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Abstract 

Despite high rates of occurrence of non-indigenous organisms in the marine 
environment, few studies have critically examined mechanisms underpinning the 
invasion process. In this study manipulative experiments and observations of a natural 
disturbance to native marine algae were used to examine the invasion dynamics of the 
Asian kelp Undaria pinnatifida on the east coast of Tasmania. 

Disturbance to reduce cover of the native algal canopy was found to be a critical stage 
in the establishment of U. pinnatifida, while the presence of a stable canopy of native 
algae inhibited sporophyte development. In the first season of sporophyte growth 
following artificial canopy removal, U. pinnatifida recruited at high densities (up to 
19 plants m -2) while remaining rare or absent in unmanipulated plots. A similar 
response was recorded in areas where native macroalgae declined through natural 
processes. These results suggest that microscopic U. pinnatifida gametophytes or 
sporophytes presently occur throughout these native algal beds, but do not develop 
into visible sporophytes while the canopy is intact. The timing of disturbance was also 
an important factor. U. pinnatifida recruited in higher densities in plots where the 
native canopy was removed just prior to the sporophyte growth season (winter), 
compared to plots where the canopy was removed six months earlier during the period 
of spore release (spring). In the second year following canopy removal, U. 
pinnatifida abundance declined significantly, associated with a substantial recovery of 
native canopy-forming species. This supports the hypothesis that continued 
disturbance or stress to reduce cover of native algae is required for persistence of 
dense stands of U. pinnatifida. 

Recovery of native algae after infestation by U. pinnatifida was investigated in greater 
detail in a large manipulative experiment conducted on a sea urchin 'barren' 
(Heliocidaris erythrogramma) seasonally dominated by dense cover of U. pinnatifida. 
This habitat was chosen as a model system to investigate persistence of U. pinnatifida 
for two reasons. Firstly, U. pinnatifida occurs most abundantly in Tasmanian waters 
on these urchin barrens and secondly, the level of disturbance could be easily 
manipulated in this system by controlling sea urchin density. 

The experiment examined the response of U. pinnatifida and native macroalgae to 
treatments comprising all combinations of presence and absence of sea urchins, 
presence and absence of U. pinnatifida sporophytes, and presence and absence of 
fertile native macroalgae. U. pinnatifida not only persisted in the absence of sea 
urchin grazing, but was significantly more abundant compared to areas where urchin 
densities remained un-manipulated. Recovery of native canopy-forming species was 
minimal, even in treatments from which sea urchins and U. pinnatifida were removed, 
and an enhanced supply of native algal spores provided. Thus, factors other than 
urchin grazing were limiting development of native algae, consequently there was no 
evidence of inhibition of U. pinnatifida by native canopy species. 

Recovery of native canopy-forming species was also examined in a transplant 
experiment. Settlement pavers colonised by high densities of native canopy-forming 
species were transplanted from an algal bed to sea urchin removal areas on an 
adjacent urchin barren. Following transplantation a marked reduction in cover of 
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canopy-forming algal recruits occurred in the absence of high densities of sea urchins, 
while cover was not affected on handling controls (pavers treated similarly but re-
deployed into the algal bed). 

These results suggest that U. pinnatifida may persist in the absence of disturbance in 
some circumstances, because other factors are limiting the recovery of native algae on 
the urchin barren. Canopy removal led to accumulation of a sediment matrix on the 
substratum, which is likely to influence settlement and development of early 
developmental stages of native algae. A consistent cover of sediment was observed on 
a large scale on the urchin barren, and rapidly developed on pavers transplanted to the 
urchin barren. Accumulation of sediment on the natural substratum, beneath dense 
algal cover was minimal by comparison. It appears that sediment accumulation plays 
a major role in inhibiting recruitment of native canopy-forming species. 

The results of this work provide management options for control of U. pinnatifida. 
Where disturbance is linked to anthropogenic activity, managing the disturbance is 
likely to prove a more practical and cost-effective method of controlling invasion of 
U. pinnatifida at high densities than targeting the plant directly. On the east coast of 
Tasmania, preventing formation of H. erythrogramma barrens is of fundamental 
importance in this context. 
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General Introduction 1 

Chapter 1 

General Introduction 

The deleterious effects of non-indigenous species on native species and ecosystems 

have been widely recognised for decades (Elton, 1958; Lodge, 1993; Sakai et al., 

2001) and now represent one of the world's most serious conservation issues 

(Wilcove et al., 1998). Coastal marine habitats are among the most heavily invaded 

systems, mainly due to human-assisted transport of marine organisms associated with 

international shipping, aquaculture and aquarium activities (Carlton and Geller, 

1993; Meinesz et al., 1993; Ribera and Boudouresque, 1995; Carlton, 1999). 

Human-mediated range expansions (introductions) of marine organisms have the 

potential to cause significant economic and ecological damage. In the USA, 

introduced marine species have cost hundreds of millions of dollars in the twentieth 

century alone, due to direct costs and the loss of ecosystem services (Bax et al., 

2001). In ecological terms, non-indigenous species can have potentially catastrophic 

effects ranging from species-specific impacts to ecosystem level effects (Grosholz, 

2002). For example, the impacts of the introduced Asian clam Potamocorbula 

amurensis in San Francisco Bay have been quantified at the ecosystem level, 

resulting in a shift from pelagic to benthic primary production with concomitant 

shifts in secondary production (Alpine and Cloern, 1992; Cloern, 1996). 

While impacts of many introduced species are well understood, the process whereby 

new species invade an environment (i.e. invasion) is often less clear. A successful 

biotic invasion is the outcome of a multi-stage process that includes arrival, 
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establishment, spread and persistence (Mollison, 1986). The number of propagules 

entering the new environment, the life history characteristics of the new species, and 

the susceptibility of the environment to invasion by new species (invasibility) 

(Lonsdale, 1999) are the main factors thought to influence invasion success (Davis et 

al., 2000). Invasibility itself is an emergent property of an environment, arising from 

the regions climate, levels of disturbance, along with the competitive ability and 

resistance to disturbance of native species. 

In many cases it has been suggested that disturbance plays a critical role in 

facilitating the establishment and spread of exotic species, particularly for terrestrial 

plant communities where there is abundant evidence supporting the link between 

invasibility and disturbance (Elton, 1958; Cavers and Harper, 1967; Crawley, 1986, 

Crawley, 1987; Hobbs and Atkins, 1988). Understanding the role of disturbance in 

the invasion process is also an important stage in prioritising introduced species for 

management purposes (Byers et al., 2002). Those species that establish and maintain 

persistent populations in the absence of disturbance represent a greater threat to the 

integrity of native communities than do species requiring disturbance for successful 

invasion (Hiebert, 1997). 

Despite the recent rapid increase in occurrence of introduced marine organisms (see 

Bax et al., 1999), few studies have investigated the role of disturbance in the 

invasion process for a marine species. Observations of the Asian clam 

Potamocorbula amurensis in San Francisco Bay, North America also provide 

evidence that disturbance can promote invasion of marine species. P. amurensis rose 

to dominance only after a major flood which caused densities of native species to 
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decline dramatically (Nichols et al., 1990). Similarly, Reusch and Williams (1999) 

concluded that fragmentation of native eelgrass (Zostera marina) beds in California, 

which may reflect anthropogenically derived stress and disturbance, facilitates 

proliferation of the introduced bivalve Musculista senhousia. While these examples 

demonstrate that disturbance can promote invasion of introduced marine organisms, 

Sousa (2001) emphasises that there is insufficient information to generalize and that 

a more rigorous investigation of this relationship is required. 

One of the few well studied examples of marine invasions is the Japanese fucoid alga 

Sargassum muticum. S. muticum has spread successfully to the shores of North 

America (Scagel, 1956) and several European countries (reviewed by Andrew and 

Viejo, 1998). Manipulative experiments indicate that S. muticum requires the 

provision of free space in order to establish successfully (Ambrose and Nelson, 1982; 

Deysher and Norton, 1982; Andrew and Viejo, 1998). Stable native algal canopies 

inhibit invasion, most likely by preventing S. muticum germlings from reaching the 

substratum (Deysher and Norton, 1982). 

In recent years the kelp Undaria pinnatifida has undergone a global range expansion 

in temperate waters. Native to Japanese, Korean and Chinese coasts, Undaria 

pinnatifida has spread to the Atlantic and Mediterranean coasts of Europe (Castric-

Fey et al., 1993; Fletcher and Manfredi, 1995; Curiel et al., 1998) as well as the 

shores of New Zealand (Hay and Luckens, 1987), Argentina (Casa and Piriz, 1996) 

and Australia (Sanderson, 1990; Campbell and Burridge, 1998). While the plant was 

intentionally introduced to the Atlantic Coast of Europe in 1983 (Flocth et al., 1991), 

the remaining introductions are all thought to have occurred accidentally via 
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international shipping activities, transported either as hull fouling or in ballast water, 

or in association with translocation of aquaculture organisms (Perez et al., 1981). 

While the occurrence and spread of U. pinnatifida has been well documented, the 

mechanism of its invasion and impact on native communities has received little 

attention. In one of the few manipulative experimental studies conducted to date, 

undertaken on the Atlantic coast of France, local kelp species were shown to be 

resistant to invasion by U. pinnatifida (Floc'h et al., 1996). Despite this result, it is 

widely speculated that U. pinnatifida is a highly invasive species, able to 

competitively displace native species and cause significant structural shifts in 

subtidal communities in sheltered to moderately exposed waters (Rueness, 1989; 

Fletcher and Manfredi, 1995). 

In the Mercury Passage, where U. pinnatifida was first recorded in Tasmania, the 

plant occurs most abundantly in habitats subject to high levels of disturbance, 

particularly on 'urchin barrens'. These habitats are characterised by high densities of 

the sea urchin Heliocidaris erythrogramma, low cover of native macroalgae and 

seasonal abundance of U. pinnatifida which can exceed 100 % cover (Sanderson and 

Barrett, 1989; Johnson, unpublished). U. pinnatifida also occurs abundantly in other 

disturbed habitats including areas of sandscour at the base of reefs, shallow wave 

impacted sites, and unstable substrata such as small rocks and shell fragments 

(Johnson, unpublished). Previous observations suggest that U. pinnatifida does not 

encroach into dense native algal communities (J. Valentine, pers. obs.; Sanderson, 

1997), consistent with reports from several other parts of the world where the alga 

has been introduced (Castric-Fey et al., 1993; Hay and Villouta, 1993). 
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Given these observations it appears likely that disturbance to native algal 

communities is a key factor in determining the invasion success of U. pinnatifida. 

Understanding the role of disturbance is crucial in assessing the threat of an 

introduced species to native communities and defining appropriate control options. If 

U. pinnatifida is capable of competitively displacing native algal communities in the 

absence of disturbance, it represents a major threat to the integrity of native 

communities. Control options in this scenario should target the plant itself. 

Alternatively, if U. pinnatifida 'tracks' disturbance or requires continued disturbance 

to persist it presents less of a threat to native communities. In this scenario 'system 

management', rather than species management may be the most effective long-term 

strategy, applicable in circumstances where disturbance is linked to anthropogenic 

activity and where control efforts address the underlying cause of the disturbance 

rather than the plant itself (Mack et al., 2000). In this study disturbance is defined as 

the loss of biomass of resident organisms from an area attributable to factors other 

than senescence (sensu Chapman and Johnson, 1990). The definition includes both 

physical (eg. wave action, sand abrasion) and biological (eg. herbivory, parasitism) 

effects. The primary objective of this study was to critically address the role of 

disturbance in two fundamental aspects of the invasion process, namely in the 

establishment and persistence of U. pinnatifida. 

It is important to define what constitutes recruitment, establishment and persistence 

for U. pinnatifida in the context of this study. U. pinnatifida is a Laminarian kelp 

with an alternation of heteromorphic generations between a macroscopic sporophyte 

and a microscopic gametophyte. In this study recruitment refers to the development 

of macroscopic U. pinnatifida plants, while establishment of U. pinnatifida is defined 
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as the development of a mature canopy of adult sporophytes (> 30 cm in length) in 

an area that previously did not support sporophytes. Persistence (sensu Johnson and 

Mann, 1988) refers to more than one turnover of a canopy of adult U. pinnatifida 

sporophytes. The presence of microscopic gametophytes and or sporophytes was not 

considered to constitute establishment or persistence. 

To examine the role of disturbance in the establishment of U. pinnatifida, two 

approaches were employed, including experimental manipulations and observations 

following disturbance to the native algal canopy. The experimental approach 

involved manipulating native algal canopy cover and proximity to a source of U. 

pinnatifida spores. These manipulations, presented in Chapter 2, were designed to 

address whether establishment of U. pinnati fida at high densities require both 

disturbance to reduce cover of native algae and a high density of U. pinnatifida 

spores. Observations following a natural canopy disturbance are presented in Chapter 

3. The natural canopy decline occurred when one of the dominant canopy-forming 

species in the study area, Phyllospora comosa, suffered significant mortality during 

summer/autumn 2001. This decline provided the opportunity to observe the response 

of U. pinnatifida and native algae to a natural disturbance event and allowed 

comparison with the experiment involving artificial disturbance. 

While disturbance may be required for the establishment of an introduced species, 

persistence may occur in the absence of the primary disturbance mechanism. For 

example, while disturbance to eelgrass (Zostera marina) habitats in California 

facilitates establishment of the bivalve Musculista senhousia, once established the 

mussel impedes eelgrass rhizome growth and vegetative propagation, allowing M. 
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senhousia to persist in the absence of continued disturbance (Reusch and Williams, 

1998). Similarly, persistence of the introduced alga Codium fragile ssp 

tomentosoides in the NW Atlantic occurs in the absence of the disturbance that 

enables it to establish in the first place (Chapman et al., 2002). Infestation of native 

kelps (Laminaria spp.) by an epiphytic bryozoan (Membranipora membranaceae) 

facilitates establishment of C. fragile, however, the dense stands of C. fragile that 

subsequently develop in turn inhibit recovery of Laminaria spp. (Chapman et al., 

2002). Furthermore, in terrestrial systems long-term dominance by invasive species 

may occur when invading plants change the disturbance regime (eg. fire frequency) 

to favour their own regeneration or introduce new forms of disturbance (Mack and 

D'Antonio, 1998). 

The mechanism of persistence of U. pinnatifida was investigated (Chapter 4) using 

urchin barrens as a model system. The study concentrated on this habitat because 

urchin barrens are where U. pinnatifida occurs most abundantly in Tasmania 

(Sanderson and Barrett, 1989, Sanderson, 1997). In addition, since sea urchins are 

well known as an important source of disturbance to temperate subtidal communities 

(reviewed by Lawrence, 1975; Dayton, 1985; Chapman and Johnson, 1990), the level 

of disturbance could be manipulated in this system by controlling urchin density. A 

large manipulative experiment was designed to: (1) assess whether dense stands of 

U. pinnatifida are self-maintaining in the absence of high densities of sea urchins; 

and (2) identify those factors that influence the re-establishment of native canopy-

forming species in areas dominated by U. pinnatifida. 
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While intensive sea urchin grazing may result in formation of urchin barrens, other 

factors may influence recovery of native canopy-forming species. For example, 

recovery of canopy-forming brown algae may be limited by their poor dispersal 

characteristics (Anderson and North, 1966; Ambrose and Nelson, 1982; Dayton, 

1985; Andrew and Viejo, 1998). Persistence of barren areas in the absence of 

intensive sea urchin grazing was investigated using a transplant experiment (Chapter 

5). Settlement pavers deployed in an algal bed and colonised by high densities of 

native canopy-forming species were transplanted to sea urchin removal plots on an 

adjacent urchin barren. This allowed an assessment of whether recruitment of native 

species on urchin barrens may be unsuccessful despite the absence of intense sea 

urchin grazing. 

In Chapter 6 the role of disturbance in the ecology of U. pinnatifida is evaluated and 

discussed in light of present and anticipated disturbance regimes, with particular 

emphasis on H. erythrogramma dominated 'barren' habitats. Implications for 

management and the potential impact of U. pinnatifida on native communities are 

also considered. The reader should note that the chapters have been written as 

manuscripts for publication, consequently repetition in the introductions of several 

chapters was unavoidable. 
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Chapter 2 

"Establishment of the introduced kelp Undaria pinnatifida in 
Tasmania depends on disturbance to native algal assemblages" 

(Journal of Experimental Marine Biology and Ecology 2003, vol. 295, 63-90) 

2.1 Abstract 

Despite recent rapid increases in the occurrence of nonindigenous marine organisms 

in the marine environment, few studies have critically examined the invasion process 

for a marine species. Here we use manipulative experiments to examine processes of 

invasion for the Asian kelp Undaria pinnatifida (Harvey) Suringar at two sites on the 

east coast of Tasmania. Disturbance to reduce cover of the native algal canopy was 

found to be critical in the establishment of U. pinnatifida, while the presence of a 

stable native algal canopy inhibited invasion. In the first sporophyte growth season 

following disturbance of the canopy, U. pinnatifida recruited in high densities (up to 

19 plants m -2) while remaining rare or absent in un-manipulated plots. The timing of 

disturbance was also important. U. pinnatifida recruited in higher densities in plots 

where the native canopy was removed immediately prior to the sporophyte growth 

season (winter 2000), compared with plots where the canopy was removed 6 months 

earlier during the period of spore release (spring 1999). Removal of the native 

canopy also resulted in a significant increase in cover of sediment on the substratum. 

In the second year following canopy removal, U. pinnatifida abundance declined 

significantly, associated with a substantial recovery of native canopy-forming 

species. A feature of the recovery of the native algal canopy was a significant shift in 

species composition. Species dominant prior to canopy removal showed little if any 

signs of recovery. The recovery was instead dominated by canopy-forming species 

that were either rare or absent in the study areas prior to manipulation of the canopy. 
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2.2 Introduction 

The introduction of non-indigenous species into the marine environment is 

recognised as a major threat to marine ecosystems with potentially dramatic effects 

on biological diversity, productivity, habitat structure and fisheries (Carlton, 1999; 

Bax et al., 2001). Over the past two decades there has been a vast increase in the 

worldwide spread of non-indigenous organisms, due mainly to dispersal via human-

mediated transport (Bax et al., 2001). It is estimated that more than 15 000 species of 

marine organisms may be transported around the world in ships' ballast water each 

week (Carlton, 1999). This rapid acceleration in spread of non-indigenous marine 

organisms now poses a major challenge for management of marine ecosystems. 

When presented with a large number of introduced species, managers must decide 

which species have immediate priority for control, which to control if time and 

finances are available, and which to leave alone (Hiebert, 1997). 

Knowledge of the threat posed by an introduced species is essential in order to 

effectively prioritise species for management purposes (Byers et al., 2002). One 

important aspect of threat is associated with the invasion process itself, particularly 

the role of disturbance in the establishment of an introduced species. While there is 

substantial evidence showing that disturbance can be a key mechanism in the 

invasion of both terrestrial and freshwater organisms (e.g. Hobbs and Adkins, 1988; 

Hobbs and Huenneke, 1992; Lodge, 1993; Moyle and Light, 1996; D'Antonio et al., 

1999), relatively few examples exist for marine communities (but see Nichols et al., 

1990; Reusch and Williams, 1999). 
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In recent years the kelp Undaria pinnatifida has undergone a global range expansion 

in temperate waters. Native to Japanese, Korean and Chinese coasts, U. pinnatifida 

has spread to the Atlantic and Mediterranean coasts of Europe (Castric-Fey et al., 

1993; Fletcher and Manfredi, 1995; Curiel et al., 1998) and to shores of New 

Zealand (Hay and Luckens, 1987), Argentina (Casa and Piriz, 1996) and Australia 

(Sanderson, 1990; Campbell and Burridge, 1998). While the plant was intentionally 

introduced to the Atlantic Coast of Europe in 1983 (Flocth et al., 1991), introductions 

to other areas are all thought to have occurred accidentally via international shipping 

activity, mediated either through hull fouling or discharge of ballast water, or 

associated with translocation of aquaculture organisms (Perez et al., 1981). 

While the occurrence and spread of U. pinnatifida has been well documented, the 

mechanism of its invasion and impact on native communities has received little 

attention. In one of the few experimental studies to date, local kelp species were 

shown to be resistant to invasion by U. pinnatifida on the Atlantic coast of France 

(Floc'h et al., 1996). Despite this result, it is speculated widely that U. pinnatifida is 

a highly invasive species, able to competitively displace native species in sheltered to 

moderately exposed waters (Rueness, 1989; Fletcher and Manfredi, 1995). 

In the Mercury Passage, where the plant was first recorded in Tasmania, U. 

pinnatifida exhibits an annual growth pattern. Macroscopic sporophytes typically 

recruit in winter growing through spring to a length of up to 2 m. Reproduction is 

thought to occur during late spring-early summer, after which the plant degenerates. 

Sporophytes are generally absent from reefs by the end of summer (Sanderson and 

Barrett, 1989). U. pinnatifida occurs most abundantly on urchin 'barrens' 
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characterized by high densities of the sea urchin Heliocidaris erythrogramma and 

low cover of native algae. In these habitats U. pinnatifida forms monospecific stands 

during the sporophyte growth season (Sanderson, 1990). Recent work has 

demonstrated a significant negative correlation between sea urchin densities and 

native algae but a significant positive correlation between sea urchins and U. 

pinnatifida (Johnson, unpublished). U. pinnatifida also occurs abundantly in other 

disturbed habitats such as areas of sandscour at the base of reefs and on unstable 

substrata, while it occurs rarely in established macroalgal stands (Sanderson, 1997; 

C. Johnson, pers. comm.). 

Observations of U. pinnatifida occurring abundantly in disturbed habitats suggest 

disturbance is potentially playing a significant role in its establishment. U. 

pinnatifida also manifests many characteristics of an opportunistic species, such as 

short lifespan, high growth rate, a high biomass invested in reproduction, small 

propagule size and high number of propagules released, and a single reproductive 

episode (Grime, 1977; Clayton, 1990). Species with these features are commonly 

associated with disturbance (Clayton, 1990). If U. pinnatifida is capable of 

displacing native algae in the absence of any primary mechanism of facilitation such 

as disturbance, then it represents a major threat to the integrity of native algal 

communities. Under this scenario, management may need to target the plant directly. 

Alternatively, if U. pinnatifida requires disturbance to establish then there exists a 

greater range of management options which include targeting the cause of the 

disturbance rather than the plant itself. If disturbance is linked to anthropogenic 

activity then managing disturbance may prove a cost-effective option. 
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This study investigated the role of disturbance as a process facilitating invasion of 

dense stands of U. pinnatifida. Manipulative experiments were used to examine the 

relationship between disturbance, establishment of U. pinnatifida and subsequent 

recovery of native species. 

2.3 Materials and methods 

2.3.1 Study site 

The experiment was conducted at 7-12 m depth on rocky reef in the Mercury 

Passage, on the east coast of Tasmania (Figure 2.1). Reefs in this area support a 

variety of algal communities, ranging from sea urchin 'barrens' (dominated by 

Heliocidaris erythrogramma) seasonally dominated by Undaria pinnatifida, to areas 

dominated by diverse stands of native canopy-forming algae. Our experiments were 

conducted at two sites (Flensers Point and Lords Bluff), dominated by native algal 

species and as far away as practically possible from the nearest dense stands of U. 

pinnatifida (ca. 0.2 km at Lords Bluff and 1.0 km at Flensers Point). 

Both sites are characterized by gently sloping rocky substratum to a depth of 12-14 

m with moderate topographic relief. Although there is slight variation in aspect 

between the two sites, they are similarly exposed to easterly swells, which although 

infrequent, can be large. Using the classification scheme proposed for Tasmanian 

subtidal communities by Edgar (1984), the sites are described as moderately exposed 

and support a mixed algal assemblage. 
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Figure 2.1. Map of Mercury Passage showing the location of study sites at Flensers Point and Lords 
Bluff. 

Flensers Point was dominated by the fucoid Seirococcus axillaris, however, the 

common kelp Ecklonia radiata and the fucoids Carpoglossum confluens, Cystophora 

retroflexa and Sargassum fall= were also distributed patchily throughout the study 

area. At Lords Bluff a range of canopy-forming species were found including 

Ecklonia radiata, Phyllospora comosa, CaToglossum confluens and Seirococcus 

axillaris. The understorey at both sites consisted of a diverse assemblage of turfing 

algal species, encrusting algae and invertebrates. 
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2.3.2 Experimental Manipulations 

Experimental manipulations were applied to fixed 16 m 2  quadrats, while response 

variables were monitored only in the inner 4 m 2 of each quadrat to minimize edge 

effects. The experiment followed a 3-way factorial design representing all possible 

combinations of two levels of each of three factors, viz.: 

1.Disturbance (2 levels; 100% removal of native algal canopy, no removal) 

2. Undaria pinnatifida spore enhancement (2 levels; background, enhanced) 

3. Site (2 sites) 

Treatments requiring manipulation were assigned at random at each site and there 

were three replicates of each treatment. The disturbance treatment, involving 

physical removal of the macroalgal canopy, mimics natural disturbance caused by 

urchin grazing and storms. Canopy removal was conducted initially in spring 

(November 1999), during the period of spore release by U. pinnatifida (Sanderson, 

1997). Plants were removed by carefully cutting stipes immediately above the 

holdfast, while understorey species were left intact. 

In treatments involving enhancement of U. pinnatifida spores, mesh bags were filled 

with fertile sporophylls and hung over the plots. Fresh material was added every 4-6 

weeks for as long as fresh sporophyll material was available in sufficient quantities. 

Containing the sporophylls in a coarse (20 mm) mesh bag prevented their grazing by 

toothbrush leatherjackets (Acanthaluteres vittiger) which caused significant damage 

to unprotected sporophylls. Spore enhancements were undertaken from Nov 1999- 

Jan 2000 and from Sep 2000-Jan 2001. 
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To minimise confounding of treatments involving U. pinnatifida spores, 

experimental plots were separated by a minimum distance of ten metres. It was 

assumed that the spore shadow of U. pinnatifida is limited and predominantly within 

a few metres of the parent plant, as has been demonstrated for other large brown 

algae (Ambrose and Nelson, 1982; Dayton, 1985; Andrew and Viejo, 1998). 

To examine the effect of timing of disturbance on invasion by U. pinnatifida, an 

additional canopy removal was employed in winter (June 2000). In contrast to the 

initial canopy removal in spring, this canopy removal of native algae was 

immediately prior to the appearance of macroscopic U. pinnatifida sporophytes. At 

each site there were three replicate plots of this treatment. 

2.3.3 Assessment of algal abundance 

The algal community was assessed immediately prior to manipulation and at three 

monthly intervals hereafter for 24 months. Abundance of canopy-forming species 

was measured in terms of stipe counts (i.e. density) and percentage cover. Stipe 

counts involved recording all adult plants > 30 cm in length in each 4 m 2  plot. 

Abundance of understorey algae, sessile invertebrates and sediment was assessed in 

terms of percentage cover. Percentage cover was estimated with a 0.25 m 2  quadrat 

using a point intercept method. The quadrat was divided with a grid of 49 evenly 

spaced intersections and was laid flat on the reef during algal assessment. Algae 

occurring under each intercept and one corner of the quadrat were recorded to give a 

total of 50 intersections per quadrat. Four randomly positioned quadrats were 

assessed in this way for each plot on every sampling occasion. Where a dense cover 

of canopy algae was present in a quadrat, cover was assessed in a two-stage process. 
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First, cover of canopy algae was estimated. Secondly, the fronds of the canopy 

species were moved aside to allow assessment of the cover of understorey algae, 

sessile invertebrates and sediment. Accordingly, the total percentage cover for 

individual quadrats can exceed 100 %. 

Organisms were identified in situ to the highest taxonomic resolution possible. For 

canopy algae, identification to species level was possible, however, it was necessary 

to allocate other species to species complexes or guilds (see Appendix I). 

2.3.4 Analysis 

Univariate analyses 

Densities (i.e. stipe counts) were analysed using a 3-way Model I analysis of 

variance (ANOVA) with the main factors of canopy removal (2 levels), U. 

pinnatifida spore enhancement (2 levels) and site (2 levels) all treated as fixed 

factors. Site was considered a fixed factor because possible sites available for the 

experiment (i.e. of similar depth, exposure, topography, extent of reef and proximity 

to nearest dense U. pinnatifida stand) was essentially limited to the two sites chosen. 

Analysis of responses to treatments assessed in November 2000 (one year after the 

initial canopy removal) revealed no effect of U. pinnatifida spore enhancement on 

subsequent U. pinnatifida density (Table 2.1). In tests conducted on cover of native 

algae, the effect of U. pinnatifida spore enhancement was similarly highly non-

significant. Consequently, treatments of ± U. pinnatifida spores were excluded from 

further analysis, enabling pooling of treatments and greater power to examine the 

effect of canopy removal. 
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Table 2.1. Three factor Model I ANOVA examining the response of U. pinnatifida in November 2000 
to experimental treatments initiated during November 1999. The analysis was conducted on square 
root transformed stipe counts of all U. pinnatifida plants > 30 cm in length in each experimental plot 
(n = 3). Note that the effect of the U. pinnatifida spore enhancement treatment was highly non-
significant. 

Source of 
Variation df MS 
Canopy removed (C) 1 38.48 64.27 0.001 
Enhanced spores (E) 1 0.05 0.08 0.779 
Site (S) 1 6.65 11.11 0.004 
C*E 1 1.45 2.43 0.139 
C*S 1 5.81 9.70 0.007 
S*E 1 0.09 0.14 0.712 
C*S*E 1 0.21 0.35 0.561 
Error 16 0.60 

In subsequent analyses in which treatments of ± spore enhancement were pooled, 

data on stipe counts were analysed by a 2-way Model I ANOVA, while a 3-factor 

Model ifi nested ANOVA was used for cover data. Both analyses included canopy 

removal (3 levels) and site (2 levels). There were three levels of canopy removal 

because these analyses included the treatment of winter canopy removal. The nested 

ANOVA included the effect of plot nested within all combinations of canopy 

removal*site as a random factor. The design was unbalanced since there were three 

replicates of each treatment for the winter canopy removal treatment, but six 

replicates of the remaining treatments (after pooling across treatments with ± U. 

pinnatifida spore enhancement). The analysis was conducted on data collected during 

assessment of algal community composition in November 2000 and November 2001. 

This allowed examination of the algal response to canopy removal during the peak 

period of U. pinnatifida sporophyte development, one and two years after the initial 
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canopy removals. For both density and cover data, three planned comparisons were 

conducted for each site, viz. (i) control vs. spring 1999 canopy removal, (ii) control 

vs. winter 2000 canopy removal, and (iii) spring 1999 vs. winter 2000 canopy 

removal. The Dunn-Sidak adjustment (aadjusted = 141-ar, where p = number of tests) 

was used to adjust the significance level associated with planned comparisons. 

Prior to all univariate tests, transformations to stabilize variances were determined 

from the relationship between group standard deviations and means (Draper and 

Smith, 1981). Transformations are expressed in terms of the untransformed variate, 

Y. All univariate tests were undertaken using the SAS® statistical package. 

Multivariate analyses 

To describe community responses to treatments and assess the significance of 

differences between treatments, non-metric multi-dimensional scaling (MDS) and 

non-parametric MANOVA (np-MANOVA) were used respectively. The relationship 

between controls and canopy removal plots was compared before manipulation and 

two years after manipulation at each site. To identify species most responsible for 

any observed differences in community structure, SIMPER analysis was conducted. 

These analyses were based on Bray-Curtis similarity matrices derived from 

percentage cover data after a 4th  root transformation to reduce the influence of 

dominant species. MDS and SIMPER analyses were undertaken using the PRIMER 

4.0 software (Carr and Clarke, 1994) while np-MANOVAs were undertaken as 

outlined in Anderson (2001). For np-MANOVA, the winter canopy removals were 

excluded from the analysis because of the inherent problems of low power as a result 
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of low replication (n=3) and therefore small number of permutations available to 

determine the distribution of the test statistic. 

2.4 Results 

2.4.1 The effect of canopy removal on density of Undaria pinnatifida and 

native canopy-forming algae 

Canopy removal had a dramatic effect on Undaria pinnatifida density in the spring 

growth period of the following year (Figure 2.2a). While U. pinnatifida remained 

rare or absent in controls, canopy removal plots were characterized by the 

appearance of U. pinnatifida plants, up to 19 plants 111-2  in some plots. The trend was 

qualitatively consistent among sites, however, there were significantly more U. 

pinnatifida plants associated with the Lords Bluff site, evidenced by a highly 

significant canopy removal*site interaction (F = 14.71, df 2, 24, P < 0.001). The 

timing of disturbance events also influenced U. pinnatifida abundance. Canopy 

removals conducted in winter 2000, at the onset of the period of sporophyte growth 

and development exhibited higher numbers of U. pinnatifida plants compared to 

plots where the canopy was removed the previous spring. This trend was evident at 

both sites, although a statistically significant result was observed at Lords Bluff (F = 

44.41, df 1, 247 P <0.001), but not at Flensers Point at the adjusted a level (F = 7.31, 

df I, 24, P < 0.012; CY----.djusted =0.009). 
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Figure 2.2. Effect of canopy removals on abundance of Undaria pinnatifida and total canopy-forming 
native algae assessed in (a) November 2000 and (b) November 2001. Data are means (± SE) of stipe 
counts (n=6 plots per treatment for spring canopy removal and controls; n=3 plots per treatment for 
winter canopy removal). Note that stipe counts represent plants > 30 cm total length. Canopy-forming 
native species include Ecklonia radiata, Phyllospora comosa, Seirococcus axillaris, Carpoglossum 
confluens, Cystophora moniliformis, C. retroflexa, Sargassum fallax and S. vestitum. 
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Algal assessments conducted in November 2001 (during the second season of U. 

pinnatifida sporophyte growth following disturbance) revealed a significant effect of 

"site" (F = 38.31, df 1, 24, P <0.001) but no significant response of U. pinnatifida to 

the canopy manipulations conducted 18 and 24 months previously (Figure 2.2b). At 

Flensers Point, very low levels of U. pinnatifida were observed in canopy removal 

plots in November 2001 while the density of native species increased markedly 

(Figure 2.2b). In contrast, U. pinnatifida plants were observed in moderate levels 

(mean 2.5 plants m -2) in all treatments at Lords Bluff (including controls). The 

number of U. pinnatifida plants in canopy removal plots at Lords Bluff decreased 

significantly from November 2000 to the November 2001 assessment, while density 

of native species increased to levels comparable with controls (Figure 2.2b). It 

should also be noted that the density of native canopy-forming algae declined in 

control plots at Lords Bluff between November 2000 (mean 7.8 plants m -2) and 

November 2001 (mean 5.1 plants m -2). This was due to a decline in Phyllospora 

comosa and EckIonia radiata associated with above average water temperatures 

during the 2000/2001 summer. 



Establishment of Undaria pinnatifida 23 

2.4.2 Native canopy -forming algae: species composition 

Although densities of native canopy-forming algae had recovered in the canopy 

removal treatments by November 2001 (24 months after the initial canopy removal), 

the species composition in control plots and recovered 'canopy-removal' plots was 

distinctly different. While Seiroccoccus axillaris continued to dominate control areas 

throughout the experiment at Flensers Point, the assemblages that developed in 

canopy removal areas consisted mainly of Sargassum fallax, Cystophora retroflexa, 

Sargassum vest itum and to a lesser extent Cystophora monihformis (Figure 2.3). 

Similarly, at Lords Bluff, the assemblage in un-manipulated control plots dominated 

by EckIonia radiata, Phyllospora comosa, Seirococcus axillaris and Carpoglossum 

confluens was replaced by Cystophora retroflexa and Cystophora monilifonnis in the 

canopy removal treatments (Figure 2.3). At both sites species abundant in control 

areas were rare or absent in the canopy removal treatments, therefore differences 

between treatments could not be tested statistically. 

2.4.3 Recovery of native canopy algae: Percentage cover 

While stipe density was appropriate to examine some aspects of the response of U. 

pinnatifida and native canopy algae, a more detailed examination of recovery 

patterns of the entire community was based on plant cover data. Cover data can 

provide greater sensitivity than density data, largely reflecting the different growth 

forms and growth densities among algal species (Johnson and Mann, 1993). 
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There were substantial differences among sites in the response of native canopy-

forming algae to canopy removal. During the first year following canopy removal 

there was a gradual increase in cover at Flensers Point, although by November 2000 

cover in control plots (73 % ± 6.5 SE) was still considerably greater than that in plots 

where canopy removals had been conducted in spring 1999 (28 % ± 5.2 SE) and 

winter 2000 (11 % ± 1.3 SE) (Figure 2.4; Table 2.2). However, during 2001 the 

cover of native canopy-forming algae increased dramatically in plots from which the 

canopy had been removed in both spring 1999 and winter 2000, reflecting the trend 

shown for stipe counts. By November 2001, there was no significant difference in the 

cover of native canopy species in control (86 % ± 5.6 SE) and spring 1999 canopy 

removal (71 % ± 4.0 SE) plots, while cover in canopy removal plots conducted in 

winter 2000 had increased markedly (49 % ± 4.1 SE) but still remained significantly 

lower than that in controls (Figure 2.4; Table 2.3). 

At Lords Bluff there was also a gradual increase in cover of native canopy-forming 

species in the year following canopy removals in spring 1999 (31 % ± 6.3 SE) and 

winter 2000 (9 % ± 2.1 SE) (Figure 2.5). The trend of recovery stalled somewhat in 

2001, with spring 1999 (34 % ± 5.8 SE) and winter 2000 canopy removal plots (15 

% ± 4.0 SE) showing only slight increases in cover. Unlike Flensers Point, where 

cover in controls remained consistently high (mean 69-86 %) over the entire 24 

months of the study, the cover in control areas at Lords Bluff declined significantly 

during the study period, averaging 98 % in November 2000 but declining to 54% in 

February 2001. This was mainly associated with the declines in Phyllospora comosa 

and EckIonia radiata. Despite this decline in cover in control plots, cover in canopy 
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removal plots was still significantly lower than controls by November 2001 (Figure 

2.5; Table 2.3). 

2.4.4 Response of understorey algae to canopy disturbance 

In interpreting the response of U. pinnatifida and native canopy-forming algae to 

disturbance it is also important to consider understorey algal species, given that 

occupation of space by turfing algal species can inhibit recruitment of canopy-

forming species (Dayton, 1975; Dayton et al., 1984; Kennelly, 1987a; Airoldi, 1998). 

The response of turfing species to canopy removal, therefore, may have significant 

implications for both invasion of U. pinnatifida as well as the recovery of native 

canopy species. 

Foliose red algae 

There was a significant response of foliose red understorey algae to canopy removal, 

although the response varied significantly among sites and the time since canopy 

removal. At Flensers Point, foliose red algal cover remained at low levels (<5 %) in 

control plots for the duration of the experiment while fluctuating significantly in 

canopy removal treatments (Figure 2.4). Cover increased to a peak in November 

2000 for spring 1999 (38 % ± 9.8 SE) and winter 2000 (26 % ± 4.1 SE) canopy 

removal treatments, after which a gradual decrease was recorded. No significant 

effect of disturbance was detected on completion of the final assessment in 

November 2001, 18 and 24 months after implementation of canopy removals (Table 

2.3). 
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At Lords Bluff cover of foliose red algae remained at low levels in all treatments 

prior to November 2000, when cover increased in plots from which the canopy was 

removed in spring 1999 (11 % ± 3.7 SE) and winter 2000 (18 % ± 8.6 SE) relative to 

controls (1 % ±1.0 SE) (Figure 2.5). Cover in canopy removal treatments remained 

significantly higher than in controls for the remainder of 2001 despite a slight 

increase in cover in the control areas (Figure 2.5). The significant "site" effect 

evident in the November 2001 assessment reflected the higher cover of foliose red 

algae observed in all treatments at Lords Bluff in comparison with Flensers Point. 

Brown twf algae 

The guild of 'brown turf algae' represented less then 10 % cover in control plots at 

both sites (Figures 2.4, 2.5). A significant "canopy removal*site" interaction was 

evident from assessments in November 2000 and 2001. Cover in plots at Flensers 

Point subject to canopy removal in winter 2000 displayed consistently higher cover 

of brown turf than in control plots and in plots where the canopy was removed in 

spring 1999 (Figure 2.4). In contrast, at Lords Bluff cover of brown turf in plots from 

which the canopy was removed in spring 1999 was higher than in control plots and in 

plots where canopy removals occurred in winter 2000 (Figure 2.5). A notable feature 

at Lords Bluff was the major peak in brown turf cover observed in the first 

assessment following the spring 1999 canopy removal, associated with recruitment 

of Colpomenia spp. (Figure 2.5). This ephemeral species subsequently degenerated 

and comprised a minor component of algal cover in all further assessments. 
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Green algae 

The green algal guild, comprising mainly species of Caulerpa, was a minor 

component of the Lords Bluff flora. While green algae contributed up to 20 % cover 

at Flensers Point, no significant treatment effects were detected, indicating that 

abundance of Caulema fluctuated in time and space independent of treatment 

(Figure 2.4). 

Zonaria/Lobophora complex 

In general, responses of algae in the Zonaria/Lobophora complex to experimental 

treatments were relatively small. A significant effect of canopy removal was detected 

during the November 2001 assessment at Lords Bluff, with cover in plots cleared of 

canopy species eventually developing approximately double the cover of that in 

control plots (Figure 2.5; Table 2.3). Cover of this guild at Flensers Point was 

consistently higher than at Lords Bluff, however, differences between treatments at 

Flensers Point were not significant. 

Encrusting algae 

The encrusting algal guild, including non-geniculate coralline algae and 

Peyssionnella spp., showed clear responses to experimental manipulations. Removal 

of the algal canopy resulted in bleaching of the vast majority of encrusting algae 

present in experimental plots, with no subsequent recovery observed over the 24 

month study period (Figures 2.4, 2.5; Table 2.3). A canopy removal*site interaction 

was evident at the November 2000 assessment, demonstrating the reduction in cover 

of encrusting algae at Lords Bluff was more dramatic than at Flensers Point (Table 

2.2). 
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2.4.5 Effect of canopy removal on sediment cover 

Cover of sediment, forming a loose matrix on the substratum of variable depth ca. 1- 

10 mm, increased significantly immediately after canopy removal at both sites 

(Figures 2.4, 2.5). Sediment cover remained significantly higher in canopy removal 

plots than in controls throughout the study period (Table 3). Sediment cover was low 

in control plots, averaging <4 % in control areas at Flensers Point for the duration of 

the study, while at Lords Bluff cover was < 2 % during 2000, after which there was a 

slight increase to an average of 7 % by November 2001. 
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Figure 2.4. Effect of removal of native canopy-forming algae on the cover of various algal guilds, 
invertebrates and the sediment matrix at Flensers Point. Data are mean percentage cover (± SE) (n=6 
plots per treatment for spring canopy removal and controls; n=3 plots per treatment for winter canopy 
removal). Circles=canopy removed spring 1999; triangles=canopy removed winter 2000; 
crosses=control). 
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Native canopy-forming algae 

Figure 2.5. Effect of removal of native canopy-forming algae on the cover of various algal guilds, 
invertebrates and the sediment matrix at Lords Bluff. Data are mean percentage cover (± SE) (n=6 
plots per treatment for spring canopy removal and controls; n=3 plots per treatment for winter canopy 
removal). Circles=canopy removed spring 1999; triangles=canopy removed winter 2000; 
crosses=control). 
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Table 2.3. Analysis of the effect of removing native canopy-forming algae on the cover of various 
algal guilds, invertebrates and the sediment matrix, assessed in November 2001. Results are of the 
overall ANOVA examining the effect of canopy removal and site, and the 3 planned comparisons for 
each site. For planned comparisons, "co" = control, "sp" = spring canopy removal, while "wi" = 
winter canopy removal. Significant P-values are shown in bold face: P-values < 0.05 are significant 
for the main analysis; P- values < 0.009 are significant for the planned comparisons (a adjusted using 
Dunn-Sidak method). All of the tests presented use the MS Plot (C*S) as the error term. 

Guild 
(transformation) 

Source of 
Variation 

Planned Comparisons 
Flensers Point 	Lords Bluff 

Canopy 
removal 

(C) 

df = 2,24 

Site 
(S) 

df = 1,24 

C*S 

df =2, 24 

Plot (C*S) 

df =24, 90 

covsp covvvi spvvii covsp covwi spywi 

Sediment cover 8.09 3.03 0.21 7.20 24.32 14.83 0.03 13.85 18.99 1.74 

(sqrt) 0.002 0.095 0.809 0.001 0.001 0.001 0.860 0.001 0.001 0.190 

Encrusting algae 85.18 14.28 1.60 1.62 125.82 86.21 0.02 89.02 39.98 1.90 

(sqn) 0.001 0.001 0.223 0.054 0.001 0.001 0.900 0.001 0.001 0.170 

Total foliose algae 5.96 9.30 1.90 2.14 1.05 3.10 0.86 0.03 19.29 20.55 

(no transformation) 0.008 0.006 0.172 0.005 0.309 0.081 0.356 0.862 0.001 0.001 
Native canopy-forming 
algae 

(no transformation) 

13.47 

0.001 

25.19 

0.001 

0.47 

0.633 

2.66 

0.001 

4.74 

0.032 

19.29 

0.001 

6.84 

0.010 

16.08 

0.001 

31.92 

0.001 

5.64 

0.019 

Foliose red algae 1.94 11.04 1.02 4.17 0.05 2.46 3.10 8.71 7.30 0.09 

(sqrt) 0.166 0.003 0.377 0.001 0.816 0.119 0.081 0.004 0.008 0.770 

Brown turf algae 4.00 5.72 9.09 1.87 1.15 11.72 6.49 15.47 3.29 25.25 

(sqrt) 0.032 0.025 0.001 0.019 0.285 0.001 0.012 0.001 0.072 0.001 

Undaria pinnatifida 1.23 18.58 1.23 1.03 0.00 0.00 0.00 3.52 0.10 3.41 

(no transformation) 0.296 0.001 0.296 0.440 1.000 1.000 1.000 0.063 0.755 0.068 

Invertebrates 4.30 1.49 2.21 1.80 9.59 16.93 2.52 0.64 0.29 0.01 

(sqn) 0.025 0.235 0.131 0.026 0.003 0.001 0.116 0.426 0.590 0.912 

Green algae 0.24 0.12 0.50 1.32 

(no transformation) 0.789 0.729 0.610 0.173 
Zonaria/Lobophora 
complex 

(sqrt) 

5.81 

0.009 

10.68 

0.003 

5.98 

0.008 

1.36 

0.150 

4.35 

0.039 

4.96 

0.028 

0.27 

0.601 

7.59 

0.007 

6.18 

0.014 

22.41 

0.001 
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2.4.6 Community Level Effects 

By November 2001 the total cover of foliose algae in plots from which the canopy 

was removed initially (i.e. in spring 1999) had recovered to levels comparable with 

controls at both sites (see Table 2.3). However, despite this recovery, there were 

significant differences between treatments in algal community structure. At Flensers 

Point in November 2001, algal community structure in control plots and in plots 

from which the canopy was removed were clearly separated in MDS space (Figure 

2.6a) despite supporting similar cover. Although not as clear as the patterns observed 

at Flensers Point, significant patterns in community structure were also apparent at 

Lords Bluff, with np-MANOVA indicating differences among treatments in algal 

community composition 24 months after the initial canopy removal (Table 2.4). An 

interesting anomaly in algal composition at Lords Bluff was the increased variation 

in control treatments in November 2001 relative to the two previous years (Figure 

2.6b). This reflects dieback and therefore decreased abundance of Phyllospora 

comosa and EckIonia radiata which occurred in the control plots after November 

2000. Those control plots subject to dieback, which initially supported a dense 

canopy of P. comosa and E. radiata, were more similar to canopy removal 

treatments after the dieback, indicating that the changes associated with the natural 

decline of these algae were similar to those observed in artificial disturbances. 

The SIMPER routine (Carr and Clarke, 1994) was used to identify the species 

contributing to these differences in community structure (Note that the analysis did 

not include the winter 2000 canopy removal treatments, since total foliose algal 

cover had not recovered to that in the control plots by November 2001 at either site; 

see Table 2.3). The species contributing to the observed differences (Table 2.5) were 
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a. Flensers Point 

b. Lords Bluff 

Treatment 
Time of assessment 

November 1999 
(before manipulation) 

November 2000 November 2001 

Control 

Canopy removed spring 1999 

Canopy removed winter 2000  

• 
+ 

0 
+ 

0 
0 

Figure 2.6. Ordination (MDS) showing relationship between experimental plots from which the algal 
canopy was removed (in spring 1999 and winter 2000) and un-manipulated plots over the duration of 
the study (November 1999-November 2001) at Flensers Point and Lords Bluff. The analysis is based 
on a Bray-Curtis matrix of 4th  root transformed percentage cover data. The plots associated with 
canopy removals and controls have been outlined for clarity. 
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found to strongly reflect treatment effects described earlier for canopy-forming algae 

(see results 2.4.2). At Flensers Point, of the five macroalgal groups observed to 

contribute > 5 % to the difference between treatments, four were the canopy-forming 

algae that proliferated in response to the initial canopy removal. The remaining 

group, encrusting algae, contributed 7.60 % to the difference between treatments due 

to the high percentage cover in control relative to canopy removal plots. At Lords 

Bluff lack of recovery of species dominating control areas (i.e. Seirococcus axillaris, 

Ecklonia radiata, Phyllospora comosa) and an increase in cover of Cystophora 

retroflexa and C. moniliformis in canopy removal plots were the main contributors to 

the differences observed between treatments (Table 2.5). 

Table 2.4. Comparison of community structure in relation to canopy removal before (November 1999) 
and 24 months after (November 2001) experimental manipulation. Results are 2-factor nested np-
MANOVAs based on a Bray-Curtis matrix of 4 th  root transformed data (4999 permutations used for 
tests of significance). The level of significance was altered according to the Dunn-Sidak adjustment, 
aadjusted=0.013. Significant tests are shown in bold face. (Note that winter canopy removals were not 
included in the analysis due to low replication.) 

Site 	Source of 
Variation 

Time 

df 
November 1999 

MS 
November 2001 

MS 
Flensers Point Canopy removal 

Plot (Canopy 
removal) 

Lords Bluff 	Canopy removal 
Plot (Canopy 

removal) 

(1, 10) 

(10,36) 

(1,10) 

(10,36) 

2185.94 

1505.06 

655.91 

2064.67 

1.452 

1.888 

0.318 

3.076 

0.234 

0.006 

0.8552 

0.001 

29204.38 

1363.33 

22443.06 

2366.92 

21.421 

1.941 

9.482 

1.912 

0.003 

0.001 

0.003 

0.004 
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Table 2.5. SIMPER analysis identifying individual species or guilds responsible for the differences in 
community structure between treatments assessed in November 2001 at Flensers Point and Lords 
Bluff. The column '% Contribution' quantifies the breakdown of the contributions from each species 
to the difference in community structure between canopy removals and controls. Species were 
included in the table if they contributed to > 5 % of the difference in community structure. The 
analysis does not include plots where the canopy was removed in winter because the total cover of 
foliose algae in this treatment was still significantly lower than in controls by November 2001. 

Species Average Abundance (% cover) % Contribution Cumulative % 
Canopy Removal Control 

Flensers Point 
Seirococcus axillaris 1.16 66.34 13.19 13.19 
Sargassum fallax 35.92 2.50 10.55 23.73 
Encrusting algae 7.50 54.34 7.87 31.60 
Sargassum vestitum 6.92 1.16 7.76 39.37 
Caulocystis cephalornithos 3.84 0.00 6.35 45.72 

Lords Bluff 
Seirococcus axillaris 0.66 29.66 10.02 10.02 
Cystophora moniliformis 12.26 2.00 8.11 18.13 
Ecklonia radiata 0.00 12.84 8.03 26.16 
Cystophora retroflexa 10.66 1.42 8.02 34.18 
Phyllospora comosa 0.00 4.00 7.34 41.52 
Caulocystis cephalornithos 2.76 0.00 6.53 48.06 
Encrusting Algae 3.00 30.08 6.14 54.20 

2.5 Discussion 

2.5.1 Undaria pinnatifida: opportunist or super competitor? 

Patterns of abundance of Undaria pinnatifida observed in this study demonstrate 

clearly that disturbance resulting in removal of the native algal canopy is a critical 

step in the process leading to establishment. The results indicate that microscopic U. 

pinnatifida gametophytes and/or sporophytes were dispersed throughout the native 

algal assemblages at both sites during the study period. These microscopic phases 

responded opportunistically to the artificial disturbance of canopy removal at both 

sites, and to the natural decline of the Ecklonia radiata and Phyllospora comosa 

canopy at Lords Bluff in 2001 (Chapter 3). 
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Given that high densities of U. pinnatifida sporophytes recruited soon after 

disturbance to the canopy, the density of microscopic gametophytes present on the 

reef must have been sufficiently high to enable fertilisation. Clearly there is no 

evidence to suggest that U. pinnatifida is capable of displacing native algal species 

through direct competition. A similar response to canopy removal has been observed 

for the introduced seaweed Sargassum muticum in northern Spain (Andrew and 

Viejo, 1998). In the present study, two lines of evidence suggest that it is competition 

for light, rather than for space, that is the major barrier to invasion. Firstly, U. 

pinnatifida recruited most strongly to plots where canopy removals were conducted 

four months after the period of spore release and just prior to the period of 

development of the macroscopic sporophyte (i.e. winter 2000). This demonstrates 

that the native canopy does not represent a physical barrier preventing spores from 

reaching the reef. Secondly, under the native algal canopy there was ample 

availability of hard substratum suitable for attachment of U. pinnatifida propagules 

and development of sporophytes given that cover of understorey species was 

generally less than 20 %. 

In relation to the supply of Undaria pinnatifida propagules, it is also important to 

consider the lack of any effect associated with the "spore enhancement" treatment. 

The most likely explanation for this result is that high densities of U. pinnatifida 

propagules had reached the reef via natural dispersal, so that the additional spores 

associated with the treatment had negligible effects on subsequent sporophyte 

density. An alternative explanation is that the treatment was unsuccessful in 

delivering high numbers of viable propagules to the reef. A problem of this nature 

might arise if the handling process had a detrimental impact on source plants, or if 
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spores were released but were carried away from experimental plots by currents or 

surge. We consider this unlikely, however, given that a similar technique has been 

used previously to successfully seed U. pinnatifida (Saito, 1975). 

The higher levels of U. pinnatifida recruitment observed in 1November 2000 in plots 

where the canopy was removed immediately prior to the sporophyte growth period 

(winter 2000), compared to canopy removals 6-months earlier during the period of 

spore release (spring 1999), raise two possibilities. Either there was higher 

survivorship of U. pinnatifida gametophytes and/or microscopic sporophytes beneath 

the native canopy and/or increased competition of developing U. pinnatifida 

sporophytes with native algae that responded to the spring 1 999 canopy removal. In 

plots where canopy removals were conducted in spring 1999, native algae had a six 

month window of development before commencement of the growth phase of the 

annual U. pinnatda sporophyte generation. Proliferation of native species 

inhibiting the establishment of an introduced species has been demonstrated 

previously in experimental manipulations involving Sargassum muticum (Deysher 

and Norton, 1982). 

These observations raise key questions relating to dispersal of spores and longevity 

of the gametophyte stage in U. pinnatifida. Since there were no macroscopic U. 

pinnatifida plants within the study areas at the beginning of the study, dispersal of 

spores from nearby plants over distances of at least several 100s of metres must have 

occurred (the site at Flensers Point was - 1 km and Lords Bluff was - 0.2 km from 

the nearest stand of U. pinnatifida). Recent work conducted in New Zealand has 

suggested that U. pinnatifida possesses multiple strategies for natural dispersal. 
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Laboratory experiments and field observations of spore dispersal confirmed that 

while spore dispersal is likely to be important for short-range dispersal (10s metres), 

drifting sporophylls or fragments enable dispersal in the scale of hundreds of metres 

to kilometres (Forrest et al., 2000). Drift U. pinnatifida plants with intact sporophylls 

are commonly observed throughout the Mercury Passage. Similar multiple dispersal 

strategies have been described for Sargassum muticum and it is thought that they 

may provide a mechanism to utilize the advantages of both long and short-distance 

dispersal (Andrew and Viejo, 1998; Deysher and Norton, 1982; Kendrick and 

Walker, 1991). 

The longevity of the U. pinnatifida gametophyte generation is also a critical question 

for managers. While analogies between gametophytes and seed banks in terrestrial 

plants have been proposed (Hoffman and Santelices, 1991), there is no experimental 

evidence of the phenomenon. Gametophytes of the perennial kelps Macrocystis 

pyrifera and Pterygophora califorrtica in Southern California appear to live for < 4 

weeks, while for the annual kelp Desmarestia ligulata dormancy of up to 3-4 months 

has been observed (Reed et al., 1997). If U. pinnatifida gametophytes have similar 

properties to D. ligulata, disturbance would need to occur during this short period of 

gametophyte viability for U. pinnatifida sporophytes to establish. Alternatively, if 

gametophytes are capable of surviving for more than one year then it is possible that 

there could be an accumulation of these stages over successive years. In this 

scenario, the timing of disturbance would be less important as there would be a high 

likelihood that viable gametophytes would be present in any particular year. In the 

Mercury Passage, our experiments indicate that the longevity of gametophytes and/or 

microscopic sporophytes is at least 4-5 months. 
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The opportunistic nature of U. pinnatifida observed in this study is also characteristic 

of other annual canopy-forming algae from the North American coast. These include 

the annual laminarian kelps Alaria fistulosa and Nereocystis luetkeana and the 

annual brown alga Desmarestia ligulata. These species appear unable to invade 

established kelp beds but colonize rapidly when kelp canopies are removed (Vadas, 

1972; Duggins, 1980; Reed and Foster, 1984; Edwards, 1998). The establishment of 

Desmarestia ligulata following severe storms can inhibit recruitment of other kelps, 

often causing local or patchy delays in kelp recovery (Dayton et al., 1992). It could 

be expected that U. pinnatifida establishment may cause similar delays in the 

establishment of native canopy-forming species. It should be noted that there is no 

native annual canopy-forming algal species in temperate waters in Australia. 

2.5.2 Maintenance of Undaria pinnatifida stands post -establishment 

Critical to understanding its invasion dynamics and defining the threat it poses is 

whether continued disturbance is required for U. pinnatifida to maintain persistent 

populations. While disturbance may be a requirement for its establishment, it does 

not necessarily follow that continued disturbance is required for U. pinnatifida 

populations to persist. For example, on the Atlantic Coast of North America, 

disturbance to native kelps either due to destructive urchin grazing or infestation by 

an epiphyte (Membranipora membranacea) facilitates establishment of the 

introduced alga Codium fragile subsp. tomentosoides. Once established, dense 

stands of C. fragile subsp. tomentosoides appear to inhibit kelp recruitment in the 

absence of continued disturbance, eventually displacing it (Chapman et al., 2002). 

Research associated with terrestrial plant invasions also indicates that persistence 

may occur in the absence of continued disturbance if an introduced species changes 
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the disturbance regime to favour its own reproduction, or if there are no species-

specific herbivores or pathogens (Luken, 1997). 

In the present study U. pinnatifida declined in the second season following canopy 

removal, corresponding with the recovery of native canopy-forming species. These 

results suggest that, on the east coast of Tasmania, continued disturbance is required 

to maintain dense stands of U. pinnatifida, although this conclusion should be 

viewed with caution given that only two seasons of U. pinnatifida growth were 

observed. Further research should specifically address the issues that relate to 

ongoing maintenance of dense U. pinnatifida stands after they establish. 

2.5.3 Recovery of native canopy-forming species following disturbance 

The decline in the abundance of U. pinnatifida after its initial establishment is most 

likely explained by recovery of native species, in particular canopy-forming brown 

algae. While the native species that recruited to cleared areas (predominately 

Cystophora and Sargassum species) are ostensibly competitors of U. pinnatifida, 

they were markedly different to the canopy species dominating control plots. A 

possible explanation for differences in the long-established and newly developed 

canopies of native algae is the timing of disturbance. The availability of propagules 

is known to determine early succession in other algal assemblages (Foster, 1975; 

Emerson and Zedler, 1978; Dayton et al., 1984; Kim and DeWreede, 1996), but 

unfortunately the phenology of the majority of the native canopy-forming species 

observed in this study remains poorly understood. We note, however, that while 

canopy manipulations were six months apart, the species composition of the resultant 

canopy was similar for both seasons of canopy removal, at both sites. Therefore it 
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appears likely that timing of clearance had only a minor influence on native algal 

succession and that species which successfully colonized cleared patches were 

opportunistic and may represent the initial stages of algal succession. Spatial 

patchiness in algal community composition at scales of 10 2  m is a feature of Mercury 

Passage, possibly reflecting patches at varying stages of algal succession. 

Comparison of similar experiments conducted elsewhere reveals that patterns of 

recovery of canopy-forming species vary substantially. Similar to the results of this 

study, removal of a canopy of EckIonia radiata in Western Australia realised a shift 

in dominance from E. radiata to Sargassum spp. (Kirkman, 1981). In contrast, 

canopy removal in E. radiata forests on the New South Wales coast facilitated 

establishment of dense mats of turf algae from the ZonarialLobophora complex, 

which persisted for up to two years for canopy removals conducted in all seasons 

except winter (Kennelly, 1987a). Canopy removals conducted in winter were 

colonized by both turf and E. radiata, with the kelp rapidly developing a closed 

canopy, eventually resulting in the decline of turf (Kennelly, 1987a). 

Examples from the Northern Hemisphere also reveal a wide variation in response to 

canopy disturbances. On the Atlantic Coast of North America the canopy of 

Laminaria longicuris can redevelop rapidly after disturbance, irrespective of timing, 

dominating both early and late stages of community development (Johnson and 

Mann, 1988). In contrast, on the Pacific coast of North America where a high 

diversity of canopy-forming species are present, the canopy is often a mosaic of 

species depending on the frequency and intensity of disturbance and proximity to 

reproductive plants (Dayton et al., 1984; Dayton et al., 1992; Edwards, 1998; Dayton 
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et al., 1999). Given the patterns observed in response to manipulations in this study, 

it could be speculated that mechanisms similar to those maintaining patch dynamics 

on the Pacific coast of North America forests also act on the east coast of Tasmania. 

2.5.4 Canopy removal and the sediment matrix 

There are several mechanisms that may increase sediment deposition on the 

substratum following canopy removal. First, the algal canopy represents a large 

surface area and removing it would allow sediment that would otherwise be trapped 

in the canopy to be deposited on the substratum. Additionally, the sweeping motion 

of canopy algae on the substratum caused by surge may prevent the sediment from 

accumulating on exposed surfaces of the reef (Kennelly, 1989). This is consistent 

with observations of higher levels of sediment in the centre of clearings compared 

with the edges (Kennelly and Underwood, 1993). It has also been suggested that the 

presence of the kelp canopy prevents colonization by small filamentous algae that 

facilitate accretion and consolidation of sediment (Melville and Connell, 2001). 

Previous work has also observed an increase in sediment cover after canopy removal 

(Kennelly, 1987a; Kennelly, 1987b; Kennelly and Underwood, 1993; Melville and 

Connell, 2001). The increased sediment levels observed in this study persisted 

throughout the study period in plots from which the canopy was removed. This is in 

contrast to previous research where persistence of the sediment layer after clearing 

was short-lived, decreasing to similar levels as that in control areas within a few 

months (Kennelly, 1987a; Kennelly and Underwood, 1993). 
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Sediment accumulation is a potentially important process in the ecology of rocky 

reefs for a number of reasons. Sediment burial and scour may affect algal 

communities by removing whole organisms, by physically preventing settlement of 

propagules on stable substrata, or by limiting newly settled propagules by reducing 

inputs of light and oxygen (Airoldi et al., 1995). Experiments have shown 

recruitment of some algal species to be negatively affected by sediment deposition 

(Devinny and Volse, 1978; Kendrick, 1991; Umar et al., 1998). It is possible that the 

significant increase in sediment levels observed in canopy removal plots might 

influence the response of the algal community. Despite the increase and persistence 

of sediment following canopy removal, however, both U. pinnatifida and some 

native species were able to recruit to these patches. This suggests that these particular 

species can tolerate a degree of sediment stress. Increased sediment may explain the 

lack of recovery of several of the native canopy-forming species, which may be more 

sensitive to sediment stress. Notably, on nearby reefs in the Lords Bluff region where 

sediment accumulation occurs on a large spatial scale associated with urchin barren 

habitats, native algae did not recover over a two-year period in areas where urchins 

were removed (Chapter 4). 

A feature of canopy removal areas at both sites was the increased abundance of 

Cystophora moniliformis relative to controls. C. moniliformis is known to grow in a 

variety of stressed habitats, including areas subject to sediment stress, while 

apparently being outcompeted in more favourable habitats (Edgar, 1984). In South 

Australia, C. moniliformis is abundant on sand scoured reefs including those covered 

by several centimetres of sediment (Shepherd and Wommersley, 1981). 
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2.5.5 Destructive sea urchin grazing: an important source of disturbance? 

While it has been shown that disturbance is necessary for successful establishment of 

U. pinnatifida at high densities, an important question is to identify the natural 

disturbance(s) facilitating U. pinnatifida establishment. Within the study area, 

destructive grazing by the sea urchin Heliocidaris erythrogramma is the most 

widespread form of disturbance to native algae. In the Mercury Passage the only 

large monospecific stands of U. pinnatifida are associated with urchin barrens 

(Johnson, unpublished). While H. erythrogramma can feed on U. pinnatifida, the 

recruitment and growth rates of the kelp clearly exceed the urchins' capacity to graze 

the plant at mean urchin densities of 6 - 7 M-2 . 

Understanding the mechanisms of urchin barren formation by H. erythrogramma is 

therefore an important step in understanding the process of U. pinnatifida invasion. 

In temperate seas elsewhere in the world there is evidence supporting the link 

between overfishing of sea urchin predators and barren formation (Estes and 

Palmisano, 1974; Harrold and Reed, 1985; Watanabe and Harrold, 1991; Estes and 

Duggins, 1995; Vadas and Steneck, 1995; Sala et al., 1998; Steneck, 1998; Shears 

and Babcock, 2002). Recent work in Tasmania has indicated that the spiny lobster 

Jasus edwardsii is more important than reef fishes as a predator of H. 

erythrogramma and, moreover, that reduced abundances of lobsters as a result of 

fishing activity is sufficient to account for barren formation (Pederson and Johnson, 

unpublished). It is therefore possible that overfishing of sea urchin predators is the 

ultimate cause of reduced native algal cover in the Mercury Passage which has 

facilitated establishment of dense U. pinnatifida stands. 



Establishment of Undaria pinnatifida 47 

2.5.6 Conclusions 

This study demonstrates that disturbance to the native algal canopy facilitates 

establishment of Undaria pinnatifida sporophytes. In the absence of disturbance 

native algal communities resist invasion by this introduced kelp. The results suggest 

that management of U. pinnatifida populations may be most effective by targeting 

the cause of canopy disturbance, rather than the plant itself. Whilst it is not practical 

to manage natural disturbances in subtidal habitats such as storm damage, if 

disturbance is linked to human activity then options for control may exist. In our 

study area the demonstrated links between fishing of sea urchin predators, urchin 

barren formation and subsequent establishment of U. pinnatifida provides a potential 

management opportunity to control abundances of this introduced alga. 
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Chapter 3 

"Establishment of the introduced kelp Undaria pinnatifida following 
dieback of the native macroalga Phyllospora comosa" 

(submitted to Marine and Freshwater Research) 

3.1 Abstract 

The Asian kelp Undaria pinnatifida has recently been introduced to several countries 

in both hemispheres. While the occurrence and subsequent spread of the alga has 

been well documented, the process of its invasion remains poorly understood. Recent 

work involving artificial canopy manipulations has demonstrated that disturbance to 

the native algal canopy facilitates establishment of U. pinnatifida sporophytes at high 

densities, however, the kelp's response to a natural disruption of the canopy has not 

been assessed. This study examined the response of U. pinnatifida to significant 

dieback during summer/autumn 2001 of a common native canopy-forming 

macroalga, Phyllospora comosa, on the east coast of Tasmania. The response of U. 

pinnatifida and native algae to the dieback was observed during the following U. 

pinnatifida sporophyte growth season (spring 2001) and compared with adjacent 

areas where dieback did not occur. U. pinnatifida recruited in high densities (6.75 ± 

1.99 plants m-2) in dieback areas while remaining rare or absent in control areas 

where the native canopy was intact. The dieback also resulted in bleaching of 

encrusting algae, and increased cover of understorey algae and sediment. The results 

support the findings of recent artificial disturbance experiments, confirming the 

importance of disturbance events in the successful establishment of U. pinnatifida. 
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3.2 Introduction 

As a consequence of human-mediated dispersal, the Asian kelp Undaria pinnatifida 

has recently become a conspicuous exotic component of subtidal algal communities 

in many temperate regions throughout the world (Rueness, 1989; Sanderson and 

Barrett, 1989; Hay, 1990; Castric-Fey et al., 1993; Fletcher and Manfredi, 1995; 

Casa and Piriz, 1996; Campbell and Burridge, 1998), including the east coast of 

Tasmania (Sanderson and Barrett, 1989; Sanderson, 1990). While several studies 

have documented the occurrence and spread of U. pinnatifida few have examined the 

mechanisms facilitating invasion of U. pinnatifida. 

It is speculated that U. pinnatifida is a highly invasive species capable of 

competitively displacing native algal species (Rueness, 1989; Fletcher and 

Manfredii, 1995). Our previous experiments suggest that in Tasmania U. pinnatifida 

requires disturbance to establish at high densities. In the absence of disturbance, 

stands of native algae were resistant to invasion by U. pinnatifida sporophytes 

(Chapter 2). Notably, on the east coast of Tasmania U. pinnatifida occurs at high 

densities only in disturbed habitats, particularly on sea urchin 'barrens', but also on 

areas of sandscour at the edge of rocky reefs and on unstable substrata, while it 

occurs rarely in established native algal communities (Johnson, unpublished; 

(Sanderson, 1997). 

The distinction between U. pinnatifida as an opportunist or aggressive dominant 

competitor is an important component of defining the threat the plant poses to native 

algal communities. If U. pinnatifida is a dominant competitor it represents a major 

threat to the integrity of native communities and efforts to control the plant should 
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target the plant directly. Alternatively, if U. pinnatifida 'tracks' disturbance 

opportunistically, it represents less of a threat to native algal communities. Targeting 

the cause of the disturbance, rather than the alga itself, may be the most effective 

control option in circumstances in which disturbances are linked to human activities. 

While experimental studies have demonstrated the potential importance of 

disturbance in the invasion process (Floc'h et al., 1996; Chapter 2), naturally 

occurring disturbances ultimately leading to establishment of U. pinnatifida 

sporophytes have not been reported. This study outlines a natural (but uncommon) 

dieback of the dominant canopy-forming brown algae, Phyllospora comosa, on the 

east coast of Tasmania that provided an opportunity to observe the response of U. 

pinnatifida to a natural disturbance event. The response of U. pinnatifida and native 

algae is interpreted in light of our recent work using artificial disturbance treatments. 

3.3 Materials and methods 

3.3.1 Study site and decline of Phyllospora comosa 

The study was conducted at Lords Bluff, in the Mercury Passage on the east coast of 

Tasmania (42°  32' S 147°  59' E). The algal community at the study site demonstrates 

clear zonation with depth (Figure 3.1). A narrow band of Durvillea potatorum 

occupies the sublittoral fringe, below which the prostrate canopy-forming algae 

Phyllospora comosa forms virtually monospecific stands to a depth of ca. 5-6 m. 

From 6-10 m a range of large brown algae form a "mixed assemblage" (Edgar, 1984) 

including the common kelp EckIonia radiata, and the fucoids Seirococcus axillaris, 

Camoglossum confluens and P. comosa. Below the mixed algal assemblage, 

Seirococcus axillaris dominates canopy structure at this site. 
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Figure 3.1. Generalised scheme of the distribution of canopy-forming brown algae in relation to depth 
at Lords Bluff. Not to scale. 

We began monitoring the algal community at the Lords Bluff site in six permanent 

16 m2  quadrats in the mixed algal assemblage in November 1999 (Figure 3.2). The 

quadrats were randomly positioned within the mixed algal zone along 100 m of 

coastline. Deterioration of E. radiata and P. comosa was first evident in February 

2001 when plants began to lose pigmentation and decay at the extremities. Morbidity 

became more severe over the next 2-3 months, culminating as a prominent dieback 

of P. comosa plants in large patches on the deeper edge of the P. comosa dominated 

assemblage and within the mixed algal assemblage. The decline in E. radiata was not 
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as extensive as for P. comosa, while there was no deterioration of P. comosa in 

shallow water (< 6 m) or of C. confluens, S. axillaris or any other large brown algae 

in the study area. P. comosa dieback was also observed in other areas of Mercury 

Passage, over at least 20 km of coastline, mainly associated with sheltered reefs. 

This is the first report of P. comosa decline and there is no evidence that it occurs 

commonly. 

Nov-99 	Nov-00 	Nov-01 	Nov-99 	Nov-00 	Nov-01 

Figure 3.2. Results from routine monitoring of canopy-forming brown algal species in fixed quadrats 
within the mixed algal assemblage November 1999-2001. Data are means (± SE) of 6 replicate 
quadrats. 
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While identification of the cause of the P. comosa decline was beyond the scope of 

this study, it is likely that above average seawater temperatures on the east coast of 

Tasmania over the 2000/2001 summer/autumn period contributed to the decline. In 

surface waters adjacent to Lords Bluff more than 50 % of observations for the 

December-May 2000-2001 period exceeded 17.5 °C, compared to an average of only 

27 % for the previous ten years. 

A negative relationship between seawater temperature and nitrate (the nutrient most 

likely to limit macroalgal growth) is well recognized for North American coastal 

waters (Dayton et al., 1992) and has been correlated with mortality or decline in 

macroalgal growth in several studies (Chapman and Craigie, 1977; Zimmerman and 

Kremer, 1984; Dayton et al., 1999). Although the relationship between nitrate levels 

and canopy-forming algal abundance in Tasmanian waters has not been investigated, 

a similar negative relationship between temperature and nitrate levels in offshore 

waters has been previously identified (Harris et al., 1987). It is possible therefore that 

nutrient stress during this period of high seawater temperature played a significant 

role in the P. comosa decline. The apparent influence of wave exposure on the 

distribution of dieback patches suggests that factors such as vertical mixing also 

contributed to the decline. We hypothesise that other algal species were not affected 

due to variability in tolerance to low nutrient conditions, as has been demonstrated 

previously in intertidal (Gunnill, 1985) and subtidal habitats (Dayton et al., 1984; 

Tegner and Dayton, 1987; Tegner, 1997; Dayton et al., 1999). 
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3.3.2 Establishment of dieback monitoring plots 

In May 2001, prior to the annual appearance of Undaria pinnatifida sporophytes and 

when large patches of P. comosa dieback were evident, six replicate 16 m 2  fixed 

plots were established in the area of P. comosa decline. The plots were located at the 

boundary separating the deeper edge of the P. comosa assemblage from the shallow 

edge of the mixed algal assemblage. 

The fixed plots had been dominated by P. comosa, evidenced by the decaying 

canopies and remaining stipes of affected plants. Small amounts of E. radiata, S. 

axillaris and C. confluens also occurred in some plots. The density of all canopy-

forming algae was measured using the inner 4 m2  of the permanent plots immediately 

after their establishment. The abundance of P. comosa and E. radiata prior to their 

decline was estimated from the density of decaying stipes, although it is likely that 

pre-decline densities were underestimated since some plants may have been 

dislodged from the substratum before assessment. 

3.3.3 Algal assessment 

Algal density and percentage cover in `dieback' plots was measured in September 

2001, during the peak period of U. pinnatifida sporophyte growth and compared to 

plots (16 m2) in adjacent 'control' areas where there was no evidence of canopy 

decline. Control areas were selected to match conditions in the dieback area as 

closely as practically possible in relation to depth, reef topography and algal 

community structure. 

Two control areas were selected, namely those located in patches of native algae in 

the same depth range as in the dieback area (7 - 8 m depth; n = 6 replicate plots) 
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dominated by S. axillaris and C. confluens, and those in patches of P. comosa in 

slightly shallower depths (5 - 6 m depth; n = 6 replicate plots) in which there was no 

evidence of morbidity. It should be noted that on adjacent sea urchin barrens U. 

pinnatifida is abundant from 5 m depth to the limit of available substratum (12 m). 

In all plots algal density was measured by counting adult algae > 30 cm in length 

within the inner 4 m2  of the plot. The percentage cover of algae, sediment and sessile 

invertebrates was also estimated within the inner 4 m2  of the plot using five randomly 

positioned 0.25 m 2  quadrats. Cover was estimated using a point intercept method 

employing 50 equidistant points in each quadrat. 

3.3.4 Data analysis 

The algal response in the three 'areas' was compared using a single-factor model I 

analysis of variance (ANOVA) based on algal density (area = fixed factor, 3 levels) 

and a nested mixed model ANOVA based on algal cover (area = fixed factor, 3 

levels; plot (area) = random factor, 6 levels). Where appropriate, a posteriori 

comparison of means was conducted using the Ryan-Einot-Gabriel-Welsch (REGW) 

multiple range test. For all tests, transformations required to stabilize variances were 

determined from the relationship between group standard deviations and means 

(Draper and Smith, 1981). Transformations are expressed in terms of the 

untransformed variate, Y. All univariate tests were undertaken using the SAS® 

statistical package. 
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3.4 Results 

3.4.1 Undaria pinnatifida response 

The results show clearly that recruitment of Undaria pinnatifida into dieback areas 

was significantly greater than in plots with intact canopies, resulting in higher 

densities and cover of U. pinnatifida in areas where Phyllospora comosa was 

previously dominant but subsequently decimated (Figures 3.3, 3.4; Table 3.1, 3.2). In 

both types of control native algal patches where the canopy was intact, little or no 

recruitment of U. pinnatifida was observed. The density of U. pinnatifida 

sporophytes that developed in the dieback areas exceeded that of the P. comosa 

plants in those plots prior to the decline (estimated from assessments in May 2001). 

Although densities were comparable, U. pinnatifida sporophyte cover (28.1 % ± 6.8 

SE) was significantly lower than the canopy cover of P. comosa prior to the dieback 

(estimated to be > 95 % based on pre-decline densities), due to the larger canopy area 

occupied by P. comosa individuals relative to U. pinnatifida. 

3.4.2 Recovery of canopy -forming algae 

Native canopy-forming algal species showed a slow recovery in the dieback areas, 

attaining 15.3 % (± 1.7 SE) cover in September 2001 (Figure 3.4). As a total measure 

of native algal cover 5.7 % was attributed to plants that survived the disturbance, 

with the remaining 9.6 % cover consisting of recruits. The most common recruits 

were of EckIonia radiata and Cystophora moniliforrnis, while other canopy-forming 

species were rare (Figure 3.5). 
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Figure 3.3. Density of canopy-forming brown algae in the three areas: DB = Phyllospora comosa 
dieback area; ND = Non-dieback area with intact canopy (dominated by Seirococcus axillaris and 
Carpoglossum confluens); PS = Phyllospora shallow area; Pre-DB = estimate of algal density in 
dieback area prior to dieback, conducted in May 2001. Data are means (+ SE) of six replicate plots 
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Figure 3.4. Cover of algae, invertebrates and sediment in the three algal areas, assessed in September 
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Table 3.1. Results of univariate ANOVAs comparing density of canopy-forming macroalgae in the 
three algal areas, assessed in September 2001. Results are the overall ANOVA examining the effect of 
area and REGW multiple range tests examining differences between areas. Areas in which the density 
of algae are not significantly different (REGW tests, a = 0.05) are indicated by a horizontal underline. 
Significant P-values in the main ANOVA are shown in bold face (a = 0.05). Treatment codes are 
abbreviated as: DB = dieback area; ND = Non-dieback area with intact canopy (dominated by 
Seirococcus axillaris and Carpoglossum confluens); PS = Phyllospora comosa shallow area. 

Taxon 
(transformation) 

Source of variation 

Area 
(df = 2, 
F 

15) 
P 

REGW 
Tests 

Total canopy-forming native algae 
(no transformation) 

69.93 0.001 DB ND PS 

Undaria pinnatifida 
(log (Y+ 0.1)) 

26.81 0.001 DB ND PS 

Phyllospora comosa 
(no transformation) 

81.77 0.001 DB ND PS 

Seirococcus axillaris 
(no transformation) 

143.67 0.001 DB PS ND 

Carpoglossum confluens 
(no transformation) 

13.57 0.001 DB PS ND 

Ecklonia radiata 
(no transformation) 

0.83 0.455 

Table 3.2. Results of ANOVAs comparing cover of algae, invertebrates and sediment in the three 
algal areas as assessed in September 2001. Results are the overall ANOVA examining the effect of 
area and plot (area), along with REGW multiple range tests examining differences between areas. 
Areas where cover of algae is not significantly different (REGW tests, a = 0.05) are indicated by a 
horizontal underline. Significant P-values in the main ANOVA are shown in bold face (a = 0.05). 
Treatment codes are abbreviated as: DB = Phyllospora comosa dieback area; ND = Non-dieback area 
with intact canopy (dominated by Seirococcus axillaris and Carpoglossum confluens); PS = 
Phyllospora shallow area. 

Taxon 
(transformation) 

Source of variation 
Area 

(df = 2, 15) 
F 	P 

Plot (Area) 
(df = 15, 72) 
F P 

REGW 
tests 

Native canopy-forming algae 
(no transformation) 

Undaria pinnatifida 
y 032) 

Foliose red algae 
(log (Y+ 0.1)) 

Fine green algae 
(log (Y+ OM) 

Zonaria/Lobophora complex 
(log (Y+ 0.1)) 

Encrusting algae 
(no transformation) 

Invertebrates 
{log (Y+ 0.1)) 

Silt cover 
( VT' ) 

220.19 

34.43 

23.03 

14.87 

0.41 

198.19 

13.54 

39.09 

0.001 

0.001 

0.001 

0.001 

0.672 

0.001 

0.001 

0.001 

3.12 

1.69 

1.91 

1.55 

2.63 

0.95 

1.67 

2.16 

0.001 

0.071 

0.036 

0.109 

0.003 

0.511 

0.076 

0.016 

DB ND PS 

DB ND PS 

DB ND PS 

DB ND PS 

DB ND PS 

DB ND PS 

DB ND PS 
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Figure 3.5. Percentage cover of recruits of canopy-forming brown algae in Phyllospora comosa 
dieback plots, assessed in September 2001. Data are means (+ SE) of six replicate plots. 

3.4.3 Cover of understorey algae, sediment and invertebrates 

The reduction in cover of the P. comosa canopy resulted in bleaching of encrusting 

algae and an increased cover of sediment and understorey algae (Figure 3.4; Table 

3.2). Cover of healthy non-geniculate coralline algae and the crustose Peyssionella 

spp. was dramatically lower in the dieback area (10.5 % ± 1.9 SE) compared to that 

in non-dieback patches at the same depth (66.7 % ± 3.3 SE) and the shallow P. 

comosa plots (64.7 % ± 1.9 SE). Sediment cover in the dieback areas (30.1 % ± 3.3 

SE) was an order of magnitude greater than that in non-dieback patches at the same 
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depth (2.2 % ± 0.5 SE) and significantly greater than that in the shallow P. comosa 

plots (6.3 % ± 1.8 SE). 

Cover of both foliose red and green understorey algae was significantly greater in the 

dieback areas compared with adjacent control patches where the native canopy 

remained intact (Figure 3.4; Table 3.2). The green algal group, consisting entirely of 

the filamentous algae Cladophora sp., averaged 20.6 % (± 4.2 SE) cover in the P. 

comosa dieback area but was <3 % in the two control areas. Similarly, the foliose 

red algal group, which included a range of ephemeral species (e.g. Heterosiphonia 

spp., Polysiphonia spp.) averaged 13.6 % (± 3.2 SE) cover in dieback plots compared 

with < 1.5 % in the control areas. In contrast, cover of the Zonaria/Lobophora 

complex was similar in all three areas. 

Sessile understorey invertebrates were also influenced by the P. comosa decline. 

Cover was lower in the dieback area (1.5 % ± 0.8 SE) compared to that in non-

dieback patches at the same depth (7.5 % ± 0.6 SE), and the shallow P. comosa plots 

(7.7 % ± 1.7 SE). These differences were associated with reduced cover of 

encrusting sponges, ascidians and the bryozans Orthoscuticella ventricosa and 

Bugularia dissimilis in the dieback plots (Figure 3.4; Table 3.2). 
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3.5 Discussion 

3.5.1 Response of Undaria pinnatifida to canopy dieback 

The clear response of Undaria pinnatifida following the dieback of Phyllospora 

comosa is consistent with results of manipulations demonstrating that experimental 

removal of the native algal canopy results in establishment of U. pinnatifida (Chapter 

2). The results demonstrate that microscopic gametophytes and/or sporophytes were 

distributed beneath the dense P. comosa canopy prior to the decline, since the canopy 

deterioration occurred during autumn, when U. pinnatifida spores are not present in 

the water column (Sanderson, 1997). U. pinnatifida sporophytes responded 

opportunistically to the P. comosa decline, most likely by utilising the increased light 

levels associated with the reduction in canopy cover. These results are also consistent 

with previous observations of U. pinnatifida, correlating dense stands of U. 

pinnatifida with disturbed habitats (Sanderson, 1997; Johnson, unpublished), and 

casual observations of U. pinnatifida establishing in patches from which native algae 

are removed during storm swells (J. Valentine, pers. obs.). 

The results also indicate that there is a relationship between timing of disturbance 

and subsequent U. pinnatifida sporophyte density. The P. comosa dieback occurred 

over the summer/autumn months of 2001, while in our artificial disturbance 

treatments canopy removals were conducted during spring 1999 and winter 2000. 

Whilst direct comparisons with these artificial disturbances need to be interpreted 

carefully (because the U. pinnatifida response was measured in different years), it is 

nonetheless interesting that the U. pinnatifida sporophyte densities that developed 

following P. comosa dieback (6.8 plants IT1-2  ± 2.0 SE) fell between the values 

observed for the spring (3.6 plants 111-2  ± 0.6 SE) and winter (14.0 plants 111-2  ± 2.6 

SE) canopy removals in the artificial disturbance experiment (Chapter 2). These 
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combined data suggest that the closer the timing of disturbance is to the onset of 

sporophyte development, the greater the establishment density of U. pinnatifida. We 

speculate that as the period between disturbance and the onset of sporophyte 

development increases, competition with native species able to develop before U. 

pinnatifida sporophytes begin growing, leads to lower recruitment success of U. 

pinnatifida. 

3.5.2 Response of native species to canopy dieback 

The decline of encrusting algae and increase in sediment cover following dieback of 

the P. comosa canopy have been similarly observed in several studies in which algal 

canopies have been removed artificially (Kennelly and Underwood, 1993; Edwards, 

1998; Melville and Connell, 2001). The bleaching of encrusting algae that followed 

the decline of the canopy may be caused either by increased light levels, increased 

sediment levels, or a combination of both. Although the detrimental effects of 

sediment on encrusting algae are largely unknown, it appears that the sweeping effect 

of large macroalgae on the benthos maintains encrusting algae largely free of 

sediment. A possible mechanism to explain this observation has been proposed by 

Melville and Connell (2001), suggesting that large macroalgae suppress the growth 

of filamentous algae, indirectly leading to the persistence of encrusting algal cover. 

While U. pinnatifida is clearly able to recruit and grow when cover of encrusting 

coralline algae is reduced, there is limited understanding of the consequences of 

coralline algal decline for native species. Edwards (1998) concluded that the primary 

substratum upon which the brown alga Desmarestia ligulata recruits was non-

geniculate coralline algae. Similarly, in rockpool habitats in the Mediterranean Sea it 

has been suggested that persistence of the canopy-forming alga Cystoseira sp. may 
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depend on the availability of encrusting coralline algae (Benedetti-Cecchi and 

Cinelli, 1992). In marked contrast to these results, others have shown that encrusting 

coralline algae inhibit the development of foliose and filamentous macroalgae either 

by shedding their epithallial cells (Johnson and Mann, 1986; Camus, 1994; Keats et 

al., 1997) or through the production of allelopathic substances (Suzuki et al., 1998). 

The restricted temporal scale of the study limits the scope of inference in regard to 

the response of canopy-forming algae to the P. comosa decline. Despite this, the 

initial slow rate of recovery observed following artificial canopy removal (see 

Chapter 2) appears comparable to that observed in this study after natural canopy 

disturbance. Recovery of native canopy-forming species averaged 9.6 % in the 

present study, while averaging 12.3 % in assessments conducted 6 months after 

artificial canopy removals in the adjacent mixed algal zone (Chapter 2). We also note 

that there was some recruitment of P. comosa into dieback areas, despite the 

observation that this species did not recruit at all over the two-year period of the 

artificial clearance experiments (Chapter 2). This may reflect seasonal and annual 

variation in availability of P. comosa propagules. Alternatively the different 

mechanisms that lead to reduced canopy cover (i.e. artificial vs natural canopy 

removal) may explain this variation. For example, the increased light levels that 

follow canopy removal would have been more rapid in the artificial canopy removal 

compared with the natural canopy disturbance, where the canopy declined over a 

longer time period. 

In terms of understorey foliose species, some similarities and conspicuous 

differences were evident between the present study and our recent work involving 
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artificial disturbance treatments (Chapter 2). For example, cover of the foliose red 

algal guild averaged 13.7 % (± 3.2 SE) following P. comosa dieback, a level 

comparable to that observed six months after artificial canopy removals (10.9 % ± 

5.2 SE). In contrast, the significant response of green understorey algae (Cladophora 

sp.) following dieback of P. comosa was not observed in artificial canopy removals, 

either reflecting variability in availability of propagules or differences associated 

with the mechanism of canopy removal. 

The loss of sessile invertebrate cover with dieback of P. comosa is comparable to 

that observed following artificial canopy removals in Tasmania and elsewhere 

(Kennelly, 1987b; Kennelly, 1989; Chapter 2). The observed decrease in cover was 

likely to be associated with the increased sediment levels, which effectively 

smothered these animals. 

3.5.3 Conclusions 

The results from this study highlight the opportunistic nature of U. pinnatifida. 

Following deterioration of the canopy, macroscopic sporophytes developed at high 

densities during the spring growth season, while remaining rare or absent in adjacent 

patches where the native canopy remained intact. These findings have significant 

implications for locations where U. pinnatifida has been introduced. Given results 

from our previous work to indicate that native algae can recover slowly in artificially 

disturbed areas after initial invasion by U. pinnatifida, the intensity and spatial and 

temporal distribution of disturbance is likely to be critical in determining abundance 

of U. pinnatifida on a local scale. If disturbance occurs at an appropriate frequency 

(e.g. annually or 2-yearly), it can be expected that U. pinnatifida will maintain large 

and persistent populations. There is growing evidence that disturbance as a result of 



Establishment of Undaria pinnatifida 66 

human activities is increasing, with potentially dramatic consequences on benthic 

communities (Harris and Tyrrell, 2001). The effects of stresses such as climate 

change (Coelho et al., 2000), species removals (Pauly et al., 2000) and habitat 

alteration due to fishing (Collie et al., 1997; Watling and Norse, 1998) represent 

ongoing threats to native algal communities. Unless these disturbances can be 

mitigated, U. pinnatifida is likely to continue to colonise new areas and become a 

persistent and conspicuous component of temperate subtidal communities around the 

globe. 
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Chapter 4 

"Does intensive grazing by the sea urchin Heliocidaris 
erythrogramma enable dense stands of the introduced kelp 

Undaria pinnatifida to persist?" 

(submitted to Marine Ecology Progress Series) 

4.1 Abstract 

Few studies have addressed processes enabling persistence of an introduced species 

after its introduction in a marine system. In this study we investigate mechanisms 

enabling persistence of the introduced Asian kelp Undaria pinnatifida on sea urchin 

(Heliocidaris erythrogramma) 'barrens' on the east coast of Tasmania. Previous 

work has demonstrated that development of dense stands of U. pinnatifida requires 

disturbance to reduce cover of native algae. Observations of U. pinnatifida occurring 

abundantly on urchin barren habitats suggests that disturbance in the form of grazing 

urchins prevents recovery of native canopy-forming species, allowing dense stands 

of U. pinnatifida to persist. We examined this hypothesis over a 30-month period in a 

manipulative experiment in which the response of native algae and U. pinnatifida 

was examined in treatments comprising all possible combinations of +/- urchins, +1-

U. pinnatifida and +/- enhanced native algal spore inoculum. The results 

demonstrated that the local sea urchin H. erythrogramma can have a significant 

impact on U. pinnatifida abundance. The response was most dramatic in the 2001 

sporophyte growth season, when sea urchins destructively grazed U. pinnatifida 

sporophytes in experimental plots on the urchin barren. Removal of sea urchins 

resulted in a slow increase in cover of understorey red algae but only limited 

recovery of native canopy-forming species. In treatments where both sea urchins and 

U. pinnatifida were removed, cover of canopy-forming species did not exceed 6 % 

over the duration of the study. Consequently, in the absence of sea urchin grazing 
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there was no evidence of inhibition of U. pinnatifida by native algae. While the 

intensity of urchin grazing may directly influence persistence of U. pinnatifida, 

recovery of native canopy-forming species may be influenced by a combination of 

factors including sea urchin grazing, depth and most importantly, the degree of 

sediment accumulation. 

4.2 Introduction 

Biological introductions in the marine environment have increased significantly over 

the last two decades, mainly due to human assisted transport associated with 

international shipping, aquaculture and aquarium activities (Carlton and Geller, 

1993; Meinesz et al., 1993; Ribera and Boudouresque, 1995; Carlton, 1999). 

Introduced marine species now represent a major threat to native ecosystems with the 

potential to dramatically alter native communities by affecting biological diversity, 

productivity, habitat structure and fisheries (Carlton, 1999). 

In defining the threat that an introduced species poses to native communities it is 

important to understand the role of disturbance in the invasion process (Hiebert, 

1997). If an introduced species can establish and maintain persistent populations in 

the absence of disturbance, it potentially represents a major threat to the integrity of 

native communities. Conversely, if establishment and persistence of an exotic 

species relies on disturbance, the key threatening process is the disturbance rather 

than the introduced species itself. 

While disturbance may facilitate establishment of an introduced species, its 

persistence may not require ongoing disturbance. For example, on the Atlantic coast 
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of Canada invasion by the introduced seaweed Codium fragile ssp. tomentosoides is 

facilitated by disturbance to the native kelp canopy in the form of either destructive 

urchin grazing or smothering of kelp laminae by the epiphyte Membranipora 

membranacea (Chapman et al., 2002). Once C. fragile is established, however, it 

displaces kelp species by inhibiting recruitment (Chapman et al., 2002). Similarly, 

invasion of San Francisco Bay by the introduced clam Potamocorbula amurensis 

followed a major flood disturbance, after which the introduced clam inhibited 

recovery of the native community during conditions of normal river flow (Nichols et 

al., 1990). 

Since its introduction to the port of Triabunna in the 1980's (Sanderson and Barrett, 

1989), the annual Japanese kelp Undaria pinnatifida has become a conspicuous 

feature of subtidal communities in sheltered to moderately exposed habitats along 

much of the east coast of Tasmania. Recent experiments have demonstrated clearly 

that disturbance to the native algal canopy is an essential process facilitating 

successful establishment of U. pinnatifida (Chapter 2; Chapter 3). Following both 

artificial and natural disruption of the canopy, U. pinnatifida sporophytes recruited in 

high densities, while the presence of an intact native canopy inhibited sporophyte 

development in the same area. 

While these recent experiments are illuminating in defining mechanisms of 

establishment, factors responsible for the persistence of dense U. pinnatifida stands 

have not been adequately addressed. Sea urchin grazing may represent a continuous 

source of disturbance that effectively maintains dense U. pinnatifida stands. In 

Tasmania, U. pinnatifida occurs most abundantly on urchin 'barrens' characterised 
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by high densities of the sea urchin Heliocidaris erythrogramma, low cover of native 

algae, and seasonal abundance of U. pinnatifida which often exceeds 100 % cover 

(Sanderson and Barrett, 1989; Sanderson, 1997; Johnson, unpublished). It has been 

suggested that U. pinnatifida maintains high densities on urchin barrens as a result of 

high reproductive output and rapid spring growth of the sporophyte which exceeds 

the grazing capabilities of the urchin (Sanderson and Barrett, 1989). Based on these 

observations and the role of sea urchins as a major source of disturbance to temperate 

subtidal communities elsewhere (Mann, 1977; Schiel and Foster, 1986; Andrew, 

1993; Hagen, 1995; Palacin et al., 1998), our hypothesis is that maintenance of dense 

stands of U. pinnatifida on urchin barrens requires continual disturbance in the form 

of intensive grazing by sea urchins. 

In this study we report on a large manipulative experiment designed to identify (1) 

whether dense stands of U. pinnatifida are self-maintaining in the absence of high 

densities of sea urchins; and (2) those factors that affect the re-establishment of 

native canopy-forming species in sea urchin/U. pinnatifida dominated areas. 

4.3 Materials and methods 

4.3.1 Study site 

The study was conducted between June 1999 and November 2001 in the Mercury 

Passage, on the east coast of Tasmania. In this area a variety of subtidal communities 

are found, ranging from 'urchin barrens' to habitats dominated by native perennial 

brown algae. Urchin barrens in the Mercury Passage area are characterised by 

relatively high densities (4-8 m -2) of the sea urchin Heliocidaris erythrogramma, low 
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cover of native algae, and seasonal dominance by Undaria pinnatifida. We 

conducted the experiment in an extensive area of urchin barren habitat on a reef at 

Lords Bluff in the Mercury Passage (42 °31' S 147°59' E). At this site the urchin 

barren extended along approximately 250 m of coast at depths greater than 5 m. 

4.3.2 Experimental design 

The experiment consisted of a total of eight treatments, comprising factorial 

combinations of three factors, viz. (1) abundance of Heliocidaris erythrogramma (2 

levels; 0 % and 100 % removal); (2) extent of Undaria pinnatifida canopy (2 levels; 

0 % and 100 % removal of sporophytes); and (3) level of native algal spore inoculum 

(2 levels; background and enhanced). 

There were four replicates of each experimental treatment, yielding a total of 32 

plots. Treatments were assigned at random to permanent plots established in the 7-12 

m depth range in the urchin barren habitat in June 1999. The experimental plots were 

4 x 4 m, although response variables were estimated from the inner 2 x 2 m area to 

minimize edge effects. 

4.3.3 Manipulations 

The initial removal of sea urchins (H. erythrogramma) commenced in June 1999. 

Thereafter plots were maintained clear of immigrating urchins every 4-6 weeks for 

the 30 month duration of the experiment. Fences were not used to restrict urchin 

access, since H. erythrogramma showed low rates of movement in an earlier study 

conducted on a nearby reef (Sanderson et al., 1996) and in a pilot study we 

conducted to assess immigration rates. 
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U. pinnatifida sporophytes were removed by cutting plants immediately above the 

holdfast. In the first season of the experiment (1999), plants were removed once they 

could be readily identified as U. pinnatifida recruits, at around 5 cm in total length. 

In subsequent seasons (2000 and 2001) plants were removed when they reached 15 

cm in length. Removals were conducted approximately monthly during the U. 

pinnatifida sporophyte growth season (i.e. August-December). 

The native algal spore inoculum was enhanced by placing fertile native species 

collected from an adjacent reef in mesh bags attached to star pickets at the perimeter 

of plots. Several individuals (6-10 depending on the species and size of plants) of a 

single species were placed in each mesh bag. This technique has proved effective in 

seeding macroalgae in other experiments (Dayton et al., 1984). A range of canopy-

forming brown algae (Phyllospora comosa, EckIonia radiata, Carpoglossum 

confluens, Seirococcus axillaris) were used for the seeding treatment depending on 

their availability and the presence of fertile reproductive material. Fresh material was 

added to experimental plots every 6-8 weeks during 1999 and 2000. In addition to 

using plants in mesh bags for the enhancement treatment, algae transplanted to 

concrete bricks were also used as a spore source (Macrocystis pyrifera and EckIonia 

radiata). For algal transplants, whole plants were carefully removed from the 

substratum, attached to bricks using heavy-duty rubber bands and placed at the 

perimeter of plots. To ensure separation of treatments receiving an enhanced spore 

inoculum from those that did not receive the enhancement, plots were separated by a 

minimum distance of 15 m. We assumed that the effective spore shadow of the algal 

species we used was limited to < 15 m, as has been demonstrated for other large 

brown algae (Ambrose and Nelson, 1982; Anderson and North, 1966; Andrew and 
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Viejo, 1998; Deysher and Norton, 1982). Species used in the spore enhancement 

treatments and the dates of replenishment of fresh material are included in Table 4.1. 

4.3.4 Algal assessment 

Assessment of experimental plots was conducted approximately every three months, 

during which the density of canopy-forming species and urchins was recorded, along 

with cover of understorey algae, sessile invertebrates and sediment. A census of the 

density of canopy-forming algae (> 30 cm total length) and urchins was made by 

direct counts in the inner 2 x 2 m of each plot. Cover of understorey species was 

estimated from five 0.10 m2  photoquadrats positioned randomly in each plot. 

Photographs were taken using Ektachrome 100 ASA slide film and slides were 

scanned to determine the cover of algae using a point intercept method. Each image 

was overlayed with 100 equally spaced dots using Imagepro0 computer software. 

Organisms were identified from photographs to the highest taxonomic resolution 

possible. For large brown algae identification to species level was possible, however, 

for most of the understorey species, photographs could only be used to separate algal 

cover into guilds (e.g. red algae, brown turf algae, green algae). An estimate of 

sediment depth was also obtained during algal assessments, measured to the nearest 

millimetre in five random positions in each plot. 
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Table 4.1 Details of spore enhancement manipulations, indicating the species 'seeded', the 
enhancement technique and dates of deployment. 

Enhancement 	 Date(s) 
	

Species "seeded" 
Methodology 	 Conducted 

Mesh bag 26/6/99 	Seirococcus axillaris, 
Carpoglossum confluens, 
EckIonia radiata 

4/8/99 	Seirococcus axillaris, 
Carpoglossum confluens, 
EckIonia radiata 

8/11/99 	Seirococcus axillaris, 
Camoglossum confluens, 
EckIonia radiata 

14/1/00 	EckIonia radiata, 
Phyllospora comosa 

22/3/00 	EckIonia radiata, 
Phyllospora comosa 

23/6/00 	Seirococcus axillaris, 
Carpoglossum confluens, 
EckIonia radiata 

21/9/00 	Seirococcus axillaris, 
Carpoglossum confluens, 
EckIonia radiata 

20/11/00 	Seirococcus axillaris, 
Carpoglossum confluens, 
EckIonia radiata 

Transplant 	 13/4/00 	EckIonia radiata 
10-11/5/00 	Macrocystis pyrifera 

Photographic sampling did not allow quantifying more than one structural layer of 

the algal community. The primary aim of the photoquadrat assessment was to 

estimate cover of understorey species and recruits of canopy-forming species. If a 

canopy was present in the quadrat (mainly Undaria pinnatifida), larger plants were 

moved aside before the photograph was taken. The photoquadrat assessment had 

limitations when estimating cover of encrusting algae, sessile invertebrates and 

sediment when there was significant cover of understorey algae present. 
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As a result of these issues, at the conclusion of the experiment in November 2001, 

destructive sampling was conducted to investigate algal community structure in more 

detail. All foliose macroalgae in each plot were removed by hand and placed in mesh 

bags before being transported to the laboratory (filamentous algae occurring in the 

sediment matrix were not collected). Samples were sorted to the highest taxonomic 

resolution possible and dried (70 °C for 48 hours) before weighing. 

4.3.5 Statistical analysis 

Analysis of the response of algal community was conducted separately for 

assessments made in November 2000 and November 2001, approximately 15 and 27 

months after all treatments were initiated. Rather than using a repeated measures 

approach, we decided a priori to conduct analyses during the peak period of U. 

pinnatifida sporophyte growth for each year of the experiment. We also analysed the 

response of U. pinnatifida in November 1999 as the urchin density manipulation had 

been in place for five months prior to this assessment. 

Of the five species that were used in the native spore enhancement treatment, only 

macroscopic recruits of Camoglossum confluens were ever observed in the study 

area. None of these recruits, however, reached the criterion of 30 cm minimum 

length used in density assessments during the course of the experiment and their 

cover averaged < 1 % across all treatments. We tested whether cover of C. confluens 

recruits was influenced by the spore enhancement treatment in preliminary analyses 

using a 4-factor Model HI nested ANOVA. This analysis included main effects of 

urchin removal, U. pinnatifida removal and spore enhancement (all fixed effects) as 

well as the nested term of 'plots within all combinations of urchin*Undaria*spore 
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enhancement' (a random effect). In both November 2000 (F = 1.33; df 1,24; P <0.26) 

and November 2001 (F = 1.05; df 1,24; P < 0.23) the effect of spore enhancement was 

highly insignificant. 

As a consequence of the very low cover values and lack of any effect of spore 

enhancement, this treatment was ignored in the main analysis, providing greater 

power to examine the effects of sea urchin and U. pinnatifida removal. For the main 

analysis density data were analysed using a 2-factor Model I ANOVA while for 

cover data a 3-factor Model 1111 nested ANOVA was used. Both analyses included 

urchin and U. pinnatifida removal. For the nested ANOVA, 'plots within (urchin 

removal* Undaria removal)' was included as a random factor. 

Prior to all univariate tests, transformations to stabilize variances were determined 

from the relationship between group standard deviations and means (Draper and 

Smith, 1981). Transformations are expressed in terms of the untransformed variate, 

Y. All univariate tests were undertaken using the SAS® statistical package. 

Variances of some variables remained heterogeneous after transformation which 

usually occurred when mean abundance (and variance) of a guild was zero in several 

experimental plots. In these instances the analysis was still carried out, recognizing 

that with a balanced design heteroscedasticity has little effect on Type I error, but can 

increase Type II error (Scheffe, 1959). 
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4.4 Results 

4.4.1 Maintenance of sea urchin removal treatment 

During the first 18 months of the experiment, physical removal maintained urchin 

densities at very low levels in removal treatments, averaging 0.5 individuals 111-2  

compared to 7.1 individuals IT1-2  in unmanipulated plots (Figure 4.1). Between 

January and April 2001, however, some re-invasion of cleared plots occurred with 

densities reaching an average of 5.8 individuals IT1-2  in April 2001. For the remainder 

of the experimental period the number of animals in removal plots remained at very 

low levels. 

12 

8 

cJ 

4 

0 

Jun-99 	Dec-99 Jun-00 	Dec-00 Jun-01 	Dec-01 

Figure 4.1. Mean density (± SE) of sea urchins in removal and non-removal plots (n = 16). Removal 
plots were visited approximately every four weeks for the duration of the study. Data associated with 
the urchin removal treatment represents the number of animals cleared from plots while maintaining 
the treatment. For the non-removal treatment densities are derived from data collected during routine 
assessments of algae and sea urchins (conducted at three monthly intervals). 
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4.4.2 Response of Undaria pinnatifida to experimental manipulations 

Undaria pinnatifida densities were higher in plots from which urchins were removed 

than in plots containing sea urchins (Figure 4.2). In urchin removal plots, average 

densities of U. pinnatifida sporophytes were 3-4 plants I11-2  higher than in controls in 

1999 and 2000, however, these differences were not statistically significant (1-way 

ANOVAs, 1999: F = 3.27, df 1,14, P = 0.092; 2000: F = 3.74, dl 1,14, P = 0.074). In 

2001 the effect of urchin removal was statistically significant (1-way ANOVA, F = 

8.41, df 1, 14, P = 0.012) resulting in a mean U. pinnatifida density of 5.2 plants 171-2  

compared to less than 0.1 plant rr1-2  in controls. This result corresponded to an 

average biomass (dry weight) of 54.5 g 111-2  U. pinnatifida in urchin removal plots 

compared to 0.4 g 111-2  in controls (Figure 4.6). 

The effect of sea urchins was also evident from the number of U. pinnatifida plants 

taken from removal treatment plots. In all years there were fewer U. pinnatifida 

plants removed from plots with urchins than in treatments free of urchins (Table 4.2). 

Examination of the number of plants in experimental plots prior to the initial removal 

of U. pinnatifida in August 2001 allowed an assessment of the cumulative effects of 

the previous 2 years of manipulation on U. pinnatifida abundance (Figure 4.3). The 

results clearly show that the presence of urchins had considerable detrimental effects 

on U. pinnatifida density (2-way ANOVA, F = 14.93, df 1, 28, P = 0.001), while the 

U. pinnatifida removal treatment had no significant effect on abundance in the 

subsequent 2001 sporophyte growth season (2-way ANOVA, F = 0.57, df 1 28, P = 

0.455). 
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Figure 4.2. Effect of sea urchin manipulations on abundance of Undaria pinnatifida assessed in 
November 1999, 2000 and 2001. Data represent mean (+ SE) stipe counts of all adult plants > 30 cm 
in size in each 4 m2  experimental plot (n = 8 replicates per treatment). 

Table 4.2. Number of Undaria pinnatifida plants removed from experimental `Undaria clearance' 
plots. In 1999 plants were removed as soon as they could be identified as U. pinnatifida, which was 
around 5 cm in total length. In 2000 and 2001, plants were removed on reaching 15 cm in total length. 
During each year plots were visited regularly during the sporophyte growth season (August-
December) to remove any new recruits. Data are means (± SE). 

1999* 2000 2001 
+urchin -urchin +urchin -urchin +urchin -urchin 

996 ± 158.1 1719 ±136.3 165 ± 51.4 217 ± 44.8 2 ± 1.0 47 ± 11.4 
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Figure 4.3 Response of Undaria pinnatifida to experimental manipulations assessed in August 2001, 
prior to the commencement of the 2001 U. pinnatifida canopy manipulations. Data represent means (+ 
SE) of all U. pinnatifida plants > 15 cm in total length within each 4m2  experimental plot (n = 8 
replicates per treatment). 
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4.4.3 Response of native algae to sea urchin removal 

Total native algal cover 

Total native algal cover in plots with sea urchins remained < 20 % during 

experimental period (Figures 4.4; 4.5). The community was characterised by very 

low cover of both brown and green algae and moderate cover of foliose red algae. 

Cover of canopy-forming species remained < 2 % throughout the experiment. The 

persistent presence of a high cover of sediment (>50 %) up to 10 mm in depth was 

also a feature of control areas (Figure 4.4). 

A significant increase in cover of native algae was detected in response to removal of 

sea urchins in both the November 2000 and 2001 assessments (Figure 4.4; Table 

4.3). While total algal cover was comparable between urchin removal and non-

removal plots for the first year of the study, cover increased steadily in urchin 

removal treatments after July 2000 (Figure 4.5). This pattern is reflected clearly in 

the biomass (dry weight) of plants determined at the conclusion of the experiment, 

with an average of 36.2 g M-2  in urchin removal treatments compared with <2 g M-2  

when urchins were present (Figure 4.6, Table 4.4). 

Response of native canopy -forming species 

While native canopy-forming species never exceeded 6 % in any treatment over the 

30-month experimental period, significantly greater cover developed in urchin 

removal plots than in controls in November 2000 (Figure 4.4, Table 4.3). The 

magnitude of this difference was small, however, with cover increasing from 0.7 % 

in the presence of urchins to 4.8 % in urchin removal plots. For data collected in 

November 2001 no canopy-forming species were recorded in the presence of 
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urchins, compared with an average of 1.6 % in urchin removal plots. This difference 

was marginally non-significant (P = 0.0570, see Table 4.3). The predominate 

canopy-forming species that were observed during the study were Cystophora 

retroflexa and C. moniliforrnis, as well as occasional individuals of a range of 

Sargassum species. 

Data describing the biomass (dry weight) of canopy-forming species at the end of the 

experimental period exhibited the same trend as cover. Across urchin removal 

-2 treatments, biomass of canopy species averaged 7.2 g m (Figure 4.6). This value 

was strongly influenced by the presence of a single large Seirococcus axillaris plant 

present in one of the urchin removal plots at the beginning of the experiment that 

persisted throughout the study period (Appendix II). If this individual was excluded 

from analysis, the average biomass was reduced to 4.1 g 

Response of understorey algae and invertebrates 

Urchin density had significant effects on cover of the red algal guild which consisted 

of both foliose and filamentous species. In November 2000 average red algal cover 

was 14.2 % in the presence of urchins, while it increased to 23.5 % in urchin removal 

plots (Figure 4.4; Table 4.3). Data collected during November 2001 showed even 

greater differences with cover averaging 14.3 % in the presence of urchins, compared 

to 41.5 % in urchin removal treatments. The temporal trend indicates that the greatest 

divergence in treatments occurred in the second year after manipulation of urchins 

(Figure 4.5). Native algal cover was clearly dominated by the guild of red algae 

(Figures 4.4 and 4.5) which showed stronger interannual variation than seasonal 

fluctuations. 
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The biomass (dry weight) of foliose red algae collected during destructive sampling 

at the end of the experiment reflected the patterns observed in cover (Figure 4.6; 

Table 4.4). Average biomass in urchin removal plots was 24.9 g m 2, while in the 

presence of urchins this value was 1.9 g rr1-2 . The dominant red algal species 

occurring in urchin removal plots in the destructive sample was Dasya ceramiodes, 

which contributed more than 50 % of total algal biomass in urchin removal plots (see 

Appendix The biomass of Echinothamnion sp., Dictymenia harveyii and 

Heterosiphonia sp. also reached moderate levels in urchin removal plots. 

In plots where urchins were present the average cover of green algae did not exceed 

0.1 %. Sea urchin removal resulted in very small but statistically significant increases 

in cover of green algae in November 2000 and November 2001 (Figure 4.4; Table 

4.3). These increases were mainly associated with the presence of Codium sp. or 

unidentified filamentous algae. Green algae were not collected in sufficient quantity 

during destructive sampling to warrant analysis. 

The guild of brown turf-forming algae did not respond to a decrease in urchin density 

during the first year of the experiment (assessment in November 2000). A year later 

in November 2001, however, the effect of urchins was significant but small, resulting 

in an additional 3 % cover in removal plots. In destructive samples no representatives 

from the brown turf guild were collected in the presence of urchins, while biomass 

averaged 4.1 g 1112  in urchin removal treatments. The main species collected during 

destructive sampling were Zonaria angustata and Dictyopteris muelleri. Ephemeral 

species that were absent during destructive sampling but relatively abundant at 
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various times during the study included Asperococcus sp., Scytosiphon sp. and 

Colpomenia sp. 

Small decreases in the cover of encrusting algae and sessile invertebrates were 

recorded in November 2001 in response to sea urchin removal (Figure 4.4; Table 

4.3). Although significant, it is likely that these differences are misleading given 

limitations of the photoquadrat assessment, which sampled only a single structural 

layer of the algal community (see methods and materials). Consequently, the 

increased levels of understorey algae that occurred as a result of urchin removal 

inevitably lead to lower estimates of encrusting algae and invertebrate cover, despite 

the fact that the abundance of these organisms may not have changed. 

4.4.4 Response of native algae to Undaria pinnatifida removal 

In contrast to responses to urchin removal, manipulation of U. pinnatifida had 

limited effects on native algae. Significant treatment effects due to either U. 

pinnatifida removal or the 'urchin removal* Undaria removal' interaction were rarely 

detected, with the exception of brown turf algae (Table 4.3). Removal of the U. 

pinnatifida canopy resulted in approximately 3 % greater cover of brown turf for data 

collected in November 2000. A year later in November 2001 there was no evidence 

that any algal group responded to the removal of the U. pinnatifida canopy. 
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Figure 4.4. Effect of experimental manipulations on cover of various algal guilds, invertebrates and 
sediment, assessed in November 2000 and November 2001. Data represent mean (+SE) percentage 
cover (n = 8 replicates per treatment) determined from five randomly positioned 0.10 m 2  
photoquadrats within each experimental plot. Note the different scales on the Y-axes. 
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Table 4.3. Effect of experimental manipulations on cover of algal guilds at the November 2000 and 
November 2001 assessments. Results are of the overall ANOVA examining the effect of sea urchin 
(Heliocidaris erythrogramma) removal and Undaria pinnatifida removal. Significant P-values (a = 
0.05) are shown in bold face. 

Guild 
(transformation) 

Source of 
Variation 

urchin 
F 
(df = 1, 

P 
28) 

F  (Uidar2iar)  df 	l, urchin* Undaria 
F 	P 
(df = 1,28) 

Plot (urchin *Undaria) 
F 	P 
(df = 28, 128) 

November 2000 

Total native algae 
( 	) 
Red algae 
{ln (Y+O.1)} 
*Native canopy-forming algae 
(arcsin VC:).(:-) 11/ ) 
*Green algae 

12.66 

12.35 

7.37 

7.30 

0.05 

2.47 

5.18 

2.71 

56.06 

49.14 

3.94 

4.49 

11.38 

29.07 

8.65 

35.60 

0.001 

0.002 

0.011 

0.012 

0.823 

0.127 

0.031 

0.111 

0.001 

0.001 

0.057 

0.043 

0.002 

0.001 

0.007 

0.001 

2.12 

1.07 

1.63 

4.20 

6.88 

0.03 

0.06 

0.48 

2.50 

3.05 

0.32 

0.10 

0.00 

0.20 

0.46 

2.46 

0.157 

0.310 

0.213 

0.050 

0.014 

0.853 

0.807 

0.493 

0.125 

0.092 

0.577 

0.760 

0.963 

0.661 

0.503 

0.128 

2.62 

1.73 

0.15 

5.10 

1.30 

2.22 

3.27 

0.35 

3.38 

2.80 

0.32 

0.09 

0.06 

0.68 

3.07 

0.04 

0.117 

0.199 

0.704 

0.032 

0.264 

0.147 

0.082 

0.561 

0.077 

0.106 

0.577 

0.762 

0.805 

0.417 

0.091 

0.852 

5.45 

3.67 

3.00 

0.83 

1.06 

4.38 

3.44 

2.54 

3.03 

2.59 

1.55 

0.95 

1.47 

1.38 

2.39 

1.55 

0.001 

0.001 

0.001 

0.704 

0.395 

0.001 

0.001 

0.001 

0.001 

0.001 

0.053 

0.539 

0.080 

0.115 

0.001 

0.053 

(arcsin 	) 
*Brown turf algae 
(arcsin N(/71.0--̀Y ) 
Encrusting algae 
ric0.54) 

Sediment 
(no transformation) 
Invertebrates 
{ In(Y+0.1)} 

November 2001 

Total native algae (y042)  
Red algae 

) 

*Native canopy-forming algae 
(arcsin VatifTrY ) 
*Green algae 
(arcsin(115.(5F-T ) 
*Brown turf algae 
(arcsin (r)7(57-KY ) 
Encrusting algae 

) 

Sediment 
(no transformation) 
Invertebrates 
{1n(Y+0.1)} 

* Transformation improved data structure considerably but did not achieve normality and 
homoscedasticity 
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Figure 4.5. Effect of sea urchin removal on cover of algal guilds from October 1999 to November 
2001. Data represent mean (± SE) percentage covers, pooled across treatments involving 
manipulation of Undaria pinnatifida (.• n = 16) determined from 5 randomly positioned 0.10 m 2  
photoquadrats within each experimental plot. Crosses represent sea urchin removal treatments, while 
diamonds indicate the presence of sea urchins. Note the different scales on the Y-axes. 
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Figure 4.6. Effect of manipulations of sea urchins (Heliocidaris erythrogramma) and the canopy of 
Undaria pinnatifida on the biomass (g dry weight m-2) of major algal groups following completion of 
the experiment in November 2001. Data represent means (+ SE) for each treatment (n=8). Biomasses 
were obtained by removing all macroalgae from each experimental plot (4 m 2  per plot). Note the 
different scales on the Y-axes. 
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Table 4.4 Effect of experimental manipulations on biomass of algal guilds collected at the end of the 
experiment (November 2001). Results are of the overall ANOVA examining the effect of sea urchin 
(Heliocidaris erythrogramma) and Undaria pinnatifida removals. Significant P-values (a = 0.05) are 
shown in bold face. Note that for the U. pinnatifida response, the table includes the results of a 1-way 
ANOVA on the effect of urchin removal, as it was not appropriate to examine the effect of U. 
pinnatifida canopy removal on U. pinnatifida biomass. 

Algal Guild 

(transformation) 

Source of Variation 

urchin 

(df = 1,28) 

Undaria 

(df = 1.28) 

urchin*Undaria 

(df = 1,28) 
Total native algal cover 52.97 0.001 0.20 0.658 0.87 0.358 

{1n(Y+0.1)} 
Undaria pinnatifida 
(no transformation) 

6.98 0.019 

Native canopy-forming algae 7.26 0.012 0.16 0.693 0.16 0.693 
*(ln(Y+0.1)} 

Foliose red algae 
ro.32)  

42.76 0.001 0.29 0.595 1.58 0.220 

Brown turf algae 58.83 0.001 0.07 0.798 0.23 0.633 
( y*0.14) 

* Transformation improved data structure considerably but did not achieve normality and 
homoscedasticity 

4.4.5 Effect of experimental manipulations on sediment 

Cover of a sediment matrix was consistently high in all treatments throughout the 

experiment, averaging > 45 % across all treatments. Cover was slightly lower in the 

urchin removal plots when assessed in November 2000 and November 2001 (Figure 

4.4; Table 4.3). Although statistically significant, it is likely that this difference is not 

biologically meaningful, for the same reasons outlined for encrusting algal and 

sessile invertebrate cover (i.e. the increase in algal cover in urchin removal plots 

inevitably lead to lower values of sediment cover, due to the fact that the 

photoquadrat technique only sampled a single structural layer of the community). In 

addition, a significant proportion of red algal cover was comprised of filamentous 

forms growing on the surface of the sediment matrix and not replacing the sediment 

itself. Thus it is likely sediment cover was under-estimated. 
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In plots containing sea urchins, the depth of sediment was significantly lower (2-way 

ANOVA, F = 18.84, dfi, 28, P = 0.001) than in plots from which the urchins were 

removed (3.8 mm ± 0.74 SE in removal plots, 1.4 mm ± 0.32 SE in un-manipulated 

plots)(Figure 4.7). Removal of the U. pinnatifida canopy had no detectable effect on 

either the cover or depth of sediment. 

A prominent feature of the sediment matrix during summer 2001 was the presence of 

a cyanobacterial mat, dominated by the rod forming species Microcoleus sp.. 

Although the extent of the cyanobacterial mat was not affected by experimental 

manipulations, across all treatments an average of 25 % of the sediment was 

colonised by this organism. 
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Figure 4.7. Effect of experimental manipulations on sediment depth, assessed in November 2001. Data represent 
mean (+SE) depth (n = 8 replicates per treatment) determined from five random positions within each 
experimental plot. 
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4.4.6 Spatial variability of algal guilds 

A feature of the analysis associated with cover of the various algal guilds was the 

consistent significance of the 'plot (urchin*Undaria)' term (Table 4.3), indicative of 

differences between replicate plots of the same treatment. Given that replicate plots 

were separated by a range of 15-180 m, this result reflects patchiness in the cover of 

these guilds at this spatial scale. 

4.5 Discussion 

In assessing the threat Undaria pinnatifida poses to native algal communities, it is 

essential to identify the factor(s) that maintain persistent populations. Two possible 

scenarios can explain long-term persistence of U. pinnatifida on urchin barrens. 

Firstly, persistence of dense U. pinnatifida stands may require continuous 

intervention by agents (eg. sea urchin grazing) to restrict development of native algal 

competitors. Alternatively, once established dense U. pinnatifida stands may be self-

maintaining in the absence of sea urchin grazing or other mechanisms that limit 

cover of native algae. Self-maintenance could occur if the U. pinnatifida canopy 

inhibits recruitment of native canopy-forming species (eg. Ambrose and Nelson, 

1982; Chapman et al., 2002), which may also be limited by their poor dispersal 

abilities (Anderson and North, 1966; Amsler and Searles, 1980; Schiel and Foster, 

1986; Santelices, 1990; Fletcher and Callow, 1992). The experimental approach used 

in this study incorporates manipulations of disturbance (i.e. urchins), the level of U. 

pinnatifida canopy, and the level of native algal propagule supply, providing key 

insights into the persistence of the 'urchin barren/U. pinnatifida' community state. 
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4.5.1 Does persistence of Undaria pinnatifida depend on grazing intensity? 

While sea urchins have previously been observed grazing U. pinnatifida sporophytes 

(Sanderson and Barrett, 1989), the dramatic consequences of sea urchin grazing seen 

in 2001, where U. pinnatifida plants were recorded only in sea urchin removal plots, 

was unexpected. It is likely that this response was caused either by an increase in 

grazing intensity by H. erythrogramma, decreased recruitment success of U. 

pinnatifida, or a combination of both. 

While no significant change in H. erythrogramma density occurred in the present 

study in control areas, a possibility is that a change in urchin behaviour in response 

to variation in food availability lead to increased grazing pressure on U. pinnatifida. 

If drift algae are the predominant food of this urchin (Connolly, 1986; Constable, 

1989), then it is possible that a decrease in drift algae resulted in H. erythrogramma 

grazing U. pinnatifida with greater intensity during the course of the study. 

Whenever present, urchins were observed feeding on drift algae on the urchin barren. 

Another explanation for the observed decline in U. pinnatifida is variable recruitment 

success. Data associated with the U. pinnatifida canopy removal treatment shows 

that abundance of U. pinnatifida was significantly lower in 2001 compared to the 

previous two years (Table 4.2). Under these conditions, U. pinnatifida abundance 

could be reduced significantly while the grazing rate of H. erythrogramma remains 

unchanged. Clearly lower recruitment success combined with a higher grazing rate 

would result in even greater impact on the abundance of U. pinnatifida sporophytes. 
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Our results (summarised in a conceptual model, Figure 4.8) show that when grazing 

pressure is low (i.e. in urchin removal plots), U. pinnatifida and understorey native 

species recruit successfully. When grazing pressure is high and/or U. pinnatifida 

recruitment is reduced, as occurred in treatments where urchin densities were not 

manipulated in 2001, all algae including U. pinnatifida will be destructively grazed. 

We suggest that when grazing intensity is at an intermediate level between these two 

extremes, U. pinnatifida persists while native algal species do not. It is likely that 

recruitment and growth rates of U. pinnatifida are much higher than that of native 

species, so that U. pinnatifida is able to outstrip the capacity of the urchin to 

consume it. The grazing preference of H. erythrogramma for U. pinnatifida relative 

to native algae remains unknown. 

Grazing preference of sea urchins has been suggested previously as an important 

mechanism regulating stands of an introduced alga. In the northwest Atlantic, the sea 

urchin Stronglyocentrotus droebachiensis can consume the introduced algae Codium 

fragile, however, the alga lacks chemical attractants present in native algae 

(Laminaria spp.), which are the preferred food source (Prince and LeBlanc, 1992; 

Scheibling and Anthony, 2001). Based on laboratory feeding preference experiments, 

it is suggested that in moderate densities urchins will graze native species creating a 

mosaic of barren and C. fragile dominated areas, while at higher urchin densities all 

seaweeds will be grazed destructively (Scheibling and Anthony, 2001). Clearly 

similar experiments to elucidate feeding preference of H. erythrogramma would be 

useful in understanding the patterns of U. pinnatifida abundance that we have 

observed. 
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Figure 4.8. Conceptual model detailing the effect of sea urchin grazing intensity on the abundance of 
Undaria pinnatifida and native understorey algae. In sea urchin removal plots (i.e. low relative sea 
urchin grazing intensity) filamentous and foliose understorey species develop beneath a seasonal U. 
pinnatifida canopy. At moderate grazing intensity, characteristic of urchin barrens in the Mercury 
Passage, U. pinnatifida remains abundant while understorey species are destructively grazed. At high 
grazing intensity, as observed in experimental plots where sea urchins were not manipulated during 
2001, all algae are destructively grazed. Note that relative sea urchin grazing intensity can be 
mediated by algal recruitment success (i.e. reduced algal recruitment success can lead to increased 
relative sea urchin grazing intensity). 

4.5.2 Why did canopy-forming species fail to recover? 

A key point is that under conditions of low grazing pressure, inhibition of U. 

pinnatifida by native algae was not observed because a dense canopy of native algal 

species did not develop, even after 30 months of urchin removals. This is in contrast 

to the rapid recovery (typically within 12 months) of canopy-species observed in 

previous studies in response to urchin removal (Duggins, 1980; Chapman, 1981; 

Andrew and Choat, 1982; Hitnmelman et al., 1983; Dayton et al., 1984; Keats et al., 

1990; Leinnas and Christie, 1996; Agatsuma et al., 1997; Shears and Babcock, 
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2002). Even removing both sea urchins and U. pinnatifida, as well as providing an 

immediate source of fertile material, resulted in a maximum of only 6 % cover of 

native canopy-forming species over the 30-month experiment. Although sea urchin 

removal resulted in a statistically significant increase in cover of canopy-forming 

species, the magnitude of increase was small. Several explanations may account for 

this limited recovery, related to factors inhibiting supply of algal propagules or post-

settlement processes that may have inhibited early developmental stages. 

Canopy-forming species: propagule supply 

The failure of the spore enhancement treatment to initiate development of native 

algae in the absence of sea urchins and U. pinnatifida poses several questions. 

Although the technique has been used successfully elsewhere (Dayton et al., 1984), it 

may be that in the present study the treatment was unsuccessful in delivering high 

densities of propagules to the substratum. Although we selected plants with fertile 

material, the presence of fertile material does not guarantee propagules will reach the 

substrate in high densities. Propagules may have been released but settled away from 

experimental plots due to current or surge, or alternatively, propagules may not have 

been released at all if the handling process affected the viability of source plants. 

Whether or not the spore enhancement was effective in delivering high densities of 

spores to the substrate, it is likely that propagules of native canopy-forming species 

reached the reef via natural dispersal. A number of observations support this view. 

Firstly, on several occasions throughout the study large quantities of drift plants 

(predominately Phyllospora comosa and EckIonia radiata) were swept onto the 

barren, often bearing fertile tissue. Secondly, dispersal via spores should have 
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occurred from plants in shallower water at the study site where a dense cover of 

native species was evident. Dispersal from a shallow algal fringe where macroalgae 

have refuge from sea urchin grazing has been attributed to the rapid recovery of kelp 

beds on barren grounds in the northwest Atlantic following mortality of sea urchins 

(Scheibling, 1986; Johnson and Mann, 1988, 1993). Finally, although it is widely 

held that effective dispersal by large brown algae is limited to within a few metres of 

the parent plants (Dayton, 1985; Schiel and Foster, 1986; Santelices, 1990; Norton, 

1992), long distance spore dispersal in kelps may occur generally, particularly if 

spore release coincides with storms and associated turbulent mixing (Reed et al., 

1988). More recently, a modelling approach has demonstrated a much greater 

potential for long-range dispersal, suggesting that dispersal distance is determined 

more by processes related to fluid dynamics rather than the biological characteristics 

of propagules, particularly under conditions of high flow and large waves (Gaylord et 

al., 2002). Even under calm conditions, 50 % of propagules of the kelp Macrocystis 

pyrifera were predicted to disperse greater than 100 m (Gaylord et al., 2002). 

Consequently it is likely that dispersal to the study site from nearby (ca. 100 m 

distance) dense stands of canopy-forming species would have occurred during the 30 

month study period. 

Intrusion of sea urchins in 2001 

The unexpected immigration of Heliocidaris erythrogramma into urchin removal 

plots in 2001 may have impacted canopy-forming species. It is possible that during 

the brief incursion of urchins, their grazing may have affected native canopy-forming 

species sufficiently to prevent recovery. We suggest, however, that this is unlikely 

given that prior to the incursion there was a period of 18 months where the densities 
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of sea urchins remained low while there was little recruitment of native species. 

During the period when urchins were at low levels, we observed significant 

recruitment of native canopy-forming species at an adjacent site, indicating that 

conditions were suitable for macroalgal growth. We note that in similar experiments 

conducted elsewhere, significant recruitment of large brown algae has occurred in 

the initial 12 months following urchin removal (Duggins, 1980; Chapman, 1981; 

Andrew and Choat, 1982; Himmelman et al., 1983; Dayton et al., 1984; Keats et al., 

1990; Leinnas and Christie, 1996; Agatsuma et al., 1997; Villouta et al., 2001; 

Shears and Babcock, 2002). 

Inhibition by understorey algae and the effects of depth 

While understorey algae can inhibit recruitment of canopy-forming species (Dayton, 

1975; Dayton et al., 1984; Kennelly, 1987; Airoldi, 1998), total cover of understorey 

species never exceeded 50 % in the present study and was often much lower. Thus, it 

is unlikely to account for the limited recovery of canopy species. The depth of our 

experimental removals (7 - 12 m) may have influenced the response of native 

canopy-forming species. Experimental removal of sea urchins in a New Zealand 

study has demonstrated that colonisation of large brown algae was much slower in a 

deeper zone (6.5 — 11.5 m) compared with two shallower zones (0— 3.5 m and 3.5 — 

6.5 m) (Villouta et al., 2001). 

The type of algae that colonises after urchin removal can also be significantly 

affected by depth. Experimental removal of the sea urchin Centrostephanus rodgersii 

from barren habitats in New South Wales, Australia showed that shallow (1-3 m) 

habitats were subsequently dominated by large brown algae (Sargassum spp.), while 
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deeper habitats (7 - 10 m) were dominated by filamentous red algae. The absence of 

brown algae at the deeper site was not due to the decreased light levels since forests 

of large brown algae were present at similar depths in adjacent areas (Fletcher, 

1987). Our results parallel some of the findings from Fletcher (1987), in that depth 

alone does not explain the lack of recovery of canopy-forming species, given that 

diverse communities dominated by large brown algae are common at similar depths 

in other regions of the Mercury Passage, including reef within 100 m of the study 

site. 

Impact of sediment matrix 

The consistent cover of sediment across all treatments is likely to have contributed to 

the poor recovery of canopy-forming and other algal species. It is well established 

that sediment can inhibit recruitment of macroalgae (Devinny and Volse, 1978; 

Kendrick, 1991; Umar et al., 1998). Sediment burial and scour influence algal 

communities by removing whole organisms, by physically preventing settlement of 

propagules on stable substrata, or by limiting newly settled propagules via reduced 

inputs of light and oxygen (Airoldi et al., 1995; Chapman and Fletcher, 2002). 

Interestingly, the depth of the sediment matrix increased significantly after removal 

of sea urchins in the present study. It is likely that this was due to increased cover of 

filamentous algae occurring in the sediment matrix, subsequently facilitating 

sediment accretion (Melville and Connell, 2001). 

While a high cover of sediment was a persistent feature of the barren habitat, clearly 

U. pinnatifida and small foliose understorey species were relatively abundant at 

times during the study, and therefore must be tolerant to a degree of sediment stress. 
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Opportunistic species that rapidly recolonise the substratum following mortality 

caused by burial and scour are characteristic of sediment stressed habitats (Littler et 

al., 1983). Hence, the opportunistic nature of U. pinnatifida observed in our previous 

experiments (Chapter 2; 3) indicate that it is also likely to be adapted to establish in 

habitats subject to relatively high sediment accumulation. 

The colonisation of the sediment matrix by a dense cyanobacterial mat in 2001 may 

also have had a significant negative influence on recruitment of canopy-forming 

species. Although the impact of cyanobacterial mats on macroalgal recruitment is 

unknown, the mat effectively smothered large patches of reef and would have almost 

certainly inhibited macroalgal growth. 

The presence of a significant cover of sediment has not been reported from urchin 

barren habitats elsewhere. Typically 'urchin barrens' are characterised by high cover 

of crustose coralline algae in association with low macroalgal cover and high sea 

urchin density and are often referred to as `coralline flats' or `coralline barrens' 

(Breen and Mann, 1976; Ayling, 1981; Jones and Andrew, 1990; Johnson and Mann, 

1993; Andrew, 1994). The H. erythrogramma barren at our study site appears to 

differ markedly from this general pattern, with only low cover of coralline algae 

(averaging 9.6 % in control areas) and a high cover of sediment. Indeed, a high 

accumulation of sediment is a notable general feature of H. erythrogramma barrens 

on the east coast of Tasmania, probably reflecting that these barrens typically arise 

on sheltered coastal reefs. 
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The likely effect of sediment in structuring the algal community in the present study 

warrants further research. Estimates of sediment cover and depth used in this study 

gave a general snapshot of abundance, however, more precise estimates of spatial 

and temporal variability, combined with analysis of sediment composition could be 

achieved using sediment traps (Airoldi et al., 1995). Experiments employing novel 

techniques to manipulate sediment levels on rocky reefs (Airoldi and Cinelli, 1997) 

would also be valuable to test the effects of sediment on algal community structure. 

4.5.3 Conclusions 

While our previous experiments clearly demonstrated that disturbance is required for 

establishment of Undaria pinnatifida (Chapter 2; Chapter 3), the present study 

illustrates that persistence of U. pinnatifida stands associated with the urchin barren 

habitat is more complex. While dense stands of U. pinnatifida have been observed in 

the presence of relatively high sea urchin densities (Sanderson and Barrett, 1989; 

Sanderson, 1997; Johnson unpublished), our results demonstrate that urchins also 

have the ability to destructively graze U. pinnatifida, as observed in the 2001 

sporophyte growth season. In the absence of sea urchin grazing, U. pinnatifida 

persisted, despite an increase in understorey algae, suggesting that self-maintenance 

can occur in the absence of sea urchin mediated disturbance. The fact that U. 

pinnatifida persisted in the absence of sea urchins is likely to reflect the poor 

recovery of native canopy-forming species. Our results suggest that factors other 

than sea urchin grazing contributed to this poor recovery. While the depth of the 

barren habitat and limited propagule supply may slow recruitment of canopy-species 

on the urchin barren, the main factor preventing recovery appears to be the high 

cover of sediment. Further research is required to critically investigate the 
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importance of sedimentation as a process inhibiting recovery of canopy-forming 

native species on these 'urchin barren/U. pinnatifida' dominated habitats. 
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Chapter 5 

"Persistence of sea urchin barrens (Heliocidaris erythrogramma) 
on the east coast of Tasmania: inhibition of macroalgal recovery in 

the absence of high densities of sea urchins" 

5.1 Abstract 

Sea urchin barrens occur commonly in temperate regions throughout the world. 

Persistence of urchin barren habitats has significant implications for the ecology of 

subtidal reefs because they constitute areas of low productivity and diversity 

compared to habitats dominated by macroalgae. On the east coast of Tasmania the 

occurrence of urchin barrens has additional implications in that they represent a 

critical habitat of the introduced kelp Undaria pinnatifida. Identifying the factors 

responsible for maintenance of the barren habitat is essential in defining management 

options to promote recovery of native canopy-forming species. In this study a 

transplant approach is used to investigate whether inhibition of recovery of native 

canopy-forming algae can occur in the absence of intense sea urchin grazing. High 

densities of canopy-forming species successfully colonised settlement pavers 

deployed in a dense algal bed adjacent to a sea urchin barren. Transplanting these 

pavers to plots on the urchin barren from which urchins were removed resulted in > 

80 % mortality of recruits after 3 months, and 100 % mortality after 7 months. The 

decline in macroalgal recruits on pavers transplanted to the urchin barren was 

associated with an increase in the cover and depth of sediment. A persistent cover of 

sediment was also a feature of pavers deployed on the urchin barren, where no 

canopy-forming algal recruits were observed. While sea urchins are undoubtedly 

important in creating urchin barrens, our results suggest that other mechanisms can 
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influence recovery of native canopy species. On the east coast of Tasmania 

sedimentation appears to play a critical role in inhibiting early developmental stages 

of macroalgae, thereby maintaining the barren habitat. 

5.2 Introduction 

The occurrence of sea urchin 'barrens' characterised by high densities of sea urchins 

and low cover of fleshy algae on rocky reefs has been widely reported from 

temperate regions across the globe (Lawrence, 1975; Choat and Schiel, 1982; 

Fletcher, 1987; Chapman and Johnson, 1990; Watanabe and Harrold, 1991; Andrew 

and Underwood, 1993; Hagen, 1995; Sivertson, 1997; Agatsuma et al., 2000; Shears 

and Babcock, 2002). Urchin barrens are unproductive habitats compared to reefs 

dominated by seaweeds, with primary productivity ca. two orders of magnitude 

lower than comparable vegetated habitats (Chapman, 1981). 

In southeast Tasmania, urchin 'barren' habitats dominated by the purple sea urchin 

Heliocidaris erythrogramma comprise an estimated 25 % of reef area in sheltered 

waters (Sanderson et al., 1996). H. erythrogramma barrens are also a critical habitat 

for the introduced Asian kelp U. pinnatifida, which forms dense stands in these areas 

during the sporophyte growth season (Sanderson and Barrett, 1989; Sanderson, 1990; 

Sanderson, 1997). 

Given the ecological implications of formation of sea urchin barrens and their 

importance as a critical habitat to Undaria pinnatifida, they represent a serious issue 

for management of the coastal zone. Re-establishment of native canopy-forming 

species on urchin barren habitats will not only lead to higher productivity and 
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biodiversity but it is also likely to result in the subsequent inhibition of development 

of U. pinnatifida sporophytes (Chapter 2). To determine whether management 

options exist to promote recovery of native canopy-forming species, it is vital to 

identify the factors responsible for persistence of the barren state. 

Persistence of urchin barrens may not necessarily be dependent on continued grazing 

of sea urchins. We recently removed sea urchins from experimental plots on an 

urchin barren in Tasmania, and despite the lack of significant grazing saw no 

evidence for recovery of macroalgae after 30 months (Chapter 4). An alternative 

reason for the maintenance of urchin barren habitats relates to supply of native algal 

propagules. Dispersal of large brown algae is generally thought to be limited, with 

most recruits occurring within a few metres of the parent plants (Anderson and 

North, 1966; Ambrose and Nelson, 1982; Dayton, 1985; Andrew and Viejo, 1998;). 

Consequently, recovery of canopy-forming species on urchin barrens may be 

restricted by their poor dispersal capabilities. 

In a previous paper (Chapter 4), we addressed possible factors responsible for 

maintaining the 'sea urchin/U. pinnatifida' dominated habitat, including native algal 

propagule supply. An enhanced supply of native algal spores was provided by 

regularly placing fertile species in mesh bags, which were subsequently attached to 

the perimeter of experimental plots. When combined with both sea urchin removal 

and removal of the U. pinnatifida canopy, the addition of this source of native algal 

spores failed to produce significant recovery of canopy-forming species (Chapter 4). 

Despite the fact that a similar technique has been used successfully to seed 

macroalgae (Dayton et al., 1984), the subsequent failure of native canopy-forming 
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species to recover in our study area raised a number of uncertainties, including the 

possibility that the treatment itself was unsuccessful in delivering high densities of 

propagules to the substrate. 

In this study we investigate the issue of macroalgal recovery critically using a 

transplant approach. We seeded settlement pavers with native propagules by 

deploying them in a habitat dominated by native canopy-forming species. These 

pavers were subsequently transplanted to plots in an adjacent sea urchin/U. 

pinnatifida dominated habitat, from which sea urchins were removed. Combined 

with appropriate handling controls, this approach allowed assessment of whether 

recovery of native canopy-forming algae on urchin barrens can be inhibited despite 

the absence of intense sea urchin grazing. 

5.3 Materials and methods 

5.3.1 Study site 

The experiment was conducted at Lords Bluff, situated at the northern extremity of 

the Mercury Passage on the east coast of Tasmania (42 °  32' S, 147°  59' E). At this 

site a large area of 'urchin barren' habitat is found adjacent to reef dominated by 

native canopy-forming species (hereafter termed 'algal bed'). The urchin barren 

habitat is seasonally dominated by dense stands of the introduced Asian kelp 

Undaria pinnatifida. These two habitats or 'zones' formed the basis of the 

experimental manipulations. A more detailed description of the algal flora found at 

the site is provided elsewhere (Chapter 3; Chapter 4). 
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5.3.2 Experimental manipulations 

Concrete pavers (29 cm x 19 cm x 9 cm) were used as settlement substrata, each 

giving a horizontal area of 551 cm 2  on the top surface for algal recruitment. Concrete 

has been used previously in studies of algal succession and is suitable in mimicking 

natural reef surfaces (Foster, 1975). Within each habitat individual pavers were 

randomly deployed along approximately 100 m of coastline, at least 30 m away from 

the 'algal bed'-`urchin barren' boundary, at a depth of 7-10 M. The initial 

deployment occurred in August 2000. After deployment pavers were randomly 

assigned to experimental treatments (see Figure 5.1). For each treatment, ten 

replicate pavers were deployed. 

Transplantation of pavers took place approximately three months after deployment, 

while assessment of macroalgal abundance was carried out 3, 7 and 11 months after 

transplantation. During the transplant process, pavers were placed carefully into a 

large bin by divers, then slowly hauled to the surface. On the surface pavers were 

placed in bins containing fresh seawater and immediately covered with hessian sacks 

to minimize exposure to direct sunlight. Pavers were transplanted within 45 minutes 

of reaching the surface. Ten replicate pavers were also deployed in each habitat at the 

time of transplantation (i.e. NT and BT) to assess algal recruitment after the time of 

transplant. The handling control treatment (NH) was included to investigate potential 

artefacts associated with the transplantation process. This involved lifting pavers 

from the algal bed and re-deploying them in the same area. 
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deploy 
(Aug. 2000) 

transplant/deploy 
(Nov. 2000) 

assessment 
(Feb. 2001, 
May 2001, 
Sep. 2001) 

TREATMENT PURPOSE 
Assesses recruitment of macroalgae to pavers in the dense algal bed from Aug. 
2000 to assessments. 
Handling control. Comparison with NN allows assessment of the effects of 
handling during the transplantation process on macroalgal survival. 

Assesses recruitment of macroalgae in algal bed after transplantation (Nov. 2000). 

Assesses recruitment of macroalgae to pavers on the urchin barren. 

Assesses change in macroalgae following transplant from the algal bed to the 
urchin barren. 

Assesses recruitment of macroalgae on the urchin barren after transplantation. 

NN 

NH 

NT 

BB 

NB 

BT 

Urchin barren 
(with urchins removed) 

BT 

cm 
BB 

BT 

Figure 5.1. Experimental design and transplant protocol. Ten replicate pavers were deployed for each 
treatment. 
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5.3.3 Sea urchin removal 

Settlement pavers deployed or transplanted to the urchin barren were positioned in 

areas where sea urchins were manually removed every 4-6 weeks (removal areas 

were 16 m2  in area). This maintained an urchin density of < 0.5 r11-2  in removal areas 

compared to an average of 7.1 Tr1-2  on adjacent un-manipulated reef. An unexpected 

and brief intrusion of sea urchins into removal areas occurred in the barren zone 

during the summer period (January-April 2001), when densities temporarily 

exceeded 5 m-2 . Despite this intrusion, we assumed that sea urchin grazing had 

negligible effects on macroalgal recruitment (see Discussion, section 5.5). In the 

algal bed where sea urchins were not manipulated, densities averaged 2.7 m-2 
± 0.51 

SE. 

5.3.4 Assessment of algal abundance 

The percentage cover of algae, sessile invertebrates and sediment on settlement 

pavers was estimated by recording taxa occurring under 50 regularly spaced 

intercepts of a point intercept quadrat. The quadrat covered the entire upper surface 

of the settlement paver and was positioned above the algae by a frame. Organisms 

were identified in situ to the highest taxonomic resolution possible. For canopy-

forming algae identification to species level was possible, however, it was necessary 

to allocate other species to guilds (eg. foliose red algae, brown turf algae). The 

density of recruits of canopy-forming species was also measured on each paver by 

recording all recruits once they could be identified to species level. When 

recruitment was particularly dense, recruits were counted in each of four replicate 7 

cm x 7 cm quadrats randomly positioned on each paver. At the conclusion of the 
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experiment in September 2001 the depth of accumulated sediment on the pavers was 

also measured to the nearest millimetre. 

5.3.5 Analysis 

The effect of the various 'treatments' on algal abundance was analysed using a one-

way analysis of variance (ANOVA), with 6 levels of "treatment" (see Figure 5.1). 

Where appropriate, differences between treatments were investigated using the 

Ryan-Einot-Gabriel-Welsch (REGW) multiple range test. Analysis was conducted 

for data collected at the conclusion of the experiment in September 2001, 11 months 

after the transplantation occurred. This allowed sufficient time for recruitment 

patterns of macroalgae to be observed, as well as allowing enough time for 

development of U. pinnatifida sporophytes. Prior to all univariate tests, 

transformations to stabilize variances were determined from the relationship between 

group standard deviations and means (Draper and Smith, 1981). Transformations are 

expressed in terms of the untransformed variate, Y. Univariate tests were undertaken 

using the SAS® statistical package. 

The relationship between sediment abundance and algal cover on settlement pavers 

was examined by plotting values of cover across all treatments against both sediment 

cover and an index of sediment load. This analysis also utilized data collected from 

additional settlement pavers deployed as part of a broader experiment. The index of 

sediment load (SL) was defined as: SL = (% cover*depth)/100. Linear regression 

was used to investigate the relationship between sediment cover and foliose algal 

cover, while quantile regression was used to examine the upper bounds of the 

relationship between sediment load and foliose algal cover. Coefficients and 
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confidence intervals for the quantile regression were estimated using the R statistical 

package (http://www.r-project.org/).  

5.4 Results 

5.4.1 Response of canopy-forming algae to experimental manipulations 

Native canopy-forming species 

Native canopy-forming algae showed a clear response to experimental treatments 

(Figure 5.2b; Table 5.1). A range of macroalgae, including canopy-forming species, 

recruited successfully to pavers deployed in the algal bed (Figure 5.3). In contrast, 

canopy-forming species did not recruit to pavers deployed in the nearby barren 

habitat (Figure 5.2b). While we did not assess algal abundance immediately prior to 

transplantation, high densities of brown algal recruits were observed on transplanted 

pavers. These recruits were generally < 1 mm in size and were too small to identify 

to species level. Three months after transplant, when canopy-forming algal recruits 

were approximately 10 mm in size, average densities (all species combined) on un-

manipulated (NN) pavers exceeded 1.2 x 10 4  recruits M-2 . 

Transplantation of pavers from the algal bed to the barren habitat resulted in a 

dramatic reduction in cover of canopy-forming species (Figure 5.2b). Three months 

after transplant, cover averaged 62.8 % ± 6.3 SE on un-manipulated (NN) pavers, 

compared to 11.8 % ± 5.0 SE for transplanted (NB) pavers. Only a small proportion 

of canopy-forming algal cover on un-manipulated pavers could be attributed to 

recruitment after the time of transplant, since the NT treatment averaged only 3.4 % 

± 1.8 SE cover at the February 2001 assessment. In subsequent assessments, cover 

declined to undetectable levels on the transplanted pavers, while gradually increasing 
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for control pavers. Development of macroalgae on pavers treated as handling 

controls was not statistically different to that on the undisturbed pavers (NN) (Table 

5.1). 

The results also indicate that recruitment success for canopy-forming species was 

dramatically lower in the period following transplantation compared with the 

previous 3 months. Data collected 7 months after transplant for controls (NN), which 

was comparable to data collected 11 months after transplant for the NT treatment 

(both treatments were deployed for 11 months), showed 67.2 % ± 5.7 SE in the NN 

treatment, while only 16.6 % ± 6.7 SE was recorded in the NT treatment. 

Table 5.1. Results of one-way ANOVA's examining the effect of experimental manipulation on cover 
of algae and sediment, assessed in September 2001. For REGWQ tests, a horizontal underline 
indicates treatments that are not significantly different from each other (a = 0.05). Refer to Figure 5.1 
for treatment codes. 

Guild 
(transformation) df MS F P REGWQ tests 

Total foliose algae 
(no transformation) 5, 54 8252.80 20.99 0.001 NN NH NT BB BT NB 

Native canopy-forming 
algae 
flog (Y+0.1)} 

5, 54 72.54 56.74 0.001 NN NH NT BB BT NB 

Brown turf algae NN NT NH NB BB BT 
(yo.33)  5,54 5.16 14.61 0.001 

Foliose red algae 
(sqrt) 5, 54 1.54 1.48 0.213 

Sediment cover 
(no transformation) 5,54 1361.87 12.88 0.001 NN NH NT BB BT NB 

Sediment load 
(no transformation) 5, 54 19.70 6.43 0.001 NN NH NT BB BT NB 
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Figure 5.2. Response of algae and sediment to experimental manipulations. Data are mean percentage 
cover (+ SE) of 10 replicate pavers per treatment. The dotted vertical line separates pavers present in 
the two habitats at the time(s) of assessment. Treatment codes are as follows: NN-un-manipulated 
pavers in algal bed; NH-handling control; NT-measures recruitment of macroalgae in algal bed after 
transplantation; BB-un-manipulatetl pavers in urchin barren; BT-measures recruitment of macroalgae 
in urchin barren after transplantation; NB-Measures change in macroalgae following transplant from 
algal bed to the urchin barren. 
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Figure 5.3. Relative abundance of native canopy-forming algae occurring on undisturbed (i.e. NN) 
pavers deployed in the native zone, assessed in September 2001. Data are mean percentage cover (+ 
SE) of 10 replicate pavers. 

5.4.2 Response of understorey species 

The guild of brown turf algae, comprising a range of ephemeral species including 

Asperococcus spp., Colpomenia spp., Scytosiphon spp. and several other unidentified 

species was generally low in cover for most treatments, usually averaging less than 

10 % (Figure 5.2c). There were, however, some notable exceptions. At the February 

2001 assessment, more filamentous brown turfing algae developed in both habitat 

types on pavers deployed at the time of transplant (NT and BT) than on those 

established at the beginning of the experiment (i.e. NB and NN). Cover declined in 

both NT and BT treatments in the May assessment, before increasing again on those 

pavers on the barren (BT) but not in the algal bed (NT). At the conclusion of the 
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experiment, cover of brown turf algae was higher in the BT treatment than in all 

other treatments (Figure 5.2c, Table 5.1). 

Cover of foliose red algae was also very low across all treatments, averaging < 5 % 

(Figure 5.2d). Although cover of foliose red algae was generally higher on pavers 

deployed in the algal bed than on those deployed on the urchin barren, these 

differences were not significant at the completion of the experimental period (Table 

5.1). 

5.4.3 Patterns of sediment abundance 

Pavers in the various treatments accumulated different amounts of sediment (Figure 

5.2e; Table 5.1). The undisturbed pavers (NN) and handling controls (NH) in the 

algal bed recorded dramatically lower sediment cover compared to all other 

treatments over the entire period of the experiment. This trend was also reflected for 

sediment load data collected in September 2001 (Figure 5.4; Table 5.1). 

Transplantation of pavers from the algal bed to the barren habitat (NB) resulted in a 

significant increase in sediment cover that persisted throughout the experimental 

period (Figure 5.2e; Table 5.1). Although we did not assess settlement pavers prior to 

transplantation, it was noted that pavers from the initial deployment on the algal bed 

were observed with low cover and depth of sediment, while pavers on the barren 

habitat possessed high cover and depths (up to 10 mm). After transplanting pavers 

from the algal bed to the barren area, sediment up to 10 t= in depth was observed 

on transplanted pavers two weeks after transplantation. 
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Figure 5.4. Effect of experimental manipulations on sediment accumulation following September 
2001 assessment. Data represent mean sediment loads (+ SE) of 10 replicate pavers per treatment. 
Sediment load (SL) is an index of sediment accumulation and is calculated SL = (% 
cover*depth)/100. The dotted vertical line separates pavers present in the two habitats at the time of 
assessment. For treatment codes refer to Figure 5.1. . 

The pattern of sediment cover was generally the reciprocal of that observed for 

canopy-forming algae. When cover of canopy-forming algae was high, cover of 

sediment was low and vice-versa. We examined this trend in more detail by plotting 

values of sediment cover against total foliose algal cover, across all treatments (note 

that NT and BT treatments were excluded because they were deployed part way 

through the experiment). This analysis revealed a significant negative relationship 

between the cover of sediment and total foliose algae (Figure 5.5). Although 

sediment cover provided some useful patterns to explore in relation to algal 

abundance, a better indicator of the amount of sediment on the pavers was given by 

the index of sediment load which includes components of both sediment depth and 

cover (see methods and materials). 
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Figure 5.5. Relationship between sediment cover and total cover of foliose algae on settlement pavers, 
assessed in September 2001. Pavers in each habitat include transplanted pavers. Regression equation: 
y = -1.031x + 89.62, n = 70, r2  = 0.79, p <0.0001. 

The relationship between algal cover and sediment load (Figure 5.6) was different to 

that for sediment cover (Figure 5.5). While cover of foliose algae varied substantially 

under conditions of low sediment load, high cover of foliose algae was only observed 

when sediment load was low. Under conditions of high sediment load, only low 

cover of foliose algae was observed. It should also be highlighted that in general, 

sediment load was higher on pavers either deployed or transplanted to the urchin 

barren compared with those in the algal bed, however, there were examples of high 

sediment load occurring on particular pavers in the native zone (Figure 5.6). 
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Figure 5.6. Upper bounds of the relationship between sediment load and foliose algal cover on 
settlement pavers, assessed in September 2001. The line represents a linear regression on the 90 th  
quantile. Confidence intervals (70 %) were plotted but could not be distinguished from the regression 
line. Sediment load (SL) is an index of sediment accumulation and is calculated SL = (% 
cover*depth)/100. Pavers in each habitat include transplanted pavers. Quantile regression equation: y 
= -10.594x + 88.636, n=70, p <0.0001. 

5.5 Discussion 

Strong experimental evidence indicates that sea urchin grazing can prevent re-

establishment of canopy-forming algae on sea urchin barrens (Duggins, 1980; 

Chapman, 1981; Himmelman et al., 1983; Keats et al., 1990; Leinnas and Christie, 

1996; Agatsuma et al., 1997; Shears and Babcock, 2002). The results of our 

experiments, however, have shown low recruitment and a marked reduction in cover 

of canopy-forming algal recruits transplanted to barrens in the absence of high 

densities of sea urchins. Furthermore, while we regularly observed H. 

erythrogramma feeding during our frequent dives on the urchin barren 

(predominately on drift algae), we never observed sea urchins grazing the horizontal 

surface of the settlement pavers. Although on one occasion we observed a small 

number of urchins grazing on the vertical surface of pavers, this was only during the 
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brief incursion of urchins that occurred during January-April 2001. These results 

suggest that other mechanisms may operate to prevent recovery of macroalgae on 

urchin barrens. 

5.5.1 Decline of algal recruits transplanted to pavers 

The question then remains: If sea urchins were not the primary cause of the decline 

in canopy species then what other mechanisms are important? While the presence of 

turfing algae has been demonstrated to prevent re-establishment of large brown 

macroalgae (Dayton et al., 1984; Kennelly, 1987a), only low cover of foliose red 

algae and brown turf was recorded on pavers deployed on the urchin barren which is 

unlikely to account for inhibition of native canopy species. We can also discount the 

potential inhibitory effects of a dense Undaria pinnatifida canopy on native algal 

abundance. The 2001 sporophyte growth season saw a significant decline in U. 

pinnatifida in our study area (see Chapter 4) such that U. pinnatifida cover was 

negligible both on the pavers themselves and in the immediate area surrounding 

them. This is also consistent with our previous work demonstrating that removal of 

the U. pinnatifida canopy on the urchin barren did not significantly affect cover of 

native foliose algae, even in the absence of sea urchins (Chapter 4). 

Although the handling process itself did not result in a significant decline in canopy-

forming algal abundance, the change in light environment associated with transplant 

from the algal bed to the barren could have contributed to mortality of macroalgal 

recruits. Many pavers deployed in the algal bed were subject to shading by canopy-

forming algae and would have experienced increased light levels following 

transplantation, potentially leading to photoinhibition for algal recruits (eg. Hanelt, 
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1996; Hanelt et al., 1997). There were also other pavers in the algal bed, however, 

that were not subject to shading by canopy species and would not have experienced a 

dramatic change in light environment after transplant. If the altered light 

environment contributed to algal mortality we would not have recorded mortality 

across all pavers. Consequently, a change in light environment is unlikely to account 

for the observed patterns of algal mortality. 

The effects of sediment accumulation on settlement pavers in the barren habitat 

appears the most likely explanation for the observed inhibition of canopy-forming 

algal recruits. Previous studies have demonstrated the inhibitory effects of sediment 

on rocky reef organisms (reviewed by Airoldi, 2003). It seems likely the rapid 

accumulation of sediments on pavers transplanted to the barren zone would have 

resulted in burial and consequent reduction in irradiance and hence the 

photosynthetic capabilities of recruits. In addition, the combination of water motion 

(scour) with sediment on the substrate is also likely to have inhibited early 

developmental stages (Coelho et al., 2000). 

5.5.2 Lack of recruitment to pavers on urchin barren 

The lack of recruitment of canopy-forming species on pavers deployed on the urchin 

barren is also likely to have been affected by sediment accumulation. In addition to 

the detrimental effects of sediment burial and scour on macroalgal propagules, 

recruitment of canopy-forming species would be limited as a consequence of the 

replacement of stable hard substrata with unstable sediment particles (Airoldi, 2003). 

Laboratory experiments conducted with Macrocystis pyrifera have demonstrated that 

effective recruitment can be reduced by spores attaching to sediment grains, which 
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are subsequently washed away from the benthos by waves and water motion 

(Devinny and Volse, 1978). Similarly, experiments have demonstrated that insertion, 

germination, survival and maturation of gametophytes of Undaria pinnatifida and 

EckIonia cava were inhibited in the presence of sediment particles (Aralcawa and 

Matsuike, 1992). 

Another possible reason for the lack of recruitment on the urchin barren relates to 

supply of algal propagules. Since dispersal of large brown algae is generally thought 

to be limited, with most recruits occurring within a few metres of the parent plants 

(Anderson and North, 1966; Ambrose and Nelson, 1982; Dayton, 1985; Andrew and 

Viejo, 1998), recovery of native canopy-forming species may be restricted by their 

poor dispersal characteristics. A number of observations indicate that this is unlikely 

to account for the observed lack of recruitment. Firstly, on several occasions 

throughout the study large quantities of drift plants (predominately Phyllospora 

comosa and EckIonia radiata) were evident, often bearing fertile tissue. In addition, 

dispersal via spores should have occurred from plants in shallower water at the study 

site where a dense cover of native species was evident. Dispersal from a shallow 

algal fringe where macroalgae have refuge from sea urchin grazing has been 

attributed to the rapid recovery of kelp beds on barren grounds in the northwest 

Atlantic following mortality of sea urchins (Scheibling, 1986; Johnson and Mann, 

1988, 1993). 

It is notable that the brown turf algal guild recruited onto pavers deployed at the time 

of transplant in both the barren and algal bed (i.e. BT and NT). The fact that pavers 

in these two treatments were separated by up to 200 m indicates that this guild is 
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capable of long distance dispersal, as demonstrated previously for filamentous brown 

algae in North America (Reed et al., 1988). It is also notable that the relatively high 

cover of brown turf algae present on the BT treatment was not found on un-

manipulated pavers initially deployed in the barren habitat (i.e. BB), despite the fact 

that these pavers possessed low algal cover. This indicates that the settlement 

substrate during the period of brown turf algal recruitment on BB pavers was 

significantly different to that on BT pavers. A possible explanation is that sediment 

levels on newly deployed BT pavers remained low enough for algal recruitment, 

while on BB pavers more accumulated sediment was present due to the longer period 

of deployment, resulting in inhibition of brown turf algal recruitment. 

5.5.3 Patterns of sediment accumulation 

While there were high sediment loads recorded on some pavers in the algal bed (see 

below), it is clear that in general, sediment loads were higher on the urchin barren 

than on the benthos beneath dense macroalgal cover. This observation is consistent 

with our observations from other experiments showing an immediate and significant 

increase in sediment cover following artificial removal of the canopy (Chapter 2) and 

following natural canopy dieback (Chapter 3). Notably, in the present experiment, 

the greatest accumulation of sediment on pavers located in the algal bed were 

associated with patches of significant canopy decline as a result of dieback of dense 

patches of Phyllospora comosa. The loss of canopy algae and associated higher 

sediment levels may partially explain the lower recruitment of native algae to pavers 

deployed in the algal zone after transplantation (i.e. NT). 



Persistence of urchin barrens 122 

Why does reduced canopy cover result in increased sediment accumulation on the 

benthos? There are several possible explanations. The most compelling is that 

sweeping of the seafloor by macroalgal fronds in dense beds prevents accumulation 

on exposed horizontal surfaces of reef (Kennelly, 1989). While it is possible that 

rates of sediment deposition were locally greater on the barren habitat than in the 

algal bed, reflecting small-scale variability in sediment deposition (Airoldi and 

Virigilo, 1998), we did not quantify spatial variability in sedimentation. In our study 

area sediment dynamics are poorly understood, so further research should address 

both the rates of sediment deposition and accumulation at a range of spatial and 

temporal scales. 

Although our data show a clear negative relationship between sediment load and 

foliose algal cover, the relationship is correlative and does not infer causality. Further 

experiments are required to determine whether sediment controls algal abundance, 

whether algal abundance controls sediment accumulation, or whether a combination 

of both mechanisms occurs. While our data are correlative, we argue that the 

combined evidence indicates that sediment is an important factor shaping algal 

community structure. Our canopy removal experiments showing an increase in 

sediment cover on the reef surface relative to areas where the canopy was left intact 

clearly indicates that the presence of a canopy inhibits sediment accumulation, as has 

been demonstrated elsewhere (Kennelly, 1987; Kennelly and Underwood, 1993; 

Melville and Connell, 2001). We measured sediment cover on the urchin barren 

habitat over a 30-month period and it was consistently high (average > 50 %) 

(Chapter 4). We interpret this persistent sediment cover to reflect the lack of canopy-

forming algal cover. 
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5.5.4 General Conclusions 

We suggest that urchins are playing a minor role in preventing recovery of canopy-

forming species in the Mercury passage. However, it is clear that destructive grazing 

of seaweed beds by sea urchins can indirectly lead to sediment accumulation through 

removal of the canopy in the first place, with subsequent inhibition of algal 

recruitment. This indirect link between sea urchins and sediment levels, whereby sea 

urchins mediate sediment dynamics through their grazing activities on kelp plants, 

has been suggested previously (Estes and Palmisano, 1974). Interestingly, our urchin 

removal experiments in the barren habitat have shown lower levels of sediment 

accumulation in the presence of sea urchins (Chapter 4), indicating that urchins can 

have both positive and negative indirect effects on sediment accumulation. The lack 

of evidence to indicate that urchin grazing affects recruitment to the urchin barren 

probably reflects that urchins were observed to feed largely on drift algae. If the 

supply of drift were to reduce dramatically, it may be that urchins would play a 

greater role in preventing recruitment to this barren (Harrold and Reed, 1985). 

Our overall conclusion is that sediment plays an important role in maintaining the 

urchin barren state by inhibiting early developmental stages of canopy-forming 

algae. If this is true, then identifying the source of sediment becomes an important 

issue. While sedimentation is a natural process on rocky reefs, various anthropogenic 

activities such as deforestation, dredging, industrial and domestic discharges, 

construction activities and land reclamation can lead to increased sedimentation rates 

(Airoldi, 2003). A critical question from a management perspective will be to 

determine whether sediment accumulation in our study area is being influenced by 

human activities. If sediment deposition can be linked to human activity, then 
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recovery of native species may require management to control sedimentation. If the 

sediments at this site are derived from natural sources, then recovery of canopy 

species is problematic since removal of sea urchins and U. pinnatifida from the 

barren is insufficient to promote regrowth of canopy-species (Chapter 4). Clearly 

prevention of loss of canopy species in the first place is the preferred management 

option. 
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Chapter 6 

General Discussion 

During the past two decades there has been a rapid increase in the worldwide spread 

of non-indigenous marine organisms (Bax et al., 2001) providing a major challenge 

for managers of the coastal zone. Since resources to control or eliminate introduced 

species are always limiting, it is important to prioritise non-indigenous species in 

terms of the threat they pose to native systems (Byers et czl., 2002). Understanding 

the role of disturbance in the invasion process is an important stage in prioritising 

species for management purposes (Hiebert, 1997). If an introduced species can 

establish, maintain persistent populations and expand its distribution in the absence 

of disturbance, it represents a major threat to the integrity of native communities. 

Conversely, if an introduced species requires disturbance for successful invasion, the 

key threatening process to native assemblages may be the disturbance rather than the 

exotic species itself. 

6.1 Disturbance and establishment of dense stands of Undaria pinnatifida 

Disturbance plays an important role in the invasion process for U. pinnatifida, 

particularly in the establishment phase. A reduction in cover of native algae, either 

by experimental removal (Chapter 2) or natural dieback of the canopy (Chapter 3), 

facilitated establishment of U. pinnatifida sporophytes at high densities, while the 

presence of a stable native canopy inhibited sporophyte development. Removing 

native algal canopies in different seasons demonstrated that the presence of the 

native algal canopy does not prevent U. pinnatifida propagules from reaching the 

reef, but inhibits sporophyte development, most likely via competition for light. The 
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role of disturbance in facilitating establishment of U. pinnatifida appears similar to 

other introduced macroalgae such as Sargassum muticum (Ambrose and Nelson, 

1982; Deysher and Norton, 1982; Andrew and Viejo, 1998) and Codium fragile ssp. 

tomentosoides (Chapman et al., 2002; Levin et al., 2002), which also require 

disturbance to reduce cover of native algae to establish. This mechanism is in stark 

contrast to the invasive alga Caulema taxifolia, which has flourished following its 

introduction to the Mediterranean and is able to establish and smother native 

seagrasses in the absence of disturbance (de Villele and Verlaque, 1995; Sant et al., 

1996). 

6.2 Disturbance and persistence of dense stands of Undaria pinnatifida 

While disturbance may be required for the establishment of an introduced species, it 

does not necessarily follow that continued disturbance is required for its persistence. 

For example, establishment of Sargassum muticum depends on disturbance, but once 

established the plant can prevent settlement and development of other algae by 

shading (Ambrose and Nelson, 1982; Critchley et al., 1990). Similarly, establishment 

of Codium fragile in the northwest Atlantic depends on disturbance, however, 

established populations show high levels of persistence stability (sensu Johnson and 

Mann, 1988) in the absence of continued disturbance by inhibiting recruitment of 

native kelps (Chapman et al., 2002). The present study provides conflicting evidence 

as to the role of disturbance in the persistence of dense stands of U. pinnatifida. In 

the second year of sporophyte development following artificial removal of native 

algal canopies, U. pinnatifida declined substantially, associated with increased 

abundance of native canopy-forming species (Chapter 2). This result is consistent 

with the hypothesis that continued disturbance is required for dense stands of U. 
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pinnatifida to persist. In contrast, experiments on sea urchin barrens to assess 

persistence of U. pinnatifida showed that disturbance in the form of grazing by 

urchins was not required for U. pinnatifida to persist (Chapter 4). In this situation, 

other mechanisms, most likely accumulation of a sediment matrix on the reef 

surface, inhibited the development of native algae. 

6.3 What factors influence invasion success of Undaria pinnatifida? 

The results from this study highlight some important ecological principles for 

invasion biology. In particular, the life history characteristics of the invading species 

and the invasibility of the recipient environment are identified as being critical in 

determining invasion success. 

While there are exceptions (see Mack et al., 2000), a broad list of qualitative 

descriptions have been proposed as characteristic of invading species. These include 

possession of r-selected traits, high dispersal rates, vegetative reproduction, high 

genetic variability, phenotypic plasticity, a large native range, eurytopy and 

polyphagy (Lodge, 1993). Undaria pinnatifida clearly possesses a number of r-

selected traits including short lifespan, high growth rate, a high biomass invested in 

reproduction, small propagule size and high number of propagules released, and a 

single reproductive episode (Grime, 1977; Clayton, 1990). Other well-studied exotic 

marine plants possess adaptations that confer invasiveness. For example Sargassum 

muticum is also highly fecund, possessing vesicles that allow the reproductive fronds 

to drift with currents and inoculate new locations (Andrew and Viejo, 1998). 

Similarly, the invasive alga Codium fragile exhibits rapid growth (up to 7 cm month" 
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- I ) and high dispersal (65-70 km year I ), as well as the capacity to regenerate from 

utricles, medullary filaments or branches (Trowbridge, 1998). 

The annual life history exhibited by U. pinnatifida has important ramifications for its 

ability to maintain persistent populations. Given that U. pinnatifida overwinters as a 

microscopic gametophyte, it is unlikely to compete effectively with perennial native 

species for resources such as suitable substratum for attachment and light. This is 

consistent with the results from Chapter 2 that demonstrated a substantial recovery of 

native species and a reduction in cover of U. pinnatifida in the second year following 

disturbance. The results contrast with the perennial species Codium fragile, which 

requires a single disturbance event to establish and maintain persistent populations 

(Chapman et al., 2002). 

The characteristics of the recipient community are also believed to be critical in 

determining invasion success (Lodge, 1993; Carlton, 1996; Davis et al., 2000; Mack 

et al., 2000; Sakai et al., 2000). The results from the present study clearly indicate 

that disturbance is a critical factor in determining invasion success for U. pinnatifida. 

Another generalization proposed for community invasibility is the existence of 

vacant or under-utilised niches. Whilst it is difficult to define a vacant niche until it is 

occupied (Trowbridge, 1999), observations of U. pinnatifida occurring abundantly 

on 'urchin barrens' also suggest that this generality can be applied to U. pinnatifida. 

Yet another generalization proposed by invasion ecologists is that stable 

communities resist invasion (Mack et al., 2000), clearly demonstrated in Chapter 2 

where stable canopies of native algal species resisted invasion by U. pinnatifida. 
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Although the cause of invasion resistance is not well understood, communities and 

geographic regions with low species diversity are thought to be less stable (and hence 

more invasible), than high diversity areas (Ribera and Boudouresque, 1995; 

Trowbridge, 1999), but there are notable exceptions (see Levine and D'Antonio, 

1999; Shea and Chesson, 2002). It should be emphasised that the factors influencing 

community stability for macroalgal communities in temperate Australian waters 

remain poorly understood and should be the focus of future work. 

Of particular relevance to macroalgal communities is the observation that for plant 

communities on land resistance to plant invasion may correlate more strongly with 

the architecture of the plant community rather than the species diversity (Mack et al., 

2000). For example, forest communities have remained resistant to plant invaders as 

long as the canopy remained intact (Corlett, 1992). While this also seems likely to be 

true for macroalgal communities, experiments are required to verify the theory. 

The stage of ecological succession of a native algal community is also likely to be 

important in determining invasion success. The experiments presented in Chapter 2 

indicate that invasion success of U. pinnatifida was reduced when the native algal 

community was in a more advanced stage of succession. For disturbances initiated 

several months prior to the sporophyte growth season, native algal succession 

occurred prior to sporophyte development. This resulted in lower U. pinnatifida 

sporophyte densities compared to disturbances initiated immediately prior to the 

sporophyte growth season, where there was limited opportunity for native algal 

succession. 
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While both the life history characteristics of U. pinnatifida and the characteristics of 

the recipient environment are important in determining invasion success, it should be 

emphasised that it is a complex process. If disturbance occurs in the absence of a 

source of propagules, then clearly invasion will not occur. Conversely, if there are 

propagules present but no disturbance, again invasion will not succeed. These 

predictions are consistent with a general theory of community invasibility recently 

proposed by Davis et al. (2000). These authors suggest that the variable nature of 

invasion success is determined by conditions of resource enrichment or release, 

which occur intermittingly. For invasion to occur, the resource enrichment or release 

must coincide with the availability of invading propagules (Davis et al., 2000). 

6.4 A distinctive 'sea urchin -macroalgal' dynamic 

While the existence of two alternative stable states is usually recognised for urchin 

barren/seaweed communities (eg. Harrold and Reed, 1985; Johnson and Mann 1988; 

Shears and Babcock, 2003), we recognise four community states on the east coast of 

Tasmania (Figure 6.1). Two of the states are common to the established view of 

dynamics of kelp beds-urchin barrens, viz, the extremes of dense stands of 

macroalgae (state 1) and urchin barrens devoid of fleshy macroalgae (state 3). The 

remaining two states are unique. The state characterised by urchin 'barrens' 

supporting seasonally dense stands of U. pinnatifida (state 2), exists only at 

intermediate grazing intensity and characterises the many urchin barrens in the 

Mercury Passage. U. pinnatifida is believed to survive grazing pressure that other 

native macroalgae cannot because of its high reproductive capacity and very rapid 

growth rate that exceeds the grazing capabilities of H. erythrogramma. The 

remaining state is comprised of an understorey of ephemeral filamentous and foliose 
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species beneath a seasonal U. pinnatifida canopy (state 4). This state occurred only in 

our experimental manipulations, but could theoretically arise with a reduction in 

urchin grazing intensity caused by any of a number of possible mechanisms. 

With the possible exception of the `Undarialnative understorey' state (state 4), the 

different community configurations show persistence stability over time scales of at 

least decades. Monitoring of several native algal stands and an urchin barren habitat 

in Mercury Passage indicates they are persistent for at least 10-12 years (Edgar and 

Barrett, unpublished). Admiralty charts published in the 1800s show kelp beds in 

areas that still support rich macroalgal cover, while anecdotal evidence suggests that 

formation of urchin barrens (by destructive grazing) at Lords Bluff occurred in the 

1970s (C. Sanderson, pers. comm.). While persistence of monospecific U. 

pinnatifida stands on urchin barrens (state 2) has not been examined specifically, 

they also appear persistent over time scales of decades, having been recorded from 

1989 through to the present (Sanderson and Barrett, 1989; Sanderson, 1997; Chapter 

4). Notably, destructive grazing of U. pinnatifida in experimental plots by urchins in 

2001 (i.e. state 3) was the first observation of such an event. 

While highlighting the distinction between the well recognised two phase system 

(urchin barrens,---k macroalgal bed) and the unique 'barrens' of the Mercury Passage, 

the model highlights the general lack of understanding of the dynamics of the 

system. There is limited understanding of the factors leading to formation of H. 

erythrogramma dominated barrens. Anecdotal evidence suggests that sea urchins 

destructively gazed native algae to form these barren grounds (W. James, pers. 

observation), however, the circumstances leading to this event are unknown. It is 
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reasonable to assume that a change in urchin density and/or behaviour resulted in 

barren formation, as reported from other temperate regions (Lawrence, 1975; Mann, 

1977; Harrold and Reed, 1985; Chapman and Johnson, 1990; Watanabe and Harrold, 

1991; Hagen, 1995; Scheibling et al., 1997; Sivertson, 1997). 
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Figure 6.1. Qualitative model of algal dynamics in the Mercury Passage. Four different community 
states are recognized. The degree of persistence of native canopy-forming algae and Undaria 
pinnatifida is regulated primarily by relative sea urchin grazing intensity. It is important to note that 
sediment accumulation does not drive system dynamics but occurs as an indirect result of canopy 
removal by sea urchins. The parentheses `(S)' denotes factors that may be affected by the spatial scale 
of the initial destructive grazing event. Transition processes in the model that remain poorly 
understood are indicated by dashed lines. Note that relative sea urchin grazing intensity can be 
mediated by algal recruitment success. For example, the transition from the persistent U. pinnatifida 
community state (2) to the community devoid of all macroalgae (3) can occur through increased sea 
urchin grazing intensity, decreased recruitment success of U. pinnatifida, or a combination of both 
factors. See text for detailed discussion of the attributes of the model. 
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6.5 The effects of accumulated sediment 

The major gap that remains in our understanding of the dynamics of the system is the 

transition from either of the 'urchin barren/U. pinnatifida' community states (i.e. 

states 2, 3) to a community dominated by native canopy-forming algae (state 1). 

Typically, native canopy species recover rapidly (usually within 12 months) 

following a reduction in urchin grazing pressure (Duggins, 1980; Chapman, 1981; 

Andrew and Choat, 1982; Himmelman et al., 1983; Dayton et al., 1984; Scheibling, 

1986; Keats et al., 1990; Leinnas and Christie, 1996; Agatsuma et al., 1997; Shears 

and Babcock, 2002), however, on the barren at Lords Bluff meaningful recovery was 

not observed following 30 months of sea urchin removals (Chapter 4). Given 

recovery rates observed in similar experiments elsewhere, it is unlikely urchin 

removal plots were maintained for an insufficient period. It is apparent that other 

factors may influence recovery of native canopy-forming species. 

The experiments in this study have clearly identified accumulation of sediment as a 

possible factor influencing maintenance of the U. pinnatifida dominated state in the 

absence of sea urchins. The urchin barren area displayed a consistently high sediment 

load on a large spatial scale and it is likely that it plays a key role in maintaining 

dense U. pinnatifida stands by inhibiting early developmental stages of native 

canopy-forming species (Chapter 5). 

Further research is required to investigate sediment dynamics in the study area, 

particularly in relation to spatial and temporal variation in deposition rates and the 

source of the accumulated sediment. It should be emphasised that the high sediment 

cover present on H. erythrogramma barrens in the Mercury Passage represents a 
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clear difference to urchin barrens described elsewhere, which are characterised by 

low cover of sediment and high cover of encrusting coralline algae (eg. Ayling, 

1981; Chapman, 1981; Harrold and Reed, 1985; Chapman and Johnson, 1990; Keats 

et al., 1990; Andrew, 1993; Leinnas and Christie, 1996; Agatsuma et al., 1997). 

While it is likely that sediment accumulation represents a potentially significant 

source of stress and mortality for macroalgae on the urchin barren, clearly U. 

pinnatifida is capable of surviving these conditions. Although a range of 

physiological, reproductive and morphological adaptations may be advantageous in 

habitats subject to sediment accumulation (see Airoldi, 2003), the life history 

characteristics that enable U. pinnatifida to cope with the effects of sediment remain 

unknown. The opportunistic nature of U. pinnatifida, evidenced by its rapid 

colonisation of disturbed patches (Chapter 2; Chapter 3), and its abundance on 

unstable substrata such as rock and shell fragments, remains the most likely 

explanation for the success of U. pinnatifida in areas subject to sediment 

accumulation. It is notable that opportunistic species that rapidly recolonise the 

substratum following mortality caused by burial and scour are characteristic of 

habitats prone to sediment accumulation (Littler et al., 1983). 

6.6 Scaling effects 

The spatial scale of disturbance should also be considered in relation to recovery of 

native canopy-forming species and persistence of U. pinnatifida. The disturbances 

created in the canopy removal experiment, where recovery of native algal species 

was observed (Chapter 2), were significantly smaller (16 m 2) than the disturbance 

attributed to destructive urchin grazing (approx. 1.2 x 10 4  m2). These differences in 
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the spatial extent of disturbance could affect persistence via a range of mechanisms. 

For example, higher supply of native algal spores would be expected in the smaller 

patches given the close proximity to reproductive individuals and their limited 

dispersal range (Sousa, 2001). The spatial scale of disturbance could also affect 

sediment load on the urchin barren. Canopy removal experiments have shown that 

sediment accumulation is greatest in the centre than on the edges of 4 m 2  clearings 

(Kennelly and Underwood, 1993). Although sediment accumulation has not been 

examined previously on a scale as large as an urchin barren, it is possible that the 

high sediment load is related to the large scale of the disturbance. Consequently 

inhibitory effects of sediment on macroalgal recovery may be greater on the urchin 

barren. 

6.7 Sea urchin grazing intensity and native algal recruitment 

While sea urchins may be important in maintaining the barren state, particularly in 

the absence of significant sediment accumulation, the conditions leading to lowered 

grazing intensity remains uncertain. In the northwest Atlantic, sea urchins have been 

decimated by a pathogen, allowing kelps to recover (Jones and Scheibling, 1985; 

Scheibling and Hennigar, 1997). Mass mortality due to disease has not been reported 

for Heliocidaris erythrogramma (Keesing, 2001) so it is unlikely that this is a 

potential mechanism to stimulate recovery of native canopy-forming species. In other 

regions recovery of seaweeds has been linked to recovery of predators that prey on 

urchins (Estes and Duggins, 1995; Shears and Babcock, 2003). This is a possible 

mechanism to facilitate recovery of native algae in Tasmania. Recent work has 

identified that rock lobster (Jasus edwardsii), a heavily fished species on the east 

coast of Tasmania, is a significant predator of H. erythrogramma (Pederson and 



General Discussion 136 

Johnson, unpublished). Sea urchin population modelling indicates that the reduction 

in the population of legal-sized rock lobster, as a direct result of fishing, is sufficient 

to account for increases in urchin density to the point of urchin barren formation 

(Pederson and Johnson, unpublished). 

Another possibility is that hydrographic conditions during the study were not 

conducive for large-scale algal recruitment. It has been suggested that favourable 

environmental conditions for large-scale recruitment can overwhelm the effects of 

urchin grazing leading to establishment of kelps, an increased supply of drift algae, 

and a switch in urchin feeding mode from active grazing to reliance on drift algae 

(Harrold and Reed, 1985). This mechanism is unlikely to account for the lack of 

recovery of canopy-species, however, given that recovery of native canopy-forming 

species occurred in canopy-removal areas on adjacent algal beds (Chapter 2). 

6.8 Options for Undaria pinnatifida control — a system management approach 

Although the relationship between disturbance and persistence of U. pinnatifida 

appears variable, disturbance is clearly critical in enabling dense stands of U. 

pinnatifida to establish in the first place. Consequently, management strategies that 

target U. pinnatifida sporophytes using physical removal while ignoring disturbance 

are not only expensive but are unlikely to succeed in the long term. The present work 

suggests that microscopic gametophytes and/or sporophytes are widely spread and to 

control invasion it is necessary to identify potential sources of disturbance that lead 

to a reduction in cover of native canopy species. Where disturbance can be linked to 

human activity, indirect control options for U. pinnatifida may exist by focusing 

efforts to minimise anthropogenic disturbances. 
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On temperate subtidal rocky reefs, a range of disturbances or physiological stresses 

can lead to a reduction in cover of the native canopy, including physical damage by 

storms (Kennelly, 1987a; Kennelly, 1987b; Dayton et al., 1992), high water 

temperatures (Tegner and Dayton, 1987), burial or abrasion by sediments (Airoldi et 

al., 1996; Airoldi and Virgilio, 1998), sea urchin grazing (Lawrence, 1975; Mann, 

1977; Ayling, 1981; Himmelman et al., 1983; Harrold and Reed, 1985; Johnson and 

Mann, 1988; Keats et al., 1990; Watanabe and Harrold, 1991; Andrew, 1993; Bulleri 

et al., 1999; Scheibling et al., 1999; Villouta et al., 2001) and pollution (Hardy et al., 

1993). Many of these disturbances can be influenced by human activities. For 

example, sedimentation is increasing on rocky coasts around the world as a direct 

result of activities such as industrial and domestic discharges and as an indirect result 

of modifying coastlines and river catchments (reviewed by Airoldi, 2003). Similarly, 

the predicted effects of global warming include not only increased water 

temperatures, but also increased frequency and intensity of storms, both of which can 

lead to reductions in cover of canopy-forming species (Coelho et al., 2000). Another 

effect of global change that could lead to reduced cover of canopy-forming species, 

particularly in the shallow subtidal and intertidal habitats is increased ultraviolet 

radiation due to ozone depletion (Coelho, 2000). There is significant evidence to 

suggest that human activities have resulted in the world-wide decline of canopy 

forming species observed in the last 30 years (Benedetti-Cecchi et al., 2001). 

In our study area, destructive grazing by sea urchins is the most obvious source of 

disturbance to native algal communities. In temperate seas elsewhere in the world 

there is evidence supporting the link between overfishing of sea urchin predators and 

barren formation (Estes and Palmisano, 1974; Harrold and Reed, 1985; Watanabe 
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and Harrold, 1991; Estes and Duggins, 1995; Vadas and Steneck, 1995; Sala et al., 

1998; Shears and Babcock, 2002). Recent work in Tasmania has indicated that the 

spiny lobster Jasus edwardsii is more important than reef fishes as a predator of H. 

erythrogramma and, moreover, that reduced abundances of lobsters as a result of 

fishing activity is sufficient to account for barren formation (Pederson and Johnson, 

unpublished). It is possible that overfishing of sea urchin predators is the ultimate 

cause of reduced native algal cover in the Mercury Passage which has facilitated 

establishment of dense U. pinnatifida stands. Managing populations of J. edwardsii 

to maintain urchin numbers at low levels, therefore, provides a potential option for 

control of U. pinnatifida. It should be emphasised that the time frame for recovery of 

the native algal canopy on barren grounds using a system management approach may 

require several decades. For example, the transition from urchin barren to kelp on 

New Zealand reefs occurred over a 20-year period following reduced fishing 

pressure after declaration of a marine reserve (Babcock et al., 1999). 

6.9 Ecological impacts of Undaria pinnatifida 

The ecological impact of U. pinnatifida on native communities has received little 

attention to date. Even if a 'system management' approach is adopted to successfully 

control U. pinnatifida, natural disturbances that cannot be controlled by humans will 

continue to be exploited opportunistically by U. pinnatifida. Under the least 

threatening scenario, U. pinnatifida would establish following disturbance, but then 

be inhibited as native canopy-forming species gradually recover, as observed in the 

canopy removal experiment (Chapter 2). What are the potential impacts of U. 

pinnatifida on native communities under this scenario? In terms of the effects on 

algal community structure, the impact will be largely dependent on seasonality of 



General Discussion 139 

recruitment for native algal species and the timing of disturbance (see Chapter 2). 

Unfortunately, there is limited understanding of the phenology of native canopy-

forming species in Tasmania so it is difficult to predict these impacts. If recruitment 

windows for native algae coincide with peaks in U. pinnatifida abundance, the rate of 

recovery of native canopy species may be slowed significantly. For species with 

narrow recruitment windows, inhibition of recruitment could occur. For example, 

peaks in abundance of the introduced algae Sargassum muticum in North America 

occurred during a critical period in the life cycle of the native kelp Macrocystis 

pynfera, resulting in complete inhibition of recruitment (Ambrose and Nelson, 

1982). 

The impact of U. pinnattfida on Macrocystis pynfera in Tasmanian waters is a 

particular concern, since both species occupy a similar ecological niche (Sanderson 

and Barrett, 1989). The present distributions of U. pinnatifida and M. pynfera have 

only recently overlapped and it is vital that further research examines the outcome of 

competition between the two species. Interestingly, the Mercury Passage area once 

contained dense stands of M. pynfera (Olsen, 1965), but the plant has now been 

largely absent from the area for more than 30 years. The cause of the decline remains 

speculative, although low nutrient conditions associated with warmer surface waters 

off the Tasmanian coast is the most likely candidate (Edgar, 1997). 

Invasion by U. pinnatifida may have implications for secondary production. The 

number, biomass and diversity of epifaunal invertebrates has been shown to be 

significantly lower in U. pinnatifida dominated communities compared to those 

dominated by native canopy-forming species in the same area (Innes and Johnson, 
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unpublished). Since these animals are potential prey of secondary consumers and 

provide links to higher trophic levels (Stoner, 1980; Virnstein and Curran, 1986), 

secondary production may be reduced significantly if U. pinnatifida becomes locally 

abundant. 

U. pinnatifida invasion may also have significant implications for nutrient cycling 

through inputs of detritus, which is an important source of organic matter for 

heterotrophs (Yoshikawa et al., 2001). Production of detritus by U. pinnatifida 

during sporophyte growth and senescence is likely to be significantly different to 

detrital production derived from native canopy-forming species. The impact of a 

change in detrital production on near-shore food webs remains unknown. 

6.10 General conclusions 

This study has provided valuable insights into the invasion process for U. 

pinnatifida, identifying disturbance as a key mechanism facilitating establishment of 

high densities of sporophytes. While destructive grazing by sea urchins is the most 

likely disturbance leading to U. pinnatifida establishing in dense stands in the 

Mercury Passage, several unanswered questions remain in relation to the processes 

leading to urchin barren formation and the reverse transition of recovery by native 

canopy-forming species. It is particularly important that further research examines 

the processes of recovery of native canopy-species, since U. pinnatifida is affected 

negatively by their presence. 

Given that the underlying cause of U. pinnatifida invasion is disturbance to reduce 

cover of native algae, controlling disturbance using a system management approach 

(eg. by managing sea urchin predator populations) may prove an effective long-term 
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strategy for reducing U. pinnatifida abundance. Such an approach is unlikely to 

result in complete elimination of U. pinnatifida, however, because the plant is also 

well adapted to exploiting natural disturbance regimes that cannot be controlled by 

human intervention. For example, in the Mercury Passage the plant is often locally 

abundant on unstable substrata, in the sand scour zone at the base of reefs and on 

reefs subjected to storm swells. Although the ecological impacts of U. pinnatifida 

incursions remain largely speculative, there are certainly potential negative effects of 

even brief periods of invasion following natural disturbance. Consequently, efforts to 

prevent further spread on a local scale through public awareness programs (eg. 

Dextrase, 2002) and on an international scale via ballast water management (INIO, 

1997) should continue. Preventing introduction in the first place is the only way to 

ensure complete protection of the integrity of native communities. 
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Appendix I. 

Taxa Flensers 
Point 

Lords 
Bluff 

Canopy-forming algae 
Carpoglossum confluens Y Y 
Caulocystis cephalomithos Y Y 
Cystophora monohformis Y Y 
Cystophora platylobium N Y 
Cystophora retroflexa Y Y 
Cystophora siliquosa N r 
EckIonia radiata Y Y 
Phyllospora comosa Y Y 
Sargassum decipiens Y N 
Sargassum fallax Y Y 
Sargassum spp. Y Y 
Sargassum verruculosum Y Y 
Sargassum vestitum Y Y 
Seirococcus axillaris Y Y 
Undaria pinnanfida Y Y 

Brown turf algae 
Sporochnus spp. 
Scytosiphon sp. 
Colpomenia sp. 
Halopteris spp. 
Dictyopteris muelleri 

Dictyota dichotoma 
Unidentified filamentous brown algae 

ZonarialLobophora complex 
Zonaria angustata 
Zonaria tumeriana 
Lobophora variegata 
Homeostrichus olsend 

Foliose Red Algae 
Jeanneretia lobata 
Echinothamnion 
Dasya ceramiodes 
Dictymenia harveyii 
Sonderopelta coriacea 
Plocamium angustatum 
Unidentified filamentous red algae 

Encrusting Red Algae 
Encrusting coralline algae 
Peyssionella spp. 

Green algae 
Caulerpa 
Caulerpa trifarium 
Caulerpa genninata 
Codium fragile 
Ulva sp. 
Cladophora spp. 

Appendix I. Algal taxa and associated guilds recorded at Flensers Point and Lords Bluff, November 
1999-November 2001 (Y=recorded, N=Not recorded). 
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Appendix II. 

Taxa 	 Algal Guild 
	

Relative 
abundance ( % ) 

50.31 
8.65 
7.02 
6.62 
6.10 
4.45 
3.67 
2.38 
2.16 
1.70 
0.94 
0.81 
0.78 
0.73 
0.57 
0.48 
0.44 
0.38 
0.33 
0.23 
0.19 
0.19 
0.16 
0.14 
0.13 
0.10 
0.07 
0.06 
0.06 
0.06 
0.04 
0.02 
0.01 
0.01 

Dasya ceramiodes 
Cystophora retroflexa 
Echinothamnion sp. 
Seirococcus axillaris* 
Zonaria angustata 
Dictymenia harveyii 
Dictyopteris muellerii 
Sargassum verruculosum 
Cystophora monoliformis 
Heterosiphonia gunniana 
Hemineura sp. 
Sargassum decipiens 
Caulerpa flexilis 
Plocamium angustatum 
Sargassum fallax 
Zonaria tumeriana 
Carpoglossum confluens 
Laurencia filiformis 
Sporochnus spl. 
Acrocarpia pan iculata 
Sargassum spp. recruit 
Filamentous brown spl. 
Caulocystis cephalornithos 
Craspedocarpus ramentaceus 
Dictyota dichotoma 
Cladophora sp. 
Gelidium sp. 
Wrangelia sp. 
Halopteris paniculata 
Ballia sp. 
Polysiphonia sp. 
Codium sp. 
Sporochnus sp2. 
Filamentous brown sp2. 

Foliose red 
Canopy-forming brown 
Foliose red 
Canopy-forming brown 
Brown turf 
Foliose red 
Brown turf 
Canopy-forming brown 
Canopy-forming brown 
Foliose red 
Foliose red 
Canopy-forming brown 
Green algae 
Foliose red 
Canopy-forming brown 
Brown turf 
Canopy-forming brown 
Foliose red 
Brown turf 
Canopy-forming brown 
Canopy-forming brown 
Brown turf 
Canopy-forming brown 
Foliose red 
Brown turf 
Green algae 
Foliose red 
Foliose red 
Brown turf 
Foliose red 
Foliose red 
Green algae 
Brown turf 
Brown turf 

Appendix II. Relative abundance of dominant native algal taxa recorded in sea urchin removal plots 
following destructive sampling (biomass data pooled across all sea urchin removal plots). Taxa are 
presented in decreasing order of abundance. Note that the value for Seirococcus axillaris was 
dominated by a single large plant that was present in o ne of the plots at the beginning of the experiment 
and persisted throughout the study period. 
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