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ABSTRACT 

Insulin-mediated increase in total blood flow has been proposed to be an important 
factor in determining insulin-mediated glucose uptake in skeletal muscle. However, 
not all researchers have seen an effect of insulin on limb blood flow in humans when 
the concentration of insulin and the time of exposure to hyperinsulinemia are 
physiologically meaningful. Recently, it has been revealed that insulin has a second 
hemodynamic action in skeletal muscle to recruitment rnicrovascular perfusion, an 
effect that is dissociable from increases in total blood flow. This micro vascular action 
of insulin has been demonstrated to occur at a physiological dose of insulin and 
precede insulin-mediated increase in bulk blood flow. In conjunction with our 
observations in the constant-flow pump-perfused rat hindlimb that flow redistribution 
between nutritive and non-nutritive routes is able to control muscle metabolism, we 
proposed that a capillary recruitment resulting from flow redistribution by insulin 
rather than increase in total flow has physiological significance in determining 
insulin-mediated glucose uptake in muscle. 

The aims of the thesis were twofold. The first was to investigate the regulatory aspects 
of insulin-mediated capillary recruitment in relation to insulin-mediated increase in 
total blood flow and glucose uptake. To this end, hyperinsulinemia euglycemic 
clamps were performed in anaesthetized rats. Femoral blood flow was measure by 
Transonic flow probe. Capillary recruitment was determined by 1-MX metabolism 
and contrast-enhanced ultrasound (CEU). Hindleg glucose uptake and muscle glucose 
uptake were also determined. In response to various doses of insulin, capillary 
recruitment showed a higher sensitivity to plasma insulin than total blood flow and 
muscle glucose uptake. In response to a termination of a physiological 
hyperinsulinemia, the reversal of insulin-mediated capillary recruitment had a similar 
time-course with that of total blood flow but slower than the reversal of insulin­
mediate glucose uptake. In response to TNFa, insulin-mediated capillary recruitment 
and glucose uptake showed a close coupling; both were opposed at low but not high 
insulin concentrations. The second aspect of the thesis was to seek anatomical 
evidence that insulin-mediated capillary recruitment may result from a redistribution 
of flow from non-nutritive vessels to nutritive capillaries. In the constant-flow pump­
perfused rat hindlimb, flow routes were mapped using either perfusion fixation with 
glutaraldehyde or fluorescent dextran under basal, predominantly nutritive or non­
nutritive conditions created by vasoconstrictors. The results suggest that non-nutritive 
vessels are on average of greater diameter than capillaries and found in connective 
tissue between the fibres. 

Overall, these findings support a physiological contribution of insulin-mediated 
capillary recruitment to insulin-stimulated glucose uptake and suggest that total flow 
and capillary recruitment are regulated by insulin via different mechanisms. Insulin­
mediated capillary recruitment may result from flow redistribution from non-nutritive 
connective vessels to nutritive capillaries. 
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CHAPTER 1 - INTRODUCTION 

CHAPTERl 

INTRODUCTION 

Insulin, apart from its effects on promoting glucose metabolism in skeletal muscle, 

also has effects on vasculature in this tissue. Its vascular actions in muscle have been 

demonstrated so far to have two aspects. One is to increase total limb blood flow. The 

other is to enhance microvascular blood volume (capillary recruitment). It has long 

been recognized that perfusion of muscle tissue is important for adequate delivery of 

hormones and nutrients. Thus, the hemodynamic actions of insulin lead to the notion 

that insulin may improve the access for glucose and itself to skeletal muscle and in 

tum to facilitate muscle glucose uptake. However, recent studies suggest that insulin­

mediated increase in bulk blood flow require relatively high insulin concentrations 

and long exposure to this hormone (325, 347). Thus, questions arose as to whether 

stimulation of bulk blood flow is a physiological action of insulin and whether it 

contributes to insulin-mediated muscle glucose uptake at physiological conditions. On 

the other hand, insulin-mediated capillary recruitment appears to be an independent 

vascular phenomenon and dissociable from insulin-stimulated total blood flow (273, 

333). Thus the possibility remains that improving insulin and glucose delivery 

through microvascular rather than macrovascular action of insulin may facilitate 

insulin-mediated glucose uptake at physiological conditions. In deed, capillary 

recruitment has been considered as a particularly important regulator of nutrient 

exchange between vasculature and muscle tissue (279). Furthermore, this dissociation 

of capillary recruitment from increase in total blood flow indicates that insulin may 

induce flow redistribution within skeletal muscle and possibly increase nutritive flow 

at the expense of non-nutritive flow. 

1.1 INSULIN-MEDIATED CAPILLARY RECRUITMENT 

1.1.1 Insulin-Mediated Increase in Total Blood Flow to Skeletal Muscle 

1 



CHAPTER 1 - INTRODUCTION 

The vascular actions of insulin were first described shortly after the introduction of 

insulin into clinical practice. In 1939, Abramson and colleagues (3) reported that 

massive doses (40-280 Units) of insulin increased blood flow in human forearm, hand 

and leg. Similar effects of insulin to induce an increase in human forearm blood flow 

were also demonstrated in other clinical reports (4, 5, 83, 84). However, because these 

studies were associated with hypoglycemia, the effect of insulin could not be 

distinguished from that produced by hypoglycemia-elicited counter-regulatory 

hormone release. Much later in 1982, by a combination of the hyperinsulinemic 

euglycemic clamp and radiolabled techniques on normal conscious dogs, Liang and 

co-workers (186) observed a significant increase in blood flow in response to insulin 

in the absence of hypoglycemia. Although this study used pharmacological insulin 

doses (4 and 8 mU.min-1.kg-1), it clearly demonstrated that insulin-mediated 

vasodilation in muscle is due to a direct action of insulin rather than a consequence of 

changes in glycemia. 

More recent literature relating to insulin-mediated vasodilation shows certain parallels 

to the older reports. Thus, a number of in vivo studies have documented an effect of 

insulin to increase blood flow to skeletal muscle in both human (6, 76, 269, 314, 321, 

325, 335) and experimental animals (186, 278). However, there are considerable 

variations in the magnitude of insulin-stimulated vasodilation in the limb muscle 

among those reports and additionally some researchers failed to observe an increase in 

muscle blood flow by insulin (34, 86, 151, 164, 348). The location of the flow 

measurement, i.e. forearm or leg, seems unlikely to contribute the discrepant results, 

as blood flow rates measured in the same subject using the same technique, namely 

venous occlusion plethysmography in forearm and calf did not significantly differ 

under basal conditions or at any hyperinsulinemic level (325). This may be not 

unexpected when considering muscles of the leg and forearm have remarkable 

similarity in muscle fibre composition (87, 348) and rates of insulin-stimulated 

glucose uptake (232). Furthermore, methodological factors also do not appear to 

explain the contradictory data because significant flow changes have been reported in 

human subjects using plethysmography (6, 321, 325, 335), dye dilution (111), 

thermodilution (76, 171) and positron emission tomography (PET) combined with 

[150] H20 (269). Doppler ultrasound appears to be clearly less sensitive. Thus, 6h of 

sequential hyperinsulinemia with a supra-physiological end dose of insulin increased 
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CHAPTER 1 - INTRODUCTION 

blood flow on average by 113% when measured by venous occlusion 

plethysmography but only by 27% when measured with Doppler ultrasound (325). 

This may explain why Buchanan et al. (39) did not observe any flow response to 

maximal hyperinsulinemia (~5000mU.L-1 ) even after 4h insulin infusion in normal 

subjects. 

Based on existing data in the literature, Yki-Jarvinen and Utriainen (347) plotted the 

percent increase in flow against an insulin exposure index which was defined as the 

product of insulin dose (mU.min-1.kg-1
) times the duration of the infusion (h).The 

analysis revealed a significant correlation between these two variables, suggesting that 

the dose or/and duration of insulin infusion may contribute considerably to the 

discrepancies regarding to the stimulation of blood flow by insulin in muscle. fu fact, 

insulin has been reported to increase limb blood flow in a time- and concentration­

dependent fashion (171, 325). For instance, during a l.7mU.kg-1min-1 

hyperinsulinemia, calf blood flow increased 39% at 2h and 91%at6h (195). When 

limb blood flow was measured during a similar duration of insulin infusion (90-

lOOmin), a 50% increase was detected at an insulin concentration of 92mU.L-1 

(552pM) in one study (314), whereas a 35% increase was recorded in another study 

with insulin level of 376pM (335). Therefore, measuring flow at different insulin dose 

and/or at different stage during insulin infusion is likely to have different blood flow 

response. An increase in blood flow is more apparent when insulin is administrated 

for a longer time and at higher doses. 

Nevertheless, for flow to increase to skeletal muscle there must have been an increase 

in cardiac output or redistribution of flow between organs. Insulin has been reported 

to cause an increase in cardiac output in lean subjects at circulating levels of 468pM 

and 12870pM but not 212pM (19). Mean arterial pressure during hyperinsulinemia 

was shown to either not change (171, 225, 335) or slightly decrease (19, 325). 

Therefore, peripheral vascular resistance which is calculated from mean arterial 

pressure divided by cardiac output may decline with insulin. Moreover, there is 

evidence that different vascular beds appear to respond differentially to insulin. fu 

experimental animals, hindquarter and renal vascular beds dilated whereas the 

superior mesenteric vascular bed constricted in response to insulin at a range of 

concentrations (955-22850pM) (110, 259). Baron and Brechtel (19) examined limb 
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CHAPTER 1 - INTRODUCTION 

and systemic vascular resistance during hyperinsulinemia ( 468pM and 12870pM) and 

observed a greater fall in vascular resistance in human leg. These researchers (19) 

further concluded that insulin differentially regulates vascular resistance and 

preferentially dilates in skeletal muscle where 80% of the insulin-mediated glucose 

uptake occurs (20, 73). 

1.1.2 Capillary Recruitment in Skeletal Muscle 

Using various methods and techniques such as microsphere deposition (245, 255, 

256), autoradiography (306), positron emission tomography (PET) combined with 

inhalation of [150] H20 (326, 330), intravital microscopy (190), it was convincingly 

demonstrated in both human (326, 329, 330) and animals (149, 190, 245, 255, 256, 

306) that microcirculatory perfusion in resting skeletal muscle is neither continuous 

nor uniform, but rather intermittent and heterogeneous in its distribution. Thus 

capillaries in skeletal muscle are not always equally perfused but rather display "on­

off' or alternating perfusion. fu fact, there are reports that two thirds of the total 

capillaries are actually reserved in skeletal muscle under resting conditions (139) and 

stimuli such as exercise is able to recruit capillaries resulting in a more homogenous 

perfusion. This capillary recruitment would allow a greater exchange surface area for 

substances and better oxygen and nutrient delivery, thus has been considered as a 

particularly important regulator of nutrient exchange between vasculature and muscle 

tissue (279). Given that exercise also increases the total muscle blood flow rate, it 

appears tempting to conclude capillary recruitment and increase in bulk blood flow 

are necessarily associated. However, a study by Honig et al. (139) revealed that this 

is not the case. These researchers performed a careful, quantitative histomorphometric 

analysis of the responses of the muscle microvascular perfusion to graded electrical 

stimulation. The results showed that the recruitment of reserved capillaries occurred at 

lower levels of electrical stimulation and were essentially completed prior to the effect 

of muscle stimulation to enhance bulk flow, suggesting muscle capillary recruitment 

does not require the occurrence of an increase in bulk flow. Furthermore in the same 

study (139), denervation increased flow by three fold in autoperfused muscle but did 

not affect the capillary flow distribution, indicating an increase in total flow does not 

necessarily result in capillary recruitment. The dissociated responses of capillary flow 

and bulk flow also occurred in other experimental conditions including anaesthetics 

(91), 02 tension changing (190), vasodilation using vasoactive agents (106) and 
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CHAPTER 1 - INTRODUCTION 

exercise (114). Therefore, it appears that microvascular and macrovascular perfusion 

in muscle are differentially regulated and it is possible that different stimuli have 

different mechanisms to exert their vascular control. One general mechanism 

considered is that capillary flow and bulk flow are regulated at different vascular 

segments. Thus, whereas resistance vessels control total flow to muscle, the terminal 

arterioles regulate microvascular perfusion and determine the flow redistribution 

within muscle tissue (218). Nevertheless, the dissociated stimulation of capillary 

recruitment and increase in bulk flow leads to the key question of whether insulin has 

a micro vascular action in skeletal muscle in addition to its effect to enhance bulk flow. 

1.1.3 Evidence for Capillary Recruitment by Insulin in Muscle 

Raitakari and colleagues (267) used positron emission tomography (PET) with 

inhalation of [150] carbon monoxide ([150] CO) to determine human skeletal muscle 

blood volume in the basal state and during hyperinsulinemia. PET allows localization 

and quantitation of radioactive tracer concentration in different tissues. By 

determining the steady-state muscle tissue [150] CO radioactivity concentration and 

the [150] CO activity concentration in blood, they were able to quantify skeletal 

muscle blood volume. These authors estimated that in healthy subjects the average 

muscle blood volume at basal to be approximately 3ml.100-1g muscle. During 

pharmacological hyperinsulinemia (3200pM), muscle blood volume increased by 9%. 

Furthermore, insulin-stimulated muscle blood volume was strongly correlated with 

insulin-mediated whole body glucose disposal (267). Using PET to measure muscle 

tissue microvascular blood volume has the advantage of being non-invasive. However 

the application of the hematocrit ratio between total body tissues and great veins into 

the calculation instead of human skeletal muscle hematocrit may have limited the 

accuracy of the evaluation (267). Moreover, the radiation exposure and high expense 

also creates difficulties for a wider utilization of this method. Most importantly, PET 

scanning measures total vascular blood volume thus has the potential disadvantage of 

being strongly influenced by blood in larger vessels, thereby may not show the same 

responses as the microvasculature to vasoactive agents. Nevertheless, this method 

provided valuable insight into the vascular action of insulin and indicates insulin may 

have a vasodilator effect in the muscle microvasculature in viva. 
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CHAPTER 1 - INTRODUCTION 

Subsequently, Bonadonna et al. (35) examined the wash-out curves of a non­

metabolizable extracellular marker (l-[3H]-L-glucose) in the deep forearm vein after a 

pulse injection of this maker into the brachial artery. Based on classic kinetic theory 

(178), they reasoned that the kinetics of a non-metabolizable extracellular marker 

such as L-glucose can be used to measure the accessible extracellular volume and 

therefore provides an index of the amount of the tissue available for metabolic 

exchange with the blood stream (35). Thus, during a supra-physiological 

hyperinsulinemia (5600pM), these researchers observed a 39% increase in muscle 

tissue drained by the deep forearm vein. Based on this observation it was concluded 

supra-physiological hyperinsulinemia increased limb blood flow which was 

associated with tissue recruitment. However, because vascular volume only 

constitutes approximately 10% of the extracellular space, capillary recruitment is not 

assessed directly with this method. 

A direct measurable effect of insulin to increase capillary recruitment in muscle, both 

in animals (273) and in humans (62) has been recently reported by us. This new 

observation relies on the development of specific techniques for the assessment of 

changes in flow distribution within muscle tissue. One of these techniques is based on 

the metabolism of 1-methylxanthine (1-MX), an exogenous substrate for xanthine 

oxidase (XO). In skeletal muscle, XO is expressed primarily in the endothelial cells of 

capillaries and small arterioles but not large vessels or muscle itself (132, 156). Thus 

an increase in capillary exchange surface area (capillary recruitment) will increase the 

exposure of its substrate to this enzyme. This in tum will result in an increase in the 

metabolism of the substrate provided the concentration of the substrate is saturating. 

1-MX was chosen as substrate because it met a number of prerequisites. Firstly, it is 

converted by XO solely to 1-methylurate (1-MU) (67, 273). 1-MU is not further 

metabolized by any tissue nearby; hence the recoveries are quantitative (67). Secondly, 

1-MX is non-vasoactive on its own over the concentration range at which its 

metabolism could be readily studied (273). Thirdly, 1-MX and 1-MU can be readily 

separated from each other as well as from physiological purine- and pyrimidine-based 

compounds by current separation technologies (273). Most importantly, changes in 1-

MX metabolism correlated positively with changes in the proportion of nutritive 

capillary flow in perfused muscle under a number of conditions (52, 271, 349). 

Therefore, we believe the changes in 1-MX metabolism are indicative of capillary 
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recruitment. With this background, we found during a high physiological 

hyperinsulinemia (lOmU.min-1.kg-1), insulin in viva increased 1-MX metabolism by 

50% in experimental animals in association with stimulated glucose uptake in muscle 

(273). This finding firmly established that insulin in viva has a microvascular action to 

induce capillary recruitment that may play a role in determining insulin-mediated 

glucose uptake. Insulin at this dose also increased femoral blood flow significantly 

(273). However, an increase in femoral blood flow of similar magnitude induced by 

epinephrine changed neither the capillary recruitment measured by 1-MX metabolism 

nor the muscle glucose uptake in anesthetized animals (273), suggesting that an 

increase in total blood flow does not necessarily result in capillary recruitment and 

enhanced glucose uptake. 

Another technique that we have adapted to quantify capillary perfusion in skeletal 

muscle is contrast-enhanced ultrasound (CEU) imaging, a method that has been used 

extensively in the past to measure microvascular flow in the myocardium (191, 244, 

337). This method involves a vascular administration of perfluorocarbon gas-filled 

albumin-coated bubbles as contrast enhancing agent. When exposed to a high-energy 

ultrasound pulse, these microbubbles are destroyed and simultaneously generate an 

acoustic signal which is proportional to microbubble concentration within the 

vasculature under the ultrasound beam. Essentially, all the microbubbles in the 

ultrasound probe field are destroyed by an initial pulse of high-energy ultrasound. By 

step-wise prolonging the time between two successive ultrasound pulses, the 

vasculature is progressively replenished with microbubbles. At the end, all the 

microvessels will be refilled with microbubbles and a further increase in pulsing 

interval will not further increase the acoustic signal. Thus, the plateau acoustic signal 

(measured as video-intensity) is indicative of capillary blood volume. Because the 

microvascular rheology of micro bubbles is similar to that of red blood cells (157), the 

reappearance rate of micro bubbles provides a measure of cell velocity in the 

capillaries. Furthermore, in contrast to PET scanning used by Raitakari et al. (267), 

CEU allows background subtraction of the tissue image to eliminate signal from large 

vessels which fill very rapidly, providing a more precise measurement of capillary 

flow. By this approach, we assessed changes in capillary blood volume in skeletal 

muscle in response to insulin in both human forearm (62) and the rat hindlimb in viva 

(66, 333). In both cases, compared with the baseline values, insulin administration 
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increased microvascular perfusion and capillary blood volume was increased more 

than two-fold in response to physiologic insulin (3mU.min-1.kg-1
) in anesthetized rats 

(66). Moreover, capillary recruitment in response to insulin or exercise measured by 

CEU correlated well with values obtained using 1-MX metabolism (50). 

Laser Doppler flowmetry (LDF) is the third approach that we have employed to 

investigate the effects of insulin on skeletal muscle tissue perfusion. For LDF 

measurements it is generally thought that movement of the blood cells causes a 

frequency shift with some of the photons also scattered or absorbed by the tissue. 

Doppler frequency shift carries information about the movement and concentration of 

the cells. LDF probes are thus considered to provide a measure of tissue perfusion and 

have recently been used as a method for the continuous measurement of blood flow in 

small, discrete areas of various tissues (49, 158, 194, 236). We applied this technique 

to rats under the euglycemic hyperinsulinemic clamp (lOmU.min-1.kg-1
) and observed 

an increased laser Doppler signal coincident with insulin-mediated glucose disposal in 

hindlimb muscle (48). This would lend support to the findings with 1-MX metabolism 

and CEU. In addition, there is evidence that LDF is indicative of microvascular flow 

rather than bulk flow as LDF signal was unaffected when femoral blood flow 

increased by 49% during adrenaline infusion (48). This is in accordance with the 1-

MX metabolism data where bulk flow increases in response to adrenaline 

administration were not accompanied by capillary recruitment (273). 

1-MX metabolism, CEU and LDF each depends on a different principle to provide 

information on skeletal muscle microvascular perfusion. Euglycemic 

hyperinsulinemia induced a positive response of all the three measurements, 

indicating that insulin stimulates capillary recruitment and improves perfusion in 

muscle tissue. An increase in femoral flow in anesthetized rats during adrenaline 

infusion affected neither 1-MX metabolism nor LDF signal, consistent with the 

concept that total blood flow and capillary recruitment are two separate vascular 

events in muscle. 

1.2 INSULIN-MEDIATED CAPILLARY RECRUITMENT AND INSULIN­

MEDIATED GLUCOSE UPTAKE IN SKELETAL MUSCLE 
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1.2.1 Insulin's Hemodynamic Actions and Insulin-Mediated Glucose Uptake in 

Skeletal Muscle 

Based on their observations (23, 171, 172), Baron and his colleagues pioneered the 

concept that insulin acts as a vasodilator and can thereby control the access of itself, 

glucose and other nutrients to skeletal muscle. They demonstrated that insulin 

increased total muscle blood flow in lean healthy subjects in a time- and dose­

dependent manner. In addition, an impaired insulin-mediated whole body glucose 

disposal in obese and diabetic subjects was paralleled by a decreased effect of insulin 

to stimulate skeletal muscle blood flow (23, 171, 172). The magnitude of insulin­

mediated leg flow blood flow response during systemic hyperinsulinemia was 

significantly correlated with insulin-mediated whole body glucose disposal in 

populations with varying insulin sensitivity (26, 171, 172, 201). Using Positron 

emission tomography (PET), Yki-Jarvinen and colleagues were able to measure total 

limb blood flow as well as muscle flow. In accord with Baron's reports, their results 

demonstrated that skeletal muscle explained 70% of the increase in leg blood flow 

with insulin (268) and there was a co-localization of insulin-stimulated muscle blood 

flow with regional glucose uptake in normal subjects during a hyperinsulinemia 

clamp (326). Moreover, vasodilation induced by the local intra-arterial infusion of 

insulin/glucose was also demonstrated to be functionally linked to whole-body 

insulin-mediated glucose uptake in lean healthy subjects (57). However, despite the 

compelling correlation, other investigators have questioned the physiological 

relevance of insulin-mediated increase in bulk blood flow as a determinant of muscle 

glucose uptake (347). Thus in human forearm, Utriainen et al. (325) demonstrated 

maximal glucose arteriovenous difference was achieved at the high physiological 

insulin concentration (61mU.L-1
, -366pM) that only minimally stimulated forearm 

flow. With further increasing insulin to supra-physiological level (462mU.L-1
, 

-2776pM), glucose extraction did not increase further but forearm blood flow 

increased progressively resulting in a further increased forearm glucose uptake. Based 

on these observations, these researchers concluded that blood flow becomes an 

important determinant for glucose uptake only at a supra-physiological insulin 

concentration (325). Although Laakso et al. (171, 172) reported the half-maximal 

insulin concentrations for blood flow stimulation to be physiological and similar to 

that for glucose uptake in human leg (266pM and 420pM respectively), most of the 

studies reporting an increase in total flow with insulin use.d supra-physiological dose 
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insulin (22, 35, 269), in keeping with Utriainen's conclusion (325). Fugmann et al. 

(108) conducted a time course study to examine the relative importance of blood flow 

and glucose extraction as determinants of insulin-mediated glucose uptake during a 

hyperinsulinemic clamp that raised plasma insulin to 92mU.L-1
. These researchers 

demonstrated the increase in forearm blood flow was preceded by glucose extraction 

and blood flow kept increasing during prolonged insulin infusion while glucose 

extraction remained constant. These findings are in accordance with studies of Laakso 

et al. (171) and Utriainen et al. (325). Thus it was concluded that glucose extraction is 

the principal determinant of forearm glucose uptake early after induction of 

hyperinsulinemia and that only during prolonged elevation of plasma insulin was the 

insulin-mediated increase in blood flow deemed to play an important role (108, 325). 

Since insulin is secreted in a phasic manner in response to food and its level rises and 

falls rapidly, whether the slow increase in bulk blood flow plays a role in determining 

insulin-mediated glucose disposal is questionable. 

Even so, there remains considerable interest in the possibility that insulin-mediated 

hemodynamic actions are somehow linked to improving access for insulin and 

perhaps glucose and more particularly, that a defect in this process might be 

responsible for part of the insulin resistance in muscle of type 2 diabetics. As 

discussed in section 1.1.3, we (62, 273) and others (35, 267) have reported insulin to 

have a second hemodynamic action of increasing microvascular volume (capillary 

recruitment) that is independent and thus dissociable from insulin's effect on total 

blood flow (273). By using a number of interventions in rats (58, 272, 331, 336, 350) 

we showed a tight link between insulin-mediated capillary recruitment and glucose 

uptake in muscle and further suggested that about 50% of the glucose uptake in vivo 

may be accounted for by capillary recruitment. However, since a major concern as to 

the relationship of insulin-mediated increase in bulk blood flow and metabolic actions 

is related to the dose and time characteristic of insulin action, detailed studies to 

lineate the dose and time-course response of insulin-mediated capillary recruitment 

may be critical to further establish a relation between insulin's microvascular action 

and metabolic effect in skeletal muscle. Thus, we performed a time course study in 

rats and revealed that insulin at physiological dose recruited microvasculature within 

5-lOmin, and this preceded both activation of insulin signalling pathways and 

increases in muscle glucose disposal as well as changes in total limb blood flow (332, 
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333). The quick onset of insulin-mediated capillary recruitment suggests capillary 

recruitment is a primary action of insulin and likely to play an important role in 

facilitating insulin action to enhance muscle glucose uptake. However, to consolidate 

this view and to obviate the other concern that is related to insulin-mediated total 

blood flow, a dose-response of insulin-mediated capillary recruitment and its relation 

to glucose uptake still needs to be determined. 

1.2.2 Influence of Vasoactive Agents on Insulin-Mediated Muscle Glucose 

Uptake 

As discussed above, the role of insulin-stimulated increase in total blood flow as a 

determinant of glucose uptake remains controversial. Investigators reasoned that if 

blood flow is important for insulin-mediated glucose uptake, augmenting or 

restricting total blood flow during insulin exposure using vasoactive agents should 

modulate insulin-mediated glucose uptake accordingly. However, studies aimed at 

testing the role of total blood flow as a determinant of insulin-stimulated glucose 

uptake by decreasing or increasing total flow using vasoactive agents yielded 

inconsistent results. Thus sodium nitroprusside (SNP) (224, 258, 285) adenosine (223) 

and bradykinin (174, 233) when infused locally in human markedly increased limb 

blood flow, but did not increase muscle glucose uptake. Methacholine (Mch) on the 

other hand, has been reported in both human (25, 27, 285) and experimental animals 

(197) to significantly augment limb blood flow as well as glucose uptake into muscle. 

Decreasing flow using L-NMMA (26, 308) was associated with a 50% reduction in 

insulin-mediated muscle glucose uptake but had no effect on whole body glucose 

disposal. Interpretation of these studies was confounded by a possible direct metabolic 

action of the vasoactive agents as vasoactive actions of some compounds such as SNP, 

Mch and L-NMMA involve nitric oxide (NO) and NO itself has been demonstrated to 

stimulate glucose uptake in incubated muscle (13, 89, 160). However, discrepancies 

among studies do not appear to relate to the possible metabolic action of NO because 

both increased (25, 27, 197) and unaffected (224, 258) insulin-mediated glucose 

uptake have been observed during a NO-dependent vasodilation. Alternatively, 

varying glucose extractions across the skeletal muscle among studies may play a role 

in causing inconsistent results. Based on Renkin's arguments (279), increases in blood 

flow would not be expected to significantly impact the uptake of substrates with a low 

11 



CHAPTER 1- INTRODUCTION 

extraction fraction across a vascular bed. Thus in the context of muscle glucose 

uptake, one would expect a change in blood flow rate only to have a greater 

modulating effect on glucose uptake with relatively higher glucose extraction across 

skeletal muscle. However there is more than circumstantial evidence suggesting this is 

not the case when it comes to comparing effects of various vasoactive agents on 

muscle glucose uptake. Thus, in post-absorptive states where the arterial-venous 

glucose gradient across skeletal muscle is only 0.l-0.2mM, significant increases in 

blood flow with bradykinin (233) or SNP (285) had no effect on glucose uptake. 

When glucose extraction across skeletal muscle was increased to 20-49% using a 

physiological or high physiological hyperinsulinemia clamp, superimposed infusion 

of bradykinin (174, 233) or SNP (224, 258) increased limb flow remarkably but again 

did not affect insulin-stimulated glucose uptake. In contrast, vasodilation induced by 

Mch was accompanied by an increase in muscle glucose uptake across a wide range 

of glucose-extraction from 2% in post-absorptive state (285) to ~70% during a 

hyperinsulinemic clamp (27). Overall, a positive relation between changes in total 

blood flow and insulin-mediated muscle glucose uptake are not compelling. Rather, 

this would be consistent with studies on perfused hindlimb where two types of 

vasoconstrictors had opposite effects on muscle metabolism through controlling flow 

redistribution (51) within in muscle without altering total blood flow (will be 

discussed in section 1.5). Indeed, Mahajan et al. (197) have recently reported in 

experimental animals that local Mch with systemic physiological hyperinsulinemia 

which enhanced total limb blood flow as reported in human studies, increased insulin­

mediated capillary recruitment in association with a potentiation of insulin-mediated 

glucose uptake.'In the same experimental setting, bradykip.in which increased flow to 

a similar extent as Mch, had no effect on either insulin-mediated glucose uptake or 

capillary recruitment. In keeping with this, in a human study using PET to measure 

muscle flow heterogeneity, Pitkanen et al. (258) reported that SNP which increased 

total flow neither increased insulin-mediated muscle glucose uptake nor changed flow 

distribution within muscle tissue. Therefore, although similarly altering total blood 

flow, vasoactive agents appear to differently control microvascular perfusion or 

influence insulin-mediated capillary recruitment in vivo. These microvascular changes 

seem to play the key role in modulating insulin-mediated glucose uptake in skeletal 

muscle. 
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1.3 INSULIN RESISTANCE 

Insulin resistance, defined as a smaller than expected biological response to a given 

dose of insulin, is a fundamental component of the pathogenesis of many glucose 

disorder conditions including non-insulin-dependent diabetes mellitus (NIDDM) (71), 

obesity (171), hypertension (94, 261) etc. Incubated muscle preparations from insulin 

resistant obese and NIDDM patients had markedly lower rates of insulin-mediated 

glucose transport (80) and subsequent glucose metabolism (102), even at the maximal 

insulin concentration (lOOOOmU.L-1
) (7), indicating a significant defect in insulin 

action at the level of the myocytes. However, given the recent evidence that insulin 

has hemodynamic actions which may contribute to insulin-mediated glucose uptake in 

muscle in viva, it is possible that insulin resistance also has a hemodynamic 

component and impairment in the hemodynamic mechanisms or vascular reactivity 

may contribute to the pathology of insulin resistance in viva. 

1.3.1 Impaired Insulin-Mediated Capillary Recruitment 

Recently, we have generated three states of acute insulin resistance in anesthestized 

rats and demonstrated that insulin-mediated capillary recruitment determined by 1-

MX metabolism was indeed impaired in these animals. Firstly, insulin resistance was 

induced by systemic administration of a vasoconstrictor (a-methylserotonin, a-met5-

HT) indicated by a 56% reduction in insulin-mediated glucose uptake across rat 

hindlimb (272). This treatment of a-met5-HT infusion commenced before insulin 

infusion prevented insulin-mediated increase in total blood flow and inhibited insulin­

stimulated capillary recruitment indicated by 1-MX metabolism by 71 %. Furthermore, 

a-met5-HT infusion alone had no effect on glucose metabolism, suggesting no direct 

receptor-mediated metabolic action occurred on skeletal muscle. This is supported by 

previously studies demonstrating no effects of serotonin on glucose uptake in the 

isolated incubated muscles where a functional vascular delivery is absent (275). 

Therefore, a-met5-HT-mediated inhibition of insulin-stimulated glucose uptake in 

viva appears to be due to its vascular actions. Moreover, hindleg glucose uptake was 

significantly correlated to 1-MX metabolism but not total blood flow (272), 

suggesting a defect in insulin-mediated capillary recruitment due to a-met5-HT may 

be a determinant contributor to a-met5-HT-induced insulin resistance in these animals. 
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The second state of insulin resistance was generated by TNFa infusion (350). 

Elevated serum TNFa levels are associated with number of insulin resistant 

conditions in rodents and humans such as obesity and diabetes (179, 211, 229) and 

have been implicated as the cause of insulin resistance observed in septic shock and 

infection (192, 235). Consistently lowering the active level of TNFa in viva by 

infusion of a TNFa receptor IgG fusion protein (142), a soluble TNFa-binding 

protein (143), or polyclonal anti-TNFa (38) in insulin-resistant animal models 

improves insulin action. Thus, it is not unexpected to observe in our study a 50% 

reduction in insulin-mediated muscle glucose uptake in anesthetized rats treated by 

acute TNFa infusion started lh before and 2h during euglycemic hyperinsulinemia 

clamp (lOmU.min-1.kg-1
) (350). Notably, this marked insulin resistance was 

associated with a complete loss of insulin-mediated changes in blood flow and 

capillary recruitment, indicating a significant hemodynaniic component in TNFa­

induced acute insulin resistance (350). In keeping with this, TNFa treatment up to 8h 

and 24h had no effect on insulin-mediated glucose uptake in incubated muscle 

preparations devoid of vascular involvement (109, 231). Furthermore, TNFa has been 

shown to interfere with insulin signalling pathway in bovine aortic endothelial cells 

(165) and vascular smooth muscle cells (113) where insulin may act to stimulate 

capillary recruitment. 

Elevation of plasma free fatty acid (FF A) levels by a combined infusion of intralipid 

and heparin was the third mean we used to induce insulin resistance in experimental 

animals (58). By this approach, we showed that 6h elevation of plasma FFA levels 

during a hyperinsulinemic-euglycemic clamp at physiologic insulin (3mU.min-1kg-1
) 

led to insulin resistance evidenced by 45% reduction in insulin-mediated glucose 

uptake by the rat hindleg and impaired insulin-mediated capillary recruitment 

determined as 1-MX metabolism. Furthermore, a positive correlation between hindleg 

glucose uptake and 1-MX metabolism was observed which contrasted with hindleg 

glucose uptake and femoral blood flow where there was no significant correlation. 

The mechanisms by which raising FFA concentrations results in insulin resistance are 

not fully understood although it is generally agreed that a direct inhibitory effect on 

skeletal muscle glucose metabolism is likely involved (92, 93). However, based on 

the recent findings that FFA elevation impairs endothelial function in humans (187, 
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310) together with our current observation, it is reasonable to propose that FFA 

elevation-induced insulin resistance in muscle may be partly due to an impairment in 

insulin's microvascular actions resulting in reduced access for insulin and glucose to 

myocytes. This may provide a novel mechanism for insulin resistance associated with 

obesity. In support of this, obese Zucker rats that have elevated plasma levels ofFFA 

(29) showed marked muscle insulin resistance in association with equally markedly 

impaired insulin-mediated capillary recruitment (336). 

Some researchers investigated skin microvascular perfusion and capillary recruitment 

as microvasculature in this tissue is readily accessible particularly in the human. Skin 

capillary density was measured using capillary microscopy and the increase in this 

parameter after arterial occlusion is regarded as capillary recruitment. By this 

approach, Seme et al. reported that recruitment of capillaries in human skin was 

induced during systemic hyperinsulinemia (409pM) (291) and positively correlated to 

insulin's metabolic actions (292). Furthermore, by simultaneously measuring 

intramuscular microvascular perfusion by implanted laser Doppler fluxmetry, the 

same group of researchers reported an augmented intramuscular reactive hyperaemia, 

indicating an association between skeletal muscle microvascular recruitment and skin 

capillary recruitment during physiological systemic hyperinsulinemia (68). There are 

some inconsistent results as to whether insulin increases basal capillary density since 

enhanced pre-arterial occlusion capillary density by insulin was reported in one 

occasion (291) but not the other (70) despite a similar circulating insulin 

concentration. Nevertheless, capillary recruitment after arterial occlusion is impaired 

in essential hypertensive (290) and obese (70) individuals with insulin resistance and 

in lean subjects during plasma FFA elevation (69). Given the demonstrated 

association between skin and intramuscular microvascular perfusion (68), it is likely 

that insulin-mediated capillary recruitment in skeletal muscle is also impaired in these 

insulin resistant humans. 

1.3.2 Impaired Insulin-Mediated Increase in Total Blood Flow to Skeletal Muscle 

There is evidence of impaired insulin-mediated increase in bulk blood flow in insulin 

resistant states. Baron and colleagues (171, 172) examined insulin action across a 

range of insulin sensitivity in lean insulin-sensitive subjects, obese and type 2 diabetic 

subjects. They demonstrated that there was a right shift in the dose-response curves 
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for both glucose uptake and insulin-mediated increase in leg blood flow in both the 

obese and diabetic subjects. The obese had similar maximal flow response to insulin 

compared to lean subjects but the insulin concentration for half maximal stimulation 

of leg blood flow was 3 fold higher than lean control whereas the maximal flow 

response in type 2 diabetes was much lower than lean and obese subjects. However, 

the association between impaired insulin-mediated flow response and insulin 

resistance has not been universally observed and appears more prominent when high 

insulin dose was applied. During supra-physiological systemic hyperinsulinemia 

(>2000pM), insulin-dependent diabetic patients (IDDM) characterized by insulin 

resistance in peripheral tissue (72, 75, 243) had markedly reduced insulin-stimulated 

blood flow compared to nondiabetic control individuals (23, 268). However, at 

physiological insulin concentration (-350pM), blood flow wasn't changed in either 

IDDM or control subjects (199, 346), indicating no impairment in flow response to 

insulin in IDDM at this physiological condition. Similarly, Baron et al (22) and Laine 

et al. (173) deployed supra-physiological hyperinsulinemia (2100 - 2700pM) and 

reported that impaired insulin stimulation of blood flow in skeletal muscle 

characterizes insulin resistance in essential hypertension, yet Natali et al (225) and 

Capaldo et al. (40) reported the opposite in studies where insulin level was raised 

either locally in forearm to 120mU.L-1 (720pM) or systemically to 360pM. A 

reduction in total skeletal blood flow response was also observed in type 2 diabetic 

(172) and obese (171) subjects at a high circulating insulin concentration, but not 

during a physiological hyperinsulinemia (500 - 600pM) (34, 71). The lack of a 

relationship between insulin resistance and defective flow response at physiological 

insulin concentrations in these human studies is mainly due to an inability to 

demonstrate an insulin-stimulated increase in total blood flow in healthy control 

subjects (34, 40, 71, 199, 225, 346). This is in accordance with the discussion in 

Section 1.2. l that the occurrence of insulin's stimulation of muscle blood flow 

appears to require high insulin concentration and prolonged exposure period. 

Therefore, some researchers have concluded that defects in glucose extraction 

predominate when insulin-resistant and sensitive individuals are compared using 

physiological insulin concentrations and defects in total blood flow distinguish 

between the groups in studies using supra-physiological insulin concentrations. It is 

important to note that defects in glucose extraction do not necessarily solely result 

from the metabolic impairment at myocytes but impaired microvascular exchange or 
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capillary delivery of insulin and glucose to muscle cells may also play a role. 

Furthermore, the relationship between impaired insulin-mediated increase in total 

blood flow and metabolic insulin resistance during supra-physiological 

hyperinsulinemia does not always hold, as some studies reported intact flow responses 

to supra-phyiological insulin in NIDDM (76, 326), obesity (240) and hypertension 

(145, 147). Overall the inability of insulin to enhance glucose uptake in skeletal 

muscle at supra-physiological concentration may be associated with a defect in insulin 

stimulation of total blood flow. However, at physiological insulin doses, an 

association between impairment in insulin's metabolic effects on glucose uptake and 

vascular action to stimulate total blood flow is not compelling. 

1.3.3 Endothelial Dysfunction 

Since a number of studies favour the involvement of endothelial cells and nitric oxide 

(NO) production in insulin-mediated vasodilation (will be discussed in section 1.6.2, 

(56, 288, 308, 331)), it has been proposed that the impaired insulin-mediated 

hemodynamic effects in insulin resistance states may reflect an endothelial 

dysfunction. Put in another words, insulin resistance may .be linked to endothelial 

dysfunction either as a cause or as a consequence. However, studies evaluating 

vascular function by examining vasodilator response to endothelium-dependent 

stimuli such as acetylcholine (Ach) and methacholine (Mch) in relation to insulin 

sensitivity have produced inconsistent results. In diabetics and obese patients with 

insulin resistance, impaired vasodilator response to Ach or Mch was reported in some 

(202, 206, 309) but not all studies (11, 315). In essential hypertensive subjects who 

had impaired insulin-mediated glucose uptake, Taddei et al. (316) reported a 

diminished increase in Ach-induced vasodilation, yet Natali et al. (226) saw no 

correlation between insulin sensitivity and Ach-induced vasodilation. Furthermore, 

young adults with low birth weight had reduced glucose disposal by insulin but had 

normal forearm blood flow response to Ach (134). The limb vasoconstrictor response 

to a NOS inhibitor is also used as an index of endothelial response but seems 

unaltered in insulin resistant conditions such as obesity (315) and hypertension (56). 

Collectively, an impaired flow response to endothelium-dependent stimuli is not 

consistently observed with insulin resistance. Moreover, in healthy individuals with 

varying insulin sensitivity, Petrie et al. (252) and Utriainen et al. (323) each reported 

no correlation between insulin sensitivity and Ach-mediated vasolidation whereas 
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Petrie et al. (252) found a correlation between insulin sensitivity and vasoconstrictor 

response to L-NMMA. Thus, whether insulin sensitivity and endothelial function are 

positively related, remains unclear. 

As defects in insulin's hemodynamic actions especially capillary recruitment appear 

to firmly associate with insulin resistance, the unclear relation between insulin 

resistance and endothelial dysfunction may indicate that insulin-mediated vascular 

action and endothelial function assessed by flow response to Ach/Mch or L-NMMA 

are not necessarily related. Indeed, Utriainen et al. (324) examined forearm blood 

flow response to Ach, L-NMMA and supra-physiologic hyperinsulinemia (5mU.min-

1kg-1) in normal subjects and found no correlation between insulin-mediated increase 

in blood flow and Ach-induced vasodilation although they did observe a correlation 

between flow response to insulin and L-NMMA. Indirect evidence in support of the 

Utriainen et al. observation (324) comes from findings suggesting that the 

mechanisms underlying the vasodilation induced by Ach and insulin appear to differ. 

Compared to Ach, the vasodilatory effect of insulin is slow. While Ach increases 

blood flow several-fold within minutes in normal subjects (46), doubling of blood 

flow with high insulin concentration takes hours (325). Furthermore, Taddei et al. 

(316) observed blunted endothelium-dependent responses (by Ach) in hypertensive as 

compared to normotensive subjects, but normal potentiation of Ach-induced 

vasodilation by insulin. There is also evidence that vascular reactivity assessed by 

flow response to L-NMMA may not reflect the vascular response to insulin. 

Vasoconstrictorresponse to L-NMMA in human leg was blunted by 2h ofFFA 

elevation while insulin-mediated blood flow was not affected till after 4h exposure to 

elevated circulating FFA levels (310). Taken together, vasodilation by insulin seems 

to differ from that induced by some other endothelium-dependent vascular stimuli. As 

a consequence, endothelial function assessed by determining vascular response to 

endothelium-dependent vasoactive agents dose not necessarily reflect the response of 

the vasculature to insulin which is associated with insulin resistance. This may partly 

explain the lack of clear relationship between insulin resistance and endothelial 

dysfunction. In keeping with this, insulin resistance was coincident with endothelial 

dysfunction during TNFa infusion (270) and FFA elevation (310), each of which was 

demonstrated to impair insulin-mediated capillary recruitment and increase in total 
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blood flow (58, 350). Additionally, Rosiglitazone, an insulin-sensitizing agent, 

improved insulin sensitivity and endothelium-dependent vasodilation (by Ach) in 

NIDDM and was accompanied by decrements in circulating levels of FF A and TNFa 

(222). 

1.4 RA TE-LIMITING STEPS IN INSULIN-MEDIATED MUSCLE GLUCOSE 

UPTAKE IN THE CONTEXT OF CAPILLARY RECRUITMENT 

It is well documented that insulin acts slower in vivo to enhance glucose utilization 

than in vitro. During a euglycemia hyperinsulinemic clamp, despite a rapid increment 

of plasma insulin, the rate to reach the half maximal activation of insulin-mediated 

whole body glucose disposal (209, 264, 265, 344) or limb muscle glucose uptake (214, 

230, 320) in lean healthy man has been reported to be 20-60min depending on the 

dose of insulin. In contrast, in incubated 3T3-Ll adipocytes, glucose uptake in 

response to insulin (lOOnM) reached maximum within 15min (98). In recent years, the 

cause of this slowness of insulin action in vivo has been suggested to be due to an 

endothelial barrier for the transcapillary transport of insulin. This view is evidenced 

by number of studies showing that steady state insulin concentrations in the 

interstitium of skeletal muscle (133, 137, 299) and abdominal subcutaneous tissue 

(155) or the hindlimb lymph (307) are lower than that in'plasma. As a consequence of 

this barrier, insulin in the interstitium and lymph is slower reaching equilibrium than 

in plasma (264, 344). Thus, there is both an attenuation and a retardation of the insulin 

signal as it crosses from the blood to the interstitium. From studies using cultured 

endothelial cells, the transendothelial transport of insulin appears to be both saturable 

and receptor-mediated (166). Evidence from in vivo studies remains controversial. In 

skeletal muscle of lean rats (137) and in human subcutaneous tissue (155), the 

plasma/interstitial concentration ratio of insulin increases in higher physiological 

concentration ranges then appears to be compatible with a saturable transport system. 

However, this was not evident in human muscle (299). In fact in the dog limb, Steil et 

al. (307) observed an increase in interstitial fluid-to-plasma insulin concentration ratio 

when the insulin dose was increased to pharmacological level. Based on this 

observation, these researchers further suggested a possible role of an increase in 

diffusion area due to capillary recruitment to account for ~his increase in transport 
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with pharmacologic plasma insulin (307). Nevertheless, whatever constitutes the 

barrier, there is evidence that movement of insulin from the interstitium seems further 

restricted in type 2 diabetic patients when compared to healthy controls. Thus, despite 

an increase in capillary filtration of albumin, there was a decrease in labelled insulin 

transfer in the same type 2 diabetic patients (327). 

Within the context of regulation, the dynamics of glucose· uptake by muscle follow 

closely the time rate of change of interstitial insulin rather than plasma insulin (264, 

344). Calibrated microdialysis technique in human muscle has also shown that the 

interstitial muscle glucose concentration is less than that in arterial plasma after 

overnight fasting, again supporting the view that free diffusion of glucose across the 

capillary endothelium limits glucose uptake (215). However, in insulin resistant 

muscle when steady state values are assessed, blood flow appears not to be limiting 

and vasodilatation due to insulin under clamp conditions leads to increased interstitial 

glucose levels without increasing the glucose transport rate (138). Indeed, neither the 

interstitial glucose concentration, nor the arterial-interstitial glucose differences 

differed between normal and type 2 diabetic subjects (300). From one point of view, if 

insulin resistance in muscle were to be the result of impaired capillary recruitment, 

then a larger gradient in steady state arterial-interstitial glucose concentration might 

be expected relative to normally responsive individuals not only before, but also 

following, insulin. However from another point of view and in the context of a 

temporal relationship, the time rate of delivery of insulin to the interstitium may be 

the key process in determining the relative insulin response in terms of muscle 

glucose uptake. Three recent studies from Peter Lonnroth's group have shown that in 

insulin resistant subjects there is a delayed rise in the interstitial concentration of 

insulin when compared to normal insulin responsive individuals (119, 297, 298). This 

finding is in harmony with earlier studies that showed a kinetic defect in the insulin­

mediated activation of glucose uptake in insulin resistant subjects such as obesity (265, 

320), hypertension (33) and type 2 diabetes (230, 320). Furthermore in these same 

studies from Peter Lonnroth's group, inulin (a polysaccharide of similar molecular 

size as insulin) delivery was similarly delayed in the insulin resistant subjects (297). 

Thus, such data would imply that a receptor-mediated transendothelial delivery of 

insulin, if present, plays only a minor role in normal insulin action and is not 

responsible for the delayed delivery evident in insulin resistant patients. Rather, these 

20 



CHAPTER 1 - INTRODUCTION 

findings are consistent with impaired capillary recruitment (54) that would lead to a 

delayed delivery evident in insulin resistant patients. 

Consistent with the view that endothelial barrier is rate-limiting for insulin-mediated 

glucose disposal in vivo, Wasserman's group using labelled glucose analogues and 

markers for the extra-cellular space, found a rate-limiting step for muscle glucose 

uptake during insulin stimulation to be glucose delivery from plasma to interstitium 

(123, 234), particularly in white fiber type muscle of the rat (121) In addition, this 

rate limiting step of glucose delivery became a greater barrier in high fat fed rats, 

which show insulin resistance (107, 122). Thus a rate-limiting step for glucose 

delivery into the interstitium of muscle exists at the endothelium, and it appears that 

this step is further limiting in diabetes as it is for insulin delivery. Yet another 

approach using magnetic resonance spectroscopy (MRS) (295), which has the 

advantage of being non-invasive, has shown that fatty acid-induced insulin resistance 

in humans resulted from a significant reduction in the intramyocellular glucose 

concentration, suggestive of glucose transport as the affected rate-limiting step. 

However, since MRS only identified a gradient from extracellular to intracellular 

glucose (295), it remains to be proven that the gradient did not occur between the 

plasma and interstitial glucose and thus reflect a rate-limiting step of glucose delivery 

induced by fatty acids. This would be consistent with the data of Halseth et al. (122) 

and our own findings that fatty acids prevented insulin-mediated capillary recruitment 

in rats in vivo (58). 

Overall, increasing evidence suggests the existence of an endothelial barrier that is 

rate-limiting for insulin-mediated glucose disposal in skeletal muscle. Considering 

the transfer of insulin from the plasma compartment to the interstitium in a kinetic 

sense, an insulin-mediated decrease in an endothelial barrier, an increase in delivery, 

or capillary recruitment are indistinguishable. Since insulin mediates capillary 

recruitment in vivo and this process is defective in a number of other models of 

insulin resistance (54), a defect in insulin signalling perhaps in the endothelial cells 

that are responsible for capillary recruitment may be a key issue. 

1.5 TWO VASCULAR ROUTES IN SKELETAL MUSCLE 
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1.5.1 Early Evidence for the Existence of Two Vascular Routes in Skeletal 

Muscle 

Evidence for the existence of two vascular routes in skeletal muscle can be traced 

back to over 30 years ago (17, 115, 144, 242). These early studies documented a 

mismatch between total blood flow into muscle and either metabolic and heat transfer 

responses (242), or the clearance of intramuscular injected or infused radioactive 

substances (16, 17). For example, using the isolated, constant-pressure perfused 

hindlimb or gastrocnemius muscle of the dog, Pappenheimer et al. (242) showed that 

when blood flow was reduced to the same degree either by stimulation of 

vasoconstrictor nerves or by the action of a low dose of epinephrine, the A-V 

difference in both 0 2 content and temperature decreased, or increased respectively. 

On another occasion, Barlow et al. (17) simultaneously recorded clearance of 24Na 

and venous outflow, and observed the capillary bed before, during and after 

intravenous infusions of adrenaline. These researchers found that the clearance of 
24Na injected into sites of semi-isolated biceps preparation known to consist mainly of 

muscle fibers was quicker than the clearance rate of 24Na injected into the 

intramuscular septa or tendons. Furthermore, intravenous infusion of epinephrine 

(-lOOnM) increased the 24Na clearance rate in the former tissue but slowed down or 

unaffected the rate in the latter. Based on these observations, it was proposed there are 

two separate circulatory systems within muscle, namely "nutritive" and "non­

nutritive". Vessels in the nutritive route are considered to be those that have extensive 

contact with the skeletal muscle cells (144) and thus promote nutrient exchange. The 

"non-nutritive" route (17), which is considered to serve as a functional vascular shunt 

thus minimizes the opportunity for nutrient exchange to occur between the muscle 

cells and the constituents of the blood, has been difficult to identify. There was a 

vigorous search for the existence of arteriovenous shunts which could serve as the 

non-nutritive route in skeletal muscle. However, the absence of large shunts in 

skeletal muscle was demonstrated by the failure to pass injected wax microspheres of 

20, 30 or 40µm either under basal conditions or during stimulation of vasodilator 

nerves (257). Furthermore, intravital microscopy studies by Hammersen et al. (125) 

failed to find any evidence of arteriovenous shunts in skeletal muscles from dog, 

monkey and rabbit. Using a double injection technique which succeeded in detecting 

arteriovenous anastomoses in rabbit's ear and cat's stomach (15), Barlow et al. (17) 
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failed to find evidence for arteriovenous anastomoses of a similar kind in skeletal 

muscle. In fact, these researchers indicated that the connective tissue vessels of the 

septa and tendon were likely the candidates for the non-nutritive route. In support of 

Barlow's conclusion and providing an anatomical basis, Grant and Wright (115) 

observed numerous arteriovenous channels wider than capillaries in the tibial tendon 

of the biceps femoris muscle in the rat. 

A direct demonstration that skeletal muscle has two vascular routes and the non­

nutritive routes may be those of connective tissue comes from studies on tenuissimus 

muscle which is accessible and transparent. Using intravi~al microscopy, it was 

revealed that the vasculature of this muscle preparation comprised transverse 

arterioles supplying both capillaries in muscle tissue proper and adjacent connective 

tissue. The two networks, muscle capillaries and adjacent connective tissue capillaries 

were found to be operating in parallel. By measuring the microvascular flow rates in 

both vascular networks in the tenuissimus muscle of anaesthetized rabbits, Lindbom 

and Arfors (188, 189) found flow to connective tissue to be 50% higher at higher 

environmental oxygen tension. Furthermore, using the same preparation, Borgstrom et 

al. (37) revealed that topically applied isoproterenol caused a marked redistribution of 

microvascular blood flow from muscle to connective tissue, indicating blood flow 

between the two vascular routes was controlled by vasoactive agents. However, 

despite these convincing observations in rabbit tenuissimus muscle, it is unknown 

whether this muscle preparation, which has special properties including high 

proportion of connective tissue vessels, is representative of the general anatomy of the 

bulk load-bearing cylindrical muscles. Although Myrhage and Eriksson (220) have 

argued that the vascular arrangement of the tenuissimus muscles existed as a basic 

unit in hind leg musculature, direct anatomical demonstration of non-nutritive routes 

in bulk muscle remains absent. 

1.5.2 Recent Evidence for Two Vascular Routes in Rat Hindlimb 

Work done in our laboratory has lent support to the notion of dual vascular routes in 

skeletal muscle. Using the constant-flow pump-perfused rat hindlimb, we have shown 

that skeletal muscle metabolism including oxygen uptake and lactate release as well 

as aerobic contractile performance is controlled by vasoconstrictors (51). One group 

of vasoconstrictors, typified by angiotensin II (All) or low-dose norepinephrine 
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(LDNE) acts to increase oxygen uptake (64) and lactate release (136) as well as 

contractile performance (276). A second group of vasoconstrictors, typified by 

serotonin (5-HT), has the opposite effect and although causing the same changes in 

perfusion pressure, acts to decrease oxygen uptake (82), lactate release (136) and 

contractile activity (81). These metabolic effects of vasoconstrictors in the perfused 

hindlimb appear to be due to their vascular actions and not due to direct actions on the 

skeletal muscle as all of these effects could be reversed by vasodilators (63, 345). 

Also the vasoconstrictors had no effect upon contractility or insulin-mediated glucose 

uptake in isolated incubated muscles where supply of nutrients is by diffusion and not 

dependent upon the vasculature (81, 274, 275). The vascular actions of these 

vasoconstrictors in the perfused hindlimb appear to involve flow redistribution as total 

flow into this preparation was held constant. This view is supported by some indirect 

evidence from vascular casts (228), surface fluorometry and dye entrapment (228) and 

changes in the pattern of red blood cell washout (227). Furthermore, studies with 

fluorescent microspheres to measure flow rates in individual tissues showed that flow 

had not been redistributed between muscle and non-muscle tissues, or between 

muscles, as a result of LDNE- or 5-HT-induced vasoconstriction (52). Thus it appears 

likely that distribution of flow either away from the nutritive to the non-nutritive route 

or vice a versa occurred within individual muscles (52). 

There is evidence that the non-nutritive route of the muscle of rat hindlimb lies in 

connective tissue. When pulses of fluorescein isothiocyanate dextran were infused 

into the hindlimb, the appearance of this substance in the tibial tendon vessels of the 

biceps femoris muscle of the perfused leg increased during 5-HT infusion which 

enhances non-nutritive flow in comparison to control (228). Consistently, when India 

ink was infused during perfusion, photomicroscopy of the India ink-filled vessels 

confirmed that the tendon vessels had generally increased in diameter in response to 

5-HT (228). Moreover, studies investigating the effects of flow redistribution induced 

by vasoconstrictors on the clearance rate of chylomicron emulsion showed a much 

higher capacity of non-nutritive routes to clear triglyceride, indicating that lipoprotein 

lipase was likely to be more concentrated in the non-nutritive than the nutritive route 

(59). Since adipose tissue contains more activity of lipoprotein lipase than muscle, the 

higher clearance of triglyceride during non-nutritive flow would suggest an active 

presence of adipocytes on this route. Indeed, adipocytes have been reported to be 
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present on connective tissue vessels in muscle, particularly on the vessels that pass 

through the perimysium and epimysium (220). Thus, it would appear likely that non­

nutritive vessels interpose within muscle but nourish fat cells and connective tissue 

rather than myocytes. 

Although the identity of the non-nutritive route has not been fully clarified, there is 

evidence that altering flow redistribution between nutritive and non-nutritive 

pathways is able to control the access of nutrients and hormones to the muscle fibres 

and thereby to influence muscle metabolism. For example, in the constant flow pump­

perfused muscle preparation the action of insulin to increase glucose uptake is 

markedly reduced when a vasoconstrictor is present that induces predominantly non­

nutritive flow (275). 

1.5.3 Evidence for Flow Redistribution Involvement in Insulin-Mediated 

Capillary Recruitment within Skeletal Muscle 

Muscle microvascular blood volume measured by CEU increased maximally within 

30min upon the commencement of insulin infusion (3mU.min-1.kg-1
) in anesthetized 

rats which contrasted with total blood flow that remained unaffected (333). fu addition, 

insulin administration at 3 or 40mU.min-1.kg-1 significantly increased human femoral 

blood flow to a similar degree by the end of 2h infusion, but increased microvascular 

blood volume in a dose-dependent manner with greater capillary recruitment seen at 

the higher dose (66). These observations demonstrated the ability of insulin to recruit 

microvascular perfusion in the absence of a change in bulk blood flow. For this to 

occur, insulin may have caused a sharing of existing flow, which would consequently 

result in a slowing down in cell velocity in the capillaries. However, direct 

measurement of cell velocity in muscle capillaries by CEU shows that cell velocity 

remained unchanged during the capillary recruitment process that occurred during the 

first 30min insulin infusion at 3mU.min-1.kg-1 (333) or durlng increasing insulin dose 

from 3 to 40mU.min-1.kg-1 (66). This finding favours an alternative explanation that 

insulin may have induced a redistribution of blood flow from "non-nutritive" to 

"nutritive" vascular pathways within muscle. This "non-nutritive" pathway may have 

a rapidly-filled characteristic so that blood in these vessels is subtracted from the 

background and thus not included in microvascular blood volume measurement. Also 

since the non-nutritive route is unlikely to have high levels of xanthine oxidase, 1-MX 

metabolism in this route would be relatively low. The probability of flow 
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redistribution within the muscle by insulin is further supported by the greater increase 

in insulin-mediated microvascular blood flow calculated from capillary blood volume 

and capillary cell velocity (337) in comparison to changes in total blood flow in 

experimental animals during physiological and supra-physiological hyperinsulinemia 

(66). 

1.6 POSSIBLE MECHANISMS FOR INSULIN-MEDIA TED MUSCLE 
CAPILLARY RECRUITMENT 

As discussed above, the two hemodynamic effects of insulin of bulk blood flow 

increase and capillary recruitment now appear to be independent of each other and 

capillary recruitment may involve an alteration in the proportion of nutritive to non­

nutritive flow within muscle tissue. Thus, whereas an increase in total blood flow is 

generally considered to result from a vasodilation presumably at the resistant vessels, 

capillary recruitment may result from a constriction at sites that control entry to non­

nutritive routes or relaxation of terminal arterioles controlling nutritive capillary bed 

or mostly likely the combination of both. 

1.6.1 Possible Vasoconstriction Mechanisms 

It is now generally recognized that in both animals and humans, acute insulin infusion 

(31, 181, 217, 248, 283) and carbohydrate ingestion (30) stimulate sympathetic nerve 

activity. In humans, acute physiological and pharmacological eulgycemia 

hyperinsulinemia is associated with an elevation of plasma circulating levels of 

catecholamine concentration (31, 283, 334) and norepinephrine spillover (181). 

Specifically, with the use of direct microelectrode recordings, it has been 

demonstrated that in humans, insulin stimulates marked sympathetic outflow to 

skeletal muscle (6, 31, 304, 335). The insulin-induced sympathetic activation is 

considered to cause vasoconstriction that which would be consistent with the marked 

fall in blood pressure following insulin injection absent in normal individuals, but 

revealed in patients with autonomic failure where there is no sympathetic pressor 

effect (203). Accordingly, the sympathetic outflow into muscle in response to insulin 

infusion would be expected to cause skeletal muscle vasoconstriction. In fact, this 

muscle sympathetic nerve activation (MSNA) has been suggested to be able to partly 

mask insulin-meditated vasodilation in human innervated limb (286). Thus, it is 

possible that MSNA induced by insulin selectively constricts non-nutritive vessels 
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and in tum redirects non-nutritive flow into nutritive routes. Although this hypothesis 

has not been experimentally explored, there is some evidence suggesting this 

possibility from current literature. MSNA appears to be a quick action of insulin. In 

non-diabetic Pima Indian men, systemic hyperinsulinemia (80mU.m-2 .min-1
) 

increased MSNA approximately 15min after the onset of insulin infusion and the time 

required to reach the half maximal effect was approximately 25min while calf blood 

flow showed significantly rise only after 45 min of insulin infusion (304). Similar 

early rise in MSNA in response to insulin infusion was also reported in other studies 

(6, 31). Such a time frame of MSNA would match our studies in rats where during 

physiological hyperinsulinemia (3mU.min-1.kg-1), capillary recruitment which 

preceded the increase in femoral blood flow, was activated within lOmin and reached 

maximal activation within 30min after the onset of insulin infusion (332, 333). The 

blood pressure was unchanged from baseline despite a marked increase in MSNA in 

those non-diabetic Pima Indian men during hyperinsulinemia (304), indicating that 

increase in MSNA after insulin infusion has no presser effect although there was .a 

lack of insulin-mediated vasodilation. It is possible that sympathetic nervous system 

response may be variable in different vascular beds (213) thus constriction in leg 

skeletal muscle may be cancelled by vasodilation in some other tissue or organ 

vasculature. However, it is equally possible that insulin constricts non-nutritive 

vessels via MSNA and simultaneously dilates terminal arterioles via other 

mechanisms. In this way, capillary recruitment occurs while vascular resistance in 

skeletal muscle remains constant. Furthermore, there is evidence that MSNA has. a 

high sensitivity to insulin. Using a low-dose hyperinsulinemic clamp to raise plasma 

insulin to a modest level (25µU.mr 1
), Hausberg et al. (131) reported MSNA rose 

from 16 bursts.min-1 (basal) to 25 bursts.min-1 which is similar to those reported by 

others using a much high~r dose of insulin (>50uU.ml-1
) (6, 334, 335). More 

importantly, forearm blood flow did not change at this very low dose of insulin (131). 

These observations suggest that MSNA is more sensitive to insulin than total blood 

flow and can be maximally activated at a relatively low dose of insulin. This would be 

in support of the hypothesis supporting the involvement of MSNA in insulin-mediated 

capillary recruitment. It is worth noting that Anderson et al. (6) reported in human 

limb that MSNA persists lh after insulin had been stopped. This slow reversal of 

MSNA would be in accordance with Berne's finding that MSNA had not returned to 
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the basal level at 90 min after carbohydrate ingestion (30). Thus if MSNA had 

involved in insulin-mediated capillary recruitment, it would be expected that the 

reversal of capillary recruitment after the removal of insulin from circulation would 

also be a slow process. Nevertheless, the mechanism for insulin sympathoexcitatory 

effects is not clear although it has been suggested to be mediated at least in part by a 

central neural action (216). The ability of insulin to cross the blood-brain barrier (200) 

and the presence of insulin receptors in several distinct regions of the central nervous 

system such as the median hypothalamus (287) appear to support this concept. fu the 

context of possible involvement of MSNA in insulin-mediated capillary recruitment, 

it may imply that capillary recruitment activation has a central neural component. fu 

experimental animals, the observation that systemic hyperinsulinemia stimulated 

capillary recruitment would be consistent with this notion (273). The effect of local 

insulin infusion has not been examined in these animals. However, in human forearm, 

the observation that an intra-brachia! artery insulin infusion activated capillary 

recruitment assessed by CEU (62) argues against a central neural involvement. 

Overall, although the mechanism(s) of insulin-associated MSNA remains elusive, the 

remarkable similarity in the time frame and dose responses to insulin between MSNA 

and capillary recruitment support the possibility of MSNA involvement in insulin­

mediated capillary recruitment possibly via constricting vessels preceding non­

nutritive route and directing flow into nutritive capillary bed while keeping a constant 

total blood flow and vascular resistance in skeletal muscle. 

Alternatively, vasoconstriction that could take part in insulin-mediated capillary 

recruitment may be caused by a vasoconstrictor released in response to insulin. One 

agent likely to fulfil this role is endothelin-1 (ET-1). ET-1 is produced and secreted by 

the endothelial cells and is the most potent and enduring vasoconstrictor among the 

natural products tested so far both in vivo and in vitro (112, 260, 303, 341, 342). Thus, 

it is not surprising that ET-1 has been demonstrated to be involved in the maintenance 

of resting vascular tone (42, 204) and that endothelial dysfunction occurs in various 

vascular diseases including obesity and type 2 diabetes (41, 202, 280). More 

importantly, insulin is known to stimulate the release of ET-I. Studies performed in 

cell cultures have demonstrated an increased ET-I gene expression in endothelial cells 

(237) and enhanced ET-1 release in both human endothelial and vascular smooth 

muscle cells (VSMCs) (8, 97). In whole body studies, after administration of insulin, 
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increased plasma levels of ET-1 have been observed in most (97, 254, 339) although 

not all (207) studies. Therefore, it is tempting to hypothesize ET-1 released in 

response to insulin may serve as a candidate to constrict non-nutritive vessels and 

redirect flow into nutritive capillaries leading to capillary recruitment and thereby 

facilitating insulin action. Unexpectedly, some whole body studies have established a 

relationship between ET-1 and insulin resistance. Elevated levels of ET-1 have been 

reported in a number of clinical disorders associated with insulin resistance, including 

type 2 diabetes (41, 96), obesity (95, 202) and hypertension (42, 184). A negative 

correlation between total glucose uptake and plasma ET-1 levels has been reported in 

NIDDM patients (96). Furthermore, intravenous infusion of ET-1 has been reported to 

be associated with decreased insulin-stimulated glucose uptake in humans (241) and 

animals (159) in viva. Interestingly, in vitro studies investigating a possible direct 

metabolic action ofET-1 have produced conflicting results, e.g., evidence of 

stimulatory (340) and inhibitory (45, 180) effects of ET-1 on insulin-mediated glucose 

uptake in isolated adipocytes. Idris et al. (148) further reported that acute exposure to 

ET-1 (30min) attenuated insulin-stimulated glucose uptake transiently in fat cells 

while acute or prolonged (24h) exposure of skeletal muscle derived L6 cells to ET-1 

had no effect on insulin-mediated glucose uptake. Idris et al. (148) have therefore 

suggested that insulin resistance associated with hyperendothelinaemia in viva is 

likely to be an indirect effect due to vasoconstriction with ET-1 and reduced perfusion 

of skeletal muscle, leading to decreased insulin and glucose delivery to insulin­

sensitive tissues. In humans, lowered insulin-mediated leg glucose uptake during ET-

1 infusion was associated an increase in mean arterial pressure, decreases in 

splanchnic and renal blood flow, but no change in total blood flow in the leg (241). 

Although the authors acknowledge that any possible redistribution of flow nutritive to 

non-nutritive or vice versa was not measured (241), it appears that ET-1 contrary to 

the proposed action of blocking non-nutritive route and mediating capillary 

recruitment, acts to block nutritive flow. Interestingly, in the constant-flow pump­

perfused rat hindlimb, whereas ET-1 caused a dose-dependent increase in perfusion 

pressure, the effects on hindlimb oxygen consumption were biphasic with low doses 

increasing and higher doses leading to a net inhibition (168). Moreover in accordance 

with Idris's conclusion (148), studies with the addition of SNP to block ET-I-induced 

vasoconstriction suggest that the vascular effects of ET-1 account for the observed 

metabolic effects (168). Therefore, it appears that ET-1 has a biphasic dose-dependent 
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vasoconstrictor effect on hindlimb blood vessels. ET-1 at low dose may be able to 

constrict sites controlling entry to non-nutritive vessels to recruit capillaries leading to 

increased nutrient delivery and thus potentially assist insulin action, but at higher 

doses to redistribute flow to restrict muscle perfusion presumably via a more global 

vasoconstriction across the muscle vascular bed, thereby becoming potentially 

antagonistic of insulin action. Such findings would explain why elevated ET-1 is 

associated with insulin resistance rather than potentiating insulin action in viva. 

1.6.2 Possible Vasodilation Mechanisms 

At present, studies on the mechanisms of insulin-mediated vasodilation mainly focus 

on total blood flow rather than flow redistribution. For the former, NO involvement is 

convincing. Locally infused L-NMMA was found to block insulin-mediated increase 

in leg blood flow and partially (-25%) inhibit glucose uptake (21, 308). A number of 

other groups also reported that the vasodilator action of insulin was blocked by 

inhibitors of NOS (56, 288). Furthermore, locally infused Mch, a cogener of 

acetylcholine and producer of NO, increased insulin-mediated leg glucose uptake and 

blood flow (25). Such data lend strong support to the probability that the limb blood 

flow action of insulin is mediated by NO. 

The control of capillary recruitment by insulin, although confirmed in human forearm 

studies (62), has not been assessed with regard to NO-dependency by infusing NOS 

inhibitors locally. In rats we have deployed systemic inhibitors of NOS (331, 332) and 

in each of these studies L-NAME raised blood pressure, completely inhibited insulin­

mediated increases in limb blood flow, capillary recruitment and partly the uptake of 

glucose by the hindlimb. However, whole body glucose requirement, indicated by the 

glucose infusion rate to maintain euglycaemia was not inhibited (331, 332). Thus a 

complex picture emerges, where it seems likely that systemic L-NAME alters hepatic 

glucose production to match the partially inhibited insulin-mediated glucose uptake 

by the hindlimb. Until this is resolved conclusions that both limb blood flow and 

capillary recruitment are mediated by insulin through NO-dependent mechanisms may 

be premature. An alternate view, based again on data from experimental animals, 

suggests that NOS inhibitors when applied systemically may act via neural effects. 

For example, Shankar et al. (293) showed in rats that stereotactically infused L­

NAME into the lateral ventricle created the same hypertension-associated insulin 
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resistance as did systemically applied L-NAME. These effects occurred without any 

detectable presence of L-NAME in peripheral blood. More recently, using a technique 

for studying the effects of locally infused agents in the rat hind leg, Mahajan et al. 

(196) have found that tetraethylammonium chloride (TEA), an inhibitor of Ca2+ 

dependent K+ channels, but not L-NAME, blocked systemic insulin-mediated 

capillary recruitment and glucose uptake in muscle in vivo. Furthermore, locally 

infused Mch, but not bradykinin, enhanced insulin-mediated capillary recruitment and 

glucose uptake, when both strongly vasodilated the hindlimb (197). Taken together, 

these findings imply that insulin mediates vasodilation leading to capillary 

recruitment in muscle by a central neural effect that is NO-dependent and which 

manifests in the muscle microvasculature through an EDHF-dependent process 

controlling capillary recruitment that can be potentiated by local Mch in an NO­

dependent mechanism. In human studies Mch has been reported to potentiate insulin's 

action in muscle in normally responsive individuals (25) and to enhance insulin action 

in hypertensive insulin resistant patients (285). Indirect evidence for neural 

involvement in the microvascular actions of insulin also comes from a recent study of 

normally responsive subjects where impaled laser Doppler probes detected an insulin­

mediated increase in low frequency vasomotion (68). 

The fragmentary evidence implicating a neural involvement in insulin-mediated 

capillary recruitment where insulin primarily interacts with central receptors is in 

contrast to the direct actions of insulin to dilate isolated segments of large and 

medium size blood vessels of 50-lOOmicrons (44, 289), as well as to stimulate NO 

production in isolated endothelial cells (352). However, these large resistance vessels 

which are considered to control bulk blood flow may act differently in response to 

insulin from smaller arterioles (e.g. third- or fourth-order arterioles) that are more 

likely to regulate microvascular perfusion and flow redistribution within tissue. 

Although dilation of third (-20µm diameter) and fourth-order (-lOµm diameter) 

arterioles has been observed in response to insulin either systemically or topically 

applied to the muscle (150, 205, 262, 278), the inaccessibility of these small 

arterioles to isolation means that direct actions of insulin have not been studied. 

Therefore, whereas studies using isolated blood vessels ( 44, 289) and local infusion 

of NO inhibitors (21, 308) have provided compelling evidence for a direct 
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vasodilator action of insulin to regulate bulk flow, whether the vasodilation of small 

arterioles involved in insulin-mediated capillary recruitment through a similar direct 

vascular mechanism remains elusive. 

Nevertheless, the possibility exits that insulin acts directly on the microvasculature 

to control capillary recruitment. In this regard, there are at least two possible 

mechanisms. First, insulin may act at insulin receptors on endothelial cells (352) to 

activate the insulin signalling cascade leading to the release of a vasodilator which 

causes VSMCs relaxation. Recent studies in primary cultures of endothelial cells 

have elucidated a complete insulin signalling cascade from the insulin receptor to 

activation of endothelial NO synthase (eNOS) and NO production via insulin 

receptor substrate (IRS)-1, PI 3-kinase, PDK-1 and PKB/Akt (212, 351, 352). NO in 

turn permeates adjacent VSMCs to activate soluble guanylyl cyclase and lower the 

vascular tone of pre-capillary sphincters resulting in vasorelaxation. This mechanism 

is consistent with recent findings that insulin-mediated capillary recruitment and leg 

glucose uptake was blocked by systemically infused L-NAME (331, 332), but 

inconsistent with the findings that local infusion L-NAME did not block systemic 

physiological hyperinsulinemia-mediated capillary recruitment in rat hindlimb and 

the findings that insulin vascular endothelial receptor knock out mice (VENIRKO) 

are not insulin resistant (328). The second possibility by-passes an endothelial 

insulin receptor-dependent mechanism and instead involves insulin interacting at 

·insulin receptors on the VSMCs. This mechanism would also be NO-dependent as 

suggested by studies in human VSMCs where the NOS inhibitor L-NAME blocked 

insulin-induced increases in cGMP level (318, 319), and attractive since TNFa 

which blocks insulin-mediated capillary recruitment (350) is known to inhibit insulin 

signaling in VSMCs, although to date this has been restricted to the ERKl/2 

activation step (113). 

Another possibility is that the signal may derive from the stimulation of muscle 

metabolism via insulin receptors on skeletal muscle cells. For instance adenosine, a 

potent dilator released as metabolic by-product in response to an increased tissue 

metabolism, has been suggested to play a role in topically applied insulin-mediated 

vasodilation in cremaster muscle of anesthetized hamsters (205). Furthermore, NO 
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derived from skeletal muscle may also play a role as skeletal muscles express the 

neuronal type NO synthase (nNOS) (162, 167, 296). However, the quicker response 

of insulin-mediated capillary recruitment than glucose uptake in viva appears to 

argue against a metabolic vasodilation mechanism for capillary recruitment (332, 

333). Rather, this mechanism is consistent with insulin-mediated increase in bulk 

blood flow which lags behind insulin-mediated muscle glucose disposal (332, 333). 

Taken together, it seems that insulin may have both vasodilator and vasoconstrictor 

actions in skeletal muscle vascular bed and capillary recruitment are likely the net 

result of the combination of the both effects. When in viva studies are considered 

where insulin recruits capillaries without altering total flow and capillary flow 

velocity, the vasoconstriction is likely at the sites controlling the entry to non-nutritive 

routes resulting in a recruitment of flow into nutritive network. Furthermore, both 

central neural and local mechanisms with an involvement of different cell types 

appear to contribute to the overall action of insulin to enhance skeletal muscle 

microvascular perfusion. 

1.7 AIMS OF THIS STUDY 

Whereas there are on-going debates regarding the physiological relevance of the 

increase in bulk blood flow in insulin action (325, 347), there is growing evidence that 

insulin's microvasclar action to recruit new capillaries may be more important in 

influencing muscle glucose uptake (272, 273, 332, 333). This concept was further 

explored in the first aspect of the thesis by looking at the regulatory aspects of insulin­

mediated capillary recruitment in relation to insulin-mediated increase in total blood 

flow and glucose uptake. Thus, insulin's effects on total blood flow, capillary 

recruitment and glucose metabolism were investigated at a range of insulin 

concentrations in anaesthetized rats using euglycemic hyperinsulinemic clamp. Then a 

physiologic insulin dose was chosen to activate hemodynamic and metabolic 

responses in these animals and the time course effects of these responses were 

examined after the termination of insulin infusion. Furthermore, TNFa which was 

reported previously to be able to influence insulin's metabolic and vascular actions 

(350) was used against serial doses of insulin to further explore the relationship 

between insulin-mediated capillary recruitment and muscle glucose uptake. 
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There is evidence suggesting insulin-mediated capillary recruitment may involve 

enhanced nutritive flow at the expense of non-nutritive flow (66, 333). Using the 

constant flow pump-perfused rat hindlimb preparation, we have provided indirect 

evidence of flow redistribution between the two vascular routes within hindlimb 

muscle using two types of vasoconstrictors (51), yet direct evidence, in particular 

regarding to the identity of non-nutritive routes, remains absent. Thus, the second 

aspect of the thesis attempted to identify the vascular routes perfused by basal flow, 

predominantly nutritive (created by All) or non-nutritive (created by 5-HT) flow in 

the muscle sections with the aim of providing anatomical insights into insulin­

mediated capillary recruitment. 
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CHAPTER2 

MATERIALS AND METHODS 

2.1 ANIMAL CARE 

Male Hooded Wistar rats were cared for in accordance with the principles of the 

Australian Code of Practice of the Care and Use of Animals for Scientific Purposes 

(1990, Australian Government Printing Service, Canberra). Experimental procedures 

were approved by the committee on the Ethical Aspects of Research Involving 

Animals of the University of Tasmania. Rats were housed (5-8 rats per cage) at 22°C 

in a 12h light/12h dark cycle with free access to water and a commercial rat chow 

(Gibsons, Hobart) containing 21.4% protein, 4.6% lipid, 68% carbohydrate and 6% 

crude fibre with added vitamins and minerals. 

For studies using contrast-enhanced ultrasound (CEU) in Chapter 3, male Sprague­

Dawley rats weighing 250 - 350 grams were obtained from Hilltop Laboratory 

Animals (Scottdale, PA). Animals were housed at 22 ± 2 °C and maintained with a 

12h light/12h dark cycle. The animals were provided with food and water ad libitum 

until food was removed at 5:00 P.M. on the evening before the experiment. The 

University of Virginia Animal Care and Use Committee approved these experimental 

protocols. 

2.2 IN VIVO EXPERIMENTS 

2.2.1 Surgery for In Vivo Experiments 

Rats were anaesthetized using pentobarbital sodium (50 mg.kg-1 body weight) and had 

polyethylene cannulae (PE-50, Intramedic®) surgically implanted into the carotid 

artery, for arterial sampling and measurement of blood pressure (pressure transducer 

Transpac IV, Abbott Critical Systems) and into both jugular veins for continuous 

infusion of anesthetic and other intravenous infusions. A tracheotomy tube was 

inserted, and the animal was allowed to spontaneously breathe room air throughout 
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the course of the experiment. Small incisions (1.5 cm) were made in the skin 

overlaying the femoral vessels of each leg, and the femoral artery was separated from 

the femoral vein and saphenous nerve. The epigastric vessels were then ligated, and 

an ultrasonic flow probe (Transonic Systems, VB series 0.5 mm) was positioned 

around the femoral artery of the right leg just distal to the rectus abdominus muscle. 

The cavity in the leg surrounding the probe was filled with lubrication jelly (H-R, 

Mohawk Medical Supply, Utica, NY) to provide acoustic coupling to the probe. The 

probe was then connected to the flow meter (Model T106 ultrasonic volume flow 

meter; Transonic Systems). This was in tum interfaced with an IBM compatible PC 

computer which acquired the data (at sampling frequency of lOOHz) for femoral 

blood flow, heart rate and blood pressure using WINDAQ data acquisition software 

(DATAQ Instruments). The surgical procedure generally lasted approximately 30min 

and then the animals were maintained under anesthesia for the duration of the 

experiment using a continual infusion of pentobarbital sodium (0.6mg.min-1.kg-1
). The 

femoral vein of the left leg was used for venous sampling, using an insulin syringe 

with an attached 29G needle (Becton Dickinson). The body temperature was 

maintained at 37°C using a water-jacketed platform and a heating lamp positioned 

above the rat. 

2.2.2 In Vivo Experimental Procedures 

Once the surgery was completed, a 60min equilibration period was allowed so that leg 

blood flow and blood pressure could become stable and constant. Detailed 

experimental protocols are given in each of the experimental chapters. Generally, an 

arterial sample was taken at the end of equilibration and multiple arterial samples 

were taken at regular intervals during the experiment. During euglycemia 

hyperinsulinemic clamps when insulin (Humulin R, Eli Lilly, Indianapolis, IN) was 

infused alone or co-infused with the inflammatory cytokine, glucose (30% w/v 

solution) was administrated to maintain blood glucose levels at or above basal level. 

In control groups, saline or the inflammatory cytokine infusions were matched to the 

volumes of insulin, glucose and/or inflammatory cytokine infused during the clamp. 

A duplicate venous sample (V) was taken only on completion of the experiment to 

prevent alteration of the blood flow from the hindlimb due to sampling, and to 
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minimize the effects of blood loss. The total blood volume withdrawn from the 

animals before the final arterial and venous samples did not exceed 1.5ml. Provided 

that the total blood volume in a rat of 250g is about 16ml (79), the blood lost during 

the experiment was easily compensated by the volume of fluid infused. Arterial 

samples for biochemical assays were centrifuged immediately and kept in a -20°C 

freezer. Lower leg muscles were dissected individually after taking all blood samples 

and stored in -20°C until assayed for 2-DG uptake. 

As described above, these in viva experiments were performed in pentobarbital­

anesthetized animals to minimize the surgery-associated stress, eliminate the 

influence of environmental factors and allow the flow probe positioning and blood 

flow measurement. Whereas the aesthetic status were well controlled in these animals, 

it is worth to note that pentobarbital has established effects on lowering sympathetic 

nervous system activity and pentobarbital-induced anaesthesia has been reported to 

associate with reduced insulin sensitivity in muscle (153) and liver (55). Therefore, 

insulin actions observed in the current studies using anethetized animals may be found 

to differ and likely to be more profound when studies were performed in conscious 

unstrained animals. 

2.2.3 Glucose Assay 

A glucose analyser (Yellow Springs Instruments, Model 2300 Stat plus) was used to 

determine whole blood glucose and plasma glucose (by the glucose oxidase method) 

during and at the conclusion of the in viva experiments. A sample volume of 25 µl 

was required for each determination. 

2.2.4 Hindleg Glucose Uptake 

To measure the glucose uptake across the lower hindlimb, both arterial sample (A) 

and venous sample (V) from the femoral vein which drains blood from lower leg were 

taken and glucose levels were determined. Hindleg glucose uptake was calculated 

from A-V glucose difference, multiplied by femoral blood flow and expressed as 

µmol.min- 1
. Since hindleg glucose uptake is a single-point measurement and these 
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samples were taken at the conclusion of each experiment, end-point femoral blood 

flow was used for this calculation. 

2.2.5 2-Deoxyglucose Uptake 

To measure glucose uptake in individual muscles, a 50µCi bolus of 2-deoxy-D-[2,6-

3H]glucose (2DG; specific activity= 44.0 Ci/mmol, Amersham Life Science) in saline 

was administrated at 45min prior to the completion of the experiment. Plasma 

samples (25µ1) were collected at 5, 10, 15, 30 and 45min after the 2-DO injection to 

determine plasma clearance of the radioactivity. At the conclusion of the experiment, 

the soleus, plantaris, red gastrocnemius (RO), white gastrocnemius (WO), extensor 

digitorum longus (EDL) and tibialis muscle were removed, clamp-frozen in liquid 

nitrogen and stored at -20°C until assayed for 2DG uptake. 

The frozen muscles were ground under liquid nitrogen and homogenised using an 

Ultra Turrax™. Free and phosphorylated 2-DG were separated by ion exchange 

chromatography using an anion exchange resin (AG1-X8) (154, 169). Scintillant 

(16ml; Biodegradable Counting Scintillant-BCA, Amersham USA) was added to each 

radioactive sample and radioactive counts (disintegrations per minute, dpm) were 

determined using a scintillation counter (Beckman LS3810, USA). From this 

measurement and knowledge of plasma glucose and the time course of plasma 2DO 

disappearance, R' g, which reflects glucose uptake into the muscle, was calculated as 

previously described in detail by others (154, 169) and expressed as µg.g- 1.min-1
. R'g 

for the combined muscle was calculated from the sum of R' g of each individual 

muscle times the wet weight of the individual muscle and divided by the sum of each 

individual muscle wet weight. 

2.2.61-MX Metabolism 

To assess the perfused capillary area, a method utilizing the metabolism of 

exogenously added 1-methylxanthine (1-MX, Sigma Aldrich Inc) has been 

established in our laboratory (273). 1-MX is the exogenous substrate of xanthine 

oxidase (XO) which converts 1-MX to a single product 1-methylurine (1-MU) (67, 

273). Both 1-MX and 1-MU are non-vasoactivce (67, 273) and can be fully recovered 
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and measured by high-performance liquid chromatography (HPLC) (273). In skeletal 

muscle, XO is expressed primarily in the endothelial cells of the capillaries and small 

arterioles and not large vessels (132, 156). Thus 1-MX uptake/metabolism across 

hindleg corresponds to hindleg capillary surface area which increases when capillary 

recruitment occurs. 

To determine hindleg 1-MX metabolism, 1-MX (0.4mg.min-1.kg-1, dissolved in saline) 

was infused systemically through one of the cannulatedjugular veins at 60min prior 

to the end of the experiment. Since 1-MX clearance was very rapid, it was necessary 

to partially inhibit the xanthine oxidase activity (273) to obtain a constant arterial 1-

MX concentration. To do this, an injection of a specific xanthine oxidase inhibitor, 

allopurinol (88) (lOµmole.kg- 1
) was administered as a bolus dose 5min prior to 

commencing the 1-MX infusion. Our previous report has shown that after the bolus of 

injection, allopurinal was only detectable in plasma for 15min as it was rapidaly 

converted to oxypurinol which could be detected through«mt the rest of the 

experiment (273). Importantly, a constant arterial 1-MX concentration was achieved 

at 15min after the commencement of 1-MX infusion and maintained throughout the 

experiment (273). 

At the end of the experiment duplicate arterial (A) and venous (V) samples (100µ1) 

were taken and placed on ice. These blood samples were immediately centrifuged and 

20µ1 of plasma mixed with 80µ1 of 0.42M PCA. The PCA treated samples were then 

stored at -20°C until assayed for 1-MX. When required, samples were thawed on ice, 

centrifuged for lOmin and the supernatant used to determine 1-MX, allopurinol and 

oxypurinol concentrations by reverse-phase HPLC as described previously (272, 273). 

The 1-MX metabolism in nmoles.min-1 was calculated from the following equation: 

1-MXmetabolism = ([1-MX]a-[1-MX]v)x0.871 xFBF 

Where [1-MX]a and [1-MX]v are the plasma 1-MX concentrations (µmol.L- 1
) 

obtained from arterial and venous blood samples respectively; 0.871 is the factor to 

convert the 1-MX concentration measured in plasma to that in whole blood; FBF is 

the femoral blood flow rate (ml.min-1
) measured at the same time when venous blood 

samples were withdrawn. 
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2.2.7 Contrast-Enhanced Ultrasound (CEU) 

. 
CEU has been used extensively in the past to measure microvascular flow in the 

myocardium (191, 244, 337). Modification of this technique for its use for rats has 

been described previously (333). Thus, a linear-array transducer interfaced with an 

ultrasound system (HDI-5000; Philips Ultrasound, Santa Ana, CA) was positioned 

over the right hindlimb of the rat to image the proximal adductor muscle group 

(adductor magnus and semimembranosus), which comprises ~5% slow-twitch 

oxidative, 30% fast-twitch oxidative-glycolytic, and 65% fast-twitch glycolytic fibers 

(9), and secured for the duration of the experiments. Pulse inversion imaging was 

performed at a transmission frequency of 3.3 MHz. The mechanical index ([peak 

negative acoustic pressure] x [frequencyr1
'
2
), a measure of acoustic power, was set at 

0.8. The acoustic focus was set at the mid-portion of the muscles. Gain settings were 

optimized and held constant, and data were recorded on 1.25cm videotape using a S­

VHS recorder (Panasonic MD830; Matsushita Electric). Perfluorocarbon gas-filled, 

albumin-coated microbubbles (Optison; Mallinckrodt Medical) were infused 

intravenously as the contrast-enhancement agent. A microbubble infusion rate of 

120µ1.min- 1 was chosen because this rate resulted in video intensity measurements 

that were well within the linear rage of the microbubble concentration and video 

intensity (333). The acoustic signal that is generated from the microbubbles when 

exposed to ultrasound is proportional to the concentration of micro bubbles within the 

volume of tissue being imaged. Essentially, all microbubbles within the ultrasound 

beam are destroyed in response to a single pulse of high-energy ultrasound, and as the 

time between each pulsing is prolonged, the beam becomes progressively replenished 

with micro bubbles. Eventually, the beam will be fully replenished and further 

increases in the time between each pulsing will not produce a change in tissue 

opacification (Fig 2.1) (333). The rate of microbubbles reappearance within the 

ultrasound beam provides an indication of microvascular flow velocity (f3), and the 

plateau video intensity reached at a long pulsing interval provides a measurement of 

microvascular volume. 
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Figure 2.1 A: Schematic depiction of the replenishment of microbubbles in 

capillaries after a pulse of high-energy ultrasound. As the time between each 

ultrasound pulse is prolonged, more microbubbles reappear. PI, pulsing 

interval. B: A typical relation between pulsing interval and acoustic signal, 

measured as video intensity. As the pulsing interval is prolonged, the 

number of microbubbles within the capillaries increases, resulting in a 

higher video intensity. Eventually a plateau is reached where an increase in 

the time interval between each pulsing interval dose not cause a further 

increase in video intensity due to complete replenishment of the vessels in 

the beam. The asymptote that intercepts the y-axis is the maximal video 

intensity signal and a measurement of microvascular volume (capillary 

recruitment). The x-intercept of the y-axis asymptote and the tangent to the 

upward sloping hyperbolic function is a measure of the rate constant of 

video intensity rise(!)), an indicator of microvascular flow velocity. 

Reproduced from Vincent (333). 
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Images were acquired at pulsing intervals from 1 to 20sec. Image analysis was 

performed off-line. Frames were aligned by cross-correlating several frames at each 

pulsing interval, and these were separately averaged and digitally subtracted from 

images obtained during continuous imaging, which served as background. Using 

images acquired with delays of 0.5sec as background allowed for the elimination of 

larger vessels (velocity> 0. lcm.s-1
) that fill promptly. The background-subtracted 

video intensity at each pulsing interval was measured from the muscle, and pulsing 

interv~l versus video intensity data were fitted to the function, y=A (1 - e-f:lt), where y 

is video intensity, t is the pulsing interval, A is plateau video intensity (an index of 

microvascular volume), and f3 is the rate constant, which provides a measure of flow 

velocity in the microvasculature (Fig 2.1) (333). 

2.2.8 Biochemical Assays 

Insulin levels at the beginning and the end of experiments were determined from 

arterial plasma samples by ELISA assay (Mercodia AB, Sweden). A Murine TNFa 

ELISA Kit (Pierce Endogen USA) was used to determine plasma TNFa levels in 

experiments involving TNFa infusion. 

2.2.9 Hemodynamic Data Analysis 

Mean femoral blood flow, mean heart rate and mean arterial blood pressure were 

calculated from 5sec sub-samples of the data, representing approximately 500 flow 

and pressure measurements every 15min. Vascular resistance in the hindleg was 

calculated as mean arterial blood pressure in millimetres of mercury divided by 

femoral blood flow and expressed as resistance units (R.U.). 

2.2.10 Statistical Analysis 

Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood 

pressure, heart rate and vascular resistance throughout the time course. When a 

significant difference (P<0.05) was found, pair wise comparisons by the Student-
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Newman-Keuls test were used to detennine at which individual times the differences 

were significant. Statistical difference among treatments for arterial glucose and 1-

MX, hind leg glucose uptake, and hindleg 1-MX metabolism was detennined by 

unpaired t-test. These tests were performed using the SigmaStat statistical program 

(Jandel Software). 

2.3 RAT HIND LIMB PERFUSION EXPERIMENTS 

This technique was first described by Ruderman et al (284) and has been proved to be 

a useful tool for studying muscle metabolism under physiological conditions at the 

isolated organ level (36). 

2.3.1 Hindlimb Surgery 

Hindlimb surgery was essentially as described by Ruderman et al. (284) with 

additional details as given previously (64). 

Rats were anaesthetized with an intraperitoneal injection of pen to barbital sodium 

(60mg.kg-1 body weight). Surgery was then performed with reference to Fig 2.2 (for 

anatomical nomenclature see Greene (117)). After a midline abdominal incision,. the 

abdominal wall was reflected and the superior epigastric vessels were ligated. The 

abdominal wall was then incised from the pubic symphysis to the xiphoid process. 

The superficial epigastric artery and vein of the right leg were ligated for single 

hindlimb perfusion. The internal spermatic vessels and other vessels supplying the 

testes, the neck of the bladder and the seminal vesicles were ligated. The testes and 

seminal vesicles were removed. The colon was excised between two ligatures placed 

around the colon, proximal to the inferior mesenteric artery. The colon and large 

intestine were separated from the connective tissue to the level of the renal vessels. A 

ligature was placed around the duodenum and the gastro-intestinal tract excised below 

the level of the ligature. A ligature was placed around the iliolumbar vessels, the 

internal spermatic vessels and the ureter on both sides. Ligatures were placed around 

the tail near the anus and around the tarsus of the right foot. The left common iliac 

artery and vein were ligated to prevent the flow from reaching the left leg. Two pairs 
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Figure 2.2 Surgery for perfused rat hindlimb 
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Surgery details are given in section 2.3.1. The surgical procedure was a modification 

of that of Ruderman (284). Nomenclature was from Greene (117). 
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of loose ligatures were placed around the vena cava and descending aorta between the 

renal vessels and the iliolumbar vessels. Heparin was injected (1000 IU.lOOg-1 body 

weight) into the vena cava above the renal vessels and allowed to circulate for lmin. 

The vena cava ligature (a) was tightened and the vena cava cannulated by using a 

Terumo 18G needle with a 16G catheter. The catheter tip was positioned -5mm above 

the aortic bifurcation and the catheter was secured within the vena cava by tying both 

ligatures (a and b) around it. Then the aortic ligature was tightened (a) and a small cut 

in the aorta was made to allow the insertion of a 20G catheter attached to a lml 

syringe filled with saline (0.9% NaCl). The catheter was pushed gently until the tip 

was at the same level as the venous catheter, then secured by tying both ligatures (a 

and b).The preparation was transferred to the perfusion apparatus and the arterial 

catheter was connected to the oxygenated perfusion medium flow line. The venous 

catheter was connected to the outflow line. Approximately 2min elapsed from the 

time the vena cava was ligated and the circulation was re-established. The rat was 

sacrificed with an overdose of pentobarbital sodium (12mg) injected into the heart. A 

final ligature was placed around the torso at the level of the L3-L4 vertebrae to 

prevent flow reaching the upper torso. The entire procedure required 20-25min. 

2.3.2 Perfusion Medium 

A modified Krebs-Henseleit bicarbonate buffer (118mM NaCl, 4.7mM KCl, l.2mM 

KH2P04, l.2mM MgS04, 25mM NaHC03 and 8.3mM Glucose) was used containing 
' 

4% bovine serum albumin (BSA, fraction V: Boehringer Mannheim, Australia). The 

perfusion buffer was filtered (0.45µm filter) and stored in the -20°C freezer until use. 

2.3.3 Perfusion Procedure 

Perfusions were conducted in a thermostatically-controlled cabinet (32°C) and the set 

up of this cabinet is shown in Fig 2.3. Perfusion medium reservoir was gassed with 

carbogen (95% 02-5% C02) to enable full oxygenation and attainment of pH 7.4. 

After gassing for 30 minutes, CaClz was added to give a final concentration of 

2.54mM. The perfusion medium was pumped by a peristaltic pump (Masterflex, Cole­

Palmer, USA) at a constant rate of 8ml.min-1
• The medium passed through a Silastic 
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lung which consisted of a glass jar containing 7 metres of Silastic tubing (ID 

l.47mm/OD 1.91 mm, Dow Coming, USA) and was gassed with carbogen as well. 

This ensured constant arterial P02 levels. The perfusion medium then passed through 

a heat exchanger coil to raise the temperature to 32°C. An infusion port (for addition 

of drugs) and bubble trap proximal to the arterial inflow line was also included. A 

peristaltic pump (LKB Microperpex 2132, USA) was used for the infusion of drugs 

and other compounds. A pressure transducer proximal to the aorta continuously 

monitored arterial perfusion pressure. Venous oxygen tension was also continuously 

monitored using a temperature controlled (32°C) in-line Clark-type oxygen electrode 

(0.5ml capacity). Venous partial pressure of oxygen and a,rterial perfusion pressure 

were recorded on a computer via a Windaq Data acquisition system. Before any 

perturbations were made, the hindlimb preparation was allowed to equilibrate for 40 

minutes. 

2.3.4 Oxygen Consumption Calculation 

At the beginning and end of each experiment, the oxygen electrode was calibrated 

with 100% oxygen and air (21 % oxygen). Any drift in the electrode was assumed to 

be linear over the course of the experiment. At the end of the experiment, the arterial 

oxygen pressure was determined by bypassing the preparation and joining the arterial 

and venous lines. The oxygen consumption in µmol.h- 1.g-1 was calculated according 

to the following equation: 

V02= 60 B CPa02-Pv02l.Q 
lOOOM 

where f3 is the Bunsen coefficient for the solubility of oxygen in plasma (l.351 

µmol.L- 1.mmHg-1 at 32°C, (47)), Pa02 and Pv02 are the arterial and venous partial 

pressure of oxygen (mmHg) respectively, Q is the perfusion flow rate (ml.min-1), Mis 

the perfused muscle mass which has been previously determined to be l/121
h of the 

body weight of a 180-200g rat (281), 60 and 1000 are conversion factors (min.h-1 and 

ml.L-1 respectively). 

46 



CHAPTER 2 - MATERIALS AND METHODS 

CABINET 32 °C 
Infusion pump 

pressure gauge 

G:::l • I-------, 
r----- • • 

02 electrode 

~+--------------J 
----------t~ 

Chart recorder/WinDaq 

Figure 2.3 Hindlimb perfusion apparatus 
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Details of this apparatus and perfusion procedure are given in section 2.3.2 and 2.3.3. 
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2.3.5 Perfusion Fixation 

When the perfusion pressure and oxygen consumption reached steady state after the 

various treatments, perfusion fixation was performed in study 1 and 2 in Chapter 6. 

Prior to fixation, BSA was washed out of hindlimb vascular bed by perfusing for 

2min with carbogen-gassed Krebs buffer containing 1.27mM Ca2+. Perfusion fixation 

followed using 2.5 % glutaraldehyde (Sigma, EM grade) in O. lM phosphate buffer 

with a pH of 7.4. In study 1 of Chapter 6, the hindlimb was perfused with 

glutaraldehyde for 3min. In study 2 of Chapter 6, a total amount of 40ml of 

glutaraldehyde was pumped through hindlimb. In both cases, perfusion flow rate was 

varied to maintain a constant pressure at the value attained during the steady-state 

BSA perfusion. 

2.3.6 Statistical Analysis 

Statistical difference between groups was assessed by one-way measure analysis of 

variance (ANOV A). Paired t-test was used to assess whether a treatment has a 

significant effect on the same experimental animals. These tests were performed using 

the SigmaStat statistical program (Jandel Software). All data is presented as means± 

SE with significant difference recognised at P<0.05 level. 

2.4 MUSCLE PERFUSION PATTERN EXAMINATION 

2.4.1 Tissue Preparation 

The extensor digitorum longus (EDL) muscle was chosen. to analyse since the fibre 

composition of the EDL is representative of the average hindlimb composition (10). 

The EDL muscle of the perfused leg was excised and cut transversely into four blocks 

of approximately equal size. Each block was mounted onto a cork disk with transverse 

orientation and snap-frozen in isopentane cooled by liquid nitrogen. For study 3 of 

Chapter 6, an additional overnight cryo-protection in 30% sucrose at 4 °C was 

performed prior to tissue freezing. Frozen tissue was cut into 7µm sections on a 

cryostat (Leica, Jung Frigocut 2800E) at -20°C. Five sections were cut from each 
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tissue block and sections from the same experiment were mounted onto one slide. For 

study 3 of Chapter 6, where rhodamine-dextran70 (Lysine fixable, Molecular Probes) 

was infused to mark perfused vasculature, sections were mounted in the aqueous 

mounting medium (Permafluor, Immunotech) and subjected to fluorescence 

microscopy. For study 1 and 2 of Chapter 6 where glutaraldehyde was perfused to fix 

perfused tissue, sections were air-dried and subjected to immunohistochemistry 

staining and subsequent bright-field microscopy. 

2.4.2 Immunohistochemistry 

Griffonia (Bandeiraea) Simplicifolia lectin 1 (GSL-1) (Vector, Burlingame, CA, 

USA), a lectin exhibiting binding specificity for a-D-galactopyranosyl groups (218) 

and specifically binding to endothelial cells and basement membrane (127, 175, 251) 

was used to identify capillary endothelial cells and outline the muscle fibers in 

transverse frozen sections. Air-dried sections on 3-aminopropyltriethoxysilane (APS, 

Sigma) coated slides were rinsed twice in 50mM Tris buffer (TB) pH 7.6, and then 

treated with peroxidase blocking reagent (Dako) for 15min, rinsed twice in TB with 

0.9% sodium chloride (TBS). Sections were then immersed for 45min in GSL-1 at 

4µg.ml- 1 in modified TBS containing lmM.L-1 each of calcium chloride, manganese 

chloride, magnesium chloride and 0.01 % Igepal (Sigma). Sections were rinsed in 

modified TBS and subsequent procedures were performed as described previously 

(246). The goat anti-GSL-1 (Vector) antibody was used at l.5mg.m1-1 and the 

biotinylated secondary antibody and peroxidase binding were performed using a (goat) 

Vectastain® ABC kit (Vector). 

2.4.3 Image Analysis 

Sections stained with GSL-1 were examined under bright-field microscope (Olympus 

BX50). The area that had wide-open capillaries and invisible muscle fibers resulting 

from the exposure to glutaraldehyde was identified as a perfused region. The area 

where the capillaries remained closed and surrounding muscle fibers had dark GSL-1 

staining resulting from the denied access of glutaraldehyde was identified as an 

unperfused area. Total section area and the unperfused area were measured using the 
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Image-Pro-Plus software. The ratio of unperfused to total area was calculated. An 

average of 10 and 15 sections were analyzed for each experiment for study 1and2 of 

Chapter 6, respectively. 

In study 3 of Chapter 6, Rhodamine-dextran70 (lysine fixable, Molecular Probes, 

50µg.mr 1 final concentration) was infused during perfusion to mark perfused vessels. 

Sections from these experiments were examined using an Olympus BX50 microscope 

equipped with an Olympus U-RFL-T lamp. Images of the perfused capillaries marked 

by fluorescence were captured using an Olympus DP50 digital camera. 

Approximately 2-4 images (400X) were required to cover each fluorescent capillary­

containing area in a section. The number of perfused capillaries was counted in each 

section. An average of 8 sections was analyzed for each experiment. 

2.4.4 Statistical Analysis 

A mean value was generated for each experiment from a ~umber of sections and the 

coefficient variance was also calculated to indicate the variation among sections. The 

mean values from each experiment were used to compute the mean and SE for each 

treatment group. Data are expressed as means ± SE. Difference between groups was 

determined by one way analysis of variance. When a significant difference (P<0.05) 

was found, the Student-Newman-Keuls test was used to determine which two groups 

had the significant difference. These tests were performed using the SigmaStat 

statistical program (Jandel Software). 
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CHAPTER3 

DOSE EFEECTS OF INSULIN ON CAPILLARY 

RECRUITMENT IN MUSCLE 

3.1 INTRODUCTION 

Insulin, apart from its classic metabolic action to increase glucose disposal, exerts a 

hemodynamic role in viva to regulate vascular tone (18, 186, 313). In skeletal muscle 

vascular bed, insulin's hemodynamic actions have been suggested to have two aspects. 

One is considered to dilate resistance arterioles resulting in increased total blood flow 

(18, 22, 171, 325). The other is considered to relax terminal arterioles to recruit 

muscle capillaries (48, 62, 273, 332, 333). More importantly, there is a close 

association between insulin's hemodynamic actions and insulin-mediated glucose· 

uptake. Thus, in normal experimental animals (273) and lean human subjects (26), 

insulin-induced hemodynamic responses are positively correlated to insulin-mediated 

glucose disposal. Consistently, typical insulin resistance states, such as obesity (24, 

171, 336) and NIDDM (172), manifest both cellular and vascular resistance to insulin 

action. 

Based on the above observations, it was proposed that insulin's metabolic actions 

depend in part on a hemodynamic component that increases glucose disposal by 

enhancing delivery of glucose, insulin itself and other nutrients to the myocytes (26, 

54). Based on this hypothesis, it was reasoned that if glucose uptake has a significant 

flow-dependent component, then altering blood flow during the exposure of insulin 

should modulate insulin-mediated glucose uptake accordingly. However, studies 

aimed at testing the role of total blood flow as a determinant of insulin-stimulated 

glucose uptake by decreasing or increasing total flow using vasoactive agents yielded 

inconsistent results. Whereas some reports support the contribution of total flow in 

regulating insulin-mediated glucose uptake (25, 26, 39, 99, 317), others oppose it (174, 

223, 224, 233). However, it's important to note that there are data indicating capillary 

recruitment is independent of total flow (273). Therefore, although vasoactive agents 

may similarly alter total blood flow, they may have distinct effects on microvascular 
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perfusion, resulting in different outcomes in terms of modulating insulin's metabolic 

action. This raised the important aspect that, whereas insulin is able to increase both 

total blood flow and microvascular perfusion via capillary recruitment, the latter 

vascular effect may play a more important role in promoting insulin's metabolic 

action in skeletal muscle. 

Indeed, there are studies challenging the physiological relevance of the insulin­

mediated increase in total blood flow by showing that enhancement in total flow 

generally requires supra-physiological dose insulin over prolonged exposure time 

(221, 325, 347). Therefore, it is necessary to investigate whether this is the case for 

insulin-mediated capillary recruitment to address the issue of physiological 

contribution of insulin's hemodynamic actions to its metabolic effects. Thus, in the 

present study, we characterized insulin-mediated capillary recruitment and the 

increase in total blood flow by examining their responses to insulin at various doses (1 

- 30mU.min-1.kg-1
) and compared their relationships with insulin-mediated glucose 

uptake at each dose. 

3.2 MATERIALS AND METHODS 

3.2.1 Animal Care 

Experiments using 1-MX metabolism were conducted on male Hooded Wistar rats" 

(240 - 260 grams) at the University of Tasmania, Australia. Studies involving 

contrast-enhanced ultrasound (CEU) technique were carried out on male Sprague­

Dawley rats at the University of Virginia Health Sciences Centre, Charlottesville, VA, 

USA. Animals were raised or obtained as described in section 2.1. 

3.2.2 In vivo Experiments 

In viva experiments were carried out in anesthetized rats using one of two protocols 

(Fig 3.1). In protocol A (Fig 3.1 A), microvascular perfusion was investigated using 

1-MX metabolism. The experimental procedure was as described in section 2.2. 

Briefly, in fed Wistar rats, after a 60min stabilization period, basal measurements 

were made and saline or insulin (1, 3, 10 or 30mU.min-1.kg-1
) infusion began and 
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Figure 3.1 Experimental Protocols. Venous infusions are indicated by open bars. 

Bolus injections are shown by@' or~. Arterial and venous samples collected for 

HPLC assay are indicated by '11. Arterial blood glucose levels were measured at times 

indicated by •. In protocol A, fed male Hooded Wistar rats were infused with either 

saline or insulin at various doses (1, 3, 10 or 30mU.min-1.kg-1
) for 2h. Microvascular 

perfusion was assessed using 1-MX metabolism. In protocol B, saline infusion or 

insulin clamps (1.5, 3 or lOmU.min-1.kg-1
) were conducted on fasted Sprague-Dawley 

rats. Contrast-Enhanced Ultrasound (CEU) technique was used to measure 

microvascular volume. CEU measurements were performed before and at the end of 

each experiment. 
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continued for 2h. 1-MX was infused (0.4mg.min-1.kg-1
) for the last 60min of the 2h 

clamp, with a bolus of allopurinol (lOµmol.kg- 1
) at Sm.in before the infusion 

commenced. This allowed partial inhibition of the activity of xanthine oxidase and 

constant arterial concentration of 1-MX to be maintained throughout the experiment. 

In these animals, 45min before the completion of the experiment, a bolus of [3H]2-DG 

(50µCi) was administrated. Plasma samples (20µ1) were collected at 5, 10, 15, 30 and 

45min following the injection to generate the radioactivity decay curve. At the 

completion of the experiment, blood was withdrawn from carotid artery and femoral 

vein to determine hindleg glucose uptake and 1-MX metabolism. After taking blood 

samples, lower leg muscles including soleus, plantaris, gastrocnemius white, 

gastrocnemius red, extensor digitorum longus, and tibialis muscles were removed and 

clamp-frozen in liquid nitrogen and stored in -20°C freezer for 2-DG uptake assay as 

described in section 2.2.5. In protocol B (Fig 3.1 B), microvascular perfusion was 

assessed using contrast-enhanced ultrasound (CEU) on fasted Sprague-Dawley rats. 

The surgical procedures were essentially as described in section 2.2. However, 

because the circulating microbubbles required for CEU ~easurement interfere with 

the Transonic™ flow probe signal, femoral blood flow could not be determined and 

thus both legs of the animals were not operated. Due to the lack of blood flow 

information, hindleg glucose uptake was not measured in these experiments. Also 

because the 1-MX method requires a measurement ofFBF, 1-MX metabolism could 

not be determined in animals undergoing CEU measurements. After the completion of 

the surgery, a 60min equilibration period was followed to allow heart rate, blood 

pressure and respirations to become stable. Then basal measurements were made and 

saline or insulin (1.5, 3 or lOmU.min-1.kg-1
) was infused for 2h. To measure 

microvascular volume, perfluorocarbon gas-filled albumin-coated microbubbles were 

infused intravenously at 120µ1.min- 1 for 2min before and during 3min of ultrasound 

data acquisition to measure microvascular volume at baseline and after 2h infusion of 

either saline or insulin. The CEU set-up and methods for data analysis were as 

described in section 2.2.7. Plasma insulin concentrations were determined after the 2h 

infusions for both protocols using an ELISA kit (Mercodia AB, Sweden). 

3.2.3 Data Analysis 
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All data are expressed as means ± SE. Hemodynamic data including femoral blood 

flow, heart rate and mean arterial blood pressure were collected by WINDAQ data 

acquisition system and data analysis methods were described in section 2.2.9. 

Statistical differences between treatments throughout the time course were ascertained 

by two-way repeated analysis of variance. Once a significant difference (P<0.05) was 

found, pair wise comparisons by the Student-Newman-Keuls test were used to 

determine at which individual time points the differences were significant. Unpaired t­

test was used to determine statistical differences among treatments at a single time 

point. These tests were performed using the SigmaStat statistical program (Jandel 

Software). 

3.3RESULTS 

3.3.1 Plasma Insulin Concentrations 

After the 2h infusions, plasma insulin concentrations rose progressively with 

increasing insulin doses from 0 (saline infusion) to 30mU.min-1.kg-1 in both fed and 

fasted animals (Fig 3.2). Thus, there was a small increase in plasma insulin by 2h 

insulin infusion at 1 or l.5mU.min-1.kg-1 in comparison to that after 2h saline infusion. 

As insulin dose was increased to 3, 10 and 30mU.min-1.kg-1, plasma insulin 

concentrations were elevated by -2-, 6- and 35-fold respectively at the end of 2h 

infusions (Fig 3.2). The non-linear increase in plasma insulin level as insulin dose­

rose from 10 to 30mU.min-1.kg-1 was not unexpected because insulin clearance 

mechanisms saturate at the concentrations above 3000 pmol.L-1 (282). 

3.3.2 Hemodynamic Measurements 

Mean arterial pressure and heart rate were similar at basal state and remained stable 

throughout the experiments (Fig 3.3). None of the treatments had effect on mean 

arterial pressure or heart rate (Fig 3.3). At very low insulin dose such as lmU.min-

1.kg-1, there was no significant change in femoral blood flow throughout the 2h 

infusion. As the insulin dose was increased, femoral blood flow rose markedly and the 

changes were seen sooner after starting the insulin infusion (Fig 3.4A).Thus, with the 

3mU.min-1.kg-1 insulin infusion, femoral blood flow begun to increase at the end of 
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the first hour and rose further during the second hour. With 10 and 30mU.min-1.kg-1 

insulin infusion, significant increases in femoral blood flow were seen after 60 and 

30min respectively. Furthermore, the magnitude of the flow increase was higher with 

higher insulin doses (Fig 3.4A). Since the arterial pressure did not change throughout 

the experiment, the progressive increases in femoral blood flow with increasing 

insulin doses resulted in progressive decreases in hindlimb vascular resistance (Fig 

3.4B). Similar to the changes in femoral blood flow, the decline of vascular resistance 

occurred earlier during insulin infusion at higher doses (Fig 3.4B). 

3.3.3 Capillary Recruitment Measured By 1-MX Metabolism and CEU 

Capillary recruitment (microvascular blood volume) in hindlimb muscles was 

measured by hindlimb metabolism 1-MX in the fed Wistar rats and by CEU of the 

proximal adductor muscle group in fasted Sprague-Dawley rats. The two methods 

gave similar outcomes. In studies where 1-MX metabolism measurement was 

involved, arterial 1-MX and oxypurinol concentrations were achieved to a similar 

level in all treatment groups (Fig 3.5). At the lowest dose of insulin (lmU.min-1.kg-1), 

hindlimb 1-MX metabolism increased significantly (Fig 3.6A). There was a further 

small rise in 1-MX hindlimb metabolism as the insulin dose increased to 3mU.min-

1.kg-1, but no further increase despite much greater increases in total flow in these 

animals at high insulin doses (Fig 3.4). In studies using CEU to assess microvascular 

perfusion, video intensity began to rise even with the lowest dose (l.5mU.min-1 .kg~1 ) 

of insulin infused (Fig 3.6B). However, the dose of 3mU.min-1.kg-1 appeared to fully 

recruit microvascular volume, as higher doses did not result in further increases (Fig 

3.6B). 

3.3.4 Whole Body Glucose Metabolism 

Blood glucose concentrations were similar under basal conditions in all experimental 

groups and were maintained at or above the basal value during insulin clamps by 

infusing 30% glucose at variable rates (Fig 3.7). With the insulin clamp at lmU.min-

1.kg-1, a small amount of glucose was needed to maintained euglycemia during the 

first 90min of insulin infusion. Then the glucose infusion declined to a level that was 

not significantly different from zero. With insulin clamps 'at 3, 10 and 30mU.min-1.kg-
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1
, glucose infusion rate was increased rapidly once insulin infusion began and reached 

a plateau within 60min that was higher in proportion to the insulin dose (Fig 3.7). The 

steady-state glucose infusion rates were 2.0 ± 0.3, 11.1 ± p.6, 21.1±0.8 and 25.5 ± 

0.9 mg.kg-1.min-1 for insulin clamps at 1, 3, 10 and 30mU.min-1.kg-1 respectively. 

3.3.5 Hindlimb Glucose Metabolism 

Insulin stimulated hindleg glucose uptake in a dose-dependent manner (Fig 3.8A) but 

this was only evident at dose of insulin equal to or exceeding 3mU.min-1.kg-1
• Thus, 

insulin failed to increase hindleg glucose uptake at lmU.min-1.kg-1
, started to 

stimulate hindleg glucose uptake at 3mU.min-1.kg-1, significantly enhanced hindleg 

glucose uptake at lOmU.min-1.kg-1 and did not further increase glucose uptake at 

30mU.min-1.kg-1
, suggesting a maximal stimulation on hindleg glucose uptake by 

insulin was achieved at lOmU.min-1.kg-1 (Fig 3.8A). Glucose disposal into skeletal 

muscle measured by 2-DG uptake showed a similar pattern for individual lower leg 

muscles (Fig 3.9) as well as combined muscle tissues (Fig 3.8B). 
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Figure 3.2 Plasma insulin concentrations of fed Hooded Wistar rats (A) or fasted 

Sprague-Dawley rats after 2h of infusion of either saline [• in A (n=8) and B (n=7)] 

or insulin at various doses [lmU.min-1.kg- 1 (lmU): Din A (n=9); 1.5mU.min-1.kg- 1 

(l.5mU): D in B(n=7); 3mU.min-1.kg- 1 (3mU) : • in A (n=8) and B (n=7); lOmU.min· 
1.kg- 1 (lOmU): ~ in A (n=6) and B (n=7); 30mU.min-1.kg- 1 (30mU): ~ in A (n=7)]. 

Values are means± SE. *Significantly different (P<0.05) from saline infusion . 
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Figure 3.3 Mean arterial pressure (A) and heart rate (B) for saline infusion (T, n=8) 

and insulin clamps at 4 doses [0, lmU (n=9); •, 3mU (n=8); D lOmU (n=6); •, 

30mU (n=7)]. Data were collected from fed Hooded Wistar rats. Values are means± 

SE. 
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Figure 3.4 Changes in femoral blood flow (A) and vascular resistance (B) for saline 

infusion (T, n=8) and insulin clamps at 4 doses [O, lmU (n=9); •, 3mU (n=8); D 

lOmU (n=6); •, 30mU (n=7)]. Data were collected from fed Hooded Wistar rats. 

Values are means± SE. *Significantly different (P<0.05) from saline infusion. 
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Figu re 3.5 Arterial concentrations of 1-MX (A) and oxypurinol (B) for saline 

infusion( • , n=8) and insulin clamps at 4 doses [0, lmU (n=9); • , 3mU (n=8); 

~,lOmU (n=6); ~, 30mU (n=7)]. Data were collected from fed Hooded Wistar rats. 

Values are means ± SE. 
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Figure 3.6 Microvascular perfusion determined by 1-MX metabolism (A) or CEU (B). 

A: The rate of 1-MX disappearance across the rat hindlimb at the end of 2h infusion 

of saline(• , n=8) or insulin at each dose [D, lmU (n=9); • . 3mU (n=8); ~.lOmU 

(n=6); ~. 30mU (n=7)] to fed, Hooded Wistar rats . B: The changes in microvascular 

volume (CEU) seen between baseline and 2h infusion of saline(• , n=7) or insulin at 

each dose [D, 1.5mU (n=9); • , 3mU (n=8); ~.IOmU (n=6)] to overnight-fasted 

Sprague-Dawley rats. Values are means± SE. *Significantly different (P<0.05) from 

saline infusion. 
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Figure 3.7 Blood glucose levels (A) and glucose infusion rates (B) for saline infusion 

(T, n=8) and insulin clamps at 4 doses [0, lmU (n=9); •, 3mU (n=8); D lOmU 

(n=6); •, 30mU (n=7)]. Glucose infusion started at the 2min time point. Data were 

collected from fed Hooded Wistar rats. Values are means± SE.* Significantly 

different (P<0.05) from zero. 
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Figure 3.8 Hindleg glucose uptake (A) and R' g of combined lower leg muscles 

(soleus, plantaris, gastrocnemius, extensor digitorum longus and tibialis anterior 

muscles) (B) after 2h infusion of saline(• , n=8) or insulin [0, lmU (n=9); • . 3mU 

(n=8); ~.lOmU (n=6); ~. 30mU (n=7)]. Data were collected from fed Hooded Wistar 

rats. Values are means± SE. * Significantly different (P<0.05) from saline infusion. 
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Figure 3.9 2-DG uptake (R' g) in soleus (A), plantaris (B) , red gastrocnemius (C), 

white gastrocnemius (D) , extensor digitorum longus (E) and tibialis anterior (F) 

muscles after 2h infusion of saline C• , n=8) or insulin [D , lmU (n=9); • , 3mU (n=8); 

~. lOmU (n=6) ; ~. 30mU (n=7)J_ Data were collected from fed Hooded Wistar rats. 

Values are means± SE. * Significantly different (P<0.05) from saline infusion. 
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3.4 DISCUSSION 

The dose effects of insulin on hepatic and peripheral glucose metabolism have been 

investigated extensively in the past (265, 282, 294, 301). While obtaining consistent 

results to those previous reports on insulin's dose-dependent action to stimulate 

glucose disposal, the present study also defined the dose-response characteristics of 

insulin effects on total limb blood flow and microvascular recruitment and examined 

their relationships with insulin's metabolic action. To our knowledge, this is the first 

study comprehensively investigating both hemodynamic and metabolic actions of 

insulin at various doses in experimental animals. 

The present data obtained from experimental animals showed that insulin augmented 

limb total blood flow in a dose-dependent manner, in agreement with reported human 

studies (171, 325). Using 1-MX metabolism and ultrasound video intensity as index 

of the microvascular perfusion, the current study also demonstrated that insulin has a 

second hemodynamic action of microvascular recruitment, providing further support 

for our previous reports (62, 273, 332, 333). The observation that the effect of insulin 

on microvascular recruitment saturates at insulin infusion.rate between 1 and 

3mU.min-1.kg-1
, whereas total flow continues to increase with increments of insulin 

infusion rates between 3 and lOmU.min-1.kg-1 and increases further between 10 and 

30mU.min-1.kg-1
, suggests these two hemodynamic actions of insulin are discrete and 

have different insulin sensitivity. This apparent difference in insulin sensitivity can 

not be attributed to differences in measurement sensitivity for total flow and capillary 

recruitment. We estimate that we would have >80% power to detect a 30% change in 

hindlimb blood flow by studying six animals (a< 0.05). The corresponding value for 

a change in microvascular recruitment was - 50% at the lowest insulin dose used. 

It has been proposed that insulin exerts control of the two distinct hemodynamic 

effects by acting on different vascular segments (60). Dilation of resistant vessels may 

result in an increased total blood flow. Relaxing terminal arterioles that are further 

down the arterial tree would lead to flow redistribution and microvascular recruitment. 

The currently observed difference in insulin sensitivity between insulin-mediated 
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increase in total limb flow and capillary recruitment indicates that microvascular 

insulin sensitivity is considerable higher than that of resistant vessels. 

There is evidence from the present study that capillary recruitment is also more 

sensitive to plasma insulin than glucose uptake in skeletal muscle. Thus, whereas 

insulin started to enhance microvascular perfusion at the doses of 1- l.5mU.min-1.kg-1
, 

glucose uptake in skeletal muscle remained inactivated. In addition, insulin at 

3mU.min-1.kg-1 was saturating for capillary recruitment, but only minimally activated 

glucose disposal into the hindlimb. Maximal activation of insulin-mediated muscle 

glucose uptake was reached at lOmU.min-1.kg-1 and additional increase in the dose to 

30mU.min-1.kg-1 did not further enhance muscle glucose disposal. It is relevant to 

note that the arteriovenous glucose measurement is not a very sensitive measure of 

glucose metabolism. However, measurement of glucose uptake by 2DG is very 

sensitive, and flow is not involved in the calculation. We are confident that even small 

(30-50%) increases in glucose uptake would be detectable with this method. 

Therefore, the lower insulin sensitivity observed with muscle glucose uptake than 

capillary recruitment can not be attributed to differing sensitivity of the methods. 

A comparison of insulin sensitivity between capillary recruitment and muscle glucose 
' 

uptake need some caution because terminal arterioles controlling microvascular 

perfusion and myocytes where glucose is taken up are within different spatial 

compartments (vascular compartment for the former and interstitial space for the latter) 

that may have different insulin concentrations. Indeed, there is data indicating that 

under physiological and pharmacological hyperinsulinemia conditions there is an 

arterial-interstitial concentration gradient for insulin (137, 155, 299, 300, 343) and the 

insulin concentration in the interstitium may be only 40 - 50% that of the plasma. 

Under basal conditions or when plasma insulin is elevated to a low physiological level, 

interstitial insulin concentrations have been reported on average to be lower than 

((133, 264, 343, 344) compared with (137) who reported no difference) plasma 

insulin concentration. As such, the lower insulin concentration in the interstitium in 

relation to the plasma insulin level may be responsible for the different dose-effects of 

insulin on capillary recruitment and muscle glucose uptake in the present study, and 

thus may not reflect an actual difference in insulin sensitivity. Nevertheless, the 

important aspect is that capillary recruitment can be activated at very low insulin dose 
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that is unable to activate muscle glucose uptake, suggesting the effect of insulin on 

recruiting microvascular volume is primary rather than secondary to the metabolic 

actions of insulin. In view of the fact that insulin is secreted in a phasic manner in 

response to food, and its level rises and falls rapidly, the primary characteristic of 

insulin-induced capillary recruitment may not be regarded as a functional 

disassociation from insulin-mediated glucose uptake, but an advantage of insulin 

under the physiological condition to prepare the routes fo:i; the nutrients delivery to 

muscle. This may also be of physiological significance to ensure optimal muscle 

glucose storage after meals. 

As reported in the introduction, whereas there is virtually uniform acknowledgment of 

insulin's action to increase total blood flow (26, 171, 288), there is considerable 

divergence of the findings among investigators with regard to the dose relationship 

between insulin and increases in total blood flow and as result, the physiological 

importance of this action of insulin to stimulate glucose disposal (172, 221, 325, 347). 

The observation from this study that capillary recruitment is fully stimulated using 

insulin infosion of 3mU.min-1.kg-1 while increasing insulin dosage beyond 3mU.min-

1.kg-1 progressively increases femoral blood flow and muscle glucose uptake supports 

the hypothesis that steps in insulin action beyond any effect on capillary recruitment 

are important determinants of muscle glucose uptake. Indeed, at very high insulin 

concentrations, when the extraction ratio for glucose across a muscle vascular bed 

approaches 50%, it would be predicted on theoretical grounds (35) and is observed 

experimentally (308) that total blood flow would be a determinant of glucose uptake. 

However, as discussed previously, at more physiological insulin concentrations, 

capillary recruitment is likely a necessary primary response for insulin-mediated 

glucose uptake. 

In summary, the present study demonstrates that insulin recruits microvasculature 

within skeletal muscle at concentrations lower than those required to enhance total 

muscle blood flow and lower than those needed to stimulate glucose disposal. These 

insulin dose-response observations show that microvascular recruitment has the 

highest sensitivity to plasma insulin and thus support the hypothesis that recruitment 

of microvasculature is a primary action of insulin and is necessary for muscle to 

obtain the optimal metabolic response to insulin under physiological conditions. 
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CHAPTER4 

TIME COURSE OF INSULIN REVERSAL 

4.1 INTRODUCTION 

Insulin regulates peripheral glucose uptake and utilization. However, when insulin is 

infused intravenously, whole body glucose disposal (264,.265, 344) and skeletal 

muscle glucose uptake (214) proceed with much slower kinetics than the rise in the 

plasma insulin concentration. Among the multiple extracellular (14, 166) and 

intracellular (163, 305, 338) steps insulin has to overcome to ultimately stimulate 

glucose phosphorylation, transcapillary insulin movement has been suggested to be 

the primary step determining the delay in insulin's metabolic action (101, 209, 344). 

Therefore, the endothelial wall, the first barrier insulin encounters once it enters the 

circulation, has until recently, been considered to be the rate-limiting barrier for 

insulin to exert its metabolic control. 

The mechanism by which the endothelial barrier might control the transcapillary , 

insulin movement and the rate of insulin appearance in interstitium is unknown. 

Whereas a number of studies have been carried out to try to solve this issue by 

examining whether transendothelial insulin transport is via a receptor-mediated and 

thus saturable process (137, 155, 166) or through a concentration gradient-dependent 

passive diffusion (124, 307), the additional delay in insulin-mediated glucose disposal 

in insulin-resistant subjects compared to normal subjects (33, 208, 230, 265, 320) 

raised an interesting aspect that there may be a factor that facilitates the movement of 

insulin across the endothelial barrier but is impaired in insulin-resistant state. Indeed, 

we and others have demonstrated that insulin has hemodynamic actions in viva to 

increase total blood flow (25, 26, 171, 325) and microvascular perfusion (48, 62, 273, 

333). Additionally, these hemodynamic actions are impaired in insulin resistant 

conditions (24, 171, 336). Since enhancing insulin delivery and capillary exchanging 

surface area by increasing total blood flow and capillary recruitment can augment the 

chance for insulin to move across the endothelial wall, it appears likely that insulin's 

hemodynamic actions take part in the endothelial barrier-associated regulation in the 
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rate of transcapillary insulin movement. It follows that a defect in insulin's 

hemodynamic effects may partly contribute to the additional temporal lag in insulin's 

metabolic action reported in the insulin resistant state (33, 208, 230, 265, 320). It is 

also important to note that a rate-limiting step at the transendothelial movement of 

insulin can not readily be distinguished from impaired capillary recruitment by insulin. 

However, the possible involvement of total flow increase in the temporal regulation of 

the onset of insulin's metabolic action is controversial and has been challenged by 

observations that increase in total blood flow needs prolonged insulin exposure time 

and thus, lags behind the stimulation of muscle glucose (171, 325). Since insulin's 

microvascular action to recruit capillaries is independent and thus can be dissociated 

from enhancement in total blood flow (273), we investigated the time-course 

relationship between insulin-mediated capillary recruitment, increase in total blood 

flow and muscle glucose uptake during the physiological hyperinsulinemic clamp in 

experimental animals (332, 333). These studies revealed that insulin at physiological 

dose recruited microvasculature within 5-lOmin, and this preceded both activation of 

insulin signalling pathways and increases in muscle glucose disposal that occurred at 

15-30min, as well as changes in total limb blood flow that happened after 30min of 

insulin exposure (332, 333). The quick onset of insulin-mediated capillary recruitment 

supports the hypothesis that enhancement in capillary exchanging surface area by 

capillary recruitment has a role in regulating the rate of insulin transcapillary 

movement and consequently the rate of the onset of insulin-mediated glucose uptake. 

Whereas the temporal dependence of insulin's metabolic and hemodynamic actions 
I 

following insulin administration have been clearly elucidated, the time course 

characteristics after the removal of insulin from the circulation have mainly focused 

on insulin's metabolic parameters (116, 265, 343). Therefore, the aim of the present 

study is to define the time course responses of insulin-mediated both metabolic and 

hemodynamic effects during the insulin deactivation phase with an attempt to gain 

further insights into the regulatory aspects of and interaction between insulin­

meditated muscle glucose uptake, increase in total blood flow and microvascular 

perfusion. 
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4.2 MATERIALS AND METHODS 

4.2.1 Animal Care 

Male Hooded Wistar tats weighing 240- 260 grams were used for this study. 

Animals were raised as described in section 2.1. 

4.2.2 In Vivo Experiments 

In vivo experiments were carried out in anaesthetized rats as described in section 2.2. 

Briefly, after lh equilibration, rats were allocated into either protocol A (Fig 4.1 A ) 

where insulin at the physiological dose of 3mU.min-1.kg-1
, was infused for lh 

(euglycemia was maintained using a variable infusion rate of 30% glucose) and 

discontinued at the 0 time point ( euglycemia continued to be maintained) followed. by 

variable periods of reversal of 15min (Fig 4.lA Ins R15', n=8), 30min (Fig 4.1.A Ins 

R30', n=7) or 60min (Fig 4.lA Ins R60', n=8), or protocol B (Fig 4.lB) where a 

euglycemic insulin clamp at 3mU.min-1.kg-1 was conducted for 2 h (n=8), or protocol 

C (Fig 4.lC) where saline infusion continued for 2h (n=14). Regardless of the 

duration of each experiment, 1-MX was infused at 0.4mg.min-1.kg-1 for the last 60min 

with a bolus of allopurinol (lOµmol.kg- 1
) given 5min before the commencement of 1-

MX infusion. Mean arterial pressure, heart rate and femoral artery blood flow were 

measured continuously using WINDAQ data acquisition software (DATAQ 

Instruments, Akron, OH). Arterial and venous samples from the femoral vein were 

withdrawn at the end of the experiment to determine 1-MX metabolism and hindleg 

glucose uptake. Basal and end-point plasma insulin levels were determined by ELISA 

assay (Mercodia AB, Sweden). 

Due to the strict timing to determine the 1-MX metabolism and the blood loss from 

taking both arterial and venous samples to measure hindleg glucose uptake and 1-MX 

metabolism, we could not perform these two measurements in one group of animals, 

but had to have several groups where the experiments were terminated at different 

time points to examine the time effects during the insulin reversal period (Protocol A). 
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Figure 4.1 Experimental protocols. Venous infusions are indicated by open bars. 

Arterial and venous samples collected for HPLC assays are indicated by JEJ. Arterial 

blood glucose levels were measured at times indicated by •. Samples taken for the 

analysis of the hemodynamic parameters (Fig 4.2-4.5), blood glucose levels (Fig 4. 7) 

and glucose infusion rate (Fig 4.8) are indicated by 1'. In protocol A, insulin clamp at 

3mU.min-1.kg-1 was conducted for lh. Then insulin infusion was discontinued 

followed by 15min (InsR 15'), 30min (InsR 30') or 60min (InsR 60') of reversal 

period. In protocol B and C, either insulin at 3mU.min-1.kg-1 (B) or saline (C) was 

infused for 2h. In all protocols, 1-MX was infused for the last 60min regardless the 

duration of the experiments with a bolus injection of allopurinol (lOµmol.kg- 1
) 

indicated by eJ given 5min before the commencement of 1-MX infusion. 
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For a clearer presentation, these reversal groups in Protocol A were combined 

together although the "n" values are variable through the 2h time course. 

4.2.3 Data Analysis 

All data are expressed as means ± SE. Hemodynamic data including femoral blood 

flow, heart rate and mean arterial blood pressure were collected by WINDAQ data 

acquisition system and data analysis methods were described in section 2.2.9. 

Differences between treatment groups at different time points were determined by one 

way analysis of variance. When a significant difference (P<0.05) was found, the 

Student-Newman-Keuls test was used to determine which two groups had the 

significant difference. These tests were performed using the SigmaStat statistical 

program (Jandel Software). 

4.3RESULTS 

4.3.1 Hemodynamic Measurements 

Basal mean arterial pressure was similar in all groups (Fig 4.2). By the end of the lh 

insulin infusion at 3mU.min-1.kg-1
, mean arterial pressure was not different from that 

after lh saline infusion. During the rest of the experiment regardless whether the 

insulin infusion was continued or not, the mean arterial pressure remained stable and 

did not differ from that of saline infusion. Similarly, heart rate was not affected by 

different treatments and was in the normal heart rate range of 330 - 380 beats.min-1
, 

although it was slightly lower in the 2h insulin clamp group (Fig 4.3). 

Insulin infusion at 3mU.min-1.kg-1 for lh significantly increased femoral blood flow 

and the increase persisted during the second hour of insulin infusion (Fig 4.4). In 

contrast, upon the cessation of insulin infusion, the increase in femoral blood flow 

started to reverse and within 30min came back to a level that was not significantly 

different from that seen in either saline infusion or insulin infusion (Fig 4.4). The 

insulin-mediated increase in femoral blood flow was fully reversed after insulin 

infusion was discontinued for 60min (Fig 4.4). Since mean arterial pressure was 

constant throughout the experiments, the change in femoral blood flow resulted in a 
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corresponding change in vascular resistance (Fig 4.5). Thus, lh insulin infusion at 

3mU.min-1.kg-1 decreased vascular resistance although this decrease was not 

significant in the 2h insulin clamp group. Whereas the vascular resistance further 

decreased as insulin was continuously infused for another lh, the cessation of insulin 

administration resulted in a reversal in vascular resistance within 30min (Fig 4.5). 

4.3.21-MX Metabolism 

The arterial plasma concentrations of oxypurinol and 1-MX were not significantly 

different in all treatment groups (Fig 4.9), indicating the enzyme activity of xanthine 

oxidase was inhibited to the same extent. Hindlimb 1-MX metabolism was 

significantly increased by the end of 2h insulin infusion compared to saline infusion 

(Fig 4.lOA). Since it has been reported that capillary recruitment is fully activated by 

insulin at the dose of 3mU.min-1.kg-1 within 30min of insulin administration, and 

remains fully activated during the following 90min of insulin infusion (333), 1-MX 

metabolism, an index of capillary recruitment, measured at the end of 2h insulin 

clamp would be comparable to that determined after the lh insulin clamp. As shown 

in Figure 4.lOA, upon cessation of the lh insulin infusion, 1-MX metabolism 

remained maximally elevated at 15min, then at 30min, dropped to a level that wasn't 

significantly different from either the basal value or the value for maximal activation. 

At 60min the 1-MX metabolism had returned to the basal level (Fig 4.1 OA). 

4.3.3 Glucose Metabolism 

Basal blood glucose concentration was between 4-5mM in all experimental groups 

although it was slightly but significantly lower in InsR group (Fig 4.6A, Fig 4.7). 

Euglycemia was maintained using variable rates of 30% glucose infusion. Glucose 

infusion rate required to maintain euglycemia increased rapidly and reached a plateau 

within lh (Fig 4.6B, Fig 4.8), indicating the steady state of insulin-stimulated glucose 

metabolism was achieved in these experimental animals. Following cessation of the 
' 

lb insulin infusion, the glucose infusion rate dropped quickly, returning within 30min 

to a value not significantly different from zero (Fig 4.8). 
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Hindleg glucose uptake was significantly enhanced by the end of 2h insulin clamp 

(Fig 4. lOB). Since the steady-state of glucose metabolism has been reached within the 

first lh of insulin infusion indicated by the plateaued glucose infusion rate, and 

maximal glucose uptake by skeletal muscle which is the major insulin-responsive 
' 

tissue in the hindlimb has been shown to be achieved within 40 - 55min after the 

onset of hyperinsulinemia (plasma insulin level of -130mU.L-1 which is similar to 

615pM achieved in the present study) (152), the hindleg glucose uptake determined at 

the end of 2h insulin clamp would be comparable to that assessed at the end of lh 

insulin clamp. Upon the cessation of lh insulin infusion, hindleg glucose uptake 

decreased rapidly back to basal (saline) within 15min (Fig 4. lOB). There was a trend 

of a further decrease in hindleg glucose uptake during the following 45min reversal 

period, although this trend was not significant (Fig 4. lOB). 

4.3.4 Plasma Insulin Concentrations 

There was a small but significant increase in plasma insulin level during the saline 

infusion (Fig 4.11 ), which may be due to the effect of pentobarbitone anesthesia on 

insulin clearance (153) or due to the slight increase in blo9d glucose concentration. 

Insulin infusion at 3mU.min-1.kg-1 for 2h elevated plasma insulin concentration by 5-

fold from 136 ± lOpM at basal to 615 ± 69pM. Since the insulin clearance mechanism 

is saturated at concentrations above 3000pM (282), the currently achieved plasma 

insulin level of 615pM by 2h insulin infusion suggests that circulating insulin has 

reached equilibrium within this period. As shown in Chapter 3 increasing the insulin 

dose from 3 to lOmU.min-1.kg-1 will further enhance insulin-mediated glucose 

disposal whereas glucose metabolism in the present study reached steady state within 

lh, plasma insulin may have reached equilibrium within lh insulin infusion at 

3mU.min-1.kg-1
. Therefore, plasma insulin concentration measured at the end of 2h 

insulin administration may be comparable to that measured lh after the onset of 

insulin clamp. As shown in Figure 4.11, upon the cessation of insulin infusion, plasma 

insulin level decreased rapidly to the basal value within 15min. There was a trend of 

an increase in insulin level at 60min, although this increase wasn't significant. 
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Figure 4.2 Mean arterial pressure for saline group (0, n=l4), insulin clamp 

(3mU.min- 1.kg-1
) group (D, n=8) and insulin (3mU.min-1.kg- 1

) reversal group (• ) at 

the -60 (A), 0 (B), 15 (C), 30 (D) and 60 (E) min time points as indicated by 1' in Fig 

4.1. Insulin reversal group is the combination of 3 sub-groups (lnsR 15', InsR 30' and 

InsR 60') and the "n" values are 23 , 23, 23 , 14 and 8 for the -60, 0, 15, 30 and 60min 

time point respectively. Values are means± SE. 
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Figure 4.3 Heart rate for saline group (0 , n=l4), insulin clamp (3mU.min- 1.kg- 1
) 

group (D, n=8) and insulin (3mU.min-1.kg- 1
) reversal group(•) at the -60 (A), 0 (B), 

15 (C), 30 (D) and 60 (E) min time points as indicated by t in Fig 4 .1. Insulin reversal 

group is the combination of 3 sub-groups (lnsR 15', InsR 30' and InsR 60') and the 

"n" values are 23, 23, 23, 14 and 8 for the -60, 0, 15, 30 and 60min time point 

respectively. Values are means± SE. *Significantly different (P<0.05) from saline 

group. 
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Figure 4.4 Changes in femoral blood flow seen between baseline (-60min) and 0 (A), 

15 (B), 30 (C) and 60 (D) min time points as indicated by 1' in Fig 4 .1 for saline group 

(D, n=l4), insulin clamp (3mU.rnin- 1.kg- 1
) group (D, n=8) and insulin (3mU.rnin- 1.kg-

1) reversal group (•). Insulin reversal group is the combination of 3 sub-groups (lnsR 

15', lnsR 30' and InsR 60 ') and the "n" values are 23, 23, 14 and 8 for the 0, 15, 30 

and 60min time point respectively. Values are means± SE. *Significantly different 

(P<0.05) from saline group. #Significantly different (P<0.05) from insulin group. 
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Figure 4.5 Changes in vascular resistance seen between baseline (-60rnin) and 0 (A), 

15 (B), 30 (C) and 60 (D) rnin time points as indicated by 1' in Fig 4.1 for saline group 

(0 , n=l4) , insulin clamp (3mU.rnin-1.kg- 1
) group (0, n=8) and insulin (3mU.rnin-1.kg-

1) reversal group(• ). Insulin reversal group is the combination of 3 sub-groups (lnsR 

15', InsR 30' and InsR 60') and the "n" values are 23, 23 , 14 and 8 for the 0, 15, 30 

and 60rnin time point respectively. Values are means± SE. *Significantly different 

(P<0.05) from saline group. #Significantly different (P<0.05) from insulin group. 
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Figure 4.6 Blood glucose concentrations (A) and glucose infusion rates (B) during 

the 2h infusion of saline (0, n=14) or insulin at 3mU.min-1.kg-1 
(•, n=8), or lh 

insulin infusion at 3mU.min-1.kg-1 and the following lh reversal period (T). For 

insulin reversal study, the "n" values are 23, 14 and 8 for time course of-60min -

15min, 15min-30min and 30min-60min respectively. Values are means± SE. 
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Figure 4.7 Arterial blood glucose levels for saline group (D, n=14), insulin clamp 

(3mU.min- 1.kg- 1
) group (0, n=8) and insulin (3mU.min-1.kg- 1

) reversal group(•) at 

the -60 (A), 0 (B), 15 (C), 30 (D) and 60 (E) min time points as indicated by 1' in Fig 

4.1. Insulin reversal group is the combination of 3 sub-groups (InsR 15', InsR 30' and 

InsR 60') and the "n" values are 23 , 23, 23, 14 and 8 for the -60, 0, 15, 30 and 60 min 

time point respectively. Values are means± SE. *Significantly different (P<0.05) 

from saline group. 
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Figure 4.8 Glucose infusion rate for saline group (D, n=l4) , insulin clamp (3mU.min-

1.kg-1) group (D, n=8) and insulin (3mU.min-1.kg- 1
) reversal group(•) at the 0 (A), 15 

(B), 30 (C) and 60 (D) min time points as indicated by 't in Fig 4 .1. Insulin reversal 

group is the combination of 3 sub-groups (InsR 15' , InsR ·30' and InsR 60') and then 

values are 23, 23, 14 and 8 for the 0, 15 , 30 and 60 min time point respectively. 

Values are means± SE. *Significantly different (P<0.05) from saline group. 

#Significantly different (P<0.05) from insulin group. 
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Figure 4.9 Arterial oxypurinol (A) and 1-MX (B) concentrations after 2h infusion of 

saline (D , n=l4) or insulin at 3mU.min-1.kg- 1 (0, n=8) or after lh infusion of insulin 

at 3mU.min-1.kg- 1 and the following variable periods of reversal of 15min (•, InsR15', 

n=8) , 30min (~ , InsR 30', n=7) or 60min (~, InsR 60', n;=8). Values are means± SE. 
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Figure 4.10 1-MX metabolism (A) and hindleg glucose uptake (B) after 2h infusion 

of saline (0, n=14) or insulin at 3mU.min- 1.kg- 1 (0, n=8), or after lh infusion of 

insulin at 3mU.min- I .kg-I and the following variable periods of reversal of 15min (• , 

InsR15', n=8), 30min (~, InsR 30', n=7) or 60min (~, InsR 60', n=8). Values are 

means± SE. *Significantly different (P<0.05) from saline infusion. #Significantly 

different (P<0.05) from insulin infusion . 
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Figure 4.11 Plasma insulin concentrations at baseline (83, -60min time point, n= 46), 

after 2h infusion of saline (D, n=l4) or insulin at 3rnU.min- 1.kg-1 (D, n=8) or after lh 

infusion of insulin at 3mU.min-1.kg-1 and the following variable periods of reversal 

[15min reversal: InsR15 ' (• ), n=8; 30min reversal: InsR 30' (~), n=7; 60 min 

reversal: InsR 60' (~ ), n=8] . Values are means± SE. *Significantly different 

(P<0.05) from basal value. 
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4.4 DISCUSSION 

The present study investigated the in viva deactivation of insulin action and represents 

the first report of the temporal relationship of the reversal of insulin's metabolic and 

hemodynamic effects in rats. To summarize the results, following the cessation of 

3mU.min-1.kg-1 insulin infusion, both plasma insulin concentration and hindleg 

glucose uptake returned to their basal levels within 15mi~. In contrast, insulin­

mediated increase in total blood flow and capillary recruitment persisted for another 

15min and then gradually returned to basal levels after further 45min. 

Although in the current study the plasma insulin and hindleg glucose uptake both 

returned to basal values at 15min after the cessation of insulin infusion, it is well 

recognized that in human and larger experimental animals, the activated state of 

glucose uptake reverses at a slower rate than the fall in plasma insulin level after 

either the termination of a continuous insulin infusion ( 116, 209, 264, 266) or a 

intravenous insulin bolus injection (61). Considering rats metabolize quicker than 

humans and larger animals, to detect a similar lag in the deactivation of insulin­

stimulated glucose uptake may require more frequent sampling after insulin infusion 

is terminated. Consistent with the reversal of insulin-activated hindleg glucose uptake, 

glucose infusion rate required further 15min to return to zero. Therefore, this extra 

amount of glucose may also be required to maintain euglycemia by compensating for 

a still suppressed hepatic production. This may suggest that insulin's inhibitory effect 

on liver reverses slower than its stimulatory actions on peripheral tissues in rats. This 

is consistent with the reports in human that after the discontinuation of insulin 

infusion, it takes longer for hepatic glucose production to return to half of its basal 

level than that required for the insulin-mediated glucose disposal to fall to half of its 

maximal response (116, 265). 

Although plasma insulin levels and muscle glucose uptake returned to basal within 

15min of stopping insulin infusion, capillary recruitment and increases in total flow 

required a further 45min to reach their basal levels. The mechanism for the slow 

deactivation of insulin's hemodynamic actions is unknown. Additionally, a 

comparison with other in viva (116, 209, 265, 344) or in vitro (129, 185) studies on 

kinetics of insulin actions during the deactivation phase is difficult since those studies 

86 



CHAPTER 4 - TIME COURSE OF INSULIN REVERSAL 

mainly looked at metabolic aspects. However, possible mechanisms suggested for the 

slow reversal in insulin-mediated glucose uptake might be helpful in shedding some 

light on the even slower deactivation of insulin-stimulated hemodynamic effects. 

Firstly, interstitial insulin has been demonstrated to be cleared at a lower rate than 

plasma insulin after the termination of insulin infusion (209, 264). In the present study, 

the fully reversed insulin-mediated hindleg glucose uptake indicates that the 

interstitial insulin has returned to basal level. This might appear to be at odds with the 

studies of Miles et al. (209) and Poulin et al. (264). However, since insulin's 

hemodynamic actions remain activated beyond the deactivation of insulin-mediated 

glucose uptake, neither plasma nor interstitial insulin clearance appears to contribute 

to this delay. Secondly, since a decline in the extracellular insulin concentration 

results in a rapid dissociation of insulin from its receptors in both in viva (253, 302) 

and in vitro (77, 78, 210) conditions, it is conceivable that a persistent intracellular 

signalling activation is responsible for the slow reversal of insulin-mediated increase 

in total blood flow and capillary recruitment after the cessation of insulin infusion. 

The lag in the deactivation of insulin's hemodynamic actions compared to the reversal 

of hindleg glucose uptake may reflect a different intracellular control on the two 

aspects of insulin actions. Indeed, there is evidence that capillary recruitment (331) 

and total blood flow (308) are each nitric oxide dependent and that nitric oxide 

production in endothelial cells involves a phosphorylation cascade from the insulin 

receptor via insulin receptor substrate-I, phosphatidylinositol 3-kinsase, and Akt to 

endothelial nitric oxide synthase (351). Thus, although sharing some elements of the 

insulin-signalling cascade with glucose transport (43, 65), lower phosphatase activity 

at one or more steps in the insulin signalling cascade may be attributable to the slow 

reversal of total flow increase and capillary recruitment. 

Insulin-mediated muscle glucose uptake has been demonstrated to lag behind insulin­

stimulated capillary recruitment but precede the increases in total blood flow, 

suggesting a different control of insulin on the activation of these two vascular events. 

A number of factors may be considered to account for the different regulation. Thus, 

since smaller vessels are more sensitive to insulin-mediated vasodilation than larger 

vessels (205, 238, 262) and capillary recruitment is more sensitive to insulin than bulk 

blood flow (Chapter 3), insulin may act on larger resistant vessels to regulate total 
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blood flow and on terminal arterioles to stimulate capillary recruitment. Furthermore, 

although the involvement of nitric oxide has been suggested for insulin-mediated total 

flow (308) and capillary recruitment (331), the source of nitric oxide may differ as 

endothelial cells (212, 351, 352), vascular smooth muscle cells (318, 319) and skeletal 

muscle cells ( 160) are each capable of producing nitric oxide. In addition, other 

factors such as Na+-K+-ATPase activation (146, 239) and adenosine release (205) 

have been suggested to take part in insulin-mediated vasodilation and thus they may 

have different involvements in insulin-mediated total flow increase and capillary 

recruitment. Despite there being a number of possibilities that could account for the 

different control of insulin on total blood flow and capillary recruitment, the present 

observation of a similar reversal time course of the two vascular events suggests the 

proposed mechanisms may have a similar deactivation component. 

The reason for the slow reversal of insulin's hemodynamic actions is not clear. One 

explanation could be the slow reversal allows washout of insulin from muscle for 

clearance by liver and kidney following the decline of the peak of plasma insulin at 

the end of the absorptive state. In this manner, anabolic processes stimulated by 

insulin in the myocytes would be more readily reversed. This might limit late 

hypoglycemia which wouldn't occur under a clamp condition since it has been 

prevented by infusing variable rates of glucose. 

In summary, the current study demonstrated that following the cessation of insulin 

infusion, the deactivation of insulin-mediated increases in total blood flow and 

capillary recruitment lags behind the fall in plasma insulin and the reversal of insulin­

stimulated hindleg glucose uptake. This suggests the intracellular signalling 

mechanisms involved in insulin-mediated capillary recruitment and total blood flow 

increase differ from those involved in glucose uptake. In addition, although the 

activation of bulk blood flow and microvascular recruitment by insulin is likely to be 

regulated differently, the current study suggests they may have similar deactivation 

mechanisms. The persistence of insulin's vascular effects after insulin withdrawal 

might facilitate the clearance of insulin from muscle to prevent late hypoglycemia. 
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CHAPTERS 

TNFa AS AN ANTAGONIST OF INSULIN-MEDIATED 

CAPILLARY RECRUITMENT 

5.1 INTRODUCTION 

Tumor Necrosis Factor alpha (TNFa) has marked effects on whole body lipid and 

glucose metabolism (32, 118), and over-expression of TNFa. in adipose tissue and 

muscle of animals and humans may contribute to the development of insulin 

resistance. Indeed, there are reports that insulin resistance and obesity are associated 

with elevated levels of TNFa mRNA and protein (142). In addition, lowering the 

active level of TNFa. in viva by infusion of a TNFa receptor IgG fusion protein (142), 

a soluble TNFa.-binding protein (143), or polyclonal anti-TNFa. (38) in insulin­

resistant animal models improves insulin action. Moreover, in genetically obese mice 

that are insulin resistant, deletion of either or both of the TNFa. receptors improves 

insulin sensitivity (140), and null mutations of TNFa. in obese mice significantly 

improve insulin receptor signalling capacity and, consequently, insulin sensitivity 

(141). Acute effects of TNFa in viva have also been reported, Thus TNFa 

administration to rats under hyperinsulinemic clamp gives rise to insulin resistance, 

particularly of muscle ( 192). 

A number of studies in vitro have provided evidence that TNFa. can directly cause 

loss of insulin sensitivity over both long and short periods. Thus 3-5 days of exposure 

of 3T3-Ll or 3T3-F442A adipocytes to TNFa. causes reductions in insulin receptor 

and insulin receptor substrate (IRS-1) tyrosine phosphorylation in response to a 

maximum dose of insulin (120, 143). Others report that 3~4 days of exposure of 3T3-

Ll adipocytes to TNFa. gives rise to transcriptional changes including decreases in 

GLUT4, insulin receptor, and IRS-1 mRNA and protein (311, 312). These reported 

effects from chronic exposure to TNFa in cell culture have downstream consequences 

consistent with insulin resistance; for example, decreased insulin-stimulated glucose 
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transport has been noted in L6 myocytes (28). Over a shorter period (lh), C2C12 

muscle cells exposed to TNFa exhibited impaired insulin-dependent 

phosphatidylinositol 3-kinase activation mediated by IRS-1 and -2. This was 

accompanied by a decrease in 2-deoxyglucose uptake (74). Despite such reports, 

isolated incubated muscle appears to be completely unaffected by TNFa. Thus 

incubation of isolated soleus and epitrochlearis muscles with 6nmol.L-1 for 45min or 

4h, or 2 nmol.L-1 for 8 h, had no effect on insulin signalling on glucose uptake (231). 

In contrast, we have recently shown (350) that TNFa infusion evoked acute insulin 

resistance [euglycemic hyperinsulinemic clamp (lOmU.min-1.kg-1
) in viva], and this 

was accompanied by the loss of insulin-mediated hemodynamic responses, including 

capillary recruitment and increases in total limb blood flow. Taken together, this 

raises the interesting possibility that, although muscle cell lines respond acutely to 
I 

TNFa in vitro, the vasculature in viva may be an important target for TNFa. The loss 

of the hemodynamic responses may limit insulin and/or glucose access and account 

for inhibition of -50% of the insulin-stimulated glucose uptake by muscle (350). Such 

a loss would be apparent only in viva and thus be consistent with the negative 

outcomes of using TNFa in isolated incubated muscles, as found by Nolte et al. (231). 

In the present study, the potential role of the vasculature in TNFa-induced insulin 

resistance was further explored by challenging TNFa's action with a supra­

physiological dose of insulin at 30mU.min-1.kg-1
. We hypothesize that if the loss of 

insulin-mediated hemodynamic responses due to TNFa was restored by this high dose 

of insulin, the metabolic action of insulin would also be restored. The effect of TNFa 

against a physiological dose of insulin at 3mU.min-1.kg-1 was also investigated. 

5.2 MATERIALS AND METHODS 

5.2.1 Animal Care 

Animals were raised as described in section 2.1. Male Hooded Wistar rats weighing 

240-260 grams were chosen for this study. 

5.2.2 In vivo Experiments 
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In vivo experiments were carried out in anaesthetized rats as described in section 2.2. 

Briefly, once the surgery was completed, a 45- to 60-min equilibration period was 

allowed so that blood pressure and femoral blood flow could become stable and 

constant. Rats then were allocated into either protocol A (Fig 5.1), where animals 

were infused with either saline or TNFa (mouse recombinant; Sigma-Aldrich, Inc.) at 

0.5µg.kg- 1.h-1 for 3h, or protocol B (Fig 5.1), where animals were infused with either 

saline or TNFa for 3h and underwent a euglycemic insulin clamp (3, 10, or 

30mU.min-1.kg-1
) for the last 2h. Xanthine oxidase activity was partially inhibited by 

a bolus injection of oxypurinol (lOµmol.kg- 1
) injected through the arterial line 5min 

before the administration of 1-MX. 1-MX infusion (0.4mg.min-1.kg-1
) was continuous 

over the final hour to achieve a constant arterial 1-MX concentration. At the 

completion of each experiment, blood was sampled from the femoral vein and carotid 

artery. From the arteriovenous difference multiplied by th,e femoral blood flow, 

hindleg glucose uptake and 1-MX metabolism were calculated. The latter was used as 

an indicator of perfused capillary surface area. A bolus dose of [3H]2-DG (50µCi) was 

given at 45min before the end of the experiment. The radioactivity decay curve was 

generated from arterial plasma samples collected at 5, 10, 15, 30, and 45min 

following the injection. Hindleg muscles were excised at the completion of the 

experiment and freeze clamped in liquid nitrogen to assess the 2-DG uptake as 

described in section 2.2.5. Insulin levels were determined in arterial plasma samples 

collected at the beginning and end of each experiment by ELISA assay (Mercodia AB, 

Sweden). Plasma TNFa levels in experiments involving TNFa infusion were also 

determined using a Murine TNFa. ELISA Kit (Pierce Endo gen USA). 

5.2.3 Data Analysis 

All data are expressed as means ± SE. Time course data were presented from the 0 

time point when the insulin clamp started. Analytical methods for hemodynamic data 

collected by WINDAQ data acquisition system and data calculation were described in 

section 2.2.9. To ascertain differences between treatments throughout the time course, 

two-way repeated analysis of variance was used. Once a significant difference 

(P<0.05) was found, pair wise comparisons by the Student-Newman-Keuls test were 

used to determine at which individual time points the difference was significant. 

Statistical differences among treatments at a single time point were determined by 
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Figure 5.1 Experimental Protocols. Venous infusions are indicated by the bars. Bolus 

injections are shown by iP. Arterial blood glucose levels were measured at times 

indicated by •· Arterial samples for determination of radioactivity are shown by +. 

Arterial and venous samples collected for HPLC assay are indicated by '11. fu protocol 

A, saline or TNFa at 0.5µg.kg- 1.h·1 was infused for 3h. Protocol B involved a 

euglycemic hyperinsulinemic clamp and TNFa infusion where the insulin clamp 

started at 0 time point which was lh after the commencement of TNFa infusion. 
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unpaired t-test. These tests were performed using the SigmaStat statistical program 

(Jandel Software). 

5.3RESULTS 

5.3.1 Hemodynamic Measurements 

Basal mean arterial pressure was similar in all groups (Fig 5.2). TNFa infusion at 

0.5µg.h- 1.kg-1 and insulin infusion at 3 or lOmU.min-1.kg-1 had no effect on blood 

pressure whereas a supra-physiological dose of insulin at 30mU.min-1.kg-1 slightly but 

significantly augmented mean arterial pressure after 45min infusion (Fig 5.2). TNFa 

had no effect on blood pressure during the insulin clamp. Heart rate remained stable at 

a normal range of 325-375 beats.min-1 during the experiment and was not 

significantly different among groups apart from the 3mU.min-1.kg-1 insulin clamp 

group where the heart rate was decreased transiently (Fig 5.3). 

Femoral blood flow did not change during the first hour of TNFa infusion (0.86 ± 

0.04 and 0.85 ± 0.04 ml.min-1at -60min and 0 time point respectively). After another 

45-60min infusion of TNFa, there was a significant decrease in femoral blood flow 

(Fig 5.4). Insulin increased blood flow in a dose-dependent manner with an earlier 

onset and bigger magnitude of increase at higher doses (Fig 5.4 ). TNFa infusion for 

lh before and during the 2h insulin clamp completely inhibited the increase in femoral 

blood flow at 3 and lOmU.min-1.kg-1 of insulin but only partly (50% at the end of 

experiment) inhibited the increase due to the highest insulin dose of 30mU.min-1.kg-1 

(Fig 5.4). 

During the first hour before the 0 time point, TNFa did not change vascular resistance 

(127 ± 8 R.U. and 131±7 R.U. at -60min and 0 time point). After another 2h of 

infusion, TNFa significantly increased vascular resistance with an onset at 45min (Fig 

5.5). Insulin infusion decreased vascular resistance and the decrease became 

significant at an earlier time point during higher dose insulin infusions (Fig 5.5). 

TNFa infusion for lh before and during 2h insulin infusion completely blocked the 

decrease in vascular resistance at 3 and lOmU.min-1.kg-1 of insulin but only partly 
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(45% at the end of the experiment) blocked the decrease due to 30mU.min-1.kg-1 

insulin (Fig 5.5). 

5.3.21-MX Metabolism 

No significant difference was found between experimental groups in arterial plasma 

concentrations of 1-MX (Fig 5.6) or oxypurinol (Fig 5.7). 1-MX metabolism after 3-

hour infusion of TNFa was not significantly different from saline infusion (Fig 5.8). 

However, insulin alone did significantly increase 1-MX metabolism at all three 

concentrations, and the increase compared with saline control was the same at all 

three doses of insulin (Fig 5.8). TNFa completely blocked the insulin-mediated 

increase in 1-MX metabolism at 3 and lOmU.min-1.kg-1 of insulin but had no effect at 

the highest dose of 30mU.min-1.kg-1 (Fig 5.8). 

5.3.3 Glucose Metabolism 

Basal arterial blood glucose levels were similar among all groups (Fig 5.9). There was 

no significant difference in blood glucose level between saline and TNFa treatment 

during the first one hour before the 0 time point (4.98 ± 0.3 and 4.65 ± 0.llmM, 4.68 

± 0.10 and 4.48 ± 0.08mM at -60min and the 0 time point for saline and TNFa 

infusion respectively). During the next 2h after the 0 time point, TNFa infusion 

decreased the blood glucose level and the decrease became significant at the 40min 

time point (Fig 5.9). During the euglycemic insulin clamp experiments with or 

without TNFa, arterial blood glucose was well maintained at or above basal values by 

infusion of glucose and statistical analysis showed no significant difference in blood 

glucose between different doses of insulin and saline treatments (Fig 5.9). Glucose 

infusion rates were shown in Fig 5.10. Steady-state rates were 11.5 ± 0.4, 21.0± 0.8, 

and 25.5 ± 0.08 mg.kg-1.min-1 for3, 10, and 30mU.min-1.kg-1 insulin respectively (Fig 

5.10). TNFa infusion inhibited the glucose infusion rates for the two lower insulin 

doses of 3 and lOmU.min-1.kg-1 by -50 and 29%, respectively. TNFa had no effect on 

the glucose infusion rate due to 30mU.min-1.kg-1 of insuli~ (Fig 5.10). 
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TNFa infusion for 3h showed a trend to decrease basal hindleg glucose uptake 

although it was not significant (Fig 5.11). Insulin stimulated hindleg glucose uptake 

by 2.5-fold at 3mU.min-1.kg-1 and 3.5-fold at 10 and 30mU.min-1.kg-1 insulin (Fig 

5.11). TNFa completely blocked insulin-mediated hindleg glucose uptake at 3 and 

lOmU.min-1.kg-1 but was without effect at 30mU.min-1.kg-1 insulin (Fig 5.11). 

5.3.4 2-DG Uptake 

A bolus of radioactive 2-DG was administrated for the final 45min of each experiment. 

Six lower leg muscles were removed at the completion of each experiment. The 2-DG 

uptake for combined muscles (A) and individual muscles (B) are shown in Fig 6.12 -

6.14 for different experimental groups. The response to insulin varied depending on 

the muscle, but in general 3mU.min-1.kg-1 of insulin led to a twofold increase, and 

maximal stimulation was reached at lOmU.min-1.kg-1
, as reflected by the combined 

data (A in Fig 5.12 -5.13). The highest dose of insulin (30mU.min-1.kg-1
) did not 

further increase R'g for individual muscles or for the combination (Fig 5.14). There 

was a trend of basal 2-DG uptake to be inhibited by TNFa alone infusion although 

this trend only became significant when it was compared among groups with 

relatively small variation (Fig 5.12). When administrated with insulin, TNFa fully 

inhibited the stimulation due to 3mU.min-1.kg-1 insulin for combined muscles and all 

individual muscles except for RO in which it was only partly blocked (Fig 5.12). 

TNFa also partly blocked the stimulation of 2-DG uptake by lOmU.min-1.kg-1 for 

combined muscles and all individual muscles apart from EDL muscle in which the 

increase in R'g was completely blocked (Fig 5.13). TNFa was without effect on R'g 

due to 30mU.min-1.kg-1 insulin for either combined or individual muscles (Fig 5.14). 

5.3.5 Plasma Insulin and TNFa Levels 

Basal and end-of-experiment arterial plasma insulin levels were determined. The 

results were summarized in Table 5.1. Briefly, insulin infusion increased arterial 

insulin concentration depending on the dose of insulin used in the experiment. TNFa 

infusion had no effect on elevated insulin level due to insl,llin infusion. There was a 

small but significant increase in arterial insulin concentration during saline infusion, 
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which may be due to the effect of pentobarbitone anaesthesia on insulin clearance 

(153) or due to the slightly increased blood glucose concentration. The insulin 

concentration after 3h TNFa infusion was not different from that after 3h saline 

treatment and not different from the basal value either, suggesting TNFa may have 

slightly decreased the plasma insulin level. 

The TNFa concentration was determined by ELISA assay in experiments where 

TNFa infusion was involved. End-of-experiment (120min) arterial plasma TNFa 

concentrations were 354 ± 65 pg.ml-1 (n=20). TNFa levels were not detectable before 

the commencement of TNFa infusion. 

Table 5.1 Arterial plasma insulin concentration at the beginning (T = -60min) and the 

end (T = 120min) of experiments. 

[Insulin](pmol.L-1
) [Insulin] (pmol.L-1

) 

n (T = -60 min) (T = 120 min) 

Saline 13 123 ± 12 219 ± 24* 

TNFa 10 159 ± 19 160 ± 15 

3mU Insulin 11 132 ± 16 512 ± 58*t 

3mU Insulin + TNFa 7 159 ± 52 414 ± 34*t 

lOmU Insulin 6 185 ± 35 1655 ± 192*t 

lOmU Insulin + TNFa 6 147 ± 18 1475 ± 238*t 

30mU Insulin 7 171±36 8055 ± 550*t 

30mU Insulin + TNFa 7 149 ± 61 7725 ± 488*t 

*Significantly (P<0.05) different from basal for each group. 

tSignificantly (P<0.05) different from saline group at corresponding time point. 
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Fig 5.2 Mean arterial pressure for saline infusion (Tin A, Band C, n=14), TNFa 

infusion (\7 in A, B, and C, n=5), insulin clamps at 3 doses without TNFa [•, 3mU 

(A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa ( 0 in A, B and C, n=7 

for each of these three groups)]. Values are means± SE.* Significantly different 

(P<0.05) from saline infusion. 
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Fig 5.3 Heart rate for saline infusion (Tin A, Band C, n=14), TNFa infusion ('\7 in 

A, B, and C, n=5), insulin clamps at 3 doses without TNFa [•, 3mU (A, n=lO), 

lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (0 in A, B and C, n=7 for each of 

these three groups). Values are means± SE. *Significantly different (P<0.05) from 

saline infusion. 
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Fig 5.4 Change in femoral blood flow for saline infusion (Tin A, Band C, n=l4), 

TNFa infusion (\7 in A, B, and C, n=5), insulin clamps at 3 doses without TNFa [•, 

3mU (A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa ( 0 in A, B and 

C, n=7 for each of these three groups). Values are means± SE. *Significantly 

different (P<0.05) from saline infusion; #significantly different (P<0.05) from clamp 

group of insulin alone infusion. 
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Fig 5.5 Change in vascular resistance for saline infusion (Tin A, Band C, n=14), 

TNFa infusion (\7 in A, B, and C, n=5), insulin clamps at 3 doses without TNFa [•, 

3mU (A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa ( 0 in A, B and 

C, n=7 for each of these three groups). Values are means± SE. *Significantly 

different (P<0.05) from saline infusion; #significantly different (P<0.05) from clamp 

group of insulin alone infusion. 
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Arterial 1-MX Concentrations 

A. TNFa - 3mU Insulin 
25 

B. TNFa. - 1 OmU Insulin 

Sal TNFa 1 OmUlns TNFa + 
1 OmUlns 

C. TNFa - 30mU Insulin 

Sal TNFa 30mUlns TNFa + 
30mUlns 

Fig 5.6 Arterial 1-MX concentrations for saline group (Din A, Band C, n=l4), 

TNFa group C• in A, B and C, n=5), clamp groups of insulin alone infusion at 3 

doses[~, 3mU (A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (• ,A, 

Band C, n=7 for all three groups)]. Data were collected at the 120min time point. 

Values are means± SE. 
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Arterial Oxypurinol Concent~ations 
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A. TNFa - 3mU Insulin 
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B. TNFa - 10mU Insulin 
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10mUlns 

C. TNFa - 30mU Insulin 

Sal TNFa 30mUlns TNFa + 
30mUlns 

Fig 5.7 Arterial oxypurinol concentrations for saline group (Din A, B and C, n=14), 

TNFa group C• in A, B and C, n=5) , clamp groups of insulin alone infusion at 3 

doses [~. 3mU (A, n=lO) , lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (• ,A, 

B and C, n=7 for all three groups)]. Data were collected at the 120rnin time point. 

Values are means ± SE. 
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1-MX Metabolism 

A. TNFa - 3mU Insulin 
10 
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Sal TNFa 3mUlns TNFa + 

B. TNFa - 10mU Insulin 
10 
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3mUlns 

Sal TNFa 1 OmUlns TNFa + 

C. TNFa - 30mU Insulin 
10 

10mUlns 

* * 

Sal TNFa 30mUlns TNFa + 
30mUlns 

Fig 5.8 1-MX metabolism for saline group (Din A, Band C, n=14), TNFa group C• 

in A, Band C, n=5), clamp groups of insulin alone infusion at 3 doses[~. 3mU (A, 

n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (• . A, B and C, n=7 for all 

three groups)]. Data were collected at the 120rnin time point. Values are means± SE. 

*Significantly different (P<0.05) from saline infusion . 
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Blood Glucose 
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Fig 5.9 Blood glucose concentration for saline infusion (Tin A, Band C, n=14), 

TNFa infusion (V' in A, B, and C, n=5), insulin clamps at 3 doses without TNFa [•, 

3mU (A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (0 in A, Band C, 

n=7 for each of these three groups). Values are means± SE.* Significantly different 

(P<0.05) from saline infusion. 
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Glucose Infusion Rate 
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Fig 5.10 Glucose infusion rate for insulin clamps at 3 doses without TNFa [•, 3mU 

(A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa (0 in A, B and C, n=7 

for each of these three groups). Values are means± SE.* Significantly different 

(P<0.05) from saline infusion; #significantly different (P<0.05) from clamp group of 

insulin alone infusion. 
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Hindleg Glucose Uptake 
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Fig 5.11 Hindleg glucose uptake for saline group (Din A, B and C, n= l4), TNFa 

group C• in A, Band C, n=5) , clamp groups of insulin alone infusion at 3 doses[~. 

3mU (A, n=lO), lOmU (B, n=6) and 30mU (C, n=7)] or with TNFa ( • .A, Band C, 

n=7 for all three groups)]. Data were collected at the 120min time point. Values are 

means± SE. *Significantly different (P<0.05 ) from saline infusion. 
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A. 
8 

B 
12 
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(TNFa-3mU Insulin Study) 
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3mUlns TNFcx. + 
3mUlns 

WG EDL Tib 

Fig 5.12 R' g of combined muscles (A) and individual muscles (B) for saline infusion 

(0, n=l4), TNFa infusion( • , n=5) , insulin clamp at 3mU without (rz:!I, n=lO) and 

with C• , n=7) TNFa. Muscles were taken at the end of the experiment. Values are 

means± SE. *Significantly different (P<0.05) from saline infusion; #significantly 

different (P<0.05) from insulin clamp at 3mU. 
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Fig 5.13 R' g of combined muscles (A) and individual muscles (B) for saline infusion 

(0, n=l4), TNFa infusion(• , n=5) , insulin clamp at lOmU without(~, n=7) and 

with(• , n=6) TNFa. Muscles were taken at the end of the experiment. Values are 

means± SE. *Significantly different (P<0.05) from saline infusion; #significantly 

different (P<0.05) from insulin clamp at lOmU. 
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Fig 5.14 R' g of combined muscles (A) and individual muscles (B) for saline infusion 

(0, n=14), TNFa infusion(•, n=5), insulin clamp at 30mU without(~, n=7) and 

with(• , n=7) TNFa. Muscles were taken at the end of the experiment. Values are 

means ±SE. *Significantly different (P<0.05) from saline infusion. 
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5.4 DISCUSSION 

In agreement with other reports (177, 192, 350), TNFa administration in viva is able 

to cause insulin resistance in experimental animals. In the present study, TNFa at a 

dose that yielded a final concentration of-350pg.mr1 after 3h infusion was used 

against physiological (3mU.min-1.kg-1), pharmacological (lOmU.min-1.kg-1
) and 

supra-physiological (30mU.min-1.kg-1
) doses of insulin. Whereas most other studies 

(177, 192) mainly looked at the metabolic aspects, the current study also examined the 

effect of TNFa on insulin's hemodynamic actions. The results confirmed our previous 

report (350) that TNFa-induced insulin resistance was manifested on both metabolic 

and hemodynamic parameters. The novel finding in this study was that insulin at a 

supra-physiological dose was able to oppose TNFa-induc'ed inhibition on insulin­

stimulated glucose metabolism which was associated with fully restored insulin­

mediated capillary recruitment. This parallel relationship between insulin-mediated 

glucose uptake and capillary recruitment supports the notion that insulin-mediated 

capillary recruitment has physiological relevance and may be a primary contributor to 

insulin's metabolic action by enhancing delivery of glucose, insulin itself and other 

nutrient. 

When comparing the dose ofTNFa with other studies (12, 100, 177, 192), a much 

lower dose was used in this study. TNFa at this low dose mildly stimulated whole 

body glucose utilization indicated by a small decrease in blood glucose and may have 

caused flow redistribution among organs indicated by the decreased total limb blood 

flow in association with constant mean arterial pressure. However, the magnitude of 

these changes were much smaller than those reported by ~thers using high dose TNFa 

(12, 100, 177, 192). Furthermore, TNFa at high dose has been reported to stimulate 

skeletal muscle glucose uptake although the effect appeared to require longer 

exposure to this cytokine (12, 90, 177). In contrast, TNFa at low dose as used in this 

study showed a trend to decrease muscle glucose uptake. This may due to an indirect 

effects of TNFa such as limiting glucose availability by redirecting flow away from 

muscle (100) or slightly decreasing circulating insulin level rather than a direct 

metabolic action on myocytes. In addition, TNFa at this dose did not appear to affect 

basal skeletal muscle capillary recruitment as indicated by the unchanged 1-MX 
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metabolism in comparison with saline control. Taken together, TNFa at a dose that 

does not appear to exert direct metabolic control on skeletal muscle glucose uptake or 

affect basal capillary recruitment was used to investigate its interaction with 3 doses 

of insulin on both metabolic and hemodynamic parameters. 

At the two lower insulin doses, TNFa inhibited both the metabolic and hemodynamic 

actions of insulin. Thus, TNFa completely blocked the hemodynamic responses of 

capillary recruitment and increased femoral blood flow due to physiological 

(3mU.min-1.kg-1
) and pharmacological (lOmU.min-1.kg-1

) insulin. fu addition, at 

3mU.min-1.kg-1
, the whole body glucose infusion rate was inhibited 50% and the R'g 

of individual muscles 80-90%. At higher doses of insulin, the effects became less 

such that, at lOmU.min-1.kg-1
, TNFa blocked the whole body glucose infusion rate 

25% and R' g of individual lower leg muscles 50%. In contrast to these in vivo results, 

in the incubated muscle preparation neither acute nor prolonged exposure of TNFa 

was able to elicit insulin resistance (109, 231). The major difference between in vivo 

and isolated muscle system is the functionally responsive vasculature that is intact in 

in vivo but absent in isolated muscle preparation. Therefore, the vasculature appears to 

be the major target for TNFa-induced insulin resistance in viva. Thus, the TNFa­

caused loss in insulin-mediated capillary recruitment and increase in total flow could 

be a primary contributor to impaired insulin's metabolic action in skeletal muscle due 

to this cytokine. Moreover, because it is unlikely that the hemodynamic responses 

account for more than 50% of the insulin-mediated glucose uptake by muscle in vivo 

(331 ), complete inhibition of hindleg glucose uptake suggests that insulin's action at 

the myocyte is likely to have also been affected by TNFa. At the highest dose insulin 

(30mU.min-1.kg-1
), the inhibition of insulin-mediated capillary recruitment by TNFa 

was completely prevented and thus insulin-mediated capillary recruitment fully 
' 

restored. fusulin-mediated increase in total blood flow was only partly restored. This 

recovery of insulin's hemodynamic parameters was associated with a fully restored 

glucose metabolic response of insulin. The closely correlated relationship between 

insulin's hemodynamic effect, particularly capillary recruitment and its metabolic 

effects gives support to the idea that insulin-mediated hemodynamic responses are of 

physiological relevance. There is on-going debate as to whether this association is 

causal and if it is, which one is the cause. The message emerging from this study is 
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that in TNFa-associated insulin resistance condition, the defects in insulin-mediated 

hemodynamic responses are primary. Although this can not be applied directly to the 

insulin sensitive situation, it favours the view that insulin-mediated hemodynamic 

effects of capillary recruitment and increase in total blood flow are not secondary to 

insulin's metabolic action. 

There is evidence that the insulin-mediated hemodynamic responses of femoral blood 

flow and capillary recruitment were more vulnerable to the TNFa. Thus with the dose 

of insulin increasing from 3 to lOmU.min-1.kg-1
, the hemodynamic responses 

remained completely inhibited whilst the metabolic responses partly recovered. Only 

at the highest dose of insulin used of 30mU.min-1.kg-1 were some of the hemodynamic 

responses to insulin recovered. The mechanism for the dose-dependent ability of 

insulin to act against TNFa's action at the endothelium and other insulin-responsive 

tissues is not fully understood. Whereas a number of in vitro studies elucidated 

possible defects in insulin cellular signalling in response ~o TNFa (142, 165, 247, 

311 ), it is unknown whether these defects are exerted via TNFa itself or via an 

intermediary that is released in vivo by the cytokine. Furthermore, the effects of 

TNFa against a serial dose curve of insulin have not been investigated. In one in vivo 

study where insulin at a dose capable of maximally stimulating glucose uptake did not 

completely oppose TNFa-induced inhibition on peripheral glucose uptake (177), the 

total amount of TNFa administrated into the rats was 20 fold higher than that infused 

in the present experiments. Thus, the results from these two studies may not be 

comparable. Nevertheless, in at least one system, there is evidence that TNFa and 

insulin oppose each other (126), suggesting, as does the present study, that insulin's 

action is most vulnerable to TNFa-mediated inhibition when insulin levels are low 

and least vulnerable when levels are high. Interestingly, insulin-like growth factor-1 

(IGF-1), a peptide homologous to insulin, has been reported to normalize TNFa­

mediated insulin resistance in experimental animals (193). In addition, other insulin 
I 

resistance models such as sepsis (176) and chronic renal failure (198) animals, where 

TNFa levels are normally elevated (2, 235), glucose metabolic response to IGF-1 

were preserved (176, 198). These studies suggest that the TNFa-induced defect in 

insulin signalling may not be a step in the IGF-1 pathway. Since insulin receptor and 

IGF-1 receptor share 60% amino acid identity (183, 322), it is possible that insulin at 
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a supra-physiological dose such as 30mU.min-1.kg-1 may cross react with IGF 

receptor (182) and normalize TNFa-associated insulin resistance via eliciting IGF-1 

signalling pathway. However, in these IGF-1-involved in °vivo studies, hemodynamic 

measurements were not conducted. Since high dose insulin is able to oppose TNFa' s 

inhibition at both the hemodynamic and metabolic sites as demonstrated in the present 

study, the possible involvement ofIGF-1 signalling in this process can not be 

concluded without knowledge of the changes in hemodynamic parameters. 

To summarise, the present findings suggest the insulin signalling at sites in the 

vasculature where capillary recruitment and total flow are controlled by insulin is 

particularly sensitive to inhibition by TNFa. Thus, the TNFa-induced defects in 

insulin-mediated hemodynamic responses may contribute to the impaired insulin­

mediated metabolic action. The close association between insulin's hemodynamic and 

metabolic actions suggests insulin-mediated capillary recruitment and increase in total 

flow are of physiological significance and impairment by TNFa may contribute to 

insulin resistance of muscle when circulating levels of the cytokine are elevated. 
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CHAPTER6 

MICROV ASCULAR FLOW ROUTES IN MUSCLE 

CONTROLLED BY VASOCONSTRICTORS 

6.1 INTRODUCTION 

The notion that skeletal muscle microvascular perfusion is not always directly related 

to the total blood flow of muscle can be traced to studies now over 30 years old ( 17, 

115, 144, 242). Those studies showed a mismatch between total blood flow into 

muscle and either metabolic and heat transfer responses (242), or the clearance of 

intramuscular injected or infused radioactive substances (16, 17). These findings 

together with more recent work (170) are regarded as evidence for two separate 

circulatory systems within muscle, one of which acts as a shunt that minimizes the 

opportunity for nutrient exchange to occur between the muscle cells and the 

constituents of the blood, and the other of which promotes nutrient exchange. 

Operationally, in the pump-perfused hindlimb these two ~ascular routes are referred 

to as "non-nutritive" and "nutritive", respectively. Anatomically, vessels in the 

nutritive route are considered to be those that have extensive contact with the skeletal 

muscle cells (144). The "non-nutritive" route (17), that is considered to serve as a 

functional vascular shunt for muscle has been difficult to identify. There are a few­

reports showing that some of the vessels for this route are closely associated with 

connective tissue (17, 37, 115). Evidence from early study (144) and more recent 

estimate (130) suggests that at least half of the blood flow to muscle is carried by the 

so-called non-nutritive network in resting muscle under basal conditions. 

Studies in this laboratory have focused on the regulation of these two vascular routes 

of skeletal muscle. Using the constant-flow pump-perfused rat hindlimb it has been 

shown that skeletal muscle metabolism including oxygen uptake and lactate release as 

well as aerobic contractile performance is controlled by vasoconstrictors that have 

been considered to act to alter flow distribution within mqscle (51, 53). One group of 

vasoconstrictors, typified by angiotensin II or low-dose norepinephrine acts to 

increase oxygen uptake and lactate release (51) as well as contractile performance (51, 
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276) by redirecting flow from a putative non-nutritive route to nutritive capillaries 

within muscle (227). A second group of vasoconstrictors, typified by serotonin, has 

the opposite effect and although causing the same changes in perfusion pressure, acts 

to decrease oxygen uptake, lactate release and contractile activity (51, 81). These 

metabolic effects of vasoconstrictors in the perfused hindlimb appear to solely rely on 

their vascular actions rather than the direct actions on the skeletal muscle as in the 

incubated muscle preparation devoid of functional vasculature, vasoconstrictors had 

no effect upon either the contractility or insulin-mediated glucose uptake (81, 274, 

275). Furthermore, diminishing nutritive capillary perfusion seems the key effect of 

thes vasoconstrictors. As total blood flow is constant in this preparation, these 

vasoconstrictors do not alter total flow to muscles but appear to redirect flow within 

the hindlimb muscle (227, 276), either away from the nutritive route to the non­

nutritive route, or vice a versa. Indeed, when fluorescent microspheres (15µm) were 

introduced during steady state with or without low-dose norepinephrine 

(predominantly nutritive) or serotonin (predominantly non-nutritive) it was found, by 

recovery of the microspheres, that flow had not redistributed between muscles or 

between muscle and non-muscle tissue, even though norepinephrine had produced a 

marked increase, and serotonin had produced a marked inhibition of oxygen uptake in 

the same legs that had been analysed for microsphere distribution (52). 

The hemodynamic actions of these vasoconstrictors to raise perfusion pressure is 

critical, thus the metabolic changes (oxygen uptake and lactate release) are blocked if 

vasodilators are added to block the vasoconstriction (51, 63, 136). Moreover, the 

access of nutrients and hormones to the muscle fibres appears to be controlled by the 

relative distribution of flow when total flow remains constant. For example, the action 

of insulin to increase glucose uptake in a constant flow pump-perfused muscle 

preparation is markedly influenced by the ratio of nutritive to non-nutritive flow (53) 

and acute insulin resistance results when a vasoconstrictor is present that induces 

predominantly non-nutritive flow (53, 275). 

Thus, in this Chapter, I have attempted to further test the hypothesis that the differing 

effects of the vasoconstrictors on perfused muscle metabolism are a result of differing 

extents of nutritive and non-nutritive flow. I have approached the problem by 
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perfusing muscle with marker substances with flow maintained at steady state under 

basal, predominantly nutritive or non-nutritive conditions with an attempt to identify 

perfused vascular routes in muscle sections. 

6.2 MATERIALS AND METHODS 

6.2.1 Animal Care 

Hooded Wistar rats weighing 180 - 200 grams were used for this study. Animals were 

raised as section 2.1. 

6.2.2 Hindlimb Perfusion 

Single hindlimb perfusions were performed at 32°C with a flow rate of Sml.min-1
. The 

surgical and experimental procedures and perfusion medium were as described in 

section 2.3 except that hindlimbs were skinned in study 3 (section 6.2.5). The 

hindlimb was allowed to equilibrate for 40min before commencing the experiment. 

The experimental protocols are shown in Fig 6.1. At t=O, vehicle, 15nM angiotensin II 

(All), or lµM 5-hydroxytryptamine (serotonin, 5-HT) was infused and maintained 

throughout until the end of the experiment despite medium changes. Steady state of 

oxygen consumption and perfusion pressure was achieve~ within 20min after the 

commencement of treatment infusions. 

6.2.3 Study 1 (GA-3min): Perfusion Fixation with Glutaraldehyde (GA) for 3min 

and Post-perfusion with Griffonia Simplicifolia Lectin 1 (GSL-1) 

Prior to fixation, BSA was washed out of the hindlimb vascular bed by perfusing for 2 

minutes with carbogen-gassed Krebs buffer containing l.27mM Ca2
+. The intent was 

to remove the albumin as it prevented successful fixation of the tissue by GA. 

Perfusion fixation followed for 3min using 2.5% glutaraldehyde (Sigma, EM grade) 

in O. lM phosphate buffer pH of 7.4. In preliminary experiments when GA was 

perfused at a constant rate of Sml.min-1
, perfusion pressure rose followed by red blood 

cell (RBC) efflux. This is consistent with the report that perfusion fixation caused an 
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increase in vascular resistance and reduction in resistance vessel radius (128). During 

the constant flow perfusion, an increase in vascular resistance may force the flow into 

previously unperfused regions resulting in the washout of RBC in that area and a 

change in perfusion pattern. Therefore in the present study, the flow rate during GA 

perfusion was varied in each experiment to keep a constant pressure and prevent the 

RBC efflux. The final flow rate at the end of perfusion fixation was measured in some 

experiments. Vasoconstrictor infusion was stopped during GA perfusion since 

alterations in perfusion flow rate have the potential to alter the agent concentration 

reaching the hindlimb. Instead, the vasoconstrictor was a4ded into the GA medium at 

the same concentration as used above in the BSA perfusion. Muscle tissue preparation 

and vasculature identification by GSL-1 binding were followed as described in 

Section 6.2.6. 

6.2.4 Study 2 (GA-40ml): Perfusion Fixation with 40ml GA and Post-perfusion 

GSL-1 

The procedure to remove BSA from hindlimb vascular bed prior to fixation was the 

same as Study 1. As in Section°6.2.3 above, the vasoconstrictor infusion was stopped 

and followed by perfusion fixation using 2.5% GA (in O.lM phosphate buffer, pH=7.4) 

containing the same concentration of the vasoconstrictor as used in the BSA perfusion. 

A total of 40ml of GA medium was pumped through the hindlimb while maintaining 

the pressure constant at the value attained during the initial 20min BSA perfusion by 

varying perfusion flow rate. The duration of GA fixation.was recorded. Hindleg 

muscle tissue was prepared and the vasculature was identified by GSL-1 binding as 

detailed in Section 6.2.6. 

6.2.5 Study 3 (Rhod-dex): Perfusion with Rhodamine-dextran70 (lysine fixable) 

and Post-perfusion Fixation with Formaldehyde 

During the steady state achieved after perturbations, Rhodamine-dextran70 (Lysine 

fixable, Molecular Probe) at a final concentration of SOµg.ml- 1 was infused for the 

final 4.5min to mark the perfused vasculature. Preliminary experiments showed that 

the fluorescent intensity in venous flow reached a plateau within 4.5min following the 
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Figure 6.1 Experimental protocols. Treatment of All (15nM), 5-HT (lµM) or vehicle 

is indicated by open bars. BSA (4%) perfusion is indicated by D. Carbogen-gassed 

Krebs buffer perfusion to flush out albumin is indicated by ~. Glutaraldehyde (GA, 

2.5 % in O.lM phosphate buffer, pH=7.4) perfusion is indicated by D. Samples taken 

for perfusion pressure and oxygen consumption analysis (Fig 6.2) are indicated by J, . 

In Study 1, GA was perfused for 3min (n=6, 6, 7 for vehicle, All and 5-HT group 

respectively) at slightly varied rates to keep a constant perfusion pressure. In Study 2, 

40ml of GA was perfused through the hindlimb and the duration of GA perfusion 

varied among experiments due to variable flow rate to maintain a constant perfusion 

pressure (n=4 for all groups). In Study 3, rhodamine-dextran70 was infused for 

4.5min in addition to the treatment infusions (n=3 for all groups). All experiments 

were conducted using the single hindlimb perfusion at 32°C and the flow rate was 

8ml.min- 1 during BSA perfusion. 
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commencement of fluorescent dextran infusion, indicating the dextran had reached 

equilibrium within the hindlimb vascular bed. For these perfusions the apparatus was 

modified slightly so as to incorporate two 3-way taps immediately before and after the 

hindlimb so that at the end of the perfusion (20min) they could be closed to contain 

the rhodamine-dextran70 within the hindlimb vasculature during the fixation period. 

Thus, at the end of the perfusion the taps were closed, the pump stopped and the rat 

was bisected above the ligature placed around the torso at the level of the L3-L4 

vertebrae and the lower part of the torso was immersed in neutral buffered 

formaldehyde for 7 days to fix rhodamine-dextran in the vasculature. 

6.2.6 Muscle Perfusion Examination 

Due to its similarity in muscle fiber composition to the whole hindlimb (10), only the 

EDL muscle was analysed. Accordingly, the EDL was excised from the perfused 

hindlimb and prepared for the subsequent examination as described in section 2.4. 

Briefly, the EDL muscle was cut into four blocks and snap-frozen in isopentane 

cooled by liquid nitrogen. Griffonia (Bandeiraea) Simplicifolia lectin-1 (GSL-1) was 

used in Study 1 and 2 to identify vasculature and muscle fibres in 7µm frozen sections. 

The GSL-1 binding was detected by a goat anti-GSL-1 primary antibody which was 

in turn was detected by a biotinylated secondary antibody and peroxidase binding 

using a (goat) Vectastain® ABC kit. Typical GSL-1 binding results from frozen 

sections of fresh muscle tissue are represented by region a in Fig 6.6 A where both 

blood vessels and muscle fibers were clearly identified. In addition, blood vessels 

were stained much heavier than muscle fibres, suggesting a stronger binding affinity 

of GSL-1 to the vascular endothelial cells. When GA is introduced during perfusion, 

perfused vessels will be fixed open and surrounding tissues will also be fixed by GA 

that diffuses out of the vasculature. Tissue fixation by GA destroys GSL-1-binding 

sites, resulting in a 'blanched' appearance with little or no GSL-1 staining. Thus, the 

wide-open blood vessels and essentially invisible muscle fibres in region b of Fig 6.6 

A are typical of the results from GA perfusion fixation. As GA follows the vascular 

routes accessed during BSA perfusion, a well-perfused area would be well fixed by 

GA like region b of Fig 6.6 A. It follows that the under-perfused regions deny access 

for GA, and thus are free of fixation effects as shown by region a of Fig 6.6 A. The 
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total section area and unperfused area were measured using hnage-Pro-Plus software 

and the fraction of unperfused tissue was calculated. An average of 10 and 15 sections 

were analysed for each experiment for study 1 and 2 respectively. For Study 3, 7µm 

frozen sections were mounted in aqueous mounting medium and subjected to 

fluorescence microscopic examination. Approximately 2-4 micrographs (400X) were 

captured to cover each area having fluorescent capillaries within each section. The 

number of fluorescent capillaries was counted and expressed as perfused capillaries 

per section. An average of 8 sections was analysed for each experiment. The exposure 

times were adjusted to optimize the image intensity from the fluorescent Rhodamine­

dextran containing vessels. 

To analyse results generated from the section examination, a mean value was 

calculated from a number of sections for each experiment and the coefficient of 
' 

variance was also determined to indicate the variation among sections. The mean 

values from each experiment were used to compute the mean and SE for each 

treatment group. 

6.2. 7 Statistical Analysis 

Statistical difference between groups was assessed by one-way measure analysis of 

variance (ANOV A). When a significant difference (P<0.05) was found, the Student­

Newman-Keuls test was used to determine which two groups had the significant 

difference. Paired t-test was used to assess whether a treatment has a significant effect 

on the same experimental animals. These tests were performed using the SigmaStat 

statistical program (Jandel Software). All data are presented as means± SE with 

significant difference recognized at P<0.05 level. 

6.3 RESULTS 

6.3.1 Perfusion Pressure and Hindlimb Oxygen Consumption (V02) 

Measurements 

In this series of experiments, the mean perfusate arterial oxygen levels were 673.56 ± 

7.25, 666.76 ± 7.62 and 676.31±9.17 mmHg for vehicle (n=13), All (n=13) and 5-
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HT (n=14) groups, respectively (NS among groups). The. basal venous P02 values for 

the rat hindlimb obtained at 0 time point after the initial 40min equilibration period 

were 326.16 ± 12.31, 333.66 ± 6.59, 317.86 ± 5.9mmHg for vehicle, All and 5-HT 

groups, respectively (NS among groups). Consequently, the basal V02 by the 

hindlimb calculated as previously described (section 2.3.4) was similar among the 

three groups (Fig 6.2B). Furthermore, all treatment groups had similar basal perfusion 

pressure (Fig 6.2A). Vehicle infusion had no effect on either V02 or perfusion 

pressure (Fig 6.2). All at 15nM and 5-HT at lµM each caused vasoconstriction, 

giving rise to a steady-state perfusion pressure significantly higher than their 

corresponding basal values (Fig 6.2). In contrast, these two vasoconstrictors had 

opposite effects on V02 as the steady-state V02 was 35% higher in All group and 

45% lower in 5-HT group than their corresponding basal values (Fig6.2). It is relevant 

to note that the infusion of Rhodamin-dextran70 in Study 3 had no effect on V02 or 

perfusion pressure (data not shown) and thus the steady-state measurements of these 

two parameters were obtained at the end of Rhodamine-dextran70 infusion as 

indicated in Fig 6.1 and included in the data shown (Fig 6.2). 

6.3.2 GA Perfusion Fixation Measurements 

In study 1, the change in perfusion pressure seen between the value before the 

commencement of GA fixation and during GA perfusion was not significantly 

different among the treatment groups, although there was a trend of increase in 

pressure in the 5-HT group (Fig 6.3). This indicates that the perfusion pressure was 

successfully controlled during GA fixation by varying perfusion flow rate. The final 

flow rates for vehicle and 5-HT groups were similar but significantly lower than that 

of the All group (Table 6.1). It is relevant to note that during equilibration of the 

pump-perfused hindlimb there is extensive washout of RBC. Once the hindlimb has 

equilibrated there is almost no further appearance of cells in the venous effluent. If 

they do appear, it is usually indicative of flow extending into previously poorly, or 

unperfused, nutritive regions (227) and this is invariably associated with a pressure 

rise. In this set of experiments, there was essentially no RBC washout during the 3min 

of GA perfusion as the perfusion pressure was deliberately kept constantly. 
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Fig 6.2 Perfusion pressure (A) and oxygen consumption (B) for vehicle group (n=l3), 

All group (n=l3) and 5-HT group (n=l4) at basal condition(•) and post-treatment 

steady state (D ). Samples were taken at time points indicated by J. in Fig 6 .1. For 

each treatment, values from 3 studies obtained at the same time point were combined 

together. Values are means± SE. *Significantly (P<0.05) different from the basal 

value. 
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Fig 6.3 Change in perfusion pressure during the 3min GA perfusion in Study 1 in 

comparison to the value before the commencement of GA fixation for vehicle group 

(e, n=6), All group (0, n=6) and 5-HT group (T, n=7). Values are means± SE. 

Table 6.1 Perfusion flow rate at the end of the 3min GA perfusion. Experimental 

details are as for Study 1 of Fig 6.1. 

Vehicle (n=2) All (n=2) 5-HT (n=3) 

GA perfusion 6.9 ± 0.1 7.75 :t 0.05 * 7.03 ± 0.15 

final flow rate (ml.min-1
) 

Values are means± SE. *Significantly different (P<0.05) from vehicle group. 

Table 6.2 Effects of All and 5-HT on steady state perfusion pressure in the constant­

flow pump-perfused rat hindlimb and resultant pressure following perfusion with a 

fixed volume (40ml) of GA-containing medium. Experimental details are as for Study 

2 of Fig 6.1. 

Vehicle (n=4) All (n=4) 5-HT (n=4) 

Steady-state perfusion 32.69 ± 0.34 69.48 ± 3.62* 86.42 ± 5.39* 

pressure (mmHg) 

Perfusion pressure after GA 30.28 ± 0.24 66.27 ± 2.85* 113.1 ± 33.27* 

fixation (mmHg) 

Duration of GA fixation 6.42 ± 0.21 5.82 ± 0.05 10.22 ± 1.43* 

(min) 

Values are means± SE. *Significantly different (P<0.05) from vehicle group. 
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Fig 6.4 Fraction of unperfused area measured from sections of Study 1 (A) and Study 

2 (B) for vehicle group (D , n=6 in A, n=4 in B), All group(•, n=5 in A, n=4 in B) 

and 5-HT group (D, n=7 in A, n=4 in B). An unperfused area is defined as a region 

having closed capillaries surrounded by muscle fibers darkly stained from GSL-1 

binding. Total section area and unperfused area were measured using Image-Pro-Plus 

software. The ratio of unperfused to total area was calculated and presented as means 

±SE. An average of 10 and 15 sections were analysed for each experiment in Study 1 

and Study 2 respectively. *Significantly different (P<0.05) from vehicle group. 
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Fig 6.5 Number of fluorescent capillaries per section for vehicle group (0 ), All group 

C• ) and 5-HT group (0). N=3 for all groups . Rhodamine-dextran70 was infused 

during experiments and fixed in vascular bed to mark perfused vessels. Capillaries 

visible under fluorescent microscope were counted for each section. An average of 6 

sections were analysed for each experiment. Values are means± SE. *Significantly 

different (P<0.05) from vehicle group. 
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In Study 2, the perfusion pressure after the 40ml GA perfusion was not significantly 

different from that seen during the steady state due to the treatment for all groups 

(Table 6.2). In these experiments some washout of RBC was observed after 3-5min 

GA perfusion in the vehicle and 5-HT groups but this was reduced when the perfusion 

flow rate was reduced to maintain constant pressure consistent with the steady state 

pre-GA value. For the All group, 3 out of 4 experiments showed no RBC washout 

and one showed a slight washout only in the last 30s of GA perfusion. Since the flow 

rate was varied to keep a relatively constant perfusion pressure and minimize the RBC 

appearance in venous flow, the duration required to perfuse 40ml GA through the 

hindlimb was different for each experiment. The mean duration for the 5-HT group 

was significantly higher than either the vehicle or All groups (Table 6.2). 

6.3.3 Tissue Perfusion Measurements 

Fig 6.6, 6.7 and 6.8 show the representative images of sections for vehicle, All and 5-

HT groups respectively in Study 1 where all hindlimbs were exposed to GA for the 

same time. The perfused and unperfused regions were in close proximity and 

normally well defined in either the vehicle or All groups. In some sections, the 

boundary between perfused and unperfused region was less distinct and this region 

may not be perfused by itself but benefit from the adjacent perfused region, thus 

regarded as an unperfused area during image analysis. The fraction of unperfused area 

was less in the All group (16.0 ± 7%) than the vehicle group (35.1±14%), although 

this difference was not statistically significant (Fig 6.4A). The mean value for each 

group was calculated from the means of individual experiments within that group and 

the coefficient of variance ranged from 2.72% to 68.87% and from 21.66% to 

115.45% for the vehicle and All group, respectively. As shown in Fig 6.8, the 5-HT 

group showed a distinct perfusion pattern as most of the regions were unperfused and 

the connective tissues surrounding bigger vessels appeared to be the areas receiving 

perfusion. The fraction of unperfused tissue (82.6 ± 10.5%) was significantly higher 

than either the vehicle or All group and the coefficient of variance ranged from 0 to 

30.313%. 

In study 2 where all hindlimbs received the same amount of GA, the image results 

(Fig 6. 9) were similar to Study 1. When the proportion of unperfused I total tissue 
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perfused was determined, the 5-HT group (77.8 ± 11.5%) had a significantly higher 

unperfused tissue ratio than either the vehicle (31.1±5.4%) or All group (12.2 ± 

5.7%) (Fig 6.4 B).The All group had fewer regions that were unperfused than the 

vehicle group, although this difference did not reach statistical significance. The 

coefficient of variance ranged from 36.95 to 54.67%, 33.65 to 300% and 1.52 to 

51.20% for vehicle, All and 5-HT, respectively. 

In Study 3, perfusate containing the fluorescent Rhodamine-dextran70 was fixed in 

situ at steady state with vehicle, All or 5-HT as background. Thus vessels receiving 

flow during perfusion are fluorescent in the sections. The representative section 

images for the vehicle, All and 5-HT groups are shown in Fig 6.10, 6.11and6.12 

respectively. For vehicle and All group, there were bundles of fluorescent capillaries 

and possibly arterioles and venules unevenly distributed across the sections. However, 

these bundles in the All group sections were located closer to each other and thus the 

sections appeared more homogenous than the vehicle group. Furthermore, the 

fluorescence was generally stronger in the All group section and can be clearly 

viewed under lower magnification (200X, Fig 6.11 A). 5-HT sections overall were 

less fluorescent and with far fewer regions containing fluorescent capillaries. Some 5-

HT sections had a cloudy appearance presumably resulting from the mild oedema due 

to 5-HT-induced vasoconstriction. There was also some evidence of fluorescent 

material in vessels larger than capillaries (Fig 6.12 A). The average number of 

perfused capillaries per section was highest in the All group and lowest in the 5-HT 

group and both were significantly different from the value of the vehicle group (Fig 

6.5). The coefficient of variance ranged from 19.98 to 35 .. 51 %, 9.6 to 56.38% and 

65.21 to 173.21 % for the vehicle, All and 5-HT groups, respectively. 
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Fig 6.6 Representative transverse frozen sections ofEDL muscle obtained from Study 1 

vehicle group. Capillaries, endothelial cells and edges of muscle fibers were identified by 

immunostaining of bound Griffonia (Bandeirae) Simplicifolia lectin. In micrograph A, region 

a represents the "unperfused region"; region b represents the "perfused region". Scale 

bar=SOµm 
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Fig 6.7 Representative transverse frozen sections of EDL muscle obtained from Study I, Aii 

group. Capillaries, endothelial cells and edges of muscle fibers were identified by 

immunostaining of bound Griffonia (Bandeirae) Simplicifolia lectin. Scale bar=SOµm. 
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Fig 6.8 Representative transverse frozen sections ofEDL muscle obtained from Study I, 5-

HT group. Capillaries, endothelial cells and edges of muscle fibers were identified by 

immunostaining of bound Griffonia (Bandeirae) Simplicifolia lectin. Scale bar=SOµm. 
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Fig 6.9 Representative transverse frozen sections of EDL muscle obtained from Study 2 of 

the vehicle (A), All (B) and 5-HT (C) groups. Capillaries, endothelial cells and edges of 

muscle fibers were identified by immunostaining of bound Griffonia (Bandeirae) 

Simplicifolia lectin. Scale bar=SOµm 
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Fig 6.10 Representative transverse frozen sections ofEDL muscle obtained from Study 3, 

vehicle group. Vessels having fluorescence (Rhodamine-dextran70) represent those that were 

perfused during hindlimb perfusion. Exposure time is 1/4, 1/3 and 1/4 sec for A, B and C 

respectively. Scale bar=SOµm. 
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Fig 6.11 Representative transverse frozen sections ofEDL muscle obtained from Study 3, Aii 

group. Vessels having fluorescence (Rhodamine-dextran70) represent those that were 

perfused during hindlimb perfusion. Micrograph A was taken by 200X magnification. The 

exposure time is 1/3, I 12 and 1/3 sec for A, Band C respectively. Scale bar=SOµm . 
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Fig 6.12 Representative transverse frozen sections ofEDL muscle obtained from Study 3, 5-

HT group. Vessels having fluorescence (Rhodamine-dextran70) represent those that were 

perfused during hindlimb perfusion. Micrograph A was taken by 200X magnification. The 

exposure time is 1/3, l /2.3 and 1 /2.8 sec for A, Band C respectively. Scale bar =50µm. 
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6.4 DISCUSSION 

The present study lends support to the notion that blood flow redistribution within 

muscle accounts for the differing metabolic effects of the vasoconstrictors, All and 5-

HT, when added to the constant flow perfused rat hindlimb. Thus All, which 

increases metabolism, increases the number of perfused capillaries (nutritive) by 

vasoconstricting entry to an alternate route, presumed to be non-nutritive. In contrast, 

5-HT markedly diminishes the number of perfused capillaries by vasoconstricting 

entry to the nutritive capillaries and diverting flow to the non-nutritive route. As such, 

the findings are consistent with proposals by others (17, 115, 242) and by our group 

[e.g. see review (51)]. In addition, the findings provide some information as to the 

anatomical identity of the non-nutritive flow route. Thus during 5-HT infusion 

although very few of the capillaries are perfused in the transverse sections examined, 

flow can be seen occasionally to be carried by somewhat larger, more heavily 

sheathed vessels (e.g. Fig 6.8, Fig 6.9 C). 

Our research group has previously proposed that the so-called 'non-nutritive' vessels 

of muscle are connective tissue vessels that are closely associated with each muscle 

and which can be viewed as separate entities on relatively exposed thin tendons such 

as the tibial tendon of the rat biceps femoris (17, 115) but do not behave as shunts 

(125). Our proposal was based on a study where we measured flow to connective 

tissue in the constant-flow perfused rat hindlimb (228). Exposed tibial tendon vessels 

of the biceps femoris muscle of the perfused leg were positioned either under a 

surface fluorometer probe to monitor signal strength when pulses of fluorescein 

isothiocyanate dextran were infused or over the objective .lens of an inverted 

microscope for photography when pulses of India ink were infused. Measurements 

were conducted under steady state with vehicle, noradrenaline (a Type A 

vasoconstrictor like All) or serotonin (a Type B vasoconstrictor) infusion. 

Noradrenaline increased perfusion pressure and oxygen uptake, but decreased 

fluorescence signal from the tendon vessels. Photomicroscopy of the India ink-filled 

vessels confirmed that the tendon vessels had generally decreased in diameter. 

Serotonin, although increasing perfusion pressure like noradrenaline had quite the 

opposite effect on the other parameters. Oxygen uptake was decreased and 

fluorescence signal from the tendon vessels increased. For serotonin, the tendon 
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vessels had clearly increased in diameter. Analysis of data for a range of 

concentrations of norepinephrine as well as serotonin showed that a reciprocal 

relationship existed between resting muscle metabolism (reflected by oxygen uptake) 

as controlled by vasoconstrictors and flow through muscle tendon vessels. Overall 

such findings heighten the possibility that vessels supplying septa and tendons are the 

functional shunts, or the non-nutritive flow route, for muscle as proposed by others 

(17, 115) several years ago. In addition, the data indicated that flow through the 

tendon vessels does not cease even when nutritive flow is high. This is consistent with 

an earlier study from our laboratory where Type A vasoconstriction recruited a new 

space without closing off a vascular space (227). 

In addition to being present in superficial connective tissue, we have speculated that 

these vessels may be interspersed between fibre bundles and constitute loci where fat 

accretion can take place to possibly give rise to the "marbling" of meat. This was 

based on a series of perfusions aimed at assessing the effect of low nutritive flow (and 

hence high non-nutritive flow in a constant total flow hindlimb) on clearance of 

triglyceride as chylomicron emulsion. Quite unexpectedly we found that clearance 

was increased under conditions of predominantly non-nutritive flow (59), indicating 

that lipoprotein lipase was likely to be more concentrated in the non-nutritive than the 

nutritive route. Since lipoprotein lipase is synthesized in fat and muscle cells and 

secreted into neighbouring capillaries and adipose tissue contains more activity of 

lipoprotein than muscle, the higher clearance of triglyceride during non-nutritive flow 

would suggest an active presence of adipocytes on this route. Indeed, adipocytes have 

been reported on connective tissue vessels in muscle, particularly on the vessels that 

pass through the perimysium and epimysium (220). 

Data from the use of fluorescent microspheres (52), where there was no major 
' 

redistribution of flow between different muscles or between muscle and non-muscle 

tissue as a result of vasoconstrictor action might suggest that vessels representing the 

non-nutritive route would have been more numerous in muscle sections. In addition, 

since we have described increased flow in superficial connective tissue vessels 

following 5-HT infusion (228), flow-carrying vessels might have been expected to be 

found on or near the surface of the muscle as viewed in transverse sections of frozen 

muscle in this study, but this was not the case (not shown). The relative paucity of the 
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non-nutritive vessels may reflect a considerable difference in diameter and therefore 
I 

flow capacity. Potter and Groom (263) showed that the distribution of capillary 

diameters in the gastrocnemius and gracilis muscles was bimodal in nature with 12% 

of capillaries having a diameter between 7.5 and 9.5 µm. These larger diameter 

capillaries could, therefore account for approximately 46% of the flow, since 

according to Poiseuille's Law, the flow through a tube is proportional to the diameter 

raised to the fourth power. In addition, if the larger vessels are originally closed and 5-

Hf infusion opened them, then approximately 85% of the flow could in principle be 

redistributed from the smaller diameter capillaries without requiring any pressure 

increase. If the larger diameter capillaries are also half the length, then the number of 

capillaries during 5-HT infusion required to take all the flow would be below 10% as 

suggested by Fig 6.5. Similar calculations can be made based on a normal distribution 

of capillary diameters. Kano et al. (161) for example determined the diameter of 

capillaries in the white gastrocnemius muscle of the rat to be 5.07 ± 1.82 µm (mean± 

SD). In this case, assuming all capillaries are within 2 SD.'s of the mean and the 10% 

of capillaries with the largest diameters (> 7 .2µm) are half the length, then the entire 

flow can be redistributed to them without requiring a pressure change. In any event, 

there are sufficient available data to suggest that the non-nutritive vessels would need 

to be of high capacitance and low resistance and therefore capable of carrying high 

flow when muscle is at rest. However, although they may be larger than the nutritive 

capillaries nourishing muscle cells, these connective tissue adipocyte vessels do not 

allow the passage of 15 µm microspheres [i.e. when non-nutritive flow is high (227)]. 

Clearly further studies are needed to map the complete architecture of these larger 

putative non-nutritive vessels seen occasionally in muscle transverse sections with the 

expectation that they will be found to branch to capillaries nourishing adipocytes in 

connective tissue. 

Other attempts to characterize non-nutritive flow routes in muscle have been more 

concerned with the holistic picture. Indeed, Friedman attempted to measure non­

nutritive flow in muscle and assessed its contribution to total flow (103-105). 

Differing blood volumes were determined by indicator dilution patterns of infused 

marker substances. Total blood volume was derived from radioactively labelled 

albumin and non-nutritional blood volume from 86Rb. A key assumption was that the 
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inability of rubidium to exchange with tissue was solely the result of it passing 

through a well-perfused channel which exhibited low extraction. It was also assumed 

that capillary permeability to rubidium was not limited. With this approach, Friedman 

estimated non-nutritive blood volume in the whole leg of a dog to be 75% of the total 

volume (105). Even though flow in the skin was not taken into account, the correction 

would be small, and the value agrees surprisingly well with values estimated by others 

using quite different methods (130). 

Since total muscle blood flow comprises two components, one nutritive and the other 

non-nutritive, other approaches have attempted to determine nutritive flow in the first 

instance. A common method has involved measuring removal of intramuscularly 

injected radioactive markers, and then based on a joint measure of total flow deduced 

the amount that must be non-nutritive. A summary of estimated proportions and the 

methods used to assess them appears in Hudlicka (144). 

In summary, I have used two methods and three protocols in an attempt to examine 

differences in muscle microvascular perfusion that might be occurring as a 

consequence of vasoconstrictor action in the pu;mp-perfused constant flow rat 

hindlimb. The first method involved a combination of perfusion fixation with 

glutaraldehyde and post-perfusion GSL-1; the second, perfusion with rhodamine­

dextran 70 (lysine fixable) and post-fixation with formaldehyde. By using three 

markedly differing experimental situations where the level of resultant metabolism 

differed from low (5-HT) through medium (vehicle) to high (All), I have succeeded in 

finding clear evidence of tissue perfusion differences. Most notable, microscopic 

examination of muscle sections following All showed an increase in perfused 

capillaries with fewer areas of under-perfusion, relative to control. In contrast, 5-HT 

caused a marked decrease in perfused capillaries relative to control and evidence that 

flow was carried by connective tissue vessels that on average were of greater diameter 

than capillaries and more sparsely distributed than capillaries. It is concluded that 

vasoconstrictors that alter hindlimb metabolism do so by intra-muscle redistribution 

between capillaries (nutritive) and connective tissue vessels (non-nutritive) within 

each muscle. 
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7.1 KEY FINDINGS 

CHAPTER7 

DISCUSSION 

The work described in this thesis investigated the regulatory and anatomical aspects 

of insulin-mediated capillary recruitment. In response to serial doses of insulin (1, 1.5, 

3, 10 and 30mU.min-1.kg-1
), capillary recruitment assessed in anesthetized rats 

showed the highest sensitivity to plasma insulin reflected by being activated at the 

two lowest insulin doses of 1 and l.5mU.min-1.kg-1 which stimulated neither femoral 

blood flow nor muscle glucose uptake. Femoral blood flow and muscle glucose 

disposal were activated by insulin at 3mU.min-1.kg-1 when full stimulation of capillary 

recruitment was already induced. Maximal glucose uptake with insulin was observed 

at lOmU.min-1.kg-1 whereas total blood flow increased further with increasing insulin 

dose from 10 to 30mU.min-1.kg-1
• In response to the removal of physiologic insulin 

(3mU.min-1.kg-1
) from the circulation, insulin-activated capillary recruitment reversed 

slower than activated glucose metabolism but at a similar.rate to bulk blood flow. 

Furthermore, when TNFa (0.5µg.kg- 1.h-1
) was added against serial doses of insulin (3, 

10 and 30mU.min-1.kg-1
), the response of capillary recruitment was closely coupled to 

that of muscle glucose uptake. Thus, both were opposed at the two lower insulin doses 

(3 and lOmU.min-1.kg-1
) but unaffected at the highest dose (30mU.min-1.kg-1), 

whereas changes in total blood flow due to highest dose insulin was still half inhibited 

by TNFa. As insulin may recruit capillaries by redirecting flow from non-nutritive 

vessels to nutritive routes, the anatomical evidence of the two vascular routes was 

sought by using the constant-flow pump-perfused rat hindlimb preparation. Perfusion 

patterns revealed in muscle sections were distinctly different under predominantly 

nutritive (by AU) or non-nutritive (by 5-HT) flow conditions. Vessels in connective 

tissue interspersed between muscle bundles and on average of greater diameter than 

muscle capillaries appear to serve as the non-nutritive route. Collectively, these results 

lend support to the notion that insulin-mediated calJillary recruitment has a 

physiological contribution to insulin-stimulated glucose disposal and involves 
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redirecting flow from the non-nutritive route to the nutritive network in skeletal 

muscle, particularly at physiologic insulin when bulk flow does not change. 

7.2 INSULIN-MEDIATED CAPILLARY RECRUITMENT AND INCREASE 

IN TOTAL BLOOD FLOW 

In conjunction with our collaborators, we have developed three independent 

techniques to assess muscle microvascular perfusion. The studies presented herein 

used two of three methods, namely 1-MX metabolism and CEU, to examine insulin's 

action on muscle microvasculature. Although equally indicative of the status of 

muscle capillary perfusion, these two techniques are based on distinctly different 

principles. On the one hand, 1-MX metabolism method relies on the conversion of 

exogenously infused 1-MX to a single product 1-MU by the enzyme XO, present 

primarily in endothelial cells of the capillaries and small arterioles of muscle tissue 

(132, 156). Thus, it gives measure of perfused capillary surface area. CEU on the 

other hand, involves the continuous infusion of microbubbles as an intravascular 

tracer and the destruction of these microbubbles to produce measurable signals. The 

signals arising from larger vessels in which flow is rapid are removed by background 

subtraction. Thus, CEU provides measure of microvascular vascular blood volume. It 

is relevant to note that positron emission tomography by which Raitakari et al (267) 

reported insulin increased blood volume in human muscle measures blood within both 

the larger vessels and the microvasculature. Furthermore, CEU measurement is made 

in one area of the hindquarter which is in contrast to 1-MX metabolism that is made 

across the whole hindlimb. Despite the different working principles, in previous 

studies CEU and 1-MX metabolism each have demonstrated the ability of insulin (62, 

273) and exercise (66, 353) to enhance muscle microvascular perfusion and results 

obtained using the two techniques were strikingly similar (50). 

The sensitivity of insulin-mediated capillary recruitment to plasma insulin was 

assessed in studies described herein. No matter whether it was measured by 1-MX 

metabolism or CEU, capillary recruitment at the end of 2h insulin clamp in 

anaesthetized rats was activated by very low dose insulin (lmU.min-1.kg-1
, 356pM) 

and fully stimulated at physiological hyperinsulinemia (3i,nU.min-1.kg-1
, 638pM). This 

high insulin sensitivity of capillary recruitment is in contrast to the response of total 
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blood flow. Low dose insulin infusion (lmU.min-1.kg-1
) had no effect on total limb 

blood flow. With increasing insulin doses, total blood flow increased progressively 

and did not reach maximal activation even at the highest dose (30mU.min-1.kg-1
, 

9666pM). This insulin dose-related difference between capillary recruitment and bulk 

blood appears to also hold in human muscle. Thus in human forearm, modest 

physiologic increases in plasma insulin concentration (53mU.L-1
, 318pM), which did 

not augment forearm or brachia! artery flow, increased ~crovascular volume (62). 

The activation time-course of the two hemodynamic actions of insulin also appears to 

be different. During physiological insulin infusion (3mU.min-1.kg-1), capillary 

recruitment was stimulated within 5-lOmin and reached steady state at 30min whereas 

total blood flow began to rise during the second hour of insulin exposure (332, 333). 

This result is reminiscent of another observation in anesthetized animals using 

pharmacological doses of insulin (lOmU.min-1.kg-1
) and LDF to assess microvascular 

perfusion (48). In that study, insulin infusion caused an increase in laser Doppler 

signal in muscle within 20min that reached the maximum by 50min. Femoral blood 

flow was not increased until at least the 60min time point (48). The time course 

response of insulin-mediated capillary recruitment has not been examined in human 

skeletal muscle. However, in human skin there is similar report on the quick action of 

insulin on microvasculature. Locally administrated insulin increased skin 

microcirculatory blood flow measured by laser Doppler fluxmetry within 13.5min 

(291). An earlier stimulation of total blood flow seems possible but would require 

much higher insulin concentrations. Inasmuch as significant increase in limb blood 

flow in the anaesthetized rat was observed lh and 30min after insulin infusion at 10 

and 30mU.min-1.kg-1 respectively (Chapter 3). In conscious animals, there are similar 

reports (110, 259). For example, four-fold increases in insulin concentration to the 

supra-physiologic level ( 4554pM) shortened the time duration to significantly activate 

hindquarter blood flow from 30min to 15min (259). However, it is clear that even if 

very high doses of insulin are used to accelerate the activation of total blood flow, it 

still wouldn't achieve the time frame of 5-lOmin that is adequate to activate capillary 

recruitment at a physiologic insulin dose. Interestingly, after the termination of insulin 

infusion, capillary recruitment and limb blood flow each remained fully activated for 

another 15min beyond the reversal of glucose uptake and required a further 45min to 

return to basal, suggesting the signal reversal of these two vascular responses has 
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similarly relatively slow kinetics. A previous study in humans under conditions of 

systemic insulin infusion showed that increased forearm blood flow was maintained 

after insulin concentrations returned to the baseline value (6), consistent with the 

findings described in the current work. However, there was no concomitant measures 

of capillary recruitment in that study (6). 

Taken together, it appears that insulin's action to recruit capillaries occurs at low 

insulin concentration and at a very early stage when physiologic insulin is 

administered. At higher insulin doses and prolonged insulin exposure, there is a 

further action of insulin to increase bulk blood flow. However, these two 

hemodynarnic responses have similar slow reversal time-courses following the rapid 

fall in plasma insulin concentration when administration of physiologic insulin is 

halted. 

7.3 MECHANISMS OF INSULIN-MEDIATED CAPILLARY RECRUITMENT 

The differential dose- and time-related characteristics of insulin's action on capillary 

flow and bulk blood flow suggest mechanisms for these two vascular effects may also 

differ. Generally, the regulation of total flow to muscle resides at resistant vessels (1 st 

_3rct order arterioles), whereas distribution of flow or capillary recruitment is regulated 

by terminal arterioles (3rct - 5th order) (219). Isolated 1 st order arterioles from rat 

cremaster muscle ( 44) and calf muscle (289) relax in response to insulin in a dose-
' 

dependent manner (60pM- 60nM), indicating increase in total blood flow may result 

from a direct action of insulin on these resistant vessels. Smaller vessels, although 

they can not be isolated due to their inaccessibility, certainly respond to insulin either 

systemically or topically applied to the muscle. Renaudin et al. (278) observed 

dilation of arterioles ( <20µm diameter), viewed by intra vital microscopy of rat 

spinotrapezius muscle in response to subcutaneous insulin injection resulting a serum 

insulin of 915pM. This arteriolar dilation occurred within 12min after insulin injection 

when blood glucose had not changed (278); consistent with the quick activation of 

capillary recruitment in viva (332, 333). In rat cremaster microvasculature, Iwashita et 

al. (150) reported that dilation of 4th_order arterioles (lOµm diameter) persisted after 

serum insulin concentration had returned to basal which would be in line with the 

slow deactivation of capillary recruitment in viva. However, effects from counter-

142 



CHAPTER 7 - DISCUSSION 

regulatory hormone release due to the fall in blood glucose (from 7.lmM to 5.5mM) 

may confound insulin's actions in this study (150). There is evidence that sensitivity 

to insulin-mediated vasodilation increases with decreasing vessel size (205, 238, 262). 

For example, 3rd order arterioles (20µm diameter) of rat cremaster muscle dilated in 

situ at insulin concentration of 4800pM within 15min, whereas larger vessels (1 st_2nd 

order arterioles) were unresponsive ever after 30min treatment of insulin at a level of 

480nM (262). Overall, it appears likely that insulin's effects on 3rd - 4th order 

arterioles result in capillary recruitment. However, due to the difficulty of isolation, 

these small arterioles have only been studied in situ with intravital microscopy. Thus, 

it is unknown whether insulin's effects on these microvessels are direct. 

Many studies suggest a NO-dependent mechanism by which insulin induces 

vasodilation. The insulin resistance exhibited in skeletal muscle of eNOS knockout 

mouse appears to be consistent with this view (85). For insulin-mediated increase in 

total blood flow, it appears that NO production mainly results from a local effect of 

insulin. During a systemic hyperinsulinemic clamp, local inhibition of NO release by 

L-NMMA abolished augmentation of forearm blood flow in human forearm (288, 

308). Consistently, isolated 1 st_order arterioles (77µm diameter) from gastrocnemius 

muscle dilated to insulin and this dilation was inhibited by the NOS blocker, L-NNA 

(289). Furthermore, cell culture studies have demonstrated that vascular endothelial 

cells (212, 349, 350), VSMCs (318, 319) and skeletal muscle cells (160) each respond 

to insulin with the release of NO. Thus, the insulin-mediated increase in total blood 

flow may be the result of effects on either of these cell tYJ;>es, or a combination of the 

three. However, in the cell culture systems, supra-physiological doses of insulin are 

often required to elicit detectable responses and cells are often obtained from large 

vessels. Therefore results obtained from these studies may not be able to readily assist 

in the interpretation of insulin-mediated recruitment of capillary flow that is highly 

sensitive to insulin and controlled by small arterioles. In fact, Oltman et al. (238) 

reported that the NOS pathway is involved in insulin's action to dilate canine 

coronary conduit arteries but not microvessels. fu accordance with this, Hester et al. 

(135) reported a longitudinal gradient in the tonic release of NO in muscle 

microcirculation and dilation of 3rd _5th - order arterioles appear to have much less 

dependency on NO production (249, 250). With regards to skeletal muscle-induced 
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NO production, it seems unlikely to be playing a role in capillary recruitment as 

insulin-mediated capillary recruitment occurs rapidly (332, 333) and transcapillary 

transport of insulin to reach myocytes is rate-limiting (264, 344). Nevertheless, there 

is in viva evidence suggesting a NO-dependent mechanism for insulin-mediated 

capillary recruitment although this NO dependency only manifested at the systemic 

level. Thus, systemic (331) but not local (196) NOS inhibition by L-NAME abolished 

insulin-mediated capillary recruitment in rat hindlimb muscle. These observations 

suggest that a central control on NO release may contribute to insulin's action to 

enhance microvascular perfusion which would be in line with observations that 

intracerebroventricular administration of L-NMMA induced hypertension-associated 

insulin resistance without producing detec:table presence of L-NMMA in the 

circulation (293). Furthermore, local administration of Mch potentiated insulin­

mediated capillary recruitment, indicating a regulatory role of a local NO-dependent 

mechanism in insulin's microvascular action (197). Nevertheless, within the context 

of NO-related vascular regulation, the tightly related reversal kinetics of the two 

vascular actions of insulin observed in viva (Chapter 4) suggest that insulin-stimulated 

NO-induced vascular responses in different tissues may have a similar deactivation 

rate. In addition, both hemodynamic actions reversed slower than insulin-stimulated 

muscle glucose uptake. This is unexpected as there is striking parallel between 

signalling pathway in metabolic targets with respect to glucose transport (43, 65) and 

signalling pathways in vascular endothelium regulating the production of NO by 

insulin (212, 351, 352). A lower phosphatase activity at one or more steps in the 

insulin signalling cascade resulting in NO production in insulin-sensitive tissues may 

contribute to the slow reversal of the total flow increase and capillary recruitment. 

Further studies are needed to test this hypothesis. 

Recently Oltman et al. (238) reported that in isolated coronary microvessels, 

relaxation in response to insulin was mediated through K+ -dependent mechanisms 

rather than NOS pathways. It is possible that the K+ -dependent mechanisms are also 

involved in playing a role in insulin-mediated capillary recruitment in terminal 

arterioles of skeletal muscle. In deed, Mahajan et al. (196) have recently found that 

local infusion of tetraethylammonium chloride (TEA), an inhibitor of Ca2+ dependent 

K+ (Kea) channels, blocked systemic insulin-mediated capillary recruitment and 

glucose uptake in rat leg muscle in viva. This Kea channel-dependent mechanism 
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seems specific for capillary recruitment as blockage of this channel by TEA had no 

effect on the increase in forearm blood flow during the hyperinsulinemic clamp in 

humans (1). The ATP-dependent K+ (KATP) channel was reported to play no role in 

insulin-meditated increase in total blood flow in human forearm. However, McKay 

and Hester (205) observed an inhibition of 4th_order arteriolar dilation induced by 

topically applied insulin in hamster cremaster muscle when KATP channel was blocked 

by glibenclamide, indicating a control of KATP channel on insulin-induced response in 

small arterioles. Therefore, it is possible the KATP channel may play a role in insulin­

mediated capillary recruitment. An in vivo study using the combination of systemic 

hyperinsulinemia and a local KATP channel blockage may prove useful to test this 

hypothesis. 

Studies presented in the thesis as well as previous studies (333) have provided more 

than circumstantial evidence that the two hemodynamic effects of insulin are 

independent of each other. For capillary recruitment to occur in the absence of 

changes in total blood flow, flow might redistribute to support the increase in 

capillary number with a decrease in blood flow velocity throughout the 

microvasculature. Flow might also be recruited from the non-nutritive route by 

vasoconstriction at sites that control entry to this route. Recent in vivo studies using 

CEU to investigate changes in microvascular volume and cell velocity found no 

slowing down in cell velocity during capillary recruitment process induced by 

physiologic insulin (66, 333), favouring the latter explanation. In fact, studies in our 

laboratory have yielded substantial evidence for the existence of two vascular circuits 

within muscle, namely nutritive and non-nutritive routes (51). Our studies indicate 

that the nutritive network contains a greater capillary surface area, allowing more 

extensive perfusion of the muscle (51); the non-nutritive route, on the other hand, is 

associated with septa and tendon (228) and very likely nourishes associated 

adipocytes (59). Work from the present studies suggests that the non-nutritive route 

supplies connective tissue wrapping muscle bundles and the non-nutritive vessels are 

on average of greater diameter than muscle capillaries. This greater diameter may 

allow these vessels to be rapidly filled and thus blood in these vessels is eliminated 

from microvascular volume measurement when using CEU. 
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To redistribute flow from non-nutritive to nutritive route, insulin may in fact exert a 

dual action to constrict vessels preceding the non-nutritive route and vasodilate into 

nutritive capillaries so that the net result is no change in overall vascular resistance. 

One possible candidate to fulfil the vasoconstriction role is endothelin- 1 (ET-1), a 

potent and enduring vasoconstrictor (260, 341). ET-1 is released upon insulin 

stimulation from cultured human endothelial cells and VSMCs (8, 97). During insulin 

infusion elevated circulating ET-1 levels were observed in most (8, 97, 207, 254, 339) 

although not all (207) whole body studies. In the constant-flow pump-perfused rat 

hindlimb, low dose ET-1-induced vasoconstriction enhanced nutritive flow evidenced 

by an increase in hindlimb oxygen consumption which was abolished when SNP was 

added to block ET-1-induced vascular effects (168). Therefore, ET-1 at low dose may 

be able to constrict at entry points to the non-nutritive vessels to recruit capillaries 

leading to increased nutrient delivery and thus potentially assist insulin action. To test 

this hypothesis, it may be useful to conduct euglycemic hyperinsulinemic clamp with 

superimposed infusion of ET-1 receptor blocker to see whether abolished ET-1' action 

inhibits insulin's ability to recruit capillaries in vivo. Since ET-1 takes part in the 

maintenance of basal vascular tone (42, 204), it may be necessary to administer an 

ET-1 receptor blocker locally to avoid undesirable systemic effects. ET-1 at high dose 

leads to a net inhibition of oxygen uptake in the constant-flow pump-perfused rat 

hindlimb preparation (168), indicating a restricted muscle perfusion by ET-1 at the 

high dose. This observation raises the possibility that an excessive level of ET-1 may 

become potentially antagonistic of insulin action rather than potentiating it. Indeed, 

elevated ET-1 was reported in a number of clinical disorders associated with insulin 

resistance including type 2 diabetes (41, 96), obesity (95, 202) and hypertension (42, 

184). Insulin-mediated capillary recruitment is likely to be impaired in these insulin 

resistant situations and the elevated ET-1 may conceivably play a role. In this regard, 

it would be interesting to see whether insulin-stimulated ~apillary recruitment and 

muscle glucose uptake in these patients could be improved by lowering ET-1 levels. 

Insulin-mediated MSNA may provide another possible vasoconstrictor mechanism by 

which insulin enhances microvascular perfusion at the expense of non-nutritive flow. 

Support for this hypothesis may draw from the remarkable similarity in the time­

course and dose responses to insulin between MSNA and capillary recruitment. 

MSNA appears to be a quick action of insulin (6, 31, 304). In particular, Spraul et al. 
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reported that MSNA increased 15min after the onset of insulin infusion (80mU.m-

2.min-1) in human subjects and the time required to reach the half maximal effect was 

approximately 25min while calf blood flow showed a significant rise only after 45min 

of insulin infusion (304). This time frame of MSNA is comparable to the 5-lOmin 

required to activate capillary recruitment in rats using 3mU.min-1.kg-1 dose of insulin 

(332, 333). Moreover, there are reports on persistent MSNA lh after the termination 

of insulin infusion (6) or 90min after carbohydrate ingestion (30). This slow reversal 

of MSNA would match the slow deactivation of capillary recruitment in rats 

following the cessation of 3mU.min-1.kg-1 insulin clamp (Chapter 4). Furthermore, 

there is evidence that MSNA is activated and saturated by insulin at low dose which is 

inadequate to stimulate total blood flow (131). This high insulin sensitivity of MSNA 

is also consistent with studies in rats showing the high insulin sensitivity of capillary 

recruitment (Chapter 3). Thus, the possible MSNA involvement in insulin's action to 

recruit capillaries may be worth further exploration. 

7.4 ROLE OF INSULIN-MEDIATED CAPILLARY RECRUITMENT IN 

INSULIN-MEDIATED GLUCOSE UPTAKE IN SKELETAL MUSCLE 

The finding that insulin has hemodynamic actions leads to the hypothesis that 

insulin's stimulatory effects on muscle glucose uptake have two components: one is 

the activation of cellular glucose metabolism; the other is an increase in the delivery 

of glucose and insulin itself to myocytes. Some researchers tested this hypothesis by 

examining the effects of altering bulk blood flow using vasoactive agents on limb 

glucose utilization and results from these studies were inconsistent. Whereas each 

similarly augmented total blood flow, Mch (25, 27, 197, 285) but not SNP (224, 258, 

285), adenosine (223) or bradykinin (174, 233) enhanced insulin-mediated glucose 

uptake. These differential effects of vasoactive agents on glucose disposal seem 

unrelated to the possible confounding effects of NO on muscle glucose metabolism or 

differences in insulin-induced glucose gradient across the' vascular bed. Rather, they 

appear to be associated with modulating actions of these drugs on insulin-stimulated 

capillary recruitment (197, 258). Therefore, these observations favour a prominent 

role of the microvascular action of insulin in facilitating glucose disposal in muscle. 

In support of this view is the demonstration that exercise training resulted in enhanced 

microvascular response in association with enhanced glucose uptake (277). Thus, it is 
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conceivable that in some insulin resistant states, the defect in insulin action may result 

not only from some intrinsic defect in the cellular metabolic steps involved in glucose 

metabolism but also from a defect in insulin's action to improve microvascular 

perfusion. Consistent with this view, previous work from our group has shown a close 

association of impaired insulin-mediated capillary recruitment with impaired insulin­

mediated glucose uptake in a number of animal models of insulin resistance. For 

example, the obese insulin resistant Zucker rat is markedly unresponsive to insulin­

mediated capillary recruitment and shows almost no response to maximum insulin in 

terms of muscle glucose uptake (336). In addition, each of the following: a-met5-HT 

(272), TNFa (350), or lntralipid +heparin (58) infusions acutely blocked insulin's 

microvascular action of capillary recruitment and impaired insulin-mediated glucose 

disposal in each case by approximately 50%. It is of added interest that TNFa­

induced inhibition of insulin-mediated capillary recruitment was overcome by high 

level insulin which was associated with a fully restored insulin action on muscle 

glucose uptake (Chapter 5). In contrast, total blood flow induced by this high dose 

insulin was still partly inhibited by TNFa. 

The dose and time characteristics of insulin-mediated increase in limb bulk blood 

flow in relation to insulin-stimulated muscle glucose metabolism have been 

extensively studied in humans. At physiological insulin concentrations, insulin 

increases glucose extraction maximally within 30-60min (325) during which time the 

response of limb flow is highly variable, with significant increases (20-60%) (6, 308, 

335), no or marginal increases (34, 233, 325, 348) in blood flow. During prolonged or 

high-dose insulin infusions, blood flow increases markedly up to 80-110% above 

basal whereas glucose extraction remains constant (171, 325). Thus it was concluded 

from these studies that an increase in total flow may play a role in facilitating muscle 

glucose uptake when the insulin concentration is supra-physiological and exposure to 

this hormone is prolonged, yet under physiologic conditions and insulin 

concentrations the role of total flow is questionable. We characterized the time-course 

and dose-curve responses of insulin-mediated capillary recruitment using 

hyperinsulinemic clamp in anesthetized rats and obtained results in contrast to those 

relating to total blood flow. Thus insulin recruited muscle capillaries at concentrations 

lower than those required to stimulate glucose disposal (Chapter 3). When insulin 
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was infused at a physiologic concentration and then halted, capillary recruitment was 

activated earlier (332) and reversed slower (Chapter 4) than muscle glucose uptake. 

To have capillary recruitment activated earlier and at lower insulin concentrations 

may be essential to ensure optimal muscle glucose storage after meal where insulin is 

secreted in phasic manner and its level rises and falls rapidly. Thus, a possible 

situation after a meal in insulin resistant subjects may be that equilibration of 

interstitial insulin may not be reached before plasma insulin level falls due to the 

defective insulin action to facilitate capillary delivery. If this is the case, the 

diminished muscle glucose uptake in insulin resistant individuals observed using a 

constant hyperinsulinemic clamp would be more prominent when experiments were 

conducted using oral glucose load or food ingestion. Moreover, the reason for the 

slow reversal of insulin-mediated capillary recruitment is not clear. It is possible that 

the slow reversal allows washout of insulin from muscle for clearance by liver and 

kidney following the decline of the peak of plasma insulin at the end of the absorptive 

state. In this manner, anabolic processes stimulated by insulin in the myocytes would 

be more readily reversed. This might limit late hypoglycemia which wouldn't occur 

under a clamp condition since it has been prevented by infusing variable rates of 

glucose. To further explore the physiologic aspects of insulin-mediated capillary 

recruitment and the contribution of defects in this insulin action to muscle insulin 

resistance, it may be useful to examine the response of capillary recruitment and 

muscle glucose disposal following intravenous glucose infusion, oral glucose load or 

mixed meal ingestion in both insulin sensitive and resistant models. In this respect, 

CEU is providing an ideal tool to conduct continuous measurement of capillary 

recruitment. 

7.5 CONCLUSION 

To summarize, the work present herein extends our previous findings that insulin's 

microvascular action and macrovascular action are disassociated and lends support to 

the notion that insulin-mediated capillary recruitment has a physiological contribution 

to insulin's stimulatory effects on muscle glucose uptake., The findings also shed an 

insight into the anatomic vascular process by which insulin may act to recruit 

capillaries without changing total blood flow. The TNFa studies show that when used 
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against serial doses of insulin, there was a constant association between capillary 

recruitment and muscle glucose uptake whereas the association between total blood 

flow and glucose disposal was only apparent at two lower insulin doses. Furthermore, 

capillary recruitment was found to be more sensitive to plasma insulin concentrations 

than either muscle glucose uptake or total blood flow. In conjunction with previous 

findings that capillary recruitment is an early event of insulin action that precedes 

insulin-mediated increase in total blood flow and muscle glucose uptake, the 

microvascular action of insulin may confer an advantage for insulin and glucose 

delivery to muscle by ensuring that optimal muscle glucose storage occurs after meals. 

The time and insulin dose-related differences between capillary recruitment and total 

blood flow suggest these two hemodynamic actions of insulin are differentially 

regulated. However, the similar reversal kinetics of insulin-mediated capillary 

recruitment and increase in total flow following the removal of physiological dose 

insulin indicate that the two vascular actions of insulin have similar deactivation 

mechanisms. Nevertheless, to have new capillaries recruited without altering bulk 

blood flow, insulin may redistribute flow from the non-nutritive route to the nutritive 

capillary network. Anatomical proof of the non-nutritive route was sought and it 

appears likely that the non-nutritive vessels supply connective tissue and have slightly 

greater diameters than muscle capillaries. Collectively, these results highlight the 

physiologic importance of insulin's action to enhance nutritive capillary flow likely at 

the expense of non-nutritive connective tissue flow in the determination of skeletal 

muscle glucose uptake. 
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