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Preface 

Abstract 

This thesis presents the development of an evaluation tool for demand-side 

management (DSM) of domestic hot water systems (DHWSs). The developed tool 

provides accurate modeling and predictions of potential peak demand reductions 

through direct control of DHWSs. It aims to assist distribution system operators 

(DSOs) in designing a DSM program to deliver desired peak load reductions while 

maintaining a satisfactory level of comfort for all consumers. 

The developed tool estimates the available domestic hot water load in a controlled 

area, and determines optimal switching programs for direct load control (DLC). A 

switching program refers to a direct control schedule that strategically switches 

DHWSs on and off in order to achieve a desired load reduction during peak periods.  

To calculate the power consumption and temperature profile of a DHWS, we 

developed a multi-layer thermally stratified hot water system model and validated it 

with experimental data. The tool employs Monte Carlo probabilistic simulations to 

generate hot water consumption profiles for domestic consumers, and uses the hot 

water system model to obtain the loads associated with these hot water consumption 

profiles. Switching programs for DLC found via iterative optimizations, are applied 

to these hot water loads to meet the peak reduction targets set by the tool user. Key 

performance indicators (KPIs) to evaluate the performance of these switching 

programs and the impact on consumers’ comfort as a result of implementing DLC, 

were also developed. 
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Outline of the research  

This research focuses on DLC of DHWSs, as a DSM approach to reduce the peak 

domestic load in a power distribution network. DHWS is chosen as the control target 

of this research for two main reasons: 

•  The domestic hot water load represents a significant share of the total domestic 

energy load. Water heating accounts for up to 40% of domestic energy 

consumption in Australia and approximately one third in Tasmania [1], [2].  

Hence, a DLC program that can effectively reduce the peak domestic hot water 

load will have a significant impact in reducing the peak load of the substations. 

For example, Integra Energy (New South Wales, Australia) has successfully 

reduced its system peak demand by 389 MW through implementing DLC on 

DHWSs [3].  

• A DHWS represents an interruptible load because it is an insulated thermal 

energy storage that continually supplies hot water to consumers even during the 

period of power interruptions. The deferred energy is recovered when the power 

is restored. Hence, a well-designed DLC program has a minimal impact on 

consumers’ existing comfort levels. 

This research has two main objectives: 

1. To develop a domestic hot water evaluation tool that can accurately model the 

available hot water load and predict the potential peak reduction achievable 

through direct control of domestic electric hot water systems. 

2. To use the developed tool to assist distribution system operators in designing their 

load management (LM) programs, with the aim of delivering optimal peak 

reduction in domestic loads while ensuring minimal impact on consumers’ 

existing comfort levels.  

Achieving these objectives requires research in the areas summarized below: 

1. Develop an accurate model to predict the power consumption and temperature 

profile of a domestic electric hot water system.  

2. Develop a generic approach to estimate hot water consumption profiles in 

individual households. 
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3. Derive a set of key performance indicators to measure, evaluate and compare the 

performance for various controlled scenarios. 

4. Develop a control management system that produces DLC switching programs 

and employs effective algorithms to optimize them. These switching programs are 

applied to the DHWSs to reduce the aggregate peak load and improve the load 

factor. 

5. Develop a user-friendly program that integrates the above functions into a tool 

that assists the DSOs in the evaluation and selection of DLC switching programs 

for their respective load management purposes. 

Figure (I) shows the block diagram that summarizes the research objectives and the 

research areas to achieve these objectives. 

 

Figure (I) Block diagram illustrating research objectives and research areas. 

With reference to the research areas discussed above, this thesis is organized as 

follows: 

Chapter 1 provides an introduction to DSM. This chapter contains a general 

overview of the history of DSM, the implementation of DSM in some major 

countries, a review of methods and strategies to implement DSM, and values of DSM 

in an electric power system. 
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Chapter 2 presents the structure of the developed hot water evaluation tool. It 

introduces the high level structure of the tool and describes the functionality of 

individual modules in the tool. In addition, the high level operation of these modules 

and the flow of information between them are also discussed. Detailed descriptions of 

the main functional modules are provided in the following chapters. 

Chapter 3 outlines the generic approach in the estimation of domestic hot water 

consumption profiles in Tasmania, Australia. It presents the Monte Carlo approach 

employed to generate hot water consumption profiles for individual households. 

Survey results, actual energy metering data, and demographic data are used in the 

estimation process. As a result, the estimated hot water consumption profiles are 

correlated to the demography and the consumer behavior in the controlled area. The 

operation of the hot water consumption generator module is described in this chapter. 

Chapter 4 presents the development of the domestic hot water system model. This 

chapter provides the mathematical modeling with heat energy equations of the most 

common DHWS in Tasmania. Furthermore, the validation with experimental data is 

also presented.  

Chapter 5 describes the operation of the performance calculator and the details of 

the control management system. This chapter defines the KPIs used by the tool to 

evaluate the performance of DLC switching programs, as well as describing in detail 

the optimizer module and algorithms developed to optimize DLC switching 

programs. 

Chapter 6 evaluates the developed tools with a number of case studies. The studies 

assess the scalability of the results, impacts of assuming certain parameters as 

constant in simulations, as well as the performance of different DLC switching 

programs applied to DHWSs under different operating scenarios. In addition, this 

chapter also includes discussions of the simulation results.  

Chapter 7 summarizes the research and gives some recommendations for future 

studies aiming to extend the research work reported in this thesis.  
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Chapter 1  
Introduction  

Electricity is a form of energy that is very costly to store in bulk with existing 

technologies. For example, the global energy storage capacity represented just 3% of 

the global generating capacity in 2010 [4], [5]. Hence, most of the time, electric 

energy is consumed as it is generated. Moreover, the demand for electricity is not 

consistent but exhibits daily and seasonal variations. These unique characteristics 

present major challenges in designing and planning for an electric power system1.  

In order to ensure a high level of supply availability, the capacity of an electric 

power distribution system is traditionally designed to support the peak load forecast 

in the network [6], [7]. Although this design approach is essential in minimizing 

supply interruptions, it creates excessive latent capacity in distribution networks with 

low load factors (ratio of average to peak load). This scenario represents inefficient 

utilization of network infrastructures. As an example, the cost of catering to peak 

loads has caused electricity prices to double in Australia over the last five years [7]. 

Capital expenditures of close to half of the total network investment and more than 

half of the transmission budget are spent to accommodate the peak load growth in the 

National Electricity Market (NEM) in Australia. This amount accounts for about 

A$10 billion in system capacity that is used for slightly more than one percent of a 

year [8]. Similar costly underutilization is reported in the South West Interconnected 

System (SWIS) of Western Australia. To meet peak demands in 2009, about 600 MW 

(or 12 %) of capacity in the SWIS was used for less than one percent of the year [9].  

The characteristic of low load factor is commonly evident in domestic load 

profiles. The peaks are usually seasonal and persist only for a few hours of a day. For 

the rest of the time, the load is considerably lower than the peaks. For example, 

Figure 1.1 shows the average daily load profile (for winter months) of a substation 

1 “Power”, unless explicitly stated otherwise, means “electric power” in this thesis. 
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serving residential areas in the Tasmanian (Australia) distribution network.  The 

majority of this substation’s loads were domestic demands. Its load factor (ratio of 

average to peak load) was about 0.7, and the load was below its average value for 

more than half of the time. The summer load in Tasmania is relatively lower than its 

winter load. 

 

Figure 1.1 Average daily total load profile in winter months of a substation in Tasmania dominated by 
domestic load.  

To overcome the problem of low efficiency in a power system, such as those in the 

aforementioned examples, active initiatives are needed to reduce peak loads, improve 

the load factor and enhance the overall network utilization. One of the widely 

implemented initiatives is DSM — the effort to reduce energy consumption and 

improve the overall power system efficiency through the implementation of policies 

and methods that modify consumer demand for electricity [10]. The following 

sections provide a review of DSM. Section 1.1 gives a brief overview on the history 

of DSM and its implementations in three major countries. Sections 1.2–1.4 describe 

different types of DSM initiatives and how they are implemented around the world. 

Section 1.5 discusses the values of DSM implementations in modern power systems. 
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1.1 Overview of Demand-side Management 

The initial concept of DSM was coined during the Arab oil embargo in the early 

1970s where the price of crude oil had quadrupled overnight from about US$2.50 to 

US$10.00 per barrel [11]. This incident had prompted an urgent requirement in the 

USA and other western countries for energy conservation programs to counter the 

adverse impact of the sharp rising cost in power generations. The early DSM 

programs in the USA were known as “conservation and load management” (CLM) 

[12]. At the same time, consumers responded positively to the DSM initiatives of the 

utilities under such circumstances.  

Analysis made in [11] divides implementations of DSM in the USA, from its 

inception in the early 1970s to 1994 and onwards, into three phases. The first phase 

(from 1973 to the late 1980s) occurred in the period of high oil prices and DSM 

initiatives were implemented mainly to conserve energy and to reduce generation 

costs. When oil prices tumbled in the late 1980s, the DSM implementation entered its 

second phase where regulatory bodies had to provide incentives for the energy and 

utilities sector to continue pursuing DSM opportunities. The third phase began after 

the deregulation of the energy market in the USA in the 1990s where competition and 

market forces became the dominant drivers in DSM programs. Among other states in 

the USA, California (CA) and Vermont (VT) have very cost-effective DSM 

implementations [13]. Through its energy efficiency agency, VT has successfully 

reduced about 50% of the growth on its electricity load. Meanwhile, energy efficiency 

and DSM programs implemented in CA enabled that state to maintain almost constant 

electricity consumption per capita for the period between the early 1980s and 2004, 

while the rest of the USA had an average rise of about 50% in the same period [13]. 

To curb rising carbon emissions and the growth in energy intensity, the Chinese 

government has set an aggressive goal to reduce 20% of energy consumption per 

GDP for the period between 2005 and 2010 [13]. DSM initiatives are among the 

major initiatives to achieve this goal. Currently, DSM initiatives in China’s power 

systems are primarily under central control. Studies in [14] reveal that the Chinese 

government has allocated an equivalent of US$3.08 billion to improve energy 

efficiency and to reduce pollution.  As a result, reforms institutionalized at all levels 
3 
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of government are expected to have long term positive effects in improving the 

energy efficiency for China. 

Studies in [15] and [16] reveal that back in 2009, India faced major issues in its 

energy supplies.  Its energy deficit was about 10%, while the shortage in peak 

capacity was about 13%. The Indian government enacted the Energy Conservation 

Act in 2001 to promote energy efficiency and conservation [16].  Plans to use more 

energy efficient devices and equipment represent the major DSM initiative for 

significant energy conservation in India [15]. DSM is estimated to potentially reduce 

peak demand in the range of 837 – 4,904 MW, and save energy in the range of 3,311 

– 17,852 GWh. However, ineffective tariff systems hamper the effort to implement 

effective DSM programs in India, specifically its agricultural sector dominated by 

energy inefficient irrigation pumps. 

1.2 Main Types of Demand-side Management Initiatives 

Since its inception in the early 1970s, DSM is currently getting considerable 

attention in modern power systems around the world. The study conducted in [17] 

attributes the resurgence of DSM efforts in recent years to growing concerns over 

climate change, volatile fuel prices and shrinking utility reserve margins. Figure 1.2 

shows the three major types of DSM that require different efforts to implement in a 

power system [17]. They are summarized below: 

• Improve energy efficiency through technical advancements such as usages of 

energy efficient devices and equipment, upgrades of insulation, applications of 

enhanced building materials etc. Active consumer participation is expected to 

have a positive impact on the success of this DSM effort. 

• Change demand profiles through LM programs that apply various methods of 

control mechanisms such as direct load control, autonomous demand response etc. 

• Promote energy conservation through educational programs and financial 

incentives that alter consumer behavior to reduce wastage and conserve electricity 

[18]. The behavioral changes may be short term or become long term if they are 

incorporated into the lifestyle of a population [19]. 
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The first two methods of DSM are further discussed in the following sub sections. 

 

Figure 1.2 Block diagram of main components in DSM. 

1.3 Energy Efficiency Programs 

Energy efficient programs refer to initiatives that promote the permanent 

installation of energy efficient technologies and the elimination of energy losses in 

the existing system [19].  This section looks at the DSM policies and methods 

employed in some countries to improve energy efficiency in power systems. 

Comprehensive analyses in [20] present the policy options in improving energy 

efficiency in Australia. Among other recommendations, this report proposes a multi-

stage market reform that encompasses energy sectors and other related sectors such as 

building industry, commercial and industrial equipment sectors etc. To have long 

term effective results, the report also proposes to incorporate the energy efficiency 

criteria into future policies.  

A number of DSM initiatives in stimulating technical changes to improve energy 

efficiency are discussed in [21]. These methods include encouraging the 

dissemination of energy efficient appliances through subsidy programs and 

comparison labeling, eliminating least efficient devices through standardization, and 
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advancing new technologies and innovations in energy efficiency through incentive. 

This paper provides the success story of comparison labeling in Australia where the 

sales of more energy efficient appliances have successfully reduced the average 

household energy consumption by 11% in 1992. Through standardization of 

efficiency for household appliances, Lawrence Berkeley Laboratory in the USA 

projected an energy saving of 7,000 TWh from 1990 to 2015 and an avoided power 

generation of about 21,000 MW in 2015 for the USA [21].  

Meanwhile, research in [22] reports that national standards on minimum efficiency 

of appliances adopted in the USA have successfully cut electricity consumption by 88 

TWh (equivalent to 2.5% of national electricity usage) in the year 2000. This paper 

also reports a projected energy saving of 0.35 EJ (equivalent to 97.2 TWh) by 2010 in 

Japan, from the revision of the Energy Conservation Law in 1998. This law 

introduces minimum energy performance standards for household appliances and 

promotes innovations in energy efficient technologies. Under the same law, the 

authors of [19] reports that energy-intensive industrial facilities in Japan are required 

to reduce their respective energy intensities by 1% annually. From reported statistics, 

about 52% of these facilities met the target in 2004.  

Multinational energy efficiency policies adopted by the European Union (EU) 

countries in the 1990s have reduced the energy consumption of washing machines 

and dishwashers by 20%, and refrigerators and freezers by 27% [22]. In the case of 

China, the investments in end user devices with high efficiency have saved about 579 

MW of generation in the Jiangsu province power system [10]. 

On the other hand, DSM initiatives to promote energy efficiency are sometimes 

perceived negatively as reduced revenue for the energy and utilities sector. Hence, 

regulatory or governmental incentives are occasionally required to support such 

initiatives. The study in [23] analyses the world’s first trading scheme for energy 

efficiency certificates (“white certificates”), which commenced in New South Wales, 

Australia in January 2003. The findings discover that this trading scheme represents 

an effective mechanism for incentivizing the abatement of greenhouse gas emissions. 

An equivalent of about 10 million tonnes of carbon dioxide equivalent (CO2-e) 

abatement was achieved by the end of 2006. 
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1.4 Load Management 

Conventionally, LM represents various control methods that are applied to change 

the consumer demand profiles. As shown in Figure 1.2, there are three methods to 

implement LM in a power system: 

• Indirect load control 

• Autonomous load control  

• Direct load control 

1.4.1 Indirect load control 

Indirect load control refers to demand response schemes that require active 

participation of consumers to make manual adjustments to change their respective 

consumption profiles. This LM method is usually associated with various time-

sensitive pricing schemes such as time of use (ToU) pricing, real time pricing (RTP) 

and critical peak pricing (CPP) [24]. A common application of this LM method is the 

off-peak tariff for heating hot water storage tanks [25]. In a deregulated power sector, 

indirect load control relies strongly on market forces for effective demand responses 

during peak demand periods where the costs of electricity are the highest [26]. The 

research in [27] estimates the potential peak load reduction in the California (CA) 

power system via indirect load control of domestic air conditioner (AC) loads 

responsive to the RTP of electricity. In the case study presented, adjustment of the 

indoor temperature range between 68oF (20oC) and 72oF (22.2oC) is reported to shift 

more than 80% of energy consumption on AC during a peak period to non-peak 

periods, as compared to maintaining a constant indoor temperature at 70oF (21.1oC) 

throughout the entire period of measurement. Consumers responsive to such real time 

electricity pricing can potentially save about 30% of their respective costs on AC 

energy. In addition, this paper uses the actual “day ahead market clearing price” data 

of CA in its simulations and estimates a potential market cost saving of up to about 

US$600/MWh by shifting domestic AC loads from peak to non-peak hours. In [28], 

the Georgia Power Company in CA offers RTP to its large customers in an effort to 

reduce peak load of the network. As of 2002, 1,600 customers, representing about 
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5,000 MW of peak load, have enrolled in the program. As a result, about 18% of peak 

reduction is reported during periods of highest real time prices. Implementation of a 

time-sensitive tariff in each of two major load centers in China is discussed in [10]. 

The power system in Beijing city applies a differential tariff to its large customers and 

manages to shift about 200 MW of loads away from peak periods. Guangdong 

province counters its generation deficit effectively with an aggressive differential 

tariff that makes the peak hour rate 3.16 times more expensive than the off peak rate. 

Voluntary load shedding is another form of indirect load control that provides 

significant peak load reductions by interrupting non time-sensitive but energy 

intensive loads in large commercial or industrial facilities [3]. For example, a 

potential 277 MW of peak load reduction is available from the commercial and 

irrigation customers in Texas and New Mexico (the USA) who voluntarily defer their 

respective electricity consumptions during network constraint periods. In return, the 

customers receive financial incentives in the form of discounted tariff or dispatch 

payments for the interruption events [3]. 

1.4.2 Autonomous load control 

In autonomous load control, appliances or devices autonomously adjust their power 

consumption in response to detected changes in the power system, or to commands or 

pricing information sent from the network control center. This LM method relies on 

smart grid enabling technologies that provide bidirectional communications between 

the network control center and consumer premises. The study in [29] reports a recent 

trial in the distribution network of Western Australia (WA) to reduce its peak demand 

due to domestic AC systems. The trial utilizes smart grid enabling technologies to 

implement autonomous load control on 188 households. Advanced metering 

infrastructure (AMI) of individual participating households receives LM commands 

from the control center, and forwards them to the AC system fitted with a demand 

response enabling device (DRED) via a wireless channel. Initial results after one year 

of the trial indicate average demand reductions from 0.5 kW to 1.0 kW per AC 

system were achieved. Meanwhile, only one complaint related to consumer comfort 

was received for the entire duration of the trial. Currently, the Department of Climate 

Change and Energy Efficiency (DCCEE) in Australia is finalising the Australian 
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Standard AS4755 that defines the requirements for DREDs and ensures the 

interoperability between demand response enabling systems (including AMI), in-

home devices and end use electrical appliances [30].  

Experiments in [26] evaluated the price adaptive control mechanism of a meter 

gateway architecture on domestic AC units in response to real time, dynamic 

electricity pricing. Research conducted by the Pacific Northwest National Laboratory 

for the Department of Energy of USA examined the use of autonomous load control 

in providing primary frequency responses on a large interconnected grid [31]. This 

paper reports that in the event of supply imbalance, autonomous responsive loads can 

bring substantial benefits by responding to under-frequency events. Its frequency 

response characteristics were found to be analogous to the governor action of a 

generator. 

1.4.3 Direct load control 

Being a LM method where the loads are directly under central control, DLC has 

been traditionally utilized to reduce peak loads in distribution networks. Domestic hot 

water and AC loads are two common interruptible loads targeted for DLC. 

Consumers participating in DLC programs usually receive financial benefits from the 

utility companies in the form of rebates or upfront payments. In most of the 

implementations of DLC programs, bidirectional communications between the 

control center and controlled premises are not required. 

For example, the DLC program implemented by Integral Energy of New South 

Wales (Australia) controls about 355,000 DHWSs and provides about 389 MW of 

potential peak load control [3]. In the USA, XcelEnergy® has successfully reduced 

330 MW of peak summer load through direct control of central AC systems in the 

upper Midwest territory [3]. 

DLC of DHWSs is commonly implemented by applying a switching program that 

strategically switches the power supply of the controlled DHWSs on and off to 

achieve the required peak load reduction.  

The first step in designing a DLC program for DHWS is to obtain the available 

domestic hot water load. There are different methods reported in the literature to 
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estimate this controllable load. The approaches used in [32]–[34] require actual 

measured load data in the estimation; whereas [35]–[39] use a modeling approach to 

approximate domestic hot water loads. 

To estimate the total available domestic hot water load in a controlled area, a 

practical method reported in [32] uses a ripple injection system to cycle all the 

DHWSs at a regular interval (15 min) over 24 hours. During the periods when the 

DHWSs are switched off, dips are detected in the measured total load of a substation. 

These periodic reductions in the measured load represent the available domestic hot 

water load on that substation. Meanwhile, smart grid infrastructure enables energy 

consumptions of individual households to be measured in almost real-time. Although 

not directly measurable, domestic hot water load can be extracted and estimated from 

the measured load of a household. Such a load extractor based on an artificial neural 

network is proposed in [33]. Actual hot water and total load data of selected 

households are used as training data to train the neural network. This method achieves 

over 87% accuracy in matching the actual hot water consumption profiles over the 

test interval. A different approach is used in [34] to extract hot water load from 

measured total load data of individual households. The authors of this paper propose a 

method to scan the measured load data of a household and look for jumps and dips 

that are equal or close to the rated power of the installed DHWS. The hot water load 

profile of a single household can be estimated by using these jumps and dips to 

identify the starting and finishing times of hot water tank recharges throughout the 

measurement period. 

On the other hand, the authors in [35] propose a generic model to estimate the 

aggregate hot water load profile for an area. They consider three significant hot water 

usages per day (in the morning, midday and evening) and assume the starting times of 

these usages are normally distributed. Then, the error function (ERF) is used to 

calculate hot water load profiles representing morning, midday and evening loads for 

the area. Additional loads, which are assumed constant throughout the day, are added 

to the sum of these load profiles to form the aggregate hot water load profile for the 

area. Another paper [36] makes further improvements to the above method of 

estimating hot water load profiles. This paper uses five significant hot water usages 
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(morning, mid-morning, midday, early evening and evening) instead of three as in 

[35]. It also proposes a model for calculating the load due to standing losses as 

opposed to using a constant value throughout the day. As a result, about 10% of 

improvement in representing the aggregate hot water load for an area is reported in 

[36], as compared to [35]. 

Meanwhile, [37]–[39] develop physical models of DHWS to estimate hot water 

load profiles without using actual measured load data. First, the hot water usage 

profiles of individual households are determined. Then, the physical model is used to 

calculate the loads associated with these hot water usage profiles. An aggregate hot 

water load profile is obtained by aggregating the average load profile of all the 

households in the area. However, these papers employ different approaches to 

determine their respective hot water usage profiles. The authors in [37] obtain hot 

water usage profiles based on data available from the NAHB Research Center Inc. 

and assign these profiles to individual households by employing the Monte Carlo 

approach. Data from load survey campaigns are used in [39] to determine the average 

hot water usage profiles. The authors in [38] derive hot water usage profiles for 

individual households in an area using the average load data obtained through load 

surveys for the area. 

Many schemes for direct controlling of DHWSs have been proposed in the 

literature.  Practical approaches in [3] and [32] use ripple injection systems to issue 

switching signals to households grouped under different modulation codes. Studies in 

[40] focus on voltage control to reduce domestic hot water loads. They demonstrate 

that the peak of hot water load can be reduced significantly by switching the 

operating voltage from 220 V to 110 V during peak hours. The water temperature 

inside each DHWS can be maintained between the thermostat set-points if the hot 

water flow rate is below a calculated value. In [39], hot water load profiles are 

simulated using physical models of domestic loads. Households are grouped by the 

family size to study the effect of DLC switching programs on peak load reduction and 

consumer comfort level. In [41], peak load reduction is studied by considering the 

number of switching groups, target value, control for ToU, and a single time-

triggered control. In [42], evolutionary algorithms form the basis for optimizing DLC 
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switching programs to meet multiple objectives, such as maximizing peak reduction 

while maintaining network operator’s profit and customer satisfaction. A smart grid 

based control algorithm performing DLC on modified DHWSs is proposed in [38] to 

regulate the aggregated power consumption. Linear programming is used in [43] to 

find optimal DLC strategies in achieving peak reduction on domestic hot water load. 

1.5 Values of DSM in Modern Power Systems 

This section presents the value of DSM implementation in modern power systems. 

The deregulation and restructuring of the electric power sector in many countries 

have created more competitive energy markets. A simplified structure of a power 

system in a deregulated market is shown in Figure 1.3 [44]. The flows of energy, 

money and information between the entities are indicated by different types of line. In 

a restructured power system, power generation is separated from transmission and 

distribution operations to encourage fair competition among the generation 

companies. An independent system operator oversees the operations of the whole 

power system to maintain the balance in supply and demand. It also ensures that an 

open and equal access of transmission and distribution facilities is provided to 

relevant network entities. Generation companies bid to supply electricity to a 

wholesale market which retailers buy from at spot prices. Consumers are free to 

choose the retailer who provides the best combination of price and services. 

Staying cost efficient while ensuring supply security is a major challenge all the 

stake-holders in a power system face. DSM programs offer the opportunity to 

improve operational efficiencies and provide financial gains for the stake holders in a 

power system [45]. Besides, the reduction in energy consumption through various 

DSM efforts provides an overall prospect to reduce the net carbon emission produced 

in a power system. 
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Figure 1.3 The simplified structure of a deregulated power system.  

1.5.1 Value of DSM in power generation 

Improved energy efficiency and reduced peak demand achieved through DSM 

efforts enable power generators to defer or avoid building new plants. This 

opportunity represents major cost reduction and potentially leads to lower energy 

prices. 

Under normal operating conditions, significant generation reserves at a plant must 

be planned for and provided by standby resources to ensure security in supply. 

However, such generation resources planned for contingencies are rarely utilized and 

represent inefficient utilization of investments. With the growing integration of 

fundamentally intermittent renewable energy sources into modern power systems, 

conventional back-up generators are essential to ensure supply security by 

maintaining the balance of supply and demand at all times [46]. The availability 

factor of a generator is defined as the percentage of operational time over a period of 

one year [47].  As an example, Figure 1.4 shows the availability factor of four high-

wind stations in Taiwan for a period of 12 months.  
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Figure 1.4 Monthly availability factors for four high-wind stations in Taiwan [47]. 

The intermittent nature of wind generation is obvious in Figure 1.4, where the 

availability factor varies from below 0.35 to close to unity. As a comparison, the 

availability factor of a combined cycle gas turbine power generator ranges from 0.87 

to 0.97 [48]. 

DSM represents a significant capacity that can be utilized as an alternative reserve 

to reduce a portion of required back-up resources in generation. For example, the 

study in [49] estimates there was about 38 GW of demand response capacity in the 

USA in 2008. As reported in [31], autonomous responsive loads provide substantial 

benefits to a power system in frequency control during contingencies. Hence, DSM 

has the potential to replace part of the conventional back-up generation and allow 

substantial cost savings in a power system [45]. 

1.5.2 Value of DSM in power transmission systems 

  Preventive security is traditionally designed into the capacity of a transmission 

network to enable it to remain operational in a secure condition under an N−1 

contingency [50]. N−1 contingency refers to the worst single contingency scenario 

following the outage of the most important transmission or generation facility. With 

the advancements in smart grid enabling technologies, [45] argues that swift  DSM 
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action in curtailing specific loads  after outages can provide an effective corrective 

security measure, which enables the transmission network to operate at a higher 

loading with the existing capacity. Hence, effective DSM programs potentially allow 

a transmission system operator (TSO) to operate a transmission network at an 

augmented utilization while maintaining the existing level of security. Furthermore, 

the implementation of effective DSM programs reduces the peak load flow on a 

transmission network. As a result, network congestions are relieved and transmission 

losses are reduced. 

1.5.3 Value of DSM in power distribution systems 

DSM programs are effective means to reduce peak loads and relieve overloads in 

distribution networks. As a result, the effective implementation of DSM programs 

provides financial and operational benefits to DSOs.  DSOs have the opportunity to 

defer costly infrastructure upgrades and capacity expansions, while retaining the 

existing level of security [45]. At the same time, the author in [45] proposes that with 

reduced load flow over the distribution network, a higher number of distributed 

generations (DGs) can be integrated into the network. Distributed generations are 

small scale generations of low carbon energy sources (e.g. photovoltaic, small wind 

turbine etc.) and they are located near the loads. The main benefits of DG are 

reductions in carbon emissions, power delivery costs and energy losses [51]. 

1.5.4 Value of DSM to consumers 

Most of the time, consumers receive financial incentives for their participation in 

DSM programs organized by the supplying utility companies. The financial 

incentives are offered as discounts on energy bills or cash payments [30]. For 

example, [3] reports that a discount of up to A$0.39 per kWh is offered to households 

charging their hot water storage systems during off peak hours in New South Wales 

(Australia). Meanwhile, [3] also reveals large commercial and industrial customers 

receive bill discounts and dispatch payments for voluntarily shedding non time-

sensitive loads on short notifications. Hence, it is expected that DSM programs 

offering incentives to consumers will encourage active participation and achieve 

better results.  
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1.6 Conclusion 

This chapter has provided a review of DSM, which includes an introduction to 

DSM and its brief history, different types of DSM and the respective implementations 

around the world, and the values of DSM to the stake-holders in a modern electric 

power system.  

DLC is one of the DSM methods preferred by DSOs because implementations of 

DLC programs have produced positive results in distribution networks. Hence, we 

have developed an evaluation tool to assist a DSO in estimating and evaluating the 

results of a DLC implementation. Details of this tool and its individual components 

are presented in succeeding chapters. 
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Chapter 2  
Hot Water Evaluation Tool 

This chapter describes the hot water evaluation tool developed to estimate and 

evaluate the results of implementing DLC to domestic water heating loads. This tool 

was developed to assist the design and planning of DLC programs in implementing 

DSM in a power distribution system. We chose MATLAB as the platform to develop 

this tool because of its flexibility, powerful charting abilities and rich graphical user 

interface (GUI) features.  

Section 2.1 presents the structure of the developed tool and the main functional 

blocks in the tool. Section 2.2 describes the user input data required by the tool in 

performing simulations. Section 2.3 provides brief descriptions for the main modules 

in the simulation block and outputs from the tool are presented in Section 2.4. A 

conclusion is provided in Section 2.5. 

2.1 Structure of the tool 

Figure 2.1 shows the overall structure of the developed hot water evaluation tool 

which consists of three main functional blocks. More specific modules defined under 

each main functional block are depicted as white rectangles. Numbered circles 

represent the inputs and outputs (I/Os) of the modules.  

The input block contains all the user input interfaces to display and acquire the 

required data for the tool to run. Four independent modules within the simulation 

block perform essential simulations. The results of the simulations are evaluated and 

passed to the output block. Tool users have an option to export the results as a 

formatted output file. The operation of the tool is described as follows: 

The input block represents the user interface, which allows the tool user to enter 

parameters required for performing simulations (e.g. the number of households in the 

controlled area, the number of Monte Carlo simulations, the desired peak reduction, 

etc.), as well as to view default parameters and change them if necessary. The main 
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block of the tool is the simulation block, which contains four modules that perform 

the required simulations. The output block contains the exporter, which exports the 

data to an external (MS Excel format) file.  

 

Figure 2.1 Overall structure of the hot water evaluation tool. 

I/O 1 represents default parameters and parameters entered by the user via the user 

input interface. The hot water consumption generator receives I/O 1 and determines 

hot water consumption profiles for individual households; these profiles are 

represented by I/O 2. The hot water system model uses I/O 1 and I/O 2 to calculate 

uncontrolled hot water loads and shower temperatures for the households; the results 

are represented by I/O 3. The user can examine the aggregate uncontrolled hot water 

load curve of the households in the controlled area, and proceed with the optimization 

of switching programs. The switching program optimizer receives I/O 3 and produces 

switching programs based on the user-defined parameters (the desired peak reduction 

target, control periods etc.). The best switching programs are presented to the user, so 

that he/she can select the most suitable switching program. The hot water system 

model then calculates controlled hot water loads (I/O 5) by applying the user-selected 

switching program (I/O 4) and the hot water consumption profiles (I/O 2). The 

performance calculator receives I/O 5 and determines KPIs such as peak reductions 

and consumer comfort levels. Results in the form of 24-hour load curves and KPI 

tables are presented to the user (I/O 6), and exported to an external file (I/O 7) via the 

exporter. 
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The hot water evaluation tool is designed as a GUI-based tool. The main user 

interface of the tool that provides access to all functions developed for the tool is 

shown in Figure 2.2. In this figure, user interfaces belonging to the same functional 

block (Figure 2.1) are grouped and labeled as shown. Individual modules shown in 

Figure 2.1 are integrated into the tool.  

 

Figure 2.2 Main GUI of the hot water evaluation tool. 

2.2 User inputs 

The input block consists of several GUIs which the tool user utilizes to view or 

change the value of configuration parameters before starting a simulation. In the 

current version of the tool, there are seven categories of configuration parameters that 

a user can change freely. They are described in more detail in the following sections. 
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2.2.1 General operation of the user input GUIs 

Every user input GUI has been built to perform inline data integrity checks on the 

entered values to reject any invalid entries such as text in place of numeric data, 

mixture of text and numeric data, complex numbers etc. 

In addition, each configuration parameter has a predefined valid range and a 

predefined expected range. The tool displays an error message if the entered value for 

a parameter is not within its predefined valid range. A warning message is displayed 

if the entered value is outside of its predefined expected range. The examples of an 

error message and a warning message are shown in Figure 2.3 and Figure 2.4, 

respectively. 

 

Figure 2.3 An error message due to the entered value being outside of the valid range. 
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Figure 2.4 A warning message due to the entered value being outside of the expected range. 

2.2.2  Simulation parameters 

The parameters under this category determine the configuration of the simulations. 

These parameters are: 

• Name of the substation under study  

• Simulation time step in minutes 

• Total number of participating households in a controlled area 

• Total number of Monte Carlo iterations used in generating domestic hot water 

consumption profiles for the households 

The tool maintains a database for each substation. This database consists of the 

average load profile and default values for the entire set of configuration parameters 

specific to the substation. When a substation is selected from a list, the tool retrieves 

all the data for this substation from the database and updates the configuration 

parameters on the input GUIs accordingly with the retrieved values.  This feature 

ensures consistency in the configuration of simulations, as well as reducing potential 

errors in manual data entries. Nevertheless, the tool user still has the option to change 

these configuration parameters via the GUIs before starting a simulation.  
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2.2.3 Parameters of the hot water cylinder 

The GUI to view or change the physical parameters of a DHWS is shown in Figure 

2.5. This figure also shows the typical default values for physical parameters of a 

DHWS. The descriptions of these parameters are presented in Chapter 4 Section 4.2. 

 

Figure 2.5 GUI for viewing or changing physical parameters of DHWS. 

2.2.4 Operating conditions 

Figure 2.6 shows the GUI for viewing or changing operating conditions of the 

DHWS. The typical default values of operating conditions are shown in the same 

figure. 

 

Figure 2.6 GUI for viewing or changing operating conditions of a DHWS. 
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2.2.5 Parameters of the hot water usage 

This user input GUI lets the tool user view or change the configuration parameters 

used in determining the hot water consumption profile of individual households 

within a controlled area. The detailed descriptions for this set of configuration 

parameters are presented in Chapter 3. 

2.2.6 Parameters of shower length and shower gap 

This user input GUI lets the tool user view or change the configuration parameters 

used in configuring the shower schedules of individual households within a controlled 

area. The descriptions for this set of configuration parameters are presented in 

Chapter 3. 

2.2.7 Parameters of the control management system 

This user input GUI lets the tool user view or change the configuration parameters 

of the control management system, which the tool uses to produce DLC switching 

programs that are applied to the DHWSs in the controlled area. The descriptions for 

this set of configuration parameters are presented in Chapter 5. 

2.2.8 Parameters of the optimization function 

This user input GUI lets the user view or change the configuration parameters of 

the optimization function, which the tool uses in the optimization of DLC switching 

programs that are applied to the DHWSs in the controlled area. The descriptions for 

this set of configuration parameters are presented in Chapter 5. 

2.3 Simulation block 

As shown in Figure 2.1, the simulation block contains four main modules: 

• Hot water consumption generator 

• Hot water system model  

• Performance calculator 

• Switching program optimizer 

They are integrated into the developed hot water evaluation tool to provide three 

different functions which are utilized in the design of a DLC program for controlling 
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DHWSs.  

Details of the hot water consumption generator are discussed in Chapter 3 and the 

modeling of the most common DHWS model installed in Tasmania (Australia) is 

presented in Chapter 4. Chapter 5 describes performance calculations and presents 

details of the switching program optimizer. 

2.4 Outputs from the tool 

The developed hot water evaluation tool provides its users with an option to export 

the entire set of configuration parameters and simulation results to an external file. In 

the current version, the export file is a multiple-worksheet MS EXCEL workbook. 

This option allows tool users to maintain a record of configuration parameters and 

simulation results, as well as to perform further processing of the generated domestic 

hot water load profiles and the DLC switching programs. 

2.5 Conclusion 

This chapter has outlined the structure and the operation of the hot water evaluation 

tool developed to estimate and evaluate the results of implementing DLC on domestic 

water heating loads. The three main functional blocks and the respective modules 

under them have been described. The input block provides an interface for the tool 

user to view and enter values of configuration parameters, whereas the output block 

exports the simulation results to an external MS EXCEL format file. Interface 

windows of the input block are equipped with inline data integrity checking capability 

to reject invalid data. The simulation block contains four main modules, which are the 

hot water consumption generator, hot water system model, performance calculator 

and switching program optimizer. These modules perform core simulations in the tool 

and they will be presented in detail in the succeeding chapters. 
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Chapter 3  
Estimation of Domestic Hot Water Consumption 

Profiles in Tasmania 

This chapter presents the processes in estimating domestic hot water consumption 

in Tasmania, Australia. Section 3.1 discusses the data collected to estimate domestic 

hot water consumption patterns in Tasmania. It covers the results obtained from a 

telephone survey and the energy metering data downloaded from households across 

Tasmania. Section 3.2 outlines the development of a hot water consumption generator 

(shown in Figure 2.1) that estimates domestic hot water consumptions in Tasmania. 

The required input data as well as the estimation process are described. Section 3.3 

presents some simulation examples, and a conclusion is provided in Section 3.4. 

3.1 Domestic hot water consumption data 

The first step in the development of the hot water consumption generator was to 

acquire knowledge of hot water consumption patterns of households in a controlled 

area. To achieve this objective, a telephone survey was firstly conducted on 1000 

randomly selected households across Tasmania. Subsequently, actual energy metering 

data of 279 households across Tasmania was acquired. These data are utilized to 

obtain key characteristics in domestic hot water usage in Tasmania. Then, a hot water 

consumption generator uses these characteristics as inputs to estimate the hot water 

consumption profiles of individual households in a controlled area. The results 

obtained from these data are described in the following sections. 

3.1.1 Survey results 

The telephone survey recorded demographic data (e.g. number of usual residents, 

combined income etc.) and details of hot water usage (e.g. the average number of 

showers taken daily, average duration of each shower, etc.) of the surveyed 

households. This survey focused on two peak periods in the Tasmanian power 

distribution network, namely morning and evening peaks from 06:00 to 10:00 and 
25 

 



Chapter 3: Estimation of Domestic Hot Water Consumption Profiles in Tasmania 

 

from 17:00 to 20:00, respectively. Figure 3.1 and Figure 3.2 show two major results 

of the survey. The questionnaire used in the survey is shown in APPENDIX 4. 

 

Figure 3.1 Average number of showers versus the number of residents per household. 

Figure 3.1 suggests a positive correlation between the average number of showers 

and the family size, in the morning and evening peaks. This correlation agrees with 

the common expectation that bigger families take more showers than smaller families. 

The unexpected drop in the average number of morning showers in households with 

six or more residents is most likely due to the relatively small sample size of this 

category of households, which is just 2.3% of the total number of households 

surveyed. 

We use statistical method to demonstrate the positive correlation between the 

average number of showers and the family size. First, we filter the survey results to 

discard the erroneous records. After that, we calculate from the filtered data the 

correlation coefficient r between the average number of showers and family size, and 

compare it with the critical r value in a 2-tailed test. If the calculated r is higher than 

the critical r value for the required significance level, we can conclude that a 
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correlation between these two parameters exists [52]. The results of the correlation 

test for morning and evening showers shown in Table 3.1 indicate a positive 

correlation exists between the average number of showers and the family size.  

Table 3.1 Correlation between average number of showers and family size 

 Calculated 
r 

Degree of 
freedom 

Significance 
level 

Critical 
value of r 

Correlation 
exists? 

Morning shower 0.552 961 0.01 0.083 Yes 

Evening shower 0.535 961 0.01 0.083 Yes 

 

 

Figure 3.2 Histogram of the average duration of showers. 

As seen from Figure 3.2, the average duration of a shower can vary from 2 min to 

15 min, with a great majority of showers (about 51%) lasting from 5 min to 8 min. 

The mean and standard deviation of shower length were 6.5 min and 3.5 min, 

respectively, for the 963 filtered survey data. 

Among other things, the survey also gathered data on the types of hot water system 

used in Tasmanian households. As shown in Figure 3.3, the majority (about 85%) of 

Tasmanian households use an electric hot water system. However, we cannot derive 

clear relationships between hot water usage and other demographic data such as 
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employment status and household income. For example, the vast variation of shower 

lengths within each demographic group prevents any conclusive inference.   

Since the data obtained from the telephone survey were subjective answers given 

over the phone, the results are used as indicative guides in our development of the hot 

water consumption generator. 

 

Figure 3.3 Distribution of types of DHWS among the surveyed households. 

3.1.2 Actual energy metering data 

To accurately estimate domestic hot water consumption profiles, we also acquired 

energy metering data from households across Tasmania. The collection period (from 

20th June to 20th July 2012) included the coldest period in Tasmania. These data were 

obtained from meters dedicated for metering electricity in water heating alone, and 

represented water heating energy consumption of individual households recorded in 

5-minute intervals. After the filtering process to discard erroneous data, we obtained 

the individual energy consumption profile of 279 households in water heating alone.  

We considered two types of hot water usage:  

• high volume usage that lasts for more than 5 min 

• low volume usage that lasts for 5 min or less 

Based on the results obtained from the modeling of DHWS (described in Chapter 

4), 1 min of hot water usage requires approximately 10 min of heating to restore the 
28 

 



Chapter 3: Estimation of Domestic Hot Water Consumption Profiles in Tasmania 

 

temperature set by the thermostat. Thus, a continuous energy consumption (a 

switched-on condition of the electric water heater) for a period of more than 50 min is 

regarded as a high volume usage (represented by showers), and a consumption of less 

than or equal to 50 min is regarded as a low volume usage. Using weekday data only, 

we derived probability distributions of the starting time for showers and low volume 

usages. 

Figure 3.4 shows the probability distribution of starting time for showers, after 

applying the moving average method to smooth the data. Two distinctive peaks in the 

morning and in the evening are observed in the figure. This characteristic indicates 

high number of showers and hence high hot water loads occur during these two peak 

periods.  

 

Figure 3.4 Probability distribution of the starting time for showers, smoothed by moving average. 

Moving averages are calculated as in ( 3.1 ): 

 𝑌s(𝑖) = 1
2𝑁+1

∙ ∑ 𝑌(𝑖 + 𝑗)𝑁
𝑗=−𝑁   ( 3.1 ) 

where YS(i) is the smoothed value of Y at time interval i; Y is the probability of 

starting time for showers derived from the energy metering data, before the 

smoothing method is applied; N is the number of neighboring data points on either 

side of interval i; the term (2N+1) is the averaging window. 
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We applied N equals 5 and implemented ( 3.1 ) in a circular manner where the 

averaging window wraps around at the beginning and at the end of the list to yield 

uniform averaging across the entire list of data. 

Deriving the probability distribution of starting time for low volume usages is not a 

straight forward task due to the following reasons: 

• Depending on the operating conditions of the hot water storage tank (e.g. initial 

temperature, hot water flow rate etc.), a continuous draw of hot water for about 

two minutes or longer will usually trigger the thermostat to recharge the tank. Any 

shorter draws will not be recorded in the energy metering data. 

• The energy metering data also records the energy consumption due to standing 

heat losses after the storage tank idles for a long period. This recharge period lasts 

for about 20 to 30 minutes, depending on the initial state of the storage tanks. 

• Any low volume draws that occur during the recharging period of a hot water tank 

are not detectable in the recorded energy metering data. 

The probability distribution of starting time for low volume usages derived directly 

from the energy metering data is shown in Figure 3.5.  

 

Figure 3.5 Probability distribution of starting time for low volume usages derived directly from energy 
metering data. 
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The probabilities are averaged for every 30 minutes. The solid curve depicts the 

trend line of the probability distribution, which indicates a peak period from around 

16:00 to around 21:00. 

To simplify the estimation of probability distribution of the starting time for low 

volume usages, we made the following assumptions: 

• An average low volume usage is equivalent to a single 5 minute draw of hot 

water. 

• Any periodic energy consumptions lasting 20–30 minutes and repeating every 11–

16 hours are regarded as standing loss recharges. These energy consumption 

records are not related to hot water usages. 

• The probabilities of low volume usages are averaged for every 30 minutes, and 

rounded to the nearest 0.025%.  

The second assumption is based on ( 3.2 ) where τh is the time period (hours) 

between two consecutive recharges due to heat losses from the hot water storage tank 

alone; M is the mass of water in the storage tank (kg); C is the specific heat of water 

(J/kg∙K); U is the heat loss coefficient of the hot water storage tank (W/K); Ton and 

Toff are respectively the thermostat’s turn-on and turn-off temperatures (oC); and Ta is 

the average ambient temperature (oC). 

 𝜏h = 𝑀∙𝐶
𝑈∙3600

∙ 𝑙𝑛 �𝑇off−𝑇a
𝑇on−𝑇a

�  ( 3.2 ) 

Based on the results obtained from the modelling of DHWS (described in Chapter 

4), a 20 – 30 minute recharge period is required to recover the heat energy lost 

through standing losses.  The value of τh may vary over a wide range due to variations 

in the parameters used in ( 3.2 ). We considered two sets of common values for 

DHWSs in Tasmania, as shown in Table 3.2. Hence, any continuous energy 

consumptions lasting 20–30 minutes and repeating every 11–16 hours are regarded as 

standing loss recharges, and they are not associated with hot water usages. 

31 

 



Chapter 3: Estimation of Domestic Hot Water Consumption Profiles in Tasmania 

 

Table 3.2 Time intervals between two consecutive recharges due to standing heat losses from the hot 
water storage tank, for two sets of common parameter values 

τh (hours) M (kg) C (J/kg∙K) Ton (oC) Toff (oC) Ta (oC) U (W/K) 

16 165 4185 52 60 8 2.0 

11 165 4185 53 60 8 2.5 

The third assumption produces 48 average probabilities of starting time for low 

volume usages, corresponding to every half an hour in a day.  

After filtering and processing the energy metering data with the above 

assumptions, we obtained the probability distribution of starting time for low volume 

usages, as presented in Figure 3.6. 

 

Figure 3.6 Filtered and processed probability distribution of starting time for low volume usages. 

3.2 Hot water consumption generator 

The hot water consumption generator is a module that produces realistic hot water 

consumption profiles for individual households. Figure 3.7 shows the block diagram 

of the hot water consumption generator that produces domestic hot water 

consumption profiles. Numbered blocks are inputs and the grey block is the output 

from this module. 

The hot water consumption profile of a household is specified by four main 
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parameters:  

• the number of hot water usages 

• the length of each hot water usage 

• the gaps between successive hot water usages 

• the starting time of each hot water usage 

 

Figure 3.7 Block diagram of the hot water consumption generator.   

In our studies, the hot water consumption profile of a household consists of two 

shower schedules and a number of low volume usages randomly occurring between 

these two schedules. A shower schedule refers to a number of showers (each shower 

with a different length) taken in successive sequence, with short gaps between each of 

them. Each household is expected to have either zero or one shower schedule in the 

morning and in the evening. The morning and evening shower schedules may contain 

different numbers of showers. A typical hot water consumption profile of a household 

is shown in Figure 3.8. 

 

Figure 3.8 A typical hot water consumption profile of a household. 
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Both survey results and energy metering data revealed that domestic hot water 

consumption depends mostly on the family size. Therefore, we have divided all 

households in a controlled area into four family types based on the number of 

residents in a household. Table 3.3 shows a typical distribution of families in a 

controlled area.  

Table 3.3 Family types and their distributions in a controlled area 

Family Type 1 2 3 4 

Family size Very small Small Average Large 

Number of residents 1 2 to 3 4 to 5 6 and above 

Distribution in a population 25% 50% 22.5% 2.5% 

We also specify probabilities of morning shower schedule only, evening shower 

schedule only or both, occurring in a household. The typical probabilities are shown 

in Table 3.4. Demographic data [53] and household energy consumption records are 

used to estimate probabilities shown in Table 3.5, which determine the number of 

showers each family type takes in individual shower schedules (morning, evening, or 

morning and evening).  

Table 3.4 Probabilities for shower schedules to occur in the morning only, evening only and both  

 Morning 
showers only 

Evening 
showers only 

Morning and 
evening showers 

Probability 0.3 0.3 0.4 

 

Table 3.5 Probabilities of number of showers in a shower schedule for each family type 

 Number of showers 

Family type 0 1 2 3 4 5 

Type 1 5% 95%   0%   0% 0% 0% 

Type 2 0% 41% 53%   6% 0% 0% 

Type 3 0% 20% 60% 19% 1% 0% 

Type 4 0%   7% 40% 47% 5% 1% 

Similarly to showers, the probability of a low volume usage depends on the family 

size of a household. The tool uses multipliers to scale this probability up based on the 
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family type. Default values of the multipliers are 1.0, 1.2, 1.6 and 2.0 for family type 

1, type 2, type 3 and type 4, respectively. The tool user can redefine these values, if 

required. Figure 3.6 gives the probability of a low volume usage occurring in a 

household at a given time. 

Shower lengths and gaps between consecutive showers are specified by their mean, 

maximum and minimum values. We define minimum and maximum to discard 

unrealistic values (e.g., a one-minute shower) in probabilistic simulations. Normal 

distributions are assumed for these two parameters. Default values used by the tool 

are shown in Table 3.6. On the other hand, a low volume usage is denoted as a single 

5 minute draw. If required, the tool user can redefine these values. 

Table 3.6 Default values for shower lengths and gaps between consecutive showers 

Parameter 
Minimum 

(min) 
Maximum 

(min) 
Mean  
(min) 

Standard deviation 
(min) 

Shower length 5 15 8 4 

Shower gap 5 7 6 1 

The probability distributions of starting time for shower schedules and low volume 

usages are shown in Figure 3.4 and Figure 3.6, respectively. We derive from Figure 

3.4 the cumulative probability distribution curves shown in Figure 3.9, and use it to 

determine starting times of morning and evening shower schedules in a household. 

The curves from 00:00 to 11:59 and from 12:00 to 23:59 are used to determine the 

starting times of morning shower schedules and evening shower schedules, 

respectively. 

The tool employs a Monte Carlo approach to generate hot water consumption 

profiles for each household. First, the tool generates random values to determine 

specific parameters for a single household:  

• family type  

• shower schedules (morning, or evening, or morning and evening)  

• number of showers in each shower schedule  

• number of low volume usages  
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• length of each shower and each gap between consecutive showers 

• starting time for each shower schedule and each low volume usage  

Next, using these parameters, the tool generates a 24 hour hot water consumption 

profile for a single household (similar to the one shown in Figure 3.8). The tool then 

repeats the profile generation process for a specified number of households using a 

new set of random values each time. Finally, the whole process is repeated for the 

required number of Monte Carlo iterations. 

 

Figure 3.9 Cumulative probability distribution of starting time for showers. 

The flowchart in Figure 3.10 outlines the main operations of the hot water 

consumption generator in creating the hot water consumption profile for a household 

in each iteration. Individual functional blocks shown in Figure 3.10 are presented as 

flowcharts in Appendix 3. 
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Figure 3.10 Flow chart showing main operations of the hot water consumption generator. 

3.2.1 Hot water consumption profile 

The hot water consumption generator creates a time-based hot water consumption 

profile for each household per Monte Carlo iteration. A hot water consumption 

profile is a sequence of “0”s and “1”s. A “0” indicates no hot water usage while a “1” 

indicates hot water is being drawn from the hot water storage tank at the current time 

interval. The average hot water profile of a household is obtained by averaging its hot 
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water consumption profiles over the specified number of iterations. Aggregating the 

average hot water consumption profile of all households forms the aggregate hot 

water consumption profile of the controlled area. The calculation is shown in ( 3.3 ). 

 𝑊� = ∑ 1
𝑁S
∙ ∑ 𝑤(𝑖, 𝑗)𝑁S

𝑗=1
𝑁H
𝑖=1   ( 3.3 ) 

where 𝑊�  is the aggregate hot water consumption profile of the controlled area; NH is 

the total number of households; NS is the total number of Monte Carlo iterations; and 

w(i, j) is the hot water consumption profile of household i in iteration j. 

3.3 Example of domestic hot water consumption profiles 

Figure 3.11 shows the average hot water consumption profiles for family type 1 to 

type 4. The hot water consumption generator uses the parameters provided in Section 

3.2 and produces these results for 500 households in 1000 Monte Carlo simulations. 

The graphs depict average number of households using hot water over 24 hours, in 5 

minute intervals.  

 
Figure 3.11. Average hot water consumption profiles for family type 1 to type 4. 

The majority of hot water usages occur in small families (family type 2), while 

only a small fraction of usages occur in large families (family type 4). For example, 

on average, there are about 10 small families using hot water during the peak period 

at around 07:30, whereas there are only about 0.8 large families using hot water in the 
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same period. This result is consistent with the distribution of family types as shown in 

Table 3.3. However, large families consume more hot water per household compared 

to small families.  

Figure 3.12 shows the aggregate hot water consumption profile for 500 households 

representing all family types in the simulation.  

 

Figure 3.12 Aggregate hot water consumption profile for all family types. 

3.4 Conclusion 

This chapter has described the processes in the estimation of domestic hot water 

consumption in Tasmania, Australia. Survey data and actual energy metering data 

were used to determine key characteristics in domestic hot water usage. A positive 

correlation has been found between the family size and the average number of 

showers taken daily. Moreover, the operation of a hot water consumption generator 

has been outlined in detail, and the main parameters used to specify the hot water 

consumption profile of a household have been discussed. This chapter has also 

described the Monte Carlo probabilistic simulation employed in the hot water 

consumption generator. In addition, simulation results representing the hot water 

consumption profiles for four family types have been presented as an example. 

The succeeding chapters will present the other modules under the simulation block 

shown in Figure 2.1. 
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Chapter 4  
Domestic Hot Water System Modeling 

This chapter aims to present the modeling of the most common DHWS found in 

the majority of households in Tasmania, Australia. This model is depicted as the hot 

water system model in Figure 2.1. Section 4.1 gives a brief description of the 

operation of a DHWS.  Section 4.2 presents the mathematical modeling of a 

thermally stratified DHWS with heat energy equation. Section 4.3 presents results of 

comparative analyses between the model and experimental data. Discussions on the 

results are presented in Section 4.4, and a conclusion is provided in Section 4.5 

4.1 Operation of a domestic hot water system 

Figure 4.1 shows the simplified block diagram of a typical DHWS.  

 

Figure 4.1  Simplified block diagram of DHWS. 

A DHWS is made up of the following main components: 

• An insulated cylindrical hot water storage tank usually made of stainless steel. 

• An electric heating element located at the bottom of the tank. To enhance hot 

water supply capacity, some models are equipped with a booster heating element 
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located at the upper section of the storage tank. However, DHWSs with a single 

heating element are the most common models in Tasmania.  

• A cold water inlet and a hot water outlet. 

• A thermostat that controls the operation of the heating element, based on the 

temperature inside the tank. 

• A tempering valve that regulates the water temperature at the usage outlets. 

• A pressure relief valve as safety measure. 

During a shower, cold water at mains pressure flows into the bottom part of the 

storage tank, while hot water flows through the outlet at the top of the tank and enters 

the tempering valve. The tempering valve regulates the water temperature at its outlet 

to a preset value by mixing the right amount of hot (from hot water storage tank) and 

cold water (from mains supply). A thermostatic element immersed in the mixed water 

contracts or expands to move a piston that regulates the flow of hot and cold water 

entering the valve [54]. Figure 4.2 shows the schematic diagram of a typical 

tempering valve. 

As drawing of hot water continues, the water temperature inside the storage tank 

drops progressively from bottom to top. When the thermostat, located in the lower 

part of the tank, detects a temperature below the preset turn-on temperature, it 

switches on the heating element which starts heating up water in the tank. The same 

thermostat switches off the heater when the water temperature reaches the preset turn-

off temperature. In other words, the thermostat maintains the water temperature 

between the turn-on and turn-off temperatures. 

Heat energy is also lost through the insulated wall of the storage tank at a very slow 

rate. Over a long period of standing time, the water temperature inside the tank will 

gradually drop below the turn-on temperature, which causes the thermostat to start the 

heating cycle.  

The operating temperatures of the DHWS in Australia are governed by Australian 

Standard AS 3498. The standard requires heating the water to at least 60oC to inhibit 

Legionella bacteria growth in the storage tank. At the same time, hot water coming 
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out from any outlet and having direct contact with consumers must be below 50oC to 

prevent scalding and injury [55].   

 

Figure 4.2 Schematic diagram of a tempering valve [54]. 

 The pressure relief valve is required as a safety feature. It relieves any excessive 

pressure build-up inside the concealed storage tank. 

4.2 Modeling of a thermally stratified DHWS 

This section presents the model of a thermally stratified DHWS that predicts the 

power consumption, shower temperature and temperature profile inside the storage 

tank along the vertical axis. 

Based on actual measurements and results published in literature [56]–[58], the 

thermal dynamics of the hot water storage tank is highly complex. Domestic hot 

water storage tanks are designed to produce thermal stratification along the vertical 

axis. The tank can be visualized as having multiple horizontal layers of water with 

different temperatures. Hot water with lower density resides in the upper part of the 

tank while colder water with higher density stays in the lower part. Thermal 

stratification effect in a hot water storage tank is illustrated in Figure 4.3 (a).  

In principle, the total heat energy content of a thermally stratified tank (Figure 4.3 

(a)) is the same as a well-mixed tank (Figure 4.3 (b)) with a uniform temperature 

[59]. However, thermal stratification in a storage tank increases the system 
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performance significantly [60]. A thermally stratified hot water storage tank has the 

following two advantages compared to a well-mixed tank: 

• Hot water supply capacity is enhanced as a higher volume of hot water is 

available in the upper part of the tank. 

• The heating element is switched on earlier since colder water near the bottom 

will trigger the thermostat earlier than in the case of a well-mixed tank. 

 

Figure 4.3 (a) thermally stratified hot water storage tank; (b) well-mixed hot water storage tank. 

Thermal stratification is a highly complex phenomenon and its full analysis 

requires extensive computing time [56], [57], [60]. Hence, to have an accurate 

representation of a DHWS, the developed model must include the thermal 

stratification effect. At the same time, it must be sufficiently simplified so that a 

group of hundreds or thousands of DHWSs can be simulated and analyzed within 

acceptable computing time. 

4.2.1 Review of models used in published literature 

Different models developed to represent the electric hot water storage system have 

been reported in the literature [34], [37], [38], [61], [62]. The oversimplified models 

in [34] and [37] do not predict thermal stratification in the hot water storage tank. 

These models allow uniform mixing of cold and hot water, which produces an 

average temperature for the entire tank. Both [61] and [62] use a sectionalized 

temperature model to predict the internal temperatures and the power consumption of 

the electric hot water system. The hot water storage tank is divided into several 
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horizontal sections of equal volume and each section is assumed to have a different 

average temperature. Three sections are used in [61], whereas [62] uses six sections. 

The average temperature of every section is obtained by solving simultaneous 

differential equations representing basic heat energy flows in the sections. The heat 

energy flow of section j is represented as in ( 4.1 ) 

 𝐸𝑗 = 𝐸inflow
𝑗 − 𝐸outflow

𝑗 − 𝐸loss
𝑗 + 𝐸heater

𝑗  ( 4.1 ) 

where Einflow is the inflow of energy into section j from the section immediately below 

it; Eoutflow is the outflow of energy from section j into the section immediately above 

it; Eloss is the standing heat loss of section j; Eheater is the heat energy gained in section 

j from the heating element located in this section; Eheater of a section equals zero if 

there is no heating element in this section.  

The models described above produce thermally stratified sections of equal volume 

in the hot water storage tank. However, we found that having a constant number of 

equal-volume sections does not accurately represent the vertical temperature profile 

seen in actual measurements.  

On the other hand, the hot water storage tank model proposed in [38] introduces 

the concept of thermocline in a mixing layer between two layers of water with 

different temperatures. However, this paper simplifies the model by assuming only 

two sections of water exist in the entire tank, with a zero volume mixing layer. These 

assumptions do not represent the vertical temperature profile inside a hot water 

storage tank observed in measurements. Furthermore, the operation of the tempering 

valve in temperature regulation is not included in any of the above models. Hence, we 

need to develop a new model to represent the thermal dynamics of a DHWS. 

4.2.2 Thermally stratified model of DHWS 

For accurate predictions of the water temperature and power consumption of a 

DHWS, we have studied the models used in the literature and developed a novel 

thermally stratified model of DHWS. Similarly to the models used in [59] and [62], 

our model employs a one-dimensional heat transfer mechanism in a vertically 

stratified storage tank and assumes negligible heat transfer via conduction and 

radiation. However, it uses a variable number of stratified layers and assumes 
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negligible mixing between them. In addition, our model includes the temperature 

regulating operation of a tempering valve.  

As shown in Figure 4.4, the developed model divides the hot water storage tank 

into two physical zones: a mixing zone, and a layer zone. 

The mixing zone is the part of the storage tank located below the cold water inlet. 

Uniform mixing of incoming cold and existing warm water is assumed in the mixing 

zone. The layer zone is the remaining part of the storage tank above the mixing zone. 

This zone consists of multiple horizontal layers of water with stepped temperature 

distribution [59]. The widths of the shaded areas in Figure 4.4 indicate the average 

temperatures of the layers; a wider shaded area implies a higher temperature. 

 

Figure 4.4 Block diagram of a hot water storage tank divided into mixing zone and layer zone. 

The temperature T inside the layer zone is expressed as 

 T = �
𝑇1,   𝐻L≥ℎ>ℎ1

𝑇2,   ℎ1≥ℎ>ℎ2…
𝑇𝑁,   ℎ𝑁−1 ≥ℎ≥0

 ( 4.2 ) 

where HL is the height of the entire layer zone measured from the top of the mixing 

zone; T j represents the temperature of layer j in the layer zone; N is the total number 

of layers in the layer zone; h is measured from the top of the mixing zone, and is 

constrained as follows: 

 0 ≤ ℎ𝑁−1 … ≤ ℎ2 ≤ ℎ1 ≤ 𝐻L  ( 4.3 ) 
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The temperature of a given layer is always higher than the temperature of the layer 

below it, and lower than the temperature of the layer above it. The average 

temperature in the mixing zone is always lower or equal to the temperature of the 

bottommost layer in the layer zone. The temperatures of the mixing zone and layer 

zone can be expressed as: 

 𝑇mz ≤ 𝑇𝑁 … ≤ 𝑇2 ≤ 𝑇1  ( 4.4 ) 

where Tmz is the mean temperature of the mixing zone. 

4.2.3 Formulation of a DHWS model 

We have developed a thermally stratified model of DHWS in MATLAB and the 

flowcharts representing the model are shown in Appendices 1 and 2. The developed 

model predicts the vertical temperature profile inside the storage tank, shower 

temperature and power consumption of a DHWS. The formulation of this model is 

presented in the following sections [63]. Table 4.1 summarizes the assumptions 

applied in the model. 

Table 4.1 Assumptions applied in the formulation of the DHWS model 

Modeling of the tempering valve 

As described in Section 4.1, the main function of a tempering valve is to regulate 

 Assumptions applied in the model 

1 One dimensional heat transfer along the vertical axis. 

2 Temperature variations in the radial direction are ignored. 

3 Uniform mixing of incoming cold water and existing warm water within the mixing 
zone. 

4 Negligible mixing between the layers within the layer zone. 

5 Stepped temperature distribution along the vertical axis. 

6 Turbulence effect caused by heating is not considered. 

7 Heat transfers via conduction and radiation inside the storage tank are ignored. 

8 In calculations of the mass of water in each layer, the water in the entire storage tank is 
assumed to have an average density value. 

9 The storage tank is cylindrical and has a uniform radius along its entire height. 

10 The storage tank has a uniform heat loss coefficient along the vertical axis. Heat losses 
from the top and bottom walls are not considered. 
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the maximum temperature of water at shower heads or tap outlets. Hot water from the 

top layer of a hot water storage tank is mixed with cold water from the supply mains 

to produce mixed water at a regulated temperature. Figure 4.5 shows the block 

diagram of a tempering valve where mh, mc and mout are respectively the flow rates 

(kg/s) of hot water, cold water and mixed water on the tempering valve; Th is the hot 

water temperature (oC); Tc is the cold water temperature (oC); Tout is the regulated 

temperature (oC) of the mixed water. In the case of a shower, Tout is regarded as the 

preferred shower temperature Tshwr.  

 

Figure 4.5 Block diagram of a tempering valve. 

Applying the law of conservation of energy and mass, and assuming negligible 

heat loss in the valve, we have the following equations:  

 𝑚h + 𝑚c = 𝑚out  ( 4.5 ) 

 𝐸h + 𝐸c = 𝐸out  ( 4.6 ) 

where Eh, Ec and Eout are the heat energies (J) in the hot water, cold water and mixed 

water, respectively. The equation ( 4.6 ) can be written as: 

 𝑚h ∙ 𝑇h + 𝑚c ∙ 𝑇c = 𝑚out ∙ 𝑇out  ( 4.7 ) 

Substituting ( 4.5 ) in ( 4.7 ) gives 

 𝛼 = 𝑚h
𝑚out

= 𝑇out−𝑇c
𝑇h−𝑇c

  ( 4.8 ) 

 𝛼 = � 𝛼,  𝑖𝑓 𝛼 ≤  𝛼max
𝛼max, 𝑖𝑓 𝛼 >  𝛼max

  ( 4.9 ) 

where α is defined as the ratio of hot water flow to mixed water flow of the tempering 

valve; αmax is the maximum value of α and it is always less than unity (a typical value 

47 

 



Chapter 4: Domestic Hot Water System Modeling 

 

is 0.86). The value of αmax depends on the design of the tempering valve. The amount 

of hot water drawn from the storage tank can be determined with ( 4.10 ) if the values 

of α and mout are known. The tempering valve keeps Tout as a constant by varying α, 

as shown in ( 4.11 ). 

 𝑚h = 𝑚out ∙ 𝛼  ( 4.10 ) 

 𝑇out = 𝑇c + (𝑇h − 𝑇c) ∙  𝛼  ( 4.11 ) 

In the case of a shower, Tshwr equals Tout. As hot water is consumed, the 

temperature inside the storage tank drops progressively. The tempering valve can no 

longer maintain Tout as a constant if the value for α (calculated in ( 4.8 )) exceeds 

αmax. 

Modeling of the hot water storage tank 

The vertical temperature profiles of the hot water storage tank before and after a 

hot water draw event are shown in Figure 4.6 (a) and (b), respectively. Discrete time 

interval is represented by the variable k. The superscript represents the position of a 

layer within the layer zone, where the numbering begins from the topmost layer in 

ascending order.  

At time interval k, the layer zone consists of N(k) layers of water. Layer j has 

height Zj (m) and temperature Tj (oC). The last layer immediately above the mixing 

zone has height ZN(k) (m) and temperature T N(k) (oC). The mixing zone has a constant 

height, Zmz (m), and a time dependent temperature, Tmz(k) (oC). At time interval 

(k+1), hot water is drawn from the top layer. An equal volume of cold water enters 

and mixes with the existing warm water in the mixing zone. Temperature in the 

mixing zone becomes Tmz(k+1). Consequently, the number of layers in the layer zone 

changes from N(k) to N(k+1). A new layer with height Z N(k+1) and temperature T N(k+1) 

is formed at the bottom of the layer zone by water displaced from the mixing zone; 

and T N(k+1)
 equals Tmz(k). The layer zone can be visualized as being shifted up 

vertically by the introduced cold water. With negligible mixing between the layers, 

the model maintains the vertical temperature profile of the storage tank. The only 

changes happen in the top and bottom layers in the layer zone. 
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Figure 4.6 Vertical temperature profiles of a hot water storage tank: (a) before a draw, (b) after a 
draw [63]. 

As the draw continues, new layers with lower temperatures are formed at the 

bottom of the layer zone, while upper layers with higher temperatures are extracted 

from the top. When the thermostat detects a temperature lower than the turn-on 

temperature Ton, it switches on the heater to recharge the storage tank until the turn-

off temperature Toff is reached.  

The energy flow in the mixing zone can be represented by a first order differential 

equation [63] shown below. 

 𝑀mz ∙ 𝐶 ∙
𝑑𝑇mz
𝑑𝑡

= 𝐽 ∙ 𝑃 + 𝑚h ∙ 𝐶 ∙ (𝑇c − 𝑇mz) − 𝑈mz ∙ (𝑇mz − 𝑇a)  ( 4.12 ) 

where Mmz is the mass of water in the mixing zone (kg); C is the specific heat of 

water (J/kg·K); Tmz is the mean temperature (oC)  of the mixing zone; P is the rated 

power of the heater (W); Umz is the heat loss coefficient of the mixing zone (W/K); 

mh is the flow rate of hot water (kg/s); Ta and Tc are the ambient and cold water 

temperatures (oC), respectively; and J is the thermostat’s state governed by the 

following rules: 

 𝐽(𝑘 + 1) = �
1, 𝑖𝑓 𝑇t(𝑘) ≤ 𝑇on
0, 𝑖𝑓 𝑇t(𝑘) ≥ 𝑇off
𝐽(𝑘), 𝑖𝑓 𝑇off > 𝑇t(𝑘) > 𝑇on

  ( 4.13 ) 

where Tt(k) is the temperature detected by the thermostat at time k. The heater is 
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turned on if the thermostat detects a temperature below or equal to Ton; it is turned off 

if the thermostat detects a temperature above or equal to Toff. If the detected 

temperature is between Ton and Toff, the heater retains its operational state of the 

previous time interval. 

We assume the heat loss coefficient is uniform for the entire storage tank, and 

ignore heat losses through the top and bottom of the storage tank. Hence, the heat loss 

coefficient for the mixing zone can be calculated as 

 𝑈mz = 𝑍mz
𝐻
∙ 𝑈mean  ( 4.14 ) 

where H is the height (m) and Umean the average heat loss coefficient of the storage 

tank. 

The equation ( 4.12 ) can be solved numerically with the fourth order Runge-Kutta 

method for every time interval k [64]. 

In the developed model, the heater is located at the bottom of the mixing zone. 

Heating of water is approximated by assuming uniform distribution of heat energy in 

the mixing zone and in layers above it that have temperatures lower than Tmz. In this 

way, heating is modeled as a heat transfer mechanism that begins in the mixing zone 

and gradually progresses to the top. This heating model eliminates the occurrence of 

temperature inversion and produces a vertically stratified temperature profile in the 

storage tank where hotter water is always above cooler water. When the temperature 

of the mixing zone is higher than the temperature of layers immediately above it, the 

mass weighted average temperature of these layers and the mixing zone is used as the 

mean temperature for all these layers and the mixing zone [62]. This mass weighted 

average temperature Tmean is calculated in the following equation.  

 𝑇mean(𝑘) =
(∑ 𝑚𝑖∙𝑇𝑖)+𝑀mz∙𝑇mz(𝑘)𝑁(𝑘)

𝑖=𝑗

(∑ 𝑚𝑖)+𝑀mz
𝑁(𝑘)
𝑖=𝑗

  ( 4.15 ) 

where mi and Ti are the mass (kg) and temperature (oC) of layer i, respectively; Mmz is 

the mass of the mixing zone (kg); Tmz is the mean temperature (oC) of the mixing 

zone, calculated in ( 4.12 ); N(k) represents the total number of layers in the layer 

zone at time interval k; j represents the topmost layer in the layer zone where its 

temperature is below Tmz(k), before the heating mechanism is applied. The operating 
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temperature of a DHWS usually ranges from 10oC to 60oC. As a result, the density of 

water varies from 999.7 kg/m3 for cold water to 983.2 kg/m3 for hot water [65]. To 

calculate the mass of water, we assume an average density of 992 kg/m3 

(corresponding to 40oC) for water in the entire storage tank and ignore the 

insignificant error (less than 1%) introduced by this assumption.  

If we assume a uniform cross sectional area for the storage tank, and an average 

density for the water in the storage tank, ( 4.15 ) can be simplified to 

 𝑇mean(𝑘) =
(∑ 𝑍𝑖∙𝑇𝑖)+𝑍mz∙𝑇mz(𝑘)𝑁(𝑘)

𝑖=𝑗

(∑ 𝑍𝑖)+𝑍mz
𝑁(𝑘)
𝑖=𝑗

  ( 4.16 ) 

where Zi represents the height of layer i; and i = j, … , N(k). 

Figure 4.7 (a) shows the state of the hot water storage tank before the heating 

model is applied. The temperatures of layer j and layers below it are less than Tmz. 

After applying the heating model, the total number of layers in the layer zone reduces 

from N(k) to j; the temperature in layer j and the mixing zone becomes Tmean. This 

state is illustrated in Figure 4.7 (b). The following equations are applied in the heating 

model: 

 𝑍𝑗 = ∑ 𝑍𝑖𝑁(𝑘)
𝑖=𝑗   ( 4.17 ) 

 𝑁(𝑘) = 𝑗  ( 4.18 ) 

 𝑇𝑗 = 𝑇mz = 𝑇mean(𝑘) ( 4.19) 

We use ( 4.20 ) to calculate the standing heat losses of the layers in the layer zone. 

 𝑀𝑗 ∙ 𝐶 ∙ 𝑑𝑇
𝑗

𝑑𝑡
= −𝑈𝑗 ∙ �𝑇𝑗 − 𝑇a�  ( 4.20 ) 

where M j, T j and U j are the mass (kg), temperature (oC) and heat loss coefficient 

(W/K) of layer j, respectively; C is the specific heat of water (J/kg·K); and Ta is the 

ambient temperature (oC). 
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Figure 4.7 States of the hot water storage tank, (a) before heating model is applied, (b) after heating 
model is applied. 

4.3 Model Validation 

We set up a test system in the university’s laboratory to tune and validate the 

developed model for a DHWS. This setup, as shown in Figure 4.8, is based on the 

most commonly installed DHWS in Tasmania, which has a 165 liter storage tank and 

a single 2.4 kW heating element. 

 

Figure 4.8 Test system setup for model tuning and validation. 
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4.3.1 Controls 

Automated data acquisitions and instrument controls are implemented on a 

computer I/O card controlled by a LabVIEW program. To simulate actual shower 

events, the program controls a solenoid-controlled valve according to a user-defined 

shower schedule.  In addition, user defined power cycle schedules can be applied to 

the test DHWS by controlling an optical relay. 

4.3.2 Measurements 

The test system was set up to measure three different quantities: 

• Power consumption of the test DHWS 

• Flow rate of hot water from the storage tank, and flow rate of showers 

measured after the tempering valve 

• Temperature at various points in the test system: 

o Ambient temperature on the side of the storage tank 

o incoming cold water temperature 

o shower temperature  

o vertical temperature profile inside the storage tank, measured at six 

different points along the vertical axis of the storage tank 

We conducted measurements on the test system under two different test conditions: 

• dynamic test 

• static test 

In the dynamic tests, we applied a series of shower schedules to the test system and 

logged all the measurements over a period of 48 hours.  A shower schedule consisted 

of four 7 minute draws with a four minute gap between two consecutive draws. There 

were four such shower schedules in the 48 hour period. The second shower schedule 

was 12 hours behind the first and 12 hours ahead of the third, and the last shower 

schedule was 5 hours behind the third. Figure 4.9 illustrates the shower schedules 

used in the tests. 
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Figure 4.9 Illustration of shower schedules in 48 hours. 

In the static test, we logged all the measurements over 24 hours without drawing 

any hot water from the storage tank. 

4.3.3 Parameters of the DHWS and operating conditions for 
simulations 

We calibrated the instruments after the test system was installed and 

commissioned. Then we collected sets of data from the test system and used them to 

tune and validate the developed DHWS model. After that, we used the tuned DHWS 

model to simulate the behavior of a DHWS with a configuration similar to the test 

system, and operated under comparable operating conditions. Subsequently, we 

performed comparative analyses on the measured and predicted time-based profiles of 

the following parameters: 

• shower temperature 

• temperatures of the top and bottom layers inside the storage tank 

• cumulative power consumption 

• state (on or off) of the DHWS thermostat 

• cumulative volume of hot water consumption 

Three sets of measurements were taken under different configurations and 

operating conditions, as shown in Table 4.2. Measurement 1 and Measurement 2 were 

taken from dynamic tests, whereas Measurement 3 was taken from the static test. 
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Table 4.2 Operating conditions and configurations of the test system in three measurements 

 Measurement 1 
(dynamic) 

Measurement 2 
(dynamic) 

Measurement 3 
(static) 

Initial conditions 
Hot water depleted. 
Average temperature in 
the tank at about 22oC. 

Hot water still available. 
Average temperature in 
the tank at about 50oC. 

Hot water depleted. 
Average temperature in 
the tank at about 22oC. 

Measured shower 
temperature 45oC–47oC 42oC–44oC Not applicable 

Measured average 
cold water 
temperature 

10.1oC 9.8oC Not applicable 

Measured average 
ambient 
temperature 

19.5oC 19.4oC 20.4oC 

 

We then ran three simulations and compared the predictions with the respective 

values obtained in Measurements 1, 2 and 3. For meaningful comparisons, the 

physical parameters of the DHWS model must closely match the configuration of the 

test system. Similarly, the operating conditions used in the simulations must be as 

close as possible to the values measured in the test system. The physical parameters 

used in the DHWS model and the operating conditions of the simulations are shown 

in Table 4.3 and Table 4.4, respectively. 

Table 4.3 Physical parameters of the DHWS model used for Simulations 1, 2 and 3 

Parameter Value 

Tank size (liter) 165 

Tank height (m) 1.6 

Cold inlet position from the base of the storage tank (m) 0.15 

Heater power (W) Pmean 

Thermostat turn on temperature (oC) 53.5 

Thermostat turn off temperature (oC) 58.3 

Maximum unbalanced dynamic supply ratio on tempering valve 6:1 

Heat loss coefficient (W/ oC) [66] 2.0 

55 

 



Chapter 4: Domestic Hot Water System Modeling 

 

Table 4.4 Operating conditions of the DHWS model in Simulations 1, 2 and 3 

Parameter Value 

Cold water temperature (oC) Use measured values 

Ambient temperature (oC) Use measured values 

Set shower temperature on tempering valve (oC) 45.5 oC for simulation 1. 
43.0 oC for simulation 2. 

Shower flow rate (liter/min) Use measured values 

Cold inlet position represents the height of the mixing zone Zmz (described in 

Section 4.2.3) and it is about 0.15 m measured from the base of the storage tank. Pmean 

in Table 4.3 is the time weighted average value of the power consumptions measured 

on the test system. We found considerable variations in the measured power 

consumption of the test system, which varied from 2.2 kW to 2.4 kW.  This variation 

was mainly due to voltage fluctuations of the power supply for the test system. 

Hence, for a close comparison with the measurements, we used Pmean as the heater 

power in the DHWS model instead of the specified 2.4 kW rated power. Table 4.5 

shows the values of Pmean for Simulations 1, 2 and 3, calculated from the power 

consumptions of Measurements 1, 2 and 3, respectively. 

Table 4.5 Values of Pmean used in Simulations 1, 2 and 3 

 Simulation 1 Simulation 2 Simulation 3 

Pmean 2.31 kW 2.32 kW 2.32 kW 

We set a higher shower temperature in Measurement 1 compared to Measurement 

2. However, the tempering valve on the test system was only able to regulate shower 

temperature within ± 3% of the set value [54]. To cater for the variations in the 

measured shower temperature values, we used 45.5oC and 43oC as the shower 

temperatures in Simulation 1 and Simulation 2, respectively. According to the 

technical data found in [54], the tempering valve has a maximum unbalanced 

dynamic supply ratio of 6:1. This parameter denotes the maximum mixing ratio of hot 

and cold water, and determines the value of αmax in ( 4.9 ). The tempering valve can 

no longer regulate its output temperature if the hot water temperature drops to a level 

such that a mixing ratio higher than 6:1 is required.  
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To match the actual variations in cold water temperature, ambient temperature and 

shower flow rate, we directly applied the measured values of these parameters for 

every interval in Measurements 1, 2 and 3 to Simulations 1, 2 and 3, respectively. 

4.3.4 Results of case study 1 

In this case study, the results from Simulation 1 were compared with the measured 

values in Measurement 1. Figures 4.10–4.12 show the comparisons of top layer 

temperatures, normalized power consumptions and normalized cumulative hot water 

consumptions, respectively.  

 

Figure 4.10 Top layer temperatures over 48 hours for Measurement 1 and Simulation 1. 

 

Figure 4.11 Normalized power consumptions over 48 hours for Measurement 1 and Simulation 1. 
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Figure 4.12 Normalized cumulative hot water consumptions over 48 hours for Measurement 1 and 
Simulation 1. 

Figures 4.13–4.16 show the comparisons of shower temperatures of each shower 

schedule in smaller time scales for Measurement 1 and Simulation 1. 

 

Figure 4.13 Shower temperatures in shower schedule 1 for Measurement 1 and Simulation 1. 
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Figure 4.14 Shower temperatures in shower schedule 2 for Measurement 1 and Simulation 1. 

 

Figure 4.15 Shower temperatures in shower schedule 3 for Measurement 1 and Simulation 1. 

 

Figure 4.16 Shower temperatures in shower schedule 4 for Measurement 1 and Simulation 1. 
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4.3.5 Results of case study 2 

In this case study, the results obtained from Simulation 2 were compared with 

Measurement 2. Figures 4.17–4.19 show the comparisons of top layer temperatures, 

normalized power consumptions and normalized cumulative hot water consumptions, 

respectively.  

 

Figure 4.17 Top layer temperatures over 48 hours for Measurement 2 and Simulation 2. 

 

Figure 4.18 Normalized power consumptions over 48 hours for Measurement 2 and Simulation 2. 
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Figure 4.19 Normalized cumulative hot water consumptions over 48 hours for Measurement 2 and 
Simulation 2. 

Figures 4.20–4.23 show the comparisons of shower temperatures of each shower 

schedule in smaller time scales for Measurement 2 and Simulation 2. 

 

Figure 4.20 Shower temperatures in shower schedule 1 for Measurement 2 and Simulation 2. 
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Figure 4.21 Shower temperatures in shower schedule 2 for Measurement 2 and Simulation 2. 

 

Figure 4.22 Shower temperatures in shower schedule 3 for Measurement 2 and Simulation 2. 

 

Figure 4.23 Shower temperatures in shower schedule 4 for Measurement 2 and Simulation 2. 
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4.3.6 Results of case study 3 

The results obtained from Simulation 3 were compared with the measured values 

of Measurement 3. Figures 4.24–4.26 show the comparisons of normalized power 

consumptions, bottom and top layer temperatures, respectively. The bottom layer 

temperature was measured at about 0.25 m above the base of the storage tank, and it 

was assumed as the temperature detected by the thermostat. 

 

Figure 4.24 Normalized power consumptions over 24 hours for Measurement 3 and Simulation 3. 

 

Figure 4.25 Bottom layer temperatures over 24 hours for Measurement 3 and Simulation 3. 
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Figure 4.26 Top layer temperatures over 24 hours for Measurement 3 and Simulation 3. 

4.3.7 Comparative analyses and summaries 

Table 4.6 shows the prediction errors of the DHWS model with respect to actual 

measurements, after comparative analyses were performed on the results. 

Table 4.6 Prediction errors of Simulations 1, 2 and 3 compared to Measurements 1, 2 and 3, 
respectively 

 Simulation 1 Simulation 2 Simulation 3 

Error in total energy consumption (%) 5.5 4.6 5.1 

Mismatch in thermostat state (%) 2.3 2.0 4.0 

Error in hot water consumption (%) -1.2 -4.5 N/A 

MAE in shower temperature (oC) 1.6 1.4 N/A 

RMSE in shower temperature (oC) 2.8 3.1 N/A 

MAE in top layer temperature (oC) 1.1 1.5 1.0 

RMSE in top layer temperature (oC) 1.7 2.7 1.3 

MAE in bottom layer temperature (oC) 0.7 1.0 0.5 

RMSE in bottom layer temperature (oC) 1.0 1.5 0.9 

For all the calculations presented in this section, i represents the simulation 

intervals: from the first interval to the last interval K. We used an interval of one 

minute in all the simulations conducted. Thus, the values of K are 1440 and 2880 for 

24 hour and 48 hour simulation periods, respectively.  

64 

 



Chapter 4: Domestic Hot Water System Modeling 

 

Error in total energy consumption 

Total energy consumption is calculated as the total area under the power 

consumption curve over the entire measurement period, and the corresponding error 

is calculated as:  

 Error in total energy consumption = 100% × (Em – Ep)/Em ( 4.21 ) 

where Em and Ep are the measured and predicted total energy consumptions of the 

DHWS, respectively. 

Mismatch in thermostat state 

This index measures the total number of mismatches between measured and 

predicted thermostat states, and expresses it as a percentage of the total number of 

thermostat states over the entire measurement period. It is calculated in the following 

equations. 

 𝐽err𝑖 = �0  𝑖𝑓
1  𝑖𝑓 

 𝐽m𝑖 =
𝐽m𝑖 ≠

𝐽p𝑖

𝐽p𝑖
  ( 4.22 ) 

where Jm and Jp are the measured and predicted thermostat states, respectively; Jerr is 

the counter for mismatches in the thermostat state between measured and predicted 

results; and the superscript i represents the time interval. 

 Error in thermostat state =100% ∙  1
𝐾
∙ ∑ 𝐽err𝑖𝐾

𝑖=1  ( 4.23 ) 

Error in hot water consumption 

This index is calculated as: 

 Error in hot water consumption = 100% × (Vm – Vp)/Vm ( 4.24 ) 

where Vm and Vp are the measured and predicted total volumes of hot water drawn 

from the DHWS, respectively. 

Error in temperatures 

In Table 4.6, RMSE is the root mean square error and MAE the mean absolute 

error [67]. The calculations of MAE and RMSE are given as below: 

 𝑀𝐴𝐸 = 1
𝐾
∙ ∑ �(𝑇m𝑖 − 𝑇p𝑖)�𝐾

𝑖=1   ( 4.25 ) 
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 𝑅𝑀𝑆𝐸 = 1
√𝐾

 ∙ �∑ �𝑇m𝑖 − 𝑇p𝑖)2𝑘
𝑖=1   ( 4.26 ) 

where Tm and Tp are the measured and predicted temperatures, respectively; the 

superscript i represents the time interval; and │x│ represents the absolute value of x. 

4.4 Discussion 

By comparing the dynamic tests and simulation results, we found that the predicted 

shower temperatures closely matched the measurements (Figures 4.13–4.16, and 

Figures 4.20–4.23). The highest MAE between measurements and predictions was 

1.6oC over a period of 48 hours. At the same time, the corresponding RMSE was 

2.8oC.  

RMSE squares prediction errors and hence amplifies large deviations. The closer 

the value of RMSE to MAE, the more uniform is the distribution of prediction errors. 

The lower and upper limits of RMSE are functions of the MAE, as given below [68]: 

 𝑀𝐴𝐸 ≤ 𝑅𝑀𝑆𝐸 ≤ √𝐾 ∙ 𝑀𝐴𝐸 ( 4.27 ) 

If all the prediction errors are uniformly distributed (i.e. all errors are the same), 

RMSE is equal to MAE.  

Hence, the error analysis of predicted shower temperatures demonstrated that the 

deviations from measured values were reasonably uniform and with acceptable 

accuracy (MAE < 2oC). 

Similar error analyses can be applied to the predictions of temperature profile 

inside the storage tank. The top layer temperature profile of Simulation 2 showed the 

highest prediction error with 1.5oC of MAE and a corresponding 2.7oC of RMSE. 

Compared to the top layer temperature predictions, lower magnitudes of error were 

found in predictions for the bottom layer temperature profile in all the simulations. As 

the calculated RMSE and MAE of the internal temperature profiles were rather close 

to each other, we deduced that the majority of the deviations between the predictions 

and measurements were reasonably uniform. This deduction is evident in the graphs 

showing comparisons of temperature profiles in the previous sections (Sections 4.3.4–

4.3.6). 
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As the actual temperature on the thermostat was not directly measurable in our test 

system, we assumed it equaled the temperature recorded by the bottommost thermo 

coupler positioned at about the same height as the thermostat inside the storage tank 

(about 0.25 m from the base of the storage tank). Meanwhile, in the simulations, the 

temperature of the layer at this height was used as the temperature detected by the 

thermostat. Moreover, the thermostat on a DHWS is not a precision device and the 

margin of error can be as high as ± 4oC according to the manufacturer data sheet [69]. 

For example, a power spike is observed at about hour 6 in Figure 4.18.  This spike 

causes a step increase in the top layer temperature, as can be seen in Figure 4.17.  

This power spike was not predicted because the model is based on a one-dimensional 

heat transfer mechanism, and thus temperature variations in the redial direction are 

not considered.  As a result, the actual temperature decrease detected by the 

thermostat was not predicted by the model. In addition, the rate of temperature drop 

inside a well insulated storage tank is rather slow (less than 0.5oC per hour). As a 

result, slight deviations between the predicted and actual temperatures can produce 

mismatches in the thermostat state. In the case of an idling DHWS, if the prediction is 

0.5oC above the actual temperature, the thermostat in the simulation will turn on after 

about an hour of delay. This phenomenon is shown in Figure 4.25 and it is the cause 

of the mismatches seen in Figure 4.24. 

In the experimental setup, the metal piping between the shower head and the hot 

water tank is not insulated. Hence, water in the piping continually loses heat energy to 

the environment. At the beginning of a shower schedule, cooler water in the piping 

flows through the shower head before hot water from the tank does. As a result, the 

measured shower temperature at the starting time of a shower schedule is below the 

preferred shower temperature set on the tempering valve. On the other hand, heat 

losses from the metal piping are not considered in predictions. Thus, the preferred 

shower temperature is predicted at the starting time of a shower schedule. This 

discrepancy between measured and predicted shower temperatures at the starting time 

of a shower schedule can be observed in Figure 4.13–4.16, 4.20– 4.23. 

Table 4.6 shows that the measured total energy consumption is always higher than 

the prediction, with the highest error of 5.5%. This prediction error is mainly due to 
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two reasons: 

• The actual turn-on and turn-off temperatures on the thermostat of the test system 

were not known. Besides, as explained above, the thermostat is not very accurate 

and it may not trigger at the same set temperature in every cycle. A small 

deviation from the set temperature will cause an observable deviation from the 

expected energy consumption. For example, a deviation from 60oC to 60.5oC in 

the turn-off temperature will increase the energy consumption by about 1.1%, 

assuming the test DHWS recharges from an initial average temperature of 15oC. 

• Several factors ignored in the developed DHWS model may contribute to higher 

energy consumption in the actual system. Some such factors are: the thermal mass 

of the stainless steel wall of the storage tank, the deviation in heat loss coefficient 

between the model and actual value, and heat losses through conduction in the 

metal pipes. 

The errors in predicted hot water consumptions were mainly due to prediction 

errors in the top layer temperature, and the fluctuations in actual shower temperature. 

Referring to ( 4.5 ) – ( 4.8 ), variations in the hot water temperature and shower 

temperature will change the ratio of hot water flow over shower flow. 

As a summary, we conclude that the developed DHWS model is able to predict the 

behavior of an actual DHWS with acceptable accuracy. The error in power 

consumption is less than 6%, while the MAE in temperature prediction is less than 

2oC. Thus, the developed DHWS model can be used in our research on DSM of 

DHWSs in the Tasmanian power distribution system. 

4.5 Conclusion 

This chapter has described the general operation of the most common DHWS in 

Tasmania, Australia. The development of a DHWS model to represent the thermal 

behavior of a thermally stratified DHWS has been presented from the basis of a 

unique one dimensional heat transfer mechanism and heat energy equations. The 

model assumes two different zones in the storage tank, namely the mixing zone and 

the layer zone. Incoming cold and existing warm water mix uniformly in the mixing 
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zone with a constant volume. The layer zone contains a variable number of layers, 

each with a variable volume of water. A stepped temperature distribution with 

negligible mixing between layers is assumed for the layer zone. In addition, this 

model also includes a tempering valve model and a mechanism that models the 

heating of water in the storage tank.  

Predictions made with the developed model were compared with experimental data 

obtained from a test system. Comparative analyses demonstrated that predicted 

results closely matched the measured data. Over a period of 48 hours, less than 6% of 

prediction error was found in the total energy consumption while the highest mean 

absolute error in temperature prediction was less than 2oC. At the same time, the 

majority of the deviations between the predicted and measured temperatures were 

reasonably uniform.  Hence, the accuracy of the developed model is acceptable to be 

used in further research work. 

The succeeding chapters will present the other modules under the simulation block 

shown in Figure 2.1. 
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Chapter 5  
Performance Calculation and Optimization of DLC 

Switching Programs 

This chapter presents the calculation of performance and the optimization of DLC 

programs for controlling DHWSs. The performance calculator, as depicted in Figure 

2.1, determines the KPIs of implementing a DLC switching program on the 

participating households in an area.  It has two main functions: calculating peak 

reductions in the hot water load and estimating the consumer comfort level. 

Meanwhile, the optimization process is performed by the switching program 

optimizer module, which has been briefly described in Chapter 2. 

Section 5.1 describes the calculations of two KPIs used to measure, evaluate and 

compare the performance of implementing DLC switching programs in a controlled 

area. Section 5.2 outlines the structure of the switching program optimizer, as well as 

its required I/Os. Subsequent sections describe its key components in detail. Section 

5.3 describes the switching program generator and the control management system 

parameters. The operation of the load estimator is presented in Section 5.4. Section 

5.5 presents the optimizer and the operation of two different optimization methods. A 

conclusion is provided in Section 5.6. 

Power consumption is normalized to 2.4 kW in examples presented in this chapter. 

5.1 Performance calculator 
5.1.1 Peak load reduction 

To calculate the peak load reduction, the performance calculator firstly determines 

an average uncontrolled hot water load profile for each household. The average 

uncontrolled load profile for a household represents an average profile of the 

household obtained over a specified number of Monte Carlo iterations. Then, it 

determines an aggregate uncontrolled hot water load curve LU by aggregating 

uncontrolled hot water load profiles for all households.  An aggregate controlled hot 
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water load curve LC is obtained in a similar manner after a DLC switching program is 

applied to the uncontrolled hot water loads of individual households. Equations ( 5.1 ) 

and ( 5.2 ) are used to calculate LU and LC, respectively.  

 𝐿U = ∑ 1
𝑁S
∙ ∑ 𝑙𝑈(𝑖, 𝑗)𝑁S

𝑗=1
𝑁H
𝑖=1   ( 5.1 ) 

 𝐿C = ∑ 1
𝑁S
∙ ∑ 𝑙𝐶(𝑖, 𝑗)𝑁S

𝑗=1
𝑁H
𝑖=1   ( 5.2 ) 

where NH is the total number of households; NS is the total number of Monte Carlo 

iterations, which produce the hot water consumption profiles for the controlled 

households; lU(i, j) and lC(i, j) represent the uncontrolled and controlled hot water 

load profiles for household i in Monte Carlo iteration j, respectively.  

The peak load reduction R(τ) of the control period τ is defined as  

 𝑅(𝜏) = 1 − 𝑚𝑎𝑥[𝐿C(𝜏)]
𝑚𝑎𝑥[𝐿U(𝜏)] ∙ 100%  ( 5.3 ) 

where max[LC(𝜏)] and max[LU(𝜏)] are the peaks of LC and LU in the control period τ, 

respectively. 

5.1.2 Consumer comfort level 

The success of any DSM program depends heavily on the acceptance of 

consumers. As a result, any domestic DSM program must be designed to limit 

impacts on consumer comfort level, in order to gain widespread acceptance and 

participation. In the case of direct load control applied to domestic hot water systems, 

the comfort level is profoundly dependent on the hot water temperature during 

consumption. 

The first step to characterize consumers’ comfort level is to find the hot water 

temperature range that is preferable to the consumers in general. The authors in [70] 

find that the preferred shower temperature has a negative correlation with the mean 

body temperature. The test subjects prefer a hotter shower after submerging their 

bodies in cold water (25oC) for 30 minutes. This paper reveals that the preferred 

range of shower temperature is from 40oC to about 44oC under different situations. A 

comparable temperature range from 39oC to about 42oC is reported in [71], while [72] 

uses 40.6oC (105oF) as the average comfortable shower temperature in their study. 
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On the other hand, Australian Standard AS 3498 dictates that the water temperature 

at the shower head or tap outlet must be below 50oC, for safety reasons. 

In the Tasmanian distribution network, domestic demand peaks in the winter 

months. According to the results in [70], consumers prefer hotter showers during this 

colder period. Hence, we assume the preferred hot water temperature ranges from 

41oC to 43oC in our studies. 

A consumer’s comfort level depends on the frequency (or probability) of getting a 

“cold shower”—an event when the shower temperature drops below the preferred 

temperature (e.g. 43oC). In our developed tool, the preferred temperature is specified 

by the tool user. Hence, probabilities of cold showers are used as the performance 

indicator for consumer comfort level in our studies. Using ( 5.4 ) and ( 5.5 ), the 

performance calculator estimates the probability of cold showers for each family type, 

as well as an overall probability of cold showers for all the families in a controlled 

area. These probabilities are calculated over the specified number of Monte Carlo 

iterations. 

 𝑃cold(𝑗) = ∑ 𝑁cold(𝑗,𝑘)𝑁S
𝑘=1 /∑ 𝑁shwr(𝑗,𝑘)𝑁S

𝑘=1   ( 5.4 ) 

where Pcold is the probability of cold showers; Ncold is the number of cold shower 

events; Nshwr is the total number of showers; j indicates the family type; k represents 

the Monte Carlo iteration; and NS is the total number of Monte Carlo iterations. 

 𝑃cold(𝑎𝑙𝑙) = ∑ ∑ 𝑁cold(𝑗,𝑘)𝑁S
𝑘=1

𝑁F
𝑗=1 /∑ ∑ 𝑁shwr(𝑗,𝑘)𝑁S

𝑘=1
𝑁F
𝑗=1   ( 5.5 ) 

where Pcold(all) is the overall probability of cold showers for all families; k represents 

the Monte Carlo iteration; j indicates the family type; and NF is the total number of 

family types. 

Because of a large number of households in a controlled area, we can assume the 

same preferred temperature for all hot water consumers. The tool allows its user to 

change the preferred temperature if required. 

5.2 Structure of the switching program optimizer 

Figure 5.1 shows the block diagram of the switching program optimizer module. 
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I/Os are depicted as numbered blocks.  I/O 1 represents parameters of the control 

management system, I/O 2 optimization parameters, I/O 3 uncontrolled hot water 

loads generated by the DHWS model, and I/O 4 denotes optimized switching 

programs. The tool user specifies I/O 1 and I/O 2. 

The switching program optimizer produces switching programs iteratively, 

optimizing them in successive iterations. First, it configures the optimizer and 

switching program generator modules with user-specified parameters (I/O 1 and I/O 

2). Next, the switching program generator produces a switching program (I/O 4) that 

the load estimator applies to the uncontrolled hot water loads (I/O 3) to produce 

estimated controlled loads. The optimizer then uses these estimated controlled loads 

and optimizes turn-off periods of the current switching program, which are 

subsequently used by the switching program generator to produce the switching 

program for the next iteration in optimization. 

 

Figure 5.1 Block diagram of switching program optimizer. 

5.3 Switching program generator 

The switching program generator uses user-specified control management system 

parameters and optimized turn-off periods produced by the optimizer to create 

switching programs, as shown in Figure 5.2. The control management system 

parameters that define a switching program are listed and described below: 

• A control step τstep is the smallest switching time interval. All other switching 

program parameters must be in multiples of a control step. 

• A turn-off period τoff is the time interval when the DHWS is turned off for several 
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consecutive control steps, whereas a turn-on period τon is the time interval when 

the DHWS is turned on for several consecutive control steps. The smallest turn-

off or turn-on period equals one control step. 

• A switching cycle τsc consists of a turn-off period followed by a turn-on period.  

The lengths of switching cycles are uniform in a switching program.  

• A control period τ contains multiple switching cycles, and it is defined by the 

starting time ts and finishing time tf of the period. There are two control periods in 

a switching program; one for the morning peak period and another for the evening 

peak period. The length of the morning control period may be different from the 

evening control period. 

• Control groups are formed by shifting the switching cycles by one or more control 

steps. As shown in Figure 5.2, to ensure the time shifted switching cycles are 

contained in a control period, each control group has one switching cycle less than 

the control period. To prevent unwanted high peaks on the controlled hot water 

load curve, turn-off periods of the control groups must overlap with each other in 

such a way that all the controlled DHWSs do not turn on simultaneously within a 

control period. To satisfy this condition for overlapping, the number of control 

groups NG must be at least equal to the number of control steps in a switching 

cycle. 

 𝑁G ≥ 𝜏SC/𝜏step ( 5.6 ) 

• Results in [73] demonstrate that division of households based on the family type 

does not significantly affect the comfort level of household residents. Thus, the 

entire set of households can be divided into control groups of approximately equal 

size, regardless of the family type of a household. 
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Figure 5.2 A typical switching program and its control management system parameters. 

5.4 Load estimator 

The load estimator estimates controlled hot water loads by applying a switching 

program to uncontrolled loads of individual households. It sets the load to zero during 

the turn-off periods of the applied switching program and restores the deferred load 

during the turn-on periods. This operation is performed on all uncontrolled hot water 

load profiles for every household.  

On the other hand, water temperatures of the DHWSs are not considered in the 

load estimator.  

5.5 Optimizer 

The main function of the optimizer is to optimize turn-off periods of a switching 

program so that the aggregate controlled load is below or as close as possible to the 

user-defined target value. The tool implements two methods of optimization: 

• The user defined control period (UDCP) optimizer. 
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•  The optimized control period (OCP) optimizer. 

5.5.1 UDCP optimizer 

The UDCP optimizer determines turn-off periods based on user-defined control 

periods and the peak load reduction target. The control periods remain unchanged 

throughout the optimization process.  This optimizer implements an iterative process 

to minimize the mean error between the user-defined target value LT and the 

estimated aggregate controlled load LC, in each switching cycle of a switching 

program. To calculate required changes in the turn-off period for each switching 

cycle, the optimizer applies proportional and integral (PI) functions to the mean errors 

[74]. 

In Figure 5.3, τoff(j,k) is the turn-off period of switching cycle j in optimization 

iteration k; e(j,k) is the average error between LC and LT in switching cycle j and 

iteration k; KP is the proportional gain and TI the integral time of the PI functions.  

The proportional function multiplies the error by KP. The integral function sums the 

mean errors of switching cycle j from the previous (S-1) iterations to the current one, 

and multiplies the result by KP/TI. The sum of the current turn-off period and outputs 

from the PI functions is converted by the limiter function into an integer between the 

minimum and maximum values. The final result is the turn-off period for the next 

iteration. 

 

Figure 5.3 Block diagram of the UDCP optimizer. 

The performance of the UDCP optimizer is dependent on parameters of the PI 

functions and the control management system. Thus, the tool allows its users to 
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modify these parameters to find switching programs that meet their requirements. 

Setting a high value for KP may create oscillations on LC, as shown in Figure 5.4. In 

this case, KP is set to 2.0 and the integral function is disabled by setting TI to a very 

large value relative to KP. Table 5.1 shows the value of control management system 

parameters used in the simulations. We find that LC alternates its shape in every other 

iteration. Furthermore, the difference between the lowest point and the highest point 

on LC increases if a higher value of KP is used. 

 

Figure 5.4 Oscillations in aggregate controlled load curves produced by the UDCP optimizer. 

Table 5.1 Control management system parameters 

Number of control group Control Period Switching cycle Control step 

6 07:15 to 14:15 30 min 5 min 

By reducing the value of KP to 1.4 while using the same control management 

system parameters (Table 5.1), the aggregate controlled load curves converge after 

several iterations. The converged curve alternates around the user-specified target 

line, as shown in Figure 5.5. With this configuration, we achieve about 17.5% of peak 

load reduction. 
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Figure 5.5 Aggregate controlled load curve without oscillations produced by UDCP optimizer. 

The performance of the UDCP optimizer improves when the integral function is 

included, as shown in Figure 5.6. The values for KP, TI and S are set to 1.2, 5 and 4, 

while the target remains at 65 p.u. (power) and the same control management system 

parameters are used (Table 5.1). Compared to the previous two curves, the one shown 

in Figure 5.6 is smoother and more closely matches the target line. It also has a lower 

peak, which is about 20% below the peak of the uncontrolled load curve.  

 

Figure 5.6. Aggregate controlled load curve produced with PI functions in UDCP optimizer. 
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5.5.2 OCP optimizer 

Switching programs can be further optimized by implementing OCP optimization. 

The OCP optimizer determines turn-off periods and control periods of a switching 

program based on the user-defined peak load reduction target LT. First, it finds the 

starting time ts and finishing time tf of the initial control period. The time ts is found as 

the first intersection of the aggregate uncontrolled load curve LU and the target LT, as 

shown in Figure 5.7.  To avoid a high payback peak after the control period, the 

finishing time tf is found by solving the following equation: 

 ∫ 𝐿U(𝑡) ∙ 𝑑𝑡𝑡f
𝑡s

= 𝐿T ∙ (𝑡s − 𝑡f)  ( 5.7 ) 

where the left hand term represents the total uncontrolled energy consumption 

between ts and tf, which is the area under LU (red solid curve) between ts and tf in 

Figure 5.7; the right hand term represents the area under LT (blue dotted line) between 

ts and tf in Figure 5.7. 

 

Figure 5.7. Initial control period in relation to LT and LU. 

To further minimize the error between LC and LT, the OCP optimizer iteratively 

tunes the switching program optimized by the UDCP optimizer. The OCP optimizer 

increases or decreases the turn-off period τoff of each switching cycle to minimize the 

error between LT and LC. We define three tolerance levels:  
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• L1 is 1% above LT; 

• L2 is 2% above LT;  

• L3(j) is the difference between LT and the estimated load (in addition to the 

existing load) that would be restored in switching cycle j, if τoff(j) is decreased by 

one control step. It is calculated as: 

 𝐿3(𝑗) = 𝐿T − 𝑚𝑎𝑥[𝐿U(𝑗 − 2), 𝐿U(𝑗 − 1), 𝐿U(𝑗)] ∙ 𝜏step
𝜏sc

  ( 5.8 ) 

where τstep is the control step; τsc is the switching cycle; max[LU(j–2), LU(j–1), LU(j)] is 

the maximum value of the aggregate uncontrolled load LU over three switching cycles 

(j-2), (j-1) and j. 

The OCP optimizer tunes the τoff of all but the last switching cycle within a control 

period, based on the three scenarios shown below, where LC(j) denotes values of LC 

within switching cycle j. Figure 5.8 graphically illustrates these scenarios. 

• Scenario 1. The peak of LC(j) is above L2. 
• Scenario 2. LC(j) stays between L1 and L2 for more than 15 min. 
• Scenario 3. The peak of LC(j) is below L3(j). 

 
Figure 5.8 Scenario 1, 2 and 3 used in OCP optimization. 

Scenarios 1 and 2 represent overshooting, whereas Scenario 3 indicates over-
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control that can potentially create higher payback peaks. The OCP optimizer reduces 

LC(j) by increasing τoff(j) by one τstep, if either Scenario 1 or Scenario 2 is met. If 

Scenario 3 is met, τoff(j) is decreased by one τstep to restore some deferred loads while 

keeping LC below LT. No change is made on τoff(j) if none of the above conditions are 

met. 

Before changing τoff(j), the OCP optimizer considers the current value of τoff 

(expressed as the number of control steps) and the location of the peak of LC(j) within 

switching cycle j. For a peak located within the first n control steps of a given 

switching cycle, the OCP optimizer imposes the following conditions to accept only 

the changes in τoff that are effective in reducing (or increasing) the peak in this 

switching cycle: 

• If τoff is to be increased and the current value of τoff is below or equal to (n-1), 

then increase τoff by one τstep. No change is made otherwise 

• If τoff is to be decreased and the current value of τoff is below or equal to n, then 

decrease τoff by one τstep. No change is made otherwise 

where τoff is expressed as the number of control steps (τstep). 

If j is the last switching cycle of a control period, and either Scenario 1 or Scenario 

2 is met, the control period is extended by one switching cycle; τoff(j) is then set to a 

value equal to a multiple of τstep and proportional to the error between the peak of 

LC(j) and LT. Through iterations, the OCP optimizer tunes the switching program so 

that the aggregate controlled load stays below or as close as possible to the user-

defined target. 

The operation of the OCP optimizer is illustrated in Figure 5.9. In this case, a hot 

water load profile with a dominant evening peak is used, which is represented as the 

blue dotted curve in Figure 5.9. After the first iteration, we can still find several 

overshooting peaks on the aggregate controlled load curve. Through iterations, the 

OCP optimizer reduces these peaks to values less than or very close to the required 

target lines. In the 6th iteration, the OCP optimizer has reduced the evening peak 
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below the intended target line, except for a rather small overshoot at around 22:00. 

This optimizer has also extended the morning control period to allow for a more 

gradual load restoration. However, the peaks located at 13:30 and 14:30 cannot be 

further reduced because the morning control period has reached the maximum limit of 

7.5 hours set in the tool. 

 

Figure 5.9 OCP optimization results for iteration 1 and iteration 6. 

More case studies and detailed analyses on simulation results are provided in 

Chapter 6. 

5.6 Conclusion 

The chapter has presented the performance calculator and the switching program 

optimizer modules in the developed hot water evaluation tool (shown in Figure 2.1). 

The KPIs produced by the performance calculator are employed by the tool to 

assess the performance of the switching programs applied to DHWSs in a controlled 

area. The two KPIs described in this chapter were peak load reduction and 

probabilities of cold showers. The former is used to evaluate the effectiveness of a 

DLC switching program in reducing peak load, while the latter is used to assess the 

impact of a DLC switching program on consumer comfort level. 

Meanwhile, the operation of the switching program generator has been described 
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with the control management system parameters clearly defined.  Functions of the 

load estimator have also been outlined. At the same time, two optimization methods 

implemented in the optimizer to produce optimized switching programs have been 

presented in detail. To produce optimized DLC switching programs, the UDCP 

optimizer requires the control periods and the peak load reduction target to be 

specified by the tool user. On the other hand, the OCP optimizer uses the peak load 

reduction target specified by the tool user to iteratively determine the optimized 

control periods and subsequently produces optimized DLC switching programs. The 

operations of the optimizers have been demonstrated through simulation examples 

presented in this chapter. 

The next chapter presents a number of case studies that use the developed hot water 

evaluation tool to investigate the performance of different DLC switching programs 

under various operating scenarios.  
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Chapter 6  
Case Studies 

This chapter presents a number of case studies performed with the developed hot 

water evaluation tool, as well as discussions on the results obtained in these studies. 

 First, we investigate the scalability of the results obtained from the tool. In other 

words, we wish to find out how well the results scale when different numbers of 

households are used in simulations. For example, we want to find out if it is possible 

to perform simulations for 300 households and scale up the results to represent 3000 

households in an area. Performing simulations on a scaled down number of 

households requires lower computing resources and drastically reduces simulation 

time.  

Next, we study the potential impacts of using average values of ambient 

temperature and cold water temperature on simulation results. We wish to determine 

if constant average values can be used to represent the actual values for these two 

parameters, and produce results that accurately approximate the actual results. 

Ambient and cold water temperatures not only change according to climate zone, they 

also vary throughout the day. Hence, using average values in place of actual values 

simplifies the simulation process. 

In the subsequent case study, we evaluate the effect of using common values for 

thermostat settings on simulation results. Thermostat settings on a DHWS determine 

its turn-on temperature Ton and turn-off temperature Toff. Practically, these two 

parameters are different from one household to another. We wish to find out if 

common values for Ton and Toff can be used for all households without significantly 

affecting the results. Being able to do this will simplify the simulation process. 

In succeeding case studies, we use the tool to generate optimized switching 

programs and assess their performance in terms of the peak load reduction and 

consumer comfort level. Several operating scenarios are considered in these studies.  

Power consumption is normalized to 2.4 kW in all the studies presented in this 
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chapter. 

6.1 Case study 1: scalability of results 

We performed six simulations in this case study. First, we used the tool to 

randomly generate hot water consumption profiles with a dominant morning peak for 

300 households and obtained an aggregate uncontrolled hot water load curve (L300). 

Then, the aggregate uncontrolled load curves for 1500 households (L1500) and 3000 

households (L3000) were determined using the same set of configuration parameters. 

Next, we scaled up L300 by factors of 5 and 10, and compared them with L1500 and 

L3000, respectively. After that, the above process was repeated for a hot water 

consumption profile with a dominant evening peak.  

Figures 6.1 and 6.3 show the uncontrolled load curves for hot water consumption 

profiles with dominant morning peak; Figures 6.2 and 6.4 show the uncontrolled load 

curves with dominant evening peak. The dotted curves in Figures 6.1 and 6.2 depict 

L1500 and the solid curves depict L300 scaled up by a factor of 5; the dotted curves in 

Figures 6.3 and 6.4 depict L3000 and the solid curves depict L300 scaled up by a factor 

of 10.  

 

Figure 6.1 Uncontrolled load curves with dominant morning peak for 1500 households. 
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Figure 6.2 Uncontrolled load curves with dominant evening peak for 1500 households. 

 

Figure 6.3 Uncontrolled load curves with dominant morning peak for 3000 households. 
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Figure 6.4 Uncontrolled load curves with dominant evening peak for 3000 households. 

We performed comparative analyses on the load curves shown in Figures 6.1–6.4 

and tabulated the results in Table 6.1. 

Table 6.1 Results of comparative analyses  

 Difference in total energy 
consumption over 24 hours MAE MAPE 

Between L1500 and L300 x5 
(Figure 6.1) 

0.1% 3.5 p.u. 1.6% 

Between L1500 and L300 x5 
(Figure 6.2) 

0.3% 2.2 p.u. 1.1% 

Between L3000 and L300 x10 
(Figure 6.3) 

0.1% 6.4 p.u. 1.4% 

Between L3000 and L300 x10 
(Figure 6.4) 

0.5% 4.5 p.u. 1.1% 

MAE is the mean absolute error and MAPE the mean absolute percentage error. 

The calculations of MAE and MAPE are given below. 

 𝑀𝐴𝐸 = 1
𝑁
∙ ∑ |𝑣𝑖 − 𝑢𝑖|𝑁

𝑖=1   ( 6.1 ) 

 𝑀𝐴𝑃𝐸 = 1
𝑁
∙ ∑ �𝑣𝑖−𝑢𝑖

𝑣𝑖
�𝑁

𝑖=1   ( 6.2 ) 
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where N is the total number of data points; u and v are the respective data to be 

compared; and │x│ denotes absolute value of variable x. 

The above results demonstrate that the simulation results scale very well. Hence, 

we can use a smaller number of households in simulations and scale up the results to 

represent a higher number of households without introducing significant errors. 

6.2 Case study 2: ambient and cold water temperatures 

This case study compared results of two simulations. In the first simulation, we 

used actual values of ambient temperature Ta and cold water temperatures Tc of 

Tasmania during the winter period, shown in Figure 6.5.  

 

Figure 6.5 Average ambient and cold water temperatures in winter time. 

Shaded areas indicate peak periods of hot water usage (06:00 – 09:00 and 16:30 – 

18:30). The profile of Ta was obtained from historical climate data for Tasmania [75]; 

Tc usually has a positive correlation with Ta [61], but has a smaller range of variation. 

As can be seen in Figure 6.5, values of Ta and Tc vary considerably over the 24 hour 

period (particularly, values of Ta), but their variations during peak periods are rather 

small. Therefore, in the second simulation, Ta and Tc were set to a constant value of 

8oC. 

Figure 6.6 shows two aggregate uncontrolled hot water load curves obtained using 

variable and constant values for ambient and cold water temperatures.  
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Figure 6.6 Uncontrolled load curves for constant and variable values of ambient and cold water 
temperatures. 

We found insignificant differences between the two curves. Over the 24 hour 

period, the difference in the total energy consumption was about 1%, and the MAE 

was about 1.3 p.u. The results can be explained by the fact that a great majority of hot 

water usages occurred during peak periods when variations of actual cold water 

temperature were rather small (within ± 1oC, in shaded areas of Figure 6.5). On the 

other hand, although Ta varied significantly during the day, its variation had 

negligible overall effect on the rate of hot water tank heat losses. An insulated hot 

water tank idles for a long period (usually from 13 to 15 hours) between two 

consecutive recharges due to heat losses. During this period, the effect of Ta variation 

is smoothed, and using the average value of Ta produces results similar to using 

variable values of Ta. Thus, variations of Ta and Tc can be represented with their 

respective average values in further studies. 

6.3 Case study 3: thermostat settings 

This case study compared the results of using constant versus variable thermostat 

settings. In the first simulation, we set the thermostat turn-on temperature Ton to 52oC 

and the turn-off temperature Toff to 60oC for all households. In the second simulation, 

we assumed that Ton and Toff were variables uniformly distributed from 50oC to 54oC 

and from 58oC to 62oC, respectively [37]. We found no significant difference between 

the two simulations, as depicted in Figure 6.7. Over the 24 hour period, the difference 
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in the total energy consumption was about 0.2%, and the MAE was about 1.1 p.u. 

Thus, common values of Ton and Toff can be used for all households in simulations 

without any significant impact on the results.  

 

Figure 6.7 Uncontrolled load curves for constant and variable turn-on and turn-off temperatures. 

In fact, the thermostat settings are fixed by qualified installers and consumers 

rarely change them. Obviously, setting higher values for Ton and Toff results in storing 

more heat energy in the hot water tank and reduces the probability of getting cold 

showers. On the other hand, Australian Standard AS 3498 requires heating the water 

to at least 60oC to inhibit Legionella bacteria growth in the storage tank [55].  Thus, 

to represent the worst case scenario in our simulations, we make the assumption to 

use 52oC as the value of Ton and 60oC as Toff for all controlled households in our 

further studies. 

6.4 Case study 4: evaluation of switching programs 

This case study consisted of several studies which assessed the performance of 

switching programs produced by the developed tool for different operating scenarios. 

We used the tool to randomly generate hot water consumption profiles for 279 

households. This set of households provided us the opportunity to use actual energy 

metering data in our studies.  From the hot water consumption profiles generated by 

the tool, we subsequently obtained an aggregate uncontrolled hot water load curve, 

which matched the actual data. Then, the optimizer module in the tool optimized and 
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recommended optimized switching programs to the tool user who would select the 

switching program that suited his/her objectives. The tool subsequently applied the 

selected switching program to the uncontrolled hot water loads and obtained the 

aggregate controlled hot water load curve. Performance was evaluated in terms of the 

peak load reduction and consumer comfort level. 

In all of these studies, we used 43oC as the preferred shower temperature for all 

households. A default switching program configuration as shown in Table 6.2 was 

used in all the studies, except otherwise stated. It had 30 minute switching cycles and 

5 minute control steps. The turn-off period of each switching cycle varied from 5 

minutes to 25 minutes in 5 minute steps. The controlled households were divided into 

six control groups each containing approximately an equal number of households. 

Table 6.2 Default switching program configuration 

  

default switching 
program configuration 

Control groups 6 

Switching Cycle 30 (min) 

Control Step 5 (min) 

Turn-off periods 5, 10, 15, 20, 25 (min) 

 

6.4.1 Comparison of UDCP and OCP optimizers 

This case study compared the performance of the UDCP optimizer and the OCP 

optimizer. Both optimizers used the default switching program configuration (Table 

6.2) to produce optimized switching programs that were applied to the same set of hot 

water loads. The peak reduction target was 15% in both cases. Figures 6.8 and 6.9 

show the aggregate controlled load curves produced by the UDCP and OCP 

optimizers, respectively. Table 6.3 shows the control periods and peak reductions 

achieved. The UDCP optimizer does not change the user-specified control periods in 

its optimization process. Probabilities of cold showers for each family type are shown 

in Table 6.4 for the uncontrolled scenario, and scenarios controlled by the UDCP-

optimized and OCP-optimized switching programs. 
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Figure 6.8 Result of the UDCP optimization. 

 

Figure 6.9 Result of the OCP optimization. 

Table 6.3 Control periods and peak reductions for UDCP and OCP optimizers 

 
Morning Evening 

 
Control period Peak reduction Control period Peak reduction 

UDCP optimizer 07:00-12:00 7.1% 18:00-23:00 9.3% 

OCP optimizer 07:30-13:00 14.3% 17:30-00:00 15.0% 
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Table 6.4 Probabilities of cold showers for uncontrolled scenario and controlled scenarios 

  Uncontrolled UDCP optimizer OCP optimizer 

Family type 1 0.0% 0.0% 0.0% 

Family type 2 4.4% 4.5% 4.6% 

Family type 3 8.0% 8.3% 8.4% 

Family type 4 13.9% 14.1% 14.4% 

Overall 5.1% 5.2% 5.3% 

 

Comparing the aggregate controlled load curves produced by both optimizers, we 

found that the OCP optimizer performed much better in terms of peak load reduction. 

The starting and finishing times of control periods in a switching program are vital for 

peak load reduction. A delayed control period produces an initial peak above the 

target line, as seen in the evening control period of Figure 6.8. Starting a control 

period too early defers loads needlessly and creates slightly higher peaks in 

subsequent switching cycles of the same control period, as observed in the morning 

control period of Figure 6.8. Control periods with sufficient length allow a gradual 

restoration of loads below the target line. Hence, ending a control period prematurely 

creates an unwanted high payback peak at the end of the control period, as seen at 

around 11:30 of Figure 6.8. Similar results were reported in [73] and [76]. As shorter 

than required control periods were used in the UDCP optimization, reducing the 

peaks at 10:30 and 21:30 would produce higher payback peaks at the end of the 

respective control periods. 

While both controlled scenarios produced higher probabilities of cold showers than 

in the uncontrolled scenario, the OCP optimizer degraded the comfort level more than 

the UDCP optimizer due to its longer control periods (Table 6.4). 

6.4.2 Switching programs for two different hot water consumption 
profiles 

In this case study, we evaluated the tool’s ability to optimize switching programs 

for two different hot water load profiles. The first one had a dominant morning peak 

and the second a dominant afternoon peak. The first load profile was used in the case 

study presented in Section 6.4.1. The default switching program configuration (Table 
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6.2) was used and the peak reduction target was 15%.  Figure 6.10 shows the 

aggregate uncontrolled load curve of the second hot water load profile, and the 

aggregate controlled load curve after the OCP-optimized switching program was 

applied. Table 6.5 shows probabilities of cold showers estimated for each family type 

under uncontrolled and controlled scenarios. 

 

Figure 6.10 The OCP optimization of a hot water load profile with a dominant afternoon peak. 

Table 6.5 Probabilities of cold showers for a hot water load profile with dominant afternoon peak 
under uncontrolled and controlled scenarios 

  Uncontrolled Controlled 

Family type 1 0.0% 0.1% 

Family type 2 4.1% 4.5% 

Family type 3 7.5% 8.3% 

Family type 4 14.3% 15.8% 

Overall 4.8% 5.3% 

 

Optimized morning and evening control periods were from 07:30 to 15:00 and 

from 17:30 to 23:30, respectively. A 9.1% peak reduction was achieved for the 

morning control period, and 13.4% for the evening. The morning control period had 

reached the maximum limit of 7.5 hours. Hence, the tool could not further reduce the 
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payback peak detected at 14:30 as seen in Figure 6.10.  

Comparison of the results produced by the OCP optimizer in the current case study 

and the one presented in Section 6.4.1 (Table 6.4 and Table 6.5) reveals that 

consumers experienced similar comfort under different load profiles. 

6.4.3 Comparison of two different switching program configurations 

In this case study, we used the hot water load profiles of the case study presented in 

Section 6.4.1 and compared the performance of two different switching program 

configurations represented in Table 6.6. Results produced by the OCP optimizer as 

presented in Section 6.4.1 represent the implementation of the default configuration. 

The results of implementing the second switching program (configuration 2) on the 

same set of hot water loads are shown in Figure 6.11 and Table 6.7. 

The optimized control periods were from 07:30 to 13:30 in the morning and from 

17:30 to 00:00 in the evening. Peak reductions for morning and evening control 

periods were 14.8% and 13.2%, respectively. 

Table 6.6 Switching program configurations used in the case studies 

  Configuration 1 (default) Configuration 2 

Control groups 6 3 

Switching Cycle 30 (min) 30 (min) 

Control Step 5 (min) 10 (min) 

Turn-off periods 5, 10, 15, 20, 25 (min) 10, 20 (min) 

 

Table 6.7 Probabilities of cold showers for uncontrolled scenario and controlled scenario employing 
switching configuration 2 

  Uncontrolled Controlled 

Family type 1 0.0% 0.1% 

Family type 2 4.4% 4.8% 

Family type 3 8.0% 8.7% 

Family type 4 13.9% 14.6% 

Overall 5.1% 5.5% 
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The default switching program configuration performed slightly better in peak 

reduction as it had a smaller control step and a higher number of control groups. 

Switching program configuration 2 degraded the consumer comfort level further as 

hot water systems were switched off for longer periods of time. 

 

Figure 6.11 The OCP optimization with switching program configuration 2. 

6.4.4 Maximum peak load reduction 

In this case study, we limited the control periods to a maximum of 7.5 hours, and 

used the tool to find the best achievable peak load reduction under this constraint. For 

comparison, we used the hot water load profiles of the case study presented in Section 

6.4.1 and the default switching program configuration shown in Table 6.2. Figure 

6.12 shows the aggregate controlled load curve created by the OCP optimizer.  

A 17.4% peak reduction was achieved for the morning control period, and 17.5% 

for the evening. The optimized control periods were from 07:15 to 14:45 in the 

morning and from 17:30 to 01:00 in the evening. 

From Figure 6.12, we can see that 7.5 hours is a practical limit under the operating 

conditions used in the simulation. After the morning control period, deferred hot 

water loads were fully restored just before the beginning of the next control period. 

Nevertheless, due to the much longer total control period, this switching program 

significantly degraded the comfort level of all families compared to the previous case 

studies. The overall probability of cold showers increased from about 5% in the 
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uncontrolled scenario to over 6% in the controlled scenario. The probabilities of cold 

showers estimated for each family type are shown in Table 6.8. 

 

Figure 6.12 The OCP optimization result with control periods limited to 7.5 hours. 

Table 6.8 Probabilities of cold showers for uncontrolled scenario and controlled scenario with 
maximum control periods 

  Uncontrolled Controlled 

Family type 1 0.0% 0.1% 

Family type 2 4.4% 5.7% 

Family type 3 8.0% 10.0% 

Family type 4 13.9% 16.0% 

Overall 5.1% 6.4% 

6.5 Conclusion 

This chapter has presented the case studies conducted with the developed tool. We 

have demonstrated that simulation results can be scaled without introducing 

significant errors. The highest MAPE associated with scaling simulation results was 

below 2%. Hence, the results simulated with a smaller number of households can be 

scaled up to represent a higher number of households. We have also investigated the 

potential impacts of using average values of ambient temperature, cold water 

temperature and thermostat settings on the simulation results. Assuming average 

ambient and cold water temperatures throughout the day produced an error of 
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approximately 1% in the total energy consumption, whereas applying common 

thermostat set point temperatures to all households produced less than 1% of error in 

the total energy consumption. Thus, we have demonstrated that average values for 

these parameters could be used to represent actual variable values without sacrificing 

the accuracy of simulations.  

The subsequent case study results have shown that the optimized switching 

programs produced aggregate controlled load curves that closely matched the user-

specified peak reduction targets under various operating scenarios. We have 

compared the performance of the OCP and UDCP optimizers and discovered that the 

former performed better in terms of peak reduction. For a 15% peak reduction target, 

the OCP-optimized switching program successfully reduced the peak by more than 

14% while the UDCP-optimized switching program could only achieve less than 10% 

of peak reduction.  However, the former degraded the consumer comfort level slightly 

more than the latter due to longer control periods.  

On the other hand, the tool has worked well to optimize switching programs for 

two different hot water load profiles. In both cases, peak reductions close to the 

required target (15%) were achieved and consumers experienced a similar level of 

comfort. We have also studied different configurations of switching program and 

found that using smaller control steps and a higher number of control groups will 

produce a slightly higher peak reduction. In the case study, a configuration that used 5 

minute control steps and six control groups improved the peak reduction by about 

1%, as compared to a configuration with 10 minute control steps and three control 

groups. 

In general, the results have revealed that the starting time and the length of control 

periods are crucial in peak reduction. Having a longer control period will potentially 

result in higher peak reductions. However, the length of control periods must be 

limited to minimize negative impact on consumer comfort. The results have shown 

that implementing a 7.5 hour control period in both the morning and evening will 

cause an additional 1.3% of households to experience cold showers. 
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Chapter 7  
Conclusion and Future Studies 

7.1 Summary of the thesis 

This thesis has presented the research work in the development of an evaluation 

tool for the DSM of domestic hot water load. This tool aims to simulate domestic hot 

water loads, produce optimized switching programs for direct control of DHWSs and 

evaluate the performance of these switching programs with simulations. The 

developed tool has met the two objectives set for this research. It can accurately 

model the available domestic hot water load and predict the potential peak reduction 

achievable through direct load control; and it can be used to assist distribution system 

operators in designing their load management programs. Our research work, as 

presented in this thesis, is summarized in the following paragraphs. 

First, we provided an introduction on DSM in Chapter 1. The main types of DSM 

initiatives were described together with their respective implementations in power 

systems around the world. At the same time, a literature review of DSM methods and 

their results were presented. In this chapter, we also included the values of DSM for 

modern power systems in a deregulated market. 

After reviewing the literature, we proceeded to present the development of 

individual components of the evaluation tool. Chapter 2 described the structure of the 

developed tool and the information flows between the main functional modules. The 

general operation, the user interfaces and the outputs of the tool were also presented. 

Then, we provided detailed descriptions of the main functional modules of the tool 

in subsequent chapters. Chapter 3 was devoted to explaining the operation of the hot 

water consumption generator, which creates hot water consumption profiles for 

individual households. To obtain key characteristics of the domestic hot water 

consumption in Tasmania (Australia), survey results were compiled and actual energy 

metering data were analyzed. In addition, parameters used in the hot water 

consumption generator and the Monte Carlo probabilistic simulations employed to 
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create hot water consumption profiles were also described in this chapter.  

In Chapter 4 we developed a unique multi-layer thermally stratified hot water 

system model to represent the most common DHWS found in Tasmania. This model 

uses a one-dimensional heat transfer mechanism in a vertically stratified storage tank 

and assumes negligible heat transfers via conduction and radiation. In addition, we 

also included the temperature regulating operation of a tempering valve in the model. 

The accuracy of this model was validated with experimental data. 

We presented the performance calculator in Chapter 5. The equations used to 

determine KPIs were described here. We used two KPIs in our research to evaluate 

the performance of the switching programs. The first KPI was the peak load reduction 

of the aggregate controlled load with respect to the aggregate uncontrolled load; the 

second KPI was the consumer comfort level measured by probabilities of getting cold 

showers in different types of families. 

In Chapter 5, we also described in detail the optimization of switching programs 

for direct load control of DHWSs. First, we outlined the structure of the switching 

program optimizer with the information flows between its main components clearly 

depicted. Then we described the operations of the main components in the switching 

program optimizer, and explained in detail the operations of the two optimization 

methods employed in the tool. Simulation examples of each optimization method 

were given to illustrate their respective operations. 

Lastly, Chapter 6 was dedicated to presenting the case studies performed with the 

developed tool. In this chapter, we evaluated the tool and found that it worked well to 

meet our research objectives. We used the tool to assess the scalability of the 

simulation results, the impacts of applying certain variables as constant values, as 

well as the performance of the switching programs produced by the tool for different 

operating scenarios. 

7.2 Major Contributions 

Our research has added the following contributions to the main body of knowledge: 

• The developed model for a DHWS is unique and novel. It accurately models 
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the heat transfer mechanism in a thermally stratified hot water storage tank. As 

a result, the predictions in power consumption, vertical temperature profile 

inside the storage tank, shower temperature and hot water consumption match 

actual measurements with acceptable margins of error.  

• The developed optimization algorithms are effective in producing switching 

programs that can be implemented practically. 

• The developed tool has the capability to perform system level simulations that 

include creating realistic domestic hot water loads, proposing practical 

optimized switching programs and evaluating the results for the 

implementation of a load management program in a power distribution 

network. It can be used as a useful tool for engineers to plan and design 

practical load management programs for a power distribution system. 

7.3 Suggestions for Future Work 

Although our work has fulfilled all the research objectives, further development 

work may be carried out to improve and extend the scope of the current research. We 

outline the following suggestions for future researchers to consider: 

• A small scale trial system implementing the switching programs proposed by 

the tool can be deployed to verify the performance of the tool. Field data and 

customer feedbacks collected in the proposed trial system are valuable 

information to validate and fine-tune the models in the tool.  

• Currently, the hot water system model has been validated for the most common 

type of DHWS used in Tasmania. The model can be further developed to 

include other types of hot water system that may operate differently, and have 

different sizes and rated powers.  

• Further research in optimization algorithms should be explored to further 

improve the effectiveness of the direct load control switching programs. 

Among other potential optimization methods, artificial neural network and 

genetic algorithm are two candidates which future research may investigate. 
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Appendix 1 Main flowchart of the DHWS model 
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Appendix 2 Flowchart for layer zone 
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Appendix 3 Flowcharts for hot water consumption generator 
 

 

Flowchart to determine the family type of a 

household. 

 

Schd equals 1, 2 or 3 correspond respectively 

to a household taking morning showers only, 

evening showers only, or morning and evening 

showers. 
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Flowchart to create a shower schedule. 

 

Flowchart to determine the number of showers. 

The tool specifies shwrMax as the maximum 

number of showers taken in a household. 
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Flow chart to determine the length of a shower. 

 

Flowchart to determine the gap between two 

successive showers. 
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Flowchart to create a shower profile. 

 

Flowchart to determine the low volume usage 

at a time interval. 
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Flowchart to determine the starting time of a shower. 
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Appendix 4 Questionnaire of hot water use survey  
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