. Since assumption sets have no 
more than one occurrence of each term variable they are set-theoretic functions. 
Thus, A(x) will denote the type associated with the variable x in A. Similarly, 
dom(A) will denote the set of all term variables occurring in A. Finally, write 
Az  for the assumption set equal to A except that any occurrence of a type 
assumption containing the variable x in A is removed. The set of free type and 
arrow variables of an assumption set A, written FV(A), is I.J 0. EA  FV(a). 

A term variable strong head neededness function (or, for conciseness, vari-
able neededness function) is a function of type X —> Bv, for some V, which 
denotes whether a term variable is strongly head needed in a term. Further-
more, variable neededness functions must be total functions, i.e., every term 
variable is bound within a variable neededness function. Variable neededness 
functions are denoted by the letter V (possibly with subscripts). If V is a vari-
able neededness function, x E X and b is an arrow expression, then V[x := 13] 
denotes the variable neededness function which is everywhere identical to V 
except at x, where its value is b. 

Let K. denote any variable neededness function with the property that 
Vx E X.V...(x)=BA -0+. For example, the expression x should have the variable 
neededness function 1/...+ [x := 	associated with it since x is strongly head 
needed in x, but for all y 	xy is irrelevant in the expression x. In fact, 
for any legal derivation (see below) variable neededness functions will be com- 
pletely determined by the assumption set and term used in the deduction of 

2The C is short for Curry. 
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a type for that term. To avoid confusion with the symbol A used as the ab-
stractor in A-terms, functions in the meta-language will be constructed using 
a meta-abstractor which will be written as A. The set c:xf free type and arrow 
variables of a variable strong head neededness function V, written FV(V), is 
Ux€x FV(1/(x)), where the set of free variables of an arrow expression is all the 
arrow variables occurring in the arrow expression. 

A typing statement is a quadruple of an assumption set A, a variable need-
edness function V, a term M, and a type T. A typing statement will be written 
as 

A FT, M: T, 

where * will be a letter denoting a particular deduction system. For example, 
in this section the deduction system of interest is the Curry-style system and 
so typing statements will be written as 

A FY' M: T. 

In the statements of lemmata or theorems, unquantified statements of the 
form: 

A 1-ic, M: T, 

are intended to be interpreted as saying M, V, T.A 	M T is a legal derivation 
for M E A in the Curry-style type assignment system for Boolean Reduction 
Types (and similarly for later systems of type assignment). 

3.2.2 The Type Assignment Rules 
The deduction system takes the form of an inference rule or axiom for each 
kind of A-term (see Figure 5). This figure in fact defines four type deduction 
systems, depending on whether the set of types is chosen to be TgA , Tc°9  , Tp} 
or Since terms are built from application and abstraction of terms and 
term variables, there are three corresponding rules. The form of each of these 
rules is now informally described. 

The VAR Rule 

For term variables an assumption about what types they belong to must be 
made. Each occurrence of the term variable will then be assigned the type 
assumed for it. Thus, this rule insists that the usage of a term variable is 
consistent across all its occurrences in a A-term. 

As for the variable neededness function V, note tha.t in a term consisting 
of a single term variable, if this variable is abstracted the identity function is 
obtained. Hence, the variable neededness function should assign the value 



VAR Az  U {x: a} 	x: 

APP 
A 	cr b  A [-F4  N2:  a  

A FY' NiN2 : r 
(V = x.Vi (x) v (b AV2 (x))) 

ABS 
Az  U {x: a} 

A1-,,c r 	, ) x. N: o- br 
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Figure 5: The Curry-style Rules for deducing Reduction Types 

to the variable. Since there are no other term variables in the term, all other 
variables should be assigned the value -0+ by the variable neededness function. 
Hence, the appropriate variable neededness function is V = V_„[x 

The APP Rule 

For the case of an application of two terms, both terms should have legal typing 
statements derivable for them in order for the APP rule to be applicable. In 
addition, the term used in a functional manner in the application must have 
a functional type. Moreover, the argument type of this functional type must 
also agree with the type of the argument term in the application. The last 
requirement is that the type assumptions made for free variables in the two 
terms by their respective typing statements should be the same. 

The typing statement for the application of the two terms can then be built 
from these typing statements. The chief operation here is the construction of 
the variable neededness function for the combined terms. Any free variable 
head needed by the functional term in the application will be head needed in 
the application. Free variables in the argument term will be head needed by 
the application if the argument term is head needed by the functional term and 
if the argument term itself head needs them. 

The ABS Rule 

Consider the cases where the set of types is TEA,T,A9, or 7,-*".} . For an abstrac- 
tion, there is the possibility that the variable being abstracted may not appear 
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free in the term. 3  In this case, it is clear that the variable neededness function 
should map the variable to -.4. (Note how the choice of the variable neededness 
function in the VAR rule will fulfill this requirement). Of course, the assump-
tion set must still assign a type to the variable even if it does not appear free 
in the term. Given a legal typing statement which satisfies these requirements, 
the typing statement for the abstraction can be constructed. The type assigned 
to the abstraction should be that of a function from the type of the abstrac-
tion variable to the type of the expression, with neededness determined by the 
variable neededness function. 

Consider the case where the set of types is TP } . An application of the rule 
for abstraction may only be made if the abstraction variable definitely occurs 
as a free variable in the term being abstracted. Thus the set of terms for which 
types can be found in this system would be expected to be a subset of Church's 
AI-terms (see Barendregt [3] for a discussion of these terms). (Baker-Finch [2] 
has investigated the connection between the system TP )  and Church's AI-
terms in greater detail). 

Since an abstraction closes the scope of the abstraction variable, any further 
abstraction of that variable will result in a function which does not have the 
variable free within it, thus the variable neededness function should have its 
entry for the abstraction variable reset to -4 in the resultant typing statement. 
In fact, for a valid typing statement derived using a type deduction system 
the variable neededness function, V, is completely determined by the structure 
of the term and the type assumption set, A, and so is not written as an as-
sumption. To see this, note that the variable neededness function is completely 
determined for each use of rule VAR. By induction it is straightforward to see 
that rules APP and ABS also completely determine the variable neededness 
function. 

In the case of the type assumption set, the current entry for the abstraction 
variable should be deleted and any previous entry for it re-instated. (This is 
because abstractions may nest the use of term variables and this requires that 
earlier assumptions for that variable be made valid again). 

Note again that at each stage of the deduction of a typing statement the 
variable neededness function is completely specified. 

3.2.3 Examples 
In this subsection some initial simple examples are presented of deductions 
using the above type assignment system. It is hoped that these will help the 
reader to understand how strong head neededness information is derived. All 

31n the case of 7' -'*1  the variable being abstracted may appear free in the term, for 
example in Ax.yr, y may be assumed to have type a 	r, for some a and r. 
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derivations use the system based on 4°, unless stated otherwise. 
Let the symbol 0 denote the empty set. 

Example 3.2.2 
Consider K E. Aab.a. By rule VAR, under the assumption set A E {a: a, b: r}, 
we obtain: 

A 1-c 	a : 

	

V... [a := 	a. 

Now we take an instance of the ABS rule to obtain: 

Ab  1-c 	Al) a • T 

	

V_.. [a := 	• • 

Note how the variable neededness function is in this example unaffected by 
the abstraction and how the form of this function provides us with the correct 
value for the strong head neededness of b in this term. Finally, a last instance 
of rule ABS is required: 

Aba  0 H ICI Aab.a: a 	T 

The main point to notice here is that since this term is now closed any further 
abstractions of this term should have the constant arrow assigned as their 
strong head neededness value, as is indeed satisfied by the variable neededness 
function V. 

A type for this term is only derivable in the systems based on Tg° and Tc°9  

Example 3.2.3 
Now consider a term with an explicit higher-order function, Axf.fx. Choose 
A E {f: a -4 i  r,x: a}, then by rule VAR: 

A 1-c  x : cr. 

A further instance of rule VAR is required: 

A q; [f 	f: 	T. 

Now rule APP is applicable and we obtain: 

A 1-?, fx: T, 

	

where V = Ay.(V...[f := 	x :=—>d)(y). Note that all term variables other 
than f and x are mapped to --0+ by V and that this is as we would expect for 
the term fx. Now follow two occurrences of rule ABS, with result: 

	

0 	Axf.fx : a -4i (a -4 i  T) = T. 

This type agrees with our intuition that the strong head neededness of x in 
this term is dependent on the strong head neededness of the argument to the 
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function f. In this way higher-order functions are dealt with in a simple and 
effective manner. This naturally has a positive impact on implementations of 
this system, as will be seen later (Chapter 5 and Appendix A). This should 
be contrasted with systems based on conventional abstract interpretations in 
which polymorphic higher-order functions cause some difficulty (see Chapter 7). 

A type for this term may be derived in all but the system based on 
Note that in the systems based on Tc°9  and 7-1(,)  the derivations of types for 
this term involve only ground types. In particular, for TP derivations of the 
following form (for some A) are derivable: 

A 	Ax f .f x : 	(a -A r) 

and, for Tc°9  as well as for 	derivations of the form below (for some A) 
are derivable: 

A FY.  Ax f .f x : a = (a = T) = T. 

Example 3.2.4 
Now consider an example in which a variable occurs more than once, say 
Afx.f(fx). This function (the Church numeral c2 ) has best type (a —+ a) —> 

—> a, for some a, in the system for F-deducibility of Curry and Feys [18]. 
(We shall see a better type for this term in a later deduction system). In the 
present system, we can reason as follows. Let A a- {f:a a,x: a}, then by 
rule VAR: 

A 1-c  v. 	X: a, 

and by rule VAR again: 

AL C Ef , = 	f : —>i a. 

By rule APP: 

A 1-- icti  fx: a, 

where V1 = Ay.(V.[f := ])(y)). Again by rule APP, 

A F ?72  f(fx): o-, 

where V2 = Ay.(1/4f := ])(y) V (--4i AVI (y)). In fact V2 = V1  since the 
present system forces us to give identical types to each occurrence of a term 
variable, even if there is more than one ocourrence. Finally after two instances 
of rule ABS, we obtain 

Az1 0 	Afx.f(fx): (a 	a) = a --+i a. 
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A type for this term may be derived in all but the system based on 

Example 3.2.5 
As a variation on the previous example, consider Afgx.f(gx). Let A F:2 If : 
a 	g: p 	a, x : p}, then by rule VAR: 

A 1.--c  := 	x p, 

and by rule VAR again: 

A F- ic, [9:=  g: p -*; o. 

By rule APP: 

A 	gx: 

where V1  = 	:=])(y)). Again by rule APP, 

A F4'2  f(gx): T, 

where V2 = Ay 	:= ])(y) V 	A14(y)). In contrast to the previous 
example V2 0 V1 since we can now distinguish between the two applications by 
the types alone. Finally after three instances of rule ABS, we obtain 

As91 =7.-  0 F?, Afgx.f(gx): (cr 	r) = (p 	a) 	p 	A —>j) T. 

This type clearly describes the dependence of x on both f and g. 

Example 3.2.6 
As an example which has a logical disjunction of strong head neededness prop-
erties in its final type, consider Afx.fxx. Suppose A :=1- ff:a -4j a ->; r, x: a}, 
then the following deduction is easily found: 

A I- - vc 	x: 

and 

A 	:= #.] f: 	CY --)j 

both by rule VAR; 

A FY‘i  fx: a -4;  T 

where V1  = Ay.(17_4f := ])(y)), by rule APP; 

A I-F,2  fxx:o- 	T, 

where V2 = Ay.14(y) V (-.; A(V...[x := , j)(y)), again by rule APP; hence 

f 0 	A fx.fxx:(a 	->; r) 	a (->j V -+;) T, 
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by two instances of rule ABS. Note that this type accurately records our in-
tuition that x may be strongly head needed through either of its occurrences 
(consider when this term is applied to Aab.a or Aab.b). 

Example 3.2.7 
Now, an example which involves the use of both V and A, S E Afgx.fx(gx). 
For this term let A {f: p a --4; T, g: p cr,x: p}, then we derive some 
instances of the VAR rule: 

A F-c  v [f 	f P —4  i 4:7 	T 7 

A F-cv_ [s, ; 	g: p 	k cr 

and 

A 1-Y 	x: p. 

Now we can make three uses of instances of rule APP: 

A Ili  fx: a 	T, 

where V1  = Ay.(V...[f := -])(y)), 

A 1- ?72  gx: 

where V2 = Ay 	:= ,])(y)) and 

A 	fx(gx): T, 

where V3 = y.Vi(y) V (-4i AV2 (y)). At this point one can trace through what 
the strong head neededness values for f, g and x are in V3 and so after three 
uses of the ABS rule it is not too surprising that we obtain: 

0 	S: (p 	cr 	(p 	cr) 	p 	\/(---j A —+ Ic)) 7. - 

Here we see that the neededness of g is dependent on whether f requires its 
second argument, whereas x is dependent on whether f needs its first argument 
or whether f needs its second argument and g needs its sole argument. 

Note that nowhere has any use of the negation operator H been made in 
these examples and the type assignment system. In fact no use in this thesis will 
be made of this operator for any system involving only pure 'A-terms. However, 
when typical constants are added to the sets of terms and types it turns out that 
such an operator is of great utility (though clearly not essential), see Chapter 6 
as well as Wright [72, 74]. 
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crbr 	N2 : cr 
A NiN2  : 

(V = AX.Vi(X) V (b AV2(X))) 

A 	cr r A' 	N2: Of  
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Figure 6: Extended Curry-style Rules for deducing Reduction Types 

3.2.4 An Extension of the Curry-style System 
In Figure 6 a simple extension of the Curry-style system is presented. This 
extension makes direct use of the intensional information available in Boolean 
Reduction types to support an additional form of application. In this rule, 
named APP---0+ in the Figure, advantage is taken of the fact that any term 
which is constant on its argument will, by definition, make no use of that 
argument in computing the result of the expression. Note that this rule (APP-
--A) would only be expressible in a simplistic way in a conventional system not 
based on Boolean Reduction Types (by restricting consideration to terms of 
the form (Ax.M)N, where x FV(M)). 

That the APP---0+ rule is indeed a degenerate case of the APP rule (as far 
as strong head neededness information is concerned) can be seen by examining 
the way the variable neededness function is constructed from its antecedents 
in the APP rule. Clearly, in the construction of 

V = Ax.Vi (x) V (-4+ AV2 (x)) , 

the value of V2 is irrelevant and V is the same as VI . 

Definition 3.2.8 
If a type a —4 r is deduced for a term P, then by abuse of language it will be 
said that Q (and all its subterms) is irrelevant to the deduction of a type for 
the term PQ. 

Similarly, a deduction of A' FY% N: a' is an irrelevant subdeduction of a 
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deduction 

A 1-4.  M: cr -0+ T A' 	N: a' 
A MN: T 

(In the case that rule APP is used it will also be true that A = A' and a = a'). 

The APP--4 rule fundamentally extends the system presented in that it 
allows the typing of (irrelevant) self-application. Consider: 

Ix: a 	T 	Ex:=1  x: 	T 

and 

{x: p} 	x: p, 

for p, a and r arbitrary types. Then rule APP--4 is applicable and so: 

: a -0-, r}1- c 	xx: T. 

Similarly, the term Y 	Af.(Ax.f(xx))(Ax.f(xx)) can now be assigned any 
type of the form: 

(p -0+ a) = T, 

for p, a and T arbitrary types. Note that any typable term of the form 
YM is always normalisable (but clearly is not strongly normalising), since 
YM=0M(YM) and YM is an irrelevant argument to M. 

An alternative would be to specify rule APP--4 in the form: 

A 1-f;,_ 	: -4r 
A I- 15, Ari N2 : r ' 

where N2 E A. This would allow terms such as (Ax.y)((Az.zz)(Az.zz)) to be 
typed in the system. In contrast, the form of the rule originally given requires 
that some type be assignable to the term under an arbitrary assumption set. 
(Clearly, no type can be assigned to (Az.zz)(Az.zz) in the present system in-
cluding rule APP--4). 

In the rest of the thesis, it is the system of Figure 5 which will be re-
ferred to as the "Curry-style system". However, in the investigation in this 
section the rule APP--4 of Figure 6 will be considered as part of the system 
unless otherwise specified. The main reason for including this rule is that in its 
presence a full strength result can be established concerning fl-expansion (see 
Theorem 3.2.24). 

Finally, note that the rule APP--4 is not definable for the system based 
on TP) , and so all results concerning this rule are implicitly only statements 
concerning the other three systems. 
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3.2.5 Multiple Occurrences of Term Variables 
The type assignment systems of Figure 5 have the property that, like Curry's 
system of F-deducibility, every variable bound by a A-abstraction must have 
a single type. However, since Boolean Reduction Types contain information 
about how a function will use its argument, the type assignment system of 
Figure 5 is more restrictive than F-deducibility4  (in the sense of the class of 
A-terms which may be assigned a type). Note that this is still an elegant result 
as the present type assignment system has exactly the same constraints as the 
system of F-deducibility—it is just that far more information is contained about 
A-terms in a Boolean Reduction Type when compared to the conventional types 
of F-deducibility. The following example is useful for illustrating this behaviour. 

Example 3.2.9 
Consider the term Af.g(f(Ax.x))(f(Ab.a)). In the system of F-deducibility a 
type for this term is ((p p) a) —> T, for some p, a and r, under the 
assumptions a: p and g:a 

In the present system we may deduce the following type for the subterm 
Ax.x of this term: 

A [-L Ax.x: o 	a. 

(For any A and a). In contrast, we deduce: 

	

A'a  U {a : T} 14'  := 	Ab.a: 	.4+ T, 

for any T, r' and A'. Now, even if we choose r = = 0' and A= A'a  U fa : r}, 
we cannot find a single type to assume for f such that we can deduce a type for 
the term Af.g(f(Ax.x))(f(Ab.a)). The problem is that the arrows assigned to 
the arguments of the two occurrences of f differ and are irreconcilable. Thus 
this example proves that the system presented here can only deduce types for 
a subset of those terms which can be assigned a type by the system of F-
deducibility (in that system the typable terms are known as the simply-typable 
terms). Later in this chapter systems will be investigated which alleviate this 
restriction. 

Note that, under the assumption that f does not require its argument, the 
above term may be assigned a type in the systems of Figure 6. (Simply by 
making use of an instance of APP--- in typing the subterm f(Ax.x)). 

To summarise, the only terms for which a type may be deduced in the 
present system are those whose every variable (both free and bound, as appro-
priate) is used in both an extensionally and intensionally identical fashion. This 
should be contrasted with systems such as the Al-calculus (in which at least 

4This is the system of Curry type deduction, as described in Chapter 1. 
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one occurrence of a variable must occur in a term if that variable is abstracted), 
and sets of linear terms (in which exactly one occurrence of a variable must 
occur in a term). It is clear that the set of linear terms is contained within 
the set of A/-terms, as well as the set of terms derivable in the present system 
when based upon TP }  (see Baker-Finch [2] for a more detailed examination of 
this point). So in the present system all linear terms are typable, but not all 
)J-terms (for example Ax.xx is a A/-term which is not typable in the system 
excluding rule APP--- ,q). On the other hand there are typable terms in the 
present system (except when based upon TP 1 ) which are not A/-terms (for 
example, K Axy.x). 

Definition 3.2.10 
1. The set of A/-terms, Al, are inductively defined to be the least set satis-

fying: 

• x E X implies x E Al, 

• M,N E Al implies MN E Al, and 

• M E Al and x E FV(M) implies Ax.M E Al. 

2. The set of linear A-terms, AL, are inductively defined to be the least set 
satisfying: 

• x E X implies x E AL, 

• M,N E AL and FV(M)11 FV(N) = 0 implies MN E AL, and 

• M E AL and x E FV(M) implies Ax.M E AL. 

Let AT' denote the set of terms for which a type may be found in the Curry-
style system when the set of types used is T. Then the following relationships 
ensue: 

1. ALCATCATc CATc CA,and 

2. AL C ATP }  C Al C A. 

(See the proposition below). 

Proposition 3.2.11 
1. M E AL implies M is typable in the Curry-style system ATP } . 

2. If M E A can be assigned a type in the Curry-style system without 
containing any irrelevant sub-deduction, then M E Al. 
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Proof 
1. Easy induction on M E AL. (In the case of an application we can use 

the Strengthening Lemma, Lemma 3.2.18, which is proved later in this 
section, to derive deductions for the two components of the application 
such that their assumption sets are disjoint. Then use Lemma 3.2.17 to 
find the same types for them undet a common assumption set. Finally, 
apply rule APP). 

2. Again, a straightforward induction since if M Ax.N, then x E FV(N), 
as required. 

0 

The key point is that the richness of the basic framework presented thus 
far in the thesis allows the incorporation of more sophisticated logical systems 
of type assignment in a straightforward manner. This is demonstrated in later 
sections of this chapter in which a progression of increasingly powerful type 
assignment systems using this framework are presented. 

3.2.6 Properties of the Curry-style System 
In this subsection some fundamental properties of the Curry-style deduction 
systems for Boolean Reduction Types are examined. Naturally, the focus is 
on reduction and its relationship to the deduction system. Later the relation 
between reduction and Boolean Reduction Types themselves will be considered 
(Chapter 4). 

The main results established are that the type deduction system always re-
spects )3-contraction (Theorem 3.2.21) and that in certain situations it respects 
fl-expansion (Theorems 3.2.23 and 3.2.24). This means that if a type and vari-
able neededness function is derived for a certain term, then every /3-contractum 
of that term can have assigned to it the same type and variable neededness func-
tion. In certain situations, as described by the Theorems themselves, the same 
is true for fl-expandums of a term. 

Note that if a result is proved for TcY or the set of types is not specified, 
then the intended meaning of this is that the result holds for all four systems 
of Curry-style deduction. A property is generic for a deduction system based 
on TGY if it holds for all subsystems of T. This genericity is of great help 
in simplifying the analysis. Fortunately, there are only a few places in the 
following investigation which are not generic. 

Firstly, for a given term and assumption set, if two deductions give identical 
types, then their variable neededness functions must be equivalent. 

Lemma 3.2.12 
Suppose 3A, cr, V2 .A 	M: cr and A F ic,2  M: a, then Vx E X.Vi(x)=BAV2(x). 
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Proof 
By induction on the structure of M. 

The interesting case is when M is an application-term, M1 M2. In this case 
the result follows from the induction hypotheses (for each combination of rules 
used) and the definition of =BA. 

The following three Lemmas are trivial in the current system, though they 
will not be in the study of the system which includes type intersection (which 
appears later in this chapter). These Lemmas are included here for consistency 
with the latter system. The first is essentially the inverse of the APP rule. 

Lemma 3.2.13 
If A F? MN: T and rule APP is the final rule used in this deduction, then 
au E TGY,b E V', V".(A 1-f;, M: abr, A F-?,n N: a and Vx E X.V = 
Ax.V I (x) V (b AV"(x))). 

Proof 
By rule APP, since this was the final rule used in the derivation of Alm?, MN: r. 
0 

The inverse of rule APP--0+: 

Lemma 3.2.14 
If A 	MN: T and rule APP--4 is the final rule applied in this deduction, 
then there exists a, a' E TGY and assumption set A' such that (A 11, M: a -4+ T 

and A' 1-Fin N: a'). 

Proof 
By rule APP--0÷. 0 

Similarly, the inverse of the ABS rule: 

Lemma 3.2.15 

• A 11 Ax.M: abr implies Az  U {x: a} Fcv[x:.b]  M :   T 

Proof 
By rule ABS, since a type can only be deduced for Ax.M by using this rule. 0 

Some more general statements about the APP rule can be made: 

Corollary 3.2.16 
Let M NN1  Nn  where N is not an application term and n > 0. Suppose 
A 11 M: r, without using rule APP-4, then 3pi E Tj7,  , bi E V and Vi 
(1 < i < n): 

1. A 11, Ni: pi, A 11, N: bi P2 b2 • • • bn-1 Pn bn  T and V = Ax.Vi(x) V 

(V7.1(bi AVi(x))), 
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2. if N 	x, then A = A'z  U Ix : 	bl P2 b2 • b,-i Pn bn r} and V' = 
:= 	and 

3. if N Ax.N' , then As  U {x: pi} qx =In] N': p2  b2  .. • bn-i p,, bn T and 
I/1(x) =-4. 

Proof 
1. By repeated use of Lemma 3.2.13. 

2. By part 1 and rule VAR, since this is the only rule which can be used to 
find a type for x. 

3. By part 1 and rule ABS, since this is the only rule which can be used to 
find a type for Ax.1■1'. 

0 

It turns out that the following rules for strengthening and weakening are 
derivable in the present system: 

STR 

WEAK 

A,U {x:o}F?M : r  
As  M:T 

(x 0 FV(M)) 

(x g FV(M)) A I-? M: T 

 

As ti {X: ()}F?, M : T 

 

This is demonstrated by the following two lemmas: 

Lemma 3.2.17 
Suppose x 0 FV(M), then Al- ; M: T implies As  U {x: a- }1- 15 M: T. 

Proof 
Straightforward induction over the deduction of A 1.-.? M: T. 

Lemma 3.2.18 
If Az  U {x : a} 	M: T and x FV(M), then Az 	M: r. 

Proof 
By induction over the deduction of A 1- 15 M: T. Use Lemma 3.2.17 for the case 
of M an abstraction term. 0 

The above properties are used to establish several results in the rest of this 
section. 

Now it is time to consider the effect of term substitution (see Chapter 1). 
The primary interest in the following two lemmas is type preservation, i.e., 
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when a term is transformed by substitution, what conditions need to be imposed 
in order to preserve its type? Firstly, the effect of undoing a substitution is 
examined: 

Lemma 3.2.19 
Suppose A Ff, M[x := N]: r, only the type a is assigned to N in this deduction 
and A F-?, N: a, then there exist b and V" such that: 

• Az  U Ix : (7} 1-Y. „Ex =IA  M: r, and 

• V = Ay.V"(y) V (b AINY))• 

Proof 
By induction on M[x := N]. 

x[x := N] -a. N In this case a = T and Az  U {x: a} F-Y' „ [x :=bi  x: r, where 
V"=BAV...... and b =BA . Now, 

V = Ay.171 (y) 
= Ay.V.,(y) V ( AV I (y)) 
= Ay.V"(y) V (b AV'(y)), 

as required. 

z[x := N] a: z (z 0 x) It is immediate that 

A 1-c 	z: T, V...Ez := ] 

so V"=BAV...[z := ] and b =BA -4. Now, for any V', 

V = Ay.(V_,+ [z := ])(y) V (-4 AV 1 (y)) 
= Ay.V"(y) V (b AV1 (y)). 

N1 N2 [x := N] (E. (Ni [x := N])(N2 [x := N])) and the last rule used is rule 
APP. By Lemma 3.2.13, 

• A FY, Ni [x := N]: pb' T , and 
• A F.- .2  N2 [x := N]: p, 

where V = Ay.Vi (y) V (b' AV2 (y)). By the induction hypotheses 

• AU {x: cr} 1- ;,,,[x:=bi)  N1 : pb' T , and 

• Az  U {x: cr} F-*[x :=b2] N2:  P, 
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where Vi(y)=BAVI"(y)V(bi ATP(y)) and 1/2 	Vf(Y) V (b2 AV'(y)). By 
APP, Ax  U Ix : a} I-F,„ [z , b]  Ni N2 : T, where V"(y)=BAVI"(y) V (b' AVf(y)) 
and b =BAbi V (b' Ab2). As is conventional, assume that A binds tighter 
than V and also temporarily replace A by juxtaposition, then by rule 
APP, 

V = _ky.(Vf(y) V bi 1/1 (Y)) V (b i (V2"(Y) V b2 WM)) 
..._y.171"(y) V b i  V'(y) V 13 1 (V211 (y) V b2 1P(Y)) 
...V.Vi"(y) V b i  Vi(y) V b' V21'(y) V b' b2 

Ay.Vi"(y) V b' iq'(y) V b i  1/1 (y) V b' b2 1NY) 
= Ay.(Vi"(y) V b' Vf(y)) V Om V 13' b2 )V 1(y) 

Ay.V"(y) V b V'(y). 

N1 N2 [x := N] 	(Ni [x := N])(N2 [x := N])) and the last rule used is rule 
APP--4. Then the result follows easily by Lemma 3.2.14, rule APP--0+ 
and the induction hypotheses. 

(Az.N')[s := NJ The case z 	x is not allowed by the variable convention. 
Suppose z # x, then (A.z.N')[x := N] 	Az.(Ni[x := N]). Since A 1- 1.  
(Az.N')[x := N]: r is deduced using rule ABS, r = pb' a', for some p, 
and a'. By Lemma 3.2.15, 

Az  U {z: p} 	N'[x := N]: a', 

where Vilz := 131 = Ay.Vi"(y)[z := bi] V (b 1  AV'(Y)). (Note that by 
the variable convention, z 0 FV(N) hence TP(z)=BA -4). By induction 
hypothesis, 

Azx  U {z: p, x : 	1•cils,.13.1][..:=0 

then by ABS, 

Ax  U {x: a} 	 j Az.N1 : p} . 

Now, 

V = Ay.Vi [z := -0+](y) 
= Ay  .Vi"[z := -41(y) V (bi 

as required. 
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Now the effect of performing a substitution: 

Lemma 3.2.20 
If Az  U {x: a} 	M: T, A 1-?,, N: a, x FV(N) and V1 (x) =-4, then 

• A 1--; M[x := N]: T, and 

• V = y.V(y) V (b AV II (Y))• 

Proof 
By induction on M. 

M x In this case M[x := N] N. 

1. Az  U {x : a} I- 1c, 	x: r, a = r, V' =V and b =BA • 

2. All x[x := N]: r. 

M z, z # x In this case M[x := N] M. 

1. A U {x : a} I- 1c, Ez:. z: r, V' = V4z := 	and b =BA 

2. By Lemma 3.2.17, A 1-?, 	z: T. 

3. All z[x := N]: T. 

M N1 N2  and rule APP is the final rule used. In this case M[x := N] 
(Ni [x := N])(N2 [x := N]). 

1. By Lemma 3.2.13, so' E T r  .A 	N1 : a' b' r, A ICI N2: a' and 
(11x := bn(y) = VIi(y) V (3' AV2'(y)). 

2. By the induction hypotheses, A 	N1  [x := N]: a' b' T, where 
V111(y) = Vii(y) V (1/11 (x) A V"(y)) and A 1-* N2 [x := N]: a', where 

Vii(Y) = V21 (y) V (Vi(x) A V"(Y)). 
3. Vi"(y) V (b' AVf(y)) 

=BAVAY) V (171'(x) A V"(y)) V (b' AV2'(y))V 
(b' AV21 (x) A V"(y)) 

=BA1/(y) V (b' AV2'(0) V (V11 (x)V 
(b' AV2'(x))) A V"(y) 

=BA(Vlx := 131)(y) V (b AV"(y)). 
4. Finally, by APP and the definition of substitution for terms it follows 

that A 1-?, (Ni N2)[x := N]: T . 

M N1 N2  and rule APP--4 is the final rule used. Straightforward. 

M Az.M' The case z x is not interesting. Suppose z x: 
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1. By Lemma 3.2.15, r = 	o-2, for some ai  and b', A. U {x: a, z: 
(71} 	 .111 ' (72.  

2. By the induction hypothesis, Az  U {z : al } 	M'Ex :=  
where Vm(y) = (IP[z := b'])(y) V (b AV"(y)). 

3. By ABS, A 1-?, (Ay.M')[x := N]: 0i b'02. 

0 

Reassuringly, any type assigned to a redex term by the present type as-
signment system may also be assigned to the (top-level) /3-contractum of that 
term. 

Theorem 3.2.21 
If A 	(Ax.M)N : r, then there exists a deduction of AHS M[x := N]: T. 

Proof 
Choose x FV(N). By Lemma 3.2.13, 3a E TX ,  b E V, V', V".A 	Ax.M : 

b 7- 5 A 1- 15n N: o-  and V = Ay.V'(y) V (b AV"(y)). By Lemma 3.2.15, As  U {x : 
a} FY' , [s  M: T. By rule ABS V i (x)=BA -•'+. Therefore Lemma 3.2.20 applies 
and so A F-? M[x := N]: r, as required. 0 

The following Corollary is also known as the "Subject-Reduction Theorem", 
see Curry and Feys [18]. 

Corollary 3.2.22 
Let M--- r3N, then A 	M: T implies A 	N: T. 

Proof 
By iterated use of Theorem 3.2.21 along the reduction path from M to N. 0 

Curry's system of F-deducibilty is not complete with respect to /3-expansion 
([18]). It is not too surprising then that the current system should also suffer 
this limitation. However, the result does hold in certain special cases, as is now 
demonstrated by the following two Theorems. 

Firstly, the case in which the abstraction variable does occur free in the 
term: 

Theorem 3.2.23 
If A F--?, M[x := N]: T and x E FV(M), and suppose only a is assigned to 
relevant occurrences' of N in the deduction of A I-? M[x := N]: T, then if 
A N: a, then A 1- 16; ()tx.M)N : T. 

5See Definition 3.2.8. This Theorem is made more general by only requiring relevant 
occurrences of N to meet this condition. 



3.2 CURRY-STYLE TYPE ASSIGNMENT 
	 46 

Proof 
1. By Lemma 3.2.19, there exist b and V" such that Az  U {x: a} 1-?,„ [x:=1.]  

M: T and V = Ay.V"(y) V (b AV I (Y))• 

2. By ABS, A F-?,, 	Ax.M : abr. 

3. V"[x := -4]=BAV", since x FV(M[x := N]). 

4. By APP, A 1-?; (Ax.M)N : r. 
0 

Secondly, the case in which the abstraction variable does not occur free in 
the term: 

Theorem 3.2.24 
If A F.?, M[x := N]: x FV(M) then A 11 (Ax.M)N: r. 

Proof 
By rule APP.-4. The theorem also holds for the system without APP--4, 
provided that A 1--f, N: a, as follows: 

1. M[x := N] E M , so A FY' M : T. 

2. By Lemma 3.2.17, A x  U {x: a} 	M: r. 

3. By ABS, A 1-?,[x:„..]  Ax.M : a V(x) T. 

4. x FV(M) implies V(x)=BA -"+• 

5. By APP, A 	(Ax.M)N: 7 where V" = y.V(y) V (V(x) A 1/ 1(y)) = 
Ay.V(y) = V, as required. 

0 

Finally, it-contraction preserves types: 

Theorem 3.2.25 
If x FV(M) and A 	Ax.Mx: o b 0 2 , then A EF, M: a b 

Proof 
By induction on the derivation of A 	Ax.M x : cri  b cr2. 

1. By Lemma 3.2.15, Az  U {x: ai } 11 	Mx: o-2 • 

2. By Lemma 3.2.13, Az U {x: al } F- 15 M: al b cr2 and by rule VAR, Az U Ix : 
ai } 	x: 

3. By Lemma 3.2.18, Al-? M:o1 b o2.  

0 



VAR 	(A.4x U ix : (,cr)} 1-c x : cr 

Ai  1-c 	: crb r  A2  IC N2: cr 
A 1  eb A2 F C  N1N2 : r 

AU {x: (b,cr)} I-C  N: r 
AF-G Ax.N:crbr 

APP 

ABS 
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Figure 7: The Alternative Curry-style Rules for deducing Reduction Types 

3.2.7 Syntactic Variations 
As a matter of syntax, two variations on the above formalism for type state-
ments are now discussed.' The first is merely writing the variable strong head 
neededness function as a pair with the type deduced, i.e., typing statements 
are written as: 

A 1-c  M: (V, r). 

This option was not followed here as it is somewhat more cumbersome to write. 
The second variation is somewhat more substantial, but has the disadvan-

tage of complicating the form of some of the proofs in the last section, hence 
it too is not further pursued. 

Let an assumption set, A, be a set of triples of the form 

x: (b,r), 

where b is an arrow expression and T is a type, such that no term variable 
x occurs more than once in A. Let A be any assumption set such that 
Vx.x : (b, r) E A implies b =BA -'4• Two assumption sets A 1  and A2 are 
compatible if Vx.x : (bi, cr) E A1  iff x: (b2, or) E A2. Suppose A1  and A2 are 
two compatible assumption sets, then let A1 EDb A2 = {x: (bi V(b A b2), cr)lx : 
(b1, E Ai; x : (b2, E A2). In Figure 7 is defined the alternative type 
assignment system. 

It is easy to show by induction that both these systems are equivalent 7  to 
the earlier definition of the 1-c system. 

6This section is intended to motivate the chosen syntax for typing statements. 
71n the sense that each term that is typable has the same set of types assignable to it in 

these systems. 
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3.2.8 Discussion 
So far in this chapter several new things have been introduced: 

• a new formalism based on types has been introduced which describes the 
reduction properties of A-terms; 

• deduction systems in the style of Curry have been presented which allow 
the inference of elements of this new formalism for a given A-term (the 
correctness of these systems is considered later); 

• use has been made of the intensional information now available to derive 
a new deduction rule called APP--0÷. This rule extends the basic system 
to allow the application of functions to irrelevant arguments while still 
preserving the intuitive correctness of typed terms; and 

• an entirely new syntactic way of categorising A-terms has resulted from 
the new formalism, namely that the type assignment system of this sec-
tion allows the identification of those A-terms which are constructed from 
variables which are used in both an intensionally and extensionally iden-
tical manner. This categorisation forms an interesting contrast with some 
other well known categorisations (AL, Al and simply-typable terms). 

In addition, the type assignment system has been shown to possess certain 
important properties: 

• the strong head neededness of free variables of a term are constant for a 
given type assumption set, type deduced and term; 

• both strengthening and weakening rules are derivable from the type as-
signment system; and 

• the set of deductions for a term are a subset of the deductions for all B-
and n-contractums of that term. 

On the other hand, certain limitations of the type assignment system have also 
been revealed: 

• terms containing variables used in an explicitly higher-order manner and 
in which the uses of these variables are necessarily intensionally different 
are not typable; and, as a related point, 

• /3-expansions of terms can only be assigned the same type (under identical 
assumption sets) if the term being abstracted is used in an intensionally 
as well as extensionally congruent manner (this is intuitively clear from 
the previous point if one considers that the term being abstracted will be 
replaced by a variable). The only exception to this is the degenerate case 
of rule APP--.'*. 
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In the following sections of this chapter increasingly powerful deduction systems 
are described. Similar investigations to the current one are conducted for each 
of these systems. Investigation of the semantic correctness of these systems is 
delayed until Chapter 4. 

3.3 LET-Polymorphic Type Assignment 
The next type assignment system introduced for Boolean Reduction Types is 
one in the style of Miler's system for ML (Milner [47]). In this system certain 
term variables may be used polymorphically, i.e., be given more than one type, 
as long as all the types satisfy a certain property. In Miler's system the term 
variables which may be used polymorphically are those which are bound by a 
special kind of term, the LET clause. This kind of term has the form: 

LET x = N IN M. 

As Milner states this is not strictly necessary as any LET term can be simply 
converted to the application of an abstraction term to an argument. So the 
above term would be translated to 

()tx.M)N. 

However, for the purposes of type assignment a term of the form LET x = 
N IN M, and hence of the form (Ax.M)N, is treated as if it were the term 
M[x := N]. Naturally, this is only possible in those situations in which the 
argument to the abstraction is explicitly available. 

In this section the additional complication of extending the set of terms to 
include a LET expression is avoided in precisely the straightforward manner 
suggested by Milner. This has the advantage of making the various systems for 
type assignment more easily comparable. 

LET-polymorphism is a restricted form of parametric polymorphism (as 
is often cited, this was first formalised by Girard [25] and independently by 
Reynolds [57]). In the present section, the restricted form of parametric poly-
morphism embodied by the LET-polymorphism approach is extended to include 
(a restricted form of) parametric intensional polymorphism. Full parametric 
polymorphism requires explicit and unrestricted use of universally quantified 
types. 

3.3.1 Generic Types 
Definition 3.3.1 
The set of Abstract LET-Polymorphic Boolean Reduction Types, TZ , is induc-
tively defined to be the least set satisfying: 
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1. E Tj implies a E TT, 

2. a E r„, E T7, implies Va.cr E TE7, and 

3. A t„ a E 	implies V 	.a E T1 . 

Quantified types will be called generic and ordinary types will be called non-
generic. Note that the definition constrains all quantifiers to occur only at the 
top level of a generic type. 

Types which may be generic will be underlined from now on to distinguish 
them from types which are definitely non-generic. 

It will be useful to denote by the metavariables 8, 61 , 62 , ... either an arrow 
variable or a type variable. Thus Vb.a will stand for either V —)i .a or Vcx.a. 
Also Vbi. • • • V(5n .cr will often be denoted by V8.o-. Similarly, it will occasion-
ally be useful to use the metavariables A, A i , A2, ... to stand for both arrow 
expressions and non-generic types. 

A type assumption in the LET-polymorphic system is the same as for the 
Curry-style system except that the types assumed for variables may now be 
generic types as well as ordinary types. 

-Term variable strong head neededness functions are exactly the same as 
described in the Curry-style type assignment system. 

As before, the set of free variables of a non-generic type a, written FV(cr), 
is the set of all the type and arrow variables occurring in a. The set of free 
variables of a generic type a = 	-V8n .r, written FV(a), is FV(r) — 
{81, 62, 	, bn}. The set of free variables of an assumption set A, written FV(A), 
is U.EAFV(cr). Similarly, the set of free variables of a variable strong head 
neededness function V, written FV(V), is U,Ex FV(V(x)), where the free vari-
ables of an arrow expression are all the arrow variables occurring in the arrow 
expression. 8  

Definition 3.3.2 
Let A i , , A n  be as defined above. Let T be a type and let a be a type iden- 
tical to T except that no bound variable within a is contained in tfiL l  FV(Ai). 
Let T[51 , 	,6n  := Ai , 	, An] be the type identical to a except that each 
occurrence of Si  in a is replaced by Ai. Then write V81 , , 6n .T 	T i  if 

= r [61 , 	, 	:= Ai , ... , A n] and {81 , ... ,(5„} n Fv(Ai, .., An) = 0. 

3.3.2 The Type Assignment Rules 
The deduction system again takes the form of an inference rule or axiom for 
each kind of A-term (see Figure 8). There are now three kinds of application: 

8In the type assignment systems described in this thesis there are no bound arrow variables 
in any variable neededness function. 
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Figure 8: The LET-Polymorphic Rules for deducing Reduction Types 

• polymorphic application (rule APP-V), 

• irrelevant application (rule APP--0+), (not detailed in the Figure), and 

• ordinary application (rule APP). 

These rules are described below. 

The VAR Rule 

There are two changes to this rule when compared with the Curry-style system: 

1. the assumption for a term variable may be a generic type, and 

2. the type given the term must be an instance of the generic type assumed, 
where the type assigned by the rule is non-generic. 

The point of this is that each occurrence of a term variable with a generic type 
may be used in multiple intensionally and extensionally different contexts. 

The APP Rule 

This rule is the same as that of the Curry-style system. Note that all types 
not in the assumption set are required to be non-generic. Also note that by 
using this rule only when the term N1  is not an abstraction term, the max-
imum amount of polymorphism may be achieved. The rule for polymorphic 
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application (described below) will then be used whenever N 1  is an abstraction 
term. Of course, this is not enforced and so derivations with less general types 
may also be derived. 

The APP--0+ Rule 

This rule is unchanged from the Curry-style system. See the comments in that 
section for discussion of this rule. For completeness, the rule is given below. 

A I-Lvi 	o- 	7' A' 1--L N • Ci f  
APP--0÷ 	 v2 2 '  

A I- Yi 	Ar2  : 

The APP-V Rule 

The APP-V rule is the second place in which polymorphism is added to the 
system. This new rule effectively encompasses the logic of both the ABS and 
APP rules, with the key addition of a generic type for the term variable being 
abstracted. The restriction on this generic type is that it must be a generalisa-
tion of the non-generic type assigned to the argument term. By generalisation 
is meant the following (see Wright [72, 74] and, in the case of ordinary types, 
Milner [47]): 

Definition 3.3.3 
gen(A, V, 7- ) = V81 .V82 . • • • .Von.r, where 18 L - 1, -S 2, • • • , S} = (FV(r) — FV(A)) — 
FV(V). 

The idea behind this definition is to make the resulting type as generic as is 
possible without causing names free in other contexts to become erroneously 
bound. 

Also notice that V(x) = (x) V (VI  (x) A V2(x))=BAV1(X))  as expected, since 
(Ax.Ari )x 

The ABS Rule 

The abstraction rule is completely unchanged from that occurring in the Curry-
style type assignment system. Note that the type assumed for the variable being 
abstracted must be non-generic, as in the Curry-style system. 

Finally, note that at each stage of the deduction of a typing statement in 
the LET-polymorphic system the types assigned to terms are non-generic. All 
the genericity occurs in the assumptions of the deduction. 

9See Moral 2.1.14 of Barendregt [3] (and the preceding discussion) for a justification of 
the use ofF.- in this case. 
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3.3.3 Examples 
Unlike the Curry-style type assignment system of the previous section, the 
LET-polymorphic style type assignment system can be used to find types for 
certain terms which use variables in intensionally different ways—those for 
which the term to be substituted for them is explicitly present. A good example 
is the type assignment for the term 

(Af.g(f I x)(f (Ax.y) z))(Aab.ab). 

In this term it is required that f be assigned first a type of the form: 

(a 	(7) 	 a, 

and then of the form: 

( (7 -I+ Of) 	 , 

for some a, a'. Given that the argument to be substituted for f is explicitly 
known (i.e., rule APP-V is applicable) and is (Aab.ab), the present system can 
satisfy these constraints. 

Note that the term 

Af.g(f I x)(f (Ax.y) z), 

cannot be assigned a term in the LET-polymorphic style system. 
It is clear that every term for which a type can be assigned using the Curry-

style system can be assigned a type using the current system—the Curry-style 
system is a strict subset of the current system as every rule of the former system 
is present in or is subsumed by a rule of the LET-polymorphic system. Thus 
there is little point in repeating the examples of the previous section. The 
proposition below proves that the systems I-L are conservative extensions of 
the systems 1-c. 

Proposition 3.3.4 
If A 	M: r, then there is a deduction of AFf,' M: r which has precisely the 
same structure as the derivation of A F M: r. 

Proof 
Induction on A 1-f; M: r. 0 

3.3.4 Properties of the LET -Polymorphic System 
In this subsection a similar investigation to that for the Curry-style system 
is undertaken. Many of the differences between the systems turn out to be 
of a somewhat subtle nature, so it is worthwhile repeating the format of the 
previous investigation in some detail. For example, in analysing the effect of 
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term substitution some more general statements may be made because of the 
presence of rule APP-V, but on the other hand the proofs have this extra case to 
consider. Similarly, the results concerning fl-expansion are more general than 
for the Curry-style system. 

In the LET-Polymorphic system, the reversal of the APP rule still applies, 
but now there are three kinds of application and so there are three correspond-
ing lemmas. Again, these reversal results are trivial for these systems, but are 
included for completeness. 

Firstly, ordinary application. 

Lemma 3.3.5 
If A i- f; MN: T and rule APP is the final rule applied in this deduction, 
then 3cr E TZ,b E V. (A M: abr, A 1-f,„ N: a and Vx E X.V = 
)tx.V'(x) V (b AV"(x))). 

Proof 
By rule APR 0 

Secondly, irrelevant application. 

Lemma 3.3.6 
If A I- f; MN: T and rule APP--4 is the final rule applied in this deduction, 
then 3o-, cr' E 	, and an assumption set A' such that A Ff, M: a 	T and 
A' 	N: a'. 

Proof 
By rule APP--4. 0 

Thirdly, polymorphic application. 

Lemma 3.3.7 
If A 1-€7  MN: T and rule APP-V is the final rule applied in this deduction, 
then M is an abstraction term, say M Ax.N' and 3cr E TZ,b E V.(Az  U : 
Q} N': T, A N: a , a = gen(A, V", c) and Vx E X.V = Ax.1/1 (x)V 
(b AV"(x))). 

Proof 
By rule APP-V. 0 

Since the abstraction rule is unchanged from the Curry-style system, the 
following result carries through unchanged as well. 

Lemma 3.3.8 
A 1- f; Ax.M: a b T implies Ar  U {x: a} 	M T. 
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Proof 
By rule ABS, since such a type can only be deduced for Ax.M by using this 
rule. 0 

Lemma 3.3.9 
Suppose A i-f;i  M: a and A 	M: a, then Vs E X.Vi(x)=BAV2(x). 

Proof 
By induction of the structure of M. 

If M--a x, then by rule VAR Vy E X.Vi (y)=BAV,,[s := ](y)=BA V2(Y)- 
If M Ax.N, then by the induction hypothesis for N and by rule ABS. 
The tedious case is when M is an application-term, M1M2. In this case the 

result again follows from the induction hypotheses, by definition of =BA and by 
the type deduction rules for application terms (for the nine significant cases). 
0 

The usual rules for strengthening and weakening are derivable in the present 
system: 

STR 

WEAK 

U  {x:g_} 	M: T 

Ar Fr M: 
(x FV(M)) 

A 1-f; M: T (x 0  FV(M)) 
Ax  U {x: cr} F-f; M: T 

This is demonstrated by the following two lemmas: 

Lemma 3.3.10 
Suppose x FV(M), then Al- f; M:T implies A,r  U Ix : a} 	M: T. 

Proof 
Straightforward induction over the deduction of A 1- f; M: T. 0 

Lemma 3.3.11 
If 	{x : a} 1-f; M:T and x FV(M), then 	M: T. 

Proof 
By induction over the deduction of A I-f; M: T, using Lemma 3.3.10 for the 
case of M an abstraction term. 0 

Now consider the effect of term substitution on type assignment. The fol-
lowing two lemmas are analogous to Lemma 3.2.19 and Lemma 3.2.20, but differ 
in both their expression and details of their proof. In the LET-polymorphic 
system certain variables may have multiple types assigned to them and this is 
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the principle advantages of the LET-polymorphic system over the Curry-style 
system. 

Lemma 3.3.12 
Suppose A 1-f, M[x := N]: r, the types p 1 ,... , pn , a -‹ pi, are assigned to N 
in this deduction and A Ft'', N: pi , (i E {1, , n}), then there exists b and V" 
such that: 

• Au {x: I} 	M: T, and 

• Vy E X.V(y)=BAV"(Y) V (b AV i(Y))• 

Proof 
By induction on M[x := N]. 

x[x := N] N In this case M[x := N] N, so 	r E {A} and Az  U {x : 
a} 1-f,' 	x: T, where V 11=BAV,. and b =BA 	Now, 

V(y) =BA VIM 
=BA 1/-4 (y) V 	AV(Y)) 
=BAV"(Y) V (b AW(Y)), 

as required. 

z[x := N] z (z # x) It is immediate that 

A F L  r 	: T, 

SO V"=BAV-...[Z := 	and b =BA 	Now, for any V', 

V(y) =BA(17,4z := -))(y) V (-4 AIP(y)) 
=BA 17"(Y) V (b AINY)). 

Then the result follows immediately or by using Lemma 3.3.10. 

Ar1 N2 [x := N] (Ni [x := N])(N2 [x := N]) and rule APP is used as the final 
step in the deduction. By Lemma 3.3.5: 

• AI- 1  Ni [x := N]: pb' T, and 

• AI- N2  [x := N]: p, 

where V(y)=BAVI(y) V (b 1 AV2(y)). By the induction hypotheses, 

• Az  U {x: a} 1--f,c1, bil  N1 : pb' 7- , and 

• AU {x: a} 1-flq. :=Ini  N2: p, 
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where VI (Y)=BAVNYMbi  AV i (y)) and V2(y)=BAVAY)V(b2 AVi(y)). By 
APP, ArU{x : 0} NiN2 : T, where V"(y)=BAVI"(y)V(b' AVAy)) 
and b =BA hi V(WA b2). By APP, 

V(Y) =BA Vi(Y) V (b i  V2(Y)) 
=BA (Vi"(y) V bi 1 (y)) V (b' (1''(y) V b2 V'())) 
=BA V (y) V bi V i(y) V 13'(V(y) V b2 1/ 1 (Y)) 
=BA Vi" (y) V bi V i(y) V b' V211 (y) V b' b2 Vi (Y) 
=BA V1" (Y) V 13' 1/211 (Y) V hi Vi (Y) V b' b2 V i (Y) 
=BA (Vi" (Y) V b' V211 (y)) V (hi V b' b2 )1P(y) 
=BA V" (Y) V b 1/1 (Y)- 

N1 N2 [x := N] (Ni [s := N])(N2 [x := ND and rule APP-4 is used as the 
final step in the deduction. Straightforward by the induction hypotheses, 
Lemma 3.3.6 and rule APP--4. 

(7ty.N1 )/V2 )[x := NJ and rule APP-V is the final step of the deduction. By 
the variable convention x y, so ((Ay.Ari )N2) [X := N] (Ay./Vi[x := 
N])(N2 [x := N]). Now by Lemma 3.3.7 3p E TZ.p = gen(A, V, p) and: 

• AU {y: p} 1-f,c [y:=0  Ari [x 	N]: T, and 

• A 1-k N2  [x := 

where V(z)=BA Vi(z) V (b' AV2 (z)). By the induction hypotheses, 

7'11X 7=bli • Azy U {X 	P J : 	 T , and 

• Axy  U {x : (2- } 1-*[x:,- b2 ] N2: P7 

where Vi(Y)=BAVI"(Y)V(bi AV I (y)) and 1/2 (Y)=BA 'MY) V (b2 AV 1(y)). By 
APP-V and Lemma 3.3.10, Ax  U 	: 	1 „ [Z .= b] (Ay.NON2  : r, where 
V"(y)=BAV11 (Y) V (3 1  A V2"(y)) and b =BA hi V (b' A b2). As is conventional, 
assume that A binds tighter than V and also temporarily replace A by 
juxtaposition, then by APP, 

V(y) =BA(Vi"(y) V hi Vi (Y)) V ( 13 10/2"(Y) V b2 V'(Y))) 
=BA I/1"(y) V hi  Vi(y) V bi (1721'(y) V b2 17' (Y)) 
.BA VI"(y) v b i V' (y) V b' Vf(y) V b' b2 1P(Y) 
=BAVI"(Y) V b i  lq(Y) V bi 1/'(y) V b' b2 V i (Y) 
=BA (Vi"(y) V b' Vf(y)) V (bi V b' b2) 1P (Y) 
=BAV"(y) V b1P(Y). 
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:= N] Az.(Nlx := ND Since A Ff', (Az.N 1)[x := NJ: r is de-
duced using rule ABS, T = pb' a', for some p, b' and a'. By Lemma 3.3.8, 

Azz  U {z: p , x : g_} F LV[X:=b i ][Z:=bl]; N': 

then by ABS, 

Az  U 	: g_} 	r 	Az.N' : 	cr'. 

By the induction hypothesis, 

Az  U {z: p} 1--f;i[z:=0  Nqx := N]: a', 

where VI  [z := b'](y)=BAVI"(y)[z := b'] V (bi Ar(Y))• (Note that by the 
variable convention, z FV(N) hence V 1 (z)=BA -4, see Barendregt [3]). 
Now, 

V(y) =BAVi [z :=-4}(y) 
=BA1/1"[z := -4](y) V Om AW(Y)), 

as required. 

Lemma 3.3.13 
If Az  U 	: 2} F- Y, [x:. b] M: T, the types pi , 	, p„ (n 	0 and 2 L‹ p i ) are 
assigned to N in this deduction, AI+, N: pi , for i E {1,...,n}, x FV(N) 
and Vi(x) =-4, then 

• A 	M[x := N]: r, and 

• Vy E X.V(Y)=BAW(Y) V (b AV"(/))- 

Proof 
By induction on M. 

	

M x In this case M[x := N] a: N. Then Az U fx: 	Ff,' [x:=]  x: T, 	T, 

1/ 1  = V« and b =BA 	thus A 1-f, x[x := N]: T, by Lemmas 3.3.10 
and 3.3.11. 

M z, z x In this case M[x := N] M. 

1. Az  U Ix : 	 z: r, VI  = 	[Z := 	and b =BA --'`+• 

2. By Lemma 3.3.10 and Lemma 3.3.11, A 1-f,' 	z: T, i.e., A 1-f, 
z[x := N]: T. 
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M N1 N2  and rule APP is the final rule used. By definition of substitution 
M[x := N] (Ni [x := N])(N2 [x := N]). 

1. By Lemma 3.4.12, 3a' E TZ.A 	NI : aibir, A F, N2: cr' and 
(Vlx := bp(y) = V;(y) V (b' AW(y)). 

2. By the induction hypotheses, A 1-f,, Ni [x := NJ: a' 1) 1 r, where 
VI"(y) = V1'(y) V (Mx) A V"(y)) and A 	N2 [x := N]: a', where 

lqi (Y) = 1/21(Y) V (Vi(x) A V"(Y)). 
3. Vi"(y) V (b' AV;'(y)) 

=BAV;(y) V (171'(x) A V"(y)) V (b' AV2i(y))V 
(b' AMs) A V"(y)) 

=HAV;(y) V (b' AV;(y)) V (Mx)V 
(b' AV2'(x))) A V"(y) 

=HA(171x := b])(y) V (b AV"(y)). 

4. By APP, A 1-f; (NI N2 )[x := N]: r .  

M N1  N2 and rule APP--0÷ is the final rule used. By definition of substitution 
M[x := N] (Ni [x := N])(N2 [x := N]). Then the result follows from 
Lemma 3.3.6, rule APP--,4 and the induction hypotheses. 

M -a-  (A.z.Ni)N2 and rule APP-V is the final rule used. By definition of substi-
tution M[x := N] (Az .Ni [s := N])(N2 [x := N]). By Lemma, 3.3.7, 
rule APP-V and the induction hypotheses. 

M Az .M1  In this case M[x := N] Az .M'[x := N]. 

1. By Lemma 3.3.8 T = al b' cr2, for some cri  and b' and Arz  U {x : z: 
:=1,1 	02. 

2. By the induction hypothesis, Az  U {z : ai } Ef,,,, Mqx := N]: (72, 
where Vm(y) = (VIz := 14)(y) V (b AV"(y)). 

3. By ABS, A I-f (Ay.M9[x 	N]: o b' cr2. 

0 

As with the previous type assignment systems, the set of types given a 
term is a (not necessarily proper) subset of the set of types assignable to the 
(top-level) 0-contractum of the term. 

Theorem 3.3.14 
If A 1-f; (Ax.M)N : r, then A 1-€, M[x := N]: T. 
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Proof 
By Lemmas 3.3.5, 3.3.6 (in the presence of rule APP--4), 3.3.7, 3.3.8 and 3.3.13. 
(See the proof of Theorem 3.2.21 for a more detailed but substantially similar 
proof). 0 

From the above the following subject-reduction result is immediate. 

Corollary 3.3.15 
Let 	then A 1- f; M: T implies A 1- f, N: T. 

Proof 
By iterated use of Theorem 3.3.14 along the reduction path from M to N. 0 

A result which does not cause any surprise is that the LET-Polymorphic 
system presented here is not complete with respect to /3-expansion. As in the 
Curry-style system, the result does hold in certain special cases, as is again 
demonstrated. Note that multiple types may be assigned to N in the following 
Theorem (provided they are all instances of a common generic type). This 
should be contrasted with the situation for the Curry-style system of the pre-
vious section (see Theorem 3.2.23). In that system a single type, a, had to be 
assigned to each relevant occurrence of the term being abstracted, N. 

Theorem 3.3.16 
If A 1-f,' M[x := N] : T and x E FV(M), and suppose p1 ,..., pn , n > 1, 
is assigned to relevant occurrences of N in the deduction of A 1-f, M[x := 
N] : r, then if A FY', N: a and gen(A, V', cr) pi, (i E {1, , n}), then 
A I- 11; (Ax.M)N: T. 

Proof 
By Lemma 3.3.12, A U : 	f, „ (z 	M: T and Vy E X.V(y)=BAV"(y) V 
(b AVi(y)). The case n = 0 is not allowed by statement of the Theorem. 

For the case n = 1 the result may hold in two ways. Firstly, if n = 1 and 
= P15 then by ABS, A Ax.M: b T and V"[x := -0+]=BA V", since 

x FV(M[x := N]). Then by APP, A i- f; ()tx.M)N : T. Secondly, if n > 1, 
then use rule APP-V. 0 

Theorem 3.3.17 
If A 1- f', M[x := N]: T and x FV(M), then A 1- f, (Ax.M)N:r. 

• Proof 
By rule APP-4. (This Theorem also holds for the systems without rule APP-
-0+, but only if A 1-, N: a, for some a). 0 

Finally, ii-contraction holds for these type assignment systems. 
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Theorem 3.3.18 
If x 0 FV(M) and A 1-f; Ax.Mx:r, then AFY M: T. 

Proof 
By induction on A 1-f; Ax.Mx: T. The interesting case is where the deduction 
ends in a use of the ABS rule: 

0 

1 - r = cri b 0-2. 

2. By ABS, Az U {x: al } ,[x:=b)  Mx: 0 2 . 

3. By Lemma 3.3.5, 3cr3  E TZ.A, U Ix : 0i} 1-f; M: 
0i} EV [x :=] x : 03' 

4. al  = (73 , hence cr3  b a2 = Gri b 02. 

5. By Lemma 3.3.10, A 1-f; M: al  b 02. 

03 b 0.2 and Az  U Ix : 

3.3.5 Discussion 
In this section the limited form of parametric polymorphism as embodied by 
the LET-polymorphic type system has been modified to use Boolean Reduc-
tion Types and extended to allow intensional parametric polymorphism. The 
system presented shares the same limitation as the conventional system of LET-
polymorphism, namely that parametric polymorphism may only be used where 
the argument to a function is explicitly known. However, the system presented 
shares with the conventional LET-polymorphic system certain advantages when 
it comes to implementation (see Chapter 5). 

Note that in exactly the same way that certain simply-typed terms were not 
typable in the Curry-style system of the previous section, these terms are not 
typable in the LET-polymorphic style system of this section. Thus the adoption 
of limited parametric polymorphism is not of great pragmatic interest. 

The second-order system of polymorphism of Girard [25] and Reynolds [57] 
is a natural generalisation of the system of LET-polymorphism. Extending the 
second-order system to Boolean Reduction Types is straightforward given the 
above treatment of the LET-polymorphic system (see Chapter 6). 

3.4 Intersection-style Type Assignment 
In this section a system capable of assigning Reduction Types to every A-term 
is introduced. This system shares most of its structure with the system for 
assigning Intersection Types to arbitrary A-terms (see [14, 16, 4, 12]). 
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Since universal quantification is most naturally interpreted as intersection 
(more generally as some notion of meet), it will become clear that the system 
for assigning Intersection Boolean Reduction Types is a generalisation of the 
systems previously considered. As shall be seen in Chapter 5 and Appendix A 
this generality results in a semi-decidable system. 

Consider a function such as (Af.fz). This function was previously given the 
type (a r) r, for some types a and T and for some arrow variable 
Thus, as previously argued, we would expect that Of. fx) might reasonably be 
assigned both the type (a r) = r and the type (a -4 r) r. In fact, we 
might consider the type (a —)i r) = r as merely a kind of shorthand for the 
type ((a r) = r) n ((a -4 r). r) 

As another example, consider the function ()'fgx.f(gx)). Earlier, we as-
signed the following type to this term: 

(p 	T) 	(CT ->2 p) -41 0-  (—>1 A -42) T 

Taking a cue from the previous example, we can expand out this type as follows: 

((p -0+ T) 	 p -P4+ Cr 	r) fl 
((p 	r) 	(a 	p) 	CI 	T) n 

Clearly, the more concise form using Boolean function type constructors has 
a readability advantage! Of course, in the earlier type assignment systems 
it was more than just an advantage in readability that was gained through 
the use of these Boolean expressions. However, it intuitively appears that by 
including an intersection operator on types that one can express all that was 
expressed in earlier type assignment systems. This is indeed so, as will be 
shown in both this section and the following chapter. It should be noted that 
for complexity reasons it is essential that the length of types be minimised 
using arrow expressions when an implementation is considered (Chapter 5). 

However, the intersection operator is much more useful than merely as a 
way of expanding out Boolean arrow expressions: consider for example the 
term (Afgxy.f(gx)(gy)). The issue here is that the variable g occurs twice in 
the term. The best type that can be given to this term requires the explicit 
use of the intersection operator: 

(p1 -41 P2 2 P3) 

((a 	)91) n (T 	p2)) ( --q V 	a (--q A -)3) r ( -4 2 A -44) P3- 

(A precisely analogous use of the intersection operator must be used in the 
Intersection Type Discipline in order to obtain the best type for this term, 
see [12, 16]). 
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3.4.1 Intersection Boolean Reduction Types 
The following definition introduces the sets of Intersection Boolean Reduction 
Types. 

Definition 3.4.1 
The set of Abstract Intersection Boolean Reduction Types, T7, is inductively 
defined to be the least set satisfying: 

1. a E rt, implies a E 

2. 0 ET7 ,rET7 andbEVimpliescrbr eT7, 

3. a E 717 and r E T7 implies a fl r E T7, and 

4. w E T7. 
The type constructor fl in this definition may be thought of as greatest 

lower bound or intersection. The type constant w can be thought of as the 
set of all terms. The set of Intersection Boolean Reduction Types is Tr° . The 
set of ground Boolean Reduction Types is T1°9  . The set of hereditarily strongly 
head needed types is T1  the set of hereditarily irrelevant types is Irk' )  . 

Type assumptions and type assumption sets are as before, except that the 
types are from T7. Variable head neededness functions are precisely as before. 

Continuing in the footsteps of Barendregt et al [4], it is natural to introduce 
an ordering on these sets of types which intuitively corresponds to a notion of 
subset. 

Definition 3.4.2 
1. The relation < on T7 is inductively defined to be the least relation sat-

isfying: 

(a) T < 

(b) c 	b 

(c) T < r, 
(d) r <r fl r, 
(e) a- n T < a,anr < 
(f) (a b p) n (abr) 5_ b(p n r), 
(g) o < T < p implies a < p, 
(h) o < a', r < T 1  implies a n T < n ri, 
(i) a < a', T < T 1  implies a' br< ab r'. 
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2. a = T if o < T < c. 
As stated in Barendregt et al [4], the pre-order < defined above is a partial 

order when the set of types, T7, is factored by =. In the following it will be 
assumed that T7 is indeed factored by =. 

Unless specifically noted, the results in the rest of this section apply equally 
to systems built from any of the four sets of types defined above. The following 
fact states some easily shown equivalences amongst types. 

Fact 3.4.3 
= abw, (GrbP)n (crbr) = ab(pnr) and pn n = (p na)n r. 

Lemma 3.4.4 
abT=W if T = w. 

Proof 
As in Barendregt et al [4], Lemma 2.4.(i), let S/ C T7 such that SI is the least 
set satisfying: 

• co E 

• pES1 implies abpEn (arbitrary a and b), and 

• p, E ft implies prlaE a 

Then a E S/ implies a = w. Now it is easily established by induction on < that 
S/ is closed under <, hence a E SZ if a = ca. Then abr = w if abrE ci iff 
T = w, as required. 0 

Lemma 3.4.5 
Suppose 

n (0i b pi) n n ai 5_ n(c b Ti) n 
i=1 	 i=1 	i=1 	 i=1 

where for no i is Ti = w, then for all j E {1,..., k} there are 	, ip  E 
{ 1 , . . . , m } such that 

n (oi, b Pih ) 	cri b rj, 
h=1 

and {/31 ,... ,13/} C 

Proof 
By induction on <. (See Barendregt et al [4], Lemma 2.4.(ii)). 
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By the above Lemma and the definition of < the following is immediately 
true. Suppose ir_ 1 (ai b 	< abr and T 	co, then there are i 1 ,. , ik E 
{1, 	, n} such that a < 	0,, and fl 1 r11  < T. 

3.4.2 The Type Assignment Rules 
The type assignment systems are presented in Figure 9. The VAR, APP and 
ABS rules carry through without change from the Curry-style type assign-
ment systems. To allow reasoning with intersection types two new rules are 
introduced, MEET and LEQ. The rule LEQ allows the natural ordering on 
intersection types introduced above to be used in the type assignment system. 
MEET expresses the expected property of intersection. Note that a rule such 
as SPLIT (below) is not required as it is directly derivable from rule LEQ. 

A Ft, M: 	fl o•2  SPLIT A 1-{, M: (i E {1, 2}) 

Unlike the standard system for intersection type assignment, there is no 
explicit rule allowing the type w to be assigned to terms (see discussion below). 
The reason for this difference is that it is not obvious what variable neededness 
function should be assigned to such a rule. However, the rule LEQ still allows 
us to find a type for any )-term. 

Definition 3.4.6 
Given two assumption sets, A 1  and A2 then for each x, A 1  rit A2 is the assump-
tion set defined by: 

	

Ai(x), 	x E dom(Ai) — dom(A2) 

	

A, a A2(x) = A2 (x), 	x E dom(A2) — dom(A1) 
Ai(x) n A2(x), x E dom(Ai) n dorn(A2) 

Lemma 3.4.7 
If A F-f, M: T, then, for any A', A in) A' 1--f, M: T. 

Proof 
Easy induction on the form of the deduction of A Ft, M: T. In particular, 
consider the case when the final rule used is rule ABS (so M As.N, for some 
N). Then the induction hypothesis for this case is (A fril A')E  U Ix : a} L v [x:= bJ  
N: T and the result follows. 0 

Every A-term possesses a type assignment using the above type assignment 
system, for some set of assumptions A of types for type variables. 



VAR 	Az  U {x: a} I-1, [x:=]  x: 

APP 	At-Y, 	abr AF-Y, N2: cr  
A FY N1Ar2: T 

(V = .Vi(X) V (b AV2 (x))) 

ABS 
A,U{x:0-} F f1x:= bl N:  

MEET 

LEQ 

N: a  A N: T  
A HY N:o-nr 

AI- & N:a a <  
A Fq, N: T 
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Figure 9: The Intersection-style Rules for deducing Reduction Types 

Theorem 3.4.8 
VM E A.3A,r,V. A FY M : T . 

Proof 
By induction on M. The interesting case is application. Suppose M N1N2, 
then from the induction hypotheses 

3A1 , al, Vi•Ai 

and 

3A2, 0.2, V2 •A2 F1,72  N2: a2, 

then by Lemma 3.4.7 it is clear that A I R A2 1- (71  NI: al  and A1 A A2 1- (72  N2:  a2 
are both derivable type assignments for N 1  and N2 (respectively). Now form 
the deduction: 

A1 rrll A2F- 'N1:a1 ai <wbw 	AI rrli A2 1- 14,  N2 : 	072 < 
Ai rill A2 FYI 	: w b w 	Al ai)  A2 F-Y, N2: W 

A 1  fril A2 I- 	N2 : 

where V = Ax.Vi (x) V (b AV2 (x)). 0 

As is to be hoped given the intuitive interpretation of the symbol w (see 
Chapter 4 for a formal interpretation), every term may be assigned this type 
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by the type assignment system. 

Corollary 3.4.9 
VME A.3A, V. A M: co. 

Proof 
Immediate by Theorem 3.4.8 and rule LEQ. 0 

3.4.3 Extending Intersection-style Inference 
Consider the following rule: 

OMEGA VA, V.AI-f, M: 

Suppose that x 	FV(F) and 0 1-f, F:coo- , for some a 	co (for 
example, choose F )tz.yz, y # x and assume y: w = cr). Then using the 
OMEGA rule it is easy to show {x: co} FL x: co and hence by APP and ABS: 
0 I- f, Ax.Fx: co -0+ cr. This type of deduction is certainly erroneous if we wish 
to have types preserved under n-reduction. 

Another rule which might be considered is: 

M is unsolvable 
A I- 'V  M: w 

Note that this rule is not derivable in the system excluding rule APP---0+, since 
an arbitrary assumption set is allowed by the rule. (Consider the term IC11(xx) 
which is clearly unsolvable, then this rule allows {x: a} 1-(4  Kii(xx): co). 

In Figure 10 the now usual extension of the system is proposed—the APP-
-4 rule has been added whose main purpose is to deal with the situation in 
which an unneeded argument is supplied to a function. Notice that this rule 
is very naturally expressed using the type constant co. As will be shown, the 
lack of any rule analogous to the (w) rule of the intersection type discipline 
weakens the 1- 1  system with respect to invariance under /3-conversion of terms. 
(The standard system for intersection types has this property, see Coppo and 
Cardone [12], for example). The APP--0+ rule regains some of this power by 
simulating the (w) rule in the particular context of a function which does not 
require its argument. The "protection" afforded by restricting use of the (w) 
rule to this context ensures the preservation of the validity of the strong head 
neededness information deduced. 

As with earlier systems, it will be the system excluding the rule APP---0+ that 
will in general be referred to in the rest of this work, except where otherwise 
noted. However, the current section always takes this rule into consideration 
since it allows the establishment of a stronger result concerning /3-expansion. 



VAR 

APP 

Ax  U {x: a} Fv1 	a 

AFY, 	br A F-f,, N2 : cr 
NiN2 : T 

(V = AX .Vi(X) V (b AV2 (x))) 

ABS 

MEET 

As  U{x: a} 	N: T 

Ax.N: abT 

A1- 11, N: 	N:T 
N:anr 

LEQ AF-Y N: cr  CT < T  

A Ff, N: T 

A I-  vi 	•. w 	T A' FYI N2: w 
APP--4+ A NiN2 : r 
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Figure 10: The Extended Intersection-style Rules for deducing Reduction 
Types 
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3.4.4 Examples 
As an example of the use of this system for type assignment of Boolean Reduc-
tion Types, consider the deduction of a type for the term Twice-a-  Afx.f(fx). 
(This term is also known as the Church numeral c2 ). The following typing 
statement is deduced given f: (a 13) n —).2 7) and x: a: 

0 1-i, Twice: ((a 	fi) n (fi 2 7)) = a (--q A 	7. 

(See Cardone and Coppo [12] for a derivation of a type for Twice in the In-
tersection Type Discipline). The following are instances of the above type for 
Twice: 

((a —q /3 ) n 	7)) = a 

(a —q a) a 	a, 

and 

((a —)1 /6) n (#(- —4i)7)) = a -0+ 7. 

In Chapter 4 the term Twice is indeed interpreted as an element of these types. 
Consider the example from the previous section on LET-polymorphic style 

type assignment: 

Af.g(f I x)(f (Ax.y) z). 

In the LET-polymorphic system no type could be found for this term unless 
its argument was known. In contrast, the following deduction holds in the 
intersection-style system. Suppose g : o2  x : p l , z : p2  and 
f ((91 = pi) -4k pi —> 0-1) n ((p2 -4 7-2) — Tri P2 —4  71 02) are assumptions in 
some assumption set A. Then the LEQ rule may be used after each instance 
of a use of the VAR rule for f in the term to obtain deductions of 

f (pl 	pi) —>k P1 —1 cii 

and 

f (P2 	1-2) --4m P2 -4n 0.2, 

then the rest is clear: there exists a deduction for this term in the intersection- 
style system (apart from the trivial one assigning w to it, see Theorem 3.4.8). 

Another example is the term Ax.xx. A type deducible for this term is 
((a —q fi) n a) = fl. This tells us that x may behave as both a function and 
an argument, as well as saying that the argument to Ax.xx is strongly head 
needed, independently of whether or not the argument requires its argument. 
From this it follows that the term S2 (Ax.xx)(Ax.xx) only has type w. (This 
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type for SI is derived in a similar fashion to the proof for the case of application 
in Theorem 3.4.8 above). 

Consider the term Y a Af.wfwf, where cof Ax. f (xx). This term is a fixed 
point combinator introduced by Curry, see [3, 30]. Suppose that x:cv —+ 1  a and 
f: 	a, then using rule LEQ, we can deduce xx : co and so wf: (co --+ 1  a) 
a. Similarly, Suppose that x: cv, then it is easy to show that (of : w —) I  a. 
Thus, wfwf : a and Y: (co 	a) a, as expected. 

Finally, consider Turing's fixed point combinator 	a AA, where A E 
Ax f.f(xx f). Suppose f:cv --4 1  a, then we can deduce 

A : (co —+1 (w -->1 P) 	/3) 	(w 	a) 	a 

and A: co 	(co 	0) = )3. Thus, 0 a AA: (cv --4 1  a) = a. This is the same 
as the type deduced for Y above. 

3.4.5 Properties of the Intersection-style System 
Note that the sets of derivations in the present type assignment systems are con-
strained by more than just the absence of an (w) rule, when compared with the 
Intersection Type Discipline. This is because the MEET rule is more demand-
ing than the on rule of the Intersection Type Discipline. 10  A good example 
to think about is the various derivations for the term Af.fx. In particular, for 
this term we can show 

{x : o-} 	Af. fx : (o- 	T 

and 

Ix: cr} Ft, 	Af.fx: (o• 	r. 

So we cannot use the MEET rule with these two derivations, though in the 
Intersection Type Discipline one cannot distinguish between these and so all 
such derivations can be used as antecedents to the (N. ) rule. Note that the 
MEET rule is applicable to all closed terms (under the same assumption set), as 
these terms all have the variable strong head neededness function V.+  assigned 
to them. As well, the MEET rule is always applicable to term variables (when 
assigned a type under the same assumption set). The consequences of this 
weakness of the MEET rule are further discussed below. 

1°The (nn rule of the Intersection Type Discipline has the following form: 

A I—  M: cri A I— M : cr 2  
A I— M: cri fl u2 
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Firstly, for a given term and assumption set, if two deductions give identical 
types, then their variable neededness functions must be equivalent. 

Lemma 3.4.10 
Suppose A Ff M: a and A 	M: a, then Vx E X.Vi(x)=BAV2(x). 

Proof 
By induction on the structure of M. 0 

Lemma 3.4.11 
If A 	M: T is derived from A hi, M: o, (i = 1,...,n) using only rules 
MEET and LEQ, then (TiL_ I  ai < r. 

Proof 
Straightforward induction on A 1- f, M: T. 0 

Lemma 3.4.12 
If A 	MN : T and this is derived using rule APP, possibly followed by 
some instances of LEQ and MEET, then acr E T7 , b E V.(A hY, M: abT, 
A I- N: a and Vx E X.V = Ax.V'(x) V (bAV"(x))). 

Proof 
By induction on the structure of A 	MN: T. The proof is similar to the 
proof of Lemma 2.8.(i) of Barendregt et al [4]. As in their proof, the interesting 
case is that of rule MEET. The essential step is: 

(al b 	n (0.2 b T2) 5_ ((al n 0.2) b 	n ((cri n a2) b T2) 
(cri n ci2)b(7-1 fl r2 ). 

0 

The following lemma is not applicable to the system based on T ' 

rule APP--# + is not definable in that system. 

Lemma 3.4.13 
If A 1-1, MN: T and this is derived using rule APP--,+, possibly followed by 
some instances of LEQ and MEET, then 3A' E {X x T7}.(A hip M: w r 
and A' N: w). (V not { 

Proof 
By induction on A I-(, MN: T. The induction cases are when the deduction 
ends in instances of either MEET or LEQ, the basis is when the deduction ends 
in an instance APP---0+. 0 

Lemma 3.4.14 
A I-(, Ax.M: a br implies Av  U {x: a} 	M r. 
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Proof 
By Lemma 3.4.5 and Lemma 3.4.11 (similar to the proof of Lemma 2.8.(iii) in 
Barendregt et al [4]). 

Lemma 3.4.15 
Suppose Vcr, T E T7.AZ  U {x: a} 	M: r implies Az  U {x: a} 	N: r, then 
Vp E 77.A 	Ax.M : p implies A 1-6 	Ax.N : p. 

Proof 
Suppose that A1-1, [r:....]  Ax.M : p is derived using rule ABS. By Lemma 3.4.14, 
Az  U Ix: al M: r, and from the assumption we have Ax  U : FY N: T. 
Then the result follows from rule ABS. The other cases (MEET, LEQ) follow 
by induction. 0 

Corollary 3.4.16 
Let M NNi  Nn  where N is not an application term and n > 0. Suppose 
A FY M: r without using rule APP-4, then 3pi E T7 and Vi (1 < i < n): 

1. A hf;  Ni: pi, A 	N: bl P2 b2 bn-1 bn  r and V = Ax.V 1 (x) V 
(V7.1(bi AVi(s))), 

2. if N x, then A = AU : ILL where either 

	

P = cri b 	b . . . b o-n  b r' 

	

1 	2 	 n 

Or 

= (cri b cr2 b • • . b 	b r') n cr, 
1 	2 	n-1 	n 

for some a, ai  such that ai < pi and T 1  < T, 171  = V4x := 	and 

3. if N 	Ax.N', then Az  U Ix : p} 	N': v, where p i  _< p and 
v < P2 b2 bn-i Pn bn T. 

Proof 
1. By iterated application of Lemma 3.4.12. 

2. Since A Ff,, x : pibi P2 b2 • • • bn- i Pn bn  T is derived using only rules VAR, 
MEET and LEQ and by Lemma 3.4.11. 

3. Since A Ff„ Ax.I■11 : pi 131 P2 b2 	bn-i Pn bn r must be derived using only 
rules ABS, MEET and LEQ and by Lemma 3.4.14. 

0 
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Lemma 3.4.17 
If A I- (, Ax.M : T, and T 	w, then T 

:= Pi bi vi (1 	i 	n). 
= r1  n 	n Tn  (n > 1), where 

Proof 
Each deduction of a type for Ax.M must end with a use of the ABS rule followed 
by zero or more uses of MEET and/or LEQ. Note that both MEET and LEQ 
cannot alter the number of arrow expressions in a type if the case a < co is 
disallowed. 0 

The rules of strengthening and weakening are also derivable in the system for 
deducing Intersection Boolean Reduction Types. These rules may be written 
as usual: 

STR 

WEAK 

Az  U {x: a} 	M: T 

Az H, M: T 

A F f, M: r 
Az  U {x: a} Ft, M: T 

This is verified by the following pair of Lemmas: 

Lemma 3.4.18 
Suppose x FV(M), then A 	M: r implies Az  U Ix : a} 	M: T. 

Proof 
Straightforward induction over the deduction of A FY M: r. 0 

Lemma 3.4.19 
If A hi, M: T and x FV(M), then Az 	M: T. 

Proof 
Straightforward induction over the deduction of A Ft, M: T. 0 

All variable strong head neededness functions derivable by the type assign-
ment system share a common structure. This can be expressed using the notion 
of substitution as defined on A-terms earlier. 

Lemma 3.4.20 
Suppose A 1-f, M[x := N] : T, the types al , 	, a,, are assigned to N in this 
deduction and A f,, N: a, where a = o n 	n an , then, 

• Az  U {x: a} 1-f,„ [„=b]  M: r, and 

• Vy E X.V(y)=BAV"(Y) V (b AVI(Y))- 
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Proof 
By induction on MEx := 

x[x := N] N In this case M[x := N] 	N, so 	< 	• • ,Orn < 
Ar  U {x: a} 1-- -f,„ [. :=1)]  x: r, where V"=BAV.... and b:=BA 	Now, 

V (y) =BAVI  (Y) 
=BAV.(y) v 	AV' (Y)) 
=BAV" (y) V (b AV 1 (Y)), 

r and 

as required. 

z[x := N] z (z # x) It is immediate that 

A I-L [z 	Z: 

so V"=BAV_..[z := 	and b=13A 	Now, for any V', 

V(y) =BA (V...[z :=])(y) V (-0+ AV'(y)) 
=BAV"(Y) V (b AINY)). 

N1 N2 [s := N] (Ni [x := N])(N2 [x := N]) If A F-Y Ar1 N2 [x := N] : T is 
deduced using rules LEQ or MEET, then the result holds in these cases 
by induction. Assume that A I-f, N1 N2 [x := N]: T is deduced using rule 
APP. By Lemma 3.4.12: 

• A 	Ni [x := N]: pb' T, and 
• A 1-(,2  N2 [x := 	: p, 

where V(y)=BAVI(y) V (biAV2 (y)). By the induction hypotheses: 

v ilx:=1,11 • AU Ix: cr} 	N1: p b' r , and 

• AU {x: a} 1-*[x , =b2 i N2 P, 

where Vi(y)=BAVI"(y)V(bi AV 1 (y)) and V2(Y)=BA 172"(Y)V(b2AV'(y)). By 
APP, Ax  U{x: a} 1-f,„ [r:=bi  N1 N2 : r , where V 11 (y)=BAMY) V (3 1  AV2"(Y)) 
and b =BA bl V(b 1  A b2). BY APP, 

V(y) =BA(Vi"(y) V bi V i (Y)) V (b i (MY) V b2 1P(Y))) 
=BA1/111(y) V bi 1NY) V b i (Vf(Y) V b2V 1 (Y)) 
=BAVill (Y) V bili 1 (Y) V b' 	(y) V b'b2 1P (Y) 
=BAVI"(y) V b' V"(y) V bi V' (y) V b'b2V(Y) 
=BA(Vf(y) V  b' I/Ay)) V (b1 V b' b2) 1P(Y) 
=BAV"(y) V b 1/'(Y). 
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N1 N2 [x := N] (Ni [x := NJ)(N2 [x := N]) and rule APP--4 is used as the 
final step in the deduction. Straightforward by the induction hypotheses, 
Lemma 3.4.13 and rule APP--q. 

(Az.N 1)[x := N] Az.(Nlx := N]) If A hi, (Az.N1)[x := N]: T is deduced 
using rules LEQ or MEET, then the result holds in these cases by induc-
tion. Assume that A F-f, (Az.N1 )[x := N]: r is deduced using rule ABS, 
then T = pb' o-', for some p, b' and a'. By induction hypothesis, 

Azz  U {z : p, x: cr} I-  • Pfx .=billz :=1,1 1‘11 : 

then by ABS, 

Az  U {x : a} r i'Lz:=billz:=-... 

Also by induction hypothesis, 

Az  U {z : p} • vi[..:= 	N i [x := N]: a', 

where 'Vi [z := 131](y)=BAVI"(y)[z := bl V (b 	(Note that by the 
variable convention, z FV(N) hence Vi(z)=BA -4, see Barendregt [3]). 
Now, 

V(Y) =BAVilz := -Ad(y) 
=BAVilz := -41(y) V (Ix AW(Y)), 

as required. 

0 

Lemma 3.4.21 
If A U {x: 	 T, A E-f,,, N: a, x FV(N) and Vi(x) =-4, then 

• A 	M[x := N]: T, and 

• dy E X.V(Y)=BAIP(y) V  (b AV II (Y)). 

Proof 
By induction on M. 

M x In this case M[x := NJ N. 

1. Az  U {x: a} h [s, 	 X T, 0' < T, 	V-.. and b =BA • 

2. By LEQ, A 	N: T. 

Az.Ni  : plc?. 
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3. A 	x[x := N]: T. 

M Z, Z 0 X In this case M[x := N] --a,  M. 

1. A U {x: a} 1-f, [z:=4,]  Z: T, VI  = 	:= 	and b =13A --'4 • 

2. By Lemmas 3.4.18, 3.4.18 and 3.4.19, Ali [z:=]  z: T. 

3. A 	z[x := N]: T. 

M N1N2 In this case M[x := N] (Ni [x := N])(N2 [x := /V]). The cases 
MEET and LEQ are straightforward. Suppose that APP is the final rule 
used in the deduction. 

1. By Lemma 3.4.12, 3a. ' E T7.A FYI, 	: 13 1  r, A I-  N2: a' and 
(Vlx := bp(y) = VII(y) V (b' AV2i(y)). 

2. By the induction hypotheses, A 	/Vi [x := N] : 	b' 7-, where 
Vf(y) = V11 (y) V CVAx ) A V"(y)) and A 	N2 [x 	N]: a', where 

MY) = V21(y) V  (1(x)  A V"(Y)). 
3. Vf(y) V (b' AV2"(y)) 

=BAVAY) V (Vgx) A V"(y)) V (b' AV2i(y))V 
(13' AVAx) A V"(y)) 

=BAVAY) V (b' AVAy)) V (1/11 (x)V 
(b' AVAx))) A V"(y) 

=BAcVlx := 131)(y) V (b AV"(y)). 
4. By APP, A 	(NI N2)[x := N]: T. 

M N1N2 and rule APP--4 is used to make this deduction. As before, the 
cases LEQ and MEET follow easily. Suppose APP--4 is the final rule 
used. 
By definition of substitution M[x := N] E (Ni [X := N])(N2[x := 
N]). Then the result follows from Lemma 3.4.13, rule APP-4 and the 
induction hypotheses. 

M Az.M' If A U {x: a} 1-f,, [x:=b]  Az.M' : T is derived using either of MEET 
or LEQ, then the result follows easily from the induction hypotheses. The 
interesting case is ABS: 

1. By Lemma 3.4.14, r = 	b'er2, 
o-,z: 	FV ,[..=b,z:=0 

2. By the induction hypothesis, A z  U {z : 	 := N]: 
where V"(y) = (1P[z := b'])(y) V (b AV"(y)). 

3. By ABS, A F(, (Ay.M1 )[x := N]: cri  b' 02. 

for some ai  and b' and Asz  U : 

Cr2, 

0 
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Contraction and Expansion 

One of the nice properties of the Intersection Type Discipline is that the set of 
types deducible for a term is invariant under 13-convertibility. In this section 
this property is considered for the present deduction systems for Reduction 
Types. It turns out that the property does not hold for these deduction systems, 
though some weaker results do hold. The main problems are the absence of 
an w axiom (partly compensated for by the introduction of the APP--0+ rule) 
and the relative weakness of the MEET rule. Thus, for the extended system 
incorporating the APP--.4 rule the main restriction is the form of the MEET 
rule. 

Types are invariant under # contraction. (The Subject-Reduction property, 
see Curry and Feys [18]). 

Theorem 3.4.22 
If A hi, (Ax.M)N : r, then A 1- f, M[x := N]: T. 

Proof 
By induction on A 	(Ax.M)N : T, using Lemma 3.4.21. (See the proof of 
Theorem 3.2.21 for a more detailed but substantially similar proof). 0 

The above result is generalised to full )3-reduction in the following corollary. 

Corollary 3.4.23 
Let M-00N, then A FY M: T implies A 1- -f, N: T. 

Proof 
By iterated use of Theorem 3.4.22 along the reduction path from M to N. 0 

Now consider /3-expansion. Firstly, the case of non-trivial "3-expansion. In 
this case, types are invariant under the restriction that the subterm being ab-
stracted has a single variable strong head neededness function which is assigned 
to every relevant occurrence of the subterm. 

Theorem 3.4.24 
If A ht, M[x := N]: T and x E FV(M), and suppose a l , 	, cf„ are assigned 
to relevant occurrences of N in the deduction of A 1-1, M[x := 	T, then if 
A 1-{,, N: c (Vi E {1, 	, rt}), then A 	(Ax.M)N : T. 

Proof 
1. Let ai„ 	, crip  be the types assigned to relevant occurrences of N in the 

deduction of A 1-f, M[x := N] : T, for 	, ip  E {1, , n}, then by 
MEET, A 1-f,, N: ai, n 	n crip  (p < n). 

2. By Lemma 3.4.20, Ar  U : 	n cro 	M: T and Vy E 
X.V(y)=BAV"(Y) V (b AV1(Y)). 
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3. By ABS, 	Ax.M : (cri, n 	n (yip)b T. 

4. V"[x := -"]=BA V", since x FV(M[x := N]). 

5. By APP, A Ft, (Ax.M)N : T. 

0 

Note that there are many cases where the conditions on N in this lemma 
are trivially satisfied. For example, if N is a closed A-term or a variable. 

Also the following weak result may be established for the second case of 8-
expansion under I-/ excluding the rule APP-4. This result is weak since, in the 
absence of APP--4, the type assignment system does not have an equivalent 
to the co rule of the Intersection Type Discipline (see Cardone and Coppo [12] 
for a proof of this case in the Intersection Type Discipline, which depends on 
the presence of the co rule). 

Theorem 3.4.25 
If A 	M[s := N] : T and x 	FV(M), then, for some A', A ail A' I-(7  
(Ax.M)N : T. 

Proof 
1. M[x := 	so A 	M:r. 

2. By Lemma 3.4.18, Ax  U fx: 	M: r. 

3. By ABS, A F- f, Ax.M : w r. 

4. By Corollary 3.4.9, A' 1--(7 , N: co for some A' and V'. 

5. A ail A' F-f, Ax.M : 	r. 

6. By APP, A a A' 	(Ax.M)N : T. 

0 

In the second case of /3-expansion under the system including rule APP--4, 
a full strength result follows. 

Theorem 3.4.26 
If A 	M[x := N]: T and x FV(M), then, A FY 	.M)N : T. 

Proof 
1. M[x := N] -a M, so A hi, M: T. 

2. By Lemma 3.4.18, Ar  U {x: co} Ft, M: r. 

3. By ABS, A I-f, Ax.M : w -4 T. 
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4. By Corollary 3.4.9, A' F(,, N: w for some A' and V'. 

5. By APP--0+, A 	(Ax.M)N: r. 
0 

The type assignment system behaves well under n  contraction. 

Theorem 3.4.27 
If x FV(M) and A 	Ax.Mx: T, then A 	M: T. 

Proof 
By induction on A F-f, Ax.Mx: T. The interesting case is where the deduction 
ends in a use of the ABS rule: 

1. T 	ori b 

2. By ABS, Az  u Ix: ail 	Mx: 0-2. 

3. By Lemma 3.4.12, ao-3  E T7.AXU : al } 	M: cr3b cr2  and Ax  U : 
al } I-1, [x:= 	X. O. 

4. al. < 0-3 , hence .73  b 0-2 < oi b 

5. By LEQ, Az  U{x: al } 1-f, M: cri  b 

6. By Lemma 3.4.18, A F-f, M: ol bcT2. 

0 

3.4.6 Discussion 
This is the most powerful of the type assignment systems considered. Natu-
rally, this results in a system which is only semi-decidable when implemented, 
as will be apparent in Chapter 5. On the other hand, the MEET rule is not 
sufficiently powerful. In particular, identical terms assigned types under equiv-
alent assumption sets may not be applicable as antecedents to this rule if their 
variable neededness functions differ. What is needed to correct this deficiency 
is a mechanism to allow the intersection of deductions so as to preserve variable 
strong head neededness functions. If a variable which is being abstracted has 
such a tagged value in the variable neededness function then this will result in 
a tagged arrow appearing in the constructed type and a special mechanism is 
needed to resolve which deduction is being used in all contexts in which this 
abstraction occurs. This extension is left for future work. 



Chapter 4 

The Semantics of Reduction 
Types 

This chapter presents semantics for the various sets of Reduction Types consid-
ered in the previous chapter. This allows the corresponding type assignment 
systems to be rigorously tested, the meaning of types to be formalised and 
classes of terms with like behaviour to be explicitly associated with a reduction 
type. 

Both a traditional approach based on a model of the A-calculus and a non-
traditional one based on a semi-model of the A-calculus are investigated. This 
latter approach has recently been introduced as a mechanism for conducting 
a semantic analysis of Curry's original system of F-deducibility (Plotkin [56]). 
The attraction of this approach in the current context is that it is based on 
reduction rather than conversion. In this chapter the soundness of all of the 
type assignment systems will be verified with respect to models of A, and the 
soundness and completeness of these systems with respect to semi-models of A. 

The unique aspect of the semantics for Reduction Types presented here 
is the need to look at the behaviour of a function as it is transformed by 
applying it to a sequence of arguments. Both the number of arguments and 
the properties of these arguments are then used to collect together functions 
into "types" of functions (i.e., the interpretation of types). Thus the semantics 
introduced in this thesis for Boolean Reduction Types is context-sensitive, a 
fact which makes them of particular interest. 

In what follows I have chosen to concentrate on syntactical models. There 
is a long tradition of using such models in typing contexts (see, for exam-
ple, Hindley [29], Barendregt et al [4], Mitchell [49], Coppo and Cardone [13], 
Plotkin [56]), and they are quite capable of elucidating the salient points of the 
semantics for this thesis. 

The chapter commences by introducing two forms of models for terms. The 
first is the ordinary A-model and the second Plotkin's semi-A-model. A term 
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model is described as a concrete instance of a A-model. A term-semi-model is 
given as a particular instance of a semi-A-model. These models are useful when 
the completeness of the type deduction logics is being examined. 

In addition, a novel filter semi-A-model is constructed. Filter models are 
used by Barendregt et al [4] to establish the soundness and completeness of the 
Intersection Type Discipline. Advantage can be taken of this method in the 
current approach, as is demonstrated in this chapter. 

The next step is to decide what is the meaning of a Boolean Reduction 
Type. The first step towards deciding this is to provide a semantic analogue 
for strong head neededness and for irrelevance. Once this has been done, some 
requirements are specified that a model for Boolean Reduction Types must 
satisfy. Next, three constructions are given which are shown to be models for 
T, TE and 17, respectively. 

One step remains before the correctness of the type deduction systems can 
be shown. This is the establishment of a connection between (interpretations 
of) A-terms and (interpretations of) Boolean Reduction Types. This is expe-
dited by the fact that equality in models of terms is a model for /3-conversion, 
and similarly for reduction and the ordering relation in semi-A-models (The-
orems 4.1.2, 4.1.3 and 4.1.5, 4.1.7). This allows the understanding of strong 
head neededness gathered in Chapter 2 to be brought into play. 

With this background, the chapter concludes by proving the correctness of 
the type deduction systems of Chapter 3. 

4.1 Models of Terms 

4.1.1 A Model of the A-calculus 
The following definition of A-model is very syntactic—it would be as easy to 
base the rest of the Chapter on, say, a Scott-Meyer style definition of A-model 
(see Hindley and Seldin [30]), but the definition below is preferred because it 
allows an easy comparison with the original definition of A-semi-model. (Pre-
sumably the definition of A-semi-model can also be made less syntactic, though 
Plotkin [56] does not do this). 

Any model of the A-calculus is a triple consisting of a non-empty set D 
called the domain, a map • : D x D D called application (i.e., (D,o) is an 
applicative structure) and another map H. which assigns each term M E A 
to an element I[ML E D, for an environment : X —> D. Furthermore, the 
map H. must satisfy, for each M E A and each environment p: X —> D, the 
following list of properties (Definition 11.3 of [30]): 

1. [[x]] ti  = 

2. 1[MN]b, =P11,•[1■1]„, 
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3. Px.M]l o  • d = EML[x:=  di, for every d E D, 

4. [IML, = I[ML', if i[x]] t, = E[x]] 0, for all x E FV(M), 

5. 1[Ax.ML = 1[Ay.M[x 	ylp , if y 	FV(M), (note that the variable 
convention of Barendregt [3] subsumes this condition in the syntax of A-
terms—effectively this convention results in A-terms being merely "syn-
tactic sugar" for de Bruijn terms), and 

6. 1[Ax.M]l p  = i[Ax.NL, if Vd E D.W11,4:=4 = 

The Term Model 

The term model is M .< 	> where 

D = {[M]IM E A}, 

and 

[M] = {MAI- M = N}. 

Let [x 1  • xi := N1  • • Ni] denote simultaneous substitution of the A-terms Ni 
to Ari for the term variables x 1  to xj , respectively. Let Env denote X -4 D, 
then define 

= [M[x i  • • • x; := Nl • • • Ni]], 

for it = [xl • • • x;  := [N1]. • [NJ]]. The canonical environment is po , where 
tto(x) = [x]. Finally, let [M] • [N] = [MN]. 

The following results are well known (see Hindley and Seldin [30] or Baren-
dregt [3]). 

Theorem 4.1.1 
(D,.,[[•1].) is a A-model. 

Theorem 4.1.2 
If M=pN, then, for any environment II, I[M]l o = NL 

Theorem 4.1.3 
M=N if in all models and for every environment it, [[M]l„ = 

The main use for the above definition and model construction is in the lead 
up to and proof of the semantic completeness of the various type assignment 
systems. 
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4.1.2 A Semi-Model of the A-calculus 
Plotkin [56] has introduced the notion of semi-model in order to conduct a 
semantic analysis of Curry's original system of F-deducibility [18]. The key 
step in this work is the emphasis on reduction rather than conversion. In the 
light of the results of Chapter 3 on expansion and contraction for the various 
type assignment systems, this approach of Plotkin's has an obvious appeal 
in order to analyse the semantics of the present work. In particular, since 
the type deductions all respect /3-contraction, but /3-expansion in only certain 
special situations (as detailed in Chapter 3), Plotkin's work is the appropriate 
forum for establishing the completeness of these systems with respect to 8-
contraction. Of course, the expectation is that soundness would also hold for 
A-models, and this is indeed true as is demonstrated in this chapter. Thus this 
section presents a semantics based on the notion of semi-model introduced by 
Plotkin [56]. Later, a filter semi-model suitable for Boolean Reduction types 
will be introduced, as well as a conventional term semi-model after Plotkin [56]. 

A AP-semi-model of the A-calculus is a triple, (D, • ,1[.1].), where D is a partial 
order, • : D x D D is a map called application and H. is another map which 
assigns each term M E A to an element i1141„ E D, for an environment p: X 
D. The (partial) ordering on D will be written as < and for two environments 
p and p' write /./ < 	if Vx E X.p(x) < pi(x). Write [AL = 	if 

< 1[M11„ and 1[M11, I[ML.  Furthermore, the map H. must satisfy, for 
each M E A and each environment it : X D, the following list of properties 
(Plotkin [56]): 

1. 1[4„ = 

2. MNIL = 

3. 1[Ax.M]l p • d < 	di, for every d E D, 

4. if [[x]], = [[x]],, for all x E FV(M), then EMI, = 

5. if y FV(M), then Em[x 	yfil„ = EML[r ,„(1 )], and 

6. if Vd E D.EML,Er:=4 [N]p[x:=4, then iAx.M]bi  <  

When compared with the conditions for the interpretation function of a A-
model, the above conditions differ in that equality is required in all conditions 
for the A-model and condition 5 is a consequence. However, the following more 
general substitution principle still holds: 

Lemma 4.1.4 (Plotkin [56]) 
IIM[x := NIL= EM114x.= 

Given the usual definition of 13-reduction, it is easy to show: 
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Theorem 4.1.5 (Plotkin [56]) 
If M--)+pN, then, for any environment p, [[M]]„ 

Thus semi-models do indeed model the process of reduction (not conversion) 
and so are a good benchmark upon which to judge the correctness of a predictor 
of reduction behaviour of terms such as is proposed in this thesis. Plotkin's 
semi-models allow the type deduction systems to be shown to give complete 
information with respect to reduction. 

Plotkin extends the notion of semi-model to /3z-semi-models by adding the 
following condition to the interpretation map H.: 

7. if x tf,Z FV(M), then [[Ax.Mx]]„ _<[[M]]„. 

The Term Semi-Model 

The term semi-model is M .< D,., H. > where 

D = {[M]IM E A}, 

[M] = {NIM-R,N44-0M}, 

and 

[M] • [N] = [MN]. 

The ordering for this model is [M] < [N] if M-N. Let Env denote X D, 
then H. is defined as before: 

H.: A -4 Env —> D 
1[M]]„. [M[x i  • • x; := Nl • • • NA, 

for p = [x 1 - • x; := [N1 ]. • • [NA. The canonical environment is p0 (x) = [x], 
as before. 

As an example, in the term-model [KM] = [I] whereas in the term-semi-
model [KIQ] < [I], but not [I] < [KI11]. 

Theorem 4.1.6 (Plotkin [56]) 
Let (D,•,[[•]].) be as defined above, then it is a semi-)-model. 

Plotkin uses the above definition of term semi-models to establish the fol-
lowing completeness theorem: 

Theorem 4.1.7 
M-)+,3N if in all semi-models and for every environment p, [[ML < EATL. 
A similar result is obtained by Plotkin for /37/-reduction by considering /377-term 
semi-models. 
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A Filter Semi-Model of Terms 

The idea of a filter model is to use the set of type expressions themselves to 
form the domain of the model or semi-model. However, the set of types cannot 
be used to construct a filter A-model as 0-convertible terms do not necessarily 
have the same set of types assignable to them (Chapter 3). Instead, a filter 
semi-A-model may be constructed for the purpose of providing an alternative 
validation of the completeness of the system with respect to reduction. 

Here, a filter semi-model is only considered for the set of Intersection Re-
duction Types, T7. 

Definition 4.1.8 
A filter is a subset d of the set of types, T7 such that 

• co E d, 

• o•, r E d implies a n 7- E d, 

• a E d and o- < 7-  implies 1-  E d. 

Lemma 4.1.9 
Let A be an assumption set, then A 1-f, 	x: o if o- is in the filter generated 
by T, where x : T E A.' 

Proof 
By rules MEET and LEQ and induction on the derivation of A1-/ 	x : a. 
0 

The powerset of a set D is written here as P(D). Let D = 'P (T7 ) where 
< is taken to be the subset relation. Several different notions of semantic 
application immediately arise, viz., strict application, constant application and 
ordinary application. These can be defined as follows: for each arrow expression 
b and each d, d' E D, define 

d Ibb d' = {7.13a E d' b T E d}. 

Note the finer structure which Boolean Reduction Types impose on functions 
is clearly evidenced. 

Let 	= {d E Did is a filter). 

Lemma 4.1.10 
Let d, d' E ./ and let b be an arrow expression. If d •b  d' 0, then d d' E -1. 

'Recall that assumption sets were restricted to contain at most one entry for each term 
variable. 
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Proof 
We need to show that w E d •b  d', a,r E d • b  d' implies cr nr Ed e t, d' and 

E d d' and a < T implies T E d •b  d'. 

1. Let a E d' and abr E d, then abw E d (since d is a filter), hence 
w E d fob  d'. 

2. Suppose a,r E d e t, d', then for some types a i  and a2 , a1  E d', cri  baEd 
and a2  E d', a2br E d, hence al fl a2  E d' and (al  b n (a2 b T) E d. 
Thus, (al b n (a2b .7) 5_ (al n a2)b(a n Ed, hence anr Ed.), d' 

3. Let a E d eb  d' and a < T, then 3cr'.a' E d' and a' b a E d, but d is a 
filter, hence a' brEd which implies r E d d'. 

0 

Definition 4.1.11 
z Let a E X -4 .7", then define Am  = UxEx {x:ncEA() a} . For each M E A, let 

Vm,„ be a variable strong head neededness function such that 3r.A„ Fir  M: T 

and a < M: a. The interpretation maps for the filter semi-A-
models are then defined to be l[M]l i,v  = fa E 771A Fir • a} for Vm,„ as .  
specified above. 

Note that for each M and II, Vm,„ may not be unique. This is because given 
a particular type assignment system and set of types, there are three de-
grees of freedom (modulo =BA)  in determining V, namely A, M and r, see 
Lemma 3.4.10. Of these, the above definition does not uniquely fix r. 

Lemma 4.1.12 
Let E X —> 	M E A and r E 	If 3V.A„ 	M: T, then 3Vm,m .Am l-f,md, 
M: T. 

Proof 
If a < T, VI .Ap  Ffp M : a, then choose Vm,„ = V. Otherwise, if 3a < 
T, V' .Am  F-Tv, M: a, then choose a to be a least such type and set Vm,„ = V', 
finally, use rule LEQ to derive A„ 1VMM

M: T. 0 

Lemma 4.1.13 
Let ft E X —> .F and for each M E A, let Vm,„ be as specified above, then 
VM E A.EMLY E F. 

Proof 
Rule LEQ ensures that EMC is closed under < and contains w. Also, rule 
MEET is applicable as all elements of [Mt': are derived using Vm,,, and so 
WU is closed under n. 0 
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Definition 4.1.14 
For each V, define d ev d' = H s_bEv  d "lb  d'. 

Note that because the intersection type assignment systems are not closed 
under /3-conversion the following is restricted to .X-semi-models. 

Theorem 4.1.15 
•v, [1:7 ) are semi -A-models. 

Proof 
Clearly, (.F, <) is a partial order (see the definition of a filter). Then all that 
is required is that we check the six conditions on the map H7, for each V. 

1. T E 1[47 iff Ai, I-L iz 	x: T which implies r E 	p(x) by Lemma 4.1.9. 
Note also that T E ti(x) implies A t, Ft, [z:=  x: T, by definition of A„. 

2. r E EMNL°  
iff 3VmN,p.A1, VMN MN: T 

if 3a, b E V, Vm,p , VN,wAp 1VM M: abT and A, FvNP  N:a 
{by Lemma 3.4.12 and Lemma 4.1.12} 
iff acr, b E V .crbT E [Mg and a E 
iff 3 b E V.r E [WU it) Env  
if r  E UbEv[MLY 0 13  [[NLY 
if T E EAM •v  

3. T E EAs.Mg ov Inv  
if 3 b E V.T E lAx.M1,7 o b ENLT 
if 3 b E V, cr.abT E EAx.Mg and a E [WU 
iff 3 b E V, (7, 	 Ax.M : a b 	T and A,I-vc,m  N: a 
iff 3 b E V, V(Ax.m)N,A .Ap 	(Ax.M)N: T 

{by rule APP and Lemma 4.1.12} 
implies 317m [x:= N] p .A /A 1-4,..m) ,,,4  M[x 	AT]: T 

{this last step is what restricts the Theorem to semi -A -models} 
if r E invi[x:dp by part 5 and Lemma 4.1.4. 

4. By Lemma 3.4.19. 

5. Immediate from the variable convention for A-terms. 

6. Immediate from Lemma 3.4.15. 

0 
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4.2 Models of Boolean Reduction Types 
The following definitions provide semantic analogues of the syntactic concepts 
of strong head neededness and irrelevance, both introduced in Chapter 2. 

For strong head neededness the corresponding semantic notions can prof-
itably be expressed as follows. 

Definition 4.2.1 
For A-semi-models, write iMi o  is strongly head needed in [N]], if 

ENL 5. [Ax i  xrn .MN1  Nn ip, 

where m, n > 0. In the case of A-models, the condition is: 

where m, n > 0. 

For irrelevance the situation is equally simple as by the Church Rosser result 
for /3-reduction this reduction schema may be used to analyse convertibility 
(both [3-conversion and those notions of convertibility induced by the respective 
models). The following definition suits both A-models and A-semi-models. 

Definition 4.2.2 
Write do  is irrelevant in d • do  • di  • . ... dn  if for all d'o, 

d do  • di  • ... • dn  = d • do  • di  • . . • • dn• 

Note that by the Church-Rosser result for /3 and Theorems 4.1.2 and 4.1.5, 
d • do  • di  • ... • dn  = d • do  • di  • .. . • dn  implies 3di .d • do  • di 	. • dn  < di > 
d • do  • di  • .. . • dn . 

Proposition 4.2.3 
EML strongly head needed in [NL if M strongly head needed in N. 

Proof 
Consider the A-semi-models. Firstly, suppose EML  strongly head needed in 
1[N1 0 . Then 

[NIL EAx i  xm.mNi NT,L, 
hence N—)+0Ax 1 	 N. The result follows by Corollary 2.4.8. 

Secondly, suppose M strongly head needed in N. Then the result is imme-
diate by Theorem 4.1.5 and by choice of the head reduction of N. 

The case for A-models is similar, using Theorem 4.1.2. 0 

Proposition 4.2.4 In, is irrelevant in [NM/Vi  N„L if M is irrelevant in NMNI . • • N. 
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Proof 
Use Theorem 4.1.7 (Theorem 4.1.3), then Proposition 2.3.3 and lastly Theo-
rem 4.1.5 (Theorem 4.1.2). 0 

4.2.1 What is a Type Interpretation? 
A type interpretation is a pair 

Ty = (Ty, H.), 

where Ty is a set of subsets of the domain of the chosen (semi-) model of terms 
which satisfies certain closure properties (see below) and H. is an interpretation 
function from types and type environments to elements of Ty which satisfies 
certain conditions (see below). 

If Ty is a partial order, then elements of Ty will be required to be upper-
closed. This ensures that properties are inherited upwards, a condition which 
is needed by the interpretation of any type system closed under /3-contraction, 
as are the three case studies of the last chapter. 

The interpretation of types is given modulo the interpretation of type vari-
ables, and the letter v is used to range over type environments. The interpre-
tation function must satisfy the following conditions: 

(Arrow 1) let d E icr b 4,, then d [alp c 
(Arrow 2) suppose d E [al, implies IM],[z:-.4 E 

[cy b 1-1,, for some b E V, and 

(Arrow 3) let d E icro bo bi crn, bn  al,„ then Vdi E iadly 
1. if bo =BA 

	then do  is strongly head needed in d • do  • d1  • ... • dn , 
and 

2. if bo =BA -4, then do is irrelevant in d • do  • d1  • ... • dn. 

Definition 4.2.5 
Let p and v be as above. The notion of semantic satisfaction is defined in the 
following manner: 

1. a statement M: a is satisfied by p, v, model M and type interpretation 
T, notation p,v, M,Ty 1 M: a, if Pip E 

2. an assumption set A is satisfied by p, I., model M and type interpretation 
T, notation p,v,M,Ty 1 A, if for each x : a E A, p,v,M,Ty x: a, and 

3. lastly, write A 1v  M: a if p, M , Ty 1 A implies p, v, M,Ty M: a and 
Vx E X.p,v,M,Ty 1 Ax.M : A(x)V (x) a to mean that whenever p, v, 
model M and type interpretation T satisfy A, then they also satisfy both 
M: a and Vx E X.Ax.M : A(x)V(x)o-. 

F]JL,, then Px.MI„ E 



TEnv 	(D) 
S[[GrL = na i €Gc (a)gfrilv 

c•.: Tc°9  TEnv P(D) 
gi[a]. = v(a) 

	

gfro 	crj hi (72 ••• o bn 
= Id E DIVdi E gfril,„ 0 < i < n. 

do  strongly head needed in d • do  • d1  
d • do  E gfri bi 0'2 • • • an b. aLl 

	

clic() 	0r1 hicr2 • • • an b. ally 

	

= 	E DIVdi quilp, 0 < i < n. 
do  irrelevant in d • do  • d1  • • • • • 4; 
d • do  E g[ai bi cr2 • • • an bn ahl 

• .. • • dn; 
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Figure 11: The Semantics of Simple Boolean Reduction Types 

Let D be the domain of a model or semi-model of the lambda-calculus, then 
write TEnv for r.„ 	(D), the type of type variable environments. 

4.2.2 The Semantics of Simple Reduction Types 
Let the set of types be T. 

Definition 4.2.6 
Write a <1c T if there is a substitution, R, of arrow expressions (E V) for 
arrow variables homomorphically extendible such that T = R(a). Let Gc(o- ) = 
Ma- <G• T; T E 

Figure 11 contains the semantics of all forms of Simple Boolean Reduction 
Types. (Not all cases of this definition are applicable to the interpretation of 
sets of types such as T{=}  and TC7+1 ). 

The definition defines that the meaning of an arrow variable is the (univer-
sal) quantification over all its instances (effectively = and -AO—hence in all 
the type assignment systems of Chapter 3 the use of arrow variables is sim-
ply a mechanism for introducing intersection types, albeit often in a greatly 
restricted form. 

Consider the term Axf.fx, which can be assigned the type 
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(Consider the case when the identity function is substituted for f). How-
ever, for any term N, Ax f. fx does not strongly head need its argument as 
(Axf.fx)N—)flAf.fN, which is in head normal form. Thus it is not sufficient 
to determine the strong head neededness of an argument on a part of the type 
of a function—instead the whole type must be taken into account, that is, all 
arguments of the correct type must be given to the function (in the specified or-
der) in order to make this determination. Thus, since (Axf.fx)1V().y.y)-00N, 
a = (a = (3) = j3 is a correct type for Axf.fx. (Of course, we should al-
low any argument of type a = /3 in making this determination, as is done in 
Figure 11). 

Note that we would also wish Ax f.fx to have the type 

And by inspection of Figure 11 this is indeed the case. This duality of behaviour 
for Axf.f x precisely expresses the context-sensitivity of strong head neededness 
information. Thus a better type assignment for Axf.fx is 

a 	(a 4i  13) 

for some arrow variable —>i. Again this is true by inspection of Figure 11, where 

= gEce 	(a 	n Ea 	(a 0) fil„. 

Let Ty = P(D), where D is the domain of a (semi-) model of terms, and 
SE]. be as defined in Figure 11, then the following Theorem holds immediately. 

Theorem 4.2.7 
(Ty, SET) is a type interpretation. 

Proof 
Clearly, Ty is upper-closed for semi-models by Theorem 3.2.21 (models do not 
have a partial order defined on them). 

By considering both of the cases for functional types it is clear that condition 
Arrow 1 on the interpretation function is satisfied. 

Consider Arrow 2. Suppose that for all d E Ea], we have Pfl ii [x; 	E 
Then in particular lAil m  E ET] 1, (just choose d = Exl„), hence EAx.mi, E 
Eg b 4,, for some arrow expression b. 

As for Arrow 1, it is clear that condition Arrow 3 is satisfied by definition 
in the respective cases of the definition of (SM.). 
0 
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L[H].: TI TEnv 'P(D) 
gfElv = nu„ 

Figure 12: The Semantics of LET-Polymorphic Reduction Types 

4.2.3 The Semantics of LET-Polymorphic Reduction 
Types 

Let the set of types be TI. 
Figure 12 contains the semantics of all forms of LET-Polymorphic Reduc-

tion Types. (Not all cases of this definition are applicable to the interpretation 
of sets of types such as 71{7}  and 71,-") ). 

Note that the restricted form of quantification in TT makes this naive in-
terpretation reasonable (types such as (Va.ce)b a are not admitted). For a full 
second-order system the domain would need to be restricted to sets of ideals 
(MacQueen et al [44]) or an approach such as that of Bruce and Meyer [7] 
would need to be followed. (See also Mitchell [49]). 

Lemma 4.2.8 
T implies G[kr]], 

Proof 
Immediate by definition of gal,. 0 

Let Ty = 7)(D), where D is the domain of a (semi-) model of terms, and 
LH. be  as defined in Figure 12, then the following Theorem clearly follows. 

Theorem 4.2.9 
(Ty, C.) is a type interpretation. 

4.2.4 The Semantics of Intersection Reduction Types 
Let the sets of types be T7. 

Definition 4.2.10 
Write a <11 T if there is a substitution, R, of arrow expressions (E V) for 
arrow variables homomorphically extendible such that T = R(a). Let Gi(o- ) = 
{rIo lj T; T E 

Figure 13 contains the semantics of all forms of Intersection Boolean Re-
duction Types. Note that this covers all cases as p b(a fl -r) = (pb a) fl (pb r). 
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/H.: T7 —) TEnv —) P(D) 
= Ri i €G,(a)g &Tit,  

g 	Tt.g TEnv P(D) 

= D  
cJfr flT]I= cifr]I , fl ciIIr  
gdcxb, = v(a) 
Mao = 0i bi a2 an bn 

fd E Drddi 	° < < n. 
ck, strongly head needed in d • do  • di • ... • an;  
d • do  E gir[ai bi 0'2 ••• anb, (IL} 

gdao -4 al bi a2 an bn 
= Id E DIVdi E 	0 < i < n. 

do  irrelevant in d • do  • di • • • • • dn; 
d • do E grfribi a2 an bn c4,} 

Figure 13: The Semantics of Intersection Boolean Reduction Types 

(Note that this semantics cannot be defined in terms of the SH. semantics 
since types of the form (p n Cr) b T are permitted). 

Lemma 4.2.11 
< T implies Vv.nol,, C /FL. 

Proof 
By straightforward induction over the definition of <. 0 

Let Ty = 'P(D), where D is the domain of a (semi-) model of terms, and 
/H. be as defined in Figure 13, then it is clear that the following Theorem 
holds. 

Theorem 4.2.12 
(Ty, 101.)  is a type interpretation. 

4.3 The Intensional Applicative Behaviour of 
A-terms 

This section explores some basic properties that the above semantics possesses, 
while laying the ground work for the major results of this chapter, which are 
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presented in the following sections. The major result of this section is the estab-
lishment of a connection between the interpretation of application of terms and 
the interpretation of functional types. This is summarised by Theorem 4.3.8 at 
the end of this section which encapsulates this behaviour in a simple Boolean 
formula. From this result will flow the soundness of the APP rules of the vari-
ous type deduction logics. The lemmata which follow are all required in order 
to establish Theorem 4.3.8. 

The results contained in this subsection are generic in the sense that they 
are applicable to all the sets of types that have been defined. (Remember that 
T7 is considered modulo = and that p b(cr n = (pb cr) n (p b r)). They are 
also dealt with in a reasonably model independent fashion, except where noted. 

The following Lemma is very similar to the results of Hindley [29] as part 
of his proofs establishing soundness (see for example his Soundness Theorem 
for quotient-set semantics). 

Lemma 4.3.1 
Let EMI,. E SETE L, and Ex]l ii  E SEal,, then 3 b Px.M]lp  E SEa- brE v . 

Proof 
Consider the case of semi-models. For all d E SEaE„, EAx.M1 0 •d [MI ti[x 	E 
SETE,„ hence Ax .ML maps Siol, into SH,„ as required. 

This lemma follows in a similar fashion for models (replace < by .). 0 

Lemma 4.3.2 
For any environments 1u and v, term M E A and term variable x, if I[M]l p  E Hy , 
ExE„ E Ea-E, and x FV(M), then Px.M]l„ E fr  -4 rE v . 

Proof 
x FV(M) implies V N , N' .(Ax.M)N = M = (Ax.M)Ni , i.e., V N, N' .C[N] = 
C[NI, where CH = (Ax.M)[). Therefore, by Proposition 2.3.3, V P.P is irrele-
vant in C[P]. By Proposition 4.2.4, Vii, P.IPL is irrelevant in iC[P]lh. 

The result now holds by combining Lemma 4.3.1 with the above fact, i.e., 
lAx.M1„, E Ea-  -4 TL. 0 

As already explained in the previous section, it is necessary that all the 
arguments specified by the type of a function be given to it in order to deter-
mine whether or not it requires a particular argument. The following syntactic 
definition is therefore useful: 

Definition 4.3.3 
The argument types of a type cri b cr2 	o-„ bn  a, n > 0, are cri, (72, • . • an• 

Lemma 4.3.4 
Suppose [Ax.Ni ll p  E Ea = r' b r]], and EN21„ E I[r1„, then Px.N1N211 0  E 
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Proof 
Let the argument types of r be cri , 	, cr„, let Pi  E d E frily, for all 

E {1, ,n} and 	d, E VT,. Let CH = BPI Pn , now by Proposi- 
tion 4.2.3 N strongly head needed in C[(As.NONN2 ], but 

C[()x.NONN2 ] 
= C[(Axy.Niy)NN2) {for x # y and y FV(NiN)} 
= C[(Ays.Niy)N2N] 
= C[(Ax.N1 N2 )N]. 

Thus by Proposition 2.4.10 N strongly head needed in C[(Ax./ViN2)N]. Hence, 
by Proposition 4.2.3, d, strongly head needed in Px.Ari/V2 i m  • d, • dl • . . . • dn . 

The result follows from the above and Lemma 4.3.1. 0 

Lemma 4.3.5 
Suppose 

E [cr 	TI  

and 

E [kr = T11 

then Px.NiN21,, E Ea = 711,. 

Proof 
Let the argument types of T be 0-1 ,•• , an, let Pi E d E Eo-i],„ for all 
i E {1,..., n}, iNLA  = do. E [Grip and let CO = [jPi ...Pn . Now by Proposi-
tion 4.2.3 we can reason as follows. C[(Ax./VI N2)N] = C[(Ax.NON(Pa.N2 )N)] 
(without contracting N), now since C[(Ax.NON((As.N2 )N)] strongly head 
needs (Ax.N2 )N,C[(Ax.NON((x.N2 )N)].--RoC1(Ax.N2 )N1, where CM is a head 
context. 2  Similarly, CI(Ax.N2 )N1-0pC"[N], where CI] is a head context, since 
N is strongly head needed in CI(Ax.N2 )N] (because Cl] is a head context). 

The result can now be seen to hold by Corollary 2.4.8 followed by Propo-
sition 2.4.10 and then Proposition 4.2.3 and finally by combining this with 
Lemma 4.3.1. 0 

Lemma 4.3.6 
Suppose Px.Ndl„ E 	-0+ TI  -0+ Ti m  and [N21, E F1,, then [[Ax.AriN21,4  E 
kr -0+ 1-11„. 

Proof 
Let the argument types of T be al, (72, 	, o , let Pi E d1  E Ecril,„ for all 

2  As was defined in Chapter 1, a head context is any context of the form 
Ax i  ...rm•DMI • • • Mn , where m,n > 0. 
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i E {1, ,n}, NL = 4 E Eol„ and let CH = OP1 • • • P. 

C[(Ax.N1 N2).N] 
= C[(Ax.NON((Ax.N2 )N)] 
{without contracting N} 
= CKAx.NONVAx.N2)N i )] 
{since N and (Ax.N2 )N are irrelevant in C[(Ax.NON((.\x.N2 )N)1} 
= C[(Ax.N1 N2 )N1. 

The result now holds by Proposition 2.3.3 and Proposition 4.2.4 and finally 
by combining this with Lemma 4.3.1. 0 

Lemma 4.3.7 
Suppose 

EAX-N11 /1 E Ea -0+ 7- 1 	rE v  

and EAs.N21, E Eo- -#+ 	then 

E fr  -0+ 

Proof 
Let the argument types of r be cri , 	, an , let Pi  E d E Eolv, for all 

E {1, 	, n}, ENE,, = 4 E (A, and let CO = []li • • • Pn• 

C[(Ax.N1 N2 )N] 
= C[(Ax.NON((Ax.N2)N)] 
{without contracting N} 
= C[(Ax.NONVAx.N2 )N)] 
{since N is irrelevant in CRAx.NON((Ax.N 2 )N)]} 
= Cl(Ax.N2 )N] 
{where CM is a head context, and since (Ax.N2 )N} 
{is strongly head needed in C[(Ax.NONVAx.N2 )N)1} 
= Cl(Ax.N2 )N1 
{since N is irrelevant in Cl(Ax.N2 )N} 
= C[(Ax.NONVAx.N2 )N')] 
= C[(Ax.N1 N2 )N 1]. 

The result now holds by Proposition 2.3.3 and Proposition 4.2.4 and finally 
by combining this with Lemma 4.3.1. 0 

The intensional applicative behaviour of A-terms is summarised as follows: 

Theorem 4.3.8 
Suppose 

E [abir%2Tiv 
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and 

1[Ax.N2L E 1013371, 

then 

1[Ax.N01211p E [ 0.  (bi V(b2 Abs)) 

Proof 
By Lemmas 4.3.4, 4.3.5, 4.3.6 and 4.3.7. (If bi =BA 	then use Lemma 4.3.4, 
else if b2 =BA -4, then use Lemma 4.3.6, else if b3 =BA 	then use Lemma 4.3.5 
else use Lemma 4.3.7. This chain of reasoning is summarised by the above 
Boolean formula.) 0 

4.4 Type Assignment is Sound 
In this section the soundness of each of the type assignment systems of Chap-
ter 3 is proved. The results in this section apply to both A-models and semi-A-
models and are independent of the selection of a particular concrete instance 
of these models (for example, term A-model or term semi-A-model). This in-
dependence is not an uncommon situation, see, for example, Hindley [29] or 
Plotkin [56]. 

4.4.1 Soundness of I-C  

Let the sets of types be Ta . Establishing the soundness of these type assign-
ment systems is now straightforward, is follows: 

Theorem 4.4.1 (Soundness) 
A FY' M: T implies A 1v  M: T. 

Proof 
By induction on the derivation A q; M: T. 

VAR By Lemma 4.3.2, Vy E X.y 	x and y : o E A implies I[Ay.xl, E 
7-]1,. Also, [Ax.xL, E Sfr = r],. So, A U 	: T} HY. 	x: T 

implies AU {x: T} 	x: T, as required. 

APP By the induction hypotheses: 

• A 	ab T, and 
• A 172 N2: o-. 

The result follows immediately from Theorem 4.3.8 and the definition of 
semantic application for terms (.). 



4.5 TYPE ASSIGNMENT IS COMPLETE 	 98 

ABS By the induction hypothesis, Az  U 	: a} 	N: T. Then it is 
immediate by definition of I and using Lemma 4.3.2 that A 
Ax.N:crbT, as required. 

0 

4.4.2 Soundness of I-L  
Let the sets of types be TZ. 

Theorem 4.4.2 (Soundness) 
A F-f; M: T implies A v  M: T. 

Proof 
The interesting cases are when the deduction of A 1-f, M: T ends in a use of 
rule VAR or rule APP-V. 

For rule VAR, the result follows as for the Curry-style system and by 
Lemma 4.2.8. 

For rule APP-V, the result follows by the induction hypotheses and Theo-
rem 4.3.8. 0 

4.4.3 Soundness of 
Let the sets of types be TT. 

Theorem 4.4.3 (Soundness) 
A FY M: T implies A 	M: T. 

Proof 
By induction on the derivation of A F-f, M: T. Consider the last step in this 
derivation: if this last step is one of VAR, APP or ABS, then the result follows 
in an identical manner to the soundness of the Curry-style system for this case. 

For the case of rule MEET, the result follows immediately by the induction 
hypotheses and property of n. 

For rule LEQ, the result follows by induction and Lemma 4.2.11. 0 

4.5 Type Assignment is Complete 
Type assignment is not complete with respect to )3-conversion. This is because 
the type assignment systems examined here are not closed under /3-conversion. 
This situation can be easily remedied by postulating a rule to close type as-
signment of terms under this relation. (After the manner of Hindley [29]). 
However, I have chosen not to do so and instead follow the method of Plotkin 
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and only validate the completeness of the type assignment systems with respect 
to 16-contraction. (Since the primary interest of this thesis is in reduction and 
types). 

4.5.1 Completeness of 1--c 
Let the set of types be T. Define /L0 (x) = [x], then clearly [no = [M]- 

Lemma 4.5.1 
Let A be an assumption set and for each M E A if a deduction of a type for 
M under assumptions A exists, then for each such M let Vm be a strong head 
neededness function such that 347.A F m  M: a. Let A be the assumption 
set which extends A such that A C A and such that each type a is assigned 
to an infinity of term variables such that no term variable appears more than 
once in A. Consider the term-semi-model, then there is a Vm such that if 
vu(a) = {ni° IA 1 VM  M: a}, then 4:4, = fiAlLoiAl-- ; M: crl. 

Proof 
By induction on a. 

o- a Immediate by definition of vo. 

cr cro 	cribl Gr2 • 	bn  a In the first case, Al- 15m  M: a implies Av„,, M: 
a, hence [Mk E SEal it , which implies [M] E S[crh. Thus, {[M]IA VM 

M: a} C Si4,0 . 
In the second case, PfLo  E S1{crl,„0 . Hence, for all iNik E Sicril vo  we 
have iNoLo  strongly head needed in [MLA. • EN0L0  • ... • [N,,Lo  and 
EM1 1,0  • [N011 4,0  E **I bi cr2 o-n bn  ah. By the induction hypotheses 

3 VmNo .AF- F,m,o  MN0 : aibior2 ornbna 

and 

3 VN..AI-k N1 : a.  

In particular, 3VN0 .A 1-F,N0  N0 : ob. Hence we may construct Vm in the 
usual way by rule APP: 

3b0.A FvM  M: croboa1b1a2 ...o-n bna. 

Moreover, by Proposition 4.2.3 bo =BA 	thus 

AFF,m  M: ao= 01b102 anbna, 

as required. Hence, S[alpo  C {W1 IA FVM  M: (7} 
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a =7: oo  -0÷O bl a2 • • • an bn a Similar to the previous case. 

0 

Theorem 4.5.2 
A kv M: T implies A FY' M: T. 

Proof 
Choose the term-semi-model and let v o  be defined as in the Lemma. Now, since 
A hy M: T implies iM11 00  E SH„,„ IIML = [M] E 	= 	IA F M  
M: T.}, by the Lemma, thus establishing that there is a deduction of r for 
M under assumptions A. Moreover, Vx E E SA(x) V(x) 71,, 
thus by the Lemma this establishes that there is a deduction of A(x) V(x) T 

for Ax.M for each x, and hence by rule ABS and Lemma 3.2.12 we may take 
Vm=BA V. These together with Lemma 3.2.18 imply A 1-f, M: T as required. 
0 

Note that the above proof fails for A-models since in [M] there may be terms 
which cannot be assigned the type a by F-c. A good example is the following: 
in the term .\-model [KIQ] = [I], but in the term semi-,\-model [KM] < [I]. 
For this example we have VA, a.A I: a = o•, but A , a.A F KM: a. 
Hence, in the )-model, equal elements of the model may not all belong to the 
interpretation of a type. This is not true for semi-A-models, as proved by the 
above theorem and demonstrated by this example, in which [KM] and [I] are 
not equal. 

4.5.2 Completeness of FL  
Let the set of types be T1 . Let Vm and A be as before and let vo (a) 
{[till tjA 1VM  M: a} . 

Note that as per the convention in Chapter 3, a type written r is constrained 
to be non-generic (types which may be generic are always written 7- ). 

Lemma 4.5.3 
Consider the term -semi-model, then gal, = {I[M11,0 1AF-Ym  M: a}. 

Proof 
By induction on a. Similar to Lemma 4.5.1 since only non-generic types may 
be deduced for terms in I-L. 0 

Theorem 4.5.4 
Akv  M: T implies A 1-4 M: T. 

Proof 
Similar to Theorem 4.5.2 0 
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4.5.3 Completeness of F- /  

Let the set of types be T7. 

Completeness using the Term Semi -Model 

Let Vm and A be as before and let vo (a) = I[M]pc, IA 	M: 

Lemma 4.5.5 
Consider the term-semi -model, then /lot°  = {I[MIA vi  M: a}. 

Proof 
By induction on a. Similar to earlier proofs, with the case a = w following by 
Corollary 3.4.9. The case a = o n cr2  also follows by the induction hypothe-
ses and the definition of /H. using rule MEET which is applicable since the 
variable head neededness function is the same in each case. 0 

Although every )-term can be assigned a type by the type assignment sys-
tems Tr A and eg, not all terms can be assigned a type for a particular assump-
tion set and free variable strong head neededness function. In contrast, the w 
rule of the standard intersection type discipline allows one to assign the type 
w to every term, irrespective of the type assumptions. Thus the completeness 
proof presented here is modulo this restriction. 

Theorem 4.5.6 
Suppose T w, then A kv M: T implies A 	M: T. 

Proof 
Similar to earlier proofs of completeness for the other type assignment systems, 
as follows. Choose the term-semi-model and let vo  be defined as in the Lemma. 
Now, A I=v M: T implies MJj I  E 	EMIL, E 	= {Wi tgo lA HVM  
M: r}. Moreover, Vx E E 4A(x) V(x) 4 0 , thus by the Lemma 
this establishes that there is a deduction of A(x) V(X) T for Ax.M for each 
x, and hence by rule ABS and Lemma 3.4.10 we may take Vm=BA V. By the 
Lemma above and Lemma 3.4.19 A hf, M: r, as required. 0 

Completeness using the Filter Semi -Model 

Let A be an assumption set. Let PA(x) be the filter generated by a, where 
x:a E A3 , and vA (ct) = {EnvA la E IMLA}. 

Lemma 4.5.7 
Choose the filter semi-model, then llui v  = {M]J A Ia  E Eml° 

VA 	 P 

3 Recall that there may be at most one entry for each x E X in each assumption set. 
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Proof 
By induction on a. 

cr a Immediate by definition of VA. 

a -.7: w Immediate since for every M E A, IMP' is a filter. 

CI a n cr2  Straightforward by induction, as follows: 

/Fr, n 0-21,74  =IfrI n licr2rA  
= HAMA icri E WIZ} n {OM A Icr2 E WIZ} 

{by the induction hypotheses} 
= {[Mrp'A lcri  fl a2  E ItM A } 

{since IMA  is a filter.} 

E ao  = a hi  a„ b„ a Firstly, suppose [M A  E gorA . By the induction 
hypotheses, [[NiLvA  E gairA , i E {0,...,n} implies ai  E [Aril AvA . By the 
remaining induction hypothesis (for al  bi 0.2... an  bn  a) and by •v, a E 
EmNi  NIL. Then the result follows from Corollary 3.4.16, part 1. 

Secondly, let Vm,,A  be as previously defined and suppose a E EML°A . 
Then the result follows since Wi pvA  = fr IA 1-/ IA 	V A M,AA M : T} hence 
a E EA/ v implies AAA hi/

mPA 
 M: a. .  

a ao 	...a„ bn  a Similar to the previous case. 

Theorem 4.5.8 
Suppose T w, then A Iz v  M: T implies A HY M: T. 

Proof 
Choose the filter semi-model, AA and VA , then I[M11,4°A  E 211,7A, iN vvA  = 
{PTA  Ir E INUA }, by the Lemma, andIMF = 	 M : a} ILA 	 A 	m,m it  
implies A 1-f, M: r (since for any a E 	= n,<,. T and by Lemma 3.4.19), 
as required. 0 

4.6 Discussion 
This chapter has established a formal connection between Chapters 2 and 3. 
This was achieved by firstly giving a semantic equivalent of strong head need-
edness (and irrelevance), and then showing the semantic relationship between 
the interpretation of Boolean Reduction Types and the applicative behaviour 
of A-terms. Along the way, context-sensitive semantics were developed for the 
various sets of Boolean Reduction Types. 
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This chapter has also shown that all the type deduction logics are semanti-
cally correct with respect to semi-)¼-models and semantically sound with respect 
to )-models. 



Chapter 5 

Implementation 

This chapter gives algorithms which correspond to each of the type assignment 
systems of Chapter 3. Each of the implementations is correct (i.e., sound and 
complete) with respect to its deduction system. Of course, since these type as-
signment systems have been shown to be semantically correct (up to reduction), 
this implies the semantic correctness of each of the implementations. 

Another consequence of the faithfulness of these algorithms to the dictum of 
the type assignment systems is that any decidability results for these algorithms 
will be a direct result of the power of the respective deduction system. Hence, 
for the intersection-style system it is apparent that its implementation is semi-
decidable, since this system can distinguish between solvable and unsolvable 
terms. 

An important step in each implementation is the satisfaction of the APP 
rule. In general, this rule demands that the argument type of the function 
match the actual type of the argument. Moreover, deductions must be made 
with identical assumption sets. Both of these problems may be resolved with a 
unification procedure, as is usual for type inference algorithms. However, one 
important difference with the current work is that since types contain arrow 
expressions it is necessary to perform unification of these Boolean expressions. 

This chapter contains four sections. The first is some material common to 
all of the implementations. After this first section a single section is devoted to 
each implementation. The first section discusses substitution and unification 
of Boolean expressions. 

Within each of the sections which describes an implementation a common 
pattern emerges. Firstly any operations required are introduced and proven 
correct. These operations are substitution and, in the case of the final imple-
mentation, expansion. 

The next step is the description of the unification algorithm and proof of 
its correctness. Fortunately, the first two implementations can share the same 
unification algorithm. Finally, constructions and correctness proofs are given 
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for the algorithms which compute a (most general) type for each admittable 
term. 

5.1 Preliminaries 
Definition 5.1.1 
Write a E r whenever a E Vars(r). 

5.1.1 Substitutions 
Let V be B Ag, 	or {-/÷} and let T be TGY, TZ or T7 for each possible 
V. 

Definition 5.1.2 
Let Id stand for a generic identity function. A substitution is a pair (RT : 
Tv  T, Rv : At, —+ V). Substitutions will usually be denoted by the letter S 
(possibly primed or subscripted). However, substitutions of the form (Id, Rv ), 
for any Rv : A t, V, will often be denoted by the letter R (possibly primed 
or subscripted). 

The application of a substitution to a type or an arrow is defined as follows. 
Let S be a substitution (RT, Rv) for some RT and Rv, r E T and b E V, then 
write 

• (r) for RT; 	(T) and 

• S(b) for Rv(b), 

where RT and Rv are homomorphically extended to types, arrows and types 
and arrows, respectively, in the obvious fashion. 

As usual, the left-to-right composition of substitutions S and S' will be 
written S; S', that is, S; S' (r) = S' (S (r)) and S; S'(b) = S'(S(b)). Let (A,V, a) 
be a triple of an assumption set A, a variable strong head neededness function 
V and a type a, then write S ((A, V, cr)) for (S(A), 5(V), S(o)). 

An ordering on substitution can be defined with least element (Id, Id) (which 
is often denoted by Id): 

S < S' if 3S".S' = S; S". 

Let S = (R, R), then write S[a := r] for the substitution (RT[a 
r], Rv), where RT[a := 7] is the substitution which differs from RT only at 
the point a at which point its value is T. 

Similarly, write S[—>i := b] for the substitution (RT[—>i := 13], Rv[-+ := 
13]). RT[—>i := b] is the substitution identical to RT except for occurrences of 

in the range of RT which are replaced by b. Rv[—>i := b] is the substitution 
which differs from Rv only at the point 	at which point its value is b. 
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5.1.2 Triples 
Definition 5.1.3 
A triple (A, V, T) is suitable for M E A if A 	M: T, where F* is one of 1-c, 
I-L or 1- 1 . 

Write (A,V,r) < (A' 	, r') if 3S.(A',V1 	= S((A,V,r)). Let ST = 
{(A,V,r)I3M E A.(A, V,r) is suitable for M}. 

Definition 5.1.4 
Let A Ey M: T, where 1-* is one of 1-c, FL  or E l . T is a principal type for M 
if A' 1-T, M: c• implies there exists a substitution S such that a-  = S(r) and 
A' = S(A). 

Similarly, a triple (A, V, T) is a principal triple for M if it is a suitable triple 
for M and if (A', V', TI) is a suitable triple for M, then (A, V, T) < (A' 

5.1.3 Unification of Boolean Rings 
Since the types used in this thesis have Boolean expressions of arrows in them 
it will be necessary to perform unification of these Boolean expressions while 
doing type inference. Fortunately, results from Unification Theory are available 
which show that this task is decidable. 

Hsiang [31] attributes the following theorem to Stone [62]: 

Theorem 5.1.5 (Stone's Theorem) 
1. Every Boolean ring is commutative (both -I- and *). 

2. Every Boolean ring is nilpotent with respect to -I-. 

3. Let (B,-F,*, 0, 1) be a Boolean ring with unit 1. Introduce the following 
operators: 

xVy=x-Fy+x*y, 

xAy=x*y, 

=x + 1, 

then (B, V, A, 0,1) is a Boolean algebra. Conversely, given a Boolean 
algebra (B, V, A, 0, 1), define: 

a + b = (a A -, b) V (--ia A b), 

a*b=aAb, 

then (B, +, *, 0, 1) is a Boolean ring. 
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As a notational convenience, note that a Boolean expression of n variables 

	

(n > 0), b, may 	be written as a function, f(xi , 	, x), of its variables. 
From Martin and Nipkow [45] comes the useful result that unification of 

expressions in a Boolean ring is unitary and decidable, that is, there exists 
an effective algorithm for determining the most general unifier of two Boolean 
expressions (if such a unifier exists at all), and furthermore this most general 
unifier is unique. 

The key step to the above result is the transformation of the equations 
defining a Boolean ring into a canonical rewrite system: 

	

0 + x 	x 

	

0 * x 	0 
1 * x —+ 

	

x * x 	x 

	

x*(y+z) 	x*y+x*z. 

(Martin and Nipkow [45] attribute these rules to Hsiang and Dershowitz-
they are also mechanically derivable by using the well-known Knuth-Bendix 
procedure extended with associative-commutative unification). 

By using these rewrite rules any Boolean ring expressionl may be translated 
into normal form (known as polynomial normal form). Note that any equation 
of the form f(Y) = g(Y) may be rewritten as f(Y) g(Y) = 0. 

There are two methods (of equal time complexity) for solving an equation 
between two expressions of a Boolean ring. The first algorithm, cited by Martin 
and Nipkow [45] as first formulated by Boole [6], is the method of successive 
variable elimination which is based on the observation that f(Y) = 0 is true 
whenever 1(0, x2 , , xn ) * f(1, x 2 , . . , xn ) = 0 is true. 

The second algorithm is due to LOwenheim [43] (as cited by Martin and 
Nipkow [45]). This method proceeds by employing a separate algorithm to find 
a particular solution to the equation and then "plugging" this solution into a 
universal formula to obtain a most general solution. 

The algorithm for Boolean unification based on Boole's method of variable 
elimination is given in Figure 14. The algorithm presented in Figure 14 makes 
use of a Boolean algebra. A Boolean ring is used in Appendix A. 

Theorem 5.1.6 
Either algorithm BUNIFY succeeds with the most general unifier of its argu-
ments, or it reports failure. 

land hence any Boolean algebra expression by Stone's Theorem. 
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BUNIFY(b1,b2) = BUNIFYVbi A -nb2) V 	A b2)) 
BUNIFY1 (f(xi, • • • )xn)) 

= if n = 0 
then if f(xi ,. • . , x,,)=BA 	then Id 

else 1 
else let G = BUNIFYV (-4 , x2, • • • , x.) A f(,r2, • • )xn)) 

	

in G[s i  := ((-,f(,G(x 2 ), 	, G(xn ))) A 	)V 
f(-4, 	,G(xn))] 

Figure 14: The Algorithm for unifying Boolean Arrow Expressions 

Proof 
See Martin and Nipkow [45]. 0 

Note this algorithm is a form of search procedure and, as reported in [45], 
its worst case complexity is 0(/ *2n), where 1 is the length (number of symbols) 
of the expression being solved and n is the number of variables in the expres-
sion. Some improvement can be obtained by the application of simplification 
steps after each variable elimination step takes place. (The complexity of the 
method based on Lowenheim's method turns out to be identical, see Martin 
and Nipkow [45]). 

Note that this result may not be as bad as it seems since the length and 
number of variables in an individual arrow expression in a particular reduction 
type is typically very short, and there is no negative interaction amongst arrow 
expressions in a single reduction type. 

5.2 Implementation of the Curry-style Sys-
tem 

In this section the development of an algorithm is conducted which corresponds' 
to the simplest of the deduction systems of Chapter 3 (summarised in Figure 5 
of Chapter 3). There are two main components to this implementation: firstly, 
a function which returns the unifying substitution of two TG7 types (Uc) and 
secondly, a function (TYPEc) which recursively descends through the term for 
which a type is sought, calling Uc (indirectly, see below) where necessary. 

21n a formal sense, see the correctness proofs at the end of this section- 
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5.2.1 Preliminaries 
The implementation applies substitutions to derivations in order to compute 
instances of these derivations. These instances are then used to allow the 
application of terms. Thus the preservation of deductions under substitution 
must be shown before the implementation can proceed. 

Lemma 5.2.1 
Let S be a substitution, then A HY' M: T implies S(A)1-5( , )  M: S(r). 

Proof 
By induction on the structure of A FY' M: T. 

All cases (VAR,APP,ABS) follow easily. (The result also holds for APP--4, 
though no use is made of this fact). 0 

5.2.2 Unification of Types 
Now the procedure for unifying types can be presented. The function Uc 
TX x  TX  -4 TGY -4 TX  is defined in Figure 15. 

As can readily be seen, 1.1c is defined by case analysis on the pair of types 
which are its argument. In the case of a type variable the unifying substitution 
is simply the identity function with the exception that the type variable, a, 
is mapped to the second argument. Note the inclusion of a test to prevent 
circular (infinite) unifications. In this last case the algorithm is undefined. 

The interesting step is that of unifying two function types. In this case not 
just the argument and result types must be unified, but the arrows as well. For 
this the algorithm of Figure 14 is used. The unification of the argument and 
result types is computed by the mutually recursive (with this function) function 
UNIFYc. Also note that the order in which the arrow unification is performed 
is unimportant so long as if it is performed before the call to UNIFY, then 
the substitution R must be applied to ai and ri (i E {1,2}). (To avoid this 
complication it is written afterwards here). 

Definition 5.2.2 
1. Pairs of the form (o, r), where a, T E TX, will be referred to as equations. 

2. A substitution S solves a set of equations E if V(o-,r) E E.S(a) = 

The function UNIFYG,  : {TX x TX} —> TX 	TX is defined by Figure 16. 
This function simply computes the in-order composition of the substitutions 
required to unify each component of the set, applying each such solution to the 
rest of the set as UNIFY c  proceeds. 
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1. Uc(a,r) = if a Er and a T then 1 
else Id[a := 

2. tic (r, a) = Uc(a, r). 

3. Uc(ai 	az, b2 T2) = let S = UNIFYc({(cri, 	(0.2, T2)}) in 
let R= BUNIFY (S(bi), S(b2)) in 

S; R. 

Figure 15: The Algorithm for unifying Simple Boolean Reduction Types 

1. UNIFYc({(cr,T)} U E') = S; UNIFY c(S(E9) 
where S = tic (a, r). 

2. UNIFYc(0) = Id. 

Figure 16: The Algorithm for solving a set of Equations 

Correctness 

Now the correctness of these two algorithms can be immediately established. 
For this to be done, both the soundness and the completeness of the algorithms 
must be shown, whenever their results are defined. 

Theorem 5.2.3 (Soundness of Uc) 
If S = Uc(a,r) is defined, then S(a) = S(r). 

Proof 
By induction on a and T. 

In the cases lic(a, T) and Uc(r, a) the result follows immediately since the 
statement of the theorem guarantees that if a 0 r, then a ft T. 

In the case Uc (cri bi 02, r1  b2 T2), by the induction hypotheses for Uc (0-1,T1) 
and Uc(Si(a2), Si(T2)) (which are applicable as both expressions must be de-
fined since the overall expression is defined), S i (cri ) = S1(r) and Si; S2(u2) = 
Si ; S2 (r2 ), now S = S1 ; S2, hence S(o) = S(ri), where i E {1,2}. By Theo-
rem 5.1.6: 

S; Mbi)=BAS; R(b2), 

hence S; R(ai) = S; R(ri) (i E {1,2}), so 

S; R(cribicr2) = 	R(rib27-2)• 
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0 
Theorem 5.2.4 (Completeness of Uc) 

1. If S' (a) = S' (7), then U c (cr,r) is defined. 

2. If S'(cr) = S'(7-) and S = Uc(cr, r), then S < S'. 

Proof 
By induction on a and T. 

In the case a is a type variable a, since S'(cr) = S 1 (7-) it must be true 
that a 0 T, hence Uc(a, 7-) = Id[a := r], which is defined. For part 2 of the 
theorem, note that 

	

S' = 	:= r] 

Id[cr 	7]; 	:= a] 

= Id[a := T]; 5" , 

	

where S" = 	:= a]. Hence S < 5'. 
The case T a type variable is similar. 
The case a and T both arrow (functional) types follows directly from The-

orems 5.2.6 and 5.1.6 and construction since the result of Uc in this case is 
merely the composition of the substitutions returned by calls on these two 
algorithms (preserving the order of application of the substitutions). 0 

Theorem 5.2.5 (Soundness of UNIFYc) 
If S = UNIFYc(E) is defined, then S solves E. 

Proof 
By induction on the cardinality of E. 

The case when E is the empty set is trivially satisfied since every substitu-
tion solves the empty set. 

In the case that E = {(a, 	U E', S(o) = (r) by Theorem 5.2.3 (which is 
applicable as U NIFYc(E) defined implies Ma-, r) is defined), then the result 
follows from the induction hypotheses. 0 

Theorem 5.2.6 (Completeness of UNIFYc) 
Let E be a set of equations and S' be a substitution such that S' solves E, then 

1. UNIFYc(E) is defined, and 

2. if S = UNIFYc(E), then S < 5'. 

Proof 
By induction on the cardinality of E. 

The case E is the empty set is trivially satisfied. 
The case E = {(o, r)} U E' follows from Theorem 5.2.4 and the induction 

hypothesis. 0 
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1. TYPEc(x) = ({x: a}, 1/.[x := 	a). 

2. TYPEc(Ax.M) = let (A', V', r') = TYPEc(M) in 
let a = if x E domA' then A'(x) 

else a 
in 

(A1z , Vls := -4],a V(x) r'). 

3. TYPEc(M1 M2 ) = let (A1,1/1,1-1) = TYPEc(Mi ) in 
let (A2 , V2, T2) = TYPEc(M2 ) in 
let 8= UNIFYC({( 711 T2 	a)}U 

UxEdomA i ndornA, {(Ai(x), A2(x))1) 
in 

(Ax. if x E domA i  then S(A i (x)) 
else S(A2 (x)), 

Ax.S(Vi (x) V (—>i AV2 (x))), 
S(a)). 

Figure 17: The Type Inference Algorithm for Simple Boolean Reduction Types 

5.2.3 Type Inference 
Now the function for inferring Simple Boolean Reduction Types can be con-
structed in terms of the unification functions. Let a be a new type variable 
and be a new arrow variable (i.e., these variables are used nowhere else in 
each case of the function), then IYPEc : A -4 {X x Tj} x (X ---+ BA) x Tj is 
defined by Figure 17. 

Correctness 

The soundness of TYPEc requires that for a given A-term the result that it 
produces be derivable in the Curry-style type assignment system of Chapter 3, 
and this can be immediately established: 

Theorem 5.2.7 (Soundness of TYPEc) 
If (A, V, r) = TYPEc(M) is defined, then A F-Y' M: T. 

Proof 
By induction on the structure of M. 

If M x, then the result follows immediately by rule VAR. 
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If M 	Ax.N, then by the induction hypothesis (A', V', -r') = TYPEc(N) 
implies 

A' F-c, N: T 1 . 

The result then follows (by construction) from rule ABS. 
If M M1 M2 , then by the induction hypotheses (Ai , 	= TYPEc (MO 

and (A2, V2,7-2) = TYPEc(M2 ) implies 

Hcvi 	•• 

and 

A2 Efi.2  M2: 72, 

respectively. By the statement of the theorem TVPEc is defined, so the follow-
ing is also defined: 

S = UNIFY c ({(ri ,r2 	a)} U 	U 	{(Ai (x), A2(x)))). 
xEdomAindomA2 

Now, by Theorem 5.2.5, 

S(ri ) = S(T2 	a) 

and 

Vs E domA i  n domA2.s(A1(s)) = s(A2 (x)). 
By Lemma 5.2.1 and, if necessary, Lemma 3.2.17: 

S(A)I-50,0 	S(r) 

and 

S(A) 11(/2 ) M2: S(r2)) 

where A = Ai  U {x: afx: a E A2j X domAi }. 
Now the result follows from rule APP and the construction of (A, V, r). 

To show that TYP Ec is complete with respect to the Curry-style type assign-
ment system of Chapter 3, some subsidiary results are required. In particular 
we need to know when the unification algorithms, ti c  and UNIFYc, are defined: 

Lemma 5.2.8 
If 7-1  < 7, T2 < r and ri  and T2 have no variables in common, then Uc(ri, r2 ) is 
defined. 
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Proof 
Straightforward induction on the structure of 7- 1  and 7-2 . The key fact is that if 
Ti is a type variable, then Ti Ti, where i j, i,j E {1,2}. 0 

Lemma 5.2.9 
Let E be a set of equations. If V(7-1 ,7-2 ) E E.ar E 	< T, T2 < T and 7-1  
and 7-2  have no variables in common, then UNIFYc (E) is defined. 

Proof 
Straightforward induction on the cardinality of E using Lemma 5.2.8. 0 

Note that the completeness theorem for TYP Ec presented below entails the 
existence of principal triples for the Curry-style type assignment system (i.e., 
every typable term has a principal triple and TYPEc applied to a term returns 
the principal triple of that term). 

Theorem 5.2.10 (Completeness of TYPEc) 
If for some A', V' and T 1  there is a deduction of A' 1-?, M: T 1  for M, then 
TYPEc(M) is defined, (A, V, T) = TYPEc(M) and (A, V, T) < (A', V1 ,71. 

Proof 
By induction on the structure of M. 

If M x, then clearly TYPEc(M) is defined and (A,V,T) < (A' ,V' , T'). 
If M Ax.N, then the deduction of A' FY% M: T 1  must end in a use of the 

ABS rule whose antecedent has the form: 

A'x  U {x: a} 	N: T", 

for some types a', T"  and arrow expression b' such that T 1  = CY 1 b1  T" . By the 
induction hypothesis TYPEc(N) is defined and 

(Ax  U {x: a}, V[x := b],p) = TYPEc(N), 

where (Az  U Ix: al,V[x := b], it) < (A's  U {x: 	Vlx := 	T"). The result 
follows immediately by construction of (A, V, 

If Al M1 M2, then the deduction of A' I-Y% M: T 1  must end in a use of the 
APP rule whose antecedents have the form: 

A' 1-c, MI : a-' b T '  1 

and 

A' I- icq  M2 : a', 

where V1', V; and b' are such that V = Ax.V;(x)V(b' AV2'(x)). By the induction 
hypotheses both TYPEc(Mi) and TYPEc(M2) are defined and 

(Ai, 	< (A', 	alb Ti) 



5.3 IMPLEMENTATION OF THE LET-POLYMORPHIC SYSTEM 	115 

and 

(112, 112, 72) 	( A', V2', of ). 

Then Lemma 5.2.9 applies by construction of TYPEc and so by Theorem 5.2.5, 
S solves3  

{(7-1, 71 	a)} U 	U 	 A2 (x))}, 
saornAi ndomA2  

hence Theorem 5.2.6 is now applicable and the result follows by construction 
and using Lemma 5.2.1. 
0 

5.2.4 Decidability 
Since the algorithm for unification of arrow expressions is decidable the follow-
ing argument shows that unification of simple reduction types is decidable: 

1. for the case of one of the types a type variable the algorithm is either 
undefined (due to the presence of a circular equation) or is a substitution 
of the other type for the type variable, and 

2. for the case of both types functions the result follows immediately from 
the induction hypotheses and the decidability of unification of arrow ex-
pressions (Theorem 5.1.6). 

5.3 Implementation of the LET-Polymorphic 
System 

In this section the implementation of the LET-polymorphic type assignment 
system as an inference procedure is explored. The pattern that will be followed 
here is modelled after that of the previous section. The implementation turns 
out to be a relatively straightforward extension of the implementation for the 
Curry-style system. 

5.3.1 Substitution 
The application of a substitution to a generic type a is defined as follows: 

• S(Va.oZ) Va.S[a := aj(Q1 ), 

• S(V 	V 	.S[—) ; := —N](a') and 

3 7-1  is unified with 7-1 	a as specified in the definition of TYPEc. 
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• S(r) is as before. 

In order to avoid capture of bound variables, a similar convention is adopted 
as to that which was adopted for A-terms, namely that bound variables are 
renamed such that they do not occur in the free variables of the range of any 
substitution applied to the generic type. This convention allows the establish-
ment of the following Lemmas. 

Lemma 5.3.1 
a 	T implies S(g_-) -L‹. S(r). 

Proof 
If a is non-generic, then the result follows since T = S(a). 

Otherwise, suppose a 	V81 ,. 	then T 	Si (T i ) where domS' = 
{45.1, • • • , 8,,}, by definition of 	Hence, 

S(7- ) _= (S'; S)(1-') 
E (S[6 :=  

which implies S(cr) -= V81 , 	, bn..S[A := ](r') --< S(r), as required. 0 

Lemma 5.3.2 
Let 2.= gen((A, V, 7)), then S(g) = gen((S(A), S(V), S(T))).4  

Proof 
Straightforward by the convention for bound variables. 0 

Lemma 5.3.3 
Let S be a substitution, then A F -f, M: T implies S(A)I- Is'm  M: 

Proof 
By induction on the structure of A 1-f, M: T. 

For rule VAR use Lemma 5.3.1. For rule APP-V use Lemma 5.3.2. All other 
cases (APP,ABS,APP--4) are straightforward. 0 

5.3.2 Unification of Types 
No new unification procedure is required as the APP rule is unchanged from 
the APP rule of the Curry-style system. (i.e. the set of types applicable in the 
APP rule is unchanged). 

4gen() is defined in Chapter 3. 
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5.3.3 Type Inference 
The algorithm presented below is closer to that normally used in actual imple-
mentations than the one presented for the Curry-style system since the infor-
mation about assumption sets is shared between recursive calls to the algorithm 
(see the case of application below). This necessitates the return of a substitu-
tion as part of the result of the algorithm, but does avoid the need to use the 
unification procedure to unify assumption sets. 

Let a be a new type variable and —÷i be a new arrow variable, then TYPEL 
is defined by Figure 18. 

Correctness 
Theorem 5.3.4 (Soundness of TYPEL) 
Let A be some assumption set and M E A. If (A', V,r) = TYPEL(A, M) is 
defined, then A' 1--f, M: r. 

Proof 
By induction on the structure of M. 

If M x, then the result follows immediately by rule VAR. 
If M Ax.N, then by the induction hypothesis (A' ,V' , 	= TYPEL(As  U 

x: o , N) implies 

A' F-Y, N: T I . 

The result then follows (by construction) from rule ABS. 
If M 	M1 M2 , where M1  is a variable or application term, then by the 

induction hypotheses (Ai, VI, , Si) = TYP EL (A, MO 
TYP EL(Ai , M2 ) implies 

A1  I-Lvi 	: 

and 

and (A2, V2, T2, S2) -= 

A2 Efi2  M2: 72) 

respectively. By the statement of the theorem TYPEL is defined, so the follow-
ing is also defined: 

S = Uc(S2(T1 ), T2 	a). 

Now, by Theorem 5.2.3, 

S(S2 (r1 )) = S(r2 	a) 

By Lemma 5.3.3 and, if necessary, Lemma 3.3.10: 

S(A)Fi(s2(vo)  M1: S(S2(71)) 
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1. TYPEL(A,x) = let (S, a, A') = 
if x : V81 , 	, S,.r E A then 

let S be a fresh renaming of 81,...,6„ in 
(S, (r), A) 

else (Id, a, A U Ix : a}) 
in 

({x : a} ,V_.,[x := 	cr, S). 

2. TYPEL(A, Ax.M) = let (A', V, r, S) = TYPEL(Az  U : a}, M) in 
(Aix  U Ix: S(A(x))} ,V[x := 	S (a)V (x) S). 

3. Let M1  be an application term or a term variable, then 

TYPEL(A, MiM2 ) = let (Ai , Vi, Si) = TYPEL(A, MO in 
let (A2, V2, r2, S2) = TYPEL(A i , M2 ) in 
let S = Uc(52(r1), T2 a) in 

(8(A 2 ), 
Ax.S(S2(Vi (x)) V (—>i AV2 (x))), 
S(o), 
Si; 52; 5). 

4. TYPEL(A, (Ax.M)N) = let (Ai , VI, Si ) = TYPEL(A, N) in 
let a: = 	TO in 
let (A2, V2, r27 52) = TYPEL((A1)x U {x: 	M) 
in 

((A2 )z  U Ix: S2 (Ai (x))}, 
Ay.V2 [x := --0-](y) V (V2 (x) A S2(Vi(Y))), 
72, 
Si; 52)• 

Figure 18: The Type Inference Algorithm for LET-polymorphic Reduction 
Types 
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and 

8(A) 1 - (v2 ) M2: S(r2), 

where A = S2(A i )U {x : alx: E A2;x dornAi}• Now the result follows from 
rule APP and by construction. 

If M (Ax.P)Q, then by induction hypothesis 

(Ai , VI , 	= TYPEL(A, (2) 
implies 

Ai 	Q: 

and (A2, V2, 7-2, S2) = TYPELJ(A i ) U : 	P) implies 

A21- f,',2  P: 7-2. 

Then the result follows by Lemma 5.3.3, Lemma 3.3.10 and construction. 0 

A principal triple for a term M is the most general type, variable neededness 
function and type assumption set that can be derived for M in a particular type 
assignment system: 

Definition 5.3.5 
Let * be C, L or I. (A,V,r) is a principal triple for M if 

1. A 	M : T, and 

2. if A' I-Tp M: r', then (A,V,T) 	(A', V', r'). 

Note that the following Theorem entails the existence of principal triples for 
all typable terms. 

Theorem 5.3.6 (Completeness of TYPEL) 
If for some A', V' and T i  there is a deduction of A' 	M : T i  for M, 
then TYPEL(A',M) is defined, (A, V, T, S) = TYPEL(A',M) and (A, V, r) < 
(A', V', T'). 

Proof 
By induction on the structure of M. 

If M x, then clearly TYPEL(A 1 , M) is defined and (A', V.„[x := 	r) < 
(A', 	:= 	r'), where T = a if x g A', else x: E A' and a T < T i . 

If M Ax.N, then the deduction of A' 	M: T' must end in a use of the 
ABS rule whose antecedent has the form: 

AU {x: CT} 	N: T", 
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for some types 0) , T"  and arrow expression b' such that Ti  = cr' b' T" . The 
result follows immediately by the induction hypothesis and by construction of 
(A, V, T, S). 

If M M1 M2 , M1  not an abstraction term, and the deduction of A' 1-f,, 
M: Ti  ends in a use of the APP rule whose antecedents have the form: 

AFLv, Mi :oli rI  

and 

A' Ff., M2 : 
2 

where V11 , V2' and b' are such that V = Ax.Vi"(x) V (b' AVAs)), then by the 
induction hypotheses both TYPEL(A', M1 ) and TYPEL(A i , M2) are defined and 

(A1, VI, T1) < (A', 1/11 , a' 1; ;1, 

and 

(A2 )  172, T2) 	(A i , V;, 

Then Lemma 5.2.8 applies and by Theorem 5.2.3, S solves 

-4i a)), 

hence, by application of Theorem 5.2.4, the result can be obtained by using 
Lemma 5.3.3 and by construction. 

If M (Ax.Mi )M2 , and the deduction of A' FY, M: r' ends in a use of the 
APP-V rule whose antecedents have the form: 

Aix  U {x: _of} I- Lvilx:=b1  M1 : 7- 1  

and 

A' F, M2 : 0) , 

where VI', V2' and b' are such that V = Ay.1/(y) V (b' AVAy)), then by the 
induction hypotheses both TYPEL(A, MO and TYPEL(Ai, M2) are defined and 

(Ai, 	(Aix  U Ix: (L'), Vas := 

and 

(A2,172,T2) <  

The result follows by construction and Lemma 5.3.3. 
If M (Ax.P)Q and the deduction of a type for M ends in a use of rule 

APP, then by Lemmas 3.3.5 and 3.3.8 followed by the induction hypothesis 
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applied to P and Q, the result holds in a similar fashion to the previous case. 
0 

5.3.4 Decidability 
It is immediate from the fact that the unification procedure is decidable (see 
argument in previous section) that the above algorithm is a decision procedure 
for LET-polymorphically typable terms. 

5.4 Implementation of the Intersection-style 
System 

The implementation of the intersection-style system is by far the most com-
plex of the implementations conducted. The work of Ronchi della Rocca and 
Venneri [59] and Ronchi della Rocca [58] has provided an excellent platform 
upon which to base the current section. However, there are some significant 
differences, in particular 

• Boolean Reduction Types must be integrated into the implementation 
framework—some care is needed with the details of this, and 

• the lack of a (derived) /3-conversion rule means that a. more detailed 
analysis of the operation of expansion (see below) is required in order to 
show that deductions are closed under this notion. 

In Appendix A I have included an Orwell script which encodes the im-
plementation described in this section in a form suitable for execution on a 
computer. 

5.4.1 Substitution 
As is now usual, we need to establish that deductions are closed under the 
operation of substitution. 

Lemma 5.4.1 
If a < r, then S(a) S (r). 

Proof 
By induction on the definition of <. 0 

Lemma 5.4.2 
A i-f, M: T implies S (A) 1- 1s(v)  M: S (r). 
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Proof 
By induction on M using Lemma 5.4.1. 0 

5.4.2 Normal Forms 
It will prove useful to prove many results with respect to a restricted set of 
terms as a preliminary step. Since the type assignment systems do not have an 
(w) rule the set of normal forms is used. This is in contrast with the treatments 
in Ronchi della Rocca and Venneri [59] and Ronchi della Rocca [58] in which 
the notion of approximate normal form is employed. (This latter notion is cited 
by Barendregt [3] as originating in Wadsworth [69] and has close connections 
with B6hm trees, see Barendregt [3], definition 14.3.5.ii). 

Definition 5.4.3 
The set of normal forms, ANF , is inductively defined to be the least set satis-
fying: 

• x E X implies x E ANF , 

• x E X, Ni  E ANF  (1 < i < n) implies X Ni . N2 E ANF , 

• x E X, N E ANF implies Ax.N E A. 

Clearly, the type assignment system for normal forms is just the same as 
the system for intersection-style Boolean Reduction Types as introduced in 
Chapter 3. 

5.4.3 Expansion of a Deduction 
The operation of expansion is introduced by Coppo, Dezani-Ciancaglini and 
Venneri [16]. (Our formulation and notation are different). This operation 
duplicates a subtree of a deduction and adds an instance of rule MEET to 
connect the duplicated subtrees. Some time is now spent investigating this 
operation with the intention of showing that deductions are closed under this 
operation. 

An i-type is any type of the form a n r. The concept of "type membership" 
needs to be extended, as follows: 

Definition 5.4.4 
Write a E T if T = C[a], for some context CH where a is not an i-type. Define 
!T = {(710.  E r}. Let B be a set of types, then !B = Urdr. 

Definition 5.4.5 
The expansion context for r with respect to set of types B, EP, is defined to 
be the least set such that: 
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• !r C ETB, and 

• a E ETB , p b E!B implies !(pbcr) C ETB . 

Definition 5.4.6 
Let B be a set of types containing a, then the expansion of a with respect to r 
and B, 4(a), is defined as follows. Let pi  (i E {1, ... n}, n > 0) be the largest 
disjoint typess in ETB such that p i  E a. Let S1  and S2 be disjoint renamings of 
the type variables in ErB such that the ranges of S1  and S2 are disjoint from 
the type variables in E. Let A = Si (pi) and p1 = S2 (pi). Form 4(a) by 
replacing each pi  in a by p n p1. Write erB (A) for 

: 4(a)lx: a E A} 

and write erB ((A,V, a)) for 

(eTB  (A), V, er13 (a)). 

The following is an immediate consequence of Definition 5.4.6. 

Fact 5.4.7 
e(ci ) n e(o 2 ) = epB (ai n 0-2). 

Lemma 5.4.8 
Let B and B' be such that a E B implies 3r E fr.cr E T. Let {p i ,... , pn} = E' 
and p = fl1 Pi, then EP, = EpB 1  (Vp E!Bi.epi (p) = 

Proof 
Immediate from Definition 5.4.5 (Definition 5.4.6). 0 

Proposition 5.4.9 
Suppose a < T (a, r w) and a, T E B, then 

1. r E EpB  implies 3cr' < r.cr' E EpB  and a = a' or 3a".cr = a' n a", and 

2. T EpB  implies a E pB . 

Proof 
1. If T = a is a type variable then a = a or 

= a. Otherwise, 
h 

	

(n Sib ei) n 	cei) , 

	

i=1 	 i=i 
k 

	

= n 	i) n 	,3i) • 

	

1=i 	i
v 	

i=, 

a  a n a". In this case, choose 

5A type a is larger than another type r if r E o. 
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Let j E {1, ... ,m}. By Lemma 3.4.5, 3./1 • 	Pi; 	vii < 
ey, fl 1 ai < fl.1 fli and Vi(1 < i < p) . by =BA by.. Let B.; = B U {e.i} 
and p be constructed from EB as in Lemma 5.4.8, then by the induction 
hypothesis: 

r E E: implies )3y E 

implies /3y E 
implies 3i 1 ,... ,ir({ii,... , g 

n 	n vir  < /3;  

and Vs E fii, • • • 

B • vi, n 	n vir  E ET,' implies ps  b vs  E E r, 

implies ps  b vs  E E. 

Also, r E Et,B  implies ai EE (1 < i < h). Let {pi ,...,p„} be the set of 
indexes obtained by union of {i1 , 	for every j, then 

V = (n (pp, I; vpi)) n (n a). 
i=1 	Pt 	i=1 

Clearly, o-' < r. 

2. This is immediate if r = a. Otherwise, the result follows since a!a' C 
!r.a' E. 

0 

Lemma 5.4.10 
Suppose a < T (0", T w) and CI, T E B, then e(a)< epB(r). 

Proof 
Immediate by Property 5.4.9 if T E E. Otherwise, if T = a, then CT = a Or 
a = a n a' and the result follows. Otherwise, 

T 

 = (

n 	n (n cq) 
i=i  

a 

 = (

n 	, n pi ].) vi) n 
( k 

	. 
Suppose m = 1 and h = 0, i.e., T = Si b 1  el. 

ail • • ip• nP 	Si, 

By Lemma 3.4.5, 

i=1 
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and 

n fi 
i.1 

and Vi(1 < i < p). b1 =BA b'1 . Let p be constructed from Eii3, as in Lemma 5.4.8, 
then 

Bufs i  1. e(8i ) < e7(pi,), by induction hypothesis if pi ;  0 E 	,t,„} 
r, 

otherwise by Property 5.4.9. Thus, e7(81) < 

2. r 1 `-'r  PB
\`'.7i < e i3B(E1 ), by induction hypothesis. 11.. 0" 	— 

Thus, 
P 	 P 

epB- (t5i b el) = eB- (Si) b etj (Ei) 	(n eP(pi..»b(n eP(v. 1.» P 	P 	 p 	s 	 p 	.7 
1 	 1 	 1 t• =1 i=1 

P 

?. n eippii) i? er, (vi, ). 
i=1  

For all i (1 < i < p), 

e i3B  (ph b vii  ) 	b 

= EP P 

since pi; b,, vii  E Efi implies 4(p .i1 	= 	(ph)b,, 4(vi i ), and pi, b 3. vi, 0 
EpB- implies 4 (iti,b;, vi,) < 	b3, eiii(vh). Thus, 

P 
B 	 B 	 B e- (T) 	n eis (Pi. b Ili.) ?- eA (a). p 

Now the result for this case follows from Lemma 5.4.8. 
The case m> 1, h > 0 follows by an easy induction. 0 

Write A for {olx: E A}. 

Lemma 5.4.11 
Let N E ANF, A 1-f, N: T, B = A U {r} and T E EpB , then there exist 
A'.A i , A2,r1, T2 such that e(A) = A' D A 1  a A2, e(r) = 7-1 n 7-2  and Ai FY 
N: Ti, for i E 11,4 

Proof 
By induction on N. Suppose N x, then, for some a E T7 , x: a E A, a < T 

and a, T E B. Clearly A i  = {x: ai ) (i E {1,2)), where ai is a trivial variant of 
U. 

If N 	Ax.Ni, then by Lemma 3.4.17 T = r1 n T2 n 	n Pr,, (n > 1), 
where ri = pi bi vi (1 <i < n). By induction on n. If n = 1, then by 
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Lemma 3.4.14 A 	Ax.N': N: 	Let 

	

bi vi implies 	U {x: pi } 
B' = A U {Pi, vi} and fi be constructed from EpB as in Lemma 5.4.8. The 
induction hypothesis applies and so e plY (Az  U {x: p i  }) = A" D n and 
ei,33 1 (vi ) = 14 n vc. Then the result follows from ABS and Lemma 5.4.8. The 
generalisation to 7/ > 1 is straightforward by Fact 5.4.7. 

If N EE X NI N2 . Nn , then by Corollary 3.4.16: 

• A 1-f,, Ni : pi, (1 < i < n), 

• A 1-f,, x: P1 bl P2 b2 	bn-1 pn bn cr, and 

• V = Ax.Vi(x) V (V(bi AVi (x))), 

where a < r. Let Bi = A u {pi}, 	= AU {pi bi P2 b2 • • • bn-i pn b„7- } and 
let p be constructed from Er , as in Lemma 5.4.8. Then by the induction 
hypotheses: 

• e.P' (A) = A' D A1  A2 and 

e- 13' 	 i (pibp2b... b pnbr) Pi b P2b 	b Pn br ,  

1 	2 	n-1 	n 	1 	2 	n-1 	n 

for i E {1,2}, and 

• epPi(pi ) = and Ai 	Ni: 	for 1 < i < n and j E {1,21. 

Note that 4'(A) = eP(A). By Lemma 5.4.8 and since T E g, 
e' (A) F- 1  N. • e l3i (p.) 2• 	P 	I, 

and hence 
enA)  hi N . enT ) 

V 	• p 	• 

Note that either 

x:pibp2b..- b pnbaE A 
1 	2 	n-1 	n 

Or 

x : (pi 1? p2 	nbi  pn  (7) n E A, 

for some a', thus by Property 5.4.9, r E EpB  implies 

b P2 b • . • b pn b E EOB  
1 	2 	n-1 	n 

and so EpB = 	. Then the result follows from the ABS rule. 0 



5.4 IMPLEMENTATION OF THE INTERSECTION-STYLE SYSTEM 	127 

Lemma 5.4.12 
Suppose N E ANF , A FY N: T and B = AU {r}, then er (A) Ff, N: (r). 

Proof 
If T E EpB, then the result holds by Lemma 5.4.11. Otherwise, by induction on 
N. 

If N 	x, then x : 	E A, a < T and a, T E B. The result follows 
immediately by Lemma 5.4.10. 

If N 	Ax.N', then by Lemma 3.4.17 T = r1 n T2 n 	n r (n > 1), 
where Ti = p b u (1 < i < n). By induction on n. If n = 1, then by 
Lemma 3.4.14 A I-f, Ax.N' : p l b i vi  implies Az  U 	: pi} 1-6 := bi ] N': v1 . 
Let B' = Az  U 	vi } and fi be constructed from EpB as in Lemma 5.4.8. 
By the induction hypothesis 4'(A U Ix: /JO) 	N': ep'T(vi ). By rule 
ABS, 4'(A) Hi, Ax.N' : 	b er(vi). Since T EpB , eir(pi) b er(vi) = 

4n/1 i  b vi ), and so 4'(A) 	Ax.N' : 4,3 '(4 b vi ). The result follows from 
Lemma 5.4.8. The case n > 1 is straightforward by induction. 

If N 	Nn , then by Corollary 3.4.16: A hf,i 	pi , (1 < i < n), 
A 1--Y, x : bi P2 b2 • • • bn-1 Pn bn and V = Ax.V1 (x) V (V7_ 1 (bi AVi (x))), 
where a < T. Let Bi = A U {pi} and B' = A U {pi p2 b2 • • • bn-i pn bn T}, 
-then by the induction hypotheses: 

• 43 '(A) I- f,, x: e' (p1  bl P2 b2 • • • bn-1 Pn bn T), and 

• eBp  i(A) 	: epBi(pi), for 1 < i 	n. 

Let ji be constructed from EpB, as in Lemma 5.4.8. Since T EpB , 

P1 b P2 b • • • b pn  b 	Expi3i  
1 	2 	n-i 	n 

and EpB EpB 1  EP, using Lemma 5.4.8. Thus, 

•  

B(A)Fii  Ni: epB ,  pi \ • ep 	 ) for 1 < < n, 

and epB (pBi bi P2 b2 • • • bn-1 Pn bn  T) B f, 
= ep  (pi) epB (P2)b2 • • • bn-i epB (pn)bn epB(r). Then, e(A) F N:  

by repeated use of rule APP. 
0 

eB (r) 

The following Lemma provides useful insight into how deductions may be 
structured in the Intersection-based systems. 

Lemma 5.4.13 
Suppose Az  U {x: a} I- f,i  P: r, x E FV(P) and A 1-{,2  Q: a where x FV(Q), 
then there is a deduction of A 1-f, P[x := Q]: r, with V = Ay.Vi (y) V (VI  (x) A 

(P1 bl P2 b2 ••• bn-1 Pn bn T), and 
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V2 (y)), (such a deduction exists by Theorem 3.4.22) in which each occurrence 
of a deduction of a type for Q either has the form A Ft, Q • a or Q is irrelevant 

• 2 	• 

to the deduction. 

Proof 
By induction on the structure of Ar  U 	: cr} 	P: T. Since the cases for 
either of rule LEQ or MEET are easy by induction only the structure of P need 
be considered. 

In the case P x, the result holds immediately (V=BAV2,a < r). 
The case P -a: y, for y x, is not allowed by statement of the lemma. 

	

In the case P 	P1 P2, and rule APP is used to deduce a type for P, 
by Lemma 3.4.12 3c, E T7

,
b E V.(A FY, P1  : a' b r, A lin P2 : CI1  and 

= Ax.Vi(x) V (b AV"(x))). From the definition of substitution for terms it 
holds that (PI P2 )[x := Q] (Pi[X := Q])(P2[X := Q]). Hence the induction 
hypothesis applies to the deductions of Pi  [x := Q] and P2 [x := Q], namely 
that the deductions of types for Q in these terms have the form A 1-f,, Q: 0. 

Then the result follows by rule APP and the definition of substitution. 
In the case P P1 P2 , and rule APP--4 is used to deduce a type for P, the 

result follows in a similar fashion except that occurrences of Q in P2 [x := Q] 
are irrelevant in the deduction of P[x := Q], as required. 

The case P Ay.N, y x, follows in a similar manner to the case of rule 
APP (only one instance of the induction hypothesis). 

The case P =7. Ax.N is not allowed by statement of the lemma. (And the 
convention for bound variables). 0 

Lemma 5.4.14 
If A Hi, ()tx.P)Q : r and e(A) 	P[x := Q]: e7,(r), v:‘There A U {r} C B, 
then e',3, (A) 1-i, (Ax.P)Q: 4(r). 

Proof 
If x FV(P), then the result holds immediately by Theorem 3.4.26. 

Otherwise, by Theorem 3.4.22, Al-f, (Ax.P)Q: T implies A 1-f, P[x := Q]: 
T . 

If rule APP is used to deduce a type for (Ax.P)Q, then by Lemma 3.4.12, 

E T1v,  b E V.(A Ft,, )tx.P : 0 b 

A 	Q: °• 

and V = Ay.V1 (y) V (b AV"(y))). So Lemma 5.4.13 applies and there is a de- 
duction for A 	P[x := Q] : r such that each occurrence of Q either has 
a deduction of the form A 	Q: a or is irrelevant. Then for this deduc- 
tion in particular, by statement of the lemma, e,B, (A) 	Q: e pB(0). Then 
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Theorem 3.4.24 applies (Theorem 3.4.25 or, if rule APP-4 is admitted, Theo-
rem 3.4.26 (directly applicable) for irrelevant occurrences of Q) and the result 
follows. 

In the case that rule APP--0+ is used to deduce a type for ()x.P)Q, by 
Lemma 3.4.13, 3A' E {X x Tn.(A Ax.P: w -0+ T and A' 1- fm  Q: co). (Here 
V may not be {}). Then the result follows similarly using Lemma 5.4.13 
except that all occurrences of Q are irrelevant (i.e., use Theorem 3.4.26 at 
each occurrence). 
0 

Theorem 5.4.15 
Suppose A FY M: T and M has a normal form, then e(A) Ft, M: 4(7), 
where B = A u {r}. 
Proof 
If T 	w, then the result follows easily since er, (w) = w and by the use of 
instances of rule LEQ as appropriate after each instance of rule VAR. 

Let N be the normal form of M. By Theorem 3.4.22, A 	M: T implies 
T, thus, by Lemma 5.4.12, (A) 	N: e(r). 

The result follows by iterated use of Lemma 5.4.14 on the reduction path 
from M to N. 0 

Definition 5.4.16 
A chain, c, is a finite composition of substitutions and expansions. Write 
(A, V, 7)-- c (A1  ,V' , 7') if (A', V', 7-') = c((A, V, 7)). 

Corollary 5.4.17 
Suppose A FY M: T and (A, V, r)--4,(A', V', T'), then A' FY, M: 7 1 , where M 
has a normal form. 

Proof 
By iterated application of Theorem 5.4.15 and Lemma 5.4.2. 0 

5.4.4 Principal Triples 
The principal triple of a term in ANF can be defined as follows. This particular 
formulation of the notion of principal triple will serve as a useful first check in 
showing that the algorithms in the following sections are correct. 

Definition 5.4.18 
Let N E ANF , then the principal triple of N, pt(N), is defined as follows: 

1. if N 	x , then pt(N) = ({x : a}, V_..[x := 	a), where a is a type 
variable; 
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2. if N Ax.P and pt(P) = (A,V[x := b], r), then if x: E A, for some a, 
then pt(N) = (Ax ,V[x := -4], b r) else pt(N) = (A, V[x := -.4], a b r), 
where a is a type variable which does not occur in A, and 

3. if N 	x 	Nn  and pt(NO = (Ai, V8 , Ti) (1 .5_ i 	n), ((A,, V,, ri) is 
chosen so that all arrow and type variables are disjoint from (A.i, 
i j, 1 < j < n), then pt(N) = 	n {x: r1-+1 • • • —÷n-1 rn -4n 
a}, V, a), where the -4i are arrow variables which do not occur anywhere 
in Ai and 17 (1 < i,j < n), a is a type variable which does not occur in 
any Ai (1 < < n) and Vy E X.V = 	:= ])(Y)V(A11-1 

Let PT = {pt(N)IN E ANF }. 

Lemma 5.4.19 
Let N E ANF. Suppose pt(N) = (A,V,r), then 

1. T E EI,B  implies B C E, where B .= A U {T}, and 

2. if (A, V, -0-+,(A', V, r') and c is a chain of expansions, then Ti  E EoBi  
implies B' C 	, where B' = A' U {r'}. 

Proof 
By induction on N using Definition 5.4.18 and Lemma 5.4.11. 0 

5.4.5 Unification of Intersection Types 
Since the set of types which may appear in the APP rule is unrestricted, and 
these types are from T7, it is necessary to define a new unification algorithm. 
However, the set of arrow expressions remains unchanged and so algorithm 
BUNIFY requires no enhancement. 

The function below is specified sequentially, i.e., the intention is that each 
of the clauses in the definition will be tried in ascending numerical sequence. 
This allows a more compact specification of the algorithm as it is then not nec-
essary to carefully ensure that all cases are disjoint. This practice has become 
common in many pattern-matching based functional programming languages 
(see Turner [64] or Hudak et al [52], for example). 

The function UNIFY/ : T x T7 x {X x T7} 	TT is defined by 
UNIFY / (o, T, A) = 	T, A U {o, r}), where U1 is defined in Figure 19. 

The following useful examples are based on those which appear in Ronchi 
della Rocca [58]. 

Example 5.4.20 
Consider UNIFY/(cr, T, 0) = U/(0', T, {o, r}), where a = a 	0 and T = y n 8. 
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To calculate the value of UI(0-,T, {a, r}) the unification function must per-
form an expansion ek''' ) . Let B = {o-, r}, then ec,B (o-) = (a' --+ i  13')n(oc" 0"), 
where a', a", /3' and 0" are fresh type variables, and ec,13  (r) = r. 

Now substitutions Si  = Id[7 := a' 	IT] and 82 = Id[8 := a" 	01 are 
computed and the final result is S = e c,13 ; Si; S2- 

Verifying, S(a) = (a' 	)31) n (a" 	fl") = S(T). 

As will soon become clear, the following example arises in attempting to 
infer a type for the term (Ax.xx)(Ax.xx). 

Example 5.4.21 
Consider UNIFY/(a n (a 	fl), (7 n (7 --3j 8)) = 8,0), then this process does 
not stop. 

The operations performed commence by expanding T =y n (7 —+; 8)) = 45 
to obtain T'  n T"  = (-y' n (7' 	8')) 	n (-y" n (7" —>; 8")) = 6"). Now 
the substitution S1  = Id[a := r'] is computed and U/(S i (a) /3,r", 0) is 
required, which in turn requires U/(Si (a) = r', -y" n (-y" --*; 8"), 0) and so on, 
ad infinitum. 

UNIFY/ is Correct 
Definition 5.4.22 
Let a' E a and T' E r , then a' and T'  are corresponding in a. and T if 

• a' = a and 7'  T, or 

• a -= bi cr2 and T Tib2 T2 (0' cri  n cr2  and T 	n 72 ) and (7' and Ti  

are corresponding in al  and ri  or 0 2  and 7-2 . 

Lemma 5.4.23 
If UN IFY/(a, T A) = c is defined and c is a chain of substitutions, then c(a) = 
c(r) and if a' E a and T i  E r have corresponding occurrences in a and r, then 
c(a') and c(r') have corresponding occurrences in c(a) and c(r). 

Proof 
If cr is a type variable, then if o- = T then UNIFY / (o-, r, A) = Id and the 
result follows immediately. Otherwise, it must be the case that a 4;1 r since 
U N I FY(cr, r) is defined, then U N I FY/(cr, T, A) = Id[a := 71 and the result holds. 

Since c is a chain of substitutions, the case of either a or T an i-type is not 
possible. 

Suppose u = ci bi  a2  and T = 1l b2 r2. Since UNIFY/(a, r, A) is defined 
it must be true that BUNIFY(bi, b2) = R is defined. By Theorem 5.1.6, 
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1. U/(cri in 02, 7-1 b2 T2, B) 
= R; ci; C2 

where 
R = BUNIFY(bi, b2) 

= MR(cri ), R(ri ), R(B)) 
C2 = UiaR; c1 )(0 2 ), (R; c1 )(7-2 ), (R; ci)(B)) 

2. Mai  n (72 , 7-1  n 7-2 ,B) 
= c1 ; c2  

where 
Ci = U1(0.1, 	B) 

= 	(ci (0-2), ci (T2 ), (B)) 

3. U 

	

	B), where a- , but not T, is an i-type 
= erB  ; c 

where 
c = UI(c(cr),4 (r),e,B(B)) 

4. U/(a, B) 
= if a E T and a T then Id[a := w][1- := w] else Id[a := T] 

5. U 	B) = Id[T := (4)1 

6. U (cr , B) = U 	cr , B) 

Figure 19: The Algorithm for unifying Intersection Reduction Types 
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R(bi )=BAR(b2). Since (R; ci ) is a chain of substitutions, the induction hypoth-
esis applies and so (R; ci )(ai ) and (R; ci )(Ti ) have corresponding instances in 
(R; ci )(a) and (R; ci )(r), and 

(R; ci)(o-i) = (R; ci)(71). 

Similarly, both (R; c1 ; c2 )(a 2 ) and also (R; c1 ; c2)(T2) have corresponding in-
stances in (R; ci ; c2 )(o-) and (R; ci ; c2 )(r), and 

(R; ci ; c2)(a2) = (R; 	c2)(T2). 

Then the case follows. 
The case a = cri  n cr2  and T = T1 n T2  follows by induction directly. 0 

Theorem 5.4.24 (Soundness of UNIFY') 
If UNIFY/(cr, T, A). c, then c(a) = c(r). 

Proof 
If c is a chain of substitutions, then by Lemma 5.4.23. Suppose o, but not T 

is an i-type. In this case c = e pB ; c' , where c' = U/(epB(a),e/(T),e pB(B)). Then 
the result follows directly from the induction hypothesis. The other cases also 
immediately follow by induction. 0 

Given Theorem 5.4.15, Lemma 5.4.2 and Theorem 5.1.6, the following Com-
pleteness Theorem holds. The proof of this Theorem is very intricate, but is 
essentially identical to that given in the Appendix to Ronchi della Rocca [58]. 
Note that the optimisations described there have already been incorporated 
into the current unification algorithm. 

Theorem 5.4.25 (Completeness of UNIFY ' ) 
Let (Ai, 	E ST , i E 11,4 If there exists a chain, c, such that c(Ti ) = 
c(T2 ), then UNIFY1(T1,T2, Ai ril A2) = c' is defined, c' < c and d(ri) = c1 (72)• 

5.4.6 The Type Inference Algorithm 
The function TYPE': A {X x (X --+ V) x 	} is defined in Figure 20. 

Example 5.4.26 
Consider the typing of the term (Ax.xx)(xy). TYPE I (Ax.xx) = (0, V, (a n 
(a —q 13)) => /3), and TYPE/(xy) = ({x: p -4  2 v, y : p} , 	:= 	v). 

Now TYPE/ will make a call of UNIFY/((an (a —*I i3 )) = ■3, v 	f, A), 
where A = 	: p 	v,y : /L}. Then, UNIFY/((a n (a —4 1  /3)) = /3, V 

f, A) = c1 ; e; c2 , where B = AU {(a n (a —4 1  /3)) = /3, V -43 E} and ecc0))  
is the expansion necessary to unify c i (v) and ci (a n (a —41 /3)). Note that 
ci(P —42 v) E ki(B). 
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1. TYPE/(x) = ({x: a}, 	:= 	a) 
(where a is a new type variable) 

2. TYPE/ (Ax.N) = (Ar ,V[x := 	V(x) r) 
where 

(A,V,r) =TYPE/(N) 
and 

= if x E domA then A(x) else a 
(where a is a new type variable) 

3. TYPE1(N1N2) = c((A, V, a)) 
where 

(Ai , VI , al ) = TYPE/(NI) 
(A2 , V2 ,0-2 ) = TYPE1(N2) 
V = Ax.Vi (x) V (--4i AV2 (x)) 
c = UNIFY i(cri ,o-2 	a, Ai  rrii A2 ) 
(where 	and a are new arrow and type variables, respectively) 

Figure 20: The Type Inference Algorithm for Intersection Reduction Types 

Then, TYPE/((Ax.xx)(xy)) = (Ix : (a i 	a) n (a2 -42 a --)1 0),Y 
n «2 1, v..4x := 	y := 	0). 
Note that TYPE/ finds a better reduction type for xy(xy)44--0(Ax.xx)(xy). In 

this case TYPE/ returns (Ix : (ai  -43 a)n(a2 --+2 a -41 )6),y: a 1  na2}, 	:= 
:= V ( -)2 A -+)], /3), which nicely illustrates the faithfulness of TYPE/ 

in emulating the (relative) weakness of the MEET rule of the intersection style 
type assignment system. 

TYPE/ is Correct 

Proposition 5.4.27 
Let N E ANF, then TYPEAN) = pt(N). 

Proof 
By induction on the structure of N. If N is a variable then this is obvious. If 
N Ax.N', then the result follows by the induction hypothesis. 

Suppose N xNi  N. Let 

TYPE/(x) = pt(x) = ({x: ao }, 	:= 

By the induction hypotheses, TYPE/(N) = pt(N) = (Ai, Vi, ri), 1 <i 	n. 
Since TYPE/ always introduces new type and arrow variables (Ai,V ri) must 
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have all type and arrow variables disjoint from (AJ,Vi,r;), for i j and 1 < 

	

< n. Let 	an  be new type variables and 	• • • , 	be new arrow 
variables, then TYPE/ performs the following operations: 

UNIFY/(ai-i, 	o, A1) = [ai-i := 	ad, and 

Vi (y) = 	:= ,J(y) V (V —+i AVi(y)), 

	

where Ai = 	: r1  -4 1  .. .73_1 	ai_i } rio (rn1 1 A;) and for 1 < i < n. 
Hence, TYPE/(N) = (An, Vn, an ) = pt(N). 0 

Theorem 5.4.28 (Soundness of TYPE') 
If TYPE/(M) = (A, V, r), then (A, V, T) is a suitable triple for M. 

Proof 
By induction on the structure of M. 

If M x, then the result follows immediately by rule VAR. 
If M Ax.N, then by the induction hypothesis 

A' 	N: T I . 

The result then follows (by construction) from rule ABS. 
If M N1 N2 , then by the induction hypotheses 

A1  H 	: 

and 

A2 Eff, N2: 7-2. 

By the statement of the theorem TYPE/ is defined. So the following is also 
defined: 

c= UNIFY (.7- l k  -15 -2 	a, Al all A2) 

Now, by Theorem 5.4.24, 

c(7-1 ) = c(r2 	a). 

By Lemma 5.4.2 and, if necessary, Lemma 3.4.18: 

C( A l ail A2) I-1(V' ) Ml: C(T1) 

and 

C(Ai frli A2) 1-(1/2)  M2: c(T2)• 

Now the result follows from rules APP, MEET and LEQ, and the construction 
of (A, V, r). 0 
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The following Completeness Theorem for TYPE/ only holds for those terms 
which are strongly normalising. This is discussed further in the following sec-
tion. As before, note the direct implication of the existence of principal triples 
for the intersection-style type system. 

Theorem 5.4.29 (Completeness of TYPE') 
If (A', V', r') is a suitable triple for M, and M is strongly normalising, then 
TYPE/(M) = (A, V, r) and there exists a chain c such that 

(A, V, r)—*,(A', V', r'). 

Proof 
By induction on M. For the case where M is a variable the result is immediate. 
For the case M an abstraction term the proof follows directly from the induction 
hypothesis. 

Suppose M NI A/2. Then, by the induction hypotheses, if 	Vi',71) are 
suitable triples for Ni (i E {l,2}), then TYPE/(N1) =Vi,ri) and there 
exists chains c.i such that (Ai, Vi, 	Vi', ri'). Since (A' 	,1-') is a suit- 
able triple for M NI A/2  there must be a chain, c', such that c'((Ai, V , ri)) 
is a suitable triple for M. Moreover, by Theorem 5.4.25 (since M is strongly 
normalising), c < c' and so the result follows by construction. 

5.4.7 Decidability 
From Theorem 5.4.29 we have that TYPE/ will assign a type to all strongly 
normalising terms, i.e., if a term has an infinite reduction path, then TYPE/ 
acts like a perpetual strategy. Thus, in contrast to the previous algorithms 
and systems studied, TYPE/ is a semi-decision procedure on the strong nor-
malisability of A-terms. Note that the source of the semi-decidability is the 
algorithm U1 and in particular the employment of the operation of expansion 
which is not guaranteed to simplify the unification problem at hand. 

In Appendix A a variation on UNIFY/ is introduced which is guaranteed 
to terminate in that the unification step is terminated after a fixed number 
of expansion operations. A less simple-minded way of ensuring termination 
might be to maintain a history of terms and try to detect the occurrence of 
cycles in the unification process. (This is not an effective mechanism unless 
the history is kept small and combined with the earlier suggestion). A much 
better mechanism would be to use a system in which terms which cause non-
termination are restricted and treated as constants by the type assignment 
system (see Chapter 6 and Appendix A). 



Chapter 6 

Extensions and Future Work 

The theme of this chapter is generalisation. Some of the generalisations con-
sider concepts that are required to be present in a practical implementation of 
the analysis methodology. Others are concerned with adapting the methodol-
ogy to deduce more or different information from that derived by strong head 
neededness analysis. 

Many of the extensions presented here represent preliminary work and so 
the reader should not expect detailed semantic or other investigations of the 
various mechanisms proposed. Instead, a presentation is given of a range of 
possible ways in which the work of this thesis may be generalised. 

In particular, the following topics are considered: 

1. term and type constants, 

2. special rules for fixpoint constants, 

3. data structures, 

4. second-order polymorphism, 

5. sharing analysis, 

6. non-termination analysis, and 

7. two stage strong head neededness analysis. 

6.1 Constants 
This section tackles the pragmatically essential idea of constants. In the design 
of programming languages, constants are usually introduced into both the set 
of terms and the set of types. Typical examples of such constants are dealt 
with in this section, though the important case of fixpoint constants is left to 
the following section. 
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IF TRUE MN 
IF FALSE MN 

FIX M 
PLUS WI 

M(FIX M) 
m n 

Figure 21: The Delta Rules for Some Term Constants 

6.1.1 Term Constants 
Individual term constants will be introduced as required in the course of the 
exposition and will be immediately distinguishable by being written in sans-
serif capitals. 

In particular, let the set of term constants contain IF, FIX, PLUS, TRUE, 
FALSE and an infinite series of constants iii , one for each natural number m 
(thus ... will be constants with which to represent the natural numbers). 

Let S be some term constant, then AS is the set of A-terms built up from 
variables and (5 by means of application and abstraction in the usual way. 
Similarly, define AS where 8 is a set of term constants. 

Each term constant may have associated with it a particular notion of re-
duction. These are known as "delta rules". Delta rules for some example 
constants are summarised in Figure 21. Let the set of all such delta rules be A. 
(No confusion with the earlier use of this symbol to denote the set of arrows 
should arise). The delta rules are then added to the notion of reduction /3, i.e., 
the notion of reduction now considered is ,3 U A. 

6.1.2 Type Constants 
Individual type constants will be distinguishable by being written using sans-
serif lowercase letters. 

Let rc be some type constant, then T.° K is the set of reduction types built up 
from type variables, arrows from V and ic in the usual way for system *, where 
* is one of C, L, I. Similarly, define T.vre  where rc  is a set of type constants. 

In particular, let the set of type constants, re , contain the type constants 
bool and int. 

6.1.3 Type Assignment 
A type assumption for a term constant, c, will be written C: T. A type assump- 
tion set, A, is then a set of type assumptions for variables and constants. The 
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following rule is added to the Curry and Intersection systems of deduction in 
Chapter 3: 

CONST A F-t, c: T (c: T E A) 

In the case of the LET-polymorphic system the following rule is preferred: 

CONST A I-I, c: T (c: E A, T a) 

6.1.4 An Example: The Conditional 
It is easy to encode the conditional statement as application: 

if P then M else N PMN, 

where it is intended that P in the above be one of the terms K (representing 
truth) or KI (representing falsity). So a )-term to represent the conditional 
term is then Aabc.abc (see Barendregt [3], pg133). With this representation 
of the conditional the following type is obtained (using the Curry system for 
example): 

(a —>i a -4; a) 	a -+i --*; a. 

If concern is restricted to typed systems in which the only defined values allowed 
as the predicate of a conditional statement are true and false, whatever their 
representation, then a much more informative type can be given. Let us choose 
the constant IF to represent the conditional and the constants TRUE and FALSE 
to represent true and false, then the delta rules for IF are as in Figure 21. Now 
choose the following type assumptions for IF (in the Curry-style and Intersection 
type assignment systems only): 

bool = obcT ( -, 13) 

(one for each possible a and b). In the LET-Polymorphic system, choose the 
following type assumption (one only) for IF: 

Va.V 	.bool = a 	a 

Also choose the type assumptions 

TRUE: bool 
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and 

FALSE: bool. 

This type for IF is very satisfactory as it allows the capturing of the maximum 
amount of strong head neededness information that could be expected to be 
achieved in a static context. In particular, cases such as IF P (fx)(fy), where 
f is not contained in P, will have that the strong head neededness of f is 

Since in practice the conditional commonly occurs in a typed context, this 
is sufficient justification for the inclusion of the operator into the definition 
of Boolean arrow expressions. 

6.2 Adding a Fixpoint Constant 
It is useful to introduce a fixpoint operator as a constant. A delta rule for one 
such fixpoint constant, FIX, is contained in Figure 21. 

The aim of this Section is simply to suggest a range of possible treatments 
(rules) for a fixpoint constant. No formal investigation is conducted. 

One way of dealing with a fixpoint constant would be to introduce a rule 
which directly emulates the infinite typing behaviour of a fixpoint combinator! 
Adding such a rule is interesting in the weaker systems of type assignment 
(Curry and LET-polymorphic), since fixpoint combinators are not even typable 
in those systems. The rule may be formulated as follows: 

IFIX 
A FT, M: o i  bi r A ht, M: a22  b2 	M: a3  b3 a2 • • •  

A HI, FIX M: r 

However, this is clearly not a pragmatically useful rule. One solution would be 
to introduce the following family of restricted versions of IFIX, one for each 
n > 2: 

IFIX„ 
A Ft, M: crib i T A Ft,  M: a2b 2 	... A  I- I,  M: an t),  Grn- i  

A II, FIX M: T 

In the case of the intersection-based type assignment system this slight variation 
is probably preferable: 
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IFIXT, 
A 	M:  o1b1r  AI-'V  M: o-2 b2 	... A 1-f, M : 	an-i  

A FIX M: T 

These systems can be implemented by inferring the type of the term, taking n 
copies of this type where each copy has all arrow and type variables renamed 
so that there are no common variables between the copies. Then the final step 
is to unify the copies in the manner suggested by IFIX Ti . 

A sensible IFIX1  rule can be defined—by requiring that the argument and 
result types agree "up to the arrows". This notion can be formalised by in- 
troducing the relation which is the least such relation on T? X T, 7  such 
that: 

1. a 	a, 

2. K 	IC, and 

3. oo2  T1 T2  
o bi Ti 	2 b2 

(And with additional clauses for types systems other than the Curry-style sys-
tem, in the obvious fashion). Now the rule can be specified as: 

AFT, M:abr  
IFIX1  	•--# A Ft, FIX M: T 	

(o-7-)  

As a further variation, the following one step rule is derived as a special 
case of IFIXI : 

FIX A 
M: abcr  

All, FIX M: 

Note that this is not the same as the IFIX1  rule. Moreover, it is not essen-
tial that this form of rule for FIX be specified at all, as it may be replaced 
by an assumption of types of the form (a b a) = a for the constant FIX. Mil-
ner [47] gives a corresponding ordinary type to a fixpoint constant and includes 
a semantic justification. In the Appendix a fixpoint constant is introduced in 
exactly this manner. 

As an example, consider the term FIX(Afxyz.IF x y (fxzy)). For simplicity, 
let us use the Curry-style system. To start with, suppose f has type bool —+i 
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a ->.; a -q a and IF has type bool = a --+/ a (-, ---3/) a. Then, via the usual 
reasoning, the type of the term Afxyz.IF x y (fxzy) is 

(bool --4i a ->j a ->k a) (-, -4/) 
bool = a (-+1 V -*k) a (-, ---*/ A ---,j) a 

Now it is time to see the effect of the various rules for FIX described above. 
Consider rule IFIX—in order to implement this rule an infinite sequence of 

unifications must be performed. These unifications are each between a pair of 
types of the forms: 

bool -4i. a --4in  a --%, a 

and 

bool = a (->t„+, V -)k„+,) a (-, -+/„+, A 
	

a. 

Performing these unifications allows the application of the rule with the result 
that the term FIX(Afxyz.IF x y (fxzy)) is given the type: 

bool = a (-% V-,  -% A(-% V...)) a (-• ->/, A(-% V-,  -4/, A...)) a, 

where -> ii ,--+ / , -4;,..=-* .;  and -q,=-q. 
In the case of IFIX„, n > 2, the result is similar except that only n unifica-

tions are performed and the resulting arrow expressions are finite. 
For IFIX1 , the result is simply: 

bool = a (-4/ V -q) a (---, ---*/ A -4j) a. 

Now consider rule FIX. In this case there is a single unification to be performed, 
namely: 

boot --4i a --4; a --4k a 

with 

bool = a (--,/ V ->k) a (-, -+/ A -);) a. 

Then the result, as mechanically determined with the help of the algorithm 
BUNIFY of Chapter 5, is 

bool = a (-4/ V -q)ce (-, -i A ->k) a. 

This is a sensible result as it expresses the fact that the second argument to 

FIX(Afxyz.IF x y (fxzy)) 

will be strongly head needed if the first branch of the conditional is taken 
(independently of any other condition). The third argument is required if the 
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PRODUCT n 	AXi • .. xnx.xxi Sn  

SUM i n —46 AX1 xn .PRODUCT .2i (PRODUCT n x . • • x.) 

	

SEL j Ti 	Axi 	xn •xi (if i < n) 

	

SELECT i n 	Ax.x(SEL i n) 

	

CASE n 	Ax.SEL (SELECT I 2 x) n 

Figure 22: The Delta Rules for Data Structures 

second branch of the conditional is taken and the following invocation of the 
function requires its second argument, and so on. (Of course, with our "inside" 
knowledge of the lack of transformations performed on the predicate, we can 
ascertain the more precise information that either y is strongly head needed 
or the term is unsolvable and neither y nor z are strongly head needed in this 
term). 

6.3 Data Structures 
The general structured types universally present in contemporary languages 
(such as Miranda, Haskell, Orwell) are sum-of-product types. (ML separates 
product and sum types). As Peyton-Jones [55] describes, in these languages 
only one translation scheme is required in order to implement common types 
such as lists, tuples, enumerations and (disjoint) sums. The key components 
of the results of this translation scheme are case, constructor (for sums and 
products) and selector (or destructor) functions. In fact, pattern-matching 
is also completely supported by the translation scheme, as is detailed within 
Peyton-Jones [55]. 

In order to conduct an analysis of the output of the translation scheme 
proposed by Peyton-Jones, five main families of functions must be supported. 
Following the treatment in Peyton-Jones [55] these families of functions will all 
be constants with delta rules as summarised in Figure 22. (The form of these 
constants is not precisely the same as appears in Peyton-Jones, pp121-125, but 
it is trivial to see that they are equivalent). The families are enumerated below. 

PRODUCT n This constant builds n-tuples. The type of PRODUCT n is: 

az —+i i  • • • an 	(ai -4 i, • • • an -4 irt /3) 

SUM i n This constant builds elements of a disjoint sum. The first argument 
to SUM is an integer tag i > I. The second argument, n > 	specifies 



6.3 DATA STRUCTURES 	 144 

the number of components in the sum (also known as the arity of the 
sum). The type of SU M i n is 

ai (—q A 	) • • • an (—q A —>in ) 

(int --+; ((a1 	• • • an —* in  13) = 13) -4k 7) 

SEL i n This constant selects the ith argument out of the n arguments to 
which SEL i n is applied. It's type is a generalisation of the type of the 
K combinator: 

a l 	ai 	. . . an  -0+ ai 

SELECT i n This constant is intended only to be used to extract components 
from a product type. (Since sum type are built using products, SELECT 
is also applicable to them). This will be so for any correct compiler 
and well-typed input script, and it will be assumed here that both these 
criterion are met. The type of this constant is: 

((ai -4 • • • ai 	• • • an -4 ai) -45 13) 	P. 

Since this constant is always applied only to product terms then by ex-
amining the type given for PRODUCT (SUM) above, it is easy to see that 
-+; will always be unified with = and so the type 

may be chosen for SELECT instead (there is not a large advantage in so 
doing, since the type inference algorithm will deduce this information). 

CASE n This constant always expects a sum term as argument, followed by 
n cases (terms) to select from. (Case on products is compiled into a let 
expression). The choice of which term to select is made based on the 
value of the tag of the sum term. Thus the type of CASE n is 

((ai 	a2 	ai ) 	int) 	/31 	 flk . 

Note that for a well-typed script, 	will always be unified with 

The translation scheme from scripts to )-terms (plus constants) is detailed in 
Peyton-Jones [55], in particular, see Chapters 3, 4, 5 and 6 of that work. 
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6.3.1 A Detailed Example 
As an example consider the type of lists, which is a structured type defined (in 
Orwell) by the following: 

> list a ::= Nil I Cons a (list a) 

In the translation scheme, Nil is translated to SUM I t-) and Cons is translated 
to SUM .2 2.. Now consider the definition of length in Orwell, which computes 
the number of elements in a given list: 

> length 0 = 0 
> length (x:xs) = 1 + length xs 

This will be translated into the function: 

FIX Afx.CASE -2 x r) (PLUS I (f(SELECT 2 (SELECT -2- 2 x)))) 

To understand the behaviour of this translation of the definition of length, 
consider the expression SELECT 2 2 (SELECT 2 M), for some term M. 
This evaluates to the term M(SEL 2)(SEL 2 2) which in turn reduces to 
M(Axy.y)(Axy.y). Now suppose that M is constructed from the Cons con-
structor of the type of lists. Then M SUM -2 P Q, for some terms P and 
Q, where in a well-typed script Q will again be a sum type representing a list. 
SUM -2 P Q reduces to 

PRODUCT 2 2(PRODUCT P Q) 

and so M(Axy.y)(Axy.y) reduces to Q, as expected. 
The intersection-style system of type assignment will be used to illustrate 

this example. 
Consider the type of M in the term M(Axy.y)(Axy.y). One possible type 

for M is 

(al 	a2 	a2) 	(a3 -0+ a4= «4) 	71. 

Further, consider the type of the term M SUM 2 P Q. After conducting 
the usual reasoning, the type obtained for this term is 

(int -4k1  ((th --4 k2 P2 -4  ka 	) = y) 	le4 	) 

Since only well-typed scripts are being considered (SELECT is only used on a 
sum type), these two types for M must be unified. Using the algorithm U/ 
from Chapter 5 (Uc would return the same result in this case), the result is 

(int 	cr) 
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where a is 

(I31 -/÷ 132 	)32) 	132. 

Note that this type gives very detailed information about the use of this data 
structure: in particular, this type for the sum term M tells us that in the 
expression SELECT 2 2 (SELECT 2 2 (SUM 2 P Q)): 

1. the term M SUM 2 P Q is strongly head needed; 

2. the term P is irrelevant; and 

3. the term Q is strongly head needed. 

I believe that this is a strong argument for the analysis of data structures at 
this level. Note that absolutely no extra machinery has been introduced into 
the type assignment system, other than the ability to assign types to constant 
terms. On the other hand, it may be that the size of the types generated (and 
hence the high quality of the information obtained) is too great for a practical 
implementation in which many complex data structures must be analysed. 

Continuing with the analysis of the translation of length, assume f: 	-4 
int, then since SELECT 2 2 (SELECT 2 x) has type /32 , 

f(SELECT 2 (SELECT 2 2 x)): int, 

as required by PLUS which has type int = int = int. Note that at this stage 
the strong head neededness of x will be -4- 

Now the remaining components of the body of the )-abstractions may be 
analysed. Firstly, consider x in the expression CASE 2 x. By examination of 
the type of CASE 2 it is clear that x (being a sum type) should be assigned the 
type (int = a -0+ int) int, where a is as defined above. This can be achieved 
by assuming x has type 

((int = a -0+ int) 	int) fl ((it -4 a 	a) 	a), 

and then following each occurrence of an instance of the VAR rule for x by an 
appropriate instance of LEQ. (See Chapter 3 for details about the intersection-
style type assignment system). 

Suppose CASE 2 x has type int 	int —% 73 , then the variable strong 
head neededness of f in the body of the .X-abstractions is 	and for x it is 

since CASE requires its second argument. Now two instances of the ABS 
rule may be used to obtain the type 

(/32 -4 k int) -4 i2  T 	73,  

where T is the type of x, namely 

((it 	-0÷ int) 	int) n ((it -4 a => a) 	a). 
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The final step is the typing of the application of FIX. Note that the strong 
head neededness of the fixpoint variable f is —)i2 . This signifies that there is a 
possibility that f is not required in the body of its A-abstraction and this has 
implications for the termination behaviour of the function (see Section 6.6 in 
this chapter). 

Using rule FIX (any IFIX„ rule with n > 1 would do as well), the final type 
thus obtained for the translation of length is 

(((it = a -0÷ int) #. int) n ((it 	#, a) #- a)) = int, 

where a is, as before, (0, -4+ P2 	/32) = /32. What does this tell us about the 
behaviour of this function? 

1. The argument to length is strongly head needed; and 

2. there are two sets of occurrences of the sum term x and each set behaves 
as follows: 

(a) the first set, corresponding to the type (int = a 	int) = int, 
strongly head needs the tag of the sum term, but ignores the value 
part of the sum term, and 

(b) the second set, corresponding to the type (int -4 a 	#- a, 
ignores the tag of the sum term, but strongly head needs the value 
part of the sum term. Furthermore, from the type a it is clear 
that the value term consists of two components, the first of which is 
ignored and the second is strongly head needed. 

6.4 Second-Order Polymorphism 
In Chapter 3 three case studies were conducted of type assignment systems for 
Boolean Reduction Types. In this Section a brief sketch of a fourth case of 
type assignment is given. 

In the case of LET-polymorphic types, all universal quantification was re-
stricted to the outermost level of a type. Now general universal quantification 
of both type and arrow variables will be allowed. Thus a second-order system 
of Boolean Reduction Types will be introduced. Second-order typing itself was 
introduced by Girard [25] (Girard called this the system F) and Reynolds [57]. 

Definition 6.4.1 
The set of Abstract Polymorphic Boolean Reduction Types, T2V , is inductively 
defined to be the least set satisfying: 

1. a E Tv  implies a E T2V 
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VAR 	Az  U {x : a} 1-- v_tx:=  x: a 

APP A Evi 	b 	Al-v2  N2 : 

A 1-v N1 N2 : T 

Ax  U{x:  cr}  1- v[„,_. b] N:  T  
ABS A 	Ax.N: a b T 

GEN 	
A 1-v M : T 

A 1-v M: V6.1- 

A [- I, M: V8.7- 
INST A 1- 1. M : -1-[(5 := 

( V = Ax.V1 (x) V (b AV2(x))) 

8 FV(A) U FV(V) 

Figure 23: The Second-Order System for deducing Reduction Types 

2. cr, E T2v , b E V implies cr b E T2°  , 

3. a E Tv a E TT implies Va.cr E T7, and 

4. -4iE Ay, a E TT implies V -4i .a E T'. 
It will be useful to denote by the metavariables 8, 81 , 82 , . either an arrow 

variable or a type variable. Thus V8.o- will stand for either V 	.a or Va.cr. 

A type assumption in the polymorphic system is the same as for earlier 
systems except that the types assumed for term variables are drawn from 77. 

Term variable strong head neededness functions are exactly the same as 
described in earlier type assignment systems. 

The set of free variables of an arrow expression, b, written FV(b), is the set 
containing all and only the arrow variables occurring in the arrow expression, 
b. The set of free variables of a type a, written FV(cr), is defined as follows: 

1. if a E a, then FV(cr) = {a}; 

2. if a a. T1  b 72 , then FV(cr) = FV(Ti) U FV(b) U FV(72 ); and 

3. if a E V5.1-, then FV(cr) = FV(r) — {8}. 

The set of free variables of an assumption set A, written FV(A), is 1..J, EA  FV(a). 
Similarly, the set of free variables of a variable strong head neededness function 
V, written FV(V), is UzEx  FV(V(x)). 

The type assignment system for polymorphic types appears in Figure 23. 
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6.5 Algebraic Reduction Types 
This section investigates the claim in Wright [76] that the present system is 
suitable as a basis for sharing analysis.' The primary insight is the generalisa-
tion of the operations of the Boolean algebra to the corresponding operations 
of a ring, i.e., replace logical disjunction by addition and logical conjunction 
by multiplication. This natural generalisation of the Boolean Reduction Types 
is called the Algebraic Reduction Types. In these types the exact number of 
uses of a subterm are kept, rather than just "none" (-4) or "more than zero" 
(.). This corresponds to the use-count generalisation of strictness analysis 
(see Sestoft [60], Jensen and Mogensen [39] and Goldberg [26]). 

For the sake of generality, this section considers the Intersection-style type 
assignment system. Similar treatments for any of the other type assignment 
systems presented in this thesis follow in the fashion suggested by earlier parts 
of this work. 

Definition 6.5.1 
1. Let Au  = 	--+k,—>i,...} be a sufficiently large set of arrow variables 

(as before), where i,j,k,... are ("dummy") variables over the natural 
numbers, and 

2. let Ag = 	...} be a set of ground arrows, (one for each natural 
number). 

3. Now some operators are defined which generalise the previous operations 
of disjunction and conjunction over arrows. Let 	—+; = 
— -4; = —>imi and x = In the right-hand sides of these 
definitions + is ordinary addition, — is ordinary subtraction and x is 
ordinary multiplication (all three over the natural numbers). 

4. The set of Algebraic arrow expressions is the set of arrows 

A = T(Ag  U A„, x,+, 

As usual, various sets of types may now be constructed. For example, the 
set of Intersection Algebraic Reduction Types is the set Tt, where A is the set 
of Algebraic arrow expressions defined above. As usual let the meta-variables 
over arrow expressions be b, b', .... Let the meta-variables for elements of Ag 
be —>„.„ .... Occasionally the multiplication symbol (x) will be replaced 
by juxtaposition. 

Now irrelevance is represented by the ground arrow --4 0  (previously -,4) 
and various degrees of strong head neededness are represented by the arrows 

'Clem Baker-Finch has independently devised a similar extension to the extension of 
Boolean Reduction Types described in this section. 
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-+2 , 	(previously 	This notion of "degrees of strong head neededness" 
needs clarification: 

Definition 6.5.2 
Let R C M be a redex. R is a strongly head needed redex of degree n in M if 
n residuals of R are reduced on the head reduction path of M. 

This concept generalises to terms other than redexes by noting that residu-
als are a special case of descendants—exactly as was done for the concept 
of strong head neededness in Chapter 2. Note the (formal) correspondence 
between strong head neededness and = and the (informal) correspondence be-
tween strong head neededness of degree n and The formalisation of the 
connection between these is very similar to that expressed in Chapter 4, where 
Boolean Reduction Types and their relation to the work of Chapter 2 was 
formalised. 

In order to construct a type assignment system the notion of variable strong 
head neededness function is required. This is defined exactly as before, except 
that rather than being a function from term variables to Boolean arrow expres-
sions each variable strong head neededness function is a function from term 
variables to Algebraic arrow expressions. In this context the name Vo  is pre-
ferred over V_.., for the everywhere irrelevant variable strong head neededness 
function (for the obvious reason). 

Finally, note that the systems of inequality and equality defined for in-
tersection types in Chapter 3 may be defined for the present system by the 
substitution of Algebraic arrow expressions for Boolean arrow expressions in 
those definitions. 

The type assignment system for Intersection Algebraic Reduction Types 
appears in Figure 24. (The only change is in the notation for the operators 
constructing the variable neededness function in the APP case and the nota-
tions for = and -,4). 

An Example 

Consider the term Twice a-  Af x.f (f x). This term has the following deduction 
using the type assignment system of Figure 24. Let A = { f : (a —> fl) 
7), 

 
x: a} , then using VAR and LEQ we obtain deductions of: 

A Fivax 	x a, 

A 	f : a # 

and 

A 	f fl 



VAR 	Ar  U {x: a} I- f,o[x  = 	x : 

APP 	
Ni :abr AH,,, N2: 0-  

NiN2: T 
(V = AX.Vi(X) (b XV2(X))) 

ABS 
Az  U {x: a} 	N: Tbl 
A I- I 	Ax. N: obT 

MEET 

LEQ 

A HY N : a A hf, N: T 
N: anr 

A I-  N:C7 (T<T 
A Fq, N: T 
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Figure 24: The Rules for deducing Intersection Algebraic Reduction Types 

Now two instances of the APP rule apply. The interesting part of this is the 
construction of the variable neededness functions in these two instances of APP. 
In the deduction of a type for fx the calculation is, for f: 

-41 + (-4i x —+o) 

(as expected, this is exactly analogous with the treatment of Chapter 3), and 
for x: 

x —+i) = ---÷o-f-ixi = 	. 

In the deduction of a type for f(fx), the calculations are, for f: 

(—>; X — 1.) 

and for x: 

—+0 + (---+; X= 	--4ix; • 

Now the claim that this system of Algebraic Reduction Types is a generalisation 
of Boolean Reduction Types is clear. Consider the final type for Twice: 

((ce -4i /3 ) n (i6 	7)) --+J+1 a —)ix; -Y. 
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Firstly, notice that the strong head neededness of f is of non-zero degree. 
Moreover, if the first occurrence of f in f(fx) strongly head needs f x a total 
of j times then f is strongly head needed a total of j + 1 times—once for the 
first occurrence of f in f (f x) and j times for each use of the second occurrence 
of f in f(f x). 

Similarly, the strong head neededness given for x reflects the intuition that 
both occurrences of f must strongly head need x in order for x to be strongly 
head needed in the overall expression. 

6.5.1 Constants 
The treatment of constants for Algebraic Reduction Types is very similar to 
that for Boolean Reduction Types. In particular, the rule CONST remains 
unchanged for each system of type assignment. On the other hand, some 
innovation is required in order to get optimal information from a constant 
representing a conditional. 

The Conditional 

In the treatment of the conditional IF for Boolean Reduction Types the oper-
ation of logical negation was used to express the typing restriction embodied 
in the constant type boo!. An analogous treatment is proposed for Algebraic 
Reduction Types. The negation operation is modelled in this system using 
subtraction. The conditional should be assigned a type of the form: 

bool 	a 	a 	a. 

Note that since the enumeration of the constant arrows Ag is over the naturals 
as opposed to the integers, this type implies that i may only be instantiated to 
either 0 or 1. 

As an example, in the context of the term f(IF p c a), where f strongly 
head needs its argument to degree j and the conditional has type bool a 
a a, the strong head neededness of p is of degree j, c is j or 0 and a 
is also j or 0. Thus c and a have upper bounds of j. In fact, since c and a 
are either j or 0, we can write their strong head neededness as j x i for c and 
j—j xi for a. 

Note that this behaviour is exactly what the type assignment system de-
livers. In analysing the term f(IF p c a) the strong head neededness of c is 
0 +jxi=j x i and that of a is 0+ j x (1 — i) =j—jxi, as required. 
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6.5.2 Fixpoints and Algebraic Reduction Types 
The treatment of a fixpoint constant in a system of Algebraic Reduction Types 
is similar to that for a system of Boolean Reduction Types. All of the fixpoint 
rules for that system translate to the system for Algebraic Reduction Types, 
except for the rule FIX. This is because equations of the form 

k =n+ k 

(n > 1) may arise which have no solution (for example, in FIXAfx.PLUS x (fx), 
here n = 1). In the system of Boolean Reduction Types, any equation of the 
form 

= 	V —>k 

	

immediately reduces to the solvable —q = 	This is intuitively reasonable 
since the analysis is only concerned with whether a term is strongly head needed 
to degree 0 or to any degree greater than 0. In the next section is an example 
where an attempt to apply rule FIX results in an erroneous conclusion. 

6.5.3 Data Structures 
The treatment of data structures for Boolean Reduction Types generalises to 
Algebraic Reduction Types in a straightforward manner. This generalisation 
is detailed below. 

PRODUCT n The type of the n-tuple builder is: 

al 	... an 	(a1 —>j, • • • an 	/3 ) 	/5. 

SUM i n The type of the sum type constructor is: 

al —4 •• • an — kxin  
(int —>; ((ai --+i, • • • an -4in  /3) --4 1 /3 ) —> k 	-Y. 

SEL i n Selection of the ith of n arguments results in the type: 

—>o .. • ai 	... an  --40 a. 

SELECT i n Selection from a product type: 

((al —>o ...ai 	...an  -40 ai) 	13) 

As before, in any well-typed context, j will be set to 1. 
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CASE n And lastly the switching function: 

((al -q «2 --+0 al) —4 i int) -■ 1 /31 	• • • fin 	in  fik 

If the term is well-typed then i will always be set to 1. 

Consider the example from the earlier section on data structures. In the• 
system of algebraic reduction types the type of the translation of length may 
be deduced as follows. 

Firstly, the type of x in 

FIX Afx.CASE x r) (PLUS T. (f(SELECT -2 (SELECT 

is 

T = ((it -q a —+0 int) -41 int) n ((it -40 CI 	-q cr), 

where cr is (fli ->o 132 	/32) -+I 132. 
Now the type of 

Afx.CASE x IT) (PLUS T. ( f (SELECT 	(SELECT 	x)))) 

is 

(132 	k int) 	T 

Let us consider some of the rules for typing the application of the fixpoint 
constant. 

Firstly, rule IFIX. In this case the final type obtained is 

T --+14./H-t 1 12 +102 :3 +... int. 

This details the correct information that (subterms of) x will be reduced each 
time the recursive part of the case statement is taken plus once for the first 
time the function is entered. In fact each / i , i > 1, is either 0 or 1 and if 1, = 0, 
for some j > 1, then Vk > j./k = 0, and so a more accurate type for this term is 

--- 1+ i1+ /2+ /3+ ... int. This more detailed information might be obtainable from 
a more informative type for the CASE constant. 

Choosing rule IFIX 2  results in the equation 

k = 1 + 
Substituting back into the type of the function yields the acceptable approxi- 
mation: 

T --> 14. i2+ki2q int. 
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Now, consider rule IFIX I . In this case the type obtained is 

T ->1+ki2  int. 

Again, this is an acceptable approximation to the behaviour of this function. 
In contrast, applying rule FIX results in the equation 

k = 1 + ki2 . 

This has a single solution (since variables range over the natural numbers), 
namely k = 1, i 2  = 0. Substituting back into the type of the function results. 
in the troublesome type: 

T 	lilt. 

The problem with this type is that it says that x is always used precisely once, 
but x may be used one or more times. The fine granularity of information 
given by Algebraic Reduction Types includes information about variable usage 
for each instance of the body of a recursive function during its reduction. Thus 
to equate all the usages of every instance of the body of a recursive function 
is erroneous in any non-trivial term. Intuitively, rule FIX works for Boolean 
Reduction Types since in that system the only concern is (effectively) with two 
arrows, —v-=-.4 and 

6.5.4 Implementation 
The essential component to be formalised in any implementation of Algebraic 
Reduction Types is the specification of a unification algorithm. However, unlike 
the situation for Boolean Reduction Types, I expect that such an algorithm 
would be undecidable. As evidence, consider Siekmann [61], in which it is 
recorded that the solution to Hilbert's Tenth problem is undecidable. This 
problem is that of finding a Diophantine (integral) solution to a polynomial 
equation. In this system the mere presence of rules of associativity and dis-
tributivity is enough to result in the system becoming undecidable (compare 
with the situation for the Boolean case). It is an open problem of Unification 
Theory whether distributivity alone is enough to result in the undecidability 
of the unification algorithm (Siekmann [61]). 

(I remind the reader that familiar techniques such as Gaussian elimination 
are only applicable to linear polynomials). 

However, the current system is not exactly the system of Hilbert's Tenth 
Problem. Firstly, the current system is restricted to the positive integers. Sec-
ondly, let x' represent the expression 1 — x (implying that x is 0 or 1), then the 
system has the following rules: 
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x x 0 = 0 
x 0 = x 	X X 1 = X 

x 	= 1 	x x (y z) = x x y x x z 
x X x l  = 0 

1' = 0 
0' = 1 

(x')' = x 

In addition, associativity and commutativity of -I- and x are added as well as 
an infinite series of rules relating to the addition and multiplication of natural 
numbers (such as 5 + 3 = 8, and so on). Note that terms such as 2', 3', ... are 
undefined. It seems unlikely that this system will have any advantage over that 
of Hilbert's Tenth Problem, though this remains to be determined. 

Should it be determined that exact solutions are not decidably obtainable, 
then work should concentrate on finding a decidable and safe approximation 
algorithm. 

6.6 Non-termination 
The problem of determining whether or not a term M is unsolvable is related 
to strong head neededness analysis: if a strongly head needed redex R C M 
of M is unsolvable then M is unsolvable. Thus it is natural to consider this 
problem once an analyser for strong head neededness information is presented. 
The completeness of the information obtained will of course depend on the 
completeness of the strong head neededness information available. 

Let e be a fixpoint combinator, i.e., VM E A.0M-00M(OM). In order 
to determine whether a term is unsolvable in an inductive fashion from its 
subterms, it is convenient to tag terms which have been determined to be 
unsolvable. 

Definition 6.6.1 
The Q- labelled A -terms, An are defined to be the least set containing A such 
that M E An  implies Mri  E A rl  and closed under application and abstraction 
in the usual manner. 

The notion of reduction associated with Si-labelled terms is axiomatised by the 
following rules: 

1. (M°)-M t , 

2. (Mn)N—>n(MN) n , and 



A U {x: a} 1-1, [x:=) x: 

A1-17, NI,: a br A 1-(4  N2 : cr 
NiN2 : r 

(V = Ax.Vi (x) V (b AV2(x))) 

A Fi; 	r A F-f,2 	: a 
A 1-f, (N1 N2 ) 11 : T 
(V = AX.Vi(X) V (b AV2(X))) 

Az  U {x 0} hfqx:=b1 r:  
crbr 

A F-Y N: 	Al-f, N:  T 
A 	N: crflr 

A hi, N: cr cr<r 
A Ff, N: r 

A F-f, M: 
A 1-{, (OM): 

VAR 

APP 

APP-1 

ABS 

MEET 

LEQ 
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Figure 25: The Rules for Non-termination 

3. Ax.M11 --qi()x.Mr. 

A term, M E An, is in fl-normal form if none of the above rules are applicable 
to M or any of its subterms. 

Now a type assignment system for An terms can be defined. For generality, 
choose the set of types to be 77 (for some V), then the type assignment system 
appears in Figure 25. Once a type has been derived for a An term using this 
type assignment system, all that remains to do to determine whether a term is 
unsolvable is to reduce the term to ft-normal form. 
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6.7 A Two Step Strong Head Neededness Al-
gorithm 

It is useful to separate the type checking phase of a compiler from its analy-
sis phase because typically the type checking phase is cycled through several 
times during the development of a script. This may be conveniently done for 
the present methodology by splitting the type inference algorithm into two 
stages. The first stage performs ordinary type inference or type checking (as 
appropriate for the input language) and returns terms annotated with their 
type, while the second stage deduces the strong head neededness information 
for the terms. Some advantage may be taken of this scheme to simplify certain 
parts of the strong head neededness algorithm (as detailed below). 

Firstly, it is not required that the terms output from the type checker have 
every subterm decorated with type annotations. Instead each variable should 
have a type annotation, but no other subterm need have a type annotation. 

Secondly, type variables and constants are now not required by the strong 
head neededness analyser. Instead, a single dummy variable may be used. 
Equivalently, type variables and constants may be preserved, but the unification 
algorithm defined to simply ignore these (since they have already been checked 
in the type checking phase). 

These ideas may be formalised by a deduction system which is specified 
below. For simplicity, a Curry-style system is considered. 

Definition 6.7.1 
The set of ordinary types is the least set containing: 

• the set of type variables, and 

• all types of the form s 	t, whenever s and t are ordinary types. 

The set of annotated variables is the set of all terms of the form x,, where x is 
a term variable and s is an ordinary type. 

Let a E *7 , then write l al for that ordinary type which results from a by 
replacing each arrow expression with the ordinary arrow 

Let a type assumption be a term of the form x,: a, where x, is an annotated 
variable and a E T. An assumption set is then a set of type assumptions, as 
usual. 

Now the deduction system may be specified as in Figure 26. Note that if V 
is a set of Boolean arrow expression, then principal types follow for this system 
in the same way as they did for the Curry-style system (see Chapters 3 and 5). 

The role of the annotated variables in this deduction system is to dictate 
the form of the types deduced in every manner except for the matter of arrow 
expressions. Thus the type checking phase of the compiler need only maintain 
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VAR 

APP 

ABS 

A U {x1,1: a} 	x: a 

abr Al- i% N2 : a 
A F ic, N1 N2 : r 

(V = _)tx.Vi (x) V (b AV2 (x))) 

Az  U 	a} 	N: T 

A 	Ax.N: crbr 

Figure 26: A System for Analysing Type Checked )-terms 

a list of types assigned to all occurrences of term variables. Then an implemen-
tation of the deduction system of Figure 26 may simply "fill in the arrows". 



Chapter 7 

Conclusion 

A new technique has been developed for analysing reduction in the A-calculus. 
This technique gathers intensional information about A-terms which may be 
used to justify transformations of the terms in the interests of more efficient 
evaluation. The reduction information collected is based on the new notion of 
strong head neededness. This property allows a finer analysis to be conducted 
of terms which are not head normalisable than does the alternative notion of 
strictness. 

The new technique, based on a particular notion of type called the Boolean 
Reduction Types, has been presented as a framework for the specification of 
related analyses. These analyses are constructed using an appropriate choice 
of type deduction system of which three such logics were studied. 

The semantics of Boolean Reduction Types has been examined. The re-
sulting semantics is of a denotational form—an instrumented semantics was 
not required. As well, the type deduction systems that were considered as case 
studies were shown to be correct with respect to the semantics assigned to 
Boolean Reduction Types. 

Implementations were conducted of all three case studies. The major in-
novation involved was the construction of a new unification method (two case 
studies were given of this method). This new unification scheme was con-
structed by joining together two pre-existing unification systems which had 
not before been used together in this fashion. 

Finally, several extensions to the method were given, notably the analysis 
of data structures and a generalisation of Boolean Reduction Types to express 
sharing information. 

This chapter contains a discussion of related work and a summary of the 
thesis and its conclusions. 
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7.1 Related Work 
A large body of related literature has developed since the original work of 
Mycroft [50] on strictness analysis of functional programs. In this Section a 
review of some of the highlights of the development of this knowledge is given, 
with particular consideration to the relationship with the current work. 

Naturally, attention is restricted to analyses which yield information about 
strictness, with occasional reference to some work concerned with sharing anal-
ysis. For present purposes it is convenient to divide the work into three cate-
gories: 

• analyses which are based on types, 

• analyses based on an abstract interpretation using other than types, and 

• other techniques. 

7.1.1 Analyses .  based on Types 
In this subsection those analyses which are based on some form of type are con-
sidered. Each of these analyses constructs functions in a conventional manner 
from unconventional base sets. This is one primary difference with the current 
work in which functions are constructed in an unconventional way, but from 
conventional base sets. Another primary distinction is that the current work 
focuses on the identification of those functions which definitely require their 
argument and those that that definitely do not require their argument. This is 
in contrast with most other analyses in which the only information sought is to 
identify those functions which definitely do require their argument. Thus the 
current work seeks to find out strictly greater information than that of other 
analyses. Yet another difference is the issue of strong head neededness ver-
sus strictness, the former of which generalises in a natural way to the concept 
of sharing (Chapter 6) and has practical application to speculative parallelism 
(Partridge [53]). 

Wray [71] developed first and second-order analysers which were the first 
to use (a primitive form of) type to describe strictness information. Types in 
the system of Wray have the following form: 

{usage —> mode 
mode = mi_ 

mD 

where usage E {S, L, D, A}. These latter symbols stand for strict, lazy, danger- 
ous and absent, respectively. The mode mr, is used to indicate that a function 
may terminate and mD is used to indicate that the function definitely does 
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not terminate. Clearly such types are only suitable for first-order information 
about functions. Wray includes an extension to this scheme to provide second-
order information about functions (i.e., information is lost about arguments 
which themselves take arguments which are functions and so on). 

Kuo and Mishra [41] also introduced a technique for analysing terms for 
strictness information based on a type inference scheme. Their scheme con-
structs types, using the function type constructor from two sets: 0 and 0, 
representing the set of "looping" terms and the set of all terms, respectively. 
(Intuitively, 0 corresponds to S in Wray's scheme and 0 to L). Kuo and Mishra 
call these types strictness types. Note that the choice made by Kuo and Mishra 
of the sets to analyse is the traditional one of differentiating those terms which 
are strict on their argument from those that may be strict on their argument. 

Kuo and Mishra present a type deduction system based on constraints 
over types and an inference algorithm to automatically determine strictness 
types for terms. They extend their system to analyse LET-polymorphism. 
The technology for their algorithm is derived from Mitchell [48] and Fuh and 
Mishra [23, 24]. One point to note is that their algorithm requires reason-
ing about a set of constraints between strictness types. Unlike the system of 
Mitchell [48], the constraints in this system cannot be decomposed into inequal-
ities between base types and variables. Indeed, for the apparently simpler case 
in which these constraints may be reduced, Wand and O'Keefe [70] have shown 
that the problem of type inference is NP-complete. (Wand and O'Keefe also 
show that if the inequalities are constrained such that a greatest lower bound 
always exists between pairs of constants, then the problem may be solved in 
low-order polynomial time). Wand and O'Keefe also report the incorrectness 
of the algorithm presented in [23] for checking the consistency of a coercion set. 
Kuo and Mishra [41] report that the termination of the algorithm for check-
ing the consistency of a coercion set may be enforced by restricting the set of 
terms which may be analysed, for example to the set of terms typable in a 
LET-polymorphic type system. 

This analysis scheme is extended in Leung and Mishra [42] to an analysis 
of which arguments are required to be evaluated to normal form, as well as 
the strictness analysis of the system of Kuo and Mishra. However, this fur-
ther complicates reasoning about constraint sets (see Section 5.1 of Leung and 
Mishra in which the 46 rules required to be satisfied are listed). 

Jensen [38] develops a relationship between the approach of Kuo and Mishra 
and that of the approach of Burn et al [11]. This is based on a representation 
of a lattice by its ideals (types naturally fitting this model). Thus Jensen is 
able to give the work of Kuo and Mishra a formal semantic justification. (The 
soundness and completeness is given via the relationship established by Jensen 
with the other abstract interpretation). 

Coppo [15] has developed a system in essence very similar to that of Kuo 
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and Mishra [41]. Coppo introduces a type constant b which is interpreted 
in his semantics as the set {1}. (This corresponds to Kuo and Mishra's 0). 
The approach of Coppo is explicit about using types as the domain of an 
abstract interpretation, whereas other work on using types have not emphasized 
this aspect. Coppo demonstrates the semantic soundness and completeness of 
his approach by introducing two additional components to his logic, one an 
axiom allowing the constant symbol I to acquire any type and the other a rule 
allowing the assignment of a type to a term if all its approximants share that 
type. 

To summarise, all these systems for strictness analysis share with this the-
sis the use of types to represent intensional information about functions. In 
contrast however, the current work is the only one based on a Boolean algebra 
of function type constructors (or, in the case of the generalisation to sharing 
analysis, an algebraic ring structure over the positive integers). 

Earlier work by Wright [72, 74] employed Boolean Reduction Types in a 
logic based on constraints. Algorithms and semantics were developed for these 
systems. The monotonicity of function types in those logics is unusual and the 
semantics of this would benefit from further study. 

Wright [73, 76] contains a less detailed exposition of some of the present 
work. In particular, the focus of these papers is on Boolean Reduction Types 
and the intersection-based logic. No algorithms are given, though semantics 
are presented.' 

Recently, linear logic has been used by Wadler [67] to conduct an analysis 
of sharing using a form of type (known as linear types). This system determines 
if an argument to a function is used exactly once. The only other system for 
computing sharing information based on a logic of types that I am aware of is 
that based on Algebraic Reduction Types, as described in this thesis.' In com-
parison with the system based on linear types, a logic of Algebraic Reduction 
Types returns strictly greater information about the sharing behaviour of an 
argument to a function. 

7.1.2 Abstract Interpretations not based on Types 
Mycroft [50] first applied the methodology of abstract interpretation (Cousot 
and Cousot [17]) to the strictness analysis of functional programs. His analyser 
was restricted to first-order functions over flat domains. The extension of this 
approach to the higher-order case over flat domains was achieved by Burn et 
al [11], Hudak and Young [32] and Maurer [46]. The approach of Burn et al 

1 1n [73] the incorrect claim that the system is complete with respect to an ordinary A-
model is made. 

2Clem Baker-Finch has independently devised this same extension to Boolean Reduction 
Types. 
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restricted the analysis by admitting only terms typable in a Curry type system 
(extended with fixpoint and other constants) 3 . This ensures the termination of 
their method by restricting the abstract domains assigned to functions to be 
finite, since these domains are iterated over in order to compute the abstract 
fixpoints. As has been previously noted the cost of computing these fixpoints 
can be prohibitive. Sestoft [60] points out that the complexity of the method 
of Burn et al and Hudak and Young is similar for Curry typable terms, and 
argues that these methods are (worst-case) n-exponentially complete for this 
class of terms4 . Despite this, considerable work has been done to alleviate the 
problem, see for example Hunt [36], Hankin and Hunt [28] and the references 
therein. 

All of the above methods are confined to flat domains (unless an encoding 
of data structures as functions is given). Considerable work has been accom-
plished on removing this restriction for abstract interpretation, see for example 
Hughes [33], Wadler [66], Ferguson and Hughes [22] and Burn [10]. Hall and 
Wise [27] describe a powerful method' for analysing lists in a first-order lazy 
language. This method is based on an abstraction of the domain of lists which 
allows the structure of an arbitrary list to be fully described. An annotation 
which indicates strictness is attached to those components of the abstracted 
structure of a list which have been deduced to be required by the computation. 

Sestoft presents a number of analyses in his thesis [60]. Of these analyses one 
is an analysis of sharing, called a usage interval analysis. Sestoft first defines a 
three point domain consisting of linearly ordered points: Zero, One and Many. 
From this he constructs the main domain used which is simply pairs of elements 
from the above domain. Such pairs represent an interval of uncertainty of the 
number of times a function will use its argument. Sestoft then presents an 
algorithm for deducing intervals for a lazy and higher-order language, as well 
as techniques for utilising the information derived in a variation of the Kri vine 
machine. (The Krivine machine is a very simple call-by-name de Bruijn-term 
interpreter). 

In comparison with the method given in this work for sharing analysis, it is 
clear that Sestoft's domain is much less precise (for example, the information 
that an argument is used exactly twice is not representable with Sestoft's notion 
of usage interval). Of course, Sestoft has traded precision for efficiency of the 
analysis algorithm, though it remains to be determined how much his 0(p3 ) 
algorithm gains in the "average" case and whether sufficient information is 

3Alternatively a LET-polymorphic system may be chosen by the result of Abramsky [1], 
though this does not prevent recomputation of strictness information for polymorphic 
functions. 

4 Geoffrey Burn was the first to point this out to me (in 1989) and he attributed the 
observation to Werner Damm. 

'This is a form of backwards analysis, see below for a description. 
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obtained for a particular application. Note that the idea of usage intervals is 
contained in the idea of algebraic arrow expressions: 

Usage Interval Arrow Expression 
(Zero, Zero) -40 
(Zero, One) .-1-i 
(Zero, Many) --+i 
(One, One) -4 1 
(One, Many) -q+i 
(Many, Many) ->2-1-i 

Also note that Sestoft's approximation fits well within the framework of Re-
duction Types as proposed by this thesis and formulated in an abstract manner 
in Wright [75]. This approximation can be modelled with the arrows: -> o , 
and -> >1 . These correspond to Zero, One and Many in Sestoft's approach. 
Then operations of addition and multiplication can be defined on these arrows. 
Thus 	+s -+>1=-4>i, 	->k=->0 and so on in the obvious manner (the 
S subscript is short for Sestoft). Lastly, a deduction system for the Reduction 
Types built from these arrows may be constructed in the manner developed 
within this thesis. 

7.1.3 Other Techniques 
Projection Analysis (Hughes and Wadler [68], Davis and Wadler [19]) is based 
on the idea of transmitting demand information about the result of a function to 
the arguments of the functions. Thus the flow of information is "backwards"— 
from result to arguments. This information is described by composing projec-
tions with the function. A projection is an idempotent function which removes 
information from its argument, i.e., the result of applying a projection to an 
argument is just the argument, but possibly with some components of the argu-
ment undefined. For example, consider the projection STR, where STR1 = .16  
and is the identity function everywhere else. Suppose f is a strict function, then 
the following identity holds: 

f; STR = STR; f; STR. 

This indicates that in a strict context the argument to f may be evaluated 
before calling f,  without changing the result of the expression. 

The main motivation for introducing projection analysis was the study of 
the properties of non-flat data structures. The initial work was restricted to 

6This is a slight simplification in that a lifted domain should be used for the result, see 
Burn [9]. 
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first-order functions. Burn has conducted a detailed examination of the rela-
tionship between his work ([11, 8, 10]) and projection analysis. Hughes and 
Launchbury [35] have shown how to reverse the direction of an abstract inter-
pretation and discuss when so doing results in a loss of information. 

Dybjer [20] also proposes a backwards analysis scheme for strictness anal-
ysis, but his approach is based on computing the inverse image of a function. 
The basic idea is that a function is strict if the inverse image of a set of total 
elements is a set of total elements, with respect to the function of interest. Dy-
bjer gives laws which encapsulate a logic for computing exact inverse images of 
functions, as well as a suggestion of how approximations may be obtained. The 
method appears to be well suited to the analysis of data structures, though the 
treatment in [20] is limited to first-order functions. 

7.2 Summary 
In this Section the contributions and conclusions of this thesis are summarised. 

7.2.1 Strong Head Neededness 
A new property of expressions has been defined called strong head neededness. 
This property is a variation on the idea of head neededness proposed by Baren-
dregt et al [5]. In particular, the new property provides more information 
about the usage of sub-expressions of a non-terminating reduction, than does 
the concept of head neededness as defined by Barendregt et al. 

The main practical advantage of the extra information is expected to be 
its use in reducing unnecessary work being performed in a machine employing 
a speculative evaluation strategy (such a machine is described in detail by 
Partridge [53]). 

The concept of strong head neededness also generalises in a very natural 
way to describe the repeated evaluation of a particular sub-expression during 
the reduction of a term. This concept forms the basis for an extension of the 
results of this work to sharing analysis (see Chapter 6). 

In Chapter 2, an examination was conducted of strong head neededness. 
Amongst other results, it was determined that whether or not a particular sub-
expression has this property cannot in general be decided. Hence, analyses of 
strong head neededness must in the general case compute a (safe) approxima-
tion to the actual information derivable. 

7.2.2 Boolean Reduction Types and Type Deduction 
With the property of strong head neededness as intuition, a new notation 
(Boolean Reduction Types) has been developed which relates the strong head 
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neededness of sub-expressions of a function to the strong head neededness of 
arguments of the function. This notation is a form of type which uses a Boolean 
algebra of function type constructors to classify groups of functions according 
to their strong head neededness behaviour on arguments. 

Since the notation is a form of type it was natural to specify systems of 
logic which relate particular terms to certain types. Three case studies were 
presented: 

• a Curry-style system, which is the simplest system that was presented 
and clearly laid out the various components of the framework to be used 
to infer Boolean Reduction Types; 

• a LET-polymorphic system which is polymorphic in arrow as well as type 
variables. This system allows a polymorphic application to have the 
abstracted variable appear in multiple strong head neededness contexts 
in the body of the abstraction; and 

• an Intersection-style system which allows any variable to appear in mul-
tiple strong head neededness contexts and moreover can find a type clas-
sification for every term. 

These case studies demonstrated the wide applicability of the basic framework 
for classifying terms according to their strong head neededness behaviour, as 
denoted by Boolean Reduction Types. 

7.2.3 Intensional Semantics for Reduction Types 
In Chapter 4, a semantics for Boolean Reduction Types was developed which 
precisely captures the context-sensitive nature of the strong head neededness in-
formation described by such a type. A formal connection between the property 
of strong head neededness and Boolean Reduction Types was then established. 

The first application of this semantics was a study of the strong head need-
edness behaviour of the application of a function to its argument. Each of the 
possible behaviours was first specified using a particular form of Boolean Re-
duction Types and then it was shown that under the conditions imposed that 
the term did indeed behave in the manner required. Finally, a general form 
was given which described the applicative behaviour of every application. 

The second application of the semantics was a demonstration that each 
of the logics developed in Chapter 3 correctly associated terms with Boolean 
Reduction Types. The soundness of these logics was successfully shown using 
both an ordinary A-model and Plotkin's notion of semi-A-model. The com-
pleteness of these logics only holds for the notion of semi-,\-model. The logics 
may each be extended following the EQ rule of Hindley [29] so as to establish 
the completeness of these systems with respect to an ordinary A-model, though 
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this was not done since the interest was primarily in reduction as opposed to 
expansion. 

7.2.4 Implementation of Reduction Type Inference 
With a formal assurance of the correctness of the logics, the implementation 
of algorithms which allow the automatic derivation of types for terms could 
proceed. The key step here was employing an E-unification algorithm for 
Boolean algebras. Fortunately, such a unification algorithm had already been 
(re)discovered and been shown to be both correct and minimal (Martin and 
Nipkow [45]). 

The resulting implementations were shown to be correct syntactically (i.e., 
with respect to the deduction systems of Chapter 3). Of course, this immedi-
ately implies their semantic correctness as well, since in Chapter 4 the semantic 
correctness of the logics had already been established (as described above). 

Three implementations were developed, corresponding to the three case 
studies of type deduction. The last of these required a careful study of the 
structure of deductions in order to establish the soundness of a fundamental 
operation employed by the algorithm, namely the operation of expansion. 

7.2.5 Extensions 
With the basic methodology now developed, attention was turned to other 
constructs and analyses. These extensions are now briefly outlined below. 

Constants, Fixpoints and Data Structures 

Since all programming languages contain constants, fixpoints and data struc-
tures it is worthwhile paying special attention to these in any analysis. It 
turned out that adding constants could be done in a straightforward and prac-
tical manner to any of the example systems. 

Several rules were postulated for computing information about fixpoints, 
including several which avoid any iteration in this computation (with a corre-
sponding reduction in precision). The efficacy of these rules in real-life situa-
tions remains to be determined. 

A particular approach to analysing arbitrary algebraic data structures was 
proposed. Though this approach yields very precise information its practicality 
is not known. 

Algebraic Reduction Types 

For a long while the author suspected that the system developed in this thesis 
based on Boolean Reduction Types could be generalised to perform sharing 
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analysis. This was established in Chapter 6 by the simple mechanism of re-
placing the Boolean algebra of function type constructors by an algebra of 
function type constructors over the positive integers. Allied to this was the 
generalisation of strong head neededness to strong head neededness of degree n. 
Preliminary investigations show that the semantics of Chapter 4 generalise in 
an obvious fashion to this case. (These investigations are not reported on in 
the text of the thesis). 

It was shown that a logic for the new set of types (Algebraic Reduction 
Types) could be developed following the pattern by which the types themselves 
were derived, namely, simply replace the Boolean Reduction Types by Algebraic 
Reduction Types and Boolean arrow expressions by Algebraic arrow expressions 
in the logics of Chapter 3. (An example of the Intersection-style system was 
made). Finally, some remarks were given concerning the treatment of constants, 
fixpoints and data structures and some aspects of what would be required of 
an implementation. 

Other Analyses 

A sketch of how the LET-polymorphic deduction system might be extended to 
a second-order polymorphic system woas given in Chapter 6. No discussion was 
given of the semantic correctness or implementation of such a system. 

Two variations on the logics presented in Chapter 3 were also given. The 
first of these provides a static determination of terms with an infinite reduction 
behaviour. The detection of these terms was based on identifying the appli-
cation of fixpoint combinators or constants to terms which strongly head need 
their argument. The strong head neededness logic was then employed to find 
out if a term containing such an application has an infinite reduction sequence 
to head normal form. 

The second variation illustrated how the analysis may be split into two 
phases: firstly, deduce a conventional type for the term and return a set of 
annotations which give each occurrence of a variable in the term an ordinary 
type; secondly, use the logic presented to fill in the function type constructors, 
thus converting the type of the term from an ordinary type to a Boolean or 
Algebraic Reduction Type. 



Appendix A 

An Implementation in Orwell 

This Appendix contains an Orwell ([51]) script which is an implementation 
of the intersection-style system for deducing Boolean Reduction Types. This 
implementation includes some of the extensions proposed in Chapter 6. In 
particular, certain term and type constants are implemented. Also, a termi-
nating version of the unification algorithm is presented as a modification to the 
semi-decidable algorithm of Section 5.4.5 (the semi-decidable algorithm is also 
implemented in this Appendix). 

A.1 Orwell 
This section of the Appendix contains a brief summary of the differences be-
tween Orwell and two similar functional languages which are perhaps more 
widely known in the functional language research community, namely Haskell 
and Miranda'. 

An Orwell program is a literate script in which each line of the script which 
is to be interpreted commences with the symbol >. All other lines in the 
script are comment. This document is itself suitable as input to the Orwell 
interpreter. Like Miranda and Haskell, Orwell employs the offside rule to define 
the boundaries of local blocks of definitions. This rule states that any expression 
following an "=" symbol in a top-level equation or where expression must 
appear entirely to the right of this expression. Also like Miranda and Haskell, 
Orwell includes a script called the standard prelude which is automatically 
included before the interpretation of a script. 

Orwell's type system is similar to that of Miranda, both being based on the 
LET-polymorphic system described by Milner [47]. Both have a single numeric 
type and a polymorphic notion of equality which is applicable to elements of all 
types, including user-defined, except for functions. This is probably the main 

'Miranda is a trademark of Research Software, Ltd. 
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difference from the type system of Haskell which employs a user-extendible 
notion of overloading of operators. 

Unlike Miranda and Haskell, Orwell requires that each equation in a func-
tion definition be disjoint, i.e., that at most one equation is applicable in any 
application of the function. In patterns variables may not occur more than 
once. Orwell does provide a mechanism for including a "catch-all" equation to 
avoid writing out tedious lists of otherwise similar cases. This is implemented 
by including a line containing the pragma %else, and then following this line 
by the default case. 

A.2 Preliminaries 
It is necessary that some preliminary definitions be made. Firstly, some general 
definitions not contained in the Orwell standard prelude are given, as well as 
the definition of association lists. Secondly, some functions for parsing various 
terms are introduced. (These parsing functions seem to have been re-invented 
more than once, see Fairbairn [21] and Hutton [37] for example, but are now 
fairly well-known though there are some extensions here). Finally, some func-
tions for producing formatted output are described. These latter functions are 
essentially due to Peyton-Jones and Lester [54]. 

A.2.1 Auxiliary functions 

This subsection contains an excerpt from my library of auxiliary functions to 
complement the Orwell standard prelude. The only functions included here are 
those used to define the type inference system. 

I prefer to write composition from left-to-right: 

> '/.right 9 ;; 
> (;;) :: (a -> b) -> (c 	d -> (a -> d) 
> (f ; ; g) x = g (f x) 

The following function "flattens" the application of a list valued function 
to each element of a list. 

> concmap : : (a -> [b]) -> [a] -> [b] 
> concmap f = map f ; ; concat 

Converting from curried forms of functions is often useful. 

> uncurry2 f (a,b) = f a b 

Some special cases of currying: 
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> pair xl x2 = (xl,x2) 
> triple xl x2 x3 = (xl,x2,x3) 

The following functions generalise the idea of currying (only a few cases are 
included). 

> curry'l'of'2 f ab=f b a 
> curry'l'of'3 f abc=f cab 
> curry'2'of'3 f a = curry'lloV2 (f a) 

Converting a string of digits to an integer is a useful operation for parsers. 

> stoi 
> 	= map (code ;; (+ (-code '0'))) ;; 
• build'num 0 
• where 

build'num n (n':ns) = build'num (n*10+n') ns 
build'num n 	= n 

The following two functions are useful in "set-like" situations: the first 
ensures that each element of a list is unique (using Orwell's built-in notion of 
equality), the second eliminates any objects which occur an even number of 
times in a list. 

> uniq :: [a] -> [a] 
> uniq (x:xs) 
> = uniq xs, if x $in xs 
> 	= x:uniq xs, otherwise 
> uniq 	= 

> rem'dups (x:xs) 
> 	= rem'dups (xs 	[x]), if x $in xs 
> 	= x: rem'dups xs, otherwise 
> rem'dups 	= 

split is a variation on the filter function: it returns a pair of lists repre-
senting all the positive and negative elements, respectively, in the input list. 

> split : : (a -> bool) -> [a] -> ( [a] , [a]) 
> split p (x:xs) 
> 	= (x:ys,zs), if p x 
> 	= (ys,x:zs), otherwise 
• where 

(ys,zs) = split p xs 
> split p 	= 
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compose2 captures many common behaviours (for example, iterating a func-
tion over a binary structured data type). 

> compose2 fl f2 xl x2 = ft (f2 xl) (f2 x2) 

The well-known finite-function builder is called update here. 

> update f xty 
• = t, if x = y 
• = f y, otherwise 

The function map2 is a generalisation of map to binary functions. 

> map2f(x:xs) (y:ys) =fxy: map2fxs ys 
> %else 
> map2 f xs ys = 

A function to print space characters is useful for formatting output 

> spaces n 
> = ":spaces (n-1), if n > 0 
> 	= "", otherwise 

Computing the maximum number in a list is used in this script to find the 
value at which renaming of variables should commence. 

> maximum = foldr max 0 

A.2.2 Parsing 

In this subsection functions for implementing recursive descent parsing in Or-
well are presented. It is important to note that this code relies on lazy evalua-
tion semantics in order to achieve reasonable efficiency. 

A parser is a function from an input type to a list of parses, a parse being 
a pair of an output and the input remaining after obtaining the output. 

> parser a b == a -> [(b,a)] 

Atomic parses are modelled by succeedwith which does no further process-
ing of the input and simply returns its first argument as result. Failure is the 
empty list of parses. 

> fail inp = 
> succeedwith x inp = [(x,inp)] 
> succeed = succeedwith 
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A general mechanism for alternatives is encoded by the following function. 
Note the dependence on a lazy evaluation strategy and the pragma used to 
declare a right associative infix operator in Orwell. 

> '/.right 8 II 
> (II) :: parser a b -> parser a b -> parser a b 
> (p1 I I p2) inp = pl inp ++ p2 inp 

Two parsers may be composed as follows. 

> %right 9 >> 
> (>>) :: parser a b -> parser a c -> parser a (b,c) 
> (p1 >> p2) hip 
> 	= concmap (cont p2) (pl inp) 
• where 

cont p (x,rest) = map (cont' x) (p rest) 
cont' x (y,rest) = ((x,y),rest) 

The following variations on composition of parsers both discard the result 
of one of the parsers making up the composition. Firstly, composition with left 
discard. 

> %right 9 !> 
> (!>) :: parser a b -> parser a c -> parser a c 
> (p1 !> p2) = p1;;concmap (snd;;p2) 

Secondly, composition with right discard. 

> '/.right 9 >! 
> (>!) :: parser a b -> parser a c -> parser a b 
> (p1 >! p2) inp 
> 	= concmap (cont p2) (pl inp) 
• where 

cont p (x,rest) = map (cont' x) (p rest) 
cont' x (y,rest) = (x,rest) 

In order to perform semantic actions (such as building up a parse tree) 
transformations are allowed on the results of parsing, as encapsulated here: 

> %right 6 0 
> (0) :: parser a b -> (b -> c) -> parser a c 
> (p 0 f) inp 
> 	= map (cont f) (p inp) 
• where cont f (x,rest) = (f x,rest) 
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Iteration of a parser is achieved by repeatedly applying the parser until it 
fails. 

> some'of :: parser a b -> parser a [b] 
> some'of p = (p >> some'of p 0 uncurry2 (:)) II succeed 

The following variation on the iterator above ensures that there are at least 
a minimum number of successful parses in order to obtain an overall successful 
parse. 

> atleast :: num -> parser a b -> parser a [b] 
> atleast 0 p = some'of p 
> atleast (n+1) p = p >> atleast n p 0 uncurry2 (:) 

A further variation is useful where the first thing being parsed is not of the 
same type as the following things. 

> %right 9 >* 
> (>*) :: parser a b -> parser a c -> parser a (b [c]) 
> p1 >* p2 = p1 >> some'of p2 

Literals are encoded using Orwell's notion of generic equality. 

> lit : : a -> parser [a] a 
> lit x (y:xs) 
> 	= [(x,xs)], if x = y 
> 	= 	, otherwise 
> lit x 	= 

Generalising to lists of literals: 

> accept :: [a] -> parser [a] [a] 
> accept 
> 	= map lit ;; 
• foldr f succeed where f xl x2 = x1 >> x2 0 uncurry2 (:) 

Membership of a list of literals: 

> any'of :: [a] -> parser [a] a 
> any' of = map lit ;; foldr ( I I) fail 

Parentheses are a common construct and deserve a parser to themselves. 

> paren open p close = lit open !> p >! lit close 
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Similarly, lists of items with separators often occur, often in conjunction 
with some form of parentheses. 

> list'body :: parser a b -> parser a c -> parser a [c] 
> list'body separator item 
• = item >* body uncurry2 (:) 
• where body = separator !> item 

Now a parser to make infix operators easy to implement. The arguments 
to infix are as follows: 

associator determines associativity (usually foldr1 or fold11), 

factor this may be a simple factor or an infix factor of lower precedence (in 
which case this is also constructed using infix), 

operator recogniser for the syntactic form of the operator, and 

build this function should construct a term from two factors. 

> infix :: (d -> [b] -> e) -> 
parser a b -> parser a c -> d -> parser a e 

> infix associator factor operator build 
• = list'body operator factor Q associator build 

Left and right associative infix operators can now be built. 

> infixr = infix foldr1 
> infixl = infix foldll 

Associative operators are dealt with by returning a list. 

> infixa f o = list'body o f 

Infix operators for which the form of the operator varies. 

> op' infix 

	

	((c -> b -> b -> b) -> (b,[(c,b)]) -> b) -> 
parser a b -> 
parser a c -> 
(c -> b -> b -> b) -> 
parser a b 

> op'infix associator factor operator build 
• = factor >* operator >> factor O associator build 

Right associative infix operators for which the form of the operator varies. 
(For brevity other forms are omitted). 
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> op'infixr = op'infix tangle'r 

> tangle'r f (b,(c,b9:cbs) = f c b (tangle'r f (b' ,cbs)) 
> tangle'r f (b, 	= b 

Some Common Parsers 

Some parsers for common lexical constructs are now defined. Firstly, a catego-
rization of characters is made: 

> num'chars = "0123456789" 
> whitespace'chars = " \n\t" 
> alpha'chars 
> = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" 
> punct'chars =  
> alphanum'chars = alpha'chars ++ num'chars 

Secondly, parsers for each category of characters: 

> digit = any'of num'chars 
> integer = atleast 1 digit 
> alpha = any'of alpha'chars 
> punctuation = any'of punctichars 
> white = any'of whitespace'chars 

The following function is useful for parsers in which white space is insignif-
icant. 

> strip'white = filter (($in whitespace'chars);;(")) 

A.2.3 Printing 
This section is closely based on the "pretty printing" functions of Peyton-Jones 
and Lester [54]. Their main motivation for introducing these functions is to 
avoid the repeated concatenation of strings forming the output—the result 
being that the cost of printing is quadratic in the length of output. Consider 
the expression: 

(xsl ++ xs2) ++ xs3 

The time taken to compute this expression (as Peyton-Jones and Lester point 
out) is proportional to 2 x #xs1+ #xs2. Always bracketing the output expres-
sion the other way will produce a result which prints in time linear in the length 
of the output, but in general achieving this complicates a script considerably. 
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I introduce the following variation on the method of Peyton-Jones and 
Lester. The first step is to define an algebraic data type to represent the 
output. This would need enhancement for more sophisticated use, but suits 
the current script well. 

> out 'seq 
> : := Empty 

Str [char] 
I Append out seq out 'seq 
I Indent out'seq 
I Newline 

The only unusual thing about the above definition is the case Indent 
out ' seq. This is used to line up its argument out seq all to the right of 
the current column on the printer. 

To make the output easier to write, define the following infix operator for 
Append. 

> '/.right 9 && 
> (&&) = Append 

We often want to insert an output sequence between two others. 

> between s sl s2 = sl && s && s2 

A natural generalisation of Append is the following: 

> join  : : [out ' sec].) -> out 'seq 
> join = foldr (&&) Empty 

Similarly, a natural generalisation of between can be defined: 

> interleave : : out 'seq -> [out 'seq] -> out' seq 
> interleave sep [] = Empty 
> %else 
> interleave sep os = foldrl (between sep) os 

A useful instance of interleave is a function for converting a list of output 
sequences into lines of output sequences. 

> lines :: [out'seq] -> out'seq 
> lines = interleave Newline 

Print a number—uses Orwell's overloaded show function. 
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> show'num :: num -> out'seq 
> show'num = show;;Str 

Often used is the function for displaying parenthesised objects. 

> show'par s = between s (Str "(") (Str ")") 

Printing Output Sequences 

The following functions convert output sequences into strings ready for display 
or printing. 

> print :: out'seq -> [char] 
> print seq = print'it 0 [(seq,0)] 

> print'it :: num -> [(out'seq, num)] -> [char] 
> print'it col ((Newline, indent) : seqs) 
> 	= "\n" ++ 

(spaces indent) ++ 
(print'it indent seqs) 

> print'it col ((Indent seq. indent) : seqs) 
> 	= print'it col ((seq, col) : seqs) 
> print'it col ((Str s, indent) : seqs) 
> 	= s ++ print'it (col + #s) seqs 
> print'it col ((Empty, indent) : seqs) 
> 	= print'it col seqs 
> print'it col ((Append seql seq2, indent) : seqs) 
> 	= print'it col ((seql, indent) : (seq2, indent) : seqs) 
> print'it col [] = 

A.2.4 Association Lists 
This section contains a standard treatment of association lists. Included is a 
parser and a printer for association lists. 

> assoc a b == [(a,b)] 

> empty'assoc = 

> update'assoc 	assoc a b -> a -> b -> assoc a b 
> update'assoc xys x y = (x,y):xys 

> delete :: assoc a b -> a -> assoc a b 
> delete xys x = [(z,y) I (z,y) <- xys; x -= z] 
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> pop :: assoc a b -> a -> assoc a b 
> pop ((x,y):xys) z 
> 	= xys, if x = z 
> 	= (x,y):pop xys z, otherwise 
> pop [] z = [] 

> spop 	assoc a b -> a -> b -> (assoc a b, b) 
> spop ((x,y):xys) z b 
> 	= (xys,y), if x = z 
> 	= ((x,y):xys',b'), otherwise 
• where (xys',b') = spop xys z b 
> spop [] z b = ([],b) 

> in'dom :: a -> assoc a b -> bool 
> x $in'dom xys = x $in dom xys 

> val 	assoc a b -> a -> b 
> val ((x,y):xs) z = y, if x = z 

= val xs z, otherwise 

> sval 	assoc a b -> a -> b -> b 
> sval ((x,y):xs) z a 
• = y, if x = z 
• = sval xs z a, otherwise 
> sval [] z a = a 

> range :: assoc a b -> [b] 
> range a = Cy I (x,y) <- a] 

> dom 	assoc a b -> [a] 
> dom a = [x 1 (x,y) <- a] 

> show'assoc showx showy ((x,y):xys) 
> 	= showxy, if xys = [] 
> = showxy 
• Str ", " && 
• show'assoc showx showy xys,,otherwise 
• where 

showxy = showx x St& Str ":" && showy y 
> show'assoc showx showy [] = Empty 
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> read'assoc readx ready 
> 	= strip'white ;; parse'assoc readx ready ;; lid ;; fst 

> parse'assoc readx ready 
> = paren 

(list'body (lit ',') (readx >> lit ':' !> ready)) 
)1, 

II (lit 1 { 1  >> lit '}' 0 const empty'assoc) 

A.3 An Implementation of Boolean Algebra 
The representation used of a Boolean algebra (as a ring structure) is also an 
algebraic data type. Another possibility would be a list based representation, 
but this may be a little less clear for didactic purposes. 

> ba 
> ::= 	Zero 

I One 

I BAVar num 
I Sum [ba] 
I Prod [ba] 

Some associated recognisers which are used in guards: 

> is'Sum (Sum bs) = True 
> %else 
> is'Sum b = False 

> is'BAVar (BAVar n) = True 
> '/.else 
> is'BAVar b = False 

A function for finding the lexically greatest arrow variable: 

> max'bavar = arrow'vars;; maximum 

Computation of a list of all the arrow variables in a ring expression is 
concisely expressed using the auxiliary function concmap. 

> arrow'vars (BAVar n) = [n] 
> arrow'vars (Sum bs) = concmap arrow'vars bs 
> arrow'vars (Prod bs) = concmap arrow'vars bs 
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> %else 
> arrow'vars b = 

A.3.1 Parsing and Printing 

Now I introduce a parser and pretty printer for Boolean algebras. 
The parser converts the input string directly into a ring term in sum-of-

products normal form using the operator. Lexical analysis is very crude—
simply remove all "white" space (tab, newline and space characters). The hard 
work is done by the call to parse tha. No error checking is performed on the 
result! 

> read'ba = strip'white;;parse'ba;;hd;;fst 

By convention, addition binds less tightly than does multiplication and so 
this determines the structure of the parser. The parsing itself is very simple—
infix associative operators are defined using infixa and atoms are defined as 
literals using lit or as a parenthesised expression using paren. The hard 
work of transforming to sum-of-products normal form is done by the functions 
xor and conj which are discussed below. The simplicity of the parser is a 
testimony to appropriate abstraction and the naturalness of the expression of 
this abstraction by higher-order functions. 

> parse'ba = infixa ba'conj (lit '+') 0 xor 
> ba'conj = infixa ba'atom (lit '.0 0 conj 
> ba'atom = simple'atom II paren 1 (' parse'ba ')' 

> simple ' atom 
> 	= (lit '1' D const One) 

II (lit '0' 	const Zero) 
II (lit 'v' !> integer 0 stoi;;BAVar) 

Pretty printing a ring expression is defined by mimicking their inductive 
definition. The functions map and interleave nicely capture the iteration 
required. 

> show'ba Zero = Str "0" 
> show'ba One = Str "1" 
> show'ba (BAVar n) = Str "v" 	show'num n 
> show'ba (Prod bs) = interleave (Str ".") (map show'ba bs) 
> show'ba (Sum bs) = interleave (Str "+") (map show'ba bs) 
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A.3.2 Sum-of-Products Normal Form 
check' single is used to avoid building unnecessary levels of Sum's and Prod's. 

> check'single 	([ba] -> ba) -> ba -> [ba] -> ba 
> check'single f e 	= e 
> check'single f e [x] = x 
> %else 
> check'single f e bs = f bs 

Simplification of a sum term is done by xor'simplify which is called from 
xor. 

> xor 	[ba] -> ba 
> xor Ex] = x 
> %else 
> xor bs = (xor'simplify;;check'single Sum Zero) bs 

Apart from implementing the simplifications expressed by the rewrite sys-
tem: 

x*(y+z) 	x*y+x*z, 

xor' simplify also orders all Boolean variables into ascending lexical order 
using xor' insert which simplifies the unification process described below. 

> xor'simplify (Zero:bs) = xor'simplify bs 
> xor'simplify (Sum bs:rest) 
> 	= xor'simplify (bs ++ rest) 
> xor'simplify (BAVar n:rest) 
> 	= xor'insert (BAVar n) (xor'simplify rest) 
> xor'simplify 0 = 0 
> %else 
> xor'simplify (x:rest) 
> 	= xs--[x], if x $in xs 
> 	= x:xs, otherwise 
• where xs = xor'simplify rest 

> xor'insert (BAVar n) (BAVar m:rest) 
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> 	= BAVar n : BAVar in : rest, if n < in 
> 	= rest, if n = m 
> 	= BAVar in : conj'insert (BAVar n) rest, otherwise 
> xor'insert b 	= [b] 
> '/,else 
> xor'insert b (b':bs) = b' : xor'insert b bs 

Similarly, constructing a product term involves both simplification and sort-
ing of variables. 

> conj 	[ba] -> ba 
> conj [x] = x 
> '/.else 
> conj bs 
> 	= (split (is'Sum);; 

uncurry2 (++);; 
conpsimplify;; 
check'single Prod One) bs 

> conj'simplify (Zero:bs) = [Zero] 
> conj'simplify (One:bs) = conj'simplify bs 
> conj'simplify (Prod bs:rest) = conj'simplify (bs ++ rest) 
> conj'simplify (Sum bs:rest) = [xor [conj (b:rest) I b <- bs]] 
> conj'simplify (BAVar n:rest) 
> 	= conj'insert (BAVar n) (conj'simplify rest) 
> conj'simplify 	= [] 

> conj'insert (BAVar n) 	(BAVar m:rest) 
> = BAVar n : BAVar in 	: rest, if n < in 
> = BAVar n : 	rest, 	if n = in 
> = BAVar in : conpinsert (BAVar n) rest, otherwise 
> conj'insert b 	= [b] 
> /,else 
> conj'insert b (b':bs) 
> 	= [Zero], if b' = Zero 
> 	= b' : conj'insert b bs, otherwise 

A.3.3 Unification of Boolean Rings 
The following algorithm is based on Boole's variable elimination procedure of 
1847. The first step is to add (using xor) the terms to be unified (they are 
then implicitly equated to Zero). After this the equation solver is called. 
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> bunify 	ba -> ba -> ba -> ba 
> bunify bl b2 = bsolve (xor [bl,b2]) 

The equation solver stops as soon as it has an equation of the form Zero = 
Zero. (If there is no solution then the Orwell system will always halt with an 
error message, this being "equivalent" to the unsolvable value bottom). Other-
wise bsolve eliminates a variable, recursively calls itself and, if the recursive 
call returns a defined result, builds up a substitution for the eliminated variable 
(which is called the "pivot" variable here). 

> bsolve 	ba -> ba -> ba 
> bsolve Zero = id 
> %else 
> bsolve b 
> 	= apply'to'ba 

(update s piv 
(xor [ piv, 

fb, 
conj [tb,piv], 
conj [fb,piv], 
conj [fb,tb,piv] ]) 

• where 
(ts,fs,piv) = pivot b 
(tb,fb) = (ts b.,fs b) 
s = bsolve (conj [tb,fb]) 

pivot computes the actual variable elimination. It returns functions to 
convert the variable being eliminated to both true and false (1 and 0) and also 
the variable itself. This latter is so that the pivot variable can be used to build 
the result substitution. 

> pivot (BAVar n) 
> 	= (apply'to'ba (update id (BAVar n) One), 

apply'to'ba (update id (BAVar n) Zero), 
BAVar n) 

> pivot (Prod bs) = pivot (hd bs) 
> pivot (Sum bs) = pivot (hd (filter ( -=One) bs)) 

The following function homomorphically extends substitution on variable 
arrows to substitution on ring expressions. 

> apply'to'ba f (BAVar n) = f (BAVar n) 
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> apply'to'ba f (Prod bs) = conj (map (apply'to'ba f) bs) 
> apply'to'ba f (Sum bs) = xor (map (apply'to'ba f) bs) 
> %else 
> apply'to'ba f b = b 

A.4 Lambda Terms 
Now it is time to define A-terms. Since these terms will not be reduced they 
are represented by an algebraic data type in the ordinary (naive) way: 

> lam : := V num I APP lam lam I ABS num lam 

The following recognition functions are useful below. 

> app'term (APP el e2) = True 
> %else 
> app'term e = False 
> abs'term (ABS n e) = True 
> '/.else 
> abs'term e = False 
> var'term (V n) = True 
> %else 
> var'term e = False 

The free variables of a term are returned in a list, being careful to ensure 
that each variable occurs at most once in the list. 

> fv (V n) = [n] 
> fv (APP el e2) = uniq (compose2 (++) fv el e2) 
> fv (ABS n e) = fv e 	En] 

A.4.1 Parsing A-terms 
A parser for )-terms is easy to construct. Lexical analysis is again simplistic 
and error checking omitted. 

> read'lam = strip'white ;; parse'lam ;; hd ;; fst 

The parser works by assigning the empty parser to application (since it is 
represented by concatenation of symbols) and .then building an infix left asso-
ciative parser which combines the resulting elements using APP (thus building 
a parse tree). 

Subterms of an application term are either variables, parenthesised expres-
sions or abstractions which are straightforward to define. 
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> parse'lam = infixl simple'term succeed APP 
> simple'term = (var 	V) II paren '(' parse'lain ')' II  abs 
> abs = lit '\\' !> var >> lit '.' !> parse'lam 0:0 uncurry2 ABS 
> var = lit 'x' !> integer Q stoi 

A.4.2 Printing A-terms 
The function to print a A-term is defined below. The main feature of this is 
the APP case in which attention is paid to including the minimum number of 
parentheses so as to enhance the readability of the output. 

> showilam (V n) = Str "x" && show'num n 
> show'lam (ABS n e2) 
> = Str "\\x" && show'num n && Str "." && show'lam e2 
> show'lam (APP el e2) 
> 	= par'lam el && Str " " && par'lam e2, 
• if abs'term el & -var'term e2 
> 	= par'lam el && Str " " && show'lam e2, if a.bs'tex-m el 
> = show'lam el && Str " " && par'lam e2, if -var'term e2 
> = show'lam el && Str " " && show'lam e2, otherwise 

> par'lam = showilam ;; show'par 

A.5 Intersection Reduction Types 
The next step is the definition of the reduction types—in this case intersection 
Boolean reduction types. The definition incorporates an additional constant 
Bool, as discussed in Chapter 6. 

> ty 
> 	: := 

TV nurn 
> I Omega 

I I ty ty 
> I F ba ty ty 
> I Bool 

As usual, recognisers are helpful to supplement pattern matching. 

> tv'type (TV n) = True 
> '/,else 
> tv'type t = False 
> ftype (F b ti t2) = True 
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> %else 
> ftype t = False 
> itype (I ti t2) = True 
> '/.else 
> itype t = False 
> omega t = t = Omega 
> type'constant t = t = Bool 

The arrow expression is extracted from a reduction type as follows: 

> arrow (F b ti t2) = b 

Type variables are found by a walk over the structure of a type, using 
compose2 to direct the iteration. 

> tvars (TV n) = [n] 
> tvars Omega = [] 
> tvars (I ti t2) = compose2 (++) tvars ti t2 
> tvars (F b ti t2) = compose2 (++) tvars ti t2 
> %else 
> tvars t = [] 

The arrow variables in a type are also found by a walk over the structure 
of a type, again using compose2 to direct the iteration. 

> avars (I ti t2) = compose2 (++) avars ti t2 
> avars (F b ti t2) = arrow'vars b ++ compose2 (++) avars ti t2 
> %else 
> avars t = 

> max'avar = avars;; maximum 
> max'tvar = tvars;; maximum 

A.5.1 Parsing Reduction Types 

Parsing reduction types follows the now familiar pattern. One difference is the 
need to record the infix arrow expression used to construct the type. This is 
ably accomplished by op ' infixr. As in the case for Boolean ring expressions, 
the resulting parse tree is reduced to a canonical form using functions reduce 'F 
and reduce' I which are defined below. 

> read'ty = strip'white ;; parse'ty ;; hd ;; fst 
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> parse'ty 
> 	= op'infixr 

inter'ty 
(accept "->[" !> parse'ba >! lit 1 ]') 
reduce'F 

> inter'ty = infixr simple'ty (lit '& 1 ) reduce'I 

> simple'ty 
> 	= tvar II 

(lit 'WI 0 const Omega) II 
(lit 'B' 0 const Bool) II 
paren '(' parse'ty ')' 

> tvar = lit 'a' !> integer 0 stoi ;; TV 

A.5.2 Simplification of Reduction Types 
The two functions below correspond to a rewrite system for intersection reduc-
tion types: 

• n 
• n 	cr 

n 	--+ 
p b(o- n r) -+ (p b cr) n (p b 7) 

p b w 	Cd. 

An important advantage for using simplified types is the ability to use syntactic 
identity to determine equality amongst them. 

> reduce'I 	ty -> ty -> ty 
> reduce'I ti t2 
> = ti, if ti = t2 V omega t2 
> 	= t2, if omega ti 
> 	= ti, if type'constant ti & tv'type t2 
> 	= t2, if type'constant t2 & tv'type ti 
> 	= Omega, if type'constant ti & type'constant t2 
> 	= I ti t2, otherwise 

> reduce'F 	ba -> ty -> ty -> ty 
> reduce'F b ti (I t2 t3) 
> 	= I (reduce'F b ti t2) (reduce 1 F b ti t3) 
> reduce'F b ti Omega = Omega 
> '/,else 



A.5 INTERSECTION REDUCTION TYPES 	 190 

> reduce'F b ti t2 = F b ti t2 

A.5.3 Printing Reduction Types 
In printing intersection reduction types, attention is given to minimising the 
number of parentheses. 

> show'ty (TV n) = Str "a" && show'num n 
> show'ty Omega = Str "w" 
> show'ty Bool = Str "B" 
> show'ty (I ti t2) = show'i ti t2 
> show'ty (F bl (F b2 t1 t2) t3) 
> 	= Str "(" && 
> show'ty (F b2 ti t2) && 
> Str ") ->[" && 
> show'ba bl && 
> Str "] " && 
> show'ty t3 
> %else 
> show'ty (F b ti t2) 
> 	= show'ty t1 && 
> Str " -> C" && 
> show'ba b && 
> 	Str "] " && 
> show'ty t2 

> show'i ti t2 
> = par'ty t1 && 
> Str " & " && 
> par'ty t2, if ftype t1 & ftype t2 
> 	= par'ty ti && 
> Str " & " && 
> show'ty t2, if ftype t1 
> = show'ty t1 && 
> Str " & " && 
> par'ty t2, if ftype t2 
> 	= show'ty ti && 

> Str " & " && 
> show'ty t2, otherwise 

> par'ty = show'ty ;; show'par 
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A.5.4 Substitution for types 
Chains, as defined in Chapter 5, are represented by functions from types to 
types. 

> chain == ty -> ty 

The first kind of chain element is the substitution. The following functions 
are useful for constructing substitutions of various kinds. 

> subst 	ty -> num -> chain 
> subst t n = subst'all' t [n] 

> subst'all 	ty -> [num] -> chain 
> subst'all t (n:ns) t' = subst'all' t (n:ns) t' 
> subst'all t 	t' = t' 

> subst'all' 	ty -> [num] -> chain 
> subst'all' t ns (TV m) 
> 	= t, if m $in ns 
> = TV m, otherwise 
> subst'all' t ns (F b ti t2) 
> 	= compose2 (reduce'F b) (subst'all' t ns) ti t2 
> subst'all' t ns (I ti t2) 
> 	= compose2 reduce'I (subst'all' t ns) ti t2 
> %else 
> subst'all' t ns t' = t' 

Applying an arrow substitutions to a type is also a required operation. 

> extend'ba'to'ty 	(ba -> ba) -> ty -> ty 
> extend'ba'to'ty f (F b ti t2) 
> 	= compose2 (F (f b)) (extend'ba'to'ty f) ti t2 
> extend'ba'to'ty f (I ti t2) 
> 	= compose2 reduce'I (extend'ba'to'ty f) ti t2 
> '/.else 
> extendiba'toity f t = t 

The second kind of chain element is expansion whose definition is given in 
a later section. 

A.5.5 State-based functions 
Before describing expansions some functions to deal with state dependent con- 
cepts are introduced. A state-based function is any function of the following 
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form: 

> statefun abcd == a -> b -> (c, d) 

In the definition of statefun, a is the state, b is the input, c is the output 
and d is the output state. 

Any ordinary function can be converted into a state-based one as follows: 

> make'state 	(b -> c) -> statefun abca 
> make'state f n x = (f x, n) 

The constant state function is defined by ignoring its input. 

> const ' state : : b -> statefun abba 
> const'state t n t' = (t, n) 

The following function is a useful iterator over state-based functions. 

> map'state : : statefun abcd -> statefun a [b] [c] d 
> map'state f s (x:xs) 
• = (y:ys,s") 

where 
(ys,s") = map'state f s' xs 
(y,s') = f s x 

> map'state f s 	= 	,$) 

Composing state-based functions is captured by compose' state. 

> compose'state : : statefun abcd -> 
statefun dcef -> 
statefun abef 

> compose'state cl c2 n t 
> 	= c2 n1 tl 

where 
(t1,n1) = ci n t 

compose2'state is like the useful auxiliary function compose2 except for 
the need to thread the states n, n1 and n2. Note that in compose2 ' state b->f 
is often instantiated to a state-based function. 

> compose2'state :: (a -> a -> b -> f) -> 
statefun beab -> 
(e -> e -> b -> f) 

> compose2'state u c ti t2 n 
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> 	= u ti' t2' n2 
• where 

(t1',n1) = c n ti 
(t2',n2) = c n1 t2 

The following is useful in conjunction with compose2 ' state. 

> coalesce :: (a ->b-> c) ->a-> statefunbdcd 
> coalesce f ti t2 = pair (f ti t2) 

A.5.6 Expansion 
Expansion is a somewhat intricate operation whose definition is made much 
simpler using the state-based function abstractions of the previous subsection. 
Defining this operation is a two step process: first define the expansion context 
and then define the expanding substitution (see Chapter 5). 

Some auxiliary concepts are useful. Firstly, we need to generate all non-i-
subtypes of a type. 

> nonisub 	ty -> [ty] 
> nonisub (TV n) = [TV n] 
> nonisub (F b ti t2) 
• = F b t1 t2 : compose2 (++) nonisub t1 t2 
> nonisub (I ti t2) 
• = compose2 (++) nonisub ti t2 
> %else 
> nonisub t = [t] 

Now a function to check if a type variable is the rightmost type variable in 
a type. (This expects the type to be in reduced form). 

> right'tvar :: [num] -> ty -> bool 
> right'tvar ms (TV n) = n sin ms 
> right'tvar ms (F b ti t2) 
• = right'tvar ms t2, otherwise 
> '/.else 
> right'tvar ms t = False 

The Expansion Context 

As defined in Chapter 5 the expansion context is built in an iterative fashion. 
All the non-i-subtypes of the expansion base type must be included, the actual 
iteration then being performed by ec 
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> ec 	[ty] -> ty -> [ty] 
> ec b t 
> = nonisub t ++ 
• concmap nonisub (ec' (uniq (concmap nonisub b)) (tvars t)) 

> ec' b newts 
> 	= [1, if ts' = [] 
> 	= ts' ++ ec' b' (concmap tvars ts'), otherwise 
• where 

(in,out) 

= split 
(uncurry2 right'tvar) 

[(newts,t) I t <- b] 

ts' = range in 
b' = range out 

The Expanding Substitution 

Using the expansion context the expanding substitution can be defined. This 
is accomplished by first building a pair of renaming substitutions. Finally, an 
i-type is constructed which consists of two renamed duplicates of the input 
type. Note the used of the state-based function abstractors. 

> e 	[ty] -> statefun num ty chain num 
> ebnt 
• = (expansion,n2) 

where 

expansion 
= exp' context 

(foldr (;;) id subs1) 
(foldr (;;) id subs2) 

(subsl,n1) 

= map'state rename n context 
(subs2,n2) 

= map'state rename n1 context 
context = uniq (ec b t) 

> rename :: statefun num ty chain num 
> rename m (TV n) = (subst (TV m) n, m+1) 

> rename m (F b ti t2) 
> 	= compose2'state (coalesce (;;)) rename ti t2 in 
> rename m (I t1 t2) 
> 	= compose2'state (coalesce (;;)) rename ti t2 in 
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> %else 
> rename m t = (id, m) 

> exp' 	[ty] -> chain -> chain -> chain 
> exp' c sub1 sub2 s 
> 	= I (subl s) (sub2 s), if s $in c 
> = exp" c subl sub2 s, otherwise 

> exp" 	[ty] -> chain -> chain -> chain 
> exp" c sub1 sub2 (TV m) = TV m 
> exp" c sub1 sub2 (I ti t2) 
> 	= compose2 I (exp' c sub1 sub2) ti t2 
> exp" c sub1 sub2 (F b ti t2) 
> 	= compose2 (reduce'F b) (exp' c sub1 sub2) t1 t2 
> '/,else 
> exp" c subl sub2 t = t 

A.6 Unification 
Unification of reduction types is complicated by the need to thread a state 
through the process. This state is an integer representing the supply of new 
names for type variables. However, appropriate use of higher-order functions 
makes this process much clearer and isolates the behaviour into well-defined 
places. 

The more abstract version of this algorithm in Chapter 5 serves as a useful 
guide as to the various parts of the following algorithm. A point to note is 
that the expansions occur in two places rather than the single occurrence in 
U /. (See the treatment of type variables and the catch-all "'/.else" clause). 

> unify :: [ty] 	ty 	ty -> num -> (chain,num) 
> unify b (TV m) t 
> 	= pair (subst'all (TV m) tvt),if (itype t) & occurs 
> 	= pair (subst'all Omega (m:tvt)), if ( -tv'type t) Sc occurs 
> 	= u'compose em unify b (TV m) t, if itype t 
> 	= pair (subst t m), otherwise 
• where 

occurs = in $in tvt 
tvt = tvars t 
em = curry'2'of'3 e b (TV m) 

> unify b (F bl ti t2) (F b2 t3 t4) 
> 	= u'compose 

(combine bu (unify b' (bu t1) (bu t3))) unify b' t2 t4 
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• where 
bu = extend'ba'to'ty (bunify bl b2) 
b' = map bu b 

> unify b (I ti t2) (I t3 t4) 
> = u'compose (unify b ti t3) unify b t2 t4 
> unify b Omega t = pair (subst'all Omega (tvars t)) 
> unify b Bool Bool = pair id 

> %else 
> unify b ti t2 
> = unify b t2 ti, if tv'type t2 V omega t2 
> 	= u'compose e2 unify b ti t2, if itype ti 
> 	= u'compose el unify b ti t2, if itype t2 
• where 

el = curry'2'of'3 e b ti 
e2 = curry'2'of'3 e b t2 

> combine fl f2 n = (f1;;f3,m) where (f3,m) = f2 n 

> u'compose fl f2 b ti t2 n 
> 	= (c1;;c2,n2) 

where 
(cl,n1) = fl n 
(c2,n2) = compose2 (f2 (map cl b)) cl ti t2 n1 

.A..6.1 Guaranteeing Termination 
The following version of unify guarantees termination by only permitting a 
finite number of expansion steps to be taken during the unification process. 

> finite'unify 	[ty] -> ty -> ty -> num -> (chain,num) 
> finite'unify = unify' 5 

> unify' :: num -> [ty] -> ty -> ty -> num -> (chain,num) 
> unify' 0 b ti t2 
> 	= pair (subst'all Omega (tvars ti ++ tvars t2)) 
> unify' (m+1) b ti t2 = unify" m b ti t2 

> unify" :: num -> [ty] -> ty -> ty -> num -> (chain,num) 
> unify" n b (TV m) t 
> 	= pair (subst'all Omega tvt), 
• if ("tv'type t) k (m $in tvt) 
> 	= u'compose em (unify' n) b (TV m) t, if itype t 
> 	= pair (subst t m), otherwise 
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• where 
tvt = tvars t 
em = curry'2'of'3 e b (TV m) 

> unify" n b (F bl ti t2) (F b2 t3 t4) 
> 	= u'compose 

(combine bu (unify" n b' (bu ti) (bu t3))) 
(unify" n) b t2 t4 

• where 
bu = extend'betoity (bunify bl b2) 
b' = map bu b 

> unify" n b (I ti t2) (I t3 t4) 
> = u'compose (unify" n b ti t3) (unify" n) b t2 t4 
> unify" n b Omega t = pair (subst'all Omega (tvars t)) 
> unify" n b Bool Bool = pair id 
> %else 
> unify" n b ti t2 
> = unify" n b t2 ti, if tv'type t2 V omega t2 
> 	= u'compose e2 (unify' n) b ti t2, if itype ti 
> 	= u'compose el (unify' n) b ti t2, if itype t2 
• where 

el = curry'2'of'3 e b ti 
e2 = curry'2'of'3 e b t2 

A.7 Constants 
Some example constants fom Chapter 6 are defined here. Each time a constant 
is typed the type assigned to it is given unique type and arrow variables. 

> lookup'const 	statefun (num,num) string ty (num,num) 
> lookup'const (an, vn) s = freshen (an, vn) (get'type s) 

> get'type :: string -> ty 
> get'type "Y" = read'ty "(al->[vl]al)->[1]al" 
> get'type "IF" = read'ty "B->[1]al->[v1]al->[v1+1]al" 
> get'type "ZERO" = read'ty "Int ->[1] B" 
> get'type "PLUS" = read'ty "Int ->[1] Int ->[1] Int" 
> get'type "FRED" = read'ty "Int ->[1] Int" 
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A.8 Type Inference 
Now the algorithm for performing type inference can be defined, closely based 
on that appearing in Chapter 5 for type inference of intersection types. 

> type :: statefun (assoc num ty) 
lam 
(ty,num -> ba) 
(assoc num ty) 

> type a e 
• = ((t,v),a') 

where 
((t,v,c),(a',n,vn)) 

= pp (a, 
find'max max'tvar, 
find'max max'avar) 

find'max f = (foldr max (-1) (map f (range a)))+1 

> pp'state == (assoc num ty, num, num) 

> pp :: statefun pp'state lam (ty,num -> ba,chain) pp'state 
> pp (a,mn,vn) (V n) 
> 	=( 

(TV inn, update (const Zero) n One, id), 
(update'assoc a' n s, mn+1, vn) 

• where 
(a',s') = spop a n Omega 
s = reduce'I s' (TV mn) 

> pp (a,mn,vn) (N n) 
> 	= ((Int, const Zero, id), (a,mn,vn)) 
> pp (a,mn,vn) (C c) 
> 	= ((citype, const Zero, id), (a,mn',vn')) 
• where 

(c'type,(mn',vn')) = lookup'const (mn,vn) c 
> pp (a,mn,vn) (ABS n e) 
> 	= ((reduce'F (v n) s t, update v n Zero, c), (a',mn',vn')) 
• where 

(a1,s1) = spop a n Omega 
((t,v,c),(a2,mn',vn')) = pp (al,mn,vn) e 
(a3,$) = spop a2 n Omega 
a' = update'assoc a3 n s1, if sl -= Omega 
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= a3, otherwise 
> pp (a,mn,vn) (APP el e2) 
> 	=( 

(c3 t, 
build'appiv 

(v1;;ty'to'ba (c2;;c3)) 
(ty'to'ba c3 (BAVar new'avar)) 
(v2;;ty'to'ba c3), 

cl;;c2;;c3 
), 

[(x,c3 y) I (x,y) <- a23, 
m4, 
new'avar+1 

• where 
((tl,v1,c1),(t2,v2,c2),(a2,m2,new'avar)) 

= compose2'state triple pp el e2 (a,mn,vn) 
t = TV m2 
ti' = c2 t1 
t2' = F (BAVar new'avar) t2 t 
m3 = m2+1 
b = ti' : t2' : range a2 
(c3,m4) = unify b ti' t2' m3 

> build'app'v vi b v2 x 
> 	= xor [bl, b2, conj [bl,b2]] 

where 
bl = vl x 
b2 = conj [b, v2 x] 

> ty'to'ba f b = arrow (f (F b Bool Bool)) 

A.9 The Top-level of the Type Inference Sys-
tem 

The top-level of the implementation is defined by the following pair of func-
tions. The first simply calls the second with the representation of the empty 
assumption set, the second arranges the parsing, type inference and printing 
phases of the implementation. 
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> ti :: string -> string 
> ti = tia "{}" 

> tia :: string -> string -> string 
> tia as s 
> = print 

(show'type'assign (m,type (read'assoc var parse'ty as) m)) 
• where in = read'lam s 

To print out the results of type inference the following function is useful. 
Note that by using show' lam in instead of just s the term is always printed in 
the canonical format. 

> show'type'assign (m,((t,v),a)) 
> 	= Str "{" 	 && 
• show'assoc (show'num;;(Str "x"&&)) show'ty a && 
• Str "I I- V-/->[" 	 && 
• interleave (Str ",") 

(map2 (between (Str ":=")) 
[Str "x" && show'num x I x <- active] 
[(v;;show'ba) x I x <- active]) 	&& 

• Str "] " 	 && 
• show'lam in 	 && 
• Str ":" 	 && 
• show'ty t 
• where active = fv in 

A.10 Examples 
In this section some example executions from this script are shown. These were 
run on an Apple Macintosh LC using the Frontline Orwell system [51] of the 
University of Western Australia. 2  

A simple term which requires the use of expansion (see Chapter 5) is the 
following: 

fx2:a7 & all, xl:(a7 ->[v1] al ->[vO] a6) & (all ->[v1] al)} 
I- V-/->[xl:=1,x2:=v1] (\xl.xl xl) (xl x2):a6 

Reductions = 4990, Cells = 20903, Name space used = 6380 

2 Macintosh is a trademark of Apple Computer, Inc. 
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A more complex term which requires the use of several expansions 3  is the 
following: 

fl I - 1/-/->[] 
\xl.(\x2.xl (x2 (\x3.\x4.x3 x4)) (x2 (\x3.\x4.x4 x3))) 
(\x5.x5 x5 x5): 
(((a55 ->[1] a56) ->[1] a55 ->[1] a56) ->[v2.v5.v8+v5+v8] 
(((a112 ->[1] (a112 ->[1] a114) ->[1] a114) ->[1] a92) 
->[1] a92) 

->[v5.v8] a18) 
->[1] al8 

Reductions = 52609, Cells = 297509, Name space used = 6380 

Some examples involving constants: 

{} I- V-/->[] 
Y (\xl.\x2.\x3.\x4.IF x2 x3 (xl x2 x4 x3)): 
B ->[1] all ->[1+v7] all ->[v7] all 

Reductions = 19305, Cells = 73827, Name space used = 5029 

{} I -  V-/- > 0 
Y (\xl.\x2.\x3.\x4.IF x2 x3 (xl x2 x3 x4)): 
B ->[1] a9 ->[1+v5*v7+v7] all ->[v6*v7] a9 

Reductions = 13048, Cells = 42159, Name space used = 5029 

fl I -  V-/->[] 
Y (\x1.\x2.\x3.\x4. 

IF (ZERO x4) (PLUS x2 x3) (xl x3 x2 (PRED x4))): 
Int ->[1+v11] Int ->[1+v8*v11+v8+v11] Int ->[1] Int 

Reductions = 22448, Cells = 75039, Name space used = 5029 

3 Even on a relatively slow machine, interpreting SK-combinator graphs, this type was 
found for this term very quickly. However, the use of many expansions has caused a ten-fold 
increase in reductions required and space used. 
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