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ABSTRACT 

Oceanographers use surface aluminium concentrations in open-ocean seawater as a 

tracer to fingerprint the location and magnitude of atmospheric dust deposition. It has 

become increasingly important to understand the role that such deposition plays in 

supplying trace elements to surface waters and consequently the effects such episodic 

supply has on moderating biological processes. For the purpose of real time analysis, 

quantification must be carried out by a system capable of being deployed shipboard. 

The most commonly employed technique for this purpose is flow injection analysis 

(FIA). 

This project aimed to develop a method for the onboard quantification of aluminium 

in seawater, specifically for the analysis of Antarctic surface waters. Initially, the 

project focussed on the establishment and optimisation of a FIA system incorporating 

fluorescent detection ·of the aluminium-lumogallion complex. Significant variables 

affecting the lumogallion chemistry; including, reaction pH, lumogallion 

concentration and reaction time were optimised for this specific FIA system. Since 

aluminium concentrations in Antarctic seawater are expected to be in the minomolar 

to subnanomolar range, investigation into the addition of an 8-hydroxyquinoline 

column to the manifold, for preconcentration purposes, was carried out. Although 

initial work involving quantification of aluminium in seawater samples appeared 

promising, complications .with the robustness of this technique forced an alternative 

method to be sought. 

High performance chelation ion chromatography (HPCIC) was considered a suitable 

alternative for development as a technique for the purpose of shipboard quantification 

of aluminium in seawater. The HPCIC system developed, involved the novel use of 

iminodiacetic acid functionalised silica for the separation of aluminium. Separation 

conditions, such as eluent composition and column temperature were optimised. Both 

photometric and fluorometric detection s;:stems were developed, employing post 

column reaction (PCR) with a variety of reagents. Of those tested for photometric 
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detection, Eriochrome® Cyanine R, which was used for the first time for PCR 

determination of aluminium in a flow system, was found to be the most sensitive. A 

limit of detection of 100 nM for a 100 µL injection volume was achieved for this 

particular system. 

For the HPCIC system with fluorescence detection, lumogallion was the reagent of 

choice given its reported high sensitivity. Variables such as buffer type and pH, as 

well as temperature and lumogallion concentration were optimised. A limit of 

detection of 0.39 nM for a 500 µL injection volume was obtained, with the 

performance of the system with a variety of other injection volumes also examined. 

Finally, this study presents a discussion on the applicability of the newly developed 

HPCIC system to the quantification of aluminium in real samples. This work involves 

the analysis of paper mill process water and seawater from the Ross Sea, Antarctica. 

Particular attention is given to the topic of aluminium speciation with sample 

acidification. Conclusions and suggested future direction of studies in this area 

conclude this project. 
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Chapter.One -

Introduction 

1.1 Overview 

The focus of this project is on the development of a technique capable of being 

deployed shipboard for real-time determination of aluminium in seawater. The chosen 

analytical system was intended for use during a cruise of the Ross Sea, Antarctica in 

2005-2006 and for subsequent work thereafter. Aluminium concentrations in 

seawater are used to trace dust deposition events, which are extremely important to 

the supply of trace elements and subsequent biological processes. Very little is known. 

about dust supply to the Southern Ocean; however, oceanographers estimate 

atmospheric deposition to be limited. Subsequently, aluminium concentrations in the 

region are expected to be in the nanomolar to sub-nanomolar range. The method 

established during this project consequently had to be not only suitable for use aboard 

a ship, but also capable of determining extremely low concentrations of aluminium in 

such a complex matrix as seawater. 

The following chapter discusses the biogeochemistry of aluminium in the ocean, its 

suitability as a tracer for dust deposition, existing methodologies for determination of 

aluminium in a range of natural water samples, as well as introducing the aims of the 

project. 
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1.2 Background 

1.2.1 Aluminium in seawater 

Aluminium is the third most abundant element in the Earth's crust (8.1 % by weight) 

[1], but exists at only trace (nanomolar) concentrations in seawater. These very low 

concentrations (e.g. <0.5 nM in deep waters of the North Pacific; Figure l.l(a)) can 

in part be explained by a balance between its input and removal processes [2]. Early 

studies [3] suggested that the concentration of dissolved aluminium in open-ocean 

was controlled predominantly by fluvial inputs. However, Maring and Duce [4] have 

since demonstrated that fluvial contributions to the remote ocean are negligible. 

Although early estimates of global riverine flux of dissolved aluminium were 

between 15 and 110 Gmol yr-1 [3], it is now lmown that the majority is lost to 

estuarine sediments [ 4-8] and through biological processes in the coastal ocean [9-

12]. In contrast, aluminium-laden particles of aeolian dust with radii <5 µm are 

capable of long-range transport and deposition in the open-ocean, where they have 

atmospheric residence times of up to several days [ 4]. Aeolian dust, predominantly 

from the great deserts of the world, is therefore considered to be the likely major 

source of aluminium to the open ocean. Vertical profiles of aluminium in major 

oceans have shown that a further minor input occurs in deep waters, most likely from 

dissolution of sedimentary particles [13] (Figure 1.1 (a)). 

Vertical profiles of dissolved aluminium in the Pacific and Atlantic Oceans 

(Figure l.l(a)) show similar-shaped profiles, with highest concentrations in the 

2 



surface waters, mid-depth minima and an .increase at the base of the water column. 

Aluminium is known to exhibit a scavenged-type distribution; that is, it has strong 

interactions with particles and a short residence time [14]. Although both oceans 

follow this type of vertical structure for dissolved aluminium, the concentration 

ranges are markedly different (8-40 times lower in the central North Pacific than in 

the central North Atlantic) [ 15]. This inter-ocean fractionation can be attributed to 

geographical variations, principally in the atmospheric flux experienced by the 

different ocean basins. 

The Atlantic Ocean is subject to major inputs from the vast Sahara Desert, whereas 

the majority of the Pacific Ocean does not have such influential terrestrial sources, 

although the NW Pacific may receive dust from the Gobi desert [16]. These Saharan 

inputs significantly influence aluminium levels due to the relatively small size of the 

Atlantic Ocean compared to the Pacific Ocean. High surface aluminium 

concentrations in the Atlantic are also reflected in deep waters due to dissolution of 

previously absorbed surface aluminium on sinking particles [17]. The highest levels 

of aluminium have been observed in the semi-enclosed Mediterranean Sea 

(Figure 1.1 (b) ), a body of water that does not typically demonstrate a surface 

maximum [18]. 

Aluminium is characterised by its relatively short (2-6 yr) residence time in surface 

seawater [19, 20]. This short residence time can largely be attributed to the element's 

rapid hydrolysis rate and the extremely low solubility of the hydrolysis products [21]. 

Furthermore, the hydrolysis products of aluminium at the pH of seawater, namely 
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Figu.re 1.1. 

(a) Vertical profiles of dissolved aluminium for the Pacific and Atlantic Oceans [17, 

19]. 

(*Original concentrations of aluminium in the Pacific Ocean were given in nmol kg-1
) 

(b) Vertical profile of dissolved aluminium in the Mediterranean Sea [18]. 
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Al(OH)3 and Al(OHk, are extremely particle-reactive [15]. Removal of aluminium 

from seawater may occur by either passive or active processes [19]. Passive 

adsorption or scavenging is believed to be the major form of removal, as 

demonstrated by the vertical distributions of dissolved aluminium in the major ocean 

basins, and occurs via interaction with particles, both inorganic or organic in nature 

[15]. Active biological uptake by plankton has also been demonstrated to occur, 

although evidence of this is limited to studies on coastal waters, the Mediterranean (a 

confined marine basin), and in the laboratory [3, 10-12, 22, 23]. Additionally, the 

mechanism of biological removal is uncertain [24] and in part may be the result of 

increased adsorptive scavenging due to heightened particle fluxes during periods of 

increased primary productivity [19, 25], rather than uptake into cellular tissues [23]. 

A schematic of the biogeochemical cycle of aluminium is given in Figure 1.2. A 

thorough understanding of the marine geochemistry of al,uminium is important for 

several reasons. Recently the focus has been on the use of aluminium as a tracer to 

fingerprint the location and magnitude of aeolian dust deposition. Atmospheric dust 

inputs are a: significant source of several trace elements to the surface waters of the 

open-ocean. Delivery of trace metals (such as iron) to the ocean surface may occur 

directly by dry deposition (dust) or indirectly by wet deposition (rainfall) [26]. Iron is 

of particular interest since although it is an element essential for the growth and 

metabolism of all marine organisms [27-30], its concentration in the surface ocean is 

extremely low (0.1-0.5 nmol L-1
) [31] and limits the growth of marine phytoplankton, 

in about 40% of the World's oceans [32]. Thus, increases in dissolved iron 

concentrations in the surface oceans may affect global climate through the 
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Figure 1.2. Biogeochemical cycle of aluminium. The weighting of the arrows 

indicates how significant the particular pathway is to the overall cycling of 

aluminium. 
a Magnitude of dissolvable aluminium calculated from values given Ill 

Maring et al. [ 4]. 
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stimulation of primary phytoplankton production and the subsequent drawdown from 

the atmosphere of climatically-important gases required for photosynthetic biological 

processes (e.g. C02) [33]. A reliable method for monitoring the atmospheric input of 

iron-laden dust to the ocean is thus imperative to furthering our understanding of 

Earth's climate control system. 

1.2.2 Use of aluminium for dust deposition calculations 

The concentration of dissolved aluminium in surface marine waters has been used 

successfully as a proxy for dust deposition in the ocean [2, 34]. The MADCOW 

(Model of Aluminium for Dust Calculation in Oceanic Waters) model first proposed 

by Measures and Brown in 1996 [2] estimates the annual dust input required to 

maintain background dissolved aluminium concentrations against an annual 

scavenging flux of 20% of the existing Al signal. The model assumes an average 

surface water residence time of 5 yr and a mixed layer depth of 30 m. As a result, 

comparisons between calculated and measured concentrations for different areas of 

the global ocean are not all in good agreement. However, Measures and Brown [2] 

note that local scaling of such parameters is anticipated to improve results. 

Estimates of dust deposition to surface waters, calculated by the MADCOW model 

can be used to provide information on the atmospheric delivery of a variety of other 

trace metals, including iron. Research has been undertaken to calculate the total input 

of iron (dissolved plus particulate) from the calculated dust fluxes, with the -

assumption that continentally-derived dust contains 4.3% iron [35]. Based on the 

molar ratio of Al to Fe in atmospheric dust ( ~3.5), the soluble fraction of iron in the 
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total flux has also been investigated. Although it was assumed initially that the Al/Fe 

molar ratio of the aeolian dust would be reflected in surface ocean waters, much 

higher than expected ratios have been observed [36, 37]. This indicates that iron 

solubility, along with its rapid removal by biological uptake, controls the extent of 

dissolution of aeolian-delivered iron and thus the observed surface water 

concentrations. 

In order to ensure models such as MADCOW are reliable, there is a need for the 

development of robust and portable instrumentation capable of the precise, rapid and 

accurate determination of aluminium at extremely low concentrations (detection limit 

approaching 1 nM) during oceanographic expeditions. Consequently, in recent years 

much research has been undertaken not only to improve the methods of determination 

employed for trace elements such as aluminium, but also the entire analytical 

procedure starting from sample collection and filtration. 

1.2.3 Aluminium speciation 

It is important to consider the speciation of aluminium when selecting particular 

quantification techniques. Fractionation methods have developed primarily in 

response to the realisation that toxicity effects of aluminium depend largely on its 

chemical forms. Labile positively charged aqua- and hydroxy-mononuclear 

aluminium complexes have been reported as the most toxic to aquatic organisms and 

plants, with further toxicity effects recognised in crops and humans [38]. 
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Aluminium speciation is somewhat difficult in aquatic systems, in which aluminium 

exists in numerous forms including: free Al3
+, Al-hydroxide complexes, monomeric 

fluoride complexes and various organic complexes. This difficulty arises due to 

several factors including: the participation of aluminium species in dynamic 

I 

reactions, their low concentration and the presence of complex matrices that have the 

potential to interfere with analytical detection systems [39]. Distribution of 

aluminium species is dependent on factors such as pH, total concentrations of specific 

ligands and dissolved organic carbon [ 40] and it must be realised that inappropriate 

sample manipulation, storage and separation processes can alter the true distribution 

of species [41, 42]. 

The fractionation of aluminium is normally defined operationally since the content of 

real samples is very difficult to determine exactly. Fractions are given terms such as 

'total reactive' and 'total monomeric' and generally contain multiple species, e.g for 

'total monomeric', all inorganic and organiG monomeric complexes. Aluminium 

speciation typically involves either a theoretical or experimental approach. The 

theoretical procedure involves the use of thermodynamic data together with the 

concentration of total aluminium and significant ligands, determined analytically. The 

experimental approach involves separation of species based on different reaction 

kinetics with a complexing reagent and/or separation based on size or charge of the 

species. 

Clarke and co-workers [43] give a thorough review of methods published up until 

1994 for the determination of aluminium fractions in natural waters. However, this 
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review focuses on fresh water examples only. This work classifies the main 

fractionation principles as: (1) kinetic or binding strength discriminations; (2) ion 

chromatographic separations; (3) size exclusion; ( 4) non-invasive methods; (5) ion 

mobility in an electric field; ( 6) minimised disturbance. 

Pyrzynska et al. [39] also present a review on aluminium speciation in natural waters. 

This review pays particular attention to the specific problems associated with 

aluminium speciation analysis and highlights some of the more applicable methods 

that have been developed. The same authors present a subsequent review of 

aluminium speciation in natural waters with particular focus on flow-injection 

methodologies [44]. The analytical performance of several separation procedures 

based on flow-injection analysis, as well as the detection methods are discussed and 

compared. 

Five methods used in different laboratories in Norway and Finland for the 

fractionation and subsequent determination of aluminium were compared and the 

results presented in a paper by Wickstrom and co-workers [ 45]. Different 

fractionation principles, types of cation exchanger, reaction time, flow systems and 

determination techniques were tested. It was reported that of the procedures studied, 

determination of the labile fraction was best achieved using ICP-AES with an 

Amberlite column. The authors also present a discussion on the influence of various 

parameters on the distribution of the species and the effects of filtration and sample 

storage. 
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In more recent years, Bi et al. [ 40] and Scancar and Milacic [3 8] have published 

reviews regarding aluminium speciation in environmental samples. Bi and co­

workers concentrate on presenting advances in analytical methodologies for both 

environmental and biological samples in the preceding five years to publication. 

Their review includes concerns about specific problems of aluminium speciation, 

such as interference issues experienced by many techniques for samples with 

complex matrices, and also advantages and applications of particular methods. 

Seanear and Milacic present a comprehensive review of the most important analytical 

methodologies of the last decade and new trends for the speciation of aluminium in 

environmental samples. 

1.3 Analytical Techniques: 

Separation/Preconcentration and Detection Methods for 

Trace Aluminium 

1.3.1 Overview 

Numerous methods for the separa~ion, preconcentration and detection of trace 

concentrations of aluminium have been developed in order to suit a wide range of 

applications. There are many factors, such as sample matrix, potential interferences, 

required detection limit, and robustness and portability of the instrumentation that 

must be considered when choosing an appropriate procedure. In the following 

11 



sections, several established analytical methods for the determination of aluminium in 

natural waters will be discussed critically. These are summarised in Table 1.1. 

1.3.2 Review of Current Literature 

1.3.2.1 Atomic spectrometry 

Atomic absorption spectrometry (AAS), atomic emission spectrometry (AES) and 

mass spectrometry (MS) can all be used for the determination of aluminium, and 

these methods are often coupled advantageously with chromatographic separation 

techniques, such as high-performance liquid chromatography (HPLC). Although 

flame AAS has been used routinely for the detection of many metals in a variety of 

matrices, it has insufficient sensitivity for samples containing ultra-trace levels of 

aluminium. 

Graphite furnace (GF)-AAS has several advantages over flame AAS, the most 

important being increased sensitivity due to the sample residence time being greater, 

and a smaller required sample size. GF-AAS has been used successfully to determine 

trace aluminium levels in natural waters (seawater, river, soil water) [46-48]. 

Detection limits for this technique for trace metals are generally low and for 

aluminium have been reported to be as low as 0.1 nM in a seawater matrix, following 

preconcentration, with precision at 5% at the 1.0 nM level [19]. The primary 

disadvantages of GF-AAS are serious matrix interferences and the formation of 
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Table 1.1. An overview of analytical methods used for the determination of aluminium in natural water matrices. 
aConcentrations reported'in the original articles have been converted to µM or nM here for comparison purposes. 

Method type Preconcentration Sample matrix LOD" Precision" 

GF-AAS Solvent extraction (8-HQ) Seawater 0.1 nM 5% at 1.0 nM 

ICP-AES HPLC (Chromazurol S immobilised silica gel) River and seawater 10.4 nM Not reported 

ICP-MS ·Single drop m1croextraction (SDME) Lake water (and synthetic) 0.12 nM(synthetic) 10% at37nM 

None reported Lagoon, lake water 3.7nM Not reported 

Voltammetry (CSV) Hg drop electrode using 

l ,2-dihydroxyanthraquinone-3-sulphonic acid Seawater l.OnM 2%at 15nM 
(DASA) 

ECD-GC Solvent extraction (HTF A) Seawater 0.6nM 3.8% at 19nM 

, UV-Vis (absorption) HPLC (Kromasil C18, Spherisorb ODS-2, River, stream water 51.9 nM 1% at 5.2 µM 
LiChrosorb RP-18, Nova-Pak C18) 

Fluorometry 

Lumogallion HPLC (L1Chrosorb RP-18) Seawater (and tap) 1.85 nM . 2.4% at 1.9 µM 

Solid phase extraction (8-HQ) Seawater 0.15 nM 1.7% at 2.6 nM 

8-HQS IE (Amberlite IR-120) Salt water (and fresh) 3.7nM 2% at 0.37 µM 

8-HQ Solvent extraction (chloroform) River (dnnkmg and waste) 7.4nM 4.9% at 1.9 µM 

SAPH None Seawater 11.1 nM 1.9% at 7.4 nM 

Morin rp-HPLC (Spherisorb ODS) Narural water (e.g. lake, river) 1.85 nM 1.8% at 1.0 µM 

Ref. 

[19] 

[49] 

[50] 

[51] 

[52] 

[53] 

[54] 

[55, 56] 

[57] 

[58] 

[59] 

[60] 

[61] 



refractory carbides. The us'e of chemical modifiers has become routine during GF­

AAS in order to overcome these interferences [62-64]. These chemicals act by 

helping the analyte to be retained at higher temperatures during pyrolysis, thereby 

ensuring that matrix interferences in the vapour stage are minimised. The modifiers 

also remove unwanted contaminants and aid in the separation of the analyte signal 

from background noise [64]. Nitrates of metals, such as magnesium and calcium, 

have been employed commonly as chemical modifiers, but with only a moderate 

improvement in sensitivity. More successful approaches have been found in the use 

of hydrogen peroxide with nitric acid [62] and ~-diketones such as acetylacetone 

[63], with the latter having shown to improve the absorption signal intensity 

approximately' 3-fold. 

The plasma in inductively coupled plasma - atomic emission spectrometry (ICP­

AES) efficiently atomises the sample before exciting the resulting atoms for 

detection. The primary advantage AES has over AAS is that emission modes can 

handle multi-element analysis, since all atoms are excited simultaneously. 

Additionally, AES is more capable of handling analyses in which the element has 

formed stable complexes that need to be broken down. The robustness of the method 

allows it to analyse all kinds of dissolved samples from dilute acids to those 

containing a high salt content. The detection limits of elements using ICP-AES have 

been recorded in the low ng g-1 range. However, the technique does suffer from the 

problem of spectral overlap from various elements present in the sample [65]. 

Aluminium is one such element, with its emission beginning at 212 nm and 
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continuing to b~low 190 nm [66]. This continuum emission makes simultaneous 

detection of cadmium, boron and tungsten extremely difficult with aluminium since 

the wavelengths of these three elements lie within the same region [67]. Chemical 

separation, for example using solid-phase extraction, is one method used to overcome 

this form of spectral interference. Successful applications of the technique for the 

detection of aluminium have been carried out for the analysis of natural waters (e.g. 

reservoir, spring, river and seawater) [49, 68]. 

Inductively coupled plasma - mass spectrometry (ICP-MS) provides an alternative to 

ICP-AES for multi-element analysis and is often the preferred method because of its 

much larger elemental scope and greater sensitivity. The technique is able to provide 

semi-quantitative data for samples in aqueous or organic media in only a few minutes 

[65], as well as the ability to measure individual isotopes of the analyte of interest. 

Typically, ions are separated in a quadrupole, with heightened performance having 

been attained with chan&es to the RF power source used for ICP generation and the 

introduction of high-resolution magnetic sector mass spectrometers. Detection limits 

for ICP-MS are now quoted in the ng L-1 range (part per trillion) with specific limits 

for aluminium between 2.6 pM-0.4 nM depending on the type of instrumentation 

used [69]. Although a relatively new technique, ICP-MS has been highly successful 

for the analysis of trace metals in a variety of samples including seawater, lake, 

spring and forest soil waters [50, 51, 68, 70, 71]. Table 1.1 gives specifics for two 

ICP-MS methods for the determination of aluminium in aqueous medium. Although 

the first method [50], successfully applies the system to lake water, the detection limit 
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(0.12 nM) is only reported for synthetic water. The second reference, Prendez et al. 

[51], gives a detection limit of 3.7 nM for lake and lagoon water matrices. 

Despite the advantages of the atomic spectrometric methods discussed above, it is 

generally impossible to analyse a sample directly because of interfering species in the 

surrounding matrix, or the concentration of the analyte being below the detection 

limit of the instrument. HPLC (using ion-exchangers) is the most common technique 

used for sample separation and preconcentration coupled to the atomic spectrometric 

instrumentation. An important operational criterion is that the selected mobile phase 

must allow for adequate separation within a realistic time frame for the detection 

method. 

1.3.2.2 Voltammetry 

The direct determination of aluminium using classical voltammetric techniques is 

difficult, owing to the highly negative reduction potential of aluminium. This 

potential (approximately -1.75 V vs. SCE; saturated calomel electrode) is very close 

to that of major cations, including sodium and potassium [72]. Nevertheless, two 

types of stripping voltammetry - anodic stripping voltammetry (ASV) and cathodic 

stripping voltammetry (CSV) - do have the scope to determine aluminium in natural 

waters. Since the CSV method involves the complexation of aluminium in a 

preliminary reaction in solution, and adsorption of the complex in the concentration 

step at the electrode surface, it is often described as adsorption stripping voltammetry. 

The most commonly used ligand for complexation with aluminium in CSV is 1,2-
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dihydroxyanthraquinone-3-sulfonic acid (DASA) [52, 72, 73], with the detection 

limit being recorded as low as 1.0 nM for a seawater matrix [52]. However, other 

compounds, such as solochrome violet [74, 75] and pyrocatechol violet [76, 77], have 

also been employed. The method has been applied successfully to determination of 

aluminium in natural waters other than seawater, e.g. river, lake and reservoir waters. 

1.3.2.3 Electron capture detection - gas chromatography 

Trace levels of aluminium and other metal ions have been detected successfully by 

electron capture detection - gas chromatography (ECD-GC), through the formation 

and extraction of volatile complexes. The technique is highly sensitive and 

subsequently allows for the use of small sample volumes. The basics of ECD (DC or 

pulsed mode) have been described elsewhere [78, 79]. The determination of 

aluminium by ECD-GC was reported by Measures and Edmond in 1986 [80], 

adapting a method first developed for the determination of beryllium in natural waters 

(seawater, river and rain water). However, the two methods differ in both the 

handling protocols and the type of solvent used for extraction. For aluminium 

analyses, 15 mL samples were buffered with sodium acetate and the metal reacted 

with 1, 1, 1-trifhioro-2,4-pentanedione (HTFA). This fluorinated volatile derivative 

was then extracted using toluene and back-washed using a sodium hydroxide 

solution. ECD-GC was carried out on 3 µL aliquots of the extracts using. a Ni63 

ionisation source. The method obtained a detection limit of 0.6 nM, with a precision 

of3.8% at 18.5 nM in seawater [53]. Despite these impressive results, the use of this 
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method is limited by the considerable amount of sample handling, increasing the risk 

of contamination, and has not been used widely in recent years. 

1.3.2.4 UV-Vis spectrophotometry and fluorometry 

The absorption of UV-Vis light may be used to selectively determine trace metal 

ions, especially after formation of metal-organic complexes. The spectrophotometric 

determination of aluminium is typified by the use of quercetin (3,5,7,3',4'­

penatahydroxyflavone) as the colour-forming reagent. Quercetin selectively forms a 

stable complex with aluminium and detection is relatively free from interfering 

species [54]. Unlike many other complexing reagents, quercetin may be used for in 

viva determination [54]. However, limits of detection for its general use are usually 

reported in the mg L-1 to µg L-1 range. Other typical chelating reagents include morin 

[81], pyrocatechol violet (PCV) [82] and eriochrome cyanine [83, 84]. UV-Vis 

spectrophotometry has been applied to the analysis of natural waters, including river, 

stream, spring, pond, lake and sea water and can be coupled to such techniques as 

flow injection analysis (FIA) and HPLC. The addition of masking agents is often 

required for the spectrophotometric determination of aluminium to increase 

selectivity. Masking is achieved by forming a stable complex from the potentially 

interfering species so that it can no longer react with the colour-forming reagent. 

Common masking agents used in the analysis of aluminium include hydrogen 

peroxide and cyanide [85]. However, many masking agents require a specific, and 

often narrow, pH range in which to complex the interferent of interest. 
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Photoluminescence, which incorporates fluorescence, is the emission of radiation 

resulting from the excitation of a sample by the absorption of photons. It has the 

advantages of high sensitivity, selectivity and linearity compared to other methods for 

the determination of aluminium, such as colorimetric spectrophotometry. The 

majority of fluorescence applications involve the use of extrinsic fluorescent 

reagents; that is, chromophoric molecules that react with, or adsorb onto, the analyte 

of interest. Since aluminium is not fluorescent itself, it must first react with a ligand 

to produce a fluorescing complex. Lumogallion (4-chloro-6-[(2,4-

dihydroxyphenyl)azo ]-1-hydroxybenzene-2-sulfonic acid; Figure 1.3), a tetradentate 

ligand that coordinates with aluminium to produce a fluorescent complex, is the most 

common, although a number of other compounds have also been investigated with 

varying degrees of selectivity, sensitivity and suitability for various applications. 

Several fluorescence-based analytical methods for aluminium, ordered by the 

particular fluorescent reagent employed, are discussed below. 

(i). Lumogallion 

The aluminium-lumogallion complex offers excellent fluorescence sensitivity and 

minimal interferences, and as such has been used successfully for the determination 

of aluminium in matrices with a high salt content, such as body fluids [55] and 

seawater [56]. In a method described by Wu and co-workers [52] for the 

determination of aluminium in human blood serum, the sample was reacted with 

lumogallion, with the resulting complex separated by HPLC (LiChrosorb RP-18 
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column) and detected by fluorescence. A detection limit of 1.9 nM for aqueous 

solutions was achieved. The authors used the same procedure for the determination of 

aluminium in both tap and coastal seawater [56]. The results from this HPLC method 

were compared against those determi~ed by GFAAS. For tap water, the results were 

in good agreement; 1.04 ± 0.04 µM (HPLC) compared with 1.04 ± 0.06 µM 

(GFAAS). However, differences were observed for seawater; 7.8 ± 1.5 µM (HPLC) 

compared with 9.3 ± 0.52 µM (GFAAS). The authors attributed this difference to 

inadequate background correction for the high salt content in seawater for GF AAS. 

Capillary electrophoresis is another technique that has been used for the separation of 

the aluminium-lumogallion complex. He et al. [86] used a fused-silica capillary for 

separation after preparation of the complex by a batch method and theyreported a 

detection'limit of approximately 0.70 µM with a precision of 3.1% at 3.7 µM (sample 

solution). It was found that by using this technique only one peak was observed in 

sample analyses, suggesting that the method was free from interference from 

common species, such as iron. The newly developed procedure was applied 

successfully to the determination of aluminium in river, reservoir and spring water 

samples, with relatively good agreement of results compared to those obtained by 

ICP-MS. 

Hara and co-workers [87] developed a method for the fluorometric detection of the 

total concentration and individual species of aluminium using lumogallion. 

Determination of the free form of aluminium (Al3l was obtained directly using 
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gradient elution cation-exchange chromatography where the separation was based 

predominantly on the charge on the analyte. Aluminium fluoride complexes were 

estii:p.ated mathematically using a fluoride ion-selective electrode to measure the free 

and total amount of fluoride (assuming that all 2+ charged aluminium species were of 

the form AlF2+) and complexation constants for the various fluoride complexes. The 

concentration of total dissolved aluminium was obtained using the same HPLC 

system as for the free and total fluoride-complexed species, but without the use of a 

separation column. Although the speciation of dissolved aluminium was canied out 

on 15 rainwater samples, Hara et· al. [88] concluded in further investigation that the 

elution of dissolved aluminium from the column was not quantitative when using this 

method. 

In a recent article by Fuse et al. [89], the use of a 5 '-chloro-5-dodecyl-2,4,2 ' -

trihydroxyazobenzene-impregnated XAD-4 resin (for the preconcentration of 

aluminium) coupled with fluorometric detection using lumogallion was investigated. 
' 

The authors found that iron and other common ions caused no interference, and that 

successful speciation could be achieved without any change of pH by separating the 

aluminium species on ion-exchange resins. A detection limit of 2.2 nM in 

environmental water samples, with a precision of 7.3% at 3.7 nM was obtained and 

the method was tested on several lake and river samples with satisfactory results. 

This section has highlighted the use oflumogallion for the detection of aluminium by 

fluorescence ill many natural waters However, its application specifically to seawater 

analysis will be discussed further in sections 1.4.2 and 1.4.3. 
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(ii) 8-hydroxyquinoline 

8-hydroxyquinoline (oxine or 8-HQ) and its sulfonated derivative, 8-

hydroxyquinoline-5-sulfonic acid (8-HQS), are strong chelators for aluminium and 

give rise to fluorescent complexes. 

Bloom and co-workers [90] applied the reaction of aluminium with 8-HQ ·in a batch 

method using butyl acetate as the solvent for extracti'on of the resulting complex. 

Detection was made by both spectrophotometric and fluorometric techniques, with 

the latter demonstrating the best detection limit (11.1 nM in distilled water). 

Sugimura and Suzuki [91] also utilised the fluorescent complex formed between 

aluminium and 8-HQ for the analysis of aluminium in seawater, after adsorption on a 

XAD-2 resin. Iron was initially removed by adsorption of the resultant complex with 

4,7-diphenyl-1,10-phenanthroline on XAD-4 resin, and magnesium and zinc were 

prevented from interfering through sequential washes of ammoniacal solution of 

EDTA and acetate buffer solution. 'The reported detection limit was 3.0 nM m 

seawater (per 20 mL of chloroform eluent). 

Zhu and co-workers [92] reported on the sensitising effect of a 

cetyltrimethylammonium bromide (CTAB) microemulsion on the determination of 

aluminium using fluorescence detection of its 8-HQ complex. It was found that the 

CTAB microemulsion gave a higher sensitivity than both CTAB micelles and water 

as media. The method gave a limit of detection of 0.15 µM in distilled water with 
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precision at 2.4%. The technique was applied successfully to the determination of 

aluminium in both tap and lake water. 

Alonso and co-workers [59] compared three forms of liquid-liquid extraction in FIA 

systems and coupled them with fluorometric determination of the Al-8HQ complex. 

Of the three procedures investigated, it was found that injecting a single segment of 

organic solution into an aqueous stream of buffered sample without phase separation 

gave the lowest detection limit of 7.4 nM in distilled water. Each method was also 

trialled on real samples, including river and waste waters. 

8-HQS has been acknowledged as one of the most sensitive organic ligands used for 

the determination of aluminium [93]. It forms a highly fluorescent complex, without 

showing any intrinsic fluorescence itself. Alonso and co-workers [58] reported a 

method using 8-HQS that was applied to the determination of aluminium in fresh and 

saline waters. Continuous determination of aluminium was possible with the use of 

FIA. Their method made use of the cationic surfactant cetyltrimethylammonium 

bromide (CTAB), which greatly enhanced the fluorescence intensity and accelerated 

the reaction rate. Many of the interferences inherent to batch methods were largely 

overcome, since post-column reaction after HPLC separation was employed. The 

detection limit for the method was 3. 7 nM (in distilled water), with a precision of 2% 

at the 0.37 µM level. This system was shown by Fairman and Sanz-Medel [94] to be 

superior to the conventional batch methods using pyrocatechol violet. Their report 
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also detailed the importance of the separation step for natural water samples (lake) 

using an ion-exchange column of Amberlite IR-120 cation-exchange resin. 

(iii) Salicylaldehyde picolinoylhydraz.one (SAP H) 

Salicylaldehyde picolinoylhydrazone (SAPH) forms a fluorescent chelate with 

aluminium in a stoichiometric ratio of 1 :3. The complex exhibits a blue-green 

fluorescence at excitation and emission wavelengths of 384 and 468 nm, respectively 

[60, 95]. The metho<;l is very sensitive, has minimal interferences, and has been 

applied satisfactorily to the determination of trace amounts of aluminium in seawater 

and spring water. 

Manuel-Vez and co-workers [60] applied the method to a batch determination of 

aluminium by reacting the metal with SAPH in an acetate buffer solution and 

measuring the resultant fluorescence intensity. The lowest detection limit achieved 

was 9.8 nM, with a precision of 1.85% at 166 nM in synthetic seawater. Canizares et 

al. [95] coupled the method to both a conventional FIA system and a flow-through 

sensor. The manifold of the sensor design involved injection of sample into an acetic 

acid/sodium acetate buffer and subsequent merging with the SAPH solution to form 

the fluorescent complex. The complex was retained in the flow cell by interaction 

with a C18 solid support and flushed to waste by injection of hydrochloric acid. The 

flow-through sensor method achieved a detection limit of 0.30 µM (6.7% precision) 

compared to 0.57 µM (8.1 % precision) for the conventional FIA system (deionised 

water matrix) [61]. 
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(iv) Morin 

A particularly sensitive fluorometric reagent for the determination of trace aluminium 

is 3,5,7,2',4'-pentahydroxyflavone (morin). Morin can selectively form a highly 

fluorescent complex with aluminium and has been used widely as a reagent for both 

. fluorometric and spectrophotometric determinations. Various investigations have 

been undertaken to improve both the extraction efficiency of the fluorescent complex 

into isobutyl methyl ketone (IBMK) [96, 97], and the sensitivity via the addition of 

non-ionic surfactants [98]. Despite continued research, the application of morin 

remains limited since the very long reaction time with aluminium makes automation 

difficult [99]. 

A recent paper by Lian et al. [100] describes a reversed-phase high-performance 

liquid chromatographic method .(Spherisorb ODS column), with pre-column 

complexation of morin and aluminium and fluorometric detection. A detection limit 

of 2.0 nM in a distilled water matrix and precision of 1.8% at the 1.0 µM level [100] 

was achieved and a wide linear range for detection was possible due to the unreactive 

morin being separated from the fluorescent Al-morin complex. The method was 

applied to the analysis of a substantial number of natural water samples including 

canal, river, stream, cave, pond, spring and lake waters. Lian and co-workers [61] 

later developed a novel strategy for th'e speciation of aluminium using selective 

I 

analytical reagents, including morin, under specific pH conditions. They reported 

considerable advantages to this fluorometric method for the fractionation of 
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aluminium in natural waters, namely high sensitivity, easy manipulation and the 

exclusion of a separation step. 

(v) Other fluorescent reagents 

Various other fluorescent reagents have been· utilised for the determination of 

aluminium in natural waters, such as chromotropic acid [101] and 2,6-bis[(o­

hydroxy)phenyliminomethyl]-1-hydroxybenzene (BPhH) [102]. Although some 

satisfactory results have been obtained, the use of these reagents is not widespread 

and consequently details will not be discussed further. 

1.3.2.5 Chelation ion chromatography 

The use of ion chromatography (IC) for the quantification of aluminium has been 

previously restricted to the determination of Al3
+ [103]. However, the scope of this 

technique has since been broadened to include separation and determination of 

multiple Al complexes (e.g. fluoro, oxalate, citrate) [87, 104-106]. Both anion- and 

cation-exchange modes of IC may be utilised in order to determine positively or 

negatively charged species of aluminium [107]. The obvious restriction of using 

common ion-exchangers in IC separations is their high sensitivity to the presence of 

simple electrolytes (KCl, NH4Cl, CaClz and others) which are used frequently for the 

extraction of ,aluminium from samples such as soil, sediment and different plant 

materials [108]. Chelating ion-exchangers are therefore of particular interest for the 

separation and determination of aluminium as an alternative to traditional ion­

exchange materials. They function by retaining metal ions according to the stability 

27 



of the corresponding complexes with chelating groups on the stationary phase and 

allow for the separation and preconcentration of aluminium in complex samples 

having a high content of alkali- and alkaline-earth metal salts. 

The determination of aluminium can take into account three categories of species. 

These groups have been described as labile weakly bound monomeric (free 

aluminium, aluminium sulfate, fluoride, and hydroxide complexes), non-labile 

thermodynamically stable monomeric (complexes of aluminium with organic ligands) 

and kinetically inert thermodynamically stable polymeric type complexes and 

colloids [109]. Usually the differentiation of aluminium species is based on 

competitive complexation and/or acid reactivity [110]. Recently, competitive 

chelation with the chelating Chelex 100 resin (which carries iminodiacetic acid 

functional groups) has been used in a resin titration method proposed by Pesavento et 

al. [ 111]. So, another possible advantage of chelating ion-exchangers is their ability 

to discriminate between kinetically-labile complexes and stable, inert complexes of 

aluminium, which provides additional information on the bioavailability and 

ecotoxicity of this element in natural samples. 

High performance chelation ion chromatography (HPCIC), or other IC modes in' 

which chelation is the dominant retention mechanism, offers several advantages over 

ion-exchange separation [112, 113]. Firstly, it allows for the possibility of using only 

one type of functionalised resin for both preconcentration and separation. This has 

obvious consequences in terms of the simplicity of a system for an application 

requiring both processes, since the same eluent can be used. Secondly, chelation acts 
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in such a way as to convert all species of aluminium into uniform surface complexes. 

While an ion-exchange chromatogram may show multiple peaks for largely 

unidentified aluminium species, a chromatogram using chelation will show only one 

or two; corresponding to total soluble and more strongly bound species. This is 

beneficial if full speciation of aluminium is not required. 

There are few known attempts to use HPCIC for the separation and determination of 

aluminium. Jones et al. used different neutral polystyrenedivinylbenzene (PS-DVB) 

microspherical resins impregnated with Chrome Azurol S dye, which has two 

salicylic acid groups in the molecule selective to aluminium [114]. Isocratic 

separation of aluminium, indium and gallium was achieved on Benson BPI-10 resin 

with 1 M KN03 at pH 2.25 as the eluent. This separation was repeated on PS-DVB 

resin (Polymer Labs PRLP-S) [115] and a slightly different elution order (Al(III) < 

Ga(III) < In(III)) was observed. Two-step pH gradient elution from 2.2 to 1.0 in 1 M 

KN03 was used for the separation of aluminium, gallium, indium and iron(III) on a 

similar chromatographic column. Finally, this same HPCIC system was used for the 

determination of aluminium in seawater [116]. In all of these studies, photometric 

detection after post-column reaction (PCR) with 0.004% Pyrocatechol Violet m 

0.5 M hexamine adjusted to pH 6 was used. 

The chromatographic behaviour of aluminium on Hamilton PRP-1 neutral PS-DVB 

resin dynamically modified with 4-chlorodipicolinic acid was investigated by Shaw et 

al. [117]. Aluminium was retained by this chelating substrate using an eluent 

comprising 1 M KN03 - 0.25 mM 4-chlorodipicolinic acid only when the eluent pH 
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was higher than 2.0. The retention order Al(III) < La(III) < Lu(III) < Fe(III) < U(VI) 

was observed. The separation of aluminium and lead on a short (50 mm.) column 

packed with aminocarboxylated polymethacry~ate Bio-Rad HRLC-MA7C resin was 

also reported [118]. 

The most significant problem of the above-mentioned works was very poor column 

efficiency which is associated with the use of relatively coarse 7-10 µm polymer­

based chelating resins and their slow kinetics of complexation with aluminium. This 

problem can potentially be overcome by the use of iminodiacetic acid functionalized 

silica (IDAS), which not only has a similar selectivity to Chelex 100 but also exhibits 

remarkable column efficiency in the separation of metal ions by HPCIC. 

1.4 Shipboard Determination of Trace Aluminium in 

Seawater 

1.4.1 Overview 

Although many low-cost, sensitive and rapid methods have been developed for the 

determination of trace levels of aluminium, few are suitable for the analysis of 

seawater samples and fewer still for shipboard determinations. The major con~em for 

seawater analysis is the matrix effects from interfering ions. Considerations that must 

be made regarding shipboard instrumentation include size, mass, portability, 

robustness against shocks and vibrations, and ease of automation. The move towards 
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finding a suitable method for shipboard trace aluminium analysis is in response to 

recent progress made in understanding the contamination risks, problems associated 

with sample storage and the need for high resolution real-time data to aid in tactical 

cruise planning (e.g. following dust deposition events). 

The different types of atomic spectrometric techniques may have advantages such as 

high sensitivity and multi-element analysis, but the size and shape of such 

instruments precludes their use at sea. Additional shortcomings include the inability 

to cope with matrix interferences and vibrations encountered on an underway 

research vessel. Furthermore the purchase and running costs of such instruments are 

relatively high. 

Voltammetry and FIA with fluorescence detection are two techniques that have been 

shown to be successful for the onboard determination of aluminium in seawater. The 

instrumentation needed for these techniques is such that transportation may be 

achieved relatively easily and disruptions to the operation by any shocks or vibrations 

that may occur whilst at sea are minimal. In addition, the techniques may be fully 

automated and operated in a flow-analysis mode, ensuring minimisation of 

contamination and an efficient analysis time. Initial equipment and ongoing running 

costs are also significantly lower than for most other techniques. FIA with 

fluorescence detection using the reagent lumogallion has been used most 

comprehensively by oceanographers in recent years, notably due to the suitability of 

the instrumentation for shipboard work and the ability to obtain particularly low 

detections limits. Consequently, it will be discussed in further detail here. 
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1.4.2 Fluorescence detection with lumogallion 

In the 1960s, Nishikawa et al. [119] first described the technique for the 

determination of aluminium in seawater using the fluorescent reagent lumogallion 

(Figure 1.3). Hydes and Liss [120] later lowered the detection limit to nanomolar 

levels using a batch method in which 50 mL samples were reacted with a lumogallion 

solution and buffered with a sodium acetate/acetic acid solution. The reaction mixture 

was heated at 80 °C in a water bath for 1.5 h before fluorescence of the samples was 

measured at an excitation wavelength of 465 nm and emission wavelength of 555 nm. 

This procedure was reported to detect all forms of aluminium, except that which is 

incorporated in stable mineral structures (e.g. clay particles) [120]. Interferences from 

iron were insignificant below 100 µg L-1
, and the authors suggested that UV 

irradiation of samples would overcome competition for the Al-lumogallion complex 

by naturally-occurring organic ligands. The detection limit for the method was 

reported as 1.9 nM with a precision of 5% at the 37 nM level [120]. 

Subsequently, Howard et al. [121] achieved a 5-6 fold increase in the fluorescence 

intensity of the aluminium-lumogallion complex by adding the non-ionic detergent 

Triton X~lOO after the reaction between the aluminium and lumogallion, and 

immediately before fluorescence detection. Multiple surfactants were tested, and 

although cationic surfactants gave initial significant enhancements, only non-ionic 

surfactants showed sustained enhancement. Triton X-100 was chosen, based on its 

ease of use and high performance with regard to increasing fluorescence intens~ty. 
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The detection limit was reduced to 0.74 nM in fresh and saline water, with a precision 

of 5% at the 3.7 nM level [121]. 

1.4.3 FIA with fluorescence detection using lumogallion 

The lumogallion method for the detection of aluminium m seawater was first 

incorporated into a FIA system by Resing and Measures in 1994 [57]. The method 

involved on-line preconcentration of seawater samples on a column of resin­

immobilised 8-hydroxyquinoline (R8-HQ), and post-column reaction of the eluted 

aluminium with the lumogallion reagent. In order to develop a procedure that gave 

accurate and precise results in only a few minutes, optimisation of each component of 

the manifold was undertaken. The optimisation was divided into five parts, including 

the reaction between aluminium and lumogallion, efficiency of the 8-HQ column, 

surfactant selection, detection parameters and minimisation of interferences. 

Variables that were adjusted included; reaction and sample pH, column length and 

type of surfactant used. The optimised system gave a detection limit of ~0.15 nM in 

seawater, with a precision of 1. 7% at the 2.4 nM level. The suitability of this method 

for shipboard determination of aluminium in seawater was excellent due to the 

minimal amount of sample handling, speed and ease of use, as well as an extremely 

low detection limit. Despite being proven to be a successful shipboard method, 

careful and time-consuming preparation of clean seawater for the system's carrier 

stream was a requirement and problems with preconcentration existed. These issues 

have since been further investigated and the method subsequently modified in a paper 

by Brown and Bruland in 2008 [122]. 
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The use of an 8-HQ column was an integral part of the method by Resing and 

Measures [57], not only ensuring an adequate preconcentration of the analyte in the 

sample prior to Al-lumogallion fluorescence detection, but also aiding in eliminating 

potential interfering species (e.g. iron and copper). This latter outcome results 

because the interfering species are either only partially re!ained on the resin, or if 

retained, are separated from the aluminium during the elution process [57]. Resing 

and Measures synthesised R8-HQ by a modification of the method of Landing et al. 

[123]. This synthesis is a multi-step process taking at least 15 h. Dierssen et al. [124] 

have recently reported a simplified one-step approach that reacts an epoxy-activated 

resin directly with 5-amino-8-hydroxyquinoline. The entire synthesis takes less than 

7 h and resin functionalised via this method has been used successfully for the 

preconcentration of a variety of trace metals from acidified seawater samples [124]. 

Various ot4er adaptations of the original lumogallion method have been made in an 

attempt to increase the sensitivity and selectivity of the system. Obata et al. [125] 

omitted the sample preconcentration step, but still reported sub-nanomolar detection 

limits for aluminium. Their method involved the selective removal of iron as an 

interfering ion through incorporation of a metal alkoxide glass immobilized 8-

hydroxyquinoline (MAF-8HQ) column in the manifold. The column, originally 

designed for the measurement of trace amounts of iron in seawater, was used at a pH 

of 3 .2 so that iron was removed selectively from the sample. The sample was then 

adjusted to a higher pH by post-column reaction so that optimal reaction with the 

lumogallion could occur. Using this set-up, 1 µM of iron did not interfere with the 

34 



detection of 1 nM aluminium. The detection limit for the method was found to be 

0.17 nM for 10 mL of seawater sample, with a precision of 2.7% at the 2 nM level. 

Ren and co-workers [126] endeavoured to overcome interferences of both iron and 

fluoride, based on the work of Zhang et al. [127]. Both groups investigated the 

addition of o-phenanthroline and Be2
+ to mask the interferences of iron and fluoride, 

respectively, during fluorometric determination of dissolved aluminium. The method 

of Zhang and co-workers involved tedious extraction of the lumogallion complex into 

n-hexanol and achieved a detection limit of 0.25 nM with a precision of 5% at the 

40 nM level. Ren et al. developed a more 'operator-friendly' technique that no longer 

required liquid-liquid extraction. Although interferences were minimised 

successfully, a considerable amount of sample manipulation was still required, 

making the method lengthy and contamination risks higher. In addition, the detection 

limit was higher than that of Zhang et al., with a value of 0.7 nM in distilled water 

and precision of 3.6% at the 5.0 nM level. 

In a more recent paper, Kramer and co-workers [20] successfully applied the 

technique developed by Resing and Measures [57] to determine the distribution of 

dissolved aluminium in the North Atlantic Ocean. Their procedure involved only 

minor changes to the original report, with a deionised water wash of the loaded 

column before elution. A detection limit of 0.7 nM in seawater with a precision of 

2.3% at the 14.2 nM level was achieved. 
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Although several publications have focused on basin-scale aluminium distributions 

during long-range transects of the major oceans, high-resolut~on information 

available presently for localised and confined regions is both scarce and conflicting, 

highlighting the continued need for reliable shipboard methods. 

1.5 Aims of Project 

The overall objective of this project was the establishment of a robust system capable 

of determining ultra-trace levels of aluminium in seawater. FIA has been discussed at 

length here and is undoubtedly the most widely accepted technique for the shipboard 

determination of aluminium in seawater. Consequently, the first approach of 

accomplishing th~ project was the set-up of a FIA system. It was envisaged that 

optimisation of operating parameters, e.g. reaction pH of aluminium-lumogallion 

complexation, would be beneficial in order to achieve the lowest LOD specific to this 

system. 

In the event that a FIA system capable of determining nanomolar concentrations of 

aluminium in seawater could not be established satisfactory to requirements, 

development of an alternative technique would have to be undertaken. HPCIC was 

considered a viable option if the need arose. 
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The applicability of the ensuing system to the determination of aluminium in 

seawater would be assessed by the analysis of surface seawater samples taken from 

both the Pacific Ocean and the Ross Sea, Antarctica. 
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Chapter Two -

Methods and Materials 

2.1 Practical Considerations 

2.1.1. Contamination risks 

The detection limits of analytical methods for the determination of trace metals have 

r 

decreased significantly in recent years. This is as much a result of improved sample 

handling techniques as it is the development of new detection technologies. The most 

frequent problem encountered when analysing a sample for trace metal content is the 

risk of contamination. The extent to which this risk affects final results is dependent 

on the initial amount of analyte, the handling procedures employed, and the degree to 

which the analyte is present in the potential contamination source [128]. When 

analysing ocean seawater, for example, the risk of contamination is high, since most 

of the metals of interest are at nanomolar concentrations, yet are ubiquitous in the 

atmosphere, and are universally associated with many manufactured sampling and 

filtration materials, the research vessel itself and any human activity. Atmospheric 

contamination can be minimised by applying various levels of controls, with the most 

stringent being the use of a class-100 laminar flow hood or a full clean room of 

similar classification [129]. Reagent grade and the type of materials used in 

equipment manufacture must also be considered. Often, typical materials used in the 

38 



manufacture of apparatus for classical chemical analysis and for storage vessels are 

not suitable for ultra-trace metal work as they may either introduce trace levels of 

contaminants or provide a surface on which the analyte under investigation may 

adsorb. Common materials, such as glass, often have to be replaced with alternatives 

that reduce these problems, such as low-density polyethylene (LDPE) or 

perfluoroalkoxy (PF A) fluorocarbon polymers. 

2.1.2. Storage bottles 

The preferred type of plastic and the cleaning protocol for storage bottles for trace 

metal analysis is not universally agreed upon. In fact, the necessity of cleaning bottles 

by acid washing is still in debate. Reimann and co-workers [130] reported that acid 

washing had no systematic beneficial effect on the analytical results for bottles made 

of high density polyethylene (HDPE) or polypropylene (PP). Suggestions by 

Reimann regarding why acid washing may be detrimental to sample storage include 

the introduction of contaminates through the use of an "unclean" acid, and an 

increased adsorptive capacity or heightened availability of incorporated trace 

elements to leaching 'due to damage of the bottle's interior walls caused by acid 

soaking [130]. Conversely, Kremling and Streu [131] state that sample bottles made 

of Teflon, HDPE, PP and quartz must be cleaned very carefully before use and they 

describe a 8-9 step cleaning procedure involving detergent and acid washes, with 

copious amounts ofrinsing with the purest di~tilled water. Achterbe~g et al. [132] and 

various other researchers also agree with this approach, although the cleaning 

protocol does differ somewhat. For example, the type and strength of acid used varies 
- \ 
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between groups, with some using HN03, others choosing HCl and others preferring 

aqua regia. Moody and Lindstrom [133] showed that these acids tend to leach various 

elements with different efficiencies and recommended the use of both HCl and 

HN03, one after another, to ensure maximum cleaning. 

Reimann's work also investigated the advantage of using expensive plastic bottle 

types, fluorinated ethylene-propylene co-polymer (FEP) and PFA, over the more 

affordable LDPE, HDPE and PP. He reported that bottle type was of no importance 

for the majority of the 62 elements tested. Exceptions to this were Al, Cr, Hf, Hg, Pb 

and Sn to varying degrees, with these elements showing better results for bottles 

made from PFA and FEP [130]. 

For this work, a rigorous bottle cleaning protocol for LDPE bottles was used. This 

included rinsing with deionised water followed by a 2% Decon (a surfactant with 

anionic and non-ionic surface active agents) soak for a week, a rinse using water 

purified on a Milli-Q system (henceforth referred to as Milli-Q water), acid soaking 

in a 10% HCl bath for the duration of a week, followed by further Milli-Q water 

rinses (x5), and lastly, acid refluxing using a specially produced glass bottle cleaning 

"tree" and high purity HCl, followed by final Milli-Q water rinses (x5). Bottles were 

then filled with a 3-5% high purity HCl solution under trace metal clean conditions 

until use. 
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2.1.3. Oceanographic sampling 

The risk of contamination during the sampling process has been of great interest in 

recent years. Much of our current understanding and appreciation of the need for 

ultra-clean procedures can be attributed to the work of C.C. Patterson in the 1970s on 

lead. The accepted concentration of lead in seawater decreased three orders of 

magnitude over the three decades following his work due to the reduction of 

contamination during sampling storage and analysis [134]. Such work has led to the 

development of sampling methods aimed specifically at obtaining trace-metal clean 

seawater. Among the most common samplers used for this purpose are 'Go-Flo' and 

'Niskin' bottles (both General Oceanics). The sample-containing tube section of Go­

Flos designed for trace metal analysis is made of poly-vinyl chloride (PVC) with a 

Teflon coating. The bottles are designed to enter the ocean in a closed state, open by a 

pressure-release mechanism at ~ 10 m to allow flushing, and close at the desired depth 

when tripped by a hydroline messenger [135]. Niskins are also constructed from PVC 

and can be triggered to shut either by a hydroline messenger or simply by pulling a 

lanyard loop. 

Contamination by the vanous types of hydrowires used for deployment of the 

sampler bottles has also been investigated in recent years. Whereas traditionally these 

wires have been made of steel or nylon for strength and durability, new non­

contaminating materials (such as Kevlar or Spectra) are now being used by many 

laboratories around the world. This prevents contamination arising from rusty 

hydrowires, which will give erroneously high trace metal concentrations. Kevlar, now 
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widely used for trace metal hydrocasts, is a non-metallic wire with a high strength-to­

weight ratio. Plastic-coated steel wire has also been successful in providing a 'non­

metallic' option. An early 1980s intercomparison of three types of both sampling 

devices and hydrowires concluded that modified Go-Flo samplers coupled with 

plastic-coated steel hydrowires provided the least contaminated samples for the 

analysis of Cd, Cu, Fe, Mn, Ni, and Zn [136]. 

In order to obtain surface water trace metal concentration data with a high spatial 

resolution, techniques for continuous underway sampling have been developed. A 

towed 'fish' device is typically deployed at 1-10 m below the sea-surface and water is 

supplied to the ship's deck using a high-volume pumping system. Several variations 

of underway sampling systems have been reported, based on an original design by 

Boyle et al. in 1982 [137], which involved pumping water to the ship's deck using a 

vacuum pump and polyethylene tubing connected to a brass b.athythermograph which 

is towed 5 m away from the side of the vessel. Recent modifications to materials used 

in the construction (e.g. all Teflon PFA tubing), design (e.g. PVC depressor vane 1 m 

above a 20 kg PVC fish) and pumping (e.g. Teflon PTFE double-diaphragm pump) of 

towed fish systems have improved oceanographers' ability to collect large volumes of 

trace metal clean surface seawater. 

A towed fish device was employed for all surface seawater samples collected for use 

during this project. The fish employed was constructed entirely of PVC with Teflon 

PFA tubing and a Teflon PTFE pump was also utilised (See Figure 2.1). 
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(a) 

Figure 2.1. Towed fish used aboard R/V Nathanial B. Palmer 

(a) System being deployed (b) PVC depressor vane (c) PVC fish . 
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2.1.4. Filtration· 

Oceanographers are now beginning to standardise the materials, devices and nominal 

cut-offs used for filtration. Filtration may be achieved either using cartridges 

(typically used for collecting dissolved samples) or membranes (typically used for 

collecting particulate samples). Polycarbonate is widely regarded as the best material 

for filtration, although others, for example polyethersulfone, have shown particular 

suitability for applications such as the retention of cell material [138]. Most workers 

either use 0.2 or 0.4-0.45 µmas their nominal cut-off for operationally differentiating 

betwee:o. dissolved and particulate trace metal species. It is also possible to use 

ultrafiltration (e.g. <200 kDa) to obtain "truly soluble" species, or add higher size­

classes (e.g. 2, 5, 20, 55, 210 µm) to investigate the association of trace metals with 

different biological size classes. 

Filtration can be achieved by various means. Filtration carried out by suction under 

aspirator vacuum is one common method. Although the apparatus is more usually 

constructed of sintered glass or ceramic, all-plastic units are available for trace metal 

analysis. There are, however, several disadvantages associated with this technique, 

namely the potential contamination risks from the amount of sample handling 

required. Pressure filtration can overcome such problems. It involves pressurising the 

sample container by supply of a gas, forcing the sample through an inline filter to a 

collection vessel. An inert gas, such as nitrogen, is used to pressurise samples to be 

analysed for trace metals to ensure precipitation of compounds, such as iron 

hydroxide, is prevented [139]. Bewers et al. [140] gives a good intercomparison of 
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eight pressure-driven systems for the determination of several trace elements 

including iron and manganese. Recently, interest has grown in syringe filtration 

methods as an alternative to the more common filtration techniques. A thorough 

description of one such method is given by Shiller [141]. Although this work 

concentrates on the sampling of small volumes of river water, a similar procedure has 

been followed for seawater samples [142]. 

2.1.5. Sample enrichment 

Despite advances having been made in detection instrumentation, trace metal analysis 

most often requires some form of separation and preconcentration methods to remove · 

interfering matrices and ensure the level of analyte is detectable. Some of the major 

methods of separation and preconcentration involve evaporation, volatilisation, co­

precipitation, solvent extraction or solid-phase extraction. Any preconcentration 

process involves additional sample handling and thus increases the p.otential risk of 

contamination. Therefore it is desirable to choose a technique that requires the 

minimal amount of sampling handling (e.g. on-line methods) and minimises the use 

of additional reagents. 
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2.2 FIA 

2.2.1 Reagents 

All reagents were of an analytical-reagent grade unless specified. A 2 M NH40Ac 

buffer was prepared from trace metal grade concentrated acetic acid (GFS Chemicals; 

Powell, Ohio, USA) and ammonia solution (isopiestic distilled concentrated NH40H) 

and pH adjusted with either ammonia or acetic acid depending on the desired pH. A 

stock 1 g/L lumogallion solution was prepared and stored for up to two months. 

Working lumogallion/buffer reagent was prepared daily. A carrier of 0.1 M HCI was 

prepared using twice distilled concentrated HCI. A 5% Brij-35 solution was prepared 

by diluting commercially available 30% Brij-35 (Sigma-Aldrich; Castle Hill, NSW, 

Australia). Acidified 50 nM aluminium standards were prepared daily from a 

1 OOO mg. L-1 stock solution of aluminium in nitric acid. All solutions were prepared 

using deionised wat~r from a Milli-Q Gradient water purification system, (Millipore; 

North Ryde, NSW, Australia). 

2.2.2 Apparatus 

The FIA manifold (see Figure 2.2) consisted of a Gilson (Middleton, WI, USA) 

Minipuls 3 eight-channel peristaltic pump for the delivery of all reagents and the 

sample; a six-port VICI (Houston, TX, USA) Cheminert® injection valve fitted with a 

two position microelectric actuator. Pump tubing used for the reagent and sample 

streams was standard flow-rated PVC tubing (Pro-tech Group; Coolum Beach, QLD, 

Australia). The remainder of the manifold was constructed from 1/16" 0.D. x 0.03" 
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I.D. Teflon tubing (Alltech Associates Australia; Baulkam Hills, NSW, Australia). 

The reaction coil was constructed fr<;>m 2 m of the same Teflon tubing knitted by way 

of a knitting apparatus (equivalent to a "Knitting Nancy") with spools set 1 cm apart. 

The resultant coil was ~ 25 cm long. The reaction coil was heated by way of a silicon 

heating pad (RS components; Smithfield, NSW, Australia), which was wrapped in 

glass tape and secured with a sticky back glass tape. The heater had an accuracy of 

± 0.5 °C. A 1 m reaction coil (not heated) was knitted in the same way for mixing 

between the carrier and surfactant streams. 

The preconcentration column was packed with 8-HQ functionalised Toyopearl AF­

Epoxy-650 M resin (65 µm polystyrene divinylbenzene beads) (Supelco; Castle Hill, 

NSW, Australia). The column was constructed from PTFE tubing and had an inside 

diameter of 2.4 mm and a length of 25 mm. A sample loop of 30 cm of manifold 

tubing replaced the column when preconcentration was not required. 

Detection w:as carried out using a Varian (Palo Alto, CA, USA) Prostar 363 

fluorescence detector fitted with a xenon lamp. The excitation and emission 

wavelengths were set to 484 and 552 nm respectively. 
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2.2.3 Design of experiments 

Due to the problems with univariate experimental designs (discussed in section 3.2.2) 

a multivariate, full factorial design was implemented. This was deemed feasible since 

only three variables were considered significant enough to optimise based on 

literature reports of aluminium-lumogallion chemistry. The three variables 

investigated were pH, lumogallion concentration and reaction time, and all were 

tested at three levels producing a 3 factor, 3 level (33
) design. Table 2.1 shows the 

levels at which the variables were tested. Ranges for both pH and reaction time were 

selected based on previous literature findings [57, 121]. The concentrations at which 

lumogallion was tested were based on a preliminary investigation in which the 

lumogallion concentration was increased against a standard 50 nM aluminium 

solution and the fluorescence intensity recorded. 

The number of experiments performed was 27. The level at which each variable was 

held for individual experiments is given in the following chapter, in Table 3 .1. 

2.2.4 Experimental procedure 

All optimisation experiments were carried out using a 30 cm sample loop and 50 nM 

acidified aluminium standard made in Milli-Q water. The carrier for this series of 

experiments was also Milli-Q water. The aluminium standard was flushed through the 

sample loop for 30 sec. This ensured sufficient rinsing and complete filling of the 

sample loop at each pump speed tested. Reaction times were controlled by pump 
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speed and varied from 4.5 to 12.5 rpm to achieve the required reaction times. Each 

experiment was run in triplicate. 

Table 2.1. Specifications oflevels of pH, lumogallion concentration and reaction time 

tested in optimisation experiments 

Factor Level 

- 0 + 

pH 4.5 5.5 6.5 

Lumogallion concentration (µM) 5.90 1.18 23.6 

Reaction time (min) 1 2 3 

2.2.5 Statistical modelling and neural network simulation 

Results from the optimisation of lumogallion chemistry experiments were analysed 

by two methods. Firstly, statistical modelling, using principles of general linear 

regression, was carried out in order to derive a function that represented if, and to 

what extent, experimental factors and their interactions influenced fluorescence 

intensity. From this function, optimum levels of the most influential factors could be 

determined. Statistical analysis was performed using SYSTAT®l0.2.05 (Systat 

Software, Richmond, CA, USA). Model suitability was tested using analysis of 

estimates and tests of fit. 
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Optimum levels of the experimental factors were also determined using Trajan 

Neural Network Simulator 6.0 (Trajan Software, Homcastle, UK). The Intelligent 

Problem Solver (IPS) analysis option was utilised for this. Predictions, residuals, 

response graphs and response surfaces were generated using the 'run existing model' 

option in the analysis menu. The most suitable neural network was chosen primarily 

based on the selection performance, with the training and selection errors also taken 

into consideration. 

2.3 HPCIC with Photometric Detection 

2.3.1 Reagents 

All chemicals were of analytical-reagent grade. Potassium chloride solutions and all 

buffers underwent filtration (0.45 µm). KCl-HN03 eluent was prepared from stock 

1 M KCl and 1 M HN03 solutions. Other eluents investigated were similarly prepared 

from stock solutions. Aluminium standards were prepared daily from a 1 OOO mg L-1 

stock solution of aluminium in nitric acid. All solutions were prepared using 

deionised water from a Milli-Q Gradient water purification system, (Millipore; North 

Ryde, NSW, Australia). PCR reagents were Tiron ( disodium salt of 4,5-

dihydroxybenzenedisulfonic acid monohydrate) (TCI; Taren Point, NSW, Australia); 

Pyrocatechol Violet, (Aldrich; Castle Hill, NSW, Australia); Chrome Azurol S and 

Eriochrome® Cyanine R, (both from Riedel-de Haen; Castle Hill, NSW, Australia). 
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2.3.2 Apparatus 

A Metrohm 844 UV/Vis Compact IC with built-in photodiode array UVNis 

detection was used for all analyses. The system allowed for the delivery of eluent at 

0.2 - 2.5 mL min-1 and was set up with a column heater (up to 75 °C) and a post-

column reactor, consisting of a 2m PTFE reaction coil (1/16" x 0.02"). Peristaltic 

pump tubing delivered the PCR reagent at a constant flow-rate of 0.36 mL min-1
• A 

sample loop of 20 µL was used unless stated otherwise. Two columns were used, 

namely a 250 x 4.0 mm i.d. IonPac SCS-1 (Dionex, Sunnyvale, USA) packed with 

4.5 µm poly(butadiene-maleic acid)-coated silica particles, and a 200 x 4 mm i.d. 

column packed with 5 µm IDAS (JPP Chromatography Ltd, Brentor, Devon, UK). 

2.4 HPCIC with Fluorescence Detection 

2.4.1 Reagents 

All reagents were of an analytical grade. A NaCl-HN03 eluent (unless otherwise 

indicated) was made from stock 2 M and 1 M solutions respectively. All solutions 

were prepared from a Milli-Q Element purification system, (Millipore; North Ryde, 

NSW, Australia). A stock 1 M 2-(N-morpholino)ethanesulfonic acid (MES) (Sigma; 

Castle Hill, NSW, Australia) buffer was made and pH adjusted to 6.05 (unless 

otherwise stated) with concentrated NaOH. A stock 2 M NH40Ac buffer was 

( 

prepared from trace metal grade concentrated acetic acid (GFS Chemicals; Powell, 

Ohio, USA) and ammonia solution (isopiestic distilled concentrated NH40H) and pH 
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adjusted to 6.8. A stock 3 mM lumogallion (Pfaltz and Bauer, Waterbury, CT, USA) 

solution was prepared and refrigerated in dark conditions for up to 2 months. 

Working lumogallion buffers were prepared daily as were aluminium standards. 

2.4.2 Apparatus 

A Metrohm 844 UV Nis Compact IC was used for all analyses. The system delivered 

the eluent at 0.3 mL min-1 and was set up with a post-column reactor, consisting of a 

2m PTFE reaction coil (1/16" x 0.02"). This reactor was immersed in a silicon oil 

bath for heating above room temperature. Peristaltic pump tubing delivered the PCR 

reagent at a constant flow-rate of 0.36 mL min-1. A 20 µL sample loop was used 

unless specified. 

A column heater set to 71 °C housed a 200 x 4 mm i.d. column packed with 5 µm 

IDAS (JPP Chromatography Ltd, Brentor, Devon, UK). Detection was carried out 

using a Varian Prostar 363 fluorescence detector fitted with a xenon lamp. The 

excitation and emission wavelengths were set to 500 and 550 nm respectively. The 

detector and Compact IC wer~ connected through a Metrohm 830 IC Interface. 
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2.5 Samples 

2.5.1 Paper mill process water sample 

A sample of paper mill process water was obtained from the Boyer Mill, Hobart 

(Norske Skog). The sample was filtered (0.45 µm) before analysis. Sample 

acidification, when required, was achieved using twice distilled HCL 

2.5.2 Seawater samples 

Surface seawater for use specifically during this project was collected aboard the 

Research Vessel Nathaniel B Palmer (USA) in the Ross Sea, Antarctica, by means of 

a towed fish. Samples were collected at a depth of approximately 7 m under trace 

metal clean conditions. The seawater was filtered (0.25 µm) and acidified to pH 2 

using trace metal clean HCL All handling of seawater samples was carried out under 

laminar flow, trace metal clean conditions. 
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Chapter Three -

FIA with Fluorescence Detection 

3.1 Introduction 

FIA coupled with fluorescence detection of the aluminium-lumogallion complex is by 

far the most widely employed technique for the ship-board determination of 

aluminium in seawater. The reasons for this have been discussed in detail already but 

in summary they include; transportability, sensitivity and relative ease of use. 

Considering that the objective of this project was to set up a method for the 

determination of aJuminium in seawater for the purpose of analysis during a research 

voyage of the Ross Sea, Antarctica, it was logical to choose an established method 

which was likely to be suitable. Although the FIA method proposed by Resing and 

Measures [57] has been adapted by many groups since its publication in 1994, it was 

envisaged that further improvements would be possible given thorough investigation. 

The objective of this part of the project was, thus, to firstly establish a FIA system 

with fluorescence detection for shipboard determination of aluminium, and secondly, 

to improve the system through optimisation of the lumogallion chemistry and other 

adjustments. 
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3.2 Background to Statistical Optimisation 

3.2.1 Overview 

A preliminary step of this project was the development of an FIA system 

incorporating detection of aluminium by fluorescence detection of the aluminium­

lumogallion complex. In order to thoroughly establish optimal conditions of the 

chemistry for this particular system, chemometrics were employed to ensure the 

process was carried out efficiently and effectively. Chemometrics is a chemical 

discipline that uses mathematical and statistical methods to design or select optimal 

measurements and experiments, and to maximise chemical information by analysing 

chemical data. This approach was considered most suitable given the substantial 

amount of prior research into the technique. C9nsequently, a brief introduction into 

the statistical approach of this wo* will be given in the following section. 

3.2.2 Multivariate full factorial experimental design 

Several variables contribute to the efficiency of the reaction between aluminium and 

lumogallion. Of these, pH, lumogallion concentration and reaction time were 

considered to be the most influential based on literature findings [57, 121]. To ensure 

maximum fluorescence was obtained from the aluminium-lumogallion reaction in the 

FIA system, and therefore, that the lowest limit of detection reached, optimum levels 

of these experimental parameters were required. A univariate approach of testing one 

factor at a time can lead to problems due to interactions between parameters. In order 
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to avoid such problems a multivariate method, in which multiple variables are tested 

simultaneously, is best. 

The outcome (y) of an experiment is dependent on experimental conditions and may 

be approximated by a polynomial function based on the experimental variables. The 

most simple of these models contains only linear terms and for experiments with 

three variables is written as: 

where residual is the difference between the calculated and experimental results. The 

next level of polynomial model contains terms that describe interaction effects 

between the variables: 

Quadratic terms must be included within the polynomial model in order for an 

optimum to be determined. Including such terms allows for non-linear interactions to 

be explored: 

y = bo + b1x1 + b2x2 + by;3 +bi ix/ + b22xz2 + b33x/ + b12X1X2 + b13x1x3 + b23X2X3 + 

b123X1X2X3 +residual 
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A factodal design allows the researcher to investigate all possible combinations of the 

factor levels. The number of experiments required to achieve this is given by: 

where N is the number of trials, k is the number of factors, and m is the number of 

levels. Therefore, if the number of levels is three then it is a 3k factorial experiment, 

and the number of trials required for three factors is 33 = 27. 

The levels of factors are represented by plus (+) for high level, zero (0) for 

intermediate, and negative(-) for low level. A three factor, three level experiment can 

thus be presented in a design matrix as in Table 3 .1. 

In order to examine how interaction effects are treated, a 23 (three factor, two level) 

experiment for the optimisation of the lumogallion chemistry will be shown for 

simplicity. In this example the response variable, y, will be fluorescence intensity 

measured in fluorescence units (FU). Signs for the interaction coefficients must be 

calculated before determination of these values can be accomplished. This is achieved 

by multiplying the signs for the corresponding main variables (Table 3.2). 
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Table 3.1. Design matrix of a three factor, three level experiment. 

Exp.# Main Variables 
Xt X2 X3 

1 - - -
2 0 - -
3 + - -
4 - 0 -
5 0 0 -
6 + 0 -
7 - + -
8 0 + -
9 + + -
10 - - 0 
11 0 - 0 
12 + - 0 
13 - 0 0 
14 0 0 0 
15 + 0 0 
16 - + 0 
17 0 + 0 
18 + + 0 
19 - - + 
20 0 - + 
21 + - + 
22 - 0 + 
23 0 0 + 
24 + 0 + 
25 - + + 
26 0 + + 
27 + + + 
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Table 3.2. Interaction variables of a 23 experiment. 

Exp.# I Main Variables Interaction variables (y) 1 

XJ X2 X3 X1X2 X1X3 X2X3 X1X2X3 (F.U.) 

1 + - - - + + + - 151 

2 + + - - - - + + 152 

3 + - + - - + - + 155 

4 + + + - + - - - 150 

5 + - - + + - - + 157 

6 + + - + - + - - 158 

7 + - + + - - + - 162 

8 + + + + + + + + 159 

where x 1 is reaction pH, x2 is reaction time and x3 is lumogallion concentration. 
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Supposing that this study fits the experimental results to the following model: 

To calculate the mean value (b0), main and interaction effects, the signs in the 

corresponding columns of Table 3.2 are used to either add or subtract the value of the 

response, y: 

bo= 151+152+155+150+157+158+162+159=
156 

8 . 

For both the main and interaction effects the denominator becomes four since this is 

the number of comparisons made [143]: 

b1= -151+152-155+150-157+158-162+159 =-1.5 
4 

b2= -151-152+155+150-157-158+162+159 =2.0 
4 

b3= -151-152-155-150+157+158+162+159 =7.0 
4 

b12= 151-152-155+150+157-158-162+159 =-2.5 
4 

b13= 151-152+155-150-157+158-162+159 =0.5 
4 

b23= 151+152-155-150-157-158+162+159=1.0 
4 

b123= -151+152+155-150+157-158-162+159 =0.5 
4 
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The estimated effects can then be substituted back into the initial polynomial model 

to illustrate the influence of the experimental variables and their interactions: 

y = 156 + -l.5x1+2.0x2 + 7.0x3 + -2.5x1X2 + 0.5X1X3 + l.Ox2X3 + 0.5X1X2X3 + 

residual 

It can thus be seen from this function that variable x3 (lumogallion concentration) has 

the largest influence on the fluorescence intensity and with an increase of one unit of 

the concentration an increase of 7 fluorescence units is possible. 

3.2.3 Neural networks 

Artificial Neural Networks (ANN) are information-processing systems with their 

theory based on the biological nervous system. Neural networks take a different 

approach to problem solving than that of conventional computers, since they do not 

use an algorithmic approach. Whereas, conventional computers require specific 

instructions, which restricts their problem-solving capability to problems that are 

already understood, neural networks 'learn by example' and can be used to extract 

patterns and detect trends which can then be used to provide projections and answers 

to unknown situations based on the examples provided. Neural networks are, thus, 

entirely model-free estimators. 

ANNs consist of numerous simple process units (neurons) that can be modified in 

order to estimate a function. The structure of an ANN is that of three types of layers: 
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a layer of inputs (x1, x2, ... ,xn), a variable number of layers of hidden units, and an 

output layer (j(z)). These layers are linked by weighted connections (w1, w2, ... ,wn) 

that can be strengthened or weakened [144]. A typical network with a single hidden 

layer is depicted in Figure 3 .1. 

The most commonly used ANN's are Multi-Layer Perceptron (MLP) networks -

simply networks of the basic perceptron shown in -Figure 3 .1. The output of such a 

network is achieved firstly by applying a linear relationship based on the weighted 

inputs and subsequently transforming the result non-linearly. Typically, the logistic 

sigmoid (1/(1 +e-x)), is the non-linear function appFed in MLP's, and more 

specifically in back propagation - a form of network training. Training is defined as a 

search process for the optimised set of weight values, which can minimise the 

squared error between the simulation and experimental data of units in the output 

layer [145]. 

A possible use of ANN' s is the prediction of optimal experimental conditions for a 

particular system. The ANN is generated from a base set of experiment data .. This 

input/output training data is fundamental in neural network technology, because it 

provides the necessary information for discovery of the optimal operati~g point 

through learning and therefore an informed selection of the ranges of all conditions 

must be made. Once a suitable ANN architecture is chosen, optimum levels of the 

investigated conditions can be predicted using the trained network. 
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Figure 3.1. Layout of an artificial neural network with a single hidden layer (h 1, h2, 

hJ) 
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3.3 Optimisation of Lumogallion Chemistry 

3.3.1 Choice of experimental variables 

As stated previously, the extensive amount of research carried out on the chemistry of 

aluminium with lumogallion, allows for a clear indication of the most influential 

variables to be derived from the literature. On this basis, it was decided that, of the 

possible variables, only lumogallion concentration, reaction time and buffer pH 

would benefit from further investigation into optimum operating levels for this 

specific FIA system. These variables have been chosen because they were shown to 

affect the efficiency of the reaction between aluminium and lumogallion 

significantly. This decision allowed for a full factorial multivariate experimental 

approach to optimisation to be implemented. As discussed previously, multivariate 

experimental design avoids issues of interaction between variables and allows for a 

detailed optimisation study to be undertaken without the drawback of an excessive 

number of experiments being required. No such systematic chemometric optimisation 

of the lumogallion chemistry has been.conducted previously. 

3.3.2. Preliminary investigation into lumogallion concentration 

Whilst ideal ranges for both buffer pH and reaction time could be gained straight 

from the literature, the ideal lumogallion concentration was not as apparent. This is 

because most research groups report this as a concentration in the effluent. Given that 

every manifold differs slightly with regard to flow-rates/pump tubing etc., an initial 

investigation into applicable lumogallion concentrations specific to the present 

65 



180 /. • • 
• 

......... I > 
E 120 • -

I 
Q) 
C,.) 
c 
Q) 
C,.) 
Cl) 
Q) 
I... 60 • 
0 

I :J 
LL 

0-+-~~~-.-~~----.~~~---.-~~~-,-~~~-.--~~---. 

0.0 1.0x10·5 2.0x10·5 3 .Ox10·5 

Lumogallion concentration (M) 

Figure 3.2. Influence of lumogallion concentration on fluorescence. Experimental 

conditions: 50 nM acidified aluminium standard; 2.75 min reaction time; 2 M 

ammonium acetate buffer (pH 6.0); reaction coil temperature 50 °C. 
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system was carried out. The results of this preliminary univariate study are given in 

Figure 3.2. It can be seen from the results that no apparent quenching effects were 

observed at the lumogallion concentrations tested and that a maximum fluorescence 

was reached at a concentration of 5.8 µM. This concentration can be converted to a 

lumogallion:aluminium ratio of~ 26: 1. Subsequently, the concentrations chosen for 

investigation during the multivariate optimisation experiments were based on this 

ratio. 

3.3.3 Results of optimisation experiments 

Following the multivariate experimental design, 27 experiments were carried out in 

order to determine an optimal level for each of the three variables investigated. 

Table 2.1 shows the levels at which each variable was tested and Table 3 .1 the 

conditions of each of the 27 experiments. A summary of the results obtained is given 

in Table 3.3. From the 27 experiments, maximum response was reached at a pH of 

5.5, reaction time of2 min and a lumogallion concentration of 23.6 µM. 
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Table 3.3. Results of optimisation experiments. 

Experiment# Fluorescence (arbitrary units) 
1 3.60 
2 51.4 
3 161 
4 6.43 
5 79.0 
6 163 
7 9.30 
8 92.5 
9 146 
10 8.13 
11 106 
12 158 
13 14.8 
14 146 
15 150 
16 18.9 
17 147 
18 135 
19 12.8 
20 154 
21 157 
22 21.3 
23 170 
24 150 
25 27.8 
26 163 
27 139 
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3.3.4 Analysis of optimisation results: 

Statistical modeling based on general linear regression 

3.3.4.1 Model selection 

Equation 1 was used as the starting point for four separate statistical models. 

Equation 1 

where: 

FI= fluorescence in arbitrary units 

pH = buffer pH 

T = reaction time in minutes 

L = lumogallion concentration in M 

The regression coefficients ({31), F-ratios, residuals (e;) and R2 of each model were 

determined usmg the general linear model estimating option within 

SYSTAT® 10.2.05. These parameters were used to evaluate and select the final 

statistical model, where F-Ratio is the ratio between treatment mean square and error 

mean square, R2 is the coefficient of determination [146]. 

A summary of four of models deemed most suitable is given in Table 3.4. The first 

model included the calculation of all of the regression coefficients (/30 through /39). 
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The "tolerance" option within SYSTAT®l0.2.05 was set at 1.0 e·11 to give warning if 

any of the regressors was directly or highly correlated to the independent variable 

(fluorescence). The second model excluded the constant term (/30). In order for the 

test of fit statistics to be calculated properly the "mixture model" option of 

SYSTAT®l0.2.05 was used. The third model. was one in which regression terms of 

low significance (a < 0.05) were removed from the model and the remaining 

regression coefficients were recalculated ("stepwi·se" option). This was repeated until 

all of the remaining regression terms had a high degree of significance (a > 0.05). 

This model also contained the constant term (/30). The fourth model was one in which 

regression terms of low significance (a < 0.05) and the constant term (/Jo) were 

removed from the model and the remaining regression coefficients were recalculated. 

This was repeated until all of the remaining regression terms had a high degree of 

significance (a > 0.05). Other models were also generated using various options of 

SYSTAT®l0.2.05 but they will not be discussed here since they were considered to 

be highly unsuitable. 

Data for the four fluorescence models, including their regression coefficients (/J1), F­

ratios and R2 values, are listed in Table 3.5. Of the four models shown model 3 and 4 

were considered to have the strongest fit statistics based on their F ratio. Model 3 was 

considered the most suitable model, given that it was not based solely on one 

variable. 
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Table 3.4. Statistical methods used to model fluorescence response. 

Model Application Description 

1 All regression coefficients with constant fJothrough fJ9 

2 All regression coefficients without constant .81 through fJ9 

3 Stepwise with constant a 2: 0.05 ,81 through fJ9 with .Bo 

4 Stepwise without constant a 2: 0.05 fJ1 through fJ9 

Table 3.5. Summary of model regressors and fit statistics 

Coefficient Model 1 Model2 Model3 Model4 

/Jo -1671 -1511 

/31 539.6 -39.79 517.1 -32.74 

/32 71.60 -6.712 

/33 9.086 2.194 1.663 

/34 -7.248 1.998 

/3s -0.579 0.205 

/36 -0.255 0.030 

/31 -40.77 8.961 -40.77 8.94 

/3s -6.124 -0.520 

fJ9 -0.122 0.060 

F ratio 20 25 67 135 

R,. 0.915 0.926 0.897 0.912 
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3.3.4.2 Model Testing 

In order to ensure that the selected model was accurate it was tested in three ways. 

Firstly, the residuals ( e1) were plotted against experimental fluorescence, the modelled 

fluorescence and against each of the regressors in order to ensure that patterns did not 

exist thus, satisfying the modelling conditions. Secondly, the modelled fluorescence 

data were plotted against the actual fluorescence data. Lastly, the data from four 

experiments, not used in the generation of the _statistical model, was used to test the 

predictability (as determined by 'R2
). 

The residuals (ei) were plotted against experimental fluorescence, the modelled 

fluorescence and against each of the regressors usmg the Scatter Plot Matrix 

(SPLOM) option of SYSTAT®l0.2.05. It can be seen from the plot (Figure 3.3) that 

there is no clear pattern except in the case of f31 and f37 which may be expected given 

they are both derived from the variable pH. 

The plot of experimental versus modelled fluorescence (Figure 3.4) gives an R2 value 

of 0.9673. Despite this being an indicator of good linear relationship it can be seen 

from the plot that the modelled and experimental results differ significantly, 

particularly in the mid-fluorescence range. It can be deduced from this plot that the 

model is not accurate in predicting fluorescence over a wide range. 

Fluorescence data from four experiments not used for the generation of the general 

linear regression model were plotted against modelled data for the same conditions 
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gave a R2 value of 0.9398 (Figure 3.5). Again, this result suggests that the model can 

predict fluorescence intensity fairly well, but, the four test experiments indicated 

limitations in the capability of the model in the mid-fluorescence range. It should be 

noted that these test data points were chosen prior to analysis of the optimisation 

results in order to avoid bias. 

Whilst the model appeared to handle the four test data points well it was still a 

concern as to whether the model would hold true over a wide fluorescence range. 

Given this concern and the somewhat conflicting results as to whether the model was 

a suitable predictor of fluorescence, further analysis of the optimisation experiments 

was sought by means of ANN's. 

3.3.5 Analysis of optimisation results: 

Artificial neural networks 

3.3.5.1 Model generation 

Due to the obvious complexity of the aluminium-lumogallion chemistry, and 

uncertainty associated with the generated general linear regression model, results of 

the optimisation experiments were analysed using artificial neural networks. The 

Trajan Neural Network Simulator 6.0, Intelligent Problem Solver (IPS) was 

employed to generate multiple ANN's. Through this approach, ANN's of different 

types and complexity (hidden units) were generated with different modes of training 
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also utilised. The 'best' ANN could be chosen by comparison of the performance 

parameters. 

Of the ANN's generated from the aluminium-lumogallion optimisation data, a 

multilayer perceptron (MLP), with three inputs (concentration, pH and time) and two 

hidden layers was determined to be the most suitable. This ANN had ten nodes in the 

first hidden layer and three in the second and was chosen based on both favourable 

selection performance and good generalisation (as illustrated by training and selection 

errors). 

3.3.5.2 ANN performance 

The fit of the experimental results versus the Trajan predicted values, is shown in 

Figure 3.6. The highest residual was -15.8 , however the average was -0.56 indicating 

the high capability of the ANN. It is important to note the ability of the neural 

network to predict accurately over the entire fluorescence range tested. In particular, 

the neural network was much more able to handle the mid-fluorescence range than 

the general linear regression model. 

3.3.5.3 Optimisation of variables 

On examination of the response curves of each variable it was noted that reaction 

time affected fluorescence the least. In fact a gain of only~ 40 fluorescence units was 

achieved by changing the reaction time from 1-3 min and most of this gain was 
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achieved by 2 min. Subsequently, 2 min was assumed to be an adequate time for the 

reaction and further optimisation of this parameter was not deemed necessary. 

A response surface depicting the two most influential variables, as generated by the 

Trajan programme, is given in Figure 3.7. An area of maximum fluorescence can be 

seen clearly, as indicated by the red area. This maximum equates to a pH of 5.75 and 

a lumogallion concentration of 1.8 x 10-5 M. This pH optimum was in fairly good 

agreement with findings by Resing and Measures [57], who reported an optimal 

response between pH 5 and 5.5. In.comparison, the SYSTAT model generated an 

optimal pH of 6.3, which is considerably higher than that reported elsewhere. 

Given the apparent superior ability of the Trajan ANN to predict fluorescence over 

the entire range tested, and not just at the extremes, the optimal levels of pH and 

lumogallion concentration generated by this technique were chosen as the operating 

conditions for subsequent investigations utilising the FIA system. 

3.4 Performance of the FIA System 

The linear response of the FIA system was investigated between 5 and 200 nM. An 

additional measurement at 2.8 nM was made, with this value being the limit of 

quantification (LOQ) for the system as calculated by 10 times signal to noise. The 
, 

result of this calibration plot is given in Figure 3.8. 
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Despite a high correlation coefficient being obtained, the performance of the system 

specifically at lower concentrations was further analysed by means of a Cassidy Test 

[147] (Figure 3.9). This test illustrates whether the method is valid at lower 

concentrations by determining whether the calibration curve is in fact linear in this 

concentration range. 

It can be seen that the Cassidy plot only becomes horizontal at a concentrations 

50 nM or higher, as indicated by the control lines representing an error of 5%. Thus, 

it can be said that the true linearity of the system for the concentration range 

investigated lies between 50 and 200 nM. It must be noted at this stage that the linear 

range may well have been able to be extended to lower concentrations if more 

extreme clean techniques were employed during ·standard preparation. At a 

concentration range this low, contamination issues become more evident and may be, 

in part, responsible for the skew in results below 50 nM. Additionally, the Milli-Q 

system used to prepare the standards was later found to produce water which 

contained a detectable amount 'of aluminium, which would have again increased 

fluorescence. This contribution would have been particularly evident in the lowest 

concentration standards (see section 6.2.4 for further discussion on aluminium 

content of Milli-Q water). 
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3.5 Preconcentration Using 8-Hydroxyquinoline 

Functionalised Resin 

Given that the expected concentration of aluminium in seawater samples from the 

Antarctic region is considered to be in the low- to sub-nanomolar reg!on, it was 

apparent that the FIA system was not capable of analysing such samples directly. 

Consequently, an initial preconcentration step needed to be added to the existing FIA 

manifold. 

3.5.1 Synthesis of 8-hydroxyquinoline functionalised resin 

As previously discussed in Section 1.5, resins with immobilsed 8-hydroxyquinoline 

(R8-HQ) is used most commonly for the purpose ofpreconcentration of aluminium in 

FIA. Not only does R8-HQ ensure enrichment of the sample concentration but it also 

serves to eliminate potentially interfering species (both the sea-salt matrix and other 

possible interferents). As was also mentioned, there are several possible methods for 

the synthesis of R8-HQ. Because the modified method of Landing [123] is an 

involved and prolonged procedure, the shorter simpler Dierssen method was chosen 

[124]. 

The Dierssen method cross-links 8-hydroxyquinoline directly to the resin by reacting 

epoxy-activated TSK-Gel AF-Epoxy-650 M resin (polystyrene divinylbenzene) with 

5-amino-8-hydroxyquinoline in a single step. The synthetic steps mvolved in 

preparing the functionalised resin are illustrated in Figure 3.10. 
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This technique was applied successfully to the concentration of trace metals from 

stored, acidified seawater samples [124]. However, this seawater was from an anoxic 

marine lake in the Palau Islands, and broader and extensive use of the synthesis had 

not been undertaken at the time of the method's utilisation in this project. 

Consequently, investigations of the performance of the resulting resin and a 

comparison with 8-HQ functionalised resin prepared by the modified Landing 

method were made. 

3.5.2 Functionalised resin capacity 

The equilibrium capacity for copper has been used as a measure of the chelating 

capacity of various resins, however, the dynamic exchange 'breakthrough' capacity is 

a more useful measurement for column operation in flow analysis [124]. Columns of 

the same shape and size, and packed under the same conditions, containing both types 

of 8-HQ functionalised resin (Dierssen and Landing) were each flushed with acid and 

Milli-Q water and preconditioned with a sodium acetate buffer (pH 5.4). A 20 ppm 

Cu2+ standard, buffered at pH 5.4, was then passed through each column and the 

breakthrough recorded by a UV-Vis detector. Copper. was chosen for capacity 

investigations due to being easily detected by UV-Vis. 

Whilst the 8-HQ functionalised resin synthesised by the modified Landing method -

resulted in a capacity equivalent to 69.6 µg of Cu2
+, the same column packed with the 

Dierssen resin had a capacity of only 39.1 µg. These results suggest that the 

efficiency of the synthetic process of Landing is greater than that of Dierssen. Despite 
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the fact that the latter resin had obviously not been functionalised completely .with 8-

HQ, or at least not to the same extent, it was used for subsequent investigations. This 

choice was supported by the fact that the resin would still act to preconcentrate 

effectively trace level amounts of aluminium and also that a larger supply was more 

readily available. If a higher preconcentration factor was found to be required in order 

to achieve the required sensitivity, then use of the Landing resin would be considered. 

3.5.3 FIA with preconcentration using 8-HQ functionalised resin 

3.5.3.1 Carrier 

Whilst previous optimisation experiments had employed a pure Milli-Q water carrier, 

an acidic carrier was required for use of the FIA system incorporating an 8-HQ 

column. A low pH was necessary in order for the aluminium preconcentrated on the 

column to be stripped from the functionalised resin. Initially, a carrier acidified to pH 

2.5 with HCl was trialled, but due to issues of incomplete elution of the loaded 

aluminium, this was lowered to pH 1. Results (not detailed here) indicated that the 

ammonium acetate buffer was able to maintain an optimal pH in terms of the 

lumogallion chemistry, with no decrease in fluorescence observed for a 50 nM 

aluminium standard (sample loop) using an acidic carrier in comparison to a Milli-Q 

water carrier. 
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3.5.3.2 Milli-Q water standards 

Aluminium uptake onto 8-HQ has been studied previously. Whilst De and co-workers 

[148] reported extraction of aluminium to be quantitative between pH 4.5-11, Resing 

and Measures found the pH range of optimal uptake of aluminium on 8-HQ columns 

to be much narrower, between 5.3-5.7 [57]. It is believed that only over this pH range 

are kinetics of aluminium sorption suitably rapid. 

Initial investigations of the performance of the 8-HQ column were carried out using 

aluminium standards prepared in Milli-Q water. A 5 nM standard, at pH 5.5 (adjusted 

with ammonium acetate buffer), was loaded for 30 s and subsequently injected into 

the manifold. The column appeared to be effectively preconcentrating the aluminium, 

to at least some extent, registered by an increase of almost twice the fluorescence 

compared to a non-preconcentrated 5 nM standard injection of the same volume. A 

drawback of the preconcentration procedure with R8-HQ was the appearance of a 

second peak in addition to the expected aluminium peak. This peak was not 

reproducible in terms of retention time or fluorescence intensity. Milli-Q water 

rinsing of the column before elution of the aluminium did not eliminate this extra 

peak, even with prolonged rinsing. 

Subsequent investigation into elimination of this extra peak and also optimal 

conditions _for column loading using Milli-Q water standards :were hampered by 

excess back-pressure in the system manifold. This was, iri part, rectified by 

modifications to reaction coil lengths and tubing diameters. However, the continually 
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irreproducible nature of the results obtained meant that no clear conclusions could be 

drawn from this series of experiments. 

In trying to gain an understanding of the poor results obtained using Milli-Q water 

standards, published research revealed that aluminium is not well absorbed onto R8-

HQ from deionised water solutions [149]. Addition of fluoride, as NaF, has been 

found to rectify this problem [149], but the disadvantage of this approach is an 

increase in blank fluorescence due to aluminium present in the NaF. Investigation 

into the possible improvement ·of results via this method was not pursued further 

given the unnecessary complications involved and the fact that seawater samples, 

rather than deionised water samples, were the focus of this project. 

3.5.3.3 Online buffering 

Considering that all seawater samples collected for the determination of aluminium 

are acidified (~pH 1.8) for storage purposes, it was apparent that pH adjustment of 

any seawater sample would be required before loading onto the column. In view of 

the multiple potential sources of contamination for such samples, minimal sample 

manipulation is preferred. Due to this reason, an online buffering system was adde~ 

to the manifold to ensure the correct pH change' on loading, whilst minimising sample 

exposure to contamination. This system involved the addition of a buffering line to 

the peristaltic pump, which was then joined via a T-junction to the sample line. A 

sample pH of 5.4 was obtained using a 2 M ammonium acetate buffer (pH 5.75). By 

means of the manually-operated T-junction, either seawater or Milli-Q water flowed 
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Figure 3.11. FIA injection of towed fish Antarctic surface seawater. 
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through this sample line as determined by whether sample loading or column rinsing 

was required. The injection valve was configured in such a way as to ensure a back­

flush elution process. 

3.5.3.4 Seawater samples 

Despite the issues of irreproducibility encountered with preconcentration of the 

standards made in Milli-Q water, the column was trialled at sea aboard the R/V 

Nathanial B. Palmer (NBP). Initial findings were promising. Although a shouldered 

aluminium peak was observed, aluminium was detected and the system showed high 

precision(< 3%). An example of the output ofa sample is shown in Figure 3.11. The 

minor dip before the peak is believed to be caused by the Milli-Q water rinse eluting 

prior to the aluminium. Given Milli-Q water has a lower aluminium concentration 

than most of the reagents responsible for the background fluorescence, it follows that 

a dip in fluorescence intensity below the baseline would occur. 

Calibration, by way of standard addition to Antarctic surface seawater, showed good 

linearity between 0 and 10 nM additions (Figure 3.12). Peak area was calculated so as 

to include the entire split peak, based on the fact that both sections of the peak 

increased with spiking. From the standard addition curve a concentration of 3 .1 nM 

could be determined for a bulk towed fish sample (surface seawater). 

At this stage, work was continuing aboard the NBP within Antarctic waters. The 

method had not been validated and thorough investigation into the nature of the split 
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peak was not undertaken onboard due to time constraints, sampling schedules and 

limited resources. Ideally, a fully validated system would have been used for real­

time determination of aluminium concentrations throughout the voyage, but due to 

instrument inconsistencies encountered prior to departure (discussed in more detail in 

section 3 .6) and the limited opportunity for ship time, the system was deployed mid­

way through the developmental process. 

3.6 Difficulties Encountered with FIA System Using 

Preconcentration on 8-HQ Functionalised Resin 

Although the FIA system initially showed promising signs of being able to quantify 

aluminium in seawater, it was fraught with both recurring and random problems. The 

manifold seemed to be able to cope well with simple determinations of aluminium 

standards using sample loop injections (as per optimisation experiments) and was 

robust in day-to-day operation during this time, but faltered once the preconcentration 

system was added. 

At first these matters were confined to elution inconsistencies and peak splitting, and 

it was believed that further and more thorough investigation into operating conditions 

of the column would be able to rectify them. However, the column itself was of major 

concern. The· 8-HQ functionalised resin showed significant compression during 

consecutive runs leaving a large dead volume within the column. Additionally, 
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frequent breakages at connections ansmg from the resulting increase in back -

pressure occurred. Despite subsequent trials with commercially available and more 

robust column housing, the problem of back pressure could not be resolved. This 

back-pressure was also believed to be one possible cause of a significantly oscillating 

baseline, which occurred intermittently. As well as oscillations, severe downward and 

upward spiking of the baseline were also observed at random intervals. 

A possible explanation of apparent peak splitting has been made when fairly high 

levels of aluminium are present in the sample [149]. When the flow reverses at the 

valve, the first "plug" of liquid that reaches the detector is non-preconcentrated 

sample that was in the line between the valve and the resin in the column. With high 

analyte concentrations, that "plug" will show up as a visible peak, that will scale with 

(but of course is much smaller than) the main peak. However, due to the fact that a 

column rinse step was utilised it is believed that this non-preconcentrated "plug" 

should not be present. 

Whilst onboard the NBP, a first incidence of sensitivity loss was encountered. The 

system had been functioning quite well for over two weeks and, on the particular day, 

for several hours. However, between consecutive runs of a seawater sample almost 

half the normal sensitivity was lost. Nothing was altered; and the xenon lamp of the 

detector, flow-rates and all other variables appeared to be unchanged. The sample 

was the same seawater sample that had been used for the past week and was not 

fouled or contaminated in any way. Numerous attempts were made to re-establish the 

system, including acid flushing all components, installation of a new Xe lamp, 
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replacement of the column with one containing fresh R8-HQ, new pump tubing and 

new reagents; however no improvement could be made. When the system did finally 

re-establish itself, the sensitivity lasted only one day until it once again halved, again 

for no apparent reason. After which, no adjustments could re-instigate normal 

function and the remainder of the cruise was spent attempting to trouble shoot this 

issue to no avail. 

On return to the laboratory, the FIA manifold was re-established in its most simple 

form, with only a sample loop and no preconcentration column. This posed no 

problem and results were obtained with expected sensitivity and high precision. On 

addition of the 8-HQ column it quickly became apparent that back-pressure was once 

again an issue. This problem, however, was monitored closely and for the most part, 

operation of the manifold was uninterrupted. 

It was at this stage that an attempt was made to investigate further the issue of the 

split ah~minium peak. Considering that the Dierssen resin was shown to be inferior in 

terms of capacity to the Landing synthesised resin, in terms of capacity, it was 

thought that perhaps using the latter could improve the performance of the system 

with regard to preconcentration. Resins synthesised according to the modified 

Landing method from both the University of Tasmania (synthesised by Dr A. Bowie) 

and from Chris Measures' laboratory (University of Hawaii) were made available for 

testing. 
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Unfortunately at this point of the investigation, the system began to once more 

display the original problem of an oscillating baseline. All flows appeared normal and 

back-pressure was not elevated. A new pump was considered a logical option to try. 

Two alternate pumps were tested with neither making a difference. The peristaltic 

pump was therefore, not deemed to be the issue. Substitution of the preconcentration 

column with others of different shapes and sizes provided at best only a temporary 

improvement over a few days. 

To try and overcome the consistent problem of high back-pressure and uneven 

mixing of reagents at T-junctions, flow-rates of several reagents were varied. It was 

hoped that by altering these flows, pressures at specific junctions within the manifold 

would balance and the flows would become more consistent, perhaps in tum 

improving the baseline. The results were disappointing, with no combination of 

changes tested making any difference to either back-pressure or the baseline. 

Although the system baseline remained unstable, the alternate resins (as discussed 

above) were introduced into the system. This served only to further confuse issues, 

with large negative peaks resulting. These negative peaks were, on average, ten times 

that of the dip detected prior to the elution of the aluminium peak depicted in 

Figure 3 .11 with no positive peak following. What this result, and the others 

preceding it, seemed to suggest was that the sorption of Al to the 8-HQ functionalised 

resin was a more complicated process than was initially envisaged. Furthermore, the 

-
inclusion of a preconcentration cartridge in the flow-analysis manifold used here 
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caused the performance capabilities of the system to be exceeded. This was shown in 

the high back pressure, and the irregular flow-rates and detector baseline. 

3.7 Conclusions 

It had become apparent by this stage that the FIA manifold was not robust and that 

despite exhaustive efforts to correct problems, all attempts were proving futile and 

further issues were constantly emerging. In terms of achieving the goals of the project 

further use of the FIA system was considered to be neither reliable nor productive. In 

order to make progress with regard to accurate quantification of aluminium in 

seawater, investigation into a new analytical technique was determined to be the best 

option to take. In the following chapters, the development of a high performance 

chelation ion chromatography (HPCIC) system for the determination of aluminium in 

seawater is presented. 
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Chapter Four -

HPCIC Separation of Aluminium 

4.1 Introduction 

The chemistry of aluminium in water is dominated by its predisposition to undergo 

hydrolysis, with the extent and type of hydroxy species formed being highly 

dependent on pH. The hydrolysis product of interest in the pH range of this study is 

the divalent hydroxy species (Al(OH)2+), which forms at a pH of around 2.5 (Al 

68.5 µM) [150]. The species distribution profile of the hydrolysis products can be 

altered by the addition of an electrolyte, such as potassium chloride. Chloride can 

suppress the degree of hydrolysis due to the formation of its own complexes with 

aluminium, in particular Al(Cl/+, which is somewhat stable (log K -1.0) [151] and 

exists at low pH (< 4). The other common aluminium species in water include 

different complexes with carboxylic acids, polyphenols, fluoride and phosphate. The 

separation and identification of all species of aluminium is an extremely difficult 

task, so researchers usually determine only the labile soluble forms of aluminium 

after their conversion to a form suitable for detection as a single species. Such 

conversion of aluminium species can be performed by either addition of a suitable 

complexing reagent to the sample or by preconcentration on a chelating resin, 

followed by elution with an inorganic acid. 
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The purpose of this section of the project was to develop and test the suitability of a 

high performance chelation ion chromatography system for the determination of 

aluminium in complex samples. The initial developmental work focussed on the 

optimisation of separation conditions in order to achieve peaks of good shape and 

reproducibility. Photometric detection was coupled firstly to the HPCIC system based 

on the fact that a simple method of detection enabled uncomplicated optimisation of 

separation conditions and assessment of column performance. Although it was 

acknowledged that photometric detection would provide insufficient sensitivity for 

the direct detection of aluminium in the seawater of interest (Antarctic), a detailed 

investigati~n into the optimal operating conditions was a logical approach before any 

improvement to detection was attempted. 

4.2 Optimisation of Separation Conditions 

4.2.1 Overview 

Aluminium forms stable complexes with 0,0-coordinating ligands, so carboxylic­

type ion-exchangers can be used for separation of this cation by HPCIC. Two silica­

based stationary phases with either a poly(butadienemaleic acid) copolymer 

(~BDMA) surface layer or iminodiacetic acid (IDAS) functionalities (see Figure 4.1) 

were evaluated in terms of the peak profile of eluted aluminium. The peak of 

aluminium obtained with PBDMA was very broad and tailed, so the IDAS column 

was used for further experiments. Eluents containing KCI and HN03 were examined, 
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Figure 4.1. Structure of iminodiacetic acid functionalised silica. 

100 



using 0.3 mM Tiron in 1 M ammonium acetate as the post-column reaction (PCR) 

reagent. Experiments were carried out without column heating, unless specified 

otherwise. 

4.2.2 Eluent pH and ionic strength 

The retention of aluminium on IDAS should depend on both acidity and ionic 

strength of the KC1-HN03 eluent. The acidity of the eluent can affect separation in 

three ways. First, changing the acidity of the eluent affects the dissociation of the 

carboxyl moiety on the iminodiacetic acid functional group as can be appreciated by 

noting the applicable pKa values of 2.59 (H2L) and 1.85 (H3L) [151] An increase in 

acidity reduces the number of negatively charged carboxyl groups through 

protonation which will, in tum, decrease electrostatic interactions. Second, 

conditional stability constants of the corresponding complexes between aluminium 

and IDA groups will also decrease. Both of these effects will result iri a reduction in 

retention. Finally, a positive effect of increased acidity on retention is the reduction of 

hydrolysis of aluminium, which may also affect the separation efficiency. 

The ionic strength of the eluent governs the extent of electrostatic interactions with 

the ionised IDA groups. At high ionic strength these interactions are suppressed and 

chelation becomes the dominant separation mechanism [112]. However, since too 

high an ionic strength can lead to a decrease in column efficiency due to increased 

viscosity, a balance between separation and column efficiency must be made. 
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Ionic strengths in the range of 0.1-0.75 M KCl were investigated, with.the effects on 

retention time and column efficiency being illustrated in Figure 4.2. Although a 

· decrease of approximately 35 s in retention time resulted from increasing the ionic 

strength from 0.1 to 0.5 M, an increase in column efficiency of more than two-fold 

was accomplished. It should be noted that at concentrations higher than 0.5 M KCl, a 

decrease in column, efficiency was observed due to viscosity effects. In view of this, 

0.5 M KCl was chosen as the optimal eluent concentration. In order to exhaust 

possible improvements through changes to ionic strength, different salts were 

examined. These included potassium sulfate, ammonium sulfate and ammonium 

chloride. K2S04 and (NH4)2S04 were dismissed as alternatives based on resulting 

poor column efficiencies and whilst NH4Cl compared well with the KCl in terms of 

retention time and column efficiency, KCl was ultimately chosen based on its 

superior peak heights. 

In summary, the optimal eluent conditions were determined to be 0.5 M KCl and 

30 mM HN03, which gave satisfactory peak shape, peak height and separation 

efficiency. 
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4.2.3 Column temperature 

Temperature exerts considerable influence on separation m HPCIC. The 

thermodynamic effects of column temperature on retention can be described by the 

van't Hoff equation and these have been previously explained in detail by Nesterenko 

and co-workers [112]. The impact of temperature change on, retention is heavily 

reliant on the enthalpy of a system. For chromatographic systems in which chelation 

is the dominant mechanism, the enthalpy of reaction may be either exothermic or 

endothermic, so an increase in temperature may increase or decrease retention times. 

Additionally, the heats of sorption (~H) for chelating systems are generally 

significant in magnitude, so observable changes in retention in response to 

temperature change can be expected for HPCIC systems. 

Response of the system at temperatures in the range of 24-75 °C was studied, with 

the latter temperature being the maximum possible for the Metrohm column heater. 

Figure 4.3 shows the dependence of retention of aluminium on column temperature. 

An increase in retention time of over 2.5 min was obtained by increasing the 

temperature from 24 to 75°C. This result agrees well with previous findings for 15 

rare earth elements on IDA-silica [152]. The sorption enthalpy of aluminium with 

IDA was estimated to be 20.2 ± 1.3 kJ (mol Kr1 from the slope of the plot in Figure 

4.3 and for such endothermic complexation reactions, higher temperatures shift the 

equilibrium in favour of complex formation and therefore increased retention results. 
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Temperature also influences separation efficiency and it has been demonstrated that 

efficient HPCIC or IC separations of aluminium are possible only at column 

temperatures above 60 °C [106, 114, 115]. The reason for this is the very slow 

interaction kinetics of the aluminium cation with chelating groups and the slow 

dissociation rates of complexed aluminium species normally present in real samples. 

Figure 4.4 shows column efficiency for an IDA-silica column and illustrates that 

between 64 and 70 °C there is a sharp increase in efficiency, followed by a rapid 
l 

decrease above 70 °C. To the author's knowledge, this type of dramatic response of 

column efficiency to column t~mperature has not been reported before and is believed 

to be specific to this particular chromatographic system. 

A possible explanation is the influence of localised temperature-induced viscosity 

changes on the shape of the sample band. This is believed to result from the specific 

performance characteristics of the column heater and also the use of low thermal 

conductivity PEEK for the column and connecting tubing. Differences between the 

temperature of column components and that of the entering eluent impose viscosity 

effects. This in turn influences the shape of the chromatographic band and consequent 

column efficiency. 

For example, it is believed that at low temperatures, the column heater provides 
' 

insufficient heat to equilibrate the entire volume of the column and so the column 

housing is at a lower temperature than the eluent. This means that the eluent in 

immediate contact with the column walls is cooled, causing viscosity differences 

within the plug of eluent and tailing of peaks (Figure 4.4 (i)). At a temperature of 
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70 °C, it is likely that the column heater provides sufficient energy for the entire column 

volume to be equilibrated to this temperature and so peak efficiency reaches a maximum 

(Figure 4.4 (ii)). At temperatures above 70 °C, a decrease in column efficiency is again 

observed. Figure 4.4 (iii) illustrates the typical peak shape at 75 °C and it can be seen that 

there is a definite increase in peak fronting'. This is thought to be caused by the column 

reaching a higher temperature than the entering eluent. It is the author's belief that had 

the column heater been capable of heating to higher temperatures, further and more 

distinct fronting would have been observed. 

This series of experiments was repeated using a water bath for heating the column and 

eluent and the strong dependence of efficiency on temperature shown in Figure 4.4 was 

not observed. However, the highest effic'iency achieved in this series of experiments was 

only 409 theoretical plates per column and for this reaso~ the Metrohm column heater 

was preferred. 

4.2.4 Final adjustments to separation conditions 

In an attempt to ensure the separation system was well prepared to handle samples with a 

complex matrix an additional 5 cm length of IDAS column was added to the existing 

15 cm previously used. This served to increase the retention time by 2 min and also 

increase column efficiency slightly. 

Up until this stage all experiments had been carried out with an eluent flow-rate of 

0.8 mL/min. Adjustment of this rate was an obvious further approach to increasing the 
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retention of aluminium, ensuring adequate separation from potential interfering analytes 

in samples with a complex matrix. Flow-rates of between 0.2-1.2 mL/min were 

investigated with an expected increase in retention time observed a lower flow-rates. 

Additionally, higher column efficiency, as measured by the number of theoretical plates, 

also resulted at lower flow-rates. Of the flow-rates investigated, 0.3 mL/min was chosen 

based on a suitable retention time of ~15 min and the highest column efficiency (>3500 

plates). 

Because of the gains in retention time achieved through the modifications described 

above, maximum performance of the IDAS column was sought through further 

adjustment of the eluent composition. Acidity was increased to 40 mM to promote 

column efficiency and the expected subsequent decrease in retention time was negated by 

a simultaneous decrease in ionic strength to 0.1 M. However, despite the retention time 

remaining fairly constant, a significant reduction in column efficiency resulted. This was 

believed to be an effect of ionic strength limiting the extent of chelation to the point 

where it was no longer the dominant separation mechanism. Consequently, the ionic 

strength was increased to 0.25 Mat the same acidity. The result was an overall reduction 

in retention but a significant increase in efficiency (>22%). 

Optimised conditions for the separation of aluminium on IDAS were thus determined to 

be a 0.25 M KCl-40 mM HN03 eluent delivered at 0.3 mL/min for a 20 cm column 

housed at 71 °C. 
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4.3 Photometric Detection of Aluminium 

4.3.l Overview 

Photometric detection utilising different post-column reagents was comprehensively 

investigated once optimisation of separation conditions was complete in order to gain, an 

initial understanding of the potential of the column for the analysis of complex samples. 

An extensive study of this area allowed for realisation of both the potential and 

limitations of this type of detection and was deemed significant in order to illustrate the 

applicability of the system to a variety of samples with different requirements e.g. limits 

of detection and applications. 

4.3.2 OptimisatiQn of post-column reaction detection 

4.3.2.1 Post-column reaction detection 

Post-column reaction (PCR) spectrophotometric detection is very common in HPCIC and 

IC [112], with Tiron and pyrocatechol violet (PCV) being the reagents used most 

commonly for the determination of aluminium. The sensitivity of systems employing 

PCR for th~ detection of aluminium has been improved continually, with Jones et al. 

[153] reporting a detection li~it of 37 nM (0.1 mL injection volume) using fluorescence 

detection of the 8-hydroxyquinoline-5-s_ulfonate-aluminium complex. An objective of the 

present study was to develop a system utilising a post-column reagent capable of such a 

detection limit but _using only photometric detection. Tiron was chosen initially as the 

post-column reagent, based on its widespread use for the detect!on of aluminium. 
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4.3.2.2 Tiron 

Initial working conditions for the Tiron post-column reagent, such as buffer type and 

reagent concentration, were chosen based on literature findings [104-106, 154] (Dionex 

Application Note AN 69, 1991). None of the reported methods, however, involved the 

inclusion of a surfactant to the reagent mixture. It has been shown that the addition of a 

·surfactant to post-column reagents can often intensify the signal through interaction with 

micelles and in this study it was found that an addition of 0.5% w/v of Triton X-100 to 

the PCR reagent resulted in a small improvement to both peak height and efficiency. A 

calibration plot of the optimised system showed good linearity between 7.4 and 370 µM 

(see Table 4.1 for regression data). 

4.3.2.3 Alternate PCR.reagents 

Alternate PCR reagents were examined in order to lowei: the limit of detection (LOD) of 

the system. The results for the optimised Tiron system were compared to those obtained 

for PCV, ChromeAzurol S (CAS) and Eriochrome Cyanine R (ECR), with this being the 

first reported use of the latter reagent. for PCR determination of aluminium in a HPCIC 

system. Column and eluent conditions were maintained as outlined above and concise 

optimisation of buffer and surfactant conditions and detection wavelength for each 

reagent was undertaken. 
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(i) Pyrocatechol violet 

For PVC, both imidazole and hexamine were investigated as possible buffers. Hexamine 

appears to be the buffer of choice in many literature articles. However, since the extent of 

complexation of aluminium by PCV increases with pH (to ~pH 6) [155], imidazole was 

initially trialed. This choice was based on imidazole's higher pKa and expected increased 

capability to maintain an optimum pH on mixing with an acidic eluent stream. Various 

wavelengths were tested for the PCV- imidazole system with 585 nm determined to be 

the most suitable. The sensitivity of the system was enhanced by the addition of Triton X-

100, with a LOD of 1.0 µM achieved. Replacement of imidazole by the same 

concentration of hexamine resulted in complete loss of the aluminium peak. Increasing 

the hexamine concentration to 1.4 M served to rectify this problem, however, the peak 

shape was distorted and subsequently efficiency was poor. 

(ii) Eriochrome Cyanine R 

Both imidazole and hexamine were also tested for the PCR reagent ECR. Both buffers 

were investigated at a concentration of 0.2 M and it was found that hexamine performed 

much better in terms of both sensitivity and peak shape. Consequently, hexamine was 

chosen as the buffer for all subsequent experiments involving ECR. The pH of the 

hexamine was also optimised with a range of between pH 6-7 .5 examined. A pH of 6.1 

was found to be the most suitable. 

Two factors; ECR and surfactant concentration, appeared to influence the extent of the 

baseline noise significantly in the ECR system. Initial experiments were carried out using 
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0.5 mM ECR but it was found that by reducing this concentration by half the baseline 

noise could be reduced ten-fold without significant loss to sensitivity. Also, the addition 

of the cationic surfactant cetyltrimethylammonium bromide (CTAB) seemed to have a 

stabilising effect on the baseline. The concentration at which this stabilising effect was 

active was limited to 1 mM, with higher and lower additions resulting in a dramatic 

increase in baseline noise. An alternate surfactant, cetylpyridinium chloride, also cationic, 

was trialed however no significant improvement to either peak shape or sensitivity was 

achieved. 

Final adjustment of the ECR system was carried out through optimisation of the 

wavelength at which absorbance was measured. A range of 520-600 nm was investigated 

with maximum absorbance reached between 570 and 590 nm. Subsequent experiments 

were carried out at 580 nm. 

(iii) Chrome Azurol S 

CAS was also examined briefly in terms of performance as a post-column reagent for the 

detection of aluminium. Operating conditions were based on the work of two groups 

[156, 157], with minor adjustments made to the wavelength at which absorbance was 

measured. However, since a highly noisy baseline for the CAS system was observed and 

because it was considered that the limit of sensitivity using photometric detection had 

been exhausted through extensive optimisation of the ECR system, further investigation 

into CAS was not carried out. 
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4.3.2.4 Comparison of PCR reagents 

Whilst peak shape was similar between Tiron, PCV and ECR, their sensitivities for the 

detection of aluminium differed considerably (Table 4.1). It can be seen that ECR 

per~ormed well with regard to both sensitivity and column efficiency, and optimal 

performance was observed using 0.25 mM ECR with 1 mM CTAB, in a 0.2 M hexamine 

solution buffered at pH 6.1 and with detection performed at 580 nm. When a 100 µL 

sample loop was used, the LOD (3cr) was 100 nM. Linear calibration was observed over 

the range of 3.7 - 370 µM (see Table 4.1). 

4.4 Conclusions 

Following extensive optimisation of separation conditions, including column temperature 

and eluent composition, it was apparent that innovative use of IDAS could achieve 

successfully and effectively the separation and preconcentration of aluminium. Optimised 

conditions for the separation of aluminium on IDAS were determined to be a 0.25 M 

KCl-40 mM HN03 eluent delivered at 0.3 mL/min for a 20 cm column housed at 71 °C. 

Additionally, a unique dependence of column efficiency on temperature, believed to be 

specific for this system, was shown to exist. 

High performance chelation IC systems employing post-column reaction were developed 

successfully and optimised for the determination of aluminium. Of the PCR reagents 

investigated, ECR, which was used for the first time for PCR aluminium detection in a 
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flow system, gave the best results, with a LOD of 100 nM obtained for a 100 µL sample 

loop. The applicability of this newly developed HPCIC system to the determination of 

aluminium in a complex sample will be presented in chapter six. 
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Table 4.1. Comparison of conditions and performance of different post-column reagents. 

Reagent 'A Reagent mixture composition 

(nm) 

Tiron 310 0.3 mM Tiron in 1 M ammonium acetate, (pH 6.7) 

with 0.5% w/v Triton® X-100 

PCV 585 0.1 mM PCV in 0.2 M imidazole, (pH 6.9) with 

0.5% w/v Triton® X-100 

ECR 580 0.25 mM ECR in 0.2 M hexamine, (pH 6.1) with 

1 mMCTAB 

CAS 590 0.26 mM CAS in 50 mM MES (pH 6.0) with 

2% w/v Triton® X-100 

a For a sample loop of 20 µL using standards prepared in deionised water. 

b where S =signal (mAU s); c =concentration (µM) 

LOD 

(µMt 

6.7 I 

1.0 

0.6 

5.0 

Linearity0 range and regression data 

7.4-370 µM_ 

S = 9.8(±0.l)c + 3.3(±13) 

3.7-370 µM 

S = 166(±5)c + 930(±900) 



Chapter Five -

Fluorescence Detection of Aluminium 

5.1 Introduction 

The sensitivity of photometric detection was never considered to be adequate for the 

determination of aluminium in the Antarctic surface seawater samples collected in t~e 

Ross Sea, nor seawater samples from many other oceanic regions. Whilst the high 

performance chelation IC system developed in chapter four was capable of detecting 

aluminium in the low µM range, it was estimated that an increase in sensitivity of 

approximately 100 times would be required for seawater analysis. Consequently, 

investigation into the coupling of a highly sensitive detector to the HPCIC system was 

always required. 

Fluorescence detection was an obvious choice given the low detection limits achievable 

and the range of applicable fluorescent reagents available for the determination of 

aluminium. The possible reagents have been discussed in detail previously in section 

1.3.2.4 but include, amongst others, lumogallion, 8-hydroxyquinoline and morin. 

For this study, lumogallion was considered the most suitable fluorescent reagent for a 

variety of reasons including: previous experience. throughout investigations using FIA, 

extensive and successful use in the literature, and most importantly, the low detection 
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limits previously reported for the detection of the aluminium-lumogallion complex. 

Considerirtg that coupling a fluorescence detector to the newly developed HPCIC system 

had not yet been investigated and because of the differences in operation between it and 

FIA, a comprehensive study into optimal conditions of the lumogallion-based post­

column reaction specific for this system. was deemed necessary. The approach taken was 

to reinvestigate and optimise experimental variables that had been shown previously to 

have a high impact on the efficiency of the fluorescence reaction. However, additional 

parameters to those studied in the optimisation experiments for FIA, such as buffer type 

and reaction temperature, were also included given that differences in response were 

considered likely between FIA and HPCIC. 

5.2 Separation Conditions 

Optimum operating conditions for the separation of aluminium using IDAS have been 

detailed previously in chapter four. The only modification to these conditions was the use 

of NaCl rather than KCl in the eluent. The reason for this was the availability of high 

grade chemical reagent in order to ensure low background fluorescence. In summary, 

these conditions were a 0.25 M NaCl-40 mM HN03 eluent delivered at 0.3 mL/min with 

separation on a 200 x 4 mm i.d. column packed with 5 µm IDAS housed at 71 °C. 
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5.3 Background Fluorescence 

A significant dip in fluorescence away from the baseline before the elution of aluminium 

was observed in preliminary experiments. This dip was up to one fifth the size of the 

peak of a 3.7 µM aluminium standard. It was decided that the probable cause was the 

- . 
effect of the sample plug on the high background fluorescence due to the reagents used to 

prepare the eluent, in particular the chloride salt. Initially, KCI was used for the 

preparation of the eluent and despite choosing an analytical grade KCI, the level of 

aluminium contamination was obviously high. A possible solution to this was the 

addition of a trap column positioned before the separation column. The column was 

packed with Eichrom Diphonix® resin (particle size 100-200 mesh). This resin has 

diphosphonic and sulfonic acid groups bonded to a polystyrene/divinylbenzene matrix. It 

is capable of extraction of a range of metals from both neutral and highly acidic solutions. 

The column, measuring 250 x 4 mm i.d., effectively removed the majority of the 

aluminium from the eluent, reducing the dip by a factor of 25. In addition, trace metal 

grade sodium chloride and nitric acid were used in the eluent for subsequent experiments. 

5.4 Optimisation of Lumogallion-Based PCR 

5.4.1 Buffer 

Previous work by Howard and co-workers [121] reported the optimum pH of the 

aluminium-lumogallion reaction to be between 4 and 5.5. Resing and Measures later 
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found the maximum response to be in a much narrower range between pH 5 and 5.5 [57]. 

Based on this fact, MES was chosen as the buffer for initial experiments given its pKa of 

6.27 at 25 °C and subsequent useful buffering range [120]. Although initial 

chromatograms of a 37 µM aluminium standard, using a 40 mM MES solution at pH 6.2, 

were promising in terms of sensitivity and efficiency, the pH of the effluent was found to 

be only 2.9. Increasing the MES concentration to 120 mM served to improve this 

situation, but also resulted in an increase in baseline noise and reduction in both 

sensitivity and efficiency. Consequently, it was decided to continue investigations using 

ammonium acetate, a buffer used extensively for the aluminium-lumogallion reaction. 

Firstly, the effect of varying the concentration of the ammonium acetate buffer on 

sensitivity was studied. This was carried out by diluting a stock 3M buffer (pH 6.7) to 

0.25, 0.5 and 1 M. The results indicated that a concentration of 0.25 M gave the best 

result in terms of peak area and also for achieving an effluent pH closest to optimum for 

the lumogallion reaction. It was shown that peak area of a 3.7 µM aluminium standard 

increased almost 1 V2 times through the use of 0.25 M compared with 1 M ammonium 

acetate and over 8 fold compared with 40 mM MES. 

Seawater samples intended for quantification of aluminium required acidification to 

between pH 1.8-2. Consequently, the buffer utilised in the lumogall_ion reaction needed to 

be able to maintain an optimum pH even on mixing with t~is acidified sample. The 

0.25 M ammonium acetate buffer was shown fo have insufficient buffering capacity 

when mixed with an acidified sample. Not only did the retention time decrease but a loss 
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in sensitivity also resulted. Given that a decrease in sensitivity was also observed 
I 
I , 

previously with an increase in buffer concentration for ammonium acetate, the only 

alternative was to increase the pH of the buffer. This was attempted but it appeared that 

even increasing the buffer pH to 8 resulted in little improvement. This meant that, short 

of sacrificing sensitivity for buffering capacity, ammonium acetate was not the best 

choice for the analysis of acidified seawater. 

The choice of buffers capable of maintaining a pH of approximately 5.5 is fairly limited. 

This fact led to the decision to reinvestigate MES. For comparative proposes, a 0.25 M 

solution of MES (pH adjusted to 6.05 with NaOH) was used initially. The result was the 

attainment of sensitivity equivalent to that of ammonium acetate, but with the added 

advantage of no loss in sensitivity between acidified and non-acidified samples. 

Similarly, changes in retention times were negligible. The remaining issue with the use of 

MES was the increase in baseline noise and subsequent increase in detection limits. This 

problem was overcome by pre-cleaning the buffer using a column packed with Eichrom 

Diphonix® resin. The resulting baseline noise reduced approximately three times artd the 

corresponding background fluorescence was almost seven times less. 

It was thus determined that a pre-cleaned buffer of 0.25 M MES adjusted to a pH of 6.05 

with NaOH, was the optimum buffer choice for the determination of aluminium in 

acidified seawater samples. 
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5.4.2 Temperature of PCR 

The response of the reaction between aluminium and lumogallion to temperature has 

been investigated in both batch techniques and flow systems. In the batch method, an 

optimal temperature of 80 °C is generally accepted [120, 121], whereas FIA methods 

tend to use 50 °C. The latter is based on investigations carried out by Resing and 

Measures, who concluded that most of the temperature-based reaction rate gain had been 

achieved by this temperature [57]. Independent investigation into the effect of 

temperature on the rate of reaction was undertaken in this study due to the fact a different 

buffer was used. It was found that the highest response, in terms of peak area, was 

obtained at temperatures between 65 and 75 °C (Figure 5.1). Based on this response, 

70 °C was chosen as the temperature at which to operate the post-column reactor for all 

subsequent analyses. 

5.4.3 Lumogallion concentration and reaction coil length 

The extent of chemical reaction needs not be complete for an analytical technique to be 

valid. However, it is desirable to obtain as high a reaction yield as possible in order to 

ensure the technique has good precision. For the reaction between aluminium and 
r 

lumogallion, the concentration of post-column reagent may be changed, along with 

temperature and reaction time, in order to control the extent of reaction. Three 

concentrations of lumogallion (0.03, 0.04 and 0.05 mM) were tested in order to exhaust 

possible improvements to the system via this approach. The concentrations chosen were 

based on those used in flow systems. It was found that at concentrations higher than 
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0.03 mM, no significant improvements were achieved. 

FIA manifolds based on that of Resing and Measures [57] typically use,a reaction coil 

length of 8-10 m. This is considerably longer than the 2 mused in investigations thus far 

with HPCIC. The effect of increasing the length of the post-column reaction coil from 

2 m to 4 m was therefore studied. The result, however, was a slight reduction in 

fluorescence. Further, the effect of adding a cooling coil after the initial PCR coil was 

also tested. Again, a reduction in fluorescence was recorded even when the total length of 

both coils was kept at 2 m. 

A MES buffer containing 0.03 mM lumogallion together with a 2m reaction coil were 

thus used in all subsequent analyses. 

5.4.4 Effect of surfactant addition 

Howard and co-workers reported an increase in the fluorescence intensity of the 

aluminium-lumogallion complex of as much as 5-fold through the addition of a non-ionic 

surfactant [121]. Further investigation has been carried out by Resing and Measures [57], 

which showed that Brij-35 enhanced fluorescence to a greater extent than other 

surfactants, such as Triton X-100 and cetyltrimethylammonium bromide (CTAB). In 

order to ensure the lowest limit of detection was achieved for this system, an 

investigation into the effect of surfactants was also carried out. 
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The results differed substantially from those discussed earlier. It was found that although 

the addition of Brij-35 enhanced fluorescence marginally, a simultaneous increase in 

baseline noise negated any improvement achieved. Interestingly, when CTAB was tested, 

the aluminium peak disappeared altogether. This was considered to be an effect of the 

surfactant adhering to the tubing walls and effectively stripping the aluminium from the 

reagent stream. The system required flushing with methanol in order to resume normal 

operation. Consequently, further investigation into the possible use of surfactants was 

abandoned, with the decision to explore other approaches to lowering the detection limit 

being deemed more favourable. 

5.5 Effect of Injection Volume 

A more attractive approach for achieving a low LOD was increasing the sample loop 

volume. All previous experiments had been carried out using a volume of 20 µL. The 

response of the system to higher volumes was investigated and the results for a 37 nM 

standard are depicted in Figure 5.2. It can be seen that for volumes between 20 and 

500 µL, the system follows a linear response, as expected. It was also noteworthy that no 

reduction in column efficiency was experienced at higher volumes. The highest 

efficiency was achieved for a 500 µL sample loop, which was unexpected considering 

that band broadening is generally associated with increased sample size and is often 

responsible for an observed reduction in performance of the chromatographic column. 
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Figure 5.2. Effect of increasing sample volume of a 37 nM aluminium standard on 

column performance and fluorescence response. 
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Another unexpected result of increasing the sample volume was an increase in retention 

time (see Figure 5.3). Generally, a decrease in retention time would be expected due to 

competition from other analytes for chelation sites; more so for samples containing 

multiple analytes. This was shown not to be the case when using IDAS for standards or 

seawater (see Chapter 6) and may be explained in terms of the formation of negatively 

charged aluminium complexes and the high ionic strength of the eluent. Ionic strength 

has been reported to affect the retention of ions in chelation IC studies [113, 158]. The 

increase in retention is actually considered favourable as it allows for additional 

stabilisation of the baseline between the minor dip in fluorescence and elution of the 

aluminium. 

The linear response and sensitivity of the HPCIC system with fluorescence detection was 

carried out by standard addition to a seawater sample with a low aluminium content and 

will be discussed in the following chapter. 

5.6 Conclusions 

A fluorescent detection unit was coupled successfully to the existing HPCIC system 

developed in chapter four in order to provide greater sensitivity. Post-column reaction 

with the fluorescent reagent lumogallion was utilised and a thorough investigation into 

optimal operating conditions of the PCR was undertaken specifically for this HPCIC 

system. 
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A 0.25 M MES buffer adjusted to a pH of 6.05 with NaOH to which the lumogallion was 

added, was chosen based on good peak shape and high sensitivity, in addition to its 

ability to effectively maintain an adequate pH on mixing with acidified (pH 1.8-2) 

samples. The extent to which the aluminium-lumogallion reaction proceeded was 

maximised by optimising the reaction coil temperature, lumogallion concentration and 

coil length. The optimal temperature of the reaction coil was found to be 70°C and a 

lumogallion concentration of 0.03 mM along with a 2 m reaction coil was observed to 

provide the highest sensitivity. 

The sensitivity of the HPCIC system coupled with fluorescence detection was able to be 

further improved through increased sample injection volume. A maximum volume of 

500 µL was tested, with both retention time and column performance highest at this 

volume in comparison to 20, 100 and 200 µL. No improvement to sensitivity could be 

made through the addition of surfactants. 
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Chapter Six 

Application of HPCIC to Real S?mples 
,, 

6.1 Introduction 

The difficult nature of seawater as a matrix has been discussed previously. Based on this 

knowledge it was decided that a sample with a less complex matrix would firstly be 

investigated in order to gauge the capability of the HPCIC system. Paper mill process 

water was deemed to be an appropriate sample because whilst such a sample has a 

relatively complex matrix the potential problems of excessively high salt content, 

together with an extremely low aluminium concentration, are avoided. The concentration 

of aluminium in this sample was known to be in the µM range and so photometric 

detection was deemed adequate in terms of sensitivity. The initial primary focus of this 

section of work was to observe how the IDAS column coped with a more complex matrix 

than the Milli-Q water used thus far rather than the issue of sensitivity. 

It was envisaged that if no problems were encountered with the IDAS column for 

injections of the paper mill process water then seawater injections could be investigated 

subsequently. In light of the low LOD required for the Antarctic seawater samples of 

interest, fluorescence detection would be used for this section of work. 

130 



6.2 Analysis of Paper Mill Process Water 

A sample of paper mill process water was obtained from the Boyer Mill. This water is 

originally used to transport fibre onto the paper machine, at which stage it contains fibre 

from a variety of sources (softwood mechanical pulp, hardwood mechanical pulp and 

recycled fibre), clay and polymeric additives (used to aid in the retention and drainage of 

fibre on the paper m~chine). The process water is recirculated many times and the main 

source of any aluminium is the clay added in the papermaking process, or carry-over as 

Al(OH)3 flocculant from the water treatment plant. 

The mill process water was analysed using the optimised ECR photometric system (using 

a 20 µL sample loop). Initial chromatograms of the sample showed two major peaks at 

11.2 min (peak A) and 13.5 min (peak B) (Figure 6.1 (a)). The latter was determined to 

correspond to free aluminium, as confirmed from spiking experiments. Increased 

acidification of the sample decreased the retention time for peak B but not for peak A, 

such that at pH 1.5 coelution of the two peaks occurred (Figure 6.1 (b)). Identification of 

the initial peak was attempted by injection of standards of multiple metals that were 

considered likely, given the composition of paper mill process water, including iron, 

copper, zinc and magnesium. Despite injecting an extensive number of possibilities no 

peaks were observed and the peak remained unidentified. ICP-MS was thus employed in 

the hope of finally identifying this peak. ICP-MS analysis of the collected fraction of the 

effluent corresponding to peak A in Figure 6.1 (b) was carried out by Dr Ashley 

Townsend (Central Science Laboratory, University of Tasmania). Results showed thaf 

this peak was not a result of the elution of another metal but was also due to aluminium. 
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Figure 6.1. Chromatogram of paper mill process water using optimised ECR-system 

(20 µL sample loop). Experimental conditions: 20 cm IDA-silica column at 71°C, 0.25 M 

KCl-40 mM HN03 delivered at 0.3 mL/min. 

(a) Sample filtered and at natural pH (pH 4.8). 

(b) Sample filtered and acidified to pH 1 with HCl. 
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This species of aluminium appeared to be neutral, as its retention did not depend 

significantly on the pH of the sample (see Figure 6.2), being stable under strongly acidic 

conditions. In addition, this species was evidently kinetically inert in view of the fact that 

it could be eluted as a discrete peak on the IDAS column, which has strongly complexing 

functional groups and is expected to behave similarly to Chelex 100 when used for resin 

titration speciation [111, 159]. However, this species can still react with ECR to produce 

a coloured, detectable complex. The exact identity of this early eluting species is not 

clear, but the aluminium must be bound very strongly by ligands in the sample in order to 

account for this shorter retention time. The existence of such stable complexes of 

aluminium has been reported elsewhere [159-161], but again, the exact identity of the 

complexes has not been determined. It has been noted that the contribution of these 

strong ligands to the complexation of aluminium seems to be more important at low pH 

and when their concentration is in excess of aluminium [159]. 

Using IC with conductivity detection (analyses carried out by Dr. Eadaoin Tyrrell, 

University of Tasmania), chromatograms of both the sample and eleven common anions 

were compared in an attempt to identify possible ligands responsible for the formation of 

the highly stable aluminium complex. Despite expected anions, such as carbonate and 

sulfate, being identified no other anion detected was deemed likely to be able to form 

such a stable complex with aluminium. In a sample of this nature it is believed that humic 

or fulvic acids may potentially form complexes of such high stability with aluminium, 

however this is merely speculative. 
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The concentration of the labile aluminium species in the process water (i.e. peak B) was 

determined to be 44.8 ± 1.8 µM (n = 3, p = 0.95). Standard addition of 18.5 µM of Al(III) 

to the sample gave a recovery of 99.3%. ICP-MS showe~ total dissolved aluminium in 

the unacidified sample to be 69.3 ± 1.1 µM (n = 5, p = 0.95). This value verifies the 

findings by the HPCIC method since the difference between the amounts measured by 

both techniques would have been due to the inert species of aluminium. The 

chromatographic peak area ratio for species B and A from the analysed sample is about 

4.04, so the concentration of species A can be estimated from the PCR calibration plot 

(see Table 4.1) as 10.4 µM. In this case, the sum of concentrations of both species will 

give 44.8 + 10.4 = 55.2 µM. This is significantly less than the total concentration 

69.3 µM of aluminium in the sample, as determined by ICP-MS, and it indirectly 

confirms the chemical inertness of specie A under conditions of PCR with ECR. 

6.3 Analysis of Seawater Samples 

6.3.1 Overview 

At this stage, the optimised HPCIC system coupled with fluorescence detection had been 

shown to be applicable to the determination of aluminium in acidified standards prepared 
' 

in Milli-Q water. Previous work with photometric detection showed that IDAS could be 

applied successfully to the analysis of samples with a complex matrix but it had not yet 

been used for the analysis of aluminium in seawater. Seawater is difficult to analyse not 

only in terms of the high salt content, but also due to the number of other potentially 
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interfering ions, such as iron and magnesium. However, preliminary chromatograms of 

seawater using the HPCIC system with fluorescence detection showed no co-elution of 

diffe~ent elements and only one additional peak (at ~8 min) other than aluminium. Based 

on previous findings this peak is likely to be due to iron and/or a mixture other analytes 

e.g. sodium and calcium. 

6.3.2 Calibration 

Calibration of the system with both 200 and 500 µL sample loops was carried out by 

means of standard addition to an Antarctic seawater sample containing low levels of 

aluminium. The limit of detection was calculated from the standard deviation of low 

aluminium seawater and determined as the signal equivalent to three times this value (i.e. 

3cr). LOD's of 1.2 nM and 0.39 nM were achieved using a 200 and 500 )iL sample loops, 

respectively. Good linearity of the system was observed between 3.7 and 37 nM additions 

for the 200 µL sample loop (Figure 6.3) and 1.8 and 37 nM additions for a 500 µL 

injection volume (Figure 6.4). 

6.3.3 Injection Volume 

Chromatograms of different injection volumes of Antarctic seawater are given in 

Figure 6.5. As per the acidified Milli-Q water standards, an increase in retention time and 

response can be seen. A distinct difference can, however, be seen in the performance of 

the IDAS chromatographic column with increasing injection volume of seawater in 

comparison to acidified Milli-Q water standards as seen in Figure 5.2. A decrease in the 
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200 µL injection volume. 
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number of theoretical plates is observed at volumes higher than 100 µL (I_'igure 6.6). This 

decrease is likely to be a result of the high ionic strength of the sample, with not only the 

amount of aluminium increasing with larger injection volumes but also the numerous 

other common ions found in seawater. Regardless of the relative decrease in performance 

witnessed, the column still acts efficiently to produce peaks of good height and shape, 

even at the highest injection volume tested. 

6.3.4 Quantification of Aluminium in Seawater Using HPCIC 

Thus far, the HPCIC system coupled with fluorescence detection had shown good 

reproducibility (1 % RSD for 500 µL injections) and linearity, however quantitative 

validation had not yet been carried out. Consequently, in order for the overall aim of the 

project to be realised, further testing in this area was required. Validating a system for the 

quantification of aluminium in seawater is difficult, owing to the fact that no certified 

reference material for aluminium in seawater exists. Direct comparison with techniques, 

such as ICP-MS, was also not possible without considerable sample manipulation, due to 

inadequate sensitivity. Therefore, the only available option was analysis of seawater 

considered within the FIA oceanographic community as equivalent to a certified 

aluminium reference sample [122]. This sample was collected in October, 2004, in the 

North Pacific, as part of the SAFe (Sampling and Analysis for Fe) iron intercomparison 

study cruise. Both open ocean surface water (S) and 1 OOO m (D2) were collected and had 

been stored at a pH of 1.7 in LDPE bottles since this time. Analysis by FIA (based on the 

Resing and Measures method [57] has shown the concentration of the S and D2 samples 

to be 1.7 and 1.0 nM 'respectively. 
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As discussed previously, calibration of the HPCIC system was carried out by standard 

addition to low aluminium Antarctic seawater. Because there was concern that slight 

differences in the matrix of seawater from different regions could alter chromatographic 

behaviour, standard addition to the SAFe samples was carried out in order to determine 

the concentration of the samples. Analysis by HPCIC gave readings approximately seven 

times higher for both S and D2, than that obtained by FIA. 

It was thought that perhaps the higher readings were a factor of some sort of background 

fluorescence. An injection of the eluent indicated no system bla~k. Likewise, whilst the 

eluent and PCR reagent contribute to constant background fluorescence, due to being 

continuously pumped throughout the IC system and detector, they could not be 

responsible for increased fluorescence on injection of a sample. 

Given the complexity of seawater and the possible contribution of other analytes to 

fluorescence, an attempt was made to quantify the fluorescence of an "aluminium free" 

seawater sample. A 25 mL volume of Antarctic towed fish sample was left overnight to 

equilibrate with approximately 0.7 g of Diphonix resin (the same as used for the trap 

column). Given the extremely high affinity of the resin for aluminium, it was expected 

that all traces of aluminium would be extracted. The peak area of a normal towed fish 

sample and "cleaned" sample was compared. The resulting peak area of the "cleaned" 

sample was ~35% less than that of the normal sample. Consequently, by subtracting the 

fluorescence of the aluminium free seawater, the concentration of the Antarctic surface 

water was determined to be 14 nM rather than 44 nM. 
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It was, at this point, still expected that the Antarctic sample should be much lower in 

aluminium than the 14 nM obtained, based on FIA results of other oceanic regions. One 

possibility for the high content of aluminium in the Antarctic sample was the affinity of 

the Diphonix resin for other metals besides aluminium. If the Diphonix resin had 

extracted additional ions that would have otherwise contributed to background 

fluorescence then the "blank" reading may have been smaller than expected and the 

resulting concentrations still higher than true. 

Because of the difficulty of extracting only aluminium from seawater, it was thought that 

Milli-Q water injections could help to identify the source of any additional fluorescence. 

Water from three available Millipore systems; Milli-Q Academic, Milli-Q Gradient and 

Milli-Q Element were injected, the latter having been developed by the company 

specifically for trace metal work and specifying sub-ppt elemental contamination. 

Despite a clear reduction in the aluminium content of the water from the Element system 

compared with the Academic and Gradient systems, as could be appreciated from 

differences in peak area, it was evident that all water types still contained aluminium to a 

degree. It must be noted at this stage, that work was not carried out inside a class 100 

clean room, with only sampling being undertaken under laminar flow. Consequently, 

aluminium fluorescence from the Element system water could have been, in part, due to 

contamination. 

The existence, and indeed source, of any additional fluorescence was still unclear at the 

conclusion of this series of experiments. This was because it remained impossible to 
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completely eliminate the contribution to fluorescence from aluminium itself. 

Additionally, a Milli-Q water injection containing no aluminium would only have served 

to eliminate the instrument itself as a source of additional fluorescence and not the 

seawater matrix. 

In order to assess the possible contribution of the seawater matrix to fluorescence, a 

differential refractometer was used to trace an injection of seawater. It was hoped that if 

potentially interfering components of seawater were present at the same retention t_ime as 

aluminium then a change in the refractive index would be observed. It was considered 

that perhaps the seawater matrix was not eluted fully at ~8 minutes as previously thought, 

and that this plug of matrix eluted gradually, overlapping with the retention time of 

aluminium. This could, in tum, falsely increase fluorescence and the subsequent 

quantification of aluminium. However, detection by refractometry confirmed that the 

plug of seawater matrix was completely eluted before aluminium, disproving this theory. 

Continuing the line of thought that there must be fluorescence additional to that caused 

solely by the reaction between aluminium and lumogallion, co-elution of two fluorescing 

compounds was considered a possibility. If this was the case, then further changes to 

separation conditions were needed in order to separate these species. The first attempt to 

separate the two species was made by the addition of an extra 10 cm of ID AS-packed 

column of the same dimensions to that used previously, giving a total length of 30 cm. As 

would be expected, the retention time of aluminium was increased, however still only one 

peak (besides that of iron/matrix) was observed. 
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At this stage, it was unclear as to whether the potentially co-eluting species were different 

elements or two distinct aluminium species. It was, however, more likely to be the latter, 

considering the performance and specific nature of ion chromatography and the results of 

the previous experiments. Changes to eluent composition were made in the hope of 

causing variation to the retention of at least one of the aluminium species, so as to 

differentiate it from the other. The first approach was to observe the effect of increasing 

ionic strength of the eluent. As was discussed in section 4.2.2, changes to ionic strength 

affect separation by suppressing electrostatic interactions and ensuring that chelation is 

the dominant separation mechanism. The ionic strength was initially increased to 0.4 M 

NaCl with acidity maintained at 40 mM HN03. Despite a decrease in fluorescence being 

observed for a seawater injection - a consequence of increased viscosity, the emergence 

of two peaks also became evident. These peaks, whilst only partially separated had a 

retention time only negligibly different to that of a normal injection of aluminium in 

seawater. 

Consequently, a further increase of ionic strength to 0.5 M NaCl was made. Only a slight 

decrease in fluorescence resulted but the separation between the two peaks became more 

evident. A final ionic strength adjustment to 0.75 M NaCl was made and again, the 

fluorescence and peak shape were significantly diminished. At the same time, further 

distinction between the two peaks also resulted. For comparative purposes, the same 

eluent composition (0.75 M NaCl-40 mM HN03) was also used for an injection of an 

acidified 37 nM aluminium standard. The same magnitude of peak separation was 

achieved as per the seawater; however, the two peaks were more obvious, given the 
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Figure 6. 7. Effect of changes to ionic strength of eluent on the separation of two co-

eluting species (believed to be both aluminium). 30 cm IDAS column. 
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higher concentration of aluminium. The chromatograms of the resultant injections are 

illustrated in Figure 6.7. Despite fairly good separation of the two species at high ionic 

strength, the consequent reduction in sensitivity and column performance meant that 

employing such a high NaCl concentration was not a feasible option. Instead, further 

separation of the two peaks was sought by means of changes to the acidity of the eluent. 

An ionic strength of 0.5 M was maintained and the acidity of the eluent. decreased from 

40 to 25 mM so as to cause an increased retention time. The resulting chromatograms are 

given in Figure 6.8. 

It can be seen that although an increase in retention time resulted, as expected, both 

species appeared to be affected equally. Decreasing acidity did not aid in separating the 

co-eluting species; in fact, it served to negate the effect of high ionic strength, such that 

complete co-elution was once again observed at approximately 29 min. The reduction 

and consequent elimination in separation of the two species may be explained in several 

ways. Firstly, by decreasing acidity, the number of negatively charged carboxyl groups 

will increase, which results in an increase in electrostatic interactions - an opposite effect 

of increased ionic strength. Additionally, conditional stability constants of aluminium 

complexes with IDAS will be increased by a reduction in acidity. Since the acidity was 

almost halved from 40 to 25 mM, it may be that the stability constants for both 

aluminium species were maximised at such a pH resulting in identical retention. 

From this series of experiments it was apparent that two ions were indeed being co-eluted 

and subsequently quantified by the HPCIC system. Due to the improbability that two 
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different elements would co-elute because of the uniqueness of conditional stability 

constants during complex formation of individual elements, it was considered that the 

two species were aluminium. 

6.3.5 Aluminium speciation in acidified seawater 

The ability of the IDAS column to differentiate between two aluminium species has been 

discussed previously in detail in section 6.2. Analysis of the paper mill process water 

showed that the technique could identify both inert and labile aluminium species. This 

work also highlighted the effect of sample acidification on the retention of these species. 

Whilst the retention of the inert species re!J:1:ained relatively unchanged with decreasing 

sample pH, the retention of the labile species was reduced, until, at a sample pH of 

approximately 1.5, co-elution of both species occurred. 

It is believed that the effect of acidification on aluminium speciation also occurs in 

seawater. This means that at a higher sample pH, two peaks of aluminium would be 

expecte.d to elute separately. However, at a low sample pH, such as that which HPCIC 

analyses were carried out, no such separation would take place and quantification would 

be of both the inert and labile aluminium species. Whilst both peaks obtained for the 

paper mill process water sample could be confirmed as aluminium using mass 

spectrometry, the same could not be carried out for the Antarctic seawater sample, once 

again given the sensitivity limitations of the technique. 
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The FIA method based on Resing and Measures work and the newly developed HPCIC 

system operate very differently. A large amount of sample manipulation is undertaken 

before seawater is analysed by FIA. This twically includes: sample acidification on 

collection ~ ~ pH 2), sample buffering before preconcentration ( ~ pH 5 .5), extraction via a 

solid phase such as 8-HQ functionalised resin (R8-HQ) and elution usirig an acidic 

carrier. In comparison, the .HPCIC system directly analyses the seawater at the pH to 

which the sample was originally acidified, for storage purposes. There is no pH change. It 

is believed that this difference between the two techniques is extremely significant and 

could help explain the variation in concentration of aluminium in the Pacific Ocean 

samples. Additionally, it raises the question as to what exactly is being measured by both 

systems, in particular questioning the term "total dissolved aluminium". 

In order to explain the differences in results of FIA and HPCIC, two suggestions are put 

forth. Firstly, it is the author's belief that the HPCIC system measures a true 

concentration of total dissolved aluminium in seawater, when the sample is acidified to 

pH 1.8 (as per the Antarctic samples). This means that both the labile and inert species 

are quantified. On the other hand, it is theorised that at a pH of ~5.5, FIA only accounts 

for one of these species, most likely the labile content. Considering the obvious inert 

nature of the other aluminium species, it is feasible that the preconcentration phases 

employed by FIA do not extract both species, or at least not to entirety. This would mean 

that the total aluminium content of the seawater is, in fact, not being accounted for by 

FIA. This partial or non-existent extraction of one species may, or may not be pH 

dependent but could be reliant on the type of solid phase employed. 
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In order to help substantiate this theory of two species of aluminium in seawater, an 

ambient pH seawater sample was obtained and an injection made using the HPCIC 

system. This sample was collected in February 2007 from the subAntarctic Southern 

Ocean, south of Tasmania and had been stored unacidified since this time in an acid­

washed LDPE container. It was hoped that two distinct aluminium peaks would be 

observed, however, only one peak was again detected. The single peak from the 

unacidified sample eluted less than 30 seconds later than the acidified sample. The 

similar elution time suggested that either co-elution df the species was occurring even at a 

higher sample pH (unlikely), or, only one species was present because the length of 

storage time of the sample before analysis (almost two years) had affected speciation. It 

has been shown that water samples for trace metal analysis require acidification for 

storage purposes in order to prevent speciation change and loss via other means, such as 

adsorption. It is thus feasible to assume that because the sample was stored unacidifed for 

such a lerigth of time, the labile fraction had been lost or possibly converted. Due to the 

inert nature of the other species, it remained in solution and was consequently the only 

species detected. 

In conclusion, due to the age of the unacidified sample, it was difficult to determine 

whether the single peak observed was due to one species resulting from storage, or 

whether co-elution of both species was still occurring. Therefore, this experiment neither 

substantiated nor disproved the original theory. However, the separation of the two co­

eluting peaks in the Antarctic sample through modifications to the eluent composition 

still strongly supported the existence of two aluminium species in seawater. 
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An alt~mative explanation for the difference in results for the Pacific Ocean samples 

obtained by FIA and HPCIC could be the effect of pH change on the preconcentration 

process. The pH change to 5.5 prior to preconcentration in FIA, is achieved using an 

ammonium acetate buffer and is required in order for aluminium to be retained optimally 

on R8-HQ. However, this pH change may inadvertently mean that only certain species 

are extracted. This assumption is supported by the complex solution chemistry of 

aluminium at different pH values. Figure 6.9 illustrates a species phase diagram for 

aluminium in a solution containing chloride (e.g. seawater) between a pH of 1-12. It can 

be seen that at a pH higher than 4, the speciation of aluminium becomes quite 

complicated with the free Al3+ ion no longer being the dominant species. In fact, at a pH 

> 4.5 the insoluble hydroxide Al(OH)3, becomes the dominant species. Upadhyay and 

coworkers [162] also describe this dependence of aluminium speciation on pH and 

specifically mention the solubility minimum of aluminium in the pH range 5.5-6.5. 

Although this paper focuses primarily on river water a similar pH range could be 

expected for seawater. Since only a small fraction oflabile aluminium would exist in this 

pH range it may be that FIA measures only this portion of aluminium, ignoring the 

contribution of more inert aluminium complexes. 

The hydrolysis of aluminium at the pH of seawater has been discussed previously 

(section 1.2.1) and it is expected that insoluble hydroxides would exist. The affect this 

hydrolysis has on the quantification of aluminium has not, however, been discussed in 

detail nor has the difference in concentration of aluminium been measured between 

samples at different pH values. 

152 



1 

H + 
-1 

c1 -
H -

-3 
Log Cone. 

A 13 ..- A l(OH)-1 -
-5 

Al(Cl 2)+ 
-7 

2-

A 11._C lh 

-9 
A I( OH h 

2 4 6 8 10 12 
pH 

Figure. 6.9. Species phase diagram of aluminium between pH 1-12 m a solution 

containing chloride. 

153 



It is not the author's intent to infer that FIA incorrectly quantifies aluminium in seawater, 

only that the definition and identity of what is being measured should perhaps be 

questioned. It is obvious that pH has a significant effect on the speciation of aluminium 

and, in tum, those species that are quantified by particular techniques. Possible future 

investigations that could help in furthering understanding into the effect of pH on 

speciation and the differences between the tyo techniques are given in the following 
' . 

chapter. It should also be noted that the MADCOW model (used for the calculation of 

dust deposition estimates) has been developed specificalJy using dissolved aluminium 

concentrations obtained by FIA and therefore may still give realistic predictions. 

However, if differences in the aluminium content of surface _seawater are indeed due Jo 

the nature of the technique employed, this model may need to be re-evaluated. 

6.4 Conclusions 

It has been shown that the IDAS column can handle effectively samples with a complex 

matrix. Peaks of aluminium from such samples compare well to standards prepared in 

Milli-Q water in terms of shape and chromatographic efficiency. The use of photometric 

detection, employing ECR as the post:column reagent, illustrated the ability of the 

HPCIC system to determine the concentration of the labile fraction of dissolved 

aluminium in paper mill process water. In addition, this work also highlighted the 

presence of both labile and chemically ine~ species of aluminium in such samples, the 

ability of the system to differentiate between these species, and the potential to quantify 
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each separately. The dependence of the retention of these species on sample pH was also 

demonstrated. 

The applicability of the HPCIC system coupled with fluorescence detection to the 

determination of aluminium in seawater was also assessed. Again, peaks of good 

efficiency were observed, however a slight decrease in column performance was noted at 

injection volumes higher than 100 µL. LOD's of 1.2 nM and 0.39 nM in seawater were 

achieved using 200 and 500 µL sample loops, respectively. Good linearity of the system 

was observed between 3.7 and 37 nM additions for the 200 µL sample loop and 1.8 and 

37 nM additions for a 500 µL injection volume. 

Verification of the system's ability to accurately determine aluminium was attempted by 

comparing results obtained for two Pacific seawater samples (regarded as a "certified" 

reference material for aluminium in seawater by oceanographers) with those acquired 

using FIA. Analysis by HPCIC gave readings approximately seven times higher for both 

samples, in comparison to those obtained by FIA. This led to an investigation into the 

discrepancy between the two techniques. Findings suggested that HPCIC determined a 

true total dissolved aluminium content whilst FIA may not account for both labile and 

inert species, or at least not entirely, as a result of the mechanisms of solid phase 

extraction and/or the effect of sample pH on speciation. 
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It is appreciated that further work needs to be carried out in order to fully substantiate 

these theories and to validate fully the ability of the HPCIC system to accurately 

determine aluminium in seawater. 
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Chapter Seyen 

Conclusions and Future Work 

7.1 Project Summary 

The overall aim of this project was to establish a system capable of determining 

extremely low levels of aluminium in seawater, specifically from the Antarctic region. 

The most logical approach was to develop an FIA system based on that of Resing and 

Measures, which is used extensively within the oceanographic community. Significant 

effort was spent optimising conditions for the aluminium-lumogallion reaction including, 

reaction pH, time and lumogallion concentration. Both conventional statistics and 

artificial neural networks (ANN) were used to calculate these optima. However, it was 

found that an ANN gave the most accurate predictions and subsequently the most reliable 

estimates of optimal values. 

The FIA system showed good reproducibility for injections of standards prepared in 

Milli-Q water. However, the addition of an 8-HQ preconcentration column resulted in the 

development of numerous problems, including excessive back-pressure, baseline 

instability and irreproducibility. Despite exhaustive ·efforts, these issues could not be 

alleviated to any degree of acceptability and so the decision was made to seek an 

alternative, more reliable technique for the purpose of this project. 
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This led to the development of a HPCIC system capable of detecting aluminium and 

subsequently the assessment of its suitability for determining aluminium in samples with 

complex matrices, most importantly, seawater. Given the innovative use of IDAS for the 

separation and preconcentration of aluminium, optimal conditions of separation were 

examined. Investigations were made into eluent composition, column temperature and 

eluent flow-rate. Photometric detection was utilised for these studies in order to 

concentrate on separation conditions without additional co.mplications from the detection 

technique. Once separation conditions were determined, a detailed study into several 

different post-column reagents was undertaken in order to maximise the achievable 

sensitivity of photometric detection. Of the reagents examined (tiron, pyrocatechol violet, 

Eriochrome Cyanine R and Chrome Azurol S), ECR gave the lowest limit of detection, 

namely 100 nM for a 100 µL injection volume. Working conditions for this post-column 

reaction were 0.25 mM ECR with 1 mM CTAB, in a 0.2 M hexamine solution buffered at 

pH 6.1 and with detection performed at 580 nm. Linear calibration was observed over the 

range of 3.7 -370 µM. 

This fully optimised photometric HPCIC system utilising ECR was employed for the first 

injection of a sample with a complex matrix. Due to the combination of high ionic 

strength and extremely low concentration of aluminium in seawater, paper mill process 

water was considered an appropriate sample of intermediate complexity in order to gauge 

how the IDAS column performed with a complex sample. Work on this sample illustrated 

the ability of IDAS to not only elute aluminium free from interferences, but also to 

differentiate between inert and labile aluminium species. The concentration of the labile 
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aluminium species in the process water was determined to be 44.8 ± 1.8 µM. ICP-MS 

showed total dissolved aluminium in the unacidified sample to be 69.3 ± 1.1 µM. This 

value verifies the findings by the HPCIC method since the difference between the 

amounts measured by both techniques would have been due to the inert species of 

aluminium. 

Following this work, a fluorescence detector was coupled to the existing HPCIC system. 

This was done in order to develop a detection method capable of the low limit of 

detection required for analysis of Antarctic seawater. Lumogallion was chosen as the 

fluorescent reagent and given the uniqueness of HPCIC as a technique, optimisation of 

parameters such as buffer type, reaction pH and temperature, was undertaken. A LOD of 

0.39 nM was achieved for a 500 µL injection of seawater using 0.03 mM lumogallion in 

a 0.25 M MES buffer adjusted to pH 6.05 and a 2m reaction coil held at 70°C. 

A significant amount of time was spent validating the HPCIC system coupled with 

fluorescence detection for the quantification of aluminium. This task was made difficult 

due to the fact that no certified reference material existed for aluminium in seawater. In 

the absence of such a standard, comparisons were made with results obtained by FIA for 

two samples of Pacific Ocean seawater. This comparison revealed that values obtained by 

HPCIC were approximately 7 times higher than those achieved by FIA. Multiple 

investigations were undertaken in an attempt to identify the reason behind this 

discrepancy. At the conclusion of this project the most probable explanation is that 

HPCIC accounts for both the labile and inert aluminium species at a sample pH of ~2. 
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This assumption is supported by the fact that the aluminium peak could actually be 

separated into two distinct peaks through changes to eluent composition. In comparison, 

FIA, which extracts aluminium at a sample pH of 5.5, most likely fails to quantify both 

species either due to variations in speciation at this pH or perhaps because the solid phase 

employed for preconcentration is unable to extract effectively the inert aluminium 

species. 

7.2 Suggested Future Work 

The potential of the developed HPCIC system with fluorescence detection for the 

determination of aluminium in seawater is evident. The only limitation in its application 

to oceanographic studies is the discrepancy between results obtained in comparison to the 

widely accepted FIA method. Differences in the species quantified by each technique, has 

been given as a possible explanation, however it is the author's opinion that this theory is 

best tested in an environment where fresh seawater is readily available and comparisons 

with an established and robust FIA system can be made. Ideally, this would occur 

shipboard during an oceanographic cruise. Considering time limitations of the project, 

this was not a feasible option for this particular study, nonetheless important 

investigations for the completion of this work are suggested below. 

Firstly, it is necessary to test freshly collected seawater using HPCIC, considering the 

fact that the storage time of the ambient pH seawater tested during this project caused 

concern over the validity of the findings,. This would determine conclusively whether 
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two species are indeed present at the natural pH or not. It is, however, a possibility that 

only one species will exist at this pH given the extent of hydrolysis that occurs naturally 

in seawater. 

Ideally, a direct comparison between HPCIC and FIA analyses, of the same sample of 

seawater needs to be made. This would require any sample manipulation to be identical, 

which may mean that modifications need to be made to both techniques in order for 

precisely the same aluminium species to be quantified. Given the restrictive pH range of 

extraction using R8-HQ, this would most likely mean changes to the solid phase used for 

preconcentration in FIA. Possible analysis into the differences in concentration obtained 

by both methods for samples at varying pH values is also suggested. This work is vitally 

important in order to address the issue of what forms of aluminium are being quantified 

by specific techniques and subsequently what concentration is required to ensure 

calculations of dust deposition are made with acceptable accuracy. 

An alternative or concurrent investigation may be the analysis of a sample for which 

there is a certified reference value of aluminium content, not necessarily seawater (e.g. 

freshwaters). This would not only serve to help validate the HPCIC system but also 

expand the range of applications to which the technique can be used. 

7 .3 Conclusions 

This project has investigated in detail two techniques for the purpose of the determination 

of ultra-trace aluminium in seawater. It has been shown that FIA, currently the most 
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widely employed method for this purpose, can suffer from severe shortcomings in terms 

of robustness, particularly in association with the preconcentration column. In addition, 

the question has been raised as to what exactly is being measured by this technique. 

Whilst the term 'total dissolved aluminium' is commonly used, it has been suggested 

through comparison with results obtained by HPCIC, that this may not be what is actually 

measured. It is theorised that FIA may only account for certain species in seawater and 

not the entire aluminium content. 

In response to the issues encountered with FIA, a high performance chelation ion 

chromatography system has been developed successfully for the determination of 

aluminium. Separation and/or preconcentration is achieved through the novel use of 

IDAS, with conditions of separation optimised fully for aluminium. The system may be 

coupled with either a photometric or fluorescence detector, and employs post-column 

reaction. HPCIC has illustrated the presence of two separate aluminium species and the 

technique can differentiate between the two. A strong dependence of retention (of at least 

one species) on sample pH has been shown. The HPCIC system has been shown to be 

applicable to the determination of labile aluminium in paper mill process water. As yet, 

the system is not validated for the quantification of aluminium in seawater, but it exhibits 

excellent chromatographic performance and linear response for seawater injections. 
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