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Abstract 

Although guidelines exist for approaches to, and vehicle use (over-snow vehicles, 

aircraft and watercraft) in the vicinity of, Weddell seals (Leptonychotes weddellii), 

there has been no scientific assessment of the effectiveness of these guidelines in 

minimising disturbance to the seals. This study examined tqe response of Weddell 

seals to various forms of human activity that the seals are currently exposed to. A 

series of controlled experiments were conducted to measure, (i) the immediate 

behavioural and physiological responses of lactating W ~ddell seals (and their pups) 

to approaches on foot, and the factors affecting the seals' respons~, (ii) the temporal 
( -

nature of the seals' response to repeated pedestrian activity fil?.d (iii) the immediate 

behavioural response oflactating cows to over-snow vehicle operations, and the 

factors that affect their response. In addition, sound/distance profiles were developed 

for commonly used Antarctic vehicles ~d the assumed detection threshold of 

Weddell seals was determined to investigate whether the noise generated by a range 

of vehicles had the potential to affect Weddell seals. 

Most lactating Weddell seals and lone pups responded to visits on foot {from 20-

5 m from the seals) by becoming alert. The separation distance at which the cows 

became alert was dependent upon the approach type (a single person or group of 

people), the distance a cow was from the water, the distance she was from a 

conspeci:fic, and whether her pup was exposed (i.e. whether the pup was between the 

approachers and the cow). The relative importance of these factors indicated that the 
-
seals perceived pedestrians to be a threat, but that the level of threat was low. 

Regular and frequent approaches by a single person to lactating Weddell seals over 

a short time period(< 2 hours) produced evidence of rapid habituation. However, 

irregular approaches over a longer time period (~3 weeks), did not result in seals 

showing any sign of having habituated. The results suggested that the cows may 

have already become sensitised to human activity prior to the experiment and that 

pups became sensitised to pedestrian activity. 

Onshore heart rate of the seals in the absence of people revealed a daily periodicity 

in rate as well as three distinct heart rate patterns during resting behaviour and when 

the seal was looking in the water, i.e. the seal has its head immersed in water. Intra 

seal variation in heart rate highlighted the importance of obtaining baseline data at a 

fine scale (e.g. hourly) before heart rate can be used as a proxy for stress in human-
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wildlife interactions studies. Pedestrian approaches to a lactating seal did not elicit a 

heart rate response, suggesting that the approaches were not considered to be 

negative stimuli. 

Most lactating Weddell seals responded to the operation of over-snow vehicles by 

becoming alert. Response was dependent upon the distance at which the vehicles 

were driven, the position of the pups in relation to the cow and the distance the cow 

was from the water. The relative importance of these factors indicated that the seals 

perceived the vehicles to be a threat, but that the level of threat was low. 

Quantifying the effect of noise on the vocal behaviour of Weddell seals required 

the development of an assumed detection threshold of the species and sound/distance 

profiles of the commonly used vehicles in Antarctica. Much of the noise generated 

by these vehicles at the tested distances and speeds was barely audible to seals. 

However, there were some instances where the noise would have been cl~arly audible 

to seals both hauled out on ice and underwater. These higher noise levels were, 

however, still below the noise levels generated by the animals themselves and were 

therefore not expected to cause physical damage to the seals.- Manipulative 

experiments did indicate th~t the underwater vocal behaviour of Weddell seals could 

be affected by continuous Hagglund noise, manifest as a decrease in the calling rate 

of seals. 

This study has shown that the existing guidelines used in the Australian Antarctic 

Territory could be improved ifthe goal of management is to minimise disturbance to 

Weddell seals. Furthermore, the study has shown that the responses of the seals were 

influenced by a number of factors and that these co_uld be incorporated into visitor 

and operational guidelines in order to increase their effectiveness and sensitivity. 

Page- v 

\ 



Acknowledgements 

I would like to gratefully acknowledge Drs Melissa Giese and Mark Hindell for 

supervision, valuable discussions, reviewing of various drafts, support and 

encouragement. I would also like to thank Dr Jack Terhune for providing me with 

his time and resources to analyse the acoustic data and his valuable input to the 

acoustic chapter. Dr Simon Wotherspoon for all of his help with the statistics, 

without whom this Ph.D. would not have been what it, is. I would also like to 

acknowledge (in alphabetical order) Rachael Grey, Damian Murphy, Humphrey van 
. 

Polanen Petel and Marjolein van Polanen Petel and for comments of.drafts. 

The research would not have been possible without the funding and logistic 

support from the Australian Antarctic Division (Human Impact Research Program -

ASAC 1148), Sea World Research and Rescue Foundation, Universities Federation 

for Animal Welfare and the Sustainable Tourism Cooperative Research Centre. The 

research was conducted with the permission from the Antarctic Animal Ethics 

Committee, Australian Antarctic Division and the Animal Ethics Committee of the 

University of Tasmania. 

I owe a great deal of thanks to Melissa Giese, Natasha Lees, Bryan Ries, Rachael 

Grey, Sarah Brown, Kate Bodley and Marjolein van Polanen Petel, who spent their 

summer with me in Antarctica working tirelessly in the field. Thank you very much 

for your support and friendship. 

. Also, to all the wonderful people in Antarctica who played tourist, drove/flew 

over-snow vehicles, zodiacs and aircraft, and fixed and made equipment, with special 

thanks to Meredith Nation, Chris Heath, and Nick Magnus for helping with seal 

anaesthesias. 

I would like to thank Nick Gales for the use of the anaesthetic machine and for 

explaining the ins and outs of seal anaesthesia. Bristol-Myers Squibb were very 

generous in supplying hair-bleaching products for the marking of seals. Thank you. 

A big thanks also goes o_ut to the crew at Antarctic Wildlife Research Unit, Human 

Impacts Research Program and Nick Holmes for support, advice, distraction, with 

special thanks to Kathryn Wheatley for helping me with those tricky sentences! 

Also, to all my friends who made me laugh and listened to my whinging. 

Vi Pa~y-



And of course, a huge thanks to my partner, Richard Taylor, for his endless 

support, si;niling face, welcoming arms and making my life so much easier, 

particularly in the last tiring months! Last but not least, to my family for their loving 

support, encouragement, valuable discussions and enthusiasm. 

Pa_ge- vii 



Table of Contents 

Measuring the Effect of Human Activity on Weddell Seals (Leptonychotes weddellii) in 
Antarctica •••..•....... : ........................................................... ~ ................................................................... i 

State~ent of Originality ..................................................................................................................... ii 

Statement of Authority of Access ............................................................................................. ~ •••.... iii 

Abstract .............................................................................................................................................. iv 

Acknowledgements ............................................................................................................................ vi 

Table of Contents ............................................................................................................................. viii 

1 Introduction ................................................................... : ............................................................ 1 

1.1 

1.1.1 

Human-wildlife interactions ........................................................................... : .................... 2 

Factors affecting wildlife responses ............................................................... 3 

1.1.2 Human-wildlife interactions in Antarctica ...................................................... 5 

1.2 

1.2.1 

Guidelines for wildlife management ................................................................................... 7 

Guidelines for managing human-Weddell seal interactions ........................... 8 

1.3 The aims of this study ............................ : .......................................................................... 10 
1.4 Study site ........................................................................................................................... 11 
1.5 Studyspecies ...................................................................................................................... 13 

1.5.1 General description ...................................................................................... 13 

1.5.2 

1.5.3 

1.5.4 

1.5.5 

1.6 

1.6.1 

Behaviour ..................................................................................................... 15 

Physiology .................................................................................................... 17 

Vocal behaviour during the breeding season ............................................... 17 

Colony behaviour ......................................................................................... 18 

Response parameters used in this study ............................................................................ 19 

Behaviour ..................................................................................................... 20 

1.6.2· · Physiology .............................................................................. : ..................... 22 

1.6.3 Behavioural and heart rate responses ........................................................... 24 

1. 7 Outline of thesis ................................................................................................................ 24 

2 The Behavioural Responses of Lactating Weddell Seals and their Pups to Pedestrian 
Approaches ........................................................................................................................................ 26 

2.1 Introduction ....................................................................................................................... 27 
2.2 Methods ............................................................................................................................. 29 

2.2.1 Study sites, number of seals and stimuli examined ...................................... 29 

2.2.2 Approach experiments .................................................................................. 29 

2.2.3 Analysis .........................................................................•.............................. 32 

2.3 Results ................................ : .............................................................................................. 36 

2.3 .1 Determination of commonly occurring behaviours and comparison of seal 
behaviour before, during and after pedestrian approaches ................... ~ ....................... 36 

2.3.2 LA Response ................................................................................................ 39 

2.3.3 Time taken to return to rest .......................................................................... 50 

2.4 Discussion ......................................................................................................................... 50 

Page- viii 



l 

2.4.1 General behavioural effects of approach experiments ................................. 51 

2.4.2 , Factors affecting response and stage of approach ........................................ 53 

2.4.3 Time to recovery ... .-...................................................................................... 56 

2.4.4 Implications for management···········································:··························· 57 

3 The Short and Long-term Behavioural Responses of Lactating Weddell Seals and their 
Pups to Pedestrian actiyity ........•.....•........••....•...•..............•....................................•...........•.......•...•. 61 

3.1 Introduction .................................................................................. : .................................... 62 
3.2 Methods ............................................................................................................................. 63 

3.2.1 Studysites ..................................................................................................... 63 

3.2.2 Experimental design .............................................................................. : ...... 63 
I 

3 .2.3 Analysis .................................................................. : ..................................... 66 

3.3 Results ............................................................................................................................... 67 

3.3.1 Experiment 1: short-term exposure ........ : ..................................................... 67 

3.3.2 Experiment 2: long-term exposure ........ ,. .......................................... : ........... 69 

3.4 Discussion ......................................................................................................................... 69 

· 3.4.1 Short-term exposure ..................................................................................... 70 

3.4.2 Long-term exposure ...................................... : ............................................... 72 

3.4.3 Conclusion ................................................................................................. , .. 74 

4 Onshore Heart Rate and Behaviour of Lactating Weddell Seals in the Presence and 
Absence of People ............................................................................................................................. 75 

4.1 Introduction ....................................................................................................................... 76 
4.2 Methods ............................................................................................................................. 78 

4.2.1 

4.2.2 

4.2.3 

4.2.4 

Study sites and number of seals ···················:··············································· 78 

Measuring heart rate ..................................... , ............................................... 78 

Measuring behaviour .................................................................................... 80 

Approach experiments .................................................................................. 82 

4.3 Results ............................................................................................. i •••••••••••••••.••••••••••••••••• 82 

. 4.3.1 

4.3.2 

4.3.3 

4.4 

4.4.1 

General patterns in onshore heart rate .. ." .................................... : .................. 83 . 

Heart rate during approaches ........................................................................ 94 

Behaviour during approaches ....................................... ~ ............................... 94 

Discussion ......................................................................................................................... 97 

Onshore heart rate ..................... ......... : .............. ........................................... 97 

4.4.2 Heart rate in relation to behaviour ............................................................... 99 

4.4.3 Approach experiments ................................................................................ 100 

4.4.4 Conclusion ........................................................................................•......... 100 

5 The Behavioural Resp_onse of Lactating Weddell Seals to over-snow vehicles •.••.•..•••.•.... 102 

5.1 Introduction ...................................................................................................................... 103 
5.2 Methods ........................................................................................................................... 104 

5.2.1 Study site, number of seals and stimuli used ............................................. 104 

5.2.2 Drive-by experiments ................................................................................. 105 

5.2.3 Analysis ...................................................................................................... 106 

Page- ix 



5.3 

5.3.1 

Results ............................................................................................................................. 108 

Comparison of vehicle type ........................................................................ 108 

5.3.2 Drive-by distance ........................................................................................ 108 

5.3.3 Speed oftravel ............................................................................................ 113 

5.3.4 Positional and biological co-variates .......................................................... 113 
5.4 Discussion ................................ , ...................................................................................... 116 

5.4.1 Effects of vehicle type on seal response ..................................................... 116 

5.4.2 The effect of drive-by distance on seal response ....................................... 117 

5.4.3 The effect of vehicle speed on seal response ............................................. 119 

5.4.4 The effect of distance to water and conspecifics {positional factors) ........ 119 

5.4.5 The effect of pup exposure (biological factor) ........................................... 121 

5 .4.6 Implications for management ..................................................................... 122 

6 An Assessment of the Audibility of Weddell Seals to Sound Generated by Human . 
Transport ........................................................................................................................................ 124 

6.1 Introduction ..................................................................................................................... 125 
6.2 Methods ........................................................................................................................... 127 

6.2.1 Study sites, stimulus and experimental design ........................................... 127 

6.2.2 Analysis ....................................................................................................... 135 
6.3 Results ............................................................................................................................. 154 

6.3.1 Sound/distance profiles in relation to the assumed detection threshold of the 
Weddell seal ........................ : ...................................................................................... 154 

6.3.2 Vocal response experiment ........................................................................ 163 
6.4 Discussion .........................•............................................................................................. 165 

6.4.1 Sound/distance profiles in relation to the assumed detection threshold of the 
Weddell seal ............................................................................................................... 165 

6.4.2 Vocal response experiment ........................................................................ 168 

7 General Discussion and Implications for Management ••.•....•.•.•..•••••••....•.•••.....••••.•••••..••.... 171 

7 .1 Summary of findings ....................................................................................................... 172 

7 .1.1 Responses to pedestrians ............................................................................ 172 

7 .1.2 Responses to vehicles ................................................................................. 17 4 

7.1.3 Sound/distance profiles .............................................................................. 174 
7 .2 Review of human-wildlife interaction studies ................................................................. 175 
7.3 Managementguidelines ................................................................................................... 176 
7.4 Implications of this study for existing management guidelines ....................................... 178 

7.4.1 Enhancing wildlife management guidelines ...... : ........................................ 179 
7.5 Final conclusion ............................................................................................. : ................ 180 

Appendix 1 •...•••.•..••••.•...••••...... : •.•..•••..•••••••.••••..••••••.••••.••....•••....••.....•..••••.•.....•••.....•.•••....••.•...••.•..... 182 

Appendix 2 .•••••••.••••••••...•••••••••..•••••••..••....•••.•......••...•••••..•••.••.••.•...•••••..•.••••...•.•••••.•••••••••....•••••...••••.. 183 

Appendix 3 ...................................................................................................................................... 184 

Appendix 4 ••..••••••..••..•.•••••.••••...•••••..•.••.•.••••••••••••.••••••.••••••••••..••••••••••••••••••••.•••••••••••.•••••••••..•••••...••••. 185 

References ····························································••o••························································••o••••········· 198 

x 



1 Introduction 

Page - 1 



In 1959 the Antarctic Treaty System was created to perpetuate peaceful activity iri 
Antarctica and to develop a range of measures and agreements to control human 

impacts on the Antarctic environment as needed (K.imball 1999). In 1991 several 

tourist companies followed suit and founded the International Association of 

Antarctic Tour Operators (IAATO) to promote safe and environmentally responsible 

private-sector travel (IAATO 2004a). The concerns expressed in 1959 and 1991 are 

still relevant today, particularly as the number of people visiting Antarctica continues 

to increase (IAATO 2004a). Currently, guidelines for managing human activity are 

based on the 1991 Protocol on Enviromrtental Protection to the Antarctic Treaty (also 

known as The Madrid Protocol) (Rothwell and Davis 1997). While these guidelines 

attempt to protect the wildlife by minimising disturbance, their scientific basis has 

never been objectively investigated to determine their validity as a means of 

minimising disturbance to wildlife. 

The focus for this study is the guidelines for managing human activity in regard to 

Weddell seals (Leptonychotes weddellii). Specifically, the purpose of the study was 

to measure the effects of pedestrian, vehicle, aircraft and watercraft operations in the 

vicinity of the seals, with ilie view of verifying the existing guidelines and to make 

recommendations as appropriate. 

1.1 Human-wildlife interactions 
Interactions with wildlife occur through various ways, including research (e.g. Salter 

1979; Hindell and Lea 1998), hunting (e.g. Tustin and Challies 1978; Peres 2001), 

tourism (e.g. Erwin 1989; Fowler 1999), and the operation of vehicles, aircraft and 

, watercraft (e.g. Platt 1974; Henry and Hammill 2001). All of these interactions have 

the potential to negatively affect wildlife. 

Effects vary in nature, some being transient, and others lasting for longer periods of 

time. For example, Lesage et al. (1999) found that exposure to small motorboat and 

ferry operations caused beluga whales (Delphinapterus leucas) to change their vocal 

behaviour (short term), while Creel et al. (2002) found that snowmobile usage caused 

elevated stress hormone levels amongst wolves (Canis lupus) and elk (Cervus 

elaphus) (short term with potential longer term consequences). Further, Safina and 

Burger (1983) found that scientific research activity significantly reduced the 

hatching and fledging success of black skimmers (Rynchops niger) (longer term). 

These examples also show that human activity can.affect wildlife at the individual 

level and at the population level, so in the case of the black skimmers, individual 



' 
birds are directly affected by human activity, which in tum affects their offspring and 

therefore the future of the colony (Safina and Burger 1983). 

The above examples demonstrate that human activities can. affec.t the behaviour, 

physiology and breeding success- of individuals. Researchers and wildlife managers 

worldwide have become increasingly interested in both the actual responses of 

wildlife to human activity as well as the follow-on affects of human activity. Thus, 

there have been investigations, for example, into the effect of wildlife tourism 

o,perations on the behaviour of polar bears ( Ursus maritimus) (Dyck and Baydack 

2004) and of tourist boat operations and swimmers on the behaviour ofbottlenose 

dolphins (Tursiops truncatus) (Constantine 2001; Constantine et al. 2004) and the 

reproductive success and fitness of penguins (e.g. Giese 1996; Cobley and Shears 

1999). The benefit of such studies is that it allows both researchers and wildlife 

managers to development management strategies to reduce any negative effects on 

the wildlife. 

1.1.1 Factors affecting wildlife responses 
Interpreting the results of human-wildlife interaction studies is complicated by the 

nature of human activity and the demographics of the species under consideration. 

Not only do the kinds of human activity take many different forms (e.g.- approaches 

on foot, vehicles, filrcraft and watercraft traffic), but each activity may also contain a 

range of visual, acoustic, and olfactory stimuli that impact on how the animals 

respond. As a· consequence, the response of wildlife can be stimulus, species and 

situation specific. For example, New Zealand fur seals (Arctocephalusforsteri) were 

significantly more affected by approaches on land than by approaches by kayaks or 

boats (Boren: et al. 2002), for a colony of harbour seals (Phoca vitulina concolor), 

paddleboats are more likely to cause a flushing event than motorboats (Lelli and 

Harris 2001 }, and for ringed seals (Phoca hispida ), escape responses are greater when 
. ,.,~ ' 

exposed to helicopters than when exposed to fixed-wing aircrafts (Born et al. 1999). 

For vehicular activity,- including aircraft, watercraft and over-snow vehicles, a 

range of factors related to the stimulus that can influence an animal's response 

include the physical structure ofth~ vehicles (i.e. size and shape), its speed of travel, 

the operation distance, the manner in which it is operated and the level and frequency 

of sound generated (e.g. Richardson et a!. 1995; Richardson and Wiirsig 1997; 

National Research Council 2003). A large vehicle generally elicits stronger 

responses among wildlife than a small one and an increase in speed often results in 



higher noise levels (McCauley and Cato 2003). The speed of an approaching 

stimulus may also make it appear more threatening (Dill 1974). The duration of 

exposure to vehicles can also affect wildlife behaviour. Harbour seals are less likely 

to haul-out again if disturbance from boat traffic persists for a long tirlle (Allen et al. 

1984). 

For pedestrian activity, factors related to the stimulus that can influence wildlife 

response include group size, visitor behaviour and approach distance. For example, 

the frequency of threat beh~viour, escape behaviour and aggressive behaviour of 

South American fur seals (Arctocephalus australis) in response to tourist approaches 

appears related to approach distance and visitor behaviour, as approaches to < 10 m . , 

elicit strong responses, while approaches > 10 m elicit weak responses (Ca~sini 

2001). In the same study, the behaviour of visitors had a significant effect on fur seal 

reactions, with approaches by calm people resulting in almost no response, while -

touris.ts who shouted, ran and/or moved their arms elicited strong responses (Cassini 

2001). Similarly, in a study on female harp seals (Phoca groenlandica) with pups, 
-

tourists who remained calm, moved. slowly, crouched while viewing the seals and 

kept some distance, ·caused little or no response amongst the seals (Kovacs and Innes 

1990). 

Factors related to the animal, such as its gender, stage of breeding, age and 

previous exposure to a stimulus, can also influence wildlife responses to human 

activitY (e.g. Kovacs and Innes 1990; Constantine 2001; Lusseau 2003). Adult 

female Atlantic walruses ( Odobenus rosmarus} will respond sooner to aircraft over­

flights at terrestrial haul-outs than will their male counterparts (Salter 1979) . 

. Equally, the response of New Zealand fur seals approached by pedestrians-and small 

boats will vary according to the sex and age of individual s.eals, with adult females 

entering the sea, adult males staying to fight and pups running and hiding from the 

approaching people (Boren et al. 2002). In the same study, previous exposure to the 

stimulus was considered to be one of the most important factors influencing how a 

fur seal responded to human activity (Boren et al. 2002). Specifically, the seals at an 

undisturbed site showed higher levels of avoidance/aggressive responses and more 

changes in behaviour than did seals at regularly exposed sites, indicating that 

experience is another important factor. 

The response of wildlife to human activity is to some extent analogous to the 

response of wildlife to predators (Frid and Dill 2002). In both circumstances, time is 
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diverted from 'fitness-enhancing activities' such as feeding, parental care or mating 

displays, in favour of responding to the perceived threat associated with the stimulus. 

Response to predators and even conspecifics is influenced by the distance the animal 

is to a shelter, the distance the animal is to a conspecific and whether the animal has 

offspring, including the position of that offspring relative to the adult (Robinson 

1981; Y denberg and Dill 1986; Dill and Houtman 1989; ·Blumstein et al. 2003). The 

distance that the animal is to a refuge can influence the flight response, i.e. fleeing, of 

an animal exposed to a predator. For example, in a study on grey squirrels (Sciurus 

carolinensis), a model predator (a stuffed cat) was able to approach to a closer 

distance when the squirrels were closer to a refuge, in this case, a tree (Dill .and 
~ 

Houtman 1989). Similarly, the distance an animal is to a conspeci~c can influence 

its behaviour, in particular vigilance behaviour. For example, wedged-capped 

capuchin monkeys (Cebus nigrivittatus) will show reduced vigilance with increasing 

proximity to the ·nearest neighbour (Robinson 1981 ), and rabbits ( Oryctolagus 

cuniculs) will display reduced vigilant behaviour with increasing proximity to 

cqnsorts, while vigilant behaviour increases with proximity to non-consorts (Roberts 

1988). 

Females with young tend to be more aggressive than adult females without young· . 

(Boness et al. 1982; Harcourt 1991; Miller 1991; Maestripien 1992). Aggression 

and vigilance have been associated with territory maintenance and the protection of 

offspring. For female rhesus monkeys (Macaca mulatto), the position of the young 

influences vigilance behaviour, with females spending significantly more time 

looking up when infants were out of physical reach than others whose infants were 

within arm's length (Leighton-Shaprio 1986). 

The above examples demonstrate that various factors influence the response of 

wildlife to human activity and that these need to be taken into account in studying the 

response of wildlife to human activity. 

1.1.2 Human-wildlife interactions in Antarctica 

Antarctic wildlife has been exposed to human activity since the advent of scientific 

research expeditions to Antarctica in the early 1900s, the building of scientific 

research stations and the development of commercial tourism in the late 1950s 

(Splettstoesser and Folks 1994; Kimball 1999; Bauer 2001). Although research 

specifically directed at measuring the effects of human activity on Antarctic wildlife 

is limited and biased towards avifauna, particularly penguins, work done to date has 



shown that human activity can cause changes in the behaviour and physiology of 

animals, with further consequences for reproductive success and the stability of locaI 

populations (e.g. Ainley et al. 1983; Muller-Schwarze 1984; Wilson et al. 1990; 

Young 1990). 

Comprehensive studies have been conducted on the effects of pedestrian visitation 

and human activity in general on Adelie penguins (Pygoscelis adeliae) by Wilson et 
. , 

al. (1989; 1990), Culik et al. (1990), Woehler et al. (1991), Nimon et al. (1995) and 

Giese (1996; 1998; 1999), and on the behaviour of emperor penguin chicks 

(Aptenodytesforsteri) in response to helicopter operation~ (Giese and Riddle 1999). 

In other studies, the effects of aircraft and scientific handling on emperor penguins 

have also been examined (Boyd and Sladen 1971; Regel and Piitz 1997). Gentoo 

penguin (Pygoscelis papua) breeding performance has also been examined (Cobley 

and Shears 1999). 

The only studies to date that have examined the effects of human activity on 

Antarctic marine mammals have been conducted on the Southern elephant seal 

(Mirounga leonina) (Wilkinson and Bester 1988; Burton and van den Hoff 2002; 

Engelhard 2002; Engelhard et al. 2002a; Engelhard et al. 2002c). Burton and Van 

den Hoff (2002) looked at indirect effects of human activities, such as competition 

with fisheries, seal mortality through discarded fishing gear and pollutants in the 

ocean on Southern elephant seal populations. In doing so, opportunistic observations 

were made of the behavioUral response of 14 male eleph~t seals to.helicopter 

operations on Macquarie Island (54°30'S, 158°57'E). The only discernible response 

from the seals was increased head-lifting during helicopter operations (Burton and 

van den Hoff2002). Wilkinson and Bester (1988) showed that research activities on 

Marion Island (64°52'S, 37°51 'E) did not have any deleterious effects on Southern 

elephant seals breeding there. In this case, the meastire of disturbance was the 

overall abundance of adult cows, weaned pups and dead pups at disturbed versus 

undisturbed sites. 

The research by Engelhard et al. (2002; 2002a; 2002b; 2002c) iS by far the most 

comprehensive study on the effects of human activity on the Southern elephant seal 

conducted to date. Their studies examined endocrinological, clinical-chemical, 

haematological, immunological, behavioural and mass-related parameters to 

investigate the impact of people on female seals and their pups during lactation. This 

research showed that there was no significant difference in the level of stress 
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hormones between mothers and pups in areas of high and low human presence 

(Engelhard et al. 2002b ), no significant difference in mother-pup pairs in clinical 

chemistry and blood composition (Engelhard et al. 2002c~, no difference in the 

haematological parameters for the pups (Engelhard et al. 2002c), and no significant 

difference in mass-related parameters of weaned pups (Engelhard et al. 2002a). The 

only evidence of an effect of human activity was a threefold increase in alertness 

among adult females in the presence of humans (Engelhard et al. 2002a). 

From the above examples it is clear that human activity is capable of eliciting 

changes in the behaviour and physiology of Antarctic animals. The Weddell seal 

lives under and on the fast ice, which alsO' represents a platform upon which people 

travel, work and explore as tourists. The species is therefore.directly exposed to 

pedestrian visits by scientific research statj.on staff and commercial tourists, to 

handling for scientific purposes, and to aircraft operations and over-snow vehicle 

traffic. Most of these interactions occur dutjng the austral spring and summer when 

the seals are hauled out on the ice to breed and to moult and the number of people 

visiting and living in Ai:ttarctica is increased (Tedman et al. 1985; Hall 1992; 

Stonehouse 1992). During breeding, the energy demands on both lactating s'eals 

and their pups are substantial (Pond 19n; Oftedal et al. 1987; Hastings et al. 

1999), suggesting the seals may therefore &e at their most vulnerable to 

disturbance-from human ;lctivity at this time. 

1.2 Guidelines for wildlife management 
Scientific investigations into the effects of human activity on wildlife often aim to 

provide detailed information for the management of human-wildlife interactions (e.g. 

Shackley 1996; Weisenberger et al. 1996; Conomy et al. 1998; Higginbottom 

2004a). In most ~ases, wildlife management involves ~e development of guidelines, 

and, even though specific guidelines vary with species and geographic location, the 

aims are ostensibly the same, to minimise disturbance caused by human activity (see 

for example Australian Government Department of the Environment and Heritage 

2002; Kirkwood et al. 2003; Australian Antarctic Division 2004c). 

The development of guidelines requires a practical definition of what constitutes 

disturbance and the level of disturbance deemed acceptable. Both of these factors 

depend on the goals of management, safety aspects, social expectations, legal 

requirements and ethical considerations (e.g. Claridge 1997; Moscardo 2001; 

Kirkwood et al. 2003; Higginbottom 2004a, b). For example, managers wishing to 
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minimise disturbance to wildlife might define disturbance as 'any' visible change in 

behaviour, while managers wishing to minimise disturbance to wildlife as well as 

maximise visitor satisfaction might define disturbance as a change in behaviour that 

has a significant biological consequence for the animal (i.e. adverse effects on 

reproductive success or survival). Thus, changes that have no biological 

consequence f<;>r the animal are considered acceptable. Both scenarios highlight the 

role of scientific study on the effects of human activity on wildlife and its importance 

in assisting managers in determining separation distances to maintain from the 

wildlife, and which behaviours have adverse biological consequence for the wildlife. 

1.2.1 Guidelines for managing human-Weddell seal interactions 

Interactions with wildlife in Antarctica are broadly governed by the Antarctic Treaty 

1959 and associated agreements, collectively known as the Antarctic Treaty System 

(Rothwell and Davis 1997). In 1991, the Protocol on Environmental Protection to 

the Antarctic Treaty (The Madrid Protocol) was adopted by the Antarctic Treaty 

Consultative Parties to ensure the protection of the Antarctic environment and its 

dependent and associated ecosystems. The protocol applies to tourism and both 

governmental and non-governmental activities in the Treaty Area and is intended to 

"ensure that these activities do not have adverse impacts on the Antarctic 

environment, or in its scientific value and aesthetic values" ( p. 118). 

The Protocol contains a number of guiqing principles relevant to minimising 

disturbance to Antarctic wildlife. For example, recommendation XVIIl-Ia - Protect 

Antarctic Wildlife ( p. 118), which governs general human activity around wildlife 

states: 

"Do not use aircraft, vessels, small boats or other means of transport in ways that 
disturb wildlife, either at sea or on land. 

Do not feed, touch, or handle birds or seals, or approach or photograph them in 
ways that cause them to alter their behaviour. Special care is needed when animals 
are breeding and moulting." 

Similarly, Article VI (Protection of native fauna) of the Antarctic Treaty Handbook 

states that: 

"Each participating Government shall take appropriate measures to minimise 
h~ interference witl?n the Treaty Area with the normal living conditions of 
any native mammal or brrd, or any attempt at such harmful interference ... " (US 
Department of State 2002). 
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In this case, harmful interference is suggested as occurring when aircraft or vehicles 
' 

are operated in a manner, which would disturb concentrations of birds and seals, or 

where people on foot disturb bird or seal colonies. In neither the Protocol, nor the 

Treaty itself, is disturbance defined. 

Within this :framework, Antarctic Treaty Nations, and users operating in , 

accordance with the Antarctic Treaty, such as the International Association of 

Antarctic Tour Operators (IAATO), which is a member organisation founded to 

advocate, promote and practice safe and environmentally responsible private-sector 

travel to the Antarctic (IAA TO 2004a), must develop specific codes of conduct to 

manage on-ground activities. IAATO and many of the Treaty Nations with scientific 

research stations in Antarctica, such as Australia, New Zealand and France, have 

generated specific guidelines for interactio~ with wildlife (see Harris 2001; 

Australian Antarctic Division 2002b, 2004a,' c). However, these guidelines,, with the . , 

exception of pedestrian approaches to Adel_ie penguins and aircraft over-flights to 

emperor penguin chicks in Australian Antarctic Territory (AA T), are not based on 

rigorous scientific testing. At best the guidelines are based on anecdotal reports and 

observations of animals responding to different types of human activity. 

, Within the AAT, the Australian Antarctic Division (AAD) has developed 

'guidelines relevant to managing human activity around W:eddell seals (see Table 1.1). 

However, no s~ientific research has yet been conducted to investigate the effect of 

pedestrian and over-snow vehicle activity on the species, and determine the adequacy 

of the guidelines. Accordingly, it is not known, for example, how ~esilient or 

sensitive Weddell seal are to different types of human activities. 

The AAD guidelines stipulate that the minimum approach distances ~e a guide 

only and that ifthe activity is distui:bing the wildlife then greater distances s~ould be 

maintained (Australian Antarctic Division 2004a). However, once again, no 

definition of disturbance is offered. Similarly, IM TO guidelines are intended to: 

"avoid harmful impacts on marine wildlife populations by ensuring that the normal 
. pattern of daily and seasonal activity of the animals are maintained in the short and 
long term" and specify that certain behaviours/ actions should be prevented, which 
include: "disruption of reproductive and social behaviours" {IAATO 2005 pp. 1 & 
3). ' 

Further, the IAA TO guidelines state that: 

"any seal response other than a raised head should be avoided" QAA TO 2005 pp. 1 
&3). 

Again, it is not clear what is meant by disturbance. 



Even though the Madrid Protocol does not offer a specific definition of 

disturbance, recommendation XVIII-Ia states that approaches to wildlife must not 

elicit changes in behaviour (Rothwell and Davis 1997). Given that both the AAD 

and IAA TO comply with the Madrid Protocol, 'disturbance' could be interpreted to 

mean any change in the visible behaviour of seals. For the purpose of this study, 

then, disturbance is defined as a change in visib.le behaviour. 

Table 1.1 Minimum separation distances (m) from Weddell seals for human activity in. the 
Australian Antarctic Territory (data from Australian Antarctic Division 2002a, b; Australian 
Government Department of the Environment and Heritage 2002; Australian Antarctic 
Division 2004c; IAATO 2005). 

On foot/ Quad or 
ski skidoo 

Australian 
Antarctic 
Division 

Adult females 15 150 
with pup and 
lone pups 

Lone adults 

International All 
Association of 
Antarctic Tour 
Operators 

5 150 

5-10 

Tracked 
vehicle 

250 

250 

* distance applies to seals in the water, on ice floes and onshore, 
t all wildlife including seals. 
# in water {specified for cetaceans only) , 

1.3 The aims of this study 

Small 
boat 

50* 

50* 

30# 

Aircraft 

750 t 
(single engine) 

1500 t 
(twin engine) 

750t 
{single engine) 

1500 t 
{twin engine) 

300 {vertical)# 

The aims of this study were to measure the effects of human activity on Weddell 

seals, with a view to verify existing guidelines in regards to Weddell seals in the 

Australian Antarctic Territory, and make recommendations as appropriate. To 

achieve this, I conducted experiments to measure the behavioural response of 

Weddell seals to pedestrian approaches and over-snow vehicle operations. The study 

also aimed to investigate the effect of pedestrian approaches on Weddell seal · 

physiology and to develop sound/distance profiles of vehicles commonly used in the 

AA T to determine whether vehicle noise has the potential to affect the Weddel~ seal. 

The five specific objectives of this study, each the subject of a chapter of the thesis, 

were: 
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(i) to determine the immediate behavioural responses of lactating Weddell seals 

and their pups to pedestrian approaches; 

(ii). to investigate the temporal nature of the behavioural responses of lactating 

Weddell seals and their pups to repeated exposure to pedestrian activity; 

(iii) to determine whether the heart rate oflactating seals (on the ice) varied with 

respect to behaviour, (e.g. during rest or travel) and, further, to determine 

whether heart rate changed in response to pedestrian approaches; 

(iv) to determine the immediate behavioural response of lactating Weddell seals to 

over-snow vehicle operations; 

(v) to measure the noise generated by the co~only used Antarctic vehicles in the 

AAT, to develop an assumed detection threshold for Weddell seals and to 

determine whether vehicle noise affects the vocal behaviour of Weddell seals. 

underwater. 

1.4 Study site 
The study was conducted at two locations, in East Antarctica, Long Fjord, Vestfold 

Hills (68°35'S, 77°58'E) and Penny Bay, Windmill Islands (66°25'S, l 10°40'E) 

(Figure 1.1 & 1.2). These locations are near the permanent Australian research 

stations of Davis and Casey, respectively. Fieldwork for the study was completed in 

three stages during the summers of2000/01and2002/03 at the Vestfold Hills and 

2001/02 at the Windmill Islands. 

Five breeding colonies, all within 10 km of each other, were studied in the· 

Vestfold Hills and one colony was studied in the Windmill Islands (Figures 1.1 & 

1.2). Each colony contained between 20 and 40 cow-pup pairs and was readily 

accessible to people from nearby research stations. However, the colonies in the 

Vestfold Hills received more visitors per season than the Windmill Islands colony, as 

the Vestfold Hill colonies were located on common thoroughfares for people 

traveling to scientific and recreation areas from Davis Station. The average summer 

population at Davis Station is approximately 80 people, while at Casey Station this 

number is 55. Davis Station is approximately 15 km from the closest colony used in 

this study, while Casey Station is located approximately-25 km from the Windmill 

Islands colony. Seals in the Vestfold Hills have been subject to tagging and 

resighting studies (Green et al. 1995; Lake et al. 1997) during each summer from 

1973/74 to 2000/01. No such studies have been conducted in the Windmill Islands. 
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Figure 1.1 Map of a section of the Vestfold Hills showing the location of the five Weddell seal colonies used in this study. Other symbols in the legend of this map 
relate to the locations of acoustic experiments, where Site A was used to generate the sound/distance profile for the quad, Hagglund and pedestrian. Site B was 
used to generate the sound/distance profile for the helicopter. Site C was used to generate the sound/distance profile for Twin Otter, and Site D was used to 
generate the sound/distance profile for the Twin Otter and the Zodiac. 
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Figure 1.2 Map of a section of the Windmill Islands showing the location of the Weddell 
seal colony in Penny Bay used in this study and the location of the vocal experiment. 

1.5 Study species 

1.5.1 General description 

The Weddell seal is an Antarctic seal in the family Phocidae. It is the most southerly 

breeding mammal and the only mammal that regularly inhabits the fast ice areas of 

the Antarctic continent (Bonner 1999). The species has a circumpolar distribution, 

but can also be found on some sub-Antarctic Islands, with occasional sightings as far 

north as South Australia and New Zealand. The northern-most breeding population 

of Weddell seals is on South Georgia Island (54°30'S, 37°00'W) (Kooyman 1981c; 

Bonner 1999). 
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Weddell seals are semi-gregarious, 'polygamous, non-migratory and show strong 
' 

fidelity to breeding sites (Stirling 1969, 1971; Kaufman et al. 1975; Bartsh et al. 

1992). The seals haul-out on the ice for two main purposes: to breed and to moult. 

Females haul-out on the fast ice to give birth to a single pup between September 

and November each year, with the specific timing increasing with latitude (Stirling 

1969). Females remain close to their pups for the first 12 days post-partum, and then 

spend increasing periods of time in the water (Thomas and DeMaster 1983). Pups 

enter the water about two weeks after birth and are weaned after 6-7 weeks (Elsner et 

al. 1977; Tedman et al. 1985). Ovulation occurs at the end oflactation and 

copulation occurs underwater where males hold territories (Bertram 1940; Cline et 

al. 1971). Implantation is delayed until January/March when the seals have moulted 

and have resumed normal foraging activity (Stirling 1969; Miller 1991). 

Both male and ·female Weddell seals haul out to moult between January and March 

each year. Unlike some other pinnipeds, hair replacement in Weddell seals occurs 

gradually allowing the seals to enter the water to forage-(Wartzok 1991). The 
. ' 

number of seals hauled out on the ice varies with time of day, with numbers peaking 

in the early afternoon, when the sun is at its highest elevation and air temperatures are 

at a maximum (Gree~ and Burton 1988; Bartsh et al. 1992; Bornemann et al. 1998). 

·High skin temperatures are conducive to hair growth (see Wartzok 1991). 

Weddell seals have large, well-developed eyes, capable of vision both in-air and 

underwater. Pinnipeds lack S-cones in their eyes ·so that they cannot see colour and 

therefore respond to brightness cues rather than hues (Schusterman et al. 1981; 

Peichl et al. 2001 ). However, they have a rod-saturated retina and a well-developed 

tapetum making the eye well adapted to low light conditions, such as those 
-

experienced underwater (Lavigne et al. 1977). Vision underwater in the Weddell 

seals is emmetropic (i.e. normal vision), but in-air is myopic and astigmatic 

(imperfect vision - near-sightedness). 

The pinniped auditory system is ·adapted to hear both aquatic and airborne sounds, 

and is directional (Repenning 1972; Richardson et al. 1995; Kastak and Schusterman 

1998). All pinnipeds studied to date show greater sensitivity to underwater sounds 

than to airborne sounds as a result of having a modified external meatus (the passage 

leading from the outside of the head to the eardrum) (Schusterman et al. 1981; 

Kastak and Schusterman 1999). Aural communication underwater is important in 

pinnipeds because the other senses of sight, smell and touch, have limited use in the 
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underwater environment (Ray and deCamp ~969). Most phocid calls are between 0.1 

kHz and 15 kHz, but calls have been recorded as high as 40 kHz,(W artzok and 

Ketten 1999). The source levels of these calls in water is in the order of 130 dB re: 1 

µPa, however, levels as high as 193 dB re l' µPa have been reported for the trills of . 

Weddell seals (Thomas and Kuechle 1982a; Thomas and Kuechle l 982b; Richardson 

et al. 1995). 

There is no specific data on the hearing ability of Weddell seals, but audiogram 

determinations and other psychophysical and anatomical studies indicate that all 

phocids are likely to have similar underwater hearing abilities (Terhune and Turnbull 

1995). Of the phocid species tested, the upper limit of ~ffective hearing is likely to 

be 60 kHz underwater and 20 kHz in air, although in-air sensitivity deteriorates as 

frequency decreases below 2 kHz (Richardson et al. 1995). 
) 

1.5.2 Behaviour 
The behaviour of Weddell seals has been studied since the early 1900s, when Edward 

Wilson made a general study of the Weddell seal's habitat (Kooyman 1969). Since 

then, the behaviour_ofthe species has been extensively documented, with research 

investigating several aspects ofbehaviour, including diving (Kooyman 1967; 

·Kooyman 1975), hunting (Davis et al. 1999), under-ice orientation and movement 

(Kooyman 198la; Wartzok et al. 1989), cow-pup interactions (Tedman and Bryden ' 

1979), colony behaviour (Kaufinan et al. 1975; Bartsh et al. 1992), social behavio~ 

and acoustics (Ray 1967), reproductive behaviour (Braun Hill 1987; Testa et al. 

1987) and territorial behaviour (Kaufman et al. 1975; Bartsh et al. 1992). As the 

present study focuses on lactating females and their pups, the following description 

of behaviour focuses on the behaviours displayed during the lactation period. 

During lactation, female Weddell seals spend most of their time hauled out on the 

ice where they nurture their pup. They also conserve energy whilst hauled out, and 

spend most of their time resting, as has been observed for most pinnipeds (W artzok 

1991). For the first two to three weeks post-partum, Weddell seal cows rarely enter 

the water (- 1-3 times in total) and then only briefly. After that, the cows spend 

increasing periods of time in the water as the pup matures and learns to swim 

(Kaufman et al. 1975). 

Weddell seals have a reputation of being docile, approachable and unafraid of 

humans (e.g. Stirling 1956; Kooyman 198lc), however both males and females can 

be aggressive towards intruders (both humans and conspecifics), particularly in the 
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vicinity of breathing holes and when their pups are present (King 1964; Smith 1966; 

Stirling 1969; Cline et al. 1971). Although anecdotal reports are few, upon the 

approach of humans, some seals have been seen to charge, change their body 

position, (e.g. roll onto their sides), vocalise, snap their jaws, move between the 

approacher and their pup and raise a flipper (similar to the threat posture of harbour 

seals) and flee over the ice or into the water (Ray and deCamp 1969; Kaufman et al. 

1975; Siniff et al. 1977). Weddell seal cows have also bee~ observed to bit~ their 

own pup in response to approaching humans (Kaufm~ et al. 1975). Instances of 
intense apparent tenacity and defence of a pup, even a dead pup, have also been 

described (Siniff et al. 1977). The pups themselves are generally reported to be 

inquisitive, but can act aggressively towards people, biting them if touched (Kaufman 

et al. 1975). 

Responses to conspecifics include vocalisations, and snapping at and biting of 

adults and pups (Smith 1966; Kaufman' et al. 1975). Females will snap their jaws at 

the approach of a male Weddell seal, but if persistent, she will roll over or move 

away (Smith 1966; Cliny et al. 1971). The approach of a male seal is known to cause 

greater disturbance than the approach of either a female or pup (Kaufman et al. 

1975). Females have also been observed to saw the ice with their teeth in response to 

conspecifics, which has resulted in this act being described as a displacement 

behaviour (Kaufinan et al. 1975). Displacement behaviours are behaviours that are 

irrelevant to the situation i~ which they occur (Allaby 1999) and are conducted to 

focus attention away from the aversive stimulus to reduce anxiety (Harvey et al. 

1984). However, others have suggested that ice-sawing is not a displacement 

behaviour and is only conducted by adult females to remove the steep edge of a tide 

crack to enable their pup to haul-out onto the sea ice (Lugg 1966) or to loosen the ice 

to enable ingestion of water (Stirling 1971). 

Behaviours observed and quantified during this study are defined in the following 

chapters. From initial observations of the seals, 12 behaviours were identified (with 

the exception of a few occurrences, I noticed that all Weddell seals were resting on 

their sides rather than on their stomachs. However, this difference in body posture 

did not seem to be significant). The terms used to describe these behaviours are 

original, with the exception of comfort, defined in the Oxford Dictionary of Zoology 

(Allaby 1999), and ice-sawing described by Kau:finan et al. (1975). 
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· 1.5.3 Physiology 
Much of the research on the physiology of the Weddell seal has focussed on the 

physiology of diving. These studies have investigated the aerobic dive limit (e.g. 

Burns and Castellini 1996), oxygen transport (Davis and Kanatous 1999) and heart 

rate (HR) of the species (Kooyman and Campbell 1972). Other studies have 

investigated the basic biochemistry of Weddell seal blood (Murphy et .al. 1982; 

Schumacher et al. 1992), plasma levels of hormones during apnea (Z~teno-Savin 

and Castellini 1998) and temperature regulation (Elsner et al. 1977). No research has 

been conducted on the physiological response of Weddell seals when exposed to 

human activities, however.existing information on the HR of Weddell seals provides 

a useful background from which to examine HR responses to human stimuli. 

The HR of Weddell seals during diving behaviour have been shown to be 

considerably lower (bradyqardia) than during rest. For example Hill et al. (1987) 

recorded decreases of between 35 and .40 beats per minute (bpm) from resting HR to 

diving HR and Zapol et al. (1977) recorded decreases of 41 bpm from resting HR to 

diving HR. Heart rate during rest onshore has been recorded at 56 and 60 bpm for 

adults and 123 bpm for pups (Ray and Smith 1968; Zapol et al. 1977). Kooyman and 

Campbell (1972) recorded the HR of adult seals during sleep in ice holes as w~ll as 

before, during and after dives. Heart rate was foµnd to vary with respiration, with 

eupneic HR during rest averaging 64 beats.per minute (bpm) compared to apnoeic 

HR averaging 34 bpm. The average HR dUrlng and after dives was 85 bpm. In 

another study, Hill et al. (1987) recorded HR during recovery after a dive of> 20 

minutes duration at 98 bpm. 

1.5.4 Vocal behaviour during the breeding season 
The Weddell seal 'is a particularly vocal pinniped (Thomas and Kuechle l 982b; 

Evans et al. 2004); with somewhere in the order of 30-55 call types grouped into 

approximately 13 broad categories (Thomas and Stirling 1983; Pahl et al. 1997). -

Research on Weddell seal vocal behaviour is extensive, covering a number of 

different topics including, the proportional use of underwater calls (Pahl et al. _1996), 

patterns of underwater calls (Thomas et al. 1988), rates of calls (Serrano and Terhune 

2001; Terhune et al. 2001), repertoire and geographic variation in underwater calls 

(e.g. Thomas and Stirling 1983), responses to playback experiments (Watkins and 

. Schevill 1968; Thomas et al. 1983) and in-air ·call sequences (Terhune et al. l 994a). 
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Vocalisations are made by both sexes in-air and underwater throughout the year, 

and have even been recorded from sleeping seals (Stirling 1971 ). Diurnal and 

seasonal patterns in vocal behaviour have been icJ,erttified, with the diurnal pattern 

depending on the time of year, with a peak-calling rate in November (Green and 

Burton 1988). A link between vocalisation and breeding has been proposed by 

Schusterman (19Sl), where the peak calling rate corresponds with the breeding 

season and the number of vocalisations decreases significantly thereafter (Thomas et 

al. 1987; Green and Burton 1988). 

Males are more vocal than females and pups during the breeding season when they 

are communicating with breeding females as well as establishing, and vigorously 

defending, underwater territories (Thomas and Kuechle 1982b). Females, in contrast, 

are particularly vocal after the birth of their pup (Poulter 1968) and most of their 

vocal behaviour on the ice is associated with mother-pup interactions (Thomas 

1979). Airborne vocalisations ofpinnipeds in general appear to be associated with 

social organisation (Evans 1967). 

A complete understanding of the vocal behavioUJ of the Weddell seal has not yet 
\ 

been established. In playback experiments of their own sounds, seals responded 
' 

differently to each of the sounds played to them, implying that the various sounds had 

different meanings for them (Watkins and ScJ:ievill 1968). However, due to the short 

duration of the experiments this finding was difficult to prove definitively. Thomas 

et al. (1983) did however propose interpretations for a number of tqe vocalisations 

recorded in their study. The 'Trill', which is male-specific, was associated with 

territorial advertisement, territorial' defence, domimµ1ce and warning. The 'Chug' 

was associated with aggressive behaviour, the 'Mew' was associated with high 

intensity threat behaviour and the 'Growl' and the 'Grunt' were associated with low 

intensity threat behaviours (also supported by.Thomas and Kuechle (1982}>) and 

Watkins and Schevill (1968)). In addition, Rouget (2004) proposed that the 'Whistle 

descending' (WD) call has a submissive function and might be used as a means of 

defense. 

1.5.5 Colony behaviour 

During the austral spring, female Weddell seals haul-out to give birth to a pup on the 

fast ice. They form colonies around tide-cracks, which facilitate access to the water 

(Tedman and Bryden 1979). The characteristics of these colonies are determined by 

Page- 18 



the stability of the fast ice, the availability of breathing holes and proximity to foqd 

resources (Stirling 1969). 

Spacing of cow-pup pairs within the colony affects the movement of both cows 

and pups. Spacing is believed to be the result of cows occupying vacant sites as 

close as possible to tide cracks at the time ofhaul-out(Ka~fman et al. 1975). 

Although ilie species is generaJly not regarded as territorial, cows maintain small 

'zones of interference' with a radius of 3 m or less (e.g. Mansfield 1958; Ray and 

deCamp 1969; Stirling 1969; Smith and Burton 1970). These zones are maintained 

via mutual avoidance, vocal signals and attacks on intruders (Kaufman et al. 1975). 

Manipulative experiments show that females maintained at high eolony densities 

experience a much higher rate of interactive stress, (i.e. interactions with 

conspeci:fics, as evidenced by fresh wounds), than those ~t low densities (Siniff et al. 

1977). According to Tedman and Bryden (1979) territorial behaviour is based on, 

pup defence and not on the space on the ice per se. This suggests that the 'zone o{ 

interference' is actually the space that the cow and pup occupy, and not a true 

territory. 

As the breeding season progresses, spacing between cow-pup pairs within the 

colony reduces as seals move towards tide cracks because their pups are entering the 

water more often (Tedman and Bryden 1979). The distance between individual seals 

further decreases outside of the breeding season, which is evident in large gioups of 

seals consisting of Juveniles, adult males and females that form in January through to 

March to moult (Stirling 1971). 

1.6 Response parameters u.sed in this study· 
There are two types of immediate responses to human activity that can be measured 

in human-wildlife interaction studies; 1) ~ change in behaviour and 2) a change in 

physiology, indicated by parameters such as HR, respiratory rate, adrenal state or 

body temperature. Other parameters, such as reproductive success (e.g. Hunt 1972; -

Safina and Burger 1983) or population stability (e.g. Young 1990; Woehler et al. 

1991) have also been measured to determine the effects ofhufuan activity on wildlife 

(see for example Fetterolf 1983; Safina and Burger 1983; Giese 1996), however, 

these parameters do not reflect the direct and immediate responses of wildlife as 

readily as do parameters such as behaviour or physiology. 
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1.6.1 Behaviour 
Behaviour is the external expression of an animal's response to stimuli from its 

internal or external environment (Hinde 1982) and appears to be the most common 

response measured in human-wildlife interactions studies. Behavioural observations 
~ • ' I 

made in both the absence and presence of human activity can reveal whether an 

animal performs or suppresses particular behaviours in response to human activity 

(Toates 1995). The behavi~ur can also reveal how an individual animal, and even a 

species, perceives a specific stimulus (i.e. whether it is of positive, negative or 

neutral consequence). Behavioural changes in response to human activity may also 

be taken_ as indicators of physiological changes that. an animal is experiencing. For 

example, if an animal flees from a stimulus (e.g. a predator), sympathetic activity is 

increased, which in turns results in an increase in HR and cardiac ·output. Blood 

sugar is increased to support prolonged activity and blood flow to the skeletal muscle 

is increased to enable greater speed, agility and endurance (Gabrielsen and Smith 

1995). 

, Changes in behaviour, such as increased vigilance, aggression or locomotor 

activity, can result in increased energy expenditure for ~dult seals and may reduc~ 

energy intake for pups if behaviours such as suckling are interrupted. For example, 

Kovacs (1990) found that tourist approaches to lactating harp seals caused the seals 

to enter the water. Those that remained in the colony did not subsequently provide 

their pups with normal care and fen:iales became more aggressive and occasionally 

clawed and bit their pup, causing injury. In a study of grey seals (Halichoerus 

grypus) by Fogden (1971), the presence of researchersJn the colony also resulted in 

adult seals entering the water, with the long-term consequence of almost half of the 

pups (13 pups, 46%) being deserted by their mothers. In this case, crowding at the 
. I 

beach due to pups waiting for the return of their mother, resulted in increased 

aggression between seals, which in tum decreased the time spent suckling and was 

even thought to prevent suckling from occurring. 

The advantages of measuring behaviour in the context of human-wildlife 

interaction studies include: 

(i) the ability to measure the response of the animal to the stimulus with little or no 

interference to the animal, because it is possible to observe and record behaviour 

from a distance and from a (largely) hidden location. Behavioural results are . 

therefore less likely to be confounded by methodology, and more likely to be a true 

reflection of an animal's response. 
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(ii) compared to anatomical or physiological measurements, behavioural 

observations are relatively inexpensive to obtain because equipment costs, such as a 

video camera or a pair of binoculars and a notebook; are minimal. 

(iii) behaviour can be defined and quantified with rela~ve accuracy and, as 

behaviour is readily observable, visitors to breeding wildlife can be educated as to 

which behaviours to look for when approaching seals so that disturbance is 

minimised. 

1.6.1. 1 Limitations with behavioural responses 
Although behavioural responses can provide complex information on how a stimulus 

is perceived and therefore whether the human activity is affecting an animal, it is not 

necessarily the most sensitive response parameter. In some animals, underlying 
, ' 

physiological changes have been recorded without there being any visible 

behavioural signs (e.g. Wilson et al. 1991; Giese 1998). For example, significant 

increases in HR of Adelie penguins W€1fe measured in response to an approaching 

person. At a distance of 15 m, penguin HR increased significantly, yet no 

behavioural signs of disturbance were visible (Giese 1998). Significant increases or 

decreases in phy'Siological parameters may have significant consequences for 

, reproductive success or energy conservation in wildlife. For example, increases in 

neurogenic amines and corticosteroids (involved in the activation of the nervous 

system) may increase the potential for short-tenn survival, but depress the growth 

and skeletal development of young birds and can cause weight loss, reduced 

reproductive capabilities and increased vulnerability to disease in adults (Siegel 

1980). Therefore, a person conducting an activity may believe that there is no 

consequence, based on the absence of a behavioural response, when in fact the 

activity is detrimental to the animal. 

A further limitation of only measuring the behavioural responses of wildlife to 

human activity, is that it may be diffic~lHo identify behavioural changes that are of 

biological significance, i.e. changes that have consequences for the survival or 

reproductive success of the animal. For example, suckling time in young elephant 

seal pups is correlated with lactational pup growth, i.e. weaning mass (Engelhard et 

al. 2002a), which in turn is correlated with survival (McMahon et al. 2000). The 

ability to link changes in behaviour with reproductive success or survival provides 

vital information for the management of human-wildlife interactions. Behaviours 
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that affect survival, for example, could be identified and relayed to visitors so that 

they are aware of the behaviours that should be avoided. 

By contrast, HR for example, that is recorded as increasing or decreasing during 

exposure to a stimulus, can be linked to the metabolic rate and energy expenditure of 

an animal and therefore to fitness (Fedak 1986; Williams et al. 1991; Butler et al. 

1992; Woakes et al. 1992; Hofer and East 1998). 

Finally, behaviour can sometimes be misinterpreted, leading to incorrectly 

concluding that the human activity does or does notelicit a change in behaviour. For 

example, a di~placement behaviour, which is executed to focus attention away from 

an aversive stimulus to reduce the anxiety aroused by the stimulus {HarVey et al. 

1984; Kortmulder 1998; Allaby 1999), could be wrongly interpreted as a 

maintenance behaviour, i.e. a behaviour conducted to maintain body condition. 

1.6.2 Physiology 
Physiological data often provides the first indication that a response to _a stimulus has 

occurred and often provides more detailed information about the magnitude and 

potential consequences of the response than do changes in behaviour alone (Jones 

and Faure 1981; Withers 1992; Hofer and East 1998). The measurement of 

physiological parameters allows the identification of subtle changes at an autonomic 

level (Jones and Faure 1981; Withers 1992), which can occur in the immune, 

cardiovascular, endocrine or metabolic systems. The most common physiological 

response ~ara:meters meas~ed in human-wildlife interaction studies are changes in 

hormone. levels, body temperature and ,HR. 

The mea81;ll"ement of physiological parameters typically involves the extraction of 

biological samples or the attachment of specialised sensors. In the ~ontext ofhuman­

wildlife interaction studies, this poses a problem, as subsequent exposure to human 

activity is likely to be affected by physiological sampling. Therefore, the 

physiological response parameter utilised in human-wildlife interaction studies and 

the methods used to collect this infonnation must ensure that methodological 

interference is minimised. 

Hormone analysis (adrenocortical responses) requires serial blood collection 

requiring restraint of seals on multiple occasions, usually before, during and after 

exposure to the stimulus. This alone can cause considerable physiological change in 

wildlife. In birds, for example, capture and handling results in a rapid increase of 

glucocorticosteroids, usually within 5-10 minutes, and reaches a maximum within 

I 
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30-60 minutes (Wingfield 1994). Similar results on the effect of handling on 

glucoco~coid levels were found in female Southern elephant seals, with moderate 

changes in cortisol levels occurring during the 45 minute sampling period following 

restraint, with average peaks of cortisol occurring 23 minuets after anaesthetic 

administration (Engelhard et al. 2002b ). The iilcrease in glucocorticosteroids during 

capture and handling, and the ongoing effects following handling, can potentially 

mask any increases in the corticosteroids related to subsequent exposure to human · 

activity. Corticosteroids in faeces and urine may be used to' indicate responsiveness 

to stimuli {wingfleld et al. 1997), and thereby remove the need to handle animals, 

however, baseline levels of corticosteroids must first be established using invasive 

sampling methods. In the context of studies to examine responses to particular 

human disturbance stimuli, th~ animal may not defecate or urinate for hours after 

exposure to the stimulus and may experience other forms of stress that could further 

elevate corticosteroid levels, thereby confounding the results. Furthermore, only 

certain 'stressors' have been found to.increase corticosterone concentrations (Harvey 

et al. 1984). 

To measure internal body temperature the animal must swallow a temperature 

logger (Wildlife Computers 1997). Thus, the animal must be restrained and usually 
l 

anaesthetised in order to insert the logger futo the stomach, again this can cause 

changes in the physiological state of the animal and confound results. Stomach 

temperature may also be affected when the animal consumes food, and in the case of 

Weddell seals, if they consume ice during exposure to the human activity. There may 

also be a delayed temperature change following exposure to the stimulus (see Boyd 

and Sladen 1971; Regel and Piltz 1997), making it difficult to correlate precisely with 

particular human activities, especially in situations where an approach by a person for 

example, tests the response of the animal at various distances as they approach. 
I ,' 

Heart rate was considered to be the most sensitive, practical and efficient 

parameter to measure in this study. Although the attachment of an external HR 

recorder also requires anaesthesia, it is possible to include a drug with 'amnesic 

properties in the anaesthetic regime to requce the chance of the animal associating 

humans with any discomfort caused by anaesthesia. Heart rate has been shown to be 

a sensitive indicator of the general physiological condition of an animal (Thompson 

et al. 1968) and changes in HR have been interpreted as an Indicator of stress in other 

species (e.g. Thompson et al. 1968; Syme and Elphick 1982; Culik and Wilson 1991; ~, 

Bevan et al. 1994). Also, changes in HR have instantaneous onset with exposure to 
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stimuli, unlike changes in body temperature and hormone levels, for which there is 

often a delayed response (Thompson et al. 1968; Boyd and Sladen 1971; Perry 1973; 

Regel and Piitz 1997). Relative to other parameters, HR can therefore provide an 

immediate measure of a physiological change. 

1.6.2.1 Limitations with heart rate 
Heart rate can provide information about wildlife responses at an autonomic level 

and if precautions are made to minimise methodological interference, HR can be a 

valuable parameter in studies of the effects of human activity on seals. However, it is 

still possible that the activity of attaching a HR monitor does have an effect on the 

response of the seal during subsequent controlled exposures. The biological 

.significance of increases and decreases in HR is not always clear, particularly when 

HR is measured alone and not in the context of behaviour and the general 

physiological state of the animal. Furthermore, in managing to avoid negative effects 

of human activity, the acceptable level of change in HR is therefore an arbitrary one, 

and if set incorrectly, may lead to an incorrect interpretation of results, with possible 

negative consequences for the wildlife. 

1.6.3 Behavioural and heart rate responses 
Based on ~e advantages and _limitations of both response parameters, it is apparent , 

that a more comprehensive understanding of the nature of an animal's response to a 

stimulus can be achieved when both behaviour and HR are measured concurrently. 

Behavioural changes can be related to changes in HR and vice versa in order to better 

understand the responses of an animal to human activity. The inadequacy of one 

parameter can be compensated by the strength of the other, which will enhance 

interpretation of the full response of the wildlife to the stimulus. 

1.7 . Outline of thesis 
In this thesis I examine and measure the effects of a range of human activities on 

lactating Weddell seals and their pups (Chapter 2-6) then briefly summarises these 

findings in Chapter 7, where I also discuss wildlife management guidelines, the 

implications of the results from my study on existing guidelines, suggest 

modifications to these guidelines and provide a method to enhance'wildlife 

management guidelines. 

With the exception_ofthe general introduction (this chapter) and the general 

discussion (Chapter 7), alJ chapters are self-contained and have been written as 
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scientific-papers. As a consequence, there is some repetition between chapters in the 

introduction and methodology. The abstracts and reference lists for each paper have 

been r~oved and combined into one thesis abstract and reference list. 

I am the senior author on each paper in this thesis, with the exception of the 

anaesthetics paper in Appendix 4. I have been responsible for the organisation and 

execution of field seasons, laboratory and data analysis and the presentation of 

publications. Dr M. Giese (supervisor) was involved with the initial experimental 

design; both Dr Giese and Dr M. Hindell (supervisor) have made contributions to , 

each of the papers in terms of discussion on content and critically reading drafts of 

the papers. Dr J. Terhune (supervisor) made contributions to Chapter'6 in terms of 

data analysis, discussion on content and critically reading drafts. Dr S. Wotherspoon 

has made significant contributions to statistical analyses in Chapters 2 and 5. 
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2 The Behavioural Responses of Lactating Weddell 
Seals and their Pups to Pedestrian Approaches 
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2.1 Introduction 
Behavioural studies examining the response of wildlife to· human activity, 

particularly in the context of wildlife tourism, are becoming increasingly common. 

Studies have been conducted on a wide range of species and human activities, for 

example, the effects of tourists on skis or. snow shoes approaching woodland caribou 

(Rangifer tarandus caribou) (Duchesne et al. 2000), the response to pedestri.ans of 

Adelie penguins (Pygoscelis adeliae) (Woehler et al. 1994; Giese 1998), the 

influence of tourist boat operations and swimmers on bottlenose dolphins (Tursiops 

truncates) (Constantine 2001; 2004) and responses of various seal species to people 

and boats (e.g. Kovacs and Innes 1990; C~sini 2001; Boren et al. 2002). These 

studies suggest that human activity can result in significant changes in the behaviour 

of wildlife and have provided information for the management of human-wildlife 

interactions. 

The response of wildlife to human activity can be influenced by a number of 

factors, which can be separated into (i) stimulus related fac~ors and (ii) factors 

inherent to the animal. In the context of pedestrian activity, stimulus related factors 

include group size (i. e. number of people)~ visitor behavio~ and approach distance 

(e.g. Cassini 2001; Boren et al. 2002). Factors inherent to the animal. can include, its 

age, degree of previous exposure to the stimulus, stage of breeding, distance from 

shelter and location within a breeding group (e.g. Richardson et al. 1995? Lelli and 

Harris ?001; Beale and Monaghan 2004). 

Pinnipeds are a group of animals that are commonly exposed to human activity, 

particularly with the growth of pinniped focused tourism (Birtles et al. 2001; 

Kirkwood et al. 2003). There have been a number of studies investigating the 

response of seals to pedestrian and watercraft activity, which have highlighted the 

various f~ctors that affect an animals' response. For example, a study on tourist 

disturbance on New Zealand fur seals (Arctocephalus forsteri) found that the four 

. most important factors affecting the behavioural response of the seals to human 

- activities were, function of the site (breeding vs. haul-out), gender of the seals, level 

of previous exposure the seals had to the stimulus and ·approach type (Boren et al. 

2002). In this study, fur seals at an undisturbed site showed higher levels of 

avoidance/aggression and responded more often than did seals at disturbed sites. In 

addition, approaching seals on land appeared to affect the animals-more than 

approaches by kayaks and boats (Boren et al. 2002). In other pinniped studies, 

tourist behaviour has been shown to.be an important factor in response, for example, 
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both South American fur seals (Arctocephalus australis) (Cassini 2001) and female 

harp seals (Phoca groenlandica) (Kovacs and Innes 1990) can be_ approached closer 

if people approach slowly and calmly. · 

Breeding Weddell seals (Leptonychotes weddellii) are the most visited marine 

·mammal in the Antarctic because they are the only species that inhabits the fast ice 

and are therefore readily and easily accessible to people (Bonner 1~99). Weddell 

seals also have a reputation as having a docile nature (e.g. Stirling 1956; Kooyman 

1981 c ), largely because they appear to tolerate n;:latively close approaches by people, 

even during the breeding season. 

Adult female Weddell seals haul-out on the fast ice to give birth to a pup; which 

they nurture for 6-7 weeks (Wilson 1907; Tedman et al. 1985). Lactating cows form 

colonies around tide-cracks, which allow the animals ready access to the water 

(Tedman and Bryden 1979). The cows maintain small 'zones ofinterference' around , 

themselves, of a radius of 3 m or less (e.g. Mansfield 1958; Ray and deCamp 1969; 

Stirling 1969; Smith and Burton 1970). These zones are maintained. through mutual 

avoidance, vocal signals and attacks on intruders (Kaufman et al. 1975). 

Manipulative experiments show that females maintained at high colony density 

experience a high rate of interactions with conspecifics (as evidenced by fresh 

wounds) (Siniff et al. 1977). Pedestrian activity around or in' pupp~g colonies has 

the potential to cause changes in behaviour, such as mo:vement of the seals within the 

colony, which increase interactions between cows, in turn affecting cow-pup 

interactions with potential consequences for energy conservation and the time 

available for suckling. 

Measures to protect Weddell seals and Antarctic wildlife in general, exist under the 

Antarctic Treaty System (Kimball 1999) and specific guidelines to minimise 

disturbance to wildlife have been established by the ~temational Association of , 

Antarctic Tour Operators (IAATO) (IAATO 2004a), which is an organisation 

founded to advocate, promote and practice safe and environmentally responsible 

private-sector travel to the Antarctic, and various nations with Antarctic research 
' 

stations (e.g. Australian Antarctic Division 2004a). These guidelines are l~gely 

based on anecdotal reports and in the case of the Weddell seal the guidelines are not 

based on scientific studies. Given that other Antarctic wildlife, namely Adelle 

. penguins and emperor penguins (Aptenodytes forsteri), and other pinniped species 

have been shown to be sensitive to human activity (e.g. Kovacs and Innes 1990; 
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Giese 1998; Giese and Riddle 1999; Cassini 2001; Boren et al. 2002) determining 

whether Weddell seals are affected by human activity is vital for the effective 

management of human-Weddell seal interactions. 

The aim of this study then, was to provide a scientific basis for a review of existing 

guidelines :µsed in the Australian Antarctic Territory and for the tourism industry. 

Experiments, which were designed to expose Weddell seals to the type of pedestrian 

activity they currently experience, were1therefore conducted to measure the 

·immediate behavioural response oflactating Weddell seals and their pups to 

pedestrian approaches, and the factors affecting response. 

2.2 Methods 

2.2.1 Study sites, number of seals and stimuli examined 
The study was conducted on lactating Weddell seals and their pups at two sites in 

East Antarctica: near Davis in Long Fjord, Vestfold Hills (68°35'S, 77°58'E) during 

the summer of2000/2001, and near Casey at Penny Bay, Windmill Islands (66°25'S, 

l 10°40'E) dUring the summer of2001/2002. Both colonies contained on average 40 

cow-pup pairs. Although both colonies are readily accessible to humans, seals in the 

Vestfol~ Hills colony (Colony A) receive on average more visitors per season than 

those in the Windmill Islands colony (Colony B) because the former is located in a· 

thoroughfare area and is closer to the Antarctic research station, Davis ( ~ 10 km 

away). The seals in Colony A have also been subject to tagging and re-sighting 

studies from 1973 to 2001 (Green et al. 1995) and thus have potentially more 

experience with people than do the seals ill the Windmill Islands, that have not been 

tagged. 

In total, the behaviour of 52 lactating Weddell seals with pups and 41 lone pups 

was recorded (Table 2.1 ). Single and group approaches to cow-pup pairs were 

conducted within a 19 and 15 day period for Colony.A and Colony B respectively. 

Single person approaches to lone pups were conducted within a seven and five day 

period for Colony A and Colony B respectively. 

2.2.2 Approach experiments 

Pedestrian approaches were 4esigned to closely resemble the actual pedestrian 

activity that the seals in this part of Antarctica experience. Therefore, three dtfferent 

approach experiments were conducted, (i) an approach to a cow-pup pair by a single 

person, (ii) an approach to a cow-pup pair by a group of five people and (iii) an 
. I 

I 
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approach to a lone pup by a single person {Table 2.1 ). The experiments incorporated 

four approach distances: 20, 15, 10 and 5 m. The 15 m distance, was recommended 

by the Australian Antarctic Division (AAD) guidelines at the time of the study as 

being suitable for approaches to breeding Weddell seals and pups (2004a) and the 5 

and 10 m distances were recommended by IAATO (2005). As the efficacy of these 

guidelines h'.18 never been tested, one distance greater than the existing limits was 

included (i.e. 20 m). All three experiments also examined the effect of posture of the 

approacher, i.e. whether people stood or crouched in front of the seals. 

Table 2.1 The number of cow-pup pairs used in each colony approached by a single person, 
a group of five people, and both the single and group of people. The number of lone pups 
approached by a single person is also presented. 

Approach type 

C.Olony Single Group Single + Group Lone pups 

V estfold Hills 6 1 19 15 
(C.Olony A) 

Wmdmill Islands 0 22 4 26 
(C.OlonyB) 

Seals were selected such that experimental approaches would not affect other seals· , 

in the immediate vicinity. Cows with pups greater than one week old, determined 

from body size or observations of pup births, were selected for cow-pup approaches 
' ' 

(Bryden et al. 1984). The lone pup approaches were conducted towards the end of 

the pupping season, as this was when they were more likely to be by themselves. The 

pups were therefore close to weaning age (6-7 weeks) (Tedman et al. 1985). Seals 

were given an identification number at the be~g of the season (painted on the 

hair) with peroxide hair-dye (Bristol Myers Squibb, Rydalmere Australia). One 

person quietly approached each seal (wearing camouflaged clothing) and applied the 

dye while the seal was asleep to avoid the seal responding and thereby invalidating 

the results. Although seals sometimes responded, their response was short-term. 

Given that each searwas treated the same, and no aggressive responses were 

observed, all dyed seals were experimentally approached. 

Each approach consisted of a pre-approach recording of 30 minutes, the approach· 

(approximately eight minutes) and a post approach recording of 10-20 minutes. The 

pre-approach recording period functioned as a control, in which behaviour in the 

absence of human activity was recorded. The approach consisted of either a single 

person or a group of five people walking directly towards the seal, starting from a 
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distance of at least 60 m. At 30 m, the approacher notified the observer, with the use 

of a handheld radio, who was recording the behaviour of the seal and the approach 

distance on Hi8 digital video camera. The observer was out of sight, behind rafted 

ice or rocks, and between 5-30 m from the seals (Figure 2.1 ). At a distance of 20 m 

from the seals the approachers stopped for one minute, then continued walking 

towards the seals, stopping again at 15, 10 and 5 m. At both the 10 and 5 m 

distances, the approachers spent an extra minute in a crouched position. People 

retreated along the same approach path without stopping. Post approach recordings 

commenced once the people were out of view of the seal, and were made to enable 

the time taken for the resting behaviour of seals to return to pre-approach levels to be 

calculated. The speed of all approaches was constant and the appearance of the 

approachers was standardised, i.e. dark coloured pants and a standard-issue red top. 

For the cow-pup pairs that were exposed to both single person and group 

approaches, the order in which each approach was conducted was randomised to 

avoid any bias associated with previous exposure to approach experiments. All 

approaches were made between 08:00 and 19:30 on days with winds < 25 knots 

(measured at 2 m above ground level using a Speedtech Instrument Weathermate©). 

For each approach, the following co-variates were recorded: the distance of the 

focal seal to the nearest conspecific, the distance of the seal to water (being a 

potential refuge), the approach angle i.e. the part of the seal that the approach was 

directed at, and whether the pup was exposed to the approacher, i.e. whether the pup 

was between the cow and the approacher. 

Figure 2.1 A group approach to a cow-pup pair showing the observer filming the behaviour 
of the cow from behind rafted ice and the approaching group from a distance of> 60 m. 
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2.2.3 Analysis 
Behaviour was quantified using The Observer (version 5.0 Noldus Info~ation. 

Technology 2003), a software package specifically designed for integrated 

behavioural analyses. 

Eleven behavioural categories were initially identified: rest, comfort, look, attack, 

ice-sawing, eat ice, vocalise, interact, travel, pup bump, and shift position 

(Table 2.2). Vocalise, pup bump and shift position were classified as event 

behaviours, i.e. they were instantaneous, and were measured as frequency of 

occmrence per minute (Altmann 1974). The other behaviours were classified as state 

behaviours that had an appreciable duration, and were measured in minutes as the. 

proportion of time of the recording that the seal spent performing ~e behaviour 

(Altmann 1974). Look, interact, attack and vocalise were further categorised in terms 

of 'to whom' the behaviour was directed (Table 2). 

All data were tested for normality and homogeneity of variance using exploratory 

. analysis and residual plots (Quinn and Keough 2002). Non-parametric statistical 

methods were used where transform13:tions were not found to improve variables to 

meet the assumptions of the parametric statistical tests .. 
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Table 2.2 Categories and description of Weddell seal behavioiir. 

Behaviour Classified To whom the behaviour is directed Description. 
as 

Rest State NIA Lying still, no sign of activity, eyes closed. 

Comfort State NIA Included scratching, yawning, grooming and 
stretching. The5e behaviours increase the 
physical comfort of the animal (Allaby ,1999). 

Look State Pup, conspecific, surroundings, bird Involved the seal looking. The seal's body 
or approachers .. position was not taken into account, that is, no 

distinction was made between lying still and 
raising the head 

Attack State Pup, conspecific, surroundings, bird Agonistic behaviour, which included lunging or 
or approachers. charging, biting and snapping of jaws. 

Ice sawing State NIA .Short duration behaviour consisting of 
incomplete and often slow swings of the head 
from side to side where the upper jaw makes 
contact with the ice or snow (Kaufman et al. 
1975). 

Eating ice State NIA Ingesting snow or ice. Often seen after ice-
sawmg. 

Vocal Event Pup, conspecific, surroundings, bird The seal vocalised. Vocalisations were not 
or approachers. differentiated. 

Interact State Pup m: conspecific: Unlike 'attack', this category included behaviours 
such as the cow placing her fore flipper on the 
pup and the cow and pup nuzzling together. 

Travel State NIA Purposeful movement involving the seal movillg 
from one location to another. 

Pup bump Event NIA Cow responded to the pup touching her, usually 
when the pup was moving around her body. 
The cow shifted the affected pa,rt, for example, 
her head, out of the pup's way. 

Shift position Event NIA Seal altered its posture by rolling or shifting part 
of its-body. Did not include purposeful 
movement as described in 'travel'. 

2.2.3.1 ·Comparison between colonies · 

Mann-Whitney U tests (Quinn and Keough 2002) were used to compare the 

behaviour of the cows during the group approach and of the pups duiing the lone pup 

approaches from the ~o study sites. The five most commonly occurring behaviours: 

rest, comfort, looking-at-approacher (LA), looking-at-surroundings (LS) and shifting 

position were compared. Sequential Bonferroni corrections were used to correct for 

possible inflation of Type II errors due to multiple tests (Qui~ and Keough 2002). 

Behaviour of the seals approach~d by a single person was not compared due to the 

small ~ample size at Colony B. 
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On the basis that the behaviorir of seals exposed to the group and lone pup 

experiments from Colony A and Colony B was indistinguishable (Appendix 1), these 

data were pooled to produce final sample sizes of29, 46 and 41 animals for the 

single, group and lone pup approaches respectively. 

2.2.3.2 Determination of commonly occurring behaviours 
The most common behaviours .recorded during the approach for each of.the three 

experiments were identified by calculating the percentage of seals that performed 

each behaviour (Appendix 2). 

2.2.3.3' Comparison between stages of the approach 

Friedman rank tests (Zar 1999} wert'. used to compare the duration and frequency of 

the five most commonly occurring behaviours before, during and after pedestrian 

approaches for each of the three experiments. 

2.2.3.4 Significance of recorded variable in determining approach 
distance 

Looking-at-approacher was the behaviour that, in both the single person and group 
i ' ' 

approach experiments, was consistently different before, during and after pedestrian 

approaches, and was therefore used for further analysis. 

Two statistical methods were employed to investigate the effects of the co-variates 

on approach distance: a linear regression (LR) and a proportional odds regression 

model (PORM) (McCullagh and Nelder 1989). How.ever, data from the lone pup 

approaches was not analysed in this. way because of the small percentage of pups that 

responded to the approacher. Therefore, lone pup data was only explored 

descriptively and graphically for this analysis. 

The linear regression model relafed the distance of approach at which the seal 

responded to the distance to the nearest conspecific and the distance to water, 

allowing the relations to differ with approach type and pup exposure. The limitation 

of this method was that it focused on the distance that people could approach a seal 

before it responded, and not the different posture of the approachers, i.e. standing 

versus crouching. 

The proportional odds regression model treated the stages of approach as a set of 

ordered categories, for example, 15 m, 10 m standing and 1 O m crouching. Body 

posture, standing and cr~uching, at the 10 and 5 m distances were therefore separated 

into two distinct categories. 
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Where a linear regression models the mean distance of appro~ch that is reached 

before a seal will respond, proportional odds regression models the o.dds that a stage 

of approach is reached before a seal will respond. If Pr(stage ::;; j) is the probability that 

the seal will respond to the approacher before stage j, then the odds the seal will 

respond to the approacher before stage j are simply: 

Pr( stage::;; j) /(1- Pr( stage::;; j)). 

The proportional odds· model assumes there is a linear relationship between the log 

odds and the predictors as follows: 

Pr(stage::;; j) 
log - . = aj + /31X1 + /32X2 :+···+ Pmxm. 

1-Pr(stage::;; ;) 

Here, the ai are intercepts that determine ''baseline" odds that an individual will 

respond before a given stage of approach, and the /3; are regression coefficients that 

describe the effect of the predictors x1,x2 , ••• ,xm. The key assumption of the 

proportional odds model is that the values for /3; are independent ofj, that is, the 

effect of the predictors is consistent across all stages. 

_. To interpret these results, the model was presented in terms of three sets of contour 

maps (see 2.3.2.3) where the cumulative probability of an outcome exceeds a given 

thresho~d probability. Three thresholds, 0.2, 0.5 and 0.8 were chosen to represent the 

stage (distance and body posture fro~ the seals) at which one can be 20%, 50% and 

80% confident respectively, that the seals will have responded. Two maps represent 

· the group approaches and two maps represent the single approaches to distingril.sh 

between pup exposures. The conditions of the contours were: the distance to water 
- I • 

(range 0-30 m in 5 m increments) and distance to a conspecific (range 0-50 m in 

10 m increments). 

2.2.3.5 Calculation of the time taken to return to rest 

Behavioural data was arc-sin transformed to improve normality and homogeneity of 

variances. A Multivariate Analysis of Variance (MANOVA) was conducted to 

determine whether the behavioural response profile of the cows differed over the 

approach experiments for the single and group approaches. On the basis that there 

was no significant difference in the profile of the cows that were approached by a 

single person and a group of people (F= 0.502,p = 0.921), the data were pooled to 

increase the sample size for this analysis. The data from the lone pup approaches 

were not further analysed because of the small sample size. 
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To determine when post approach restin~ levels (i.e. the percentage of time the seal 

spent resting) returned to pre-approach resting levels, the post approach period was 

first divided into five minute sections. Helmert style contrasts of each post approach 

period and the average pre-approach resting levels were then tested by MANOV A. 

The first five minute time interval post approach in which the seals' resting level 

statistically matched the pre-approach resting level was taken to indicate the time 

interval at which the approachers no longer had an affect on the behaviour of the 

seals.· This time was however, an underestimate, because of the limited power of the 

test. 

2.3 Results 

2.3.1 Determination of commonly occurring behaviours and 
' comparison of seal behaviour before, during and after pedestrian 

approaches 

The most common behaviours recorded during each of _!he three experiments were 

resting (100% of seals), comfort (single= 96.55%, group= 89.13%, pup= 87.80%), 

looking-at-approacher (single= 62.07%, group= 76.09%, pup= 39.02%), looking­

at-surroundings (single= 41.38%, group= 65.22%, pup= 34.15%) and shift position. 

(single= 55.17%, group= 45.65%, pup,= 19.51%) (Appendix 2). 

Comparisons before, during and after the pedestrian approach for each experiment 

showed that the percentage of time that seals spent looking-at-approacher was 

significantly higher during the approach than during any other phase. Cows 

approached by the group also spent less time resting and more time looking-at­

surroundings during the approach. Lone pups spent significantly less time 

performing comfort behaviour during the approach than during post approach 

observations (Table 2.3). 
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Table 2.3 Results of the Friedman test (mean± st. dev) comparing the most commonly 
occurring behaviours observed during the single person approach to the cow-pup pair, the 
group approach to the cow-pup pair and the single person approach to the lone pup across 
the three stages of approach (pre-approach, approach and post approach). Values of 
p < 0.05 are in bold. If a significant effect was found, the Wilcoxon signed rank test was 

· applied for post-hoe comparisons. Symbols '<' and '>' indicate significant increase or 
decrease in the % of seals performing the behaviour between stages; symbol '=' indicates no 
significant difference (see Appendix 3 for statistical values). 

Behaviour 

Single approach to 
cow-pup n=29 

Rest (% of time) 

Comfort (% of 
time) 

Looking-at­
Approacher (% of 
time) 

Pre-approach 

Mean± st. dev 

92.57 ± 6.22 

5.46 ± 4.20 

0.00 ± 0 

Looking-at- 0.83 ± 1.88 
Surroundings {% 
of time) 

Shift position 
(freq. of occur 
min/hr) 

0.12 ± 0.19 

/ 

Approach 

85.26 ± 16.61 

4.45 ± 5.05 

7.01 ± 11.13 

1.07 ± 2.15 

0.24 ± 0.33 

Post approach 

'X;l.2 ·p Post hoe test 

88.90 ± 12.59 4.62 0.099 
-

8.62 ± 10.13 2.97 0.227 

0.00 ± 0 36.00 < 0.0001 A>Pre 

A>Post 

Pre= Post 

1.35 ± 3.70 0.32 0.85 

0.26 ± 0.34 2.26 0.322 
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Table 2.3 continued 

Pre-approach Approach Post approach 

Groupn=46 Mean± st. dev xl p Post hoe test 

Rest (% of time) 92.51±6.22 82.98 ± 16.53 88.93 ± 14.35 13.91 0.001 A<Pre 

A<Post 

Pre= Post 

Comfort (% of 6.66 ± 521 3.52 ± 3.67 6.36 ± 6.95 4.0 0.135 
time) 

Looking-at- o.oo ± 0 9.48 ± 12.76 9.00 ± 0 70.0 < 0.0001 A>Pre 
Approacher (% 

A>Post of time) 

Pre= Post 

Looking-at- 0.21±0.33 1.90 ± 3.72 0.59 ± 1.38 11.77 0.003 A>Pre 
Surroundings (% 

A>Post of time) 

Pre= Post 

Shift position 0.10 ± 0.15 ' 0.22 ± 0.38 0.17 ± 0.30 0.28 0.868 
(freq. of occur 
min/hr) 

Pre-approach Approach Post approach 

Pupn=39 Mean± st. dev XJ.2 p Post hoe test 

Rest (% of time) 80.73 ± 15.96 79.72 ±,24.81 71.71 ± 25.47 5.282 0.071 

Comfort (% of 18.04 ± 14.91 15.23 ± 18.56 24.69 ± 22.23 13.12 0.001 A"' Pre 
time) 8 

A<Post 

Pre= Post 

Looking-at- 0.00 ± 0 2.71 ± 5.36 0.00 ± 0 28.0 < 0.0001 A>Pre 
Approacher (% 

A>Post of time) 

Pre= Post 

Looking-at- 0.79 ± 1.18 1.16 ± 3.0 1.81±3.01 3.127 ,- 0.209 
Surroundings (% 
of time) 

Shift position 0.49 ± 0.13 0.06 ± 0.15 0.11±020 2.375 0.305 
(freq. of occur 
minlhr) 
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2.3.2 LA Response 
The percentages of seals that responded by looking-at-approacher during the single, 

group and lone pup approaches were 62%, 76% and 39% respectively. There was no 

clear pattern in the percentage of lone pups that responded to the approachers at each 

of the stages of the approach (Figure 2.2a). Similarly, there was no evidence of a 

difference in the duration of response across the stages of approach for lone pups 

(Figure 2.2b ). 

Only one cow (of the 52 cows approached) showed a stronger response than 

looking-at-approacher. This individual attacked both her pup and the approachers. 

When approached by a single person to the 10 m distance the cow attacked her pup 

(biting and shaking it), when the person approached to the closer distance of 5 m the 

cow charged the approacher with an open gape. When approached by a group of 

people, the cow attacked her pup when people were at the 15 m distance, and again, 

when the group was 5 m away, again charging the group with an open gape. 

a) 

8~ 

1 

.. 6-i 

! : 
~ l 

4! 

20 
.-- -

15 10s 10c 5s 
Stage of approach 

(m) 

b) 

Sc 20 15 10s 10c 5s 
Stage of Approach 

(m) 

Figure 2.2a) The percentage of pups responding at each of the stages of approach. b) The 
percentage of time spent responding± SE during each stage of the approach. The 's' 
signifies that the person was standing and the 'c' signifies that the person was crouching. 
Note: The 30 m distance and the retreat have been removed because the time spent at the 
30 m distance and retreating was considerably shorter than at the other distances. 

Page - 39 

Sc 



2.3.2.1 Signfficance of recorded variables in determining 
approach distance (cow/pup pairs) 

Exploratory analysis of the recorded co-variates in relation to the distance at which 

the seal first responded indicated that approach type (single or group), distance to 

conspecific, and pup exposur~ were important (Figure 2.3-2.5). Distance to water 

was included in the model to investigate whether it may function as a refuge to which 

seals could retreat when presented with a negative stimulus on the ice. 

If the effects of the other co-variates were ignored, a two-samples t-test showed 

that the distance at which the seals responded was dependent on pup exposure 

(t = 3.262, df= 46,p = 0.002). However, given the highly discrete nature of the data, 

.:the assumptions of normality required by a t-test were likely to be violated, therefore 

a permutation test (Good 2000), was also performed. This test also showed strong 

, evidence of a difference in pup exposure with the distance of approach (probability of 

0.005). 
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Figure 2.3 The percentage of cows looking at the single person (n=29) and the group of 
people (group size= 5 people) (n=46) at each of the distances of the approach. 
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Figure 2.4 The percentage of cows looking at the approachers, irrespective of approach type 
(single versus group), when the pup was directly exposed to the approachers (i.e. pup was 
between the cow and the people) and when not exposed (i.e. cow was between the pup and 
the approachers). 
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Figure 2.5 Regression analysis showing a positive relationship between the distance of 
approach and the distance the cow was from the nearest conspecific. 

2.3.2.2 Significance of recorded variables in determining approach 
distance using linear regression 

An initial regression model was used to relate the distance at which the cows first 

responded to the distance each cow was from the nearest conspecific,, the distance the 

cow was from water, whether or not the pup was exposed and the type of approach 

(single and group). All three-way interactions between approach type, pup exposure 

and either distance to conspecific or distance to water were included. Stepwise 

·model selection, based on the Akaike's information criterion (AIC) (Quinn and 

Keough 2002), was used to select the most parsimonious model. The final model 

included all the main effects; approach type, pup exposure, distance to conspeci:fi.c 

and distance to water, and two-way interactions between approach type and distance 

to water (p = 0.003), approach type and distance to conspecific (p = 0.003), and pup 

exposure and distance to water (p = 0.009). The model therefore showed that the 

seals' response differed with the approach type and that the relevance of distance to 

water differed with pup exposure. 

The responses of some individual cows and the related co-variates strongly 

influenced the results of the regression model. However, deleting these observations 
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and refitting the model did not alter the major conclusions of the model, therefore 

they were retained in the data set. 

As there were significant interactions between approach type and distance to water 

and approach type and distance to conspecific, the model was refitted to the single 

approach experiment and to the group approach experiment sep~ately, to simplify 

the interpretation of the model. 

When the model was refitted to the single approach data alone, there was no 

evidence that pup exposure or distance to water influenced the distance that a single 

person could approach a eow before she responded (pup exposure t = -1. 766, df = 15, 

p = 0.098,-and distance to water t = 1.54, df = 15,p = 0.143). The lack of a 

significant difference between interactions may be attributed to the decreased sample 

size compared to the combined dataset. If, for consistency with the combined 

analysis (i. e. single and group data-set) these terms were retained, inspection of the 

95% confidence intervals for the regression coefficients showed that: 

(i) irrespective of the exposure of the pup, for every 1 m the cow was closer to the 

water, the single' person could approach between -0.2 II). and 1.4 m closer before the 

cow responded. Thus, a single p~son could app~oach to a dos~r distance before the 

cow responded when the cow was closer to the water. 

(ii) when the pup was exposed, then a single person could approach between -

10.4 m and -16.6 m closer before the cow responded, while if the pup was not 

exposed, a single person could approach between-1.1mand12.2 m closer before the 

cow responded. Therefore, a single person could approach to a closer distance before 

the cow responded when the pup was not exposed. 

When the model was refi~ed to the group approach data alone, distance to the 

nearest conspecific had significant effects on the distance at which the cows first 

responded (p < 0.001) and a significant interaction occurred between pup exposure -

and distance to water (p = 0.005). Inspection of the 95% confidence intervals for the 

regression showed that: 

(i) irrespective of pup exposure, for every 1 m the cow was closer to a conspecific, 

the distance to which the group could approach decreased by between 0.3 m to O. 7 m 

before the cow respond~. Thus, the group could get closer when the cow was closer 

to a conspecific. 
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(ii) when the pup was exposed, for every 1 m the cow was farther from the water,> 

the distance to which the group could approach increased by between 0.5 m and 

1.3 m before the cow responded. Thus, the group could get less close when the cow 

was further from the water. 

(iii) when the pup was not exposed, for every 1 m the cow was further from the 

water, the distance to which the group could approach decreased by between 0.6 and 

-0.6 m before the cow responded. What is indicated here is that there is no evidence 

that the distance the group could approach was related to the distance to the water 

when the pup was not exposed. 

2.3.2.3 Significance of recorded variables in determining stage of 
approach using proportional odds regression 

The proportional odds regression model related the stagy of approach at which the 

seals first responded to the distance the cow was from the nearest conspecific, the 

--distance the cow was from water, pup exposure and the type of approach (single and 

group). As with the linear regression, stepwise model selection based on the AIC 

was used to select the most parsimonious model. The final model included all of the 

main effects and the two-way interactions between approach type and distance to 

conspecific (t = 3 .167), approach type and distance to water (t = -2.903) and distance 

to water and pup e_xposure (t = -2.597). 

While it is possible to iµterpret the model coefficients, the fitted model is more 

easily understood through its predictions. The reason for this is the complicated 

nature of the proportional odds model. Figure 2.6 presents the contour maps that 

show the closest stage of approach that the approachers could reach before 80% of 

cows were predicted to respond for specific combinations of the co-variates. For 

example, when a cow was 15 m from the water and 30 m from a conspecific and the 

pup was not exposed, 80% of cows were predicted to respond when the group was 

somewhere between 20 m and 15 m from the pair. If the cow was 20 m from a 

'conspecific and still 15 m from the water, then the group could approach to lO m and 

crouch dowri (Figure 2.6a) before the cow responded. Similarly, Figures 2. 7 and 2.8 

show the stage of approach that could be reached before 50% and 20% of cows 

respond~d. l; 

The results of the proportional odds model for the cumulative probability for the 

0.8 threshold showed that when a pup was not exposed, the distance the cow was 

from water had little effect on the stage of approach that the group could reach before 
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the cow responded. The distance that the cows were from a conspecific did, 

however, affect the stage of approach. Contr~wise, for an approach by a·single 

person the distance to water did have an effect on the stage of approach, but the 

distance the cow was from a conspecific did not (Figure 2.6c). When the pup was 

exposed, irrespective of approach type, both distance to water and distance to a 

conspecific influenced .the stage of approach that could be reached before 80% of 

cows were predicted to respond. The effect of distance to water, however, was 

counter-intuitive, in that it was reversed. A single person could approach to a closer 

stage when the cow was closer to the water while a closer approach by the group 

required the seals to be further from the water (Figure 2.6b & d) . 

. The contour maps from Figures 2.6-2.8 show the stage of approach for specific 

combinations of the co-variates at the three different cumulative probability 

thresholds. That is, the stage of approach that both the single person and the group of 

people could reach before 80%, 50% and 20 % of cows were predicted to respond. 

For example, 80% of cows with pups that were not exposed and were lying 15 m 
·. I 

from the water and 10 m from a conspecific were predicted to respond to_ an approach-

by a single person when the person was som~where between 15 m and 10 m from the 

seals (Figure 2.6d). This stage of approach increased to approximately 20 m when 

the percentage of cows that were predicted to respond was decreased to 50%, and the 

stage of approach was further increased to between 30 th and 20-m when the . 

percentage of co~s that were predicted to- respond was decreased to 20% (Figure 

2.7d & 2.8d). 
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Figure 2.6 The contour maps generated through the proportional odds regression model for 
the 0.8 predictability threshold. The maps illustrate the closest stage of approach that could 
be reached before 80% of cows were predicted to respond for specific combinations of the 
co-variates. The 's' represents the body posture of standing and 'c' represents the body 
posture of crouching. The dotted lines provide an example of how to use the maps, so, in 
figure (a) for example, the stage of approach the group could reach before 80% of cows, 
whose pups are not exposed and are lying 15 m from the water and 20 and 30 m from a 
conspecific, are predicted to respond occurs at the intersection of the dotted lines (10 m 
crouching and standing at 15 m, respectively). 
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Figure 2. 7 The contour m~ps generated through the proportional odds regression model for 
the 0.5 predictability threshold. The maps illustrate the closest stage of approach that could 
be reached before 50% of cows were predicted to respond for specific combinations of the 
co-variates. The 's' represents the body posture of standing and 'c' represents the body 
posture of crouching. The dotted lines in figure ( d) provide an example of how to use the 
maps, so, the stage of approach a single person could reach before 50% of cows, whose pups 
are exposed and are lying 15 m from the water and 10 m from a conspecific, are predicted to 
respond occurs at 20 m. Compare with Figure 2.6d and Figure 2.8d for the 0.8 and 0.2 
thresholds. ' 
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Figure 2.8 The contour maps generated through the proportional odds 'f'egression model for 
the 0.2 predictability threshold. The maps illustrate the closest stage of approach that could 
be reached before 20% of cows were predicted to respond for specific combinations of the 
co-variates. The 's' represents the body posture of standing and 'c' represents the body 
posture of crouching. The dotted lines in figure (d) provide an example of how to use the 
maps, so, the stage of approach a single person could reach before 20% of cows, whose pups 
are exposed and are lying 15 m from the water and 10 m from a conspecific, are predicted to 
respond occurs between 20 and 30 m. Compare with Figure 2.6d and Figure 2. 7 d for the 0 .8 
-and 0.5 thresholds. 
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2.3.3 Time taken to return to rest 
A MANOV A, combining the data from both single person and group approach 

experiments, showed evidence of a change in the duration of resting behaviour 

during the approach experiment (F= 2.193,p = 0.032). The contrast revealed that 

cows spent significantly less time resting, compared to pre-approach resting levels 

(92.7% of time), when the approachers were between 10 m standing and 5 minutes 

post approach. It should be recognised that at the 15 m distance, resting levels first 

fell to an indistingtiishable level, that is, compared to pre-approach levels. Resting 

levels returned to those recorded prior to approaches 5 minutes after the approach 

(Table 2.4). 

Table 2.4 Summary results of the Contrast analysis showing the significance of the 
percentage of time spent resting during the pre-approach compared to each stage of the 
approach, irrespective of approach type, starting with the final 5 minutes of the post 
approach. Significant results at the 0.5 alpha level are in bold. Combined n=71. 

Contrast with 
Pre-approach Mean(% of Ftest p 
(mean = 92.6) time resting) 

5-10 min post 89.6 0.854 0.360 
approach 

0-5 min post 88.3 4.612 0.037 Q) 

approach 
!/) 
as 
~ 

Retreat 84.3 
0 Ol 

3.685 0.061 Q) c: 
~; 
as !/) 

5 m crouching 82.2 4.464 0.040 - Q) 

J, o.:: 
Q) c: 

5 m standing 
0 Q) 

72.8 13.39 <0.001 c: c. 
Q) !/) 

32 Q) 

10 m crouching 86.0 3.801 0.057 >E 
Q):;::: 

Q) Q) 

1 O m standing .82.6 4.673 0.039 E..c: 
i o-

(/) .5 

15 m 85.6 1.041 0.313 

20m 89.1 2.230 0.634 

30 rn 85.4 0.082 0.776 

2.4 Discussion 
Guidelines for human-wildlife interactions often aim to minimise disturbance to 

wildlife and simultaneously ensure viewer satisfaction and safety (see for example 

Australian Government Department of the Environment and Heritage 2002; 

Kirkwood et al. 2003; Australian Antarctic Division 2004c). In most cases however, 

guidelines, including those tested in this study (i.e. the AADs and IAATOs), 

recommend one distance per type of approach per species, and in some cases 

breeding status, to guide visitors and reduce wildlife disturbance (e.g. Australian 
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Government Department of the Environm,ent and Heritage 2002; Australian Antarctic 

Division 2004a; 2004c; IAATO ~005). Often, such guidelines have been purposely 

developed to increase the probability of the guidelines being adhered to, as guidelines 

that are too complex may be less likely to be remembered, influencing.compliance. 

However, the approach of setting generic guidelines does not always allow for 

differences in the sensitivity of individual ~als to human activity or the allimal 

related factors that can affect ail animal's response. Where such 'blanket' guidelines 

are set conservatively, they may minimise the likelihood of wildlife being affected by 

human activity, but this may come at the cost of visitor satisfaction. Alternatively, -

guidelines designed to maximise visitor satisfaction, for example by allowing close 

approaches to breeding animals, may result in greater wildlife disturbance. 

Irrespective of how they are set; such guidelines are not always maximally effective. 

This study has shown that the behavioural responses of lactating Weddell seals and 

lone pups to pedestrian approaches can be influenced by a number of factors, namely, 

(i) the type of appr~ach, i.e. single versus group, (ii) the distances of the focal ~eal to 

water and to the nearest conspecific and (iii) whether pups are exposed to the 

approacher. These associations have implications for the development of sensitive 

management guidelines that aim to minimise disturbance to the seals while providing 

a satisfying viewing experience for visitors. 

2.4.1 General behavioural effects of approach experiments 
The approach of a single person or a small group of people to 5 m from Weddell 

seals resulted in most cows and some lone pups becoming alert. Some. individuals 

showed no sign of a behavioural response, suggesting that approaches to 5 m were 

relatively insignificant. Weddell seals are, however, known to react strongly to 

approaching people (for example, Kaufman et al. 1975), and I recorded one instance 

of a lactating cow attacking her pup and charging at the approachers. Although just 

one animal in the sample responded in this manner, the result suggests that pedestrian 

approaches can elicit extreme responses, albeit rarely, that may have adverse 

consequences for the pup. 

Generally, however, the response looking-at-approacher was the only behaviour 

indicative of a re~ponse to the stimuli tested. Alert behaviour, often described as 

vigilance, and defined as the ''readiness of an animal to detect certain specified 

events that occur unpredictably in its environment" (Allaby 1999 p.566), is often 

reported as a response to human activity (e.g. Yorio and Boersma 1992; Conomy et 
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al. 1998; Giese 1998; Dyck and Baydack 2004). In Wedd~ll seals, alertness in 

response to pedestrians suggests that the approach of people represented an 

unpredictable stimulus that warranted monitoring. 

The number of people (group size) approaching and observing wildlife has been 

shown to affec~ the behaviour and even the breeding success of wildlife. For 

example, an increase in the number of observers resulted in a decrease in the time 

that woodland caribou (Rangi.fer tarandus caribou) spent foraging and 

resting/ruminating (Duchesne et al. 2000). An increase in the number of boats 

observing bottlenose dolphins (Tursiops truncatus) also resulted in a decrease in 

resting behaviour (Constantine et al. 2004). In a study of kittiwakes (Rissa 

tridactyla) and guillemots (Uria aalge), an 8.5% increase in the number of visitors 

resulted in a 22% and 13% nesting failure rate for the two species respectively, while 

halving.the number of visitors resulted in a·nesting failure of 4.4%·and 12.8% 
. ' 

respectively (Beale and Monaghan 2004). In the current study, the response of 

Weddell seals indicated that the number of people approaching the seals d~termined 

the stage of approach at which the seals responded, and the percentage of cows that 

responded. During group approaches, cows also spent more time looking-at­

surroundings and less time resting. Although resting levels increased once the 

approachers were out of sight, the seals remained alert during this period. This 

response was not apparent during single approach experiments, which may indicate 

that the cows considered an approach by a group to be of greater concern, requiring 

increased vigilance. 

Responses of wildlife to human activity have also been shown to differ· according 

to the age of an animal. Adult female New Zealand fur seals, for example, are 

known to enter the sea when exposed to pedestrians or small boats, while pups hide 

among the rocks (Boren et al. 2002). The percentage of Weddell seals in this study 

that responded to an approaching person was lower for lone pups than for lactating 

cows. This suggests that the pups perceived the approach of the·person differently to 

the cows, perhaps because of differences in age, and therefore lack of previous 

exposure to h~an activity. Female Weddell seals return to the same pupping 

colonies to give birth each year (e.g. Cline et al. 1971; Thomas and DeMaster 1983;. 

Thomas and Stirling 1983) and the colonies used in this study have been subject to 

intermittent visits by station personnel since the establishment of the two scientific 

research stations during the 1950s (Austraiian Antarctic Division 2004b ). This prior 

exposure may mean that the cows had learned to become vigilant when subject to 
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pedestrian approaches (see Chapter 3 for behavioural responses to cumulative 

exposure). The pups in this study, on the other hand, had only received exposure to 

pedestrian activity during the experimental period, and may not have developed an 

association with people. 

Alternatively, the lower percentage of lone pups (compared to lactating cows) 
' 

responding to the single approach may have.been related to factors such as the 

distance the pups were from water and the distance they were from a conspecific. 

Both of these factors had an effect on how_ close people could approach before 

eliciting a response from lactating cows (see 2.4.2). Unfortunately, the percentage of 

lone pups that responded to the approach' was small, making it impossible to verify 

whether these factors influenced.the results. 

Lone pups spent significantly niore time performing c<?mfort behaviours, i.e. 

scratching, yawning, grooming and stretching following the approach than during the 

approach.. Changes in comfort behaviours are not typically described in responses of 

pinnipeds to human activity (for example Born et al. 1999; Cassini 2001; Boren et al. 

2002; Engelhard et al. 2002a; Cassini et al. 2004; Orsini 2004). Rather, responses 

are described as vigilance activiti~s and escape behaviour. However, in a study on 

the impact 'of tourism on harp seals, comfort behaviours were described for pups 

(Kovacs and Innes 1990). Contrary to the results in the current study, harp seals 

reduced their comfort behaviour both during tourist approaches and for one hour after 

the tourists had retreated (Kovacs and Innes 1990). 

The increase in comfort behaviours following approaches in the present study may 

be the result of those pups that were looking-at-approacher during the approaches, 

actively conducting behaviours to increase their overall comfort levels following 

exposure to the approacher. Even if this were the case, approaches by a single person 

appear to affect the behaviour of the pups for only short time periods following 

exposure. 

2.4.2 Factors affecting response and stage of approach· 
The two statistical methods employed to determine the distance, or stage of approach, 

before the cows respo~ded provided the same qualitative results. While the 

coefficients of the PORM are relatively difficult to interpret, the predictions 

expressed through the contour maps provide clear information that is immediately 

usable by any visitors on site. This method also provides additional information 

about the significance of some animal and stimulus related factors that affect seal 
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behaviour, 'fhich means that managers are in a better position to develop more 

effective guidelines. The PORM also has the advantage of distinguishing between 

the effects that body posture of the approacher (stand versus crouch) has on seal 

response. Determining whether or not body posture has an effect on the likelihood of 

response can be used as a management tool to minimise disturbance to wildlife, yet 

increase visitor satisfaction. For example, if crouching at 10 m does not elicit an 

alert response but standing at 1_ 0 m does, then people can be informed that they can 

approach to 10 m as long as they crouch down. 

Cows adopted a different strategy when approached by a group of people than 

when approached by a single person. For a cow approached by a single person, the 

importance of distance to water and distance to another seal differed according to 

whether or not her pup was exposed. For C<?WS approached by a group, the closeness 

of other seals, irrespective of pup exposure, was important, but distance to water was 

only perceived to be important to cows when their pups were' exposed. These result~ 

will therefore be discussed as four SGenarios, (i) a single approach to a cow-pup pair 

where the pup is exposed, (ii) a single approach to a cow-pup pair where the pup is _ 

not exposed, (iii) a group approach to a cow-pup pair where the pup is exposed and 

(iv) a group approach to a cow-pup pair where the pup is not exposed. 
I 

Scenario 1 - Single approach to a cow-'-pup pair where-the pup is exposed 

Both the distan~e to water, and to a conspecific influenced response, with cow~ 

positioned near the water allowing closer approaches and cows positioned closer to a 

conspecific allovying closer approachers. This suggests that seals regarded water as a 

place to escape to and therefore that they perceived the approacher to be a potential 

threat. Proximity to shelter (equivalent to water for the seals) has been identified in 

other studies as an important factor affecting the distance from a stimulus at which an 

animal responds. For example, grey squirrels (Sciurus carolinensis) 

characteristically seek shelter in a tree when attacked (Dill and Houtman 1989). The 

distance at which squirrels flee when exposed to a predator, increases when the 

distance from the tree is in~reased (Dill and Houtman 1989). No seals in this study 

entered the water, indicating that the effort associated with entering the water, or the 

consequences of spe~ding tinie in the water instead of being hauled out on the ice, 

may have been greater than the perceived threat of the approaching person. This 

suggests that while the approaching person warranted monitoring and preparedness to 

Page- 54 



respond further, the approacher was not perceived by the cows to be particularly 

threatening. 

In other studies, vigilance behaviour has been correlated with proximity to a 

conspecific, where vigilance behaviour was related to predator detection/~lnerability 

and foraging success (e.g. Robinson 1981; Roberts 1988; Barnard 2004). Predator 

detection is increased when animals are closer together because of the increase in the 

number of eyes watching for predators. This also means that each individual can 

spend less time Vigilant and more time for other fitness enhancing behaviours, such 
' ~ 

as foraging and resting. Since Weddell seals do not feed on the ice, foraging activity 

will not be influenced by group vigilance, however, vulnerability to predators may 

be. Even though Weddell seals do not have any land-based predators (e.g. Lfodsey 

193 7; Ray and deCamp 1969) they may display an innate avoidance and vigilance 

re~ponse to humans, which are a relatively novel stimulus in the environment of a 

Weddell seal. Vulnerability to predators decreases with increased proximity to 

conspecifics because of the dilution factor, where risk of capture is diluted by the 

presence of conspecifics (Barnard 2004). Furthermore, the probability of an 

individual being taken by a predator decreases with an increase in group size because 
. . 

there are more eyes to detect a predator.· Therefore, the closer the seals are to each 

other, the more 'at ease' they may feel, and so allow an intruder (in this case a 

pedestrian) to approach more closely before responding. 

Scenario 2 - Single approach to a cow-pup pair 'where the pup is not exposed 

As with scenario 1; the response of cows was influenced by distance to water, 

however, under this scenario, the distance to a conspecific was not important. The 

reasons why the distance to conspecific is important when the pup is not protected 

from the stimulus and not when·the pup is protecte~, is however, not cl~ar. 

Scenario 3 - Group approach to a cow-pup pair where the pup is exposed 

Both the distance to a conspeci:fic and the distance to the water influenced response 
- . 

in Weddell seals when approached by a group of people. Cows closer to another seal 

could be approached more closely than cows further from conspecifics. The 

importance of distance to water in this result is, however, counter-intuitive. When 

cows were further away from the water, people oould approach more closely before a 

response was evident. In this scenario, there is no obvious explanation for the cows 

responding at a later stage of approach (closer distance) the further they were from 

the water~ This may simply be an artefact of the dataset, i.e. limited sample size and 
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therefore the inability to exantjne three-way interactions, and may be clarified with 

additional sampling. 

Scenario 4 - Group approach to a cow-pup pair where the P1:'P is not exposed 

Under this scenario, the distance to a conspecific influenced response in Weddell 

seals when approached by a group of people. Again, cows closer to another seal 

could be approached more closely than cows further from conspecifics. However, 

the stage of appreach that the group could reach before the seals responded was not 

influenced by distance to water. Tiris suggests that the seals did not consider the 

water as a place of escape tq be relevant. The reasons for this are not clear, 

particularly because an increasdn people can equate to an increase in predation risk 

(which the results of this study suggest), and an increase in predation risk can result 

in an increase in escape behaviour. For example, tWo heron species (Egretta spp.) 

are known to be more likely to flee when: birdwatchers are present in larger groups 

(Burger and Gochfeld 1998). 

Summary of response and factors influencing response 

In all but one scenario, the proximity of the cow to a conspecific was important in 

determining the stage of approach that people could reach before seals responded. 

The reason this factor was not important when a single person approached a cow 

where her pup was not exposed, is not clear. The proximity of water in affecting seal 

responses was also inconsistent, but results nonetheless indicated that distance to 

water could influence Weddell seal response. The influence on response (of the cow) 

of the position of the pup is not obvious and therefore does not allow specific 'pup 

exposure' oriented guidelines to be developed. However, taking both distance to 

conspecifics and distance to water into account appears likely to improve the ability 

of visitor guidelines to ensure minimal disturbance to Weddell seals, while allowing 

visitors to approach seals Closely. 

2.4.3 Time to recovery 
In this study, significant decreases in cow resting behaviour occurred when people 

were 10 m or closer to seals, and did not return to pre-approach levels until five 

minutes after the completion of the approach. This indicates that although a 

significant change in behaviour occurred, it was of short duration. Other studies of 

the response of pinnipeds to human activity have also shown that behaviour returns 

to pre-disturbance levels soon after the disturbance is removed. For instance, the 

alert behaviour-of lactating Southern elephant seals (Mirounga leonina) returned to 
( 
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pre-disturbance levels immediately after the departure of humans (Engelhard et al. 

2002a) and attendance behaviour oflactating harp seals returned to normal levels· 

almost immediately after the departure of tourists (Kovacs and Innes 1990). 

An interruption to resting behaviour, or any other behaviour, may not have 

immediate negative consequences for the animal, however, there may be cumulative 

effects of interruptions in behaviour that are, as yet, unclear. Wildlife is often 

subjected to on-going human activity. For inst_ance, some penguin colonies on ~e 

Antarctic Peninsula receive up to 3,000-4,000 visitors within a three month season 

(IAA TO 2004b ). Therefore, understanding how the responses of animals change 

when interruptions are repeated will also be important in developing guidelines that 

reduce both the short and long-term consequences of visitation (see Chapter 3). 

2.4.4 Implications for management 
Generic, or 'blanket' guidelines, which are commonly employed for the management 

of human-wildlife interactions, may not be maximally effective at minimising 

disturbance to all individuals, unless the guidelines are set conservatively at a level 

that causes no visible response. However, guidelines that ensure no disturbance to 

wildlife run the risk of failing to achieve visitor satisfactfon (e.g. Australian 

Government Department of the Environment and Heritage 2002; IAATO 2005). 

The blanket guideline set by the AAD for people approaching Weddell ~eals with 

pups and pups on their own was 15 mat the time of this study, although this distance 

has recently been increased to 20 m (Australian Antarctic Division 2002a, 2004a). 

The AAD acknowledges that this distance is a guide only and stipulates that ifhuman 

activity is disturbing the wildlife, then greater distances should be maintained 

-(Australian Antarctic Division 2004a). No definition of disturbance is provided by' 

the AAD, however, it is .reasonable to interpret disturbance to mean 'a change in 

behaviour' as the AAD complies With recommendation XVIIl-Ia- Protect Antarctic 

Wildlife, of the Madrid Protocol (Rothwell and Davis 1997 p. 118), which states: 

"Do not feed, touch, or handle birds or seals, or approach or photograph them in 

ways that cause them to alter their behaviour ... " (Rothwell and Davis 1997 p.118). 

The blanket guideline set by IAATO for approaches to Weddell seals on foot is 5-

10 m (IAATO 2005). IAATO also complies with the Madrid Protocol, and has 

specified separation distances that should prevent disruption to reproductive and 

social behaviours, but that do allow the seal to raise its head. However, a strict 
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interpretation of the results of the current study indicate that adherence to the IAA TO 

guidelines would elicit ~t least short-term changes in Weddell seal behaviour. 

Disturbance in this study has been defined as 'a change in behaviour', suggesting 

that approaches to 20 m result in some seals being disturbed. Strict interpretation of 

existing guidelines, those of both the AAD and IAAJ'O, show that they are not 

effective at preventing a change in all Weddell seal behaviour. The Weddell seal 

responses reported here imply that a separation distance of more than 30 m would 

need to be employed if no change in seal behaviour is the desired outcome for 

managers controlling visits to lactating Weddell seals and pups close to weaning. 

Given that many management guidelines aim to minimise disturbance to wildlife 

and maximise visitor satisfaction, large separation distances, designed to prevent any 

visible change in-behaviour are not necessarily the best solution, especially in cases 

, where an increase in separation distance raises logistic proglems relating to safety for 

example. It is at this point that managers may need to adopt less strict definitions of 

disturbance and accept some behavioural change of wildlife exposed to visitation. 

One approach to this is to reconsider the definition of disturbance in relation to 

whether changes in behaviour have significant biological consequences for the 

animals. Thus, changes in. behaviour that have no biological consequence to the 

animal may be considered acceptable, but behavioural changes that have adverse 

effects on reproductive success or survival are not. A threefold increase in alertness 

of lactating Southern elephant seals during visits by researchers, for example, was 

found to have no measurable effect on the weaning mass of pups or on mother-pup 

behaviour (Engelhard et al. 2002a). The authors therefore concluded that the human 

activity investigated in their study was unlikely to result in a decrease in fitness of the 

seals. Thus, the change in behaviour could be considered acceptable because there 
,· _/ 

was no fitness cos~ demonstrated. 

Studies investigating the biological consequence of short~term, seemingly 

innocuous changes in beh~viour are limited, specifically those that correlate short­

term changes in behaviour to long-term effects. Those that are able to link short-term 

changes in behaviour to long-term effects, or an absence of, should not, however, be 

taken to imply that similar species or stimuli will result in the same outcome. Thus 

in the case of the Weddell seals in this study, an increase in alertness could have 

, long-term consequences for pup mass and possibly survival. 
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An alternative management option to balance the pressure of minimising 

disturbance to wildlife and maximising visitor satisfaction and safety is to allow a 

certain percentage of animals in a colony/population to show a change in behaviour. 

Approaches to a distance that elicits a response in some individuals (i.e. a small 

percentage of animals) will enable a closer approach (increase in visitor satisfaction), 

but ensure protection for most individuals (who show no change in behaviour). 

Ultimately the decision to change the definition of disturbance or to allow a 

specific number of individuals to be disturbed depends on a number of factors, 

including the goals of management, legal requirements, social expectations, safety 

aspects and ethical considerations (e.g. Claridge 1997; Moscardo 2001; Kirkwood et 

.al. 2003; Higginbottom 2004a, b). Nevertheless, scientific research, as in the present 

case, can provide the information required for either management option. 

Management guidelines can be tailored for the species in question, by 

understanding and incorporating the factors that affect their response, to further 

increase visitor satisfaction and prevent/minimise disturbance to wildlife. This study 

has shown that there are a number of factors that influence the point at which a 

lactating Weddell seal responds behaviourally to an approach by a single person and 

a group of people. Many of the factors can be incorporated into guidelines, for 

example by using the PORM method of analysis, so that visitors in the field can 

determine which seal they can make the closest approach to without causing 

significant changes in the natural behaviour of the wildlife. In addition, the PORM 

method of analysis allows wildlire managers to control the percentage of individuals 

in a colony/population that are likely to respond by providing visitors with the 

appropriate contour map, i.e. specific predictability threshold. 

Although both managers and tour operators may consider the use of contour maps 

impractical, because it requires additional education and that tourists assess each 

situation before approaching, the use of these maps allows closer approaches 

(increased satisfaction), because the approacher can determine which animal is least 

likely to respond for any combinations of the factors influencing its behaviour. 

Furthermore, the PORM method of analysis has broader applications than Weddell 

seals in the Antarctic. It can be used for any species, focus on any behaviour and can 

incorporate other stimulus and animal related factors. The generation of species 

specific and stimulus specific contour maps (guidelines) can therefore make 
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substantial contributions to minimising disturbance during human-wildlife 

interactions. 
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3 The Short and Long-term Behavioural Responses 
of Lactating Weddell Seals and their 

Pups to Pedestrian activity 
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3.1 Introduction 
In the context of studies investigating the responses of wildlife to human activity, the 

short-term, or immediate behavioural reactions to novel stimuli, or to stimuli that are 

encountered at irregular intervals, have been documented for a number of species. 

For example, Giese and Riddell (1999) report on the behavioural responses of 

emperor penguin (Aptenodytes forsteri) chicks to the single passage of a helicopter 

and Erwin (1989) reports on the flush distance (i.e. the distance at which a bird flies 

up off its nest) of various -species of nesting water birds to a single approach by two 

people. However, wildlife is often subjected to on-going h~an activity, creating a 

need to understand how prolonged and repeated exposure influences the nature of 

wildlife response. Such information provides insight into the possible cumulative 

effects of repeated human activity on wildlife, w~ch is essential if interactions are to 

be sustained over the long-term. 

At some point after repeated exposure to the same stimulus, an animal will no 

longer perceive the stimulus as novel, and may alter its response accordingly 

(Manning and Stamp Dawkins 1992). ,'The nature_ofthe respon8e, and the way this 

changes, depends on a variety of factors, including how the stimulus is perceived, 

(e.g. whether: it is of positive, negative or neutral consequence), the state of the 

animal (e.g. its health, age and stage of breeding} and the environment. in which the 

animal experiences the stimulus (Petrinovich 1973; Manning and Stamp Dawkins 

1992; Constantine 2001). 

There are five categories into which the behavioural responses of'Yildlife to a 
. ' 

repeated stimulus can be placed. (i) Attraction, which is the strengthening of an 

animal's response as a result of positive reinforcement, and is often manifested as 

physical movement towards the stimuli (Knight and Cole 1991); (ii) avoidanqe, 

which is an aversion to negative consequences associated with a stimulus (Knight 

and-Cole 1991; Allaby 1999); (iii) sensitisation, which is an increased responsiveness 

to the stimulus over time (Richardson et al. 1995; Allaby 1999); (iv) habituation, 

which is the gradual waning of a response as a result of repeated stimulation, where 

the stimulus lacks significant consequences for the animal (Hinde 1970); and (v) 

tolerance, which occurs when an animal remains in the vicinity of the stimulus 

because there is no option to leave (Richardson et al. 1995). However, special care 
-

must be taken not to misinterpret a lack of response as an instance of tolerance, 

because the stimulus might simply have been too weak to warrant a measurable 

reaction. Nevertheless, each of these response types demonstrates that the animal has 
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recognised a stimulus, has learnt something of its consequences, and has changed its 

behaviour accordingly (Manning and Stamp Dawkins 1992). 

The type of behavioural response elicited by a stimulus is of considerable practical 

concern when attempting to manage human interactions with wildlife populations. 

Knowing which response is elicited by a particular stimulus allows management 

strategies to be developed that are appropriate· and effective at minimising 

disturbance over the long-term. · 

In Antarctica, especially during the austral spring and summer, many animal 

species receive visits from both tourists and personnel working at scientific research 

bases. Many of these visits occur at wildlife breeding areas, as these offer reliable 

opportunities to view animals, often resulting in the same sites receiving multiple 

visits. For example, of the 150 sites visited by tourists on the Antarctic Peninsula 

since 1989, the majority of these visits were concentrated at< 35 sites, with a small 

number of those sites receiving 3,000-4,000 visitors each season (IAATO 2004b). 

Weddell seals (Leptonychotes weddelliz) are one species that receives multiple 

visits from humans, primarily because females haul-out.to give birth on the fast ice, 

which is readily accessible from research bases and offers a platform for human 

travel. In addition, the species has a reputation of being unafraid of humans (e.g. 

Stirling 1956; Kooyman 198lc) and is therefore targeted by visitors in the hope of 

getting close to breeding animals and their young. The aim of this study was to 

investigate whether the behavioural responses of lactating Weddell seals and their 

pups change with repeated exposure to ~edestrian activity over a short-time period 

and a longer-time period, to better inform management of human-Weddell seal 

interactions. 

3.2 Methods 

3.2.1 Study sites 
The study was conducted during the Weddell seal pupping season (October-

December) in Long Fjord, Vestfold Hills (68°35'S, 77°58'E, 2000) and Penny Bay, 

Windmill Islands (66°25'S, l 10°40'E, 2001) East Antarctica. 

3.2.2 Experimental design 
Two experiments were conducted. Experiment 1 (short-term exposure), was 

designed to measure the changes in beh~viour oflactating Weddell seals to a highly 

controlled and predictable stimulus over a short time period. (within a few hours). 
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Seals were exposed. to_ repeated approaches by a single person, simulating the kind of 

exposure that the individual seals might experience during a visit by a tour group or 

by station personnel. The age of the pups was unknown, however, based on body 

size and observations of births, approaches were restricted to cows with pups older 

than one week (Bryden et al. 1984). Experiment 2 (long-term exposure), compared 

the behaviour of seals (adult females and pups) in a colony exposed to relatively 

unpredictable pedestrian activity throughout the pupping season (several weeks), to 

that of seals in a colony not exposed to human activity. Once again, this experiment 

was designed to simulate the type and level of exposure the seals might receive 

during an entire pupping season. 

3.2.2.1 Experiment 1: Short-term exposure 
The experiment testing the short-term effe~ts of repeated exposure to human activity 

was conducted in Penny Bay. Ten direct approaches by a single person were 

successively made to the same cow-pup pair over a period of approximately 1.4 

hours, with each approach separated by 10 minutes. For each approach, the person 

stopped at a distance of 5 m from the pair for one minute and then crouched for a 

further minute, simulating a visitor crouching to take a ph~tograph, before standing 

and retreating along their approach path to an area out of sight of the seals (behind 

rafted ice). All experiments were conducted between 09:00 and 18:00 (local time). 

Eighteen pairs of seals were approached. The approacher, using a Hi8 Digital video 

camera, filmed the behaviour of the cows during the approach. The responses that 

were quantified were (i) whether the seal looked at the approacher and (ii) the 

proportion of time that this behaviour was expressed. For each approach, the person 

walked at a constant pace and wore the same clothing (black.pants and a standard­

issue red top). 

3.2.2.2 Experiment 2: Long-term exposure 

The experiment testing the long-term effects of repeated exposure to pedestrian 

activity was conducted in Long Fjord using two seal colonies, located approximately 

4.5 km apart and out of sight of each other. The seals, both cows and pups, in the 

experimental colony were exposed to daily pedestrian activity during the pupping 

season, in the form of pedestrian activity within the colony, which included 

approaches to read flipper tags (attached in previous years) and experimental 

pedestrian approaches conducted by the research group. Each cow-pup pair received 

_ up to two experimental approaches (5 m from the seals) throughout the pupping 

season. The seals in the control colony were not exposed to any human activity. 
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At the end of the pupping season, a scan sample (Altmann 1974) of the behaviour 

of all seals (cows and pups) in response to a single person slowly walking through 

each colony, approaching each seal to a distance of 5 m, was conducted. These 

approaches were made between 18:00 and 19:30 (local time). At the experimental 

colony, several cows were in the water at the time of the walk through, (indicated by 

the presence of nine lone pups hauled out on the ice, which was approximately half 

of the pups observed at the start of the pupping season). Therefore, another walk 

through and scan sample was conducted on the following day at this colony to ensure 

that the responses of as many individuals as possible were assessed. Both cows and 

pups spend increasing periods of time in the water towards the end of the pupping 

season (Thomas and DeMaster 1983), which means it is highly probable that 

different individuals are on the ice at any given time, and that different individuals 

were observed on the second day of sampling. 

The scan sample was conducted by an observer positioned out of sight of the seals 

on a high vantage point on rocky outcrops overlooking the colonies (-25 m high and 

10-100 m from the seals). Behaviour was scored using 11 categories (Table 3.1). 
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Table 3.1 Categories and descriptions of Weddell seal behaviour used in the long-term 
exposure experiment. 

Behaviour To whom the behaviour 
is directed 

Rest NIA 

C.Omfort NI A 

Alen Pup, conspecific, 
surroundings, bird or 
approachers. 

Attack Pup, conspecific, 
surroundings, bird or 
approachers. 

Ice sawing NI A 

Eating ice NI A 

Vocal Pup, conspecifi~, 
surroundings, bird or 
approachers. 

Interact Pup or conspecific. 

Travel NIA 

Pup bump NIA 

Shift position NI A 

Suckling NI A 

3.2.3 Analysis 

Description 

Lying still, no sign of activity, eyes closed. 

Included scratching, yawning, grooming and stretching. 
These behaviours increase the physical comfort of the animal 
(Allaby 1999). 

Involved the seal looking. The seal's body position was not 
taken into account, that is, no distinction was made between 
lying still and raising the head 

Agonistic behaviour, which included lunging or charging, 
biting and snapping of jaws. 

Short duration behaviour consisting of incomplete and often 
slow swings of the head from side to side where the upper 
jaw makes contact with the ice or snow (Kaufman et aL 
1975). 

Ingesting snow or ice. Often see after ice-sawing. 

The seal vocalised. Vocalisations were not differentiated. 

Unlike 'attack', this category included behaviours such as the 
cow placing her fore flipper on the pup and the cow and pup 
puzzling together. 

Purposeful movement involving the seal moving from one 
location to another. 

C.Ow responded to the pup touching her, usually when the 
pup was moving around her body. The cow shifted the 
affected part, for example, her head, out of the pup's way. 

Seal altered its posture by rolling or shifting part of its body. 
Did not include purposeful movement as described in 
'travel'. 

Pup sucking the teat 

All data were examined for normality and homogeneity of variance using residual 

plots and exploratory data analysis (Quinn and Keough 2002). Non-parametric 

statistical tests were used in cases where transformations were insufficient to meet 

the assumption of the parametric statistical tests. All data are presented as means ± 1 

standard error. 

Behaviour was quantified using The Observer (version 5.0, Noldus Information 

Technology 2003). For both the short and long-term experiment, the response 

.looking at the approacher was classified as a state behaviour (i.e. having an 
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appreciable duration) and was calculated in terms of the proportion of time the seal 

spent responding (Altmann 1974). 

3.2.3.1 Experiment 1: Short-term exposure 
Regression analysis was used to describe the relationship between the percentage of 

seals that responded and the number of approaches they had been exposed to. 

Friedman tests were used to determine whether response time decreased with the 

number of approaches. 

3.2.3.2 Experiment 2: Long-term exposure 

G-tests were used to determine whether the proportion of cows and pups performing 

each of the observed behaviours differed between colonies during the experimental 

walk through. 

3.3 Results 

3.3.1 Experiment 1: short-term exposure 
Lactating Weddell seals exposed to repeated approaches over a short-time period 

showed a change in behaviour with successive approaches. The proportion of seals 

responding decreased in an approximately linear fashion, from 67% of seals (12 of 

18) responding during the first approach to 18% of seals (3 of 17) responding during 

the tenth approach (K = 0.398, F= 5.291, df = 9,p = 0.050) (F~gure 3.la). The 

proportion of time spent responding also differed significantly across the ten 

approaches, with a decrease in the percentage of time spent looking at the approacher 

with repeated exposure (Friedman test,z/ = 36.078, df = 9,p = <0.001). The 

duration of the response during approach numbers 3-10 was considerably shorter than 

during the first two approaches (Figure 3 .1 b ). 
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Figure 3.1a) The percentage of adult female Weddell seals (n=18) responding to the approacher during each of the 10 approaches, b) 
mean duration of time spent responding to the approacher during each of the approaches. 



3.3.2 Experiment 2: long-term exposure 
The percentage of cows respoµ.ding to a 5 m approach by a single person in both the 

experimental and control colony was similar. Alert behaviour was displayed by 83% 

of cows in the experimental colony compared to 80% of cows in the control colony. 

No significant differences were seen between colonies in terms of the percentage of 

seals displaying any other behaviour, notably resting and vocal behaviour, during the 

approach (Table 3.2). 

Comparisons between' the behaviour of the pups from the experimental and control 

colonies revealed that 88% of pups were alert in the experime:p.tal colony compared 

to 11 % in the control colony when exposed to the approacher. Significantly more 

pups were resting in the control colony than in the experimental colony during the 

approach (Table 3.2). However, there was no significant difference between colonies 

in the percentage of pups performing comfort behaviours (Table 3.2). No other 

behaviours were observed from pups in response to the approacher. 

Table 3.2 G-test statistics of the percentage of cows and pups from the experimental and 
control colonies performing each of the observed behaviours in response to an approach. 
Significant differences in bold. , 

Behaviour 

Cows Rest 

Alert 

Vocal 

Pups Rest 

Alert 

Comfort 

3.4 Discussion 

% of seals 
Experimental Control 

0 

83 

17 

53 

47 

0 

20 

80 

0 

85 

10 

5 

Gtest df 
statistic 

1.726 1 

0.027 1 

1.537 1 

4.013 1 

5.811 1 

0.694 1 

p 

0:189 

0.870 

0.215 

0.045 

0.016 

0.401 

The responses of Weddell seals to repeated pedestrian activity was investigated at 

two temporal scales, short and longer-term, and across two different patterns, regular 

frequency and irregular frequency of exposure. 
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3.4.1 Short-term exposure 
Lactating Weddell seals in the Penny Bay colony showed a reduction in alert 

behaviour to repeated approaches by a single person over a period of 1.4 hours. This 

was manifest both as a decrease in the percentage of seals that responded to the 

approacher, and ~s a decrease in the mean time spent responding. Of the five 

different ways in which changes in behaviour in the presence of a repeated stimulus 

can be described (i.e. attraction, avoidance, sensitisation, habituation or tolerance), 

the change in behaviour observed in cows from this study is probably best explained 

as habituation, because the response of the seals waned with repeated approaches 

{Hinde 1970). After the initial, relatively long duration in response evident during 

the first two approaches, the duration of response decreased significantly. 

Typically, during approaches 3-10, the seals simply looked up at the approacher 

and thereafter resumed 'normal' behaviour, suggesting that the seals had adjusted 

their response. This rapid waning of response may indicate that the stimulus was not 

particularly strong or meaningful to the seals. The speed with which a response 

wanes is dependent on the strength of the stimulus and/or the frequency of exposure 

(Hinde 1970; Petrinovich 1973). For example, the mobbing behaviour of chaffinches 

(FringUla coelebs) has been shown to diminish more slowly with a strong stimulus 

(live owl), than with a weak stimulus (stuffed owl), suggesting that it takes an animal 

a longer period of time to 'learn' that a strong st~ulus is ultimately not harmful. 

Other studies have shown that the greater the :frequency of stimulation, the more 

rapid is the resulting habituation (see Petrinovich 1973). Frequent exposure should 

result in the recognition of the stimulus and the adjustment of behaviour more 

quickly. In the current study, the interval between approaches to Weddell seals was 

relatively short (10 minutes), and is therefore likely to have been a key factor in the 

rate with which the seals showed signs of habituating. 

Habituation tends to be stimulus specific, such that habituation to a particular 

stimulus does not necessarily mean that animals will habituate to other. stimuli or that 

if habituation does occur, that the rate of waning would occur over the same time 

frame (Hinde 1970). Further, the rate of recovery (i.e. re-establishment of the normal 

response after the stimulus is removed) is variable, again depending on the strength 

and type of stimulus (Hinde 1970). Recovery can occur rapidly, and completely, or 

can take considerable lengths of time. Alternatively, recovery may not occur at all 
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and the animals' response to subsequent exposure may continue to be affected (Hinde 

1970). 

In the case of Weddell seals, habituation to a particular stimulus during one 

breeding season should therefore not be taken to imply that the seals remain 

habituated between seasons, as they disperse during non-breeding periods into 

environments where they will have little or no interaction with humans (Testa 1994). 

However, individuaJ seals may habituate more readily on subsequent exposures, as 

habituation becomes more and more rapid with a series of habituation sessions 

(Petrinovich 1973). Thus although the speed at which an animal habituates to a 

stimulus increases with exposure, it is important to treat each stimulus independently 

and to devise appropriate management practises accordingly. 

Both the weakness and the frequency of the stimulus are therefore factors that can 

. be exploited from a management perspective. The immediate implication of the 

stimulus being weak is that there appears to be no obvious harm in approac~g the 

seals in the. manner with which the approaches were conducted. 

There are examples in the literature where managers deliberately expose certain 

wildlife colonies to human activity and prohibit access to others, .as a means of 

managing the effects of visitation. For example, of the five colonies of otariids at 

Caho Polonio in Uruguay, visits are restricted to one colony only (Cassini 2001), and 

access to certain breeding seabird colonies across Antarctica is restricted to permit 

holders through the designation of Antarctic Specially Protected Areas (Australian 

Antarctic Division 2004b ). The logic behind such strategies appears to be that most 

animals (or colonies) will be 'protected' from exposure to human activity at the 

expense of a small number of individuals. While such an approach has many 

advantages, particularly where species are highly sensitive to disturbance yet the 

pressures for,visitation are intense, there is seldom sufficient information on the long­

temi effects of visitation to be certain that undesirable and irreversible consequences 

will not occur to those animals receiving frequent visits. It is possible, for instance, 

that animals, which have previously demonstrated habituation to human activity, may 

begin to exhibit other learned responses, such as sensitisation, because frequent 

exposure to human activity is no longer considered to be of neutral consequence. 
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3.4.2 Long-term exposure 

3.4.2.1 Adult females 
. Despite the apparent habituation to frequent, predictable pedestrian approaches over 

the short-term (Penny Bay colony), seals exposed to less frequent exposure over the 

longer-term (Long Fjord colony) did not show signs of habituation. A similarly high 

percentage of seals (80 and 83 % ) became alert during the approach at the control and 

experimental colonies respectively. 

Adult females in both colonies may have responded to the approach of a single 

person in the same manner, i.e. becoming alert, because the seals had already 

developed an association with human activity prior to our experiment, where the 

learned response was to become vigilant in readiness for further response. This · 

might then suggest that the seals had already become sensitised to human activity. If 

so, the extent to which sensitisation had occurred is unknown, although it would 

appear to be fairly mild as there was no evidence of escape or agonistic behaviours. 

The additional 'sporadic' exposure that the seals in the experimental colony received 

during this experiment did not, however, appear to alter the perception of humans 

that the seals already had, evident by the similarity in the percentage of seals that 

were alert between colonies. Boren et al. (2002), in a study on New Zealand fur seals 

(Arctocephalus forsteri) showed that previous exposure to approaches by people and 

boat activity was the most important factor in determining whether or not the seals 

were likely to respond to subsequent human activity. New Zealand fur seals from 

areas experiencing high levels of tourism responded less often, responded at closer 

distances and responded less dramatically than did seals at study areas that were 

rarely visited. In the present study, Weddell seals in Long Fjord have been 

intermittently exposed to human activity since the establis.hment of the Australian 

Antarctic research station, Davis, in 1957 (A~stralian Antarctic Division 2004b ). · 

The. seals have been exposed to human activity in the form of recreational visits and 

· -vehicle drive-bys and also to scientists who have been tagging _Weddell seal pups, 

and subsequently checking flipper tags, each spring/summer since 1973 (Green et al. 
\, 

1995). Given that breeding adult females show strong site fidelity to pupping areas, 

it is highly probable that individual seals in this study had already received various 

levels of exposure to human activity before this experiment was conducted (Stirling 

1969; Cline et al. 1971). Habituation, one fonn of response, can remain expressed 

for considerable lengths of time or even indefinitely (Hinde 1970), which means that. 

Page- 72 



the response of an animal may continue to be affected for considerable lengths of . 

time. In the current study, previous exposure to human activity may therefore have 

confounded the results. It was not possible to find a colony ofWeddelfseals in the 

Vestfold Hills that had not been exposed to some sort of human activity and was 

therefore completely naive. However, repetition of the study in other localities in 

Antarctica, that receive little or no visitation, could demonstrate whether previous 

exposure is a significant factor in the seals' response. 

In terms of managing visits to Weddell seals in the Vestfold Hills, there is no 

evidence that justifies restricting .Ji.sits to one colony in order to minimise 

disturbance of the greater population. 

3.4.2.2 Pups 
For the Long Fjord colonies, comparisons between pups that were exposed to 

pedestrian activity over the pupping season and pups that had no experience with 

humans should provide a clearer picture of the effects of long-term exposure to 

pedestrian activity, as pups have no preVious familiarity with humans,. 

In this study, the percentage of pups that were alert during the pedestrian approach 

in the experimental colony was significantly higher than in the control colony. This 

·suggests that the pups in the experimental colony may have become sensitised to 

pedestrian activity, i.e. their response became greater with repeated exposure. The 

results therefore suggest that infrequent visits over the pupping season have an effect 

on behaviour. 

Although it ~uld be argued that restricting visits to one colony is the most 

approp!iate management strategy to minimise disturbance to the greater population, it 

must first be determined whether the change in behaviour has any negative 

consequences. If a vigilant response to infrequent visits results in adverse 

consequences, then it may be ~ore appropriate to 'disturb' one colony only and 

attempt to induce habituation by increasing the number of visits so that the pups can 

learn that an approaching person does not represent a threat. If successful, the 

approaching person would no longer represent a threat and only a small proportion of 

pups would have had to learn, and change their behaviour, so that people could visit 

the seals. If there were no adverse consequences to the pups becoming alert 

infrequently over the pupping season, then it may be more appropriate to manage 

visits such that each pup in the Vestfold Hills is only visited a few times over the 
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entire pupping season rather than attempting to induce habituation (with the 

possibility that habituation is unsuccessful and that the effect of the increase in visits 

is detrimental to the pups). 

3.4.3 Conclusion 
The initial response of most lactating Weddell seals to an approaching person was to 

become alert. Regular approaches by a single person over a short time period 

provided a good basis for learning, where, in this case, the frequency of approaches 

was sufficient for stimulus recognition, yet weak enough for cows to recognise that 

the stimulus posed no threat. However, irregular approaches over a longer-time 

period, where the human stimulus was variable, did not result in habituation. 

Although previous exposure to human activity may have confounded the results of 

the adult female experiment, the effect of irregular exposure on the behaviour of pups 

indicat~d that the pups had become sensitised to pedestrian activity. 

It is difficult to recommend a management strategy for pedestrian interactions with 

lactating Weddell seals and their pups from this study, largely because of the lack of 

knowledge as to the biological significance of the seals becoming alert and the lack 

of knowledge about the effects of human activity over much longer time periods than 

examined here. However, it is possible to identify two different management 

strategies that could be adopted; (i) minimise changes in behaviour to all individuals 

by sending visitors out at irregular intervals over the entire pupping season and to all 

colonies. This strategy would therefore allow on1~ a few visits to each seal. (ii) 

Designate one specific colony for visitation, and in doing so protect all other colonies 

from pedestrian activity. This strategy would accept that the behaviour of the 

exposed seals is likely to be affected in the short-term, with longer-term responses 

unclear. Either approach should invplve monitoring the responses of cows and pups . 

to determine whether there are any longer-term effects·ofvisits on the seals. 
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4 Onshore Heart Rate and Behaviour of 
Lactating Weddell Seals in the 

Presence and Absence of People 
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4. 1 Introduction 
Human activity in the vicinity of wildlife can cause changes in the behaviour and 

physiology of animals. Vigilance of woodland caribou (Rangifer tarandus), for 

example, can increase in response to ecotourists (Duchesne et al. 2000), while faecal 

glucocorticoid levels, a measure of physiological stress, are known to be higher in 

wolves ( Canis lupus) during periods of heavy snowmobile activity (Creel et al. 

2002). These, and similar studies highlight the need to manage human activity in 

order to minimise any negative effects on wildlife. 

To demonstrate that an animal has responded to human activity, there must be a 

quari.tifiable change in the state of the animal that can be related to exposure to a 

particular human stimulus. Behavioural observations measure the external 

expression of an animals' respoi;ise to a stimulus (Hinde 1982). However, they 

provide little or no information about the underlying physiological changes that may 

be occurring at the autonomic ~evel, such as changes in heart rate (HR), respiratory 

rate, body temperature and adrenal state. Physiological changes are often the first, 

and sometimes the only response manifest in the presence of a stiµmlus (Jones and 

Faure 1981; Withers 1992; Hofer and East 1998). The identification of potentially 

unseen physiological changes can therefore provide a more complete understanding 

of the effects of human activity on wildlife than can behavioural observations alone. 

Physiological parameters commonly measured in studies of human-wildlife 

interaction are HR, body temperature and hormone levels (e.g. Culik et al. 1990; 
' 

Regel and Piitz 1997; Giese 1998). Of these, HR is th~ most practical and efficient 

parameter to measure from wildlife in situ, for a number of reasons. Firstly, HR has 

been shown to be a sensitive indicator of the general physiological condition of an 

ammal (Thompson et al. 1968) with changes in HR having instantaneous onset with 

exposure to a stimulus (Thompson et al. 1968; Perry 1973). By contrast, delays have 

been recorded between exposure to a stimulus and changes in body temperature (see 

Regel and Putz 1997) and glucocorticosteroid levels in birds, the latter of which 

usually increase 5-10 minutes after capture and handling of an animal, with 

maximum levels occurring 30-60 minutes,later (Wingfield 1994). These delays make 

it difficult to establish cause and effect relationships in human-wildlife interactions. 

Secondly, the method of attaching a HR monitor to wildlife can involve less 

interference than measuring other physiological parameters, such as hormone levels. 
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Hormone analysis typically requires serial blood collection, so investigator activity is 

likely to confound subsequent results. Although hormone levels can be measured 

from faecal and urine samples (Wingfield et al. 1997), it is necessary to obtain 

baseline level~ from blood samples. Thirdly, changes in HR have been interpreted as 

an indicator of stress in other species (e.g. Thompson et al. 1968; Syme and Elphick 
' 

1982; Cu1ik and Wilson 1991; Bevan et al. 1994). 

Current methods of measuring the HR of marine maminals include surgical 

implantation of loggers, and external attachment of loggers. Although_ both 

techniques require that the animal be anaesthetised, surgical implantation requires 

incisions and for some species, requires the animal to be anaesthetised a second time 

to remove the logger, making this method less suitable for use in human-wildlife 

interaction studies because of extra'hB.?dling. Reducing methodological interference 

increases the ability to identify and measure a 'true' response should there be one, of 

an animal exposed to human activity. 

Guidelines pertaining to interactions with wildlife in Antarctica have been 

developed by the International Association of Antarctic Tour Operators (IAATO) 

(IAA TO 2005), which is a member organization founded to .advocate, promote and 

practice safe and environmentally responsible private-sector travel to the Antarctic, 

and by many individual 9ountries with scientific research stations in the region, for 

example Australia (Australian Antarctic Division 2004a). However, the majority of 

these guidelines are not based on the results of scientific studies investigating the 

resp~nses of wildlife to human activity, and may therefore not be effective at 

minimising disturbance. 

Weddell seals (Leptonychotes weddellii) inhabit areas close to some scientific 

research stations in Antarctica and are therefore regularly exposed to approaches by 

people on foot, over-snow vehicle drive-bys and aircraft operations. In particular this 
' " 

is the case during the austral spring and summer when female Weddell seals haul-out 

onto the fast ice to give birth and nurture their pup (Tedman et al. 1985). Although it 

has been demonstrated that Weddell seals can modify their behaviour in response to 

these activities (Chapter 2, 3 and 5), their physiological responses to human activity 

are unknown. 

Establishing a link between HR and behaviour, and relating/behavioural responses 

to changes in HR, can greatly enhance our understanding of the responses of Weddell 
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seals to human activity. Such information can be used to develop more sensitive, and 

therefore more effective guidelines for human-Weddell seal interactions. Therefore, 

the aims of this study were to describe the on-ice HR oflactating Weddell seals, to 

determine whether the HR of seals hauled out varied with different behaviours, and 

to determine whether the close approach of a single person and a group of people on 

foot elicited a change in HR. 

4.2 Methods · 

4.2.1 Study sites and number of seals 

The study was conducted in Long Fjord, Vestfold Hills, East Antarctica (68°35'S,. 

77°58'E) during the summer of2002/2003 on lactating Weddell seals. Ten adult 

female seals were anaesthetised using gas anaesthesia (Appendix 4), fitted with a 

Wildlife Computers™ heart rate recorder and given an identification number, painted 

on the hair with peroxide hair-dye (Bristol Myers Squibb, Rydalmere Australia). 

4.2.2 Measuring heart rate 
The HR recorder used consisted of three components: (i) a HR processor and 

transmitting unit (8 cm x 12 cm x 3 cm, 46 g), (ii) a logging unit ( 4 cm x 6 cm x 

'2 cm, 60 g) and (iii) two electrode pads ( 6 cm diameter) (Figure 4.1 ). Both the 

processing unit, which was programmed to record the time between successive heart 

beats, and the logging unit, were first fixed with plastic cable ties to separate 

Velcro TM strips (10 x 5 cm). The two strips were then glued, using Araldite K268 

Ciba Geigy, 2-5 cm apart onto the hair along the dorsal midline of the seal to ensure 

good communication between the two components (Wildlife Computers 1997) 

(Figure 4.1 ). Attachment of the logging units to the Velcro enabled the units to be 

easily retrieved from the seals ~y cutting through the cable ties. The electrode pads 

consisted of a copper coin:soldered to a waterproof electrical cable (-60 cm) leading 

to the processor unit. The coins were covered on one side with acrylic sheeting · 

(20 mm thick) in a dome shape for protection against the ice and so that the electrode 

pad could be glued onto the hair of the seal. The skin directly under the coin was 

shaved and coated with a thin layer of electrode gel to enhance conductivity. The 

electrode pads were glued slightly offset to the ~orsal midline, one towards the 

anterior end of the seal and one towards the posterior end. The exact distance of 

separation between the electrode pads was dependent on the strength of the received 
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signal (evident by a Polar® heart-rate receiver placed next to the processor unit 

during gluing) (Figure 4.1). 

Heart rate recorders were retrieved following the completion of two pedestrian 

approaches (see below) and no units were attached for more than five days. The 

electrode pads and Velcro™ strips were not removed, but left to fall off during the 

moult. 

Heart rate data were downloaded and expressed as beats per minute (bpm) by 

diving the time interval by 60 seconds, enabling HR to be matched to specific 

behaviours recorded.during subsequent approach experiments. The HR data were 

filtered to remove anomalously high readings (> 150 bpm) resulting from false 

triggering by muscle activity and from seawater penetration between the electrode 

and the seal's skin when the seal was in the water. The upper and lower limits of 

HR, although conservative estimates, were based on (i) resting HR recorded from 

Weddell seals onshore, at 56 and 60 bpm (Ray and Smith 1968; Zapol et al. 1977), 

and HR recorded during apnea while asleep at 45 bpm (Kooyman and Campbell 

1972); (ii) limited HR data from other pinniped species onshore, recorded as low as 

3 7 bpm during apnoeic periods of rapid eye mol,11ent (REM) sleep in Northern 

elephant seals (Mirounga angustirostris) (Castellini et al. 1994a) to 120 bpm for 

harbour seals (Phoca vitulina) (Pasche and Krog 1980); (iii) previous findings that 

HR during activity can increase two to threefold in mammals (Phoades and Pflanzer 

1992; Withers 1992); and (iv) the low frequency of occurrence of HR > 150 and< 30 

bpm from this study. 
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Heart rate process or and transmitting unit 

.-...--- Logging unit 

Electrode pad 

Electrical cable 

Figure 4.1 The attachment of the heart rate monitor on the back of a Weddell seal 

showing the processing and logging unit and the two electrode pads. 

4.2.3 Measuring behaviour 
Seal behaviour was recorded during a series of approach experiments (see below) 

using Hi8 Digital video cameras mounted 5-30 m from the seals, but out of sight of 

the animals (i.e. behind rafted ice or rocks). Seal behaviour was later entered into 

The Observer (Version 5, Noldus Information Technology 2003), a software program 

designed for integrated behavioural analyses. 

Eleven behavioural categories were identified: rest, look, interact, vocalise, attack, 

travel, shift position, comfort, pup bump, eat ice and shift snow (see Table 4.1 for 

descriptions). Vocalise, pup bump and shift position were classified as event 

behaviours (Altmann 1974) and were quantified as frequency of occurrence per 

minute. Because event behaviours were record as a 'moment' in time, the HR data 

point immediately after the event occurred was used. The remaining eight 

behaviours were classified as state behaviours (Altmann 1974) and were quantified 

as the proportion of the total observation time spent performing that behaviour. 
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Look, interact, attack and vocalise were further categorised in terms of 'to whom' the 

behav.iour was directed (Table 4.1 ). 

Given the short durations of many of the observed behaviours recorded during the 

approach experiments, non-resting behaviours were pooled (see Table 4.1) to form a 

new category 'active', so that HR during resting behaviour could be compared to HR 

during activity when testing for effects of pedestrian approaches. 

Table 4.1 Categories and descriptions of Weddell seal behaviour used in this study. 

Behaviour Classified To whom the behaviour is directed Description 
as 

Rest State NIA Lying still, no sign of activity, eyes closed 

Comfort State NIA Included scratching, yawning, grooming and 
stretching. These behaviours increase the 
physical comfort of the animal (Allaby 1999). 

Look State Pup, conspecific, surroundings, Involved the seal looking. The seal's body 
bird or approachers. position was not taken into account, that is, no 

distinction was made between lying still and 
raising the head 

Attack State Pup, conspecific, surroundings, Agonistic behaviour, which included lunging or 
bird or approachers. charging, biting and snapping of jaws. 

Ice sawing State NIA Short duration behaviour consisting of 
incomplete and often slow swings of the head 
from side to side where the upper jaw makes 
contact with the ice or snow (Kaufman etaL 
1975). 

Eating ice State NIA Ingesting snow or ice. Often seen after ice-
sawmg. 

Vocal Event Pup, conspecific, surroundings, The seal vocalised Vocalisations were not 
bird or approachers. differentiated. 

Interact State Pup or conspecific. Unlike 'attack', this category included behaviours 
such as the cow placing her fore flipper on the 
pup and the cow and pup nuzzling together. 

Travel State NIA Purposeful movement involving the seal moving 
from one location to another. 

Pup bump Event NIA Cow responded to the pup touching her, usually 
when the pup was moving around her body. 
The cow shifted the affected part, for example, 
her head, out of the pup's way. 

Shift position Event NIA Seal altered its posture by rolling or shifting part 
of its body. Did not include purposeful 
movement as described in 'travel'. 
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4.2.4 Approach experiments 
Two approach experiments were conducted on each seal that was fitted with a HR 

recorder; a single approach and a group approach. The first approach was made 

24 hrs after anaesthesia (to ensure the seal was fully recovered) and the second at 

least 48 hrs after anaesthesia. The order in which the seals were exposed to each 

approach type was randomised to avoid any bias associated with previous exposure 

to either approach type. Both approaches were designed to closely resemble the type 

of pedestrian activity that the seals are currently exposed to from station personnel or 

commercial tourist visits. The approaches consisted of a pre-approach recording of 

30 minutes, the approach (approximately eight minutes in duration) and a post 

~pproach recording of 20 minutes. The pre-approach recording functioned as a 

control, and the post approach recording enabled the time taken for HR to return to 

pre-approach levels to be calculated. The approach consisted of either a single 

person or a group of five people walking towards the seal, starting from a distance of 

at least 60 m. The approachers stopped for one minute at 20 m from the seal, and 

8:gain when at 15, 10 and 5 m. At both the. I 0 and 5 m distances, the approachers 

spent an extra minute crouching before continuing the approach. This approach style 

was designed to simulate a person crouching to take a photograph. The approachers 

then retreated and the post approach recording commenced once people were out of 

view of the seal. The speed of the approach was kept constant and the appearance of 

the approacher~ was standardised, i.e. dark coloured pants and a standard-issue red 

top. 

The effect of an approach by a single person and a group of five people on HR 

during rest and HR during activity was tested by a two-factor ANOV A. Data were 

examined for normality and homogeneity of variance using residual plots and 

exploratory statistics and log transformations were mad~ where necessary (Quinn and 

Keough 2002) .. 

4.3 Results 
The amount ofHR data retrieved was limited due to difficulties experienced with the 

HR recorders. The very low temperatures, the abrasive nature of the ice and the 

behaviour of the seals resulted in extensive electrode cable breakage, and therefore 

only six monitors returned usable data, with an average of37 hours ofHR data 

recorded per seal (range approx. % of a day to five days) (Table 4.2). Only one HR 
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recorder, however, logged HR during the approach experiments (Seal 2). This was 

due to cable breakage in the 24 hour period between attachment and exposure to the 

pedestrian or because of poor conductivity between the skin and the electrode. 

(Further rese~ch into other methods of recording HR would greatly enhance sample 

sizes). 

Table 4.2 The total' duration of recorded heart rate per seal. 

Seal Total duration of recorded HR. 
(hh:mm:ss) 

1 43hr,27~,10s 

2 122 hr, 00 min, 50 s 

3 15 hr, 05 min, 53 s 

4 09 hr, 35 mill, 09 s 

5 28 hr, 22 min, 34 s 

6 09 kr, i1 min, 47 s 

Mean 37 hr, 01 min, 06 s 

Stdev. 43 hr, 00 min, 33 s 

4.3.1 General patterns in onshore heart rate _ 

Over a period of five days, the HR of Seal 2 showed a clear diurnal pattern. The 

lowest HRs, with an average of 54.4 bpm, were recorded between 21 :00 &nd 01 :00 
. -

(local time), then increased to more than 75 bpm between 05:00 and 10:00, followed 

by.a linear decrease throughout the rest of the day (Figure 4.2). As the experimental 
. ' 

approaches were made between 09:00 and 18:00,-this decrease in HR throughout the 

day needed to be taken into account when interpreting HR during the approaches. 

This correction used the standardised residuals from a linear regression on HR and 

time (between 10:00 and 17:00) (Figure 4.3). . 
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Figure 4.2 Mean heart rate per hour (bpm) ± 1 SE recorded over 5 days for Seal 2. 
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Figure 4.3 Mean heart rate per hour (bpm) ± 1 SE averaged over the 5Y2 days of recorded 
heart rate for Seal 2 showing the change in HR over 24 hours and the regression line 
{HR.=79 .39+-1.27xh) used to calculate the standardised residuals in order to correct the HR 
data to remove the time of day effects. 
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All six seals showed a broadly similar pattern in HR (Figure 4.4), and in all cases, 

there was a wide range ofHR's recorded between 30 bpm and 75 bpm. 

Discontinuous records of on-shore HR were primarily due to seals entering the water. 

Heart rate data from Seals 1,2,4 and 6 all showed the diurnal pattern as described in 

Figures 4.2 and 4.3. 
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Figure 4.4 Complete time series of heart rate (bpm) for each of the six seals. The vertical 
dashed lines through the 12:00 functions to align the graphs according to the time of day. 

Mean HR recorded over 24 hours from Seals 1 and 2 (the only two seals for which 

continuous HR was recorded over 24 hours) showed the same distinct pattern of 

decreasing HR during the day with the lowest mean HR recorded at 16:00 and 01:00 

for Seal 1 and Seal 2 respectively, and the highest mean HR recorded at 23:00 and 

23111 
00 :00 
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05:00 for Seal 1 and Seal 2 respectively. Mean HR, calculated separately for the 

period of highest and lowest recorded HR, w~ lower for Seal 1 than for Seal 2 

(lowest - 50 & 53 bpm respectively, highest - 67 & 73 bpm respectively) (Figure 4.5). 

The time of day that HR started to decrease varied between individuals (Seal I at 

approximately 07:00 and Seal 2 at approximately 10:00), however, the period of time 

that HR remained relatively stable was similar between seals (Seal 1 - 7 hrs and Seal 

2 - 5 hrs) (Figure 4.5). Intra seal variation was also evident as seen in (Figure 4.9) 

where HR was significantly higher durin~ the group approach experiment than during 

the singl~ approach experiment (F= 508.77, df= I,p = 0.028). 
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Figure 4.5 Mean heart rate per hour (bpm) ±1 SE for Seal I (black circle) and Seal 2 (grey 
circle) during a 24-hr period. 

Heart rate and behaviour were recorded simultaneously for Seal 2 only, and 

although mean HR of Seal 2 was similar during each of the 10 state behaviours 

recorded (Table 4.3 & 4.4), graphical presentation of HR per behaviour (1 Yi -3Yi 

minute intervals) showed distinct patterns in both HR during resting behaviour and 
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when the seal was looking in the water, i.e. the seal had its head immersed in water 

- (Figure 4.6). During rest, the HR exhibited either a cyclic pattern (Figure 4.6ai) or' a 

relatively stable pattern (Figure 4.6aii). Lag analysis revealed an eight second cycle 

in HR with a maximum HR of 83 bpm and a minimum HR of 33 bpm (Figure 4. 7). 

Heart rate when the seal was looking into the water also showed a distinct cyclic 

pattern (Figure 4.6c) but of a longer duration. This was evident in two of four 

periods for which the behaviour continued for durations of~l minute. The cycle had 

a period of 60 seconds with an amplitude of 25 bpm (maximum HR of 102 bpm and 

a minimum HR of 77 bpm, Figure 4.8). The remaining eight behaviours did not 

show any distinct patterns with respect to HR. 
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Table 4.3 Summary statistics of the heart rate (bpm)·data recorded from Seal 2 during the three stages of the single approach experiment for each of the observed behaviours. '%of 
time' is the proportion of the total time spent performing each of the state behaviours and the 'freq of occur.' is the frequency Of occurrence of event behaviours calculated as the 
number of times the behaviour was recorded per minute. Because event behaviours were record as a 'moment' in time, the HR data point immediately after the event occurred was 
used. 

Pre-recording Approach Post recording 
Duration 30 mins 55 sees Duration 8 mins 40 sees Duration 20.mins 8 sees 

Behaviour Mean Median 95%CI Range 0/o of. Freq. of Mean Median 95%CI Range %of Freq. of Mean median 95%CI Range %of Freq. of 
time occur. time occur. time occur. 

Rest 58.1 60.0 57.6- 30.0- 95.51 'NIA 58.7 60.6 57.6- 30.6- 81.86 NIA 58.2 59.4 57.5- 30.0- 92.01 NIA 
58.7 115.4: . 59.8 113.2 59.0 117.6 

Comfort 59.7 62.2 56.7- 30.3- 3.64 NIA 56.2 58.3 53.7- 30.0- 15.65 NIA 57.5 59.4 54.8- 30.9- 6.87 NIA 
63.2 83.3 58.8 75.0 .. 60.3 83.3 

Look pup 59.1 58.0 52.1- 42.0- 0.58 NIA - - - - - - 62.8 65.2 47.9- 43.2- 0.49 NIA 
67.7 80.0 " 77.8 75.9 

Look 59.0 58.8 43.3- 52.6- 0.13 NIA 38.8 38.8 -0.8- 35.7- .0.64 NIA 60.5 60.6 58.5- 57.7- 0.63 NIA 
surrounding 74.5 65.2 78.5 42.0 62.5 63.2 

Look - - - - - - 54.7 57.7 43.2- 35.5- 1.85 NIA - - - - - -
approacher 66.2 67.4 

Interact pup 61.0 61.0 33.0- 58.8- 0.13 NIA - - - - - - - - - - - -
89.0 63.2 

Vocalise pup 45.2 46.2 33.2- 30.5- NIA 0.26 - - - - - - 56.1 56.1 56.1 56.1 NIA 0.05 
57.3 66.7 

Pup bump 58.6 62.5 51.2- 36.6- NIA 0.46 - - - - - - - - - . - - -
66.1 74.1 

Note: NI A means calculation not possible because of the method in which the behaviour was recorded. 



Table 4.3 continued. 

Pre-recording Approach Post recording 
Duration,30 mins 55 sees - Duration 8 mins 40 sees Duration 20 mins 8 sees 

Behaviour Mean Median 95%CI Range %of Freq. of Mean Median 95%CI Range %of Freq.of Mean Median 95%CI Range %of Freq. of 
time ·, occur. time occur. time occur. 

Shift position 61.2 66.3 46.3- 34.3- NIA 0.23 - - - - - - 59.8 60.0 55.8- 50.0- NIA 0.5 -
76.1 72.3 63.8 65.9 

Active 58.9, 61.5 56.4- 30.3- 4.49 NIA 55.6 58.3 53.1- 30.0- 18.14 NIA 58.2 58.5 56.0- 30.9- 7.99 NIA 
61.3 83.3 58.1 75.0 60.5 83.3 

Note: NI A means calculation was not made because the calculation was not applicable to that behaviour. 



Table 4.4 Summary statistics of the heart rate (bpm) data recorded from Seal 2 during the three stages of the group approach experiment for each of the observed behaviours. 
'%of time' is the proportion of the total time spent performing each of the state behaviours and the 'freq of occur.' is the frequency of occurrence of event behaviours calculated as 
the number of times the behaviour was recorded per minute. Because event behaviours were record as a 'moment' in time, the HR data point immediately after the event occurred 
was used. 

Pre-recording Approach Post recording 
Duration 29 mins 54 sees Duration 9 mins 31 sees Duration 20 mins 34 sees 

Behaviour Mean Median 95%CI Range %of Freq. of Mean Median 95%CI Range %of Freq. of Mean Median 95%CI Range %of Freq.of 
time occur. time occur. time occur. 

Rest 63.7 65;9 63.0- 31.4- 31.49 NIA 64.0 65.2 63.2- 31.1- {7.84 NIA 63.4 64.5 63.0- 30.2- 96.7 NIA 
64.5 84.5 64.7 85.7 63.8 100.0 

Comfort 63.6 65.2 62.1- 31.7- 8.37 NIA 64.8 65.9 62.2- 39.7- 6.63 NIA 61.9 63.2 59.7- 32.6- 2.95 NIA 
65.1 ' 93.8 67.4 82.2 64.1 69.8 

Look pup ( 62.6 66.3 59.8- 33.1- 4.08 NIA 61.7 64.5 56.9- 40.5- 2.97 NIA 68.2 68.2 68.2 68.2 0.16 NIA. 
65.4 75.9 66.4 72.3 -

Look 59.9 63.8 52.4- 34.3- 0.59 NIA - - - - - ' - 65.0 65.0 33.7- 62.5- 0.13 NIA 
surrounding 67.4 . 69.8 . 96.2 67.4 

Look water 64.9 66.7 64.2- 31.9- 39.26 NIA - - - - - - - - - - - -
65.6 115.4 

Look - - - - - - 63.1 63.8 61.4- 32.4- 11.47 NIA - - - - - -
approacher 64.8 76.9 

Shift snow 62.6 65.2 60.5- 31.4- 4.8 NIA - - - - - - - - - - - -
64.8 87.0 

Eat ice 66.3 66.7 65.1- 33.1- 5.47 NIA - - - - . - - - - - - ' - -
67.6 77.9 

Note: NI A means calculation not possible because of the method in which the behaviour was recorded. 



Table 4.4 continu,ed. 

Pre-recording Approach Post recording 
Duration 29 mins 54 sees Duration 9 mins 31 sees Duration 20 mins 34 sees 

Behaviour Mean Median 95%CI Range %of Freq. of Mean. Median 95%CI Range %of Freq.of Mean Median 95%CI Range %of Freq. of 
time occur. time occur. time occur. 

Interact pup 65.6 66.2 64.0- 37.7- 5.08 NIA 65.4 65.2 63.3- 63.2- 1.09 NIA - - - - - -
67.1 76.9 67.5 69.0 

Travel 64.1 64.5 61.2- 39.7- . 0.86 NIA - - - - - - - - - - - -
67.0 85.7 

Vocalise pup 62.8 67.4 56.8- 33.7- NIA 0.6 65.9 65.9 64.1- 61.2- NIA 0.84 65.9 65.9 65.9 65.9 NIA 0.05 
68.8 75.0 67.7 70.6 

Pup bump 57.7 61.6 48.7- 34.9- NIA 0.2 - - - - - - - - - - - -
66.7 65.9 

Shift 64.6 65.2 61.1- 32.8- NIA 1.41 - - - - - - - - - - - -
position 68.1 87.0 

Active 64.5 65.9 64.0- 31.4- 68.51 NIA 63.8 64.5 62.6- 32.4- 22.16 NIA 62.3 63.2 60.2- 32.6- 3.7 NIA 
65.0 115.4 65.0 - 82.2 64.3 69.8 -

Note: NI A means calculation was not made because the calculation was not applicable to tha~ behaviour. 
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Figure 4.6 Examples of heart rate (bpm) against time for each of the state behaviours 
recorded from Seal 2 on the 16/11/02 during a(i) rest, showing the cyclic HR pattern and 
a(ii) rest, showing the stable HR pattern, b) comfort activities, c) look water, d) look pup, e) 
look surrounding, t) look approacher, g) shift snow, b) eat ice, i) interact with pup, and j) 
travel. The breaks between data points occur because the seal was performing other 
behaviours at that particular time. 
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Figure 4.7 Autocorrelation function (ACF) of the heart rate (bpm) recorded from Seal 2 
during resting behaviour in the absence of human activity showing a cycle in HR occurring 
every eight seconds (1 lag= 2 seconds). The lag is a transformation in the ACF that brings 
past values of a series into the current case. The case prior to the current case is a lag of 1. 
Solid lines indicate the lower and upper 95% confidence intervals. 
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Figure 4.8 Autocorrelation function (ACF) of the heart rate (bpm) recorded from Seal 2 
during 'look water' behaviour, i.e. the seal has its head immersed in water, showing half a 
cycle, where the peak and trough of the cycle (3-19 lag number) result in a difference of 16 
lags. 1bis corresponds to a 32 second time period resulting in a 60 second cycle of heart 
rate. The lag is a transformation in the ACF that brings past values of a series into the 
current case. The case prior to the current case is a lag of 1. Solid lines indicate the lower 
and upper 95% confidence intervals. 
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4.3.2 Heart rate during approaches 
There was no evidence of a significant effect of a single person approach or a group · 

approach on the HR of Seal 2. This was demonstrated by a comparison of time­

corrected HR data testing for differences between experiments (single and group), 

stage of approach (pre-recording, approach and post recording) (F = 0.278, df = 2, 

p = 0.782) and behaviour (rest or active) stage of approach (F= 0.61, df= 1, 

p = 0.621). However, a significant increase in HR was recorded during the group 

approach when compared to the single person approach (F = 508.77, df = 1, 

p = 0.028) (Figure 4.9). 

) 

4.3.3 Behaviour during approaches 
The behaviours displayed by Seal 2 during the three stages of the single approach 

experiment did not appear to change with stage of approach (Figure 4.10, Table 4.3). 

The seal spent> 80% of her time resting during each stage of the approach. 

However, changes m behaviour were evident during the group approach, with the 

greatest difference found in the percentage of time spent resting. This increased 

sequentially from the pre-approach recording (31 % ), to the ·appro~ch (78%) to the 

post approach recording (97%). The seal also spent time looking in the water during 

the pre-approach recording (39%) but not during the approach or the post approach 

recording. The time spent performing the remaining state behaviours did not appear 

to cliange between the stages of the approach, with the exception of looking at 

approacher (Figure 4.10, Table 4.4). 
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Figure 4.9 Time corrected heart rate data (bpm) (time corrected to remove the effect of the 
natural decrease in HR during the day) of Seal 2 showing HR ± l SE during resting and 
active behaviour for the three stages of approach for both single and group approach 
experiments. 
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Figure 4.10 The proportion of time Seal 2 spent performing each of the state behaviours during the three stages of the approach (pre-approach, during approach and 
post approach) for (a) the single approach experiment and (b) the group approach experiment. LP =look pup, LS= look surroundings, LA= look approachers, 
L W = look water, IP = interact pup, SN = shift snow and EI = eat ice. 



4.4 Discussion 
Heart rate is regulated by the efferent neurons of the autonomic nervous system, 

which is divided into the parasympathetic and sympathetic nervous systems (Withers 

1992). The nerves of the parasympathetic system influence organs to conserve and 

restore energy, particularly during quiet, calm activities, corresponding to decreases 

in HR (Withers 1992; Solomon et al. 1999). Conversely, the nerves of the 

sympathetic system operate to stimulate organs and to mobilise energy, especially in 

response to stress and vigorous activity, which results in an increase in HR (Withers 

1992; Solomon et al. 1999). During stress, sympathetic stimulation also results in an 

increase in blood pressure, pupillary dilatation, elevation in blood glucose and free 

fatty acid concentrations, and an increase in arousal state (Cunningham 2002). The 

increase in arousal state prepares the animal to respond behaviourally, either by 

fighting or taking flight, commonly known as the 'fight or flight' reaction (Cannon 

1963). The behavioural state of an animal therefore has a direct relationship with 

HR. 

However, physical and emotional stressors can also result in an increase in HR 

without a concomitant change in behaviour (Dressen et al. 1990; Giese 1998; 

Solomon et al. 1999). During stress, the adrenal gland secretes the hormones 

·epinephrine and norepinephrine, which results in an increased HR (Withers 1992). 

Therefore, if an animal is presented with a negative stimulus, an increase in HR may 

occur. Research on sheep, starlings, penguins and albatrosses, for example, have 

illustrated that HR can be interpreted as an indicator of stress (Thompson et al. 1968; 

Syme and Elphick 1982; Culik and Wilson 1991; Bevan et al. 1994). 

4.4.1 Onshore heart rate 
In this study, observations of the HR of six lactating Weddell seals revealed a daily 

periodicity in HR. Circadian rhythm of HR has been shown to be affected by 

endogenous and exogenous factors, and to occur in many different species, including 

humans (Krauchi and Wirz-Justic 1994), hamsters (Hashimoto et al. 2004), rats (van 

den Buuse 1994; Lemmer et al. 1995) and sea bream (Aissaoui et al. 2000). Changes 

in HR reflected in the circadian rhythm of an animal are partly determined by the 

biological clock, which in mammals is located in a small suprachiasmatic nucleus of 
. . 

the hypothalamus and its effector control is mediated by the nervous system and 

ultimately by genes and proteins (Withers 1992; Sherwood et al. 2005). Changes in 

HR are also based on exogenous factors, such as physical activity, body temperature 
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and·, in some animals, food intake (Minors and Waterhouse 1981; Withers 1992). In 

the case of Weddell seals, the activity pattern, namely haul-out behaviour, seems to 

be driven by a circadian rhythm based on changes in solar radiation (Bornemann et . 

al. 1998) and air-temperature (Lake et al. 1997). However, Bornemann et al. (1998) 

proposed that the principal 'zeitgeber' of the Weddell seals ultradian (sefl1:icircadian) 

rhythm of behaviour is actually the tide. Behavioural observations of lactating 

Weddell seals onshore have shown that the seals are relatively inactive, spending 

92.7% of their time resting (Chapter 2), as is the case for other pinnipeds (for 

ex~ple, grey seals (Halichoerus grypus) Anderson and Harwood 1985), suggesting 

that activity does not fully explain tJi.e periodicity in HR seen here. Furthermore, HR 

recorded during the various forms of behaviour indicate that the circadian HR rhythm 

of the seals is more likely to reflect endogenous processes and not activity levels. 

Similar results have been reported in Tamar wallabies (Ma(:ropus eugenii), where 

long-term changes (e.g. hours) in HR occurred in the absence of activity (e.g. 

Dressen et al. 1990). Reite and Short (1981) found relatively long-term day-to-day 

changes in the HR of pigtailed monkeys (Macaca nemestrina), with no significant 

relationship to day-to-day variability in activity. 

The timing of the circadian rhythm of Weddell seals varies between individuals by 

as much as 5.2 hours_ (n=5) (Bornemann et al. 1998), which is consistent with the 

difference in timing of the HR cycles recorded from the present study. Intra-specific 

yariation in physiological parameters is well known in vertebrates (Spicer and Gaston 

1999). Moreover, variation within individuals also occurs, as was evident of the HR 

of Seal 2. Heart rate was higher during the hour of the group approach experiment 

than during the hour of the single approach experiment. There was no differenc~ 

however, in the daily HR between the two days of recordip.g or over the five days of 

recording. The difference in HR was not related to the approach type or the 

behaviours observed, as HR did not change in the presence of the approacher 

irrespective of approach type, nor did it change with different behaviours conducted, 

therefore the difference is likely to be related to other factors, one of which could be 

the physical and/or emotional state of the animal. For example, the seal may have 
,-

been more agitated during the hour of the group approach (the group approach was 

conducted 25 hours after the single approach) or her body temperature may have been 

elevated resulting in an overall higher HR. This pronounced intra-seal variation in 

HR highlights the importance of obtaining baseline data at a fine scale (e.g. at least 
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holirly for Weddell seals, and for a larger sample of individual seals) before HR can 

be used as a proxy for stress in human-wildlife interactions studies. 

4.4.2 Heart rate in relation to behaviour . 
The HR for Seal 2 did not increase during activity compared to rest, suggesting that 

the active behaviours were not of sufficient vigour to elevate HR above resting rates. 

This may be partly related to the high degree of variability in HR during resting 

behaviour and during active behaviour (Rest: range = 31.4-84.5 bpm and 30.0-115.4 

bpm for group and single pre-approach respectively, and Active: range = 31.4-115 .4 

bpm and 30.3-83.3.7 bpm for group and single pre-approach respectively). Many of 
, 

the active behaviours, for example, comfort, shift snow and interact pup, occurred for 

short time periods (< 2 minutes). The increased activity level may simply not have 

been of sufficien~ vigour to result in an increase in HR. Many of these behaviours do 

not require the expenditure of much energy, for example, comfort behaviours, which 

include scratching and stretching, and can be conducted by Weddell seals while 

resting. The HR recorded during travel, which in this study was the most physically 

demanding behaviour observed, was not elevated relative to HR recorded during the 

other behaviours. The most likely explanation for this was the short duration (29.9-. . 
71.4 seconds) of the behaviour and therefore the lack of an increase in metabolic rate. 

Changes in HR may not have been the best metric to use when comparing 

behaviours, however, p~tterns in HR, in particular during rest and when the seal was 
' -

looking int,o the water, were more telling. Both of these behaviours can involve 

periods Qf eupnea and apnea, which are known to affect HR (Harrison and Ridgway 

1972; Kooyman and Campbell 1972; Kenny 1979; Castellini et al. 1994a). -Although 

it was not possible to distinguish between sleeping and resting behaviour, in humans. 

HR differs during times of sleep versus being awake while resting (see Veerappan et 

al. 2000). In a qualitative study of sleeping and waking patterns in Weddell seals, 

inspection of HR patterns within sleeping periods of an adult female (non-lactating) 

Weddell seal and a female pup show similar patterns to human patterns classifiable 

as REM and Slow-Wave (delta) sleep, with intermediate stages in the non-REM 

portions (Shurley et al. 1969). Kooyman and Campbell (1972) recorded the HR of 

adult seals during sleep in ice holes and found HR to vary with respiration, where 

eupneic HR during rest averaged 64 bpm compared to apnoeic HR, which averaged 

34 bpm. This suggests that different HR patterns occur during sl'eep. In Northern 

elephant seal pups (Mirounga angustirostris) several cycles of apnea and eupnea can 
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occur during a single sleep episode (Castellini et al. 1994a). Heart rate during REM 

sleep was irregular and during apnea the HR was relatively stable and similar to the 

minimum value recorded during eupneic HR (Castellini et al. 1994a; Castellini et al. 

1994b; Ware 1998). In hooded seals (Cystophora cristata) and harbour seals (Phoca 

vitulina) resting on land, HR during apnea has been shown to be significantly lower 

than during eupnea (Pasche and Krog 1980). Studies such as these indicate that 

different patterns in resting HR can occur in seals, and can be explained by breath 

holding. The two different patterns in HR observed during resting behaviour in this 

study are therefore likely to reflect two different resting states. 

In the present study, the cyclic pattern in HR during look water was most probably 

the result of breath holding. There was no evidence of the dive response, i.e. a 

decrease in HR, which is probably because the seal had no intention of diving (see 

Kooyman and Campbell 1972; Kooyman 1981 b ). There was however, evidence of a 

longer HR cycle suggesting that respiratory rate decreased. Hence, the HR pattern 

was different to that observed during resting behaviour. Therefore, the only 

measurable change in HR during this behaviour was the length of the period of the 

cycle. 

4.4.3 Approach experiments 
The HR of Seal 2 did not vary with the approach to 5 m by a single person or a group 

of people. This indicates that the stimuli tested did not activate the sympathetic 

nervous system of the seal, which is stimulated under conditions of fright or vigorous 

activity (Cannon 1963). The seal did, however, respond behaviourally, indicating 

that the approachers were considered to be of interest. 

It would be imprudent to generalise from the results gained from a single seal 

about the physiological responses of Weddell seals to pedestrian approaches. Due to 

the lack of research on the effect of human activity on HR in pinnipeds, comparisons 

cannot be made to establish whether the response of Seal 2 are representative of the 

species or pinnipeds in general. Further research is therefore required. Experiments 

with stronger stimuli may be needed to substantiate the relationship between HR and 

stress in Weddell seals. 

4.4.4 Conclusion 

This study has revealed periodicity in the onshore HR of lactating Weddell seals at 

two quite different temporal scales: a daily periodicity related to haul-out behaviour, 

and the shorter cycles seen during rest and look water, which were likely to be related 
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to respiration ( eupnea and apnea). Some degree of individual variation was apparent 

in the time of day at which HR was at its maximum and minimum. Therefore, care 

needs to be exercised when using HR as a proxy for stress. 

The absence of a change in HR with the approach of a single person or a group of 

people to a distance of 5 m may suggest that there is no immediate physiological HR 
I 

change associated with close approaches to lactating Weddell seals, but further 

research involving more individuals must first be conducted to clarify this. 
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5 The Behavioural Response of Lactating Weddell 
Seals to over-snow vehicles 

Page - 102 



5.1 Introduction 
Human activity in Antarctica is primarily focused on scientific research, its logistic 

support and tourism. All of these involve travel over land or ice by foot, over-snow 

vehicles, or light ai~craft. These forms of transport, with the exception of 

pedestrians, are often large, brightly coloured, and generate varying levels of noise; . 

all factors which have the potential to negatively affect wildlife. Previous studies on 

marine mammals and seabirds have shown that vehicular activity (encompassing all 

forms of transport) can cause changes in behaviour, including vocal behaviour, and 

physiology, such as heart rate and body temperature (e.g. Regel and Piitz 1997; Giese 

1998; Constantine 2001; van Parijs and Corkeron 2001). Emperor penguin 

(Aptenodytes forsteri) chicks for example, are known to become more vigilant during 

the approach of a helicopter (Giese and Riddle 1999), and beluga whales 

(Delphinapterus leucas) will change their vocal behaviour during small motorboat 

and ferry activity (Lesage et al. 1999). Polar bears (Ursus maritimus) are also known 

to alter their behaviour in the presence of vehicles (Dyck and Baydack 2004). 

Despite these studies, the eff~cts on wildlife of vehicle activity are still poorly 

understood. 

The behavioural response of an animal to a vehicle depends on a number of factors 

associated with both the stimulus and the animal. For example, the physical structure 

of the vehicle (i.e., its size and shape), its speed of travel, operating distance, the 

-manner in which it is driven, and the level and frequency of sound generated, can all 

, influence the degree and nature of an animal's response (e.g. Richardson et al. 1995; 

Richardson and Wiirsig 1997; National Research·~ouncil 2003). A large vehicle 

generally elicits stronger responses than a small one, an increase in speed often 

results in higher noise ievels (McCauley and Cato 2003) and a fast moving vehicle 

may seem more threatening to wildlife (Dill 1974). Another important factor is the 
' 

constancy of the sound level generated by the vehicle (Myrberg 1990; Richardson et 

al. 1995). 

Factors inherent to the animal that will influence responses to vehicles include its 

gender, phase of breeding, and age. Adult female Atlantic walruses ( Odobenus 

rosmarus), for example, are reported~ often being the only members of a colony to 

show vigilance behaviour in the presence of aircraft at terrestrial haul-outs (Salter 

1979). Similarly, adult female New Zealand fur seals (Arctocephalusforsteri) 

approached by pedestrians and small boats will respond by entering the sea, while 

adult males will stay in the colony to fight (Boren et_ al. 2002). Pups in this study 



responded differently again, and fled from the vehicles to hide among the rocks 

(Boren et al. 2002). 

Managing yehicular activity around wildlife in Antarctica is currently achieved in a 

variety of ways. The Antarctic Treaty system, for example~ has measures and 

. conventions that protect wildlife from disturbance from vehicles, prohibiting the 

operation of vehicles in a manner that disturb concentrations of seals and birds 

(Kimball 1999). Further, many ~dividual Antarctic Treaty Nations have established 

their own guidelines to minimise vehicle disturbance to Antarctic wildlife (e.g. 

Australian Antarctic Division 2002a), as has the International Association of 

Antarctic Tour Operators {IAATO) (IAATO 2004a), which is an organisation 

founded to advocate, promote and practice safe and environmentally responsible 

private-sector travel to the Antarctic. 

However, for most Antarctic wildl~fe, there has been little, if any, research to verify 

the accuracy and effectiveness of existing guidelines, which is further exacerbated by 

the fact that these guidelines are mostly based on anecdotal reports. In particular, the 

guidelines for the Weddell seal (Leptonychotes weddellii) have not been examined, 

yet this species receives the highest level of exposure to vehicular activity on the · 

continent than any other pinniped. Weddell seals are the only pinniped to breed and. 

moult on the fa~t ice upon which humans travel, and at a time when human activity in 

the region is at its peak. The aim of the study was to verify the existing guidelines 

for travel around Weddell seals adopted by one Treaty Nation; Australia, by 

measuring the immediate behavioural responses of lactating Weddell seals to over-
• I 

sno:w vehicles. 

5.2 Methods 

5.2.1 Study site, number of seals and stimuli used 
The study was conducted on lactating Weddell seals and their pups over a 17-day 

period during November 2001 at Penny Bay, Windmill Islands, East Antarctica 

(66°25'8, 110°40'E). Fifteen cow-pup pairs were exposed to drive-bys of a 4-

wheeled, all-terrain vehicle (known as a 'quad' bike, Honda TRX350) and i2 pairs 

were exposed to drive-bys of a tracked all-terrain vehicle (known as a 'Ha~glund', 

Mercedes Benz BV206D). Five c~w-pup pairs were exposed to the-passage of both a 

quad and a Hagglund. 
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5.2.2 Drive-by experiments 
The drive-bys were designed to closely resemble the type of vehicle activity that 

Weddell seals in the Australian Antarctic Territory (AAT) currently encounter, and 

incorporated three treatments: drive-by distance, vehicle type and travel speed. The 

distances were based on the current guidelines recommended by the Australian 

Antarctic Division (AAD) for travel in the vicinity of Weddell seals and were, for a 

quad: 150 m, and for a Hagglund: 250 m (Australian Antarctic Division 2004b ). As 
I 

the efficacy of these guidelines has never been tested, distances that were less thari 

. and greater to existing limits were also included (T~ble 5.1 ). ,·One drive-by for both 

types of vehicles at the same speed was conducted at 250 m from the seals so tJ:iat 

comparisons of seal responses between vehicle types could be made. 

Table 5.1 Distance from the seal and speed of travel used in the drive-by experiments. 
Distances in bold represent the current Australian Antarctic Division guidelines for travel in 
the, vicinity of Weddell seals. 

Speed of travel ' Quad Hagglund 
(kmhrl) 

Closest distance 15 50m 100m 

Middle distance 15&45-quad 150m 250m 
15 & 25 - Hagglund 

Furthest distance 15 250m 400m 

Cow-pup pairs were selected if pups were greater than one week old. Pup age was 

determined from visual body size estimates and observations of births (Bryden et al. 

1984). Cows were given an identification number (painted on the hair) with peroxide 

hair-dye (Bristol Myers Squibb, Rydalmere Australia) at the beginning of the season. 

This was conducted by one person who quietly approached the seal w];ri~e at rest to 

avoid the seal responding to the person and possibly confounding the results. 

Each experiment consisted of four drive-bys. For both vehicle types, one drive-by 

was made at the closest distance at a slow speed of 15 km/hr and another drive-by 

was made at the furthest distance, also at 15 km/hr. The remaining two drive-bys 

were both made at the middle distance, however one drive-by occurred at a slow 

speed (15 km/hr for both vehicles types) and the other was at a faster speed (45 km/hr 

for the quad and 25 km/hr for the Hagglund). Between each drive-by, vehicles were 

switched off for 10 minutes. The order in which seals were exposed to the different 

distances and speeds was randomised to avoid any bias associated with previous runs 

(distance/speed). Due to logistical constraints (i.e. access to vehicles), the five seals 
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exposed to both the quad and the tfagglund were always exposed to the quad 

treatment first. 

. The behaviour of the cows during each drive-by was recorded on Hi8 Digital video 

cameras mounted between 5-30 m out of sight of the seals behind rafted ice or rocks. 

For each experiment, two positional co-variates were recorded; (i) the distance of 

the cow to the nearest conspecific and (ii) the distance of the cow to water (potential 

refuge); and one biological co-variate: the position of the pup in relation to its mother 

and the vehicle (i.e. whether the pup was directly exposed to the vehicle or not). 

5.2.3 Analysis · 

5.2.3.1 General 
The recorded behaviour was later quantified using The Observer (Version 5 Noldus 

Information Technology 2003), a software package specifically de~igned for 

integrated behavioural analyses. 

Althol!gh eleven behavioural categories were identified (Table 5.2) only one 

behavioural category, 'looking at vehicle', was taken to indicate that the seal had 

perceived the stimulus_ and responded to it. This behaviour was recorded both as a 

binary variable, indicating whether or not the seal looked at the vehicle, and as the 

~uration of time that the seal spent looking at the vehicle, expressed as the proportion 

of total drive-by time. 

All analyses were conducted using R statistical software{version 1.8.1 2003). 

Binomial generalised linear models (GLMs) (McCullagh and Nelder 1989) were 

fitted to the binary data to test ff the probability that, an individual seal would react 

during a drive-by differed with the type of vehicle, the drive-by distance, travel speed 

or the positional and biological co-variates. 

Exploratory analysis showed that the proportion of time that the seal spent looking 

at the vehicle was not normally distributed, so permutation tests (Good 2000) were 

used to test if the distribution of the duration data differed with vehicle type, drive-by 

distance, speed or the positional and biological co-variates. 
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Table 5.2 Categories and description of Weddell seal behaviour. 

Behaviour To whom the behaviour 
is directed 

Rest NIA 

Comfort NIA 

Look Pup, conspecific; 
surroundings, bird or 
-,approachers. 

Attack Pup, conspecific, 
surroundings, bird or 
approachers. 

Ice sawing NI A 

Eating ice NI A 

Vocal Pup, compecific, . 
surroundings, bird or 
approachers. 

Interact Pup or conspecific. 

Travd NIA 

Pup bump NIA 

Shift position NI A 

Description . 

Lying still, no sign of activity, eyes closed 

Included scratching, ya'wning, grooming and stretching. 
These behaviours increase the physical comfort of the animal _ 
(Allaby 1999). 

Involved the seal looking. The seal's body position was not 
taken into account, that is, no distjnction was made between 
lying still and raising the head 

Agonistic behaviour, which included lunging or charging, 
biting and snapping of jaws. 

Short duration be~avioµr consisting of incomplete and often 
slow swings of the head from side to side where the upper 
jaw makes contact with the ice or snow (Kaufman et aL 
1975). 

Ingesting snow or ice. Often seen after ice-~wing. 

The seal vocalised Vocalisations were not differentiated. 

Unlike 'attack', this categozy included behaviours such as the 
cow placing her fore flipper on the pup and the cow and pup 
nuzzling together. 

Purposeful movement involving the seal moving from one 
location to another. · 

Cow responded to the pup touching her, usually when the 
pup was moving around her body. The cow shifted the 
affected part, for example, her head, out of the pup's way. 

Seal altered its posture by rolling or shifting part of its body. 
Did not include purposeful movement as described in 
'travel'. 

5.2.3.2 Comparison of vehicles 

Responses to the type of vehicle were tested by comparing s~al behaviour in the 

presence of a quad and a Hagglund driven at 250 m at the slow speed. In both the 

binomial GLM and the permutation test, the seal was treated as a blocked factor to 

account for individual variation. 

5.2.3.3 Drive-by distance 

Binomial GLM and permutation tests were used to perform omnibus tests for a 

difference in response due to drive-by distance. These tests were performed 

separately for quad and Hagglund results. WhereJhere was evidence of a difference 

in response, Holm adjusted pairwise comparisons were used to determine which 

treatments differed (Benj~ini ~d Hochberg 1995). 
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5.2.3.4 Speed of travel 
Binomial GLM and permutation tests were used to perform omnibus tests for a 

difference in response due to travel speed. Where there was evidence of a difference 

in response, Holm adjusted pairwise comparisons were used to determine which 

treatments differed (Benjamini and Hochberg 1995). 

5.2.3.5 Positional and biological co-variates 
Binomial GLMs were fitted to the binary data to investigate_ the correlation between a 

seal's response and its distance from the nearest conspecific, its distance to water and 

whether its pup was exposed to the vehicle. 

As these co-variates were confounded with individual seals it was not possible to 

treat seals as a blocked factor to control for individual variation. Each co-variate was 

modelled separ~tely because of the low power of the test when all three co-variates 

were incorporated into the one model. 

5.3 Results 

5.3.1 Comparison of vehicle type 
Of the five seals exposed to both types of vehicle examined in this study, only one 

individual reacted to the quad, and a second individual to the Hagglund. The 

binomial GLM showed no evidence that the probability of a seal reacting to the 

drive-by of a quad at a distance of 250 m was different from the probability of the 

seal reacting to the drive-by of the Hagglund at the same distance (p = 0.87, 6.7% of 

individuals for the quad vs. 8.3% of individuals for the Hagglund, n = 5). Similarly, 

the permutation test showed no evidence that the duration of response during the 

drive-by of the two vehicles differe4 with vehicle type (p = 1.00, X = 4.6 ± 4.6% of 

time spent responding to the quad and X = 1. 7 ± 1. 7% of time spent responding to the 

Hagglund, n = 5). 

5.3.2 Drive-by distance 

5.3.2.1 Hagglund 

For the Hagglund, the binomial GLM showed strong evidence that the probability of 

a seal reacting differed with drive-by distance (p = 0.0002). Holm adjusted pairwise 

comparisons showed significant differences between the 100 m and the 250 m 

distance (p = 0.0006), an~ between the 100 m and the 400 m _distance (p = 0.0006), 

but no evidence for a difference between the 250 m and 400 m distance (p = 1.00). 
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Where there was a difference in seal response due to distance, the probability of a 

seal reacting was greater during the closer drive-bys (Figure 5.la). 

The permutation test of the three drive-by distances showed strong evidence that 

duration ofresponse also differed with distance (p = 0.0015). However, the Holm 

adjusted pairwise comparisons showed only weak evidence of a difference in 

duration of response between the 100 m and 250 m distance (p = 0.092) and the 

100 m and 400 m distance (p = 0.092) and no evidence of a difference between the 

250 m and 400 m distance (p = 1.00) (Figure 5.lb). 
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Figure 5.la) The percentage oflactating Weddell seals reacting to the drive-by of the Hagglund at the three experimental distances, b) the total duration of time 
(recorded as the% of time within each interval)± 1 SE, that the seals (n = 12) spent looking at the Hagglund during the drive-bys at the three experimental 
distances. Statistically significance differences at the 0.05 level are indicated by letters, where 'a' signifies the difference between the 100 m and 250 m distance 
and 'b' signifies the difference between the 100 m and 400 m. 



5.3.2.2 Quad 
For the quad, the binomial GLM showed that the probability of a seal reacting 

differed significantly with drive-by distance (p < 0.001). Holm adjusted pairwise 

comparisons showed that this probability was significantly greater during the drive­

by at 50 m than at eitherthe 150 m or 250 mdistances (p = 0.0496 andp < O.OOlL 

respectively).. The probability of a seal reacting to a quad was also greater at the 

150 m distance than at the 250 m distance (p = 0.0017) (Figure 5.2a). 

The permutation test of the three drive-by distances tested for a quad showed 

strong evidence that the duration of response to a quad also varied with distance 

(p = 0.003). The duration ofresponse was longer when a quad travelled at 50 m 

compared to 250 m (p = 0.014). However, there was ~n1y no evidence of a difference 

in the duration of respo~se between the 50 m and 150 m distances (p = 0.106), and 

between the 150m and 250 m distances (p = 0.504) (Figure 5.2b). 
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5.3.3 Speed of travel 

5.3.3.1 Hagglund 
For the Hagglund, the binomial GLM showed no evidence of a difference in the 

probability of a seal reacting when the speed of travel changed (p = 1.00, 8.3 % of 

individuals reacted during the slow drive-by and 8.3% reacted duringthe fast drive­

by, n = 11 ). Similarly, the permutation test showed no evidence of a difference in 

duration of response due to speed of travel (p = 1.00, X = 0.8 ± 0.8% of time spent 

responding during the slow drive-by and X = 0.7 ± 0.7% of time spent responding 

during the fast drive-by, n = 11 ). 

5.3.3.2 Quad 
As with the Hagglund, the binomial GLM and permutation tests showed no evide~ce 

of an effect due to the speed of travel of a quad, either in the probability of a seal 

reacting or in the duration of response (p = 0.41, 33.3 % of individuals reacted during 

the slow drive-by and 33.3% reacted to the fast drive-by, and p. = 0.44, X = 2.9 ± 

1.4% of time spent responding during the slow drive-by and X = 7.5 ± 4.2% of time 

spent responding during the fast drive-by, n = 14). 

5.3.4 Positional and biological co-variates 

5.3.4.1 Hagglund 
There was a significant correlation between pup position (i.e. whether or not the pup 

was exposed) and seal response to the drive-by of a Hagglund (p = 0.0003). Cows 

were more likely to react to the vehicle when they were between the pup and the 

Hagglund (Figure 5.3). 

There was no evidence of a correlation between the distance of the focal seal to a 

conspecific and the probability of that seal reacting to the Hagglund (p = 0.306), nor 

was there a correlation between the distance of the focal seal to water and the 

probability of the seal reacting to the Hagglund (p = 0.228). 
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Figure 5.3 The percentage oflactating seals (n = 12) reacting to the Hagglund during each 
of the four drive-bys differentiating between pup position, i.e. pups exposed (black 
colouration) and pup not exposed (grey colouration). 

5.3.4.2 Quad 
As with responses to the Hagglund, there was a significant correlation (p = 0.009) 

between pup exposure and response of the cow to a quad, and seals were again more 

likely to react when their pups were not exposed (Figure 5.4). 

There was no correlation between the probability of a seal reacting to the quad and 

the distance the seal was to the nearest conspecific (p = 0.116), however, there was a 

significant correlation between the distance a focal seal was to the water and the 

probability of it reacting to the quad (p = 0.0003). Seals further from the water were 

more likely to react than seals closer to the water (Figure 5.5). 

Since both pup exposure and distance to water were correlated with the probability 

of a seal reacting to a quad, both variables were included into the one model and one­

term deletions were considered. This showed that if distance to water is retained, 

pup exposure was only weakly significant (p = 0.082). By contrast, if pup exposure 

was retained in the model then there was strong evidence that distance to water 

significantly affected the response of the seal (p = 0.002). 
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Figure 5.4 The percentage of lactating seals (n = 15) reacting to the quad during each of the 
four drive-bys differentiating between pup position, i.e. pups exposed (black colouration) 
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Figure 5.5 The mean distance± 1 SE of the seals (n = 15) from the water during the four 
passages of the quad, differentiating between the seals that did not react (black) and those 
that did react to the quad (grey). 
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5.4 Discussion 
Most, but not all, lactating Weddell seals responded to the passage of both types of 

, over-snow vehicle examined in this study. In particular, the distanc~ at which the 

vehicles passed influenced the !lumber of seals that reacted, and the duration of their 

response. The number of seals that reacted was also dependent upon whether their 

pup was directly exposed to the vehicle. For experiments examining responses to 

quads, the probability of a seal reacting was also influenced by the proximity of the 

seals to water. 

5.4.1 Effects of vehicle type on seal response 
- ' 

For the one distance at which both types of vehicle were driven, the behavioural 

response of the seals did not differ with vehicle type, even thouih visually and 

acoustically the vehicles were considerably different. A Hagglund is approximately 

double the height and triple the length of a quad, and although the p~ak sound 

frequency produced in-air by the two vehicles travelling on sea-ice is the same (i.e._ 

centred at 0.86 kHz), the -noise level generated by the Hagglund is greater. The noise 

level generated by a quad travelling at 15 km/hr at a distance of2~0 m is 19 dB re. 20 

µPa, while the noise level generated by a Hagglund is 24 dB re. 20 µPa (see 

Chapter 6). 

The lack of a difference in response of the seals towards the different vehicle types 

may, however, be related to the small sample size. Only five seals were exposed to 

both the quad and Hagglunds and only two individuals reacted to the vehicles (one to 

the quad and one to the Hagglund). Results must be interpreted cautiously. If 

however, the absence of a difference in response was 'real', then it contradicts some 

of the limited number of studies making oontrolled comparisons between the effects 

of vehicle type on wildlife response. Born et al. (1999) found that a greater number 

of ringed seals (Phoca hispida) reacted to a Bell 206B helicopter that than to a fixed­

wing aircraft (Partenavia PN68 Observer), even though the helicopter was operating 

at a further distance. The difference in response was attributed to the different noise 
' 

levels produced by each aircraft type. Although the results from another study on the 

variability in reactions of Pacific harbour seals (Phoca vitulina richardsi) to 

disturbance also suggest response can be influenced by vehicle type, Suryan and 

Harvey (1999) report that kayaks within I km of the harbour seals cause more 

harassment (55%) than did powerboats (9%) operating at the same distance. 
\ 

However, as an example of the differential effects of different vehicle types on 

Page-116 



wildlife, the results of that study are ambiguous because the seals were thought to 

respond differently due to the different levels of previous experience they had had 

with kayaks and powerboats. The results of these two studies highlight the many 

different factors that can affect the response of wildlife to stimuli and the difficulty of 

isolating the effect of any one particular variable, sucp. as vehicle type, in studies of 

human-wildlife interactions. Nevertheless, results from the current study suggest that 

a Hagglund and quad, operated ·under the same conditio~s, had a similar effect on 

lactating Weddell seals. 

At the 250 m distance tested in this study, the noise levels generated by the two 

vehicles were within 5 dB of each other (Chapter 6), which could explain the 

similarity in the response to the two types of vehicles. Differe1.1ces of this magnitude 

are unlikely to be differentiated by the seals given the low decibel level of the noise. 

and background noise levels, making it probable. that the vehicles were acoustically 

indistinguishable to the seals. 

The similarity in the duration of the seals' response to the quad and Hagglund ·also 

suggests that the vehicles were perceived to be the same in terms of their potential 

interest· or threat to the seals. This may be·related to the fact that at 250 m, objects 

such as over-snow vehicles are outside the 'area of concern' for Weddell seals, that 

is, the objects are considered far enough away to not warrant expending time and 

energy responding. 

5.4.2 The effect of drive-by distance on seal response 
The distance between a focal animal and a stimulus is a key factor influencing 

wildlife_ responses to human activity (e.g. Salter 1979; Grubb and Bowennan 1997; 

Born et al. 1999). This study also provided evidence for effects of approach distance, 

a8 both the number of seals that reacted to the vehicles and the duration of their 

response increased with decreasing distances. 

Increasing the distance between the Hagglund and the-seals, from 100 m to 250 m, 

resulted in a significant decrease in the number of seals that reacted. There was no 
,-

evidence that increasing this distance to 400 m further influenced the seals' response. 

For the quad, increasing in distance from 50 m to 150 m, and then to 250 m resulted 

in a significant decrease in the number of seals that reacted. 

Auditory detection of the vehicles may explain the seals' variable response to the 

drive-by distances tested in this study. Received noise level decreases with distance 
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due to transmission loss ( 6 dB decrease with a doubling of distance Albers 1965; 

Richardson et al. 1995; Carlin 1996). Therefore detection of the noise generated by 

the vehicles would become harder with the increase in distance, especially if the 

noise levels were already low, i.e. barely audible to the seals (see Chapter 6). 

However, the effect of distance on the received noise levels was at most 3 dB 

(Chapter 6). Such simple comparisons may be misleading though, as the noise 

recordings were made on different days and at different times. Differences in 

ambient air temperature and wind speed, which affect received noise levels, could 

explain the small difference in received noise level generated from the different. 

distances (Richardson et al. 1995). For example, ori sunny days the air temperature . 

directly above the ice is cooler than the air temperature further up the air column. 

This results in refraction of the sound wave towards the cooler area, i.e. to where the 

seal is, which means that the received noise level is louder (Carlin 1996). Further, 

any differences in the ice surface could also influence received noise levels. A layer 

of snow has a dampening effect on noise (Richardson et al. 1995), thus a snow layer 

at the 100 m distance but not at the 250 m distance could result in the received noise 

levels being the same. Thus, variations in these and other ambient conditions may 

have confounded the effects of distance per se on noise levels. 

The duration of response of the Weddell seals to the drive-bys was also affected by 

distance to the vehicle. For the experiments with the Hagglund, significant 

differences between two sets of distances, i.e. 100 m and 250 m or 250 m and 400 m, 

were not found even though an overall difference in response duration was observed. 

This is likely to be due to the low statistical power of the Holm adjusted parrwise 

comparison relative to the omnibus test. For the quad drive-bys, duration of the 

seals' response was greatest at the closest distance (50 m) when compared to the 

furthest distance (250 m) suggesting that the drive-by of the quad at 50 m was 

perceived to be of greater interest to the seals than a quad operating at 250 m. The 

absence of a difference between the other distances suggests that duration of response 

decreased somewhere between 150-250 m. Many studies have identified critical 

distances at which wildlife respond to human stimuli. For example, in a study on the 

effects of tourist approaches to South American fur seals (Arctocephalus australis) 

Cassini (2001) found that approaches closer than 10 m elicited strong responses. 

Approaches at further distances, did not result in strong responses. In another study, 

ringed seal response to predators occurred at distances of 100 m or less, even though 

the seals could see predators at distances of ~200 m,(Smith and Hamill 1981). The 
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results of these studies, along with the present study, indicate that distance of 

approach/drive-by affects the duration and intensity of wildlife response. 

5.4.3 The effect of vehicle speed on seal response 
Increases in speed of20 km hr-1 for the quad and 10 km hr-1 for the Hagglund 

resulted in no me~surable difference in Weddell seal response. Increases in boat 

speed have been shown to affect cetacean behaviour, for example beluga whales 

(Delphinapterus leucas) showed an increase in avoidance behaviour with an increase 

'in boat speed (Blane and Jaakson 1994), although in this case the-speed and distance 

effects could not be separated. The absence of an effect due to travel speed in the 

present study may be related to the small number of seals that reacted during the 

150 m drive-by for the quad and the 250 m drive-by for the Hagglund, irrespective of 

speed. This suggests that drive-bys at these distances may not be perceived to be of 

interest to the seals. Alternatively, the increase in speed, which resulted in a 1-3 dB 

re. 20 µPa increase in noise levels (see Chapter 6) may not have been sufficient to 

cause a greater number of seals to react. 

One caveat of the experimental design used here, that influences interpretation of 

results, is that experiments testing for differences in speed are confounded either by 

duration of exposure or distance from tlie animal. Differential duration of exposure 

occurs when the transect length at each distance tested is identical. The time taken to 

drive the length of the transect is obviously less for the fast vehicle than it is for the 

slow vehicle. When the duration of exposure to the stimulus is identical, the length 

of the transect for the 'fast' speed of travel must be increased. This results in the 

distance between the animal and the stimulus being greater for the 'fast' travelling 

vehicle. Therefore, no true comparison in speed can be made when comparing the 

duration of time spent responding, and caution should be used when interpreting 

results. 

5.4.4 The effect of distance to water and conspecifics (positional 
factors) 

· Analogies can be drawn between disturbance caused by human activity and by 

predation risk (Frid and Dill 2002). Under both scenarios, animals divert time from 

other 'fitness-enhancing activities' such as feeding, parental care or mating displays 

(Frid and Dill 2002), in favour of responding to the perceived threat. Reponses to 

disturbance, either human induced or as a result of natural predators, have been 
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shown to depend on factors such as proximity to shelter, group size and proximity to 

conspecifics (Robinson 1981; Dill and Houtman 1989; Blumstein et al. 2003). 

Weddell seals spend the majority of their time in the water, however when hauled 

out, they lie near cracks in the ice, which provide predictable access to water (Stirling 

1969). Although Weddell seals do not have land-based predators, the sea is likely to 

represent a refuge from any disturbing stimulus on the ice. Vigilant responses of 

lactating Weddell seals to approaches by a single person (see Chapter 2) suggested 

that the seals might consider the sea to be a refuge. In that case, the seals closer to 

the water were more tolerant of the person, enabling a closer approach before the seal 

responded. None of the seals exposed to the over-snow vehicle drive-bys fled to the 

water, which either suggests that the sea was not considered to be a refuge when 

exposed to this stimulus, or that the flight initiation distance, or more precisely the 

'fleeing response', i.e. the approach distance. at which the benefits of fleeing exceed 

the costs of remaining, was not breached (Hediger 1934; Y denberg and Dill 1986; 

Blumstein et al. 2003).' Given that seals positioned further from the water were more 

likely to react to a quad at all distances tested, it.is likely that the seals did consider 

the sea to be a place to retreat to if necessary. The further the distance from water, 

the larger the seal's flight initiation distance and the less tolerant the seal is to the 

traverse of the quad. This also suggests that the quad was perceived to be a potential 

threat that warranted a vigilant resp<?nse. 

The lack of an effect of distance to water on the number of seals that reacted to the 

Hagglund may be attributable to the small range of distances to the water that were 

recorded from animals used in these experiments (i.e. all< 10 m). The range of 

distances of the seals to water during the quad drive-bys was greater (1-40 m). This 

may indicate that the effect of distance to water for ov:er-snow vehicles is only 

influential when seals are > 10 m from the water. 

The distance to the nearest neighbour can influence v,igilant responses of animals 

(e.g. Robinson 1981; Roberts 1988). The vigilant responses of Weddell seals to 

pedestrian approaches indicate that they may consider people to be less threatening 

when another seal is near-by, as evident by seals becoming vigilant as people 

approached to a'closer distance (see Chapter 2). In the current study, however, 

responses to over-snow vehicle operations were not influenced by the seal's distance 

to her nearest neighbour. This suggests that the advantages oflying in close 

proximity to conspecifics i.e. reduced probability of being taken (dilution effect) and 
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increased vigilance levels to spot the predator (greater chances of escape) (Barnard 

2004), were not present under the test conditions. Perhaps the distance of travel from 

the seals was too great for distance to a conspecific to be an influencing factor. 

5.4.5 The effect of pup exposure (biological factor) 
During pregnancy and in the presence of young, animals tend to be aggressive toward 

conspecifics, with increased vigilance levels associated with the protection of the 

young,~ well as territ_ory maintenance (Boness et al. 1982; Harcourt 1991; 

Maestripieri 1992). The positic:>n of the young in relation to the mother is a critical 

factor in the vigilance response of some species, such as rhesus monkeys (Macaca 

mulatto) (Leighton-Shaprio 1986). In this study, vigilance levels of mothers were 

significantly greater when their infant was further away, than when it was closer 

(Leighton-Shaprio 1986). 

In the present,study, Weddell seals that were lying between their pup and the 

vehicle were more likely to react to the drive-bys than seals whose pups were directly 

exposed to the vehicle. Weddell seals show aggressive behaviour towards 

conspecifics and people who venture too close to their pups (Cline et al. 1971; 

Kaufinan etal. 1975), particularly ifthe 'zone of interference' (an area approximately 

3 m around the cow-pup pair), is breached (Mansfield 1958; Stirling 1969; Smith and 

Burton 1970; Tedman and Bryden 1979). Kaufinan et al. (1975) described adult 

feniale Weddell seals with pups to crawl between the pup and approaching people, 

which suggests that the seals shield their pup from a potential threat. Why Weddell 

seal cows, whose pups were already shielded from the approaching vehicle, were 

more responsive to the drive-bys is therefore unclear, and may be due to factors that 

were not measured during this study. One such factor may be related to the 

orientation of the COW to the stimulus. Seals facing the stimulus (as they would often 

be if the pup were between them and the vehicle) would only have to open their eyes 

to see the stimulus, while seals not facing the stimulus, would have to physically 

move in order to see the stimulus. Subtle changes in behaviour such as the opening 

of eyes, which signify an alert response, were impossible to detect from the 

behavioural video recordings made during this study, and so could not be 

distinguished. 

Given the small sample size, I was unable to test for interactions between the co­

variates (positional and biological factors) and seal response, although these factors 

could have direct effects on each other and alter the interpretation of the results. In 
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this study, distance to water and pup exposure were both influential in deterntlning 

the probability of a seal reacting to a quad. Adjusting for the effect of distance to 

water for quad drive-bys, where sample sizes were the largest, resulted in pup 

exposure having no effect on the probability of the seals reacting; while adjusting for 

pup exp<?sure still showed distance to water to have a strong effect. This suggests 

that the significant effect of pup position on the probability of reacting to the quad 

may be a consequence of the distance the seals were from the water. Further 

research, with larger samples sizes, could clarify this result and in doing so provide 

more detailed ~formation for the management of vehicle activity around Weddell 

seals. 

5.4.6 Implications for management 
Most lactating Weddell seals responded to the passage of a quad and Hagglund at one 

or more of the tested distances ( 50, 150 and 250 m for the quad and 100, 250 and 
' ' 

400 m for the Hagglund). The operation of the vehicles at the current AAD guideline 

of 150 m for the quad· and 250 m for the Hagglund did, therefore, elicit a short-term 

behavioural response from some individuals. The AAD acknowledges that these 

distances are a guide only and that great~r distances should be adopted if signs of 

disturbance are detected (Australian Antarctic' Division 2004a). If disturbance were 

defined as any change in behaviour, then the current AAD guidelines would need to 

be,.modified. Ifit were the goal of management to avoid all visible signs of Weddell 

seal response, then the distance of travel for a quad would need to be great~ than · · 

250 m and for a Hagglund, greater than 400 m. 

_· However, the behavioural changes observed in this study were all of relatively 

short d4ration. Moreover, eliciting a vigilance response from Weddell seals is 

unlikely to have adverse.consequences for the seals or their young. This means that 

changing existing guidelines and potentially increasing the complexity of travel near 

wildlife may be unnecessary. The results of this study do not generally allow 

interpretation of the seals' perception of the stimulus. However, no seals fled 

towards the water during th~ drive-bys, indicating that the stimuli were not 

considered to be overly threatening, although the response of seals to a quad was 

influenced by distance to water, suggesting that close approaches by this vehicle type 

may not be regarded as completely benign. Further research is needed to determine 

whether a) there are any adverse effects associated with the seals becoming vigilant, 

and b) whether there are any cumulative effects of repeated exposure to vehicle 
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activity. This information would then provide the necessary detail to allow managers 

to set guidelines that are effective for the protection of Weddell seals, that are also 

practical, and useable for over-snow vehicle users. 
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6 An Assessment of the Audibility of Weddell Seals to 
Sound Generated by Human Transport 

1 
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6.1 Introduction 
·Human activity in the Antarctic has been steadily increasing since the continent was 

discovered in 1820 (Kimball 1999). Early human activities included harvesting of 

wildlife (primarily seals and whales), exploratory expeditions, and scientific research. 

In recent decades, activity pas been largely limited to science and tourism. Many of 

these activities have had a range of effects on the wildlife (see for example 

Richardson et al. 1995; Giese and Riddle 1999; National Research Council 2003), 

but of particular· interest here, is that these activities have associated sounds of 

varying frequencies and intensities. Anthropogenic sounds have no context-specific 

meaning and are th~refore effectively 'noise' for the wildlife. However, mimy 

marine mammals in the Antarctic use sounds as an important sense of foraging and 

social facilitation, so alterations of the acoustic medium are potentially adverse for 

the wildlife. 

Despite this, very little research has been conducted to establish whether Antarctic 

wildlife is affected by anthropogenic noise. Studies have investigated the effect of 

helicopter operations on the behavioural response of king penguins (Aptenodytes 

patagpnica) (Cooper et al. 1994 ), emperor penguins (Aptenodytes forsteri) (Giese 

and Riddle 1999), Adelie penguins (Pygoscelis adeliae) (Culik et al. 1990; Wilson et 

al. 1991) and Southern elephant seals (Miroimga leonina) (Burton and van den Hoff 

2002). However, these studies did not differentiate between the acoustic and visual 

components of the stimuli, so it is difficult to draw conclusions about the relative 

importance of acoustic effects. Studies on marine m~als elsewhere have found a 

range of effects due to anthropogenic noise, although it is difficult to establish cause 

and effect. For example, anthropogenic noise has been found to cause: 

_ 1) changes in behaviour, such as cessation of feeding and mating, increased 

alertness, vigilance and agonistic behaviour or increased avoidance and escape 

behaviour, for example harbor seals (Phoca vitulina) (Myrberg 1990) and ringed 

seals (Phoca hispida) (Born et al. 1999), 

2) changes in vocal behaviour, such as cessation of calls, or change in call 

duratio~, repetition rate, frequency (kHz) and loudness, for example beluga whales 

(Delphinapterus leucas) in Canada (Lesage et al. 1999) bottlenose dolphins 

(Tursiops truncatus) (Scarpaci et al. 2000), lndo-Pacific humpbacked dolphins 

(Sousa chinensis) in Australia (van Parijs and Corkeron ZOOl') and killer whales 

( Orcinus orca) in the USA (Foote et al. 2004), 
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3) changes in movement patterns such that animals temporarily or permanently 

leave an area, for example harbour seals in Canada (Henry and Hammill 2001) and 

killer whales in Canada (Morton and Symonds 2002), 

4) masking of important sounds, affecting communication,. navigation, and 

predator/prey interactions, for example killer whales in Canada (Morton and 

Symonds 2002), 

5) temporary or permanent hearing loss and 

6) physical injury or death, for example (Richardson et al. 1995; National Research 

Council 2003). 

Measures and conventions controlling travel in the vicinity of wildlife exist under 

the Antarctic Treaty System (Kimball 1999). In addition to these, the International 

Association of Antarctic Tour Operators (IAATO}, which is a member organisation 

founded to advocate, promote and practice safe and environmentally responsible 

private-sector travel to the Antarctic, has developed guidelines for vessel and aircraft 

operations in the vicinity ofwildlifo (IAATO 2004a). Many of the Antarctic Treaty 

Nations with research bases in the region, including Australia, have also developed 

guidelines (see Table 1.1 ). However, the majority of these guidelines are not based 

on scientific studies and have not been tested to determine whether they are actually 

sufficient to minimise or eliminate noise impacts to wildlife. 

The Weddell seal (Leptonychotes weddellii) is the only Antarctic marine mammal 

that lives under and breeds on the same fast ice that people utilise for .travel. As a 

consequence, seals near research bases or tourist operations are often exposed to 

anthropogenic noise. The vocal behaviour of Weddell seals is sophisticated; 

compared to other Antarctic phocids, and the species may therefore· be especially 

vulnerable to acoustic interference (Ray and deCamp 1969; Evans et al. 2004). 

Quantifying the effect of noise on the behaviour (and potentially the physical state) 

of Weddell seals requires knowledge of the auditory threshold of the Weddell seal, 

the factors affecting audibility of noises, the sound levels produced by various forms 

of transport (i.e. their sound/distance profile) and how the seals might respond to 

anthropogenic noise. The aims of this study were therefore to (i) provide 

sound/distance profiles for a number of commo1?1y used Antarctic vehicles, (ii) 

establish the assumed detection threshold for Weddell seals, (iii) relate the 

sound/distance profiles to the Weddell seal detection thresho~~1and (iv) determine, 
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from an experiment of vocal response, whether continuolis vehicle noise affects the 

vocal behaviour of Weddell seals underwater. 

6.2 Methods 

6.2.1 Study sites, stimulus and experimental design 

6.2. 1. 1 Sound/distance Profiles 

Four recording locations in Princess Elizabeth Land, East Antarctica wer:e used to 

record sound/distance profiles: 8hirokaya Bay, at 68°31 '30"$, 78°09'E (site A) Long 

Fjord, at 68°30'8, 78°20'E (site B) and Prydz Bay, 10 km from Davis station, at 

68°33'24"8, 78°0l'E and 68°35'8, 77°5l'E (site C & D respectively) (Figure 6.la). 

These locations were at least 1.75 km from Weddell seal pupping,colonies. Although 

the sites differed in terms ofbathymetry, ice thickness was similar at all sites 

(approximately 2 m). Recordings were made during November- January 2002/2003 

between 08:45 and 14:45 hours (local time). All recordings were made with low 

wind and no precipitation. 

Page -127 



Legend 

* Seal colony 
Sound profile 

78°0'0"E A o_-=::::15-= 1=-0 ____ 20 Kllometers 

* Vocal experiment 
+ Brookes Hut 

@ Davis station 

~ .- .. _ -· .P..'.:-

68"24'0"~ 

<?. '!. 2 4 Kilometers 

Figure 6.la) Map of a section of the Vestfold Hills showing the four sites used to record the 
sound/distance profiles of the stimuli; the sites used in the vocal response experiment and the 
location of the seal colonies (data from Australian Antarctic Division 2004b). 
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Figure 6.1 b Map of a section of the Windmill Islands showing the sites used in the vocal 
response experiment and the location of the seal colony (data from Australian Antarctic Division 
2004b). 
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6.2.1.1.1 Stimulus 
The modes of transport from which the sound profiles were recorded were those that are 

commonly used in the Australian Antarctic Territory. They included a pedestrian wearing 

crampons (metal spikes worn on the sole of the boot), a quad (4 wheeled all-terrain 

vehicle, Honda TRX350), a Hagglund (tracked, all-terrain vehicle, Mercedes Benz 

BV206D), a 'Squirrel' helicopter (Aerospatiale AS350B single engine), a Twin Otter 

aircraft (fixed wing, fitted with skis), and a Zodiac (5 m inflatable boat with a 35 hp 

outboard motor). 

6.2.1.1.2 Sites· 
Site A was used to record sound/distance profiles for the pedestrian and over-snow 

vehicles. The ice was polished blue ice with little to no'snow cover. The sound/distance 

profile for the helicopter was recorded at Site B. 'qie ice at this site had a thin (approx. 1-

2 cm) layer of snow in some areas and none in others. Sites C and D were used to record · 

sound/distance profiles for the Twin Otter and site D was used to record the sound from 

the Zodiac. The ice over which the Twin Otter was flown was also covered in a thin layer 

of snow (approx. 1-2 cm). Sound/distance profiles for the Zodiac were completed later in 

the season when the ice ha~ largely broken-out. 

To guide vehicle movement during' recordings, grids were marked on the ice with canes 

and marking paint, or on the water with buoys and the use of a GPS (Figure 6.2). 

Distances from the sound recording point (SRP) were based on Yilo&10> steps: 1, 31.6, 

fOO, 316 m etc and distances specified by the AAD for travel in the vicinity of Weddell 

seals (Figure 6.2 & Table 6.1). The distance from the SRP,, and therefore the number of 

transects, was dependent on the anticipated amplitude (audible in-air to humans) of the 

sound from a particular mode of transport (Table 6.1). Within the grid, markers were 

placed along transects at 10 m and 49 m intervals fo~ the pedestrian and the over-snow 

vehicle grids respectively. To guide the helicopter activity, markers were placed at 0, 100, 

250 and 750 m from the SRP (see 6.2.1.l.3), where 0 m was directly overhead. The Twin 

Otter flew directly above the SRP in straight lines. Speed of travel for.the over-snow 

vehicles and watercraft was based on common speeds used in situ (quad, 15 and 40 km/hr, 

Hagglund, 15 and 25 km/hr, Zodiac, 15 and 25'km/hr) and aircraft speed was based on the 

cruising speed of the aircraft (helicopter, 100 km/hr, Twin Otter, 220 kmlhr). Distance 

from the SRP for both the helic9pter and the Twin Otter was measured in height (altitude) 

and horizontal distance. 
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Each stimulus traversed the grid five times while sound was recorded. Sounds were 

recorded irrespective of whether the vehicle was travelling towards of away from the SRP 

for the pedestrian, quad, Hagglund and helicopter. In order to establish the baseline 

against which the noise generated by vehicles could be compared, background noise. levels 

were recorded three times for a period of 15 mins. Recordings were made prior to the 

beginning of the experiment, between the 3rd and 4th traverse (approximately half way 

through the experiment), and at the completion of the_ traverses. 

Table 6.1 Dimensions of the grid used for each of the stimuli, including the number of transects, 
the speed of travel and the distance from the sound recording point. 

Stimulus Trmsect No"of Speed Location Distance from SRP 
length transects (km/hr) ofSRP 

Pedestrian - 80m 8 3-4 UnderW-ater 1,5,10,15,20,30,40,59 m 

Quad 240m 3 15 In-air 50,150,250 m 

4 Underwater 1,31.6,100,316 m 

1 40 In-air 150m 

2 Qnderwater 100,316 in -

Hagglund 240m 3 15 In-air 100,250,400 m 

5 Underwater 1,31.6,100,316,486 m 

1 25 In-air 250m 

2 Underwater 316,486 iii 

Helicopter 1600m 3 100 In-air& 200,800,2500 ft {altitude) 
Underwater 

0,100,250,750 m (horiz.ontal) 

NIA Idle/land/ In-air& 10,100,250?50 m · 
take off Underwater 

Twin NIA 5 220 In-air& 328,500,1500,3000,5000 ft 
Otter Underwater 

NIA Idle/land/ In-air& 20,100,500 m 
take off Underwater 

Zodiac No set 11 15 In-air& 0,10,31.6,100,316,500,1000, 
length Underwater' 1500,2000,2500,3000 m 

10 35 In-air& 0,31.6, 100,316,500, 1000, 
Underwater 1500,2000,2500,3000 m 
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Figure 6.2 Grid pattern for the pedestrian (a), helicopter (b) and Zodiac (c) recordings (the 
over-snow vehicles grid is similar to the pedestrian grid). Direction of travel is indicated 
with the arrow. Distance is in metres. 
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6.2.1.1.3 Recordings 
The sound recording point was a 15 cm diameter hole drilled through the ice. Two 

High Tech hydrophones, with built-in preamplifiers, were suspended in the water 

column, one at 0.5 m below the ice and the other 1 m from the bottom ifthe depth of 

water was< 30 m, or 29 m if the depth was> 30 m. Water depth ranged from 6.4 m 

to ~250 m. The frequency response of the hydrophones was± 1 dB from 0.0 to 

8 kHz and± 3 dB from 0.0 to 20 kHz. In-air recordings were made with a Cesva SC-

2 sound level meter, which was calibrated with a Cel-282 acoustic calibrator. The 

sound level meter was 'A-weighted' (microphone adjusted to the auditory sensitivity 

curve of humans). Stereo recordings (underwater) and mono recordings (in-air) were 

made using a Sony TCD-ClOO digital audio tape (DAT) recorder (0.02-20 kHz± 

1 dB at standard recording speed or O.Dl - 16 kHz± 1 dB in the long play mode). 

The in-air 'lj-octave bands of interest were centred near 1 kHz and thus the A 

weighting effect of the sound level meter would not influence the sound 

measurements. We were therefore able to present sound levels in absolute units of 

dB re. 20 µPa; the standard in-air reference level. Underwater, the hydrophones had 

an essentially flat frequency response over the frequencies of interest and thus the 

underwater sound levels are presented in absolute units, dB re. 1 µPa; the standard 

underwater reference level. 

6.2.1.2 Seal detection threshold 
I created an assumed detection threshold (ADT) for Weddell seals, both underwater 

and in air (Figure 6.3), based on experimental studies on harbor seals (Mohl 1968; 

Terhune 1988, 1991; Kastak and Schusterman 1998; Wolski et al. 2003), harp seals 

(Pagophilus groenlandicus) (Terhune and Ronald 1971, 1972) and ringed seals 

(Terhune and Ronald 1975). Psychophysically and anatomically, all phocids are very 

similar and the detection thresholds among several species have been found to be 

very similar (Terhune and Turnbull 1995). I therefore took the lowest detection 

threshold reported for each frequency from the above phocid studies to generate a 

conservative estimate of in-air and underwater detection thresholds. Terhune and 

Turnbull (1995) also found that for a seal to correctly detect a signal 95% of the time, 

the sound source had to be 15-20 dB above the threshold. The signal detection 

criterion of the seal was found to affect audibility within the 1-20 dB range, where 

recognition increased exponentially from 50-95 percent correct response. Signal 

levels need to be about 20 dB above the threshold to permit recognisable speech in 

humans (Hirsch 1952). 
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The ADT in-air is also based on the results from behavioural observations of 

lactating Weddell seals to quad and Hagglund drive-by experiments (Chapter 5). The 

results of this study show that the seals react to quad and Hagglund drive-bys at 

250 m. The lowest mean received noise level during the drive-by was 19 dB re. 20 

µPa at 0.86 kHz frequency (Table 6.2). Although the stimulus tha~ first alerted the 

seals to the drive-bys, i.e. sight, sound, smell or vibration, was not determined, sound 

was thought to be the most likely stimulus. Vision, olfaction and vibrations were 

thought to be unlikely triggers at this distance. The chance of the seals becoming 

alert due to sight is small as the seals spend a larger proportion of their time resting 

with their heads down (92. 7%, Chapter 2) and would have to be looking in the exact 

direction of the vehicle to be alerted to it by sight alone. Weddell seals are also 

myopic and astigmatic in-air, which means that objects in the distance are blurred 

. (Lavigne et al. 1977). Olfactory cues at these distances are unknown. In this study, 

vibratio~s generated by the vehicles driving on the ice were also unlikely to be felt by 

a seal because of the distance between the seals and the vehicles, and the thickness of 

the snow cover, which would have a dampening effect. Acoustic potential energy 

does not propagate well laterally as the energy is absorbed, spread and scattered as it 

travels through the ice (Richardson et al. 1995; Carlin 1996). The results therefore 

suggest that the seals can detect noise in the 0.86 kHz :frequency range at noise levels 

of 19 dB re. 20 µPa. 

It is important however, to point out that the noise levels recorded during the quad 

and Hagglund drive-bys at the tested distances are crude and may be erroneous. 

Noise leve~s decrease with an increase in distance due to transmission loss (Albers 

1965; Richardson et al. 1995; Carlin 1996); however, the levels recorded showed 

little, if any, decrease with an increase in distance. This suggests that some of the 

received levels are erroneous. The most likely reason for the similarity in noise 

levels between the distances tested is equipment error and variability in abiotic 

conditions, which affect transmission foss (in the order of± 3 decibels). For 

example, sound can be refracted towards the ice (height of the seal) on sunny days 

because the air temperature directly above the ice is cooler than the air temperature 

higher up, which means that the received noise levels are louder. 

Despite this, a conservative approach was taken and the assumed in-air detection 

level was set at 0.86 kHz, as the lowest level recorded during the behavioural 

experiment was 19 dB re. 20 µPa. 
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Thr~e distinct audibility levels were specified; inaudible, barely audible (noise 

levels between 0-20 dB above threshold), where the sound would only be audible 

under low levels of background noise or when the seal is actively listening, and 

clearly audible, where noise levels were > 20 dB above threshold. 

Assumed underwater audiogram 

120 

100 
«I 
ID. 
:i ... 

80 ai ... 
m 
"g 

60 
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Figure 6.3 Assumed Weddell seal audiogram, a) underwater and b) in-air. Points above the 
curve illustrate the scatter of the data. The,curve represents the lowest threshold 
measurement at that frequency for anyphocid (Mohl 1968; Terhune and Ronald 1971, 1972, 
1975; Terhune 1988, 1991; Kastak and Schusterman 1998; Wolski et al. 2003). 

6.2.1.3 Vocal response experiment 

To determine the effect of continuous vehicle noise on the vocal behaviour of 

Weddell seals underwater, vocal behaviour was recorded with and without vehicle 

noise, at six Weddell seal breeding colonies in East Antarctica. Two sites were in 

Penny Bay, Windmill Islands (66°25'8, l 10°40'E) and the remaining four were in 

Long Fjord, Vestfold Hills (68°35'8, 77°58'E) (Figure 6.la & 6.lb). The recordings 

at the Vestfold Hills (sites 1-4) were made between the 3 rd and the 20th November 

2002. The recordings at the Windmill Islands (sites 5-6) were made between 31 st 
\ 

October and 15th November 2001. Although the sites were different in terms of 

bathymetry, the ice conditions were similar (2 m thick ice and no surface snow). 

Sites selected were 300 m from the centre of the nearest breeding colony to ensure 

that the closest distance from the edge of the 50 m radius circle, drawn around the 

SRP on which the Hagglund drove, was 250 ni from the seals. This distance met the 
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AAD guideline limit for Hagglund travel near Weddell seals (Australian Antarctic 

Division 2004a). The distance was also thought to be far enough away to minimise 

the disturbance to hauled out seals but close enough to capture underwater 

vocalisations. The circumference of the circle was marked on the ice with spray 

paint. In the center of the circle a 15 cm diameter hole was drilled and two High 

Tech hydrophones were suspended in the water column, one at 0.5 m below the ice 

and the other at 27.5 m or less, but at a minimum of 0.5 m above the ~ottom. Stereo 

recordings were made as before, using the two hydrophones with built-in 

preamplifiers and a Sony TCD-Cl 00 digital audio tape recorder (DAT). 

The recordings were made at the peak calling times for the seals ( 6 - 8 pm local 

time for the Windmill Island~ and 8-10 pm local time for the Vestfold Hills) (Green 

and Burton 1988). An initial recording, on Day 1 of experiments, was undertaken to 

establish an index of the 'normal' vocal behaviour of the seals in the absence of 

anthropogenic noise (the control). A second recording, on Day 2, was made during 

continuous anthropogenic noise generated by a Hagglund traveling at a constant 

speed of 15 km/hr along the marked circle. 

6.2.2 Analysis 
All acoustic signals were calibrated in the field .with a Cel-282 acoustic calibrator. 

The hydrophones were calibrated in the lab by the comparison technique using a 

Bruel & Kjaer 8100 hydrophone, Bruel & Kjaer 2635 Charge Preamplifier and Bruel 

& Kjaer 4220 pistonphone (comparison technique Caruthers 1977). Recordings were 

played back with a Sony TCD 750 DAT recorder, a Krohn-Hite Bandpass filter 

(model 3364) and Digitor C4116 headphones. 

6.2.2.1 Sound/distance profile 

A one second sample of sound was taken as the vehicle passed each of the marked 

distances along the transect. From this sample, the frequency with the highest 

amplitude above the assumed detection threshold was selected (both in-air and 

underwater). The level (dB) of the ~-octave bandwidth that was centered near this 

frequency us~g Multispeech (Kay Elemetrics Corp, model 3700 version 2.2, 1999) 

was then measured. Using the ~-octave bandwidth distance is a conservative 

approach because the actual masking bandwidth may be smaller (Richardson et al. 

1995). A sound/distance profile for each stimulus was then made for the distances 

tested under the abiotic conditions measured (Tables 6.2 & 6.3). 
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Because continuous recordings along transects were made, it was possible to 

determine sound levels at additional distances. However, because of the large 

number of distances obtained in this method and the close proximity of some of the 

distances to each other, only the distat).ces of the transects, i.e. 1, 31.6, 100 m, and 

additional distances along the furthest transect are presented {Tables 6.2 & 6.3). 
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Table 6.2 Average sound level (dB re. lµPa) recorded underwater at a shallow and deep depth of a) pedestrian, b) quad, c) Hagglund, d) helicopter, e) Twin Otter 
and f) zodiac, travelling at various speeds and distances from the sound recording point. The sounds are categorised as to their audibility to a theoretical Weddell 
seal, where inaudible sounds are below threshold, barely audible sounds are between 0-20 dB above threshold and clearly audible sounds are> 20 dB above 
threshold. -

a) Pedestrian 

Frequency Distance Speed'~ SoWld level (dB re. 1µPa) 

(Hz) (m) (km/hr) Shallow Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

1033t I 1 3-4 - 74 - - 73 

5 3-4 - 82 - - 80 

10 3-4 - 80 - - 79 

15 3-4 - 76 - - 75 

20 3-4 - 76 - - 75 

30 3-4 - . 75 - - 74 

40. 3-4 - 74 - - 73 

50 3-4 - 75 - - 75 

* The speed of walking was not measured, however a "normal' walking pace of 3-4 km/hr was maintained. 



Table 6.2 continued. 

b) Quad 

Frequency Distance Speed Sound level (dB re. lfiPa) 

(Hz) (m) (km/hr) Shallow Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

200 I 1 15 - - 118 - 94 

31.6 15 - 87 - - 89 

100 15 79 - - 78 

100 40 - 87 - - 88 

316 15- 79 - - 76-

316 40 79 - - 77 

338 15 79 - - 78 

338 40 80 - - 80 



Table 6.2 continued. 

c)Hagglund 

Frequency Distance Speed Sound level (dB re. 1µPa) 

(Hz) (m) (km/hr) Shallow Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

75 I 1 15 - - 144 - - 132 

31.6 15 - 118 - - - 125 

100 15 - 105 - - 114 

316 15 91 - - 98 

316 25 94 - - 98 

486 15 86 - - 87 

486 25 89 - - 91 

500.6 15 88 - - 88 

500.6 25 90 - - 91 



Table 6.2 continued. 

d) Helicopter 

Frequency Distance Altici.tde Speed Action Sound level (dB re. 1µ.Pa) 

(Hz) (m) (feet) (km/hr) Shallow Deep 

Inaudible Barely,audible Clearly audible Inaudible Barely audible Clearly audible 

1033t I 10 0 " Idle I " 78 " " 85 

100 0 " Idle I " 74 " I " 73 

250 0 " Idle I " 78 " I " 68 

100 0 " Take off 

I 
" 78 " I " 80 

/ 

250 0 " Take off " 74 " I " 73 

750 0 "' Take off I " 74 " I " 73 

10 0 " Land I " " 90 I " " 99 

100 0 " Land " 80 " " 84 

250 0 " Land " 75 " " 72 

750 0 " Land " 75 " " 72 

0 200 -100 Cruise " 78 " " 73 
~ 

10 200 -100 Cruise " 81 " " 83 

100 200 -100 Cruise " 72 " " 82 

250 200 -100 Cruise " 76 " " 72 

750 200 -100 Cruise " 81 " " 75 



Table 6.2 continued. 

d) Helicopter 

Frequency Distance Altitude Speed Action Sound level (dB re. 1µPa) 

(Hz) (m) (feet) (km/hr) Shallow _Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

1033t I 0 800 -1CO Cruise I - 80 - - 79 

100 800 -100 Cruise I - 75 - I - 80 

250 800 -100 Cruise I - 75 - I - 75 

750' 800 -100 Cruise I - 73 - I - 74 

0 2500 -100 Cruise I - 76 - I - 73 

250 2500 -100 Cruise I - 74 - I - 73 

750 2500 -100 Cruise I - 74 - I - 72 



Table 6.2 continued. 

e) Twin Otter 

Frequency Distance Altitude Speed Action Sound level (dB re. 1µ.Pa) 

(Hz) {m) (feet) {km/hr) Shallow Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

1033t I 10 0 - Idle I - - 102 - - 92 

10 0 - Taxiirig I - - 112 I - - 110 

500 0 - Take off - 77 - 78 

20 0 - Land - - 118 - - 106 

100 0 - Land - - 118 - - 115 

0 328 -ZD Cruise - 79 - - 78 

0 500 -m Cruise - - 90 - - 87 

0 1500 -ZD Cruise - 79 - - 75 

0 3000 -ZD Cruise - 76 - - 74 

0 5000 --ZD Cruise - 79 - - 73 



Table 6.2 continued. 

f) Zodiac 

Frequency Distance Speed Action Sound leve~ (dB re. 1µPa) 

(Hz) {m) (km/hr) Shallow Deep 

Inaudible Barely audible Clearly audible Inaudible Barely audible Clearly audible 

1033t I 1 - Idle I - - 114 - - 114 

10 I - Idle - - 107 - - 110 

0 35 Drive - - 129 - - 127 

10 15 Drive - - 122 - - 122 

31.6 15 Drive - - 115 - - 115 

31.6 35 Drive - - 123 - - 120 

100 15 ' Drive - - 111 - - 110 

100 35 Drive - - 118 - - 116 

316 15 Drive - - 103 - - 103 

316' 35 Drive 

I 
- - 109 

I 
- - 110 

500 35 Drive - - _'105 - - ' 106 

1000 -15 Drive I - - 89 I - 85 

1000 35 Drive I - . - 98 I - - 97 

1500 35 Drive I - - 101 I - - 100 



Table 6.2 continued. 

,f) Zodiac 

Frequency 

(Hz) 

Distance 

(m) 

2000 

2500 

3000 

Speed 

(km/hr) 

35 

35 

35 

Action 

Drive 

Drive 

Drive 

Sound level (dB re. 1µPa) 

Shallow 

Inaudible ·Barely audible Clearly audible 

90 

98 

83 

Inaudible 

Deep 

Barely audible Clearly audible 

89 

98 

83 

t The reason that the centre frequencies of the Y3-octave bandwidth with the highest amplitude is the same for the pedestrian, aircraft and zodiac, even though these 
modes of transport are highly different and sound different, is because the noise spectrum is relatively flat and the sensitivity of the seal drops as the frequency 
increases from above 0.8 kHz. 



· Table 6.3 Average sound level (dB re. 20µPa) recorded in-air for the a) quad, b) Hagglund, c) helicopter, d) Twin Otter, and e) Zodiac, travelling at various speeds 
and distances from the sound recording point. The sounds are categorised as to their audibility to a theoretical Weddell seal, where inaudible sounds are below 
threshold, barely audible sounds are between 0-20 dB above threshold and clearly audible sounds are> 20 dB above threshold. 

a) Quad 

Frequency Distance Speed . Sound level 

(Hz) (m) (km/hr) . (dB re. 20µPa) 

Inaudible Barely audible Clearly audible 

861t I 50 15 - 21 

150 15 - 21 

150 40 - 22 

250 15 - 19 



b) Hagglund 

Frequency Distance Speed Sound level 

(Hz) (m) (km/hr) (dB re. 20µPa) 

Inaudible Barely audible Clearly audible 

861t . I 100 15 - 23 

250 15 - 24 

250 25 - 21 

400 15 - 22 



Table 6.3 continued. 

c) Helicopter 

Frequency Distance Altitude Speed Action Sound level 

(Hz) (m) (feet) (km/hr) (dB re. lµPa) 

Inaudible Barely audible Clearly audible 

, 861t I 10 0 - Idle - - 73 

100 0 - Idle - 39 

250 0 - Idle - 34 

100 0 - Take off - - 59 

250 0 - Take off - - 41 

750 0 - Take off - 36 

10 0 - Land - - 86 

100 0 - Land - - 51 

250 0 - Land - 37 

750 0 - Land - 38 

0 200 -100 Cruise - - 75 

10 200 -100 Cruise - - 78 

100 200 -100 Cruise - - 63 

250 200 -100 Cruise - - 51 

750 200 -100 Cruise - 39 



Table 6.3 continued. 

c) Helicopter 

Frequency Distance Altitude Speed Action Sound Level 

(Hz) (m) (feet) (km/hr) (dB re. 1µPa) 

Inaudible Barely audible Clearly audible 

861t I 
0 800 -100 Cruise - - 61 

100 800 -100 Cruise - - 58 

250 800 -100 Cruise - - 47 

750 800 -100 Cruise - 39 

0 2500 -100 Cruise - - 50 

250 2500 -100 Cruise - - 43 

750 2500 -100 Cruise - 38 



Table 6.3 continued. 

d) Twin Otter 

Frequency Distance Altitude Speed Action Sound level 

(Hz) (m) (feet) (km/hr) (dB re. 1µPa) 

Inaudible Barely audible Clearly audible 

861t I 10 0 - Idle - - 79 

10 0 - Taxiing - - 54 

500 0 - Take off - 25 

20 0 - Land - - 88 

100 0 - Land - - 59 

0 r 100 -m Cruise - ·- 68 

0 500 -22:) Cruise - - 58 

0 1500 -22:) Cruise - - 45 

0 300 -22:) Cruise - - 50 

0 5000 -22:) Cruise - ' 38 



Table 6.3 continued. 

e) Zodiac 

Frequency Distance Speed Action Sound level 

(Hz) (m) (km/hr) (dB re. 1µPa) 

Inaudible Barely audible Clearly audible 

861t I ' 1 - Idle - - 73 

10 - Idle - 38 

0 35 . Drive - - 61 

10 15 Drive - - 52 

31.6 15 Drive - - 43 

31.6 35 Drive - - 50 

100 15 Drive - 34 

100 35 Drive - 36 

316 15 Drive - 28 

316 35 Drive - 33 

1000 15 Drive - 24 

1000 35 Drive - 22 

2000 35 Drive - 24 

t The reason that the centre frequencies of the ~-octave bandwidth with the highest amplitude is tlie same for all modes of transport, even though they are highly 
different and ~ound different, is because the noise spectrum is relatively flat and the sensitivity of the seal drops as the frequency increases from above 0.8 kHz. 



6.2.2.~ Vocal response experiment 
Seal vocalisations were analysed using Spectrogram (R.S Home's Spectrogram, 

version 6.0.9) at a sampl~g rate of 32 or 44 kHz with 16-bit resolution. Only calls 

between 0.010-16 kHz were analysed b\:cause of the upper frequency limit (16 kHz) 

, of the DAT recorder in long-play mode. This frequency range is less than that 

recorded for Weddell seal vocalisations (up to 20 kHz) (Thomas and Kuechle 

l 982b ), however it allowed capture of most calls. 

Vocalisations were categorised as per Thomas and Kuechle (1982b) and Pahl et al. 

(1997) with the addition of one call type, the tongue click, which was included as a 

new category (Table 6.4). For each two hour recording, the first 100 clearly 

discemable calls were sampled (thus, the cumulative total of all individual seals). 

For each recording the following parameters were recorded: 

1) Call type (for each of the first, 100 calls) 

2) Call duration 

3) Number of elements within each call 

4) Whether the focal call was overlapped, i.e. one call occurring at the same tinie 

as another from a different individual 

5) The time taken to record 100 calls 

6) The number of calls made in 10 minutes. 
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Table 6.4 Classification of Weddell seal calls based on (Thomas and Kuechle 1982b) and 
(Pahl et al. 1997). 

Type Symbol 

Tone 0 

Growl L 

Whoop w 
Squeak s 

Whistle Ascending WA 

Trill Constant Frequency 'IC 

Trill T 

Whistle Descending WD 

Mew M 

'Chug c 

Guttural Glug (Grunt) G· 

Whistle Ascending Grunt WAG 

Knock' K 

Tongue Click a, 

6.2.2.2.1 Statistical procedure 

Description 

Constant frequency, predominantly sinusoidal 

Constant frequency, broad bandwidth, long call 

Constant frequency call with a terminal upsweep 

Brief call with a constant frequency or rising frequency and an irregular 
waveform 

Ascending frequency, sinusoidal waveform 

Narrow bandwidth trill with a constant frequency beginning, sinusoidal 
or frequency modulated waveform (> 2 seconds) 

Narrow to broad bandwidth, beginning with a frequency downsweep 
(> 2 seconds) 

Descending freq\lency, sinusoidal waveform ( < 2 seconds) 

Abruptly descending frequency followed by a long constant frequency 
ending 

Abruptly descending frequency followed by a brief constant frequency 
ending 

Descending frequency call that is lower than a chug and has a brief 
duration 

Brief ascending whistle followed by a guttural glug, the two types 
altemateinaregularpattem · 

_ Abrupt, brief duration broadband so~d 

Biief sharp call with slowly repeating elemen~, broadband and an 
irregular waveform · · 

Regression analysis indicated a positive relationship between call duration and the 

number or'elements within a call (k =::: 0.539,p < 0.001) (Fig 6.4), so call duration 

alone was used for further analysis. Call duration allowed the inclusion of all call 

types in the analysis rather than splitting the call types into single and multiple 

element calls. 

Weddell seals may increase the duration of their call in response to another seal 

calling simultaneously, thus overlapping the calls (Terhune et al. 1994b). The effect 

of overlap on call duration with treatment and site as independent variables was 

therefore examined using a 2-way analysis of variance (ANOVA). Overlap was 

found to_ increase in the presence of vehicle noise (F= 143.61, df= I,p < 0.001), and 

therefore the data were separated into overlapped ,calls and non-overlapped calls. 
/ 

Paired t-tests were then used to compare mean duration of calls between the control 

and experimental recordings. 
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Figure 6.4 Quadratic relationship between the number of elements in a call and call 
duration. Calls made in the absence of Hagglund noise. 

An analysis of similarity (ANOSIM) was used to compare the number of calls 

(within each call type) to the absence or presence ofveliicle noise. Log (x+ 1) 

transformations were used and each site was regarded as a replicate, giving a total 

sample size of six. 

Paired t-tests were also used to compare the mean length of time required to record 

100 calls, as an index of calling rate, and to compare the frequency of occurrence of 

calls emitted during the 10 minute segments of the control and experimental 

recordings. -

Site 1 was excluded from the analyses for comparisons of the time taken to record 

100 calls, the number of calls emitted in 10 minutes and the duration of calls, 

because of the small number of measurable calls in both the control and experimental 

recording (9 and 21 respectively). 

All data were tested for normality and homogeneity of variance, and log 

transformations were applied where necessary. The alpha level of all tests was set at 

0.05 and stand error was unless otherwise stated. Statistical analyses were performed 

using SPSS (SPSS for Windows, version 11.5.1, 1989-2002) and Primer 5 (Plymouth 

Marine Laboratory, version 5.2, 2001). 
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6.3 Results 

6.3.1 Sound/distance profiles in relation to the assumed detection 
threshold of the Weddell seal 

Tables 6.2 and 6:3 list the sound level for each of the stimuli and the likely 

detectability of the sound for a Weddell seal in water and in-air. 

The direction of travel, i.e. whether approaching the SRP or receding from the 

SRP, for the pedestrian, quad, Hagglund and helicopter, was found to result in slight 

differences in sound level (mean of 2. 7 dB), however, this degree of difference was 

close to the error range of the equipment and was therefore disregarded. 

6.3.1.1 Pedestrian 
The peak frequency (centre of the ~-octave bandwidth) of underwater noise 

produced by a person wearing crampons walking on the ice was 1.03 kHz. Based on 

the assumed detection threshold, this frequency would be barely audible when 

decibels levels are > 66 dB re. 1 µPa. The noise level generated by the pedestrian 

walking on the ice at all distances (up to 50 m) would be barely audible to a seal 

under the water (Table 6.2). The highest noise level recorded (16 dB above 

threshold) was 25 m from the SRP, recorqed from the lower hydrophone (Figure 6.5). 

No in-air recordings were made. 

6.3.1.2 Over-snow vehicles 
6.3.1.2.1 Quad 
The peak frequency produced underwater by a quad travelling on sea-ice was within 

the ~-octave bandwidth centred at 0.2 Hz. The noise would become audible to a 

theoretical seal at levels above 84 dB re. lµPa. In-air, the peak frequency of the quad 

was 0.86 kHz, and from behavioural response experiments it appears that the seals 

react to noise levels above 19 dB re. 20 µPa. 

The noise produced by a quad at the distances tested would be barely audible to the 

seal in-air and underwater (Tables 6.2 & 6.3). The only distance at which the noise 

would be clearly audible (34 dB above threshold) would be at 1 m, and then at the 

shallow depth only. Deeper in the water column, the noise would be barely audible. 

A quad travelling at a distance of 40 m from the SRP would only be barely audible. 

A further 10 meters away and the quad would be inaudible (Figure 6.5). The 

increases in speed tested resulted in an increase of 1-5 dB in the sound level recorded 

(Table 6.2 & Figure 6.5). At 128 m, the underwater sound level of the quad would 

be 4 dB above threshold at the shallow depth and 1 dB above threshold at 156 m for 
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the greater depth. Any distance past this point and the quad would be inaudible 

(Figure 6.5). 

6.3.1.2.2 Hagglund 
Th~ peak 'i)-octave bandwidth of noise produced underwater by a Hagglund 

travelling on sea-ice was centred at 0.075 kHz. The noise would be detected by the 

seal when levels are >66 dB re. lµPa. In-air, the peak frequency of the Hagglund 

was centred at 0.86 kHz and would be audible to seals at levels above 

19 dB re. 20µPa. 

The noise produced by a Hagglund at the distances tested would be barely audible 

to a seal on the ice (Table 6.3). Observations on the behavioural response of 

lactating Weddell seals hauled out on the ice to the drive-by of a Hagglund at 400 m 

(15 km/hr) suggest that the seals cannot hear·the vehicle (Chapter 5). Only one of 12 

_ seals looked UJ? at the vehicle. It is highly possible that the seal that reacted to the 

Hagglund did so because she was already alert and sighted the vehicle rather than 

having detected the vehicle by sound. If this was indeed the case then the noise . ' 

generated by a Hagglund at a distance of 400 m (15 km/hr) is most probably -

inaudible to seals hauled out on the ice. 

Underwater, the loudest noise level recorded (42 dB above threshold) was at 1 m 

from the SRP (0.5 m below the ice) (Table 6.2 & Figure 6.5). This would be.the only 

distance at which the Hagglund would be clearly audible at the shallow depth, while 

at the greater depth the Hagglund would be clearly audible at distances up to 31.6 m._ 

The noise level at both depths decreased to within the 0-19 dB range at 156 m from · 

the SRP, (barely audible), and then would be undetectable between 156 and 316 m 

(Figure 5). The increase in speed during the 316 m trans~ct did not make the noise 

audible, however it did increase the dB level by 3-5 dB at the shallow depth and 0-

2 dB at the greater depth (Table 6.2 & Figure 6.5). In comparison to the quad, the 

Hagglund noise level underwater was louder and would be audible at greater 
I 

distances (Figure 6.5). 
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Figure 6.5 Underwater noise levels generated by over-snow vehicles (where Hag= 
Hagglund) and the pedestrian (Ped) relative to the assumed detection threshold of the 
Weddell seal (0 dB). Noises below 0 threshold are undetectable, noises between 0 and 
20 dB are detectable by an actively listening seal in a quiet environment and noises above 
20 dB (black line) are clearly detectable. The distance at which the noise first falls below the 
20 dB threshold is an estimate based on the distances tested. Shallow and deep refer to the 
hydrophone depths (see text). 

6.3. 1.3 Aircraft 
6.3.1.3.1 Aerospatiale AS350B helicopter 
The peak 'h-octave bandwidth of the helicopter was centred at 1.03 kHz underwater, 

and 0.86 kHz in-air. Both frequencies would be detected by a Weddell seal when 

noise levels are > 66 dB re. I µPa and 19 dB re. 20 µPa respectively. 

At most of the distances tested, the noise of a helicopter idling, landing or during 

takeoff, would be barely audible. The only exception occurred during landings at a 

distance of I 0 m from the SRP and during take off at 100 m from the SRP. At these 

distances, the noise would be clearly audible (Table 6.3 & Figure 6.6). The loudest 

noise level occurred during the landing at 10 m (33 dB above threshold, underwater 

at the deep hydrophone, and 60 dB above threshold in-air). Detectability would be 

similar in-air for the distances and activities tested with the exception of landing at a 
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distance of 100 m from the SRP, and takeoff at 250 m, which would be clearly 

audible (Figure 6.7). 

During flight, the noise produced by the helicopter at all of the altitudes and 

distances, i. e. up to 800 ft and 750 m from the SRP, would be barely audible 

underwater (Table 6.2 & Figure 6.8). Noise level in-air would be clearly audible at 

altitudes of 2500 ft with distances up to 250 m from the SRP (Table 6.3 & 

Figure 6.9). 
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- +- TO idle Deep - ·X - ·TO land Deep ~TO take off Deep 

Figure 6.6 Underwater noise levels generated by the aircraft (where TO = Twin Otter) 
relative to the assumed detection threshold of the Weddell seal (0 dB). Noises below 0 
threshold are undetectable, noises between 0 and 20 dB are detectable by an actively 
listening seal in a quiet environment and noises above 20 dB (black line) are clearly 
detectable. The distance at which the noise first falls below the 20 dB threshold is an 
estimate based on the distances tested. 'Ice' refers to the hydrophone 0.5 m below the ice 
and 'deep' refers to the hydrophone at the deeper depth (29 m if the water depth was > 30 m 
and 1 m above bottom if < 30 m). 
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Figure 6.7 In-air noise levels generated by aircraft (where TO = Twin Otter) relative to the 
assumed detection threshold of the Weddell seal (0 dB). Noises below 0 threshold are 
undetectable, noises between 0 and 20 dB are detectable by an actively listening seal in a 
quiet environment and noises above 20 dB (black line) are clearly detectable. The distance 
at which the noise first falls below the 20 dB threshold is an estimate based on the distances 
tested. 
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Figure 6.8 Underwater noise levels generated by aircraft (where TO = Twin Otter) during 
flight relative to the assumed detection threshold of the Weddell seal (0 dB). Noises below 
0 threshold are undetectable, noises between 0 and 20 dB are detectable by an actively 
listening seal in a quiet environment and noises above 20 dB (black line) are clearly 
detectable. The distance at which the noise first falls below the 20 dB threshold is an 
estimate based on the distances tested. 'lee' refers to the hydrophone 0.5 m below the ice 
and 'deep' refers to the hydrophone at the deeper depth (29 m if the water depth was > 30 m 
and I m above bottom if < 30 m). 
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Figure 6.9 In-air noise levels generated by aircraft (where TO = Twin Otter) during flight 
relative to the assumed detection threshold of the Weddell seal (0 dB). Noises below 0 
threshold are undetectable, noises between 0 and 20 dB are detectable by an actively 
listening seal in a quiet environment and noises above 20 dB (black line) are clearly 
detectable. The distance at which the noise first falls below the 20 dB threshold is an 
estimate based on the distances tested. 

6.3.1.3.2 Twin Otter 
The peak VJ-octave bandwidth of a Twin Otter was centred at 1.03 kHz underwater 

and 0.86 kHz in-air. Both frequencies would be audible to the seals at levels 

> 66 dB re. 1 µPa and 19 dB re. 20 µPa respectively. 

The noise from the Twin Otter while idling on the ice would be clearly audible 

underwater at both depths at a distance of 1 m (Table 6.2). Landing at l 00 m would 

be also clearly audible at both depths, and was the activity that produced the highest 

noise levels during the study (52 dB above threshold). The noise produced during 

take off at 500 m would be barely audible (Figure 6.6). The same pattern was 

observed for in-air recordings (Table 6.3 & Figure 7.6). The loudest in-air recording 

measured (62 dB above threshold) was during landing at a distance of20 m from the 

SRP. 

During flight, the noise level underwater at all altitudes (330-5000 ft) would be 

barely audible. The only distance at which the noise level would be clearly audible 
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was at 500 ft (Figure 6.8). Noise recorded in-air would be clearly audible at altitudes 

up to 3000 ft (Figure 6.9). 

6.3. 1.4 Zodiac 
The peak Y3-octave band of noise produced by a Zodiac was centred at 1.03 kHz 

underwater and 0.86 kHz in-air. Both frequencies would be audible to the seals at 

levels >66 dB re. 1 µPa and 19 dB re. 20 µPa respectively. 

At the distances tested, the Zodiac idling would be clearly audible both underwater 

and in-air, with the exception of the in-air noise level during idle at 10 m from the 

SRP; in this case the noise would be barely audible (Tables 6.2 & 6.3 and Figures 

6.10 &, 6.11 ). During travel, underwater noise levels would be clearly audible with 

the exception of travel at 15 km/hr at 1000 m in which case the noise would be barely· 

audible. The other exception would be during travel at 35 km/hr at 3000 m (both 

depths) (Table 6.2 & Figure 6.10). Noise levels in-air would be barely audible when 

distances exceed 100 m (up to 2000 m) for travel at 15 and 35 km/hr (Figure 6.11). 

The highest decibel level ·recorded was during travel at 35 km/hr directly above the 

hydrophones both underwater (61 dB above threshold) and in-air (35 dB above 

threshold). The increase in speed resulted in an average 7 dB increase in noise level 

underwater. 
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Figure 6.10 Underwater noise levels generated by a travelling Zodiac relative to the 
assumed detection threshold of the Weddell seal (0 dB). Noises below 0 threshold are 
undetectable, noises between 0 and 20 dB are detectable by an actively listening seal in a 
quiet environment and noises above 20 dB (black line) are clearly detectable. The distance 
at which the noise first falls below the 20 dB threshold is an estimate based on the distances 
tested. 'lee' refers to the hydrophone 0.5 m below the ice and 'deep' refers to the hydrophone 
at the deeper depth (29 m if the water depth was > 30 m and I m above bottom if < 30 m). 
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Figure 6.11 In-air noise levels generated by a travelling Zodiac relative to the assumed 
detection threshold of the Weddell seal (0 dB). Noises below 0 threshold are undetectable, 
noises between 0 and 20 dB are detectable by an actively listening seal in a quiet 
environment and noises above 20 dB (black line) are clearly detectable. The distance at 
which the noise first falls below the 20 dB threshold is an estimate based on the distances 
tested. 

6.3.2 Vocal response experiment 

6.3.2.1 Call profiles 
There was no significant difference in the pattern of call types used and the number 

of calls within each call type, between periods when the vehicle was absent and when 

it was present (Global R = 0.048, p = 0.234) (Figure 6.12). 
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Figure 6.12 Multidimensional scaling (MDS) plot showing that the call profile did not vary 
significantly between recordings (presence/absence of the vehicle). Site 1 (two points 
furthest right) is separate from the other sites due to the small sample size. 

6.3.2.2 Time taken to record 100 calls and the number of calls in a 10 
minute period 

The time taken to measme 100 clearly discernable calls was higher during vehicle 

activity from 23 ± 3 min to 60 ± 13 min (t = -3.463, df = 4,p = 0.026). The 

frequency of occurrence of calls was lower quring vehicle activity from 47 ± 7 in 10 

min to 20 ± 4 inl 0 min (t = 3A76, df = 4, p = 0.025). 

6.3.2.3 Call attributes 

Regression analysis indicated that call duration was still positively related to the 

number of elements in both circumstances, (overlap: R? ~ 0.326,p<0.001, non­

overlap: k= 0.419,p<0.001). 

Paired t-tests investigating the difference in call duration between the control 

recording (absence of noise) and the experimental recording (Hagglund noise) found 

that continuous noise did not influence the duration of calls: overlap control 

recorc;ling X = 10.1±1.5 sec and experimental recording X = 10.2 ± 0.6 sec (t= -

0.308, df= 4,p = 0.774), non-overlap control recording X = 3.7 ± 0.6 sec and 

experimental recording X = 5.0 ± 1.2 sec (t = -0.760, df= 4,p = 0.442).· 
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6.4 Discussion 

6.4.1 Soundldistance profiles in relation to the assumed detection 
threshold of the Weddell seal 

The sound/distance profiles from this study provide baseline propagation data for 

se~eral common sources of anthropogenic noise in the Antarctic environment. The 

peak frequency range relative to the likely detection thresholds of the seals for these 

modes of transport, underwater and in-air fell between 0.075-1.03 kHz. Weddell seal 

vocalisations have been recorded at frequencies between 0.2-12.8 kHz by others, 

with some vocalisations at frequencies as high as 30 kHz (Schevill and Watkins 

1971 ). Thus, in terms of frequency, all of the sources of anthropogenic noise tested, 

with the possible exception of the Hagglund, if generated at sufficient noise levels, 
- ' 

would be audible to Weddell seals. Consequently, there is a real potential for 

anthropogenic noise to interfere with seal vocal behaviour and even to disturb them. 

The majority oft~e noise levels recorded in this study, both in-air and 

underwater/under ice, were greater than background noise levels and were above the _ 

assumed detection threshold (ADT) of the Weddell seal at close ranges. In most 
. ' 

cases, anthropogenic noise from nearby sources was between 0-20 dB aboye the 

ADT and therefore audibility was dependent on back&I"ound noise levels and the 

behavioural state of an attentive seal. There were only a small number of instances 

where the noise level was in the clearly audible range(> 20 dB above threshold). 

However, these levels were well below the highest level recorded for Weddell seal 

vocalisations, i.e. 193 dB re. 1 µPa at 1 m (which in human hearing terms is an 
. . 

equivalent level in-air of 131 dB re. 20 µPa at I m) (Thomas and Kuechle 1982b ). 

Consequently, even at the closest distances or altitudes tested, the noise levels 

generated from the anthropogenic sources were less than those of the loudest natural 

vocalisations. This means that the loudest noise levels generated by anthropogenic 

sources in this study would not be expected to cause physical damage to the seals 

_beyond a few metres. 

These data can be used to develop guidelines for distance and speed of travel for 

vehicles near Weddell seal colonies. However, there are a number of other factors 

that will further influence the nature of the sound and therefore the corresponding 

effect on the seals. Direct comparisons between in-air and underwater noise levels 

and auditory thresholds are difficult because of acoustic impedance differences 

between air and water (Richardson et al. 1995). Wh~n comparisons are made, 

underwater hearing is more sensitive than in-air hearing in pinnipeds, especially in 
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phocids (Mohl 1968; Terhune 1991). However, it is unclear in which medium 

anthropogenic noise has the greater potential to affect the seals. In many cases, 

particularly in-air, the visual element of the stimulus confounds the response of an 

,animal. In most studies, no distinction is made between the two stimuli, so that a 

distance that is regarded as 'acoustically safe' may still result in an adverse 

behavioural response because of the visual component of the stimulus. 

Direct comparisons between different types of anthropogenic noise are also 

difficult due to differences in engine type and vehicle structure, and frequency 

characteristics of the noise generated. For example, one of the differences between a 

Hagglund and a quad is that the tracks of a Hagglund do not isolate the engine noise 

from the ice as effectively as do the tyres of a quad. In addition, the contact between 

the tracks and the ice is also generating sound, unlike the rubber tyres of the quads. 

The result is that transmission loss is less for the Hagglund and therefore the decibel 

level (under the ice) is greater. The activity of the vehicle can also play an important 

role in determining the extent of noise effects. For instance, during flight, the noise 

from a helicopter or Twin Otter aeroplane ~s first transmitted through the air, before 

transmission through the ice into the water. Sound transmission through the ice and 

then into the water is complex and variable. Not only does sound attenuate as it 

travels along its path, but transmission loss also occurs at the air/ice interface where 

most of the acoustic energy is reflected. Therefore, although sound pressure is 

, greater directly under the ice (Richardson et al. 1995), the noise level recorded under 

the ice is much less than in-air. During landing and idling, the skids of both the 

helicopter and the Twin Otter transmit sound directly through the ice into the water. 

Higher vehicle travel speeds are also a factor when relating detection thresholds 

and decibel levels for the purpose ofinves~gating noise effects. For many small 

vessels, an increase in speed results in higher noise levels (McCauley and Cato 

2003). In this study the increase in speed did not result in a significant increase in 

decibel levels. Rather, only a small number of slµfts occurred between the audibility 

categories, i.e. ·from inaudible at the slowest speed to barely audible at the fastest 

speed. Although speeds were not specified, research on cetaceans suggests that a 

slow moving boat has less of an effect on behaviour than a fast moving one (e.g., 

Richardson and Wiirsig 1997; Natjonal Research Council 2003).- Again, determining 

precisely what an animal is responding to in these situations is difficult because the 

acoustic and visual components of the stimuli are difficult to separate. 
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Received noise level will also vary according to abiotic conditions. For example, a· 

thick layer of snow will dampen the transmission of airborne sounds heard 

underwater. Changes in temperature, salinity or humidity will also result in 

refraction of the sound. Thus, the convergence or divergence'ofthe sound waves will 

either amplify or reduce the received noise (Richardson et al. 1995). Although in this 

study abiotic factors such as snow cover were controlled for 'when generating 

sound/distance profiles, Weddell seals under the ice would normally be exposed to 

varying noise levels because the ice surface on which over-snow vehicles travt?l and 

people walk is variable. It would be reasonable to assume that if the differences in 

received .noise were in the order of a few decibels then the seals would be able to 

accommodate the change by shifting their position in the water column, i.e. swim/call 

at a deeper depth if the noise is louder. Wind speed will also affect the dete~tability 

of the vehicle, with increased wind speeds resulting in increased background noise 
~. . . 

levels which in tum increase the detection threshold. Further study would be 

necessary to determine the effect of such· factors on Weddell seals. 

The characteristic of the noise, in particular whether it is continuous or transient 

and constant or changing, is also an important factor influencing the effect of noise 

on wildlife. In rodents, exposure to continuous, intensive noise can result in health 

effects, while intermittent noise does not (Borg 1981 ), possibly because the animals 

recover between succes~ive exposures (Bowles 1995). Humans have also been found 

to be more sensitive to continuous noise than to pulsed noise (at equivalent peak 

levels) (Fidell et al. 1970). In gray whales (Eschrichtius robustus), the threshold for 

distinct reactions to seismic pulses, with an average pulse level of 170 dB re. 1 µPa at 

1 m, w~ reported as approximately 50 dB higher than that for continuous industrial 

noise (Malme et al. 1984; Richardson et al. 1995). Continuous noise can mask 

marine mammal vocalisations for long periods of time with a concomitant reduction . 

in the effective range of communication (Bowles 1995). The distinction between 

'transient and continuous sounds is not absolute,. thereby making it difficult to specify 
I 

which noise types Weddell seals are more often exposed to. For example, much of · 

the anthropogenic noise that the seals are exposed to in the Australian Antarctic 

Territory is vehicular, which varies in duration, is not pulsed, does not necessarily 

have an obvious start and end (transient), but does not originate from a fixed point 

(continuous). 

Changing noises, associated with rapid shifts in speed or direction for example, 

have also been found to have a greater behavioural effect than constant noises. Rapid 
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movements of vessels, with fast shifts in speed or direction, are especially disturbing 

to marine mammals (Richardson and Wiirsig 1997). Reactions of Californian, sea 

lions (Zalophus californianus) to nearby boats were most common when motor noise 

levels varied(Richardson et al. 1995) (Peterson and Bartholomew 1967). In their _ 

study, hauled out pinnipeds were found to react most strongly if the aircraft made 

abrupt changes, affecting sound levels. Myrberg (1990) reports that a sudden change 

in sound level is considered a prime stimulus to avoid or to exhibit responses 

indicative of disturbance. 

A number of factors determine whether anthropogenic noise is audible to Weddell 

seals. Thus, not only is it necessary to establish the noise levels generated by 

vehicles operating at-various distances and altitudes, it is also necessary to establish 

both the characteristics and the context of the noise._ Furthermore, it is important to 

recognise that noise levels in-air are louder for humans than they are for seals. The 

lowest detection threshold of a human is· less than the assumed threshold for the 

Weddell seal (see Figure 1 in Terhune 2004). Therefore, noise levels that we 

consider loud and potentially damaging or disturbing to the Weddell seals may in fact 

be barely audible to the seals. 

6.4.2 Vocal response experiment 
The experiments to determine the effects 'of vehicle noise on Weddell seal vocal 

' ' 

behaviour indicated that during continuous vehicle noise at 0.075 kHz, Weddell seals 

detected the noise and modified their behaviour as a result. 

During this study, the location of the seals relative to the test stimulus was 

unknown. However, if vocal behaviour were only to change when noise levels were 

clearly audible (> 20 dB above threshold), then the seals would need to have been 

closer than 40 m. Although this is possible, it is more likely that the seals were 

closer to the pupping colony (300 m from the SRP), and therefore further away from 

the sound recording point (SRP). This is because males are actively holding 

territories under the pupping colony (Siniffet al. 1977; Kooyman 198lc). Even low 

levels of noise therefore appear to have the potential to affect vocal behaviour in 

Weddell seals. It is not surprising that the seals responded to the noise, considering 

that the SRP was close to the pupping colony (300 m) and male Weddell seals are 

actively listening and communicating both with other males and with receptive 

females during this time (Thomas and Kuechle 1982b). 
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Harp seals have been found to alter their vocal behaviour in a number of ways to 

compensate for increased noise in their environment. For example, they can adjust 

their call repertoire, so that fewer call types are used that fall within or close to the 

frequency bandwidth of the noise (Serrano and Terhune 2002). Shifts in frequency 

have also been recorded for beluga whales when exposed to boat noise (Lesage et al. 

1999). It has been suggested that this response was made to increase signal detection 

by avoiding frequencies that were being masked (Lesage et al. 1999). In the current 

study no decrease in call types within or close to the 0.075 kHz frequency bandwidth 

were recorded, nor an increase in call types with frequencies> 0.075 kHz. The 

absence of a shift in frequency may be a result of the low noise levels the Weddell 

seals were exposed to (i.e. the Hagglund was simply not loud enough). 

Another method observed among marine mammals of altering vocal behaviour to 

increase detection over noise, is to decrease the use of low amplitude calls and 

increase the use of high amplitude calls. The use oflong and repetitive call types, 

which 'cut through' background noise, also enhances detection (Watkins and 

Schevill 1979; Serrano and Terhune 2001). Weddell seals have been reported to 

lengthen many underwater vocalisations in response to conspecific vocalisations, 

with calls that were overlapped being longer in duration than solitary calls (Terhune 

et al. 1994b). The increase in duration has been attributed to the addition of elements 

(for multi-element calls). Also, detectability should increase for calls oflonger 

duration in the presence of sporadic noise. Changes to vocalisations would either 

reduce or eliminate masking effects of the vehicle noise, thereby increasing 

detectability. However, in this study, there was no evidence of the lengthening of 

calls, for either the overlapped or non-overlapped call types in the presence of 

Hagglund noise. The absence of an increase in call duration in response to Hagglund 

noise probably reflected the fact that the noise level was not sufficient to require the 

seals to alter individual vocalisations to enhance detection. 

Althoughcthe amplitude of the noise generated by the Hagglund in this study was 

low, and did not seem to cause any masking, the increase in ambient noise during 

vehicle activity resulted in an increase in the time taken to record 100 definable calls 

and a decrease in the frequency of occurrence of calls. This suggests that either some 

seals left the immediate area during vehicle noise, or that the seals vocalised less. 

Similar results have been found in a study on the influence of vessel noise on 

underwater vocal activity of harp seal~ (Terhune et al. 1979). The authors found a 

significant reduction in the number of calls following a day of nearby vessel activity 
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and suggested this was due to either a decrease in the number of seals in the area, or a 

change in the vocalisations emitted. Studies on whales have also recorded a decrease 

in calling rate during vessel approach/activity, for examples see Watkins (1986) for 

right whales (Euba/aena g/acia/is) and Blane and Jaakson (1994) for beluga whales. 

Belugas have also been recorded to swim ~O km from their original location in 

response to a ship and remain away for 1-2 days (Richardson and Wiirsig 1997). 
1 

Without knowledge of the activity of the seals, it is impossible to determine which of 

the two theories best explains the response of Weddell seals in this study. 

In conclusion, continuous Hagglund activity was found to have an effect on the 

vocal behaviour of the seals. However, the effect was only manifest in the frequency 

of occurrence of calls and the number of calls recorded in a specified time period. 

The absence of changes to the individual calls, such as the lengthening "of calls, was 

attributed to the low received noise levels of the Hagglund. Experiments in w:µich 

the location of the seals are known would greatly improve our knowledge of the 

distance at which the-noise generated by a Hagglund would affect the actUal calls of 

Weddell seals underwater and the received noise levels at which these changes would 

occur. 

\ 
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7 General Discussion and Implications for Management 
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The broad aim of this study was to measure the effects of various forms of human 

activity on Weddell seals in the Australian Antarctic Territory (AAT), with a view to 

verify existing guidelines for pedestrian approaches to seals and for over-snow 

vehicle operations around seals, and to make recommendations as appropriate. More 

specifically, this study follows up on recommendation XVIII-Ia in Rothwell and · 

Davis (1997) by determining the critical distances for pedestrian approaches and 

over-snow vehicle operations that will minimise disturbance to seals. In order to 

achieve this, a series of experiments was conducted to measure, (i) the immediate 

behavioural responses of lactating Weddell seals and their pups to pedestrian 

approaches, and the factors affecting response; (ii) the nature of the seals' responses 

to repeated pedestrian activity; and (iii) the immediate behavioural responses of 

lactating cows to over-snow vehicle operations, and the factors affecting responses. 

The study also aimed to measure the immediate physio.Jogical response of Weddell 

seals to pedestrian approaches and to develop standardised sound/distance profiles 

for the types of vehicles commonly used in the AAT to determine the potential for 

vehicle activity to affect the seals. 

Detailed discussions of these experiments have been pr~sented through previous 
. ' 

chapters (Chapters 2-6), of which key :findings are repeated briefly here. This chapter 

then reviews human-wildlife interaction studies, before examining existiI,1.g 

management guidelines for human activity around Weddell seals in the AA T and the 

implications of results from this study for those guidelines. Finally recommendations 

are made as to how guidelines could be improved to further minimise effects of 

·human activity on Weddell seals. 

7.1 Summary of findings 

7 .1.1 Responses to pedestrians 
In chapters 2-4, I explored the short-term and lon~er-term behavioural and 

physiological responses of lactating Weddell seals and their pups to pedestrian 

approaches by a single person and a small group of people. 

Generally, lactating Weddell seals and lone pups responded to pedestrians by 

becoming alert. Only one individual cow showed a more extreme response of 

attacking both her pup and the approachers. Cows with pups apparently considered 

humans to be of greater interest than did lone pups. Furthermore, groups of visitors 

elicited a greater level of interest from cows than did the approach of a single person. 

For cows with pups, the stage of approach a pedestrian could reach before the seal 
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responded was determined by the distance of the cow to the water, the distance she 

was from a conspecific and whether the pup was positioned between her and the 

approacpers. The relative importance of these factors during the two approach types 

(i.e. single person and group) suggested that the cows adopted different strategies 

depending on the number of people approaching (Chapter 2). The responses of the 

cows, particularly in relation to distance to·water, indicated that approaching people 

were at least perceived as a novel stimulus, and possibly as.a threat. If the seals 

perceived approaching humans as a threat, then the level of threat was apparently not 

seen as particularly great because no seals fled to the water or exhibited responses 

stronger than looking up at the people. Nevertheless, factors such as distance to 

water, and position of pups can be incorporated into guidelines by the use of contour 

maps to help pedestrians determine which seals they can approach most closely while 

causing the least amount of disturbance. 

The effects of pedestrian approaches on Weddell seals recorded during this study 

·were of short duration, lasting no more than five minutes after pedestri~s were out 

of sight. However, visitation to colonies occµrs both over short-time periods (hours), 

and over longer-time periods (e.g. a breeding season). Regular and fi:equent 

approaches _by a single person to lactating, Weddell seals over a period of less than 

two hours produced evidence ofrapid habituation among the seals (Chapter 3). 

Evidently, the stimulus was s~fficiently predictable and regular for the seals to 

recognise the stimulus, but was weak enough to represent no harm, allowing seals to 

resume 'normal' behaviour within moments of assessing the approaching stimulus. 

By contrast, irregular approaches over a full breeding season, revealed no evidence of 

habituation. Rather, for the cows, their responses suggested that they might have . 

become sensitised to human activity prior to the experiment. For the pups, the results 

suggested that repeated exposure to pedestrian activity reSulted in sensitisation, 

suggesting that the pups regarded humans as a negative stimulus and that previous 

exposure can affect response and therefore that this factor needs to be considered in 

human-wildlife interaction studies. 

Physiological responses can provide information about the autonomic responses of 

wildlife to their environment and therefore can provide a more complete 

understanding of the effects of human activity than behavioural observations. alone 

(Withers 1992). The study described in Chapter 4 provides valuable background 

information on the heart rate of Weddell seals in various behavioural states, and 

highlighted the importance of understanding the degree and nature of individual 
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differences in physiology before apparent changes can be associated with external 

factors such as human approaches. The one animal from which heart rate responses 

to pedestrian approaches were successfully recorded during this study showed no 

indication of a response and further investigation of the physiological responses of 

Weddell seals to human activity remains an important area of future investigation 

(Chapter 4). 

7 .1.2 Responses to vehicles 
Most lactating Weddell seals in this study responded to the operation of over-snow 

vehicles by becoming alert (Chapter 5). The distance from the seals at which the 

vehicles were driven had a significant effect on the probability and duration of seal 

response. As with responses to pedestrians, seals that were closer to the water were 

less likely to respond to vehicle activity, suggesting that the seals may have regarded 

water as a refuge and that vehicles were seen as a potential threat. Interestingly, the 

position of the pup (i.e. whether exposed to the vehicle or not) was also important 

during vehicle activity, w_ith cows more likely to respond when pups were protected 

(i.e. the cow was between the pup and the vehicle). However, unlike pedestrian 

approaches, the distance of the cow to a conspecific did not influence her response to 

vehicles. During vehicle drive-bys, the cows did not appear to consider the speed of 

travel or vehicle type to be important. 

Continuous Hagglund operatjons resulted in a decrease in the calling rate of seals 
,• 

underwater. This finding can be used to guide vehicles around known feeding areas 

and underwater territories of Weddell seals to minimise disturbance to seals under -
the ice. 

7 .1.3 Sound/distance profiles 

Based on behavioural observations of Weddell seals, and the similarity in detection 

thresholds amongst phocids (Terhune and Turnbull 1995), I constructed an assumed 

detection threshold (ADT} for the Weddell seal (Chapter 6). Sound/distance profiles 

were generated for the vehicles commonly used at Australian Antarctic research 

stations. At the tested distances (1-500 m) and speeds (15-45 lan/hr), the noise 

generate by a quad, Hagglund and pedestrian would be barely audible (0-20 dB above 

threshold) to Weddell seals occupying in-air and underwater environments. 

Much of the noise generated by a Twin Otter fixed-wing aircraft, a helicopter and a 

Zodiac at the tested distances (1-3000 m) and speeds (idle-cruise), would also have 

been barely audible to seals. However, there were some instances where the noise 
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was sufficiently loud to have been clearly audible (> 20 dB above threshold). These 

higher noise levels were still below the noise levels generated by the animals 

themselves, and were therefore not expected to cause physical damage to the seals, 

although there is a possibility that the noise levels could cause disturbance. 

The sound/distance profiles generated by this study provide baseline propagation 

data for several common sources of anthropogenic noise in the Antarctic 

environment. Not only can these data be used to develop guidelines for optimal 

distances and speeds of travel for vehicles near Weddell seal colonies, but they can 

also be used for any future assessments of the potential impacts of human activity on 

wildlife in Antarctica. 

7.2 Review of human-wildlife interaction studies 
The growing concern about the effects of human activity on wildlife and the 

environment in general, is reflected in an increasing number of studies on the effects 

of human activity on wildlife and the numerous attempts to manage human-wildlife 

interactions (e.g. Shackley 1996; Manfredo 2002; Kirkwood et al. 2003; 

Higginbottom 2004a). Notable are discussions on and reviews of the different types 

of effects that humans can have on wildlife (e.g. Hall 1992; Gutzwiller 1995; 

Richardson et al. 1995; Higginbottom 2004a) and studies of the eff~cts of specific 

types of human activity on individual species (e.g. Burger and Gochfeld 1983; Ellis 

et al. 1991; Cooper et al. 1994; Delaney et al. 1999). Certainly, these studies provide 

greater understanding about the possible effects of human activity on wildlife and 

this enables the generation of more adequate guidelines. However, not all studies 

have been rigorously designed. The result is that the guidelines often reflect 

anecdotal field studies and observations of the response of wildlife to human activity, 

rather than empirical studies that identify the possible.cause and effect relationships 

upon which guidelines are more appropriately based (Kirkwood et al. 2003; 

Higginbottom 2004a). 

Previous knowledge of the effects of human activity on Weddell seals has been 

largely derived from opportunistic observations while conducting other research. For 

example, in a study on the behaviour of Weddell seals in a breeding colony at Hutton 

Cliffs in Antarctica (77°51 'S, 166°45'E), Kaufinan et al. (1975) also described the 

response of adult males, lactating females and pups to the approach of people. Such 

descriptions have contributed to Weddell seals having a retmtation of being docile in 

response to humans. In the absence of other available information, such descriptions 
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may influence visitor guidelines. Where guidelines are based on false or 

misinterpreted information, they could result in unnecessary disturbance to the 

wildlife and an unsatisfactory wildlife viewing experience for visitors. 

Manipulative experiments, as employed in the current study, that control for as 

many confounding variables as possible and test the response of the wildlife to just 

one stimulus at a time, are comparatively more likely to identify cause and effect 

relationships between human activity and wildlife response. It is the results of these 

experiments, conducted on a representative sampl~ size, that enable validation of 

long standing opinions about individual species and their response to human activity 

and allow the development of adequate guidelines that minimise impact to wildlife 

and allow satisfying and safe human activity. 

7.3 Management guidelines 
Scientific studies .investigating changes in wildlife behaviour, physiology, 

reproductive success or survival as a result of human activity can provide a valuable 

basis for recommendations for the management of those interactions. For example, 

Cassini (2004) investigated the behavioural response of South American fur seals to 

visitors and found that the use of a fence to restrict visitor movement could be a 

simple and affordable means of reducing stressful behaviours of tQ.e seals, such as 

threats, attacks and leaving the colony. In another study, Boren et al. (2002) 

quantified the response of New Zealand fur seals to approaches by people on foot, in 

kayaks and in boats, and on the basis of their results recommended new separation 

distances to minimise disturbance to breeding seals. 

In cases such as these, managing human-wildlife interactions involves the 

development of guidelines to ensure, firstly, that human activity has minimal impact 

on the wildlife and the environment in general and, secondly, that the human activity 

can continue. However, the relative importance of these two factors depends on the 

perspective adopted by the management agency. One viewpoint is to manage 

human-wildlife interactions to ensure that there is no visible effect on the wildlife. 

The approach of the Australian Antarctic Division (AAD) could be interpreted in this 

waY, as their guidelines stipulate that if the activity is 'disturbing' the wildlife, then 

greater distances should be maintained (Australian Antarctic Division 2004a). 

Another viewpoint, and one that is likely to predominate in situations where wildlife 

viewing is the primary purpose of the action, is to manage interactions so that visitor 

satisfaction is guaranteed, but that any changes in animal behaviour do not have 
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adverse long-term effects. This viewpoint appears to be that held by commercial to~ 

operators in Antarctica and is reflected in the guidelines recommended by 

organisations such as the International Association of Antarctic Tour Operators 

(IAATO). The difference between these two approaches lies in their respe~tive 

definitions of disturbance and ill the purpose of the management guidelines. 

Defining disturbance and establishing an acceptable level of disturbance must 

involve consideration of a number of factors such as the goals of management, legal 

requirements, social expectations, safety and ethical considerations (e.g. Claridge 
I 

1997; Moscardo 2001; Kirkwood et al. 2003; Hi~ginbottom 2004a, b). 'A manager 

wishing to ensure that no visible changes among wildlife occur is likely to interpret 

disturbance as being demonstrated by any visible change in behaviour, while the 

·manager attempting to find a balance between visitor satisfaction and the welfare of 

the animals, is likely to interpret disturbance as only a significant change in 

behaviour, for example one that results in a disruption to reproductive ~d social 

behaviours (i.e. having a demonstrable biologicai impact). In the case ofmanaging­

Visitation aronnd Weddell seals, the distances, speeds and group sizes reported here 

would be acceptable to the latter, but not to the former. 

Determining what constitutes a biologically significant impact requires the 

mea8µrement of a response that can be directly linked to parameters such as 

reproductive success or survival. A threefold increase in the frequency of alert 
I 

behaviour of lactating Southern elephant seals at Macquarie Island during human 

activity, for example, may be considered to be acceptable because the changes in 

behaviour did not subsequently appear to influence i:he efficiency of lactation or the 
' ' 

mass or condition of affected cows and pups (Engelhard et al. 2002a). A review of 

the literature, however, reveals that many studies are unable to, or do riot attempt to, 

determine which changes in wildlife behaviour have a significant biological effect. 

Without empirical evidence of biologically significant effects, managers must often 

interpret available evidence themselves to determine the extent to which human 

activity affects the wildlife and, therefore,. how to manage human activity around the 

wildlife. 

There is evidence from this study that many seals become alert in the presence of 

both pedestrians and over-snow vehicles, but that these stimuli may nevertheless be 

,perceived as a low level threat. This might suggest that an alert response does not- · 
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have a biologically significant impact on the seals, although one seal in this study 

responded aggressively, potentially limiting the growth of her pup. 

In managing human-wildlife interactions 'blanket' guidelines are often used. One 

guideline is recommended per activity per species or in some cases multiple 

guidelines per activity per species are suggested. For example, to distinguish 

between breeding animals and presence of young, the AAD have set different 

guidelines for pedestrian approaches to cow-pup pairs, pups on their own and ad~lt 

seals (Australian Antarctic Division 2004a). Blanket guidelines have the advantage 

of often being simple, providing visitors with just one or two management messages 

to remember. In this way, there may be an increased probability of people 

understanding, remembering and adhering to them. 

However, blanket guidelines treat each interaction the same, despite individual 

differences in wildlife sensitivity and responses to human activity, and therefore may 

not minimise disturbance to all individuals or maximise visitor satisfaction. This is 

because for blanket guidelines to enslire that all individuals are protected, limits to 

human activity must be set conservatively, at a level that causes no visible 

behavioural response in any animal, and this has implications for visitor satisfaction 

and the practicality of implementing guidelines. For example, in the present study, 

increasing the separation distance for Hagglunds to 400 m may be problematic 

because it may not always be possible to-maintain such separation distances, due to 

the terrain surrounding certain seal breeding sites .. -In a case such as this, the desire to 

minimise disturbance to wildlife would have to be traded off against maximising 

human safety and the practicality of travel on the ice. Augmenting blanket guidelines 

with the relevant species-specific information, can greatly improve the effectiveness 

of the guidelines in minimising disturbance and maximising visitor satisfaction. 

7.4 Implications of this study for existing management 
guidelines 

The specific guidelines examined during this study were those currently employed by 

the Australian Government through the AAD, and by the peak Antarctic tourist body, 

IAATO. Although the AAD recently increased their recommended distance for 

r pedestrians approaching breeding Weddell seals and lone pups to 20 m (as part of 

their annual review process) (Australian Antarctic Division 2004a), at the time of this 

study the recommended distance was 15 m. The furthest distance statistically tested 

in this study for pedestrian approaches to seals was 20 m. However, a small number 
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oflone pups and rows were' observed to respond when people were 30 m away. In 

line with recommendation XVIII-Ia of the Madrid Protocol, and assuming ' 

disturbance is taken as any change in the behaviour of an animal, the 20 m separation 
. ' 

distance for pedestrian approaches to cow-pup pairs and lone pups can thereby be 

shown to be ineffective at preventing disturbance. · 

1 The current AAD guideline for over-snow vehicle operations in the vicinity of 

Weddell seals is 150 m for quads and 250 m for Hagglunds (Austr~ian Antarctic 

Divjsion 2004a). In the present study, some cows became alert when a quad was 

within 250 m and at least one cow responded to the Hagglund at 400 m. Thus, if 

these results are interpreted as for results from pedestrian approach experiments, the 

separation distances currently recommended by the AAD are shown to be ineffective 

at preventing disturbance. 

A strict interpretation of the results of this study would suggest that the separation 

distances currently recommended by the AAD need to be modified if the goal of 

management is to avoid behavioural changes in Weddell seals. If management 

wishes ~o reduce behavioural responses then at a minimum, appropriate separation 

distances could be as follows: quads 250 m, Hagglurtds 400 m and greater than 20, m 

for pedestrians. 

-
If, on the other hand, an alert response was considered·acceptable, then the results 

of.this study indicate that a single person could approach the majority of cow-pups 

pairs to .a distance of 15 m and to a distance of 5 m from lone pups, without causing 

significant disturbance. Equally, a group of people could approach cow-pup pairs to 

a distance of20 m. Using this approach, a quad could mairitain a separation distance 

of 50 m when travelling at 15 km/hr past cow-pups pairs, and a Hagglund could 

maintain a separation distance of 100 m when travelling at 15 km/hr. 

The minimum distance stipulated by IAATO for pedestrian approaches to seals is 

5-10 m (IAATO 2005). Based on the results of this study, approaches to this 

distance would also be causing an alert response among Weddell seals. This distance 

could also- result in a stronger response, e.g. an attack, as observed in thi~s study, and 

would tl_ierefore still be considered unacceptable even with the acceptance of an alert 

response. 

7 .4.1 Enhancing wildlife management guidelines 

Blanket guidelines for managing human-Weddell seal interactions are likely to be 

only paftly effective at minimising disturbance to the seals because of the individual 
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variation in the seals' responses. For example, in this study, while the majority of 

animals responded to human activity with mild responses, one lactating cow 
c 

res~onded in an extreme manner involving behaviours that could have been 

detrimental to the growth and survival of her pup. Guidelines can be greatly 

enhanced by incorporating species and site-specific details t_hat should ensure 

guidelines can better cope with individual variation in responses. This study has 

demonstrated one way in which guidelines may be enhanced, particularly if the 

nature of response to human activity of a species is known. The proportional <_>dds 

regression model (PORM) method of analysis can be used to generate contour maps 

that incorporate factors that influence an individual animal's response, such as, the 

distance an animal is to a refuge. These maps may then be used in the field by 

visitors to determine which individual animal·they could approach most closely while 

causing the least ~ount of disturbance. Using such an approach could effectively 

tailor blanket guidelines to local conditions, minimising disturbance to wildlife, 

while maximising visitor satisfaction. 

Although the use of PORMs adds complexity to guidelines controlling human­

wildlife interactions, the contour maps can be presented as an opportunity to ~chieve 

a more intimate encounter. Both close approaches and mini~sing impacts are 

considered by tourists to be important in wildlife-interactions (e.g. Finkler and 

Higham 2004; Valentine et al. 2004). Species-specific contour maps may therefore 

enrich the overall wildlife experience of visitors, and could become a successful 

management tool applicable to managing visits to a range of wildlife species. 

7.5 Final conclusion 
Observations of the response of Weddell seals to the various forms of human activity 

presented in this study suggest that Weddell seals in the Vestfold Hills and in the 

Windmill Islands are not particularly responsive to the human activities investigated. 

Specifically, the seals appear not to show threat, displacement or escape behaviours 

during pedestrian approaches and over-snow vehicle drive-bys, which have been 

shown to occur in other pinniped species when exposed to simijar stimuli (e.g. 

Kovacs and Innes 199,0; Cassini 2001; Boren et al. 2002). Results from this study 

with respect to physiological responses of the species to the stimuli tested are 

ambiguous because of the small sampl~ sizes achieved. 

It is, however, important to recognise that the populations examined in this study 

may not be representative of the species throughout its range, as seals in the Vestfold 
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Hills and Windfilill Islands have been exposed to some human activity prior to the 

experimental approaches and may therefore have formed an association with human 

activity that influences their response to the stimuli tested. Guidelines therefore need 

to be tested on Weddell seals in other areas before they can be considered appropriate 

for use at other colonies~ Nevertheless, this study has demonstrated an approach to 

objectively investigating the responses of a pinniped species to human activity and 

has identified at least some of the factors that may affect their response. 

In measuring the effects of human activity on Weddell seals, it was apparent that a 

number of factors influence the seals' behavioural response. As a result, behavioural 

responses can show high individual variation, and so blanket guidelines may not 

necessarily be effective at minimising disturbance to all individuals whilst 

maximising visitor satisfaction or vehicle operational efficiency. The particular 

factors that influence response can only be determined through carefully designed . 
, ' 

studies that establish cause and effect relationships between human activity ~d 

wildlife response. Identification of these factors can then be incorporated into 

guidelines to generate species-specific and Context-specific controls. Within this 

stu4y I have shown that it is possible to tailor blanket guidelines to generat~ 

maximally effective and sensitive guidelines for Weddell seals. !his approach can 

be applied to other, more responsive 'species, in an effort to manage human-wildlife 

interactions for the protection of the species and more sustainable human-wildlife 

interactions. 
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Appendix 1 

Table 1 Comparison of the total duration(% of interval) of the most commonly occurring 
behaviours between lactating Weddell seals during a group approach and the lone pups 
during a single person approach in Colony A and in Colony B. Differences in behaviour 
were tested using a Mann-Whitney U test. Significance difference occurred at <0.013 
because of the Sequential Bonferroni Correction. 

Group Approach Lone pup Approach 

Mean ±St. Significance Mean± St. Significance 
Behaviour deviation level deviation level 

Rest 92.45 ± 556 0.756 76.96 ± 21.54 0.130 

Comfort 5.63 ± 4.69 0.782 20.22 ± 66.82 0.159 

Look 

Approacher 0.00 ± 0.00 1.000 0.00 ± 0.00 1.000 

Surrounding 0.24 ± 0.35 0.101 1.16 ± 2.40 0.621 

Shift position 0.10 ± 0.13 0.026 0.08 ± 0.22 0.783 
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Appendix 2 

Table 1 The percentage of seals that performed each measured behaviour during the 
approach for each of the three experimental treatments. The five,,most common behaviours 
are in bold. 

Single Group Pup 
% of seals 

Rest 100 100 100 

Comfort 96.55 89.13 87.80 

Look 

Pup 34.48 41.30 NIA 

Conspecific 3.45 0 4.88 

Approacher 62.07 76.09 39.02 

Sµrrounding 41.38 65.22 34.15 

Bird 0 0 2.44 

Attack 

Pup 3.45 2.17 NIA 

Conspecific 3.45 0 0 

Approacher 3.45 2.17 0 

Ice sawing 0 15.22 7.32 

Eating ice 0 13.04 7.32 

) Vocal 

Pup 26.90 4.35 NIA 

Conspecific 0 0 0 

Approacher 0 0 0 

Unknown 13.79 6.52 14.63 

Interact 

Pup 10.34 15.22 NIA 

Conspecific 3.45 0 4.88 

Travel 3.45 6.52 7.32 

Pupbwnp 20.69 8.70 NIA 

Shift position 55.17 45.65 19.51 
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Appendix3 

Table 3 Post-hoe. comparisons of the Wilcoxon signed rank test comparing the most 
commonly occurring behaviours observed during the single; group and lone pup approach 
experiments across the three stages of approach (pre-approach recording, the approach and 
the post-approach recording). Significant results at the 0.05 alpha level are in bold. 

Behaviour Pre vs. approach Approach vs. post Prevs. post 

Singlen=29 z p z p z p 

Looking-at- -3.724 <0.001 -3.724 <0.001 0.000 1.000 
Approacher_ 

Pre vs. approach Appr~ach vs. post Prevs.post 

Groupn=46 z p z p z p 

Rest -3.305 0.001 -3.110 0.002 -1.180 0.238 

Looking-at- -5.159 ' <0.001 -5.159 <0.001 0.000 1.000 
. Approacher 

Looking-at- -4.095 <0.001 -2.247 0.025 -1.718 0.086 
Surroundings 

Pre vs. approach Approach vs. post Prevs. post 

Pupn=39 z p z p z p 

C.Omfort -1.005 0.315 -3.307 0.001 -1.898 0.058 

Looking-at- -3.296 0.001 -3296 0.001 0.000 1.000 
Approacher 
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