
Extending and Benchmarking Cascade-Correlation

Extensions to the Cascade-Correlation architecture and
benchmarking of feed-forward supervised artificial neural

networks

by

Samuel George Waugh, BSc (Hons)

Submitted in fulfilment of the requirements for the degree of Doctor of
Philosophy

University of Tasmania, August, 1995

%06.1,11.

a' IONA

Tkitu4
Li) AUG-H
P

1 9'

Abstract

This thesis is divided into two parts: the first examines various extensions to Cascade-

Correlation, and the second examines the benchmarking of feed-forward supervised

artificial neural networks, including back-propagation and Cascade-Correlation.

The first extensions to the training mechanism of Cascade-Correlation involve the inclusion

of patience to stop the addition of hidden nodes and the introduction of alternative methods

for training the candidate pool. These methods greatly improve the training speed of the

algorithm. Secondly, reducing the number of connections within Cascade-Correlation

networks is examined: by the introduction of hidden nodes with limited connection

strategies, and by the pruning of the fully-connected hidden nodes and the output layer.

Three methods of stopping the pruning process are briefly investigated. It is shown that

adding limited connected hidden nodes is effective in altering the style of network topology,

if not reducing the number of connections. Pruning within Cascade-Correlation drastically

reduces the number of connections required without affecting the classification performance

of the networks developed. Furthermore, all the different methods of halting the pruning

process are shown to be effective.

The second part of the thesis concentrates on benchmarking feed-forward supervised

artificial neural networks, in particular Cascade-Correlation. The earlier part of the thesis

highlights the need for effective benchmarks, as a large number of real-world problems do

not require anything more than a single layer of weights to achieve near optimal

performance given the available data. The second part initially investigates two new real-

world problems. Although both turn out to be useful problems to examine — testing many

of the features of Cascade-Correlation described earlier — they too do not require much

more than a single layer of weights, and hence do not test the power of Cascade-Correlation

or other systems which allow the use of hidden nodes. Two methods of generating artificial

data are then examined as ways of producing increasingly complex data sets. The

application of these benchmarks to the comparison of various artificial neural network

methods is examined. The generated data sets are effective in highlighting the differences

between the algorithms, for example it is shown that Quickprop and the activation function

offset methods of accelerating training are not always useful, and provide more detailed

results on the various Cascade-Correlation modifications.

Statements of originality and access

This thesis contains no material which has been accepted for a degree or diploma by the

University or any other institution, except by way of background information and duly

acknowledged in the thesis, and to the best of my knowledge and belief no material

previously published or written by another person except where due acknowledgment is

made in the text of the thesis.

...eara•P••—.......-- _i,._,,j-

This thesis may be made available for loan and limited copying in accordance with the

Copyright Act 1968.

,A,Rr......*-- •••1\-•■.5

11

Acknowledgments

Thanks to my supervisors Tony Adams and Phil Collier: their help and insightful comments

were invaluable. Thanks particularly to Tony, who cheerfully put up with me annoying him

every week. Thanks also to Scott Fahlman who was of great assistance during the initial

development of this work, and who is always ready to answer questions. Further thanks to

the anonymous examiners for their helpful comments and suggestions.

Thanks also to the members of the Artificial Neural Network Research Group and the

department's postgraduate students — particularly Julian Dermoudy, Carl Lewis, Peter

Vamplew, Tim Freeman and Lee Arnould — who helped my postgraduate studies go a little

faster.

Acknowledgment and thanks must also go to other groups for their assistance in producing

this thesis. Thanks to the Tasmanian State Government Department of Education and the

Arts for providing after-hours access to their machines, resulting in over 13000 hours of

simulations being completed. In particular, Jim Palfreymann and Dr John Gilbert deserve

special mention. To the Tasmanian Government Department of Primary Industry and

Fisheries Marine Research Laboratories, in particular Warwick Nash, for generously

providing the abalone data. To the University of Newcastle Centre for Linguistic and

Literary Studies, in particular John Burrows and Hugh Craig, for the data on Romantic and

Renaissance tragedies. Finally thanks to Michael Fraser, Simon Talbot and Tony Adams,

respectively, for suggesting these resources in the first place.

The patience and assistance of the many proof readers who made it through the earlier

drafts also deserves recognition, in particular Tony Adams, Trudy Steedman, Cristina

Cifuentes, Phil Collier and Julian Dermoudy.

On a more personal level, a great deal of thanks to my parents, for getting me to the stage

where I could attempt this at all. Finally, thanks to Trudy Steedman for always being my

best friend.

111

Contents

Abstract 	 i

Statements of originality and access 	

Acknowledgments 	 iii

1 	Introduction 	 1

1.1 	Organisation of thesis 	 2

1.2 	Inclusion of papers 	 3

Part I Extensions to Cascade -Correlation 	 5

2 	Background to dynamic learning 	 7

2.1 	Current literature on dynamic neural networks 	 8

2.1.1 Removing connections — saliency methods 	 8

2.1.2 Modifying weights — penalty terms 	 10

2.1.3 Changes to the number of hidden nodes 	 12

2.1.4 Combinations of different strategies 	 14

2.1.5 Further comments 	 15

2.2 Abstraction of topology changing methods 	 16

2.2.1 Changing connections and weights 	 16

2.2.2 Changing the application of hidden nodes 	 17

2.3 Standard Cascade-Correlation 	 18

2.3.1 Overview of Cascade-Correlation 	 18

2.3.2 Output layer training 	 20

2.3.3 Candidate training 	 21

2.3.4 Stopping Training 	 24

2.3.5 The Quickprop algorithm 	 26

2.3.6 Diagrams 	 30

2.3.7 Summary 	 30

2.4 Experimental design 	 31

2.4.1 Standard Cascade-Correlation option settings 	 32

2.4.2 Measures of performance 	 32

2.4.3 Benchmark data sets 	 34

2.4.4 Performance of standard Cascade-Correlation 	 35

iv

3 	Extensions to Cascade-Correlation training 	 37

3.1 	Stopping the addition of hidden nodes 	 37

3.1.1 Description of node patience 	 38

3.1.2 Results and discussion 	 39

3.1.3 Need for hidden nodes 	 41

3.1.4 Summary 	 42

3.2 Alternative candidate node training schemes 	 43

3.2.1 Description of alternative candidate training methods 	 43

3.2.2 Experimental design 	 45

3.2.3 Results and discussion — single activation function 	 47

3.2.4 Results and discussion — multiple activation functions 	 50

3.2.5 Summary 	 52

4 	Altering connection strategies within Cascade-Correlation 	 53

4.1 Limiting connections by growth 	 53

4.1.1 Alternative node connection strategies 	 54

4.1.2 Node forcing and experimental design 	 55

4.1.3 Results and discussion 	 56

4.1.4 Summary 	 61

4.2 Limiting connections by pruning 	 62

4.2.1 Pruning algorithm 	 62

4.2.2 Where to prune? 	 63

4.2.3 Stopping pruning 	 64

4.2.3 Summary 	 69

Part II Benchmarking Cascade-Correlation 	 71

5 	Background to benchmarking databases 	 73

5.1 	Features of data sets 	 73

5.1.1 Underlying problem structure 	 73

5.1.2 Factors affecting the data presentation 	 75

5.1.3 Inductive bias 	 79

5.2 Real-world and constructed data sets 	 80

5.2.1 Constructed data set benchmarks 	 80

5.2.2 Real-world data set benchmarks 	 83

5.3 Application of previous benchmarks 	 84

5.4 Summary 	 86

V

6 	Real-world data sets — two new examples 	 87

6.1 Example one — ageing abalone 	 87

6.1.1 Initial data preparation 	 87

6.1.2 No hidden nodes 	 91

6.1.3 Hidden nodes 	 92

6.1.4 Optimal Performance 	 93

6.1.5 Confusion matrices 	 95

6.1.6 Pruning 	 96

6.1.7 Other classification methods 	 98

6.1.8 Summary 	 99

6.2 Example two — identifying authors 	 99

6.2.1 Details of author data 	 100

6.2.2 Full data Cascade-Correlation experiments 	 102

6.2.3 Cross-validation error estimation 	 103

6.2.4 Restricted attributes 	 104

6.2.5 Other methods 	 106

6.2.6 Summary and discussion 	 107

7 	Constructing data sets — two methods 	 109

7.1 	Voronoi data sets 	 109

7.1.1 Data set characteristics 	 110

7.1.2 Measuring complexity 	 112

7.1.3 Simulation results on Voronoi data sets 	 114

7.1.4 Summary 	 118

7.2 Normal data sets 	 119

7.2.1 Optimal classification 	 120

7.2.2 Simulation results on normal data sets 	 121

7.2.3 Summary 	 122

7.3 Application of benchmarks 	 123

7.3.1 Quickprop and back-propagation 	 123

7.3.2 Cascade-Correlation and modifications 	 127

7.3.3 Summary 	 130

8 	Conclusion 	 133

8.1 Further work 	 135

vi

Appendices 	 137

A 	Node patience results 	 139

B 	Candidate training results 	 145

B.1 	Single activation function 	 145

B.2 Multiple activation functions 	 148

C 	Limited candidate node results 	 153

D 	Pruning results 	 159

E 	TasCas — a Cascade-Correlation simulator 	 167

E.1 	Introduction 	 167

E.2 Network input I — data file 	 168

E.3 Network input II — simulator options 	 169

E.3.1 Weight training options (Quickprop) 	 170

E.3.2 Stopping training 	 171

E.3.3 Candidate training controls and options 	 172

E.3.4 Pruning and weight reduction 	 175

E.3.5 Obtaining network results 	 176

E.3.6 Trial options 	 176

E.3.7 Checkpointing and file recovery 	 177

E.4 Network output 	 177

E.4.1 Header Information 	 177

E.4.2 Final and summary results 	 178

E.4.3 Other outputs for completed training of a single trial 	 180

E.4.4 Progress during training 	 182

E.4.5 Regression results 	 183

E.5 Possible errors 	 183

E.6 Code structure 	 184

E.6.1 Module overview 	 184

E.6.2 Main training mechanism 	 185

E.6.3 Other code groups 	 185

E.7 Special considerations 	 186

E.7.1 Standard notation and indexing 	 186

E.7.2 Module specific considerations 	 186

E.7.3 Error and correlation formulas 	 187

E.8 Planned improvements 	 188

E.A Extended Quinlan format 	 189

vii

E.B Options summary 	 190

E.0 Full header information 	 192

E.D Complete examples 	 193

E.D.1 Example one 	 193

E.D.2 Example two 	 195

F 	References 	 197

viii

1 Introduction

In recent years there has been an enormous increase in the amount of research conducted in

artificial neural networks. This may be loosely divided into two complementary areas:

firstly, the application of computational methods to the development of realistic models of

neural functions, and secondly the application of the distributed computation methodology

to solving problems, not necessarily in a biologically plausible manner.

One of the most developed and researched areas in the applications part of artificial neural

networks is inductive learning — the learning of a theory from individual examples

presented to the system. In particular, supervised learning — where an answer is known

and used to improve performance — is particularly popular. The back-propagation

algorithm [Rumelhart, Hinton & Williams 1986] is easily the most frequently used artificial

neural network model, not only because of its simplicity, but also because of its effectiveness

at producing good solutions to a wide range of problems.

One of the difficulties with the back-propagation algorithm, and others like it, is that details

of the network structure need to be decided prior to training. This requires a priori

knowledge of the problem to obtain good performance, gathered either from knowledge of

the problem domain or from experimentation using the learning algorithm.

In response, attempts have been made to develop algorithms which change their internal

structure as well as training the network weights, with the aim of removing the onus on the

user of selecting the network topology. An artificial neural network which dynamically

alters its topology, not only alleviates the need for human intervention, but also potentially

gives extra flexibility which allows the training algorithm to more effectively find a solution

[Baum 1989].

One of the more promising algorithms for dynamically altering artificial neural network

topologies is Cascade-Correlation (Cascor) [Fahlman & Lebiere 19891. This algorithm starts

with a minimal network architecture, to which hidden nodes are added as required, forming

feature detectors within the network. The first part of this thesis examines this algorithm,

extending the methods of training and examining further ways of altering the final network

topology.

A further difficulty with the development of inductive learning via artificial neural networks

is the frequent reliance on minimal testing to measure the performance of various

techniques. The currently available benchmarks are not entirely suitable, as will be seen

from the results of Part I, and comparatively little literature is devoted to the development of

1

benchmarks for inductive learning systems. A large number of generated benchmarks are

too simple to be realistic, and are thus not able to test the algorithms such as Cascor.

Hence the second part of this thesis examines the area of benchmarking supervised

inductive learning — in particular artificial neural networks. Two new real-world problems

and two methods for generating complicated artificial problems are examined and assessed.

1.1 Organisation of thesis

To limit the size of this thesis it is assumed that the reader has background knowledge of

inductive learning, particularly classification which involves the separation of examples into

distinct classes; and supervised feed-forward artificial neural network methods.

The main body of this thesis is in two major sections. The first part involves alterations

made to the Cascor neural network architecture in an effort to improve its performance.

This consists of three chapters. Chapter 2 reviews methods of dynamically altering the

structure of feed-forward fully-supervised artificial neural networks, and then details an

outline into which all such algorithms fit. The chapter is concluded by giving a description

of the Cascor algorithm, the parameters and data sets used, and the results of Cascor as

applied to nine problems used for benchmarking the first part of the thesis. Chapter 3

examines methods for assisting and speeding the training process: a method used to halt

training when little performance increase is being achieved; and alternative methods for

training the candidate nodes. Chapter 4 examines methods of reducing the number of

connections within a Cascor network — the aim being to produce a smaller classifier which

will generalise at least as well and possibly better by using fewer free parameters. This is

addressed in two ways: by the addition of hidden nodes which have a limited initial

connection strategy, and by the pruning of hidden nodes and the output layer to reduce the

number of connections after a suitable amount of training is completed.

The second part of this thesis examines methods of benchmarking artificial neural network

inductive learning systems. In Chapter 5, a review of the literature is presented which

highlights the important features of data sets which need to be considered. This is followed

by a summary of different benchmarks that have been presented: both those containing real-

world problems, and those containing artificially generated data. Finally, an examination of

the performance of Cascor on a number of these benchmarks is given. Chapter 6 examines

two new real-world problems, using Cascor as the major development tool, in an attempt to

find tasks which require the processing power of a reasonable number of hidden nodes to be

solved. The problems relate to the ageing of abalone shellfish from Tasmanian waters, and

the separation of Romantic and Renaissance tragedy authors. Chapter 7 examines two

2

methods of generating complicated data sets, and their application to comparisons between

various artificial network training methods.

Finally, Chapter 8 concludes the work in the thesis, and suggests further work which may be

conducted in both the areas of examining Cascor and benchmarking strategies. Full details

of the experiments undertaken in Part I are detailed in Appendices A through D. Appendix

E is an abridged version of the manual for the simulator used to perform the Cascor

experiments [Waugh 1995cl, and Appendix F gives the complete bibliography.

1.2 Inclusion of papers

For clarity the papers which have been included within this thesis as part of the author's

own work are outlined with references to the relevant sections. Firstly, those which have

been accepted in refereed conferences are given:

[Waugh & Adams 1993] §5.3

[Collier & Waugh 1994] §5.3

[Waugh 8,z Adams 1994] §4.1

[Adams & Waugh 1995] §8.1

[Waugh 1995a] §3.1 and §3.2

[Waugh 1995b1 §7.1

[Waugh & Adams 1995] §4.2

Secondly, unrefereed works are outlined:

[Waugh 1994a] 	§2 and §4.2

[Waugh 1995c] 	§E

3

Part I Extensions to Cascade-
Correlation

2 Background to dynamic learning

One of the major criticisms of fully-supervised feed-forward artificial neural networks is

their failure to cope with requirements for different topologies. Usually only a simple, fixed

network structure is used: namely one hidden layer with no shortcut connections, forming

two processing layers. The problem is not due to the limitations of particular weight

training algorithms, such as back-propagation [Rumelhart, et al. 1986], but rather is due to

the limits of the network's structure and how this is developed [Baum 1989]:

... it is unlikely that any algorithm which simply varies weights on a net of fixed size and

topology can learn in polynomial time. ... obstructions to rapid learning can be avoided if

one considers algorithms with the power to add neurons and synapses, as well as simply

varying synaptic weights.

An artificial neural network has a set number of inputs and a set number of outputs, as

defined by the problem being addressed. However, the internal hidden connections,

weights and nodes may be altered in any way by the training algorithm. 1 This includes

deciding what connections are present between nodes, whether there should be distinct

layers of nodes, and so on. Overall, the number of free parameters, or the ability of a

network to model further data set features, corresponds roughly with the number of

connections [Cortes, Jackel & Chiang 1995]. Thus, the modification of network features

allows for more parameters to be added to model the underlying data set function, or the

removal of parameters to avoid over-specialisation on the given training data.

This chapter investigates the dynamic alteration of network topologies during the training of

fully-supervised feed-forward artificial neural networks. It is suggested by many

researchers (for example, [Baum 1989; Fahlman 1990]) that dynamically altering networks

presents good opportunities for developing optimal network architectures that generalise

well. This chapter gives an overview of past methodologies, both constructive and

destructive; gives a general reasoning as to why certain types of topology-changing

algorithms are successful based on a framework developed from the literature; and

concludes by giving a more detailed description of Cascor and introducing the remaining

chapters in this part of the thesis.

1 In this thesis, the term connection is used to indicate the presence of a link between two nodes,

whereas the term weight is used to indicate the numeric strength of the connection.

7

2.1 Current literature on dynamic neural networks

The main aim of dynamic neural network algorithms is to produce a network which

effectively solves the problem at hand. This is done in two basic ways: by either removing

unnecessary features to make the network smaller, or adding features to a minimal network

as required. The fewer free parameters that exist in the network, the more likely that they

will be correctly estimated from the available training data_ The greater the number of free

parameters, the more likely the network will have the ability to model all of the data. Thus

the task of the dynamic neural network algorithm is to produce the most appropriate

number of parameters in a form which models the function underlying the data, without

allowing for over-specialisation.

Few papers summarise the major construction and pruning strategies. Wynne-Jones

concentrates on weight decay methods, and node construction and pruning — the paper

does not examine the ideas of connection pruning in any detail [Wynne-Jones 1991a]. Hertz,

Krogh and Palmer briefly examine connection pruning, weight decay and node construction

algorithms [Hertz, Krogh & Palmer 19911. Reed gives a very good overview of the different

pruning strategies, identifying the two main groups of pruning algorithms: sensitivity

calculation methods, and penalty-term methods [Reed 1993]. Fiesler provides a very brief

tabulated overview of many methods of changing topology within perceptron-style

networks and others [Fiesler 19941. The general perceptron-style topology altering methods

are described more fully below.

2.1.1 Removing connections — saliency methods

There are two main ways of removing connections between nodes: by pruning using

saliency measures, or by pruning using penalty-term methods to reduce weights to zero.

Removing weights by the use of penalty terms will be considered in the next section.

The saliency of a connection is the change in error after the removal of that connection, or

the sensitivity of the network to the removal of that connection [Mozer & Smolensky 1988]:

Saliency = Error (connection removed) - Error (connection present) (2.1)

The higher the saliency value, the more important the connection is. Low saliencies indicate

that a connection has little importance, and negative saliencies indicate a weight that is

doing more harm than good. Often the saliency is estimated in some way to speed the

removal of connections. The actual saliency or its estimate may then be used to decide

which connections to prune or remove.

8

Thodberg examines the removal of connections by a process of direct elimination: each

connection is pruned in turn, and the resulting network is retrained for a short period

[Thodberg 1991]. If the network still performs reasonably the change is kept, otherwise the

connection is returned along with the original network weights. This method may be time

consuming — to the point of being computationally intractable — but it has reasonable

success in removing extra connections and.retraining existing ones. A saliency estimate is

not calculated as the weights are individually removed, and the effect on the network is

evident after training.

Skeletonization [Mozer & Smolensky 1988; Mozer & Smolensky 1989] is a technique which

removes nodes by assessing the relevance of their connections. This process may be simply

extended to the removal of connections, as it actually estimates the error after removing a

single connection, which is combined to give the error after the removal of a node. Karnin

notes that Mozer and Smolensky's sensitivity measure is defined to be used with a particular

linear error measure, and he goes on to describe a sensitivity measure specifically for

network connections which is independent of the error function used [Karnin 1990].

Another sensitivity measure is Optimal Brain Damage (OBD) [Le Cun, Denker & Solla 1989]

and the subsequent method Optimal Brain Surgeon (OBS) [Hassibi & Stork 1992]. OBD

calculates saliencies by comparing the results of the main diagonal of a Hessian matrix, or

the second derivatives, of the change in error with respect to the weights. A Taylor

expansion of the error results in four groups of terms: the first term is assumed to be

constant, the second term is assumed to be zero as the network has been trained to a local

minimum and the slope is constant, the third term results in the Hessian matrix which

calculates the quadratic approximation or curvature of the error surface, and the higher

order terms are ignored and assumed to be negligible. The main diagonal of the Hessian

matrix gives an estimate of which connections are required. OBS follows this up with

improvements, mainly by using the full Hessian matrix, in contrast to using only the

diagonal. This has the advantage of requiring no retraining after the changes have been

made whereas OBD does require retraining. Nevertheless, these computations can be quite

expensive. A number of papers have examined these algorithms further, with comparisons

between OBD and OBS, and some improvements and modifications to the algorithms —

particularly to the OBS algorithm (for example, [Gorodkin, Hansen, Krogh, Svarer &

Winther 1993; Hassibi, Stork & Wolff 1993; Tolstrup 1995]).

A further method called Principle Components Pruning (PCP) has also been developed

[Levin, Leen & Moody 1994]. As the name suggests, this method prunes connections by the

use of principle components analysis to calculate their relative worth. The paper shows that

PCP has a computational complexity much less than OBS, but greater than OBD. It also

9

claims that PCP is likely to produce better results than OBD, although this is not backed up

with results.

Another method [Tsaptsinos, Mirzai & Leigh 1992] uses correlation analysis for the removal

of unnecessary connections; and there are a number of papers which optimise the network

architecture by using genetic algorithms (for example, [Nolfi & Parisi 1991; Hancock 1992;

Kendall & Hall 1992; Kendall & Hall 1993]), though it is not obvious from the papers that

this is an efficient process, especially for larger networks [Hertz, et al. 1991].

Sensitivity measures also have their critics [Reed 1993]:

... most of the sensitivity methods ... don't detect correlated elements. ... An extreme

example is two nodes which cancel each other out at the output. As a pair, they have no

effect on the output, but individually each has a large effect so neither will be removed.

Retraining may break such a deadlock, but this will not necessarily result in an optimum

solution.

2.1.2 Modifying weights — penalty terms

Another way of removing a connection, as mentioned previously, is by changing the weight

of that connection so that the connection has no effect. Pruning of weights, or regularisation,

is performed by adding a penalty term affecting the network complexity to the network

error term which is being minimised, with the purpose of changing the magnitude of the

network weights. With this method generally weights are reduced to remove their effect.

This relies on the weight training algorithm to reduce the weights by minimising the overall

network cost:

Network cost --- Network error + Network complexity 	(2.2)

The minimisation of the overall cost results in the training of the network weights and the

alteration of the weights to minimise the term specifying the network complexity.

Weight decay and weight elimination are mentioned quite extensively in the literature. Less

frequently mentioned is the use of weight enhancement to generate weights from zeroed

connections [Chauvin 1988].

Krogh and Hertz give a good overview of the area of weight decay [Krogh & Hertz 1991] —

the idea being initially attributed to Rumelhart [Hanson & Pratt 1988; Wynne-Jones 1991a]

— and then go on to show that weight decay is an improvement over standard gradient

descent back-propagation weight training. Weight decay in its basic form is simply the

gradual reduction of the smaller weights to minimise their effect in relation to the larger

10

weights in the network. Hanson and Pratt, and Burkitt and Ueberholz also examine this

method, with the latter attempting to separate the learning from the weight reduction

phases [Hanson & Pratt 1988; Burkitt & Ueberholz 1993].

Weigend, et al. propose a system for weight elimination which subsumes much of the work

done in weight decay [Weigend, Rumelhart & Huberman 1990; Weigend, Rumelhart &

Huberman 19911. This system, similarly operates by training to a set minimum error for a

particular problem and trades off complexity and the network error. The method allows for

the alteration of the weight cost function so that smaller weights or larger weights become

relatively expensive.

NowIan and Hinton describe a further penalty term method called soft weight sharing

[Nowlan & Hinton 1992]. Under this scheme an alternative penalty term is used which

favours the reduction of smaller weights. The penalty term involves the combination of two

Gaussian functions. One function is used to reduce the smaller weights, while the other

targets larger weight values — the latter, in the limiting case, may be replaced with a

uniform distribution. The penalty term is reduced by allowing the means and variances of

the Gaussians used to adapt such that the variances shrink, drawing the weights into having

similar values, which in turn implements a 'soft' version of weight sharing, whereby asingle

weight is used by several connections. By starting the penalty-term Gaussians with high

variances, all the weights influenced by the respective Gaussians will be forced to have

similar values. The wide variance at the beginning means that the Gaussians will not

adversely affect the training process. The sharing of weights results in a reduction of the

degrees of freedom that the network may use for over-fitting the data. There is, of course, a

greater cost with the increased complexity of the weight optimisation process.

Not everyone is in favour of these penalty-term methods. Mozer and Smolensky state

[Mozer & Smolensky 19891:

... our impression is that it is a tricky matter to balance a primary and secondary error term

against one another.... In our experience, it is often impossible to avoid local minima —

compromise solutions that partially satisfy each of the error terms.

Karnin also notes that penalty-term methods can 'interfere with the learning process'

[Karnin 1990]. Hanson and Pratt indicate that weight decay is not effective at removing

hidden units [Hanson & Pratt 19881 To remove connections other methods would have to

be employed to zero small weights at some stage during training, as the weight decay

methods are not effective in reducing the weight values to absolute zero [Sietsma & Dow

1988].

11

2.1.3 Changes to the number of hidden nodes

The large majority of papers with respect to topology altering algorithms consider changes

in the number of hidden nodes, rather than changes to the connections or weights between

nodes. Most of these papers concentrate on the introduction of new nodes when the

network is not capable of solving the problem at hand. Only a few examine the removal of

nodes. These different styles will be considered in turn.

2.1.3.1 	Construction — adding hidden nodes

Many techniques are based on the standard configuration for a back-propagation style of

network, with two layers of processing nodes. The idea of splitting nodes in the hidden

layer, or simply adding extra nodes to the hidden layer is very common (for example, [Ash

1989; Hanson 1989; de le Maza 1991; Platt 1991; Refenes & Vithlani 1991; Wynne-Jones

1991b]).

Several methods have been developed which grow layers as well as the number of nodes in

a single layer. The majority have been designed for problems with binary inputs, but could

be extended to cover more general cases. Gallant presents three concepts of network growth

which involve the addition of individual nodes [Gallant 1986]: growing nodes with

connections to the previous node and the inputs (Tower Construction), growing nodes

connected to all previous nodes and inputs (Inverted Pyramid Construction), and adding

static nodes in layers. No results are given as to the effectiveness of these ideas. The Tiling

algorithm [Mezard & Nadal 1989] builds another layer on the network outputs if the

previous layer does not separate the classes in the problem. Along a similar vein is the

Extentron algorithm [Baffes & Zelle 19921 which forces the separation of examples by

extending a standard perceptron. The Upstart algorithm [Frean 1990] produces a binary tree

of nodes which correct the values of the outputs for all training examples, the purpose being

to correct any mistakes by adding extra positive and negative signals to the output node.

This adds as many nodes as required to correct the error. The Upstart algorithm performs

better than the Tiling method [Wynne-Jones 1991a], however both suffer from the limitation

that only binary tasks are addressed.

Cascor is not limited to binary problems nor to a certain number of layers [Fahlman &

Lebiere 1989]. It allows the addition of hidden nodes as required which have connections

from all previous hidden nodes and the inputs, and are connected in turn to all outputs —

hence giving the Inverted Pyramid Construction identified by Gallant. The network starts as

a single output layer with full connections between the network inputs and outputs.

Training occurs until there is no further improvement, as measured by patience parameters,

much like the method employed by Ash [Ash 1989]. Cascor is then able to individually

install hidden nodes into the network. The hidden node is selected from a pool of trained

12

candidate nodes. The node with the highest correlation to the network error after the

candidates have been trained is installed. The weights of this hidden node are then frozen

and the output layer is retrained with the extra node connected to it. This process is cyclical

and continues until either the training set is classified correctly or the maximum number of

hidden nodes has been added. This produces all possible feed-forward connections, and the

ability of hidden nodes to connect to other hidden nodes allows for the possible formation of

advanced feature detectors. The Cascor algorithm has been extended a number of times

[Littmann & Ritter 1992; Simon, Corporaal & Kercichoffs 1992; Simon 1993] .

One limitation of Cascor is that it is not effective when examining regression style problems.

The correlation machinery tends to over-compensate which means that the results, though

effective for classification, tend to over-shoot on regression problems [Fahlman 1993;

Hwang, You, Lay & Jou 1993; Freeman 1994; Adams & Waugh 1995].

Projection Pursuit Learning (PPL) [Hwang, et al. 1993; Hwang, Lay, Maechler, Martin &

Schimert 1994] involves a single hidden layer of nodes with adaptable activation functions.

Nodes are added to the single hidden layer when required, and the activation functions are

altered to solve the required problem, rather than adding more nodes with fixed activation

functions to a deepening network as with Cascor. Simulations indicate that PPL is

extremely effective at solving regression problems, as the activation functions adapt to fit the

shape of the problem structure.

2.1.3.2 Pruning — removing hidden nodes

Three main methods are employed for node pruning: heuristic solutions, saliency measures

which are extensions of the methods used to prune connections, and node decay based on

weight decay methods. Sietsma and Dow take the heuristic approach by comparing nodes

based on the network outputs of all training patterns [Sietsma & Dow 1988]. The idea is to

remove those nodes which have little effect — non contributing units; or whose effect is

duplicated by other nodes — the unnecessary-information units. It also removes layers by

determining if they are redundant. Shamir et al. consider the reduction of hidden nodes by

merging neurons with similar functional behaviour, hence preserving functionality [Shamir,

Saad & Marom 1993]. Statistical results are presented to support the algorithm. Chung and

Lee also develop a node pruning algorithm which removes four styles of unnecessary nodes:

non-contributing, duplicated, inversely-duplicated and inadequate nodes [Chung & Lee

1992].

As was mentioned previously, Skeletonization is one method of pruning nodes from a

network [Mozer & Smolensky 1988; Mozer & Smolensky 1989]. Segee and Carter show that

this method is quite effective, even though a relevant node may have weights which are

13

irrelevant [Segee & Carter 1991]. Ramachandran and Pratt extend the Skeletonization idea

by basing a node pruning method on an information measure from the inductive learning

literature [Quinlan 1986b; Ramachandran & Pratt 19911. Similar ideas are presented by

Dunne et al. with regard to nodes which attempt to separate only one class from the rest of

the classifications in the problem [Dunne, Campbell & Kiiveri 1992]. Adams and Jones also

examine a node's relevance in relation to function interpolation with success in creating

minimal single layered networks [Adams & Jones 1992].

Chauvin examines the removal of nodes by a weight decay method which is altered to

encompass all weights connected to the one node, rather than operating on individual

weights [Chauvin 1988]. Ji et al. also consider the removal of nodes using a penalty term,

along with the reduction of weight magnitudes at the same time [Ji, Snapp & Psaltis 1990].

2.1.4 Combinations of different strategies

As the methods mentioned above may be applied in different phases of network training,

combinations of different methods have occurred. Sietsma and Dow examine one method

which combines the use of growing and pruning algorithms [Sietsma & Dow 1991]. One

deficiency with their method of heuristic pruning [Sietsma & Dow 1988] is that although it

may produce a minimal number of nodes in a layer, the output of the layer may not be

linearly separable. This may require the introduction, and hence growth, of extra hidden

layers to overcome the newly created problems with the hidden layer or layers. The result is

a transformation of a wide and shallow network into a thin, deep network which may

generalise better than the originally trained network. The problem is that this method is

used over and above the training of the initial network, thus increasing the time required for

training.

Wynne-Jones favours the combination of constructive algorithms and pruning methods to

overcome the problems of obtaining the minimal network, by allowing the training process

to increase the size of the network, and then reduce it when the task has been learnt [Wynne-

Jones 1991a]. No specific system is presented in the paper. There have been algorithms

developed which both add and delete hidden nodes from a single layer (for example,

[Murase, Matsunaga & Nakade 1991; Wang & Hsu 1991]).

There are a number of additions to the Cascor algorithm to include further topology

changing methods. Klagges and Soegtrop which examines the use of limited and randomly

connected hidden nodes in the Cascor style of network [Klagges & Soegtrop 1992]. The idea

of growing a single hidden layer using Cascor has also been considered [Sjogaard 1991;

Yeung 1991].

14

2.1.5 Further comments

In the case of using pruning algorithms, where initially excess connections or nodes are in

the network, often the extra free parameters aid in the learning process as well as the speed

of learning [Mozer (Sr Smolensky 1988; Izui 8r Pentland 1990; Thodberg 1991; Wynne-Jones

1991a].

Not all people agree with this approach [Ash 1989]:

There are some shortcomings to the pruning approach. Since the majority of the training

time is spent with a network which is larger than necessary, this method is computationally

wasteful.

This training speed problem does not occur with methods such as Cascor [Fahlman 1993], as

it seems to be related to the 'herding' problems that have been identified within standard

back-propagation style networks [Fahlman & Lebiere 19891. Since in back-propagation all

hidden nodes are active at any point in time during the training of the hidden layer, all the

nodes are trying to correct the same error. To ensure that a solution is reached, a greater

than optimal number of hidden nodes is required for training to ensure that the nodes are

well spaced by the initial random allocation of weights. Cascor, for example, does not suffer

from this problem as only one hidden node is trained at a time so that the maximum error is

reduced by one node and then its weights are frozen. Nevertheless, it is not guaranteed that

this 'greedy algorithm' will produce a minimal network [Fahlman 1990], as it is trying to

remove as much of the error as possible using a single hidden node.

A further criticism of pruning is that the reduction in the number of connections may lead to

a corresponding reduction in the fault tolerance of networks, inherited from the way in

which knowledge within the network is distributed. Work done on the effect of pruning on

the fault tolerance of networks indicates that after pruning a network's ability to cope with

being damaged is not decreased [Segee & Carter 1991]. This should be taken in the context

that generally, back-propagation gradient-descent trained networks do not have significant

fault tolerance capability, as usually individual weights may have a great bearing on the end

result [Bolt 19921.

Further work is also being performed on network architectures which differ from the

standard feed-forward network design (for example, [Fiesler 1994; Deffuant 1995]).

However, the above review does show definite trends which form the basis for the next

section outlining an abstraction of methods for changing network topology. The majority of

connection alteration methods involve the pruning of unnecessary connections or weights.

The majority of node alterations involve the addition of new nodes to account for further

data features. Most algorithms also require the retraining of the network after pruning.

15

0
0

0 	 0

0

2.2 Abstraction of topology changing methods

This section outlines an abstraction of possible ways of changing network topologies

developed from the literature presented above. Feed-forward networks can be considered

to be directed acyclic graphs. There are two features of a general acyclic graph: the set of

vertices, and the set of directed edges between those vertices. Artificial neural networks can

be mapped to acyclic graphs such that nodes are regarded as the vertices, and connections

being the directed edges. The weight of a connection can be considered to be a strength of

the directed edge. From this it can be seen that there are two general topological features of

artificial neural networks, namely the nodes and the connections with their associated

weights. The distinction between connections and weights may be considered to be

arbitrary, but it reflects a difference in methods presented in the literature.

Disregarding whether nodes, connections, or weights are being examined, there are three

common ways in which topologies are altered: by the use of constructive algorithms to add

features to the network, using destructive algorithms which remove or prune features from

the network, and a combination of constructive and destructive algorithms. Any algorithm

which considers the alteration of a network topology will then be adding or removing

nodes, connections, or weights. These will be considered in turn below. Note that if a node

is added or removed, so are all the connections to that node, so changes which include

whole nodes amount to the addition or removal of blocks of network connections.

2.2.1 Changing connections and weights

Firstly, adding or removing connections or weights is examined. Consider that there are ii

potential inputs to a particular node, then there are 2n possible connection strategies to that

node (see figure 2.1). In a construction algorithm, a base case of minimal connections to a

node is needed to which new connections can be added. As the number of inputs to a node

increases, the number of possible starting connection strategies to that node increases

dramatically. The large number of possibilities would mean that the best initial connection

strategy would often be missed if only a few were selected randomly. Though there are

advantages to having nodes with limited fan-in, the large number of combinations make

their use prohibitive.

Figure 2.1 — Example of the possible connection strategies with two inputs (possibly one being a bias
connection) to the one node

16

For example, consider the case where each node has a maximum of two connections. If

there are n network inputs there will be:

n! (2.3)
2 • (n ±2)!

possible node connection strategies to the input layer, without even considering the need to

train multiple nodes with different random weights to avoid local minima. Therefore for 10

inputs, there would be 45 different connection strategies for each node to be used.

It may also be possible to employ some form of weight enhancement to add in connections

when they are required from zeroed weights. The problem of what is a sensible initial

connection strategy comes up again, as most weight training methods require the setting of

random initial weights. If a network required the majority of weights — or all weights as is

the obvious choice — to be set to zero, allowing weight enhancement to be employed at

some later stage, there will be little variation to avoid local minima. Further, it is difficult

then to start the training process and decide which weights should be allowed to vary.

A pruning algorithm for connections would start at the more obvious position of all possible

connections to a node being present and could then decrease the number of connections •

according to some pruning strategy. Although there are the same number of possible

connection strategies, a unique base case exists to start training on, and it is easier to remove

connections which have no effect than add connections which may have an effect. Likewise,

weight decay methods seem more reasonable than weight enhancement as they can

gradually reduce weights that are already in place. One concern with choosing a pruning ,

approach is that initially training the extra connections would require more computational

time for little gain than a more limited connection strategy, especially when a large number

of connections are redundant.

2.2.2 Changing the application of hidden nodes

Finally, additions and deletions to the number of hidden nodes are considered. Whereas the

number of connections has an upper limit set by the maximum number of inputs to the

particular node, the number of hidden nodes has no upper limit. The base case is naturally

no hidden nodes at all — perhaps forming just a perceptron-style output layer. Thus a node

construction algorithm seems quite attractive as long as the initial conditions are sensibly

set. This will require at least one node in each hidden layer or some strategy for forming

new layers.

To use a destructive scheme for removing nodes more nodes are required than are necessary

in the final network. The problem with such a destructive algorithm is that at some point

17

the initial topology needs to be decided: what is the maximum number of hidden nodes

required, how many layers are needed and how are the nodes to be connected to proceeding

and succeeding layers. A sensible possibility would be to start with a fully connected

layered network and remove unnecessary nodes. This relies on the weight training, possibly

over a large number of layers, to find a reasonable solution in the first place and also to be

reasonably quick; and puts the onus on the user to allocate the initial topology to be just

larger than the necessary final network, to reduce the overall training time.

Thus the most promising approaches seem to be to add hidden nodes and remove

connections. The ideal of using the smallest number of layers may also be incorporated into

this scheme if this is judged as being important for the network application. This abstraction

is mirrored by the methods presented in the literature.

2.3 Standard Cascade-Correlation

Cascor is examined as one of the most promising node construction algorithms, as it is able

to develop networks with multiple layers creating advanced feature detectors, and it is able

to examine problems with real-valued inputs. Its real strengths lie in the area of

classification where the outputs are binary and it is this excellent performance which

warrants further consideration. The algorithm's performance with real valued outputs is

less than optimal [Adams & Waugh 19951. Furthermore, it is a prime candidate for the use

of methods to reduce the number of connections, as the algorithm adds hidden nodes with

all possible feed-forward connections, many of which may be redundant. This leads to a

natural combination of growing and pruning methods, in line with the trends evident in the

literature.

2.3.1 Overview of Cascade -Correlation

The Cascor algorithm cycles between two phases to train a network: the first phase involves

training and further retraining of the weights to the output nodes; and the second involves

the gradual addition of hidden nodes to the network (see figure 2.2). The second phase is

the more complicated whereby candidate nodes are trained to maximise their correlation

with the network error, and the best of these nodes is installed into the network.

Figure 2.2 outlines the ordering of these processes, and the following subsections describe

them in more detail. The details described in this section are taken from Fahlman's paper,

the released Cascor software and the author's TasCas simulator (see [Fahlman & Lebiere

1989; Crowder & Fahlman 1991; Waugh 19950 and §E).

18

Training
and test

data
Initialisation

phase

Candidate training

Output layer training

Calculate
output layer

cache

Train output
layer for one <

epoch

L

Calculate
hidden unit

cache

Add best
candidate to

network

Initialise
candidates

End)

Calculate
correlation

(

Start

Figure 2.2 — Flow-chart outlining the Cascor algorithm

The initialisation phase of the algorithm is simple: the network consists of the required

number of inputs and outputs as determined by the problem. For classification problems it

is usual to have one output node per class and train the network to fire one output node at a

time. For unseen data the output node with the largest response is taken as the example

classification. The network is created by the allocation of the required memory for the

connections between the input and output nodes, the initial weights of the network are

randomly set, and the data required for training and testing is read in to appropriate data

structures for use throughout the training process. Note that the test set data is not used in

any way to select features of the network. It is there purely to monitor the generalisation of

the network.

19

2.3.2 Output layer training

Cascor starts developing a network by initially training a layer of weights between the input

nodes and the output nodes. This single layer is fully-connected and prescribed by the

problem and data representation chosen. The output layer configuration, with random

weights set during the initialisation process, is trained to produce a minimal error (see

§2.3.5).

For efficiency and speed considerations the training process initially involves caching the

required values from the evaluation of the network: namely the network outputs for each

example, the error values for each output and example and the overall network error. The

error for each output and example value is as follows:

ekp = y kp ± tip 	 (2.4)

where ekp is the error over all outputs k and all training patterns p, ykp is the output node

value and tkp is the expected output value.

The output and error values are cached for later use in the training process, especially

during the training of the candidate nodes where these values are not altered over several

iterations. The caching is not necessary, but it greatly speeds up training if the machine

memory is available. Otherwise the values and errors of the output nodes must be

recalculated for each example when required.

Once the values have been cached, it is possible to say whether the goals of training have

been met, as the most recent network has been evaluated. At this point it is decided whether

training the output layer should continue. This process is described more fully below (see

§2.3.4). If these goals have been met — which is unlikely if no changes have been made to

the weights — then the output layer training phase is complete. If this does not occur then

the output layer weights are trained using Quickprop (see §2.3.5) and the algorithm cycles to

evaluating and caching the output layer information. This process continues until training

of the output layer is considered to be complete.

The error to be back-propagated (3) is calculated as follows:

Skp = f kp • e kp 	 (2.5)

where fp is the derivative of the activation function f for pattern p, in this case for the output

unit k, with respect to the sum of its inputs. The released Cascor code [Crowder & Fahlman

1991] uses the above slope value for some error calculations instead of (2.4). This usually

includes an activation function offset (see §2.3.5). The error function in (2.4) is used for all

20

error calculations within the experiments presented within this thesis. The learning error

rate used is:

T1 	 (2.6)

where n is the nominal learning rate and t is the total number of training examples. This

scaling is for the benefit of Quickprop to keep the updates within a sensible range.

Once the output layer training is complete as mentioned previously, the algorithm checks to

see if the conditions of training the entire network have been met (see §2.3.4). If they have,

the algorithm stops, otherwise candidate units are trained and one of those units is installed

in the network. The output layer is then retrained with connections to this new hidden unit,

and the process cycles. The process of training the candidates is described next.

2.3.3 Candidate training

The training and installing of a hidden node is performed in a similar manner to the output

layer training: a number of candidate nodes are given initial random weights, and they are

then trained independently to maximise their correlation to the network error; the total

number of candidates is specified by the user. The candidates are connected to all the input

nodes and all the previously installed hidden nodes.

The training cycle for candidate nodes begins by calculating the correlation2 of each

candidate node with the residual error at the output nodes. The original Cascor paper

[Fahlman & Lebiere 1989] gives the following formula for the correlation calculation (S) for

which is to be maximised each candidate:

S =
k = 1

E (v,,,±clekp ±
p =1 	'

(2.7)

where vp is the value of the candidate for example p, and z) and ëj are the averages of the

candidate values and the errors for each output respectively. This results in the following

derivative with respect to the candidate's input weights which are being trained:

DS _ 	G 	ekp ± Fk) f • x, F,
- k=1 k p=1(r

(2.8)

2 As noted in Fahlman's paper the correlation calculation is strictly a covariance, as no normalisation of

the calculation is performed. Fahlman has indicated that the normalisation process does not improve

training performance [Fahlman & Lebiere 1989].

21

where o-k is the sign of the correlation between the candidate's value and output k, xip is the

input the candidate receives from the unit i for the pattern p, j is the index for the candidate

nodes, and wi is the weight to the candidate from the input layer. The unit i may be a

network input or a previously installed hidden node. In the actual implementation released

by Fahlman, and the subsequent TasCas simulator [Crowder & Fahlman 1991; Waugh 1995c1

error normalisation is implemented for correlation values. This amounts to having the

following formulas instead of (2.7) and (2.8):

=1
s - 	

k p=1
VP .ek

P
 tv. k

(2.9) m t
I 	2 ek

k=lp=1

±ak • ± (ekp 	• fip

=
as k=i 	p=1

k=lp=1

These formulae are used for the calculation of the correlation and the subsequent

modification of candidate weights within the candidate training process.

If, as calculated from the correlation calculations, training is not complete (see §2.3.4) then

the candidate node weights are modified by gradient ascent to maximise their correlation

with the output nodes. The learning rate is normalised in a similar manner to the output

layer training rate to keep the Quickprop updates within a sensible range [Crowder &

Fahlman 1991]:

11
t-(n+h-F 1) (2.11)

where n is the total number of inputs, and h is the number of hidden nodes installed so far,

and n again is an arbitrary constant representing the learning rate.

Once the candidates are trained the candidate with the largest correlation is installed in the

network. Its input weights are added to the network and frozen so they will not be altered.

The freezing is effected by only training the output layer weights during the output training

phase, and not back-propagating the errors past the output layer. The output layer weights

for the newly installed hidden nodes are set using minus the last correlation calculated as an

initial guess (—S). Fahlman has found this to be more effective than just setting random

weights [Fahlman 1993]. The hidden unit cache may then be updated with the values

produced by the new hidden node. As the hidden node weights are frozen, these will not

alter during the rest of training.

1p

(2.10)

22

The output layer is then retrained with the newly installed hidden node as an extra input to

all the output nodes. This process cycles, adding in further hidden nodes, until the training

is completed. The extra connections to the previous hidden nodes generate a very deep

network with one node per hidden layer and all possible shortcut connections installed. The

maximum number of hidden nodes which can be installed is again specified by the user.

2.3.3.1 	Correlation derivation

The following is the derivation of the correlation S with respect to the candidate's input

weights [John 1995]:

as _
(Vp rlekp

k=1 p=I

DTATi 	 dWi

	

t (

a 1X1 	± V)(e kp ±

k=1

a ± (v to ±v)(ekp ±Fk)
	 where ak is the sign of the correlation = 	GI(k =I 	 aw;

± qekp ±
= E ak

	

k=1 p = I 	awi
a(vp±v)

= 	ak I 	(e kp ± -e7,) as ek does not depend on VV,
k=1 	p=1 	Lovvi

t

= k1 akpI= 1

(av
P 7-v

Tv■Ti (ekP ± DN' 7;

The error is independent from the candidate weights as this is dependent on the output

weights only. From the definition of the network:

n + h
Vp = 	W. • X• ip

1=1

the following may be calculated:

n + h

Dv af(E w • x ip)
,.1

= 	awi
n + h (

a 	w; • x ip)
= f' 	 dwi
= f' •

which may be used within the last equation of (2.12) to give:

as _ 	(f, _
k=1 —k

p„ u. • Xip f x i)(ekp ± Fk)

(2.12)

(2.13)

(2.14)

(2.15)

23

This formula can be shown to be equivalent to the original calculation of the derivative (2.8)
as the f' • x, term sums to zero. Removing this additional term may lead to some problems

of precision, although empirical evidence does not indicate that this has had any major effect

[John 1995].

2.3.4 Stopping Training

There are three points within the Cascor algorithm where decisions need to be made as to

whether training should continue. These are at the end of each output layer training epoch,

at the end of each candidate pool training epoch, and for the entire network at the end of

each output layer training phase.

At these different points different methods are used to decide when training is complete:

• an arbitrary limit — which is used for output layer and candidate training

setting a maximum number of epochs which training may take, or is used by

the overall network training by setting the maximum number of hidden units

which may be installed;

• a correctness limit — which is used for stopping output layer training and the

entire network training; and

• a patience limit — which is used to halt output layer and candidate training

when training is not resulting in an effective improvement in network

performance.

If any one of these limits is met on a phase of training in which it is being employed, then

training halts. Thus if, for example, the epoch limit is met on output layer training, then

training halts regardless of whether the patience limit or correctness limit has been met. The

arbitrary limit, irrespective of whether it measures the number of hidden nodes or the

number of epochs, is a rough measure of training time; hence this may be regarded as a time

limit.

The correctness limit is determined in two ways. The first is more appropriate for

classification problems, where a minimum number of error bits is set for a goal of training

and often this minimum is set to zero. An error bit is where a value for an output for a

particular example is outside a specified range, and is hence considered to be in error. This

is counted as one error bit. If the number of error bits is zero then 100 percent correctness is

said to be achieved. The maximum number of error bits is therefore the number of training

examples multiplied by the number of outputs. The allowable range from the expected

value is specified by an error threshold. Thus, for example, if a symmetric sigmoid

activation function is used with values between —0.5 and 0.5 and an error threshold of 0.4 set,

24

then a correct maximum value will be between 0.1 and 0.5, and a correct minimum value

will be between —0.5 and —0.1.

The second method for judging correctness, which is more appropriate for regression

problems, is to simply set an arbitrary error value which the network error must fall below:

(ykp tkp)2

MSE k 	= I P = i
m • t

(2.16)

Fahlman provides further normalisation of this value within the released simulator (see

[Crowder & Fahlman 1991] and §E.7.3).

Patience is a measurement of minimal activity specified by the two patience parameters:

• patience error — the change in error required over a set period to continue

training; and

• patience period — the period over which the change in error is measured.

Thus if there has not been a change in the network error greater than the patience percentage

of the error given — or the maximum correlation for training the candidate pool — over the

patience period, then the network runs out of patience and that phase of training is

completed. The code for implementing the patience calculation is given in figure 2.3.

initialise by:

quitpoch = currentEpoch = 0;

stillPatient = true;

At the end of each training period:

/* note that currentEpoch++ has occurred and currentError is set */

if (quitEpoch == 0) {

lastError = currentError;

quitEpoch = patienceLength;

) else

if (fabs(currentError - lastError) > patiencePercentage * lastError)

lastError = currentError;

quitEpoch = currentEpoch + patienceLength;

) else

if (currentEpoch >= quitEpoch)

stillPatient = false;

At the completion of training:

totalEpochs += currentEpoch;

Figure 2.3 — C code for calculating the patience stopping criterion

25

2.3.5 The Quickprop algorithm

Quickprop is the name given by Fahlman to a quasi-Newton method of minimising a

function using an heuristic estimate of the curvature of the error function to improve

performance over gradient descent back-propagation [Fahlman 19884 3 Any function can

be expanded about a known point in a Taylor series. For simplicity consider the one

dimensional case:

c
+ h2

2 'ax2
xo

f(x0 + h) = f(x0) +

(2.17)

x0

The first term is proportional to the function evaluated at the known point, the second to the

first derivative evaluated at that point and multiplied by the distance from it, the third to the

second derivative evaluated at that point and multiplied by the square of the distance from

it, and so on.

If the expansion is about a minimum, the curve in the vicinity of the minimum can be

reasonably approximated by a constant and a term quadratic in the distance from the

minimum, h. This is because the first term gives the value at the minimum, the second term

is proportional to the slope of the curve which at the minimum is zero and the third term is

proportional to the curvature at the minimum. At the minimum the curve is symmetric and

hence all the terms proportional to the odd powers of h are zero. If h is small then even
terms of order h4 and higher will be small compared with the quadratic term.

In minimising the error function in back-propagation this analysis cannot be directly applied

since the position of the minimum is what is required rather than what is known. However,

if near a minimum it is reasonable to take the shape of the surface to be quadratic. Fahlman

makes the assumption that the surface is quadratic but applies it at all times rather than only

near a minimum [Fahlman 19884 Fahlman makes the further 'risky' assumption that the

weights are independent, thus changes to a weight do not affect the other weights in the

network. The use of the partial derivative is the implementation of this assumption.

The standard gradient descent weight change, including the momentum term which need

not be used, is as follows:

Aw(t) = tri • s(t) +a • Aw(t ± 1) 	 (2.18)

3The technical report referenced here is available by ftp. The published version of the paper [Fahlman

1988b1 is also referenced but it is not as readily available.

26

where ri is the learning rate, a the proportion of momentum used and s(t) is the slope at time

t. The Quickprop algorithm essentially changes this to:

Aw(o = s(t+4.00,406,w(t±i) 	 (2.19)

leading to a crude approximation of the optimum value which gets increasingly better as the

minimum is approached. The derivation of this is outlined below.

2.3.5.1 	Derivation of Quickprop update

In back-propagation style networks the error function is a function of the weights and each

weight is dealt with individually. At each step in the iterative process of minimising the

error function the value of the error and the gradient of the error function at that point are

known. Quickprop uses the current and previous gradients and the values of the weights to

estimate the position of the minimum based on the quadratic approximation. Figure 2.4

illustrates the situation.

lAi
	

1A
	

Wm 	 W

Figure 2.4 — The error function, E is a function of a weight, w. At wi and w2 the gradients of the
curve are si and s2 respectively. wm is the position of the minimum

The error function is assumed to be a quadratic function of the weight, w, namely

E = a + bw + cw2 	 (2.20)

The slope of this curve is given by:

E = b + 2cw 	 (2.21)

Two points are known, namely

D-TA-i-E = s, at w = w, and .. A.,' E = s2 at w = w, 	 (2.22)

At the minimum we have:

27

= 0 at w = w,,, 	 (2.23)

Substituting (2.22) into (2.21) we have:

s, = b + 2cw, and s 2 = b + 2cw2 	 (2.24)

from which we derive:

b = slww22 ±± ws2w: and c = 1 s2± s ' 2 w2±

Substituting these values into (2.21) and (2.23) we have:

lb
wrn =

—±
s, w2 ± s2w, 1 2 w2 ±w1

w2 ±w1 • 2 s2
s2w1 ± s 1 w2

s2 ± s,

Finally, if we interpret the subscripts to mean that wi and si are measured at time (t - 1) and

w2 and s2 at time (t) and introduce two further parameters:

Aw(t) = Wm ± w2 and Aw(t ± 1) = w2 ± WI 	 (2.27)

we can rewrite (2.26) as:

Aw(t) = s(t ± s(i)t)± swAvs(t ± 1) 	 (2.28)

which is the derived Quickprop formula [Fahlman 19884 Since it involves the (reciprocal

of the) difference of two gradients divided by the distance between them, Fahlman is able to

claim that this is an approximation to a second order algorithm.

2.3.5.2 	Practical considerations

Since at a point a great distance from a minimum the quadratic assumption may be poor

Fahlman has introduced a series of heuristic rules to deal with the cases where this

assumption does not work well.

At the beginning of the training there is only one value of w and s known and hence simple

gradient descent with learning rate TI is employed as the full Quickprop update formula will

be ineffective. Likewise when the previous weight change is zero, gradient descent is used

to continue the training process if required.

Furthermore, the standard gradient descent term is added to the Quickprop quadratic

update if the current slope will cause the weight to move down the error slope in the same

(2.25)

(2.26)

28

direction as the previous change, helping to push the value toward the minimum. This

additional term is not used if the slope changes: hence the weight is near the minimum

where the quadratic weight update should be most effective.

lithe current slope is close to or larger than the previous slope and moving in the same

direction — unlike the parabola that Quickprop formula models — a jump to the minimum

may result in an overly large step. To avoid this Fahlman introduces a term 1.1, the maximum

growth factor, to limit the step size. In such a situation ji times the previous weight change

is used instead of the Quickprop update formula, where Fahlman suggests a value of 1.75

for This or the Quickprop formula are thus only used if the previous weight is non-zero.

A shrink factor is calculated from ji to test if the current slope is as large or larger than the

previous slope. This is used to avoid taking steps which are too large. The shrink factor is

defined as follows:

shrink factor = 	 1 +

Finally a weight decay term is added to the slope prior to these calculations to limit the

growth of the weights, if required, giving the following cost function for the output layer as

an example:

n

E = Eo +1,yi
f

k=1 i = 1 	k'
(2.30)

where y represents the strength of the weight decay. A small decay value will ensure that

the weights do not grow too large, for both the output layer and candidate weights.

All these modifications lead to the implementation shown in figure 2.5. For stability

considerations this algorithm only works as a batch training method, which requires the

presentation of a group of examples to update the weights. In this case each batch is

considered to be a complete run through the training set, after which the errors are used to

update the weights.

An offset to the activation function derivative to stop this getting close to zero, is also often

employed in conjunction with the Quickprop algorithm [Fahlman 19884 Briefly the

activation function offset adds 0.1 to the derivative of the activation function it is applied to.

The purpose of this is to ensure that the derivative does not become close to zero for values

at the extremes of the activation function. The weight update, by definition, is multiplied by

the derivative, and thus there is no update if the derivative is zero or is near zero. This

increases the effect of any error in the region of the activation function. In Cascor an

activation function offset is used in training the output layer, but no activation function

offset is used with the candidate nodes as this confuses the correlation machinery [Fahlman

(2.29)

29

Lebiere 19891. Adams and Lewis have shown that for function evaluation, which is

related to finding the maximum of the correlation, the use of the offset is not useful.

nstep = 0.0;

s += decay * w;

if (pd < 0.0) {

if (s > 0.0) nstep -= eta * s;

if (s >= shrink * ps) nstep += mu * pd;

else nstep += pd * s / (ps - s);

) else if (pd > 0.0) {

if (s < 0.0) nstep -= eta * s;

if (s <= shrink * ps) nstep += mu * pd;

else nstep += pd * s / (ps - s);

) else

nstep -= eta * s;

pd = nstep;

w += pd;

ps = s;

Figure2.5 — the C code for a single weight Quickprop update: s is the current slope, ps the previous
slope, pd the previous weight change, w is the actual weight, eta is the learning rate, mu the maximum
growth factor, decay is the weight decay term, shrink is the shrinkage factor, and nstep is a variable for

calculating the next step by the Quickprop algorithm

2.3.6 Diagrams

Since Cascor is able to install a large number of shortcut connections the usual layered

network diagram becomes unmanageable and unable to convey the full network

information. To overcome this problem Fahlman and Lebiere developed an alternative

diagram for displaying cascaded neural networks [Fahlman (SE Lebiere 1989]. Examples of

networks — both a standard layered network and a Cascor network — are given in figure

2.6. The shaded nodes are the non-processing inputs, and the nodes at the top of each

diagram are the outputs. The boxes indicate frozen hidden node connections within the

Cascor network and the crosses indicate trainable connections: for the Cascor network this

involves only output layer connections. The vertical lines to a node indicates the nodes'

inputs and horizontal lines from a node indicate outputs from that node. If no box or cross

occurs on the intersection of a horizontal and a vertical line, then the relevant connection is

not present. This method of displaying artificial neural networks is useful for displaying

any variety of feed forward network.

2.3.7 Summary

To recap the entire Cascor training process: initially a layer of weights between the input

and output nodes is trained to minimise the overall network error. This is performed using

the Quickprop algorithm, which requires several parameter values over a phase of training:

30

• •

UNE
UNE.

Ime•i
Usumem • mnimomm •nomenou• Wommommos

1111111111•1111•

• •

..S sons • sir•m ,Mom • .20.11.100
siti••io•s

•OINIMIIEN
Ainituteasini

(b)

Figure 2.6 — Examples of (a) a standard two hidden layer network, and (b) a standard Cascor network

• ri — the learning rate;

• p. — the maximum growth rate which limits the size of any change in weights

performed after each presentation of the training set; and

• y — a standard weight decay parameter which may be used to ensure that the

weights do not grow excessively large.

Once progress is no longer made, the maximum number of epochs of training has been

performed or the network achieves a correct result, output training is complete. If this

results in a correct network, or the maximum number of hidden nodes has been installed,

then the network training is complete. Otherwise a pool of candidate nodes is trained to

maximise their correlation with the residual error of the network. When the maximum

number of epochs has been reached or no progress is been made in the training of the

candidate nodes, the best candidate node is installed into the network and the output layer

is retrained. The algorithm thus cycles through installing hidden nodes and retraining the

output layer, and these phases themselves cycle through training regimes. The user of

Cascor has to decide what parameters to use for the specific application of the algorithm.

2.4 Experimental design

This section provides more specific details regarding the design of experiments throughout

this thesis. The assumptions and general algorithm parameters used for experiments are

given, followed by how network and general classifier performance is measured. The data

sets employed to test the ideas presented in the first part of the thesis are then outlined, and

finally details of the results of basic simulations using these data sets and parameters with

standard Cascor are presented. Modifications to the Cascor algorithm are presented in the

remaining chapters in the first part of the thesis.

31

2.4.1 Standard Cascade-Correlation option settings

To test the performance of the modifications presented in this thesis, a standard

experimental construction is used. Each result is the median of 100 randomly seeded trials

performed on the selected data sets (see §2.4.3), using the parameters outlined in tables 2.1

and 2.2, unless otherwise specified. The median is reported to avoid problems of skewed

results, since there is no guarantee that the results produced will follow a normal

distribution. A maximum of 25 hidden nodes may be added to each network. Symmetric

sigmoid activation functions, with values within the range of —0.5 and 0.5, are used for all

processing nodes, unless otherwise specified. The initial weights are set evenly over the

interval –1 and 1. Each class is represented by a single output node.

Table 2.1 — Default values for candidate and output layer training parameters

Parameter Candidate value Output value

11 1.0 0.35

II 1.75 1.75

Y 0.0 0.0

Patience percentage 3% 1%

Patience period (epochs) 50 50
Epoch limit 500 500

Activation function offset 0.0 0.1

Table 2.2 — Default values for network training parameters
Parameter Value Parameter Value

Number of candidates 10 Network trials 100
Candidate node limit 25 Percentage allowable error bits 0.0

Default connection strategy Full Error threshold 0.4
Default candidate node activation

function
Symmetric

sigmoid
Expected value buffer 0.0

Thus the only difference between tests is the actual initial weights for the individual trials

and the parameters under investigation. All the experiments are performed using the

author's Cascor simulator (see Appendix E).

2.4.2 Measures of performance

There are six often quoted measures of performance of a classifier[Bratko 1990; Weiss &

Kulikowski 1991; Zheng 1993]:

• the performance or prediction accuracy of the classifier;

• the speed of classification;

• the speed of learning the classification;

• the complexity or size of the final theory;

32

• the explanation ability of the final theory; and

• the ability of the theory to stand up to partial corruption.

These measures do not include other important factors, such as the cost of measuring the

attributes, which is problem dependent. The speed of the final classification is often

negligible — certainly in comparison to learning times — and will not be considered here.

The ability of the network to stand up to partial corruption and the explanation ability of the

final classifier will also not be considered, although they are areas warranting further

detailed investigation.

The most important measure is the prediction accuracy or the generalisation ability of the

final network, as this is the goal of the training. This is the ability to learn the underlying

function of a population from the examples that have been presented to the system. Weiss

and Kulikowski give an excellent introduction to measuring generalisation [Weiss &

Kulikowski 1991]. Within this thesis — unless otherwise indicated — generalisation will be

measured by a separate unseen test set. Though this may give a biased — usually

pessimistically biased — measure of performance, this measure was chosen as it is

computationally cheaper to employ than full cross-validation.

The complexity or size of the final theory also needs to be considered. It is preferable to

obtain a system which solves the problem correctly, but which is also the smallest possible,

giving the best chance for sensible generalisation. The size of the resulting theory depends

on the method used to solve to the problem. For example, the number of hidden nodes, or

the total number of connections are most often used to specify the complexity of a network.

Thus the results presented in this thesis take three forms:

• correctness or performance of the final theory — measured by the percentage

correct on an unseen test set;

• complexity or size of the resulting theory — measured by the number of hidden

nodes, or the total number of connections in the network; and

• training time — for artificial neural network methods, measured by the number

of connection crossings or epochs required to train the network. 4

4An epoch is considered here to be the presentation of the same number of examples as there are in the

training set. Each connection crossing is the multiplication of a network weight by an input. The

number of connection crossings is a more accurate measure than the number of training epochs in an

architecture changing environment, as the extra work required with the introduction of more hidden

nodes which have more inputs is taken into account as the network grows [Fahlman Sr Lebiere 1989].

33

2.4.3 Benchmark data sets

The following classification tasks are chosen to test the performance of Cascor on the

alterations presented in the first part of this thesis:

• the Monks problems [Thrun, et al. 19911 — an artificial benchmark of three

problems used to compare various methods of machine learning: these

problems are based on a simple set up of enumerated attributes leading in each

case to a binary classification problem;

• Two Spirals problem (TS) [Fahlman & Lebiere 1989] — a well known problem

for showing the learning ability of Cascor — involves two interlocking spirals of

different classes, with 192 training and test examples;

• Double Helix problem [Waugh & Adams 1994] — an extension of the Two

Spirals concept: the Double Helix data set is generated using two full spirals of

radius one with each spiral being one unit in length, one hundred samples were

taken at evenly spaced intervals along each spiral, and the test set includes the

points shifted by 0.1;

• LED — recognising LED displays from examples with ten percent noise added

[Breiman, Friedman, Olshen & Stone 1984] using 2000 training examples and

500 test examples; and

• problems from the Proben1 benchmark [Prechelt 1994a1 — three examples of

real-world problems without substantial missing values are selected from this

benchmark: Cancer1 from the University of Wisconsin Hospitals, Diabetes1, and

Glassl.

Copies of all but the Double Helix data set are available from the UCI machine learning

database repository [Murphy & Aha 1994]. Thus, nine problems are used to benchmark the

methods outlined in the first part of this thesis. Six of them are artificial, and three are taken

from real-world environments, all of which have prescribed test sets for generalisation.

These tasks are selected as they are commonly known problems available to all researchers

(Monks, LED and Probenl data sets), or they are difficult tasks for standard artificial neural

networks with sigmoid-like activation functions (Two Spirals and Double Helix). For

example the Two Spirals problem is very difficult to solve using standard non-constructive

methods. Fahlman and Lebiere note that at least two hidden layers are required to solve the

problem, often with specialised architectural features, such as short-cut connections between

hidden layers [Fahlman & Lebiere 1989]. The training also requires a large number of

training epochs: of the order of 60000 to 200000.

It also accounts for the extra work involved when the number of candidates in the hidden node pool

for Cascor is altered.

34

The three Probenl problem are chosen as they are classification tasks from the benchmark

which do not contain major arbitrary encodings of missing data. In a related work Zheng

details a number of benchmarks taken from the UCI repository for general machine learning

tasks [Zheng 1993]. In total he identifies 13 data sets, including Monlcs2, Cancerl, Diabetes1

and LED. Although a complete coverage of all the data sets mentioned in these benchmarks

is not made, a reasonable number of each is examined while still examining two data sets

requiring the addition of hidden nodes. The issue of benchmarking is further addressed in

Part II of this thesis.

2.4.4 Performance of standard Cascade-Correlation

To give a baseline measurement, table 2.3 outlines the performance of Standard Cascor on

the benchmark data sets outlined above, given the parameters outlined in tables 2.1 and 2.2.

It is evident that a large proportion of these data sets have training sets which are completely

solved by the addition of hidden nodes, although this may be the result of over-training.

Two of the problems also reach the maximum number of hidden nodes, indicating that the

problems are not completely solvable, and thus may contain classifications which cannot be

explained given the information available. However, the results achieved using Cascor may

be improved with modifications.

Table 2.3 — Results from application of standard Cascor to the benchmarldng problems: shown are the
name of the data set, the training and test set performance, the number of hidden nodes and

connections required, and the number of connection crossings the training took (measured in millions)

Data set Train % Test % Hidden nodes Connections CCs (M)

Monks 1 100 97.69 1 50 4.5

Monks 2 100 99.7 1 50 5.8

Monks 3 100 88.89 2 69 16.1

Two Spirals 100 95.83 12 132 123.3

Double Helix 100 100 6 59 63.5

LED 76 71.8 25 830 4770.7

Cancerl 100 95.98 5 90 178.7

Diabetesl 98.48 68.49 25 593 1962.9

Glassl 100 66.04 17 468 407.7

The data sets used for the experiments should present an interesting array of results. For

example, the Two Spirals problem requires the installation of hidden nodes to be solved, and

the LED problem is linearly separable but not completely solvable in that 100 percent cannot

be achieved on the training set.

For comparison previous performances on these data sets are summarised in table 2.4.

These results are taken from the previously referenced papers, apart from the LED problem

[Quinlan 1987]. The results on the Proben1 data sets presented here are the best results of

several trials. The performances given in table 2.3 may be comparatively worse as these

35

involve different techniques or more fine-grained optimisation of the algorithm than has

been attempted here. Optimisations of the parameter values are not examined as the

experiments are only comparing modifications to standard Cascor and not a detailed

comparison to other techniques. Nevertheless, the performance levels achieved are near the

maximums obtained on these data sets.

Table 2.4 — Results from recorded literature on the benchmarking problems (except Double Helix):
shown are the name of the data set, the training and test set performance, the name of the learning

method used to achieve the performance reported, and any noteworthy differences in the exact data
used; with 'N/A

,
 indicating unavailable results

Data set Train % Test % Method Comments

Monks 1 100 100 Cascor 1 Gaussian hidden node
Monks 2 100 100 Cascor 1 Gaussian hidden node
Monks 3 100 95.4 Cascor 3 Gaussian hidden nodes

Two Spirals 100 N/A Cascor Median of 15 sigmoid hidden units
LED N/A 72.6 C4 Optimal rate 74%

Cancerl N/A 98.62 RProp Two hidden layers
Diabetesl N/A 75.9 RProp Two hidden layers

Glassl N/A 67.3 RProp One hidden layer

36

3 Extensions to Cascade-Correlation training

This chapter presents modifications to standard Cascor which are shown to improve the

training mechanism. Some of the results in this chapter have been reported previously

[Waugh 19954 The first section examines the application of patience parameters to the

addition of hidden nodes with the aim of halting network training. The second section

examines methods for altering where patience is applied to the candidate pool in standard

candidate training: training candidates in subgroups of the same node style and training

candidates individually, instead of training the whole candidate pool; and by changing the

maximum criteria of candidate selection.

3.1 Stopping the addition of hidden nodes

One problem with artificial neural networks is deciding when to stop training. Three

commonly used methods are:

• correctness — checking the classification accuracy: training is halted when a

certain number of the training examples, often 100 percent, are classified

correctly by the network;

• time — checking an epoch or connection crossing limit: training stops when an

arbitrary amount of training has been completedl; and

• validation set (separate selection test set) — a separate pool of examples is used

for checking when overtraining is occurring: this set is independent of the

training set used to set the network weights and test set used to evaluate the

final network's generalisation ability [Prechelt 19944

The most effective of these methods is the validation set. However, there are often not

enough examples available for training, let alone for creating two test sets. A preferable

stopping criterion is one which does not require a validation set, and which will work when

it is not obvious what is the optimum training time or what is the highest possible

correctness.

Within Cascor, as mentioned previously, Fahlman and Lebiere rely on another method for

halting output layer or candidate pool training,-which is a hybrid of the time and correctness

stopping criteria [Fahlman & Lebiere 1989]:

1 Methods for checking the optimal time limits as opposed to arbitrary time limits [Harney 1991] will

not be considered here.

37

• patience — if training continues over a period of time with little change in the

network performance, the network 'runs out of patience' and training is halted.

Patience is set by two parameters: the percentage change in network error required to

continue training, and the length of patience time, which is usually measured in epochs.

3.1.1 Description of node patience

This section introduces a new use of patience applied to the installation of hidden nodes to

halt the entire Cascor training process — node patience. The idea has been identified

independently of previous work [Squires & Shavlik 19911. Once there has been no

improvement in accuracy with the installation of the most recent n hidden nodes, training is

halted. Node patience will only have an effect when the introduction of new hidden nodes

does not assist the network. The node patience is set by the following parameters:

• node percentage change — of the network error, as in standard patience

calculations within Cascor; and

• node patience period — over the number of hidden nodes added.

An epoch limit for the node patience period is not appropriate as a varying number of

epochs of training may occur in the addition of different hidden nodes, resulting in the use

of the hidden nodes installed as the time period. Thus there are two distinct uses of patience

within Cascor which are applied in three places within the Cascor algorithm: standard

patience which is used to halt the training of the output layer or candidate pool, and node

patience which halts the addition of nodes to the network.

The implementation of node patience is simple. The code from figure 2.3 is applied at the

end of each output layer training phase, and node patience may then be used with the other

network stopping criteria. The network error is used to calculate whether the node

percentage change has occurred, and the number of hidden nodes installed is used for the

period. The additional code required is thus limited to the variables and code for the

patience call, and the additional check to see whether network training is complete.

Node patience may be extended by later removing the nodes which added little to the

performance of the network, a procedure termed rollback. If training is halted by node

patience, the last n hidden nodes added are removed, where n is the node patience period.

This is done in two ways: by either storing the output layer weights to be re-used if required,

or by simply retraining the output layer again for one training phase with the unnecessary

hidden nodes removed. If the output layer weights are to be stored, the final weights of the

last n phases of output layer training need to be stored, where n is the node patience period.

In such cases retraining is unnecessary, resulting in the same training times for the networks

with and without rollback. Retraining the output layer is a simpler method to implement,

38

but forces extra unnecessary training. Here rollback is implemented by the second method:
once the entire network training is complete, if node patience is used and rollback is

required, the relevant candidates and their output layer weights are removed and the output

layer is retrained for another phase of training. This completes the network training, and

further check of the entire network training conditions is made.

The application of node patience should aid in stopping network training. It involves the

addition of a new stopping criterion which will not interfere with the previous criteria. It

will only decrease the amount of training performed, but it is an open question of whether

node patience will hinder network training. Node patience should reduce the overall

execution time by avoiding unnecessary training of candidate nodes, and should also reduce

the final network size without jeopardising the network integrity. In fact it may even result

in better generalisation as the size of the network will be reduced.

3.1.2 Results and discussion

For assessing the performance of node patience the standard experimental set up is used

with the values of the required node patience percentage change (1 percent to 5 percent or 10

percent for the Two Spirals problem), and the node patience period (1 to 5 hidden nodes .

added) being varied. Full results — showing the median percentage correct on the unseen
test set, number of hidden nodes, and number of connection crossings required for training

over 100 trials — are presented in Appendix A.

The results of the use of node patience vary markedly depending on the problem addressed.

Three different effects of node patience are seen on the benchmark problems: no effect, a

hindering effect, or a beneficial effect. The use of node patience on Cancert Double Helix

and the Monks data sets has no effect (see tables A.1.1 to A.3.3, A.5.1 to A.5.3, and A.7.1 to

A.7.3). Cascor simply solves each problem — to an accuracy of 100 percent on the training

set — by adding in the required hidden nodes. The percentage change made by the addition

of each hidden node is sufficient to ensure that training continues.

Some problems are hindered by the use of node patience. For example, the Two Spirals

problem is not effectively solved when a high patience percentage (greater than 2 percent)

and a low patience period (less than 3 hidden nodes) are used in some combinations (see

figure 3.1). This corresponds to a dramatic reduction in the nodes installed, but the extra

nodes are necessary to solve the problem. In this case node patience may be over-used to

the point where it halts useful training. Node patience is not necessary, but it does not

hinder training when used sensibly, as in the cases where it has no effect on the majority of

Two Spirals trials.

39

100

90

80

70

60
Percentage 50

correct
40

30

20

10

0

4

5
6

Patience percentage

10

3
Patience

2 	period

Patience
percentage Patience period

3500

3000—

2500—

2000—
CCs (M)

1500

1000—

500

Figure 3.1 — Percentage correct on the test set for Two Spirals problem

On other problems, such as the LED and Diabetesl data sets (see tables A.6.1 to A.6.3 and

A.8.1 to A.8.3), the use of node patience is extremely beneficial. For the LED problem the

test set classification performance is not affected by the application of node patience (staying

around 72 percent), however the training required drops dramatically (see figure 3.2) as less

hidden nodes are installed. The maximum number of allowed nodes is never installed on

the LED problem while node patience is used under the given experimental conditions.

Applying standard Cascor to the LED problem will always install the maximum number of

hidden nodes, thus taking longer to train for the same result. A similar trend is also evident

in solving the Glass1 data set (see tables A.9.1 to A.9.3), although this is not as significant as

the problem is also solved to 100 percent accuracy on the training set.

Figure 3.2 — Connection crossings (millions) for LED problem (note the difference in the labelling of
the axes from figure 3.1 and 3.3)

40

Percentage
correct

4
Patience

percentage
Patience period

Likewise for the Diabetesl problem a similar effect is seen, except that where less hidden
nodes are added the test set performance actually increases, avoiding over-training (see

figure 3.3).

Figure 3.3 — Percentage correct on the unseen test set for the Diabetesl problem

Predictable results occurred when rollback is added to the best trials on two of the data sets

where node patience was effectively employed (see table 3.1). In both cases the number of

hidden nodes is reduced, and a better classification performance is obtained on the
Diabetesl data set. Note that the node patience parameters used with the Diabetes1 data set

were determined after the experiments presented above — simply another trial was :.

performed using the parameters given which resulted in one less hidden node being added

to the final network.

Table 3.1 — Results of rollback experiments on the LED (node patience 1% and 1 node) and Diabetesl
(node patience 6% and 1 node) data sets

Node patience

LED

+ Rollback Node patience

Diabetesl

+ Rollback

Test set performance

Number of hidden nodes

Connection crossings (M)

72%

1

108.8

72%

0

127

76.04%

1

26.7

77.6%

0

28.0

3.1.3 Need for hidden nodes

Following on from the node patience experiments performed above, it is worth asking

whether hidden nodes are actually required at all with the data sets selected for

benchmarking. Two problems definitely do not require hidden nodes, as shown by the

rollback trials. To answer this question, trials are made of each data set with the restriction

41

that no hidden nodes may be added to the network (see table 3.2). Thus only the single

output layer is used for the classification tasks, and thus no node patience is required.

Table 3.2 — Results with no hidden nodes: shown are the problem name, the training and test set
performances, the number of connections, and the number of connection crossings required for

training (measured in millions)

Data set Train % Test % Conn's CCs (M)

Monks 1 84.68 75.23 32 0.64
Monks 2 63.31 62.27 32 0.67
Monks 3 94.26 96.76 32 0.73

Two Spirals 50 50 6 0.13
Double Helix 50 50 8 0.37

LED 75.15 72 80 31.68
Cancerl 96 98.28 20 2.99

Diabetesl 77.6 77.08 18 3.4
Glassl 70.81 66.04 60 3.13

In comparing the results of table 3.2 to table 2.3 it is evident that for a number of problems

there is no performance improvement to be gained by adding hidden nodes, without further

optimisation of the other network parameters. Monks3, LED, Cancerl, Diabetesl and Glassl

all achieve as good, if not better, results on the test set without hidden nodes being added.

The training speed is remarkably improved, as would be expected, and the size of the

resulting classifiers has also been reduced. In all cases the performance on the training set is

increased by the addition of hidden nodes, but mostly this is over-training. None of the real-

world data sets require the addition of hidden nodes to achieve better performance given

these training parameters. Only the Monksl, Monks2, Two Spirals and Double Helix data

sets require the addition of hidden nodes — which is not an encouraging result as these are
all constructed data sets.

3.1.4 Summary

Node patience is able to limit unnecessary training, ensuring that overtraining of the

network is minimised. It will only stop training earlier when there are no relatively large

data set features to be learnt; training will not continue longer than standard Cascor. It

would also seem, from further experiments, that many problems may not require hidden

nodes to be solved. Better performance using hidden nodes may be achieved, but only with

much greater cost in optimising the network training parameters.

Some criticisms of the node patience method may be made. It does contribute to the number

of parameters Cascor requires. However, node patience may be used independently of the

other Cascor features as it only partially controls stopping the entire network training. For

example, these studies indicate that it is unnecessary to consider node patience periods

42

greater than 2 nodes, and it is rare that a percentage change greater than 5 percent would be

required to achieve reasonable results.

Node patience is not a substitute for the use of a validation set. This still remains the best

method of ensuring that the correct network size has been achieved. If, however,

insufficient training examples are available to produce a validation set then node patience

may assist greatly in producing a superior classifier by cutting down excessive training and

classifier size.

3.2 Alternative candidate node training schemes

After examining alternative methods of stopping the installation of candidate nodes in

Cascor, the next stage is to examine possible improvements to the training mechanism, in

particular the candidate training where a large proportion of computational time is used.

Here, again, the target is to reduce overall training time and network size, and improve the

network classification performance.

Unlike the output layer training where there is the network error, there is no natural
combined error measure which can be used to halt the training of the candidates. To decide

when to stop training candidates in the normal Cascor system, the patience criterion is
	

- t

applied to the maximum of the candidate node correlations. This particular method of

selecting the correlation score is not explicitly stated [Fahlman & Lebiere 1989], but it is

inferred from publicly available software [Crowder & Fahlman 1991]. Selecting the

maximum of the correlations at each stage is not necessarily the optimum method of •
choosing a value to apply patience, though it is an obvious choice.

The problem with this standard form of candidate training is that nodes which have

different features — such as activation functions, connection strategies, or even different

random weights — may train more quickly than the other nodes in the pool. This may

hinder the network by forcing the use of a quickly trained node when there may be a better

alternative. It also means that the training of one candidate node is influenced by the rest of

the nodes in the pool. This final point is especially problematic as the candidates are

supposed to be independent. Thus methods for avoiding such a situation are examined.

3.2.1 Description of alternative candidate training methods

Two methods for overcoming these problems are proposed and examined in detail. Both

involve changes where the patience stopping criterion is applied to stop candidate training.

The first is independent candidate training: each candidate unit has its own patience

parameters so the candidate trains until it, not the entire pool, runs out of patience. The

second is subgroup candidate training: subgroups of the candidate pool which have the same

43

properties are trained in a block. For example, half the candidate pool may have Gaussian

activation functions and the other half may have sigmoid activation functions, so the pool

would be trained in two portions, each having its own patience parameters. The only

differences between candidates in a subgroup will be their random weights. The advantage

of allowing different activation functions and other network features is that more suitable

nodes which match part of the feature space more concisely may be added as required.

The implementation is relatively straight forward. In standard candidate training the entire

pool of nodes is trained for a period controlled mainly by the patience criterion applied to

the maximum correlation of all the nodes. This code is simply generalised to perform the

same function on contiguous candidate nodes: meaning that a lower and upper bound

within the candidate pool may be given and all the candidates within that bound are trained

as a pool. Standard candidate training is then implemented by calling this subgroup

training function with the bounds of the candidate pool: namely one to the number of

candidate nodes. Independent candidate training is affected by calling the subgroup
training function n times, where n is the number of candidates: thus the nodes are trained as

a number of one node pools. It is assumed for subgroup training that candidate nodes

which are of the same style are placed with adjacent array positions, which is performed

during the initialisation of the candidates. Determining the subgroups then simply involves

checking the activation function — and connection strategy if required — for each candidate
node, and training in a subgroup those which are the same (see figure 3.4).

noderange 1, u; 	/* lower and upper bounds for candidates */

noderange n; 	/* total number of candidates */

candidateinfo *c; /* variable representing remaining candidate info */

if (independentTraining) {

for (u = 0; u < n; u++)

trainCandidateSubgroup(c, u, u);

) else

if (subgroupTraining) {

1 = u = 0;

while (u < n) (

while Cu < n && c->activationFunc[u]

trainCandidateSubgroup(c, 1, u);

1 = u;

}

) else

trainCandidateSubgroup(c, 0, n-1);

= = c->activationFUnc[1]) U++;

Figure 3.4 — C code for implementing the alternative candidate training methods, with subgroup
trairung based only on activation function similanties

44

The training of candidate nodes either in subgroups or independently has several
advantages. Training will not be forced to stop prematurely based on the results of a

different node or node subgroup, so the candidates should train to produce better results.

Likewise, nodes or subgroups may finish training when they would normally be forced to

continue, saving time on a serial computer. Conversely, independent or subgroup training

may allow the candidates to train excessively, especially when other nodes have already

achieved much better results. Likewise, training may cut out too early when local minima

are found — the extra training forced by other nodes during standard candidate training

may produce a better hidden node. It is not obvious which factors will prevail.

One further method for altering the training mechanism is to alter the function which selects

the value used for patience. Fahlman suggests using the sum of the candidate correlations

for the patience calculations rather than the maximum [Fahlman 1994]. This ensures that all

nodes are allowed to train while it is still possible for them to make reasonable progress. It

is expected that the method will allow better training to be performed, but will be slower

than the standard maximum criterion. The summing of the correlation scores has no effect

when candidates are trained independently.

The implementation of the summation criterion is also straightforward. The sum of the

candidate correlations is given to the patience calculation rather than the maximum. The
maximum of the candidates is still required to select the final candidate to be installed, as is

the case with subgroup and independent candidate training.

3.2.2 Experimental design

The following experiments were performed on data sets which require the addition of

hidden nodes based on the experiments presented in tables 2.3 and 3.2: namely the Monks1,

Monks2, Two Spirals, and Double Helix problems; and also upon the Monks3 and Cancerl

data sets as examples of what may occur when hidden nodes are not strictly required.

The first group of experiments involves training hidden nodes with only symmetric sigmoid

activation functions using normal, independent, and summing candidate training methods.

This examines the effect of the different methods given a homogeneous candidate pool, with

candidates likely to give similar results, as the only differences between them are the initial

random weights. If all the nodes are the same style, subgroup training reverts to standard

candidate training; hence this is not examined here.

In the second group of experiments, a variety of different activation functions are used

(symmetric sigmoid, asymmetric sigmoid, tanh and Gaussian) on candidate nodes, so it is

possible to test subgroup as well as standard and independent candidate training methods.

For each of the experiments the candidate nodes are allocated different activation functions

45

so that the number of each style is as even as possible, given that there are four activation

functions used and differing numbers of candidates. In the case of there being only four

nodes in the candidate pool, subgroup candidate training reverts to individual candidate
training.

To clarify the choice of activation functions, the following are the formulas and derivatives

for the symmetric sigmoid, asymmetric sigmoid, tanh and Gaussian functions:

sig(x) = 1 +1 e,, ± and sig'(x) 	± sig(x)2 	 (3.1)

asig(x) = ±1 e,„ and asig'(x) = asig(x) (1 ± asig(x)) 	(3.2)

tanh(x) = ex 	±e±x and tanh'(x) = 1 ± tanh(x)2 	 (3.3)

Gauss(x) = e±ix 2 and Gauss(x) = ± Gauss(x) • x 	(3.4)

The actual implementation of the activation function includes bounds to avoid overflow and

underflow errors. Although the first three activation functions — symmetric sigmoid,

asymmetric sigmoid and tanh — are similar in form, there are enough differences to lead to

different training patterns. The asymmetric sigmoid obviously has a range from zero to one,

thus being centred around 0.5. The symmetric sigmoid and tanh function are related

mathematically with both being centred around zero (tanh(x) = 2sig(2x)), but the tanh

function has double the range of the symmetric sigmoid function. A further difference

between these two functions is that the slope at zero for the tanh function is four times the

symmetric sigmoid slope at the same point. Although the slope may be modified by

changing the weights of the node, the initial variation one way or the other may be beneficial

depending on the task the node needs to complete. These differences are small, but they

lead to greater variation than just the differences in the random weights.

In both experimental groups the length of the standard patience period for candidate

training is altered (using 10, 20 and 50 epochs) since the new candidate training methods

will affect the training time. Furthermore, the size of the candidate pool is altered to give an

indication of which method of candidate training performs better for small, medium and

large candidate pools (4, 10 and 20 candidate nodes respectively). It is expected that the

larger candidate pool will give better performance per node installed, but will require much

more training. When there are 10 candidates in the pool, three Gaussian and three

symmetric sigmoid activation functions are used, with two asymmetric sigmoid functions

and two hyperbolic tangent functions. Node patience is not used in these experiments.

Full results of these experiments incorporating the percentage correct on the unseen test set,

the number of hidden nodes added, and the number of connection crossings are presented

46

in Appendix B. The results of using only a single activation function are detailed in

Appendix B.1, and Appendix B.2 details the results of varying the activation functions.

3.2.3 Results and discussion — single activation function

The results of the experiments are reasonably consistent across the different data sets,

including those which did not require hidden nodes. As would be expected, training times

and classification performance drop with a decrease in the candidate pool size and a

decrease in the patience period of the candidate training. The difference on all measures

between a candidate patience period of 20 epochs and a period of 50 epochs is nowhere near

as marked as the difference between the 10 and 20 epoch limits. A further increase in the

candidate patience period to above 50 epochs would be unlikely to accrue any great benefit.

The classification performance, the number of hidden nodes installed and the training speed

are now considered in turn.

3.2.3.1 	Classification performance

For the majority of the data sets there is very little difference between the trials when

examining the performance on the unseen data set. Those differences which do occur May

be accounted for by differences in the seeds for the trials, or the fact that excess training may

produce slight over-training. For the Monks problems and the Cancerl data set similar

results are achieved regardless of the variation in the training parameters (see tables B.1.1.1,

B.1.2.1, B.1.3.1 and B.1.6.1).

However, on the Two Spirals and Double Helix problems — both of which require the

addition of multiple hidden nodes — there is a marked difference between the candidate

training methods. Although at the 20 and 50 epoch patience period for candidate training

there is no difference between the trials on percentage correct (see tables B.1.4.1 and B.1.5.1),

the 10 epoch range shows distinct differences in the training pattern (see figure 3.5). On the

Two Spirals problem, summation training outperforms standard candidate training by a few

percent, but independent candidate training is able to greatly increase the performance of

the classifier. More effective training is being performed and solutions near the top of the

range of possible test results are achieved. The maximum number of hidden nodes are

installed on the other trials, stopping training from continuing. If node patience were

employed these trials would probably not install the same number of hidden nodes [Waugh

19954 Similar results are obtained on the Double Helix problem except that summation

candidate training produces similar performance to standard candidate training of around

50 percent, which is no better than chance.

47

90

80

70

60
Percentage 50 	correct

40

20 30

Candidate 10
pool size

100

Summation
Standard 	Independent

Candidate training method

20

10

o

3.2.3.2 	Hidden nodes installed

This difference in ability between the candidate training methods is also evident upon

examination of the numbers of hidden nodes installed into the network. Most of the data

sets show that, for patience periods of 20 or 50 epochs on the candidate training, the number

of hidden nodes is similar (see tables B.1.1.2, B.1.2.2, B.1.3.2, B.1.4.2 and B.1.5.2). The Two

Spirals problem also shows the benefit of using a larger candidate pool with less nodes being

required when more candidates are trained (see table B.1.4.2). Over the 20 and 50 epoch

cases the only data set which shows any difference between the methods of candidate

training is the Cancer1 problem, where independent and summation candidate training add

slightly fewer candidate nodes (see table B.1.6.2).

Figure 3.5 — Percentage correct on the unseen test set for the different candidate training methods on
the Two Spirals problem, examining the results of the 10 epoch patience period on candidate training

25

20

5
Hidden
nodes

installed
10

Candidate 10
pool size

Standard
Independent

Candidate training method

Figure 3.6 — Hidden nodes installed for the different candidate training methods on the Two Spirals
problem, examining the results of the ten epoch patience period on candidate training

20

Summation

48

The real differences between the methods is again shown by examining the 10 epoch

patience period trials (see tables B.1.1.2, B.1.2.2, B.1.3.2, B.1.4.2, B.1.5.2 and B.1.6.2). The

Monks problems indicate that summation and independent candidate training install less

hidden nodes than standard candidate training. The results from the Two Spirals (see figure

3.6), Double Helix and Cancerl data sets indicate that independent candidate training is

superior to the other two approaches, as fewer hidden nodes are installed indicating —

along with the percentage correct results — that more effective nodes are being installed.

As mentioned previously, the trials on the Two Spirals data using a 10 epoch patience period

would not have continued to the point of adding in 25 hidden nodes had node patience been

used [Waugh 1994b1. The lack of performance gain by each hidden node would result in a

lack of patience prior to the installation of the maximum number of hidden nodes.

3.2.3.3 	Training speed

Finally the training speed, as measured by the number of connection crossings, needs to be

considered. There is no consistent trend across all data sets as to which method is faster.

The Monksl and Monks2 data sets show that standard candidate training is faster for 20 and

50 epoch patience periods, where candidates are not trained for as long as with independent

candidate training (see tables B.1.1.3 and B.1.2.3) as these problems do not require hidden

nodes. The latter is faster for 10 epoch periods, as more effective training is performed in the

shorter period, leading to less hidden nodes being installed. For the Monlcs3 problem

independent candidate training produces results faster across all the trials (see table B.1.3.3).

For the Cancer1 and Two Spirals data sets (see table B.1.6.3 and figure 3.7 respectively) faster

training results are achieved for the 20 and 50 epoch patience period cases using

independent candidate training. For the 10 epoch patience period trials more effective

training is being performed using the independent training, resulting in higher

generalisation ability and less hidden nodes, and also more training time is required to

achieve this level (see figure 3.7). Both standard and summation training in this case result

in the maximum number of hidden nodes being installed.

The Double Helix problem is mostly solved most quickly by the standard candidate training,

followed by independent and then summation candidate training (see table B.1.5.3). The

Double Helix data set is unique in this context as, although it requires the addition of hidden

nodes, it is simple to solve to 100 percent accuracy using Cascor. This may indicate why

standard training is faster than independent candidate training: the standard method stops

training earlier avoiding unnecessary candidate development.

49

Or%

144

I I

I 1

20 	 ‘ J116
.

• 	

.o o
Pool ca 	-cs 	g c size 	4 	 a, 	-o 	a, 	E o E 	o ra 	o. a.)

73 "CS c 	cl, 	E 	cr) 	nzsz 	cf)
fa 	o 	E 	ca 	cu 	o • tr) -o o ca no a) 	cn

	

o 	•----_,,e..

•

---• cn 	o

	

......___.........__—.0 	20 epochs
10 epochs

Figure 3.7 — Connection crossings (millions) required for the Two Spirals problem where only a single
activation function used within the candidate pool

3.2.4 Results and discussion — multiple activation functions

The results from using multiple activation functions closely follow those from a single type

of candidate activation function. The classification performance, the number of hidden

nodes and the amount of training required will again be considered in turn.

There is little difference between the methods in terms of the generalisation ability,

indicating that there is a reasonable amount of room for variation of parameters while still

obtaining good performance. In fact, unlike the previous experiments, a mixture of hidden

node activation functions aids in finding a solution, and all methods found reasonable

networks (see tables B.2.1.1 through to B.2.6.1).

With regard to the number of hidden nodes added on the Monksl and Monks2 problems

there is little to distinguish the methods (see tables B.2.1.2 and B.2.2.2). However,

differences occur on the Monks3, Two Spirals, Double Helix and Cancer1 data sets (see

tables B.2.3.2, B.2.4.2, B.2.5.2 and B.2.6.2). The Monks3 data set shows that independent

candidate training may result in one less hidden node being installed than for both standard

and subgroup candidate training. This trend is repeated for the Two Spirals (see figure 3.8),

Double Helix and Cancer1 data sets for both independent and subgroup candidate training.

On the Monksl and Monks2 the speed of standard candidate training is usually slightly

better than both independent and subgroup candidate training (see tables B.2.1.3 and B.2.2.3)

150
CCs (M)

100

200

250

50

50 epochs

Training method and patience length

50

"

	

Cl)
	c. g

 	
.

	

CD

r.

 	
••0

	

CD

C.
" 	

n 	
o

	

c 	
2-

CD

CD y

	

CD
 	

0
.

0

-3
n

 	
a)

	

a)
 	

8 .
'0

 	
.=..

	

Z 	
. - 0

 .=
1 . 	

•
a

.

	

..
. 	

V
—

a

	

CL
 	

cn

	

.-t-
 	

.-1 	
ea

	

ea 	
o 	

5.

	

cn
 	

C
r

o

.-t

	

CD
 	

2)

Z

0

0-

	

C,
, 	

''''
 	

'73

A)

FIL

	

o-
 	

= 	
,9,

•
ro

	

-, 	
0- 	

:L

	

CD
'10

 	
fl)

ri)

	

CD
 	

a

	

x 	
••

••

a) —

0 c

St
an

da
rd

Su
bg

ro
up

In
de

pe
nd

en
t

St
an

da
rd

ro
Su

bg
ro

up

In
de

pe
nd

en
t

.41

In
de

pe
nd

en
t N

.0

ea
 0

problems, on the other hand only require a single hidden node to be added .

This results in better training times (see figure 3.9) .

candidate training performs well enough without the assistance given to the other methods .

used, standard training performs slightly better, indicating that the extra training allowed is

Finally the Double Helix problem shows a mixture of results: when only a 10 epoch patience

A)
 	

1 -3
 	

C.
!)

"0

0

F

.

CD
 	

cp

again accounted for by the complexity of the problems. However, on the Monks3, Two

Z
 =

CPP

 	
.-r

fa.

•

rt.

	

cn 	
n

	

0
c
 	

a)

■-t

	

c
o
 -

, 	
n

CA
 	

D6
) 	

ft

O
CA

 	
.1

I--

,
c
r cn
 	

-5
.

0..

.-1
- 	

cp
 	

26
)

c 	
ro 	

si)

C
-

a
,

(,)
to
	

a) 	
.(3,)

r-
n

 	
a) 	

en
a) c 	

cn
5..-

rD

	

a
 r

r
 	

ea
v)

	

ii
 .

-i
 	

ra

.-1
P)

 	
ft

 	
<

.
-0

co

ea
	

c 	
-I

	

4

rzen
 	

ra

ch

Eli.
 	

ft)
C/)

•
o,

o

o 	
q

o
cr.

q 	
'-t

	

ra
 	

ft:

,--
]

	

-.
 	

o
"

	

z-
 0

..
 	

CD

	

C
D

 a
, 	

4

CD -I
0-2 	

c
(/)

,
 	

4

	

c 	
a)

g
 o

	

a
 	

—

c
o

co

	

Cl, 	
—

c

	

a
 	

cra

o
o%

o

0-

9

	

r
C

D w
 	

CD

cn

CI
"

lc
All

training, also performs better than standard candidate training .

The tri als using a single activation function for the candidate nodes indicate that

classifier. Summation training is not a major improvement over standard maximum
training methods, as it performs more effective training resulting in a smaller and better

uogetuums JO piepue;s uutp Ja4sej yntu AjjeJaua2 s! 2tutuu.0 alep!puea 4uapuadapu!

subgroup candidate training, whilst not performing to the same standard as independent

1nsa.1 Jo lanai awes ay 2u!nappe NINA% 'spopad aDuaged

,..t.
, 	

,,:-,-
, 	

n 	
.-' 	

6.)
n) 	

q-
 	

CL.
, 	

CL.
, 	

•--1
 	

nt
,

.
cl

■-h

a)

n) 	
5

. 	
,-

..
.,
 	

..
.,
 	

E.
 	

o 	
8

a
.

5.
	

fD
 	

CD

..
 	

7)
.

,

<
cm

, 	
fD

 	
fb

ri)
 	

Z 	
,..t.Z 	

crc9 	
co 	

it
 	

CD

	

rr

cre
l 	

Cr'
f-r

q

S
 	

4.

c
o
 n

 	
q
 r

b
 a

)
n 	

et 	
n.)

O
'ci"

cc) 	

0L
,

"
,-

o,

—

 Fs
.....

 	
...

 	
v, 	

...
 	

0
O

0 	
CL

 	
0
 q

 	
I

▪
•-r

 	
n 	

zw.,
.

9--tv 	
n

crtl
 	

C
r 	

Crg
 	

0 	
co 	

a)
in

"
a
 	

2
 0

 c
o
 	

rt 	
o

c
o
 0

	

0-
-
2
 	

g 	
St

an
da

rd

'0
 c

 	
co co 	

,
 	

■-t
co 	

cr) 	
5,-

 	
C

t.
 §

. 	
a) 	

co
■-e 	

fp
 	

ft
, 	

co 	
z 	

a
sa

.
C

..
w

 	
,-;-:

 	
cm

0 	

cf, 	
o 	

5'
ri-

g

0

„,

o
0 	

(c) 	
0
 '

-o
 n) o 	

Su
bg

ro
up

•

co ▪

co 	
Z 	

0
 i
-O

 	
a c

c?,

i
n

r1
' 	

co
q

cn
 .
5
 • 	

0
•

0.
, 	

o 0.
, 	

....
‹ 	

...l-

eo 	
co 	

a)

	

cr.
cro

 	
In

de
pe

nd
en

t
o 	

co 	
a)

o
ci

)
,.,.

r, 	
co 	

n
0

—

....

cr
o

 0
 	

-0
 c

0 	

a) 	
(1)

•-.<
 	

't-ic 	
0

=,
- 	

St
an

da
rd

CL

)
r9-

z▪ 	

I
O

r, ..,

co 	
cp 	

-., 	
,-••

q
 c

)
2-

 	
0

...3
.

0
 0

 —

o
c%)

Er
2.

 	
—

0

CD
 	

■-
t 	

.1
,

cn
 	

'0
 0

 2
) 	

co 	
5
:or

° 	
o

	

5,

crg
 	

-a
 	

Su
bg

ro
up

0-

 	
0

ct 	
c 	

.1 	
co 	

0
c
o
 c

r 	
a
 a

p
 	

.-
.

p
i

z

cL...
.. 	

co 	
—

 	
ct,

-.,1
—

. c
ra

O

'-c 	
0 	

0 	
2 	

cn
 ..

..<
 	

n
fa

, 	
In

de
pe

nd
en

t
o 	

■-•
•

0
 	

0
.,

 Z
 	

,
 	

a)
n

0 	
0
 c

o
 s

i)
 	

0
(IT

a) 	
cco

 	
co

•
■-t 	

_ 	
,- 	

0-

I

	

(t
. 	

EL
.,

•
fa.

o
0.

. c
r4

. 	
f-'4.

	

n
o 	

St
an

da
rd

o

-4
1
 o

 n
 	

0-
-

CM
 	

cn

fr:'

Z
 	

Su
bg

ro
up

CD

 	
CD

 • 	

tn
 	

' 	
roCn

n)
o

11
1 	

fD
 	

Z)
 	

ri
- 	

'-
-

c
t 	

0
 n

z
,-,

Ci

f 	
0

 C
M

 	
ft)

 	
.-

. 	
.1

, 	
'0

 	
cn

N
.
Z
 	

fa
.
z
 	

•-i 	
n 	

a

ea 	
In

de
pe

nd
en

t
(n 	

Z-
'

("D 	
0

q
 	

Cfc
) 	

0
q
 z

 	
to

a 	

a,
w 	

,.,) 	
z.

 	
'0

 	
tn

0
 	

• 	
rr

 	
Z.)

c
o

 C
it

l 	
.4

 	
fD

 	
0

 	
5'

 C
r4 	

24.•
 	

5'

CI
L 	

ca
 	

,....-
.• 	

Su
 	

et.
 	

CD
 	

<

SI.
) 	

fp
 	

5
co 	

c
i.2.,...

 	
0 	

crq
 	

a)
,-t

co 	
n)

co 	
cir

0 	

_
 	

z a)
11

 	
cn

Co

q

Tgual aaualsi

4 Altering connection strategies within
Cascade-Correlation

One of the criticisms of Cascor is that it enables too many connections to be added to a

network. This chapter examines methods for reducing the number of connections in Cascor

networks: firstly by adding nodes with a limited number of connections, and secondly by

the pruning of candidate nodes and the output layer. Results for limiting the number of

connections to candidates have been reported earlier [Waugh & Adams 1994], as has the

work on pruning within Cascor [Waugh 1994a; Waugh & Adams 1995]. The motivation

behind this work is to produce a smaller network which solves the task at hand and is then

more likely to provide better generalisation. This may result in reductions to the network

depth which may be necessary for certain evaluation speed increases in applications,

although this will not be directly considered here.

4.1 Limiting connections by growth

This section investigates a number of different connection strategies for the hidden nodes

that Cascor inserts into a network, by limiting the connections a candidate node may make.

By definition Cascor starts new candidate nodes with full connections from all inputs and

previously added hidden nodes, and to later all hidden nodes and the outputs (see figure

4.1, a replication of figure 2.6 for convenience). One sensible opportunity to change this is to

change the connection strategy of the candidate nodes. A more limited topology may

improve learning speed as more hidden nodes are added, and the fewer connections could

lead to greater generalisation ability as less parameters need to be estimated.

• •

(a)

• •

'sou 'sem 'gm= Woo= • U.sommou sueseaus W000simo simumone
(b)

Figure 4.1 — Examples of(a) a standard two hidden layer network, and (b) a standard Cascor network
shown in the traditional Cascor format

53

4.1.1 Alternative node connection strategies

Three different techniques for limiting the number of connections in hidden nodes are

examined to obtain an indication of the power of limited connection strategies. These are

growing layered networks, growing networks with limited shortcuts, and growing networks

with random candidate fan-in.

One method for altering the connection strategy — and one which is often mentioned in the

literature (for example, [Mezard & Nadal 1989; Marchand, Golea & Rujian 1990; Sjogaard

1991; Yeung 1991; Baluja & Fahlman 19941) — is the idea of adding nodes to layers, rather

than simply increasing the network by one one-node layer at a time, as is performed by

standard Cascor. Thus some or all of the candidate nodes are trained with no connections to

a number of the previous hidden nodes, leading to a layer of nodes with inputs only from

previous layers (see figure 4.2). This has the benefit of creating networks which are not as

deep as a fully cascaded style of topology, with several hidden nodes forming a single layer.

Figure 4.2 — Layered network with shortcuts: a network with layered nodes forming three hidden
layers with 3, 4 and 1 nodes respectively

The next method examined uses a minimal number of shortcuts between layers, where

shortcuts from hidden nodes to non-adjacent hidden nodes are not used [Waugh & Adams

19941 similar to the Tower construction suggested by Gallant [Gallant 19861. This means that

a hidden node will only receive connections from the immediately previous hidden node

and the inputs, and is in turn only connected to the next hidden node and the output nodes

(see figure 4.3). This greatly decreases the number of connections required, although it does

not decrease the number of layers.

54

• •

Figure 4.3 — Minimum shortcut network: a network where all nodes have a minimal number of
shortcut connections

Using a pool of candidates with a limited number of randomly chosen connections is the

final node topology to be examined — also termed Limited Fan-in Cascade-Correlation

(LFCC) [Klagges & Soegtrop 1992[. A number of connections from both the inputs and

previously installed hidden units are selected randomly for use. This is done in two distinct

ways: a random number of connections (Rand-LFCC) [Waugh & Adams 1994]; and a fixed

number of connections, in this case two connections (2-LFCC).

The implementation of the different connection strategies is relatively straight forward. The

network data structure is extended to not only include the network weights, but also to

include a boolean variable for each weight flagging whether there is a connection present or

not. The number of required nodes of each style is set and the appropriate connection

strategies are allocated by initialising these connection flags. The code for performing this

initialisation is outlined in figure 4.4.

4.1.2 Node forcing and experimental design

Experiments are conducted to test the effects of limiting the number of connections to

candidate nodes. The experiments are conducted by altering the candidate pool in two

ways. Firstly, the candidate pool is split in half: one half with standard fully connected

hidden nodes, and the other half with the limited connection nodes. Secondly, the candidate

pool solely uses the particular limited connection nodes.

55

fullyConnected = true;

for (i = 0; i <= n + h; i++)

if ((connectionStrat == Layered && ± > n + h - nodesInLayer)

(connectionStrat == MinShort && i > n && i < n + h)

.(connectionStrat == Random && i > 0 && !in(randConns, i)))

candidateWeight[i] = 0.0;

candidateConnection[i] = fullyConnected = false;

} else

candidateWeight[i] = randomWeight;

candidateConnection[i] = true;

if (connectionStrat != Full && fullyConnected) connectionStrat = Full;

Figure 4.4 — C code implementing the initialisation of candidate node connections for each node;
where "in" is a function returning true if that connection number is one of the connections to be

present

The first pooling method is further modified to allow forcing the use of limited connection

nodes, when the correlation of the best limited connection node is near that of the best

standard cascaded node. This gives a higher priority to the limited connection nodes, and is

achieved by adding to these candidates a percentage of their own correlation score. The

purpose of this is to bias the candidate training in favour of the candidates with limited

connection strategies and thus guide the network structure towards the required form,

although the method may be used to increase the chance of any node variety being used.
This method has been independently investigated by Baluja and Fahlman [Baluja & Fahlman

1994]. Three different forcing factors — the percentage by which the specified nodes are

biased over others — are used in these experiments: 0, 10 and 50 percent. The

implementation involves, in this case, setting a default connection strategy of full

connection, and multiplying the correlation score of any non-default node by the forcing

factor, thus increasing its chances of selection. The node with the highest modified

correlation score is then chosen as the candidate to be installed as well as that value being

used for the correlation calculations.

These series of experiments are conducted on the Monks problems, Two Spirals, Double

Helix and the Cancerl data sets. Independent candidate training is used for these trials.

4.1.3 Results and discussion

The full experimental results are presented in Appendix C, giving the percentage correct on

the unseen test set, the number of limited hidden nodes and total hidden nodes added, the

number of network connections, and the total connection crossings as an indication of

training speed.

56

80
70
60
50
40
30
20
10

Percentage
correct

Half pool
Forcing 10%

Forcing 50%
Pool

format 	Full pool

0

M
in

im
a l

 sh
or

tc

Tw
o

ra
nd

100
Fu

ll
co

nn
ec

ti

Connection
strategy

4.1.3.1 	Classification performance

The performance of the different styles with respect to their generalisation ability is even

(see tables C.1.1, C.2.1, C.3.1, C.4.1, C.5.1, and C.6.1). This is to be expected, as the aim of

training is to produce a network which solves the problem at hand.

There are only two exceptions: on the Two Spirals problem, for example (see figure 4.5), both

layered nodes and random connection nodes with only two links have difficulties in solving

the problem when all nodes have those connection strategies. It is well known that a

network without advanced feature detectors has a great deal of difficulty in solving the Two

Spirals problem. Hence a fully layered network, forming one hidden layer with shortcut

connections from the inputs to the outputs, will not be able to solve the problem completely.

The two random connection nodes have a similar problem in that it is unlikely that, out of a

group of ten candidate nodes, the right connections will be obtained, let alone that the

connections will have the right starting weights. Hence the performance is lower on the

Two Spirals and the Monks2 problems (see tables C.3.1 and C.4.1), although it may be

improved by greatly increasing the size of the candidate pool.

Figure 4.5 — Percentage correct on the unseen test set for the Two Spirals problem: note that the full
pool candidate training is only valid method for fully connected nodes

Nevertheless, these results imply that a large number of the network connections may be

redundant, as the limited connection strategies can do equally well as fully connected nodes.

57

4.1.3.2 	Network structure

Upon examining the numbers of hidden nodes installed, further interesting trends become

evident. Firstly, the Monks problems are not completely suitable for testing the limited

connection strategies as they require two or less nodes to be added to the network to be

solved (see tables C.1.2, C.2.2 and C.3.2). This creates difficulties in that the layered nodes

do not come into effect until after a first hidden node has been added, and it takes two

hidden nodes to be added before there is any effect from the introduction of minimal

shortcut nodes. The Monks problems indicate that having pools of nodes with only two

random connections may require more nodes to be installed, or alternatively not solve the

problem by the time the maximum number of hidden nodes has been reached given the

current pool size. Further, nodes with a random number of random connections are able to

introduce nodes with less than maximum connections quite easily, although this does not

guarantee a large reduction in connections (see tables C.1.3, C.2.3 and C.3.3).

With regard to the other benchmarks, the fact that the nodes with less than the full

connections are chosen without forcing their use is an indication that a fully connected node

is not necessarily the best option (see tables C.4.2, C.5.2 and C.6.2). Indeed, a choice of the

limited connections may be beneficial to the network. Having said that, no large numbers of

hidden nodes have been replaced, which indicates that the weight training algorithm may be

removing the effect of unnecessary connections without the need to cut them absolutely. For
example, on the Two Spirals problem over 100 trials a maximum of two limited nodes are

used out of between 12 and 14 needed to solve the problem when the node usage is not
being forced (see figure 4.6).

14 —

12

0 Full connection hidden nodes

• Limited hidden nodes

2

0
-o 	To rj (0 	 O 2 C-. 	E 8 c., 	 -0 0
ea 	 0 u

	

CO 	
,... c.,

`4 1–
Candidate connection style

Figure 4.6 — Hidden nodes and limited hidden nodes installed on the Two Spirals problem without
forcing

Fu
ll

co
nn

ec
tio

n

58

Adding a forcing factor to help choose particular nodes is a workable method for biasing in
favour of a desired network topology. Limited forcing strongly increases the number of

specialised nodes, with only a small increase in the total number of nodes employed. For

example, again the Two Spirals problem shows a great increase in the number of limited

nodes used when 50 percent forcing is applied (see table C.4.2). The layered nodes installed

increases from 2 to 9 while the total number of nodes needed increases by only 2 to 14 (see

figure 4.7). Nevertheless, using only the one limited node style in the candidate pool may

hinder the network — as the results on the Two Spirals problem show with great increases

in the number of nodes installed — as some node connection strategies are not able to solve

the problem. The results from the Double Helix and Cancerl data sets mirror these findings,

except that fewer nodes are required to solve these benchmark problems (see tables C.5.2

and C.6.2).
25 —

111 Full connection hidden
nodes

20 —

• Layered hidden nodes

5 —

Half pool 	Forcing 10% 	Forcing 50% 	Full pool
Candidate pool format

Figure 4.7 — Layered nodes installed with forcing for the Two Spirals problem

Nevertheless, these limited connection strategies are useful if a particular network structure

is required. For example, when layered nodes are used on the Two Spirals problem, the

following number of layers were required: 11 for the half pool without forcing layering, 10

with 10 percent extra forcing, 7 with 50 percent extra forcing, and of course 2 when using a

full pool of layering candidates. A total of 13 layers were employed by standard Cascor.

The number of nodes required gives only part of the picture. The number of connections in

the final networks must also be examined. The Monks problems show very little variation in

the number of connections required, except to show that using only two random connections

may often backfire and require a much greater number of connections to be used (see tables

C.1.3, C.2.3 and C.3.3). On the Double Helix and Cancerl problems, all limited connection

59

being the most effective (see table C.4.4 and figure 4.9).

decreased the training time, with layered and completely rand om nodes showing the largest

used in a full pool, as would be expected . On the Double Helix problem, most trials

being present: two-connection nodes taking the smallest amount of training except when

random connection techniques show a decrease in training times due to fewer connections

l i ttle difference in training when compared to standard fully-connected nodes. Both the

z ro CD
 ro Er 76-

Cl
)

CL

a) CD

CD

0

0
 CD

With regard to training speed, once again the Monks and Cancerl problems are similar in

Figure 4.8 — Connections required in solving the Two Spirals problem

Cl
)

=

E.
. 	

'r
i 	

...
.

o
 	

Z

wo
 	

a. 	
'r

i o
..

.
0
 	

'71

0

Z

 c.

0
_

ft

C.4.3). For example, a random number of random connections does not decrease the

best method being the layering of hidden nodes (see tables C.5.3 and C.6 .3) .

methods produce a sl ightly smaller network than the standard Cascor network, with the

However this trend does not continue with the more d iffi cul t Two Spirals problem (see tabl e

number of connections needed to solve the problem at any stage. The only method to have

0

00

z
 	

(t.

tc,

4
,
0

CD

E.0

oo

, 	
cp

,

o
 o

 	
°

Fu
ll

co
nn

ec
tio

n

0

La
ye

re
d 	

n
.

M
in

im
al

 sh
or

tc
ut

s 	
(J)

Tw
o

ra
nd

om
 c

on
ne

ct
io

ns

ro

C
om

pl
et

el
y

ra
nd

om

cro

*t:
1

CT
I

0

0

0

)

00
-

CD

11.)
CD

cra
 Co

A2ale.ns uor:pauuoD

Cl)

0

r—
t•

M
in

im
al

 sh
or

t(

Full pool
Forcing 50%

Forcing 10% Candidate
pool

Half pool 	format

CCs (M)

140

120

100

80

60
40
20

0
Fu

ll
co

nn
ec

tio
n

Connection strategy

Figure 4.9 — Connection crossings required in training on the Two Spirals problem

An interesting point is that generally forcing limited connection nodes by 50 percent

increases the training time (see figure 4.9). This is due to forcing the use of the limited-
connection nodes more often, basically halving the candidate pool size. This of course

means that less useful nodes are being installed and that further training has to be

completed at a later stage. The training times generally drop off when the entire pool is

limited connection nodes.

4.1.4 Summary

It is possible to add limited connection hidden nodes to a Cascor network without any

decrease in classification performance. The network structure is influenced but there is

generally little reduction in network size. Further limited connection strategies other than

the ones selected are possible, but perhaps not as obvious. These different strategies appear

to be particularly good for certain problems but not for others, so a more general method of

reducing connections should be developed to be usable for all problems.

Forcing is an effective method of ensuring that the preferred node styles are used above

another style. Overall it would seem that forcing only certain types of connection strategies,

such as layering, may hinder the network's performance, although for the most part this

does not occur. Allowing the use of other node styles solves this deficiency.

Tv

61

A further drawback is that the methods examined here do not alter the training

requirements for the Cascor output layer in any way. This means that for a large number of

problems, which require few hidden nodes to be effectively solved, the methods mentioned

here will have little effect. These techniques do allow the Cascor user to guide the way in

which the final network is to be shaped, and are effective in this respect. However other
methods of reducing connections need to be examined.

4.2 Limiting connections by pruning

As opposed to the methods presented in the previous section, where the cascaded networks

have been altered by allowing limited connected nodes to be added to the networks, this

section considers reducing the size of the network by training fully connected nodes and

pruning connections from them. As the number of hidden nodes increases, covering all

cases of limited connection hidden nodes as in 0.1 becomes impossible. Therefore, fully

connected hidden nodes may need to be used to ensure that the smallest possible network

may be generated. These nodes, including the output layer nodes, may be pruned later. The

pruning of connections is a more sound approach to the reduction of the size of Cascor

networks, as is identified in chapter 2, and is more likely to produce a smaller classifier in
line with the aims expressed at the beginning of this chapter.

4.2.1 Pruning algorithm

The choice of pruning method is not obvious without a study of which is most effective.

Although some such studies have been performed [Thimm & Fiesler 1995] the results are

less than conclusive given the large number of pruning and regularisation algorithms

available. Thus an arbitrary decision has been made to use Karnin's connection pruning

algorithm [Karnin 1990]. This involves calculating a saliency measure of the importance of

each weight, and pruning the weights with the lowest sensitivities. The derivation and

justification of the sensitivity calculation from Karnin's paper is given below.

The sensitivity S of a network to the removal of a weight w is:

S = E(0) ± gw9

= E(w1) ± E(0)
 ± 	(w1± 	Iv

(4.1)

where wf is the final value of the connection on completion of the training phase, and E is

the network error expressed as a function of w assuming all other weights are fixed in their

final state. Assuming further that the initial random weight value will substitute for the
error with the weight zeroed, the sensitivity S may be approximated by:

62

_s ± 	 WI
E(w) ± E(W I)

WI ± WI
	 (4.2)

where the final value, w1 , and the initial weight, w', are values which are available during

training. The numerator in (4.2) may be estimated in turn by the following integral:

E(w) ±E(wl_fiF E(ww) dw 	 (4.3)

where I and F are the initial and final positions of w respectively. This may in turn be

approximated by a summation giving the entire sensitivity calculation:

N±1 	 W f
S ± 	(n) • Aw(n) ± w i e=0 LIW

(4.4)

where N is the number of epochs of training, and the gradient and weight change are

available during training. This means that there is little cost in implementing the saliency

measure calculation. The previously calculated values are simply stored in shadow arrays

until they are required for pruning. Only the initial weights and the current sum of the

epoch information has to be stored. Note that if the weight is the same as the initial weight,

the sensitivity is assumed to be zero.

The sensitivity measure works equally well for correlation calculations: at the beginning of

candidate training the initial weights are stored and the derivative and weight change use

the correlation instead an error measure. Since Cascor has two quite different training

phases, it is sensible to use two sets of pruning parameters, one on the candidates, and one

on the output layer. Karnin's saliency measure does not adjust the other weights so the

pruned nodes need to be retrained.

The aim of the following experiments is to test Cascor networks pruned with Karnin's

sensitivity measure against the standard Cascor network training. There are two questions

to be answered about how to incorporate pruning into the Cascor architecture: where to

prune and how to stop pruning. These issues and their effects on network performance will

be examined in turn.

4.2.2 Where to prune?

Since Cascor training is cyclic it is not immediately obvious where pruning should be

applied to the trained connections. Pruning the hidden nodes at the completion of network

training is only feasible with the subsequent retraining of those nodes, which is not practical

when the network is very deep. Thus there are two options of where to prune:

63

• prune each candidate pool when trained and prune the output layer after
training is complete; or

• prune each candidate pool and prune the output layer after each output training
phase.

This choice only has an effect when hidden nodes are being added to the network.

Experiments on where to prune are performed on the Two Spirals data set, as an example of

a problem requiring a deep network. Here only one parameter is used for both phases of

training. Two arbitrary pruning levels (0.01 and 0.06) are used on both the candidates and

the outputs to give an indication of the results expected for low and high pruning levels.

The usual range of pruning levels for the Karnin measure is approximately between 0 and

0.1. Any connection with a sensitivity less than the specified level is removed from the

network (see table 4.1).

Table 4.1 — Results of when to prune (no pruning, output layer at end of training, or every output
layer training phase) using two pruning levels (0.01 and 0.06) on the Two Spirals problem, giving the
percentage correct on the test set, the number of hidden nodes, the number of network connections

and the number of connection crossings (millions) training required
Where to prune? Prune level Test set % Hidden Connections CCs (M)

No pruning N/A 95.83 12 132 112.8
Output once 0.01 95.83 12 104 127.7

0.06 95.83 14 89 148.0
Every output 0.01 90.62 19 162 171.0

0.06 83.33 25 100 214.1

Table 4.1 indicates that pruning can be effective in reducing network size without damaging

classification ability. Although pruning requires more training, the trade off to obtain a

smaller network and thus a more concise classifier may be worthwhile as this process

reduces the number of free parameters within the network. There is, however, no indication

here of increased generalisation ability. This is not surprising as the Two Spirals problem is

not a good test for generalisation, but rather memorisation [13aluja & Fahlman 1994]. The

extra requirement to prune the output layer after each training phase damages the final

network by prematurely removing connections which may be used later. The conclusion

from these experiments is that the best pruning method is to prune connections after

training of the particular nodes, whether that be the candidate nodes or the output layer, has
been fully completed.

4.2.3 Stopping pruning

Three methods have been developed to stop the pruning process: two absolute measures

and a third relative measure.

64

4.2.3.1 	Arbitrary choice and percentage change

The obvious way of removing connections, as mentioned in §4.2.2, is to pick an arbitrary cut-

off sensitivity level, and remove all connections with saliencies below that level. This will

then relate to either the change in error with the removal of an output layer connection, or
the change in correlation if pruning candidate nodes. Given the saliency measure algorithm

(see §4.2.1), the implementation of this is trivial.

A further method is to remove connections whose expected change in the error or the

maximum correlation is less than a fixed percentage. The maximum correlation is used to

prune all of the candidates so that the saliency of each connection is being standardised

across the entire candidate pool. A node with a lower correlation will not have connections

regarded more highly because of that node's correlation score. Both these methods measure

a change relative to the initial error or correlation values, before processing occurs. The

implementation of this method is also simple: the minimum sensitivity level is multiplied by

the current error or maximum correlation.

4.2.3.2 	Relative saliency measure

Deciding when to stop pruning is a similar problem to the decision of when to stop training

in Cascor: at some stage a decision to stop must be made. Some mechanism similar to

patience may be used, as opposed to simply picking an arbitrary level. However, unlike

training where it is possible to use the patience criterion and to train for a few extra epochs

to check when to stop, pruning a few extra connections without any regard for their effect

may destroy a node's functionality. There is no buffer of extra connections to sacrifice to a

patience criterion to start the process of deciding when to stop pruning.

The following algorithm has been developed to allow for a patience-like method of stopping

connection pruning. It is assumed that the saliency measure is a relatively accurate measure

of the importance of each connection:

1. calculate saliencies of all connections after training has been completed;

2. remove connections with zero or negative saliency, thus decreasing the network

error;

3. sort the remaining saliencies;

4. remove connections from lowest to highest saliency until the predicted error or

correlation change is too large, using the training error or correlation as a

starting point; and

5. retrain if required.

Deciding when to stop pruning falls to a measure of change in the sorted saliencies: if the

change is too large then pruning is stopped. Unlike the patience criterion, no patience

65

period is used, but the increase in saliency compared to the removal of the previous

connection is checked. Such a period, measured across the range of connections, is not

necessary due to the sorted nature of the saliencies. It would force the removal of at least n-1
connections where n is the length measured in connections removed. The use of a term such

as 'reverse patience' [Waugh & Adams 1995] is thus inappropriate as there is no longer any

'time' period over which the error change is measured.

As the saliencies are assumed to be a measure of the change in error or correlation caused by

the removal of a connection, it is necessary to calculate the saliency changes in relation to the

current error or maximum correlation level, not just using the actual saliency value. Thus

this level is used as a starting point for these calculations. This will ensure that the saliency's

relevance is taken into account with respect to the network error or the maximum

correlation.

Connections from layers are pruned together rather than pruning each node independently,

as it is possible, for example, to have as little as two connections to a candidate or output

node. Combining the connections from otherwise independent nodes will give a more

significant sample from which to draw saliencies to decide which connections to prune.

4.2.2.3 	Results and discussion

Results of experiments conducted are presented in Appendix D detailing the percentage

correct on the test set, the number of connections required, and the number of connection
crossings training required for training.

The three methods for stopping pruning are tested on the nine benchmarking problems with

Monks3, Cancerl, Diabetesl, Glass1 and LED resulting in the installation no hidden nodes,

meaning that only the output layer needs to be pruned. The other problems — Monks1,

Monks2, Two Spirals and Double Helix — include trials on pruning the candidate nodes as

well. All trials consist of giving pruning levels of 0.0 to 0.1 in steps of 0.01 to the absolute,

percentage and relative pruning methods. These results are summarised below.

There is little to distinguish between the methods of stopping pruning. All are effective (see

tables D.1.2, D.2.2, D.3, D.4.2, D.5.2, D.6, D.7, D.8 and D.9), although the relative method

may over-prune candidate nodes when high levels are used (see figure 4.10 and tables D.1.1,

D.2.1, D.4.1 and D.5.1). This results in the maximum number of hidden nodes being

installed, as the data set features cannot be learnt under such conditions. The over-pruning

using saliency changes is simply due to the pruning depending on the previous connection

removed; the relative nature of the algorithm means that more connections are cut as long as

the relative difference is not too great.

66

120

0.04 	0.05 	0.06
Pruning level

0.07 	0.08 	0.09 	0.1 0 	0.01 	0.02 	0.03

100

Absolute

9 	 Percentage

Relative

20

so

g 60

(-) 40

Figure 4.10— Candidate node pruning on the Monks1 problem: comparison of absolute, percentage
and relative pruning

One feature of the results that is immediately evident is that little or no connections are

pruned from the output layer of networks (see figure 4.11 and see tables D.1.2, D.2.2, D.3, 4

D.4.2, D.5.2, D.6, D.7, D.8 and D.9), even with the relative saliency method. The worth of

these connections is greater than those of a hidden unit as they directly influence the output •

error as opposed to indirectly through the correlation to the output error, but it is

unexpected that so few would be removed. One reason may be that all of the inputs are

required to solve the network. Cancer1 requires all 20 possible connections — taking into

account biases, Diabetesl uses all 18 possible connections, Glassl uses 57 to 58 of a

maximum possible 60, LED requires 71 to 72 of a maximum of 80 (see figure 4.11), Monksl

uses 43 to 44 of a total of 50 and so on. Unnecessary connections are removed early and the

rest are required to solve the problem.

An alternative explanation for the low pruning of the output layer is that the actual pruning

algorithm used is not effective in estimating the saliency of connections. This is difficult to

quantify without further comparison between differing methods of pruning.

When used to reduce the complexity of candidates being introduced into the network the

performance of the pruning methods is much better than that of limited connection hidden

nodes (see tables D.1.1, D.2.1, D.4.1 and D.5.1). Classification performance is not affected

when, for example, the number of connections in the Two Spirals networks are reduced

from 132 to 92 using absolute pruning, without employing any connection pruning on the

output layer (see figure 4.12). This compares with a minimum of 131 connections obtained

using limited connection candidates under similar conditions. A further point is that as

more pruning is performed more training is required to compensate to solve the problem by

67

0 0
oo •n

q 	0'0

250

200

150

100 -L

50

Test set percentage

Hidden layer
connections

Connection
crossings
(millions)

greater alterations to existing connections or by the addition of further hidden nodes. In this

situation the candidate nodes are being over-pruned, although Cascor is still able to find
solutions.

60 —

50

agx

oq' 40

.0

30

20

10

	* 	

Test set percentage

	Output layer
connections

	 Connection crossings
(millions)

0 	
CO 	 o 	 ■•••■

Absolute pruning level

Figure 4.11 — Output layer pruning using an absolute level on the LED problem

300

Absolute pruning level

Figure 4.12— Candidate node pruning using absolute level on the Two Spirals problem

A final point is that although a large number of connections have been removed the actual

generalisation ability of the networks is not increased or decreased by the removal of

connections — in fact no change beyond random variation is evident (see figures 4.11 and

68

4.12). The lack of increase may be due to the networks being so small initially that further

reduction of free parameters is not necessary to achieve good generalisation capabilities, and

so it may be peculiar to the Cascor training method.

4.2.3 Summary

Pruning is a more principled approach to removing connections which are not required than

picking an arbitrary hidden node connection strategy. Simple pruning can remove a large

number of connections from a standard Cascor network, especially from hidden nodes, with

no change in the classification ability and only a small amount of extra training. The

removal of the unnecessary connections allows for the possible extraction of knowledge

from networks to occur more easily [Tolstrup 1995], as well as reducing the number of free

parameters which in turn reduces over-training. The methods used to stop pruning may be

applied to other artificial neural networks, and all are effective in stopping the pruning

process. The level of pruning may need to be determined empirically depending on the

problem at hand in the same way that the learning rate is determined. Nevertheless, it is

possible to employ a small amount of pruning without jeopardising the quality of the final

results.

69

Part II Benchmarking Cascade-
Correlation

71

5 Background to benchmarking databases

In the previous two chapters several extensions to Cascor have been examined. In doing so,

it became evident early on that the benchmarks selected to test the extensions are less than

sufficient. The majority of problems appear to tend towards two extremes: linearly

separable or unsolvable given the available information; or they are contrived and do not

effectively test generalisation. The possible problems which may be solved by algorithms

such as Cascor need to be understood in abstract terms. However, more immediately there

is a demand for problems which will test the different capabilities of learning algorithms.

In general, one of the faults of current research into inductive learning, particularly in the

artificial neural network field [Prechelt 19941)], is that new learning methods are not

benchmarked in a consistent or sufficient manner. The trials of a learning method are often

performed on a single data set, which may not be readily available to other researchers, or

which is overly simple, such as the ubiquitous xor problem. Hence, it is important to

develop benchmarks for testing new and variations on existing methods.

The aim of this part of the thesis is to develop new benchmarks for artificial neural network

classifiers. Although this study was motivated by the examination of Cascor and other

artificial neural networks, the benchmarks shown in this part of the thesis may be applied to

any inductive learning system.

In this chapter, a background to the area of benchmarking data sets is given. This covers

what features of data sets need to be considered, examples from the literature of real-world

and constructed benchmarks, and examples of the performance of Cascor on some of these

sets. This is followed by chapters giving new examples of the different benchmarking styles.

5.1 Features of data sets

To create a benchmark some consideration of what features are important within data sets is

necessary — a description of the data character. What sort of structure the data sets can

entail is outlined below, thus looking at the content of the data set and the complexity of the

underlying functions. How these data set features are presented is then examined, both

through the dimensions of the problem and the effect of sampling.

5.1.1 Underlying problem structure

Obviously one of the important features of data sets is the structure of the underlying

problem, which gives the difficulty in learning — sometimes termed the concept character or

73

the class distribution for classification problems [Rendell & Cho 1990]. This is the

distribution of examples in the instance space, as defined by the measured attributes — the

shape of the class regions or partitioning in relation to each other, or the shape of the surface

formed by a regression problem. The attributes — otherwise known as the features,

variables tests or inputs — are the measurements or observations recorded about each

example. Each example or instance is one case drawn from the population under

consideration. Whether examples are present only in certain areas of the attribute space, or

whether examples occur in an uniform distribution across the attribute space, for example, is

part of the underlying problem structure. The attribute space is the geometric space formed

by using the attribute values as axes of measurement, meaning that each example forms a

point in the space.

It is worth noting that the distribution of classes throughout the attribute space may lead to

some interesting formations with interlocking classes. However, it is more likely that class

regions may simply not meet, and thus may be solved with a simple classifier; or they may

overlap resulting in an unsolvable situation. The area of each data set which may be solved
using a more powerful classifier over a simple linear classifier may be very small.

Rendell and Cho examine a number of features of classification problems which relate to

these ideas: the size of the concept — the amount of the feature space it covers; the
concentration of peaks in the one class — whether a number of peaks formed by examples

are distributed around the feature space, or whether there is only one peak of class

membership; conformation — whether the peaks of a class are normal in shape or involve

'all-or-none' class membership; and whether there is some higher order regularity in the

distribution of class peaks [Rendell & Cho 1990]. Although a process of generating artificial

data sets is described in this paper, the actual details of the examples used are unclear and

only single data sets are used to test differences in the concepts.

A number of papers consider concepts which are logical combinations of attribute values

(for example, [Lounis & Bisson 1991; Hickey 1992]). These papers are more directed at

testing the capabilities of symbolic machine learning systems, such as C4.5 — a decision tree

inductive learning methodology [Quinlan 1993a].

Quinlan [Quinlan 1993b] identifies two styles of problems: S-type which are suitable to be

learnt by sequential classification methods such as C4.5, and P-type which are suitable to be

learnt by parallel classification methods such as gradient descent artificial neural networks.

These are best characterised by the following [Quinlan 19934

74

At one extreme are P-type tasks where all the input variables are always relevant to the

classification. ... At the other extreme are the S-type tasks in which the relevance of a

particular input variable depends on the values of the other input variables.

Quinlan considers one specific example of each type, which are then used to compare

symbolic and connectionist learning methods.

There have been attempts to characterise what sort of problem structures are difficult for

different supervised artificial neural networks to learn, such as Lippmann's classification of

network capability 1Lippmann 19871. This states, for example, that a two-layer network can

only solve problems with convex open and closed decision regions. This has been shown to

be false in particular contrived cases 1Sjogaard 19911.

The majority of papers consider only single problems without any variation in the

underlying structure. This is to be expected with problems taken from the real-world where

a specific problem is considered, but it also often occurs with generated data 1Lounis &

Bisson 1991; Thrun, et al. 1991; Hickey 1992; Quinlan 1993b1. Many of these papers mention

methods for generating further data sets, but again only specific examples are considered.

Note that the actual shape of the underlying problem structure is a vague concept which is

based on the sample or data set selected from the population, and the attributes that have
been measured. For example, the xor problem is simple to solve if different attributes are

given — such as the number of true values modulo two. The measurements that have been

made will often be only a small portion of the overall picture. An analogy may be drawn

between the visible light and the rest of electromagnetic spectrum, which is there but
invisible to humans. Thus, the underlying structure cannot be completely separated from' .
how the problem is presented, which is considered next.

5.1.2 Factors affecting the data presentation

It is also important to consider factors which may affect the view of the population structure:

the representation and data reliability. The inputs, outputs, examples and each example's

values need to be considered (see figure 5.1). The inputs, and outputs outline the problem

dimensions; whereas the actual examples selected from the population give the sampling

dimensions Wendell & Cho 19901.

Variations in any of these features will occur when information is missing or if extra

information is available. Figure 5.2 draws a distinction, shown on two axes, between

different types of information which may be gained or lost by the addition or removal of a

data set feature: relevant information; irrelevant information; or a combination of the two

leading to a continuum of attributes with differing predictive powers. Extra information

75

Missing
information
((x -1) + y)

Increased
irrelevant

information
(x + (y + 1))

Full
information

(x + y) \

Redundant information
((x + 1) + y)

Decreased irrelevant
information (x + (y -1))

-1
feature

Relationship between
redundant and irrelevant

information

+1
feature

Relevant
information

axis

may be redundant if full information required to solve the problem is available, meaning

that it is duplicated information, or irrelevant, meaning that the information is not relevant

to the learning task. A reduction in relevant information may lead to missing information
necessary to solve the problem.

Outputs
>< 	

Sample

Example

Figure 5.1 — Graphical view of a data set for superv'sed inductive earning, showing the features
considered: the inputs, outputs, examples and an actual example

Irrelevant information axis
+1 feature

Inputs

-1 feature

Figure 5.2 — The relationship between needed information (shown on the x axis) which is redundant if
enough information to solve the problem is available (as shown), and unnecessary information (shown

on the y axis) given full information: the sum of x and y will give a whole number relating to the
number of features under consideration

For example, if a new input is added to a data set which contains all of the inputs necessary

to solve the problem, the input may be solely redundant information, solely irrelevant

76

information or a combination of the two. Often this may show up as a poor or

unrepresentative input — only partially measuring the features which are required to solve

the problem — as not all the required information is available. Similarly, any reduction in

the required inputs will mean that information necessary for the solution will be missing or

that irrelevant information is removed. A large number of data sets may then be considered

a combination of these factors: missing information necessary to fully describe the problem,

but containing poorer quality information that partially contains the required information.

5.1.2.1 	Problem Dimensions

Consider the variations that may occur with respect to the inputs as one part of the problem

dimensions:

• number of inputs — dictates the size of the problem by specifying how features

are being measured for the learning system;

• nominal/ tree-structured/ ordinal/interval inputs — the type of inputs is also

important, as more information may be available from different styles;

• missing inputs — it is possible that not enough or not the right inputs have been

selected for the data set to solve the problem;

• redundant inputs — a number of inputs may not be required because their

information is duplicated by others; and

• irrelevant inputs — an input may not be required, but unlike a redundant input

it contains no relevant or useful information.

Nominal data has no order: such as binary or enumerated types; tree-structures have a

partial ordering; ordinal is ordered discrete values; and interval includes integer and real

values giving extra complexity and extra information [Rendell & Cho 19901. A large

proportion of the generation methods shown in the literature rely only on integer [Rendell &

Cho 1990] or nominal [Lounis & Bisson 1991; Thrun, et al. 1991; Hickey 1992] inputs.

The outputs are similar in structure and contain the following elements:

• number of outputs — also dictates the size of the problem, showing what is

expected at the output; and

• nominal/ tree-structured/ ordinal/interval outputs — similar to the inputs, the

outputs of a learning system may take on a number of different styles.

A problem with real outputs is a regression problem, whereas a classification problem

entails nominal outputs. Ordinal or integer outputs may be considered to form constrained

regression problems. Here the focus is on classification problems, thus regression problems

are not considered, though many of the difficulties are the same. The majority of

benchmarks concentrate on classification problems, with only a few regression data sets (for

77

example, [Prechelt 1994a]). It is possible to consider missing, redundant or irrelevant

outputs as well, but it is usual to consider only a single relevant problem at a time.

The problem dimensions form the structure of the problem: what information is available.

The process of feature extraction gives the attribute space structure. Good feature selection

will lead to a problem that is simple to solve using a linear discriminant function for

example. Unfortunately finding such attributes is a difficult and error prone process. The

final attributes which are used may require a more complicated classifier as the underlying

problem structure is more convoluted, or even unsolvable given the known information.

5.1.2.2 	Sampling dimensions

Now the actual examples that will be presented to the system are considered. The sampling

dimensions do not effect the underlying problem structure, but they effect how well that

structure may be learnt. Many of these considerations are the duals of those given above.
However, they are distinct as they refer to individual examples with values across all inputs
and outputs, rather than considering an input or output which has values across all

examples. Variations in the entire data set are considered:

• number of training examples in sample — to train a system to recognise the

underlying function, the particular function needs to be sampled enough to
obtain the required information;

• redundant or irrelevant examples in the sample [Quinlan 1986a] — there is a

problem that extra examples may be presented, which may either contain no

information or misleading information, or they may be redundant resulting in
biases toward one class or another; and

• missing examples from the sample — likewise there may be examples of

important cases which may be missing from the sample.

An under-sampled problem will lead to poor generalisation as there are not enough

examples to train the system properly. Over-sampling may, with some systems, lead to

excessive training times, which is a lesser problem. A few papers examine changes in these

sampling dimensions [Rendell & Cho 1990; Collier & Waugh 1994]. Redundant, irrelevant

or missing examples point to problems in the sampling or measuring processes.

It is also important to outline differences between the example values which may occur:

• noise or errors within an example — the extra fluctuations in the measurements

of all values when considering numeric values, or wrong nominal values which

are not appropriate; and
• missing values within an example — due to a number of reasons a particular

value may be missing: further separation of data may be possible given the

78

actual value, or there is a reduction in numerical results possibly leading to a

smaller range of attribute values, and thus a weaker indicator relative to other

measures.

These changes may occur to individual examples only, or may be alterations to the values of

all examples. Noise [Quinlan 1986a] can have a number of sources, such as problems with

the measuring equipment affecting all examples, or being an aberration affecting only a

single example. In some cases, especially with binary or enumerated inputs, or even the

actual classes, these fluctuations may lead to an erroneous value which does not reflect the

example taken from the population.

It is preferable if the examples are selected independently, giving a proportional view of the

entire population. Furthermore, the minimum classification rate expected is the proportion

of examples in the largest class. If the largest class accounts for 95 percent of the data set,

there is no point accepting any level of performance below this minimum.

All of these factors can affect the performance of a learning system in the development of a

classifier or predictor. Extra information, in the form of redundant or irrelevant information,

may bias the learning a system performs, as will missing information. Combinations of

these cases may lead to considerable difficulty in learning a task. This is on top of the ability

or biases of learning systems toward learning certain tasks, and will be considered next

5.1.3 Inductive bias

Inductive bias is how a particular learning system, in learning a set problem, affects the final

classifier produced. Not only do these biases stem from how learning methods cope with

the underlying data set structure, but also from how different methods are affected by noise,

missing values, irrelevant and redundant data and so on. If you are given a particular data

set, a learning system will develop one solution over another on the basis of how that

method works. There are two forms of inductive bias [Collier & Waugh 1994]:

• restricted hypothesis space bias — the possible theories which can be generated;

and

• preference bias — each learning system generates theories in preference to

others consistent with the training set.

The first form of inductive bias is important as it indicates what sort of data sets may be

learnt. For example, C4.5 is biased in that it may only represent theories which involve

Boolean combination of attributes in conjunctive normal form. C4.5 cannot combine several

inputs to generate a classifier when this is required to solve a problem efficiently. Another

example is standard back-propagation, which with only a single hidden layer and a

restricted number of hidden nodes has difficulty in distinguishing between regions which

79

curve around each other, such as the Two Spirals problem presented earlier [Fahlman &
Lebiere 1989].

The second form of inductive bias is equally as important. Consider back-propagation: this

learning algorithm may generate a large number of possible classifiers, each with the

potential to solve a particular problem. However, frequently the final solution is biased, for

example, by the initial random weights, often quite easily [Adams 1994]. Likewise the

training algorithm is biased towards smaller weights as a by-product of minimising the total

network error, and this may affect the generation of solutions.

There is a trade-off between the two different sources of bias which have been identified as

the 'bias/variance dilemma' [Geman, Bienenstock & Doursat 1992]. Briefly, the more

freedom a learning method has, the more variations are possible, requiring more training

with a greater number of examples. If a learning method is restricted — such as a

parametric statistical technique — then less examples and training are required, but the

learning method is biased in what solutions it may develop, possibly resulting in a less
suitable classifier.

5.2 Real-world and constructed data sets

From the above considerations of how problems are presented and how different learning

systems may produce different results, it is worthwhile considering particular benchmarks
and problems that have been presented throughout the literature.

There have been a number of studies into defining benchmarks for inductive learning.

These often centre on either data sets from real-world problems, or upon constructed data

sets where the domain has been created artificially. There is a difference in opinion as to

which style of benchmarking provides more relevant results to those developing new

learning methods. Some examples of each benchmarking style are considered in turn.

5.2.1 Constructed data set benchmarks

A number of artificial benchmarks for inductive learning tasks have been developed. The

majority of data sets have been presented through the literature as single problems created

mostly on an ad hoc basis, often for testing particular features of a learning method (for

example, [Solla 1988; Fahlman & Lebiere 1989; Sjogaard 1991; Baluja & Fahlman 1994]). The

Two Spirals data set [Fahlman & Lebiere 1989] is an example of this, as it is a difficult

problem for artificial neural networks with sigmoid activation functions to solve. In this

respect the benchmark is very good, hence the application of it in the first part of this thesis.
However it is hindered in that the test set — and for that matter the training set — is

unrealistic and does not test generalisation [Baluja & Fahlman 1994].

80

Famous collections of benchmark problems include Breiman et al. which includes problems

such as recognising waveforms and LED displays with added noise [Breiman, et al. 1984].

One of the first artificial benchmarks for neural networks includes the parity, symmetry,

encoder, T-C and addition problems [Rumelhart, et al. 1986].

An example of an artificial benchmark of several specific data sets developed for testing

inductive learning systems is the Monks problems [Thrun, et al. 1991]. This suite consists of

three data sets which are all binary classification tasks. The tasks are variations on the same

input space which consists of six inputs with two to four possible values for each input.

Hence the problems are completely enumerable with a total of 432 possible cases. In each

data set only a limited number of these cases are available for training. The first problem is

in disjunctive normal form, the second is similar to parity problems and the third is another

disjunctive normal form problem with added noise. The aim of the benchmark is to describe

the performance of a variety of learning algorithms on these standard problems, and thus

provide a good comparison between the various methods.

Rendell and Cho develop a number of benchmark problems, generated to test various

characteristics that they wished to examine [Rendell & Cho 19901 These include variations

in the attribute and class errors, the size of the concepts, the number of class peaks and their

shape, the scales of the attributes and the number of training examples. The actual method

of data set generation is outlined, though no examples are given, and only integer attribute

values are used.

Lounis and Bisson also consider the generation of artificial benchmarks [Lounis & Bisson

19911 They justify their usage by stating that with artificial benchmarks the availability of

data is no longer a problem, translation is simple, interpretation of the results may be

performed without an expert in a particular area, and that it is easier to answer questions

such as 'what happens if the application domain is different?' Specifically they consider

attribute value logic and predicate logic methods for the generation of concepts,

concentrating on a single problem. Hickey also considers the benefits of generating artificial

data [Hickey 1992]. The approach taken is to consider a specific problem in conjunctive

form and model the introduction of noise to such a system. Both of these methods use only

nominal attributes.

Further papers consider two problems involving overlapping Gaussian distributions

[Kohonen, Chrisley & Barna 1988; Ragnvaldsson 19931. The distributions have different

standard deviations, and one problem has the same mean value for the distributions,

whereas the other is offset in one dimension. The problem is to distinguish between the

distributions which are described by two to eight continuous-valued attributes — leading to

a total of 14 problems to compare various methods.

81

As mentioned previously Quinlan identifies two styles of problems: S-type and P-type, and

uses real-valued attributes in the generation of problems [Quinlan 1993b]. Quinlan shows

that decision-tree methods are unsuitable for P-type problems, and that artificial neural

networks — specifically back-propagation — requires an inordinate amount of learning time

for S-type problems. This shows the inductive bias of artificial neural networks favours

solving P-type problems. Further work has been conducted in this area [Collier & Waugh

1994] which confirms Quinlan's findings, and extends these by showing that irrelevant —

and, to a lesser extent, redundant — attributes adversely affect connectionist learning

systems and noise affects symbolic learning systems. The work also shows that fewer

training examples is more of a problem for symbolic methods than connectionist methods.

Quinlan's work could be extended to consider problems on a continuum whereby they are

not S or P-type, but S and P-type to some degree [Collier 1995]. Adding irrelevant or

redundant attributes influences problems to be more S-type in structure as those attributes

are not necessary. On the other hand, adding noise or providing fewer training examples

makes a problem more P-type-like in structure as individual attribute values are less

reliable.

Not all are in favour of constructed data sets. Of the benchmarks developed in the 1980s

Prechelt [Prechelt 1994a1 states:

all of these problems are purely synthetic and have strong a-priori regularities in their

structure; for some of them it is unclear how to measure in a meaningful way the

generalization capabilities of a network with respect to the problem; most problems can be

solved 100% correct, which is untypical for realistic settings.

With respect to problems which have a stochastic element to their generation, two faults are

identified:

First, there is still the danger to prefer algorithms that happen to be biased towards the

particular kind of data generation process used. ... Second, it is often unclear what

parameters for the data generation process are representative of real problems in any

particular domain.

Prechelt states that although generated data of a realistic nature has its place in the

development of new algorithms, real data sets are preferred as the results produced will be

applicable to at least a 'few' real domains [Prechelt 1994a].

82

5.2.2 Real-world data set benchmarks

A number of attempts have also been made at producing benchmark sets which include

real-world problems. The first collection, which is the basis for most others, is the UCI

Repository for Machine Learning databases [Murphy & Aha 19941. This collection has no set

structure and is made up of donated data sets from a large number of people with varying

backgrounds. Though not an actual benchmark in itself, the databases contained there

formed the basis of most other real-world benchmarks. The main reason for this is that it is

simply too expensive and time consuming to develop new data sets.

Probenl is a well constructed benchmark to use with artificial neural networks for

benchmarking both classification and regression style methods [Prechelt 1994a]. It relies on

a number of real-world problems available from the UCI Repository [Murphy & Aha 1994],

using set encodings. The problems are presented in a consistent format which allows for

easy and direct comparison between methods.

A further benchmarking suite has been developed using databases from the UCI Repository.

Zheng's database collection may be used to benchmark classification methods [Zheng 1993].

The collection is an effort to cover the widest possible set of problem types by examining

which benchmarks should be used, based on a number of measures. These are the type of

attributes, the number of attributes, the number of different nominal attribute values, the

number of irrelevant attributes, the data set size, the data set density, the level of noise in

attribute values, the level of noise in class memberships, the frequency of missing values, the

number of classes, the default accuracy, the entropy, the predictive accuracy, the relative

accuracy, the average information score, and the relative information score. From all these

factors 13 data sets were selected in the final benchmark. Note, though, that about five were

generated or artificial in nature.

Lee and Lippmann also consider a combination of two artificial problems and two speech

recognition tasks [Lee & Lippmann 19891. The aim of their paper is to measure the

performance of various pattern recognition algorithms with the following view in mind:

A shortcoming of much recent neural network pattern classification research has been an

overemphasis on back-propagation classifiers and a focus on classification error rate as the

main measure of performance. This research often ignores the many alternative classifiers

that have been developed ...

Waugh and Adams have also examined data sets for benchmarking neural networks

[Waugh & Adams 1993]. A large number of the problems were again from the UCI

Repository, and a number of the problems were constructed rather than naturally occurring.

One of the main results of this work was that when using Cascor only one of the 14 data sets

83

used required more than two hidden nodes to be installed to solve the problem: that being
the Two Spirals problem.

The above result, along with previous experience of a large number of UCI databases not

reported here, implies that the majority of real-world data sets rarely require any of the

power of adding hidden nodes that Cascor possesses. A similar point of view is expressed

by Holte using tree induction methods Nolte 1993]. Hoke examines 16 UCI problems and

concludes that frequently very simple classification rules perform almost as well as more

complicated learning methods. He considered the development of single-level decision trees

whereby a single attribute is used to split the data — all the data sets being considered
involve binary classifications. He states:

Of particular concern are the datasets. One does not intuitively expect "real" classification

problems to be solved by very simple rules. Consequently, one may doubt if the datasets

used in this study are "representative" of the datasets that actually arise in practice.

Not all concur with the above opinion. Elomaa argues that, although the prediction

accuracy differences between the one-level decision trees and C4.5 are small, the differences

are significant: 'High baseline success is achieved by simple means, but further advances

require much more effort,' [Elomaa 19941. Furthermore, it is stated that methods such as

C4.5 are more robust in the solutions they generate.

Elomaa also makes some interesting points about the quality of real-world data that is
available:

It is essential to test machine learning approaches on data drawn from real -life in order not

to lose sight of the real goal of our field. Nevertheless, manufactured data suits the purpose

too: it is easier to control self-made data in the sense that monitoring the effects caused by

changes in data, e.g., to prediction accuracy is easier. ... Many of the differences [with

Holte's work] basically stem from the fact that we did not accept the UCI repository data

sets to be representative of most typical application domains of decision tree learning. ...

Holte has, rather, succeeded in proving that the current collection of standard test data for

inductive learning is not up to its function.

Holte's paper is not inconsistent with these views.

5.3 Application of previous benchmarks

This section briefly outlines the application of some of the previously mentioned

benchmarks to Cascor. The first point is to recount the result of the experiments performed
in the first part of this thesis (see table 5.1).

84

Even without the application of the methods developed within Part I, it is easy to see the
deficiencies with these benchmarks. As would be expected, the addition of hidden nodes

increases training set performance. However, this is at the expense of test set performance

in most cases, and in all cases a large amount of extra training has to be performed. Only
two of the Monks problems, the Two Spirals and Double Helix data sets require the addition

of hidden nodes given the training parameters used: the problems from the Proben1

benchmark - Cancerl, Diabetesl and Glass1 - not requiring any such nodes. The first two

Monks problems, which have an increased performance from the addition of hidden nodes,

only require a single such feature detector. Finally the Two Spirals and Double Helix data

sets, though they require the addition of large numbers of hidden nodes, have also been

criticised as being extremely unrealistic.

Table 5.1 - Results from application of standard Cascor with and without hidden nodes to the
benchmarking problems from Part I: the name of the data set, the training and test set performance, the

number of hidden nodes required, and the number of connection crossings the training took
(measured in millions) are given

Data set Train

Stand.

%

No hid.

Test

Stand.

%

No hid. Stand.

Hidden

No hid.

CCs

Stand.

(M)

No hid.

Monks 1 100 84.68 97.69 75.23 1

C

0

0
0

0
0

0
0

0

4.5 0.64

Monks 2 100 63.31 99.7 62.27 1 5.8 0..67

Monks 3 100 94.26 88.89 96.76 2 16.1 0.73

Two Spirals 100 50 95.83 50 12 123.3 0.13

Double Helix 100 50 100 50 6 63.5 0.37

LED 76 75.15 71.8 72 25 4770.7 31.68
.,-

Cancerl 100 96 95.98 98.28 5 178.7 2.99

Diabetesl 98.48 77.6 68.49 77.08 25 1962.9 3.4

Glassl 100 70.81 66.04 66.04 17 407.7 3.13

Further results have been generated using Cascor on another benchmark for the comparison

of the algorithm with back-propagation, Quickprop and C4.5 [Waugh & Adams 1993]. This

examined some of the above problems, as well as others from the UCI Repository and one

obtained from within the Department of Computer Science at the University of Tasmania.

One common benchmark, the encoder problem [Rumelhart, et al. 1986], was considered

within the group, but it is simply not suitable for testing Cascor as it requires the encoding

of the inputs through a specified hidden layer for further decoding at the output layer. The

architecture of Cascor does not allow the use of this problem. Of the nine further problems

- discounting those considered above - none required the addition of more than two

hidden nodes by Cascor. Comparisons were possible on the problems, but there seemed to

be no difficulty in solving the presented tasks.

Further studies of the performance of Cascor have also concentrated on specific problems.

One considers character recognition on an eight by eight grid [Hamamoto, Kamruzzaman &

Kumagai 1992], another further problems from UCI [Yang 1991], and a further paper which

85

examines three artificial data sets and one well known real-world data set: majority7, parity6

and Mackey-Glass, and heart disease [Squires & Shavlik 1991]. The following comment is

made [Hamamoto, et al. 1992]:

This task is made difficult by the non-availability of non-proprietary data sets from real-

world domains that are complex enough to adequately challenge generative learning

algorithms (note that all the data sets used in this study required the generation of

relatively small numbers of hidden units).

5.4 Summary

The ability to generalise to unseen cases is very much problem dependent, as well as

learning system dependent. If there is no useful information in the data set which may

guide a classification system, then there is no way that any method can produce a good

result. Likewise the final result is biased by the learning system — symbolic, statistical and

artificial neural network methods all learn in different ways.

It is possible to identify causes of differences between data sets, splitting these into the

underlying structure of the data set and factors which affect the measurement of those

underlying structures. Having done so, it is easy to see that it is difficult to produce some

sort of benchmarking suite which covers this entire area, though reasonable attempts have
been made.

People working in the development of new learning methods require specific ways of

sensibly comparing their methods against other established techniques, involving both

artificial and real-world problems. The rest of this thesis examines new real-world problems

and methods of creating data sets for benchmarking, specifically in respect to Cascor.

86

6 Real-world data sets — two new examples

In this chapter two new real-world data sets are examined. The purpose of this process is to

examine new data using Cascor as one of the tools, and to see if either of the new data sets

contains features which require the use of hidden nodes. Given the complexity of

previously examined real-world data sets, the chances of finding a problem which is

solvable by the introduction of hidden nodes is unlikely, but this still needs to be considered.

6.1 Example one — ageing abalone

Abalone shellfish are a major industry in Tasmania. Sales of abalone are worth millions, as

are commercial licences to catch the shellfish. The Marine Research Laboratories of the

Tasmanian State Government Department of Primary Industry and Fisheries have an

ongoing research interest in managing the fishery stock. Part of this research involves the

catching and measuring of large numbers of the shellfish for analysis [Nash, Sellers, Talbot,

Cawthorn & Ford 1994]. However, determining the age of the abalone is relatively time

consuming, and hence expensive. The aim here is to develop a classification system which`

will give a reasonable estimate of the abalone age from the other measured attributes of each

shellfish.

To this end, data from abalone captured in two regions of the state are examined. This data

is generously provided by the Marine Research Laboratories. The differences in the regions

are due mainly to the type of abalone captured: the first region, Bass Strait, contains a large

number of samples which have stunted growth patterns; the second region, St Helens,

contains samples which are predominantly fast growing.

6.1.1 Initial data preparation

For each example supplied by the Marine Research Laboratories the following information is

assessed:

• area — the area of collection within the region (string containing name);

• site — number of the actual site (integer value of site);

• sex — the sex of the abalone: male, female, infant or trematode (nominal value);

• length — the length of the abalone (in millimetres);

• diameter — basically the width of the abalone (in millimetres);

• height — height of abalone (in millimetres);

• whole weight — the weight of the abalone after capture (in grams);

• shucked weight — the weight of the abalone meat (grams);

87

• viscera weight — the weight of the gut, this is after the abalone has been

bleeding, and hence the weights do not total (in grams);

• shell weight — weight of the dried shell, the shells being porous can otherwise

carry a lot of water (in grams);

• rings — number of rings through the abalone shell; and

• age — the number of rings plus 1.5, as determined by previous experiments.

The number of rings give the age of the abalone. The shell needs to be dried, cut, stained

and the rings counted under a microscope — the process takes around five minutes per

shell. This is the most expensive part of the information gathering, and hence the target for

the classification. Only discrete ages are then available, hence the choice of using a

classification system as opposed to a regression network.

The area and site information are ignored, as a classifier which will work for any abalone

caught in Tasmanian waters is preferred. The age is also ignored as this is a simple

calculation from the number of rings in the abalone shell — no example has an age without

the ring information being present. Thus the problem involves eight attributes, seven of

which are continuous numeric values and one of which, the sex, is an enumerated variable

with four values; and the result of the classifier is the number of rings in the abalone shell.

Table 6.1 details the structure of the data set. This indicates that very few of the samples

which contain missing values can be used as training vectors for the classifier. 8233

examples are available, and 4203 have no missing values. Of those examples with missing

values, 495 could be used for training given some form of input encoding for a neural

network [Vamplew & Adams 1991], as with the rest the number of rings is the missing

value. This is due to a large proportion of the shells from the Bass Strait area being damaged

by natural causes to the extent that the number of rings cannot be determined. No examples

with missing values are used in the experiments.

Table 6.1 — Numbers of examples and their breakdown

Bass Strait St Helens Total data

Total samples 4754 3479 8233
No missing values 1621 2582 4203

Missing values 3133 897 4030
Missing rings/age 2921 614 3535

Missing other values 212 283 495

The next point to consider is the distribution of the classes. Table 6.2 outlines this

information for the examples without missing values, detailing the number of examples in

each age group for the different regions. From this information it was decided to examine

the data in three ways: the first being trying to classify all of the examples with their given

class; the second involving grouping the data into three new classes; and the third trying to

88

Number of Rings

1

2

3

4

5

6

7

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

Total

Bass Strait St Helens

1 N/A

1 N/A

8 7

24 33

49 67

60 199

96 297

101 471 -

165 530

185 451

• 336:

153 116

155 50

113 15

97 6

66 1

55 3

42 N/A

33 N/A

26 N/A

14 N/A

6 N/A

9 N/A

2 N/A

1 N/A

1 N/A

2 N/A

1 N/A

1621 2582

Total

1

1

15

57

116

259

393

572

491

269

205

128

103

67

58

42

33

26

14

6

9

2

1

1

2

1

4203

classify the four classes with the most examples, namely 8, 9, 10 and 11 rings. The three new

classes of the grouped data set are created by collecting examples withl to 8 rings in class

one; examples with 9 or 10 rings in class two; and examples with greater than 10 rings in

class three. Though it may be possible to separate all of the examples, this is unlikely due to

how few examples in some classes are available for training. Hence the development of the

two extra data sets.

Table 6.2 — Number of examples in each ring group, with the shaded region shows the examples used
in the restricted data, and the borders indicating the divisions of the grouped data ('N/ A' is used to

indicate not applicable cases throughout this chapter)

Note that these data sets could naturally be translated as regression problems given that the

classifications used here are only discrete versions of the continuous age of the abalone.

However this does not preclude the examination of these particular data sets, which will

indicate whether the underlying structure may be solved as a regression problem.

89

The majority of the attributes are numeric, so it is important to get an idea of the range of

results (see table 6.3). Since the ranges of the data are so large — even discounting some

obvious errors where an abalone would have to be twice as high as it is long — the examples

are scaled, simply by dividing by 200. This gives the attributes small ranges which may be

handled by artificial neural networks more easily, as there are no extremely large values

which force the activation functions to be hard on or hard off.

Table 6.3 — Minimum and maximum ranges of attributes over examples with no missing values

Attribute

Bass

Min

Strait

Max MM

St Helens

Max

Total

Min Max

Length 15 160 27 163 15 163

Diameter 11 126 21 130 11 130

Height 2 50 0 226 0 226

Whole weight 0.4 510 2.8 565.1 0.4 565.1

Shucked weight 0.2 214.1 1.1 297.6 0.2 297.6

Viscera weight 0.1 118 0.1 152 0.1 152

Shell weight 0.3 201 0.8 179.4 0.3 201

The only non-numeric attribute is sex (see table 6.4). Even here there is a bias with very few

of the examples being trematodes — animals which have been de-sexed. These examples

have been removed.

Table 6.4 — Totals of each sex over samples with no missing values

Sex Bass Strait St Helens Total

Male 653 875 1528

Female 624 683 1307

Infant 340 1002 1342

Trematode 4 22 26

Total 1621 2582 4203

To summarise, the missing value examples have been removed, as have the trematode

examples. Six data sets are considered, three distinct problems both scaled and unscaled:

the complete class data; the grouped class data; and the restricted class data. In each case

the data set has been created by randomly selecting three quarters of the examples to create

a training set and one quarter to be an unseen test set. The number of examples in each of

the training and test sets is outlined in table 6.5, along with the minimum expected

percentage based on the largest class (scaled and unscaled data sets have the same

characteristics).

It is also worth checking the correlations between the attributes (see table 6.6). This

information shows that a number of the attributes may be redundant, for example the length

and diameter are very closely related. It also shows that a single attribute may not be used

to solve the problem, and that combinations of attributes may be required. The correlation

90

between the number of rings and the other attributes does not suggest that the task may be
simply solved. There is most likely redundant information being presented here, but there is

no point removing information for this initial study even though this may lead to less non-

linear features being evident in the data.

Table 6.5 - Details of the training and test set sizes of the data sets extracted from the Abalone data,
along with the minimum required percentage correct calculated by the percentage of the largest class

Data Set Training Set Test Set Totals

Size Min Size Min

Full data 3133 16.16% 1044 16% 4177

Grouped data 3133 34.34% 1044 37.07% 4177

Restricted data 1783 28.77% 595 29.58% 2378

Table 6.6 - Correlations between attributes calculated from all data examples

Diameter Height Whole Shucked Viscera Shell Rings

Length 0.9868 0.8276 0.9253 0.8979 0.903 0.8977 0.5567

Diameter N/A 0.8337 0.9255 0.8932 0.8997 0.9053 0.5747

Height N/A N/ A 0.8192 0.775 0.7983 0.8173 0.5575

Whole N/A N/A N/A 0.9694 0.9664 0.9554 0.5404

Shucked N/A N/A N/A N/A 0.932 0.8826 0.4209

Viscera N/A N/A N/A N/A N/A 0.9077 0.5038

Shell N/A N/A N/A N/A N/A N/A 0.6276

6.1.2 No hidden nodes

A number of experiments on the six data sets using Cascor have been conducted. Cascor
was trained, using the standard parameters outlined in Part I, to classify the problems. Two

further restrictions are enforced: no hidden nodes are installed and the training of the output

layer is restricted to 100 epochs (see table 6.7).

Table 6.7- Results of using Cascor to build classifiers on the six Abalone data sets: 100 clock-seeded
trials, giving the median (upper result) and the interquartile range (lower result)

Abalone Data Set Training % Test % Connections CC(M)

Full, Unscaled 13.50 13.41 308 194

5.94 7.76 0 0

Full, Scaled 27.18 24.86 308 194

0.45 0.86 0 0

Grouped, Unscaled 44.69 43.53 33 20.8

20.71 23.18 0 0

Grouped, Scaled 64.28 61.40 33 20.8

0.22 0.29 0 0

Restricted, Unscaled 28.77 29.58 44 15.8

5.16 5.21 0 0

Restricted, Scaled 39.99 37.98 44 15.6

0.79 0.67 0 1.1

91

These results indicate that the performance on the scaled data is much greater than the

unscaled data. The unscaled data is not doing much better than chance — the high range of

the attribute values prevents the network from learning. If the network weights are

generated in the bounds of 1 and —1, as in this case, then large input values will in turn give

a large value to the squashing function input, resulting in near extreme values for the

squashing function output. It has been noted previously [Fahlman 1988a] that this causes

very slow learning, due to the slope near extreme values of the activation function being

close to zero. This leads to the changes to the weights being very small, as they are

proportional to the slope. In fact, in this case, on the full data the performance has dropped

below that obtained by selecting the largest class. In comparison, the results on the scaled
data are a third to twice the minimum performance level.

The results also indicate that the unscaled data is much more unstable, with the interquartile

ranges showing a far larger spread of results. The error on the training set for one trial on

each of the restricted data sets is traced for both the scaled and unscaled data (see figure 6.1),

and it is obvious from this that the scaled data is more stable to the point that training ceases

early due to the lack of patience. From now on only the scaled data will be considered.

0.8 — , , ,

	 Unscaled data

— — — — — Scaled data

0.5 --.-
i

	

0.1 	,

	

0 	 I 	 I 	 I
0 	10 	20 	30 	40 	50 	60 	70 	80 	90

Epochs of training

Figure 6.1 — Training error measured against time (epochs) for a single trial of the restricted data sets

6.1.3 Hidden nodes

The performance without hidden nodes, even on the scaled data, is not as good as is

required, with the highest performance around 60 percent correct on the more general

0.7

0.6

Training 0 4

set error '

0.3
\

\
\

0.2

92

grouped data The next trials to examine are the introduction of hidden nodes within Cascor

to pick up any non-linear features in the data sets. Trials have been conducted on the scaled

data sets, allowing up to 10 hidden nodes to be added whilst using independent candidate

training and node patience: 3 percent change over a single node period. Candidate training

is restricted to 200 epochs and output layer training is restricted to 100 epochs (see table 6.8).

Table 6.8- Results on the three scaled Abalone data sets applying node patience (3%, 1 node), giving
the median (upper result) and the irtterquartile range (lower result) over 100 clock-seeded trials

Data Set Training % Test % Hidden Connections CC(M)

Full 27.66 24.90 1 347 491.0

0.48 0.77 0 0 32.9

Grouped 66.36 64.85 2 62 296.9

1.21 1.34 1 15 155.5

Restricted 41.00 39.24 1 59 100.2

0.73 2.35 0 0 3.8

Comparing these results against the networks without hidden nodes (see table 6.7) is not

encouraging. The performance of these single trials is not that much better, indicating that

the problem involves overlapping classes and only minor improvement may be made by

adding hidden nodes. This result is verified by further trials which forced the usage of five

hidden nodes, although the generalisation performance is slightly better (see table 6.9), a

difference which is accounted for by the simplistic application of node patience. No further

improvement is made by introducing up to 20 hidden nodes.

Table 6.9- Results on the three scaled Abalone data sets installing 5 hidden nodes, giving the median
(upper result) and the interquartile range (lower result) over 100 clock-seeded trials

Data Set Training % Test % Hidden Connections CC(M)

Full 29.36 26.25 5 513 1631.3

0.57 1.25 0 0 105.4

Grouped 67.22 65.61 5 113 851.3

0.41 0.77 0 0 30.4

Restricted 43.07 39.33 5 129 502.5

0.84 1.34 0 0 17.8

6.1.4 Optimal Performance

It is preferable at this point to show that no possible further improvement may be achieved

by the addition of hidden nodes. Techniques are available for estimating the optimal

performance of any learning method on any problem - thus the performance which may be

achieved if an unlimited amount of data is available [Cortes, et al. 1995]. The methods were

developed to examine problems where 'the data collection was not designed for the task at

hand and prove inadequate for constructing high performance classifiers.' This is applicable

to this problem.

93

The independent variables in this process are the capacity of the classifier and the number of

learning examples. The capacity may be roughly defined as the power of the learning

system to model the data, and in an artificial neural network the capacity is related to the

number of free parameters — namely the number of weights and layers. In a standard back-

propagation network the capacity is fixed, whereas in a Cascor network the capacity is

varied by adding more hidden nodes with the resulting connections.

Briefly, increasing the capacity of a learning system, given a certain amount of data,

produces a distinctive pattern: the training error continues to drop as more capacity is

allowed, whilst the test set error initially drops and subsequently increases due to the

overtraining allowed by the increased capacity resulting in the memorisation of the training

set. Thus the increase in capacity causes the following stages to be met: undertraining, a

good capacity for modelling the data, and then overtraining.

Furthermore, if a learning system of a fixed capacity is trained with increasing numbers of

examples in the training set, then the training set error increases as more examples need to

be replicated, and the test set error decreases as the classifier becomes more robust. This

means, given an infinite number of training examples, that the training and test set errors

converge toward the predicted error for that capacity: the asymptotic error E.. This may be

shown by averaging the training and test set errors, and extrapolating the error limits.

The combination of these two features of learning means that the intrinsic noise level of the

data set may be determined, giving an estimate of the optimal performance of any learning

algorithm which may be obtained from particular data given an unlimited number of

examples. This may be achieved by plotting the asymptotic error rate against the change in

capacity. The curve that plotting the error rate follows is limited from below by the intrinsic
noise level.

This method is of particular interest here as Cascor allows the generation of results

regarding different capacities from a single trial. By saving the performance results and

error after the installation of increasing numbers of hidden nodes, it is possible to generate

the required results for a single data set size, without requiring the retraining of another
network or other learning system.

Figure 6.2 shows the results of a single trial on the grouped data with up to 100 hidden

nodes installed, measuring the mean squared error on both the training and test sets. This

indicates that the optimal performance is achieved after the introduction of only a few

hidden nodes. Although this single trial does not show all the asymptotic error rates, the

errors may be considered to approximate the asymptotic error rates, and they indicate that

no further improvement may be expected after this point.

94

0.3

0.25

0.2

0.05

Training error

Test error

Average error

0 	10 	20 	30 	40 	50 	60 	70
	

80 	90 	100
Hidden nodes installed

Figure 6.2— Errors on a single trial of the grouped data after the introduction of each hidden node, up
to a total of 100 hidden nodes

The results of measuring the classification performance rather than the mean squared error

give similar results, though slightly rougher in nature given that the network is trained on

the error rather than the percentage correct.

6.1.5 Confusion matrices

How the examples in the data sets are being separated may be checked by the closer

examination of single trials. Confusion matrices [Weiss & Kulikowski 19911 are produced

for the grouped, restricted and full data from single trials (see tables 6.10, 6.11 and 6.12

respectively). Although the results are reasonably spread, there is a considerable amount of

overlap. The grouped data shows reasonably good selection of classes one and three, but

the performance on class two is poorer. This may be due to the small range of samples in

the second class. The results on the restricted data shows that it is difficult for adjacent

classes to be distinguished. The full data also indicates the problem of overlapping classes,

though a definite trend in training is evident.

Table 6.10— Final training and test set confusion matrices for a single trial on the grouped data:
columns show predicted values (shown by labels across table), rows the actual class of the examples

Class 1

Training

Class 2 Class 3 Class 1

Test

Class 2 Class 3

Class 1

Class 2

Class 3

858

253

96

171

376

187

47

368

777

259

85

40

49

105

76

23

136

271

95

Table 6.11 — Final training and test data set confusion matrices for a single trial on the restricted data:
columns show the predicted values, rows the actual c_lass c:of the examples

8 rings

Training

9 rings 	10 rings 11 rings 8 rings

Test

9 rings 	10 rings 11 rings

8 rings 226 145 50 9 74 46 16 2
9 rings 152 187 133 41 55 62 49 10
10 rings 80 135 178 88 29 36 56 32
11 rings 41 73 130 115 27 21 47 33

Table 6.12 — Final test set confusion matrix for a single trial on the full data: columns show the
predicted values, rows the actual dass of the examples, blank cells contain no examples, bold numbers

show the correct examples

2 3 4 5 6 7 8 9 10 11 12 13 	14 15 16

3 21

4 1 642 1

5 3 3 6 12

6 1 4 8 46 4 6
7 1 2 37 15 24 2
8 2 25 52 48 13
9 14 34 68 50 1
10 5 23 45 82 4
11 4 16 38 72 9 1
12 2 4 30 27 3 1
13 6 12 37 4
14 3 8 20 1 1
15 2 10 12 2
16 1 7 10 2 2
17 2 2 5 1 1
18 1 9 1 1
19 1 6 1
20 2 2 1
21 1 1
22

23

24 1 1

6.1.6 Pruning

Pruning will not necessarily produce a better classifier, but it may result in a much smaller

network, and would indicate that a number of the attributes are not required. Simple trials

are conducted on solving the problems using the output layer only,. using absolute pruning

to firstly remove connections with saliencies below 0.0, and secondly removing connections

with saliencies below 0.05 (see table 6.13). As expected, the addition of pruning does not

greatly improve the performance of the classifier, although there is a performance increase

with all problems. However it does show that a reasonable proportion of the connections

are not required at all, as they are simply removed by low level pruning. This in turn

96

identifies many of the inputs that are not required, which is supported by the correlation

information (see table 6.6). The increased level of pruning does not reduce the number of

connections further as these, according to the saliency measure, are required to solve the

problem.

Table 6.13- Results of pruning experiments, showing the data set, the pruning level, and median and
interquartile results for the training and test set percentage correct, the number of connections, the
maximum number of possible connections and the number of connection crossings (in millions)

Problem Pruning Train Test Conns Maximum CCs (M)

Full 0.0 27.51 24.90 273 308 304.2

0.41 0.77 6 N/A 46.4

0.05 27.61 24.90 273 308 313.6

0.51 0.86 8 N/A 53.6

Grouped 0.0 64.60 62.07 26 33 34.5

0.35 0.86 2 N/A 5.5

0.05 64.67 62.07 26 33 34.4

0.29 0.96 2 N/A 5.6

Restricted 0.0 40.38 38.32 33 44 22.4

0.62 1.68 3 N/A 1.3

0.05 40.38 38.40 32 44 22.1

0.5 2.35 3 N/A 1.5

By counting which connections are pruned it is possible to get an idea of which connections

are actually important. Figure 6.3 demonstrates this by showing which attributes were used

the most over 100 trials of the full data - giving percentage usage on all possible (2800)

connections per attribute. This pattern is repeated for the other data sets. It seems that the

abalone length, and shucked and shell weight are the most important indicators in forming

the classifier, although no attribute stands out as being completely redundant.

100

Pe
rc

en
ta

ge
 o

f c
on

ne
ct

io
n

us
ag

e

" 	
&.. T, i.. c, bo 	1.1 	60 	0 	 c1.) .14 	 X u

LI) 	(la a) 	= .-1 	 -Z 	>
6 	 (r)

Network input

Figure 6.3 - Percentage usage of connections over 100 solutions to the full abalone data

74w

97

6.1.7 Other classification methods

One decision tree method and two statistical methods are used to classify the normalised

data sets: C4.5 (see table 6.14), and linear discriminant analysis (LDA) and (k = 5) nearest

neighbour (5-NN) (see table 6.15). For reference the results of applying Cascor without

hidden nodes to the data sets is also given (see table 6.14).

Table 6.14 - Results of trials using C4.5 and Cascor (previously generated): the training and test set
percentages correct and the number of nodes in the tree for C4.5 are shown

Data set Training set

C4.5

Test set Nodes

Cascor - no

Training set

hidden nodes

Test set

Full

Grouped

Restricted

76.6

89.3

83.1

21.5

59.2

30.8

1817

874

862

27.18

64.28

39.99

24.86

61.40

37.98

The performance of C4.5 on the data sets is not as good as Cascor, although the results are

comparable. The training set performance is much higher indicating a great deal of over-

specialisation which is irrelevant to further unseen cases. This is also evident from the large

sizes of the final trees produced. C4.5 must not be sold short in that it does have a restricted

hypothesis space and the speed of the actual learning is faster than that of Cascor, with no

requirements for setting any training parameters. The process is deterministic, thus

requiring only a single trial. The performance of C4.5 is not affected by whether the data has

been scaled or not.

Table 6.15 - LDA and 5-NN trials results: training and test set performances on the normalised data

Data set

Training set

LDA

Test set Training set

5-NN

Test set

Full

Group

Restricted

0.03

33.61

26.36

0.0

32.57

26.22

7.14

90.33

82.29

3.57

62.46

35.93

The performance of LDA on the abalone data is not good. For whatever reason the results

are well below those of Cascor and C4.5, though the result on the restricted data set is

comparable. The large spread of examples in the full and grouped data appear to cause

problems for LDA in learning.

The performance of 5-NN is also poor, especially on the full data set where there are a large

number of classes - a relatively large proportion of the classes containing less than five

examples for training. The bias of the algorithm is such that the performance on all the data

sets is less than the results from Cascor: the overlapping data seems to degrade the

performance of nearest neighbour. This is supported by the performance of 5-NN on the

grouped data, which performs better than Cascor without hidden nodes. Although Cascor

with hidden nodes out performs the level achieved by 5-NN, the nature of the grouped data

98

— where possibly overlapping ring groups have been placed in the one class — results in a

better level of performance from 5-NN.

From this brief examination of non-neural methods, it seems that a better level of

performance may not be obtainable. This supports the results gained by checking the

optimal performance using Cascor. This must be taken in the context that the statistical

methods examined are very simple — better results may be obtained from more

sophisticated methods.

6.1.8 Summary

A new problem has been examined, and it has been shown that the maximum performance

on this data set is achievable with Cascor. However, the problem is not solvable from the

information available, and the requirement for the addition of hidden nodes is limited. This

may be due to the duplication in the data sets of related attributes, as well as the

unreliability of prediction masking non-linear features. Nevertheless, the performance of

Cascor is higher than the other methods examined. The problem is useful for testing basic

learning performance, as well as being a problem of interest in its own right.

Of course this data is not ideally suited for analysis as classification tasks. The measure of

the number of rings giving the classification may also be translated as a function
approximation problem. However, a classification problem is as equally valid as the

number of rings is divided into discrete values. Nevertheless, there is the indication that the

problem being examined has a great deal of overlap between the classes. The results on the

grouped data and from the confusion matrix examples indicate that it is possible to get ,

estimates of the number of rings from the other attributes, however exact matching is not

possible.

Further information is required to obtain a useful classifier, as the information available is

not sufficient to perform the necessary classification. For example information on the site of

where the abalone was captured may provide the required information. This may be

generalised to information such as, for example, whether the abalone grew in an area

exposed to colder ocean water — a factor quite important to the abalone growth rates. In a

further trials, site information was included and used to train Cascor networks, resulting in

improvements of up to five percent in the classification performance as expected. Thus such

information in a more general form would be invaluable for further work.

6.2 Example two — identifying authors

In further attempt to examine data which is difficult in nature, examples of text word

frequencies were generously provided by the University of Newcastle Centre for Literacy

99

and Linguistic Computing (CLLC) for the purpose of distinguishing between Renaissance
and Romantic tragedy authors [Burrows & Craig 1994]. The reason why this may be a

difficult problem is that the attribute information is based on word counts from passages of

text, but the classification is based on the authors of the text passages.

Previous work has been conducted on the stylometry identification of authors using artificial
neural network methods [Matthews & Merriam 1993; Merriam & Matthews 1994; Singh &

Tweedie 1995], however this is the first to use a topology changing algorithm such as Cascor.

The previous work has not considered whether it is possible to solve such problems using

only a single layer of weights, which is addressed by the application of Cascor.

6.2.1 Details of author data

Each example is a section from one of a number of plays (see table 6.16): text blocks of close

to 2000 words are used and the most frequent words — from throughout all the passages —

within each block are counted (see table 6.17). From the selected plays there are 188

examples, classed as being Romantic (80 examples) or Renaissance (108 examples), with 100

attributes each representing one of the most frequently used words. Thus each attribute

value is the number of occurrences of a particular word within the corresponding example.

Table 6.16 — Plays used for analysis, giving the author(s), the name of the play, the number of blocks
of text extracted, and the number of words in each block: the first ten are from the Renaissance era, and

the second ten are Romantic plays
Author Play Samples Words per sample

Kyd The Spanish Tragedy 10 9 by 2000, 1 by 2773
Shakespeare Hamlet 14 13 by 2000, 1 by 3218

Macbeth 8 7 by 2000, 1 by 2674
King Lear 12 11 by 2000, 1 by 2752
Othello 12 11 by 2000, 1 by 2895

Middleton Women Beware Women 13 12 by 2000, 1 by 1925
Hengist 10 9 by 2000, 1 by 3455

Middleton/Rowley The Changeling 9 8 by 2000, 1 by 2498
Rowley All's Lost by Lust 8 7 by 2000, 1 by 2491
Webster Duchess of Malfi 12 11 by 2000, 1 by 1744

Scott The House of Aspen 6 5 by 2000, 1 by 2365
Auchindrane 7 6 by 2000, 1 by 3244
Halidon Hill 5 4 by 2000, 1 by 1980

Byron Marino Faliero 14 13 by 2000, 1 by 2281
Manfred 5 4 by 2000, 1 by 2296
Werner 13 12 by 2000, 1 by 2777

Shelley The Cenci 9 8 by 2000, 1 by 2913
Coleridge Osorio 7 6 by 2000, 1 by 2700

Keats Otho 7 6 by 2000, 1 by 2349
Sheridan Pizarro 7 6 by 2000, 1 by 3549

100

Table 6.17 — The list of the 100 most common words in descending order of frequency of the 10
Renaissance and 10 Romantic tragedies (from left to right and down the table)

the and I of a

you is my it in (preposition)
not to (infinitive) to (preposition) me but

be have with he this

will (verb/ modal) his your for (preposition) as
thou what him all are
that

(demonstrative
pronoun)

thy now if that (relative
pronoun)

do that (conjunction) thee we (not royal
plural)

shall

then from by (preposition) which (relative
pronoun)

was

or no (adjective) would they on (preposition)

at our (not royal
plural)

there can 0

more must their am lord

she here her (adjective) them so (adverb of
degree)

when one yet how let
know upon

(preposition)
were may sir

well had such should come

so (adverb of
manner)

good see who (relative
pronoun)

_ mart- ,

an her (pronoun) some us (not royal
plural)

for (conjunction)

too these why like (preposition) has

make where say love life .

Two different forms of the data were provided by the CLLC: the raw data which simply

contains the word counts of the most frequent words for each play section, and a normalised

data set. The normalisation process involved taking the raw data, dividing each example's

attribute values by the total number of words in that example and turning each attribute

value into a percentage of the total number of words. This standardises the examples by

removing the number of words in the block as a factor removing irrelevant information.

The immediate concern with this data is that there are very few examples available to train a

classification system given that there are 100 different attributes. This is particularly a

concern with artificial neural networks given that the number of parameters to be estimated

within the classifier is proportional to the number of attributes and the number of hidden

nodes. On this basis the performance of any classifier trained on this data when confronted

with new examples may be doubtful. Further, the number of examples may lead to a biased

estimate of generalisation ability given the small number available for training and later

testing. Thus the first experiments performed will use the full data for training: examining

101

the need for hidden nodes and pruning within Cascor, and giving the apparent error rate

calculated from the training set [Weiss & Kulikowski 1991].

6.2.2 Full data Cascade-Correlation experiments

Two data sets are examined, the original raw data and the normalised data, and are used to

train classifiers using Cascor with pruning at two levels (0.0 and 0.05 absolute level pruning)

and without pruning with all the examples being used for training (see table 6.18). For all of

the 100 randomly seeded trials on each data set and training method, hidden nodes were not

required in developing the final classifiers.

Table 6.18— Results of training Cascor using the raw and normalised data, showing the median
(upper) and interquartile range (lower) for the percentage correct on the training set, the number of

connections (maximum of 202), and the number of connection crossings of training

Technique and Data Set Training % Connections CCs (M)

Cascor 100 202 14.5

Raw 0 0 10.6

Cascor 100 202 3.0
Normalised 0 0 0.3

Cascor, pruning 0.0 100 136 15.4

Raw 0 22 9.9

Cascor, pruning 0.0 100 119 3.4
Normalised 0 8 0.5

Cascor, pruning 0.05 100 138 15.7
Raw 0 19 10.2

Cascor, pruning 0.05 100 115.5) 3.4
Normalised 0 9 0.4

These results demonstrate a number of interesting points. The training set, when all the data

is used to train a network, appears linearly separable. This does not seem to be a difficult

problem, the only difference between trials being to the random starting points which leads

to a great variation in the training times.

The performance on the normalised data is much more stable. As is expected reducing the

size of the attribute values and removing the reliance on the number of words in each

example greatly speeds the learning process. The presence of the word count within each

example of the raw data results in training difficulties as this information is irrelevant to and

disguises the relative word frequencies. Further experiments only considered the

normalised data.

Simple pruning reduces the size of the network dramatically, up to 40 percent of the

connections are removed with no change in network performance. Figure 6.4 shows the

results of pruning connections on the normalised data, removing connections with a saliency

102

40

60
Number
of trials

for which 50
connection
is needed

100

90

80

70

30

20

10

below 0.0. Over 100 trials, almost 50 percent of the connections are not required for half the

solutions. These results indicate a large number of redundant attributes. There is little point

in trying to examine which particular attributes are being pruned out from both outputs, as

there is so much flexibility in choosing connections due to the large number of attributes (see

figure 6.4).

1 	 51 	 101
	

151
	

201
Sorted connections

Figure 6.4— The number of times each of the 202 possible connections (including the two bias
connections) are required over 100 trials of the full normalised data

The redundant attributes do not necessarily lead to a reduction in network performarice,

indeed in the presence of noise the extra attributes will result in better predictions. However

poor or non-critical redundant attributes may adversely affect the training performance by

overweighting unimportant features thus biasing training [Weiss & Kulikowski 19911. It is

not obvious whether such redundant attributes are valuable or not, although the results

from table 6.18 give a weak indication that reducing the number of attributes has no effect.

This may only be examined further by testing or estimating the true error rate.

6.2.3 Cross-validation error estimation

It is difficult to see how well a learning method is generalising without a test set to check the

performance on unseen cases. Unfortunately there are not enough examples available to

produce a separate test set. Rather cross-validation is used to estimate the true error rate of

the population [Weiss & Kulikowski 1991]. In this case the leaving-one-out method of cross-

validation is used, whereby 188 different data sets are created: each contains a one example

test set and a 187 example training set, and the average of these test set results gives the

estimate of the true error rate. This is further complicated by the random nature of the

neural network starting points. Hence the median of 100 trials is used as the error value for

103

each test set. There is little difference between the median and mean results over the 100

trials. The results are displayed in table 6.19.

Table 6.19 — Results of cross-validation training of Cascor, showing the average of the median results
over 100 trials: including the percentage correct on the training and test sets, the number of

connections (maximum of 202) and the number of connection crossings of training (in millions)
Technique Training % Test % Connections CCs (M)

No pruning 100 98.4 202 2.98
Pruning 0.0 100 98.4 118.43 3.4

Pruning 0.05 100 98.4 115.3 3.39

The performance of various methods, without the installation of hidden nodes which are not

required, is high (see table 6.19). Cascor is able to distinguish between the play segments to

a high level of accuracy, although a level of 100 percent is not achieved. The introduction of

pruning, removing the influence of a large number of attributes, does not result in

performance degradation, although training time is increased. This indicates that the

redundant attributes present are not degrading or improving the classification performance,

and there may be no effect in reducing a large number of attributes. This will be tested next.

6.2.4 Restricted attributes

This section examines restricting the number of attributes as a crude method of determining

the attribute redundancy in the data set. If a large number of the attributes are redundant, a

smaller theory, from artificial neural networks especially, may be produced by reducing the
attributes. This will also test whether the data is noisy in nature — resulting in a decrease in

classification performance — or whether the redundant attributes adversely affect training

— resulting in an increase in classification performance in these experiments. Simple

reductions in the number of attributes will be used to test the extent of attribute redundancy.

To start with, the previous pruning experiments may be examined. If the frequency an

attribute is used by either output node after pruning (0.0 level) is totalled (see figure 6.5), it is

evident that the relative frequency of the word occurrence is not a factor in deciding which

words separate the examples. If more examples were to be classified a larger number of

attributes may be required. However, this evidence points towards a large number of the

attributes being redundant. Further examination of the saliency of each connection is also

possible giving a more detailed measure of relative worth, but without any justification of

the validity of the Karnin saliency measure, the value of such an analysis is minimal.

A total of ten data sets were created from the normalised data such that four data sets had 25

attributes missing, two data sets had 50 attributes missing and the final four data sets had 75

missing attributes. The attributes are simply partitioned, and the results presented are from

the leaving-one-out cross-validation of the median of 100 trials (see table 6.20). Note that

104

some of the trials with only a quarter of the attributes remaining required the addition of

hidden nodes, resulting in the differences in the number of connections. More sophisticated

techniques for reducing the number of attributes [Catlett 1992; Kira & Rendell 1992; Caruana

& Freitag 1994] will not be considered here.

Connections
to each

attribute

200

160

120

80

40

0
1 	 26 	51 	76 	101

Attributes: bias and then most to least frequent words

Figure 6.5— The usage of different attributes from Most to least frequent words over 100 trials.

Table 6.20— Cross-validation results of the median of 100 Cascor nets using the normalised reduced
attribute data, showing the training and test set percentage correct, and the number of connections and

connection-crossings of training (in millions)

Data Set Training % Test % Connections CCs (M)

25% missing — 1st 25 100 97.87 152 2.07

25% missing — 2nd 25 100 94.41 152 5.13

25% missing — 3rd 25 100 98.4 152 2.58

25% missing — 4th 25 100 95.74 152 3.16

50% missing — 1st 50 100 92.02 102 5.33

50% missing — 2nd 50 100 97.34 102 2.54

25% left — 1st 25 100 86.17 108.85 73.98

25% left — 2nd 25 100 96.28 52 2.68

25% left — 3rd 25 100 84.84 109 61.16

25% left — 4th 25 100 92.55 80 20.54

These results indicate that the problem is still solvable by Cascor, even if three quarters of

the attributes are removed, though not to the same degree as when all the attributes are

used. The drop in performance indicates that the data is noisy, and the larger number of

attributes is valuable in obtaining a high level of performance.

The most useful groups of attributes appear to be the second and fourth groups — the most

frequent words from 26 to 50 and 76 to 100. This is evident when considering the three

groups of trials which cover all the data. With one quarter of the attributes missing the

105

training time increases when, in particular, the second and the fourth partitions of the

attributes are missing. When half the attributes are missing more training is required when

the first 50 attributes are missing — thus excluding the second group of 25 attributes.

Finally when only a quarter of the attributes are used it is evident from the cross-validation

performance, network size and training times which sets of attributes most aid the training

process.

6.2.5 Other methods

Finally other classification methods are considered: the performance of C4.5 (see table 6.21),

and then LDA and 5-NN (see table 6.22) are applied to the normalised and reduced attribute

data sets, and the classification performance is determined again by full cross-validation.

C4.5 creates a simple decision tree for classifying texts based on the complete data (see figure

6.6). However, the tree produced does not classify all of the training samples. This may be

due to the number of training examples being too limited to develop a more sound tree, or

the separations between the classes may not be performed by splitting the data on a single

attribute value. It should also be noted that the tree developed by C4.5 requires only seven

attributes to arrive at its performance. This also indicates, along with the previous pruning

and restricted attribute results, that not all of the attributes are required to achieve a

reasonably high performance level, if one below the highest possible.

that (relative pronoun) <= 0.20202 : romantics (51.0/1.0)

that (relative pronoun) > 0.20202 :

who (relative pronoun) <= 0.2 :

make <= 0.07407 :

1 	you <= 1.26147 : romantics (11.0/1.0)

1 	you > 1.26147 : renaissance (6.0)

make > 0.07407 :

1 	good > 0.06866 : renaissance (88.0)

1 	good <= 0.06866 :

I 	I 	is <= 1.05 : romantics (3.0)

I 	I 	is > 1.05 : renaissance (10.0/1.0)

who (relative pronoun) > 0.2 :

come <= 0.24661 : romantics (16.0)

come > 0.24661 : renaissance (3.0)

Figure 6.6 — Tree developed by C4.5 from the normalised tragedy data showing that, for example, 51
cases are correctly classified (and 1 incorrectly) as romantic play sections if the percentage of

occurrences of 'that' (relative pronoun) is below 0.20202 percent

In comparison to the performance of Cascor, C4.5, for the reasons stated above, seems to be a

relatively poor classifier for this task (see table 6.21). The training set and cross-validation

performances are well below those of Cascor: there is a difference of 10 percent between the

highest cross-validation performance for Cascor and that of C4.5. There is also evidence that

106

the reduction of the number of attributes affects the final performance of C4.5 through the

size of the final tree which has been developed. This reflects the usefulness of some groups

of attributes over others, however, unlike Cascor, the final 25 attributes seem to be of more

value to the C4.5 classification than the second group.

Table 6.21 - Results of C4.5 cross-validation of 188 data sets: the training and test set percentages, and
the nodes in the final tree

Data Set Training % Test % Nodes

Full normalised 98.5 87.2 15.8

1st 25% missing 98.9 85.6 17.3

2nd 25% missing 98 77.1 19.6

3rd 25% missing 98.5 87.8 15.8

4th 25% missing 98.8 75.5 22.9

1st 50% missing 98 80.3 19.5

2nd 50% missing 98.8 80.9 23.2

1st 25% left 98.6 70.7 33.8

2nd 25% left 98.4 82.4 23.1

3rd 25% left 96.4 73.4 29.1

4th 25% left 97.8 87.2 18.8

The performances of LDA and 5-NN are good on these data sets (see table 6.22). Although

the performance of both methods does not maintain the high standard achieved with

Cascor, these results further highlight how easy it is to solve this problem given the number

of attributes and examples.

Table 6.22 - Results of LDA and 5-NN on the various data sets: the training and test set percentages

Data Set Training %

LDA

Test % Training %

5-NN

Test %
Full normalised 100 96.81 100 93.62

1st 25% missing 100 95.21 100 96.28

2nd 25% missing 98.29 94.15 100 91.49

3rd 25% missing 99.98 95.74 100 93.09

4th 25% missing 100 96.28 100 94.15

1st 50% missing 97.8 91.49 99.37 90.96

2nd 50% missing 99.36 96.28 100 90.96

1st 25% left 91.91 85.11 100 84.04

2nd 25% left 97.68 95.74 99.99 89.89

3rd 25% left 89.31 81.91 99.37 83.51

4th 25% left 94.3 91.49 99.37 91.49

6.2.6 Summary and discussion

The classification of Romantic and Renaissance authors has been examined. Cascor is easily

able to build a suitable classifier without the use of hidden nodes, and cross-validation

107

shows that this high performance level is maintained for unseen cases. Hidden nodes may

be added only by forcing the network to over-train. Furthermore, a number of the attributes

may be removed resulting in a minor degradation in classification performance, indicating

that a large number of attributes is required to maintain high levels of classification.

Alternative methods are also able to solve the problem, although not to the same

performance level as Cascor.

There is little room for improvement by Cascor given that only a linear layer with squashing

functions is applied, and further examples are required to examine the non-linear nature of

the data set. As mentioned in chapter 5 the complexity of the data set is dependent on the

presentation of the data: what is measured and how many examples are available.

The two problems examined in this chapter demonstrate the difficulties present in finding

problems of a non-linear nature which are solvable. Insufficient examples will not allow

non-linear features to be extracted from the data, and unreliable data may mask complex

features. Attributes which are related in a non-linear manner may also avoid the need for

complex data features as these are directly obtainable from the inputs. This experience

indicates that having sufficient training examples and a concise group of measured

attributes which identify non-duplicated features is a method for ensuring complex data.

The final necessary feature is a problem of sufficient complexity — as defined by the

measured attributes and examples — which may only be determined by close examination
of the problem under consideration.

For the process of testing new methods the question becomes whether this is a sensible

strategy or whether constructing data is more practical.

108

7 Constructing data sets — two methods

Looking at real-world problems to aid in the development of new methods, as indicated in

the previous chapter, may be a long drawn out method for finding tasks which are difficult,

but not impossible, to solve. Thus it is necessary to turn to artificial benchmarks to create

problems to test the capabilities of learning systems. Although it will not be possible to

develop a single universal benchmark, as all systems have their own biases, it may be

possible to develop benchmarks which will at least challenge different learning methods,

particularly artificial neural networks, without being overly simplified.

One difficulty with generating tasks is limiting the data sets to be within sensible bounds.

For the purposes of the experiments in this chapter the following conditions will be met:

• two real-valued inputs — with values between –1.0 and 1.0, with the benefit

that the data sets may be displayed in a two-dimensional graph;

• two classes;

• no missing, redundant or irrelevant classes, attributes or examples; and

• a set number of training and independent test examples — 5000 in each set.

Thus variation in the data sets is performed by changing the underlying theory. Changes in

the number of inputs and outputs is a minor extension, and simulating problems

encountered in real-world situations — such as noise, redundant data and different numbers

of training examples — may also be incorporated. The great advantages of generating data

are that as many data sets as required may be produced to test a learning system, and that a

large number of examples may be used for testing the accuracy of the final classifier leading

to a true and accurate measure of the classifier performance.

The work on Voronoi data sets in §7.1 is published elsewhere [Waugh 1995b].

7.1 Voronoi data sets

This section examines the application of Voronoi diagrams [Okabe, Boots & Sugihara 1992]

to the generation of data sets which are more complicated, hence requiring the power of

learning methods such as multiple layer neural networks. This stems from Quinlan's

concept of P-type problems [Quinlan 1993b; Collier & Waugh 1994]. Okabe et al. give the

following informal definition of two dimensional Voronoi diagrams [Okabe, et al. 1992]:

Given a set of two or more but a finite number of distinct points in the Euclidean plane, we

associate all locations in that space with the closest member(s) of the point set with respect

to the Euclidean distance. The result is a tessellation of the plane into a set of regions

109

associated with the members of the point set. We call this tessellation the planar ordinary

Voronoi diagram generated by the point set, and the regions constituting the Voronoi

diagram ordinary Voronoi polygons.

In practice the term 'ordinary' may be dropped.

The generation of the data sets is simple: a number of generation points are randomly

constructed within the space under consideration, and assigned to a particular class. These

are then used to classify further random points in the feature space by their distance from

the generating points. These new points are used for the training and test sets. Thus

generator points are linked to form regions of a single class (for example see figure 7.1).

Figure 7.1 — an example of a two class Voronoi data set with five generators in each class

7.1.1 Data set characteristics

There are a number of important features which should be considered:

• the number of generating points actually needed;

• the number of generating points needed in each class;

• the number of edges needed to separate the generating points and hence the
classes, which is also proportional to the number of vertices; and

110

140

120 -- -

100 --

80

60

40

•
20 	• •

•-•
•■

.0
,,, •

70.

• Total generators

Total in class 1

• Total in class 2

	 Total edges

	 Total edge length

• the total length of the necessary edges.

The number and length of edges is dictated by the number and placement of generators, the

placement being random in this situation. If a number of trials are conducted to avoid

problems with the placement of generators, complexity in data sets is increased in two ways:

• increasing the total number of generators, as more subregions or extensions of a

class are generated; and

• using more equal numbers of generators in each class, increasing the complexity

over unequal numbers, corresponding with a greater likelihood of the

generators needing to be separated.

This complexity is indicated by the number of divisions within the data set (see §7.1.2).

Figure 7.2 demonstrates the first point by showing the averages over 100 randomly created

data sets of the needed generators, edges and edge lengths for each pair of generator

numbers. The number of generators is varied from 1 to 50 in each class, thus requiring the

generation of 5000 data sets. The number of edges needed grows asymptotically linearly, as

does the total length of the edges, which does so at a slower rate indicating in a decreasing

average length. This means that each edge has less effect on the final solution, but there are

more edges resulting in a higher complexity. Furthermore figure 7.2 shows that the

generators required are near the maximum possible in this case where an equal number of

generators are used in each class. For example with 50 generators in each class, over 96

generators out of a possible 100 are required on average over the generated data.

0 	5 	10 	15 	20 	25 	30
	

35
	

40
	

45
	

50
Generators per class

Figure 7.2 — Increase in complexity due to more generators being used for both classes

•

111

It should also be noted that the standard deviations of these measurements increase slowly

along with the number of generators, as is expected with a larger possible range of
numerical values.

Figure 7.3 demonstrates the second point. The data sets plotted have a total of 20 generators,

and the number in each class is altered from 1 and 19 to 10 and 10; with again the results

being the averages over 100 generated data sets. The shapes of the curves are similar to that

of the product of the number of generators used in each class. As the number of generators

in each class becomes more even, the total generators and the total edges reach their

maximum level. Simultaneously more generators of the lesser class, in this case class one,

are being used with a resulting increase in the percentage of the feature space falling under

that class, while the number of generators used from the other class falls. Furthermore,

when the classes are extremely uneven, few generators of the second class are used at all as

the feature space is dominated by that class and a large proportion of them are redundant.

25

20

Total needed
generators

Class 1 needed
generators

15

• Class 2 needed
generators 10

Generated edges

00
/-1

csr
N.

C6

,0
1-1

•Zi,
1-4

C•1 	1-1
1-1 	e—I

o ,
c; Generators per class
,

Figure 7.3 — Increase in complexity due to more balanced numbers of generators in each class, with a
total of 20 generators

7.1.2 Measuring complexity

It may be possible to determine an exact measure of complexity based on the data set

features. However, it is not obvious that this would be a sensible course of action given that

complexity is measured in different manners for different learning methods. What is

112

difficult for linear discriminant analysis, for example, may be trivial for artificial neural

networks, meaning that it would be of little value to create such a measure.

It is prudent to note at this point that the structure of Voronoi data sets should be easy for

perceptron-like architectures to solve, as the regions involved have piece-wise linear

boundaries. In comparison C4.5 should have difficulty in solving such problems given that

it separates regions by splitting the feature space on the basis of a single attribute value,

meaning that non-vertical or horizontal separations in the feature space are harder to

classify. Such separations will be common in Voronoi data sets.

Thus there are many possible definitions of complexity depending on the capability of the

learning system. Here the focus is on measures which will allow a relative comparison of

complexity by measuring features which lead to complexity within a data set, hence the use

of the number of generators in total and per class for the Voronoi data sets. This method of

measuring complexity is rough and does not take into account features such as convexity

and concavity. These are problematic in that some decision needs to be made as to whether

a slight concavity should be ranked as being as complex as a large indentation of one class

into a region of another within the feature space. Likewise connectivity of edges also needs

to be considered, as for example separate regions in feature space are more difficult to isolate

using artificial neural networks. A more complete measure of complexity should take these

factors into consideration, along with the capabilities of the various learning methods.

Nevertheless, the number of generators does give a relative estimation of complexity. For

example a rectangle and a dodecagon are both convex and fully connected, but to model a

dodecagon exactly requires more processing power, thus presenting a more complicated

problem. Further, considering that in this case the placement of generators is random, the

convexity and connectivity of the resulting regions should be averaged over a reasonable

number of trials.

Thus on average, it is possible to produce Voronoi data sets of arbitrary complexity by

simply increasing the number of generators in all classes and evening up the number of

generators between the classes. As it is possible, even though unlikely, to generate a data set

with an infinite number of generators which is in turn trivial to solve — namely that the

generators are collinear — it is necessary to perform tests over a reasonable number of data

sets rather than a single one. These data sets have the added advantages that the maximum

and minimum classification rates are known: namely 100 percent and the percentage of the

largest class respectively.

113

7.1.3 Simulation results on Voronoi data sets

Experiments are conducted using LDA, 5-NN, C4.5, back-propagation-style networks using

Quickprop (QP) as the update function, and Cascor to test the validity of these data sets for

the purpose of generating problems with differing underlying complexity for benchmarking.

Cascor is used with the parameters given in §2.4.1, except that a restricted patience period

(20 epochs) is used for both candidate and output training. Node patience is also used with

percentage changes in error of 1 and 5 percent over the installation of a single hidden node.

The Quickprop trials use the parameters outlined in table 7.1, with patience (1 and 5 percent

change) being employed to stop training and either 5 or 10 hidden nodes used. The results

of the artificial neural network learning methods on each data set are averaged over 100

machine clock-seeded trials to account for the random nature of the starting points. The

back-propagation experiments were also performed using a separate simulator developed

by the author.

Table 7.1 — Parameters used for Quickprop trials
Parameter Value

Total hidden nodes 5 or 10 nodes
Eta 0.1
Mu 1.75

Weight decay 0.0001
Patience percentage 1% or 5%

Patience length 20 epochs
Maximum epochs 1000 epochs

Activation functions Symmetric sigmoid
Activation function offset 0.1

The results take two forms:

• correctness of the final theory — measured by the percentage correct on the

unseen test set; and

• complexity or size of the final theory — measured, where appropriate, by the

number of hidden nodes for Cascor or Quickprop trials, or the number of tree

nodes for C4.5.

7.1.3.1 	Complexity by increasing generator numbers

The effect of increasing the number of generators in each class is considered. The results are

on three types of data sets with 4, 10 and 20 generators used for each class. 20 data sets of

each type were created, the classification results of which are averaged to give an indication

of the complexity of the data sets given the changes in the number of generators used (see

table 7.2 and 7.3). The standard deviation is also shown to give an indication of the spread

of the results for each data set.

114

In these experiments more generators lead to relatively less examples per generator, as the

number of training examples is fixed. Thus it is expected that the performance will drop

slightly, along with a drop due to the increasing complexity of the data sets.

Table 7.2 - Average and standard deviation of the percentage correct results on trials over 20 data sets
in each generator category (4 and 4, 10 and 10, and 20 and 20)

Method

4 and

Average

4

Stand. Dev.

10 and

Average

10

Stand. Dev.

20 and

Average

20

Stand. Dev.

LDA 75.7 11.2 67.1 10 59.6 6.7

5-NN 99 0.3 98.5 0.3 97.7 0.4

C4.5 98.5 0.5 97.7 0.5 96.4 0.5

Cascor 1% 93.8 6 88.1 4.5 77.4 4.4

Cascor 5% 93.3 6.8 87.3 5.8 77 4

QP 5 hid 1% 70.8 11.7 61.1 7.1 56.2 4.3

QP 5 hid 5% 70.9 12 61.4 7.1 56.1 4.2

QP 10 hid 1% 75.3 13.2 63.5 7.5 57.3 4.4

QP 10 hid 5% 75.6 13.3 63.4 7.3 57.3 4.1

Table 7.3- Average and standard deviation of the theory size where appropriate on trials over 20
data sets in each generator category (4 and 4, 10 and 10, and 20 and 20)

Method

4 and

Average

4

Stand. Dev.

10 and

Average

10

Stand. Dev.

20 and

Average

20

Stand. Dev. •

C4.5 111.2 33.1 165.8

,:::
,
 'I

,
m

 •
o
c
c
o

A
 -
,
 ,

251.6 31.7

Cascor 1% 5.9 1.7 5 3.9 1

Cascor 5% 5.3 1.8 4.5 3.5 0.9

QP 5 hid 1% 5 0 5 5 0

QP 5 hid 5% 5 0 5 5 0

QP 10 hid 1% 10 0 10 10 0

QP 10 hid 5% 10 0 10 10 0

LDA has a decreasing performance with the increasing complexity of the data sets, as would

be expected due to its inability to solve anything more than linearly separable problems.

This is also shown by the standard deviations of the LDA results: as the complexity increases

the deviation of the LDA results reduce indicating less capability to model the data sets as

greater structure is present within them.

5-NN performs very well, though the performance does drop slightly with harder problems

which contain more features and more edges where mistakes are likely to occur, with the

same number of examples overall to identify them. The high performance levels are due to

the algorithms natural bias in favour of these data sets where no noise is involved. This is

also shown by the low standard deviation in the data set results as the method is solving the

problems to near optimal levels. Note though that the performance is not perfect as the

training set does not contain the exact generating points - if it did, then 100 percent

accuracy is expected.

115

C4.5 also performs very well with a slight drop in performance as complexity is increased,

and a large increase in the size of the learnt theory as measured by the number of nodes in

the induced tree. The large tree indicates that the feature space has been segmented heavily

to classify the data sets. The large variation in the size of the induced trees is due to the

natural variation in the data sets, as well as complications forced by the inductive bias of the

algorithm: namely dividing classes based on a single feature. Although this style of problem

is P-type in nature, the large number of training examples allow C4.5 to successfully

separate the data set features, resulting in very good classification performance. If less

examples are available the performance would probably drop as C4.5 would develop much

simpler decision trees.

Cascor also performs well but degrades quickly with increasing complexity, which is further

indicated by a decrease in the deviation showing that the extra complexity affects the further

addition of hidden nodes: adding nodes becomes more difficult (see table 7.3). There is also

a corresponding drop in the size of the final theory as measured by the number of hidden

nodes. The drop in performance is accounted for as the trials were conducted using node

patience (see §3.1). As the data sets become more complicated the features become smaller,

as indicated by the average edge length (see figure 7.2), and correct classification of those

features results in less overall performance improvement. Thus Cascor stops training using

these node patience levels before all possible improvements have been made. The addition

of further hidden nodes may result in better solutions.

The advantage of employing node patience is that it stops the introduction of unnecessary

nodes. The obvious disadvantage is that helpful training may not occur. These alternatives

cannot be distinguished on the basis of training data only. The differences in the percentage

change used for node patience do not seem to have a significant effect on the final classifier,

though further variation of the parameters may result in performance improvements. These

data sets are difficult to apply node patience to as there is the possibility of very small

performance increases later on relative to the initial gains by earlier hidden nodes or the

simple perceptron-like output layer. This further points to the value of having a validation

set, if enough examples are available.

The performance of Quickprop as a representative of the back-propagation styles of

networks is very poor. The trials in most cases did not achieve better results than those

gained by LDA, and the standard deviation results are similar in nature, showing the

difficulties of increased complexity. Further increasing the number of hidden nodes, with

up to 20 hidden nodes being used, resulted in a small performance increase, and a very large

increase in the training time. Perhaps the cause of this is what Fahlman terms the 'herding

effect' [Fahlman & Lebiere 1989], whereby most of the hidden nodes are covering the major

errors as driven by the learning algorithm, without spreading out to cover more areas of the

116

feature space. An alternative explanation is that the architecture, being only a two-

processing layer network, may not be able to model the underlying function, although the

algorithm should achieve the performance level of LDA. A further explanation may be that

the algorithm has not been optimised sufficiently by the setting of parameters; although this

argument pales in comparison to C4.5, for example, which requires no parameter

adjustments. A final possibility is that there is some problem with the Quickprop algorithm

which produces poor results in some cases - this is to be examined in §7.3.1. Whatever the

reason, the performance of Quickprop on these problems is inadequate.

Finally the performance difference between the artificial neural network methods and C4.5

and 5-NN needs to be explained. The lack of performance by the network architectures is

unexpected given the bias of the methods toward solving Voronoi-style problems. This may

be explained by the lack of capacity in the neural network techniques, the natural bias of 5-

NN in solving such problems, and the large number of leaves of C4.5 trees indicating a high

segmentation of the feature space given the number of generators. Such a classification is

not natural, and most likely will not scale up to higher dimensions, and performance on

these data sets is likely to drop off more rapidly if the number of training examples is

reduced. These conjectures are supported by the results from chapter 6 where Cascor.

outperformed both 5-NN and C4.5.

7.1.3.2 Complexity by more even generator numbers

The change in complexity with differing numbers of generators between the classes is also

examined. This is tested by considering a number of generator combinations totalling .20

generators in both classes: 2 and 18, 4 and 16, 6 and 14, 8 and 12, and 10 and 10. The results

of trials using the methods mentioned above are outlined in tables 7.4 and 7.5, but only

Cascor with 5 percent node patience and one Quickprop trial with 5 hidden nodes and 5

percent patience are considered, as there is little variation in the alternatives tested

previously.

Table 7.4 - Average and standard deviation results of test set performance on trials over 20 data sets
in each generator category (2 and 18, 4 and 16, 6 and 14, 8 and 12, and 10 and 10)

Method

2 and

Av

18

SD

4 and

Av

16

SD

6 and

Av

14

SD

8 and

Av

12

SD

10 and

Av

10

SD

LDA 89.2 4 78.5 4.8 71.9 6.3 64.6 7.4 67.1 10

5-NN 99.3 0.2 98.9 0.3 98.6 0.3 98.5 0.3 98.5 0.3

C4.5 99 0.3 98.2 0.3 97.9 0.5 97.6 0.5 97.7 0.5

Cascor 94 2.9 89 4.6 87.8 5.1 85.5 4.6 87.2 5.6

Quickprop 84.6 7.9 71.1 6.3 64.1 6.8 59.6 6.8 61.4 7.1

The performance of LDA is improved, as would be expected, when the number of

generators in the classes are unbalanced. This corresponds to a large area of the feature

117

space being closer to the generators of the majority class, and it becomes simpler to perform

well under these circumstances. The performance mirrors closely the expected percentage of

the feature space under the largest class.

5-NN performs well again with the percentages correct on the unseen test set remaining

about the same high level given the natural bias of the method. The standard deviation of

the results does drop slightly as the data sets become more complicated. Whether this is a

chance occurrence or whether it indicates more consistent results obtained by nature of the

larger number of generator points leading to less erratic data sets is unclear from these

figures.

Table 7.5 — Average and standard deviation results of the theory size on trials over 20 data sets in
each generator category (2 and 18,4 and 16, 6 and 14, Sand 12, and 10 and 10)

2 and 18 4 and 16 6 and 14 8 and 12 10 and 10

Method Av SD Av SD Av SD Av SD Av SD

C4.5 69.7 21.2 119.4 16.8 150.2 29.1 170.4 24.6 165.8 36.6

Cascor 2.9 1 3.7 1.1 4.5 1.6 4.3 0.9 4.5 1.3

Quickprop 5 0 5 0 5 0 5 0 5 0

C4.5 also performs well with results near 100 percent correct. What generally alters is the

size of the learnt theory, increasing as the number of generators becomes more even,

indicating that the complexity of the data sets is increasing. The standard deviations of the

results back up these observations: the result for the test set classification rate does not

change greatly, and the spread of the size of the final theories increases with the additional

complexity.

The performance of the artificial neural network methods is also consistent with increasing

complexity as the performance of the methods decreases, whilst the number of hidden nodes

installed by Cascor increases and then drops off with further complexity. The trends are

evident, though not perfect, and results may be improved by measuring over more than 20

trials in each case.

7.1.4 Summary

It is possible to generate data sets of increasing complexity to test new inductive learning

methods by reporting average performance on specified problems, without biasing results

by considering an individual problem. Data set complexity is increased by the addition of

greater number of generation points, or by the evening up of the numbers of generators

between classes. The suggested method of generating data has been shown to hold over a

reasonable number of differing learning methods, although the biases of each method must

be taken into account. There is also a large background of Voronoi diagram theory to build

on, including areas on generalised [Okabe, et al. 1992] and temporal Voronoi diagrams

118

[Devillers, Cohn, Kedem & Schirra 1994]. Such data sets may be easily created and the

experiments replicated.

It would appear that such learning tasks are difficult for artificial neural networks. The

higher performance of 5-NN may be accounted for by a natural bias towards problems

formulated in this way. The higher performance of C4.5 is more of a surprise, given the

previous literature [Quinlan 1993b]. However these previous tests have centred on

problems using a total of 5 generators in 5 dimensional space, as opposed to up to 40

generators in 2 dimensional space. The differences between Cascor and C4.5 may alter with

alternative learning tasks using more attributes — an interesting area for future

investigation. Cascor easily outperforms the Quickprop-trained networks on these more

difficult domains. Nevertheless, the performance of the artificial neural network methods is

poor, indicating that these problems do effectively test such systems and show that further

improvement is possible. Further work may need to be completed to achieve the standards

of the other learning methods.

The data sets are biased in that they are all of a similar style which may aid one learning

method over another. However, all benchmarks do have some biases regardless of how

cleverly they are constructed and these data sets are capable of comparing similar methods

such as artificial neural networks. Voronoi data sets are able to represent a very large

number of data sets. A final concern is that the data sets are unrealistic in nature as the

examples are spread evenly over all the feature space, however this may be a benefit in that

matching the exact boundaries of such problems is a very difficult task.

7.2 Normal data sets

A further method has been developed to address the lack of realism exhibited by Voronoi

data sets. Instead of generating example points and classifying them due to their distance

from the various generation points, the generators are created with a position and a

standard deviation. New example points for training and test sets are then created by

selecting one of these generators at random and adding to that generator position variations

along each axis based on a normal distribution calculated by the generator's standard

deviation — thus giving changes around the generator, which becomes the mean of the

distribution. This gives the position of the new example in the feature space.

Thus example points are centred in a normal distribution around the generating points,

creating a normal data set, rather than example points for the training and test sets being

spread out evenly over the feature space. This in turn leads to overlap between classes, and

areas where no examples fall — a more realistic scenario. The correct classification for each

example is given by the generator which is originally selected.

119

Such data sets, unlike Voronoi data sets, are ill-matched to the capabilities of multi-layer

perceptrons as these methods form piece-wise linear boundaries. Data sets based on

Gaussian mixtures form quadratic decision boundaries. Rather than being a hindrance, this

is a benefit as it allows network training algorithms to be tested on hard problems. As such,

it is expected that comparisons to the performance of neural network methods on the data

sets will be poorer in relation to the results obtained on the Voronoi data sets.

There are a number of further assumptions with this generation process:

• the generators are within the bounds of —1.0 to 1.0, in two dimensional space;

• the generators are selected with equal probability, meaning that the number of

points associated with each generator is equal;

• the points used for training do not have to be within the —1.0 to 1.0 bounds;

• the same standard deviation is used for both axes, giving a round distribution

and meaning that the covariances in the multiple-valued normal distributed are

set to zero; and

• the standard deviations are generated from the even interval of 0.0 to 0.25.

7.2.1 Optimal classification

It is possible to calculate the optimal Bayesian classification for such data sets, given that

there is overlap between the classes. This gives an upper bound on the classification

performance, in the same way that the lower bound will again depend on the class with the

most examples. Unlike the Voronoi data sets where the maximum classification rate is 100

percent, the overlapping classes in these examples lead to a lower optimal classification rate.

To briefly reiterate the calculation of the Bayesian classification rate, the class of an example

is inferred by calculating the probability that the example falls in each class, and choosing

the maximum, hence applying Bayes' rule to select a particular class i:

P(C i I 	> P(Ci I sz) V j i 	 (7.1)

where P(x) represents the probability of x, P(x I y) represents the conditional probability of x

given y, C represents a particular class and t represents the inputs to the system. The

expression (7.1) may be calculated by employing Bayes' theorem:

p(y(I c i) P(c,) PK; 	=
I Ci) • 13(C)

v
(7.2)

The probability of each class without prior information is proportional to the number of

examples in each class, hence in this particular case this is proportional to the number of

120

generators. As is standard the denominator in (7.2) may be dropped when employed within

Bayes rule. Furthermore, given this is a normal distribution, the following formula holds:

P(R I C i) = 	ni 	±ROT vi ± 1 (x ±go

(27c) lvi

where n is the number of dimensions, V1 is the covariance matrix of class i, and pi is the

mean vector of class i. In this case n is two, and the covariance matrix is simplified with the

variance in the diagonal, and zeros elsewhere due to the assumption of a circular

distribution. A few minor steps gives the following expression from (7.3):

P(R I C i)= 1 e±-1-4(x± 	4- Pix)2 (Y ± giy)2)
2Tccy 	2ar

(7.4)

where pix, for example, is the mean in the x axis of class i, and r is the standard deviation

for class i. This may be used, along with the proportion of generators or number of

examples in each class, to calculate the Bayesian classification for each data set generated,

which in turn may be compared to the known classifications. The maximum classification

rate may thus be given exactly for each training and test set generated. A more detailed

discussion on Bayesian classification may be found in statistical texts (for example, [Duda &

Hart 1973; James 1985]).

7.2.2 Simulation results on normal data sets

Results are generated on similar data sets for the same methods as mentioned in §7.1.3.1;

though only one Quickprop trial - with 5 hidden nodes and a patience stopping percentage

of 5 percent - is considered. The results are given in tables 7.6 and 7.7, along with the

Bayesian classification rates for the data sets averaged over the 20 sets in each generator

grouping.

Table 7.6 - Average and standard deviation results of the test set classification rate on trials over the
20 data sets in each generator category, including the optimal Bayesian classification

Method Average

4 and4

Stand. Dev.

10 and

Average

10

Stand. Dev.

20 and

Average

20

Stand. Dev.

Bayesian 95.1 4.1 88.6 3.8 83.1 3.5

LDA 73.8 10.7 62.2 7.3 56.4 3.7

5-NN 94.6 4.4 87.6 4.1 81.7 3.6

• C4.5 94.4 4.7 86.6 4.4 80.3 3.6

Cascor 1% 91 5.1 79.3 5.9 70.5 3.4

Cascor 5% 91.2 5.1 78.9 6 69.3 4.3

Quickprop 71.5 12.2 56.1 4.2 51.4 1.3

The complexity of the data sets steadily increases as more generators are used (see table 7.6

and 7.7). This is evident from the results of the classification methods as well as the

(7.3)

121

Bayesian classification which indicates that there is increasing overlap between distributions

of examples. LDA again does not perform well as the number of generators increase. The

performance when there is only four generators in each class is reasonable, although this is

to be expected as there is more likelihood of gaps between the distributions of examples.

The spread of the results is also quite large indicating a lack of capability in solving the

problems.

Table 7.7 — Average and standard deviation results of the size of the final theory on trials over the 20
data sets in each generator category, where relevant

Method

4 and

Average

4

Stand. Dev.

10 and

Average

10

Stand. Dev.

20 and

Average

20

Stand. Dev.

C4.5

Cascor 1%

Cascor 5%

Quickprop

131.8

3.3

2.9

5

107

1.3

1.1

0

365.7

4

3.5

5

134.9

0.9

0.7

0

526

3.8

3.1

5

115.4

0.5

0.8

0

5-NN again performs well, though there is evidence that the results of the method fall off

more quickly than those for the Voronoi data sets, as is expected from this data set style.

This follows as the overlap between different classes increases. The spread of results is not

much larger than for the Bayesian classification. C4.5 also performs well, although again the

performance decreases rapidly with increasing complexity. This is accompanied by a

massive growth in the size of the final pruned trees necessary to classify the problems. The

spread of results here also increases in line with these larger results, indicative of the greater

variation possible with the tree size.

The performance of Cascor again is lower than that of 5-NN and C4.5, although the

performance drop with increasing data sets complexity is not as great as for the Voronoi

data generation method. The results show that there is little difference in the changes to the

node patience percentage. Cascor is not able to cope with the additional complexity and the

number of hidden nodes installed decreases when there are 40 generators in the feature

space. Quickprop also performs badly, not even reaching the performance level of LDA.

Initially the variation in classification performance is very high, but this decreases with

increasing data set complexity and a decrease in the ability of the network style to solve the

problems at hand.

7.2.3 Summary

A second method of generating data for benchmarking artificial neural networks is given —

normal data sets. This generates more realistic data sets than the Voronoi data generation

method in that the distribution of examples varies across the feature space; but loses some of

the properties and correspondence with the Voronoi diagram theory. The results indicate

122

that normal data sets are similar in nature to Voronoi data sets in that complexity may be

easily increased by the addition of generator points.

The current generation process is limited by the initial assumptions in that not all possible

normal distributions are allowed — only round distributions are produced currently — and

that the restriction of the standard deviation is ad hoc in nature. However, as there are so

many possibilities for generated data sets, some flexibility has been lost to facilitate

comparison. If further variations to the distribution pattern of the generators are required,

these may be simply included in the generation process. Note that linear transforms of the

generated data will result in data sets with any desired normal distribution.

A continuing problem with this generation of data is that methods with a natural bias

towards normally-distributed data may perform better. However, when used in conjunction

with the Voronoi data sets, good performance on data sets from both methods would

indicate a reasonably robust method, especially for the comparison of different artificial

neural network methods.

7.3 Application of benchmarks

Following on from the previous definitions of two artificial benchmarks, it is sensible to

apply them to the comparison of different learning methods. Specifically two different

groups of experiments are examined. Firstly, a comparison is made between the results

obtained by Quickprop and further trials using pattern presentation and batch back-

propagation. Here pattern presentation refers to the updating of the weights after the

presentation of a single randomly selected example; whereas batch refers to the updating of

the weights after the presentation of all the examples in the training set once only. Secondly,

a brief examination is made of some of the modifications to Cascor presented in Part I.

7.3.1 Quickprop and back-propagation

Quickprop was developed to speed the learning of back-propagation-style networks (see

§2.3.5). It was assumed that the error surface would approximate a quadratic function, and

following on from this a number of 'risky' assumptions are made, and changes developed,

to the process of updating the network weights [Fahlman 19884 The assumption that the

error surface fits a quadratic is valid near the minimum, as may be seen from the expansion

of the Taylor series. Along with the development of Quickprop, a number of other

modifications were introduced, most notably the activation function offset which stops the

derivative of the function ever reaching near zero when the squashing function is set hard

on or off. A number of papers have critically examined Quickprop [Lister 1994] and the

activation function offset [Adams & Lewis 1995] expressing doubts about their effectiveness

123

on all problems. This is a sensible point to test those criticisms using the benchmarks that

have been developed.

Experiments are performed in a similar fashion to those given earlier. Six experiments are

considered, testing the differences between pattern presentation and batch back-propagation

and Quickprop, and the use of activation function offsets or not. A total of 100 trials of each

data set are considered, with 5 percent patience over 20 epochs used as the stopping criteria

and 5 nodes in the hidden layer. Back-propagation using the steepest descent algorithm,

using both pattern presentation and batch methods, is applied with the parameters outlined

in table 7.8. The other Quickprop parameters are identical to those given earlier (see table

7.1). The results given are the averages over the 20 data sets for each generator set and for

each data set style: the same data sets as used previously to show the changes in complexity.

The actual results are the percentage correct on the unseen test set (see table 7.9) and the

number of epochs required for training (see table 7.10), given that there are hard limits of

1000 epochs maximum and 20 epochs minimum of training.

Table 7.8 — Parameters used for pattern presentation and batch back -propagation trials
Parameter Value

Total hidden nodes 5 nodes
Eta 0.1

Alpha 0
Weight decay 0

Patience percentage 5%
Patience length 20 epochs

Maximum epochs 1000 epochs
Activation functions Symmetric sigmoid

Generally the activation function offset is not beneficial (see table 7.9). Although it

occasionally aids batch back-propagation in finding a better solution, the results for pattern

presentation back-propagation and for Quickprop indicate that the inclusion of the offset

results in an inferior classifier. These results are consistent with previous theoretical work

[Adams & Lewis 1995].

The effectiveness of Quickprop is also called into question. Quickprop is on a par with batch

back-propagation when the activation function offset is used, and easily outperforms the

batch method when no offsets are used. However, at no stage did Quickprop outperform

the pattern presentation back-propagation algorithm, and the results appear to be

significantly worse (see §7.3.1.1). Performance differences of around 20 percent are not

uncommon, which is not encouraging given that the generalisation performance is the prime

goal of training. The stochastic nature of pattern presentation does assist in escaping local

minima and plateaus in the feature space, which is an advantage over the batch methods.

124

Table 7.9 - Comparison of Quickprop (QP), and pattern presentation (PP) and batch (B) back-
propagation (BP) on the generated benchmark data sets: results on the unseen test set showing average

(Av) and standard deviation (SD) over 20 different data set trials

Data style
and gen's

PPBP with
offsets

PPBP with
no offsets

BBP with
offsets

BBP with no
offsets

QP with
offsets

QP with no
offsets

Av SD Av SD Av SD Av SD Av SD Av SD

Voronoi

4 & 4 91.1 9.1 96.4 2.7 71.7 13 60.9 6 70.9 12 87.9 8.2

10 & 10 85.1 5 89.3 4.2 61.7 8.5 56.3 4 61.4 7.1 76.3 9.2

20 & 20 77.9 3.3 80.3 3.1 55.6 5.2 53.6 3.6 56.1 4.2 67.3 7.3

Voronoi

2 Sz 18 97 1.9 97.1 2.2 88.4 5.3 88.9 4.2 84.6 7.9 93.1 2.8

4 & 16 90.3 3.8 93.9 1.9 75.2 5.7 77.6 4.9 71.1 6.3 86.3 4.1

6 & 14 87 4 90.8 3.4 66.3 6.9 68.43 5.6 64.1 6.8 81.8 4.8

8 & 12 84.6 5.2 88.9 3.7 60.5 7.9 59.1 5.6 59.6 6.8 76 7.1

Normal

4 & 4 93.8 5.1 93.7 4.7 71.5 14.1 54.2 4.6 71.5 12.2 72.7 10.9

10 & 10 80.7 6.1 82 6.2 56.1 5.6 52 2.5 56.1 4.2 61.8 7.5

20 & 20 69.5 4.3 69.9 4.9 51 1 50.2 0.3 51.4 1.3 53.3 3.2

Table 7.10- Comparison of Quickpro (QP), and pattern presentation (PP) and batch (B) back-
propagation (BP) on the generated benchmark data sets: epoch results showing average (Av) and

standard deviation (SD) over 20 different data set trials

Data style
and gen's

PPBP with
offsets

PPBP with
no offsets

BBP with
offsets

BBP with no
offsets

QP with
offsets

QP with no
offsets

Av SD Av SD Av SD Av SD Av SD Av SD

Voronoi

4 & 4 713.1 302.9 577.5 318.3 999.7 1.6 58 40.4 947.9 155.9 303.3 107.5

10 & 10 269.2 213.4 182.7 201.9 937.7 176.7 42.2 25.2 990.7 21.5 296.9 88.9

20 & 20 81.3 24.3 67.1 21 895.6 244.8 38.1 24.8 980.9 29.8 317.5 104.6

Voronoi

2 & 18 801.5 227.5 440.7 270.1 947.3 154.3 20.3 0.9 880.6 225.4 488.1 142.8

4 & 16 450.6 245.8 232 189.9 1000 0 21.7 2 1000 0 442.5 122.1

6 & 14 315.3 237.7 150.7 99.2 1000 0 27.6 9.1 1000 0 370.9 121.1

8 & 12 280.3 217.2 133.9 109.1 978.7 91 36 19.2 987.4 31.6 367.2 116.1

Normal

4 & 4 212.1 235 120.9 207.4 841.5 296.6 38.2 30.1 861.1 227.7 162.9 78.4

10 & 10 103.5 63 64.9 24.7 751.6 318.4 32.5 11 889.6 177.8 154.9 37.2

20 & 20 47.2 7.2 46.6 9.1 317.3 314.9 25.5 6.3 605.6 344.8 135.2 33.2

The speed of training should also be considered (see table 7.10), especially as improving this

is the purpose of both Quickprop and the activation function offset. The activation function

offset, considering pattern presentation, batch and Quickprop learning, slows training

down. The pattern presentation back-propagation and Quickprop trials without the offset

are not only faster but, as mentioned previously, the results are much better. Although the

batch back-propagation trials with the activation function offset are better in terms of

125

generalisation ability, it is dubious whether the large amount of extra training required is

worth the performance increase.

The training speed performance of Quickprop in relation to the back-propagation methods

is also comparatively poor. Though the comparison with batch back-propagation is

favourable, the performance compared with pattern presentation back-propagation is not

good — far from being a major speed improvement. This poor performance may be

partially explained by the large size of the data sets. If a training set is doubled by

duplication of the examples then batch methods will require double the amount of training

presentations to achieve the previous performance level, whereas pattern presentation

learning will train with the same effort as before. This does not fully apply in this situation

as the examples in the data sets are not duplicated, although they may be clustered in the

feature space. The generalisation performance also has to be taken into account, which does

not help Quickprop in these comparisons.

7.3.1.1 	Significance of results

There are only a limited number of trials presented here on which to base the observations

given above, and as such the results should be interpreted carefully. To obtain a measure of

confidence in the results presented above statistical tests have been performed to give some

indication of whether the means of the samples gathered about each method are distinct. To

do this a homoscedastic two-tailed T-tests have been performed on the results of the three

distinct Voronoi data set groups involving even numbers of generators: namely 4 and 4, 10

and 10, and 20 and 20 (see table 7.11).

The main feature of the information displayed in table 7.11 is the large number of significant

differences between the data set results, on both the number of epochs and the percentage

correct on the unseen test set. In examining the percentage correct results it is evident that

the QP trials with activation function offsets consistently achieve similar results to that of

BBP with offsets. There is minor similarity between QP and BBP with no offsets on the 20

and 20 generator data sets, and between QP with no offsets and PPBP using the 4 and 4

generator data sets. Other than that the probabilities that the corresponding distributions

are the same are very small indicating that the results obtained are significant. The results

showing similarity are not strong indicators that the results are from the same distribution,

apart from the QP and BBP using the activation function offset.

There are also some similarities with regard to the number of epochs, but taking into account

the differences shown by the percentages on the unseen test cases, the only significant and

consistent difference is again with the QP and BBP results. There are some similarities

between PPBP styles of training on this epoch measure, and there is an interesting strong

126

similarity between PPBP with offsets and QP without offsets with regard to training time on

the 10 and 10 generator data sets even though the classification performance levels are

remarkably different.

Table 7.11 — Results of T-test comparison of means for the 4 and 4, 10 and 10, and 20 and 20 Voronoi
generator pair data sets: shown are the values for the test set performance comparison (lower
triangular) and the number of epochs of training (upper triangular) where each figure is the

probability (to 4 decimal places) that the distributions are the same

PPBP with
offsets

PPBP with
no offsets

BBP with
offsets

BBP with no
offsets

QP with
offsets

QP with no
offsets

PPBP N/A 0.1756 0.0001 0 0.0038 0

PPBP NO 0.0175 N/A 0 0 0 0.0008

BBP 0 0 N/A 0 0.1459 0

BBP NO 0 0 0.0018 N/A 0 0

QP 0 0 0.8364 0.0021 N/A 0

QP NO 0.2405 0.0001 0 0 0 N/A

PPBP N/A 0.1957 0 0 0 0.5958

PPBP NO 0.0062 N/A 0 0.0037 0 0.0261

BBP 0 0 N/A 0 0.1094 0

BBP NO 0 0 0.0141 N/A 0 0

QP 0 0 0.9077 0.0078 N/A 0

QP NO 0.0006 0 0 0 0 N/A

PPBP N/A 0.0561 0 0 0

.<
©

C
o
o
 C

---..
Z

PPBP NO 0.0269 N/A 0 0.0003 0

BBP 0 0 N/A 0 0.1299

BBP NO 0 0 0.1568 N/A 0

QP 0 0 0.7589 0.0518 N/A

QP NO 0 0 0 0 0

Overall the results obtained, from this indication, are sufficiently significant.

7.3.2 Cascade-Correlation and modifications

Three modifications which are examined are the performance of the independent candidate

training, the application of node patience, and the application of pruning within Cascor.

Independent candidate training is examined as it is recommended as the best method for

training candidate nodes within Cascor (see §3.2). The use of node patience is also

examined, as up until now it has been used within the benchmarking experiments presented

in this chapter without examining its effect on the training results. It is expected that better

classification performance will be achieved with a cost of extra training (see §7.1.3.1).

Pruning of connections within Cascor (see §4.2) is also examined as a sensible way of

reducing connections.

127

Three experiments are conducted with the application of Cascor to the generated data sets

(see table 7.12): Cascor with node patience; Cascor with node patience and independent

candidate training; Cascor with node patience, independent candidate training and

connection pruning; and Cascor without node patience and with independent candidate

training. In the latter case a maximum of 15 candidate nodes are installed. The rest of the

parameters are the same as those outlined in §2.4.1. The pruning performed is absolute level

pruning using a saliency level of 0.01 for both candidate and output layer connections.

Table 7.12 - Comparison of Cascor modifications: the average and standard deviation (SD) of the
percentage correct are given

Data style
and gen's

Average

Standard

SD Average

Independent

SD

Independent

Average

pruning
and

SD Average

No patience

SD

Voronoi

4 and 4 93.3 6.8 97.2 3.7 97.1 3.5 98.3 1.4
10 and 10 87.2 5.8 92.8 5.6 92.3 5.7 95.8 1.7
20 and 20 77 4 84.6 4.1 84 3.9 91.2 2.2

Voronoi

2 and 18 94 2.9 97.4 1.3 97.5 1.3 98.2 1.3
4 and 16 89 4.6 94.4 2.5 94.3 2.7 96.4 1.7
6 and 14 87.8 5.1 93.7 3.2 93.4 3.3 93.4 11.2
8 and 12 85.5 4.6 92.8 3.1 92.5 3.6 95.5 1.5

Normal

4 and 4 91.2 5.1 93.4 5.2 93.4 5.2 94.1 4.8
10 and 10 78.9 6 83.8 4.6 83.7 4.6 86.7 3.6
20 and 20 69.3 4.3 71.6 5.1 71.1 5.1 80.1 3.3

The comparison of standard candidate training and independent candidate training

confirms the results from §3.2 (see table 7.12). Independent candidate training results in

more effective training which ensures that better and more stable candidate nodes are

produced; and, with the application of node patience, enables training to continue for longer

resulting in a much more complex and effective classifier. The use of pruning does not

appear to have a detrimental effect on the classification performance of the final classifier,

with most of the results being very similar.

Comparing the application of node patience, it is evident that no node patience and training

to install 15 hidden nodes results in better generalisation performance. Further training is

conducted without the node patience parameters, and as is expected better results are

achieved. Without node patience large amounts of unnecessary overtraining may be

performed. Indeed here the choice of limiting the number of candidates installed was made

after seeing the results of the node patience trials. If the limit which has been applied

throughout this thesis had been used, namely 25 hidden nodes, an extremely large amount

of unnecessary training may have been performed.

128

The results of the independent candidate training are encouraging as they show that Cascor

may solve these problems with accuracies closer to the performance levels of C4.5 and 5-NN.

The number of connections required to obtain the final solutions also presents an interesting

picture (see figure 7.13). Standard Cascor, which performs less effective training than

independent candidate training, requires far fewer connections in the solutions developed,

as is expected. Pruning is very effective at reducing the number of connections, and, as

mentioned previously, does so without any drop in training performance. The standard

deviation results also show that the final number of connections used is much more stable

using pruning, indicating more consistent networks. Not using node patience results in

usually very large networks which, although better classification performance is obtained,

are much more complicated than those obtained by using node patience.

Table 7.13 - Comparison of Cascor methods: the average and standard deviation (SD) of the size of
the final theory in connections are given

Data style
and gen's

Standard

Average SD Average

Independent

SD

Independent
pruning

Average

and

SD

No patience

Average SD

Voronoi

4 and 4 50.2 19.7 138.2 60.4 101.8 37.2 183.9 5.4

10 and 10 38.8 11.6 123.4 50.5 82.5 30.3 186 0

20 and 20 29 7.5 75.6 29.4 55.8 17.5 186 0.

Voronoi

2 and 18 25 8.2 68.7 32.1 58.2 21 185.1 2.9

4 and 16 31.5 9.4 96 33.9 74.3 26.7 186 0

6 and 14 40.2 15.7 131.9 56.9 89.7 32.6 180.9 22.8

8 and 12 37.2 8.1 127 42.8 87 27.1 186 0

Normal

4 and 4 24.6 9.7 32.2 14.8 29 14 185.8 1.5

10 and 10 28.9 5.8 46.3 9 40.9 8 186 0

20 and 20 25.3 6.1 31 9.5 26.9 7.7 186 0

7.3.2.1 	Significance of results

It is again worth checking the significance of these results. T-tests have been applied to the

results of the Cascor trials on the Voronoi data sets with an even number of generators.

These calculations are presented below (see table 7.14).

The immediately evident point is the high relationship between the independent patience

methods with and without pruning. The figures indicate that the results on the percentage

correct are very close, where as the number of connections show only a loose matching.

There are a number of similarities between the classification rates, though only very weak,

on the 4 and 4 generator data sets. These relationships tend to diminish as the number of

129

generators increase as would be expected, given that there is much more possible variation

within the data sets.

The important point is that these relationships — apart from that between the pruned and

unpruned independent node patience trials — are very weak. The remainder of the figures

suggest a good separation between the distributions of the results around each data set style,

and that the results obtained are significant.

Table 7.14 — Results of T-test comparison of means for the 4 and 4, 10 and 10, and 20 and 20 Voronoi
generator pair data sets: shown are the values for the test set performance comparison (lower

triangular) and the number of connections (upper triangular), where each figure is the probability (to 4
decimal places) that the distributions are the same

Standard Independent Ind Prune Ind No Pat

Standard N/A 0 0 0

Independent 0.0284 N/A 0.0017 0.0272

Ind Prune 0.0299 0.9530 N/A 0

Ind No Pat 0.0025 0.2185 0.1796 N/A

Standard N/A 0 0 0

Independent 0.0035 N/A 0.0035 0
Ind Prune 0.0075 0.7807 N/A 0

Ind No Pat 0 0.0294 0.0127 N/A

Standard N/A 0 0 0

Independent 0 N/A 0.0137 0
Ind Prune 0 0.6656 N/A 0

Ind No Pat 0 0 0 N/A

7.3.3 Summary

Pattern presentation and batch back-propagation have been compared with the Quickprop

algorithm, and the Quickprop update does not seem to yield the expected performance

improvements. Likewise the trials performed compared the application of an activation

offset, and this is more likely to result in worse generalisation and slower convergence times

than the use of standard activation functions without the modification.

The trials conducted here may be criticised in that only simplistic algorithm parameters have

been used, with no search for the best possible settings. This may produce effects which are

larger than necessary, which is a valid criticism. However, through experience it is assumed

that the parameters selected will give reasonable results. Regardless, it is unlikely that such

large differences as were shown above could be accounted for by the modification of the

algorithm parameters. Indeed, an algorithm which requires such extensive parameter

modification is not generally practical.

130

The modifications to Cascor have also been shown to be effective. The independent

candidate training is a substantial improvement over the standard method of candidate

training. Although node patience does not necessarily produce better results than training

to a set number of hidden nodes, the results indicate that the method is able to stop

substantial overtraining and give an indication of how many hidden nodes are actually

required. Pruning of connections as developed in 0.2 results in significantly smaller

networks without degrading classification performance.

The results for both sets of experiments have also been shown to be statistically significant,

often to a very high level, giving confidence to the results presented here.

The methods for generating data sets are shown to be effective for the benchmarking of

different artificial neural network methods, including Cascor. They are especially useful as

complicated problems to test the need for hidden nodes which are required to solve these

problems.

131

8 Conclusion

The work of this thesis is summarised, and conclusions presented, followed by details of

further work to be performed.

Part one of the thesis examines various methods for changing network topology during

training. This is motivated by two concerns. It is a non-trivial choice to decide how a

network should be structured — if this can be automated, the use of neural networks would

become greatly simplified. Furthermore, it is not obvious that a static network will find a

solution — allowing a network to change its capacity during training gives an extra degree

of freedom. A survey of current literature indicates that increasing the number of hidden

nodes and reducing the number of connections between nodes are the most commonly used

methods of dynamically altering neural networks structure. Cascor is one algorithm for

growing hidden nodes which stands out as being effective and practical. Pruning

connections by the use of saliency measures also is effective in reducing network size.

Modifications to Cascor to produce faster training times are examined: in particular, node

patience and different methods of training the candidate pool. The effect of these

modifications is measured by comparison to standard Cascor on a number of benchmark

data sets. Chapter 3 introduces these changes made to the Cascor training mechanism.

Node patience is shown to be an effective method for controlling the size of Cascor network.

On tasks, such as the LED and Diabetes1 problems, node patience greatly improves the

speed of training, reducing the classifier size, and often increasing the generalisation

performance. Rollback — the removal of the last few hidden nodes added, after the

application of node patience to halt training — is also an effective addition which reduces

the size of the final network. Node patience is not a substitute for the use of a validation set

of examples used to halt training, but it is an effective technique for halting training when no

such validation set exists.

Chapter 3 concludes by introducing modifications to the training of the candidate pool. The

independent training of candidates often leads to more effective training resulting in less

hidden nodes being required overall. The benefits of using independent candidate training

outweigh the chances that a minimal amount of extra training may be performed. Subgroup

candidate training also exhibits these benefits to a lesser extent. Summing the candidate

correlations, as opposed to finding the maximum, to determine when to stop training the

candidate pool, may also perform more effective training but results in greater training

times.

133

Further modifications made to Cascor allow for the reduction of the number of connections

used within a network, as examined in Chapter 4. The first section of Chapter 4 shows that

the introduction of hidden nodes with limited connection strategies are able to modify the

network connection structure by guiding the development of the network. The second

section examines the use of connection pruning within Cascor networks, a more principled

approach than selecting an arbitrary hidden node connection strategy, whereby many

connections may be removed with no detrimental effect to the generalisation performance.

The methods of stopping the pruning process are also shown to be effective under these

conditions.

The main point which becomes evident through the work presented here is that few of the

problems used for benchmarking require the power of the Cascor algorithm to solve them,

whether this is due to the classes being separate or overlapping is unclear. This makes

comparison of the newly developed methods with standard Cascor very difficult. The

second part of this thesis examines the area of benchmarking in more detail, to determine

how Cascor, and other artificial neural network methods, may be more effectively tested.

In this part, two aspects of benchmarking are examined: benchmarking by performance on

real-world problems, and benchmarking by constructing new problems. It is noted that

there is wide scope for the examination of data sets, with a large number of modifications to

data sets possible in modelling real-world situations. There is also an obvious trade-off

between the two methods: on the one hand realistic data sets are required, and on the other

data sets which are complex are required to test learning methods. Chapter 5 started by

examining the features of data sets, details of previous work, and the results of some

previous benchmarking of Cascor.

Two new real-world problems are then examined in Chapter 6. The aim of this is two-fold:

to apply Cascor to the problems as a practical tool for finding solutions, and to see if these

problems present features which require the higher-order feature detectors available in

multi-layer perceptron styles of networks. The first data set, which involves determining the

age of abalone, was not solvable given the information available. What was solvable may be

done with very few hidden nodes being introduced into a Cascor network, implying that the

data set involves overlapping classes. Only minor improvements are made by the addition

of a few hidden nodes. The second data set involves the classification of plays as either

Renaissance or Romantic tragedies. This is different from the first data set in that there are a

large number of attributes compared with the number of examples available for training,

and the number of classes is much smaller. The data set is solvable from the examples

available, with a high cross-validation performance level, and this may be done using no

hidden nodes in an artificial neural network. A final point illustrated by Chapter 6 is that

134

the classification process is aided greatly by sensible pre-processing. Scaling of the data

particularly helps learning in artificial neural networks.

Following this examination of real-world problems, two new methods for generating

artificial data sets are examined in Chapter 7, where the complexity of those data sets may

be increased as required and as much data as is needed may be generated. Voronoi data sets

are shown to be capable of creating data sets of differing complexity. The second method,

normal data sets, creates a more realistic setting where examples are not distributed evenly

throughout the feature space. This method is also capable of generating data sets of

differing complexity where the maximum classification rate may be calculated.

Examples of these data generation methods are then used to compare standard artificial

neural network methods, as well as to briefly examine some of the modifications to Cascor

developed earlier. Specifically, pattern presentation and batch back-propagation, and

Quickprop are examined, and pattern presentation back-propagation is shown to be the

fastest and most effective training method on these problems. The use of activation function

offsets was also examined and the results indicate that their use is detrimental to learning.

Furthermore, the experiments on the Cascor modifications show that independent candidate

training produces much more effective networks and that pruning is able to reduce the

network sizes without affecting the classification performance. The application of node

patience is also examined and, although the results are not as good as no node patience, the

use of the method does greatly decrease the training time. At the very least, node patience

may be used to obtain an indication of how many hidden nodes are required to solve a

problem.

Thus, these methods of generating data sets result in problems which are difficult for Cascor

and other artificial neural networks to solve, without being completely unsolvable. They are

effective in benchmarking existing and new artificial neural network algorithms.

8.1 Further work

The results of the node patience experiments in Chapter 3 indicate that it would be valuable

to evaluate the use of validation sets in the stopping of training through all phases within

Cascor — stopping candidate and output layer training as well as the overall network

training. Improvements may also be possible by the use of more efficient algorithms within

Cascor, such as conjugate gradient methods [Moller 1993; Stone St Lister 1994] for weight

training, and OBS [Hassibi St Stork 1992] or PCP [Levin, et al. 19941 for pruning. In fact there

has been little work on benchmark comparisons of pruning methods, and such a study could

also include comparisons of the methods outlined in §4.2 for controlling the pruning of

connections. A detailed study of the performance of weight decay in removing connections

135

should also be included. Further investigation of error functions for classification or

regression may also be considered [Lister & Stone 1995].

It has been noted that Cascor has difficulties in solving function interpolation problems

[Fahlman 1993; Freeman 1994; Adams & Waugh 1995]. Prior to the commencement of the

work undertaken in this thesis there was an expectation that Cascade2 would become

available, an algorithm which trains candidates with the network error directly, similar to

previous work [Littmann & Ritter 19921, and which solves the difficulties experienced by

Cascor in function approximation problems. However, there has been no public release of

any such software or any description of the algorithm. Nevertheless, the changes to Cascor

presented in this thesis may be easily applied to any architecture which is similar to Cascor

in the way it structures networks, even if the training mechanisms differ slightly. Further

work may be performed on problems which have been identified, such as Quickprop

training [Squires & Shavlik 1991] and the freezing of weights [Ash 1989; Adams & Waugh

1995].

The work on real-world data sets may be continued. Specifically, there is a large scope for

the addition of further attributes to the abalone data, such as site information, to aid the

classification process. In particular, information about the site giving general characteristics

and information about ocean currents may play an important role — thus requiring

information about Tasmania's weather systems. Further work may be performed on the

authorship data set with regard to, for example, trying to separate Shakespeare from his

contemporaries. However this may be difficult without further examples to train on.

Extension of current work on artificial benchmarks may also be continued: firstly including

the generation of multiple classes, multiple attribute data sets and altering the number of

examples available for training. This may then be further expanded by the examination of

the effect of noise, redundancy, irrelevancy and so on. Furthermore, with the normal data

set construction, the generation of different variance matrices may be examined — including

different methods of generating the standard deviations. The generation of further data sets

more suitable for solution with neural networks may also be examined. In particular the

random generation of neural network structures may be used to generate random problems

solvable by neural networks. Again this needs to be constrained to stop a combinatorial

explosion of possible data sets.

Finally, applying the theory of Voronoi diagrams to generating other styles of data sets may

be an interesting area for further study. For example, function approximation problems and

temporal data may be developed. Existing real-world data sets may also be examined, using

Voronoi diagrams to reverse engineer a data set to find features and to estimate the data set

complexity.

136

Appendices

137

A Node patience results

This appendix presents the full results of the experiments on node patience. The details

presented here include the percentage correct on the unseen test set, the number of hidden

nodes required and the amount of training required as measured by the the number of

connection crossings. These results are the median results of 100 trials.

Table A.1.1 - Percentage correct on the unseen test set for the Monks1 data set

Patience length 1 2 3 4 5

97.92 97.69 97.69 97.45 97.92

Patience 97.57 97.92 97.69 97.92 97.69

percentage 97.69 97.92 97.92 97.92 97.92

97.92 97.69 97.69 97.69 97.92

97.92 97.69 97.69 97.92 97.69

Table A.1.2 - Hidden nodes required for the Monksl data set

Patience length 1 2 3 4 5
r-1 	

Cf 	
to

1 1 1 1 1

Patience 1 1 1 1 1

percentage 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Table A.1.3 - Connection crossings (millions) required for the Monics1 data set

Patience length 1 2 3 4 5

es
i
 m

 	
to

4.5 4.4 4.5 4.5 4.4

Patience 4.5 4.5 4.5 4.4 4.4

percentage 4.5 4.5 4.5 4.5 4.4

4.5 4.5 4.5 4.5 4.4

4.5 4.5 4.5 4.4 4.2

Table A.2.1 - Percentage correct on the unseen test set for the Monks2 data set

Patience length 1 2 3 4 5

C
A

 C
O

 -1, u
-

)

99.77 99.77 99.77 99.77 99.77

Patience 99.77 99.77 99.77 99.77 99.77

percentage 99.77 99.77 99.77 99.77 99.77

99.77 99.77 99.77 99.77 99.77

99.77 99.77 99.77 99.77 99.77

139

Table A.2.2 - Hidden nodes required for the Moriks2 data set

Patience length 1 2 3 4 5

■
-
■
 N

 M

•

tV u
•

)

1 1 1 1 1

Patience 1 1 1 1 1

percentage 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Table A.2.3 - Connection crossings (millions) required for the Monks2 data set

Patience length 1 2 3 4 5

,-,
 N

 M
 71, in

5.8 5.8 6.0 6.0 5.9

Patience 6.0 5.8 5.9 5.9 5.9

percentage 5.8 5.9 5.9 5.9 5.9

6.0 5.8 5.9 5.9 5.8

5.9 5.9 5.9 5.8 5.8

Table A.3.1 - Percentage correct on the unseen test set for the Monks3 data set

Patience length 1 2 3 4 5

,--1
 N

 M

88.77 88.16 88.31 89 88.89

Patience 89 88.66 88.19 88.66 88.08

percentage 88.19 88.19 88.77 88.1 88.54

88.13 88.54 88.08 88.66 88.43

88.43 88.54 88.31 87.96 88.19

Table A.3.2 - Hidden nodes required for the Monlcs3 data set

Patience length 1 2 3 4 5

Patience

percentage

,--i
 N

 C
O

 •1+
I

n

N
N

N
N

N

N
N

N
N

N

CV C
V

N

N

N

N
N

N
N

N

N
N

N
N

N

Table A.3.3 - Connection crossings (millions) required for the Monks3 data set

Patience length 1 2 3 4 5

r
-
I
 N

 M

•

tt,
i
n

16.3 17.2 16.5 16.4 16.5

Patience 15.9 16.2 16.4 16.6 16.1

percentage 16 16.8 15.9 15.8 16.2

16.7 16.1 16.7 16.9 16.5

17.5 . 16.8 16.1 17.3 16.1

140

Table A.4.1 - Percentage correct on the unseen test set for the Two Spirals data set

Patience length 1 2 3 4 5

,—
I
 c
l
 cn

 .1
4
 i n
 \
C

S
.

95.83 95.83 95.83 95.83 95.83

Patience 95.83 95.57 95.83 95.83 96.09

percentage 53.12 95.83 95.83 95.83 95.83

53.12 95.83 96.35 96.35 95.83

53.12 95.83 95.83 95.83 95.83

53.12 96.09 95.83 95.83 95.83

53.12 93.75 95.83 96.35 96.09

53.12 61.98 95.83 96.35 95.83

53.12 61.98 95.83 95.83 96.35

53.12 61.98 95.31 96.35 96.09

Table A.4.2 - Hidden nodes required for the Two Spirals data set

Patience length 1 2 3 4 5

■—
■

CSI
e
f

)
.1

'
U

•)
 \
C
 t

...

0
0

0

-,

C

)
,

12 12 12 12 12

Patience 12 12 12 12 12

percentage 1 12 12 12 13

1 12 12 12.5 12

1 12 13 12 13

1 12 12 12 12

1 12 12 12 12

1 2 13 12 12

1 2 12 12 12

1 2 12 12 12

Table A.4.3 - Connection crossings (millions) required for the Two Spirals data set

Patience length 1 2 3 4 5

0

■--I
N

C
n

,t,
t
r

.)
 \
O

N
C
O

C
N

,

126.5 124 124.8 127.7 126.2

Patience 125.4 126.4 122.6 122.3 125.5

percentage 1.7 126 125.1 125.9 131.1

1.7 125.7 126.9 130.5 125.6

1.7 126.4 128.1 126.4 131.6

1.7 123.6 127.3 126.3 122.1

1.7 114.3 127.3 124.5 120.5

1.7 4.3 129.3 127.2 120.9

1.7 4.4 127.1 121.1 126

1.6 4.5 128.9 125.4 120.9

141

Table A.5.1 - Percentage correct on the unseen test set for the Double Helix data set

Patience length 1 2 3 4 5

■—
■

N
c
n
T

zt,
I
f

)

100 100 100 100 100

Patience 100 100 100 100 100

percentage 100 100 100 100 100

100 100 100 100 100

100 100 100 100 100

Table A.5.2 - Hidden nodes required for the Double Helix data set

Patience length 1 2 3 4 5

Patience

percentage

r-1
N

e
r

)
71,

i
n

■0
 V

D
 V

D

V
D

 tr)
s.
0
 ■O

'0

s..
0
 s.
0
 s.
0
 in

 .0

■CD
■0

VD

VD

s
ID

4D
 V

D
 1

1
) V

D

■
0

Table A.5.3 - Connection crossings (millions) required for the Double Helix data set

Patience length 1 2 3 4 5

■—
■
N

en

71,

i
n

66.4 67.1 67.7 68.2 63.3

Patience 69 59.4 68.6 65.3 67.1

percentage 66 67.1 68.7 66.2 62.4

68.7 65.1 61.8 66.4 64.1

65.2 63.3 65.2 62.7 63.6

Table A.6.1- Percentage correct on the unseen test set for the LED data set

Patience length 1 2 3 4 5

,--1
 N

 m
 •z
r
 u-)

72 72.1 72 71.8 72

Patience 72 72.2 72.2 72.2 72.2

percentage 72 72.2 72.2 72 72

72 72.2 72.2 72 72

72 72.2 72.2 72.2 72

Table A.6.2 - Hidden nodes required for the LED data set

Patience length 1 2 3 4 5

1

<-
■ 20

Patience 1 12

percentage

CI) 1

N

C
I) 10

1 5

1 5

142

Table A.6.3 - Connection crossings (millions) required for the LED data set

Patience length 1 2 3 4 5

I
—

I
 N

 e
n

.1

,
I
f

)

108.8 605.2 1254.8 2225.9 3279

Patience 108.1 199.3 615.4 768.4 1552.5

percentage 109.7 196.2 284.8 398.4 1176.1
107 196.6 288.5 390.8 511.3

108.9 194.9 291.4 391 503.7

Table A.7.1 - Percentage correct on the unseen test set for the Cancerl data set

Patience length 1 2 3 4 5

1—
,
N

 C
O

.1.4

 in

95.98 95.98 95.98 95.98 96.55

Patience 95.98 96.55 95.4 95.4 95.98

percentage 95.98 95.98 95.98 95.98 95.98

95.98 95.98 95.98 95.98 95.98

95.98 95.4 95.98 96.55 95.98

Table A.7.2 - Hidden nodes required for the Cancerl data set

Patience length 1 2 3 4 5

Patience

percentage

r
.
N

e

n

'

e
f
I

lf)

If)
 L

t
)
 I

n

I
n

tn

I
f)

 I
f
)

I
f
)

l
f
)
 I

f
)

Le)
i
f
)
 L

f
)
 I

f
)
I

n

If)
I
f
)
 I

f
)
 I

f
)
I
f

)

L
f) 	

If)
 I

f
)
 I

f
)
 I

f
)

Table A.7.3 - Connection crossings (millions) required for the Cancer1 data set

Patience length 1 2 3 4 5

■
-
■

 N
 c
o

 ,z
r
 in

176.2 175.4 178.1 166.9 174.9

Patience 174.2 176.5 172.9 171.8 181.7

percentage 176.2 184.4 173.4 175.5 176.8

176.5 173.7 173.2 174.5 173.8

174.9 172.8 167.7 181.5 173.5

Table A.8.1 - Percentage correct on the test set for the Diabetes1 data set
Patience length 1 2 3 4 5

,--. es/
 I
n

 '1.4
i
n

69.27 69.27 68.75 69.27 68.75

Patience 71.61 68.75 68.75 69.27 68.75

percentage 75.52 68.75 69.27 69.27 69.27

76.04 68.75 69.79 69.79 68.23

76.04 69.79 68.75 69.27 69.27

143

Table A.8.2 - Hidden nodes required for the Diabetesl data set

Patience length 1 2 3 4 5

r
-
i
 N

ce)

.
4

1 I
n

25 25 25 25 25

Patience 24.5 25 25 25 25

percentage 3 25 25 25 25

2 25 25 25 25

2 25 25 25 25

Table A.8.3 - Connection crossings (millions) required for the Diabetesl data set

Patience length 1 2 3 4 5

,--1
 e
s
i co

 -4,
Lt)

1880.8 1955.3 1959 1959.7 1969.8

Patience 1798.5 1975.8 1941 1979.8 1941.5

percentage 104.2 1946.1 1944.6 1946.1 1956.7

63.3 1903.4 1963.8 1932.8 1964.9

62.2 1898.8 1972.4 1964.8 1960

Table A.9.1 - Percentage correct on the unseen test set for the Glassl data se

Patience length 1 2 3 4 5

r
-
■

 C
A

C
O

 c
r
 in

66.04 66.04 66.04 66.04 66.04

Patience 66.04 66.98 66.04 66.04 66.04

percentage 66.04 66.04 67.92 66.98 66.04

66.04 66.04 66.04 66.04 64.15

66.04 66.04 66.04 66.04 64.15

Table A.9.2 - Hidden nodes required for the Glassl data set

Patience length 1 2 3 4 5

<-
1
 N

C
O

 .Tr,
In

15 16 16 16 17

Patience 15 17 16 17 16

percentage 14.5 16 16 17 16

14 15 16 16 16

13 16 16 17 18

Table A.9.3 - Connection crossings (millions) required for the Glassl data set

Patience length 1 2 3 4 5

,—
I
 N

 Cr)
 •

c1+ L
0

379.0 414.9 411.29 403.0 444.7

Patience 373.7 412.5 392.1 403.9 421.0

percentage 336.9 399.6 385.3 416.8 402.1

339.3 363.6 396.9 413.9 403.8

314.6 385.7 396.8 432 426.8

144

B Candidate training results

This appendix presents the full results of the experiments on candidate training methods.

The details presented here include the percentage correct on the unseen test set, the number

of hidden nodes required and the amount of training required as measured by the the

number of connection crossings. These results are the median results of 100 trials.

A number of abbreviations are used within the tables. 'Cand' refers to the number of

candidates; 'Cand training' refers to the candidate training style; and 'HL patience' refers to

the hidden layer patience period. The four candidate training methods are referred using

'Stand' for standard, 'Ind' for independent, 'Sum' for summation, and 'Sub' for subgroup

candidate training methods.

B.1 Single activation function

Table B.1.1.1 - Percentage correct on the unseen test set for the Monks1 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind 'Sum

4 98.61 98.61 98.38 97.92 98.38 98.15 97.92 98.15 98.38

Cand 10 97.69 97.92 97.92 97.69 97.92 97.69 97.92 97.92 97.92

20 97.92 97.69 97.69 97.92 97.69 97.69 97.69 97.92 .' 97.92

Table B.1.1.2 - Hidden nodes required for the Monks1 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 1 1 1 1 1

1-4 	
I—

I 	
r- I

1

Cand 10

rs1 1

v--1 1 1 1 1 1

20 1 1 1 1 1 1

Table B.1.1.3 - Connection crossings (millions) required for the Monks1 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 1.89 1.52 1.67 1.85 1.9 1.96 2.36 2.42 2.5

Cand 10 3.83 2.46 3 3.23 3.38 3.57 4.52 4.78 5.01

20 5.38 3.98 5.13 5.49 6 6.47 7.91 8.71 9.35

145

Table B.1.2.1 - Percentage correct on the unseen test set for the Monks2 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 99.77 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77

Cand 10 99.19 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77

20 99.07 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77

Table B.1.2.2 - Hidden nodes required for the Monks2 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4

cr)
 Cc)

1 1 1 1 1 1 1 1

Cand 10 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1

Table B.1.2.3 - Connection crossings (millions) required for the Monks2 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 4.08 2.3 2.43 2.37 2.84 2.75 3.01 3.92 4.02

Cand 10 7.6 3.42 4.67 4.15 5.71 5.71 5.9 8.29 8.49

20 13.69 5.76 8.32 7.35 10.59 10.58 10.63 15.87 15.73

Table B.1.3.1 - Percentage correct on the unseen test set for the Monks3 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 88.54 88.43 88.89 88.19 87.96 88.19 88.66 88.66 88.43

Cand 10 88.66 88.89 89.12 88.43 88.89 88.43 88.31 87.96 88.43

20 88.66 89 89.35 88.89 88.54 89.35 88.19 88.43 88.43

Table B.1.3.2 - Hidden nodes required for the Monks3 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 2.5

N

N

 CV

Cand 10

•ct'

N

CV

N
 2

CV

C
V

CV

20 2

Table B.1.3.3 - Connection crossings (millions) required for the Monks3 data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 9.03 7.57 7.48 8.57 7.71 8.3 9.47 9.21 9.83

Cand 10 13.61 9.36 9.64 11.81 10.71 11.34 16.49 14.98 16.41

20 18.46 12.01 14.02 17.88 16.4 18.01 28.66 24.61 27.24

146

Table B.1.4.1 - Percentage correct on the unseen test set for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 59.9 85.94 64.06 95.31 94.79 94.79 95.83 95.31 95.31

Cand 10 59.38 95.31 63.02 95.31 94.79 95.31 96.09 95.83 95.83

20 60.16 95.31 65.63 95.31 95.31 95.57 95.31 95.31 95.57

Table B.1.4.2- Hidden nodes required for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 25 25 25 16 16 16 14 14 14

Cand 10 25 22 25 14 14 14 12 12 12

20 25 16 25 13.5 13 13 12 11 11

Table B.1.4.3- Connection crossings (millions) required for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 22.1 41.7 24.1 62.7 55.7 64.7 76.4 70.5 81.2

Cand 10 29.9 71 33.3 92.2 77.2 96.9 125.7 112.8 131.4

20 43.2 75.3 50.9 152.5 120.3 156.8 207.9 182.1 221.8

Table B.1.5.1 - Percentage correct on the unseen test set for the Double Helix data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind . Sum

4 49.25 50 48.88 100 100 100 100 100 .. 100

Cartd 10 50 82.75 50 100 100 100 100 100 100

20 50 100 49.75 100 100 100 100 100 100

Table B.1.5.2 - Hidden nodes required for the Double Helix data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 25 25 25

\
 0

\

0
 s
r+

Cand 10 25 25 25

\

'C

'C

'C

\ 0

20 25 12 25

Table B.1.5.3 - Connection crossings (millions) required for the Double Helix data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 49.86 50.96 49.85 28.82 31.81 33.54 38.96 39.7 41.41

Cand 10 67.98 74.36 68.21 47.43 49.08 54.05 65.38 71.51 72.44

20 98.8 72.62 98.91 74.18 83.23 92.52 111.14 116.06 133.11

147

Table B.1.6.1 - Percentage correct on the unseen test set for the Cancerl data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 98.28 98.28 98.28 96.26 95.40 95.98 95.98 95.98 95.98

Cand 10 98.28 97.13 98.28 95.98 96.55 95.98 95.98 96.55 95.98

20 98.28 96.55 98.28 96.55 96.55 95.98 95.98 95.98 95.98

Table B.1.6.2 - Hidden nodes required for the Cancerl data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 25 25 25

Lt)
L
(
)
 in

Cand 10 25 25 25

\D

V
)

I
f

)

L
t)

lf)

20 25 18 25

Table B.1.6.3 - Connection crossings (millions) required for the Cancerl data set

HL patience 10 20 50

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum

4 94.2 97.1 95 96.3 81.5 87.5 99.5 92.8 100.6

Cand 10 134.1 146.3 134.4 142.1 115.9 133.8 170.6 156.3 182.3

20 192.3 208.2 192.2 231.2 184 235.9' 336.8 269.9 323.6

B.2 Multiple activation functions

Table B.2.1.1 - Percentage correct on the unseen test set for the Monks1 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 99.77 100 100 100 100 100 100 99.65 99.77

Cand 10 99.31 99.42 99.77 99.54 99.31 99.88 100 99.77 100

20 98.61 98.38 98.61 98.61 98.73 98.84 98.15 98.61 98.84

Table B.2.1.2 - Hidden nodes required for the Monks1 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 1

i
-

I
i
-

I
r
i

1 1 1 1 1 1

Cand 10 1

1
-

1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

Table B.2.1.3 - Connection crossings (millions) required for the Monksl data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 1.58 1.57 1.52 1.72 1.86 1.92 2.27 2.54 2.58

Cand 10 2.53 2.29 2.56 3.1 3.19 3.46 4.31 4.47 4.99

20 4.15 3.45 4.26 5.13 5.34 5.97 7.83 8.05 9.17

148

Table B.2.2.1 - Percentage correct on the unseen test set for the Monlcs2 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 99.54 99.77 98.61 99.54 99.77 98.61 99.07 99.54 99.77

Cand 10 100 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77

20 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77

Table B.2.2.2 - Hidden nodes required for the Monks2 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 1

e
N

i
x
—

I

r-I

1

Cand 10

1
-1

 1

■—
.1

■••••1

,
-

I

e
.

I
l
 1

20 1 1

Table B.2.2.3 - Connection crossings (millions) required for the Monlcs2 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 4.4 2.38 5 4.76 5.11 6.17 8.01 7.95 4.48

Cand 10 3.54 3.19 3.91 4.39 4.94 5.66 6.17 7.14 8.24

20 5.67 4.26 6.64 7.14 7.97 10.23 10.59 11.77 15.46

Table B.2.3.1 - Percentage correct on the unseen test set for the Monks3 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub _Ind

4 88.31 89.12 89 88.77 88.89 88.66 88.19 88.19 88.66

Cand 10 88.54 88.31 88.31 87.73 88.54 88.54 87.96 88.89 88.77

20 88.77 88.89 88.19 88.19 89.12 88.89 88.77 87.96 88.43

Table B.2.3.2 - Hidden nodes required for the Monks3 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4

CA C
A

 C
A

Cand 10

en

Cs1

en

en

en

CV

C
V

en

20

Table B.2.3.3 - Connection crossings (millions) required for the Monks3 data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 7.76 7.91 7.48 7.94 8.79 8.1 11 10.68 9.27

Cand 10 11.62 8.94 10.31 12.72 13.13 11.77 17.69 19.15 16.17

20 15.19 13.64 13.4 19.01 16.61 16.97 27.42 27.41 25.2

149

Table B.2.4.1 - Percentage correct on the unseen test set for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 92.71 94.79 94.27 94.53 95.31 94.79 95.05 94.79 94.79

Cand 10 95.83 95.31 94.79 94.79 95.57 95.83 95.31 95.05 95.31

20 96.09 95.31 95.83 95.83 95.83 95.83 95.83 95.83 94.79

Table B.2.4.2 - Hidden nodes required for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 25 22 22 19 18 18 17 16 16

Cand 10 24 19 18.5 17 16 15.5 14 14 14

20 20 17 15 13 14 13 12 12 12

Table B.2.4.3 - Connection crossings (millions) required for the Two Spirals data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 74 67.1 71 82.8 74.3 76.1 97.2 84.6 92.8

Cand 10 114.6 76.9 79.1 116.7 106.7 98.9 157.9 151.5 139.9

20 151.8 95.4 84.6 146 151 130.3 136.9 206.3 205.8

Table B.2.5.1 - Percentage correct on the unseen test set for the Double Helix data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 100 100 100 100 100 100 100 100 100

Cand 10 100 100 100 100 100 100 100 100 100

20 100 100 100 100 100 100 100 100 100

Table B.2.5.2 - Hidden nodes required for the Double Helix data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 13

N
.
 ■0

■C

Cand 10 10

CO

N
.

N
.

VD

,ID

VD

,ID

20 9

Table B.2.5.3 - Connection crossings (millions) required for the Double Helix data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 54.84 39.92 35.67 35.25 37.18 38.08 47.29 46.41 48.05

Cand 10 64.91 36.83 3724 54.94 50.91 50.43 74.51 70.93 75.91

20 84.78 43.72 42.32 74.77 75.72 78.44 117.95 110.3 121.2

150

Table B.2.6.1 - Percentage correct on the unseen test set for the Cancerl data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 97.70 96.55 96.55 96.55 96.55 96.55 96.55 96.26 96.55

Cand 10 97.7 97.13 96.55 96.55 97.13 96.55 95.98 96.55 96.55

20 97.7 97.13 97.13 96.55 96.55 96.55 96.55 96.55 96.55

Table B.2.6.2 - Hidden nodes required for the Cancerl data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 25 14 13

If) 1
1

"
)
 in

Cand 10 25 23 9

ND

II)

Lt)

in

to)

20 25 25 7

Table B.2.6.3 - Connection crossings (millions) required for the Cancerl data set

HL patience 10 20 50

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind

4 122.7 112.1 116.5 86.1 77.6 78.9 99.6 97.3 92.9

Cand 10 163.6 188 85.3 128.7 115.6 116.3 171.7 167.8 169.6

20 226.7 247.4 89.6 201.2 192 178.8 305.4 307.7 275.4

151

C Limited candidate node results

This appendix details the full results from the experiments conducted on the introduction of

limited candidate nodes. Six of the nine problems are used: the Monks problems, Two

Spirals, Double Helix and Cancer1. The details presented here include the percentage

correct on the unseen test set, the total and number of limited hidden nodes required, the

total number of connections needed, and the amount of training required as measured by

the the number of connection crossings. These results are the median results of 100 trials.

Where there is no applicable result, the abbreviation 'N/A' is given.

Table C.1.1 - Percentage correct on the unseen test set for the Monks1 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 97.92

Layered 97.8 97.92 97.92 97.92

Minimal shortcuts 97.69 97.69 97.69 97.69

Two random connections 97.92 98.38 97.69 98.38

Completely random 97.92 98.26 99.42 98.15

Table C.1.2 - Hidden nodes added (and limited hidden nodes added) for the Monksl data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 1 (0)

Layered 1 (0) 1 (0) 1 (0) 1 (0)

Minimal shortcuts 1 (0) 1 (0) 1 (0) 1 (0)

Two random connections 1 (0) 1 (0) 1 (0) 5 (5)

Completely random 1 (0) 1 (1) 1 (1) 1 (1)

Table C.1.3 - Total network connections for the Monks1 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 50

Layered 50 50 50 50

Minimal shortcuts 50 50 50 50

Two random connections 50 50 50 57

Completely random 50 48 48 48

Table C.1.4 - Connection crossings (millions) for the Monlcs1 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 4.8

Layered 4.8 4.8 4.8 4.8

Minimal shortcuts 4.7 4.8 4.9 4.8

Two random connections 3.1 3.1 3.2 8.4

Completely random 4.0 4.1 4.3 3.3

153

Table C.2.1 - Percentage correct on the unseen test set for the Monks2 data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 99.77
Layered 99.77 99.77 99.77 99.77

Minimal shortcuts 99.77 99.77 99.77 99.77
Two random connections 99.77 99.77 99.77 75.23

Completely random 99.77 99.77 99.77 99.77

Table C.2.2 - Hidden nodes added (and limited hidden nodes added) for the Monks2 data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 1 (0)
Layered 1 (0) 1 (0) 1 (0) 1 (0)

Minimal shortcuts 1 (0) 1 (0) 1 (0) 1 (0)
Two random connections 1 (0) 1 (0) 1 (0) 25 (25)

Completely random 1 (0) 1 (0) 1 (1) 1 (1)

Table C.2.3 - Total network connections for the Monks2 data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 50
Layered 50 50 50 50

Minimal shortcuts 50 50 50 50
Two random connections 50 50 50 157

Completely random 50 50 50 50

Table C.2.4 - Connection crossings (millions) for the Monks2 data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 8.3
Layered 8.4 8.3 8.3 8.3

Minimal shortcuts 8.3 8.4 8.1 8.2
Two random connections 5.0 4.9 5.0 66.6

Completely random 7.0 7.1 7.6 7.3

Table C.3.1 - Percentage correct on the unseen test set for the Monks3 data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 87.96
Layered 88.31 87.96 88.43 88.31

Minimal shortcuts 87.96 88.19 88.43 88.19
Two random connections 88.89 88.89 88.43 89.81

Completely random 88.43 88.31 89.12 88.77

154

Table C.3.2 - Hidden nodes added (and limited hidden nodes added) for the Monks3 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 2 (0)

Layered 2 (1) 2 (1) 2 (1) 2 (1)

Minimal shortcuts 2 (0) 2 (0) 2 (0) 2 (0)

Two random connections 2 (0) 2 (0) 2 (0) 11.5 (11.5)

Completely random 2 (0) 2 (1) 3(2.5) 2.5 (2)

Table C.3.3 - Total network connections for the Monks3 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 69

Layered 69 68 68 68

Minimal shortcuts 69 69 69 69

Two random connections 69 69 69 89.5

Completely random 69 69 69 69

Table C.3.4 - Connection crossings (millions) for the Monks3 data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 15.0

Layered 14.6 14.5 14.6 14.2

Minimal shortcuts 15.1 14.7 14.7 14.8

Two random connections 10.8 10.6 11.1 28.4

Completely random 12.3 13.3 16.7 11.7

Table C.4.1 - Percentage correct on the unseen test set for the Two Spirals data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 95.83

Layered 95.83 96.09 95.31 78.13

Minimal shortcuts 95.83 95.83 96.35 96.88

Two random connections 95.83 95.83 95.83 83.33

Completely random 95.83 95.05 94.79 95.57

Table C.4.2 - Hidden nodes added (and limited hidden nodes added) for the Two Spirals data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 12 (0)

Layered 12 (2) 13 (4) 14 (9) 25 (24)

Minimal shortcuts 13 (1) 13 (2) 14 (7) 19.5 (17.5)

Two random connections 14 (1) 13 (1) 14 (3) 25 (24)

Completely random 13 (2) 13 (4) 15 (9) 15 (10)

155

Table C.4.3 — Total network connections for the Two Spirals data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 132
Layered 132 143 151.5 131

Minimal shortcuts 149 139 127 122
Two random connections 163 148.5 149 131

Completely random 145 139.5 153 157.5

Table C.4.4 — Connection crossings (millions) for the Two Spirals data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 112.8
Layered 106.9 111.2 124.9 88.9

Minimal shortcuts 95.3 92.4 97.8 95.3
Two random connections 87.6 87.2 90 71.8

Completely random 98.2 97.5 119.3 96.1

Table C.5.1 — Percentage correct on the unseen test set for the Double Helix data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 100
Layered 100 100 100 100

Minimal shortcuts 100 100 100 100
Two random connections 100 100 100 100

Completely random 100 100 100 100

Table C.5.2 — Hidden nodes added (and limited hidden nodes added) for the Double Helix data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 6 (0)
Layered 5 (1) 5 (3) 6 (4) 6 (5)

Minimal shortcuts 6 (1) 6 (3) 6 (3.5) 6 (4)
Two random connections 5 (0) 5 (2) 6 (3) 10 (10)

Completely random 5 (0) 5 (2) 6 (4) 6 (2)

Table C.5.3 — Total network connections for the Double Helix data set
Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 59

Layered 48 44 44 44
Minimal shortcuts 55 49 49 49

Two random connections 48 47 48 58

Completely random 48 47 52 50.5

156

Table C.5.4 - Connection crossings (millions) for the Double Helix data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 71.5

Layered 60.2 54.4 61.2 52.9

Minimal shortcuts 65.5 61.5 69.2 61.2

Two random connections 50.8 47.9 58.5 77.2

Completely random 55.9 54.9 67.7 48.4

Table C.6.1 - Percentage correct on the unseen test set for the Cancerl data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/ A N/A 96.55

Layered 95.98 96.55 96.55 96.55

Minimal shortcuts 96.55 95.98 95.98 96.55

Two random connections 95.98 95.98 95.98 95.4

Completely random 95.98 96.55 95.98 95.98

Table C.6.2 - Hidden nodes added (and limited hidden nodes added) for the Cancerl data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 5 (0)

Layered 5 (1) 5 (3) 5 (4) 5 (4)

Minimal shortcuts 5 (1) 5 (2) 5 (3) 5 (3)

Two random connections 5 (0) 5 (0) 5.5 (2) 12 (12)

Completely random 5 (1) 5 (2) 6 (5) 5 (4) 	.

Table C.6.3 - Total network connections for the Cancerl data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection

Layered

Minimal shortcuts

Two random connections

Completely random

N/A

87

87

90

87

N/A

86

85

90

83.5

N/A

80

84

80

85

?
 R

 1
 R

7d

Table C.6.4 - Connection crossings (millions) for the Cancerl data set

Connection strategy Half pool Forcing 10% Forcing 50% Full pool

Full connection N/A N/A N/A 156.3

Layered 160.8 168.4 169.6 159.4

Minimal shortcuts 160.8 172.3 169 162.4

Two random connections 123 122.2 139 174.9

Completely random 143.9 148.6 174.8 125.1

157

D Pruning results

The following section details tests on the absolute, percentage and relative methods of

pruning connections from Cascor networks. When required pruning is performed

separately on the candidate and output layers: Monks3, Cancerl, Diabetes1, Glass1 and LED

problems do not require the addition of candidate nodes. The details presented here include

the percentage correct on the unseen test set ('1st %'), the total number of connections

needed ('Con'), and the amount of training required as measured by the the number of

connection crossings ('CCs') measured in millions. These results are the median results of

100 trials. Where there is no applicable result, the abbreviation 'N/A' is given.

Table D.1.1 - Results of Monks1 problem on candidate node pruning

Prune Tst %
Absolute

Con CCs Tst %

Percentage

Con CCs Tst %
Relative

Con CCs

None 97.92 50 4.78 N/A N/A N/A N/A N/A N/A

0.0 97.92 48 6.61 N/A N/A N/A N/A N/A N/A

0.01 97.92 45 6.2 97.69 46 6.3 98.15 43 10.31

0.02 97.80 43 5.98 97.69 45 5.98 95.72 81 81.53

0.03 97.92 42 5.97 97.69 43 5.93 75.23 116 192.30

0.04 98.15 40 5.64 97.92 42 6.0 75.23 114 194.07

0.05 97.92 40 5.57 97.92 41 5.82 75.23 113 193.08

0.06 97.92 39 5.56 97.69 41 5.76 75.23 113 194.03

0.07 98.03 39 5.58 98.15 40 5.74 75.23 112 193.72

0.08 98.38 39 5.51 97.92 40 5.69 75.23 111 194.3

0.09 98.38 40 5.97 98.15 40 5.58 75.23 111 194.2

0.1 97.8 43.5 11.13 98.15 39 5.52 75.23 111 194.8

Table D.1.2 - Results of Monlcs1 problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 97.92 50 4.78 N/A N/A N/A

1
1

N/A

0.0 99.42 44 4.94 N/A N/A N/A N/A

0.01 99.54 44 4.91 99.31 4.95 99.54 4.9

0.02 99.77 43.5 4.86 99.31 4.96 99.54 4.91

0.03 99.54 44 4.89 99.54 4.91 99.54 4.92

0.04 99.54 44 4.96 99.54 4.9 99.07 4.89

0.05 99.54 44 4.86 99.54

4 4.84 99.54 4.98

0.06 99.77 43 4.88 99.54 4.96 99.54 4.87

0.07 99.54 43 4.85 99.54 4.88 99.54 4.94

0.08 99.54 43 4.92 99.77 4.85 99.54 4.8

0.09 99.77 43 4.98 99.31 4.92 99.54 4.93

0.1 99.54 43 5.01 99.54 4.97 99.54 4.91

159

Table D.2.1 - Results of Monks2 problem on candidate node pruning

Prune Tst %

Absolute

Con CCs Tst %
Percentage

Con CCs Tst %

Relative

Con CCs

None 99.77 50 8.29 N/A N/A N/A N/A N/A N/A

0.0 99.77 50 10.95 N/A N/A N/A N/A N/A N/A

0.01 99.77 47 10.77 99.77 49 10.70 86.69 143 386.57

0.02 99.77 44 10.83 99.77 47 10.94 63.43 119 354.19

0.03 99.77 43 10.74 99.77 45 10.75 62.27 112 348.78

0.04 98.61 43 11.43 99.77 44 10.70 62.27 111 349.53

0.05 98.38 52.5 21.95 99.77 43 10.79 62.27 110 350.57

0.06 94.68 67 46.65 99.77 43 10.54 62.27 110 350.80

0.07 91.90 87 91.42 99.77 43 10.90 62.27 109 352.20

0.08 89.58 112 186.51 98.61 50 21.24 62.27 109 352.71

0.09 80.67 136 377.53 98.38 49.5 20.69 62.27 109 353.68

0.1 69.44 128 371.58 96.88 60.5 34.48 62.27 109 352.48

Table D.2.2 - Results of Monks2 problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %
Relative

Con CCs

None 99.77 8.29 N/A N/A N/A N/A

<
 <

-2 -±--

N/A

0.0 99.77 8.43 N/A N/A N/A N/A N/A

0.01 99.77 8.64 99.77 40 8.87 99.77 8.89
0.02 99.77 8.71 99.77 40 8.68 99.77 8.50

0.03 99.77 8.65 99.77 40.5 8.82 99.77 8.78
0.04 99.77 8.65 99.77 40.5 8.75 99.77 8.85
0.05 99.77 8.66 99.77 40 8.70 99.77 8.75

0.06 99.77 8.77 99.77 40 8.96 99.77 8.57
0.07 99.77 8.72 99.77 40 8.74 99.77 8.68

0.08 99.77 8.83 99.77 40 8.92 99.77 8.89

0.09 99.77 8.79 99.77 40 8.76 99.77 8.57

0.1 99.77 8.77 99.77 40 8.55 99.77 8.76

160

Table D.3 - Results of Monks3 problem on output ayer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 96.76 32 0.73 N/A N/A N/A N/A N/A N/A

0.0 96.99 25 1.13 N/A N/A N/A N/A N/A N/A

0.01 96.99 25 1.10 96.99 25 1.13 97.22 25 1.11

0.02 96.99 25 1.15 97.22 25 1.08 96.99 25 1.12

0.03 96.99 25 1.12 97.22 25 1.11 96.99 25 1.11

0.04 97.11 25 1.10 96.99 25 1.14 96.99 25 1.12

0.05 96.99 24 1.11 97.22 24.5 1.11 97.11 25 1.12

0.06 96.99 25 1.12 96.99 25 1.16 96.99 25 1.14

0.07 96.99 24 1.10 96.99 25 1.13 96.99 25 1.10

0.08 97.22 24 1.14 97.11 25 1.15 96.99 25 1.11

0.09 97.22 24 1.10 96.99 25 1.11 96.99 25 1.14

0.1 97.22 24 1.10 96.99 25 1.09 97.22 24 1.11

Table D.4.1 - Results of Two Spirals problem on candidate node pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 95.83 132 112.8 N/A N/A N/A N/A N/A N/A

0.0 95.83 124.5 130.0 N/A N/A N/A N/A N/A N/A

0.01 95.83 104 120.0 95.83 115 129.5 95.31 99 124.9

0.02 95.83 100 128.6 95.31 107.5 115.6 95.31 96.5 163:4

0.03 95.83 96.5 133.2 95.57 106.5 124.7 94.79 106 2565

0.04 96.61 93.5 139.7 95.83 102.5 121.6 93.23 111 338.6

0.05 95.83 95 151.3 95.31 101.5 122.1 87.24 104.5 361.8

0.06 95.83 92 149.7 95.83 102 125.3 82.29 100 368.1

0.07 95.83 93.5 177.6 95.83 96 123.9 79.17 98 355.6

0.08 94.79 94 189.9 95.57 96 126.2 72.14 93 365.6

0.09 94.79 98.5 219.3 95.83 95 126.3 70.83 91 358.0

0.1 94.79 101.5 260.1 95.83 99.5 134.4 66.15 88 354

161

Table D.4.2 - Results of Two Spirals problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %
Relative

Con CCs

None 95.83 132 112.8 N/A N/A N/A N/A N/A N/A

0.0 95.31 131 104.4 N/A N/A N/A N/A N/A N/A

0.01 95.83 131 109.8 95.31 147 116.4 95.83 139 113.7

0.02 95.83 131 110.7 95.83 132 113.6 95.31 132 116.3

0.03 95.31 131 110.7 95.83 131 108.4 95.31 131 110.3

0.04 95.31 131 111.9 95.83 132 107.5 95.31 131 106.8

0.05 95.83 132 112.8 95.57 131.5 110.1 95.57 131 112.3

0.06 95.83 131 111.8 95.83 132 108.5 95.31 146.5 117.0

0.07 95.83 132 110.6 95.83 146.5 115.9 95.31 132 114.0

0.08 95.83 138.5 116.9 95.83 131 106.0 95.83 132 113.0

0.09 95.31 130 110.1 95.31 131 109.2 95.83 131.5 111.1

0.1 95.83 130.5 111.1 95.31 130 100.5 95.83 131 110.8

Table D.5.1 - Results of Double Helix problem on candidate node pruning

Prune Tst %
Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative
Con CCs

None 100 59 71.5 N/A N/A N/A N/A N/A N/A

0.0 100 48 75.19 N/A N/A N/A N/A N/A N/A

0.01 99.5 46.5 76.41 100 48 74.65 100 49.5 81.86

0.02 99.5 50 82.95 100 48 76.11 99.5 46.5 85.25

0.03 100 50 83.93 100 50 77.08 100 48 112.84

0.04 100 48 84.85 99.75 50 80.02 100 57 190.74

0.05 100 48 85.49 99.13 49 81.84 99.5 84 456.30

0.06 100 47 86.25 99.63 50 82.65 98.88 95 543.24

0.07 100 47 88.28 100 48 82.83 95.75 95 566.72

0.08 100 47 91.37 99.5 46 80.98 97.38 94 583.94

0.09 100 47 93.47 99.25 47.5 86.46 87.63 92 594.75

0.1 100 52 106.58 100 48.5 86.08 80.5 91 607.40

162

Table D.5.2 - Results of Double Helix problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 100 59 71.5 N/A N/A N/A N/A N/A N/A

0.0 100 58 67.68 N/A N/A N/A N/A N/A N/A

0.01 100 48 64.17 100 58.5 68.24 100 59 69.43

0.02 100 59 69.74 100 59 69.52 100 48 63.21

0.03 100 59 70.00 100 59 70.20 100 59 70.63

0.04 100 57 66.70 100 59 70.00 100 59 70.37

0.05 100 59 68.34 100 58 69.86 100 59 69.76

0.06 100 59 68.45 100 59 68.51 100 59 72.86

0.07 100 48 62.08 100 58 69.72 100 56.5 68.63

0.08 100 48 65.99 100 59 70.54 100 59 69.17

0.09 100 59 69.44 100 58 68.06 100 59 70.36

0.1 100 58 68.91 100 59 69.67 100 59 69.16

Table D.6 - Results of LED problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 72 80 31.7 N/A N/A N/A N/A N/A N/A

0.0 72.4 71.5 47.4 N/A N/A N/A N/A N/A N/A

0.01 72.4 71 47.0 72.2 71 47.2 72.4 72 47.9

0.02 72.4 71 46.7 72.3 71 46.8 72.2 71 46.8

0.03 72.4 71 47.2 72.2 71 46.8 72.4 71 47.1

0.04 72.3 72 46.4 72.2 72 46.8 72.4 71 47.6

0.05 72.4 71 46.7 72.2 71 47.1 72.4 72 47.1

0.06 72.2 72 47.3 72.4 72 47.5 72.2 71 46.9

0.07 72.2 71 47.0 72.3 72 47.3 72.4 71 47.1

0.08 72.4 71 46.6 72.4 71 47.0 72.4 71 46.8

0.09 72.4 72 48.2 72.2 72 46.8 72.4 71 47.1

0.1 72.3 71 47.3 72.4 71 47.1 72.4 71 46.8

163

Table D.7 - Results of Cancerl problem on output ayer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 98.28 20 2.99 N/A N/A N/A N/A N/A N/A

0.0 98.28 20 4.00 N/A N/A N/A N/A N/A N/A

0.01 98.28 20 3.97 98.28 20 3.98 98.28 20 3.93

0.02 9828 20 3.95 98.28 20 3.97 98.28 20 4.08

0.03 98.28 20 4.03 98.28 20 4.01 98.28 20 4.03

0.04 98.28 20 3.97 98.28 20 4.04 98.28 20 4.03

0.05 98.28 20 4.05 98.28 20 4.01 98.28 20 3.96

0.06 98.28 20 3.88 98.28 20 3.95 98.28 20 3.97

0.07 98.28 20 4.01 98.28 20 4.03 98.28 20 4.07

0.08 98.28 20 4.05 98.28 20 3.96 98.28 20 4.02

0.09 98.28 20 4.07 98.28 20 4.07 98.28 20 3.99

0.1 98.28 20 4.09 98.28 20 4.02 98.28 20 4.02

Table D.8 - Results of Diabetes1 problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs 1st %

Relative

Con CCs,

None 77.08 18 3.40 N/A N/A N/A N/A N/A N/A

0.0 77.08 18 4.49 N/A N/A N/A N/A N/A N/A

0.01 77.08 18 4.55 77.08 18 4.67 77.08 18 4.59

0.02 77.08 18 4.53 77.08 18 4.62 77.08 18 4.59

0.03 77.08 18 4.58 77.08 18 4.55 77.08 18 4.59

0.04 77.08 18 4.51 77.08 18 4.42 77.08 18 4.58

0.05 77.08 18 4.6 77.08 18 4.4 77.08 18 4.45

0.06 77.08 18 4.48 77.08 18 4.62 77.08 18 4.47

0.07 77.08 18 4.5 77.08 18 4.53 77.08 18 4.57

0.08 77.08 18 4.51 77.08 18 4.53 77.08 18 4.58

0.09 77.08 18 4.62 77.08 18 4.57 77.08 18 4.52

0.1 77.08 18 4.59 77.08 18 4.54 77.08 18 4.56

164

Table D.9 - Results of Glassl problem on output layer pruning

Prune Tst %

Absolute

Con CCs Tst %

Percentage

Con CCs Tst %

Relative

Con CCs

None 66.04 60 3.13 N/A N/A N/A N/A N/A N/A

0.0 64.15 58 4.33 N/A N/A N/A N/A N/A N/A

0.01 66.04 58 4.34 65.09 58 4.21 66.04 58 4.23

0.02 66.04 58 4.37 66.04 58 4.18 66.04 58 4.39

0.03 66.04 58 4.3 66.04 58 4.3 66.04 58 4.28

0.04 66.04 57 4.36 66.04 58 4.27 64.15 57 4.21

0.05 66.04 57 4.28 66.04 57.5 4.29 66.04 57 4.33

0.06 65.09 57 4.11 66.04 58 4.28 66.04 58 4.28

0.07 66.04 57 4.22 66.04 58 4.33 64.15 58 4.23

0.08 65.09 57 4.38 66.04 57 4.3 66.04 57.5 4.21

0.09 66.04 57 4.26 66.04 58 4.34 66.04 58 4.18

0.1 66.04 57 4.31 66.04 58 4.25 66.04 58 4.25

165

E TasCas — a Cascade-Correlation simulator

This is the User and System Manual for the TasCas Cascade-Correlation artificial neural

network simulator. The system options, data format, output and error are described, along

with details relevant to the code structure and assumptions made in the development of the

package. Examples are presented throughout.

This is a slightly abridged version of the full technical report TR95-9, from the Department

of Computer Science at the University of Tasmania. Part one of the technical report, the

User Manual, entails §E.2 to §E.5, part two entails §E.6 to §E.8, and the appendices to the

technical report are presented in §E.A to §E.D.

E.1 Introduction
This document outlines the various facilities and structure of the TasCas Cascade-

Correlation (Cascor) simulator, version 4.0, developed at the University of Tasmania. In
writing this manual it was assumed that the reader has a fair understanding of the Cascor

algorithm [Fahlman & Lebiere 1989] and artificial neural networks in general. The details in

this text specifically relate to the simulator, and where required, references are given to

relevant literature.

TasCas implements the Cascor algorithm, relying on Quickprop [Fahlman 1988a] for the

actual weight training, and using the C4.5 data set format [Quinlan 1993a] for training and

test sets. This format has been extended to allow for continuous-valued outputs (see §E.A).

The simulator has had many features added to the original algorithm [Fahlman & Lebiere

1989].

This document is divided into two major parts. Part one is the User Manual which details

information necessary to use the system. This includes an overview of the data format, the

possible inputs to the system, the simulator output, and possible simulator errors. Part two

is the System Manual detailing how the code is structured, any assumptions made during

development, and planned future improvements to the system. The first two sections of this

part should be consulted before making any modifications to the code.

The code is written in ANSI C with few assumptions beyond the standard libraries (any

non-ANSI C code is detailed in §E.7). There are no requirements for special path names. So

far the TasCas system has been successfully compiled on an IBM RS/ 6000, Sun system and

DEC Alpha machine, using IBM's xlc, Sun's acc, and DEC's cc compilers respectively, as well

167

as Gnu's gcc. Note, however, that this package has been developed as a by-product of thesis

work. It is stable, but not polished or complete code.

E.2 Network input I — data file

The program uses Quinlan's C4.5 data format [Quinlan 1993a] which requires the files

'<filestem>.names', '<filestem>.data' and '<filestem>.test' for the data information file, the

training set file and the test set file respectively. The name of the data files (the filestem) is

given via the command line directly after calling the executable. Data sets are read in from

standard text files. It is not necessary to provide a test set— it is only required to give a

measure of the network's generalisation on unseen cases. If the file is not present, no error

will occur.

The '.names' file contains the names of the final classifications, or an indication of a

regression problem, and details about the attribute values. For example, consider the

following contents of a '.names' file:

Red, Green, Blue.

Length: continuous.

Size: small, medium, large.

This indicates that the data files '.data' and '.test' — if the latter exists — contain examples

with two attributes — Length and Size — being classified into three classes — Red, Green

and Blue. The three classes are encoded as three output nodes — the network is trained to

give a high value for an output node when an example of the corresponding class is given.

If there are only two classes, they are still encoded as two output nodes.

The first attribute, Length, is a continuous numeric value and so is encoded as one input to

the network. The second attribute, Size, is an unordered discrete variable and is encoded as

three separate inputs, each input corresponding to an individual attribute value. When a

particular input value is received the corresponding node is set high and the rest are set low.

The only exception is when the attribute is binary-valued — then only one input to the

network is used, whereby a high node value represents one attribute value, and a low node

value represents the other. A high value is encoded as a 1, and a low value as a –1, for

discrete attribute values.

There are two further styles of attributes, for example:

Width: ignore.

Height: discrete 8.

The first may be simply used to avoid having to remove information from the data sets: by

setting the attribute to 'ignore' the information is read and ignored. The second is also for

168

unordered discrete variables, whereby the actual attribute values are not specified, and are

simply read from the data.

Examples in the '.data' and '.test' files have the same format: a list of comma separated

attribute values followed by the actual classification. For example, from the above

information, examples may have the following form:

2.0, Small, Red

5.43, Medium, Green

-1.0, Medium, Blue

Any white space is acceptable between values, and comments may be added to the end of a

line by placing a vertical bar' I' before the comment. Everything following the bar on that

line will be ignored. This applies to all the data files.

Regression problems have a slightly different format. The term 'continuous' is used in place

of the classes to indicate that a regression problem with one output is being described. At

this stage only one regression output is allowed under this implementation. This is a partial

implementation of the full Extended Quinlan format as outlined in §E.A.

E.3 Network input II— simulator options

TasCas uses command line options for the setting of the network parameters. The output of

the simulator is directed to standard output, apart from errors (directed to standard error)
and the final network weights. There are default settings for all options. Currently the

standard default values ensure that all Boolean options are false, hence they will not be used

without being set. For example, by default no output is produced unless specifically

requested by the user. The standard numeric default values for the options outlined in

§E.3.1 to E.3.7 are listed in tables E.1 and E.2 (see the header information when running the

system for completely up-to-date information).

Table E.1 — Default values for candidate and output layer training parameters
Parameter Candidate Value Output Value

Eta 1.0 0.35
Mu 1.75 1.75

Weight decay 0 0

Minimum pruning sensitivity 0.01 0.01

Pruning patience percentage 0.03 0.01

Patience percentage 0.03 0.01

Patience length 50 50

Epoch limit 500 500
Activation function offset 0.0 0.1

169

Table E.2 — Default values for network training parameters.

Parameter Value Parameter Value

Number of candidates 4 Network patience percentage 0.02
Candidate node limit 25 Network patience length 1

Special node force factor 1.1 Network trials 1
Number of random connections 2 Percentage allowable error bits 0.0

Default activation function Sigmoid Error threshold 0.4
Default connection strategy Full Expected value buffer 0.0

Allowable regression error 0.001

The command to run the simulator is then as follows:

tascas <filestem› [options]

Substitute the name of the simulator executable for 'tascas'. The filestem is the name of the

data files (see §E.2) and the network weight file (see §E.4.3).

The following points refer to the options listed below:

• when two options are in conflict, the latter option has priority;
• the order of the options may have an effect on the values given to a trial (see

§E.3.3.3);

• the actual option flags are given below within parentheses where '#' represents

an integer value, '#.#' represents a floating point number and brackets indicate
an optional input;

• when there are options which may be employed on both candidate and output

training, the convention is to use the same letters with the output training flags

in lower case and the candidate training flags in upper case;
• with the output options an upper case flag provides more information as

opposed to a lower case flag; and
• percentages given to flags are in decimal point form, for example a value of 0.1

is regarded as ten percent.

The output layer is fixed to use symmetric sigmoid functions as the activation functions for

each output node when performing classification tasks, and linear activation functions for

regression problems. Linear activation functions are not allowed in the hidden layer.

A tabulated summary of the options is given in §E.B.

E.3.1 Weight training options (Quickprop)

The following options alter the standard training parameters:

eta 	 learning rate for candidate (-E#.#) and output (-e#.#)

nodes;

170

MU
	 maximum growth factor (-M#.# and -m#.#) — no weight

step is allowed to be greater in magnitude than mu times

the previous step for that weight; and

offset 	 offset given to activation functions (-0# .# and -o#.#) — the

derivatives for the candidate activation functions do not

usually include an offset as this confuses the correlation

machinery, but an offset is included on the output layer by

default.

The weight updates are performed using the Quickprop algorithm with activation function

offsets where required [Fahlman 1988a1. There is no particular reason for using Quickprop

other than that historically Cascor has used this algorithm for weight updates.

E.3.2 Stopping training

There are two distinct levels of stopping training within Cascor: stopping the training of a

candidate or output layer, and stopping training of the entire network.

E.3.2.1 	Stopping layer training

The following (-s) options are used to stop training of network layers:

patience percentage

patience length

maximum epochs

if the percentage error improvement has been less than this

value over patience length epochs then stop training

(-sP#.# and -sp#.#);
length allowed for percentage change to occur (-sL# and .

-s1#); and
maximum epochs during layer training phase (-sM# and

-sm#).

The above options are described more fully in [Fahlman & Lebiere 19891. Note that the

minimum number of epochs for candidate training is two epochs rather than one —

allowing for an initial epoch which simply generates the correlations.

E.3.2.2 Stopping network training

The following (-S) options are used to stop overall network training either directly, or

indirectly by modifying the expected outputs and error bit threshold:

node maximum 	the maximum number of candidate nodes which can be

installed (-Sm#) — setting this does not force the use of

node patience;

171

node percentage 	use and possibly set node based patience percentage
(-Sp[#.#1) — halts overall network training by using

patience with the number of nodes installed as the time

period;

node length 	node patience length in the number of hidden nodes used

(-SP);

rollback 	 remove redundant hidden nodes after training stopped by

node patience (-Sr) — simply done by removing the nodes

and retraining the output layer;
errors 	 the maximum allowable error for regression problems

(-Se#.#);

error bits 	 set the percentage of allowable error bits (-Sb#.#) where

the total error bits are the number of outputs over all

examples incorrectly classified — this is a measure of

correctness used to halt the training of classification

networks;
error threshold 	this sets the allowable distance away from the required

result that a training example output value can be without

being recorded as an error (-St#.#) when using the number

of error bits to stop training of classification networks; and
expected value 	ability to change the expected value range or buffer of the

sigmoids (-Sx#.#) — for example a value of 0.1 would

change the expected values from the output layer sigmoids

from -0.5 and 0.5 to -0.4 and 0.4 (note the error threshold is

adjusted so that the threshold remains the same regardless

of the expected value).

The node patience options are described in detail in §3.1. The errors option is only used for

regression style problems, and the error bits, error threshold and expected value options are

only used in classification problems.

E.3.3 Candidate training controls and options

The following (-c) options are available for candidate training — most are additions to

standard Cascor. The first set involve general candidate training:

candidate total 	the number of nodes in the candidate pool (-cn#)
individual patience 	train candidate nodes using patience on each individual

node, rather than all candidates in the pool (-cI);

172

subgroup patience 	(homogeneous patience) train candidate nodes using

patience on each subgroup of similar nodes, rather than all

candidates (-cH);

summation 	 the candidate pool or sub-pool is trained on the summation

of the correlation scores rather than the maximum (-cS);

and

force usage 	 non-default nodes (see below) are forced by a percentage

factor (-cF#.#), for example -cF1.1 adds an extra ten

percent of their correlation to the non-default nodes.

Standard, individual and subgroup training are alternatives, with standard candidate

training being the default and individual candidate training having the highest priority.

The following two sections detail the options for changing the activation functions and the

connection strategy of the candidate nodes. Most of the options allow for an optional

integer to be included to specify the number of nodes of that particular style that are

required. If the specified node total is greater than the number of nodes in the pool, the pool

size is increased. If the number is less than the pool size the rest of the nodes will be of the

default (connection and activation) style. If the optional number is not included the default

node style is altered. Examples will be presented in §E.3.3.3.

E.3.3.1 	Setting candidate activation functions

These options are used to set the candidate pool activation functions:

Gaussian 	 add Gaussian nodes (-cg[#]);

sigmoid 	 add symmetric sigmoids (-cs[#]);

tanh 	 add tanh functions (-ct[#]);

asymmetric 	add asymmetric sigmoids (-ca[#]); and

distributed 	 distributes the activation varieties about the candidates

(-cD[#])— the order of preference is Gaussian, sigmoid,

tanh and asymmetric sigmoid.

E.3.3.2 Setting candidates with limited connections

These options allow the setting of the connection strategies of the candidate pool:

full connections 	nodes with full connections (-cf[#]);

form layers 	 nodes with no connection to the previous layer (-c1[#]);

minimum shortcuts 	nodes with minimal shortcuts — the only connections to

the hidden node are those from immediately the inputs

and the immediately previous hidden node (-cm[#]);

random weights 	randomly connected nodes (-cr[#]);

173

total random

distributed

number of random connections (-cR# where # equalling

zero means a random number of connections); and

distributes the connection varieties about the candidates
(-cd[#])— the order of preference is full, layered, minimal

shortcuts, and random connection nodes.

The above options are described more fully in §4.1. The distribution of activation functions

and connection strategies means that, for example, if a candidate pool of ten nodes with

distributed activation functions is required, three will be Gaussian, three will be symmetric

sigmoids, two will be tanh functions and two will be asymmetric sigmoids.

E.3.3.3 Examples and notes

Consider the following example:

-cn20 -cl -cf5

This sets the candidate pool to contain twenty nodes, the default connection strategy to

layered and five of the nodes have full connections. Consider another example:
-cs -CD -cn20

This sets the default node style to be sigmoids, distributes the activation functions within
the candidate pool — the default size is assumed to be four nodes in the pool — leading to

one node of each type, then increases the number of default nodes to total seventeen. The
following example distributes the node activation types evenly among the twenty candidate
nodes:

-cs -cn20 -CD

This illustrates how the ordering of the options is important. The system is slightly more

difficult to use than others which could have been devised, but it is extremely flexible.

Finally there is no intelligent distribution of activation functions and connection strategies

implemented. So if both features are distributed, the result will not be a mixture of all

connection strategies with all activation functions. Rather, a quarter of the nodes will have

the same activation function and connection strategy, and these will change at the same time

to differing activation functions and connection strategies. For example

-cn20 -cd -CD

will give five nodes with Gaussian activation functions and with full connections, five with

symmetric sigmoids and a layered connection strategy, and so on.

174

E.3.4 Pruning and weight reduction

The following (-p) options are additions to standard Cascor for both candidate and output

layer training. Standard weight decay is also included (even though it is not strictly a

pruning method):

Karnin pruning 	use absolute Karnin [Karnin 1990] pruning for connections,

removing connections with an estimated error (or

sensitivity) less than the pruning level (-pK#.# and

percentage change 	rather than absolute values when used in conjunction with

the above options, prune on the percentage change in the

error (-pC and -pc);

patience pruning 	use patience percentage change in the error value (the

patience length is not needed) to control pruning, after

pruning all zero and negative saliency connections (-pP#.#

and -pp#.#);

every output 	prune the output layer at the end of every output layer
training phase as opposed to at the end of network training

(-pe);

weight decay 	reduce weights by adding a term to the error function

(-pD#.# and -pd#.#); and

small decay 	use decay term which reduces smaller weights more than --•

larger weights relative to the standard weight decay (-pS

and -ps).

The weight decay terms are added to the slope during the Quickprop update. Standard

weight decay is:

decay• wii

where wii is the layer weight. The small weight decay term is:

decay • wo

(1 +

This term gives a smaller decay for larger weights relative to the previous decay term. See

[Fahlman 8r Lebiere 19891 for more details on weight decay, [Hertz, et al. 1991] for more

details on the small weight decay term, and §4.2 for more details on Kamin pruning within

Cascor.

175

E.3.5 Obtaining network results

The following (-w) options are also available for obtaining results from the simulator (note

the term 'output' here refers to writing to 'stdout', and 'write' refers to writing to a text file):

header information 	output training parameters (-wh);
final 	 output final network results (-wf);
summary 	 output summary statistics of all runs (-ws);
full summary 	output the full results of each network in (tab separated)

tabular form (-wS) for multiple trials;
weights 	 write out the weights to '<filestem>.wei' (-ww);
connections 	output which network connections exist (-wn);
examples 	 output final results for each data set example (-we);
matrix 	 output the final confusion matrix for a single network

(-wm);
vectors 	 output the final output layer vectors for each example

(-wv);

best vectors 	output the best output layer vectors for each example,

obtained from the network at the end of an output layer

training phase where the error on the training set is
smallest (-wb);

epoch training 	output progress after each epoch of training (-wT);
node training 	output progress after each training phase (-wt);
epoch correlation 	output correlations of pool after each epoch during

training (-wC); and
node correlation 	output correlations after hidden node training is

completed (-wc).

The above options are described more fully in §E.4. Note that the result options are slightly

different from other TasCas options in that the choices, which are all Boolean, can be made
using the one flag. For example:

-wh -wt -wf -wn -wc

can be expressed as:

-whtfnc

The options can be in any order, duplicated or in two or more separate -w flags. They just

switch on the appropriate reporting.

E.3.6 Trial options

The following options alter the number of trials and the random weight seeding:

176

trials (runs) 	number of different trials (-t#); and

completely random 	seeds the random number generator off the clock (-R), used

to initialise the network weights and generate random

connections to nodes (see note immediately below).

Note that differences in the clock seeding only occur every second. Hence if an individual

trial is shorter than one second wall-clock time, the same seed will be used.

E.3.7 Checkpointing and file recovery

The current version of the TasCas simulator performs simple checkpointing of multiple

trials. All the results of completed networks are saved for later summarisation.

If a run is killed by whatever means, it may be restarted simply by typing:

tascas -R<filestem>.<process number>

where 'tascas' refers to the executable name, and where each checkpointing file is stored as

the name of the data set filestem followed by the process identification number of the
process which was performing the initial simulation. The simulator picks up from the last

completed network. If the process is interrupted again, the same process number of the

original process will be used as the recovery file suffix, meaning that the same recovery

command may be reused.

Three points to note: firstly, if there is a checkpoint file present with the same number as the
newly started process (a completely separate trial) the simulator will exit with an error to

that effect, and it will not attempt to overwrite the previous checkpoint file. Secondly, if the

checkpoint file is deleted during a simulation, the simulator will fail to give summary

results and, of course, further recovery of results will not be possible. Finally, no checkpoint

file is produced when only one trial is being performed.

E.4 Network output

This section describes in more detail the output which can be expected from the various

reporting options. Complete outputs of the major examples are given in §E.D.

E.4.1 Header Information

The header information (option -wh) gives details about the particular run, which is useful

to document experiments. There are six lines in the header which are produced with most

simulations, plus a number of other lines of option details if required. The exception being

when no hidden nodes are added, the lines containing candidate training information are

not included, leaving a minimum of four lines. For example the call:

177

tascas spiral -whtf -cn10 -Sm20

produces the following header:

tascas spiral (v4.0)

Train 192 Test 192 Inputs 2 Outputs 2

OEta 0.35 °Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500

MaxCand 20 PErrBits 0.00 ErrTh 0.40

Pool 10 Sigmoid 10 Full 10

The first line shows the simulator name, the filestem of the data set and the current

simulator version being used. The second line shows information about the data set

(number of training and test examples, and the number of network inputs and outputs).

The third and fourth lines show the training parameters for both output and candidate

(input) training respectively: the learning rate, the maximum growth factor, patience period

and percentage, maximum number of training epochs per training phase, and the activation

offset where used. The fifth shows network training parameters (in this case the maximum

number of candidates which may be installed, the number of allowable error bits, and the
current error threshold). The sixth line contains candidate information: the size of the

candidate pool and the number of different candidates with different activation functions

and connection strategies. This is all interspersed and followed by other information about

optional settings: such as the number of trials, whether a random seed is used for setting the

network weights, or pruning parameters. Information referring to the candidate or input
layer training is always prefixed with 'I', and that which refers to the output layer is always
prefixed with '0'.

Section E.0 details all the different header outputs, including the line of appearance.

Remember that information about candidate training parameters is only produced when

candidates are trained — if the network is limited to adding no candidates the information
is not provided.

E.4.2 Final and summary results

The final results (option -wf) are of a network after training has been completed. This

information includes the percentage correct on the training and test sets, the number of

hidden nodes installed, the total number of connection crossings and the total number of

connections. If the entire candidate pool is trained together with the one set of patience

parameters, then the number of epochs is also shown. If some form of connection limitation

is used, the number of limited connection nodes, the number of layers and the maximum

number of possible connections are also shown. For example, the following command
(example 1 in §E.D):

tascas spiral -whtf -pk -pK0.05 -Sm20 -cn10

178

produces this final report:

Final Network Results :

training %correct 	: 100.00

testing %correct 	: 92.71

hidden nodes 	: 16

limited hidden nodes 	: 16

layers 	: 11

total epochs 	: 8811

total conn. cross. 	: 239094720

total connections 	: 109

maximum connections 	: 206

Of course the actual details of the results will differ from machine to machine, as all the

results in this report depend on the seed given to the random number generator as well as

the precision of the machine.

The summary option (option -ws) produces the same information as the final results but is

used with multiple trials to give the mean, mean absolute deviation, standard deviation,

coefficient of variation, skew, kurtosis, confidence interval, median, minimum, maximum

and inter-quartile range values for each field. For example, the command (example 2 in

tascas spiral -whs -t50 -R -cn10 -c15 -cI -cF1.1

gives the following summary:

Summary Statistics :

Trn% Tst% Hid LimH Lay TEps TCC TCn MxC

Mean 99.95 95.45 14.4 5.5 9.9 32826 129383163 170.5 180.4

MAD 0.10 1.25 2.38 2.16 1.03 3568.6 26014314 44.91 50.29

SD 0.22 1.63 3.46 3.04 1.41 4436.8 34919506 68.20 77.04

Coy 0.22 1.71 24.06 55.45 14.23 13.52 26.99 40.00 42.71

Skew -3.99 -0.53 1.83 1.34 0.14 0.68 1.23 2.17 2.17

Kurt 14.76 0.19 2.87 1.74 0.53 -0.29 0.99 4.19 4.17

CI +/- 0.06 0.45 0.96 0.84 0.39 1229.82 9679193.24 18.90 21.35

Median 100.00 95.31 13.5 5.0 10.0 31443 120590016 148.5 158.0

Min 98.96 90.62 11 1 7 25544 83701824 111 116

Max 100.00 97.92 25 15 14 43029 232353408 403 431

IQR 0.00 1.56 3.00 3.00 2.00 4978.0 37061568 49.00 54.00

A result of 'na' is given for values of the coefficient of variation, the skewness and the

kurtosis when there is no valid result.

The other final report is the full summary (produced by -wS) which simply gives a tab-

separated list of all the final results of all the networks, in case this is required.

179

E.4.2.1 	Formulas used in statistical summary results

For completeness, the following are the formulas used to calculate the summary results
where t is the number of trials, and xi is the result of trial i:

Mean

Mean absolute deviation

Standard deviation

Skewness

Kurtosis

Coefficient of variance

Confidence interval

l xi ±R I MAD= '=

s=

(Xi ± X)3

sk = = 1 t • s3

(xi ±
ku = =1 t 	± 3

CoV = 100 • s

CI = 1-96 s

Note that the confidence interval is only valid for trials of greater than thirty networks, and
is for ninety five percent confidence.

E.4.3 Other outputs for completed training of a single trial

Writing weights (option -ww) writes out the weights of a particular run to a file
'<filestem>.wei'. If this option is used during a multiple trial, all the weight sets are sent to
the one weight file. Writing network connections (option -wn) shows which connections are

present, and what the activation function is on each node. This is produced for each

network after the final results of that network. The following letters are used to represent

candidate node activation functions: 'A' for asymmetric sigmoids, 'S' for symmetric

sigmoids, 'T' for tanh functions, and 'G' for Gaussian functions.

Writing examples (option -we) produces the actual and expected outputs of the network for

each example in the training and test sets. Writing vectors (option -wv) writes out the actual

and expected output vectors for each example in the training and test sets. Writing the best

vectors (option -wb) produces the vectors for when the best result on the training error is

reached. These vector results are displayed separately from the other vectors, and are

distinguished by the tags 'tr-v' and 'ts-v' at the beginning of each vector depending on

180

whether the example is from the training or the test set respectively. Writing the confusion

matrix (option -wm) produces a totals breakdown of what examples are correctly classified,

and what class is given to incorrectly classified examples. Note that the predicted values are

listed across the matrix, hence the total examples predicted in a particular class are obtained

by summing the column. Similarly the actual value totals for each class are obtained by

summing the row — the actual class labels are given in column format. The example results

and confusion matrices are not produced when trials are performed on regression data sets.

The options for producing the network connections, the examples, the confusion matrix and

the output vectors are illustrated by the following trial on the simple xor problem:

tascas xor -whfnevm

which gives the following output:

tascas xor (v4.0)

Train 4 Test 0 Inputs 2 Outputs 2

OEta 0.35 °Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500

MaxCand 25 PErrBits 0.00 ErrTh 0.40

Pool 4 Sigmoid 4 Full 4

Final Training Examples & Output Vectors :

1 1 0.24264 -0.24264 0.50000 -0.50000

2 2 -0.24264 0.24264 -0.50000 0.50000

2 2 -0.21852 0.21852 -0.50000 0.50000

1 1 0.24264 -0.24264 0.50000 -0.50000

Confusion Matrix (rows predicted values, columns actual) :

2 	0

0 	2

Final Network Results :

training %correct
	: 100.00

hidden nodes 	:1

total epochs : 131

total conn. cross. : 9620

total connections : 11

Network Connections and Activation Functions :

111S

1111S

1111S

The training examples are shown with six columns: the first two are the actual and expected

example output classes, followed by the actual and expected output vectors. The final

section of the output shows the network connections: there is one hidden node followed by

the two output nodes, all of which are fully connected with symmetric sigmoid functions.

Not only are the output nodes connected to the bias node and the two inputs, but also the

connection to the hidden node is shown.

181

E.4.4 Progress during training

Epoch training (option -wT) produces the mean squared error (MSE) and percentage correct

for both the training and test sets at the end of each epoch of output layer training. It also

produces the current maximum correlation score (for normal or subgroup candidate

training), the current hidden node correlation (for individual candidate training) or the total

correlation of all the nodes (for summation candidate training) plus a letter representing the

selected node activation function during the candidate node training phase.

Node training (option -wt) produces the same information at the end of the candidate node

and the output layer training phases. This is prefixed with the number of hidden nodes

installed, a cumulative number of epochs - if appropriate - and connection crossings for

the entire network training. The tag 'best' is also given at the end of output layer training if

the writing of best vectors is required (option -wb) and the output phase produces the
lowest error for that network on the training set.

Epoch and node correlation reporting (options -wC and -wc respectively) produce the
correlation scores for all candidate nodes after each epoch or each candidate node training

phase. Note that options -wC and -wT produce the same results under individual candidate
training, hence only one is given.

These are illustrated with the following example:
tascas xor -whftTcC -sL5 -s15

which gives:

tascas xor (v4.0)

Train 4 Test 0 Inputs 2 Outputs 2

OEta 0.35 OMU 1.75 OLen 5 OPerc 0.01 0Ep 500 00ff 0.10

IEta 1.00 TM 1.75 ILen 5 IPerc 0.03 IEp 500

MaxCand 25 PErrBits 0.00 ErrTh 0.40

Pool 4 Sigmoid 4 Full 4

0.30443 50.00

0.29903 50.00

0.25000 50.00

0.25000 50.00

0

0.04890

0.04994

0.08404 S

0.05284

0.08759 S

0.49369

0.49801 S

0.49369

11

0.00275

0.00279

0.00291

0.49335

0.49335

552

0.08276

0.08404

0.08759

0.49801

0.49801

0.25000

0.01291

0.01343

0.01487

0.49365

0.49365

50.00

182

1

0.23472

0.20594

0.18290

0.14942

0.11019

0.07084

1

32

75.00

75.00

75.00

75.00

100.00

100.00

41

2520

3140

0.49801 S

0.07084 100.00

Final Network Results :

training %correct

hidden nodes

total epochs

total conn. cross.

total connections

: 100.00

:1

: 41

: 3140

: 11

Note that a number of the lines in the example are deleted (as shown by the ellipsis). The

example shows the training information (MSE and percentage correct) for the output layer

after each epoch (option -wT), followed by the training results for that layer (hidden nodes

installed, epochs, connection crossing, MSE and percentage correct) (option -wt) which

shows the number of epochs completed as being 11. This is followed by the correlation
results (correlation of each candidate) (option -wC) for the initial random weights of the

candidates, and then after each epoch of training. Interleaved is the selected candidate as

shown by its (maximum) correlation and the activation function of the candidate (option

-wT again). The training of candidates is completed and the final candidate results are •

shown (option -wc), although this output is the same as the last candidate results of epoch

training. This is followed by the summary of the candidate training (hidden nodes installed,

epochs, connection crossings, maximum correlation and the hidden node activation 	 r,

function) (option -wt again) showing that 32 epochs of training have been completed. This

is further followed by the output layer training results until all the examples are classified

correctly.

E.4.5 Regression results

Regression results are slightly different in that it is not possible to calculate a percentage

correct, hence in all the training results this is not given, and in the final and summary

results the final MSE is used to indicate the strength of the learnt theory.

E.5 Possible errors

The TasCas system produces a number of errors in exceptional cases. These are grouped by

their type and the return code from the system will give an indication of the error type, as

183

will the actual error message. When the system completes the required task with no errors,

a return code of zero is given. The errors are as follows:

• data file reading (return code 1) — an error has occurred while the data file is

being read in, with a maximum of ten of errors displayed;

• memory allocation (return code 2) — not enough memory available for

allocation;

• major command line error (return code 3)— if a command line error is major

enough to halt the simulator from sensibly continuing; and

• output errors (return code 4) — when the required file, such as the

checkpointing file, is not available.

Note that minor command line error warnings are also displayed for unknown options or

invalid options values.

E.6 Code structure

This section outlines the structure of the TasCas code. The module tascas details the main

code for the TasCas system. The other modules (basic, data, inp, out, eval, train) provide

routines used by the tascas code. For a deeper understanding of the workings of the system

than is presented here, it is probably best to go to the code itself.

E.6.1 Module overview

The following is an overview of the various modules:

• basic contains simple procedures for neural network calculations which are used

throughout the entire code, and some data structures;

• data defines the data structure for examples to be used for training and testing

and routines for reading in Quinlan style data sets, and the data reading

function itself;

• eval contains routines that evaluate Cascor networks to determine the result of

the network given a particular input, cache training results and to give test set

estimates of accuracy;

• train contains routines to perform generic weight training, pruning and patience

calculations;

• inp contains routines for the remaining input (other than data reading) which

involves the command line options, the modification of options as required and

the setting up of checkpointing; and

• out contains all output including the writing of network weights and the

reporting of the training process, the completion of training and result

summaries.

184

Note that eval.li contains the definitions of network structure, train.h contains the layer

training parameters, and inp.h contains definitions of the reporting structures and the other

parameters used for training the network and writing out the results. The code in basic and

data is not specific to the TasCas simulator and has been used in other simulators. The data

reader may be altered as long as it produces the information in the form of the data types

shown in data.h.

E.6.2 Main training mechanism

Training Cascor networks is a two stage process. Firstly the output layer is trained until

patience has run out, and then if the desired result has not been achieved (namely the

stopping criteria on the training set have not been met) a hidden node is added. This is

done by training candidate nodes with connections to the inputs and previous hidden

nodes, adding the best candidate to the network, and then retraining the output layer with

extra connections to the added node. This process cycles until training is complete or the

maximum number of hidden nodes has been installed. Options are available to use node

patience as well to halt the training process.

The code reflects this structure. The trnout function trains the output layer determining

whether the training is complete. If that has not occurred, trncand is called to train the

candidate nodes. Both these functions complete a single training phase — namely training

until loss of patience on one layer, whether that be training the candidate nodes or the

output layer, or pruning the connections afterward. These functions call trnoutperiod,

trncandperiod to train the weights for a single patience period which in turn call trnoutepoch

and trncandepoch which, as their names suggest, train the output and candidate nodes for a

single epoch. The trnout and trncand functions act as shells to cope with the possibility of

pruning the network.

Note trnoutepoch trains all of the output nodes, unlike trncandepoch which trains only one

node. This is due to the different set up for training candidates with separate patience

parameters. The candidate training functions also include trncandsub for training a

subgroup of candidate nodes.

E.6.3 Other code groups

The candidate node training has a lot of associated machinery which is absent from the

output layer training. These extra procedures include initcand which sets up the candidates

for training (including limiting connections where required), addcand which adds a selected

candidate node to the network ready for output layer training, select cand which selects the

candidate node for inclusion in the network, and calccorr which calculates the correlation of

the candidate nodes with the network output.

185

The main program also has various initialisation and post-training functions associated with

it as well as procedures to produce the correct number of trials and calls to the reporting

functions. From the code it should be evident which functions are called from modules

throughout the training process and which are only required before or after training.

E.7 Special considerations

These are more detailed comments regarding certain features of the code. Assumptions

have been made at various points during the development of the system, and it is the aim of

this section to detail the more important ones.

E.7.1 Standard notation and indexing

The inputs are numbered 0 to n (d->n in main) with i used as index and element zero being
the bias node, the outputs are numbered 1 to m (d->m in main) with k as the index, the
hidden nodes are numbered 1 to h (net->h in main) with j as the index, and the candidate
nodes are numbered 0 to c –1 (c->c) with u as the index variable.

E.7.2 Module specific considerations

The following are specific considerations which need to be taken into account when

modifying the code. They are prefixed by the name of the module where the feature occurs:

• Basic — the memory allocation functions simply exit when there is not enough
memory available. All exits caused by memory problems return a value of 2.

• Basic — the inputs to the activation functions are bounded (in fun) to prevent

over and underflow errors occurring. The bounds may need to be altered
depending on the precision of the floating point processing used.

• Data — discrete attribute values are encoded as separate nodes. If the

particular value is set, the corresponding node value is set to 1.0, otherwise it is

set to –1.0. However two-valued discrete attributes are encoded as one input

node.

• Data — in GetNames storing the number of expected values for the 'discrete'
option has one too many type coercions.

• Eval — dasseg is not used during any training calculations, so does not pass

back the number of connection crossings.

• Train — with nodeactiv from the eval module, backprop and prune only perform

calculations when there is a connection present. Checking first whether there is

a connection present should not be a detriment when there are no missing

connections (needing a truth check followed by an increment, as opposed to a

straight multiplication of a value).

186

• Inp — the checkpointing uses the process id to determine a unique file name.
• Inp — the default options are set in the function setup in inp.c. The following

options should not be altered: 'trp->completedc any Boolean options such as

the writing options (all Booleans are set to false, and using the flag will not flip

the value — only set it to true), and the initial counter for the candidate

activations and connection strategies.

• Out — the summary functions have a bad case of magic numbers.

• TasCas — as an informed guess, the output weights to a newly added candidate

node are set to minus the previous correlation at the output. This seems to be

better than just setting random weights [Fahlman 1993]

• TasCas — it is assumed that the output layer will have symmetric sigmoid

activation functions for classification problems, and linear activation functions

for regression problems.

• TasCas — the 'eta' values are normalised within the calls to the update

(Quickprop) function. The output eta is divided by the number of training

examples, while the input eta is divided by the total training examples

multiplied by the maximum number of inputs to each candidate. The input eta

normalisation should possibly be changed when a limited connected hidden

node is being trained — this has not been examined.

E.7.3 Error and correlation formulas

This section refers to differences between Fahlman's publicly released code [Crowder &

Fahlman 1991] and this simulator.

• The error being used at the moment is

ek = yk - tk
	 (E.1)

in classout, where e is the error, y is the actual output, t the expected output, and

k the output layer index. Fahlman often uses

ek =- (yk - t1). derivactprime(yk) 	 (E.2)

for the error, sum of errors and sum of squared error in the calculation of the

correlation and derivative of the correlation, where derivactprime is the

derivative of the activation function with 0.1 offset. This changes the 'true'

error — effectively removing the sigmoid in classification problems, and so

both would have to be stored for patience calculations. Fahlinan refers to the

error criteria used in this simulator as the raw error. These differences should

be taken into account when examining formulas E.4 and E.5 below.

• The mean squared error (MSE) used in this simulator is:

187

(
MSE = k=1 p=1 kYkp tkp)

m • d

where p is the index to d the number of patterns, and k is the index to m the
number of outputs. Fahlman's simulator does not divide the MSE by the

number of training examples and by the number of outputs. This should not

have an effect, though, as the patience calculations are performed with

reference to the percentage change. The changes made to the output weights
are the same in both simulators.

• Fahlman uses an error index for determining when training has been completed
in regression problems, rather than the simple MSE used in this simulator. The
MSE is normalised to give relatively the same error for different training sets.
The formula for this (using E.3 above) is:

Error Index = %/MSE
 sdtr

where sdtr is the standard deviation of the training set as defined by:

(E.3)

(E.4)

sdtr =
tip .M.d±(

k=1 p=1 	 k=1 p = 1
tkpi

(E.5) m-cl(m•d±1)

• Error normalisation is implemented for correlation values. This amounts to

having the following formulas instead of those given in Fahlman's Cascor paper
[Fahlman & Lebiere 1989[:

S =
k=1

=1
V

P
 .Ek

P
 ±V.Ek

p

(E.6)

2 Ek
k=1 p=1 	

F,

as 	± a, (Ekp ±ric). 	 .xip 	
(E.7)

k = 1 p=1
E ,

2

where i is the index for the input xi, w is the weight to the candidate from the

input layer. This is the same as the publicly released code.

E.8 Planned improvements

The following are possible future improvements to the code. Generally they will not be
implemented until they are needed:

• full implementation of the Extended Quinlan format;
• cross-validation of networks;
• proper handling of validation sets;

188

• even class selection;

• allow for separate training and test set results;

• reading in previously generated networks;

• allow a configuration file to be read in as well as having command line options;

• update with improved algorithms for training and pruning;

• getopt code is ad hoc is some respects — need a more consistent system;

• change initcand so that different activation functions are associated with

different limited connection strategies — more than one of the techniques is

used at the one time (needs priorities for candidate groups: eg train activation

types in sub-pools regardless of connections);

• printing of doubles in header to the appropriate number of decimal places;

• add summary reporting on different activation functions and connection

strategies when used; and

• more consistent output and graphical output of results.

E.A Extended Quinlan format

One of the most systematic formats for inductive learning data is Ross Quinlan's C4.5 data

format [Quinlan 19934 This is a user friendly way of expressing and documenting data,

which has the additional benefit of being a style that is independent of the learning system.

Consider a problem with three classes (red, blue and green) separated by two attributes

(height, which is a numerical value; and size, which is an unordered discrete attribute with

two possible values small and large). The description of this problem would be expressed

as the following '.names' information file:

red, blue, green.

height: continuous.

size: small, large.

Both training and test examples (extensions '.data' and '.test' respectively) are then

expressed in the following form:

-3.67, small, red

The major problem with the format is that there is no method for expressing regression style

problems — Quinlan's format is specifically for classification problems. This has lead to the

proposed Extended Quinlan Format for the system output which encompasses the

classification style:

Problem ::= Subproblem { ";" Subproblem } "."

Subproblem ::= [Subprobname] Values

Subprobname ::= ident

Values ::= "continuous" I ident ("," ident)

189

This defines additions to the Quinlan format to allow for regression problems as well as
multiple classifications or regressions stemming from the same data, where that may be
required:

continuous. 	 (simple regression)
depth: continuous. 	 (named regression)
depth: continuous; height: continuous. 	(multiple regression)
depth: continuous; colour: red, green, blue. 	(classification & regression)

As can be seen, the labelling of the sub-problems would be optional, but it would aid in the

data documentation. The attribute descriptions would have the same form, and examples

would be appended with specific results for each sub-problem. It is then up to each learning

system how the data is handled, and the beauty of this system is that all prior Quinlan
format files remain valid.

This may be further expanded to account for time series problems by replicating the

attributes required for each time frame in the example, separating this information by a

semicolon as opposed to a comma. Consider the previous example, if this were a time series

problem, the header file would remain the same but examples would be in the following
form:

-3.67, small; 0.45, small; 4.78, large, green

This last example has three time frames ending in the classification green.

A final extension would be to allow for the explicit definition of a validation set [Prechelt

19944 Though it is quite possible to randomly select a validation set from the training set,

in some cases it may be preferable to have an explicitly defined validation set, hence it is

proposed to reserve the extension '.valid' for this purpose, using the same format as
examples from the training and test sets.

These extensions do not include those necessary for ordered discrete attributes and classes
or for partial orderings. These need to be examined in the future.

E.B Options summary

This appendix summarises all the possible options. The headings 'Option', 'Subopt' and

'Params' refer to the main option letter, the sub-option letter and the format of any required

parameters respectively. A dash indicates that no value is required, brackets indicate an

optional part of the flag, and the symbols '#' and '#.#' represent integer and floating point

number parameters respectively. Note that upper case letters refer to the candidate options,

whereas lower case letters refer to the output layer training options. With output options

upper case letters mean more information is produced than when the lower case option is
used.

190

Option Subopt Params Description

e/E

o

r

t
t r

(
r
)
 £
 E

n

En

r

-n

0
"

t
o

(
D

'
0
 0

S
I
 Pj
 F
S
 5
 r r
 fi
r
 (.0

 71
 H

 X
 Cr

I
I
I

U)

#.# eta values

m/M #.# mu values

0/0 #.# activation function offsets

S stopping layer training

#.# patience percentage change

patience period length (epochs)

maximum epochs for layer training

S stopping network training

maximum number of hidden nodes installed

#.# node patience percentage change

node patience period length (hidden nodes)

— node patience rollback of unneeded nodes

#.# maximum allowable error for regression

#.# percentage allowable error bits 	(class.)

#.# error threshold for error bits

#.# change to expected value range

c candidate training options

number of nodes in candidate pool

— individual candidate training

— subgroup (homogeneous) candidate training

— summation rather maximum candidate selection

#.# percentage forcing usage of non-default nodes

[#1 Gaussian activation functions

[#) sigmoid activation functions

[in asymmetric sigmoid activation functions

(#1 tanh activation functions

[4#1 all activation functions distributed

[#1 fully connected candidate nodes

[#] layered candidate nodes

[#] minimum shortcut candidate nodes

[#] randomly connected candidate nodes

number of random connections (see -cr)

(in all connection strategies distributed

p #.# absolute Karnin pruning

— percentage pruning when used with -pk/K

#.# patience percentage pruning

— prune output layer after every training phase

#.# weight decay

— use weight decay to decay smaller terms more

w output and writing options

— header information

— final network information

— summary information over trials

— final information for all trials 	(tab spaced)

— write weights to file

— output table of connections

— output final results for each example

— output final confusion matrices sets

— output actual and expected output vectors

— output best vectors of network

— output node/epoch training information

— output node/epoch candidate training info.

191

Option Subopt Params Description

t

R

—

—

—

number of trials required

clock-seeded random numbers for trials

E.0 Full header information

This appendix details the header information: italics indicates that the detail may vary, '#'
indicates a integer value, '#.#' indicates a floating point number, brackets indicate options,
and 'a' and 'b' lines may not appear.

Header Details Line Description

tascas 1 executable name

spiral 1 data set name

(v4.0) 1 version number

Train # 2 total training examples

Test # 2 total testing examples

Inputs # 2 total number of network inputs

Outputs # 2 total number of network outputs

[OI]Eta #.# 3/3a learning rate

[OI]MU #.# 3/3a growth factor

[OI]Len # 3/3a patience period (epochs)

[OI]Perc #.# 3/3a patience percentage change

[OI]Ep # 3/3a maximum number of epochs per training phase

[OI)Off #.# 3/3a activation function offset

[OI]Dcy #.# 3b standard weight decay parameter

[OI)SmDcy #.# 3b small weight decay parameter

[OI]Prn #.# 3b Karnin pruning level

[OI]PrnPerc #.# 3b Karnin percentage pruning level

[OI)PPerc #.# 3b Patience pruning percentage

NLen # 4 node patience period (nodes)

NPerc #.# 4 node patience percentage change

Rollback 4 node patience rollback used

MaxCand # 4 maximum number of candidates

MinError #.# 4 minimum error for regression problems

PErrBits #.# 4 percentage of allowable error bits

ErrTh #.# 4 error threshold

ExpVBuff #.# 4 expected value buffer

PrnEvery0 4 prune output layer after every training phase

Trials # 4 total trials to be conducted

Clock seed 4 whether trial or trials clock-seeded

Pool # 4a candidate pool size

Gaussian # 4a number of Gaussian nodes

Sigmoid # 4a number of symmetric sigmoid nodes

TanH # 4a number of tanh nodes

ASymSig # 4a number of asymmetric sigmoid nodes

Full # 4a number of fully connected nodes

Layered # 4a number of layered nodes

MinShort # 4a number of nodes with minimal shortcuts

RanConn # 4a number of randomly connected nodes

(# links) 4a number of connections per randomly connected node

(rand) 4a random connections per randomly connected node

192

Header Details Line Description

SumCorr

IndCandPat

SubCandPat

Forcing #.#

(def string)

4

summation (not max) of candidate correlations

independent candidate training

subgroup candidate training

forcing level of non-default candidates

default node features

E.D Complete examples

Here two runs are detailed using the simulator on the Two Spirals data set [Fahlman &

Lebiere 1989].

E.D.1 Example one

For an example of how the program is used, consider the following training command to

recognise the Two Spirals data set:

tascas spiral -whtf -pk -pK0.05 -Sm20 -cn10

This trains a network on the Two Spirals data set whilst producing the header information,

the training progress after each layer training phase is completed, and the final results. It

uses Karnin pruning on the output layer with the default setting, prunes the input (hidden

node) layer with setting 0.05, can install a maximum of twenty hidden nodes, and uses a

candidate pool of ten nodes.

The output is as follows:

tascas spiral (v4.0)

Train 192 Test 192 Inputs 2 Outputs 2

OEta 0.35 0Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500

OPrn 0.00 IPrn 0.05

MaxCand 20 PErrBits 0.00 ErrTh 0.40

Pool 10 Sigmoid 10 	Full 10

0 56 130176 0.24673 50.00 0.24672 50.00

1 186 1622016 0.10293 S

1 236 1812096 0.09293 S

1 296 1998144 0.23948 55.21 0.24084 54.17

2 539 5722944 0.13779 S

2 589 6141120 0.14147 S

2 654 6393024 0.22662 62.50 0.22748 63.54

3 917 11433024 0.17465 S

3 967 11965248 0.17541 S

3 1044 12323136 0.20485 64.58 0.21056 64.58

4 1382 20099136 0.18554 S

4 1432 20688384 0.16852 S

4 1507 21095232 0.18879 67.71 0.19856 65.62

5 1744 27452352 0.15802 S

5 1835 28112640 0.11091 S

193

• 	5 1915 28607808 0.18091 67.71 0.19109 67.71

6 2226 38146368 0.21388 S

6 2301 38918784 0.18378 S

6 2368 39385728 0.16850 70.83 0.17549 68.75

7 2534 45105408 0.28347 S

7 2686 46327104 0.25419 S

7 2801 47215104 0.13641 75.00 0.14902 71.88

8 2927 52034304 0.16445 S

8 3019 52772160 0.16733 S

8 3105 53503872 0.12508 76.04 0.14417 73.96

9 3424 66957312 0.19930 S

9 3513 67806912 0.15677 S

9 3606 68669376 0.11614 79.17 0.13453 75.00

10 3987 86202816 0.24180 S

10 4126 88011072 0.22100 S

10 4263 89384640 0.10069 85.42 0.12006 81.25

11 4497 101040960 0.17079 S

11 4605 101701440 0.11558 S

11 4695 102675072 0.09554 84.38 0.11709 82.29

12 5185 128990592 0.32415 S

12 5311 130677312 0.29859 S

12 5572 133691520 0.06989 92.71 0.10454 86.46

13 5936 154629120 0.45196 S

13 6039 156636480 0.45693 S

13 6516 162505536 0.02738 95.83 0.09921 89.58

14 6727 175438656 0.29196 S

14 6777 176065920 0.29349 S

14 7210 181726464 0.01881 97.92 0.09266 89.58

15 7363 191681664 0.39839 S

15 7429 192436224 0.39961 S

15 7929 199355904 0.00859 98.96 0.08356 91.67

16 8429 233881344 0.72292 S

16 8517 234788544 0.74221 S

16 8811 239087616 0.00298 100.00 0.07897 92.71

16 8811 239094720 0.00298 100.00 0.07897 92.71

Final Network Results :

training %correct : 100.00

testing %correct : 92.71

hidden nodes : 16

limited hidden nodes : 16

layers : 11

total epochs : 8811

total conn. cross. : 239094720

total connections : 109

maximum connections : 206

The header information is followed by a blank line, then this is followed by the actual
training information - firstly the output layer training without any hidden nodes, then two

phases of candidate training, the first being training before pruning occurs, the second after

pruning has been completed. This is followed by the results of training the output layer

with the added hidden unit - selected from the candidate pool based on its performance.

194

This process cycles until one hundred percent is achieved on the training set, whereby the

output layer is pruned and retrained. Finally, after another blank line, the final report of the
training run is produced.

E.D.2 Example two

Another run on the Two Spirals data set may look like the following:

tascas spiral -whs -t50 -R -cn10 -c15 -CI -cF1.1

This writes to the screen the header information and summary information of the fifty clock-

seeded trials, which involve using a pool of ten candidates, individual candidate patience,

forming layers with half the nodes and forcing the usage of layered nodes by an extra ten

percent.

The output produced by this command is as follows:

tascas spiral (v4.0)

Train 192 Test 192 Inputs 2 Outputs 2

OEta 0.35 0Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10

IEta 1.00 LMu 1.75 ILen 50 IPerc 0.03 IEp 500

MaxCand 25 PErrBits 0.00 ErrTh 0.40 Trials 50 Clock seed

Pool 10 Sigmoid 10 Full 5 Layered 5

IndCandPat 	Forcing 1.1

Summary Statistics :

Trn% 	Tst%

(def full symsig)

Hid 	LimH 	Lay TEps TCC TCn MxC

Mean 99.95 95.45 14.4 5.5 9.9 32826 129383163 170.5 180.4

MAD 0.10 1.25 2.38 2.16 1.03 3568.6 26014314 44.91 50.29

SD 0.22 1.63 3.46 3.04 1.41 4436.8 34919506 68.20 77.04

Coy 0.22 1.71 24.06 55.45 14.23 13.52 26.99 40.00 42.71

Skew -3.99 -0.53 1.83 1.34 0.14 0.68 1.23 2.17 2.17

Kurt 14.76 0.19 2.87 1.74 0.53 -0.29 0.99 4.19 4.17

CI +/- 0.06 0.45 0.96 0.84 0.39 1229.82 9679193.24 18.90 21.35

Median 100.00 95.31 13.5 5.0 10.0 31443 120590016 148.5 158.0

Min 98.96 90.62 11 1 7 25544 83701824 111 116

Max 100.00 97.92 25 15 14 43029 232353408 403 431

IQR 0.00 1.56 3.00 3.00 2.00 4978.0 37061568 49.00 54.00

195

F References

Adams A. (1994) A neural network local minimum testbed, in 1994 International Symposium
on Artificial Neural Networks, IEEE, pp57-62.

Adams A and Jones P. (1992) Function evaluation and interpolation using a

backpropagation artificial neural network, in The Fifteenth Australian Computer Science
Conference, Gupta G and Keen C, Editors, Department of Computer Science, University

of Tasmania, pp13-25.

Adams A and Lewis C. (1995) Neural network function evaluation and the sigmoid prime

offset, in The Sixth Australian Conference on Neural Networks, Charles M and Latimer C,

Editors, University of Sydney, Electrical Engineering, pp229-233.

Adams A and Waugh S. (1995) Function evaluation and the Cascade-Correlation

architecture, in IEEE International Conference on Neural Networks, IEEE and Causal

Productions, pp942-946.

Ash T. (1989) Dynamic node creation in backpropagation networks, Connection Science, 1 (4):

365-375.

Baffes PT and Zelle JM. (1992) Growing layers of perceptrons: introducing the extentron

algorithm, in International Joint Conference on Neural Networks, IEEE, pp392-397.

Baluja S and Fahlman SE. (1994) Reducing network depth in the cascade-correlation learning
architecture, School of Computer Science, Carnegie Mellon University, TR CMU-CS-94-

209.

Baum EB. (1989) A proposal for more powerful learning algorithms, Neural Computation, 1:
201-207.

Bolt GR. (1992) Fault tolerance in artificial neural networks: are neural networks inherently fault
tolerant?, University of York, D.Phil. thesis.

Bratko I. (1990) Prolog programming for artificial intelligence, 2nd ed., Addison-Wesley.

Breiman L, Friedman JE, Olshen RA and Stone CJ. (1984) Classification and regression trees,
Wadsworth International Group: Belmont, California.

Burkitt AN and Ueberholz P. (1993) Pruning feed-forward neural networks, in The Fourth
Australian Conference on Neural Networks, Leong P and Jabri M, Editors, Sydney

University Electrical Engineering, pp185-188.

197

Burrows JF and Craig DH. (1994) Lyrical drama and the "Turbid Mountebanks": styles of

dialogue in Romantic and Renaissance tragedy, Computers and the Humanities, 28: 63-

86.

Caruana R and Freitag D. (1994) Greedy attribute selection, in The Eleventh International

Conference on Machine Learning, Cohen WW and Hirsh H, Editors, Morgan Kaufmann,

pp28-36.

Catlett J. (1992) Peepholing: choosing attributes efficiently for megainduction, in The Ninth
International Workshop on Machine Learning, Sleeman D and Edwards P, Editors,

Morgan Kaufmann, pp49-54.

Chauvin Y. (1988) A back-propagation algorithm with optimal use of hidden units, in

Advances in Neural Information Processing Systems /, Touretzky DS, Editor, Morgan

Kaufmann, pp519-526.

Chung FL and Lee T. (1992) A node pruning algorithm for backpropagation networks,

International Journal of Neural Systems, 3 (3): 301-314.

Collier PA. (1995) Choosing between back propagation neural networks and C4.5 for

different types of data, ACS AISIG (Vic) Newsletter, 8 (3): 3-10.

Collier PA and Waugh S. (1994) Characteristics of data suitable for learning with

connectionist and symbolic methods, in The 7th Australian Joint Conference of Artificial
Intelligence, Zhang C, Debenham J and Lukose D, Editors, World Scientific, pp116-123.

Cortes C, Jackel LD and Chiang W-P. (1995) Limits on learning machine accuracy imposed

by data quality, in Advances in Neural Information Processing Systems 7.

Crowder RS and Fahlman SE. (1991) C implementation of the Cascade-Correlation learning

algorithm, Carnegie Mellon University, 1.32, URL:

ftp:/ / pt.cs.crnu.edu / afs / cs/ project/ connect/ code.

de le Maza M. (1991) SPLITnet: dynamically adjusting the number of hidden units in a

neural network, in Artificial Neural Networks, Kohonen T, Makisara K, Simula 0 and

Kangas J, Editors, North-Holland, pp647-651.

Deffuant G. (1995) An algorithm for building regularized piecewise linear discrimination

surfaces: the perceptron membrane, Neural Computation, 7: 380-398.

Devillers 0, Golin M, Kedem K and Schirra S. (1994) Revenge of the dog: queries on Voronoi

diagrams of moving points, Institut National de Recherche en Informatique et en

Automatique, TR 2329.

Duda RO and Hart PE. (1973) Pattern classification and scene analysis, Wiley-Interscience.

198

Dunne RA, Campbell NA and Kiiveri HT. (1992) Task based pruning, in The Third Australian

Conference on Neural Networks, Leong P and Jabri M, Editors, Sydney University

Electrical Engineering, pp166-169.

Elomaa T. (1994) In defense of C4.5: notes on learning one-level decision trees, in The

Eleventh International Conference on Machine Learning, Cohen WW and Hirsh H, Editors,

Morgan Kaufmann, pp62-69.

Fahlman SE. (1988a) An empirical study of learning speed in back-propagation networks, Carnegie

Mellon University, TR CMU-CS-88-162.

Fahlman SE. (1988b) Fast-learning variations on back-propagation: an empirical study, in

Proceedings of the 1988 Connectionist Models Summer School, Touretzky D, Hinton G and

Sejnowksi T, Editors, Morgan Kaufmann, pp38-51.

Fahlman SE. (1990) Summary of NIPS-90 workshop: constructive and destructive learning

algorithms, Carnegie-Mellon University, neuroprose archive.

Fahlman SE. (1993) Private communication.

Fahlman SE. (1994) Private communication.

Fahlman SE and Lebiere C. (1989) The cascade-correlation learning architecture, in Advances

in Neural Information Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann,

pp525-532.

Fiesler E. (1994) Comparative bibliography of ontogenic neural networks, in International

Conference on Artificial Neural Networks.

Frean M. (1990) The Upstart algorithm: a method for constructing and training feedforward

neural networks, Neural Computation, 2: 198-209.

Freeman T. (1994) Private communication.

Gallant SI. (1986) Three constructive algorithms for network learning, in The Eighth Annual

Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, pp652-660.

Geman S. Bienenstock E and Doursat R. (1992) Neural networks and the bias/ variance

dilemma, Neural Computation, 4: 1-58.

Gorodkin J, Hansen LK, Krogh A, Svarer C and Winther 0. (1993) A quantitative study of

pruning by optimal brain damage, International Journal of Neural Systems, 4 (2): 159-169.

Hamamoto M, Kamruzzaman J and Kumagai Y. (1992) A study on generalization properties

of artificial neural network using Fahlman and Lebiere's learning algorithm, in

199

Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland,

pp1067-1070.

Hamey LGC. (1991) Benchmarking feed-forward neural networks: models and measures, in

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and

Lippmann R, Editors, Morgan Kaufmann, pp1167-1174.

Hancock PJB. (1992) Pruning neural nets by genetic algorithm, in Artificial Neural Networks 2,

Aleksander I and Taylor J, Editors, North-Holland, pp991-994.

Hanson SJ. (1989) Meiosis networks, in Advances in Neural Information Processing Systems 2,

Touretzky DS, Editor, Morgan Kaufmann, pp533-541.

Hanson SJ and Pratt LY. (1988) Comparing biases for minimal network construction with

back-propagation, in Advances in Neural Information Processing Systems /, Touretzky DS,

Editor, Morgan Kaufmann, pp177-185.

Hassibi B and Stork DG. (1992) Second order derivatives for network pruning: Optimal

Brain Surgeon, in Advances in Neural Information Processing Systems 5, Morgan

Kaufmann, pp164-171.

Hassibi B, Stork DG and Wolff G. (1993) Optimal Brain Surgeon: extensions and

performance comaprisons, in Advances in Neural Information Processing Systems 6,

Cowan JD, Tesauro G and Alspector J, Editors, Morgan Kaufmann, pp263-270.

Hertz J, Krogh A and Palmer RG. (1991) Introduction to the theory of neural computation,

Addison-Wesley.

Hickey RJ. (1992) Artificial universes — towards a systematic approach to evaluating

algorithms which learn from examples, in The Ninth International Workshop on Machine

Learning, Sleeman D and Edwards P, Editors, Morgan Kaufmann, pp196-205.

Holte RC. (1993) Very simple classification rules perform well on most commonly used

datasets, Machine Learning, 11: 63-91.

Hwang J-N, Lay S-R, Maechler M, Martin RD and Schimert J. (1994) Regression modeling in

back-propagation and projection pursuit learning, IEEE Transactions on Neural

Networks, 5 (3): 342-353.

Hwang J-N, You S-S, Lay S-R and Jou I-C. (1993) What's wrong with a cascaded correlation

learning network: a projection pursuit learning perspective, neuroprose archive.

Izui Y and Pentland A. (1990) Analysis of neural networks with redundancy, Neural

Computation, 2: 226-238.

James M. (1985) Classification algorithms, Collins: London.

200

Ji C, Snapp RR and Psaltis D. (1990) Generalizing smoothness constraints from discrete

samples, Neural Computation, 2: 188-197.

John GH. (1995) Cascade Correlation: derivation of a more numerically stable update rule,

in IEEE International Conference on Neural Networks, IEEE and Causal Productions,

pp1126-1129.

Karnin ED. (1990) A simple procedure for pruning back-propagation trained neural

networks, IEEE Transactions on Neural Networks, 1 (2): 239-242.

Kendall GD and Hall TJ. (1992) OcIdiam's nets: self-adaptive minimal neural networks, in

Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland, pp183—

186.

Kendall GD and Hall TJ. (1993) Optimal network construction by minimum description

length, Neural Computation, 5: 210-212.

Kira K and Rendell LA. (1992) A practical approach to feature selection, in The Ninth
International Workshop on Machine Learning, Sleeman D and Edwards P, Editors,

Morgan Kaufmann, pp249-256.

Klagges H and Soegtrop M. (1992) Limited fan-in random wired cascade-correlation, IBM..

Research Division, Physics Group Munich, neuroprose archive.

Kohonen T, Chrisley R and Barna G. (1988) Statistical pattern recognition with neural

networks: benchmarking studies, in Neural networks from models to applications, • •
Personnaz L and Dreyfus G, Editors, IDSET, Paris, pp160-167.

Krogh A and Hertz JA. (1991) A simple weight decay can improve generalisation, in

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and

Lippmann RP, Editors, Morgan Kaufmann, pp950-957.

Le Cun Y, Denker JS and Solla SA. (1989) Optimal Brain Damage, in Advances in Neural
Information Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann, pp598-605.

Lee Y and Lippmann RP. (1989) Practical characteristics of neural network and conventional

pattern classifiers on artificial and speech problems, in Advances in Neural Information

Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann, pp168-177.

Levin A, Leen TK and Moody JE. (1994) Fast pruning using principle components, in

Advances in Neural Information Processing Systems 6, Cowan J, Tesauro G and Alspector

J, Editors, Morgan Kaufmann, pp35-42.

Lippmann RP. (1987) An introduction to computing with neural nets, IEEE Transactions on

Acoustics, Speech and Signal Processing, 4 (2): 4-22.

201

Lister R. (1994) The problem with Quickprop's weight independence assumption, in The
Fifth Australian Conference on Neural Networks, Tsoi AC and Downs T, Editors,

University of Queensland Electrical and Computer Engineering, pp5-8.

Lister R and Stone JV. (1995) Error functions and conjugate gradient back propagation, in

The Sixth Australian Conference on Neural Networks, Charles M and Latimer C, Editors,

University of Sydney, Electrical Engineering, pp130-133.

Littmann E and Ritter H. (1992) Cascade networks architectures, in International Joint
Conference on Neural Networks, IEEE, pp398-404.

Lounis H and Bisson G. (1991) Evaluation of learning systems: an artificial data-based

approach, in European Working Session on Learning, Kodratoff Y, Editor, Springer-Verlag

Lecture Notes in Artificial Intelligence, 482, pp463-481.

Marchand M, Golea M and Rujian P. (1990) A convergence theorem for sequential learning

in two-layer perceptrons, Europhysics Letters, 11: 487-492.

Matthews RAJ and Merriam TVN. (1993) Neural computation in Stylometry I: an

application to the works of Shakespeare and Fletcher, Literary and Linguistic Computing,
8 (4): 203-209.

Merriam TVN and Matthews RAJ. (1994) Neural computation in Stylometry II: an

application to the works of Shakespeare and Marlowe, Literary and Linguistic
Computing, 9 (1): 1-6.

Mezard M and Nadal J-P. (1989) Learning in feedforward layered networks: the tiling

algorithm, Journal of Physics A: Mathematical and General, 22: 2191-2203.

Moller MF. (1993) A scaled conjugate gradient algorithm for fast supervised learning, Neural
Networks, 6: 525-533.

Mozer MC and Smolensky P. (1988) Skeletonization: a technique for trimming the fat from a

network via relevance assessment, in Advances in Neural Information Processing Systems
1, Touretzky DS, Editor, Morgan Kaufmann, pp107-115.

Mozer MC and Smolensky P. (1989) Using relevance to reduce network size automatically,

Connection Science, 1 (1): 3-16.

Murase K, Matsunaga Y and Nakade Y. (1991) A back-propagation algorithm which

automatically determines the number of association units, in International Joint

Conference on Neural Networks, IEEE, pp783-788.

202

Murphy PM and Aha DW. (1994) LICI Repository of machine learning databases, University of

California, Irvine, Department of Information and Computer Science, URL:

ftp:/ /ics.uci.edu/ pub/machine-learning-databases/.

Nash WI, Sellers TL, Talbot SR, Cawthorn AJ and Ford WB. (1994) The population biology of
Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast
and the Islands of Bass Strait, Sea Fisheries Division, Marine Research Laboratories —

Taroona, Department of Primary Industry and Fisheries, Tasmania, TR 48.

Nolfi S and Parisi D. (1991) Growing neural networks, Department of Cognitive Processes and

Artificial Intelligence, Institute of Psychology, National Research Council, Rome, TR

PCIA-91-15, neuroprose archive.

Nowlan SJ and Hinton GE. (1992) Simplifying neural networks by soft weight-sharing,

Neural Computation, 4: 473-493.

Okabe A, Boots B and Sugihara K. (1992) Spatial tessellations: concepts and applications of
Voronoi diagrams, John Wiley and Sons: Chichester.

Platt J. (1991) A resource-allocating network for function interpolation, Neural Computation,
3: 213-225.

Prechelt L. (1994a) PROBEN1 — a set of neural network benchmark problems and benchmarking
rules, Fakultat far Informatik, Universitat Karlsruhe, TR 21/ 94.

Prechelt L. (1994b) A study of experimental evaluations of neural network learning algorithms:
current research practice, Fakultat Iiir Informatik, Universitat Karlsruhe, TR 19/94.

Quinlan J. (1987) Simplifying decision trees, International Journal of Man-Machine Studies, 26:.

Quinlan JR. (1986a) The effect of noise on concept learning, in Machine learning: an artificial
intelligence approach, Michalski RS, Carbonell JG and Mitchell TM, Editors, Morgan

Kaufmann: Los Altos, California, Vol. 2, pp149-166.

Quinlan JR. (1986b) Induction of decision trees, Machine Learning, 1 (1): 81-106.

Quinlan JR. (1993a) C4.5: programs for machine learning, Morgan Kaufmann: San Mateo,

California.

Quinlan JR. (1993b) Comparing connectionist and symbolic learning methods, in

Computational learning and natural learning systems: constraints and prospects, Hanson S,

Drastal G and Rivest R, Editors, MIT Press: Cambridge, Massachusetts.

Ramachandran S and Pratt LY. (1991) Information measure based skeletonisation, in

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and

Lippmann RP, Editors, Morgan Kaufmann, pp1080-1087.

203

Reed R. (1993) Pruning algorithms — a survey, IEEE Transactions on Neural Networks, 4 (5):
3-16.

Refenes AN and Vithlani S. (1991) Constructive learning by specialisation, in Artificial
Neural Networks, Kohonen T, Makisara K, Simula 0 and Kangas J, Editors, North-

Holland, pp923-929.

Rendell L and Cho H. (1990) Empirical learning as a function of concept character, Machine
Learning, 5: 267-298.

Rognvaldsson T. (1993) Pattern discrimination using feedforward networks: a benchmark

study of scaling behaviour, Neural Computation, 5: 483-491.

Rumelhart DE, Hinton GE and Williams RJ. (1986) Learning internal representations by

error propagation, in Parallel Distributed Processing, Rumelhart DE and McClelland JL,

Editors, MIT Press: Cambridge, Massachusetts, Vol. 1, pp318-362.

Segee BE and Carter MJ. (1991) Fault tolerance of pruned multilayer networks, in

International Joint Conference on Neural Networks, IEEE, pp447-452.

Shamir N, Saad D and Marom E. (1993) Neural net pruning based on functional behaviour

of neurons, International journal of Neural Systems, 4 (2): 143-158.

Sietsma J and Dow RJF. (1988) Neural net pruning — why and how, in IEEE International
Conference on Neural Networks, IEEE, pp325-333.

Sietsma J and Dow RJF. (1991) Creating artificial neural networks that generalise, Neural
Networks, 4: 67-79.

Simon N. (1993) Constructive supervised learning algorithms for artificial neural networks, Delft
University of Technology, Masters thesis.

Simon N, Corporaal H and Kerckhoffs E. (1992) Variations on the cascade-correlation learning
architecture for fast convergence in robot control, Delft University of Technology,

neuroprose archive.

Singh S and Tweedie FJ. (1995) Neural networks and disputed authorship: new challenges,

in 4th International Conference on Artificial Neural Networks.

Sjogaard S. (1991) A conceptual approach to generalisation in dynamic neural networks, Aarhus

University, Denmark, Masters thesis.

Solla SA. (1988) Learning and generalization in layered neural networks: the contiguity

problem, in Neural networks from models to applications, Personnaz L and Dreyfus G,

Editors, IDSET, Paris, pp168-177.

204

Squires CS and Shavlik JW. (1991) Experimental analysis of aspects of the Cascade-Correlation

learning architecture, Machine Learning Research Group, Computer Sciences

Department, University of Wisconsin — Madison, TR 91-1, neuroprose archive.

Stone JV and Lister R. (1994) On the relative time complexities of standard and conjugate

gradient back propagation, in The Fifth Australian Conference on Neural Networks, Tsoi

AC and Downs T, Editors, University of Queensland Electrical and Computer

Engineering, pp242-245.

Thimm G and Fiesler E. (1995) Evaluating pruning methods, IDIAP, Switzerland, Preprint of

paper accepted for publication by ISANN'95.

Thodberg HH. (1991) Improving generalization of neural networks through pruning,

International Journal of Neural Systems, 1 (4): 317-326.

Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, De Jong K, Dzeroski S. Fisher D,

Fahlman SE, Hamann R, Kaufman K, Keller S. Kononenko I, Kreuziger J, Michalski RS,

Mitchell T, Pachowicz P. Reich Y, Vafaie H, Van de Welde W, Wenzel W, Wnek J and

Zhang J. (1991) The MONK'S problems — a performance comparison of different learning

algorithms, Carnegie Mellon University, TR CMU-CS-91-197.

Tolstrup N. (1995) Pruning of a large network by Optimal Brain Damage and Surgeon: an

example from biological sequence analysis, International Journal of Neural Systems, 6 (1):

31-42.

Tsaptsinos D, Mirzai AR and Leigh JR. (1992) Matching the topology of a neural net to a

particular problem: preliminary results using correlation analysis as a pruning tool, in

Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland, pp957—

960.

Vamplew P and Adams A. (1991) Real world problems in backpropagation: missing values and

generalisability, Artificial Neural Network Research Group, Department of Computer

Science, University of Tasmania, TR R91-4.

Wang S-D and Hsu C-H. (1991) A self growing learning algorithm for determining the

appropriate number of hidden nodes, in International Joint Conference on Neural

Networks, IEEE, pp1098-1104.

Waugh S. (1994a) Dynamic learning algorithms, Artificial Neural Network Research Group,

Department of Computer Science, University of Tasmania, TR R94-2.

Waugh S. (1994b) Extensions to Cascade-Correlation training, Artificial Neural Network

Research Group, Department of Computer Science, University of Tasmania, TR R94-8.

205

Waugh S. (1995a) Extensions to Cascade-Correlation training, in The Sixth Australian

Conference on Neural Networks, Charles M and Latimer C, Editors, University of Sydney,

Electrical Engineering, pp21-24.

Waugh S. (1995b) Generating data sets for benchmarking, in IEEE International Conference on

Neural Networks, IEEE and Causal Productions, pp2145-2148.

Waugh S. (1995c) TasCas — a Cascade-Correlation simulator, Artificial Neural Network

Research Group, Department of Computer Science, University of Tasmania, TR R95-9,

URL: ftp:/ / ftp.cs.utas.edu.au / pub/ ANNRG/ Software/ tascas4.0.tar.gz.

Waugh S and Adams A. (1993) Comparison of inductive learning of classification tasks by neural

networks, Artificial Neural Network Research Group, Department of Computer Science,

University of Tasmania, TR R93-5, extended abstract appears in The 6th Australian

Joint Conference on Artificial Intelligence, World Scientific, (1993), p447.

Waugh S and Adams A. (1994) Connection strategies in Cascade-Correlation, in The Fifth

Australian Conference on Neural Networks, Tsoi AC and Downs T, Editors, University of

Queensland, Electrical and Computer Engineering, pp1-4.

Waugh S and Adams A. (1995) Pruning within Cascade-Correlation, in IEEE International
Conference on Neural Networks IEEE and Causal Productions: Perth, WA. pp1206-1210.

Weigend AS, Rumelhart DE and Huberman BA. (1990) Generalization by weight-

elimination with application to forcasting, in Advances in Neural Information Processing
Systems 3, Lippmann RP, Moody JE and Touretzky DS, Editors, Morgan Kaufmann,

pp875-882.

Weigend AS, Rumelhart DE and Huberman BA. (1991) Generalization by weight-

elimination applied to currency exchange rate prediction, in International Joint
Conference on Neural Networks, IEEE, pp837-841.

Weiss SM and Kulikowski CA. (1991) Computer systems that learn: classification and prediction

methods from statistics, neural nets, machine learning, and expert systems, Morgan

Kaufmann: San Mateo.

Wynne-Jones M. (1991a) Constructive algorithms and pruning: improving the multilayer

perceptron, in 13th IMACS World Congress on Computation and Applied Mathematics,

Vichnevelsky R and Milier JJH, Editors, pp747-750.

Wynne-Jones M. (1991b) Node splitting: a constructive algorithm for feed-forward neural

networks, in Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ

and Lippmann RP, Editors, Morgan Kaufmann, pp1072-1079.

206

Yang J. (1991) Experiments with the Cascade-Correlation Algorithm, Department of Computer

Science, Iowa State University, TR 91-16.

Yeung D-Y. (1991) Automatic determination of network size for supervised learning, in

Internation Joint Conference on Neural networks, IEEE, pp158-164.

Zheng Z. (1993) A benchmark for classifier learning, in The Sixth Australian Conference on

Artificial Intelligence, Rowles C, Liu H and Foo N, Editors, World Scientific, pp281-286.

207

