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Abstract 

Patients with type 2 diabetes mellitus (T2DM) are at an increased risk of target organ damage, 

compared to non-diabetic individuals. The reason for this remains to be fully elucidated, however, 

high blood pressure (BP) or hypertension (measured in the clinic from the brachial artery) is likely 

to play a contributory role. Recent evidence suggests that central (or aortic) BP and related 

haemodynamics may be more closely related to cardiovascular risk than other surrogate markers 

(including brachial BP). Furthermore, studies have shown that the BP response to light to 

moderate intensity exercise is predictive of cardiovascular events and mortality, independently of 

resting brachial BP and other cardiovascular risk factors. Despite this, the association between light 

to moderate exercise central haemodynamics and target organ damage in patients with T2DM has 

never been assessed. Therefore, the broad aim of this thesis was to examine the haemodynamic 

differences and consequent target organ damage between patients with T2DM and non-diabetic 

controls under resting conditions as well as in response to light to moderate intensity exercise. 

In study 1 (Chapter 2 Part II) the difference between central and brachial systolic BP in 

patients with T2DM compared to non-diabetic controls was examined by systematic review and 

meta-analysis of 17 individual studies (including 2,711 patients with T2DM and 10,460 non-

diabetic controls). The main finding from this study was that despite patients with T2DM having 

elevated central haemodynamics indicative of systolic stress, there was no difference in the level of 

central to brachial systolic BP or pulse pressure amplification. However, the level of 

amplification differed throughout T2DM duration. Furthermore, large variation in systolic BP 

amplification was observed in both patients with T2DM (range= 2.0 – 16.6 mmHg) and non-

diabetic controls (range= 1.0 – 16.1 mmHg), suggesting that risk related to central systolic BP 

cannot be estimated simply from a measure of brachial BP. 

Study 2 (Chapter 3) examined central haemodynamics in order to determine the association 

between aortic stiffness and augmentation index (a purported surrogate marker of aortic 

stiffness) in 53 patients with T2DM and 53 non-diabetic controls. This study showed that 

despite patients with T2DM having increased aortic stiffness, there was no difference in 

augmentation index compared to non-diabetic controls (p=0.184), and augmentation index was 

not related to aortic stiffness in either group (p>0.05 for both). These findings suggest that 

augmentation index should not be used as a marker of aortic stiffness in either individuals with 
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or without T2DM. 

Study 3 (Chapter 4) sought to determine an explanation as to why patients with T2DM have 

abnormal brain structure (specifically grey matter atrophy) by examining the effect of potential 

mediators (including brachial BP, abdominal obesity and physical activity) on the association 

between T2DM and grey matter atrophy in 258 patients with T2DM and 302 non- diabetic 

controls. This study found that the association between T2DM and grey matter atrophy was 

substantially attenuated by abdominal obesity (32%) above and beyond other cardiovascular 

risk factors including resting brachial BP and, therefore, abdominal obesity may be a target 

for interventions that aim to maintain brain structure in patients with T2DM. This was an 

analysis of a convenience sample in which exercise central haemodynamic data was not 

available and, therefore, the association between these parameters and grey matter atrophy 

was unable to be determined. 

In study 4 (Chapter 5) exercise central haemodynamics (including aortic reservoir pressure 

and excess pressure) were measured in both patients with T2DM (n=37) and non-diabetic 

controls (n=37) and the association of these variables with grey matter atrophy was examined. 

This study found that excess pressure integral was significantly elevated in patients with 

T2DM (compared to non-diabetic controls) both at rest and in response to exercise 

(p<0.001 for both); however, aortic stiffness was the strongest independent predictor of grey 

matter atrophy (p=0.036). In non-diabetic controls, excess pressure integral was independently 

related to grey matter atrophy (p=0.043), thus providing the first evidence that excess pressure 

may be a novel cardiovascular risk factor related to brain atrophy and a useful clinical 

marker to identify individuals at risk related to BP in future. 

Study 5 (Chapter 6) sought to determine the association between exercise central 

haemodynamics (including excess pressure integral) and kidney function (both at rest and in 

response to the stress induced by light to moderate intensity exercise) in 39 patients with T2DM 

compared to 39 non-diabetic controls. In this study, exercise induced-albuminuria was observed 

in patients with T2DM in response to light to moderate intensity exercise. Importantly, excess 

pressure measured during exercise was associated with exercise-induced albuminuria in patients   

with  T2DM,  independently  of  resting  brachial  BP (p=0.003), therefore, suggesting that 

exercise excess pressure may be an important marker to identify individuals at increased risk 

related to abnormal renal function. 
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Finally, in study 6 (Chapter 7) the effect of abnormal haemodynamics (in particular brachial to 

radial systolic BP amplification) on the accuracy of central BP estimated using radial 

applanation tonometry, was examined in 20 patients with T2DM and 20 non-diabetic age- 

matched controls at rest and in response to light to moderate exercise. During the candidature of 

this thesis, radial applanation tonometry was the most widely accepted non-invasive method to 

estimate central BP. This study found that resting radial systolic BP was significantly higher 

than brachial systolic BP in both patients with T2DM (136 ± 19 vs 127 ± 17 mmHg) and non-

diabetic controls (135 ± 12 vs 121 ± 11 mmHg; p<0.001 for both). Furthermore, in both 

groups, brachial to radial systolic BP amplification resulted in significant underestimation in 

central BP using radial tonometry. The exercising results were similar to the resting data and 

are presented in Appendix II, as they did not form part of the final submitted manuscript 

(Chapter 7). These findings have significant implications for the refinement of methods that 

determine central BP non-invasively. 

Overall, the work contained in this thesis supports that patients with T2DM have abnormal 

central haemodynamics compared to non-diabetic controls at rest, however, for the first time 

has shown that these patients have abnormal central haemodynamics in response to light to 

moderate exercise. Furthermore, this research program has shown that exercise central 

haemodynamics are related to target organ damage in patients with T2DM, independently of 

resting brachial BP and other cardiovascular risk factors. Finally, this research highlights the 

necessity to refine the methods that estimate central BP non-invasively. Taken together, this 

thesis provides novel information and represents a significant advancement in understanding the 

relationship between exercise central haemodynamics and target organ damage in patients with 

T2DM.  
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Chapter 1. Introduction 



 
2 

In Australia, type 2 diabetes mellitus (T2DM) is the fastest growing chronic disease and if 

current trends continue, an estimated 3.3 million Australians will have T2DM by 20311. Patients 

with T2DM are at an increased risk of target organ damage, that is, they have a greater propensity 

to develop undesirable changes in the heart and arterial system, brain, eyes and kidneys (target 

organ damage). The causes for these adverse changes remain to be fully elucidated, however, high 

blood pressure (BP) or hypertension, is likely to play a contributory role. In clinical practice, BP is 

typically measured from the brachial artery of the upper arm (brachial BP). Importantly, over the 

last decade, increasing evidence has emerged suggesting that central (or aortic) BP and associated 

haemodynamic indices may be more closely related to cardiovascular risk than other surrogate 

markers (such as brachial BP). Patients with T2DM have generalised vascular irregularities2-4 

that may predispose to abnormal central haemodynamics, which may in turn be associated with 

accelerated target organ damage. 

 

Although resting BP indices are clinically important, haemodynamic responses to moderate 

intensity exercise may have stronger prognostic value than resting BP in terms of cardiovascular 

risk5, suggesting that pathophysiological insights may be gained from exercise haemodynamics 

beyond that of resting conditions. This is likely because individuals spend a large proportion of 

their day ambulatory6 (doing some form of light to moderate physical activity) and, thus, the 

BP response to light to moderate intensity exercise may be more akin to the chronic BP loading 

that occurs during normal daily activity7. Currently there is little evidence regarding the association 

between light to moderate intensity exercise central haemodynamics and target organ damage in 

patients with T2DM. Understanding this association may lead to better methods for detection and 

diagnosis as well as more appropriate and targeted treatment strategies in this population. 

Therefore, the broad aim of this thesis was to examine the haemodynamic differences between 

patients with T2DM and non- diabetic controls by examining the role of exercise central 

haemodynamics (in addition to that of rest) and their relation to target organ damage. 

 

Chapter 2 – Review of Literature, Part I of this thesis provides an overview of the physiology 

and clinical importance of the abnormal central haemodynamics in patients with T2DM, and 

describes what is known regarding the associations between central haemodynamics and target 

organ damage in this population. Part I of the Review of Literature also highlights the 

importance of light to moderate intensity exercise to unmask haemodynamic abnormalities that 

may otherwise not be evident under resting conditions. Due to the limited available literature 

regarding the difference between central and brachial systolic BP in patients with T2DM compared 
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to non-diabetic controls, Part II of the Review of Literature is a synthesis of the literature 

currently available in this field. This systematic review and meta-analysis of 17 original studies 

(including data from 2,711 patients with T2DM and 10,460 non- diabetic controls) found that 

there is no difference in the level of central to brachial systolic BP (or pulse pressure) 

amplification between patients with T2DM and non- diabetic controls, despite patients with 

T2DM having elevated central haemodynamics indicative of increased systolic stress. Importantly, 

this study demonstrated that substantial variation in amplification exists in both groups, and that 

the difference in the magnitude between the groups increased as the duration of T2DM increased. 

Thus, risk related to BP cannot be definitively determined based on brachial BP alone. 

 

In Chapters 3 and 7, central haemodynamic parameters were examined in patients with T2DM 

compared to non-diabetic controls in order to provide an insight into the potential causative 

influences of the accelerated cardiovascular-related target organ damage associated with T2DM. 

The study presented in Chapter 3 aimed to examine the cardiovascular and clinical determinates 

of augmentation index (AIx) including arterial stiffness, in 53 patients with T2DM (aged 61±8 

years, 51% male) and 53 matched non-diabetic controls (aged 58±6 years, 51% male). The study 

hypothesis was that arterial stiffness would be significantly elevated in patients with T2DM but 

would not be related to AIx. AIx is a marker of left ventricular afterload and purported to be a 

measure of systemic arterial stiffness however, despite patients with T2DM having significantly 

increased arterial stiffness, there was no difference in AIx compared to non-diabetic controls. This 

study showed that the factors contributing to AIx differ between patients with T2DM and non-

diabetic controls, and that AIx is not related to regional arterial stiffness in patients with T2DM. 

The results from this study were published in Artery Research in 2013. 

 

In Chapter 4, the adverse association between T2DM and target organ damage (namely brain 

structure assessed via magnetic resonance imaging) was examined in a cross-sectional study of 258 

patients with T2DM (aged 67±7 years, 62% male) and 302 non-diabetic control participants 

(aged 72±7 years, 53% male). The aim of this study was to determine the effect of potential 

mediators (including abdominal obesity and conventional brachial BP) and the influence of exercise 

on the T2DM-brain atrophy (grey matter volume) relationship. The hypothesis was that the 

association between T2DM and grey matter volume would either be modified or mediated by 

measures of obesity or physical inactivity. This study found that the association between T2DM 

and grey matter volume was substantially attenuated by increased abdominal obesity alone. The 
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findings from this study were published in PLos ONE in 2015. A limitation of this study however, 

was that the data used was from an existing dataset in which exercise central haemodynamics were 

not recorded and, therefore, the association between these parameters and brain atrophy was 

unable to be determined. Therefore, this line of enquiry was interrogated in the studies presented 

in Chapters 5 and 6, where exercise central haemodynamics were recorded and their relationship 

to target organ damage (including grey matter volume) in patients with T2DM was assessed. 

 

The aim of the study presented in Chapter 5 was to determine the associations between central 

haemodynamics and brain structure at rest and during exercise in 37 patients with T2DM (aged 

63±9 years, 47% male) and 37 non-diabetic controls (aged 52±8 years, 51% male). It was 

hypothesised that central haemodynamics would be significantly elevated in patients with T2DM 

at rest and during exercise and that exercise central haemodynamics would be associated with 

adverse brain structural defects in both patients with T2DM and non-diabetic individuals. In this 

study, aortic reservoir characteristics were also assessed. The aortic reservoir pressure paradigm is 

a novel approach to analysing arterial pressure waveforms and suggests that the aortic pressure 

waveform can be separated into an aortic reservoir pressure component, representing proximal 

aortic volume; and an excess pressure (Pexcess) component, representing excess left ventricular 

work that is analogous to left ventricular flow8, 9. In patients with T2DM, resting aortic stiffness 

was inversely related to brain atrophy (grey matter volume), whilst in non-diabetic participants, 

resting Pexcess was  inversely associated with grey matter atrophy. In opposition to the study 

hypothesis, the association between exercise central haemodynamics and brain structure was not 

enhanced compared to resting data. The findings from this study suggest that central vascular 

mechanisms underlying structural brain changes may differ between individuals with and without 

T2DM and were published in Cardiovascular Diabetiology in 2014. 

 

The study presented in Chapter 6 is an extension of that presented in Chapter 5 performed 

on the same study population but with an expanded exercise protocol focusing on exercise-induced 

albuminuria. The aim of this study was to determine the associations between resting and 

exercise central haemodynamics (including the aortic reservoir characteristics) with kidney 

function assessed at rest and in response to light to moderate exercise in 39 patients with T2DM 

(aged 63±9 years; 49% male) compared to 39 non-diabetic controls (aged 53±9 years; 51% male). 

The study hypothesis was that firstly, exercise-induced albuminuria would be more pronounced in 

patients with T2DM compared with non-diabetic controls and secondly, exercise Pexcess would be 
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independently related to exercise-induced albuminuria. Indeed, this study demonstrated that light to 

moderate intensity exercise (similar to that of normal daily activity) induced albuminuria in 

patients with T2DM, but not in non-diabetic controls. This finding is extremely novel, as 

previous studies have only measured exercise-induced albuminuria in response to maximal 

exercise, however, this study showed that even light to moderate intensity exercise was enough to 

induce renal abnormalities in patients with T2DM. Importantly, Pexcess was associated with 

exercise-induced albuminuria in patients with T2DM, independently of known risk factors 

associated with albuminuria, including resting brachial BP. For the first time, these novel findings 

highlight the potential clinical significance of aortic reservoir characteristics in a cohort of 

patients with T2DM and suggest that Pexcess could be important for appropriate renal function in 

this population. The results from this study were published in the American Journal of Physiology – 

Heart and Circulatory Physiology in 2015. 

 

During the candidature of this thesis, the most widely accepted method for estimating central BP 

non-invasively was via radial applanation tonometry10. Using this method, central BP is estimated 

by applying a validated generalised transfer function11 to the radial pressure waveform, which is 

calibrated with brachial systolic and diastolic BP. However, the arterial tree is not uniform in 

elastic properties and becomes increasingly stiffer further from the heart and results in the pressure 

waveform being amplified (increase in systolic BP) as it moves towards the periphery. Currently 

there is no data regarding the degree of systolic BP amplification along the forearm (i.e. from the 

brachial to radial artery) in patients with T2DM, and any amplification is largely ignored when 

central systolic BP is estimated via radial applanation tonometry. By failing to account for brachial 

to radial systolic BP amplification, calibrating the radial pressure waveform with brachial systolic 

BP may result in systematic underestimation of central systolic BP. Indeed, the vascular 

irregularities in patients with T2DM may influence this further, but this has never been examined 

before. 

 

The study presented in Chapter 7 was undertaken at the same time as the studies presented in 

Chapters 5 and 6, and aimed to determine the magnitude of brachial to radial systolic BP 

amplification (Bra-Rad-SBPAmp) and the effect of Bra-Rad-SBPAmp on estimated central systolic 

BP in 20 patients with T2DM (aged 64±8 years, 50% male) and 20 non-diabetic age-matched 

controls (aged 60±8 years, 50% male). The study hypotheses were firstly, that Bra-Rad-SBPAmp 

would be elevated  in patients with T2DM compared to non-diabetic controls and secondly, Bra-
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Rad-SBPAmp would result in underestimation in central systolic BP determined via radial 

applanation tonometry. In opposition to the first study hypothesis, Bra-Rad-SBPAmp was 

significantly blunted in patients with T2DM compared to non-diabetic controls. However, 

regardless of disease status, Bra-Rad-SBPAmp resulted in significant underestimation of central 

systolic BP. These findings have significance for how central BP is estimated non-invasively and 

for the implementation of central BP into clinical practice. This manuscript was published in the 

Journal of Human Hypertension in 2015. 

 

The study presented in Chapter 7 formed part of a larger study that was performed in a healthy 

ageing population (Appendix I). In Appendix I, Bra-Rad-SBPAmp was examined in 40 healthy 

younger (aged 28±5 years, 50% male) and 20 healthy older individuals (aged 60±8 years, 50% 

male) to determine the magnitude and effect of ageing on Bra-Rad-SBPAmp and the effect of Bra-

Rad-SBPAmp on estimated central systolic BP. The findings from the study presented in Appendix 

I were published in the Journal of Hypertension in 2015 by the author of this thesis. In this larger 

study, the effect of light to moderate intensity exercise on Bra-Rad-SBPAmp was also examined. The 

findings from the comparison between patients with T2DM and non- diabetic controls were similar 

to those at rest and are presented in Appendix II, as they did not form part of the final submitted 

manuscript presented in Chapter 7. 

 

Overall, this series of original research projects has made several novel contributions to the 

literature. Firstly, this research has shown that there is large variation in central to brachial systolic 

BP amplification in patients with T2DM and that the magnitude of amplification differs 

substantially throughout disease progression. Thus, risk related to elevated central BP may not be 

adequately assessed based on a measure of brachial BP in patients with T2DM. Secondly, the 

research contained in this thesis has confirmed that patients with T2DM have abnormal central 

haemodynamics, and for the first time has shown that these adverse changes contribute to altered 

systolic BP amplification down the forearm. Moreover, systolic BP amplification contributes 

significantly to underestimation of central BP via radial applanation tonometry, therefore, 

highlighting the necessity to refine the methods that determine central BP non-invasively 

whereby the influence of Bra-Rad-SBPAmp is minimised. Additionally, this research has shown that 

the central haemodynamic response to exercise is altered in patients with T2DM and that exercise 

central haemodynamics are related to exercise-induced albuminuria, independently of resting 

haemodynamic measures in this population. Finally, this research program highlights the potential 
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clinical significance of aortic reservoir characteristics in relation to target organ damage in 

patients with T2DM. 
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Thesis aim 

 

The broad aim of this thesis was to examine the relation of resting and exercise central 

haemodynamics with target organ damage among patients with type 2 diabetes mellitus compared 

with non-diabetic healthy controls. 
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Chapter 2 Part I. Review of literature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

This chapter includes two sections; Part I reviews the physiology and clinical importance of central 

haemodynamics and their relation to target organ damage in patients with type 2 diabetes mellitus; 

Part II is a systemic review and meta-analysis of the currently available literature on central to 

brachial systolic blood pressure amplification in patients with type 2 diabetes mellitus compared to 

non-diabetic controls.  
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2.1.1 Type 2 diabetes mellitus in Australia 

Type 2 diabetes mellitus (T2DM) is the fastest growing chronic disease in Australia and 

everyday, 280 people develop the disease. T2DM currently affects an estimated 1.5 million 

people and if trends continue an estimated 3.3 million people will have T2DM by 20311. Patients 

with T2DM have greater propensity to develop adverse structural and functional changes in the 

heart and arterial system, brain, kidneys and eyes (termed target organ damage), which predisposes 

these individuals to increased risk of cardiovascular disease, dementia, nephropathy and 

retinopathy. Indeed, cardiovascular disease is the leading cause of mortality in patients with 

T2DM12 and the risk of an acute myocardial infarction is five times higher in this population 

compared to non-diabetic individuals13. T2DM is a strong independent predictor of cerebro-

vascular disease and stroke14, 15, and the risk of developing dementia is increased by two-three 

fold in these patients16. The number of diabetics requiring dialysis or a kidney transplant has 

dramatically risen in Australia over the last few decades, largely due to the increased prevalence 

of T2DM12. Moreover, the prevalence of diabetic retinopathy is nearly four times higher in patients 

with established T2DM compared to those with newly diagnosed diabetes17. Although the 

pathogenesis of these adverse changes is largely influenced by genetic, metabolic and lifestyle 

factors, the underlying pathophysiological causes remain to be elucidated. 

 

2.1.2 Hypertension in patients with type 2 diabetes mellitus 

Cardiovascular disease accounts for 80% of all deaths in patients with T2DM18, with high blood 

pressure (BP), or hypertension, affecting a reported 70% of this population19. The development 

of T2DM is nearly 2.5 times more likely in individuals with pre-existing hypertension20 and 

hypertension is more prevalent in patients with T2DM compared to non-diabetic individuals21, 

suggesting that these two conditions commonly coexist. Moreover, hypertension is associated with 

an increased risk of myocardial infarction, stroke, kidney disease and mortality22, 23 (figure 2.1.1), 

which can lead to an increased cardiovascular burden in hypertensive patients with T2DM. The 

prevalence of masked hypertension (normal resting office BP but elevated ‘out-of-office’ BP)24, 25 

and white coat hypertension (elevated office BP but normal ‘out-of-office’ BP)26 are higher in 

patients with T2DM compared to non-diabetic individuals. Similarly, the prevalence of a 

hypertensive response to exercise, which is a known risk factor for cardiovascular events and future 

onset hypertension27, is greater in patients with T2DM compared to those without28, 29. 

Altogether these observations suggest that an individual’s risk related to hypertension is elevated in 

the presence of T2DM. Although hypertension is largely influenced by genetic, lifestyle and 
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environmental factors, the underlying pathophysiological mechanisms for the development of 

hypertension remain unclear. 

 
 

 

Figure 2.1.1. The association between systolic (left) and diastolic blood pressure (right) and 

mortality due to stroke for each age category, increasing by decade22. 

 
In clinical practice, BP is typically measured from the brachial artery of the upper arm (brachial 

BP)30 and although raised brachial systolic BP is a strong risk factor for cardiovascular 

disease22, over the last decade increasing evidence31-34 has emerged to suggest that central (aortic) 

BP and related haemodynamics may be more closely related to cardiovascular risk than other 

surrogate markers such as brachial BP. The structure of the arterial tree supports a significant 

amplification in systolic BP as the forward travelling pressure wave generated by left ventricular 

contraction propagates from the central elastic vessels towards the smaller and more muscular 

peripheral vessels. Indeed, central systolic BP is generally lower than brachial systolic BP but 

m a y vary considerably between individuals (up to 33 mmHg)2, 4 and depends on a number of 

variables including age, sex, height and heart rate35-37. Since the left ventricle encounters aortic 

pressures with each cardiac ejection and the aortic pressures are the primary determinants of 

coronary perfusion, central BP may be better correlated with the chronic loading occurring in 

the heart, aorta and central arteries (coronary and cerebral) and the central organs (brain, 

kidneys and the eyes) than brachial BP34, 38, 39. Central BP indices are predictive of mortality in 
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high-risk individuals independently of brachial BP33, 34 and central BP responds differently 

compared to brachial BP to certain BP lowering (hypotensive) medications40, 41. Indeed the clinical 

importance of elevated central systolic BP has recently been highlighted and cut off values that 

denote ‘central hypertension’ (≥130 mmHg) have been developed42. However, central BP may be 

influenced by individual physiological factors including left ventricular ejection, pulse transit time43 

and medications40. Importantly, patients with T2DM elicit vascular irregularities including 

increased arterial stiffness (both centrally44, 45 and peripherally46), impaired endothelial mediated 

vasodilation47, loss of myogenic responsiveness48 and small vessel hypertrophy and remodeling49 

compared to non-diabetic individuals and emerging research has suggested that these adverse 

changes in arterial structure and function may contribute (via increased central systolic stress) 

to accelerated target organ damage in this population. However, this remains to be elucidated fully. 

 

The evidence for the superiority of central BP beyond brachial BP is, however, not universally 

accepted, mainly due to issues surrounding the methods used to estimate central BP50. The accuracy 

and reproducibility of central BP measurement using non- invasive methods, requires 

confirmation before central BP can be established as a clinically useful tool. Standardised 

treatment strategies which incorporate central BP readings must also be developed and universally 

accepted51. Indeed, the 2013 European Society of Cardiology Guidelines for the management of 

arterial hypertension suggests that further investigation is required before central BP can be 

recommended for routine clinical use52. Nonetheless, evidence does exist to support the use of 

central BP in clinical practice (outlined in table 2.1.1), and highlights that although some 

methodological and technical issues require refinement, the use of central BP measurement  

may  significantly  aid  decision  making  for  doctors   and enhance patient care, above and beyond 

conventional measures of brachial BP. 
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Table 2.1. 1. Evidence to support the use of central blood pressure (BP) in clinical practice.  

Evidence Strength of evidence Clinical advantage beyond 

brachial blood pressure 

Major differences in central BP occur in 

people with similar brachial BP 

+++ Improved accuracy of assessment 

of risk related to BP 

   

The response to antihypertensive medication 

differs between central and brachial BP 

+++ Improved accuracy of assessment 

of BP response to treatment 

   

Central BP indices independently relate to 

target organ damage 

++  

   

Changes in target organ damage in response 

to therapy independently relate to central 

BP 

++  

   

Central BP indices independently relate to 

cardiovascular events and mortality 

++ Enhanced discrimination of 

cardiovascular risk 

   

Measurement of central BP improves the 

predictive accuracy of future cardiovascular 

events beyond brachial BP and other 

cardiovascular risk factors 

+  

   

Central BP has superior diagnostic accuracy 

over brachial BP 

+ Increased probability of 

clinicians making relevant 

treatment and management 

decisions 

   

Central BP measurement results in different 

management decisions compared to usual 

care 

+ Improved patient care 

Adapted from Sharman et al.51 + indicates minimal evidence, +++ indicates substantial evidence. 
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2 1.3 Abnormal haemodynamics in patients with type diabetes mellitus 

T2DM is associated with classic cardiovascular risk factors (including hypertension, smoking and 

hyperlipidaemia) as well as diabetes specific risk factors (including hyperglycaemia, 

hyperinsulinaemia, obesity and inflammation), all of which can influence the normal functioning of 

the cardiovascular system. Hypertension exerts an increased load on the chamber wall of the heart 

and vessels by increasing wall tension. This increased ventricular wall tension may cause changes 

in the structure of the wall of the left ventricle in an attempt to normalise the increased 

myocardial stress. Additionally, an increase in diameter and wall thickness of the large elastic 

arteries occurs due to passive distension and to minimise intima media stress53. Both smoking and 

hyperlipidaemia reduce the availability of nitric oxide (a potent vasodilator) and contribute to 

endothelial dysfunction54, 55. Hyperglycaemia is a major metabolic alteration that contributes to 

vascular impairment early on in the progression of T2DM, and may even contribute to vascular 

abnormalities prior to the diagnosis of T2DM56. The mechanisms of hyperglycaemia driven 

vascular impairment include increased reactive oxygen species and advanced glycation end product 

concentrations, impaired vasodilatory processes due to nitric oxide inhibition, accumulation of 

endothelial growth factors and vascular smooth muscle cell dysfunction56. Adrenergic activity is 

stimulated by hyperinsulinaemia57 and it has been postulated that chronic hyperinsulinaemia may 

lead to enhanced sympathetic activity and functional overload of the heart and vasculature58, 59. 

Both hyperglycaemia and hyperinsulinaemia have a direct toxic effect on cardiomyocytes which 

can lead to adverse changes in cardiac structure and function60. Increased adipose tissue is 

associated with greater arterial stiffness possibly via elevated oxidative stress and inflammation61, 

62. Finally, inflammation itself reduces the bioavailability and increases the inactivation of nitric 

oxide as well as releasing vasoconstrictor prostanoids, which can lead to endothelial dysfunction 

and also increased arterial stiffness61. Collectively, these aforementioned risk factors can have 

an unfavourable and often deleterious effect on the normal functioning of the heart and vasculature, 

predisposing individuals with T2DM to haemodynamic abnormalities as summarised in table 2.1.2.  
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Table 2.1.2. Summary of the change in central and peripheral haemodynamics in patients with 

type 2 diabetes mellitus compared to non-diabetic individuals. 

Central haemodynamics  

Heart rate   

Stroke volume  

Cardiac output  

Blood pressure  

Pulse pressure  

Augmentation index  - 

Augmentation pressure   

Arterial stiffness  

Peripheral haemodynamics  

Systemic vascular resistance  

Blood pressure  

Pulse pressure  

Pulse pressure amplification  

Arterial stiffness  

 

 

Central haemodynamics 

 

Heart rate, stroke volume and cardiac output 

Increased heart rate63 and impaired heart rate variability64 are common in patients with T2DM, 

possibly as a result of autonomic nervous system dysfunction65, 66 and hyperinsulinaemia58, 59, 67. 

Damage to autonomic nerve fibers can lead to sympathetic dominance and a resultant higher heart 

rate65. Additionally, hyperinsulinaemia alters the variability of sinoatrial node activity in response 

to both sympathetic and parasympathetic influences thereby enhancing sympathetic outflow whilst 

at the same time withdrawing vagal tone66. Furthermore, in patients with T2DM64 and also obese 

individuals66 stroke volume is increased, most likely due to the enhanced sympathetic outflow to 

the heart66, causing an increase in the strength of myocardial contraction. Elevated cardiac output 

has been observed in patients with T2DM compared to non-diabetic individuals67 and also prior to 

the development of T2DM in individuals with insulin resistance60 and is most likely due to the 
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aforementioned elevated heart rate, but also stroke volume in these patients. Furthermore, any 

increase in body mass, whether it is due to an expansion of adipose or muscle tissue, requires an 

increase in cardiac output and blood volume in order to meet the increased metabolic demands68, 69. 

 

Central BP 

Typically central systolic BP is elevated in patients with T2DM compared to non- diabetic 

individuals2, 4, 67, 70-72 and is most accurately determined invasively using a high-fidelity pressure 

transducer in the ascending aorta39. However, this method is not feasible for routine clinical use 

and, therefore, alternate methods that estimate central BP non-invasively have been developed. 

During the candidature of this thesis, the most widely accepted non-invasive method to determine 

central BP was applanation tonometry at the superficial arteries (most commonly the radial) and the 

use of commercially available devices such as the SphygmoCor (AtCor Medical, Sydney, 

Australia)10. Using this method, a central (ascending aorta) waveform and BP are estimated by 

applying a validated transfer function11, 73 to the radial pressure waveform, which is calibrated 

with brachial systolic and diastolic BP. While mean arterial pressure and diastolic BP remain 

fairly constant throughout the arterial system, it is generally accepted that systolic BP is amplified 

as it moves towards the periphery (as shown in figure 2.1.2)74. However, radial applanation 

tonometry relies on negligent brachial to radial systolic BP amplification (Bra-Rad-SBPAmp) and 

thus, due to systolic BP amplification, calibrating the radial waveform with brachial systolic and 

diastolic BP may result in central systolic BP being consistently underestimated. The use of 

oscillometric mean arterial pressure (which is less dependent on brachial systolic BP) and diastolic 

BP to calibrate the radial waveform may improve the precision of waveform calibration and central 

systolic BP estimation75. However, the magnitude and effect of Bra-Rad-SBPAmp on the estimated 

central systolic BP remains unknown in healthy ageing individuals and also in patients with 

T2DM, in whom vascular irregularities may influence the level of Bra- Rad-SBPAmp. Therefore, 

this was investigated in Chapter 7 and Appendix I of this thesis. In a cohort of patients with T2DM 

and non-diabetic controls, Chapter 7 examines the effect of Bra-Rad-SBPAmp on the estimated 

central systolic BP, and explores some of the underlying physiology that may influence Bra-Rad-

SBPAmp. T he findings presented in Appendix I suggest that there is significant Bra-Rad-SBPAmp 

that occurs in both young healthy individuals and also older healthy individuals, and that Bra-Rad-

SBPAmp contributes significantly to underestimation of central systolic BP via radial applanation 

tonometry. 
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Figure 2.1.2. Pressure wave amplification. Systolic blood pressure (BP) is amplified as it moves 

from the central arteries (aorta) to the peripheral arteries (brachial and radial), while mean 

arterial pressure and diastolic BP remain relatively constant throughout the arterial system76. 

Whether systolic BP is amplified from the brachial to radial artery is yet to be definitively 

determined. 

 

Central pulse pressure 

Analysis of the central pressure waveform permits the derivation of other haemodynamic indices 

such as central pulse pressure (the difference between systolic and diastolic BP; see figure 2.1.3). 

Several studies have shown that central pulse pressure is elevated in patients with T2DM67, 77, 78 

and other populations with increased cardiovascular risk79, 80, despite having similar brachial BP 

compared to healthy individuals. Indeed, Schultz et al.67 noted that patients with T2DM have an 

abnormal haemodynamic response when moving from a seated to standing posture and that 

central pulse pressure did not differ between the two positions, the authors suggesting that this 

persistent elevation in central pulse pressure may adversely affect cardiovascular health. 
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Figure 2.1.3. The central (aortic) pressure waveform. Important parameters can be derived from 

this waveform including; systolic blood pressure (BP), central pulse pressure (systolic – 

diastolic BP), augmentation pressure (second - first systolic peak) and augmentation index 

(augmentation pressure expressed as a percentage  of the pulse pressure). 

 

Augmentation pressure 

Augmentation pressure is defined as the difference between the second and first central systolic 

peaks and is elevated in patients with T2DM compared to non- diabetic individuals81. The 

conventional explanation of waveform morphology and pressure transmission through the arterial 

system, the wave reflection theory, would suggest that when the forward traveling pressure 

wave generated by left ventricular contraction meets sites of impedance mismatch (i.e. arterial 

bifurcations), it is reflected back towards the heart where it is believed to augment, or increase, 

systolic BP in the central arteries43. However, a recent study showed that reflected waves 

contribute minimally to a rise in the systolic peak and that the elastic properties of the arteries 

may be the principle determinants of elevated augmentation pressure82, and this hypothesis is 

discussed in more detail later in this chapter. The degree of central pressure augmentation 

directly relates to the duration of diabetes83 and is influenced by a number of factors (including 

increasing age, a history of smoking, hypertension and hyperlipidaemia81). 
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Augmentation index 

Augmentation index (AIx), which quantifies the degree of augmentation pressure relative to 

central pulse pressure, has been purported to be a marker of systemic arterial stiffness. This is 

because an increase in arterial stiffness results in a faster traveling pressure wave and an earlier 

return in the reflected wave (according to wave reflection theory), which may arrive back at the 

heart during systole causing a rise in the systolic peak43. Some studies have reported that AIx is 

elevated in patients with T2DM44, 70, 84, however, on the other hand, a number of studies85-89 have 

reported that AIx is not elevated, despite these patients having increased arterial stiffness 

compared to non-diabetic individuals. Importantly, AIx is a composite measure that is influenced 

by a number of factors including the strength of left ventricular ejection, heart rate and pulse 

wave transit time90-92, which may explain the discrepancies between previous studies. 

Nonetheless, the association between AIx and arterial stiffness in patients with T2DM remains 

inconclusive and further studies are required to clarify this relationship. In Chapter 3 of this thesis, 

the association between AIx and arterial stiffness has been examined in order to determine the 

cardiovascular and clinical determinants of AIx in patients with T2DM compared to non-diabetic 

individuals. 

 

Central arterial stiffness 

A reliable marker of aortic and large vessel function is central arterial stiffness, which is typically 

determined via aortic pulse wave velocity (carotid-femoral pulse wave velocity [PWV])10. 

Using this method arterial stiffness is estimated by measuring PWV via applanation tonometry 

sequentially at the carotid and femoral artery in combination with a three-lead electrocardiogram 

to determine the timing between the foot of the waveform at each site (as shown in figure 

2.1.4). The surface distance between the two measurement sites is taken as the distance 

travelled by the pressure waves. 

 

Central arterial stiffening is a common feature of ageing and is exacerbated by T2DM45, 93 and is 

evident even before the onset of T2DM in individuals with impaired glucose tolerance94. In 

patients with T2DM arterial stiffness is a systemic change, however, regional differences exist 

with the aorta and carotid arteries being preferentially affected  (beyond the peripheral arteries)95, 

96. Cruickshank et al.45 showed that Doppler-derived aortic PWV was elevated in patients with 

T2DM and also in individuals with impaired glucose tolerance and newly diagnosed patients with 

T2DM compared to non-diabetic controls. The Horn Study97 showed that central arterial stiffness 

(assessed via carotid to femoral transit time) was increased in patients with T2DM compared to 
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individuals with normal glucose metabolism. Similarly, aortic compliance has been shown to be 

lower in patients with T2DM compared to non-diabetic individuals98, 99. 

 
 

 

Figure 2.1.4. Estimation of aortic stiffness using PWV. Carotid-to-femoral PWV (expressed in 

meters per second [m/s]) is determined using the ‘foot to foot’ method. Using this method, the 

speed that the pressure waveform travels is determined as the ratio of the distance (m) from the 

common carotid artery to the femoral artery pressure sites and the time delay (Δt) between the 

foot of the pressure waveform at the two measurement sites. 

 

Peripheral haemodynamics 

 

Systemic vascular resistance 

Studies have confirmed that systemic vascular resistance is either normal or reduced in obese 

individuals100, however there is limited data available in patients with T2DM. Due to 

hyperinsulinaemia66 and peripheral vasodilation mediated by nitric oxide release101 systemic 

vascular resistance is likely to be reduced in patients with T2DM and is examined in Chapter 3 of 

this thesis. A significant reduction in systemic vascular resistance in combination with increased 

arterial stiffness in patients with T2DM may give rise to increased pressure and/or flow being 

transmitted from the large vessels to the microcirculation where damage to the delicate 

microvessels may occur (discussed in more detail later in this chapter). However, this 

mechanism has never been examined in patients with T2DM before and thus was investigated 

in Chapters 5 and 6 of this thesis. 

 

Peripheral (brachial) BP 

T2DM and elevated brachial BP (hypertension) are comorbid diseases, which independently 

predispose an individual to further cardiovascular complications. Although both diseases have 

independent aetiology, they both serve to exacerbate the other in terms of further cardiovascular 
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complications102. Indeed, hypertension accelerates the progression of microvascular and 

macrovascular complications in patients with T2DM103. Evidence suggests that maintaining 

brachial systolic BP levels of <140 mmHg and diastolic BP <90 mmHg markedly reduces the risk 

of cardiovascular disease related morbidity and mortality and the development of end- stage renal 

disease in patients with T2DM104-106. Furthermore, a reduction in systolic BP of 10 mmHg is 

associated with a 12% decrease in any complications related to T2DM and a 15% decrease in risk 

of mortality related to T2DM107. 

 
Peripheral pulse pressure 

Patients with T2DM demonstrate increased peripheral pulse pressure compared to non-diabetic 

individuals70, 108-110 which is likely to be a result of an increase in arterial stiffness97. Peripheral 

pulse pressure is associated with macro and microvascular complications in patients with 

T2DM111, and is a strong predictor of mortality in individuals with impaired glucose 

tolerance112 and coronary heart disease in patients with T2DM110. Importantly, patients with T2DM 

have a 27% increased risk of death related to cardiovascular disease per 10 mmHg increase in 

peripheral pulse pressure97. 

 

Central to peripheral systolic BP amplification 

The central to peripheral (brachial) BP relationship, or BP amplification, is altered in individuals 

with cardiovascular risk factors including hypertension, hyperlipidaemia and T2DM2, 4. In patients 

with T2DM in particular, central to brachial systolic BP may be blunted compared to non-

diabetic individuals4. The altered relationship is likely due to changes in arterial compliance 

(increased arterial stiffness) and autonomic function (increased heart rate), which would 

preferentially affect central BP compared to brachial BP43. However, the magnitude and 

variation in central to brachial systolic BP amplification is currently unknown in patients with 

T2DM. Clarifying this would be useful in guiding future treatment and management of 

hypertension in this population, given that the level of amplification can vary from 2- 33 mmHg in 

healthy individuals and in those with suspected coronary disease, and can result in a significant 

number of people being misdiagnosed in terms of risk related to hypertension2, 4. Part II of this 

Review of Literature is a systematic review and meta-analysis of the currently available literature 

on this topic. Central to brachial systolic BP amplification has been compared in patients with 

T2DM and non-diabetic individuals to determine the magnitude and variation in central to brachial 

systolic BP amplification. 



 
22 

 

Peripheral arterial stiffness 

In patients with T2DM, brachial PWV (carotid-radial PWV; a marker of peripheral arterial 

stiffness) is higher than in non-diabetic individuals3, 113. Indeed patients with T2DM114 and also 

obese115 individuals have increased peripheral arterial diameters, which is likely to be associated 

with an increase in peripheral arterial stiffness and stretching of collagen fibers116. 

 

2.1.4 Relation of central haemodynamics to target organ damage and clinical outcomes in 

patients with type 2 diabetes mellitus 

Accelerated target organ damage is a common feature of T2DM however, the reasons for this 

remain unclear. Only a few studies (summarised in table 2.1.3) have examined the relationship 

between central haemodynamics and markers of target organ damage or clinical outcomes, 

independently of conventional measures of brachial BP in patients with T2DM. Sharman et al.77 

demonstrated that central pulse pressure predicted left ventricular mass index in patients with 

T2DM independently of brachial BP and other known risk factors for left ventricular 

hypertrophy. The Strong Heart Study showed that central pulse pressure was more strongly related 

to carotid intima media thickness and plaque score than brachial pulse pressure in 3520 individuals 

(of which 46.5% had diabetes)32. These authors have also demonstrated that central pulse pressure 

is independently related to cardiovascular events (including myocardial infarction and stroke) and 

mortality in individuals free from cardiovascular disease (including patients with T2DM)78. In 

another study83 central systolic BP and augmentation pressure but not brachial systolic BP, were 

independently related to carotid intima media thickness, with the authors speculating that this could 

be due to changes in arterial mineralisation. Other studies have demonstrated that an increase in 

arterial stiffness (determined either as heart to femoral PWV or carotid to femoral PWV) is 

independently related to retinopathy117 and kidney dysfunction118, 119, as well as an overall increase 

in cardiovascular disease risk96, 120, 121 and cardiovascular and all-cause mortality45. Finally, studies 

in patients with type 1 diabetes have shown that central haemodynamic parameters may be related 

to adverse changes in the brain122, however, this is yet to be confirmed in patients with T2DM. 

Taken together, these previous studies suggest that central haemodynamic parameters may be 

related to various markers of target organ damage and clinical outcomes in patients with T2DM 

independently of traditional measures of brachial BP however, the underlying pathophysiological 

mechanisms remain unknown. Therefore, Chapter 4 and 5 of this thesis explore some of the 

potential factors contributing to brain structural defects in patients with T2DM compared to non-

diabetic individuals, whilst Chapter 6 examines factors associated with kidney dysfunction.
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 Table 2.1.3. Studies indicating the relationship between haemodynamic parameters and markers of target organ damage or clinical events 

in patients with type 2 diabetes mellitus, independently of brachial blood pressure. 

Haemodynamic parameter Evidence of target organ damage and clinical events 

Central blood pressure Increased carotid intima media thickness83 

Central pulse pressure Increased left ventricular mass77 

Myocardial infarction, coronary heart disease, congestive heart failure, stroke and sudden death 78 

Augmentation index Increased carotid intima media thickness123 

Augmentation pressure Atherosclerosis81 

Increased carotid intima media thickness83 

 

Heart to femoral pulse wave velocity 

Ischemic heart disease96 

Reduced glomerular filtration rate118, 119 

Retinopathy117  

 

 

 

Carotid to femoral pulse wave velocity 

White matter lesions124 

Reduced glomerular filtration rate125  

Albuminuria125-127 

Cardiovascular disease risk96, 128, 129 

Cardiovascular disease mortality45, 129 

All cause mortality45 
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2.1.5 Possible mechanisms linking abnormal central haemodynamics and target organ 

damage in patients with type 2 diabetes mellitus 

 

Pulsatility 

When the left ventricle contracts a pressure wave is generated that travels towards the periphery 

through the arterial network. Under optimal conditions, the elasticity of the proximal ascending 

aorta plays an important role in minimising excessive rises in BP and left ventricle work130 and acts 

to buffer the pulsatile fluctuations in BP to ensure a more steady flow of blood is delivered to the 

periphery and microcirculation. However, when the pressure buffering capacity of the aorta and 

central arteries is diminished (i.e. increased arterial stiffness) there is a greater proportion of the 

highly pulsatile stroke volume (pressure and/or flow) that is transmitted to the periphery 

following left ventricular ejection. Studies in non-diabetic individuals131-133 have shown that the 

transmission of pulsatile stress from the large vessels to the periphery, may extend deep into the 

microvasculature and cause excessive cyclic shear stress and damage to the delicate capillary 

networks. The brain and kidneys in particular have a vascular system supplying blood with high 

flow, but low resistance and, therefore, these organs can potentially be exposed to damaging 

levels of pressure and/or flow pulsatility due to increased aortic stiffness and pulse pressure132, 

134, 135. This phenomenon has not been studied in patients with T2DM, yet may serve as a 

possible explanation for accelerated organ damage. Importantly, patients with T2DM demonstrate 

increased arterial stiffness and when combined with systemic vasodilation may result in a highly 

pulsatile pressure waveform that is transmitted directly to the organs thus contributing to 

accelerated brain atrophy and renal dysfunction. Indeed, it is this mechanism that may link 

abnormal central haemodynamics with target organ damage in patients with T2DM and, therefore, 

has been investigated in Chapters 5 and 6 of this thesis. 

 

Arterial stiffness and wave reflection 

Arterial stiffness also increases the speed of the forward traveling pressure wave generate by 

left ventricular ejection. Conventional theory would argue that at sites of impedance mismatch, 

such as major arterial bifurcations, some of the energy from the incident wave is reflected back 

towards the heart and thus, the measured arterial pressure is the sum of the forward traveling 

wave and the backward traveling reflected wave43, 136. In young individuals with compliant vessels, 

the reflected pressure wave arrives back at the heart during diastole, aiding coronary perfusion and 

has a minimal affect on central systolic BP and left ventricular afterload. However, in older or 

diseased individuals (such as T2DM) with increased arterial stiffness, the reflected pressure 
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wave returns earlier during systole, causing augmentation in the systolic peak and an increase in 

central systolic BP and left ventricular work. However, recently this explanation of waveform 

morphology has been challenged137-139. Indeed, a recent meta-analysis demonstrated that there is no 

significant shift in the timing of the reflected wave140 that contributes to an increase in central 

BP (and augmentation pressure) which typically occurs with age, whilst others have suggested that 

the rise in central BP should not merely be described by changes in reflected wave timing141. 

 

The wave reflection theory further suggests that augmentation in central BP is significantly 

influenced by the magnitude of the reflected wave, which is dependent on the magnitude of the 

incident wave and arterial impedance properties43. However, this is based on a number of 

assumptions relating to the cardiovascular system, perhaps most importantly, the compliant 

properties of the arteries have been largely ignored142, 143. Failing to account for the compliant 

nature (i.e. the ability to expand and contract in response to a increase in volume), or pressure 

buffering role of the large elastic arteries may result in incorrect explanation of the physiology 

underlying the central pressure waveform139. Moreover, recent studies have suggested that reflected 

waves contribute minimally to a rise in central BP82, 144 and that due to dispersion of the 

reflected waves along the aorta, the compliance of the aorta may indeed play a more prominent 

role in determining central BP than previously described145 

 

Aortic reservoir-excess pressure 

The aortic reservoir-excess pressure theory is an alternate physiological model that describes the 

shape of the central pressure waveform, whilst taking into account the compliant properties of the 

arterial system8. The reservoir-excess pressure paradigm proposes that the central pressure wave 

may be separated into a reservoir pressure, which is representative of the changes in proximal 

aortic volume (distension during systole to store blood and recoil during diastole to release 

blood) and; an excess pressure component which is analogous to left ventricular flow (figure 

2.1.5)139. The reservoir pressure is representative of the minimum amount of work the left ventricle 

must do to expel blood into the aorta, and the excess pressure is, therefore, any excess work 

required above this minimum146. The reservoir-excess pressure model does not omit the existence 

of reflected waves in the arterial system, however, when considering the ‘reservoir function’, the 

influence of reflected waves on augmentation of central systolic BP is significantly reduced82. In a 

recent sub-study of the Anglo-Scandinavian study147, excess pressure was shown to predict adverse 

cardiovascular events in patients with cardiovascular disease, independently of known 
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cardiovascular risk factors and, therefore, it is likely that this novel parameter is of prognostic 

importance in describing other end organ damage. For the first time, the associations between 

aortic reservoir characteristics and target organ damage in patients with T2DM have been examined 

in Chapters 5 and 6 of this thesis. In Chapter 5 the association between reservoir pressure and 

excess pressure and grey matter atrophy has been examined in patients with T2DM compared to 

non-diabetic individuals, whilst in Chapter 6 the association between reservoir characteristics and 

renal function has been explored. 

 

Figure 2.1.5. Example aortic pressure waveform separated into reservoir pressure and excess 

pressure. Total measured pressure is equal to the sum of reservoir pressure and excess pressure. 

Aortic reservoir pressure represents the cyclic increase in aortic volume (aortic distension that 

occurs during systole) and decrease in volume (aortic recoil that occurs during diastole). Excess 

pressure is representative of the excess work required by the left ventricle for ejection of stroke 

volume and is analogous to left ventricular flow144. 

 

2.1.6 Exercise – a method to identify abnormal haemodynamics in patients with type 2 

diabetes mellitus? 

Although resting BP indices are clinically important, haemodynamic responses to exercise may 

have stronger prognostic value in terms of cardiovascular risk5, suggesting that pathophysiological 

insight may be gained from exercise haemodynamics beyond that of resting conditions. This is 

likely because individuals spend a proportion of their day doing some form of light to moderate 

physical activity6 and, therefore, the BP response to physical activity is more akin to the 

chronic BP loading that occurs during normal daily activity7. In normotensive men with no prior 

history of coronary heart disease, an exaggerated systolic BP response to exercise (≥230 mmHg) 

Excess 
pressure 

Reservoir pressure 
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is associated with a 2.74 fold increased risk of acute myocardial infarction, independently of resting 

systolic BP and other cardiovascular risk factors148. Furthermore, an increase in exercise BP is 

associated with an increased relative risk of cardiovascular mortality, and the change in systolic 

BP from rest to exercise is associated with both cardiovascular and non-cardiovascular related 

mortality149. 

 

Most previous studies have examined the BP response to maximal intensity exercise, however, in a 

recent systematic review and meta-analysis Schultz et al.5 showed that an exaggerated BP response 

to moderate intensity exercise was associated with a 36% increase in rates of cardiovascular events 

and mortality, independently of resting BP (figure 2.1.6). Weiss et al.150 demonstrated that systolic 

BP measured during moderate intensity exercise at stage 2 of the Bruce protocol was more closely 

related to risk of cardiovascular mortality than systolic BP measured in response to maximal 

intensity exercise. Furthermore, independent of resting BP, light to moderate exercise 

haemodynamics have been shown to unveil BP abnormalities in individuals with increased 

cardiovascular risk151 and also predict kidney function in elderly men152. 

 
 

 

Figure 2.1.6. Pooled hazard ratios and 95% confidence intervals for a hypertensive response to 

moderate and maximal intensity exercise, adjusted for age, resting blood pressure (BP) and 

multiple cardiovascular risk factors. Moderate exercise p value=0.039, I2=51.8%. Maximal exercise 

p value=0.12, I2=65.0%5. 
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Relative to non-diabetics, patients with T2DM have excessive increases in exercise brachial and 

central BP28, 153. Scott et al.28 showed that the prevalence of a hypertensive response to exercise 

was significantly higher in patients with T2DM compared to non-diabetic individuals (51% vs 

22%), and that this abnormal response was related to an increase in left ventricular relative wall 

thickness and also increased exercise central BP. This finding is likely to be clinically significant 

because a hypertensive response to exercise is related to future onset hypertension, cardiovascular 

morbidity and mortality in other populations27, 154, 155. Taken together, these data suggest that the 

modality of exercise may be a useful method to uncover haemodynamic abnormalities that 

would otherwise not be evident at rest. However, the association between exercise central 

haemodynamics and target organ damage has been seldom explored in patients with T2DM. 

 

2.1.7 Summary and conclusion 

Patients with T2DM are at an increased risk of target organ damage compared to their non-diabetic 

counterparts and while hypertension (measured conventionally by a cuff placed over the brachial 

artery of the upper arm) may explain some of the increased risk, it does not explain all of the 

variance in target organ damage. Although traditional measures of brachial BP taken in the clinic 

are useful for screening individuals at risk related to hypertension, substantial evidence now 

suggests that central BP (and related haemodynamics) may be more closely related to the chronic 

BP load experienced by the heart and other truncal organs and thus, may more accurately 

determine target organ damage risk. Importantly, the pathophysiological mechanisms, which 

contribute to the development of T2DM, are known to elicit vascular irregularities that 

predispose to abnormal central BP and haemodynamics, which may in turn contribute to 

accelerated target organ damage in this population. Moreover, the BP response to light to 

moderate intensity exercise has stronger prognostic value in terms of cardiovascular risk 

compared to corresponding resting BP. To date, few studies have examined the associations 

between central haemodynamics (either at rest or in response to light to moderate intensity 

exercise) and target organ damage in patients with T2DM. Understanding such associations 

may enable more targeted treatment and management strategies and help to reduce the risk of 

morbidity and mortality due to organ failure in this population.  
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Chapter 2 Part II. Central to brachial blood pressure amplification in type 2 

diabetes mellitus: Systematic review and meta-analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Part II of Chapter 2 was in the final stages of preparation for publication at the time of submission 

of this thesis. 
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pressure amplification in type 2 diabetes mellitus: Systematic review and meta-analysis.  
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2.2.1 Abstract 

Background. Brachial blood pressure (BP) may not reflect the pressure centrally (central BP) due 

to amplification in systolic BP (SBP). Patients with type 2 diabetes mellitus (T2DM) elicit 

vascular irregularities that may effect SBP amplification and other central BP indices (including 

pulse pressure [PP], augmentation pressure [AP] and augmentation index [AIx]). By systematic 

review and meta-analysis, this study aimed to determine the magnitude and variation of central 

to brachial SBP and PP amplification, AIx and AP in T2DM compared to non-diabetic controls. 

Methods. Online databases were searched for published studies reporting central and brachial SBP 

in T2DM and non-diabetic controls. Random effects meta-analyses and meta-regression were used 

to analyse the studies. 

Results. We identified 17 studies with a total of 2,711 T2DM and 10,460 non- diabetic controls. 

There was no significant difference in SBP amplification between groups (T2DM=10.8, non-

diabetic=10.2mmHg;pooled estimate=0.6mmHg, 95%CI - 0.3,1.5, p=0.21), but large variation in 

both (T2DM range=2.0-16.6mmHg, non- diabetic range=1.0-16.1mmHg). In the meta-regression, 

the difference in glycated haemoglobin (HbA1c) explained 50.9% of the variance in the pooled data 

(p=0.03) and duration of T2DM explained 15.9% (p=0.16); the difference in amplification 

between groups increasing by 0.3mmHg per year of T2DM. PP amplification was not significantly 

different between groups (p=0.16). AIx (p=0.010), AIx corrected for heart rate (p<0.001) and AP 

(p=0.001) were all significantly higher in T2DM. 

Conclusions. There is no difference in SBP (or PP) amplification in T2DM compared to non-

diabetic individuals but the difference varies with duration of T2DM. There is also large variation 

in SBP amplification. These data suggest that central SBP cannot be estimated from brachial SBP. 
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2.2.2 Introduction  

High blood pressure (BP) or hypertension, is associated with adverse cardiovascular outcomes22, 23. 

In clinical practice, BP is typically measured at the brachial artery (brachial BP)30. However, 

due to amplification in systolic BP (SBP) as the pressure wave prorogates peripherally, brachial 

SBP may not accurately reflect the pressure at the heart and aorta (central SBP), and studies have 

demonstrated that central SBP and the corresponding load on the left ventricle may be elevated 

despite brachial SBP being within the normal range4. The left ventricle must overcome aortic 

pressures with each cardiac ejection to expel blood into the systemic circulation and thus, it is 

reasonable to expect that central SBP may be more closely related to the chronic load experienced 

by the heart and aorta, rather than other surrogate measures (such as brachial SBP)34, 39. 

Furthermore, central BP indices (including central pulse pressure [PP], augmentation pressure [AP; 

the difference between the second and first central systolic peaks] and augmentation index [AIx; 

AP expressed as a percentage of PP]) have been identified as predictors of cardiovascular 

events156, morbidity and mortality33, independently of brachial SBP. Together this suggests that 

measurement of central SBP and related indices may improve cardiovascular risk assessment. 

 

The magnitude and variation of central to brachial SBP (and PP) amplification may be influenced 

by a number of demographic (including age and sex35) and physiological factors (including 

hyperlipidaemia, mean arterial pressure35, arterial stiffness4 and heart rate36) and has been shown to 

vary considerably in healthy individuals and patients with coronary heart disease (up to 33 

mmHg)2. Patients with type 2 diabetes mellitus (T2DM) elicit vascular irregularities (including 

elevated cardiac output63, and central45, 97 and peripheral46 arterial stiffening) compared to non-

diabetic individuals, which may affect the magnitude and variation of central to brachial SBP 

(and PP) amplification, as well as AIx and AP. Indeed, we have previously observed 

substantial variability in central to brachial SBP amplification in patients with T2DM2, however to 

our knowledge, this has never been thoroughly examined in comparison to non-diabetic 

controls by systematic review and meta-analysis. If significant amplification and variation exists in 

patients with T2DM compared to non- diabetic controls, this could mean that a measure of brachial 

SBP may not accurately reflect the true risk related to BP in this patient group. This could have 

therapeutic implications. Therefore, the aim of this study was to determine the magnitude and the 

range of variation of central to brachial SBP and PP amplification, and to determine the 

difference in AIx and AP in patients with T2DM compared to non-diabetic individuals. 
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2.2.3 Methods 

Literature search and methods 

The search methods used in this study followed the Preferred Reporting Items for Meta-

analyses157 and the Meta-analyses of Observational Studies in Epidemiology158 reporting 

guidelines. Two independent reviewers (RC and MS) conducted a literature search of seven 

electronic databases (CINAHL, Cochrane, EMBASE, PubMed, Scopus, SPORTDiscus and Web of 

Science) including all studies reporting central to brachial SBP amplification in patients with T2DM 

for all years up to March 2015. The search strings included the following terms: (‘type’ AND (‘2’ 

OR ‘two’) AND ‘diabetes’ OR ‘non-insulin dependent diabetes’) AND (‘blood pressure’ OR 

‘brachial blood pressure’ OR ‘peripheral blood pressure’ OR ‘upper arm blood pressure’ OR 

‘central blood pressure’ OR ‘aortic blood pressure’ OR ‘blood pressure amplification’ OR ‘pulse 

pressure’ OR ‘pulse pressure amplification’ OR ‘amplification’ OR ‘augmentation index’ OR 

‘augmentation pressure’). Search filters for human studies and adults aged >18 years of age were 

included. Additionally, the reference list of any other relevant original and review articles were also 

searched. 

 

Criteria for study inclusion 

Studies were included in the systematic review if they met the following criteria; 1) full length 

publication in a peer reviewed journal; 2) a human study in adults >18 years of age; 3) 

reported central SBP and brachial SBP and diastolic BP using non- invasive or invasive 

techniques; 4) central and brachial SBP was measured at the same time period (either simultaneous 

or consecutive measurements) and; 5) a control (non-diabetic) group was included in the study. 

Studies were not included if data for central or brachial SBP for either patients with T2DM or the 

control group were not reported separately. 

 

Outcome measures 

The main outcome measure was central to brachial SBP amplification. Central to brachial PP 

amplification, AIx, (including AIx corrected for a heart rate of 75 beats per minute [bpm]) and 

AP were secondary outcome measures. SBP amplification was determined by the method specified 

by the study authors within each individual paper, or calculated as brachial SBP – central SBP. 

Similarly, PP amplification was determined by the method adopted by the individual paper or by 

brachial PP divided by central PP. If central PP was not reported, it was calculated as central 

SBP – central (or brachial where central was unavailable) diastolic BP. Where AIx was not 
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reported but central PP and AP were available, AIx was calculated using equation 1 below and 

the standard deviation was calculated using the Delta method159. AP could not be calculated if not 

reported in the individual studies due to insufficient availability of data. 

 

Equation 1: 

AIx = Augmentation pressure/central PP x 100 

 

Data extraction 

Two reviewers (RC and PO) extracted the data independently. All discrepancies were reviewed and 

resolved. For the systematic review the following data were extracted from each individual paper; 

the characteristics of the study population (including the age, proportion of male participants, body 

mass index [BMI], medications, disease status and duration of diabetes), central and brachial SBP 

and diastolic BP, central PP, peripheral PP, AIx, AP, heart rate, statistical methods  (corrected, 

uncorrected analysis) and method of determining central and brachial SBP and diastolic BP. The 

study by Maple Brown et al.160 was performed in two distinct populations (indigenous Australians 

and Australians with European ancestry) in which data was presented for both a diabetic and non-

diabetic subgroup. Therefore, we decided a priori to treat these estimates as separate studies. 

 

Statistical analysis 

Random effects analyses were performed comparing the difference in central to brachial SBP and 

PP amplification, AIx and AP between patients with T2DM and non-diabetic individuals.  Five 

meta-analyses were performed separately and studies could be included in more than one meta-

analysis if the appropriate data was reported. Heterogeneity between studies was examined using 

meta-regression analyses to examine the effect of age, BMI, diabetes duration (in the diabetic 

group), heart rate, and use of antihypertensive medication on the difference in central to brachial 

SBP between individuals with and without T2DM. 

 

The majority of the studies measured central SBP using radial applanation tonometry and only 

two161, 162 used alternate methods. Sensitivity analyses were performed to assess whether the two 

studies that used different methods to determine central SBP caused any difference in effect size. 

A number of studies70, 126, 162 reported variance as either interquartile range or 95% confidence 

intervals and, therefore, these were converted to standard deviations for the analysis. Two studies 

containing data from similar cohorts were included in separate analyses, one in the analysis of 

central to brachial SBP and PP amplification163 and one in the analysis of AIx and AP164. All 
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data from each individual study was reported as uncorrected. Publication bias was assessed 

visually with funnel plots and with Eggers test for bias. 

 

2.2.4 Results 

Literature search and systematic review 

A summary of the literature search procedure adopted in the current study is shown in figure 2.2.1. 

The original search of seven online databases revealed 45,086 original articles of which 45,021 

were excluded (due to being duplications or based on review of title or abstract or both), leaving 

65 potentially relevant articles that required full text reviews. Forty-seven of these were excluded, 

leaving 18 articles for the final systematic review (table 2.2.1) and 17 for the primary meta-

analysis. The 17 studies included in the meta-analysis had a total of 2,711 patients with T2DM 

and 10,460 non-diabetic controls for meta-analysis. 

 

Central to brachial SBP amplification 

Central and brachial SBP were elevated in patients with T2DM (124, range 113-147 mmHg and 

134, range 121-160 mmHg) compared to non-diabetic individuals (114, range 103-146 mmHg and 

124, range 114-158 mmHg). The pooled estimate showed that there was minimal difference in 

central to brachial SBP amplification between patients with T2DM and non-diabetic controls (0.6 

mmHg, 95%CI -0.3, 1.5, p=0.21; figure 2.2.2). The mean central to brachial SBP amplification 

was 10.8 mmHg and ranged from 2.0 to 16.6 mmHg in patients with T2DM and was 10.2 mmHg 

and ranged from 1.0 to 16.1 mmHg in non-diabetic individuals. 

 

The difference in age between individuals with and without T2DM, did not explain the variance 

in the pooled data (R2 = 0%) nor did the difference in sex (R2 = 0%), BMI (R2 = 0%), heart rate 

(R2 = 0%) or use of antihypertensive medication (R2 = 0%). However, glycaemic control (HbA1c 

levels) explained 50.9% (p=0.03) and diabetes duration explained 15.9% (p=0.16) of the variance in 

the pooled data. As the duration of diabetes increased in patients with T2DM, the difference in 

central to brachial SBP amplification between the groups also increased (figure 2.2.3). The meta-

regression suggests that amplification is lower in patients with T2DM relative to non-diabetic 

individuals at five years of disease duration (-0.7 mmHg), and increases with each additional year 

of having T2DM by 0.3 mmHg per year to be 1.1 mmHg higher for participants with an average 

T2DM duration of 11 years. Of note, in the study by Chirinos et al.162 central SBP was estimated 

from the carotid artery rather than the aorta, however, removal of this study from the analysis 

made little difference to the overall pooled result (0.6 mmHg, 95%CI -0.4, 1.6, p=0.25). 
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Furthermore, the removal of the two studies161, 162 that used alternate methods to determine central 

SBP other than radial tonometry, made no difference to the overall pooled result (0.6 mmHg, 

95%CI -0.4, 1.6, p=0.28).  
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Figure 2.2.1. Summary of literature search and selection procedure for articles included 

in the systematic review and meta-analysis. 
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Table 2.2.1. Studies included in the systematic review reporting central to brachial systolic blood pressure (SBP) amplification in patients 

with type 2 diabetes mellitus (T2DM) and non-diabetic controls. 

No. Study Participants 

(n) 

Age 

(years) 

Male 

(%) 

Duration of 

diabetes 

(years) 

Body mass 

index 

(kg/m2) 

Smoking 

history 

(%) 

Hypertensive 

medication 

(%) 

Hyperlipidaemic 

medication 

(%) 

Hyperglycaemic 

medication 

(%) 

 Afsar et al. 

2014161
 

*146 61±11 18 9.8 28.2±5.7 29 36 18 NR 

1 238 51±16 21  30.5±5.6 39 41 21 NA 

 Agnoletti et 

al. 2013165
 

*126 63±10 56 11.0 28.4±3.9 69 58 53 47 

2 203 57±15 52  25.8±4.6 94 51 30 NA 

 Brooks et al. 

200170
 

*88 56±11 58 7.5 28.7±5.3 61 31 NR 67 

3 85 55±16 47  25.0±4.1 40 17 NR NA 

 Chirinos et al. 

2013162
 

*37 53±5 68 4.8 30.9±4.8 NR 46 NR 71 

4 2025 45±7 45  24.8±3.9 NR 9 NR NA 

 Climie et al. 

201363
 

*53 61±8 51 NR 30.8±5.0 NR 57 57 NR 

5 53 58±6 51  25.4±3.5 NR 6 2 NA 

 Climie et al. 

2014164
 

*37 63±9 47 6.0 30.5±4.8 NR 63 66 68 

6 37 52±8 51  25.9±3.3 NR 0 0 NA 

 Climie et al. 

2015163
 

*39 63±9 49 6.0 30.5±4.8 8 64 67 72 

7 39 53±9 49  24.9±3.3 10 NR NR NA 

 Kolade et al. 

201271
 

*211 56±10 55 NR 31.8±6.1 NR NR NR NR 

8 208 50±14 70  26.2±3.8 NR NR NR NA 

 Maple Brown 

et al. 2005167
 

*43 47±11 42 >10 27.3±4.9 45 50 NR NR 

9 54 46±9 35  29.5±5.7 57 13 NR NA 

 Maple Brown 

et al. 2007160
 

*38 54±8 45 5.0 30.8±5.0 8 47 NR NR 

10 a) 83 42±9 34  25.8±6.0 9 4 NR NA 

 Maple Brown 

et al. 2007160
 

*60 48±10 48 5.0 27.3±6.0 46 45 NR NR 

10 b) 102 42±12 38  24.6±5.0 56 8 NR NA 
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 McEniery et 

al. 20084
 

*356 65±14 64 NR 29.4±NR NR NR NR NR 

11 5648 45±21 51  25.2±NR NR NR NR NA 

 Recio-
Rodriguez et 
al. 2012166

 

*100 59±11 65 NR 29.9±5.2 20 70 58 87 

12 92 55±12 53  25.7±3.5 26 0 0 NA 

 Sacre et al. 

201272
 

*106 56±9 58 NR 32.0±6.0 NR 51 45 71 

13 106 56±9 58  27.0±4.0 NR 0 10 NA 

 Schultz et al. 

201267
 

*21 61±9 48 11.0 29.0±6.0 37 52 NR 74 

14 20 53±8 45  26.0±5.0 37 0 NR NA 

 Scott et al. 

200828
 

*73 54±10 62 NR 31.5±5.9 NR 25 29 53 

15 73 53±12 63  26.2±3.8 NR 0 0 NA 

 Sharman et 

al. 

2008167
 

*224 56±10 55 NR 31.8±6.1 NR NR NR NR 

16 222 50±14 68  26.0±3.7 NR NR NR NA 

 Tamminen et 

al. 2002168
 

*16 54±2 68 7.0 29.1±1.1 30 NR NR NR 

17 19 51±2 75  28.9±0.9 20 NR NR NA 

 Wier et al. 

2011126
 

*974 NR NR NR NR NR NR NR NR 

18 1170 NR NR  NR NR NR NR NA 
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Table 2.2.1 continued. 

 
No. Central 

SBP 

Brachial 

SBP 

Brachial 

DBP 

Method to determine brachial SBP Method to determine central SBP 

 *119±16 136±17 86±10 Automatic, oscillometry Brachial BP cuff (Mobil-o-Graph arteriograph), calibrated via 

brachial SBP and DBP 1 116±15 132±16 83±10  

 *147±26 160±28 94±15 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 2 146±27 158±29 96±15  

 *129±18 139±18 82±8 NR Radial applanation tonometry (PWV Medical Blood Pressure 

Analysis System), calibration method NR 3 114±16 124±16 76±10  

 *141±19 143±3 87±2 Automatic, oscillometry Carotid applanation tonometry (SphygmoCor), calibrated via 

brachial MAP and DBP 4 130±23 131±0 77±0  

 *114±13 124±13 71±9 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 5 107±12 117±11 68±8  

 *114±11 124±12 68±8 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 6 103±10 114±9 65±6  

 *115±12 125±13 69±8 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 7 103±10 114±9 65±6  

 *125±16 
136±17 82±9 

  
  Mercury sphygmomanometer Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 8 114±15 125±15 75±10  

 *113±19 121±20 76±11 Automated sphygmomanometer Radial applanation tonometry (SphygmoCor), calibration 

method NR 9 114±21 121±21 75±12  

 *125±15 132±15 78±8 Automated sphygmomanometer Radial applanation tonometry (SphygmoCor), calibration 

method NR 10 a) 107±16 118±17 73±10  

 *117±17 130±23 75±11 Automated sphygmomanometer Radial applanation tonometry (SphygmoCor), calibration 

method NR 10 b) 112±23 123±27 73±12  
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 *130±21 143±21 79±11 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibration 

method NR ^11 108±12 120±11 74±8  

 *129±18 137±19 83±11 Automated sphygmomanometer Radial applanation tonometry (SphygmoCor), calibration 

method NR 12 108±14 115±14 74±9  

 *122±13 135±14 79±9 Mercury sphygmomanometer Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 13 114±12 125±13 75±8  

 *121±17 136±18 72±9 Automatic, oscillometry Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 14 106±13 119±12 70±9  

 *116±10 127±11 77±7 Mercury sphygmomanometer Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP 15 113±11 124±12 76±8  

 *125±17 136±18 82±9 Mercury sphygmomanometer Radial applanation tonometry (SphygmoCor), calibrated via 

brachial SBP and DBP ^16 113±14 124±13 74±9  

 *119±13 129±4 79±2 NR Radial applanation tonometry (SphygmoCor), calibration 

method NR 17 116±18 125±13 80±2  

 *117±21 130±22 68±13 Aneroid sphygmomanometer Radial applanation tonometry (SphygmoCor), calibration 

method NR 18 111±16 120±16 72±13  

Data are mean ± standard deviation unless otherwise indicated. NR, not reported; NA, not applicable; DBP, diastolic BP; PWV, pulse wave velocity. 

*represents data for patients with T2DM. ^SBP amplification reported in individual study, for all other studies SBP amplification was calculated as brachial 

SBP – central SBP. 
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Figure 2.2.2. Pooled estimates and 95% confidence intervals for amplification in central to 

brachial systolic blood pressure (SBP) in patients with type 2 diabetes mellitus (T2DM) 

compared to non-diabetic individuals. I2=88.0% p=0.21. The forest plot indicates that central to 

brachial systolic blood pressure was slightly, although not significantly, higher in patients with 

T2DM. 

 

 

Figure 2.2.3. Association between the level of central to brachial systolic blood pressure 

amplification between patients with and without type 2 diabetes mellitus and the duration of 

diabetes. R2=15.9%, p =0.16. 
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Central to brachial PP amplification 

The total number of patients with T2DM included in the meta-analysis of PP was 2,622 and 10,368 

non-diabetic controls. The pooled estimate showed that there was no difference in central to 

brachial PP amplification between patients with T2DM and non-diabetic controls (-0.03 mmHg, 

95%CI -0.07, 0.01, p=0.16; figure 2.2.4 A). The mean PP amplification was 1.3 mmHg and 

ranged from 1.0 to 1.4 mmHg in patients with T2DM, and was 1.3 mmHg and ranged from 1.0 to 

1.4 mmHg in non-diabetic controls. 

 

Augmentation index and augmentation pressure 

Unadjusted AIx was calculated using equation 1 in two studies70, 165. However, insufficient data was 

provided to calculate AIx in six studies28, 71, 126, 161, 162, 167 and AP in nine studies28, 71, 72, 126, 161, 162, 

165-167 and therefore, these studies were excluded from the respective meta-analyses. Data for 

AIx corrected for heart rate was only available in seven studies28, 63, 67, 72, 126, 161, 164. There was a 

total of 1,046 patients with T2DM and 6,504 non-diabetic controls included in the meta-analysis of 

unadjusted AIx; 712 patients with T2DM and 6,101 non-diabetic controls included in the meta-

analysis of AP and; 1,410 patients with T2DM and 1,697 non-diabetic controls included in the 

meta-analysis of AIx corrected for heart rate. The pooled estimate showed that AIx was 

significantly elevated in patients with T2DM (3.1%, 95%CI 0.7, 5.4, p=0.010; figure 2.2.4 B) 

compared to non-diabetic controls, as was corrected AIx (4.3%, 95% CI 2.7, 6.0, p<0.001; figure 

2.2.4 C). Additionally, AP was significantly greater in patients with T2DM compared to non-

diabetic controls (3.2 mmHg, 95% CI 1.3, 5.1, p=0.001; figure 2.2.4 D). 

 

Publication bias 

It is difficult to determine publication bias from a relatively small number of individual studies, 

however, funnel plots (figure 2.2.5) and Egger’s test indicated that there was relatively little 

influence of any publication bias. 
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C  D 

 

 

 

Figure 2.2.4. Pooled estimates and 95% confidence intervals for; (A) Amplification in central to brachial pulse pressure, I2=96.1% p=0.16; (B) 

augmentation index, I2=86.5% p=0.010; (C) augmentation index adjusted for a heart rate of 75 beats per minute (bpm), I2=61.0% p<0.001; (D) 

augmentation pressure, I2=90.6% p=0.001. 
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Figure 2.2.5. Funnel plots representing the publication bias for individual studies for each meta-

analysis. (A) Central to brachial systolic blood pressure amplification; (B) central to brachial 

pulse pressure amplification; (C) augmentation index; (D) augmentation index corrected of heart 

rate of 75 beats per minute; (E) augmentation pressure. The results depict the relative absence of 

any publication bias. 
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2.2.5 Discussion 

The salient finding of this study, comprising of data from 2,711 patients with T2DM and 

10,460 non-diabetic individuals, was that there is no difference in central to brachial SBP or PP 

amplification in patients with T2DM compared to non-diabetic controls, despite differences in 

both central and brachial SBP, as well as central BP indices (AIx and AP). Furthermore, we 

have shown that large variation in SBP amplification exists and is similar for both individuals 

with and without T2DM. Additionally, the difference in the level of amplification between patients 

with T2DM and non-diabetic controls differs depending on the duration of diabetes in the 

diabetic group, increasing in magnitude with increasing disease progression. These novel findings 

highlight that central SBP cannot be estimated from a measure of brachial SBP and that 

assessment of risk related to BP should not be based on a measure of brachial BP alone. 

 

Central to brachial SBP and PP amplification in patients with T2DM compared to non- 

diabetic controls 

The level of central to brachial SBP amplification is predominantly influenced by factors 

affecting vessel stiffness and pressure wave travel4 but studies have shown that amplification may 

also be influenced by a number of demographic35 and physiological factors35, 36. Furthermore, the 

discrepancy between central and brachial SBP may be magnified by the administration of 

antihypertensive medication40, 169. In patients with T2DM, vascular abnormalities and 

cardiovascular risk factors that have a greater influence on central, rather than brachial SBP 

(including hypertension170, hyperlipidaemia79 and smoking171) may further effect the magnitude and 

variation in amplification by causing a rise in central SBP and a dampening of central to brachial 

SBP amplification. Indeed, in a large cohort of individuals from the Anglo-Cardiff Collaborative 

Trial, McEniery et al.4 showed that diabetes (as well as cardiovascular disease) was associated with 

an increase in PP ratio (higher central relative to brachial BP), beyond other cardiovascular risk 

factors. This suggests that central to brachial SBP amplification should be lower in patients with 

T2DM compared to non-diabetic individuals. On the other hand, we have previously shown 

that there is no difference in central to brachial SBP amplification (brachial-aortic SBP 

difference) between patients with T2DM and healthy individuals167. 

 

In the current study, patients with T2DM had elevated central (and brachial) SBP, AIx and AP 

compared to non-diabetic controls, all of which are markers of increased cardiovascular risk33, 156. 

Despite this, there was no difference in central to brachial SBP or (PP) amplification between 
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patients with T2DM and non-diabetic controls. Importantly, we observed substantial variation in 

amplification in both groups, similar to previous findings172. This suggests that two people (either 

with or without T2DM) may have similar brachial SBP, but could have significantly different 

central SBP. Furthermore, the magnitude of SBP amplification varies depending on the degree of 

glycaemic control and throughout disease progression in patients with T2DM. Indeed, in newly 

diagnosed patients (duration of diabetes of 5 years) central to brachial SBP amplification is lower 

compared to non-diabetic controls, but rises to be 1.1 mmHg higher after 11 years duration of 

T2DM. Further, chronic and uncontrolled hyperglycaemia can lead to vascular dysfunction56 and 

an eventually results in an increase in brachial SBP. Indeed, the difference in the degree of 

glycaemic control in patients with T2DM had a substantial influence on the heterogeneity observed 

in SBP amplification between studies. Therefore, in patients with T2DM, in whom central 

systolic stress is increased (i.e. elevated central SBP, AIx and AP), risk related to BP may not be 

captured by a conventional measure of brachial BP. These findings have relevance for the 

management of BP in patients with T2DM and decisions surrounding the administration of 

therapeutic agents, which may be misguided based on a measure of brachial BP alone. 

 

A large proportion of the studies included in the meta-analysis (15 from a total of 17 studies) used 

radial applanation tonometry (mostly calibrated with brachial SBP and diastolic BP) to estimate 

central SBP. However, a recent meta-analysis and systematic review173 demonstrated that there is 

significant error introduced by calibrating central SBP obtained via radial applanation tonometry 

with brachial SBP and diastolic BP measures.  In particular using the SphygmoCor device, central 

SBP calibrated with non-invasive brachial SBP and diastolic BP was underestimated by 8 ± 11.6 

mmHg. While this method advocates the use of brachial SBP and diastolic BP to calibrate the 

radial waveform, we have shown that by failing to account for brachial to radial SBP 

amplification, central SBP estimated via radial tonometry is underestimated in patients with 

T2DM174 and may result in SBP amplification being overestimated. Additionally, brachial to radial 

SBP amplification is significantly dampened in patients with T2DM compared to non-diabetic 

controls (9 ± 8 vs 14 ± 7 mmHg, p=0.042)174 and when the radial waveform is re-calibrated with 

radial (rather than brachial) SBP, the change in central SBP is lower in patients with T2DM (9 ± 

6 vs 12 ± 6 mmHg). This suggests that patients with T2DM may have less underestimation in 

central SBP and thus, higher central to brachial SBP amplification compared to non-diabetic 

individuals. Further, underestimation of brachial BP itself by devices that utilise oscillimetric SBP 

and diastolic BP as calibration points may further contribute to underestimation in central SBP175, 
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176. Thus calibrating the radial waveform with brachial mean and diastolic BP may be a 

reasonable alternative to brachial SBP and diastolic BP177, 178 as thesevpressures remain almost 

entirely unaltered throughout the arterial tree43. Indeed, recent evidence suggests that the use of 

oscillometric mean arterial pressure for calibration generates a derived central SBP that is closer 

to the true (invasive) central SBP75. Furthermore, Laugesen et al.179 demonstrated that by 

calibrating the radial waveform with mean arterial pressure and diastolic BP using a 40% form 

factor substantially improved the accuracy of estimating central SBP in patients with T2DM. Taken 

together, this suggests that the minimal difference in amplification observed between patients 

with T2DM and non-diabetic controls may be influenced by the non-invasive BP methods used to 

determine central SBP, potentially masking any difference in amplification observed between the 

groups. It should also be noted that the observed difference in SBP amplification between patients 

with T2DM and non-diabetic controls that varies with disease progression may also be influenced 

by the non-invasive methods used to estimate SBP amplification. The degree of influence is 

difficult to discern from the current study and is a limitation of using non-invasive methods to 

determine the level of amplification in patients with T2DM, which may be overcome with further 

invasive studies. 

 

Limitations 

There are a few limitations to our study. Firstly, the different devices used in the individual 

studies to estimate central BP non-invasively may influence the level of amplification observed in 

the current study. However, this is unlikely as all but two studies161, 162 used radial applanation 

tonometry to measure central SBP and in the sensitivity analysis these studies did not affect the 

pooled estimate for central to brachial SBP amplification. Secondly, we relied on published 

combined data rather than acquiring individual patient data for each study and thus, it was not 

possible to correct for potential biases within the individual studies. Finally, only a small number of 

studies met our inclusion criteria and, therefore, publication bias was unable to be thoroughly 

assessed. 

 

2.2.6 Conclusions 

This is the first systematic review and meta-analysis to examine central to brachial SBP 

amplification in patients with T2DM compared to non-diabetic individuals. These findings are 

significant as they show that despite central and brachial SBP (as well as other markers of systolic 

stress) being elevated in patients with T2DM, there is no difference in the level of SBP 
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amplification compared to non-diabetic individuals. Importantly, we observed large variation in 

amplification in both populations, which suggests that risk related to central SBP may be 

overestimated in some individuals whilst underestimated in others based on a measure of brachial 

SBP. However, methodological errors exist when calibrating central SBP estimated non-invasively 

and may have confounded the level and variation in amplification observed in the current study. 

Therefore, further studies are required to confirm the true magnitude of central to brachial SBP 

amplification in patients with T2DM compared to non-diabetic controls. 

 

2.2.7 Contribution of Chapter 2 Part II to thesis aims 

The study presented in Part II of Chapter 2 showed that despite patients with T2DM having 

elevated central and brachial SBP compared to non-diabetic individuals, there is minimal 

difference in central to brachial SBP amplification between the groups. The difference in 

amplification between individuals with and without T2DM varies depending on the length of 

disease (diabetes) duration. Importantly, this systematic review and meta-analysis has demonstrated 

that large variation in amplification occurs in patients with T2DM, which suggests that the risk 

related to elevated central systolic stress may not be captured based on a measure of brachial BP 

alone in this population. However, methodological errors in estimating central SBP non-invasively, 

especially via radial applanation tonometry, may limit the value of central BP as a clinically useful 

tool. Whilst this study is an important contribution to current knowledge surrounding the non-

invasive measurement of central SBP in patients with T2DM, more work is warranted to resolve 

these methodological errors, given the potential supremacy of central, beyond brachial, BP for 

determining risk related to BP. In Chapter 7 of this thesis, the effect of brachial to radial SBP 

amplification on central SBP estimated via radial applanation tonometry is, therefore, examined. 

Furthermore, substantial debate surrounds the issue as to whether AIx should be considered as a 

marker of arterial stiffness in patients with T2DM, as it is purported to be. This line of 

inquiry is further investigated in the next chapter. 
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Chapter 3. Augmentation index and arterial stiffness in patients with type 2 

diabetes mellitus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This chapter has previously been published; 

Climie RED, Nikolic SB, Otahal P, Keith LJ, Sharman JE. Augmentation index and arterial 

stiffness in patients with type 2 diabetes mellitus. Artery Research, September 2013; 7:194- 200. 
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3.1 Abstract 

Background. Augmentation index (AIx) is a measure of left ventricular afterload that predicts 

mortality and is regarded as a marker of systemic arterial stiffness. Patients with type 2 diabetes 

mellitus (T2DM) have increased arterial stiffness, but not AIx, which suggests that mechanisms 

contributing to AIx in T2DM may differ from non-diabetic individuals and be unrelated to 

arterial stiffness. The aim of this study was to examine the cardiovascular and clinical 

determinates of AIx (including arterial stiffness) in patients with T2DM compared with controls. 

Methods. Clinical characteristics and haemodynamic variables (including aortic and brachial pulse 

wave velocity [stiffness], cardiac output, systemic vascular resistance and heart rate) and AIx (by 

radial tonometry) were recorded in 53 T2DM (aged 61±8 years) and 53 matched controls (aged 

58±6). Correlates of AIx unadjusted for heart rate were assessed by uni- and multi-variable 

analysis. 

Results. Compared with controls, T2DM patients had significantly higher aortic stiffness 

(7.6±1.6vs6.7±1.9 m/s p=0.016), cardiac output, heart rate, brachial and central BP; lower 

brachial stiffness and systemic vascular resistance, but no significant difference in AIx 

(27±9vs24±11% p=0.184). AIx (adjusted or unadjusted) was not significantly related to aortic or 

brachial stiffness in either group (p>0.198 all). Independent predictors of AIx in T2DM patients 

were height and heart rate, whereas in controls, AIx  was independently related to height. 

Conclusions. Determinants of AIx in patients with T2DM differ from non-diabetic individuals. 

Moreover, AIx is not significantly related to regional large artery stiffness and should not be 

regarded as indicative of systemic arterial stiffness. 
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3.2 Introduction 

Increased arterial stiffness is an independent predictor of cardiovascular events and total mortality 

in both healthy and diseased populations180. Augmentation index (AIx) is defined as the difference 

between the second and first systolic peaks on the central (aortic) pressure waveform expressed as a 

percentage of pulse pressure. AIx represents the pressure over time that the heart is exposed to 

during each contraction and is, therefore, a measure of left ventricular afterload141. AIx is inversely 

related to heart rate, and is purported to be a marker of systemic arterial stiffness. This is based on 

the notion that the magnitude and speed of arterial wave travel is increased in the presence of 

stiffened vasculature through increased wave reflection43.  

 

Several studies have shown that patients with type 2 diabetes mellitus (T2DM) have generalised 

vascular dysfunction and increased arterial stiffness compared to non-diabetic, age-matched 

people3, 85, 86, 98, 120, 181. Specifically, patients with T2DM have been shown to have increased aortic 

stiffness (assessed by aortic pulse wave velocity)85, 86, 120, 181, higher carotid intima media thickness3 

and elevated cardio-ankle vascular stiffness index182; as well as decreased systemic arterial 

compliance44, 181 and arterial distensibility98. Taken all together these data lead to the expectation 

that AIx should be significantly elevated in patients with T2DM. Indeed, this has been reported in 

some cross sectional case-control comparison studies44, 70, 84. On the other hand, several studies have 

shown that despite significant increases in arterial stiffness among people with T2DM, no 

significant differences in AIx were found when compared with healthy subjects, and this was 

observed with87, 88 or without85, 86 adjusting for heart rate. The above information brings into 

question the concept that AIx is indicative of systemic arterial stiffness and necessitates further 

investigations to determine reasons for the inconsistency in these findings. Thus, the aim of this 

study was to examine the cardiovascular and clinical determinates of AIx (including arterial 

stiffness) in patients with T2DM compared with controls. We hypothesised that arterial stiffness 

would be significantly elevated in patients with T2DM but would not be related to AIx and that the 

determinants of AIx would differ from healthy individuals.   



53  

3.3 Methods  

Study participants 

Exclusion criteria for participation in the study included; pregnancy or a clinical history of 

cardiovascular disease including cardiac arrhythmia. A total of 152 eligible participants responded 

to community advertisement and were examined between June 2010 and February 2011. The 

sample comprised 53 patients with T2DM (51% male), and each of these were matched with 

one non-diabetic control participant selected from the remaining 99 non- diabetic participants. 

Matching was made on the basis of the same sex and the nearest age (total n=106). Diabetes 

mellitus was determined by self-reported diagnosis by a physician. Hypertension was defined as: 

clinic brachial BP ≥140/90 mmHg; use of antihypertensive medications or self-reported 

diagnosis of hypertension by a physician. Participant characteristics are summarised in table 3.1. 

 

Study protocol 

Participants attended the research clinic for assessment on two occasions. At visit one, all 

standard anthropometric (including height, weight, waist and hip circumference) and BP 

variables were measured in a temperature controlled room (23°C ± 1°C). Prior to this visit, 

participants were asked to refrain from alcohol consumption and exercise on the day of 

testing and to avoid consuming heavy meals (i.e. were in a post-absorptive state), smoking and 

caffeine containing products in the three hours prior to testing. At visit two, fasting blood samples 

were taken and all participants were fitted with a 24-hour ambulatory BP monitor. All 

participants signed informed consent and the study was approved by the Tasmanian Health and 

Medical Human Research Ethics Committee. 

 

Arterial stiffness 

After the participant had been resting supine on a bed for 10 minutes, duplicate measures of 

brachial pulse wave velocity (PWV) were measured in the carotid-to-radial arterial segments using 

ECG-gated hand held applanation tonometry (SphygmoCor 8.1, AtCor Medical, Sydney, 

Australia). Aortic PWV was measured in duplicate from the carotid-to-femoral arterial segments 

using the same tonometry apparatus. Arterial length was estimated by subtracting the 

transcutaneous distance between the sternal notch and carotid sampling site from the distance 

between the sternal notch and the radial sampling site (for brachial PWV) and femoral site (for 

aortic PWV)10.   
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Table 3.1. Participant characteristics for non-diabetic participants (n=53) and patients with type 

2 diabetes mellitus (T2DM; n=53). 

 Non-diabetic T2DM P value 

Male, n (%) 27 (51) 27 (51) 1.00 

Age (years) 58±6 61±8 0.082 

Waist-hip (ratio) 0.92±0.10 0.96±0.16 0.196 

Weight (kg) 75±14 88±16 <0.001 

Height (cm) 171±10 169±10 0.159 

Body mass index (kg/m2) 25.4±3.5 30.8±5.0 <0.001 

Ambulatory day-time systolic BP (mmHg) 136±13 141±15 0.105 

Ambulatory day-time diastolic BP (mmHg) 83±8 80 ±9 0.092 

Duration of diabetes, years (range) - 6 (1-18) - 

Hypertensive medication, n (%) 3 (6.1) 30 (56.6) <0.001 

Oral hyperglycaemia medications (including 

metformin and sulfonylurea), n (%) 

 

0 (0) 33 (62.3) - 

Insulin, n (%) 0 (0) 11 (20.7) - 

Statins, n (%) 1 (1.9) 30 (56.6) <0.001 

Glucose (mmol/L) 4.8±0.6 7.6±1.9 <0.001 

Cholesterol (mmol/L) 5.7±1.0 4.6±1.1 <0.001 

Triglycerides (mmol/L) 1.0±0.4 1.5±0.7 <0.001 

High density lipoprotein (mmol/L) 1.7±0.5 1.4±0.4 <0.001 

Low density lipoprotein (mmol/L) 3.5±1.0 2.5±0.8 <0.001 

Glycated haemoglobin (%) 5.3±1.0 7.2±0.8 <0.001 

Data expressed as mean ± standard deviation or %. p value is for between group 

analyses. BP, blood pressure. 

 

Brachial and central blood pressure 

After supine measures, participants were moved into a seated position with feet flat on the floor, 

back supported by the chair and with a pillow placed under the arm so that the BP cuff was at the 

same height as the heart. After 10 minutes of rest, duplicate brachial BP measurements were 

recorded by a validated automatic device (Omron HEM-907; OMRON Europe B.V. (OMCE), 

Hoofddorp, The Netherlands)183 using an appropriately sized cuff in accordance with guidelines184.  

Central BP was measured in duplicate by radial applanation tonometry (SphygmoCor 8.1, AtCor 

Medical, Sydney, Australia) immediately following the brachial BP measurements. A validated11 
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generalised transfer function was applied to the measured radial artery pressure waveforms to allow 

for the reconstruction of the central (aortic) pressure waveform. Pulse pressure amplification was 

calculated as the ratio of brachial to central pulse pressure and heart rate was determined from the 

electrocardiogram recording during the radial waveform measurement by the device.  

 

Augmentation index 

AIx was determined from the radial (radial AIx) and aortic pressure wave (central AIx) and was 

calculated as the difference in pressure between the second and first systolic peaks (augmented 

pressure on the central waveform) expressed as a percent of pulse pressure. Because AIx is 

significantly influenced by heart rate92, it was also adjusted to a heart rate of 75 beats per minute 

using SphygmoCor software.  

 

Cardiothoracic bioimpedance 

Cardiac output, stroke volume and systemic vascular resistance were measured throughout the 

assessment by cardiothoracic bioimpedence (Physio Flow; Manatec Biomedical; Macheren, 

France). This device has previously been validated against invasive measures185 and has good 

reproducibility186.  

 

Blood biochemistry 

Venous blood samples were taken from the antecubital fossa following an overnight fast in order 

to assess blood biochemistry (including glucose, insulin, total cholesterol, triglycerides and 

glycated haemoglobin [HbA1c]) in all participants. Analytical biochemistry was performed using 

accredited hospital pathology laboratory methodologies. 

 

Statistical analysis 

All data were analysed using SPSS for windows software version 19.0 (IBM SPSS Statistics, New 

York, USA). Data are presented as mean ± standard deviation unless otherwise stated and p<0.05 

was considered statistically significant. Data were assessed for normality and all variables were 

normally distributed. Independent t-tests assuming unequal variance were performed for 

continuous variables to compare characteristics between control participants and patients with 

T2DM and Chi Square tests were performed for dichotomous variables. Univariable associations 

between variables were assessed by Pearson’s correlations. Analysis of covariance was additionally 

undertaken to assess between group differences in AIx (correcting for age, gender, height and heart 
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rate) and aortic PWV (correcting for age, gender and mean arterial pressure). Multivariable 

regression analyses for the predictors of AIx were performed separately in patients with T2DM 

and controls. Models examined variables that significantly correlated with AIx and variables of 

clinical relevance (including age, height, heart rate, body mass index [BMI], antihypertensive 

medication and statin use). These variables were added separately into the regression model. 

 

3.4 Results 

Participant characteristics 

As shown in table 3.1, there was no significant difference between patients with T2DM and non-

diabetic controls with respect to sex, age, waist to hip ratio, height or 24 hour ambulatory 

determined day-time BP. Patients with T2DM were significantly heavier, had higher BMI, were 

more likely to be taking medication for hypertension (including angiotensin receptor blockers, 

beta blockers and angiotensin converting enzyme inhibitors), hyperlipidemia (statins) and 

hyperglycaemia (including metformin, sulfonylurea or insulin), had lower total cholesterol and 

high and low density lipoprotein, and had poorer glycemic control compared to non-diabetic 

controls. The average duration of diabetes was 6 years and ranged from 1-18 years.  

 

Arterial stiffness 

Compared to non-diabetic controls, patients with T2DM had significantly increased aortic PWV 

and significantly lower brachial PWV (p<0.05 for both, table 3.2). Furthermore, after adjusting 

aortic PWV for age, gender and mean arterial pressure, aortic PWV remained significantly 

higher in patients with T2DM (p<0.005). 

 

Augmentation index 

There was no significant difference in AIx between groups (radial or central; table 3.2), 

however, when AIx was normalised to a heart rate of 75 beats per minute, patients with 

T2DM had significantly increased AIx compared to the non-diabetic controls. Furthermore, AIx 

remained significantly higher in patients with T2DM after adjusting further for age, gender, 

height and heart rate.  
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Table 3.2. Haemodynamic comparison between non-diabetic controls (n=53) and patients with 

type 2 diabetes mellitus (T2DM; n=53). 

 Non-diabetic T2DM P value 

Arterial stiffness    

Aortic pulse wave velocity (m/s) 6.7±1.9 7.6±1.6 0.016 

^Aortic pulse wave velocity (m/s) 6.8±1.8 7.6±1.8 0.023 

Brachial pulse wave velocity (m/s) 8.5±1.0 8.1±0.9 0.037 

Haemodynamics    

Brachial systolic blood pressure (mmHg) 117±11 124±13 0.004 

Brachial diastolic blood pressure (mmHg) 68±8 71±9 0.178 

Mean arterial pressure (mmHg) 80±22 88±16 0.039 

Brachial pulse pressure (mm Hg) 49±5 54±10 0.004 

Radial augmentation index (%) 76±16 80±12 0.171 

Central systolic blood pressure (mmHg) 107±12 114±13 0.004 

Central diastolic blood pressure (mmHg) 69±8 72±9 0.147 

Central pulse pressure (mmHg) 37±6 43±10 0.001 

Heart rate (bpm) 57±7 64±9 <0.001 

Stroke volume (ml) 78±13 85±14 0.006 

Cardiac output (l/min) 4.49±0.72 5.54±1.15 <0.001 

Systemic vascular resistance (d.s.cm‐5) 1562±281 1326±249 <0.001 

Augmentation pressure (mmHg) 10±5 12±5 0.032 

Central augmentation index (%) 24±11 27±9 0.184 

Central augmentation index (heart rate 75 

bpm) 

 

15±11 
 

21±7 
 

0.002 

*Central augmentation index (%) 24±9 27±9 0.043 

Pulse pressure amplification (ratio) 1.33±0.15 1.27±0.14 0.043 

Data expressed as mean ± standard deviation. p value is for between group analyses. 

^Aortic pulse wave velocity was adjusted for age, gender and mean arterial pressure. 

*Central augmentation index was adjusted for age, gender, height and heart rate. 

 

Haemodynamics 

Patients with T2DM had significantly increased brachial systolic BP, mean arterial pressure, pulse 

pressure, central systolic BP, central pulse pressure, heart rate, stroke volume, cardiac output and 
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augmentation pressure, but significantly lower systemic vascular resistance and pulse pressure 

amplification (p<0.05 for all, table 3.2) compared to non-diabetic controls. There was no 

difference in brachial or central diastolic BP between groups. 

 

Univariable associations with augmentation index 

Table 3.3 summarises the univariable associations between AIx and different haemodynamic 

variables. AIx was not significantly correlated with either aortic PWV (figure 3.1a) or brachial 

PWV (figure 3.1b) in patients with T2DM or non-diabetic controls (p>0.05 for both, table 3.3). 

Moreover, after adjusting AIx for a heart rate of 75 beats per minute, there was still no 

significant association between AIx and aortic or brachial PWV in either patients with T2DM (r=-

0.091, p=0.527 and r=0.090, p=0.527 respectively) or non-diabetic controls (r=- 0.023, p=0.872 

and r=-0.015, p=0.311 respectively). In patients with T2DM, AIx significantly correlated with age, 

height, HbA1c, central systolic BP, heart rate, cardiac output and systemic vascular resistance 

(p<0.05 for all, table 3.3). In non-diabetic controls, AIx did not significantly correlate with age or 

heart rate (p>0.05), but was significantly correlated with height (p=0.002) and central systolic BP 

(p<0.001, table 3.3).  
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Table 3.3. Univariable associations of augmentation index in non-diabetic controls (n=53) 

and patients with type 2 diabetes mellitus (T2DM; n=53). 

Independent variable Non-diabetic  T2DM 

 r P value r P value 

Age (years) 0.11 0.427 0.47 <0.001 

Height (cm) -0.42 0.002 -0.46 <0.001 

Body mass index (kg/m2) 0.14 0.310 0.06 0.673 

Glycated haemoglobin (%) -0.24 0.193 0.33 0.042 

Arterial stiffness     

Aortic pulse wave velocity (m/s) -0.04 0.776 -0.19 0.198 

Brachial pulse wave velocity (m/s) -0.14 0.327 0.03 0.828 

Haemodynamics     

Brachial systolic blood pressure (mmHg) 0.26 0.057 0.07 0.596 

Brachial diastolic blood pressure (mmHg) 0.35 0.010 -0.18 0.211 

Central systolic blood pressure (mmHg) 0.58 <0.001 0.33 0.015 

Heart rate (bpm) 0.07 0.631 -0.63 <0.001 

Stroke volume (ml) -0.14 0.320 -0.23 0.101 

Cardiac output (l/min) -0.18 0.194 -0.60 <0.001 

Systemic vascular resistance (d.s.cm‐5) 0.23 0.104 0.54 <0.001 

R refers to Pearson’s correlation coefficient and p value is for the correlation 

between augmentation index and variables. 
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a) 

 
 

b) 

 
 

Figure 3.1. The univariable relationship between augmentation index and 

arterial stiffness (aortic pulse wave velocity (a) and brachial pulse wave velocity 

(b)) in non-diabetic participants (healthy; dashed line) (r=-0.03, p=0.863 and r=-

0.13, p=0.373 respectively) and patients with type 2 diabetes mellitus (T2DM; 

solid line) (r=-0.19, p=0.198 and r=0.03, p=0.828).  
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Predictors of augmentation index 

Separate regression models were performed for non-diabetic controls and patients with T2DM and 

are shown in table 3.4. The models included the covariates of age, height, BMI, HbA1c, heart rate, 

cardiac output antihypertensive medication and statin use. In patients with T2DM, the strongest 

predictors of AIx (model adjusted R2 =0.47, p=0.001) were height and heart rate, which accounted 

for 13% and 15% of the variance in AIx respectively. Further adjustment for insulin use did 

not affect the model (model adjusted R2 =0.49, p=0.001). The strongest predictor of AIx in controls 

(model adjusted R2 = 0.17, p=0.012) was height, which explained 20% of the variance in AIx. Only 

a few of the non-diabetic participants were being treated for hypertension (n=3) or hyperlipidemia 

(n=1), and the addition of these variables in the multivariable analysis did not affect the model. 

 

Table 3.4. Multivariable regression for associations between augmentation index and 

cardiovascular and clinic characteristics in non-diabetic controls (n=53) and patients with type 2 

diabetes mellitus (T2DM; n=53).  

 Independent variable 
Unstandardised β p value 

(95% CI) 
 

Healthy  
  

Age (years) -0.06 (-0.40, 0.53) 0.782 

Height (cm) -0.53 (-0.83, -0.23) 0.001 

Body mass index (kg/m2) 0.66 (-0.16, 1.48) 0.110 

Heart rate (bpm) -0.19 (-0.61, 0.22) 0.353 

T2DM  
  

Age (years) 0.14 (-0.97, 0.37) 0.240 

Height (cm) -0.32 (-0.53, -0.10) 0.005 

Body mass index (kg/m2) 0.01 (-0.46, 0.47) 0.961 

Hemoglobin A1c (%) 1.82 (-0.12, 3.78) 0.066 

Heart rate (bpm) -0.43 (-0.67, -0.13) 0.004 

Cardiac output (l/min) 0.24 (-2.29, 2.77) 0.846 

Antihypertensive medication 0.24 (-2.63, 6.05) 0.427 

Statin use 0.90 (-3.13, 4.95) 0.649 

Models were performed separately for non-diabetic controls and patients with 

T2DM. Data are unstandardised β coefficient and p value relates to the independent 

variable in the model. 
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3.5 Discussion 

The main finding of this study was that despite patients with T2DM having significantly 

increased arterial stiffness (aortic PWV), there was no difference in AIx unadjusted for heart rate, 

compared to age and sex matched non-diabetic controls. Secondly, whether adjusted for heart rate 

or otherwise, AIx was not significantly related to aortic or brachial artery stiffness in non-

diabetic controls or patients with T2DM. Furthermore, the determinants of AIx were different 

in patients with T2DM compared to non-diabetic individuals. In patients with T2DM, the 

independent predictors of AIx were height and heart rate whilst in non-diabetic controls only 

height was independently related to AIx. Our findings suggest that AIx is not a reliable marker 

of arterial stiffness in patients with T2DM or non-diabetic individuals and separate factors are 

likely to influence AIx between these populations. 

 

Arterial stiffness in patients with T2DM 

Our observation of increased aortic PWV in patients with T2DM is consistent with numerous 

studies showing that patients with T2DM have accelerated arterial stiffening compared to non-

diabetic matched controls3, 44, 85, 86, 120, 181. The Strong Heart Study187 also found that arterial stiffness 

assessed using the ratio of pulse pressure to stroke volume, was significantly increased in diabetic 

patients compared to normoglycaemic individuals188 . AIx has been heralded as a surrogate marker 

of systemic arterial stiffness189, 190 however studies examining the association between AIx and 

measures of vascular stiffness in patients with T2DM are not conclusive. Indeed, similar to our 

study, no difference in AIx has been observed between patients with T2DM and healthy 

participants85-88. On the other hand, others70, 84, 97 have reported AIx to be significantly increased in 

patients with T2DM compared with non-diabetic individuals, but this was only after adjusting for 

heart rate or only evident in male study participants. A possible explanation for these discrepancies 

may be that AIx is influenced by a multitude of factors beyond arterial stiffness that result in altered 

waveform patterns in patients with T2DM and contribute to inconsistent findings in terms of the 

overall effect on AIx.  

 

Determinants of AIx in patients with T2DM 

In both healthy participants and patients with T2DM, AIx was significantly and inversely related to 

height. This supports previous findings and conventional theory suggests this is because people of 

shorter stature have reduced distance to arterial pressure reflecting sites and this influences the 

timing and magnitude of arterial wave travel, causing early return to the heart (during systole) and 
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resulting in an increase in AIx43, 191. In our study, patients with T2DM had significantly increased 

heart rate compared to healthy participants and, similar to previous studies28, 44 heart rate was 

significantly related to AIx in patients with T2DM.  An increase in heart rate shortens the ejection 

duration and corresponding lower AIx is purported to be due to reflected pressure waves being 

moved into the diastolic (rather than systole) phase43, however, aortic reservoir function should also 

be considered when interpreting physiological mechanisms of AIx82, 192. In our findings, the effect 

of heart rate on AIx was greater than the effect of arterial stiffness (aortic PWV) because AIx was 

significantly increased in patients with T2DM after correcting for heart rate. Other studies have 

demonstrated the same effect whereby significantly increased AIx compared to healthy people was 

only seen after adjusting for heart rate28, 92, 97. On the other hand, Lacy et al.88 found no difference in 

AIx between people with and without diabetes even after adjustment for heart rate. Insulin increases 

vasodilation of the large arteries and has a diminishing effect on AIx193, which may explain the lack 

of difference in AIx between patients with and without T2DM. It should be noted that in the current 

study 20.7% of patients with T2DM were being administered insulin, however insulin use was not 

related to, or a determinant of, AIx. Further, in the current study, some patients with T2DM had 

poorly controlled blood glucose levels which can lead to vascular impairment via a number of 

pathways (including impaired vasodilatory processes and vascular smooth muscle cell 

dysfunction)56. HbA1c was borderline significantly related to AIx in patients with T2DM suggesting 

that abnormalities in vascular function due to chronic hyperglycaemia may result in elevated AIx. 

 

In our study, patients with T2DM had significantly increased cardiac output (due to a rise in both 

heart rate and stroke volume) and decreased systemic vascular resistance, compared to healthy 

participants. Elevated cardiac output has previously been observed in people with insulin resistance 

and patients with T2DM67, 194. Although not independent predictors of AIx, both cardiac output and 

systemic vascular resistance were significantly correlated with AIx in patients with T2DM, but not 

in healthy participants. The increase in left ventricular flow output together with the reduction in 

systemic vascular resistance could together be contributing to the relative reduction in AIx in 

diabetic individuals. The high flow output may be suggestive of increased dilation of the proximal 

aorta (among other possibilities) but would need to be assessed in future studies. Interestingly, 

patients with T2DM had significantly lower brachial PWV, which may also be suggestive of 

muscular peripheral artery dilation beyond that of controls. 
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Limitations 

This is a relatively small case-control comparison study that cannot attribute causality and 

further studies are required in order to determine the exact mechanisms contributing to AIx in 

patients with T2DM. In our study, we determined arterial stiffness via PWV, however, the 

addition of other markers of arterial stiffness would strengthen the findings with respect to the 

relation between AIx and systemic arterial stiffness. Finally, more than half the patients with 

T2DM were taking medication for hypertension or hyperlipidaemia, and the vasoactive properties 

of these medications could have influenced the results. Future studies in drug naïve participants 

could overcome this problem. 

 

3.6 Conclusions 

The main finding of this study was that AIx (whether adjusted or unadjusted for heart rate) was 

not related to arterial stiffness in patients with T2DM and that the determinants of AIx in these 

patients were significantly different to that of non-diabetic participants. Our findings indicate that 

AIx should not be referred to as a surrogate maker of arterial stiffness and further work is 

needed in order to understand the disparate systemic haemodynamics that may explain the 

difference in AIx between people with and without T2DM. 

 

3.7 Contribution of Chapter 3 to thesis aims 

Prior to this study it was unclear whether AIx (a purported marker of arterial stiffness) was 

indeed related to arterial stiffness in patients with T2DM, as previous studies had shown 

conflicting results. Importantly, this current study has confirmed that AIx is not related to 

arterial stiffness in either individuals with or without T2DM and furthermore, has identified the 

different correlates of AIx within each group. Although the finding of no difference in 

unadjusted AIx between individuals with and without T2DM is somewhat contrary to the 

finding in Part II of Chapter 2, this may be explained by the relatively small sample size of the 

current study, as the magnitude of difference in AIx between the groups was similar in both 

studies. Nonetheless, this study further supports that patients with T2DM have abnormal central 

haemodynamics compared to non-diabetic individuals. However, it remains unclear how these 

alterations in central haemodynamics, in particular the high flow (elevated cardiac output), low 

resistance (low systematic vascular resistance) state is related to target organ damage and is 

further investigated in Chapters 5 and 6. Furthermore, it is also unclear how changes in central 

arterial function affect the accuracy of methods that estimate central BP non-invasively, such as 

radial applanation tonometry, which is r subsequently examined in Chapter 7 of this thesis. 
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Chapter 4. Abdominal obesity and brain atrophy in type 2 diabetes mellitus 
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Forbes J, Blackburn NB, Srikanth V. Abdominal obesity and brain atrophy in type 2 diabetes 

mellitus. PloS One, November 2015; 10: e0142589.  
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4.1 Abstract  

Background. Type 2 diabetes mellitus (T2DM) is associated with gray matter atrophy. Adiposity 

and physical inactivity are risk factors for T2DM and brain atrophy. We studied whether the 

associations of T2DM with total gray matter volume (GMV) and hippocampal volume (HV) are 

dependent on obesity and physical activity.  

Methods. In this cross-sectional study, we measured waist-hip ratio (WHR), body mass index 

(BMI), mean steps/day and brain volumes in a community dwelling cohort of people with and 

without T2DM. Using multivariable linear regression, we examined whether WHR, BMI and 

physical activity mediated or modified the association between T2DM, GMV and HV.  

Results. There were 258 participants with (mean age 67±7 years) and 302 without (mean age 72±7 

years) T2DM. Adjusting for age, sex and intracranial volume, T2DM was independently associated 

with lower total GMV (p=0.001) and HV (p<0.001), greater WHR (p<0.001) and BMI (p<0.001), 

and lower mean steps/day (p=0.002). After adjusting for covariates, the inclusion of BMI and mean 

steps/day did not significantly affect the T2DM-GMV association, but WHR attenuated it by 32% 

while remaining independently associated with lower GMV (p<0.01). The T2DM-HV association 

was minimally changed by the addition of BMI, steps/day or WHR in the model. No statistical 

interactions were observed between T2DM and measures of obesity and physical activity in 

explaining brain volumes.  

Conclusions. Abdominal obesity or its downstream effects may partially mediate the adverse effect 

of T2DM on brain atrophy. This requires confirmation in longitudinal studies. 
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4.2 Introduction 

People with type 2 Diabetes Mellitus (T2DM) are at high risk of developing cognitive 

impairment195 and dementia196. We have recently shown that T2DM is associated with lower total 

gray matter volume (GMV) and that GMV loss may explain the association between T2DM and 

cognitive dysfunction197. However, the pathways leading to loss of GMV in T2DM are unknown. 

 

Obesity and physical inactivity are commonly seen in people with T2DM, and have also been 

associated with brain atrophy198-202 and dementia203, 204. The distribution of body fat may also play a 

role in explaining these associations. In particular, abdominal adiposity is linked to chronic 

inflammation and reduced insulin sensitivity205, both potentially important factors in determining 

neuronal health203, 204. In support of this concept, a recent imaging study demonstrated that visceral 

fat accumulation was associated with reduced cortical thickness independent of BMI206. Low levels 

of physical activity202 or cardiovascular fitness207, which are determinants of low grade 

inflammation, vascular health and metabolic health208 have also been associated with lower GMV.  

 

The roles of obesity and physical activity in determining gray matter loss in people with T2DM 

have not been studied. Since these are modifiable risk factors, a better understanding of their 

relative contributions to brain health in T2DM will help guide interventions aimed at preserving 

cognition in people with T2DM who represent a high-risk group for developing dementia. We 

hypothesised that the association between T2DM and GMV will either be modified or mediated by 

measures of obesity or physical inactivity. 

 

4.3 Methods 

Study participants 

The sample consisted of participants recruited into the Cognition and Diabetes in Older Tasmanians 

study, the recruitment details of which have previously been described197. Those with T2DM were 

selected from the National Diabetes Service Scheme (NDSS) register if aged >55 years and living 

in the Southern Tasmanian postcodes 7000-7199. The NDSS is managed by Diabetes Australia and 

provides information and support for individuals with diabetes who enroll voluntarily. The 

diagnosis of T2DM within NDSS is based on physician assessment using standard criteria 

including; fasting plasma glucose >7. 0 mmol/L, random plasma glucose >11.1 mmol/L, or 2 hour 

glucose >11.1mmol/L post oral glucose tolerance test. The population-based comparison group 

consisted of individuals who were aged >60 years without T2DM randomly selected from the same 

Southern Tasmanian postcodes (7000-7199) into the Tasmanian Study of Cognition and Gait197. 
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The absence of T2DM in the comparison group was determined by the following; fasting plasma 

glucose <7.0mmol/L, random plasma glucose <11.1mmol/L and glycated haemoglobin (HbA1c) 

<6.5% (48mmol/mol) in those individuals without a history of T2DM. All potential participants 

received invitation letters followed by telephone contact for enrolment into the study. Excluded 

were people living in a nursing home and those with any contraindication to magnetic resonance 

imaging (MRI). The Southern Tasmanian Health and Medical Human Research Ethics Committee 

and the Monash University Human Research Ethics Committee approved the study and all 

participants signed informed consent.  

 

Measurements 

Standardised questionnaires were administered to obtain demographic data, clinical information 

about the duration of T2DM, years of formal education, health and medical history including that of 

cardiovascular disease and risk factors, and medication use. The 15-item Geriatric Depression Scale 

(GDS)209 was used to determine mood.  

 

Obesity 

Waist and hip circumference were measured in duplicate unless there was a difference of more than 

two centimeters between the first and second measurement, in which case a third measurement was 

taken and the average of all three measures was used in the analysis. Waist-hip ratio (WHR) was 

calculated as a measure of abdominal obesity dividing waist circumference (cm) by hip 

circumference (cm). Height (m) and weight (kg) were measured and body mass index (BMI) was 

calculated as weight divided by height squared. 

 

Physical activity 

Daily physical activity was measured using a Yamax pedometer. Participants were instructed to 

attach the pedometer to the waistband of trousers/skirt above their dominant leg and to wear the 

pedometer for 7 consecutive days, whilst going about normal daily activity. They were instructed to 

reset the pedometer at the start of every day and to record the number of steps displayed on the 

monitor in a pedometer diary at the end of each day. Mean steps/day were calculated by dividing 

the total number of steps on days where the participant wore the pedometer for >eight hours a day, 

by the number of days that the pedometer was worn. In a sub analysis (n=115) we determined that a 

cut off value for wear time of >eight hours a day would result in 95% of mean steps/day being 

captured.  
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Brain MRI  

MRI brain scans were performed using a 1.5T General Electric Signa Excite T scanner with 

sequences as follows: High-resolution T1 weighted spoiled gradient echo (TR 35ms, TE 7ms, flip 

angle 35o, field of view 24 cm, voxel size 1 mm3) comprising 120 contiguous slices; T2 weighted 

fast spin echo (TR 4300 ms; TE 120 ms; NEX 1; turbo factor 48; voxel size 0.90 x 0.90 x 3 mm); 

FLAIR (fluid attenuated inversion recovery) (TR=8802 ms, TE=130 ms, TI=2200ms, voxel size 

0.50 x 0.50 x 3 mm); GRE (TR0.8ms, TE 0.015, flip angle 30º, voxel size 0.9 x 0.9 x 7 mm). All 

processing and segmentation steps were performed by investigators blinded to T2DM status. The 

scans were registered to a standard 152 brain Montreal Neurological Institute template in 

stereotaxic coordinate space. Gray and white matter were automatically segmented using methods 

in statistical parametric mapping software SPM5210. Hippocampi were manually segmented using 

standard methodology and landmarks with high test-retest reliability211. Total GMV and 

hippocampal volume (left, right and total HV) were calculated using standard in-house voxel 

counting algorithms. 

 

Blood biochemistry and genotyping 

Following an overnight fast, venous blood samples were taken from the antecubital fossa. 

Analytical biochemistry of fasting plasma glucose, HbA1c, insulin, lipid profile and C-reactive 

protein (CRP) were performed at the Royal Hobart Hospital, Tasmania, Australia using accredited 

laboratory techniques. We also measured serum levels of tumor necrosis factor alpha (TNF) and 

interleukin 6 (IL6) using Multiplex Bead Arrays (Lincoplex, Linco Research Inc. Missouri, USA). 

Whole blood DNA extraction and apolipoprotein ε4 allele (APOE-ε4) SNP genotyping (rs429358 

and rs7412) using Sequenom MassArray iPLEX technology was also performed as the presence of 

APOE-ε4 is known to increase the risk of Alzheimer’s disease in patients with T2DM212. 

 

Other clinical measures 

Mean systolic blood pressure was taken from three consecutive seated brachial blood pressure 

measurements from the right arm of each participant using an Omron M4 sphygmomanometer. 

Hypertension was defined as systolic blood pressure>140mmHg and/or diastolic blood pressure >90 

mmHg and/or current use of anti-hypertension medication. Homeostatic model assessment of 

insulin resistance (HOMA-IR) was calculated from fasting plasma glucose and insulin levels using 

the formula (Insulin x Glucose)/22.5213. Hyperlipidaemia was defined as total cholesterol >6 

mmol/L and/or current use of statin. We also had measures of tissue advanced glycation endproduct 

(AGE) accumulation available in most participants using the skin autofluorescence technique214. 



70  

Statistical analysis 

Independent t tests were performed for continuous variables with normal distributions, Wilcoxon 

rank sum test for continuous measures with non-normal distributions, and Chi square tests for 

dichotomous variables while comparing characteristics between patients with and without T2DM. 

Firstly exploratory unadjusted correlations and regressions were conducted adjusting for age, sex 

and total intracranial volume to examine the association between T2DM and cortical volumes 

(GMV, HV), and associations of obesity and habitual physical activity (WHR, BMI, mean 

steps/day) with cortical volumes. Multivariable regression models were then used to examine 

whether the T2DM-brain volume relationships were confounded, modified or mediated by measures 

of obesity and physical activity. To study effect modification, we assessed for an interaction 

between T2DM and measures of obesity and physical activity in explaining brain volumes using a 

test of significance of the respective product terms (T2DM × WHR; T2DM × BMI, T2DM × mean 

steps/day), adjusting for age, sex, total intracranial volume, education, APOE-ε4 status (grouped as 

ε4 allele carriers or non-carriers), vascular risk factors (a summary variable coded for the presence 

of hypertension, and/or hyperlipidemia, and/or smoking, and/or history of stroke, and/or history of 

ischemic heart disease), years of formal education and GDS score. SAF was used as an additional 

covariate among participants in whom it was available. To examine potential mediation of the 

association between T2DM and brain volumes, we successively entered mean steps/day, BMI and 

WHR into multivariable regression models relating T2DM to the respective brain volume measure. 

Mediation was judged to be present, if the addition of the potential mediator (mean steps/day, BMI 

or WHR) attenuated the β coefficient for the association between T2DM and the brain volume 

measure by >30%, and the β coefficient and standard errors for the mediator remained relatively 

unchanged from its value without T2DM in the model. Finally, we explored the effects of potential 

mechanistic variables (HOMA-IR, HbA1c, and inflammatory cytokines including CRP, TNF and 

IL6) by adjusting for them in the final models. All statistical analyses were performed using 

STATA version 12 (StatCorp.College Station Tx.) and p<0.05 was considered statistically 

significant. 

 

4.4 Results 

The participant characteristics are summarised in table 4.1. Among a total of 560 participants, There 

were 258 with T2DM (mean age 67 ± 7 years) and 302 without T2DM (mean age 72 ± 7 years) 

with complete data on the primary exposure (obesity measures and mean steps/day) and outcome 

(brain MRI measures) variables. The median duration of T2DM was 6 years (interquartile range 3-

11 years). In univariable comparisons against those without T2DM, people with T2DM had 
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significantly greater BMI, WHR, fasting blood glucose, HbA1c, and triglyceride levels, were more 

likely to report a history of ischemic heart disease, stroke, hypertension, hyperlipidemia, and be on 

treatment for both (all p<0.05), but had similar mean steps/day.  

 

T2DM, obesity, habitual physical activity and brain volumes 

Associations of these variables with total GMV and HV are presented in table 4.2, adjusted for age, 

sex and total intracranial volume. T2DM was significantly associated with lower total GMV (β= –

10.04, 95% CI –15.89 to –4.19, p=0.001), left HV (β= –0.39, 95% CI –0.47 to –0.32, p<0.001), 

right HV (β= –0.45, 95% CI –0.53 to –0.37, p<0.001) and total HV (β= –0.85, 95% CI –0.99 to –

0.70, p<0.001). Greater WHR (p<0.001) and BMI (p=0.01), and fewer mean steps/day (p=0.02) 

were independently associated with lower total GMV. Greater WHR, greater BMI, and fewer mean 

steps/day were associated with lower left, right HV and total HV (all p<0.05). 
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4.1. Participant characteristics. 
 

 T2DM (n=258) 

Mean (SD) or n (%) 

Non-T2DM (n=302) 

Mean (SD) or n (%) 

P value 

Male sex 159 (62) 161 (53) 0.061 

Age (years) 67 (7) 72 (7) <0.001 

Median duration of T2DM (years; IQR) 6 (3-11) - - 

Ischemic heart disease 51 (20) 52 (17) 0.46 

History of stroke 22 (8) 20 (6) 0.42 

Smoked 140 (54) 155 (51) 0.49 

^Hypertension 215 (83) 216 (72) 0.001 

Systolic blood pressure (mmHg) 137 (19) 142 (22) 0.005 

Diastolic blood pressure (mmHg) 77 (10) 80 (12) <0.001 

Hyperlipidaemia 173 (67) 143 (47) <0.001 

Blood pressure lowering medication 182 (70) 144 (48) <0.001 

Statin use 161 (62) 74 (25) <0.001 

Body mass index (kg/m2) 30.0 (4.6) 27.2 (4.0) <0.001 

Overweight (BMI 25-30) 108 (42) 148 (49) 0.076 

Obese (BMI>30) 115 (45) 59 (20) <0.001 

Waist-hip ratio 0.96 (0.08) 0.90 (0.08) <0.001 

Fasting blood glucose (mmol/l) 7.7 (2.2) 5.3 (0.55) <0.001 

Glycated haemoglobin (HbA1c) (%)/ 

(mmol/mol) 

7.1 (1.2)/ 54.1 5.6 (0.3)/ 37.7 <0.001 

Total cholesterol (mmol/L) 4.4 (1.0) 5.3 (1.2) <0.001 

Triglycerides (mmol/L) 1.7 (0.8) 1.3 (0.6) <0.001 

HOMA-IR (IU) 2.18 (13.30) 5.93 (1.56) <0.001 

C-reactive protein (mg/dL) 3.31 (7.44) 3.70 (7.09) 0.53 

Tumor necrosis factor alpha 1.15 (1.74) 2.82 (2.34) <0.001 

Interleukin 6 1.51 (2.17) 2.15 (3.48) 0.004 

APOE-ε4 allele 70 (27) 72 (24) 0.53 

Geriatric Depression Scale (GDS) score 2.2 (2.4) 1.7 (2.0) 0.02 

Formal education (years) 12 (4) 11 (4) 0.051 

Mean steps per day 6088 (3481) 6201 (3216) 0.67 

MRI Cortical volumes    

Total grey matter volume (ml) 586.9 (60.2) 582.6 (61.1) 0.40 

White matter volume (ml) 457.8 (58.6) 455.15 (55.5) 0.58 

Total hippocampal volume (ml) 4.6 (0.8) 5.4 (0.9) <0.001 

Left hippocampal volume (ml) 2.2 (0.4) 2.6 (0.5) <0.001 

Right hippocampal volume (ml) 2.3 (0.4) 2.8 (0.5) <0.001 

T2DM – type 2 diabetes mellitus, SD – standard deviation, IQR – interquartile range, 

HOMA-IR – homeostatic model assessment of insulin resistance, MRI – magnetic resonance 

imaging. ^Hypertension - self-reported history of hypertension or mean systolic blood 

pressure >140 or mean diastolic blood pressure >90 mmHg. p value is for unadjusted 

comparisons. Wilcoxon rank sum tests for fasting glucose, HbA1c, triglycerides, HOMA-IR, 

C-Reactive Protein, GDS score. Independent t-tests or chi-square tests for all other variables.



 

Table 4.2. Associations of type 2 diabetes mellitus (T2DM), waist-hip ratio (WHR), body mass index (BMI), mean steps/day and cortical 

volumes (n=560). 

 T2DM 

β (95% CI) 

P value WHR 

β (95% CI) 

P value BMI 

β (95% CI) 

P value Mean steps/day 

β (95% CI) 

P value 

Total grey matter 

volume (ml) 

-10.04 

(-15.89, -4.19) 

0.001 -107.77 

(-146.81, -68.73) 

<0.001 -0.82 

(-1.47, 0.18) 

0.01 0.001 

(0.0001, 0.002) 

0.02 

Left hippocampal 

volume (ml) 

-0.39 

(-0.47, -0.32) 

<0.001 -1.48 

(-2.03, -0.93) 

<0.001 -0.01 

(-0.01, -0.001) 

0.03 0.00002 

(5.39-6, 0.00003) 

0.005 

Right hippocampal 

volume (ml) 

-0.45 

(-0.53, -0.37) 

<0.001 -1.18 

(-1.77, -0.59) 

<0.001 -0.009 

(-0.02, -0.00002) 

0.05 0.00002 

(7.93-6, 00003) 

0.002 

Total hippocampal 

volume (ml) 

-0.85 

(-0.99, -0.70) 

<0.001 -2.70 

(-3.76, -1.64) 

<0.001 -0.02 

(-0.04, -0.003) 

0.02 0.00004 

(0.00002, 0.00007 

0.001 

β is unstandardised coefficient. CI – confidence interval. 

All regressions adjusted for age, sex and total intracranial volume. 
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Analysis of effect modification and mediation 

There were 532 participants with complete data available for multivariable analysis excluding the 

variable SAF. Table 4.3 shows the change in the association between T2DM and total GMV 

(adjusted for age, sex, vascular risk, education, APOE-ε4 and GDS score) when each additional 

factor of interest (i.e. mean steps/day, BMI, WHR) is entered into the models. The addition of mean 

steps/day (Model 2) and BMI (Model 3) did not appreciably alter the association between T2DM 

and total GMV. The addition of WHR (Model 4) attenuated the association between T2DM and 

total GMV by 32% (compared with Model 3) rendering the T2DM-GMV relationship statistically 

non-significant, while WHR remained independently associated with total GMV (p<0.001), and the 

standard errors for T2DM and WHR remained unchanged. The association between T2DM and 

total HV (table 4.4) was unchanged by the addition of mean steps/day, BMI and WHR. Greater 

mean steps/day, but not BMI or WHR, was independently associated with greater total HV 

(p<0.05). The addition of HOMA-IR, HbA1c, CRP, TNF and IL6, and SAF (available only in 486 

participants, data not shown) to the final models (Models 4) for both total GMV and HV did not 

change the observed associations. There were no significant interactions between T2DM and 

measures of obesity or physical activity in explaining cortical volumes (p>0.05 for all product 

terms).
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Table 4.3. Effects of mean steps/day, body mass index (BMI) and waist-hip ratio (WHR) on the association between type 2 diabetes mellitus 

(T2DM) and total grey matter volume (n=532). 

 Model 1 Model 2 Model 3 Model 4 

 β (95%CI) β (95%CI) β (95%CI) β (95%CI) 

T2DM -7.98 (-13.96, -2.01)* -7.48 (-13.48, -1.45)* -7.40 (-13.64, -1.16)* -5.05 (-11.32, 1.22) 

Mean steps per day  0.001 (-0.0002, 0.002) 0.001 (-0.0002, 0.002) 0.001 (-0.001, 0.02) 

Body mass index   -0.14 (-0.85, 0.57) 0.24 (-0.50, 0.97) 

Waist hip ratio    -72.26 (-117.55, -26.97)^ 

β – beta coefficient, CI – confidence interval, T2DM – type 2 diabetes mellitus, BMI – body mass index, WHR – waist-hip ratio. 

 

 

All models adjusted for age, sex, years of education, total intracranial volume, vascular risk (hypertension and/or hyperlipidemia and/or smoking 

and/or history of stroke and/or history of ischemic heart disease), apolipoprotein ε4 allele and Geriatric Depression Scale score. 

*p<0.05, ^p<0.01. 

Model 1 – association between T2DM and total grey matter volume. 

Model 2 – model 1 adjusted additionally for mean steps/day. 

Model 3 – model 2 adjusted additionally for BMI. 

Model 4 – model 3 adjusted additionally for WHR. 
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Table 4.4. Effects of mean steps/day, body mass index (BMI) and waist-hip ratio (WHR) on the association between type 2 diabetes mellitus 

(T2DM) and total hippocampal volume (n=532). 

 Model 1 Model 2 Model 3 Model 4 

 β (95%CI) β (95%CI) β (95%CI) β (95%CI) 

T2DM -0.94 (-1.08, -0.79)^ -0.92 (-1.06, -0.77)^ -0.94 (-1.09, -0.78)^ -0.91 (-1.06, -0.75)^ 

Mean steps per day  0.00003 (8.6706, 0.0001)* 0.00003 (0.00001, 0.0001)* 0.00003 (9.8806, 0.0001)* 

Body mass index   0.01 (-0.01, 0.03) 0.02 (-0.001, 0.04) 

Waist hip ratio    -1.09 (-2.21, 0.03) 

β – beta coefficient, CI – confidence interval, T2DM – type 2 diabetes mellitus, BMI – body mass index, WHR – waist-hip ratio. 

 

 

All models adjusted for age, sex, years of education, total intracranial volume, vascular risk (hypertension and/or hyperlipidemia and/or smoking 

and/or history of stroke and/or history of ischemic heart disease), apolipoprotein ε4 allele and Geriatric Depression Scale score. 

*p<0.05, ^p<0.01. 

Model 1 – association between T2DM and total hippocampal volume. 

Model 2 – model 1 adjusted additionally for mean steps/day. 

Model 3 – model 2 adjusted additionally for BMI. 

Model 4 – model 3 adjusted additionally for WHR. 
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4.5 Discussion 

We found that the adverse association between T2DM and total GMV may be partially mediated by 

abdominal obesity. Moreover, WHR, but not BMI or mean steps/day, remained independently 

associated with total GMV. Mean steps/day did not affect the relationship between T2DM and total 

GMV. By contrast, neither WHR, BMI or mean steps/day appeared to affect the association 

between T2DM and total HV. However, across all individuals mean steps/day, but not WHR or 

BMI, remained independently associated with total HV.  

 

Although previous studies have reported that obesity is associated with lower total brain or regional 

volumes in the general population198, 199, 206, 215, 216, none, to our knowledge, have examined these 

relationships in people with T2DM. In our previous study197, we were unable to demonstrate an 

independent association of T2DM with white matter volume. Therefore we did not explore white 

matter volume as an outcome, although others have demonstrated that obesity (overall and 

abdominal) is related to lower white matter volume in morbidly obese people216. We found that 

WHR, but not BMI, explains a large portion of the T2DM-GMV association suggesting that 

abdominal obesity and its related mechanistic factors may be important drivers of gray matter 

atrophy in T2DM. WHR was also independently associated with total GMV. An interpretation of 

this finding is that T2DM confounds the relationship between WHR and GMV, but the stability of 

standard errors in the models suggests this is less likely. T2DM is likely to represent a clinical state 

further downstream of abdominal obesity in the causal pathway to cortical atrophy. In support of 

this concept, abdominal adiposity often precedes the development of insulin resistance and 

T2DM205. The direction of causality between WHR and total GMV cannot be confirmed based on 

these cross-sectional analyses alone, because atrophy of brain regions that regulate dietary habits 

may theoretically explain the observed relationships217. However, a Mendelian randomisation 

analysis in the 3C-Dijon Study demonstrated that the association between WHR and lower total 

GMV in the general population198 was likely to be causal. Our results are consistent with cross-

sectional and longitudinal data from the general population showing that the associations between 

obesity and brain volumes are more pronounced for abdominal obesity rather than measures of 

global body mass such as BMI198, 199, 218. Abdominal fat differs in its metabolic activity compared 

with peripheral fat, is strongly linked to the production of pro-inflammatory cytokines and the 

generation of insulin resistance205, and is more strongly predictive of cardiovascular disease than 

measures of global obesity (e.g. BMI)219. Although fewer mean steps/day were associated with 

T2DM as well as total gray matter and hippocampal atrophy, mean steps/day did not explain the 
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T2DM-GMV or T2DM-HV associations. Interventions involving moderate and vigorous aerobic207, 

220 or resistance training221 interventions are known to preserve brain structure and function as well 

as improve glycemic control in older individuals222. It is possible that our measure of physical 

activity was not sufficiently sensitive to capture the exercise intensity and type necessary to 

influence T2DM related brain atrophy. However, similar to recent work223, we showed that those 

individuals who engaged in more physical activity had lower WHR. Mean steps/day did remain 

independently related to total HV, in line with previous studies224, 225, suggesting physical activity is 

important for maintaining total HV irrespective of diabetes status.  

 

Chronic low grade inflammation, insulin resistance, advanced glycation endproducts (AGEs), 

hormonal effects and vascular disease may all be mechanisms that could explain the associations 

between T2DM, abdominal obesity and brain atrophy. The association of T2DM and WHR with 

GMV was independent of inflammatory cytokines in our study, however, peripheral inflammatory 

cytokine levels are poor measures of neuroinflammation which requires estimation with specialised 

neuroimaging226. Neuronal insulin resistance is associated with impaired amyloid clearance227 and 

increased tau phosphorylation in the human brain228 and in mouse models of T2DM229. However, 

adjustment in our final models (Model 4) for HOMA-IR did not alter the T2DM-GMV and T2DM-

HV associations. Finally, the associations of T2DM, obesity measures and mean steps per day with 

GMV or hippocampal volume were independent of SAF, a measure of long-term tissue advanced 

glycation, although we were unable to adjust for measures of circulating AGEs. Abdominal obesity 

is also strongly associated with vascular mechanisms that may explain brain atrophy such as arterial 

stiffness164, 230. It is tempting to consider whether interventions targeting abdominal obesity or 

related factors may protect against brain atrophy in T2DM. Lifestyle interventions (such as 

increased physical activity and decreasing caloric intake) seem a reasonable option although they do 

not necessarily preferentially target abdominal adiposity231 and may be difficult to maintain. 

Bariatric surgery in highly selected morbidly obese middle-aged individuals was shown to be 

associated with improved cognition in a small study (n=21), but the contribution of weight loss to 

this improvement was not explored in relation to other mechanistic variables232. There is renewed 

use of antidiabetic agents such as thiazolidinediones233 and metformin234 that have modest effects 

on abdominal obesity, as well as leptin analogs to determine whether use of these agents may 

ameliorate cognitive decline in individuals with T2DM235. Additionally, interventions that target 

adiposity-related mechanisms such as insulin signaling (e.g. analogs of glucagon-like peptide) 

deserve further study for preserving brain health in T2DM. 
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Strengths of this study include a large sample size, a robust definition of T2DM, quantitative 

measures of exposures (physical activity, BMI and WHR) and outcome (brain volumes) using 

validated and standardised techniques, adjustment for several potential confounders, and careful 

analysis for effect modification and mediation. 

 

Limitations 

The following are limitations of our study. Due to the cross sectional design, this study does not 

permit us to draw conclusions about causality. On the other hand, our findings are consistent with 

evidence linking abdominal obesity to cognitive decline236, 237 and brain atrophy in non-diabetic 

populations198, 199, 206, 215, and provide a good basis for the longitudinal study of abdominal obesity 

on brain atrophy in patients with T2DM. Secondly, as patients with T2DM were recruited based on 

their willingness to participate in research indicated on their NDSS membership, our sample might 

be over-represented by healthier individuals with T2DM. Nonetheless, we showed consistent and 

expected differences in anthropometric and biochemical measures between those with T2DM and 

the comparison group, (i.e. patients with T2DM had higher WHR, BMI, fasting blood glucose and 

HbA1c). Although pedometers provide an objective measure of habitual physical activity and are 

simple and inexpensive238, they do not provide information on sedentary behavior, non-ambulatory 

physical activity (i.e. swimming or resistance training), intensity or type of physical activity239. 

Finally, the pedometers were only worn for 7 days and, therefore, may not provide a good 

representation of long-term physical activity. 

 

4.6 Conclusions 

In summary, abdominal obesity appears to be an important factor in explaining the adverse impact 

of T2DM on total GMV and these results require confirmation in longitudinal studies. In people 

with T2DM, who represent a high-risk group for developing dementia and cognitive dysfunction, 

interventions targeting abdominal obesity or its related downstream factors may present promising 

avenues for reducing the risk of T2DM related total GMV atrophy. 

 

4.7 Contribution of Chapter 4 to thesis aims 

This chapter makes a significant contribution to understanding why patients with T2DM are more 

likely to demonstrate target organ damage, in particular brain structural abnormalities, compared to 

non-diabetic individuals. Although previously published studies have shown that abdominal obesity 

contributes to grey matter atrophy in healthy ageing populations whilst physical activity is 
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beneficial for maintaining brain structure, it was unknown whether these variables were related 

to brain structural abnormalities in patients with T2DM until now. For the first time, this study 

showed that abdominal obesity explains a large proportion of grey matter atrophy in patients with 

T2DM and importantly, this association was independent of a number of cardiovascular risk 

factors including resting brachial BP. A limitation of this study was that measures of central 

haemodynamics (either at rest or during exercise) were not available, and therefore, the 

association between these variables and brain structural abnormalities was not able to be 

determined. In the next chapter, measures of resting and exercise central haemodynamics and 

brain structure have been obtained in a cohort of individuals with and without T2DM and their 

relationships explored. 



 
82 

Chapter 5. Aortic reservoir characteristics and brain structure in people with 

type 2 diabetes mellitus; a cross sectional study 
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5.1 Abstract 

Background. Central haemodynamics help to maintain appropriate cerebral and other end-organ 

perfusion, and may be altered with ageing and type 2 diabetes mellitus (T2DM). We aimed to 

determine the associations between central haemodynamics and brain structure at rest and during 

exercise in people with and without T2DM.  

Methods. In a sample of people with T2DM and non-diabetic controls, resting and exercise 

measures of aortic reservoir characteristics (including excess pressure integral [Pexcess]) and other 

central haemodynamics (including augmentation index [AIx] and aortic pulse wave velocity 

[aPWV]) were recorded. Brain volumes (including grey matter volume [GMV] and white matter 

lesions [WML]) were derived from magnetic resonance imaging (MRI) scans. Multivariable 

linear regression was used to study the associations of haemodynamic variables with brain structure 

in the two groups adjusting for age, sex, daytime systolic BP (SBP) and heart rate. 

Results. There were 37 T2DM (63±9years; 47% male) and 37 non-diabetic controls (52±8years; 

51% male). In T2DM, resting aPWV was inversely associated with GMV (standardised β=-0.47, 

p=0.036). In non-diabetic controls, resting Pexcess was inversely associated with GMV (β=-0.23, 

p=0.043) and AIx was associated with WML volume (β=0.52, p=0.021). There were no 

associations between exercise haemodynamics and brain volumes in either group. 

Conclusions. Brain atrophy is associated with resting aortic stiffness in T2DM, and resting Pexcess 

in non-diabetic controls. Central vascular mechanisms underlying structural brain changes may 

differ between non-diabetic controls and T2DM. 
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5.2 Introduction 

Type 2 diabetes mellitus (T2DM) is an important vascular risk factor for cognitive impairment. It is 

associated with brain atrophy197, infarcts and cerebrovascular lesions (white matter hyperintensity 

of presumed vascular origin [WML])196, potentially leading to cognitive decline and greater risk for 

dementia. Age-related vascular factors such as hypertension and aortic stiffening are more prevalent 

in patients with T2DM240 and may partly explain the associated structural brain abnormalities241-243. 

Aortic stiffening can limit buffering capacity of the large central arteries such that small changes in 

cardiac stroke volume can result in excessive rises in local pulsatile pressure130. These excess 

pressures may damage peripheral capillary networks43, which is of relevance to the brain as a high 

flow organ with low resistance proximal large vessels and an extensive microcirculation. 

Consequent damage to the neurovascular unit may be a factor underlying the observed brain 

atrophy in T2DM. 

 

Aortic reservoir function plays a role in the maintenance of normal central BP and may protect 

distal microcirculation by dampening excessive aortic pulsatile pressure, as well as reducing 

peripheral pressure transmission139. The aortic reservoir pressure paradigm proposes that the central 

(aortic) pressure wave may be separated into an aortic reservoir pressure component, representing 

proximal aortic volume; and an excess pressure (Pexcess) component, representing excess left 

ventricular work required for stroke volume ejection, analogous to left ventricular flow (refer to 

figure 2.1.5)8, 9. Indeed, aortic reservoir pressure is related to aortic stiffness (aortic pulse wave 

velocity [aPWV]) and we have previously shown that reservoir pressure, not backward pressure (i.e. 

from peripheral wave reflections) is the largest contributory factor to an increase in augmented 

pressure82. Increased Pexcess was recently shown to independently predict adverse cardiovascular 

events in patients with cardiovascular disease147, possibly due to accelerated target organ damage, 

but this has never been examined.  

 

Although resting BP indices are clinically important, hemodynamic responses to moderate exercise 

may have stronger prognostic value in terms of cardiovascular risk5, suggesting that 

pathophysiological insight may be gained from exercise hemodynamics beyond that of resting 

conditions. This may be because individuals can spend a large proportion of their day ambulatory 6 

(doing some form of light-moderate physical activity; standing, walking) and the BP response to 

this type of lower intensity exercise may, therefore, be a better representation of the chronic BP 

load. Indeed, we have shown that independent of resting BP, light-to-moderate exercise 
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hemodynamics can unveil BP abnormalities151, 244 and also predict kidney function in older men152. 

We have also found that patients with T2DM have abnormal responses at higher exercise 

intensities28, 72. This study aimed to determine associations between central hemodynamics, 

including aortic reservoir characteristics, and brain structure in people with and without T2DM, 

during rest and light-moderate exercise. 

 

5.3 Methods 

Study sample 

Eighty participants (T2DM n=40, non-diabetic controls n=40) were recruited from the community 

via local advertisements. Exclusion criteria were; pregnancy, arrhythmia, clinical history of 

cardiovascular disease (including coronary artery disease, myocardial infarction, heart failure or 

stroke), severe pulmonary disease and contraindication to brain magnetic resonance imaging 

(MRI). T2DM was determined by self-report of diagnosis by physician. All participants gave 

informed consent and the study was approved by the University of Tasmania Human Research 

Ethics Committee. 

 

Study protocol 

Participants attended the testing laboratory on two occasions and were scheduled for MRI 

assessment. At visit 1 participants were asked to avoid smoking, caffeine containing products and 

consuming heavy meals for a minimum of three hours prior to the testing, and were instructed to 

avoid heavy exercise and alcohol consumption within the 24 hours prior. Participants were not 

instructed to withhold BP medication. Anthropometric measures, questionnaires relating to BP, 

medical history and haemodynamic data were recorded. Following 10 minutes of semi-recumbent 

rest (torso at 45º, arm supported at heart level), brachial BP was measured by a validated automatic 

device (Omron HEM-907; Hoofddorp, The Netherlands)183, followed by central haemodynamic 

variables recorded by applanation tonometry (SphygmoCor, AtCor Medical, Sydney, Australia). 

All measures were repeated during moderate intensity exercise at 60% of age-predicted maximal 

heart rate. A validated245mercury free sphygmomanometer (UM-101, A&D Medical, Tokyo, 

Japan) and auscultation was used to measure exercise brachial BP. Using a 2-legged cycle 

ergometer positioned at the end of the bed, participants were asked to cycle at 50 revolutions per 

minute while the investigator increased the watts to 30. Data collection commenced after 

approximately 2-3 minutes once a steady state heart rate had been achieved and continued for 

approximately 20 minutes (with intermittent breaks to measure aortic stiffness as described below). 
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Further details of the exercise protocol can be found elsewhere152. Non-invasive impedance 

cardiography was continuously recorded throughout the protocol (PhysioFlow; Manatec 

Biomedical; Macheren, France). At visit 2, fasting venous bloods were taken and participants were 

fitted with a 24-hour ambulatory BP monitor (24ABPM; TM-2430, A&D Medical, Sydney, 

Australia). Hypertension was defined as clinic brachial BP ≥140/90 mmHg, self- reported diagnosis 

by a physician, or use of antihypertensive medications. 

 

MRI analysis 

Scans were performed on a 1.5T General Electric Signa Excite T scanner with the 

following sequences: High-resolution T1 weighted spoiled gradient echo (TR 35ms, TE 7ms, flip 

angle 35o, field of view 24 cm, voxel size 1 mm3) comprising 120 contiguous slices; T2 

weighted fast spin echo (TR 4300 ms; TE 120 ms; NEX  1; turbo factor 48; voxel size 0.90 x 0.90 

x 3 mm); FLAIR (TR=8802 ms, TE=130 ms, TI=2200ms, voxel size 0.50 x 0.50 x 3 mm). Scans 

were registered to a 152 brain Montreal Neurological Institute template in stereotaxic coordinate 

space. Brain tissue was classified as gray or white matter using statistical parametric mapping 

software SPM5. Hippocampi were manually segmented using standard landmarks with high test-

retest reliability246. WML were segmented using a validated semi-automated method247. GMV, 

white matter, WML, and hippocampal volumes were calculated using standard voxel counting 

algorithms. MRI examiners were blinded to outcome variables and diabetes status. 

 

Central haemodynamic measures 

Aortic reservoir characteristics 

Central (aortic) pressure waveforms were reconstructed as previously described63. Using custom 

MatLab software the averaged radial pressure waveforms were separated into reservoir pressure 

(representative of the cyclic changes in aortic volume that occur during systolic expansion to 

store blood, and diastolic recoil to allow for the discharge of blood from the proximal aorta) and 

excess pressure (excess work done by the left ventricle, see figure 2.1.5)8, 9. Reservoir pressure 

was calculated as previously described147 and Pexcess was determined by subtracting the reservoir 

pressure from the aortic pressure waveform137. 

 
Central BP and aortic stiffness 

Central BP was measured in duplicate and augmentation index (AIx), augmentation pressure 

(AP), pulse pressure (PP) and PP amplification were calculated63. Duplicate right sided carotid-to-
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femoral aPWV was measured as previously described152. The tonometry method was modified 

during exercise in order to obtain waveforms of sufficient quality. Once the participant reached a 

steady state heart rate, they were asked to increase the revolutions per minute in order to increase 

heart rate by approximately 10 beats per minute. Once the desired heart rate was reached, the 

investigator located the pulse site and told the participant to cease exercise. The participant’s heart 

rate dropped to their steady state heart rate, during which time the investigator captured the 

waveform. The participant was then instructed to repeat the exercise until all data was collected.  

 

Cardiothoracic bioimpedance 

Measures of cardiac output, systemic vascular resistance, heart rate and stroke volume were 

recorded using a device with good reproducibility during rest and exercise186. Five minutes of 

continuous steady state monitoring was averaged and analysed offline. 

 

Peripheral haemodynamic measures 

Duplicate conventional brachial BP measures were averaged for analysis. 24ABPM was 

measured every 20 minutes during the daytime, and every 30 minutes during the nighttime. 

 

Biochemistry 

Fasting blood glucose, insulin, glycated haemoglobin (HbA1c), and lipid profiles were obtained by 

accredited laboratory techniques (Royal Hobart Hospital pathology department). A resting urine 

sample was analysed for the presence of albumin by the Royal Hobart Hospital pathology 

department. 

 

Statistical analysis 

Data were analysed using SPSS for Windows software version 19.0 (IBM SPSS Statistics, New 

York, USA). Data were visually inspected for normality of distribution and were all normally 

distributed. All brain volume outcome measures were expressed as a ratio of total intracranial 

volume. To compare characteristics between patients with T2DM and non-diabetic controls, 

independent t-tests (continuous variables) and Chi square tests (dichotomous variables) were 

performed. Independent t-tests were used to compare unadjusted brain volumes between groups, 

followed by analysis of covariance (ANCOVA) adjusted for age and sex. To assess the 

relationships between resting and exercising central haemodynamic variables and brain volumes, 

Pearson’s correlations and multivariable linear regression were performed. Z statistic scores were 
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determined to compare the regression slopes obtained from within-group correlations. Independent 

variables known (age and sex) or suspected (heart rate, ambulatory daytime systolic BP [SBP], 

body mass index [BMI] and total cholesterol) to contribute to variance in brain volumes were 

added separately into the regression model, and a p<0.05 was considered statistically significant. 

Based on previous reproducibility work248, we calculated that a between- group difference of 10 

mmHg in central SBP could be detected in 36 participants per group (α=0.05 and β=0.20), therefore 

we recruited 40 participants for each group.  

 

5.4 Results 

Sample characteristics 

One patient with T2DM and two non-diabetic controls withdrew consent for MRI due to 

claustrophobia. Brain volume data was unavailable for one patient with T2DM (due to a significant 

non-vascular abnormality on MRI) and technical difficulty rendered aortic reservoir data 

unavailable in two participants (one participant from each group), resulting in 37 participants in 

each group. Compared with non-diabetic controls, patients with T2DM were older, heavier, and 

had greater blood glucose and glycated haemoglobin (HbA1c). None of the non-diabetic controls 

were on BP or cholesterol lowering medications (table 5.1). 

 

Table 5.2 summarises the difference in brain volumes between groups whilst table 5.3 summarises 

the differences in resting and exercising central haemodynamics. There was no difference between 

the groups in any of the adjusted brain volumes. Those with T2DM had significantly greater values 

in most aortic reservoir characteristics and other haemodynamic variables at rest and during 

exercise. No between-group differences were observed for reservoir pressure integral and stroke 

volume during rest and exercise, and for peak reservoir pressure and cardiac output during 

exercise alone. Compared with non-diabetic controls, brachial SBP and PP were significantly 

higher in those with T2DM at rest and during exercise, whereas resting systemic vascular 

resistance was significantly lower. Pexcess correlated with AP at rest  in patients with T2DM 

(r=0.49, p=0.001) and in non-diabetic participants at rest and during exercise (r=0.58, p<0.001 

and r=0.34, p=0.032 respectively). In patients with T2DM, there was a significantly greater change 

from rest to exercise in peak excess pressure, central SBP, central PP, aPWV, brachial SBP and 

brachial PP compared to non-diabetic participants (p<0.05 for all). 
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Table 5.1. Study participant characteristics. 
 

 T2DM Non-diabetic  
   P value 
 (n=37) (n=37)  

Male, n (%) 17 (47) 19 (51) 0.56 

Age (years) 63±9 52±8 <0.001 

Body mass index (kg/m2) 30.5±4.8 25.9±3.3 <0.001 

Waist-hip (ratio) 0.91±0.06 0.84±0.1 0.002 

Current smoker, n (%) 3 (8) 3 (8) 0.97 

Hyperlipidaemia, n (%) 25 (66) 10 (27) 0.001 

Normotensive, n (%) 15 (39) 28 (76) 0.002 

24 hour ambulatory systolic BP (mmHg) 134±13 130±11 0.21 

24 hour ambulatory diastolic BP (mmHg) 75±8 79±6 0.016 

Day-time ambulatory systolic BP (mmHg) 138±14 136±13 0.50 

Night-time ambulatory systolic BP (mmHg) 119±12 113±11 0.016 

Duration of diabetes (years) 6±6 - - 

Antihypertensive medications, n (%) 24 (63) 0 (0) <0.001 

Oral hypoglycaemic medications, n (%) 26 (68) 0 (0) <0.001 

Urinary albumin (mg/L) 9.00±11.19 7.85±7.59 0.60 

Insulin, n (%) 5 (13) 0 (0) 0.016 

Statin, n (%) 25 (66) 0 (0) <0.001 

Glucose (mmol/L) 7.5±1.8 4.7±0.4 <0.001 

Glycated haemoglobin (%) 7.2±0.8 5.5±0.3 <0.001 

Insulin (IU/mL) 10.2±8.6 2.4±4.7 <0.001 

Total cholesterol (mmol/L) 4.4±1.0 5.4±1.0 <0.001 

HDL cholesterol (mmol/L) 1.3±0.4 1.6±0.4 0.002 

Triglycerides (mmol/L) 1.4±0.6 1.0±0.5 0.003 

Data expressed as mean ± standard deviation or %. T2DM, type 2 diabetes mellitus; BP, 

blood pressure; HDL, high density lipoprotein. P is for between group analyses. 



 

90 

Table 5.2. Brain magnetic resonance imaging (MRI) volumes in patients with type 2 diabetes mellitus (T2DM) and non-diabetic controls. 
 

 

 
MRI variable 

T2DM 

Mean±SD 

(n=37) 

Non-diabetic 

Mean±SD 

(n= 37) 

 

Association of T2DM with MRI variable 

β coefficient (95% CI) 

 
P for 

regression 

Grey matter volume (ml) 567.36±77.81 607.81±63.01 0.014 (-17.23, 21.21) 0.84 

White matter volume (ml) 583.92±76.03 604.84±80.53 -0.005 (-15.98, 14.48) 0.92 

Left hippocampal volume (ml) 2.43±0.37 2.55±0.38 -0.019 (-0.17, 0.14) 0.86 

Right hippocampal volume (ml) 2.51±0.36 2.56±0.39 0.046 (-0.14, 0.21) 0.70 

White matter lesion volume (ml) 3.34±2.38 3.44±2.39 -0.148 (-1.93, 0.54) 0.26 

Unadjusted MRI volumes are presented in the first two columns; β refers to standardised beta coefficient for the association between T2DM and MRI 

variables determined by ANCOVA and adjusted for age, sex and total intracranial volume. SD, standard deviation. P value is for relation of diabetes 

status with MRI variables. 
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Table 5.3. Differences in central and peripheral (brachial) haemodynamic variables between patients with type 2 diabetes mellitus (T2DM) and non-diabetic controls at rest, 

      during exercise and the change from rest to exercise.  
 

 Rest    Exercise  Change from rest to exercise 

 T2DM 

(n=37) 

Non-diabetic 

(n=37) 

P value T2DM 

(n=37) 

Non-diabetic 

(n=37) 

P value T2DM 

(n=37) 

Non-diabetic 

(n=37) 
P value 

Peak reservoir pressure (mm Hg) 36±8 32±4 0.016 18±10 15±5 0.17 -19±10 -17±10 0.49 

Reservoir pressure integral (Pa.s) 1872±520 1869±369 0.97 794±485 694±263 0.40 -1413±570 -1441±454 0.81 

Peak excess pressure (mm Hg) 35±9 30±4 0.005 73±16 58±12 <0.001 37±19 27±11 0.013 

Excess pressure integral (Pa.s) 630±197 493±98 <0.001 1644±437 1255±472 <0.001 970±468 776±470 0.079 

Central systolic BP (mm Hg) 114±11 103±10 <0.001 132±14 114±13 <0.001 18±12 11±11 0.015 

Central pulse pressure (mm Hg) 45±9 37±5 <0.001 52±12 39±7 <0.001 8±9 2±7 0.003 

Pulse pressure amplification (ratio) 1.2±0.1 1.3±0.1 <0.001 1.5±0.1 1.6±0.1 0.007 0.26±0.11 0.23±0.09 0.37 

Augmentation pressure  (mm Hg) 13±4.8 8±5 <0.001 9±6 4±4 <0.001 -4±5 -4±3 0.78 

Augmentation index (%) 29±6.8 21±10 <0.001 17±9 10±6 0.001 -12±7 -11±6 0.68 

Augmentation index (at 75bpm) 23±6 13±11 <0.001 25±9 14±11 <0.001 0.8±9 1±7 0.73 

*Adjusted augmentation index (%) 26±6.7 23±6.7 <0.001 14.6±8.0 11.9±7.9 <0.001 -11.6±6.7 -11.5±6.8 0.58 

Aortic pulse wave velocity (m/s) 8.01±2.16 6.29±1.42 <0.001 9.73±2.10 7.02±1.43 <0.001 2.14±2.59 0.32±2.71 0.004 

Heart rate (bpm) 64±8 58±8 0.001 92±12 86±12 0.043 27±9 28±9 0.58 

Cardiac output (L/min) 5.24±0.90 4.50±0.73 <0.001 8.22±1.54 7.91±1.28 0.35 2.9±1.3 3.4±1.3 0.103 

Stroke volume (mL) 82±11 78±15 0.26 90±13 93±14 0.36 7±12 14±11 0.017 

Brachial systolic BP (mm Hg) 124±12 114±9 <0.001 155±17 134±14 <0.001 31±13 20±13 <0.001 

Brachial diastolic BP (mm Hg) 68±8 65±6 0.064 77±9 73±9 0.097 8±6 9±8 0.93 

Brachial pulse pressure (mm Hg) 55±10 49±5 0.002 78±15 60±10 <0.001 23±11 11±10 <0.001 

Systemic vascular resistance 

(d.s.cm-5) 
1369±243 1503±268 0.027 1004.38±201 973±157 0.45 -354±206 -529±247 0.001 

Data expressed as mean ± standard deviation. BP, blood pressure. P is for between group analyses. *Augmentation index adjusted for age, sex, heart rate and 
height. 
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Associations between central haemodynamic and brain MRI volumes 

In patients with T2DM, resting aortic reservoir characteristics were not related to MRI volumes 

(p>0.05 for all). In non-diabetic controls, there was an inverse correlation between resting Pexcess 

and GMV (r=-0.41, p=0.011), which remained after adjusting for age, sex, ambulatory daytime 

SBP and heart rate (table 5.4, figure 5.2). Further adjustment for BMI or urinary albumin did 

not attenuate the association (β=-0.73-4, p=0.028, β=-0.061-3, p=0.045 respectively) however, the 

addition of total cholesterol did (β=-0.58-4, p=0.060). Adjusting for clinic SBP (in the place of  

ambulatory daytime SBP), did not affect the relationship between Pexcess and GMV (β =0.075-3, 

95% CI -0.139-3 to -0.011-3, p=0.023). There was a between-group difference in the strength of 

the association between resting Pexcess and GMV in patients with T2DM compared to non-diabetic 

controls (z=2.08, p=0.044, figure 5.2). 

 

In patients with T2DM, but not in non-diabetic participants, resting aPWV was inversely associated 

with GMV (r=-0.45, p=0.005) and remained associated after adjusting for age, sex, ambulatory 

daytime SBP, heart rate (table 5.4) and the use of antihypertensive medication. Additionally, 

adjusting for clinic SBP instead of ambulatory BP, did not affect the relationship between aPWV 

and GMV (β =-0.009, 95% CI -0.015 to -0.002, p=0.009). Further adjustment for BMI, urinary 

albumin or total cholesterol did not alter the association (β=-0.007, p=0.036, β=-0.007, p=0.050 

and β=-0.006, p=0.045 respectively). There was no difference between non-diabetic participants 

and patients with T2DM in the strength of the association between aPWV and GMV (z=1.76, 

p=0.088). 
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Figure 5.1. Univariate association (unadjusted) between grey matter volume and excess pressure 

integral in patients with type 2 diabetes mellitus (T2DM) and non- diabetic controls (healthy) at 

rest. 
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Table 5.4. Multivariable analysis of grey matter volume and resting haemodynamics in patients with type 2 diabetes mellitus (T2DM) and non-diabetic controls. 

 

Brain MRI variable Independent variable 
β unstandardised  

β standardised  P value 
Model 

adjusted R2 (95% CI) 

T2DM      

Gray matter/total intracranial volume 

Aortic pulse wave velocity -0.007  (-0.014, -0.050-2) -0.47 0.036 

0.16 

Age -0.001 (-0.002, 0.001) -0.15 0.44 

Sex 0.006 (-0.019, -0.030) 0.088 0.64 

24ABPM daytime systolic BP 2.94-5 (-0.001, 0.001) 0.013 0.94 

Heart rate 0.001 (-0.001, 0.001) 0.18 0.28 

Healthy 

  
 

  

Gray matter/total intracranial volume 

Excess pressure integral 0.60-4 (-0.119-3, -0.200-5) -0.23 0.043 

0.68 

Age -0.020 (-0.002, -0.001) -0.49 <0.001 

Sex -0.028 (-0.039, -0.018) -0.55 <0.001 

24ABPM daytime systolic BP 4.30-5 (-0.390-3, 0.477-3) 0.021 0.84 

Heart rate 0.32-4 (-0.001, 0.001) -0.010 0.93 

White matter lesion/total intracranial volume 

Augmentation index 5.91-5 (0.9-5, 0.12-3) 0.52 0.021 

0.16 

 

 

 

Age 2.01-5 (0.29-4, 0.7-4) 0.14 0.41 

Sex 0.28-3 (-0.001, 0.001) 0.12 0.57 

24ABPM daytime systolic BP -0.10-4 (-0.39-4, 0.22-4) -0.093 0.58 

Heart rate 9.17-6 (-0.41-4, 0.59-4) 0.060 0.71 

Central pulse pressure 0.11-3 (0.28-3, 0.19-3) 0.48 0.010 

 

0.19 

 

 

Age 2.79-5 (-0.18-4, 0.74-4) 0.19 0.23 

Sex 0.12-3 (-0.001, 0.001) -0.045 0.79 

24ABPM daytime systolic BP 0.17-4 (-0.49-4, 0.14-4) -0.093 0.58 

Heart rate 1.40-5 (-0.35-4, 0.63-4) 0.091 0.57 

R2 refers analysis of variance adjusted R square and P value is for the independent variable. 24ABPM, 24 hour ambulatory blood pressure monitoring; BP, blood pressure. All 

models adjusted for age, sex, ambulatory daytime systolic BP and heart rate. 
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Aortic reservoir characteristics were not related to WML volume in either group (p>0.05 for all). In 

non-diabetic participants, resting AIx and central PP were the only haemodynamic variables 

associated with WML volume (r=0.46, p=0.004 and r=0.47, p=0.003 respectively) and remained 

related after adjusting for age, sex, ambulatory daytime SBP and heart rate (table 5.4). Alternatively 

adjusting for clinic SBP, in the place of ambulatory BP, did not attenuate the relationships between 

central PP and AIx with WML (β =0.122-3, 95% CI 0.013-3 to 0.230-3, p=0.029 and β =8.354-5, 

95% CI -0.018-3 to -0.149-3, p=0.014 respectively). Further adjustment for BMI, urinary albumin or 

total cholesterol did not attenuate the association between AIx and WML volume (β=5.40-5, p=0.037, 

β=6.233-5, p=0.020 and β=5.86-5, p=0.025) or central PP and WML volume (β=9.83-5, p=0.025, 

β=0.120-3, p=0.007 and β=0.0001, p=0.006 respectively). Neither exercise central haemodynamic 

variables nor peripheral haemodynamic variables were associated with MRI brain volumes in either 

group. 

 

5.5 Discussion 

To our knowledge, this is the first study to examine associations between aortic reservoir 

characteristics and brain structure. There are several new or noteworthy findings: 1) In non- 

diabetic individuals, Pexcess (a novel marker of cardiovascular risk) was independently associated with 

GMV. 2) In patients with T2DM, aortic stiffness (a more traditional marker of cardiovascular risk and 

shown to be elevated in patients with T2DM) was independently associated with GMV. 3) Contrary 

to expectation, exercise haemodynamic variables were not stronger correlates of brain structural 

abnormalities than resting variables. Overall, these findings suggest that central haemodynamic 

mechanisms may play a role in leading to structural brain changes underlying cognitive 

impairment, but that these mechanisms may differ between non- diabetic individuals and patients 

with T2DM. 

 

Unique to the brain is the continuous passive perfusion of high volume blood flow to the organ 

throughout systole and diastole132. High flow associated with low microvascular resistance could lead 

to brain vascular networks being sensitive to upstream changes in pressure and flow pulsatility131, 249. 

Maintenance of relatively low central BP (especially PP) could, therefore, be important in protecting 

the microcirculation from excess pressure and/or flow pulsatile energy which may lead to 
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microvascular remodeling, ischemia or structural brain changes131. This hypothesis appears to be 

consistent with data in our study showing an independent association of WML (a marker of small 

cerebral vessel disease) with raised central PP and AIx in healthy people. Moreover, we show that 

higher Pexcess is related to lower GMV in this population. Pexcess is representative of the excess left 

ventricular work required above the minimum to eject blood into the aorta and the Pexcess waveform 

has been shown to correspond closely with the flow velocity waveform8, 9, 137, 147. Thus one 

interpretation of the association between high Pexcess and low GMV is that greater pressure and/or flow 

transmission from the aorta to the cerebral circulation causes microvascular stress242, unfavorable 

remodeling leading to ischemia131 and neuronal loss. 

 

Despite patients with T2DM being significantly older, of greater BMI and aortic stiffness compared to 

controls, there were no significant differences between the groups in any of the brain volume measures. 

This may be explained by the relatively small sample size or by the relatively younger age and shorter 

duration of T2DM than that of previous studies showing a significant reduction in brain volume 

compared to non-diabetic individuals250, 251. On the other hand WML volume has been shown to not 

differ between patients with T2DM and age and sex matched controls124. Interestingly, the relationship 

between high Pexcess and low GMV was only evident in healthy individuals, whereas adverse structural 

brain changes were more highly related to aortic stiffness in patients with T2DM. These results may be 

influenced by the cross sectional design of the study, but it is also likely that alterations in central 

hemodynamic function associated with T2DM is an explanatory factor. Key differences in patients with 

T2DM compared with healthy individuals were increased aortic stiffness, higher cardiac output (mainly 

due to higher heart rate) and reduced systemic vascular resistance. Increased aortic stiffening has 

previously been described in these patients, and other study samples have observed similar high left 

ventricular flow output, reduced peripheral resistance and different central hemodynamic responses to 

postural stress63, 67. The association between aortic stiffness and brain structural defects has not been 

definitively established in patients with T2DM despite some studies showing evidence for252, however 

also against253, an association with cognitive impairment. Our findings agree with data from patients 

with type 1 diabetes mellitus122 and the general community in which aortic stiffening was 

independently related to brain structural defects131, 249.  

 

We can only speculate as to the possible mechanistic differences between non-diabetic participants 
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and those with T2DM, which may contribute to brain atrophy. During systole, pressure rises due to 

increased aortic inflow relative to outflow9. A proportion of the pressure rise is dispersed via aortic 

reservoir function which is dependent on proximal aortic stiffness and peripheral resistance, both aiding 

in buffering BP fluctuations to allow steady blood flow to the periphery. Aortic reservoir pressure 

integral was not different in those with T2DM compared with healthy controls despite higher cardiac 

output and increased aortic stiffness in the former. This is similar to previous reports whereby patients 

with T2DM were shown to have reduced aortic elastic properties, however, there was no difference in 

aortic energy loss compared to non-diabetic controls254. This implies that the significant reduction in 

systemic vascular resistance in patients with T2DM may be a factor mitigating excessive increases in 

aortic reservoir pressure. Alternatively, or in conjunction, despite some studies showing smaller aortic 

root diameter in patients with T2DM255, aortic diameter could have remodeled to be higher in patients 

with T2DM in the current study, thereby enabling relatively more inflow into the proximal aorta before 

a rise in pressure occurs. Others have suggested that alterations in aortic, rather than carotid arterial 

properties occur in patients with T2DM162, 256. Impedance mismatching between the aortic and carotid 

arteries have previously been associated with increased flow pulsatility in the carotid vasculature and 

may relate to cerebral microvascular remodeling and lower brain volumes131. Similarly, our data 

supports the probability that brain structural defects associated with aortic stiffness in patients with 

T2DM may be the product of excessive transmission of flow (rather than pressure) pulsatility to the 

cerebral circulation. Therapeutic methods (such as weight loss and reductions in insulin) that target 

aortic stiffness257 may, therefore, be beneficial in patients with T2DM. Finally, and in opposition to our 

hypothesis, associations between exercise aortic reservoir characteristics and brain atrophy/WML were 

not enhanced compared to resting data, despite patients with T2DM having exaggerated hemodynamic 

responses indicative of central systolic stress (including increased central PP, AIx and aPWV) 

compared to healthy individuals. This was based on the expectation that moderate exercise (similar to 

ambulatory BP conditions) would be more representative of the chronic hemodynamic loading 

experienced during normal daily activity and, thus, would be more highly related to end organ disease. 

This appears to be relevant to cardiac structure258 and kidney function152 but the lack of relationship 

with brain morphology implies different pathophysiological pathways. 
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Limitations 

The strengths of our study include comprehensive MRI measures and rigorous haemodynamic 

examination at rest and during moderate intensity exercise. Despite finding significant associations 

between central haemodynamic variables and GMV in both patients with T2DM and non-diabetic 

controls, we have performed multiple statistical tests in a relatively small study sample and, 

therefore, further studies in larger samples are required to confirm our results. We did not measure 

aortic root diameter and, therefore, our assumption of aortic dilation cannot be confirmed.  Further,  

Study participants were not told to withhold BP medication as this may have resulted in some 

participants having abnormally high BP readings on the day of testing which is not reflective of their 

normal, controlled state. However, this does mean that haemodynmic data may have been influenced 

by antihypertensive medication in some patients with T2DM but not others. Finally, the cross 

sectional nature of the study limits inference regarding causality. 

 

5.6 Conclusions 

In summary, this is the first study to examine associations between aortic reservoir characteristics and 

brain structure. Our findings suggest that Pexcess may be an important contributor to brain atrophy in 

healthily ageing individuals whereas in patients with T2DM, aortic stiffening may play a more 

prominent role. These findings suggest that there may be different vascular abnormalities 

contributing to brain dysfunction among diabetics compared with non-diabetics. However more work 

is required to determine the underlying central vascular mechanism/s. 

 

5.7 Contribution of Chapter 5 to thesis aims 

Chapter 5 represents the first investigation of central haemodynamics measured in response to light 

to moderate intensity exercise (similar to that of normal daily activity) in patients with T2DM. 

Importantly, this study showed that the central haemodynamic response to exercise is abnormal in 

patients with T2DM and that all central haemodynamic variables indicative of systolic stress 

were elevated compared to non-diabetic individuals. Although exercise central haemodynamics 

were not related to brain structural abnormalities, they may have important ramifications for other 

organ systems, such as the kidneys, the association between which is examined in the next 

chapter. Furthermore, this study was the first to examine the physiological and clinical relevance of 

the aortic reservoir characteristics in patients with T2DM and identified excess pressure as a novel 
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cardiovascular risk marker associated with brain atrophy, above and beyond traditional measures of 

brachial BP. This is important as it suggests that excess pressure may be a useful clinical marker for 

determining risk related to BP in future.  
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Chapter 6. Exercise excess pressure and exercise-induced albuminuria in patients 

with type 2 diabetes mellitus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This chapter has previously been published; 

Climie RED, Srikanth V, Keith LJ, Davies JE, Sharman JE. Exercise excess pressure and exercise-

induced albuminuria in patients with type 2 diabetes mellitus. American Journal of Physiology – 

Heart and Circulatory Physiology, May 2015; 308.9. 
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6.1 Abstract 

Background. Exercise-induced albuminuria is common in patients with type 2 diabetes mellitus 

(T2DM) in response to maximal exercise, but the response to light-moderate exercise is unclear. 

Patients with T2DM have abnormal central haemodynamics and greater propensity for exercise 

hypertension. This study sought to determine the relationship between light-moderate exercise 

central haemodynamics (including aortic reservoir and excess pressure) and exercise-induced 

albuminuria. 

Methods. Thirty-nine T2DM (63±9 years; 49% male) and 39 non-diabetic controls (53±9 years; 51% 

male) were examined at rest and during 20-minutes of light-moderate cycle exercise (30W; 50RPM). 

Albuminuria was assessed by albumin-creatinine ratio (ACR) at rest and 30 minutes post exercise. 

Haemodynamics recorded included brachial and central blood  pressure (BP), aortic stiffness, 

augmentation pressure (AP), aortic reservoir pressure and excess  pressure integral (Pexcess). 

Results. There was no difference in ACR between groups prior to exercise (p>0.05). Exercise 

induced a significant rise in ACR in T2DM but not controls (1.73±1.43 vs 0.53±1.0 mg/mol, 

p=0.002). All central haemodynamic variables were significantly higher during exercise in T2DM 

(i.e. Pexcess, systolic BP and AP; p<0.01 all). In T2DM (but not controls), exercise Pexcess was 

associated with post exercise ACR (r=0.51, p=0.002), and this relationship was independent of age, 

sex, body mass index, heart rate, aortic stiffness, antihypertensive medication and ambulatory daytime 

systolic BP (β=0.003, p=0.003). 

Conclusions. Light-moderate exercise induced a significant rise in ACR in T2DM and this was 

independently associated with Pexcess, a potential marker of vascular dysfunction. These novel 

findings suggest that Pexcess could be important for appropriate renal function in T2DM. 
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6.2 Introduction 

Type 2 diabetes mellitus (T2DM) is associated with maximal exercise-induced albuminuria which may 

be an early marker of diabetic nephropathy259. Vascular risk factors such as hypertension and aortic 

stiffening are associated with renal function and albuminuria under resting conditions in patients with 

T2DM119, 260, 261, however, these risk factors only partly explain the variance in renal function. Patients 

with T2DM are more likely to have increased aortic stiffening, which can limit the buffering capacity 

of large central arteries and is hypothesised to expose the glomerular capillaries to damage from excess 

pulsatile stress. However, to our knowledge this has never been examined. The aortic reservoir-excess 

pressure concept suggests that the measured arterial pressure is the sum of the volume-related reservoir 

pressure (representing the cyclic changes in aortic volume that occur during systole to store blood, and 

during diastole to allow for the discharge of blood from the proximal aorta) and excess pressure, a 

potential marker of vascular dysfunction8, 9, 139, 147. Excess pressure integral (Pexcess) was recently shown 

to predict cardiovascular events and mortality above and beyond common cardiovascular risk 

factors147, with the authors suggesting that higher Pexcess may reflect endothelial and circulatory 

dysfunction. This opens the possibility that Pexcess could have an independent mediatory role on 

cardiovascular related end organ damage.   

 

Moderate intensity exercise blood pressure (BP) measured at a fixed intensity has been shown to have 

stronger prognostic value than resting BP or maximal exercise BP in terms of cardiovascular risk5. This 

is likely because the BP responses to physical activity at moderate intensity are more akin to the 

chronic BP loading that occurs during normal daily activity7. Relative to non-diabetics, patients with 

T2DM have excessive increases in exercise brachial and central BP28, 153 and it has recently been 

shown (in patients undergoing coronary angiography) that the dominant driver of an increase in central 

BP during light-moderate exercise is indeed Pexcess
144. Most studies examining the association between 

exercise-induced albuminuria have been at maximal exercise262-264 and only one has shown that 

albuminuria may be induced by light-moderate treadmill exercise (2.9 to 4.3 average MET consumed 

during the exercise) in patients with T2DM265. However, the relationship between light-moderate 

exercise central hemodynamics and exercise-induced albuminuria in patients with T2DM is yet to be 

elucidated. This current study aimed to determine the association between exercise central 

hemodynamics (including reservoir pressure and Pexcess; measured under a fixed resistance in order to 

mimic a standard light-moderate exercise intensity of normal daily activity) and exercise-induced 
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albuminuria in patients with T2DM. We hypothesised that compared with non-diabetics, exercise-

induced albuminuria would be more pronounced in patients with T2DM and that this response would 

be independently related to exercise Pexcess.  

 

6.3 Methods 

Study participants and protocol 

Eighty consecutive participants from the local community were recruited via advertisements. The 

sample included a group of patients who were otherwise healthy but diagnosed with T2DM 

(n=40) and a group of non-diabetic control participants (n=40). Exclusion criteria included; 

pregnancy, arrhythmia or a clinical history of cardiovascular disease (including coronary artery 

disease, myocardial infarction, heart failure or stroke) or severe pulmonary disease. Aortic reservoir 

data was not available in one patient with T2DM and one healthy participant due to technical 

difficulties, leaving 39 participants for the final analysis in each group. T2DM was determined by 

self-report of previous diagnosis by a physician. Hypertension was defined as clinic brachial BP 

≥140/90 mmHg, self-reported diagnosis by a physician or use of antihypertensive medications. 

 

Participants attended the Menzies Research Institute Tasmania on two occasions. Prior to attendance, 

participants were asked to abstain from smoking, caffeine containing products and consuming heavy 

meals (i.e. were in a post-absorptive state) for a minimum of three hours. Participants were also asked 

to avoid heavy exercise and alcohol consumption 24 hours prior to testing. At visit 1, standard 

questionnaires relating to BP, medical history and physical activity were completed. The amount of 

moderate, vigorous and total physical activity MET minutes per a week the participants engaged in 

was determined as per the international physical activity questionnaire recommendations266. 

Following, anthropometric measures (including height, weight, waist and hip circumference) were 

obtained and resting and exercise haemodynamic data were recorded. A baseline sample of urine was 

provided by each participant (prior to exercise) and at 30 minutes post exercise, based on the data of 

Poortman et al.267 who demonstrated that significant exercise-induced albuminuria can be detectable 

at this time point. Brachial and central BP and large artery stiffness measures were taken sequentially 

at rest and during exercise (semi-recumbent) on a bicycle ergometer at a light-moderate intensity in a 

temperature controlled room (23°C ± 1°C). At visit 2 (within 10 days of visit 1), a blood sample 

was taken following an overnight fast and participants were fitted with a 24 hour ambulatory BP 
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monitoring (24 ABPM) device (TM-2430, A&D Medical, Sydney, Australia). All participants 

provided informed consent and ethical approval was obtained from the University of Tasmania 

Human Research Ethics Committee. 

 

Renal function measures 

Urine samples were analysed for the presence of albumin and creatinine by the Royal Hobart Hospital 

pathology department using standard laboratory techniques as previously reported152. Serum 

creatinine was measured by IDMS-aligned technique to allow for the estimation of the glomerular 

filtration rate (eGFR) by the CKD-Epi eGFR equation. Venous blood samples were taken from the 

antecubital fossa and analysed for plasma glucose, glycated haemoglobin (HbA1c), insulin, total 

cholesterol, high-density lipoprotein and triglycerides using accredited laboratory techniques. 

 

Central haemodynamics 

Central blood pressure 

Following 10 minutes of semi-recumbent supine rest (torso at 45º, head and arm supported) 

central BP was synthesised using radial applanation tonometry and a validated (both at rest and 

during exercise)11 and reproducible248 generalised transfer function (SphygmoCor 8.1, AtCor Medical, 

Sydney, Australia). Augmentation pressure (AP) was calculated from the central pressure waveform 

as the difference in pressure between second and first systolic. 

 

Aortic reservoir and excess pressure 

The ensemble-averaged radial pressure waveforms were separated into reservoir and excess pressure 

using custom MatLab software as previously described147.. All of the reservoir pressures and excess 

pressures are presented with diastolic pressure subtracted. 

 

Aortic stiffness 

Aortic pulse wave velocity (aPWV) was determined using electrocardiogram-gated hand-held 

applanation tonometry (SphygmoCor 8.1) in the right carotid-to-femoral arterial segments as 

previously described10. The average of duplicate measures of aPWV captured during rest and 

exercise was used in the analysis. 

 



 
105 

Non-invasive haemodynamic monitoring 

Cardiac output, stroke volume and systemic vascular resistance were measured using cardiothoracic 

bioimpedance (Physio Flow; Manatec Biomedical; Macheren, France), which has been validated185 

and shown to have good reproducibility at rest and during exercise186. The average of five minutes of 

continuous steady state monitoring at rest and during exercise was analysed offline. 

 

Brachial blood pressure 

Brachial BP was recorded as the average of duplicate measures taken prior to central BP 

measurements and by a validated automatic device (Omron HEM-907 Hoofddorp, The 

Netherlands)183 using an appropriately sized cuff as per recommendations. Exercise brachial BP was 

measured using a validated mercury free sphygmomanometer and auscultation technique (UM-101, 

A&D Medical, Tokyo, Japan) to minimise potential error due to movement artifact. 

 

Exercise protocol 

Following resting measurements, the participant remained in the semi-recumbent position and a 

bicycle ergometer (Rehab Trainer 881, MONARK Exercise AB, Vansbro, Sweden) was attached to 

the end of the bed. Exercise was commenced with two-legged cycling. Participants were 

instructed to gradually increase cadence until plateauing at 50 revolutions per minute. At the same 

time, resistance was progressively increased to 30 watts and participants maintained this exercise 

until a steady state heart rate was achieved after approximately 2-5 minutes. This exercise intensity 

equated to an average of approximately 55% of age predicted maximum heart rate for all participants. 

In order to record all waveforms of sufficient quality during exercise, the tonometry method was 

modified as follows; once the participant reached a steady state heart rate, they were asked to increase 

the revolutions per minute in order to increase heart rate by approximately 10 beats per minute. 

Once the desired heart rate was reached, the investigator located the carotid or radial arterial 

pulse and the participant was instructed to stop pedaling while the waveform was captured, during 

this time the participant’s heart rate had returned to a rate similar to the steady state. During femoral 

tonometry, once the desired heart rate of 10 beats per minute above steady state had been reached, the 

participant was told to stop exercise and remove their right leg from the cycle ergometer and lay it 

horizontally on the bed whereupon the investigator recorded the arterial pulse waveform (from the 

femoral pulse site). 
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Statistical analysis 

Continuous variables were analysed using independent t-tests and a repeated measures analysis of 

variance (ANOVA), and categorical variables were analysed by Chi-square test for independence. 

To assess the relationships between variables, Pearson’s correlations and multivariable linear 

regression analyses were performed. Independent variables known (including age, sex and body 

mass index [BMI]) or suspected (24 ABPM daytime systolic BP, antihypertensive medication, 

blood glucose, HbA1c, aPWV and heart  rate) to contribute to the variance in post exercise ACR 

were added separately into the regression models, which were performed separately for patients with 

T2DM and non-diabetic participants. The accuracy of Pexcess to predict an increase in ACR following 

exercise was evaluated with the use of receiver operator characteristics. Z statistic scores were 

calculated to compare the regression slopes obtained from within-group correlations. We also 

tested for an interaction between T2DM and Pexcess by assessing the coefficient of the product term 

in the multivariable analysis. All data were analysed using SPSS for Windows software version 

19.0 (IBM SPSS Statistics, New York, USA) and p<0.05 was considered statistically significant. We 

recruited 40 participants for each group based on previous reproducibility work248 whereby we 

determined that a between-group difference of 10 mmHg in central SBP could be detected in 36 

participants per group (α=0.05 and β=0.20). 

 

6.4 Results 

Study participant characteristics 

The study participant baseline characteristics are shown in table 6.1. Compared with non- diabetic 

controls, patients with T2DM were older and had higher BMI. There was no difference between 

the groups in 24 ABPM systolic BP, but 24 ABPM diastolic BP was significantly lower in patients 

with T2DM. Patients with T2DM were more likely to have hypertension and hyperlipidaemia and had 

significantly higher blood glucose, but significantly lower total cholesterol and high-density 

lipoprotein cholesterol. Over half of the patients with T2DM were receiving medication for 

hypertension (mean number of medications 2±2), hyperlipidaemia and hyperglycaemia. 
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Renal function and albuminuria 

Table 6.2 summarises the difference in renal function measures between the patients with T2DM and 

non-diabetics prior to and post exercise. Albumin measured prior to exercise was undetectable in 16 

patients with T2DM and 11 non-diabetic participants and in 18 patients with T2DM and 29 non-

diabetics following exercise. Where albumin was undetectable in study participants (indicating 

normal renal function in relation to albuminuria) a ‘0’ value was allocated for the analysis. Prior to 

exercise, patients with T2DM had significantly lower eGFR (CKD-Epi eGFR) compared to non-

diabetic participants, but there was no difference between the groups in all other variables (p>0.05 

for all). Following exercise, patients with T2DM had significantly increased urinary albumin and 

ACR compared to non- diabetic participants, and the difference in ACR measured prior to and post 

exercise was significantly higher in patients with T2DM. The increase in ACR was due to a slight 

but non- significant decrease from rest to exercise in urinary albumin in patients with T2DM 

(2.11±2.08) compared to a slightly greater decrease in non-diabetic controls (5.53±3.37, p=0.32 for 

between group difference in change). At the same time there was a decrease in urinary creatinine in 

both patients with T2DM and non-diabetic participants (2.14±0.14, 4.29±2.78 respectively, p=0.06 for 

between group difference in change). These findings were similar whether the data was analysed using 

a t test or a repeated measures ANOVA.  
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Table 6.1. Study participant baseline characteristics. 
 

 T2DM Non-diabetic P value 

 (n=39) (n=39)  

Male, n (%) 19 (49) 19 (49) 0.75 

Age (years) 63±9 53±9 <0.001 

Body mass index (kg/m2) 30.5±4.8 24.9±3.3 <0.001 

Waist-hip (ratio) 0.9±0.1 0.8±0.1 <0.001 

24 hour ambulatory systolic blood pressure (mmHg) 135±13 130±12 0.12 

24 hour ambulatory diastolic blood pressure (mmHg) 75±8 79±6 0.02 

Day-time ambulatory systolic blood pressure (mmHg) 140±15 137±13 0.32 

Night-time ambulatory systolic blood pressure (mmHg) 121±13 113±11 0.002 

Hyperlipidaemia (%) 26 (67) 10 (26) 0.001 

Normotensive, n (%) 15 (38) 30 (77) <0.001 

Current smoker, n (%) 3 (8) 4 (10) 0.67 

Time since diagnosis of T2DM (years) 6±6 - - 

Blood biochemistry    

Glucose (mmol/L) 7.5±1.8 4.7±0.5 <0.001 

Glucose ≥ 7.0 mmol/L, n (%) 13 (33) 0 (0) <0.001 

Glycated haemoglobin (%) 7.2±0.8 5.5±0.6 <0.001 

Insulin (IU/mL) 10.2±8.7 2.5±4.6 <0.001 

Total cholesterol (mmol/L) 4.4 ±1.0 5.4±1.03 <0.001 

High density lipoprotein cholesterol (mmol/L) 1.3±0.4 1.7±0.4 <0.001 

Triglycerides (mmol/L) 1.5±0.7 1.02±0.5 0.001 

Medications    

Antihypertensive medications, n (%) 25 (64) 0 (0) <0.001 

Angiotensin-converting-enzyme inhibitor, n (%) 8 (21) 0 (0) 0.003 

Angiotensin receptor blocker, n (%) 16 (41) 0 (0) <0.001 

Beta-blocker, n (%) 3 (8) 0 (0) 0.07 

Calcium antagonist, n (%) 9 (23) 0 (0) 0.001 

Diuretic, n (%) 6 (15) 0 (0) 0.01 

Statin, n (%) 26 (67) 0 (0) <0.001 

Diabetic medication, n (%) 28 (72) 0 (0) <0.001 

Oral hypoglycemic medications, n (%) 27 (69) 0 (0) <0.001 

Insulin, n (%) 5 (13) 0 (0) <0.001 

Physical activity    

Moderate activity (MET minutes/week) 718±1109 610±800 0.62 

Vigorous activity (MET minutes/week) 903±1391 1001±1427 0.76 

Total (MET minutes/week) 2534±2532 2677±2288 0.79 

Data expressed as mean ± standard deviation or %. T2DM, type 2 diabetes mellitus. P value is 

for between group analyses. 
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Table 6.2. Differences in renal function measures between patients with type 2 diabetes mellitus 

(T2DM) and non-diabetic participants prior to and post exercise. 

 T2DM 

(n=39) 

Non-diabetic 

(n=39) 

P value 

Prior to exercise    

Plasma urea (mmol/L) 6±2 6±1 0.13 

Plasma creatinine (μmol/L) 76±18 75 ±13 0.87 

*Urine albumin (mg/L) 8.54±10.97 7.92±7.67 0.78 

Urine creatinine (mmol/L) 8.11±4.02 9.24±6.07 0.34 

Albumin creatinine ratio 0.87±1.09 0.90±1.30 0.95 

CKD-Epi estimated glomerular filtration rate 94±11 100±8 0.01 

Post exercise    

*Urine albumin (mg/L) 6.43±8.89 2.39±4.30 0.014 

Urine creatinine (mmol/L) 5.97±4.16 4.95±3.29 0.23 

Albumin creatinine ratio 1.73±1.43 0.53±1.0 0.002 

Albumin creatinine ratio 

(post exercise minus prior to exercise) 

0.15±1.04 -0.49±1.16 0.014 

Data expressed as mean ± standard deviation. P value is for between group analyses. 

*Albumin measured prior to exercise was undetectable in 16 patients with T2DM and in 

11 non-diabetic participants and in 18 patients with T2DM and in 29 non-diabetic participants  

following exercise. 

 

Resting haemodynamics 

Central haemodynamics including systolic BP, pulse pressure and AP were all significantly 

elevated in patients with T2DM compared to non-diabetics (table 6.3). Peak reservoir pressure, peak 

excess pressure and Pexcess were all significantly higher in patients with T2DM compared to non-

diabetic participants. aPWV, heart rate and cardiac output were all significantly elevated in patients 

with T2DM, however, systemic vascular resistance was significantly lower compared to non-diabetic 

participants (p<0.05 for all, table 6.3). Brachial systolic BP, diastolic BP and pulse pressure were all 

significantly higher in patients with T2DM (p<0.05 for all). 
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Exercise haemodynamics 

During exercise, central systolic BP, pulse pressure and AP were all significantly higher in patients 

with T2DM. Peak excess pressure and Pexcess were both significantly elevated in patients with T2DM, 

as were aPWV and heart rate (p<0.05 for all, table 6.3). Additionally, patients with T2DM had 

significantly higher exercising brachial systolic BP and pulse pressure (p<0.05 for all). 

 

Association between resting haemodynamics and albuminuria (ACR) 

At rest in patients with T2DM, aPWV was significantly associated with resting ACR (r=0.39, 

p=0.019). After adjusting for covariates (age, sex, BMI, 24 ABPM daytime systolic BP) the 

relationship between aPWV and resting ACR no longer remained (table 6.4). There were no 

significant associations between brachial or central haemodynamics in non-diabetics at rest and 

resting ACR (p>0.05 all). 
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Table 6.3. Haemodynamic differences between patients with type 2 diabetes mellitus (T2DM) and non-diabetic participants at rest 

and during a bout of light-moderate intensity exercise. 

  Rest   Exercise  

 T2DM (n=39) Non-diabetic 

(n=39) 

P value T2DM 

(n=39) 

Non-diabetic 

(n=39) 

P value 

Central systolic blood pressure (mmHg) 115±12 103±10 <0.001 132±14 114±12 <0.001 

Central pulse pressure (mmHg) 45±9 37±5 <0.001 53±11 39±7 <0.001 

Augmentation pressure (mmHg) 13±5 8±5 <0.001 9±6 4±4 <0.001 

Peak reservoir pressure (mm Hg) 35±8 32±4 0.011 18±10 14±5 0.14 

Reservoir pressure integral (Pa/s) 1897±536 1888±370 0.93 793±484 676±267 0.32 

Peak excess pressure (mmHg) 35±9 30±4 0.003 74±16 58±12 <0.001 

Excess pressure integral (Pa/s) 636±197 492±96 <0.001 1671±465 1272±467 <0.001 

Aortic pulse wave velocity (m/s) 8.0±2.1 6.3±1.4 <0.001 9.7±2.1 7.1±1.4 <0.001 

Heart rate (bpm) 64±8 58±8 0.001 92±12 86±11 0.050 

Cardiac output (L/min) 5.4±1.01 4.5±0.7 <0.001 8.3±1.5 7.9±1.3 0.23 

Stroke volume (mL) 83±113 79±14 0.13 91±13 92±14 0.62 

Systemic vascular resistance (d/s/cm-5) 1361±243 1504±260 0.015 1003±200 980±156 0.57 

Brachial systolic blood pressure (mmHg) 125±13 114±9 <0.001 155±17 135±14 <0.001 

Brachial diastolic blood pressure (mmHg) 69±8 65±6 0.028 77±9 74±8 0.094 

Brachial pulse pressure (mmHg) 56±11 49±5 <0.001 78±15 61±10 <0.001 

Data expressed as mean ± standard deviation. P value is for between group analyses. 
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Table 6.4. Multivariable analysis of the relationships between albumin creatinine ratio measured prior to and post exercise and 

haemodynamic variables in patients with type 2 diabetes mellitus (T2DM) and non-diabetic participants. 

  T2DM (n=39)  Non-diabetic (n=39) 

 Independent variable β (95% CI) P value β (95% CI) P value 

Prior to exercise      

Albumin creatinine ratio Aortic pulse wave velocity (m/s) 0.081 (-0.079, 0.241) 0.069 -0.080 (-0.454, 0.293) 0.93 

Post exercise      

 Excess pressure integral (Pa/s) 0.003 (0.001, 0.004) 0.001 0.000 (-0.004, 0.003) 0.60 

 Peak excess pressure (mm Hg) 0.030 (-0.020, 0.080) 0.22 -0.039 (-0.147, 0.070) 0.47 

 Central systolic blood pressure 

(mm Hg) 

  -0.003 (-0.115, 0.110) 0.63 
 0.023 (-0.028, 0.074) 0.27   

Albumin to creatinine ratio     

 Cardiac output (L/min) 0.262 (-0.158, 0.682) 0.204 -0.044 (-0.799, 0.711) 0.62 

 Brachial systolic blood pressure 

(mm Hg) 

  -0.022 (-0.118, 0.074) 0.56 
0.026 (-0.014, 0.065) 0.19   

 Brachial pulse pressure (mm Hg) 0.027 (-0.024, 0.078) 0.24 -0.065 (-0.193, 0.063) 0.34 

Albumin to creatinine ratio Excess pressure integral (Pa/s) 0.001 (0.000, 0.002) 0.034 004-3 (-0.001, 0.001) 0.99 

(post exercise minus prior to 

exercise) 

   0.068 (-0.27, -0.0408) 0.99 
Cardiac output (L/min) 0.262 (0.003, 0.521) 0.27   

β refers to unstandardised beta coefficient for the independent variable; CI, confidence interval. P value relates to the independent 

variable in the model. All models adjusted for age, sex, body mass index and ambulatory daytime systolic blood pressure. 



 
112 

Association between exercise haemodynamics and exercise-induced albuminuria (ACR) 

Following exercise, in patients with T2DM but not non-diabetic controls, exercising central systolic 

BP (r=0.33, p=0.043), Pexcess (r=0.51, p=0.002), peak excess pressure (r=0.38, p=0.022), stroke 

volume (r=0.40, p=0.014), cardiac output (r=0.45, p=0.005), brachial systolic BP (r=0.36, p=0.026) 

and pulse pressure (r=0.34, p=0.035), but not aPWV (r=0.12, p=0.45), were significantly associated 

with post exercise ACR. Additionally, Pexcess and cardiac output in patients with T2DM were 

significantly associated with the difference between ACR measured prior to and post exercise 

(r=0.44, p=0.008 and r=0.39, p=0.026 respectively). After adjusting for the same covariates as at 

rest, the only independent predictor of post exercise ACR in patients with T2DM was Pexcess (table 

6.4). After further adjusting for the use of antihypertensive medication, blood glucose or HbA1c 

level, the association between Pexcess and post exercise ACR in patients with T2DM remained 

unchanged (β=0.003, 95%CI 0.001 to 0.004, p=0.001). Adjusting for aPWV or heart rate did not 

attenuate the association between Pexcess and post exercise ACR in patients with T2DM (β=0.003, 

95%CI  0.001  to  0.004,  p=0.003  and  β=0.003,  95%CI  0.001  to  0.004, p=0.001 respectively) 

and Pexcess remained independently associated with  post exercise ACR in patients with T2DM after 

adjusting for exercise systolic BP and also the change from rest to exercise in systolic BP 

(β=0.002, 95%CI 0.001 to 0.004, p=0.002 and β=0.003, 95%CI 0.001 to 0.004, p=0.002 

respectively). Furthermore, Pexcess remained an independent predictor of the change in ACR from 

prior to post exercise. There were no significant associations between post exercise ACR and 

exercise brachial or central haemodynamics in non-diabetics. Individuals who had a high Pexcess 

response during exercise (defined as ≥1439 Pa/s which was the median Pexcess) were more likely to 

have T2DM (n=27 vs n=12, p<0.001), were of older age (60±8 vs 55±10 years, p=0.007), had 

greater BMI (29.2±5.5 vs 26.2±4.0 kg/m2, p=0.008), higher blood glucose (6.6±1.9 vs 5.4±1.7 

mmol/L, p=0.008) and HbA1c levels (6.6±1.0 vs 6.0±1.0%, p=0.012) compared to individuals 

who had an exercise response below the median. A Pexcess value of 1227 Pa/s predicted an increase 

in ACR from rest to exercise with 80% sensitivity and 60% specificity (AUC = 0.677; p=0.019). Z 

statistic scores were calculated to compare the correlation coefficients of haemodynamic variables 

and ACR between patients with T2DM and non-diabetics. There was a significant difference in 

the strength of the relationship between exercise Pexcess and post exercise ACR in patients with 

T2DM compared with non-diabetics (Z statistic=2.85, p=0.007; figure 6.1). There was no 

significant interaction between the groups and Pexcess in predicting ACR (p>0.05 for product term). 
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Figure 6.1. Association between albumin to creatinine ratio measured post exercise and excess 

pressure integral (Pexcess) during exercise in patients with type 2 diabetes mellitus (open circles; 

r=0.510, p=0.002, n=39) and non-diabetic participants (solid circles; r=0.220, p=0.18, n=39). 

The correlation in patients with T2DM was stronger than for non-diabetic participants (Z 

statistic=2.85, p=0.007). 

 

6.5 Discussion 

In this study we have shown that 1) a bout of light-moderate intensity exercise induced a 

significant rise in ACR only in patients with T2DM; 2) central  (not brachial) haemodynamics, 

specifically Pexcess, was independently associated with exercise-induced albuminuria in patients 

with T2DM and, importantly, this association remained after correction for other variables known 

to be associated with end organ damage including age, BMI and 24 ABPM; 3) the association 

between Pexcess and exercise-induced albuminuria was only evident under light-moderate intensity 

exercise, not resting conditions. These novel findings suggest that Pexcess, a new marker 

representing vascular dysfunction, may be important for appropriate renal function in patients with 

T2DM, especially under the haemodynamic load induced by low level exercise similar to normal 

daily activities. 

 

Altered central hemodynamics, flow wave patterns and albuminuria 

Several investigations of subjects studied under resting conditions have reported an association 

between increased aortic stiffness and albuminuria, independent from brachial BP268-270. 
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Observations such as this have led to the hypothesis that stiffening of the large central vasculature 

enhances transmission of pulsatile pressure43 and/or flow energy to the peripheral microvasculature 

resulting in end organ injury. Indeed, data from Hashimoto and Ito271 suggest that increased aortic 

stiffness may disturb femoral blood flow patterns, firstly by decreasing the normal diastolic flow 

reversal thought to be needed for appropriate circulation to the truncal organs, but also by reducing 

forward flow to the lower extremities. These investigators also demonstrate that femoral flow wave 

abnormalities are related to adverse renal artery hemodynamics, which in turn explained higher 

levels of urinary albumin excretion, even after correction for well known risk factors133. In the 

current study, patients with T2DM had significantly higher aPWV (stiffness) and central pulse 

pressure, both at rest and during exercise, but neither of these factors were related to ACR. This 

disparity is probably due to different study designs and patient populations.  

 

In the current study, we found that Pexcess (specifically measured under the stress induced by 

exercise) was the only significant predictor of exercise-induced albuminuria in patients with T2DM. 

Although speculative, a stiffened aorta (as observed in our patients with T2DM) may result in an 

increase in left ventricular work and a subsequent elevation in Pexcess, ultimately leading to greater 

transmission of pulsatile stress towards the periphery, which may disrupt renal hemodynamics and 

induce a rise in albumin excretion. Indeed, when the normal ‘reservoir’ function of the aorta is less 

than optimal (i.e. due a reduction in vessel compliance) there must be an increase to left ventricular 

work and excess pressure in order to overcome the resistance caused by the stiffened aorta. 

However, reservoir pressure is influenced not only by aortic compliance, but also by resistance 

from the peripheral circulation, which probably has greater impact on ‘discharge’ of the reservoir 

during diastole139. Combined with systemic vasodilation (demonstrated in this study by a reduction 

in systemic vascular resistance in both non-diabetic participants and patients with T2DM during 

exercise), the increased excess pressure associated with light-moderate exercise may be transmitted 

with higher energy from the large vessels to the microcirculation. As Pexcess is also analogous to 

flow output into the aorta8, our data appears to conform with the ‘flow hypothesis’ which suggests 

that increased flow pulsation may extend into the renal microvasculature and cause excessive cyclic 

shear stress and eventual glomerular dysfunction134, 272.  

 

Hashimoto et al.133 showed that the renal resistive index is inversely associated with renal diastolic 

flow (and femoral reverse flow) and resulted in reduced renal flow throughout diastole. This may 

align with the findings of the current study, whereby in patients with T2DM who not only have 

reduced ‘reservoir’ function but also higher heart rates (both at rest and during exercise and thus 
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shortened cardiac cycle time; predominantly affecting the diastolic phase), there will be less aortic 

recoil and discharge of blood from the proximal aorta to the distal vasculature, and thus normal 

blood flow throughout diastole will be reduced8. Our findings support the notion that a reduction in 

reservoir pressure from rest to exercise in both groups could give rise to a large majority of the 

arterial pressure wave, which is attributable to Pexcess as shown previously8, 144 and a resultant 

increase in pulsatile pressure and/or flow throughout systole. Taken together, our findings imply 

that abnormalities in the aortic reservoir and excess pressure components of the pressure wave and 

the relative increase in systolic flow and decrease in diastolic flow may play a role in impaired renal 

flow hemodynamics and end organ damage.  

 

Exercise central hemodynamics and albuminuria. It is worth noting that central hemodynamics 

(Pexcess) measured during light-moderate intensity exercise, but not at rest, were related to ACR, and 

this was independent of BP. To our knowledge, only one study has reported the association between 

exercise hemodynamics to exercise-induced albuminuria in patients with T2DM, showing that 

maximal exercise systolic BP was associated with exercise-induced albumin excretion264. The rise 

in noradrenalin that occurs during exercise may partially explain the increase in permeability of the 

glomerular membrane and increased urinary albumin excretion, a mechanism that may be reversed 

by sympathetic nerve inhibition267. Based on our findings under light-moderate exercise conditions, 

it is possible that patients with T2DM with an elevated central BP (and Pexcess) response may be 

exposed to pronounced stress-induced hemodynamic changes during normal daily activity that 

allow for the transmission of excessive pressure to the microcirculation and ensuing susceptibility 

towards renal dysfunction. Having said this, the cross sectional design of this study limits inference 

regarding causality. 

 

Limitations 

Only one urine sample was taken at 30 minutes post exercise. The rationale for choosing 

this time point was based on previous literature showing that there is a significant increase in 

urine albumin excretion occurring 30 minutes following exercise267, but the lack of multiple 

urine measures (considered a priori to be less feasible than one discrete sample) could have 

led to the peak ACR response being missed in some individuals. Multiple urine samples would 

also have provided more precise information on the integrated (area under the curve) exposure of 

haemodynamic renal damage from exercise. In a number of participants we were unable to detect a 

measureable level of urinary albumin following exercise (indicating that these participants had 

normal renal function in response to light-moderate intensity exercise) and therefore, this reduced 
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the sample size of participants with detectable albumin values and could have led to a type 2 error. 

That said, despite the small sample size we were still able to detect significant changes in renal 

function in response to exercise, which provides sound rationale for examining the underlying 

mechanisms in larger cohort studies. A further limitation is that all participants, irrespective of 

their age or disease status, exercised at the same intensity. The reason for using a set resistance 

protocol was to achieve a fixed light-moderate intensity exercise that approximated the intensity 

regularly achieved during daily activity. This approach is more generalisable to clinical exercise 

stress testing which is performed at fixed intensities. Finally, due to the cross sectional design 

we are unable to determine the degree to which chronic exposure to conventional risk factors may 

explain the abnormal kidney function response to exercise in patients with T2DM. 

 
6.6 Conclusions 

This is the first study to examine the association between exercise central haemodynamics and 

exercise-induced albuminuria in patients with T2DM. Our findings show that a bout of light-

moderate exercise, similar to that of normal daily activity, induced albuminuria in patients with 

T2DM. Current guidelines for assessing urinary albumin in patients with T2DM suggest avoiding 

heavy exercise within the 24 hours prior to assessment273. However, our findings suggest that 

urinary albumin should be measured well clear of light to moderate physical activity as well, in 

patients with T2DM. Alternatively, our findings show that the modality of exercise may reveal 

renal abnormalities in patients with T2DM that are not evident at rest, however, further 

longitudinal studies are required to confirm this. Additionally, Pexcess, a marker of possible 

vascular dysfunction, may be important for appropriate renal function in this population. Given 

the increased risk of albuminuria and renal dysfunction in patients with T2DM, more work is 

required to determine the exact underlying vascular mechanism contributing to such 

abnormalities and the implications of light to moderate exercise prior to a spot urine test in this 

population. 

 

6.7 Contribution of Chapter 6 to thesis aims 

The results from the study presented in Chapter 6 showed, for the first time, that light to moderate 

intensity exercise can induce albuminuria in patients with T2DM. This is important, as until now, 

previous studies have only measured albuminuria in response to maximal intensity exercise. These 

findings suggest that exercise at a similar intensity to that of normal daily activity, can induce this 

abnormal renal state in patients with T2DM. Therefore, light to moderate intensity exercise may 

be a useful tool to unmask renal abnormalities in patients with T2DM. Chapter 6 also 
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demonstrated that exercise central haemodynamics, in particular excess  pressure, were related to 

exercise-induced albuminuria in patients with T2DM, independently of resting brachial BP. This 

is inline with the findings from Chapter 5 and provides further support for excess pressure as a 

potential marker of increased cardiovascular risk. Furthermore, the findings from this study 

suggest that central haemodynamics measured in response to light to moderate intensity exercise 

may provide pathological insights above and beyond resting clinic measures of brachial BP. 

 

The findings from the studies presented in Chapters 3, 5 and 6 highlight that patients with T2DM 

have abnormal central haemodynamics compared to their non-diabetic counterparts, which may 

influence the accuracy of clinical methods including the estimation of central BP non-invasively. 

Therefore, in Chapter 7, the effect of these haemodynamic abnormalities on the accuracy of 

central BP determined via radial applanation tonometry (the most widely utilised non-invasive 

method during the candidature) is examined. 
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Chapter 7. Brachial-to-radial systolic blood pressure amplification in patients 

with type 2 diabetes mellitus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has previously been published; 

Climie RED, Picone DS, Keske MA, Sharman, JE. Brachial-to-radial systolic blood pressure 

amplification in patients with type 2 diabetes mellitus. Journal of Human Hypertension, October 

2015; 10.1038/jhh.2015.101 

 

Chapter 7 formed part of a larger study for which 40 healthy younger participants and 40 older 

participants (20 patients with type 2 diabetes mellitus and 20 non-diabetic, healthy controls) were 

recruited. The findings from the study in the healthy participants are presented in Appendix I. In 

this larger study, the effect of light to moderate intensity exercise on brachial to radial systolic 

blood pressure amplification in patients with type 2 diabetes mellitus and non-diabetic controls was 

also examined. This data was not included in the final submitted paper (Chapter 7) but is presented 

in Appendix II. 
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7.1 Abstract 

Background. Brachial-to-radial-systolic blood pressure amplification (Bra-Rad-SBPAmp) can affect 

central SBP estimated by radial tonometry. Patients with type 2 diabetes mellitus (T2DM) have 

vascular irregularities that may alter Bra-Rad-SBPAmp. By comparing T2DM to non-diabetic 

controls, we aimed to determine the 1) magnitude of Bra-Rad-SBPAmp; 2) hemodynamic factors 

related to Bra-Rad-SBPAmp; and 3) effect of Bra-Rad-SBPAmp on estimated central SBP.  

Methods. Twenty T2DM (64±8 years) and 20 non-diabetic controls (60±8 years; 50% male both) 

underwent simultaneous cuff deflation and two-dimensional ultrasound imaging of the brachial and 

radial arteries. The 1st Korotkoff sound (denoting SBP) was identified from the first inflection point 

of Doppler flow during cuff deflation. Bra-Rad-SBPAmp was calculated by radial minus brachial 

SBP. Upper limb and systemic hemodynamics were recorded by tonometry and ultrasound.  

Results. Radial SBP was higher than brachial SBP for T2DM (136±19vs127±17mmHg; p<0.001) 

and non-diabetic controls (135±12vs121±11mmHg; p<0.001), but Bra-Rad-SBPAmp was 

significantly lower in T2DM (9±8vs14±7mmHg, p=0.042). The product of brachial mean flow 

velocity*brachial diameter was inversely and independently correlated with Bra-Rad-SBPAmp in 

T2DM (β=-0.033 95% CI-0.063 to -0.004, p=0.030). When radial waveforms were calibrated using 

radial, compared with brachial SBP, central SBP was significantly higher in both groups (T2DM; 

116±13vs125±15mmHg and controls; 112±10vs124±11mmHg, p<0.001 both) and there was a 

significant increase in the number of participants classified with ‘central hypertension’ (SBP>130 

mmHg; p=0.004).  

Conclusions. Compared with non-diabetic controls, Bra-Rad-SBPAmp is significantly lower in 

T2DM. Regardless of disease status, radial SBP is higher than brachial SBP and this results in 

underestimation of central SBP using brachial-BP-calibrated radial tonometry. 
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7.2 Introduction 

Central blood pressure (BP) indices are predictive of cardiovascular events and all-cause mortality 

above and beyond brachial BP33, 274. Accumulating evidence suggests that central BP could be 

useful in routine clinical management of hypertension275-277. The most accurate measurement of 

central BP is obtained invasively, however, this is not suitable for routine use. The most common 

non-invasive method to estimate central BP to date has been radial applanation tonometry10. Using 

this method, the radial pressure waveform is calibrated with brachial systolic BP (SBP) and 

diastolic BP, and a generalised transfer function applied to synthesise the central (ascending aortic) 

waveform10, 11. This method relies on the assumption of minor differences in SBP from the brachial 

to the radial artery278. However, we recently found major brachial-to-radial SBP amplification (Bra-

Rad-SBPAmp) in healthy older people, with wide inter-individual variation (range from 3 to 27 

mmHg)279. Other studies confirm that significant Bra-Rad-SBPAmp is likely to be a common 

finding178, 280-283. Importantly, Bra-Rad-SBPAmp contributes to underestimation of central SBP using 

radial applanation tonometry173, 178, 279, and this could result in misclassification of individual risk 

based on central hypertension thresholds42. 

 

Inter-individual differences in Bra-Rad-SBPAmp may be influenced by disease related changes in 

arterial structure and function. Patients with type 2 diabetes mellitus (T2DM) have cardiovascular 

irregularities including increased cardiac output (predominantly due to increased heart rate but also 

stroke volume)63, increased central and peripheral46 large artery stiffness, reduced systemic vascular 

resistance63, adverse structural remodeling of the peripheral arterioles49, 67 and impaired nitric oxide 

mediated endothelial function284. Abnormalities such as these could impact on the magnitude of 

Bra-Rad-SBPAmp which could in turn affect the accuracy of central BP estimated using brachial BP-

calibrated radial tonometry, but whether this amplification is different in patients with T2DM 

compared to non-diabetic controls is unknown. The aims of this study were to determine the: 1) 

magnitude of Bra-Rad-SBPAmp; 2) hemodynamic factors related to Bra-Rad-SBPAmp and; 3) effect 

of Bra-Rad-SBPAmp on estimated central SBP in patients with T2DM compared to healthy age-

matched non-diabetic controls. 
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7.3 Methods 

Study participants.  

Twenty patients with T2DM and 20 non-diabetic controls were consecutively recruited from the 

community via advertisements. Exclusion criteria included pregnancy, arrhythmia (due to affecting 

the quality of the waveforms captured), clinical history of cardiovascular disease (including 

coronary artery disease, myocardial infarction, heart failure or stroke), or severe pulmonary disease. 

The presence of T2DM was determined by self-report of previous diagnosis by a physician. 

Hypertension was defined as clinic brachial BP ≥140/90 mmHg or self-reported diagnosis by a 

physician, or use of antihypertensive medications. All participants signed informed consent and the 

study was approved by the University of Tasmania Human Research Ethics Committee. 

 

Study protocol. 

The study protocol has previously been described elsewhere279. Briefly, each participant attended 

the testing laboratory on one occasion. Participants were asked to refrain from vigorous exercise for 

the 24 hours prior to their visit; avoid alcohol consumption on the day; and to fast and refrain from 

caffeine and cigarettes three hours prior to their appointment. Participants on medications 

maintained their normal treatment schedule on the study day. Standard anthropometric 

measurements (including height, weight, waist and hip circumference) were recorded. All 

hemodynamic data were collected with the participant in a semi-recumbent position (with the upper 

section of the bed elevated so that the head and torso were at a 45 degree angle) and the arm 

supported at the level of the heart. At the completion of the study, participants completed a standard 

questionnaire relating to BP and medical history and were fitted with a validated285 oscillometric 24 

hour ambulatory BP monitor (TM-2430, A&D Medical, Sydney, Australia) which measured 

brachial BP every 20 minutes during the day and 30 minutes during the night.  

 

Bra-Rad-SBPAmp.  

After 10 minutes of rest, six measures of brachial and radial SBP (three at each site) were measured 

sequentially (approximately 45 seconds apart), in random order, using the same arm for brachial 

and radial SBP measurements. Appropriately sized cuffs were placed on the upper arm (~7cm 

above the antecubital fossa) and forearm (~7cm above the anatomical snuff box) of the participant 

to measure brachial and radial SBP respectively. SBP was identified during BP cuff deflation from 

the first inflection point of Doppler flow (Figure 1) and the audible Doppler signal (denoting SBP) 

286. When the first Doppler flow inflection (and audible signal) during cuff deflation was observed, 

SBP was recorded as the value displayed on the sphygmomanometer; a validated mercury-free 
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device (UM-101, A&D Medical, Tokyo, Japan)287. We could not identify diastolic BP using the 

Doppler flow signal and accurate auscultation was not possible at the radial artery. We assumed 

brachial diastolic BP was equal to radial diastolic BP, based on previous data that shows diastolic 

BP remains consistent throughout the arterial system (within 1-3 mmHg)74. This resulted in the 

magnitude of Bra-Rad-SBPAmp being equivalent to pulse pressure amplification; therefore, we only 

reported the former. The BP operator was blinded to the ultrasound measurement site by a partition 

screen that blocked the view of the participant’s arm and the arterial image on the ultrasound 

screen, but permitted sight of the Doppler flow signal and the sphygmomanometer to allow SBP to 

be determined. Bra-Rad-SBPAmp was calculated as radial minus brachial SBP. We tested the 

validity of this method of determining SBP from the Doppler flow by comparing brachial SBP 

obtained by auscultation with brachial SBP obtained from the Doppler flow in all participants. 

There was strong agreement between measures (intraclass correlations [ICC] r=0.963, p<0.001 and 

mean difference = -0.10 ± 3.38 mmHg, p=0.85). The reproducibility of the brachial and radial SBP 

obtained from the Doppler flow was tested in a subset of 10 participants who completed an 

additional assessment within 5 ± 2 days of their initial assessment. The between-visit ICC were 

r=0.944 for brachial SBP and r=0.937 for radial SBP (p<0.001 both) and the mean differences 

between visits were 1 ± 5 mmHg, p=0.45 and -1 ± 6 mmHg, p=0.72 for brachial and radial SBP 

respectively.  

 

Arterial diameter and blood flow velocity  

Brachial and radial arterial imaging was performed using a two dimensional ultrasound (Philips 

iU22, Philips Healthcare, Bothell, WA, USA) with a linear-array transducer with a transmission 

frequency of 12-5 MHz and arterial diameters were analysed offline, using QLAB software (figure 

7.1). Brachial and radial artery mean blood flow velocities were recorded by Doppler ultrasound 

with the same Philips device and the average of 10 heart beats was used for analysis. The difference 

between brachial and radial mean flow velocity was determined by brachial minus radial flow 

velocity. Exploratory variables such as brachial mean flow velocity x brachial diameter were 

derived based on sound physiological rationale (including patients with T2DM having increased 

flow output and reduced vascular resistance compared to their non-diabetic counterparts63), which 

may explain any observed differences in Bra-Rad-SBPAmp between the groups.” 

 

Brachial artery blood flow and radial artery blood flow (in ml/min) were calculated using equation 

1 and 2 respectively; 
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Equation 1: 

Brachial artery flow 

= 𝛱 𝑥 𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙 𝑎𝑟𝑡𝑒𝑟𝑦 𝑟𝑎𝑑𝑖𝑢𝑠2 𝑥 𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑚𝑒𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑥 60 

 

Equation 2: 

Radial artery flow 

= 𝛱 𝑥 𝑟𝑎𝑑𝑖𝑎𝑙 𝑎𝑟𝑡𝑒𝑟𝑦 𝑟𝑎𝑑𝑖𝑢𝑠2 𝑥 𝑟𝑎𝑑𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑚𝑒𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑥 60 

Where, Π = pi; radius expressed as cm; and velocity expressed as cm/s.  

 

 

Figure 7.1. Measurement of systolic blood pressure (SBP) using brachial artery Doppler ultrasound 

and sphygmomanometry. As per normal SBP measurement, the brachial cuff was inflated to 

occlude flow at suprasystolic pressure and then steadily deflated at ~ 2 mmHg/sec. The point at 

which the first Doppler flow inflection (which also corresponded to the first audible Doppler signal) 

returned during cuff deflation (as indicated by the left arrow) was defined as SBP. Upon observing 

the first Doppler flow inflection, the BP operator immediately recorded SBP from the 

sphygmomanometer (as indicated by the right arrows). The same method was used to determine 

SBP at the radial artery by inflating a cuff placed at the forearm. 

 

Arterial stiffness  

Brachial pulse wave velocity (PWV; carotid-radial) was measured as previously described10. The 

average upper limb distensibility was calculated using equation 3 below and is a measure of passive 

expansion and contraction of the arterial wall relative to changes in pressure288. The average upper 

limb distensibility was determined as the average of brachial and radial distensibility; 

Equation 3:  

 
Brachial artery 

Doppler flow first inflection 

point (systolic blood pressure) 
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Average upper limb distensibility 

[= 𝐵𝑟𝑎𝑐ℎ𝑖𝑎𝑙 (𝐷𝑠 − 𝐷𝑑)/𝐷𝑑 / 𝑃𝑃)]  + [𝑟𝑎𝑑𝑖𝑎𝑙 (𝐷𝑠 − 𝐷𝑑)/𝐷𝑑 / 𝑃𝑃)]  

2
×  10 000 

Where, Ds = End systolic diameter (cm); Dd = End diastolic diameter (cm); PP = brachial and 

radial pulse pressure (mmHg) respectively. Multiplied by 10 000 for better display. 

 

Cardiothoracic bioimpedance 

Non-invasive cardiothoracic bioimpedance (PhysioFlow, PF-05, Manatec Biomedical, Paris, 

France) was performed continuously throughout the study to monitor additional cardiovascular 

parameters including heart rate, stroke volume, cardiac output and systemic vascular resistance. 

This device has been previously validated185 and has good reproducibility186. 

 

Central BP 

Following the SBP measurements, duplicate central BP was estimated via radial applanation 

tonometry (SphygmoCor 8.1, AtCor Medical Pty Ltd, Sydney, Australia). Augmentation index 

(AIx) was calculated as the difference in pressure between the first and second systolic peaks 

(augmented pressure), expressed as a percentage of pulse pressure and was adjusted for a heart rate 

of 75 beats per minute. To quantify the effect of Bra-Rad-SBPAmp on central SBP estimation, radial 

waveforms were calibrated firstly using brachial SBP and diastolic BP and secondly using radial 

SBP and brachial diastolic BP. Brachial, rather than radial diastolic BP was used to calibrate the 

radial waveforms on the assumption that diastolic BP varies little from central (i.e. aorta, carotid) to 

peripheral (brachial, radial) large arterial beds74, and also because radial artery diastolic BP was 

unable to be detected accurately using auscultation and Doppler flow. A central SBP cutoff value of 

≥130 mmHg was used to delineate ‘central hypertension’42. 

 

Blood biochemistry 

Following a three hour fast a venous blood sample was drawn from the antecubital fossa. Sample 

analysis was performed for blood glucose and lipid profiles using accredited laboratory techniques.  

 

Statistical analysis 

Data were analysed using SPSS for Windows software version 20.0 (IBM SPSS Statistics, New 

York, USA). Data were visually inspected for normality of distribution and were all normally 

distributed. Differences between patients with T2DM and non-diabetic controls were assessed using 
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independent T-tests for continuous variables and Chi square test for categorical variables. Pearson 

correlation analysis was used to determine associations between variables. Multiple regression 

analysis was performed in patients with T2DM and non-diabetic controls separately adjusting for 

potential confounders (including age, sex, clinic SBP, antihypertensive use, body mass index [BMI] 

and heart rate) to determine the independent predictors of Bra-Rad-SBPAmp. P< 0.05 was considered 

statistically significant. Based on previous reproducibility work279, we calculated that a between-

group difference of 5 mmHg in Bra-Rad-SBPAmp could be detected in 16 participants per group 

(α=0.05 and β=0.20), therefore we recruited 20 participants for each group. 

 

7.4 Results 

Participant characteristics  

The participant characteristics are displayed in table 7.1. The groups were well matched for age and 

sex. Patients with T2DM had significantly greater body mass index and waist-to-hip ratio. There 

was no difference between the groups in overall 24 hour ambulatory SBP or diastolic BP. None of 

the controls were taking medication for the treatment of hypertension, however, 70% of the patients 

with T2DM were taking antihypertensive medication, 20% were taking oral hypoglycaemic and 

40% were taking statins. Patients with T2DM had significantly higher blood glucose but 

significantly lower total cholesterol and low-density lipoprotein cholesterol.  
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7.1. Participant characteristics of patients with type 2 diabetes mellitus (T2DM) and non-

diabetic controls. 

 T2DM Non-diabetic P value 

 (n=20) (n=20)  

Male, n (%) 10 (50) 10 (50) 1.0 

Age (years) 63±8 60±7 0.21 

Body mass index (kg/m2) 30.7±6.1 25.6±3.3 0.002 

Waist-hip ratio 0.92±0.09 0.86±0.10 0.036 

24 hour ambulatory systolic BP (mmHg) 127±13 129±11 0.74 

24 hour ambulatory diastolic BP (mmHg) 73±7 77±9 0.10 

Antihypertensives, n (%) 14 (70) 0 (0) <0.001 

Oral hypoglycaemics, n (%) 4 (20) 0 (0) 0.03 

Statins, n (%) 8 (40) 0 (0) 0.001 

Glucose (mmol/L) 7.6±2.4 5.7±0.6 0.007 

Total cholesterol (mmol/L) 4.5±1.1 5.7±1.0 0.002 

LDL cholesterol (mmol/L) 2.2±0.7 3.5±0.9 <0.001 

HDL cholesterol (mmol/L) 1.3±0.6 1.6±0.5 0.095 

Triglycerides (mmol/L) 2.3±1.8 1.5±0.8 0.10 

Data are mean ± standard deviation. BP, blood pressure; LDL, low-density lipoprotein; 

HDL, high density lipoprotein. 

 

Bra-Rad-SBPAmp 

As shown in table 7.2, patients with T2DM had significantly lower Bra-Rad-SBPAmp compared to 

non-diabetic controls. Brachial SBP was 6 mmHg higher in patients with T2DM than non-diabetic 

controls, but this was non-significant. Radial SBP was significantly higher than brachial SBP for 

patients with T2DM and non-diabetic controls. 
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Table 7.2. Brachial to radial systolic blood pressure (BP) amplification (Bra-Rad- SBPAmp) and 

effect on central BP estimation in patients with type 2 diabetes mellitus (T2DM) and non-diabetic 

controls. 

 T2DM Non-diabetic P value 

 (n=20) (n=20)  

Bra-Rad-SBPAmp (mmHg) 9±8 14±8 0.042 

Brachial systolic BP (mmHg) 127±17 121±11 0.14 

Brachial diastolic BP (mmHg) 68±7 72±7 0.12 

Radial systolic BP (mmHg) 136±19 135±12#
 0.9 

*Central systolic BP (mmHg) 116±13 112±10 0.28 

**Central systolic BP (mmHg) 125±15^ 124±11^ 0.80 

Data are mean ± standard deviation. *Central systolic BP calibrated with brachial systolic 

and diastolic BP. **Central systolic BP calibrated with radial systolic and brachial diastolic BP. 

# P value =0.001 for radial vs brachial systolic BP. ^P value <0.001 for the difference in 

central systolic BP calibrated using radial compared to brachial systolic BP. 

 

Differences in hemodynamic and arterial properties between groups and associations with 

Bra-Rad-SBPAmp 

Hemodynamic and arterial differences between patients with T2DM and non-diabetic controls are 

shown in table 7.3. AIx adjusted for heart rate of 75 beats per minute was significantly higher in 

patients with T2DM and upper limb distensibility was significantly lower in patients with T2DM 

compared to non-diabetic controls.  

 

None of the measured hemodynamic variables shown in table 7.3 were significantly correlated with 

Bra-Rad-SBPAmp in non-diabetic controls. However, in patients with T2DM, brachial mean and 

peak flow velocities significantly and inversely correlated with Bra-Rad-SBPAmp (r=-0.628, 

p=0.003 and r=-0.563, p=0.010 respectively). The product of brachial mean flow velocity and 

brachial diameter was significantly and inversely correlated with Bra-Rad-SBPAmp (r=-0.598, 

p=0.007; figure 7.2) and this relationship remained significant after adjusting for age, sex and clinic 

SBP (β=-0.033 95% CI -0.063 to -0.004, p=0.030). The relationship between brachial mean flow 

velocity*brachial diameter and Bra-Rad SBPAmp remained significant after further adjustment for 

BMI (β=-0.033 95% CI -0.064 to -0.001, p=0.043) and heart rate (β=-0.035 95% CI -0.065 to -

0.006, p=0.024). A similar but non-significant relationship existed between brachial blood flow and 
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Bra-Rad SBPAmp (r=-0.405, p=0.077). No other hemodynamic variables shown in table 3 

significantly correlated with Bra-Rad-SBPAmp in patients with T2DM. 

 

Table 7. 3. Haemodynamic and arterial differences between patients with type 2 diabetes mellitus 

(T2DM) and non-diabetic controls. 

 T2DM Non-diabetic P value 

 (n=20) (n=20)  

Augmentation index (%) 29±9 26±7 0.24 

Augmentation index at heart rate of 75bpm 

(%) 

 

24±7 
 

18±8 
 

0.017 

Brachial artery diameter (mm) 3.96±0.92 3.59±0.60 0.14 

Radial artery diameter (mm) 1.81±0.37 1.81±0.40 0.96 

Brachial mean flow velocity (cm/s) 7.98±4.26 6.76±4.33 0.37 

Brachial peak flow velocity (cm/s) 14.30±7.41 11.91±7.57 0.32 

Brachial mean flow velocity x brachial 

diameter (cm/s/mm) 

 

304±132 
 

243±166 
 

0.21 

Radial mean flow velocity (cm/s) 6.70±3.91 5.87±4.98 0.56 

Radial peak flow velocity (cm/s) 12.85±7.74 11.90±10.51 0.75 

Difference between brachial and radial 

mean flow velocity (cm/s) 

 

1.28±3.45 
 

0.88±2.23 
 

0.67 

Brachial blood flow (ml/min) 54±29 42±32 0.22 

Radial blood flow (ml/min) 10±7 11±13 0.8 

Brachial pulse wave velocity (m/s) 8.13±1.09 7.99±1.55 0.73 

Upper limb arterial distensibility (%/mmHg) 6.89±3.50 9.83±4.20 0.031 

Heart rate (bpm) 67±10 60±10 0.051 

Stroke volume (ml) 75±22 74±13 0.93 

Cardiac output (l/min) 5.03±1.88 4.39±0.73 0.19 

Systemic vascular resistance (dyne/s/cm-5) 1455±414 1676±269 0.071 

Data are mean ± standard deviation. 
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Figure 7.2. Univariate association between the product of brachial mean flow velocity and 

brachial diameter and brachial to radial systolic blood pressure amplification (Bra-Rad-

SBPAmp) in patients with type 2 diabetes mellitus (black diamonds and solid trend line; r=-

0.598, p=0.007) and non-diabetic controls (open circles and dashed trend line; r=-0.028, 

p=0.905). 

 

The effect of Bra-Rad-SBPAmp on central BP estimation 

There was no difference between the groups in central BP estimated using brachial SBP and 

diastolic BP to calibrate radial pressure waveforms. However, central SBP was significantly higher 

in both non-diabetic controls and patients with T2DM when radial pressure waveforms were 

calibrated using radial SBP and brachial diastolic BP (change in central SBP of 12±6 mmHg for 

non-diabetic controls and 9±6 mmHg for patients with T2DM, p<0.001 for both; table 7.2). One 

control participant (5%) and three patients with T2DM (15%) had central SBP >130 mmHg 

(indicative of high central blood pressure42) when brachial SBP and diastolic BP were used for 

calibration. However, when brachial SBP was replaced with radial SBP to calibrate the radial 

pressure waveforms, there was a significant (p=0.004) increase in the number of participants (6 

non-diabetic controls [30%] and 12 patients with T2DM [60%]) who had high central SBP (i.e. 

>130 mmHg. 

  

0

100

200

300

400

500

600

700

800

-15 -5 5 15 25 35

B
ra

ch
ia

l 
m

ea
n

 f
lo

w
 v

el
o

ci
ty

 x
 b

ra
ch

ia
l 

d
ia

m
et

er
 (

cm
/s

/m
m

) 

Bra-Rad-SBPAmp (mmHg)



 
130 

7.5 Discussion 

This is the first study to directly, non-invasively measure Bra-Rad-SBPAmp in patients with T2DM. 

The novel findings were: 1) Bra-Rad-SBPAmp was significantly lower in patients with T2DM 

compared to age and sex matched non-diabetic controls; 2) the product of brachial mean flow 

velocity and diameter was inversely and independently related to Bra-Rad-SBPAmp in patients with 

T2DM; and 3) central SBP was significantly higher in both patients with T2DM and non-diabetic 

controls when radial pressure waveforms were calibrated using radial, compared with brachial SBP. 

These findings suggest that compared with non-diabetic controls, patients with T2DM have 

abnormal upper limb hemodynamics that result in lower Bra-Rad-SBPAmp, but regardless of disease 

status, Bra-Rad-SBPAmp may lead to underestimation of central SBP by radial tonometry and 

brachial BP calibration of radial waveforms. 

 

Bra-Rad-SBPAmp and abnormal upper limb hemodynamics in patients with T2DM  

In an optimally functioning system, the structure of the arterial tree encourages SBP amplification 

and widening of the pressure pulse, as the pressure wave generated by left ventricular contraction is 

transmitted from large central elastic arteries to relatively muscular and tapered peripheral large 

arteries. Only a few studies178, 281-283, 289 have attempted to assess the magnitude of Bra-Rad-

SBPAmp. In another investigation, using the same methods as this current study, we found that Bra-

Rad-SBPAmp averaged 8±7 mmHg in healthy young adults, but this was significantly higher in 

healthy older adults (14±7 mmHg)279. Although it is generally accepted that SBP amplification 

decreases with age from the aorta to brachial artery43, until now it was unclear as to the amount of 

SBP amplification that may occur down the forearm. Interestingly, in this previous study279 we 

observed that in fact central to radial SBP amplification did decrease with age, but only when 

central SBP was estimated using radial SBP to calibrate the radial waveform. Furthermore, the 

magnitude of this SBP amplification was similar to several other well-conducted studies74, 282, 290 

that measured central and radial SBP using simultaneous invasive measurements. Verbeke et al.178 

showed in a cohort of healthy subjects that there was significant Bra-Rad-SBPAmp (e.g. 6±5 mmHg), 

and a recent invasive study in individuals undergoing percutaneous coronary intervention (15% of 

which had diabetes) found that SBP was 12±8 mmHg higher in the radial compared to the brachial 

artery 289. To our knowledge, no studies have examined Bra-Rad-SBPAmp specifically in patients 

with T2DM compared with non-diabetic controls. We expected that cardiovascular abnormalities in 

patients with T2DM would give rise to an increase in Bra-Rad-SBPAmp. In particular, the expected 

increase in cardiac output63, together with increased aortic44 and brachial46 artery stiffness 

associated with T2DM were hypothesised to result in an increased amplitude of SBP from brachial 
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to radial arteries. On the contrary, compared to healthy age and sex matched non-diabetic controls, 

Bra-Rad-SBPAmp was significantly reduced in patients with T2DM.  

 

We believe the explanation for reduced Bra-Rad-SBPAmp observed in patients with T2DM is due to 

a relatively higher flow velocity, but a lower pressure gradient from the brachial to radial arteries, 

despite having significantly reduced upper limb distensibility (as previously reported46). This 

conclusion is based on the independent association between higher brachial flow velocity*brachial 

diameter and reduced Bra-Rad-SBPAmp in patients with T2DM. In these patients there were also 

trends toward increased cardiac output (owing to higher heart rate) and lower systemic vascular 

resistance; altogether suggesting a hyperdynamic system of flow into and out of the upper limb 

vasculature. The higher inflow does not produce a pressure rise because even though brachial SBP 

was significantly higher in patients with T2DM compared to controls, there were no differences 

between groups in radial SBP. In keeping with our findings, we and others have previously reported 

that patients with T2DM or obese individuals have increased diameter of the brachial and radial 

arteries as well as increased cardiac output67 but decreased systemic vascular resistance63. 

 

Effect of Bra-Rad-SBPAmp on estimated central BP 

Estimated central SBP was significantly higher in both groups after accounting for Bra-Rad-SBPAmp 

and calibrating radial pressure waveforms with radial SBP. We have previously shown this in 

healthy individuals279 and is not unexpected given the higher radial SBP calibration point. 

Interestingly, a recent meta-analysis173 showed that central SBP estimated by radial tonometry 

calibrated with brachial BP, underestimated invasive central SBP by -8.2±11.6 mmHg. Our results 

are similar to that paper, whereby calibration of radial tonometry with brachial SBP resulted in the 

underestimation of central SBP (compared to central SBP estimated via radial SBP calibration of 

radial tonometry) in patients with T2DM (9±6 mmHg) and non-diabetic controls (12±6 mmHg). 

Due to technical difficulties in accurately measuring radial BP, previous studies have attempted to 

at least partially account for Bra-Rad-SBPAmp by calibrating radial waveforms with brachial mean 

arterial pressure and diastolic BP, which seems to be a reasonable alternative because both mean 

and diastolic BP are thought to be relatively constant throughout the arterial tree compared with 

SBP43, 178, 283. However, if mean arterial pressure is calculated from either 1) brachial tonometry and 

integration of the brachial waveform178, 283 or 2) using 1/3 or 40% form factor equations291, these 

calibration methods can be subject to error due to dependence on brachial SBP. Indeed, recent 

evidence suggests that calibration of radial waveforms with oscillometric mean arterial pressure 

(which is less dependent on brachial SBP) and diastolic BP may substantially improve precision of 
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waveform calibration and subsequent central SBP estimation75. 

 

Cut-off values denoting high central SBP have recently been proposed42. Accordingly, we stratified 

participants based on these values (<130 or >130 mmHg)42 to determine the possible clinical 

implications of central SBP underestimation by neglecting to account for Bra-Rad-SBPAmp. 

Importantly, there was a significant increase in the number of participants categorised as having 

increased risk associated with ‘central hypertension’ (central SBP>130 mmHg) when radial (as 

opposed to brachial) SBP was used to calibrate radial pressure waveforms (e.g. from 15% to 60% in 

T2DM and from 5% to 30% in controls; p=0.004). In clinical decision making, central BP values 

may be more beneficial than traditional cuff based estimates for excluding a diagnosis of 

hypertension292 and our findings suggest that consideration of Bra-Rad-SBPAmp could help to refine 

management decisions through more accurate diagnosis of central hypertension.  

 

Limitations  

Despite our Doppler methodology to assess SBP being valid in comparison with brachial SBP 

auscultation, we were unable to compare radial SBP because accurate auscultation was not possible 

at the radial artery. Having said this, our results are similar to previous invasive studies of Bra-Rad-

SBPAmp
280, 289. Nevertheless, simultaneous measurement of invasive brachial SBP and radial SBP 

would have been an optimal study design. However, this approach would not have been possible in 

healthy participants. Additionally, anatomical differences between the brachial and radial arteries 

may have differentially affected the pressure required to compress the radial artery compared with 

the brachial artery. However, as the radial cuff was placed approximately seven centimetres from 

the proximal end of the anatomical snuff box (to allow for the placement of the ultrasound 

transducer), the cuff was inflated over the muscular area comprising the brachioradialis and flexor 

carpi radialis muscles, which could have compressed the radial artery similar to that of the biceps 

brachii compressing onto the brachial artery in the upper arm during cuff inflation. Furthermore, 

there is no reason to suspect differences between diabetics and non-diabetics in the pressure 

required to compress the radial artery, but in any case the above speculation can only be confirmed 

with invasive measures. Finally, we cannot rule out the effect of a reactive rise in either brachial or 

radial SBP from the measurement process itself293 in our data. However, we consider this an 

unlikely given the consistency of our findings with invasive studies of Bra-Rad-SBPAmp
280, 289.  
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7.6 Conclusions 

In summary, Bra-Rad-SBPAmp is significantly reduced in patients with T2DM compared to healthy 

age and sex matched non-diabetic controls. In patients with T2DM, vascular irregularities (in 

particular the product of brachial mean flow velocity and diameter) influence the magnitude of Bra-

Rad-SBPAmp. Furthermore, central BP is significantly underestimated when determined non-

invasively by radial applanation tonometry calibrated with brachial, rather than radial SBP. These 

findings are of clinical importance if central BP is going to be used to guide hypertension 

management. 

 

7.7 Contribution of Chapter 7 to thesis aims 

The findings from Chapter 7 further highlight that patients with T2DM elicit central haemodynamic 

abnormalities compared to their non-diabetic counterparts. For the first time, this study has shown 

that there is significant amplification in SBP from the brachial to radial artery in patients with 

T2DM and that due to Bra-Rad-SBPAmp, central SBP is systematically underestimated using 

radial applanation tonometry. Given the potential value of central BP beyond measures of 

brachial BP to identify individuals at increased BP risk, these findings (in combination with those 

presented in Part II of Chapter 2) have relevance to how central BP is measured in future. 

However, further work is required to refine the methods that estimate central BP (and 

haemodynamics) non-invasively so that there is little influence of Bra-Rad-SBPAmp, prior to central 

BP being established as a clinically useful tool.  
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Chapter 8. Conclusions and future directions 
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Through a number of original studies, this research program has confirmed that patients with type 2 

diabetes mellitus (T2DM) have abnormal central blood pressure (BP) and related haemodynamics 

(Chapters 2, 3 and 7) and that these patients are more likely to suffer damage to target organs 

compared to their non-diabetic counterparts (Chapters 4, 5 and 6). For the first time, this thesis has 

shown that there is substantial variation in the level of central to brachial systolic BP 

amplification in patients with T2DM (Chapter 2); that patients with T2DM have abnormal central 

haemodynamics in response to light to moderate intensity exercise (similar to the intensity of 

normal daily activity) and finally; that central haemodynamics (measured both at rest and during 

exercise) provide pathological insights relating to target organ damage, above and beyond 

conventional measures of clinic BP taken from the brachial artery (brachial BP) (Chapters 5 and 6). 

Taken together, this research thesis provides novel information and represents a significant 

advancement in understanding the haemodynamic differences between individuals with and without 

T2DM, the physiology and clinical relevance of exercise central haemodynamics and their relation 

to target organ damage. 

 

For the first time, the systematic review and meta-analysis presented in Part II of Chapter 2 

shows that despite patients with T2DM having elevated central and brachial systolic BP and other 

central BP indices, there is no difference in the level of central to brachial systolic BP 

amplification compared to non-diabetic individuals. However, large variation in amplification was 

observed (in both individuals with and without T2DM) and thus, this data suggests that the true 

risk related to BP (i.e. the chronic loading on the heart and central organs) may be inadequately 

assessed via a measure of brachial BP. These findings have relevance for the management of BP in 

patients with T2DM (as well as non-diabetic individuals) and the design of future clinical 

trials. However, due to the complexity of methodological errors inherent in a non-invasive central 

BP measurement, the level of amplification between patients with T2DM and non-diabetic 

individuals needs to be confirmed invasively. Future case-control studies that measure the 

magnitude of central (aortic) to brachial systolic BP amplification via invasive catheterisation in 

patients with T2DM compared to non-diabetic individuals are required. More broadly, if 

central BP is going to be measured in clinical practice, further large-scale prospective studies that 

include measures of hard endpoints  (such  as cardiovascular  events  and/or  mortality) a r e  

r e quired to determine cut-off values of central systolic BP that denote increased cardiovascular risk 

in patients with T2DM. 
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The study presented in Chapter 3 was the first to specifically determine the relationship between 

arterial stiffness and augmentation index (AIx) in individuals with and without T2DM. This is an 

important comparison as AIx has been suggested to be a surrogate marker of arterial stiffness and 

increased cardiovascular risk. The findings from this study clarify that AIx is not related to, and 

should not be used as a surrogate marker of arterial stiffness in patients with T2DM in future. 

Following on from this work, a longitudinal study that examines whether the changes in arterial 

stiffness are related to the changes in AIx over time may be useful to definitively determine 

the relationship between AIx and arterial stiffness in patients with T2DM. However, it remains 

unknown what factors are contributing to AIx in patients with T2DM compared to non-diabetic 

individuals. Thus, given that AIx is an independent predictor of increased cardiovascular risk, 

further large-scale studies that involve a comprehensive cardiovascular assessment (including 

measures of both left ventricular and vascular function) are required to determine the exact 

underlying pathophysiology of AIx in this population. Furthermore, clinical trials that examine 

whether interventions such as exercise are beneficial in reducing AIx (and thus cardiovascular risk) 

in patients with T2DM are warranted. 

 

Chapter 4 makes an important contribution to understanding why patients with T2DM have 

abnormal brain structure compared to non-diabetic individuals. Although measures of central 

haemodynamics were not available, the findings show that abdominal obesity was associated with 

grey matter atrophy, independently of resting brachial BP and other cardiovascular risk factors. 

Thus, future interventions that target abdominal obesity may prove to be advantageous in 

preserving the integrity of brain structure in patients with T2DM. Further to this, the exact 

mechanistic pathway linking abdominal obesity and grey matter atrophy in patients with T2DM 

remains to be elucidated and, therefore, further studies should aim to investigate other mechanisms 

that may explain this association including neuroinflammation and insulin signaling pathways 

(which have been suggested as possible causative factors) as well as the role of exercise central 

haemodynamics. 

 

Despite physical activity being previously shown to be beneficial for maintaining brain structure in 

non-diabetic populations, this was not the case in the study presented in Chapter 4, possibly due to 

the relatively low intensity of physical activity adopted (mean step count), compared to that in 

previous studies. Additional work is required to determine the beneficial effect of a more 

vigorous exercise regime on maintaining brain structure in patients with T2DM. Indeed, 

following on from this study, a pilot randomised control trial is currently underway (Cognition and 
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Diabetes in Older Tasmanians– a randomised control trial of exercise [CDOT-X]) that aims to 

determine the effects of regular aerobic exercise on brain structure in patients with T2DM. In 

this trial, 50 patients with T2DM have been randomised to either undergo 6-months of aerobic 

exercise training (experimental group) or flexibility training (control group) in order to determine 

whether regular aerobic exercise is beneficial in preserving brain volumes in this population. 

Furthermore, central haemodynamics are being measured in response to exercise (during an 

exercise stress test) and also following the intervention. This will enable the beneficial effects of 

exercise on improving vascular function, and the subsequent role in maintaining brain structure in 

patients with T2DM to be examined. The findings from this intervention study may help to guide 

exercise recommendations in patients with T2DM in future. 

 

Chapter 5 constitutes the first investigation of central haemodynamics measured in response to 

light to moderate intensity exercise in patients with T2DM. This study showed that exercise 

central haemodynamics are abnormal in patients with T2DM compared to non-diabetic controls 

and although these variables were not related to brain structure, they may explain why patients 

with T2DM have accelerated decline in other organ systems such as the kidneys (as shown in 

Chapter 6) and also the eyes. Although it appears that abnormalities in pressure and/or flow 

pulsatility may be a likely factor linking central haemodynamics and target organ damage in 

patients with T2DM, the exact underlying mechanism remains to be elucidated.  Mechanistic 

studies that examine whether the pulsatility in the large vessels is indeed reflected in the 

microcirculation using methods such as Laser Doppler Flow techniques are warranted. 

Furthermore, this study (and also the study presented in Chapter 6) was limited by the cross 

sectional design. Therefore, further longitudinal studies are required that include comprehensive 

measures of haemodynamic function and aim to examine the changes in central haemodynamics 

in patients with T2DM and their relation with target organs over time. To this end, a 

longitudinal study was commenced in 2014 and aims to determine the association between the 3-

year change in central haemodynamics (measured at rest and in response to exercise) and target 

organ damage in the same study population of that in Chapters 5 and 6. The results from this 

study will likely allow for more causative conclusions to be drawn and will help to define the 

clinical relevance of resting and exercising central haemodynamics in patients with T2DM. 

 

The study presented in Chapter 5 was also the first to examine the physiological and clinical 

relevance of the aortic reservoir characteristics in patients with T2DM and identified excess 

pressure as a novel cardiovascular risk marker associated with grey matter atrophy (in non-
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diabetic controls). This is important as excess pressure was related to brain structural 

abnormalities independently of brachial BP and the current “gold standard” of BP measures, 24-

hour ambulatory BP, suggesting that excess pressure may be a useful clinical marker for 

determining risk related to BP in future. The development of efficiently and reliably non-invasive 

methods to measure aortic reservoir and excess pressure may facilitate a large-scale prospective 

study to definitely determine the clinical significance of abnormal reservoir and excess pressures, 

and may enable more widespread use of aortic reservoir characteristics in clinical practice. 

 

The results presented in Chapter 6 show that light to moderate intensity exercise can induce 

albuminuria in patients with T2DM. This may suggest that the chronic stress brought on by 

normal daily activity (i.e. light to moderate intensity exercise) may contribute to accelerated renal 

damage in patients with T2DM. Alternatively, or in conjunction, exercise may be beneficial for 

unmasking renal abnormalities in high- risk populations and for identifying individuals at risk of 

exercise-induced albuminuria, and may represent a useful tool to reveal cardiovascular 

abnormalities in future that are not otherwise evident at rest. This novel finding has relevance for 

how albuminuria is measured in clinical practice as currently guidelines suggest that strenuous 

exercise should be avoided prior to a measurement of albuminuria. However, these results suggest 

that the contribution of light to moderate intensity exercise should also be considered. Further 

large-scale prospective studies that determine the association between exercise-induced 

albuminuria (beyond a resting measure) and cardiovascular outcomes would be useful in 

deciphering whether exercise should be avoided or encouraged prior to a measurement of 

albuminuria in high-risk individuals. Furthermore, given that exercise is beneficial for 

maintaining vascular function, further randomised control trials that examine the benefit of an 

exercise intervention on improving vascular function and reducing the risk associated with exercise-

induced albuminuria are warranted. 

 

The study presented in Chapter 6 also showed that exercise central haemodynamics, in particular 

excess pressure, were related to exercise-induced albuminuria in patients with T2DM, 

independently of resting brachial BP. This may suggest that firstly; excess pressure may be a 

useful clinical marker to identify individuals at elevated cardiovascular risk in future and 

secondly; that haemodynamics measured in response to stress induced by light to moderate 

intensity exercise may provide pathological insights above and beyond corresponding resting 

measures. Pertaining to this, methods that measure central BP and haemodynamics whilst 

ambulatory (such as 24- hour ambulatory central BP devices, which are becoming increasingly 
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commercially available) need to be refined and validated. This will give way for the 

association between ambulatory central haemodynamics (beyond measures of resting brachial BP) 

and target organ damage to be defined. Further, a prospective study that examines the association 

between exercise central haemodynamics and measures of hard endpoints in patients with T2DM 

may enable the true clinical relevance of ambulatory central haemodynamics to be determined. 

Once achieved, this may lead to the measurement of ambulatory (i.e. light to moderate intensity 

exercise) central haemodynamics being incorporated into routine clinical practice. 

 

The results from Chapter 7 show that central systolic BP is underestimated using radial applanation 

tonometry, when the radial pressure waveforms are calibrated with brachial BP. Underestimation of 

central BP using this method only became apparent through the studies presented in Chapter 7 and 

Appendix I and is an issue that is inherent in any non-invasive measure of BP, whether it be at the 

brachial artery or estimated central BP. Although this study was confined to a relatively small 

sample group and further verification is required in larger study populations, these findings, (as 

well as those presented in Appendix I and II) highlight the necessity for refinement of methods that 

estimate central BP non-invasively, so that there is minimal dependence on brachial to radial 

systolic BP amplification. This is crucial if central BP is going to be implemented into routine 

clinical practice as currently such issues surrounding the non-invasive measurement of central BP 

limit its effectiveness as a tool to identify individuals at elevated risk related to BP. At the 

commencement of the body of research contained in this thesis, radial applanation tonometry was 

the gold standard method for determining central haemodynamics non-invasively, and it only 

became apparent early in the research that there may be issues surrounding the amplification in 

systolic BP when estimating central BP using this method. Thus, the studies presented in Chapter 7 

and Appendix I were conducted concurrently with the studies presented in Chapters 3, 5 and 6, to 

further investigate this issue. Following on from this work, the findings presented in Chapter 7 and 

Appendix I are currently being used to inform an international task force which aims to determine 

the most appropriate method to validate devices that measure central BP non-invasively. However, 

further large-scale studies are still required to determine the most robust calibration method, which 

may be device specific, in a range of study populations by comparison with the true (invasive) 

central BP. This would represent a significant advancement for measuring central BP non-

invasively and aid in paving the way for central BP as a clinically useful tool in future. 
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Appendix I. Additional publication – Brachial to radial systolic blood pressure 

amplification: implications of age and estimated central blood pressure from 

radial tonometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix I represents an additional manuscript that was published during the candidature. Whilst 

this study does not form part of the primary thesis it is closely related to the aim of this thesis and 

provided a lot of the background information for the study presented in Chapter 7. 

 

Appendix I has previously been published; 

Climie RED, Picone DS, Ahuja KD, Keske MA, Sharman JE. Brachial-to-radial systolic blood 

pressure amplification: implications of age and estimated central blood pressure from radial 

tonometry. Journal of Hypertension, April 2015; 33.9:1876-1833. 
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AI.1 Abstract 

Background. The reference standard for non-invasive estimation of central blood pressure 

(BP) is radial tonometry calibrated using brachial systolic and diastolic BP (SBP, DBP). 

Brachial to radial SBP amplification (B-R-SBPAmp) may introduce error into central BP 

estimation, but the magnitude of such amplification is uncertain. This study aimed to determine 1) 

the magnitude, and effect of aging on B-R- SBPAmp; 2) the effect of B-R-SBPAmp on radial 

tonometry-estimated central SBP, and 3) correlates of B-R-SBPAmp. 

Methods. Forty young (28±5 years) and 20 older (60±8 years) healthy participants underwent 

brachial and radial artery ultrasound to identify SBP from the first Doppler flow inflection during 

BP cuff deflation (first Korotkoff sound). Impedance cardiography, ultrasound, tonometry and 

anthropometric data were collected to explore B-R-SBPAmp correlates. 

Results. Radial SBP was significantly higher than brachial SBP in younger (118 ± 12 mmHg 

versus 110 ± 10 mmHg; p<0.001) and older (135 ± 12 mmHg versus 121±11 mmHg; p<0.001) 

participants. The magnitude of B-R-SBPAmp (radial minus brachial SBP) was higher in older, 

compared to younger participants (14 ± 7 mmHg versus 8 ± 7 mmHg; p=0.002), independent of sex 

and heart rate. Estimated central SBP was higher in both age groups when radial waveforms were 

recalibrated using radial (versus brachial) SBP (p<0.001). The central SBP change relative to B-

R-SBPAmp was associated with augmentation index (r=0.739, p<0.001), independent of age, sex 

and heart rate. Age, male sex and high-density lipoprotein each positively related to B-R-

SBPAmp in multiple regression analysis (p<0.05). 

Conclusions. Major B-R-SBPAmp occurs in healthy people and is higher with increasing age. 

Furthermore, B-R-SBPAmp contributes to underestimation of radial tonometry-derived central 

SBP.  
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AI.2 Introduction 

Central blood pressure (BP) indices predict cardiovascular disease and mortality independent of 

brachial BP33. Although methods to assess central BP are not currently used in routine clinical 

practice (due to several reasons including the need for specialist equipment, technical expertise and 

costs), accumulating evidence suggests that central BP estimation could aid in the assessment of 

risk related to hypertension294, 295. Recently, reference values for central BP have been proposed42, 

296. The current reference standard for non-invasive central BP estimation is radial applanation 

tonometry whereby a central (ascending aortic) waveform (and BP) is estimated by applying a 

generalised transfer function to the radial pressure waveform10, 11, 297. The radial pressure waveform 

is usually calibrated with brachial systolic BP (SBP) and diastolic BP (DBP) on the assumption of 

negligible difference in these BP values from the brachial to radial artery278. It is generally accepted 

that SBP is amplified from the aorta to the brachial artery, but mean arterial pressure (MAP) and 

DBP vary little (from approximately 1 to 3 mmHg)74 between these sites. The magnitude of aorta to 

brachial SBP amplification decreases with increasing age and vascular disease2, 298. However, there 

is dispute as to the level of SBP amplification that may occur from the brachial to radial arteries (B-

R-SBPAmp)299. The presence of significant B-R-SBPAmp may compromise the accuracy of radial 

pressure waveform calibration and consequently estimated central SBP, with a tendency towards 

underestimation173, 178. 

 

Invasive catheterisation studies support the possibility of significant B-R-SBPAmp, even to levels 

>20 mmHg 280-282, 289, 300. Two non-invasive studies of B-R-SBPAmp (assessed using oscillometric 

BP and applanation tonometry) have shown SBP to be greater in the radial artery compared to the 

brachial artery178, 283. Indeed, in apparently healthy cohorts an average (±SD) B-R-SBPAmp of 6 ± 

5 mmHg (n=44)178 and 7 mmHg (variance not provided) (n=1873)283 has been reported. 

Additionally, it has been observed301 in one study302 that the derived aorta-radial transfer function 

was of a higher modulus than the derived aorta-brachial transfer function, indicating the presence of 

B-R-SBPAmp. However, a limitation of these studies was they were performed in either: 1) a small 

participant age range281, 282; 2) participants with significant cardiovascular comorbidities who were 

undergoing cardiac catheterisation280, 289, 300 or; 3) used non-invasive methods to calculate B-R-

SBPAmp178, 283. A summary of studies relating to the level of B-R-SBPAmp is presented in 

supplementary table 1. To our knowledge, no study has directly measured B-R-SBPAmp in healthy 

people of a wide age range. The aims of this study were to determine the magnitude of B-R-

SBPAmp and the effect of aging on B-R-SBPAmp in healthy participants. Further we sought to 

determine the effect of B-R-SBPAmp on estimated central SBP using radial tonometry, as well as 
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to explore hemodynamic, arterial and anthropometric correlates of B-R-SBPAmp. Non-invasive 

Doppler ultrasound was used to directly measure brachial and radial SBP. 

 

AI.3 Methods  

Study participants 

Forty healthy younger (19-40 years, 50% male) and 20 healthy older participants (49- 

75 years, 50% male) were consecutively recruited from the community via advertisements. 

Exclusion criteria included: a clinical history of cardiovascular disease, type 2 diabetes mellitus, 

high BP (defined as clinic BP ≥140/90 mmHg or self-reported diagnosis of hypertension by a 

physician, or use of antihypertensive medications), current smoking or pregnancy. Each participant 

provided informed written consent and the study was approved by the University of Tasmania 

Human Research Ethics Committee. 

 

Study protocol overview 

Each participant attended the research clinic on one occasion and the study was performed in a 

temperature-controlled room (24 ± 1°C). Participants were asked to refrain from vigorous exercise 

in the previous 24 hours, alcohol consumption on the day of the study, and to fast (including 

refraining from caffeine consumption) for three hours prior to the study. Participants were in a 

semi-recumbent position for the study, with the right arm outstretched and supported by a pillow 

on a bench top that was adjusted so that the heart, brachial and radial arteries were at the same 

level. After 10 minutes rest, ultrasound images of the structural and functional characteristics of the 

brachial and radial arteries were recorded. Following this, brachial and radial SBP measurements 

were recorded (for calculation of B-R- SBPAmp) in random order using Doppler ultrasound. 

Following this applanation tonometry was performed in duplicate to determine both central BP 

(from radial waveforms) and brachial pulse wave velocity (from carotid and radial waveforms). 

Central (ascending aortic) BP was determined by applying a validated generalised transfer 

function to the radial waveform (SphygmoCor 8.1, AtCor Medical Pty Ltd, Sydney, Australia)11. 

Augmentation index was calculated as the pressure augmentation above the systolic shoulder 

expressed as a percentage of pulse pressure (PP). MAP was calculated in three ways: using the 

SphygmoCor software via integration of the radial waveform calibrated with (a) brachial SBP 

and DBP or (b) radial SBP and brachial DBP or (c) calculated from brachial DBP + 0.4 x PP 

as proposed by Bos et al303. 
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B-R-SBPAmp 

Brachial and radial SBP were measured using Doppler ultrasound  (Philips iU22, linear array 12-5 

MHz transducer, Philips Healthcare, Bothell, WA, USA) with simultaneous sphygmomanometry 

via a validated mercury-free device (UM-101, A&D Medical, Tokyo, Japan)287 and appropriately 

sized cuffs for both  sites. To enable ultrasound transducer placement, the brachial and radial 

cuffs were placed approximately seven centimetres (the length of the ultrasound transducer head) 

proximal to the centre of the antecubital fossa and the proximal end of the anatomical snuff box 

respectively. 

 

Six brachial and radial SBP measurements (three at each region) were taken in a random 

order by a BP operator who was blinded to the measurement site. Blinding was achieved by 

using a partition screen to block the BP operator’s view of the participants arm and also to 

prevent sight of the arterial image on the ultrasound screen, whilst still allowing view of the 

Doppler flow signal and sphygmomanometer to record SBP. At each site, SBP was defined as 

the first inflection of the Doppler flow signal (during cuff deflation at approximately 2 mmHg/s), 

representing the first Korotkoff sound as previously described304. B-R-SBPAmp was calculated 

as radial minus brachial SBP. 

 

The validity of this method was tested by comparing the brachial SBP determined only by 

Doppler ultrasound with brachial SBP determined only by auscultation in all 60 participants. SBP 

was acquired simultaneously by separate operators, each blinded to the others SBP reading. There 

was strong concordance between measures (intraclass correlation  [ICC] r  = 0.964,  p<0.001;  mean  

difference  =  0.38  ± 3.15 mmHg; p=0.35). The reproducibility of brachial and radial SBP 

measures was tested in 10 participants who underwent an additional assessment with 5 ± 2 days 

between visits. Between-visit ICC were r=0.944 and r=0.937 (p<0.001 both) for brachial SBP and 

radial SBP respectively and the mean differences between visits were 1 ± 5 mmHg, p=0.45 and -1 

± 6 mmHg, p=0.72 for brachial and radial SBP respectively. The between-visit ICC and mean 

difference for B-R-SBPAmp were r=0.687; p=0.050 and -2 ± 6 mmHg, p=0.31. 

 

Effect of B-R-SBPAmp on estimated central SBP 

To quantify the effect of B-R-SBPAmp on central SBP estimation, radial waveforms were 

calibrated using brachial SBP and DBP and also using radial SBP and brachial DBP (radial DBP 

not measurable). Waveforms were also calibrated by MAP (brachial DBP + 0.4 x PP) and DBP. 

Equation 1 (a modified version of that used by Papaioannou et al305) was used to determine the 
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change in estimated central SBP (due to radial waveform calibration using radial SBP versus 

brachial SBP) expressed as a percentage of B-R-SBPAmp (∆). 

 

Equation 1: 

∆

=  
(𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑆𝐵𝑃 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑎𝑑𝑖𝑎𝑙 𝑆𝐵𝑃 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 –  𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑆𝐵𝑃 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑟𝑎𝑐ℎ𝑖𝑎𝑙 𝑆𝐵𝑃 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛)

𝐵 − 𝑅 − 𝑆𝐵𝑃𝐴𝑚𝑝
 

×  100 

 

Haemodynamic, arterial and anthropometric correlates of B-R-SBPAmp 

Impedance cardiography 

A validated185 non-invasive cardiothoracic bioimpedance device (PhysioFlow, PF-05, Manatec 

Biomedical, Paris, France) with good reproducibility186 was used to assess haemodynamic 

parameters including heart rate, cardiac output, stroke volume and contractility index. Heart rate 

recorded during the same time period as SBP measurements was used in the analysis. 

 

Ultrasound imaging and analysis 

All ultrasound images were recorded using the Philips machine previously mentioned. Brachial and 

radial artery diameters were analysed offline using QLAB software (Philips Healthcare, Bothell, 

WA, USA). The average of three diameter measurements at end diastole were used for the analysis. 

Brachial and radial artery mean blood flow velocities were determined by Doppler ultrasound using 

a three lead electrocardiogram and were averaged over 10 cardiac cycles. 

 

Anthropometric variables 

Standard anthropometry was measured including height, weight, waist and hip circumference. In 

addition, brachial and radial arm circumferences were recorded from the distal end of each 

cuff. The distance between imaging sites was measured between the distal ends of brachial to 

radial cuffs. 

 

Blood biochemistry 

A venous blood sample was drawn from the antecubital fossa and analytical biochemistry was 

performed to derive glucose and lipid values using standard accredited laboratory techniques. 
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Statistical analysis 

Data were analysed using SPSS for windows software version 20.0 (IBM SPSS Statistics, NY, 

USA). Data were visually inspected for normality of distribution and brachial and radial blood 

velocity data were logarithmically transformed to give a normal distribution. Differences 

between and within groups were assessed using two- tailed independent and paired t-tests 

respectively, as well as analysis of covariance (ANCOVA) adjusting for sex and heart rate. 

Associations between variables were determined using Pearson correlations and linear multiple 

regression analysis was performed to determine predictors of B-R-SBPAmp, adjusting for factors 

with known or suspected association with B-R-SBPAmp (as detailed in Results). Part correlation 

coefficients were used to assess the contribution of each independent variable to the overall 

variance in B-R-SBPAmp. Multicollinearity was assessed using variance inflation factors and Q-Q 

plots were used to determine normal distribution of the model. Analyses were not adjusted for 

MAP or SBP based on statistical singularity and multicollinearity potentially leading to unstable 

regression models. In the models examining independent predictors of B-R-SBPAmp, it was 

deemed inappropriate to adjust for brachial or radial SBP because both variables are included in the 

calculation of B-R-SBPAmp. Data are presented as mean ± standard deviation unless otherwise 

specified and p<0.05 was considered statistically significant. 

 

AI.4 Results 

Patient characteristics 

Table AI.1 summarises the clinical characteristics of the study population. Body mass index, 

arm circumference (at brachial and radial sites), blood glucose, total cholesterol and low-density 

lipoprotein were all significantly higher in the older participants compared to younger 

participants (p<0.05 for all). 
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Table AI.1. Participant characteristics. 
 

 Younger (n=40) Older (n=20) P value 

Male, n (%) 20 (50) 10 (50) 1.00 

Age (years) 28±5 60±8 < 0.001 

Body mass index (kg/m2) 23.7±3.1 25.6±3.3 0.038 

Brachial arm circumference (cm) 25.0±2.1 26.7±2.0 0.004 

Radial arm circumference (cm) 16.2±1.0 17.3±1.5 0.006 

Distance between brachial and radial 

imaging sites (cm) 

 

26.6±3.2 
 

26.8±3.1 
 

0.79 

Glucose (mmol/L) 5.3±0.9 5.7±0.6 0.042 

Triglycerides (mmol/L) 1.2±0.7 1.5±0.8 0.15 

Total cholesterol (mmol/L) 4.8±0.8 5.8±1.0 0.001 

Low-density lipoprotein (mmol/L) 2.6±0.8 3.5±0.9 0.001 

High-density lipoprotein (mmol/L) 1.7±0.5 1.6±0.5 0.68 

Data expressed as mean ± standard deviation or n (%). P value is for between group 

differences. 

 

B-R-SBPAmp and effect of aging 

Radial SBP was significantly higher than brachial SBP in the younger and older groups (p<0.001 

for both groups). Radial and brachial SBP were significantly higher in older compared with 

younger participants (table AI.2). B-R-SBPAmp was significantly higher in the older group and 

remained significant after adjustment for sex and heart rate. The range of B-R-SBPAmp was -

5 to 20 mmHg and 3 to 27 mmHg in the younger and older age groups, respectively. 
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Table AI.2. Blood pressure variables measured in both younger and older participants. 

 Younger (n=40) Older (n=20) P value 

Radial systolic BP (mmHg)* 118±12 135±12 <0.001 

Brachial systolic BP (mmHg) 110±10 121±11 0.001 

Brachial diastolic BP (mmHg) 67±6 72±7 0.012 

B-R-SBPAmp (mmHg)** 8±7 14±7 0.004 

MAP (a) (mmHg) 80±8 90±8 <0.001 

MAP (b) (mmHg) 82±8 95±8 <0.001 

MAP (c) (mmHg) 84±7 92±8 0.002 

Brachial pulse pressure (mmHg) 43±9 49±8 0.011 

Radial pulse pressure (mmHg) 51±11 63±12 <0.001 

Data is mean ± standard deviation. P value represents between group analyses. BP, blood 

pressure; B-R-SBPAmp, brachial-to-radial systolic blood pressure amplification; MAP, mean 

arterial pressure. *P value of the difference between radial and brachial SBP was <0.001 for both 

groups. **Between group differences in B-R- SBPAmp remained significant after adjustment for 

sex and heart rate (p=0.002). MAP was calculated using three methods: SphygmoCor software via 

integration  of the radial pressure waveform calibrated with either (a) brachial SBP and 

diastolic BP (DBP) or (b) radial SBP and brachial DBP or (c) calculated from brachial DBP +  0.4 

x pulse pressure. 

 

Effect of B-R-SBPAmp on estimated central SBP 

Estimated central SBP was significantly increased when radial waveforms were calibrated with 

radial SBP and brachial DBP compared with brachial SBP and brachial DBP in both younger (100 

± 10 versus 95 ± 9) and older participants (124 ± 11 mmHg versus 112 ± 11 mmHg; p<0.001 for 

both groups). Central SBP calibrated with radial SBP was significantly greater than central SBP 

calibrated with brachial SBP, and this difference was significantly greater in older compared to 

younger participants (12 ± 6 mmHg versus 5 ± 4 mmHg, p<0.001). The difference remained 

significant after adjustment for sex and heart rate (difference between younger and older β = 

6.23, 95% confidence interval [95%CI] 3.55 to 8.90, p<0.001). Central SBP calibrated with MAP 

(brachial DBP + 0.4 x PP) was also significantly higher than central SBP calibrated with 

brachial SBP and DBP, however, the difference was significantly lower in older compared to 

younger participants (5 ± 5 mmHg versus 11 ± 8 mmHg, p=0.001). The difference remained 

significant after adjusting for sex and heart rate (difference between younger and older β= -5.73, 

95%CI -9.26 to -2.20, p=0.002). Figure AI.1 depicts the relationship between age and upper limb 
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SBP amplification (either central-to-brachial or central-to-radial). In each example radial tonometry 

waveforms were calibrated with either brachial or radial SBP and brachial DBP. As per 

expectation, with increasing age there was a decrease in central-to- brachial SBP amplification 

when radial waveforms were calibrated with brachial or radial SBP (figure AI.1 A, B). When 

using brachial SBP for calibration, there was no significant relationship between age and central-

to-radial SBP amplification (figure AI.1 C). However, when radial waveforms were calibrated 

with radial SBP there was a decrease in central-to-radial SBP amplification with increasing age 

(18 ± 6 mmHg versus 12 ± 3 mmHg, p<0.001, younger versus older participants; figure AI.1 

D). Augmentation index significantly correlated with the change in central SBP (due to radial 

SBP versus brachial SBP radial waveform calibration) relative to the magnitude of B-R-SBPAmp 

(figure AI.2) and remained significant after adjustment for age, sex and heart rate (β=0.445, 95%CI 

0.25 to 0.65, p<0.001).  
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A       B 

 

 

 
 

C       D 

     

Figure AI.1. Associations between central to peripheral (brachial and radial) systolic blood 

pressure (SBP) amplification and age, and the effect of different methods to calibrate radial 

tonometry waveforms. A, B; central-to-brachial SBP amplification was significantly and 

negatively associated with age when using brachial or radial SBP for calibration. C; central-to-

radial SBP amplification was not associated with age when using brachial SBP for 

calibration. D; central-to-radial SBP amplification was significantly and negatively associated 

with age when radial tonometry was calibrated with radial SBP. 
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Figure AI.2. Association between augmentation index and the change in central systolic blood 

pressure (SBP) relative to the magnitude of brachial to radial SBP amplification (B-R-

SBPAmp). The solid line represents the trend for the entire cohort. The solid and dashed arrows 

refer to two participants with 14 mmHg B-R-SBPAmp. Participant A had -12% augmentation 

index and their central SBP increased by 57% of B-R-SBPAmp when radial SBP was used for 

radial waveform calibration. Participant B had a higher augmentation index (24%) and their central 

SBP increased by 86% of B-R-SBPAmp 

 

Haemodynamic and arterial variables 

A comparison of the haemodynamic and arterial variables between the younger and older 

participants is shown in table AI.3. Systemic vascular resistance, augmentation index, mean radial 

blood flow velocity and the quotient of radial peak blood flow velocity and radial diameter were 

significantly higher in older participants. Contractility index was significantly higher in younger 

participants and there was a trend towards higher stroke volume and brachial blood flow velocity 

compared with the older participants. There was no significant difference between the groups in 

any of the other haemodynamic or arterial variables (p>0.05). 
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Table AI.3. Comparison of haemodynamic and arterial variables between younger and older 

participants. 

 Younger (n=40) Older (n=20) P value 

Heart rate (beats/min) 61±11 60±10 0.86 

Cardiac output (L/min) 4.74±0.99 4.39±0.73 0.13 

Stroke volume (mL) 79±14 74±13 0.25 

Contractility index (AU) 173±62 85±40 <0.001 

Systemic vascular resistance (d/s/cm-5m2) 1457±304 1676±269 0.008 

Central augmentation index (%) 5±13 27±5 <0.001 

Mean brachial blood flow velocity (cm/s) 0.63±0.23 0.76±0.25 0.07 

Mean radial blood flow velocity (cm/s) 0.39±0.38 0.61±0.38 0.044 

Brachial diameter (cm) 3.46±0.73 3.59±0.60 0.47 

Radial diameter (cm) 1.67±0.33 1.81±0.40 0.19 

Radial peak blood flow velocity / radial 

diameter (s-1) 

 

-0.54±0.37 
 

-0.34±0.36 
 

0.046 

Data expressed as mean ± standard deviation. P value represents between group analyses. AU, 

arbitrary units. Logarithmically transformed mean brachial and radial blood flow velocity data is 

presented. 

 

Correlates of B-R-SBPAmp 

In all 60 participants, age was significantly correlated with B-R-SBPAmp (r=0.449, p<0.001). 

Radial, but not brachial SBP was also significantly correlated with B-R- SBPAmp (r=0.585, 

p<0.001 versus r=0.087, p=0.51). Univariate correlations of B-R- SBPAmp with all variables listed 

in the methods were assessed, however, no significant associations were found (p>0.05 for all). 

To predict contributors to the variance in B-R-SBPAmp, a multivariable model was developed 

from variables with a univariate correlation of p<0.10 with B-R-SBPAmp. Radial SBP was not 

included in the multivariable analysis because it was used in the calculation of B-R-SBPAmp. 

Variables initially included in the model were glucose (r=0.22, p=0.09), high-density lipoprotein 

(HDL; r=0.24, p=0.06), contractility index (r=-0.25, p=0.06) and the quotient of radial peak flow 

velocity and radial artery diameter (r=0.28, p=0.028). Age, sex and heart rate were also included 

because of known or suspected association with B-R-SBPAmp. Variables were included in the 

final multivariable model if 1) they significantly predicted B-R-SBPAmp (p<0.05) or 2) upon 

removal of the variable there was a change in β coefficient >10%. The final model consisted of 

age, sex, heart rate and HDL. This model explained 32% of the variance in B-R-SBPAmp (table 
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AI.4). 

 

Table AI.4. Independent predictors of brachial to radial systolic blood pressure (BP) amplification 

in the full study cohort (n=60). 

Unstandardised β coefficient 

(95% confidence intervals) 

P value Part correlation 

coefficient 

Age (years) 0.21 (0.11, 0.31) <0.001 0.46 

Sex (0=female, 1=male) 4.36 (0.68, 8.04) 0.021 0.26 

Heart rate (beats/min) -0.11 (-0.27, 0.06) 0.194 -0.14 

High density lipoprotein 

(mmol/L) 

5.51 (1.89, 9.13) 0.004 0.33 

Data are unstandardised β coefficient and 95% confidence intervals. Dependent variable is 

brachial to radial systolic blood pressure amplification. Adjusted R2 = 0.32; p<0.001. Part 

correlation coefficient quantifies the unique contribution of each independent variable to the R2  

of the model. 

 

AI.5 Discussion 

This study used a direct, non-invasive method, for the first time to our knowledge, to measure 

brachial and radial SBP in healthy individuals. The main findings were: 1) radial SBP was 

significantly higher than brachial SBP, thus resulting in major B-R- SBPAmp; 2) the magnitude 

of B-R-SBPAmp was significantly greater in older compared with younger people; 3) owing to B-

R-SBPAmp, the estimation of central SBP using radial tonometry and calibration with brachial 

SBP and DBP resulted in significant underestimation of central SBP and; 4) the magnitude of 

B-R-SBPAmp was not predicted from local or systemic haemodynamic, arterial or 

anthropometric characteristics. 

 

SBP amplification from the aorta to the brachial artery is an established principle and while SBP 

amplification beyond the brachial artery is physiologically plausible43, it has been argued that this is 

likely to be minimal278. In keeping with our findings, several studies have found major B-R-

SBPAmp (e.g. >20 mmHg)178, 280-283, 289, 300. One invasive study289 reported B-R-SBPAmp of 12.4 ± 

8.2 mmHg (mean ± SD), whilst another300 conducted in patients prior to cardiopulmonary bypass 

showed radial SBP was on average 7 mmHg higher than brachial SBP.  
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Estimated central SBP was significantly higher when accounting for B-R-SBPAmp with radial 

waveform calibration. Similarly, Verbeke et al.178 showed that estimated central SBP increased by 

an average 4 mmHg when radial waveforms were calibrated with radial SBP compared with 

brachial SBP (B-R-SBPAmp = 6 mmHg average) and the ratio of B-R-SBPAmp:central SBP 

underestimation was comparative to that in our study (1.45 versus 1.42 respectively). A recent 

meta-analysis173 reported -8.2 ± 11.6 mmHg disparity between estimated central SBP (determined 

by radial tonometry calibrated with non-invasive brachial SBP and DBP) and invasive catheter 

central SBP. Multiple factors may be contributing to this central SBP underestimation, including B-

R-SBPAmp and underestimation of cuff brachial SBP306, 307. One method advocated to take into 

account B-R-SBPAmp is the calibration of radial waveforms using MAP calculated by brachial 

DBP + 0.4 x PP[32, 33]. When we used this method to calibrate radial waveforms (versus brachial 

SBP and DBP calibration), central SBP increased in both groups, but the increase was significantly 

higher among younger participants. On the other hand, when radial waveforms were calibrated with 

radial SBP and brachial DBP the estimated central SBP increased significantly more in older 

participants when compared to the brachial SBP and DBP calibration method. These disparate 

results may be due in part to the equation to derive MAP from brachial DBP + 0.4 x PP. This may 

not reflect the true MAP of the radial pressure waveform due to a relatively narrower and more 

peaked systolic phase compared to the brachial308 artery, which differs between younger and older 

people283. 

 

Underestimation of cuff brachial SBP may also result in systematic underestimation of central SBP 

in the newer brachial cuff waveform devices that utilise oscillometric SBP and DBP as calibration 

points. However, this could be overcome by calibration with oscillometric MAP and DBP75. The 

value of this calibration method has been debated309 due to potential for estimated central SBP to be 

higher than brachial SBP75, 310, which would be non-physiological. However, this apparent reverse 

SBP amplification is likely due to the aforementioned underestimation of true brachial SBP306, 307 

combined with more accurate estimation of the true (higher) central SBP when using oscillometric 

MAP and DBP calibration of radial waveforms51, 75. Thus, the reverse SBP amplification is an 

artefact of recording methods rather than representing true underlying physiology. Importantly, this 

oscillometric MAP and DBP calibration method has been shown to improve the relationship of 

estimated central SBP with end organ damage (i.e. left-ventricular mass index)310, suggesting this is 

a more clinically relevant method. 

 

This study highlights the problem that different radial waveform calibration methods may cause 
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differences in the apparently true levels of central-to-brachial and -radial SBP amplification. 

Population data on central-to-brachial SBP amplification shows that this decreases with aging296, 

although most of these data were non-invasive and central SBP was estimated on the assumption 

that brachial SBP was roughly equal to radial SBP. Our data supports two previous postulations: 1) 

the assumption of minimal B-R-SBPAmp contributes to underestimation of central SBP178 and; 2) 

this assumption may inflate the true level of central-to-brachial SBP amplification283. Importantly, 

central-to-radial SBP amplification decreased with aging only when radial SBP was used to 

calibrate radial waveforms and the magnitude of amplification is comparable to several invasive 

catheter studies that simultaneously measured ascending aortic and radial SBP74, 281, 282, 290, 311. 

 

The mechanism underlying the change in central SBP by recalibration with radial SBP is related to 

waveform morphology as exemplified in figure 2. Despite individuals having similar B-R-

SBPAmp, the magnitude of central SBP underestimation may be considerably different, with 

greater underestimation of central SBP associated with higher augmentation index. This is probably 

because augmentation index is not pressure dependent and, therefore, does not change when 

waveforms are recalibrated. However, if the SBP calibration value is increased there will be a 

relatively greater increase in central SBP (i.e. greater underestimation using brachial versus radial 

SBP calibration) when augmentation index is high. On the other hand, when augmentation is 

negative or close to zero, the change in the magnitude of estimated central SBP will be minimal as 

this will mainly be contingent on the first systolic peak rather than augmented pressure. This 

observation has clinical relevance because augmentation index increases with age (until 

approximately 50 years of age, at which point tends to plateau)35 as well as disease processes 

related to arterial stiffening such as hypertension43. Therefore, greater underestimation of central 

SBP is likely to be more prevalent in these higher-risk patient populations, which may impact on 

treatment decisions if hypertension management is being guided by central BP values. 

 

To assess the correlates of B-R-SBPAmp, a number of hemodynamic and anthropometric variables 

were measured. We found that radial SBP, not brachial SBP, was associated with B-R-SBPAmp, 

which suggests that B-R-SBPAmp cannot be predicted from traditional upper arm BP measurement, 

and that B-R-SBPAmp may be more dependent on vascular properties distal to the brachial artery. 

We expected that variables such as heart rate, flow resistance, flow input and arterial tapering may 

have correlated with B-R-SBPAmp43, however, this was not the case. Increasing age, male sex and 

higher HDL values were all independent predictors of increased B-R-SBPAmp. The association 

between male sex and increased B-R-SBPAmp has been shown previously178 and is consistent with 



 
156 

the case for central-to-brachial SBP amplification2, 35. The mechanisms of the association between 

B-R-SBPAmp and HDL are unclear, however, arterial compliance appears to be modified in 

familial hypercholesterolemia91, and this may influence arterial pressure transmission.  

 

Limitations 

The gold standard method to determine B-R-SBPAmp would be simultaneous invasive pressure 

recording at the brachial and radial arteries, but due to ethical reasons this was not possible in 

healthy people. In any case, the Doppler ultrasound method has been shown to provide an accurate 

and direct measurement of SBP178 and our methodology had excellent agreement with 

sphygmomanometric brachial SBP and good reproducibility. Anatomical differences between the 

brachial and radial arteries may have affected the pressure required for cuff occlusion of these 

arteries, and thus affected the calculation of brachial and radial SBP. However, the strong 

concordance of our non-invasive results with well conducted invasive studies75, , 282, 305, 306 suggests 

that this is unlikely to be a major confounder, although this can only be confirmed with invasive 

measurements. Finally, we used cardiothoracic bioimpedance to record cardiovascular parameters. 

Although, this method has been validated compared with invasive techniques187 and has acceptable 

reproducibility188, the accuracy of this non-invasive tool would be inferior to the invasive 

reference standard. 

 

AI.6 Conclusions 

Interest in the usefulness of central BP as a clinical tool emphasises the importance of ensuring the 

accuracy of central BP measurement devices. Our study shows that B-R- SBPAmp results in 

significant underestimation of central SBP from the radial pressure waveforms calibrated using 

brachial SBP and DBP. Emerging data suggests that a more appropriate calibration method is with 

oscillometric MAP and DBP whether waveforms are derived by radial tonometry or upper arm 

cuff technology76. Given the large range of B-R-SBPAmp values between participants, central BP 

estimated from upper arm cuffs that have been validated by comparison with invasive central BP 

measurements, may provide a more accurate non-invasive estimation of central BP than radial 

tonometry. 
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Appendix II. Additional data on brachial to radial systolic blood pressure 

amplification in response to exercise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Appendix II represents additional information and data analysis that was completed for the study 

presented in Chapter 7. This data, relating to the effect of light to moderate intensity exercise on 

brachial to radial systolic blood pressure amplification, was not included in the final manuscript 

submitted for publication. 
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AII.1 Background 

Despite resting blood pressure (BP) being clinically important, the BP response to moderate 

intensity exercise may have stronger prognostic value in terms of cardiovascular risk5. This is 

because individuals spend a relatively large proportion of their day doing some form of light to 

moderate intensity exercise6 and, therefore, the BP response to light to moderate exercise is more 

akin to the chronic BP loading that occurs during normal daily activity7. Measuring central BP 

in response to light to moderate exercise may, therefore, provide pathophysiological insights 

beyond that of resting measures. However, radial tonometry is currently the only validated11 

method to estimate central systolic BP (SBP) during exercise and brachial to radial systolic BP 

amplification (Bra-Rad-SBPAmp) may indeed influence the accuracy of this technique. Therefore, 

this study also aimed to determine the influence of light- moderate exercise on Bra-Rad-SBPAmp and 

the affect of Bra-Rad-SBPAmp on exercise central SBP in patients with and without type 2 diabetes 

mellitus (T2DM). 

 

AII.2 Methods  

Exercise protocol 

Exercise was performed via two legged semi-recumbent cycling using a portable ergometer, 

mounted on the end of the hospital bed. The resistance was fixed at 40 watts and participants were 

asked to pedal at 50 revolutions per minute. Once the participant reached as steady state heart 

rate, all haemodynamic data measured at rest was collected again during exercise. 

 

AII.3 Results 

Table AII.1 details the level of Bra-Rad-SBPAmp as well as exercise brachial and central BP in 

patients with T2DM and non-diabetic controls. Exercise brachial SBP was greater in patients with 

T2DM, although not significantly, compared to non- diabetic controls, however, there was no 

difference in exercise radial SBP between the groups. The difference between exercise brachial 

and radial SBP was borderline significant in patients with T2DM (p=0.076) and significant in non-

diabetic controls (p<0.001). Importantly, similar to at rest, exercise Bra-Rad-SBPAmp was 

significantly blunted in patients with T2DM compared to non-diabetic controls. Estimated exercise 

central SBP  calibrated  with  radial  SBP  was  higher  than  when  calibrated using brachial SBP in 

both patients with T2DM (p=0.090) and non-diabetic controls (p<0.001) however, there was no 

difference in exercise central SBP (calibrated by either brachial or radial SBP) between the groups 

(p>0.05 for both). 
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Table AII.1 Brachial to radial systolic blood pressure (BP) amplification (Bra-Rad- SBPAmp) and 

effect on central BP estimation during exercise in patients with type 2 diabetes mellitus (T2DM) 

and non-diabetic controls. 

 T2DM Non-diabetic  
   P value 
 (n=20) (n=20)  

Bra-Rad-SBPAmp (mmHg) 5±12 16±12 0.006 

Brachial systolic BP (mmHg) 154±24 146±17 0.16 

Radial systolic BP (mmHg) 159±25 162±25 0.97 

Brachial diastolic BP (mmHg) 70±7 72±8 0.36 

*Central systolic BP (mmHg) 128±15 121±13 0.13 

**Central systolic BP (mmHg) 132±18 132±12 0.74 

Data are mean ± standard deviation. T2DM, type 2 diabetes mellitus; BP, blood pressure; 

Bra-Rad-SBPAmp, brachial to radial systolic BP amplification; *Central systolic BP calibrated with 

brachial systolic and diastolic BP; **Central systolic BP calibrated with radial systolic and 

brachial diastolic BP. 

 

AII.4 Conclusions 

Radial SBP is higher than brachial SBP under light to moderate exercise conditions in both patients 

with and without T2DM. However, in patients with T2DM and also non- diabetic controls, Bra-

Rad-SBPAmp is of similar magnitude during exercise to that at rest. Therefore, although there is 

significant underestimation in central SBP using radial tonometry during exercise, it is not 

augmented compared to resting data. 
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