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Abstract 

Theoretically, there are a number of ways in which predator and prey can co-exist, 

including temporal and spatial partitioning and the presence and use of refuge 

habitats by prey. Whilst these factors have been shown to promote co-existence in 

well-studied, co-evolved predator and prey pairs, there has been a lack of applied 

research into how predator-prey theory fits when predators are introduced species. 

Understanding the mechanisms behind the success, or lack of, by native species 

when predators have been introduced, thus requires knowledge of whether the 

same factors promote co-existence, and contexts in which predation pressure is 

likely to be greatest on native species. 

This thesis examines the interactions of Galaxias auratus, a threatened galaxiid 

species that has shown unusual resilience to the predation pressure imposed by the 

introduced brown trout, in order to gain insight into the mechanisms that have 

assisted it in co-existing with an introduced piscivore that has adversely impacted 

other galaxiid populations. There has been a substantial reduction in the 

availability of complex habitats in the entire natural range of this species, 

prompting an investigation into the likely importance of these habitats in 

facilitating the co-existence of this unnatural predator-prey pair. 

An initial study on the feeding of G. auratus in the wild revealed it to be an 

efficient forager that feeds constantly, both day and night. This occurred whilst it 

appeared to undertake a diel shift in habitat use, and its daily ration was still 

comparable to other well-studied freshwater fishes, despite it using complex 
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habitats for some of this time. A laboratory experiment was conducted to examine 

this apparent diel switch between habitats, and test whether G. auratus 

behaviourally altered this pattern when predation risk was high. This confirmed 

that G. auratus uses complex habitats (macrophytes and rocks) during the day and 

open water during the night, but reduces its use of open water significantly when 

brown trout are near and predation risk is high. 

In order to determine whether this habitat use pattern and response to the 

predation risk imposed by brown trout was likely to promote co-existence of these 

species, two experiments were run to assess the potential foraging costs usually 

associated with using complex habitats, and the benefits to using such habitats in 

terms of reducing predation risk. The foraging of G. auratus was found not to be 

significantly reduced in complex habitats, but the risk of predation was 

substantially reduced. These results imply that the behaviour of G. auratus is 

"adaptive" and is likely to have contributed to its success with brown trout. These 

findings also suggest, however, that if the availability of macrophytes was 

severely reduced for this species, as is likely to continue in the future, the 

importance of predation pressure in determining the outcome of its interaction 

with trout is likely to substantially increase. 

The implications for other native species are that the importance of predation by 

introduced species is context-dependent, and that conservation must focus on 

maintaining contexts in which predation pressure is likely to be lessened. This 

includes conservation of important habitats that may mediate interactions between 

introduced predators and native prey. 
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also a co-author on two (Chapters 4 and 5) as she assisted in a substantial 

component of field and laboratory work for these. 
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Stuart-Smith RD, Barmuta LA, White RWG (2006). Nocturnal and diurnal 

feeding by Galaxias auratus, a lentic galaxiid fish. Ecology of Freshwater Fish 

15: 521-531. 

Stuart-Smith RD, White RWG, Barmuta LA (2007). A shift in the habitat use 

pattern of a lentic galaxiid fish: an acute behavioural response to an introduced 
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Chapter 1: Introduction 

Understanding how predator and prey can co-exist formed much of the early and 

major theoretical developments in community and population ecology (Solomon 

1949; Holling 1965). Early studies, including those by Rosenzweig and 

MacArthur (1963) and Sih (1987), established that habitat heterogeneity and, in 

particular, the presence of refuge habitats, promotes system stability. Whilst this 

theory has been thoroughly discussed in the literature (e.g. McNair 1986; Chesson 

and Rosenzweig 1991), a need for further applied research in this area has been 

highlighted by recent reviews (Sinclair et al. 1998; Ormerod 2002). Agrawal et al. 

(2007} discussed context-dependence of interaction strengths and have 

specifically identified the need for research into situations in which interactions 

(e.g. between predator and prey) are likely to be most important. These 

requirements for research may be particularly crucial and applicable for 

understanding the ecology of the galaxiid fishes of the Southern Hemisphere. 

The galaxiids have recently been labelled as a particularly vulnerable group of 

fishes due to a range of natural and anthropogenically-induced impacts 

(McDowall 2006), yet the ecology o~ many species remains poorly studied. 

Arguably, the most damaging impact on these small fishes has been the 

widespread introduction of salmonids to Southern Hemisphere fresh waters which 

has been linked to declines in ranges and abundances of many galaxiids 

(Cadwallader 1975a, 1975b; Tilzey 1976, Townsend and Crowl 1991; Flecker and 

Townsend 1994; Crook and Sanger 1998a, 1998b; Mcintosh 2000; Baigun and 

Ferriz 2003; McDowall 2003). Tasmania has 16 species of galaxiids, 11 of which 
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are listed as threatened by the Tasmanian Threatened Species Protection Act 

199 5. Introduced salmonids have been identified as a key threat to all these 

species (Hardie et al. 2006). 

The existing body of literature on predator-prey co-existence in freshwater fish 

includes some well-developed and tested theory on the influence of complex 

habitats, particularly with respect to the habitat use offish~s and its links with 

foraging efficiency and predation risk. Influential studies, such as those by 

Crowder and Cooper (1982), Werner et al. (1983), Werner and Hall (1988), Diehl 

(1988), and Persson and Eklov (1995), have identified the importance of habitat 

complexity in promoting predator-prey co-existence by reducing predation risk, 

but usually at a cost to the prey species in foraging success and growth. Werner 

and Hall (1988) demonstrated that bluegill sunfish (Lepomis macrochirus) were 

faced with a trade-off between predation risk and feeding (and consequently 

growth) rate when they shift between open water and vegetated habitats. Predation 

risk and diet of juvenile perch (Percafluviatilis) and roach (Rutilus rutilus) are 

also strongly influenced by habitat complexity (Persson and Eklov 1995). 

These and many other similar studies have tested theory with experiments using 

either bluegill sunfish in America, or perch and roach in Europe (e.g. Winfield 

1986; Savino and Stein 1989). These fishes evolved sympatrically with 

piscivorous fishes (largemouth bass, Micropterus salmoides, and adult perch, 

Percafluviatilis, respectively), so their responses to predation risk from these 

piscivores have had the opportunity for refinement through evolutionary 

processes. Many galaxiids, however, evolved in isolation from aggressive, mobile 
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piscivorous and competitive fishes (McDowall 1990; Townsend and Crowl 1991), 

and their responses to introduced predators may not be as stabilizing or 

predictable as those observed for bluegill sunfish or juvenile perch. Reebs (1999) 

pointed out that a lack of appropriate predator-avoidance behaviour may occur in 

populations that have not been in contact with particular predators. Before the 

introduction of trout, birds and eels were the major predators of many galaxiids. 

The predation pressure exerted by these predators, however, is likely to be much 

less pervasive to that of the much more aggressive and mobile trout, and the 

evolved behavioural responses of galaxiids to these predators should clearly be 

different. It is not known if a habitat-dependent trade-off in foraging success and 

predation risk actually occurs for galaxiids th~t occur with trout, and whether their 

behavioural responses to the predation risk imposed by these introduced 

piscivores promote co-existence (sensu Mills et al., 2004). 

Galaxias auratus: specific needs for research 

Galaxias auratus (Johnston) is a threatened galaxiid, listed as 'rare' under the 

Tasmanian Threatened Species Protection Act 1995, and 'vulnerable' under the 

national Commonwealth Environment Protection and Biodiversity Conservation 

Act 1999 due to its restricted distribution. It is endemic to Lakes Crescent and 

Sorell, associated wetlands and the upper Clyde River on the Tasmanian Central 

Plateau. This species is unusual because, despite the introduction of brown trout 

(Salmo trutta L) to these lakes in 1868, it has remained very abundant and occurs 

in higher densities than any of Tasmania's other land-locked galaxiids (A. 

Uytendaal, S.A. Hardie, R.W.G. White, unpublished data). 
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Despite the unusually high abundance of this species, which could easily lead to 

complacency about its long-term security, there have been recent, substantial 

changes to Lakes Crescent and Sorell, including a reduction in the availability of 

the habitats that may have enabled G. auratus to co-exist with trout so far. 

Consistently low water levels in these lakes from the 1990s onwards, and more 

frequent re-suspension events coupled with algal blooms, have resulted in the loss 

of the once-extensive in-lake macrophyte beds in Lakes Sorell (Uytendaal 2003), 

and the large areas of fringing wetland habitat have remained dry or disconnected 

from the lakes for extended periods (Heffer 2003). The only significant areas of 

rocky habitat in Lake Crescent have also been dewatered several times during 

recent years, leaving little refuge for G. auratus throughout the entire lake. By 

contrast, rocky patches of substrate are found throughout Lake Sorell, and much 

of the exposed shores of this lake are occupied by this habitat. Fig. 1 shows the 

relationship between the water levels and the availability of the wetland 

macrophyte habitat in both lakes, and the rocky habitat in Lake Crescent, and Fig. 

2 shows the extent of wetlands and limited stretches of rocky shoreline in Lake 

Crescent. 

Historically, these two lakes have had contrasting limnologies, leading Cheng & 

Tyler (1973) to term the situation a "limnological paradox". Lake Sorell has 

generally been a clear-water lake, with prominent vascular hydrophytes (i.e. 

macrophytes), sporadically high densities oflarge-bodied zooplankton (mostly 

Daphnia carinata), and infrequent algal blooms. By contrast, Lake Crescent is 

dominated by phytoplanktonic blooms, small-bodied zooplankton and has very 

-

limited cover of vascular hydrophytes. Since mid- to late 1990s, Lake Sorell 
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appears to have been oscillating between the alternative states (i.e. macrophyte-

dominated "clear water" v. phytoplankton-dominated ''turbid") that have been 

identified in recent limnological literature (Scheffer et al. 2001; Beisner et al. 

2003; Hargeby et al. 2004; Schroder et al. 2005). Continued excessive drawdown 

for irrigation and potable supply could very likely result in a full shift to a turbid 

phytoplankton-dominated state, where re-establishment of macrophyte beds 

would be hampered by self-stabilizing feedback mechanisms (Blindow et al. 

1993). 
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Fig. 1 Historic lake water levels (in metres above Australian Height Datum 
(ARD)) in Lake Sorell (a) and Lake Crescent (b).Blank regions in the solid line 
denote missing lake level data. Horizontal dashed lines show the levels at which 
the wetlands become disconnected in both lakes and the rocky shores are left dry 
in Lake Crescent. Figure taken from Hardie (2007). 
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Fig. 2 Map of Lake Crescent showing extent of the wetlands (darker grey) and the 
limited rocky shorelines (diagonal hatching). Figure taken from Hardie (2007). 

Restricting the availability of macrophyte habitats in these two lakes is likely to 

have a damaging effect on G. auratus, but, to date, there has been no research to 

determine the role that macrophyte habitats may play in allowing its co-existence 

with trout, and the likely future of this species in Lakes Crescent and Sorell if the 

current water level regime continues. The research reported in this thesis took 

advantage of the unique opportunity to explore the unexpected success of a 
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galaxiid that co-occurs with an introduced piscivore, whilst concurrently gaining 

insight into the potential future impacts of the recent habitat loss that has occurred 

in its entire natural range. Typically, such applied research is only conducted in 

cases when a native species is affected deleteriously (e.g. Swenson 1999; Labbe 

and Pausch 2000; Hamer et al. 2002), but this research took a novel, proactive 

approach, addressing research questions about a threatened species which has 

actually fared well, with an additional aim of providing information that will 

assist in understanding mechanisms that may contribute to the success, or lack of, 

of other species in the presence of an introduced predator. 

The ecology oflacustrine galaxiids has been relatively poorly studied, and further 

study should contribute to an understanding their importance in temperate 

Southern Hemisphere lakes, as well as identifying when and what management 

intervention is needed. Priorities for such purposes include understanding the 

importance of different habitats for each species, their reproduction, and 

interactions with predators and prey. Work by Hardie (2007) has highlighted the 

importance of complex habitats for the reproduction of G. auratus, but no data 

existed on its foraging and interactions with predators in the previously extensive, 

but now intermittently available macrophyte habitats of Lakes Crescent and 

Sorell. Such data could assist in understanding its past success in co-existing with 

trout and the potential consequences of the recent environmental changes for its 

future, and have been identified as a high priority for its conservation (Hardie et 

al. 2004). These data may also contribute to an understanding the likely 

importance of complex habitats for the conservation of other lentic galaxiids. 
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Hardie et al. (2006) and Townsend and Crowl (1991) have suggested the likely 

importance of habitat loss for galaxiid conservation, and the particular physical 

changes that have occurred in Lakes Crescent and Sorell (low water levels, high 

turbidity and changes in habitat loss) have also impacted the ecology of other 

freshwater fishes. Pyrovetsi and Papastergiadou (1992) reported that the loss of 

habitat diversity, including large areas of macrophyte habitat, in Lake Kerkini in 

Greece resulted in declines in fish diversity and abundance. Extreme turbidity has 

also been shown on many occasions to affect the ecology of freshwater fish 

(Sweka and Hartman 2001; Richardson and Jowett 2002; Zamor and Grossman 

2007). But despite many reports of the negative impacts of macrophyte loss and 

extreme turbidity, characteristics of the globally increasing problem of 

eutrophication of fresh waters, Diehl (1988) pointed out that these changes affect 

the ecological interactions of different species in different ways. As suggested by 

Agrawal et al. (2007), determining these will assist in improving our knowledge 

of community ecology. 

Research aims 

This project aimed to examine the interactions of Galaxias auratus with brown 

trout and test existing, relevant ecological theories in order to understand the 

ecological factors that may have contributed to its success in co-existing with 

trout to date, and that may make it vulnerable in future as a result of the changes 

in habitat availability that have occurred in Lakes Crescent and Sorell. An initial, 

field-based study was designed to provide fundamental foraging data including 

what and how much this species consumes, and when it forages in the wild 

(Chapter 2). This was a necessary first step to document its natural feeding habits, 
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and allowed hypotheses to be generated regarding its ability to forage under 

different conditions, and its use of different habitats. It also yielded quantitative 

data on daily ration and feeding rate that can be incorporated into the next 

iteration oflimnological simulation models that were initiated by Uytendaal 

(2006) using the CAEDYM-DYRESIM framework, as well as allowing 

subsequent experiments to be designed under more natural conditions, including 

the use of appropriate numbers and types of prey and lighting conditions. 

The direct effect of trout presence on the habitat use patterns of G. auratus first 

needed to be determined, before being able to examine if its behavioural response 

to brown trout is likely to promote co-existence, whether there are any associated 

costs, and whether the availability of different habitats was likely to alter their 

interaction. In Chapter 3, I examined the behavioural responses of G. auratus to 

brown trout under habitat conditions that simulated the scenarios of past and 

present habitat availability in Lakes Crescent and Sorell. In the other two 

experimental chapters (Chapters 4 and 5), I tested the resulting impacts of the 

behavioural responses of G. auratus to trout, by assessing foraging costs and 

predation risk in these contrasting habitats to see whether a trade-off occurs, sensu 

Werner and Hall (1988) and Persson and Eklov (1995). In Chapter 4, I assessed 

potential foraging costs of an increased use of complex habitats that occurs in the 

presence of trout, thus examining the potential indirect effect of trout on the 

feeding (and likely growth) of G. auratus. In Chapter 5, I examined the direct 

outcomes of an increased use of complex habitats by G. auratus in terms of 

predation mortality to trout. I tested the predation risk of G. auratus to trout under 

the different habitat scenarios, again simulating those experienced in Lakes 
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Crescent and Sorell in the past, present and likely in the future. The specific aims 

and hypotheses tested in each experiment are given in each of the relevant 

chapters. 

G. auratus and Lakes Crescent and Sorell 

Galaxias auratus is a relatively large galaxiid (max total length (TL) ~240 mm, 

but more commonly to 140 mm) believed to be derived from a landlocked 

population of Galaxias truttaceus (Johnson et al. 1981; Ovenden et al. 1993 ). It 

occupies a similar ecological niche to G. truttaceus being a generalist consumer, 

but adopting more of an epibenthic lifestyle (Hardie et al. 2004). Adults have been 

found to forage on a variety of aquatic and terrestrial invertebrates, but most often 

consume epibenthic crustaceans and insect larvae and plankton when available 

(Hardie et al. 2004). It is much more abundant in Lake Crescent than in Lake 

Sorell, with Hardie (2003a) recording up to 10-fold greater catches in fyke nets in 

Crescent than Sorell on identical sampling occasions. 

Lakes Crescent and Sorell are shallow, polymictic lakes that lie on the eastern 

edge of the Tasmanian Central Plateau at c. 42° 5' S; 147° 10' E and are 

connected by a canal approximately 1 km long. Prior to the construction of this 

canal, these lakes were likely connected by mosaic of ill-defined channels and 

wetlands during high water, usually over the austral winter and spring. Lake 

Sorell is 804.36 m a.s.1. at full supply level (£s.l.) and is the largest of the two 

with a surface area of approximately 5310 ha, a mean depth of 3 .07 m and a max 

depth of 4.30 m (also at f.s.l.). At f.s.l, Lake Crescent is 803.8 m a.s.1. and has a 

surface area of approximately 2305 ha. The mean depth of Lake Crescent is only 

10 



2.30 m, and its maximum depth is 3.80 m. The water levels of both lakes, 

however, are manipulated by humans. Lake levels have been artificially raised a 

number of times since the first weirs were constructed in 1833 (Cheng and Tyler 

1973; Cutler et al. 1990; Deakin 2002) and have been regulated for downstream 

irrigation, with additional minor allocations for town water supply. The catchment 

area for these lakes is relatively small compared to their surface area, with a ratio 

of total catchment area to lake surface area of 1.75 (Uytendaal 2003). The 

vulnerability of these lakes to decreases in water levels during times of drought is 

thus high due to the combined effects of the small catchment area and the high 

surface area to volume ratio of both lakes. This results in potentially large 

evaporative losses of water, and these losses dominate the water-balance for these 

lakes (Department of Primary Industries, Water and the Environment 2005). 

Rainfall for the area averages 699 mm per year (Uytendaal 2003). 

Despite their geographic proximity, geologic, geomorphic, vegetational and 

climatic similarities, Lakes Crescent and Sorell have persistently different 

phytoplankton and zooplankton communities. Cheng and Tyler (1973) found Lake 

Crescent to have ten times the standing crop biomass of phytoplankton than Lake 

Sorell, and Burrows (1968) found copepods (Boeckella rubra) and cladocerans 

(Bosmina hagmanni) to dominate the zooplankton communities of Lakes Sorell 

and Crescent, respectively. Both lakes contain a range of fish species, both native 

and introduced. As well as the natural, endemic populations of G. auratus, the 

native short-finned eel (Anguilla australis Richardson) is present in both lakes. 

This species has been maintained artificially by stocking of elvers since upstream 

migration was blocked by the construction of Meadowbank Dam on the Derwent 
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River (into which the Clyde River flows) in the 1960's. Native Galaxias 

maculatus (J enyns) has also been found in small numbers, but these are believed 

to have been accidentally introduced with elvers and have apparently not 

established a self-sustaining population (S. A. Hardie, pers. comm.). The 

introduced fish species found in these lakes are brown trout and rainbow trout 

(Oncorhynchus mykiss Walbaum), which were deliberately introduced for 

recreational fishing in 1868 and 1932, respectively, and common carp (Cyprinus 

carpio L), which were discovered in 1995. Nothing is known of potential impacts 

of common carp on G. auratus, and this was not investigated in this thesis because 

an extensive and successful program of eradication has been pursued by the 

Inland Fisheries Service since 1996, and numbers of this species were very low 

during this study. 

Lakes Crescent and Sorell have significant wetlands which make up 17% (385 ha) 

and 7.8% (415 ha) of the surface areas at full supply, respectively, and are 

considered important habitats for a range of invertebrates, frogs, snakes, water 

birds and fishes (Heffer 2003). Heffer (2003) provided a comprehensive report on 

the nature and importance of these wetlands. Historically, Lake Sorell also 

supported extensive areas of submerged macrophytes (Myriophyllum simulans). 

Lake Crescent had far less extensive submerged macrophyte beds, but still 

possessed pockets of submerged and emergent macrophytes outside of the 

wetlands in the littoral zone. 
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Chapter 2: Nocturnal and diurnal feeding by Galaxias auratus, a 

lentic galaxiid fish 

Manuscript published as: Stuart-Smith, R.D., Barmuta, L.A., and White, R.W.G. 

2006. Nocturnal and diurnal feeding by Galaxias auratus, a lentic galaxiid fish. 

Ecology of Freshwater Fish 15: 521-531. 

Abstract 

We examined the diel feeding pattern, gastric evacuation and daily ration of a 

lentic, endemic Tasmanian galaxiid fish, Galaxias auratus. Analysis of stomach 

contents and consumption -estimates based on collections of fish every 3 h over 

three 24-h periods in summer 2002/2003 revealed that feeding always occurred 

during both the day and night, with no obvious peaks. We also estimated the 

gastric evacuation rate of G. auratus in a laboratory experiment using the two 

prey species found to be dominant in stomachs of field sampled fish. The 

relationship was best described by an exponential model, with rate parameters (R) 

of 0.104 and 0.081 for the evacuation of the amphipod, Austrochiltonia australis, 

and the cladoceran, Daphnia carinata, at water temperatures of 11.5 °C and 16.5 

°C respectively. Daily ration of G. auratus in summer was estimated to be 

approximately 3% (dry body weight) using the models of Elliot & Persson and 

Eggers. Galaxias auratus appears to be unusual in that its feeding pattern cannot 

be classified as nocturnal, diurnal or crepuscular, but its gastric evacuation and 

daily ration estimates are still similar to other comparable Northern Hemisphere 

freshwater fishes. 
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Introduction 

Whether they are nocturnal, diurnal or crepuscular, most fishes exhibit a distinct 

diel pattern in feeding (Fraser et al. 1993; Brannas & Alanara 1997; Fraser & 

Metcalfe 1997). The potential causes of such patterns are complicated and may 

include factors such as prey availability (Glova et al. 1987), predation risk 

(Metcalfe et al. 1999), potential for intra- or interspecific competition (Keast & 

Welsh 1968), capabilities of each fish species, (e.g. dependence on vision for 

locating prey: Forrester et al. 1994; Kreivi et al. 1999), or a range of seasonal 

effects, (e.g. temperature and day length: Riehle & Griffith 1993; Fraser et al. 

1995). Many of these are also interdependent. Studying the diel feeding pattern of 

a fish species can thus suggest a lot about its ecology, and provides the foundation 

for estimating the amount of food it consumes daily. 

There are some cases where the feeding of a fish species has both diurnal and 

nocturnal peaks (e.g. rock bass, Ambloplites rupestris; Keast & Welsh 1968). For 

fishes that occur in high densities (or when food is limited) this may be caused by 

temporal partitioning of feeding: in order to reduce the effects of intraspecific 

competition, some individuals feed nocturnally and some diurnally (Briinnas & 

Alanara 1997). This partitioning may be size-structured and brought about by 

social interactions, where only the larger, more dominant individuals feed at the 

most preferred time of day ('preferred' in tenns of the trade-off between 

optimising foraging efficiency and avoiding predators sensu Lima & Dill 1990). 

Members of the Galaxiidae form an important component of the native freshwater 

fish fauna in temperate regions of the Southern Hemisphere, yet diel feeding 
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patterns are unknown for most species. The lotic galaxiids of New Zealand have 

been the best studied in this respect, and many are nocturnal foragers (Glova & 

Sagar 1989a, 1989b). Galaxias auratus (Johnston) is a lentic Tasmanian galaxiid 

that it has co-existed with introduced brown trout (Salmo trutta Linnaeus) in 

Lakes Crescent and Sorell, to which it is endemic, since 1868 and still remains in 

very high densities. Little is known, however, of its ecology. It is believed that the 

activity of this species is greater at night, but its diel feeding pattern is unknown 

(Hardie et al. 2006). We hypothesised that G. auratus would also be a nocturnal 

forager both because of the prevailing evidence from New Zealand congeners and 

because the potential selective pressures imposed by brown trout (the major 

predator of G. auratus) would foster feeding in low light conditions. Thus the 

primary objective of this study was to examine the diel feeding pattern of this 

lentic galaxiid. The potential for size-based temporal partitioning of feeding was 

also examined in relation to the observed feeding patterns. 

When the diel feeding pattern is known, daily ration (or daily food intake) can be 

estimated with greatest accuracy (Darnell & Meierotto 1962; Mann 1978; Madon 

1998). If samples of stomach contents have been collected in the field and the 

nature of gastric evacuation is known, daily ration can be estimated using a 

number of existing models, the most commonly used being those of Elliot & 

Persson (1978) and Eggers (1977) (Boisclair & Marchand 1993; Specziar 2002). 

Despite the importance of galaxiids in temperate Southern Hemisphere freshwater 

systems, there are no published estimates of daily ration for any species. A 

secondary objective of this study was to use the diel feeding data in conjunction. 

with an estimate of the rate of gastric evacuation to estimate daily ration. 

24 



Methods 

Study species and site 

Galaxias auratus is a relatively large galaxiid (max total length (TL) ~240 mm, 

but more commonly to 140 mm), which is endemic to the interconnected Lakes 

Crescent and Sorell on the Tasmanian Central Plateau (c. 42° 5' S; 147° 10' E).It 

is an opportunistic feeder, with adults eating a variety of aquatic and terrestrial 

invertebrates, but most often consuming epibenthic crustaceans and insect larvae 

and plankton when available (Hardie et al. 2004). Brown trout are also abundant 

in these lakes, which also contain smaller numbers of rainbow trout 

(Oncorhynchus mykiss Walbaum), short-finned eel (Anguilla australis 

Richardson) ~d common carp (Cyprinus carpio L.). The brown trout prey 

heavily on G. auratus, although their efficiency appears to have been reduced 

since the mid 1990s, when both lakes became highly turbid (Uytendaal 2003) and 

G. auratus presumably became harder to locate and capture (Stuart-Smith et al. 

2004). 

G. auratus is listed as 'rare' under the Tasmanian Threatened Species Protection 

Act 1995, and 'vulnerable' under the national Environment Protection and 

Biodiversity Conservation Act 1999 due to its restricted distribution, yet within 

these lakes it occurs in arguably the highest densities of any of Tasmania's lentic 

galaxiids. Although Lakes Crescent and Sorell are relatively large (23.1 and 51.6 

km2 respectively), they are shallow (2.3 and 3.1 m average depth, respectively), 

and there are estimated to be in excess of 2 million and 0.5 million G. auratus in 

Lakes Crescent and Sorell respectively (A. Uytendaal, unpublished data). 
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Diel feeding patterns 

Galaxias auratus were captured using a backpack electrofishing unit (Smith-Root 

Inc. model 12-B) at 3-h intervals for 24 h. A replicate sample was taken exactly 

24 h from the first. This was done on three occasions over summer 2002 - 2003, 

with two of these from Lake Crescent (11-12 December 2002 and 6-7 February 

2003) and one from Lake Sorell (13-14 February 2003). The study was conducted 

in both Lakes Crescent and Sorell in case the feeding pattern of G. auratus was 

affected by differences in their own populations, or trout or prey populations 

between the lakes. On each occasion, a suitable stretch of shoreline consisting of 

uniform cobble rock habitat was chosen and divided into nine shorter stretches, 

each to be sampled once fa that day. Immediately after capture, the fish were 

killed by overdosing in benzocaine (300 mg L-1
), weighed, measured (TL), and 

preserved in 4% formalin with their abdominal cavity slit open. The water 

temperature was measured at the time and place of each sample. 

Stomachs were dissected from fish and contents were removed. Each prey taxon 

was identified at least to genus, and the relative proportion of volume made up by 

each was estimated. Stomach contents were then dried (60°C > 48 h) and weighed 

(to 0.1 mg) using a Mettler AE 100 analytical balance. A sub-sample of contents 

from 40 stomachs was ashed (540°C > 24 h), and ash-free dry weight (AFDW) 

was estimated for the remainder of stomach contents using the relationship 

between AFDW and dry weight (DW) of stomach contents in the sub-sample 

(linear regression, AFDW = 0.8324 x DW + 0.0007, r 2 
= 0.99,p < 0.001, n = 40). 

To calculate the DW of whole fish minus their stomach contents, the emptied 
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stomachs were returned to the abdominal cavity of the fish, which were then also 

dried (60°C > 96 h) and weighed. For graphical purposes and use in daily ration 

estimation, the relative stomach contents weight (F1) was also calculated for fish 

captured at each time using equation 1 : 

(1) F = G, 
1 

D, xIOOO 

where G, is the weight of the stomach contents (mg DW) and D, is the DW (g) of 

a fish captured at time t. 

Stomach contents AFDW were log-transformed in order to homogenise variances 

and compared between times of day by one-way analysis of covariance 

(ANCOVA) with loge(fish DW) as the covariate. The positive relationships 

between transformed fish weights and stomach contents weights were similar for 

all times on all days, satisfying the ANCOV A assumption of homogeneity of 

slop_es. Any differences in fish sizes are thus unlikely to effect interpretation of 

results. Where significant differences across the 9 samples were, identified, 

Tukey' s post-hoe test was used to determine which pairs of times differed. In 

addition to analysis of the amount of food in the stomach, estimates of 

consumption during each of the 3-h intervals were also used to determine the diel 

feeding pattern of G. auratus. These were based on the model of Elliot & Persson 

(1978) (equation 2, below). 

Trellis plots, as implemented in the lattice package ofR (Sarkar 2005), were used 

to examine whether there was any evidence of size-based temporal partitioning in 
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feeding. On each sample date, the fish were split into six slightly overlapping size 

classes (i.e. "shingles" sensu Cleveland 1994) with equal numbers of fish in each 

size class, and Ft was plotted against time. Any trends were visualised using a 

loess smoother. If size-based partitioning occurred, we expected that these plots 

would show different trends over time for small and large fish. 

Epibenthic prey 

Samples of epibenthic invertebrate prey were also taken with fish samples with 

the aim of detecting if diel changes in prey positioning resulted in changes in 

abundance of prey that may be available to the fish at different times of the day, a 

phenomenon well documented in lotic invertebrates (Cowan & Peckarsky 1994; 

Mcintosh & Townsend 1994). Immediately before electrofishing each stretch of 

shoreline, prey were sampled using a suction sampler, with three randomly 

located quadrats of 576 cm2 sampled in each stretch. This method samples prey 

from exposed surfaces of the substrate, so it probably more closely represents 

prey that were available to the fish than other sampling methods which sample 

interstitial and other sub-surface habitats (e.g. cores or grabs). Prey samples were 

preserved in 80% ethanol and later identified to a minimum of genus level and 

enumerated in the laboratory using a dissecting microscope. The densities of the 

amphipod, Austrochiltonia australis on 6-7 February 2003 were estimated by sub

sampling because of the particularly large numbers of this species. Precision of 

estimates based on sub-sampling ranged up to ± 23 %, but for most samples was 

approximately± 15%. 

The diet of the fish was very low in diversity, with a single prey taxon forming the 

bulk of stomach contents on each day (Table 1 ). Only the amphipod A. australis 
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and the gastropod Austropyrgus sp. were used in analyses as these were the most 

dominant epibenthic prey found in stomach contents. The densities of each in the 

environment at each sample time were analysed for correlation with their mean 

relative proportion in stomach contents of fish at those times. Densities of A. 

australis on 11-12 December 2002 were log transformed as they differed by more 

than an order of magnitude between times. 

Gastric evacuation 

The rates at which prey are evacuated from the stomach of G. auratus were 

determined under controlled laboratory conditions. Due to the dominance of A. 

australis and Daphnia carinata in the diets of field sampled fish on different days 

(Table 1), two experiments were conducted, one with each prey species. Water 

temperature influences the rate of gastric evacuation (Elliot 1972; Dos Santos & 

Jobling 1991; Andersen 1999), so as the purpose of the gastric evacuation 

experiments was to allow estimation of daily ration on different days, experiments 

were run at the mean temperatures recorded on the days on which these prey were 

,dominant (11.5 °C for A. australis and 16.5 °C for D. carinata). Otherwise, both 

experiments followed the same protocol. 
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Table 1. Times of fish sampling, sample and fish sizes and % volume of dominant 
prey found in stomachs of Galaxias auratus sampled from Lake Crescent (11-
12/12/2002 and 6-7/02/2003) and Lake Sorell (13-14/02/2003). 

Date Time n MeanTL %A. %D. % 
(range) australis carinata Austropyrgus 

11/12/2002 15:15 27 103 (83-123) 40.85 0 45.10 
18:15 29 104 (79-143) 93.57 0 5.63 
21:15 28 103 (81-145) 88.73 0 0 

12/12/2002 00:15 27 101 (84-124) 83.71 0 5.09 
03:15 23 107 (82-166) 63.48 0 20.89 
06:15 27 106 (89-136) 83.53 0 14.46 
09:15 26 100 (80-131) 98.34 0 0.30 
12:15 26 104 (81-132) 97.44 0 0 
15:15 25 100 (82-128) 82.03 0 16.41 

6/02/2003 09:15 21 91 (76-112) 25.32 73.55 0 
12:15 20 95 (85-116) 20.06 77.33 0 
15:15 21 93 (82-114) 48.34 51.01 0 
18:15 21 88 (78-101) 20.63 70.16 0 
21:15 17 89 (79-111) 8.02 91.83 0 

7/02/2003 00:15 7 89 (81-100) 30.12 69.28 0 
03:15 10 95 (88-114) 28.89 71.11 0 
06:15 24 93 (84-113) 34.45 65.55 0 
09:15 28 91 (78-123) 27.21 69.36 0 

13/02/2003 09:15 21 98 (87-120) 0 99.24 0 
12:15 20 99 (81-147) 2.68 97.32 0 
15:15 18 98 (86-136) 2.42 97.58 0 
18:15 20 95 (80-144) 0.26 99.48 0 
21:15 20 94 (76-117) 0.28 99.44 0.28 

14/02/2003 00:15 20 97 (81-134) 10.88 83.08 0 
03:15 22 96 (78-120) 1.75 98.00 0 
06:15 24 99 (81-149) 2.36 97.41 0 
09:15 21 97 (82-130) 6.87 91.66 0 

Fish were captured in Lake Crescent by electrofisher (n = 54, mean TL = 103 mm, 

range 84-144 mm) and maintained in the laboratory in two large holding tanks 

(approx. 350 L) for a minimum of 2 weeks to allow them to acclimate. At the 

beginning of a trial, they were placed in individual, food-free tanks (350 x 210 x 

260 mm) for 48 h. A known number of prey was introduced and the fish were 

allowed to feed for 3 h. Fish were then transferred into new tanks without any 

30 



prey and the number of remaining prey was counted. The DW of prey consumed 

by each fish was estimated from linear regression of number and DW of each prey 

species (A. australis: loge(DW) = - 0.9182 + l.0362loge(number), r2 
= 0.95,p < 

0.001, n = 20; D. carinata: loge(DW) = - 1.8949 + 0.9860lo&(number), r 2 = 0.93, 

p < 0.001, n = 20). Fish were killed at each of a series of pre-determined intervals 

after the feeding period and the fish and remaining stomach contents were dried 

and weighed separately, following the same procedures and equipment as for the 

field sampled fish. 

Regression analysis was used to identify the best model to describe the evacuation 

of A. australis and D. carinata from the stomach of G. auratus and for estimation 

of the rate parameter R, which was required for the Elliot & Persson and Eggers 

models. We used non-linear regression, rather than linear regression on 

transformed variables, so that the best model could be chosen and comparisons 

could be made based on? and SE values (Elashoff et al. 1982; Bromley 1994). 

Daily ration 

It is widely reported that the Elliot & Persson model usually provides accurate 

estimates of consumption (Hayward 1991; Heroux & Magnan 1996; Specziar 

2002), but it is subject to two major sources of error. The first is that as it is based 

on differences in mean relative stomach contents weights between sample times, 

and does not account for variation about these means, or when data are not 

normally distributed or do not satisfy parametric assumptions. Some researchers 

have used geometric means or medians rather than arithmetic means because of 

this (Amundsen & Klemetsen 1986; Parrish & Margraf 1990). The second is that 
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there is error associated with the measurement of the gastric evacuation rate (R), 

which is not accounted for. Many studies have completely neglected this. 

In our study, estimates of consumption based on the Elliot & Persson model ( Ci) 

for each 3-h interval were made using the bootstrap method, which allowed the 

error associated with both Ft and R to be estimated (Trudel & Boisclair 1993). 

Transformed (arcsine '1) Ft values from each time period were sampled 5000 

times with replacement and means from each were back-transformed. Each of the 

* 5000 back-transformed means (multiplied by 100 to convert to %DW offish) (Ft) 

was then used in the Elliot & Persson model: 

(2) 
* * -R*t * 

* (_F(t+I) -~ e )Rt 
C=-------

, 1-e-R*t 

where Ci is the mean of the 5000 Ci * estimates the consumption during the 

interval i (always 3 h in this study) expressed as %DW offish, Ft* and F(t+1)* are 

mean back-transformed relative stomach contents weights(%) at two successive 

sampling times, and R* is a bootstrap estimate of the evacuation rate. Values of R* 

were generated using equation 3: 

(3) 

where SER is the standard error of R, and RN is a normally distributed random 

number with a mean ofO and a standard deviation of 1 (Trudel & Boisclair 1993). 

Values of Rand SER were estimated from the non-linear regressions of gastric 

evacuation (i.e. of A. australis for 11-12 December 2002, and of D. carinata in 
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calculations for 6-7 and 13-14 February 2003). 95% confidence intervals of 

bootstrap estimates were calculated using Hall's basic method (Davison & 

Hinkley 1997). These analyses were conducted in the package ''boot" (Canty & 

Ripley 2005) in R version 2.2.0 (R Development Core Team 2005). 

Daily ration using the Elliot & Persson model is equal to the sum of Ci for each 

day. The bootstrap method was also employed to estimate daily ration using the 

Eggers model (C24), with re-sampling of transformed Ft values (5000 

permutations) and combining the back-transformed means(%) with appropriate 

R* values in equation 4: 

(4) C24 = F* xR* x24 

where C24 is the daily ration expressed as %DW of fish, and F* is the mean of all 

Ft for that day. The correction method of Eggers (1979) was not used as Ft values 

did not differ significantly between replicate samples at the same time 24 h apart 

on any day (ANOVA: 11-12 December: Fi, so= 0.001,p = 0.971; 6-7 February: 

F1,41= l.279,p = 0.264; 13-14 February: F 1,40= 0.098,p = 0.756). 

Results 

Diel feeding pattern 

Only four empty stomachs were found in 593 fish sampled, and AFDW of 

stomach contents were consistently high and variable. Differences in AFDW 

between times on any of the days sampled were not significant, with the exception 
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of the sample at 18:15 on 6 February 2003, in which stomach contents weights 

were significantly lower than samples at 12:15, 15:15, and 00:15, 03:15 and at 

09:15 on the following day (ANCOVA: F8, 159 = 2.153,p = 0.034). Estimates of 

consumption in each of the time intervals revealed feeding during both day and 

night, but did differ significantly between some sample times, as indicated by 

non-overlapping confidence intervals (Fig. 1 ). The greatest feeding occurred 

between 15:15 -18:15 and 00:15 -03:15 on 11-12 December 2002, and 18:15 -

00:15 on 6-7 February 2003. Feeding was more consistent in Lake Sorell on 13-14 

February. There were also periods in which Elliot & Persson estimates were 

negative. However, confidence intervals of all of these overlapped zero. These 

were between 15:15 - 18:15 and 00:15 - 03:15 on 6-7 February 2003, and 03:15 -

06:15 on 13-14 February 2003 (Fig. 1). 

Although feeding occurred during both the day and night, this was not the result 

of different sized fish feeding at different times, i.e. there was no evidence of any 

size-based differences or temporal partitioning of feeding. Visual inspection of the 

trellis plots of relative stomach contents weights from different size classes of fish 

(Fig. A 1) revealed no differences in trends over the day on any of the sampling 

dates. There were also no significant differences in the size (TL) offish captured 

at each time on any day (ANOVA: 11-12 December: Fs,229= 0.641,p = 0.743; 6-

7 February: Fs, 160= 1.680,p = 0.107; 13-14 February: Fs, 111= 0.312,p = 0.961). 
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Fig. 1. Diel patterns in relative stomach contents weights (F1, left column) and 
corresponding Elliot & Persson three-hourly consumption estimates ( Ci, right 
column) for Galaxias auratus sampled from Lake Crescent on 11-12 December 
2002 (top), 6-7 February (middle) and from Lake Sorell on 13-14 February 
(bottom) 2003. Relative stomach contents weights are plotted as box-and-whisker 
plots with raw data overlaid as open circles. Consumption estimates are bootstrap 
estimates of means+ 95% confidence intervals. Horizontal black bars represent 
hours of darkness. 

Epibenthic prey 

Austrochiltonia australis dominated both stomach contents and epibenthic prey 

samples on 11-12 December 2002. There was a strong, positive linear relationship 

between the proportion of A. australis in stomachs of G. auratus and its densities 

in environmental samples on this day (Pearson correlation coefficient, r = 0.76), 

with peaks early in the night and early in the day (Fig. 2). There were no 
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correlations between stomach contents and the densities of Austropyrgus sp. on \ 

this day despite the fact that this species increased in proportion in stomach 

contents late in the day and late in the night. There were no correlations between 

stomach contents and the densities of either prey on the 6-7 and 13-14 February 

2003 (all lr I< 0.13). 

Gastric evacuation 

The evacuation of both A. australis and D. carinata from the stomach of G. 

auratus followed a curvilinear decay with time (Fig. 3). A simple exponential 

model yielded the greatest r2 and smallest SE for both prey species (equation 5): 

(5) 

where M1 is the amount of prey remaining in the stomach at time t (mg DW) and 

Mo is the initial meal size (mg DW). 
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Fig. 2. Density of Austrochiltonia australis in samples of epibenthic prey (open 
circles) and the mean(± SE) proportion by volume of stomach contents made up 
by this prey in Galaxias auratus (closed circles) on 11-12 December 2002. No 
significant correlations were found between prey density and stomach contents on 
any of the other days sampled. 

Daily ration 

Daily ration estimates ranged from 2.2 % DW (0.43 g· 1 OOg wet wf 1 ·day1
, Eggers 

model, 6-7 February 2003) to 3.9 % (0.76 g·lOOg wet wf1·day1
, Eggers model, 

11-12 December 2002)(Fig. 4), with the overall mean close to 3%. This equates to 

around 118 amphipods (A. australis) or 406 Daphnia carinata for a fish of the 

average sampled size (1.87 g DW, 98 mm TL). Eggers and Elliot & Persson 

estimates differed by almost 1 % on 6-7 February 2003, but this was not 

statistically significant, and estimates on other days were more similar. Elliot & 

Persson estimates were almost identical for all three days. Although not 

statistically significant, the highest estimates were on 11-12 December 2002, 

despite the water temperature being considerably cooler on this day (mean 1 l .5°C 

as opposed to mean 16.5°C on the other two days). 
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Fig. 3. Evacuation of Austrochiltonia australis (left) and Daphnia carinata (right) 
from the stomach of Galaxias auratus at 11 .5 °C and 16.5 °C, respectively. 
Circles represent the fraction (by DW) of the original meal remaining in the 
stomach at each time. The rate parameter, R (± its asymptotic standard error), for 
the evacuation of A. australis = 0.1044 ± 0.0158 and the r2 = 0.8096. For the 
evacuation of D. carinata, R (±its asymptotic standard error) = 0.0805 ± 0.0052 
and r2 = 0.8277. 

<O 
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Fig. 4. Daily ration estimates (%DW) (and 95% Cl) for Galaxias auratus on the 
three days sampled using the Eggers (1977) model (unshaded bars) and the Elliot 
& Persson (1978) model (shaded bars). 
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Discussion 

Both analysis of stomach contents weights and the estimation of consumption 

using the Elliot & Persson model show that there were no significant peaks in 

feeding by G. auratus and that they fed rather consistently during both night and 

day on all the dates sampled and in both lakes. Thus, the hypothesis that they feed 

primarily at night was not supported by our findings. Feeding appeared .to be more 

consistent throughout the 24 hr day in fish sampled from Lake Sorell, but this 

does not alter the conclusions of the study, with G. auratus still observed feeding 

during day, night and twilight periods. Although the variability in stomach 

contents weights was high, this is characteristic offish feeding (Jenkins & Green 

1977; Grant & Kott 1999; Hartman 2000), and, in the context of other similar 

studies, these data were remarkably free of the problems emphasised by 

Amundsen & Klemetsen (1986): weights of stomach contents were not skewed, 

nor were there many empty stomachs. Our sample sizes were also comparable to, 

or larger than most similar studies (e.g. Brodeur & Pearcy 1987; Johnson & 

Dropkin 1995; Madon 1998). 

One of the assumptions of the Elliot & Persson model is that feeding is continuous 

during each 3-h interval (Elliot & Persson 1978). Failure to satisfy this 

assumption can lead to errors in estimates of consumption and possibly negative 

estimates during intervals in which consumption is low and not continuous. By 

keeping the sampling interval short(::=:; 3 h, Elliot & Persson 1978; Cortes, 1997), 

and because the diet was "fine-grained" (large numbers of small food particles, 

Cochran & Adelman 1982), the likelihood of violating this assumption was 

minimised. However, this assumption may still be violated when fish are feeding 

close to satiation (Elliot & Persson 1978; Cochran & Adelman 1982; Persson 
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1983). As there were very few empty stomachs found in G. auratus and stomach 

contents weights were consistently high, it is possible that they were feeding close 

to satiation, and therefore, in an inconsistent manner. Elliot & Persson (1978) 

experimentally tested the effects of violating this assumption and found that even 

in extreme cases (a fish feeding for only 20 min every 3 h) their model still 

provided good estimates of actual consumption when the interval was 3 h, but that 

when there were differences between estimates and actual consumption, the 

estimates were normally slightly lower than actual consumption. Thus, even ifthe 

assumption of continuous feeding was not satisfied in our study, the resulting 

estimates are unlikely to differ considerably from the real consumption of G. 

auratus; but if at all, they may be slight underestimates. This may help explain 

those estimates that were low (some negative but with 95% Cl overlapping zero). 

Feeding of G. auratus was consistent and was not significantly greater during 

night, day or twilight periods. Although this pattern has occasionally been seen in 

other species (e.g. coho salmon, Oncorhynchus kisutch: Ruggerone 1989, and 

brook charr, Salvelinus fontinalis: Heroux & Magnan 1996) it is unusual amongst 

fish (Fraser et al. 1993; Fraser & Metcalfe 1997). Although Mcintosh & 

Townsend (1995) found that Galaxias vulgaris (the common river galaxias) 

foraged both nocturnally and diurnally, most galaxiid species have been reported 

to be nocturnal foragers (Cadwallader 1975; Glova & Sagar 1989a, 1989b; 

McDowall 1990) and there is evidence that activity and movement of this species 

is also greater at night. Diel surveys of G. auratus in a recently translocated 

population in a trout-free, clear-water dam (Hardie et al. 2006) have suggested 

that G. auratus spends more time in the cover of complex habitats such as 

macrophytes during the day, and then moves about in search of food at night. This 
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was supported by preliminary electrofishing for this study, which indicated that 

numbers of G. auratus in areas of uniform silt substrate were low throughout the 

day but increased at night. Interestingly, Mcintosh & Townsend (1995) recorded 

this type of activity/habitat use pattern for G. vulgaris even though this species 

also feeds during the day. They found that G. vulgaris spent most of the daylight 

hours in cover, emerging only to capture prey, but actively moved about in search 

of food during the night. 

Although further research is needed to establish whether the proposed diel 

activity/ habitat use pattern of G. auratus persists in the presence of brown trout, it 

appears that like G. vulgaris, G. auratus still captures prey during times in which 

it uses complex habitats. This may be due either to a change in feeding strategy 

from ambush or sit-and-wait foraging from the edge of complex habitats during 

the day, to actively searching for prey at night, or to the ability to search for, and 

capture prey amongst the complex habitat. The latter may be realistic in habitats 

such as macrophytes, because the ability to feed at night suggests that this species 

is capable oflocating and capturing prey using non-visual stimuli, which would 

also be advantageous in habitats that reduce or break up the visual field. This 

ability also suggests that the current high turbidity of Lakes Crescent and Sorell 

may not negatively affect their feeding ability. 

Another reason that we hypothesised that G. auratus would show a nocturnal peak 

in foraging is because the risk of predation by brown trout is also likely to differ 

during the diel cycle. Brown trout are primarily visual predators; although they 

are capable of nocturnal foraging, they present the greatest predation threat from 

dawn through to dusk (Allan 1978; Ringler 1979). Brown trout were introduced 
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into Lakes Crescent and Sorell in 1868 and it is possible that they have provided a 

selective pressure for G. auratus to forage nocturnally. While this study cannot 

determine whether brown trout influence habitat use by G. auratus, it does appear, 

however, that threat of predation by brown trout has not resulted in a nocturnally 

biased feeding pattern by G. auratus. 

Diel patterns in prey availability are also known to influence feeding patterns of 

fishes, and have been implicated in causing the nocturnal peaks in the feeding of 

other galaxiids (Glova & Sagar 1989a, 1989b). Prey availability in our study was 

consistently high throughout the day and night and we suggest that it did not 

influence the feeding pattern of G. auratus. The evidence for this includes the 

presence of very few empty stomachs, very high densities of sampled epibenthic 

invertebrates (the mean density of A. australis was 13 300 m-2 and Austropyrgus 

sp., 264 m-2
), and the observation of very large, dense swarms of Daphnia 

carinata during all fish sampling periods on the 6-7 and 13-14 February 2003. 

Unfortunately Daphnia carinata were not quantitatively sampled as a part of this 

study due to the absence of planktonic prey in the diet of G. auratus in 

preliminary samples and the added logistical considerations of attempting to 

quantitatively and efficiently sample an invertebrate with such a patchy 

distribution. 

Feeding during both day and night may be caused by intraspecific interactions. 

Size is the most commonly recorded determinant of social structure in fishes 

(Danylchuk & Tonn 2001; Whiteman & Cote 2004), and size-based resource 

partitioning has been reported in other galaxiids (Whitehead et al. 2002; David & 

Stoffels 2003). Although we could not test explicitly for differences in feeding 
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patterns of individuals in this study because we did not sample the same 

individual fish at each time of day, there was no evidence of size-based 

differences in feeding when we examined the amount of food in the stomach 

throughout the day in different sized individuals within the range of sizes 

sampled. 

The gastric evacuation rates and daily ration estimates of G. auratus are slightly 

lower than, but still similar to other similar sized lentic fishes from studies 

undertaken in the Northern Hemisphere (Persson 1982; Boisclair & Leggett 

1988). Interestingly, even though consumption by G. auratus may be a little less 

than other planktivorous fish (e.g. dace, Phoxinus eos x P. neogaeus: Trudel & 

Boisclair 1993; Gauthier & Boisclair 1997), adult G. auratus may still consume 

around 400 Daphnia carinata per day. Daphnia carinata are relatively large 

zooplankters (up to 6 mm), and are probably the dominant algal grazers in Lakes 

Crescent and Sorell (Uytendaal 2003). Thus the predation pressure exerted by 

such high densities of G. auratus on D. carinata may possibly have a strong 

influence on algal biomass in these lakes. There has been a growing number of 

studies that have demonstrated such abilities of fishes to exert top down control 

on lower trophic levels through trophic cascades (He & Wright 1992; Karjalainen 

et al. 1999; Zambrano et al. 2001 ). This study has not only provided an unusual 

example of a fish that feeds throughout both night and day, but has also provided 

empirical data on the predatory capabilities of a galaxiid fish, which offer insight 

into their role as predators in Southern Hemisphere freshwater systems. 
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Fig Al. Trellis plots of relative stomach contents weights (F1) of different size 
classes offish (TL in mm) on 11-12 December 2002 (left column), 6-7 February, 
2003 (middle column) and 13-14 February 2003 (right column) with a loess 
smoother superposed (gray line) to assist in visualizing any trends. Each panel has 
an equal number of fish, and the lengths of the fish included in each panel 
increase from bottom to top with a slight overlap in the fish included in each panel 
as indicated by the sizes specified in each title strip. The shading in the title strip 
of each panel provides a graphical key to the size range of fish included in each 
panel. 
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Chapter 3: A shift in the habitat use pattern of a lentic galaxiid 

fish: an acute behavioural response to an introduced predator 

Manuscript published as: Rick D. Stuart-Smith, Robert W. G. White and Leon A. 

Barmuta. 2007. A shift in the habitat use pattern of a lentic galaxiid fish: an acute 

behavioural response to an introduced predator. Environmental Biology of Fishes. 

Online publication, DOI 10.1007/s10641-007-9256-z 

Abstract 

Despite potentially reducing predation mortality, behavioural responses of native 

species to introduced predators may still have sub-lethal impacts. In video

recorded laboratory trials, we examined the effects of introduced brown trout on 

the short-term behaviour of a threatened, lake-dwelling galaxiid fish and 

confirmed a suspected diel pattern in habitat use by this species. We found that 

Galaxias auratus followed a distinct diel pattern in the use of complex habitats 

and open water, which was significantly altered by the presence of brown trout. In 

trials without the introduced predator, G. auratus used complex habitats (rocks or 

macrophytes) during the day, and open water during the night. In trials with 

brown trout present, G. auratus spent significantly less time in open water and 

rarely ventured out of the macrophytes. However, when given the option of using 

only rocky substrate or open water, which is the more common situation in the 

lakes to which this galaxiid is endemic, the fish reduced the apiount of time they 

spent in the open water during the night, but still spent more time in open water 

than when macrophytes were available. Spending the daylight hours amongst the 

cover of rocks or macrophytes is most likely an adaptation to reduce the risk of 
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predation by visual predators, and the pattern of reduced use of open water 

habitats in the presence of brown trout is an acute response to the close proximity 

of the introduced predator. The difference in the nocturnal use of macrophytes and_ 

rocks when trout are present may be related to differences in feeding opportunities 

or success within these habitats. 

Introduction 

Animals often respond to the presence of predators by altering their use of 

habitats or reducing their activity (Jacobsen and Perrow 1998; Reebs 1999; 

Nystrom et al. 2001; Jennions et al. 2003; Marquis et al. 2004). Although 

predation is a fundamental component of predator-prey interactions, identifying 

and understanding sub-lethal effects of predators on their prey is necessary for a 

more complete understanding of interactions between the predator and prey (Lima 

1998). In freshwater systems, introduced piscivorous fishes have impacted native 

species in many ways, with direct predation and competition commonly 

responsible for declines in abundance and reductions in the range of small native 

fishes (Townsend and Crowl 1991; Crowl et al. 1992; Marsh and Douglas 1997; 

Mcintosh 2000; Jackson et al. 2004). Frequently, little is known of the sub-lethal, 

behavioural impacts on native species;. Behavioural responses of fishes to 

introduced predators may take the form of short-term behavioural changes, such 

as shifts in habitat use in response to a nearby predator, or adaptation, for those 

species which survive long enough in the presence of the introduced predator for 

this to occur. This former response, although on a smaller temporal scale, may 

~ still impact the native species by substantially interfering with other necessary 
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activities such as fora~ng and reproduction (Edge et al. 1993; Mcintosh and 

Townsend 1994; Jennions et al 2003). 

The introduction of brown trout to southern hemisphere waters has detrimentally 

impacted many native species, particularly galaxiid fishes (McDowall 2006). 

Whether trout indirectly affect galaxiids by modifying their habitat use is 

unknown. Galaxias auratus is a threatened galaxiid fish naturally endemic to the 

turbid Lakes Crescent and Sorell on the Tasmanian Central Plateau. As with other 

galaxiid fishes in Tasmania, this species evolved in isolation from larger predatory 

fishes (Hardie et al 2006b ), and is vulnerable to predation by brown trout, which 

were introduced into Lakes Crescent and Sorell in 1868 and are now its major 

predator (Stuart-Smith et al 2004). Despite being found to feed during both day 

and night-time (Stuart-Smith et al. 2006), there is some evidence to suggest its 

activity and habitat use does show a diel pattern. Hardie et al. (2006a) reported 

that in a small "insurance" population of G. auratus translocated to a clear-water, 

trout-free farm dam reservoir, the fish were more likely to be found in open water 

habitats during the night, while during daylight they appeared to be generally 

confined to heavily vegetated macrophyte beds. The objective of the present study 

was to experimentally test whether the increased predation risk associated with 

the close proximity of brown trout resulted in a short-term shift in this suggested 

diel pattern in the use of complex habitats by Galaxias auratus, in order to more 

clearly understand potential impacts of trout on this threatened species. 

The habitat use of G. auratus could not be directly observed in Lakes Crescent 

and Sorell due to persistent high turbidity [approximately 100 Nephelometric 
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turbidity units (NTU) or greater at the time of the study]. Consequently, 

observation of the diel pattern in the use of complex habitats by G. auratus and 

the manipulation of brown trout presence was undertaken in the laboratory. This, 

however, allowed us to also examine whether diel patterns in habitat use differ 

depending on the type of complex habitat available. The two main types of 

complex habitat available to G. auratus in Lakes Crescent and Sorell are the 

macrophytes in the marshes, which are only available during high water, and areas 

of rocky substrate. Since habitat use is often associated with a trade-off between 

foraging opportunities and predation risk (sensu Werner et al. 1983; Lima 1998), 

we hypothesized that potential differences in foraging opportunities within these 

two habitat types may alter the relative importance of foraging in this trade-off for 

G. auratus, and therefore its use of these habitats under high predation risk. 

Materials and methods 

Galaxias auratus [range 81 - 97 mm total length (TL), n = 30] and brown trout 

(204 and 231 mm TL) were collected by backpack electrofisher (Smith-Root Inc. 

model 12-B) in Lake Crescent and transported to the laboratory in 100 L 

containers with aeration from battery-operated pumps. They were held in large 

acrylic tanks (1100 x 650 x 400 mm) prior to beginning the experiments, with 

brown trout and G. auratus held separately but in identical conditions. 

Trials were conducted in a large rectangular opaque acrylic tank (1100 x 650 x 

400 mm) with half of the bottom area covered by complex habitat [either rocks 

(collected from Lake Crescent; diameter ranging from approximately 100 mm to 

250 mm) or artificial macrophytes (at 625 stems m-2
)] and halfleft bare, with a 
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substrate consisting of a thin layer of sand glued to the acrylic. Artificial 

macrophytes represented Triglochin procerum, an important littoral macrophyte 

in Lake Crescent (Heffer 2003), and were constructed from strands of buoyant 

nylon rope long enough to reach the water surface, tied to a base of plastic lattice. 

Lighting consisted of fluorescent room lighting during the day, with dawn and 

dusk periods created by staggered timing of the lighting that lasted for 20-min 

before or after the lights were all switched on or off. Day length and _temperature 

were maintained close to the conditions in Lakes Crescent and Sorell at the time 

the experiments were conducted (11 h and l 4°C). Trials were run in random order 

and the water in the experimental tank was changed between each trial to 

eliminate the chance of G. auratus detecting a predator in trials without trout due 

to olfactory cues remaining in the water from previous trials. 

Five randomly selected G. auratus and one brown trout (only in trials with the 

predator present) were added to the experimental tank 24 h prior the beginning of 

each trial and all filtration was turned off. Natural prey (Austrochiltonia australis 

collected from Lake Crescent) were added to the tank 10 minutes prior to the 

beginning of each trial at a density of approximately 700 m-2
, and were observed 

distributing themselves throughout the tank. The duration of the trials was 24 h. 

The position of G. auratus was monitored using an infrared video camera 

(constructed in the laboratory) and an infrared light source (250 W, also 

constructed in the laboratory), both mounted above the tank, and a Panasonic™ 

time-lapse video cassette recorder (model AG-6730). As Lakes Crescent and 

Sorell are turbid and this may affect the behaviour of G. auratus, we attempted to 

run the trials in water as turbid as possible without interfering with our ability to 
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determine the location of the fish. Preliminary trials revealed that a turbidity of 

30-40 NTU (measured with an Analite™ 156 high sensitivity model 

nephelometer) permitted excellent images using the sensitive infrared equipment 

during both day and night, whilst still appearing turbid to the naked eye. Videos of 

the trials were sampled at 15 min intervals in addition to every 2 min for 14 min 

before and after "dawn" and "dusk". The number of G. auratus in the open water 

was recorded at each of these times. 

To examine the diel use of complex habitats by G. auratus and test the effects of 

predator presence and habitat type on this, a 2-way factorial design was used with 

complex habitat type (macrophyte cover or rock cover) crossed with trout (2 

levels: present or absent). Four replicate trials were run for each combination of 

these experimental treatments. A priori we were interested in comparing each 

treatment combination with macrophytes and trout absent. Although the original 

intent was to model the number of fish in the complex habitat (rocks or 

macrophytes) as a continuous covariate with autocorrelation between successive 

observations included in the model, inspection of the data showed a clear division 

between night-time and day-time activity. Because of this, we used the mean 

number of fish in the complex habitat in each of day and night periods as the 

response variable, with the mean weighted according to the number of 

observations in each time period. Thus time of day (i.e. a two-level, fixed factor: 

night vs. day) was nested within the 2-way factorial treatment design. 

A multi-stratum analysis of variance model was fitted using appropriate error 

terms (see Quinn and Keough 2002). Overall, the habitat x trout x time of day 
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interaction was highly significant, so after first testing whether there was a 

difference between night and day in the reference treatment of macrophyte cover 

without trout, the data were then analysed in terms of f).d, the number of G. 

auratus in cover during day minus the number of G. auratus in cover during the 

night. In the absence of trout, this difference was always positive (i.e. more of the 

galaxiids were in the complex habitat in daylight than at night). All pairwise 

comparisons of f).d were carried out using Westfall's simulation procedure for 

simultaneous confidence intervals which is more powerful than conventional 

procedures for unplanned multiple comparisons (Westfall 1997). Assumptions of 

homoscedasticity and normality of errors were checked using standard plotting 

procedures (Quinn and Keough 2002), and no transformations were required prior 

to analysis. All analyses were conducted using R 2.3.1 (R Development Core 

Team 2006) and Westfall's procedure was implemented in the multcomp package 

(Bretz et al. 2004). 

Results 

Galaxias auratus showed a distinct diel pattern in its use of complex habitats 

(Figure Al), with significantly more fish using the complex habitats during the 

day than at night (F1,12 = 578.1, P < 0.005). In the absence of brown trout, most G. 

auratus were found in the sheltered habitats during daylight (mean no. in 

macrophytes: 4.4; in rocks: 4.2) and left the sheltered habitats at night (mean no. 

in macrophytes: 1.6; in rocks: 1.3). Overall differences in the mean number offish 

found in rocks and macrophytes in the absence of trout were not significant (t = 

0.45, p = 0.662). 
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Figure 1 The mean number of Galaxias auratus found in cover during the day 
(open symbols) and night (black symbols) in each treatment combination. Day 
and night means within each treatment combination are joined by a grey line. 
Vertical lines are ± 1 standard error of the mean. 

Trout affected the diel habitat use pattern of G. auratus by suppressing the 

nighttime use of open water substantially (Figurel). This resulted in significant 

reductions in Ad for both complex habitat types (Table 1 ). The predator effect was 

greater when macrophytes provided cover than when rocks provided cover (Table 

1 ). When trout were present, G. auratus showed a smaller difference in the use of 

cover between day and night (i.e. reduced Ad) much more in trials with 

macrophytes than in those with rocks (Figure 1 ). Thus, the effect of trout on G. 

auratus was essentially to reduce the magnitude of Ad and this effect was greater 

in macrophytes than in rocks. In all trials with trout, the trout tended to remain in 
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the open water much of the time, with rare excursions into the macrophytes or 

over the rocks. 

Table 1 Pairwise comparisons of Ad values (i.e. the difference in the number of 
G. auratus in the complex habitat between day and night) between all treatment 
combinations. Ad1 and Ad2 are Ad values for the first and second named treatment 
combinations respectively in each row of the table. For example, the day- night 
difference in G. auratus ' use of macrophytes without trout present was greater by 
2. 7 (of five) fish than the day- night difference in macrophytes with trout present. 
Simultaneous confidence intervals for these differences are given in parentheses. 
P values are Bonferroni adjusted. MNT = macrophytes as cover and no trout, MT 
= macrophytes with trout, RNT = rocks as cover .and no trout, and RT = rocks 
with trout IJresent. 

~~~~~~~~~~~~~~~~~~~~~-

Treatment Comparison Ad1 - Ad2 t P 

MNT-MT 2.7 12.982 <0.001 
(2.1, 3.3) 

MNT-RNT -0.l -0.448 0.969 
(-0.7, 0.5) 

MNT-RT 1.4 6.594 <0.001 
(0.8, 2.0) 

MT-RNT -2.8 -13.430 <0.001 
(-3.4, -2.2) 

MT-RT -1.3 -6.389 <0.001 
(-2.0, -0.7) 

RNT-RT 1.5 7.041 <0.001 
(0.9, 2.1) 

Discussion 

The behaviour of G. auratus observed in this study confirms Hardie et al.' s 

(2006a) suggested diel pattern in the use of complex habitats. In the absence of 

brown trout, G. auratus remained concealed in the artificial macrophytes or rocks 

during the day, but spent far more time in open water and showed an increase in 

activity during the night. This pattern of behaviour is commonly observed for 

fishes under predation pressure from visual predators such as piscivorous fish or 

birds (Reebs 2002). 
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Although aiming to confirm this overall pattern of habitat use, the focus of this 

study was to test whether increased predation risk associated with the close 

proximity of an introduced predator affected the behaviour of G. auratus. We 

have clearly shown that the close presence of an adult brown trout results in a 

pronounced, acute behavioural response by G. auratus. In the laboratory, when 

trout were present, the proportion of time spent by G. auratus in the open water 

adjacent to either macrophytes or rocks was significantly reduced. Clearly the 

close proximity of trout, or the imminent threat of predation, largely restricted G. 

auratus to whichever complex habitat was available. Such an increase in the use 

of complex habitats in the presence of a predator has been observed for many 

animals including the house mouse (Mus domesticus: Dickman 1992) and 

numerous fishes (e.g. bluegill Slµlfish, Lepomis macrochirus: Werner et al. 1983; 

Eurasian perch, Percajluviatilis: Persson and Eklov 1995; Jacobsen and Berg 

1998; roach, Rutilus rutilus: Bean and Winfield 1995; rudd, Scardinius 

erythrophthalmus: Bean and Winfield 1995; and rainwater killifish, Lucania 

parva: Jordan 2002). The modification of habitat use by G. auratus in this study is 

particularly important as it suggests that the impacts of brown trout on many 

galaxiids may go beyond predation and competition, with potential indirect 

impacts on feeding, growth and reproduction. 

Predation risk and foraging success are usually highly habita~-dependent 

(Manatunge et al. 2000; Laegdsgaard and Johnson 2001; Fullerton and Lamberti 

2006), so the behavioural response of G. auratus' to brown trout is likely to alter 

its risk of predation and foraging success. The purpose of G. auratus' response to 
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trout presence would likely be to reduce predation risk, and the effectiveness of 

this could be experimentally evaluated quite easily. It is still unclear, however, 

whether any reduction in foraging returns may result from the increased use of 

complex habitats. Werner et al. (1983) found that small bluegill sunfish, which 

switched from foraging in open water to the macrophyte habitat in the presence of 

a predator (largemouth bass, Micropterus salmoides), grew significantly less than 

bluegills feeding in the open water in the absence of the predator. Thus, it is 

possible that altered habitat use of G. auratus during times in which brown trout 

are near may similarly result in decreased feeding and reduced growth rates. 

Obviously, an important consideration is how long the behaviour of G. auratus 

remains altered after a close encounter with brown trout. The duration of their 

response will clearly affect the magnitude of any negative affect of altered habitat 

use. J ennions et al. (2003) found that the length of the response by fiddler crabs to 

predation risk depended on aspects of the encounter such as proximity of the 

predator. More data are needed on"the behavioural response of G. auratus to 

encounters with brown trout to determine the longevity of habitat use changes. 

Knowledge of the independent effects of habitat complexity and brown trout 

presence on feeding of G. auratus would also help give an overall impression of 

the sub-lethal effects of introduced brown trout on this threatened species. 

The effect of trout on habitat use of G. auratus differed according to the type of 

habitat that was available. A greater use of open water during the night by G. 

auratus in trials with rocks and trout (as opposed to almost no use of open water 

in corresponding trials with macrophytes and trout), suggests that they may be 
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more willing to make themselves vulnerable to predation when this is the only 

complex habitat available. It is conceivable that there are differences in foraging 

opportunity or returns between these two habitats that may result in these 

observed differences. The visual field, and in addition G. auratus' access to 

interstices in which prey may hide, would be more restricted amongst rocky 

habitat such as that in Lakes Crescent and Sorell (and that used in our trials) than 

in macrophyte habitats. Experimental work on European perch (Percafluviatilis) 

has found that their ability to forage in mussel-covered rocky habitat is limited 

(Dieterich et al. 2004), but that they are capable of foraging efficiently within 

dense stands of aquatic vegetation (Diehl 1988; Persson and Eklov 1995). So, if 

foraging returns within the rocky habitat 'are comparatively poor, we suggest that 

the fish must consequently expose themselves to a greater risk of predation by 

actively searching for prey in the open water. Vehanen (2003) observed similar 

risk taking by hungry Atlantic salmon (Salmo salar). Conversely, foraging returns 

in the macrophyte habitat might be high enough to allow them to minimise 

predation risk by considerably reducing the amount of time they spend outside of 

the cover. A future experimental evaluation of G. auratus' ability to feed in 

macrophyte habitats would be essential to support this suggestion. 

This study only considered the behaviour of adult G. auratus during late summer. 

We acknowledge that habitat use of fishes often changes seasonally (David and 

Closs 2003), but the timing of this study was specifically chosen to coincide with 

when feeding is at a maximum due to increased metabolism and the needs 

associated with gonad development (Hardie et al. 2004). At other times of the 

year the relative importance of predation risk in determining habitat use may be 
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greater, as the importance of feeding in this trade-off may not be as great. It has 

also been reported that habitat use changes during ontogeny for a number of fishes 

(Roussel and Bardonnet 1999; Whitehead et al. 2002; Bystrom et al. 2004; hnre 

and Boisclair 2004), and this is also the case for G. auratus. We only considered 

adult fish, from I+, as the larvae and young juveniles of this species are wholly 

pelagic and do not utilize complex habitats until at least 4-5 months of age 

(Hardie et al. 2004). Additionally, it has been suggested that behaviour that 
\ 

minimizes predation risk is more evident in larger or older individuals (Clark 

1994; Bystrom et al. 2004; hnre and Boisclair 2004), so using larger individuals 

was considered more appropriate for examining the behavioural response of G. 

auratus to an introduced predator. 

The littoral marshes currently represent the only significant macrophyte habitat in 

Lakes Crescent and Sorell, making the availability of the macrophyte habitat to G. 

auratus highly dependent on water levels. The availability of rocky substrate is 

also water level dependent in Lake Crescent, with the lake bed mainly consisting 

of silt and clay at low water levels. Thus manipulation of water levels can 

potentially interfere with ecological interactions of G. auratus, and this study 

provides an example of how the way in which G. auratus reacts to introduced 

brown trout could be influenced by the water level through changes to habitat 

availability. If the water level drops so that the marshes are left dry, then G. 

auratus has only rocky habitat available, a situation in which they may potentially 

spend more time in open water, thus increasing their vulnerability to predation. 

An attempt to determine any differences in relative predation risk of G. auratus in 

both habitat types would be useful and may provide extra support to this 
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hypothesis, and reinforce the importance of high water levels for G. auratus 

through the effect on habitat availability. 
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Appendix 
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Figure Al. Number of Galaxias auratus in the complex habitat for each time 
interval observed on the video recording. Values have been jittered on the 
ordinate to avoid over plotting. The trend line is lowess-smoothed number of fish, 
and the dark vertical bar denotes hours of darkness. Note the abrupt change in the 
number of fish in the complex habitat around dusk and dawn in trials with trout 
absent. 
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Chapter 4: Are there foraging costs associated with the use of 

complex habitats by a lentic galaxiid fish? 

Manuscript published as: Stuart-Smith, R.D., Stuart-Smith, J.P., White, R.W.G., 

and Bannuta, L.A. 2007. The effects of turbidity and complex habitats on the 

feeding of a galaxiid fish are clear and simple. Marine and Freshwater Research 

58: 429-435. 

Abstract 

The habitat used by animals plays an important role in their interactions with 

predators and prey. By using complex habitats such as areas of dense macrophyte 

cover in response to elevated predation risk, small fishes may reduce their 

foraging success. Because the threat of predation by introduced brown trout 

increases the use of complex habitats by the threatened Galaxias auratus 

(Johnston), we experimentally examined its foraging in different habitats to 

estimate indirect impacts of brown trout presence. The lakes in which G. auratus 

lives have recently become more turbid, so the experiment was also conducted 

under different turbidity levels. Laboratory feeding trials in which planktonic and 

epibenthic prey were simultaneously offered to G. auratus in the presence or 

absence of artificial macrophytes and at three turbidity levels (0, 50 and 100 

NTU), revealed that its overall foraging success was unaffected by habitat 

complexity, however, in trials with artificial macrophytes, G. auratus consumed a 

greater proportion of planktonic prey than in the absence of artificial macrophytes. 

Neither overall foraging success nor prey selection by G. auratus was affected by 
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high turbidity, indicating that water clarity does not appear to directly negatively 

impact its feeding. The switch in prey types would probably not be detrimental to 

G. auratus in the long-term, and thus it appears that there is no substantial feeding 

cost associated with its increased use of complex habitats. It could, however, 

affect lower trophic levels in the lakes to which it is endemic. 

Introduction 

The structural complexity of habitats is an important physical characteristic of 

shallow lakes, and can have significant impacts on predator - prey interactions 

(Crowder and Cooper 1982; Gilinski 1984; Swisher et al. 1998; Wilhelm et al. 

2002; Warfe and Barmuta 2004). Usually, the foraging success offish predators 

decreases with increasing habitat complexity (Coull and Wells 1983; Anderson 

1984; Bertolo et al. 1999). Thus, small fishes, which often use complex habitats 

such as macrophyte stands to reduce their risk of predation (Bean and Winfield 

1995; Holker et al. 2002; Reebs 2002), may incur a cost in terms of foraging 

success iftheir ability to effectively locate and capture prey is impaired by the 

physical structure of the habitat. Therefore, examining a fish's ability to forage in 

complex habitats is necessary to evaluate potential negative indirect effects of 

predators. 

Galaxias auratus is a locally abundant but threatened galaxiid fish that is endemic 

to Lakes Crescent and Sorell, Tasmania. It is important to determine the foraging 

habits of G. auratus in structurally complex habitats, becaus,e it spends more time 

in these habitats when its major predator, introduced brown trout (Salmo trutta 

L.), is in close proximity (R.D. Stuart-Smith, unpublished data). An additional 
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potential impact on the foraging of this fish is that both the lakes in which G. 

auratus lives have become highly turbid over the past decade owing to lake levels 

being reduced by prolonged drought and increased abstraction for irrigation 

(Uytendaal 2003). The potential deleterious impacts ofincreased turbidity are, 

therefore, a clear concern for the management of this species. So, although many 

galaxiid species are able to feed non-visually (Bonnet et al. 1989; McDowall 

1997; David and Closs 2003), it is also important to identify whether turbidity 

affects the foraging success of G. auratus. 

Both complex habitats and high turbidity may alter the vulnerability of various 

prey types due to differences in contrast (De Robertis et al. 2003) and behaviour 

(Persson and Eklov 1995; Starry et al. 1998). If changes in habitat complexity or 

turbidity result in prey switching, this can affect a fish's growth rate and possibly 

fecundity or survival. If prey switching is density-independent, it can be non

stabilizing and possibly lead to changes in invertebrate prey communities through 

selective predation (Murdoch and Bence 1987; Kornij6w et al. 2005). Thus, 

identifying situations in which prey switching occurs is important for 

understanding whether consequences of habitat use and elevated turbidity may 

also extend to lower trophic levels. 

The primary aim of this study was to experimentally determine whether the 

overall foraging success of G. auratus is affected by the structural complexity of 

macrophytes and by high turbidity. By providing its two most important prey 

types ( epibenthic and planktonic; Stuart-Smith et al. 2006) in experiments, a 
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second aim was to assess whether prey selection by G. auratus is also influenced 

by these important physical characteristics of shallow lakes. 

Materials and methods 

Presently, Lakes Crescent and Sorell contain only three main habitat types which 

represent three different degrees of structural complexity: macrophytes (sparse 

littoral vegetation and dense cover in wetlands at high water levels), areas of reef 

(low relief bedrock and boulders smaller than 0.3 m diameter, but up to 0.5 m), 

and areas of barren silt, without any structure. The most structurally simple 

habitat, the areas of silt substrate, contains very little in the way of cover for fish 

or prey, yet occupies the majority of the lakebed of Lake Crescent and extensive 

areas of Lake Sorell and is used by G. auratus for feeding during the nighttime 

(Stuart-Smith et al. 2006). We assessed G. auratus' feeding ability in the most 

simple and the most complex habitats (the featureless silt and the macrophytes). 

Two prey types were used in trials: the epibenthic amphipod, Austrochiltonia 

australis (Ceinidae), and the planktonic cladoceran, Daphnia carinata. These 

species were chosen because they have been the dominant prey items (both 

numerically and volumetrically) in the diet of Galaxias auratus in recent years 

(Stuart-Smith et al. 2006). They are also found in all three habitat types in Lakes 

Crescent and Sorell; A. australis has been super-abundant in Lakes Crescent and 

Sorell in recent years (mean densities of up to 13 300 m-2
; Stuart-Smith et al. 

2006), even over the featureless silt substrate in which they lack cover, and D. 

carinata are found in dense blooms throughout the lakes during the summer and 
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end up in the fringing wetlands during windy weather (Leon Bannuta, pers. 

comm.). 

To determine the effects of habitat structural complexity and turbidity on the 

foraging success and prey selection of G. auratus, experimental tanks were set up 

with all combinations of two levels of habitat complexity (presence or absence of 

artificial macrophytes ), three levels of turbidity [low = 1.3 2 ± 0 .10 NTU (mean ± 

standard error margin (SEM)), medium= 51.03 ± 1.42 NTU, and high= 97.31 ± 

2.22 NTU] and presence or absence of G. auratus, which provided a control for 

natural prey mortality or inaccuracies of prey counts during the experiment. We 

conducted a power analysis on the portion of the design that just included G. 

auratus to determine the number of replicates needed in each treatment 

combination to detect an average squared interaction effect of one-quarter of the 

within-cell variance at a= 0.05. Eight replicate trials of each treatment 

combination were used in this experiment as this was identified as sufficient 

(power = 0.858). 

Galaxias auratus were captured from Lake Crescent (n = 42, mean total length 

(TL) = 114 mm, range= 84-142 mm) using a backpack electroshocker (Smith

Root Inc. model 12-B) and maintained in two large holding tanks (1100 x 650 x 

400 mm) in the laboratory for a minimum of three weeks prior to use in trials. 

Prey used in trials were collected from the same lake and were sieved to ensure 

that similar sizes of both types (2 - 4 mm) were used in the experiment. Trials 

consisted of individual fish in opaque experimental tanks (350 x 210 x 260 mm). 

After a 48-h settling period without food, 150 (equivalent to high natural 
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densities) of each prey were added. Trials lasted for 3 h, as preliminary trials 

indicated that both this time period and the number of prey added were sufficient 

to allow enough consumption for analysis of selection {> 20% of prey offered; 

Peterson and Renaud 1989) without allowing satiation. At the conclusion of each 

trial, the fish were removed, measured (TL), returned to the large holding tanks 

and the remaining number of each prey in the experimental tanks was counted. 

Control trials (i.e. without fish) underwent an identical protocol. 

Turbidity was manipulated by diluting or evaporating turbid water from Lake 

Crescent in 100 L tanks until the desired levels were obtained. Turbidity was then 

maintained in these large holding tanks by circulation produced by heavy aeration. 

Turbidity was measured with an Analite™ 156 high sensitivity model 

nephelometer. In the smaller experimental tanks, light aeration reduced settling of 

the sediment during the 48-h period prior to the beginning of the trials, but 

aeration was ceased immediately before prey were introduced, to eliminate 

current from affecting prey distributions. A second turbidity measurement was 

made at the end of every trial and while there was very little reduction in turbidity 

during the course of the trials, this measurement was used in analyses. 

Artificial macrophytes simulated Triglochin procerum, a common macrophyte in 

the littoral zone of Lakes Crescent and Sorell (Heffer 2003), with stems at a 

density similar to that amongst an individual plant (900 stems m-2
). They were 

constructed from strands of plastic packing tape bound together into small 

bunches and held to a suction cup by a rubber band; this allowed bunches to be 

separated at the end of each trial to remove and count remaining prey. Trials 
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without artificial macrophytes simulated areas of barren silt lakebed in Lakes 

Crescent and Sorell, which have no cover for fish or prey. Fluorescent lighting 

was maintained in the laboratory with a fixed photoperiod. As previous work has 

demonstrated that G. auratus feeds during both night and day in the field (Stuart-

Smith et al. 2006), but more actively searches for food during times oflow light 

(R.D. Stuart-Smith, unpublished data), trials were conducted during the last hour 

before and two hours following the lighting being switched off. 

The total number of prey consumed in each trial was analysed by analysis of 

covariance (ANCOVA). To test for inaccuracies in counts between experimental 

treatments, a one-way ANCOV A with habitat structural complexity as a fixed 

factor and the measured turbidity in the trials as a continuous covariate was 

conducted on the number of prey not recovered in each trial in on1y those trials 

without fish (controls). Then, in the trials that included a fish, another one-way 

ANCOV A was used to analyse differences in total prey consumption between 

trials with and without artificial macrophytes, with both fish TL and the measured 

turbidity as covariates. 

Prey selection by G. auratus was examined using the Chesson-Man1y index ( acM, 

Chesson 1983), which accounts for prey depletion (Man1y 1985; Turnbull and 

Barmuta 2002). Values of acM were calculated for Daphnia carinata (values for 

Austrochiltonia australis are simply the complement) and were used as the 

dependent variable in the same combination of analyses as was used for the total 

prey consumption. 
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Results 

From observations in preliminary trials, Galaxias auratus appeared to feed 

naturally in the experimental setup. In open water, they swam slowly above the 

substrate and actively searched for prey. Short swimming bursts were made to 

consume detected prey. This meant that they took prey both from the water 

column and from near the surfaces of the aquaria when prey that were disturbed 

by the fish's movement tried to escape. In artificial macrophytes, G. auratus 

adopted more of an ambush strategy, generally remaining stationary and lunging 

only after detecting moving prey. 

Counts of remaining prey were reliable and independent of experimental 

treatment, with only 2.97 ± 0.16% (mean± SEM) of 300 prey not recovered at the 

end of each of the control trials (habitat complexity: Fi,44 = 0.88, P = 0.35; 

turbidity: F1,42 = 0.3 8, P = 0.54; habitat complexityx turbidity: Fi,44 = 0.30, P = 

0.59). Thus the omission of controls in further analyses was justified. 

In the analysis of overall foraging success of G. auratus, the homogeneity of 

slopes assumption was satisfied (F4,40 = 0.65, P = 0.63, combined covariate 

interactions) and a reduced model was fitted without covariate interaction terms 

(Table 1 ). Neither the habitat structural complexity nor the turbidity level affected 

the G. auratus' overall foraging success. The total number of prey eaten in each 3-

h trial ranged from 78.5 ± 6.9 (mean± SEM) in the medium turbidity level 

without artificial macrophytes to 107 .5 ± 26.0 in the low turbidity level without 

macrophytes (Fig. 1 ). There was no effect of fish size on the number of prey 

consumed (Table 1 ). 
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Table 1. One-way ANCOVA of the effects ofhabitat complexity, turbidity and 
fish size on the overall foraging success of Galaxias auratus in feeding trials 
(insignificant covariate interactions were omitted for this analysis). 
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Fig. 1. Box and whisker plots showing overall foraging success of Galaxias 
auratus in feeding trials with artificial macrophytes (a) and trials without artificial 
macrophytes (b ), and at different turbidity levels (1 = 1.32 ± 0.10 NTU (mean± 
SEM), 2 = 51.03 ± 1.42 NTU, and 3 = 97.31±2.22 NTU). 

Turbidity did not significantly affect prey selection, but the presence of artificial 

macrophytes did (Table 2). G. auratus selected the planktonic D. carinata in trials 

with artifical macrophytes and A. australis in trials without artificial macrophytes 

(Fig. 2). Prey selectivity was apparently not influenced by fish size; however, 

diagnostic plots (i.e. Cook's D vs. Leverage; Quinn and Keough 2002) showed 

one strongly influential fish which, when omitted, resulted in better diagnostics 
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and a significant interaction between habitat complexity and fish TL (F1,41 = 6.31, 

P = 0.016). This effect was such that the value of acM increased with fish size in 

the simple habitat only, indicating that smaller fish in these trials consumed 

proportionally more A. australis than the larger fish (Fig 3). While it is possible 

that, with more replicates, this pattern would become more robust to the presence 

of the influential datum, there was no a priori reason to exclude the fish with high 

influence, and all covariate interactions were insignificant when included (F4,40 = 

1.95, P = 0.12). We concluded, therefore, that there might be a weak tendency for 

preference for Daphnia to increase with fish length, but only in simple habitats. 

Table 2. One-way AN COVA of the effects of habitat complexity, turbidity and 
fish size on prey selection by Galaxias auratus in feeding trials (insignificant 
covariate interactions were omitted for this analysis). 

Habitat complexity 
Turbidity 
Fish TL 
Error 

MS df 
1.820 1 
0.035 1 
0.014 1 
0.032 44 

F 
56.79 
1.08 
0.43 

p 
<0.001 
0.30 
0.51 
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Fig. 2. Box and whisker plots showing prey selection by Galaxias auratus in 
feeding trials with artificial macrophytes (a) and trials without artificial 
macrophytes (b ), and at different turbidity levels (levels same as in Fig. 1 ). The 
Chesson-Manly index (acM) was calculated for Daphnia carinata so values 
greater than 0.5 indicate preference, or greater selection for this prey, and values 
less than 0.5 indicate preference for the amphipod, Austrochiltonia australis. The 
lone data point not encompassed by the whisker in the high turbidity level in plot 
(b) is an outlier. 
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Fig. 3. Plots of prey selection ( <XcM) versus fish TL in feeding trials with artificial · 
macrophytes (a) and trials without artificial macrophytes (b ), with regression lines 
superimposed. In the simple habitat (b) the broken grey regression line includes 
the influential observation indicated by the solid grey symbol. 
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Discussion 

The results suggest that the use of structurally complex habitats, such as areas of 

dense macrophyte cover, by G. auratus may not reduce its foraging success. This 

is a significant finding.as the threat of predation by introduced brown trout has 

been shown to dramatically increase the use of macrophyte habitats by this 

threatened species (Stuart-Smith et al. in review) and Hardie et al. (2006) have 

found that this species confines itself to macrophyte beds during the daytime in a 

trout-free insurance population in a small, artificial water storage. While we 

tentatively conclude that this fish is not deleteriously affected in terms of its 

foraging by living in macrophytes, by contrast, most research on other fishes has 

found that the structure of dense macrophytes reduces foraging success. For 

example, Diehl (1988) found the capture rates of bream (Abramis brama) and 

roach (Rutilus rutilus) were considerably reduced in artificial vegetation, and the 

results of Manatunge et al. (2000) were similar for Pseudorasbora parva. There 

are some species, however, that are capable of foraging effectively in macrophyte 

habitats. Winfield (1986) and Persson and Eklov (1995) found European perch 

(Percafluviatilis) to maintain prey capture rates with increasing habitat structure 

(macrophytes). We speculate that European perch and G. auratus are able to 

locate and capture prey in such habitats by using multiple cues including visual 

and non-visual stimuli. 

Most studies on fish foraging in complex habitats, such as those of Diehl (1988) 

and Manatunge et al. (2000) have used only one prey type, eliminating the 

potential for the fish to switch to prey that is more easily located or captured in the 

complex habitat. Whether the apparent reduction in the feeding efficiency of these 
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species in complex habitats can be compensated for by switching to other prey 

taxa in the wild is unknown. Persson and Eklov (1995) noted that the overall 

foraging success of juvenile European perch did not appear to be reduced when it 

was forced to use macrophytes, because its reduced consumption of planktonic 

prey was balanced by increased consumption of epiphytic macroinvertebrate prey. 

Similarly, in our study G. auratus was able to feed in macrophytes by switching 

from an epibenthic macroinvertebrate to a planktonic prey. 

Apart from differences in relative abundances, habitat-dependent prey switching 

can often be the result of prey appearance or behaviour altering their vulnerability 

in different habitats. Savino and Stein (1989) suggested that the way in which 

prey use the structure to avoid predators plays a major role in determining 

foraging costs associated with the use of complex habitats by a predator. We 

propose that this was important in the pattern we observed, and that G. auratus 

was probably consuming more Daphnia in the trials with artificial macrophytes 

because the Daphnia were not able to use the smaller spaces between the 

macrophytes in which A. australis hid to their advantage. Starry et al. (1998) also 

found that freshwater amphipods were good at seeking refuge amongst the 

interstitial spaces of a complex habitat in the presence of a fish predator. Daphnia, 

however, would be more vulnerable to the sit and wait strategy that G. auratus 

appears to use in cover. Mcintosh & Townsend (1995) described that Galaxias 

vulgaris took more prey from the water column when feeding in cover, but 

captured more prey that were disturbed from the bottom when actively moving 

about and feeding away ·from cover. Our results indicate that G. auratus feeds in a 

similar way to G. vulgaris, but that the switch in feeding methods associated with 
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the use of cover or open water results in different prey being eaten due to the 

different behaviours of the prey. 

The reason for the weak pattern observed with smaller fish consuming 

proportionally more epibenthic prey than larger fish in the trials without artificial 

macrophytes is unknown. It is possible that it may reflecra slightly different 

foraging strategy by smaller fish or different physical capabilities. By swimming 

closer to the bottom smaller fish may disturb and locate more epibenthic prey, 

perhaps also encountering less plank.tonic prey at the same time. Our casual 

observations from preliminary trials could not detect this as the sides of the 

aquaria were opaque and observations were made from above. It is also possible 

that the smaller fish were physically more capable of extracting epibenthic prey 

that sought refuge in comers of the aquaria than larger fish due to a smaller head 

size. However, the same pattern was not observed in the trials with artificial 

macrophytes. In addition, from observations in preliminary trials it appeared that 

most of the amp hi pods that were consumed were actually taken whilst moving 

above the substrate, usually after being disturbed by the fish's movement. Small 

head size would be no advantage for such a feeding strategy. The possibility that 

the position in the water column differed for foraging fish of different sizes is 

more likely to explain the observed pattern, but further observational work would 

be required to identify whether this occurs. 

Whether habitat-dependent prey switching has the potential to have a negative 

impact on G. auratus over time depends on prey diversity and availability in 

Lakes Crescent and Sorell and the nutritional value of the prey taxa being 
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consumed. Differences in prey availability between habitats are unlikely to 

negatively impact G. auratus as prey abundance and diversity is high in the 

macrophyte habitat of the littoral wetlands of these lakes (Hardie 2003), and A. 

australis has been super-abundant in all habitats, including areas of silt substrate 

(mean densities of up to 13 300 m-2
; Stuart-Smith et al. 2006). While the energy 

content of amphipods and cladocerans are often similar to each other, with 

reported values of 3.6-6.9 cal g-1 dry weight (DW) for freshwater amphipods 

(Bajchorov and Semenchenko 1977; Driver 1981; Bortkevitch et al. 1984), and 

4.2 - 5.0 cal g-1 DW for various Daphnia species (Wissing and Hasler 1971), the 

biomass of A. australis is greater than Daphnia carinata per individual 

(regressions of number and DW: A. australis: loge(DW) = - 0.9182 + 

l.0362lo~(number), r2 = 0.95,p < 0.001, n = 20; D. carinata: lo~(DW) = -

1.8949 + 0.9860lo~(number),? = 0.93,p < 0.001, n = 20; Stuart-Smith et al. 

2006). Thus, G. auratus would need to consume more Daphnia than A. australis 

to receive the same energy gain. While we found no evidence for this in our 

experiment, stomach contents data from field caught fish suggest that this may 

occur in the wild, with no differences observed in the DW of stomach contents of 

fish that had consumed only Daphnia from those that had consumed only A. 

australis (Stuart-Smith et al. 2006). In light of data from field caught fish and the 

greater diversity and abundance of alternative prey in the macrophyte habitat in 

Lakes Crescent and Sorell, we suggest that the prey switching observed in our 

experiment is unlikely to negatively impact G. auratus in the long term. 

Our experiment indicated that the feeding of G. auratus was not reduced by high 

turbidity. Whilst the feeding of many fishes has been found to be negatively 
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affected by high turbidity (e.g. bluegill sunfish, Lepomis macrochirus, Gardner 

1981; rainbow trout, Oncorhynchus mykiss, Barrett 1992; brook trout, Salvelinus 

fontinalis, Sweka and Hartman 2001), results of the few studies to have examined 

the abilities of galaxiid fishes to feed in turbid water vary (Rowe and Dean 1998; 

Rowe et al. 2002). The nocturnal habits of many galaxiids (Glova and Sagar 

1989a, 1989b; Whitehead et al. 2002; David and Closs 2003) and the well

developed mechano-sensory system (McDowall 1990) including an additional 

"accessory'' lateral line in many species, including G. auratus (McDowall 1997), 

suggest that many fishes within this family do not rely solely on vision for 

locating prey and are likely to be capable of feeding in turbid water. From a study 

which examined the structure of the retina of various galaxiid species, Ali et al. 

(1990) suggested that G. auratus was probably adapted to a crepuscular existence. 

However, considering that G. auratus was capable of foraging equally as well in 

100 NTU as in clear water with prey selection unaffected, which implies that it is 

efficient at using non-visual cues for feeding, it appears that it is also well adapted 

to a nocturnal existence. 

We have shown that the current high turbidity of lakes Crescent and Sorell should 

not directly negatively affect the feeding of G. auratus (although it may well have 

indirectly impacted G. auratus through changes to prey communities), and it is 

even possible that high turbidity may benefit G. auratus by reducing the risk of it 

being preyed on by trout. A reduction in the number of G. auratus in brown trout 

stomachs was observed during years of increasing turbidity in Lakes Crescent and 

Sorell (Stuart-Smith et al. 2004) and it would be expected that the foraging 

success of brown trout would be reduced by the high turbidity due to its 
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predominant reliance on vision for feeding (Allan 1978; Ringler 1979; Glova et 

al. 1992; Heggenes et al. 1993). Rowe et al. (2003) also suggested that high 

turbidity might favour the survival of Koaro ( Galaxias brevipinnis) in some New 

Zealand lakes by reducing predation pressure from trout. 

Galaxias auratus appears to be a very capable forager of pelagic and epibenthic 

prey in turbid conditions and amongst dense macrophyte stands. The apparent 

habitat-dependent prey switching does not necessarily imply that the increased use 

of complex habitats in response to brown trout is directly having a negative 

impact on this species. The degree to which complex habitats reduce predation 

risk for G. auratus under field conditions is unknown, but will also be an 

important factor in determining the overall outcome of the modified habitat use by 

this species and thus requires further study. The observed prey switching is 

significant for the ecology of Lakes Crescent and Sorell, however, because the 

impact of G. auratus on prey populations is habitat-dependent, and brown trout 

may also be having indirect effects on invertebrate prey communities by 

modifying its habitat use. 
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Chapter 5: The impact of an introduced predator on a threatened 

galaxiid fish is reduced by the availability of complex habitats 

Manuscript published as: Rick D. Stuart-Smith, Jemina Stuart-Smith, Robert W. 

G. White, and Leon A. Bannuta. 2007. The impact of an introduced predator on a 

threatened galaxiid is reduced by the availability of complex habitats. Freshwater 

Biology 52: 1555-1563. 

Summary 

1. The availability of complex habitats such as macrophytes may be vital in 

determining the outcomes of interactions between introduced predators 

and native prey. Introduced brown trout (Salmo trutta) have impacted 

numerous small native freshwater fishes in the southern hemisphere, but 

the potential role of complex habitats in determining the direct outcomes 

of brown trout - native fish interactions has not been experimentally 

evaluated. 

2. An in-lake enclosure experiment was used to evaluate the importance of 

structurally complex habitats in affecting the direct impacts of brown trout 

on a threatened galaxiid fish. Five Galaxias auratus and a single brown 

trout were added to enclosures containing one of three different habitat 

types (artificial macrophytes, rocks, and bare silt substrate). The 

experiment also had control enclosures without brown trout. Habitat

dependence of predation risk was assessed by analysis of G. auratus losses 

to predation, and stomach contents of remaining fish were analysed to 
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determine if brown trout directly affect the feeding of G. auratus and 

whether this is also habitat-dependent. 

3. Predation risk of G. auratus differed significantly between habitat types, 

with the highest mortality in enclosures with only bare silt substrate and 

the lowest in enclosures containing artificial macrophytes. This result 

highlights the importance of availability of complex habitats for trout -

native fish interactions and suggests that increasing habitat degradation 

and loss in fresh waters may exacerbate the direct impacts of introduced 

predators. 

4. Stomach contents analyses were restricted to fish in enclosures with 

artificial macrophytes and rocks, as most fish were consumed in 

enclosures with brown trout and only bare silt substrate. These analyses 

suggest that brown trout do not directly affect the feeding of G. auratus in 

complex habitats, but it is still unknown whether its feeding is reduced if 

complex habitats are unavailable. 

Introduction 

Of the many impacts introduced species have on native species, predation has the 

most direct and readily detectable effects. Declines in numerous freshwater fishes 

have been linked to predation by introduced species (Crowl, Townsend & 

Mcintosh, 1992; Marsh & Douglas, 1997; Mcintosh, 2000; Jackson et al., 2004; 

McDowall, 2006), but the factors that influence the interaction between 

introduced predator and prey are often complicated and not well understood. The 

availability of structurally complex habitats and the pattern of usage of these by 

native species, as well as predator and prey densities (Jones et al., 1995; 

102 



Beauchamp et al., 1999; Zambrano, Scheffer & Martinez-Ramos, 2001), feeding 

and activity patterns (Beauchamp et al., 1999), and the availability and behaviour 

of other prey species (Schwartz, 2002; Woodward & Hildrew, 2002) can 

ultimately influence predation mortality of native species to introduced predators. 

Structurally complex habitats such as macrophyte beds, if available, may provide 

refuge for native species by interfering with the foraging of an exotic predator. 

The direct impacts of introduced predators on native species may not only include 

predation, but also decreased feeding activity and consequently growth rates, and 

these impacts may also be determined by the habitat types used by the native 

species. Introduced predators can affect the feeding of native species directly by 

instigating increased vigilance and escape responses in the native species, 

potentially reducing feeding motivation and time (Van Buskirk & Yurewicz, 

1998; Foam et al., 2005; Sunardi, Asaeda & Manatunge, 2005). This may be 

habitat-dependent, with native species possibly able to feed more freely within the 

perceived safety of complex habitats, provided they can still locate and capture 

prey in these environments (Diehl, 1988; Manatunge, Asaeda & Priyadarshana, 

2000). 

As well as those associated with introduced species, additional impacts on native 

species result from habitat degradation and loss, which are increasingly occurring 

globally due to anthropogenic impacts such as water level manipulation and 

severe eutrophication (Riis & Sand-Jensen, 2001). Macrophyte beds are 

particularly vulnerable to such impacts, with loss oflittoral wetlands and in-lake 

macrophyte beds common in lakes that are used as water supplies for town water, 
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irrigation, or hydroelectricity (Pyrovetsi & Papastergiadou, 1992; Hellsten et al., 

1996) and a switch to phytoplankton-dominated primary production also 

increasingly evident in shallow lakes world-wide (Hilt et al., 2006). Such changes 

are of particular concern due to the importance of habitat type in influencing 

predator-prey interactions. The interactive effects of introduced predators and the 

reduction or loss of complex habitats like macrophyte beds may be critically 

detrimental for threatened species, with a potential side effect of anthropogenic 

(and some natural) disturbances being that the impacts of introduced predators 

may be exacerbated. 

The galaxioids are a group of fishes that have recently been labeled as particular! y 

at risk, and have suffered severely from introductions of exotic species 

(McDowall, 2006). Little is known, however, of present ecological factors that 

influence their vulnerability to exotic species. Much of the existing research on 

these fishes has been undertaken in lotic systems, and there is a need for research 

on the ecology of lacustrine species, for which habitat diversity may be greater 

and habitat type has greater potential to interact with the impacts of introduced 

species (Wissinger, Mcintosh & Greig, 2006). 

We investigated habitat-dependence of predation risk of a threatened, lentic 

galaxiid fish to an introduced predator in field enclosures. The use of complex 

habitats, particularly macrophytes, by Galaxias auratus (Johnston) increases 

substantially in the presence of introduced brown trout (Salmo trutta L.) (Stuart

Smith, White & Barmuta, 2007a), so we hypothesized that use of these habitats is 

likely to decrease its risk of predation to this introduced predator. The availability 
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of macrophyte habitats to this galaxiid has been reduced in recent times, yet the 

importance of macrophytes for its interactions with trout has not yet been 

demonstrated. In a previous experiment, we have shown that the feeding ability of 

G. auratus is not compromised in structurally complex habitats (Stuart-Smith, 

Stuart-Smith, White & Barmuta, 2007b) and, in this way, brown trout are not 

indirectly influencing the feeding success of this small fish. However, a secondary 

objective of this study was to examine how brown trout might directly influence 

G. auratus' feeding and whether this influence differs depending on the habitat 

type occupied by G. auratus. 

Materials and methods 

Study species and site 

Galaxias auratus is a relatively large galaxiid (max total length, TL-240 mm, but 

more commonly to 140 mm), which is endemic to the interconnected Lakes 

Crescent and Sorell on the Tasmanian Central Plateau (c. 42° 5' S; 147° 10' E) 

and is listed as 'rare' under the Tasmanian Threatened Species Protection Act 

1995, and 'vulnerable' under the national Commonwealth Environment Protection 

and Biodiversity Conservation Act 1999 due to restricted distribution. It is an 

opportunistic forager, with adults eating a variety of aquatic and terrestrial 

invertebrates, but most often consuming epibenthic crustaceans, insect larvae and 

plankton when available (Hardie, Barmuta & White, 2004; Stuart-Smith, Barmuta 

& White, 2006). Brown trout were introduced into Lakes Crescent and Sorell in 

1868 as a recreational fishing target and are now the major predator of G. auratus 

(Stuart-Smith, Richardson & White, 2004). The lakes also contain smaller 
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numbers of rainbow trout (Oncorhynchus mykiss Walbaum), short-finned eel 

(Anguilla australis Richardson) and European carp (Cyprinus carpio L.). 

Lakes Crescent and Sorell have experienced significant physical changes during 

the last decade. Low rainfall and abstraction for irrigation (both lakes have been 

artificially raised since the 1830's and have been regulated for downstream 

irrigation purposes) have resulted in prolonged low water levels and a substantial 

increase in turbidity. The resulting changes to habitat availability for G. auratus 

have included the almost complete loss of once extensive in-lake macrophyte 

beds, and the recent water level regime has left the extensive littoral wetlands of 

the lakes dewatered for extended periods. Habitat mapping has revealed that not 

only is the macrophyte habitat now largely confined to the shallow wetlands, but 

that in Lake Crescent, the rock substrate is also restricted to the littoral zone 

(Hardie, 2003). So at low water levels in this lake, both the macrophyte and rocky 

habitat become unavailable, leaving much of the lakebed barren silt. The recent 

shift in availability of the wetland macrophyte habitat and rocky substrate, as 

indicated by the lake levels below which they are left dry or disconnected from 

the lakes, is shown in Fig. 1. It is suspected that the lost in-lake macrophyte beds 

and the now typically unavailable macrophyte habitats in the wetlands were 

important for the ecology of G. auratus, including potentially mediating their 

interactions with brown trout, but no research has been undertaken to examine 

this. 
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Fig. 1 Historic lake levels in Lake Sorell (a) and Lake Crescent (b), and the levels 
at which the wetlands become disconnected in both lakes and the rocky shores are 
left dry in Lake Crescent (Figure prepared by S. Hardie, unpub data). 

Experimental design and set-up 

A field enclosure experiment using a randomized complete block design was used 

to test whether habitat type affects predation mortality of G. auratus to brown 

trout and possible effects of brown trout on foraging by G. auratus. Three habitat 

types representing the major habitats present in Lakes Crescent and Sorell (two 

artificial habitats representing cobble rock substrate and macrophytes, and natural 

bare silt) were crossed with the presence and absence of trout (controls). Each 

combination was replicated twice in each block (time was a blocking factor), with 

the experiment replicated three times in January and February 2005. 
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Twelve cylindrical enclosures constructed from 6 mm knotless "honeycomb" 

mesh, supported by three hoops (one each at the bottom and top and one in the 

middle made from 12 mm PVC conduit) were fastened in place using four star 

pickets on silt substrate in a sheltered bay in Lake Crescent in water depth of 

approximately 0.9 m. Dimensions were 1.75 m diameter, 1.20 m height and a 

volume of2165 L (at a water depth of0.9 m). Artificial macrophytes were 

constructed from lengths of buoyant nylon rope tied to a base of plastic lattice 

(800 x 800 mm) at a density of 625 stems m-2
, with a structure similar to an 

important littoral macrophyte in Lake Crescent, Triglochin procerum (Heffer, 

2003). 

A feature of the structure of cobble rock substrate in Lakes Crescent and Sorell 

that we considered important is the variable size of interstices such that there are 

refuges for G. auratus from adult brown trout and refuges for invertebrate prey 

from G. auratus. We represented this in a replicable manner using 800 x 800 mm 

sheets ofLaserlite® (corrugated plastic) (Bayer AG, Leverkusen, Germany), glued 

on top of each other (seven layers) in a consistent manner to achieve a range of 

interstitial sizes (none accessible to adult brown trout). The four replicates of each 

of these two artificial habitat types were randomly allocated to enclosures (one per 

enclosure, occupying approximately 30% of the bottom area of the enclosure) and 

left submerged in Lake Crescent for four weeks before commencement of the 

experiment to allow colonization by natural prey populations. The remaining four 

enclosures were designated as silt substrate and were left bare. 
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Five G. auratus (overall mean TL = 86 mm, range 67-122 mm) were added to 

each enclosure 24-h prior to the commencement of each block to allow them to 

become accustomed to the conditions before the trials started. One adult trout was 

also added to appropriate enclosures the next day (overall mean TL = 441 mm, 

range 355 - 530 mm). The density of G. auratus used was comparable to that 

observed in littoral areas of Lake Crescent (R.D. Stuart-Smith, unpublished data); 

however the trout density was higher in the experiment due to the constraints of 

an enclosure experiment. All G. auratus were captured by backpack electrofisher 

(Smith-Root Inc. model 12-B, Vancouver, WA, U.S.A.) and were weighed (to 

nearest O.Olg) and measured (to nearest mm) before being stocked in enclosures. 

The whole process from fish capture to stocking was never more than 90-min. 

Brown trout were captured in Fyke nets set overnight and were introduced 

immediately after collection. 

After 4 days, all G. auratus were removed, measured and weighed again and 

immediately killed by anaesthetic overdose (benzocaine 300 mg L-1 
). In the 

laboratory, stomachs were dissected from fish and both fish and stomach contents 

were dried separately (60°C > 96-h and> 48-h, respectively) and weighed. 

Relative stomach contents weight (.F) was calculated for each fish using equation 

1: 

(1) F= G 
DxlOOO 

where G is its stomach contents weight (mg DW) and D is its DW (g). 
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Analyses 

Mortality data were analysed by two-way ANCOV A with habitat type and date 

(block effect) as independent variables, brown trout TL as a covariate, and the 

number of G. auratus eaten by the trout as the dependent variable. Enclosures not 

containing trout were excluded from this analysis, as there was no mortality in the 

absence of brown trout. As it has been shown that G. auratus feeds throughout the 

day without any significant peaks in stomach contents weights (Stuart-Smith et 

al., 2006), stomach contents of fish at the end of the trials were used as a point 

sample indication of feeding. Unfortunately, stomach contents data were 

unbalanced due to fish lost to predation in enclosures with brown trout, with very 

few fish remaining in enclosures without the artificial macrophytes or rocks (i.e. 

those designated "silt"). Consequently, data from enclosures with the silt habitat 

type were omitted and remaining data were loge transformed and analysed by 3-

way ANOV A with predator presence (trout present or absent), habitat type (rock 

or macrophyte) and block as fixed factors and logJ as the dependent variable. For 

both sets of analyses, Tukey's post hoe test was used to determine which 

treatment combinations differed from each other when significant effects were 

found. 

Results 

Habitat type had a significant effect on predation mortality of G. auratus, but no 

differences occurred due to the size of the trout or the date the experiment was run 

on (block effect). There was also no significant interaction among experimental 

treatments (Table 1 ). The greatest loss of G. auratus to predation by brown trout 

was in enclosures with only silt habitat (i.e. no complex habitat available. Fig. 2). 
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Enclosures containing artificial rock substrate had the next greatest predation 

mortality, but this was not significantly less than those enclosures with silt. 

Enclosures containing artificial macrophytes had the least predation mortality, 

which was significantly less than both other habitats. The effect of the date (block 

effect) was not significant. 

There were also no statistically significant differences in stomach fullness of G. 

auratus between enclosures containing trout and those without, or between 

enclosures with artificial macrophytes or rocks (Table 2). More importantly, there 

was no significant interaction between the effects of trout presence and habitat 

type on the stomach fullness of G. auratus (Fig. 3). The only significant term was 

the interaction between trout presence and the date (block effect), which indicated 

that there was an effect of trout on the stomach fullness of G. auratus, but this 

only occurred in the first block of replicates (Fig. 4). On this occasion, the mean 

relative stomach contents weight of G. auratus in enclosures without trout was 

more than double that of G. auratus in enclosures with trout. 

Table 1 Two-way AN COVA of the effects of habitat type, date (block effect) and 
brown trout TL (covariate) on the predation mortality of Galaxias auratus in 
enclosures. 

------------------------------------------------------------------------------------------------~ 
MS df F p 

Habitat 17.102 2 14.530 0.002 
Date 0.155 2 0.132 0.878 
Habitat x Date 0.414 4 0.352 0.836 
TroutTL 0.084 1 0.071 0.797 
Error 1.056 8 
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Fig. 2 Mean predation mortality(± 95% CL) of Galaxias auratus to brown trout 
in enclosures containing different habitat types. Enclosures containing 
macrophytes were significantly different from those with rocks or silt. 

Table 2 Three-way AN OVA of the effects of trout, habitat type and date (block 
effect) on the relative stomach contents weights of Galaxias auratus from 
enclosures. 

MS df F p 
Trout. 0.426 1 0.702 0.404 
Habitat* 0.266 1 0.439 0.509 
Date 0.068 2 0.112 0.894 
Trout x Habitat 0.003 1 0.005 0.944 
Trout x Date 2.622 2 4.324 0.016 
Habitat x Date 0.090 2 0.149 0.862 
Trout x Habitat x 0.579 2 0.955 0.389 
Date 
Error 0.606 87 

*Due to insufficient sample sizes in enclosures with silt habitat, only macrophyte 

and rock habitats were analysed 
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Fig. 3 Box and whisker plots of relative stomach contents weights of Galaxias 
auratus from enclosures containing different habitat types (a) without trout, and 
(b) with trout. Symbols outside whiskers represent outliers, and corresponding 
sample sizes are given above each box. Note that enclosures with only silt 
substrate were excluded from the analysis due to the small sample size. 
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Fig.-4 Mean relative stomach contents weights (± 95% CL) of Galaxias auratus 
from enclosures with and without brown trout from (a) block 1 (12- 15 January 
2005), (b) block 2 (30 January-2 February 2005), and (c) block 3 (7 - 10 
February 2005). The only significant difference was in block 1. 

113 



Discussion 

The field enclosure experiment clearly demonstrated that the risk of predation by 

brown trout is dependent on the habitat type available to Galaxias auratus. The 

availability of structurally complex habitats such as artificial macrophytes, and to 

a lesser extent the artificial rocky substrate considerably reduced predation 

mortality of G. auratus, whereas predation mortality was very high when no 

refuge habitat was available. Studies on other fishes have shown predation risk to 

be reduced in a range of complex habitat types including vegetated areas (Savino 

& Stein, 1989; Stunz & Minello, 2001; Snickars, Sandstrom & Mattila, 2004) and 

areas of rock or coral (Almany, 2004), and predation risk to be high in open 

habitats (Stunz & Minello, 2001; Belanger & Corkum, 2003). Complex habitats 

often reduce predation risk because they interfere with location and capture of 

prey by the predat9r (Heck & Thoman, 1981; Dionne & Folt, 1991) and provide 

areas of shelter for the prey that are inaccessible to the predator (e.g. holes in a 

coral reef; Almany, 2004). 

Predation risk was lower in the artificial macrophytes than the artificial rocky 

substrate, despite the fact that the brown trout could potentially penetrate all areas 

of the macrophytes, while the rocky substrate contained interstices that provided 

complete refuge for G. auratus. This difference in predation risk between these 

two habitats is probably related to the way in which G. auratus uses them. The 

diel pattern of habitat use by G. auratus has been found to differ between these 

habitats (see Stuart-Smith et al., 2007a), with almost exclusive use of 

macrophytes throughout both the day and night in the presence of brown trout. 

When only rocky substrate is available, however, G. auratus emerges from the 
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cover during the night and spends time in open water adjacent to the rocks, a 

pattern evident in the absence of the introduced predator. The structure of 

macrophytes often significantly interferes with foraging success of piscivorous 

fish (Savino & Stein, 1989; Persson & Eklov, 1995) and the observed protection 

of G. auratus afforded by this habitat could be expected when G. auratus 

occupies this habitat during both day and night. Despite gaining complete refuge 

from predation when using rocky habitat, however, still using open water during 

the night leaves it relatively more vulnerable to predation during this period. 

Although brown trout are visual predators and pose a greater predation threat from 

dawn through to dusk (Allan, 1978; Ringler, 1979; Glova, Sagar & Naslund, 

1992), they are still capable of feeding during the night (Heggenes et al., 1993). 

The potential reasons for the differences in diel use of these two habitats are 

discussed by Stuart-Smith et al. (2007a). It is likely, however, that this habitat

dependent behaviour of G. auratus may be a determining factor in the observed 

habitat-dependent differences in predation risk. It appears therefore, that predation 

risk of G. auratus to brown trout in Lakes Crescent and Sorell may be influenced 

both by habitat availability and its patterns of use of these habitats. This highlights 

that the impacts of introduced species may not only be altered by the availability 

of certain habitat types for native species, but that the manner in which these 

habitats are used as refuge and for foraging is also particularly important. 

Although the results of the stomach contents analysis did not provide clear 

evidence of a direct impact of brown trout on the feeding of G. auratus, we 

suggest that there may have been a habitat-dependent effect of trout on the 

feeding of G. auratus, but that our experiment was not able to clearly identify this. 

115 



Not detecting an effect was possibly an artefact of our experimental design, as we 

were unable to test for reduced feeding in enclosures with only bare silt substrate 

due to the low sample sizes that resulted from the higher predation mortality in 

these enclosures. Relative stomach contents weights of the few G. auratus that 

were remaining in these enclosures were very low, whereas the values from G. 

auratus in enclosures containing artificial macrophytes and rocks were similar to 
! 

those found in fish sampled from Lakes Crescent and Sorell at a similar time of 

year (Stuart-Smith et al. 2006). It would be expected considering such high 

predation risk that all G. auratus in enclosures without artificial macrophytes or 

rocks would need to spend more time evading trout and would need to be 

constantly alert, thus affording less foraging time. Numerous studies have shown 

that high predation risk usually results in reduced foraging time and success, and 

consequently reduced growth over longer periods (Milinski & Heller, 1978; Van 

Buskirk & Yurewicz, 1998; Foam et al., 2005; Sunardi et al., 2005). When all 

habitat types were considered together, we did observe an effect of trout in one of 

the blocks (12 - 15 January 2005), but this was restricted to this one occasion. 

Whilst an examination of the effects of trout on G. auratus' feeding was a 

secondary objective of this study, the reduced sample sizes due to predation 

mortality were a weakness in the design of the experiment. A similar experiment, 

but with a mesh partition separating the trout from G. auratus in the enclosU(es to 

eliminate predation mortality, similar to that used by Persson & Eklov (1995), 

would be needed to confirm the direct effect of brown trout on the feeding of G. 

auratus and properly test whether this is habitat-dependent. 
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The direct impacts of brown trout appear to depend on the habitats available to G. 

auratus. This experiment has clearly demonstrated that predation risk is habitat

dependent, and whilst more experimentation is needed to test the effects of brown 

trout on G. auratus' feeding, there is some evidence (albeit very small) to suggest 

that this may also be habitat-dependent. The potential for these complex habitats 

to influence interactions between G. auratus and brown trout in a way that likely 

reduces the direct impacts of this introduced species suggests that complex habitat 

availability may have been an historically important factor for the ecology of G. 

auratus post-trout introduction, and may be a very important factor in determining 

impacts of introduced species on other galaxiids. 

Galaxioid fishes have been identified as a highly vulnerable group of fishes 

(McDowall, 2006). This is in part due to the widespread introduction of predatory 

salmonids in the southern hemisphere and the fact that many galaxioid fishes 

evolved in isolation from larger piscivorous fishes. This study has provided direct 

evidence that complex habitats can significantly reduce the impacts of introduced 

salmonids on this group of fishes. In previous work we have shown that G. 

auratus can forage efficiently within macrophytes (Stuart-Smith et al., 2007b), 

and the extent to which complex habitats benefit other species' interactions with 

introduced salmonids will also depend on their own foraging capabilities within 

these habitats. Whilst there is a clear need for further research in this area, 

conservation of this group of fishes must also focus on maintaining habitat 

diversity and conserving complex habitats such as macrophyte beds. 
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Considering the strong link between water levels and habitat availability in Lakes 

Crescent and Sorell, low water levels due to abstraction for irrigation may be 

indirectly detrimental to the threatened Galaxias auratus by increasing their 

vulnerability to predation by trout. There are also links between habitat 

availability and water levels in other lakes that are managed for town water or 

hydroelectricity, and similar, but more long-term, habitat loss is also occurring 

globally due to severe eutrophication and pollution (Hellsten et al., 1996; Wolter 

et al., 2000; Hilt et al., 2006). By clearly demonstrating the importance of 

complex habitats in reducing the impact of an introduced species on a threatened 

species and a link between water levels and the availability of complex habitats in 

this system, this study suggests that human-induced disturbances such as water 

level manipulation and associated habitat loss may also impact other threatened 

species by altering the outcomes of their interactions with predators. 
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Chapter 6: General discussion 

Studying the mechanisms by which predators and prey can co-exist has long been 

a central aspect of ecological research, with niche partitioning, low prey densities 

and behavioural or morphological adaptation often identified as key components 

to predator-prey co-existence (Solomon 1949; Holling 1965). Also linked to 

behavioural adaptation, the use of complex habitats by prey as refuge is another 

mechanism that can promote co-existence of predator and prey (McNair 1986; Sih 

1987; Dudgeon 1996). This, however, often results in trade-offs for the prey, such 

as foraging costs associated with using a habitat in which feeding may be 

retarded, and possibly increased competition with other sheltering prey. 

A need for more research on the role of predation in applied issues has recently 

been emphasized (Sinclair et al. 1998; Ormerod 2002). The impact of introduced 

predators is one area that requires research, as the successful co-existence of 

native prey and introduced predators has not been common (Arthington 1991; 

Rowe 1993; Clavero and Garcia-Berthou 2005). Foundational studies, such as 

those by Rosenzweig and MacArthur (1963) and Sih (1987) suggest that the 

availability of prey refuges promotes co-existence (i.e. it is stabilizing). This 

assumes adaptive responses by prey via co-evolution with their predator, and that 

the costs of using such refugial habitats are small. Yet when predators are 

introduced species that have usually arrived through anthropogenic avenues, there 

has often been little evolutionary time for native prey to adapt to the new 

situation, and thus, their responses may not necessarily be adaptive. 
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This has possibly been the case with many galaxiid fishes, which have been 

forced into co-habitation with salmonids, from which they apparently diverged 

some time in the Mesozoic, as a result of the widespread introduction of trout in 

the Southern Hemisphere during the 19th and 20th centuries (McDowall 1969; Fink 

1984; McDowall 1990). With little evolutionary armor to protect them from the 

larger and aggressive salmonids, they are highly vulnerable to being out-competed 

and consumed, and many species have suffered considerably (McDowall 2006). 

However, G. auratus is one species that has fared well, despite the consistent 

abundance (and all evidence suggests also predation pressure) of brown trout (and 

rainbow trout) in their entire natural range for over 130 years. So, the questions of 

just how it has done this, and what the likelihood is of other species also showing 

similar resilience, beg to be asked. Research on the reproductive biology of G. 

auratus has revealed it to be similar to the more numerous and fecund diadromous 

galaxiid species (e.g. G. maculatus, Hardie 2007), which may have played an 

important role in its success and persistently high abundance. But according to 

theory, low abundance rather than high abundance of a prey species usually 

makes co-existence with its predator more likely (Sinclair et al. 1998; Holling 

1965). This thesis was the first to address the predator-prey interactions of G. 

auratus, and potential mechanisms that may have facilitated its successful co

existence with brown trout. 

Being a lacustrine galaxiid, with historical access to extensive areas of 

macrophyte cover and rocky substrate, the potential for G. auratus to have 

behaviourally responded to trout by choosing the safest habitat type may have 

substantially contributed to this success. The study reported in this thesis was 
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designed to answer whether it does respond in this way, but also whether a trade

off between predation risk and foraging success occurs, thus reducing the 

effectiveness of this behavioural response. 

Although competitive interactions with juvenile brown trout and other G. auratus 

individuals, which were beyond the scope of this study, will also contribute to 

determining its habitat use, this research has clearly demonstrated that the habitat 

use pattern shown by G. auratus and its response to the presence of trout, 

significantly reduce its predati0n risk. In addition, the potential foraging costs 

often associated with such behaviour (Werner and Hall 1988; Persson and Eklov 

1995) appear to be minimized by it being an unusually efficient forager. These 

observations suggest adaptive behaviour, despite G. auratus only spen~ing a 

relatively short period of time, in evolutionary terms (139 years, or approximately 

35 generations), in the presence of brown trout. Its behaviour appears to promote 

co-existence with brown trout, provided that macrophyte habitats are available. In 

this way, the results of these experiments support both the theory that the 

behavioural selection of appropriate habitats can promote co-existence of predator 

and prey, and the idea emphasized by Agrawal et al. (2007), that the strength of 

predator - prey interactions is likely to differ in different contexts. 

A fundamental difference between what I observed for G. auratus and what has 

been widely reported in the literature for other species (Werner and Hall 1988; 

Diehl and Eklov 1995; Persson and Eklov 1995; Gliwicz et al. 2006), is that a 

significant trade-off between predation risk and foraging returns does not appear 

to occur for G. auratus when it has the option of using macrophytes for cover. As 
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I reported in Chapters 2 and 4, G. auratus is an unusually efficient forager, 

feeding throughout day and night, in open water and amongst macrophytes, and 

its foraging abilities allow it to use complex habitats at minimal cost. This may be 

a very important characteristic of this species that has assisted in its atypical co

existence with brown trout to date. There is still potential that a trade-off occurs if 

G. auratus has only rocky habitat available, however, but more research is needed 

to determine this (see section on need for further research at the end of the 

discussion). 

The behavioural traits of G. auratus (i.e. the diel periodicity in habitat use and the 

shift in response to predation risk) that appear to have contributed to its success 

appear adaptive. The shift in habitat use in response to nearby trout is likely the 

result of behavioural plasticity, and was the focus of the discussion in Chapter 3, 

but the consistent diel pattern in habitat use may either be the result of rapid 

adaptation (to trout), a learnt response, or possibly an inherited trait. As discussed 

in other chapters, a diel switch in habitats has also been observed for other 

freshwater fishes (Roussel and Bardonnet 1999; Bremset 2000; Reebs 2002; 

David and Closs 2003) and is believed to be the result of adaptation to diel 

patterns in food availability and predation risk, amongst other things. But how 

long does it take for such adaptations to develop when a new predator is 

introduced? There is strong evidence of zooplankton and macroinvertebrate 

species showing adaptive behaviour (and morphological changes) after spending 

only a relatively short time with a novel predator (Flecker 1992; Fisk et al. 2007; 

Latta et al. 2007), but these animals have shorter generation times than G. 

auratus. What little is known from studies on fish have shown a degree of 
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behavioural and phenotypic plasticity in a short time frame, but of a magnitude 

less than due to natural variation (Holopainen et al. 1997; Reebs 2002). The time 

frames discussed in these studies, however, is considerably shorter than the time 

G. auratus has been with trout, so the possibility of its behaviour being a result of 

adaptation to trout should not be discounted. 

Despite being a typical adaptation to visual predators (Reebs 2002), the diurnal 

use of complex habitats by G. auratus is unlikely to be an adaptation to its natural 

predators (birds and eels). The predation pressure exerted by birds (e.g. herons) 

would likely be greatest amongst the shallow macrophyte habitats during the day, 

while that of eels (which are largely non-visual predators: Sagar et al. 2005) 

would be distributed throughout all habitats during the night. So the observed diel 

periodicity in habitat use of G. auratus would place it in the worst places at the 

worst times with respect to its natural predators. 

It is remotely possible that the "adaptive" behaviour of G. auratus is a result of 

learning. Reebs (1999) suggested, however, that while time-place learning in fish 

is possible based on food, daily habitat shifts in fish that may be rooted in 

minimizing predation risk are most likely not a direct result oflearning, but are 

probably innate. If this were true, then the behaviour shown by G. auratus may 

have been phylogenetically inherited. G. auratus was likely derived from a land

locked population of G. truttaceus ( Ovenden et al. 1993 ). There are no published 

records of the diel habitat use of G. truttaceus populations, but this species, like 

G. auratus, possesses an additional, accessory lateral line, which is a physical 

adaptation to nocturnal activity (McDowall 1997). It has also been reported to 
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forage nocturnally (Williams 1975), so it is very possible that G. truttaceus shows 

a similar habitat use pattern, and that the behaviour of G. auratus has been 

retained since diverging from their common ancestral stock. 

Interestingly, lacustrine populations of G. truttaceus in Tasmania (which are 

mostly also on the Central Plateau) have also been reasonably successful in co-

existing with brown trout. It must be noted, however, that its densities in these 

lakes are nowhere near as great as those of G. auratus in Lakes Crescent and 

Sorell (A. Uytendaal, S.A. Hardie, R.W.G. White, University of Tasmania, 

unpublished data), and trout densities are lower than have been traditionally 

recorded in Lake Sorell (T. Farrell, Inland Fisheries Service Tasmania 

unpublished data). An examination of the habitat use patterns and responses of G. 

truttaceus, and other closely related galaxiids, to brown trout may provide some 

valuable insight into whether the success of G. auratus, and the extreme 

vulnerability of other galaxiid species, is related to the phylogeny of this group. 

This may greatly assist conservation of this group of fishes by identifying 

members that may be particularly susceptible to predation by introduced 

salmonids. 

Conservation of Galaxias auratus 

The direct and indirect impacts of brown trout on G. auratus and the ability of G. 

auratus to minimize these is very important for understanding the historical 

success of this species. Its future success is very much dependent on the effects of 

the substantial changes that have occurred in its natural environment and the 

interactive effects of these with those of brown trout. 
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Impacts of brown trout 

Mills et al. (~004) suggested that multiple negative interactions should be 

examined to assess the likely outcome (co-existence or extinction) of interactions 

between introduced and native.species. Whilst many potentially negative 

interactions between G. auratus and brown trout were beyond the scope of this 

thesis and still require research, the collective experiments presented here have 

found the following: 

• Predation is a clear threat, but this appears to be effectively countered by a 

combination of a diel pattern in habitat use by G. auratus that minimizes 

its risk and a short-term increase in its use of complex habitats when trout 

are near. The effects of prolonged exposure of G. auratus to higher 

densities of brown trout, however, are unknown. 

• No evidence was found for a habitat-related indirect impact of brown trout 

on the feeding of G. auratus. More data are needed for G. auratus using 

rocky habitat, and to determine longer-term effects of habitat-dependent 

prey switching and whether this mechanism occurs in the wild. 

• Only circumstantial evidence was found for a direct impact of brown trout 

presence on the feeding of G. auratus, and it is likely that this may only 

occur in extremely low water levels in Lake Crescent when neither 

macrophytes nor rocks are available (see Chapter 5). 

Thus, predation was the biggest observed impact of brown trout, and the extent of 

this was reduced by a behavioural modification by G. auratus (a shift in its diel 

pattern in the use of complex habitats), as discussed above. However, the potential 
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for G. auratus to benefit from this (i.e. for it to promote co-existence with trout) is 

highly dependent on the availability of macrophytes. Agrawal et al. (2007) 

highlighted the need for empirical evidence on context-dependence of interaction 

strengths for a better understanding of community ecology. This research has 

provided such evidence, suggesting that the importance of predation on G. 

auratus populations depends on the availability of macrophyte habitats. This is an 

important observation given that the availability of these habitats is currently 

restricted and is likely to remain that way in future (see helow), potentially 

increasing the importance of trout predation in the ecology of Lakes Crescent and 

Sorell. 

Effects of habitat degradation and loss on Galaxias auratus 

Despite the ability of G. auratus to minimise predation risk to an introduced 

species that has negatively impacted other galaxiid populations (McDowall 1990; 

Townsend and Crowl 1991; Mclntosh2000; McDowall 2006), its future is 

uncertain because of the recent changes that have occurred to its entire natural 

range. The loss or unavailability of macrophyte habitats (both in-lake macrophyte 

beds and the littoral wetlands) appears to be of far greater concern than the 

episodes of elevated turbidity, the impact of which is possibly limited to inducing 

physiological stress during periods of extreme turbidity (S.A. Hardie, unpublished 

data). The macrophyte habitats in the extensive wetlands of both Lakes Crescent 

and Sorell, and previously abundant in the main basins of Lake Sorell and patches 

of the Lake Crescent littoral zone, have likely played a large role in facilitating the 

successful co-existence of G. auratus and brown trout, as discussed above. No 

data are available on macrophyte habitat availability prior to the first artificial 
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raising of the water level, and so no conclusions can be made as to the importance 

of this habitat type for G. auratus prior to European settlement. However, this 

thesis has identified that macrophytes appear to be vital to its ecology after 

European interference, and it is unclear whether the littoral vegetation will be able 

to adjust to the lower lake levels likely to prevail ifthe current dry conditions and 

increased demands for human abstraction continue. Importantly, modelling by 

Uytendaal (2006) has established that at sustained low levels, much of the bed of 

Lake Crescent is susceptible to elevated shear stress, which would be 

unfavourable for emergent or submerged vascular plants. 

H_abitat conservation is an important conservation tool for freshwater fishes 

(Maitland and Lyle 1992; Dudgeon 1999; Dudgeon 2005; Hardie et al. 2006), and 

must be cons~dered of great importance for the future of G. auratus. Because of 

the critical influence of water levels on the availability of wetland macrophyte 

habitat and suitable spawning habitats (Hardie 2007), and for the future re

establishment of in-lake macrophyte beds, management of water levels is 

probably the single most important aspect to conserving this unique species. 

Given the prediction of lower rainfall in this area due to climate change (Bureau 

of Meteorology, Australia: http://www.bom.gov.au/; G.P. Harris, pers. Comm.), 

and the associated increase in the need for abstraction for irrigation, the littoral 

wetlands may be inundated even less frequently than during the past decade. 

Consistently low water levels may also force Lake Sorell into a stable 

phytoplankton-dominated state, in which re-establishment of macrophyte beds 

will become even less likely. Thus, unless water levels are managed with the 
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conservation of G. auratus in mind, the situation may worsen for this species with 

macrophyte habitats possibly being completely eliminated. This situation would 

leave G. auratus without suitable habitat in which they may minimize the impact 

of brown trout, and extremely low levels would also leave it without suitable 

spawning habitat in Lake Crescent (Hardie 2007). On the other hand, reducing or 

eliminating water abstraction may assist maintenance of water levels during dry 

spells. Whilst possibly keeping the wetlands more frequently inundated and 

connected to the main lakes, higher water levels may also minimize resuspension 

events (Uytendaal 2006), providing better opportunities for improved water clarity 

and the re-establishment of in-lake macrophyte beds. 

Needs for further research 

There are areas of the biology of G. auratus that require further research to allow 

a better understanding of its ecology and its likely success in the future. 

Experimental evaluation of the foraging ability of G. auratus in the rocky habitat 

typical of Lake Sorell and the shallow exposed areas of Lake Crescent would 

greatly assist in both understanding potential impacts of a continuation of the 

current water level regime as well as its diel habitat use patterns. in the presence of 

trout (as identified in Chapter 3). The effect of trout on the growth of G. auratus is 

also likely to be dependent on the ava~lability of complex habitats, but this project 

was not able to identify this due to the design of the experiment in Chapter 5 and 

the sensitivity of G. auratus to abrasion on the enclosure mesh over longer periods 

of time. It would be possible to set up an experiment similar to that in Chapter 5, 

but with a mesh partition eliminating the potential for predation by trout in the 

enclosures, and using larger enclosures. Larger enclosures would reduce the 
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number of times individuals contacted the mesh, thus .reducing damage to their 

slime coat (and consequently death or reduced growth over longer periods), but 

some more well-planned pilot studies may need to be conducted to reassure 

bioethical and wildlife authorities that minimal harm would occur to fish under 

such conditions. The sociopolitical constraints of researching listed, threatened 

species are real and need to be addressed directly in future research proposals. 

Potential further impacts of brown trout on G. auratus that were not explored in 

this thesis also require further study. These include the potential for both inter

and intra-specific competition to occur as a result of increased use of complex 

habitats by G. auratus in the presence of brown trout, and the effect of turbidity 

on predation by brown trout. If juvenile trout are also using macrophyte and rocky 

habitats to reduce their own predation risk, then this increases the likelihood' of 

inter-specific interference or exploitative competitive interactions. 

Finally, the impact of the introduced common carp on the ecology of G. auratus 

should be investigated. Whilst carp numbers are currently low (D. Jarvis, Inland 

Fisheries Service Tasmania), complete eradication is certainly not guaranteed, and 

it is possible that carp may impact this species, or potentially other species if 

further introductions occur in future. The impacts of this other alien species on 

galaxiids are unknown, and efforts to understand whether it competes 

significantly for food or space, consumes or disturbs the eggs of G. auratus once 

laid must be amongst the priorities for such research. 
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