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Abstract 

Saltmarshes are an intriguing ecotone representing the transition between the marine 

and terrestrial environments. Much is understood in terms of zonation and 

vegetation communities in saltmarshes, however considerably less is understood 

about their edaphic factors. In Australian saltmarshes, terrestrial arthropod fauna 

and factors that determine invertebrate assemblages are largely unknown. 

The aim of this study was to understand the factors that influence the presence of 

epigeal spiders and beetles in a coastal saltmarsh. The chosen site at Long Point, a 

saltmarsh on Tasmania’s east coast, included adjacent woodland which enabled 

expansion of the study to incorporate a full environmental gradient. Moisture, 

salinity and pH gradients were analysed alongside vegetation community structure. 

During the 12 month study period 5 606 spiders (37 taxa) and 1 165 beetles (84 taxa) 

were caught in 141 pitfall traps. Indicator species (spider and beetle) were identified 

for each vegetation community within the saltmarsh zone and adjacent woodland 

zone. Spiders and beetles reacted in a similar fashion to edaphic factors and 

vegetation species. However, the sequential order of importance for spiders was 

moisture, salinity and vegetation, whereas, the response order for beetles was 

moisture, vegetation and salinity.  

Further investigation into the interaction between saltmarsh vegetation species and 

spider and beetle species will assist in our endeavours to understand the loss or gain 

of arthropod species due to climate change and sea-level rise. 

Key words 

Saltmarsh, landscape features, edaphic factors, vegetation communities, invertebrate 

assemblages, spiders, beetles, Tasmania 
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Glossary 

ARS: code for saltmarsh vegetation community dominated by saline graminoids. 

ASS(a): code for saltmarsh vegetation community dominated by Sarcocornia 

quinqueflora. 

ASS(b): code for saltmarsh vegetation community dominated by Tecticornia arbuscula. 

BOM: Bureau of Meteorology. 

Braun-Blanquet: method of assessing vegetation presence and cover abundance that 

estimates the quantity of cover of each species in a community in one scale (Mueller-

Dombois & Ellenberg 1974). 

Dolerite ridge: extreme southern section of Long Point consisting of exposed 

dolerite outcrop and associate soils (see Figure 2.4). 

DSE: dry (non-lactating) sheep equivalent. 

EC: electrical conductivity. The electrical conductivity indicates the amount of 

soluble (salt) ions in soil, and can be used as a proxy for salinity (Hazelton & 

Murphy 2007). 

Edaphic factors: soil-related variables, a component of research in this project. 

Variables include moisture, pH, EC, carbon and soil organic matter. 

GPL (dr): code for woodland vegetation as on dolerite ridge. 

GPL (sr): code for woodland vegetation as on sand ridge. 

Group: a vegetation community detected by multivariate analysis – three in the 

saltmarsh zone, three in the woodland zone in this study. 

GSL: code for woodland vegetation as on sand dune. 

Halophilic: describes organisms capable of living in high concentrations of salt. 

Halophyte: salt-tolerant plant. 

Hypersaline: water with a high concentration of salt generally greater than that of sea 

(marine) water. 
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Indicator species: species whose status provides information on the overall makeup 

and condition of the ecosystem and of other species in that ecosystem (De Cáceres 

et al. 2010). 

Intertidal: the zone/environment between the level of high and low tide. 

Inundation: the condition of water occurring above the ground surface as a result of 

flooding by tidal waters or high precipitation. 

Invertebrate assemblage: a collection of invertebrates characterised by a distinctive 

combination of species occupying a common environment and interacting with one 

another; a component of research interest in this project. 

Landscape features: a component of research in this project. Features include 

elevation, hill shade and solar radiation. 

Location: the setting of the research site, i.e. east coast of Tasmania. 

LOI: loss on ignition. A method to estimate the organic matter content in soils. 

pH: a scale that measures how acidic or basic a substance is. It ranges from 0 to 14; 

solutions with a pH of 7.0 are neutral, less than 7 are acidic, and greater than 7 are 

basic or alkaline. 

Pitfall trap: a collection container sunk into the ground, the top flush with the 

ground surface. A killing/preserving agent is added at time of setting. 

PSA: particle size analysis. 

Ramsar Convention: Convention on Wetlands of International Importance, especially as 

Waterfowl Habitat is the official name of the Ramsar Convention – the abbreviated 

names "Convention on Wetlands (Ramsar, Iran 1971)" or "Ramsar Convention" are 

more commonly used. 

Saltmarsh: tract of land tidally connected to the sea, covered with emergent, 

herbaceous, halophytic vegetation (Prahalad 2009). 

Sand dune: in this study, the primary linear dune aligned north south composed of 

yellow/orange sand (see Figure 2.4). 

Sand ridge: in this study, the secondary linear sandbank aligned east west composed 

of white/grey sand (see Figure 2.4). 
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Site: the general research location eg Long Point. 

SOM: soil organic matter. 

Spring tide/king tide: tide that is greater than the mean tidal range – occurs about 

every two weeks, when the moon is new or full. 

Station: in this study, a point along each transect located as near as possible in the 

centre of each vegetation community that transect passes through. 

Sub-tidal: permanently below the level of low tide, an underwater environment. 

TASVEG: a comprehensive digital map of Tasmania’s vegetation produced by the 

Tasmanian Vegetation Monitoring and Mapping Program (TVMMP). Each 

vegetation community is assigned a three-letter code that defines the dominant 

vegetation community present within each polygon. TASVEG 3.0 is the current 

version (Department of Primary Industries Parks Water and Environment 2014). 

Transect: a line crossing environmental gradients, laid out in such a way to gather as 

much data as possible of landscape features, edaphic factors, vegetation 

communities and invertebrate assemblages that made up the research site. 

Vegetation community: a collection of plant species that form a relatively uniform 

patch and is distinguishable from the adjacent community due to the different plant 

species contained therein; a component of research interest in this project. 

Vegetation community code: alpha code based on TASVEG 3.0 vegetation codes. 
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Chapter 1: Introduction 

 Saltmarshes 1.1

Historically, saltmarshes are despised landscapes. Typically they are mainly flat, 

damp, boggy and cold, the source of many biting insects such as mosquitos and 

midges, and often feature in horror stories (Bridgewater et al. 1981). Commonly 

regarded as wastelands, coastal saltmarshes have over time, become the domain of 

playing fields, grazing and agriculture, coastal resorts and even sites for the disposal 

of refuse (Kirkpatrick & Glasby 1981; Finlayson & Rea 1999; Saintilan 2009a). 

Notwithstanding the historical negative connotations and sustained abuse, 

saltmarshes are a distinctive and intriguing ecosystem that bridges the land-sea 

boundary (Bridgewater et al. 1981). Yet these intertidal ecotones are one of the most 

restricted habitats in the world (Pétillon et al. 2008) covering less than 0.01% of the 

earth’s surface (Desender & Maelfait 1999). Saltmarsh areas are increasingly reducing 

in area from a raft of pressures such as port extensions, soil pollution from adjacent 

agricultural lands (Pétillon et al. 2008), aquaculture, introduced species and sea-level 

rise (Adam 2002). 

Although widespread and found on all continents, saltmarshes are generally located 

between the Tropic of Cancer and the Arctic Circle in the Northern Hemisphere, 

and between the Tropic of Capricorn and latitude 60oS in the Southern Hemisphere 

(Chapman 1974). They only occur infrequently within the tropics, either being 

limited to areas not dominated by mangroves or interspersed with mangroves (Adam 

2002).  

Saltmarshes occupy sheltered coasts, particularly those in protected estuaries. They 

can be recognised by their distinctive vegetation communities ranging from saline 

succulents to saline graminoids, and are often located in areas inundated by tidal 

influences (Long & Mason 1983; Adam 1990). Many estuarine saltmarshes have 

distinguishing features such as conspicuous zonation, which is the delineation of the 

marsh into low, middle and upper zones defined by vegetation. 
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On a global scale it is difficult to estimate, let alone measure, the extent of 

saltmarshes. Estimation is made more difficult by the question of definition given 

that the US data includes brackish marshes, whereas Canada excludes these areas, 

and in Europe, though extensively studied, saltmarsh area data are not available 

(Adam 2002). Chapman (1974) estimates that the east and west coasts of the North 

American continent are home to the most extensive areas of saltmarshes followed by 

the north, western and Mediterranean coasts of Europe. 

Australia, by global standards, has only a small proportion of its coastline as 

saltmarsh ecosystems which cover approximately 16 000 square kilometres (Saintilan 

& Adam 2009). Australian saltmarshes are generally limited to the south east of the 

continent, including Tasmania, with small areas in the southwest of Western 

Australia (Chapman 1974). Tasmania has approximately 10 000 hectares of saltmarsh 

(V Prahalad 2014, pers. comm. 31 July), principally located on its east coast and 

Flinders Island, north coast and the far north west. 

The saltmarsh ecosystem has held a long standing interest for authors such as 

Ranwell (1972), Chapman (1974), Long and Mason (1983) and Adam (1990). 

However, attention has been limited to the distribution and patterns of vegetation 

variance (Adam 2002). In recent years, with an increasing focus on conservation and 

restoration, a renewed and expanding interest in saltmarshes has evolved especially 

in Europe (Desender et al. 1998; Desender & Maelfait 1999; Irmler et al. 2002; Finch 

et al. 2007; Pétillon et al. 2008). This has led to emerging studies into saltmarsh soils 

such as Álvarez‐Rogel et al. (2000) and some invertebrate taxa for example Finch et 

al. (2007). A similar renewal in interest has been somewhat lacking in Australia. 

Fairweather (1990) noted that Australian saltmarshes had received the least attention 

of all marine habitats and their ecological values were being ignored. Furthermore, 

there has been little study of the terrestrial fauna of saltmarshes, leading to 

assumptions that Australian saltmarsh fauna is similar to those found in other 

locations around the world (Morrisey 2000). Nevertheless, during the last decade the 

growing appreciation of saltmarsh values and a realisation that predicted climate 

change related sea-level rise will impact saltmarshes, have led to increased research in 

this challenging environment (Saintilan & Adam 2009). 
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Recent studies of coastal invertebrates in the Northern Hemisphere have included 

the conservation of saltmarsh dwelling terrestrial arthropods (Desender & Maelfait 

1999), invertebrate zonation and effects of sea-level rise (Irmler et al. 2002), and the 

influence of salinity on spiders (Pétillon et al. 2003; Pétillon et al. 2011). Research has 

also explored the use of spiders and beetles as indicator taxa in studies on sea-level 

rise and climate change (Finch et al. 2007; Pétillon et al. 2008). However, comparable 

information on saltmarsh fauna is lacking in Australia, as this fauna has been the 

least studied component of Australian saltmarsh ecology (Laegdsgaard 2006). 

Indeed, Boon (2011) maintained that  

Australian saltmarshes suffer from massive knowledge gaps (for example, habitat and food for 

saltmarsh fauna, including invertebrates), and that until recently (2009), the most recent text 

with substantive sections on Australian coastal saltmarsh was 20 years old (Boon 2011, p. 

131). 

Terrestrial invertebrates such as spiders and insects scarcely rate a mention in the 

“Conservation advice for Australian Subtropical and Temperate Coastal Saltmarsh”, 

and although benthic invertebrates have been listed under common fauna in the 

document, spiders and beetles have been neglected (Department of the 

Environment 2013). 

Nevertheless, in an important development, the Australian Federal Minister for the 

Environment amended the list of threatened ecological communities under Section 

s266B of the Environment Protection and Biodiversity Act 1999 (EPBC Act) by including 

the Subtropical and Temperate Coastal Saltmarsh Community in the “vulnerable” 

category in August 2013 (Department of the Environment 2013). Previously, NSW 

was the only Australian jurisdiction to list coastal saltmarsh as endangered, others, 

including Tasmania do not list this ecological community (Department of the 

Environment 2013). 

 Tasmanian saltmarsh studies 1.2

Tasmania has a cool temperate climate that excludes the presence of mangroves, 

probably as a result of wintertime frosts (Kirkpatrick 1981). Coastal saltmarshes are 

found in the southeast, east coast, Flinders and King Islands, north coast and the far 
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north west of the island. Pioneering Tasmanian saltmarsh research was conducted by 

Curtis and Somerville (1947) on the botanical and historical aspects of Boomer Bay 

on the Tasman Peninsula. Other early work focused on intertidal ecology, principally 

algae (Guiler 1949; 1952a; 1952b; 1952c), and the distribution, mapping and 

vegetation of saltmarshes (Glasby 1975; Kirkpatrick & Glasby 1981). Work on the 

benthic fauna, vegetation and soil factors continued in the 1980s and 1990s (Marsh 

1982; Richardson et al. 1991; Wong et al. 1993; Richardson & Mulcahy 1996; 

Richardson et al. 1997; 1998). A thesis by Gouldthorpe (2000) researched the 

impacts of drainage and grazing on Derwent River marshes and recently an 

extensive project identified changes in the extent and community composition of 

southeast Tasmanian saltmarshes (Prahalad 2009). The real and projected impacts of 

climate change have also received attention (Mount et al. 2010; Prahalad et al. 2011). 

Finally, work by Prahalad, in the period 2010-2014, saw completion of coastal 

saltmarsh mapping in all three NRM regions of Tasmania. Nevertheless, no studies 

on Tasmanian saltmarshes have explored the interactions of saltmarsh soils, 

vegetation and terrestrial invertebrates. 

 Research project aims 1.3

Within the research question, a number of aims have been identified: 

a) Undertake a baseline survey of the research site. This will serve as a reference 

point for future research at Long Point particularly in relation to sea-level rise 

and its effects; 

b) Investigate the epigeal (ground dwelling) arthropods, principally spiders and 

beetles in a saltmarsh and their relationships with vegetation communities and 

edaphic (pertaining to soil) factors; 

c) Define a saltmarsh reference state. By the use of indicator species analysis, be 

able to predict the incidence of spider and beetle taxa in certain saltmarsh 

vegetation communities; and 

d) Prepare a reference document for use by local community groups interested in 

monitoring saltmarshes. 
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 Structure of thesis 1.4

This thesis consists of six chapters. As the study encompassed four principal 

saltmarsh aspects (vegetation communities, landscape features, edaphic factors and 

terrestrial arthropods), the thesis has been structured in a way to allow each aspect to 

be fully addressed. 

Chapter Two describes the characteristics, past history, vegetation, climate and 

intrinsic values of the research site. It gives the reader an understanding of the value 

of Long Point for this type of study. 

Chapter Three discusses in separate detail, the methods used to study each individual 

aspect. It includes reviews of methods used to gather data in ecological research, 

particularly those that pertain to saltmarshes and makes clear why specific methods 

were chosen. The chapter also describes the statistical analyses applied to the data 

gathered for each aspect in the study. 

Chapter Four provides the results of each individual aspect by the use of narrative 

descriptions, plots, tables and charts. 

Chapter Five discusses the results of each aspect – vegetation communities, 

landscape features, edaphic factors and spiders and beetles – and relates this to other 

studies wherever possible. Following the discussion of each aspect separately, they 

are then collectively addressed in an attempt to understand the associations and 

interactions between each, and then all aspects. 

Chapter Six summaries the findings of the study, outlines limitations apparent within 

the study and concludes with suggestions for further work to address continuing 

knowledge gaps. 



Chapter 2 – Site Description 

 Page 6 

Chapter 2: Research Site 

 Description 2.1

Long Point, owned by the Tasmanian Land Conservancy (TLC), is a low spit of 

land, approximately 3.2 kilometres long by 1.3 kilometres wide. It is located on a 

NE/SW alignment in the south west corner of Moulting Lagoon on the East Coast 

of Tasmania. The mid-point lies at 42.0506oS 148.1512oE (Figures 2.1 – 2.3). It is a 

mixed saltmarsh/woodland/grassland environment; the saltmarsh component being 

recognised as the largest contiguous coastal saltmarsh in Tasmania  

(V Prahalad 2014, pers. comm., 20 July). An area of approximately 380 hectares is 

bisected by a central sand dune varying between five and 20 metres in height and 

running most of its length, splitting the saltmarsh into western and eastern sectors. A 

dolerite ridge dominates the extreme southern margin of the site. The orientation of 

the major dune does not appear to align with existing tidal water edges, suggesting 

that the dune pre-dates the current margins (Kiernan 2013). It has been proposed 

that fluvial processes have played a major role in the formation of Long Point’s 

topographic framework with grey silts deposited during the Holocene Period 

(Kiernan 2013). Two distinct lunettes, Gum Tree Hole and Round Hole are located 

in the northern and eastern sections of the sand dune (Figure 2.4). These have been 

recognised as unique geomorphological features and have been nominated for 

inclusion in Tasmania’s Geo-conservation Database (Kingdom 2008). 

Long Point is encircled on three sides (north, east and south) by Moulting Lagoon, a 

waterway that forms the estuary to the Swan and Apsley Rivers, and Little Bay on 

the western side. The Lagoon has been described as a wave dominated estuary – a 

low energy central basin that is rimmed by intertidal environments and a coastal 

parallel barrier (Harris et al. 2002; Heap et al. 2004). It contains a 4 000 hectare game 

reserve that is managed by the Tasmanian Parks and Wildlife Service under a Game 

Reserve Management Plan (Parks and Wildlife Service 2007). The Lagoon itself has 

been identified as a wetland of national significance and is recognised as an 

internationally important wetland under the Ramsar Convention on Wetlands (1971) 
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(Parks and Wildlife Service 2007; Department of Sustainability 2008). Long Point 

has an 11 kilometre coastal border with Moulting Lagoon and Little Bay, and along 

with its extensive intertidal flats, plays a vital role in the ecological function of the 

Lagoon (Kingdom 2008). 

 
 

 
Figures 2.1 – 2.3: Top left – location in Tasmania; Top right – location on Tasmania’s east coast;  
Bottom – Long Point peninsula. Source: DPIPWE (2014). 
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Figure 2.4: Long Point physical and geomorphological features. Source: Google Maps (2014). 
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 Vegetation 2.2

The vegetation at Long Point has been classified under TASVEG 3.0 (TASVEG) as 

ASS (Saline succulent herbland), ARS (Saline sedgeland/rushland), GPL (Lowland 

Poa grassland), NBA (Bursaria-Acacia woodland/grassland). The sand dune is 

classified as DVG (Eucalyptus viminalis woodland) and FRG (Regenerating cleared 

land) (Harris & Kitchener 2005; Department of Primary Industries Parks Water and 

Environment 2014) (Figure 2.5). In 2005 the TLC conducted a vegetation survey 

and identified six vegetation communities (Kingdom 2008) which have been 

described as: a) Saline aquatic herbland; b) Saline grassland; c) Saltmarsh; d) Lowland 

grassland complex; e) Coastal grassland and herb-field; and f) Acacia – Bursaria 

woodland and scrub (Kingdom 2008) (Figure 2.6). 

  
 ASS – Saline succulent herbland 

 ARS – Saline sedgeland/rushland 

 FRG – Regenerating cleared land 

 DVG – Eucalyptus viminalis woodland 

 GPL – Lowland Poa grassland 

 NBA – Bursaria-Acacia woodland/grassland 

 

 
Figures 2.5 and 2.6: Interpretation of vegetation types at Long Point. Left – TASVEG 3.0 applied to aerial photos. 
Source: DPIPWE (2014). Right – vegetation survey at time of acquisition by TLC. Source: Kingdom (2008). 
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Long Point is characterised by extensive, low-lying tidal marsh dominated by 

succulent herbs, primarily Sarcocornia spp. (glassworts). Other species found in the 

marshes are Tecticornia arbuscula (shrubby glasswort) and Disphyma crassifolium 

(pigface). The saline grasslands, though irregularly inundated, still present saline 

conditions harbouring Gahnia spp. (saw-sedges) and Austrostipa spp. (spear-grasses). 

The lowland grasslands and woodlands contain native and introduced graminoids, 

gorse and bracken with overstorey species such as Acacia in the woodland areas 

(Kingdom 2008). Vegetation communities on the site, particularly the saltmarsh 

section, are generally well defined (Figures 2.7 and 2.8). 

  
Figures 2.7 and 2.8: Distinctive vegetation boundaries. Left – saline succulent herbland (ASS) of Sarcocornia 
blackiana and Tecticornia arbuscula (left side) and saline sedgeland/rushland (ARS) of Austrostipa spp. and 
Juncus spp. (right side). Right – saline succulent herbland (ASS) of Tecticornia arbuscula (left side) and 
Sarcocornia quinqueflora (right side) displaying vegetation boundary within a TASVEG vegetation class. 

 Invertebrates 2.3

No comprehensive, terrestrial faunal surveys have been conducted at Long Point, 

though casual observations have been made that include invertebrates (Kingdom 

2008). Invertebrate surveys by authors Wong et al. (1993), Richardson et al. (1997; 

1998) and Edgar et al. (1999), have been conducted on Tasmanian saltmarshes 

including Moulting Lagoon. However, research has so far only focused on benthic 

fauna, such as molluscs and amphipods. 

 Intrinsic values 2.4

In 2008, a team from National Resource Management South (NRM South) carried 
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out a significant assessment of its coastline responsibilities. The assessment included 

Moulting Lagoon and Long Point but only from the shoreline to 100 metres inland 

from the shoreline (Temby & Crawford 2008). The assessment documented several 

important intrinsic values of Moulting Bay and Long Point as listed in Table 2.1. 

Table 2.1: Intrinsic values of Moulting Bay/Long Point. Source: NRM South (2008). 

Category Assessment 

Pressure from anthropogenic modification Slight anthropogenic modification 

Ecological disturbance and foreshore condition Minimal ecological disturbance  

Fauna significance within 100 metres of the coast Endangered 

Biological values of foreshores Very high biological values 

Vulnerability of foreshores to climate change Most vulnerable to climate change 

Condition of foreshores Very good condition 

Natural value of foreshores Very high natural values 

Pressure from pollution on foreshore  No pressure from pollution 

Pressure on the foreshore Slight pressure 

Pressure from recreation and tourism use on 
foreshore 

No pressure from recreation and tourism 

Geomorphic value of foreshores High geomorphic values 

Introduced species and foreshore condition WEST shoreline: condition not affected by 
introduced species  

EAST shoreline: condition slightly affected 
by introduced species 

Introduced species and foreshore pressure Slight pressure from introduced species 

Native vegetation condition Intact 

Native vegetation viability Viable and self-sustaining 

Vegetation ASS = succulent saline herbland 

Vegetation significance within 100 metres of the coast Non-threatened 

Weeds No weeds present 

Potential fauna habitat within 100 metres of the coast Yes, all of coastline 

Saltmarshes in the area have also been described as: 

…among the most sensitive coastal landforms in the Southern NRM Region and are associated 

with biological communities of high conservation values (NRM South 2008, pp. 8, 9). 

Past occupation by local Indigenous Peoples could have occurred in several suitable 

sites, however no records or evidence of such occupation have been discovered 

(Kingdom 2008; Kiernan 2013). The large numbers of black swans in waters 
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adjacent to and within Long Point would have provided a valuable food source of 

eggs to the Aboriginal people (Department of Sustainability 2008). Nevertheless, no 

Aboriginal heritage artefacts or sites were found during an Indigenous Heritage 

Survey carried out in July 2007 (Kingdom 2008). 

Since European occupation, extensive duck hunting has taken place, becoming an 

important feature of the Moulting Lagoon. Although this still occurs today, the 

activity is managed. Historical evidence of hunters on Long Point exists, however 

the purchase of Long Point by TLC in 2005 coincided with the exclusion of hunting 

on the site (Kingdom 2008). 

Subsequent to the acquisition of Long Point, TLC has adopted the following 

objective:  

To identify, conserve, assist people to appreciate and where necessary restore the Reserve’s (Long 

Point) natural and cultural heritage values and to ensure these values are passed on to future 

generations in as good or better condition than at present (Kingdom 2008, p. 17). 

 Climate 2.5

Tasmania’s east coast has a temperate maritime climate with prevailing westerly 

winds. The site is equidistant between Swansea and Friendly Beaches, each the 

location of a weather station managed by the Bureau of Meteorology (BOM) (Figure 

2.9). The Swansea station is a full weather recording facility (FWS) situated at an 

elevation of six metres, whereas Friendly Beaches is an automatic facility (AWS) 

recording temperature, rainfall and wind parameters and is located at an elevation of 

55 metres (Bureau of Meteorology 2014c). 
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Figure 2.9: Long Point in relation to BOM weather stations and the range of hills on the west and the east that 
appear to create a rain shadow effect. Source: DPIPWE (2014). 

Climate modelling shows that the central Tasmanian east coast will experience drier 

and warmer conditions in the future (McInnes et al. 2004). These conditions have 

already become apparent in the 30-year period mean climate statistics (Table 2.2). 

Table 2.2: Change in 30-year period mean climate statistics at Swansea. Source: BOM (2014a). NB: At present, 
2008 is the last year of statistical data available for Swansea. 

Statistic/30-Year period 1891-1920 1921-1950 1951-1980 1981-2008 

Rainfall (mm) 581.2 614.4 606.3 524.8 

Maximum temperature (
o
C)   17.6 18.1 

Minimum temperature (
o
C)   7.4 8.0 

2.5.1 Precipitation 

The general rainfall pattern for both BOM stations is variable throughout the year, 

though higher falls are experienced during the summer months. Friendly Beaches 

records higher rainfall for every month except December and January (Bureau of 

Meteorology 2014a; 2014b) (Figure 2.10). As Long Point appears to be in a rain 

shadow of both BOM sites, precipitation is expected to be lower. 
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Figure2.10: Average precipitation per month for Friendly Beaches (FB) and Swansea (SW) – FB 1997-2014, SW 
1981-2008. Source: BOM (2014a & b). 

2.5.2 Temperature 

Both weather stations show similar average monthly maximum and minimum 

temperatures (Figure 2.11). The warmest months are January and February with a 

mean daily maximum of 22.5oC and a mean minimum of 12.5oC. July is the coldest 

month with a mean daily maximum of 13.5oC and a mean minimum of 4.5oC 

(Bureau of Meteorology 2014a; 2014b). 

 
Figure 2.11: Average monthly maximum and minimum temperatures for Friendly Beaches (FB) and Swansea 
(SW) – FB 1997-2014, SW 1981-2008. Source: BOM (2014a & b). 
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2.5.3 Wind  

At 9am, west to north-westerly winds are the most prevalent for both Friendly 

Beaches and Swansea, followed by north-easterlies at 3pm (Bureau of Meteorology 

2014a; 2014b) (Figures 2.12 and 2.13). Wind strength at Friendly Beaches is greater, 

as the location is more exposed and elevated (Bureau of Meteorology 2014c). Wind 

strength at Long Point is more likely intermediate between Friendly Beaches and 

Swansea, however the shadow effect (see Figure 2.9) may alter the wind direction. 

 

  
Figure 2.12: Wind-rose data (L = 9am, R = 3pm) for Friendly Beaches for the period Mar 1997 to Sep 2010. 
Source: BOM (2014b).  

  
Figure 2.13: Wind-rose data (L = 9am, R = 3pm) for Swansea for the period Jan 1957 to Sep 2008. Source: BOM 
(2014a).  
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 Site history 2.6

Long Point was originally part of “The Grange”, a freehold property purchased in 

1848 by the Cotton family. In the 1890s, “The Grange” was sold and in the early 

1900s was repurchased by the Cottons and since then has remained in the family 

until Long Point was subdivided from “The Grange” in 2005 (J Cotton 2014, pers. 

comm., 24 August). 

Following subdivision from “The Grange” in 2005, Long Point was purchased by 

the Tasmanian Land Conservancy, a registered environmental organisation 

established in 2001 “to protect areas of high conservation values for species which 

are not adequately protected” (Tasmanian Land Conservancy 2014).  

On purchase of the site, TLC sought a perpetual conservation covenant in the form 

of a Private Sanctuary over Long Point to be registered under the Tasmanian Nature 

Conservation Act 2002 (Kingdom 2008). However, declaration as a Private Sanctuary 

under the Act has not been attained as the Tasmanian Department of Primary 

Industry, Parks, Water and the Environment are currently reluctant to take on “any 

more official responsibilities” (D Kingdom 2014, pers. comm., 17 February). 

2.6.1 Past land use 

Traditionally, Long Point had been used for bush grazing sheep with a dry stocking 

rate of approximately 0.75 DSE (dry, (not lactating), sheep equivalent) per hectare  

(J Cotton 2014, pers. comm., 24 August). Cultivation of the area has been limited to 

sporadic attempts to establish exotic pasture which failed. From the late 1880s to the 

1930s, black wattle was harvested to feed the Swansea bark mill; the processed 

material was exported for use tanning leather. Sometime in the early years of 

European ownership, several drains were dug across the marshland (Kingdom 

2008). Though their purpose was not recorded, their location and direction appears 

to suggest that attempts were made to drain the marsh of flooding tides (Kingdom 

2008). In the early 1990s, a channel was constructed on the northern side of the 

dolerite ridge from Moulting Lagoon to King Bay, in effect isolating the dolerite 

ridge from the saltmarsh (see Figure 2.4). Unsuccessful attempts at aquaculture 
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ventures followed – one for Tasmanian whitebait the other for Pacific oysters 

(Kingdom 2008). The channel drain remains open with weak tidal waters generally 

flowing east to west. For some years, Long Point was used by duck hunters and two 

small, derelict shacks are still visible at the north-eastern end of the site. Bird hides 

were also built in the ephemeral ponds such as Gum Tree Hole and Opening Hole 

for duck hunters (Kingdom 2008). 

2.6.2 Current land use 

Long Point is now freehold land retained by the TLC (Figure 2.14). The site is 

somewhat remote with limited access. Activities are restricted to those outlined in 

the conservation covenant that is attached to the land title (Kingdom 2008). A 

visitor management policy has been implemented with its principal aims being 

reserve management, scientific research and donor and educational visits. In each 

case visitor numbers are limited to a maximum of 20 persons at any one time 

(Kingdom 2008). With respect to introduced species, gorse (Ulex europaeus) 

eradication is underway with the aim of eliminating gorse cover estimated at 

approximately 50 hectares (in 2005). Contract spot spraying, and cut and paint of 

gorse by conservation volunteers, have been used for this task with some success 

(Kingdom 2008). 

 
Figure 2.14: Access gate to Long Point Reserve fitted with appropriate signage. 
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 Relevant treaties, legislation and regulations 2.7

Current legislation and policies pertaining to the site are outlined in Table 2.3. 

Table 2.3: Legislation and policies requirements for the management of Long Point. Source: Kingdom (2008). 

Jurisdiction Legislation and Policies 

Federal Commonwealth Environment Protection and Biodiversity Conservation Act (1999) 

State Tasmanian Nature Conservation Act (2002) 

 Tasmanian Threatened Species Protection Act (1995) 

 Tasmanian Aboriginal Relics Act (1975) 

 Tasmanian Coastal Policy 

Local Glamorgan-Spring Bay Council Planning Scheme 

 

 



Chapter 3 – Research Methods 

 Page 19 

Chapter 3: Research Methods 

 Introduction 3.1

Long Point was chosen as an appropriate study site for a number of reasons. Firstly, 

the land is privately owned and under consideration for protection as a private 

sanctuary, thereby facilitating future reassessment of environmental modifications 

resulting from climate related sea-level rise. Secondly, it contains a compact sequence 

of habits of varying vegetation communities and edaphic factors, ranging from the 

coastal to woodland and a full transitional range of marine to terrestrial 

communities. Thirdly, the adjacent woodland zone, although having incurred a low 

degree of anthropogenic impact in the past, provides a very important opportunity 

to study the full ecological range of terrestrial invertebrates now and in the future 

(Richardson & Mulcahy 1996). 

Preliminary site visits revealed that several environmental aspects played an 

important role within the saltmarsh ecosystem therefore necessitating investigation 

in conjunction with a study of spiders and beetles. These aspects were vegetation 

communities, landscape features and edaphic factors, with tides and climate regarded 

as being secondary. The need to carefully document these aspects influenced the 

research methodology for this project given that: 

1. Landscape features, for example, elevation and hill shade, determine various soil 

and vegetation characteristics; 

2. The edaphic factors, such as, moisture, salinity and pH, determine what and 

where plant species live and survive; and 

3. As terrestrial epigeal invertebrates live on vegetation and the ground surface, 

occupancy of particular habitats may be influenced by the make-up of 

vegetation communities and abiotic impacts. 
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Assessment of these three aspects helped to formulate the primary research 

question: 

o To what extent does a saltmarsh environment influence the distribution of cursorial spiders and 

ground beetles? 

From this, two secondary questions arose: 

o What is the relationship between soils, vegetation communities and invertebrate assemblages? 

o Are spider and beetle taxa faithful to their habitats as described by well-defined plant 

communities, or do they range between the saltmarsh and woodland environments? 

A hierarchical approach then defined the research processes as follows: 

 

 

Spiders and beetles 

Invertebrate assemblages 

Edaphic factors 

Landscape features 

Vegetation communities 

Outlined below in subsequent sub-sections are the methods used to answer the 

research question. A review of each component and its role within the saltmarsh 

environment is followed by a justification of the methods used in this study. 

 Transects, stations and identification 3.2

Three transects were established. Two were orientated west to east across the site 

and traversed the sand dune. The third tracked in a southerly direction incorporating 

the sand ridge and ended on the dolerite ridge (access to the shoreline here was 

hindered due to extensive gorse infestation). Transect locations and direction were 

determined by the profile of the landform and originally positioned to capture as 

much environmental range as possible across the elevation gradient (Figure 3.1). 
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Figure 3.1: RED, YELLOW and GREEN transects with identified stations at the research site, Long Point. Note: the 
GPS coordinates for all stations were uploaded to Google MAPS to generate the above image and saved 
as a .kmz file. Source: Google MAPS (2014). 

Vegetation communities were the most visible and readily assessable factor and 

generally had well defined boundaries. They became the basis for allocating the 

positions of individual pitfall stations along each transect. For example, if a 

vegetation community dominated by Sarcocornia spp. was followed by 
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another vegetation community dominated by Tecticornia arbuscula, a station would be 

positioned in the centre of each vegetation community positioned in a way that 

avoided the impact of edge effects. Although vegetation communities occurred more 

than once on transects, each time the community composition changed, a station 

was established.  

Pitfall trapping was used to sample terrestrial invertebrates, particularly spiders and 

beetles that inhabit the saltmarsh surface. In order to confer replication, three pitfall 

traps were established at each station, one on the transect line, one to the north of 

the line and one to the south. Pitfall traps to the north and south of the transect line 

were at least four metres and no more than six metres from the centre trap. All three 

pitfall traps were placed in positions that represented the vegetation community of 

the station. Additionally, the GPS coordinate of each pitfall trap at each station  

(n = 141) was recorded.  

It was very important that numbering and identification of transects, stations and 

pitfall traps were simple yet effective in order to facilitate site and laboratory work. 

To this end, a three character alphanumeric code was adopted, incorporating: a) R, 

Y, G (Red, Yellow, Green transect); b) stations numbered from west to east 

beginning 1 for each transect; and c) pitfall traps B (centre line trap), A and C (traps 

set north and south of centre line). For example, “Y4B” describes the pitfall trap 

position on Yellow transect in the 4th vegetation community along transect from 

western end, and it is the centre line pitfall trap. 

Transect attributes, including length, number of stations and pitfall traps are listed in 

Table 3.1. 

  



Chapter 3 – Research Methods 

 Page 23 

Table 3.1: Transect attributes at Long Point. 

Transect Description Length (m) Stations Pitfall traps 

RED Northern transect through Gum Tree Hole; 
crosses the sand dune twice either side of the 
lunette; sand dune has a woodland 
dominated vegetation cover. Saltmarsh 
vegetation is extensive either side of the sand 
dune and around Gum Tree Hole. 

995 14 42 

YELLOW Middle transect through Round Hole after 
crossing sand dune; vegetation either side of 
the dune dominated by grasses, some 
introduced. Saltmarsh vegetation is extensive 
either side of the sand dune and around 
Round Hole. 

1 215 17 51 

GREEN Southern transect crosses the low east/west 
sand ridge dominated by bracken; traverses 
beside Opening Hole and ends on the dolerite 
ridge. This transect had two unavoidable 
bends due to impenetrable gorse cover 
present at the time of establishment. 

1 320 16 48 

 TOTALS 3 530 47 141 

Although many stations were established in similar vegetation communities, all were 

retained in order to improve statistical robustness to the data being collected. 

 Vegetation communities 3.3

In order to survive harsh saltmarsh conditions, saltmarsh plants must be able to 

endure frequent inundation by salt water and live in soils that are often waterlogged 

(Long & Mason 1983; Saintilan 2009b). Furthermore, those plants that are further 

inland are prone to aerobatic salt, particularly on the windward side of the marsh. 

Soil types that vary across the saltmarsh are dependent on a number of factors, for 

example, frequency of saltwater incursion, salinity and elevation. Saltmarsh plants 

may adapt and survive in a wide range of soils, however their abundance and health 

will be markedly affected by the variable factors that make up soil types (Ranwell 

1972).  

A frequent claim made for saltmarsh vegetation is that it is species-poor. This 

impression is compounded by the dominance of a single species, or at times a few 

species, particularly in the lower marsh (Adam 1990; Saintilan 2009b). Here, 

halophytic (salt tolerant), succulent vascular plants dominate the marsh, 
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these plants having adapted to the constant variations of salinity, moisture and at 

times anaerobic conditions to not only survive but also thrive (Long & Mason 1983). 

With increasing elevation, the number of species tends to increase, especially in the 

upper marsh zones, where mixtures of halophytic and non-halophytic species as well 

as saline and woodland grasses dominate alongside herbs (Long & Mason 1983; 

Adam 1990). This progressional change in vegetation is a universal feature of coastal 

marine marshes (Chapman 1974). 

As a general rule, the tropics exhibit the greatest richness of plant species, with 

richness declining as latitude increases (Adam 2009). However, Australian 

saltmarshes show a very noticeable contrary pattern (Adam 1990; Saintilan 2009). 

Australia’s four southern states – Tasmania, Victoria, New South Wales and South 

Australia, though home to less than 2.5% of the total saltmarsh/saltpan area of 

Australia, house over 90% of Australian saltmarsh species (Saintilan 2009), 

Tasmanian saltmarshes recording the highest number (Bridgewater & Cresswell 

2003). Although there are taxonomic affinities at family and genus level with 

saltmarsh taxa from other continents, at species resolution, Australian saltmarshes 

plants display a high level of endemism (Adam 1990). 

  
Figures 3.2 and 3.3: Distinct vegetation boundaries. Left – saline grassland containing Austrostipa spp. (left 
side), woody succulents – Tecticornia arbuscula (right side). Right – lowland woodland community comprising 
Lomandra longifolia (left side), saline grassland containing Austrostipa spp. and Poa spp. (right side). 

Vegetation patterns are conspicuous within saltmarshes, leading to what has been 

described as zonation (Long & Mason 1983; Adam 1990; 2009; Saintilan 2009b). 

Zonation is recognised in three rudimentary classes – low, middle and upper marsh 

(Long & Mason 1983), with often distinct boundaries. In turn, this zoned 
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arrangement of the saltmarsh reflects vegetation communities (Figures 3.2 and 3.3), 

and is dominated by tidal and elevational aspects.  

3.3.1 Classification 

Long and Mason (1983) suggested that the best manner to classify the saltmarsh is to 

consider the vertical range within the saltmarsh and split this range into three equal 

vertical zones, each supporting different vegetation communities. The low marsh 

would include three or four species, with one species dominant and there would be 

bare areas; the middle marsh containing more species, with the low marsh species 

present but with reduced abundance; the upper marsh comprising both salt and non-

salt tolerant species (Long & Mason 1983). 

Kirkpatrick and Glasby (1981) defined the structural forms of Tasmanian saltmarsh 

communities as: communities dominated by succulent herbs such as Sarcocornia spp.; 

communities dominated by grasses such as Austrostipa stipoides; communities 

dominated by sedges and grasses such as Juncus krausii, and communities dominated 

by herbs, such as Samolus repens (Kirkpatrick & Glasby 1981). 

Similarly, Bridgewater and Cresswell (2003) identified diverse coastal saltmarsh 

vegetation communities on an Australian continental basis and recognised a specific 

Tasmanian subgroup within the main Tecticornia arbuscula-Juncus kraussii group 

(Bridgewater & Cresswell 2003). Work by Saintilan (2009a; 2009b) analysing 

Australia’s coastal bioregions, revealed that with increasing latitude, vegetation 

richness of saltmarsh biogeographic provinces increased. Furthermore, Tasmania, as 

a whole, has 53% of Australia’s saltmarsh flora with the island’s South East 

bioregion containing 46% of the total flora (Saintilan 2009). Add any buffer or 

woodland fringe to the saltmarsh and species richness increases considerably. 

3.3.2 Sampling 

Many challenges are faced when sampling saltmarsh environments. Together with 

bare areas and saltpans, the complexity and diversity of vegetation in temperate 

saltmarsh habitats makes it difficult to define at a fine scale, the vegetation 

communities that are found (Kelleway et al. 2009). Long Point was no 
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different. Canopy cover of some plants obscured smaller plants, hampering 

identification and estimates of abundance. Furthermore, the timing of sampling was 

important, as identification of some species from the same genus was far easier at 

different times of the year. For example, Sarcocornia blackiana was easier to identify 

from S. quinqueflora in autumn due to its colour contrast. 

Floristic composition and species abundance was measured using two methods. The 

first was qualitative assessment to determine the position of pitfall stations along 

each transect. The second was a quantitative method to determine species 

composition and abundance and to identify any species that had not been recognised 

using the previous method. 

Boundaries of vegetation communities at Long Point are very discernible (see 

Figures 2.7 and 2.8, 3.2 and 3.3) with generally two or three species being the most 

dominant within the community. As transects were established, stations were 

identified by using the qualitative approach based on the three dominant vegetation 

species (if possible) or by genus (if species not possible) within the particular 

community, and their respective percentage cover at the station. As would be 

expected, many stations at the site were identical in vegetation complexes. Some 

communities were replicated but were in a different landscape setting. For example, 

a Sarcocornia spp. community was very close to the marine environment (the edges of 

the saltmarsh) and a similar vegetation community was also duplicated within the site 

adjacent to large water holes. All stations were retained irrespective of their location 

or vegetation make-up. 

A second survey was conducted using a modified Braun-Blanquet (BB) cover-

abundance method that estimates the quantity of each species in a vegetation 

community in one scale – cover and abundance (Mueller-Dombois & Ellenberg 

1974; Moore & Chapman 1986). This method ascribed a numerical value to crown 

cover percentage of individual species as follows: 

1 = <1%, 2 = 1-5%, 3 = 5-25%, 4 = 25-50%, 5 = 50-75% and 6 = >75% 

Due to the overlaying cover of most species, the total cover for each sample plot 
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may exceed 100% (Moore & Chapman 1986) and was a common outcome at Long 

Point. 

Each station on each transect (n = 47) was assessed in April 2013 and reassessed in 

January 2014 in order to capture any summer growing plants. An area approximately 

one metre on either side of the line through the three pitfall traps (A, B and C, 

therefore two metres wide) at each station was evaluated for individual species and 

ascribed a numerical value based on its percentage cover within the plot using the 

Braun-Blanquet scale above. 

3.3.3 Analysis of data and presentation of results 

The first vegetation assessment was used to establish transects and stations on the 

research site and following completion the information had no further use, but was 

retained. 

3.3.3.1 Grouping to vegetation communities 

Vegetation is the most visible and easily assessable factor of a saltmarsh. The 

principal species that make up the individual vegetation communities do not change 

season by season. Dominant species, such as Sarcocornia spp. and Tecticornia arbuscula 

are easily identifiable. Furthermore, saltmarsh vegetation communities are generally 

well defined and have distinct boundaries. Therefore, it was beneficial to use 

vegetation communities to cluster the stations at the research site.  

Following the second vegetation survey, stations were grouped using a cluster 

analysis incorporating the Ward linkage method from the vegan package in R 

(Oksanen 2013). The analysis of BB cover values 1 to 6 (individual species cover 

from less than 1%) and cover values 2 to 6 (individual species cover from 1%) 

produced too much distortion, where in both cases, groups included too many 

stations that were visually different in the species present at individual stations. 

Furthermore, the Ward analysis of BB cover values 1 to 6 and 2 to 6, created groups 

that contained just one station, a situation that was not represented in the field. An 

analysis using BB cover values 3 to 6 (individual species cover of greater than 5%) 

improved the results by reducing the number of stations in particular groups. 
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However, groupings of seven and eight clusters still resulted in some groups 

containing a single station each. 

The best grouping of stations was derived from a whole evidence approach that 

included a statistical analysis of cover data, a visual appraisal and knowledge of the 

site. To this end, using BB cover values of 3 to 6 in an analysis resulting in six 

clusters met the criteria. This was consistent with field inspection of the vegetation 

communities that made up each group, recognisable as lower/middle/upper marsh 

and fringe (woodland) areas. Furthermore, although two woodland groups had only 

two stations each, each of these groups represented an excellent fit based on field 

evidence. 

For ease of use and understanding, the vegetation communities at the research site 

were matched with the recognised units used in the formal mapping of Tasmania’s 

vegetation – TASVEG 3.0 (TASVEG). Currently saltmarsh vegetation units in 

TASVEG are identified by three codes, ASS, ARS and AUS (Department of Primary 

Industries Parks Water and Environment 2014) (Table 3.2). 

Table 3.2: TASVEG saltmarsh codes and description. Source: Harris and Kitchener (2005). 

Code Description 

ASS Succulent saline herbland (ASS) is a low-growing community dominated by Sarcocornia 
quinqueflora and sometimes Sclerostegia arbuscula (now known as Tecticornia arbuscula – 
author note), the latter shrubs being up to 80 cm high. Often the community has a strong 
reddish tinge resulting from the visibility of leaf anthocyanin, which is an adaptation to 
highly saline and sunny environments. 

ARS Saline sedgeland/rushland (ARS) is a coastal community frequently dominated by Juncus 
kraussii or, sometimes, other species such as Gahnia filum. Some succulent species may be 
intermixed. 

AUS Saltmarsh (undifferentiated) (AUS) is a generic saltmarsh code, which has been used 
where remote-mapping of the specific saltmarsh ecological vegetation communities has 
not been possible. 

While TASVEG codes were useful at a broad scale, they were limiting in identifying 

vegetation at a finer scale. The ASS unit (succulent saline herbland) did not 

discriminate between Tecticornia arbuscula dominated vegetation compared to 

Sarcocornia spp. dominated vegetation, nor, if the vegetation was coastal, or, in the 

case of Long Point, inland. 
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Based on the vegetation dendrogram (see Results – Section 4.1.1, Figure 4.1,  

page 60) of the three defined saltmarsh vegetation communities, two groups at Long 

Point fell into succulent saline herbland (ASS) code, one that was wholly dominated 

by Sarcocornia quinqueflora and/or S. blackiana, the other dominated by Tecticornia 

arbuscula, S. quinqueflora and/or S. blackiana, and Disphyma crassifolium. These two 

groups were assigned codes ASS(a) and ASS(b) respectively. The third group 

represented saline sedgeland/rushland dominated by Juncus spp. (rushes) and Gahnia 

spp. (sedges) and is consistent with the TASVEG description, therefore assigned the 

code ARS. 

The research site also included buffer zones and woodland. TASVEG codes that 

have been used to describe these dry-land communities at Long Point were DVG 

and GPL (Department of Primary Industries Parks Water and Environment 2014) 

(Table 3.3). 

Table 3.3: TASVEG dry-land codes and description. Source: Harris and Kitchener (2005). 

Code Description 

DVG Eucalyptus viminalis grassy forest and woodland (DVG) is characteristically low to 
medium height (15-25m), open, grassy forest dominated by E. viminalis. The 
understorey is generally grassy, however rock can form a significant cover in some 
situations. Low shrubs may form a sparse layer. The specific make-up of the understorey 
depends largely on the fire and grazing regimes. 

GPL Lowland grasslands (GPL) are dominated by tussocks of Poa labillardierei that may be 
large and spreading or small and tufty, depending on the situation. The tussocks may 
form a closed sward or an open layer with smaller grasses and herbs between the 
tussocks. 

The DVG code includes typical understorey tall shrubs as Acacia mearnsii, 

Allocasuarina verticillata and Bursaria spinosa. These three species were present on the 

sand dune, with Acacia mearnsii also occurring on the dolerite ridge. However, there 

was no evidence of living Eucalyptus viminalis at the site, this tree having succumbed 

to the ravages of grazing (sheep), browsing (possums), drought and old age (J 

Cotton 2014, pers. comm., 24 August). In this instance it was prudent to characterise 

this vegetation community as GSL – lowland grassy sedgeland (Table 3.4), as 

Lomandra longifolia, and to a lesser extent Lepidosperma concavum, were well established 

in several large areas of the sand dune. The GSL vegetation code also includes tall 

shrubs such as Acacia mearnsii and Bursaria spinosa, both evident in the vegetation 
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community being classified. 

Table 3.4: TASVEG GSL description. Source: Harris and Kitchener (2005). 

Code Description 

GSL Lowland grassy sedgeland (GSL) is dominated by sedges such as Lomandra longifolia 
and Lepidosperma species interspersed with grasses. Acacia dealbata, A. mearnsii, A. 
melanoxylon and Bursaria spinosa can form scattered small tree layer on slopes 

Using the groups identified by Ward method on BB cover values 3 to 6, vegetation 

communities at Long Point were assigned vegetation codes based on TASVEG (see 

Results – Section 4.1.1, Table 4.1, page 61) and stations identified to those 

vegetation codes were grouped (see Results – Section 4.1.1, Table 4.2, page 64). A 

non-metric multidimensional plot was produced to demonstrate station relationships 

based on the groups selected above. 

The saline community’s descriptions for ASS(a), ASS(b) and ARS fit realistically with 

those described by Kirkpatrick and Glasby (1981) in their study of vegetation 

distribution and community composition of Tasmanian saltmarshes (Table 3.5). 

Table 3.5: A comparison of vegetation descriptions between Kirkpatrick and Glasby (1981) and this study. 

Kirkpatrick and Glasby TASVEG 
Code 

This study 

Communities dominated by succulent 
shrubs: Arthrocneum arbuscula (now 
known as Tecticornia arbuscula – author 
note), Sarcocornia quinqueflora, 
Sarcocornia blackiana, Disphyma blackii 
(now known as Disphyma crassifolium – 
author note) 

ASS(a) Succulent saline herbland wholly 
dominated by Sarcocornia quinqueflora 
and/or S. blackiana 

ASS(b) Succulent herbland dominated by 
Tecticornia arbuscula, Sarcocornia 
quinqueflora and/or S. blackiana, Disphyma 
crassifolium and bare areas 

Communities dominated by sedges or 
rushes: Juncus kraussii, Gahnia filum 
and/or Gahnia trifida 

ARS Saline sedgeland/rushland dominated by 
Juncus spp., Gahnia spp., Austrostipa 
stipoides, and to a lesser extent, Poa 
labillardierei with bare areas 

The groups – three saltmarsh ASS(a), ASS(b), ARS, and three woodland GSL, GPL 

(dr) and GPL (sr), formulated above and in Results (see Section 4.1.1), will now 

form the basis for the further analysis of landscape, soil and invertebrate data in this 

study. 
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3.3.3.2 Vegetation communities – indicator species 

Species are chosen as indicators when they reflect the biotic state of the 

environment if their presence can predict the diversity of communities within an 

area (De Cáceres 2013). Indicator species emerge through an analysis of occurrence 

or abundance values from a set of sampled sites and the classification of the same 

sites into site groups, which may represent vegetation communities. For this study, 

one data element has been used to cluster the stations into group sites, and then to 

determine the indicator species within those groups. The site classification vector 

was determined by the use of BB values of 3 to 6; subsequently, the species indicator 

analysis used the BB values of 1 to 6 in order to fully characterise each vegetation 

community. The indicator species analysis was carried out in the R package 

indicspecies using the function “IndVal” (De Cáceres 2013). 

 Landscape features 3.4

The principal factor that differentiates the saltmarsh environment from the adjacent 

terrestrial environment is tidal inundation (Adam 1990), and the main feature that 

controls what is flooded and what is not is elevation. The elevational gradient from 

sea-level interacts with the tides to determine which sections are inundated daily, 

seasonally or infrequently, such as via storm events. This gradual altitudinal increase 

decreases tidal influences, which in turn limits soil salinity, moisture, waterlogging 

and pH. These factors all impact directly on the extent and nature of vegetation 

cover in saltmarshes (Ranwell 1972; Long & Mason 1983; Adam 1990; 2009). 

The amount of light reaching the ground is another factor that is determined by the 

interplay of tides and elevation (Ranwell 1972). During times of tidal inundation, the 

amount of light available to submerged vegetation is reduced, and often fine silt will 

settle on plant leaves, impacting the rate of photosynthesis following tidal retreat 

(Ranwell 1972; Chapman 1974). Solar insolation, the amount of energy that reaches 

the earth’s surface, plays a role in the make-up of vegetation communities. For 

example, shading by tall saline grasses limits types of ground cover vegetation, and 

evaporation can alter soil moisture thereby increasing salinity (Clarke & Hannon 

1969; Adam 2009).  
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A minor factor, yet still important, is hill shade. Sand dunes that border or intersect 

saltmarshes can limit sunlight by shading depending on elevation and dune 

orientation, which can determine the impact on surrounding vegetation and soils. 

Hill shading could influence the fringe/hinterland to the saltmarsh and data from 

GPS coordinates was analysed to see if there was any evidence of impact. 

3.4.1 Tides 

Tides play several roles in the daily life of a saltmarsh. Of particular importance is 

the daily flooding of saline water that influences the plant and animal saltmarsh 

species of the lower marsh zone (Ranwell 1972; Adam 1990). The recurrent cycle of 

inundation and withdrawal exerts selective pressure on both plants and animals that 

have adapted to conditions of exposure and submersion in combination with 

hypersaline surroundings. A flooding tide recharges the lower marsh with saline 

waters, whereas an ebbing tide will leave substantial volumes of saline water within 

the soil and in saltmarsh pans (Long & Mason 1983). Evaporation draws off water 

leaving increased salt levels behind, thus changing the local environment to 

hypersaline conditions (Morrisey 2000). 

Tidal patterns vary around the world and fall into three categories, a) semi–diurnal: 

two high tides per day of relatively equal height; b) mixed: two high tides per day, 

with varying heights; and c) diurnal: one high tide per day (Adam 1990). 

Furthermore, tidal heights vary over a 28 day period (the lunar cycle) and again at 

the time of equinoxes when the maximum amplitude occurs (Long & Mason 1983). 

As a consequence of tidal height fluctuations, different sections of the saltmarsh 

become inundated, some more often than others (Ranwell 1972; Long & Mason 

1983; Adam 1990). Variable levels of marsh inundation lead to zonation, in turn 

leading to varying vegetation communities that adapt and survive in different levels 

of tidal flooding (Long & Mason 1983; Adam 1990) and salinity levels. 

Zonation is very evident at Long Point with many vegetation communities having 

well defined boundaries (see Figures 2.7 and 2.8). During this research project, tidal 

flooding events were observed particularly in winter. No observations were recorded 

during these events except for some photographs (Figures 3.4 and 3.5). 
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Figure 3.4 and 3.5: Flooding events. Left – RED transect station R13. Right – YELLOW transect station Y2. 

A desktop study of tidal activity during the time of invertebrate collections, March 

2013 to February 2014, was undertaken using tidal data from the Bureau of 

Meteorology Tidal Predictions portal, and is reported in Section 4.2.1 (see Results – 

Tides). 

3.4.2 Climate 

Climatic influences operate unvaryingly over the flat surface of marshland, and tend 

to be “unidirectional across marsh surfaces” (Ranwell 1972, p. 11). It is not clear 

what impact rainfall has on saltmarshes other than locally reducing salinity in soils, 

particularly after heavy rain, and also increasing soil moisture levels in upper marsh 

areas (Chapman 1974). High rainfall at times of extreme high tides will increase the 

marsh area flooded both spatially and temporally (personal observation). Although it 

appears not to have been studied in detail, temperature range and variation can play 

a role in the saltmarsh vegetation germination and survival (Ranwell 1972; Chapman 

1974). High temperatures, which occur during periods of neap tides when tidal 

inundation is at its weakest, will escalate evaporation and as a consequence, increase 

salt efflorescence in soils (Chapman 1974). Young vegetation at this time is at 

serious risk. Low temperatures such as frost, particularly at times of low inundation 

levels, will seriously damage vegetation, such as Sarcocornia quinqueflora, often resulting 

in death of shoots and at times whole plants (personal observation – see Appendix 

A1b – Frosts, page 165). 

Precipitation and temperature data were available from nearby BOM weather 

stations at Swansea and Friendly Beaches. However, as Long Point is 
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probably in a rain shadow caused by the surrounding hills and ranges (see Figure 

2.9), it was considered important that an attempt be made to record precipitation 

and temperature at the site and compare to that of the official weather stations to 

establish any variations. 

3.4.2.1 Precipitation 

Four standard 2 000ml Nylex rain gauges were set up at: a) the entry gate to Long 

Point (LPS); b) station R4; c) station Y12; and d) station G16 (Figure 3.6). Rainfall 

recordings were taken at every visit to the site and data tabulated with rainfall data 

for the same period from the BOM weather stations.  

3.4.2.1 Temperature 

Ten LogTag® (Model Trix-8) (http://www.microdaq.com) temperature data loggers 

were located at various stations on Red and Yellow transects to record temperature 

on marshland and the sand ridge, and one was placed at the end of Green transect 

on the dolerite ridge (Figure 3.6). Each logger, attached to a marker peg adjacent to 

the A pitfall trap, was covered with an upturned white plastic pail that had 

ventilation holes drilled into it in an attempt to mimic a Stevenson Screen, a standard 

used internationally to house temperature instruments (Bureau of Meteorology 2013) 

(Figures 3.7 and 3.8). The loggers were set to record the temperature every 66 

minutes for 365 days, a total of nearly 8 000 measurements per logger. 

  
Figure 3.7: Temperature logger.            Figure 3.8: Temperature logger cover. 

http://www.microdaq.com/
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Figure 3.6: Location of rain gauges and temperature loggers at Long Point. Source: Google MAPS (2014). 
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The LogTags® were positioned on 9 June 2013 and retrieved 12 June 2014 – 

recording concluded on 8 June 2014. Data from two LogTags® (stations R1 and 

Y17) were irretrievable. Data retrieval from the remaining LogTags® was successful. 

Retrieved data were collated by station, sorted for maximum and minimum per 

month, and tabulated and plotted with the maximum and minimum temperatures 

from Swansea FWS and Friendly Beaches AWS. The maximum and minimum 

temperatures for June 2013 were taken from the period 9 to 30 June 2013 to match 

the date range from the data loggers. 

3.4.3 Elevation, hill shade and solar radiation 

A GPS survey using a Garmin GPS 72 handheld unit was completed as transects 

and stations were established. At that time the coordinate of each pitfall trap was 

recorded. Fortuitously, LiDAR (Light Detection and Ranging) data from a 

Tasmanian Government project on climate futures for Tasmania was available. This 

facilitated the analysis of the GPS data for elevation using Esri ArcMap 10™. 

However, the elevation results were found to be unreliable as LiDAR has more 

difficulty penetrating dense saltmarsh vegetation, such as Sarcocornia mats, than it 

does open woodland vegetation (Davidson 2010). This resulted in the estimates of 

elevation of closed vegetation communities of the lower and middle marsh areas to 

be higher than actual by up to 0.20m (Davidson 2010). 

A real-time kinematic (RTK) survey was completed in June 2014 using geodetic 

grade GPS receivers. A base station was setup on ST114’s Reference Mark (RM) 5 

(ST114 is a 4th order Survey Control Point located on Grange Hill near Long Point) 

utilising a Leica® 1200 GPS and a radio transmitter (Figure 3.9). A Leica® 1200 

rover GPS was used to measure each pitfall trap (n = 140) at 1 second epochs for  

20 seconds (Figure 3.10). The anticipated accuracy of these points relative to the 

base station was ±20mm horizontally and ±50 mm vertically. Given real uncertainty 

of ST114 and associated RMs, detailed both in its Survey Report and the Geospatial 

Infrastructure Branch of DPIPWE (S Strong 2014, pers. comm., 11 June), a new and 

more accurate coordinate for ST114 RM5 was calculated using standard GPS 

surveying techniques. This involved undertaking an ~30 min static GPS 
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survey between the nearby SPM10953, a 2nd order survey point situated on the Lake 

Leake Highway, and ST114, over an ~5km baseline. From the new updated 

coordinate of ST114 RM5, an easting, northing, and height correction factors were 

calculated in order to update the pitfall trap coordinates. The horizontal positions 

for each pitfall trap were correlated to MGA Grid, GRS80 Ellipsoid, GDA94 and 

Zone 55. The orthometric height, which approximates mean sea level (MSL), was 

computed using the AusGeoid09 model (for further information see: 

http://www.ga.gov.au/ausgeoid/ nvalcomp.jsp) (all coordinates are available in 

Appendix E). As an independent check on ST114 RM5’s solution, base station data 

for ST114 RM5 was converted into RINEX format and this file was uploaded to 

AUSPOS (http://www.ga.gov.au/ earth-monitoring/geodesy/auspos-online-gps-

processing-service.html) to determine another solution. As the AUSPOS solution is 

a ‘modelled’ solution, using a number of GPS base stations over great distances (up 

to ~2,300km), this was not as accurate as the Static GPS survey between SPM10953 

and ST114 RM5. 

  
Figure 3.9 and 3.10: Left – GPS base station at ST114 RM5. Right – rover GPS recording coordinates (at Y12). 

  

http://www.ga.gov.au/ausgeoid/%20nvalcomp.jsp
http://www.ga.gov.au/%20earth-monitoring/geodesy/auspos-online-gps-processing-service.html
http://www.ga.gov.au/%20earth-monitoring/geodesy/auspos-online-gps-processing-service.html
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3.4.4 Analysis of data and presentation of results 

It was imperative to identify the correct location of each pitfall trap for future work 

at Long Point. As the GPS data from the first survey was only accurate to within 10 

metres in the horizontal plane (R Anders 2014, pers. comm., 6 June), it was not 

precise enough to enable relocation of existing pitfall traps in the future. 

The height data from AusGeod09 were used to generate an elevational profile of 

each transect based on longitudinal distance. Additionally, the new GPS coordinate 

data were analysed by Esri ArcMap 10™ for solar radiation and hill shade and used 

to produce a digitised terrain map and maps of hill shade and solar radiation. 

Height data from each station (the B pitfall trap which was the centreline of transect) 

were aligned to the six vegetation community groups formulated using the 

vegetation data – ASS(a), ASS(b), ARS, GSL, GPL (sr) and GPL (dr) (see Methods 

Section 3.3.3 and Results Section 4.1.1). Once associated to each group, the group 

height data were analysed using multivariate methods in the vegan package in R to: 

1. Examine the attributes of each group by use of a boxplot summarising the 

quartiles; 

2. Check for differences of groups means using analysis of variance (ANOVA). 

A post hoc test, Tukey’s Honestly Significant Difference (HSD) test, was used 

to identify groups that differ significantly from each other.  

 Edaphic factors 3.5

Saltmarsh soils are made up of sediments transported by fluvial flows, which are 

deposited on low-lying marine zones when flows decrease in velocity (Phleger 1977). 

These deposits are generally fine silts and clays that allow vascular plants to become 

established (Long & Mason 1983), and as vegetation increases in abundance, more 

sediment is trapped and the surface rises in elevation (Phleger 1977; Long & Mason 

1983). Decaying plant matter adds organics thereby increasing the nutrient supply to 

the established vegetation, stimulating further vegetation growth. Biological activity 

breaks down the decaying plant matter and bioturbation by invertebrate burrowers 
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transport detritus deep into the sediment substrates (Ranwell 1972) further 

improving the soil. Soil characteristics vary across saltmarsh zones and are 

dependent on the regularity of saltwater incursion, topography, erosion and 

vegetation type, and also environmental features such as wind, precipitation and 

evapotranspiration (Phleger 1977; Long & Mason 1983). 

Soil excavated from the three the pitfall traps at each station was removed from the 

corer, combined, boxed and labelled. Soil samples were taken to a depth of 10cm. 

The initial soil sampling was conducted in January 2013, with a further sampling 

taken in July 2013, from cores adjacent to the original cores. The later sampling was 

conducted to investigate any changes to moisture content, pH and EC due to winter 

time precipitation and evaporation at the site. 

On return to laboratory, a representative sub sample from each sample was dried to 

determine as received moisture content (see 3.5.1 below). The remaining soil from 

each sample was air dried in a fume hood using only fan forced air in order to 

prevent mould growth or any changes to the characterisation of the soil. Once dried, 

the samples were sieved on a 2mm sieve with large pieces broken up using a mortar 

and pestle (if possible) prior to sieving. Care was taken to remove any obvious plant 

material from each sample. The <2mm fraction was packaged in seal-top plastic 

bags, labelled and stored (Figures 3.11 and 3.12). 

  
Figures 3.11 and 3.12: Left – RED transect soil samples – numbered from top left R1, R13 and R14 at bottom. 
Right – soil samples for storage. 

The analysis of soil moisture content (3.5.1), soil chemistry (3.5.2), soil organic 

matter, carbon and texture (3.5.3) of the <2mm fraction from each sample (from 

each station on all transects), was undertaken by the author. The 
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methodology used in the analysis of the results is outlined in 3.5.4 (below). 

3.5.1 Soil moisture content 

Soils can hold substantial amounts of moisture, yet moisture content is often 

overlooked or ignored (Rayment & Lyons 2011). However, it is an important factor 

in saltmarshes and therefore has been used as one of the factors in the 

characterisation of soils in this study. The cyclical rise and fall of tides, floods and 

drains water from the soil and moisture retention is determined by the soil structure 

(Long & Mason 1983). Soils containing high levels of organic matter can retain over 

10% of their oven dried weight as moisture, whereas those with low levels of organic 

matter such as siliceous sands retain less than 2% moisture (Rayment & Lyons 

2011). Waterlogging in saltmarshes is a major factor in saltmarsh ecology (Adam 

1990) and its basic effect is limiting the supply of oxygen and allowing the soil to 

become anaerobic (Long & Mason 1983). Variation in plant species capacity to 

tolerate anaerobic conditions and high levels of salinity caused by tidal flooding, 

determines patterns of plant species distribution within saltmarshes (Long & Mason 

1983; Adam 1990). Furthermore, waterlogging impacts the reducing potential of 

saltmarsh soils which can lead to the production of organic compounds such as 

methane (Long & Mason 1983). Soil moisture tests used to determine moisture 

content are from Rayment and Lyons (2011) and described below: 

As received moisture content: on receipt at the laboratory, a sub sample from each 

sample was removed, weighed, and air dried in a fan forced fume cupboard. Each 

sub-sample was reweighed to determine the field moisture weight and reported as: 

Field moisture content (%). 

Air dry moisture content: a pre-weighed (10-50g) sub-sample of each air dried 

sample was oven dried at 105oC in a fan forced oven to constant weight, generally 24 

hours, then reweighed to determine the weight of moisture and reported as: Air dry 

moisture content (%). 

Field to oven dry moisture content: total moisture content for each sample was 

calculated by summing the above field and air dry moisture contents and reported as: 

Total moisture content (%). 
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3.5.2 Soil chemistry (EC and pH) 

The distribution of vegetation in a saltmarsh can be influenced by acidity (Wherry 

1920), and the concentration of salt within the soil (Álvarez‐Rogel et al. 1997; 

Álvarez‐Rogel et al. 2000). With increasing elevation, flooding tides decrease, 

although this it is not necessarily synonymous with salinity (Adam 1990). Salinity 

levels can vary spatially and temporally throughout saltmarshes (Álvarez‐Rogel et al. 

1997). Precipitation between tidal flooding can reduce salinity, yet during periods of 

dry weather, salinity levels can increase due to evapotranspiration (Long & Mason 

1983; Adam 1990) resulting in salinity levels greater than that of seawater (personal 

observation). The elevated terrestrial profile is also subject to high levels of aerosolic 

salt borne by strong onshore winds thus increasing soil salinity levels (Long & 

Mason 1983). 

3.5.2.1 Electrical conductivity (EC) 

Salinity levels in soils are usually assessed by measuring the electrical conductivity 

(EC) of a soil/water solution (Hazelton & Murphy 2007). The EC of a soil solution 

is directly related to the amount of total dissolved salts that are present in the soil, 

however the salinity level depends on the type of salt that is present in the soil 

(Hazelton & Murphy 2007). At present there is no internationally agreed technique 

for determining EC, the main option being a soil/water ratio of 1:5 which is widely 

used in Australia (Rayment & Lyons 2011). The common units for EC used in soil 

science are deciSiemens per metre (dS/m) (Hazelton & Murphy 2007), these units 

are used throughout this report. Soil chemistry tests used to determine EC content 

are from Rayment and Lyons (2011) described below. 

EC1:5 soil and water: three sub-samples from each summer and winter soil sample 

(n = 282) were prepared and tested by adding ten grams of air dried soil to 50ml of 

deionised water and placed in a centrifuge tube. The solution was mechanically 

shaken end over end for one hour so as to dissolve soluble salts. After standing for 

20-30 minutes to allow the soil to settle, three electrical conductivity readings were 

taken using a temperature compensated pre-calibrated Mettler Toledo® (model 

Seven Multi) meter (Figures 3.13 and 3.14), thus nine readings were taken for each 
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sample (3 readings from 3 sub-samples). An average was calculated from the nine 

readings, this became the EC1:5 value of each sample, reported as: EC1:5 (dS/m) at 

25oC on an air dry (40oC) basis. 

 

 
 
Figures 3.13 and 3.14: Left – Mettler Toledo® Seven 
Multi meter. Above – fitted with pH and EC probes. 

 

As the dominant salt is expected to be composed of sodium chloride (from sea 

water), the conversion of EC to salinity is: 0.64 X EC1:5 dS/m (Hazelton & Murphy 

2007). 

3.5.2.2 pH 

The pH measure of soil is its value of the acidity or alkalinity, indicating the chemical 

activity of the hydrogen ion and/or the hydroxyl ion in a water solution (Hazelton & 

Murphy 2007; Rayment & Lyons 2011). This chemical activity is at its lowest when 

the pH value is 7.0. Soil pH plays an important role in the distribution of native 

plants (Wherry 1920). Saltmarsh soils that undergo regular inundation become 

anaerobic leading to the release of sulphates that in turn causes the lowering of pH 

(Adams 1963). Soil pH is generally measured in a water or 0.01M calcium chloride 

(CaCl2) solution at a ratio of one part soil to five parts solution (Hazelton & Murphy 

2007). The use of a CaCl2 solution is recommended for soils that have been affected 

by salts such as sodium from sea water (Rayment & Lyons 2011). 

pH of 1:5 soil/0.01M calcium chloride (CaCl2): this method was used as the 

results are largely unaffected by the occurrence of soluble salts, whereas the use of 

deionised water instead of CaCl2, impacts the results due to the occurrence of 

soluble salts. Three sub samples from each summer and winter soil sample (n = 282) 

were prepared and tested as follows: ten grams of air dried soil was added to 50.0g 

of 0.01M CaCl2 and placed in a centrifuge tube. The solution was 
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mechanically shaken end over end for one hour. After standing for 20-30 minutes to 

allow the soil to settle, three pH readings were taken using a temperature 

compensated pre-calibrated Mettler Toledo® (model Seven Multi) meter (Figure 

3.13 and 3.14) fitted with an InLab®Expert Pro electrode that is recommended for 

use in soil measurements (Mettler Toledo 2007). Thus nine readings were taken for 

each sample (3 readings from 3 subsamples) (Figures 3.15 and 3.16).  

 
Figures 3.15 and 3.16: Above – testing laboratory. Right 
– pH and EC probes in soil solution. 

 

An average was calculated from the nine readings and nominated as the pH value for 

each sample, reported as pH (1:5 soil/0.01M CaCl2) on an air dry basis. There was a 

noticeable difference in the composition of the measured solution in each sample 

(Figures 3.17 and 3.18). 

  
Figures 3.17 and 3.18: Difference between samples. Left – station R2 little organic matter. Right – station R3 
high organic matter. 

Note on calibration: Prior to use each day, the meter was calibrated using pH buffers 

of 2.0, 4.0, 7.01 and 9.21, and EC buffers of 0.5, 1.413 and 12.88 dS/m. 
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The calibration was checked prior to measurement using pH buffers of 4.0 and 7.0 

as this was the expected range of the soil measurements, and all three EC buffers. 

The meter was checked during measurements and recalibrated if necessary. 

Note on measurements: Although pH measurements were reported using DI water, 

and EC using 0.01M CaCl2, pH and EC measurements were taken for each test and 

the information retained. Only the applicable measurements have been included in 

this report. 

3.5.3 Soil organic matter, carbon and texture 

Sub-samples from each of the summer and winter soil collections from each station 

were combined and thoroughly mixed to create an averaged soil sample for each 

station. These samples were labelled to indicate that they were a representation of 

summer and winter, for example R10SW (Red transect, station 10, summer/winter). 

Sub samples were taken from this new representative sample for the following 

analysis of soil organic matter and texture. 

3.5.3.1 Soil organic matter and carbon 

Soil organic matter (SOM) in the saltmarsh environment is sourced from decaying 

vegetative matter that grows on the marsh in addition to roots and rhizomes that 

support the vegetative growth (Long & Mason 1983). SOM does not decompose 

quickly due to poor drainage which inhibits microorganisms’ ability to break down 

plant residues (Rayment & Lyons 2011), leading to increased levels of plant material 

in saltmarsh soils. Carbon (C) is an important contributor to soil and plays an 

essential role in the biological, chemical and physical properties of soil  

(Rayment & Lyons 2011). Soil carbon can range from greater than 60% in peaty soils 

to practically nil in silica sands (Rayment & Lyons 2011). In estuarine systems, 

saltmarsh soils are the foremost reservoir of C. Until recently, the measurement of C 

has been either by loss on ignition (LOI) or dichromate oxidation  

(Craft et al. 1991), both with comparable results to that of carbon analysers  

(Soil and Plant Analysis Council 1999), a more recent, but expensive method. 

LOI has been used for many years by soil scientists, geographers and geologists as a 
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reliable technique in the measurement of C (Konen et al. 2002). It is a safe, quick and 

relatively cheap process (Craft et al. 1991; Navarro et al. 1993; Pribyl 2010) and 

requires simple laboratory equipment (Rayment & Lyons 2011). This method has 

been described as one of the more accurate methods of assessing C in soils (Navarro 

et al. 1993). Yet it does have some limitations with the accuracy of the result being 

dependent on a number of factors such as the dryness of the sample, the 

temperature of the furnace, the sample’s composition (Pribyl 2010), the loss of 

structural water from carbonaceous materials (clays) and CO2 from soil carbonates 

(Navarro et al. 1993). LOI is a technique that determines SOM content of a soil 

sample, and from this an estimation of soil organic carbon (SOC) can be made. 

Historically, this estimate has been based on an assumption that SOC to SOM 

conversion is 1.724 (SOM to SOC of 58%), called the “Bemmelen factor”, however 

the original source of this conversion factor is generally unknown (Pribyl 2010). In 

Pribyl’s (2010) critical appraisal of the SOC to SOM conversion, he assessed over 

480 studies and concluded that the empirical factor should actually be 1.97, which 

concurred with that obtained from theoretical calculations of 1.95 (SOM to SOC 

conversion of 51%) (Pribyl 2010). This is supported in an earlier study by Navarro et 

al. (1993) on the relationship between organic matter and carbon of organic wastes 

where they reported a value for SOC to SOM conversion of 1.957 for plant residues 

(Navarro et al. 1993). 

 
Figures 3.19 – 3.21: Above – muffle 
furnace. Centre – pre ashing in furnace. 
Right – post ashing (same samples). 
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The procedure for LOI adopted in this research is a combination of Rayment and 

Lyons (2011) and Soil and Plant Analysis Council (1999), slightly modified. Each of 

the samples (n = 47) was dried in an oven at 105oC for four hours, then following 

weighing in a crucible, was ashed at 550oC for two hours in a muffle furnace (SEM 

(SA) Pty Ltd, model CE MLM). The furnace was fitted with a digital temperature 

display, a thermostatic temperature control and a settable timer (Figure 3.19).  

Following cooling in the furnace to between 250-280oC, approximately 6-8 hours, 

the samples (Figures 3.20 and 3.21) were reweighed still in their respective crucibles 

and once emptied, the crucible was also weighed. The organic matter component of 

the soil was calculated as follows: 

%SOM = [(W105 – W550) x 100] / W105 

where W105 = oven dried sample less the weight of the crucible, W550 = muffle 

furnace sample weight less the crucible. The result is reported as soil organic matter 

by LOI (%SOM) on an oven dry basis. 

A study by Heiri et al. (2001) considered whether the position within the furnace and 

the size of the sample affected LOI results. To see if this had a bearing on the SOM 

values and reproducibility/precision of the results of this research, several samples 

were repeated during the LOI process using different weights, in different size 

crucibles (surface area) and placed randomly in the furnace. Very little variation in 

results was observed. 

The development of carbon analysers that operate on dry combustion (DC) of the 

soil sample has become the standard (Craft et al. 1991; Konen et al. 2002; Chatterjee 

et al. 2009). Studies have shown that there is a correlation of greater than 90% 

between this method and LOI (Pribyl 2010), with a study by Craft et al. (1991) on 

250 samples of estuarine marsh soils showing a relationship between organic carbon 

and LOI of R2 = 0.990. Although DC has a greater precision then LOI (Chatterjee et 

al. 2009), the unit cost of this method is not cheap (Konen et al. 2002) – $12 per 

sample following sample preparation (Chatterjee et al. 2009). In dry combustion, the 

soil sample, generally ground to less than 63µm and weighing 200mg, is mixed with a 

catalyst, heated to approximately 1 000oC in a stream of pure oxygen 
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allowing all C to be oxidised to CO2. The CO2 released is measured by solid state 

infrared absorption and converted to total carbon (TC) (Pribyl 2010). TC though, 

includes organic and inorganic carbon, therefore any carbonates in the soil are 

included in the TC value, whereas, LOI at 550oC does not include carbonates as the 

LOI temperature needs to be over 800oC to incinerate any carbonates. 

Fortuitously, an opportunity arose that gave rise to the access of a carbon analyser at 

the School of Earth Sciences (University of Tasmania). The analyser, an ELTRA® 

CS 2000 Carbon Sulphur Determinator, was fitted with a resistance furnace making 

it excellent for testing organic soils (Figure 3.22). The standard procedure for carbon 

analysis in the ELTRA, outlined in the operating manual, was followed. A ground 

subsample of each of the summer/winter soil combinations was weighed to three 

decimal places and added to the ELTRA along with accelerants (pure iron and pure 

tungsten) and a C value was obtainable within 60 seconds (Figure 3.23). The result 

was expressed as a percentage of C by weight of the sample. Due to the high per 

unit cost factor of this process, none of the samples were repeated to confirm 

repeatability/precision. 

  
Figures 3.22 and 3.23: Left – ELTRA CS 2000 Carbon Sulphur Determinator. Right – screen display of Y14 soil 
sample. 

3.5.3.2 Texture 

Texture is an important attribute of soil and one of its fundamental properties (Hunt 

& Gilkes 1992; White 1997). Texture controls soil temperature (White 1997), the 

movement of air, water and nutrients, this in turn affects plant growth (Bouyoucos 

1927; Bohn & Gebhardt 1989; Hunt & Gilkes 1992). Soils are classified by their 

texture, for example loamy sand, sandy loam, silty loam etc. This 
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classification is determined by the size of particles in the soil which are determined 

by the particle size analysis method (White 1997). The results are then plotted a 

triangular texture diagram (Hunt & Gilkes 1992; White 1997; Loveland & Whalley 

2000). 

A particle size analysis (PSA) was carried out on all collected soil samples (n = 47) to 

classify the soil texture for each station. The analysis was based on the density 

method and followed the most widely used procedure – the Bouyoucos hydrometer 

(Day 1965; Sur & Kukal 1992; Loveland & Whalley 2000). The density method relies 

on the change in density of the soil solution as soil particles settle, measured by the 

Bouyoucos hydrometer at specified points of time (Sur & Kukal 1992). This in turn 

determines the percentages of sand, slit and clay in the sample. The procedure is well 

documented (Bouyoucos 1927; 1962; Day 1965; Sur & Kukal 1992), and was used 

with the following protocol: 

Each analysed sample was a mix of summer and winter soils (see 3.5.3 above) taken 

from each station. A sub-sample of approximately 25 grams, weighed to 3 decimal 

places, was shaken with dispersing solutions – 10ml of 5% Calgon (sodium 

hexametaphosphate), 5ml of 1N NaOH (sodium hydroxide) and 250ml of deionised 

(DI) water in a 500ml flask on a Chiltern Flash Shaker for 15 minutes (Figure 3.24).  

 
Figure 3.24: Chiltern flask shaker. 

The solution was transferred to a cylinder and topped up with DI water to the 500ml 

level (Figure 3.25). The mixture was well stirred with a metal plunger for at least 30 

seconds and the Bouyoucous hydrometer introduced immediately the plunger was 

removed and a stopwatch started. Hydrometer readings were taken at 23 seconds, 40 

seconds, 5 minutes and 2 hours along with temperature. Each hydrometer reading 

was taken at the top of the meniscus (Day 1965) (Figure 3.26).  
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Figures 3.25 and 3.26: Left – soil solution in cylinders – left to right: R1, R2, R4, G3, G4, G7, G8, and G15. Right – 
hydrometer reading at meniscus – reading = 4.5g per 500ml. 

As the hydrometer was calibrated to record in grams per litre, the reading had to be 

corrected (a 500ml volume was used not 1 000ml) and further corrections applied to 

compensate for temperature (for each degree above 20oC add 0.3g or below subtract 

0.3g – a change in temperature alters the viscosity of the solution altering the rate of 

fall of the particles in the solution (Baver et al. 1972)), and the dispersion agents 

(subtract 0.5g) (Hutton 1950). 

There is considerable discussion in the literature relating to the question of the time 

of the hydrometer readings (Day 1965; Bohn & Gebhardt 1989; Sur & Kukal 1992; 

Ashworth et al. 2001), with suggested times being up to 24 hours (Bohn & Gebhardt 

1989). It is generally accepted that the time taken to separate the sand fraction from 

the silt/clay fraction is between 30 and 60 seconds (Bohn & Gebhardt 1989), with 

40 seconds being acceptable (Ashworth et al. 2001), yet contention centres on the 

time taken to separate the silt and clay fractions. Day (1965) had recommended that 

the time should be between eight and ten hours, however, though his method is 

sound and accurate, its time efficiency discourages its use on a routine basis (Sur & 

Kukal 1992). Subsequent work by Sur and Kukal (1992) modified Day’s (1965) 

hydrometer method, reducing the analysis time from eight hours to just two hours, 

this later validated by Adiku et al. (2005). However, Ashworth et al. (2001) countered 

this suggestion claiming that too much bias still existed using the two hour reading 

and that the silt/clay fractionation should be six hours, which would still allow the 

same operator to make all readings in one working day (Ashworth et al. 2001). In 

light of the above arguments it was resolved to use the 40 sec and 2 hour readings 
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due to time constraints with six samples tested over an eight hour period at a later 

date in an attempt to validate the 2 hour readings. A little variation was observed, 

however it was not sufficient to impact the results. 

During the PSA process, a very serious flaw was observed. The hydrometer method 

is based on the principle that the heaviest grains fall the quickest followed by smaller 

and smaller grains (Adiku et al. 2005). Therefore, as sand is heavy, it falls fastest in 

the water column, followed by silt and finally clay. However, the results obtained 

had to be modified as many samples contained high to very high levels of organic 

matter (see Results – Section 4.3.2, page 91). Some researchers suggest that prior to 

using the hydrometer method, organic matter should be removed with the use of 

hydrogen peroxide (Day 1965), however this is expensive and time consuming 

(Hutton 1950), and difficult to remove (Clarke & Hannon 1967). In this research, 

the size and the volume of organic grains were so great, they settled at a similar rate 

to that of sand, therefore increasing the representative percentage of sand compared 

to actuality (Figures 3.27 to 3.30).  

    
Figures 3.27 – 3.30: Results of particle size analysis. R2 and G4 – note the organic particles mixed within the 
sand portion; R2 – note the silt fraction above the organics topped by the clay fraction; G3 and G15 – expected 
outcomes, note the definitive graduations of sand, slit and clay. 

To overcome this, the percent weight of SOM ascertained from previous 

assessments of each soil sample (see Soil organic matter and carbon analysis above) 

was deducted from the weight of sand, and the percentages for sand, silt and clay 

were recalculated based on the reduced amount of sand as per the following 

example: 

Sample weight of soil added to cylinder = 100g; 

SOM content of sample (previously determined) = 25%, therefore SOM = 25g; 

Result of PSA based on Bouyoucous hydrometer: clay = 5% (5g), silt = 25% (25g), 

sand = 70% (70g). 
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As the SOM had mostly settled with the sand, the value of SOM was subtracted 

from the sand to ascertain the “true” weight of sand = 45g. The sand, silt and clay 

fractions were recalculated, clay = 7%, silt = 33% and sand = 60%. It is 

acknowledged that some of the SOM may have been included in the silt percentage 

(or even the clay portion) of the solution, however there was no method of 

accurately ascertaining whether this was so, or the amount. Therefore, the weight of 

SOM was subtracted from sand portion and for consistency was applied across all 

47 samples analysed. 

3.5.4 Analysis of soil data and presentation of results 

Soil analysis data were plotted in a linear format based on the elevation profile of 

each transect. The results from the summer and winter analysis of pH, EC and 

moisture were plotted within the same chart to demonstrate the temporal differences 

between the two seasons. The outcome of SOM from Loss-on-Ignition and carbon 

from dry combustion were plotted together by percentage for each transect. The 

results from the PSA were presented in chart form, each variable – sand, silt and 

clay, plotted by percentage. All plots are underlain by the elevation profile for each 

respective transect. 

Data from soil analysis of each station were aligned to the groups formulated using 

the vegetation data – ASS(a), ASS(b), ARS, GSL, GPL (sr) and GPL (dr) (see 

Methods Section 3.3.3 and Results Section 4.1.1). Once associated to each group, the 

group soil data were analysed using multivariate methods in the vegan package in R 

to: 

1. Examine the attributes of each group by use of boxplots summarising the 

quartiles; 

2. Check for differences of group means using analysis of variance (ANOVA). A 

post hoc test, Tukey’s Honestly Significant Difference (HSD) test, was used to 

identify those groups that differ significantly from each other. 

The relationship between edaphic factors was tested using the correlation (cor) 

function in R in order to identify predictor variables that would be useful tools in the 
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laboratory and the field. Correlation was tested between all factors. 

Soil texture analysis was carried out in the R package soiltexture (Moeys 2014). The 

results of PSA for each sample along with the average for each vegetation group 

were plotted on the USDA triangular texture diagram to determine the soil texture 

classification for each station and tabulated by vegetation group. The use of the 

USDA/FAO diagram was recommended by Minasny and McBratney (2001) for 

most countries, including Australia, following their evaluation based on scientific and 

educational grounds. 

 Invertebrate assemblages 3.6

Saltmarsh fauna can be divided into three groups: a) aquatic – such as mosquitoes; b) 

specialised saltmarsh – those derived from aquatic ancestors such as crustaceans and 

snails; and c) terrestrial – for example, spiders and beetles (Morrisey 2000). The 

terrestrial group can be separated into residents, those that live in the saltmarsh their 

entire lives or visitors, those that source food and leave (Adam 1990; Morrisey 

2000). Terrestrial invertebrates face a daunting task living in saltmarshes, particularly 

in the lower marsh which is subject to regular tidal inundation (Adam 1990). 

Phytophagous invertebrates (plant feeders) can avoid this inconvenience by simply 

climbing their host plant, however epigeal invertebrates have had to adapt, in some 

cases by modifying their activity rhythms, or face the inevitable – death by drowning 

(Long & Mason 1983; Adam 1990; Morrisey 2000). 

Cameron (1976), in his research on tides and insect communities, found that insects 

did not move up into the vegetation strata during inundation, but remained in place. 

It was also recognised through field observations that members of certain families of 

beetles were covered in air bubbles (Cameron 1976). Many epigeal spiders also trap 

air bubbles under epidermal hairs allowing respiration to continue while submerged 

(Adam 1990). Several species have adapted in different ways to counter mortality by 

adjusting to periods of inundation that occurs twice daily, alternating with some tides 

that do not reach their zone of habitation (Foster 1983). One such species is a 

carabid beetle (Dicheirotrichus gustavi) that lives underground but emerges to the 
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surface to forage for food. This animal has developed a phase-relationship in sync 

with its activity rhythm so that it can avoid the adverse effects of submergence from 

critical tides that would inundate its habitat (Daiber 1982; Foster 1983; Long & 

Mason 1983; Morrisey 2000). Foster (1983) observed in two separate populations 

that D. gustavi have diel (24 hour) activity rhythms, which has a peak at just after 

dusk and is suppressed during total submergence with the beetle being able to live 

for up to a week underground. Another example of adaptation is the saltmarsh 

spider, Arctosa fulvolineata. This wolf spider is a non-migratory, terricolous (living on 

or in the soil) species and has the ability to overcome tidal submergence by falling 

into an hypoxic coma (Pétillon et al. 2009). The capacity to become comatose is 

considered a physiological adaptation to its saltmarsh environment, with females 

being able to endure submergence for approximately 16 hours and still remain 

reactive (Pétillon et al. 2009). Research has shown that periods of inundation do not 

change the number of species present, their representation in the vegetation 

communities, the taxonomic composition nor the tropic structure of the assemblage 

(Cameron 1976). 

Other invertebrates escape submergence by retreating to the upper branches of 

saltmarsh vegetation to wait for tidal waters to retreat before returning to the 

saltmarsh surface to continue foraging (Morrisey 2000). However, this behaviour is 

dependent on their active state and temperature at the time of inundation (Davis & 

Gray 1966; Morrisey 2000). Predatory terrestrial invertebrates have also had to adapt 

to the high salinity levels encountered in saltmarshes, particularly herbivores, such as 

aphids and grasshoppers, which have become specialists feeding on certain parts of 

plants or plant species (Long & Mason 1983). 

3.6.1 Classification 

Similar to zonation in saltmarsh vegetation, zonation also occurs in saltmarsh 

invertebrates. This is controlled by the hydroperiod (Daiber 1982) and flooding 

regime (Irmler et al. 2002). Gradients of tidal reach, salinity and desiccation are all 

features which determine zonation, and though there may be distinct boundaries 

between the marshes and the adjacent mudflats, zonation is less distinct within the 
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saltmarsh due to a mosaic of microhabitats (Long & Mason 1983). Saltmarsh 

vegetation communities play a pivotal role in the number of invertebrate species and 

abundance found in the saline environment, with communities of spiders and beetles 

being analogous to vegetation communities (Finch et al. 2007). Mid-marsh fauna is 

richer in species than the lower marsh and is generally of terrestrial origin (Adam 

1990) with upper marsh species being true terrestrial species (Finch et al. 2007). 

However, the number of species that are dependent on the saltmarsh environment 

in the mid-marsh is less than that of the lower marsh. Marsh dependent 

invertebrates account for 75-80% species in the lower marsh, with  

25-50% in the middle marsh and just 5-10% in the upper marsh (Adam 1990). 

A large number of insect species are phytophagous, some are generalist, many are 

specialist, feeding not only on a particular plant, but often restricted to specific parts 

of those plants (Cameron 1972; Adam 1990). Vegetation communities that have 

plants with frequent branching and larger leaf cavities, such as Sarcocornia spp. or 

Distichlis spp., house more species than communities made up of Juncus spp., as the 

former provide additional places of refuge from tidal submergence and are more 

palatable (Daiber 1982). Habitat configuration along with physical influences such as 

tidal reach, are important elements that determine the make-up of spider 

communities (Dobel et al. 1990). Work by Larsen (1951) showed that the distribution 

of marsh beetles was strongly influenced by vegetation and soil type, this distribution 

changing as vegetation invaded bare areas of the marsh. Work by Cameron (1972) 

established that trophic diversity within saltmarshes has distinct seasonal patterning. 

Resident species, along with seasonal species, avoid competitive interactions in order 

to maximise the resource base. However, during spring resource expansion, the 

invertebrate assemblage undergoes a process of species packing, with additional 

species utilising the expanded resource (Cameron 1972). 

3.6.2 Sampling 

3.6.2.1 Pitfall traps 

Saltmarsh terrestrial invertebrates were the target group in this study. Pitfall trapping 

is one of the most frequently used methods for invertebrate capture as it is cost 
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effective and easy to use (Weeks & McIntyre 1997; Woodcock 2005). The most 

commonly sampled invertebrates captured by this method are guild specific, those 

that are active on the soil surface, epigeal invertebrates (Woodcock 2005). These 

invertebrates are represented by spiders such as Lycosidae and Linyphiidae, beetles, 

for example, Carabidae and Staphylinidae, and ants. Many are highly active, mostly 

predators and polyphagous (feed on a variety of matter) (Greenslade 1964; Thiele 

1977) which can make these species difficult to capture (Woodcock 2005). There is 

no set design for a pitfall trap, and most researchers design their own with cost 

effectiveness and availability of materials in mind (Woodcock 2005). 

A 65mm borer was used to remove the soil for the trap to a depth of 150mm; the 

top 100mm was retained for soil analysis in the laboratory. The excavated hole was 

lined with 150mm of 70mm PVC pipe and a plastic disposable 215ml cup inserted 

to act as the trap (Figure 3.31).  

 

Figure 3.31: Pitfall trap components. 

A 65mm hole was dug into the soil, the 
70mm long PVC sleeve (left) was used as 
a liner (in the hole) and support for the 
215ml plastic cup (trap) containing 
approximately 40ml of ethylene glycol as 
the killing/preservative agent. Between 
collections, the cup was removed and 
plant material was placed in the hole to 
allow fauna, which had inadvertently 
fallen in to escape. 

Identical cups were used throughout the site and for the time of the research. The 

traps were constructed at least two weeks before sampling commenced so that 

digging in effects would be minimised at the commencement of the first sampling 

(Woodcock 2005). At the time of each sampling set, approximately 40ml of 

preservative was added to each trap. Several killing agents/preservatives were 

considered for use in the research, for example, propylene glycol, ethanol, and saline 

solution. Ethylene glycol (antifreeze: Kmart) was chosen and although it is possibly 

attractive to some invertebrates (Woodcock 2005), its cost effectiveness and 

retention of preservative properties following dilution by rain or flooding 
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were the decisive factors in its selection. Furthermore, ethylene glycol has higher 

conservation attributes and better sampling efficiencies for ground beetles and 

spiders than any other ethanol based products (Schmidt et al. 2006). The trap 

contents were retrieved after seven days and transferred to 70ml labelled vials 

topped up with 75% ethanol. Plastic cups were removed following each sampling.  

Three traps were placed at each station, a total of 141 traps. The traps were placed 

wherever possible in the centre of each station away from vegetation boundaries in 

an effort to avoid edge effects (Figure 3.32). Within each station, traps were placed 

no further than six metres apart and always in a position that represented the overall 

vegetation community and structure, including bare areas, of the station. Traps were 

not covered, as uncovered traps are generally more successful (Spence & Niemelä 

1994). Only those that were prone to attack by wombats were protected with a wire 

mesh guard (see Appendix A1e – Wombats, page 168). Several traps were secured by 

roofing nails to prevent removal by birds or to prevent lifting by a rising water table 

during periods of inundation (Figure 3.33). Extreme care had to be taken with 

protrusion of the trap rim as this could deter/prevent invertebrate captures. 

Saltmarsh soils are prone to desiccation (shrinkage) followed by expansion during 

inundation which can cause the cup to lift during the sampling period. 

 

 
Figures 3.32 and 3.33: Left – station R2 pitfall traps. Right – 
pitfall trap secured by roofing nails – station R2. 
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3.6.2.2 Sampling duration and temporal patterns 

Sampling duration using pitfall traps can range from a week to over three years 

depending on the study (Woodcock 2005), but sampling should be generally be 

undertaken for a minimum of four months (Niemelä 1990) or at least for the 

growing season (Uetz & Unzicker 1975). Sampling of up to a year is preferable as 

this will cover the activity period of the invertebrate community in question (Baars 

1979). In temperate regions, the winter season is often ignored due to low activity 

(Woodcock 2005). There is some question in the use of quantitative data from pitfall 

trapping in that the differences in population size (abundance) of one species 

between sites should not be used to compare the relative numbers between each 

species (Baars 1979). However, Baars (1979) caveats this by stating that comparing 

population sizes between several species is a possibility if sampling continues over a 

year. Important information can be obtained through shorter temporal patterns of 

up to 28 days, but with increased sampling periods, similarity increased and variance 

decreased (Woodcock 2005). Another consideration of invertebrate sampling is the 

concept of activity-abundance. 

The rate of invertebrate capture is proportional to their activity, therefore numbers 

caught are not directly representative of their true abundance (Woodcock 2005). In 

reality, the rate of capture is proportionate to the interaction of abundance and 

activity – the concept of activity-abundance (Thiele 1977). In other words, species 

which have high numbers but are largely sedentary, may yield low numbers in 

samples, and species, though few in number but highly active, may record high 

numbers. Similarly, seasonal aspects also come into play. Activity for some species 

can be very high in summer and very low, or perhaps not at all, in winter. 

Furthermore, behavioural peculiarities are likely to confound capture rates 

(Greenslade 1964; Woodcock 2005). One taxon such as amphipods is a source of 

food for spiders so that the rates of abundance in the target taxa are dependent on 

non-target taxa (personal observation). Additionally, Spence and Niemelä (1994) 

found low carabid beetle catch during summer months due to their low activity even 

though their numbers were high. In light of the inherent biases that are the result of 

individual species behaviour it is difficult to find the optimum pitfall trapping 
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scenario, however a great majority of species will have their true abundance reflected 

over time (Woodcock 2005). 

In an attempt to avoid some of the limitations outlined above, pitfall trapping was 

conducted over a 12 month period. This enabled sampling of each climatic season 

during which two collections were made for each season (n = 8), as close to six 

weeks apart as practicable. In most cases traps were set on a Saturday and collected 

the following Saturday. Care had to be taken to avoid periods of high astronomical 

tides (predictable) and heavy rainfall (unpredictable) as low elevation areas were 

prone to inundation in which case traps could not be set, or would be flooded with 

the possibility of contents being lost (see Appendix A1a – Flood tides, page 167). 

3.6.2.3 Sorting and identification 

On return to the laboratory, collections were sorted by pitfall trap into spiders, 

beetles and miscellaneous, and stored in vials of 75% ethanol. Subsequently, 

specimens were identified to either family, genus or species level wherever possible 

with particular attention paid to spiders and beetles. Additionally, abundance of each 

family/genus/species was recorded.  

Following identification, all sorted contents were rehoused in glass vials with fresh 

75% ethanol, suitably labelled to identify station and collection date, and archived 

for future work – no invertebrates were discarded. 

3.6.3 Analysis of data and presentation of results 

The following analysis was carried out individually for spiders and beetles: 

1. The five dominant spider and beetle taxa by abundance in each vegetation 

group were graphed in a stacked bar plot based on percentage. Information for 

each season was plotted to investigate changes that occurred over a 12 month 

period. 

2. Vegetation communities were used to cluster stations into groups. 

Subsequently, an indicator analysis of spiders and beetles, independently of 

each other, was carried out in the R package indicspecies (De Cáceres 2013). This 
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analysis used the totals of spider and beetle taxa captured over the 12 month 

period and tabled based on site (vegetation) groups. 

3. The data from each invertebrate taxon – spiders and beetles, was 

transformation by log(x+1), which down weighted the influence of the very 

abundant taxa in the data sets, thus making the data more tractable and the 

variance relatively constant. The transformed data was utilised as an input to 

ordination – non-metric multidimensional scaling (nMDS) using R. An 

ordination nMDS explores the relationship between samples/sites and 

produces a visual representation of the associations such as similarity or 

preference, between the spider and beetle taxa that are not directly evident in 

the raw data. 

To better interpret nMDS, it is preferable to overlay environmental information 

onto the ordination plots. This can be used to clarify and also justify the ordination 

based on collected ecological data (Oksanen 2013). The nMDS plots based on the 

transformed log(x+1) spider and beetle data were independently fitted with soil and 

vegetation vectors using the vegan package in R by means of the “envfit” function 

(Oksanen 2013). The fitted vectors were arrows interpreted as follows: 

a. The arrows point in the direction of most rapid change of the vector variable 

(the direction of the gradient); and 

b. The length of the arrow is proportional to the correlation between the vector 

variable and the ordination (strength of the gradient) (Oksanen 2013). 

The following analysis was carried out jointly for spiders and beetles: 

1. The combined spider and beetle collections were plotted in a linear format 

based on the elevation profile of each transect. A representative sample of 

seven spider taxa and seven beetle taxa were used to demonstrate groups that 

are generalists (ranged over the whole site), specialist (confined to specific 

areas), those that co-exist or that exist in isolation.  
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Chapter 4: Results 

Several events/issues were experienced during the course of the study that may have 

had a minor impact on some results, in particular the incidence and abundance of 

terrestrial invertebrates. These events are documented in Appendix A. 

 Vegetation communities 4.1

4.1.1 Grouping to vegetation communities 

Data from the second vegetation survey (available in Appendix F) was used to 

cluster the 47 stations into six groups (Figure 4.1). 

 
Figure 4.1: Dendrogram of 47 stations clustered by Ward linkage method into six groups based on vegetation 
communities cut to a level of 16% dissimilarity. Groups have been assigned TASVEG codes. 

The six groups were assigned vegetation codes from the Tasmanian vegetation 

mapping system – TASVEG 3.0 (Table 4.1). 
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Table 4.1: Assigned vegetation community codes at Long Point. 

No. 
stations 

TASVEG 
Code 

Assigned 
Code 

Description 

5 ASS ASS(a) Succulent saline herbland wholly dominated by Sarcocornia 
quinqueflora and/or S. blackiana. 

18 ASS ASS(b) Succulent herbland dominated by bare areas, Tecticornia 
arbuscula, Sarcocornia quinqueflora and/or S. blackiana, and 
Disphyma crassifolium. 

14 ARS ARS Saline sedgeland/rushland dominated by Juncus spp., 
Gahnia spp., Austrostipa spp., and to a lesser extent 
Poa labillardierei. 

6 GSL GSL Dominated by Lomandra longifolia with Acacia mearnsii and 
Bursaria spinosa tall shrubs interspersed with lowland 
grasslands. 

2 GPL GPL (sr) Lowland grassland dominated by Pteridium esculentum 
(bracken) and Juncus spp. 

2 GPL GPL (dr) Dolerite soils lowland grassland dominated by Poa 
labillardierei and prostrate herbs. 

4.1.1.1 Group descriptions 

All plant species discussed below have been aligned for nomenclature, classification 

and current status (endemic, introduced etc) with the most recent version of “The 

census of vascular plants of Tasmania” by Baker and de Salas (2013). Groups ASS(a), 

ASS(b) and ARS are saltmarsh communities, groups GSL, GPL (sr) and GPL (dr) 

are grassy woodland communities. Examples of the six vegetation communities are 

shown in Figures 4.2 to 4.7 

ASS(a) (Figure 4.2) 

Affectionately known as Sarcocornia lawns, this group of prostrate, succulent plants 

occupied large areas at Long Point, especially on the landward side of the coastal 

levee and adjacent to the ephemeral pools. At most sites, just three succulent species 

were present: Sarcocornia quinqueflora, S. blackiana (glassworts) and Disphyma crassifolium 

(pigface). In two locations individual Gahnia spp. (a perennial tussock) plants and 

Spergularia tasmanica (a native sea spurry) were also evident. This group represented 

the low marsh, an area that was most often inundated by marine waters. 
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Figure 4.2: ASS(a) – succulent herbland (type a) – 
Sarcocornia spp. lawn mixed with Disphyma 
crassifolium often with bare ground. 

Figure 4.3: ASS(b) – succulent herbland (type b) –
dominated by Tecticornia arbuscula with Sarcocornia 
spp. and Disphyma crassifolium as ground covers and 
some bare ground. 

ASS(b) (Figure 4.3) 

Dominated by Tecticornia arbuscula (shrubby glasswort) shrubs with groundcover of 

Sarcocornia quinqueflora, S. blackiana and Disphyma crassifolium, this group occupied the 

coastal levee and large inland areas. The coastal vegetation was verdant and 

flourished with T. arbuscula reaching approximately two metres in height with a dense 

Sarcocornia spp. groundcover. The inland areas were less verdant, having an arid like 

appearance; T. arbuscula ranged in height from 0.5 to 1.5 metres, and many plants 

appeared to be stunted and under stress. Sarcocornia spp. were less abundant and 

there were many bare areas. Hemichroa pentandra (trailing salt star – a prostrate 

perennial herb) was present, along with Gahnia spp. Chenopodium glaucum (oak-leaved 

goosefoot), an introduced plant, was also evident, although had very low cover 

abundance. This vegetation group represented the middle marsh which was less 

regularly inundated than the low marsh, though when inundated, waters receded 

very slowly particularly from the inland areas (personal observation). 

ARS (Figure 4.4) 

Saline grassland covered a significant area in the east section of Long Point and was 

the zone that separated the saline succulent groups from the grassy woodlands in 

other areas. This group was made up of graminoids, the dominant species being 

rushes (Juncus spp.), sedges (Gahnia spp.) and saline grasses (for example Austrostipa 

spp.). These plants were often intermixed with succulents from the ASS(a) group. 

Other natives such as Schoenus nitens (shiny bog-rush), Selliera radicans 
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(swamp weed), Epilobium billardierianum (willow herb) were evident in low numbers. 

Introduced species, for example, Anthoxanthum odoratum (sweet vernal grass), 

Anagallis arvensis (scarlet pimpernel), Centaurium erythraea (common centaury) existed 

with Senecio jacobaea (ragwort), a declared weed. The ARS group represented the 

upper marsh and from current observations it did not appear to be flooded by 

marine water. Following heavy rainfall, water did remain for some time before 

evaporating or draining away (personal observation). 

  
Figure 4.4: ARS – saline grasslands – mixture of 
Austrostipa spp., Poa spp. and Gahnia spp. with 
Disphyma crassifolium as ground cover with some 
bare areas. 

Figure 4.5: GSL – sand dune – mixture of Lomandra 
longifolia and Poa spp., small patches of Pteridium 
esculentum (bracken) and Ehrharta stipoides with 
Oxalis perennans as a ground cover with bare ground. 

GSL (Figure 4.5) 

This group encompassed the sand dune that runs north/south at Long Point. It had 

a woodland appearance with Acacia and Bursaria tall shrub/low trees, though neither 

species were recorded at stations along transects. The principal species in this group 

were Ehrharta stipiodes (weeping grass), Oxalis perennans (grassland sorrel), Lomandra 

longifolia (mat rush), and Austrostipa spp. This area, along with the saline grasslands, 

was used for sheep grazing prior to acquisition by the TLC, resulting in a number of 

introduced species being present. These include Vellereophyton dealbatum (white 

cudweed), Hypochaeris spp. (cat’s ears), Plantago coronopus (buck’s horn plantain) and 

Ulex europaeus (common gorse), a declared weed. 

GPL (sr) (Figure 4.6) 

Centred on the small sand ridge that runs W/E in the southern section of Long 

Point was group GPL (dr). The dominant species were Hibbertia prostrata (bundled 
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guinea flower), Ficinia nodosa (knobby club-rush), Poa spp. and Pteridium esculentum 

(native bracken). Many bare areas were associated with this group. Though subjected 

to sheep grazing, the only introduced species found was Ulex europaeus. 

  
Figure 4.6: GPL – sand ridge – mixture of Poa spp., 
Pteridium esculentum (bracken) and Hibbertia 
prostrate with Ficinia nodosa as a ground cover and 
bare ground. 

Figure 4.7: GPL – dolerite ridge – mixture of Poa spp., 
Lomandra longifolia, Baumea juncea, Aira 
caryophyllea and Austrodanthonia setacea and some 
bare ground. 

GPL (dr) (Figure 4.7) 

The dolerite ridge was at the extreme southern end of Long Point. It was a large 

grassy knoll, covered in native species of grasses (Poa spp.), rushes (Juncus spp.), 

Lomandra longifolia (mat rush) and Zoysia macrantha (prickly couch). Similar to the sand 

ridge, this area would have been prone to sheep grazing, however only one 

introduced species was evident, Aira caryophyllea (silver hairgrass). 

The stations assigned to each vegetation community code are shown in Table 4.2. 

Table 4.2: Stations assigned to vegetation community codes. 

Vegetation 
Code 

Transect RED Transect YELLOW Transect GREEN 

ASS(a) R6, R13 Y2, Y16 G13 

ASS(b) R1, R2, R5, R7, R12, R14 Y1, Y3, Y11, Y12, Y15, Y17 G1, G2, G3, G4, G10, G12 

ARS R3, R8, R11 Y4, Y5, Y6, Y10, Y13, Y14 G5, G8, G9, G11, G14 

GSL R4, R9, R10 Y7, Y8, Y9  

GPL (sr)   G6, G7 

GPL (dr)   G15, G16 

Using non-metric multidimensional scaling, the relationship between stations and 

groups are presented in Figure 4.8. 
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Figure 4.8: Ordination plot demonstrating relationships between groups and stations within groups. The green 
lines connect each station to the centroid of each group; the hashed blue line defines the ordination space 
taken up by each group. 

The ordination summarises the relationship between vegetation groups and stations 

within groups. All five stations within group ASS(a) are superimposed on each other 

in the plot indicating the close relationship of these stations to each other. 

4.1.2 Vegetation communities – indicator species 

The results of the indicator species analysis are listed in Table 4.3 highlighting 

vegetation taxa for which p < 0.05. 

Table 4.3: Indicator vegetation species for each vegetation community (p < 0.05). 

Group Vegetation species stat p.value  

ASS(a) (succulent herbland - a) Sarcocornia quinqueflora 0.944 0.001 *** 

 Disphyma crassifolium 0.822 0.011 * 

ASS(b) 

ASS(a) 

ARS 

GSL 

GPL (dr) 

GPL (sr) 
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Group Vegetation species stat p.value  

ASS(b) (succulent herbland - b) Bare ground 0.961 0.002 ** 

 Sarcocornia quinqueflora 0.944 0.001 *** 

 Tecticornia arbuscula 0.904 0.001 *** 

 Disphyma crassifolium 0.822 0.011 * 

ARS (saline grassland) Bare ground 0.961 0.002 ** 

 Poa labillardierei 0.939 0.001 *** 

 Juncus spp. 0.869 0.002 ** 

 Gahnia spp. 0.854 0.001 *** 

 Disphyma crassifolium 0.822 0.011 * 

 Austrostipa spp. 0.807 0.015 * 

GSL (sand dune) Ehrharta stipoides 1.000 0.001 *** 

 Bare ground 0.961 0.002 ** 

 Oxalis perennans 0.894 0.001 *** 

 Lomandra longifolia 0.877 0.005 ** 

 Austrostipa spp. 0.807 0.015 * 

 Leontodon taraxacoides 0.764 0.017 * 

 Poa rodwayi 0.707 0.011 * 

GPL (sr) Hibbertia prostrata 1.000 0.003 ** 

 Bare ground 0.961 0.002 ** 

 Poa labillardierei 0.939 0.001 *** 

 Ficinia nodosa 0.935 0.002 ** 

 Oxalis perennans 0.894 0.001 *** 

 Lomandra longifolia 0.877 0.005 ** 

 Pteridium esculentum 0.835 0.018 * 

 Isolepis nodosa 0.800 0.027 * 

GPL (dr) Aira caryophyllea 1.000 0.005 ** 

 Austrodanthonia setacea 1.000 0.005 ** 

 Bare ground 0.961 0.002 ** 

 Poa labillardierei 0.939 0.001 *** 

 Juncus spp. 0.869 0.002 ** 

 Zoysia macrantha 0.910 0.002 ** 

 Oxalis perennans 0.894 0.001 *** 

 Lomandra longifolia 0.877 0.005 ** 

 Austrostipa spp. 0.807 0.015 * 

 Baumea juncea 0.801 0.022 * 

 Poa rodwayi 0.707 0.011 * 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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 Landscape features 4.2

4.2.1 Tides 

The closest port that had available tide prediction data was Spring Bay (Triabunna), 

approximately 59 kilometres SSW from Long Point. From observations at the 

research site, tide times varied from approximately one hour (eastern side – Moulting 

Lagoon) to approximately two hours (western side – Little Bay) from those 

predicted at Spring Bay. It was difficult to ascertain whether the tidal height 

predictions followed those of Spring Bay, however predicted days of extreme high 

and low tides were observed and followed predictions for Spring Bay.  

Tides for the east coast of Tasmania have a semi-diurnal pattern (Figure 4.9). 

 
Figure 4.9: Semi-diurnal tide pattern, Spring Bay, Tasmania for 12 and 13 January 2013. Source: BOM (2013).  

The monthly tidal amplitude varied according to the alignment of sun, moon and 

earth, this known as spring tides (Figure 4.10). 
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Figure 4.10: The amplitude of high tides for the month of January 2013, Spring Bay, Tasmania. Source:  
BOM (2013).  

Furthermore, the annual tidal amplitude varied according to solstices and equinoxes 

(Figure 4.11). 

 
Figure 4.11: The amplitude of spring high tides for the year October 2012 to September 2013, Spring Bay, 
Tasmania. LAT = lowest astronomical tide. Source: BOM (2013).  

Extreme flooding along the western and eastern sides of Long Point was observed 

during June and July 2013, the period of the highest spring tides for the year. At 

times this occurred up to 150-200 metres inland. Flooding was restricted to 

Sarcocornia spp. and Tecticornia arbuscula dominated vegetation, and around Gum Tree 
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and Round Holes. There was little evidence of marine water intrusion into saline 

grassland vegetation. 

4.2.2 Climate 

4.2.2.1 Precipitation  

All four recording rain gauges at Long Point recorded less rain than Swansea FWS 

and Friendly Beaches AWS over the period of invertebrate survey – 23 February 

2013 to 23 February 2014. Total precipitation for the 12 month period at Long Point 

varied from 514mm at Y12 (Round Hole) to 524mm at G16 (dolerite ridge) (Figure 

4.12). 

 
Figure 4.12: Precipitation at four sites at Long Point compared to Swansea and Friendly Beaches. Source of data 
for Swansea and Friendly Beaches: BOM (2014).  

Generally, precipitation was on average 10% lower than Swansea and 35% lower 

than Friendly Beaches (Table 4.4). It is acknowledged that the rain gauges were 

subject to evaporation, particularly during the six week periods between visits in the 

summer months. This could impact on results, probably bringing precipitation at 

Long Point more in line with that of Swansea. 
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Table 4.4: Total precipitation for period 23 Feb 2013 to 23 Feb 2014 and variation to Swansea and Friendly 
Beaches. Source of data for Swansea and Friendly Beaches: BOM (2014). 

  

 Variation to 
Site Total (mm) Swansea Friendly Beaches 

Gate 522.0 -10.11% -34.67% 

Station R4 523.5 -9.85% -34.48% 

Station Y12 513.5 -11.57% -35.73% 

Station G16 524.0 -9.76% -34.42% 

Swansea 580.7 0.00% -27.32% 

Friendly Beaches 799.0 37.59% 0.00% 

4.2.2.2 Temperature 

Monthly maximum and minimum temperatures from Swansea FWS, Friendly 

Beaches AWS, and LogTags® at stations Y1, Y8, R14 and G16 are presented in 

Table 4.5 and Figure 4.13. A full set of maximum and minimum temperatures for 

stations fitted with LogTags® is available in Appendix G. 

Table 4.5: Monthly maximum and minimum temperatures for Swansea (SW), Friendly Beaches (FB), Little Bay 
(LB = station Y1), sand dune crest (SD = station Y8), Moulting Lagoon (ML = station R14) and dolerite ridge (DR = 
station G16). Source of data for Swansea and Friendly Beaches: BOM (2014). 

 

Maximum (oC) Minimum (oC) 

Month SW FB LB SD ML DR SW FB LB SD ML DR 

Jun ‘13 16.4 17.2 15.4 19.0 17.7 20.8 0.1 2.6 -1.2 -0.4 -1.0 -2.4 

Jul 19.5 18.6 17.7 19.5 18.7 21.7 -2.1 1.1 -1.8 -1.2 -1.2 -4.0 

Aug 19.4 19.4 19.6 23.8 22.5 22.8 -1.1 0.2 -0.6 -0.2 -0.5 -2.6 

Sep 23.2 23.8 24.6 24.2 24.8 25.4 -2.1 -1.0 1.1 -1.6 -1.1 -3.6 

Oct 28.8 30.7 27.6 36.9 32.4 32.8 1.9 3.7 2.8 3.8 4.2 1.5 

Nov 27.8 25.0 28.7 35.7 30.0 33.5 2.3 5.2 4.2 3.2 5.1 1.2 

Dec 29.2 31.1 31.4 36.8 33.4 33.2 5.9 7.6 7.1 5.5 7.1 3.6 

Jan ‘14 38.0 35.8 34.3 42.3 37.0 41.0 7.2 8.4 6.7 7.9 8.3 5.5 

Feb 38.6 37.3 34.5 43.9 37.3 43.0 6.0 8.1 7.2 6.9 6.9 4.7 

Mar 33.2 28.6 30.4 34.0 30.7 34.4 6.6 9.0 6.0 7.1 6.9 5.3 

Apr 31.0 30.4 28.3 32.4 30.9 32.7 2.4 3.5 3.2 3.3 3.5 1.7 

May 22.0 22.0 21.0 23.0 21.6 24.7 -0.1 2.3 -0.2 0.5 0.7 -1.6 
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Figure 4.13: Monthly maximum (top) and minimum (bottom) temperatures for period June 2013 to May 2014. 
Swansea (SW), Friendly Beaches (FB), Little Bay (LB = station Y1), sand dune crest (SD = station Y8), Moulting 
Lagoon (ML = station R14) and dolerite ridge (DR = station G16). Source of data for Swansea and Friendly 
Beaches: BOM (2014). Note: the lower portion of the legend (from SW) relates to the minimum data. 

There was little monthly minimum temperature variation between the BOM weather 

stations and stations at the site. However, variations in monthly maximum 

temperature between the October and March were evident with increased spread of 

data. This correlated well with the increased number of invertebrate taxa and 

abundance at the site. 

4.2.3 Elevation, hill shade and solar radiation 

Station elevation data, hill shade and solar radiation analysed by ArcMap 10™ from 

the second GPS survey are presented in Appendix B and as transect profiles in 

Figures 4.14 to 4.16. 

The detailed elevation study of the saltmarsh zone confirmed how uniform and flat 

this area was. There was a similarity in elevation profile between the sand dune and 

the sand ridge, however the dolerite ridge was very dissimilar.  
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Figure 4.14: RED transect – elevation profile, hill shade and solar radiation. 

 

 
Figure 4.15: YELLOW transect – elevation profile, hill shade and solar radiation. 

 

 
Figure 4.16: GREEN transect – elevation profile, hill shade and solar radiation.  

Note: the horizontal axes in each figure are equally spaced; they are not scaled for distance. 
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Hill shade and solar radiation were inverse to elevation on each transect profile 

particularly those transects aligned W to E – Red and Yellow transects (Figures 4.14 

and 4.15). In the case of Green transect, aligned north-south, hill shade and solar 

radiation are generally parallel except at G16 which is located just to the south of the 

dolerite ridge crest, hence both variables tending to decrease (Figure 4.16). 

The height variation between the first two and the last two stations on each transect, 

for example, R1 (0.304m) and R2 (0.169m), Y16 (0.225m) and Y17 (0.247m) and G1 

(0.273m) and G2 (0.227m), illustrate the existence of a levee on the saltmarsh fringe 

bordering Little Bay and Moulting Lagoon. 

Saltmarsh hill shade values approximate 180 with solar radiation value ~ 1.21 x 106 

MW/m2/year. The west facing slope of the sand dune (stations R9, Y7) has 

increased hill shade and solar radiation values, whereas the east facing slope (stations 

R10, Y9) has the opposite. This demonstrates that the west facing slopes experience 

longer periods of sunlight than those facing east. The highest hill shade/solar 

radiation were at station G15, this having an aspect of NNW. There was a positive 

correlation between hill shade and solar radiation. 

A boxplot of the elevation data is presented in Figure 4.17. 

 
Figure 4.17: Boxplot of elevation. 
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The group medians of elevation for vegetation communities ASS(a), ASS(b) and 

ARS were not significantly different, nor the means for GSL and GPL (sr). The only 

vegetation community that was dissimilar in elevation was GPL (dr). 

The ANOVA table for elevation analysis is presented in Table 4.6. 

Table 4.6: ANOVA table of elevation (Df = degrees of freedom).  

Environmental feature Df F value p-value 

 Elevation 5,41 18.65 1.26e – 09 (P < 0.001) 

The very low p-value indicates that there was at least one vegetation community that 

is highly significantly different to all other vegetation communities. 

Tukey’s Honestly Significant Difference (HSD) test results are presented in Table 

4.7. 

Table 4.7: Group means, standard deviation, range and Tukey groups for elevation. Tukey group values followed 
by the same letter are not different at p < 0.05. 

Feature Group n Mean ± Std Error (m) Min Max Tukey groups 

Elevation ASS(a) 5 0.256 ± 0.028 0.214 0.363 a 

 

ASS(b) 18 0.300 ± 0.023 0.169 0.516 a 

 

ARS 14 0.562 ± 0.036 0.290 0.837 a 

 

GSL 6 3.511 ± 1.161 1.153 9.069 b 

 

GPL (sr) 2 2.180 ± 0.119 2.061 2.298  a, b 

 

GPL (dr) 2 7.331 ± 2.991 4.338 10.323 c 

 

The Tukey groups demonstrate that the saltmarsh vegetation groups – ASS(a), 

ASS(b) and ARS – are similar. GPL (sr) is similar to GSL and also the saltmarsh 

vegetation groups, however GPL (dr) is dissimilar to all other vegetation groups. 

Hill shade and solar radiation are presented as graphic displays in digitised maps 

along with a digitised elevation map (Figures 4.18 to 4.20) produced by ArcMap 

10™. 
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Figure 4.18: Digitised terrain map of Long Point. 
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Figure 4.19: Hill shade at Long Point – the lighter the colour, the more exposed. The saltmarsh zones display a 
standard grey colour, indicating flat ground. 
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Figure 4.20: Solar radiation of Long Point – deep yellow to orange = higher the value; west/northwest facing 
slopes have very high values, south/southeast facing slopes have low values. 
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 Edaphic factors 4.3

4.3.1 Soil analysis 

Soil analysis data for each transect is presented in Appendices C (attached) and H 

(on CD) and graphically in Figures 4.21 to 4.23. 

The relationship of elevation to sand, silt and clay.  

Sand content is positively aligned to elevation: 

RED Transect (Figure 4.21) – increased levels at R4, R9 and R10 (> 80%) are in 

response to the sand dune. The decreased level at R5/6 reflects the position of the 

northern lunette (Gum Tree Hole). 

YELLOW Transect (Figure 4.22) – high levels of sand content at Y9 and Y10 

(>80%) are in response to the sand dune, similar to Red transect. The high sand 

level (>60%), though in decline, is maintained to the east, possibly resulting from 

aeolian activity of westerly winds prior to the sand dune becoming fully vegetated. 

GREEN Transect (Figure 4.23) – increased levels at G6 and G7 (>80%) are a result 

from the influence of the sand ridge. The increasing level at G15 and G16 (~80%) 

are in response to the dolerite ridge. 

In contrast, silt and clay content are negatively aligned to elevation and sand content. 

The relationship of elevation to edaphic factors: 

Summer moisture and EC, winter moisture and EC, carbon and SOM are all 

strongly negatively aligned to elevation. Small changes in elevation have a marked 

impact on moisture and EC, for example R4, Y4 and Y14 and G6 and G7. Similarly, 

although to a less extent, summer and winter pH are negatively aligned to elevation. 

The response of pH may be aligned more to a combination of elevation and 

vegetation community structure. 
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Figure 4.21: Results of soil analysis of RED transect plotted over elevation profile; note that all factors except for 
sand (top plot) are aligned inversely to elevation. R1 = Little Bay; R14 = Moulting Lagoon; R4 and R10 – summit 
of sand dune; between R6 and R7 – Gum Tree Hole (lunette). Legend note: Carbon by ELTRA = dry combustion 
method, LOI = loss on ignition, EC = electrical conductivity. 
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Figure 4.22: Results of soil analysis of YELLOW transect plotted over elevation profile; similar to RED transect, 
note that all factors except for sand (top plot) are aligned inversely to elevation. Y1 = Little Bay; Y17 = Moulting 
Lagoon; Y8 – summit of sand dune; between Y12 and Y13 – Round Hole (lunette); Y4 and Y14 are slightly higher 
in elevation than surrounding marsh land, note the change in moisture, EC and pH. Legend note: Carbon by 
ELTRA = dry combustion method, LOI = loss on ignition, EC = electrical conductivity. 
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Figure 4.23: Results of soil analysis of GREEN transect plotted over elevation profile; similar to RED and YELLOW 
transects, note that all factors except for sand (top plot) are aligned inversely to elevation. G1 = Little Bay; G16 = 
summit of dolerite ridge; G6 and G7 – summit of sand ridge; between G12 – Opening Hole. Legend note: Carbon 
by ELTRA = dry combustion method, LOI = loss on ignition, EC = electrical conductivity. 
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4.3.2 Grouping to vegetation communities 

The 47 stations were aligned to the vegetation groups ASS(a), ASS(b), ARS, GSL, 

GPL (sr) and GPL (dr) (Table 4.8). 

Table 4.8: Station groups with edaphic factors (Moist = moisture, (S) = summer, (W) = winter, EC = electrical 
conductivity, SOM = soil organic matter). Values for moisture, SOM and carbon are in %, EC in dS/m. 

GROUPS Station  Moist S Moist W pH S pH W EC S EC W SOM Carbon 

ASS(a) R6 62.10 78.56 5.207 5.178 22.18 18.32 25.66 13.85 

 

R13 61.59 89.60 4.788 5.619 33.38 42.58 45.05 18.74 

 

Y2 77.12 92.45 4.821 5.463 49.64 42.19 44.43 21.70 

 

Y16 75.39 92.19 5.532 5.926 46.27 43.00 36.42 15.14 

 

G13 65.83 72.89 5.012 4.950 29.12 14.30 37.26 15.64 

ASS(b) R1 82.31 90.17 5.459 6.285 33.59 39.13 51.20 20.48 

 

R2 47.35 55.29 5.240 5.238 16.17 16.75 18.94 4.90 

 

R5 49.00 57.08 5.739 5.817 30.82 5.97 34.68 13.34 

 

R7 52.66 35.18 5.776 6.665 39.43 1.84 14.43 5.48 

 

R12 49.15 58.27 5.522 5.908 31.51 25.33 18.59 4.82 

 

R14 84.45 86.70 5.873 6.008 44.98 39.86 44.26 16.22 

 

Y1 87.31 94.25 5.859 4.787 60.13 32.98 53.16 20.16 

 

Y3 34.17 44.52 5.760 5.819 25.86 13.67 7.61 3.95 

 

Y11 48.92 39.42 6.207 6.639 25.87 3.94 12.41 4.21 

 

Y12 57.92 78.24 6.022 6.267 20.90 7.29 10.79 4.34 

 

Y15 41.41 38.49 6.701 7.463 12.51 10.76 10.92 3.47 

 

Y17 79.15 90.89 5.742 6.055 43.74 38.00 38.23 15.35 

 

G1 65.92 81.09 5.209 5.569 28.40 30.23 29.33 7.21 

 

G2 45.72 65.72 6.232 6.432 24.50 17.78 15.23 2.28 

 

G3 18.98 27.79 6.574 7.475 17.74 5.16 2.52 0.78 

 

G4 39.83 37.78 6.184 6.350 22.84 10.58 10.12 2.48 

 

G10 46.16 44.26 4.341 4.814 24.84 5.46 14.10 5.27 

 

G12 63.56 69.40 5.428 5.456 30.77 26.46 30.09 13.67 

ARS R3 18.46 45.53 4.609 5.404 5.95 1.31 17.60 6.37 

 

R8 12.85 22.85 5.064 5.068 1.61 0.24 10.86 5.18 

 

R11 12.75 34.02 4.925 4.986 0.54 0.15 9.98 5.21 

 

Y4 16.22 27.46 5.583 5.151 2.59 0.10 7.69 3.79 

 

Y5 29.62 32.87 5.492 5.970 13.00 0.61 9.00 4.96 

 

Y6 10.00 30.02 5.524 5.636 0.75 0.14 8.42 2.90 

 

Y10 16.65 33.02 5.391 5.527 0.20 0.19 10.77 4.83 
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GROUPS Station  Moist S Moist W pH S pH W EC S EC W SOM Carbon 

ARS Y13 37.40 56.39 5.063 5.628 12.38 1.96 16.33 6.86 

(cont’d) Y14 13.24 29.23 4.861 4.646 0.73 0.08 10.62 4.18 

 

G5 19.74 30.49 5.099 5.159 1.05 0.26 12.71 4.50 

 

G8 13.73 21.20 5.094 4.934 0.59 0.11 10.75 5.89 

 

G9 36.84 48.96 4.875 5.304 12.58 1.93 22.27 9.25 

 

G11 53.33 72.41 4.887 4.893 24.48 19.03 35.36 16.38 

 

G14 23.06 39.90 5.331 5.376 0.79 0.42 26.55 6.70 

GSL R4 7.87 13.35 4.408 4.253 0.06 0.10 8.86 2.52 

 

R9 5.56 19.26 3.871 4.178 0.04 0.05 5.57 1.98 

 

R10 6.48 13.52 4.394 4.240 0.03 0.04 4.70 1.74 

 

Y7 2.59 8.94 4.630 4.392 0.06 0.06 3.66 1.73 

 

Y8 4.11 7.44 4.410 4.083 0.03 0.02 1.84 1.04 

 

Y9 5.05 12.32 4.838 5.052 0.04 0.03 3.46 1.48 

GPL (sr) G6 6.01 5.46 3.740 4.070 0.08 0.07 4.94 1.97 

 

G7 3.29 10.40 3.969 4.074 0.05 0.02 3.37 1.38 

GPL (dr) G15 2.38 11.46 4.539 4.674 0.06 0.02 3.30 1.21 

 

G16 3.53 13.33 4.631 4.757 0.03 0.02 3.57 1.34 

 

  



Chapter 4 – Results 

 Page 84 

 

Figure 4.24: Example 
of soil based on 
vegetation grouping – 
Top left: ASS(a) from 
G13. 
Top right: ASS(b) 
from R2.  
Centre left: ARS from 
R8.  
Centre right: GSL 
from Y7.  
Bottom left: GPL (sr) 
from G7.  
Bottom right: GPL 
(dr) from G15. All 
soils had been sieved 
to 2mm. 

 

Soil examples from each group based on the six vegetation communities are 

presented in Figures 4.24. 

ASS(a) top left: 

Dark brown colour, high in organic matter, a sandy clay loam. 

ASS(b) top right: 

Light brown to grey, sandy clay material containing lower levels of organic matter. 

ARS centre left: 

Dark brown sandy loam containing high levels of fibrous plant material. 

GSL centre right: 

Yellow loamy sand material with some plant matter. 

GPL (sr) bottom left: 

Grey loamy sand material with some plant matter. 

GPL (dr) bottom right: 

Mid brown sandy loam with a little plant material. 
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Following the alignment of stations to vegetation groups, results for each edaphic 

factor were summarised in boxplots by vegetation group (Figures 4.25 to 4.32). 

  
Figure 4.25: Summer moisture by group Figure 4.26: Winter moisture by group 

  
Figure 4.27: Summer pH by group Figure 4.28: Winter pH by group 

Moisture:  

The group medians for moisture (Figures 4.25 and 4.26) are highly dissimilar for the 

saline groups (ASS(a), ASS(b) and ARS), yet highly similar for non-saline soils (GSL, 

GPL (sr) and GPL (dr)). 

pH: 

In Figures 4.27 and 4.28 group medians in ASS(a) and ARS display similarity for 

both summer and winter. GSL and GPL (dr) display similarity in summer, yet 

dissimilarity in winter. Between saltmarsh groups, ASS(a) is dissimilar to the other 

two groups. 
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Figure 4.29: Summer EC by group Figure 4.30: Winter EC by group 

  
Figure 4.31: SOM (soil organic matter) by group. Figure 4.32: Carbon by group. 

EC: 

In Figures 4.29 and 4.30, group medians for saltmarsh soils display a level of 

dissimilarity for both summer and winter, reflecting varying degrees of marine water 

inundation. There is a high degree of similarity in the non-saline soils for both 

seasons, a reflection of the non-inundation by marine water. 

SOM and carbon: 

Group medians for SOM (Figure 4.31) are dissimilar for saline soils with overlap 

between ASS(b) and ARS, with similarity for the woodland soils. In carbon (Figure 

4.32), all groups except for ASS(a) display similarity. 
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ANOVA outputs of all factors are presented in Table 4.9. 

Table 4.9: ANOVA output of all edaphic factors (Df = degrees of freedom). 

Soil variable Df F value p-value 

 Moisture summer  5,41 24.31 2.75e – 11 (P < 0.001) 

Moisture winter  5,41 17.97 2.09e – 09 (P < 0.001) 

pH summer  5,41 16.08 9.24e – 09 (P < 0.001) 

pH winter  5,41 12.50 2.13e – 07 (P < 0.001) 

EC summer  5,41 21.90 1.29e – 10 (P < 0.001) 

EC winter  5,41 11.01 9.21e – 07 (P < 0.001) 

SOM 5,41 6.97 8.61e – 05 (P < 0.001) 

Carbon 5,41 7.65 3.73e – 05 (P < 0.001) 

All edaphic factors have a significant difference between the groups. The very low p-

value for each edaphic factor indicates that there is at least one vegetation group 

within that factor that is significantly different to all other vegetation groups.  

Tukey’s Honestly Significant Difference test results are presented in Table 4.10. 

Table 4.10: Group means, standard error, range and Tukey groups for each edaphic factor. Within each edaphic 
factor, the values followed by the same letter are not different at p < 0.05.  

Variable Group n Mean ± Std Error Min Max Tukey Groups 

Moist S (%) ASS(a) 5 68.406 ± 3.298 61.590 77.120 a 

 

ASS(b) 18 55.221 ± 4.399 18.980 87.310 a 

 

ARS 14 22.421 ± 3.343 10.000 53.330 b 

 

GSL 6 5.277 ± 0.750 2.590 7.870 b 

 

GPL (sr) 2 4.650 ± 1.360 3.290 6.010 b 

 

GPL (dr) 2 2.955 ± 0.575 2.380 3.530 b 

Moist W (%) ASS(a) 5 85.138 ± 3.977 72.890 92.450 a 

 

ASS(b) 18 60.808 ± 5.174 27.790 94.250 a 

 

ARS 14 37.454 ± 3.769 21.200 72.410 b 

 

GSL 6 12.472 ± 1.691 7.440 19.260 c 

 

GPL (sr) 2 7.930 ± 2.470 5.460 10.400 c 

 

GPL (dr) 2 12.395 ± 0.935 11.460 13.330 c 

pH S ASS(a) 5 5.072 ± 0.137 4.788 5.532 bc 

 

ASS(b) 18 5.770 ± 0.129 4.341 6.701 a 

 

ARS 14 5.128 ± 0.078 4.609 5.583 b 

 

GSL 6 4.425± 0.132 3.871 4.484 cd 

 

GPL (sr) 2 3.855 ± 0.115 3.740 3.969 d 

 

GPL (dr) 2 4.585 ± 0.046 4.539 4.631 b c d 
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Variable Group n Mean ± Std Error Min Max Tukey Groups 

pH W ASS(a) 5 5.427 ± 0.170 4.950 5.926 a b 

 

ASS(b) 18 6.058 ± 0.177 4.787 7.475 a 

 

ARS 14 5.263 ± 0.095 4.646 5.970 b 

 

GSL 6 4.366 ± 0.143 4.083 5.052 c 

 

GPL (sr) 2 4.072 ± 0.002 4.070 4.074 c 

 

GPL (dr) 2 4.716 ± 0.042 4.674 4.757 b c 

EC S (dS/m) ASS(a) 5 36.118 ± 5.180 22.178 49.644 a 

 

ASS(b) 18 29.700 ± 2.742 12.508 60.133 a 

 

ARS 14 5.518 ± 1.964 0.200 24.478 b 

 

GSL 6 0.042 ± 0.006 0.027 0.061 b 

 

GPL (sr) 2 0.062 ± 0.014 0.048 0.075 b 

 

GPL (dr) 2 0.044 ± 0.013 0.031 0.056 b 

EC W (dS/m) ASS(a) 5 32.077 ± 6.469 14.034 43.000 a 

 

ASS(b) 18 18.399 ± 3.125 1.839 39.856 a 

 

ARS 14 1.895 ± 1.330 0.083 19.031 b 

 

GSL 6 0.048 ± 0.011 0.015 0.095 b 

 

GPL (sr) 2 0.043 ± 0.025 0.018 0.068 b 

 

GPL (dr) 2 0.023 ± 0.001 0.022 0.023 b 

SOM (%) ASS(a) 5 37.764 ± 3.508 25.660 45.050 a 

 

ASS(b) 18 23.145 ± 3.658 2.520 53.160 a b 

 

ARS 14 14.922 ± 2.154 7.690 35.360 b c 

 

GSL 6 4.682 ± 0.981 1.840 8.860 c 

 

GPL (sr) 2 4.155 ± 0.785 3.370 4.940 c 

 

GPL (dr) 2 3.435 ± 0.135 3.300 3.570 c 

Carbon (%) ASS(a) 5 17.014 ± 1.420 13.850 21.700 a 

 

ASS(b) 18 8.245 ± 1.511 0.780 20.480 b 

 

ARS 14 6.214 ± 0.886 2.900 16.380 b 

 

GSL 6 1.748 ± 0.202 1.040 2.520 b 

 

GPL (sr) 2 1.675 ± 0.295 1.380 1.970 b 

 

GPL (dr) 2 1.275 ± 0.065 1.210 1.340 b 

4.3.3 Relationship of edaphic factors for all groups 

The relationship between edaphic factors was tested using the correlation function in 

R. A pairwise scatterplot demonstrated variables that have an association. An 

investigation into the strength of the correlation between each variable showed that 

SOM and winter moisture have the best fit of correlation to the remaining edaphic 

factors (Table 4.11).  
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Table 4.11: The correlation between each edaphic factor; 0 to 0.3 (nil symbol) = the weakest correlation,  
0.95 to 1 (B symbol) = the strongest correlation (EC = electrical conductivity, S = summer, W = winter). 

Variable SOM Carbon pH S pH W EC S EC W Moist S Moist W 

SOM 1 B   

Carbon B 1   

pH S   1 + 

pH W   + 1 

EC S + , . . 1 

EC W + +  . + 1 

Moist S + + . . * + 1  

Moist W + +  . + + B 1 

 [1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1 

This demonstrates that both SOM and winter moisture data can be used as 

predictors for the remaining edaphic factors and that it may be unnecessary to 

measure the remaining factors.  

Exploring the data reveals the strength of the correlation between SOM and winter 

moisture with the remaining factors (Figure 4.12). 

Table 4.12: The correlation between SOM and winter moisture with each edaphic factor; 0 = no correlation,  
1 = the highest level of correlation (EC = electrical conductivity, S = summer, W = winter). 

Variable SOM Carbon pH S pH W EC S EC W Moist S Moist W 

SOM 1.000 0.894 

Carbon 0.965 0.858 

pH S 0.225 0.413 

pH W 0.211 0.415 

EC S 0.804 0.861 

EC W 0.847 0.880 

Moist S 0.873 0.950 

Moist W 0.894 1.000 

SOM shows very little correlation with pH in summer and winter, but strong 

correlation with the remaining factors. Winter moisture displays moderate 

correlation to summer and winter pH, with strong correlation for the remaining 

factors. Variables, SOM and winter moisture, independently of each other, could be 

used as a predictor for saltmarsh and woodland soils. 
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4.3.4 Soil texture 

The results from the particle size analysis were plotted on the USDA/FAO soil 

texture triangle using R (Figure 4.33). The plot demonstrates the decrease in clay 

content and increase in sand content from the lower marsh to the upper marsh, with 

further increases of sand content into the woodland indicating the impact of the 

sand dune and ridge. 

 
Figure 4.33: USDA/FAO soil texture triangle with data for clay, silt and sand plotted by station/group. Red sites = 
RED transect, orange sites = YELLOW transect, green sites = GREEN transect, blue sites = vegetation groups. 

Soil classifications are tabled in Table 4.13 along with the PSA results. 

Table 4.13: Station particle size analysis data – clay, silt and sand in %, classification to USDA/FAO classes; value 
of 1 = wholly within polygon, value of 2 = on side of two polygons, value of 3 = on corner of three polygons. 

Group/ 
Station CLAY SILT SAND Clay 

Sandy 
clay 

Clay 
loam 

Sandy 
clay loam 

Sandy 
loam 

Loamy 
sand Sand 

ASS(a) 42 26 32 1   

 

   

R6 22 13 65 

 

  1    

R13 51 25 24 1       

Y2 49 34 17 1       

Y16 39 38 23 

 

 1     

G13 48 21 31 1  
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Group/ 
Station CLAY SILT SAND Clay 

Sandy 
clay 

Clay 
loam 

Sandy 
clay loam 

Sandy 
loam 

Loamy 
sand Sand 

ASS(b) 30 17 53 

 

  1    

R1 55 27 18 1   

 

   

R2 25 13 62    1    

R5 24 22 54    1    

R7 19 8 73    

 

1   

R12 23 12 65    1    

R14 49 21 30 1       

Y1 45 23 32 1       

Y3 15 10 75     1   

Y11 15 9 76     1   

Y12 19 7 74     1   

Y15 25 25 50    1    

Y17 35 28 37   1     

G1 40 21 39 2  2     

G2 37 17 46  1      

G3 14 1 85      1  

G4 19 4 77     1   

G10 56 25 19 1       

G12 34 26 40   1     

ARS 17 16 67     1   

R3 15 17 68     1   

R8 10 6 84      1  

R11 9 9 82      1  

Y4 6 7 87      1  

Y5 11 12 77     1 

 

 

Y6 8 9 83     

 

1  

Y10 17 12 71     1   

Y13 21 17 62    1 

 

  

Y14 8 21 71     1   

G5 16 10 74     1   

G8 11 11 78     1   

G9 41 25 34 1       

G11 40 31 29 2  2     

G14 28 30 42 

 

 1     

GSL 9 3 88      1  

R4 8 6 86      1  

R9 8 4 88      1  

R10 7 3 90      

 

1 

Y7 11 1 88      1 

 Y8 6 1 93      

 

1 

Y9 12 5 83      1 
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Group/ 
Station CLAY SILT SAND Clay 

Sandy 
clay 

Clay 
loam 

Sandy 
clay loam 

Sandy 
loam 

Loamy 
sand Sand 

GPL (sr) 10 0 90      3 3 

G6 11 0 89      2 

 G7 9 0 91      

 

2 

GPL (dr) 11 9 80     1   

G15 13 9 78     1   

G16 10 8 82     

 

1 

 

Each vegetation group has been classified as follows: 

ASS(a) – clay; 5 stations – clay (4) to clay loam (1). 

ASS(b) – sandy clay loam; 18 stations – across the spectrum of clay to sandy loam. 

ARS – sandy loam; 14 stations – clay to clay loam (3), remainder sandy loam/loamy 

sand. 

GSL – loamy sand; 6 stations – loamy sand (4) to sand (2). 

GPL (sr) – loamy sand; 2 stations – loamy sand to sand. 

GPL (dr) – sandy loam; 2 stations – sandy loam to loamy sand. 

 Invertebrate assemblages 4.4

The results of all pitfall collections are presented in Table 4.14. 

Table 4.14: Pitfall trap collections over the 12 month period by season and total. 

 

Spring Summer Autumn Winter TOTAL 

Transects 3 3 3 3 3 

Pitfall stations 47 47 47 40 47 

Pitfall traps 141 141 141 118 141 

Pitfall trap – set and collect 2 2 2 2 8 

Total traps collected 282 282 282 236 1 082 

Total catch 10 984 20 073 4 667 2 106 37 830 

No. Orders 15 14 16 14 22 

SPIDERS 

     Spider Families 10 13 11 6 23 

Spider Taxa 15 18 15 10 37 

Spiders 1 726 2 597 639 644 5 606 

% spiders of total catch 15.71% 12.94% 13.69% 30.58% 14.82% 
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BEETLES    Spring Summer Autumn Winter TOTAL 

Beetle Families 10 12 12 8 22 

Beetle Taxa 29 38 27 13 84 

Beetles 351 486 241 87 1 165 

% beetles of total catch 3.20% 2.42% 5.16% 4.13% 3.08% 

A full data set of all pitfall trap collections by station is available in Appendix I. 

4.4.1 Spiders 

Five dominant spider families by abundance in each vegetation group and by season 

are presented in Figures 4.34 to 4.37. 

Three spider families were ubiquitous in all seasons: Lycosidae (wolf spiders), 

Linyphiidae (sheet weaver spiders) and Zoridae (wandering ghost spiders), with a 

clear dominance by Lycosidae (Figures 4.34 to 4.37). A seasonal signal was evident 

with a decline in the Lycosidae, increasingly replaced by Linyphiidae from summer 

to winter, reverting to Lycosidae in spring. Zoridae, though having a lower 

representation across the site, are more dominant in the woodland groups, for 

example, GPL (sr) in autumn. 

Of the remaining dominant families, Miturgidae (large sac spiders) was evident 

during the colder seasons of winter and spring; Gnaphosidae (ground spiders) was 

present spring to autumn, generally restricted to the drier woodland vegetation 

communities such as the sand dune; Nicodamidae (red and black spiders) occurred 

during the warmer seasons spreading across the site during autumn. 

Autumn was the most variable season for spider activity across all vegetation groups 

and winter the least variable season. 
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Figure 4.34: Top five dominant spider families by vegetation group – spring. 

 

Figure 4.35: Top five dominant spider families by vegetation group – summer. 

 

Figure 4.36: Top five dominant spider families by vegetation group – autumn. 

 

Figure 4.37: Top five dominant spider families by vegetation group – winter. 
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The results of spider indicator species analysis for each vegetation group are 

presented in Table 4.15 along with vegetation indicator species of each vegetation 

group. 

Table 4.15: Vegetation groups and significant vegetation species (indicator species) of p-value < 0.05 with 
significant spider taxa (indicator species) of p-value < 0.05 over 12 months of invertebrate collection at Long 
Point. 

Vegetation group/ 
Dominant vegetation taxa stat 

p-
value  Dominant spider taxa stat 

p-
value  

ASS(a)  

   

 

   Sarcocornia quinqueflora 0.944 0.001 *** Venatrix (s) 0.984 0.002 ** 

Disphyma crassifolium 0.822 0.008 ** Zodariidae 0.838 0.044 * 

    

Zoridae 0.814 0.016 * 

ASS(b)        

Bare ground 0.961 0.001 *** Venatrix (s) 0.984 0.002 ** 

Sarcocornia quinqueflora 0.944 0.001 *** 

    Tecticornia arbuscula 0.904 0.001 *** 

    Disphyma crassifolium 0.822 0.008 ** 

    ARS (saline grassland)       

 Bare ground 0.961 0.001 *** Venatrix (s) 0.984 0.002 ** 

Poa labillardierei 0.939 0.001 *** Gnaphosidae (A) 0.894 0.003 ** 

Juncus spp. 0.869 0.001 *** Zodariidae 0.838 0.044 * 

Gahnia spp. 0.854 0.001 *** Zoridae 0.814 0.016 * 

Disphyma crassifolium 0.822 0.005 ** 

    Austrostipa spp. 0.807 0.005 ** 

    GSL (sand dune)       

 Ehrharta stipoides 1.000 0.001 *** Venatrix (s) 0.984 0.002 ** 

Bare ground 0.961 0.001 *** Gnaphosidae (A) 0.894 0.003 ** 

Oxalis perennans 0.894 0.001 *** Salticidae 0.857 0.006 ** 

Lomandra longifolia 0.877 0.003 ** Zodariidae 0.838 0.044 * 

Austrostipa spp. 0.807 0.005 ** Zoridae 0.814 0.016 * 

Leontodon taraxacoides 0.764 0.026 * 

    Poa rodwayi 0.707 0.014 * 

    GPL (sr)       

 Hibbertia prostrata 1.000 0.002 ** Gnaphosidae (A) 0.894 0.003 ** 

Bare ground 0.961 0.001 *** Salticidae 0.857 0.006 ** 

Poa labillardierei 0.939 0.001 *** Zodariidae 0.838 0.044 * 

Ficinia nodosa 0.935 0.001 *** Zoridae 0.814 0.016 * 

Oxalis perennans 0.894 0.001 *** 

    Lomandra longifolia 0.877 0.003 ** 

    Pteridium esculentum 0.835 0.019 * 

    Isolepis nodosa 0.800 0.021 * 
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Vegetation group/ 
Dominant vegetation taxa stat 

p-
value  Dominant spider taxa stat 

p-
value  

GPL (dr)       

 Aira caryophyllea 1.000 0.002 ** Salticidae 0.857 0.006 ** 

Austrodanthonia setacea 1.000 0.002 ** Theridiidae 0.845 0.009 ** 

Bare ground 0.961 0.001 *** Zodariidae 0.838 0.044 * 

Poa labillardierei 0.939 0.001 *** Zoridae 0.814 0.016 * 

Zoysia macrantha 0.910 0.004 ** 

    Oxalis perennans 0.894 0.001 *** 

    Juncus spp. 0.869 0.001 *** 

    Lomandra longifolia 0.877 0.003 ** 

    Austrostipa spp. 0.807 0.005 ** 

    Baumea juncea 0.801 0.019 * 

    Poa rodwayi 0.707 0.014 * 

    Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 
(s) = striped; (A) = genus A 

The most significant (p < 0.05) spider group across the site was the genus Venatrix 

evident in the saline zones and the woodland area of the sand dune (Table 4.15). The 

Gnaphosidae (A) taxon inhabited the dry saline grasslands and the sand dune and 

ridge woodlands with the Salticidae restricted to the dry woodland areas. Two 

families – Zodariidae and Zoridae were generalists being significant in all vegetation 

communities except for ASS(b). 

The spider taxa nMDS plot fitted with the edaphic factors is presented in Figure 

4.38. 

Edaphic factors were strongly aligned in a negative direction on axis 1 with a small 

divergence of the pH variables from the other factors (Figure 4.38). The direction of 

the arrows indicated decreasing conditions, for example, increasing moisture, 

decreasing pH. In this case axis 1 can be regarded as an edaphic factor gradient.  
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Figure 4.38: Edaphic (vector) factors (shown in light blue) fitted to non-metric multidimensional scaling plot of 
spider taxa data (shown in red) transformed by log(x+1). Spider codes are deciphered in Appendix J. 

The grouping of the spider taxa near the centroid of the ordination indicated that 

many preferred neutral soil conditions. However, some taxa have particular 

preferences such as Trochosa preferred dry, low saline conditions, whereas the spotted 

Venatrix was content in wetter, more saline conditions. 

The vector values of the fitted edaphic factors (displayed in Figure 4.38) are tabled in 

Table 4.16. 
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Table 4.16: Vector values of fitted edaphic factors to nMDS plot of spider taxa data transformed using log(x+1). 
The table is sorted by Pr(>), then nMDS1. 

Variables nMDS 1 nMDS 2 r
2
 Pr(>r)  

Moisture summer -0.99281 -0.11973 0.6389 0.001 *** 

Moisture winter -0.99157 -0.12958 0.5790 0.001 *** 

EC summer -0.98619 -0.16561 0.5543 0.001 *** 

EC winter -0.94488 -0.32741 0.4019 0.001 *** 

SOM -0.96976 -0.24407 0.3725 0.001 *** 

pH winter -0.97559 0.21961 0.3546 0.001 *** 

pH summer -0.96939 0.24551 0.3483 0.001 *** 

Carbon -0.97561 -0.21953 0.3252 0.001 *** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 

The very low vector values of nMDS for each of the edaphic factors confirmed the 

effectiveness of Axis 1 in the nMDS plot (Figure 4.38), reinforcing the notion of this 

axis being regarded as the edaphic factor gradient. The more neutral values of axis 2 

demonstrated the little importance this axis has on the edaphic factors. Two factors, 

summer and winter moisture, had the highest r2 value indicating that they were the 

dominant soil factors that influenced the spider community. 

The spider taxa nMDS plot fitted with the vegetation taxa is presented in Figure 

4.39. 

Vegetation taxa were less uniformly aligned then the edaphic factors. In this case 

(Figure 4.39) many vegetation taxa were aligned with axis 1, for example Sarcocornia 

quinqueflora and Oxalis perennans were respectively strongly negatively and positively 

aligned with this axis. Several taxa, such as, Dichelachne crinita and Austrodanthonia 

setacea were negatively aligned with axis 2. 
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Figure 4.39: Vegetation (vector) taxa (shown in green) with maximum p-value < 0.05 fitted to non-metric 
multidimensional scaling plot of spider taxa data (shown in red) transformed by log(x+1). Spider codes are 
deciphered in Appendix J. 

The grouping of the spider taxa near the centroid indicated that many preferred a 

range of vegetation taxa. However, some spider taxa have particular preferences, for 

example, the spotted Venatrix was found in Sarcocornia quinqueflora/Tecticornia 

arbuscula/Disphyma crassifolium vegetation communities – ASS(a)/ASS(b), whereas the 

black and white Linyphiidae was found associated with Leontodon taraxacoides, Pimelea 

glauca and Wahlenbergia stricta vegetation communities (ARS and GSL). 

The vector values of the fitted vegetation taxa (displayed in Figure 4.39) are tabled in 

Table 4.17. 
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Table 4.17: Vector values of fitted vegetation taxa of p-value < 0.05 to nMDS plot of spider data transformed by 
log(x+1). The table is sorted by Pr(>r), then nMDS1. 

Vegetation taxa nMDS 1 nMDS 2 r
2
 Pr(>r)  

Sarcocornia quinqueflora -0.99920 -0.03993 0.5420 0.001 *** 

Aira caryophyllea 0.38519 -0.92284 0.3162 0.001 *** 

Leontodon taraxacoides 0.62925 0.77721 0.3040 0.001 *** 

Oxalis perennans 0.99992 0.01301 0.3028 0.001 *** 

Austrodanthonia setacea 0.40443 -0.91457 0.3027 0.001 *** 

Lomandra longifolia 0.97486 -0.22283 0.2907 0.001 *** 

Tecticornia arbuscula -0.97564 -0.21937 0.2629 0.001 *** 

Ehrharta stipoides 0.94184 0.33605 0.3016 0.002 ** 

Disphyma crassifolium -0.97273 -0.23195 0.2856 0.002 ** 

Poa labillardierei 0.88402 -0.46744 0.2556 0.003 ** 

Ulex europaeus 0.77984 0.62597 0.2298 0.004 ** 

Autrostipa spp. 0.97022 0.24221 0.2352 0.006 ** 

Themeda triandra 0.98107 -0.19365 0.1817 0.014 * 

Isolepis nodosa 0.98072 0.19544 0.1676 0.017 * 

Pteridium esculentum 0.99170 0.12856 0.1651 0.019 * 

Dichelachne crinita 0.26286 -0.96483 0.1851 0.020 * 

Poa rodwayii 0.89839 -0.43920 0.1676 0.021 * 

Ehrharta stipoides 0.99910 0.04241 0.1657 0.023 * 

Baumea juncea 0.92570 - 0.37825 0.1502 0.024 * 

Pimelea glauca 0.70366 0.71053 0.1722 0.038 * 

Wahlenbergia stricta 0.70366 0.71053 0.1722 0.038 * 

Acetosella vulgaris 0.96927 0.24600 0.1373 0.040 * 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 

The impact of both axis 1 and axis 2 was equal in the nMDS plot (Table 4.17). Some 

vegetation taxa, for example Sarcocornia quinqueflora, were strongly negatively aligned 

to axis 1, with Aira caryophyllea strongly negatively aligned to axis 2. Leontodon 

taraxacoides was an example of a species that was positively aligned midway between 

axis 1 and axis 2. 

The vegetation species with the greatest r2 value was Sarcocornia quinqueflora indicating 

that this taxon was the dominant vegetation species followed by Aira caryophyllea. 
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4.4.2 Beetles 

Five dominant beetle families by abundance in each vegetation group by season are 

presented in Figures 4.40 to 4.43. 

Interesting and clear patterns of beetles were evident throughout the site (Figures 

4.40 to 4.43). Analogous to spiders, three beetle families were ubiquitous in all 

seasons: Carabidae (ground beetles), Staphylinidae (rove beetles) and Curculionidae 

(weevils). Carabidae were the dominant taxa in the saltmarsh vegetation 

communities with decreasing abundance towards dryer, less saline conditions; 

numbers were highest in winter/spring and lowest in autumn. Staphylinidae 

presence was mixed throughout the year – autumn, winter and spring saw this family 

evident in the wet and dryer vegetation communities, yet in summer Staphylinidae 

appeared increasingly in the wetter communities. The Curculionidae family was 

restricted to dryer and less saline conditions in winter and spring, however it became 

a generalist during summer and autumn favouring most conditions. Two beetle 

families were active over three seasons, Scarabaeidae (scarab beetles) spring to 

autumn, and Elateridae (click beetles) winter to summer. Scarabaeidae dominated the 

dry vegetation communities during spring and summer and were evident across all 

vegetation communities except for ASS(a) during autumn. Elateridae preferred the 

dry sand dune during winter, however became a generalist during spring and 

summer. Two other families, Byrrhidae (pill beetles) and Cantharidae (soldier 

beetles), made a brief appearance in the top five dominant species, autumn and 

winter respectively. Byrrhidae was evident on the sand dune (GSL) and the saline 

grasslands (ARS), while Cantharidae was dominant on the dolerite ridge (GPL (dr)) 

with a lower appearance in ARS and ASS(b). 

Summer and autumn were the most variable seasons for beetle activity across all 

vegetation groups, followed by winter, with spring being the least variable. 
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Figure 4.40: Top five dominant beetle families by vegetation group – spring. 

 

Figure 4.41: Top five dominant beetle families by vegetation group – summer. 

 

Figure 4.42: Top five dominant beetle families by vegetation group – autumn. 

 

Figure 4.43: Top five dominant beetle families by vegetation group – winter. 
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The results of beetle indicator species analysis for each vegetation group are 

presented in Table 4.18 along with the indicator vegetation species of each group. 

Table 4.18: Vegetation groups and significant vegetation species (indicator species) of p-value < 0.05 aligned 
with significant beetle taxa (indicator species) of p-value < 0.05 over 12 months of invertebrate collection at 
Long Point. 

Vegetation group/ 
Dominant vegetation taxa stat 

p-
value  Dominant beetle taxa stat 

p-
value  

ASS(a)        

 Sarcocornia quinqueflora 0.944 0.001 *** Bembidion 0.949 0.001 *** 

Disphyma crassifolium 0.822 0.008 ** 

    ASS(b)       

 Bare ground 0.961 0.001 *** Bembidion 0.949 0.001 *** 

Sarcocornia quinqueflora 0.944 0.001 *** 

    Tecticornia arbuscula 0.904 0.001 *** 

    Disphyma crassifolium 0.822 0.008 ** 

    ARS (saline grassland)       

 Bare ground 0.961 0.001 *** 

    Poa labillardierei 0.939 0.001 *** 

    Juncus spp. 0.869 0.001 *** 

    Gahnia spp. 0.854 0.001 ***     

Disphyma crassifolium 0.822 0.005 ** 

    Austrostipa spp. 0.807 0.005 ** 

    GSL (sand dune)       

 Ehrharta stipoides 1.000 0.001 *** Lepispilus sulcipennis 0.876 0.009 * 

Bare ground 0.961 0.001 *** Mandalotus 0.874 0.010 ** 

Oxalis perennans 0.894 0.001 *** Saragus 0.866 0.014 * 

Lomandra longifolia 0.877 0.003 ** Acrossidius tasmaniae 0.844 0.019 * 

Austrostipa spp. 0.807 0.005 ** Conoderus (large) 0.830 0.014 ** 

Leontodon taraxacoides 0.764 0.026 * Microchaetes 0.777 0.022 * 

Poa rodwayi 0.707 0.014 * Simodontus 0.775 0.025 * 

GPL (sr)       

 Hibbertia prostrata 1.000 0.002 ** Onthophagus posticus 0.951 0.001 *** 

Bare ground 0.961 0.001 *** Coccinellidae 0.894 0.008 ** 

Poa labillardierei 0.939 0.001 *** Saragus 0.866 0.014 * 

Ficinia nodosa 0.935 0.001 *** Acrossidius tasmaniae 0.844 0.019 * 

Oxalis perennans 0.894 0.001 *** Conoderus (large) 0.830 0.014 * 

Lomandra longifolia 0.877 0.003 ** Simodontus 0.775 0.025 * 

Pteridium esculentum 0.835 0.019 * 

    Isolepis nodosa 0.800 0.021 * 
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Vegetation group/ 
Dominant vegetation taxa stat 

p-
value  Dominant beetle taxa stat 

p-
value  

GPL (dr)       

 
Aira caryophyllea 1.000 0.002 ** 

Metriorrhynchus 
(larva) 1.000 0.002 ** 

Austrodanthonia setacea 1.000 0.002 ** Onthophagus posticus 0.951 0.001 *** 

Bare ground 0.961 0.001 *** 
Onthophagus 
australis 0.950 0.002 ** 

Poa labillardierei 0.939 0.001 *** Conoderus (large) 0.830 0.014 * 

Zoysia macrantha 0.910 0.004 ** Simodontus 0.775 0.022 * 

Oxalis perennans 0.894 0.001 *** Microchaetes 0.777 0.025 * 

Juncus spp. 0.869 0.001 *** 

    Lomandra longifolia 0.877 0.003 ** 

    Austrostipa spp. 0.807 0.005 ** 

    Baumea juncea 0.801 0.019 * 

    Poa rodwayi 0.707 0.014 * 

    Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 

No beetle group was significant (p < 0.05) across the whole site (Table 4.18). The 

genus Bembidion was restricted to the saline conditions of ASS(a) and ASS(b). The 

genera Conoderus and Simodontus were significant in the dryer woodland areas of the 

sand dune, and the sand and dolerite ridges. There were some interesting anomalies: 

the genus Saragus and species Acrossidius tasmaniae were significant in the sandy 

woodlands of GSL and GPL (sr), however, not significant on the dolerite ridge; in a 

similar manner, the small dung beetle, Onthophagus posticus, was significant on the 

sand ridge and the dolerite ridge, but not on the sand dune. 

The beetle taxa nMDS plot fitted with the edaphic factors is presented in Figure 

4.44. 

Edaphic factors were strongly aligned in a negative direction with a small divergence 

of the pH from the other factors (Figure 4.44). The direction of the arrows indicated 

decreasing conditions, for example increasing moisture. Again, similar to spiders, 

axis 1 can be interpreted as the edaphic factor gradient. 
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Figure 4.44: Edaphic (vector) factors (shown in light blue) fitted to non-metric multidimensional scaling plot of 
beetles data (shown in red) transformed by log(x+1). Beetle codes are deciphered in Appendix J. 

The grouping of the majority of beetle taxa on the positive (right) side of axis 1 

suggests that beetles favour improving soil conditions, for example, decreasing 

moisture, lower salinity and more alkaline soils. The genus Phyllotocus and species 

Naupactus leucoloma are two examples. Yet, some taxa did favour less favourable soil 

conditions, for example increasing acidity, higher moisture and salinity. The genera 

Bembidion and Clivina (large) are two examples. 

The vector values of the fitted edaphic factors (displayed in Figure 4.44) are tabled in 

Table 4.19. 
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Table 4.19: Vector values of fitted edaphic factors to nMDS plot of beetles data transformed using log(x+1). The 
table is sorted by Pr(>r), then nMDS1. 

Variable nMDS 1 nMDS 2 r
2
 Pr(>r)      

Moisture summer -0.999820 -0.018938 0.7567   0.001 *** 

Moisture winter -0.994410 0.105609 0.7564   0.001 *** 

EC summer -0.988000 -0.154485 0.7004   0.001 *** 

EC winter -0.979140 -0.203181 0.5831   0.001 *** 

SOM -0.999950 -0.010474 0.4741   0.001 *** 

Carbon -0.999480 0.032240 0.4452 0.001 *** 

pH winter -0.964490   0.264125 0.3959 0.001 *** 

pH summer -0.982660 0.185402 0.3478   0.001 *** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 

The very low vector values of nMDS for each of the edaphic factors confirmed the 

effectiveness of axis 1 in the nMDS plot as the edaphic factor gradient (Figure 4.44). 

The more neutral values of axis 2 demonstrated the little emphasis this axis has on 

the edaphic factors. 

Two factors, summer and winter moisture, had the highest r2 value indicating that 

they were the dominant edaphic factors followed by summer and winter EC 

respectively. Summer and winter pH had the lowest r2 values suggesting the least 

dominant factors. 

The beetle taxa nMDS plot fitted with the vegetation taxa is presented in Figure 

4.45. 

Vegetation taxa were a lot less aligned than the edaphic factors. In this case (Figure 

4.45), some vegetation taxa were aligned with axis 1, for example Sarcocornia 

quinqueflora and Ulex europaeus were respectively strongly negatively and positively 

aligned. The tall sedge, Gahnia spp., was strongly negatively aligned with axis 2. The 

majority of vegetation taxa was neutral, either positive/positive or positive/negative 

aligned with axis 1 and 2 respectively. 
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Figure 4.45: Vegetation (vector) taxa (shown in green) with maximum p-value < 0.05 fitted to non-metric 
multidimensional scaling plot of beetles data (shown in red) transformed by log(x+1). Beetle codes are 
deciphered in Appendix J. 

The grouping of the majority of beetle taxa on the positive (right) side of axis 1 

suggests that beetles favour dry-land vegetation communities containing Oxalis 

perennans and Isolepis nodosa, with the scarabs, Automolius and Antitrogus tasmanicus, 

being two examples. Yet, some taxa, such as Bembidion and Anthicus (striped) did 

favour more saline plants such as Tecticornia arbuscula. 

The vector values of the fitted vegetation taxa (displayed in Figure 4.45) are tabled in 

Table 4.20. 
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Table 4.20: Vector values of fitted vegetation taxa of p-value < 0.05 to nMDS plot of beetles data transformed 
by log(x+1). The table is sorted by Pr(>r), then nMDS1. 

Vegetation nMDS 1 nMDS 2 r
2
 Pr(>r)  

Sarcocornia quinqueflora -0.99980 0.01992 0.7056 0.001 *** 

Lomandra longifolia 0.94519 0.32651 0.3652 0.001 *** 

Oxalis perennans 0.83199 0.55480 0.3523 0.001 *** 

Poa labillardierei 0.88698 -0.46181 0.3284 0.001 *** 

Isolepis nodosa 0.86359 0.50420 0.2994 0.001 *** 

Tecticornia arbuscula -0.93445 0.35609 0.2987 0.001 *** 

Ficinia nodosa 0.75158 -0.65964 0.2607 0.001 *** 

Disphyma crassifolium -0.97452 -0.22430 0.3932 0.002 ** 

Pteridium esculentum 0.82181 0.56977 0.2824 0.002 ** 

Ehrharta stipoides 0.77905 0.62696 0.2548 0.002 ** 

Distichlis distichophylla 0.62142 -0.78348 0.1911 0.006 ** 

Gahnia spp. 0.02889 -0.99958 0.2128 0.007 ** 

Baumea juncea 0.99447 0.10506 0.1914 0.008 ** 

Leontodon taraxacoides 0.73407 0.67907 0.1789 0.012 * 

Hibbertia prostrata 0.99988 -0.01565 0.1560 0.012 * 

Ulex europaeus 0.99902 0.04436 0.1618 0.014 * 

Themeda triandra 0.86062 -0.50925 0.1518 0.016 * 

Juncus spp. 0.67853 -0.73457 0.1814 0.017 * 

Poa rodwayi 0.89634 0.44338 0.1641 0.019 * 

Astroloma humifusum 0.66572 0.74620 0.1544 0.023 * 

Pimelea glauca 0.58444 -0.81144 0.1424 0.024 * 

Wahlenbergia stricta 0.58444 -0.81144 0.1424 0.024 * 

Danthonia spicata 0.71466 0.69947 0.1428 0.027 * 

Zoysia macrantha 0.65431 0.75623 0.1296 0.050 * 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’0.05 ‘.’ 0.1 ‘ ’ 1. P values based on 999 permutations. 

The impact of both axes was somewhat uniform in the nMDS plot (Table 4.24). A 

large group of vegetation taxa were equally aligned to both axes such as Poa 

labillardierei and Astroloma humifusum. Similar to spiders and vegetation, Sarcocornia 

quinqueflora was strongly negatively aligned with axis 1. Taxa aligned positively to axis 

1 included Hibbertia prostrata, Ulex europaeus and Baumea juncea. The succulent 

glasswort, Sarcocornia quinqueflora recorded the greatest r2 value, followed by Disphyma 

crassifolium and Lomandra longifolia. 
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4.4.3 Spiders and beetles 

A representative sample of seven spider taxa and seven beetle taxa was used to 

demonstrate the distribution of each taxon across each transect in a linear format 

based on the elevation profile (Figures 4.46 to 4.48). The figures highlight 

occurrence in vegetation communities across each transect gradient during the 

course of the year and are based on presence only (not abundance). The presence of 

two or more taxa in the same vegetation group does not necessarily indicate that 

those taxa co-exist as some taxa are not present in all seasons. 

Examples of spiders and beetles and a description of their habitats are presented in 

Figures 4.49 to 4.54 (spiders) and Figures 4.55 to 4.60 (beetles). 

Of the spider taxa, the genera, Venatrix (striped) and Artoria (plain), were the most 

widely distributed across all vegetation communities followed by the family 

Gnaphosidae and genus Nicodamus, both avoiding the wetter, more saline 

communities. The families Zoridae, Zodariidae and Salticidae preferred the dryer, 

saline grasses and woodland areas. 

The beetle genera Bembidon and Anthicus (plain) were the most widely distributed 

across all gradients, though they appeared to mostly shun the saline grasses and 

woodland areas. The rove beetle, Bledius, was generally evident in most vegetation 

communities, but avoided the Sarcocornia spp. – the ASS(a) group. Conversely, the 

weevil, Mandalotus, was restricted to woodland areas – GSL, GPL (sr) and GPL (dr), 

with some limited presence in saline grasses but did not venture into the moist, 

saline communities. 
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Figure 4.46: RED transect – representative taxa along transect over 12 months, stations aligned to vegetation groups. COL = Coleoptera, ARA = Araneae, LB = Little Bay, ML = Moulting Lagoon.  
Vertical exaggeration = 16.5. 
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Figure 4.47: YELLOW transect – representative taxa along transect over 12 months, stations aligned to vegetation groups. COL = Coleoptera, ARA = Araneae, LB = Little Bay, ML = Moulting Lagoon.  
Vertical exaggeration = 16.5. 
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Figure 4.48: GREEN transect – representative taxa along transect over 12 months, stations aligned to vegetation groups. COL = Coleoptera, ARA = Araneae, LB = Little Bay, ML = Moulting Lagoon.  
Vertical exaggeration = 16.5. 
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Figure 4.49: Family: Miturgidae, species: Miturga agelenina, 
length: 20mm, habitat: dry saline grassland and woodland – 
ARS and GPL (G Anderson at http://www.arachne.org.au/ 01_cms/ 

details.asp?ID=2570). 

Figure 4.50: Family: Lycosidae, Genus: Atoria (banded), length: 
10mm, habitat: generalist – saltmarsh to woodland – ASS(a 
and b), ARS, GSL and GPL (J Douglas at http://www.tasmanianspiders. 

info/ A074.htm). 

Figure 4.51: Family: Nicodamidae, Genus: Nicodamus, length: 
8mm, habitat: generalist – saltmarsh to woodland – ASS(a 
and b), ARS, GSL and GPL (R Whyte at http://www. arachne.org.au/ 

01_cms/details.asp?ID=2528). 

   
Figure 4.52: Family Lycosidae, Genus: Venatrix, length: 10mm, 
habitat: generalist – saltmarsh to woodland – ASS(a and b), 
ARS, GSL and GPL (R Whyte at http://www.arachne.org.au/01_cms/ 

details.asp?ID=1163). 

Figure 4.53: Family: Linyphiidae, length: 2mm, habitat: 
generalist – saltmarsh to woodland – ASS(a and b), ARS, GSL 
and GPL. Note: very small, difficult to ID (J Douglas at 

http://www.tasmanianspiders.info/276.htm). 

Figure 4.54: Family: Thomisidae, Genus: Cymbacha, length: 
6mm, habitat: woodland – GSL (R Whyte at http://ednieuw. 

home.xs4all.nl/australian/thomisidae/crabspiders.html). 

http://www.arachne.org.au/%2001_cms/%20details.asp?ID=2570
http://www.arachne.org.au/%2001_cms/%20details.asp?ID=2570
http://www.arachne.org.au/01_cms/%20details.asp?ID=1163
http://www.arachne.org.au/01_cms/%20details.asp?ID=1163
http://www.tasmanianspiders.info/276.htm
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Figure 4.55: Family: Tenebrionidae, Genus: Saragus, length: 
15mm, habitat: woodland – GSL and GPL (T Daley at 

https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-

polyphaga/tenebrionidae-darkling-beetles). 

Figure 4.56: Family: Staphylinidae, Genus: Bledius, length: 
15mm, habitat: saltmarsh to saline grasslands – ASS(b) and 
ARS (T Daley at https://sites.google.com/site/insectsoftasmaniacoleoptera 

/suborder-polyphaga/ staphylinidae-rove-beetles/genus-bledius). 

Figure 4.57: Family: Scarabaeidae, Genus: Onthophagus, 
length: 8mm, habitat: woodland – GSL and GPL (T Daley at 

https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-

polyphaga/scarabaeidae-scarab-beetles/genus-onthophagus).  

   

Figure 4.58: Family: Carabidae, Genus: Bembidion, length: 
7mm, habitat: saltmarsh with some intrusion into saline 
grasslands – ASS(a and b) and ARS (D Maddison at 

http://bembidion.org). 

Figure 4.59: Family: Elateridae, Genus: Agrypnus, length: 
12mm, habitat: generalist, though more evident in saltmarsh – 
ASS(a and b), ARS and GSL (from: http://commons.wikimedia.org/wiki 

/File:Agrypnus.murinus. 1.jpg). 

Figure 4.60: Family: Scarabaeidae, Genus: Aphodius, 
length: 8mm, habitat: saline grassland and woodland – 
ARS, GSL and GPL (P Skelly at http://museum.unl.edu/research/ 

entomology/Guide/Scarabaeoidea/Scarabaeidae/Aphodiinae/ 

AphodiinaeTribes/ Aphodiini/Aphodius/Aphodius.html). 

 

https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-polyphaga/tenebrionidae-darkling-beetles
https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-polyphaga/tenebrionidae-darkling-beetles
https://sites.google.com/site/insectsoftasmaniacoleoptera%20/suborder-polyphaga/%20staphylinidae-rove-beetles/genus-bledius
https://sites.google.com/site/insectsoftasmaniacoleoptera%20/suborder-polyphaga/%20staphylinidae-rove-beetles/genus-bledius
https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-polyphaga/scarabaeidae-scarab-beetles/genus-onthophagus
https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-polyphaga/scarabaeidae-scarab-beetles/genus-onthophagus
http://bembidion.org/
http://commons.wikimedia.org/wiki%20/File:Agrypnus.murinus.%201.jpg
http://commons.wikimedia.org/wiki%20/File:Agrypnus.murinus.%201.jpg
http://museum.unl.edu/research/%20entomology/Guide/Scarabaeoidea/Scarabaeidae/Aphodiinae/%20AphodiinaeTribes/%20Aphodiini/Aphodius/Aphodius.html
http://museum.unl.edu/research/%20entomology/Guide/Scarabaeoidea/Scarabaeidae/Aphodiinae/%20AphodiinaeTribes/%20Aphodiini/Aphodius/Aphodius.html
http://museum.unl.edu/research/%20entomology/Guide/Scarabaeoidea/Scarabaeidae/Aphodiinae/%20AphodiinaeTribes/%20Aphodiini/Aphodius/Aphodius.html
https://sites.google.com/site/insectsoftasmaniacoleoptera/suborder-polyphaga/tenebrionidae-darkling-beetles/genus-saragus/saragus-costatus/IMG_7400.jpg?attredirects=0
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Chapter 5: Discussion 

Long Point presents a rich ensemble of saltmarsh plant community groups near sea-

level which interface with adjoining more elevated communities featuring coastal 

grassland and woodland. These in turn support diverse communities of ground 

dwelling insects and arachnids not previously documented in Tasmania.  

This discussion addresses the vegetation communities, landscape features and spider 

and beetle assemblages in turn, before attempting to summarise their integrative 

aspects. 

 Vegetation communities 5.1

Three discrete vegetation communities were apparent in both saltmarsh and adjacent 

woodland zones at Long Point. Each community was closely identified with a 

particular vegetation structure and can be readily recognised in the field based on a 

specific indicator species or some combination of them. 

Saltmarsh zonation was very marked at the study site, both in terms of species 

incidence by group, and in the visual demarcation of each group. Woodland 

zonation however, was less conspicuous with the intermixing of several species 

between groups often apparent, yet it was discernible on analysis, as principal species 

in each group were obvious. 

5.1.1 Saltmarsh zone 

Saltmarshes are characterised by dominant vegetation species and communities that 

are adapted to the harsh saltmarsh environment (Kirkpatrick & Glasby 1981; 

Bridgewater & Cresswell 2003; Saintilan 2009b). The spatial distribution of plants 

within the saltmarsh is not random; it is organised into distinctive communities 

arranged in a sequence or zonation (Long & Mason 1983; Adam 1990; 2002; Silvestri 

et al. 2005). Many authors, for example, Kirkpatrick and Glasby (1981), Bridgewater 

and Cresswell (1999), Bridgewater and Cresswell (2003), and Saintilan (2009), have 

described the succession of dominants, from saline succulents in the low-
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marsh zone through to saline graminoids including grasses, rushes and sedges, in the 

upper zone. Similarly, species diversity increases from just a few taxa at the low 

marsh end to higher numbers in the upper marsh (Adam 1990; Saintilan 2009). 

Bridgewater and Cresswell (2003) formulated five saltmarsh phytogeographic 

groups, further divisible into 12 subgroups, based on the Australian Virtual 

Herbarium (AVH) and the Interim Biogeographical Regionalisation of Australia 

(IBRA). The southern Australian coastline including Tasmania was placed in group I 

– Sclerostegia (now Tecticornia) arbuscula – Juncus kraussii group. This group is further 

subdivided into four sub-groups, in which sub-group I.2: Stipa (now Austrostipa) 

stipoides – Agrostis billardieri (now Lachnagrostis billardierei) (Baker & de Salas 2013) 

defines eastern Tasmania and south-eastern Australia. This group has no further 

subdivisions. Adam (1990) on the other hand, describes three vegetation categories 

based on dominant growth form: a) herb communities; b) graminoids; and c) dwarf 

shrubs. Kirkpatrick and Glasby (1981) used a slightly different approach in 

classifying Tasmanian saltmarsh vegetation, based on the life-form of the dominant 

species that had the highest cover in the tallest layer. This led to four defined 

communities: a) succulent herbs; b) grasses; c) sedges and rushes; and d) herbs. 

These were further subdivided in terms of height and cover of the dominant species 

into a total of 15 sub-communities (Kirkpatrick & Glasby 1981). However, 

dominants could comprise a number of species, in particular various Gahnia, Juncus 

and Austrostipa spp. making such a variable combination difficult to assign a 

particular classification.  

At Long Point, the saltmarsh zone is organised into three groups based on 

vegetation structure and composition and its position in the landscape. This broadly 

reflects the findings of Richardson et al. (1997; 1998) who recognised three broad 

vegetation groups within Tasmanian saltmarsh zones. The groundcover succulents 

(the low marsh) were typified by Sarcocornia quinqueflora and S. blackiana (and others), 

the saltbush group (mid marsh) described by Arthrocnemum (Tecticornia) arbuscula, and 

the grass-sedgelands (upper marsh) by Austrostipa, Juncus and Gahnia spp. and others. 

An earlier study of three separate saltmarshes in the Derwent region of southeast 

Tasmania by Marsh (1982) identified a similar arrangement of zones with a 
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corresponding vegetation community structure.  

Saltmarsh vegetation classification is sensitive to scale with a broad brush approach 

of Bridgewater and Cresswell (2003) grouping Tasmania’s east coast with south-

eastern Australia, whereas Kirkpatrick and Glasby (1981) have developed 

classifications at a much finer scale. In general terms, the classification of Sarcocornia 

and Tecticornia into separate zones, as has been promoted in this thesis, would 

probably not be appropriate. Both plants are succulents, were mostly found together 

and could easily fall into the succulent herbs category of Kirkpatrick and Glasby 

(1981). However, it was important to divide this category into two as there was 

marked distinction between these genera in terms of height, well defined mappable 

boundaries and position in the landscape. This allowed each genus to be allocated 

low and middle marsh respectively. The two vegetation types may also represent 

definitive invertebrate habitats, a key focus of this study. Visually distinguishing the 

zone containing grasses, sedges and rushes was more difficult, yet the clustering 

analysis clearly classified this as a single group – designated here as upper marsh. 

Evidence from Long Point demonstrated that classification grouping can be either 

floristic or non-floristic based. Floristic classification is relatively straightforward if 

only one or two species is dominant in the community. However, when a 

community displays multiple dominant species or where no dominant species is 

apparent, classification reverts to non-floristic terms (Adam 1990). In saltmarshes 

species diversity increases with elevation (Adam 1990), therefore floristic 

classification is often used for low to middle marsh zones, whereas the upper marsh 

zone accommodates a greater number of species and is often classified using a non-

floristic term. 

The low marsh is dominated at times by a single species, Sarcocornia quinqueflora, or by 

a combination of S. quinqueflora, S. blackiana and Disphyma crassifolium and therefore 

became the Sarcocornia zone. Similarly, the middle marsh, dominated by Tecticornia 

arbuscula often with low marsh species as groundcover, was referred to as the 

Tecticornia zone. However, due to the difficulty in defining grasses, sedges and rushes 

into individual groups, and in order to retain the grouping suggested by the 
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clustering method, the upper marsh was referred to as saline grasslands. In a similar 

fashion, Richardson and Mulcahy (1996), in their study of talitrid amphipods 

(Crustacea) at Lutregala Marsh on Bruny Island, classified their saltmarsh study sites 

based on the dominant plant species that made up each vegetation community. 

Coastal saltmarshes occur worldwide and although local features are often exhibited, 

most have similarities that are immediately recognised (Adam 2002; 2009). The 

appearance and the make-up of Australian saltmarsh vegetation communities are 

broadly comparable to saltmarshes elsewhere (Chapman 1974; Adam 2009). As a 

result Chapman (1974) proposed a global saltmarsh classification based on floristic 

and vegetation criteria. He delineated nine biogeographical saltmarsh groupings with 

Australia and New Zealand united as the Australasian group. In both appearance 

and vegetation, there is a relationship, at least to genus level, between Australian 

saltmarshes, particularly those in SE Australia (including Tasmania) and those in the 

Northern Hemisphere (Adam 1990). For example, Juncus kraussii appears to be 

ecologically equivalent to Juncus maritimus in Europe. Various salt tolerant genera of 

Cyperaceae, Restionaceae, Poaceae and Chenopodiaceae are shared between Europe, 

North and South America, and South Africa. Isolepis, Leptocarpus, Distichlis, Sarcocornia 

and Suaeda are widespread in those regions (Long & Mason 1983; Vince & Snow 

1984; Adam 1990; Álvarez‐Rogel et al. 2000; Adam 2009; Lovell & Davis 2012). 

These extensive genera occupy similar saltmarsh zones as in Australia, for example 

Distichlis, occupies the upper zone (saline grasslands), while Sarcocornia is typical of 

the lower/middle zones. 

5.1.2 Woodland zone 

At Long Point, native woodland abuts the saltmarsh zones and provided a valuable 

opportunity to study the distribution of a full range of ground dwelling invertebrates, 

particularly cursorial spiders and ground beetles, in relation to woodland vegetation. 

The local topography determined that the woodland zone was made up of three 

different vegetation types, as recognised by the clustering analysis. Apart for a 

limited number of studies, for example Richardson and Mulcahy (1996) and Clarke 

and Hannon (1967), consideration of the saltmarsh to woodland zone continuum 
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has not been common. 

There were several shared plant species between the three woodland groups such as 

Oxalis perennans and Lomandra longifolia. Common species were identified between two 

of the three groups such as Poa rodwayi and in two cases, the saline grassland genus, 

Austrostipa was found in the woodland zone. However, each group could be 

identified by the significant occurrence of indicative species: Ehrharta stipoides on the 

sand dune, Hibbertia prostrata on the sand ridge and Aira caryophyllea and 

Austrodanthonia setacea on the dolerite ridge. A notable indicative species was Pteridium 

esculentum which delineated the sand ridge from the sand dune as the bracken zone. 

 Landscape features 5.2

As hill shade and solar radiation were uniform across the saltmarsh zone, the main 

area of study, these factors will not be further discussed. Although elevation shows 

minor variation in the saltmarsh zone, it does play an important role in the saltmarsh 

environment through its interaction with tidal flows, and therefore demands further 

discussion. 

5.2.1 Saltmarsh zone 

Typically, the saltmarsh zone will gently rise from the seaward fringe and tidal flats 

to its landward limit or the terrestrial zone (Long & Mason 1983). This elevational 

gradient determines the temporal pattern of inundation by tidal flooding (Sánchez et 

al. 1996) that results in decreasing tidal influence as elevation increases (Long & 

Mason 1983). This pattern was apparent in elevation data at Long Point. The 

elevation range of the three saltmarsh groups was 0.306m. It ranged from 0.256m in 

ASS(a), through to 0.300m in ASS(b) and 0.562m in ARS. These mirror a study in 

northwest Spain where Sánchez et al. (1996) found the levels separating the low 

marsh from the mid marsh to the high marsh were 0.260m, 0.350m to 0.400m 

respectively. In both cases, elevation was based on mean sea level. It is important in 

any ecological study of elevational aspects in saltmarshes, deliberation be given to 

the more meaningful use of relative tide height as opposed to actual altitude. 

Communities that are found at high tide mark at varying locations for 
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example will have more similarity than those that are one or two metres above mean 

sea level irrespective of the tidal range at a particular site (Long & Mason 1983). This 

is due to the influence of the frequency and duration of inundation on intertidal 

communities (Adam 1990). 

The lower marsh, which can be inundated once to twice per day, is able to be 

flooded up to 700 times per year. Yet, the upper marsh, which may only be 

inundated once per month, will only be impacted by marine waters 12 times per year 

(Long & Mason 1983). However, Bockelmann et al. (2002) found that elevation 

(shore height) only had a weak correlation with inundation frequency, which may 

reflect the influence of local winds and the dynamics of the site such as the drainage 

system (Bockelmann et al. 2002). Furthermore, storm tide events and 

onshore/offshore winds can impact the inundation area irrespective of the elevation 

of the zones at normal inundation times (Long & Mason 1983). The speed of tidal 

retreat is also controlled by elevation which in turn determines zonation. Creek 

systems for example, permit the rapid retreat of flooding waters once the tide begins 

to fall, allowing adjacent areas to be clear of inundation faster than those areas 

further away, even if there is no change in elevation (Bockelmann et al. 2002). 

5.2.2 Saltmarsh zone – elevation and vegetation 

The zonation discussed above is linked to tidal inundation which is determined by 

elevation (Sánchez et al. 1996; Huckle et al. 2000). Plant distribution is therefore not a 

direct reflection of altitude within the saltmarsh, rather it is more a consequence of 

inundation controlled by elevation (Long & Mason 1983). Some plant species are 

limited to precise elevational classes. However many appear in two zones and some 

appear in all three (Sánchez et al. 1996). In an Alaskan saltmarsh, Vince and Snow 

(1984) found that vegetation communities changed markedly with increasing 

elevation. In several cases this occurred over an elevation difference of less than 

eight centimetres with some individual species ranging over a number of zones 

(Vince & Snow 1984). Inundation frequency therefore has a greater explanatory 

value for forecasting the occurrence of dominant species than will altitude (Davis & 

Gray 1966; Bockelmann et al. 2002). Minor changes in elevation, particularly closer 
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to sea level, leads to greater variations in inundation, which in turn results in greater 

variation in vegetation. Some plant species can still be found over a wide range of 

inundation frequencies (Bockelmann et al. 2002). 

At Long Point, Disphyma crassifolium was significant in all three saltmarsh groups (p < 

0.05). Similarly, Sarcocornia quinqueflora was highly significant in groups ASS(a) and 

ASS(b) (p < 0.001), but was also evident in ARS as a groundcover species, though in 

reduced extent. Similarly, Austrostipa spp. was found on the sand dune (GSL) and 

dolerite ridge (GPL dr) as well as the saline grasslands (ARS) (p < 0.015). During the 

study period, the saline grasslands at Long Point were only inundated once in 

conjunction with an equinoctial tide and very high recent rainfall. There is no simple 

explanation as to why some species occupy two or more zones, except that some 

individual plant species may be more adaptable to, or tolerant of, a wide range of 

saltmarsh conditions. 

5.2.3 Woodland zone 

Contrary to the saltmarsh groups, the elevation within woodland communities varied 

as a result of the undulating landscape. Mean elevations ranged from 2.18m for the 

sand ridge (GPL sr), 3.51m for the sand dune (GSL) to 7.33m on the dolerite ridge 

(GPL dr). As the mean of the lowest group was over 2m it was well out of the reach 

of even the highest tide and therefore not subjected to inundation. However, 

regardless of elevation, the woodland zone is subject to varying inputs of aerosolic 

salt from onshore winds which can affect the make-up of coastal vegetation 

communities (Adam 1990). 

5.2.4 Woodland zone – elevation and vegetation 

The altitudinal range of the woodland zone at Long Point was small (1.15m to 

10.32m) therefore the coastal vegetation species diversity of the site was not 

expected to be high. Irrespective of elevation and woodland grouping, some species 

were found in all three woodland groups, for example Lomandra longifolia, (p < 0.005) 

with Poa rodwayii (p < 0.011), was found on the sand dune (GSL) and dolerite ridge 

(GPL dr). However, there were species identified to particular groups such as 
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Ehrharta stipoides (p < 0.001) which were restricted to the sand dune, Hibbertia 

prostrata (p < 0.003) to the sand ridge and Aira caryophyllea (p < 0.011) found on the 

dolerite ridge. There were other species that were identified to a particular group 

such as Pteridium esculentum on the sand ridge, which became the distinguishing 

species at this location as it was absent from the dolerite ridge and was minimal on 

the sand dune. Therefore, other factors including biotic, local habitat and 

competition were possibly more crucial to the presence of species than elevation 

alone (Bockelmann et al. 2002). 

 Edaphic factors 5.3

Soil data were aligned with the vegetation grouping previously established (see 

above). Five factors were analysed by group, with three of the factors – moisture, 

pH and EC, assessed for summer and winter. In every case there was a significant 

difference between groups. This was generally the case between the saltmarsh and 

woodland groups, but differences also existed between the saltmarsh groups. The 

only variable that was significantly different between the woodland groups was pH. 

Further analysis of the data showed that predictor factors were winter moisture and 

SOM with winter moisture being the better of the two in indicating other factors. As 

a predictor factor, SOM is more difficult to measure as it requires laboratory testing 

with highly accurate weighing equipment and a 550oC muffle furnace. Winter 

moisture can be measured in the field with an inexpensive handheld meter. 

Edaphic factors generally show gradients from the low marsh to the high marsh that 

correspond with elevation and tidal impacts (Pennings & Callaway 1992). 

Throughout the study site interesting patterns of positive and negative correlations 

in the soils were evident. Moisture and EC (summer and winter) along with SOM 

and carbon, all showed a distinctive negative correlation to elevation. The pH 

(summer and winter) though less distinctive, was still negatively correlated to 

elevation. Among soil texture variables, sand was positively correlated to elevation as 

all elevated areas at Long Point were composed of sand, yet silt and clay were 

negatively correlated to elevation.  
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5.3.1 Saltmarsh zone 

There are difficulties in comparing data from this study with others of a similar 

nature. Edaphic factors have correlations in the same study site and when a factor is 

taken out of context it is problematic trying to relate this to the same factor from 

another study site. For example soil sand/silt/clay components vary between 

saltmarshes and within saltmarshes, resulting in variations to moisture retention, 

organic matter and possibly pH. However, it is expected that overall findings 

between studies would have a degree of similarity. 

The following section will discuss each factor independently, in combination, and 

then in combination with vegetation and elevation. 

Moisture: 

Tidal inundation and retreat on the saltmarsh zone results in the cyclical increase and 

decrease of the water table (Long & Mason 1983). The tidal retreat is slow, due in 

part to the flat topography, and also to the low hydraulic conductivity of saltmarsh 

soils (Clarke & Hannon 1967; 1969). The soil is waterlogged, oxygen is limited and 

the soil becomes anaerobic (Long & Mason 1983; Adam 1990). 

Moisture content varies considerably over the saltmarsh. Areas that are prone to 

frequent inundation have high levels of moisture, whereas areas of reduced 

inundation frequency record lower levels of moisture content (Long & Mason 1983). 

This pattern was replicated at Long Point. The coastal stations and those adjacent to 

the ephemeral ponds recorded levels of moisture exceeding 61% in summer and 

72% in winter, with group ASS(a) recording means of 68% and 85% respectively. 

Decreasing moisture content was strongly evident progressing through the middle 

marsh to the upper marsh with means of 55% and 22% respectively for summer and 

60% and 37% for winter. Similarly, Richardson and Mulcahy (1996) on Bruny Island, 

reported high levels of moisture throughout the saltmarsh zone with levels 

decreasing on approach to the woodland zone. Analysis of the data from a study by 

Gouldthorpe (2000) on the effects of drainage and grazing on Derwent Estuary 

saltmarshes revealed that a site very high in Sarcocornia quinqueflora cover – equivalent 
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to the ASS(a) group in this study – had a moisture content of 40%. Furthermore, 

two sites very high in Tecticornia arbuscula cover – equivalent to ASS(b) – had a mean 

moisture content of 51% (Gouldthorpe 2000). The frequency of inundation and 

distance to a waterbody of Gouldthorpe’s (2000) Derwent marsh sites is unclear. 

Nevertheless, his results do demonstrate high moisture content in saltmarsh soils. 

On the other hand the conclusions of Marsh (1982) were contrary to this and other 

Tasmanian studies, in that she reported the low and high marsh both had a very low 

moisture content (~ 3%), whereas the mid marsh had 15%. These seem unusually 

low. 

EC (salinity): 

Decreasing tidal inundation as a result of increasing elevation of the saltmarsh zone 

most often results in a decrease in soil salinity (Adam 1990; Silvestri et al. 2005). Low 

marsh salinity levels are generally constant throughout the year as tidal inundation 

recharges the water table and the soils (Adam 1990). However, the middle and upper 

marsh zones are subject to temporal variations in salt levels due to 

evapotranspiration, which can lead to increased salinity sometimes exceeding that of 

seawater, and also decreasing salinity following heavy rainfall (Long & Mason 1983; 

Adam 1990; Álvarez‐Rogel et al. 1997). This demonstrates that salinity has neither a 

positive or negative relationship, but a combination of effects with elevation (Adam 

1990). 

As salinity and EC have a close relationship (Hazelton & Murphy 2007), EC was 

used as a proxy for salinity in this study. 

At Long Point, there was a clear decreasing EC gradient across the saltmarsh zone. 

Soil EC decreased from summer to winter. EC for the ASS(a and b) groups were 

similar (p < 0.05), however the ARS group was significantly lower for both summer 

and winter. The three groups each recorded lower winter EC readings compared to 

that of summer following heavy rainfall in July 2013. Work by Richardson and 

Mulcahy (1996) supported the results from Long Point. Although they only reported 

sodium (Na) levels, there is a clear decline in levels progressively from the seaward 

side towards the woodland zone. A study by Adams (1963) of North 
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Carolina saltmarshes somewhat supported the finding of decreasing EC values in 

this study, though not conclusively. Aligning the vegetation species in North 

Carolina to saltmarsh zones does indicate a declining EC value of approximately 

40dS/m at the low marsh to approximately 27dS/m at the high marsh (Adams 

1963). This is supported by this study where the low marsh recorded a mean of 

36dS/m falling to a mean of 5dS/m in the upper marsh. In Gouldthorpe’s (2000) 

study, the ASS(a) equivalent site recorded 35dS/m and the mean of the ASS(b) 

equivalent sites was 57dS/m, again not a conclusive comparison. A similar study by 

Clarke and Hannon (1967), also documented decreasing salinity across the saltmarsh, 

where EC (m-mhos used in report, 1 m-mhos = 1 dS/m) values decreased from the 

Arthrocnemum zone to the Juncus zone from ~ 35dS/m to ~11dS/m (Clarke & 

Hannon 1969). 

Following further investigation into the relationship between EC and salinity, 

subsequent studies have shown that this relationship is not always satisfied (Álvarez‐

Rogel et al. 1997). The relationship is not completely linear especially in soils with a 

high content of soluble salts (Simón et al. 1994), typical of saltmarsh soils. To better 

evaluate saltmarsh soil salinity, further research and work needs to be conducted to 

understand salinity levels and the relationship to EC, if EC is to be used as a 

measure of salinity.  

Furthermore, some studies report that salinity increases with elevation with 

increased salinities being recorded in the high marsh zone (Long & Mason 1983; 

Adam 1990; Pennings & Callaway 1992). This is contrary to results from Long Point 

where salinity (in this case EC) was found to decline with increasing elevation. 

Additional study on a number of sites is required to clarify this point. 

pH: 

Work by Wherry (1920) in the New Jersey saltmarshes showed a relationship 

between plant distribution and soil chemistry. Further study by Clarke and Hannon 

(1967) of saltmarshes and mangroves near Sydney determined that soils increased in 

acidity towards the woodland zone.  
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Clear patterns were difficult to determine in pH values at Long Point. The means for 

ASS(a) and ARS were more closely aligned for both summer and winter with values 

of pH 5.1 each in summer, increasing slightly to pH 5.4 and 5.3 respectively during 

winter. In the ASS(b) group, the means for both summer and winter were lower 

(summer) and higher (winter) than the other saltmarsh groups, pH 4.3 and 6.1 

respectively. This didn’t fit expectations, however there was a significant change (p < 

0.05) from the saline grasslands to the adjacent woodland zone.  

It is difficult to compare data from this study to that of Clarke and Hannon (1967). 

Their saltmarsh zones were identified as Arthrocnemum (now Tecticornia) which could 

equate to ASS(b) in this study, and Juncus which may relate to ARS. Furthermore, 

there is no indication as to which season or time of year the soil samples were 

collected. Still, it was important to compare results as there appears to be a lack of 

saltmarsh soil pH data especially in Australia. The Arthrocnemum zone pH ranged 

from 5.4 to 7.5 compared to the ASS(b) zone (in this study) which ranged from 4.3 

to 6.7 in summer and 4.8 to 7.5 in winter. The Juncus zone (Sydney) range was 5.2 to 

7.0, compared to the ARS zone (in this study) range of 4.6 to 5.5 in summer and 4.6 

to 6.0 in winter. It is possible that Clarke and Hannon (1967) samples were collected 

over more than one season as they comment: “there does not appear to be any 

marked change associated with season…” (Clarke & Hannon 1967, p. 766). 

Similarly, the results from the Derwent Estuary study were far from comparable. 

The ASS(a) equivalent site recorded 9.5, and the mean of the ASS(b) equivalent sites 

was 8.9 (Gouldthorpe 2000). In this case, a colour test kit was used as absolute soil 

pH was not required (Gouldthorpe 2000). 

SOM and carbon: 

The primary contribution of organic matter in a saltmarsh is from in situ plant 

material (Adam 1990), with much originating from roots and rhizomes (Long & 

Mason 1983). Recorded levels of organic matter in saltmarshes are variable (Long & 

Mason 1983; Adam 1990), with studies reporting levels of 8% in the lower marsh, 

13% in the mid marsh to 25% in the upper marsh (Long & Mason 1983). Adam 

(1990) doesn’t report values in different saltmarsh zones, however he comments that 
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levels of up to 50% have been recorded in some North American marshes. 

There was a defined pattern of SOM at Long Point. The highest levels were 

recorded in ASS(a) – 37.7% ± 3.5, followed by decreasing levels in ASS(b) – 23.1% 

± 3.7, to ARS – 14.9% ± 2.2. The transition from saltmarsh to the woodland zone 

showed a dramatic fall in SOM to 4.7% ± 1.0 (see below). These results are in 

contrast to the study by Clarke and Hannon (1967) in which the Arthrocnemum zone 

was 8.5% ± 3.7 and the Juncus zone recorded 20.9% ± 17.5, yet Clarke and Hannon 

values are comparable to those reported by Long and Mason (1983). A study at 

Westernport Bay (Victoria, Australia) on a site of Sclerostegia (now Tecticornia) arbuscula 

and Sarcocornia quinqueflora, similar to ASS(a and b) in this study, estimated 50-60% 

soil organic matter (Van Der Valk & Attiwill 1983). This value is higher than 

recorded at Long Point, however it does support the notion that the low/middle 

marsh has a high level of organic matter, which is possibly dependant on the 

vegetation make-up of the individual zones. 

The relationship of organic matter levels to elevation is uncertain. Long and Mason 

(1983) and Adam (1990) both state that organic matter levels often increase with 

elevation. This assertion is supported by Clarke and Hannon (1967) and by 

Richardson and Mulcahy (1996). However, this study reports a contrary view, a well-

defined decrease in organic matter levels with increasing elevation, even into the 

woodland zone. Organic content in three saltmarshes of the Derwent region also do 

not support the view that organic matter increases with increasing elevation, the low 

and upper marsh recorded 5.5% and the middle marsh 16.5% (Marsh 1982) and 

corresponds with the moisture values from the same study. In her study, Marsh only 

reported a combined mean for the three sites, so there was a difficulty in matching 

her results with other studies. In the case of Gouldthorpe’s (2000) study, the ASS(a) 

equivalent site was 26.5% in organic matter, with the ASS(b) equivalent sites mean 

being 38.8%. This too correlated positively with moisture (Gouldthorpe 2000). All 

studies used a similar method in determining SOM by LOI and showed that there 

was a positive correlation between moisture and organic matter. Further study is 

required to support this view and perhaps should be undertaken at a number of 

diverse sites rather than at one site. 
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Texture: 

The physical make-up of saltmarsh soils is largely a manifestation of sediment type, 

riverine or marine, or a combination of both (Adam 1990). Estuarine saltmarshes 

source the majority of their sediment from the adjacent land resulting in marked 

variations of inputs of sand, silt and clay (Long & Mason 1983). During and 

following periods of heavy rain and flooding, sediment discharges can be high and 

often contain higher levels of sand than during quieter times. Marshes that are 

adjacent to sand dunes can also have higher levels of sand due to aeolian affects 

(Adam 1990). The mineral composition of saltmarsh soils varies considerably. 

Studies in NW Europe have shown variations of sand content from 5% in East 

England to 75% in East Ireland (Long & Mason 1983). 

Clarke and Hannon (1967) found that the sand component ranged from 78.5% in 

the Arthrocnemum zone to 69.4% in the Juncus zone decreasing landward. However, 

data from Long Point showed the contrary – 32% in ASS(a) to 67% in ARS. 

Reversal of that found at Woolooware Bay may not have any meaning at all as large 

variations of the sand component can be apparent (see above). Additionally, the 

saltmarsh flats at Long Point are intersected by a large sand dune which may have 

contributed to an increase in the sand component in the upper marsh due to strong 

winds prior to the dune being vegetated. Furthermore, as outlined in the methods in 

soil analysis, the sand component was impacted by the high level of organic matter 

and the factor applied to adjust this abnormality may not be entirely correct. 

Additional study into effective methods to determine texture of saltmarsh soils high 

in organic matter are warranted, and should not be restricted to samples from a 

single study site. 

5.3.2 Saltmarsh zone – edaphic factors, elevation and vegetation 

Growth and survival of saltmarsh vegetation species is influenced by various edaphic 

factors including soil texture and elevation. Zonation in response to elevation has 

long been appreciated in saltmarshes (Ranwell 1972; Chapman 1974; Sánchez et al. 

1996). Yet increasingly, recent studies have begun to focus on edaphic factors such 

as salinity and moisture as key drivers (Snow & Vince 1984; Vince & Snow 
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1984; Álvarez‐Rogel et al. 2000; Huckle et al. 2000; Silvestri et al. 2005). However, 

elevation is the key component in the saltmarsh environment – it determines areas 

that are inundated frequently, intermittently and spasmodically. This study has 

demonstrated that as a response to inundation (which is a response to elevation), 

moisture and salinity are either constant or high in the low marsh, through to 

declining moisture and salinity in the middle marsh, to low levels of moisture and 

salinity in the upper marsh, where very rare incidents of inundation occur (Pennings 

& Callaway 1992).  

Vegetation response to moisture and salinity via a change in elevation has also been 

demonstrated. The composition of vegetation communities changes with an increase 

in elevation. The low marsh for example, is a low diversity community made up of 

one to three succulent species, whilst the middle marsh community is made up of 

three or more species, often a mix of succulents from the lower marsh with grasses 

from the upper marsh, and the upper marsh community is made up of a larger 

number of species principally saline graminoids. However, strict species restriction 

to certain zones is not evident. Many species can tolerate a range of moisture and 

salinity and at times some species, for example Sarcocornia spp. and Disphyma 

crassifolium have colonised areas in three zones. Many saltmarsh species have broadly 

overlapping salinity tolerance ranges as is evident from the field (Clarke & Hannon 

1970; Kirkpatrick & Glasby 1981; Silvestri et al. 2005) and in the laboratory (Snow & 

Vince 1984). Yet, saltmarsh zonation, particularly at Long Point is well defined, so 

much so that in many cases species range appears to be pre-determined and there is 

no encroachment beyond the demarcation line. Perhaps complementary roles of 

tolerance to physical conditions such as moisture and salinity at one end of the 

gradient, and between-species competition where more species survive at the other 

end could be the key (Snow & Vince 1984; Pennings & Callaway 1992). Studies 

focusing on the biotic and abiotic impacts of saltmarsh species edaphic variability in 

conjunction with competition would be beneficial in determining the maintenance of 

saltmarsh vegetation zonation. Any results of this research may assist in determining 

the possible extent of landward encroachment of saltmarsh vegetation in response to 

sea-level rise. 
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5.3.3 Woodland zone 

Soil factors in the woodland zone displayed far less disparity between groups 

compared to that of the saltmarsh zone groups. It was difficult to compare results 

from this study to any of a similar study where the woodland zone was assessed 

alongside the saltmarsh zone. Many factors respond to different attributes of the soil 

composition, for example, soils with high organic matter retain higher levels of 

moisture. The following edaphic factors are discussed in a similar sequence to that of 

the saltmarsh zone. 

Moisture: 

Moisture for both summer and winter were similar between groups ranging from 

2.4% to 7.9% and 5.5% to 19.3% respectively. The increase in moisture content for 

winter was due to rainfall events prior to soil collection and reduced evaporation 

rates. 

Clarke and Hannon (1967) report in their findings at Woolooware Bay, the Casuarina 

woodland zone, which could possibly equate to the woodland zone in this study, 

recorded moisture content of 13.6% to 37.0%. The explanation for the high reading 

was that the organic surface soil (LOI of ~ 30%) had a high moisture-holding 

capacity. Each group in the woodland zone at Long Point had very low organic 

material, hence the likelihood of low moisture retaining capabilities.  

EC (salinity): 

EC values in all woodland groups were very low ranging from 0.027 to 0.075dS/m 

in summer to 0.015 to 0.095dS/m in winter. The influence of tidal inundation was 

highly apparent in the contrast in soil conductivity between woodland groups, 

(overall mean 0.04dS/m) compared to the saltmarsh groups (overall mean 22dS/m), 

550 times lower.  

The Casuarina zone referred to by Clarke and Hannon (1969) recorded EC values 

from 4.2 to 49.6dS/m over a two year period. This was far less than that recorded in 

the Arthrocnemum zone, but similar to the Juncus zone (same study). At Long Point, 
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the ARS group, though considered part of the saltmarsh zone, was comparable to 

the woodland zone, which had conductivity similar to the Juncus and Casuarina zones 

of Woolooware Bay. 

pH: 

The woodland zone soil at Long Point was typically acidic. Values for pH ranged 

from 3.9 to 4.6 and 4.1 to 4.7, respectively for summer and winter, and there was no 

difference between vegetation groups (p < 0.05). This reflected data from 

Woolooware Bay, where the Casuarina woodland zone recorded pH between 4.1 and 

6.9 (Clarke & Hannon 1967). The woodland zone was more acidic than the 

saltmarsh zone. 

SOM and carbon: 

The SOM averaged 4.1% across the woodland groups, with no difference between 

groups (p < 0.05). The Casuarina woodland zone (Clarke & Hannon 1967) was not 

comparable, as it recorded a level of 29.7%. 

Texture: 

The texture analyses of the woodland soils place all the groups in the sandy 

loam/loamy sand categories. As the study site was a coastal environment, it was 

expected that the sand dune and the sand ridge would have high levels of sand. The 

dolerite ridge varied slightly having a higher silt/clay component than the sand 

dune/ridge, probably due to the weathering and erosion of the dolerite outcrops. 

5.3.4 Woodland zone – edaphic factors, elevation and vegetation 

Although there were strong edaphic and elevational similarities between the three 

woodland groups, the make-up of vegetation communities was far from similar, 

suggesting that it was not just edaphic factors and/or elevation that were responsible 

for the structure of the present day vegetation communities.  

Each group had certain species that were highly significant to that individual group 

(p < 0.005). These species were not evident in the remaining groups at p < 0.05, 
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suggesting that each species was the dominant in its respective group. Some species 

were represented across the three groups, some across two of the groups, some only 

in one group, at a higher p-value, though still under 0.05.  

In the absence of other information, it was not clear what the controlling factor in 

each group was that determined the presence of particular dominant species, nor the 

make-up of the vegetation community. Key measured components such as elevation, 

edaphic factors, precipitation and temperature, all yielded similar results among the 

three groups. However, a number of other factors might be influential, the principal 

one being anthropogenic impacts. For a number of decades, Long Point was used as 

a dry grazing area for sheep (J Cotton 2014, pers. comm., 24 August). With sheep 

moving on and off the site, plant species that were not originally present may have 

been introduced from the adjoining lands. Other species that were initially present 

may have been preferentially grazed by sheep, decimated and not recovered due to 

competition. Other impacts include the attempted introduction of exotic pasture 

species and harvesting of Black wattle (Acacia mearnsii) (Kingdom 2008), which may 

have altered subsequent plant succession. Another factor that may have had an 

impact on vegetation community structure is drought. The mean rainfall at Swansea 

for the period 1884 to 2008 is 593mm (Bureau of Meteorology 2014a). Since 1979, 

there have been seven years when annual rainfall has fallen to approximately 50-55% 

of the average, and 1994 was particularly low at 45% (Bureau of Meteorology 

2014a). As noted previously, all Eucalyptus viminalis trees that were present on Long 

Point some years ago have subsequently died. 

A useful insight from this study is that soil sampling should be restricted to summer, 

as one collection will suffice to capture most of the variation present. All important 

edaphic factors can be determined from this single sample collection. Similarly, 

vegetation assessment is best conducted during summer. 

This study confirms that individual saltmarshes differ subtly in their attributes, 

despite being similar in vegetation communities, elevation, inundation frequency, 

edaphic factors or invertebrate assemblages. In particular, data describing edaphic 

factors are very difficult to associate with other studies, even when similar methods 
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are used. It is important to compare results from other studies to better understand 

the complexities of each environment. However, it is difficult to come to 

generalisable conclusions when there is so much disparity between similar 

environments. 

 Spiders and Beetles 5.4

Increasingly, study has also focused on a range of benthic saltmarsh invertebrates, 

worldwide, for example, Cammen (1976), Long and Mason (1983), Odum (1988), 

Adam (1990), and Australia (Wells 1983; Peterson 1991; Boon 2011) including 

Tasmania (Marsh 1982; Richardson et al. 1991; Wong et al. 1993; Richardson & 

Mulcahy 1996; Richardson et al. 1997; 1998). However, with the exception of the 

saltmarsh mosquito (Laegdsgaard 2006), there has been less study in Australia  

(Finch et al. 2007) of invertebrates in habitats which adjoin saltmarshes such as 

coastal woodland (Laegdsgaard 2006; Boon 2011). However, few studies, for 

example Marsh (1982) and Gouldthorpe (2000), have superficially included spiders 

and beetles as a component to a wider study of benthic invertebrates. 

Explaining the patterns of invertebrate incidence in these environments presents 

many challenges. The apparent absence of any spider or beetle taxon in a particular 

season should not necessarily be construed as a true absence from the saltmarsh or 

woodland (McCoy & Rey 1981). There are well understood limitations in the 

sampling method used. Generally, pitfall trapping over a long period of time is more 

successful, however there is always a chance of missing species (false absences), 

particularly rare ones. Some species are not prone to pitfall sampling even though 

they are epigeal in behaviour. Individual habits such as levels of activity do play a 

role in species detection, however this can often be overcome with a longer trapping 

period (Woodcock 2005). 

The influence of gradients of elevation, tidal inundation and edaphic factors 

witnessed in saltmarshes, was not apparent on the zonation of spiders and ground 

beetles by family as it was on the zonation of saltmarsh vegetation (Long & Mason 

1983). Seasonal variations in surface activity do occur, particularly in winter when 
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invertebrates are in the less active larval stage or respond by temporally leaving the 

site due to a decrease in food resources (Laegdsgaard 2006).  

5.4.1 Spiders – seasonal variation 

Most spiders did not appear to be confined to a particular vegetation group, or any 

season, although spider assemblage structures were different between them. Three 

spider families were dominant throughout Long Point over the year. The most 

dominant family by both incidence and abundance were wolf spiders (Lycosidae), 

similar to that of the Derwent estuary saltmarshes (Marsh 1982). Almost exclusively, 

the genera Artoria and Venatrix made up this family at Long Point. Wolf spiders are 

epigaeic, hunting in and on the ground surface and the base of plants and living in 

burrows in the soil (Hickman 1967; Whyte & Anderson 2014). Artoria are fast 

runners and live amongst plant litter, the larger Venatrix, live in open areas adjacent 

to water (Whyte & Anderson 2014). Lycosidae were present across the gradient, but 

were found in higher numbers in the saltmarsh zone. The incidence of wolf spiders 

did decline in autumn, particularly on the sand dune and sand ridge, with a further 

considerable decline in all groups during winter. This decline may have been in 

response to the inability of Lycosidae to adapt and survive to a decrease in 

temperature or the temporal increase of tidal inundation along with increased rainfall 

events particularly in the saltmarsh zone. As temperatures during late autumn and 

winter did fall below freezing on a number of occasions across the site, this factor 

may have been the principal cause in reduction of numbers and in some cases 

absence of any activity. 

The next most dominant family was Linyphiidae, sheet weaver spiders. These are 

very small spiders (2-4mm long), and therefore difficult to identify to genus level let 

alone species level. They are not well studied in Australia (Whyte & Anderson 2014), 

and many species may be European introductions. Again, they were present in all 

vegetation communities, though their dominance was restricted to autumn and 

winter. This may have been in response to the natural decline in Lycosidae during 

the two seasons and also to the fact that Linyphiidae can live and survive within the 

plant structure using their ability to spin silken sheet webs close to the ground to 
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catch prey (Hickman 1967). This survival technique leaves Linyphiidae less prone to 

the impact of inundation common during winter. It was unclear if the incidence or 

abundance of sheet weaver spiders were regulated by temperature. However, it 

appears that the possible decline response of one taxon (Lycosidae) to a seasonal 

climatic variable (temperature) has led to an increase response by another taxon 

(Linyphiidae) to fill the niche.  

The third dominant spider family were Zoridae, the wandering ghost spiders. They 

are typically plant dwellers, using a web to build a silken retreat (Whyte & Anderson 

2014). Again, they were present in both saltmarsh and woodland groups, but showed 

a preference for the woodland zone. The incidence of ghost spiders was low in 

summer, restricted to the woodland zone and to the dryer saline grasslands. 

However by autumn, it had increased in presence to all vegetation groups, with an 

increasing abundance in the woodland zone. By winter the ghost spiders had 

retreated to the woodland and saline grasslands, with a similar occupancy in spring. 

Similar to Linyphiidae, Zoridae appeared in response to the decline in Lycosidae 

presence during autumn and winter, with its presence in spring favouring the 

woodland as conditions became dryer and temperatures increased. 

Less dominant families at Long Point included Gnaphosidae, Nicodamidae, 

Miturgidae and Zodariidae. Though these families were represented (by presence) in 

many groups on the site, their abundance in many cases was low, often recorded as 

singletons or doubletons in some vegetation groups.  

Gnaphosidae, the ground spiders, are hunters, mostly active at night (Platnick 2000; 

Whyte & Anderson 2014). They were absent during winter, but present in the 

remaining seasons. Spring witnessed an emergence in presence and numbers, limited 

to the woodland and dry ARS group. Presence and abundance increased in summer, 

though Gnaphosidae were still restricted to the woodland zone where observations 

had increased, and were still evident in the dry saline grasslands. By autumn, this 

family had spread across all vegetation groups but its incidence and abundance were 

still highest in the woodland zone.  
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The family Nicodamidae, the red and black spiders, are only found in Australia and 

New Zealand (Harvey 1995; Nieuwenhuys 2013; Whyte & Anderson 2014). 

Nicodamidae are ground dwellers, and can be found among fallen bark, leaves and 

other debris. Females construct a tangled sheet web in hollow areas and between 

stones (Nieuwenhuys 2013). The genus Nicodamus were evident at Long Point, 

however its activity was restricted to summer and autumn. In summer, its range was 

limited to the woodland and dryer saltmarsh groups, however by autumn, its range 

had increased across all saltmarsh and woodland groups. At this time, temperatures 

were still high (30oC plus) and the site was dry, even in the lower marshes, which 

indicated that Nicodamus preferred dryer habitats. 

Miturgidae, the prowling spiders, are extremely widespread in Australia. There 

numbers were low and presence was confined to saline grasslands and some 

woodland areas. The dominant species found at Long Point from this family was 

Mituga agelenina, a large spider up to 20mm, confined to woodland areas. 

Zodariidae are ground dwelling ant spiders, diurnal hunters often living in the 

vicinity of ants and mimicking their behaviour (Whyte & Anderson 2014). Similar to 

Miturgidae, they preferred the woodland and saline grass areas, however as their 

abundance was low it was difficult to more accurately define their habitat. 

It was unclear what led to the seasonal cycle in the diversity of spiders which 

increased as seasons progressed from spring to autumn, before declining in winter. 

A number of explanations are plausible. Maximum daily temperatures increased 

from spring (25 to 35oC) with the warmest month being February (35-40oC plus), 

and remaining high (30oC plus) through March and April, and were still 20oC plus in 

May. Minimum daily temperatures were the highest December to March (6 to 9oC), 

but fell sharply in May to below freezing on several occasions. Rainfall was relatively 

consistent through the year. However November was unusually wet with over 

230mm recorded. High rainfall in November, in conjunction with increasing 

temperatures, led to greater vegetation growth during spring and summer. This 

provided sustenance for herbivorous insects, which in turn sustained predatory 

spiders. Catch rates during spring and summer of all terrestrial invertebrates (this 
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excludes amphipods) increased sharply – spring yielded 3.5 times more individuals 

than winter, summer 5.9 times greater than winter. Furthermore, the number of taxa 

increased, increasing species diversity across the site. Increased presence and 

abundance of invertebrates would have led to a more abundant and diverse food 

supply for spiders.  

5.4.2 Spiders and vegetation 

Arachnid family preference for various vegetation community structures was 

somewhat confusing at Long Point. Venatrix (Lycosidae) were dominant (p < 0.002) 

in all three saltmarsh groups and on the sand dune. Yet vegetation groups 

incorporated varying plant species ranging from Sarcocornia spp. in ASS(a), to 

Tecticornia arbuscula in ASS(b), to saline grasses (ARS) to Ehrharta stipoides and 

Lomandra longifolia (GSL). One factor that was common to the groups except ASS(a) 

was bare ground (p < 0.001). This strongly suggests that Venatrix was a generalist 

throughout the saltmarsh zone as well as being content on the sand dune. As 

Venatrix are a ground dweller, plant structure was not an important factor, however 

open spaces among and under vegetation is important for hunting (Dobel et al. 

1990). This may explain the link between bare ground and the incidence of Venatrix. 

Similarly, prostrate vegetation cover on the sand and dolerite ridges exclude Venatrix 

where for example, sufficient ground foraging space is less available under shrubs. 

On the one hand, this species could be classified as stenotopic (tolerant of a narrow 

range of environmental conditions), but on the other hand, it could be classed as 

eurytopic (tolerant of a wide range of environmental conditions). It is possible that 

spiders mainly present in the lower/middle marsh can be present in the upper 

marsh, but in low abundance, still contributing to species richness (Finch et al. 2007).  

The family Gnaphosidae are mostly elongate spiders dependent on vegetation that 

allows them to construct tunnel-like nests (Dobel et al. 1990). In this study their 

suitable habitat was the saline grassland, the sand dune and the sand ridge (p < 

0.003) and they were absent in areas of dense ground cover vegetation such as 

Sarcocornia spp. – ASS(a), and Poa labillardierei and Zoysia macrantha – GPL (dr). Across 

the study, spider body size was also important to habitat preference. Large robust 
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taxa such as Miturgidae, cannot move effectively or forage in dense vegetation so 

prefer open structured habitat (Dobel et al. 1990) such as saline grasses and open 

woodlands.  

A study by Dobel et al. (1990) has shown that population densities, particularly for 

ground foraging, hunting spiders tended to increase in relation to elevation increases, 

which suggested that inundation may limit the range of spiders to the upper-mid and 

upper marsh groups (Dobel et al. 1990; Desender & Maelfait 1999; Irmler et al. 2002; 

Finch et al. 2007). This result was not evident at Long Point. In contrast, ground 

foraging hunters such as Artoria and Venatrix tended to show a reverse trend with 

decreasing numbers up the elevation gradient. Even though Artoria were present in 

all vegetation groups across the site, their numbers were twice as great in the lower 

marsh region then elsewhere. This suggests that some species have been 

predominately selected for greater survival fitness by the regularity of inundation 

(Finch et al. 2007). Species abundant in the lower marsh can be expected to be more 

resistant to frequent and longer flooding events (Irmler et al. 2002). Additionally, 

many dominant species are ‘r-selected’, meaning they have the capability for speedy 

and abundant re-colonisation of the low marsh following flooding (Desender 1989; 

Finch et al. 2007). In the case of Artoria and Venatrix, this was highly probable due to 

greater abundance in the low marsh zone. Similarly, very high numbers of juvenile 

Lycosidae were observed in the low and middle marsh zones particularly in autumn 

and prior to the period of increased inundation frequency of the low/middle zone 

that occurred in winter.  

Few spider species are exclusive to the low saltmarsh zone. Most have a range that 

includes the mid to high marsh (and beyond), and correlation to tidal inundation is 

non-existent (Irmler et al. 2002). Additionally, spider species richness (a count of 

species in an ecological community) is positively correlated with elevation (Desender 

& Maelfait 1999; Finch et al. 2007) and with sites bordering woodland zones, which 

further increases richness (Finch et al. 2007). In this study a number of families 

demonstrated this fact such as Zodariidae, which existed both in the middle and 

upper marshes and also the woodland zone. It was unclear whether progression was 

from saltmarsh to woodland or from woodland to saltmarsh. However, the upper 
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marsh (ARS) and the adjoining buffer zone of the woodland zone did have some 

grass species, for example, Austrostipa and Poa spp., in common which may explain 

Zodariidae occurrence. 

5.4.3 Spiders and edaphic factors 

Contrary to the varying relationship of spider families to vegetation species, the 

relationship of spider families to edaphic factors was better defined. Wolf spiders, 

Artoria and Venatrix, were strongly aligned to decreasing soil conditions particularly 

increasing SOM, moisture and EC. Most taxa were content in neutral conditions, for 

example Nicodamus, Zodariidae and Zoridae. Some, such as Sidymella and Trochosa 

spp., were strongly aligned to dry conditions with low EC, whereas Lycosa were 

observed in conditions that were dry and high in pH (neutral to alkaline soils). 

However, as these taxa recorded very low numbers, it cannot be construed that the 

relationships described were entirely clear.  

Variations in species richness have been described by others as a response to the 

salinity gradient (Long & Mason 1983) and also that few species adapt to the 

physiological conditions of high salinity (Desender & Maelfait 1999; Irmler et al. 

2002). Of the 37 spider taxa observed at Long Point, only eight were confirmed to 

be resident in areas of high salinity and most of these were not restricted to saline 

conditions. This corresponds to the gradient of increasing species richness of 

vegetation along the salinity gradient (Desender & Maelfait 1999; Pétillon et al. 2008) 

suggesting a link between spider species richness and that of vegetation species. A 

study by Irmler et al. (2002) considered varying aspects of soil factors such as 

conductivity, moisture, pH and sand content. However, all but conductivity were 

omitted in data analysis due to the low variations in the elevation gradient (Irmler et 

al. 2002). This suggested that many edaphic factors were not controlling 

characteristics in the saltmarsh environment. This is contrary to the findings of 

Pétillon et al. (2008) in a study of edaphic factors on saltmarsh arthropods where 

spider species were negatively correlated with salinity and elevation (distance from 

the seawall) and only seven of the 57 species caught determined to be halophilic 

(thrives in a salt environment) (Pétillon et al. 2008). The findings of this study reflect 
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those of Pétillon et al. (2008) where eight of the 37 taxa were halophilic. The factors 

that significantly affected the abundance of spider species for Pétillon et al. (2008), 

were in order of relevance, soil moisture, salinity and bare ground. These 

conclusions were also supported in this study, whereby, soil moisture and salinity 

were significantly negatively correlated to elevation, which was in turn negatively 

correlated to spider abundance. Additionally, SOM was identified as an important 

abiotic factor at Long Point, not considered by either Irmler et al. (2002) or Pétillon 

et al. (2008). 

5.4.4 Beetles – seasonal variation 

Similar to spiders, most beetles were not confined to a particular vegetation group, 

and were more limited by seasonal life cycles between spring and autumn with most 

spending winter in the larval stage (Davis & Gray 1966). In contrast to spiders 

however, beetles displayed a greater diversity within most vegetation groups, but not 

greater abundance. Although total beetle numbers were less than 25% of spider 

numbers, total beetle diversity was more than double that of spiders. While some 

literature is dated, high levels of beetle diversity in saltmarshes has also been found 

elsewhere, for example, Davis and Gray (1966), McCoy and Rey (1981), Desender 

and Maelfait (1999), and is particularly apparent for carabid species (Irmler et al. 

2002; Desender et al. 2007; Finch et al. 2007), the most studied saltmarsh beetle 

family. Beetles were found in greater diversity (compared to spiders) in all seasons 

except for winter when the number of taxa was similar.  

Three families were dominant by presence throughout the site over the 12 months 

of sampling appearing in all seasons. The principal family was Carabidae, the ground 

beetles. This family is one of the largest in the Coleoptera, with 295 genera and 

approximately 2 600 described species in Australia, some living up to two years in 

the wild (Hangay & Zborowski 2010). Carabids are found in all terrestrial 

environments and have been well studied (Thiele 1977) particularly in saltmarshes, 

for example, Irmler et al. (2002), Finch et al. (2007), Desender et al. (2007) and 

Pétillon et al. (2008). In addition to being the most dominant in terms of presence 

(15 taxa), Carabidae also rated the highest in terms of abundance, perhaps due in 
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part to being wingless and therefore relatively easier to catch in pitfall traps. The 

main taxa in this family were Bembidion, followed by Simodontus, those from the 

Harpalini tribe and Clivina. Seasonally, carabids were dominant in the saltmarsh 

vegetation groups during winter and spring, their dominance decreasing in summer 

and further in autumn. Although autumn displayed the highest beetle taxa diversity, 

the presence and abundance of Carabidae was still the greatest. 

The next dominant family by presence was Staphylinidae, the rove beetles. 

Staphylinids occupy most terrestrial habitats including marshes and tidal pools 

(Hangay & Zborowski 2010). At Long Point, the main taxa in order of abundance 

were Bledius, Quedius and Oxytelus. Except for the wetter and colder seasons, 

Staphylinidae were active across the site, principally during autumn. During the 

winter and spring they were restricted to the dryer, woodland vegetation groups with 

some incursion into ARS and ASS(b) groups. Unlike carabids, most species in this 

family are winged and therefore do not just live on the ground surface but also in the 

plant structure, hence a reduced chance of capture by pitfall trapping.  

The third dominant beetle family by presence was Curculionidae, the true weevils or 

snout beetles. They form the largest animal family in the world with over 40 000 

described species and possibly just as many undescribed (Hangay & Zborowski 

2010). Eleven taxa were identified at Long Point, Steriphus the most abundant. The 

overall abundance of Curculionidae in samples at Long Point was low (fourth out of 

top five) which could be attributed to the fact that many species in the adult stage 

live on plants (Hangay & Zborowski 2010) rather than on the ground. Seasonally, 

they were restricted to the drier woodland groups in spring, increasing their range as 

temperatures increased and the other vegetation groups become drier. By autumn 

weevils were active across the site, with a high dominance on the sand ridge – GPL 

(sr). Winter witnessed retreat from the saline areas with increasing concentration in 

the woodland and complete dominance on the sand ridge. 

The least observed by season of top five Coleoptera families at Long Point, were 

Scarabaeidae and Elateridae, both restricted to three differing seasons each. 

Scarabaeidae, the scarab beetles, which include the dung beetle (subfamily 
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Scarabaeinae), are a large family with over 2 200 species in over 270 genera found in 

Australia (Hangay & Zborowski 2010). Seventeen scarab taxa were captured over the 

12 months making this the most diverse family captured and second largest by 

abundance. Their dominance of the woodland zone was evident during spring and 

increased in summer, particularly on the sand and dolerite ridges. During summer, 

scarab beetles were found in the saltmarsh zone though in very low numbers and by 

winter, they lost their membership of the top five Coleoptera families present on the 

site. The most evident species was Acrossidius tasmaniae, a pest in cultivated pastures 

(Hangay & Zborowski 2010). The dung beetle, Onthophagus pronus, was associated 

with wombat dung and active in all seasons except in winter. 

Elateridae are click beetles, living on foliage, flowers or under the bark of trees 

(Hangay & Zborowski 2010). Their presence on the site was generally registered 

over winter, spring and summer, but their numbers were low (fifth out of the top 

five) with several of the seven taxa found recorded as singletons. 

5.4.5 Beetles and vegetation 

Beetles did not mirror the poor associations of spiders to vegetation groups. Most 

common saltmarsh Coleoptera are restricted to one type of marsh zone (Davis & 

Gray 1966). The carabid genus Bembidion, includes many halophilic species 

(Desender & Maelfait 1999) and was the most abundant beetle genus at Long Point 

found in the ASS(a and b) vegetation groups (p < 0.001). It was the only Coleoptera 

taxon to have any significance (p < 0.05) in saltmarsh vegetation – ASS(a and b). 

However, its association with the saline grasslands was virtually non-existent. This 

pattern reflects studies in Europe where the range of Bembidion normannum was solely 

restricted to the low marsh on the East Frisian Islands (Finch et al. 2007) and the 

North and Baltic Seas (Irmler et al. 2002). Additionally, three Bembidion spp. were 

found to occupy tidal marshes on the River Schelde in saline and brackish 

environments (Desender & Maelfait 1999). On the other hand, the carabid beetle 

Simodontus, is a true terrestrial beetle, restricted to woodland vegetation particularly 

the sand dune and dolerite ridge (p < 0.025). The tribe Harpalini was intermediate, 

dominating the saline grasslands with some incursion into the adjacent Sarcocornia 
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vegetation. Of the burrowing carabids, the genus Clivina ranged across the site, 

occupying all vegetation types. Although there was no link with similar genera at 

Long Point, a study by McCoy and Rey (1981) into the association of Coleoptera to 

saltmarsh vegetation, found that different carabid species were restricted to certain 

vegetation communities. Locally, Carabidae were reported by Gouldthorpe (2000) in 

his study of the Derwent Estuary saltmarshes, however the taxa were not identified 

to genus level and abundance was very low, probably due to limited sampling. 

The burrowing staphylinid genus Bledius, were found in saline grasslands with the 

occasional singleton found in Sarcocornia vegetation. Quedius ranged from Tecticornia 

dominated habitat to the woodland zone but its abundance was low, with singletons 

and doubletons observed at most stations. Rove beetles were also found in the 

Northwest Florida marshland fringe known as saline grassland in this study, however 

neither of the above genera were observed there (McCoy & Rey 1981). Staphylinids 

were reported in the Derwent marshes by Gouldthorpe (2000) but numbers were 

again very low. 

The weevil genus Steriphus was restricted to Tecticornia – ASS(b) and the saline 

grasslands – ARS, whereas Mandalotus were a more terrestrial taxon, found in the 

woodland vegetation with some spread into the saline grasslands particularly if 

adjacent to woodland. Most other weevils were recorded as singletons or doubletons 

making it difficult to confidently align them with a particular vegetation group or 

groups. Curculionidae was also recorded in the Derwent marshes (Gouldthorpe 

2000), again not defined to a particular vegetation group. 

Scarab beetles were all found in the woodland zone with the exception of singletons 

at several saline grassland stations. The most diverse genus was Onthophagus (dung 

beetles), with three native species, O. australis, O. posticus and O. pronus, mainly 

restricted to woodland vegetation groups. The dominant marsupial at the site was 

the Tasmanian wombat, Vombatus ursinus tasmaniensis, generally present to the 

woodland zone, however scats and signs of browsing and disturbance were found in 

the saline grasslands adjacent to woodland areas especially during summer and 

autumn. Following expectations, Onthophagus spp.were evident wherever there were 
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signs of wombat presence. O. posticus were strongly aligned (p < 0.001) with the sand 

and dolerite ridges, and O. australis with the dolerite ridge (p < 0.002), suggesting 

some influence of soil type. Similarly, Acrossidius tasmaniae, were also restricted to the 

woodland zone (p < 0.019), with some incursion into the ARS group. Two scarab 

beetles were also recorded in one Derwent marsh (Gouldthorpe 2000), however it is 

unclear how close the location was to a woodland zone. 

The click beetle genus Agrypnus (Elateridae) was widespread across the site, in both 

saltmarsh and woodland zones. Its greatest abundance was found in the woodland 

and saline grasslands, however it was also evident in the halophilic areas of the 

saltmarsh in reduced numbers. Although classified as a foliage dweller by Hangay 

and Zborowski (2010), Agrypnus appears to be a generalist and its normal activity 

rhythms may have been repressed in saltmarsh vegetation. Its larvae are thought to 

be unspecialised feeders on plant roots. 

5.4.6 Beetles and edaphic factors 

The relationship of Coleoptera to edaphic factors was well defined. Most beetle taxa 

prefer neutral to improving soil conditions. Three taxa were aligned to poorer 

conditions, two, the tribe Trechini and the family Ptiliidae were only recorded as 

singletons, therefore should be discounted. The remainder, Bembidion, is a saltmarsh 

specialist (Desender & Maelfait 1999; Irmler et al. 2002; Desender et al. 2007), hence 

a confirmed resident of the halophytic zone. 

Species richness respond to the salinity gradient (Long & Mason 1983), and that few 

species have adapted to decreasing edaphic conditions is evident when investigating 

the presence and abundance of Coleoptera. Of 84 taxa recorded at Long Point only 

two were truly halophilic, up to ten tolerate saline conditions, and most of the 

remainder tend to avoid the saltmarsh zone, although singletons and doubletons 

were occasionally identified in the ARS community. This somewhat reflects the 

situation in NW France where 11 species from 34 beetle species were considered 

halophilic (Pétillon et al. 2008). It was observed at Long Point that particular taxa will 

migrate seasonally to more saline conditions, perhaps in response to improving 

conditions in the saltmarsh zone such as increased food resources, 
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increased temperature, dryer conditions, or in special cases wetter conditions as the 

saline conditions were ameliorated by increased precipitation. Beetles may respond 

to increasing vegetative richness along the elevational gradient (Desender et al. 2007; 

Pétillon et al. 2008). In a study by Irmler et al. (2002), most soil factors were omitted 

in the analysis as edaphic variation along their elevation gradient was minimal. In 

contrast, beetle species were negatively correlated with salinity, percentage cover of 

Puccinellia maritima (a seaside grass), soil moisture and salinity in the study by Pétillon 

et al. (2008). At Long Point, soil moisture and salinity are negatively correlated to 

elevation, whereas beetle abundance is positively correlated to elevation, the 

opposite trend seen in spiders. 

5.4.7 Spiders and Beetles 

At Long Point, the percentage of halophilic spiders was greater than that of 

halophilic beetles – 21% to 13%, which suggests that spiders and beetles are affected 

differently by vegetation communities, elevation and edaphic factors. However, if 

predatory ground beetles (carabids) alone were considered against spiders, the 

percentage would be somewhat closer – 21% to 20% respectively, suggesting that 

epigeal spiders and beetles are affected in a similar manner in the saltmarsh 

environment. Species richness appeared to be determined by several factors such as 

vegetation type and community and edaphic factors (Finch et al. 2007). 

Factors in order of decreasing importance for spiders by taxa, on the basis of 

abundance (log(x+1)), were summer moisture, winter moisture, EC summer, 

Sarcocornia quinqueflora, EC winter, pH winter, pH summer, Aira caryophyllea, Leontodon 

taraxacoides and Oxalis perennans. For beetles by species on the basis of abundance 

(log(x+1)), the factors in decreasing order were summer moisture, winter moisture, 

S. quinqueflora, EC summer, EC winter, pH winter, Disphyma crassifolium, Lomandra 

longifolium, Oxalis perennans and pH summer. This suggests that the incidence and 

abundance of each order are initially controlled by similar factors – moisture,  

S. quinqueflora, EC, pH and then a mix of plant species peculiar to each order. 

However, although the determining factors are similar, spider species and abundance 

may be dissimilar to beetle species and abundance as the data analysis focused on the 
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full range of taxa for both orders, irrespective of epigeous or phytophagous status. 

In this instance, most spiders are ground dwellers or being phytophagous, they 

mostly need to return to the ground to get to the next plant. Therefore, the chance 

of capture by pitfall trapping is high, but is dependant on activity. Except for ground 

beetles (carabids), most are winged and do not use the ground to move around, 

therefore capture by pitfall trapping decreases. Identifying the halophilic spider and 

beetle taxa to species level may refine the result. However, the analysis did 

demonstrate that moisture followed by the incidence of S. quinqueflora are the 

principal variables in determining spider and beetle presence. 

Summer and autumn were the most variable seasons for spider and beetle activity 

across all vegetation groups as measured by both species richness and species 

abundance. This suggests that this period is an opportune time of the year to 

conduct surveys for saltmarsh invertebrates. However, not every taxon was evident 

during the summer/autumn period. Several taxa were only sampled during winter. If 

the opportunity exists, it would be prudent to conduct two invertebrate surveys – 

one in winter and the other summer/autumn in order to maximise species 

representation. 
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Chapter 6: Conclusion 

 Research findings 6.1

The primary motivation for this study was to identify the influences of the saltmarsh 

environment on the distribution of spiders and beetles at Long Point. Fortuitously, 

the study site facilitated the investigation to include a true terrestrial (woodland) 

zone adjacent to the saltmarsh that allowed a landscape style research approach that 

incorporated a comprehensive environmental gradient. The ability to position three 

transects at Long Point improved the robustness of the data collected as each 

transect became a replicate. Additionally, invertebrate data collection was further 

improved by the replication of pitfall traps within vegetation groups along each 

transect. 

The demarcation of vegetation communities along each transect, the description of 

summer and winter soil conditions and landscape features such as elevation, has 

enabled the full documentation of the progressional change in habitat. Habitat 

variation could also be determined in the transition from a full coastal environment 

across a tidal saltmarsh, to the woodland zone, including the fringe/buffer between 

the saltmarsh and the adjacent woodland. 

The most conspicuous characteristic of the saltmarsh area was the distinctive 

assemblage of plants within each vegetation community and in particular the clear 

delineation between each community. This facilitated the classification of the 

saltmarsh into three zones – lower, middle and upper. The key feature that drove 

zonation was the elevational gradient across the saltmarsh flat, which governed the 

frequency and duration of marine inundation. Soil moisture content, salinity and pH 

responded to the frequency and duration of inundation, which in turn determined 

vegetation species distribution. Each saltmarsh zone had a different vegetation 

structure. Vegetation representation in the low marsh was limited to three or four 

species with one generally being dominant; the middle zone had more species, which 

included some from the low marsh, while the upper marsh had the greatest species 

diversity, and generally none were shared with the lower marsh. Seasonally, 
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variations can occur in edaphic factors such as increasing soil moisture in the low 

marsh. However there were no seasonal changes in the make-up of vegetation 

community species. 

Spider and beetle taxa were generally not faithful to individual zones within the 

saltmarsh, or to particular vegetation communities. However, some individual taxa 

overlapped just two saltmarsh zones, while some others were restricted in their range 

to the saltmarsh environment and others to the woodland environment. A minority 

did range across both environments. 

This study found that the incidence of halophilic beetles was far higher than that of 

spider taxa and moisture was the key factor determining the spider and beetle taxa 

distribution. However, dependence on vegetation type was the next determining 

factor for beetles followed by salinity. In contrast, salinity was more important for 

spiders, followed by vegetation type. The result suggested that although the 

determining factors differed, similarities did occur. In response to the similarities, 

both orders displayed evidence of vegetation and abiotic factor variability that 

determined their distribution on an environmental gradient. This information will be 

very useful in the management of saltmarshes, and monitoring environmental and 

climatic change over time. 

 Study aims 6.2

At the onset, three aims were identified for the study and are addressed below. 

6.2.1 Baseline study 

Long Point is an important ecological reference site. It is privately owned by the 

Tasmanian Land Conservancy, with the adjacent woodland buffer zone incorporated 

within the land tenure. Most importantly, the site is governed by a perpetual 

conservation covenant which ensures that land-use changes at the site, except for the 

management of noxious weeds (for example, gorse), will be keep to a minimum. 

Establishing three transects across the full environmental gradient allowed a 

comprehensive assessment to be been undertaken of the vegetation, soils, 
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and invertebrates. The location of each pitfall trap was identified by a real-time GPS 

kinematic survey to a high level of accuracy. This precision will enable a future study 

to be conducted using the same pitfall trap locations to document any change over 

time, for example in response to climate change and sea-level rise. 

Furthermore, all invertebrate collections have been fully labelled, curated and 

archived, which will permit further identification to species level of unidentified taxa, 

and voucher specimens can be retained for comparisons in future studies at Long 

Point. 

6.2.2 Defining a reference state 

It is important to acknowledge that spiders and beetles range over the site in search 

of food and resources and that prevailing temperature can play a role in the seasonal 

activity of epigeal invertebrates. In many cases individual taxa are not restricted to 

specific vegetation species or communities. Indicator (spider and beetle) species for 

each saltmarsh vegetation community have been identified. It is clear from this study 

that some taxa are generalists ranging across the full spectrum of the environmental 

gradient. Others are specialists, being restricted to either the saltmarsh zone or the 

woodland zone. Principally, edaphic factors determine spider and beetle incidence in 

a saltmarsh environment, therefore two adjacent vegetation communities may have a 

similar range of indicator species. 

6.2.3 Saltmarsh monitoring 

To aid community groups in future, a reference list has been developed that will 

assist in the monitoring of local saltmarsh environments. Indicator vegetation 

species can be utilised to define the saltmarsh zone, indicator spider and beetle taxa 

will not. However, identifying the vegetation type will assist in determining spider 

and beetle taxa that would be expected within that particular vegetation community 

(see Appendix F). In other words, vegetation communities are a good indicator of 

spider and beetle incidence. 
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 Limitations of the study 6.3

The study has been limited in resolution to a degree of confidence in the 

identification of spiders and beetles to species level. All taxa have been identified to 

family, nearly all to genus and some to species. Full identification to species may 

further clarify the results, but this is considered unlikely to alter the main 

conclusions. 

Pitfall trapping, an acceptable method of invertebrate sampling especially if 

undertaken over a long period of time, is restricted to more active species, and those 

that generally reside on the ground. Litter collection along with beating and/or 

sweeping vegetation will add to the completeness of data and improve the 

knowledge of saltmarsh species diversity. 

 Future directions 6.4

Further study of saltmarsh soils may lead to a better understanding of the varying 

habitats of saltmarsh vegetation and spiders and beetles. Analysis of carbon, nitrogen 

and sulphur would yield C:N:S ratios and may assist in the research on stress levels 

witnessed on saltmarsh vegetation, in particular Tecticornia arbuscula. Improved 

analysis of soil texture that involved the efficient and cost effective removal of 

organic matter prior to particle size analysis would be beneficial in the precision of 

determining the levels of sand, silt and clay. 

The use of EC as a proxy for salinity in highly saline soils needs to be properly 

evaluated. If possible the use of EC should be retained as it is an easy and 

straightforward measure. Studies on a number of sites are required to clarify the 

results from this study that salinity has a negative correlation to elevation. 

 Similarly, clarification of the correlation between SOM and elevation is needed. This 

can be completed simultaneously with the study into salinity. 

Studies focusing on identifying individual spider and beetle species association in 

monospecific (single species) vegetation would be beneficial in determining the 
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latitudinal range of invertebrate species (or genus) based on the vegetation species. 

This would assist in the understanding of future increasing (or decreasing) range of 

species resulting from vegetation gain or loss due to climate change and sea-level 

rise. 

 

 



References 

   Page 152 
Page 152 

Page 152 

References 

Adam, P (1990): Saltmarsh ecology, Cambridge University Press, Cambridge. 

Adam, P (2002): Saltmarshes in a time of change, Environmental Conservation, 29, pp. 
39-61. 

Adam, P (2009): Australian saltmarshes in a global context. In: N Saintilan (ed.), 
Australian saltmarsh ecology, CSIRO Publishing, Collingwood. 

Adams, DA (1963): Factors influencing vascular plant zonation in North Carolina 
salt marshes, Ecology, 44, pp. 445-456. 

Adiku, SGK, Osei, G, Adjadeh, TA & Dowuona, GN (2005): Simplifying the 
Analysis of Soil Particle Sizes. I. Test of the Sur and Kukal's Modified Hydrometer 
Method, Communications in Soil Science and Plant Analysis, 35, pp. 1995-2003. 

Álvarez‐Rogel, J, Alcaraz-Ariza, F & Ortiz-Silla, R (2000): Soil salinity and moisture 
gradients and plant zonation in Mediterranean salt marshes of Southeast Spain, 
Wetlands, 20, pp. 357-372. 

Álvarez‐Rogel, J, Hernández, J, Ortiz-Silla, R & Alcaraz-Ariza, F (1997): Patterns of 
spatial and temporal variations in soil salinity: Example of a salt marsh in a semiarid 
climate, Arid Soil Research and Rehabilitation, 11, pp. 315-329. 

Ashworth, J, Keyes, D, Kirk, R & Lessard, R (2001): Standard Procedure in the 
Hydrometer Method for Particle Size Analysis, Communications in Soil Science and Plant 
Analysis, 32, pp. 633-642. 

Baars, MA (1979): Catches in pitfall traps in relation to mean densities of carabid 
beetles, Oecologia, 41, pp. 25-46. 

Baker, ML & de Salas, MF (2013): A census of the vascular plants of Tasmania. Tasmanian 
Herbarium, Tasmanian Museum and Art Gallery, Hobart. Available at: 
<http://www.tmag.tas.gov.au/__data/assets/pdf_file/0009/77607/2013_Census_
of_Tasmanian_Vascular_Plants.pdf> (accessed: 30 May 2014). 

Baver, L, Gardner, WH & Gardner, WR (1972): Soil Physics 4th ed, Wiley & Sons, 
New York. 

Bockelmann, A-C, Bakker, JP, Neuhaus, R & Lage, J (2002): The relation between 
vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh, 
Aquatic Botany, 73, pp. 211-221. 

Bohn, CC & Gebhardt, K (1989): Comparison of Hydrometer Settling Times in Soil 
Particle Size Analysis, Journal of Range Management, 42, pp. 81-83. 

 



References 

   Page 153 
Page 153 

Page 153 

Boon, PI (2011): Chapter 9: Saltmarshes. In: Understanding the Western Port Environment 
A summary of current knowledge and priorities for future research, Melbourne Water, 
Melbourne, p. 228, viewed 21 Jan 2013, 
<http://www.melbournewater.com.au/content/library/current_projects/rivers_cre
eks_and_wetlands/westernport/Understanding_the_Western_Port_Environment.p
df>. 

Bouyoucos, GJ (1927): The hydrometer as a new method for the mechanical analysis 
of soils, Soil Science, 23, pp. 343-354. 

Bouyoucos, GJ (1962): Hydrometer method improved for making particle size 
analyses of soils, Agronomy Journal, 54, pp. 464-465. 

Bridgewater, P & Cresswell, I (1999): Biogeography of mangrove and saltmarsh 
vegetation: implications for conservation and management in Australia, Mangroves and 
Salt Marshes, 3, pp. 117-125. 

Bridgewater, P & Cresswell, ID (2003): Identifying biogeographic patterns in 
Australian saltmarsh and mangal systems: a phytogeographic analysis, Phytocoenologia, 
33, pp. 231-250. 

Bridgewater, PB, Rosser, C & de Corona, A (1981): The saltmarsh plants of Southern 
Australia, Botany Department, Monash University, Clayton. 

Bureau of Meteorology (2013): General definitions. Available at: 
<http://www.bom.gov.au/climate/cdo/about/definitionstemp.shtml> (accessed: 
23 Sep 2013). 

Bureau of Meteorology (2014a): Climate statistics for Australian locations: Summary 
statistics Swansea Post Office. Available at: 
<http://www.bom.gov.au/climate/averages/tables/cw_092038.shtml> (accessed: 
14 Feb 2014). 

Bureau of Meteorology (2014b): Climate statistics for Australian locations: Summary 
statistics Friendly Beaches. Available at: 
<http://www.bom.gov.au/climate/averages/tables/cw_092114.shtml> (accessed: 
14 Feb 2014). 

Bureau of Meteorology (2014c): Basic Climatological Station Metadata: Friendly Beaches. 
Available at: 
<http://www.bom.gov.au/clim_data/cdio/metadata/pdf/siteinfo/IDCJMD0040.0
92114.SiteInfo.pdf> (accessed: 11 Feb 2014). 

Cameron, GN (1972): Analysis of Insect Trophic Diversity in Two Salt Marsh 
Communities, Ecology, 53, pp. 58-73. 

Cameron, GN (1976): Do Tides Effect Coastal Insect Communities, American 
Midland Naturalist, 95, pp. 279-287. 
  



References 

   Page 154 
Page 154 

Page 154 

Cammen, L, M. (1976): Abundance and Production of Macroinvertebrates from 
Natural and Artificially Established Salt Marshes in North Carolina, American Midland 
Naturalist, 96, pp. 487-493. 

Chapman, VJ (1974): Salt marshes and salt deserts of the world, 2nd ed, London, New 
York, Verlag von J Cramer, Lehre. 

Chatterjee, A, Lal, R, Wielopolski, L, Martin, MZ & Ebinger, MH (2009): Evaluation 
of Different Soil Carbon Determination Methods, Critical Reviews in Plant Sciences, 28, 
pp. 164-178. 

Clarke, LD & Hannon, NJ (1967): The mangrove swamp and salt marsh 
communities of the Sydney district: I. Vegetation, soils and climate, The Journal of 
Ecology, 55, pp. 753-771. 

Clarke, LD & Hannon, NJ (1969): The mangrove swamp and salt marsh 
communities of the Sydney district: II. The Holocoenotic complex with particular 
reference to physiography, The Journal of Ecology, 57, pp. 213-234. 

Clarke, LD & Hannon, NJ (1970): The mangrove swamp and salt marsh 
communities of the Sydney district: III. Plant growth in relation to salinity and 
waterlogging, The Journal of Ecology, 58, pp. 351-369. 

Craft, C, Seneca, E & Broome, S (1991): Loss on ignition and Kjeldahl digestion for 
estimating organic carbon and total nitrogen in estuarine marsh soils: calibration 
with dry combustion, Estuaries, 14, pp. 175-179. 

Curtis, W & Somerville, J (1947): Boomer Marsh–a preliminary botanical and 
historical survey. In: Papers and Proceedings of the Royal Society of Tasmania, pp. 151-157. 

Daiber, FC (1982): Animals of the tidal marsh, Van Nostrand Reinhold, New York. 

Davidson, T (2010): The Influence of Coastal Saltmarsh Vegetation on LiDAR 
Elevation Measurement Accuracy. Master of Applied Science thesis, School of 
Geography and Environmental Studies, University of Tasmania. 

Davis, LV & Gray, IE (1966): Zonal and Seasonal Distribution of Insects in North 
Carolina Salt Marshes, Ecological Monographs, 36, pp. 275-295. 

Day, PR (1965): Particle Fractionation and Particle Size Analysis. In: CA Black (ed.), 
Methods of Soil Analysis: Part 1: Physical and Mineralogical Properties, including Statisics of 
Measurement and Sampling, American Society of Agronomy Inc., Madison. 

De Cáceres, M (2013): How to use the indicspecies package (ver. 1.7. 1). Available at: 
<http://137.122.187.16/cran/web/packages/indicspecies/vignettes/indicspeciesTu
torial.pdf> (accessed: 19 May 2014). 

De Cáceres, M, Legendre, P & Moretti, M (2010): Improving indicator species 
analysis by combining groups of sites, Oikos, 119, pp. 1674-1684. 



References 

   Page 155 
Page 155 

Page 155 

Department of Primary Industries Parks Water and Environment (2014): The LIST 
Maps. Available at: <http://maps.thelist.tas.gov.au/listmap/app/list/map> 
(accessed: 12 Feb 2014). 

Department of Sustainability, Environment, Water, Population and Communities 
(2008): Moulting Lagoon Ramsar Site - Ecological Character Description. Australian 
Government, Canberra. Available at: 
<http://www.environment.gov.au/water/publications/environmental/wetlands/3-
ecd.html> (accessed: 23 Feb 2013). 

Department of the Environment (2013): Subtropical and Temperate Coastal Saltmarsh. 
Available at: <http://www.environment.gov.au/cgi-
bin/sprat/public/publicshowcommunity.pl?id=118> (accessed: 30 Jul 2014). 

Desender, K (1989): Heritability of wing development and body size in a carabid 
beetle, Pogonus chalceus Marsham, and its evolutionary significance, Oecologia, 78, 
pp. 513-520. 

Desender, K, Backeljau, T, Delahaye, K & De Meester, L (1998): Age and size of 
European saltmarshes and the population genetic consequences for ground beetles, 
Oecologia, 114, pp. 503-513. 

Desender, K & Maelfait, J-P (1999): Diversity and conservation of terrestrial 
arthropods in tidal marshes along the River Schelde: a gradient analysis, Biological 
Conservation, 87, pp. 221-229. 

Desender, K, Maelfait, J-P & Baert, L (2007): Ground beetles as "early warning indicators" 
in restored salt marshes and dune slacks. Paper presented to: 5th European Conference on 
Ecological Restoration, Greifswald, Germany. Available at:  
<http://www.researchgate.net/publication/236132143_Restoration_of_Coastal_Ec
osystems/file/60b7d521e34fe814fb.pdf#page=30> (accessed: 15 Apr 2013). 

Dobel, HG, Denno, RF & Coddington, JA (1990): Spider (Araneae) Community 
Structure in an Intertidal Salt Marsh: Effects of Vegetation Structure and Tidal 
Flooding, Environmental Entomology, 19, pp. 1356-1370. 

DPIPWE (2014): The LIST Maps. Available at: 
<http://maps.thelist.tas.gov.au/listmap/app/list/map> (accessed: 12 Feb 2014). 

Edgar, GJ, Barrett, NS & Graddon, D (1999): A classification of Tasmanian estuaries and 
assessment of their conservation significance using ecological and physical attributes, population and 
land use. Marine Research Laboratories, TAFI, University of Tasmania, Hobart. 
Available at: <http://eprints.utas.edu.au/1718/> (accessed: 20 January 2014). 

Esri mapping centre (2011): Ask a cartographer. Available at: 
<http://mappingcenter.esri.com> (accessed: 23 Apr 2014). 

Fairweather, PG (1990): Ecological changes due to our use of the coast: research 
needs versus effort, Proceedings of the Ecological Society of Australia, 16, pp. 71-77. 



References 

   Page 156 
Page 156 

Page 156 

Finch, O-D, Krummen, H, Plaisier, F & Schultz, W (2007): Zonation of spiders 
(Araneae) and carabid beetles (Coleoptera: Carabidae) in island salt marshes at the 
North Sea coast, Wetlands Ecology and Management, 15, pp. 207-228. 

Finlayson, CM & Rea, N (1999): Reasons for the loss and degradation of Australian 
wetlands, Wetlands Ecology and Management, 7, pp. 1-11. 

Foster, W (1983): Activity rhythms and the tide in a saltmarsh beetle Dicheirotrichus 
gustavi, Oecologia, 60, pp. 111-113. 

Glasby, J (1975): Distribution of Salt Marsh Communities in the Hobart Area. BA 
(Honours) thesis, Faculty of Arts, University of Tasmania. 

Google MAPS (2014): Maps. Available at: <https://maps.google.com.au/> 
(accessed: 30 Sep 2013). 

Gouldthorpe, JJ (2000): The effects of drainage and grazing on saltmarsh 
environments on south-east Tasmania. BSc (Honours) thesis, School of Geography 
and Environmental Studies, University of Tasmania. 

Greenslade, PJM (1964): Pitfall Trapping as a Method for Studying Populations of 
Carabidae (Coleoptera), Journal of Animal Ecology, 33, pp. 301-310. 

Guiler, ER (1949): The Intertidal Ecology of Tasmania, Papers and Proceedings of the 
Royal Society of Tasmania, 1946, pp. 135-201. 

Guiler, ER (1952a): The nature of intertidal zonation in Tasmania, Papers and 
Proceedings of the Royal Society of Tasmania, 86, pp. 31-62. 

Guiler, ER (1952b): The intertidal ecology of the Eaglehawk Neck area, Papers and 
Proceedings of the Royal Society of Tasmania, 86, pp. 13-30. 

Guiler, ER (1952c): The ecological features of certain sheltered intertidal areas in 
Tasmania, Papers and Proceedings of the Royal Society of Tasmania, 86, pp. 1-12. 

Hangay, G & Zborowski, P (2010): A guide to the beetles of Australia, CSIRO 
Publishing, Collingwood. 

Harris, P, Heap, A, Bryce, S, Porter-Smith, R, Ryan, D & Heggie, D (2002): 
Classification of Australian clastic coastal depositional environments based upon a 
quantitative analysis of wave, tidal, and river power, Journal of Sedimentary Research, 72, 
pp. 858-870. 

Harris, S & Kitchener, A (2005): From Forest to Fjaeldmark: Descriptions of Tasmania's 
vegetation, Department of Primary Industries, Parks, Water and Environment, Hobart. 

Harvey, M (1995): The systematics of the spider family Nicodamidae (Araneae: 
Amaurpbioidea), Invertebrate Systematics, 9, pp. 279-386. 

Hazelton, PA & Murphy, BW (2007): Interpreting soil test results: what do all the numbers 
mean?, CSIRO Publishing, Collingwood. 



References 

   Page 157 
Page 157 

Page 157 

Heap, AD, Bryce, S & Ryan, DA (2004): Facies evolution of Holocene estuaries and 
deltas: a large-sample statistical study from Australia, Sedimentary Geology, 168, pp. 1-
17. 

Heiri, O, Lotter, A & Lemcke, G (2001): Loss on ignition as a method for estimating 
organic and carbonate content in sediments: reproducibility and comparability of 
results, Journal of Paleolimnology, 25, pp. 101-110. 

Hickman, VV (1967): Some common Tasmanian spiders, Tasmanian Museum and Art 
Gallery, Hobart. 

Huckle, JM, Potter, JA & Marrs, RH (2000): Influence of environmental factors on 
the growth and interactions between salt marsh plants: effects of salinity, sediment 
and waterlogging, Journal of Ecology, 88, pp. 492-505. 

Hunt, N & Gilkes, B (1992): Farm Monitoring Handbook: a practical down-to-earth manual 
for farmers and other land users, The University of Western Australia, Nedlands. 

Hutton, JT (1950): Detailed method of particle size analysis of soils using mechanical dispersion 
and a plummet balance. Division of Soils, CSIRO. 

Irmler, U, Heller, K, Meyer, H & Reinke, H-D (2002): Zonation of ground beetles 
(Coleoptera: Carabidae) and spiders (Araneida) in salt marshes at the North and the 
Baltic Sea and the impact of the predicted sea level increase, Biodiversity & 
Conservation, 11, pp. 1129-1147. 

Kelleway, J, Williams, RJ & Laegdsgaard, P (2009): Mapping, assessment and 
monitoring of saltmarshes. In: N Saintilan (ed.), Australian saltmarsh ecology, CSIRO 
Publishing, Collingwood. 

Kiernan, K (2013): A preliminary intrepretation of landscape evolution at Long 
Point. School of Geography and Environmental Studies, University of Tasmania, 
Hobart. 

Kingdom, D (2008): Long Point Moulting Lagoon, Swansea: Reserve Management Plan. 
Tasmanian Land Conservancy, Lower Sandy Bay. Available at: 
<http://www.landcaretas.org.au/wp-content/uploads/2012/08/LP_Management-
Plan_Final_Apr2009.pdf> (accessed: 20 Dec 2012). 

Kirkpatrick, JB (1981): Coastal, heath and wetland vegetation. In: WD Jackson (ed.), 
The vegetation of Tasmania, Botany Department, University of Tasmania, Hobart. 

Kirkpatrick, JB & Glasby, J (1981): Salt Marshes in Tasmania: Distribution, Community 
Composition and Conservation. Department of Geography, University of Tasmania, 
Hobart. 

Konen, ME, Jacobs, PM, Burras, CL, Talaga, BJ & Mason, JA (2002): Equations for 
predicting soil organic carbon using loss-on-ignition for north central US soils, Soil 
Science Society of America Journal, 66, pp. 1878-1881. 



References 

   Page 158 
Page 158 

Page 158 

Laegdsgaard, P (2006): Ecology, disturbance and restoration of coastal saltmarsh in 
Australia: a review, Wetlands Ecology and Management, 14, pp. 379-399. 

Larsen, EB (1951): Studies on the soil fauna of Skallingen, Oikos, 3, pp. 166-192. 

Long, SP & Mason, CF (1983): Saltmarsh ecology, Blackie & Sons Limited, 
Bishopbriggs, Glasgow. 

Loveland, PJ & Whalley, WR (2000): Particle Size Analysis. In: KA Smith & CE 
Mullins (eds), Soil and Environmental Analysis, Marcel Dekker, Inc, New York. 

Lovell, CR & Davis, DA (2012): Specificity of salt marsh diazotrophs for vegetation 
zones and plant hosts, Frontiers in Microbiology, 3. 

Marsh, JA (1982): Aspects of the Ecology of three Saltmarshes of the Derwent 
Region and an Investigation into the Role of the Burrowing Crab H. haswellianus 
(Whitelegge, 1889). BSc (Honours) thesis, Zoology Department, University of 
Tasmania. 

McCoy, ED & Rey, JR (1981): Terrestrial Arthropods of Northwest Florida Salt 
Marshes: Coleoptera, The Florida Entomologist, 64, pp. 405-411. 

McInnes, KL, Bathols, J, Page, C, Suppiah, R & Whetton, PH (2004): Climate change 
in Tasmania: A Report undertaken for Hydro Tasmania by Climate Impact Group, CSIRO 
Atmosphere Research. CSIRO, Aspendale. Available at: 
<http://eprints3.cipd.esrc.unimelb.edu.au/482/> (accessed: 15 Jan 2013). 

Mettler Toledo (2007): A Guide to pH Measurement: the theory and practice of laboratory pH 
applications, Mettler-Toledo AG, Schwerzenbach. 

Minasny, B & McBratney, AB (2001): The australian soil texture boomerang: a 
comparison of the australian and USDA/FAO soil particle-size classification 
systems, Australian Journal of Soil Research, 39, pp. 1443-1451. 

Moeys, J (2014): The soil texture wizard: R functions for plotting, classifying, 
transforming and exploring soil texture data. 

Moore, PD & Chapman, SB (1986): Methods in Plant Ecology. In: FB Goldsmith, 
CM Harrison & AJ Morton (eds), Description and analysis of vegetation, 2nd edn, 
Blackwell Scientific Publications, Oxford. 

Morrisey, D (2000): Saltmarshes. In: AJ Underwood & MG Chapman (eds), Coastal 
Marine Ecology of Temperate Australia, University of New South Wales Press Ltd, 
Sydney. 

Mount, RE, Prahalad, VN, Sharples, C, Tilden, J, Morrison, B, Lacey, M, Ellison, J, 
Helman, J & Newton, J (2010): Circular Head Coastal Foreshore Habitats: Sea Level Rise 
Vulnerability Assessment: Final Project Report to Cradle Coast NRM. Blue Wren Group, 
School of Geography and Environmental Studies, University of Tasmania, Hobart. 
Available at: <http://eprints.utas.edu.au/10159/> (accessed: 12 Jan 2013). 



References 

   Page 159 
Page 159 

Page 159 

Mueller-Dombois, D & Ellenberg, H (1974): Aims and Methods of Vegetation Ecology, 
John Wiley & Sons, New York. 

Navarro, AF, Cegarra, J, Roig, A & Garcia, D (1993): Relationships between organic 
matter and carbon contents of organic wastes, Bioresource Technology, 44, pp. 203-207. 

Niemelä, J (1990): Spatial distribution of carabid beetles in the southern Finnish 
taiga: the question of scale. In: NE Stork (ed.), The role of ground beetles in ecological and 
environmental studies, Intercept, Andover, UK, pp. 143-155. 

Nieuwenhuys, E (2013): Spiders of Australia. Available at: 
<http://ednieuw.home.xs4all.nl/australian/Spidaus.html> (accessed: 1 Jun 2014). 

NRM South (2008): Swan-Apsley Catchment Summary. NRM South, Hobart. Available 
at: 
<http://www.nrmsouth.org.au/uploaded/287/15131216_95swanapsleycatchments
umm.pdf> (accessed: 24 Feb 2013). 

Odum, WE (1988): Comparative ecology of tidal freshwater and salt marshes, 
Annual Review of Ecology and Systematics, 19, pp. 147-176. 

Oksanen, J (2013): Multivariate analysis of ecological communities in R: vegan tutorial. 
Available at: <http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf> 
(accessed: 31 Aug 2013). 

Parks and Wildlife Service (2007): Moulting Lagoon Game Reserve (Ramsar Site) 
Management Plan. Department of Tourism, Arts and the Environment, Hobart. 
Available at: <http://www.parks.tas.gov.au/?base=5624> (accessed: 22 Feb 2013). 

Pennings, SC & Callaway, RM (1992): Salt marsh plant zonation: the relative 
importance of competition and physical factors, Ecology, pp. 681-690. 

Peterson, CH (1991): Intertidal zonation of marine invertebrates in sand and mud, 
American Scientist, 79, pp. 236-249. 

Pétillon, J, Georges, A, Canard, A, Lefeuvre, J-C, Bakker, JP & Ysnel, F (2008): 
Influence of abiotic factors on spider and ground beetle communities in different 
salt-marsh systems, Basic and Applied Ecology, 9, pp. 743-751. 

Pétillon, J, Lambeets, K, Ract‐Madoux, B, Vernon, P & Renault, D (2011): Saline 

stress tolerance partly matches with habitat preference in ground‐living wolf spiders, 
Physiological Entomology, 36, pp. 165-172. 

Pétillon, J, Montaigne, W & Renault, D (2009): Hypoxic coma as a strategy to 
survive inundation in a salt-marsh inhabiting spider, Biol Lett, 5, pp. 442-445. 
  



References 

   Page 160 
Page 160 

Page 160 

Pétillon, J, Ysnel, F, Le Gluet, S, Lefeuvre, J-C & Canard, A (2003): Responses of spider 
communities to salinity and flooding in a tidal salt marsh (Mont St. Michel Bay, France). Paper 
presented to: 21st Eurpean Colloquium of Arachnology, St Petersburg, Russia. 
Available at:  <http://www.european-
arachnology.org/proceedings/21th/235_248_Petillon.pdf> (accessed: 15 Apr 2013). 

Phleger, FB (1977): Soils of Marine Marshes. In: VJ Chapman (ed.), Ecosystems of the 
World: Wet Coastal Ecosystems, Elsevier Scientific Publishing Company, Amsterdam. 

Platnick, NI (2000): A relimitation and revision of the Australasian ground spider 
family Lamponidae (Araneae: Gnaphosoidea), Bulletin of the American Museum of 
Natural History, pp. 1-328. 

Prahalad, VN (2009): Long term temporal changes in south east Tasmanian 
saltmarshes. Master of Applied Science thesis, School of Geography and 
Environmental Studies, University of Tasmania. 

Prahalad, VN, Kirkpatrick, JB & Mount, RE (2011): Tasmanian coastal saltmarsh 
community transitions associated with climate change and relative sea level rise 
1975-2009, Australian Journal of Botany, 59, pp. 741-748. 

Pribyl, DW (2010): A critical review of the conventional SOC to SOM conversion 
factor, Geoderma, 156, pp. 75-83. 

Ranwell, DS (1972): Ecology of Salt Marshes and Sand Dunes, Chapman and Hill, 
London. 

Rayment, GE & Lyons, DJ (2011): Soil Chemical Methods - Australasia, CSIRO 
Publishing, Collingwood. 

Richardson, A, Swain, R & Smith, S (1991): Local distributions of sandhoppers and 
landhoppers (Crustacea: Amphipoda: Talitridae) in the coastal zone of western 
Tasmania, Hydrobiologia, 223, pp. 127-140. 

Richardson, AMM & Mulcahy, ME (1996): The Distribution of Talitrid Amphipods 
(Crustacea) on a Salt Marsh in Southern Tasmania, in relation to Vegetation and 
Substratum, Estuarine, Coastal and Shelf Science, 43, pp. 801-817. 

Richardson, AMM, Swain, R & Wong, V (1997): The crustacean and molluscan 
fauna of Tasmanian saltmarshes, Papers and Proceedings - Royal Society of Tasmania, 131, 
pp. 21-30. 

Richardson, AMM, Swain, R & Wong, V (1998): Relationship between the 
crustacean and molluscan assemblages of Tasmanian saltmarshes and the vegetation 
and soil conditions, Marine and Freshwater Research, 49, pp. 785-799. 

Saintilan, N (2009): Biogeography of Australian saltmarsh plants, Austral Ecology, 34, 
pp. 929-937. 

Saintilan, N (2009a): Australian Saltmarsh Ecology, CSIRO Publishing, Collingwood. 



References 

   Page 161 
Page 161 

Page 161 

Saintilan, N (2009b): Distribution of Australian saltmarsh plants. In: N Saintilan 
(ed.), Australian saltmarsh ecology, CSIRO Publishing, Collingwood. 

Saintilan, N & Adam, P (2009): Preface. In: N Saintilan (ed.), Australian Saltmarsh 
Ecology, CSIRO Publishing, Collingwood. 

Sánchez, J, Izco, J & Medrano, M (1996): Relationships between vegetation zonation 

and altitude in a salt‐marsh system in northwest Spain, Journal of Vegetation Science, 7, 
pp. 695-702. 

Schmidt, MH, Clough, Y, Schulz, W, Westphalen, A & Tscharntke, T (2006): 
Capture Efficiency and Preservation Attributes of Different Fluids in Pitfall Traps, 
Journal of Arachnology, 34, pp. 159-162. 

Silvestri, S, Defina, A & Marani, M (2005): Tidal regime, salinity and salt marsh plant 
zonation, Estuarine, Coastal and Shelf Science, 62, pp. 119-130. 

Simón, M, Cabezas, O, Garcia, I & Martinez, P (1994): A new method for the 
estimation of total dissolved salts in saturation extracts of soils from electrical 
conductivity, European journal of soil science, 45, pp. 153-157. 

Snow, AA & Vince, SW (1984): Plant Zonation in an Alaskan Salt Marsh: II. An 
Experimental Study of the Role of Edaphic Conditions, Journal of Ecology, 72, pp. 
669-684. 

Soil and Plant Analysis Council (1999): Soil analysis handbook of reference methods, CRC 
Press LLC, Boca Raton. 

Spence, JR & Niemelä, JK (1994): Sampling Carabid assemblages with pitfall traps: 
The madness and the method, The Canadian Entomologist, 126, pp. 881-894. 

Sur, H & Kukal, S (1992): A modified hydrometer procedure for particle size 
analysis, Soil Science, 153, pp. 1-4. 

Tasmanian Land Conservancy (2014): About the Tasmanian Land Conservancy. Available 
at: <http://www.tasland.org.au/about> (accessed: 31 Jan 2013). 

Temby, N & Crawford, C (2008): Coastal and Estuarine Resource Condition Assessment: a 
baseline survey in the Southern NRM Region, Tasmania. TAFI, University of Tasmania, 
Hobart. Available at: 
<http://www.nrmsouth.org.au/uploaded/287/15130394_49cerca_baselinereport_fi
.pdf> (accessed: 13 Feb 2014). 

Thiele, H-U (1977): Carabid beetles in their environments. A study on habitat selection by 
adaptation in physiology and behaviour, Springer-Verlag, Berlin. 

Uetz, GW & Unzicker, JD (1975): Pitfall Trapping in Ecological Studies of 
Wandering Spiders, Journal of Arachnology, 3, pp. 101-111. 
  



References 

   Page 162 
Page 162 

Page 162 

Van Der Valk, AG & Attiwill, PM (1983): Above- and below-ground litter 
decomposition in an Australian salt marsh, Australian Journal of Ecology, 8, pp. 441-
447. 

Vince, SW & Snow, AA (1984): Plant Zonation in an Alaskan Salt Marsh: I. 
Distribution, Abundance and Environmental Factors, Journal of Ecology, 72, pp. 651-
667. 

Weeks, RD & McIntyre, NE (1997): A comparison of live versus kill pitfall trapping 
techniques using various killing agents, Entomologia Experimentalis et Applicata, 82, pp. 
267-273. 

Wells, FE (1983): An analysis of marine invertebrate distributions in a mangrove 
swamp in northwestern Australia, Bulletin of Marine Science, 33, pp. 736-744. 

Wherry, ET (1920): Plant distribution around salt marshes in relation to soil acidity, 
Ecology, 1, pp. 42-48. 

White, RE (1997): Principles and Practice of Soil Science: The Soil as a Natural Resource, 3rd 
ed, Blackwell Science, Carlton. 

Whyte, R & Anderson, G (2014): Arachne.org.au. Available at: 
<http://www.arachne.org.au/default.asp> (accessed: 01 Jun 2014). 

Wong, V, Richardson, AMM & Swain, R (1993): The crustaceans and molluscs of 
Tasmanian saltmarshes, Zoology Department, University of Tasmania. 

Woodcock, BA (2005): Pitfall trapping in ecological studies. In: SR Leather (ed.), 
Insect sampling in forest ecosystems, Blackwell Science, Oxford, pp. 37-57. 

 

 

 



Appendices 

   Page 163 
Page 163 

Page 163 

Appendices 

The following appendices are attached: 

Appendix A: Abnormal events 

Appendix B: Elevation, hill shade and solar radiation 

Appendix C: Edaphic data by transect by station 

Appendix D: Coastal saltmarsh community reference state 

The following appendices are available on the enclosed CD: 

Appendix E: Pitfall station coordinates (includes all pitfall traps) 

  File name: E – Coordinates.xlsx 

Appendix F: Vegetation data (Braun-Blanquet values by species by station) 

  File name: F – Vegetation.xlsx 

Appendix G: Temperature data (maximum and minimum values per month for 

each data logger)  

File name: G – Temperature.xlsx 

Appendix H: Edaphic data by transect by station 

File name: H – Soil.xlsx 

Appendix I: Invertebrate data (full list of all taxa per station, 12 months) 

File name: I – Invertebrates.xlsx 

Appendix J: Spider and beetle codes 

File name: J – SpiderBeetleCodes.xlsx 
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Appendix A – Abnormal events 

1a Flood tides 

Tidal amplitude varies throughout the year and along with meteorological 

conditions, tides can be higher or lower than predicted (Long & Mason 1983). In the 

presence of a low atmospheric pressure system, high tides can be significantly higher 

than anticipated and increased flooding on the saltmarsh will occur particularly in the 

presence of a full moon (spring tide). Such an event occurred during the week 

commencing 18 July 2013 with expected tide heights up to 1.45 metres and low 

barometric pressures (Table A.1) coinciding with a full moon on 23 July. 

Table A.1: Predicted tide height for Spring Bay and 9am barometric pressure for Friendly Beaches and Swansea 
week commencing 18 July 2013. Data source: BOM (2013; 2014a and b). 

 Barometric Pressure (hPa) 
Date Predicted height (m) Friendly Beaches Swansea 

18 July 2013 1.29 1017.0 1016.0 

19 1.35 998.0 996.3 

20 1.40 1001.5 1000.9 

21 1.44 999.5 999.2 

22 1.45 1004.9 1004.1 

23 (full moon) 1.44 1018.8 1018.2 

24 1.39 1026.3 1025.6 

Subsequently, large areas of the lower sections of Long Point were flooded, 

including the Sarcocornia flats and majority of Tecticornia areas; marine waters also 

flooded the ephemeral waterholes. Pitfall traps were planned to be set on 26 July 

2013 with collection scheduled for 2 August 2013. Trap setting went ahead, however 

approximately 15% could not be set (Table A.2 and Figures A.1 and A.2). 

Table A.2: Pitfall traps not set for collection period 26 July to 2 August 2013 due to flooding. 

Transect RED Transect YELLOW Transect GREEN 

R12a, b and c Y2a, b and c G1a, b and c 

R13a, b and c Y3a, b and c G2a, b and c 

 Y16a, b and c G3a, and b 

As a result there was a loss of data from the respective traps for this collection. 
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However, as it was a winter collection when terrestrial invertebrate species and 

numbers greatly reduced, it is expected that there was only a marginal impact on the 

results.  

  
Figures A.1 and A.2: Left – flooded pitfall station Y16 (8 June 2013). Right – flooded pitfall trap.  

1b Frosts 

Frosts were recorded at Swansea FWS and at Long Point on several occasions 

during the research project (Table A.3). 

Table A.3: Minimum temperatures (
o
C) recorded at Swansea (SW), Y1 (Little Bay), Y12 east side of Round Hole 

and R14 (Moulting Lagoon) during July, August and September 2013. Data source for Swansea and Friendly 
Beaches: BOM (2014a and b). 

Date SW Y1 Y12 R14 Date SW Y1 Y12 R14 Date SW Y1 Y12 R14 

6/07 6.8 5.0 2.8 5.0 7/08 7.1 1.1 -1.5 0.8 11/09 5.4 5.4 2.4 4.1 

7/07 0.3 -0.6 -3.4 -0.2 8/08 -0.8 1.9 -1.0 2.4 12/09 -0.3 2.4 0.1 2.4 

8/07 2.4 1.0 -2.5 0.9 9/08 3.1 3.8 2.7 5.1 13/09 -2.1 1.1 -3.8 -1.1 

9/07 -2.1 -1.0 -4.2 -1.3 10/08 0.7 4.1 2.8 5.5 14/09 0.4 4.6 3.1 4.1 

10/07 -1.5 -1.8 -5.1 -1.2 11/08 2.8 3.1 1.6 4.2 15/09 0.2 5.4 2.3 2.2 

11/07 1.7 0.5 -1.8 1.6 12/08 0.9 6.5 5.4 5.6 16/09 4.4 7.4 7.3 9.0 

12/07 2.9 -0.2 -3.5 0.7 13/08 5.4 1.6 0.0 2.0 17/09 9.9 11.1 11.3 11.6 

Minima as low as minus 5.2oC were recorded at R4 (west side of Gum Tree Hole) 

during June to September 2013, and minus 4oC at G16 (crest dolerite ridge) during 

the same period. Similarly, Friendly Beaches AWS also recorded low temperatures, 

though not as low as Swansea and Long Point. Except for data from the 

temperature loggers, no frosts were documented at Long Point as no visits were 

made at the time frosts occurred at the site. 
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The most noticeable impact on vegetation following the frosts was the dieback or 

death of very large swathes of Sarcocornia quinqueflora, in particular the large areas of 

succulent lawns adjacent to water bodies (Figures A.3 – A.4). S. quinqueflora beneath 

a canopy cover of Tecticornia arbuscula or Austrostipa spp. survived the frost, similarly, 

any S. quinqueflora that had been immersed in water at the time of the frost also 

survived (Figure A.5). In contrast Sarcocornia blackiana was unaffected by the frost 

(Figure A.6). 

  
Figures A.3 – A.4: station G13 Sarcocornia quinqueflora lawn. Left – January 2013. Right – September 2013 
(frost damaged). 

  
Figures A.5 – A.6: Left – frosted damaged Sarcocornia quinqueflora lawn with surviving edge that was 
submerged at time of frost (photo – January 2014). Right – Sarcocornia blackiana (left side – undamaged by 
frost), new growth of S. quinqueflora amongst frost damaged plants. 

Pitfall traps that were located in the affected areas were retained. Although some of 

the terrestrial invertebrate data could be compromised as the invertebrate 

assemblages may have been altered following the change to the vegetation 

community, it was considered important to collect the data and record any change in 

invertebrate numbers and/or species. Additionally, it would be valuable to record if 

any new detritivore species present in the dead and decaying plant material. 
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1c Reduced collecting time 

All invertebrate collections were planned to span seven days – traps set on a 

Saturday, collected the following Saturday, on eight occasions. It was reasoned that 

this was an adequate procedure that would capture as much data on terrestrial 

invertebrates over the 12 month period. 

The first summer collection pitfall traps were set on 2 November 2013, due for 

collection on 9 November 2013. The average temperature for the seven day period 

was in line with the monthly average recorded at Swansea and Friendly Beaches 

(Table A.4). However, heavy rain fell beginning early AM on the 8th to AM on the 

9th, virtually for the 24 hour period. Rainfall was recorded at the site as follows: R4 – 

45ml; Y12 – 41ml; and G16 – 46ml. 

Table A.4: Maximum temperatures and rainfall recorded at Swansea and Friendly Beaches 2-9 November 2013. 
Data source for Swansea and Friendly Beaches: BOM (2014a and b). 

 

Swansea Friendly Beaches 
Date Temp (

o
C) Rainfall (mm) Temp (

o
C) Rainfall (mm) 

2-Nov 18.5 0.0 20.4 0.0 

3-Nov 16.5 0.8 17.2 0.0 

4-Nov 17.6 0.4 19.3 0.8 

5-Nov 17.6 0.0 19.4 0.0 

6-Nov 27.8 0.0 25.0 0.0 

7-Nov 15.7 0.0 16.3 0.0 

8-Nov 10.9 10.0 10.7 9.4 

9-Nov 14.1 38.8 15.3 37.8 

Average for the period 17.3 

 

18.0 

 Average for the month 16.9 

 

17.9 

 
Fresh water flooding caused several traps to lift from the pitfall trap liner and tip, 

though fortunately, not spill. All still retained the catch as ethylene glycol is denser 

than water, and captured invertebrates sink to the bottom of the cup. 

Although it was possible that the pitfall traps may have lost some of their catch, and 

the catch period had been reduced by one day due to the rain, the sampling data was 

retained as heavy rainfall events are an integral component of the ecological process. 
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1d Ground swelling and contraction 

Moisture content in saltmarsh soils can be very high, thus desiccation promotes soil 

contraction followed by swelling when moisture returns. This became apparent 

when setting pitfall traps in dry conditions, a large gap around the perimeter of the 

cup was evident, as the soil had contracted from the pitfall trap liner (Figures A.7 

and A.8). Many targeted invertebrates would be unable to span the gap so care had 

to be taken to fill the cavity with similar material in order to assist invertebrates to 

enter the trap. This issue occurred on a number of occasions and at times while 

there was no gap on setting the trap, following a week of dry weather, a gap would 

be apparent on return to collect the takings. It is possible that some invertebrates 

may have been under sampled due to soil contraction; however, every effort was 

made to reduce the gaps. 

  
Figures A.7 and A.8: pitfall trap liner and contracted soil; Left – among Sarcocornia quinqueflora (station R6). 
Right – in bare ground (station G10). 

 

1e Environmental engineers – wombats 

As woodland areas were an important part of the vegetation sequence at Long Point, 

pitfall traps were established there. However, a number of wombats (Vombatus 

ursinus tasmaniensis) resided in these areas. These animals are very inquisitive and 

protective of their habitat. They were reluctant to allow any transgression within 

their range and traps and trap liners were initially upended and the pitfall trap hole 

filled in (Figure A.9). To counter this insurgency, trap protectors were made from 

coarse galvanised mesh and fixed to the ground over the set pitfall trap with metal 

pegs. This achieved the objective, though the wombats still insisted on 
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letting the researcher know that a violation had taken place by leaving droppings on 

the trap protector (Figure A.10). Fortunately, damage by wombats was encountered 

before pitfall trapping commenced and no protected traps were subsequently 

damaged. 

 

 
Figures A.9 and A.10: Left – damage by wombats. Right – 
solution, “but it’s still my patch”. 
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Appendix B – Elevation, hill shade and solar radiation 

Table B.1: Station elevation, hill shade and solar radiation. Elevation is based on the AusGeoid09. MSL = mean 
sea level; hill shade units (illumination) range from 0 to 255 – zero (no illumination, or complete shadow) to 255 
(full illumination, or full sunlight) (Esri mapping centre 2011); solar radiation value = MW per square metre per 
year. Elevation data has a SD of 0.0155m averaged across all stations. 

Station Elevation (m) above MSL Hill Shade (illumination) Solar Radiation (MW/m2) 

R1 0.304 179 1,211,974.25 

R2 0.169 180 1,212,498.25 

R3 0.509 181 1,213,181.63 

R4 1.153 177 1,204,584.00 

R5 0.243 180 1,209,345.75 

R6 0.214 180 1,207,849.88 

R7 0.293 180 1,203,368.88 

R8 0.611 181 1,202,972.38 

R9 2.157 194 1,217,994.13 

R10 2.873 155 1,171,393.38 

R11 0.472 174 1,181,738.38 

R12 0.238 179 1,207,100.00 

R13 0.257 180 1,208,996.75 

R14 0.227 180 1,211,839.00 

Y1 0.270 180 1,205,666.88 

Y2 0.221 180 1,205,734.13 

Y3 0.233 180 1,203,501.38 

Y4 0.527 179 1,194,302.38 

Y5 0.491 176 1,180,591.38 

Y6 0.608 185 1,200,928.50 

Y7 2.180 210 1,231,764.13 

Y8 9.069 166 1,124,523.13 

Y9 3.633 156 1,216,284.63 

Y10 0.660 177 1,183,755.75 

Y11 0.467 178 1,190,296.88 

Y12 0.310 180 1,209,544.75 

Y13 0.479 182 1,213,362.63 

Y14 0.837 181 1,209,052.75 

Y15 0.516 181 1,213,433.25 

Y16 0.225 179 1,205,187.50 

Y17 0.247 180 1,208,981.38 
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Station Elevation (m) above MSL Hill Shade (illumination) Solar Radiation (MW/m2) 

G1 0.273 180 1,212,585.75 

G2 0.227 180 1,211,169.25 

G3 0.234 180 1,214,993.63 

G4 0.427 180 1,210,239.38 

G5 0.529 181 1,216,770.00 

G6 2.061 179 1,218,100.00 

G7 2.298 185 1,226,034.63 

G8 0.778 179 1,203,131.50 

G9 0.540 180 1,212,774.50 

G10 0.460 179 1,208,870.38 

G11 0.290 178 1,208,911.88 

G12 0.264 179 1,207,767.13 

G13 0.363 181 1,201,217.88 

G14 0.532 191 1,221,537.63 

G15 4.338 200 1,242,559.63 

G16 10.323 184 1,222,176.75 
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Appendix C – Edaphic data 

1a Red transect 

Table C.1: Results of soil analysis of Red transect (SOM = soil organic matter, EC = electrical conductivity,  
dS/m = deciSiemens per metre).  

   

Summer (January) Winter (July) 

 Station 
ID 

% 
SOM 

% 
Carbon pH  

EC 
(dS/m) 

% 
Moist pH  

EC 
(dS/m) 

% 
Moist 

Sand 
(%) 

Silt 
(%)  

Clay 
(%) 

R1 51.20 20.48 5.459 33.589 82.31 6.285 39.133 90.17 19 27 55 

R2 18.94 4.90 5.240 16.174 47.35 5.238 16.747 55.29 62 13 25 

R3 17.60 6.37 4.609 5.952 18.46 5.404 1.307 45.53 68 17 15 

R4 8.86 2.52 4.408 0.061 7.87 4.253 0.095 13.35 86 6 8 

R5 34.68 13.34 5.739 30.822 49.00 5.817 5.970 57.08 54 22 24 

R6 25.66 13.85 5.207 22.178 62.10 5.178 18.316 78.56 65 13 22 

R7 14.43 5.48 5.776 39.433 52.66 6.665 1.839 35.18 73 8 19 

R8 10.86 5.18 5.064 1.612 12.85 5.068 0.241 22.85 83 6 10 

R9 5.57 1.98 3.871 0.038 5.56 4.178 0.051 19.26 88 4 8 

R10 4.70 1.74 4.394 0.027 6.48 4.240 0.037 13.52 90 3 7 

R11 9.98 5.21 4.925 0.539 12.75 4.986 0.150 34.02 81 9 9 

R12 18.59 4.82 5.522 31.511 49.15 5.908 25.333 58.27 65 12 23 

R13 45.05 18.74 4.788 33.378 61.59 5.619 42.578 89.60 24 25 51 

R14 44.26 16.22 5.873 44.978 84.45 6.008 39.856 86.70 30 21 49 
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1b Yellow transect 

Table C.2: Results of soil analysis of Yellow transect (SOM = soil organic matter, EC = electrical conductivity,  
dS/m = deciSiemens per metre).  

   

Summer (January) Winter (July) 

 Station 
ID 

% 
SOM 

% 
Carbon pH  

EC 
(dS/m) 

% 
Moist pH  

EC 
(dS/m) 

% 
Moist 

Sand 
(%) 

Silt 
(%)  

Clay 
(%) 

Y1 53.16 20.16 5.859 60.133 87.31 4.787 32.978 94.25 32 23 45 

Y2 44.43 21.70 4.821 49.644 77.12 5.463 42.189 92.45 17 34 49 

Y3 7.61 3.95 5.760 25.856 34.17 5.819 13.667 44.52 75 10 15 

Y4 7.69 3.79 5.583 2.594 16.22 5.151 0.102 27.46 87 7 6 

Y5 9.00 4.96 5.492 13.001 29.62 5.970 0.612 32.87 76 12 11 

Y6 8.42 2.90 5.524 0.746 10.00 5.636 0.143 30.02 82 9 8 

Y7 3.66 1.73 4.630 0.056 2.59 4.392 0.056 8.94 87 1 11 

Y8 1.84 1.04 4.410 0.034 4.11 4.083 0.015 7.44 93 1 6 

Y9 3.46 1.48 4.838 0.035 5.05 5.052 0.034 12.32 83 5 12 

Y10 10.77 4.83 5.391 0.200 16.65 5.527 0.190 33.02 71 12 17 

Y11 12.41 4.21 6.207 25.867 48.92 6.639 3.944 39.42 76 9 15 

Y12 10.79 4.34 6.022 20.896 57.92 6.267 7.286 78.24 74 7 19 

Y13 16.33 6.86 5.063 12.384 37.40 5.628 1.959 56.39 62 17 21 

Y14 10.62 4.18 4.861 0.732 13.24 4.646 0.083 29.23 70 21 8 

Y15 10.92 3.47 6.701 12.508 41.41 7.463 10.763 38.49 50 25 25 

Y16 36.42 15.14 5.532 46.267 75.39 5.926 43.000 92.19 23 38 39 

Y17 38.23 15.35 5.742 43.744 79.15 6.055 38.000 90.89 37 28 35 
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1b Green transect 

Table C.3: Results of soil analysis of Green transect (SOM = soil organic matter, EC = electrical conductivity,  
dS/m = deciSiemens per metre).  

   

Summer (January) Winter (July) 

 Station 
ID 

% 
SOM 

% 
Carbon pH  

EC 
(dS/m) 

% 
Moist pH  

EC 
(dS/m) 

% 
Moist 

Sand 
(%) 

Silt 
(%)  

Clay 
(%) 

G1 29.33 7.21 5.209 28.400 65.92 5.569 30.233 81.09 39 21 40 

G2 15.23 2.28 6.232 24.500 45.72 6.432 17.781 65.72 47 17 37 

G3 2.52 0.78 6.574 17.738 18.98 7.475 5.160 27.79 84 1 14 

G4 10.12 2.48 6.184 22.844 39.83 6.350 10.583 37.78 77 4 19 

G5 12.71 4.50 5.099 1.052 19.74 5.159 0.255 30.49 73 10 16 

G6 4.94 1.97 3.740 0.075 6.01 4.070 0.068 5.46 89 0 11 

G7 3.37 1.38 3.969 0.048 3.29 4.074 0.018 10.40 92 0 9 

G8 10.75 5.89 5.094 0.594 13.73 4.934 0.112 21.20 79 11 11 

G9 22.27 9.25 4.875 12.579 36.84 5.304 1.932 48.96 34 25 41 

G10 14.10 5.27 4.341 24.844 46.16 4.814 5.460 44.26 19 25 56 

G11 35.36 16.38 4.887 24.478 53.33 4.893 19.031 72.41 28 31 40 

G12 30.09 13.67 5.428 30.767 63.56 5.456 26.456 69.40 40 26 34 

G13 37.26 15.64 5.012 29.122 65.83 4.950 14.304 72.89 31 21 48 

G14 26.55 6.70 5.331 0.790 23.06 5.376 0.418 39.90 42 30 28 

G15 3.30 1.21 4.539 0.056 2.38 4.674 0.023 11.46 78 9 13 

G16 3.57 1.34 4.631 0.031 3.53 4.757 0.022 13.33 82 8 10 
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Appendix D – Coastal saltmarsh community reference state 

Feature Zone Description 

Vegetation Low Prostrate saline succulent herbs – Sarcocornia 
quinqueflora and or S blackiana, often present as 
dense mats or “lawns”, bright green (spring) to 
deep red in colour (autumn). 

 Middle Shrub form succulents with prostrate succulent 
understory, occasional intrusion of saline grasses 
– Tecticornia arbuscula, S quinqueflora, S 
blackiana, Disphyma crassifolium, bare areas. 
Often present on the extreme coastal fringe (for 
example levee banks), Tecticornia can be up to 
1.5m in height, very verdant; inshore of the low 
marsh, degraded areas, up to 1.0m in height, 
where Tecticornia appears to be under stress (not 
verdant), sometimes dead, bare areas can be 
significant. 

 Upper Saline grasslands – Juncus spp., Gahnia spp., 
Austrostipa spp. and some Poa spp., bare areas. 
Clusters of individual species are not uncommon, 
however generally mixed. Ground cover by S 
quinqueflora, S blackiana, D crassifolium and bare 
areas can occur. 

Elevation  This depends entirely on the tidal range at the 
site. On coasts with an approximate range of 
<1.0m, the following is an estimate: 

 Low Range: 0.20 – 0.35 metres above Australian Height 
Datum (AHD) 

 Middle Range: 0.30 – 0.50 metres above AHD 

 Upper Above 0.50 metres above AHD 

Inundation Low Frequently inundated by high tides, particularly 
from late autumn to early spring, water is often 
slow to recede. 

 Middle Seldom inundated, though subject to high 
astronomical tides and high rainfall flooding 
events, water can be slow to retreat. 
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Feature Zone Description 

 Upper No tidal inundation, subject to high rainfall 
flooding events, water is slow to recede. 

Edaphic factors  Summer. The values are indicative only and very 
dependent on each site. There is a correlation 
between the factors, eg high organic matter = 
high moisture. 

  Low Moisture: High – range 60-80% 
EC (as a proxy for salinity): range 22-50dS/m 
pH: range 4.8-5.5 
Soil organic matter: range 25-45% 
Soil texture: Clay 

 Middle Moisture: Medium – range 20-70% 
EC (as a proxy for salinity): range 10-50dS/m 
pH: range 4.3-6.7 
Soil organic matter: range 5-50% 
Soil texture: Sandy clay loam 

 Upper Moisture: Low – range 10-40% 
EC (as a proxy for salinity): range 0.2-25dS/m 
pH: range 4.6-5.5 
Soil organic matter: range 8-30% 
Soil texture: Sandy loam 

Spiders (information 
from: 
www.arachne.org.au) 

Low Lycosidae (wolf spider) – Venatrix, agile hunters, 
ground dwellers, in litter or burrows, presence all 
year 
Zodariidae (ant spider)*, abundant, ground 
dwellers, day time hunters, often living among 
and mimicking ants, presence all year 
Zoridae (wandering ghost spider)*, superficially 
resemble wolf spiders, however build webs with a 
silken retreat, presence all year 

 Middle Lycosidae – Venatrix, presence all year 
Nicodamidae (red-black spider)*, distinctive by 
their colouring, small to medium, often in sheet 
webs, presence spring to autumn 
Miturgidae (prowling spider)* – Miturga 
agelenina, large, females up to 20mm, males 
18mm, presence winter to summer 

http://www.arachne.org.au/
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Feature Zone Description 

 Upper Lycosidae – Venatrix, presence all year 
Gnaphosidae (ground spider), night hunters, run 
down prey on surface, spend day in silken retreat, 
presence spring 
Zodariidae*, presence intermittent 
Zoridae*, presence spring to autumn 
Nicodamidae*, presence spring to autumn 

Beetles (information 
from: A Guide to 
Beetles of Australia 
by Hangay and 
Zborowski) 

Low Carabidae (carabid beetle) – Bembidion, presence 
spring and summer 
Staphylinidae (rove beetle)* – Quedius, presence 
summer  
Carabidae – Clivina*, presence spring through 
autumn  
Elateridae (click beetle)* – Agrypnus , presence 
summer  
Curculionidae (weevils)* – Steriphus, presence 
winter  

 Middle Carabidae – Bembidion, presence spring , 
summer, autumn* and winter*  
Carabidae – Clivina, presence all year* 
Anthicidae (ant-like flower beetle)* – Anthicus, 
mimic ants, scavenger(?), presence spring to 
autumn 

 Upper Pselaphidae (water-penny beetle), presence 
intermittent 
Scarabaeidae (scarab beetle) – Heteronyx 
aphodioides*, presence all year 
Staphylinidae – Bledius*, presence spring to 
autumn 
Carabidae – Mecyclothorax*, presence summer to 
winter 

  * = not significant (p < 0.05) 

 


