
Extending and Benchmarking Cascade-Correlation 

Extensions to the Cascade-Correlation architecture and 
benchmarking of feed-forward supervised artificial neural 

networks 

by 

Samuel George Waugh, BSc (Hons) 

Submitted in fulfilment of the requirements for the degree of Doctor of 
Philosophy 

University of Tasmania, August, 1995 



%06.1,11.  

a' IONA 

Tkitu4 
Li) AUG-H 
P 

1 9' 



Abstract 

This thesis is divided into two parts: the first examines various extensions to Cascade-

Correlation, and the second examines the benchmarking of feed-forward supervised 

artificial neural networks, including back-propagation and Cascade-Correlation. 

The first extensions to the training mechanism of Cascade-Correlation involve the inclusion 

of patience to stop the addition of hidden nodes and the introduction of alternative methods 

for training the candidate pool. These methods greatly improve the training speed of the 

algorithm. Secondly, reducing the number of connections within Cascade-Correlation 

networks is examined: by the introduction of hidden nodes with limited connection 

strategies, and by the pruning of the fully-connected hidden nodes and the output layer. 

Three methods of stopping the pruning process are briefly investigated. It is shown that 

adding limited connected hidden nodes is effective in altering the style of network topology, 

if not reducing the number of connections. Pruning within Cascade-Correlation drastically 

reduces the number of connections required without affecting the classification performance 

of the networks developed. Furthermore, all the different methods of halting the pruning 

process are shown to be effective. 

The second part of the thesis concentrates on benchmarking feed-forward supervised 

artificial neural networks, in particular Cascade-Correlation. The earlier part of the thesis 

highlights the need for effective benchmarks, as a large number of real-world problems do 

not require anything more than a single layer of weights to achieve near optimal 

performance given the available data. The second part initially investigates two new real-

world problems. Although both turn out to be useful problems to examine — testing many 

of the features of Cascade-Correlation described earlier — they too do not require much 

more than a single layer of weights, and hence do not test the power of Cascade-Correlation 

or other systems which allow the use of hidden nodes. Two methods of generating artificial 

data are then examined as ways of producing increasingly complex data sets. The 

application of these benchmarks to the comparison of various artificial neural network 

methods is examined. The generated data sets are effective in highlighting the differences 

between the algorithms, for example it is shown that Quickprop and the activation function 

offset methods of accelerating training are not always useful, and provide more detailed 

results on the various Cascade-Correlation modifications. 



Statements of originality and access 

This thesis contains no material which has been accepted for a degree or diploma by the 

University or any other institution, except by way of background information and duly 

acknowledged in the thesis, and to the best of my knowledge and belief no material 

previously published or written by another person except where due acknowledgment is 

made in the text of the thesis. 

...eara•P••—.......-- _i,._,,j- 

  

   

This thesis may be made available for loan and limited copying in accordance with the 

Copyright Act 1968. 

,A,Rr......*-- •••1\-•■.5 

 

  

11 



Acknowledgments 

Thanks to my supervisors Tony Adams and Phil Collier: their help and insightful comments 

were invaluable. Thanks particularly to Tony, who cheerfully put up with me annoying him 

every week. Thanks also to Scott Fahlman who was of great assistance during the initial 

development of this work, and who is always ready to answer questions. Further thanks to 

the anonymous examiners for their helpful comments and suggestions. 

Thanks also to the members of the Artificial Neural Network Research Group and the 

department's postgraduate students — particularly Julian Dermoudy, Carl Lewis, Peter 

Vamplew, Tim Freeman and Lee Arnould — who helped my postgraduate studies go a little 

faster. 

Acknowledgment and thanks must also go to other groups for their assistance in producing 

this thesis. Thanks to the Tasmanian State Government Department of Education and the 

Arts for providing after-hours access to their machines, resulting in over 13000 hours of 

simulations being completed. In particular, Jim Palfreymann and Dr John Gilbert deserve 

special mention. To the Tasmanian Government Department of Primary Industry and 

Fisheries Marine Research Laboratories, in particular Warwick Nash, for generously 

providing the abalone data. To the University of Newcastle Centre for Linguistic and 

Literary Studies, in particular John Burrows and Hugh Craig, for the data on Romantic and 

Renaissance tragedies. Finally thanks to Michael Fraser, Simon Talbot and Tony Adams, 

respectively, for suggesting these resources in the first place. 

The patience and assistance of the many proof readers who made it through the earlier 

drafts also deserves recognition, in particular Tony Adams, Trudy Steedman, Cristina 

Cifuentes, Phil Collier and Julian Dermoudy. 

On a more personal level, a great deal of thanks to my parents, for getting me to the stage 

where I could attempt this at all. Finally, thanks to Trudy Steedman for always being my 

best friend. 

111 



Contents 

Abstract 	 i 

Statements of originality and access 	  

Acknowledgments 	 iii 

1 	Introduction 	 1 

1.1 	Organisation of thesis 	 2 

1.2 	Inclusion of papers 	 3 

Part I Extensions to Cascade -Correlation 	 5 

2 	Background to dynamic learning 	 7 

2.1 	Current literature on dynamic neural networks 	 8 

2.1.1 Removing connections — saliency methods 	 8 

2.1.2 Modifying weights — penalty terms 	 10 

2.1.3 Changes to the number of hidden nodes 	 12 

2.1.4 Combinations of different strategies 	 14 

2.1.5 Further comments 	 15 

2.2 Abstraction of topology changing methods 	 16 

2.2.1 Changing connections and weights 	 16 

2.2.2 Changing the application of hidden nodes 	 17 

2.3 Standard Cascade-Correlation 	 18 

2.3.1 Overview of Cascade-Correlation 	 18 

2.3.2 Output layer training 	 20 

2.3.3 Candidate training 	 21 

2.3.4 Stopping Training 	 24 

2.3.5 The Quickprop algorithm 	 26 

2.3.6 Diagrams 	 30 

2.3.7 Summary 	 30 

2.4 Experimental design 	 31 

2.4.1 Standard Cascade-Correlation option settings 	 32 

2.4.2 Measures of performance 	 32 

2.4.3 Benchmark data sets 	 34 

2.4.4 Performance of standard Cascade-Correlation 	 35 

iv 



3 	Extensions to Cascade-Correlation training 	 37 

3.1 	Stopping the addition of hidden nodes 	 37 

3.1.1 Description of node patience 	 38 

3.1.2 Results and discussion 	 39 

3.1.3 Need for hidden nodes 	 41 

3.1.4 Summary 	 42 

3.2 Alternative candidate node training schemes 	 43 

3.2.1 Description of alternative candidate training methods 	 43 

3.2.2 Experimental design 	 45 

3.2.3 Results and discussion — single activation function 	 47 

3.2.4 Results and discussion — multiple activation functions 	 50 

3.2.5 Summary 	 52 

4 	Altering connection strategies within Cascade-Correlation 	 53 

4.1 Limiting connections by growth 	 53 

4.1.1 Alternative node connection strategies 	 54 

4.1.2 Node forcing and experimental design 	 55 

4.1.3 Results and discussion 	 56 

4.1.4 Summary 	 61 

4.2 Limiting connections by pruning 	 62 

4.2.1 Pruning algorithm 	 62 

4.2.2 Where to prune? 	 63 

4.2.3 Stopping pruning 	 64 

4.2.3 Summary 	 69 

Part II Benchmarking Cascade-Correlation 	 71 

5 	Background to benchmarking databases 	 73 

5.1 	Features of data sets 	 73 

5.1.1 Underlying problem structure 	 73 

5.1.2 Factors affecting the data presentation 	 75 

5.1.3 Inductive bias 	 79 

5.2 Real-world and constructed data sets 	 80 

5.2.1 Constructed data set benchmarks 	 80 

5.2.2 Real-world data set benchmarks 	 83 

5.3 Application of previous benchmarks 	 84 

5.4 Summary 	 86 

V 



6 	Real-world data sets — two new examples 	 87 

6.1 Example one — ageing abalone 	 87 

6.1.1 Initial data preparation 	 87 

6.1.2 No hidden nodes 	 91 

6.1.3 Hidden nodes 	 92 

6.1.4 Optimal Performance 	 93 

6.1.5 Confusion matrices 	 95 

6.1.6 Pruning 	 96 

6.1.7 Other classification methods 	 98 

6.1.8 Summary 	 99 

6.2 Example two — identifying authors 	 99 

6.2.1 Details of author data 	 100 

6.2.2 Full data Cascade-Correlation experiments 	 102 

6.2.3 Cross-validation error estimation 	 103 

6.2.4 Restricted attributes 	 104 

6.2.5 Other methods 	 106 

6.2.6 Summary and discussion 	 107 

7 	Constructing data sets — two methods 	 109 

7.1 	Voronoi data sets 	 109 

7.1.1 Data set characteristics 	 110 

7.1.2 Measuring complexity 	 112 

7.1.3 Simulation results on Voronoi data sets 	 114 

7.1.4 Summary 	 118 

7.2 Normal data sets 	 119 

7.2.1 Optimal classification 	 120 

7.2.2 Simulation results on normal data sets 	 121 

7.2.3 Summary 	 122 

7.3 Application of benchmarks 	 123 

7.3.1 Quickprop and back-propagation 	 123 

7.3.2 Cascade-Correlation and modifications 	 127 

7.3.3 Summary 	 130 

8 	Conclusion 	 133 

8.1 Further work 	 135 

vi 



Appendices 	 137 

A 	Node patience results 	 139 

B 	Candidate training results 	 145 

B.1 	Single activation function 	 145 

B.2 Multiple activation functions 	 148 

C 	Limited candidate node results 	 153 

D 	Pruning results 	 159 

E 	TasCas — a Cascade-Correlation simulator 	 167 

E.1 	Introduction 	 167 

E.2 Network input I — data file 	 168 

E.3 Network input II — simulator options 	 169 

E.3.1 Weight training options (Quickprop) 	 170 

E.3.2 Stopping training 	 171 

E.3.3 Candidate training controls and options 	 172 

E.3.4 Pruning and weight reduction 	 175 

E.3.5 Obtaining network results 	 176 

E.3.6 Trial options 	 176 

E.3.7 Checkpointing and file recovery 	 177 

E.4 Network output 	 177 

E.4.1 Header Information 	 177 

E.4.2 Final and summary results 	 178 

E.4.3 Other outputs for completed training of a single trial 	 180 

E.4.4 Progress during training 	 182 

E.4.5 Regression results 	 183 

E.5 Possible errors 	 183 

E.6 Code structure 	 184 

E.6.1 Module overview 	 184 

E.6.2 Main training mechanism 	 185 

E.6.3 Other code groups 	 185 

E.7 Special considerations 	 186 

E.7.1 Standard notation and indexing 	 186 

E.7.2 Module specific considerations 	 186 

E.7.3 Error and correlation formulas 	 187 

E.8 Planned improvements 	 188 

E.A Extended Quinlan format 	 189 

vii 



E.B Options summary 	 190 

E.0 Full header information 	 192 

E.D Complete examples 	 193 

E.D.1 Example one 	 193 

E.D.2 Example two 	 195 

F 	References 	 197 

viii 



1 Introduction 

In recent years there has been an enormous increase in the amount of research conducted in 

artificial neural networks. This may be loosely divided into two complementary areas: 

firstly, the application of computational methods to the development of realistic models of 

neural functions, and secondly the application of the distributed computation methodology 

to solving problems, not necessarily in a biologically plausible manner. 

One of the most developed and researched areas in the applications part of artificial neural 

networks is inductive learning — the learning of a theory from individual examples 

presented to the system. In particular, supervised learning — where an answer is known 

and used to improve performance — is particularly popular. The back-propagation 

algorithm [Rumelhart, Hinton & Williams 1986] is easily the most frequently used artificial 

neural network model, not only because of its simplicity, but also because of its effectiveness 

at producing good solutions to a wide range of problems. 

One of the difficulties with the back-propagation algorithm, and others like it, is that details 

of the network structure need to be decided prior to training. This requires a priori 

knowledge of the problem to obtain good performance, gathered either from knowledge of 

the problem domain or from experimentation using the learning algorithm. 

In response, attempts have been made to develop algorithms which change their internal 

structure as well as training the network weights, with the aim of removing the onus on the 

user of selecting the network topology. An artificial neural network which dynamically 

alters its topology, not only alleviates the need for human intervention, but also potentially 

gives extra flexibility which allows the training algorithm to more effectively find a solution 

[Baum 1989]. 

One of the more promising algorithms for dynamically altering artificial neural network 

topologies is Cascade-Correlation (Cascor) [Fahlman & Lebiere 19891. This algorithm starts 

with a minimal network architecture, to which hidden nodes are added as required, forming 

feature detectors within the network. The first part of this thesis examines this algorithm, 

extending the methods of training and examining further ways of altering the final network 

topology. 

A further difficulty with the development of inductive learning via artificial neural networks 

is the frequent reliance on minimal testing to measure the performance of various 

techniques. The currently available benchmarks are not entirely suitable, as will be seen 

from the results of Part I, and comparatively little literature is devoted to the development of 
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benchmarks for inductive learning systems. A large number of generated benchmarks are 

too simple to be realistic, and are thus not able to test the algorithms such as Cascor. 

Hence the second part of this thesis examines the area of benchmarking supervised 

inductive learning — in particular artificial neural networks. Two new real-world problems 

and two methods for generating complicated artificial problems are examined and assessed. 

1.1 Organisation of thesis 

To limit the size of this thesis it is assumed that the reader has background knowledge of 

inductive learning, particularly classification which involves the separation of examples into 

distinct classes; and supervised feed-forward artificial neural network methods. 

The main body of this thesis is in two major sections. The first part involves alterations 

made to the Cascor neural network architecture in an effort to improve its performance. 

This consists of three chapters. Chapter 2 reviews methods of dynamically altering the 

structure of feed-forward fully-supervised artificial neural networks, and then details an 

outline into which all such algorithms fit. The chapter is concluded by giving a description 

of the Cascor algorithm, the parameters and data sets used, and the results of Cascor as 

applied to nine problems used for benchmarking the first part of the thesis. Chapter 3 

examines methods for assisting and speeding the training process: a method used to halt 

training when little performance increase is being achieved; and alternative methods for 

training the candidate nodes. Chapter 4 examines methods of reducing the number of 

connections within a Cascor network — the aim being to produce a smaller classifier which 

will generalise at least as well and possibly better by using fewer free parameters. This is 

addressed in two ways: by the addition of hidden nodes which have a limited initial 

connection strategy, and by the pruning of hidden nodes and the output layer to reduce the 

number of connections after a suitable amount of training is completed. 

The second part of this thesis examines methods of benchmarking artificial neural network 

inductive learning systems. In Chapter 5, a review of the literature is presented which 

highlights the important features of data sets which need to be considered. This is followed 

by a summary of different benchmarks that have been presented: both those containing real-

world problems, and those containing artificially generated data. Finally, an examination of 

the performance of Cascor on a number of these benchmarks is given. Chapter 6 examines 

two new real-world problems, using Cascor as the major development tool, in an attempt to 

find tasks which require the processing power of a reasonable number of hidden nodes to be 

solved. The problems relate to the ageing of abalone shellfish from Tasmanian waters, and 

the separation of Romantic and Renaissance tragedy authors. Chapter 7 examines two 
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methods of generating complicated data sets, and their application to comparisons between 

various artificial network training methods. 

Finally, Chapter 8 concludes the work in the thesis, and suggests further work which may be 

conducted in both the areas of examining Cascor and benchmarking strategies. Full details 

of the experiments undertaken in Part I are detailed in Appendices A through D. Appendix 

E is an abridged version of the manual for the simulator used to perform the Cascor 

experiments [Waugh 1995cl, and Appendix F gives the complete bibliography. 

1.2 Inclusion of papers 

For clarity the papers which have been included within this thesis as part of the author's 

own work are outlined with references to the relevant sections. Firstly, those which have 

been accepted in refereed conferences are given: 

[Waugh & Adams 1993] §5.3 

[Collier & Waugh 1994] §5.3 

[Waugh 8,z Adams 1994] §4.1 

[Adams & Waugh 1995] §8.1 

[Waugh 1995a] §3.1 and §3.2 

[Waugh 1995b1 §7.1 

[Waugh & Adams 1995] §4.2 

Secondly, unrefereed works are outlined: 

[Waugh 1994a] 	§2 and §4.2 

[Waugh 1995c] 	§E 
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Part I Extensions to Cascade- 
Correlation 



2 Background to dynamic learning 

One of the major criticisms of fully-supervised feed-forward artificial neural networks is 

their failure to cope with requirements for different topologies. Usually only a simple, fixed 

network structure is used: namely one hidden layer with no shortcut connections, forming 

two processing layers. The problem is not due to the limitations of particular weight 

training algorithms, such as back-propagation [Rumelhart, et al. 1986], but rather is due to 

the limits of the network's structure and how this is developed [Baum 1989]: 

... it is unlikely that any algorithm which simply varies weights on a net of fixed size and 

topology can learn in polynomial time. ... obstructions to rapid learning can be avoided if 

one considers algorithms with the power to add neurons and synapses, as well as simply 

varying synaptic weights. 

An artificial neural network has a set number of inputs and a set number of outputs, as 

defined by the problem being addressed. However, the internal hidden connections, 

weights and nodes may be altered in any way by the training algorithm. 1  This includes 

deciding what connections are present between nodes, whether there should be distinct 

layers of nodes, and so on. Overall, the number of free parameters, or the ability of a 

network to model further data set features, corresponds roughly with the number of 

connections [Cortes, Jackel & Chiang 1995]. Thus, the modification of network features 

allows for more parameters to be added to model the underlying data set function, or the 

removal of parameters to avoid over-specialisation on the given training data. 

This chapter investigates the dynamic alteration of network topologies during the training of 

fully-supervised feed-forward artificial neural networks. It is suggested by many 

researchers (for example, [Baum 1989; Fahlman 1990]) that dynamically altering networks 

presents good opportunities for developing optimal network architectures that generalise 

well. This chapter gives an overview of past methodologies, both constructive and 

destructive; gives a general reasoning as to why certain types of topology-changing 

algorithms are successful based on a framework developed from the literature; and 

concludes by giving a more detailed description of Cascor and introducing the remaining 

chapters in this part of the thesis. 

1  In this thesis, the term connection is used to indicate the presence of a link between two nodes, 

whereas the term weight is used to indicate the numeric strength of the connection. 
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2.1 Current literature on dynamic neural networks 

The main aim of dynamic neural network algorithms is to produce a network which 

effectively solves the problem at hand. This is done in two basic ways: by either removing 

unnecessary features to make the network smaller, or adding features to a minimal network 

as required. The fewer free parameters that exist in the network, the more likely that they 

will be correctly estimated from the available training data_ The greater the number of free 

parameters, the more likely the network will have the ability to model all of the data. Thus 

the task of the dynamic neural network algorithm is to produce the most appropriate 

number of parameters in a form which models the function underlying the data, without 

allowing for over-specialisation. 

Few papers summarise the major construction and pruning strategies. Wynne-Jones 

concentrates on weight decay methods, and node construction and pruning — the paper 

does not examine the ideas of connection pruning in any detail [Wynne-Jones 1991a]. Hertz, 

Krogh and Palmer briefly examine connection pruning, weight decay and node construction 

algorithms [Hertz, Krogh & Palmer 19911. Reed gives a very good overview of the different 

pruning strategies, identifying the two main groups of pruning algorithms: sensitivity 

calculation methods, and penalty-term methods [Reed 1993]. Fiesler provides a very brief 

tabulated overview of many methods of changing topology within perceptron-style 

networks and others [Fiesler 19941. The general perceptron-style topology altering methods 

are described more fully below. 

2.1.1 Removing connections — saliency methods 

There are two main ways of removing connections between nodes: by pruning using 

saliency measures, or by pruning using penalty-term methods to reduce weights to zero. 

Removing weights by the use of penalty terms will be considered in the next section. 

The saliency of a connection is the change in error after the removal of that connection, or 

the sensitivity of the network to the removal of that connection [Mozer & Smolensky 1988]: 

Saliency = Error (connection removed) - Error (connection present) (2.1) 

The higher the saliency value, the more important the connection is. Low saliencies indicate 

that a connection has little importance, and negative saliencies indicate a weight that is 

doing more harm than good. Often the saliency is estimated in some way to speed the 

removal of connections. The actual saliency or its estimate may then be used to decide 

which connections to prune or remove. 
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Thodberg examines the removal of connections by a process of direct elimination: each 

connection is pruned in turn, and the resulting network is retrained for a short period 

[Thodberg 1991]. If the network still performs reasonably the change is kept, otherwise the 

connection is returned along with the original network weights. This method may be time 

consuming — to the point of being computationally intractable — but it has reasonable 

success in removing extra connections and.retraining existing ones. A saliency estimate is 

not calculated as the weights are individually removed, and the effect on the network is 

evident after training. 

Skeletonization [Mozer & Smolensky 1988; Mozer & Smolensky 1989] is a technique which 

removes nodes by assessing the relevance of their connections. This process may be simply 

extended to the removal of connections, as it actually estimates the error after removing a 

single connection, which is combined to give the error after the removal of a node. Karnin 

notes that Mozer and Smolensky's sensitivity measure is defined to be used with a particular 

linear error measure, and he goes on to describe a sensitivity measure specifically for 

network connections which is independent of the error function used [Karnin 1990]. 

Another sensitivity measure is Optimal Brain Damage (OBD) [Le Cun, Denker & Solla 1989] 

and the subsequent method Optimal Brain Surgeon (OBS) [Hassibi & Stork 1992]. OBD 

calculates saliencies by comparing the results of the main diagonal of a Hessian matrix, or 

the second derivatives, of the change in error with respect to the weights. A Taylor 

expansion of the error results in four groups of terms: the first term is assumed to be 

constant, the second term is assumed to be zero as the network has been trained to a local 

minimum and the slope is constant, the third term results in the Hessian matrix which 

calculates the quadratic approximation or curvature of the error surface, and the higher 

order terms are ignored and assumed to be negligible. The main diagonal of the Hessian 

matrix gives an estimate of which connections are required. OBS follows this up with 

improvements, mainly by using the full Hessian matrix, in contrast to using only the 

diagonal. This has the advantage of requiring no retraining after the changes have been 

made whereas OBD does require retraining. Nevertheless, these computations can be quite 

expensive. A number of papers have examined these algorithms further, with comparisons 

between OBD and OBS, and some improvements and modifications to the algorithms — 

particularly to the OBS algorithm (for example, [Gorodkin, Hansen, Krogh, Svarer & 

Winther 1993; Hassibi, Stork & Wolff 1993; Tolstrup 1995]). 

A further method called Principle Components Pruning (PCP) has also been developed 

[Levin, Leen & Moody 1994]. As the name suggests, this method prunes connections by the 

use of principle components analysis to calculate their relative worth. The paper shows that 

PCP has a computational complexity much less than OBS, but greater than OBD. It also 
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claims that PCP is likely to produce better results than OBD, although this is not backed up 

with results. 

Another method [Tsaptsinos, Mirzai & Leigh 1992] uses correlation analysis for the removal 

of unnecessary connections; and there are a number of papers which optimise the network 

architecture by using genetic algorithms (for example, [Nolfi & Parisi 1991; Hancock 1992; 

Kendall & Hall 1992; Kendall & Hall 1993]), though it is not obvious from the papers that 

this is an efficient process, especially for larger networks [Hertz, et al. 1991]. 

Sensitivity measures also have their critics [Reed 1993]: 

... most of the sensitivity methods ... don't detect correlated elements. ... An extreme 

example is two nodes which cancel each other out at the output. As a pair, they have no 

effect on the output, but individually each has a large effect so neither will be removed. 

Retraining may break such a deadlock, but this will not necessarily result in an optimum 

solution. 

2.1.2 Modifying weights — penalty terms 

Another way of removing a connection, as mentioned previously, is by changing the weight 

of that connection so that the connection has no effect. Pruning of weights, or regularisation, 

is performed by adding a penalty term affecting the network complexity to the network 

error term which is being minimised, with the purpose of changing the magnitude of the 

network weights. With this method generally weights are reduced to remove their effect. 

This relies on the weight training algorithm to reduce the weights by minimising the overall 

network cost: 

Network cost --- Network error + Network complexity 	(2.2) 

The minimisation of the overall cost results in the training of the network weights and the 

alteration of the weights to minimise the term specifying the network complexity. 

Weight decay and weight elimination are mentioned quite extensively in the literature. Less 

frequently mentioned is the use of weight enhancement to generate weights from zeroed 

connections [Chauvin 1988]. 

Krogh and Hertz give a good overview of the area of weight decay [Krogh & Hertz 1991] — 

the idea being initially attributed to Rumelhart [Hanson & Pratt 1988; Wynne-Jones 1991a] 

— and then go on to show that weight decay is an improvement over standard gradient 

descent back-propagation weight training. Weight decay in its basic form is simply the 

gradual reduction of the smaller weights to minimise their effect in relation to the larger 
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weights in the network. Hanson and Pratt, and Burkitt and Ueberholz also examine this 

method, with the latter attempting to separate the learning from the weight reduction 

phases [Hanson & Pratt 1988; Burkitt & Ueberholz 1993]. 

Weigend, et al. propose a system for weight elimination which subsumes much of the work 

done in weight decay [Weigend, Rumelhart & Huberman 1990; Weigend, Rumelhart & 

Huberman 19911. This system, similarly operates by training to a set minimum error for a 

particular problem and trades off complexity and the network error. The method allows for 

the alteration of the weight cost function so that smaller weights or larger weights become 

relatively expensive. 

NowIan and Hinton describe a further penalty term method called soft weight sharing 

[Nowlan & Hinton 1992]. Under this scheme an alternative penalty term is used which 

favours the reduction of smaller weights. The penalty term involves the combination of two 

Gaussian functions. One function is used to reduce the smaller weights, while the other 

targets larger weight values — the latter, in the limiting case, may be replaced with a 

uniform distribution. The penalty term is reduced by allowing the means and variances of 

the Gaussians used to adapt such that the variances shrink, drawing the weights into having 

similar values, which in turn implements a 'soft' version of weight sharing, whereby asingle 

weight is used by several connections. By starting the penalty-term Gaussians with high 

variances, all the weights influenced by the respective Gaussians will be forced to have 

similar values. The wide variance at the beginning means that the Gaussians will not 

adversely affect the training process. The sharing of weights results in a reduction of the 

degrees of freedom that the network may use for over-fitting the data. There is, of course, a 

greater cost with the increased complexity of the weight optimisation process. 

Not everyone is in favour of these penalty-term methods. Mozer and Smolensky state 

[Mozer & Smolensky 19891: 

... our impression is that it is a tricky matter to balance a primary and secondary error term 

against one another.... In our experience, it is often impossible to avoid local minima — 

compromise solutions that partially satisfy each of the error terms. 

Karnin also notes that penalty-term methods can 'interfere with the learning process' 

[Karnin 1990]. Hanson and Pratt indicate that weight decay is not effective at removing 

hidden units [Hanson & Pratt 19881 To remove connections other methods would have to 

be employed to zero small weights at some stage during training, as the weight decay 

methods are not effective in reducing the weight values to absolute zero [Sietsma & Dow 

1988]. 
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2.1.3 Changes to the number of hidden nodes 

The large majority of papers with respect to topology altering algorithms consider changes 

in the number of hidden nodes, rather than changes to the connections or weights between 

nodes. Most of these papers concentrate on the introduction of new nodes when the 

network is not capable of solving the problem at hand. Only a few examine the removal of 

nodes. These different styles will be considered in turn. 

2.1.3.1 	Construction — adding hidden nodes 

Many techniques are based on the standard configuration for a back-propagation style of 

network, with two layers of processing nodes. The idea of splitting nodes in the hidden 

layer, or simply adding extra nodes to the hidden layer is very common (for example, [Ash 

1989; Hanson 1989; de le Maza 1991; Platt 1991; Refenes & Vithlani 1991; Wynne-Jones 

1991b]). 

Several methods have been developed which grow layers as well as the number of nodes in 

a single layer. The majority have been designed for problems with binary inputs, but could 

be extended to cover more general cases. Gallant presents three concepts of network growth 

which involve the addition of individual nodes [Gallant 1986]: growing nodes with 

connections to the previous node and the inputs (Tower Construction), growing nodes 

connected to all previous nodes and inputs (Inverted Pyramid Construction), and adding 

static nodes in layers. No results are given as to the effectiveness of these ideas. The Tiling 

algorithm [Mezard & Nadal 1989] builds another layer on the network outputs if the 

previous layer does not separate the classes in the problem. Along a similar vein is the 

Extentron algorithm [Baffes & Zelle 19921 which forces the separation of examples by 

extending a standard perceptron. The Upstart algorithm [Frean 1990] produces a binary tree 

of nodes which correct the values of the outputs for all training examples, the purpose being 

to correct any mistakes by adding extra positive and negative signals to the output node. 

This adds as many nodes as required to correct the error. The Upstart algorithm performs 

better than the Tiling method [Wynne-Jones 1991a], however both suffer from the limitation 

that only binary tasks are addressed. 

Cascor is not limited to binary problems nor to a certain number of layers [Fahlman & 

Lebiere 1989]. It allows the addition of hidden nodes as required which have connections 

from all previous hidden nodes and the inputs, and are connected in turn to all outputs — 

hence giving the Inverted Pyramid Construction identified by Gallant. The network starts as 

a single output layer with full connections between the network inputs and outputs. 

Training occurs until there is no further improvement, as measured by patience parameters, 

much like the method employed by Ash [Ash 1989]. Cascor is then able to individually 

install hidden nodes into the network. The hidden node is selected from a pool of trained 
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candidate nodes. The node with the highest correlation to the network error after the 

candidates have been trained is installed. The weights of this hidden node are then frozen 

and the output layer is retrained with the extra node connected to it. This process is cyclical 

and continues until either the training set is classified correctly or the maximum number of 

hidden nodes has been added. This produces all possible feed-forward connections, and the 

ability of hidden nodes to connect to other hidden nodes allows for the possible formation of 

advanced feature detectors. The Cascor algorithm has been extended a number of times 

[Littmann & Ritter 1992; Simon, Corporaal & Kercichoffs 1992; Simon 1993] . 

One limitation of Cascor is that it is not effective when examining regression style problems. 

The correlation machinery tends to over-compensate which means that the results, though 

effective for classification, tend to over-shoot on regression problems [Fahlman 1993; 

Hwang, You, Lay & Jou 1993; Freeman 1994; Adams & Waugh 1995]. 

Projection Pursuit Learning (PPL) [Hwang, et al. 1993; Hwang, Lay, Maechler, Martin & 

Schimert 1994] involves a single hidden layer of nodes with adaptable activation functions. 

Nodes are added to the single hidden layer when required, and the activation functions are 

altered to solve the required problem, rather than adding more nodes with fixed activation 

functions to a deepening network as with Cascor. Simulations indicate that PPL is 

extremely effective at solving regression problems, as the activation functions adapt to fit the 

shape of the problem structure. 

2.1.3.2 Pruning — removing hidden nodes 

Three main methods are employed for node pruning: heuristic solutions, saliency measures 

which are extensions of the methods used to prune connections, and node decay based on 

weight decay methods. Sietsma and Dow take the heuristic approach by comparing nodes 

based on the network outputs of all training patterns [Sietsma & Dow 1988]. The idea is to 

remove those nodes which have little effect — non contributing units; or whose effect is 

duplicated by other nodes — the unnecessary-information units. It also removes layers by 

determining if they are redundant. Shamir et al. consider the reduction of hidden nodes by 

merging neurons with similar functional behaviour, hence preserving functionality [Shamir, 

Saad & Marom 1993]. Statistical results are presented to support the algorithm. Chung and 

Lee also develop a node pruning algorithm which removes four styles of unnecessary nodes: 

non-contributing, duplicated, inversely-duplicated and inadequate nodes [Chung & Lee 

1992]. 

As was mentioned previously, Skeletonization is one method of pruning nodes from a 

network [Mozer & Smolensky 1988; Mozer & Smolensky 1989]. Segee and Carter show that 

this method is quite effective, even though a relevant node may have weights which are 
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irrelevant [Segee & Carter 1991]. Ramachandran and Pratt extend the Skeletonization idea 

by basing a node pruning method on an information measure from the inductive learning 

literature [Quinlan 1986b; Ramachandran & Pratt 19911. Similar ideas are presented by 

Dunne et al. with regard to nodes which attempt to separate only one class from the rest of 

the classifications in the problem [Dunne, Campbell & Kiiveri 1992]. Adams and Jones also 

examine a node's relevance in relation to function interpolation with success in creating 

minimal single layered networks [Adams & Jones 1992]. 

Chauvin examines the removal of nodes by a weight decay method which is altered to 

encompass all weights connected to the one node, rather than operating on individual 

weights [Chauvin 1988]. Ji et al. also consider the removal of nodes using a penalty term, 

along with the reduction of weight magnitudes at the same time [Ji, Snapp & Psaltis 1990]. 

2.1.4 Combinations of different strategies 

As the methods mentioned above may be applied in different phases of network training, 

combinations of different methods have occurred. Sietsma and Dow examine one method 

which combines the use of growing and pruning algorithms [Sietsma & Dow 1991]. One 

deficiency with their method of heuristic pruning [Sietsma & Dow 1988] is that although it 

may produce a minimal number of nodes in a layer, the output of the layer may not be 

linearly separable. This may require the introduction, and hence growth, of extra hidden 

layers to overcome the newly created problems with the hidden layer or layers. The result is 

a transformation of a wide and shallow network into a thin, deep network which may 

generalise better than the originally trained network. The problem is that this method is 

used over and above the training of the initial network, thus increasing the time required for 

training. 

Wynne-Jones favours the combination of constructive algorithms and pruning methods to 

overcome the problems of obtaining the minimal network, by allowing the training process 

to increase the size of the network, and then reduce it when the task has been learnt [Wynne-

Jones 1991a]. No specific system is presented in the paper. There have been algorithms 

developed which both add and delete hidden nodes from a single layer (for example, 

[Murase, Matsunaga & Nakade 1991; Wang & Hsu 1991]). 

There are a number of additions to the Cascor algorithm to include further topology 

changing methods. Klagges and Soegtrop which examines the use of limited and randomly 

connected hidden nodes in the Cascor style of network [Klagges & Soegtrop 1992]. The idea 

of growing a single hidden layer using Cascor has also been considered [Sjogaard 1991; 

Yeung 1991]. 
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2.1.5 Further comments 

In the case of using pruning algorithms, where initially excess connections or nodes are in 

the network, often the extra free parameters aid in the learning process as well as the speed 

of learning [Mozer (Sr Smolensky 1988; Izui 8r Pentland 1990; Thodberg 1991; Wynne-Jones 

1991a]. 

Not all people agree with this approach [Ash 1989]: 

There are some shortcomings to the pruning approach. Since the majority of the training 

time is spent with a network which is larger than necessary, this method is computationally 

wasteful. 

This training speed problem does not occur with methods such as Cascor [Fahlman 1993], as 

it seems to be related to the 'herding' problems that have been identified within standard 

back-propagation style networks [Fahlman & Lebiere 19891. Since in back-propagation all 

hidden nodes are active at any point in time during the training of the hidden layer, all the 

nodes are trying to correct the same error. To ensure that a solution is reached, a greater 

than optimal number of hidden nodes is required for training to ensure that the nodes are 

well spaced by the initial random allocation of weights. Cascor, for example, does not suffer 

from this problem as only one hidden node is trained at a time so that the maximum error is 

reduced by one node and then its weights are frozen. Nevertheless, it is not guaranteed that 

this 'greedy algorithm' will produce a minimal network [Fahlman 1990], as it is trying to 

remove as much of the error as possible using a single hidden node. 

A further criticism of pruning is that the reduction in the number of connections may lead to 

a corresponding reduction in the fault tolerance of networks, inherited from the way in 

which knowledge within the network is distributed. Work done on the effect of pruning on 

the fault tolerance of networks indicates that after pruning a network's ability to cope with 

being damaged is not decreased [Segee & Carter 1991]. This should be taken in the context 

that generally, back-propagation gradient-descent trained networks do not have significant 

fault tolerance capability, as usually individual weights may have a great bearing on the end 

result [Bolt 19921. 

Further work is also being performed on network architectures which differ from the 

standard feed-forward network design (for example, [Fiesler 1994; Deffuant 1995]). 

However, the above review does show definite trends which form the basis for the next 

section outlining an abstraction of methods for changing network topology. The majority of 

connection alteration methods involve the pruning of unnecessary connections or weights. 

The majority of node alterations involve the addition of new nodes to account for further 

data features. Most algorithms also require the retraining of the network after pruning. 
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2.2 Abstraction of topology changing methods 

This section outlines an abstraction of possible ways of changing network topologies 

developed from the literature presented above. Feed-forward networks can be considered 

to be directed acyclic graphs. There are two features of a general acyclic graph: the set of 

vertices, and the set of directed edges between those vertices. Artificial neural networks can 

be mapped to acyclic graphs such that nodes are regarded as the vertices, and connections 

being the directed edges. The weight of a connection can be considered to be a strength of 

the directed edge. From this it can be seen that there are two general topological features of 

artificial neural networks, namely the nodes and the connections with their associated 

weights. The distinction between connections and weights may be considered to be 

arbitrary, but it reflects a difference in methods presented in the literature. 

Disregarding whether nodes, connections, or weights are being examined, there are three 

common ways in which topologies are altered: by the use of constructive algorithms to add 

features to the network, using destructive algorithms which remove or prune features from 

the network, and a combination of constructive and destructive algorithms. Any algorithm 

which considers the alteration of a network topology will then be adding or removing 

nodes, connections, or weights. These will be considered in turn below. Note that if a node 

is added or removed, so are all the connections to that node, so changes which include 

whole nodes amount to the addition or removal of blocks of network connections. 

2.2.1 Changing connections and weights 

Firstly, adding or removing connections or weights is examined. Consider that there are ii 

potential inputs to a particular node, then there are 2n possible connection strategies to that 

node (see figure 2.1). In a construction algorithm, a base case of minimal connections to a 

node is needed to which new connections can be added. As the number of inputs to a node 

increases, the number of possible starting connection strategies to that node increases 

dramatically. The large number of possibilities would mean that the best initial connection 

strategy would often be missed if only a few were selected randomly. Though there are 

advantages to having nodes with limited fan-in, the large number of combinations make 

their use prohibitive. 

Figure 2.1 — Example of the possible connection strategies with two inputs (possibly one being a bias 
connection) to the one node 
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For example, consider the case where each node has a maximum of two connections. If 

there are n network inputs there will be: 

n! (2.3) 
2 • (n ±2)! 

possible node connection strategies to the input layer, without even considering the need to 

train multiple nodes with different random weights to avoid local minima. Therefore for 10 

inputs, there would be 45 different connection strategies for each node to be used. 

It may also be possible to employ some form of weight enhancement to add in connections 

when they are required from zeroed weights. The problem of what is a sensible initial 

connection strategy comes up again, as most weight training methods require the setting of 

random initial weights. If a network required the majority of weights — or all weights as is 

the obvious choice — to be set to zero, allowing weight enhancement to be employed at 

some later stage, there will be little variation to avoid local minima. Further, it is difficult 

then to start the training process and decide which weights should be allowed to vary. 

A pruning algorithm for connections would start at the more obvious position of all possible 

connections to a node being present and could then decrease the number of connections • 

according to some pruning strategy. Although there are the same number of possible 

connection strategies, a unique base case exists to start training on, and it is easier to remove 

connections which have no effect than add connections which may have an effect. Likewise, 

weight decay methods seem more reasonable than weight enhancement as they can 

gradually reduce weights that are already in place. One concern with choosing a pruning , 

approach is that initially training the extra connections would require more computational 

time for little gain than a more limited connection strategy, especially when a large number 

of connections are redundant. 

2.2.2 Changing the application of hidden nodes 

Finally, additions and deletions to the number of hidden nodes are considered. Whereas the 

number of connections has an upper limit set by the maximum number of inputs to the 

particular node, the number of hidden nodes has no upper limit. The base case is naturally 

no hidden nodes at all — perhaps forming just a perceptron-style output layer. Thus a node 

construction algorithm seems quite attractive as long as the initial conditions are sensibly 

set. This will require at least one node in each hidden layer or some strategy for forming 

new layers. 

To use a destructive scheme for removing nodes more nodes are required than are necessary 

in the final network. The problem with such a destructive algorithm is that at some point 
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the initial topology needs to be decided: what is the maximum number of hidden nodes 

required, how many layers are needed and how are the nodes to be connected to proceeding 

and succeeding layers. A sensible possibility would be to start with a fully connected 

layered network and remove unnecessary nodes. This relies on the weight training, possibly 

over a large number of layers, to find a reasonable solution in the first place and also to be 

reasonably quick; and puts the onus on the user to allocate the initial topology to be just 

larger than the necessary final network, to reduce the overall training time. 

Thus the most promising approaches seem to be to add hidden nodes and remove 

connections. The ideal of using the smallest number of layers may also be incorporated into 

this scheme if this is judged as being important for the network application. This abstraction 

is mirrored by the methods presented in the literature. 

2.3 Standard Cascade-Correlation 

Cascor is examined as one of the most promising node construction algorithms, as it is able 

to develop networks with multiple layers creating advanced feature detectors, and it is able 

to examine problems with real-valued inputs. Its real strengths lie in the area of 

classification where the outputs are binary and it is this excellent performance which 

warrants further consideration. The algorithm's performance with real valued outputs is 

less than optimal [Adams & Waugh 19951. Furthermore, it is a prime candidate for the use 

of methods to reduce the number of connections, as the algorithm adds hidden nodes with 

all possible feed-forward connections, many of which may be redundant. This leads to a 

natural combination of growing and pruning methods, in line with the trends evident in the 

literature. 

2.3.1 Overview of Cascade -Correlation 

The Cascor algorithm cycles between two phases to train a network: the first phase involves 

training and further retraining of the weights to the output nodes; and the second involves 

the gradual addition of hidden nodes to the network (see figure 2.2). The second phase is 

the more complicated whereby candidate nodes are trained to maximise their correlation 

with the network error, and the best of these nodes is installed into the network. 

Figure 2.2 outlines the ordering of these processes, and the following subsections describe 

them in more detail. The details described in this section are taken from Fahlman's paper, 

the released Cascor software and the author's TasCas simulator (see [Fahlman & Lebiere 

1989; Crowder & Fahlman 1991; Waugh 19950 and §E). 
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Figure 2.2 — Flow-chart outlining the Cascor algorithm 

The initialisation phase of the algorithm is simple: the network consists of the required 

number of inputs and outputs as determined by the problem. For classification problems it 

is usual to have one output node per class and train the network to fire one output node at a 

time. For unseen data the output node with the largest response is taken as the example 

classification. The network is created by the allocation of the required memory for the 

connections between the input and output nodes, the initial weights of the network are 

randomly set, and the data required for training and testing is read in to appropriate data 

structures for use throughout the training process. Note that the test set data is not used in 

any way to select features of the network. It is there purely to monitor the generalisation of 

the network. 
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2.3.2 Output layer training 

Cascor starts developing a network by initially training a layer of weights between the input 

nodes and the output nodes. This single layer is fully-connected and prescribed by the 

problem and data representation chosen. The output layer configuration, with random 

weights set during the initialisation process, is trained to produce a minimal error (see 

§2.3.5). 

For efficiency and speed considerations the training process initially involves caching the 

required values from the evaluation of the network: namely the network outputs for each 

example, the error values for each output and example and the overall network error. The 

error for each output and example value is as follows: 

ekp  = y kp  ± tip 	 (2.4) 

where ekp  is the error over all outputs k and all training patterns p, ykp  is the output node 

value and tkp  is the expected output value. 

The output and error values are cached for later use in the training process, especially 

during the training of the candidate nodes where these values are not altered over several 

iterations. The caching is not necessary, but it greatly speeds up training if the machine 

memory is available. Otherwise the values and errors of the output nodes must be 

recalculated for each example when required. 

Once the values have been cached, it is possible to say whether the goals of training have 

been met, as the most recent network has been evaluated. At this point it is decided whether 

training the output layer should continue. This process is described more fully below (see 

§2.3.4). If these goals have been met — which is unlikely if no changes have been made to 

the weights — then the output layer training phase is complete. If this does not occur then 

the output layer weights are trained using Quickprop (see §2.3.5) and the algorithm cycles to 

evaluating and caching the output layer information. This process continues until training 

of the output layer is considered to be complete. 

The error to be back-propagated (3) is calculated as follows: 

Skp = f kp • e kp 	 (2.5) 

where fp  is the derivative of the activation function f for pattern p, in this case for the output 

unit k, with respect to the sum of its inputs. The released Cascor code [Crowder & Fahlman 

1991] uses the above slope value for some error calculations instead of (2.4). This usually 

includes an activation function offset (see §2.3.5). The error function in (2.4) is used for all 
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error calculations within the experiments presented within this thesis. The learning error 

rate used is: 

T1 	 (2.6) 

where n is the nominal learning rate and t is the total number of training examples. This 

scaling is for the benefit of Quickprop to keep the updates within a sensible range. 

Once the output layer training is complete as mentioned previously, the algorithm checks to 

see if the conditions of training the entire network have been met (see §2.3.4). If they have, 

the algorithm stops, otherwise candidate units are trained and one of those units is installed 

in the network. The output layer is then retrained with connections to this new hidden unit, 

and the process cycles. The process of training the candidates is described next. 

2.3.3 Candidate training 

The training and installing of a hidden node is performed in a similar manner to the output 

layer training: a number of candidate nodes are given initial random weights, and they are 

then trained independently to maximise their correlation to the network error; the total 

number of candidates is specified by the user. The candidates are connected to all the input 

nodes and all the previously installed hidden nodes. 

The training cycle for candidate nodes begins by calculating the correlation2  of each 

candidate node with the residual error at the output nodes. The original Cascor paper 

[Fahlman & Lebiere 1989] gives the following formula for the correlation calculation (S) for 

which is to be maximised each candidate: 

S = 
k = 1 

E (v,,,±clekp ± 
p =1 	' 

(2.7) 

   

where vp  is the value of the candidate for example p, and z) and ëj are the averages of the 

candidate values and the errors for each output respectively. This results in the following 

derivative with respect to the candidate's input weights which are being trained: 

DS _ 	G 	ekp ± Fk) f • x, F, 
- k=1 k  p=1( r 

(2.8) 

2 As noted in Fahlman's paper the correlation calculation is strictly a covariance, as no normalisation of 

the calculation is performed. Fahlman has indicated that the normalisation process does not improve 

training performance [Fahlman & Lebiere 1989]. 
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where o-k  is the sign of the correlation between the candidate's value and output k, xip  is the 

input the candidate receives from the unit i for the pattern p, j is the index for the candidate 

nodes, and wi is the weight to the candidate from the input layer. The unit i may be a 

network input or a previously installed hidden node. In the actual implementation released 

by Fahlman, and the subsequent TasCas simulator [Crowder & Fahlman 1991; Waugh 1995c1 

error normalisation is implemented for correlation values. This amounts to having the 

following formulas instead of (2.7) and (2.8): 

=1 
s - 	 

k p=1 
VP  .ek

P 
 tv. k  

(2.9) m t 
I 	2 ek  

k=lp=1 

±ak • ± (ekp 	• fip 

= 
as k=i 	p=1 

k=lp=1 

These formulae are used for the calculation of the correlation and the subsequent 

modification of candidate weights within the candidate training process. 

If, as calculated from the correlation calculations, training is not complete (see §2.3.4) then 

the candidate node weights are modified by gradient ascent to maximise their correlation 

with the output nodes. The learning rate is normalised in a similar manner to the output 

layer training rate to keep the Quickprop updates within a sensible range [Crowder & 

Fahlman 1991]: 

11  
t-(n+h-F 1) (2.11) 

where n is the total number of inputs, and h is the number of hidden nodes installed so far, 

and n again is an arbitrary constant representing the learning rate. 

Once the candidates are trained the candidate with the largest correlation is installed in the 

network. Its input weights are added to the network and frozen so they will not be altered. 

The freezing is effected by only training the output layer weights during the output training 

phase, and not back-propagating the errors past the output layer. The output layer weights 

for the newly installed hidden nodes are set using minus the last correlation calculated as an 

initial guess (—S). Fahlman has found this to be more effective than just setting random 

weights [Fahlman 1993]. The hidden unit cache may then be updated with the values 

produced by the new hidden node. As the hidden node weights are frozen, these will not 

alter during the rest of training. 

1p 

(2.10) 

22 



The output layer is then retrained with the newly installed hidden node as an extra input to 

all the output nodes. This process cycles, adding in further hidden nodes, until the training 

is completed. The extra connections to the previous hidden nodes generate a very deep 

network with one node per hidden layer and all possible shortcut connections installed. The 

maximum number of hidden nodes which can be installed is again specified by the user. 

2.3.3.1 	Correlation derivation 

The following is the derivation of the correlation S with respect to the candidate's input 

weights [John 1995]: 

as _ 
(Vp  rlekp  

k=1 p=I 

DTATi 	 dWi  

	

t (

a 1X1 	± V)(e kp  ± 

k=1 

a ± (v to  ±v)(ekp  ±Fk) 
	 where ak  is the sign of the correlation = 	GI( k =I 	 aw;  

± qekp  ± 
= E ak 

	

k=1 p = I 	awi  
a(vp±v) 

= 	ak  I 	(e kp  ± -e7,) as ek  does not depend on VV, 
k=1 	p=1 	Lovvi 

t 

= k1 akpI= 1 

(av 
P 7-v 

Tv■Ti  (ekP ± DN' 7; 

The error is independent from the candidate weights as this is dependent on the output 

weights only. From the definition of the network: 

n + h 
Vp  = 	W. • X• ip 

1=1 

the following may be calculated: 

n + h 

Dv af(E w  • x ip) 
,.1  

= 	awi  
n + h ( 

a 	w;  • x ip) 
= f' 	 dwi  
= f' • 

which may be used within the last equation of (2.12) to give: 

as _ 	(f, _ 
k=1 —k

p„ u. • Xip  f x i)(ekp  ± Fk) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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This formula can be shown to be equivalent to the original calculation of the derivative (2.8) 
as the f' • x, term sums to zero. Removing this additional term may lead to some problems 

of precision, although empirical evidence does not indicate that this has had any major effect 

[John 1995]. 

2.3.4 Stopping Training 

There are three points within the Cascor algorithm where decisions need to be made as to 

whether training should continue. These are at the end of each output layer training epoch, 

at the end of each candidate pool training epoch, and for the entire network at the end of 

each output layer training phase. 

At these different points different methods are used to decide when training is complete: 

• an arbitrary limit — which is used for output layer and candidate training 

setting a maximum number of epochs which training may take, or is used by 

the overall network training by setting the maximum number of hidden units 

which may be installed; 

• a correctness limit — which is used for stopping output layer training and the 

entire network training; and 

• a patience limit — which is used to halt output layer and candidate training 

when training is not resulting in an effective improvement in network 

performance. 

If any one of these limits is met on a phase of training in which it is being employed, then 

training halts. Thus if, for example, the epoch limit is met on output layer training, then 

training halts regardless of whether the patience limit or correctness limit has been met. The 

arbitrary limit, irrespective of whether it measures the number of hidden nodes or the 

number of epochs, is a rough measure of training time; hence this may be regarded as a time 

limit. 

The correctness limit is determined in two ways. The first is more appropriate for 

classification problems, where a minimum number of error bits is set for a goal of training 

and often this minimum is set to zero. An error bit is where a value for an output for a 

particular example is outside a specified range, and is hence considered to be in error. This 

is counted as one error bit. If the number of error bits is zero then 100 percent correctness is 

said to be achieved. The maximum number of error bits is therefore the number of training 

examples multiplied by the number of outputs. The allowable range from the expected 

value is specified by an error threshold. Thus, for example, if a symmetric sigmoid 

activation function is used with values between —0.5 and 0.5 and an error threshold of 0.4 set, 
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then a correct maximum value will be between 0.1 and 0.5, and a correct minimum value 

will be between —0.5 and —0.1. 

The second method for judging correctness, which is more appropriate for regression 

problems, is to simply set an arbitrary error value which the network error must fall below: 

(ykp tkp)2 

MSE k 	= I P  = i
m • t 

(2.16) 

Fahlman provides further normalisation of this value within the released simulator (see 

[Crowder & Fahlman 1991] and §E.7.3). 

Patience is a measurement of minimal activity specified by the two patience parameters: 

• patience error — the change in error required over a set period to continue 

training; and 

• patience period — the period over which the change in error is measured. 

Thus if there has not been a change in the network error greater than the patience percentage 

of the error given — or the maximum correlation for training the candidate pool — over the 

patience period, then the network runs out of patience and that phase of training is 

completed. The code for implementing the patience calculation is given in figure 2.3. 

initialise by: 

quitpoch = currentEpoch = 0; 

stillPatient = true; 

At the end of each training period: 

/* note that currentEpoch++ has occurred and currentError is set */ 

if (quitEpoch == 0) { 

lastError = currentError; 

quitEpoch = patienceLength; 

) else 

if (fabs(currentError - lastError) > patiencePercentage * lastError) 

lastError = currentError; 

quitEpoch = currentEpoch + patienceLength; 

) else 

if (currentEpoch >= quitEpoch) 

stillPatient = false; 

At the completion of training: 

totalEpochs += currentEpoch; 

Figure 2.3 — C code for calculating the patience stopping criterion 
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2.3.5 The Quickprop algorithm 

Quickprop is the name given by Fahlman to a quasi-Newton method of minimising a 

function using an heuristic estimate of the curvature of the error function to improve 

performance over gradient descent back-propagation [Fahlman 19884 3  Any function can 

be expanded about a known point in a Taylor series. For simplicity consider the one 

dimensional case: 

 

c  
+ h2 

2 'ax2 
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f(x0  + h) = f(x0) + 

 

(2.17) 

 

x0 

 

   

The first term is proportional to the function evaluated at the known point, the second to the 

first derivative evaluated at that point and multiplied by the distance from it, the third to the 

second derivative evaluated at that point and multiplied by the square of the distance from 

it, and so on. 

If the expansion is about a minimum, the curve in the vicinity of the minimum can be 

reasonably approximated by a constant and a term quadratic in the distance from the 

minimum, h. This is because the first term gives the value at the minimum, the second term 

is proportional to the slope of the curve which at the minimum is zero and the third term is 

proportional to the curvature at the minimum. At the minimum the curve is symmetric and 

hence all the terms proportional to the odd powers of h are zero. If h is small then even 
terms of order h4  and higher will be small compared with the quadratic term. 

In minimising the error function in back-propagation this analysis cannot be directly applied 

since the position of the minimum is what is required rather than what is known. However, 

if near a minimum it is reasonable to take the shape of the surface to be quadratic. Fahlman 

makes the assumption that the surface is quadratic but applies it at all times rather than only 

near a minimum [Fahlman 19884 Fahlman makes the further 'risky' assumption that the 

weights are independent, thus changes to a weight do not affect the other weights in the 

network. The use of the partial derivative is the implementation of this assumption. 

The standard gradient descent weight change, including the momentum term which need 

not be used, is as follows: 

Aw(t) = tri • s(t) +a • Aw(t ± 1) 	 (2.18) 

3The technical report referenced here is available by ftp. The published version of the paper [Fahlman 

1988b1 is also referenced but it is not as readily available. 
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where ri is the learning rate, a the proportion of momentum used and s(t) is the slope at time 

t. The Quickprop algorithm essentially changes this to: 

Aw(o = s(t+4.00,406,w(t±i) 	 (2.19) 

leading to a crude approximation of the optimum value which gets increasingly better as the 

minimum is approached. The derivation of this is outlined below. 

2.3.5.1 	Derivation of Quickprop update 

In back-propagation style networks the error function is a function of the weights and each 

weight is dealt with individually. At each step in the iterative process of minimising the 

error function the value of the error and the gradient of the error function at that point are 

known. Quickprop uses the current and previous gradients and the values of the weights to 

estimate the position of the minimum based on the quadratic approximation. Figure 2.4 

illustrates the situation. 

lAi 
	

1A 
	

Wm 	 W 

Figure 2.4 — The error function, E is a function of a weight, w. At wi and w2 the gradients of the 
curve are si and s2 respectively. wm  is the position of the minimum 

The error function is assumed to be a quadratic function of the weight, w, namely 

E = a + bw + cw2 	 (2.20) 

The slope of this curve is given by: 

E = b + 2cw 	 (2.21) 

Two points are known, namely 

D-TA-i-E  = s, at w = w, and .. A.,' E  = s2  at w = w, 	 (2.22) 

At the minimum we have: 
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= 0 at w = w,,, 	 (2.23) 

Substituting (2.22) into (2.21) we have: 

s, = b + 2cw, and s 2  = b + 2cw2 	 (2.24) 

from which we derive: 

b = slww22  ±±  ws2w: and c = 1  s2± s ' 2 w2± 

Substituting these values into (2.21) and (2.23) we have: 

lb 
wrn = 

—± 
s, w2  ± s2w,  1 2  w2  ±w1  

w2  ±w1  • 2 s2 
s2w1  ± s 1 w2  

s2  ± s, 

Finally, if we interpret the subscripts to mean that wi and si are measured at time (t - 1) and 

w2 and s2 at time (t) and introduce two further parameters: 

Aw(t) = Wm  ± w2  and Aw(t ± 1) = w2  ± WI 	 (2.27) 

we can rewrite (2.26) as: 

Aw(t) = s(t ± s(i)t)±  swAvs(t ± 1) 	 (2.28) 

which is the derived Quickprop formula [Fahlman 19884 Since it involves the (reciprocal 

of the) difference of two gradients divided by the distance between them, Fahlman is able to 

claim that this is an approximation to a second order algorithm. 

2.3.5.2 	Practical considerations 

Since at a point a great distance from a minimum the quadratic assumption may be poor 

Fahlman has introduced a series of heuristic rules to deal with the cases where this 

assumption does not work well. 

At the beginning of the training there is only one value of w and s known and hence simple 

gradient descent with learning rate TI is employed as the full Quickprop update formula will 

be ineffective. Likewise when the previous weight change is zero, gradient descent is used 

to continue the training process if required. 

Furthermore, the standard gradient descent term is added to the Quickprop quadratic 

update if the current slope will cause the weight to move down the error slope in the same 

(2.25) 

(2.26) 
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direction as the previous change, helping to push the value toward the minimum. This 

additional term is not used if the slope changes: hence the weight is near the minimum 

where the quadratic weight update should be most effective. 

lithe current slope is close to or larger than the previous slope and moving in the same 

direction — unlike the parabola that Quickprop formula models — a jump to the minimum 

may result in an overly large step. To avoid this Fahlman introduces a term 1.1, the maximum 

growth factor, to limit the step size. In such a situation ji times the previous weight change 

is used instead of the Quickprop update formula, where Fahlman suggests a value of 1.75 

for This or the Quickprop formula are thus only used if the previous weight is non-zero. 

A shrink factor is calculated from ji to test if the current slope is as large or larger than the 

previous slope. This is used to avoid taking steps which are too large. The shrink factor is 

defined as follows: 

shrink factor = 	 1 + 

Finally a weight decay term is added to the slope prior to these calculations to limit the 

growth of the weights, if required, giving the following cost function for the output layer as 

an example: 

n 

E = Eo  +1,yi 
f  

k=1 i = 1 	k' 
(2.30) 

where y represents the strength of the weight decay. A small decay value will ensure that 

the weights do not grow too large, for both the output layer and candidate weights. 

All these modifications lead to the implementation shown in figure 2.5. For stability 

considerations this algorithm only works as a batch training method, which requires the 

presentation of a group of examples to update the weights. In this case each batch is 

considered to be a complete run through the training set, after which the errors are used to 

update the weights. 

An offset to the activation function derivative to stop this getting close to zero, is also often 

employed in conjunction with the Quickprop algorithm [Fahlman 19884 Briefly the 

activation function offset adds 0.1 to the derivative of the activation function it is applied to. 

The purpose of this is to ensure that the derivative does not become close to zero for values 

at the extremes of the activation function. The weight update, by definition, is multiplied by 

the derivative, and thus there is no update if the derivative is zero or is near zero. This 

increases the effect of any error in the region of the activation function. In Cascor an 

activation function offset is used in training the output layer, but no activation function 

offset is used with the candidate nodes as this confuses the correlation machinery [Fahlman 

(2.29) 
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Lebiere 19891. Adams and Lewis have shown that for function evaluation, which is 

related to finding the maximum of the correlation, the use of the offset is not useful. 

nstep = 0.0; 

s += decay * w; 

if (pd < 0.0) { 

if (s > 0.0) nstep -= eta * s; 

if (s >= shrink * ps) nstep += mu * pd; 

else nstep += pd * s / (ps - s); 

) else if (pd > 0.0) { 

if (s < 0.0) nstep -= eta * s; 

if (s <= shrink * ps) nstep += mu * pd; 

else nstep += pd * s / (ps - s); 

) else 

nstep -= eta * s; 

pd = nstep; 

w += pd; 

ps = s; 

Figure2.5 — the C code for a single weight Quickprop update: s is the current slope, ps the previous 
slope, pd the previous weight change, w is the actual weight, eta is the learning rate, mu the maximum 
growth factor, decay is the weight decay term, shrink is the shrinkage factor, and nstep is a variable for 

calculating the next step by the Quickprop algorithm 

2.3.6 Diagrams 

Since Cascor is able to install a large number of shortcut connections the usual layered 

network diagram becomes unmanageable and unable to convey the full network 

information. To overcome this problem Fahlman and Lebiere developed an alternative 

diagram for displaying cascaded neural networks [Fahlman (SE Lebiere 1989]. Examples of 

networks — both a standard layered network and a Cascor network — are given in figure 

2.6. The shaded nodes are the non-processing inputs, and the nodes at the top of each 

diagram are the outputs. The boxes indicate frozen hidden node connections within the 

Cascor network and the crosses indicate trainable connections: for the Cascor network this 

involves only output layer connections. The vertical lines to a node indicates the nodes' 

inputs and horizontal lines from a node indicate outputs from that node. If no box or cross 

occurs on the intersection of a horizontal and a vertical line, then the relevant connection is 

not present. This method of displaying artificial neural networks is useful for displaying 

any variety of feed forward network. 

2.3.7 Summary 

To recap the entire Cascor training process: initially a layer of weights between the input 

and output nodes is trained to minimise the overall network error. This is performed using 

the Quickprop algorithm, which requires several parameter values over a phase of training: 
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Figure 2.6 — Examples of (a) a standard two hidden layer network, and (b) a standard Cascor network 

• ri — the learning rate; 

• p. — the maximum growth rate which limits the size of any change in weights 

performed after each presentation of the training set; and 

• y — a standard weight decay parameter which may be used to ensure that the 

weights do not grow excessively large. 

Once progress is no longer made, the maximum number of epochs of training has been 

performed or the network achieves a correct result, output training is complete. If this 

results in a correct network, or the maximum number of hidden nodes has been installed, 

then the network training is complete. Otherwise a pool of candidate nodes is trained to 

maximise their correlation with the residual error of the network. When the maximum 

number of epochs has been reached or no progress is been made in the training of the 

candidate nodes, the best candidate node is installed into the network and the output layer 

is retrained. The algorithm thus cycles through installing hidden nodes and retraining the 

output layer, and these phases themselves cycle through training regimes. The user of 

Cascor has to decide what parameters to use for the specific application of the algorithm. 

2.4 Experimental design 

This section provides more specific details regarding the design of experiments throughout 

this thesis. The assumptions and general algorithm parameters used for experiments are 

given, followed by how network and general classifier performance is measured. The data 

sets employed to test the ideas presented in the first part of the thesis are then outlined, and 

finally details of the results of basic simulations using these data sets and parameters with 

standard Cascor are presented. Modifications to the Cascor algorithm are presented in the 

remaining chapters in the first part of the thesis. 
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2.4.1 Standard Cascade-Correlation option settings 

To test the performance of the modifications presented in this thesis, a standard 

experimental construction is used. Each result is the median of 100 randomly seeded trials 

performed on the selected data sets (see §2.4.3), using the parameters outlined in tables 2.1 

and 2.2, unless otherwise specified. The median is reported to avoid problems of skewed 

results, since there is no guarantee that the results produced will follow a normal 

distribution. A maximum of 25 hidden nodes may be added to each network. Symmetric 

sigmoid activation functions, with values within the range of —0.5 and 0.5, are used for all 

processing nodes, unless otherwise specified. The initial weights are set evenly over the 

interval –1 and 1. Each class is represented by a single output node. 

Table 2.1 — Default values for candidate and output layer training parameters 

Parameter Candidate value Output value 

11 1.0 0.35 

II 1.75 1.75 

Y 0.0 0.0 

Patience percentage 3% 1% 

Patience period (epochs) 50 50 
Epoch limit 500 500 

Activation function offset 0.0 0.1 

Table 2.2 — Default values for network training parameters 
Parameter Value Parameter Value 

Number of candidates 10 Network trials 100 
Candidate node limit 25 Percentage allowable error bits 0.0 

Default connection strategy Full Error threshold 0.4 
Default candidate node activation 

function 
Symmetric 

sigmoid 
Expected value buffer 0.0 

Thus the only difference between tests is the actual initial weights for the individual trials 

and the parameters under investigation. All the experiments are performed using the 

author's Cascor simulator (see Appendix E). 

2.4.2 Measures of performance 

There are six often quoted measures of performance of a classifier[Bratko 1990; Weiss & 

Kulikowski 1991; Zheng 1993]: 

• the performance or prediction accuracy of the classifier; 

• the speed of classification; 

• the speed of learning the classification; 

• the complexity or size of the final theory; 
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• the explanation ability of the final theory; and 

• the ability of the theory to stand up to partial corruption. 

These measures do not include other important factors, such as the cost of measuring the 

attributes, which is problem dependent. The speed of the final classification is often 

negligible — certainly in comparison to learning times — and will not be considered here. 

The ability of the network to stand up to partial corruption and the explanation ability of the 

final classifier will also not be considered, although they are areas warranting further 

detailed investigation. 

The most important measure is the prediction accuracy or the generalisation ability of the 

final network, as this is the goal of the training. This is the ability to learn the underlying 

function of a population from the examples that have been presented to the system. Weiss 

and Kulikowski give an excellent introduction to measuring generalisation [Weiss & 

Kulikowski 1991]. Within this thesis — unless otherwise indicated — generalisation will be 

measured by a separate unseen test set. Though this may give a biased — usually 

pessimistically biased — measure of performance, this measure was chosen as it is 

computationally cheaper to employ than full cross-validation. 

The complexity or size of the final theory also needs to be considered. It is preferable to 

obtain a system which solves the problem correctly, but which is also the smallest possible, 

giving the best chance for sensible generalisation. The size of the resulting theory depends 

on the method used to solve to the problem. For example, the number of hidden nodes, or 

the total number of connections are most often used to specify the complexity of a network. 

Thus the results presented in this thesis take three forms: 

• correctness or performance of the final theory — measured by the percentage 

correct on an unseen test set; 

• complexity or size of the resulting theory — measured by the number of hidden 

nodes, or the total number of connections in the network; and 

• training time — for artificial neural network methods, measured by the number 

of connection crossings or epochs required to train the network. 4  

4An epoch is considered here to be the presentation of the same number of examples as there are in the 

training set. Each connection crossing is the multiplication of a network weight by an input. The 

number of connection crossings is a more accurate measure than the number of training epochs in an 

architecture changing environment, as the extra work required with the introduction of more hidden 

nodes which have more inputs is taken into account as the network grows [Fahlman Sr Lebiere 1989]. 
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2.4.3 Benchmark data sets 

The following classification tasks are chosen to test the performance of Cascor on the 

alterations presented in the first part of this thesis: 

• the Monks problems [Thrun, et al. 19911 — an artificial benchmark of three 

problems used to compare various methods of machine learning: these 

problems are based on a simple set up of enumerated attributes leading in each 

case to a binary classification problem; 

• Two Spirals problem (TS) [Fahlman & Lebiere 1989] — a well known problem 

for showing the learning ability of Cascor — involves two interlocking spirals of 

different classes, with 192 training and test examples; 

• Double Helix problem [Waugh & Adams 1994] — an extension of the Two 

Spirals concept: the Double Helix data set is generated using two full spirals of 

radius one with each spiral being one unit in length, one hundred samples were 

taken at evenly spaced intervals along each spiral, and the test set includes the 

points shifted by 0.1; 

• LED — recognising LED displays from examples with ten percent noise added 

[Breiman, Friedman, Olshen & Stone 1984] using 2000 training examples and 

500 test examples; and 

• problems from the Proben1 benchmark [Prechelt 1994a1 — three examples of 

real-world problems without substantial missing values are selected from this 

benchmark: Cancer1 from the University of Wisconsin Hospitals, Diabetes1, and 

Glassl. 

Copies of all but the Double Helix data set are available from the UCI machine learning 

database repository [Murphy & Aha 1994]. Thus, nine problems are used to benchmark the 

methods outlined in the first part of this thesis. Six of them are artificial, and three are taken 

from real-world environments, all of which have prescribed test sets for generalisation. 

These tasks are selected as they are commonly known problems available to all researchers 

(Monks, LED and Probenl data sets), or they are difficult tasks for standard artificial neural 

networks with sigmoid-like activation functions (Two Spirals and Double Helix). For 

example the Two Spirals problem is very difficult to solve using standard non-constructive 

methods. Fahlman and Lebiere note that at least two hidden layers are required to solve the 

problem, often with specialised architectural features, such as short-cut connections between 

hidden layers [Fahlman & Lebiere 1989]. The training also requires a large number of 

training epochs: of the order of 60000 to 200000. 

It also accounts for the extra work involved when the number of candidates in the hidden node pool 

for Cascor is altered. 
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The three Probenl problem are chosen as they are classification tasks from the benchmark 

which do not contain major arbitrary encodings of missing data. In a related work Zheng 

details a number of benchmarks taken from the UCI repository for general machine learning 

tasks [Zheng 1993]. In total he identifies 13 data sets, including Monlcs2, Cancerl, Diabetes1 

and LED. Although a complete coverage of all the data sets mentioned in these benchmarks 

is not made, a reasonable number of each is examined while still examining two data sets 

requiring the addition of hidden nodes. The issue of benchmarking is further addressed in 

Part II of this thesis. 

2.4.4 Performance of standard Cascade-Correlation 

To give a baseline measurement, table 2.3 outlines the performance of Standard Cascor on 

the benchmark data sets outlined above, given the parameters outlined in tables 2.1 and 2.2. 

It is evident that a large proportion of these data sets have training sets which are completely 

solved by the addition of hidden nodes, although this may be the result of over-training. 

Two of the problems also reach the maximum number of hidden nodes, indicating that the 

problems are not completely solvable, and thus may contain classifications which cannot be 

explained given the information available. However, the results achieved using Cascor may 

be improved with modifications. 

Table 2.3 — Results from application of standard Cascor to the benchmarldng problems: shown are the 
name of the data set, the training and test set performance, the number of hidden nodes and 

connections required, and the number of connection crossings the training took (measured in millions) 

Data set Train % Test % Hidden nodes Connections CCs (M) 

Monks 1 100 97.69 1 50 4.5 

Monks 2 100 99.7 1 50 5.8 

Monks 3 100 88.89 2 69 16.1 

Two Spirals 100 95.83 12 132 123.3 

Double Helix 100 100 6 59 63.5 

LED 76 71.8 25 830 4770.7 

Cancerl 100 95.98 5 90 178.7 

Diabetesl 98.48 68.49 25 593 1962.9 

Glassl 100 66.04 17 468 407.7 

The data sets used for the experiments should present an interesting array of results. For 

example, the Two Spirals problem requires the installation of hidden nodes to be solved, and 

the LED problem is linearly separable but not completely solvable in that 100 percent cannot 

be achieved on the training set. 

For comparison previous performances on these data sets are summarised in table 2.4. 

These results are taken from the previously referenced papers, apart from the LED problem 

[Quinlan 1987]. The results on the Proben1 data sets presented here are the best results of 

several trials. The performances given in table 2.3 may be comparatively worse as these 
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involve different techniques or more fine-grained optimisation of the algorithm than has 

been attempted here. Optimisations of the parameter values are not examined as the 

experiments are only comparing modifications to standard Cascor and not a detailed 

comparison to other techniques. Nevertheless, the performance levels achieved are near the 

maximums obtained on these data sets. 

Table 2.4 — Results from recorded literature on the benchmarking problems (except Double Helix): 
shown are the name of the data set, the training and test set performance, the name of the learning 

method used to achieve the performance reported, and any noteworthy differences in the exact data 
used; with 'N/A

, 
 indicating unavailable results 

Data set Train % Test % Method Comments 

Monks 1 100 100 Cascor 1 Gaussian hidden node 
Monks 2 100 100 Cascor 1 Gaussian hidden node 
Monks 3 100 95.4 Cascor 3 Gaussian hidden nodes 

Two Spirals 100 N/A Cascor Median of 15 sigmoid hidden units 
LED N/A 72.6 C4 Optimal rate 74% 

Cancerl N/A 98.62 RProp Two hidden layers 
Diabetesl N/A 75.9 RProp Two hidden layers 

Glassl N/A 67.3 RProp One hidden layer 
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3 Extensions to Cascade-Correlation training 

This chapter presents modifications to standard Cascor which are shown to improve the 

training mechanism. Some of the results in this chapter have been reported previously 

[Waugh 19954 The first section examines the application of patience parameters to the 

addition of hidden nodes with the aim of halting network training. The second section 

examines methods for altering where patience is applied to the candidate pool in standard 

candidate training: training candidates in subgroups of the same node style and training 

candidates individually, instead of training the whole candidate pool; and by changing the 

maximum criteria of candidate selection. 

3.1 Stopping the addition of hidden nodes 

One problem with artificial neural networks is deciding when to stop training. Three 

commonly used methods are: 

• correctness — checking the classification accuracy: training is halted when a 

certain number of the training examples, often 100 percent, are classified 

correctly by the network; 

• time — checking an epoch or connection crossing limit: training stops when an 

arbitrary amount of training has been completedl; and 

• validation set (separate selection test set) — a separate pool of examples is used 

for checking when overtraining is occurring: this set is independent of the 

training set used to set the network weights and test set used to evaluate the 

final network's generalisation ability [Prechelt 19944 

The most effective of these methods is the validation set. However, there are often not 

enough examples available for training, let alone for creating two test sets. A preferable 

stopping criterion is one which does not require a validation set, and which will work when 

it is not obvious what is the optimum training time or what is the highest possible 

correctness. 

Within Cascor, as mentioned previously, Fahlman and Lebiere rely on another method for 

halting output layer or candidate pool training,-which is a hybrid of the time and correctness 

stopping criteria [Fahlman & Lebiere 1989]: 

1 Methods for checking the optimal time limits as opposed to arbitrary time limits [Harney 1991] will 

not be considered here. 
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• patience — if training continues over a period of time with little change in the 

network performance, the network 'runs out of patience' and training is halted. 

Patience is set by two parameters: the percentage change in network error required to 

continue training, and the length of patience time, which is usually measured in epochs. 

3.1.1 Description of node patience 

This section introduces a new use of patience applied to the installation of hidden nodes to 

halt the entire Cascor training process — node patience. The idea has been identified 

independently of previous work [Squires & Shavlik 19911. Once there has been no 

improvement in accuracy with the installation of the most recent n hidden nodes, training is 

halted. Node patience will only have an effect when the introduction of new hidden nodes 

does not assist the network. The node patience is set by the following parameters: 

• node percentage change — of the network error, as in standard patience 

calculations within Cascor; and 

• node patience period — over the number of hidden nodes added. 

An epoch limit for the node patience period is not appropriate as a varying number of 

epochs of training may occur in the addition of different hidden nodes, resulting in the use 

of the hidden nodes installed as the time period. Thus there are two distinct uses of patience 

within Cascor which are applied in three places within the Cascor algorithm: standard 

patience which is used to halt the training of the output layer or candidate pool, and node 

patience which halts the addition of nodes to the network. 

The implementation of node patience is simple. The code from figure 2.3 is applied at the 

end of each output layer training phase, and node patience may then be used with the other 

network stopping criteria. The network error is used to calculate whether the node 

percentage change has occurred, and the number of hidden nodes installed is used for the 

period. The additional code required is thus limited to the variables and code for the 

patience call, and the additional check to see whether network training is complete. 

Node patience may be extended by later removing the nodes which added little to the 

performance of the network, a procedure termed rollback. If training is halted by node 

patience, the last n hidden nodes added are removed, where n is the node patience period. 

This is done in two ways: by either storing the output layer weights to be re-used if required, 

or by simply retraining the output layer again for one training phase with the unnecessary 

hidden nodes removed. If the output layer weights are to be stored, the final weights of the 

last n phases of output layer training need to be stored, where n is the node patience period. 

In such cases retraining is unnecessary, resulting in the same training times for the networks 

with and without rollback. Retraining the output layer is a simpler method to implement, 
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but forces extra unnecessary training. Here rollback is implemented by the second method: 
once the entire network training is complete, if node patience is used and rollback is 

required, the relevant candidates and their output layer weights are removed and the output 

layer is retrained for another phase of training. This completes the network training, and 

further check of the entire network training conditions is made. 

The application of node patience should aid in stopping network training. It involves the 

addition of a new stopping criterion which will not interfere with the previous criteria. It 

will only decrease the amount of training performed, but it is an open question of whether 

node patience will hinder network training. Node patience should reduce the overall 

execution time by avoiding unnecessary training of candidate nodes, and should also reduce 

the final network size without jeopardising the network integrity. In fact it may even result 

in better generalisation as the size of the network will be reduced. 

3.1.2 Results and discussion 

For assessing the performance of node patience the standard experimental set up is used 

with the values of the required node patience percentage change (1 percent to 5 percent or 10 

percent for the Two Spirals problem), and the node patience period (1 to 5 hidden nodes . 

added) being varied. Full results — showing the median percentage correct on the unseen 
test set, number of hidden nodes, and number of connection crossings required for training 

over 100 trials — are presented in Appendix A. 

The results of the use of node patience vary markedly depending on the problem addressed. 

Three different effects of node patience are seen on the benchmark problems: no effect, a 

hindering effect, or a beneficial effect. The use of node patience on Cancert Double Helix 

and the Monks data sets has no effect (see tables A.1.1 to A.3.3, A.5.1 to A.5.3, and A.7.1 to 

A.7.3). Cascor simply solves each problem — to an accuracy of 100 percent on the training 

set — by adding in the required hidden nodes. The percentage change made by the addition 

of each hidden node is sufficient to ensure that training continues. 

Some problems are hindered by the use of node patience. For example, the Two Spirals 

problem is not effectively solved when a high patience percentage (greater than 2 percent) 

and a low patience period (less than 3 hidden nodes) are used in some combinations (see 

figure 3.1). This corresponds to a dramatic reduction in the nodes installed, but the extra 

nodes are necessary to solve the problem. In this case node patience may be over-used to 

the point where it halts useful training. Node patience is not necessary, but it does not 

hinder training when used sensibly, as in the cases where it has no effect on the majority of 

Two Spirals trials. 
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Figure 3.1 — Percentage correct on the test set for Two Spirals problem 

On other problems, such as the LED and Diabetesl data sets (see tables A.6.1 to A.6.3 and 

A.8.1 to A.8.3), the use of node patience is extremely beneficial. For the LED problem the 

test set classification performance is not affected by the application of node patience (staying 

around 72 percent), however the training required drops dramatically (see figure 3.2) as less 

hidden nodes are installed. The maximum number of allowed nodes is never installed on 

the LED problem while node patience is used under the given experimental conditions. 

Applying standard Cascor to the LED problem will always install the maximum number of 

hidden nodes, thus taking longer to train for the same result. A similar trend is also evident 

in solving the Glass1 data set (see tables A.9.1 to A.9.3), although this is not as significant as 

the problem is also solved to 100 percent accuracy on the training set. 

Figure 3.2 — Connection crossings (millions) for LED problem (note the difference in the labelling of 
the axes from figure 3.1 and 3.3) 
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Likewise for the Diabetesl problem a similar effect is seen, except that where less hidden 
nodes are added the test set performance actually increases, avoiding over-training (see 

figure 3.3). 

Figure 3.3 — Percentage correct on the unseen test set for the Diabetesl problem 

Predictable results occurred when rollback is added to the best trials on two of the data sets 

where node patience was effectively employed (see table 3.1). In both cases the number of 

hidden nodes is reduced, and a better classification performance is obtained on the 
Diabetesl data set. Note that the node patience parameters used with the Diabetes1 data set 

were determined after the experiments presented above — simply another trial was :. 

performed using the parameters given which resulted in one less hidden node being added 

to the final network. 

Table 3.1 — Results of rollback experiments on the LED (node patience 1% and 1 node) and Diabetesl 
(node patience 6% and 1 node) data sets 

Node patience 

LED 

+ Rollback Node patience 

Diabetesl 

+ Rollback 

Test set performance 

Number of hidden nodes 

Connection crossings (M) 

72% 

1 

108.8 

72% 

0 

127 

76.04% 

1 

26.7 

77.6% 

0 

28.0 

3.1.3 Need for hidden nodes 

Following on from the node patience experiments performed above, it is worth asking 

whether hidden nodes are actually required at all with the data sets selected for 

benchmarking. Two problems definitely do not require hidden nodes, as shown by the 

rollback trials. To answer this question, trials are made of each data set with the restriction 
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that no hidden nodes may be added to the network (see table 3.2). Thus only the single 

output layer is used for the classification tasks, and thus no node patience is required. 

Table 3.2 — Results with no hidden nodes: shown are the problem name, the training and test set 
performances, the number of connections, and the number of connection crossings required for 

training (measured in millions) 

Data set Train % Test % Conn's CCs (M) 

Monks 1 84.68 75.23 32 0.64 
Monks 2 63.31 62.27 32 0.67 
Monks 3 94.26 96.76 32 0.73 

Two Spirals 50 50 6 0.13 
Double Helix 50 50 8 0.37 

LED 75.15 72 80 31.68 
Cancerl 96 98.28 20 2.99 

Diabetesl 77.6 77.08 18 3.4 
Glassl 70.81 66.04 60 3.13 

In comparing the results of table 3.2 to table 2.3 it is evident that for a number of problems 

there is no performance improvement to be gained by adding hidden nodes, without further 

optimisation of the other network parameters. Monks3, LED, Cancerl, Diabetesl and Glassl 

all achieve as good, if not better, results on the test set without hidden nodes being added. 

The training speed is remarkably improved, as would be expected, and the size of the 

resulting classifiers has also been reduced. In all cases the performance on the training set is 

increased by the addition of hidden nodes, but mostly this is over-training. None of the real-

world data sets require the addition of hidden nodes to achieve better performance given 

these training parameters. Only the Monksl, Monks2, Two Spirals and Double Helix data 

sets require the addition of hidden nodes — which is not an encouraging result as these are 
all constructed data sets. 

3.1.4 Summary 

Node patience is able to limit unnecessary training, ensuring that overtraining of the 

network is minimised. It will only stop training earlier when there are no relatively large 

data set features to be learnt; training will not continue longer than standard Cascor. It 

would also seem, from further experiments, that many problems may not require hidden 

nodes to be solved. Better performance using hidden nodes may be achieved, but only with 

much greater cost in optimising the network training parameters. 

Some criticisms of the node patience method may be made. It does contribute to the number 

of parameters Cascor requires. However, node patience may be used independently of the 

other Cascor features as it only partially controls stopping the entire network training. For 

example, these studies indicate that it is unnecessary to consider node patience periods 
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greater than 2 nodes, and it is rare that a percentage change greater than 5 percent would be 

required to achieve reasonable results. 

Node patience is not a substitute for the use of a validation set. This still remains the best 

method of ensuring that the correct network size has been achieved. If, however, 

insufficient training examples are available to produce a validation set then node patience 

may assist greatly in producing a superior classifier by cutting down excessive training and 

classifier size. 

3.2 Alternative candidate node training schemes 

After examining alternative methods of stopping the installation of candidate nodes in 

Cascor, the next stage is to examine possible improvements to the training mechanism, in 

particular the candidate training where a large proportion of computational time is used. 

Here, again, the target is to reduce overall training time and network size, and improve the 

network classification performance. 

Unlike the output layer training where there is the network error, there is no natural 
combined error measure which can be used to halt the training of the candidates. To decide 

when to stop training candidates in the normal Cascor system, the patience criterion is 
	

- t 

applied to the maximum of the candidate node correlations. This particular method of 

selecting the correlation score is not explicitly stated [Fahlman & Lebiere 1989], but it is 

inferred from publicly available software [Crowder & Fahlman 1991]. Selecting the 

maximum of the correlations at each stage is not necessarily the optimum method of •  
choosing a value to apply patience, though it is an obvious choice. 

The problem with this standard form of candidate training is that nodes which have 

different features — such as activation functions, connection strategies, or even different 

random weights — may train more quickly than the other nodes in the pool. This may 

hinder the network by forcing the use of a quickly trained node when there may be a better 

alternative. It also means that the training of one candidate node is influenced by the rest of 

the nodes in the pool. This final point is especially problematic as the candidates are 

supposed to be independent. Thus methods for avoiding such a situation are examined. 

3.2.1 Description of alternative candidate training methods 

Two methods for overcoming these problems are proposed and examined in detail. Both 

involve changes where the patience stopping criterion is applied to stop candidate training. 

The first is independent candidate training: each candidate unit has its own patience 

parameters so the candidate trains until it, not the entire pool, runs out of patience. The 

second is subgroup candidate training: subgroups of the candidate pool which have the same 

43 



properties are trained in a block. For example, half the candidate pool may have Gaussian 

activation functions and the other half may have sigmoid activation functions, so the pool 

would be trained in two portions, each having its own patience parameters. The only 

differences between candidates in a subgroup will be their random weights. The advantage 

of allowing different activation functions and other network features is that more suitable 

nodes which match part of the feature space more concisely may be added as required. 

The implementation is relatively straight forward. In standard candidate training the entire 

pool of nodes is trained for a period controlled mainly by the patience criterion applied to 

the maximum correlation of all the nodes. This code is simply generalised to perform the 

same function on contiguous candidate nodes: meaning that a lower and upper bound 

within the candidate pool may be given and all the candidates within that bound are trained 

as a pool. Standard candidate training is then implemented by calling this subgroup 

training function with the bounds of the candidate pool: namely one to the number of 

candidate nodes. Independent candidate training is affected by calling the subgroup 
training function n times, where n is the number of candidates: thus the nodes are trained as 

a number of one node pools. It is assumed for subgroup training that candidate nodes 

which are of the same style are placed with adjacent array positions, which is performed 

during the initialisation of the candidates. Determining the subgroups then simply involves 

checking the activation function — and connection strategy if required — for each candidate 
node, and training in a subgroup those which are the same (see figure 3.4). 

noderange 1, u; 	/* lower and upper bounds for candidates */ 

noderange n; 	/* total number of candidates */ 

candidateinfo *c; /* variable representing remaining candidate info */ 

if (independentTraining) { 

for (u = 0; u < n; u++) 

trainCandidateSubgroup(c, u, u); 

) else 

if (subgroupTraining) { 

1 = u = 0; 

while (u < n) ( 

while Cu < n && c->activationFunc[u] 

trainCandidateSubgroup(c, 1, u); 

1 = u; 

} 

) else 

trainCandidateSubgroup(c, 0, n-1); 

= = c->activationFUnc[1]) U++; 

Figure 3.4 — C code for implementing the alternative candidate training methods, with subgroup 
trairung based only on activation function similanties 
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The training of candidate nodes either in subgroups or independently has several 
advantages. Training will not be forced to stop prematurely based on the results of a 

different node or node subgroup, so the candidates should train to produce better results. 

Likewise, nodes or subgroups may finish training when they would normally be forced to 

continue, saving time on a serial computer. Conversely, independent or subgroup training 

may allow the candidates to train excessively, especially when other nodes have already 

achieved much better results. Likewise, training may cut out too early when local minima 

are found — the extra training forced by other nodes during standard candidate training 

may produce a better hidden node. It is not obvious which factors will prevail. 

One further method for altering the training mechanism is to alter the function which selects 

the value used for patience. Fahlman suggests using the sum of the candidate correlations 

for the patience calculations rather than the maximum [Fahlman 1994]. This ensures that all 

nodes are allowed to train while it is still possible for them to make reasonable progress. It 

is expected that the method will allow better training to be performed, but will be slower 

than the standard maximum criterion. The summing of the correlation scores has no effect 

when candidates are trained independently. 

The implementation of the summation criterion is also straightforward. The sum of the 

candidate correlations is given to the patience calculation rather than the maximum. The 
maximum of the candidates is still required to select the final candidate to be installed, as is 

the case with subgroup and independent candidate training. 

3.2.2 Experimental design 

The following experiments were performed on data sets which require the addition of 

hidden nodes based on the experiments presented in tables 2.3 and 3.2: namely the Monks1, 

Monks2, Two Spirals, and Double Helix problems; and also upon the Monks3 and Cancerl 

data sets as examples of what may occur when hidden nodes are not strictly required. 

The first group of experiments involves training hidden nodes with only symmetric sigmoid 

activation functions using normal, independent, and summing candidate training methods. 

This examines the effect of the different methods given a homogeneous candidate pool, with 

candidates likely to give similar results, as the only differences between them are the initial 

random weights. If all the nodes are the same style, subgroup training reverts to standard 

candidate training; hence this is not examined here. 

In the second group of experiments, a variety of different activation functions are used 

(symmetric sigmoid, asymmetric sigmoid, tanh and Gaussian) on candidate nodes, so it is 

possible to test subgroup as well as standard and independent candidate training methods. 

For each of the experiments the candidate nodes are allocated different activation functions 
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so that the number of each style is as even as possible, given that there are four activation 

functions used and differing numbers of candidates. In the case of there being only four 

nodes in the candidate pool, subgroup candidate training reverts to individual candidate 
training. 

To clarify the choice of activation functions, the following are the formulas and derivatives 

for the symmetric sigmoid, asymmetric sigmoid, tanh and Gaussian functions: 

sig(x) = 1 +1 e,, ± and sig'(x) 	± sig(x)2 	 (3.1) 

asig(x) =  ±1 e,„ and asig'(x) = asig(x) (1 ± asig(x)) 	(3.2) 

tanh(x) = ex 	±e±x  and tanh'(x) = 1 ± tanh(x)2 	 (3.3) 

Gauss(x) = e±ix 2  and Gauss(x) = ± Gauss(x) • x 	(3.4) 

The actual implementation of the activation function includes bounds to avoid overflow and 

underflow errors. Although the first three activation functions — symmetric sigmoid, 

asymmetric sigmoid and tanh — are similar in form, there are enough differences to lead to 

different training patterns. The asymmetric sigmoid obviously has a range from zero to one, 

thus being centred around 0.5. The symmetric sigmoid and tanh function are related 

mathematically with both being centred around zero (tanh(x) = 2sig(2x)), but the tanh 

function has double the range of the symmetric sigmoid function. A further difference 

between these two functions is that the slope at zero for the tanh function is four times the 

symmetric sigmoid slope at the same point. Although the slope may be modified by 

changing the weights of the node, the initial variation one way or the other may be beneficial 

depending on the task the node needs to complete. These differences are small, but they 

lead to greater variation than just the differences in the random weights. 

In both experimental groups the length of the standard patience period for candidate 

training is altered (using 10, 20 and 50 epochs) since the new candidate training methods 

will affect the training time. Furthermore, the size of the candidate pool is altered to give an 

indication of which method of candidate training performs better for small, medium and 

large candidate pools (4, 10 and 20 candidate nodes respectively). It is expected that the 

larger candidate pool will give better performance per node installed, but will require much 

more training. When there are 10 candidates in the pool, three Gaussian and three 

symmetric sigmoid activation functions are used, with two asymmetric sigmoid functions 

and two hyperbolic tangent functions. Node patience is not used in these experiments. 

Full results of these experiments incorporating the percentage correct on the unseen test set, 

the number of hidden nodes added, and the number of connection crossings are presented 
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in Appendix B. The results of using only a single activation function are detailed in 

Appendix B.1, and Appendix B.2 details the results of varying the activation functions. 

3.2.3 Results and discussion — single activation function 

The results of the experiments are reasonably consistent across the different data sets, 

including those which did not require hidden nodes. As would be expected, training times 

and classification performance drop with a decrease in the candidate pool size and a 

decrease in the patience period of the candidate training. The difference on all measures 

between a candidate patience period of 20 epochs and a period of 50 epochs is nowhere near 

as marked as the difference between the 10 and 20 epoch limits. A further increase in the 

candidate patience period to above 50 epochs would be unlikely to accrue any great benefit. 

The classification performance, the number of hidden nodes installed and the training speed 

are now considered in turn. 

3.2.3.1 	Classification performance 

For the majority of the data sets there is very little difference between the trials when 

examining the performance on the unseen data set. Those differences which do occur May 

be accounted for by differences in the seeds for the trials, or the fact that excess training may 

produce slight over-training. For the Monks problems and the Cancerl data set similar 

results are achieved regardless of the variation in the training parameters (see tables B.1.1.1, 

B.1.2.1, B.1.3.1 and B.1.6.1). 

However, on the Two Spirals and Double Helix problems — both of which require the 

addition of multiple hidden nodes — there is a marked difference between the candidate 

training methods. Although at the 20 and 50 epoch patience period for candidate training 

there is no difference between the trials on percentage correct (see tables B.1.4.1 and B.1.5.1), 

the 10 epoch range shows distinct differences in the training pattern (see figure 3.5). On the 

Two Spirals problem, summation training outperforms standard candidate training by a few 

percent, but independent candidate training is able to greatly increase the performance of 

the classifier. More effective training is being performed and solutions near the top of the 

range of possible test results are achieved. The maximum number of hidden nodes are 

installed on the other trials, stopping training from continuing. If node patience were 

employed these trials would probably not install the same number of hidden nodes [Waugh 

19954 Similar results are obtained on the Double Helix problem except that summation 

candidate training produces similar performance to standard candidate training of around 

50 percent, which is no better than chance. 
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3.2.3.2 	Hidden nodes installed 

This difference in ability between the candidate training methods is also evident upon 

examination of the numbers of hidden nodes installed into the network. Most of the data 

sets show that, for patience periods of 20 or 50 epochs on the candidate training, the number 

of hidden nodes is similar (see tables B.1.1.2, B.1.2.2, B.1.3.2, B.1.4.2 and B.1.5.2). The Two 

Spirals problem also shows the benefit of using a larger candidate pool with less nodes being 

required when more candidates are trained (see table B.1.4.2). Over the 20 and 50 epoch 

cases the only data set which shows any difference between the methods of candidate 

training is the Cancer1 problem, where independent and summation candidate training add 

slightly fewer candidate nodes (see table B.1.6.2). 

Figure 3.5 — Percentage correct on the unseen test set for the different candidate training methods on 
the Two Spirals problem, examining the results of the 10 epoch patience period on candidate training 

25 

20 
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Figure 3.6 — Hidden nodes installed for the different candidate training methods on the Two Spirals 
problem, examining the results of the ten epoch patience period on candidate training 

20 
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The real differences between the methods is again shown by examining the 10 epoch 

patience period trials (see tables B.1.1.2, B.1.2.2, B.1.3.2, B.1.4.2, B.1.5.2 and B.1.6.2). The 

Monks problems indicate that summation and independent candidate training install less 

hidden nodes than standard candidate training. The results from the Two Spirals (see figure 

3.6), Double Helix and Cancerl data sets indicate that independent candidate training is 

superior to the other two approaches, as fewer hidden nodes are installed indicating — 

along with the percentage correct results — that more effective nodes are being installed. 

As mentioned previously, the trials on the Two Spirals data using a 10 epoch patience period 

would not have continued to the point of adding in 25 hidden nodes had node patience been 

used [Waugh 1994b1. The lack of performance gain by each hidden node would result in a 

lack of patience prior to the installation of the maximum number of hidden nodes. 

3.2.3.3 	Training speed 

Finally the training speed, as measured by the number of connection crossings, needs to be 

considered. There is no consistent trend across all data sets as to which method is faster. 

The Monksl and Monks2 data sets show that standard candidate training is faster for 20 and 

50 epoch patience periods, where candidates are not trained for as long as with independent 

candidate training (see tables B.1.1.3 and B.1.2.3) as these problems do not require hidden 

nodes. The latter is faster for 10 epoch periods, as more effective training is performed in the 

shorter period, leading to less hidden nodes being installed. For the Monlcs3 problem 

independent candidate training produces results faster across all the trials (see table B.1.3.3). 

For the Cancer1 and Two Spirals data sets (see table B.1.6.3 and figure 3.7 respectively) faster 

training results are achieved for the 20 and 50 epoch patience period cases using 

independent candidate training. For the 10 epoch patience period trials more effective 

training is being performed using the independent training, resulting in higher 

generalisation ability and less hidden nodes, and also more training time is required to 

achieve this level (see figure 3.7). Both standard and summation training in this case result 

in the maximum number of hidden nodes being installed. 

The Double Helix problem is mostly solved most quickly by the standard candidate training, 

followed by independent and then summation candidate training (see table B.1.5.3). The 

Double Helix data set is unique in this context as, although it requires the addition of hidden 

nodes, it is simple to solve to 100 percent accuracy using Cascor. This may indicate why 

standard training is faster than independent candidate training: the standard method stops 

training earlier avoiding unnecessary candidate development. 
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Figure 3.7 — Connection crossings (millions) required for the Two Spirals problem where only a single 
activation function used within the candidate pool 

3.2.4 Results and discussion — multiple activation functions 

The results from using multiple activation functions closely follow those from a single type 

of candidate activation function. The classification performance, the number of hidden 

nodes and the amount of training required will again be considered in turn. 

There is little difference between the methods in terms of the generalisation ability, 

indicating that there is a reasonable amount of room for variation of parameters while still 

obtaining good performance. In fact, unlike the previous experiments, a mixture of hidden 

node activation functions aids in finding a solution, and all methods found reasonable 

networks (see tables B.2.1.1 through to B.2.6.1). 

With regard to the number of hidden nodes added on the Monksl and Monks2 problems 

there is little to distinguish the methods (see tables B.2.1.2 and B.2.2.2). However, 

differences occur on the Monks3, Two Spirals, Double Helix and Cancer1 data sets (see 

tables B.2.3.2, B.2.4.2, B.2.5.2 and B.2.6.2). The Monks3 data set shows that independent 

candidate training may result in one less hidden node being installed than for both standard 

and subgroup candidate training. This trend is repeated for the Two Spirals (see figure 3.8), 

Double Helix and Cancer1 data sets for both independent and subgroup candidate training. 

On the Monksl and Monks2 the speed of standard candidate training is usually slightly 

better than both independent and subgroup candidate training (see tables B.2.1.3 and B.2.2.3) 
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problems, on the other hand only require a single hidden node to be added . 

This results in better training times (see figure 3.9) . 

candidate training performs well enough  without the assistance given to the other methods . 

used, standard training performs slightly better, indicating that the extra training allowed is 

Finally the Double Helix problem shows a mixture of results: when only a 10 epoch  patience 
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training, also performs better than standard  candidate training . 

The tri als using a single activation function for the candidate nodes indicate that 

classifier. Summation training is not a major improvement over standard  maximum 
training methods, as it performs more effective training resulting in a smaller and better 
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4 Altering connection strategies within 
Cascade-Correlation 

One of the criticisms of Cascor is that it enables too many connections to be added to a 

network. This chapter examines methods for reducing the number of connections in Cascor 

networks: firstly by adding nodes with a limited number of connections, and secondly by 

the pruning of candidate nodes and the output layer. Results for limiting the number of 

connections to candidates have been reported earlier [Waugh & Adams 1994], as has the 

work on pruning within Cascor [Waugh 1994a; Waugh & Adams 1995]. The motivation 

behind this work is to produce a smaller network which solves the task at hand and is then 

more likely to provide better generalisation. This may result in reductions to the network 

depth which may be necessary for certain evaluation speed increases in applications, 

although this will not be directly considered here. 

4.1 Limiting connections by growth 

This section investigates a number of different connection strategies for the hidden nodes 

that Cascor inserts into a network, by limiting the connections a candidate node may make. 

By definition Cascor starts new candidate nodes with full connections from all inputs and 

previously added hidden nodes, and to later all hidden nodes and the outputs (see figure 

4.1, a replication of figure 2.6 for convenience). One sensible opportunity to change this is to 

change the connection strategy of the candidate nodes. A more limited topology may 

improve learning speed as more hidden nodes are added, and the fewer connections could 

lead to greater generalisation ability as less parameters need to be estimated. 

• • 

(a) 

• • 

'sou 'sem 'gm= Woo= • U.sommou sueseaus W000simo simumone 
(b) 

Figure 4.1 — Examples of(a) a standard two hidden layer network, and (b) a standard Cascor network 
shown in the traditional Cascor format 
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4.1.1 Alternative node connection strategies 

Three different techniques for limiting the number of connections in hidden nodes are 

examined to obtain an indication of the power of limited connection strategies. These are 

growing layered networks, growing networks with limited shortcuts, and growing networks 

with random candidate fan-in. 

One method for altering the connection strategy — and one which is often mentioned in the 

literature (for example, [Mezard & Nadal 1989; Marchand, Golea & Rujian 1990; Sjogaard 

1991; Yeung 1991; Baluja & Fahlman 19941) — is the idea of adding nodes to layers, rather 

than simply increasing the network by one one-node layer at a time, as is performed by 

standard Cascor. Thus some or all of the candidate nodes are trained with no connections to 

a number of the previous hidden nodes, leading to a layer of nodes with inputs only from 

previous layers (see figure 4.2). This has the benefit of creating networks which are not as 

deep as a fully cascaded style of topology, with several hidden nodes forming a single layer. 

Figure 4.2 — Layered network with shortcuts: a network with layered nodes forming three hidden 
layers with 3, 4 and 1 nodes respectively 

The next method examined uses a minimal number of shortcuts between layers, where 

shortcuts from hidden nodes to non-adjacent hidden nodes are not used [Waugh & Adams 

19941 similar to the Tower construction suggested by Gallant [Gallant 19861. This means that 

a hidden node will only receive connections from the immediately previous hidden node 

and the inputs, and is in turn only connected to the next hidden node and the output nodes 

(see figure 4.3). This greatly decreases the number of connections required, although it does 

not decrease the number of layers. 
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• • 

Figure 4.3 — Minimum shortcut network: a network where all nodes have a minimal number of 
shortcut connections 

Using a pool of candidates with a limited number of randomly chosen connections is the 

final node topology to be examined — also termed Limited Fan-in Cascade-Correlation 

(LFCC) [Klagges & Soegtrop 1992[. A number of connections from both the inputs and 

previously installed hidden units are selected randomly for use. This is done in two distinct 

ways: a random number of connections (Rand-LFCC) [Waugh & Adams 1994]; and a fixed 

number of connections, in this case two connections (2-LFCC). 

The implementation of the different connection strategies is relatively straight forward. The 

network data structure is extended to not only include the network weights, but also to 

include a boolean variable for each weight flagging whether there is a connection present or 

not. The number of required nodes of each style is set and the appropriate connection 

strategies are allocated by initialising these connection flags. The code for performing this 

initialisation is outlined in figure 4.4. 

4.1.2 Node forcing and experimental design 

Experiments are conducted to test the effects of limiting the number of connections to 

candidate nodes. The experiments are conducted by altering the candidate pool in two 

ways. Firstly, the candidate pool is split in half: one half with standard fully connected 

hidden nodes, and the other half with the limited connection nodes. Secondly, the candidate 

pool solely uses the particular limited connection nodes. 
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fullyConnected = true; 

for (i = 0; i <= n + h; i++) 

if ((connectionStrat == Layered && ± > n + h - nodesInLayer) 

(connectionStrat == MinShort && i > n && i < n + h) 

.(connectionStrat == Random && i > 0 && !in(randConns, i)) ) 

candidateWeight[i] = 0.0; 

candidateConnection[i] = fullyConnected = false; 

} else 

candidateWeight[i] = randomWeight; 

candidateConnection[i] = true; 

if (connectionStrat != Full && fullyConnected) connectionStrat = Full; 

Figure 4.4 — C code implementing the initialisation of candidate node connections for each node; 
where "in" is a function returning true if that connection number is one of the connections to be 

present 

The first pooling method is further modified to allow forcing the use of limited connection 

nodes, when the correlation of the best limited connection node is near that of the best 

standard cascaded node. This gives a higher priority to the limited connection nodes, and is 

achieved by adding to these candidates a percentage of their own correlation score. The 

purpose of this is to bias the candidate training in favour of the candidates with limited 

connection strategies and thus guide the network structure towards the required form, 

although the method may be used to increase the chance of any node variety being used. 
This method has been independently investigated by Baluja and Fahlman [Baluja & Fahlman 

1994]. Three different forcing factors — the percentage by which the specified nodes are 

biased over others — are used in these experiments: 0, 10 and 50 percent. The 

implementation involves, in this case, setting a default connection strategy of full 

connection, and multiplying the correlation score of any non-default node by the forcing 

factor, thus increasing its chances of selection. The node with the highest modified 

correlation score is then chosen as the candidate to be installed as well as that value being 

used for the correlation calculations. 

These series of experiments are conducted on the Monks problems, Two Spirals, Double 

Helix and the Cancerl data sets. Independent candidate training is used for these trials. 

4.1.3 Results and discussion 

The full experimental results are presented in Appendix C, giving the percentage correct on 

the unseen test set, the number of limited hidden nodes and total hidden nodes added, the 

number of network connections, and the total connection crossings as an indication of 

training speed. 
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4.1.3.1 	Classification performance 

The performance of the different styles with respect to their generalisation ability is even 

(see tables C.1.1, C.2.1, C.3.1, C.4.1, C.5.1, and C.6.1). This is to be expected, as the aim of 

training is to produce a network which solves the problem at hand. 

There are only two exceptions: on the Two Spirals problem, for example (see figure 4.5), both 

layered nodes and random connection nodes with only two links have difficulties in solving 

the problem when all nodes have those connection strategies. It is well known that a 

network without advanced feature detectors has a great deal of difficulty in solving the Two 

Spirals problem. Hence a fully layered network, forming one hidden layer with shortcut 

connections from the inputs to the outputs, will not be able to solve the problem completely. 

The two random connection nodes have a similar problem in that it is unlikely that, out of a 

group of ten candidate nodes, the right connections will be obtained, let alone that the 

connections will have the right starting weights. Hence the performance is lower on the 

Two Spirals and the Monks2 problems (see tables C.3.1 and C.4.1), although it may be 

improved by greatly increasing the size of the candidate pool. 

Figure 4.5 — Percentage correct on the unseen test set for the Two Spirals problem: note that the full 
pool candidate training is only valid method for fully connected nodes 

Nevertheless, these results imply that a large number of the network connections may be 

redundant, as the limited connection strategies can do equally well as fully connected nodes. 
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4.1.3.2 	Network structure 

Upon examining the numbers of hidden nodes installed, further interesting trends become 

evident. Firstly, the Monks problems are not completely suitable for testing the limited 

connection strategies as they require two or less nodes to be added to the network to be 

solved (see tables C.1.2, C.2.2 and C.3.2). This creates difficulties in that the layered nodes 

do not come into effect until after a first hidden node has been added, and it takes two 

hidden nodes to be added before there is any effect from the introduction of minimal 

shortcut nodes. The Monks problems indicate that having pools of nodes with only two 

random connections may require more nodes to be installed, or alternatively not solve the 

problem by the time the maximum number of hidden nodes has been reached given the 

current pool size. Further, nodes with a random number of random connections are able to 

introduce nodes with less than maximum connections quite easily, although this does not 

guarantee a large reduction in connections (see tables C.1.3, C.2.3 and C.3.3). 

With regard to the other benchmarks, the fact that the nodes with less than the full 

connections are chosen without forcing their use is an indication that a fully connected node 

is not necessarily the best option (see tables C.4.2, C.5.2 and C.6.2). Indeed, a choice of the 

limited connections may be beneficial to the network. Having said that, no large numbers of 

hidden nodes have been replaced, which indicates that the weight training algorithm may be 

removing the effect of unnecessary connections without the need to cut them absolutely. For 
example, on the Two Spirals problem over 100 trials a maximum of two limited nodes are 

used out of between 12 and 14 needed to solve the problem when the node usage is not 
being forced (see figure 4.6). 
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Adding a forcing factor to help choose particular nodes is a workable method for biasing in 
favour of a desired network topology. Limited forcing strongly increases the number of 

specialised nodes, with only a small increase in the total number of nodes employed. For 

example, again the Two Spirals problem shows a great increase in the number of limited 

nodes used when 50 percent forcing is applied (see table C.4.2). The layered nodes installed 

increases from 2 to 9 while the total number of nodes needed increases by only 2 to 14 (see 

figure 4.7). Nevertheless, using only the one limited node style in the candidate pool may 

hinder the network — as the results on the Two Spirals problem show with great increases 

in the number of nodes installed — as some node connection strategies are not able to solve 

the problem. The results from the Double Helix and Cancerl data sets mirror these findings, 

except that fewer nodes are required to solve these benchmark problems (see tables C.5.2 

and C.6.2). 
25 — 
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Figure 4.7 — Layered nodes installed with forcing for the Two Spirals problem 

Nevertheless, these limited connection strategies are useful if a particular network structure 

is required. For example, when layered nodes are used on the Two Spirals problem, the 

following number of layers were required: 11 for the half pool without forcing layering, 10 

with 10 percent extra forcing, 7 with 50 percent extra forcing, and of course 2 when using a 

full pool of layering candidates. A total of 13 layers were employed by standard Cascor. 

The number of nodes required gives only part of the picture. The number of connections in 

the final networks must also be examined. The Monks problems show very little variation in 

the number of connections required, except to show that using only two random connections 

may often backfire and require a much greater number of connections to be used (see tables 

C.1.3, C.2.3 and C.3.3). On the Double Helix and Cancerl problems, all limited connection 
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being the most effective (see table C.4.4 and  figure 4.9). 

decreased the training time, with  layered  and  completely rand om nodes showing the largest 

used in a full  pool, as would  be expected . On the Double Helix problem, most trials 

being present: two-connection nodes taking the smallest amount of  training except when 

random connection techniques show a decrease in training times due to fewer connections 

l i ttle difference in training when compared  to standard  fully-connected  nodes. Both  the 
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C.4.3). For example, a random number of  random connections does not decrease the 

best method being the layering of hidden nodes (see tables C.5.3 and  C.6 .3) . 

methods produce a sl ightly smaller network  than the standard Cascor network, with  the 
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Figure 4.9 — Connection crossings required in training on the Two Spirals problem 

An interesting point is that generally forcing limited connection nodes by 50 percent 

increases the training time (see figure 4.9). This is due to forcing the use of the limited-
connection nodes more often, basically halving the candidate pool size. This of course 

means that less useful nodes are being installed and that further training has to be 

completed at a later stage. The training times generally drop off when the entire pool is 

limited connection nodes. 

4.1.4 Summary 

It is possible to add limited connection hidden nodes to a Cascor network without any 

decrease in classification performance. The network structure is influenced but there is 

generally little reduction in network size. Further limited connection strategies other than 

the ones selected are possible, but perhaps not as obvious. These different strategies appear 

to be particularly good for certain problems but not for others, so a more general method of 

reducing connections should be developed to be usable for all problems. 

Forcing is an effective method of ensuring that the preferred node styles are used above 

another style. Overall it would seem that forcing only certain types of connection strategies, 

such as layering, may hinder the network's performance, although for the most part this 

does not occur. Allowing the use of other node styles solves this deficiency. 

Tv
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A further drawback is that the methods examined here do not alter the training 

requirements for the Cascor output layer in any way. This means that for a large number of 

problems, which require few hidden nodes to be effectively solved, the methods mentioned 

here will have little effect. These techniques do allow the Cascor user to guide the way in 

which the final network is to be shaped, and are effective in this respect. However other 
methods of reducing connections need to be examined. 

4.2 Limiting connections by pruning 

As opposed to the methods presented in the previous section, where the cascaded networks 

have been altered by allowing limited connected nodes to be added to the networks, this 

section considers reducing the size of the network by training fully connected nodes and 

pruning connections from them. As the number of hidden nodes increases, covering all 

cases of limited connection hidden nodes as in 0.1 becomes impossible. Therefore, fully 

connected hidden nodes may need to be used to ensure that the smallest possible network 

may be generated. These nodes, including the output layer nodes, may be pruned later. The 

pruning of connections is a more sound approach to the reduction of the size of Cascor 

networks, as is identified in chapter 2, and is more likely to produce a smaller classifier in 
line with the aims expressed at the beginning of this chapter. 

4.2.1 Pruning algorithm 

The choice of pruning method is not obvious without a study of which is most effective. 

Although some such studies have been performed [Thimm & Fiesler 1995] the results are 

less than conclusive given the large number of pruning and regularisation algorithms 

available. Thus an arbitrary decision has been made to use Karnin's connection pruning 

algorithm [Karnin 1990]. This involves calculating a saliency measure of the importance of 

each weight, and pruning the weights with the lowest sensitivities. The derivation and 

justification of the sensitivity calculation from Karnin's paper is given below. 

The sensitivity S of a network to the removal of a weight w is: 

S = E(0) ± gw9 

= E(w1)  ± E(0)  
 ± 	( w1± 	Iv  

(4.1) 

where wf is the final value of the connection on completion of the training phase, and E is 

the network error expressed as a function of w assuming all other weights are fixed in their 

final state. Assuming further that the initial random weight value will substitute for the 
error with the weight zeroed, the sensitivity S may be approximated by: 
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_s ± 	 WI 
E(w)  ± E(W I ) 

WI ± WI 
	 (4.2) 

where the final value, w1 , and the initial weight, w', are values which are available during 

training. The numerator in (4.2) may be estimated in turn by the following integral: 

E(w) ±E(wl_fiF E(ww) dw 	 (4.3) 

where I and F are the initial and final positions of w respectively. This may in turn be 

approximated by a summation giving the entire sensitivity calculation: 

N±1 	 W f 
S ± 	(n) • Aw(n)  ± w i  e=0 LIW 

(4.4) 

where N is the number of epochs of training, and the gradient and weight change are 

available during training. This means that there is little cost in implementing the saliency 

measure calculation. The previously calculated values are simply stored in shadow arrays 

until they are required for pruning. Only the initial weights and the current sum of the 

epoch information has to be stored. Note that if the weight is the same as the initial weight, 

the sensitivity is assumed to be zero. 

The sensitivity measure works equally well for correlation calculations: at the beginning of 

candidate training the initial weights are stored and the derivative and weight change use 

the correlation instead an error measure. Since Cascor has two quite different training 

phases, it is sensible to use two sets of pruning parameters, one on the candidates, and one 

on the output layer. Karnin's saliency measure does not adjust the other weights so the 

pruned nodes need to be retrained. 

The aim of the following experiments is to test Cascor networks pruned with Karnin's 

sensitivity measure against the standard Cascor network training. There are two questions 

to be answered about how to incorporate pruning into the Cascor architecture: where to 

prune and how to stop pruning. These issues and their effects on network performance will 

be examined in turn. 

4.2.2 Where to prune? 

Since Cascor training is cyclic it is not immediately obvious where pruning should be 

applied to the trained connections. Pruning the hidden nodes at the completion of network 

training is only feasible with the subsequent retraining of those nodes, which is not practical 

when the network is very deep. Thus there are two options of where to prune: 
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• prune each candidate pool when trained and prune the output layer after 
training is complete; or 

• prune each candidate pool and prune the output layer after each output training 
phase. 

This choice only has an effect when hidden nodes are being added to the network. 

Experiments on where to prune are performed on the Two Spirals data set, as an example of 

a problem requiring a deep network. Here only one parameter is used for both phases of 

training. Two arbitrary pruning levels (0.01 and 0.06) are used on both the candidates and 

the outputs to give an indication of the results expected for low and high pruning levels. 

The usual range of pruning levels for the Karnin measure is approximately between 0 and 

0.1. Any connection with a sensitivity less than the specified level is removed from the 

network (see table 4.1). 

Table 4.1 — Results of when to prune (no pruning, output layer at end of training, or every output 
layer training phase) using two pruning levels (0.01 and 0.06) on the Two Spirals problem, giving the 
percentage correct on the test set, the number of hidden nodes, the number of network connections 

and the number of connection crossings (millions) training required 
Where to prune? Prune level Test set % Hidden Connections CCs (M) 

No pruning N/A  95.83 12 132 112.8 
Output once 0.01 95.83 12 104 127.7 

0.06 95.83 14 89 148.0 
Every output 0.01 90.62 19 162 171.0 

0.06 83.33 25 100 214.1 

Table 4.1 indicates that pruning can be effective in reducing network size without damaging 

classification ability. Although pruning requires more training, the trade off to obtain a 

smaller network and thus a more concise classifier may be worthwhile as this process 

reduces the number of free parameters within the network. There is, however, no indication 

here of increased generalisation ability. This is not surprising as the Two Spirals problem is 

not a good test for generalisation, but rather memorisation [13aluja & Fahlman 1994]. The 

extra requirement to prune the output layer after each training phase damages the final 

network by prematurely removing connections which may be used later. The conclusion 

from these experiments is that the best pruning method is to prune connections after 

training of the particular nodes, whether that be the candidate nodes or the output layer, has 
been fully completed. 

4.2.3 Stopping pruning 

Three methods have been developed to stop the pruning process: two absolute measures 

and a third relative measure. 
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4.2.3.1 	Arbitrary choice and percentage change 

The obvious way of removing connections, as mentioned in §4.2.2, is to pick an arbitrary cut-

off sensitivity level, and remove all connections with saliencies below that level. This will 

then relate to either the change in error with the removal of an output layer connection, or 
the change in correlation if pruning candidate nodes. Given the saliency measure algorithm 

(see §4.2.1), the implementation of this is trivial. 

A further method is to remove connections whose expected change in the error or the 

maximum correlation is less than a fixed percentage. The maximum correlation is used to 

prune all of the candidates so that the saliency of each connection is being standardised 

across the entire candidate pool. A node with a lower correlation will not have connections 

regarded more highly because of that node's correlation score. Both these methods measure 

a change relative to the initial error or correlation values, before processing occurs. The 

implementation of this method is also simple: the minimum sensitivity level is multiplied by 

the current error or maximum correlation. 

4.2.3.2 	Relative saliency measure 

Deciding when to stop pruning is a similar problem to the decision of when to stop training 

in Cascor: at some stage a decision to stop must be made. Some mechanism similar to 

patience may be used, as opposed to simply picking an arbitrary level. However, unlike 

training where it is possible to use the patience criterion and to train for a few extra epochs 

to check when to stop, pruning a few extra connections without any regard for their effect 

may destroy a node's functionality. There is no buffer of extra connections to sacrifice to a 

patience criterion to start the process of deciding when to stop pruning. 

The following algorithm has been developed to allow for a patience-like method of stopping 

connection pruning. It is assumed that the saliency measure is a relatively accurate measure 

of the importance of each connection: 

1. calculate saliencies of all connections after training has been completed; 

2. remove connections with zero or negative saliency, thus decreasing the network 

error; 

3. sort the remaining saliencies; 

4. remove connections from lowest to highest saliency until the predicted error or 

correlation change is too large, using the training error or correlation as a 

starting point; and 

5. retrain if required. 

Deciding when to stop pruning falls to a measure of change in the sorted saliencies: if the 

change is too large then pruning is stopped. Unlike the patience criterion, no patience 

65 



period is used, but the increase in saliency compared to the removal of the previous 

connection is checked. Such a period, measured across the range of connections, is not 

necessary due to the sorted nature of the saliencies. It would force the removal of at least n-1 
connections where n is the length measured in connections removed. The use of a term such 

as 'reverse patience' [Waugh & Adams 1995] is thus inappropriate as there is no longer any 

'time' period over which the error change is measured. 

As the saliencies are assumed to be a measure of the change in error or correlation caused by 

the removal of a connection, it is necessary to calculate the saliency changes in relation to the 

current error or maximum correlation level, not just using the actual saliency value. Thus 

this level is used as a starting point for these calculations. This will ensure that the saliency's 

relevance is taken into account with respect to the network error or the maximum 

correlation. 

Connections from layers are pruned together rather than pruning each node independently, 

as it is possible, for example, to have as little as two connections to a candidate or output 

node. Combining the connections from otherwise independent nodes will give a more 

significant sample from which to draw saliencies to decide which connections to prune. 

4.2.2.3 	Results and discussion 

Results of experiments conducted are presented in Appendix D detailing the percentage 

correct on the test set, the number of connections required, and the number of connection 
crossings training required for training. 

The three methods for stopping pruning are tested on the nine benchmarking problems with 

Monks3, Cancerl, Diabetesl, Glass1 and LED resulting in the installation no hidden nodes, 

meaning that only the output layer needs to be pruned. The other problems — Monks1, 

Monks2, Two Spirals and Double Helix — include trials on pruning the candidate nodes as 

well. All trials consist of giving pruning levels of 0.0 to 0.1 in steps of 0.01 to the absolute, 

percentage and relative pruning methods. These results are summarised below. 

There is little to distinguish between the methods of stopping pruning. All are effective (see 

tables D.1.2, D.2.2, D.3, D.4.2, D.5.2, D.6, D.7, D.8 and D.9), although the relative method 

may over-prune candidate nodes when high levels are used (see figure 4.10 and tables D.1.1, 

D.2.1, D.4.1 and D.5.1). This results in the maximum number of hidden nodes being 

installed, as the data set features cannot be learnt under such conditions. The over-pruning 

using saliency changes is simply due to the pruning depending on the previous connection 

removed; the relative nature of the algorithm means that more connections are cut as long as 

the relative difference is not too great. 

66 



120 

0.04 	0.05 	0.06 
Pruning level 

0.07 	0.08 	0.09 	0.1 0 	0.01 	0.02 	0.03 

100 

Absolute 

9 	 Percentage 

Relative 

20 

so 

g 60 

(-) 40 

Figure 4.10— Candidate node pruning on the Monks1 problem: comparison of absolute, percentage 
and relative pruning 

One feature of the results that is immediately evident is that little or no connections are 

pruned from the output layer of networks (see figure 4.11 and see tables D.1.2, D.2.2, D.3, 4 

D.4.2, D.5.2, D.6, D.7, D.8 and D.9), even with the relative saliency method. The worth of 

these connections is greater than those of a hidden unit as they directly influence the output • 

error as opposed to indirectly through the correlation to the output error, but it is 

unexpected that so few would be removed. One reason may be that all of the inputs are 

required to solve the network. Cancer1 requires all 20 possible connections — taking into 

account biases, Diabetesl uses all 18 possible connections, Glassl uses 57 to 58 of a 

maximum possible 60, LED requires 71 to 72 of a maximum of 80 (see figure 4.11), Monksl 

uses 43 to 44 of a total of 50 and so on. Unnecessary connections are removed early and the 

rest are required to solve the problem. 

An alternative explanation for the low pruning of the output layer is that the actual pruning 

algorithm used is not effective in estimating the saliency of connections. This is difficult to 

quantify without further comparison between differing methods of pruning. 

When used to reduce the complexity of candidates being introduced into the network the 

performance of the pruning methods is much better than that of limited connection hidden 

nodes (see tables D.1.1, D.2.1, D.4.1 and D.5.1). Classification performance is not affected 

when, for example, the number of connections in the Two Spirals networks are reduced 

from 132 to 92 using absolute pruning, without employing any connection pruning on the 

output layer (see figure 4.12). This compares with a minimum of 131 connections obtained 

using limited connection candidates under similar conditions. A further point is that as 

more pruning is performed more training is required to compensate to solve the problem by 
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Figure 4.11 — Output layer pruning using an absolute level on the LED problem 
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Figure 4.12— Candidate node pruning using absolute level on the Two Spirals problem 

A final point is that although a large number of connections have been removed the actual 

generalisation ability of the networks is not increased or decreased by the removal of 

connections — in fact no change beyond random variation is evident (see figures 4.11 and 
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4.12). The lack of increase may be due to the networks being so small initially that further 

reduction of free parameters is not necessary to achieve good generalisation capabilities, and 

so it may be peculiar to the Cascor training method. 

4.2.3 Summary 

Pruning is a more principled approach to removing connections which are not required than 

picking an arbitrary hidden node connection strategy. Simple pruning can remove a large 

number of connections from a standard Cascor network, especially from hidden nodes, with 

no change in the classification ability and only a small amount of extra training. The 

removal of the unnecessary connections allows for the possible extraction of knowledge 

from networks to occur more easily [Tolstrup 1995], as well as reducing the number of free 

parameters which in turn reduces over-training. The methods used to stop pruning may be 

applied to other artificial neural networks, and all are effective in stopping the pruning 

process. The level of pruning may need to be determined empirically depending on the 

problem at hand in the same way that the learning rate is determined. Nevertheless, it is 

possible to employ a small amount of pruning without jeopardising the quality of the final 

results. 
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5 Background to benchmarking databases 

In the previous two chapters several extensions to Cascor have been examined. In doing so, 

it became evident early on that the benchmarks selected to test the extensions are less than 

sufficient. The majority of problems appear to tend towards two extremes: linearly 

separable or unsolvable given the available information; or they are contrived and do not 

effectively test generalisation. The possible problems which may be solved by algorithms 

such as Cascor need to be understood in abstract terms. However, more immediately there 

is a demand for problems which will test the different capabilities of learning algorithms. 

In general, one of the faults of current research into inductive learning, particularly in the 

artificial neural network field [Prechelt 19941)], is that new learning methods are not 

benchmarked in a consistent or sufficient manner. The trials of a learning method are often 

performed on a single data set, which may not be readily available to other researchers, or 

which is overly simple, such as the ubiquitous xor problem. Hence, it is important to 

develop benchmarks for testing new and variations on existing methods. 

The aim of this part of the thesis is to develop new benchmarks for artificial neural network 

classifiers. Although this study was motivated by the examination of Cascor and other 

artificial neural networks, the benchmarks shown in this part of the thesis may be applied to 

any inductive learning system. 

In this chapter, a background to the area of benchmarking data sets is given. This covers 

what features of data sets need to be considered, examples from the literature of real-world 

and constructed benchmarks, and examples of the performance of Cascor on some of these 

sets. This is followed by chapters giving new examples of the different benchmarking styles. 

5.1 Features of data sets 

To create a benchmark some consideration of what features are important within data sets is 

necessary — a description of the data character. What sort of structure the data sets can 

entail is outlined below, thus looking at the content of the data set and the complexity of the 

underlying functions. How these data set features are presented is then examined, both 

through the dimensions of the problem and the effect of sampling. 

5.1.1 Underlying problem structure 

Obviously one of the important features of data sets is the structure of the underlying 

problem, which gives the difficulty in learning — sometimes termed the concept character or 
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the class distribution for classification problems [Rendell & Cho 1990]. This is the 

distribution of examples in the instance space, as defined by the measured attributes — the 

shape of the class regions or partitioning in relation to each other, or the shape of the surface 

formed by a regression problem. The attributes — otherwise known as the features, 

variables tests or inputs — are the measurements or observations recorded about each 

example. Each example or instance is one case drawn from the population under 

consideration. Whether examples are present only in certain areas of the attribute space, or 

whether examples occur in an uniform distribution across the attribute space, for example, is 

part of the underlying problem structure. The attribute space is the geometric space formed 

by using the attribute values as axes of measurement, meaning that each example forms a 

point in the space. 

It is worth noting that the distribution of classes throughout the attribute space may lead to 

some interesting formations with interlocking classes. However, it is more likely that class 

regions may simply not meet, and thus may be solved with a simple classifier; or they may 

overlap resulting in an unsolvable situation. The area of each data set which may be solved 
using a more powerful classifier over a simple linear classifier may be very small. 

Rendell and Cho examine a number of features of classification problems which relate to 

these ideas: the size of the concept — the amount of the feature space it covers; the 
concentration of peaks in the one class — whether a number of peaks formed by examples 

are distributed around the feature space, or whether there is only one peak of class 

membership; conformation — whether the peaks of a class are normal in shape or involve 

'all-or-none' class membership; and whether there is some higher order regularity in the 

distribution of class peaks [Rendell & Cho 1990]. Although a process of generating artificial 

data sets is described in this paper, the actual details of the examples used are unclear and 

only single data sets are used to test differences in the concepts. 

A number of papers consider concepts which are logical combinations of attribute values 

(for example, [Lounis & Bisson 1991; Hickey 1992]). These papers are more directed at 

testing the capabilities of symbolic machine learning systems, such as C4.5 — a decision tree 

inductive learning methodology [Quinlan 1993a]. 

Quinlan [Quinlan 1993b] identifies two styles of problems: S-type which are suitable to be 

learnt by sequential classification methods such as C4.5, and P-type which are suitable to be 

learnt by parallel classification methods such as gradient descent artificial neural networks. 

These are best characterised by the following [Quinlan 19934 
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At one extreme are P-type tasks where all the input variables are always relevant to the 

classification. ... At the other extreme are the S-type tasks in which the relevance of a 

particular input variable depends on the values of the other input variables. 

Quinlan considers one specific example of each type, which are then used to compare 

symbolic and connectionist learning methods. 

There have been attempts to characterise what sort of problem structures are difficult for 

different supervised artificial neural networks to learn, such as Lippmann's classification of 

network capability 1Lippmann 19871. This states, for example, that a two-layer network can 

only solve problems with convex open and closed decision regions. This has been shown to 

be false in particular contrived cases 1Sjogaard 19911. 

The majority of papers consider only single problems without any variation in the 

underlying structure. This is to be expected with problems taken from the real-world where 

a specific problem is considered, but it also often occurs with generated data 1Lounis & 

Bisson 1991; Thrun, et al. 1991; Hickey 1992; Quinlan 1993b1. Many of these papers mention 

methods for generating further data sets, but again only specific examples are considered. 

Note that the actual shape of the underlying problem structure is a vague concept which is 

based on the sample or data set selected from the population, and the attributes that have 
been measured. For example, the xor problem is simple to solve if different attributes are 

given — such as the number of true values modulo two. The measurements that have been 

made will often be only a small portion of the overall picture. An analogy may be drawn 

between the visible light and the rest of electromagnetic spectrum, which is there but 
invisible to humans. Thus, the underlying structure cannot be completely separated from' .  
how the problem is presented, which is considered next. 

5.1.2 Factors affecting the data presentation 

It is also important to consider factors which may affect the view of the population structure: 

the representation and data reliability. The inputs, outputs, examples and each example's 

values need to be considered (see figure 5.1). The inputs, and outputs outline the problem 

dimensions; whereas the actual examples selected from the population give the sampling 

dimensions Wendell & Cho 19901. 

Variations in any of these features will occur when information is missing or if extra 

information is available. Figure 5.2 draws a distinction, shown on two axes, between 

different types of information which may be gained or lost by the addition or removal of a 

data set feature: relevant information; irrelevant information; or a combination of the two 

leading to a continuum of attributes with differing predictive powers. Extra information 
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may be redundant if full information required to solve the problem is available, meaning 

that it is duplicated information, or irrelevant, meaning that the information is not relevant 

to the learning task. A reduction in relevant information may lead to missing information 
necessary to solve the problem. 

Outputs 
>< 	 

Sample 

Example 

Figure 5.1 — Graphical view of a data set for superv'sed inductive earning, showing the features 
considered: the inputs, outputs, examples and an actual example 
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Inputs 
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Figure 5.2 — The relationship between needed information (shown on the x axis) which is redundant if 
enough information to solve the problem is available (as shown), and unnecessary information (shown 

on the y axis) given full information: the sum of x and y will give a whole number relating to the 
number of features under consideration 

For example, if a new input is added to a data set which contains all of the inputs necessary 

to solve the problem, the input may be solely redundant information, solely irrelevant 
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information or a combination of the two. Often this may show up as a poor or 

unrepresentative input — only partially measuring the features which are required to solve 

the problem — as not all the required information is available. Similarly, any reduction in 

the required inputs will mean that information necessary for the solution will be missing or 

that irrelevant information is removed. A large number of data sets may then be considered 

a combination of these factors: missing information necessary to fully describe the problem, 

but containing poorer quality information that partially contains the required information. 

5.1.2.1 	Problem Dimensions 

Consider the variations that may occur with respect to the inputs as one part of the problem 

dimensions: 

• number of inputs — dictates the size of the problem by specifying how features 

are being measured for the learning system; 

• nominal/ tree-structured/ ordinal/interval inputs — the type of inputs is also 

important, as more information may be available from different styles; 

• missing inputs — it is possible that not enough or not the right inputs have been 

selected for the data set to solve the problem; 

• redundant inputs — a number of inputs may not be required because their 

information is duplicated by others; and 

• irrelevant inputs — an input may not be required, but unlike a redundant input 

it contains no relevant or useful information. 

Nominal data has no order: such as binary or enumerated types; tree-structures have a 

partial ordering; ordinal is ordered discrete values; and interval includes integer and real 

values giving extra complexity and extra information [Rendell & Cho 19901. A large 

proportion of the generation methods shown in the literature rely only on integer [Rendell & 

Cho 1990] or nominal [Lounis & Bisson 1991; Thrun, et al. 1991; Hickey 1992] inputs. 

The outputs are similar in structure and contain the following elements: 

• number of outputs — also dictates the size of the problem, showing what is 

expected at the output; and 

• nominal/ tree-structured/ ordinal/interval outputs — similar to the inputs, the 

outputs of a learning system may take on a number of different styles. 

A problem with real outputs is a regression problem, whereas a classification problem 

entails nominal outputs. Ordinal or integer outputs may be considered to form constrained 

regression problems. Here the focus is on classification problems, thus regression problems 

are not considered, though many of the difficulties are the same. The majority of 

benchmarks concentrate on classification problems, with only a few regression data sets (for 
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example, [Prechelt 1994a]). It is possible to consider missing, redundant or irrelevant 

outputs as well, but it is usual to consider only a single relevant problem at a time. 

The problem dimensions form the structure of the problem: what information is available. 

The process of feature extraction gives the attribute space structure. Good feature selection 

will lead to a problem that is simple to solve using a linear discriminant function for 

example. Unfortunately finding such attributes is a difficult and error prone process. The 

final attributes which are used may require a more complicated classifier as the underlying 

problem structure is more convoluted, or even unsolvable given the known information. 

5.1.2.2 	Sampling dimensions 

Now the actual examples that will be presented to the system are considered. The sampling 

dimensions do not effect the underlying problem structure, but they effect how well that 

structure may be learnt. Many of these considerations are the duals of those given above. 
However, they are distinct as they refer to individual examples with values across all inputs 
and outputs, rather than considering an input or output which has values across all 

examples. Variations in the entire data set are considered: 

• number of training examples in sample — to train a system to recognise the 

underlying function, the particular function needs to be sampled enough to 
obtain the required information; 

• redundant or irrelevant examples in the sample [Quinlan 1986a] — there is a 

problem that extra examples may be presented, which may either contain no 

information or misleading information, or they may be redundant resulting in 
biases toward one class or another; and 

• missing examples from the sample — likewise there may be examples of 

important cases which may be missing from the sample. 

An under-sampled problem will lead to poor generalisation as there are not enough 

examples to train the system properly. Over-sampling may, with some systems, lead to 

excessive training times, which is a lesser problem. A few papers examine changes in these 

sampling dimensions [Rendell & Cho 1990; Collier & Waugh 1994]. Redundant, irrelevant 

or missing examples point to problems in the sampling or measuring processes. 

It is also important to outline differences between the example values which may occur: 

• noise or errors within an example — the extra fluctuations in the measurements 

of all values when considering numeric values, or wrong nominal values which 

are not appropriate; and 
• missing values within an example — due to a number of reasons a particular 

value may be missing: further separation of data may be possible given the 
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actual value, or there is a reduction in numerical results possibly leading to a 

smaller range of attribute values, and thus a weaker indicator relative to other 

measures. 

These changes may occur to individual examples only, or may be alterations to the values of 

all examples. Noise [Quinlan 1986a] can have a number of sources, such as problems with 

the measuring equipment affecting all examples, or being an aberration affecting only a 

single example. In some cases, especially with binary or enumerated inputs, or even the 

actual classes, these fluctuations may lead to an erroneous value which does not reflect the 

example taken from the population. 

It is preferable if the examples are selected independently, giving a proportional view of the 

entire population. Furthermore, the minimum classification rate expected is the proportion 

of examples in the largest class. If the largest class accounts for 95 percent of the data set, 

there is no point accepting any level of performance below this minimum. 

All of these factors can affect the performance of a learning system in the development of a 

classifier or predictor. Extra information, in the form of redundant or irrelevant information, 

may bias the learning a system performs, as will missing information. Combinations of 

these cases may lead to considerable difficulty in learning a task. This is on top of the ability 

or biases of learning systems toward learning certain tasks, and will be considered next 

5.1.3 Inductive bias 

Inductive bias is how a particular learning system, in learning a set problem, affects the final 

classifier produced. Not only do these biases stem from how learning methods cope with 

the underlying data set structure, but also from how different methods are affected by noise, 

missing values, irrelevant and redundant data and so on. If you are given a particular data 

set, a learning system will develop one solution over another on the basis of how that 

method works. There are two forms of inductive bias [Collier & Waugh 1994]: 

• restricted hypothesis space bias — the possible theories which can be generated; 

and 

• preference bias — each learning system generates theories in preference to 

others consistent with the training set. 

The first form of inductive bias is important as it indicates what sort of data sets may be 

learnt. For example, C4.5 is biased in that it may only represent theories which involve 

Boolean combination of attributes in conjunctive normal form. C4.5 cannot combine several 

inputs to generate a classifier when this is required to solve a problem efficiently. Another 

example is standard back-propagation, which with only a single hidden layer and a 

restricted number of hidden nodes has difficulty in distinguishing between regions which 
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curve around each other, such as the Two Spirals problem presented earlier [Fahlman & 
Lebiere 1989]. 

The second form of inductive bias is equally as important. Consider back-propagation: this 

learning algorithm may generate a large number of possible classifiers, each with the 

potential to solve a particular problem. However, frequently the final solution is biased, for 

example, by the initial random weights, often quite easily [Adams 1994]. Likewise the 

training algorithm is biased towards smaller weights as a by-product of minimising the total 

network error, and this may affect the generation of solutions. 

There is a trade-off between the two different sources of bias which have been identified as 

the 'bias/variance dilemma' [Geman, Bienenstock & Doursat 1992]. Briefly, the more 

freedom a learning method has, the more variations are possible, requiring more training 

with a greater number of examples. If a learning method is restricted — such as a 

parametric statistical technique — then less examples and training are required, but the 

learning method is biased in what solutions it may develop, possibly resulting in a less 
suitable classifier. 

5.2 Real-world and constructed data sets 

From the above considerations of how problems are presented and how different learning 

systems may produce different results, it is worthwhile considering particular benchmarks 
and problems that have been presented throughout the literature. 

There have been a number of studies into defining benchmarks for inductive learning. 

These often centre on either data sets from real-world problems, or upon constructed data 

sets where the domain has been created artificially. There is a difference in opinion as to 

which style of benchmarking provides more relevant results to those developing new 

learning methods. Some examples of each benchmarking style are considered in turn. 

5.2.1 Constructed data set benchmarks 

A number of artificial benchmarks for inductive learning tasks have been developed. The 

majority of data sets have been presented through the literature as single problems created 

mostly on an ad hoc basis, often for testing particular features of a learning method (for 

example, [Solla 1988; Fahlman & Lebiere 1989; Sjogaard 1991; Baluja & Fahlman 1994]). The 

Two Spirals data set [Fahlman & Lebiere 1989] is an example of this, as it is a difficult 

problem for artificial neural networks with sigmoid activation functions to solve. In this 

respect the benchmark is very good, hence the application of it in the first part of this thesis. 
However it is hindered in that the test set — and for that matter the training set — is 

unrealistic and does not test generalisation [Baluja & Fahlman 1994]. 
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Famous collections of benchmark problems include Breiman et al. which includes problems 

such as recognising waveforms and LED displays with added noise [Breiman, et al. 1984]. 

One of the first artificial benchmarks for neural networks includes the parity, symmetry, 

encoder, T-C and addition problems [Rumelhart, et al. 1986]. 

An example of an artificial benchmark of several specific data sets developed for testing 

inductive learning systems is the Monks problems [Thrun, et al. 1991]. This suite consists of 

three data sets which are all binary classification tasks. The tasks are variations on the same 

input space which consists of six inputs with two to four possible values for each input. 

Hence the problems are completely enumerable with a total of 432 possible cases. In each 

data set only a limited number of these cases are available for training. The first problem is 

in disjunctive normal form, the second is similar to parity problems and the third is another 

disjunctive normal form problem with added noise. The aim of the benchmark is to describe 

the performance of a variety of learning algorithms on these standard problems, and thus 

provide a good comparison between the various methods. 

Rendell and Cho develop a number of benchmark problems, generated to test various 

characteristics that they wished to examine [Rendell & Cho 19901 These include variations 

in the attribute and class errors, the size of the concepts, the number of class peaks and their 

shape, the scales of the attributes and the number of training examples. The actual method 

of data set generation is outlined, though no examples are given, and only integer attribute 

values are used. 

Lounis and Bisson also consider the generation of artificial benchmarks [Lounis & Bisson 

19911 They justify their usage by stating that with artificial benchmarks the availability of 

data is no longer a problem, translation is simple, interpretation of the results may be 

performed without an expert in a particular area, and that it is easier to answer questions 

such as 'what happens if the application domain is different?' Specifically they consider 

attribute value logic and predicate logic methods for the generation of concepts, 

concentrating on a single problem. Hickey also considers the benefits of generating artificial 

data [Hickey 1992]. The approach taken is to consider a specific problem in conjunctive 

form and model the introduction of noise to such a system. Both of these methods use only 

nominal attributes. 

Further papers consider two problems involving overlapping Gaussian distributions 

[Kohonen, Chrisley & Barna 1988; Ragnvaldsson 19931. The distributions have different 

standard deviations, and one problem has the same mean value for the distributions, 

whereas the other is offset in one dimension. The problem is to distinguish between the 

distributions which are described by two to eight continuous-valued attributes — leading to 

a total of 14 problems to compare various methods. 
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As mentioned previously Quinlan identifies two styles of problems: S-type and P-type, and 

uses real-valued attributes in the generation of problems [Quinlan 1993b]. Quinlan shows 

that decision-tree methods are unsuitable for P-type problems, and that artificial neural 

networks — specifically back-propagation — requires an inordinate amount of learning time 

for S-type problems. This shows the inductive bias of artificial neural networks favours 

solving P-type problems. Further work has been conducted in this area [Collier & Waugh 

1994] which confirms Quinlan's findings, and extends these by showing that irrelevant — 

and, to a lesser extent, redundant — attributes adversely affect connectionist learning 

systems and noise affects symbolic learning systems. The work also shows that fewer 

training examples is more of a problem for symbolic methods than connectionist methods. 

Quinlan's work could be extended to consider problems on a continuum whereby they are 

not S or P-type, but S and P-type to some degree [Collier 1995]. Adding irrelevant or 

redundant attributes influences problems to be more S-type in structure as those attributes 

are not necessary. On the other hand, adding noise or providing fewer training examples 

makes a problem more P-type-like in structure as individual attribute values are less 

reliable. 

Not all are in favour of constructed data sets. Of the benchmarks developed in the 1980s 

Prechelt [Prechelt 1994a1 states: 

all of these problems are purely synthetic and have strong a-priori regularities in their 

structure; for some of them it is unclear how to measure in a meaningful way the 

generalization capabilities of a network with respect to the problem; most problems can be 

solved 100% correct, which is untypical for realistic settings. 

With respect to problems which have a stochastic element to their generation, two faults are 

identified: 

First, there is still the danger to prefer algorithms that happen to be biased towards the 

particular kind of data generation process used. ... Second, it is often unclear what 

parameters for the data generation process are representative of real problems in any 

particular domain. 

Prechelt states that although generated data of a realistic nature has its place in the 

development of new algorithms, real data sets are preferred as the results produced will be 

applicable to at least a 'few' real domains [Prechelt 1994a]. 
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5.2.2 Real-world data set benchmarks 

A number of attempts have also been made at producing benchmark sets which include 

real-world problems. The first collection, which is the basis for most others, is the UCI 

Repository for Machine Learning databases [Murphy & Aha 19941. This collection has no set 

structure and is made up of donated data sets from a large number of people with varying 

backgrounds. Though not an actual benchmark in itself, the databases contained there 

formed the basis of most other real-world benchmarks. The main reason for this is that it is 

simply too expensive and time consuming to develop new data sets. 

Probenl is a well constructed benchmark to use with artificial neural networks for 

benchmarking both classification and regression style methods [Prechelt 1994a]. It relies on 

a number of real-world problems available from the UCI Repository [Murphy & Aha 1994], 

using set encodings. The problems are presented in a consistent format which allows for 

easy and direct comparison between methods. 

A further benchmarking suite has been developed using databases from the UCI Repository. 

Zheng's database collection may be used to benchmark classification methods [Zheng 1993]. 

The collection is an effort to cover the widest possible set of problem types by examining 

which benchmarks should be used, based on a number of measures. These are the type of 

attributes, the number of attributes, the number of different nominal attribute values, the 

number of irrelevant attributes, the data set size, the data set density, the level of noise in 

attribute values, the level of noise in class memberships, the frequency of missing values, the 

number of classes, the default accuracy, the entropy, the predictive accuracy, the relative 

accuracy, the average information score, and the relative information score. From all these 

factors 13 data sets were selected in the final benchmark. Note, though, that about five were 

generated or artificial in nature. 

Lee and Lippmann also consider a combination of two artificial problems and two speech 

recognition tasks [Lee & Lippmann 19891. The aim of their paper is to measure the 

performance of various pattern recognition algorithms with the following view in mind: 

A shortcoming of much recent neural network pattern classification research has been an 

overemphasis on back-propagation classifiers and a focus on classification error rate as the 

main measure of performance. This research often ignores the many alternative classifiers 

that have been developed ... 

Waugh and Adams have also examined data sets for benchmarking neural networks 

[Waugh & Adams 1993]. A large number of the problems were again from the UCI 

Repository, and a number of the problems were constructed rather than naturally occurring. 

One of the main results of this work was that when using Cascor only one of the 14 data sets 
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used required more than two hidden nodes to be installed to solve the problem: that being 
the Two Spirals problem. 

The above result, along with previous experience of a large number of UCI databases not 

reported here, implies that the majority of real-world data sets rarely require any of the 

power of adding hidden nodes that Cascor possesses. A similar point of view is expressed 

by Holte using tree induction methods Nolte 1993]. Hoke examines 16 UCI problems and 

concludes that frequently very simple classification rules perform almost as well as more 

complicated learning methods. He considered the development of single-level decision trees 

whereby a single attribute is used to split the data — all the data sets being considered 
involve binary classifications. He states: 

Of particular concern are the datasets. One does not intuitively expect "real" classification 

problems to be solved by very simple rules. Consequently, one may doubt if the datasets 

used in this study are "representative" of the datasets that actually arise in practice. 

Not all concur with the above opinion. Elomaa argues that, although the prediction 

accuracy differences between the one-level decision trees and C4.5 are small, the differences 

are significant: 'High baseline success is achieved by simple means, but further advances 

require much more effort,' [Elomaa 19941. Furthermore, it is stated that methods such as 

C4.5 are more robust in the solutions they generate. 

Elomaa also makes some interesting points about the quality of real-world data that is 
available: 

It is essential to test machine learning approaches on data drawn from real -life in order not 

to lose sight of the real goal of our field. Nevertheless, manufactured data suits the purpose 

too: it is easier to control self-made data in the sense that monitoring the effects caused by 

changes in data, e.g., to prediction accuracy is easier. ... Many of the differences [with 

Holte's work] basically stem from the fact that we did not accept the UCI repository data 

sets to be representative of most typical application domains of decision tree learning. ... 

Holte has, rather, succeeded in proving that the current collection of standard test data for 

inductive learning is not up to its function. 

Holte's paper is not inconsistent with these views. 

5.3 Application of previous benchmarks 

This section briefly outlines the application of some of the previously mentioned 

benchmarks to Cascor. The first point is to recount the result of the experiments performed 
in the first part of this thesis (see table 5.1). 

84 



Even without the application of the methods developed within Part I, it is easy to see the 
deficiencies with these benchmarks. As would be expected, the addition of hidden nodes 

increases training set performance. However, this is at the expense of test set performance 

in most cases, and in all cases a large amount of extra training has to be performed. Only 
two of the Monks problems, the Two Spirals and Double Helix data sets require the addition 

of hidden nodes given the training parameters used: the problems from the Proben1 

benchmark - Cancerl, Diabetesl and Glass1 - not requiring any such nodes. The first two 

Monks problems, which have an increased performance from the addition of hidden nodes, 

only require a single such feature detector. Finally the Two Spirals and Double Helix data 

sets, though they require the addition of large numbers of hidden nodes, have also been 

criticised as being extremely unrealistic. 

Table 5.1 - Results from application of standard Cascor with and without hidden nodes to the 
benchmarking problems from Part I: the name of the data set, the training and test set performance, the 

number of hidden nodes required, and the number of connection crossings the training took 
(measured in millions) are given 

Data set Train 

Stand. 

% 

No hid. 

Test 

Stand. 

% 

No hid. Stand. 

Hidden 

No hid. 

CCs 

Stand. 

(M) 

No hid. 

Monks 1 100 84.68 97.69 75.23 1 

C
  
0

0
0

0
0

0
0

0
 

4.5 0.64 

Monks 2 100 63.31 99.7 62.27 1 5.8 0..67 

Monks 3 100 94.26 88.89 96.76 2 16.1 0.73 

Two Spirals 100 50 95.83 50 12 123.3 0.13 

Double Helix 100 50 100 50 6 63.5 0.37 

LED 76 75.15 71.8 72 25 4770.7 31.68 
.,- 

Cancerl 100 96 95.98 98.28 5 178.7 2.99 

Diabetesl 98.48 77.6 68.49 77.08 25 1962.9 3.4 

Glassl 100 70.81 66.04 66.04 17 407.7 3.13 

Further results have been generated using Cascor on another benchmark for the comparison 

of the algorithm with back-propagation, Quickprop and C4.5 [Waugh & Adams 1993]. This 

examined some of the above problems, as well as others from the UCI Repository and one 

obtained from within the Department of Computer Science at the University of Tasmania. 

One common benchmark, the encoder problem [Rumelhart, et al. 1986], was considered 

within the group, but it is simply not suitable for testing Cascor as it requires the encoding 

of the inputs through a specified hidden layer for further decoding at the output layer. The 

architecture of Cascor does not allow the use of this problem. Of the nine further problems 

- discounting those considered above - none required the addition of more than two 

hidden nodes by Cascor. Comparisons were possible on the problems, but there seemed to 

be no difficulty in solving the presented tasks. 

Further studies of the performance of Cascor have also concentrated on specific problems. 

One considers character recognition on an eight by eight grid [Hamamoto, Kamruzzaman & 

Kumagai 1992], another further problems from UCI [Yang 1991], and a further paper which 
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examines three artificial data sets and one well known real-world data set: majority7, parity6 

and Mackey-Glass, and heart disease [Squires & Shavlik 1991]. The following comment is 

made [Hamamoto, et al. 1992]: 

This task is made difficult by the non-availability of non-proprietary data sets from real-

world domains that are complex enough to adequately challenge generative learning 

algorithms (note that all the data sets used in this study required the generation of 

relatively small numbers of hidden units). 

5.4 Summary 

The ability to generalise to unseen cases is very much problem dependent, as well as 

learning system dependent. If there is no useful information in the data set which may 

guide a classification system, then there is no way that any method can produce a good 

result. Likewise the final result is biased by the learning system — symbolic, statistical and 

artificial neural network methods all learn in different ways. 

It is possible to identify causes of differences between data sets, splitting these into the 

underlying structure of the data set and factors which affect the measurement of those 

underlying structures. Having done so, it is easy to see that it is difficult to produce some 

sort of benchmarking suite which covers this entire area, though reasonable attempts have 
been made. 

People working in the development of new learning methods require specific ways of 

sensibly comparing their methods against other established techniques, involving both 

artificial and real-world problems. The rest of this thesis examines new real-world problems 

and methods of creating data sets for benchmarking, specifically in respect to Cascor. 
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6 Real-world data sets — two new examples 

In this chapter two new real-world data sets are examined. The purpose of this process is to 

examine new data using Cascor as one of the tools, and to see if either of the new data sets 

contains features which require the use of hidden nodes. Given the complexity of 

previously examined real-world data sets, the chances of finding a problem which is 

solvable by the introduction of hidden nodes is unlikely, but this still needs to be considered. 

6.1 Example one — ageing abalone 

Abalone shellfish are a major industry in Tasmania. Sales of abalone are worth millions, as 

are commercial licences to catch the shellfish. The Marine Research Laboratories of the 

Tasmanian State Government Department of Primary Industry and Fisheries have an 

ongoing research interest in managing the fishery stock. Part of this research involves the 

catching and measuring of large numbers of the shellfish for analysis [Nash, Sellers, Talbot, 

Cawthorn & Ford 1994]. However, determining the age of the abalone is relatively time 

consuming, and hence expensive. The aim here is to develop a classification system which` 

will give a reasonable estimate of the abalone age from the other measured attributes of each 

shellfish. 

To this end, data from abalone captured in two regions of the state are examined. This data 

is generously provided by the Marine Research Laboratories. The differences in the regions 

are due mainly to the type of abalone captured: the first region, Bass Strait, contains a large 

number of samples which have stunted growth patterns; the second region, St Helens, 

contains samples which are predominantly fast growing. 

6.1.1 Initial data preparation 

For each example supplied by the Marine Research Laboratories the following information is 

assessed: 

• area — the area of collection within the region (string containing name); 

• site — number of the actual site (integer value of site); 

• sex — the sex of the abalone: male, female, infant or trematode (nominal value); 

• length — the length of the abalone (in millimetres); 

• diameter — basically the width of the abalone (in millimetres); 

• height — height of abalone (in millimetres); 

• whole weight — the weight of the abalone after capture (in grams); 

• shucked weight — the weight of the abalone meat (grams); 
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• viscera weight — the weight of the gut, this is after the abalone has been 

bleeding, and hence the weights do not total (in grams); 

• shell weight — weight of the dried shell, the shells being porous can otherwise 

carry a lot of water (in grams); 

• rings — number of rings through the abalone shell; and 

• age — the number of rings plus 1.5, as determined by previous experiments. 

The number of rings give the age of the abalone. The shell needs to be dried, cut, stained 

and the rings counted under a microscope — the process takes around five minutes per 

shell. This is the most expensive part of the information gathering, and hence the target for 

the classification. Only discrete ages are then available, hence the choice of using a 

classification system as opposed to a regression network. 

The area and site information are ignored, as a classifier which will work for any abalone 

caught in Tasmanian waters is preferred. The age is also ignored as this is a simple 

calculation from the number of rings in the abalone shell — no example has an age without 

the ring information being present. Thus the problem involves eight attributes, seven of 

which are continuous numeric values and one of which, the sex, is an enumerated variable 

with four values; and the result of the classifier is the number of rings in the abalone shell. 

Table 6.1 details the structure of the data set. This indicates that very few of the samples 

which contain missing values can be used as training vectors for the classifier. 8233 

examples are available, and 4203 have no missing values. Of those examples with missing 

values, 495 could be used for training given some form of input encoding for a neural 

network [Vamplew & Adams 1991], as with the rest the number of rings is the missing 

value. This is due to a large proportion of the shells from the Bass Strait area being damaged 

by natural causes to the extent that the number of rings cannot be determined. No examples 

with missing values are used in the experiments. 

Table 6.1 — Numbers of examples and their breakdown 

Bass Strait St Helens Total data 

Total samples 4754 3479 8233 
No missing values 1621 2582 4203 

Missing values 3133 897 4030 
Missing rings/age 2921 614 3535 

Missing other values 212 283 495 

The next point to consider is the distribution of the classes. Table 6.2 outlines this 

information for the examples without missing values, detailing the number of examples in 

each age group for the different regions. From this information it was decided to examine 

the data in three ways: the first being trying to classify all of the examples with their given 

class; the second involving grouping the data into three new classes; and the third trying to 
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Number of Rings 

1 

2 

3 

4 

5 

6 

7 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

29 

Total 

Bass Strait St Helens 

1 N/A 

1 N/A 

8 7 

24 33 

49 67 

60 199 

96 297 

101 471 - 

165 530 

185 451 

• 336: 

153 116 

155 50 

113 15 

97 6 

66 1 

55 3 

42 N/A 

33 N/A 

26 N/A 

14 N/A 

6 N/A 

9 N/A 

2 N/A 

1 N/A 

1 N/A 

2 N/A 

1 N/A 

1621 2582 

Total 

1 

1 

15 

57 

116 

259 

393 

572 

491 

269 

205 

128 

103 

67 

58 

42 

33 

26 

14 

6 

9 

2 

1 

1 

2 

1 

4203 

classify the four classes with the most examples, namely 8, 9, 10 and 11 rings. The three new 

classes of the grouped data set are created by collecting examples withl to 8 rings in class 

one; examples with 9 or 10 rings in class two; and examples with greater than 10 rings in 

class three. Though it may be possible to separate all of the examples, this is unlikely due to 

how few examples in some classes are available for training. Hence the development of the 

two extra data sets. 

Table 6.2 — Number of examples in each ring group, with the shaded region shows the examples used 
in the restricted data, and the borders indicating the divisions of the grouped data ('N/ A' is used to 

indicate not applicable cases throughout this chapter) 

Note that these data sets could naturally be translated as regression problems given that the 

classifications used here are only discrete versions of the continuous age of the abalone. 

However this does not preclude the examination of these particular data sets, which will 

indicate whether the underlying structure may be solved as a regression problem. 
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The majority of the attributes are numeric, so it is important to get an idea of the range of 

results (see table 6.3). Since the ranges of the data are so large — even discounting some 

obvious errors where an abalone would have to be twice as high as it is long — the examples 

are scaled, simply by dividing by 200. This gives the attributes small ranges which may be 

handled by artificial neural networks more easily, as there are no extremely large values 

which force the activation functions to be hard on or hard off. 

Table 6.3 — Minimum and maximum ranges of attributes over examples with no missing values 

Attribute 

Bass 

Min 

Strait 

Max MM 

St Helens 

Max 

Total 

Min Max 

Length 15 160 27 163 15 163 

Diameter 11 126 21 130 11 130 

Height 2 50 0 226 0 226 

Whole weight 0.4 510 2.8 565.1 0.4 565.1 

Shucked weight 0.2 214.1 1.1 297.6 0.2 297.6 

Viscera weight 0.1 118 0.1 152 0.1 152 

Shell weight 0.3 201 0.8 179.4 0.3 201 

The only non-numeric attribute is sex (see table 6.4). Even here there is a bias with very few 

of the examples being trematodes — animals which have been de-sexed. These examples 

have been removed. 

Table 6.4 — Totals of each sex over samples with no missing values 

Sex Bass Strait St Helens Total 

Male 653 875 1528 

Female 624 683 1307 

Infant 340 1002 1342 

Trematode 4 22 26 

Total 1621 2582 4203 

To summarise, the missing value examples have been removed, as have the trematode 

examples. Six data sets are considered, three distinct problems both scaled and unscaled: 

the complete class data; the grouped class data; and the restricted class data. In each case 

the data set has been created by randomly selecting three quarters of the examples to create 

a training set and one quarter to be an unseen test set. The number of examples in each of 

the training and test sets is outlined in table 6.5, along with the minimum expected 

percentage based on the largest class (scaled and unscaled data sets have the same 

characteristics). 

It is also worth checking the correlations between the attributes (see table 6.6). This 

information shows that a number of the attributes may be redundant, for example the length 

and diameter are very closely related. It also shows that a single attribute may not be used 

to solve the problem, and that combinations of attributes may be required. The correlation 
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between the number of rings and the other attributes does not suggest that the task may be 
simply solved. There is most likely redundant information being presented here, but there is 

no point removing information for this initial study even though this may lead to less non-

linear features being evident in the data. 

Table 6.5 - Details of the training and test set sizes of the data sets extracted from the Abalone data, 
along with the minimum required percentage correct calculated by the percentage of the largest class 

Data Set Training Set Test Set Totals 

Size Min Size Min 

Full data 3133 16.16% 1044 16% 4177 

Grouped data 3133 34.34% 1044 37.07% 4177 

Restricted data 1783 28.77% 595 29.58% 2378 

Table 6.6 - Correlations between attributes calculated from all data examples 

Diameter Height Whole Shucked Viscera Shell Rings 

Length 0.9868 0.8276 0.9253 0.8979 0.903 0.8977 0.5567 

Diameter N/A  0.8337 0.9255 0.8932 0.8997 0.9053 0.5747 

Height N/A  N/ A 0.8192 0.775 0.7983 0.8173 0.5575 

Whole N/A N/A N/A  0.9694 0.9664 0.9554 0.5404 

Shucked N/A N/A N/A  N/A 0.932 0.8826 0.4209 

Viscera N/A N/A N/A N/A N/A  0.9077 0.5038 

Shell N/A N/A N/A N/A N/A N/A  0.6276 

6.1.2 No hidden nodes 

A number of experiments on the six data sets using Cascor have been conducted. Cascor 
was trained, using the standard parameters outlined in Part I, to classify the problems. Two 

further restrictions are enforced: no hidden nodes are installed and the training of the output 

layer is restricted to 100 epochs (see table 6.7). 

Table 6.7- Results of using Cascor to build classifiers on the six Abalone data sets: 100 clock-seeded 
trials, giving the median (upper result) and the interquartile range (lower result) 

Abalone Data Set Training % Test % Connections CC(M) 

Full, Unscaled 13.50 13.41 308 194 

5.94 7.76 0 0 

Full, Scaled 27.18 24.86 308 194 

0.45 0.86 0 0 

Grouped, Unscaled 44.69 43.53 33 20.8 

20.71 23.18 0 0 

Grouped, Scaled 64.28 61.40 33 20.8 

0.22 0.29 0 0 

Restricted, Unscaled 28.77 29.58 44 15.8 

5.16 5.21 0 0 

Restricted, Scaled 39.99 37.98 44 15.6 

0.79 0.67 0 1.1 
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These results indicate that the performance on the scaled data is much greater than the 

unscaled data. The unscaled data is not doing much better than chance — the high range of 

the attribute values prevents the network from learning. If the network weights are 

generated in the bounds of 1 and —1, as in this case, then large input values will in turn give 

a large value to the squashing function input, resulting in near extreme values for the 

squashing function output. It has been noted previously [Fahlman 1988a] that this causes 

very slow learning, due to the slope near extreme values of the activation function being 

close to zero. This leads to the changes to the weights being very small, as they are 

proportional to the slope. In fact, in this case, on the full data the performance has dropped 

below that obtained by selecting the largest class. In comparison, the results on the scaled 
data are a third to twice the minimum performance level. 

The results also indicate that the unscaled data is much more unstable, with the interquartile 

ranges showing a far larger spread of results. The error on the training set for one trial on 

each of the restricted data sets is traced for both the scaled and unscaled data (see figure 6.1), 

and it is obvious from this that the scaled data is more stable to the point that training ceases 

early due to the lack of patience. From now on only the scaled data will be considered. 

0.8 — , , , 

	  Unscaled data 

— — — — — Scaled data 

0.5 --.- 
i 

	

0.1 	,  

	

0 	 I 	 I 	 I 
0 	10 	20 	30 	40 	50 	60 	70 	80 	90 

Epochs of training 

Figure 6.1 — Training error measured against time (epochs) for a single trial of the restricted data sets 

6.1.3 Hidden nodes 

The performance without hidden nodes, even on the scaled data, is not as good as is 

required, with the highest performance around 60 percent correct on the more general 

0.7 

0.6 
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set error ' 

0.3 
\ 

\ 
\ 

0.2  
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grouped data The next trials to examine are the introduction of hidden nodes within Cascor 

to pick up any non-linear features in the data sets. Trials have been conducted on the scaled 

data sets, allowing up to 10 hidden nodes to be added whilst using independent candidate 

training and node patience: 3 percent change over a single node period. Candidate training 

is restricted to 200 epochs and output layer training is restricted to 100 epochs (see table 6.8). 

Table 6.8- Results on the three scaled Abalone data sets applying node patience (3%, 1 node), giving 
the median (upper result) and the irtterquartile range (lower result) over 100 clock-seeded trials 

Data Set Training % Test % Hidden Connections CC(M) 

Full 27.66 24.90 1 347 491.0 

0.48 0.77 0 0 32.9 

Grouped 66.36 64.85 2 62 296.9 

1.21 1.34 1 15 155.5 

Restricted 41.00 39.24 1 59 100.2 

0.73 2.35 0 0 3.8 

Comparing these results against the networks without hidden nodes (see table 6.7) is not 

encouraging. The performance of these single trials is not that much better, indicating that 

the problem involves overlapping classes and only minor improvement may be made by 

adding hidden nodes. This result is verified by further trials which forced the usage of five 

hidden nodes, although the generalisation performance is slightly better (see table 6.9), a 

difference which is accounted for by the simplistic application of node patience. No further 

improvement is made by introducing up to 20 hidden nodes. 

Table 6.9- Results on the three scaled Abalone data sets installing 5 hidden nodes, giving the median 
(upper result) and the interquartile range (lower result) over 100 clock-seeded trials 

Data Set Training % Test % Hidden Connections CC(M) 

Full 29.36 26.25 5 513 1631.3 

0.57 1.25 0 0 105.4 

Grouped 67.22 65.61 5 113 851.3 

0.41 0.77 0 0 30.4 

Restricted 43.07 39.33 5 129 502.5 

0.84 1.34 0 0 17.8 

6.1.4 Optimal Performance 

It is preferable at this point to show that no possible further improvement may be achieved 

by the addition of hidden nodes. Techniques are available for estimating the optimal 

performance of any learning method on any problem - thus the performance which may be 

achieved if an unlimited amount of data is available [Cortes, et al. 1995]. The methods were 

developed to examine problems where 'the data collection was not designed for the task at 

hand and prove inadequate for constructing high performance classifiers.' This is applicable 

to this problem. 
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The independent variables in this process are the capacity of the classifier and the number of 

learning examples. The capacity may be roughly defined as the power of the learning 

system to model the data, and in an artificial neural network the capacity is related to the 

number of free parameters — namely the number of weights and layers. In a standard back-

propagation network the capacity is fixed, whereas in a Cascor network the capacity is 

varied by adding more hidden nodes with the resulting connections. 

Briefly, increasing the capacity of a learning system, given a certain amount of data, 

produces a distinctive pattern: the training error continues to drop as more capacity is 

allowed, whilst the test set error initially drops and subsequently increases due to the 

overtraining allowed by the increased capacity resulting in the memorisation of the training 

set. Thus the increase in capacity causes the following stages to be met: undertraining, a 

good capacity for modelling the data, and then overtraining. 

Furthermore, if a learning system of a fixed capacity is trained with increasing numbers of 

examples in the training set, then the training set error increases as more examples need to 

be replicated, and the test set error decreases as the classifier becomes more robust. This 

means, given an infinite number of training examples, that the training and test set errors 

converge toward the predicted error for that capacity: the asymptotic error E.. This may be 

shown by averaging the training and test set errors, and extrapolating the error limits. 

The combination of these two features of learning means that the intrinsic noise level of the 

data set may be determined, giving an estimate of the optimal performance of any learning 

algorithm which may be obtained from particular data given an unlimited number of 

examples. This may be achieved by plotting the asymptotic error rate against the change in 

capacity. The curve that plotting the error rate follows is limited from below by the intrinsic 
noise level. 

This method is of particular interest here as Cascor allows the generation of results 

regarding different capacities from a single trial. By saving the performance results and 

error after the installation of increasing numbers of hidden nodes, it is possible to generate 

the required results for a single data set size, without requiring the retraining of another 
network or other learning system. 

Figure 6.2 shows the results of a single trial on the grouped data with up to 100 hidden 

nodes installed, measuring the mean squared error on both the training and test sets. This 

indicates that the optimal performance is achieved after the introduction of only a few 

hidden nodes. Although this single trial does not show all the asymptotic error rates, the 

errors may be considered to approximate the asymptotic error rates, and they indicate that 

no further improvement may be expected after this point. 
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Figure 6.2— Errors on a single trial of the grouped data after the introduction of each hidden node, up 
to a total of 100 hidden nodes 

The results of measuring the classification performance rather than the mean squared error 

give similar results, though slightly rougher in nature given that the network is trained on 

the error rather than the percentage correct. 

6.1.5 Confusion matrices 

How the examples in the data sets are being separated may be checked by the closer 

examination of single trials. Confusion matrices [Weiss & Kulikowski 19911 are produced 

for the grouped, restricted and full data from single trials (see tables 6.10, 6.11 and 6.12 

respectively). Although the results are reasonably spread, there is a considerable amount of 

overlap. The grouped data shows reasonably good selection of classes one and three, but 

the performance on class two is poorer. This may be due to the small range of samples in 

the second class. The results on the restricted data shows that it is difficult for adjacent 

classes to be distinguished. The full data also indicates the problem of overlapping classes, 

though a definite trend in training is evident. 

Table 6.10— Final training and test set confusion matrices for a single trial on the grouped data: 
columns show predicted values (shown by labels across table), rows the actual class of the examples 

Class 1 

Training 

Class 2 Class 3 Class 1 

Test 

Class 2 Class 3 

Class 1 

Class 2 

Class 3 

858 

253 

96 

171 

376 

187 

47 

368 

777 

259 

85 

40 

49 

105 

76 

23 

136 

271 
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Table 6.11 — Final training and test data set confusion matrices for a single trial on the restricted data: 
columns show the predicted values, rows the actual c_lass c:of the examples 

8 rings 

Training 

9 rings 	10 rings 11 rings 8 rings 

Test 

9 rings 	10 rings 11 rings 

8 rings 226 145 50 9 74 46 16 2 
9 rings 152 187 133 41 55 62 49 10 
10 rings 80 135 178 88 29 36 56 32 
11 rings 41 73 130 115 27 21 47 33 

Table 6.12 — Final test set confusion matrix for a single trial on the full data: columns show the 
predicted values, rows the actual dass of the examples, blank cells contain no examples, bold numbers 

show the correct examples 

2 3 4 5 6 7 8 9 10 11 12 13 	14 15 16 

3 21 

4 1 642  1 

5 3 3 6 12 

6 1 4 8 46 4 6 
7 1 2 37 15 24 2 
8 2 25 52 48 13 
9 14 34 68 50 1 
10 5 23 45 82 4 
11 4 16 38 72 9 1 
12 2 4 30 27 3 1 
13 6 12 37 4 
14 3 8 20 1 1 
15 2 10 12 2 
16 1 7 10 2 2 
17 2 2 5 1 1 
18 1 9 1 1 
19 1 6 1 
20 2 2 1 
21 1 1 
22 

23 

24 1 1 

6.1.6 Pruning 

Pruning will not necessarily produce a better classifier, but it may result in a much smaller 

network, and would indicate that a number of the attributes are not required. Simple trials 

are conducted on solving the problems using the output layer only,. using absolute pruning 

to firstly remove connections with saliencies below 0.0, and secondly removing connections 

with saliencies below 0.05 (see table 6.13). As expected, the addition of pruning does not 

greatly improve the performance of the classifier, although there is a performance increase 

with all problems. However it does show that a reasonable proportion of the connections 

are not required at all, as they are simply removed by low level pruning. This in turn 
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identifies many of the inputs that are not required, which is supported by the correlation 

information (see table 6.6). The increased level of pruning does not reduce the number of 

connections further as these, according to the saliency measure, are required to solve the 

problem. 

Table 6.13- Results of pruning experiments, showing the data set, the pruning level, and median and 
interquartile results for the training and test set percentage correct, the number of connections, the 
maximum number of possible connections and the number of connection crossings (in millions) 

Problem Pruning Train Test Conns Maximum CCs (M) 

Full 0.0 27.51 24.90 273 308 304.2 

0.41 0.77 6 N/A 46.4 

0.05 27.61 24.90 273 308 313.6 

0.51 0.86 8 N/A 53.6 

Grouped 0.0 64.60 62.07 26 33 34.5 

0.35 0.86 2 N/A 5.5 

0.05 64.67 62.07 26 33 34.4 

0.29 0.96 2 N/A 5.6 

Restricted 0.0 40.38 38.32 33 44 22.4 

0.62 1.68 3 N/A 1.3 

0.05 40.38 38.40 32 44 22.1 

0.5 2.35 3 N/A 1.5 

By counting which connections are pruned it is possible to get an idea of which connections 

are actually important. Figure 6.3 demonstrates this by showing which attributes were used 

the most over 100 trials of the full data - giving percentage usage on all possible (2800) 

connections per attribute. This pattern is repeated for the other data sets. It seems that the 

abalone length, and shucked and shell weight are the most important indicators in forming 

the classifier, although no attribute stands out as being completely redundant. 
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Figure 6.3 - Percentage usage of connections over 100 solutions to the full abalone data 
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6.1.7 Other classification methods 

One decision tree method and two statistical methods are used to classify the normalised 

data sets: C4.5 (see table 6.14), and linear discriminant analysis (LDA) and (k = 5) nearest 

neighbour (5-NN) (see table 6.15). For reference the results of applying Cascor without 

hidden nodes to the data sets is also given (see table 6.14). 

Table 6.14 - Results of trials using C4.5 and Cascor (previously generated): the training and test set 
percentages correct and the number of nodes in the tree for C4.5 are shown 

Data set Training set 

C4.5 

Test set Nodes 

Cascor - no 

Training set 

hidden nodes 

Test set 

Full 

Grouped 

Restricted 

76.6 

89.3 

83.1 

21.5 

59.2 

30.8 

1817 

874 

862 

27.18 

64.28 

39.99 

24.86 

61.40 

37.98 

The performance of C4.5 on the data sets is not as good as Cascor, although the results are 

comparable. The training set performance is much higher indicating a great deal of over-

specialisation which is irrelevant to further unseen cases. This is also evident from the large 

sizes of the final trees produced. C4.5 must not be sold short in that it does have a restricted 

hypothesis space and the speed of the actual learning is faster than that of Cascor, with no 

requirements for setting any training parameters. The process is deterministic, thus 

requiring only a single trial. The performance of C4.5 is not affected by whether the data has 

been scaled or not. 

Table 6.15 - LDA and 5-NN trials results: training and test set performances on the normalised data 

Data set 

Training set 

LDA 

Test set Training set 

5-NN 

Test set 

Full 

Group 

Restricted 

0.03 

33.61 

26.36 

0.0 

32.57 

26.22 

7.14 

90.33 

82.29 

3.57 

62.46 

35.93 

The performance of LDA on the abalone data is not good. For whatever reason the results 

are well below those of Cascor and C4.5, though the result on the restricted data set is 

comparable. The large spread of examples in the full and grouped data appear to cause 

problems for LDA in learning. 

The performance of 5-NN is also poor, especially on the full data set where there are a large 

number of classes - a relatively large proportion of the classes containing less than five 

examples for training. The bias of the algorithm is such that the performance on all the data 

sets is less than the results from Cascor: the overlapping data seems to degrade the 

performance of nearest neighbour. This is supported by the performance of 5-NN on the 

grouped data, which performs better than Cascor without hidden nodes. Although Cascor 

with hidden nodes out performs the level achieved by 5-NN, the nature of the grouped data 
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— where possibly overlapping ring groups have been placed in the one class — results in a 

better level of performance from 5-NN. 

From this brief examination of non-neural methods, it seems that a better level of 

performance may not be obtainable. This supports the results gained by checking the 

optimal performance using Cascor. This must be taken in the context that the statistical 

methods examined are very simple — better results may be obtained from more 

sophisticated methods. 

6.1.8 Summary 

A new problem has been examined, and it has been shown that the maximum performance 

on this data set is achievable with Cascor. However, the problem is not solvable from the 

information available, and the requirement for the addition of hidden nodes is limited. This 

may be due to the duplication in the data sets of related attributes, as well as the 

unreliability of prediction masking non-linear features. Nevertheless, the performance of 

Cascor is higher than the other methods examined. The problem is useful for testing basic 

learning performance, as well as being a problem of interest in its own right. 

Of course this data is not ideally suited for analysis as classification tasks. The measure of 

the number of rings giving the classification may also be translated as a function 
approximation problem. However, a classification problem is as equally valid as the 

number of rings is divided into discrete values. Nevertheless, there is the indication that the 

problem being examined has a great deal of overlap between the classes. The results on the 

grouped data and from the confusion matrix examples indicate that it is possible to get , 

estimates of the number of rings from the other attributes, however exact matching is not 

possible. 

Further information is required to obtain a useful classifier, as the information available is 

not sufficient to perform the necessary classification. For example information on the site of 

where the abalone was captured may provide the required information. This may be 

generalised to information such as, for example, whether the abalone grew in an area 

exposed to colder ocean water — a factor quite important to the abalone growth rates. In a 

further trials, site information was included and used to train Cascor networks, resulting in 

improvements of up to five percent in the classification performance as expected. Thus such 

information in a more general form would be invaluable for further work. 

6.2 Example two — identifying authors 

In further attempt to examine data which is difficult in nature, examples of text word 

frequencies were generously provided by the University of Newcastle Centre for Literacy 

99 



and Linguistic Computing (CLLC) for the purpose of distinguishing between Renaissance 
and Romantic tragedy authors [Burrows & Craig 1994]. The reason why this may be a 

difficult problem is that the attribute information is based on word counts from passages of 

text, but the classification is based on the authors of the text passages. 

Previous work has been conducted on the stylometry identification of authors using artificial 
neural network methods [Matthews & Merriam 1993; Merriam & Matthews 1994; Singh & 

Tweedie 1995], however this is the first to use a topology changing algorithm such as Cascor. 

The previous work has not considered whether it is possible to solve such problems using 

only a single layer of weights, which is addressed by the application of Cascor. 

6.2.1 Details of author data 

Each example is a section from one of a number of plays (see table 6.16): text blocks of close 

to 2000 words are used and the most frequent words — from throughout all the passages — 

within each block are counted (see table 6.17). From the selected plays there are 188 

examples, classed as being Romantic (80 examples) or Renaissance (108 examples), with 100 

attributes each representing one of the most frequently used words. Thus each attribute 

value is the number of occurrences of a particular word within the corresponding example. 

Table 6.16 — Plays used for analysis, giving the author(s), the name of the play, the number of blocks 
of text extracted, and the number of words in each block: the first ten are from the Renaissance era, and 

the second ten are Romantic plays 
Author Play Samples Words per sample 

Kyd The Spanish Tragedy 10 9 by 2000, 1 by 2773 
Shakespeare Hamlet 14 13 by 2000, 1 by 3218 

Macbeth 8 7 by 2000, 1 by 2674 
King Lear 12 11 by 2000, 1 by 2752 
Othello 12 11 by 2000, 1 by 2895 

Middleton Women Beware Women 13 12 by 2000, 1 by 1925 
Hengist 10 9 by 2000, 1 by 3455 

Middleton/Rowley The Changeling 9 8 by 2000, 1 by 2498 
Rowley All's Lost by Lust 8 7 by 2000, 1 by 2491 
Webster Duchess of Malfi 12 11 by 2000, 1 by 1744 

Scott The House of Aspen 6 5 by 2000, 1 by 2365 
Auchindrane 7 6 by 2000, 1 by 3244 
Halidon Hill 5 4 by 2000, 1 by 1980 

Byron Marino Faliero 14 13 by 2000, 1 by 2281 
Manfred 5 4 by 2000, 1 by 2296 
Werner 13 12 by 2000, 1 by 2777 

Shelley The Cenci 9 8 by 2000, 1 by 2913 
Coleridge Osorio 7 6 by 2000, 1 by 2700 

Keats Otho 7 6 by 2000, 1 by 2349 
Sheridan Pizarro 7 6 by 2000, 1 by 3549 
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Table 6.17 — The list of the 100 most common words in descending order of frequency of the 10 
Renaissance and 10 Romantic tragedies (from left to right and down the table) 

the and I of a 

you is my it in (preposition) 
not to (infinitive) to (preposition) me but 

be have with he this 

will (verb/ modal) his your for (preposition) as 
thou what him all are 
that 

(demonstrative 
pronoun) 

thy now if that (relative 
pronoun) 

do that (conjunction) thee we (not royal 
plural) 

shall 

then from by (preposition) which (relative 
pronoun) 

was 

or no (adjective) would they on (preposition) 

at our (not royal 
plural) 

there can 0 

more must their am lord 

she here her (adjective) them so (adverb of 
degree) 

when one yet how let 
know upon 

(preposition) 
were may sir 

well had such should come 

so (adverb of 
manner) 

good see who (relative 
pronoun) 

_ mart- , 

an her (pronoun) some us (not royal 
plural) 

for (conjunction) 

too these why like (preposition) has 

make where say love life . 

Two different forms of the data were provided by the CLLC: the raw data which simply 

contains the word counts of the most frequent words for each play section, and a normalised 

data set. The normalisation process involved taking the raw data, dividing each example's 

attribute values by the total number of words in that example and turning each attribute 

value into a percentage of the total number of words. This standardises the examples by 

removing the number of words in the block as a factor removing irrelevant information. 

The immediate concern with this data is that there are very few examples available to train a 

classification system given that there are 100 different attributes. This is particularly a 

concern with artificial neural networks given that the number of parameters to be estimated 

within the classifier is proportional to the number of attributes and the number of hidden 

nodes. On this basis the performance of any classifier trained on this data when confronted 

with new examples may be doubtful. Further, the number of examples may lead to a biased 

estimate of generalisation ability given the small number available for training and later 

testing. Thus the first experiments performed will use the full data for training: examining 
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the need for hidden nodes and pruning within Cascor, and giving the apparent error rate 

calculated from the training set [Weiss & Kulikowski 1991]. 

6.2.2 Full data Cascade-Correlation experiments 

Two data sets are examined, the original raw data and the normalised data, and are used to 

train classifiers using Cascor with pruning at two levels (0.0 and 0.05 absolute level pruning) 

and without pruning with all the examples being used for training (see table 6.18). For all of 

the 100 randomly seeded trials on each data set and training method, hidden nodes were not 

required in developing the final classifiers. 

Table 6.18— Results of training Cascor using the raw and normalised data, showing the median 
(upper) and interquartile range (lower) for the percentage correct on the training set, the number of 

connections (maximum of 202), and the number of connection crossings of training 

Technique and Data Set Training % Connections CCs (M) 

Cascor 100 202 14.5 

Raw 0 0 10.6 

Cascor 100 202 3.0 
Normalised 0 0 0.3 

Cascor, pruning 0.0 100 136 15.4 

Raw 0 22 9.9 

Cascor, pruning 0.0 100 119 3.4 
Normalised 0 8 0.5 

Cascor, pruning 0.05 100 138 15.7 
Raw 0 19 10.2 

Cascor, pruning 0.05 100 115.5) 3.4 
Normalised 0 9 0.4 

These results demonstrate a number of interesting points. The training set, when all the data 

is used to train a network, appears linearly separable. This does not seem to be a difficult 

problem, the only difference between trials being to the random starting points which leads 

to a great variation in the training times. 

The performance on the normalised data is much more stable. As is expected reducing the 

size of the attribute values and removing the reliance on the number of words in each 

example greatly speeds the learning process. The presence of the word count within each 

example of the raw data results in training difficulties as this information is irrelevant to and 

disguises the relative word frequencies. Further experiments only considered the 

normalised data. 

Simple pruning reduces the size of the network dramatically, up to 40 percent of the 

connections are removed with no change in network performance. Figure 6.4 shows the 

results of pruning connections on the normalised data, removing connections with a saliency 
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below 0.0. Over 100 trials, almost 50 percent of the connections are not required for half the 

solutions. These results indicate a large number of redundant attributes. There is little point 

in trying to examine which particular attributes are being pruned out from both outputs, as 

there is so much flexibility in choosing connections due to the large number of attributes (see 

figure 6.4). 

1 	 51 	 101 
	

151 
	

201 
Sorted connections 

Figure 6.4— The number of times each of the 202 possible connections (including the two bias 
connections) are required over 100 trials of the full normalised data 

The redundant attributes do not necessarily lead to a reduction in network performarice, 

indeed in the presence of noise the extra attributes will result in better predictions. However 

poor or non-critical redundant attributes may adversely affect the training performance by 

overweighting unimportant features thus biasing training [Weiss & Kulikowski 19911. It is 

not obvious whether such redundant attributes are valuable or not, although the results 

from table 6.18 give a weak indication that reducing the number of attributes has no effect. 

This may only be examined further by testing or estimating the true error rate. 

6.2.3 Cross-validation error estimation 

It is difficult to see how well a learning method is generalising without a test set to check the 

performance on unseen cases. Unfortunately there are not enough examples available to 

produce a separate test set. Rather cross-validation is used to estimate the true error rate of 

the population [Weiss & Kulikowski 1991]. In this case the leaving-one-out method of cross-

validation is used, whereby 188 different data sets are created: each contains a one example 

test set and a 187 example training set, and the average of these test set results gives the 

estimate of the true error rate. This is further complicated by the random nature of the 

neural network starting points. Hence the median of 100 trials is used as the error value for 
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each test set. There is little difference between the median and mean results over the 100 

trials. The results are displayed in table 6.19. 

Table 6.19 — Results of cross-validation training of Cascor, showing the average of the median results 
over 100 trials: including the percentage correct on the training and test sets, the number of 

connections (maximum of 202) and the number of connection crossings of training (in millions) 
Technique Training % Test % Connections CCs (M) 

No pruning 100 98.4 202 2.98 
Pruning 0.0 100 98.4 118.43 3.4 

Pruning 0.05 100 98.4 115.3 3.39 

The performance of various methods, without the installation of hidden nodes which are not 

required, is high (see table 6.19). Cascor is able to distinguish between the play segments to 

a high level of accuracy, although a level of 100 percent is not achieved. The introduction of 

pruning, removing the influence of a large number of attributes, does not result in 

performance degradation, although training time is increased. This indicates that the 

redundant attributes present are not degrading or improving the classification performance, 

and there may be no effect in reducing a large number of attributes. This will be tested next. 

6.2.4 Restricted attributes 

This section examines restricting the number of attributes as a crude method of determining 

the attribute redundancy in the data set. If a large number of the attributes are redundant, a 

smaller theory, from artificial neural networks especially, may be produced by reducing the 
attributes. This will also test whether the data is noisy in nature — resulting in a decrease in 

classification performance — or whether the redundant attributes adversely affect training 

— resulting in an increase in classification performance in these experiments. Simple 

reductions in the number of attributes will be used to test the extent of attribute redundancy. 

To start with, the previous pruning experiments may be examined. If the frequency an 

attribute is used by either output node after pruning (0.0 level) is totalled (see figure 6.5), it is 

evident that the relative frequency of the word occurrence is not a factor in deciding which 

words separate the examples. If more examples were to be classified a larger number of 

attributes may be required. However, this evidence points towards a large number of the 

attributes being redundant. Further examination of the saliency of each connection is also 

possible giving a more detailed measure of relative worth, but without any justification of 

the validity of the Karnin saliency measure, the value of such an analysis is minimal. 

A total of ten data sets were created from the normalised data such that four data sets had 25 

attributes missing, two data sets had 50 attributes missing and the final four data sets had 75 

missing attributes. The attributes are simply partitioned, and the results presented are from 

the leaving-one-out cross-validation of the median of 100 trials (see table 6.20). Note that 
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some of the trials with only a quarter of the attributes remaining required the addition of 

hidden nodes, resulting in the differences in the number of connections. More sophisticated 

techniques for reducing the number of attributes [Catlett 1992; Kira & Rendell 1992; Caruana 

& Freitag 1994] will not be considered here. 

Connections 
to each 

attribute 

200 

160 

120 

80 

40 

 

0 
1 	 26 	51 	76 	101 

Attributes: bias and then most to least frequent words 

Figure 6.5— The usage of different attributes from Most to least frequent words over 100 trials. 

Table 6.20— Cross-validation results of the median of 100 Cascor nets using the normalised reduced 
attribute data, showing the training and test set percentage correct, and the number of connections and 

connection-crossings of training (in millions) 

Data Set Training % Test % Connections CCs (M) 

25% missing — 1st 25 100 97.87 152 2.07 

25% missing — 2nd 25 100 94.41 152 5.13 

25% missing — 3rd 25 100 98.4 152 2.58 

25% missing — 4th 25 100 95.74 152 3.16 

50% missing — 1st 50 100 92.02 102 5.33 

50% missing — 2nd 50 100 97.34 102 2.54 

25% left — 1st 25 100 86.17 108.85 73.98 

25% left — 2nd 25 100 96.28 52 2.68 

25% left — 3rd 25 100 84.84 109 61.16 

25% left — 4th 25 100 92.55 80 20.54 

These results indicate that the problem is still solvable by Cascor, even if three quarters of 

the attributes are removed, though not to the same degree as when all the attributes are 

used. The drop in performance indicates that the data is noisy, and the larger number of 

attributes is valuable in obtaining a high level of performance. 

The most useful groups of attributes appear to be the second and fourth groups — the most 

frequent words from 26 to 50 and 76 to 100. This is evident when considering the three 

groups of trials which cover all the data. With one quarter of the attributes missing the 
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training time increases when, in particular, the second and the fourth partitions of the 

attributes are missing. When half the attributes are missing more training is required when 

the first 50 attributes are missing — thus excluding the second group of 25 attributes. 

Finally when only a quarter of the attributes are used it is evident from the cross-validation 

performance, network size and training times which sets of attributes most aid the training 

process. 

6.2.5 Other methods 

Finally other classification methods are considered: the performance of C4.5 (see table 6.21), 

and then LDA and 5-NN (see table 6.22) are applied to the normalised and reduced attribute 

data sets, and the classification performance is determined again by full cross-validation. 

C4.5 creates a simple decision tree for classifying texts based on the complete data (see figure 

6.6). However, the tree produced does not classify all of the training samples. This may be 

due to the number of training examples being too limited to develop a more sound tree, or 

the separations between the classes may not be performed by splitting the data on a single 

attribute value. It should also be noted that the tree developed by C4.5 requires only seven 

attributes to arrive at its performance. This also indicates, along with the previous pruning 

and restricted attribute results, that not all of the attributes are required to achieve a 

reasonably high performance level, if one below the highest possible. 

that (relative pronoun) <= 0.20202 : romantics (51.0/1.0) 

that (relative pronoun) > 0.20202 : 

who (relative pronoun) <= 0.2 : 

make <= 0.07407 : 

1 	you <= 1.26147 : romantics (11.0/1.0) 

1 	you > 1.26147 : renaissance (6.0) 

make > 0.07407 : 

1 	good > 0.06866 : renaissance (88.0) 

1 	good <= 0.06866 : 

I 	I 	is <= 1.05 : romantics (3.0) 

I 	I 	is > 1.05 : renaissance (10.0/1.0) 

who (relative pronoun) > 0.2 : 

come <= 0.24661 : romantics (16.0) 

come > 0.24661 : renaissance (3.0) 

Figure 6.6 — Tree developed by C4.5 from the normalised tragedy data showing that, for example, 51 
cases are correctly classified (and 1 incorrectly) as romantic play sections if the percentage of 

occurrences of 'that' (relative pronoun) is below 0.20202 percent 

In comparison to the performance of Cascor, C4.5, for the reasons stated above, seems to be a 

relatively poor classifier for this task (see table 6.21). The training set and cross-validation 

performances are well below those of Cascor: there is a difference of 10 percent between the 

highest cross-validation performance for Cascor and that of C4.5. There is also evidence that 
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the reduction of the number of attributes affects the final performance of C4.5 through the 

size of the final tree which has been developed. This reflects the usefulness of some groups 

of attributes over others, however, unlike Cascor, the final 25 attributes seem to be of more 

value to the C4.5 classification than the second group. 

Table 6.21 - Results of C4.5 cross-validation of 188 data sets: the training and test set percentages, and 
the nodes in the final tree 

Data Set Training % Test % Nodes 

Full normalised 98.5 87.2 15.8 

1st 25% missing 98.9 85.6 17.3 

2nd 25% missing 98 77.1 19.6 

3rd 25% missing 98.5 87.8 15.8 

4th 25% missing 98.8 75.5 22.9 

1st 50% missing 98 80.3 19.5 

2nd 50% missing 98.8 80.9 23.2 

1st 25% left 98.6 70.7 33.8 

2nd 25% left 98.4 82.4 23.1 

3rd 25% left 96.4 73.4 29.1 

4th 25% left 97.8 87.2 18.8 

The performances of LDA and 5-NN are good on these data sets (see table 6.22). Although 

the performance of both methods does not maintain the high standard achieved with 

Cascor, these results further highlight how easy it is to solve this problem given the number 

of attributes and examples. 

Table 6.22 - Results of LDA and 5-NN on the various data sets: the training and test set percentages 

Data Set Training % 

LDA 

Test % Training % 

5-NN 

Test % 
Full normalised 100 96.81 100 93.62 

1st 25% missing 100 95.21 100 96.28 

2nd 25% missing 98.29 94.15 100 91.49 

3rd 25% missing 99.98 95.74 100 93.09 

4th 25% missing 100 96.28 100 94.15 

1st 50% missing 97.8 91.49 99.37 90.96 

2nd 50% missing 99.36 96.28 100 90.96 

1st 25% left 91.91 85.11 100 84.04 

2nd 25% left 97.68 95.74 99.99 89.89 

3rd 25% left 89.31 81.91 99.37 83.51 

4th 25% left 94.3 91.49 99.37 91.49 

6.2.6 Summary and discussion 

The classification of Romantic and Renaissance authors has been examined. Cascor is easily 

able to build a suitable classifier without the use of hidden nodes, and cross-validation 
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shows that this high performance level is maintained for unseen cases. Hidden nodes may 

be added only by forcing the network to over-train. Furthermore, a number of the attributes 

may be removed resulting in a minor degradation in classification performance, indicating 

that a large number of attributes is required to maintain high levels of classification. 

Alternative methods are also able to solve the problem, although not to the same 

performance level as Cascor. 

There is little room for improvement by Cascor given that only a linear layer with squashing 

functions is applied, and further examples are required to examine the non-linear nature of 

the data set. As mentioned in chapter 5 the complexity of the data set is dependent on the 

presentation of the data: what is measured and how many examples are available. 

The two problems examined in this chapter demonstrate the difficulties present in finding 

problems of a non-linear nature which are solvable. Insufficient examples will not allow 

non-linear features to be extracted from the data, and unreliable data may mask complex 

features. Attributes which are related in a non-linear manner may also avoid the need for 

complex data features as these are directly obtainable from the inputs. This experience 

indicates that having sufficient training examples and a concise group of measured 

attributes which identify non-duplicated features is a method for ensuring complex data. 

The final necessary feature is a problem of sufficient complexity — as defined by the 

measured attributes and examples — which may only be determined by close examination 
of the problem under consideration. 

For the process of testing new methods the question becomes whether this is a sensible 

strategy or whether constructing data is more practical. 
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7 Constructing data sets — two methods 

Looking at real-world problems to aid in the development of new methods, as indicated in 

the previous chapter, may be a long drawn out method for finding tasks which are difficult, 

but not impossible, to solve. Thus it is necessary to turn to artificial benchmarks to create 

problems to test the capabilities of learning systems. Although it will not be possible to 

develop a single universal benchmark, as all systems have their own biases, it may be 

possible to develop benchmarks which will at least challenge different learning methods, 

particularly artificial neural networks, without being overly simplified. 

One difficulty with generating tasks is limiting the data sets to be within sensible bounds. 

For the purposes of the experiments in this chapter the following conditions will be met: 

• two real-valued inputs — with values between –1.0 and 1.0, with the benefit 

that the data sets may be displayed in a two-dimensional graph; 

• two classes; 

• no missing, redundant or irrelevant classes, attributes or examples; and 

• a set number of training and independent test examples — 5000 in each set. 

Thus variation in the data sets is performed by changing the underlying theory. Changes in 

the number of inputs and outputs is a minor extension, and simulating problems 

encountered in real-world situations — such as noise, redundant data and different numbers 

of training examples — may also be incorporated. The great advantages of generating data 

are that as many data sets as required may be produced to test a learning system, and that a 

large number of examples may be used for testing the accuracy of the final classifier leading 

to a true and accurate measure of the classifier performance. 

The work on Voronoi data sets in §7.1 is published elsewhere [Waugh 1995b]. 

7.1 Voronoi data sets 

This section examines the application of Voronoi diagrams [Okabe, Boots & Sugihara 1992] 

to the generation of data sets which are more complicated, hence requiring the power of 

learning methods such as multiple layer neural networks. This stems from Quinlan's 

concept of P-type problems [Quinlan 1993b; Collier & Waugh 1994]. Okabe et al. give the 

following informal definition of two dimensional Voronoi diagrams [Okabe, et al. 1992]: 

Given a set of two or more but a finite number of distinct points in the Euclidean plane, we 

associate all locations in that space with the closest member(s) of the point set with respect 

to the Euclidean distance. The result is a tessellation of the plane into a set of regions 
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associated with the members of the point set. We call this tessellation the planar ordinary 

Voronoi diagram generated by the point set, and the regions constituting the Voronoi 

diagram ordinary Voronoi polygons. 

In practice the term 'ordinary' may be dropped. 

The generation of the data sets is simple: a number of generation points are randomly 

constructed within the space under consideration, and assigned to a particular class. These 

are then used to classify further random points in the feature space by their distance from 

the generating points. These new points are used for the training and test sets. Thus 

generator points are linked to form regions of a single class (for example see figure 7.1). 

Figure 7.1 — an example of a two class Voronoi data set with five generators in each class 

7.1.1 Data set characteristics 

There are a number of important features which should be considered: 

• the number of generating points actually needed; 

• the number of generating points needed in each class; 

• the number of edges needed to separate the generating points and hence the 
classes, which is also proportional to the number of vertices; and 

110 



140 

120 -- - 

100 -- 

80 

60 

40 

• 
20 	• • 

•-•
•■ 

.0
,,,  • 

70. 

• Total generators 

Total in class 1 

• Total in class 2 

	 Total edges 

	 Total edge length 

• the total length of the necessary edges. 

The number and length of edges is dictated by the number and placement of generators, the 

placement being random in this situation. If a number of trials are conducted to avoid 

problems with the placement of generators, complexity in data sets is increased in two ways: 

• increasing the total number of generators, as more subregions or extensions of a 

class are generated; and 

• using more equal numbers of generators in each class, increasing the complexity 

over unequal numbers, corresponding with a greater likelihood of the 

generators needing to be separated. 

This complexity is indicated by the number of divisions within the data set (see §7.1.2). 

Figure 7.2 demonstrates the first point by showing the averages over 100 randomly created 

data sets of the needed generators, edges and edge lengths for each pair of generator 

numbers. The number of generators is varied from 1 to 50 in each class, thus requiring the 

generation of 5000 data sets. The number of edges needed grows asymptotically linearly, as 

does the total length of the edges, which does so at a slower rate indicating in a decreasing 

average length. This means that each edge has less effect on the final solution, but there are 

more edges resulting in a higher complexity. Furthermore figure 7.2 shows that the 

generators required are near the maximum possible in this case where an equal number of 

generators are used in each class. For example with 50 generators in each class, over 96 

generators out of a possible 100 are required on average over the generated data. 
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Figure 7.2 — Increase in complexity due to more generators being used for both classes 
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It should also be noted that the standard deviations of these measurements increase slowly 

along with the number of generators, as is expected with a larger possible range of 
numerical values. 

Figure 7.3 demonstrates the second point. The data sets plotted have a total of 20 generators, 

and the number in each class is altered from 1 and 19 to 10 and 10; with again the results 

being the averages over 100 generated data sets. The shapes of the curves are similar to that 

of the product of the number of generators used in each class. As the number of generators 

in each class becomes more even, the total generators and the total edges reach their 

maximum level. Simultaneously more generators of the lesser class, in this case class one, 

are being used with a resulting increase in the percentage of the feature space falling under 

that class, while the number of generators used from the other class falls. Furthermore, 

when the classes are extremely uneven, few generators of the second class are used at all as 

the feature space is dominated by that class and a large proportion of them are redundant. 
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Figure 7.3 — Increase in complexity due to more balanced numbers of generators in each class, with a 
total of 20 generators 

7.1.2 Measuring complexity 

It may be possible to determine an exact measure of complexity based on the data set 

features. However, it is not obvious that this would be a sensible course of action given that 

complexity is measured in different manners for different learning methods. What is 
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difficult for linear discriminant analysis, for example, may be trivial for artificial neural 

networks, meaning that it would be of little value to create such a measure. 

It is prudent to note at this point that the structure of Voronoi data sets should be easy for 

perceptron-like architectures to solve, as the regions involved have piece-wise linear 

boundaries. In comparison C4.5 should have difficulty in solving such problems given that 

it separates regions by splitting the feature space on the basis of a single attribute value, 

meaning that non-vertical or horizontal separations in the feature space are harder to 

classify. Such separations will be common in Voronoi data sets. 

Thus there are many possible definitions of complexity depending on the capability of the 

learning system. Here the focus is on measures which will allow a relative comparison of 

complexity by measuring features which lead to complexity within a data set, hence the use 

of the number of generators in total and per class for the Voronoi data sets. This method of 

measuring complexity is rough and does not take into account features such as convexity 

and concavity. These are problematic in that some decision needs to be made as to whether 

a slight concavity should be ranked as being as complex as a large indentation of one class 

into a region of another within the feature space. Likewise connectivity of edges also needs 

to be considered, as for example separate regions in feature space are more difficult to isolate 

using artificial neural networks. A more complete measure of complexity should take these 

factors into consideration, along with the capabilities of the various learning methods. 

Nevertheless, the number of generators does give a relative estimation of complexity. For 

example a rectangle and a dodecagon are both convex and fully connected, but to model a 

dodecagon exactly requires more processing power, thus presenting a more complicated 

problem. Further, considering that in this case the placement of generators is random, the 

convexity and connectivity of the resulting regions should be averaged over a reasonable 

number of trials. 

Thus on average, it is possible to produce Voronoi data sets of arbitrary complexity by 

simply increasing the number of generators in all classes and evening up the number of 

generators between the classes. As it is possible, even though unlikely, to generate a data set 

with an infinite number of generators which is in turn trivial to solve — namely that the 

generators are collinear — it is necessary to perform tests over a reasonable number of data 

sets rather than a single one. These data sets have the added advantages that the maximum 

and minimum classification rates are known: namely 100 percent and the percentage of the 

largest class respectively. 
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7.1.3 Simulation results on Voronoi data sets 

Experiments are conducted using LDA, 5-NN, C4.5, back-propagation-style networks using 

Quickprop (QP) as the update function, and Cascor to test the validity of these data sets for 

the purpose of generating problems with differing underlying complexity for benchmarking. 

Cascor is used with the parameters given in §2.4.1, except that a restricted patience period 

(20 epochs) is used for both candidate and output training. Node patience is also used with 

percentage changes in error of 1 and 5 percent over the installation of a single hidden node. 

The Quickprop trials use the parameters outlined in table 7.1, with patience (1 and 5 percent 

change) being employed to stop training and either 5 or 10 hidden nodes used. The results 

of the artificial neural network learning methods on each data set are averaged over 100 

machine clock-seeded trials to account for the random nature of the starting points. The 

back-propagation experiments were also performed using a separate simulator developed 

by the author. 

Table 7.1 — Parameters used for Quickprop trials 
Parameter Value 

Total hidden nodes 5 or 10 nodes 
Eta 0.1 
Mu 1.75 

Weight decay 0.0001 
Patience percentage 1% or 5% 

Patience length 20 epochs 
Maximum epochs 1000 epochs 

Activation functions Symmetric sigmoid 
Activation function offset 0.1 

The results take two forms: 

• correctness of the final theory — measured by the percentage correct on the 

unseen test set; and 

• complexity or size of the final theory — measured, where appropriate, by the 

number of hidden nodes for Cascor or Quickprop trials, or the number of tree 

nodes for C4.5. 

7.1.3.1 	Complexity by increasing generator numbers 

The effect of increasing the number of generators in each class is considered. The results are 

on three types of data sets with 4, 10 and 20 generators used for each class. 20 data sets of 

each type were created, the classification results of which are averaged to give an indication 

of the complexity of the data sets given the changes in the number of generators used (see 

table 7.2 and 7.3). The standard deviation is also shown to give an indication of the spread 

of the results for each data set. 
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In these experiments more generators lead to relatively less examples per generator, as the 

number of training examples is fixed. Thus it is expected that the performance will drop 

slightly, along with a drop due to the increasing complexity of the data sets. 

Table 7.2 - Average and standard deviation of the percentage correct results on trials over 20 data sets 
in each generator category (4 and 4, 10 and 10, and 20 and 20) 

Method 

4 and 

Average 

4 

Stand. Dev. 

10 and 

Average 

10 

Stand. Dev. 

20 and 

Average 

20 

Stand. Dev. 

LDA 75.7 11.2 67.1 10 59.6 6.7 

5-NN 99 0.3 98.5 0.3 97.7 0.4 

C4.5 98.5 0.5 97.7 0.5 96.4 0.5 

Cascor 1% 93.8 6 88.1 4.5 77.4 4.4 

Cascor 5% 93.3 6.8 87.3 5.8 77 4 

QP 5 hid 1% 70.8 11.7 61.1 7.1 56.2 4.3 

QP 5 hid 5% 70.9 12 61.4 7.1 56.1 4.2 

QP 10 hid 1% 75.3 13.2 63.5 7.5 57.3 4.4 

QP 10 hid 5% 75.6 13.3 63.4 7.3 57.3 4.1 

Table 7.3- Average and standard deviation of the theory size where appropriate on trials over 20 
data sets in each generator category (4 and 4, 10 and 10, and 20 and 20) 

Method 

4 and 

Average 

4 

Stand. Dev. 

10 and 

Average 

10 

Stand. Dev. 

20 and 

Average 

20 

Stand. Dev. • 

C4.5 111.2 33.1 165.8 
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251.6 31.7 

Cascor 1% 5.9 1.7 5 3.9 1 

Cascor 5% 5.3 1.8 4.5 3.5 0.9 

QP 5 hid 1% 5 0 5 5 0 

QP 5 hid 5% 5 0 5 5 0 

QP 10 hid 1% 10 0 10 10 0 

QP 10 hid 5% 10 0 10 10 0 

LDA has a decreasing performance with the increasing complexity of the data sets, as would 

be expected due to its inability to solve anything more than linearly separable problems. 

This is also shown by the standard deviations of the LDA results: as the complexity increases 

the deviation of the LDA results reduce indicating less capability to model the data sets as 

greater structure is present within them. 

5-NN performs very well, though the performance does drop slightly with harder problems 

which contain more features and more edges where mistakes are likely to occur, with the 

same number of examples overall to identify them. The high performance levels are due to 

the algorithms natural bias in favour of these data sets where no noise is involved. This is 

also shown by the low standard deviation in the data set results as the method is solving the 

problems to near optimal levels. Note though that the performance is not perfect as the 

training set does not contain the exact generating points - if it did, then 100 percent 

accuracy is expected. 
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C4.5 also performs very well with a slight drop in performance as complexity is increased, 

and a large increase in the size of the learnt theory as measured by the number of nodes in 

the induced tree. The large tree indicates that the feature space has been segmented heavily 

to classify the data sets. The large variation in the size of the induced trees is due to the 

natural variation in the data sets, as well as complications forced by the inductive bias of the 

algorithm: namely dividing classes based on a single feature. Although this style of problem 

is P-type in nature, the large number of training examples allow C4.5 to successfully 

separate the data set features, resulting in very good classification performance. If less 

examples are available the performance would probably drop as C4.5 would develop much 

simpler decision trees. 

Cascor also performs well but degrades quickly with increasing complexity, which is further 

indicated by a decrease in the deviation showing that the extra complexity affects the further 

addition of hidden nodes: adding nodes becomes more difficult (see table 7.3). There is also 

a corresponding drop in the size of the final theory as measured by the number of hidden 

nodes. The drop in performance is accounted for as the trials were conducted using node 

patience (see §3.1). As the data sets become more complicated the features become smaller, 

as indicated by the average edge length (see figure 7.2), and correct classification of those 

features results in less overall performance improvement. Thus Cascor stops training using 

these node patience levels before all possible improvements have been made. The addition 

of further hidden nodes may result in better solutions. 

The advantage of employing node patience is that it stops the introduction of unnecessary 

nodes. The obvious disadvantage is that helpful training may not occur. These alternatives 

cannot be distinguished on the basis of training data only. The differences in the percentage 

change used for node patience do not seem to have a significant effect on the final classifier, 

though further variation of the parameters may result in performance improvements. These 

data sets are difficult to apply node patience to as there is the possibility of very small 

performance increases later on relative to the initial gains by earlier hidden nodes or the 

simple perceptron-like output layer. This further points to the value of having a validation 

set, if enough examples are available. 

The performance of Quickprop as a representative of the back-propagation styles of 

networks is very poor. The trials in most cases did not achieve better results than those 

gained by LDA, and the standard deviation results are similar in nature, showing the 

difficulties of increased complexity. Further increasing the number of hidden nodes, with 

up to 20 hidden nodes being used, resulted in a small performance increase, and a very large 

increase in the training time. Perhaps the cause of this is what Fahlman terms the 'herding 

effect' [Fahlman & Lebiere 1989], whereby most of the hidden nodes are covering the major 

errors as driven by the learning algorithm, without spreading out to cover more areas of the 
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feature space. An alternative explanation is that the architecture, being only a two-

processing layer network, may not be able to model the underlying function, although the 

algorithm should achieve the performance level of LDA. A further explanation may be that 

the algorithm has not been optimised sufficiently by the setting of parameters; although this 

argument pales in comparison to C4.5, for example, which requires no parameter 

adjustments. A final possibility is that there is some problem with the Quickprop algorithm 

which produces poor results in some cases - this is to be examined in §7.3.1. Whatever the 

reason, the performance of Quickprop on these problems is inadequate. 

Finally the performance difference between the artificial neural network methods and C4.5 

and 5-NN needs to be explained. The lack of performance by the network architectures is 

unexpected given the bias of the methods toward solving Voronoi-style problems. This may 

be explained by the lack of capacity in the neural network techniques, the natural bias of 5- 

NN in solving such problems, and the large number of leaves of C4.5 trees indicating a high 

segmentation of the feature space given the number of generators. Such a classification is 

not natural, and most likely will not scale up to higher dimensions, and performance on 

these data sets is likely to drop off more rapidly if the number of training examples is 

reduced. These conjectures are supported by the results from chapter 6 where Cascor. 

outperformed both 5-NN and C4.5. 

7.1.3.2 Complexity by more even generator numbers 

The change in complexity with differing numbers of generators between the classes is also 

examined. This is tested by considering a number of generator combinations totalling .20 

generators in both classes: 2 and 18, 4 and 16, 6 and 14, 8 and 12, and 10 and 10. The results 

of trials using the methods mentioned above are outlined in tables 7.4 and 7.5, but only 

Cascor with 5 percent node patience and one Quickprop trial with 5 hidden nodes and 5 

percent patience are considered, as there is little variation in the alternatives tested 

previously. 

Table 7.4 - Average and standard deviation results of test set performance on trials over 20 data sets 
in each generator category (2 and 18, 4 and 16, 6 and 14, 8 and 12, and 10 and 10) 

Method 

2 and 

Av 

18 

SD 

4 and 

Av 

16 

SD 

6 and 

Av 

14 

SD 

8 and 

Av 

12 

SD 

10 and 

Av 

10 

SD 

LDA 89.2 4 78.5 4.8 71.9 6.3 64.6 7.4 67.1 10 

5-NN 99.3 0.2 98.9 0.3 98.6 0.3 98.5 0.3 98.5 0.3 

C4.5 99 0.3 98.2 0.3 97.9 0.5 97.6 0.5 97.7 0.5 

Cascor 94 2.9 89 4.6 87.8 5.1 85.5 4.6 87.2 5.6 

Quickprop 84.6 7.9 71.1 6.3 64.1 6.8 59.6 6.8 61.4 7.1 

The performance of LDA is improved, as would be expected, when the number of 

generators in the classes are unbalanced. This corresponds to a large area of the feature 
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space being closer to the generators of the majority class, and it becomes simpler to perform 

well under these circumstances. The performance mirrors closely the expected percentage of 

the feature space under the largest class. 

5-NN performs well again with the percentages correct on the unseen test set remaining 

about the same high level given the natural bias of the method. The standard deviation of 

the results does drop slightly as the data sets become more complicated. Whether this is a 

chance occurrence or whether it indicates more consistent results obtained by nature of the 

larger number of generator points leading to less erratic data sets is unclear from these 

figures. 

Table 7.5 — Average and standard deviation results of the theory size on trials over 20 data sets in 
each generator category (2 and 18,4 and 16, 6 and 14, Sand 12, and 10 and 10) 

2 and 18 4 and 16 6 and 14 8 and 12 10 and 10 

Method Av SD Av SD Av SD Av SD Av SD 

C4.5 69.7 21.2 119.4 16.8 150.2 29.1 170.4 24.6 165.8 36.6 

Cascor 2.9 1 3.7 1.1 4.5 1.6 4.3 0.9 4.5 1.3 

Quickprop 5 0 5 0 5 0 5 0 5 0 

C4.5 also performs well with results near 100 percent correct. What generally alters is the 

size of the learnt theory, increasing as the number of generators becomes more even, 

indicating that the complexity of the data sets is increasing. The standard deviations of the 

results back up these observations: the result for the test set classification rate does not 

change greatly, and the spread of the size of the final theories increases with the additional 

complexity. 

The performance of the artificial neural network methods is also consistent with increasing 

complexity as the performance of the methods decreases, whilst the number of hidden nodes 

installed by Cascor increases and then drops off with further complexity. The trends are 

evident, though not perfect, and results may be improved by measuring over more than 20 

trials in each case. 

7.1.4 Summary 

It is possible to generate data sets of increasing complexity to test new inductive learning 

methods by reporting average performance on specified problems, without biasing results 

by considering an individual problem. Data set complexity is increased by the addition of 

greater number of generation points, or by the evening up of the numbers of generators 

between classes. The suggested method of generating data has been shown to hold over a 

reasonable number of differing learning methods, although the biases of each method must 

be taken into account. There is also a large background of Voronoi diagram theory to build 

on, including areas on generalised [Okabe, et al. 1992] and temporal Voronoi diagrams 
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[Devillers, Cohn, Kedem & Schirra 1994]. Such data sets may be easily created and the 

experiments replicated. 

It would appear that such learning tasks are difficult for artificial neural networks. The 

higher performance of 5-NN may be accounted for by a natural bias towards problems 

formulated in this way. The higher performance of C4.5 is more of a surprise, given the 

previous literature [Quinlan 1993b]. However these previous tests have centred on 

problems using a total of 5 generators in 5 dimensional space, as opposed to up to 40 

generators in 2 dimensional space. The differences between Cascor and C4.5 may alter with 

alternative learning tasks using more attributes — an interesting area for future 

investigation. Cascor easily outperforms the Quickprop-trained networks on these more 

difficult domains. Nevertheless, the performance of the artificial neural network methods is 

poor, indicating that these problems do effectively test such systems and show that further 

improvement is possible. Further work may need to be completed to achieve the standards 

of the other learning methods. 

The data sets are biased in that they are all of a similar style which may aid one learning 

method over another. However, all benchmarks do have some biases regardless of how 

cleverly they are constructed and these data sets are capable of comparing similar methods 

such as artificial neural networks. Voronoi data sets are able to represent a very large 

number of data sets. A final concern is that the data sets are unrealistic in nature as the 

examples are spread evenly over all the feature space, however this may be a benefit in that 

matching the exact boundaries of such problems is a very difficult task. 

7.2 Normal data sets 

A further method has been developed to address the lack of realism exhibited by Voronoi 

data sets. Instead of generating example points and classifying them due to their distance 

from the various generation points, the generators are created with a position and a 

standard deviation. New example points for training and test sets are then created by 

selecting one of these generators at random and adding to that generator position variations 

along each axis based on a normal distribution calculated by the generator's standard 

deviation — thus giving changes around the generator, which becomes the mean of the 

distribution. This gives the position of the new example in the feature space. 

Thus example points are centred in a normal distribution around the generating points, 

creating a normal data set, rather than example points for the training and test sets being 

spread out evenly over the feature space. This in turn leads to overlap between classes, and 

areas where no examples fall — a more realistic scenario. The correct classification for each 

example is given by the generator which is originally selected. 
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Such data sets, unlike Voronoi data sets, are ill-matched to the capabilities of multi-layer 

perceptrons as these methods form piece-wise linear boundaries. Data sets based on 

Gaussian mixtures form quadratic decision boundaries. Rather than being a hindrance, this 

is a benefit as it allows network training algorithms to be tested on hard problems. As such, 

it is expected that comparisons to the performance of neural network methods on the data 

sets will be poorer in relation to the results obtained on the Voronoi data sets. 

There are a number of further assumptions with this generation process: 

• the generators are within the bounds of —1.0 to 1.0, in two dimensional space; 

• the generators are selected with equal probability, meaning that the number of 

points associated with each generator is equal; 

• the points used for training do not have to be within the —1.0 to 1.0 bounds; 

• the same standard deviation is used for both axes, giving a round distribution 

and meaning that the covariances in the multiple-valued normal distributed are 

set to zero; and 

• the standard deviations are generated from the even interval of 0.0 to 0.25. 

7.2.1 Optimal classification 

It is possible to calculate the optimal Bayesian classification for such data sets, given that 

there is overlap between the classes. This gives an upper bound on the classification 

performance, in the same way that the lower bound will again depend on the class with the 

most examples. Unlike the Voronoi data sets where the maximum classification rate is 100 

percent, the overlapping classes in these examples lead to a lower optimal classification rate. 

To briefly reiterate the calculation of the Bayesian classification rate, the class of an example 

is inferred by calculating the probability that the example falls in each class, and choosing 

the maximum, hence applying Bayes' rule to select a particular class i: 

P(C i  I 	> P(Ci  I sz) V j i 	 (7.1) 

where P(x) represents the probability of x, P(x I y) represents the conditional probability of x 

given y, C represents a particular class and t represents the inputs to the system. The 

expression (7.1) may be calculated by employing Bayes' theorem: 

p(y( I c i) P(c,)  PK; 	= 
I Ci) • 13(C) 

v 
(7.2) 

The probability of each class without prior information is proportional to the number of 

examples in each class, hence in this particular case this is proportional to the number of 
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generators. As is standard the denominator in (7.2) may be dropped when employed within 

Bayes rule. Furthermore, given this is a normal distribution, the following formula holds: 

P(R I C i) = 	ni 	±ROT  vi ± 1 (x ±go 

(27c) lvi 

where n is the number of dimensions, V1  is the covariance matrix of class i, and pi is the 

mean vector of class i. In this case n is two, and the covariance matrix is simplified with the 

variance in the diagonal, and zeros elsewhere due to the assumption of a circular 

distribution. A few minor steps gives the following expression from (7.3): 

P(R I C i)=  1   e±-1-4(x± 	4-  Pix)2  (Y ± giy)2) 
2Tccy 	2ar 

(7.4) 

where pix, for example, is the mean in the x axis of class i, and r is the standard deviation 

for class i. This may be used, along with the proportion of generators or number of 

examples in each class, to calculate the Bayesian classification for each data set generated, 

which in turn may be compared to the known classifications. The maximum classification 

rate may thus be given exactly for each training and test set generated. A more detailed 

discussion on Bayesian classification may be found in statistical texts (for example, [Duda & 

Hart 1973; James 1985]). 

7.2.2 Simulation results on normal data sets 

Results are generated on similar data sets for the same methods as mentioned in §7.1.3.1; 

though only one Quickprop trial - with 5 hidden nodes and a patience stopping percentage 

of 5 percent - is considered. The results are given in tables 7.6 and 7.7, along with the 

Bayesian classification rates for the data sets averaged over the 20 sets in each generator 

grouping. 

Table 7.6 - Average and standard deviation results of the test set classification rate on trials over the 
20 data sets in each generator category, including the optimal Bayesian classification 

Method Average 

4 and4 

Stand. Dev. 

10 and 

Average 

10 

Stand. Dev. 

20 and 

Average 

20 

Stand. Dev. 

Bayesian 95.1 4.1 88.6 3.8 83.1 3.5 

LDA 73.8 10.7 62.2 7.3 56.4 3.7 

5-NN 94.6 4.4 87.6 4.1 81.7 3.6 

• C4.5 94.4 4.7 86.6 4.4 80.3 3.6 

Cascor 1% 91 5.1 79.3 5.9 70.5 3.4 

Cascor 5% 91.2 5.1 78.9 6 69.3 4.3 

Quickprop 71.5 12.2 56.1 4.2 51.4 1.3 

The complexity of the data sets steadily increases as more generators are used (see table 7.6 

and 7.7). This is evident from the results of the classification methods as well as the 

(7.3) 
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Bayesian classification which indicates that there is increasing overlap between distributions 

of examples. LDA again does not perform well as the number of generators increase. The 

performance when there is only four generators in each class is reasonable, although this is 

to be expected as there is more likelihood of gaps between the distributions of examples. 

The spread of the results is also quite large indicating a lack of capability in solving the 

problems. 

Table 7.7 — Average and standard deviation results of the size of the final theory on trials over the 20 
data sets in each generator category, where relevant 

Method 

4 and 

Average 

4 

Stand. Dev. 

10 and 

Average 

10 

Stand. Dev. 

20 and 

Average 

20 

Stand. Dev. 

C4.5 

Cascor 1% 

Cascor 5% 

Quickprop 

131.8 

3.3 

2.9 

5 

107 

1.3 

1.1 

0 

365.7 

4 

3.5 

5 

134.9 

0.9 

0.7 

0 

526 

3.8 

3.1 

5 

115.4 

0.5 

0.8 

0 

5-NN again performs well, though there is evidence that the results of the method fall off 

more quickly than those for the Voronoi data sets, as is expected from this data set style. 

This follows as the overlap between different classes increases. The spread of results is not 

much larger than for the Bayesian classification. C4.5 also performs well, although again the 

performance decreases rapidly with increasing complexity. This is accompanied by a 

massive growth in the size of the final pruned trees necessary to classify the problems. The 

spread of results here also increases in line with these larger results, indicative of the greater 

variation possible with the tree size. 

The performance of Cascor again is lower than that of 5-NN and C4.5, although the 

performance drop with increasing data sets complexity is not as great as for the Voronoi 

data generation method. The results show that there is little difference in the changes to the 

node patience percentage. Cascor is not able to cope with the additional complexity and the 

number of hidden nodes installed decreases when there are 40 generators in the feature 

space. Quickprop also performs badly, not even reaching the performance level of LDA. 

Initially the variation in classification performance is very high, but this decreases with 

increasing data set complexity and a decrease in the ability of the network style to solve the 

problems at hand. 

7.2.3 Summary 

A second method of generating data for benchmarking artificial neural networks is given — 

normal data sets. This generates more realistic data sets than the Voronoi data generation 

method in that the distribution of examples varies across the feature space; but loses some of 

the properties and correspondence with the Voronoi diagram theory. The results indicate 
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that normal data sets are similar in nature to Voronoi data sets in that complexity may be 

easily increased by the addition of generator points. 

The current generation process is limited by the initial assumptions in that not all possible 

normal distributions are allowed — only round distributions are produced currently — and 

that the restriction of the standard deviation is ad hoc in nature. However, as there are so 

many possibilities for generated data sets, some flexibility has been lost to facilitate 

comparison. If further variations to the distribution pattern of the generators are required, 

these may be simply included in the generation process. Note that linear transforms of the 

generated data will result in data sets with any desired normal distribution. 

A continuing problem with this generation of data is that methods with a natural bias 

towards normally-distributed data may perform better. However, when used in conjunction 

with the Voronoi data sets, good performance on data sets from both methods would 

indicate a reasonably robust method, especially for the comparison of different artificial 

neural network methods. 

7.3 Application of benchmarks 

Following on from the previous definitions of two artificial benchmarks, it is sensible to 

apply them to the comparison of different learning methods. Specifically two different 

groups of experiments are examined. Firstly, a comparison is made between the results 

obtained by Quickprop and further trials using pattern presentation and batch back- 

propagation. Here pattern presentation refers to the updating of the weights after the 

presentation of a single randomly selected example; whereas batch refers to the updating of 

the weights after the presentation of all the examples in the training set once only. Secondly, 

a brief examination is made of some of the modifications to Cascor presented in Part I. 

7.3.1 Quickprop and back-propagation 

Quickprop was developed to speed the learning of back-propagation-style networks (see 

§2.3.5). It was assumed that the error surface would approximate a quadratic function, and 

following on from this a number of 'risky' assumptions are made, and changes developed, 

to the process of updating the network weights [Fahlman 19884 The assumption that the 

error surface fits a quadratic is valid near the minimum, as may be seen from the expansion 

of the Taylor series. Along with the development of Quickprop, a number of other 

modifications were introduced, most notably the activation function offset which stops the 

derivative of the function ever reaching near zero when the squashing function is set hard 

on or off. A number of papers have critically examined Quickprop [Lister 1994] and the 

activation function offset [Adams & Lewis 1995] expressing doubts about their effectiveness 
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on all problems. This is a sensible point to test those criticisms using the benchmarks that 

have been developed. 

Experiments are performed in a similar fashion to those given earlier. Six experiments are 

considered, testing the differences between pattern presentation and batch back-propagation 

and Quickprop, and the use of activation function offsets or not. A total of 100 trials of each 

data set are considered, with 5 percent patience over 20 epochs used as the stopping criteria 

and 5 nodes in the hidden layer. Back-propagation using the steepest descent algorithm, 

using both pattern presentation and batch methods, is applied with the parameters outlined 

in table 7.8. The other Quickprop parameters are identical to those given earlier (see table 

7.1). The results given are the averages over the 20 data sets for each generator set and for 

each data set style: the same data sets as used previously to show the changes in complexity. 

The actual results are the percentage correct on the unseen test set (see table 7.9) and the 

number of epochs required for training (see table 7.10), given that there are hard limits of 

1000 epochs maximum and 20 epochs minimum of training. 

Table 7.8 — Parameters used for pattern presentation and batch back -propagation trials 
Parameter Value 

Total hidden nodes 5 nodes 
Eta 0.1 

Alpha 0 
Weight decay 0 

Patience percentage 5% 
Patience length 20 epochs 

Maximum epochs 1000 epochs 
Activation functions Symmetric sigmoid 

Generally the activation function offset is not beneficial (see table 7.9). Although it 

occasionally aids batch back-propagation in finding a better solution, the results for pattern 

presentation back-propagation and for Quickprop indicate that the inclusion of the offset 

results in an inferior classifier. These results are consistent with previous theoretical work 

[Adams & Lewis 1995]. 

The effectiveness of Quickprop is also called into question. Quickprop is on a par with batch 

back-propagation when the activation function offset is used, and easily outperforms the 

batch method when no offsets are used. However, at no stage did Quickprop outperform 

the pattern presentation back-propagation algorithm, and the results appear to be 

significantly worse (see §7.3.1.1). Performance differences of around 20 percent are not 

uncommon, which is not encouraging given that the generalisation performance is the prime 

goal of training. The stochastic nature of pattern presentation does assist in escaping local 

minima and plateaus in the feature space, which is an advantage over the batch methods. 
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Table 7.9 - Comparison of Quickprop (QP), and pattern presentation (PP) and batch (B) back- 
propagation (BP) on the generated benchmark data sets: results on the unseen test set showing average 

(Av) and standard deviation (SD) over 20 different data set trials 

Data style 
and gen's 

PPBP with 
offsets 

PPBP with 
no offsets 

BBP with 
offsets 

BBP with no 
offsets 

QP with 
offsets 

QP with no 
offsets 

Av SD Av SD Av SD Av SD Av SD Av SD 

Voronoi 

4 & 4 91.1 9.1 96.4 2.7 71.7 13 60.9 6 70.9 12 87.9 8.2 

10 & 10 85.1 5 89.3 4.2 61.7 8.5 56.3 4 61.4 7.1 76.3 9.2 

20 & 20 77.9 3.3 80.3 3.1 55.6 5.2 53.6 3.6 56.1 4.2 67.3 7.3 

Voronoi 

2 Sz 18 97 1.9 97.1 2.2 88.4 5.3 88.9 4.2 84.6 7.9 93.1 2.8 

4 & 16 90.3 3.8 93.9 1.9 75.2 5.7 77.6 4.9 71.1 6.3 86.3 4.1 

6 & 14 87 4 90.8 3.4 66.3 6.9 68.43 5.6 64.1 6.8 81.8 4.8 

8 & 12 84.6 5.2 88.9 3.7 60.5 7.9 59.1 5.6 59.6 6.8 76 7.1 

Normal 

4 & 4 93.8 5.1 93.7 4.7 71.5 14.1 54.2 4.6 71.5 12.2 72.7 10.9 

10 & 10 80.7 6.1 82 6.2 56.1 5.6 52 2.5 56.1 4.2 61.8 7.5 

20 & 20 69.5 4.3 69.9 4.9 51 1 50.2 0.3 51.4 1.3 53.3 3.2 

Table 7.10- Comparison of Quickpro (QP), and pattern presentation (PP) and batch (B) back- 
propagation (BP) on the generated benchmark data sets: epoch results showing average (Av) and 

standard deviation (SD) over 20 different data set trials 

Data style 
and gen's 

PPBP with 
offsets 

PPBP with 
no offsets 

BBP with 
offsets 

BBP with no 
offsets 

QP with 
offsets 

QP with no 
offsets 

Av SD Av SD Av SD Av SD Av SD Av SD 

Voronoi 

4 & 4 713.1 302.9 577.5 318.3 999.7 1.6 58 40.4 947.9 155.9 303.3 107.5 

10 & 10 269.2 213.4 182.7 201.9 937.7 176.7 42.2 25.2 990.7 21.5 296.9 88.9 

20 & 20 81.3 24.3 67.1 21 895.6 244.8 38.1 24.8 980.9 29.8 317.5 104.6 

Voronoi 

2 & 18 801.5 227.5 440.7 270.1 947.3 154.3 20.3 0.9 880.6 225.4 488.1 142.8 

4 & 16 450.6 245.8 232 189.9 1000 0 21.7 2 1000 0 442.5 122.1 

6 & 14 315.3 237.7 150.7 99.2 1000 0 27.6 9.1 1000 0 370.9 121.1 

8 & 12 280.3 217.2 133.9 109.1 978.7 91 36 19.2 987.4 31.6 367.2 116.1 

Normal 

4 & 4 212.1 235 120.9 207.4 841.5 296.6 38.2 30.1 861.1 227.7 162.9 78.4 

10 & 10 103.5 63 64.9 24.7 751.6 318.4 32.5 11 889.6 177.8 154.9 37.2 

20 & 20 47.2 7.2 46.6 9.1 317.3 314.9 25.5 6.3 605.6 344.8 135.2 33.2 

The speed of training should also be considered (see table 7.10), especially as improving this 

is the purpose of both Quickprop and the activation function offset. The activation function 

offset, considering pattern presentation, batch and Quickprop learning, slows training 

down. The pattern presentation back-propagation and Quickprop trials without the offset 

are not only faster but, as mentioned previously, the results are much better. Although the 

batch back-propagation trials with the activation function offset are better in terms of 
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generalisation ability, it is dubious whether the large amount of extra training required is 

worth the performance increase. 

The training speed performance of Quickprop in relation to the back-propagation methods 

is also comparatively poor. Though the comparison with batch back-propagation is 

favourable, the performance compared with pattern presentation back-propagation is not 

good — far from being a major speed improvement. This poor performance may be 

partially explained by the large size of the data sets. If a training set is doubled by 

duplication of the examples then batch methods will require double the amount of training 

presentations to achieve the previous performance level, whereas pattern presentation 

learning will train with the same effort as before. This does not fully apply in this situation 

as the examples in the data sets are not duplicated, although they may be clustered in the 

feature space. The generalisation performance also has to be taken into account, which does 

not help Quickprop in these comparisons. 

7.3.1.1 	Significance of results 

There are only a limited number of trials presented here on which to base the observations 

given above, and as such the results should be interpreted carefully. To obtain a measure of 

confidence in the results presented above statistical tests have been performed to give some 

indication of whether the means of the samples gathered about each method are distinct. To 

do this a homoscedastic two-tailed T-tests have been performed on the results of the three 

distinct Voronoi data set groups involving even numbers of generators: namely 4 and 4, 10 

and 10, and 20 and 20 (see table 7.11). 

The main feature of the information displayed in table 7.11 is the large number of significant 

differences between the data set results, on both the number of epochs and the percentage 

correct on the unseen test set. In examining the percentage correct results it is evident that 

the QP trials with activation function offsets consistently achieve similar results to that of 

BBP with offsets. There is minor similarity between QP and BBP with no offsets on the 20 

and 20 generator data sets, and between QP with no offsets and PPBP using the 4 and 4 

generator data sets. Other than that the probabilities that the corresponding distributions 

are the same are very small indicating that the results obtained are significant. The results 

showing similarity are not strong indicators that the results are from the same distribution, 

apart from the QP and BBP using the activation function offset. 

There are also some similarities with regard to the number of epochs, but taking into account 

the differences shown by the percentages on the unseen test cases, the only significant and 

consistent difference is again with the QP and BBP results. There are some similarities 

between PPBP styles of training on this epoch measure, and there is an interesting strong 
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similarity between PPBP with offsets and QP without offsets with regard to training time on 

the 10 and 10 generator data sets even though the classification performance levels are 

remarkably different. 

Table 7.11 — Results of T-test comparison of means for the 4 and 4, 10 and 10, and 20 and 20 Voronoi 
generator pair data sets: shown are the values for the test set performance comparison (lower 
triangular) and the number of epochs of training (upper triangular) where each figure is the 

probability (to 4 decimal places) that the distributions are the same 

PPBP with 
offsets 

PPBP with 
no offsets 

BBP with 
offsets 

BBP with no 
offsets 

QP with 
offsets 

QP with no 
offsets 

PPBP N/A 0.1756 0.0001 0 0.0038 0 

PPBP NO 0.0175 N/A 0 0 0 0.0008 

BBP 0 0 N/A 0 0.1459 0 

BBP NO 0 0 0.0018 N/A 0 0 

QP 0 0 0.8364 0.0021 N/A 0 

QP NO 0.2405 0.0001 0 0 0 N/A 

PPBP N/A 0.1957 0 0 0 0.5958 

PPBP NO 0.0062 N/A 0 0.0037 0 0.0261 

BBP 0 0 N/A 0 0.1094 0 

BBP NO 0 0 0.0141 N/A 0 0 

QP 0 0 0.9077 0.0078 N/A 0 

QP NO 0.0006 0 0 0 0 N/A 

PPBP N/A 0.0561 0 0 0 

.<  
©

C
o
o
 C

---.. 
Z  

PPBP NO 0.0269 N/A 0 0.0003 0 

BBP 0 0 N/A 0 0.1299 

BBP NO 0 0 0.1568 N/A 0 

QP 0 0 0.7589 0.0518 N/A 

QP NO 0 0 0 0 0 

Overall the results obtained, from this indication, are sufficiently significant. 

7.3.2 Cascade-Correlation and modifications 

Three modifications which are examined are the performance of the independent candidate 

training, the application of node patience, and the application of pruning within Cascor. 

Independent candidate training is examined as it is recommended as the best method for 

training candidate nodes within Cascor (see §3.2). The use of node patience is also 

examined, as up until now it has been used within the benchmarking experiments presented 

in this chapter without examining its effect on the training results. It is expected that better 

classification performance will be achieved with a cost of extra training (see §7.1.3.1). 

Pruning of connections within Cascor (see §4.2) is also examined as a sensible way of 

reducing connections. 
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Three experiments are conducted with the application of Cascor to the generated data sets 

(see table 7.12): Cascor with node patience; Cascor with node patience and independent 

candidate training; Cascor with node patience, independent candidate training and 

connection pruning; and Cascor without node patience and with independent candidate 

training. In the latter case a maximum of 15 candidate nodes are installed. The rest of the 

parameters are the same as those outlined in §2.4.1. The pruning performed is absolute level 

pruning using a saliency level of 0.01 for both candidate and output layer connections. 

Table 7.12 - Comparison of Cascor modifications: the average and standard deviation (SD) of the 
percentage correct are given 

Data style 
and gen's 

Average 

Standard 

SD Average 

Independent 

SD 

Independent 

Average 

pruning 
and 

SD Average 

No patience 

SD 

Voronoi 

4 and 4 93.3 6.8 97.2 3.7 97.1 3.5 98.3 1.4 
10 and 10 87.2 5.8 92.8 5.6 92.3 5.7 95.8 1.7 
20 and 20 77 4 84.6 4.1 84 3.9 91.2 2.2 

Voronoi 

2 and 18 94 2.9 97.4 1.3 97.5 1.3 98.2 1.3 
4 and 16 89 4.6 94.4 2.5 94.3 2.7 96.4 1.7 
6 and 14 87.8 5.1 93.7 3.2 93.4 3.3 93.4 11.2 
8 and 12 85.5 4.6 92.8 3.1 92.5 3.6 95.5 1.5 

Normal 

4 and 4 91.2 5.1 93.4 5.2 93.4 5.2 94.1 4.8 
10 and 10 78.9 6 83.8 4.6 83.7 4.6 86.7 3.6 
20 and 20 69.3 4.3 71.6 5.1 71.1 5.1 80.1 3.3 

The comparison of standard candidate training and independent candidate training 

confirms the results from §3.2 (see table 7.12). Independent candidate training results in 

more effective training which ensures that better and more stable candidate nodes are 

produced; and, with the application of node patience, enables training to continue for longer 

resulting in a much more complex and effective classifier. The use of pruning does not 

appear to have a detrimental effect on the classification performance of the final classifier, 

with most of the results being very similar. 

Comparing the application of node patience, it is evident that no node patience and training 

to install 15 hidden nodes results in better generalisation performance. Further training is 

conducted without the node patience parameters, and as is expected better results are 

achieved. Without node patience large amounts of unnecessary overtraining may be 

performed. Indeed here the choice of limiting the number of candidates installed was made 

after seeing the results of the node patience trials. If the limit which has been applied 

throughout this thesis had been used, namely 25 hidden nodes, an extremely large amount 

of unnecessary training may have been performed. 

128 



The results of the independent candidate training are encouraging as they show that Cascor 

may solve these problems with accuracies closer to the performance levels of C4.5 and 5-NN. 

The number of connections required to obtain the final solutions also presents an interesting 

picture (see figure 7.13). Standard Cascor, which performs less effective training than 

independent candidate training, requires far fewer connections in the solutions developed, 

as is expected. Pruning is very effective at reducing the number of connections, and, as 

mentioned previously, does so without any drop in training performance. The standard 

deviation results also show that the final number of connections used is much more stable 

using pruning, indicating more consistent networks. Not using node patience results in 

usually very large networks which, although better classification performance is obtained, 

are much more complicated than those obtained by using node patience. 

Table 7.13 - Comparison of Cascor methods: the average and standard deviation (SD) of the size of 
the final theory in connections are given 

Data style 
and gen's 

Standard 

Average SD Average 

Independent 

SD 

Independent 
pruning 

Average 

and 

SD 

No patience 

Average SD 

Voronoi 

4 and 4 50.2 19.7 138.2 60.4 101.8 37.2 183.9 5.4 

10 and 10 38.8 11.6 123.4 50.5 82.5 30.3 186 0 

20 and 20 29 7.5 75.6 29.4 55.8 17.5 186 0. 

Voronoi 

2 and 18 25 8.2 68.7 32.1 58.2 21 185.1 2.9 

4 and 16 31.5 9.4 96 33.9 74.3 26.7 186 0 

6 and 14 40.2 15.7 131.9 56.9 89.7 32.6 180.9 22.8 

8 and 12 37.2 8.1 127 42.8 87 27.1 186 0 

Normal 

4 and 4 24.6 9.7 32.2 14.8 29 14 185.8 1.5 

10 and 10 28.9 5.8 46.3 9 40.9 8 186 0 

20 and 20 25.3 6.1 31 9.5 26.9 7.7 186 0 

7.3.2.1 	Significance of results 

It is again worth checking the significance of these results. T-tests have been applied to the 

results of the Cascor trials on the Voronoi data sets with an even number of generators. 

These calculations are presented below (see table 7.14). 

The immediately evident point is the high relationship between the independent patience 

methods with and without pruning. The figures indicate that the results on the percentage 

correct are very close, where as the number of connections show only a loose matching. 

There are a number of similarities between the classification rates, though only very weak, 

on the 4 and 4 generator data sets. These relationships tend to diminish as the number of 
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generators increase as would be expected, given that there is much more possible variation 

within the data sets. 

The important point is that these relationships — apart from that between the pruned and 

unpruned independent node patience trials — are very weak. The remainder of the figures 

suggest a good separation between the distributions of the results around each data set style, 

and that the results obtained are significant. 

Table 7.14 — Results of T-test comparison of means for the 4 and 4, 10 and 10, and 20 and 20 Voronoi 
generator pair data sets: shown are the values for the test set performance comparison (lower 

triangular) and the number of connections (upper triangular), where each figure is the probability (to 4 
decimal places) that the distributions are the same 

Standard Independent Ind Prune Ind No Pat 

Standard N/A 0 0 0 

Independent 0.0284 N/A 0.0017 0.0272 

Ind Prune 0.0299 0.9530 N/A 0 

Ind No Pat 0.0025 0.2185 0.1796 N/A 

Standard N/A 0 0 0 

Independent 0.0035 N/A 0.0035 0 
Ind Prune 0.0075 0.7807 N/A 0 

Ind No Pat 0 0.0294 0.0127 N/A 

Standard N/A 0 0 0 

Independent 0 N/A 0.0137 0 
Ind Prune 0 0.6656 N/A 0 

Ind No Pat 0 0 0 N/A 

7.3.3 Summary 

Pattern presentation and batch back-propagation have been compared with the Quickprop 

algorithm, and the Quickprop update does not seem to yield the expected performance 

improvements. Likewise the trials performed compared the application of an activation 

offset, and this is more likely to result in worse generalisation and slower convergence times 

than the use of standard activation functions without the modification. 

The trials conducted here may be criticised in that only simplistic algorithm parameters have 

been used, with no search for the best possible settings. This may produce effects which are 

larger than necessary, which is a valid criticism. However, through experience it is assumed 

that the parameters selected will give reasonable results. Regardless, it is unlikely that such 

large differences as were shown above could be accounted for by the modification of the 

algorithm parameters. Indeed, an algorithm which requires such extensive parameter 

modification is not generally practical. 
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The modifications to Cascor have also been shown to be effective. The independent 

candidate training is a substantial improvement over the standard method of candidate 

training. Although node patience does not necessarily produce better results than training 

to a set number of hidden nodes, the results indicate that the method is able to stop 

substantial overtraining and give an indication of how many hidden nodes are actually 

required. Pruning of connections as developed in 0.2 results in significantly smaller 

networks without degrading classification performance. 

The results for both sets of experiments have also been shown to be statistically significant, 

often to a very high level, giving confidence to the results presented here. 

The methods for generating data sets are shown to be effective for the benchmarking of 

different artificial neural network methods, including Cascor. They are especially useful as 

complicated problems to test the need for hidden nodes which are required to solve these 

problems. 
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8 Conclusion 

The work of this thesis is summarised, and conclusions presented, followed by details of 

further work to be performed. 

Part one of the thesis examines various methods for changing network topology during 

training. This is motivated by two concerns. It is a non-trivial choice to decide how a 

network should be structured — if this can be automated, the use of neural networks would 

become greatly simplified. Furthermore, it is not obvious that a static network will find a 

solution — allowing a network to change its capacity during training gives an extra degree 

of freedom. A survey of current literature indicates that increasing the number of hidden 

nodes and reducing the number of connections between nodes are the most commonly used 

methods of dynamically altering neural networks structure. Cascor is one algorithm for 

growing hidden nodes which stands out as being effective and practical. Pruning 

connections by the use of saliency measures also is effective in reducing network size. 

Modifications to Cascor to produce faster training times are examined: in particular, node 

patience and different methods of training the candidate pool. The effect of these 

modifications is measured by comparison to standard Cascor on a number of benchmark 

data sets. Chapter 3 introduces these changes made to the Cascor training mechanism. 

Node patience is shown to be an effective method for controlling the size of Cascor network. 

On tasks, such as the LED and Diabetes1 problems, node patience greatly improves the 

speed of training, reducing the classifier size, and often increasing the generalisation 

performance. Rollback — the removal of the last few hidden nodes added, after the 

application of node patience to halt training — is also an effective addition which reduces 

the size of the final network. Node patience is not a substitute for the use of a validation set 

of examples used to halt training, but it is an effective technique for halting training when no 

such validation set exists. 

Chapter 3 concludes by introducing modifications to the training of the candidate pool. The 

independent training of candidates often leads to more effective training resulting in less 

hidden nodes being required overall. The benefits of using independent candidate training 

outweigh the chances that a minimal amount of extra training may be performed. Subgroup 

candidate training also exhibits these benefits to a lesser extent. Summing the candidate 

correlations, as opposed to finding the maximum, to determine when to stop training the 

candidate pool, may also perform more effective training but results in greater training 

times. 
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Further modifications made to Cascor allow for the reduction of the number of connections 

used within a network, as examined in Chapter 4. The first section of Chapter 4 shows that 

the introduction of hidden nodes with limited connection strategies are able to modify the 

network connection structure by guiding the development of the network. The second 

section examines the use of connection pruning within Cascor networks, a more principled 

approach than selecting an arbitrary hidden node connection strategy, whereby many 

connections may be removed with no detrimental effect to the generalisation performance. 

The methods of stopping the pruning process are also shown to be effective under these 

conditions. 

The main point which becomes evident through the work presented here is that few of the 

problems used for benchmarking require the power of the Cascor algorithm to solve them, 

whether this is due to the classes being separate or overlapping is unclear. This makes 

comparison of the newly developed methods with standard Cascor very difficult. The 

second part of this thesis examines the area of benchmarking in more detail, to determine 

how Cascor, and other artificial neural network methods, may be more effectively tested. 

In this part, two aspects of benchmarking are examined: benchmarking by performance on 

real-world problems, and benchmarking by constructing new problems. It is noted that 

there is wide scope for the examination of data sets, with a large number of modifications to 

data sets possible in modelling real-world situations. There is also an obvious trade-off 

between the two methods: on the one hand realistic data sets are required, and on the other 

data sets which are complex are required to test learning methods. Chapter 5 started by 

examining the features of data sets, details of previous work, and the results of some 

previous benchmarking of Cascor. 

Two new real-world problems are then examined in Chapter 6. The aim of this is two-fold: 

to apply Cascor to the problems as a practical tool for finding solutions, and to see if these 

problems present features which require the higher-order feature detectors available in 

multi-layer perceptron styles of networks. The first data set, which involves determining the 

age of abalone, was not solvable given the information available. What was solvable may be 

done with very few hidden nodes being introduced into a Cascor network, implying that the 

data set involves overlapping classes. Only minor improvements are made by the addition 

of a few hidden nodes. The second data set involves the classification of plays as either 

Renaissance or Romantic tragedies. This is different from the first data set in that there are a 

large number of attributes compared with the number of examples available for training, 

and the number of classes is much smaller. The data set is solvable from the examples 

available, with a high cross-validation performance level, and this may be done using no 

hidden nodes in an artificial neural network. A final point illustrated by Chapter 6 is that 
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the classification process is aided greatly by sensible pre-processing. Scaling of the data 

particularly helps learning in artificial neural networks. 

Following this examination of real-world problems, two new methods for generating 

artificial data sets are examined in Chapter 7, where the complexity of those data sets may 

be increased as required and as much data as is needed may be generated. Voronoi data sets 

are shown to be capable of creating data sets of differing complexity. The second method, 

normal data sets, creates a more realistic setting where examples are not distributed evenly 

throughout the feature space. This method is also capable of generating data sets of 

differing complexity where the maximum classification rate may be calculated. 

Examples of these data generation methods are then used to compare standard artificial 

neural network methods, as well as to briefly examine some of the modifications to Cascor 

developed earlier. Specifically, pattern presentation and batch back-propagation, and 

Quickprop are examined, and pattern presentation back-propagation is shown to be the 

fastest and most effective training method on these problems. The use of activation function 

offsets was also examined and the results indicate that their use is detrimental to learning. 

Furthermore, the experiments on the Cascor modifications show that independent candidate 

training produces much more effective networks and that pruning is able to reduce the 

network sizes without affecting the classification performance. The application of node 

patience is also examined and, although the results are not as good as no node patience, the 

use of the method does greatly decrease the training time. At the very least, node patience 

may be used to obtain an indication of how many hidden nodes are required to solve a 

problem. 

Thus, these methods of generating data sets result in problems which are difficult for Cascor 

and other artificial neural networks to solve, without being completely unsolvable. They are 

effective in benchmarking existing and new artificial neural network algorithms. 

8.1 Further work 

The results of the node patience experiments in Chapter 3 indicate that it would be valuable 

to evaluate the use of validation sets in the stopping of training through all phases within 

Cascor — stopping candidate and output layer training as well as the overall network 

training. Improvements may also be possible by the use of more efficient algorithms within 

Cascor, such as conjugate gradient methods [Moller 1993; Stone St Lister 1994] for weight 

training, and OBS [Hassibi St Stork 1992] or PCP [Levin, et al. 19941 for pruning. In fact there 

has been little work on benchmark comparisons of pruning methods, and such a study could 

also include comparisons of the methods outlined in §4.2 for controlling the pruning of 

connections. A detailed study of the performance of weight decay in removing connections 
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should also be included. Further investigation of error functions for classification or 

regression may also be considered [Lister & Stone 1995]. 

It has been noted that Cascor has difficulties in solving function interpolation problems 

[Fahlman 1993; Freeman 1994; Adams & Waugh 1995]. Prior to the commencement of the 

work undertaken in this thesis there was an expectation that Cascade2 would become 

available, an algorithm which trains candidates with the network error directly, similar to 

previous work [Littmann & Ritter 19921, and which solves the difficulties experienced by 

Cascor in function approximation problems. However, there has been no public release of 

any such software or any description of the algorithm. Nevertheless, the changes to Cascor 

presented in this thesis may be easily applied to any architecture which is similar to Cascor 

in the way it structures networks, even if the training mechanisms differ slightly. Further 

work may be performed on problems which have been identified, such as Quickprop 

training [Squires & Shavlik 1991] and the freezing of weights [Ash 1989; Adams & Waugh 

1995]. 

The work on real-world data sets may be continued. Specifically, there is a large scope for 

the addition of further attributes to the abalone data, such as site information, to aid the 

classification process. In particular, information about the site giving general characteristics 

and information about ocean currents may play an important role — thus requiring 

information about Tasmania's weather systems. Further work may be performed on the 

authorship data set with regard to, for example, trying to separate Shakespeare from his 

contemporaries. However this may be difficult without further examples to train on. 

Extension of current work on artificial benchmarks may also be continued: firstly including 

the generation of multiple classes, multiple attribute data sets and altering the number of 

examples available for training. This may then be further expanded by the examination of 

the effect of noise, redundancy, irrelevancy and so on. Furthermore, with the normal data 

set construction, the generation of different variance matrices may be examined — including 

different methods of generating the standard deviations. The generation of further data sets 

more suitable for solution with neural networks may also be examined. In particular the 

random generation of neural network structures may be used to generate random problems 

solvable by neural networks. Again this needs to be constrained to stop a combinatorial 

explosion of possible data sets. 

Finally, applying the theory of Voronoi diagrams to generating other styles of data sets may 

be an interesting area for further study. For example, function approximation problems and 

temporal data may be developed. Existing real-world data sets may also be examined, using 

Voronoi diagrams to reverse engineer a data set to find features and to estimate the data set 

complexity. 
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A Node patience results 

This appendix presents the full results of the experiments on node patience. The details 

presented here include the percentage correct on the unseen test set, the number of hidden 

nodes required and the amount of training required as measured by the the number of 

connection crossings. These results are the median results of 100 trials. 

Table A.1.1 - Percentage correct on the unseen test set for the Monks1 data set 

Patience length 1 2 3 4 5 

97.92 97.69 97.69 97.45 97.92 

Patience 97.57 97.92 97.69 97.92 97.69 

percentage 97.69 97.92 97.92 97.92 97.92 

97.92 97.69 97.69 97.69 97.92 

97.92 97.69 97.69 97.92 97.69 

Table A.1.2 - Hidden nodes required for the Monksl data set 

Patience length 1 2 3 4 5 
r-1 	

Cf 	
to  

1 1 1 1 1 

Patience 1 1 1 1 1 

percentage 1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Table A.1.3 - Connection crossings (millions) required for the Monics1 data set 

Patience length 1 2 3 4 5 

es
i
 m

 	
to

 

4.5 4.4 4.5 4.5 4.4 

Patience 4.5 4.5 4.5 4.4 4.4 

percentage 4.5 4.5 4.5 4.5 4.4 

4.5 4.5 4.5 4.5 4.4 

4.5 4.5 4.5 4.4 4.2 

Table A.2.1 - Percentage correct on the unseen test set for the Monks2 data set 

Patience length 1 2 3 4 5 

C
A

 C
O

 -1,  u
-

) 

99.77 99.77 99.77 99.77 99.77 

Patience 99.77 99.77 99.77 99.77 99.77 

percentage 99.77 99.77 99.77 99.77 99.77 

99.77 99.77 99.77 99.77 99.77 

99.77 99.77 99.77 99.77 99.77 
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Table A.2.2 - Hidden nodes required for the Moriks2 data set 

Patience length 1 2 3 4 5 

■
-
■
 N

 M
  
•

tV  u
•

) 

1 1 1 1 1 

Patience 1 1 1 1 1 

percentage 1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Table A.2.3 - Connection crossings (millions) required for the Monks2 data set 

Patience length 1 2 3 4 5 

,-,
 N

 M
 71,  in

 

5.8 5.8 6.0 6.0 5.9 

Patience 6.0 5.8 5.9 5.9 5.9 

percentage 5.8 5.9 5.9 5.9 5.9 

6.0 5.8 5.9 5.9 5.8 

5.9 5.9 5.9 5.8 5.8 

Table A.3.1 - Percentage correct on the unseen test set for the Monks3 data set 

Patience length 1 2 3 4 5 

,--1
 N

 M
 

 

88.77 88.16 88.31 89 88.89 

Patience 89 88.66 88.19 88.66 88.08 

percentage 88.19 88.19 88.77 88.1 88.54 

88.13 88.54 88.08 88.66 88.43 

88.43 88.54 88.31 87.96 88.19 

Table A.3.2 - Hidden nodes required for the Monlcs3 data set 

Patience length 1 2 3 4 5 

Patience 

percentage 

,--i
 N

 C
O

 •1+  
I

n
  

N
N

N
N

N
  

N
N

N
N

N
  

CV  C
V

  
N

 
N

 
N

  

N
N

N
N

N
 

N
N

N
N

N
 

Table A.3.3 - Connection crossings (millions) required for the Monks3 data set 

Patience length 1 2 3 4 5 

r
-
I
 N

 M
  
•

tt,  
i
n

  

16.3 17.2 16.5 16.4 16.5 

Patience 15.9 16.2 16.4 16.6 16.1 

percentage 16 16.8 15.9 15.8 16.2 

16.7 16.1 16.7 16.9 16.5 

17.5 .  16.8 16.1 17.3 16.1 
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Table A.4.1 - Percentage correct on the unseen test set for the Two Spirals data set 

Patience length 1 2 3 4 5 

,—
I
 c
l
 cn

 .1
4
 i n
 \
C
 
S
.
 

95.83 95.83 95.83 95.83 95.83 

Patience 95.83 95.57 95.83 95.83 96.09 

percentage 53.12 95.83 95.83 95.83 95.83 

53.12 95.83 96.35 96.35 95.83 

53.12 95.83 95.83 95.83 95.83 

53.12 96.09 95.83 95.83 95.83 

53.12 93.75 95.83 96.35 96.09 

53.12 61.98 95.83 96.35 95.83 

53.12 61.98 95.83 95.83 96.35 

53.12 61.98 95.31 96.35 96.09 

Table A.4.2 - Hidden nodes required for the Two Spirals data set 

Patience length 1 2 3 4 5 

■—
■  

CSI  
e
f

)  
.1

'  
U

•)
 \
C
 t

...
 
0
0
 
0

-,
 
C

)
,
 

12 12 12 12 12 

Patience 12 12 12 12 12 

percentage 1 12 12 12 13 

1 12 12 12.5 12 

1 12 13 12 13 

1 12 12 12 12 

1 12 12 12 12 

1 2 13 12 12 

1 2 12 12 12 

1 2 12 12 12 

Table A.4.3 - Connection crossings (millions) required for the Two Spirals data set 

Patience length 1 2 3 4 5 

0
  

■--I
N

C
n

,t,  
t
r

.)
 \
O

N
C
O

C
N

,
 

126.5 124 124.8 127.7 126.2 

Patience 125.4 126.4 122.6 122.3 125.5 

percentage 1.7 126 125.1 125.9 131.1 

1.7 125.7 126.9 130.5 125.6 

1.7 126.4 128.1 126.4 131.6 

1.7 123.6 127.3 126.3 122.1 

1.7 114.3 127.3 124.5 120.5 

1.7 4.3 129.3 127.2 120.9 

1.7 4.4 127.1 121.1 126 

1.6 4.5 128.9 125.4 120.9 
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Table A.5.1 - Percentage correct on the unseen test set for the Double Helix data set 

Patience length 1 2 3 4 5 

■—
■

N
c
n
T

zt,  
I
f

) 

100 100 100 100 100 

Patience 100 100 100 100 100 

percentage 100 100 100 100 100 

100 100 100 100 100 

100 100 100 100 100 

Table A.5.2 - Hidden nodes required for the Double Helix data set 

Patience length 1 2 3 4 5 

Patience 

percentage 

r-1  
N

  
e
r

)  
71,  

i
n

  

■0
  V

D
  V

D
 

 

V
D

 tr)  
s.
0
 ■O

  
'0

  

s..
0
 s.
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 s.
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 .0
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VD
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Table A.5.3 - Connection crossings (millions) required for the Double Helix data set 

Patience length 1 2 3 4 5 

■—
■  
N

  
en

  
71,  

i
n

  

66.4 67.1 67.7 68.2 63.3 

Patience 69 59.4 68.6 65.3 67.1 

percentage 66 67.1 68.7 66.2 62.4 

68.7 65.1 61.8 66.4 64.1 

65.2 63.3 65.2 62.7 63.6 

Table A.6.1- Percentage correct on the unseen test set for the LED data set 

Patience length 1 2 3 4 5 

,--1
 N

 m
 •z
r
 u-) 

72 72.1 72 71.8 72 

Patience 72 72.2 72.2 72.2 72.2 

percentage 72 72.2 72.2 72 72 

72 72.2 72.2 72 72 

72 72.2 72.2 72.2 72 

Table A.6.2 - Hidden nodes required for the LED data set 

Patience length 1 2 3 4 5 

1 

<-
■ 20 

Patience 1 12 

percentage 

CI) 1 

N
 

C
I) 10 

1 5 

1 5 
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Table A.6.3 - Connection crossings (millions) required for the LED data set 

Patience length 1 2 3 4 5 

I
—

I
 N

 e
n

  
.1

,  
I
f

) 

108.8 605.2 1254.8 2225.9 3279 

Patience 108.1 199.3 615.4 768.4 1552.5 

percentage 109.7 196.2 284.8 398.4 1176.1 
107 196.6 288.5 390.8 511.3 

108.9 194.9 291.4 391 503.7 

Table A.7.1 - Percentage correct on the unseen test set for the Cancerl data set 

Patience length 1 2 3 4 5 

1—
,  
N

  C
O

  
.1.4

 in
 

95.98 95.98 95.98 95.98 96.55 

Patience 95.98 96.55 95.4 95.4 95.98 

percentage 95.98 95.98 95.98 95.98 95.98 

95.98 95.98 95.98 95.98 95.98 

95.98 95.4 95.98 96.55 95.98 

Table A.7.2 - Hidden nodes required for the Cancerl data set 

Patience length 1 2 3 4 5 

Patience 

percentage 

r
.  
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e

n
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Table A.7.3 - Connection crossings (millions) required for the Cancer1 data set 

Patience length 1 2 3 4 5 

■
-
■

 N
 c
o

 ,z
r
 in

 

176.2 175.4 178.1 166.9 174.9 

Patience 174.2 176.5 172.9 171.8 181.7 

percentage 176.2 184.4 173.4 175.5 176.8 

176.5 173.7 173.2 174.5 173.8 

174.9 172.8 167.7 181.5 173.5 

Table A.8.1 - Percentage correct on the test set for the Diabetes1 data set 
Patience length 1 2 3 4 5 

,--. es/
 I
n

 '1.4  
i
n

  

69.27 69.27 68.75 69.27 68.75 

Patience 71.61 68.75 68.75 69.27 68.75 

percentage 75.52 68.75 69.27 69.27 69.27 

76.04 68.75 69.79 69.79 68.23 

76.04 69.79 68.75 69.27 69.27 
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Table A.8.2 - Hidden nodes required for the Diabetesl data set 

Patience length 1 2 3 4 5 

r
-
i
 N

  
ce)  

.
4

1  I
n

  

25 25 25 25 25 

Patience 24.5 25 25 25 25 

percentage 3 25 25 25 25 

2 25 25 25 25 

2 25 25 25 25 

Table A.8.3 - Connection crossings (millions) required for the Diabetesl data set 

Patience length 1 2 3 4 5 

,--1
 e
s
i co

 -4,  
Lt) 

1880.8 1955.3 1959 1959.7 1969.8 

Patience 1798.5 1975.8 1941 1979.8 1941.5 

percentage 104.2 1946.1 1944.6 1946.1 1956.7 

63.3 1903.4 1963.8 1932.8 1964.9 

62.2 1898.8 1972.4 1964.8 1960 

Table A.9.1 - Percentage correct on the unseen test set for the Glassl data se 

Patience length 1 2 3 4 5 

r
-
■

 C
A
 
C
O

 c
r
 in 

66.04 66.04 66.04 66.04 66.04 

Patience 66.04 66.98 66.04 66.04 66.04 

percentage 66.04 66.04 67.92 66.98 66.04 

66.04 66.04 66.04 66.04 64.15 

66.04 66.04 66.04 66.04 64.15 

Table A.9.2 - Hidden nodes required for the Glassl data set 

Patience length 1 2 3 4 5 

<-
1
 N

 
C
O

 .Tr,  
In

 

15 16 16 16 17 

Patience 15 17 16 17 16 

percentage 14.5 16 16 17 16 

14 15 16 16 16 

13 16 16 17 18 

Table A.9.3 - Connection crossings (millions) required for the Glassl data set 

Patience length 1 2 3 4 5 

,—
I
 N

 Cr)
 •

c1+  L
0

 

379.0 414.9 411.29 403.0 444.7 

Patience 373.7 412.5 392.1 403.9 421.0 

percentage 336.9 399.6 385.3 416.8 402.1 

339.3 363.6 396.9 413.9 403.8 

314.6 385.7 396.8 432 426.8 
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B Candidate training results 

This appendix presents the full results of the experiments on candidate training methods. 

The details presented here include the percentage correct on the unseen test set, the number 

of hidden nodes required and the amount of training required as measured by the the 

number of connection crossings. These results are the median results of 100 trials. 

A number of abbreviations are used within the tables. 'Cand' refers to the number of 

candidates; 'Cand training' refers to the candidate training style; and 'HL patience' refers to 

the hidden layer patience period. The four candidate training methods are referred using 

'Stand' for standard, 'Ind' for independent, 'Sum' for summation, and 'Sub' for subgroup 

candidate training methods. 

B.1 Single activation function 

Table B.1.1.1 - Percentage correct on the unseen test set for the Monks1 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind 'Sum 

4 98.61 98.61 98.38 97.92 98.38 98.15 97.92 98.15 98.38 

Cand 10 97.69 97.92 97.92 97.69 97.92 97.69 97.92 97.92 97.92 

20 97.92 97.69 97.69 97.92 97.69 97.69 97.69 97.92 .' 97.92 

Table B.1.1.2 - Hidden nodes required for the Monks1 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 1 1 1 1 1 

1-4 	
I—

I 	
r- I 

1 

Cand 10 

rs1  1 

v--1  1 1 1 1 1 

20 1 1 1 1 1 1 

Table B.1.1.3 - Connection crossings (millions) required for the Monks1 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 1.89 1.52 1.67 1.85 1.9 1.96 2.36 2.42 2.5 

Cand 10 3.83 2.46 3 3.23 3.38 3.57 4.52 4.78 5.01 

20 5.38 3.98 5.13 5.49 6 6.47 7.91 8.71 9.35 
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Table B.1.2.1 - Percentage correct on the unseen test set for the Monks2 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 99.77 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77 

Cand 10 99.19 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77 

20 99.07 99.77 99.54 99.54 99.54 99.77 99.77 99.77 99.77 

Table B.1.2.2 - Hidden nodes required for the Monks2 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 

cr)
 Cc) 

 

1 1 1 1 1 1 1 1 

Cand 10 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 

Table B.1.2.3 - Connection crossings (millions) required for the Monks2 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 4.08 2.3 2.43 2.37 2.84 2.75 3.01 3.92 4.02 

Cand 10 7.6 3.42 4.67 4.15 5.71 5.71 5.9 8.29 8.49 

20 13.69 5.76 8.32 7.35 10.59 10.58 10.63 15.87 15.73 

Table B.1.3.1 - Percentage correct on the unseen test set for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 88.54 88.43 88.89 88.19 87.96 88.19 88.66 88.66 88.43 

Cand 10 88.66 88.89 89.12 88.43 88.89 88.43 88.31 87.96 88.43 

20 88.66 89 89.35 88.89 88.54 89.35 88.19 88.43 88.43 

Table B.1.3.2 - Hidden nodes required for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 2.5 
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Table B.1.3.3 - Connection crossings (millions) required for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 9.03 7.57 7.48 8.57 7.71 8.3 9.47 9.21 9.83 

Cand 10 13.61 9.36 9.64 11.81 10.71 11.34 16.49 14.98 16.41 

20 18.46 12.01 14.02 17.88 16.4 18.01 28.66 24.61 27.24 
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Table B.1.4.1 - Percentage correct on the unseen test set for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 59.9 85.94 64.06 95.31 94.79 94.79 95.83 95.31 95.31 

Cand 10 59.38 95.31 63.02 95.31 94.79 95.31 96.09 95.83 95.83 

20 60.16 95.31 65.63 95.31 95.31 95.57 95.31 95.31 95.57 

Table B.1.4.2- Hidden nodes required for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 25 25 25 16 16 16 14 14 14 

Cand 10 25 22 25 14 14 14 12 12 12 

20 25 16 25 13.5 13 13 12 11 11 

Table B.1.4.3- Connection crossings (millions) required for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 22.1 41.7 24.1 62.7 55.7 64.7 76.4 70.5 81.2 

Cand 10 29.9 71 33.3 92.2 77.2 96.9 125.7 112.8 131.4 

20 43.2 75.3 50.9 152.5 120.3 156.8 207.9 182.1 221.8 

Table B.1.5.1 - Percentage correct on the unseen test set for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind . Sum 

4 49.25 50 48.88 100 100 100 100 100 .. 100 

Cartd 10 50 82.75 50 100 100 100 100 100 100 

20 50 100 49.75 100 100 100 100 100 100 

Table B.1.5.2 - Hidden nodes required for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 25 25 25 

\
 0  

\
 
0
 s
r+ 

Cand 10 25 25 25 

\
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\ 0  

20 25 12 25 

Table B.1.5.3 - Connection crossings (millions) required for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 49.86 50.96 49.85 28.82 31.81 33.54 38.96 39.7 41.41 

Cand 10 67.98 74.36 68.21 47.43 49.08 54.05 65.38 71.51 72.44 

20 98.8 72.62 98.91 74.18 83.23 92.52 111.14 116.06 133.11 
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Table B.1.6.1 - Percentage correct on the unseen test set for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 98.28 98.28 98.28 96.26 95.40 95.98 95.98 95.98 95.98 

Cand 10 98.28 97.13 98.28 95.98 96.55 95.98 95.98 96.55 95.98 

20 98.28 96.55 98.28 96.55 96.55 95.98 95.98 95.98 95.98 

Table B.1.6.2 - Hidden nodes required for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 25 25 25 

Lt)  
L
(
)
 in

 

Cand 10 25 25 25 

\D
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)  

I
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L
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20 25 18 25 

Table B.1.6.3 - Connection crossings (millions) required for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Ind Sum Stand Ind Sum Stand Ind Sum 

4 94.2 97.1 95 96.3 81.5 87.5 99.5 92.8 100.6 

Cand 10 134.1 146.3 134.4 142.1 115.9 133.8 170.6 156.3 182.3 

20 192.3 208.2 192.2 231.2 184 235.9' 336.8 269.9 323.6 

B.2 Multiple activation functions 

Table B.2.1.1 - Percentage correct on the unseen test set for the Monks1 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 99.77 100 100 100 100 100 100 99.65 99.77 

Cand 10 99.31 99.42 99.77 99.54 99.31 99.88 100 99.77 100 

20 98.61 98.38 98.61 98.61 98.73 98.84 98.15 98.61 98.84 

Table B.2.1.2 - Hidden nodes required for the Monks1 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 1 

i
-

I  
i
-

I  
r
i 

1 1 1 1 1 1 

Cand 10 1 

1
-

1  1 1 1 1 1 1 

20 1 1 1 1 1 1 1 

Table B.2.1.3 - Connection crossings (millions) required for the Monksl data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 1.58 1.57 1.52 1.72 1.86 1.92 2.27 2.54 2.58 

Cand 10 2.53 2.29 2.56 3.1 3.19 3.46 4.31 4.47 4.99 

20 4.15 3.45 4.26 5.13 5.34 5.97 7.83 8.05 9.17 
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Table B.2.2.1 - Percentage correct on the unseen test set for the Monlcs2 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 99.54 99.77 98.61 99.54 99.77 98.61 99.07 99.54 99.77 

Cand 10 100 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 

20 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 

Table B.2.2.2 - Hidden nodes required for the Monks2 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 
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Table B.2.2.3 - Connection crossings (millions) required for the Monlcs2 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 4.4 2.38 5 4.76 5.11 6.17 8.01 7.95 4.48 

Cand 10 3.54 3.19 3.91 4.39 4.94 5.66 6.17 7.14 8.24 

20 5.67 4.26 6.64 7.14 7.97 10.23 10.59 11.77 15.46 

Table B.2.3.1 - Percentage correct on the unseen test set for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub _Ind 

4 88.31 89.12 89 88.77 88.89 88.66 88.19 88.19 88.66 

Cand 10 88.54 88.31 88.31 87.73 88.54 88.54 87.96 88.89 88.77 

20 88.77 88.89 88.19 88.19 89.12 88.89 88.77 87.96 88.43 

Table B.2.3.2 - Hidden nodes required for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 
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Table B.2.3.3 - Connection crossings (millions) required for the Monks3 data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 7.76 7.91 7.48 7.94 8.79 8.1 11 10.68 9.27 

Cand 10 11.62 8.94 10.31 12.72 13.13 11.77 17.69 19.15 16.17 

20 15.19 13.64 13.4 19.01 16.61 16.97 27.42 27.41 25.2 
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Table B.2.4.1 - Percentage correct on the unseen test set for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 92.71 94.79 94.27 94.53 95.31 94.79 95.05 94.79 94.79 

Cand 10 95.83 95.31 94.79 94.79 95.57 95.83 95.31 95.05 95.31 

20 96.09 95.31 95.83 95.83 95.83 95.83 95.83 95.83 94.79 

Table B.2.4.2 - Hidden nodes required for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 25 22 22 19 18 18 17 16 16 

Cand 10 24 19 18.5 17 16 15.5 14 14 14 

20 20 17 15 13 14 13 12 12 12 

Table B.2.4.3 - Connection crossings (millions) required for the Two Spirals data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 74 67.1 71 82.8 74.3 76.1 97.2 84.6 92.8 

Cand 10 114.6 76.9 79.1 116.7 106.7 98.9 157.9 151.5 139.9 

20 151.8 95.4 84.6 146 151 130.3 136.9 206.3 205.8 

Table B.2.5.1 - Percentage correct on the unseen test set for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 100 100 100 100 100 100 100 100 100 

Cand 10 100 100 100 100 100 100 100 100 100 

20 100 100 100 100 100 100 100 100 100 

Table B.2.5.2 - Hidden nodes required for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 
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Table B.2.5.3 - Connection crossings (millions) required for the Double Helix data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 54.84 39.92 35.67 35.25 37.18 38.08 47.29 46.41 48.05 

Cand 10 64.91 36.83 3724 54.94 50.91 50.43 74.51 70.93 75.91 

20 84.78 43.72 42.32 74.77 75.72 78.44 117.95 110.3 121.2 
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Table B.2.6.1 - Percentage correct on the unseen test set for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 97.70 96.55 96.55 96.55 96.55 96.55 96.55 96.26 96.55 

Cand 10 97.7 97.13 96.55 96.55 97.13 96.55 95.98 96.55 96.55 

20 97.7 97.13 97.13 96.55 96.55 96.55 96.55 96.55 96.55 

Table B.2.6.2 - Hidden nodes required for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 25 14 13 
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Table B.2.6.3 - Connection crossings (millions) required for the Cancerl data set 

HL patience 10 20 50 

Cand training Stand Sub Ind Stand Sub Ind Stand Sub Ind 

4 122.7 112.1 116.5 86.1 77.6 78.9 99.6 97.3 92.9 

Cand 10 163.6 188 85.3 128.7 115.6 116.3 171.7 167.8 169.6 

20 226.7 247.4 89.6 201.2 192 178.8 305.4 307.7 275.4 
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C Limited candidate node results 

This appendix details the full results from the experiments conducted on the introduction of 

limited candidate nodes. Six of the nine problems are used: the Monks problems, Two 

Spirals, Double Helix and Cancer1. The details presented here include the percentage 

correct on the unseen test set, the total and number of limited hidden nodes required, the 

total number of connections needed, and the amount of training required as measured by 

the the number of connection crossings. These results are the median results of 100 trials. 

Where there is no applicable result, the abbreviation 'N/A' is given. 

Table C.1.1 - Percentage correct on the unseen test set for the Monks1 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 97.92 

Layered 97.8 97.92 97.92 97.92 

Minimal shortcuts 97.69 97.69 97.69 97.69 

Two random connections 97.92 98.38 97.69 98.38 

Completely random 97.92 98.26 99.42 98.15 

Table C.1.2 - Hidden nodes added (and limited hidden nodes added) for the Monksl data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A 1 (0) 

Layered 1 (0) 1 (0) 1 (0) 1 (0) 

Minimal shortcuts 1 (0) 1 (0) 1 (0) 1 (0) 

Two random connections 1 (0) 1 (0) 1 (0) 5 (5) 

Completely random 1 (0) 1 (1) 1 (1) 1 (1) 

Table C.1.3 - Total network connections for the Monks1 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A 50 

Layered 50 50 50 50 

Minimal shortcuts 50 50 50 50 

Two random connections 50 50 50 57 

Completely random 50 48 48 48 

Table C.1.4 - Connection crossings (millions) for the Monlcs1 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 4.8 

Layered 4.8 4.8 4.8 4.8 

Minimal shortcuts 4.7 4.8 4.9 4.8 

Two random connections 3.1 3.1 3.2 8.4 

Completely random 4.0 4.1 4.3 3.3 
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Table C.2.1 - Percentage correct on the unseen test set for the Monks2 data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 99.77 
Layered 99.77 99.77 99.77 99.77 

Minimal shortcuts 99.77 99.77 99.77 99.77 
Two random connections 99.77 99.77 99.77 75.23 

Completely random 99.77 99.77 99.77 99.77 

Table C.2.2 - Hidden nodes added (and limited hidden nodes added) for the Monks2 data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A  1 (0) 
Layered 1 (0) 1 (0) 1 (0) 1 (0) 

Minimal shortcuts 1 (0) 1 (0) 1 (0) 1 (0) 
Two random connections 1 (0) 1 (0) 1 (0) 25 (25) 

Completely random 1 (0) 1 (0) 1 (1) 1 (1) 

Table C.2.3 - Total network connections for the Monks2 data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 50 
Layered 50 50 50 50 

Minimal shortcuts 50 50 50 50 
Two random connections 50 50 50 157 

Completely random 50 50 50 50 

Table C.2.4 - Connection crossings (millions) for the Monks2 data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A  N/A 8.3 
Layered 8.4 8.3 8.3 8.3 

Minimal shortcuts 8.3 8.4 8.1 8.2 
Two random connections 5.0 4.9 5.0 66.6 

Completely random 7.0 7.1 7.6 7.3 

Table C.3.1 - Percentage correct on the unseen test set for the Monks3 data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A  87.96 
Layered 88.31 87.96 88.43 88.31 

Minimal shortcuts 87.96 88.19 88.43 88.19 
Two random connections 88.89 88.89 88.43 89.81 

Completely random 88.43 88.31 89.12 88.77 
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Table C.3.2 - Hidden nodes added (and limited hidden nodes added) for the Monks3 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 2 (0) 

Layered 2 (1) 2 (1) 2 (1) 2 (1) 

Minimal shortcuts 2 (0) 2 (0) 2 (0) 2 (0) 

Two random connections 2 (0) 2 (0) 2 (0) 11.5 (11.5) 

Completely random 2 (0) 2 (1) 3(2.5) 2.5 (2) 

Table C.3.3 - Total network connections for the Monks3 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 69 

Layered 69 68 68 68 

Minimal shortcuts 69 69 69 69 

Two random connections 69 69 69 89.5 

Completely random 69 69 69 69 

Table C.3.4 - Connection crossings (millions) for the Monks3 data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 15.0 

Layered 14.6 14.5 14.6 14.2 

Minimal shortcuts 15.1 14.7 14.7 14.8 

Two random connections 10.8 10.6 11.1 28.4 

Completely random 12.3 13.3 16.7 11.7 

Table C.4.1 - Percentage correct on the unseen test set for the Two Spirals data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 95.83 

Layered 95.83 96.09 95.31 78.13 

Minimal shortcuts 95.83 95.83 96.35 96.88 

Two random connections 95.83 95.83 95.83 83.33 

Completely random 95.83 95.05 94.79 95.57 

Table C.4.2 - Hidden nodes added (and limited hidden nodes added) for the Two Spirals data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A 12 (0) 

Layered 12 (2) 13 (4) 14 (9) 25 (24) 

Minimal shortcuts 13 (1) 13 (2) 14 (7) 19.5 (17.5) 

Two random connections 14 (1) 13 (1) 14 (3) 25 (24) 

Completely random 13 (2) 13 (4) 15 (9) 15 (10) 
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Table C.4.3 — Total network connections for the Two Spirals data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A 132 
Layered 132 143 151.5 131 

Minimal shortcuts 149 139 127 122 
Two random connections 163 148.5 149 131 

Completely random 145 139.5 153 157.5 

Table C.4.4 — Connection crossings (millions) for the Two Spirals data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 112.8 
Layered 106.9 111.2 124.9 88.9 

Minimal shortcuts 95.3 92.4 97.8 95.3 
Two random connections 87.6 87.2 90 71.8 

Completely random 98.2 97.5 119.3 96.1 

Table C.5.1 — Percentage correct on the unseen test set for the Double Helix data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A 100 
Layered 100 100 100 100 

Minimal shortcuts 100 100 100 100 
Two random connections 100 100 100 100 

Completely random 100 100 100 100 

Table C.5.2 — Hidden nodes added (and limited hidden nodes added) for the Double Helix data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A  N/A 6 (0) 
Layered 5 (1) 5 (3) 6 (4) 6 (5) 

Minimal shortcuts 6 (1) 6 (3) 6 (3.5) 6 (4) 
Two random connections 5 (0) 5 (2) 6 (3) 10 (10) 

Completely random 5 (0) 5 (2) 6 (4) 6 (2) 

Table C.5.3 — Total network connections for the Double Helix data set 
Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A  N/A 59 

Layered 48 44 44 44 
Minimal shortcuts 55 49 49 49 

Two random connections 48 47 48 58 

Completely random 48 47 52 50.5 
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Table C.5.4 - Connection crossings (millions) for the Double Helix data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 71.5 

Layered 60.2 54.4 61.2 52.9 

Minimal shortcuts 65.5 61.5 69.2 61.2 

Two random connections 50.8 47.9 58.5 77.2 

Completely random 55.9 54.9 67.7 48.4 

Table C.6.1 - Percentage correct on the unseen test set for the Cancerl data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/ A N/A 96.55 

Layered 95.98 96.55 96.55 96.55 

Minimal shortcuts 96.55 95.98 95.98 96.55 

Two random connections 95.98 95.98 95.98 95.4 

Completely random 95.98 96.55 95.98 95.98 

Table C.6.2 - Hidden nodes added (and limited hidden nodes added) for the Cancerl data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A  N/A N/A 5 (0) 

Layered 5 (1) 5 (3) 5 (4) 5 (4) 

Minimal shortcuts 5 (1) 5 (2) 5 (3) 5 (3) 

Two random connections 5 (0) 5 (0) 5.5 (2) 12 (12) 

Completely random 5 (1) 5 (2) 6 (5) 5 (4) 	. 

Table C.6.3 - Total network connections for the Cancerl data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection 

Layered 

Minimal shortcuts 

Two random connections 

Completely random 

N/A 

87 

87 

90 

87 

N/A 

86 

85 

90 

83.5 
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80 

84 

80 
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Table C.6.4 - Connection crossings (millions) for the Cancerl data set 

Connection strategy Half pool Forcing 10% Forcing 50% Full pool 

Full connection N/A N/A N/A  156.3 

Layered 160.8 168.4 169.6 159.4 

Minimal shortcuts 160.8 172.3 169 162.4 

Two random connections 123 122.2 139 174.9 

Completely random 143.9 148.6 174.8 125.1 
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D Pruning results 

The following section details tests on the absolute, percentage and relative methods of 

pruning connections from Cascor networks. When required pruning is performed 

separately on the candidate and output layers: Monks3, Cancerl, Diabetes1, Glass1 and LED 

problems do not require the addition of candidate nodes. The details presented here include 

the percentage correct on the unseen test set ('1st %'), the total number of connections 

needed ('Con'), and the amount of training required as measured by the the number of 

connection crossings ('CCs') measured in millions. These results are the median results of 

100 trials. Where there is no applicable result, the abbreviation 'N/A' is given. 

Table D.1.1 - Results of Monks1 problem on candidate node pruning 

Prune Tst % 
Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 
Relative 

Con CCs 

None 97.92 50 4.78 N/A N/A N/A N/A N/A N/A 

0.0 97.92 48 6.61 N/A N/A N/A N/A N/A N/A 

0.01 97.92 45 6.2 97.69 46 6.3 98.15 43 10.31 

0.02 97.80 43 5.98 97.69 45 5.98 95.72 81 81.53 

0.03 97.92 42 5.97 97.69 43 5.93 75.23 116 192.30 

0.04 98.15 40 5.64 97.92 42 6.0 75.23 114 194.07 

0.05 97.92 40 5.57 97.92 41 5.82 75.23 113 193.08 

0.06 97.92 39 5.56 97.69 41 5.76 75.23 113 194.03 

0.07 98.03 39 5.58 98.15 40 5.74 75.23 112 193.72 

0.08 98.38 39 5.51 97.92 40 5.69 75.23 111 194.3 

0.09 98.38 40 5.97 98.15 40 5.58 75.23 111 194.2 

0.1 97.8 43.5 11.13 98.15 39 5.52 75.23 111 194.8 

Table D.1.2 - Results of Monlcs1 problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 97.92 50 4.78 N/A N/A N/A 

1
1

 

N/A  

0.0 99.42 44 4.94 N/A N/A N/A N/A 

0.01 99.54 44 4.91 99.31 4.95 99.54 4.9 

0.02 99.77 43.5 4.86 99.31 4.96 99.54 4.91 

0.03 99.54 44 4.89 99.54 4.91 99.54 4.92 

0.04 99.54 44 4.96 99.54 4.9 99.07 4.89 

0.05 99.54 44 4.86 99.54 

4  4.84 99.54 4.98 

0.06 99.77 43 4.88 99.54 4.96 99.54 4.87 

0.07 99.54 43 4.85 99.54 4.88 99.54 4.94 

0.08 99.54 43 4.92 99.77 4.85 99.54 4.8 

0.09 99.77 43 4.98 99.31 4.92 99.54 4.93 

0.1 99.54 43 5.01 99.54 4.97 99.54 4.91 

159 



Table D.2.1 - Results of Monks2 problem on candidate node pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 
Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 99.77 50 8.29 N/A N/A N/A N/A N/A N/A 

0.0 99.77 50 10.95 N/A N/A N/A N/A N/A N/A 

0.01 99.77 47 10.77 99.77 49 10.70 86.69 143 386.57 

0.02 99.77 44 10.83 99.77 47 10.94 63.43 119 354.19 

0.03 99.77 43 10.74 99.77 45 10.75 62.27 112 348.78 

0.04 98.61 43 11.43 99.77 44 10.70 62.27 111 349.53 

0.05 98.38 52.5 21.95 99.77 43 10.79 62.27 110 350.57 

0.06 94.68 67 46.65 99.77 43 10.54 62.27 110 350.80 

0.07 91.90 87 91.42 99.77 43 10.90 62.27 109 352.20 

0.08 89.58 112 186.51 98.61 50 21.24 62.27 109 352.71 

0.09 80.67 136 377.53 98.38 49.5 20.69 62.27 109 353.68 

0.1 69.44 128 371.58 96.88 60.5 34.48 62.27 109 352.48 

Table D.2.2 - Results of Monks2 problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 
Relative 

Con CCs 

None 99.77 8.29 N/A N/A N/A N/A 

<
 < 

-2 -±-- 

N/A 

0.0 99.77 8.43 N/A N/A N/A N/A N/A 

0.01 99.77 8.64 99.77 40 8.87 99.77 8.89 
0.02 99.77 8.71 99.77 40 8.68 99.77 8.50 

0.03 99.77 8.65 99.77 40.5 8.82 99.77 8.78 
0.04 99.77 8.65 99.77 40.5 8.75 99.77 8.85 
0.05 99.77 8.66 99.77 40 8.70 99.77 8.75 

0.06 99.77 8.77 99.77 40 8.96 99.77 8.57 
0.07 99.77 8.72 99.77 40 8.74 99.77 8.68 

0.08 99.77 8.83 99.77 40 8.92 99.77 8.89 

0.09 99.77 8.79 99.77 40 8.76 99.77 8.57 

0.1 99.77 8.77 99.77 40 8.55 99.77 8.76 
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Table D.3 - Results of Monks3 problem on output ayer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 96.76 32 0.73 N/A N/A N/A N/A N/A N/A 

0.0 96.99 25 1.13 N/A N/A N/A N/A N/A N/A 

0.01 96.99 25 1.10 96.99 25 1.13 97.22 25 1.11 

0.02 96.99 25 1.15 97.22 25 1.08 96.99 25 1.12 

0.03 96.99 25 1.12 97.22 25 1.11 96.99 25 1.11 

0.04 97.11 25 1.10 96.99 25 1.14 96.99 25 1.12 

0.05 96.99 24 1.11 97.22 24.5 1.11 97.11 25 1.12 

0.06 96.99 25 1.12 96.99 25 1.16 96.99 25 1.14 

0.07 96.99 24 1.10 96.99 25 1.13 96.99 25 1.10 

0.08 97.22 24 1.14 97.11 25 1.15 96.99 25 1.11 

0.09 97.22 24 1.10 96.99 25 1.11 96.99 25 1.14 

0.1 97.22 24 1.10 96.99 25 1.09 97.22 24 1.11 

Table D.4.1 - Results of Two Spirals problem on candidate node pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 95.83 132 112.8 N/A N/A N/A N/A N/A N/A 

0.0 95.83 124.5 130.0 N/A N/A N/A N/A N/A N/A 

0.01 95.83 104 120.0 95.83 115 129.5 95.31 99 124.9 

0.02 95.83 100 128.6 95.31 107.5 115.6 95.31 96.5 163:4 

0.03 95.83 96.5 133.2 95.57 106.5 124.7 94.79 106 2565 

0.04 96.61 93.5 139.7 95.83 102.5 121.6 93.23 111 338.6 

0.05 95.83 95 151.3 95.31 101.5 122.1 87.24 104.5 361.8 

0.06 95.83 92 149.7 95.83 102 125.3 82.29 100 368.1 

0.07 95.83 93.5 177.6 95.83 96 123.9 79.17 98 355.6 

0.08 94.79 94 189.9 95.57 96 126.2 72.14 93 365.6 

0.09 94.79 98.5 219.3 95.83 95 126.3 70.83 91 358.0 

0.1 94.79 101.5 260.1 95.83 99.5 134.4 66.15 88 354 
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Table D.4.2 - Results of Two Spirals problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 
Relative 

Con CCs 

None 95.83 132 112.8 N/A N/A N/A N/A N/A N/A 

0.0 95.31 131 104.4 N/A N/A N/A N/A N/A N/A 

0.01 95.83 131 109.8 95.31 147 116.4 95.83 139 113.7 

0.02 95.83 131 110.7 95.83 132 113.6 95.31 132 116.3 

0.03 95.31 131 110.7 95.83 131 108.4 95.31 131 110.3 

0.04 95.31 131 111.9 95.83 132 107.5 95.31 131 106.8 

0.05 95.83 132 112.8 95.57 131.5 110.1 95.57 131 112.3 

0.06 95.83 131 111.8 95.83 132 108.5 95.31 146.5 117.0 

0.07 95.83 132 110.6 95.83 146.5 115.9 95.31 132 114.0 

0.08 95.83 138.5 116.9 95.83 131 106.0 95.83 132 113.0 

0.09 95.31 130 110.1 95.31 131 109.2 95.83 131.5 111.1 

0.1 95.83 130.5 111.1 95.31 130 100.5 95.83 131 110.8 

Table D.5.1 - Results of Double Helix problem on candidate node pruning 

Prune Tst % 
Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 
Con CCs 

None 100 59 71.5 N/A N/A N/A N/A N/A N/A 

0.0 100 48 75.19 N/A N/A N/A N/A N/A N/A 

0.01 99.5 46.5 76.41 100 48 74.65 100 49.5 81.86 

0.02 99.5 50 82.95 100 48 76.11 99.5 46.5 85.25 

0.03 100 50 83.93 100 50 77.08 100 48 112.84 

0.04 100 48 84.85 99.75 50 80.02 100 57 190.74 

0.05 100 48 85.49 99.13 49 81.84 99.5 84 456.30 

0.06 100 47 86.25 99.63 50 82.65 98.88 95 543.24 

0.07 100 47 88.28 100 48 82.83 95.75 95 566.72 

0.08 100 47 91.37 99.5 46 80.98 97.38 94 583.94 

0.09 100 47 93.47 99.25 47.5 86.46 87.63 92 594.75 

0.1 100 52 106.58 100 48.5 86.08 80.5 91 607.40 
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Table D.5.2 - Results of Double Helix problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 100 59 71.5 N/A N/A N/A N/A N/A N/A 

0.0 100 58 67.68 N/A N/A N/A N/A N/A N/A 

0.01 100 48 64.17 100 58.5 68.24 100 59 69.43 

0.02 100 59 69.74 100 59 69.52 100 48 63.21 

0.03 100 59 70.00 100 59 70.20 100 59 70.63 

0.04 100 57 66.70 100 59 70.00 100 59 70.37 

0.05 100 59 68.34 100 58 69.86 100 59 69.76 

0.06 100 59 68.45 100 59 68.51 100 59 72.86 

0.07 100 48 62.08 100 58 69.72 100 56.5 68.63 

0.08 100 48 65.99 100 59 70.54 100 59 69.17 

0.09 100 59 69.44 100 58 68.06 100 59 70.36 

0.1 100 58 68.91 100 59 69.67 100 59 69.16 

Table D.6 - Results of LED problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 72 80 31.7 N/A N/A N/A N/A N/A N/A 

0.0 72.4 71.5 47.4 N/A N/A N/A N/A N/A N/A 

0.01 72.4 71 47.0 72.2 71 47.2 72.4 72 47.9 

0.02 72.4 71 46.7 72.3 71 46.8 72.2 71 46.8 

0.03 72.4 71 47.2 72.2 71 46.8 72.4 71 47.1 

0.04 72.3 72 46.4 72.2 72 46.8 72.4 71 47.6 

0.05 72.4 71 46.7 72.2 71 47.1 72.4 72 47.1 

0.06 72.2 72 47.3 72.4 72 47.5 72.2 71 46.9 

0.07 72.2 71 47.0 72.3 72 47.3 72.4 71 47.1 

0.08 72.4 71 46.6 72.4 71 47.0 72.4 71 46.8 

0.09 72.4 72 48.2 72.2 72 46.8 72.4 71 47.1 

0.1 72.3 71 47.3 72.4 71 47.1 72.4 71 46.8 
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Table D.7 - Results of Cancerl problem on output ayer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 98.28 20 2.99 N/A N/A N/A N/A N/A N/A 

0.0 98.28 20 4.00 N/A N/A N/A N/A N/A N/A 

0.01 98.28 20 3.97 98.28 20 3.98 98.28 20 3.93 

0.02 9828 20 3.95 98.28 20 3.97 98.28 20 4.08 

0.03 98.28 20 4.03 98.28 20 4.01 98.28 20 4.03 

0.04 98.28 20 3.97 98.28 20 4.04 98.28 20 4.03 

0.05 98.28 20 4.05 98.28 20 4.01 98.28 20 3.96 

0.06 98.28 20 3.88 98.28 20 3.95 98.28 20 3.97 

0.07 98.28 20 4.01 98.28 20 4.03 98.28 20 4.07 

0.08 98.28 20 4.05 98.28 20 3.96 98.28 20 4.02 

0.09 98.28 20 4.07 98.28 20 4.07 98.28 20 3.99 

0.1 98.28 20 4.09 98.28 20 4.02 98.28 20 4.02 

Table D.8 - Results of Diabetes1 problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs 1st % 

Relative 

Con CCs, 

None 77.08 18 3.40 N/A N/A N/A N/A N/A N/A 

0.0 77.08 18 4.49 N/A N/A N/A N/A N/A N/A 

0.01 77.08 18 4.55 77.08 18 4.67 77.08 18 4.59 

0.02 77.08 18 4.53 77.08 18 4.62 77.08 18 4.59 

0.03 77.08 18 4.58 77.08 18 4.55 77.08 18 4.59 

0.04 77.08 18 4.51 77.08 18 4.42 77.08 18 4.58 

0.05 77.08 18 4.6 77.08 18 4.4 77.08 18 4.45 

0.06 77.08 18 4.48 77.08 18 4.62 77.08 18 4.47 

0.07 77.08 18 4.5 77.08 18 4.53 77.08 18 4.57 

0.08 77.08 18 4.51 77.08 18 4.53 77.08 18 4.58 

0.09 77.08 18 4.62 77.08 18 4.57 77.08 18 4.52 

0.1 77.08 18 4.59 77.08 18 4.54 77.08 18 4.56 
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Table D.9 - Results of Glassl problem on output layer pruning 

Prune Tst % 

Absolute 

Con CCs Tst % 

Percentage 

Con CCs Tst % 

Relative 

Con CCs 

None 66.04 60 3.13 N/A N/A N/A N/A N/A N/A 

0.0 64.15 58 4.33 N/A N/A N/A N/A N/A N/A 

0.01 66.04 58 4.34 65.09 58 4.21 66.04 58 4.23 

0.02 66.04 58 4.37 66.04 58 4.18 66.04 58 4.39 

0.03 66.04 58 4.3 66.04 58 4.3 66.04 58 4.28 

0.04 66.04 57 4.36 66.04 58 4.27 64.15 57 4.21 

0.05 66.04 57 4.28 66.04 57.5 4.29 66.04 57 4.33 

0.06 65.09 57 4.11 66.04 58 4.28 66.04 58 4.28 

0.07 66.04 57 4.22 66.04 58 4.33 64.15 58 4.23 

0.08 65.09 57 4.38 66.04 57 4.3 66.04 57.5 4.21 

0.09 66.04 57 4.26 66.04 58 4.34 66.04 58 4.18 

0.1 66.04 57 4.31 66.04 58 4.25 66.04 58 4.25 
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E TasCas — a Cascade-Correlation simulator 

This is the User and System Manual for the TasCas Cascade-Correlation artificial neural 

network simulator. The system options, data format, output and error are described, along 

with details relevant to the code structure and assumptions made in the development of the 

package. Examples are presented throughout. 

This is a slightly abridged version of the full technical report TR95-9, from the Department 

of Computer Science at the University of Tasmania. Part one of the technical report, the 

User Manual, entails §E.2 to §E.5, part two entails §E.6 to §E.8, and the appendices to the 

technical report are presented in §E.A to §E.D. 

E.1 Introduction 
This document outlines the various facilities and structure of the TasCas Cascade-

Correlation (Cascor) simulator, version 4.0, developed at the University of Tasmania. In 
writing this manual it was assumed that the reader has a fair understanding of the Cascor 

algorithm [Fahlman & Lebiere 1989] and artificial neural networks in general. The details in 

this text specifically relate to the simulator, and where required, references are given to 

relevant literature. 

TasCas implements the Cascor algorithm, relying on Quickprop [Fahlman 1988a] for the 

actual weight training, and using the C4.5 data set format [Quinlan 1993a] for training and 

test sets. This format has been extended to allow for continuous-valued outputs (see §E.A). 

The simulator has had many features added to the original algorithm [Fahlman & Lebiere 

1989]. 

This document is divided into two major parts. Part one is the User Manual which details 

information necessary to use the system. This includes an overview of the data format, the 

possible inputs to the system, the simulator output, and possible simulator errors. Part two 

is the System Manual detailing how the code is structured, any assumptions made during 

development, and planned future improvements to the system. The first two sections of this 

part should be consulted before making any modifications to the code. 

The code is written in ANSI C with few assumptions beyond the standard libraries (any 

non-ANSI C code is detailed in §E.7). There are no requirements for special path names. So 

far the TasCas system has been successfully compiled on an IBM RS/ 6000, Sun system and 

DEC Alpha machine, using IBM's xlc, Sun's acc, and DEC's cc compilers respectively, as well 
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as Gnu's gcc. Note, however, that this package has been developed as a by-product of thesis 

work. It is stable, but not polished or complete code. 

E.2 Network input I — data file 

The program uses Quinlan's C4.5 data format [Quinlan 1993a] which requires the files 

'<filestem>.names', '<filestem>.data' and '<filestem>.test' for the data information file, the 

training set file and the test set file respectively. The name of the data files (the filestem) is 

given via the command line directly after calling the executable. Data sets are read in from 

standard text files. It is not necessary to provide a test set— it is only required to give a 

measure of the network's generalisation on unseen cases. If the file is not present, no error 

will occur. 

The '.names' file contains the names of the final classifications, or an indication of a 

regression problem, and details about the attribute values. For example, consider the 

following contents of a '.names' file: 

Red, Green, Blue. 

Length: continuous. 

Size: small, medium, large. 

This indicates that the data files '.data' and '.test' — if the latter exists — contain examples 

with two attributes — Length and Size — being classified into three classes — Red, Green 

and Blue. The three classes are encoded as three output nodes — the network is trained to 

give a high value for an output node when an example of the corresponding class is given. 

If there are only two classes, they are still encoded as two output nodes. 

The first attribute, Length, is a continuous numeric value and so is encoded as one input to 

the network. The second attribute, Size, is an unordered discrete variable and is encoded as 

three separate inputs, each input corresponding to an individual attribute value. When a 

particular input value is received the corresponding node is set high and the rest are set low. 

The only exception is when the attribute is binary-valued — then only one input to the 

network is used, whereby a high node value represents one attribute value, and a low node 

value represents the other. A high value is encoded as a 1, and a low value as a –1, for 

discrete attribute values. 

There are two further styles of attributes, for example: 

Width: ignore. 

Height: discrete 8. 

The first may be simply used to avoid having to remove information from the data sets: by 

setting the attribute to 'ignore' the information is read and ignored. The second is also for 
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unordered discrete variables, whereby the actual attribute values are not specified, and are 

simply read from the data. 

Examples in the '.data' and '.test' files have the same format: a list of comma separated 

attribute values followed by the actual classification. For example, from the above 

information, examples may have the following form: 

2.0, Small, Red 

5.43, Medium, Green 

-1.0, Medium, Blue 

Any white space is acceptable between values, and comments may be added to the end of a 

line by placing a vertical bar' I' before the comment. Everything following the bar on that 

line will be ignored. This applies to all the data files. 

Regression problems have a slightly different format. The term 'continuous' is used in place 

of the classes to indicate that a regression problem with one output is being described. At 

this stage only one regression output is allowed under this implementation. This is a partial 

implementation of the full Extended Quinlan format as outlined in §E.A. 

E.3 Network input II— simulator options 

TasCas uses command line options for the setting of the network parameters. The output of 

the simulator is directed to standard output, apart from errors (directed to standard error) 
and the final network weights. There are default settings for all options. Currently the 

standard default values ensure that all Boolean options are false, hence they will not be used 

without being set. For example, by default no output is produced unless specifically 

requested by the user. The standard numeric default values for the options outlined in 

§E.3.1 to E.3.7 are listed in tables E.1 and E.2 (see the header information when running the 

system for completely up-to-date information). 

Table E.1 — Default values for candidate and output layer training parameters 
Parameter Candidate Value Output Value 

Eta 1.0 0.35 
Mu 1.75 1.75 

Weight decay 0 0 

Minimum pruning sensitivity 0.01 0.01 

Pruning patience percentage 0.03 0.01 

Patience percentage 0.03 0.01 

Patience length 50 50 

Epoch limit 500 500 
Activation function offset 0.0 0.1 
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Table E.2 — Default values for network training parameters. 

Parameter Value Parameter Value 

Number of candidates 4 Network patience percentage 0.02 
Candidate node limit 25 Network patience length 1 

Special node force factor 1.1 Network trials 1 
Number of random connections 2 Percentage allowable error bits 0.0 

Default activation function Sigmoid Error threshold 0.4 
Default connection strategy Full Expected value buffer 0.0 

Allowable regression error 0.001 

The command to run the simulator is then as follows: 

tascas <filestem› [options] 

Substitute the name of the simulator executable for 'tascas'. The filestem is the name of the 

data files (see §E.2) and the network weight file (see §E.4.3). 

The following points refer to the options listed below: 

• when two options are in conflict, the latter option has priority; 
• the order of the options may have an effect on the values given to a trial (see 

§E.3.3.3); 

• the actual option flags are given below within parentheses where '#' represents 

an integer value, '#.#' represents a floating point number and brackets indicate 
an optional input; 

• when there are options which may be employed on both candidate and output 

training, the convention is to use the same letters with the output training flags 

in lower case and the candidate training flags in upper case; 
• with the output options an upper case flag provides more information as 

opposed to a lower case flag; and 
• percentages given to flags are in decimal point form, for example a value of 0.1 

is regarded as ten percent. 

The output layer is fixed to use symmetric sigmoid functions as the activation functions for 

each output node when performing classification tasks, and linear activation functions for 

regression problems. Linear activation functions are not allowed in the hidden layer. 

A tabulated summary of the options is given in §E.B. 

E.3.1 Weight training options (Quickprop) 

The following options alter the standard training parameters: 

eta 	 learning rate for candidate (-E#.#) and output (-e#.#) 

nodes; 
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MU 
	 maximum growth factor (-M#.# and -m#.#) — no weight 

step is allowed to be greater in magnitude than mu times 

the previous step for that weight; and 

offset 	 offset given to activation functions (-0# .# and -o#.#) — the 

derivatives for the candidate activation functions do not 

usually include an offset as this confuses the correlation 

machinery, but an offset is included on the output layer by 

default. 

The weight updates are performed using the Quickprop algorithm with activation function 

offsets where required [Fahlman 1988a1. There is no particular reason for using Quickprop 

other than that historically Cascor has used this algorithm for weight updates. 

E.3.2 Stopping training 

There are two distinct levels of stopping training within Cascor: stopping the training of a 

candidate or output layer, and stopping training of the entire network. 

E.3.2.1 	Stopping layer training 

The following (-s) options are used to stop training of network layers: 

patience percentage 

patience length 

maximum epochs 

if the percentage error improvement has been less than this 

value over patience length epochs then stop training 

(-sP#.# and -sp#.#); 
length allowed for percentage change to occur (-sL# and . 

-s1#); and 
maximum epochs during layer training phase (-sM# and 

-sm#). 

The above options are described more fully in [Fahlman & Lebiere 19891. Note that the 

minimum number of epochs for candidate training is two epochs rather than one — 

allowing for an initial epoch which simply generates the correlations. 

E.3.2.2 Stopping network training 

The following (-S) options are used to stop overall network training either directly, or 

indirectly by modifying the expected outputs and error bit threshold: 

node maximum 	the maximum number of candidate nodes which can be 

installed (-Sm#) — setting this does not force the use of 

node patience; 
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node percentage 	use and possibly set node based patience percentage 
(-Sp[#.#1) — halts overall network training by using 

patience with the number of nodes installed as the time 

period; 

node length 	node patience length in the number of hidden nodes used 

(-SP); 

rollback 	 remove redundant hidden nodes after training stopped by 

node patience (-Sr) — simply done by removing the nodes 

and retraining the output layer; 
errors 	 the maximum allowable error for regression problems 

(-Se#.#); 

error bits 	 set the percentage of allowable error bits (-Sb#.#) where 

the total error bits are the number of outputs over all 

examples incorrectly classified — this is a measure of 

correctness used to halt the training of classification 

networks; 
error threshold 	this sets the allowable distance away from the required 

result that a training example output value can be without 

being recorded as an error (-St#.#) when using the number 

of error bits to stop training of classification networks; and 
expected value 	ability to change the expected value range or buffer of the 

sigmoids (-Sx#.#) — for example a value of 0.1 would 

change the expected values from the output layer sigmoids 

from -0.5 and 0.5 to -0.4 and 0.4 (note the error threshold is 

adjusted so that the threshold remains the same regardless 

of the expected value). 

The node patience options are described in detail in §3.1. The errors option is only used for 

regression style problems, and the error bits, error threshold and expected value options are 

only used in classification problems. 

E.3.3 Candidate training controls and options 

The following (-c) options are available for candidate training — most are additions to 

standard Cascor. The first set involve general candidate training: 

candidate total 	the number of nodes in the candidate pool (-cn#) 
individual patience 	train candidate nodes using patience on each individual 

node, rather than all candidates in the pool (-cI); 
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subgroup patience 	(homogeneous patience) train candidate nodes using 

patience on each subgroup of similar nodes, rather than all 

candidates (-cH); 

summation 	 the candidate pool or sub-pool is trained on the summation 

of the correlation scores rather than the maximum (-cS); 

and 

force usage 	 non-default nodes (see below) are forced by a percentage 

factor (-cF#.#), for example -cF1.1 adds an extra ten 

percent of their correlation to the non-default nodes. 

Standard, individual and subgroup training are alternatives, with standard candidate 

training being the default and individual candidate training having the highest priority. 

The following two sections detail the options for changing the activation functions and the 

connection strategy of the candidate nodes. Most of the options allow for an optional 

integer to be included to specify the number of nodes of that particular style that are 

required. If the specified node total is greater than the number of nodes in the pool, the pool 

size is increased. If the number is less than the pool size the rest of the nodes will be of the 

default (connection and activation) style. If the optional number is not included the default 

node style is altered. Examples will be presented in §E.3.3.3. 

E.3.3.1 	Setting candidate activation functions 

These options are used to set the candidate pool activation functions: 

Gaussian 	 add Gaussian nodes (-cg[#]); 

sigmoid 	 add symmetric sigmoids (-cs[#]); 

tanh 	 add tanh functions (-ct[#]); 

asymmetric 	add asymmetric sigmoids (-ca[#]); and 

distributed 	 distributes the activation varieties about the candidates 

(-cD[#])— the order of preference is Gaussian, sigmoid, 

tanh and asymmetric sigmoid. 

E.3.3.2 Setting candidates with limited connections 

These options allow the setting of the connection strategies of the candidate pool: 

full connections 	nodes with full connections (-cf[#]); 

form layers 	 nodes with no connection to the previous layer (-c1[#]); 

minimum shortcuts 	nodes with minimal shortcuts — the only connections to 

the hidden node are those from immediately the inputs 

and the immediately previous hidden node (-cm[#]); 

random weights 	randomly connected nodes (-cr[#]); 
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total random 

distributed 

number of random connections (-cR# where # equalling 

zero means a random number of connections); and 

distributes the connection varieties about the candidates 
(-cd[#])— the order of preference is full, layered, minimal 

shortcuts, and random connection nodes. 

The above options are described more fully in §4.1. The distribution of activation functions 

and connection strategies means that, for example, if a candidate pool of ten nodes with 

distributed activation functions is required, three will be Gaussian, three will be symmetric 

sigmoids, two will be tanh functions and two will be asymmetric sigmoids. 

E.3.3.3 Examples and notes 

Consider the following example: 

-cn20 -cl -cf5 

This sets the candidate pool to contain twenty nodes, the default connection strategy to 

layered and five of the nodes have full connections. Consider another example: 
-cs -CD -cn20 

This sets the default node style to be sigmoids, distributes the activation functions within 
the candidate pool — the default size is assumed to be four nodes in the pool — leading to 

one node of each type, then increases the number of default nodes to total seventeen. The 
following example distributes the node activation types evenly among the twenty candidate 
nodes: 

-cs -cn20 -CD 

This illustrates how the ordering of the options is important. The system is slightly more 

difficult to use than others which could have been devised, but it is extremely flexible. 

Finally there is no intelligent distribution of activation functions and connection strategies 

implemented. So if both features are distributed, the result will not be a mixture of all 

connection strategies with all activation functions. Rather, a quarter of the nodes will have 

the same activation function and connection strategy, and these will change at the same time 

to differing activation functions and connection strategies. For example 

-cn20 -cd -CD 

will give five nodes with Gaussian activation functions and with full connections, five with 

symmetric sigmoids and a layered connection strategy, and so on. 
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E.3.4 Pruning and weight reduction 

The following (-p) options are additions to standard Cascor for both candidate and output 

layer training. Standard weight decay is also included (even though it is not strictly a 

pruning method): 

Karnin pruning 	use absolute Karnin [Karnin 1990] pruning for connections, 

removing connections with an estimated error (or 

sensitivity) less than the pruning level (-pK#.# and 

percentage change 	rather than absolute values when used in conjunction with 

the above options, prune on the percentage change in the 

error (-pC and -pc); 

patience pruning 	use patience percentage change in the error value (the 

patience length is not needed) to control pruning, after 

pruning all zero and negative saliency connections (-pP#.# 

and -pp#.#); 

every output 	prune the output layer at the end of every output layer 
training phase as opposed to at the end of network training 

(-pe); 

weight decay 	reduce weights by adding a term to the error function 

(-pD#.# and -pd#.#); and 

small decay 	use decay term which reduces smaller weights more than --• 

larger weights relative to the standard weight decay (-pS 

and -ps). 

The weight decay terms are added to the slope during the Quickprop update. Standard 

weight decay is: 

decay• wii  

where wii is the layer weight. The small weight decay term is: 

decay • wo  

(1 + 

This term gives a smaller decay for larger weights relative to the previous decay term. See 

[Fahlman 8r Lebiere 19891 for more details on weight decay, [Hertz, et al. 1991] for more 

details on the small weight decay term, and §4.2 for more details on Kamin pruning within 

Cascor. 
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E.3.5 Obtaining network results 

The following (-w) options are also available for obtaining results from the simulator (note 

the term 'output' here refers to writing to 'stdout', and 'write' refers to writing to a text file): 

header information 	output training parameters (-wh); 
final 	 output final network results (-wf); 
summary 	 output summary statistics of all runs (-ws); 
full summary 	output the full results of each network in (tab separated) 

tabular form (-wS) for multiple trials; 
weights 	 write out the weights to '<filestem>.wei' (-ww); 
connections 	output which network connections exist (-wn); 
examples 	 output final results for each data set example (-we); 
matrix 	 output the final confusion matrix for a single network 

(-wm); 
vectors 	 output the final output layer vectors for each example 

(-wv); 

best vectors 	output the best output layer vectors for each example, 

obtained from the network at the end of an output layer 

training phase where the error on the training set is 
smallest (-wb); 

epoch training 	output progress after each epoch of training (-wT); 
node training 	output progress after each training phase (-wt); 
epoch correlation 	output correlations of pool after each epoch during 

training (-wC); and 
node correlation 	output correlations after hidden node training is 

completed (-wc). 

The above options are described more fully in §E.4. Note that the result options are slightly 

different from other TasCas options in that the choices, which are all Boolean, can be made 
using the one flag. For example: 

-wh -wt -wf -wn -wc 

can be expressed as: 

-whtfnc 

The options can be in any order, duplicated or in two or more separate -w flags. They just 

switch on the appropriate reporting. 

E.3.6 Trial options 

The following options alter the number of trials and the random weight seeding: 
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trials (runs) 	number of different trials (-t#); and 

completely random 	seeds the random number generator off the clock (-R), used 

to initialise the network weights and generate random 

connections to nodes (see note immediately below). 

Note that differences in the clock seeding only occur every second. Hence if an individual 

trial is shorter than one second wall-clock time, the same seed will be used. 

E.3.7 Checkpointing and file recovery 

The current version of the TasCas simulator performs simple checkpointing of multiple 

trials. All the results of completed networks are saved for later summarisation. 

If a run is killed by whatever means, it may be restarted simply by typing: 

tascas -R<filestem>.<process number> 

where 'tascas' refers to the executable name, and where each checkpointing file is stored as 

the name of the data set filestem followed by the process identification number of the 
process which was performing the initial simulation. The simulator picks up from the last 

completed network. If the process is interrupted again, the same process number of the 

original process will be used as the recovery file suffix, meaning that the same recovery 

command may be reused. 

Three points to note: firstly, if there is a checkpoint file present with the same number as the 
newly started process (a completely separate trial) the simulator will exit with an error to 

that effect, and it will not attempt to overwrite the previous checkpoint file. Secondly, if the 

checkpoint file is deleted during a simulation, the simulator will fail to give summary 

results and, of course, further recovery of results will not be possible. Finally, no checkpoint 

file is produced when only one trial is being performed. 

E.4 Network output 

This section describes in more detail the output which can be expected from the various 

reporting options. Complete outputs of the major examples are given in §E.D. 

E.4.1 Header Information 

The header information (option -wh) gives details about the particular run, which is useful 

to document experiments. There are six lines in the header which are produced with most 

simulations, plus a number of other lines of option details if required. The exception being 

when no hidden nodes are added, the lines containing candidate training information are 

not included, leaving a minimum of four lines. For example the call: 
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tascas spiral -whtf -cn10 -Sm20 

produces the following header: 

tascas spiral (v4.0) 

Train 192 Test 192 Inputs 2 Outputs 2 

OEta 0.35 °Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10 

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500 

MaxCand 20 PErrBits 0.00 ErrTh 0.40 

Pool 10 Sigmoid 10 Full 10 

The first line shows the simulator name, the filestem of the data set and the current 

simulator version being used. The second line shows information about the data set 

(number of training and test examples, and the number of network inputs and outputs). 

The third and fourth lines show the training parameters for both output and candidate 

(input) training respectively: the learning rate, the maximum growth factor, patience period 

and percentage, maximum number of training epochs per training phase, and the activation 

offset where used. The fifth shows network training parameters (in this case the maximum 

number of candidates which may be installed, the number of allowable error bits, and the 
current error threshold). The sixth line contains candidate information: the size of the 

candidate pool and the number of different candidates with different activation functions 

and connection strategies. This is all interspersed and followed by other information about 

optional settings: such as the number of trials, whether a random seed is used for setting the 

network weights, or pruning parameters. Information referring to the candidate or input 
layer training is always prefixed with 'I', and that which refers to the output layer is always 
prefixed with '0'. 

Section E.0 details all the different header outputs, including the line of appearance. 

Remember that information about candidate training parameters is only produced when 

candidates are trained — if the network is limited to adding no candidates the information 
is not provided. 

E.4.2 Final and summary results 

The final results (option -wf) are of a network after training has been completed. This 

information includes the percentage correct on the training and test sets, the number of 

hidden nodes installed, the total number of connection crossings and the total number of 

connections. If the entire candidate pool is trained together with the one set of patience 

parameters, then the number of epochs is also shown. If some form of connection limitation 

is used, the number of limited connection nodes, the number of layers and the maximum 

number of possible connections are also shown. For example, the following command 
(example 1 in §E.D): 

tascas spiral -whtf -pk -pK0.05 -Sm20 -cn10 

178 



produces this final report: 

Final Network Results : 

training %correct 	: 100.00 

testing %correct 	: 92.71 

hidden nodes 	: 16 

limited hidden nodes 	: 16 

layers 	: 11 

total epochs 	: 8811 

total conn. cross. 	: 239094720 

total connections 	: 109 

maximum connections 	: 206 

Of course the actual details of the results will differ from machine to machine, as all the 

results in this report depend on the seed given to the random number generator as well as 

the precision of the machine. 

The summary option (option -ws) produces the same information as the final results but is 

used with multiple trials to give the mean, mean absolute deviation, standard deviation, 

coefficient of variation, skew, kurtosis, confidence interval, median, minimum, maximum 

and inter-quartile range values for each field. For example, the command (example 2 in 

tascas spiral -whs -t50 -R -cn10 -c15 -cI -cF1.1 

gives the following summary: 

Summary Statistics : 

Trn% Tst% Hid LimH Lay TEps TCC TCn MxC 

Mean 99.95 95.45 14.4 5.5 9.9 32826 129383163 170.5 180.4 

MAD 0.10 1.25 2.38 2.16 1.03 3568.6 26014314 44.91 50.29 

SD 0.22 1.63 3.46 3.04 1.41 4436.8 34919506 68.20 77.04 

Coy 0.22 1.71 24.06 55.45 14.23 13.52 26.99 40.00 42.71 

Skew -3.99 -0.53 1.83 1.34 0.14 0.68 1.23 2.17 2.17 

Kurt 14.76 0.19 2.87 1.74 0.53 -0.29 0.99 4.19 4.17 

CI +/- 0.06 0.45 0.96 0.84 0.39 1229.82 9679193.24 18.90 21.35 

Median 100.00 95.31 13.5 5.0 10.0 31443 120590016 148.5 158.0 

Min 98.96 90.62 11 1 7 25544 83701824 111 116 

Max 100.00 97.92 25 15 14 43029 232353408 403 431 

IQR 0.00 1.56 3.00 3.00 2.00 4978.0 37061568 49.00 54.00 

A result of 'na' is given for values of the coefficient of variation, the skewness and the 

kurtosis when there is no valid result. 

The other final report is the full summary (produced by -wS) which simply gives a tab-

separated list of all the final results of all the networks, in case this is required. 
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E.4.2.1 	Formulas used in statistical summary results 

For completeness, the following are the formulas used to calculate the summary results 
where t is the number of trials, and xi is the result of trial i: 

Mean 

Mean absolute deviation 

Standard deviation 

Skewness 

Kurtosis 

Coefficient of variance 

Confidence interval 

l xi ±R I  MAD= '= 

s= 

(Xi ± X)3 

sk =  = 1  t • s3  

(xi  ± 
ku =  =1  t 	± 3 

CoV = 100 • s 

CI = 1-96 s  

Note that the confidence interval is only valid for trials of greater than thirty networks, and 
is for ninety five percent confidence. 

E.4.3 Other outputs for completed training of a single trial 

Writing weights (option -ww) writes out the weights of a particular run to a file 
'<filestem>.wei'. If this option is used during a multiple trial, all the weight sets are sent to 
the one weight file. Writing network connections (option -wn) shows which connections are 

present, and what the activation function is on each node. This is produced for each 

network after the final results of that network. The following letters are used to represent 

candidate node activation functions: 'A' for asymmetric sigmoids, 'S' for symmetric 

sigmoids, 'T' for tanh functions, and 'G' for Gaussian functions. 

Writing examples (option -we) produces the actual and expected outputs of the network for 

each example in the training and test sets. Writing vectors (option -wv) writes out the actual 

and expected output vectors for each example in the training and test sets. Writing the best 

vectors (option -wb) produces the vectors for when the best result on the training error is 

reached. These vector results are displayed separately from the other vectors, and are 

distinguished by the tags 'tr-v' and 'ts-v' at the beginning of each vector depending on 
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whether the example is from the training or the test set respectively. Writing the confusion 

matrix (option -wm) produces a totals breakdown of what examples are correctly classified, 

and what class is given to incorrectly classified examples. Note that the predicted values are 

listed across the matrix, hence the total examples predicted in a particular class are obtained 

by summing the column. Similarly the actual value totals for each class are obtained by 

summing the row — the actual class labels are given in column format. The example results 

and confusion matrices are not produced when trials are performed on regression data sets. 

The options for producing the network connections, the examples, the confusion matrix and 

the output vectors are illustrated by the following trial on the simple xor problem: 

tascas xor -whfnevm 

which gives the following output: 

tascas xor (v4.0) 

Train 4 Test 0 Inputs 2 Outputs 2 

OEta 0.35 °Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10 

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500 

MaxCand 25 PErrBits 0.00 ErrTh 0.40 

Pool 4 Sigmoid 4 Full 4 

Final Training Examples & Output Vectors : 

1 1 0.24264 -0.24264 0.50000 -0.50000 

2 2 -0.24264 0.24264 -0.50000 0.50000 

2 2 -0.21852 0.21852 -0.50000 0.50000 

1 1 0.24264 -0.24264 0.50000 -0.50000 

Confusion Matrix (rows predicted values, columns actual) : 

2 	0 

0 	2 

Final Network Results : 

training %correct 
	: 100.00 

hidden nodes 	:1 

total epochs : 131 

total conn. cross. : 9620 

total connections : 11 

Network Connections and Activation Functions : 

111S 

1111S 

1111S 

The training examples are shown with six columns: the first two are the actual and expected 

example output classes, followed by the actual and expected output vectors. The final 

section of the output shows the network connections: there is one hidden node followed by 

the two output nodes, all of which are fully connected with symmetric sigmoid functions. 

Not only are the output nodes connected to the bias node and the two inputs, but also the 

connection to the hidden node is shown. 

181 



E.4.4 Progress during training 

Epoch training (option -wT) produces the mean squared error (MSE) and percentage correct 

for both the training and test sets at the end of each epoch of output layer training. It also 

produces the current maximum correlation score (for normal or subgroup candidate 

training), the current hidden node correlation (for individual candidate training) or the total 

correlation of all the nodes (for summation candidate training) plus a letter representing the 

selected node activation function during the candidate node training phase. 

Node training (option -wt) produces the same information at the end of the candidate node 

and the output layer training phases. This is prefixed with the number of hidden nodes 

installed, a cumulative number of epochs - if appropriate - and connection crossings for 

the entire network training. The tag 'best' is also given at the end of output layer training if 

the writing of best vectors is required (option -wb) and the output phase produces the 
lowest error for that network on the training set. 

Epoch and node correlation reporting (options -wC and -wc respectively) produce the 
correlation scores for all candidate nodes after each epoch or each candidate node training 

phase. Note that options -wC and -wT produce the same results under individual candidate 
training, hence only one is given. 

These are illustrated with the following example: 
tascas xor -whftTcC -sL5 -s15 

which gives: 

tascas xor (v4.0) 

Train 4 Test 0 Inputs 2 Outputs 2 

OEta 0.35 OMU 1.75 OLen 5 OPerc 0.01 0Ep 500 00ff 0.10 

IEta 1.00 TM 1.75 ILen 5 IPerc 0.03 IEp 500 

MaxCand 25 PErrBits 0.00 ErrTh 0.40 

Pool 4 Sigmoid 4 Full 4 

0.30443 50.00 

0.29903 50.00 

0.25000 50.00 

0.25000 50.00 

0 

0.04890 

0.04994 

0.08404 S 

0.05284 

0.08759 S 

0.49369 

0.49801 S 

0.49369 

11 

0.00275 

0.00279 

0.00291 

0.49335 

0.49335 

552 

0.08276 

0.08404 

0.08759 

0.49801 

0.49801 

0.25000 

0.01291 

0.01343 

0.01487 

0.49365 

0.49365 

50.00 
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1 

0.23472 

0.20594 

0.18290 

0.14942 

0.11019 

0.07084 

1 

32 

75.00 

75.00 

75.00 

75.00 

100.00 

100.00 

41 

2520 

3140 

0.49801 S 

0.07084 100.00 

Final Network Results : 

training %correct 

hidden nodes 

total epochs 

total conn. cross. 

total connections 

: 100.00 

:1 

: 41 

: 3140 

: 11 

Note that a number of the lines in the example are deleted (as shown by the ellipsis). The 

example shows the training information (MSE and percentage correct) for the output layer 

after each epoch (option -wT), followed by the training results for that layer (hidden nodes 

installed, epochs, connection crossing, MSE and percentage correct) (option -wt) which 

shows the number of epochs completed as being 11. This is followed by the correlation 
results (correlation of each candidate) (option -wC) for the initial random weights of the 

candidates, and then after each epoch of training. Interleaved is the selected candidate as 

shown by its (maximum) correlation and the activation function of the candidate (option 

-wT again). The training of candidates is completed and the final candidate results are • 

shown (option -wc), although this output is the same as the last candidate results of epoch 

training. This is followed by the summary of the candidate training (hidden nodes installed, 

epochs, connection crossings, maximum correlation and the hidden node activation 	 r, 

function) (option -wt again) showing that 32 epochs of training have been completed. This 

is further followed by the output layer training results until all the examples are classified 

correctly. 

E.4.5 Regression results 

Regression results are slightly different in that it is not possible to calculate a percentage 

correct, hence in all the training results this is not given, and in the final and summary 

results the final MSE is used to indicate the strength of the learnt theory. 

E.5 Possible errors 

The TasCas system produces a number of errors in exceptional cases. These are grouped by 

their type and the return code from the system will give an indication of the error type, as 
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will the actual error message. When the system completes the required task with no errors, 

a return code of zero is given. The errors are as follows: 

• data file reading (return code 1) — an error has occurred while the data file is 

being read in, with a maximum of ten of errors displayed; 

• memory allocation (return code 2) — not enough memory available for 

allocation; 

• major command line error (return code 3)— if a command line error is major 

enough to halt the simulator from sensibly continuing; and 

• output errors (return code 4) — when the required file, such as the 

checkpointing file, is not available. 

Note that minor command line error warnings are also displayed for unknown options or 

invalid options values. 

E.6 Code structure 

This section outlines the structure of the TasCas code. The module tascas details the main 

code for the TasCas system. The other modules (basic, data, inp, out, eval, train) provide 

routines used by the tascas code. For a deeper understanding of the workings of the system 

than is presented here, it is probably best to go to the code itself. 

E.6.1 Module overview 

The following is an overview of the various modules: 

• basic contains simple procedures for neural network calculations which are used 

throughout the entire code, and some data structures; 

• data defines the data structure for examples to be used for training and testing 

and routines for reading in Quinlan style data sets, and the data reading 

function itself; 

• eval contains routines that evaluate Cascor networks to determine the result of 

the network given a particular input, cache training results and to give test set 

estimates of accuracy; 

• train contains routines to perform generic weight training, pruning and patience 

calculations; 

• inp contains routines for the remaining input (other than data reading) which 

involves the command line options, the modification of options as required and 

the setting up of checkpointing; and 

• out contains all output including the writing of network weights and the 

reporting of the training process, the completion of training and result 

summaries. 
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Note that eval.li contains the definitions of network structure, train.h contains the layer 

training parameters, and inp.h contains definitions of the reporting structures and the other 

parameters used for training the network and writing out the results. The code in basic and 

data is not specific to the TasCas simulator and has been used in other simulators. The data 

reader may be altered as long as it produces the information in the form of the data types 

shown in data.h. 

E.6.2 Main training mechanism 

Training Cascor networks is a two stage process. Firstly the output layer is trained until 

patience has run out, and then if the desired result has not been achieved (namely the 

stopping criteria on the training set have not been met) a hidden node is added. This is 

done by training candidate nodes with connections to the inputs and previous hidden 

nodes, adding the best candidate to the network, and then retraining the output layer with 

extra connections to the added node. This process cycles until training is complete or the 

maximum number of hidden nodes has been installed. Options are available to use node 

patience as well to halt the training process. 

The code reflects this structure. The trnout function trains the output layer determining 

whether the training is complete. If that has not occurred, trncand is called to train the 

candidate nodes. Both these functions complete a single training phase — namely training 

until loss of patience on one layer, whether that be training the candidate nodes or the 

output layer, or pruning the connections afterward. These functions call trnoutperiod, 

trncandperiod to train the weights for a single patience period which in turn call trnoutepoch 

and trncandepoch which, as their names suggest, train the output and candidate nodes for a 

single epoch. The trnout and trncand functions act as shells to cope with the possibility of 

pruning the network. 

Note trnoutepoch trains all of the output nodes, unlike trncandepoch which trains only one 

node. This is due to the different set up for training candidates with separate patience 

parameters. The candidate training functions also include trncandsub for training a 

subgroup of candidate nodes. 

E.6.3 Other code groups 

The candidate node training has a lot of associated machinery which is absent from the 

output layer training. These extra procedures include initcand which sets up the candidates 

for training (including limiting connections where required), addcand which adds a selected 

candidate node to the network ready for output layer training, select cand which selects the 

candidate node for inclusion in the network, and calccorr which calculates the correlation of 

the candidate nodes with the network output. 
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The main program also has various initialisation and post-training functions associated with 

it as well as procedures to produce the correct number of trials and calls to the reporting 

functions. From the code it should be evident which functions are called from modules 

throughout the training process and which are only required before or after training. 

E.7 Special considerations 

These are more detailed comments regarding certain features of the code. Assumptions 

have been made at various points during the development of the system, and it is the aim of 

this section to detail the more important ones. 

E.7.1 Standard notation and indexing 

The inputs are numbered 0 to n (d->n in main) with i used as index and element zero being 
the bias node, the outputs are numbered 1 to m (d->m in main) with k as the index, the 
hidden nodes are numbered 1 to h (net->h in main) with j as the index, and the candidate 
nodes are numbered 0 to c –1 (c->c) with u as the index variable. 

E.7.2 Module specific considerations 

The following are specific considerations which need to be taken into account when 

modifying the code. They are prefixed by the name of the module where the feature occurs: 

• Basic — the memory allocation functions simply exit when there is not enough 
memory available. All exits caused by memory problems return a value of 2. 

• Basic — the inputs to the activation functions are bounded (in fun) to prevent 

over and underflow errors occurring. The bounds may need to be altered 
depending on the precision of the floating point processing used. 

• Data — discrete attribute values are encoded as separate nodes. If the 

particular value is set, the corresponding node value is set to 1.0, otherwise it is 

set to –1.0. However two-valued discrete attributes are encoded as one input 

node. 

• Data — in GetNames storing the number of expected values for the 'discrete' 
option has one too many type coercions. 

• Eval — dasseg is not used during any training calculations, so does not pass 

back the number of connection crossings. 

• Train — with nodeactiv from the eval module, backprop and prune only perform 

calculations when there is a connection present. Checking first whether there is 

a connection present should not be a detriment when there are no missing 

connections (needing a truth check followed by an increment, as opposed to a 

straight multiplication of a value). 
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• Inp — the checkpointing uses the process id to determine a unique file name. 
• Inp — the default options are set in the function setup in inp.c. The following 

options should not be altered: 'trp->completedc any Boolean options such as 

the writing options (all Booleans are set to false, and using the flag will not flip 

the value — only set it to true), and the initial counter for the candidate 

activations and connection strategies. 

• Out — the summary functions have a bad case of magic numbers. 

• TasCas — as an informed guess, the output weights to a newly added candidate 

node are set to minus the previous correlation at the output. This seems to be 

better than just setting random weights [Fahlman 1993] 

• TasCas — it is assumed that the output layer will have symmetric sigmoid 

activation functions for classification problems, and linear activation functions 

for regression problems. 

• TasCas — the 'eta' values are normalised within the calls to the update 

(Quickprop) function. The output eta is divided by the number of training 

examples, while the input eta is divided by the total training examples 

multiplied by the maximum number of inputs to each candidate. The input eta 

normalisation should possibly be changed when a limited connected hidden 

node is being trained — this has not been examined. 

E.7.3 Error and correlation formulas 

This section refers to differences between Fahlman's publicly released code [Crowder & 

Fahlman 1991] and this simulator. 

• The error being used at the moment is 

ek = yk - tk 
	 (E.1) 

in classout, where e is the error, y is the actual output, t the expected output, and 

k the output layer index. Fahlman often uses 

ek =- (yk - t1). derivactprime(yk) 	 (E.2) 

for the error, sum of errors and sum of squared error in the calculation of the 

correlation and derivative of the correlation, where derivactprime is the 

derivative of the activation function with 0.1 offset. This changes the 'true' 

error — effectively removing the sigmoid in classification problems, and so 

both would have to be stored for patience calculations. Fahlinan refers to the 

error criteria used in this simulator as the raw error. These differences should 

be taken into account when examining formulas E.4 and E.5 below. 

• The mean squared error (MSE) used in this simulator is: 
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( 
MSE = k=1 p=1 kYkp tkp) 

m • d 

where p is the index to d the number of patterns, and k is the index to m the 
number of outputs. Fahlman's simulator does not divide the MSE by the 

number of training examples and by the number of outputs. This should not 

have an effect, though, as the patience calculations are performed with 

reference to the percentage change. The changes made to the output weights 
are the same in both simulators. 

• Fahlman uses an error index for determining when training has been completed 
in regression problems, rather than the simple MSE used in this simulator. The 
MSE is normalised to give relatively the same error for different training sets. 
The formula for this (using E.3 above) is: 

Error Index = %/MSE 
 sdtr 

where sdtr is the standard deviation of the training set as defined by: 

(E.3) 

(E.4) 

sdtr = 
tip .M.d±( 

k=1 p=1 	 k=1 p = 1 
tkpi 

(E.5) m-cl(m•d±1) 

 

• Error normalisation is implemented for correlation values. This amounts to 

having the following formulas instead of those given in Fahlman's Cascor paper 
[Fahlman & Lebiere 1989[: 

S = 
k=1 

 

=1 
V

P 
 .Ek

P 
 ±V.Ek 

p  

 

(E.6) 

 

2 Ek  
k=1 p=1 	

F,  

 

     

as 	± a, (Ekp  ±ric). 	 .xip 	
(E.7) 

k = 1 p=1 
E ,

2  

where i is the index for the input xi, w is the weight to the candidate from the 

input layer. This is the same as the publicly released code. 

E.8 Planned improvements 

The following are possible future improvements to the code. Generally they will not be 
implemented until they are needed: 

• full implementation of the Extended Quinlan format; 
• cross-validation of networks; 
• proper handling of validation sets; 
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• even class selection; 

• allow for separate training and test set results; 

• reading in previously generated networks; 

• allow a configuration file to be read in as well as having command line options; 

• update with improved algorithms for training and pruning; 

• getopt code is ad hoc is some respects — need a more consistent system; 

• change initcand so that different activation functions are associated with 

different limited connection strategies — more than one of the techniques is 

used at the one time (needs priorities for candidate groups: eg train activation 

types in sub-pools regardless of connections); 

• printing of doubles in header to the appropriate number of decimal places; 

• add summary reporting on different activation functions and connection 

strategies when used; and 

• more consistent output and graphical output of results. 

E.A Extended Quinlan format 

One of the most systematic formats for inductive learning data is Ross Quinlan's C4.5 data 

format [Quinlan 19934 This is a user friendly way of expressing and documenting data, 

which has the additional benefit of being a style that is independent of the learning system. 

Consider a problem with three classes (red, blue and green) separated by two attributes 

(height, which is a numerical value; and size, which is an unordered discrete attribute with 

two possible values small and large). The description of this problem would be expressed 

as the following '.names' information file: 

red, blue, green. 

height: continuous. 

size: small, large. 

Both training and test examples (extensions '.data' and '.test' respectively) are then 

expressed in the following form: 

-3.67, small, red 

The major problem with the format is that there is no method for expressing regression style 

problems — Quinlan's format is specifically for classification problems. This has lead to the 

proposed Extended Quinlan Format for the system output which encompasses the 

classification style: 

Problem ::= Subproblem { ";" Subproblem } "." 

Subproblem ::= [Subprobname] Values 

Subprobname ::= ident 

Values ::= "continuous" I ident ( "," ident ) 
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This defines additions to the Quinlan format to allow for regression problems as well as 
multiple classifications or regressions stemming from the same data, where that may be 
required: 

continuous. 	 (simple regression) 
depth: continuous. 	 (named regression) 
depth: continuous; height: continuous. 	(multiple regression) 
depth: continuous; colour: red, green, blue. 	(classification & regression) 

As can be seen, the labelling of the sub-problems would be optional, but it would aid in the 

data documentation. The attribute descriptions would have the same form, and examples 

would be appended with specific results for each sub-problem. It is then up to each learning 

system how the data is handled, and the beauty of this system is that all prior Quinlan 
format files remain valid. 

This may be further expanded to account for time series problems by replicating the 

attributes required for each time frame in the example, separating this information by a 

semicolon as opposed to a comma. Consider the previous example, if this were a time series 

problem, the header file would remain the same but examples would be in the following 
form: 

-3.67, small; 0.45, small; 4.78, large, green 

This last example has three time frames ending in the classification green. 

A final extension would be to allow for the explicit definition of a validation set [Prechelt 

19944 Though it is quite possible to randomly select a validation set from the training set, 

in some cases it may be preferable to have an explicitly defined validation set, hence it is 

proposed to reserve the extension '.valid' for this purpose, using the same format as 
examples from the training and test sets. 

These extensions do not include those necessary for ordered discrete attributes and classes 
or for partial orderings. These need to be examined in the future. 

E.B Options summary 

This appendix summarises all the possible options. The headings 'Option', 'Subopt' and 

'Params' refer to the main option letter, the sub-option letter and the format of any required 

parameters respectively. A dash indicates that no value is required, brackets indicate an 

optional part of the flag, and the symbols '#' and '#.#' represent integer and floating point 

number parameters respectively. Note that upper case letters refer to the candidate options, 

whereas lower case letters refer to the output layer training options. With output options 

upper case letters mean more information is produced than when the lower case option is 
used. 
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Option Subopt Params Description 
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#.# eta values 

m/M #.# mu values 

0/0 #.# activation function offsets 

S stopping layer training 

#.# patience percentage change 

# patience period length (epochs) 

# maximum epochs for layer training 

S stopping network training 

# maximum number of hidden nodes installed 

#.# node patience percentage change 

# node patience period length (hidden nodes) 

— node patience rollback of unneeded nodes 

#.# maximum allowable error for regression 

#.# percentage allowable error bits 	(class.) 

#.# error threshold for error bits 

#.# change to expected value range 

c candidate training options 

# number of nodes in candidate pool 

— individual candidate training 

— subgroup (homogeneous) candidate training 

— summation rather maximum candidate selection 

#.# percentage forcing usage of non-default nodes 

[#1 Gaussian activation functions 

[#) sigmoid activation functions 

[in asymmetric sigmoid activation functions 

(#1 tanh activation functions 

[4#1 all activation functions distributed 

[#1 fully connected candidate nodes 

[#] layered candidate nodes 

[#] minimum shortcut candidate nodes 

[#] randomly connected candidate nodes 

# number of random connections (see -cr) 

(in all connection strategies distributed 

p #.# absolute Karnin pruning 

— percentage pruning when used with -pk/K 

#.# patience percentage pruning 

— prune output layer after every training phase 

#.# weight decay 

— use weight decay to decay smaller terms more 

w output and writing options 

— header information 

— final network information 

— summary information over trials 

— final information for all trials 	(tab spaced) 

— write weights to file 

— output table of connections 

— output final results for each example 

— output final confusion matrices sets 

— output actual and expected output vectors 

— output best vectors of network 

— output node/epoch training information 

— output node/epoch candidate training info. 
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Option Subopt Params Description 

t 

R 

— 

— 

# 

— 

number of trials required 

clock-seeded random numbers for trials 

E.0 Full header information 

This appendix details the header information: italics indicates that the detail may vary, '#' 
indicates a integer value, '#.#' indicates a floating point number, brackets indicate options, 
and 'a' and 'b' lines may not appear. 

Header Details Line Description 

tascas 1 executable name 

spiral 1 data set name 

(v4.0) 1 version number 

Train # 2 total training examples 

Test # 2 total testing examples 

Inputs # 2 total number of network inputs 

Outputs # 2 total number of network outputs 

[OI]Eta #.# 3/3a learning rate 

[OI]MU #.# 3/3a growth factor 

[OI]Len # 3/3a patience period (epochs) 

[OI]Perc #.# 3/3a patience percentage change 

[OI]Ep # 3/3a maximum number of epochs per training phase 

[OI)Off #.# 3/3a activation function offset 

[OI]Dcy #.# 3b standard weight decay parameter 

[OI)SmDcy #.# 3b small weight decay parameter 

[OI]Prn #.# 3b Karnin pruning level 

[OI]PrnPerc #.# 3b Karnin percentage pruning level 

[OI)PPerc #.# 3b Patience pruning percentage 

NLen # 4 node patience period (nodes) 

NPerc #.# 4 node patience percentage change 

Rollback 4 node patience rollback used 

MaxCand # 4 maximum number of candidates 

MinError #.# 4 minimum error for regression problems 

PErrBits #.# 4 percentage of allowable error bits 

ErrTh #.# 4 error threshold 

ExpVBuff #.# 4 expected value buffer 

PrnEvery0 4 prune output layer after every training phase 

Trials # 4 total trials to be conducted 

Clock seed 4 whether trial or trials clock-seeded 

Pool # 4a candidate pool size 

Gaussian # 4a number of Gaussian nodes 

Sigmoid # 4a number of symmetric sigmoid nodes 

TanH # 4a number of tanh nodes 

ASymSig # 4a number of asymmetric sigmoid nodes 

Full # 4a number of fully connected nodes 

Layered # 4a number of layered nodes 

MinShort # 4a number of nodes with minimal shortcuts 

RanConn # 4a number of randomly connected nodes 

(# links) 4a number of connections per randomly connected node 

(rand) 4a random connections per randomly connected node 
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Header Details Line Description 

SumCorr 

IndCandPat 

SubCandPat 

Forcing #.# 

(def string) 

4 

summation (not max) of candidate correlations 

independent candidate training 

subgroup candidate training 

forcing level of non-default candidates 

default node features 

E.D Complete examples 

Here two runs are detailed using the simulator on the Two Spirals data set [Fahlman & 

Lebiere 1989]. 

E.D.1 Example one 

For an example of how the program is used, consider the following training command to 

recognise the Two Spirals data set: 

tascas spiral -whtf -pk -pK0.05 -Sm20 -cn10 

This trains a network on the Two Spirals data set whilst producing the header information, 

the training progress after each layer training phase is completed, and the final results. It 

uses Karnin pruning on the output layer with the default setting, prunes the input (hidden 

node) layer with setting 0.05, can install a maximum of twenty hidden nodes, and uses a 

candidate pool of ten nodes. 

The output is as follows: 

tascas spiral (v4.0) 

Train 192 Test 192 Inputs 2 Outputs 2 

OEta 0.35 0Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10 

IEta 1.00 IMu 1.75 ILen 50 IPerc 0.03 IEp 500 

OPrn 0.00 IPrn 0.05 

MaxCand 20 PErrBits 0.00 ErrTh 0.40 

Pool 10 Sigmoid 10 	Full 10 

0 56 130176 0.24673 50.00 0.24672 50.00 

1 186 1622016 0.10293 S 

1 236 1812096 0.09293 S 

1 296 1998144 0.23948 55.21 0.24084 54.17 

2 539 5722944 0.13779 S 

2 589 6141120 0.14147 S 

2 654 6393024 0.22662 62.50 0.22748 63.54 

3 917 11433024 0.17465 S 

3 967 11965248 0.17541 S 

3 1044 12323136 0.20485 64.58 0.21056 64.58 

4 1382 20099136 0.18554 S 

4 1432 20688384 0.16852 S 

4 1507 21095232 0.18879 67.71 0.19856 65.62 

5 1744 27452352 0.15802 S 

5 1835 28112640 0.11091 S 
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• 	5 1915 28607808 0.18091 67.71 0.19109 67.71 

6 2226 38146368 0.21388 S 

6 2301 38918784 0.18378 S 

6 2368 39385728 0.16850 70.83 0.17549 68.75 

7 2534 45105408 0.28347 S 

7 2686 46327104 0.25419 S 

7 2801 47215104 0.13641 75.00 0.14902 71.88 

8 2927 52034304 0.16445 S 

8 3019 52772160 0.16733 S 

8 3105 53503872 0.12508 76.04 0.14417 73.96 

9 3424 66957312 0.19930 S 

9 3513 67806912 0.15677 S 

9 3606 68669376 0.11614 79.17 0.13453 75.00 

10 3987 86202816 0.24180 S 

10 4126 88011072 0.22100 S 

10 4263 89384640 0.10069 85.42 0.12006 81.25 

11 4497 101040960 0.17079 S 

11 4605 101701440 0.11558 S 

11 4695 102675072 0.09554 84.38 0.11709 82.29 

12 5185 128990592 0.32415 S 

12 5311 130677312 0.29859 S 

12 5572 133691520 0.06989 92.71 0.10454 86.46 

13 5936 154629120 0.45196 S 

13 6039 156636480 0.45693 S 

13 6516 162505536 0.02738 95.83 0.09921 89.58 

14 6727 175438656 0.29196 S 

14 6777 176065920 0.29349 S 

14 7210 181726464 0.01881 97.92 0.09266 89.58 

15 7363 191681664 0.39839 S 

15 7429 192436224 0.39961 S 

15 7929 199355904 0.00859 98.96 0.08356 91.67 

16 8429 233881344 0.72292 S 

16 8517 234788544 0.74221 S 

16 8811 239087616 0.00298 100.00 0.07897 92.71 

16 8811 239094720 0.00298 100.00 0.07897 92.71 

Final Network Results : 

training %correct : 100.00 

testing %correct : 92.71 

hidden nodes : 16 

limited hidden nodes : 16 

layers : 11 

total epochs : 8811 

total conn. cross. : 239094720 

total connections : 109 

maximum connections : 206 

The header information is followed by a blank line, then this is followed by the actual 
training information - firstly the output layer training without any hidden nodes, then two 

phases of candidate training, the first being training before pruning occurs, the second after 

pruning has been completed. This is followed by the results of training the output layer 

with the added hidden unit - selected from the candidate pool based on its performance. 
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This process cycles until one hundred percent is achieved on the training set, whereby the 

output layer is pruned and retrained. Finally, after another blank line, the final report of the 
training run is produced. 

E.D.2 Example two 

Another run on the Two Spirals data set may look like the following: 

tascas spiral -whs -t50 -R -cn10 -c15 -CI -cF1.1 

This writes to the screen the header information and summary information of the fifty clock-

seeded trials, which involve using a pool of ten candidates, individual candidate patience, 

forming layers with half the nodes and forcing the usage of layered nodes by an extra ten 

percent. 

The output produced by this command is as follows: 

tascas spiral (v4.0) 

Train 192 Test 192 Inputs 2 Outputs 2 

OEta 0.35 0Mu 1.75 OLen 50 OPerc 0.01 0Ep 500 00ff 0.10 

IEta 1.00 LMu 1.75 ILen 50 IPerc 0.03 IEp 500 

MaxCand 25 PErrBits 0.00 ErrTh 0.40 Trials 50 Clock seed 

Pool 10 Sigmoid 10 Full 5 Layered 5 

IndCandPat 	Forcing 1.1 

Summary Statistics : 

Trn% 	Tst% 

(def full symsig) 

Hid 	LimH 	Lay TEps TCC TCn MxC 

Mean 99.95 95.45 14.4 5.5 9.9 32826 129383163 170.5 180.4 

MAD 0.10 1.25 2.38 2.16 1.03 3568.6 26014314 44.91 50.29 

SD 0.22 1.63 3.46 3.04 1.41 4436.8 34919506 68.20 77.04 

Coy 0.22 1.71 24.06 55.45 14.23 13.52 26.99 40.00 42.71 

Skew -3.99 -0.53 1.83 1.34 0.14 0.68 1.23 2.17 2.17 

Kurt 14.76 0.19 2.87 1.74 0.53 -0.29 0.99 4.19 4.17 

CI +/- 0.06 0.45 0.96 0.84 0.39 1229.82 9679193.24 18.90 21.35 

Median 100.00 95.31 13.5 5.0 10.0 31443 120590016 148.5 158.0 

Min 98.96 90.62 11 1 7 25544 83701824 111 116 

Max 100.00 97.92 25 15 14 43029 232353408 403 431 

IQR 0.00 1.56 3.00 3.00 2.00 4978.0 37061568 49.00 54.00 

195 



F References 

Adams A. (1994) A neural network local minimum testbed, in 1994 International Symposium 
on Artificial Neural Networks, IEEE, pp57-62. 

Adams A and Jones P. (1992) Function evaluation and interpolation using a 

backpropagation artificial neural network, in The Fifteenth Australian Computer Science 
Conference, Gupta G and Keen C, Editors, Department of Computer Science, University 

of Tasmania, pp13-25. 

Adams A and Lewis C. (1995) Neural network function evaluation and the sigmoid prime 

offset, in The Sixth Australian Conference on Neural Networks, Charles M and Latimer C, 

Editors, University of Sydney, Electrical Engineering, pp229-233. 

Adams A and Waugh S. (1995) Function evaluation and the Cascade-Correlation 

architecture, in IEEE International Conference on Neural Networks, IEEE and Causal 

Productions, pp942-946. 

Ash T. (1989) Dynamic node creation in backpropagation networks, Connection Science, 1 (4): 

365-375. 

Baffes PT and Zelle JM. (1992) Growing layers of perceptrons: introducing the extentron 

algorithm, in International Joint Conference on Neural Networks, IEEE, pp392-397. 

Baluja S and Fahlman SE. (1994) Reducing network depth in the cascade-correlation learning 
architecture, School of Computer Science, Carnegie Mellon University, TR CMU-CS-94- 

209. 

Baum EB. (1989) A proposal for more powerful learning algorithms, Neural Computation, 1: 
201-207. 

Bolt GR. (1992) Fault tolerance in artificial neural networks: are neural networks inherently fault 
tolerant?, University of York, D.Phil. thesis. 

Bratko I. (1990) Prolog programming for artificial intelligence, 2nd ed., Addison-Wesley. 

Breiman L, Friedman JE, Olshen RA and Stone CJ. (1984) Classification and regression trees, 
Wadsworth International Group: Belmont, California. 

Burkitt AN and Ueberholz P. (1993) Pruning feed-forward neural networks, in The Fourth 
Australian Conference on Neural Networks, Leong P and Jabri M, Editors, Sydney 

University Electrical Engineering, pp185-188. 

197 



Burrows JF and Craig DH. (1994) Lyrical drama and the "Turbid Mountebanks": styles of 

dialogue in Romantic and Renaissance tragedy, Computers and the Humanities, 28: 63- 

86. 

Caruana R and Freitag D. (1994) Greedy attribute selection, in The Eleventh International 

Conference on Machine Learning, Cohen WW and Hirsh H, Editors, Morgan Kaufmann, 

pp28-36. 

Catlett J. (1992) Peepholing: choosing attributes efficiently for megainduction, in The Ninth 
International Workshop on Machine Learning, Sleeman D and Edwards P, Editors, 

Morgan Kaufmann, pp49-54. 

Chauvin Y. (1988) A back-propagation algorithm with optimal use of hidden units, in 

Advances in Neural Information Processing Systems /, Touretzky DS, Editor, Morgan 

Kaufmann, pp519-526. 

Chung FL and Lee T. (1992) A node pruning algorithm for backpropagation networks, 

International Journal of Neural Systems, 3 (3): 301-314. 

Collier PA. (1995) Choosing between back propagation neural networks and C4.5 for 

different types of data, ACS AISIG (Vic) Newsletter, 8 (3): 3-10. 

Collier PA and Waugh S. (1994) Characteristics of data suitable for learning with 

connectionist and symbolic methods, in The 7th Australian Joint Conference of Artificial 
Intelligence, Zhang C, Debenham J and Lukose D, Editors, World Scientific, pp116-123. 

Cortes C, Jackel LD and Chiang W-P. (1995) Limits on learning machine accuracy imposed 

by data quality, in Advances in Neural Information Processing Systems 7. 

Crowder RS and Fahlman SE. (1991) C implementation of the Cascade-Correlation learning 

algorithm, Carnegie Mellon University, 1.32, URL: 

ftp:/ / pt.cs.crnu.edu  / afs / cs/ project/ connect/ code. 

de le Maza M. (1991) SPLITnet: dynamically adjusting the number of hidden units in a 

neural network, in Artificial Neural Networks, Kohonen T, Makisara K, Simula 0 and 

Kangas J, Editors, North-Holland, pp647-651. 

Deffuant G. (1995) An algorithm for building regularized piecewise linear discrimination 

surfaces: the perceptron membrane, Neural Computation, 7: 380-398. 

Devillers 0, Golin M, Kedem K and Schirra S. (1994) Revenge of the dog: queries on Voronoi 

diagrams of moving points, Institut National de Recherche en Informatique et en 

Automatique, TR 2329. 

Duda RO and Hart PE. (1973) Pattern classification and scene analysis, Wiley-Interscience. 

198 



Dunne RA, Campbell NA and Kiiveri HT. (1992) Task based pruning, in The Third Australian 

Conference on Neural Networks, Leong P and Jabri M, Editors, Sydney University 

Electrical Engineering, pp166-169. 

Elomaa T. (1994) In defense of C4.5: notes on learning one-level decision trees, in The 

Eleventh International Conference on Machine Learning, Cohen WW and Hirsh H, Editors, 

Morgan Kaufmann, pp62-69. 

Fahlman SE. (1988a) An empirical study of learning speed in back-propagation networks, Carnegie 

Mellon University, TR CMU-CS-88-162. 

Fahlman SE. (1988b) Fast-learning variations on back-propagation: an empirical study, in 

Proceedings of the 1988 Connectionist Models Summer School, Touretzky D, Hinton G and 

Sejnowksi T, Editors, Morgan Kaufmann, pp38-51. 

Fahlman SE. (1990) Summary of NIPS-90 workshop: constructive and destructive learning 

algorithms, Carnegie-Mellon University, neuroprose archive. 

Fahlman SE. (1993) Private communication. 

Fahlman SE. (1994) Private communication. 

Fahlman SE and Lebiere C. (1989) The cascade-correlation learning architecture, in Advances 

in Neural Information Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann, 

pp525-532. 

Fiesler E. (1994) Comparative bibliography of ontogenic neural networks, in International 

Conference on Artificial Neural Networks. 

Frean M. (1990) The Upstart algorithm: a method for constructing and training feedforward 

neural networks, Neural Computation, 2: 198-209. 

Freeman T. (1994) Private communication. 

Gallant SI. (1986) Three constructive algorithms for network learning, in The Eighth Annual 

Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, pp652-660. 

Geman S. Bienenstock E and Doursat R. (1992) Neural networks and the bias/ variance 

dilemma, Neural Computation, 4: 1-58. 

Gorodkin J, Hansen LK, Krogh A, Svarer C and Winther 0. (1993) A quantitative study of 

pruning by optimal brain damage, International Journal of Neural Systems, 4 (2): 159-169. 

Hamamoto M, Kamruzzaman J and Kumagai Y. (1992) A study on generalization properties 

of artificial neural network using Fahlman and Lebiere's learning algorithm, in 

199 



Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland, 

pp1067-1070. 

Hamey LGC. (1991) Benchmarking feed-forward neural networks: models and measures, in 

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and 

Lippmann R, Editors, Morgan Kaufmann, pp1167-1174. 

Hancock PJB. (1992) Pruning neural nets by genetic algorithm, in Artificial Neural Networks 2, 

Aleksander I and Taylor J, Editors, North-Holland, pp991-994. 

Hanson SJ. (1989) Meiosis networks, in Advances in Neural Information Processing Systems 2, 

Touretzky DS, Editor, Morgan Kaufmann, pp533-541. 

Hanson SJ and Pratt LY. (1988) Comparing biases for minimal network construction with 

back-propagation, in Advances in Neural Information Processing Systems /, Touretzky DS, 

Editor, Morgan Kaufmann, pp177-185. 

Hassibi B and Stork DG. (1992) Second order derivatives for network pruning: Optimal 

Brain Surgeon, in Advances in Neural Information Processing Systems 5, Morgan 

Kaufmann, pp164-171. 

Hassibi B, Stork DG and Wolff G. (1993) Optimal Brain Surgeon: extensions and 

performance comaprisons, in Advances in Neural Information Processing Systems 6, 

Cowan JD, Tesauro G and Alspector J, Editors, Morgan Kaufmann, pp263-270. 

Hertz J, Krogh A and Palmer RG. (1991) Introduction to the theory of neural computation, 

Addison-Wesley. 

Hickey RJ. (1992) Artificial universes — towards a systematic approach to evaluating 

algorithms which learn from examples, in The Ninth International Workshop on Machine 

Learning, Sleeman D and Edwards P, Editors, Morgan Kaufmann, pp196-205. 

Holte RC. (1993) Very simple classification rules perform well on most commonly used 

datasets, Machine Learning, 11: 63-91. 

Hwang J-N, Lay S-R, Maechler M, Martin RD and Schimert J. (1994) Regression modeling in 

back-propagation and projection pursuit learning, IEEE Transactions on Neural 

Networks, 5 (3): 342-353. 

Hwang J-N, You S-S, Lay S-R and Jou I-C. (1993) What's wrong with a cascaded correlation 

learning network: a projection pursuit learning perspective, neuroprose archive. 

Izui Y and Pentland A. (1990) Analysis of neural networks with redundancy, Neural 

Computation, 2: 226-238. 

James M. (1985) Classification algorithms, Collins: London. 

200 



Ji C, Snapp RR and Psaltis D. (1990) Generalizing smoothness constraints from discrete 

samples, Neural Computation, 2: 188-197. 

John GH. (1995) Cascade Correlation: derivation of a more numerically stable update rule, 

in IEEE International Conference on Neural Networks, IEEE and Causal Productions, 

pp1126-1129. 

Karnin ED. (1990) A simple procedure for pruning back-propagation trained neural 

networks, IEEE Transactions on Neural Networks, 1 (2): 239-242. 

Kendall GD and Hall TJ. (1992) OcIdiam's nets: self-adaptive minimal neural networks, in 

Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland, pp183— 

186. 

Kendall GD and Hall TJ. (1993) Optimal network construction by minimum description 

length, Neural Computation, 5: 210-212. 

Kira K and Rendell LA. (1992) A practical approach to feature selection, in The Ninth 
International Workshop on Machine Learning, Sleeman D and Edwards P, Editors, 

Morgan Kaufmann, pp249-256. 

Klagges H and Soegtrop M. (1992) Limited fan-in random wired cascade-correlation, IBM.. 

Research Division, Physics Group Munich, neuroprose archive. 

Kohonen T, Chrisley R and Barna G. (1988) Statistical pattern recognition with neural 

networks: benchmarking studies, in Neural networks from models to applications, • • 
Personnaz L and Dreyfus G, Editors, IDSET, Paris, pp160-167. 

Krogh A and Hertz JA. (1991) A simple weight decay can improve generalisation, in 

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and 

Lippmann RP, Editors, Morgan Kaufmann, pp950-957. 

Le Cun Y, Denker JS and Solla SA. (1989) Optimal Brain Damage, in Advances in Neural 
Information Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann, pp598-605. 

Lee Y and Lippmann RP. (1989) Practical characteristics of neural network and conventional 

pattern classifiers on artificial and speech problems, in Advances in Neural Information 

Processing Systems 2, Touretzky DS, Editor, Morgan Kaufmann, pp168-177. 

Levin A, Leen TK and Moody JE. (1994) Fast pruning using principle components, in 

Advances in Neural Information Processing Systems 6, Cowan J, Tesauro G and Alspector 

J, Editors, Morgan Kaufmann, pp35-42. 

Lippmann RP. (1987) An introduction to computing with neural nets, IEEE Transactions on 

Acoustics, Speech and Signal Processing, 4 (2): 4-22. 

201 



Lister R. (1994) The problem with Quickprop's weight independence assumption, in The 
Fifth Australian Conference on Neural Networks, Tsoi AC and Downs T, Editors, 

University of Queensland Electrical and Computer Engineering, pp5-8. 

Lister R and Stone JV. (1995) Error functions and conjugate gradient back propagation, in 

The Sixth Australian Conference on Neural Networks, Charles M and Latimer C, Editors, 

University of Sydney, Electrical Engineering, pp130-133. 

Littmann E and Ritter H. (1992) Cascade networks architectures, in International Joint 
Conference on Neural Networks, IEEE, pp398-404. 

Lounis H and Bisson G. (1991) Evaluation of learning systems: an artificial data-based 

approach, in European Working Session on Learning, Kodratoff Y, Editor, Springer-Verlag 

Lecture Notes in Artificial Intelligence, 482, pp463-481. 

Marchand M, Golea M and Rujian P. (1990) A convergence theorem for sequential learning 

in two-layer perceptrons, Europhysics Letters, 11: 487-492. 

Matthews RAJ and Merriam TVN. (1993) Neural computation in Stylometry I: an 

application to the works of Shakespeare and Fletcher, Literary and Linguistic Computing, 
8 (4): 203-209. 

Merriam TVN and Matthews RAJ. (1994) Neural computation in Stylometry II: an 

application to the works of Shakespeare and Marlowe, Literary and Linguistic 
Computing, 9 (1): 1-6. 

Mezard M and Nadal J-P. (1989) Learning in feedforward layered networks: the tiling 

algorithm, Journal of Physics A: Mathematical and General, 22: 2191-2203. 

Moller MF. (1993) A scaled conjugate gradient algorithm for fast supervised learning, Neural 
Networks, 6: 525-533. 

Mozer MC and Smolensky P. (1988) Skeletonization: a technique for trimming the fat from a 

network via relevance assessment, in Advances in Neural Information Processing Systems 
1, Touretzky DS, Editor, Morgan Kaufmann, pp107-115. 

Mozer MC and Smolensky P. (1989) Using relevance to reduce network size automatically, 

Connection Science, 1 (1): 3-16. 

Murase K, Matsunaga Y and Nakade Y. (1991) A back-propagation algorithm which 

automatically determines the number of association units, in International Joint 

Conference on Neural Networks, IEEE, pp783-788. 

202 



Murphy PM and Aha DW. (1994) LICI Repository of machine learning databases, University of 

California, Irvine, Department of Information and Computer Science, URL: 

ftp:/ /ics.uci.edu/ pub/machine-learning-databases/. 

Nash WI, Sellers TL, Talbot SR, Cawthorn AJ and Ford WB. (1994) The population biology of 
Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast 
and the Islands of Bass Strait, Sea Fisheries Division, Marine Research Laboratories — 

Taroona, Department of Primary Industry and Fisheries, Tasmania, TR 48. 

Nolfi S and Parisi D. (1991) Growing neural networks, Department of Cognitive Processes and 

Artificial Intelligence, Institute of Psychology, National Research Council, Rome, TR 

PCIA-91-15, neuroprose archive. 

Nowlan SJ and Hinton GE. (1992) Simplifying neural networks by soft weight-sharing, 

Neural Computation, 4: 473-493. 

Okabe A, Boots B and Sugihara K. (1992) Spatial tessellations: concepts and applications of 
Voronoi diagrams, John Wiley and Sons: Chichester. 

Platt J. (1991) A resource-allocating network for function interpolation, Neural Computation, 
3: 213-225. 

Prechelt L. (1994a) PROBEN1 — a set of neural network benchmark problems and benchmarking 
rules, Fakultat far Informatik, Universitat Karlsruhe, TR 21/ 94. 

Prechelt L. (1994b) A study of experimental evaluations of neural network learning algorithms: 
current research practice, Fakultat Iiir Informatik, Universitat Karlsruhe, TR 19/94. 

Quinlan J. (1987) Simplifying decision trees, International Journal of Man-Machine Studies, 26:. 

Quinlan JR. (1986a) The effect of noise on concept learning, in Machine learning: an artificial 
intelligence approach, Michalski RS, Carbonell JG and Mitchell TM, Editors, Morgan 

Kaufmann: Los Altos, California, Vol. 2, pp149-166. 

Quinlan JR. (1986b) Induction of decision trees, Machine Learning, 1 (1): 81-106. 

Quinlan JR. (1993a) C4.5: programs for machine learning, Morgan Kaufmann: San Mateo, 

California. 

Quinlan JR. (1993b) Comparing connectionist and symbolic learning methods, in 

Computational learning and natural learning systems: constraints and prospects, Hanson S, 

Drastal G and Rivest R, Editors, MIT Press: Cambridge, Massachusetts. 

Ramachandran S and Pratt LY. (1991) Information measure based skeletonisation, in 

Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ and 

Lippmann RP, Editors, Morgan Kaufmann, pp1080-1087. 

203 



Reed R. (1993) Pruning algorithms — a survey, IEEE Transactions on Neural Networks, 4 (5): 
3-16. 

Refenes AN and Vithlani S. (1991) Constructive learning by specialisation, in Artificial 
Neural Networks, Kohonen T, Makisara K, Simula 0 and Kangas J, Editors, North-

Holland, pp923-929. 

Rendell L and Cho H. (1990) Empirical learning as a function of concept character, Machine 
Learning, 5: 267-298. 

Rognvaldsson T. (1993) Pattern discrimination using feedforward networks: a benchmark 

study of scaling behaviour, Neural Computation, 5: 483-491. 

Rumelhart DE, Hinton GE and Williams RJ. (1986) Learning internal representations by 

error propagation, in Parallel Distributed Processing, Rumelhart DE and McClelland JL, 

Editors, MIT Press: Cambridge, Massachusetts, Vol. 1, pp318-362. 

Segee BE and Carter MJ. (1991) Fault tolerance of pruned multilayer networks, in 

International Joint Conference on Neural Networks, IEEE, pp447-452. 

Shamir N, Saad D and Marom E. (1993) Neural net pruning based on functional behaviour 

of neurons, International journal of Neural Systems, 4 (2): 143-158. 

Sietsma J and Dow RJF. (1988) Neural net pruning — why and how, in IEEE International 
Conference on Neural Networks, IEEE, pp325-333. 

Sietsma J and Dow RJF. (1991 ) Creating artificial neural networks that generalise, Neural 
Networks, 4: 67-79. 

Simon N. (1993) Constructive supervised learning algorithms for artificial neural networks, Delft 
University of Technology, Masters thesis. 

Simon N, Corporaal H and Kerckhoffs E. (1992) Variations on the cascade-correlation learning 
architecture for fast convergence in robot control, Delft University of Technology, 

neuroprose archive. 

Singh S and Tweedie FJ. (1995) Neural networks and disputed authorship: new challenges, 

in 4th International Conference on Artificial Neural Networks. 

Sjogaard S. (1991) A conceptual approach to generalisation in dynamic neural networks, Aarhus 

University, Denmark, Masters thesis. 

Solla SA. (1988) Learning and generalization in layered neural networks: the contiguity 

problem, in Neural networks from models to applications, Personnaz L and Dreyfus G, 

Editors, IDSET, Paris, pp168-177. 

204 



Squires CS and Shavlik JW. (1991) Experimental analysis of aspects of the Cascade-Correlation 

learning architecture, Machine Learning Research Group, Computer Sciences 

Department, University of Wisconsin — Madison, TR 91-1, neuroprose archive. 

Stone JV and Lister R. (1994) On the relative time complexities of standard and conjugate 

gradient back propagation, in The Fifth Australian Conference on Neural Networks, Tsoi 

AC and Downs T, Editors, University of Queensland Electrical and Computer 

Engineering, pp242-245. 

Thimm G and Fiesler E. (1995) Evaluating pruning methods, IDIAP, Switzerland, Preprint of 

paper accepted for publication by ISANN'95. 

Thodberg HH. (1991) Improving generalization of neural networks through pruning, 

International Journal of Neural Systems, 1 (4): 317-326. 

Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, De Jong K, Dzeroski S. Fisher D, 

Fahlman SE, Hamann R, Kaufman K, Keller S. Kononenko I, Kreuziger J, Michalski RS, 

Mitchell T, Pachowicz P. Reich Y, Vafaie H, Van de Welde W, Wenzel W, Wnek J and 

Zhang J. (1991) The MONK'S problems — a performance comparison of different learning 

algorithms, Carnegie Mellon University, TR CMU-CS-91-197. 

Tolstrup N. (1995) Pruning of a large network by Optimal Brain Damage and Surgeon: an 

example from biological sequence analysis, International Journal of Neural Systems, 6 (1): 

31-42. 

Tsaptsinos D, Mirzai AR and Leigh JR. (1992) Matching the topology of a neural net to a 

particular problem: preliminary results using correlation analysis as a pruning tool, in 

Artificial Neural Networks 2, Aleksander I and Taylor J, Editors, North-Holland, pp957— 

960. 

Vamplew P and Adams A. (1991) Real world problems in backpropagation: missing values and 

generalisability, Artificial Neural Network Research Group, Department of Computer 

Science, University of Tasmania, TR R91-4. 

Wang S-D and Hsu C-H. (1991) A self growing learning algorithm for determining the 

appropriate number of hidden nodes, in International Joint Conference on Neural 

Networks, IEEE, pp1098-1104. 

Waugh S. (1994a) Dynamic learning algorithms, Artificial Neural Network Research Group, 

Department of Computer Science, University of Tasmania, TR R94-2. 

Waugh S. (1994b) Extensions to Cascade-Correlation training, Artificial Neural Network 

Research Group, Department of Computer Science, University of Tasmania, TR R94-8. 

205 



Waugh S. (1995a) Extensions to Cascade-Correlation training, in The Sixth Australian 

Conference on Neural Networks, Charles M and Latimer C, Editors, University of Sydney, 

Electrical Engineering, pp21-24. 

Waugh S. (1995b) Generating data sets for benchmarking, in IEEE International Conference on 

Neural Networks, IEEE and Causal Productions, pp2145-2148. 

Waugh S. (1995c) TasCas — a Cascade-Correlation simulator, Artificial Neural Network 

Research Group, Department of Computer Science, University of Tasmania, TR R95-9, 

URL: ftp:/ / ftp.cs.utas.edu.au  / pub/ ANNRG/ Software/ tascas4.0.tar.gz. 

Waugh S and Adams A. (1993) Comparison of inductive learning of classification tasks by neural 

networks, Artificial Neural Network Research Group, Department of Computer Science, 

University of Tasmania, TR R93-5, extended abstract appears in The 6th Australian 

Joint Conference on Artificial Intelligence, World Scientific, (1993), p447. 

Waugh S and Adams A. (1994) Connection strategies in Cascade-Correlation, in The Fifth 

Australian Conference on Neural Networks, Tsoi AC and Downs T, Editors, University of 

Queensland, Electrical and Computer Engineering, pp1-4. 

Waugh S and Adams A. (1995) Pruning within Cascade-Correlation, in IEEE International 
Conference on Neural Networks IEEE and Causal Productions: Perth, WA. pp1206-1210. 

Weigend AS, Rumelhart DE and Huberman BA. (1990) Generalization by weight-

elimination with application to forcasting, in Advances in Neural Information Processing 
Systems 3, Lippmann RP, Moody JE and Touretzky DS, Editors, Morgan Kaufmann, 

pp875-882. 

Weigend AS, Rumelhart DE and Huberman BA. (1991) Generalization by weight-

elimination applied to currency exchange rate prediction, in International Joint 
Conference on Neural Networks, IEEE, pp837-841. 

Weiss SM and Kulikowski CA. (1991) Computer systems that learn: classification and prediction 

methods from statistics, neural nets, machine learning, and expert systems, Morgan 

Kaufmann: San Mateo. 

Wynne-Jones M. (1991a) Constructive algorithms and pruning: improving the multilayer 

perceptron, in 13th IMACS World Congress on Computation and Applied Mathematics, 

Vichnevelsky R and Milier JJH, Editors, pp747-750. 

Wynne-Jones M. (1991b) Node splitting: a constructive algorithm for feed-forward neural 

networks, in Advances in Neural Information Processing Systems 4, Moody JE, Hanson SJ 

and Lippmann RP, Editors, Morgan Kaufmann, pp1072-1079. 

206 



Yang J. (1991) Experiments with the Cascade-Correlation Algorithm, Department of Computer 

Science, Iowa State University, TR 91-16. 

Yeung D-Y. (1991) Automatic determination of network size for supervised learning, in 

Internation Joint Conference on Neural networks, IEEE, pp158-164. 

Zheng Z. (1993) A benchmark for classifier learning, in The Sixth Australian Conference on 

Artificial Intelligence, Rowles C, Liu H and Foo N, Editors, World Scientific, pp281-286. 

207 


