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ABSTRACT 

The origin of electrocardiographic ST segment depression in subendocardial 
I \ 

ischaemia remains unclear. The location of ST depression does not enable the 

localization of an ischemic region. Previous studies showed that the current path was 

within the intramyocardium, and there was a current sink at the boundary of the 

ischaemic area which caused the ST depression on the epicardium. Thus, it is vital to 
; ' 

explore the intramyocardial potential distributions during subendocardial ischaemia. 

Different subendocardial ischaemia animal models were produced in the present study 

as well as acute myocardial ischaemia model. 

(1) SUBENDOCARDIAL ISCHAEMIA MODEL 

' The subendocardial ischaemia was produced by combining left atrium pacing with 

partial occlusion of the left anterior descending coronary artery (LAD) and/or the left 

circumflex coronary artery (LCX). ST potentials yvere collected simultaneously from 

epicardial, endocardial and three different layers of the intramyocardium of the left 

ventricular wall. Regional myocardial blood flow (RMBF) was also measured in the 

inner one-third, mid one-third and outer one-third of the left ventricular wall by 

fluorescent microspheres. 

The RMBF results showed that there was a decrease of endocardial RMBF in the 

ischaemic region during subendocard~al ischaemia. 

In subendocardial ischaemia of altern,ate LAD or LCX areas, ST depression occurred 

on the epicardium, the distributions of the ST potential on the epicardium from either 

ischaemic region were very similar. At the same time, endocardial potentials showed 

ST elevation which was directly ,associated with the ischaemic area. In the 

intramyocardium, both ST elevation :and ST depression occurred in different layers 

from the subendocardium to the subepicardium. Epicardial ST depression can not 

predict the ischaemic area, however, ST distribution patterns in different layers of 

intramyocardium during subendo".ardial ischaemia can be predicted from 

electrocardiographic theory. Thus, it is suggested that the intramyocardial electrical 

current path might be altered towards the epicardium. 

(2) SUBENDOCARDIAL ISCHAEMIA MODEL: TRANSITI,ON FROM MILD 

TO SEVERE DEGREE 

Further experiments were performed :to transit ischaemia from mild degree to severe 



degree, and finally to full thicknes: ischaemia, in an attempt to explain how the 

intramyocardial electrical current path altered when spread towards the epicardium. 

ST potentials were also recorded silJ:1;ultaneously from epicardium, endocardium and 

three different layers of the left ventricular wall. By combining occlusion of the LAD 

or LCX by 30% and 70% of its original blood flow with left atrium pacing, mild and 

severe ischaemia were produced, full thickness ischaemia was produced by total 
I 

occlusion of the LAD or LCX. 

Measurement of RMBF showed that RMBF in the inner one-third layer decreased, 

while RMBF in the mid and outer one-third layers remained unchanged in mild 

ischaemia. RMBF in every layer decreased in severe ischaemia in the ischaemic 

regions, with RMBF decreasing most in the inner one-third layer and least in the outer 

one-third layer. Although it was expected that, with 70% occlusion of the coronary 

artery, there would be an abrupt transition of RMBF between the mid and outer 

one-third layer of the left ventricular wall, the RMBF of the entire left ventricular wall 

was affected in the severe ischaemia. 

In the mild ischaemia group in either the LAD or LCX area, epicardial ST depression 

occurred after ischaemia and it ! was not related to the ischaemic region. 

Simultaneously recorded endocardial potentials showed ST elevation which was 

related to the ischaemic area. Intramyocardial ST potentials showed both ST elevation 

and ST depression in different layers of the LV wall, with ST elevation occurring in 

the ischaemic centre and ST depression occurring on the boundary of the ischaemic 

and non-ischaemic area. 

In severe subendocardial ischaemia of either the LAD or LCX area, both ST elevation 

and ST depression occurred on epicardium and different layers of intramyocardium, as 

in mild ischaemia, ST elevation appeare4 in ischaemic area, with the maximal 

magnitude occurring in the ischaemic centr~; ST depression appeared in the 

non-ischaemic area, the magnitude of ST depressio!l decreased towards the ischaemic 

boundary. Endocardial ST elevation in severe ischaemia occurred in the ischaemic 

region. The different epicardial ST :distribution between the mild and the severe 

ischaemic groups led to a postulate t4at the current path might breakthrough towards 

the epicardium during severe subendocardial ischaemia. 

When the ischaemia became full thiqkness, ST elevation appeared on the ischaemic 

area, and ST depression occurred on the non-ischaemic area in every layer of the left 

ventricle. However, the maximal ST elevation and ST depression occurred on the 

boundary of the ischaemic and th~ non-ischaemic regions. The ST distribution 

patterns between severe and full thicl.9iess ischaemia were totally different. 
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(3) ACUTE MYOCARDIAL ISCHAEMIA MODEL 

Acute transmural ischaemia was developed by ligating either the LAD or the LCX. ST 

potentials and RMBF were recorded and measured in the same way as that in 

subendocardial ischaemia. 

After acute ischaemia, RMBF in different layers of the left ventricular wall in the 

ischaemic region decreased significantly, and RMBF in the inner and mid one-third 

layers in the non-ischaemic region also decreased. 

Similar ST potential distributions were obtained on different layers of the heart, i.e., 

ST elevation occurred on the acute ischaemic region while ST depression occurred on 

the non-ischaemic region. The highest magnitude of maximal and minimal ST 

potential occurred on the boundary of the ischaemic and the non-ischaemic areas. ST 

shift had a positive relationship with RMBF. However, ST depression did not relate to 

the corresponded RMBF decrease. The results supported that some basic balance 

between ST elevation and ST depression existed during ischaemia, the total current 

flowing out of the heart must flow back into the heart. The ST depression was also a 

part of the source. 
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CHAPTER ONE 

CHAPTER ONE INTRODUCTION 

1.1 RESEARCH BACKGROUND ' 

The historical development of the' electrocardiogram has resulted in a clinical 

diagnostic tool, the 12-lead electrocardiogram (ECG). 

Electrocardiographic ST segment deviation, including ST elevation and ST 

depression, has been long regarded as a sign of ischaemic heart disease (Pardee, 
I 

1920; Wilson et al., 1933d; Kmekci et al., 1961; Kleber et al., 1978). 

The cellular mechanism of electrocardiographic ST elevation has been well studied 

(Samson and Scher, 1960; Prinzmental 1961; Shaefer and Hass, 1962; Kleber, 1978). 

In an elaborately designed animal experiment, Kleber (Kleber et al., 1978) studied 

ischaemic ST deviation on a cellular level. In Kleber's experiment, both 

transmembrane potentials from the subepicardial ventricular cells and local 

extracellular DC electrograms in is~lated perfµsed pig hearts were recorded before 

and after the occlusion of the LAD. Two mechanisms have been put forward to 

explain the ischaemic ST deviation. Firstly, the ischaemic cardiac cells were less 

depolarised (i.e., relatively positive compared to normal cells) during the resting 

phase of action potential compared to the normal heart muscle, which results in injury 

current f19wing from the ischaemic tissue to normal heart tissue with depression of 

the QT segment of the extracellular potential, which on normal alternating coupled 

(AC) amplifiers, is represented by ST elevation. Secondly, it was found that during 

the active phase of action potential, the action potential duration shortened, the 

upstroke velocity and the amplitude of action potential diminished in ischaemic 

cardiac cells, the intracellular potential of ischaemic tissue was electrically lower than 
' 

the normal tissue, which resulted in a systolic injury current flowing from the normal 

tissue to the ischaemic tissue, · also producing ST elevation on surface 

electrocardiogram. 

The mechanism of ST depression in' ischaemic heart disease has been controversial 

(Prinzmetal et al., 1959 and 1961; Ekmekci, 1961; Toyoshima et al., 1964; Holland 

and Brooks, 1975; Vincent et al., 1977). Wilson (Wilson et al., 1933a) used dipole 

theory to interpret the electrocardiogram information in ischaemic heart disease. The 

dipole model considered the active myocardial event as a single dipole source that 

contained both the maximum and the minimum potentials. Accordingly, an injured 

tissue of the myocardium acts in systole as the positive pole of dipoles situated on its 

1 



CHAPTER ONE 

boundary with the normal myocardium , and the latter acts as the negative pole. In the 

event of subendocardial ischaemia, the epicardium over the ischaemic region faces 

the negative pole of the dipole; the cavity faces the positive pole. Thus, the electrodes 

over the ·ischaemic region will record depressed ST and the cavity will yield elevated 

ST (Bayley, 1946; Yu and Stewart, 1950; Cook et al., 1958). The dipole theory was 

expanded into the solid angle electrocardiogram theory by Holland and Brooks 

(Holland and Brooks, 1975). They suggested that ST deflection in ischaemic heart 

disease is a boundary phenomenon that depended on the diastolic and the systolic 

injury currents flowing at the boundary between the ischaemic myocardium and the 

normal myocardium. The electrocardiographically recorded potential was directly 

proportional to both solid angle and the difference in transmembrane potentials 

between the normal and the ischaemic regions. Thus, according to this theory, 

endocardial ischaemia would cause relative depression of the ST segment in the 
I 

epicardium due to the reversed current flow at the boundary of the normal and the 

ischaemic myocardium, and that thi.s ST depression should provide the means for 
I 

localizing ischaemia. However, Holh.md and Brooks failed to produce subendocardial 

ischaemia in the porcine model ~nd were unable to confirm their theoretical 

prediction of subendocardial ischaemia. Clinical research has also shown that ST 

depression can not localise the isc~aemic region (Dunn et al., 1981; Ikeda et al., 

1985; Mark et al., 1987), this inability of ST depression to localise the ischaemic 

region cannot be explained by classical theoretical analysis (Wilson et al., l 933a; 

Holland and Brooks, 1975 and 1977; Tung, 1978). 

In a recent study exploring the origin of ST depression in subendocardial ischaemia, 

both epicardial and endocardial potential distributions were recorded (Li et al., 1998). 

With subendocardial ischaemia produced in either the LAD or LCX area, the 

epicardial ST depression distribution looked very similar, and did not localise the 

ischaemic area, even though simultaneous recorded endocardial ST elevation 

occurred on the ischaemic region. These results were not consistent with classical 
' 

electrocardiogram theories (Wilson 'et al., 1933a; Holland and Brooks, 1975 and 

1977). 

To understand the origin of ST depression on the epicardium during subendocardial 

ischaemia, it is important to trace the electrical path. Kilpatrick (Kilpatrick et al., 

1990) postulated that ST depression on the surface ECG originates from current 

flowing from an endocardial ischaemic region t~ the outside of the heart through the 

great vessels and atria. This hypothesis explained the difficulty in localising 
I 

ischaemia from body surface ST depression. To test this hypothesis, a further study 
\ 
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CHAPTER ONE 

was carried out by insulating the heart from the return current (Li et al., 1998), the 

results showed that there was an increase of the magnitude of ST depression on 

epicardium and a decrease of magnitudes of the QRS complex and T wave in the 

routine ECG limb leads, whereas the ST depression distribution on the epicardium 

remained unchanged. This result suggested that the source of ST depression is 

intramyocardial, rather than involving external paths. This contention was further 

tested by the transition of subendoca~dial ischaemia to transmural ischaemia (Li et al., 

1998). From the transition of subendocardial ischaemia to full-thickness ischaemia, it 

was found that epicardial ST depression increased gradually over the boundary region 

as the ischaemia progressed until ST elevation ensued over the ischaemic region as 

the ischaemia became transmural. The increase of ST depression before the 

occurrence of ST elevation was also observed in a study with a perfused canine heart 

by Guyton et al in 1997 (Guyton et al., 1977). In another study on the effects of 

conducting media on cardiac potential (Green et al., 1991), it was found that the 

amplitude of the epicardial QRS potentials from both intact and isolated hearts was 

markedly higher when the heart was surrounded by an insulating medium but that the 

QRS potential distribution patterns were less .affected. This also supports that the 
; ' 

electrical path of the active heart is within the heart muscle. 

A mathematical model of the whole heart was constructed by Li and co-workers (Li 

et al., 1998) to explain the experimental results. From the bidomain model, epicardial 

ST depression was obtained over the lateral region in either the LAD or the LCX 

partial occlusion, and endocardial ST elevation over the ischaemic region, which 

correlated well with the experimental results. It showed that there was a powerful 

current sink at the boundary of the ischaemic and the non-ischaemic tissues. The 

model effectively predicted that the major current flow would occur over the 

boundary. Since the LAD and the LCX share their boundary at the lateral wall, no 

matter which side of the boundary was involved, there would be similar ST 

depression distribution on the epicardium. However, further more simple simulations 

in a block with anisotropy of myocardium suggested that the ischaemic region could 

be predicted from the region of ST depression, which was discrepant to Li's study 

(Johnston et al., 2001). 

Since the electrical path is within the myocardium, it is necessary to look at the 

intramyocardial potential distributi01;1, this data will be vital for understanding the 

current flowing at the ischaemic boundary, and thus to further analyze the source of 

ST depression. 

3 



CHAPTER ONE 

Acute myocardial ischaemia is commonly associated with ST elevation in ECG leads 

over the damaged region, "recipro~al" ST depression may appear in ECG leads 

remote from the infarction region. The origin and significance of ST depression 

associated with acute myocardial infarction is controversial (Gibson et al., 1982; 

Ferguson et al., 1984; Roubin et al., 1984; Mirvis, 1988; Bates et al., 1990; Krone et 

al., 1993; Wong et al., 1993; Edmunds et al., 1994). Animal models of small size of 

acute myocardial infarction showed ,uniform ST elevation over the infracted region 

with little change over the remaining epicardium (Holland and Brooks, 1975; Smith 

et al., 1979; Kleber et al., 1978). However, in Li and co-workers' (Li, et al., 1999) 

experimental sheep model, they found that ST depression always accompanied ST 

elevation in large size of acute transµmral ischaemia whereas in small size of acute 

transmural ischaemia, ST depression was almost invisible. They explained this 

phenomenon by constructing a conc~ntric sphere model which suggested that some 

basic balance between size of isch~emia and ST elevation to ST depression ratio 

exists. The total current flowing out' of the heart must flow back into the heart, i. e., 

the over~ll current out of the heart must be zero. This study was analysed using the 

data from both epicardial and endocardial ST potentials. Because the current path is 

within the myocardium, it is essential to take the intramyocardial potential into 

account when trying to define the origin of ST depression in acute myocardial 

ischaemia. 

1.2 RESEARCH PROPOSAL AND ORGANIZATION OF THE THESIS 

Based on the above knowledge, this study w~s carried out to detect why electrical 

current, at the boundaries of subendocardial ischaemia, flows in such a manner as· to 

cause epicardial ST depression over the boundary. A series of experiments measuring 

potentials simultaneously from intramyocardial electrodes, in addition to the 

epicardial and endocardial electrodes, were performed in ischaemic sheep models. 

Epicardiai and endocardial potentials were recorded from the entire left ventricle 

surface of both epicardium and endocardium. Intramyocardial potentials were 

recorded with 29 needles scattered on the boundary of the myocardium supplied by 

the LAD and LCX. Each needle has three electrodes of different depth when inserted 

into the heart muscle. The design of the experiments aimed to give as much 

information as required to understand the electrical path of the heart. 
I 

Firstly, animal models of subendocardial ischaemia of either the LAD or LCX area 
! 

were constructed and confirmed by measuring regional myocardial blood flow 

(RMBF) using fluorescent microspheres. This kind of experiment model would give 
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CHAPTER ONE 

an overall view of potential distributions at different layers of the heart. 

Subendocardial ischaemia regions were further induced sequentially in both the LAD 

and the LCX area in the same sheep, with a stable period of 30 minutes between the 

two manipulations in either order. By comparing the potential distributions in 

different areas of ischaemia in single experiment, convincing results should be 

achieved. 

Secondly, transition of subendocardial ischaemia from mild degree to severe degree 

was performed in either the LAD or LCX area. Because the electrical path is within 

the myocardium, more detail about the potential distributions with the progress of 

subendocardial ischaemia would be obtained. 

Finally, as a part of studying the origin of ST depression in subendocardial ischaemia, 

ST depression accompanying acute myocardial ischaemia was also studied. 

This thesis is composed of seven 'chapters. Chapter one concludes the research 

background and the organization of the thesis. Chapter two is a literature review, 
' 

covering the basic knowledge of electrophysiology of the heart, principal of the ECG, 

ECG manifestation of ischaemic heart disease and its mechanism. It also reviews the 

mapping technique in cardiac disease and simulation study of the heart. Chapter three 

describes the general methodology of this study. Chapter four studies the potential 

distributions in different layers of the heart in subendocardial ischaemia. Chapter five 

studies the potential distributions in different layers of the heart during transition of 

subendocardial ischaemia from mild to severe degree. Chapter six studies the 

potential distributions in different layers of the heart in acute myocardial ischaemia. 

Chapter seven gives an overall concl~sion to the study. 
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CHAPTER TWO LITERATURE REVIEW 

2.1 FUNDAMENTALS OF ELECTROCARDIOGRAPHY 

The primary function of the heart is to contract so that it can fulfill its role as a pump. 

The myocardium is unique among the muscles of the body in that it possesses the 

property of automatic rhythmic contraction, each contraction triggered by excitation 

waves of electrical activity. The electrical activity arises in the conduction system of 

the heart, which results in excitation throughout the myocardium. The formation and 

conduction of the electrical activity of the heart produces weak electrical currents that 

spread through the whole body. The electrocardiograph (ECG) is a graphic recording 

of the electrical potential differences, between any two points on the body surface 

produced by the electrical activity of the heart. 

2.1.1 THE GENESIS OF THE ECG 

In the genesis of ECG, several factors are involved: (1) initiation of impulse 

formation in the primary pacemaker (sinoatrial node); (2) transmission of the impulse 

through the specialized conduction system of the heart; (3) activation (depolarisation) 
' ' 

of the atrial and ventricular myocardium; (4) recovery (repolarization) of all the 

above areas. (Goldman, 1986) 

The initial impulse in the cardiac cycle begins in the sinoatrial node which has the 

most rapid rate of spontaneous depolarisation. In the normal heart, the sinoatrial node 

cells trigger the contraction, the impulse traverses the intemodal pathways to 

depolarise the atria, producing the P wave. Atrial depolarisation is followed by atrial 

repolarization. The potentials generated by the atrial repolarization are not usually 

seen on the surface ECG because of their low amplitude and they are superimposed 

on the much higher amplitude QRS complex. After atrial repolarisation, the impulse 

reaches the atrioventricular node. ·Normally, the impulse is "delayed" in the 

atrioventricular node for 0.07 second 'before passing on to the bundle of His, the right 

and left bundle branches and the ramifications of the Purkinje system. Conduction 

through this electrical pathway is much more rapid than through ordinary heart 

muscle. The excitation of these structures is too small to produce detectable potentials 

on the body surface at the normal amplifier gains used in the clinical ECG, so it 

appears isoelectric which in normal ECG is represented by the PR segment. The 

impulse is then passed by the electrical pathway to the ventricular muscle. 
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The spread of excitation through the ventricular myocardium is from the endocardial 
' 

to the epicardial surface. The broadly dispersed ramifications of the treelike or fractal 

Purkinje system and the rapid conduction within it result in depolarisation of most of 

the endocardial surfaces of both ventricles within several milliseconds and the 

simultaneous activation of multiple endocardial sites. Earliest activity begins in three 

sites: (1) the anterior paraseptal wall of the left ventricle, (2) the posterior paraseptal 

wall of the left ventricle, (3) the center of the left side of the septum. Wave fronts 

spread from these sites in anterior and superior directions to activate the anterior and 

lateral walls of the left ventricle. The posterobasal areas of the left ventricle are the 

last to be activated. Septal activation begins in the middle third of the left side and 

spreads across the septum from left to right and from apex to base. Excitation of the 

right ventricle begins near the insertion point of the right bundle branch close to the 

base of the anterior papillary muscle and spreads to the free wall. The final areas to be 

involved are the pulmonary conus and posterobasal areas. Thus, in both ventricles, 

the overall endocardial excitation pattern begins on septal surfaces and sweeps down 

and ·around the anterior free walls to the posterior and basal regions in an apex-to­

base direction. The activation fronts then move from endocardium to epicardium. 

Excitation of the endocardium begins at sites of Purkinje-ventricular muscle junctions 

and proceeds with muscle cell-to-muscle cell conduction in an oblique direction 

toward the epicardium. The sequence of endocardial activation and endocardial-to­

epieardial activation results in the characteristic waveforms of the QRS complex. 
I ' 

Following the excitation of the left ventricular muscle, the recovery of the ventricle 

occurs. Similar to activation, the recovery of the ventricles occurs in a characteristic 

geometrical pattern. As activation moves from endocardium to epicardium, sites 

further away from the endocardium are activated later and later in the sequence. 
I 

However, action potential durations· are longest near the endocardium and shortest 

near the epicardium, which produces a transmural gradient in recovery periods. 

Differences in action potential dur~tion are greater than differences in activation 

times, so recovery is completed near the epicardium before it is completed near the 

endocardium, thus recovery occurs from the epicardial to the endocardial, resulting in 

T wave concordant with the QRS ~ave pattern. The period between excitation and 

recovery of the heart is electrically quiescent, with no regional differences in 
j 

potentials occurring in the ventricles~ This results in the isoelectrical ST segment of 

the ECG. After ventricular recovery, no current can be recorded and no potential 

differences exist, until the next impulse reaches the atria. This period is also 

isoelectrical in the ECG and is termed the TQ segment. 
i 
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2.1.2 CELLULAR BASIS OF ECG 

The behaviour of the transmembrane action potential of the myocardial cells 

influences the ECG. The character of the transmembrane action potential varies with 

its site of origin and is different in different cell types of the heart. Generally, the 

heart is composed of three types of specialized myocardial cells: one group of cells 

has the primary function of impulse formation (pacemaker cells); another group has 

the primary function of conduction (Purkinje fibres); and the third group has the 

primary function of mechanical contraction (Lipman et al, 1984). The third group is 

further divided into three subgroups in the left ventricular wall, i.e., epicardial cells, 

M cells and endocardial cells. Each cell type and subtype has different characteristic 

action potential, and the recorded ECG is a summation of the extracellular potentials 

generated by these individual action potentials as modified by the instrumentation 

used for their amplification and recording. The total ECG is also dependent on the 

sequence of activation, the status of the myocardium, and a variety of factors 

influencing depolarisation and repola~ization. 

The myocardial cell membrane is a thin lipid bilayer that separates the aqueous 

phases inside and outside the cells (Quinn, 1976; Katz, 1986). Many of the 

components of the bilayer (e.g., the phospholipids) have a hydrophobic portion 

oriented toward the interior of the lipid membrane and a charged hydrophilic portion 

oriented toward the internal or external aqueous phase, the lipids of the bilayer can be 

polarized, permitting the membrane to store charges, so myocardial membrane is a 

good capacitor. The membrane is selectively permeable to different ionic species that 

pass through channels controlled by gates which open and close in response to 

voltage, time, or the presence of a chemical activator, this character gives the 

membrane a high impedance. 

2.1.2.1 Resting membrane potential 

If a microelectrode is placed on the surface of a resting myocardial cell and a second 

(indifferent) microelectrode is placed in a remote location such as the extracellular 

space, no detectable potential is recorded because of the high impedance of the cell 

membrane. However, if the cell membrane is penetrated by a microelectrode, a 

negative potential will be recorded, which represents the potential difference between 

the inside and the outside of the cell. This potential is known as the "resting 

membrane potential" (Fig2.l.1) whic~ varies from -60mV to -lOOmV, depending on 
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the type of cell and on the cell's state of depolarization. In the non-pacemaker cells of 

atria and the ventricles, the resting membrane potential remains steady until the cell is 

depolarized by the spread of excitation. In the pacemaker cell, a continuous slow 

diastolic depolarization brings the transmembrane potential to a critical level of about 

-65mV, which is called the "threshold potential", at this level, the depolarization 

becomes rapid and gives rise to a spontaneous action potential (vide post). 

Measurements of the intracellular and extracellular ionic concentrations show a high 

intracellular potassium concentration and a low extracellular potassium concentration. 

Similar measurements of sodium concentration show the reverse, with high 

extracellular and low intracellular sodium levels. These concentrations are maintained 

by active metabolism of the myocardial cell and by the fact that the myocardial 

membrane is not completely permeable to these ions. The large ionic gradients across 

the membrane create the electrochemical potential. 

The major factor that determines the resting membrane potential is the potassium ions 

gradient across the cell membrane. The intracellular concentration of potassium is 

about 150mEq/L, and the extracellular about SmEq/L, resulting in a high 30:1 

concentration gradient, the Na+-K+ pump, by an active ion transport mechanism, 

maintains this concentration gradient. During quiescent state, the membrane is of high 

permeability to potassium compared with other ions. Because of the high intracellular 

concentration of potassium, there is always a tendency for potassium to diffuse out of 

the cell down its concentration gradient, via the opening K+ channels. However, the 

negative intracellular ions, mainly organic phosphates and charged proteins, can not 

accompany potassium ions because the cell membrane is impermeable to them. If the 

negative intracellular potential was big enough, the electrical attraction of the cell 

interior for the potassium could fully offset the outward diffusion tendency of the 

ions, creating a dynamic equilibrium in which there would be no further net 

movement of potassium ion out of the cell. The electrical potential at which this 

happens is called the potassium equilibrium potential. This electrical potential is, by 

definition, equal in magnitude to the outward-driving effect of the chemical 

concentration gradient. The exact relation between the potassium equilibrium 

potential and the potassium concentration ratio is given by the Nernst equation (Page 

1962; Levick 1995), 
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Fig 2.1.1 Left: diagram of tra11smembrane potential of a ventricular muscle cell and correspo11di11g extracellular electro gram. Right: dwgram of 
ions flux duri11g action potential period and resting membrane potential period. 

RMP=resti11g membrane potential; APd=actio11 potential duration; TP=tlzreslzold potential; ARP=absolute refractory penod; RRR=1 elatil'e refractory period; 
SN=supernormal period of excitability. O=depolarisatio11; 1 ,2,3 =phases of repolarisation; 4 =diastolic phase. 

Plzase 0: Rapid depolarisation due to Na+ (and Ca2+) influx; Plzase 2: Plateau plzase of repolarisatio11 in whiclz there is a slow injlw: of Cai+; Phase3: Ef]lux of K resulting in 
slow return of intracellular potential to -90m V. At the ter111i11al of p/zase 3 an active transport system .extrudes Na+ from tlze cell and pumps K into tlze cell. Phase 4: Resting 
membrane potelltial=-90111 V 
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Where R is the universal gas constant, T is the absolute temperature and F is the 

Faraday's constant. Experimentally, it is found that the myocyte's resting potential is 

indeed close to the potassium equilibrium potential (Page 1962; Levick 1995). It is 

also found that when the extracellular potassium concentration increased, as in 

ischaemia, the myocyte resting potential declines (became more negative) in 

proportion to the K+ concentration, and a decreased extracellular K+ concentration 

increases the resting membrane potential, as predicted by the Nemst equation 

(Surawicz, 1967). 

2.1.2.2 Action potential 

When a pulse reaches a myocyte, it will reduce the cell's transmembrane potential to 

a critical level known as the threshold potential. The threshold potential is about 

-65m V in atria and ventricular muscle cells and about -40m V in sinoatrial and 

atrioventricular nodal cells (Goldschlager and Goldman, 1989). The membrane 

potential reaching the threshold leads. to depolarization of the membrane. At the onset 

of depolarization of a cardiac muscle cell (e.g. a ventricular muscle cell), there is an 

abrupt change in permeability of the cell membrane to sodium. As has been 

mentioned, in a quiescent state, the extracellular Na+ concentration is relatively high 

in relation to intracellular Na+ concentration and the membrane at this period is 

almost impermeable to Na+. This Na+ concentration gradient across the membrane is 

also maintained by the Na+-K+ exchange pump. With the change of membrane 

potential to sodium, Na+ (and Ca2+ to a lesser degree) enter the cell and result in a 

sharp rise of intracellular potential to positivity (approximately 20mV). This is 

designated as phase 0 and represents the fast inward current typical of normal 
l 

myocardial cells and Purkinje fibres. Pacemaker cells of the sinoatrial node and cells 

in the proximal region of the atrioventricular node are depolarized by a slow inward 

current of calcium. Under abnormal conditions, cells whose fast inward current via 

sodium channels is inhibited can be depolarized by the slow inward current via 

calcium channels. The intracellular potential change to a positive degree is called the 

"overshoot". At the end of phase 0, all the carrier sites that allow Na+ to be 

transported across the membrane have been saturated (inactivated) and the membrane 

becomes absolutely impermeable to sodium (beginning of the "absolute refractory 

period"). Therefore, initial depolarization depends on the Na+ influx. 
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Following depolarization, there is a relatively slow and gradual return of intracellular 

potential to the resting membrane potential. This is termed the repolarization time and 

is divided into 3 phases: Phase 1: an initial rapid return of intracellular potential to 

OmV. This is largely the result of abrupt closing of the sodium channels. It has been 

suggested that chloride ions enteringthe cell may also contribute to phase 1. Phase 2: 

a plateau phase of repolarization owing to the slow entrance of calcium ions into the 

cell. These are the same channels that can result in the slow inward type of 

depolarization. Phase 3: this represe,nts the slow, gradual return of the intracellular 

potential to resting membrane potential. It results from extrusion of potassium ions 

out of the cell, which reestablishes the normal negative resting potential. During 

repolarization, the sodium carriers are not fully regenerated (activated) during most of 

the repolarization, hence the cell is partially refractory to stimulation. However, there 

is a period near the end of repolarization in which there is full reactivation of sodium 

carriers but the cell has not returned to the resting membrane potential and this is 

closer to the threshold level. This short period gives rise to the superexcitable 

(supernormal) period, when a smal~er than normal stimulus will result in cellular 

depolarisation (Fig2. l.1 ). After repolarization, the cell is again permeable to 

potassium, there are an excess of sodium ions and a deficit of potassium ions, to 

restore the original ion concentration, the Na+-K+ pump becomes effective as 

mentioned before. The energy required pump, which has an adenosine triphosphate 

(ATP) dependent transport mechanism, removes sodium from the cell and permits 

potassium influx. The inhibition of the Na+-K+ pump in the early ischaemic stage can 

cause an increase in extracellular potassium (Kleber, 1983; Wilde and Kleber, 1986). 

In relation to the action potential, the resting membrane potential period is referred to 

phase 4. 

2.1.2.3 Conduction of action potential in cardiac fibre -local circuit currents 

An action potential travelling down a cardiac muscle fibre is propagated by local 

circuit currents which are shown in Fig2.1.2. Diagram A represents a normal 

myocardial fibre. In diagram B, there is a depolarized region where the external 

surface of the membrane is negative compared to the adjacent membrane, and the 

internal face of the depolarized membrane is positively charged relative to the 

neighbouring internal areas. These potential differences cause local currents to flow, 

which depolarize the membrane adjacent to the initial site of depolarisation if the 

initial electric current is sufficient to bring the adjacent membrane above threshold. 

The major carrier of this current is K+ (Horan and Flowers, 1980). These newly 
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depolarized areas then cause current flows that depolarize other segments of the 

membrane still further removed from the initial site of depolarization. Diagram C 

shows the depolarisation is carried on by local circuit currents. Diagram D shows all 

the myocardial fibre is depolarised. When the depolarising current reaches the end of 

the cell, propagation of the action potential occurs through the gap junction which is a 

low-resistance structure responsible for intracellular electrical communication. 

(Pressler, 1987). 
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Fig 2.1.2 Mechanism of spread of depolarisation. A: a normal 
polarised myocardial fibre. B, C: the local circuit currents that 
flow to adjacent area of the membrane and allow conduction 
of the depolarisation. D: the·reversal of membrane potential 
in depolarised myocardial fibre. 
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2.1.3 CARDIAC ELECTRICAL FIELD 

Transmembrane potential is, by definition, differences in voltage between the inside 

and the outside of a cell, but the electrocardiogram records the differences of potential 

in an electrical field at a distance from the heart, and that electrical field exists 

because excitation spreads sequentially from one part of the heart to another. At every 

instant, from the beginning of an action potential in the first myocardial cell to be 

excited until the complete repolarization of the last one, it is possible to identify a line 

of demarcation that separates cells tl~at have just been activated from those still in a 

resting state. This advancing wave front is the origin of the electrical field because the 

surface of cells just depolarized is electrically negative with respect to the exterior of 

those not yet activated, where the activated part is served as sink and the non­

activated part is served as source, the electrical field generated by such dipole extends 

outwards. With such a dipole immersed in a conducting medium, an electric current is 

established which flows through the medium, similar to the magnetic field set up by 

the positive and negative poles of a magnet, the magnitude and direction of this 

complex dipole can be recorded and analysed from the body surface leads. The single 

dipole theory, put forward by Einthoven (Einthoven et al, 1913) and developed by 

Wilson (Wilson et al, 1933a) is over~implified, but it is useful for explanation of the 

electrocardiogram. It is based on three premises: (1) The heart is a single dipole 

generator; (2) The body is a homogeneous conductor; and (3) All electrodes are 

equidistant from the dipole generator. 

2.1.4 THE RELATIONSHIP BETWEEN ELECTROCARDIOGRAM AND 

CARDIAC ELECTRICAL FIELD 

Depolarization and repolarization of the ventricles occur transversely, i.e. across the 

thickness of the ventricular myocardium from endocardial to epicardial surfaces. This 

is illustrated in Fig2. l .3 which, for simplicity, depicts a tissue of four cells extending 

from endocardium to epicardium. The exploring electrodes are placed on the chest 

wall (B) and the intracavity (A). Diagram One represents the resting state. All four 

cells are in the resting state, i.e. they are all in phase 4 of the transmembrane action 

potential. All the cells of the tissue have positive extracellular potential and negative 

intracellular potential. There is no difference in potential between the cells, and no 

current flows. 
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Enda cardium Epic::arr:lium 
A 1 2 3 4 B 
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Fig 2.1. 3 Process of depolarisation and repolarisation in a series of four cells 
hypothetically situated from endocardium to epicardium, and corresponding 
potential recording with exploring electrodes located at endocardium (A) and 
epicordium (BJ. The directions of depolarisation and repolarisation are 
indicated by arrows. (From Schamroth L. Electrophysiology and electropa­
thology. In: The electrocardiology of coronary artery disease, Schamroth L,ed. 
Blackwell Scientific Publications,1975 with modification. See text). 
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Diagram Two illustrates the process of normal depolarization from endocardium to 

epicardium, the cells being activated sequentially from cell 1 to cell 4. Cells 1 and 2 

have been activated and are in phase 0 of the transmembrane action potential; cell 3 

and 4 are still at rest and are in phase 4 of the transmembrane action potential. A 

doublet exists between cells 2 and 3, the first doublet of the activation process having 

occurred between cells 1 and 2. The doublet current with a positive head in 

extracellular space thus flows from endocardium to epicardium, giving rise to a 

positive QRS deflection in an electrode facing the epicardium, and a negative QRS 

deflection in an electrode facing the ~ndocardium. 

Diagram Three reflects the fully depolarized state, all four cells being in the process 

of recovery. This state corresponds principally to Phase 2 of the transmembrane 

action potential, the plateau. Since this is a relatively long phase, there is a large 

measure of overlap between the ce~ls in this state, and sequential differences are 

usually not evident. Consequently t~ere is no difference in surface potential, and no 

current flows. The conventional electrocardiogram therefore reflects no deflection, an 

isoelectric baseline, which correspon~s principally to the ST segment. 

As we know, repolarization of the activated cells does not occur in the same sequence 

as depolarisation. It generally occurs from epicardial to endocardial surfaces instead 
) 

of from endocardial to epicardial su~faces. The first cell to be depolarized is the last 

cell to be repolarised, and vice versa. There are several reasons to explain -why 

repolarisation of epicardium occurs earlier than endocardium: the pressure within the 

endocardial regions is greater compared to the epicardial regions of the myocardium 

during ventricular systole; different blood supply resulted from specific differences in 

the distribution of the coronary artery between epicardium and endocardium exists; 

the endocardium is easy to cool down by dispersing thermal energy to cardiac cavity. 

This reversed process of repolarization becomes evident when phase 3, the cascade of 

the transmembrane action potential, is reached. It shows in Diagram Four that cell 4 

and 3 have already recovered, being fully polarized with positive extracellular 

potentials. A doublet exists between cells 2 and 3. The series of doublets so-to-speak 

proceeds from epicardium to endocardium with a negative head and a positive tail in 

the extracellular space, giving rise to ·a positive deflection, an upright T wave in leads 

orientated to the epicardium and a· downward T wave in leads orientated to the 

endocardium. Diagram Five illustrates the fully repolarised, resting state of the four 

cells once again. 
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The measured electrical potential 'Will depend on many factors, including the 

orientation of the leads with respect to the electrical field generated, rate and number 

of cells depolarised or repolarised, the nature of the conducting medium surrounding 

the heart, etc. If all the factors were known, together with the sequence of activation, 

and the exact intracellular potential of each cell, it would be possible to construct the 

ECG. This has been nearly done on numerous occasions (Rudy and Plonsey, 1980; 

Leon and Horacek, 1991; Khoury and Rudy, 1992; Zhou and van Oosterom, 1994; 

He et al., 1997; Johnston and Kilpatrick, 2003), which provide evidence to better 

understand the facets of the ECG. 

2.1.5 RELATIONSHIP BETWEEN ACTION POTENTIAL AND ECG 

The transmembrane action potential reflects the electrical events of a single cell, 

whereas the electrocardiogram reflects the electrical events of cardiac tissue, from 

very many cells. Nevertheless, because of the rapid near-synchronous activation of all 

the cells, the following approximate correlation exists between the two records (on 

ventricular level): 

Phase 0 Corresponds to the QRS complex 

Phase 1 Corresponds to the J point, the junction of the QRS complex 

with the ST segment 

Phase 2 Corresponds to the ST segment 

Phase 3 Corresponds to the T wave 

Phase 4 Corresponds to the isoelectric baseline of the resting state, 
I 

TQ segment 
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2.2 ST SEGMENT SIDFT IN ISCHAEMIC HEART DISEASE 

2.2.1 ST SEGMENT IN ECG 

As has been mentioned, there is a segment in ECG between the QRS complex and T 

wave which is called ST segment. In a normal ECG, the ST segment has an 

isoelectric section in most leads. Normal ECG analysis usually regard the TP 

segment in the ECG (the portion of the ECG tracing that lies between the termination 

of the T wave and the beginning of the following P wave) or the preceding PR 

segment as the baseline. The normal variant of the ST segment in the limb leads can 

be less than O.lmV above the baseline or less than 0.05mV lower than the baseline; 

or in the chest leads, within 0.3mV above the baseline in VrV3, within O.lmV 

above the baseline in leads V4, V5• Normally, the ST segment is not depressed more 

than 0.05m V in any chest-leads. Any change exceeding the above criteria is regarded 

as abnormality. The ST segment corresponds to the plateau period in the action 

potential, any factor affects phase 2 of the action potential will result in ST segment 

shift. Theoretically, the absence of ~T segment, deviation from the baseline implies 

an absence of significant potentiai differences during phase 2 of ventricular 

repolarisation. Even under normal . circumstances, this condition is not always 

fulfilled, particularly at the onset of repolarisation. After the end of depolarization, 

some potential differences do exist before the onset of uniform repolarisation to the 

level of the plateau. This interval is short but it may cause deviation of the junction (J 

depression) and of the early portion of the ST segment. As a result of this, 

measurements of ST segment deviation are usually made about 60-80ms after the 

end of the QRS complex when all the ventricular fibres are expected to be 

depolarized (discharged) to the same· membrane potentials, before the onset of rapid 

repolarisation. 

2.2.2 ST SEGMENT SHIFT IN IS(:HAEMIC HEART DISEASE 

ST segment shift, either ST elevation or ST depression, has long been regarded as an 

indication of ischaemic myocardial injury. 

2.2.2.1 ST segment elevation in ischaemic heart disease 

According to the classic electrocardiographic theory, ST segment elevation is 

produced predominantly by acute coronary occlusion. Pardee (Pardee, 1920) first 
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related ST segment elevation of electrocardiogram to acute myocardial infarction in 

human, similar results were found by Wilson (Wilson et al, 1933d) who confirmed 

that with coronary artery ligation, ST' segment shift occurred on the epicardial surface 

of the. dog heart. Thus established the theory that ST segment changes in the 

electrocardiogram is a sign of myocardial ischaemia. 

Subsequent researchers have reported a wide range of ST changes after acute coronary 

occlusion in experimental animals. In Rakita and Ekmekci's experiment with dogs, 

following the experimental ligation of the left anterior' descending coronary artery, 

unipolar epicardial electrogram leads taken in the center of the cyanotic area showed 

ST segment elevation within 30-60 seconds, which occurred somewhat later than the 

regional loss of contraction and tended to reach a maximum in 5 to 7 minutes. 

Exploration of the epicardial surface in adjacent areas showed more gradual 

development of ST segment elevation in the peripheral regions, and a gradation of less 

severe ST segment elevation occurred from central to peripheral cyanotic areas 

(Rakita et al., 1954; Ekmekci et al., 1961). Reciprocal ST segment depression was 

noted in leads taken from the posterior wall of the heart (Rakita et al., 1954). This ST 
' 

segment depression occurred just outside the cyanotic area when only a branch of 

LAD was ligated, if the small coron~ry artery supplying such a region of ST segment 

depression was ligated, .ST segment elevation replaced the depression promptly 

(Ekmekci et al., 1961). When small plunge electrodes were used to record intramural 

leads across the left ventricular wall,, ST segment elevation can also be observed, with 

less magnitude than that in epicardial leads (Rakita et al., 1954). Intracavity leads 
' ' 

immediately beneath the subendocardium also showed ST segment elevation of a 

slight degree. Nabel studied ST segment shift in human beings with coronary artery 

disease, rapid atrial pacing confirmed myocardial ischaemia in patients with coronary 

artery disease when angina was provoked. Before atrial pacing, there was no ST 

segment shift both in the body surface electrocardiagram and endocardial 

electrocardiogram; however, after r~pid atrial pacing, no abnormalities in the body 

surface electrocardiogram were apparent, but marked ST elevation was found in 17 of 

the 21 patients in endocardial leads. This ST elevation was abolished by nitroglycerin. 

Moreover, in several patients, endocardial ST segment elevation after rapid atrial 
l 

pacing was abolished after successful percutaneous transluminal coronary angioplasty 
' 

of the critically stenosed artery supplying the ischaemic region of myocardium (Nabel 

et al., 1988). These suggested that ST segment elevation in endocardium is a reflection 
\ 

of myocardial ischaemia and may be a sensitive marker compared with the body 

surface electrocardiogram. 
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Unlike the above studies, Kleber and his co-workers (Kleber et al., 1978) observed a 

pattern of uniform ST segment elevation in transmural myocardial ischaemia over the 

infarcted region and no ST segment depression over the border region following LAD 

ligation in an isolated pig heart, which led to a current flow just at the border between 

the normal and the ischaemic tissues, and this agrees with the solid angle model of 

Holland and Brooks (1975 and 1977). 

Smith observed another pattern of ST shift in experiments involving baboons and pigs 

(Smith et al., 1979 and 1983). A spatially uniform degree of epicardial ST segment 

elevation overlying the ischaemic area occurred for approximately the first 20 minutes 

of ischaemia. After 20 minutes of ischaemia, ST segment elevation increased from the 

periphery to the center of the ischaemic area, this, disagreed with the solid angle 

theory. Smith explained that the entire ischaemic region might be characterized by a 

uniform dipole moment per unit volume instead of one distributed solely around the 

border between the normal and the ischaemic tissues (vide post). 

In addition, ST segment elevation can be recorded with subendocardial and intramural 

electrodes after coronary occlusion when the ST segment in epicardial leads overlying 

a site on the periphery of the cyanotic region remained normal (Rakita et al., 1954). 

Experimental studies have generally supported the belief that ST segment elevation 

can localize ischeamic area. It has been shown that ST elevation in precordial leads 

indicates transmural ischaemia or injury in the LAD distribution, and ST segment 

elevation in the "inferior" leads (II, III, A VF) indicates transmural ischaemia or injury 

in the right coronary artery or LCX (Holland and Brooks, 1977; Yasue et al., 1981; 

Fuchs et al., 1982). 

In Fuchs and co-worker's study (Fuchs et al., 1982) for localizing the site of coronary 

artery disease in 134 patients with angiographically documented single-vessel 

coronary disease, they reviewed 10 years of, cardiac catheterization to select the 

studied patients, who had ECGs recorded during myocardial infarction, spontaneous 

rest angina, and/or treadmill exercise, and found 91 % of ST segment elevation 

correctly identified the location of the coronary lesion. They observed that there was a 

significant relationship between ST segment elevation and the location of the 

obstructed coronary artery, ST segment elevation in leads I, avL and V1~V5 during 

myocardial infarction correlated with the presence of LAD disease (p<0.005 for each 
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lead); ST segment elevation in leads II, III and avF was associated with RCA or LCX 

disease (p<0.005). 

Using endocardial potential mappill:g method, Li (Li, 1997) recorded endocardial 

potential distribution in subendocardial ischaemia in sheep. It was found that ST 

segment elevation in the endocardial electrograph can localize ischaemia, that is, 

partial occlusion of LAD resulted in subendocardial ischaemia and ST elevation over 

the endocardium in the corresponding area. 

2.2.2.2 ST segment depression in ischaemic heart disease 

Unlike ST segment elevation which is always an indication of myocardial ischaemia, 

ST segment depression occurs under different conditions: firstly, it occurs as a 

benign electrical phenomenon (Mirvis, 1988); secondly, it is a manife-station of 

myocardial ischaemia caused by acute occlusion of another coronary artery (known 

as ischaemia at a distance (Schwartz et al., 1983; Haraphongse et al., 1984; Li et al., 

1997); furthermore, it is regarded as a primary change of myocardial ischaemia 

(Ekmekci et al., 1961a; Prinzmetal et al., 1959). 

Previous studies have not agreed about a correlation between the site of coronary 

artery obstruction at arteriography and the site of ST segment depression on exercise 

electrocardiography. 

A positive correlation between ST segment depression on exercise and the site of 

coronary arterial obstruction has been reported by Robertson (Robertson et al., 1976). 

He found that exercise-induced ST segment depression in the inferior leads (II, III, 

avF) indicated right coronary artery ~isease and ST segment depression in the chest 

leads I and avL indicated left coronary artery disease, but their investigation included 

patients with single and multivessel disease. Herman (Herman et al., 1967) found in 

patients with single and multivessel disease a similar correlation when the site of 

coronary occlusion was determined from exercise-induced and resting 

eletrocardiographic ST segment depression. Griffith (Griffith et al., 1978) found in 

112 patients with single vessel disease that ST segment depression in leads I, avL and 

V1 to Vs reflected myocardium supplied by the LAD and leads II, III and avF 

reflected myocardium supplied by the LCX or RCA. Because 76 of these patients had 

myocardial infarction and 36 had angina pectoris, it is difficult to extrapolate these 
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results to locate coronary artery disease from the site of exercise-induced ST segment 

depression. 

On the other hand, Dunn (Dunn· et al., 1981) reported no differences in the 

distribution of exercise-induced ST segment depression in patients with either · 

isolated left anterior descending artery lesions or in those with single left circumflex 

or-right coronary lesions. ST segment depression in their study in both inferior and 

anterior leads occurred in 43% of patients with left anterior descending artery disease 

and in 29% of subjects with right or circumflex artery disease. In Nasmith's study of 

ST segment deviation with acute coronary syndrome patients which include 

myocardial infarction patients and unstable angina patients, multiple sites of 

continuous recording were made with orthogonal X, Y and Z leads. It was evident 

that ST segment depression vectors :were confined to a small, lateral cardiac region 

despite a variety of cardiac lesions, it is maximal over the left thorax regardless of 

cardiac lesion location. They suggested that one lateral lead may suffice in 

monitoring ST segment depression (Nasmith et al., 2001). 

I 
In Li's experiments (Li et al., 1998) with sheep, subendocardial ischaemia was 

induced by partially occluding the LCX or the LAD. Such occlusion induced 

ischaemia over approximately half of the left ventricle in each instance and there was 

little overlap between the two regions. The results showed that the epicardial potential 

distributions were very similar for occlusion of the respective arteries (correlation 

coefficient was 0.77±0.14), supporting that epicardial ST depression does not predict 

the location of the ischaemic region. However, further study of the mathematical 
' 

model designed to understand the relationship between subendocardial ischaemia and 

the resulting epicardial potential distributions by the same group disagreed with their 

experimental study (Johnston et a~., 2001). In this bidomain model, epicardial 

potential distribution was simulated on the base of an anisotropic model of the cardiac 

tissue. It was found from the simulations that it should be possible to predict the 

region of subendocardial ischaemia from the epicardial potential distribution. The 
I 

model was an infinite slab of cardiac tissue attached to an infinite amount of blood, 

whereas the experimental model dealt with finite quantities, and the experimental 

model induced ischaemia from the middle of the left ventricular free wall to the 

septum behind which is another blood mass, so difference in the geometries being 

considered, as well as the relative size of the ischaemic region. 
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There are several concerns about the lack of capability of ST depression to localise 

ischaemia. Fuchs (Fuchs et al., 19~2) concluded that this is because ST segment 

depression occurs frequently both as a primary change due to subendocardial 

ischaemia or infarction and as a se~ondary "reciprocal" change. Kato (Kato et al., 

1968) believed that the non-specific ST segment depression in localizing the site of 

ischaemia or infarction is due to the multiple ways in which ST segment depression 

can be produced. Animal experiments have shown that subendocardial ischaemia or 

injury can produce ST segment depression in leads overlying the area of damage, and 

transmural ischaemia or injury can produce ST segment depression in distant 

reciprocal leads (Ekmekci et al., 1961a; Kato et al., 1968). Thus, ST segment 

depression in leads II, III or avF might be due to subendocardial ischaemia in the 

distribution of the LCX or RCA or to transmural ischaemia in the distribution of the 

LAD. There is no clear means of differentiating the two possibilities based on the 

ECG alone. 

Iskandrlan and Segal (1979) postulated that the amount of myocardium supplied by a 

specific coronary artery varies in each individual patient and is further altered by 

proximal or distal obstruction. Some myocardial segments that become ischaemic on 

exercise with associated ST segmen~ depression may be supplied by any one of the 

three major coronary arteries. They found individual differences of coronary artery 

anatomy in exercise-induced ischaemia in patients with effort angina pectoris. 

Myocardial ischaemia may extend from a region supplied by a stenosed vessel to 

surrounding regions and is prone to take the form of global subendocardial ischaemia 

(for example, because of elevated left ventricular end-diastolic pressure). 

Accordingly, the left ventricular apex may be most vulnerable with myocardial 

ischaemia. This is in agreement with the fact that exercise-induced ST segment 

depression is most often seen in left chest leads not only in the total study population 

but also in patients with each one-vessel disease. 

The lead position may be another reason for the lack of correlation between ST 

segment depression and obstructed coronary arteries. If there is a correlation between 

the distribution of ST segment depression and the site of the ischaemic area, then 

except for the site of ischaemic area, the position of the heart in relation to the 12 

electrocardiographic electrodes will have a definite effect on the distribution of ST 

depression. 
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Variations in the extent of collateral blood flow may also explain the lack of 

correlation between ST segment depression and diseased artery. Berger (Berger et al., 

1981) found that regions without copateral vessels distal to an obstruction are more 

likely than regions with collateral vessels to manifest stress-induced ischaemia as 

seen on thallium scanning, suggesting that patients without lateral vessels may have 

more extensive ischaemia and more widespread ST segment depression on exercise 

ECG. Although collateral vessels may reduce the. extent of myocardial ischaemia, 

Tubau (Tubau et al., 1981) reported no difference in the number of positive leads and 

the depth of ST segment depression in patients with isolated single vessel disease 
I 

with and without collateral vessels. Furthermore, Mirvis (1983) found that during 3 

months of pacing following ameroid constrictor placement in the LCX in dogs, when 

collateral formation should be extensive, ST segment depression still occurred. 

However, collateral blood flow was .not measured in Mirvis's study (Mirvis, 1983). 

This was postulated to demonstrate that collateralization is inadequate to prevent 

tachycardia-induced ischaemia. 

2.2.3 Cellular basis of ischaemic electrocardiographic changes 

Classic electrocardiographic theories offered to explain the changes which occur in 

the ST segments during myocardial ischaemia based on the supposition that a 

boundary might exist between a region of normal and damaged cells and that an 
I 

abnormal current might flow between the ischaemic area and the normal area. The 
I 

injured region is considered to be partially or completely depolarised at rest, the 

damaged area appears electrically negative with respect to normal regions. Wilson 

(Wilson et al., 1933b) and Bayley (1942) proposed that ST elevation is a 

manifestation of this injury current, and Wilson (Wilson et al., 1933a) classified 

injury currents into two types: injury current at rest or diastolic injury current, and 

injury current of action or systolic injury current (Fig 2.2. _l ). 
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Fig 2.2.1 Effect of systolic ~nd diastolic injury currents on the ST 

and TQ segments (Modified from Surawicz B et al. Am J Cardial, 

41: 943,1978) 

Recent studies of transmembrane action potentials and simultaneously recorded 

epicardial ECG from the surface of the ventricle have shown the following events 

during ischaemia: (1) Decrease of resting membrane potential (less negative) occurs 

in ischaemic tissue results in a diastolic injury current flows from the injured tissue to 

the healthy tissue, produces depressed QT segment of the surface electro gram, which 

in clinical ECG using alternating current (AC) coupled amplifiers, is represented by 

ST elevation (secondary ST elevation). (2) Decrease in the action potential duration 

and amplitude of the ischaemic tissue results in a systolic injury current flowing from 

the normal tissue to the injured tissue, produces "primary ST elevation" in the surface 

electrogram. Further deterioration of the action potential can result in complete loss 

of the action potential. 

2.2.4 INJURY CURRENT AND ITS RELATIONSHIP WITH ISCHAEMIC 

ELECTROCARDIOGRAPIDC Cl{ANGES 

The injury current and its relatio:q.ship to ST shift have been found by serial 

researchers (Prinzmental 1961; Shaefer and Hass, 1962). They were further 

interpreted by Samson and Scher (1960) and explored by Kleber (1978). 
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Using intracellular electrodes, Prinzmetal (Prinzmetal et al., 1961) recorded partial 

diastolic depolarisation from cells within the zone of ischaemia which lead to 

decreased membrane potential (less negative). In the ECG as recorded from the body 

surface, the electronic circuit compensates for this baseline shift which would 

otherwise be recorded as a depression of the TQ segment, and only ST elevation is 

recorded (secondary ST elevation). Shaefer and Hass (1962) also found that during 

the diastolic period, when the injured region is partially or completely depolarised, 

the damaged area appears electrically negative with respect to normal regions, thus 

resulting in a diastolic injury current. 

The conventional ECG recorded with alternating current (AC) coupled amplifiers 

can't differentiate ST segment shift from QT segment shift (Taccardi, 1967). Using 

direct current coupled (DC) amplifiers; Samson and Scher (1960) measured the ECG 
i 

combined with simultaneous intracellular recordings in a model of acute infarction in 

dogs. The DC recording allowed the differentiation of ST segment shifts from the TQ 

segment shifts. 

When the intracellular electrogram ~as recorded, Samson and Scher (1960) found 

that while abnormal resting depolarisation sometimes was the initial event after acute 

coronary occlusion, more often primary ST segment elevation occurred first in the 

ischaemic zone within 40 seconds following the occlusion, and abnormal 

depolarisation during electrical diastole usually became evident 80 seconds later. In 

addition, they reported that there was an early repolarisation of the ischaemic cells, 
' 

while cells in the normal myocardial zone were still depolarised, ischaemic cells were 

partially repolarised, thereby allowing an abnormal current to flow during electric 

systole and resulting in primary ST elevation. 

ST segment shift and its relation to ECG were also supported by Kleber' s study 

which measured intracellular potentials from subepicardial ventricular cells and the 

local extracellular DC electrogram in isolated pig hearts before and during the LAD 

occlusion (Kleber et al., 1978; Janse et al., 1980). Kleber and his co-workers 

observed that the first change was a. shift of the resting potential to a more positive 
' value and a concomitant depression of the TQ segment of the extracellular potential, 

which occurred during the first minute of ischaemia. After 3 minutes, the resting 

potential decreased further and the upstroke velocity, the amplitude, and the duration 

of the action potential diminished. The alterations in action potential resulted in ST 

segment elevation. Finally, the cells in this ischaemic centre became totally 
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unresponsive at a resting potential of about -65m V. This rendered the extracellular 

monophasic curve to form (Fig 2.2.2). 
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,Fig 2.2.2 Transmembrane potentials (up panel) and local DC extracellular 
Electrograms (low panel) recorded from a single subepicardial cell in the 
Intact heart during cotrol (dotted line) and ischemia (solid line). (See text 
For explanation) (Modified from Kleber et a, 1978) 
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With the use of the Laplacian maps constructed on the basis of the extracellular 

potential distribution, Kleber also found that during electrical diastole (TQ interval), 

the injury current flowed from the intracellular compartment of the ischaemic 

myocardium toward that of the adjacent normal tissue. The diastolic injury current 

emerged as a current source in the extracellular space at the normal side of the border 

and flows back into the ischaemic tissue, where it entered, as a current sink, the 

intracellular space. The distribution of current sources and sinks was localised to the 

border zone with the extracellular current flowing from the normal zone to the 

ischaemic zone during the TQ int~rval, and the current flowing in the opposite 

direction during the ST interval. Smith and co-workers also showed that the injury 

current arises at the ischaemic border (Smith et al., 1979). The maximal current 

density during late systole was 1 µA/mm2
, flowing in the border zone towards normal 

myocardium; and during diastole a maximal current of 0.3 µA/mm2 flowing in the 

opposite direction. Cinca (Cinca et, al., 1984) measured potential gradients at the 

"electric border" between the ischaemic and normal myocardium in the dogs during 

LAD occlusion at 12-20m V. The characteristic of the border zone will be discussed 

in detail in other section of this thesis. 

A comparison between precordial ECG leads recorded during the first minute of 

acute myocardial infarction in human, and transmembrane potentials and local DC­

extracellular electrogram recorded during the first minute following coronary artery 

occlusion in isolated pig hearts was made by Cinca (Cinca et al., 1980). They found 
i 

that in the precordial leads in the patient, the configuration of the complexes and the 

time course of the changes were very similar to the configuration of the extracellular 

signals in the pig, suggesting that cellular changes in human are similar to those in the 

pig. 

There has been little work with DC coupled amplifiers in human. Studies using the 

magnetocardiogram which records the same currents as the ECG responds to direct 

current, have been helpful in separating the systolic injury current from the diastolic 

injury current (Cohen et al., 1975). Measurements of the magnetic field of patients 

(Savard et al., 1983; Cohen et al., 1983) have shown that there was an injury current 
-

during. exercise induced ST segment depression which was comparable to that 

recorded in animals. Because the magnetocardiogram is currently an impractical 

device for systematic evaluation of such patients, the results in animals form large 

part of data on the origin of ST segment potentials. 
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2.2.5 MECHANISM OF ELECTROCARDIOGRAPIDC PATTERNS IN 

MYOCARDIAL ISCHAEMIA 

2.2.5.1 The mechanism of ST segment elevation 

Injury current at rest 

During the electric diastolic period, the extracellular space of the injured muscle 

tissue is electrically negative in relation to the space of the normal resting muscle. 

Thus, a potential difference between these areas exists, producing current flow from 

the normal area to the ischaemic area. An electrode overlying the injured area of 

muscle will record a depression relative to the baseline, which is an isoelectric line 

recorded when there is no myocardial injury. When the muscle is stimulated, an 

advancing negative charge (in front of which is a positive charge) is initiated, and the 

overlying electrode records a positive deflection. When a potential difference no 

longer exists between the advancing stimulus and the injured area, the recorded 

deflection returns to the baseline. 

Injury current of activity 

When injured muscle is stimulated, the extracellular space does not become as 

electrically negative as normal muscle. Thus, stimulated injured muscle will have less 

of ~ negative charge and therefore a relatively larger positive charge than the normal 

stimulated muscle, producing potential difference between the injured area and the 

normal area, with current flowing from the ischaemic area to the normal area. An 

electrode overlying the injured portion of the muscle will face this positive charge, 

resulting in elevation of the ST segment. 
I 

2.2.5.2 The mechanism of ST segment depression 

The responsible mechanism of ST depression remams controversial. Two 

mechanisms are generally discussed. Firstly, ST depression may reflect reciprocal 

changes of the ST segment elev~tion. Secondly, it may also be produced by added 

ischaemia of adjacent myocardium. Furthermore, it is regarded as a primary change 

of myocardial ischaemia (Ekmekci et al., 1961a; Prinzmetal et al., 1959). 

Reciprocal ST depression 

Reciprocal ST depression suggests that in acute transmural myocardial ischaemia, ST 

segment depression occurs in distant "reciprocal" leads, thus, anterior acute 
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myocard~al infarction will cause ST elevation in leads over anterior wall and ST 

depression in leads over inferior wall, while inferior acute myocardial infarction will 

cause ST elevation in leads over inferior wall and ST depression in leads over 

anterior wall. The ST elevation is always termed as "Primary change" and the ST 

depression is termed as "Reciprocal change". Accordingly, ST depression should 

always change reciprocally with fluctuations of ST elevation (Mirvis, 1988). This has 
l 

been observed both in animal experiments and human studies. 

Crawford (Crawford et al., 1984) studied inferior electrocardiographic ST depression 

during acute anterior myocardial infarction in the baboon. Myocardial ischaemia was 

induced by ligation of the distal third of the LAD and was verified by epicardial ECG 

mapping and by tissue creatine kinase and histologic study. All baboons had ST 

depression in leads III and avF of 0.1 to l.2m V at 30 minutes, and 11 of 13 had 

similar changes in lead II. 10 of 13 l;>aboons had ST elevation in lead avL and 11 of 

13 in lead a VR. The results suggested that the ST vector from the infarct area was 

directed away from the inferior leads and acute myocardial infarction always resulted 

in reciprocal ST depression at sites distant from the area of acute infarction. 

By analyzing ECG and angiographic~results in patients with acute anterior or inferior 

infarction, Ferguson (Ferguson et al., 1984) verified that ST depression in acute 

myocardial infarction did not indicate the presence of ischaemia in the remote wall as 

manifested by segmental wall motion abnormalities. They even found that the degree 

of ST depression in the remote wall leads correlates with the degree of ST elevation 

in the infarct wall leads, which supported the idea that reciprocal ST depression was a 

benign electrical event. Similar conclusions have been proposed by Little and co­

workers (Little et al., 1984). In the study of ST depression in acute inferior 

myocardial infarction patients during thrombolytic therapy, opening of the occluded 

coronary artery resulted in the resolution of the anterior ST depression whereas 

failure of streptokinase to open the occluded coronary artery produced no change in 

the anterior ST depression in patients with a normal LAD. In patients with a diseased 

LAD, the results also showed that sµccessful reperfusion of the occluded coronary 

artery caused prompt resolution of both the anterior ST depression and the inferior ST 

elevation and failure to reopen the pccluded coronary artery had no effect on the 
. ' 

anterior or inferior ST shifts. By analyzing collateral flow to the anterior wall, aortic 

blood pressure and heart rate change, the author c~ncluded that even in patients with 

LAD, the anterior ST depression was due to reciprocal changes from ischaemic injury 

in the region perfused by the occlude coronary artery other than anterior ischaemia. 
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Dipole electrocardiographic theory was used to explain the "reciprocal" deduction of 

ST depression. Reciprocal effects are a direct biophysical consequence of cardiac 
l 

electrical activity; their properties niay be derived directly from concepts of dipole 

theory. The cardiac electrical sources are located within the units of the electrically 

polarized cell membrane. For the purpose of evaluating the body surface ECG, an 

equivalent source or equivalent cardiac generator can be substituted for the actual 

biologic sources (Vide Section 2.5). The simplest and most widely considered 

equivalent cardiac generator is an electrical double layer or dipole layer on the 

surface of the heart. The electrical field generated by a dipole is intrinsically 

characterized by direct and reciprocal potentials corresponding to the orientation of 

the dipole. In a dipole model, the maximum positive potentials represent the 

equivalent of primary ST segment elevation as recorded in leads lying over an injured 

zone; the minimum represents reciprocal or secondary ST segment depr~ssion as seen 

in leads lying over remote sites. In Li's (Li et al., 1999) experimental and mathematic 

model, it was suggested that som~ basic balance existed between the size of 

ischaemia and ST elevation to ST depression ratio. They concluded, on the basis of 

physical factors, that the total current flowing out of the heart must flow back into the 

heart; the overall current out of the heart must be zero. Hence, all ST balances 
I 

between elevation and depression are subject to this. 
I 

In conclusion, reciprocal ST segment depression is a biophysical phenomenon that is 

always to be expected to accompany primary ST segment elevation. Both the dipole 

source strength and the location of the lesion in relation to the body surface electrode 

position affect its detection on the body surface. 

However, Wong (Wong et al., 1993)'did not support the proposal that ST depression 

is a reciprocal phenomenon of ST elevation. By continuous 12-lead ECG recording in 

patients with acute inferior infarction given intravenous thrombolytic therapy, the 

results showed that the maximal recorded precordial ST depression correlated 

inversely with the corresponding inferior ST elevation. Within individual patients, , 

continuous 12-lead monitoring revealed a close negative correlation between the 

inferior and precordial ST shifts for the entire recording period in most patients, but 

there was 26% of patients did not have this relation. Moreover, precordial ST 

depression was not always present during inferior ST elevation, 36% of the patients 

had ECG showing <O.lmV precordial ST depression despite summed inferior ST 

elevation >0.6m V. They suggested that precordial ST depression was not just the 

simple electrical reciprocal projection of the abnormal inferior wall ST elevation, and 
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its fluctuation could not be predictetl by changes in the inferior ST shifts in every 

patient. The reciprocal correlation between precordial and inferior ST shifts in the 

whole group and within most individual patients over time might suggest that 

precordial ST depression reflected an area of ischaemia adjacent to but anatomically 

distinct from the inferior wall which shares a common vascular supply from the 

infarcted-related artery. 

lschaemia at a distance 

Under normal conditions, occlusion. of one corpnary artery produces ischaemia or 

infarction limited to the subserved myocardium. Even though occlusion of a small 

coronary artery results in a slight increase of blood flow in non-ischaemic region, 

occlusion of large coronary artery r~sults in a decrease of blood flow in the non­

ischaemic area (Li, 1997). Ischaemia at a distance refers to ischaemia in the 
l 

myocardium perfused by a stenotic coronary artery produced by acute occlusion of 

another coronary artery. 

Both experimental and clinical studies claim that ST segment depression is due to 

ischaemia at a distance. Schwartz'~ (Schwartz et al., 1983) experiment in dogs 

documented a reduction in flow to the bed perfused by a stenotic artery after acute 

occlusion of a second major vessel. The reduction is primarily in endocardial regions, 

with lesser decreases or an increase in epicardial flow, it was found in their 

experiment that after occlusion of the a1:1terior descending artery, the 

endocardial/epicardial blood flow ratio in the circumflex zone fell from 0.89±0.07 to 

0.04±0.10. Shah and coworkers (Shah et al., 1980) examined 44 patients with inferior 

myocardial infarction, and found that those who had anterior reciprocal ST segment 

changes had reduced contractility in
1 
the anterior wall. In another study by Salcedo 

' 
and coworkers on 45 patients with inferior infarction, 35 exhibited ST depression; 

among these, 24 had ST depression; in precordial leads 1 to 4 and 23 of them had 

advanced disease in the LAD. Roubin and colleagues (Roubin et al., 1984) performed 

coronary arteriography in 84 surviv<;>rs of inferior myocardial infarction and found 

that absence of reciprocal ST depression precluded the presence of multivessel 

coronary disease. Haraphongse and associates (Haraphongse et al., 1984) studied 33 

patients with anterior myocardial infarction, those who had reciprocal ST depression 

had higher frequency of right or circumflex co~onary artery disease. In Tzivoni's 

(Tzivoni et al., 1985) study on 137 patients with acute myocardial infarction who 

underwent right atrial pacing in ord~r to detect residual myocardial ischaemia, they 

found that patients without recipro:cal changes rarely had ischaemia during the 
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predischarge pacing. That is, the residual ischaemia in patients without reciprocal 

changes is extremely rare. However, among patients who exhibited reciprocal 

changes on admission, Tzivoni found that about half had ischaemia during atrial 

pacing while the other half did not. The author concluded that two different 

mechanisms may be responsible for the reciprocal changes: in one half of the patients 

this is due to a mirror-image phenomenon (those patients with normal response to 

atrial pacing), while in the other half, the reciprocal changes are due to ischaemia 

(those patients with ischaemia on right atrial pacing). 

There are multiple mechanisms interact to interpret distant ischaemia. First, increased 

heart rate and increased chamber size following coronary artery ligation may increase 

oxygen demand of the heart, thus provokes ischaemia in the non-infarcted bed. 

Second, reduced perfusion due to the drop of the perfusion pressure directly produces 

ischaemia in the nonischaemic regions. Third, myocardial infarction may result in 

increase of left ventricular end-diastolic pressure which in tum will increase back 
I 

pressure on the distal coronary bed; the transcoronary pressure may then be reduced 

to reduce the coronary blood flow. Fourth, increase of myocardial wall stress to 

sustain cardiac output by over-compensation by the nonischaemic myocardium may 

contribute to the relative ischaemia in the nonischaemic regions (Trevi and Sheiban, 

1991; Scott and Kerber, 1992). 

Under normal conditions ST-T is concordant to the QRS complex and is due to the 

opposite direction of cardiac activity and recovery (Vide section2.1 ). However, this is 

different during ischaemia. As we know, ischaemia occurs firstly in endocardium, 

electrocardiophysiologic study shows that ischaemia acts to shorten the action 

potential durations, thus the action potential in the endocardium is shorter than that in 

the epicardium, which results in an earlier repolarisation in endocardium than 
I ' 

epicardium. This will eventually ·reverse the normal transmural sequence of 

repolarisation to produce discordant QRS complex and ST-T, that is, ST segment 

depression and T wave inversion. 

Primary ST depression 

Although a lot of research was related to ST segment depression on the epicardium as 

a result to reciprocal changes of ST segment elevation of endocardial injury, Ekmekci 

(Ekmekci et al., 1961a) proposed that epicardial ST segment depression might 

originate from epicardial injury, they called this ST segment displacement as primary 

ST depression. Prinzmetal (Prinzmetal et al., 1959) found that hemorrhagic 
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hypotension might produce marked ST segment depression from direct epicardial 

leads without significant ST elevation from simultaneously recorded subendocardial 

and cavity leads. These findings were confirmed by Toyoshima and Takakuna (1960) 

through the use of multiple intramural electrodes. Since no marked ST segment 

elevation was recorded from subendocardial or cavity leads, the epicardial ST 

segment depression cannot be explained on the basis of the reciprocal effect of a 

subendocardial injury current. Massumi (Massumi et al., 1955) made a further 

demonstration: injury to the outer layers of the myocardium resulting in marked 

epicardial ST segment depression failed to produce any significant displacement of 

the ST segment from the subendocardial or cavity leads. 

Why does epicardial injury result in different ST segment displacement in ECG. As 

has been mentioned, epicardial injury will also cause ST segment elevation. In 

Ekmekci's (Ekmekci et al., 1961a) series of experiment, he found that after the 

ligation of a coronary artery, ST segment elevation appeared 1~2 minutes later in the 

centre of the ischaemic area which was cyanotic indicating more severe ischaemia, 

the amplitude of ST segment elevation decreased as the electrodes moved to the edge 

of the ischaemic area. About 15 to 20 minutes after ligation of the artery, slight ST 
' 

segment depression was noted from the periphery of the ischaemic area which was 

reddish-blue indicating less severe ischaemia. 
I 

Following this finding, more detailed experiments done by Ekmekci (Ekmekci et al., 

1961a) showed that after the releasing of the ligated coronary artery, the blood flow 

was re-established in the ischaemic area, and the cyanotic area turned to red. ST 

segment depression recorded in periphery area during ligation of the coronary artery 

became an isoelectric line, then previously recorded ST segment elevation in the 

centre of the ischaemic area also became isoelectric line via a transient ST segment 

depression. Hemorrhagic hypotension further increased ST segment elevation from 

the centre part of the ischaemic area, ST segment elevation from the intermediate 

zone increased slightly. The zone immediately outside the ischaemic area, in which 

the ST segment had been isoelectric prior to hypotension, also showed slight ST 

segment elevation, and the area of cyanosis appeared enlarged. Electrocardiographic 

exploration beyond the large ischaemic area revealed "islands" of ST segment 

depression scattered over all aspects of both ventricles. It is known that 
i 

cardiovascular shock leads to further decrease in coronary flow and thereby a further 

reduction in the blood supply to the ischaemic area. Transfusion resulted in 

restoration of normal blood pressur~. They also found that following transfusion, 
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elevation of the ST segment decreas~d from the centre part of the ischaemic area, the 

scattered ST segment depression that had been recorded over all aspects of both 

ventricles during hypotension disappeared. So it was concluded that ST segment 

elevation is associated with more severe ischaemia than ST segment depression. 

The conclusion that ST segment elevation is associated with more severe ischaemia 

than ST segment depression by Ekmekci (Ekmekci et al., 1961a) seems to be 

contradicted by the observation that ST segment depression never occurred 

immediately following the ligation of a coronary artery, that is, during the initial 

period before ischaemia had become severe. If ST segment depression indeed relates 

to a less severe degree of ischaemia than ST segment elevation, then ST segment 

depression should appeared during the initial period of the coronary artery ligation. 

Ekmekci (Ekmekci et al 1961a) tri~d to explain this phenomenon by using theory 

based on cell metabolism (Ekmekci et al 1961a). However, no further experiments are 

available to support this postulation. \ 

Whilst considering ST depression as a primary change of cardiac injury, Ekmekci 

(Ekmekci et al., 1961a) did find in one of his experiments that ST segment depression 

was also recorded from an area of posterior wall of the heart opposite to the 

ischaemic area in the anterior wail, and this ST segment depression appeared 

simultaneously with the ST segment elevation from the ischaemic area, which is 

different from the ST segment depression recorded from around the periphery of the 

ischaemic area. He concluded that both "reciprocal" and primary ST segment 

depression exist during myocardial injury. 

In MacDonald's study in hm:~ans (MacDonald et al., 1986), routine 

electrocardiographic results were recorded during percutaneous transluminal coronary 

angioplasty of the LAD. They found that patients developing ST depression (either 

with or without symptoms), when compared with those evolving ST elevation, 

commonly have a richer collateral system to the region supplied by the occluded 
l 

vessel. Thus, the overall response suggests that lesser degrees of ischaemia result in 

ST depression while more severe an~ extensive ischaemia produces elevation of ST. 
! 

Coronary angiography performed during symptomatic episodes of myocardial 

ischaemia supports this hypothesis (Yasue et al., 1981 ). Patients with ST depression 

with chest pain are more likely to have subtotal coronary artery occlusion and/or 

collaterals to the ischaemic region of myocardium. 
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2.2.5.3 Theoretical analysis of ST segment shift -the solid angle theory 

To relate, in a physiologic and quantitative manner, the electrical activity of the heart 

to the magnitude and polarity of the deflections in ECG, one needs to know where 

and when the ionic current originates in the heart and the configuration and electrical 

properties of the volume conductor. Conversely, the ionic current origination in the 

heart and the configuration and electrical properties of the volume conductor makes it 

possible to relate quantitatively the electrical activity of the heart to the magnitude 

and polarity of the deflections in ECy. 

The concept of the solid angle theory was first formulated by Newton in his classic 

studies on gravitation and was later applied by physicists in the theoretical 

characterization of a wide variety of electrical phenomenon. The applicability of the 

solid angle theory to the interpretation of recorded electrocardiographic signals was 

recognised by Wilson (Wilson et al:, 1933a), and was expanded to ECG theory by 
, I 

Holland and Brooks (1975). After Einthoven's establishment of the standard limb 

lead system, it was soon recognized that electrode location as well as the area of 
> 

injury was capable of influencing both the magnitude and polarity of the TQ-ST 

segment deflection (Barnes and Whitten, 1929), the utility of solid angle theory in 

quantitative TQ-ST segment changes may give rise to a detailed recognition of 
I 

myocardial injury. 

The solid angle model considers each boundary present in the heart to be composed 

of an infinite number of dipoles, each representing an infinitesimally small region of 

the boundary. Because more dipoles are considered, this model more accurately 

represents the electrical activity of the heart, each dipole is permitted to move in the 

directi~n of its segment of the boundary and each dipole has exactly the same 

strength or magnitude which equals the difference in transmembrane voltage across 

the boundary (Holland and Arnsdorf, 1977). Since this boundary separates two cell 

populations that differ in transme~brane potential, it has been represented as a 

distributed dipole layer. 

Holland and Brooks' (1977) solid angle model suggested that ST segment deflection 

is a boundary phenomenon which depends on,diastolic and systolic injury currents 

flowing at the boundary between the ischaemic cells and the normal myocardium. 

According to the theorem (Holland find Brooks, 1977b) (Fig 2.2.3), the magnitude 
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and polarity of the TQ-ST segment deflection recorded at an electrode site can be 

calculated by solid angle formula: 

Where EQT-ST is the potential recorded at a specific electrode point (say, point P); n is 
the solid angle which is defined as the area of spherical surface cut off a unit sphere 

by the cone formed by drawing lines from P to every point at a boundary of interest. 

In brief, n is the solid angle subtended at P point by the ischaemic boundary; V mN 

and V ml denote the transmembrane potentials of the normal and ischaemic region 

during either diastole (TQ segment) or systole (ST segment); K is a term correcting 

for differences in intracellular and extracellular conductivity and the occupancy of 

much of the heart muscle by interstitial tissue (Holland and Brooks, 1977 a; Holland 

and Amsdorf, 1977; Plonsey, 1974). The electrocardiographically recorded potential 

is thus directly proportional to both solid angle and the difference in transmembrane 

potentials between the normal and the ischaemic regions. 

37 



I 

I 

l 
I 

I 

\ 
\ 

( 

/ 
.!' 

~----- .... 
... 
' ' 

d
. \ 

recor mg electrode \ 

' .. ... 

ischaemic 
boundnry 

I 

I 

I 

I 

CHAPTER TWO 

Fig. 2.2. 3 Mathematic and pictorial characterization of the solid angle theory. The 

ischaemic boundary is a source of current flow established by differences in the 

transmembrane potentials of the normal and ischaemic cells during diastole and 

systole. The TQ-ST segment potential recorded at the electrode (point P) is given by 

the above equation. (See text for explanation) (From Holland and Arnsdorf. Prog 

Cardiovasc Dis,1977) 
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Space factors influence TQ-ST segment shift 

Ischaemic position 

CHAPTER TWO 

Ischaemic position, first considered oy Prinzmetal (Prinzmetal et al., 1948), could be 

a function of solid angle. This is depicted in Fig 2.2.4. Subepicardial ischaemia (A) in 

which the outer portion of the ventricular wall is involved subtends a positive solid 

angle and therefore positive ST segment deflections are recorded from leads 

overlying the ischaemic region. Transmural ischaemia (B) will also yield positive 

solid angle and ST segment deflections on electrodes overlying ischaemic regions. 

While with subendocardial ischaemia (C) in which the inner wall is involved, the 

direction of ionic current flow during systole is away from the recording electrodes, 

the solid angle and ST segment deflections are negative in all overlying leads. 

In Holland and Brooks' (1975 and 1977b) experimental porcine models, they verified 

that positive ST segment deflection occurred in epicardial and transmural ischaemia 

produced by ligating different coronary arteries. Although they predicted that ST 

segment depression in subendocardial ischaemia should be able to localise ischaemia, 

they failed to produce subendocardial ischaemia in their porcine model (Holland and 

Brooks 1975), and were unable to confirm their theoretical prediction of 

subendocardial ischaemia. 
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Transmmal Ischaemia (E) 
Outer Wall Ischaemia (A) 
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Fig 2. 2.4 Magnitude and polarity of the solid angle as a function of ischaemic position. When the region has 
a transmural ischaemia (Panel BJ, the resultant solid angle (QT) is equal to the difference in the solid angle 
computed for ischaemic regions localized to the outer (Qow) and inner (Q1w) layers of the ventricular wall. 
The direction of current flow (positive to negative) across the ischaemic boundary at midsystole is indicated 
by arrows. The polarity of the solid angle is then positive at electrode sites overlying outer wall and trans­
mural ischaemic regions and negative at sites overlying inner wall ischaemic regions. (From Holland 
and Arnsdorf MF. Prag Cardiovasc Dis, 1977). 
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Ischaemic area and the site of the recording electrodes 

According to the solid angle theory, an increase of ischaemic area should increase n 
at precordial locations and decrease Q at epicardial locations overlying the ischaemic 

region (Fig 2.2.5). Such an increased relationship between precordial and epicardial 

recordings during an increase in ischaemic area has been demonstrated by Holland 

and others (Holland and Brooks, 1975 and 1977b). In Holland and Brooks' spherical 

heart model, they assumed transmural ischaemia with outer and inner wall radii of 3 

and 2cm respectively, and the solid angles subtended by transmural ischaemia 

boundary at centrally overlying precordial and epicardial electrodes were calculated. 

The results showed that these solid angles increased with the size of the ischaemic 

area at the precordial site, and the solid angles decreased with an increase in t~e 

ischaemic area at the epicardial site because the ischaemic boundary moves further 

away from the electrode following an increase of ischaemic area. The relationship of 

ischaemic area and solid angle was also verified experimentally by Holland and 

Brooks (1975 and 1977b) in the porcine heart. Sequential coronary ligation was 

performed in pigs experimentally by ligating different segments of the LAD to 

produce different sizes of ischaemia. They showed that, when the size of the 

ischaemic area was increased by ligating the LAD more proximally, the magnitude of 

precordial TQ-ST segment deflections increased while the magnitude of epicardial 

TQ-ST segment deflections reduced. 
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Fig 2. 2. 5 Effect of electrode location and ischaemic area on the magnitude of the solid angle and the TQ-ST segment deflection. At pre cordial 
electrode locations (left), an increase in ischaemic area increases both the solid angle and the TQ-ST deflection. At epicardial locations 
(right), however, the ischaemic boundary moves further away from the electrode following an increase in ischaemic area and hence the TQ-ST 
deflection declines in magnitude. The direction of current flow (positive to negative) across the ischaemic boundary at mid-systole is indicated 
by arrows and is assumed not to be a function of ischaemic area. (From Holland and Arnsdorf, Prog Cardiovasc Dis, 1977). 
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Thickness of the ischaemic wall 

Differences in wall thiclmess exist between the right and left ventricles and the base 

and apex of the left ventricle, which may account for differences in the TQ-ST 

segment deflections recorded from 'these areas (Holland and Brooks, 1977b). As 

found by Holland and Brooks, thicker-walled ischaemia results in increased 

magnitude of TQ-ST segment deflection. 

Other spatial factor 

Other spatial factors which will influence the TQ-ST segment deflection in ischaemia 

include heart size, location of the electrodes as to if they are centrally or peripherally 

situated over the ischaemic or the nonischaemic area (Holland and Brooks, 1977b). 

Nonspatial factors influence TQ-ST segment shift 

Transmembrane potentials in norm~/ or/and ischaemic area 

The change of transmembrane potentials in normal or/and ischaemic area is the 

mechanism by which nonspatial factors influence TQ-ST segment deflection in 

ischaemia, as have been discussed in solid angle formula, the TQ-ST segment 

deflection is a function of the difference in transmembrane voltage (~ Vm) between 

the ischaemic and the normal tissue during both systole and diastole. There are a lot 

of potential agents capable of altering ~ Vm which may be classified into two 

categories (Holland and Brooks, 1977a): (1) Agents directly alter the transmembrane 
I 

potential of either the n9rmal or the ischaemic cell. (2) Agents influence the rate and 

degree of potassium ions accumulation in the extracellular space of the ischaemic 

tissue. The latter may be accomplished by either altering the rate of potassium ions 

leakage out of the ischaemic cells or altering the rate of its removal from the 

extracellular space of the ischaemic tissue. 
I 

Potassium ion and TQ-ST segment deflection 

In Holland and Brooks' (1977a) opinion, agents as ouabain may influence the ST 

segment of ischaemic electro gram by shortening (or in other agents, lengthening) the 

ventricular action potential duration. The ventricular action potential durations are 

shortened out of proportion in the ischaemic or the normal cells, a difference of 

transmembrane potential between normal and ischaemic cells may occur resulting in 

ST segment deflection. The factors which directly modify the transmembrane 

potentials of either the normal or ischaemic cells during diastole or systole include 
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electrolytes, temperature, heart rate, metabolic inhibitors, anti-arrhythmia therapy and 

catecholamine. 

According to Nemst equation 

Where R is the gas constant, T is the absolute temperature, F is the Faraday's 

constant, and [K+]o and [K+]i are' the respective extracellular and intracellular 

potassium ions concentrations. Therefore, changes of either extracellular or 

intracellular potassium concentrations in normal or ischaemic area may result in 

deflections ofresting potentials. Because [K+]o is relatively low with respect to [K+]i, 

small changes in [K+]o will dramatically alter Ek. Calculations indicate that the 

movement of 1 % of the total intracellular potassium ions to the extracellular space 

will increase [K+]o by 140% (1977a). Holland and Brooks (Holland and Brooks, 

1977b) found that the decline in the TQ-ST deflection varies with the logarithm of 

potassium ions level. 

Factors affecting the drainage of the ischaemic region such as diffusion and venous 

efflux will determine how long this gradient will be maintained. Many factors will 

alter the transmembrane voltage of the ischaemic tissue by changing the degree and 

rate of potassium leakage out of myocardial cells (Parker et al., 1970; Holland and 

Brooks, 1976). 

It is known that uptake of potassium ion by excitable cells is closely coupled with the 

active extrusion of sodium ion, this active pumping of sodium ion out and coupled 

transport of potassium ion into the cell requires the participation of high energy 

phosphate compounds (ATP). During myocardial ischaemia, hypoxia results in 

dysfunction of Na+-K+-ATP pump, which bring about a rapid block of sodium ion 

efflux while still permitting the efflux of potassium ion to continue (Caldwell, 1968), 

thus potassium ion accumulate in extracellular space and cause Ek to decline in the 

ischaemic cells. 

As been found by Samson and Scher (1959), a decreased potassium ion gradient may 

result in TQ segment shift. Holland and Brooks (1977b) found in their pig model that 

TQ-ST segment deflections recorded from both the ischaemic and nonischaernic 
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regions decreased with steadily increasing plasma potassium level. However, other 

researchers disagree with this opinion (Kleber, 1983; Wilde and Kleber, 1986). 

TQ-ST segment deflection is a result of potassium ions accumulation in the 

extracellular space of the ischaemic :tissue is also demonstrated by the phenomenon 

that potassium ions removal from the ischaemic area will reduce TQ-ST segihent 

deflection. Mechanisms that remove 'potassium ions from the ischaemic area include 

diffusion (Kushmerick and Podolsky, 1969), available collateral flow (Schaper, 

1971), venous (Datta and Gupta, 1972) and lymphatic drainage (Miller, 1963). For 

collateral flow to bring about a significant reduction of the TQ-ST segment 

deflection, it need not necessarily be so great as to sustain the oxygen requirements of 

the tissue, thereby reversing the ischaemia, but perhaps only great enough to wash out 

the accumulated potassium ion from the ischaemic tissue into the peripheral 
' 

circulation. Similarly, hyaluronidase, by presumably altering interstitial permeability 

factors (Maroko et al., 1972) again need only speed up potassium ion removal to 

bring about an electrocardiographic improvement; significant oxygen and substrate 

delivery to the ischaemic tissue, although desirable, may not be necessary for this 

effect. This washout phenomenon ~as been demonstrated both by Ekmekci and 
I 

Bodenheimer (Ekmekci et al., 1961b;:Bodenheimer et al., 1976). 

A recent study on transgenic mice supported the theory that activation of 

sarcolemmal ATP-sensitive potassium (KArP) channels by ischaemic ATP depletion 

played an important role on the ischaemic ST elevation (Li et al., 2000). The Kir6.2 

gene in the mice encodes the pore-forming subunit of cardiac surface KATP channels. 

Patch-clamp studies in cardiomyoc}rtes confirmed that surface KATP current was 

absent in homozygous knockout mice (KO), while robust in cells from wild-type 

mice (WT). By comparing the electrocardiographic response of both KO and WT 

mice to the LAD ligation, Li et al found that ST elevation was readily evident in WT 

following the LAD ligation, whereas it was markedly suppressed in KO. Blocking the 

surface KATP channels in WT with HMR1098 (surface KATP channel blocker) resulted 

in suppression of early ST elevation in WT. It was concluded that the opening of 

sarcolemmal KArP channels underlay 'ST elevation during ischaemia. 

The solid angle theory has provided a geometric ischaemic heart model that 

quantitatively relates changes of ST segment to the distribution of transmembrane 

potential changes in the ischaemic region. However, for both theoretical and practical 

reasons, the solid angle theory does not provide a complete mathematical 
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representation of the electrical activity of the heart. Solid angle analysis is limited, as 

is classical dipole theory, by the fact that the thorax is neither a homogeneous nor an 

infinite volume conductor. The thorax consists of regions of varying conductivity 

nonhomogeneous. Furthermore, the thorax is irregularly shaped, with the heart 

occupying an eccentric position with it. These factors make the mathematical formula 

extremely complex (Bayley and Berry, 1964). 

One practical limitation of the solid angle theory approach pertains to the difficulty of 

calculation. Even when modifications in the theory due to inhomogeneities (Bayley 

and Berry, 1964), boundaries (Selvester et al., 1967), asymmetric cardiac cell 

geometry (Plonsey, 1974) and transmembrane potential time dependency (Reimer et 

al., 1973) are excluded, the solid angle may be computed with relative ease only in 

those situations where the boundary exhibits a high degree of spherical symmetry. In 

many instances piecemeal approximations of an irregularly shaped boundary with 

circular or ellipsoidal boundaries are necessary in order to obtain actual numerical 

values (Plonsey, 1974). 

2.2.6 IONS CHANGES UNDERLYING ST SEGMENT SIDFT 

The immediate cause of the ST segment shift during acute myocardial ischaemia has 

long been presumed to relate to alterations in ion transport which, in turn, would 

affect the transmembrane potentials of ischaemic cells. Elevation of the K+ 

concentration in coronary venous effluent has been observed during ischaemia and 

was considered likely to reflect loss of intracellular K+, accompanied by an increased 

intracellular Na+ (Prinzmetal et al., 1961). Recently, myocardial biopsies from both 

central and border zones of an area of acute myocardial ischaemia showed a striking 

fall in the ratio of [K+]/[Na+] and a d~op in the [Mg2+]/[Ca2+] ratio, which started from 

15 minutes following the coronary occlusion, progressed over the first hour, and 

[K+]/[Na +] approached that of extracellular fluid at 24 hours (Lie et al., 1975). 

It is of interest that perfusion of a coronary artery with a solution high in K+ 

(1 OmEq/l) resulted in ST segment e~evations ,on epicardial electrocardiograph leads 

accompanied by TQ segment depression on the intracellular electrogram (Prinzmetal 

et al., 1961). It was proposed that ST segment ~epression could relate to the opposite 

effect, that is, an increase in intracellular K+ with resulting hyperpolarization of the 

membrane, possibly secondary to an increased flux of K+ associated with increased 

glucose uptake in the presence ofhypoxemia or ischaemia (Prinzmetal et al., 1961). 

46 



CHAPTER TWO 

2.3 PHYSIOLOGY, PATHOPHYSIOLOGY AND ST SEGMENT 

DISTRIBUTION IN MYOCARDIAL ISCHAEMIA 

2.3.1 MYOCARDIAL BLOOD FLOW AND MYOCARDIAL METABOLISM 

2.3.1.1 Methods of measuring transmural myocardial blood flow 

Myocardial blood flow can be measured by different methods. It was initially 

measured by injecting radioactive tracers and recording the rate constants of their 

wash out (Brandi et al., 1968), by recording the rate constant of the wash out of 

hydrogen with polarographic electrodes (Howe and Winbury, 1973), by examining 

the myocardial distribution of infused inert diffusible indicators like tritiated water 

(Tripp et al., 1977) or antipyrine (Yipintsoi et al., 1973), or by using rubidium or 

potassium isotopes that exchange with intracellular potassium (Yipintsoi et al., 1973). 
' 

Lately, a molecular marker, desmethylimipramine has been used (Little, 1983). These 

methods can not be used to measure flows more than once or twice in the same 

animal, neither can they measure flows simultaneously in all the regions of the 

ventricles, without the risk of damaging the tissue locally. Radioactive microsphere 

methods (Domenech et al., 1969; Hoffman et al., 1983) have been used to measure 

myocardial blood flow. When used correctly, this method gives flows to small 

regions with high accuracy (Tripp et al., 1977; Yipintsoi, 1973; Little, 1983). 

However, radioactive microspheres have disadvantages in that it may pose health 

risks, requires special precautions for use and disposal, has limited shelf life, and are 

relatively expensive. Hale (Hale et al., 1988) and Kowallik (Kowallik et al., 1991) 

reported the use of coloured and heavy metal-labeled microspheres for measuring 

regional myocardial perfusion, the result correlated well with the radioactive 

technique, but at high flows, it yielded values greater than those obtained with 

radioactive microspheres. Recently, fluorescent-labled microspheres have been used 

(Glenny et al., 1993; Li et al., 19~5). Compared to other methods, blood flow 

measured by fluorescent microspheres can be repeated in the same experiment, does 

not have the disadvantage of disposal, and the results correlated well with that 

measured by radioactive microspheres (Glenny et al., 1993). Regional myocardial 

blood flow imaging has been accomplished using positron emission tomography (Li 

et al., 1997), magetic resonance imaging (Kroll et al., 1996), and ultrasound (Wei et 

al., 1998). These imaging methods have a potential use in clinical measurements of 

regional myocardial blood flow. 
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2.3.1.2 Blood flow distribution in normal heart 

Myocardial perfusion is spatially heterogeneous. In research, the myocardium is 

usually divided into three layers. Subendocardium refers to the deepest one quarter or 

the one third of the ventricular wall and subepicardium refers to the outer one quarter 

or the one third, with a middle region between these two layers. No uniformity of 

blood flow exists in different layers of the heart. 

Using fluorescent microspheres, Li ,and coworkers (Li et al., 1996) measured the 

endocardial and epicardial blood flow in sheep and found that slight differences of 

blood flow exist between endocardiUm and epicardium. The endocardial/epicardial 

blood flow ratio is 1.23±0.26 in LCX bed and 1.25±0.08 in LAD bed. Previous 

studies with sheep and lambs (Archie et al., 1974; Fisher et al., 1980 and 1984) found 

even higher differences of blood flow between different layers. In these studies, flow 

per gram in the subendocardium is usually 20% to 40% higher than that in the 

subepicardium, with flow in the midwall usually being between the two. Though it is 

not yet possible to make blood flow measurement of different layers in human 

ventricles, it is reasonable to believe that the results of animal experiments can be 
\ 

extrapolated to human. 

Systolic contraction of the left ventricular myocardium might be an important reason 

for the difference between the pattern of blood flow to the subendocardial regions and 

the subepicardial regions of the left ventricular wall. During ventricular systole, no 

blood flows to the subendocardium, while blood flow in the subepicardium rises 

during systole; during diastole, blood flow to the subendocardium rises dramatically, 

and blood flow to the epicardium remains a high level, blood flow to the midwall 
' 

region is intermediate between these two patterns. By injecting microspheres to 

perfuse the coronary arteries only during the ventricular systolic period, Hess and 

Bache (Hess and Bache, 1976) verified that total coronary blood flow is reduced 

during systole, with an abrupt rise and then a slow fall during diastole. Under normal 

conditions, the coronary vascular resistance is lower in the subendocardial layer 

during diastole so as to compensate for systolic flow limitation. Thus the mean blood 

flow to the subendocardium is slightly higher than that to the subepicardium, yielding 

an endocardial/epicardial blood flow ratio of about 1.2:1 (Li et al., 1995). Under 

normal conditions, it has been postulated that the explanation for this observation is a 

slightly higher 02 consumption of the endomyocardium. 
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The heterogenous nature of regulation of coronary microvascular tone also plays an 

essential role in determining regional as well as transmural distribution of blood flow 

(Tiefenbacher and Chilian, 1998). The vascular tone, distributed down to small 

arterioles, is closely coupled with myocardial 0 2 supply and demand (Massie et al., 

1994). So the spatial distribution of myocardial flow is most likely to be formed at a 

precapillary arteriolar level under the influence of the 0 2 supply and demand. This is 

documented in a study which demonstrated that myocardial blood flow distribution 

was largely altered at arteriolar-capillary levels by a change in arterial 0 2 tension 

(Matsumoto et al., 1996). Thus more workload and myocardial 0 2 consumption in the 

subendocardium than that in the su~epicardium will induce differences in a spatial 

pattern of flow distribution between different layers of myocardium. 

Regional differences of vascularity can also make it possible for the subendocardium 

to receive more blood flow than th~ subepicardium when other factors are similar. 

Several studies involved in this condition. The volume of blood in small vessels 

(mainly capillaries) has been measured in rabbit and dog hearts (Kleinert et al., 1980; 

Crystal et al., 1981) and it is about 20% greater in subendocardial than in 

subepicardial vessels. In a study of cardiac vascularity, capillary volume fractions, 

diameter, numerical density, anisotropy, and sarcomere length were measured using 

computer analysis of light microscopic images of sections taken transverse or 

longitudinal to the muscle fibre axis. Capillary volume was 4-6% of myocardial wall 

volume and exhibited a significant transmural gradient, increasing from epicardium to 

endocardium (May-Newman et al., 1?95). 

In a review assessing heterogenous distribution of blood flow and metabolism and 

their relationship in the heart, the au~hor concluded that blood flow heterogeneity in 

the heart relates at least in part to heterogeneity of metabolic indicators. The latter 

may involve regional differences in content of 02 and energy-consuming 

mitochondria and contractile elements, and differences in the metabolic rate and 

requirements of these elements (Groeneveld et al., 2001). 

2.3.1.3 Determinants of myocardial metabolic rate and coronary blood flow 

The energy requirements of the myocardium include requirements for basal 
1 

metabolism, for electrical activation, i.e., membrane depolarisation and repolarisation, 

and for the performance of internal and external mechanical work. The energy 

required for mechanical work includ,es the energy required to develop and maintain 
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systolic tension, as well as the energy required to deactivate the contractile system. 

Basal oxygen requirements, e.g., the requirements of an electrically arrested, 

normothermic heart on cardiopulmo~ary bypass, have been estimated to be 20% of 
I 

total myocardial oxygen consumption; the energy requirement of electrical activation 

is about 5% of total oxygen require~ents; contractile work accounts for the majority 

of myocardial oxygen consumption. However, contractile work and consequently 

total myocardial energy requirements vary greatly. The myocardial energy 

requirement is determined by the balance of myocardial oxygen demand and oxygen 

supply. There are three major determinants of myocardial oxygen demands: heart 

rate, myocardial wall tension, and the intrinsic contractile state of myocardium. 

Myocardial oxygen supply is determined by oxygen extraction from the vessel and 

coronary blood flow. 

2.3.2 TRANSMURAL PROGRESS OF ISCHAEMIC CELL DEAIB 

I 

' 2.3.2.1 Consequences of myocardial ischaemia 

Myocardial activity is dependent on aerobic metabolism for the production of energy 

in the form of ATP. Myocytes con~ain very limited reserve stores of high-energy 

phosphates and are dependent on ~ continuous source of oxygen and metabolic 

substrate. With the cessation of coronary artery blood flow, the relatively small 

quantities of oxygen remaining in capillary erythrocytes or attached to myoglobin are 

rapidly consumed, which results in a rapid drop of ATP production. In the mean 

while, metabolic catabolites accumulate in the myocytes or in the interstitial space. In 

ischaemia, both energy insufficiency and catabolite accumulation result in inhibition 

of cellular function, which includes contractile function and a variety of transport and 

synthetic functions. Initially, the inhibition of cellular functions is reversible, but 

eventually damage occurs to ,some qritical subcellular organelle that is irreversible; 

the myocytes undergo coagulation n~crosis, followed by an inflammatory response, 

macrophage removal of the dead myocytes, ~nd replacement by scar. Ischaemic 

damage of the microvasculature also occurs; the latter further stimulates the 
I 

inflammatory response. In addition, the inflammatory response, per se, might further 

damage myocytes and/or capillaries. If reperfusion occurs, either spontaneously or 

through experimental or clinical intervention, the consequences depend on the state of 

the myocardium at the time the reperfusion occurs. If the reperfusion is established 

when myocytes and microvasculature are still in the "reversible" phase of injury, cell 

death is prevented, and cellular ultrastructure and metabolic and contractile functions 
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eventually recover. Conversely, if myocytes have been "irreversibly" injured, 

restoration of blood flow results not in cellular recov,ery but rather in explosive 

swelling of the myocytes, massive calcium overload, and disruption of the 

myofibrillar apparatus. 

2.3.2.2 Transmural progress of ischaemic cell death 

By using various periods of temporary coronary occlusion, Jennings (Reimer and 

Jennings, 1979) studied the time course of ischaemic cell death. They found in 

anaesthetized, open-chest dogs, ischaemic myocytes remain viable for at least 15 

minutes. Beyond 15 minutes of coronary occlusion, increasing numbers of ischaemic 

myocytes became irreversibly injured, reperfusion does not prevent subsequent 

infarction. By 40 minutes, much of the subendocardial zone, if severely ischaemic, 

has been irreversibly injured. Nevertheless, much of the midcardial and subepicardial 

region is still viable; reperfusion prevents infarction of these zones. With increasing 

duration ~f coronary occlusion, a transmural "wavefront" of cell death progresses 

from the subendocardium to the subepicardium (Reimer et al., 1977; Reimer and 

Jennings, 1979), and after 3 hours of uninterrupted ischaemia, infarcts eventually 

involved an average of 80% of the ischaemic region. By 6 hours, infarcts reached 

their full size. Similar results were found by Fujiwara and co-workers (Fujiwara et al., 
I 

1982) in their study of transmural cellular damage in early ischaemia in pig hearts. 

Using both light microscopy and electron microscopy to determine morphometrically 

the transmural histological changes of the left ventricle after ischaemia, they also 
"--~ 

found a "wavefront phenomenon" of,ischaemic cellular damage which occurred from 

inner third to outer third of the left ventricular wall at 20 and 40 minutes of coronary 

artery occlusion, and became uniform with 120 minutes of ischaemia. Jennings 

(Jennings et al., 1985) observed in their study of coronary occlusion in dogs that the 

subendocardial region dies quickly because it is severely ischaemic (flow < 

0.15ml/~ii1/g) and that the subepicardial region dies more slowly because it often is 

only moderately ischaemic (flow 0.15-0.30ml/min/g) or mildly ischaemic 

(flow>0.30ml/min/g). In human studies of myocardial infarction, the ischaemic 

damage is either entirely subendocardial or, in transmural infarcts, is confluent and 

maximal in the subendocardium and less extensive in the subepicardium (Freifeld et 

al., 1983). Similar temporal evolution of myocardial infarctions, beginning in the 

subendocardial region, and only later involving the subepicardial region, has been 

observed in other experimental models of abrupt coronary occlusion of different 

species and human as well. (Schaper et al., 1979; Baughman et al., 1981; Lee et al., 
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1981; Connelly et al., 1982; Fujiwara et al., 1982; Geary et al., 1982; Warltier et al., 

1982; Kloner et al., 1983; Klein et al., 1984). Usually, a higher local flow under 

normal physiological conditions is associated with a higher demand for oxygen, it 

might also be hypothesized that the probability of ischaemic injury is higher in high 

flow region (Deussen et al., 2001); Thus, subendocardial muscle is vulnerable to 

ischaemia, both when coronary arteries are normal and when they are narrowed. 

2.3.2.3 Mechanism of transmural progress of ischaemia pattern 

The reasons that ischaemic damage preferentially affects subendocardial muscle may 

lie in one or more of the following ways: there is a tendency for greater oxygen usage 

or lower oxygen tensions in subendocardial than epicardial muscle. Subendocardial 

muscle might use more oxygen, it might be more easily damaged by a decreased 

oxygen supply, or it might more readily become underperfused. There is evidence 

that subendocardial oxygen consm~ption per unit weight is normally about 20% 

higher than that of subepicardial m~scle (Weiss et al., 1978; Weiss, 1979). Some 

investigators have argued that this : increase is because of greater work done by 

subendocardial muscle fibres, which shorten more in systole than do those in the 

subepicardium (Yoran et al., 1973). Compared with subepicardial muscle, 

subendocardial muscle has lower venous oxygen saturations (Weiss et al., 1978) and 

oxygen tensions (Winbury et al., 1971). 

The heart is an organ with an enormous need for oxygen and blood flow. The oxygen 

consumption of the heart is 20 times more than the whole body at rest, and 5 times 

more than the whole body even during severe exercise. Oxygen can be obtained by 

increasing coronary blood flow which will be accomplished by two ways: one is to 

extract more oxygen from the bloo~· perfusing the heart another way is to increase 

coronary artery blood flow. The reserve for myocardial oxygen extraction is usually 

small, so the resultant fall in oxygeri tension makes further extraction an inefficient 

method of delivering oxygen to tissues. As a result, the increased oxygen delivery 

needed by the heart when its work increases is obtained mainly by an increased 

coronary blood flow, so the coronary vascular resistance plays an important role in 

the increasing of coronary blood flow. In Hoffman's experiment (Hoffinan, 1978) 

studying transmural myocardial perfusion with dogs, he found that coronary blood 

flow can be maintained to each lay~r of the left ventricle during a certain range of 

perfusing pressure When perfusing pressure drops below a certain level, maximal 

vasodilation takes place first in the deepest, subendocardial muscle and flow there 
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becomes pressure dependent. Any further fall in perfusing pressure then causes a 

decreased flow to the subendocardial muscle, while flow remains in the remainder 

layers of the muscle in which the vessels still retain some vasomotor reserve. Further 

decreases in perfusing pressure will eventually exhaust the autoregulatory ability in 

successive layers of the left ventricu~ar wall from inside out, but at each low pressure 

flows will be lowest in the deepest muscle and will increase progressively the more 

superficial the muscle layer. 

There is a transmural gradient of wall tension, with tension greatest in the 

subendocardial region and least in the subepicardial region. This trarismural gradient 

of pressure could be another reason for subendocardial ischaemia. At the onset of 

systole, intramyocardial pressures increase more in the subendocardium than in 

subepicardium, so intravascular pres,sures are increased more in the subendocardial 

where they exceed pressures in the extramural coronary arteries. Although there are 

intravascular pressures which increase in the subepicardial vessels as well, these 

pressures remain lower than in the extramural arteries. The resulting pressure 

gradients permit blood to flow retrogradely from the subendocardial · to the 

subepicardial vessels, but to flow anterogradely in the subepicardial vessels. By the 

end of systole, the subendocardial arteries are much narrower than they were at the 

end of diastole. Consequently, at the onset of diastole, blood entering the myocardium 

from the extramural arteries flows to the most superficial myocardial vessels first 

(which have the lowest resistance), then to those in the midwall, and last to those in 

the inner myocardium which have the highest resistance. Reductions in diastolic 

perfusion time or pressure will thus result in decreased flow to the subendocardium. 

If the flow reduction is marked, this will cause subendocardial ischaemia. With the 

dependence of subendocardial blood flow on diastolic perfusion, it is easy to 

understand why so many studies .have shown that reduced coronary perfusing 

pressures cause profound subendocardial ischaemia. 
' 

However, there is evidence that transmural differences in blood flow are not the sole 

explanation for the transmural wavefront of cell death. Factors other than blood flow 

are important determinants of the rate of myocardial cell injury during ischaemia. 

Biochemical studies also indicate a transmural gradient of metabolites during 

coronary artery occlusion in the dog; where the subendocardium is more vulnerable 
I 

biochemically to ischaemic injury than is the subepicardium (Griggs et al., 1972). 

And, in studies in which myocardium has been made totally ischaemic in vivo with 
' no transmural blood flow gradient, ultrastructure and metabolic features of cell injury 
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have occurred more quickly in the subendocardial region than in the subepicardial 

region (Lowe, 1983). In Fujiwara's studies of pigs (Fujiwara et al., 1982; Warltier et 

al., 1982; Klein et al., 1984) and Ge~ry's studies of primates (Geary et al., 1982), the 

subepicardial zone is as severely ischaemic as the subendocardial region. 

Nevertheless, analysis of both ultrastructure and infarct location (following 

reperfusion) in these species indicate the existence of a transmural wavefront of 

irreversible cellular injury despite the absence of a blood flow gradient. 

Tota (1983) has raised the interesting analogy with the anatomy of the heart in fish, 

most of which have an inner spongy myocardial wall supplied by venous lacunae 

from the cavity and an outer compact muscle layer that receives blood supply from 

coronary arteries. In this system, the deepest muscle not only has a different anatomy 

but also a differently regulated blood supply than has the outer muscle. However, a 

direct connection between this phylogenetic pattern and the mammalian 

subendocardium with a normal coronary blood supply has not been made. 

In addition, there are also reported differences between subendocardial and 

subepicardial layers for many metabolites and enzymes. The subendocardium has 

been found to have greater mitochondrial oxidative activity in some studies but not in 

others (Tota, 1973). When the ventricles were fibrillated and all coronary inflow was 

abruptly stopped, a greater accumulation of lactate occurred in the subendocardial 

than the subepicardial muscle (Dunn and Griggs, 1975). Glycolytic enzyme activities 

in the subendocardium are altered in ischaemia (Lundsgaard-Hansen, 1967). 

Consistent differences for many enzymes and substrates have been observed, and 

differences in redox potential and NAD+/NADW ratios (Minamidate et al., 1973) 

probably do exist across the wall. These findings were reviewed in detail by Feigl 

(1983). The reasons for these biochemical differences are unknown. The biochemical 

differences that have been noted may explain why, in experimental animals, in the 

absence of differences of regional wall tensions or blood flows, sudden cessation of 

myocardial blood flow leads to the ,greater production of lactate and to the earlier 
I 

onset of necrosis in the subendocardium than in more superficial muscle (Dunn and 

Griggs, 1975; Lowe et al., 1983). 

2.3.3 LATERAL BOUNDARIES OF ISCHAEMIA 

Controversy exists about the existence and width of ischaemic gradients at the lateral 

boundaries of an ischaemic region (Hearse and Yellon, 1981). Based on detailed 
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analyses of such observations, Janse and coworkers (Janse et al., 1979) found that 

there is a transition composed of interdigitating normal and ischaemic zones rather 

than a "border zone" between ischaemic and nonischaemic myocardium. In their 

study, regional ischaemia was produced by LAD occlusion in isolated perfused pig 

hearts and in hearts in situ; intramural and epicardial direct-coupled electrograms 

were recorded, subepicardial transmembrane potentials were recorded by floating 

microelectrodes and tissue A TP, creatine phosphate, lactate glycogen were 

simultaneously recorded and measured among ischaemic centre, border zone and 

normal myocardium. Intermediate metabolic values are found in the electrical border 

zone, and in the border, zones with normal glycogen content interdigitate with zones 

depleted of glycogen. If the border is reperfused, cells with nearly normal 

transmembrane action potentials are in close proximity to umesponsive cells with low 

resting membrane potentials. They suggest that the ischaemic border is composed of 

interdigitating normal and ischaemic zones sharply demarcated from each other. 
! 

Similar results had also previously been found by Cox (Cox et al., 1968). In their 

study, a border zone in the dog heart was found surrounding severely ischaemic 
I 

tissue; damage in this border zone was confined to mitochondrial swelling. Brooks 

(Brooks et al., 1975) found in the pig heart, the zone in which blood flow changed 

from very low to normal values had an average length of 7.5nm. Hearse (Hearse et 

al., 1977) concluded from their findings that it was most likely that the border zone 

consisted of homogeneously damaged cells in which the damage was less severe than 

in the central ischaemic zone. By measuring blood flow, metabolic and 

electrocardiographic changes after coronary artery occlusion of dog's hearts, Hearse 

(Hearse et al., 1977) found gradients in local blood flow, lactate content, high energy 

phosphate content and ST segment potentials over an area of 8-15mm. They 

suggested that the finding of an intermediate value for blood flow and metabolic state 

could be explained when the border tissue was either a mixture of normal and 

ischaemic cells or uniformly composed of cells with an intermediate degree of 

change. Kleber (Kleber et al., 1978) also found the zone where extracellular 

potentials changed from monophasic ·complexes with maximal TQ depression and ST 

elevation was of the order of 9mm in the pig heart. 

However, Marcus (Marcus et al., 1975) found, on the basis of flow analysis, no 

evidence for a geometrically well~defined border zone of moderate ischaemic 

myocardium surrounding and separating severely ischaemic myocardial from normal 

tissue after a 5 minutes occlusion in the dog heart. In 24-hour infarctions, Hirzel 
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(Hirzel et al., 1977) found in the dog heart a sharp demarcation between normal tissue 

and tissue in which creatine phosphokinase depletion was complete. Barlow (Barlow 

et al., 1977) found a border zone that appeared as a patchwork of ischaemic and 

normally perfused tissues sharing sharp interfaces. 

Schaper (1971b) explained the sharp transition on the basis that the important 

collateral anastomoses between major coronary arteries are on the epicardial surface 
' 

of the heart. The myocardium is perfused through smaller penetrating branches of 

these layer surface arteries. A recent anatomic study of dog by Factor (1981) suggests 

that the penetrating intramural arteries are essentially end arteries, with few or no 

interconnections between adjacent capillary beds. So there is no anatomic explanation 

based on intramural vascular connections for the existence of broad lateral border 

zones of intermediate severity of ischaemia. 

Further studies in dogs showed that, even permanent ligation of a major coronary 

artery often does not result in complete infarction of the occluded vascular region. In 

Reimer and Jennings's study (Reim~r and Jennings, 1979), they found that after left 

circumflex artery occlusion, there was persistent viable myocardium in the 

subepicardial zone, averaging about 20% of the ischaemic vascular bed. In their 

experimental model, collateral blood flow to the subepicardial zone is quite variable; 

the amount of subepicardial sparing is inversely related to the amount of collateral 

blood flow provided to this zone during the early phase of ischaemia. It is concluded 

that in dogs with permanent coronary artery occlusions, both the size of the ischaemic 

vascular bed and the amount of subepicardial collateral blood flow are major 

determinants of infarction size. In· contrast, baboons and pigs have few native 

coronary collateral anastomoses; permanent coronary artery occlusion is followed by 

severe transmural ischaemia and by solid transmural infarcts (Geary et al., 1982; 

Warltier et al., 1982). Thus, in these. species, infarct size is determined primarily by 

the size of the occluded vascular bed. Failure to identify the interface between 

ischaemic and nonischaemic myocardium may explain paradoxical results within the 

same species. 

2.3.4 TRANSMURAL ST SEGMENT DISTRIBUTION IN MYOCARDIAL 

IS CHAE MIA 

To study the origin of ST segment shift, it is important to know the intramural ST 

segment distribution. 
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Because endocardium is more vulnerable to ischaemia, occlusion of coronary artery 

accordingly results in greater regional blood flow reduction and a more pronounced 

histological damage in endocardium than in epicardium. It is thus conceivable that the 

electrocardiographic changes occurring at the endocardium may also be more 

prominent and may precede those of epicardium. 

Early research by Sayen (Sayen et al., 1961) observed epicardial and intramyocardial 

electrocardiograms after coronary artery occlusion in dogs, they recorded ST 

elevation with intramyocardial electrodes within 12 seconds after ischaemia, and such 

leads also detected subendocardial ischaemia at the borders of a cyanotic area when 

the epicardial ST segment was unchanged. In J<huri's (Khuri et al., 1975) study of 

changes in intramyocardial ST shift and gas tensions with regional myocardial 

ischaemia in the dog, they found that increases in intramyocardial ST shift are 

associated with parallel increases in myocardial carbon dioxide tension, the results 

showed that ST segment shift recorded in unipolar epicardial electrodes were a less­

sensitive indicator of myocardial ischaemia than were those recorded in 

intra~yocardial electrodes. Epicardial electrodes sometimes failed to detect the 

presence of underlying ischaemia, as evidenced by significant changes in local 

myocardial gas tensions and intramyocardial ST segment shift. The lack of sensitivity 

of epicardial electrodes may reflect an inability of the epicardial electrodes to sense 

ischaemic changes in deeper myocardial layers. Similar findings were also supported 

by O'Riordan. Using multicontact plunge electrodes, O'Riordan (O'Riordan et al., 

1977) recorded intramyocardial electrograms at multiple depths within the canine 

myocardial wall which suggests that the severity of myocardial ischaemia can be 

assessed by measuring intramyocardial ST magnitude at resting and paced heart rates. 

They found in the presence of critical stenosis, ST changes recorded in deeper 

myocardial layers were of greater magnitude than those recorded near the epicardial 

surface, and the increase of ST magi;iitude was parallel to that of myocardial carbon 

dioxide tension with atrial pacing in the presence of different degrees of coronary 

artery stenosis. They also found that intramyocardial ST magnitude was a more 

sensitive indicator of the severity of pacing-induced myocardial ischaemia than 

epicardial ST segment changes. 

To analyse the existence of a possible increased electrical vulnerability of the 

subendocardium during acute myocardial ischaemia in the in situ pig heart, Cinca and 

coworkers (Cinca et al., 1984) recorded epicardial and endocardial electrograms after 
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LAD occlusion. They found that after LAD occlusion, TQ segment depression and 

ST segment elevation showed a faster rate of development, and monophasic 

potentials occurred earlier in the endocardium than in the epicardium, This faster rate 

of change in endocardial than in ~picardial potentials is in agreement with the 

reported increased vulnerability of the subendocardium to acute myocardial 

ischaemia. 

An early study by Kennamer (Kennamer et al., 1953) reported that coronary 
I 

occlusion produced less net ST elevation in the inner than in the outer layers of the 

left ventricle. Using small plunge electrodes, John (1976) recorded intramural ST 

elevation after coronary artery occlusion in the dogs, and simultaneously epicardial 

ST elevation was also recorded. The intramural ST elevation is less marked than ST 

elevation in epicardial leads, similar results to Rakita's (Rakita et al., 1954). In 

Rakita's experiment of myocardial ischaemia induced by LAD occlusion, they 

observed that ST segment elevation decreased progressively from epicardium to 

cavity. 

Research has also shown that the electrophysiologic response to ischaemia was 

greater in the epicardial site than in the endocardial site. This was documented in a 

study of exploring the effects of ischaemia on transmembrane action potentials and 

refractory periods of both endocardial and epicardial myocytes in cats (Kimura et al., 

1986). In this model, ischaemia was induced by stopping perfusion of the LAD, rapid 

deterioration of transmembrane action potentials was observed in both endocardial 

and epicardial cells. The magnitude of the reduction of action potential amplitude and 

action potential duration was greater in epicardial cells than in endocardial cells, 
' while the change in resting membrane potential was almost the same. However, 

action potential duration of endocardial cells decreased progressively during 30 

minutes of ischaemia, whereas the action potential duration of epicardial cells was 

reduced maximally at 10 minutes and then partially recovered. The mechanism of the 

discrepancy of electrophysiologic · response and electrocardiograph between 

endocardium 'and epicardium is unclear. Further research is needed to explore the 

time course of both electrophysiologic and electrocardiographic changes in 

myocardial ischaemia to understand this mechanism. 

2.3.5 TRANSLATERAL ST SEGMENT SIDFT OF MYOCARDIAL 

ISCllAEMIA 
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According to solid angle theory, aµ assumption is that the degree of ischaemic 

cellular injury is uniform in the ischa~mic myocardium. Thus, the ischaemia produces 

two distinct and sharply separated dell populations with respect to action potential 

morphology. Therefore, a difference in transmembrane potential exists only at the 

boundary between the ischaemic and normal myocardium so that injury currents 
! 

originate only at this boundary which means the uniform double layer exists only at 

the , ischaemic boundary. Another assumption is that the conducting medium is 

infinite, homogeneous and isotropic. Under these assumptions, the distribution of 

ischaemic ST segment deviation is determined by the ischaemic boundary at any field 

point, with highest ST segment elevation occurring at the boundary, while a 

progressive decrease in ST segment elevation is expected to occur approaching the 

centre of this ischaemic region. 

Using isolated, coronary perfused, isovolumic contracting canine hearts in a 

homogeneous cylindrical volume conductor, Maehara and coworkers (Maehara et al., 
1 

1986) recorded ischaemic ST segment deviation at intramyocardial, epicardial and 

precordial sites to investigate the applicability of solid angle theory to the mechanism 

of ischaemic ST segment deviation. By comparing experimentally measured ST 
I 

segment potential distributions and calculated solid angle, they found that there was a 

high correlation between these two data sets at epicardial, precordial and 

intramyocardial leads, despite the difference which existed between epicardial and 

precordial ST segme~t potential distributions. They concluded that solid angle 

analysis can be used to approximate the distribution of ischaemic ST segment 

deviation in acute ischaemia. Furthehnore, the results showed that on epicardial ST 

segment mapping, the higher ST segment elevations occurred near the ischaemic 

boundary with a small progressive decrease , in amplitude as the centre of the 

ischaemic region was approached, which supports solid angle theory that injury 

currents arise mainly over the marginal zone in acute ischaemia. This conclusion was 

further supported by the observation that not only ST segment elevation, but also ST 

segment depression occurred over the nonischaemic region, with less ST segment 
I 

depres~ion occurred near the ischaemic boundary and progressively decreased ST 

segment occurred further away from the ischaemic boundary. However, no indices 

indicative of the severity of regio.nal myocardial damage were investigated in 

Maehara's study. Thus, the degree of the inhomogeneity in the ischaemic tissue was 

unknown. To better understand the' translateral ST-shift in different depth of the 

myocardium, the degree of regional n,iyocardial damage should be considered. 
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Our recent studies of epicardial ST ~epression in acute myocardial ischaemia with in 

situ sheep (Li, et al., 1999) observed that occlusion of the big artery (LAD or LCX) 

produced ST elevation over the infarcted region and ST depression over the 

noninfarcted region. The highest amplitude of ST elevation is at the boundary, with 

gradually decreased amplitude of ST segment elevation produced towards the 

ischaemia centre. Occlusion of small artery (OM) produced a graduated but even 

peak of ST elevation in the ischaemic centre, with the magnitude decreasing toward 

the border, and slight reciprocal ST depression occurred at the surrounding region, 

which is quite different from that of occlusion of the LAD or LCX. The different 

response of ST in the centre and border zone in smaller ischaemic area was also 

found by Maehara and coworkers (Maehara et al., 1986). Janse's (Janse et al., 1979) 

also found in his study of regional myocardial ischaemia in isolated perfused pig 

hearts that after 8 minutes of ischaemia, highest ST elevation/TQ depression occurred 

in the centre of ischaemia, ST elevation/TQ depression in the border zone is less than 

in the centre, while in surrounding normal myocardial showed slight reciprocal TQ 

elevation/ST depression. After 30 minutes of ischaemia, ST elevation/TQ depression 

diminished in amplitude in centre zone, and after 2 hours, ST elevation/TQ 

depression has substantially decreased. However the location of the electrical border 

zone has remained constant, and even though the electric recording in the border zone 

showed ischaemic changes (i.e. ST elevation/TQ depression), they were in a lesser 

degree than in the centre zone. ST/TQ of the normal zone remained either isoelectric 

or showed slight reciprocal changes. 

The different response of ST/TQ in the centre and border zone might be explained 

that injury currents arise over a marginal zone with a certain width. In Hearse's study, 

they found that the electrophysiological border zone in dog hearts was over an area of 

8~15mm (Hearse et al., 1977). Rich~son reported, by the use of solid angle analysis, 

that epicardial ST segment distributions appear most consistent with the condition in 

which the injury current source is distributed over a 1 cm border region in the pig 

heart (Richeson et al., 1978). Miller. and Geselowitz (Miller and Geselowitz, 1978) 

reported that body surface electrocardiograms in acute ischaemia and infarction are 
' 

well simulated by a model in whic~ action potential morphology is progressively 

changed from the periphery to the central portion of the ischaemia region. So it may 

be more realistic to presume that the severity of ischaemic injury increases from the 

periphery to a central portion over an ischaemic border zone having a certain width. 

Another explanation is that small regions of infarction lead to stable condition of the 

animal, which can not produce powerful electrical activities strong enough to lead to 
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typical ischaemic distribution. The latter was suggested by Li and co-workers (Li et 

al., 1999) in their animal and modelling study of epicardial ST depression in acute 

myocardial infarction that the total current flow\ng out of the heart must flow back 

into the heart. Thus, the integral of current density over the ischaemic region matches 

that over the normal region, which w
1
as shown by the balance of ST elevation and ST 

depression during myocardial ischaemia. Smith (Smith et al., 1979) elaborated this 

discrepancy in his study of epicardial mapping in a myocardial ischaemia injury 

model. They concluded that early ischaemia (less than 20 minutes) was represented 

by a model of ischaemia in which injury current arises only at the ischaemic 

boundary, results in the highest ST segment elevation occurring on the boundary, 

while later ischaemia (after 20 minutes of ischaemia) may be represented by a model 

in which ST segment elevation is considered dependent on injury currents generated 

throughout the ischaemic region, results in a gradient in ST segment elevation from 

the periphery to the centre of the i~chaemic region. An ionic mechanism may be 

involved in this phenomenon. 

2.3.6 ST SEGMENT SIDFT IN MYOCARDIAL ISCHAEMIA AND ITS 

RELATIONSIDP TO MYOCARDIAL BLOOD FLOW 

2.3.6.1 ST segment shift in transmural myocardial infarction and its relationship 

to myocardial blood flow 

Because the degree of ST segment elevation has been used widely as an index of 

ischaemic injury, it is of particular interest to examine the relationship between ST 

segment elevation and blood flow in the ischaemia area. Much research has involved 

in quantitative or qualitative anal~sis of the relationship between reduction of 

regional blood flow and myocardial activation recorded in different site of the 

myocardium. 

In Kjekshus and co-worker's study (~jekshus et al., 1972), myocardial infarction was 

induced by LAD occlusion in dogs and myocardial blood flow was measured by 

radioactive-labelled microspheres. They found that blood flow in both the inner and 

outer portion of myocardium was reduced after coronary artery occlusion, and acute 

ST elevation on the epicardial was linearly related to reduction of subepicardial blood 

flow. However, the extent of ST elevation was disproportionately less with respect to 
' 

the same degree of blood flow reduction in subendocardial portion. Furthermore, 

epicardial ST changes were less profound and less consistent where local myocardial 
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flow red~ction was present only in the subendocardial region. Comparable ischaemic 

injury associated with the same extent of reduction of myocardial flow in the outer 

layer of the heart was associated witli more marked ST elevation than that in the inner 

portion. They also found that epicardial acute ST depression was not associated with 

reduction of myocardial blood flow in either inner or outer portions of the ventricular 

wall. In sites with epicardial ST depression, blood flow was normal in both portions. 

They suggest that ST elevation in the epicardium occurs only with severe myocardial 

ischaemia, and that ST depression in the epicardial layer might be due to reciprocal 

changes from reversibly injured subendocardial cells. 

In Smith's (Smith et al., 1975) myocardial ischaemia model of LAD ligation in dogs, 

they found epicardial ST elevations correlate well with myocardial blood flow within 

two hours, though there was still one.third of the areas with myocardial blood flow of 

10ml/min/100g or less which had no epicardial ST elevation. After two hours of 

occlusion, myocardial blood flow in both centrical and border areas increased, but 

these increases were not associated. with a significant reduction of epicardial ST 

elevation. Their results didn't sho'.w a single quantitative relationship between 

epicardial ST elevation and myocardial blood flow following acute coronary artery 

occlusion, the author suggested the r~ason might be that the critical determinant of ST 

alteration is the local balance in ~xygen demand and supply which affects the 

functional integrity of the myocardial membrane. It is known that myocardial blood 
! 

flow has to be reduced to less than 50% of normal before significant ST elevation 

occurs (Raab et al., 1962). However, they did not measure blood flow in different 

myocardium layers, which will b~ vital in determining the relation between 

myocardial blood flow and ST segment shift. For further understanding of this 

relations~ip, more detailed studies need to be designed using intramural plunge 
, ' 

electrodes for detailed intramural potential records and with myocardial blood flow 
I 

recordings in different myocardial layers. 

2.3.6.2 ST segment shift in subendocardium and its relationship to myocardial 

blood flow 

As we know, subendocardial ischaemia always produces ST segment elevation in 

electrodes overlying the subendocardium or in the corresponding area of the 

ventricular cavity, and overall ST segment depression on the epicardial leads. 

Subendocardial is'chaemia can be induced by partial coronary artery occlusion plus 

atrial pacing in animal studies. In patients with the presence of coronary artery 
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stenosis, an exercise test may provoke subendocardial ischaemia. The study of the 

quantitative relationship between the myocardial blood flow and the 

electrocardiographic abnormalities in subendocardial ischaemia may lead to an easy 

way to monitor patients with angina pectoris. Furthermore, the study of quantitative 

relationship between the myocardial blood flow and the electrocardiographic ST 

segment elevation in subendocardial ischaemia may be used to predict the prognosis 

ofthrombolytic therapy. 

Guyton (Guyton et al., 1977) pr~duced a subendocardial ischaemia model by 

reducing the subendocardial blood flow to 25% of normal while keeping the 

subepicardial blood flow normal. They found a significant negative correlation 

existed between the magnitude of ST abnormality and the endocardial/epicardial 

coronary pressure. Endocardial ST elevation as well as epicardial ST depression was 

recorded in subendocardial ischaemia. But when subendocardial ischaemia extended 

to the outer portion of the left ventricular wall, and ischaemia becomes transmural, 

epicardial ST elevation occurs. As predicted by Prinzmetal (Prinzmetal et al., 1961) 

from electrophysiologic considerations, the ma_gnitude of this reciprocal ST 

depression is small compared with the magnitude of simultaneous subendocardial ST 

elevation. 

In Mirvis and co-worker's study (Mirvis et al., 1986), they produced subendocardial 

ischaemia in a dog model by chronically constricting the LCX plus atrial pacing at 90 

to 210 beats/min. They studied ST shifts by body surface isopotential mapping with 

an 84-electrode torso grid and ST changes related to myocardial blood flow measured 

by radiolabelled microspheres. Subendocardial ischaemia was verified by the 

reduction of endocardial/epicardial blood flow ratios. Logistic regression analysis 

demonstrated that the magnitude of ST segment depression corresponded to an 
\ 

endocardial/epicardial blood flow ratios of less than 0.57-0.70. An equal likelihood 

of a normal and an ischaemic response was at an endocardial/epicardial blood flow 

ratio of 0.67. Ratios of 0.58 and 0.76 predicted abnormal or normal patterns 

respectively, with probabilities of 95%. The exact value of such an effect may be 

inaccurate, since recordings and measurements were made intermittently rather than 

continuously. It may also have varied if compared with contraction and metabolic 

measures, which may be more sensitive indicators of ischaemia (Markham et al., 

1983). Mirvis further documented that the increase of blood flow in both 

endocardium and epicardium of a ~og's heart with dipyridamole, which does not 
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induce endocardial/epicardial blood ·flow ratio change, will not result in abnormal 

body surface potential distribution (Mirvis et al., 1988). 

In a recent study by Li (Li et al., 1997), they explored the relationship between 

epicardial and endocardial potential distributions and regional myocardial blood flow, 

subendocardial ischaemia was produced by partial LAD or LCX occlusion together 

with atrial pacing in sheep and was verified by measurement of regional myocardial 

blood flow with fluorescent microspheres. Both endocardial and epicardial potential 

distributions were recorded by direct cardiac mapping. Their results showed that the 

epicardial potential changes at 20 minutes did not correlate with either the 

endocardial/epicardial blood flow ratio or the percent decrease in the regional 

myocardial blood flow in the inner third of the myocardium underlying the 

electrodes. Neither did the peak negative epicardial potential difference correlate with 

the average endocardial/epicardial blood flow ratio. When the epicardial potential 

distribution maps were combined with the endocardial regional myocardial blood 

flow maps, the lowest ST segment depression did not coincide with the lowest flow 

area. Similar analysis was performeq with the endocardial potential changes. It was 

shown that there was a weak but highly significant negative correlation between the 

endocardial potential changes and the endocardial/epicardial blood flow ratio, as well 

as the percent decrease of the control regional myocardial blood flow. When the 

endocardial potential maps were superimposed with the regional myocardial blood 

flow maps, a general relationship existed between the positive. endocardial ST 

potentials and the low flow regions., This detailed research indicated that epicardial 

ST depression in subendocardial ischaemia does not predict the location of ischaemia 

region, while endocardial ST segment elevation is a direct effect of subendocardial 
l 

ischaemia. 
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2.4 MODELS AND SIMULATION OF ELECTROCARDIOGRAPH 

2.4.1 CONSIDERATION RELATED TO ELECTROCARDIOGRAPH STUDY 

Research into the ECG study can be considered as falling into one of the three areas: 

(1) The direct problem, which describes the electrical sources in the heart directly; (2) 

The inverse problem, which involves the quantitative specifications of the parameters 

of the electrical sources of the heart from potential measurements over the torso; (3) 

Diagnosis, which is the determination of the pathological state of the heart from a 

temporal description of the electrical source of the heart as found under the inverse 

problem. 

The simulation of the electrocard\ograph involves constructing models for the 

effective sources of the heart and the surrounding conducting medium that are 

capable of an accurate simulation of the corresponding ECG. The models, in general, 

include two independent parts, one is a representation of the cardiac electric sources, 

the other is the relationship between the source.sand the surface potentials (the body­

surface ECG) they generate. The sources of the model have been used as single 

dipoles, multiple dipoles and distributed dipoles etc. (vide infra). The problem of 

determining the relationship between sources and potentials is referred to as the 

volume-conductor problem. 

I 

2.4.2 SOURCES OF THE MODELS 

According to electrocardiographic ·theory, simulation of the electrocardiograph 

involves sources of the heart. Many attempts have been made to provide "equivalent 

cardiac generators" for the bioelectric sources in the heart, these include: single 

dipoles, multiple dipoles, multipoles and a double layer equivalent cardiac generator. 

Single dipole 

In the single dipole model, the heart's electrical activity is represented by a dipole 

current source that is fixed in position but allowed to vary in magnitude and direction 

during the heart beat (Geselowitz, 1964). It assumes that the distance from the 

recording electrode to the heart is large in comparison with the electrically active 

boundaries of the heart, and that the heart and surrounding thoratic structures together 

comprise a uniform, homogeneous volume conductor. The limitations of the single 

dipole model have been demonstrated (Scher et al., 1960) and discussed (Geselowitz, 
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1964; Horan and Flowers, 1972) extensively. The electrical activity of the heart 

cannot be considered by a single dipole source with electrodes placed in close 

proximity to the heart. Experiments in which intramural electrodes were placed in the 

heart indicated that at any time during the QRS complex interval, multiple boundaries 

or surfaces are present which separate the resting cells from the cells that are already 

depolarised. But the size of these boundaries is not small, especially in relation to 

most electrode distances. Furthermore, the boundaries are also not fixed in position, 

as is required by the single dipole representation. As time progresses, the boundaries 

propagate through the ventricular myocardium, generally in an endocardial-to­

epicardial and apex-to-base direction in the normal heart (Durrer et al., 1970). 

In order for a single dipole model to be a reasonably good approximation, the 

electrode distance to the heart must be great in relation to the size of the boundary. 

Taccardi (1958) observed that it is only at a distance equal to five times the radius of 

the heart that the distribution of el~ctrical potentials recorded are similar to those 

which may be generated by a single dipole. This requirement is not met by most 

epicardial, endocardial, intracavitary, esophageal, or precordial recording sites. 

Furthermore, Horan and Flowers (1972) have pointed out that in the normal heart 

only during the very early inscription of the QRS complex, when the activation 

process is taking place in the septum, is the boundary separating the resting and the 

depolarised tissue small and well localized. 

Multiple Dipole 

The multiple dipole model more completely represents the electrical activity of the 

heart (Holt et al., 1969). The boundary is represented by a finite number of discrete 

dipoles. This model permits the association of each dipole with a particular anatomic 

segment of the myocardium. In the study of Holt (Holt et al., 1969), the ventricular 

wall was divided into 12 segments. Unlike the single dipole model, the direction of 

each of the 12 dipoles is fixed in advance and approximates the average direction of 

the activation pathway in each particular segment. The magnitude of each dipole is 

then permitted to vary in time, rising from zero when the wavefront or boundary 

enters the segment and returning to zero when it leaves. Thus, in this model, the 

thicker the segment the longer the time the contribution from that segment persists. 

The magnitude of each dipole is also assumed to be proportional to the area of the 

activation boundary occupied by that segment at different moments in time as the 

boundary propagates through the segment. The potential seen at an electrode site is 

then equal to the sum of potentials contributed by each dipole. With the analog model 
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of Selvester's (Selvester et al., 1967), it was shown that infarctions of only 1.0 cm3 in 

size resulted in identifiable changes in the vectorcardiogram as compared to the 

control, regardless of location including the supposedly "silent areas" (i.e. basilar 

portions of the septum and left ventricular wall). They also noted that involvement of 

the base of the left ventricle resulted in abnormalities of the terminal portions of the 

QRS complex. 

Distributed dipole (Solid angle theory) 

The concept of the solid angle theory was first formulated by Newton in his classic 

studies on gravitation and was later applied by physicists in the theoretical 

characterization of a wide variety of electrical phenomenon. The applicability of the 

solid angle theory to the interpretation of recorded electrocardiographic signals was 

recognised by Wilson (Wilson et al., 1933a), and was expanded to ECG theory by 

Holland and Brooks (1975). The solid angle model considers each boundary present 

in the heart to be composed of an infinite number of dipoles, each representing an 

infinitesimally small region of the boundary. Because more dipoles are considered, 

this model more accurately represents the elec!fical activity of the heart. This model 

differs significantly from the two previously considered not only in the number of 

dipoles used to represent the heart but because each dipole is permitted to move in the 

direction of its segment of the boundary and each dipole has exactly the same 

strength or magnitude which equals the difference in transmembrane voltage (~ V m) 

across the boundary (Holland and Arnsdorf, 1977). Since this boundary separates two 

cell populations that differ in transmembrane potential, it has been represented as a 

distributed dipole layer. 

The solid angle or distributed dipole layer model of the electrical activity of the heart 

overcomes many of the limitations of the more conventional single dipole 
I 

representation. First and foremost, the solid angle approach provides a specific 

physiologic interpretation of the ECG. All ECG deflections may be categorized as 

being due to spatial (Q), nonspatial (~ V m), or other (K) factors. These deflections, 

whether reflecting electrical activity of normal or diseased (ischaemic, hypertrophic, 

or infarcted) hearts, are due to the presence of boundaries in the heart established by 

regions having different transmembrane voltages. Second, it is observed that the solid 

angle approach is valid at all electrode distances from the heart. Since the area 
I 

represented by each dipole in the distributed dipole layer model is infinitesimally 

small, an electrode can be placed as close to or as far away from the heart (or, more 

properly, the boundaries present in the heart) as is desirable and the solid angle 
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representation remains valid. Third; it is suggested that the solid angle analysis 

provides a rational basis for the quantitative interpretations of electrocardiographic 

data. Using this theory, changes in the spatial relationship of the boundary and the 
! 

electrode site or changes in the transmembrane potential difference of different 

regions can be directly associated with changes in the magnitude and polarity of the 

waveforms recorded in the ECG. 

However, the solid angle theory has its limitations. For both theoretical and practical 

reasons, it does not provide a complete mathematical representation of the electrical 

activity of the heart. The solid angle analysis is limited, as is the classical dipole 

theory, by the fact that the thorax is neither a homogeneous nor an infinite volume 

conductor. Furthermore, the thorax is irregularly shaped, with the heart occupying an 

eccentric position within it. These factors make the mathematical formulations 

extremely complex (Bayley and Berry, 1964). One practical limitation of the solid 

angle approach pertains to the difficulty of calculation. In many instances piecemeal 

approximations of an irregularly shaped boundary with circular or ellipsoidal 

boundaries are necessary in order to .obtain actual numerical values (Plonsey, 1974). 

Most important of all, the anisotropy of the heart muscle must be taken into account 

in the solid angle analysis. 

2.4.3 VOLUME-CONDUCTOR PROBLEM 

The earliest solutions to the ECG volume-conductor problem were analytical. Such 

solutions are confined to relatively' simple shapes such as spheres or ellipsoids. 

However, they can provide useful information. Analogue computer solutions were 

induced later to cope with realistic torso geometries. Numerical schemes were 

developed more recently which enabled the calculations to be carried out on digital 

computers. In either case, it sugge~ts that realistic geometries be used to avoid 

restricting electrode sites to the limbs, and to incorporate electrical inhomogeneities 

in the volume conductor to account for the different conductivities of body tissues 

such as lung, fat, bone, cardiac muscle, skeletal muscle and blood. 

2.4.4 MODELS AND SIMULATION OF ELECTROCARDIOGRAPH FOR 

FORWARD PROBLEMS 

The prototype model of the ECG was put forward by Einthoven (Einthoven et al., 

1913). This simplistic model has proved to be extremely useful and still dominates 
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much of electrocardiographic theory. The source of Einthoven's model is a dipole, 

the distribution of sources throughout the heart during cardiac cycle can be 

represented by a single dipole source at a fixed location, thus in Einthoven's model, 

the heart is localised in the midpoint of a triangle, it is postulated that the 

electromotive force created by the heart is equivalent at any given moment of the 

cardial cycle to a single dipole, this single dipole may be presented by a vector 

directed from the negative to the positive pole, proportional to the magnitude of the 

charges and to the distance that separates them, this vector represents the moment of 

the dipole. Einthoven also postulated that the triangle may be conceived as a 

homogeneous plane of conducting material, implying that the structures surrounding 

the heart-bones, muscles, etc are homogeneous from an electrical standpoint. There 

are limitations of Einthoven's model, the human body is certainly not a symmetric, 

homogeneous conductor, different specific resistances exist among various tissues of 

the body, etc. 

Einthoven's single dipole model was developed by Wilson (Wilson et al., 1933b and 

1933c) who correlated dipole sources to cellular activity. By using a single cylindrical 

fibre, Wilson showed that the dipole moment was related to the spatial gradient of 

transmembrane action potential. According to Wilson, a long cylindrical fibre in an 

infinite volume conductor acts as a distributed current dipole source whose movement 

is proportional to the product of the area of the fibre, the conductivity and the 

derivative of the transmembrane potential along the fibre axis. 

Researchers used the cable theory with the assumption that the intracellular potential 
I 

varied along the axis of the cylinder and that the intracellular conductivity was the 

same throughout the cylinder, it was found that the intracellular potential gradients 

primarily determine the magnitude of the extracellular potentials during 

depolarisation (Rall, 1969) and repolarization (Spach and Barr, 1976). 

Despite its cellular nature, the heart acts in many respects as a syncytium. Cell-to-cell 

resistance of the heart is low, therefore intracellular space may be thought of as a 

"syncytium" occupying the volume of the heart muscle. Interstitial space similarly 

can be considered a second syncytium. Thus the volume of the heart muscle can be 

considered to be composed of two syncytia or domains. The two domains (bidomain) 

or syncytia are everywhere separated by the cell membrane. In Spach's (Spach et al., 

1972) '.'SI model" (spatial intracellular potential), he assumes that a network of cells 

69 



CHAPTER TWO 

can be treated as one large cell so that net membrane currents can be determined from 

the second spatial derivative. 

The "bidomain model" provides a basis for relating cardiac sources to cellular action 

potentials. The volume conductor problem provides the framework for relating torso 

potentials to cardiac sources. A model based on the bidomain model has been 

developed by Miller and Geselowitz (1978). In Miller and Geselowitz's model which 

is similar to Spach's SI model, they .applied a general three-dimensional distribution 

of cells. In this model, the geometry .of a human heart was represented by a series of 

16 cross-sections along planes perpendicular to the base-to-apex axis. A rectangular 

grid of discrete points was superimposed on each cross-section, resulting in a three­

dimensional array of approximately 4000 points. This was subdivided into 23 regions 

representing the ventricles of the heart, giving a multiple-dipole model of the heart. 

On the basis of the bidomain model, the distributed dipole source J, (intracellular 

current density) is proportional to the spatial derivative of the transmembrane 

potential. During the heart cycle, the transmembrane potential of each cardiac cell 

undergoes a variation in time, the resulting waveform being known as the action 

potential. The distribution of cellular action potentials both spatially and temporally 

throughout the heart provides sufficient information to determine J, . By summing the 

spatial gradient of the intracellular potential distribution throughout the region, the 

moment of the single dipole representing each region is determined. The resulting set 

of 23 dipoles is then used to calculate the potentials on the surface. The Miller­

Geselowitz model of the ECG appears to provide an excellent simulation of the body 

surface ECG for the normal heart and for a wide variety of examples of ischaemia 

and infarction. However, inhomogeneity and anisotropy of the body as a volume 

conductor are ignored in this model. 

A more detailed three-dimensional inhomogeous torso model has been developed by 

Walker and Kilpatrick (1985). In this torso model, the torso was digitised from the 

CT scans of human with normal tors.o geometry. A non-uniform grid was used, grid 

spacing ranged from 7.5mm to 15mm. The model was made from 25 slices, ranging 

in thickness from 1 Omm in the vicinity of the heart to 50mm in the lower part of the 

torso, resulting in a highly detailed model containing 18924 nodes, encompassing the 

heart, lungs, spine and sternum. The validity of the modelling procedure has been 

tested by modelling a homogeneous spherical volume conductor with two point 

current sources and comparing the model solution with the known analytical solution 

(Frank, 1952). The isopotential contbur maps for both the model and the analytical 
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result are almost identical. The percentage difference between the two solutions is 

1 %~2% through the outer half of the sphere and 4%~5% at the surface of the sphere 

which is relatively small. Using this model, a standard dipole-like source is placed 

along the axis of the heart. The torso surface potential distributions produced are 

quite similar in shape to those measured from a normal subject at mid QRS, 
' . 

supporting the idea underlying most conventional electrocardiography and 

vectorcardiography that the electrical sources in the heart c,an be approximated by a 

single dipole source. 

However, in multidimensional anisotropic tissue, the relationships exist between the 

intracellular and the extracellular potentials are considerably more complex. Using 

the standard equations of cable theory, Jack (Jack et al., 1975) used a core conductor 

model to explain the origin of extracellular potentials in multidimensional anisotropic 

tissue. This model provided most ?f the information that explains the spread of 

intracellular currents. The concept of using intracellular currents to derive the 

transmembrane currents, which is an integral part of the core conductor model, has 

been applied to cardiac muscle in the analysis of extracellular potentials (Spach and 

Barr, 1976). It provides a way to describe in detail the spread of intracellular currents 

which, in tum, determine the currents that flow between the intracellular and the 

extracellular space. Thereby, providing all of the information necessary to develop, 

evaluate and compose various models of bioelectric sources. 

Anisotropy is likely to play a significant role in the case of cardiac ischaemia, this has 

been documented by Johnston and co-worker's further study of modelling ST 

segment shift in subendocardial ischaemia (Johnston et al., 2001). In this study, the 

cardiac tissue is represented by the bidomain model. Tissue anisotropy and fibre 

rotation have been incorporated with a view to predicting the epicardial surface 

potential distribution. This model allows differing electrical conductivity in the 

intracellular and extracellular spaces as well as in the longitudinal and transverse 

directions. It showed that tissue anisotropy a~d fibre rotation must be included to 

obtain meaningful and realistic epicardial potential distributions. 

2.4.5 MODELS AND SIMULATION OF ELECTROCARDIOGRAPH FOR 

INVERSE PROBLEM 

In an attempt to improve the clinical utility of electrocardiographic recordings, many 

groups have attempted to calculate the strength and location of sources within the 
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heart that give rise to the measured ECG, this is known as the inverse problem of 

electrocardiography. 

A number of methods have been tried in the study of the inverse problem (Barr and 

Spach, 1978a; Cuppen and VanOosterom, 1984; Walker and Kilpatrick, 1987a). In 

Barr's study of inverse calculation of QRS-T epicardial potentials from body surface 

potential distributions in the intact dog, inverse calculations are made to develop 

mathematical models previously used for forward simulations (Barr and Spach, 

1978b). They found that epicardial potential distributions estimated from measured 

body surface potential distributions correspond well to measured epicardial maps. 

Moreover, the inverse epicardial maps characterized each sequence of excitation and 

repolarization to an extent not possible from inspection of the body surface maps 

alone. This was done by providing information that was sufficient not only to make 

clear the answers to the question of the site of the stimulus, but also to provide a 

picture of the development and movement of major features of the sequence of 

excitation and repolarization events. 

Walker and Kilpatrick (1987a) calculated epicardial potential distribution on a 

resistive network model of the human torso containing approximately 20000 nodes. 

To calculate epicardial potentials, a model of the torso was constructed and used to 

determine body surface potentials in terms of the epicardial potentials. Computerised 

tomographic (CT) scan data were ·digitised to create a three-dimension resistor 

network model which approximates the torso. The torso model used here was 

obtained from the CT scans of a 40-year-old male subject. The model contained 

18924 nodes and included the heart, lungs, spine and sternum. There are 736 nodes 

on the epicardial surface. The epicardial-nodes were grouped into source regions of 

approximately equal size. Epicardial potential distributions were calculated using 26, 

50, 74 and 98 source regions. The epicardial potential distributions calculated from 

measured body surface data yielded a constant potential with small error. Further 

research by Walker and Kilpatrick (1987b) showed that using some form of 
i 

smoothing (regularization) was essential when calculating epicardial potentials. This 

was previously verified by Barr and Spach (1978b). 

Two approaches are immediately evident for modifying the inverse calculation 

method. The first and most direct approach is to reduce the errors in the epicardial 

potentials by reducing the noise. The second is to incorporate into the solution 

procedure additional information about the characteristics of physiologically real 
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epicardial potential distributions, in addition, to using the same variance for the 

potential magnitude at all electrodes. 

2.4.6 ELECTROCARDIOGRAPH MODELS FOR MYOCARDIAL 

ISCHAEMIA STUDY 

The assessment of alterations m ST segment deflections obtained by 

electrocardiograph is a valuable experimental and clinical method of dynamical 

reflection of alterations in the metabolic status of ischaemic myocardial cells. To 

model ischaemia, the action potentials were modified in the region of injury on the 

basis of available electrophysiological data. As ischaemia progresses, there are 

characteristic changes in the action potentials, including a decrease in the magnitude 

of the resting potential, a decrease i~ action potential amplitude, and a shortening of 

the action potential. A cell may eventually become unresponsive and finally die. All 

these features, as well as ischaemic conduction delay, should be incorporated to the 

model. Myocardial injuries generally have complex and irregular geometries, 

however, and vary greatly in location, size, and in the distribution of the severity of 

injury within the injured region. It is tmpossible to predict accurately the nature of the 

changes in the surface ECG without taking all of these factors into account. In 

addition, volume conductor distance and boundary effects in the torso must be 

considered. Considerable interest has been focused on defining the relationship 

between ST elevation and the distribution of transmembrane potential changes within 

the ischaemic region. 

Modelling of electrophysiological events in myocardial ischaemia for interpreting ST 
I 

segment shift has been reported in many studies (Ekmekci et al., 1961a and 1961b; 

Holland et al., 1977; Holland and Brooks, 1975 and 1977a; Kleber et al., 1978; Smith 

et al., 1979 and 1983). 

The origin of cardiac injury potentia'ls, manifested as ST elevation in the epicardial 

ECG, was initially formulated by Wilson and others (Wilson et al., 1933a; Pruitt and 

Valencia, 1948) by the application of basic principles of field theory. Wilson 

proposed that the solid angle theory. could be used to predict the ST elevation at a 

given recording site from knowledge of the geometrical configuration of a region of 

ischaemic injury (Wilson et al., 1933a). This was based on the assumption that 

transmembrane potential is uniformly altered throughout an ischaemic region such 

that a difference in transmembrane potential exists only at the boundary between the 
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ischaemic and the normal myocardium. Thus, the ischaemic boundary has been 

represented as a polarized surface giving rise to injury potentials measured as ST 

elevation in the ECG. Holland and Brooks (Holland et al., 1977; Holland and Brooks, 

1975 and 1977a) constructed a geometrical ischaemic heart model based on 

"polarized surtace" analysis linking, changes in ST elevation to the distribution of 

transmembrane potential changes i~ the ischaemic region. In their model, which 

employed a solid angle theory, the ventricle was represented by a sphere of specified 

thickness: A transmural region of ischaemia was represented by a wedge throughout 

the ventricle. The ischaemic boundary is defined as the interface of the ischaemic and 

normal regions. As this boundary separates the two cell groups that differ in 

transmembrane potential, it has been represented as a distributed dipole layer. 

Polarized surface models predict that the ST elevation observed at a given recording 

site is proportional to the solid angle subtended at that recording site by the polarized 

surface representing the boundary of ischaemia. According to this model, the degree 
' 

of ST elevation overlying the ischaemic region is approximately uniform and 

represents the pattern experimentally observed during early ischaemia. They found 
' 

that a decrease in ischaemia size results in an increase in ST elevation. 

After a more prolonged period of i~chaemia, stUdies showed that a gradient in the 

transmembrane potential of ischaemic cells occurred that extended from the boundary 

to the centre of the ischaemic region (Prinzmetal et al., 1968; Mittra, 1968). They 

found ST elevation showed a progressive increase from the boundary to the centre of 

the ischaemic region, the lowest ST elevation occurred near the ischaemic boundary 

and a progressive increase in ST el~vation occurred approaching the centre of the 

ischaemic region, which can't be explained by "polarized surface" model. 

Furthermore, the decrease in ischaemic size resulted in a decrease in ST elevation 

and, conversely, an increase in ischaemic size resulted in an increase in ST elevation. 

They suggested that later ischaemia may be presented by a model in which ST 

elevation was considered dependent on injury currents generated throughout the 

ischaemic region. Because cell gro~ps differing in transmembrane potential exist 

throughout the volume of ischaemia, 'the gradient of cellular transmembrane potential 

has been represented by a volume of distributed dipoles. 

An electrocardiographic model of ischaemic injury was constructed by Smith (Smith 

et al., 1983) which accounted for the non-uniform distribution of transmembrane 

potential changes which occurred throughout a region of ischaemia. In their model, 

the ventricle was represented by a sphere of specified thickness, and a transmural 
' 
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region of ischaemia was represented PY the intersection of the sphere with a cone, the 

apex of which lay at the centre of the sphere. The ischaemic boundary was defined as 

the annular shell that interfaces the cone and the sphere. Such a model is referred to 

as a "polarized volume" model. This has the capability of representing polarization 

distributed throughout a volume and affords a method of accurately describing the 

nonuniformity in transmembrane potential changes occur within the ischaemic 

region. This model is quite similar to that of Holland and Brooks' "depolarised 

surface" model (Holland et al., 1977), only that the total volume of ischaemia was 

divided into an arbitrarily large number of volume elements. Any given volume 

element is considered to be polarised in that it exhibits a gradient in transmembrane 

potential which gives rise to a dipolar field of injury current, and each volume 

element behaves as a small current .dipole. Using this model, Smith compared the 

theoretical three-dimensional plots of distribution of epicardial ST elevation and the 

experimental distributions of epicardial ST elevation during the course of myocardial 

ischaemia in a pig heart, and found a good relationship between them. Similar results 

were obtained by Kleber (Kleber et al., 1978) who used high resolution ST mapping 

in the pig. These results are also consistent with previous ST mapping studies 
/ : 

conducted in the dog (Redwood et ~I., 1972; Ergin et al., 1976). Thus a "polarised 

volume" model can explain the experimental observed increase in the magnitude of 

epicardial ST elevation from the boundary to the centre of the ischaemic region which 

is inconsistent with the "polarised. surface" model. In addition, the "polarised 

volume" model also predicts the experimental results that the amplitude and area of 

ST elevation decreases following a decrease in the size of ischaemia. The "polarised 

volume" model more accurately reflects the experimental results regarding changes of 

ST in myocardial ischaemia. 

i 

To explain electrocardiographic ST changes in subendocardial ischaemia, a bidomain 

model was constructed (Li et al., 1998). In the bidomain model, the intracellular and 

extracellular volumes occupied the same space and were separated everywhere by the 

membrane. The intracellular space and the extracellular space were coupled through 
! 

the trans-membrane current; the concept is that the outflow from one region must be 

equal to inflow to the other. In Li's model, the geometry of the heart of a normal 58-

year-old woman was constructed from a magnetic resonance imagine scan. 

Subendocardial ischemia from either LAD or LCX region was simulated. Eight-node 
' 

brick elements were used to mesh the heart, which was divided into 60661 elements 

(2*2*2mm3
). The source was calculated from the width of the boundary, the given 

conductivity and the transmembrane potentials. It was found from the model that the 
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epicardial ST depression in subendocardial ischemia was over the lateral region in 

either the LAD or the LCX occlus.ion. Since the LAD and the LCX share their 

boundary at the lateral wall, ST potentials showed a similar distribution pattern of 

lateral ST depression. 

However, anisotropy of the heart was not taken into account in Li's model. The 

anisotropy was simulated further in Hopenfeld's model (Hopenfeld et al., 2004). 

Hopenfeld constructed a geometric model based on the anatomic and fiber structure 

data of the Aukland canine heart. The localized ischaemia was represented by a path 

of tissue in the left ventricle, where the transmembrane potentials were 30m V smaller 

than that in the remaining healthy cells, and the size of the ischaemic patch was 

altered in the transmural direction to simulate various degrees of transmural 

ischaemia. The anatomy of the heart was represented by a hexahedral mesh defined 

by a number of nested, concentric layers. The heart consisted of 60 layers that were 

weighted averages of the epicardial and endocardial surfaces. The degree of ischemia 

was defined with respect to the 60 layers. They found from the model study that ST 

depression along at least one side of the ischaemic patch increased with the degree of 

transmural ischaemia, and the voltage drop across the ischaemic boundary tended to 

be greatest along the direction of the fibres. Further model study by Hopenfeld 

(Hopenfeld et al., 2005) took into account of both the intracellular and extracellular 

conductivities of the heart and th~ conductivity of the ventricular blood. The 

conductivity tensor at each quadrature point was based on the local fibre orientation, 

which was computed by forming a distance-based weighted average of the fibre 

orientation data corresponding to the eight points from the canine data. It showed that 

at medium or high thickness of transmural ischaemia, a consistent pattern of two 

minima of the epicardial potential over opposite sides of the boundary between 

healthy and ischaemic tissue appeared on the epicardium over a wide range of 

conductivity values. The magnitude of the net epicardial potential differences was 

strongly correlated to the intracellular to extracellular conductivity ratios both along 

and across fibres. Anisotropy of the ischaemic source region was critical in predicting 

epicardial potentials. Subendocardial ischaemia is manifest on the epicardium by ST 

depression located over a boundary between ischaemic and healthy tissue. The 

magnitude of the ST depression is a function of the bidomain conductivity values. 

The limitation of Hopenfeld's study is that the heart model has not been linked to the 

torso. Thus, it is not certain if these findings might serve as a diagnostically 

meaningful marker of ischaemia. 
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2.5 APPLICATION OF MAPPING TECHNIQUES 

Mapping techniques used in cardiac research and diagnosis include cardiac mapping 

and body surface mapping. Cardiac mapping is a method by which potentials are 

recorded directly from the heart, while body surface mapping is defined as the 

temporal sequence of potential distributions observed on the thorax. The location of 

the recording electrodes ( endocardium, intramyocardium, epicardium, or torso 

surface), the recording mode used (unipolar or bipolar, or both) as well as the method 

of display (isopotential or isochronous) depends on the problem under consideration. 

As we know, the spread of excitation and recovery through the heart gives rise to a 

three-dimensional time-varying cardiac potential distribution. A complete picture of 

the cardiac electrical field can be obtained by measuring the potential distribution in 

the. cavity of the heart, on the end~cardial surface, in the thickness of the cardiac 
( 

walls, on the epicardial surface, in the extracardiac conducting media and on the 

surface of the body. A detailed picture of the cardiac electrical field will give more 

information in order to understand the cardiac activity and to interpret the underlying 

mechanism of cardiovascular disease. 

2.5.1 APPLICATION OF ELECTRODES FOR MAPPING PURPOSE 

The electrode configurations vary significantly between different research groups and 

with different applications. While epicardial mapping can be done with one probe, 
' 

and two electrodes can detect a surface electrocardiograph, most mapping systems 
I 

have a minimum of 32 electrodes. The nature of the electrodes used to measure the 
! 

myocardial potential determines the nature and quality of the data. Unipolar 

electrodes yield information about · total cardiac electrical activity while bipolar 

electrodes, when used properly, cancel the effects of activation of tissue far away 

from the electrode site (Durrer and Van, 1953). The electrode material can influence 

the amount of direct coupled offset introduced into the recording. The method of 

application of the electrode influences the amount of mechanical artifact introduced 

into the electrogram and thus makes the data more or less difficult to analyse. The 

size of the electrodes, and thus the surface area in contact with the epicardium, also 

influences the quality of the data. 

Epicardial electrodes have been widely used in basic research as well as in clinical 

research. Different kinds of epicardial electrodes were designed both for animal and 

human studies. In Muller and co-workers' research (Muller et al., 1975) of 
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myocardial ischaemic injury in dogs, the epicardial electrograms were recorded with 

the use of an electrode grid sutured by its comers to the surface of the left ventricle. 

The grid was composed of 30 multistrand 34 gauge stainless steel wires sutured 

0.5cm apart in a 2-by-4cm sheet of silastic. To study the genesis of the 

electrocardiograms, D'Alche (1976) used stainless steel hooks which were fixed in a 

homogeneous distribution over the whole pericardia! surface as electrodes. Each hook 

was soldered to an isolated electrical copper wire which came out of the thorax. In a 

study of analysing cardiac activation during arrhythmia, Gallagher (Gallagher et al., 

1982) constructed epicardial mapping with a hand-held probe. In Gallagher's work, a 

single electrode probe was used to record signals from the epicardium, a reference 

electrode was also used for timing purpose. Monro and co-workers (Monro et al., 

1986) studied epicardial potential distribution in humans during surgery. Three 

stainless steel pacing wires were used to record the epicardial potential. The bared 

end of the wire was bent sharply in the middle and sewn to the epicardium. Using a 

64-unipolar-electrode sock, the epicardial potential mapping from the isolated whole 

heart of the dog was constructed by Green and co-workers (Green et al., 1991). The 

64 electrodes were mounted on the sock, and the arrangement of the 64 electrodes 

provided extensive coverage of the epicardial surfaces of the left and right ventricles. 

Epicardial potential distribution on both left and right ventricular surfaces was 

recorded from the in situ sheep heart during acute myocardial infarction by using a 

similar epicardial sock (Li et al., 1999). For coverage of a smaller area with possible 

higher electrode density, a sock with the configuration of the electrodes modified 

appropriately or a patch of electrode-carrying material anchored to the epicardial 

surface was used by Ergin (Ergin et al., 1976) who mounted electrodes on a piece of 

Mersilene mesh coated with silicone and tailored the mesh to cover the desired part of 

the epicardium. 

Endocardial mapping is widely used in cardiac arrhythmia and ischaemia studies. The 

application of multiple electrodes to the endocardial surface of the heart chambers can 

not be carried out as conveniently as with the epicardium. To study endocardial 

potential distribution, Scherlay (ScheHay et al., 1967) used wires inserted through the 
' ' 

myocardial wall, the ends of the wires were hooked and inserted inside the needle 

into the cavity. The needle was pulled back and the wires gently retracted until the 

hooks embedded in the endocardial surface. Smith (Smith et al., 1979) used a series 

of electrodes inserted into a needle curved in the approximate shape of the 
I 

interventricular septum, the needle was passed longitudinally through the septum and 

pulled back, and electrodes were left ,in the cavity along the length of the septum. For 
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studying ventricular tachycardia, Josephson (Josephson et al., 1982) used intracardiac 

catheters to record endocardial potential. Beatty (Beatty et al., 1994) used a multiple­

electrode array catheter which can be introduced percutaneously through a 9F 

introducer to record endocardial potential. By using an endocardial basket which has 

8 arms, each with five electrodes on·it, Li (Li et al., 1999) successfully recorded the 

global endocardial potential distribution by inserting the basket from the cardiac apex 

to the cavity where the basket became inflated. A similar basket catheter was used by 

Zrenner (Zrenner et al., 1999) in his study of atrial arrhythmias. The basket catheter 

was composed of 64 electrodes mounted on eight flexible, self-expanding nitinol 

splines; each spline had 8 electrodes on it. The multiple electrograms recorded by this 

basket catheter were used to analyse the three-dimensional activation patterns of 

various atrial arrhythmias. Kongstad, also used a catheter which was introduced into 

the left ventricle via the carotid/femoral artery or into the right ventricle via the 

jugular/femoral vein to record moi:iophasic action potentials, the catheter had a 
I 

contact ball oflength 0.5mm and diameter lmm at the end surface of the tip electrode 
' (Kongstad et al., 2002). 

The intramyocardial potential distribution is not easy to record for the analysis of 

myocardial injury currents. Kasell ~nd Gallagher (1977) measured intramyocardial 

electrograms by using a needle with wire electrodes fixed along its length, the ends of 

15~20 wires were placed along the open side of the needle at Imm intervals and were 

fixed using epoxy or dental acrylic. An automated system for transmural cardiac 

mapping has been described by Witkowski and Corr (1984). They used plunge needle 

electrodes to record from up to 240 sites simultaneously. Li (Li et al., 1997) used four 

quadripolar needle electrodes with a diameter of 0.9mm and a length of 17mm to 

record intramural potentials. However, the data recorded by Li were not satisfactory 

due to the strong injury currents produced by the intramural electrodes. 

Abraham (1983) designed a suction-electrode net for precordial ECG mapping which 

included a 19-electrode net and 48-electrode net. The 48-electrode net was a 

rectangular 6x8 matrix with four pneumatically isolated quadrants. The 19-electrode 

net had a hexagonal structure around a central electrode. Suction was transmitted 

from each electrode to its neighbours via holes in the groove surrounding a concave 

conductive electrode and a soft "Silastic" tubing system which enabled the matrix to 

conform to the body contours. The 'dimensions of the net can be easily varied by 
' using sets of connecting tubes of different length. Walker (Walker et al., 1983) 

constructed a jacket of two layers of closed cell foam, the surface of the inner layer 
\ ' 
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shows a regular grid of slightly raised nickel plated electrodes lcm in diameter. The 

electrodes are distributed regularly on the inner layer of the jacket, with 5 rows of 10 

electrodes. Each electrode is connected to a high input impedance unity gain buffer, 

which lie between the foam layers, behind the electrodes. With this jacket, body 

surface potential mapping was generated quickly with great success. Other 

technology for body surface mapping has also been used in the clinical research 
' (Tonooka et al., 1983; Toyama et al., 1984; Osugi et al., 1984). Compared to routine 

ECG, body surface potential mapping contains more information for diagnosis of 
I 

myocardial disease, even though the technique is more difficult. 

2.5.2 ANALYSIS OF MAPPING 

Mapping data can be displayed by .conventional potential versus time scale plots, 

distribution displays such as isopotential contour maps, isointegral contour maps or 
I 

isochrone contour maps. A variety of graphic techniques is also available for 

enhancing aspects of the distributions which include the use of colour, either as 

contours or shading between contours, and nonlinear scaling. 

Some of the mapping studies used the trajectories of maxima and minima as 

diagnostic parameters. According to the trajectory analysis, Hirai found that in 26 out 

of 32 cases of anterior myocardial infarction with normal ECG, the trajectories of the 

potential minimum were abnormal and correlated well with the location of the 

asynergy (Hirai et al., 1984). Similar findings were obtained in inferior myocardial 

infarction patients with normal 12 lead ECG (Osugi et al., 1984). In angina patients 

with normal resting ECG, De Ambroggi (De Ambroggi et al., 1977) observed a 

typically abnormal location of the ST minimum in about one half of the patients. The 

trajectory analysis was also used in exercise tests by Simoons and Block (1981) who 

found the optimal electrode location and the optimal criteria for detecting ischaemic 

changes. Liebman even found that the trajectory of the maxima may reveal the 

location of focal right bundle branch block in children after surgical repair of 

congenital heart diseases (Liebman et al., 1984). 

Many researchers have used the isop9tential analysis technique which allows detailed 
I 

analysis of sequential changes in the ECG, the disadvantage of isopotential analysis is 

that the large amount of data makes display cumbersome. Isa-integral analysis 

technique was introduced by Montague (Montague et al., 1981) and it is a useful and 

convenient method of data reduction and can provide spatial information. It has the 
I 
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advantage of summarizing the map ihformation'telating to the entire QRST interval, 

or parts of this interval, into one map. Compared to iso-integral analysis, departure 

mapping is more accurate in estima;ting the site and size of myocardial ischaemia. 

!so-integral maps, departure maps and departure index maps may be used for 

mapping analysis to provide information on the location and size of myocarqial 

infarctions. Using iso-integral maps,' departure maps and departure index maps, De 

Ambroggi (De Ambroggi et al., 1986) found that all these indices could be used to 

localise myocardial infarction. 

Quantitative analysis has been re~ently applied to body surface mapping with 

interesting results. Peak potential values and the integral of the potential function 

extended to the entire chest surface have been combined in a multivariate statistical 

analysis to reveal myocardial infarctions, left ventricular hypertrophy and myocardial 

ischaemia in 42 patients with left bundle branc~ block. These conditions were 

undetectable from the 12-lead ECG (Musso et al., 1987). The same parameters, 

combined with the location of the ST minimum, enabled myocardial ischaemia to be 

detected in 80% of angina patients w~th normal resting ECG. 

Qu8;ntitative analysis of ST magnitude using discriminant maps was done by 

Kornreich (Kornreich et al., 1993). In their study, different maps were computed by 

subtracting at each electrode site the normal group mean voltage from each 

myocardial infarction group mean voltage for each time instant. Sequential 

discriminant maps were obtained.: The values achieved were referred to as 

discriminant indices, this was used to assess the effect of thrombolytic therapy in 
I 

acute myocardial infarction. Hanninen (Hanninen et al., 2001) used body surface 

potential mapping to evaluate electi-ocardiogr~phic criteria for ischaemia in stress 

testing. By introducing the discrimin_ant index suggested by Kornreich (Kornreich et 

al., 1993), they calculated the group mean ST segment isopotential and isoslope 

maps. The highest negative discriminant indices indicate the optimal locations for the 

,ST depression and ST-slope decrease and the highest positive discriminant indices 

indicate the optimal locations for th~ reciprocal ST elevation and ST-slope increase. 

The results showed that both ST depression and ST-slope could detect transient 

myocardial ischaemia in body surface potential mapping. The morphology of the ST, 

reflected by the ST-slope, appeared t
1
o be a sensitive and specific marker of transient 

myocardial ischaemia, and seemed to perform slightly better than conventional ST 

depression. Even in the standard ECG, ST-slope seems to be a sensitive marker of 

myocardial ischaemia (Ribisl et al., 1 ?93). 
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2.5.3 APPLICATION OF MAPPING 

2.5.3.1 Application of body surface mapping 

Body surface mapping is the collection of sufficient electrocardiographic potentials 

from the surface of the body to adequately reconstruct the body surface potential 

contours for diagnostic purposes. 

Body surface mapping has been used in human to study the sequence of atrial 

activation and the sequence of ventricular activation (Abildskov et al., 1976), to find 

accessory pathway of arrhythmias (Tilg et al., 2002), and to estimate possible 

approaches for management of cardiac arrhythmia (Iwai et al., 2002). In addition, 

body surface potential mapping is al~o used in other cardiac diseases like reperfusion 
I 

assessment (Von-Essen et al., 1985), cardiac function estimate (Horan et al., 1988), 

and hypertrophy (Yamaki et al., 1989). It is widely used in diagnosing myocardial 

infarction and localizing myocardial infarction (Toyama et al., 1984; Osugi, 1984; 

Montague et al., 1988; Montague et al., 1990; Hauninen et al., 2001b). 

In Abildskov's (Abildskov et al., 1976) study of body surface isopotential maps in 

dogs, they constructed body surface isopotential maps based on 192~200 body­

surface-electrode recordings, and found that body surface potential patterns were 

substantially influenced by the effects of electrical activity. Different effects of 

electrical activity in various cardiac regions on body surface potential were seen by 

the body surface location of potential maxima and minima, and by patterns of 

isopotential lines during early portions of ventricular excitation initiated at different 
' ventricular sites. Thus cardiac activity can be examined by body surface mapping. 

Furthermore, to interpret the cardiac activity in more detail, the potential gradients at 

various locations, the time course of changing potential values can also be referred to. 

Body surface mapping has been shown to be superior to 12-lead ECG for detecting 

myocardial ischaemia. Body surface ?lapping has been used in human studies during 

exercise (Miller et al., 1980). Miller recorded the body surface potential distribution 

from 20 normal young adults during multistage maximal exercise testing on a bicycle 

ergometer. Body surface potential maps were obtained from 24 electrodes; spatial 

distributions of the potentials over the surface of the torso have been examined at 

serial instants of time. The results showed that during and after exercise, consistent 

changes appeared in the map patterns during early QRS and the ST segment and in 
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the magn,itude of the T-wave potentials. Increases in QRS duration (0-10 msec) also 

appeared during exercise. They concluded that the changes in map patterns during 

early QRS in exercise strongly suggested changes in the initial sequence of activation 

in the ventricles, and that more information was obtained from body surface mapping 

than clinical ECG. Yanowitz (Yanowitz et al., 1982) recorded body surface maps 

during exercise in patients with coronary artery disease, torso potential distributions 

at 192 locations were derived from a 32 lead electrode array. Body surface potential 

mapping was constructed at ST80 (80ms after the end of the QRS complex-J point), 

and the most negative ST 8o site on the map was called the "ST 80 minimum". They 

found that the ST 80 minima were located 1 or 2 electrode rows away from the 

standard V4~V6 electrode positions in patients who developed ST80 areas of-8mV.ms 
', 

or greater. The results suggested that standard electrocardiographic leads may not be 

optimal for identifying ST depression in all patients with coronary disease. 

Furthermore, body surface mapping during exercise provides a more quantitative and 

qualifu.tive method for characterizing the ischaemic response to exercise. In 

Komreich's (Kornreich et al., 1993) study of body surface mapping to monitor the 

effect ofthrombolytic therapy in acute myocardial infarction, they compared 120-lead 

body surface potential mapping data in acute myocardial infarction patients and 
' normal control subjects. The results showed that from the six leads selected for 

optimal classification of the acute myocardial infarction patients, five are outside the 

area sampled by the conventional 'precordial electrodes. It was also found that 
\ 

quantitative analysis of ST magnitude at each electrode site allows determination of 

best thresholds for ECG criteria. To compare the diagnostic ability of the 12-lead 

ECG with body surface mapping for 'early detection of acute myocardial infarction in 

patients presenting with ST depression in the 12-lead ECG, 54 patients with chest 

pain and ,ST depression in ECG _were studied (Menown et al., 2001). Acute 

myocardial infarction occurred in 24/54 patients. Univariate prediction of acute 

myocardial infarction by the 12-lead ECG, based on the depth or numbers of leads 

with ST depression, was not improved by assessment of ST elevation outside the 

conventional 12 leads using body· surface mapping. Thus, using body surface 

mapping may improve the early diagnosis of acute myocardial infarction in patients 

presenting with chest pain and ST depression only on the 12-lead ECG. 
' 

By sampling the ECG over the whole thorax, body surface mapping can be used for 

spatial analysis of ECG to detect myocardial ischaemia. In Montague's (Montague et 

al., 1988) study of body surface potential mapping in patients with isolated LAD 

coronary artery stenosis during exercise test, they found that ST integral decrease was 
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higher in LAD patients than that in normal subjects. The author concluded that 

ischaemic repolarization changes were detectable and quantifiable by body surface 

mapping. 

Researchers also found that body surface mapping can locate myocardial ischaemia. 

Using isointegral analysis of body surface mapping, Tonooka {Tonooka et al., 1983) 

estimated the location and size of myocardial infarction in 35 myocardial infarction 

patients and observed that QRS isointegral mapping is useful and convenient for 

detecting the location and size of myocardial infarction. A similar result has also been 

observed by Toyama (Toyama et al., 1984). They used thallium-201 scintigram as a 

standard method to detect myocardial infarction and found that body surface 

isopotential mapping is more sensitive than the 12 lead ECG in detecting the location 

of myocardial infarction. Osugi (1984) compared body surface isopotential maps with 

12 lead ECG results in 43 old myocardial infarction patients, and found that body 

surface maps contained diagnostic information concerning the presence or absence of 

inferior myocardial infarction which can not be diagnosed by 12 lead ECG. Montague 

(Montague et al., 1990) recorded body surface ST integral maps in 36 coronary artery 
• 

disease patients and observed that patients with tw? and three vessel coronary artery 
' disease had significantly greater decrease in the body surface sum of ST integral 

values than patients with single vessel coronary artery disease. Thus exercise ST 
\ 

integral body surface mapping allows quantitation of myocardium at ischaemic risk in 

patients with coronary artery disease, though considerable overlap of ST integral 

values exist among individuals. Hauninen (Hauninen et al., 2001 b) also used body 

surface potential mapping to detect exercise-induced myocardial ischaemia in 

coronary artery stenosis patients. The results showed that the optimal location for ST 

depression was on the left upper anterior thorax for the LAD, left lower anterior 

thorax for the RCA, and on the lower back for the LCX subgroup. Mean ST 

amplitudes in coronary artery stenosis patients were lower than that in normal 

subjects. It concluded that body surface potential recording was sensitive for 

detecting transient myocardial ischaemia. 

Conversely, Thompson and Katavatis (1976) found precordial ST mapping has no use 

in assessing myocardial infarction size and location. In their study of 78 patients with 

anterior myocardial infarction or ischaemia, the extent and amplitude of ST elevation 

was measured on the chest wall with precordial mapping. They found poor relation 

between the extent and amplitude of ST elevation obtained by precordial mapping 

and the extent of necrosis measured by the peak levels of creatine kinase (CK). They 
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found that the only use of precordial ST mapping is to estimate prognosis of early 

mobilization. They suggested that the standard 12 lead ECG provides sufficient 

information for clinical evaluation of ST elevation. 

Until recently, body surface potential mapping has not been widely used in the clinic 

as a diagnostic tool. The performance of a body surface map required the individual 

placement of multiple electrodes sometimes up to 128~256 which will take a much 

longer time than 12 lead ECG. There is also a large expenditure of recording 
' 

equipment and analysis software. Moreover, there is no standardization for mapping 

analysis. However, recent work has shown that only limited electrodes is needed and 

there are now systems available with which body surface mapping can be performed 

faster than a routine 12 lead ECG for no greater cost (Walker et al., 1983). Although 

the initial equipment 1s moderately expensive, it is quick to use and uses no 

consumable items. 

2.5.3.2 Application of epicardial, e~docardial and intramyocardial mappings 

l 
There is a great theoretical advantage in looking at epicardial and endocardial 

potentials; the heart is the source of the electrocardiographic changes and these 

changes can be directly related to cardiac anatomy. Both epicardial and endocardial 

mappings have been proven to be a valuable technique in clinical practice as well as 

in basic research. 

The technique of epicardial mapping was first re:ported in a dog by Rothberger and 

Winterberg (1913) and by Lewis and Rothschild (1915). After that, Barker (Barker et 

al., 1930) described the excitatory pr~cesses recorded in the exposed heart of a patient 

with draining purulent pericarditis. Epicardial mapping was first used clinically to 

localize accessory pathways associated with the Wolff-Parkinson-White syndrome 
i 

(Burchell et al., 1967). Later on, res'earch on transmural activation in human hearts 

were reported by Durrer (Durrer et al., 1970) in adults and by Brusca and Rossetani 
I 

(1973) in the fetus. Epicardial mapping was also used in other applications, including 

the use of mapping to study atrial activation (Wellens et al., 1971), to delineate the 

course of the atrioventricular conduction system (Wyndham et al., 1980) and to 

identify areas of ischaemia and infarction (Daniel et al., 1971). Similar techniques 

have been used to direct the surgical treatment of ventricular tachyarrhythmia 

(Gallagher and Cox, 1979). In Li's (Li et al., 1999) study of the origin of epicardial 

ST depression of acute myocardial infarction in sheep, epicardial ST mapping was 
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constructed by a 64-electrode sock recording. In the animal study, they found that 

sheep with small infarcts showed uniform ST elevation over the infarction whereas 

sheep wiih larger infarcts showed marked ST depression over the normal 

myocardium in addition to the sr elevation. The experimental findings were 

replicated by bidomain models of the heart to explain the results. 

Epicardial mapping can be constructed by both direct epicardial potential recordings 

and calculating from body surface potential mapping. A lot of studies have been done 

by inverse calculating epicardial mapping from body surface measurements. Barr and 

Spach (1978) compared directly measured epicardial maps with epicardial maps 

computed from body surface measurements in an intact dog during cardiac 

depolarisation and repolarization. They observed that the two correlate well with each 

other although significant differences occurred occasionally. Oster (Oster et al., 1997) 
I 

observed that non-invasive electrocardiographic imaging can reconstruct epicardial 

potential and isochrone mapping over the entire epicardial surface during the cardiac 
' ' 

cycle and provide detailed information on local activation of the heart noninvasively. 

Similar result were found by Tanaka (Tanaka et al., 1982) using the orthogonal 

expansion method and Yajima (Yajima et al., 1982) who found that the correlation 

coefficients between the measured and the computed epicardial potentials were from 
' 

0.3 to 0.7. 

Toyama {Toyama et al., 1987) found in humans that an epicardial map calculated 

from body surface mapping is adequate to p~edict the size and the location of the 

infarcted areas in anterior infarction. In their study, the accuracy of the prediction by 

the epicardial mapping was assessed by comparing it with findings from thallium-201 

scintigraphy (SCG), electrocardiography and vectorcardiography (VCG). It was 
' 

shown that in anterior infarction patients, the location of the abnormal depolarized 

areas determined on the epicardial mapping, as localized at the anterior wall along the 

anterior intraventricular septum, agr~ed with the location of the abnormal findings 

obtained by SCG, electrocardiography and VCG. For inferoposterior infarction 

patients, the abnormal depolarized areas were localized at the posterior wall and the 

location also coincided with that of the abnormal findings obtained by SCG, 

electrocardiography and VCG. They also found that the size of the abnormal 

depolarized areas could be predicted ·by the epicardial mapping for both anterior and 

inferoposterior infarction patients. In anterior infarction patients, the size of the 
I , 

abnormal depolarized area by the epicardial mapping was correlated to the size of the 

abnormal findings by SCG, as well ,as to the results from Selvester's QRS scoring 
I 
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system in electrocardiography and to the angle of the maximum QRS vector in the 

horizontal plane in VCG. 

Endocardial mapping has been used in myocardial ischaemia and cardiac arrhythmia 

studies. With different kinds of endocardial mapping equipment, endocardial 

electrical activity has been successful,ly recorded. 

In studies of ventricular arrhythmias, animal experiments as well as clinical 

observations, indicate that the origin of ventricular arrhythmia is often endocardial. 

Mapping is carried out endocardially rather than epicardially (Spielman et al., 1978). 

A technique was developed by De Bakker (De Bakker et al., 1983) for the 

simultaneous recording of 30 endocardial electrograms during cardiac surgery in 

patients undergoing aneurysmectomy or endocardial resection, endocardial potential 

was recorded and isochrone contour maps were constructed. The results showed that 

isochrone contour maps could depict activation sequences during constructive ectopic 

beats with the same QRS morphologic features. An olive-shaped probe, which was 
" introduced to the left ventricle via the left atria, was used by Taccardi (Taccardi et al., 

1987) to record intracavity potential. Isopotential and isochrone contour maps were 

constructed from records of this · probe, on which electrodes were regularly 

distributed; these maps provide info~ation on the point of origin of ectopic paced 

beats in a normal dog heart. Multipolar endocardial potential recordings were 

obtained by Smith (Smith et al., 1994) from electrode arranged on a basket catheter in 

the left ventricle of swine subjected to anterior myocardial infarction. They suggested 

that endocardial potential recording· permit easier localization of endocardial sites 

suitable for catheter ablation of ventricular tachycardia. Using a multielectrode basket 

catheter, Zrenner (Zrenner et al., 1999) recorded the activation pattern in patients with 

atrial arrhythmia. It revealed that multiple electrograms recorded with the basket 

catheter were valuable to delineate the three-dimensional activation patterns of 

various atrial arrhythmias. 

Using a homemade basket with 40-electrode, Li (Li et al., 1998) constructed 

endocardial maps in sheep with subendocardial ischaemia produced by partial 

occlusion of the LAD or LCX with atrial pacing, their results showed that ST 

elevation occurred in areas of corresponding partially occluded artery. 

To study the sequence of ventricular activation and repolarization, it is necessary to 

know the intramural electrical activio/. Spach and Barr (1975) measured ventricular 
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intramural and epicardial potential distribution during normal excitation and 

repolarization in intact dogs; intramural potentials were recorded by intramural 

plunge needles, each with 15 insulated tungsten wires. Unipolar wave forms were 

recorded from intramural and epicardial electrodes and converted into potential 

distributions. Well-known shapes of waveforms recorded at the inner and outer layers 

of the ventricles as well as peak-to-peak voltages were shown by the potential 

distributions to be determined primarily by superposition effects of distant excitation 

waves. It was found that these effects were most prominent before epicardial 

breakthrough and then receded during the last half of the QRS complex. However, the 

potential distributions became more , complex as excitation waves merged, collided, 

and terminated. During terminal depolarisation, there were scattered positive 

repolarization potentials intramurally. Normal repolarization was characterized by 

positive potentials over the ventricular epicardium while there were changes 

intramurally and on the atrium. Throughout the T wave, there was a predominant 
I 

transmural unidirectional gradient with the inner wall being more negative than the 

outer wall. This finding confirms that the sequence of repolarization is from the 

epicardium to the endocardium with the middle layers having an intermediate time. A 

similar study has been done by Van Oosterom and Van Dam (1976) in the dog. 

Intramural electrodes were also use~ in the study of ventricular arrhythmia during 

acute myocardial ischaemia. In Wu's study of ventricular arrhythmia (Wu et al., 

1995), the intramural electrodes were constructed with tungsten wire through 22-

gauge needles; each needle had 8 electrodes in it. With the three-dimensional 

activation maps derived from 240 bipolar sites by 60 plunge needle electrodes, they 

observed that spontaneously occurring premature ventricular complexes and 

ventricular tachycardia during acute myocardial ischaemia in dogs display focal 

excitation with no evidence of macroreentry. 

With similar intramural plunge electrodes, the mechanism of ventricular tachycardia 

in canine and cat myocardial infarction was also studied previously by Pogwizd and 

Corr (1987) respectively. They found that five minutes after the occlusion of the 

LAD, activation was delayed durin~ sinus rhythm and was characterized by slow 

conduction in the endocardial-to-epicardial direction. While the initiation of 

premature ventricular contractions and ventricular tachycardia resulted from 

intramural reentry which occurred in the subendocardium, adjacent to the site of 

delayed subendocardial and midmyocardial activation of the preceding sinus beat. 

Mechanisms of ventricular arrhythmias in long QT syndrome in puppies were studied 
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by El-Sherif (1996) using intramural tungsten plunge needles. Analysis of three 

dimensional activation and repolarization patterns showed that the polymorphic QRS 

configuration of ventricular tachycardia in the long QT syndrome was due to either 

changing the site of origin of focal activity, resulting in varying activation patterns, or 

varying orientations of circulating wave fronts. 

There is little research considering using intramural potential mapping to study 

intramural ST distribution in myocardial ischaemia. Since ST depression occurs on 

the boundary of ischaemia in subendocardial ischaemia (Li et al., 1998), it is 

necessary to study the electrical activity on the boundary, which can only be obtained 

by intramural potential recording. 
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CHAPTER THREE MATERIALS AND METHODS 

3.1 EXPERIMENTAL ANIMALS 

A total of 24 (Polworth/Comeback cross) sheep weighing between 26-36kg of both 

genders were used. All the sheep were bred in the University of Tasmania's animal 

farm. Table 3.1 shows the groups of animals subjected to different experimental 

protocols. 

Table 3.1 Experimental protocol 

animal 

group number experimental protocol 

1 transmural ST segment potential distribution in 

subendocardial ischaemia. 

2 

3 

transmural ST segment potential distribution in 

transition of mild subendocardial ischaemia to 

severe subendocardial ischaemia. 

transmural ST segment potential distribution in 

acute myocardial infarction. 

Group 1: Subendocardial ischaemia group. In this group, animals were divided into 

four subgroups. 

Subgroup 1: Cardiac pacing without coronary artery stenosis. 

Subgroup 2: Subendocardial ischaemia in LCX area. 

Subgroup 3: Subendocardial ischaemia in LAD area. 

Subgroup 4: Alternating subendocardial ischaemia in LCX and LAD areas. 

Group 2: Transition of mild subendo~ardial ischaemia to severe subendocardial 

ischaemia group. This group was divided into two subgroups. 

Subgroup 1: Transition of mild subendocardial ischaemia to severe 

subendocardial ischaemia in LCX area. 

Subgroup 2: Transition of mild subendocardial ischaemia to severe 

subendocardial ischaemia in LAD area. 

Group 3: Acute myocardial infarction group. Acute myocardial infarction was 

90 



induced by ligating the following coronary artery. 

Subgroup 1: Ligation ofLCX. 

Subgroup 2: Ligation of LAD. 

CHAPTER THREE 

3.2 ANIMAL PREPARATION AND SURGICAL PROCEDURES 

Experiments were performed in an open-chest sheep preparation. Anaesthesia was 

induced intravenously with sodium pentobarbital (30mg/kg) and then maintained at 

3~8mg/kg/hour throughout the experiment via a jugular vein catheter. The sheep were 

artificially ventilated with respirator (Engstrom, Erica, Sweden) at a rate of 12~14 

breaths/min via a cuffed tracheal tube with room air. 0 2 was added according to 

blood gas measurements. Tidal volume and respiratory rate were constant during each 

experiment. The sheep were heparinized prior to instrumentation. A left thoracotomy 

was performed in the fourth and fifth intercostal space, and the hearts were suspended 

in a pericardia! cradle. 

The carotid arterial pressure (CAP) was measured via a 7F catheter introduced to the 

left carotid artery. The left ventricular systolic and diastolic pressure (LVSP, LVDP) 

were measured by another 7F catheter introduced through a side hole into the left 

ventricular cavity through the left carotid artery. The left atrial pressure (LAP) was 

measured via a PE 90 cannula imp'lanted in the left atrium through the left atrial 

appendage, this PE 90 cannula was also used for fluorescent microsphere injection. 

Two pacing wires were sutured to the left atrial appendage for left atrial pacing. 

The LCX and LAD were isolated proximally for the Doppler probe (TRITON 

TECHNOLOGY, INC, SANDIEGO, CA) to measure coronary blood flow, and 

10~20mm distal to the probe, LCX and LAD were isolated for the hydraulic occluder 

(IN VIVO METRIC, Healdsburg, CA) to induce coronary artery stenosis or for 

coronary artery ligation. 
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3.3 DRUGS AND CHEMICALS 

Drugs and chemicals used in this study are listed below (Table 3.2). 

Table 3.2 Drugs and chemicals used in this study 

Name 

Pentobarbitone sodium 

0.9% physiological 

Saline 

Heparin 

Supplier Usage 

Boehrmger Ingelheim Induce and maintenance of anaesthesia 

Royal Hobart Hospital (1) Compensate for body fluid loss during 

Pharmacy experiments (through jugular vein); 

(2) Flush catheters to prevent blood clot; 

(3) Make up drug or chemical solutions; 

(4) Soak flowmeter probes for calibration; 

Royal Hobart Hospital Avmd blood clot formation (administer into 

Pharmacy jugular vein and coronary artery) 

Adrenalme hydrochloride Royal Hobart Hospital Dnp into Jugular vein to maintain blood pressure 

Pharmacy when necessary 

Fluorescent Microspheres Molecular Probes, Inc Measure regional myocardial blood flow 

Ethyl Acetate Sigma Extract fluorescent dye 

Potassium hydroxide Sigma Digest myocardial tissue 

Methylene Blue Sigma Delmeate 1schaemia area 

Tween 80 Sigma Disperse microspheres 
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3.4 EXPERIMENTAL INSTRUMENTS 

Experimental instruments used in the study are listed in Table 3.3. 

Table 3.3 Experimental instruments used in thzs study 

Instruments Location Usage 

F7 fluid filled catheter carotid artery and L V pressure measurement 

PE 90 cannula left atrrnm pressure measurement/ microsphere injection 

2 8/3 2/3. 7mm Doppler LCX/LAD coronary flow measurement 

Flow probes 

Hydraulic occluder LCX/LAD/OM mduce coronary artery stenosis 

Pacing wires left atrial appendage cardiac pacing 

Epicardrnl sock electrodes ventricular surface ep1cardrnl potential recording 

Endocardial basket electrodes L V cavity endocardial potential recording 

Intramyocardial plunge needles intramyocardium transmural potential recording 

Spectrophotofluorometer RMBF measurement 
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3.5 REGIONAL MYOCARDIAL BLOOD FLOW MEASUREMENT 

Regional myocardial blood flow (RMBF) was measured by fluorescent microspheres. 

The fluorescence microspheres were bought as a kit containing seven vials of 

different fluorescent dyes from Molecular Probes, Inc., USA. Table 3.4 lists the seven 

colours with their excitation and emission'wavelengths in Ceilosolve acetate (Glenny 

et al. 1993) and in ethyl acetate (author's measurement). 

Table 3.4 Excitation and Emission maximum wavelengths offluorescete microsphere 

in Ceilosolve acetate and in ethyl acetate for blood flow determination. 

Colour Excitation wavelength (nm) Emission wavelength (nm) 

Ceilosolve acetate ethyl acetate Ceilosolve acetate ethyl acetate 

blue 360 360 420 430 

blue-green 430 420 457 470 

yellow-green 490 490 520 505 

orange 530 530 552 550 

red 565 565 598 590 

crimson 600 600 635 630 

scarlet 651 650 680 680 

To accurately measure blood flow using fluorescent microspheres, an imperative is an 

even distribution of microspheres in the myocadium. Two sheep were used to detect 

whether different fluorescent dyes had stable and even distribution throughout the 

myocardium. Two fluorescent microspheres were randomly chosen and injected 

through the left atrium of each sheep. Fig. 3 .1 showed that blood flow (BF) measured 

by blue-green fluorescent microspheres had a significant correlation with blood flow 

measured by yellow-green fluorescent microspheres. Blood flow measured by orange 

fluorescent microspheres had a significant correlation with blood flow measured by 
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crimson fluorescent microspheres. The results indicated that the fluorescent 

microspheres were evenly distributed throughout the myocardium. 
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Fig. 3.1 Correlation of distribution of different fluorescent dyes. A: Relationship 

between blood flow (BF) measured by blue-green fluorescent microspheres and blood 

flow measured by yellow-green fluorescent microspheres (data from 90 samples in 

different myocardial layers). B: Relationship between blood flow measured by orange 

fluorescent microspheres and blood flow measured by crimson fluorescent 

microspheres (data from 81 samples in different myocardial layers). 

3.5.1 PREPARATION OF FLUORESCENT MICROSPHERES 

The microspheres were uniform polystyrene microspheres with nominal diameter of 

lOµm and were supplied as suspensions in lOml of 0.15% NaCl with 0.05% Tween® 

20 and 0.02% thimerosal. The suspensions (0.2% solids) contain 3.6xl06 

microspheres per milliliter of solution. Each microsphere reagent contains a single 

fluorescent dye whose fluorescence is well resolved from all of the others (Fig. 3.2 & 
I 

Table 3.4). 

Due to the weak red signal in the spectrophotofluorometer used in this study, 2~4 

times more Orange, Crimson and Scarlet microspheres were used in the experiments. 

On average, approximately 2500 microspheres for Blue-Green and Yellow-Green, 

and 5000 microspheres for Orange, Crimson and Scarlet dyes per myocardium 

sample were used. 
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Fig. 3.2 Fluorescence emission spectra of the dyes contained in the polystyrene 

microsphere components, after extraction into ethyl acetate. The seven types of 

microspheres represented are: Blue, Blue-Green, Yellow-Green, Orange, Red, 

Crimson and Scarlet. 

The fluorescent dyes were randomly chosen for different experiments. As specified 

by the spectrophotofluorometer, the following colours of microspheres and optimum 

excitation/emission wavelengths were used: Blue-Green (420/470nm), Yellow-Green 

(490/505nm), Orange (530/550nm), Crimson (600/630nm), and Scarlet (650/680nm). 

3.5.2 INJECTION OF FLUORESCENT MICROSPHERES 

Each color of microspheres was ultrasonically agitated for 5 minutes, followed by a 

vigorous vortex for 10 minutes, prior to injection. Microsphere suspensions were 

mixed with lOml of warm blood and the whole mixture was injected into the left 

atrium via the implanted cannula over a period of about 10 seconds. The cannula was 

then flushed with 1 Oml of saline. 

3.5.3 DIGESTION OF TISSUE SAMPLE AND DISSOLVING OF MICROSPHERES 

At the end of the experiment, 1 Oml of 0.1 % Methylene blue dye (Sigma) was injected 

into the culprit coronary artery to delineate the ischaemic from the non-ischaemic 

area. Each sheep was killed by stopping ventilation and sodium pentobarbital 

overdose. The heart was carefully taken out of the chest and rinsed with 0. 9% saline 

to remove superficial blood. The left ventricle was isolated, and the epicardial fat and 

blood vessels were trimmed off. The heart was then stored in a freezer at -10°C to 

facilitate section. The left ventricle was cut into 4~6 circumferential rings from base 

to apex. The apex of the left ventricle was ligated to secure the cavity basket, causing 

blood supply to this area to be disturbed, thus it was trimmed off and blood flow was 
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not measured in this part (vide infra). The circumferential rings were then cut into 

sections of about 3g each. Each section was then cut into 3 layers, which 

corresponded to the epicardial, the middle myocardial and the endocardial layers. The 

anatomic location of each myocardial piece was recorded. The weight of each piece 

was 0.6~ l.2g. Each myocardial piece was placed into a screw-capped polystyrene 

tube in which 2ml of 4M KOH was added. The polystyrene tubes were then placed in 

a 37 °C water bath for 12 hours. After the tissue had been digested, 3ml of ethyl 

acetate was added to dissolve the microspheres, then the tube was vortexed for three 

minutes to extract the fluorescent dye ethyl acetate. The mixture was allowed to settle 

for at least 30 minutes. The upper ethyl acetate layer was transferred to a quartz 

cuvette where fluorescent intensity was determined. 

3.5.4 MEASUREMENT OF FLUORESCENT INTENSITY 

The tissue fluorescent intensity was measured by Amino-Bowman spectrophoto­

fluorometer. Each fluorescent intensity was read at the appropriate 

excitation/emission wavelengths. The excitation/emission bandpass was set at 

27.5nm/27.5nm. All the samples from the same experiment were measured on the 

same day. The whole procedure of microspheres injection, tissue sampling and 

digestion, fluorescence extraction and measurement is illustrated in Fig. 3.3. 

Fluorescent intensity 
measurement 

Extraction Digestion 

Transverse section 
of left ventricle 

Fig. 3.3 Illustration of the procedure ofmicrospheres injection, tissue sampling and 

digestion, fluorescence extraction an4 measurement. 
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3.5.5 ANALYSIS AND CALCULATION OF THE RESULTS 

Reference blood flow rate was used to calculate the flow rate per myocardial tissue 

sample. Blood flow of LCX and LAD measured by the Doppler flowmeters was used 

as reference blood flow. The flow rate (ml/min) is calculated as follows: 

Fi=Ii*Fca/Ica 

Where: Fi= flow rate of per gram tissue sample (ml/min/g) 

Ii= fluorescence intensity of per gram tissue sample (units/g) 

Fca =flow rate ofLCX or LAD area (ml/min) 

lea= fluorescnce intensity ofLCX or LAD area (units) 

3.5.6 EVALUATION OF FLUORESCENCE OF MICROSPHERES AND 

INTRINSIC FLUORESCENCE OF MYOCARDIUM AND 

SOLVENTS 

50µ1 of each fluorescent microsphere dye was obtained from each vial of the kit, 

yielding a 0.35ml solution containing 7 different fluorescent dyes. This was diluted 

with 9.65ml of 0.9% NaCL A new solution with 18,000 microspheres per milliliter 
I 

was obtained. A serial dilution of 9 different fluorescent dye concentrations was made 

from this new solution. Each dilution was divided into two equal halves and one gram 

of myocardial tissue was added to each of them. 

Two nine-serial dilutions were thus produced, with one containing pure fluorescent 

dyes and the other a mixture of fluorescent dyes and myocardial tissue. 2ml of 4M 

KOH and 3ml of ethyl acetate were added to each of the dilutions. After being 

vortexed for three minutes, the microsphere dyes were extracted by ethyl acetate. The 

ethyl acetate which contained microsphere fluorescent dyes was transferred to a 

quartz cuvette where fluorescent intensity was read. The fluorescent intensity of each 

dilution was measured by the Aminco-Bowman spectrophotofluorometer. 

The results were similar to Abel's (Abel et al. 1993). In the serial dilutions without 

myocardial tissue, the fluorescent intensity showed a linear relationship with 

microsphere number of all the 7 fluorescent dyes. In the serial dilutions with 

myocardial tissue, the fluorescent intensity had a linear relationship with the 

microsphere number of all the fluorescent dyes except blue and red dyes. 
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Consequently the blue and red fluorescent microspheres were excluded from the 

subsequent experiments (Fig. 3.4). 
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Fig. 3.4 Fluorescence of microspheres, myocardium and solvents. A: Samples were 

made by 7 mixed dyes. B: Samples were made by 7 mixed dyes and one gram of 

myocardial tissue. 
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3.6 POTENTIAL RECORDING AND MAP CONSTRUCTION 

3.6.1 POTENTIAL RECORDING 

3.6.1.1 Epicardial sock 

The epicardial potentials were recorded using an epicardial sock containing 64 

electrodes (Cardiovascular Research and Training Institute, the University of Utah, 

USA). Each electrode is a construction of fine silver wire mounted in a nylon sock. 

The arrangement of the 64 electrodes provides coverage of the epicardial surface of 

the left and right ventricles (Fig. 3.5). 

Fig. 3.5 Image of the sock 
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3.6.1.2 Endocardial basket 

The endocardial potentials were recorded using a home-made 40-electrode basket 

mapping apparatus (Fig. 3 .6). The apparatus was oval-shaped and constructed with 

spring steel wire as the skeleton, and polyethylene tube as the outer covering, on 

which 40 silver electrodes were mounted. The steel skeleton consisted of 8 arms. 

Each arm was insulated with a polyethylene tube and mounted with 5 unipolar silver 

electrodes. To avoid electrical injury current, the electrodes were mounted in such a 

manner that they were not in direct contact with the endocardium. The 8 arms were 

equally spaced. This was ensured by using a fine nylon string to tie the middle of 

each arm sequentially with equal length. And the 8 arms also connected to each other 

at both ends. Thus, when the apparatus was expanded, a uniform distribution of 

electrodes resulted. The arms were marked for orientation. The apparatus was 52mm 

long and 32mm in maximal diameter when fully opened (Fig. 3.6). 

Transverse section of the basket 
(from the middle portion) 

Fig. _3. 6 Structure of the basket (black spots are electrodes sites, the middle line is 

where the string being tied for equal expansion of the basket) 

Placement of the apparatus was accomplished by using a thin wall tube (inserter) with 

an outer diameter of 8mm through the myocardial apex. The closed apparatus was 

placed inside the inserter; a left apical ventriculotomy of approximately 1 Omm, 

simulating the clinical approach, was performed. The inserter was introduced into the 
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apex, and the apparatus placed into the left ventricle while withdrawing the inserter. 

The apparatus was secured by a purse string suture around the point of insertion, i.e., 

the apex of the left ventricle. All this was done as quickly as possible to avoid 

interfering with the physical activity of the heart. Once inside the left ventricle, the 

apparatus deploys, with 8 arms placed into position, each maintaining constant 

contact with the endocardium. The electrodes were not in direct contact with the 

endocardium, however, they detected the potential changes from the nearest section 

of the endocardium. 

From the postmortem examination, the distance between the electrodes and the 

endocardium ranged from 1.3~1.Smm. The apparatus enabled recording signals from 

a working heart, and to allow mapping the whole endocardial surface potentials 

simutaneously. 

Brief hemodynamic measurements during experiments suggested that the insertion of 

the apparatus into the left ventricule did not cause significant hemodynamic 

deterioration. The , apparatus did not provoke electrical injury currents. All the 

electrodes remained in their positions throughout the experiments. The quality of all 

signals remained satisfactory. 

3.6.1.3 Intramyocardial needles 

Development of intramyocardial plunge needles 

Intramyocardial potential recordings require intramyocardial electrodes that do not 

cause significant injury current. To construct suitable intramyocardial electrodes, 

techniques such as insulation of the intramyocardial plunge needles, decreasing the 

size of the intramyocardial plunge needles and use of different materials for the 

intramyocardial plunge needles were tried. 

Stainless steel plunge needles used' in this laboratory were found to incur strong 

injury currents (Li, 1997). These plunge needles were used again in the present study 

with some modification to avoid the occurrence of injury current. These plunge 

needles have four quadripolar electrodes on it, with a diameter of 0.9mm and a length 

of 17mm. A technique was used to restrict the contact of these needles with the 

cardiac muscle. An insulation material was used to coat these needles, leaving only 

the electrodes exposed. The results still showed strong injury current which lasted 

several hours. 
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In an attempt to improve results, fine-gauge needles (26-gauge) were used. To 

determine whether insulation affected the results, some needles were insulated, while 

others were left without insulation. Disappointingly, even these tiny needles, with or 

without insulation, produced strong injury current. 

Given these results, it seemed that the needle material might have an important role in 

the occurrence of the injury current. Intramyocardial tungsten wires were successfully 

used to study cardiac electrophysiology (Spach and Barr, 1975; Van Oosterom and 

van Dam, 1976). Intramyocardial electrodes constructed with tungsten wire 

introduced through 22-gauge needles were also used in the study of ventricular 

arrhythmia during acute myocardial infarction (Pogwizd and Corr, 1987; Wu et al., 

1995; El-Sherif, 1996). Further experiments were carried out on intramyocardial 

plunge needles made of different materials such as tungsten, nickel, silver, copper and 

stainless steel. The results showed that needles made of tungsten, nickel and silver 

incurred minor injury current. The silver needles gave the best results. Although the 

injury current did occur immediately following the insertion of the needles, almost all 

would disappear within 30min, while others took 45~60min. Silver wire was thus 

chosen to make the intramyocardial plunge needles. 

Structure of the silver intramyocardial needles 

Transmural potentials were recorded by intramyocardial plunge needles. Each needle 

consisted of 3 strings of insulated silver wires, the tip of each wire was exposed at a 

length of l.Omm for potential recording, the adjacent wire tips were 3.0mm apart. 

Then the 3-strand wire was inserted into a polyethylene tube (with an outside 

diameter of 0.8mm). 3 side holes to accommodate the silver wire tips were punctured 

along the wall of the polyethylene tubing to complete the making of an 

intramyocardial needle. Finally, the tip of the polyethylene tube was stretched sharp 

so as to facilitate needle insertion. The base of the needle was bent to a 90-degree 

angle, giving the needle with a length of 12mm. 

The construction of the needle ensured that whenever the needle was inserted into the 

myocardium, the subepicardial electrodes were l.5mm, the mid-myocardial 

electrodes were 4.5mm, and the endocardial electrodes were 7.5mm beneath the 

epicardium respectively (Fig. 3. 7, Fig. 3. 8). 
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Fig. 3.7 Image of the plunge needle 
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Fig. 3.8 Model structure of the plunge needle 

To insert the needles into the heart, a stainless steel wire was inserted through the 

plunge site at the base of the needle, until it protruded about 3mm from the tip of the 

needle. This protruded wire punctured the heart muscle with ease, guiding the needles 

into the heart muscle. Once the whole length of the needle was inserted into the heart 

muscle, the stainless steel wire was withdrawn, leaving the needle on site. To avoid 

the needle comjng out of the myocardium, a tiny piece of wool was placed around the 

base of the needles to facilitate clot formation and anchor the needles in position. The 
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insertion of the needles did not cause haemodynamics deterioration, but did cause 

brief electrical injury current. After a period of stabilization (1.0-1.5 hours), the 

electrical injury current would significantly decrease, and the recorded ST potential 

was fairly close to the isoelectrical li~e. Any ongoing experiments were carried out at 

least 1.5 hours after the needle insertion. Altogether 29 needles were used in this 

study. The needles were inserted randomly into the myocardium, with a greater 

density of the needle array at the border of myocardium supplied by LAD and LCX. 

The location of the needles was marked at the end of each experiment. 

3.6.1.4 Potential recording system 

The epicardial, intramyocardial and endocardial electrodes were connected to a 256-

channel system (BDDD-Binary Data Delivery Device). 191 out of 256 channels were 

used in this study. The signal from each electrode was passed through a differential 

amplifier with a gain of 1000. The system was controlled by a Field Programmable 

Gate Array (FPGA) chip. The configuration data were stored in a PROM (XCl 765) 

which delivered the data to the FPGA. A sample and hold on the output of each 

amplifier allowed the signal of all electrodes to be sampled simultaneously. Potentials 

were sampled at 1 OOO samples/second/channel by the data acquisition system directly 

on to the computer memory (DMA) through an S 11 w (Engineering Design Team, 

Inc., llOONW Compton, Suite 306, Beaverton, Oregon USA 97006) interface to 

SBus on a computer (Sun Spares, SUN Microsystems, Inc., 4150 Network Circle, 

Santa Clara, CA 95054, USA) (Fig. 3.8). An immediate display of the sampled 

electrocardiographic signals enabled a check on the data quality. All the potentials 

were recorded with the reference to the left leg. During data acquisition, the 

pericardia! cradle was released; the opening chest wall was covered by moisturized 

wann saline pads without touching the myocardium, preventing the anterior wall of 

the left ventricle from being exposed to air. The left and right atria, the right ventricle 

and the posterior and lateral walls of the left ventricle were in contact with the lung, 

the great vessels and the back of the thoracic cavity. 
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Sheep 
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Fig. 3. 8 The potential recording system 

3.6.2 CONSTRUCTION OF ISOPOTENTIAL MAPS AND MAP DISPLAY 

3.6.2.1 Confirmation of the electrode position and reconstruction of the heart 

outline 

At the termination of each experiment, the sheep was sacrificed and the heart was 

carefully removed from the chest cavity. After both of the epicardial electrode 

positions and the intramyocardial needle positions were marked with numbered 

mapping pins, the sock and the needles were removed from the heart. By making an 

incision from the middle of the septum, the left ventricle was opened and the 

endocardial electrode positions were verified and marked. The sock electrode 

positions, the needle electrode positions and the basket electrode positions were 

linked at different myocardial sites, so the potential transition map could be 

constructed later. The electrode positions corresponded to the tissue samples 

subsequently taken for measurement of the RMBF, so that the ST segment potentials 

following the coronary artery occlusion could be correlated with the blood flow of 

each sample. From the flatly opened heart, the epicardial and endocardial vascular 

patterns and the outlines of the ventricle could be traced. The electrode positions, the 

vascular patterns and the outlines of the ventricle were then traced using transparent 

plastic paper and transferred to paper, where the coordinates of the whole picture 

were measured and reconstructed using our own mapping program and the S-plus 

statistical package. The pictures were then combined with the ST potential maps to 

give an epicardial, intramyocardial, or an endocardial potential map. The potential 

106 



CHAPTER THREE 

maps were combined with the flow maps constructed from the simultaneously 

measured RMBF. In some experiments, the blood flow maps were also constructed. 

3.6.2.2 Data analysis 

Data from the recording system were transferred to a SUN workstation (SUN 

Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054, USA), and then 

analyzed using the mapping program in this laboratory (Walker et al. 1983 and 

1987a) and the S-plus statistical package, which are both run under UNIX. The 

quality of electrograms was evaluated. Missing or poor electrograms were discarded. 

Bad leads were picked out and replaced by interpolation from the surrounding leads. 

The onset of the QRS complex was chosen manually from the plots, and the 

potentials during a 1 Omsec period of the PR segment were averaged for use as a zero­

potential reference level. The ST segment maps w~re constructed from data averaged 

over a 40msec interval centered on a point of 80msec after the QRS onset (the QRS 

interval of the sheep is shorter than that in the human, about 40msec ). The epicardial 

potential maps were constructed from the epicardial ST potentials of both ventricles. 

The transmyocardial and endocardial potential maps were constructed from the 

transmyocardial and the endocardial ST potentials of the left ventricle respectively. In 

some studies, the epicardial, the transmyocardial and the endocardial potential maps 

were further combined with the fl<;>w maps constructed from the simultaneously 

measured RMBF. The ST segment potential distributions were displayed as 

isopotential contour maps or image maps. 

Maps were also displayed and analyzed in the patterns as described below. 

Isopotential maps: Individual maps were constructed as contour lines, connecting 

the points of equal voltage at the selected time instants, representative of the ST 

segment. The ST segment was measured over a period of 40msec, after 80msec of 
I 

QRS onset, subtracted from the PR segment measured over a period of 1 Omsec before 

20msec of QRS onset. The latter was used as a zero-potential reference level. This 

isopotential map construction was used in experiments pacing the sheep heart without 

occluding the coronary arteries. 

Isopotential difference maps: The difference maps were computed by subtracting 

the baseline potential from each ischaemic potential at each electrode site during the 

ST segment. This isopotential difference map construction was used in the ischaemic 

sheep heart model, i.e., pacing the sheep heart at a specific rate plus partial occlusion 
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of the coronary artery. After the ischaemic heart models were set up, the recorded ST 

potentials from epicardium, intramyocardium and endocardium were close to but not 

totally isoelectrical during the baseline recording. Using the TQ segment as a 

reference for each lead, the baseline ST potentials were usually less than 0.03mV. To 

get rid of the baseline effect on ischaemic results, the baseline potential from each 

electrode site during the ST segment was subtracted from the ischaemic potential, i.e., 

ST potential=( STischaemia-QT1schaemia)-(ST baseline-QT baseline), 

where ST potential is the calculated ST potential during ischaemia from each electrode, 

STischaemia is the recorded ST potential during ischaemia, QTischaemia is the recorded 

reference potential during ischaemia, ST baseline is the recorded ST potential at baseline, 

QT baseline is the recorded reference potential at baseline. 

Grouping of map patterns: To group similar ST potential distributions, a 

hierarchical clustering technique was used. The measure of similarity between two 

distributions was taken to be their correlation coefficient, which was calculated as 

follows (two potential distributions A and Bare given): 

A*B 

Correlation coefficient = ----

IAI* !BI 

where A *B == L aibi IAI = Laiai IBI = Lbibi. 

The correlation coefficient is independent of the magnitude of the two vectors, ~nd 

gives an indication of the similarities of both pattern and position of maxima and 

minima. In all correlations, the recorded signals were used without interpolation and 

the electrode arrays did not shift throughout the procedure. The resulting correlation 

coefficient is between -1 and I. A correlation coefficient approaches 1 if the data sets 

are identically shaped, a zero correlation coefficient implies there is no association 

between the two data sets. This technique was used previously for analyzing body 

surface map data (Walker et al. 1987). 

Maps were also analyzed on the basis of the magnitude of the maximum ST segment 

depression or the magnitude of the maximum ST segment elevation from each 

electrode. 
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3.6.2.3 Computer programs 

Computer programs written on the UNIX system to process data and to display 

results are as follows: 

premap 

get_ con 

Extracts ST potential data from the electrogram data collected by the 

recording system 

Combines ST potential of each channel with its corresponding 

electrode position, and picks out bad or missing signals 

mycontour Displays the ST potentials or blood flow values in the format of 

contour map or image map together with the picture of the heart 

subtract Subtracts the control ST potential from each ischaemic ST potential at 

each electrode site. 

flow-spatial Displays the spatial distribution ofregional myocardial blood flow. 

3.7 HAEMODYNAMIC MEASUREMENTS 

3.7.1 LEFT VENTRICULAR, CAROTID ARTERY AND LEFT ATRIUM 

PRESSURE 

Statham P23ID pressure transducers (Statham Laboratory Inc.) were used for left 

ventricular, carotid artery and left atrium pressure measurements with size 7 

catheters. Each sheep was anticoagulated with heparin sodium (initial dose lOOOOIU, 

followed by 5000IU every 2~3 hours) throughout the whole experiment to ensure 

there was no clot during each experiment. 

' 
3.7.2 CORONARY ARTERY BLOOD FLOW 

LAD and LCX blood flow were measured by Doppler flow probes (TRITON 

TECHNOLOGY, INC, SANDIEGO, CA). The probes were cleaned thoroughly and 

soaked in saline for at least 30min, and then calibrated according to the 

manufacturer's instructions. The calibration was also performed during the 

experiment and at the end of each experiment. 
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3.7.3 DATA RECORDING 

The left ventricular pressure, the carotid artery pressure, the left atrium pressure and 

the coronary artery flows were recorded on a multichannel recorder (Grass Instrument 

Co., Quincy, Mass, 02169, USA). 

3.8 STATISTICAL ANALYSIS 

All data were continuous and were checked with SPSS and found to be normally 

distributed so parametric statistical tests were employed. The data were expressed as 

the mean± standard deviation (SD). The paired data were analyzed by two-tailed 

Student's paired t-test with the 0.05 level of probability considered as being 

significant. Simple linear regression and correlation were used to analyze the 

relationship between two sets of variables. Standard diagnostic checks of model fit 

and residuals were made. 

The following statistical packages were used to analyze data. 

Excel 

S-plus 

was used to calculate regional blood flow and haemodynamic 

parameters, the mean, the standard deviation (SD) and the P value for 

student t-test, it was also used to compare two groups of data by 

linear correlation. 

. 
was used to compare two groups of data by linear correlation, and to 

do t-tests for correlation coefficient. 

Cricket Graph was used to graph data and to compare two groups of data by linear 

regression and correlation 

Sigma Plot was used to graph data. 
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CHAPTER FOUR 

INTRAMYOCARDIAL ST SEGMENT POTENTIAL 
DISTRIBUTION IN SUBENDOCARDIAL ISCHAEMIA 

To analyse the source of ST depression, a further senes of experiments were 

conducted to measure potentials from intramyocardial electrodes in addition to the 

epicardial and endocardial electrodes. ST potential distribution maps were 

constructed from the recorded ST potentials. These data should allow future modeling 

including anisotropy to explain the source of ST changes in partial thickness 

ischaemia. 

4.1 MATERIALS AND METHODS 

4.1.1 EXPERIMENTAL ANIMALS AND PROTOCOLS 

A total of 18 (Polworth/Comeback cross) sheep weighing between 26~36kg of both 

genders were used. All the sheep were bred in the University of Tasmania's animal 

farm. Table 4.1 shows the groups of animals subjected to different experimental 

protocols. 

Group 1: Cardiac pacing without coronary artery stenosis (n=6). In this group, the 

heart was paced at a rate of 120, 140, 150, 160, 180, 200, 220, 240bpm 

without coronary artery occlusion. 

Group 2: Subendocardial ischaemia in LAD area (n=3). LAD was partially occluded 

with the blood flow reduced to 50% of the original blood flow plus left 

atrial pacing at a rate of 180bpm. 

Group 3: Subendocardial ischaemia in LCX area (n=3). LCX was partially occluded 

with the blood flow reduced to 50% of the original blood flow plus left 

atrial pacing at a rate of 180bpm. 

Group 4: Alternating subendocardial ischaemia in LAD and LCX areas (n=6). 

Subendocardial ischaemia were produced both in LAD and LCX area 

in the same sheep. Alternative occlusion of LAD and LCX reduced the 

blood flow to 50% of the original level. Each partially occlusion lasted 

for 20 minutes, the first occlusion was followed by at least 30 minutes 

of rest before the next occlusion, or until the flow and pressure 

returned to the control level (normally after 30 minutes of rest). 
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Table 4.1 Experimental protocol 

animal 

group number experimental protocol 

pacing alone 

LCX occlusion plus left atrial pacing 

LAD occlusion plus left atrial pacing 

CHAPTER FOUR 

1 

2 

3 

4 

6 

3 

3 

6 alternating of LAD and LCX occlusion plus left atrial pacing 

4.1.2 EXPERIMENTAL PROCEDURES AND SUBENDOCARDIAL 
IS CHAE MIA 

Experimental procedures were described in detail in chapter 3. In group 1 (Pacing 

without coronary artery stenosis group), the heart was paced without coronary artery 

occlusion at a start rate of 120 beat per minute (bpm). Then the stimulation was 

gradually increased at a rate of 1 Obpm every 2 minutes until it reached 180bpm, after 

that the stimulation rate was increased to 200, 220 and finally 240bpm every 2 

minutes. In the subendocardial ischa~mia group, the subendocardial ischaemia sheep 

model was made by combining pacing with partial occlusion of an artery. This 

teclmique was previously validated in our laboratory by fluorescent microspheres (Li 

et al., 1996). In brief, stenosis was achieved by inflating the hydraulic occluder 

causing a reduction in flow to about 50% of the control level. The left atrium was 

then paced by a stimulator starting with a rate of 120bpm, and increased gradually by 

1 Obpm every 2 minutes until it reached 180bpm. 

4.1.3 REGIONAL MYOCARDIAL BLOOD FLOW MEASUREMENT 

The regional myocardial blood flow (RMBF) was measured before ischaemia and at 

20 minutes of ischaemia by using fluorescent microspheres (Molecular Probes, Inc., 

Eugene, OR, USA) as previously described (Li et al., 1996). Instead of using Perkin­

Elmer 650-1 OS fluorescence spectrophotometer (Hitachi Ltd), the tissue fluorescent 

intensity was measured by Amino-Bowman spectrophoto-fluorometer. Each 

fluorescent intensity was read at the appropriate excitation/emission wavelengths. The 

excitation/emission bandpass was set at 27.5mn/27.5nm. All the samples from the 

same experiment were measured on· the same day. The detailed procedure of 
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microspheres injection, tissue sampling and digestion, fluorescence extraction and 

measurement has been described in chapter 3. 

4.1.4 POTENTIALS RECORDING AND MAP CONSTRUCTION 

Potentials recording and map construction are described as in chapter 3. Epicardial 

potential, endocardial potential and intramyocardial potentials of different depth were 

simultaneously recorded in each experiment before and after 5min, 1 Omin, 15min and 

20min of ischaemia. The epicardial potentials were recorded by using an epicardial 

sock containing 64 electrodes (Cardiovascular Research and Training Institute, the 

University of Utah, USA). The endocardial potentials were recorded by using a 

home-made 40-eletrode basket mapping apparatus. Intramyocardial potentials were 

recorded by intramyocardial plunging needles; each needle had three electrodes as 

described in chapter 3. Such apparatus enable the recording of signals from a working 

heart. The locations of all the electrodes were marked at.the end of the experiments, 

and the epicardial vascular pattern. and the outlines of the ventricle were also 

recorded for future map construction. 

' The potentials from epicardial, intramyocardial and endocardial electrodes were 

recorded by a 256-channel system. Data from the recording system were transferred 

to a SUN workstation (SUN Microsystems, Inc., 2550 Garcia Avenue, Mountain 

View, CA 94043, USA), and then an1alysed using the mapping program developed in 

this laboratory (Walker et al. 1983 and 1987a) and the S-plus statistical package, 

which are both run under UNIX system. The ST segment potential distributions were 

displayed as isopotential contour maps, and these were further combined with flow 

maps constructed from the simultaneously measured regional blood flow. 
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4.2RESULTS 

4.2.1 HAEMODYNAMIC RESPONSE 

4.2.1.1 Haemodynamic response to pacing 

Haemodynamic parameters were recorded before and during pacing. Pacing the heart 

at a rate of l 80bpm for 20min did not cause significant change in L VDP, L VSP, LAP 

and CAP (P>0.05), (Table 4.2). 

Table 4.2 Haemodynamic response to left atrial pacing (n=6) 

LVDP,mmHg 

LVSP,mmHg 

LAP,mmHg 

CAP,mmHg 

control 

(before pacing) 

-8.83+3.76 

106.67+ 11.69 

-0.14+ 1.95 

85.44+9.06 

pacing (180bpm) 

-5.67+7.00+ 

94.17+18.82+ 

3.40+7.79+ 

73.61+18.54+ 

LVDP: left ventricular diastolic pressure LAP: left atrial pressure 

LVSP: left ventricular systolic pressure CAP: carotid artery pressure 

compared with control group: + P>O. 05 
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4.2.1.2 Haemodynamic response to subendocardial ischemia 

Partial occlusion of a coronary artery itself did not cause L VDP, L VSP, LAP and 

CAP changes; partial occlusion of a coronary arte1y together with left atrial pacing 

did not cause LVDP, LVSP and CAP change (P>0.05), but did increase LAP 

(P<0.05), (Table 4.3). 

Table 4.3 Haemodynamic response topartial coronary artery stenosis and 

subendocardial ischemia (n= 12) 

control stenosis only subendocardial ischaemia 

LVDP,mmHg -0.06+3.46 1.17+4.81 3.36+5.04 

LVSP,mmHg 102.00+9.93 101.9+ 13.50 91.67+ 15.15 

LAP,mmHg 1.98+2.77 2.77+3.22 6.81 +5.43* 

CAP,mmHg 79.61 +17.49 79.91+16.96 66.28+ 15.60 

LVDP: left ventricular diastolic pressure LAP: left atrial pressure 

LVSP: left ventricular systolic pressure CAP: carotid artery pressure 

Compared to control group: * P<0.05 
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4.2.2 RMBF RESPONSE 

4.2.2.1 RMBF response to pacing 

RMBF was measured before pacing and after 20 minutes of pacing the heart at 

l 80bpm. Though pacing the heart at a rate of 180bpm increased blood flow in every 

layer of the heart, especially in the inner layer, the difference was not significant 

(P>0.05). RMBF in any layer of the heart, and the ratio of RMBF of the inner one­

third layer and outer one-third layer of the L V wall ( endo/epi ratio) during pacing did 

not differ significantly from that of before pacing (P>0.05), (Table 4.4, Fig. 4.1 ). 

Table 4.4 RMBF response to left atrial pacing (n=6) 

LAD area LCXarea whole LV 

control pacing (180bpm) control pacmg (180bpm) control pacing (180bpm) 

epi 0.71±0.09 0.70±0.11+ 0.74±0.13 0.77±0.12+ 0.72±0.11 0.74±0.12+ 

mid 0.72±0.12 0.74±0.11+ 0.77±0.13 0.83±0.14+ 0.75±0.12 0.78±0.13+ 

en do 0.77±0.13 0.79±0.13+ 0.82±0 13 0.87±0.13+ 0.79±0.13 0.83±0.13+ 

trans 0.73±0.11 0.74±0.12+ 0.78±0.13 0.82±0.13+ 0.75±0.11 0.78±0.13+ 

endo/epi 1.08±0.12 1.13±0.04+ 1.12±0.08 1.13±0,03+ 1 10±0.10 l.13±0.o3+ 

ratio 

epi: RMBF in outer one-third layer of L V wall mid: RMBF in middle one-third layer of LV wall 

endo: RMBF in inner one-thzrd layer of LVwall trans. RMBF znfull thickness of LVwall 

endo/epi ratio: ratio of RMBF of inner one-third layer and outer one-third layer of L V wall 

Compared with control group:+ P>0.05 
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Fig. 4.1 RMBF distributions during left atrial pacing (see Table 4. 4 for abbreviation) 
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4.2.2.2 RMBF response to subendocardial ischemia 

RMBF was measured before and after 20min of ischaemia. During subendocardial 

ischaemia, RMBF in the subendocardial layer of the heart in the ischaemic area was 

significantly reduced (P<0.05). The endo/epi ratio was also decreased significantly 

(P<0.001), while the RMBF in the mid layer and subepicardial layer displaced no 

significant change. In the non-ischaemic area, subendocardial ischaemia caused a 

slight increase in the RMBF in the endocardial layer and the mid layer, but the 

difference was not significant (P<0.05), (Table 4.5, Fig. 4.2). 
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Table 4.5 RMBF response to subendocardial ischemia (n=12) 

ischaemic area 

ep1 

mid 

en do 

trans 

endo/epi ratio 

non-ischaemic area 

ep1 

mid 

en do 

trans 

endo/epi ratio 

control 

0.821 +0.089 

0.872+0.lll' 

0.916+0.107 

0.870+0.100 

1.116+0.057 

0.829+0.142 

0.835 +0.067 

0.880+0.092 

0.848+0.094 

1.073 +0.099 

subendocardial ischaemia 

0.780+0.066+ 

0.763 +0.059+ 

0.689+0.079* 

0.744+0.067* 

0.882 +0.041 ** 

0.827+0.088+ 

0.882 +0.111 + 

0.972 +0.174+ 

0.893+0.122+ 

1.170+0.095+ 

epi: RMBF in outer one-third layer of LV wall mid: RMBF in middle one-third layer of LV wall 

endo: RMBF ill inl!er olle-third layer ofLVwall trans: RMBF ill full thickness of LVwall 

endo/epi ratio. ratio of RMBF of illner one-third layer and outer one-third layer of L V wall 

Compared with control group:+ P>O 05, * P<0.05, ** P<O 001 
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Fig. 4.2 RMBF distributions in subendocardial ischaemia (see Table 4.5 for 
abbreviation) 

120 



CHAPTER FOUR 
4.2.3 ST POTENTIAL DISTRIBUTION 

4.2.3.l ST potential distribution in pacing only group 

6 sheep were paced at different rates without ligation of a coronary artery. Pacing the 

heart up to a rate of 180bpm did not cause significant spatial ST potential distribution . 

changes and ST magnitude changes in the epicardial, subepicardial, mid layer of the 

heart, subendocardial and endocardial potential recordings. When the heart rate 

reached 220bpm, ST potential magnitude in the epicardial and subepicardial layers 

increased compared to that of before pacing (P<0.05); Pacing the heart up to a rate of 

240bpm resulted in increased ST potential magnitude in the mid, subendocardial and 

endocardial layers (P<0.05). ST potential distributions in different layers at pacing 

rate of 160bpm, 180bpm and 220bpm'are shown in Fig. 4.3 .. ST potential magnitudes 

in different layers before and after left atrial pacing were shown in Table 4.6. 
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pacing 220bpm 

epicardium 

subepicardium 

middle 

subendocardium 

endocardium 

Fig. 4.3 ST potential distributions in different layers of the heart at a pacing rate of 
I 60bpm, I 80bpm and 220bpm .. The thickest solid lines reflect the position of the coronary 
arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines 
indicate ST elevation. and ST depression. respectively. Maps are plotted from data of one of 
the animals in group I. Contour interval=0.2mV ' 122 
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Table 4.6 ST potential magnitudes (microvolt) before and during pacing (n=6) 

baseline 140bpm 150bpm 160bpm 

ep1 -47.9±15.4 -34.3±26.3 -38.7±15.2 -35.9±21.2 

sub-epi -31.8±32.4 -30.3±38.6 -29.0±35.4 -29.9±43.6 

mid -23.1±54.8 -24.3±48.3 -19.2±41.1 -17.8±50.2 

sub-endo -36.1±79.9 -31.9±41.3 -35.3±35.4 -27.0±28.9 

en do 46.8±29.2 46.3±25.5 48.2±34.3 55.1±37.7 

epi: ST potential magnitude from epicardial recording 

sub-epi: ST potential magnitude from subepicardial recording 
) 

mid: ST potential magnitude from mid-layer of LV wall recording 

sub-endo: ST potential magnitude from subendocardial recording 

endo: ST potential magnitude from endocardial recording 

Compared with baseline: *P<O. 05 

180bpm 

-54.9±27.9 

-26.7±54.0 

-23.6±61.4 

-27.4±52.7 

50.4±22.0 

200bpm 220bpm 240bpm 

-60.2±39.1 -103.5±48.1 * -153 .3±59 .O* 

-13.5±46.8 34.7±61.5* 33.8±60.9* 

-4.91±47.3 51.6±64.6 71.1±76.3* 

-17.3±45.6 17.5±82.0 101.3±107.2* 

69.2±48.7 102.3±62.7 175.6±97.8* 
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4.2.3.2 ST potential distribution in subendocardial ischaemia in either LAD or 

LCXarea 

Subendocardial ischaemia was produced in the LAD area in 3 sheep and in the LCX 

area in another 3 sheep. In either the LAD or the LCX subendocardial ischaemia area, 

epicardial ST depression occurred following ischaemia. Subendocardial ischaemia in 

either the LAD or the LCX area caused similar epicardial ST potential distributions. 

Simultaneously recorded endocardial potentials showed ST elevation which was 

related to the area supplied by the culprit coronary artery. Intramyocardial ST 

potential recordings showed both ST elevation and ST depression in different layers 

of the heart, with ST elevation occurring in the ischaemic centre and ST depression 

on the boundary of the ischaemic and non-ischaemic areas, the distribution of the ST 

depression extended slightly towards the ischaemic area from subendocardium to 

subepicardium (Fig. 4.4, Fig. 4.5). 
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control ischaemia 

ep1card1um epicardtum 

subepicardium subepicard1um 

middle middle 

subendocardium subendocardium 

end9card1um endocardium 

Fig. 4.4 ST potential distributions in different layers of the heart before 'and at 20min of 
I 

subendocardial ischaemia of LAD area. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the 
dashed lines indicate ST elevation and ST depression respectively, with the occluded 
arteries indicated by bars across the coronary arteries. Maps are plotted from data of one 
of the animals in group 2. For negative ST, contour interval=0.2mV; for positive ST, 
contour interval=0.2mV in endocardium, contour interval=0.5mV in epicardium and 
intramyocardium (subepicardium, middle and subendocardium). 125 
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control ischaemia 

ep1cardium epicard1um 

subepicardium subep1cardium 

middle middle 

subendocardium subendocard1um 

endocard1um endocardium 

Fig. 4.5 ST potential distributions in different layers of the heart before and at 20min of 
subendocardial ischaemia of LCX area. The thickest solid lines reflect the position of 
the coronary arteries, the thick solid lines indicate zero potential, the thin solid and the 
dashed lines indicate ST elevation and ST depression respectively, with the occluded 
arteries indicated by bars across the coronary arteries. Maps are plotted from data of one 
of the animals in group 3. For negative ST, contour interval=0.2m V; for positive ST, 
contour interval=0.2mV in endocardium, contour interval=0.5mV in epicardium and 
intramyocardium (subepicardium, middle and subendocardium). 126 
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Time course of ST potential distribution in subendocardial ischaemia in either the 

LAD or LCX area 

Fig. 4.6.1, Fig. 4.6.2, Fig. 4.7.1, and Fig. 4.7.2 illustrate the potential distributions in 

different layers of the heart at different times during subendocardial ischaemia in 

either the LAD or the LCX area. Epicardial ST depression was seen on the surface of 

the heart, with the maximal ST depression occurring on the lateral wall. Epicardial 

ST depression distribution changed little with progression of the ischaemia. 

Endocardial ST elevation occurred on the lateral wall, but as the ischaemia was 

maintained, it spread to the surrounding areas. The magnitude of ST elevation 

increased as well. Intramyocardial ST potential showed a stable distribution as the 

ischaemia progressed. 
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epicardium endocardium 

control control 

' 

. . . .. 

ischaemia Smin 1schaemia Smin 

I 

ischaem1a 10min ischaemia 1 Omin 

ischaemia 15min 1schaemia 15min 

ischaemia 20min 1schaem1a 20min 

Fig. 4. 6.1 ST potential distributions in epicardium and endocardium at control and at 
various time periods in subendocardial ischaemia of LAD ligation. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively, with the 
occluded arteries indicated by bars across the coronary arteries. Maps are plotted from 
the data of one animal from group2. Contour interval=0.2m V. 128 
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subepicardium middle layer subendocard1um 

control control control 

ischaemia 5min ischaem1a 5min 1schaemia 5min 

1schaemia 10min 1schaem1a 10mm 1schaem1a 10mm 

ischaemia 15min ischaemia 15min ischaemia 15mm 

ischaem1a 20min ischaemia 20min ischaemia 20min 

Fig. 4. 6.2 ST potential distributions in different depth of intramyocardium at control and 
at various time periods in subendocardial ischaemia of LAD ligation. The thickest solid 
lines reflect the position of coronary arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 
the occluded arteries indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal fiwn group2. Contour interval=O. 5m V. 129 
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epicardium endocardium 

ci;mtrol control 

0 

ischaem1a 5min ischaemia 5min 

1schaemia 1 Omin ischaemia 10min 

ischaemia 15min ischaemia 15min 

1schaemia 20min 1schaem1a 20min 

Fig. 4. 7.1 ST potential distributions in epicardium and endocardium at control and at 
various time periods in subendocardial ischaemia of LCX ligation. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively, with the 
occluded arteries indicated by bars across the coronary arteries. Maps are plotted from 
the data of one animal from group3. Contour interval=0.2mV. 130 
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subepicardium middle layer subendocardium 

control control control 

ischaemia 5min ischaemia 5mm 1schaemia 5min 

ischaemia 1 Omin 1schaemia 1 Omm ischaemia 1 Omin 

ischaemia 15min ischaemia 15min ischaemia 15mm 

ischaemia 20mm 1schaemia 20m1n ischaemia 20min 

Fig. 4. 7.2 ST potential distributions in different depth of intramyocardium at control and 
at various time periods in subendocardial ischaemia of LCX ligation. The thickest solid 
lines reflect the position of coronary arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 

- the occluded arteries indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group3. Contour interval=0.5mV 131 
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Intramyocardial transition of ST potential magnitude during subendocardial 

ischaemia 

Table 4.7 showed intramyocardial transition of ST potential magnitude during_ 

subendocardial ischaemia at different time courses after ischaemia. It revealed that 

the ST potential magnitude at different time courses after ischaemia displayed no 

significant changes (P>0.05). 

Comparison of ST potential magnitude among the three intramyocardial layers of the 

left ventricle showed that there were no significant changes of ST potential 

magnitude between the inner one-third and the mid one-third layers. Neither were 

there changes between the mid one-third and the outer one-third layers (P>0.05). At 

5min, 1 Omin and 15min after ischaemia, negative ST potential magnitude in the outer 

one-third layer was relatively lower than that in the inner one-third layer (P<0.05). 
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Table 4. 7 Intramyocardial transition of ST potential magnitude (millivolt) during subendocardial ischaemia (n=6) 

lmin 5min lOmin 

positive ST-shift 
sub-epi 2.993±0. 787 3.089±0.777 2.690±0.566 
mid 2.431±0.472 2.744±0.606 3.187±0. 799 
sub-en do 2.442±0.474 2.514±0.538 2.435±0.430 

negative ST-shift 
sub-epi -1.236±0.384 -1.414±0.457 -1.352±0.451 
mid -1.030±0.246 -1.209±0.429 -1.275±0.478 
sub-endo -0.833±0.186 -0.874±0.170* -0.860±0.230* 

sub-epi: ST potential magnitude from subepicardial recording 
mid: ST potential magnitude from mid-layer of LV wall recording 
sub-endo: ST potential magnitude from subendocardial recording 
Compared with sub-epi group at the same time: *P<O. 05, others P>O. 05 
Comparison between different time m-oups: P>0.05 

15min 20min 

2.348±0.594 2.672±0.525 
3.088±0.663 3.186±0.588 
2.368±0.402 2.506±0.302 

-1.076±0.331 -1.004±0.386 
-0.885±0.371 -0.874±0.414 
-0.675±0.232* -0.617±0.242 
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4.2.3.3 ST potential distribution in subendocardial ischaemia in alternation of 

LAD and LCX area 

ST potential distribution in subendocardial ischaemia in alternation of LAD and 

LCXarea 

Subendocardial ischaemia was produced by alternate LAD and LCX ligation in 6 

sheep. Subendocardial ischaemia in either of the LAD or LCX area resulted in a 

similar ST potential distribution to that in subendocardial ischaemia of a single vessel. 

Epicardial ST depression occurred with maximum change in the anterolateral wall of 

the left ventricle, and the potential distribution was similar in various subendocardial 

ischaemic locations. The epicardial ST potential change in each individual electrode 

position during the LAD ligation was compared to that during the LCX ligation. The 

results showed that there was a significant relationship between epicardial ST 

potential distribution during LAD · ligation and that during LCX ligation, the 

correlation coefficient was 0.769 (P<0.001), (Table 4.8). 

Table 4. 8 Relationship of epicardial ST potential distribution 

between LAD and LCX ligation in subendocardial ischaemia 

in alternate of LAD and LCX area. 

sheep No r P value 

1 0.807 P<0.001 

2 0.696 P<0.001 

3 0.923 P<0.001 

4 0.543 P<0.001 

5 0.794 P<0.001 

6 0.859 P<0.001 

mean±SD 0.769±0.135 P<0.001 

Endocardial ST elevation occurred with the distribution corresponding to the partially 

occluded coronary artery. There was no significant relationship between endocardial 

ST potential distribution during LAD ligation and that during LCX ligation, the 

correlation coefficient was 0.017 (P>0.01), (Table 4.9). 
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Table 4. 9 Relationship of endocardial ST potential distribution 

between LAD and LCX ligation in subendocardial ischaemia 

in alternate of LAD and LCX area. 

sheep No r P value 

1 0.007 P>0.01 

2 0.021 P>0.01 

3 0.032 P>0.01 

4 0.009 P>0.01 

5 0.025 P>0.01 

6 0.010 P>0.01 

mean±SD 0.017±0.010 P>0.01 

Both ST depression and ST elevation occurred in the intramyocardium, with maximal 

ST elevation in the ischaemic centre and ST depression on the boundary of the 

ischaemic and non-ischaemic areas. The distribution of ST depression extended 

slightly towards the ischaemic area from subendocardium to subepicardium. The 

intramyocardial region with ST depression during subendocardial ischaemia in the 

LAD area converted to ST elevation during subendocardial ischaemia in the LCX 

area. The intramyocardial region with ST elevation during subendocardial ischaemia 

in the LAD area converted to ST depression during subendocardial ischaemia in the 

LCX area (Fig. 4.8). 
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ischaem1a-LAD area ischaemia-LCX area 

epicard1um epicardium 

subepicard1um subepicard1um 

middle middle 

subendocard1um subendocard1um 

endocardium endocardium 

Fig. 4.8 ST potential distributions in different layers of the heart at 20min of 
subendocardial ischaemia of alternative occlusion of LAD or LCX The thickest solid lines 
reflect the position of the coronary arteries, the thick solid lines indication zero potential, 
the thin solid and dashed lines indicate ST elevation and depression respectively, with the 
occluded arteries indicated by bars across the coronary arteries. Maps are plotted from 
the data of one of the animals in group 4. For endocardium, contour interval=0.2mV, for 
epicardium and intramyocardium, contour interval=O.SmV. 136 
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Time course of ST potential distribution in subendocardial ischaemia in 

alternation of LAD and LCX areas 

Fig. 4.9. l~Fig. 4.9.5 illustrate the potential distributions in different layers of the 

heart at different times of alternate subendocardial ischaemia in the LAD and LCX 

areas. 

Epicardial ST depression in LAD ligation started on the lateral wall. As the ischaemia 

progressed, the ST depression spread to the whole heart, with the maximal ST 

depression occurring on the lateral wall. Epicardial ST depression in LCX ligation 

showed a more stable distribution at different times of ischaemia. 

The distribution of intramyocardial ST potential was constant in both the LAD and 

LCX ligation as ischaemia developed. There was a mild increase in magnitude of the 

ST potential in both the LAD and LCX ligation. 

Endocardial ST elevation distribution in LAD ligation varied with the progression of 

ischaemia. The maximal ST elevation occurred in the centre of the ischaemic area. 

Endocardial ST elevation in the LCX ligation showed a more stable distribution with 

time. 
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LAD occlusion LCX occlusion 

control control 

ischaemia 5min ischaem1a 5min 

ischaemia 1 Omin ischaemia 10min 

ischaemia 15min ischaemia 15min 

ischaemla 20min ischaemia 20min 

Fig. 4.9.1 Epicardial ST potential distributions at control and at various time periods in 
subendocardial ischaemia in alternation of LAD and LCX area. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively. The 
occluded arteries are indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group 4. Contour interval=0.5mV. 138 
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LAD occlus1on LCX occlus1on 

control control 

ischaemia 5min ischaem1a 5min 

ischaem1a 10min 1schaemia 1 Omin 

ischaemia 15min 1schaemia 15min 

ischaemia 20min ischaemia 20min 

Fig. 4.9.2 Subepicardial ST potential distributions at control and at various time period 
in subendocardial ischaemia in alternation of LAD and LCX area. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively. The 
occluded arteries are indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group 4. Contour interval=0.5mV. 139 
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LAD occlusion LCX occlusion 

control control 

... . .. 
~-~: ___ _ 

ischaem1a 5mm 1schaemia 5min 

1schaemia 1 Omin 1schaem1a 1 Omm 

ischaemia 15min ischaemia 15min 

ischaemia 20min 1schaemia 20min 

Fig. 4. 9.3 ST potential distributions in middle layer of the heart at control and at various 
time periods in subendocardial ischaemia in alternation of LAD and LCX area. The 
thickest solid lines reflect the position of coronary arteries, the thick solid lines indicate 
zero potential, the thin solid and dashed lines indicate ST elevation and ST depression 
respectively. The occluded arteries are indicated by bars across the coronary arteries. 
Maps are plotted from the data of one animal ji-om group 4. Contour interval=O. 5m V. 140 
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LAD occlusion LCX occlusion 

control control 

ischaemia 5min ischaemia 5min 

ischaem1a 1 Omin ischaemia 1 Omin 

1schaemia 15min 1schaem1a 15min 

... 
~·· ..... . 

ischaem1a 20min ischaem1a 20min 

Fig. 4. 9. 4 Subendocardial ST potential distributions at control and at various time periods 
in subendocardial ischaemia in alternation of LAD and LCX area. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively. The 
occluded arteries are indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group 4. Contour interval=0.5mV. 141 



CHAPTER FOUR 

LAD occlusion LCX occlusion 

control control 

ischaernia 5rn1n 1schaern1a 5rnin 

ischaernia 1 Orn1n ischaernia 1 Ornin 

ischaern1a 15rnin ischaernia 15rnin 

ischaern1a 20rnin ischaernia 20rnin 

Fig. 4. 9. 5 Endocardial ST potential distributions at control and at various time periods in 
subendocardial ischaemia in alternation of LAD and LCX area. The thickest solid lines 
reflect the position of coronary arteries, the thick solid lines indicate zero potential, the 
thin solid and dashed lines indicate ST elevation and ST depression respectively. The 
occluded arteries are indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group 4. Contour interval=0.2mV. 142 
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4.2.3.4 Relationship between ST potential distribution and RMBF in 

subendocardial ischaemia 

Relations/tip between ST potential distribution and RMBF in subendocardial 

iscltaemia in either LAD or LCX area 

RMBF was measured before and after 20min of ischaemia in every one-third layer of 

the heart. RMBF distribution image maps were plotted and combined with ST 

potential distribution contour maps. Epicardial and subepicardial ST potential 

distribution maps were combined with maps of RMBF of the outer one-third layer. 

Intramyocardial ST potential distribution maps of the mid one-third layer were 

combined with maps of RMBF of the mid one-third layer. Subendocardial and 

endocardial ST potential distribution maps were combined with maps of RMBF of 

the inner one-third layer. From Fig. 4.10 and Fig. 4.11, it can be seen that before 

subendocardial ischaemia, RMBF in every layer had an even distribution over the 

whole ventricle, and there were no significant ST potential shifts on any layer of the 

heart. At 20min of subendocardial ischaemia, RMBF in the ischaemic region was 

lower than that in the nonischaemic region, endocardial and intramyocardial ST 

elevation occurred in areas of reduced RMBF, intramyocardial ST depression 

occurred at the boundary of the ischaemic and nonischaemic areas, while epicardial 

ST depression was not related to RMBF change. 
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ischaemia 

epicardium epicardium 

-----. :.«;_ I . 

I ,.·. 

subepicardium subepicardium 

middle middle 

subendocardium subendocardium 

endocardium endocardium 

Fig. 4.10 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
ml/minlg) in different layers of the heart at control and at 20min of subendocardial ischaemia in LAD area. 
From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distributioll and RMBF distributioll of inner 113 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate 
ST elevation and ST depression respectively, with the occluded arteries indicated by bars across the 
coronary arteries. Maps are plotted from data of one of the animals in group 2. Contour interval is same as 
Fig. 4.4. 144 
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control ischaemia 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

subendocardium subendocardium 

endocardium endocardium 

Fig. 4. 11 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
mllminlg) in different layers of the heart at control and at 20min of subendocardial ischaemia in LCX 
area. From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner 113 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted from data of one of the animals in group 3. Contour interval is same as Fig. 4.5. 

145 



CHAPTER FOUR 

Relationship between ST potential distribution and RMBF in subendocardial 

ischaemia during alternative ligation of the LAD and LCX 

RMBF was measured after 20min of ischaemia in both the LAD and LCX ligation in 

every one-third layer of the heart. RMBF distribution image maps were plotted and 

combined with ST potential distribution contour maps in the same way as that in the 

previous section (Fig. 4.10 and Fig. 4.11). Fig. 4.12 shows RMBF in the ischaemic 

region is lower than that in the nonischaemic region, no matter whether the LAD or 

LCX was ligated. Endocardial and intramyocardial ST elevation occurred in areas of 

reduced RMBF. Intramyocardial ST depression occurred at the boundary of 

ischaemic and nonischaemic areas. Finally, epicardial ST depression was not related 

to RMBF change. 
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ischeamia-LAD area ischaemia- LCX area 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

subendocardium subendocard ium 

endocardium endocardium 

Fig. 4. I 2 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
mllminlg) in different layers of the heart at 20min of subendocardial ischaemia in alternation of LAD and 
LCX ischaemia. From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination ofsubepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner 113 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted from data of one of the animals in group 4. Contour interval is same as Fig. 4.8. 
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CHAPTER FOUR 
4.3 DISCUSSION 

4.3.1 SUBENDOCARDIAL ISCHAEMIA MODEL 

This study was based on a successful subendocardial ischaemia model. The 
-- - --- ------ - ----

subendocardial ischaemia model in this study was constructed by partially occluding 

the coronary artery together with pacing the atrium at a rate of 180bpm, which was 

previously validated in our laboratory by fluorescent microspheres (Li et al., 1996). 

The design of this model was based on the principle of the clinical exercise stress test 

for detecting coronary artery disease. In circumstance of an insufficient coronary 

blood supply occurring, when the myocardial oxygen demand increases, then a 

transient subendocardial ischaemia will be produced. In animal experiments, pacing 

the heart at a specific rate reliably produces ischaemia of the subendocardium when 

the artery is narrowed to 50% of the original. These all increase the oxygen demand 

of the heart (Mirvis and Gordey, 1983; Heller et al., 1984). 

Myocardial perfusion is spatially heterogeneous. Studies showed that the RMBF of 

subendocardium was about 20% to 40% higher than that of subepicardium in sheep 

and lamb (Archie et al., 1974; Fisher et al., 1980 and 1984; Li et al., 1996). However, 

cardiac ischaemia always begins from the subendocardium, with the increase of 

duration of c~ron~ry artery occlusion, a transmural "wavefront:' of cell death progress 

from the subendocardium to the subepicardium (Reimer et al., 1977; Reimer and 

Jennings, 1979). Jennings (Jennings et al., 1985) observed in their study of coronary 

artery occlusion in dogs that the subendocardial region died quickly because it was 

severely ischaemic (flow <0.15ml/min/g and that the epicardial region died more 

slowly because it was usually moderately ischaemic (flow 0.15~0.30ml/min/g) or 

mildly ischaemic (flow >0.3ml/min/g). Similar temporal evolution of myocardial 

infarctions, beginning in the subendocardial region, and only later involving the 

subepicardial region, was observed in other experimental models of abrupt coronary 

occlusion of different species (Schaper et al., 1979; Baughman et al., 1981; Lee et al., 

1981; Connelly et al., 1982; Fujiwara et al., 1982; Geary et al., 1982; Warltier et al., 

1982, Kloner et al., 1983; Klein et al., 1984). In human studies of myocardial 

infarction, the ischaemic damage was either entirely subendocardial or, in transmural 

infarction, was confluent and maximal in the subendocardium and less extensive in 

the subepicardium (Freifeld et al., 1983). 

' 
By occluding the coronary artery to 50% of the original blood flow level, Li and co-

workers (1996) produced subendocardial ischaemic sheep model, which was 
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evidenced by, as previously reported (Guyton et al., 1977; Mirvis et al., 1986; Mirvis 

and Kamanathan, 1987), the reduction in the endocardial/epicardial (endo/epi) flow 

ratio in the ischaemic area caused by a decrease in subendocardial flow without 

significant changes in subepicardial perfusion. 

In this study, RMBF was measured in three different layers of the heart, i.e., inner 

one-third layer, middle one-third layer and outer one-third layer of the heart, by using 

fluorescent microspheres. After 20min of partial occlusion of coronary artery plus 

atrium pacing, RMBF in every layer of the heart in ischaemic area reduced, with 

endo/epi ratio reduced from 1.16±0.08 before ischaemia to 0.77±0.10 after ischaemia, 

suggested a more severe ischaemia in subendocardium. Although pacing the heart 

itself to 180bpm increased RMBF in every layer of the heart, especially blood flow in 

the inner layer, the differences were not significant. 

Using fluorescent micro spheres has been verified to be a reliable method to measure 

RMBF (Li et al., 1996), and it is comparable to radioactive microspheres method 

which has been regarded as a "gold standard" of measuring RMBF (Abel et al., 1993; 

Glenny et al., 1993). 

From the results it can be seen that the subendocardium is more vulnerable to 

ischaemia. There is a tendency for greater oxygen usage or lower oxygen tensions in 

subendocardial than epicardial muscle. Subendocardial muscle might use more 

oxygen, it might be more easily damaged by a decreased oxygen supply, or it might 

more readily become underperfused. There is evidence that subendocardial oxygen 

consumption per unit weight is normally about 20% higher than that of subepicardial 

muscle (Weiss et al., 1978; Weiss, 1979). Some investigators have argued that this 

increase is due to greater work done 'by subendocardial muscle fibres, which shorten 

more in systole than do those in the subepicardium (Yoran et al., 1973). Compared 

with subepicardial muscle, subendocardial muscle has lower venous oxygen 

saturations (Weiss et al., 1978) and oxygen tensions (Winbury et al., 1971). Apart 

from the effect of blood flow, biochemical studies also indicated a transmural 

gradient of metabolites during coronary artery occlusion in the dog, where the 

subendocardium was more vulnerable biochemically to ischaemic injury than was the 

subepicardium (Griggs et al., 1972). And, in studies in which myocardium was made 

totally ischaemic in viva with no transmural blood flow gradient, ultrastructure and 

metabolic features of cell injury occuned more quickly in the subendocardial region 

than in the subepicardial region (Lowe, 1983). 
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4.3.2. POTENTIAL RECORDING METHOD 

In this study, potential distributions were recorded simultaneously from epicardium, 

endocardium and three different layers in the intramyocardium. 

A 64-electrode sock, with each electrode constructed with a fine silver wire mounted 

on a nylon sock, was used to record the epicardial potential distributions 

(Cardiovascular Research and Training Institute, the University of Utah, USA). 

Epicardial potential recording was first used to define patterns of ventricular 

activation in the Wolff-Parkinson-White syndrome (Gallagher et al., 1975). Similar 

procedures were employed in investigations of other disturbances of rhythm such as 

ventricular tachycardia (Gallagher, 1978; Harken et al., 1979). The initial epicardial 

potential recording approach was a single hand-held recording electrode which was 

positioned over an area of myocardium and electrical activity was recorded from that 

area. By moving the electrode sequentially to a series of sites over the entire 

ventricular surface, eventually enough data could be gathered. However, the data 

gathered was from different cardiac cycles and might be misleading, and it took at 

least 5min to get enough data to construct a map. 

The use of the sock electrodes made it possible to obtain data simultaneously from 

numerous epicardial sites during a single cycle. The usefulness of the sock electrode 

array has been enhanced by the development of the computer system for rapid 

analysis and display of cardiac potentials (Smith et al., 1980; Walker et al; 1983). In 

this study, the cardiac potentials were recorded by a home-made 256-channel system 

(BDDD-Binary Data Delivery Device). A sample and hold on the output of each 

amplifier allowed the signal at all electrodes to be sampled simultaneously, and an 

immediate display of the sampled electrocardiographic signals enabled a check on the 

quality of the data. 

The sock electrode is a useful tool in both experimental and clinical studies. It is 

flexible and easily positioned around the heart. The nylon mesh can closely envelop 

the heart without damaging the epicardium, and it can be quickly applied to the heart 

and can remain in place throughout the experiment. The arrangement of the 

electrodes provides coverage of the epicardial surface of the whole left and right 

ventricles. 
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Endocardial mapping data is essential for localizing some arrhythmia site and for the 

study of ischaemic heart disease. Invasive needles inserted through the myocardial 

wall and anchored on the endocardial surface were used in the earliest study of 

arrhythmia (Scherlay et al., 1963; Smith et al., 1979). This method had great 

disadvantage for tlie following reasons. Apart from causing damage to the heart 

muscle, a limited number of endocardial electrodes can be used. Multiple-electrode 

array catheters were introduced later and could be introduced percutaneously to the 

endocardial site (Josephson et al., 1982; Browne et al., 1983). This method avoided 

damage to the heart, but again, a limited number of electrodes can be used, and 

further more, the electrodes did not cover the whole surface of the endocardium. 

By using an endocardial basket which had 8 arms, each arm with five electrodes on it, 

Li and co-workers (1999) successfully recorded the global endocardial potential 

distributions by inserting the basket from the cardiac apex to the cavity where the 

basket became inflated. A similar ba~ket catheter was used by Zrenner (Zrenner et al., 

1999) in his study of atrial arrhythmias. 

In present study, the endocardial potentials were recorded by an oval basket similar to 

Li's (Li et al., 1999). The 40-electrode on the basket covered nearly the whole surface 

of the endocardium and the infonnation provided by the electrodes should be enough 

to analyse the cardiac activity. The electrodes on the basket were not in direct contact 

to the endocardial surface to avoid potential disturbance. Although insertion of the 

basket from the heart apex would cause damage to the heart, the hydrodynamics did 

not deteriorate while inserting the basket, and it did not provoke cardiac arrhythmias, 

no injury current occurred during the entire process. 

Information from intramyocardial electrodes is vital in understanding the current 

flowing at the ischaemic boundaries in this study. Intramyocardial needles with a 

diameter of 0.9mm were used in our laboratory to record potentials in previous 

experiments but were always subject to injury currents which prevented their use for 

ST segment analysis (Li, 1997). Techniques were tried to partially insulate the needle 

to prevent the metal from direct contact with the heart muscle, but this manipulation 

did not avoid the injury currents. Plunge needles made of different materials 

including: nickel, tungsten, silver, copper and stainless steel were tested to record the 

intramyocardial potentials. It was found that the tungsten, nickel and the silver needle 

electrodes caused less injury currents. Compared to tungsten and nickel, silver 

seemed to be a better material for the plunge needles in our experiments. As the sock 
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electrodes and the basket electrodes were all made of isolated silver wire, so isolated 

silver wire of a diameter of 0.147mm was chosen for the construction of the plunge 

needle. A serial of research designed to study the mechanism of cardiac arrhythmia, 

the intramyocardial plunge needles were usually made of tungsten material (Kasell 

and Gallagher, 1977; Kramer et al., 1985; Pogwizd and Corr, 1987, Wu et al., 1995). 

Whatever material was used, the purpose was to minimize the injury currents. 

Haemodynamic measurements during experiments suggested that the insertion of the 

needles into cardiac wall did not cause significant haemodynamic deterioration and 

did not provoke cardiac arrhythmia. 

Recently, a fiberglass needle electrode for transmural cardiac mapping has been 

constructed by Rogers (Rogers et al., 2002). Thess needles had 12-electrode with 

lmm spacing apart and were fabricated from fiberglass-reinforced epoxy. The 

characters of these needles were: They were much thinner than the traditional plunge 

needles (Kasell and Gallagher, 1977; Witkowski and Penkoske, 1988; Moore et al., 

1990), and were stiff enough to be easily inserted into the heart and durable enough to 

be reused, and they were also nonconductive. These needles were well suited to 

record intramyocardial electrical activities from high-resolution arrays. However, the 

construction of these needles was techniquely difficult. We have looked at optical 

methods but these are currently not suitable because the interface of interest is 

intramyocardial and would be disturbed by implanting optical arrays. Multiple optic 

fibre sensors may become available but the voltage sensitive dyes are relatively toxic 

and not appropriate at this stage. 

4.3.3 POTENTIAL DISTRIBUTIONS AND INTRAMYOCARDIAL 
ELECTRICAL CURRENT PATH 

The main finding of this study is that even though epicardial ST depression can not 

predict ischaemic area as previously validated (Li et al., 1998), ST distribution 

patterns in different layers of intramyocardium during subendocardial ischaemia can 

be predicted from electrocardiographic theory. The ST potential distributions between 

epicardium and subepicardium are markedly different. 

It was well accepted that ST elevation in ECG over the ischaemic area is a sign of 

myocardial ischaemia. Classic electrocardiographic theories offered to explain the 

changes which occur in the ST segn1ents during myocardial ischaemia based on the 

supposition that a boundary might exist between a region of normal and damaged 
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cells and that an abnormal current might flow between the ischaemic area and normal 

area. Wilson (Wilson et al., 1933b) and Bayley (1942) proposed that ST elevation 

during myocardial ischaemia was a manifestation of this injury current, and Wilson 

(Wilson et al., 1933a) classified injury currents into two types: injury current at rest 

or diastolic injury current, and injury current of action or systolic injury current. At a 

cellular level, two major mechanisms are considered to underlie the injury currents: 

(1) a localized shortening of action potential duration and diminishing of the 

amplitude of the action potential and (2) a localized decrease in resting membrane 

potential. The former generates a systolic injury current flowing from the normal 

tissue to the injured tissue, produces "primary ST elevation" in the surface ECG. The 

latter generates a steady injury current that is interrupted during the ST segment when 

all the cells are depolarized. The injury current produces a TQ segment depression, 

which can not be directly detected on the surface ECG because the amplifiers are AC­

coupled, and it is represented by ST elevation (secondary ST elevation) 

The origin of ST depression is far from clear from up to date research. Early work 

(Wolferth et al., 1945; Bayley, 1946; Pruitt and Valencia, 1948) in isolated hearts 

suggested that the ST segment response to myocardial injury was elevation and that 

the ST depression recorded at the epicardium was the reciprocal of ST elevation in 

the underlying subendocardium. This verified the dipole theory (Wilson et al., 1933b; 

Pruitt and Valencia, 1948). The dipole model considered the active myocardial event 

as a single dipole source that contained both the maximum and the minimum 

potentials. Accordingly, an injured region of the myocardium acts in systole as the 

positive pole of a layer of dipoles situated on its boundary with normal myocardium, 

whereas the latter acts as the negative pole. 

According to the dipole theory, in the event of subendocardial ischaemia, the 

epicardium over the ischaemic region faces the negative pole of the dipole; the cavity 

faces the positive pole. Tims, the electrodes over the ischaemia should record 

depressed ST segments, and the cavity should recorded elevated ST segments 

(Bayley, 1946; Yu, 1950; Cook et al., 1958). However, clinically, it is difficult to 

localize the ischaemic region by surface ST depression. In the present study of 

subendocardial ischaemia, even though ST depression occurred on epicardium and 

ST elevation occurred on endocardium, the epicardial ST depression was scattered on 

the left ventricular surface and could not localize the ischaemic area. Either LAD or 

LCX ischaemia gave a similar epicardial ST distribution pattern, whereas endocardial 

ST potential distribution pattern showed that ST elevation was directly associated 
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with the ischaemic area. These results are consistent with previous studies in this 

laboratory (Li et al., 1998). Thus, using the dipole theory to explain the ST depression 

in subendocardial ischaemia has its limitation. The limitations of the single dipole 

model have been demonstrated (Schmitt et al., 1953; Okada et al., 1959; Scher et al., 

1960) and discussed (Holland and Amsdorf, 1977; Okada, 1963; Horan and Flowers, 

1972; Clark and Plonsey, 1966). 

Prinzmetal and coworkers (Prinzmetal et al., 1959 and 1961, Ekmekci et al., 1961; 

Toyoshima et al., 1964) proposed that ST depression was a primary effect of 

abnormal membrane polarization rather than a reciprocal effect of ST elevation. 

Using a canine model, Prinzmetal and co-workers recorded relative ST segment 

depression (true TQ segment elevation) from the epicardium of "mild" ischaemic 

areas produced by severe haemorrhagic hypotension. The TQ segment elevation 

coincided with the increase in membrane resting potential. They suggested that mild 

subepicardial ischaemia might generate ST depression independent of 

subendocardium damage. But their model was not a real subendocardial ischaemia 

model and the "mild" ischaemia could not be validated. 

The present study showed that during subendocardial ischaemia, RMBF of ischaemic 

area decreased, particularly in the inner one-third layer of the left ventricular wall. 

The endocardial ST elevation was related to the ischaemic area, while the epicardial 

ST depression had no relation to RMBF of subepicardium. It suggested that the 

source of the ischaemic ECG was related to the endocardium, that was, the ischaemic 

source was related to the endocardial ST change but not the epicardial ST change, 

which was consistent with our previous model study (Li et al., 1998) and Kleber's 

(Kleber et al., 1978) work on intracellular recording. However, this finding can not be 

interpreted by the solid angle theory. 

The solid angle theory, by taking into account the geometry of the ischaemic 

boundaries, the degree of transmembrane or action potential duration differences, and 

alterations in intracellular and extracellular conductivities, has provided a geometrical 

ischaemic heart model that quantitatively links changes in ST shifts to the distribution 

of transmembrane potential changes in the ischaemic region. This model predicts that 

subendocardial ischaemia would cause relative depression of the ST segment in the 

epicardium and precordium due to the reversed current flow at the boundary of the 

nom1al and the ischaemic myocardium (Holland and Brooks, 197 5 and 1977) and that 

this ST depression should provide the means for localizing ischaemia, which can not 
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be verified by previous study (Li et al., 1998) and the present study. Li's experiment 

was replicated by a mathematical model of the whole heart. This model showed that 

there was a powerful current sink at the boundary of the ischaemic and non-ischaemic 

areas. It was this current sink that caused the epicardial ST depression. When the 

ischaemia was subendocardial, no matter which side of the boundary, there was ST 

depression over the boundary on the epicardium. This model gave no clue as to why 

the currents were concentrated at the boundary. A further bidomain model was 

constructed by Johnson (Johnson et al., 2001). In this model, a slab of cardiac tissue 

was presented where tissue anisotropy and fibre rotation were considered and it was 

concluded that it would be possible to predict the region of subendocardial ischaemia 

from the epicardial potential distribution, which was contrary to the experimental data. 

Insulating the heart from surrounding tissue showed that the source of the ST 

depression was intramyocardial (Green et al., 1991; Li et al., 1998). These researchers 

showed that when the heart was surrounded by an insulating medium, the magnitude 

of QRS or ST potentials increased while the QRS or ST potential distribution pattern 

had not change. Further research was done by the transition of subendocardial 

ischaemia to transmural ischaemia, the results indicated that epicardial ST depression 

increased gradually over the boundary region as ischaemia progressed and ST 

elevation ensued over the ischaemic region as ischaemia became transmural (Guyton 

et al., 1977; Li et al., 1998). The electrical transition from ST depression to ST 

elevation was consistent with the contention that the current path was in the 

myocardium. 

Thus, detailed information of the electrical field around the ischaemic boundary was 

needed. To record the potential distributions around the ischaemic boundary, 

intramyocardial electrodes are needed. Our self-made plunge needles enable us to 

record intramyocardial potential distributions from different layers of the left 

ventricle. The needles were randomly plunged into the left ventricle muscle of the 

experimental sheep, with a high density around the boundary of the ischaemic and 

non-ischaemic regions. The needle positions were marked at the end of each 

experiment, which were used for the potential distribution maps construction. The 
I 

total 29 needles used in the experiments gave enough information from the 

intramyocardium for potential mapping purpose. Even though insertion of the needles 

into the heart muscle resulted in injury current initially, this injury current decreased 

with time, and approached to the isoelectrical line at least 1~1.5 hours following the 

insertion. Potentials were recorded after 1.5 hours of inse1iion of the needles. The 
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present study was carried out to measure potentials from intramyocardial electrodes 

together with the epicardial and endocardial electrodes. Our results showed that in the 

intramyocardium, both ST elevation and ST depression occurred in different layers 

from subendocardium to subepicardium, with the source appeared in the ischaemic 

area and the sink appeared in the non-ischaemic area, and the peak ST elevation 

occurred in the center of the ischaemic area, the distributions of the ST potential 

among the three intramyocardial layers were quite similar, only that ST depression 

extended slightly towards the ischaemic area from subendocardium to subepicardium. 

Analyses of ST potential magnitude in different intramyocardial layers showed that 

ST potential magnitude did not change significantly after the onset of ischaemia. 

Only negative ST potential magnitude in outer one-third layer at 5min, I Omin and 

l 5min after ischaemia was relatively lower compared to that in inner one-third layer. 

The similarity of ST potential distributions and magnitudes in different 

intramyocardial layers is beyond our understanding. When subendocardial ischaemia 

was alternated between the LAD and LCX areas, ST potential distributions and 

magnitude were similar to that of subendocardial ischaemia in either LAD or LCX 

area. These results suggested that the intramyocardial current path had little change in 

different intramyocardial layers. The different manifestation of epicardial and 

subepicardium ST distributions to ischaemia leads us to postulate that there might be 

an electrically different structure under the epicardium, which might result in the 

distortion of current path. 

The different potential distributions between the epicardium and intramyocardium 

lead us further to a hypothesis that there might be an electrically different structure 

under the epicardium. As has been proposed by Wilensky (Wilensky et al., 1986) in 

their study of acute ischaemia in rabbit, they found that an endocardial zone of a 

40~60 cell layer existed in which transmembrane potentials were affected relatively 

little by ischaemia, and extracellular K +, pH and content of phosphocreatine were 

quite different than that in the rest of the myocardium. Our hypothesized 

subepicardial structure might have different electrical characteristics which might 

disturb the electrical current path. However, no studies have been shown that this 

hypothetical structure existed yet. 

We propose that the anisotropy of the cardiac muscle may result in the electrical 

current path diversion. By considering the impedance difference between ischaemic 

and normal heart tissues during ischaemia, it is likely that the injury current might 

divert its way when spreads outwards. 
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It is known that the cardiac muscle is anisotropic. The human cardiac cells are 

branched at their ends, the branching cardiac cells set up a complex three-dimensional 

geometry. At the gross anatomical level, the ventricles of the heart are composed of 

spiraling layers of fibres running in different directions. Even though the sheep 

cardiac cells might have different orientation as human's, from postrnortem 

observation, it was found that the sheep cardiac fibres' orientation is also spiral from 

subendocardium to subepicardium. As a consequence, histological sections of 

ventricular muscle inevitably contains the profiles of cells cut in a variety of 

orientations. 

It was reported that wavefront velocity would be influenced by fibre direction (Sano 

et al., 1959; Draper and Mya-Tu, 1959; Clerc, 1976; Roberts et al., 1979). Early work 

by Rush (Rush et al., 1963) showed a slight anisotropy of about 2:1 with a high 

resistivity value of 563olnn-cm and a low resistivity value of 252ohm-cm. Gorbin and 

Scher (1977) found that the fibre direction was important in determining potentials at 

a distance from the electrical source. Using an empirical axial hypothesis model, 

Gorbin and Scher predicted a strong dependence of wavefront voltage on fibre 

orientation. Roberts (Roberts et al., 1978) further analysed the influence of cardiac 

fibre orientation on wavefront voltage, conduction velocity and tissue resistivity in 

the dog. Their study disclosed that when the canine epicardium was stimulated, the 

spread of epicardial excitation was 2.4 times faster along the long axes of the cardiac 

fibres than perpendicular to them, the gross tissue resistivity was lower parallel to 

fibres by a factor of 3.2, and the voltage across the depolarization wave was 

approximately three times as great in the longitudinal direction. It indicated that there 

was a strong dependence between epicardial fibre direction, conduction velocity, 

resistivity of the myocardium and the surrounding potential field generated by a wave 

of depolarization. 

Further study by Roberts and Scher (1982) by taking into account the tissue 

anisotropy in a mathematical model showed that the anisotropy of the electrical 

conductivity of cardiac muscle had important effects on the propagation of waves of 

depolarization and on the potential fields produced by depolarization in the intact 

heart. They found that the extracellular voltage drop across a propagating 

depolarization wave depends on the direction of propagation. The measured 

extracellular voltage across a longitudinal wave was 1.75+0.12 times greater than 

the voltage across a transverse wave. 
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Recently, it was found that the myocardial electrical impedance varied in normal, 

ischaemic and !nfracted tissue. Fallert (Fallert et al., 1993) measured the electrical 

impedance of myocardial tissue in ·a sheep model of infarction by using a four­

electrode probe, it showed that the impedance was a bulk electrical property of tissue 

that varied with the evolution of myocardial infarction. Impedance mapping revealed 

significantly different values for normal, ischaemic and infracted tissues. Previous 

studies also showed that hypoxia would lead to an increase in longitudinal resistance 

(Woitczak, 1979; Hiramatsu et al., 1988). 

However, if the tissue anisotropy and impedance would play an important role on 

electrical current path, the potential distribution in different layers of the heart should 

show regular change, which is not apparent in present study. This postulation is not 

supported by the fact that ST distribution and magnitude in different intramyocardial 

layers were quite similar. 
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INTRAMYOCARDIAL ST SEGMENT POTENTIAL 
DISTRIBUTIONS: TRANSITION FROM MILD 
SUBENDOCARDIAL ISCHAEMIA TO SEVERE 
SUBENDOCARDIAL ISCHAEMIA 

CHAPTER FIVE 

Intramyocardial ST potential distributions in subendocardial ischaemia were 

described fully in chapter 4. It can be concluded that the intramyocardial ST potential 

distributions were quite different from that of epicardium and endocardium, the 

negative ST potential originated on the boundary of the ischaemic and non-ischaemic 

regions in intramyocardium, the positive ST potential of intramyocardium was 

blocked when trying to spread along the path to epicardium. To further understand 

what happened in the intramyocardium during subendocardial ischaemia, a series of 

experiments were performed to convert mild subendocardial ischaemia to severe 

subendocardial ischaemia. 

5.1 MATERIALS AND METHODS 

5.1.1 EXPERIMENTAL ANIMALS AND PROTOCOLS 

A total of 6 (Polworth/Comeback cross) sheep weighing between 27~35kg of both 

genders were used. All the sheep were bred in the University of Tasmania's animal 

farm. Table 5.1 shows the groups of animals subjected to different experimental 

protocols. 

Table 5.1 Experimental protocol 

group animal number 

1 3 

2 3 

experimental protocol 

transition from mild subendocardial ischaemia to severe 

subendocardial ischaemia in LAD area. 

transition from mild subendocardial ischaemia to severe 

subendocardial ischaemia in LCX area. 
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group 1: Transition from mild subendocardial ischaemia to severe subendocardial 

ischaemia in LCX area (n=3). 

group 2: Transition from mild subendocardial ischaemia to severe subendocardial 

ischaemia in LAD area (n=3). 

5.1.2 EXPERIMENTAL PROCEDURES AND SUBENDOCARDIAL 

ISCHAEMIA 

Experimental procedures were the same as in chapter 4. A sheep model of 

subendocardial ischaemia was made by combining pacing with partial occlusion of a 

coronary artery. Mild subendocardial ischaemia was produced by reducing either 

LAD or LCX blood flow by 30% of the original blood flow plus left atrial pacing at a 

, rate of 180bpm, and was continued for 20 minutes. After a stable period of 30 

minutes, severe subendocardial ischaemia was produced by reducing either LAD or 

LCX blood flow by 70% of the ori~al blood flow plus left atrial pacing at a rate of 

180bpm, and also lasted for 20 minutes. 30 minutes after severe ischaemia, either 

LAD or LCX was totally occluded for another 20 minutes. One sheep developed 

ventricular fibrillation after severe subendocardial ischaemia and was unable to be 

rescued. The left atrium was paced by a stimulator starting with a rate of 120bpm, 

and increased gradually by 1 Obpm every 2 minutes until it reached 180bpm. 

5.1.3 RMBF MEASUREMENT 

As described in chapter 4, RMBF were measured before ischaemia, 20min after mild 

subendocardial ischaemia, 20min after severe subendocardial ischaemia and 20min 

after total occlusion of a coronary artery. 

5.1.4 POTENTIAL RECORDINGS AND MAP CONSTRUCTION 

Potential recordings and map construction are described as in chapter 3 and chapter 4. 

ST potentials were simultaneously recorded before and 5min, 1 Omin, l 5min, 20min 

after ischaemia of varying degrees on epicardium, endocardium and three different 

depth of intramyocardium. 
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5.2RESULTS 

5.2.1 HAEMODYNAMIC RESPONSE 

In mild subendocardial ischaemia group, LVDP, LVSP, LAP and CAP did not 

change with ischaemia. In the severe subendocardial ischaemia group, L VDP and 

LAP were significantly increased (P<0.05), L VSP and CAP were significantly 

decreased from control (P<0.05). Complete occlusion of the coronary artery resulted 

in a significant LVDP and LAP increase (P<0.001, 0.05 respectively) and also 

significant LVSP and CAP decrease (P<0.001 ), (Table5.1 ). 

Table 5.1 Haemodynamic response to subendocardial ischaemia from mild to severe 

degree (n=6) 

control mild subendocardial severe subendocardial full thickness 

ischaemia 

LVDP,mmHg -5.17+3.54 -2.33 +3.14 

LVSP, mmHg 112.00+l0.30 97.50+22.08 

LAP,mmHg 1.39+3.90 5.01 +5.04 

CAP,mmHg 96.39+7.56 83.89+21.18 

LVDP: left ventricular diastolic pressure 

LVSP: left ventricular systolic pressure 

LAP: left atrial pressure 

CAP: carotid artery pressure 

ischaemia 

-0.17+3.49* 

90.00+ 16.73* 

8.81 +6.17* 

71.39+ 17.43* 

Compared to control group: * P<0.05, ** P<0.001. 

ischaemia 

12.00+5.10** 

51.00+ 19.34** 

16.33+11.26* 

45.20+ 16.00** 
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5.2.2 RMBF RESPONSE 

In the mild subendocardial ischaemic group, the RMBF in the inner one-third layer 

and endo/epi ratio decreased significantly from control (P<0.05, 0.001 respectively), 

while the RMBF in the mid and outer one-third layers showed no significant change 

(P>0.05). In the severe subendocardial ischaemic group, the RMBF in every layer of 

the heart and endo/epi ratio were significantly decreased from control (P<0.001). 

Compared with the mild ischaemic group, the RMBF in every layer in severe 

ischaemia group decreased significantly in the ischaemic area (p<0.001), while the 

endo/epi ratio had no significant difference between these two groups (p>0.05). In the 

non-ischaemic area, the RMBF were unchanged, and the endo/epi ratio was identical 

between different groups (P>0.05) (Table 5.2, Fig. 5.1). 

Fig. 5.2 and Fig. 5.3 show the RMBF distributions in subepicardium, mid and 

subendocardium layers during mild and severe ischaemia of either LAD or LCX 

occlusion respectively. It showed that there was a relatively distinct border of RMBF 

in the ischaemic and non-ischaemic regions. 
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Table 5.2 RlvfBF in mild and severe subendocardial ischaemia (n=6) 

ischaemic area 

ep1 

mid 

en do 

trans 

ratio 

control 

0.80+0.15 

0.82+0.15 

0.89+0.16 

0.84+0.15 

1.11 +0.04 

non-ischaemic area 

ep1 0.69+0.09 

mid 0.76+0.07 

en do 0.80+0.07 

trans 0.75+0.06 

ratio 1.17±0.19 

mild 1schaemia severe ischaemia 

0.70+0.09 0.39±0.05**# 

0.67+0.08 0.37+0.05**# 

0.62+0.09* 0.34±0.05**# 

0.67+0.09* 0.37+0.05**# 

0.89+0.05** 0.88+0.06** 

0.73+0.08 0.73+0.07 

0.76+0.07 0.76±0.07 

0.78+0.06 0.78±0.07 

0.76+0.06 0.75+0.06 

1.07+0.11 1.07+0.10 

epi. RMBF in outer one-third layer of L V wall mid. RMBF in middle one-third layer of LV wall 

endo: RMBF in inner one-third layer of L V wall !rans RMBF in full thickness of LV wall 

ratio: ratio of RMBF of inner one-third layer and outer one-third layer of LV wall 

Compared with control group: * P<O 05, ** P<0.001 

Compared wzth mild zschaemic group: #P<O 001 

Others: P>0.05 
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RMBF distributions in varying degrees of ischaemia 
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Fig. 5.1 EMBF distributions in mild subendocardial ischaemia, severe 

subendocardial ischaemia (see Table 5.2 for explanation). 

Compared with baseline: +p >0.05, *p<0.05, **p<0.001. 

Compared with mild group: §p>0.05, #p<0.001. 
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ischaemia-30%LAD occlusion ischaemia-70%LAD occlusion 

. subepicardium subepicardium 

: 

mid layer mid layer 

subendocardium subendocardium 

Fig. 5. 2 Blood flow (ml/minlg) distributions in subepicardium, mid and subendocardium 
layers during mild and severe ischaemia of LAD occlusion. Notice the remarkable border 
at the ischaemic and non-ischaemic regions. Maps are plotted with data from group 1. 
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ischaemia-30%LCX occlusion ischaemia-70%LCX occlusion 

subepicardium subepicardium 

mid layer mid layer 

subendocardium subendocardium 

Fig. 5.3 Blood flow(ml/minlg) distributions in subepicardium, mid and subendocardium 
layers during mild and severe ischaemia of LCX occlusion. Notice the distinguish border 
at the ischaemic and non-ischaemic regions. Maps are plotted with data from group 2. 
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5.2.3 ST POTENTIAL DISTRIBUTIONS IN TRANSITION OF MILD 

SUB:Em)OCARDIAL ISCHAEMIA TO SEVERE SUBENDOCARDIAL 

ISCHAEMIA 

Fig. 5.4 and Fig. 5.7 are contour maps showing ST distributions under three different 

degree of ischaemia. The imaging maps of Fig. 5.5, Fig. 5.8 give a more comparable 

view of the three groups. It showed that ST distribution pattern was_ quite similar in 

mild and severe ischaemia, except that in the mild ischaemic group, there was no ST 

elevation on epicardium. However, when ischaemia became full thickness, the ST 

distribution pattern was totally different. Fig. 5.6 and Fig. 5.9 showed the different 

patterns of ST distribution. 

The results showed that in mild subendocardial ischaemia of either LAD or LCX 

ligation, ST potential distributions in different layers were similar to that in 

subendocardial ischaemia of 50% occlusion of coronary artery (results in chapter 4). 

In mild subendocardial ischaemic group, epicardial ST depression occurred after 

ischaemia, the epicardial ST depression was quite similar in either LAD or LCX 

group, and were not related to ischaemic region. Simultaneously recorded 

endocardial potentials showed ST elevation related to the area supplied by the culprit 

coronary artery. Intramyocardial ST potential recordings showed that ST elevation 

occurred in the ischaemic centre and ST depression occurred on the boundary of the 

ischaemic and non-ischaemic areas. 

In severe subendocardial ischaemia of either LAD or LCX area, both ST elevation 

and ST depression occurred on epicardium and different layers of intramyocardium, 

ST elevation appeared in the ischaemic area, with the maximal magnitude occurred in 

the ischaemic centre; ST depression appeared in the non-ischaemic area. Endocardial 

ST elevation in severe ischaemia occurred in the ischaemic region. 

When the ischaemia became foll thickness, no matter which region was involved, 

there was a strong dipole in each layer of the heart. The distribution of the dipole was 

similar to that in severe subendocardial ischaemia. However, the highest magnitude 

of both ST elevation and ST depression occurred on the ischaemic boundary (Fig. 

5.4~Fig. 5.9). 
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ischaernia-30%LAD occlusion ischaernia-70%LAD occlusion ischaernia-total LAD occlusion 

ep1card1um ep1cardium ep1card1um 

subepicardium subepicard1um subepicard1um 

middle middle middle 

subendocard1um subendocardium subendocard1um 

endocard1um endocard1um endocardium 

Fig. 5.4 ST potential distributions in different layers of the heart at 20min of mild subendocardial 
ischaemia, 20min of severe subendocardial zschemia and 20min of full thickness ischemia of LAD area. The 
thickest solid lines reflect the position of the coronary arteries, the thick solid !mes indicate zero potential, 
the thzn solid and dashed lines zndicate ST elevation and ST depression respectively, with the occluded 
arteries indicated by bars across the coronary arteries. Maps are plotted from the data of one of the 
animals in group 1. For epicardium and intramyocardium (subepicardium, middle and subendocardium), 
contour interval=O 5mV; for endocardium m 30% occlusion, contour interval=0.2mV, for endocardium in 
70% and total occlusion, contour interval=0.4m V. 168 
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ischaemia-30%LAD occlusion ischaemia-70%LAD occlusion ischaemia-total LAD occlusion 

epicardium epicardium epicardium 

subepicardium subepicardium subepicardium 

middle middle middle 

: 

subendocardium subendocardium subendocardium 

endocardium endocardium endocardium 

Fig. 5. 5 Imaging view of ST potential distributions in different layers of the heart at 
20min of mild, severe and full thickness ischemia of LAD area. The intensities of the 
shade indicate the quantity of ST potentials. The thickest solid lines reflect the position of 
the coronary arteries, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted from the data in Fig. 5. 4 l 69 
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ischaemia-30%LAD occlusion ischaemia-70%LAD occlusion ischaemia-total LAD occlusion 

epicardium epicardium epicardium 

subepicardium subepicardium subepicardium 

middle middle middle 

subendocardium subendocardium subendocardium 

endocardium endocardium endocardium 

Fig. 5. 6 Same imaging as in Fig. 5. 5 except that the legend scales are different in each 
sub-graph, which gives a better view of ST potential distribution pattern. 
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ischaemia-30%LCX occlusion ischaemia-70%LCX occlusion ischaemia-total LCX occlusion 

epicardium epicardium epicard1um 

subepicard1um subep1cardium subep1cardium 

middle middle middle 

subendocardium subendocardium subendocardium 

endocardium endocardium endocardium 

Fig. 5. 7 ST potential distributwns in different layers of the heart at 20min of mild subendocardial 
ischaemia, 20min of severe subendocardial ischemia and 20min of full thickness ischemia of LCX area. The 
thickest solid lines reflect the position of the coronaJy arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with the occluded 
arteries indicated by bars across the coronaiy arteries. Maps are plotted from the data of one of the 
animals m group 2. For epicardium and mtramyocardium, contour znterval=0.5mV; for endocardium, 
contour interval=0.2mV. 171 
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ischaemia-30%LCX occlusion ischaemia-70%LCX occlusion ischaemia-total LCX occlusion 

epicardium epicardium epicardium 

subepicardium subepicardium subepicardium 

middle middle middle 

subendocardium subendocardium subendocardium 

endocardium endocardium endocardium 

Fig 5.8 Imaging view of ST potential distributions in different layers of the heart at 
20min of mild, 20min of severe and 20min of full thickness ischemia of LCX area. The 
intensities of the shade indicate the quantity of ST potentials. The thickest solid lines 
reflect the position of the coronary arteries, with the occluded arteries indicated by bars 
across the coronary arteries. Maps are plotted from the ,data in Fig 5. 7. 1 72 
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ischaemia-30%LCX occlusion ischaemia-70%LCX occlusion ischaemia-total LCX occlusion 

epicardium epicardium epicardium 

subepicardium subepicardium subepicardium 

middle middle middle 

subendocardium subendocard ium subendocardium 

endocardium endocardium endocardium 

Fig. 5. 9 Same imaging as in Fig. 5. 7 except that the legend scales are different in each 
sub-graph, which gives a better view of ST potential distribution pattern. 
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5.2.4 RELATIONSHIP BETWEEN ST POTENTIAL DISTRIBUTIONS AND 

RMBF IN MILD AND SEVERE ISCHAEMIA IN EITHER LAD OR LCX 

AREA 

RMBF were measured before and after 20min of ischaemia in every one-third layer 

of the heart. RMBF distribution image maps were plotted and combined with ST 

potential distribution contour maps. Epicardial and subepicardial ST potential 

distribution maps were combined with maps of RMBF of the outer one-third layer; 

intramyocardial ST potential distribution maps of the mid one-third layer were 

combined with maps of RMBF of the mid one-third layer; Subendocardial and 

endocardial ST potential distribution maps were combined with maps of RMBF of 

the inner one-third layer. 

Fig. 5.10 and Fig. 5.11 showed that RMBF in the ischaemic region was lower than 

that in the non-ischaemia region, and RMBF in the ischaemic area decreased when 

the severity of ischaemia increased. 

In mild ischaemia, epicardial ST depression scattered on the surface of the heart and 

had no relationship to the ischaemic area; endocardial and intramyocardial ST 

elevation occurred in area of reduced RMBF, intramyocardial ST depression occurred 

at the boundary of the ischaemic and nonischaemic areas. 

In sever ischaemia, ST elevation in different layers occurred in the low blood flow 

areas, while ST depression in different layers occurred in relatively high blood flow 

areas (Fig. 5.10 and Fig. 5.11). 

174 



CHAPTER FIVE 

ischaemia-30%LAD occlusion ischaemia-70%LAD occlusion 

epicard ium epicardium 

subepicardium subepicardium 

middle middle 

: 

subendocardium subendocardium 

endocardium endocardium 

Fig 5. J 0 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
ml/minlg) in different layers of the heart at 20min of mild and 20min of severe ischaemia in LAD ligation. 
From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner l 13 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted from data of one of the animals in group / . Contour interval is same as Fig 5.4. 
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ischaemia- 30%LCX occlusion ischaemia-70%LCX occlusion 

epicardium epicardium 

subepicardium subepicard ium 

middle middle 

: 

subendocardium subendocardium 

endocardium endocardium 

Fig. 5.11 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
mllminlg) in different layers of the heart at 20min of mild and 20min of severe ischaemia in LCX ligation. 
From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner 113 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted from data of one of the animals in group 2. Contour interval is same as Fig. 5. 6. 
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5.3 DISCUSSION 

The main fmding of this study is that the ST distribution patterns of intramyocardium 

and endocardium were quite similar in mild and severe ischaemia, and the ST 

distribution patterns of epicardium were different, i.e., in severe ischaemia, apart from 

ST depression, minor ST elevation also occurred. However, when ischaemia became 

full thickness, the ST distribution pattern was totally different. 

The present results showed that in both mild and severe subendocardial ischaemia, 

both ST elevation and ST depression coexisted, ST elevation appeared in the 

ischaemic area, with the maximal magnitude occurred in the ischaemic centre; ST 

depression appeared in the non-ischaemic area. However, when the ischaemia 

became full thickness, even though ST elevation still appeared in the ischaemic area 

and ST depression appeared in non-ischaemic area, the highest magnitude of both ST 

elevation and ST depression occurred on the ischaemic boundary (Fig. 5.4~Fig. 5.9). 

Occurrence of ischaemia is dependent on oxygen required and blood flow reserve of a 

particular organ, as well as the blood supply to that organ. The heart is one of the 

highest oxygen consumption organs, whereas, the cardiac blood flow reserve is 

relatively low. Any increase in the myocardial oxygen requirement will normally 

result in a proportional increase in coronary blood flow. In circumstances of coronary 

occlusion, blood supply to the heart is reduced. When oxygen requirement increases, 

the coronary blood supply fails to meet the needs of the heart muscle for oxygen and 

metabolic substrate. As a result, myocardial ischaemia may occur. The narrower the -

coronary artery is, the less blood supplies to the heart. The degree of subendocardial 

ischaemia increases as the degree of coronary artery obstruction increases (Ball and 

Bache, 1976; Bache et al., 1977). 

It is well known that the myocardial perfusion is heterogeneous. In experimental 

animals, subendocardium of left ventricle at rest consumes 10 to 30 percent more 

oxygen than the epicardium and has a proportionately higher blood flow (Hoffman, 

1978). However, when oxygen supply to the myocardium can't meet the requirement, 

cardiac ischaemia always begins from the subendocardium. The subendocardium is 

more likely to be compromised by ischaemia. With the increase of duration of 

coronary artery occlusion, a transmural wavefront of cell death progresses from 

subendocardium to epicardium (Reimer et al., 1977; Reier and Jennings, 1979). In the 

presence of low coronary artery perfusion and elevated myocardial oxygen demand, if 
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the collateral blood flow is low, the progression of the wavefront is accelerated when 
I 

myocardial ischaemia becomes severe. 

In the present study, two varying degrees of coronary artery blood flow reduction 

were performed: In mild coronary artery blood flow reduction group, coronary blood 

flow was reduced by 30% of the original flow; in severe coronary artery blood flow 

reduction group, coronary blood flow was reduced by 70% of the original flow. 

RMBF was measured in different layers of the left ventricular wall, i.e., im1er one­

third layer, mid one-third layer and outer one-third layer. The results showed that in 

the mild subendocardial ischaemic group, blood flow in the inner one-third layer 

decreased while blood flow in the mid and outer one-third layers remained 

unchanged. When coronary blood flow was reduced by 70% of the original flow, 

RMBF in every layer decreased. There were significant differences of RMBF in 

every layer between the mild ischaemic and severe ischaemic group, while endo/epi 

ratio between the mild ischaemic and severe ischaemic group had no significant 

difference. In both mild and severe subendocardial ischaemic groups, RMBF in 

endocardium was the lowest while RMBF in epicardium was the highest, with RMBF 

in mid layer being in between. 

The effects of ischaemic injury on mechanical function, membrane potential, 

metabolism, and ultrastructure are all reversible if the duration of ischaemia is short 

(Bayley et al., 1944; Jennings et al., 1960). Only when the ischaemia persists for 

longer periods of time, the affected cells become irreversibly injured. Jennings 

(Jennings et al., 1975) found that during mild ischaemia in dogs (coronary blood flow 

reduced to 50~60% of control), no irreversible injury would occur. Although dogs 

usually have tiny collaterals existing, which is quite different from sheep, the mild 

degree and brief duration of partial coronary artery ligation should not cause severe 

injury to the myocardium, especially after a stable period of at least 30min. the 

outcome of the second ischaemia would not be interfered by the initial ischaemia. 

In addition to a transmural flow gradient, there are also a lateral gradient in flow. This 

lateral gradient has been verified by high-speed cinematography of the surface of the 

heart following injection of tracers (Prinzmetal et al., 1948) and biochemical 

parameters (Sayen et al., 1958). However, unlike the gradual flow transition from the 

endocardium to the epicardium during subendocardial ischaemia, there was a sharp 

blood flow change from the ischaemic region to the nonischaemic region at the lateral 

boundary of the heart, producing a sharp lateral interface between the ischaemic and 
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normal regions (Li et al., 1998). Studies on transmural ischaemia also found a sharp 

lateral interface between the ischaemic and nonnal cells with severely ischaemic 

tissue lying adjacent to the normally well-perfused tissue (Reimer and Jennings, 

1979; Factor et al., 1981; Harken et al., 1981). In ischaemic pig hearts, 

transmembrane action potential recordings using floating microelectrodes also 

demonstrated a sharp and distinct transition from electrophysiologically abnormal to 

normal cells (Janse et al., 1979). 

Our results also showed this sharp blood flow transition from the ischaemic zone to 

nonischaemic zone in both mild and severe subendocardial ischaemia (Fig. 5.2 and 

Fig. 5.3). We expected that when mild subendocardial ischaemia was replaced by 

severe subendocardial ischaemia, the lateral boundary blood flow transition zone 

would move from ischaemic zone to nonischaemic zone, resulting in a large 

ischaemic area. However, this has not been found in our experiments. This might be 

explained as follows: the lack of collateral circulation in sheep makes ischaemia exist 

only in the area supplied by the culprited coronary artery and can not be compensate 

by other coronary artery supply; the mild and severe subendocardial ischaemia were 

produced by partially occluding the same site of the coronary artery at the proximate 

segment. Effort was tried to occlude the coronary artery at the proximal site as well as 

distal site, however, this was unsuccessful because of technique difficulties. 

The different epicardial ST potential distributions in mild and severe ischaemia led to 

a postulation that the current path might breakthrough towards the epicardium during 

severe subendocardial ischaemia. During severe ischaemia, RMBF in every layer 

decreased, while in mild ischaemia, only the subendocardial RMBF decreased. Thus, 

the middle and outer one-third layers of the left ventricle might have vital effect on 

the different epicardial ST potential distributions during mild and severe ischaemia. 

Recent study of transmural differences in electrical properties of cardiac cells showed 

three different layers of left ventricular wall: epicardial cells, ventricular M and 

endocardial cells (Antzelevitch et al., 1999; Dumaine and Antzelevitch, 2000; 

Antzelevitch, 2001). Ventricular M .and epicardial cells, but not endocardial cells, 

typically display action potentials with a prominent notch or phase 1, due to the 

presence of a large 4-aminopyridine (4-PA)-sensitive transient outward current Cito). 

Transmural differences in the magnitude of the Ito-mediated action potential notch 

give rise to a transmural voltage gradient. Accentuation of this gradient leads to the 

appearance of pathophysiological J waves, ST segment elevation and the 

development of ventricular tachycardia and fibrillation in experimental models of the 

Brugada syndrome as well as under conditions of acute ischaemia. Whether this 
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transmural voltage gradient will affect the spread of electrical current path need 

further elaborate research, and might be important to understand the cardiac current 

path in ischaemia. 

There were dipoles on intramyocardial layers during mild and severe ischaemia, and 

on epicardial during severe ischaemia, and there were also dipoles on each layer 

during full thickness ischaemia. We try to explain this by solid angle theory. 

According to solid angle model, the potential (<D) recorded at a specific site is as 

follows: 

<D = ill4n·LiVm·K 

Where .Q is the solid angle subtended by the ischaemic boundary at the electrode site, 

Li V m denotes the transmembrane potential difference of the normal and ischaemic 

regions, and K is a term correcting for differences in intracellular and extracellular 

conductivity and the occupancy of m'uch of the heart muscle by interstitial tissue. The 

electrocardiographically recorded potential is directly proportional to both .Q and 

Li V m· The polarity of .Q is positive or negative depending on whether an observer at a 

specific site views first the positive or negative side of the surface enclosed by the 

boundary (Bayley, 1958). Thus, this model predicts that ischaemia would cause ST 

elevation over the ischaemic area whereas ST depression would occur on the non­

ischaemic area. Our experimental model recorded potential distribution of dipoles all 

showed ST elevation over the ischaemic area, with ST depression occurred on the 

boundary of the ischaemic and non-ischaemic regions. Mild subendocardial 

ischaemia, severe subendocardial isc
1

haemia and full thickness ischaemia all showed 

the same results, which is consistent with the solid angle theo1y. 

In either mild or severe subendocardial ischaemia, the maximal intramyocardial ST 

elevation in present study occurred in the centre of the ischaemic area, the magnitude 

of ST elevation decreased gradually towards the ischaemic border (Fig. 5.5, Fig. 5.6, 

Fig. 5.8, Fig. 5.9), which is contrary to solid angle theory. However, in full thickness 

ischaemia, the maximal ST shift in each layer occurred on the ischaemic boundary, 

which was totally different with mild and severe ischaemia, and is consistent with the 

solid angle theory. As predicted by solid angle theory, when the solid angle .Q 

increases the recorded potential increases as well. 

In the circumstance of subendocardial ischaemia, the solid angle of an 

intramyocardial electrode should increase with the ischaemic area. Thus the boundary 

potential recorded by a specific intramyocardial electrode should be higher compared 
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to the central potential recorded at the same intramyocardial site. The former should 

have a larger solid angle than that of the central one. In a previous (Holland and 

Brooks, 1975) experimental ischaemia model of swine, Holland and Brooks' 

recorded a higher epicardial ST elevation in the central of a small size ischaemia and 

a lower epicardial ST elevation in the central of a large size ischaemia. Their 

ischaemia model was later verified by thioflavin S fluorescence that the ischaemic 

area was confluent and maximal in subepicardium, this is contrary to previous studies 

which suggested that subendocardium is vulnerable to ischaemia (Reimer et al., 1977; 

Reimer and Jennings, 1979; Jennings et al., 1985). Furthermore, in Holland and 

Brooks' animal experiment, epicardial potentials were recorded by one electrode 

fixed on a epicardial site, and central potentials of different ischaemic sizes were 

recorded by two experimental protocols. The similarity of ST distribution in mild and 

severe ischaemia might resulted from the same blood flow distributions in both 

groups, even though RMBF in severe ischaemic group was lower than that in mild 

ischaemic group. However, RMBF in full thickness ischaemia was not measured. On 

the basis of the solid angle theory, electrodes located near the border of the ischaemia 

would be expected to record potentials different from those recorded by more 

centrally located electrodes. In addi~ion, when the electrode moves away from the 

center, whether the potential decreases or increases depends on the size of the 

ischaemia. Thus, the relationship between ischaemic size and ST potential should be 

analyzed by multiple recording sites which should include not only the central 

ischaemic area but especially the ischaemic border as well. The discrepancy between 

our experimental results and their relationship with the theoretical deduction might be 

able to seek a solution by further modeling study. The solid angle theory is a "classic" 

theory for electrocardiograph, even though it has been recently ignored by growing 

insight in the essentially anisotropic nature of the ventricular myocardium, its role in 

source descriptions that relate directly to cardiac electrophysiology was re­

emphasized by Van Oosterom (2002). 
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CHAPTER SIX 

INTRAMYOCARDIAL ST SEGMENT POTENTIAL 
DISTRIBUTION IN ACUTE TRANSMURAL ISCHAEMIA 

ST segment elevation has been accepted as being a bona fide marker of acute 

transmural ischaemia. However, the origin and significance of ST segment depression 

in acute transmural ischaemia had long been controversial. It was recently found that 

ST depression always accompanied ST elevation in large size of acute transmural 

ischaemia whereas in small size of acute transmural ischaemia, ST depression was 

almost invisible (Li et al., 1999). This study was analysed from the data of epicardial 

and endocardial ST potential. From the previous chapters we know that the 

intramyocardial ST potential distributions were quite different from those on 

epicardium and endocardium, the data of ST potential from the intramyocardium 

might be essential to explain the significance of ST depression in acute transnmral 

ischaemia. In this chapter, epicardial, endocardial and intramyocardial ST potential 

distributions were recorded simultaneously in acute transmural ischaemia. 

6.1 MATERIALS AND METHODS 

6.1.1 EXPERIMENTAL ANIMALS AND PROTOCOLS 

A total of 6 (Polworth/Comeback cross) sheep weighing between 26~35kg of both 

genders were used. All the sheep were bred in the University of Tasmania's animal 

farm. Table 6.1 shows the groups of animals subjected to different experimental 

protocols. 

Table 6.1 Experimental protocol 

animal 

group number experimental protocol 

1 

2 

5 

4 

acute transmural ischaemia in LAD area. 

acute transmural ischaemia in LCX area. 
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group 1: Acute transmural ischaemia in LCX area (n=5). 

group 2: Acute transmural ischaemia in LAD area (n=4). 

CHAPTER SIX 

6.1.2 EXPERIMENTAL PROCEDURES AND ACUTE TRANSMURAL 

ISCHAEMIA 

Experimental procedures were the same as in chapter 4. Instead of partially occluding 

the coronary artery plus LA pacing, acute transmural ischaemic sheep model was 

made by ligating either LAD or LCX for 20min. One sheep developed ventricular 

fibrillation after l 5min of LAD occlusion, thus data recorded only for 15minutes. 

Two sheep in LAD group and one sheep in LCX group developed ventricular 

fibrillation caused by hypoxia during the early stage of the experiments, so no data 

were available in these three sheep. 

6.1.3 RMBF MEASUREMENT 

RMBF were measured as described in chapter 4. RMBF were measured before acute 

transmural ischaemia and at 15min after acute transmural ischaemia. 

6.1.4 POTENTIALS RECORDING AND MAP CONSTRUCTION 

Potentials recording and map construction are described as in chapter 3, chapter 4 and 

chapter 5. ST potentials were simultaneously recorded before and 5min, lOmin, 

l 5min, 20min after acute transmural ischaemia on epicardium, endocardium and three 

different depths of intramyocardium. (One sheep developed ventricular fibrillation 

after 15min of LAD occlusion, ST potentials were recorded before and 5min, lOmin, 

15min after its ligation). 
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6.2RESULTS 

6.2.1 HAEMODYNAMIC CHANGES IN ACUTE TRANSMURAL 

ISCHAEMIA 

Haemodynamic parameters as LVDP, LVSP, LAP and CAP were recorded during the 

whole process of experiments. 

Table 6.2 showed LVDP, LVSP, LAP and CAP recorded before and 15min after 

acute transmural ischaemia. The results showed that L VDP and LAP during acute 

ischaemia were significantly higher than that before ischaemia, L VSP and CAP 

during acute ischaemia were significantly lower than that before ischaemia (P<0.01). 

Table 6.2 Haemodynamic response to acute transmural ischaemia (n=6) 

baseline acute ischaernia 

LVDP,mmHg -8.83 +3.76 -0.33 +0.82* 

LVSP,mmHg 106.67+ 11.69 81.67+ 19.15* 

LAP,mmHg 2.21 +2.77 8.97+2.90* 

CAP,mmHg 85.83+8.87 61.50+ 15.32* 

L VDP: left ventricular diastolic pressure LAP: left atrial pressure 

LVSP: left ventricular systolic pressure CAP: carotid artery pressure 
I 

Compared to baseline: * P<O. 05. 
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6.2.2 RMBF CHANGES IN ACUTE TRANSMURAL ISCHAEMIA 

Table 6.3 and Fig. 6.1 illustrated that RMBF in every one-third layer of the heart and 

the endo/epi ratio at 15min after acute transmural ischaemia decreased significantly 

than that before ischaemia in ischaemic region (P<0.001). Table 6.4 and Fig. 6.2 

illustrated that RMBF and the endo/epi ratio in mid and inner one-third layers of the 

heart at l 5min after acute transmural ischaemia also decreased significantly than that 

of before ischaemia in non-ischaemic region (P<0.05); RMBF in outer one-third layer 

of the heart at l 5min after acute transmural ischaemia had no significant change 

compared with that of before ischaemia in non-ischaemic region (P>0.05), resulted in 

a decreased endo/epi ratio in non-ischaemic region (P=0.05). 

Table 6.3 RMBF response to acute transmural ischaemia in ischaemic area (11=6) 

baseline acute ischaemia 

sheep 

No epi mid endo trans ratJ.o epi mid en do trans ratio 

1 0.928 0.946 0.962 0.945 1.037 0.216 0.202 0.192 0.203 0.889 

2 0.702 0.767 0.879 0.783 1.252 0.295 0.226 0.180 0.234 0.610 

3 0.753 0.796 0.836 0.795 1.110 0.235 0.195 0.161 0.197 0.685 

4 0.596 0.612 0.630 0.613 1.057 0.191 0.178 0.166 0.178 0.869 

5 0.694 0.745 0.781 0.740 1.125 0.269 0.200 0.136 0.202 0.506 

6 0.539 0.567 0.600 0.569 1.113 0.285 0.211 0.162 0.219 0.568 

mean 0.702 0.739 0.781 0.741 1.116 0.249 0.202 0.166 0.206 0.688 

SD 0.135 0.136 0.142 0.136 0.075 0.041 0.016 0.019 0.019 0.159 

P value 0.0002 0.0002_ 0.0001 0.0002 0.0005 

epz: RMBF in outer one-third layer of LV wall mzd: RMBF in middle one-third layer of LV wall 

endo RMBF in mner one-tlurd layer of LV wall trans RMBF mfull thickness of LVwall 

ratio: ratio of RMBF of inner one-third layer and outer one-third layer of LVwall 
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Table 6.4 RMBF response to acute transmural ischaemia in non-ischaemic area 

(n=6) 

baseline acute ischaemia 

sheep 

No epi mid en do trans ratio epi mid en do trans ratio 

1 0.870 0.892 0.910 0.891 1.046 0.770 0.760 0.745 0.758 0.968 

2 0.665 0.741 0.805 0.737 1.211 0.614 0.602 0.584 0.600 0.951 

3 0.726 0.764 0.804 0.765 1.107 0.657 0.640 0.612 0.636 0.932 

4 0.715 0.733 0.750 0.733 1.049 0.640 0.614 0.598 0.617 0.934 

5 0.796 0.840 0.893 0.843 1.122 0.680 0.655 0.660 0.665 0.971 

6 0.539 0.573 0.600 0.571 1.113 0.498 0.482 0.490 0.490 0.984 

mean 0.719 0.757 0.794 0.756 1.108 0.643 0.626 0.615 0.628 0.957 

SD 0.113 0.109 0.112 0.110 0.060 0.089 0.090 0.085 0.088 0.021 

P value 0.231 0.047 0.012 0.050 0.001 

epi: RMBF in outer one-third layer of LV wall mid RMBF 111 middle one-third layer of LV wall 

endo: RMBF in mner one-tlzzrd layer of LV wall !rans: RMBF 111 full thickness of LV wall 

ratio: ratio of RMBF of inner one-third layer and outer one-tlurd layer of LV wall 
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Fig. 6.1 RMBF distribution in different layers of the heart and endo/epi 

ratio before and at J 5min afte r acute ischaemia in the ischaemic area 

(see Table 6. 2 for abbreviation). 
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Fig. 6.2 RMBF distribution in different layers of the heart and endo/epi 

ratio before and at l 5min after acute ischaemia in the non-ischaemic 

area (see Table 6.3 for abbreviation). 
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6.2.3 ST POTENTIAL DISTRIBUTION IN ACUTE TRANSMURAL 

ISCHAEMIA 

6.2.3.1 ST potential distributions in acute transmural ischaemia in LAD ligation 

Fig. 6.3 showed ST potential distributions at different layers of the heart before and 

15min after total LAD occlusion. The epicardial ST potential distributions showed 

that ST elevation occurred on the acute ischaemic region while ST depression 

occurred on the non-ischaemic region. Similar ST potential distribution occurred in 

different layers of intramyocardium, with the magnitude of ST elevation and ST 

depression higher than that on epicardium. Endocardial ST elevation occurred on the 

ischaemic region, while endocardial ST depression occurred on the non-ischaemic 

region, which was different from that of during subendocardial ischaemia. In 

subendocardial ischaemia, only ST elevation appeared, and mostly on the ischaemic 

region. The highest magnitude of maximal and minimal ST potential occurred on the 

boundary of the ischaemic and non-ischaemic areas (Fig. 6.4). 
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control ischaemia 

epicardium epicardium 

subepicardium subep1cardium 

middle middle 

subendocardium subendocardium 

endocardium endocardium 

Fig. 6. 3 ST potential dzstributions in different layers of the heart before and at l 5min of 
acute transmural ischaemia of LAD ligation. The thickest solid lines reflect position of the 
coronary arteries, the thick solid lines reflect zero potential, the thin solid and the dashed 
lines indicate ST elevation and ST depression respectively, with the occluded arteries 
indicated by bars across the coronmy arteries. Maps are plotted from data of one of the 
animals in group 1. Contour interval=0.5mV. 189 



control 

epicardium 

subepicardium 

middle 

subendocardium 

endocardium 

CHAPTER SIX 

acute ischaemia-LAD ligation 

II 

epicardium 

II 

subepicardium 

II 

middle 

II 

subendocardium 

II 

endocardium 

Fig. 6. 4 Imaging view of ST potential distributions in different layers of the heart before 
and at 15min of acute ischaemia in LAD area. The intensities of the shade indicate the 
quantity of ST potentials. The thfckest solid lines reflect the position of the coronary 
arteries, with the occluded arteries indicated by bars across the coronary arteries. Maps 
are p lotted from data in Fig. 6. 3. 190 
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6.2.3.2 ST potential distributions in acute transmural ischaemia of LCX ligation 

ST potential distributions in acute transmural ischaemia of LCX ligation were quite 

similar to that of LAD ligation. Fig. 6.5 showed the ST potential distributions at 

different layers of the heart before and at l 5min after total LCX occlusion. On the 

epicardium and three different layers of intramyocardium, ST elevation occurred on 

the acute ischaemic region while ST depression occurred on the non-ischaemic 

region. ST elevation occurred on endocardium of the ischaemic region, while ST 

depression occurred on endocardium ofnon-ischaemic region. The highest magnitude 

of maximal and minimal ST potential occurred on the boundary of the ischaemic and 

non-ischaemic areas (Fig. 6.6). 
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control ischaemia 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

subendocardium subendocardium 

endocardium endocardium 

Fig. 6. 5 ST potential distributions in different layers of the heart before and at J 5min of 
acute transmural ischaemia of LCX ligation. The thickest solid lines reflect position of the 
coronary arteries, the thick solid lines reflect zero potential, the thin solid and the dashed 
lines indicate ST elevation and ST depression respectively, with the occluded arteries 
indicated by bars across the coronary arteries. Maps are plotted from data of one of the 
animals in group 2. Contour interval=0.5mV. 192 
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control acute ischaemia-LAD ligation 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

subendocardium subendocardium 

endocardium endocardium 

Fig. 6. 6 Imaging view of ST potential distributions in different layers of the heart before 
and at 15min of acute ischaemia in LCX area. The intensities of the shade indicate the 
quantity of ST potentials. The thickest solid lines reflect the position of the coronary 
arteries, with the occluded arteries indicated by bars across the coronary arteries. Maps 
are plotted from data in Fig. 6. 5. 193 
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6.2.4 TIME COURSE OF ST POTENTIAL DISTRIBUTIONS IN ACUTE 

TRANSMURAL ISCHAEMIA 

6.2.4.1 Time course of ST potential distributions in acute transmural ischaemia 

of LAD ligation 

ST potential distributions were recorded before, 5min, 1 Omin, l 5min and 20min after 

acute transmural ischaemia of LAD ligation. 5 minutes after acute ischaemia, ST 

elevation and ST depression appeared on every layer of the heart, with maximal and 

minimal ST potential occurred on the ischaemic and non-ischaemic boundary. 10 to 

15 minutes after acute ischaemia, the magnitude of ST shifts reached the highest peak, 

and then decreased with the development of ischaemia (Fig. 6.7.1 and Fig. 6.7.2). 

194 



CHAPTER SIX 

epicardium endocardium 

control control 

1schaemia 5min ischaem1a 5mm 

ischaem1a 1 Omm ischaemia 1 Om1n 

1schaemia 15min ischaem1a 15min 

-~\ 
ischaemia 20mm ischaemia 20min 

Fig. 6. 7.1 ST potential distributions in epicardium and endocardium at control and at 
various time periods in acute transmural ischaemia of LAD ligation. The thickest solid 
lines reflect the position of coronmy arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 
occluded arteries indicated by bars across the coronary arteries. Maps are plotted from 
data of one animal.from group I. Contour interval=0.5mV. 195 



CHAPTER SIX 

subepicardium middle layer subendocardium 

control control control 

ischaemia 5min ischaemia 5mm ischaem1a 5min 

ischaemia 10min ischaem1a 10mm ischaemia 10min 

ischaem1a 15min ischaem1a 15min ischaemia 15min 

ischaemia 20min ischaemia 20min ischaemia 20min 

Fig. 6. 7.2 ST potential distributions in different depth of intramyocardium at control and 
at various time periods in acute transmural ischaemia of LAD ligation. The thickest solid 
lines reflect the position of coronary arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 
the occluded arteries indicated by bars across the coronary arteries. Maps are plotted 
from the data of one animal from group I. Contour interval=0.5mV. 196 
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6.2.4.2 Time course of ST potential distributions in acute transmural ischaemia 

of LCX ligation 

ST potential distributions were recorded before, 5min, lOmin, 15min and 20min after 

acute transmural ischaemia of LCX ligation. Compared to acute LAD ligation, 

maximal magnitude of ST shifts in acute LCX ligation occurred earlier. 5 to 10 

minutes after acute ischaemia, highest magnitude of ST elevation and ST depression 

appeared on every layer of the heart, with ST elevation occurred in the ischaemic 

area, ST depression occurred in the non-ischaemic area, and maximal and minimal 

ST potential occurred on the ischaemic and non-ischaemic boundary. As the 

ischaemia developed, the magnitude of ST elevation and ST depression decreased 

(Fig. 6.8.1 and Fig. 6.8.2). 
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epicardium endocardium 

control control 

ischaemia 5min ischaemia 5min 

ischaemia 1 Omin ischaemia 1 Omin 

ischaemia 15min ischaemia 15min 

ischaem1a 20min ischaemia 20min 

Fig. 6. 8.1 ST potential distributions in epicardium and endocardium at control and at 
various time periods in acute transmural ischaemia of LCX ligation. The thickest solid 
lines reflect the position of coronary arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 
the occluded arteries indicated by bars across the coronary arteries. Maps are plotted 
from data of one animal from group 1. Contour interval=0.5mV. 198 
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subepicardium middle layer subendocardium 

control control control 

ischaemia Sniin ischaemia 5min ischaemia Smin 

ischaemia 1 Omin ischaemia 1 Omin ischaemia 1 Omin 

ischaemia 1 Smin ischaemia 15min ischaemia 1 Smin 

ischaemia 20min ischaemia 20min ischaemia 20min 

Fig. 6. 8. 2 ST potential distributions in different depth of intramyocardium at control and 
at various time periods in acute transmural ischaemia of LCX ligation. The thickest solid 
lines reflect the position of coronary arteries, the thick solid lines indicate zero potential, 
the thin solid and dashed lines indicate ST elevation and ST depression respectively, with 
the occluded arteries indicated by bars across the coronmy arteries. Maps are plotted 
from the data of one animal from group 1. Contour interval=O. 5m V l 99 



CHAPTER SIX 

6.2.5 RELATIONSIDP BETWEEN ST POTENTIAL DISTRIBUTIONS AND 

RMBF IN ACUTE TRANSMURAL ISCHAEMIA 

6.2.5.1 Relationship between ST potential distributions and RMBF in acute 

transmural ischaemia of LAD ligation 

RMBF were measured before and after l 5min of acute transmural ischaemia in every 

one-third layer of the heart. RMBF distribution image maps were plotted and 

combined with ST potential distribution contour maps. Epicardial and subepicardial 

ST potential distribution maps were combined with maps of RMBF of the outer one­

third layer; intramyocardial ST potential distribution maps of the mid one-third layer 

were combined with maps of RMBF of the mid one-third layer; Subendocardial and 

endocardial ST potential distribution maps were combined with maps of RMBF of 

the inner one-third layer. Fig. 6.9 illustrated that before acute transmural ischaemia, 
' 

RMBF in every layer had an even distribution over the whole ventricle; there were no 

ST potential drift. l 5min after acute transmural ischaemia, RMBF in the ischaemic 

region was significantly lower than that of the non-ischaemic region, ST elevation 

occurred in lower RMBF region every layer of the heart, ST depression occurred at 

the boundary of the ischaemic and non-ischaemic areas in every layer of the heart. 
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control ischaemia 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

: 

subendocardium subendocardium 

endocardium endocardium 

Fig. 6.9 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
ml/minlg) in different layers of the heart at control and at l 5min of acute transmural ischaemia of LAD 
ligation. From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer l 13 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner l 13 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted.from data of one of the animals in group 1. Contour interval is same as Fig. 6.3. 
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6.2.5.2 Relationship between ST potential distributions and RMBF in acute 

transmural ischaemia of LCX ligation 

Measurement and maps construction of RMBF were similar to that of LAD ligation. 

RMBF distribution image maps were combined with ST potential distribution contour 

maps in the same way as in LAD ligation. Fig. 6.10 illustrated that before acute 

transmural ischaemia, RMBF in every layer had an even distribution over the whole 

ventricle, there were no ST potential drift. I 5min after acute transmural ischaemia, 

RMBF in the ischaemic region was significantly lower than that of the non-ischaemic 

region, ST elevation occurred in every layer of the heart with reduced RMBF, ST 

depression occurred at the boundary of t@ ischaemic and non-ischaemic areas in 

every layer of the heart. 
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control ischaemia 

epicardium epicardium 

subepicardium subepicardium 

middle middle 

subendocard ium subendocardium 

endocardium endocardium 

Fig. 6. l 0 Combination of ST potential distributions (contour lines) and RMBF distributions (shaded area, 
ml/minlg) in different layers of the heart at control and at l 5min of acute transmural ischaemia of LCX 
ligation. From top to bottom: 

Combination of epicardial ST potential distribution and RMBF distribution of outer 113 layer; 
Combination of subepicardial ST potential distribution and RMBF distrbution of outer 113 layer; 
Combination of mid layer ST potential distribution and RMBF distribution of mid 113 layer; 
Combination of subendocardial ST potential distribution and RMBF distribution of inner 113 layer; 
Combination of endocardial ST potential distribution and RMBF distribution of inner 113 layer. 

The intensities of the shade indicate the quantity of flow. The thickest solid lines reflect the position of the 
coronary arteries, the thick solid lines indicate zero potential, the thin solid and the dashed lines indicate ST 
elevation and ST depression respectively, with the occluded arteries indicated by bars across the coronary 
arteries. Maps are plotted.from data of one of the animals in group 2. Contour interval is same as Fig. 6.5. 
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6.2.5.3 Correlation between ST potential shift and RMBF in acute transmural 

ischaemia 

RMBF was measured in the inner one-third layer, mid one-third layer and outer one­

third layer of the left ventricular wall at 15min of acute myocardial ischaemia. ST 

potentials were recorded from epicardium, subepicardium, mid layer of left 

ventricular wall, subendocardium and endocardium. The relationships between the 

mean RMBF and the mean ST potential from the same region at 15min after acute 

ischaemia were shown in Fig. 6.11. 

Panel A showed the relationship between epicardial ST potential shift and RMBF of 

the outer one-third layer of the left ventricular wall. Panel B showed the relationship 

between subepicardial ST potential shift and RMBF of the outer one-third layer of the 

left ventricular wall. Panel C showed the relationship between mid layer ST potential 

shift and RMBF of the mid one-third layer of the left ventricular wall. Panel D 

showed the relationship between subendocardial ST potential shift and RMBF of the 

inner one-third layer of the left ventricular wall. Panel E showed the relationship 
I 

between endocardial ST potential shift and RMBF of the inner one-third layer of the 

left ventricular wall. 

All the results showed that ST elevation occuned on the area of reduced RMBF, and 

ST depression occurred on the relatively high RMBF area. However, when ST 

depression was correlated with RMBF in the non-ischaemic area, it showed no 

significant relationship (r-0.004~0.145, P>0.05) (Figures were not shown). 

To further understand ST depression in acute myocardial ischaemia, the relationship 

between epicardial, subepicardial, mid layer and subendocardial ST depression and 

subendocardial RMBF at 15min of ischaemia in the non-ischaemic area were 

analysed (Fig. 6.12). Although it showed a positive relationship between ST 

depression of different layer and subendocardial RMBF, the relationship had no 

statistical significance. 
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Fig. 6.11 Relationship between ST potential shift and RMBF in different LV layer at 

15min of acute myocardial ischaemia. 
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Fig. 6.12 Relationship between epicardial, subepicardial, mid layer and 

subendocardial ST depression and RMBF of the inner one-third layer of the LV 

wall at 15min of acute myocardial ischaemia in the non-ischaemic area 

(r=0.02~0.173, P>0.05). 
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6.2.6 RELATIONSHIP BETWEEN ST ELEVATION AND ST DEPRESSION 

Linear correlation analysis was used to examine the relationship between ST 

elevation and ST depression in every layer of the heart. Fig. 6.13 showed that there 

were significant negative correlation between mean ST depression and mean ST 

elevation in different layer of the heart (r=0.386~0.684, P<0.05~0.001). 

The results suggested that ST depression over the non-ischaemic area during acute 

myocardial ischaemia was a result of ST elevation over the ischaemic area. 
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Fig. 6.13 Relationship between mean ST elevation over the ischaemic area and mean 

ST depression over the non-ischaemic area in eve1y layer of the heart 

(r=0.386~0.684, P<0.05~0.001). 

208 



CHAPTER SIX 

6.3 DISCUSSION 

6.3.1 HAEMODYNAMIC RESPONSE IN ACUTE MYOCARDIAL 

IS CHAE MIA 

Clinically, acute coronary syndromes refer to acute obstruction of coronary artery by 

abrupt rupture of plaque. In the present study, one of the coronary artery was ligated 

for 20min, which had the same effect as an acute coronary syndrome. The complete 

occlusion of a coronary artery typically leads to a well described sequence of events. 

There is rapid decline in myocardial oxygen tension, accompanied by loss of 

contractile performance; the affected area appears cyanotic and bulging, and the 

occlusion of the coronary artery further leads to a large zone of necrosis involving the 

full or nearly full thickness of the ventricular wall in the myocardial bed subtended by 

the affected coronary artery. The ultrastructure changes in cardiac muscle in 

experimental infarction following ligation of a coronary artery are noted within 

20min, which consist of reduction in the size and number of glycogen granules, 

intracellular oedema, and swelling and distortion of the transverse tubular system, the 

sarcoplastic reticulum, and the mitochondria. Early after the onset of ischaemia, 

contractile dysfunction in ischaemic zone is observed which is believed to be due in 

part to the shortening of the action potential duration, reduced cytosolic free calcium 

levels, and intracellular acidosis. Four abnormal contraction patterns develop in 

sequence: (1) dyssynchrony (i.e., dissociation in the time course of contraction of 

adjacent segments), (2) hypokinesis (reduction in the extent of shortening), (3) 

akinesis (cessation of shortening), and (4) dyskinesis (paradoxical expansion, systolic 

bulging) (Swan et al., 1972; Forrester et al., 1976). Myocardial contractile function in 

the non-ischaemic zone is also reduced. 

When a sufficient quantity of myocardium undergoes ischaemic injury, it could result 

in left ventricular pump function depression, reduction of cardiac output, stroke 

volume, blood pressure and peak dp/dt, and increase of end-systolic volume; these 

will enventually cause elevation of left ventricular end-diastolic pressure and volume. 

Haemodynamic indexes were monitored during the whole process of present 
' 

experiments. Our results showed that left ventricular end-diastolic pressure and left 

atrial pressure increased significantly during acute ischaemia, while left ventricular 

systolic pressure and carotid artery pressure decreased significantly during ischaemia. -

The systolic and diastolic myocardial dysfunction causes deterioration circle of 

myocardial dysfunction if the ischaemia remains unattended. 
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6.3.2 RMBF IN ACUTE MYOCARDIAL ISCHAEMIA 

Immediately after a coronary artery ligation and cessation of coronary artery blood 

flow, the RMBF in every layer of the heart begin to decrease, especially in 

subendocardial layer which has a higher energy requirement (Dunn and Griggs, 

1975). Studies revealed that the ovine left ventricle is exclusively supplied by the left 

main coronary artery and its branches; the LAD supplies the anterior wall and the 

apex, and the anterior two-thirds of the septum; the LCX supplies the remainder of 

the left ventricle (Markovitz et al., 1989). In contrast to other mammalian species, the 

ovine heart lacks an intrinsic coronary collateral circulation (Euler et al., 1983), and 

thus the ischaemic size and the transmural extent are mainly determined by the size of 

the occluded vascular bed. Therefore, ~ither the LAD or LCX ligation would produce 

extensive ischaemia involving the myocardium supplied by the related coronary 
' artery. RMBF is an early and important indicator of ischaemia. It detects both the 

extent and location of ischaemia, and also reflects the degree of ischaemia. 

RMBF was measured in the inner one-third, mid one-third and outer one-third layers 
i 

of the left ventricular wall before and after 15min of either LAD or LCX ligation in 

present study. During acute ischaemia, RMBF of every layer in the ischaemic area 

significantly decreased, especially that in the inner one-third layer, which was 

represented by decreased endo/epi ratio. RMBF of each layer in the non-ischaemic 

area also slightly decreased; again with subendocardial blood flow decreased the 

most. ST elevation occurred on each layer in the areas with reduced RMBF, and ST 

depression occurred on each layer in the relatively high RMBF area. 

6.3.3 EPICARDIAL, ENDOCARDIAL AND INTRAMYOCARDIAL ST 

POTENTIAL DISTRIBUTIONS DURING ACUTE MYOCARDIAL 

ISCHAEMIA 

Early ST mapping studies have been concentrated on the epicardial potential (Holland 

and Brooks, 1975; Kleber et al., 1978; Smith et al., 1979). The recording electrodes in 

these studies were distributed only in the ischaemic and the surrounding regions, the 

transition in electrophysiological measurements with respect to the distance from an 

ischaemic border were not examined and therefore the spatial features of the 

electrophysiological changes in the infarcted and non-infarcted areas were not 

estimated. A recent study explored ST potential distribution on both epicardium and 

endocardium during acute coronary artery ligation (Li et al., 1999). In Li's study, the 
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epicardial ST potentials were recorded from the whole surfaces of both left and right 

ventricles, the endocardial ST potentials were recorded from the entire endocardium 

of the left ventricle, and thus it is possible to record detailed signals from both the 

infarcted and the non-infarcted areas. However, intramyocardial ST potentials were 

not able to be recorded in those studies. Intramyocardial ST potential was recorded by 

Wendt (Wendt et al., 1974) as a part of study relate to various interventions effects on 

acute myocardial ischaemia, but only three intramyocardial electrodes each with one 

potential recording site were used in the ischaemic area. To map the ST potential 

distribution in acute myocardial ischaemia information from both the ischaemic and 

non-ischaemic areas are needed especially on the ischaemic boundary. 29 

intramyocardial needles, each having 3 electrodes with different depth were used in 

this study. The intramyocardial needles were scattered on the ischaemic and non­

ischaemic areas, with higher density on the ischaemic boundary. 

The present study recorded ST potential distributions simultaneously from 

epicardium, endocardium and three different layers of left ventricular wall in acute 

myocardial ischaemia of either LAD or LCX ligation. The results showed a strong 

dipole on each of the individual layer of the left ventricular wall in either coronary 

artery ligation. The epicardial potential distributions showed ST elevation over the 
; 

ischaemic area and ST depression ~ver the non-ischaemic area, with maximal ST 

potential occurred on the boundary of the ischaemic side and minimal ST potential 

occurred on the boundary of the non-ischaemic side (Fig. 6.4, Fig. 6.6). The typical 

epicardial potential distributions of ST changes of the three different coronary arteries 

damages correspond well to the derived epicardial maps of humans with acute 

infarction (Kilpatrick et al., 1989). The intramyocardial ST distributions were similar 

to that of the epicardium, except that the magnitude of ST elevation and ST 

depression was slightly higher than that of the epicardium (Fig. 6.4, Fig. 6.6). The 

distribution and magnitude of endocardial ST potential were also similar to that of the 

epicardium (Fig. 6.4, Fig. 6.6). Thus, in every layer of the heart after acute 

myocardial ischaemia, there was a dipole with ST elevation occurred on the 

ischaemic area and ST depression occurred on the non-ischaemic area (Fig. 6.11). 

The process of this dipole was also recorded for 20min after the coronary artery 

ligation (data was recorded for 15min in one of six animals due to occurrence of 

ventricular fibrillation, from which, the sheep died within 2min after ventricular 

fibrillation). During LAD ligation, ST elevation and ST depression appeared on every 

layer of the heart after 30 seconds of LAD ligation (This is not shown on the graph. 

Fig. 6.7.1 and Fig. 6.7.2 showed ST potential distributions after 5min of LAD 
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ligation). 10 to 15min after LAD ligation, the absolute magnitude of ST elevation and 

ST depression reached the highest value, and then decreased with the progression of 

ischaemia. During LCX ligation, maximal and minimal magnitude of ST potentials 

occurred slightly earlier than that of during LAD ligation, the highest absolute 

magnitude of ST elevation and ST depression on each layer occurred 5 to 1 Omin after 

LCX ligation, and then decreased (Fig. 6.8.1 and Fig. 6.8.2). 

Previous studies showed that following ligation of a coronary artery, epicardial ST 

elevation occurred within 30 to 60 seconds, and tended to reach a maximum in 5 to 

lOmin (Rakita et al., 1954; Ekmekci et al., 196la; Li et al., 1999). Ligation of either 

LAD or LCX resulted in a powerful electrical dipole with ST elevation over the 

ischaemic region and ST depression over the non-ischaemic region (Li et al., 1999). 

Early experimental work (Rakita et al., 1954) reported "reciprocal" ST depression in 

leads taken from the posterior wall of the heart following the ligation of the LAD. 

Posterior wall ST depression was also observed following LAD occlusion in an 

isolated, perfused rabbit heart (Brody et al., 1973) and in an in-situ baboon model 

(Crawford et al., 1984). However, Kleber's work (Kleber et al., 1978) showed 

uniform ST elevation over the infracted region and little change over the border 

region following the LAD ligation in the isolated pig heart. The different results may 

be due to the lack of the epicardial electrodes in the non-infarcted region in this study 

(Kleber et al., 1978). 

An early study of mapping the entire surface of the endocardium of left ventricle also 

showed an electrical dipole after ligation of either LAD or LCX. This endocardial 

electrical dipole had the similar distribution to the simultaneously recorded epicardial 

ST potential (Li et al., 1999), but was quite different from those of the endocardial ST 

potentials in the subendocardial ischaemia (Li et al., 1998). There was little 

infomiation from literature about intramyocardial ST potential mapping. In Wendt's 

study (Wendt et al., 1974), intramyocardial ST potentials were recorded from three 

different sites in the ischaemic area which showed a highest ST elevation on the 

ischaemic boundary, the magnitude of ST elevation subsided in the ischaemic center. 

This was similar to present results. However, no ST potential information from non­

ischaemic area was recorded in Wendt's study. 

6.3.4 ST DEPRESSION IN ACUTE MYOCARDIAL ISCHAEMIA 
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The present study showed exclusively ST depression over the non-ischaemic area in 

different layers of the left ventricular wall after acute coronary artery ligation. ST 

shift in acute myocardial ischaemia are attributed to injury currents flowing between 

the ischaemic area and the normal myocardium (Kleber et al., 1978; Samson and 

Scher, 1960); electrodes directly overlying the injured zones usually recorded ST 

elevation (Kleber et al., 1978; Samson and Scher, 1960), which was believed to be 

resulting from intracellular action potential change during ischaemia (Samson and 

Scher, 1960). However, electrocardiographic ST depression associated with acute 

myocardial infarction has not been explained satisfactorily. Two mechanisms are 

generally discussed. Firstly, ST depression may reflect reciprocal changes of the ST 

elevation. Secondly, it may also be produced by added ischaemia of adjacent 

myocardium. Many studies have suggested that ST depression was an indicator of a 

poor prognosis (Shah, 1980; Billadello et al., 1983; Mukharji et al., 1984; 

Haraphongse et al., 1984; Kilpatrick et al., 1989; Bates et al., 1990). Others 

considered that ST depression was only "reciprocal" to ST elevation (Wolferth et al., 

1945; Putini et al., 1993; Fletcher et al., 1993; Stevenson et al., 1993 and 1994; 

Birnbaum et al., 1994). 

According to classic electrocardiographic theory, ST depression should be expected 

during acute myocardial ischaemia as a "reciprocal" change of ST elevation. Our 

results showed exclusively ST depression over the non-ischaemic area and ST 

elevation over the ischaemic area in each individual layer of the left ventricular wall 

following acute coronary artery ligation, and the. ST depression corresponded well 

with the ST elevation (Fig. 6.13). The significant positive relationship between the 

mean ST depression over the non-ischaemic area and the mean ST elevation over the 

ischaemic area suggested that ST depression in acute myocardial ischaemia is a 

reciprocal change of ST elevation. 

Ferguson (Ferguson et al., 1984) performed coronary angiography on a group of 

patients with acute myocardial infarction. Patients with concomitant ST depressions 

in inferior ECG leads had similar degrees of anterior segmental wall motion 

abnormalities when compared with patients without ST depression, there were no 

abnormalities in the wall motion of the inferior or posterior myocardium. Furthermore, 

the extent of inferior ST depression correlate well with the degree of ST elevation in 

the anterior precordial leads, thereby suggested that the ST depression was an ECG 

phenomenon. However, other investigators (Lembo et al., 1986; Hlatky et al., 1985) 

suggested that inferior infarctions with anterior ST depression of O.lmV or more were 
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associated with a larger area of infarction, poorer residual left ventricular function, 

and a higher in-hospital and I-year mortality. The greater degree of left ventricular 

dysfunction observed in this subgroup may be the result of more extensive 

involvement of the inferior myocardium as well as the posterior and lateral walls 

(Gibson et al., 1982; Pierard et al., 1986; Ruddy et al., 1986). By analysing derived 

epicardial potential distribution patterns, Kilpatrick (Kilpatrick et al., 1989) found 

that epicardial electrical dipoles were present in patients with single vessel disease as 

well as in those with triple vessel disease and that the dipole predicted the death of 

those with single vessel disease. Further analysis showed that the degree of ST 

elevation and ST depression, and the negative ST segment area voltage integral were 

significantly related to mortality. They concluded that the dipole reflects major 

subendocardial ischaemia in other territories and suggested that this ischaemia be a 

result of mechanical stress secondary either to the size of the inferior infarction 

producing high wall stress in the remaining ventricle or to a mechanical dysfunction 

such as mitral regurgitation, ventricular septa! defect or cardiac rupture. 

A recent animal study showed that epicardial ST depression over the non-ischaemic 

area after acute coronary ligation correlated to the endocardial flow reduction (Li 

1997), suggesting that ST depression during acute myocardial ischaemia might reflect 

remote ischaemia secondary to a reduced perfusion pressure. However, conflicting 

results were recorded from Li's study (Li, 1997). Even though epicardial ST 

depression was considered to be caused by subendocardial ischaemia in non-infarcted 

area, endocardial ST depression was recorded on the non-infarcted region. In stead of 

predicted ST elevation, the endocardial ST potential distribution patterns were similar 

to that of the epicardial, i.e., a dipole formed by ST depression over the non-infarcted 

region and ST elevation over the infracted region. Furthermore, Li found that there 

was a good correlation between the magnitude of epicardial ST depression in the non­

infarcted regions and the magnitude of epicardial ST elevation in the infracted regions. 

They suggested that the epicardial ST depression was not purely secondary to 

subendocardial ischaemia of the non-infarcting myocardium. 

It seemed both classic ECG theory and experimental results could not explain ST 

depression during acute myocardial ischaemia. By constructing a concentric spheres 

model, Li and co-workers (1999) suggested that some basic balance between ST 

elevation and ST depression exist, the total current flowing out of the heart must flow 

back into the heart. The basic property of physics dictates that the overall current out 

of the heart must be zero; all ST balances between ST elevation and ST depression 
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are subject to this. The ST depression was part of the source, and the balance between 

elevation and depression was dependent on the zero line set by the requirement that 

the overall current from the heart was zero. Li (Li et al., 1999) suggested that any 

large infarction will have both ST elevation and ST depression generated at the 

ischaemic boundary on the epicardium. 

The present results also showed that there were an overall linear relationship between 

ST potential shift and RMBF in each individual layer of the left ventricular wall, i.e., 

ST elevation occurred on the area of low RMBF and ST depression occurred on the 

relatively high RMBF area. Nevertheless, when only ST depression correlated with 

RMBF in corresponded area, there was no significant relationship between ST 

depression and RMBF. This result suggested that ST depression is not a direct 

consequence of decreased RMBF. As we lmow, the endocardial RMBF decreased 

further than the epicardial RMBF in acute myocardial ischaemia in non-ischaemic 

area, we hypothesized that ST depression might relate to endocardial RMBF. 

However, our result did not show any statistical relationship between epicardial and 

intramyocardial ST depression and endocardial RMBF, which is contrary to Li's 

study (Li et al, 1999), (Fig. 6.12). 

Thus the intramyocardial and the endocardial potential distribution patterns in present 

study might also be explained by this proposal. According to Li's (Li et al., 1999) 

analysis, it is clear that the dipole in every layer of the heart reflected the overall size 

of the infarction. Because the overall current from the heart was zero, ST elevation is 

always expected to be accompanied by ST depression. Although additional ischaemia 

existed in remote region, this will also be constrained by the need to have the overall 

current from the heart be zero. The presence of additional ischaemia will probably 

increase the ST elevation as well as increase the ST depression. The intramyocardial 

ST potential distribution at present study supported Li's model analysis (Li et al., 

1999) and should be a clue for future study. 
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CHAPTER SEVEN CONCLUSION 

7.1 SUMMARY OF THE STUDY 

Subendocardial ischaemia 

1) Epicardial ST potential mappmg showed that the epicardial ST potential 

distributions were independent of the ischaemic region, whether they were in 

different animals or in the same sheep. 

2) The endocardial ST elevation occurred on the ischaemic area in either the LAD 

or LCX occlusion. When the LAD and LCX were occluded alternatively, ST 

elevation occurred alternately on the ischaemic surface. 

3) Intramyocardial ST potential distributions showed that the ST elevation occurred 

on the ischaemic centre, and the ST depression occurred on the boundary of the 

ischaemic and non-ischaemic areas, which is also in dependant of the ischeamic 

region. The distributions of ST potential in different intramural layers were quite 

similar. 

Transition from mild to severe subendocardial ischaemia 

4) Epicardial ST potential distributions in mild subendocardial ischaemia in either 

the LAD or LCX area showed similar pattern. Simultaneously recorded 

endocardial potential showed ST elevation related to the ischaemic area. 

Intramyocardial ST potential recording showed a dipole in different layers of the 

heart, with ST elevation occurring in the ischaemic centre and ST depression 

occurring on the boundary of the ischaemic and non-ischaemic areas. 

5) In severe subendocardial ischaemia of either LCX or LAD area, ST elevation 

occurred in the ischaemic area, ST depression appeared in the non-ischaemic area. 

Endocardial ST elevation in seve~e ischaemia occurred in the ischaemic region. 

6) When the severe ischaemia developed to full thickness, no matter which region 

was involved, there occurred a strong dipole in each layer of the heart, with ST 

elevation appeared in the ischaemic area, and ST depression appeared in the non­

ischaemic area. 

Acute myocardial ischaemia 

7) Similar ST potential distributions pattern presented in acute myocardial 

ischaemia, with strong dipoles occur on each of the individual layers of the left 

ventricular wall in either coronary artery ligation. 
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8) The ST potential distributions showed ST elevation over the ischaemic area and 

ST depression over the non-ischaemic area, with maximal ST potential occurring 

on the boundary of the ischaemic side and minimal ST potential occurring on the 

boundary of the non-ischaemic side. 

7.2 SUBENDOCARDIAL ISCHAEMIA MODEL 

The primary aim of this study is to detect the transmural ST potential distribution on 

the ischaemic boundary during subendocardial ischaemia and to give a clue to explain 

why electrical current flows in such a manner as to cause epicardial ST depression 

over the ischaemic boundary. 

A subendocardial ischaemic sheep model was produced by partially occluding the 

coronary artery together with pacing the left atrium at a rate of 180bpm in the 

anaesthetised sheep. Subendocardial ischaemia was produced in either the LAD area 

or the LCX area in different sheep, or in both LAD and LCX areas alternately in the 
I 

same sheep. Measurement of RMBF showed that partially occluding a coronary 

artery plus atrial pacing resulted in a significant decrease of RMBF in the 

subendocardium, represented by a de~reased endo/epi blood flow ratio. 

ST potential distributions were recorded from the epicardium, endocardium and 

three different layers of the intramyocardium. Epicardial and endocardial ST 

potentials were recorded in a previous study. Intramyocardial ST potentials were 

recorded by self-made intramyocardial needles. Each needle has three electrodes on 

it, which enable the recording of intramyocardial potentials from three different 

depth of the left ventricular wall. The results were as following: 

(1) Epicardial ST potential mapping showed that the epicardial ST potential 

distributions were independent of the ischaemic region, whether they were in 

different animals or in the same sheep. When ischaemia of different regions was 

produced alternately in the same animal, it showed similar epicardial ST potential 

distributions in ischaemia of various regions (r=0.769±0.135). This result was 

consistent with previous studies which suggested that epicardial ST can not localise 

the ischaemic region This explains the clinical difficulty in identifying stenosed 
I 

arteries from body surface ST depression. 
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(2) The endocardial ST elevation occurred on the ischaemic area in either the LAD or 

LCX occlusion. When the LAD and LCX were occluded alternatively, ST elevation 

occurred alternately on the ischaemic surface. 

(3) Intramyocardial ST potential recording showed dipoles in different layers of the 

left ventricular wall. Whichever coronary artery was occluded, or if both arteries were 

occluded in turn, it showed the ST elevation occurred on the ischaemic centre, and the 

ST depression occurred on the boundary of the ischaemic and non-ischaemic areas, 

the distributions of ST potential in different intramyocardial layers were quite similar. 

We hypothesize that the epicardial ST depression should be compensation for the 

endocardial ST elevation. The different potential distributions between the 

epicardium and intramyocardium leads us to a further hypothesis that there might be 

an electrical structure under the epicardium, this hypothesized subepicardial structure 

might have different electrical characters as to disturb the electrical current path. 

7.3 TRANSITION FROM MILD TO SEVERE SUBENDOCARDIAL 

ISCHAEMIA 

To further understand the intramyocardial path of ST potential during ischaemia, a 

series of experiments were performed to convert mild subendocardial ischaemia to 

severe, and eventually to full thickness ischaemia. Different degrees of coronary 

artery blood flow reduction were performed: In the mild coronary artery blood flow 

reduction group, coronary blood flow was reduced by 30% of the original flow; In 

severe coronary artery blood flow reduction group, coronary blood flow was reduced 

by 70% of the original flow; after severe ischaemia, the coronary artery was totally 

occluded, resulted in a full thickness ischaemia. RMBF was measured in three layers 

of the left v~ntricular wall during mild and severe ischaemia. ST potential 

distributions were recorded from epicardium, endocardium and three ·different layers 

of the intramyocardium. The results showed that: 

(1) In the mild subendocardial ischaemia group, blood flow in the inner one-third 

layer decreased significantly; in the severe subendocardial ischaemia group, blood 

flow in every layer decreased significantly. 

(2) Mild subendocardial ischaemia in either the LAD or LCX area caused similar 

epicardial ST potential distributions. Simultaneously recorded endocardial potential 
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showed ST elevation related to the area supplied by the culprit coronary artery. 

Intramyocardial ST potential recording showed a dipole in different layers of the 

heart, with ST elevation occurring in the ischaemic centre and ST depression 

occurring on the boundary of the ischaemic and non-ischaemic areas. 

(3) In severe subendocardial ischaemia of either LCX or LAD area, both ST elevation 

and ST depression occurred on the epicardium and different layers of 

intramyocardium, ST elevation appeared in the ischaemic area, with the maximal 

magnitude occurring in the ischaemic centre; ST depression appeared in the non­

ischaemic area, the magnitude of ST depression decreased towards the ischaemic 

boundary. Endocardial ST elevation in severe ischaemia occurred in the ischaemic 

reg10n. 

(4) When the ischaemia became full thickness, no matter which region was involved, 

there occurred a strong dipole in each layer of the heart. As in severe subendocardial 

isch~emia, ST elevation appeared in the ischaemic area, and ST depression appeared 

in the non-ischaemic area. However, the highest magnitude of both ST elevation and 

ST depression occurred close to the ischaemic boundary. 

The different epicardial ST potential distributions during mild and severe ischaemia 

led to a postulate that the current path might break through towards the epicardium 

during severe subendocardial ischaemia. During severe ischaemia, the RMBF in 

every layer decreased, while in mild ischaemia, only the subendocardial RMBF 

decreased. Thus, the middle and outer one-third layers of the left ventricle might have 

a vital effect on the different epicardial ST potential distributions during mild and 

severe ischaemia. 

The similarity of intramyocardial ST distributions in mild and severe ischaemia might 

result from the same blood flow distribution in both groups. Even though RMBF in 

every layer of the heart in severe subendocardial ischaemia was lower than that in 

mild subendocardial ischaemia, the RMBF distributions were the same. The different 

distributions of ST potential between severe and full thickness ischaemia are not 

easily explained. It might suggest that with the progress of ischaemia, the current path 

follows a regular way to spread out towards the epicardium. When the ischaemia 

becomes full thickness, a quantitative to qualitative transit occurs in this current path, 

resulting in a vital current path distortion. 
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7.4 ACUTE MYOCARDIAL ISCHAEMIA MODEL 

Another aim of this study was to investigate the electrophysiologic and 

pathophysiologic mechanism of ST depression occurring with ST elevation during 

acute myocardial ischaemia. Acute myocardial ischaemia was produced by totally 

occluding either the LAD or LCX. RMBF was measured in three layers of the left 

ventricular wall. ST potential distributions were also recorded simultaneously from 

epicardium, endocardium and three different transmural layers ofleft ventricular wall. 

The following results were obtained: 

(1) During acute myocardial ischaemia, RMBF of every layer in the ischaemic area 

significantly decreased. This was especially so in the inner one-third layer, which 

was represented by decreased endo/epi ratio. RMBF of each layer in the non­

ischaemic area also slightly decreased, again the subendocardial blood flow decreased 

the most. ST elevation occurred on. each layer in the area of low RMBF, and ST 

depression occurred on each layer in the area ofrelatively high RMBF. 

(2) The results of ST potential distributions showed a strong dipole on each of the 

individual layers of the left ventricular wall in either coronary artery ligation. The 

epicardial potential distributions showed ST elevation over the ischaemic area and ST 

depression over the non-ischaemic area, with maximal ST potential occurring on the 

boundary of the ischaemic side and minimal ST potential occurring on the boundary 

of the non-ischaemic side. The intramyocardial ST distributions were similar to that 

of the epicardium, except that the magnitude of ST elevation and ST depression was 

much higher than that of the epicardium. The distribution and magnitude of 

endocardial ST potential were also similar to that of the epicardium. 

The ST depression in acute myocardial ischaemia can not be explained by classical 

ECG theory. A concentric spheres model suggested that some basic balance between 

ST elevation and ST depression exists. According to this model, the total current 

flowing out of the heart must flow back into the heart. The basic property of physics 

dictates that the overall current out of the heart must be zero; all ST balances between 

ST elevation and ST depression are subject to this. Thus the ST potential distribution 

patterns in present study might be explained by this proposal. Because the overall 

current from the heart was zero, ST elevation is always expected to be accompanied 
i 

by ST depression. 
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