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Abstract

Unlike some other gauge choices the Fock-Schwinger gauge condition
z.A(z) = 0 uniquely fixes the gauge potentials in terms of the Maxwell fields
through the so-called inversion formula. Thus the Fock-Schwinger gauge po-
tentials in some simple configurations can be derived by making use of this
formula and contrasted with the familiar Coulomb gauge potentials. Two
important consequences are that Fock-Schwinger potentials of electrostatic
systems are no longer static and (unlike the Lorentz gauge potentials) that
Fock-Schwinger potentials corresponding to plane electromagnetic waves are
not plane waves.

To apply the Fock-Schwinger gauge to perturbation theory the gauge
propagator is first derived by the use of two different gauge fixing to the La-
grangian mechanism. The first one corresponds to adding a gauge fixing term
while the second makes use of auxiliary or Lagrange multiplier fields. The
auxiliary method leads to two components of the propagator: the physical
and the unphysical. The physical component in the second method coincides
with the propagator in the first one. Symmetry properties of the above prop-
agators are also derived and provide considerable improvement of Kummer
and Weiser’s analysis.

The fact that the Fock-Schwinger gauge theory is a ghost-free theory
enables one to derive the Slavnov-Taylor identities without using the language
of BRST transformations. Nevertheless BRST identities are also obtained.

The main focus and content of the thesis are perturbation calculations
in the Fock-Schwinger gauge. The most important one-loop corrections in
electrodynamics and chromodynamics have been computed and compared
with the more standard translation-invariant gauge choices. The on-mass-
shell equivalence of these calculations with more conventional gauge choices

has been established in detail.
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Chapter 1

Introduction

This chapter is intended as a literature review on the Fock-Schwinger gauge as
well as to give a global perspective on how the chapters of the thesis relate to one

other.

1.1 Review on the Fock-Schwinger Gauge
The less familiar gauge condition
(z —z0)- A(z) =0 (1.1)

where ¢ is a certain space time point, that without loss of generality may be set
to zero, has various names: the Fock-Schwinger gauge [Nov 84, Ohr 85, Kum 86,
Zuk 86, Sch 87, Kar 87, Mod 90], the Fock gauge [Ska 85], the Schwinger gauge [Nik
82, Niko 82, Sch 89], the complete Lorentz covariant gauge [Cro 80, Men 84, Oka
84], the coordinate gauge [Shi 80, Dur 82, Men 84, Mod 90], the fixed-point gauge
[Dub 81}, the Constrom-Dubovikov-Smilga (CDS) gauge [Ita 81, Men 84, Hau 84], the
Poincaré gauge [Bri 82, Ska 85, Gal 89, Gal 90], the homogenous gauge [Aza 81] and
the multipolar gauge [Kob 82, Kob 83, Ell 90]*. This gauge condition is the subject
of the thesis.

*The noncovariant version of the gauge, namely - E(r) = 0, is sometimes called the radial gauge

[Mod 90] since the radial component of the potential vanishes.

1



It is worth noting that the above mentioned gauge is only a special choice of a set

of gauges [Jac 78, Men 84]

fH(2)Au(z) =0 (1.2)

where

f“(z) = a* + bz* + Wz, + 22"z, — c*z?; wh = —w¥* (1.3)

are conformal Killing vectors satisfying

1
au.fu + aufp = §guuatxfa- (14)

Since the gauge condition (1.1) was originated a long time ago by V. A. Fock
[Foc 37] and then rediscovered by J. Schwinger [Sch 70], the Fock-Schwinger gauge
condition seems to be the best name for it and we will adopt it hereafter for z- A(z) =
0.

In spite of its relative unfamiliarity the Fock-Schwinger gauge choice has some
interesting properties that sometimes make it attractive to field theorists. It is a ghost-
free theory since, in this gauge, the Faddeev-Popov ghost action does not depend on
the gauge fields and thus its effects can be absorbed into the normalization factor of
the entire generating functional. As a result all Feynman diagrams involving ghost
loops vanish. Some complications found in the axial-type gauges [Sch 89, Lei 84,
Lei 87, Bas 89, Bass 89, Bas 90], which are also ghost-free, cause field theorists to
look for other ghost-free gauges like the Fock-Schwinger gauge [Kum 86].

One of the most interesting points about the Fock-Schwinger gauge is that there
is a unique relationship between the gauge potentials A,(z) and the field strength
F,,(z) [Hal 79, Men 84, Kum 86, Sch 87]*. Such a relation, the inversion formula
[Ita 81, Gal 89], seems to be the most enticing feature in applications to problems in
quantum field theory. For example, the formula allows formulations of gauge theory

directly in terms of field strengths F,,(z) instead of gauge potentials A,(z) [Hal 79,

*Notice that another gauge, the so-called fixed axial gauge [Hal 79], with its gauge conditions
Ag(t, 2o, Y0, 20) = A1(t, 2,9, 20) = Aa(t, 20,¥,20) = As(t,z,y,2) = 0 with zo,yo, 20 fixed, also has

an inversion formula. However the inversion formula in the Fock-Schwinger gauge is simpler.



Ita 81, Dur 82, Men 84, Sch 87]. It can also be employed to obtain gluonic mean
fields in Hartree approximation where the gluonic mean field is generally generated
by vacuum expectation values of gluonic operators [Sch 87]. Coeflicients of gluon

operators in the operator product expansions (OPE)
Mua(2,0) = T : g(=)T1q(s) = T(0)T24(0) (1.5)

with I'; and I'; are any two Dirac matrices (I'1,I's = 1,7, and oy, for scalar, vector
and tensor amplitudes respectively) and ¢(z) is a quark field may be calculated by
utilizing the inversion formula as well [Hub 82]. In addition, for I’y =4, and I'; = 4,,
the OPE itself can be computed by making use of the complete quark propagator up
to first order of the inversion formula showing that the resulting function is transverse
[Nov 84].

Shifman utilizes the inversion formula to consider the behaviour of the Wilson
loop average [Shi 80]. By rewriting the Wilson loop [Wil 69] as a power series of
gauge field strengths the series may be grouped into two sets of terms. The first set
consists of terms with no derivatives while terms in the second set contain derivatives
of gauge field strengths. Analysis then shows that the first set depends only on the
area of a contour of integration and (besides its dependence on the area) the second
set also depends on the shape of the contour.

Another example, duality transformations, that change a given (original) theory
with the coupling constant g into a (dual) theory with (%) as its coupling constant and
play an important role in discussing strong coupling theories [Sav 80, Ita 81}, benefit
from the inversion relation. After applying the inversion formula to pure Yang-Mills
theories it is found that [Ita 81, Miz 82] the dual theory goes over the original theory in
the weak coupling limit and vice versa in the strong coupling limit. In scalar quantum
chromodynamics, Mizrachi has concluded that, apart from the usual Lagrangian
in the generating functional for dual fields, there occur self interactions of gauge
fields and extra antisymmetric tensor fields coupled to the dual gauge fields and

scalar fields. Finally generalization of the inversion formula to supersymmetric



theories has been presented by Ohrndorf [Ohr 85]. Here he has shown that the gauge
connection as well as the prepotential can be expressed in terms of the supersymmetric
field strength.

Although the Fock-Schwinger gauge has positive features there are disadvantages
as well. The non-translational invariance [Nov 84, Kum 86, Sch 87, Sch 89] and the
nonlocality of the inversion formula [Kum 86, Ell 90, Wit 62] are, perhaps, the main
drawbacks, producing complexities in the Fock-Schwinger gauge propagator and, as
a result, difficulties in perturbation theory calculations. Such difficulties were exhib-
ited by Kummer and Weiser [Kum 86] on their work on one-loop graphs in spinor
quantum electrodynamics. Despite the intricacies of the computations they found the
interesting result that up to first order the scattering matrix in the Fock-Schwinger
gauge is equivalent, on mass-shell, to that in the Feynman gauge. The main aim of
the thesis is to widen the application of the perturbation methods to scalar electrody-
namics and more significantly quantum chromodynamics, and specifically to calculate

the significant one-loop graphs in those gauge theories.

1.2 The Thesis

The thesis consists of six chapters. The first chapter is given for introduction
while 1.:he final chapter is devoted to conclusions. The remaining ones constitute the
main body of the thesis.

Inversion formulas are the main ingredient of Chapter 2. After a formal derivation
of the formula and its necessary and sufficient conditions, we go to consider some
simple classical systems. The Fock-Schwinger gauge potentials for these systems are
then computed by making use of the formula. In addition, the scattering of quantized
charged particles by the Fock-Schwinger gauge potential is calculated.

In Chapter 3, the Fock-Schwinger gauge as well as the Lorentz and axial-type
gauge propagators are derived by two methods or two different choices of gauge fixing
Lagrangians. The first method is the familiar one of adding gauge fixing term while

auxiliary or Lagrange multiplier fields are introduced in the second method. Their



symmetry properties are also obtained.

Those propagators are then employed to derive the Ward-Takahashi and the BRST
identities. Since the Fock-Schwinger gauge theory is a ghost-free theory the BRST
identities are derived in two ways: with and without introducing ghost fields. These
ideas are carried through in Chapter 4.

The fifth chapter is the most substantial part of the thesis. Perturbation calcula-
tions to one-loop order in quantum electrodynamics and quantum chromodynamics
are presented and compared with more familiar translational-invariant gauge choices.
It is then possible to prove the on-mass-shell equivalence of the two treatments.

The general notations used throughout the thesis and various details of calcula-

tions are contained in the Appendices.
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Chapter 2
Fock-Schwinger (Gauge Potentials

The main goals of this chapter are to derive the inversion formula and, by its use,
to obtain the Fock-Schwinger potentials for some classical systems. As an illustration
the scattering of quantized charged particles in a Fock-Schwinger (FS) potential will

be derived and proved to be identical to the Coulomb scattering.

2.1 Gauge Transformations

Any theory of fundamental nature of matter must be consistent with quantum
theory as well as relativity [Ryd 85]. Therefore we must frame the theory in its
Lorentz covariant form.

In electrodynamics, for example, it is necessary to reformulate the noncovariant
form of the Maxwell equations into the covariant one by introducing field strength

tensors F,,(z) and four-vector potentials A,

Fo(z) = O*A"(z) — 8 A(z)

0 —-E' —E? —F3
E' 0 -B® B?
E? B3 0 -B!
E* -B* B! 0

(2.1)



The four three-vector Maxwell equations combine to
0, F* = j; d,F» =0 (2.2)

and are now covariant. Here j* = (p,j) and F* = 36" F,,. The Lagrangian of

electromagnetic fields then reads
L= —%F‘“’F,w 2.3)

which is automatically covariant. Thus the Lorentz covariance of the theory is com-
plete and explicit.
One important consequence of introducing potentials A,(z) is that if one trans-

forms A,(z) into A},(z) according to
AL(2) = Au(e) - BA(2) (2.4

for some arbitrary function A(z) the Lagrangian (2.3) remains unchanged. One then
says that the theory of electromagnetism is invariant under the transformation (2.4)
which is then called a gauge transformation. Hence the Maxwell theory is a gauge
invariant theory. The name gauge field is ascribed to the potential A,(z) for historical
reasons.

In 1954 Yang and Mills [Yan 54, Mil 89] proposed a new theory for strong nuclear
interactions, very similar to the electromagnetic theory. The difference between both
theories is in respect of their gauge groups. This leads to somewhat different proper-
ties of the gauge fields. The gauge fields in electromagnetism are Abelian while they
are non-Abelian in Yang-Mills theory.

The nonuniqueness of potentials due to the gauge invariance of the theory allows us
to choose certain conditions which make the potential unique. These are often called
the gauge fixing conditions or simply the gauge choices. Clever choices of gauge lead
to interesting simplifications but can also destroy manifest covariance [Itz 80].

One of the most familiar gauges is the Lorentz gauge 0“A, = 0. Although it has
some advantages such as relativistic invariance and uniform Feynman’s ie-prescription
for the momentum space singularities of propagators [Lei 87] there are also disadvan-
tages: ghost particles should arise in non-Abelian theories which considerably com-

plicate perturbation calculations. It is also difficult to handle certain topical models
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such as supersymmetric Yang-Mills and superstring theories in the Lorentz gauge
[Lei 87]. Such complexities have led many theoretical physicists to examine other
gauges like the axial-type gauges and the less familiar FS gauge.

Some properties of the FS gauge

z*A,(z)=0 (2.5)

have been mentioned in the Introduction. The relativistic covariance of the condition
is obvious since the dot (scalar) product between two four-vectors, in this case, z*
and A¥(z), is Lorentz invariant (see for example [Jac 75]). Further, the FS gauge
theory is ghost-free and the proof of this will be given in chapter 4. The inversion
formula will be derived after the next section. Our immediate task is to consider the

attainability and completeness of the FS gauge.

2.2 Attainability and Completeness of the Fock-
Schwinger Gauge

Consider the gauge transformations in non-Abelian theories, where U(z) refers to

some internal group unitary change,

A, — AL =UAU™ - s(auU)U‘l. (2.6)

Suppose that potential A,(z) does not obey the gauge condition (2.5) but A} (z) does

satisfy it. Then one has

g(x“aﬂU(m)) = U(z)z"A,. (2.7)
Replacing z, — az, where a € [0,1] is a parameter, equation (2.7) reads
z#0,U(az) = a%U(aw) = —igU(az)az* A, (az) (2.8)
or
d—da—U(a:v) = —igU(az)z” A, (az). (2.9)
Hence
1
Ulx)=P [e:vp (—-ig/ da:z;"A#(am))] U(0). (2.10)
0
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P denotes path ordering in the variable a and U(0) is an arbitrary initial value for
U(z). Thus the gauge condition (2.5) is attainable [Cro 80, Zuk 86, Gal 89, Gal 90]
which means that one can always find gauge potentials satisfying condition (2.5) by
means of some appropriate U(z) as given by (2.10).

Let one now suppose that both A(x) and A,(z) satisfy the FS gauge condition.
Accordingly the right-hand side of equation (2.7) vanishes

z#9,U(z) = 0. (2.11)
Transforming z,, — az,, equation (2.11) becomes
z*9,U(az) = 0. (2.12)
Equations (2.11) and (2.12) allow us to conclude that
U(z) = U(az) = constant (2.13)

i.e. U is a homogenous function of zeroth degree in z. Thus, apart from con-
stant gauge transformations, the gauge condition (2.5) is a complete gauge condition
[Cro 80, Zuk 86, Gal 89, Gal 90]. The homogeneity of U (of zeroth degree) is the rea-
son, explaining why the gauge condition (2.5) is called the homogenous gauge choice
[Aza 81]. Another name, the complete Lorentz-covariant gauge [Cro 80], refers to its

properties: complete and Lorentz covariant.

2.3 Inversion Formulae

The inversion formula to which we have alluded is nothing but the expression of
potentials A,(z) in terms of their field strengths F,,(z). It is called inversion since
the familiar relationship between both is in the expression of field strengths F,,(z)
in terms of (the derivative of) potentials A,(z) as is seen in (2.1); inversion is the
converse. The derivation of the inversion formula in the FS gauge goes as follows.

Consider the electromagnetic field strength (2.1). One then has
zﬂFl‘”(z) = (1 + mua#)AV(m) - a,,.’l:ﬂA“(:B). (214)
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Replacing z* by az* where a € [0,1] is a parameter and then integrating over a from

0 to 1, equation (2.14) becomes

/01 da azF,,(az) = / [ (1+z0)A,(az) — % ,,a:z:“Au(a:v)]
- / [—aA (az) — —a K(az)]. (2.15)
Hence
Az) = / da az’F,,(az) +/ —8 K(az) (2.16)

where K(z) is a function of « defined by
z*A,(z) = K(z). (2.17)

Equation (2.16) is the inversion formula in the inhomogenous F'S gauge (2.17). Setting

K(z) = 0 leads one to the inversion formula
1
Au(z) = —/ da az’F,,(az). (2.18)
0

It turns out that the gauge potentials A,(z) at a point = not only recieve contri-
butions from the field strengths F),, at point = but also by all those points az along a
straight line between point z and the origin. In this sense the gauge potentials A,(z)
are nonlocal [Ber 56, Wit 62, Ell 90]. It is worth mentioning that the inversion for-
mula (2.18) may be derived by a simple geometrical argument [Dur 82] as well as by
applying Poincaré lemma* in a star shaped region in a modern differential geometry
[Bri 82] (see Appendix D). From now on we only consider the homogenous FS gauge
condition (2.5) and therefore the inversion formula (2.18).

To ensure that A,(z) in (2.18) are really the electromagnetic potentials one should
be able to derive the field strengths F,, from (2.18). Operating the curl on (2.18),

one has
1
0,A,(z) — 8,Au(z) = — /0 da a[8,2°F,5(az) — 8,2° F,p(az)] (2.19)

1
= —/0 da a[2F,,(az) + 2P0, F,p(az) — 2°8, F,4(az)).

*This is the reason why the gauge condition (2.5) is sometimes called the Poincaré gauge [Bri 82,

Ska 85, Gal 89, Gal 90].
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Now the first term on the right-hand side of (2.19) may be integrated by parts

—2/1d aF,,(az) = a’Fy(az)|! —/ld 24 b (az)
| daaF,(ez) = o'Fy(az)la— [ doo’o—Fi

1
= F(z)— / do azP 5 F,, (az). (2.20)
)]
Putting (2.20) into (2.19), equation (2.19) yields

9, Au(z) — B, Au(z) = Fu(z) — /01 do *2P[04F . (az) + 8, F,p(az) + 8, Fp.(az))
(2.21)
where 9, = 18,. One now notices that A,(z) in (2.18) will represent the electro-
magnetic potentials with F},,(z) as their field strength tensors provided that the last

term of equation (2.21) vanishes,
OpFu.(z) + 0, F,5(z) + 8,Fp,(z) = 0. (2.22)

But these are nothing but the homogenous Maxwell equations (2.2b) or the Bianchi
identities in Abelian theories. Hence the Bianchi identities (2.22) are the necessary
and sufficient conditions for the inversion formula (2.18) to be relations between field
potentials A,(z) and their field strengths F,,(z) [Dur 82].

The inversion formula (2.18) also holds for non-Abelian theories
Fu(z) = 0,A.(z) — 8,A,(z) — ig[Au(z), Au(z)] (2.23)

because if one multiplies z# and F,,(z) in (2.23) the commutator terms vanish and
equation (2.14) remains unchanged due to gauge condition (2.5). However the iden-
tities (2.22) are not correct in non-Abelian theories. To obtain the right constraints
let us go back to equation (2.21) but with F,(z) defined in (2.23). It turns out that
the second term in the right-hand side of equation (2.21) does not vanish because the
left-hand side of equation (2.21) is not equal to F,,,(z) anymore. If one adds to both
sides of (2.21) the identity (remember z - A(z) = 0)
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ig [ da @’aP{[4,(0), Fun(az)] + [Aaz), Fau(a)])
= ig [ da @s~{{4,(az),0,45(a)] ~ [As(az), dp A, (cc)]
+{Au(a2), dpAu(a@)] - [A,(a2), BuAalac)]}
= g [ deraf~20A,(az), Ay(a0)] — a-[4,(az), Au(ea)]}
= —ig [ da-a’[Ay(aw), A(0z)]
= —igla,(2), A,(2)

one arrives at

8, Au(2) — B, Au(a) — iglA,(2), A(2)]
= Fu(z)- fo de *2P|DgF,,(az) + D, F,p(az) + D, Fpu(az)]

where

DpFy = 0pF,, ~ ig[Aﬁ, F;w]-

Equation (2.25) allows us to conclude that the Bianchi identities

DﬁF;W(m) + D, Fop(z) + D,Fp,(z)=0

(2.24)

(2.25)

(2.26)

(2.27)

are the necessary and sufficient conditions for the inversion formula (2.18) to succeed

in non-Abelian theories [Cro 80, Dur 82]. Notice that equation (2.18) is actually the

general solutions of equations (2.1) and (2.23) without fixing the gauge (thus they

hold for all gauges in the vicinity of the origin) [Itz 80]. This is obvious since around

the origin, z, ~ 0, the last term on the right-hand side of equation (2.14) and the

commutator term which appears in non-Abelian theories may be neglected.

One important point that should be mentioned is that for Abelian theories the

inversion formula in (2.18) is only a special case of the more general relations discov-

ered by Cornish [Cor 84], namely that the potential can be expressed in terms of the

field strength via
95* 05”

1
Ao,(:lﬁ) =A dAFuV(S)W%;
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where S = S(), z) is a two dimensional surface with parameter A € [0,1]. The proof

is as follows. Consider a one parameter closed path in space time

= w*(v) n<rv<y (2.29)
w*(r) = w*(1)
w1th is continuous. Let also define a two dimensional surface S
% = S*(\, w(v)) n<v<y, 0<X<1 (2.30)
which is differentiable and satisfies boundary conditions
S%(0,w*(v)) =0; S*(1,w(v)) = w*(v). (2.31)
Now one obtains the following integral over S
vz f1 88?95° 08S5°095°
po —
/SF,,,dQ - / / Fou{ S\, w(#)]} ( S~ ) dAdv
liNig BS" w”
= o[ [ [etsiuon G o] s o
on the other hand
/S Fod® = /S (8, Ay — 8, A,)d
_ b — v_o 74 0%
2 /S 8,A,d0" =2 /w A dw” =2 / " A dv (2.33)

according to Stokes’ theorem. By equating (2.32) and (2.33) one finally arrives at
equation (2.28) above. Notice that formula (2.28) was derived by choosing a surface
which belongs to a class of surfaces satisfying boundary conditions (2.31). Since
the number of such surfaces is infinite there are still many degrees of freedom. One
therefore can say that choosing a certain surface S is equivalent to choosing a certain
gauge. By setting S = Az®, for example, equations (2.28) lead to the FS gauge
potentials (2.18)7. However not all familiar gauges, such as the Lorentz gauge, belongs
to class of gauges (2.28) [Cor 84]. Note too that the Bianchi identities (2.22) act
as conditions for relations (2.28) (see Appendix D). A formula similar to (2.28),

tThe noncovariant version of the FS gauge 7- A(F,) = 0 is equivalent to the choice of $* = Az’

and S° = z0.
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differing only in boundary conditions, was proposed for the first time by De Witt
[Wit 62, Aha 62, Man 62] when he formulated quantum theories without potentials.
This formula may be derived from choosing the gauge parameter [Ell 90, Wit 62,
Aha 62, Hea 79, Bel 62, Roh 65]

Az) = — /P f(’) Au(2)de* = /0 ' A,,(z(/\,m))%d)\. (2.34)

The inversion formula (2.18) can be written in the form of infinite series by Taylor-

expanding the field strength F,, (az) around the origin. We have

1
Aua) = — [ dooaFu(oa) (2.35)
— 1
- —_ ¥V ™Mg92...g% ..
nz:% nl(n + 2)‘” Tz "0y Oy * * * O F i (0)

* Because of the condition (2.5) the identity (see Appendix D)
T2z - 290, Oy * * * Oap Fun(0) = 2*22%% - - 2%" Dy, Dy, - - - Do, F i (0)  (2.36)

holds, and we then come to [Shi 80, Hub 82, Nov 84, Zuk 86]

ad 1 v, oy, 00 On
A#($) = - nE=0 mw rr - Dal Dag v DanFu.l/(O)
1 1 1
= §$VFvu(0) + g:z:":c“DaF,,u(O) + gm"a:aa:ﬁDaDng(O) + .-+ (2.37)

i.e., the gauge condition (2.5) enables one to replace ordinary derivatives in (2.35)
by their covariant ones. The elegant appearance of this series has attracted many
theoretical physicists to take advantage of them, even though only the first few terms
are usually taken.

There is no doubt that the Coulomb and Lorentz gauges are the most well known
gauges as one can see that almost all texts on electrodynamics are written in terms
of those gauge choices. The reason is that at the classical level, for example, both
gauges play an important role in simplifying some problems. It is therefore of some
interest to calculate the FS gauge potentials fixed by the FS gauge condition for
some simple classical systems and then compare them with the familiar ones, the

Coulomb/Lorentz potentials. The following section is devoted to this.

$The name multipolar gauge [Kob 82, Kob 83, Ell 90] is also given to the gauge (2.5) because

the expression (2.35) looks like a multipole expansion.
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2.4 Fock-Schwinger Potentials in Simple Classi-

cal Systems

2.4.1 General Formulae

In this section we will exploit the inversion formula (2.18) to obtain the FS gauge
potentials for some classical systems. According to formula (2.18) the FS scalar

potential is

Aoz / da az” Fo,(az) / da of - B(az) (2.38)
and the FS vector potential is
Al(z) = / do az, F¥(az) = / da a[zoE (az) + €%z, By(az)]  (2.39)
or
Alz) = / da ofzoE(az) + 7 x B(az)). (2.40)

It turns out that the vector potential A(a:) does not depend purely on the magnetic
field B(z) but also is dependent on the electric field E(z). This additional term is
the major difference between the vector potential in the FS gauge and that in the
Coulomb gauge. Both formulas (2.38) and (2.40) are quite general and will be applied

to some classical charge/current configurations.

2.4.2 Electrostatics

Here the electric field is F(7), independent of time, and the magnetic field B (7)

vanishes. The FS potentials of electrostatic systems reduce to
1 -
Ao(F) = — / da of - B(af) (2.41)
0

A(zo,7) = —/01 do azoE(or). (2.42)

It is clear that, because of its dependence on the electric field, the vector potential
f-l‘(:z:) is no longer zero. Another important fact is that it is proportional to time zo.

Thus, in FS terms electrostatic systems are not static, they depend on time!
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Let us now relate the FS and the Coulomb potentials. As is well known, the

Coulomb potential V() is defined by
E(F) = —VV(7). (2.43)
The corresponding Fock-Schwinger potentials become
1 \Y
Ao(F) = / dar o' ZV(af) = V() + V() (2.44)
0
with Vi(F) = — f3 da V(aF), and
A(zo,7) = o / daa—VV (o) = —2oVVi (7). (2.45)
0
Thus the FS scalar potential differs from the Coulomb potential by V;(7) which ex-
plains how the nonvanishing FS vector potential (2.45) comes about.
a) n point charges

The electric field E (7) measured at the point 7, due to n point charges ¢, at 7

where s runs from 1 to n is defined as

B = =3 = (7 7) (2.46)

47"60 s=0 IT - TSIS

and the corresponding Coulomb potential reads

n

t. .
47r€0 z; IF— 7 + constan (2.47)

Hence, the FS gauge potentials are

Aol) = E 47reo - / da]ar—rsl (2.48)

47r60 |

A(zo,7) = / daVIZ:TI— (2.49)

47T €0 g

b) Electric dipole

This is nothing but two point charges ¢ and —g¢ infinitesimally separated:

1 1 q F—m)-T
V() = 5 =| ~ & 2.50
(7= 47?60 |F—r' — l| ]r — 7| dreg |7 — 1|3 ( )
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Here the charges q and —q are at the points 7 +1 and r respectively and |I] < |F— ).
The FS gauge potentials (2.44) and (2.45) read

g F=m)-T ¢ [, (aF=1).-T
= DALY d J 2.
Ao(7) dmeg |[F—r'2  4dmen Jo * ar — |2 (2:51)
- qz F—r' I
A(zo, ™) = 4,,:0 / da v 2|3 . (2.52)

¢) Infinite line charge along z-axis

The electric field in this case is defined by

~ Ao dY -
B(f) = lm — [ 7 2.
(r) = Jm L, e r'|3(r r') (2.53)
where A is a charge density chosen to be constant. After integration over 2z’ one has
~ A x4y
E(f) = ———= 2.54
(7 2meo 22 + y? (2.54)
and accordingly
V(F) = “Ire (z® + y*) + constant. (2.55)
The FS gauge potentials are
A A1 A
AP = ——2-1 2 2 _/ do 1 2.2 2,2y — _ .
o(7) e, n(z* + y*) + Treo o a ln(a’z® + a’y?) ey (2.56)

a constant, and

/\a:o Azo 217+ 227

= —zoE(F). (2.57)

A(zo,7) = —

/ daV ln(a :1:1 + a :1:2)

" 4rmeo z? + 22
d) Charged ring (with z-axis as its symmetry axis)

In this case the Coulomb gauge scalar potential is given by

dly

dreg J |7 — i

V(@) = + constant. (2.58)

Since
dl] = ad¢1

(F—71) = (z— acos$)7+ (y — asin ¢;)7+ 2k,
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a being the radius of the ring, one has

V()= 22

- \/ﬁ + constant for r>a (2.59)

and therefore

GA 1 GA 20
= 2 1—-In= _
Al = 5 {\/—,,2 +a? W} areg L T In ) (2:60)
e alzg alzg /
== — — d .
A($O’ 77) 260 / daV /agrz + a2 260 aO{ —a 21 )5
= ;;\io #(1-In _) for r>a (2.61)

2.4.3 Magnetostatics

Since in magnetostatic systems the magnetic field B (7) is independent of time and

the electrostatic field vanishes, the F'S potentials (2.38) and (2.40) reduce to

Ao(:l,‘o,’f_‘) =0 (262)
A = - /oldaaf'xB‘(aF). (2.63)

Thus whereas in electrostatic systems both the FS scalar potential and the FS vector
potential have different value from those in the Coulomb gauge, in systems of mag-
netostatics only the vector potentials in both gauges are different. It is worth noting
that unlike electrostatics, the F'S potentials in the magnetostatic systems are indeed
static.

In order to obtain the difference between the Coulomb gauge and the FS gauge

potentials let us define a vector potential A? (7) satisfying
B(7) =V x A’ (7). (2.64)

The superscript f is to remind one that there is an infinite number of vectors satisfying

equation (2.64). Those vectors may be written as
A7) = A(F) + Vf(7) (2.65)
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where the arbitrariness resides in the function f(7). The superscript c in the first term
on the right-hand side of (2.65) will be associated with the Coulomb gauge condition
later, but now, it is just to distinguish the potential Af () on the left-hand side of
(2.65). Substituting (2.64) and (2.65) into (2.63) one obtains

in=-[ doai x [2V x A(af)] = A7) - / ' daV[F- A(af).  (2.66)

n (2.66) A‘(f") is the F'S gauge vector potential and A°(7) is a vector potential which
has not been gauge-fixed yet. Therefore if one is restricted to a certain gauge condition
on A‘C(F), equation (2.66) describes the relationship between the FS gauge vector
potential and other-gauge vector potential. If one takes the “other-gauge” as the FS
gauge, the second term on the right-hand side of (2.66) vanishes and A(F) = A%(F) as

expected.
Let one now choose A%(F) as a vector potential in the Coulomb gauge and then

calculate the FS gauge vector potential for some simple systems.

a) Infinite steady current

The magnetic field at point 7 due to a flow of steady current I along the z-axis is

given by

ﬂoI EX(F=r) _ pol —z+yk
= Hol (% s = ) 2.67
(-‘) —co |’I‘ _ ’I"|3 o y2 + 22 ( )

The corresponding Coulomb gauge vector potential is

Ac(") = —ﬂ—oI—z In(y? + 2%) + Vf(z,y, 2); V2f(#) =0 (2.68)

and the FS gauge vector potential is
Am = £ ol 1oy + ) + V() + 5 v / do zIn[o?(y? + 22)]
—v/ da 7- —Vf(m"')
_ f;of 7+ [¢B.j— B, . (2.69)

It should be noted here that the FS gauge vector potential (2.69) is free of the
gauge parameter f(7), whereas the Coulomb potential (2.68) is not. Another obser-

vation is that the FS vector potential is perpendicular to the magnetic field. Unless
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one chooses f = f(r) rather than f = f(¥), the Coulomb gauge vector potential and

its associated magnetic field are not perpendicular.

b) Steady current ring

The vector potential of a system of a closed steady current I in the Coulomb

gauge is of the form

-‘I
A7) = ”°I L (2.70)
77
It is a solution of
V(V - A% — V2A° = —V2A° = pof (2.71)
with jdV — I dr. F;or a system of a current ring of radius r’,
di' = r'd¢’(—7sin ¢' + Jcos ¢')
the Coulomb vector potential (2.70) reads
zoran _ Mol r (2n - 1) ! ( )" zr' \"
A° =) | 57—
(7) = Ar mnz_%kz;) () T r? 4+ r”
2
./(; d¢'(—7'sin ¢' + Tcos ¢') sin* ¢’ cos™* &' (2.72)
For " <« r, it becomes
I I2
A (F)= 4 CE )3/2( yi+ ) (2.73)
and its corresponding FS gauge vector potential is
- - 1 - -
A7) = A(7) — V7 /0 do Ao(dr) = A7), r>r. (2.74)

Thus the FS gauge potential and the Coulomb gauge potential are equal in the far
region. Of course the Coulomb and the FS gauge conditions hold asymptotically,

V- A(F) =7 A7) =0. (2.75)
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2.4.4 Constant Electromagnetic Fields

In this system the electric and magnetic fields are constant

—

E(z) = E = constant; B(z) = B = constant. (2.76)

So the F'S potentials, according to (2.38) and (2.40), are

1 o4 1.
Ao(7F) = —/0 daa r-E=—§r-

- 1 - - - —
Alzo,) = = [ daa [eoB+7 x B = —%(a:oE+F>< B.  (2m)

T}

(2.77)

Thus the scalar potentials in the FS gauge and the Coulomb gauge only differ by
a scale; the Coulomb scalar potential is twice the FS scalar potential. The vector

potentials, on the other hand, are different because of the extra term —%moﬁ .

2.4.5 Plane Electromagnetic Waves
The plane electromagnetic fields have the forms
E(7,t) = By’ = Foe=i=:  B(7,t) = Boe " (2.79)

— -
where Ey and By are constant, and

o= Ey-k=By-E=Ey-Bo=0; Kk =0. (2.80)
0
According to general formulae (2.38) and (2.40), the FS potentials are
. 1 . 7. E, .
_ — —iaks __ r 0 ; —ikz
Ao(z) = —7- EO/O daa e = a)? [1—(1+ikz)e™**]
= —ik::m (ka)n
7 Ege ™y T 2] (2.81)

n=0
e — o — 1 . —ikz
A(z) = (zoFo+T X BO)W [1 — (1 +ikx)e ]

= (.’EoEo + F X Eo)e_ikz E (ka)

(n+2)!

(2.82)

Equations (2.81) and (2.82), describing the FS potentials in a system of plane
waves (2.79), are no longer plane waves! Note that the zero order of equations (2.81)
and (2.82) have a similar form to equations (2.77) and (2.78), the FS potentials in a

system of constant electromagnetic fields.
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2.5 DPotential Scattering of Charged Particles

We have calculated the FS gauge potentials for some classical electromagnetic
systems. It was found that, in general, the FS gauge potentials and the Coulomb
gauge potentials differ. Since both kind of potentials were derived from the same
physical quantities, the electric and magnetic fields, the difference in their values
cannot produce any physical effects. This also holds for quantum systems. The
scattering of charged particles due to either the FS gauge potentials or the Coulomb
gauge potentials must produce the same result. This last section will be used to
derive the differential cross section of charged particles scattered by the FS gauge
potentials.

Consider the transition amplitude [Itz 80] between the initial state

bi(z) o ul®(p;)e = (2.83)
and the final state
ps(z) o ul®(ps)e 1" (2.84)
of an electron scattered by the FS gauge potentials (2.48) and (2.49) with K = )
s=1land ¢, =¢
Si = —ie [ 5T (p) (@) 01 ()
1 1 ,
= Sp(Coul) +ieK / d*zu®) (ps)A° / dAme’(pf_p')'zu(ﬁ)(p;)(2.85)
0 F—r
. 1 .
—z'eI{/d“zﬁ("‘)(pf)zo'y'a;/ d\ _‘1 _ e‘(Pf—P-)'-'L'uﬁ(pi)
o A =7

where Sy;(Coul) is the transition amplitude of the electron due to the Coulomb po-
tential V(r) = £ with A(7) = 0. Integration over zo in the last two terms on the

right-hand side of equation (2.85) can be easily done. One obtains
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—i(Fy—p )7

27rzeK{ o) uP(p )5(Ef—E)/ D f & 6__'|

. 0 e~ Pr=P) T
T ) (Y| —— — B i, — 3
Epn)1 w0 p) [ OB — B o = [ [
= 2mieK {@(p;)7°u® (p:)8(Es — E:) | (2.86)
9 Pl
TA)) E; — Eu®)(p; d\ | Pr——
R P R Y E e

where the mass-shell condition

T (pys) (B #:) wP(pi) = 0 (2.87)

has been used. It turns out that equation (2.86) vanishes since it is proportional to

6(E)+ E5 6(E) 3 S ES(E—0)=0 (2.88)

with E = E; — E;. Hence, the only non-zero term of equation (2.85) is Sy,(Coul):
Sf,' = Sf,-(Coul) (2.89)

i.e., the transition amplitude of an electron scattered by the FS gauge potentials is

equal to that by the Coulomb gauge potentials and likewise for differential cross-

sections.

To summarize we have calculated potentials for some classical systems which obey
the FS gauge condition. Even though they differ from the Coulomb/Lorentz gauge
potentials the physical content is the same and this has been verified in scattering of
quantized charged particles. The remaining chapters will be devoted to higher order
corrections in the relativistic quantum theory. Here quantities such as propagators

play a crucial role and hence the next chapter concentrates on the FS propagators.
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Chapter 3

Fock-Schwinger Gauge

Propagators

In this chapter the Lorentz, axial and FS gauge propagators will be derived in
coordinate space by the use of two different gauge-fixing of Lagrangians Lgr, =
—2(G-A)? and Lgx, = CG-A+%C? where C(z) is an auxiliary or Lagrange multiplier
field. The undoubtedly popular gauges, Lorentz and axial-type, are incorporated here
in order to check the calculations. The FS gauge propagator will also be presented in
momentum space and various symmetry properties will be derived. The first section
is devoted to a brief review of generating functionals in order to introduce the basic
theoretical idea which underlies the derivations. This review is based on Bailin and

Love [Bai 86], Ryder [Ryd 85], Burden [Bur 90] and Nash [Nas 78].

3.1 Review on Generating Functionals

The transition amplitude of a (non-relativistic) quantum system in which its state

are |¢',t’ > and |¢",t"” > at time ' and t"” > ¢’ respectively is defined by
< ¢",1"l¢', ¥ >=< ¢"|exp[—iH(t" — V)]lg’ > . (3-1)

Here |¢ > is an eigenstate of position operator @) with its eigenvalue ¢ in the Schro
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dinger picture
Qlg >=qlg>. (3.2)

The Hamiltonian operator H is time independent. By dividing the time interval t” — ¢’

into (N + 1) interval of equal length € and putting €e — 0 (or N — oo0) one may write
N
<¢",t"l¢,t' >= lim H/qu' < ¢",t"lgn, tn >< g, tnlgN-1,tN-1 >
1=1

- < qr,tlgt > (3.3)

According to equation (3.1), and when the Hamiltonian operator H has the form

H(Q,P) = g— + V(@), one has, after some algebra,

d' B " .
< gisn tinlgity >= [ Zexp{i fi dt [pig, — H(g;,p5)]}

) (3.4)
X exp {z [ dt L(‘]j,‘ig)}

for every j = 1,2,---, N. Hence, by putting go = ¢’ and gn41 = ¢”, inserting (3.4)
into (3.3) leads to

tll
<q",t"l¢,t' > x /Dq exp {z dt L(q,(j)} (3.5)
t'

where the integration is over all functions ¢(t) with boundary conditions ¢(t) = ¢’

and ¢(t") = ¢".

In the presence of an external source j(t), the transition amplitude (3.5) becomes

. tll
< qn, tnlq/’ t>? /'Dq exp {l /t’ dt [L(q,q) —}-j(t)q]} . (36)

Now if the source j(t) is non-zero only in the interval t” > ¢, > t > ¢, > #' the
left-hand side of (3.6) can be written as

<¢" gt >i= ¥, . [dadg < ¢",t"|n >< nlgs,ta >< ga, talgs, to >7
< g, tylm >< m|q¢’,t' >

= [dg.dgytpo(q”",t")3(gasta) < Gurtalgs, ts >7 Yo(ge, to)g(q', )
(3.7)

where |n > are the energy eigenstates

Hin >= E,|n >, E, > Eg (3.8)
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and

Pn(g,t) =< ¢, t|n >= e Bt < gn > . (3.9)

It turns out that in the limit ¢” — oo and it' - —o0, < ¢”,t"|¢’,t’ >? is dominated

by contribution from the vacuum |0 >. Let one now define a functional Z[j] as follows

Z[]] = /ande¢3(Qaata) < Qaatalqb, tb >j ¢0(Qb,tb)
x < q" gt > (3.10)

Thus Z[j] is nothing but the vacuum expectation value of the transition amplitude
which can be taken in the limit where t, and —%; (hence t' and —t") —» oco. By
recalling (3.6), functional differentiation of (3.10) with respect to j(¢) n times leads
to

§"Z[j . )
5J'(t1)5j(tz)[ﬂ-6j(tnj oo = TS 442d05%5(4as ta)

< €0, ta|T[Q(21)Q(22) - - - Q(a)]lgbs to > tPo(g5,25)
= " < O0|T[Q(t:)Q(t2) - Q(2)]]0 > .

(3.11)
This means that the vacuum expectation value of the time ordered product of any
number of operators Q(t) can be obtained by functional differentiating the vacuum
to vacuum amplitude Z[j]. Thus if Z[j] is known the vacuum expectation value of
the time ordered product of operators Q(t) may be obtained. This is why Z(j] is
called the generating functional.
The transition from the non-relativistic to the relativistic quantum theory is done
just by replacing ¢(t) — ¢(t,Z) = ¢(z) and Q(t) — Q(x) Therefore, e.g. in a
quantum field theory of scalar fields,

2li) = [ g exp{i [ da(L(d,0,8) + o]} (312)

o 2[0 =" () O(2,) - - - O
56 6y~ ¢ SWREICE:) - Qo> (3.13)

To normalise the generating functional (3.12) the condition Z[0] = 1 is added. The

Lagrangian density £ is defined from expression L = [ d®zL. Now the Taylor series
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of the generating functional Z[j] is given by

Z[]] = i_o: :_;'/dxldz2 Tt dzn](ml)J(xZ) " 'j(‘rn)T(xl’ T2, (Bn) (314)
where
( e m) = 8" Z[0]
TR T i (0)85(8) - 8j(ta)
= <0|T[Q(t)Q(t2) -+ - Q(t-)]I0 > (3.15)

is called the n-point (Green’s) function. Another Green’s function which is called the

connected Green’s function is defined by

§"W (0]
To(T1,Ta, "+ Tp) = —= - —, 3.16
O (ST RSO (1)
Graphically,
7c(T1,%2, -, Tn) = X, (3.17)
with
W[j] = —In Z[j]. (3.18)
The relationship between the two above Green’s functions is given by
T(Z1, 22,y Tn) = Te(T1, T2y + +, Tp) + disc. (3.19)

Here disc. stands for disconnected diagrams, i.e., the sum over all possible partition
1o(z1, %2, Tn) & To(T1, T2)Te (23, + -, T0), To(Z1, T2, T3)Te (T4, - - -, Ty ) €LC.

Since only the Hamiltonian of the type H = {% + V(q) has been used in the
derivation the (free field) Lagrangian L£(¢,0,¢) (with V = 0) corresponds to the
bilinear

£=3 [ drs()a" = 0)40) (3:20)

where A~!(z,y) is a differential operator. Thus, after some algebra, equation (3.20)

brings equation (3.12) into the form
Z[j] = exp {—5 / dzdy j(z)A(z,y)] (y)} (3-21)
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upon using the relation
~ [ A wi)as. (3.22)

The two point function is simply
(21, T2) =< 0T [d(z1)$(22)]]0 >= iA(z1, z2). (3.23)

Similarly, for vector fields A%(x), in which (3.12) becomes

2l = [ DA exp {z [ dz oAz, 0,42) + j‘“‘AZ]} (3.24)
one has
1G5 (z,y) =< 0|T[A%(z) AL (v)][0 > (3.25)
and
/ dyG (2, )7 (4)- (3.26)

3.2 Gauge-fixing Lagrangian Terms
Consider now the generating functional (3.24) with j =0

Z[0] = / DA e, pf =—ZF;Z,,( 2) P (g). (3.27)

As can be seen in the Appendix F the Lagrangian Lo is invariant under the gauge
transformation
' 1
a 8a __ pa abcpb pc a
Ar=AP =A%+ 0Au—§au0. (3.28)

Because of this invariance the generating functional (3.27) can be written as

Z[0) = [DA® exp i [dzLo(A®,0A0)

(3.29)
[ DAC) exp i [dzLo(A,0A).

Accordingly, integration over the gauge-transformed field A®) in (3.29) diverges be-

cause it includes an infinite gauge freedom volume factor f ], d6*(z). This factor

should be factorized out before using the perturbation theory [Fad 67,Mut 87,Lei 87];
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otherwise it will lead to ill-defined Green’s functions [Lei 87]. To eliminate this factor

Faddeev and Popov [Fad 67] introduced a functional A[A] via
AlA] / DIS(G*AD) =1 (3.30)

where in the argument of the delta function we write G* instead of 0* because we
want to generalise this identity from the Lorentz gauge to other gauge choices. Here
A[A] is gauge invariant since when we transform A into A®) A[A] becomes

1

A[A®)] = { [o#s(G- A(”'))}_ { [ ooy A(“'))}_l —Al4] (3.31)

where the second equality comes from the fact that exists the gauge group identity
[Fra 70, Gil 74, Ryd 85]

/ DOf(6) = / DO (66"). (3.32)
Now the identity (3.30) may be inserted, after replacing A[A] by A[A®)], into the
generating functional (3.29)

Z[0] = /D9DA(9)A[A(")]5(G-A(9)) exp i/dmﬁo(A("),aA("))

= [ DDA AIAI(G- A) exp i [ duto(4,04). (3.33)

We see that this generating functional is explicitly proportional to the volume [ D6.

Therefore we can now factor out the volume and the generating functional becomes
Z[0] = / DA A[A]6(G - A) exp i / dzLo(A,DA). (3.34)

Consider now the factor §(G - A). This is nothing but the homogenous gauge
condition G- A = 0 with G* = 0#,n* or z* in the Lorentz gauge, the axial-type gauges
or the F'S gauge. It is advantageous to replace the homogenous gauge condition by

the inhomogenous one

G-A=B. (3.35)

Accordingly the generating functional (3.34) becomes

Z[0] = / DAA[AIS(G- A— B) exp i / dzLo(A, DA). (3.36)
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Field translation ensures that Z[0] is independent of B(z) so one may integrate the
right-hand side of (3.36) over B(z) with the help of a chosen weight function [Hoo 71,
Lei 87]. The result is

Z[0] = / DA A[A] exp i / dz(Lo + LoF) (3.37)

where Lgr is called the gauge-fixing term of the Lagrangian £ = Lo + Lgr. Adding

a source term in (3.37) one has
Z[0] = / DA A[A] exp i / dz(Lo+ Lor + jA). (3.38)

This is the general form of the generating functional for Yang-Mills theories. The
functional A{A] will be derived in detail in the next chapter. The explicit form of the
gauge-fixing Lagrangian Lgr depends on the chosen weight function. If one chooses

a Gaussian weight function

X 3 l BZ T 3.39
and integrates over B one ends up with

G- A). (3.40)

1
Lgr = —ﬁ(

This Lagrangian may also be written in different form, namely in the form of auxiliary

fields C%(z) [Nak 66, Mut 87]:

A
Lor=CG-A+ 502 (3.41)
where in this formulation functional integration over C* must be added to the gener-

ating functional (3.38)
Z[0] = / DADC A[A] exp i / dz(Lo(A) + Lor(A,C) +jA).  (3.42)

The equivalence between the Lagrangian (3.40) and (3.41) is trivially proved by mak-
ing use of the identity
b2

4a

b
az’ +bz+c=a(z+ £)2 +c— (3.43)
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in the functional (3.42). Note that C(z) is an auxiliary field and therefore all physical
observables should not depend on it [Fra 70]. This field is also called the Lagrange
multiplier field [Fra 70], especially in the context of gauge-fixing Lagrangian

Ler=CG-A (3.44)

[Del 74, Kum 75, Kon 77, Itz 80, Cap 86, Kum 76]. In fact the Lagrangian (3.44) is
only a special case of (3.41), i.e. the case when A — 0.

The next section will be devoted to derivations of Green’s functions or propaga-
tors. The derivations will be presented by recalling the bilinearity of the Lagrangian,
equation (3.20) and (3.21), and by applying Euler-Lagrange equations and equation
(3.26).

3.3 Gauge Field Propagators

The gauge field propagators depend significantly on the gauge fixing term of La-
grangian. By taking the gauge-fixing Lagrangian (3.41) into account the Lagrangian
of the gauge fields reads

1 a auy a a A a
L=—2FL P 4+ C°GH AL + 5(0 )2 (3.45)

The propagator will be obtained first by deriving the fields A** and C* in the form of
their external sources via the Euler-Lagrange equations. Then, according to equation
(3.26), the propagator emerges automatically. Using this method we ought to add

external source terms to the Lagrangian (3.45)
1 a auyv a I A /\ a\2 ap ca asva
L= _ZF’“’F + C*G" A;, + E(C )+ A+ K°C (3.46)

where j** and K* are the external sources of the fields A** and C* respectively. The

Euler-Lagrange equations

oL 9 oL __ o
ac™ ~ "»9(8,C%) (3.47)
oL 9, oL = 0 )



lead to the field equations

G-A* = —(K°+)C% (3.48)
(Og™ — §*8")A% F GHC* = —jo*. (3.49)

The (F) factor in the second term on the left-hand side of (3.49) comes from the
second term of (3.46): in the axial and FS gauges CG*A, = +(G*C)A, while, after
omitting surface term, CG*A, = —(G*C)A, in the Lorentz gauge. Thus the upper
sign, in this case (-), in the last term on the left-hand side of equation (3.49) is for the
Lorentz gauge whereas the lower sign is given for the axial and FS gauges. Note that
equation (3.48) is nothing but the inhomogenous gauge condition. Now operating

with O on (3.48) and J, on (3.49) we obtain
—0O(K +AC*%) = G"O0OA; +2Ips0- A® (3.50)

C* = £(0-G)'8-5° (3.51)

where

Irg= 1 for the F'S gauge
Fs gaug (3.52)

= (0 for other (Lorentz and axial) gauges.
By operating with G, on (3.49) and using results (3.50) and (3.51) one obtains, after

some rearrangement,
0 A® = (8G — 2Irs) ' [~-DOK® — (G* £ A0)(6G)~' - j* + G - 7°]. (3.53)
Combination of (3.49), (3.51) and (3.53) leads to
A(z) = —(0G — 3Ips) 'O*K® — O~ g* — (8G — Irs) "} (G*0” + 0"G¥) +

(8G — Ips)"20*G20” £ MG — Irs)™(0G + 3Ips)"108*8"}j2.  (3.54)

In obtaining expression (3.54) the identities

0G = GO+ 4Irs (3.55)
0,(0G + a)*' = (8G + a + Irs)*' 0, (3.56)
a:,,(BG + a)il = (aG +a— Ips):ﬂzu (3.57)
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apGu = Guay. + IFSg;w

(3.58)

with a an arbitrary number have been employed. Finally using the definition (3.26)

one extracts the propagators

(3.59)

(3.60)
(3.61)

(3.62)

= 0g,, — (0G — Irs) ™ (Gud, + 8,G,) + (G — Irs)"28,G%8, +
+ A8G — Irs)™Y(0G + 31Irs)"108,8,}6%(z — v),
% (2, y) = _‘;ﬁ{;g; = —i}i*;i"’; (G — 3Irs)™8,6%(z — y),
Giblav) = g = ~5d = F(06) 0,69z - v),
=545 4583

Thus we have the Lorentz, axial and FS gauge propagators

ab;w(z,y) —
G (zy) =

GL (.’I), y) =

ab;W(x’y) —
G (zy) =

Gab44( ’y) —

buv
Grs (z,y) =

GRE @) =

GP(z,y) =

GP¥(z,y) = 0.

O~ [g" + (A —1)07948")6%(z — y)

~Gp™(2,y) = 07'9#6%(c — )

o*n® + 0"n* n?-—
ICERNCE )2
Gy (x,y) = (0n)710*6%(z — y)

0

O-1 g —

8“8" 5“b(m

y)

(3.63)

(3.64)

07 {g* — (9z — 1)} (2#0” + 0*z”) + (9z — 1)~2#220"

— M9z —1)7}(dz + 3)7'08#8"} §°(z, y)
(0z — 3)710*6%(z — y)
(0z)10"6(z — y)
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The inverse propagator G " (z,y) where K, L = 0,---4 may be obtained in a
straightforward way by recalling the bilinearity (equation (3.20)) of the Lagrangian
(3.45):

L= _%[A““(Dguu — 0,0,)A™ F A*G,C* + C°G,A™ + C*AC”] (3.66)

after discarding the surface terms. Again, the upper sign in the second term is
associated with the Lorentz gauge while the lower sign is for the axial and F'S gauges.

Hence the inverse of propagators (3.59-3.62) can be read off:

G2l (2,y) = (Ogu — 8,,)8(z — y) (3.67)
Gt”(2,y) = FGu6"(z — y) (3.68)
Gt (z,y) = Gu6"(z — y) (3.69)
G (z,y) = M6%(z — y). (3.70)

The above inverse propagator may also be derived by the use of identity
/ dy G2, (2,4)G~"" (y, z) = 6M8%(z — 2). (3.71)

However such derivation is not straightforward and a few pages are needed to perform
all the calculations (see Appendix E).

In the limit A — 0 we have
Ler=CG-A (3.72)

and

GZ?/(:I:’ y) =0 {guu - (aG - IFS)‘I(Gua,, + 6,,G,,) +

(0G — Irs)20,G%3,}6%(z — y), (3.73)
G (z,y) = (0G — 3Irs) 10,8z — ), (3.74)
G(z,y) = F(G) 10,6 (z — y), (3.75)
Gialz,y) =0, (3.76)

and their inverse
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GY(2,y) = (Ogu — 8,0,)8%(z — y), (3.77)

i (z,y) = FG.6%(z —y), (3.78)
G (z,y) = Gu8(z —y), (3.79)
G™(z,y) =0. (3.80)

In this limit the FS gauge propagator and its inverse are

G2 (z,y) = O {g — (z — 1)~} (z*8" + B*z")
+(8z — 1)720*2%0"} 6%(z — y)
Gyt(z,y) = (0z —3)719*6%(z — )
Grs'(z,y) = (0z)'0"6%(z —y)
G4z, y) = 0 (3.81)
G (:9) = (Ogu — 8,0,)8%(z —y)
Grsua(2,y) = Grsau(a,y) = 2,8(z — y)

lab

544(1" y) 0.

To end this section let us compare the above propagators to those associated with
the gauge-fixing Lagrangian Lor; = —5(G - A)%:
G2 (z,y) = 07 {gu — (9G — Irs) (0., + G,d)) +
(6G — Ips)_2auG20,,
+A(0G — Irs) ™ (0G + 31rs) 08,0, } §°(z — y) (3.82)

and

a 1
G1(z,y) = (Ogu — 8,0, £ XG,‘GU)é“"(:z: —y). (3.83)

The derivation of these propagators can be carried out in a similar way as above (see

Appendix E) and therefore we only show the final result here.
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It turns out that the propagator associated with Lgx, is equal to (¢, ¥) components
of the propagator associated with Lgr,. This equality is understood since both gauge-
fixing Lagrangians are equivalent in the context of generating functional. On the other
hand, the physical components of the inverse propagator (3.67) is simpler: it is free
from the gauge parameter A and is equal to the gauge parameter-free term of the
inverse propagator (3.83). The appearance of extra components, G®*** and G°***,
in the propagator associated with Lgr, is due to the introduction of the auxiliary
field C(x). However these extra components will not contribute to the scattering
matrix and thus we may call them the unphysical components of the corresponding
propagator but the remainder, (4, v), are called the physical components.

In perturbation calculations we will not use the F'S gauge propagators (3.65) or
(3.82) but because of its simplicity we will employ the FS gauge propagator and its
inverse (3.81).

Symmetry properties of propagators play an important role in simplifying pertur-
bation calculations and therefore we should derive them for the above propagators.

The next section is devoted to the derivation of those symmetries.

3.4 Properties of Gauge Field Propagators

The symmetry properties of the propagator G, (z,y) can be deduced immediately

from identities below

07 §(z — 2') = O 14(z — ) (3.84)

G, 0(x —z') = FG,b(z — 2) (3.85)

(0'G' +a)'6(x — z') = (£0G + a + 4Irs) 1 6(z — 2') (3.86)
(0G + a)*07! = 010G + a + 2Ips)* (3.87)
GuD_l = D_IG,_, + 2IF5D—23# (3.88)

where a is constant and G, 8, and O refer to the variable z’. The proof of the above

identities can be found in the Appendix B. By applying (3.85), (3.86) and then (3.56)

42



the unphysical components of the propagator G, (z,z’) have the property
Gﬁi(z', z) = G:Z(z, z'). (3.89)

Similarly, but with a few more lines of calculations, all the identities (3.84-3.88) and
(3.55-3.58) can be applied to show that the physical components of the propagator
obey

G2 (2, z) = G (z,2). (3.90)
Thus we conclude that the propagators are symmetrical under interchanging both

z « 2’ and K & L simultaneously

Gt (a,7) = Gy (e, 2), (3.91)
as is consistent with Bose symmetry. Another symmetry

G (z,2') = G (~z,~') (3.92)

also holds for the physical components of the propagators (but it does not hold for
the unphysical components) as is easily seen from (3.60-3.61) or (3.74-3.75).
The physical components have another important property. If G, is operated on

them the result is

G G (z,2") = A(0G)™18,6%(x — ). (3.93)

Hence in the limit A — 0 the physical components of the propagator GZ',’,(m, z') are

orthogonal to G*,
G*G% (z,2') = 0; A—0. (3.94)

3.5 Fock-Schwinger Gauge Propagators in Coor-
dinate and Momentum Spaces

The explicit form of the physical components ot the FS gauge propagator (3.81)
is complicated and will cause difficulties in scattering calculations. However these

difficulties may be diminished by taking advantage of the symmetry properties of
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the propagator without using its detailed form. In this section we will rewrite the
propagator (3.81) in a more useful way.

Let us consider the physical components of the FS gauge propagator (3.81)

Gu(z,2') = 07 {gu — (82 = 1) (2,0, + Buz) + (87 — 1)7?0,2%9, } 6(z — =)
(3.95)
where for simplicity we have dropped index F'S and color indices a and b. The
first term on the right-hand side is the Feynman gauge propagator Gg,,(z,z’) and
the remaining terms, G}, (z,z'), are the contributions associated with the FS gauge

condition. In this section we only pay attention to G’ (z,z’).

Guw(z,2') = Gr,(z,2)+ G, (z,2') (3.96)

G (z,2") = 07 {—(0z — 1) (2,0, + ,uz,) + (02 — 1)7?0,5%, } (2 — o)+
(3.97)

When evaluating the scattering matrix, the fermion (or boson) propagator as well
as the gauge field propagator play a crucial role. The intricacies of perturbation calcu-
lations depend significantly on these propagators. Since the basic form of the fermion
propagator is an inverse of differential operator 8, (inverse of O in the case of the
boson propagator) the gauge field propagator will facilitate perturbation calculations
if it contains factors of differential operators. Because of this reason we should cast
the propagator G, (z, z’) into derivatives of some functions. Since G, (z,z’) is a two
point function one may relate indices ¢ and v with derivatives with respect to  and

z’ respectively. In this way one can arrive at the more useful form,

G,.(z,2") = 8, f.(2,2) + 3, fau(z,2") (3.98)
where 8, = -(,fm, and
fiu(z,2)y = —-07'2,(0z—-1)"16(z—2') + %D'lzza,‘(az ~1)7%§(z — z') (3.99)

fou(z,2') = +D:1(3z -1)z,6(z—2') - %D'l (0z — 1)7%8,2%6(z — 2') (3.100)

Identities (3.56) and (3.57) have been used to obtain (3.100). According to the sym-
metry (3.90), or else by applying (3.55), (3.56) and (3.57) on (3.100) directly, one
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has
fuu(e,2) = fau(e', 2). (3.101)
The momentum space form of (3.97) or (3.98) can also be obtained. Recalling the
symmetry (3.101) and the definition (3.106 ) one has, after some algebra,

0, fiu(z',z) = 0, fau(z,2)
= 0729,0,(0z —1)76(z — z') + 32,070,Gs(z', z)
+107Y(2.8,, + g,,)Ga(z, z") + 1071 (2" 8,8, + 22,8, ) Hi(z, z")

(3.102)

where we have defined
(0z — n)Gn(z,2') = 6(z — 2') (3.103)
(0z — n) 'Gu(z, 2') = Hy(z,2'). (3.104)

Gn(z,2') and Hy,(z,z') may be obtained as follows. After introducing a parameter
B via a replacement £ — Sz in equation (3.103) the operator 0 in (3.103) can be
replaced by an operator ﬂ% because zJ acts on a function of Sz, viz. G,(Bz,z").

Thus, equation (3.103) becomes
[ 4 _ (n— 4)] G.(Bz,z") = §(Bz — z'). (3.105)

To simplify this equation we may replace the parameter § by another parameter

1

a = 5. After some algebra we arrive at
2 o162, o) = —a™16(z — ad) (3.106)
da a’ ' '

(Note that in deriving equation (3.106) we used a trick, namely, we multiply both-
sides of equation (3.105) by a factor a®~°). Equation (3.106) yields a solution

G.(z,z') = 6111110 loo da e a™1§(z — az'). (3.107)

Accordingly, the function H,(z,z') defined in (3.104) follows immediately

H,(z,z') = 6l—i>r-1+-10 loo da e 1 (0z — n)718(z — az')

= lim [ da e~ o™ Gy (z, az'). (3.108)
§—+0J1
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A few simple cases are,

Gi(z,2") = / dk / " da e~obeikz=oa') (3.109)
1

Hy(z,2') = /Jk /w da e In @ e~ k(z—0=') (3.110)
1

Gi(z,z') = /Jk /oo da e~ e k(z=a') (3.111)
1

where dk = (27)~*d*k and from now on we neglect the specification lim,__,, except

where needed. Putting (3.109), 3.110) and (3.111) into equation (3.102) we get

ax,/flll(x” .'B)
= 0729,0,(0z — 1)7é(z —2') - %f _i}:f P da e *Siaz,k, ¢~ ik(az—a')
+3/ _L;l:r 2 doe™[g,, + iz, k, + 2az,k, Ina

—y2k,k,o?ln a] e~ ikle-az’),
(3.112)

This is the second term of (3.98). The first term of (3.98) can be obtained from
(3.112) by interchanging ¢ < z’ and g < v and the symmetry (3.101). Hence the
propagator (3.98) reads

G (z,2')
— %floo do e—a&f_ill:z_e—ik(x—-ax')x
0 + ik, +io(1 +2Ine)zlk, — 2 kk,0?lna]  (3.113)
+%f1°° da e—a&f_i_ll:z_e—ik(ax—z')x

[9u — iz, b, —ia(l + 2ln @)z, k, — 22k, k, 02 In q]
where we have used the identity
0'-29.8,(8'z' — 1)7'6(z — ') = —0729,0,(9z — 1) §(z — ). (3.114)

The propagator (3.113) agrees with Kummer and Weiser [Kum 86]. In their
derivation they did not introduce formula (3.98) but directly worked out (3.71) by

rewriting the propagator Gap(z,z’) in the form

Gap(z,2') = / dke=*G 45 (k, ') (3.115)
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with

Gu(k,z') = Agu + Bk.k, +Czlz), + Dz k, + Ek,z,

Guu(k,2’) = ak, + b2 (3.116)

Ga(k,2’) = ck,+dz)
where the coefficients A, B, - -+, a,b,-- are functions of k2, kz’ and . They found
that the resulting propagator does not obey the symmetry (3.91). The contradiction
is understandable because in order to keep G, (z,z') symmetric G, (k,z') in (3.115)
must be necessarily free from z/; it is only a function of forms like exp(zkz’ )G,“,( k, k).
However since the inverse propagator contains zj,, z; appears in Gu,,(k, z') too. To

escape the contradiction Kummer and Weiser then proposed a symmetric propagator

G’,“,(:c,a:’):

(2, 0') = %[G,w(a:, ) + Gl 7)] (3.117)
after claiming that Gpa(z',z) is also a solution of (3.71). They were then able to
obtain (3.113).

The propagator in momentum space (3.113) can be obtained from coordinate
space as a Fourier transform
G (z,2") —/ / dB [£.(B,k, O, 2" )ku ™ + g, (B, k, B, )k,
(3.118)
although all reference to the coordinates does not go into exponential. Above,
fu(B, k, 0k, z) = %e"ﬁ‘s{e'k” & 4 §(8—1) [{° daei™ = x
[ia(l +2lna)z, — o®ln ak,z?]}

1,-36 ikz oo ik (3.119)
9u(By by Oy 2) = 77T 5 +8(0 — 1) [° dae™ " x
[—ia(l +2lna)z, — o® Inak,z?]}
with their properties
,k,a,:l? = - 7—k,_a, ’
fu(B, k, Ok, z) 9.(8 k, ) (3.120)

Ju(By b, Ok, —x) = +9,(B, k, O, z).

Hence,

Gl (z,2") = / 2 [ 4B (008,88 s + (o vz o 2)] . (3121)
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To summarize, the physical components of the Green’s function (3.81) have the

form:

Coordinate space

G (z,2') = G'}b“"(z, ') + O* f3b(z,2') + alvfgb“(x, z')
(e, 2) = fi(a,z)
= O7'—z,(0z — 1) + 12%9,(9z — 1)=%)6%(z, z')

(z,a) = 8t (2,2

(3.122)

Momentum space

Got(z,a") = GE (2,2")+ [ L [7°dB [f>(B,k, B,z )kyePF=
+92(B, k, O, )k, €05
f:b(ﬂ,k,ak,m) = _gzb(ﬂ’_k’ —ak,.'l?) (3.123)
f:b(ﬁa ka ak’ —:L‘) = gzb(ﬂ, k3 ak’ :l,‘)

fﬁb(ﬂ’ k, aka :12) = 6abfu(ﬂa k) aka (l?)

where G2* (z,z') = §2¢**0-1§(z — z') is the Feynman gauge propagator. Note that
the Green functions (3.123) are not fully in momentum space because the space-time
coordinates z and z’ in (3.123) still exist.

The propagators we have derived here will be used in the next chapter to obtain

the Ward-Takahashi and the BRST identities.
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Chapter 4

Ward-Takahashi and BRST

Identities

The Ward-Takahashi and the BRST identities will be derived here. Since the F'S
gauge theory is a ghost-free theory its BRST identity will also be derived without
introducing the ghost fields. Both kind of BRST identities will be compared. The
ghost-free version of the FS gauge theory will be obtained in the first part of the
chapter.

4.1 Ghost-free Fock-Schwinger-Gauge Formula-
tions
The generating functional in the Yang-Mills theory
Z1J] = / DA A[A] ¢t 2 (CotLor+Ia) (4.1)

has been derived in the previous chapter. Here we will focus mainly on the func-
tional A[A]. Its general form will be derived and its responsibility for the ap-
pearance of the nonphysical, ghost, fields will be discussed. The derivation of this

functional will follow the work of Muta [Mut 87].
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Let us begin with the definition of A[A] as given in the previous chapter
(A[A])™ = / [[Ds*6(G - A" (4.2)
)
where s® is the gauge parameter of the gauge transformation
5A%(z) = fobosb(z) A% (z) — ;11-6,,3“(:1:). (4.3)

abc heing the structure constant of the gauge group and g a coupling constant.
g gauge g

The above integral may be written as

@ = [Tioea) [(GL)] @ A
C (det Mo)" (44)
Hence
A[A] = det Mg (4.5)
and
(Mo(apy* = 2E D), «5)

Since other integrands in (4.1) are in an exponential form it is advantagous to write
A[A]in such a form. Fortunately the determinant of a matrix may be so expressed.

For the matrix Mg one may write

detiMg = /DxDx* exp (—i/da:/dy X*a(z)Mgb(z,y)xb(y)) . (4.7)

Here x and x* are two independent fictitious fields called the Faddeev-Popov ghost
fields. They are anticommuting like fermions. The explicit derivation of the above
expression can be seen in many textbooks (see for example [Ryd 85]) and, thus,
no derivation is needed here. Now by inserting (4.7) into (4.5) and then (4.5) into

(4.1) the generating functional (4.1) becomes, up to irrelevant factor
213,6,¢'1 = [ Dlaxx] exe {i [ da(Lo+ Loz

= [dx @M@ X w) + AT e ]} (49)
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where D[Axx*] = DADxDx* for short and ¢* and £*° are the external sources for
the ghost fields x** and x° respectively. It turns out that A[A] is responsible for
the appearance of the ghost fields x** and x°.

Let us now find the explicit form of the matrix element Mg*(z,y) for some gauge

conditions. Inserting (4.3) into (4.6) one has

M) = (16245 = 259600, ) (e )

1 a

where

D3t = §°0, — g f*™ AS,. (4.10)

The expression (4.9) can be written as
M&(z,y) = ( freACGH — 36“”6?“6,,) §(z —y) (4.11)

subject to the homogenous gauge condition G - A = 0. It turns out that the
dependence of MZ® on Aj, arises through the first term of the right-hand side of
equation (4.11). When this term vanishes the element matrix Mg’ is independent of
the gauge field Aj. As a consequence integrations over x and x* in the generating
functional (4.8) reduce to just a number that can be absorbed into the normalization
factor. In that case, theories with the generating functional (4.8) are ghost-free. It is
obvious that Abelian theories are ghost-free theories since f**° = 0. In non-Abelian
theories, on the other hand, f* is not zero in general and thus the independence of
Mg on the gauge field A% hinges on the value of A%*G,. Accordingly, non-Abelian
theories in the Lorentz gauge are not ghost-free since ASG* = A%0* #0. On the
other hand, ASz* = z#A{, = 0 means that the FS gauge theory is not haunted by
ghost.
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4.2 Local Gauge and BRST Invariances of La-
grangians

Consider the Lagrangian density of a system of quarks and massless gluons

1 .
Lo = =7 Fi F** + (ir* Dy — m)p (4.12)

where
D, = 08,—1igT"A;

F.= D,A —-DA, (4.13)
[Ta’ Tb] — ifabcTc.

Under the infinitesimal local gauge transformations

P(z) = ¢(z) = Ulz)y(z) = (1 - igT*A*(z))¢(z)
P(e) = P(z) = P(e)U(2) = P(z)(1 +igT°A%(2)) (4.14)
Al(z) = A (z) = A2 — DIPA®
with
U(z) = e~sT*A%@)
Dzb — 6ab8ﬂ _ gfabcAz
At = s (4.15)
the Lagrangian density Lo is invariant because Fj, F'**, P and P D1 are gauge
invariant quantities.
If we add Lgr = CG - A+ %Cz to the Lagrangian Lo, the new Lagrangian
Lo + Lgr is no longer gauge invariant due to the non-gauge invariance of Lgr.

Nevertheless when the Faddeev-Popov ghost Lagrangian Lrp = —x**M®*x? is also

added one can find larger transformations which make the Lagrangian
L=Lo+Lgr+ LFp (4.16)

invariant. These transformations consist of the local gauge transformations (4.14)
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and transformations related to x, x* and C

X/a — Xa + 6Xa. — Xa. _ %gafabcxbxc

X* = X+ = x+6C° (4.17)
C*= C*+é6C* = C°

where @ 1s defined from

A%(z) = —0x*(z). (4.18)

6 must be a Grassmann number since x? is an anticommuting ghost field. In order

to keep the reality of A%, 6 is restricted by relations
(0x*)T = ox°. (4.19)

The local gauge trasformations (4.14) together with the transformations (4.17)
are well-known and are called the BRST transformations following the work of
Becchi, Rouet, Stora [Bec 74, Bec 76] and Tyutin [Tyu 75]. The detailed proof of
the BRST invariance of the Lagrangian (4.16) is given in Appendix F.

4.3 Ward-Takahashi Identities

The invariance of a Lagrangian under certain transformations produces some
consequences. In quantum electrodynamics the invariance of the Lagrangian L,
under the gauge transformation will result in the so-called the Ward-Takahashi
identities [War 50, Tak 57]. In this section those identities will be derived. We will
find that the Ward-Takahashi identities will be slightly different with the gauge-
fixing Lagrangian Lgr. However they all imply orthogonality of photon self-energy.

To obtain the Ward-Takahashi identities let us consider the generating func-

tional of quantum electrodynamics
ZJ,n,7, K] = / D[AY9C] expi / dz(Lo + Lor + AJ + ¥ + 7 + CK) (4.20)

where Lgr = CG- A+ 5C? is the chosen gauge fixing Lagrangian and K represents

the external source of the auxiliary or multiplier field C. Here A[A] described in
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the previous chapter is just a constant and included in the normalization constant.
The above generating functional remains unchanged under arbitrary field variables

transformations
Z[J, 7,7, K] = / DIAYFC') expi / do(Llo+Lop+ A' T+ P+ +C'K). (4.21)

If the local gauge transformations (4.14), with g the electron charge e and one
color index, are chosen as the field transformations the generating functional (4.21)

becomes

Zl0, 0,7, K] = / DAYPC] expi / dz(Lo + Loy + A'T + P + 79 + C'K)
= [ DIAYFC] exp [z [ da(Lo+ Lox + AT +Fn + 70 + CK)] X
{1 +i [ do [5Cor +(64)- T +(5)n +769] + } L (422
In obtaining the above expression we use the fact that the integral measure

D[Ay4C] and the Lagrangian L, are gauge transformation invariant (see Appendix
F). Equating (4.20) and (4.22) one gets

0= 8210,1,7, K] = [ DIAYC] [ do [60os +(54)- T+ (6F)n +

76 + (6C)K | e (4.23)

with
S = / dz(Co + Lor + AJ +n +79 + CK). (4.24)

To rewrite the identity (4.23) in a more useful form let us combine the variation of

Lgr and CK

§Lor + (6C)K = (6C)(K + G- A+ XC) + CG*6A, = CG*6A, = F(G*C)SA,.
(4.25)
The 6C term in the above expression vanishes since, according to the Euler-
Lagrange equation,

K+G-A+XC=0. (4.26)
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This also means that the action S is invariant under any transformation of C.

Now the identity (4.23) becomes

0= / dzA(z)[FOGHC + 8- J + iepn — ieqp) Z1J, , 7, K|

= :I:i@,,G“:—IZE +0-JZ+ eni—? - eﬁ%g—. (4.27)
This is the Ward-Takahashi identity in the functional form. The upper (lower) sign
in the first term on the right-hand side of equation (4.27) is associated with the
Lorentz gauge (the axial and FS gauges). It turns out that the Ward-Takahashi
identities differ only slightly with gauge choices.

As has been mentioned in the previous chapter, the generating functional
Z[J,n,7, K] consist of connected and disconnected Feynman diagrams. Since only
the connected diagrams contribute to S — 1, the nontrivial part of the scattering
matrix S, it is advantageous to rewrite the Ward-Takahashi identity (4.27) in the

terms of the connected generating functional W|[J, 5,7, K|. The relation between

both kind of functionals is given by
Z[J,n,7, K] = exp:W|[J, 5,7, K]. (4.28)

Since

§Z SW 62 . §W 62 . 6W 6Z . 6W
82 _ ., 6W  8Z _ . 6W 62 _ . W  6Z _. W |
TRl s i ikl B ek — B 3 i (4:29)

the Ward-Takahashi identity (4.27) becomes

ow ow W
K i0-J+ ena - CTIE =0. (4.30)

It is instructive and useful to express the identity in terms of another functional

+48,G*

called the effective action T'[A, 1, %, C] which generates one-particle irreducible di-
agrams. This is defined by

I'[A,%,%,Cl = W[J,n,7, K] - /dw[J - A+ + 7+ CK] (4.31)
with

W _ 4. W _ _3. W_ 4 W _

sF= A Ty = ¥ =W gx=C (432

T _ _j. 8L _ _,. ) N L _ _g -32)

FAF = p 55 B = 3C = :
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Accordingly the Ward-Takahashi identity (4.30) changes into

6T 6T 6T
$An 6¢6—$ + 61/’?

Equations (4.30) and (4.33) form a complete formulation of the Ward-Takahashi

+i8,G*C + 0" = 0. (4.33)

identities of quantum electrodynamics. The identity (4.30) is the Ward-Takahashi
identity in the form of external sources whereas the corresponding identity given in
the form of field variables is shown in equations (4.33).

Finally consider some consequences relating to the identity (4.33). Functionally
differentiating the identity with respect to 1¥(z1) and +¥(z;) and setting A =9 =
¥ = C = 0 one gets

§°T[0] 82T[0]

O eneeniane) - CCT W el eey Y
Differentiating (4.33) with respect to A,(y) and then putting A = % = ¢ = 0, one
obtains

_ 621—‘[0] . 1MV v
0= 3um = 0u[G™ (z,y) — I*(z,y)). (4.35)
This gives
01" (z,y) =0 (4.36)
because
G (z,y) = [Og* — 0*0"16(z — y). (4.37)

Lastly, functionally differentiate (4.33) with respect to C(y) and take C = A =

=1 = 0; we have a trivial result

§°I[0]

— H _ H__ - Tt
0= £0,G"5(z —y) + &' e

= +0,G"6(x — y) F 0,G*8(z — y). (4.38)

4.4 Slavnov-Taylor Identities

The Ward-Takahashi identities in non-Abelian theories were first derived by
Taylor [Tay 71] and Slavnov [Sla 72]. Since then the identities often bear their

names. The derivation of the Slavnov-Taylor identity is analogous to the derivation
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of the Ward-Takahashi identity previously discussed. This section is devoted to the
derivation of it.
Instead of the generating functional (4.20) we begin with the generating func-

tional
Z[J, K] = / DJAC] AlA] expi / dz(Lo + Lor + AJ + CK). (4.39)

We leave out the fermion fields because they are irrelevant to our discussion. A[A]
is crucial in non-Abelian theories as it is dependent on the gauge fields A* and thus
cannot be included in the normalization factor.

Taking advantage of the gauge invariance of D[AC] and Afp[A] the generating

functional (4.39) is equivalent to
Z[J, K] = / DIAC] A[A] expi / dz(Lo + Ly + A'T + C'K), (4.40)
and therefore
0=46Z = / dz (6Lgr + J - A+ (6C)K)Z. (4.41)

Even though its general form is similar to the identity (4.23) there is a difference.
The difference between both is associated with the form of §A. In non-Abelian
theories, § A is dependent on the gauge field A while in Abelian theories it is not.
This dependence of 64 on A in (4.41) leads to difficulties in reformulating this
identity into the way we have treated with the Ward-Takahashi identity. We show
this difficulty below.

Now let us define

Q° = §(G- A%) = —G*DPA. (4.42)
Accordingly we have
§A2 = —D¥A® = D¥(G - D) Q¢ (4.43)
and
§Lor + K6C = (6C°)(G - A* + AC* + K®) + C°8(G - A°) = C°Q°.  (4.44)
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Hence we obtain the Slavnov-Taylor identity

—_ 6 bu be 6 —jce . 8
0= [261{‘1 +/dyJ (y)Du (;6_J)M (y,x,m) Z. (4.45)

It turns out that the appearance of M(y,z; 3%) leads to difficulties in express-

ing the Slavnov-Taylor identity (4.45) compactly for one-particle irreducible func-
tions [Lee 76, Itz 80, Tho 82]. This problem was resolved by Becchi, Rouet, Stora
[Bec 74, Bec 76] and Tyutin [Tyu 75] who replaced the gauge transformations with
their extended BRST transformations.

One important point that should be noted is that in ghost-free gauges like
the FS gauge the quantity M is independent of 6%. In that case the Slavnov-
Taylor identity (4.45) may be translated easily into an identity for the one-particle
irreducible functions. Thus reformulation of the above identity into the Ward-
Takahashi-like form may be carried out and is given in the last part of the next

section. It happens to be identical to the BRST identity in the ghost-free gauges.

4.5 DBRST Identities

The derivation of the BRST identity is similar to the derivation of the Ward-
Takahashi identity. Instead of the gauge transformation (4.14) the BRST transfor-
mations (4.14) and (4.17) are used as the symmetry of the Lagrangian. The identity
will be more complicated compared to the Ward-Takahashi identity. However, in
ghost-free theories such as the F'S gauge theory, the ghost fields may be discarded.
As a result the BRST transformations simplify to the local gauge transformation
version. In this section we will derive the BRST identities in both: by keeping and

excluding the ghost terms in the generating functional
200,,m,6,€, K] = [ DlagxClexn {i [da[£+ 4T+ 70+

X+ x+ CKJ} (4.46)

with
L=Ly+ Lg}' + Lrp. (4.47)
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Since the Lagrangian £ and the integral measure D[A¥¥xx*C] are BRST invariant
(see Appendix F), one has
0 = 62[J,n,7& € K]
= [da[sa-T+78% -+ (6B + (6x)E + €6 + K6C) 20,,7,6,6°, K]
= / D[ ApPxx*C] / dz [0J°#D2tX® + ignbT X" — ighPT X"y + 6C€"
- %f“bcf‘anbxc] expiS (4.48)
with
S=/d:c[£+A-J+ﬁ¢+$n+x‘§+§'x+CK]. (4.49)

To rewrite (4.48) in the form of external source variations one should introduce new

anticommuting source u®* and commuting sources v*®,w and @ in the action S,
S = /dm [C+ A T+7% + P+ x"€+Ex+CK +usrDebyt

- %v"f""“x"xC + igx*wI*Y — ig%x“T“w] . (4.50)
This new action does not lead to different identities, i.e. the identity (4.48) remains

unchanged since Dzb b foexbxe, xu and ¥y are BRST invariant as is checked

in Appendix F:
§(Dix") = 6(f*x"x°) = 6(x¥) = 6(¥x) = 0. (4.51)
Note also that under the BRST transformations the following equations hold
§2A% = §%p = §%p = §%x° = 8%x™" = §2C° = 0. (4.52)

This means that the BRST transformations are nilpotent. Now under the new

action (4.50) the identity (4.48) reads

52 62 52 67 62
ap Y4 a __¢ene 94 VO ‘s —
[ [J fur TEE Y 5 6w T bw ’7] 0 (453)

or in the form of connected generating functional W = —ilnZ

W _ puadW _ W §W
137G 50°  Tom | w

/ dz [J““% e 7]] =0 (4.54)
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Equations (4.53) and (4.54) are the BRST identities in the generating and connected

generating functional forms respectively. If we define the effective action T’

I‘[A7 /‘p’w’ X’ X*’ C’ u’ v’w’ w] = W["” "Ia-ﬁ’ 57 6*1K’ u’ v,w’w—]
— [dald- A+ x¢ +€x + 0+ 70 + CK]

(4.55)
where 5 5 s
W _ a. w _ T — a.
TTF = A;u 5T = X F = X5
W _ o W _ . W _ .
37’— - 1/” W - 1/": - C; (4 56)
6F _— _Ja.. 6F — __fa. 6F _ é-*“, )
AT — nr 6—XT” - 6 ’ X - ’
6T _ .. 6T _ &L _ g
5% - B W Uh SCV I{a
§W 6T 162 s g
5t &t iZ 6t’ Ty
equation (4.54) becomes
6T 6T 6T 6" 6T 6T 6T 6T 6T
a —_— —_—— _—— = . 4:-
[ = [6A° sur T s Y 550 T 5950 T Gweg| T (4:57)

The functional derivative with respect to x** may be replaced by functional deriva-

tive with respect to u®* by the use of the ghost field equation

6T 6T
—w _nab b e S — (M o
0=<-G"D’x"+¢&" > G Fur G (4.58)
Hence
6T 8T 6T 6T 6T 6T
Kva - —
[ { [Ma £0G°C ] et T | e &p} 0, (489

after performing integration by parts in the second term for the Lorentz gauge.
The identity like (4.36) can be obtained by functionally differentiating equation
(4.59) with respect to A%(y) and x°(z) and setting all fields to zero. We obtain,

— [ gy O°TI0] PO _ ey oy~
0—/d 5x°(z)6us(z) 6 A2(z)6 AL (y) A I1*(z,y) = 0 (4.60)

after recalling (4.37), i.e. the self-energy remains transversal even in non-Abelian
theories. Other identities similar to (4.34) may also be derived, namely by func-

tionally differentiating (4.59) with respect to x’(y), ¥(2) and (¢).
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We have derived the BRST identities in the Lorentz, axial-type and FS gauges.
In deriving the BRST identity ghost fields must be included in the Lorentz gauge.
In ghost-free gauges such as the axial and FS gauges, on the other hand, the BRST
identities may be derived by neglecting the ghost fields. Since this derivation has
not been carried out the BRST identity in the FS gauge without using the ghost
fields will now be obtained.

By excluding the ghost terms the generating functional (4.46) reduces to (4.39).
Since we are still working with the non-Abelian theory color indices a should be
retained in the generating functional (4.20), but A[A] in (4.39) may be omitted
in ghost-free cases. The exclusion of ghost fields effectively reduces the BRST
transformations to the local gauge transformations (4.14). Therefore the identity

that we are looking for is
0= 62[7% 0,7, K] = [ DIAWBC?] [ da [6Lor + (54%)- J° + (%)

+76] €S, (4.61)

This is nothing but the identity (4.41) (after including fermion terms) or the non-

Abelian version of the identity (4.23). Note that the term K°5C*® in (4.61) is
excluded since 6C* = 0.

To derive the above BRST identity (and thus 1;he Slavnov-Taylor identity) in the

FS ghost-free gauge more explicitly, let us consider the first two terms of identity

(4.61). According to the gauge transformation (4.14) these terms become

6Lgr + 5A°”J;: = (Cz, + J;f)(gAa“
= AY[6°b0* + gfeteA¥|(Cox, + J2) (4.62)
after discarding the surface terms. Inserting (4.62) into (4.61) and recalling the

variation of the fermion fields according to the gauge transformation (4.14) we

obtain the BRST identity
2
0= ié‘abaym“ 67 +gfabcm# 6°Z _ 6abauJayZ
b 87 b 6Z# b6 (4.63)
g fooc —gT T 54,
+igf syr — 9T gy + 9T g
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In terms of the connected generating functional W and the effective action I' the

BRST identity (4.63) is given by

2
0= i6“ba“zu% +gf"b°:z:# (z%% + W‘S W )
m

p (4.64)
: cab a . cabe yap OW b, OW b—5W
+i8%0, T +igf T g — 9T n g + 9T T
or 5T
0= i6%04z,C* + igfx, AHC* — i§*PH*
g g oA (4.65)

—ig fo4° A ofon + STV L — T 3.
In contrast to the BRST identity (4.59), the BRST identity (4.65) is simpler in
the sense that the latter identity does not contain composite sources u, v, w and @.
Their difference from the Ward-Takahashi identity (4.33) is due to the f°*-terms.
Thus when we change non-Abelian theories into Abelian theories the BRST identity
(4.65) will reduce to the Ward-Takahashi identity (4.33).
Now suppose the identity (4.65) is functionally differentiated with respect to
A% (y) and then setting all fields to zero. In that case the only term in the identity
that survives is the third term, and it becomes

§2I[0]
A7) A% (y)

m

=0. (4.66)
This equation is the same as the equation (4.60), thus it gives the same result
8,I1% (z,y) = 0. (4.67)

It is obvious that the contributions of fermion terms, such as the identity like (4.34),
are the same as found previously.

To end this chapter let us briefly summarize our results. We have rederived the
Ward-Takahashi identity in quantum electrodynamics. In non-Abelian gauges the
difficulties in expressing the Slavnov-Taylor identities (the equivalence of the Ward-
Takahashi identities) on one-particle irreducible functions leads one to introducing
a new symmetry, the BRST symmetry. The BRST invariance of the Lagrangian
results in the BRST identity, replacing the Slavnov-Taylor identity. The BRST

identity in the F'S gauge has been derived in two cases. The first version includes
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the ghost fields and composite sources such as u, v, w and @. The resulting identity
therefore consists of such sources as well as the original ones (gauge, fermion and
ghost sources). In the second case the derivation has been carried out by excluding
the ghost fields. As a result the identity reduces to the Slavnov-Taylor identity and

no composite sources need be introduced; it just consists of the original sources and

is much simpler.
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Chapter 5

One-Loop Graphs in the
Fock-Schwinger Gauge

The FS gauge propagator with the gauge parameter A — 0 will be used to
work out all the following perturbative calculations. In scalar and spinor quantum
electrodynamics calculations will be performed both in “momentum space” and
coordinate space. Problems with translational invariance in quantum chromody-
namics lead to difficulties in carrying out the scattering computations in momentum
space; In this particular case the evaluations will be done only in coordinate space.
Throughout the chapter we only write the basic form of each diagram and its final
form before and after putting the diagram on the mass-shell (ms) condition. Details

of calculations which are sometimes tedious can be seen in the Appendix G.

5.1 Feynman Rules

The Feynman rules of spinor and scalar quantum electrodynamics and quantum
chromodynamics stemming from the books of Itzykson and Zuber [Itz 80] and Muta

[Mut 87) are summarized below.
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5.1.1 Spinor Electrodynamics

Fields

— . —_—— ————

Pp(z) ° v(z) ° Af(z) o
Vertex

©
¢ ,g ¢ e

Propagators
gy $@)h(y) = iSr(z —y) =< O|TH(2)P()]0 >

—

g, porn~nnr sy, v A(z)Al(y) = iGu(z,y) =< 0T Au(z)A.(y)]0 >

5.1.2 Scalar Electrodynamics

Fields
e I I Mo,
¢!(z) () Af(z) =*
Vertices
| V4
TR T T 65;1' TTTTTT TTTT 2ie?g#
Propagators

pemmmmmmey @) (y) = iSa(z — y) =< T H2)$(3)[0 >

——

T, YAAAANAY A (2)Au(y) = iG(z,y) =< 0|TA,.(2)A.(y)]0 >

m —

2!

Symmetry factor

note: 0* acts purely on scalar fields.
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5.1.3 Quantum Chromodynamics

Fields
— ____,__'. aM
Yi(z) 7 vi(z) ° A™(z) *
....... a(--.-.n.. .----u--.)u-u-nu.
Xx (:13) z,a Xa(x) z,a

Vertices

a§ I a i @
1 T 7 ig’Y“(Ta),'J beege + EEY CR P q:igfachb,u
a
- igfabc‘/u(s;)b,c) (az)
" WoT k=i (g, (0) — 8Y) + 9.,(8%) - 81)
+gpu(a:(cf) - a&,ﬂ))]
a,p —Zg2W:3;§.

— _Z'g2[feabfecd(gupg‘w _ g;wgup)
d,o b,v +feacfedb (guagup _ gp,ugpa)
+feadfebc(g;wgpa - gupgua)]

cp
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Propagators

: < Y iSg(z —y) = i69Sp(z — y)
aw’
T y iGie(2,y) = i6*Gu(z,y)
a b
egen e - oab s gsab
i iS%@-y)=it%Sae—y), m=0

(Lorentz gauge)

5.2 One-loop Corrections in Spinor Electrody-
namics

The FS gauge propagators which have been derived in Chapter 3 can be written

in a general form

G (z,y) = G% (z,y) + G (z,y) (5.1)
where G% (z,y) are the Feynman gauge propagators
wv ERNTI e | T Jk —ik(z—y)
GF (2,y) = g0 8z —y) = ¢* | —7e : (5-2)

Since calculations of scattering diagrams in the Feynman gauge can be found in
almost all textbooks on quantum field theory, it is sufficient to only consider the
corrections due to G**(z,y) when one works diagrams which are linear in gauge

propagators.
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5.2.1 Calculations in Momentum Space

Here the modification to the propagators that we use are
" (z,y) = / dB / LB,k Byl + g,(B, K, By 2) ). (5.3)

1. Electron-electron scattering (Born term)

P2 T, p 2!

Figure 5.1
S'= —ieu(p;)y*u(p)u(g:)r u(q) f dz [ dyG,,, (z,y)e=(Pr-Pr)¥ivlez—a1)
= ie? [ L [ 2 [dygu(B,k, bk, y)
{@(p2)(Fa— Pr)u(pr)u(g2)v*u(q1)é(p2 — p1 + Bk)e¥( @) (5.4)

+a(p2 )y u(p1)a(q2) (da— d1)u(q1)6(qz — @1 + Bk)eiv(Pz—P1)}

S}

2. Electron self-energy

Figure 5.2

§'= & [dpa(p:)7*(#—~m +ie) 'y u(p:) [ de [ dyei*Pa-Pltivle-r) G (g, y)
e? [ % [ 25 [ dy [ dpgu(B, k, Bk, y)
[@(p2)(F— $2)(B— m + €)'y u(p1)8(pz — p + k)PP +
Wpa ) (B — m + i) (1= Pyu(p)8(p — p1 + Bk)e™¥P)]

(5.5)

Off the mass-shell, the expressions (p— p,)(f—m+ie)"'v* and v*(f—m+ie)™?
(§— P2) cannot be further simplified. Also, the parameter S introduced in the

FS gauge propagator does not play any role in simplifying the whole expression.
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Accordingly, S’ does not vanish off the mass-shell. On the mass-shell, however,
(#— B2)(¥ — m + i€)™! reduces to unity and leaves a factor @(p2)7y*u(p1). Such
factor can also be obtained in the second term. In this case cancellation between

both terms depends on the rest (exponential and delta functions) and indeed occurs:
S'Z0. : (5.6)

In most diagrams that we will come across, simplifications also happen in a
similar way on the mass-shell. In the first order of vertex corrections, for example,
it takes place between all three possible diagrams. This will be shown below.

3. Vertex corrections g

Figure 5.3

Si= € [dp[dq[dz[dy[dzu(p)y*(#—m+ie)™ Aly)(d—m+ie)™'x
Pulpy )G HE-DPIG (2, 2)
= L 2 [dpfdq[dy]dzg.(B,k, b, 2)u(p2)
[(Z— £2)(F — m +ie)™ A(y)(d—m +ie)™y”
§(ps —p+ ﬂk)eiy(z’—q)ﬁz(q—m)
Y (F—m+ie)™ A)(d—m+i)(hi— o)
§(q = pr + BR)eve-Dti(m—Py(p,))
T B2 [ 2% [dpfdy[dzg.(B,k, 0, 2)T(p2) X
[A(Y)(F— m + ie) 1 yreivlprtbhltizle=r)
—1u($— m + ie)™? A(y)ep-ritfitizle—r)y(p,).

LTy

Pz ¥ 4 Tk P ZV M
Figure 5.4

(5-7)

S;= € [dp[dq[dz [dy[dzu(p,) Aly)(d—m+ i)' v*(#—m+ie)~ x
~u(py )eiz(q—p)+s‘y(pz —9)+"2(P—P1)G;‘ J(z,2)
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= 7> 98 [ 4k [dpfdqfdyfdzg,(B,k, 0k, z)u(p:) Aly)x
e'v(P2—q)+iz(q—p1 +6k) o
{(d—m+ie)~ [(d—m) — (F— m)|($— m + i)' v"6(qg — p + Bk)
+(d —m+ie) " (F—m +ie)" (- £)6(p — pr + Bk)}u(p)

Y L[ [dp[dy[dzgu(B, k0 2)T(p2) Aly)(F—m +i€) x
yPu(p, )ev(p2—ptBR)Fiz(p-p1)

STy

p2z Z,p p %2V ¢ Y DN

(5.8)

Figure 5.5

Sy= € [dp[dq[dz[dy][dzu(p;)y*(#—m+ie) v (f —m+ie)x
A(y)u(pl)efr(m—p)+iy(q-m)+iz(p—q)Gl (z,2)
= S [ F [ 2 [dp[dq[dy[dzg.,(B,k,0, 2)a(ps)evla P Hizlp2—a+5k)
{(Zi‘— Ifz)(I‘ m +1€)71y"(f — m +ie) 7 6(p2 — p + Bk)
—(F—m+ie) (- m)— (- m))(d —m +ie)76(p — g + BF)}
Ay)u(p)

T S L2 [dp [ dy [ dzg,(B,k, O, 2)u(p2)7*(F — m + i€) T x

5.9
A(y)u(pl)esy(p P1+8k)+iz(p2—p) ( )

P2 TLp ;

Figure 5.6

Sy= € [dp[dq[dz[dyfdzu(p:)v*u(p)Tr(d — m + i)~ 19" x
(# —_m + ie)—l A(z)eiz(m-Pl)+iU(P-Q)+iz(q_p)G:‘u(z, y)
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= [PdB[ 2 [dp[dq[dy[dzg,(B,k,by)e= ) x
{ﬂ(p2)(1‘1— I‘Z)U(Pl)Tl‘(d —-—m+ ie)‘lfy"(z{ —-—m+ ie)‘l X
6(p2 — p1 + Bk)e?vr=9)

. (5.10)
+8(p2)7 u(pr) Tr(f — m + ie) 7 [(f — m) — (- m)|(F—m +ie)
§(p — q + Bk)e¥2-m)} A(z)
0.
We obtain
=8 +---+5 =0 (5.11)
5.2.2 Calculations in Coordinate Space
Instead of (5.3) computations in coordinate space will be based on
G:w(xvy) = aﬂflu(myy) + 3uf2u($,y)- (512)

This has advantages. Firstly, when the derivative, say 0,,, meets the Dirac matrix
4* it is possible, for some expression, that a form like ( &, + im)Sp(z — y) is
generated on the mass-shell whereupon it will simply reduce to the Dirac delta
function §(z —y). Another benefit comes from the functions fi,(z,y) and fo,.(z,y),
which sometimes produce cancellations due to the symmetry property fi.(z,y) =
fau(y, z).-

In this section we will start with truncated diagrams, i.e. diagrams without
external lines, and then cast them into a form such that when external lines are

added to the diagrams one can find immediately their simple form on mass-shell.

Truncated Diagrams

All truncated diagrams will be written into forms like [(5,, + é;)] or
[(5m + é:c)SF(m — y)-] where the dots are given just to recall that when we turn
to the corresponding completed diagrams we just put external (fermion) fields on
those dots. The usefulness of the above expressions is that on the mass-shell those

forms will reduce to vanish or to Dirac delta functions. Here we will use notation:
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directed derivatives such as @, and @. do not act on photon propagators, i.e. on

flu(mv y) and f2u(m, y)

1. Electron self-energy

Figure 5.7

2% (2,y) = [1Sk(z — y)1* ]G’ (2,y)
= —[(#s + P)Sr(z — ¥)7* ] fru(e,y) (5.13)
—[1Se(z = y)(By + B) ] Faulz,)-

2. Vertex corrections

Figure 5.8

_ie—zrlla(za Y, z) = ['7”51"'(‘7" - 2)7GSF(2 - y)7u']G:;u(a:a y)
= —[(#s + §=)Sr(z — 27 Sr(z — y)v" 1 fu(z,y)  (5.14)
~[v*Sr(z — 2)7"Sr(z — y)(Dy + By)") faulz,y)-

Ty

T, 4 %0 y,v

Figure 5.9

-7y (2,y,2) = [*Sr(z — 2)7°Sr(z — y)1"|Gl(z, 2)
= —[(g:+ 7:)Sr(z — 2)y*SFr(z — )7 fiu(z, 2) (5.15)
—i{v*[8(z — z) — 6(z — y)ISF(z — Y7} fau(z, 2).
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i

TR 2,0 Y,V
Figure 5.10

—ie7 3 (¢,y,2) = [1*Sr(z — 2)7°Sr(z — y)v" ]G, (2,y)
= —i{y*[6(z — 2) — 6(z — ¥))Sr(z — y)v* I fu(z,y) (5-16)
—[*Sp(x — 207 Sk(z — y)(@y + Py)1f20(2, )

z3u
Figure 5.11
—ie™ Ty (z,y,2) = [4*TrSr(z — y)7*Sr(y — 2)7°"1G,,, (2, y)
= —[(fe+ )| TeSr(z — y)v*Sr(y — 2)7° fr(z,y)  (5.17)
[ /2@,y TeSr(z — y)( By + By)Skly — 2)7°

On-shell Diagrams

Results in the previous section are used to evaluate the corresponding (on mass-

shell) diagrams.

1. Electron-electron scattering (Born term)

DY
~—
Figure 5.12

§'= —ie? [dz [ dyp(z)y*(2)P(y)7 (¥)Gu(z,y)
= ie* [ do f dy { (F@( B —im) + (P +im)}p(2) ) ) A(e9)0(0)
+ (@) fil,9)(@) (FW)I(B, —im) + (B, +im)lv())}

(5.18)
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2. Electron self-energy

Iy

~T,p 2

Figure 5.13

§'= [ da ] dyBE)S (2 3)00)
= —[defdy E [F@)(B + A)Se(@ - y11#9)] Funlar)

. o (5.19)
F@)rS(e = ) + B)b)| fae )}

+

Figure 5.14

Sy= —ie[dz [ dy[dzp(=)TT (2,9, ) Ao(20(0)
= —€[dz [dy [dzA,(2)
()P + D)Se(a = 11 Sele —yTd@uley) o
+H#2)1Sr(@ = ) Sr(z = 9)(Bo + ANl fou(e>9))
T e [da [ dy [ d={(2)d(z ~ 2) A2)Sr(z ~v) Filz.0)b(o)
~(z) la9)Sr(z = 2) A~ )p()}

acun s

Z,p zZ,0 YV
Figure 5.15

Sy = —ie[dz [dy [dzd(z)T3 (z,¥,2)A(y)P(y)
= —e3[dz [dy[dzA,(y)
[B(z)(P: + B2)Sr(z — 27*Se(z — ¥)1"$(¥)] fralz: 2) (5.21)
+i{P(z)7*[6(z — z) — 8(z — ¥)ISF(z — ¥)7* ¥ (¥)} fau(z, 2)}
2 ied [dz [ dy [ dz9(z) fa(z,2)8(z — y)SFr(z — y) Aly)P(y)-
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z, p z,0 Y, v

Figure 5.16

Sy = —ie[dz [dy [ dzp(z)T5 (2,y,2)Au(z)p(y)

= —e3[dzr[dyfdzA,(z)
i{[P()1*[6(z - 2) — 8(z — )] SF(z — y)v" ()] fulz,y)

+HB@)r*Se(z — 27 Se(z — ¥)(By + Bo)b®)]far(2,9))
L _ied [dx [ dy [ d2p(z) A(z)(z — 2)Sr(z —v) fu(z,9)¥(y)-

T

I

Figure 5.17

(5.22)

_iefdm fdy fdz-lz(x)r;c(xa Y, Z)Aa(z)"p(m)
~é* [ dz [ dy [ d=(@){( Pz + Po)TeSr(z —y) fu(w,y)x
Sr(y — 2)7"

+ fo(@y)TeSr(z — y)(By + B,)Sr(y — 2)7° YA(2)b (=)
0.

(5.23)

ms

Hence we have the same result as in momentum space (obviously):

S'=81+5+S+S5,Z0. (5.24)

5.3 Omne-loop Corrections in Scalar Electrody-

namics

Computations in scalar electrodynamics are basically similar to those in spinor
electrod};namics and require little elaboration.
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5.3.1 Calculations in Momentum Space

1. Meson-meson scattering (Born term)

__‘L"’-__?___ql.__
TP T EET TR
Figure 5.18

§'= —ie? [dady(p + p2)*(q1 + @) G, (3, y) e PP ¥iv(@=0)

= —i62f _L_:ffloo %fdy[(th + qZ)Ugu(ﬂa k7 ak, y)(pf - p%)

N _ (5.25)
5(pz — p1 + ng)e:y(qz—m) + (p & q))

= 0.

2. Meson self-energy

—_—‘_J'i”_\:j'—jl__‘_ —

D2 T, H p y,v h
Figure 5.19

Sy = €*[dz [dy [dp(p: + p)*(p+ ;)" (P* — m* + i) "'G,, (2, y)
eiz(p2—p)+iy(p—p1)
= & [ 25 [° % [dy [ dp(p? — m? + i) g (B, k, Ok, y) (p + Pr)" (p* — P3):
6(pz —p+ Bk)etvr-p) 4 (p & —p, p1 & —p2)]
T 9¢2 [ 95 [0 dB [ dyg,(B, k, Ok, y)k”eiup2ritBk),

TPy m
Figure 5.20
S! = —¢e? [ dye'vp2—p) guv ,
2 I y_ g uu(y y) | (5.27)
= —2e* [ 25 [°dB [ dyg.(B, k, Ok, y) ke ¥ (P2Pr+BE),
We have
F=S+R=0 (529

80



3. Vertex corrections
— e e é— -— -— e Gl e o

-——— gty = =

P2 T,EN, Pz 4 v m

Figure 5.21

Si= &fdzfdy[d:{ ,2_m2+.¢ | 7= (2 + p)*(p + 9)° (g + P1) Ao (2)
(:c y)ew(m -p)+iv(g—p1)+iz(p—q)

= sf:p'flw 2 fdyfdzf _m2+.¢ f qz_mz.mA (2)9.(B,k,0k,y)
(2" ~ 22)(P + )" (g + 1) 8(p2 ~ p o+ BE) PTG
—(p & —¢q, ;& —p2)]
T e JLdzfdy ] -i:,;r:,:A (2)9.(B, k, O, z)
[(p + p2 + BE) (p + p1)? e=(p-P1)+iv(p2—p+5k)

_(p + pl —_— ﬁk)”(p + pz)”eix(pZ_p)+iy(p—P1+ﬁk)]_
(5.29)

Figure 5.22

Sp= &fdofdyfdsf o [ ol (p+ @+ 2+ 1) Ao0)
y(z z)e'z(m—‘J)’*"y(P-Pl)+1z(q—p)
= SJ YAy & i | prmm A () (p + pr)7 e e-P)
[gu(ﬂ, k, aks z)(q - Pz)(Pz +p+ ﬂk)"&(pz —-q+ ﬁk)eiz(m—lﬂ-ﬁk)_i_
(g & —¢, p2 + —p)]
% [ [ % [ dz [dy [ 5 Ac(¥)9u(By K, O, )
[28Kk*(p + p1 )Geit(m—p+ﬁk)+iy(p—p1)+

(p+p2)*(p + p1 + BE)° e‘=(m—r)+iy(p-m+ﬁk)].
(5.30)

81



p2 Y0 p T,p q 2V D
Figure 5.23

Sy= & [de[dy[dz[ B [ 2= (ma+P)" (P + 0)"(g+ P1) Ao (y)

G (z,2) e'z(P—a)+iy(p2—p)+iz(g—p1)

= 3.[ py =20 01 ’gfdxfdyfpz_mz_*.,c (y)gu(ﬂaka 6k’$)
[28k“(p +p2)”e"”(” P1—p+Bk)+iy(p2—p) (5.31)

—(p+ p1)*(p + p2 — Bk)° e=p—P)tiu(p2—p+BK)]

v\VI""\,\i
—— et K e - e e ————

p2 Yy,0 p T,p DN
Figure 5.24

Si= —26%[do [dy [ b (p + p1) A ()G, (2, y)ei=lP P +iv(ea—r)
= =26 [dy | perr [ S 1 G A W)
[9:(B, k, 35, y) (P} — PP)8(p — p1 + Bk)erPrmritfhly
B [ dzg,(B,k, Ok, x)k,(p + py)Pei=PP)+iv(p2—p+Bk)]
T 26 [dy [ 2 [ A (y) {[90(B, , Oy y)e e+ oR)
— [dz [ ngp(ﬂ, k, Ok, z)Bk,(p +pl)ueir(p—m)+iy(m—p+ﬁk)} .

N
—a wife m— — il — — — — —

b2 T,0 p Y,V p1
Figure 5.25

(5.32)

L= —2e3[dz[dy [ "5~ pg_mz_m (p + p2)*A¥(y) ’V(x,y)eir(pz—p)+iy(p—m)
% 26 [dy [ [ LA (y) {[=9.(B, k, Oh,y)erPrri+PH) (5.33)
[ 8o [ e u(B, K, Ok, ) By (p + po)rei=on P s o}
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B VI

D2 z p Y, 0 y 41
Figure 5.26

—esfda:fdyf — +l€ (p+p)°As (y)gw’G:w(z,z)eiz(pz—p)+iy(p—p1)

—263fd$ fdyf -m +|c f —_kf °° dﬂA ( )(p + pl)agﬂ-(ﬂs k7ak’ :E)ﬂk”'
eiT(p2—p+Bk)+iy(p—p1)

LD

OERG

Figure 5.27

(5.34)

—e®fdz [dy [ m(}’ + p2)° As (y)g* G, (2, T)er=(P~P1)+iv(pe=p)

—263fd$fdyf—2_—m§:1—€f w%AU(y)(p'}'p?)ag#(ﬂ’k’ 8k,:l:)ﬂk“
e (P—p1+Bk)+iy(p2—p)

é (5.35)

—_—— — — — — . — —

p2 T,k T

Figure 5.28

e [dz fdy [dz [ 2_m2+,C f qz__mz_*_u (p1+p2)*(¢+p)"(p+ 9)7 As(2)
,,(a:, y)e iz(p2—p1)+iy(p—a)+iz(¢-p)

Sfdyfdzfpz—mzﬂc J qz—m2+zc f —K2 i "éA (z z)(p+ ‘I)aeiz(q_p)

90(B, k, Ok, y){ (P} — P3)(q + p)* 6(p2 — p1 + Bk)e iy(p—q) 4

[(g* —m?*) — (»* - mz)](pl +p2)*6(p — g + Bk)eivram)}
e3nyszf P2—m2+ae f puyx3 f]oo dﬂA (Z)gu(ﬁ, k, Ok, y)(l’l +P2)V (p2—p1)
[(2p + Bk)*eiP*= — (2p — Bk)7e~iF*2]

(5.36)
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i

A}
i
—— e e ———— — — i —— —
P2 ke DN
Figure 5.29

Sy= 26°[de [dy [ =S (p1 + p2)* A (9) G (2, y) P2 P)
= 2¢%[dz[dy[ m(h — p3) A" (y) fu(z, y) (5.37)

= 0.

Adding S;, S, -+ Sy we obtain

S'=8 4 +5% (5.38)

5.3.2 Calculations in Coordinate Space
Truncated Diagrams

As in spinor electrodynamics, directed derivatives do not act on f1,(z,y) and
fou(z,y). Surface terms will be omitted and indices g, v and o in derivatives are

attached to variables x, y and z respectively. Thus 9, = 0., 0, = 0y, and 8, = 0.,.

T, 1 y,v
Figure 5.30

1. Meson self-energy

—e ™ (z,y) = |8 Sa(z —y) & 1GL(.9)
= —{[ﬁx - ﬁz]SB(w - y) 5;, '}flu(a:’ y) (539)
~{- 0" Sp(z - y)[ﬁy - ﬁy]-}f2ﬂ(m,y).

T,y
Figure 5.31

—e?E(z,y) = ‘“’[ 6(z — y)-1Gl.(2,9)

(5.40)
= [0 8(x — y)1foulzy) — [$(z — y) & Ifu(,1).
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S(z,y) = Ei(e,y) + Zi(z,y)
= &[(T. - @)Sa(z —y) & 1fulz,y)+
e[- 0" Sp(z - y)(Ty — O0,) 1 faulz, y)+
[8(z — ) & Jfulz,y) - [ 0 8(z ~ y)|faulz, 9)-

2. Vertex corrections

ie_sl'"la(:l;, Y,2) =

ie3T (z,y,2) =

ie~3Ty (z,y,2) =

z’/l' 2,0’ y7l/

Figure 5.32

[ 8" Sp(x — 2) 8 Sp(z —y) & |G’ (x,y)
~[(T, — T,)S(z — 2) & Ss(z —y) & 1 fu(z,y)

—[- 8 Sp(z — 2) & Sa(z —y)(Ty - T,) 1 foulz, y)-

Ty 4 z,0 y,v

Figure 5.33

[ 5 Sa(e — 2) & Salz — 3) 8 G (2,2)
(@, - T)Sa(e - 2) & Salz — 1) & 1fuo(a,)

+[ 9 Sp(z — 2)(T, — &5,)85(z — y) & | fou(z, 2).

z, U z2,0 y,v
Figure 5.34
[' 5;1' SB(-’B — Z) 5:7 SB(Z - y) 5:’ -]wa(z,y)
—[- 0* Sp(z — 2) 8° Sp(z — y)(Ty — G,)1fau(z,¥)

_[' 5; SB(x - z)(ﬁz - ﬁz)SB(z - y) 5;/ ']flu(z7 y)'
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—_—_————

z’z y”/

Figure 5.35

13T (z,y,2) = ¢*°[-6(z — 2)Sp(z —y) 5;’ -]G’:w(:z:, z)

= [(6* 8(z — 2))Sa(z —v) 5; 1 foul(@, 2)
—[6(z — 2) &° Sp(z —y) 8" ‘] fro(z, 2).

T, p 2,y
Figure 5.36
10Ty (2,9,2) = ¢"[ 9" Sp(z — 2)6(z — ¥} ]G, (2,)
= _[.(all» SB(x - z))5(z - y) ay ']flu(zs y)

ie_SI’g' (z,y,2) =

ie‘3F'7" (z,y,2) =

1

+[- 0% Sp(z — 2) 8 6(z — y)]fau(2,)-

”‘W

T Z,Y

Figure 5.37

29" [- 8" Sp(z — 2)8(z — y) |G, (<, 2)
_QQW{'[E; - ﬁz]SB(m —z)8(z — y)-}fla(m,Z)

~2g"[- 9" Sp(z — 2)(0° + 8)6(z — y) 1 faulz, 2).

Figure 5.38

294 [-8(z — 2)Sa(z — y) & |G, (2,9)
—2g#7[-8(z — 2)Sn(z — ¥)(Ty — OT,)] a0 (2, 1)

~2g47[-8(x — 2)(8° + 87)Sa(z — y) & 1fu(2,y).
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S —q/

-
=2
\

~

w ¢

z
Figure 5.39

ie =Ty (2,y,2) = [ 0 1G.,(,9)[(8S5(y — 2)) & Sp(z — )~
Sp(y — 2)) & 8 Sp(z — y)]
[(m—z - D_:c)']flu(z’ y)X

[(8"Sa(y — 2)) & Sa(z —y) — Saly — 2)) & 8"Su(z —y))-
(5.49)

TN
fl’,g o /

7/

T,
Figure 5.40
ie™Fy (z,,2) = 2[ 0" |G\, (2,9)9"" Sn(y — 2)8(y — )
= 2[- 8" |SB(y — 2)6(y — 2)9"’ [Oufrv(z,y) + O fou(z, y)]
= 2['(ﬁz - Ij:v)']SB(y — 2)6(y — 2)9" fu(z,y)+

[ 8 1Sa(y — 2)8(y — 2)9"° 0y fau(2, ).
(5.50)

On-shell Diagrams

Examining the truncated diagrams it is obvious that each of the corresponding

completed diagrams consists of terms containing factors like
Ho)E. —~ TiSa(a—v) or Sp(@ - I - LlSa(= —y).

Difficulties in simplifications off the mass-shell are caused by those factors since
they cannot be brought into simpler forms. On the mass-shell, on the other hand,

those factors may be simplified into Dirac delta functions. As a result cancellations
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may and do take place in this case. A summary of the computations will be given
below.

1. Meson-meson scattering (Born term)

v,V
__‘._g_q—_
—— — -

?

Figure 5.41

S'= ietfde [ dyl(z) 8 4(2)1(y) & $(y)GL(z,v)
= ie? [do [ dydl(2) 0 $(2)8t () & 6(1)[0ufru(2,¥) + B fru(z, )]
= —2ie* [ dz [ dy{! (2)0"¢(2)! ()[(T, +m?) — (&, +m?)|$(y)} faul, )
= 0.

(5.51)

2. Meson self-energy

— _{i/_:\:LB_ — il ——

T, H y,v
Figure 5.42

S = [dz [dysl(2)%(2,y)é(y)
T — [dz [ dy{—¢(z) 0" 6(z — y)$(y) fau(z,y) (5.52)
+¢1 (2)6(z — y) 8 $(y) fuu (=, )}

—-t—-—;v —_——

Figure 5.43

Sy= [de [ dysl()Sh(z,y)e()
= —e?[da [ dy{¢}(z) 8" 6(x — y)(¥) foul(z>y) (5.53)
~¢1 (2)6(z — y) 8" $(v) fu(z,¥)}.
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§'= 8, +5,™0. (5.54)

3. Vertex corrections E
i — — vl ==

TR A

Figure 5.44

[dz [ dy [ d=41(2)T5 (2,9, 2)$(y)Ad(2)
—ie [ dz [ dy [ dzA,(2){[¢}(2)6(z — 2) & Sp(z —y) & $(¥))fu(z,Y)
—[¢t(z) 8 Sa(z — 2) 8° 8(2 — ¥)$(v)] faulz, ¥)}-

zZ,0

Flgure 5.45

(5.55)

= [dz [dy[dz¢1(2)T5 (2,y,2)8(y)Ay)

i€ [dz [ dy [ dzA,(y){[$1(2) 8" Sa(z — 2)8(z — y) 0 $(y)] fau(z, 2)
—[41(2) 8 8(z — 2)SB(z — y) & (y)]fau(c,2)
+[¢16(z — 2) 8 Sa(z — y) & $(y)]fio(z,2)}-

_—-—gv—-‘-—g:\,‘l_—q._
T, p 2,0 Y,V

Figure 5.46

(5.56)

= [de[dy[dz¢1(2)T5 (2,y,2)$(y)Au()

—ie® [ dz [ dy [ dzA(z){~[¢}(z) & 8(z — 2)SB(z — y) & #(y)]fu(2,Y)
—[¢1(2) 8 Sp(z — 2) 8° 6(z — ¥)$(¥)] fao (2, ¥)

+[¢1(z) 8 Sa(z — 2)6(z — y) & B(¥)fin(z:¥)}-
(5.57)
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z,z Yy
Figure 5.47

[da [ dy [ d=¢1(2)T% (2,9, 2)$(y) Aly)
—ie® [ de [ dy [ dzA,(y){[#! (c) 0" 6(z — 2))Sa(z — y) " $(¥)| fau(z, )
—[¢1(2)8(c — 2) 8° Sa(z — y) & $(¥)|fis(z,2)}.

A

T Z,Y

Figure 5.48

(5.58)

[dz [ dy [ dz¢1 ()T (z,, 2)$(y) Au(z)
—ie® [ dz [ dy [ dzA(z){~[61(z) & Sp(z — 2))6(z — y) 8" $(¥)]fr(2,v)
+[41(2) 0* Sa(z — 2) 87 6(z — y)d(y)) fao(2,)}-

z 2,y
Figure 5.49

(5.59)

= [da[dy[dz¢!(2)T} (2,9, 2)(y) Au(y)
% —ie® [ dz [ dy [ dzA,(y){2¢" $1(2)8(z — 2)6(z — ¥)$(y) Fro(z, 2)+
—2¢"°[41(2) 8 S(e — 2)(8° + 8°)6(z — y)$(¥)) faul, 2)}-

T,z Y

Figure 5.50

(5.60)

[dz [ dy [ dz¢1 (2)7 (2, y, 2)$(y) Au()
—ie® [ dx [ dy [ dzA,(z){—29" ¢! (2)8(z — 2)6(z — ¥)b(¥) fao (2, )
—2¢% [$1(2)8(c — 2)(8” + 8°)S8(z —¥) & $(y) fuu(z,y)}-

g

(5.61)
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/AR
)
~ o’
yiv
.._..._m’pl.q_
Figure 5.51
Sy= [dz[dy[dz4(2)T5 (2,9,2)8(s)Ao(2) (5.6
= 0.
2,08
’ )
y,v \\-v"
RS
Figure 5.52
Sy=[dz [dy[dz¢! ()5 (2,y,2)8(y)Ae(2)
(5.63)
= 0.

The first order of vertex corrections is then given by

§' =

—ie® [ dz [ dy [ dz¢! (z)(y)
[T (2,9, 2)Ac(2) + T (2,9, 2) A(y) + T2 (2, 9, 2) Ay(2)
+T% (2,9, 2) Auly) + Tt (2,9, 2) Au(e) + T (2, y, 2) Ao (y)
+I7 (2, y,2)Au(z) + T (2,5, 2) Ao (2) + Tg (2,9, 2) Ao (2)]
S1+ S5+ 55+ 5+ St + Sg + 57+ Sg + S
—ic® [ dz [ dy { d={~[8}(z) " Sa(z — 2) & 6(z — ¥)$(¥)] fau(z, ¥) Ao(2)
+81(2)b(z — 2) 0% S(z - y) & $()] funlz,¥)Ad(2)
+[g(z) 8 Sp(z — 2)8(z — y) & $(y))fau(®, 2) Auly)
—[gt(z) 8" 8(z — 2)S(z — y) & S fulz ) Au(=)
~2[¢1(2) 0* Sp(z — 2)(8° + 87)8(2 — ¥)$(y)] Fau(z, 2) Ao y)
—2(¢1(@)6(z — 2)(6” + 8)S5(z — v) & S fuulz,¥) Ao(2)} 2 0.
(5.64)
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5.4 Omne-loop Corrections in Quantum Chromo-
dynamics

The equivalence between the electron-photon vertex in quantum electrodynam-
ics and the quark-gluon vertex in quantum chromodynamics can be seen easily from

relationship

— € & g(Ta'),'j. (565)

This equivalence leads one to infer that, neglecting the group factors, the quark-
quark scattering and the quark self-energy diagrams are equivalent to the electron-
electron scattering and the electron self-energy diagrams. Hence we can conclude
that, like in quantum electrodynamics, the correction G'“b“”(a:,y) gives no contri-
bution, on the mass-shell, to the quark-quark scattering and the quark self-energy.

However the same conclusion does not apply to the sum of the four diagrams in

the first order of the vertex corrections

é} A
Figure 5.53

This is because the group factors for each diagram are different due to the noncom-
mutativity of the group generators. However, these are not all of the diagrams in
quantum chromodynamics. To first order the vertex correction require three other

diagrams contributed by the three-gluon and four-gluon vertices.

— + +
Figure 5.54
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Therefore we have to work out these seven diagrams combined and see whether the
same conclusion of the previous calculations will also apply. These corrections to
the vertex and the gluon self-energy are the last calculations of the thesis.

First order corrections to the three-gluon and four-gluon vertices (see figures
5.55 and 5.56) have not been carried out in this thesis because the calculation is
even more formidable and needs considerably more effort. The complication arises
from diagrams that contain three and four gluon propagators. But we are hopeful
that the same conclusion of on-mass-shell equivalence also holds here.

Three-gluon vertices

QYRR R

Figure 5.55

Figure 5.56
Before we go into detailed computations for each diagram considered let us take

notice of the Feynman rules in quantum chromodynamics. Firstly consider the
ghost vertex. G’f‘b) in the ghost vertex equals 6‘("’) and z, in the Lorentz gauge and
the F'S gauge respectively. This vertex vanishes in the F'S gauge because A**G, = 0
and therefore all diagrams containing ghost fields/propagators can be disregarded

in scattering calculations involving external vectors. The second consideration is
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about the three-gluon vertex. In the case when all three wavy lines in the three-
gluon vertex represent external gauge fields, the corresponding ig f abcv;g;b'6>(az) in

momentum space may be readily obtained and is just

igfabcvu(:;zb’c)(k) = _gfabc[g;W(kl —k2)p + guolks — k3)u + gpu(ks — k1),].  (5.66)

If one {(or more) of the wavy lines is replaced by the FS gauge propagator,
V(@5)(k) will necessarily be more complicated. This is because unlike propagators

in the Lorentz gauge that can be formulated as

G (a,y) = [ dk o (k) expl—ik(c — y) (5.67)
the general form of the FS gauge propagator is more complex,

G (g, y) = / / / dadBdkf** (a, B,,y, k) exp[—iaks + iBky].  (5.68)

The amplitude f*** is still a function of space-time coordinates and thus Vu(,’f;,b'c)(k)
isafunction of k, Oy as well as integrations over & and 8. Accordingly, complications
of V;L(l‘f,;b’c)(k) in the FS gauge lead to difficulties in evaluating perturbative calcula-
tions in momentum space. We avoid such difficulties by only taking perturbative
calculations in quantum chromodynamics in coordinate space into account (where
the gauge condition looks more natural). We start with truncated diagrams before

extending them to mass-shell diagrams.

5.4.1 Truncated Diagrams

The first four diagrams can be obtained by the use of the previous results in

quantum electrodynamics. We have
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G @8 () > (n)

z z Yy
Figure 5.57

—ig~ T (2,9,2) = [v(T*)iiSqir(z — 2)7° (T)uiSqim(z — y)7* (T")mn-] X
Gzt(xs y)
— (F) + (TaTch + ibedTaTd),'n
{=[(P: + P2)Sr(z — 2)v"Sr(z — y) [(z,p)]

—[ £z, 9)Sr(z — 217" Se(z — y)( By + B,)1)-
(5.69)

Figure 5.58
—ig Tt (2,9,2) = [1*(T%)iiSeir(z — 2)7° (T*)uiSqim (2 = ¥)7"(T)mn-] X
Got (2, 2)
= (F)+(T°T*T*)n
(=[P + £.)Sr(z = 2) [(2,2)Sr(z = y)r*]
—i[- f5(2,2)[6(z — z) — 8(y — 2)ISF(z — y)v"]}-

(5.70)
~ (e p) a,o b, v
) I y (1)
T z h
Figure 5.59
—ig~ (2, 9,2) = [4*(T)iiSqir(z — 207 (T*)uSaim(z — y)1* (T*)mn"] X
G2 (2,)
= (F)+ (T°T°T®);n

{~=il1*[8(z - 2) — 6(z — Y)ISr(z — ¥) £i*(2,y)]

—[y*Sp(z — 2) [z ¥)Sr(z — ¥)(By + u)1}-
(5.71)
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(c2)

b¥v
M 8 ()
Figure 5.60
—ig T, (z,9,2) = [7*](T)aGii(z,y)
Tr[Sosk(z — y ) (T*)uSqim(y — 2)7° (T)ms]
= (F) = §8(T*)ul-( B + 7o) )%
TeSr(z —y) fi%(2,y)Sr(y — 2)7°]

_%(Ta)"n[' f;c(a:,y)-] TTSF(Z - y)(éy + é;/)SF(y - z)')’a
(5.72)

The terms (F') in each above diagrams stand for the Feynman gauge version of the
corresponding diagrams. Now we turn to diagrams contributed by the three-gluon
vertex. We just transcribe the final result given in the Appendix G here. The first

diagram is

a,m,u

OLs 7 )

Figure 5.61

—ig g, (z,y,2) = [V ERD72B(8,)[-4*(T*)i;Squ(z — y)1" 1 (T*)im
Goe(z,2)GE (2, y)
— (F) + fced(TaTb)'_nOgd-Fe)aﬂx (5_73)
{GEs. (2, 9)]- £3°(2,2)Sr(z — y)7v"]
—[v*Sr(z —y) £°(2,9)1G55(=, 2)}
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—fced(T“Tb);nV(—’e’d)”“ﬁ(az) X
{f22(2, 2)G s, (2,9)[-(Pe + Bo)Sr(z —y)7*]
+F3(2,)G% (3, 2)[1*Sk(= — ¥)(Py + B)1}
— f(TT*):u 0978 £8 (2, y) x
[ £2%(2,2)Sk(z — v)( Py + By)]
+ feed(TT*)in[6G — z”(az)-laz(;)] X
{[- £24(z,2)Sr(z — y)y*]6%(z — y)
+4*Sr(z — y) f2(z,9)16%(z — z)}.

The last diagram contributed by the three-gluon vertex is

c P d,o
(a,u)Q(b, )

€A fr0
Figure 5.62

(5.74)

3% (z,y) = Lg?foeeV@ecluod(@,) P14V hdvee(9)Got (2, 4) G55 (, y)
= (F)+ (ghost)
+39° foee {0y [V (8e) (Goi (e, v) i (25 9)
— G, (2,9)f52(z,v)) + OO fii(z, ) f3i (2, v)]
+Ope [~V 1D (5,) (G (2, 9) f1 (=, 9)
— G (2, ) f5(z,y)) + O 53z, y) f5h (2, )] +

+y* [V @,) (£3] (2, 9)(0y) 10D 8% (z — y)
— (=, y)(0y) 1008 (z — )
+2((8y) 6% (z — y)) 071046z — y)
— x”((@x)_15°d(m _ y))(ay)_15ef(x _ y)]
+z# [V(—.f,d)uoa(ay) ( <d(z,y)(0z) 1098 (z — y)
— £t (2,9)(0z2) 1 0Q8%(z — y))
+2((92) 716" (z — y))0; 0y 8 (z — y)
— ¥((82)16%(@ — 1)) (99) 6% (c - )
+2 287 = 0" — 8P (@, )8 — )}
(5.75)
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Here (ghost) in TI3**(z,y) equals

(ghost) = g*f*= f4107026%(a — y)][0"8;8 (= — v)
(5.76)

= .'ZJ,#O: .}y,v

Figure 5.63

It is quite interesting that H'{b’“’(a:,y) in the FS ghost-free gauge contains im-

plicitly the ghost term associated with the Feynman gauge.

The contribution of the four-gluon vertex is

cp d,o

(e,p) 7y (b,v)

Figure 5.64
3¢, (z,y) = 39*W2keds(z — y)Go*° (z,y)
= (F)
+g2facefbfd[_2.qlwag§§) + -q")‘al%) + gz\#ag(n{)]fgfl\(xa y)6Cd($ - y)'

(5.77)
Thus we have a part (the other part is contributed by fermion loop diagram) of the

gluon self-energy

I (z,y) = T3 (z,y) + 03" (, y)

= (F)+ (ghost)+ (5.13)

3 fece fIU0y Hig ¥ (z,y) + O Hig¥ (y, )

+y Hy (2, y) + 2*H;*/" (y, )]

where
HiF¥(z,y) = OO fed(z,y) f3{ (<, v)
+V 0N (9,)[GE (2, 9) f51 (2, y) — GEh, f53(2, )]

Hy# ¥ (z,y) = Ve 3,)[ £ (z,y)(0y) 18,6 (z — y) (5.19)

— f53(,y)(By) "0y 8 (z — y)]
+2[(9y)~16% (¢ — y)|0; 1026z — y)
—z#[(0z)718%(z — y)][(8y) 6% (z — y)).
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Note that (F) 4 (ghost) above is nothing but the gluon selfenergy II%**(z,y)
in the Feynman gauge. Finally the last two diagrams of the first order correction

of the quark-gluon vertex are combined into

8, a, (b,v) R a,

Figure 5.65
Fg‘z{n(x’ Y, z) = Fg‘;in(ma Y, z) + I‘g:in(z, Y, z)
= (F) + (ghost) + i[-¥[(T*)inO:c fiji(2, z)1** (2, y)
ig?foee Py (T2)in e (7, 2) x

[0y Hig ¥ (2,y) + 0% Hig" (y,2) + y By (2, y)].
(5.80)

5.4.2 On-shell Diagrams

Gluon self-energy

The gluon self-energy in the FS gauge consists of three diagrams below

AWIOAMAr -+ /W\'{:}IW + MQ\‘A"
Figure 5.66

The first diagram is gauge propagator independent. It is also gauge independent
because of transversality of its truncated diagram. This means that t};is diagram
in the FS gauge is exactly equal to that in the Feynman gauge. According to the
previous result, equation (5.78), it turns out that the last two diagrams equal the

same diagrams in the Feynman gauge plus the ghost terms
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o) e S

F
Figure 5.67
because
A(y)-y=0 (5.81)
and
0o A (y) = 0. (5.82)

Since the gluon self-energy in the Feynman gauge is transverse, see for example
[Mut 87], we conclude that the equality leads to the transversality of the gluon
self-energy in the FS gauge, as already anticipated.

Quark-gluon vertex corrections

Now consider the first three diagrams depicted below

Figure 5.68

It turns out that the terms in equations (5.69), (5.70) and (5.71) which each
has factors T*T®T*® are proportional to equations (5.14), (5.15) and (5.16) in spinor
quantum electrodynamics respectively. As a consequence, because the sum of those
terms in quantum electrodynamics vanishes on the mass-shell, the only term in the
three above diagrams that give a contribution on the mass-shell is the term in (5.69)

which has group factors fe*4TeT? = feedTaTbgee§d, Accordingly
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S1+ S2+ Ss= ig[dz[dy[dzp,(z)
[Ti5(2, 9, 2)A5(2) + T3 (2, y, 2) AL(Y) + Tain(, , 2) AL (2)| K )

T (F)+ ¢(f4TT?);, [ dz [ dy [ dz
{[#i(2)8(z — 2) A(2)SF(z —y) £*(z,y)9n()]

—[i(z) f5°(2,y)Sr(z — 2) A%(2)6%(z — y)¥u(y)]}-
(5.83)

Similarly, since the second term of I'{7,(z, y, z) in (5.72) is proportional to (5.17)

4in

and thus does not give any contribution to S4 on mass-shell, we have

Figure 5.69

Sy ™ (F). (5.84)

Now we come to the last three diagrams. Their details of calculation can be

seen in the Appendix G. The final results are given as follows.
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Figure 5.70

Ss = ig[dz [dy [ dz(x)TZ,(2,y, 2)A5(2)n(y)

2 (F) = g U T T )in [ dz [ dy [ dzAS(z)V 29728 (9,) x
{2i fe2(z, 2)GD (2, y)Pi(2)6(z — y) ¥ ¥n(y)
—ifie(z, 2) f35(z, y)¥i(2)( B +im)é(z — y)ba(y)}

+gafced(TaTb)in f dz f dy f dzAf,(z)Ogd)"ﬁ X (5.85)
2% f35(z,y)di(2) f3°(x,2)6(z — y)n(y)
— g3 fed(T°T®);, [ dx [ dy [ dzAS(2)
{—Pi(2) f5°(z,2)SF(z — Y)Y Pu(y)6%(2z — y)
+i(z)7"Sr(z —y) £i(2,9)¥n(y)8%(2 — 2)}.
The last
8,€ a, b,v a,p S,€
z T ] + b X Z
Figure 5.71
Se = ig[dz [dy [dep,(2)T,(2,y,2)AL(y)Pa(2)
= (F)+ (ghost) —ig® f={T°T")in [ dz [ dy [ d2A5(2);(z) %
(5.86)

{—2v(-ed)oab(9,)6(z — y)y* G2 (2,y) fi(z, 2)

+26(z — y)OIP fie(z,2) f(2,)
—V(edoa (9 )[( 3, —im)é(z — y)| f22(2, 2) FE4(2, ¥) }bu(v)

Remember that (ghost) is the ghost contribution in the Feynman gauge:

tast

Figure 5.72
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Summing up equations (5.83)-(5.86), we get

S= S1+S52+S83+ 54+ 55+ Se

(5.87)
=2 (F)+ (ghost).

To conclude: off the mass-shell, all QED diagrams considered in the F'S gauge are

!

»(z,y) is responsible

different from those in the Feynman gauge. The correction G
for it. These correction terms, though they are quite complicated, contain helpful

factors like

B(@)(e + Po)Sr(z—y) and Se(z —2)(P. + §.)Sr(z —y)

in spinor QED and
$1(2)(, — T,)Sp(c —y) and Sp(zc—2)(T, — 0,)Sa(z —y)

in scalar QED. Such factors will reduce to Dirac delta functions on the mass-shell.
This reduction leads to cancellations in the correction terms. As a result both the

FS gauge and the Feynman gauge are identical on mass-shell

(selfenergy)rs = (selfenergy)r

(vertex)rs = (vertex)g.

The same conclusion holds for quantum chromodynamics. One interesting point
here is that since the FS gauge is ghost-free while the Feynman gauge on the
other hand contains ghost loops the above equality means that when one shifts
the FS gauge into the Feynman gauge ghost terms in the Feynman gauge emerge

automatically. Diagramatically
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gluon selfenergy

O 0,
2O+ Mo O ]

Figure 5.73

F

quark-gluon vertex corrections

Tg_+mé+§m+f£3
{ I 2

4.6

Figure 5.74
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Chapter 6

Conclusion

6.1 Summary

In Chapter 2 we reviewed the derivation of inversion formulas together with their
sufficient and necessary conditions both in Abelian and non-Abelian gauge theories.
These formulas then were employed to obtain the so-called FS gauge potentials for
some classical configurations. We found that in electrostatics the F'S vector potentials
are nonzero whereas (like the familiar Coulomb gauge) there are no scalar potentials
in magnetostatic systems. One important result is that since according to the inver-
sion formula the FS gauge vector potential depends on time in the language of FS
gauge potentials electrostatic systems are-no longer static! In addition, the FS gauge
potentials in systems of plane electromagnetic waves are not plane waves. The fact
that scattering of charged particles due to the F'S gauge potential is identical to the
-Coulomb scattering lets us conclude that the FS gauge potentials (as expected) do
not produce any (new) physical consequences.

Chapter 3 is the starting point of the discussion on quantum field theory. Green
functions which play an important role in quantum field theory were derived in co-
ordinate space in two different gauge fixing terms of Lagrangian Lgr, = — (G- A)?
and Lgr, = C(G-A)+3C? and where G,, = 8,,,z, or n, in the Lorentz, FS and axial
gauges respectively and C is an auxiliary or Lagrange multiplier field. The Green’s

function derived by the use of Lgr, is the most familiar one. It is a 4 x 4 matrix
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and thus it only contains (, v)-elements. The last Green’s function is a 5 x 5 matrix.
Besides (u, v)-elements there are (g,4) and (4, p)-elements. These last two elements
are called the unphysical part of the Green’s function since they are not found in
scattering matrices. Accordingly the (y,v)-elements are contained in the physical
part of the Green’s function. We showed that the first Green’s function is equal to
the physical part of the second Green’s function. This equality is understood since in
the generating functional Lgr, is effectively equal to Lgr,.

The symmetry properties of the Green functions or propagators were found to be
GaB(z,y) = Gpa(y,z). In the case when A = 0 the physical component of the Green’s
function has another property: it is orthogonal to G,,. The derivation of the physical
part of the propagator, for A — 0, in “momentum space” from that in coordinate
space was based on the above symmetry and therefore the resulting propagator did
not lose its symmetry. Our derivation is a definite improvement on what Kummer
and Weiser [Kum 86] did. They did not make use the symmetry property from the
beginning and as a result they found that the symmetry does not obviously appear
in their resulting propagator; this forced them to propose new propagators C;’#,,(x, Y)
which obey the symmetry.

In Chapter 4 the local gauge and the BRST transformations were reviewed. The
BRST transformations were derived by the use of Lg7,. Based on the local gauge and
BRST symmetries of Lagrangians the Ward-Takahashi, Slavnov-Taylor and BRST
identities were then derived.

The fact that the FS gauge is a ghost-free gauge was demonstrated in the first
section of the chapter. Since the ghost fields in ghost-free gauges like the FS gauge
may be disregarded the BRST identities in such gauges can be simplified into the
Slavnov-Taylor identities or the non-Abelian version of the Ward-Takahashi identities.
However, the content of all these identities, such as the transversality of the gauge
field self-energy, naturally remains the same.

Investigations on up to one-loop diagrams in spinor and scalar quantum electro-
dynamics and quantum chromodynamics were done in Chapter 5. We found that

in scalar and spinor quantum electrodynamics the extra propagator G, (z,y) contri-
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butions disappear on mass-shell and leaving only the terms containing the Feynman
gauge propagator Gru,(z,y). Therefore as far as the mass-shell perturbation calcula-
tions are concerned, the FS gauge theory is equivalent to the Feynman gauge theory.
This is hardly surprising. The same conclusion is also true for quantum chromo-
dynamics. Here, extra diagrams contributed by ghost fields in the Feynman gauge
are contained in the FS gauge propagator and the transversality of the full gluon
self-energy is in agreement with the BRST identity.

We anticipate that the conclusion holds (on mass-shell) to all order of scattering
matrix but highly complicated nature of FS calculations indicates that it is better to
consider the Feynman gauge rather than the FS gauge in perturbation calculations.
However some properties of the FS gauge such as the inversion formula may make it

useful for certain nonperturbative computations.

6.2 Outlook

The conclusion obtained in Chapter 5 is based on the lowest order diagrams we
have considered. Thus it is essential to justify whether this conclusion also well applies
for (at least up to a few) higher order diagrams. Of course this is not an easy task.
The easiest task is, perhaps, to examine the first order three-gluon vertex correction
which remains to be done.

The investigations are based on the propagator with A = 0. It would be quite
interesting if computations are carried out by making use of propagators with a
general value of the gauge parameter A and discover what role the gauge parameter
term plays in perturbation theories. As in the axial gauge, [Cap 82, Lei 87], the final
results will of course be more complicated. We are confident that in the limit A — 0

the final result will shift to the result found in Chapter 5.
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APPENDICES
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A General Notations

Summation over repeated (Greek or Latin) indices is understood. Units with
c¢=h=h/2r =1 are used throughout the thesis.

Metric tensor:

1 0 0 0

googwo |01 00
uy = =

0 0 -1 0

0 0 0 -1

Four-vectors:

-

= (t,z,y,2) = (2°, 2%, 2%, 2%) = (2°, 7

Gradient:

V= (3757 55)

Divergence and curl:

Levi-Civita tensors:

1 if (ijk) is an even permutation of (123)
ijk

€’ = —¢€r =4 —1 ifitis an odd permutation

0 otherwise

1 if (pvpo) is an even permutation of (0123)
P’ = —€up0 4 —1 if it is an odd permutation

0 otherwise
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Electromagnetic field tensor:
0 —F' —F? _—FE3
B 0 —B® B?
Fr = grAY — g¥A* =
E? B3 0 —-Bt
E? —-B? B! 0

FOi — __El’ Ft] = €iJkB]¢.

B Identities Relating to Operators §, and G,

First we list important formulae and later we indicate their proofs.

1 if G¥ =z*
Ips =
0 if G¥ = 3* or n*

(1) 0,G, = GL0,+ IFsg,,
(2) G = GO+ 4lrs
(3) G*(8G + a)*! = (G + a — Ips)*'G*
(4) (G + a)!' = (3G + a + Ips)F1o*
(5) OGF = GHO + 2[psd*
(6) 0G,G, = G,G,0+ 2Irs(8,G, + G,0,)
(7) 0(8G + a)*! = (8G + a + 2Irs)*'0
(8) GrO™l = O-1G* + 2Ips07 28"
(9) G,G,07'= 071G,G, +2Irs07Y(4,G, + G,8,)0!
(10) G,G, 0! = O7'G,G, + 2Irs07%8,G, + G,8,)
+8Irs07%0,0,
(11) G?07!' = O71G? 4 41psGOO2
(12) G*O™2 = 0O7GH + 4Ips0730"
(13) (8G + a)F'0-1 = 018G + a + 2Irs)*!
(14) G'23(z—z')= G¥*¥(z—2')
(15) G¥5(z — ') =FGH6(z — =)

(16) (0'G' + a)*'6(z — ') = +(8G + a — 4lps)*'6(z — ')
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where the upper sign of (F) or (+) in the coefficient of the righthand side of the last
two equations is given for the Lorentz gauge and the lower sign is for the axial and
Fock-Schwinger gauges. Note that a is a number.

Proofs

(1) and (2) obvious.

—
)
~—

3)  (0G+a—Irs)Gu D (GO+a+3Irs)C,
Gy(Gpau + IFSg;w) + Gp(a + 3IFS)

G.(G + a + 4Irs) 2 G,(0G + a).

—
=

Multiplying both sides by (G + a — Irs)™! from the left and (G + a)~! from the

right the above identity is converted into

G,.(0G + a)“l =(0G+a-— Ips)_lG“.

4) 849G +a) L (8G + Irs)d* + ad* = (G + a + Irs)0".
The same multiplication as in (3) leads to

(BG +a+ Ips)_lau = 6“(6G + a)'l.

—
[
e

(5) DG# = a"(Guau + IFSgu.u)
Q (G0, + Irsgu)d” + Irsd, = Gu0 +2lrs,.
(6) 0G,G, & (G,0+2Irs0,)G, & G,(G,0 + 2Irsv) + 2IrsOuG,

G.G,D + 2Irs(0,G, + G,.0,).
84(0G + a + Irs)*'8, & (3G + a + 2Ups)*100.

~—
£
~—

(7) O(3G + a)*

(8) Multiplying O~ from both the left and right on both sides of (5) we have
G,07' = 071G, + 2Irs0720,.

(9) Same treatment as (6).
(10) = (9) according to (8).
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11) 6ot o162 4 270296 + GO) + 8IpsO?

= O71G? + 4IFSD_26G (1=3) 0-1G? + 4IFsGaD_2.

(12) G072 (0716, + 2Ips0-29p)0! € 001G, + 2IpsO20p)
+2IFSD_36[£ = D_ZG“ + 4IpsD_3au.

I~

(13) Same treatment as in (8) for (7).
(14) and (15) obvious.

16)  (IG' +a)i(z—2) T2 (FOC +a)é(z - z') = (FCI + a)b(z — ')

© (160 + a)é(z — ') = (£(G — 4Irs) +a)

é(z — ')
= i(aG +a— 4];'5)5(.’1) — x’).

Multiplying £(0G £ a — 4Irs)"(8'G' 4+ a)! on both sides the identity becomes

+(8G £ a — 4Ips) '6(z — ') = (8'G' + a) " '8(z — ).
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C Special Unitary Group SU(N)

The generators T* are hermitian and traceless, a = 1,2,3,---,N%2 — 1. They

obey the Lie algebra
[Ta, Tb] — ifabcTc
where f2 are the antisymmetric structure constants. Other useful relations are
{Ta’Tb} — %—,6“ + dabcTc
Ta.Tb _ %6(& + %dabcTc + %z'fabcTc
debe = 2Tr[{T*,T*}T¢).

Traces of product of generators:

Tr[T% = 0
Tr(T°T" = Lé%
TT[TaTch] — i_(dabc_*_ z'fabc)

TT[TaTchTd] — ﬁé‘ab&cd + %(dabe + ifabe)(dcde + ifcde).
Jacobi identities:
[T, [T, T + [T%, [T, T°)) + [T, [T°,T%]] = 0
[Tu, {Tb’ TC}] + [Tb, {Tc’ Ta}] + [Tca {Ta’ Tb}] = 0
or

fabc fcde + fcbe fdae + fdbe face = 0

fa.be dcde + fcbe dda.e + fdbe dece = 0.
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D Inversion Formulae and Their Conditions

D.1 Derivations of identity a%f(am) =z - 0. f(ax)

For any function f(az) in n dimensional space z = (z!,z2,-- -, z") with an arbri-
trary parameter a one has
d ds' 0 ; 0 ; 0
ok f(oz) = a2 L f(0) = aw' L flaw) = ' f(as) M)
where s =azr and : =1,2,---,n.

D.2 Derivations of conditions for inversion formulae in non-

Abelian theories

We start from equation
1
8,4, (z) — 8,Au(z) = Fu(z) — /0 dac?2P [0 F,,(az) + O, F,p(0z) + 8, Fpu(az)]

with 8 = 19p. In non-Abelian gauge theories the left-hand side of the above equation
is not equal to F,,(z). Adding —ig[A,(z), A.(z)] to both sides of the above equation

one has

IuAu(z) — 0, Au(z) — ig[Au(z), Au(2)]
= —ig[Au(z), Av(z)] + Fuu () (2)
— Jo doo?zP[9F,(az) + 8, F,s(ax) + 8, Fp.(az)].
The commutator can be written as follows
(), Ae)] = J2 daro?[A, (ac), A(oc) 9
= [} dac{2{A,(a2), Ay(a2)] + a4, (az), Afez)]}.
By recalling the Fock-Schwinger gauge condition z - A = 0, A,(az) and A,(az) in

the first term on the right-hand side can be written as

—Ayu(az) = azPd, Ag(az)
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while, according to the identity (1), a% in the second term can be replaced by

230° = 24,0”. Equation (3) now reads

[Au(z), A(z)] =[5 daa®sP{—[0,Ap(az), A,(az)] — [Au(az), 8, Ag(az)]
+05[Au(az), Ay (az)]}
= Jo daa®zP{—[8, As(az) — FpAu(az), A,(az)] (4)
—[Au(az), 8, Ag(az)] — pA.(az)]}
= Jo dea®aP{[Fp,(az), A(az)] - [Au(az), Fop(az)]}.

Inserting (4) into (2) one has

9uA,(z) — 0, Au(z) — ig[Au(z), Au(z)]
= Fu(o) — 2 da?sP {3 Fyn (o) — iglAg(ae), Fuu(ae)] + BLF,p(az)

_ (5)
—ig[Au(az), Fup(az)] + 9, Fpu(az)] — [AL(az), Fpu(az)]}
= Fu(z)- fo dac®zP[DyF,, + DyF,5 + D, Fp,)(az)
where
DgF,y = aﬁFuu - ig[Aﬁ, Ful/]-
Equation (5) agrees with the Bianchi identities
[DﬂFuu +D,F5+ D,,Fgu] = 0.
D.3 Validity of A.(z) = j{ d\F,,(S)%-%5
The inversion formula
1 a5* 85”
Aa(z) = /0 d/\F“"(S)W% (6)

is only for abelian theories [Cor 84]. The derivation of necessary and sufficient con-
ditions of the inversion formula (6) is as follows. Applying derivatives on A,(z), one

has

[ [BF,.(S)85° 85" 8S" 525 oS
Oha(a) = | dA{ 53, 0a8 0% do= T 1) gomgnaes T
s s
Fou(5) 8_)\8:1:‘381:"} )
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Therefore

_ft [OF,(S)8S* (85°BS* 8S* BS¥
OpAa(z) — Oadp(z) = /0 d)‘{ 0S, 0X (3:::5 dz> Oz~ 3.’1:'6)

o5+ 9sv  9*SH 9S”
FulS) (8mﬁ0/\ dz ~ dzed\ P )} '
The first term on the right-hand side may be written as

OF,.(S) 8S* (65” asy  asr asv) _ (8F,W(S) 8F,,,L(S)) aS* 88 8S"

S, O \9z8 0z 9z 0zP dSe dSv ) O\ 0zP dz~

oS* 85° oSv 3 dF,,(S) dS* aS¥
O\ 0z Oz~ )\ 0zf Jz~

= (B, F(S) + 8,F.(S) + 8, Fou(9))
where 0, = %. In consequence,

OpAa(z) — OuAp(z)

o\ 0zPf Oz~

Fu(S) o%5* 9Sv 4 828 s+ dF,,(S)dS* 8s”
w ozPoN Oz = Oz*O)\ zP o\ 0OzP Oz>

d\ 0zP 9z~

- [l { (0,F(S) + B Fy(S) + B F,u(S))

_ /0 ) { (8,F(S) + O, F,(S) + O, F,u(S)) +

d aS* 05"
5y [Fw(s)a?@]}

1 , , dS* 5S° BS”
= Fpo(z) + /0 dX (8, F,u () + 0,F,p(S) + 8, Fpu(S))

O\ 9zf Oz’

This final result states once again that the Bianchi identities
0,F,, +0,F,,+08,F,,=0

are the necessary and sufficient conditions for the inversion relation (6) to hold.

D.4 Expansions of A,(z)

The expansion formula for A,(z) follows the work of Shifman [Shi 80]. Consider

the inversion formula

Auz) = —/: daaz’F,, (az) (7)
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F,.(az) in the integrand can be Taylor-expanded around z = 0

F(az) = F( o>+z (a2)t - (az)*" (8, -+ Ou, Fiu(@) az=o0)

= #V(O) + Z _a" o (6011 e aanFuV(m)l?:O) (8)

n=1

where 3!, = 20,,. After replacing F,(ax) in (7) by series (8) integration over « can

be done easily. The formula (7) becomes
Au(z) = 53 F,,(0) + Z ,( T Oy Ban Fla(0). 9)

The ordinary derivatives in (9) can be replaced by the covariant ones

1 14 — 1 (o4 Qn
A#(il:) = §$ Fu#(0)+n§=': ml‘ .. Dal "'Dranuu(O) (10)
because in the FS gauge the identity
g - g0y Oa Fou(0) = 2% - - 2% Dy, -+ - Dy, F,,(0) (11)

holds.

The proof of identity (10) is as follows. Consider the following expression
AN [30116012 e aanFVﬂ(x) - Da1D<12 e DanFl/u(m)]‘ (12)

The equation (11) holds automatically if expression (12) vanishes for every n. For
n=1

2% [0y — oy + 19 A |Fou(z) = igz™ Ao, Fou(z) = 0
because z - A = 0. For n = 2 expression (12) reads
L [aalaaz - (80180!2 - igaal Aaz - igAalaaz - ngalAaz)]FVﬂ(z)‘

The last two terms vanish because of the gauge condition. The remaining term also

vanishes

'2%20n, Aay = % (Oy @+ A — 632 Aa,) = 0. (13)
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Thus (12) is also zero for n = 2. By the use of (13) it can be easily shown that for

n = 3 the remaining term has the form z®1z*22%239,,04,As,- However, this is also

zero
22200, 0y Aay = T80, %00y — 83300, A

= z%2°20,,0,, - A — 2*18% 0y, Asy — 2223 Oap Ay = 0.
(14)

The similarity between identities (13) and (14) enables us to prove (11) for higher n

by mathematical induction. Suppose that this expression holds for n
2122 <+« %7 2P, By - - + Oan Ap(z) = 0.

Accordingly, for n +1
T*1go2 ... g g1 gDy By - DO sy Ap(2)
= Tz ... g%, Dy - Oy, (T A)
—z%1g%2 - gon41[8, B,y Oon Ay (T) + By * + + Oy Oy A (T)
o BagBag -+ Oy Aey ()]
= 0.

Thus expression (11) is true for all n and therefore expansion (10) is valid.

D.5 Two other derivations of the inversion formulae

We may derive the inversion formulae by two other ways: by employing Stokes’
theorem [Dur 82] and by using the language of differential geometry [Bri 81]. Both

derivations will be given below for completeness.

D.5.1 Stokes’ theorem methods

Relationships between potentials A,(z) and their field strength tensors F,(z)

based on the Stokes’ theorem are given by expression

fc A dzt = /S F,,dr*

where the line integral is along a closed path C and the surface integral is over a
surface S around C. For our purposes it is sufficient to choose a closed path C as

depicted below
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xHy sxH

O (dl p«zi'..<l
M
9 (x+Aax) Aql ___-’_ql
VA
dulxtazy¥ A Doy = ~ o,
4 K
” d| AxXH AX
oy A% : Doy = °(z - °(3
x¥ad3 | I"'A:"(:. ¢ ‘B I‘fdd[
q’axﬁ q/’.x“ ql z‘l xﬂ ?0cse e

Now the line integral reads

f; A (z)dz* = Au(z)Az* + Ay(eaz)r¥Aay + Au(eaz)r”Aag + - -
~ A (z+ Az) (2 + Az)* Ay — ALJor(z + Az)] (z + Az)*Aay

= A,(z)Az*

subject to the gauge condition z - A(z) = 0. Note that every pair of paths such as
AB and CD does not give any contribution to the integral because of their opposite
directions. The final result tells us that the only path which contributes to the

integral is the base Az*. On the other hand the surface around the above closed

path leads the surface integral into

./;F#,,(:c)dr“” = F,(eqz)(z* Ay )(a1Az”) + F(aez)(s* Aas)(Az”) + - - -

N
= z a; Aoz Fy (aiz)Az”.
=1

If we divide the surface into infinite number of trapezoids the integral becomes
1 1
/ F,dr* = / daaz*F, (az)Az" = ——/ daaz” F,,(az)Az".
s 0 ()
Equating both expressions one arrives at the result

1
Aulz) = —./o daaz” F,,(az).
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D.5.2 Differential geometry

The derivation is based on a choice of a region called a star-shaped region [Spi 65].
A star-shaped region S C R" is a set of z € S with conditions Az € Sfor 0 < A < 1.
Now if w is a closed m-form on the star-shaped S, that is dw = 0, then, according to
Poincaré lemma [Spi 65], w is exact, i.e. w can be written as w = d} with Q is an

(m —1) form on S. In a star-shaped region Q) can be defined as

Q=1Iw= Z 2:(—1)"1 /01 daa™ 1z

1<11 <2< <im<n =1
. ~ iy :
Wiy wim(@T)dZ* Ao Adz A--- Adz™

where the hat symbol over dz'*r indicates that it is omitted. The above expression
can be applied to gauge field theories since in the language of differential geometry

the gauge field strength tensors are closed (see for example [Ryd 85]):
dF =0

where

F= Y Fude*Ads”

0<u<v<s

and according to the Poincaré lemma
F=dA

with
A= A,dz".

In integral form

1
A=IF= ) / daaF,, (az) (z#dz” — z¥dz*)
0

0<u<v<3
1 /1
= 5/ daoF,, (az) (z*dz” — z¥dz*)
0
1
= —/0 daaF,, (az)z’dz"
yielding

1
A, (z) = —/0 daaz” F,,(az).
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E Fock-Schwinger Gauge Propagators

E.1 Propagators with Lgr = —3(G - A)?
The inverse propagators are given by
G (z,y) = [Dg™ — 06" + §GﬂG"]6ab(x _ ).
The general form of the corresponding propagators must be
G (z,y) = [Ag™ + 80" B + G*G*C + 8G* D + G*0"E|6°(z — y)

with A, B,---, F are in general functions of 8* and G*. These quantities can be

solved by the use of identities
/dyG_labw(x,y)Gf:‘;(y, z) = 6L6%(z — 2).

We get, after integration over v,

§t8(z — z) = [Dg™ — 9"8” £ LG*G*)[Agva + 8,028 + G,G.C
+8,GoD + G,0.E)6(z — y)
= {DAS* 4+ OG*G,C + OGHOLE — 8*0,A — 00 - GG,C
—~040 - GOLE £+ L[GFG, A+ G*G - 80:B + G*G*GC
+G*G - 0G4 D + G*G*3,E|}6(zx — z)
= {DA8% + G*G,[OC + (A + G*C(8G — 3Irs)D — 2IpsE))
+0"Go[2IrsC — (8G + Irs)C]
+G*0,[2IpsC + OF £ Y((8G — 5Irs)B + G*E)]
+840,[2IpsE — A — (0G — Irs)E]}6(z — 2)

where we have used identities derived in the appendix B. We conclude that

A=01 C=

A+ (8G — 3Ips)D — 2IpsE =
(O£ 1G*E + 1(0G - 5Irs)B =
—A— (3G — 3Is)E =

?
?

)

0
0
0
0.
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Recalling identities in the appendix B we have
E= —(8G —3Ips)™ 07! = —07Y0G — Irs)™?,
D = +(8G — 3Ips) -0 — 2IpsO071(0G — Irs)™!]
= —07Y8G — Irs)~%(0G + Ifs),
B = FMO0G —5Irs) (O £ :G*)(-071)(0G — Irs)™
= +AD71(AG - 3Ips)7 [0 £ }(G* + 4Ips0710G)](0G — Irs)™".
Accordingly
8.8,B = +£A0719,08,(0G — 3Ips)~ [0 £ 3(G? + 4Irs010G)](0G — Ips)™!
= 070G — Irs) ' [£ MG + 3Irs)~' 000, + (0G — Irs)™10,G*0.]+
2Irs0~Y(0G — Irs)~20,G, + 4Ips072(8G + Irs)~2(0G + 21ps)0,.0,
0,G,D = —9,G,0°Y0G — Irs)~%(0G + Irs)
= —O0Y9G — Irs)™19,G, — 2Ips0O~Y (G — Ips)~%0,G,
—2Ips0~%(0G + Irs)"%(8G + 31rs)0,0,
G,0,E = —G,0,07Y(0G — Irs)™?
= —0Y8G — Irs) G0, — 2IrsO~2%(0G + Irs)~10,0,.

Finally
G (z,y) = [Ag* + 0*0"B + G*G*C + 0*G*D + G*8”E)6%(z — v)
= D_l{g"w - (0G — Ips)_l(a“G” + G*9”) + (0G — IFS)‘28“G28"
+A(0G — Ips) 1 (IG + 3Irs)~1 008" }6%(z — y).

E.2 Inverse propagators when Lgr =CG- A+ %C’2
In this case the propagators are of the form
G (z,y) = O-1{gh — (8G — Ips)~L(8*G” + G»8") + (3G — Ips)~20» G20
£X(0G — Irs)~Y(0G + 3Ips)~100#9"} 8% (2 — y),
G(z,y) = (8G — 3Irs)™10"8%(z — y),
G (z,y) =F(0G) 1 0"6*(z — ),
G4 (z,y) = 0.
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In general the inverse of the corresponding propagators are
G (z,y) = [Ag™ + (8*G¥ + 8”G*)B + 8*6*C + G*G* D)6 (z — y),
G (2,y) = G*E8(z — y),
G (z,y) = GHF§%(z —y),
G (a,y) = H6(z —y),

where A, B,---, H are in general functions of G* and 9*. These functions can be

obtained by making use of identities

/dyG?{bL(% y)G~

with K,L,M =0,1,---,4. More explicitly

lbcLM(

y,z) = 6M8°(z — z)

§(z — z) =f dyGau(=,9)G™ (v, 2),
0 = [ dyGau(z,y)G " (y, 2),
0 =/ dy[Gou(z,y)G" (4, 2) + Gua(2, )G (3, 2)),
836(z — 2) = [ dy[Gu(z,y)G (3, 2) + Gua(z, y) G (3, 2)],
where G**¥L(z,y) = §2°GXL(z,y). Now the first identity reads
§(z — z) = F(0G)19,G*Eé(z — z) = FEb(z — 2);
thus
E = TFl1.
The second identity
0= F(0G)'9,[Ag" + (0*G” + 8*G*)B + &*3"C + G*G* D)6%(x — z)
= (0Q)0*(A+ 0GB +0C) + (0GB + GG D))5(z — z).
The third identity
0= OYg* —(8G — Irs)"1(8*G* + G*&") + (0G — Irs)20*G28”
+A(9G — Irs)™'(9G + 31ps)~*00*0"}G* Eé(z — y) +
(0G — 3Irs) 10, HS(z — 2)
= (0G —3Ips)"10,(H £ AE)é(z — 2).
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Hence

H=F)E =\
The last identity

§2 = 07g,, — (8G — Irs) ™ (8,G, + G,8,) + (3G — Irs)~20,G?0,
£A(OG — Irs)~1(8G + 3Ips)~108,8,}{Ag™* + (8*G* + 6*G*)B
+8v9>C + G*G*D} + (0G — 3Ips)10,G*F

= (A+ B)§ + G,G*0(0G — Ips)™'B

+G,8%[B — (8G — Ips)"Y(A + 2Irs + OC)]

+8,G°{B — (8G — Irs)"'[A — B + (0G — 3Irs)B
FAOG + 3Ips)~'02B ¥ AOD + OF]
+(8G — Ips)~%[—2IrsA + G?*0OB — 4IpsB
—2Irs8GB — 2Ips0C)}

+8,0%{C + (8G — 3Irs) 7 [G?*B — (G — 5Irs)C + (8G — 31rs)"1G?
(A+2IpsB+0OC) £ A\(8G + Irs)~10A
+4TpsA(OG + Ips)™'0B + A(8G + Ips)10%2C
+2IpsAD + 2IpsF]
+AOG(OG — 5Ips) YOG — Ips) ™' B}.

Thus we have

The second identity agrees with this result.
Now we have obtained all the quantities A, B,---, H. These lead to the inverse

propagators (which can be read off the Lagrangian in fact)
G—labyv(z, y) — (Dguu _ auau)é‘ab(m _ y)’
G_labp4 (:lt, y) — :FGué‘ab(x _ y),
G_lab&#(z’ y) — Gyé‘ab(z _ y),
G (z,y) = A6*(z —y).
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E.3 Symmetry properties of propagators

Consider G***(z, ')

G (z,y) = TH{g" — (3G — Irs) " (B*G” + G40¥) + (8G — Ips) 204 G20
:E/\(aG — Ips)—l(aG + 3IF5)_1D6“6"}5GI’(.’B — y).

We have

Gab“"(—z, _xl) = Gab‘w(m, :L")

because 07!, (G — Irs)™18,G, and §,G*, are invariant under transformations

z— —z and 2’ — —z'. Also

G (a',z) = 07 {g, — (0'G' — Irs)™Y(8,G,, + G,8,) + (8'G" — Irs)™?8,G" 8,
MG — Irs) ™ (8'G + 31ps) 71018, }6%(z — o).

Rearranging and making use of identities given in the appendix B,

G¥(z',z) = {07 gu — (0'G' — 3Ips) " [0L(G, 0" — 2IpsD3.)
+G, 0 = 2Irs0 78,8
+HO'G' — 3Ips) 20 [G" O — 4IpsG'O'DT’)0),
MG — 3Ips) YOG + Irs) 10,0, }6%(z — 2')
= 0 Yg,, F[+G,0, +8,G, — 4Irs0719,9,)-
(0G F 3Ips — 4lps)™?!
+[0,G?8, F 4Irs0710,8G0,)(+)*(0G F 3Irs — 41ps)™2
+A(0G — 3Irs)"Y(0G + Irs)™1,0,}6%(z — ')
= 0, —[G.8, + 8,G, T 4Irs070,8,](0G — Irs)™
+[0,G?8, F 4Irs0710,0G,)(0G — Irs)~?
+ (3G — Irs)™(8G + 3Irs)™108,0,}6%(z — =)

= G%(z,2').
Such symmetry also holds for the nonphysical propagators
G (2, z) = (G’ —3Ips)710"6%(z — 2')
= F(8G)1o6%(z — 2') = G (z, ).
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However
Gab#4(—$, —27') = —Gab“4($, 1:,).

Hence we conclude that the symmetry properties of the propagators are

GabKL(.'L', y) —_ GabLK(y, l‘),
Gabuu(z, y) — +Gabp.u(_x’ _y)’
Gab"4($,y) — —G“b“4(—$, _y),
Go(z,y) = —G®U(—z,—y).

E.4 Fock-Schwinger propagators in momentum space

The non-Feynman gauge part of the Fock-Schwinger gauge propagators in the

case A — 0
G, (z,2") = 07 [—(0z — 1) (8uzy + 2,0,) + (0 — 1)7%0,2%0,]6(z — ')
can be written in the form of derivatives §, and 9, of some functions as follows:

G, (z,2') = O7=08,z,(0z — 1)~ + (0z — 1)7'2,0, + 30,2%0,(9z — 1)~?
—2(0z — 1)729,2%3, |6(z — ')
= +0,[-07'2,(0z — 1)716(z — 2’) + 1071229, (0x — 1)728(z — o))
+9,[071(0z — 1)z ,6(z — ') — 107 (0z — 1)728,226(z — 2')]

= Oufu(2,7) + 8, fou(z, ')

fip(z ') = -0z, (0z — 1)718(z — 2') + 1071220,(0z — 1)726(z — 2')
fou(z,2’) = 40710z — 1) 'z,6(z — 2') — 3071(9z — 1)720,2%6(z — ')
— _D/—lz:‘(alz_l _ 1)_16(33 _ (L") + %Dl_lxaall‘(alzl . 1)_26(512 _ 1./)
= fiu(2, ).
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Now
9, fru(a',x) = 8, fau(s,2')
= 1[20-18,2!(8z — 1)~ + 0718,2" 8, (dz — 1)?]6(z — 2)
= OO, + 2,8 + g)(05 — 1)
+0-1(2" 8,0, + 22',0,)(0z — 1)72]6(z — ')
— O (0,0, + 2, + g) (B2 — 1)
+0-1(z" 80, + 22.,8.)(0z — 1)~2]6(z — =)
= (2,07 +207%9,)8,(0z — 1) + O (2,0, + g )(0z — 1)
+07Y (2”80, + 22/,8.)(8z — 1)~%é(z — )
= [32,0719,(8'z' — 3)~' + 0729,9,(0z — 1)71]é(z — ')
101 (2L8, + ) (02 — 1)) + (278, + 20,9.)(02 — 1))
§(z — ')
= 072§,0,(0z —1)7*6(z — ') + 12,0719, Gs(a', z)
+107Y(2"8, + gu)Gi(, 2') + 10°1(2z° 8.8, + 22,0,) Hy(z, 2
where we have defined
(0z — n)Gyp(z,2') = b6(z — ')
(0 — n)"'Gp(z,2') = Ha(z,z').
Gn(z,z') and H,(z,z’) may be obtained as follows. First of all we rewrite operator
(8z — n) which acts on G,(z,z') as [z0 — (n —4)]. Then we introduce a parameter

B by replacing z — Sz. This gives
[#0 — (n — 4)]G,(Bz,2") = §(Bz — ).
Now z9 may be replaced by S ?1%

[ﬂj‘% ~ (n~ 1)]Ga(Ba, ') = (B2 — o).

W=

Furthermore, we can change to parameter a =
—[ai + (n — 4)]G (£ t') = o*6(z — az’)
do ta’ '

The left-hand side may be reduced to single term by multiplying ™5 into the

equation

ia“"’Gn(z, ') = —a"1§(z — az').

da
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The last steps to obtain G,(z,z') come by multiplying both sides by e~*° with

6 — +0 and then integrating over a from 1 to +00. We have
Gn(z,2') = /oo dae " 1§(z — az').
1
H,(z,z') follows immediately

H,(z,z') = (0z —n)"1G,(z,2’)
= [Pdae*a™1(dz —n)"16(z — az’)

_ foo —ab n-1 ’
= [Cdae™®a"1G,(z,az’).
Particular n-values are

Gl (.’L', wl) = floo da e_asé(.’lf —_ a.’l:’) = ka f1°° da e"a&e—ik(z—az’)
— _fdke—lk(z—z)
Hi(z,z') = [Pdae™Gi(z,az’) = — [°dae ™ [ dk*
[ dk [° dae=*¢ In e~ (z=a2')
GS(-’I;, x,) = floo da e_°‘60425(z — a.’L‘,) = f d—k floo dae"a'sa2 e—ik(z—a:z:’).

—tk(z—az')

iakz’!

Now we have

8, fau(z,2") = 0729,8,(0z —1)716(z — «')
+1 dll:2 ) o Jve~ Sia.’L‘ k e—ik(z:’—aa:)
+l k2 1 dae as[zax k +gl_¢u xakyk#azlna
+2iaz! k, In o] e~tk(z—2=)
= 0729,0,(0z - 1)16(z — ')
-1 dfz ' dae*%iaz, ke~ oz
+§ [ =5 [ da e~ [g,, + iaz, k, + 2icz,k, Ina

—z"k,k,0? In o] e=ikE—aa),

Since 0, f1,(z,z’) can be obtained from J,f,,(z,z’) by replacements z « z’ and
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p + v, the propagator G, (z,z') becomes
G, (z,2") = [D‘28 8,(0z — 1)1 + 07 3,9,(0'z' — 1)71|é(z — 2')
$1] 2 [ daeebg,, (iMoo 4 ¢miklan=2)
+1 f 5 [ dae~liazl k, +ic(1 4+ 2In o)z} k,
—z"k,k,o? In a] e~E—o=")
+1f _i_,f; P dae[—iaz,k, —ia(l +2lna)z,k,
—z"k,k,0? In o] e~ Flee=2"),

The first term vanishes because of the equality

07800 — 1) 6(e —2') = —~0O'7°8,9,(9z — 3)7*8(z — )
= —(8z-3)"'07°9,0,8(z — ')
= —0-28,8,(0z — 1)"16(z — ).

Hence
G (z,e)= 3 _i,fz- ' dae=%g,, (emH(@-0e") | g-ik(as=z))
% _dk | dae‘“s[zaa: k, +ic(l +2lna)zlk,
— k k a2 In a] e—ik(z—a:z’)
: f [P dae*[—iaz,k, —ia(l + 2lna)z,k,

—a” kyk, 0 In o] e klaz=7),

More neatly rewrite
Gro(0,) = [ 2 [ BB, by B Y™ + 0,8, b, Do )]

where

SulBok, Bk 2) = FeP {5k 1+ 6(8 — 1) [ doce™
eiak:c[ia(l +21n Ol)a:# _ $2kﬂa2 ln Ol]}

gu(ﬁ, ka 8]\:7‘77) = %e—ﬂb'{ _ikzag,‘ + 6(ﬂ - 1) fl dae” as,
e~k _ja(l+2In )z, — 22k,0%In a]} .

It is readily verified that

g#(ﬂa _ka _aka (L‘) = _f#(ﬂa k, ak,il?)
gl‘(ﬁ’ k,ak,—:l?) = f#(ﬂ’ k,akax)-

131



F Local Gauge and BRST Invariances

F.1 The local gauge invariance of Lagrangians

The infinitesimal local gauge transformatians

P(2) = $(z) —igT*A*(2)¢(2)

¥(z) = ¥(z) +igp(z)T*A%(z)

Al(z) = Au(z)— T°D2A(z)
= UAU* - é(B”U)U*

(1)

where

U(z) = 1—1igT*A%(z)
D,= 0,—1gT*A;
D% = §9, — gfeAs
lead to the field strength F,, = D,A, — D, A, and the covariant derivative of the
fermion field D, which transform into
F,, = UF,U"
D' = UD,.

It follows that quantities such as Fe* F®

uv?

Y1) and D, ¢ are invariant. Accordingly

the quark-gluon Lagrangian
1 apy pna (s
Lo = _ZF WEL, 4+ (19" D, — m)

is invariant under the local gauge transformations (1).

F.2 The BRST invariance of Lagrangians
Consider the Lagrangian
L=Lo+Lgr+ Lrp (2)

with
Lo —%F:VF““" +¥(iv*D, — m)y
Lor= CG-A+ %02
Lrp = —X*"G*D?x*

132



We wish to prove the invariance of the above Lagrangian under infinitesimal BRST

transformations
bp(z) = 1gbT°x*(z)¥(z)
§5(z) = —igh(z)IT*x"(z)
A3(e) = 0DSR(e) 9
§x*(z) = —390f*x*(z)x(=)
§x*'(z) = 0C%(2)
§C*(z) = —30G*D%xt
where n = 0 when C is an auxiliary field, and n = 1 when
C = —lG - A%, (4)
A

i.e. when Lgr = —25(G - A)>

As a matter of fact the first three transformations are essentially the local gauge
transformations with A = —0yx. Since Lo is local gauge invariant it is also BRST
invariant. Thus we need only to prove that Lgr + Lrp is BRST invariant. The

variation of Lgr + Lrp under the BRST transformations is given by

0Lgr + 6Lrp = 6Ca(G -A+ /\Ca) + CQGM(SAZ — (5X*G)G“_Dszb
=X G*8(Dy’x")

= 6C*(G- A*+\C*) — x*"G*6(D%X") ®)
= — (%G A* +n8C") G*Ditx’ — X GH§(Datx®).
Since Dzb x® is BRST invariant, namely
§(DBxY) = DX — gfe(5A4%)x"
= —390F*(Bux)x" — 390F**Xx°Bux’
_gofacd(auxd)xc + %gzg (fcdbfbea + 2facbfbde) Azxcxd -

= +g0f*(0ux?)x° — g0 (8uxh)x*
+ % g20 ( fcdb fbea. + fa.cb fbde + fa.db fbec) Azxcxd
= 0

upon remembering the Jacobi identity
fcdbfbea + facbfbde + fadbfbec =0
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the equation (5) becomes

8Lor +6Lrp = — (Zi-\-o-G <A+ nOC“) G’“Dszb. (7

It turns out that when C is a (auxiliary) field and is independent of AS, 6Lgx +
6L rp vanishes since in this case n = 0. The same conclusion also holds when we
choose (4). In the latter case n must be equal to 1 in order to match 6C* in (3) and
8C*® derived from (4). Thus we have proved that the Lagrangian (2) is invariant
under the BRST transformations (3).

F.3 BRST-nilpotencies

Other quantities which are BRST invariant are f***x%x°, x® and ©¥x. The proofs
are as follows
6‘(fabcxbxc) — fabc(éxb)xc + fabcxbéxc
— __lz_gfabcfbdeaxdxexc _ %gfabcfcdexngdxe (8)
— gefabcfcdexbxdxe =0
because
_fabcfcdexbxdxe — (fadcfceb + faecfcbd) XbXdXe
— fa.bcfcde (Xbxdxe + Xbxdxe)
— 2fabcfcdexbxdxe
6(x) = T*(8x*)¢ + T°x*6¢
= 290[T°, T<Ix x°p — igbT°T*xx e 9)
= igBTchxbxcz,b — 1g0T Ty = 0.

The variation of ¥ is similar to that of x, thus

§(¥x) = 0. (10)
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Results (6-10) establish the nilpotency of the BRST transformations

§2A% = 06(Dbx*) =0
§2C* = —2G*§(D%x) =0
8% = igbé(x¥) =0
8% = —igfé(Px) =0
8x% = —3906(f*x’x") =0
8" = 06C*=0.

F.4 Invariance of integral measures

Let us consider two integral measures

(1) D[Ag¥C]

(2) DlAYYxx*Cl.
The former will be related to the local gauge symmetry while the latter will refer to
the BRST transformation.To check the invariance of the above integral measures
under their corresponding transformations we need only to prove the unity of their
corresponding Jacobians. Recalling the infinitesimal local gauge transformations
(1) the Jacobian related to the first integral measure is

(A, (), ¥(2), ¥'(z),C"(2))

(A (), %(v), ¥ (¥), C°(y))
= det {[g, (6% — gf**A%)8(z — y)][(1 + igh)é(z — y)] X

[(1 - igA)é(z — y)][6%(z - y)I}

which is independent of A and is equal to 6(z — y). Hence D[AY (] is gauge

invariant. Similarly by recalling the BRST transformations (3) the Jacobians for
the last integral measure is given by
O(An(2), F(2), ¥'(2), X" (@) X" (2),C"(2))
8(A™(y), ¥(v), ¥(¥), x(¥), x*(¥), C*(y))
= det {[g,(6* + gf**°x")é(z — y)][(1 — igT*0x*)8(x — )] x
[(1+igTe0x°)6(z ~ y)|[(6* + g8 5**Xx*)6*(z — y)[*[6°( — y)] }.

This determinant is also unity and therefore D[Ayyxx*C] is BRST invariant.
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G Some Details of Perturbation Calculations

All diagrams considered in scalar and spinor quantum electrodynamics are linear
in G, (z,y). This linearity enables us to write each of the diagrams into two terms:
the Gpu (z,y) and the G, (z,y) terms. Since the familiar Feynman diagram are
assumed to have been calculated the whole propagator G, (z,y) will not be taken
into account but, rather, the corrections G/, (z,y).

In quark-gluon vertex corrections, however, the full G, (z,y) must be used
rather than G, (z,y) because diagrams contributed by the three and four-gluon
vertices are not linear but quadratic in G,,,(z,y), producing terms which consist of
multiplication of GF,.(z,y) and G, (z,y) that cannot be neglected.

Perturbation calculations in scalar and spinor quantum electrodynamics will
be carried out in “momentum space” as well as in coordinate space. In quantum
chromodynamics, on the other hand, we will only consider calculations in coordi-

nate space due to difficulties in combining the three-gluon momentum vertex with

G (z,y).

G.1 Scalar Quantum Electrodynamics
G.1.1 Momentum Space

Meson-meson scattering (Born term) (Figure 5.18)

S'= —ie’ [dzdy(p1 + p2)* (@1 + ¢2)* G, (z, y)e(Pr-Pr)+iviaz—n)
= —ie? [ & [ dB [ dz [ dy(ps + p2)* (91 + 42)"[9.(B, k, Or, v) kePot
(g & v, z & y)]eP2-r)tiviez—a)
= —ie?f -ill:f o dp [ dy(pr + p2)*(q1 + 42)"[9.(B, k, Ok, y) K,
8(p2 — p1 + BR)e¥=0) 4 (p & v, p o g)]
= —ic? [ Z5 [ % [ dyl(as + @) 9.(8, k, 0, y) (P} — B)-
8(pz — pr + k)M~ 4 (p & g))]
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Meson self-energy (Figures 5.19-5.20)

S =

s =

e? [dz [ dy [ dp(p: + p)*(p + p1)*(p* — m?® + i) 'G,,, (z,y)
e'z(p2—p)+iv(p~p1)

e? [ 2 [ dB [ dz [ dy [ dp(ps + p)*(p + p1)* (p* — m? + i€) -

[gu(ﬂ, k ak, )k e'Bkz + (:z: L ey, ,,)]ew(pz—p)+iy(p—p1)

e? [ & [°dB [ dy [ dp(p2 + p)*(p + p1)"(p? — m? +i€)7[g.(B, k, B, ¥)-
ky-6(ps—p+ Bk)eV®P) 4 (p s —p, p1 & —pa, p & V)]
e? [ -2 [ 9 [ dy [ dp(p® — m? + i€) g (B, ky Ok, y) (P + p1)" (9* — P3)-
B

6(p2 — p + Bk)e¥PP) 4 (p & —p, p & —p,)]

e? [ 2 [ L [ dylg,(B, k, Bk, y)(p2 + p1 + B) eV (P2pr+6E)
+(p1 & —p2)]

262f = h dﬂfdygu(ﬂyk Ok, y)ku f(p2-p1+Bk)

—ezfdyeiy(Pz—m)gqu/ (y,y)
—2¢? f fl dﬂfdygu(ﬂ,k ak,y)k” iy(p2—p1+6k)

!4 S0,

Vertex corrections (Figures 5.21-5.29)

51

fdz[dy[dz [ z=br [ qz_i"mc (P2 +p)*(p+ )7 (g + p1)" As(2)
G’ u(m’ y)eiz(pz—p)+iy(q—m)+i2(p—q)
& fda[dy[de [ B [ o [ 2 [2dBA,(2)(p+ q)°
(P2 + p)#(q + pl) [gv(ﬂa k’ aky )kp.elﬁkx + (.’E Sy, B V)]
ei(p2—p)+iv(g—p1)+iz(p—q)
e? f m’ floo 2 fdyfdzf p2—m2+:c f q2_:12+,5 (z)gl'(ﬂ, k 61:7 y)
[(P* = P3)(P + )7 (g + p1)"6(p2 — p + Bk)efvla=rr)+iz(p=0)
—(p o —¢, p1 & —p3)]
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= f floo ddeydef 1:,.’5“‘4 (Z)g,,(ﬂ,k ak, y)
[(p2 + q + ﬂk)’(q +p1)” iy(g—p1)+iz(p2—q+8k) __ (q - —q, 1< —pz)]
= I [ L [z [dy [ 52 As(2)9.(B, K, B4, 7)
[(p + p2 + ﬂk)a(p + pl)”eiz(P_pl)‘H'y(P?_P'*‘ﬁk)
—(p+ p1 — BE)? (p + py)* &= P2—P)Hiv(p—p1+8K)]

Sp= Jdz[dy[dz [ 2 [ B (P2 +0)*(a 4 P)* (P + P1) Ao (y)
u( z, z)eir(m—q)+"y(P—px )+iz(g-p)
= fdzfdyfdzf B [ 7% [ L [ dBA(y)(p + P1)
(P2 + 9)*(q9 + p)*9.(B, k, Ok, 2)kueP* + (z & 2, p o V)]
e'z(P2—q)+1y(p~p1)+iz(9—p)
= [ [*dBdy[dz [ 5B [ =S 4, (y)(p + pr) PP
(p2 + 9)*(q + P)*[9.(B, k, O, 2)ku6(p2 — g + Bk)e*( 3P4
(g —¢, p2 & —p, pt & V)]
= [ L [PL dy[dof 5 [ S A(y)(p+ p) W)
[9.(B, &, 0k, )(q* — P3) (P2 + p + Bk)"6(p2 — q + Bk)et=(ramP+FR) 4
(g & ~g, p2 & —p)]
Y S Y dyfd ot [ 49 A, (y)(p + p1)7 4P P1)
[9.(B, &, 0k, z)(p2 + p + BE)*6(p; — q + Bk)ei=(Pr+BE) 4
9u(Bs b, O, ) EFEZE) (—p — o + BE)8(g — p+ B)e P+
= &[5 [° % [dz [dy [ =2 Ac(y)9u(B, F, Ohy )
[28k*(p + ;1 )vew(m—p+ﬁk)+iy(p—m )+

(p + p2)*(p + p1 + Bk)° ei=(Pa—P)+iv(p-P1+BK)]

By diagram-inspection we can conclude that the diagram Sj can be obtained

from the diagram S by transformations

P2~ —p,peo —p g —g, Tz, p > v, e & —€).
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Thus calculations in S} are very similar to those in S;. The result is

Sy= & fdafdy[dz] m=rp | mmabgm(pe +0) (0 + (g + 1) As(y)
u(x z)e".z(P—‘I)'*"'y(Pz—P)-Hz(q—pl)

= &[22 Y [do [dy [ =Pz Ao (4)9u(B, F, B, )
[28k*(p + pg)" ei=(P—P1—p+Pk)+iy(p2-p) 1
—(p+ p)*(p+p; — ﬂk)deix(p—p1)+iy(pz—p+ﬁk)].

Si= -2 [dz [dy [ B~ p2—m2+.e (p-}—pl)“A”(y) (T, y)ei=@=P1)+iv(p2—p)
= 2% [dz[dyf —,_—mm J 85 [ dBAY(y)(p + pr)Pe= PP tiv(pa )
[9:(8, k, B, y)kue® + (z o y, p o v)]
= 26 [dy [ =2 [ 4 [° LAY (y)
[9.(B: k, Ok, y) (¥ — p*)6(p — p1 + B)e¥P2PitPB 4
B [ dzg,(B, k, Bk, )k, (p + py)*e=P-P)+iulpa—pthE))
= 28 fdyf _—k;f°° a8 pe () { (9-(B, k ak,y)eiy(pz—pﬁﬁk)
— [ dz [ =2 9,(B,k, Bk, x) Bk, (p +pl)uew(p—m)+zy(pz—p+ﬂk)}

S§ can be obtained from S) by replacements

[Pz & —=p1, P+ —p, € & —6].
We have

Sy= —2¢%[dz[dy[ pz_m2+;e(p + p2)* A ()G, (2, y)e@2-P)Hiv(p=p1)
T 263 [dy [ & k. floo —QA" () {[ —05(B, k, 8, y) ¥ (p2—p1+8K)
— [ de [ =2u(B, by Ok, @) B, (p + po) et ivlo-pitbh) |

Sy= —€[dz[dy[ T —(p+ ) As(y)g™C,, (z,z)eErPIrislp—r1)
= —e g“"fdxfdyfmf:vfl dBA,(y)(p + p1)° e=lP2P)Hivle—m)
[9.(B, k, Ok, )kue'ﬁ’“ + (g & v)]

= —26°[dz [dy [ =2 [ 25 [° L A(y)(p + P1)°9u(B, K, Ok, ) BRH
eiz(m—p+6k)+iy(p-px ).
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Similarly S7 can be obtained from S§ as we obtained S; from Sj.

S;= —€[dz[dy[ m(? + p2)° As(y)g* G, (z, T)eio PP Hivlre=r)

= —26*[de [dy [ =B [ 25 [° L Ac(v)(p + P2)° 9u(B, F, O, ) BR*
ei=(p—p1+0k)+iy(p2—p)

Sg= € [defdy[dz] 2_m2+,c S 73— (p1 + p2)"(q + p)" (P + )7 Ao (2)
(x,y)ew(m—m)+w(p g9)+iz(g—7)
= & [de [dy[dz [ pter [ gt [ 5 17 dBA(2)(p + )7 (1 + p2)"
(g +p)[9.(B,k 31:,!/)’6,;6“”" + (z & y, p o v)]ePrptivie-a)+iz(e-p)
= ¢ [dyfdz] p2— m2+ze J q2—332+i5 —k2 floo LA (2)(p+ @)% (p1 + p2)*
(¢+ p)* e P, (8, k, Ok, y)(p1 — P2)u6(p2 — p1 + Bk)e¥?—9)
+(q ¢ p1, p & pa, p & V)]
= [ dy[d: [ gt | gt [ e I B Aa(2)(p + ) e
90 (B, k, 0, y){(p? — P3)(q + p)*6(p2 — p1 + )P+
[(¢* —m?) — (p2 - mz)](pl + p2)*8(p — q + Bk)e¥z—m)}
YAy [de [ g [ [ L A(2)0u(B, b, Ok y) (1 + p) D)
[(2p + BE) eP* — (2p — Bk)7 %]

g = 263fd“’fdyf‘27nm(l’1 + p2)* A (y) G, (z, y)ei=PrP)
= 2¢°[dz[dy [ pz_mz+,e(191 + p2)* A"(y)
[a Fr(2,y) + 0, fou(z, y)]e=F2—7)
= 26 [de [dy [ 7=tz (9} — P3)A*(v) fuula,9)

™

Observe that
§'=81+-+85=0.
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G.1.2 Coordinate Space

Notations: Directed derivatives 5;, 5;, é_m g and O do not act on photon
propagators (fiu(z,y) and fo,(z,y)). Surface terms will be discarded. Indices p,
v and o in derivatives are attached to variables z, y and z respectively: 0, = 9.,
0, = Op and 0, = 0,c. @ = QF + Q' for any quantities @ and @QF in the Fock-
Schwinger gauge and Feynman gauge respectively.

1. Truncated Diagrams

Meson self-energy (Figures 5.30-5.31)

—e?%(z,y) = [0 Sa(z —y) & 1., (,y)
= [ 8" Sa(z —y) & 10ufuu + 0 fau(z, )]
= —{[0, - T]Sa(z - y) & }ful(e,y)
—{- 9 Sp(z — )[T, — T} aulz, ).

—e7 284 (z,y) = ¢*[-6(z - y)1G).(x,y)
= ¢"[-8(z — y)|[0ufrv(2,y) + O, fou(z,y)]
= —g"[ 0" 6(z —y) - +- (Bub(z — )1 fuulz,)
—g" (8" 8(z — ) - + - 6(z — ) & 1faulz,y)
= —g{[- 0" 8(z - y))fulz,y) - [-(6(2 — ¥) 8) 1 fru(,p)}
— " {~[(8" 6(z — 9)) 1 faulo,y) + [b(z — y) & 1fuu(e, )}
= [ 0" 8(z — y)1faule,y) - [6(c — y) & 1 fuu(z,y).

¥(z,y) = Zi(z,y) + Zi(z,y)
= (T — I5,)Sa(z — y) 8 Jfule,y)+
e 9" Sp(z — y)(T, — &) faule, y)+
[8(z — ) & 1fiulz,y) = [ 0" 6(z — y) 1 faule, ).
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Vertex corrections (Figures 5.32-5.40)

i€~ (z,y,2) = [ 0% Sp(z — 2) & Sp(z—y) & Gl (,y)
= [ 9" Sa(z —2) & Sp(z—y) & NOufiu(2,y) + o foul(z,y)]
= —[(T. - %)Ss(z — 2) & Sa(z—y) & 1fulz,)
—[- 9" S(z — 2) & Sa(z — y)(Ty — &)1 faulz, ).

ieT; (2,9,2) = [ 6 Sz — 2) & Sp(z —y) & |Gl (3, 2)
= [ 8 Sp( - 2) & [Sa(z = ) & Bufiole, )+
Sa(z =) 8 -Ou faulz, )}
This form actually has the same form as j(z, y) because the above expression can
be obtained from ¥j(z,y) by changing
& b
Sp(z —y) — Sp(z — 2)
file,y) = Salz—9) & fiala,2)
faul,y) = Salz=1) & faula, 2)

Thus by making these replacements into Xj(z,y) one has the final form of I

i} (2,9,2) = —[(T, - &5,)Sp(z — 2) & Sp(z —y) & 1fuo(, 2)+
[- 3 Sp(z — 2)(F, — 0,)Sp(z —y) & 1 fau(z, 2).

From the diagrams we can see that I'; can be deduced from I} by hermitean
conjugation (to change the direction of boson lines) and then by transforming

(z,1) & (y,v). We have

Ad

ie=3TY (¢,9,2) = [ 0* Sp(z —2) & Su(z —y) & 1G%,(2,)
= —[ 8 Sp(z—2
- Y Sp(z — 2

o° SB(Z - y)(ﬁy - ﬁy)']f%(zay)’*‘
(T; — 0.)Ss(z — y) 8 -] fu(z, ).

—
—

)
)
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ie™Ty (2,9,2) = g% [6(z — 2)SB(z —y) & |Gl (2, 2)
= g [-6(z — 2)S8(z — y) & 1[Bufio(z, 2) + By fou(z, 2)]
= —g*[(0" §(z — 2))Sp(z — y) & +
. 5" 8(z — 2)S8(z — y) & 1 fue(3, 2)
~g#[(8(z — 2) °)S(z — y) & +
b(z — 2) & Sa(z —y) & 1faul(s, 2)
= g‘“’[-(a_;‘ §(z — 2))Sp(z — y) & 1fao(z, 2)
—gh[6(x — 2) & Sn(z—y) & | fua(z,2)
+g"[6(z — 2) 87 Sn(z — ) & | fu(z:2)
—gh [ 8 8(z — 2)S5(z — y) & 1 fau(, 2)
= [(8" 6z — 2))Sn(z — 4) & 1fauls, 2)
—[-6(z — 2) & Sz — y) & 1fuo(a, 2).
The process used in deriving I'y from I'y may be applied to obtain I'y from I%.

Therefore, from I"}, we get

i€ (2,y,2) = ¢"°[ 9 Sp(z — 2)6(z — ¥)1G" (2, )
= —[-(0" S(z — 2))b(z — y) 0" ‘) fr(z,9)
+[- & Sp(z — 2) 8° 6(z — y)-) fau(2, y)-

1 ©

QD

ie=Ty (2,4,2) = 29"’ 9" Sp(z — 2)8(z — 1)1GL, (2, 2)
= 2 O Sp(z — 2)6(z — y)][0uf10(2, 2) + O fau(z, 2)]
= —2¢{[T, — (5,]S8(z — 2)8(z — y)} fuo (2, 2)
~2g"[- 9" Sp(z — 2)(° + 8)6(z — y)| faulz, ).

I, follows immediately from Iy

Lmd

ie—ar‘l;‘(a” Y, z) = 29" [6(37 - Z)SB(Z - y) 0” ']G:w(z’ y)
= —2¢*°[-6(z - 2)SB(z — y)(ﬁy - ﬁy)']f%(z, y)
20 [6( — ) + 5)Sa(z ~ 1) & 1fuulz9).
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ie= Ty (2,y,2) = [ 9 1G.,(,9)[(8*Sb(y — 2)) & Sa(z — y)—
Sp(y — 2)) & 8*Sp(z — y)]
= [ 0" 10ufu(e,y) + 8 faulz, )] x
(8*S(y — 2)) & S8(z — y) — Sa(y — 2)) & 8Sp(z —y)]
= [(F: +m?) — (Tz +m?)-] fr (e, y) %
(8Ss(y — 2)) & Sa(z —y) — Saly — 2)) & 8*Sp(z — y)]
—[-&* W((T, +m?)Sa(y — 2)] & Sa(z —y)—
Sa(y — 2)) & [(T, +m?)Ss(z — y)]} feu(=, ¥)
= [(3, — ©) ) fule,y)x
(8*S(y - 2)) & Ss(z — y) — Saly — 2)) & 8“Sp(z - y)).

ie=Ty (z,9,2) = 2 0 |G, (2,9)g"" Saly — 2)(y — )
= 2[- 0" 1Sy - 2)6(y — 2)g"[0ufrn(®,y) + B fau(z, )]
= 2[(0; — 0;)|Ss(y — 2)8(y — 2)g*° fr(z,y)+
[ 8 1S5y — 2)8(y — 2)9"°8, fau(z, y)-

2. On-shell Diagrams

Meson-meson scattering (Born term) (Figure 5.41)

§'= ie? [ dz [ dysl(z) B $(z)81(v) B ¢(v)GC" (. )

ie? [ dz [ dydT(z) 8 $(z)81(v) & B(v)[Bufru(ry) + By fru(z, ¥)]

~2ie? [ dz [ dy{¢1(2)0*6(2)8T (v)I(T, +m?) — (T, +m2)]¢(1)} foulz, )
0.

IE
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Meson self-energy (Figures 5.42-5.43)

Si= [dz [yl ()i (z,9)4(y)
= —¢?[dz [ dy{~¢!(2) 0" Ss(z ~ y)(T, — G,)$(y) faulz, ¥)+
—41(2)(T, - T)Ss(z — y) 7 $(y) fuulz,v)}
™ e[ dz [ dy{—¢}(z) 0 6(z — v)é(v) faulz, y)+
81 ()é(z —v) & $() fuu(z,9)}-

Sy= [de [ dysl(z)Th(=,v)d(y)
= —e[dz [ dy{sl(z) 0" 8(z — y)$(¥) foulz,y)
—61(2)8(z — y) & $(y) fru(z,)}-

S'= S +8..

Vertex corrections (Figures 5.44-5.52)

Sy = [de[dy[dz¢!(2)Ty (2,9,2)8(y)As(2)
= —iefdz [dy [dzA,(z)
{+[~¢1(2)(T — &.)S5(z — ) 0 Ss(z — ) & $(¥)Ifiulz,y)
—[#t(z) 8 S5(z — 2) 8 Sa(z - y)(T, — G,)é(y)]faulz, v)}
—i¢® [ dz [ dy  dz A, (2){[#}(2)6(c — 2) & Sa(z —y) & $(¥)]fuula,y)
~[61(2) 3" Sp(z — 2) & 8(= — ¥)d(y)] faule, )}

IF:

Sy = [defdy[dz¢!(2)T5 (2,y,2)$(y)Aly)
= —ie®fdz [dy [dzA,(y)
{~[61(2) 0" Sp(z — 2)[(T. +m?) - (T, +m?)|Sp(z — y) & $(v))fau(z,2)
—[61(T. — 0,)S8(z — 2) & Sp(z—y) & $(v)]fro(z,2)}
W _ic? [ do [ dy [ dzA,(y){[#}(c) 0 Sa(e — 2)6(z — y) & $(y))fauls, 2)
—[61(2) 8" 8(z — 2)SB(z — y) & $(y)) foulz, )
+[¢16(z — 2) 87 Su(z — y) & $(¥)]fio(z, )}
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1E

[ dz [ dy  dzT (2)T5 (2, y, 2)$(y) Au(z)

—ied fdz [dy [ dzA,(z)

{~[$1(2) 8" S8(z — 2)[(T. +m?) (&, +m?)]Sp(z —y) & $(¥)]fuu(z,y)
(¢l () 8 Sa(z — 2) & Sa(z —¥)(T, — G,)$(¥))f2o(z,9)

—ic® [ dz [ dy [ dzA,(e){~[¢1(2) 8" 6(z - 2)S5(z —v) & $(¥)]frulz,9)
—[¢1(2) 0" Sp(z - 2) & 6(z — 9)é(y)| faslz,Y)

+[#1(2) 8" S(z — 2)8(z —y) & S fuulz¥)}-

[ dz [ dy [ dz¢1 ()T (z,y, 2)$(3) Au(y)
—ie® [ dz [ dy [ dzA, (y){[#1(z) 8" 8(z — 2))SB(z ~ y) & $(¥)]fau(z, 2)
—[¢1(2)8(c — ) 8° Sa(z —y) & $(¥)]fio(z,2)}-

[de [ dy [ dz¢1 (2)T% (z,y,2)$(y) Au(z)
—ie® [dz [ dy [ dzA,(z){~[#1 () 0" Sa(z — 2))8(z —y) & $(¥)]fiu(2,Y)
+[67(z) 8 Sa(z — 2) 8 6(2 — ¥)$(¥)] fau(2,y)}-

[ dz [ dy [ dz¢1 (2)Tq (2,9, 2)$(y) Au(y)

—ie® fdz [dy [ dzA,(y)

{~2¢"°¢1(2)(T: — %) 8(z — 2)8(2 — 4)8(y) fro(z, 2)+
~2g"[$1(2) 0" S(z — 2)(8” + 8)6(= — 1)é(y)] fau(z, 2)}

—ie® [ da [ dy [ dzA,(y){29"° ¢! (2)8(z — 2)8(z — 4)$(y) fuo (z, 2)+
~2g"[$1(2) O S(z — 2)(&" + 87)6(= — 1)$(y)| fau(z, 2)}-

[ dz { dy [ dzg (z)T7 (2,9, 2)$(y) Au(z)

—ie® fdz [dy [ dzA (=)

{20 ¢1(2)6(z — 2)Sa(2 — y)(T, — 5,)é(y) fao(2,¥)
—2g2[$}(2)8(z — 2)(0" + 0°)S(z — y) & $(y)fuulz,v))

—ic® [ dz [ dy f dzA,(2){ 29" $1 (2)8(z ~ 2)8(z - ¥)$(y) fao (2, ¥)
~2g"7[$1(2)8(z — 2)(8 + 8)Sn(z —y) & B(y)fiulz:¥)}.
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Si= [dz[dy[dz¢{(z)T5 (2,9,2)$(y)As(2)
0.

(E

St= [dz[dy[dzgi(2)Ts (z,9,2)d(y)A.(2)

= 0.

Adding S!, 8- -- S,
S'= S +85+84+S,+ 5+ S5+ 5+ S+ S
T e [dz[dy[dz
{~[8(2) 8 Sp(z — 2) & 6(z — y)$(¥)] faul,¥) Ao (2)

+gt (2)6(z — 2) & Sa(z —y) & $(¥)|fiul2,9)As(2)

+(81(2) 0 Sa(z — 2)6(z — y) & $(¥)] faul(z, 2) Au ()

(67 (2) 0" 8(z — 2)S5(z — y) & $()]frulz,¥)Au(2)
~2[¢1(2) 0 Sa(z — 2)(9" + 0°)8(z — ¥)$(¥)] faul®, 2) Ao (9)
~2[¢t(2)8(c — 2)(8” + 8°)Sa(z — ) & B(¥)1fuu(z,9)As(2)}.

The last two terms can be written as (neglecting surface terms)

2(¢1 () 0" Sa(z — 2)(0° + 89)8(= — ¥)$(¥)] faul®, 2) Ao ()
= 2[¢1(2) 3" Sp(z — 2) & 6(z — ¥)$(y)] faul,¥) A(2)
—2[¢1 () 0" Sp(z — 2)8(z — y) 3" ()] faulz, 2)Au(y)
= —[#t(2) 9 Sa(z — 2) & 6(z — y)$ () fau(z, ¥) Ao ()
+[81(2) 8 Sp(z — 2)8(2 — y) & $(¥)fau(e, 2) Au(y)

261 (2)8(z — 2)(8° + 87)Sn(z — ¥) & B(¥)]fun(2,¥) Al (z)
= —[¢1(z) 3" 8(z — 2)Sa(z — y) & $(¥)] (7, ¥)Au(z)
+[61(2)8(z — 2) 8 Sa(z —y) & ()| fuu(2,9)As(2).

Thus we get
S'=8+---+5=0.
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G.2 Spinor Quantum Electrodynamics

G.2.1 Momentum Space

The calculations here are very similar to the previous ones. Therefore it is

sufficient to show their initial and final expressions.

Electron-electron scattering (Born term) (Figure 5.1)

§'= —ieu(p2)y*u(ps)a(q:)7"u(q) [ dz [ dyG, (z,y)erepr+ivla=a)
= ie? [{° % [ 25 [ dyg.(B,k, Ok, y)
{T(p:)(Ha— #1)u(p1)u(g2)7*u(q1)6(p2 — pr + BR)eo2—n)
+3(p2 )y u(p1)u(q2)(fo— ¢1)u(q1)6(q2 — g1 + Bk)e™¥iPz—r1)}

Electron self-energy (Figure 5.2)

§'= € [dpu(p)v*(F —m +ie) 'y u(p) [ de [ dyet=Pr-P¥ile-r)@ (g, y)
= & [°dB [ Z [ dpu(po)y"($— m+ie) My u(py) [ do [ dy
eiepr=p)tle-rg (B, k, Ok, y) k. + (n & v, T & )]
= e [° L [ [dy[dpg.(B,k, O Y)
[@(p2)(P— #2) (B — m + ie) " vPu(p1)é(p2 — p + Bk)e¥ =P
+u(p2)y*(# — m +ie) (h1— Pu(p1)é(p — p1 + Bk)e¥(P)]

Vertex corrections (Figures 5.3-5.6)

Si= ¢ fdpfdafda[dyfda(pyy"(§—m+ie) Ay)(d—m+ie)Ix
,-yuu(pl)eix(pz-p)+iy(p—q)+iz(q—p1 )GL (z,2)
= [°dp [ S [dp[dq[dz [dy[dzmp)y*(F—m+ie)™ Aly)x
(d—m+ ie)—l,yvu(pl)eix(pz—p)+iy(p—q)+iz(q—p1) %

[gV(:B, k’ ak, z)k“eiﬂk:c -+ (ﬂ VU, T Z)]
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ms

Sy =

Sy =

e [° L [ 2 [dp[dqfdy[dzg.(B,k, bk Z)"(Pz)

[(Z— 22)(F—m +ie)™ A(y)(d—m + i)~y
6(ps—p+ ﬂk)el‘y(p—q)ﬁz’(q—m?

+7 (B —m+ie)™ Ay)(d—m+ie)7 (A~ o)
6(q — p1 + Bk)e¥r-a+iz(p2-2) ]y (p; )

e [° %L [ [dp [ dy [ dzg.(B,k, Ok, 2)u(p2) X

[A(y)(ﬁ —-—m+ ze) 7uety(pz—p+ﬁk)+tz(p p1)

(B —m+ie)™t Ay)e iRt -Ry(p, ).

e [dp [dq [ dz [ dy [ dzu(p:) A(y)(d —m +ie)'y*(f — m +ie) " x

7vu(p1)eir-(q—p)+iy(p2—q)+i2(p—p1)GI (z,2)
& [ df [ 2 [dp [ dg [ da [ dy [ dza(ps) A(y)(d—m +ie) Iy

(§ — m + i€) "1y u(p, )e™2a—PIHiv(pa—a)+iz(p—p1) ¢

[yu(ﬂ, k, Ok, 2)kue™ + (4 v, ¢ © 2)]

L [ 2 [dp[dqfdy[dzg,(8,k, 0k 2)T(p2) Aly)X
e ¥(p2—9)+iz(g—p1 +Bk) y
{(d—=m+ie)7[(d—m) - (- m)|(F—m +ie)7v"é(¢ — p + BE)
+(f — m+ie) v (§ - m +ie) 7 (F— $1)8(p — pr + BF)}u(p1)

L [ [dpfdy [ dzg.(B,k, 0k, 2)T(p2) Aly)(P—m +ie) " x
~#u(py ) e ¥(p2—p+Bk)+iz(p—p1)

e [dp [ dq [dz [ dy [ dza(p:)y*($—m +ie) 'y ( — m +ie) ™ x
A(y)u(pl)eiz(pz-P)Hy(q—m)+iz(p—q)G’ (z,2)
& [°dB [ 25 [dp [ dq [ dz [ dy [ dzu(p:)y*(F— m+ie) "y
(f —m +ie)™ Ay)u(p)e™=re-p)Hivla—rltizlo=a)
[gu(ﬂ, k, O, 2)kueP* + (4 & v, T & 2)]
2L [ 2 [dpfdqfdy[dzu(p)y"(§—m+ie) "y
(d —m +ie)™ A(y)u(pr)e@ ) x
[9.(B, &, Ok, 2)(p — P2)ub(pz — p + Bk)e=pathk
+(g & v, p & —p, ¢ & —p2)]
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ik f 2k [dp[dq [ dy [ dzg.(B,k, Ok, 2)u(ps)e¥a—P1)+iz(p2—a+BE)
{(15— zfz)(zf —m+ie) 1y (f — m + ie)"16(p2

—(F—m+ie)[(F—m)— ({—m)l(d —m +ie)76(p— ¢ + Bk)}
A(y)u(m)

—p+ Bk)

& fr2 8 [ 3 [ dp [ dy [ dzgu(B, k, O, 2)B(p)y" (B —m +i€) " x
A(y)u(pl)e'y(” p1+0k)+iz(p2—p)

Sy= € [dp[dq[dz [dy[dzu(p:)y u(p)Tr(d —m +ie)™ y"x
(g—m + z'e)-l A( z)eir(m—m)+iy(P—q)+iZ(q—p) G’ Jz,y)
= e [°df [ 2 [dp[dq[dy[deg,(B,k, 0, y)e P x
{@(p2) (A~ Fo)u(p)Tr(d —m +ie) " (— m + i)™
&(p2 — p1 + Bk)e=0)
+a(p2)y u(p1)Tr(d — m +ie) 7' [(f — m) — (B —m)|(—m + i)™
§(p— g + BE)e¥ (PP} A(2)
= 0.

Hence

S'= Si4-.-+85,Z0.
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G.2.2 Coordinate Space

The same notations as in scalar electrodynamics apply.

1. Truncated Diagrams

Electron self-energy (Figure 5.7)

6_22,(1",?1) = ['7“SF($ - y)’y"-]G:w(:L',y)

= [+*Sr(z — Yy )[0ufrv(z,y) + B0 fau(z, y)]
= —[(fs + 2:)Sr(z — y)7* 1 fru(z,y)
—[v*Sr(z — y) By + By)] faulz, ).

Vertex corrections (Figures 5.8-5.11)

—ie_zl“'la(:z:, Y,2) =

—ie‘zF';(z, Y,z) =

—ie" Ty (z,y,2) =

[7*Sp(z — 2)7° SF(z —y"" |G, (2,y)

[-v*Sr(z — 2)v° Sr(z — y)v" {Oufru(2,y) + 0. fou(z, y)]

—[(#= + 8:)Sr(z — 2)7°Sr(z — ¥ )1 fuul@,v)

—[4*Sk(e — 27 Se(z = ¥)(Py + B}l foulz,y)-

[-7*SF(z — 2)7° SF(z — y)7v"]G,,. (2, 2)

[44Sk(2 — 2)7°Se(z = )7 B fio(2, 2) + 0o fou(a, 2)]

—[(7= + :)Sr(z — 2)7"Sr(z — )7 1 fiul=, 2)

—{1#Sp(z — 2)[(#: —im) + (P: +im)|Sp(z —y)7*}
fau(z, 2)

—[(#: + 8:)Sr(z — 2)7*Sr(z — )" 1 fiulz, 2)

—i{-7*[8(z — z) — 6(z — ¥)ISFr(z — y)7*"} fau(, 2).

[v*Sr(z — 2)7° SF(2 — y )" 1G,.(2,y)

—{1#Sr(z — 2)[(#. —im) + (: +im)]Sr(z — y)7"")
fu(z,9)

—[7#Sp(z — 2)1°SE(z — 9)( By + By)1fae(2:y)

—i{-y*[8(z — 2) — 8(z — y)|SF(z — y)7* -} fru(2,y)

—[1#Sr( — 237" Sr(z = 9)( By + B) 1 fao(2,9)-
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—ie~Ty (z,9,2) = [7*TrSr(z — y)v*Sr(y — 2)7°-1G,.(, v)
= —[(#: + Bo)TxSr(z — )1 Sr(y — )71 fu(z,y)
~{-/*TxSp(z — y)(P, —im) + (B, +im)]Se(y — 2)7°-}
Jau(z,v)
= ~[(f: + ) TxSe(z — y)1*Se(y — 27" fuu(z, ).

2. On-shell Diagrams

Electron-electron scattering (Born term) (Figure 5.12)

S'= —ie® [dz [ dyp(z)y*(z)d(y)r" ¥ (y)G,.(2,y)
= —ie? [dz [ dyP(z)y*(z)b(y)7" b (¥)0ufiv(z,y) + B0 fau(z, y)]
= i [ da [ dy { (F@(Be —im) + (e +im)]9(2)) Bv) /(2,00 ()
+ 8(@) falo,9)b (@) (BW)(B, —im) + (B, +im)lp(v) ) |

I

0.

Electron self-energy (Figure 5.13)

S'= fdz [dyp(z)E(z,y)¥(y)
= —¢* [de J dy{[H(e)(Ps + §2)SF(z — y)r*d ()] frule,y)
+[B(@)1*Sp(@ — v)(By + o)) faul, )}
T —e? [ dz [ dy{[if(z)( Pz +im)Sr(z — y)r*(y)] frule, )
+[B(2)r*Sr(z — y)(By —im)b ()] faul,9)}
= ie* [ dz [ dy{P(2)8(z — y)1*d(y) fuu(e,v)
—h(2)y6(x — ) (y) faulz, ¥)}
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Vertex corrections (Figures 5.14-5.17)

S =

f3

Adding S --

—ie {dz  dy [ de(@)TY (,y, 2) Ae(2)$(®)
—e3 [dx [dy [ dzA,(2)
{[B(2)(#: + §.)Sr(z — 277 Sr(z — Y17 ()] frul, )
+HB(@)1*Se(2 — )77 Sp(z = y)(Fy + D)o ()] faulz,9)}
ie® [ dz [ dy [ dz{3(2)8(z — z) A(2)Sr(z —y) fi(z,¥)¥(y)
—B(z) fo(z,9)Sr(z — 2) A(2)8(z ~ y)w(y)}

—ie [ dz [ dy [ d=(@)T (2., 2) A(y)b(y)
—¢® [ dz [ dy [ dzA.(y)
[B(@)(Pe + P2)Sr(z — 2)7*Sr(z = )7 b)) fuule, 2)
+i{p(z)y*[6(z — z) — 8(z — y)]Sr(z — y)v* ¥ (¥)} fau(z, 2)}
ie® [ dz [ dy [ dz¢(z) fa(z,2)6(z — y)Sr(z —y) A(y)¥(y)

—ie fde [ dy [ d=(@)Ts (2, ¥, 2) Au(z)(y)
—e® [dz [dy [dzA,(z)
i{[B(2)7*[8(z — 2) — 6(z — 9)ISr(z — ¥)7 D) finlz, )
+[B(@)Sr(z — 27 Sk(z = 9)(By + Doyb()]faol(z,9)}
~ie® [ dz [ dy [ dz(z) A(2)(z — 2)Sr(z — ) filz,9)b(y).

—ie [ dz [ dy [ dz(2)T (2,9, 2) As(2)h(a)
—& [ de f dy [ d=(z)(Pe + §o)TeSr(z — y) filz,y)x
Sr(y - 2) Al)$()

'
'S4a

S'=8+8,+ 55+ 5,20,
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G.3 Quantum Chromodynamics

Calculations on quark-quark scattering and quark self-energy are similar to those
on electron-electron scattering and electron self-energy previously done. Here we
will only carry out gluon self-energy diagrams and the first order correction of
the quark-gluon vertex. The first order corrections of the three-gluon and four-
gluon vertices contain up to three and four gluon propagators and thus are very
complicated. We do not consider such vertices in this thesis. As a starting point

general notations presented below need to be introduced.

G.3.1 General Notations

In order to shorten some mathematical expressions in quark-gluon (and gluon-
gluon) vertices some notations are needed. ( Directed derivatives are still assumed
not to act on f{’f: and f;ﬁ) We define 9(*)* = fc‘(a) as an operator 9% that only acts
on functions that contain index a. As an example we may write, for any functions

Feb(z), G%(z) and H%(z),

HMFH(z)G¥(2) Hi(z) = F*¥a)GH(a) B(a)0" = Fo4(x)o G () H¥(a)
= F@)C (@) HY() = [P (=)0 () H (@)

Thus 8{*)* can be placed around functions F, G and H just like a number. We
also define §(¢+)# = ge)» 4 §()s, By this notation we can write §(+9)x FabGhe fd
instead of 8@+ FebGte He 4 9k FabGhe e or [0 Feb|Gb HP 4 F**G*[0* H?]. Notice
that superscripts (e) in 8(®)* and @ in F° signify different things. Unlike indices a
there is no summation over repeated indices (a). Thus it is understood, for

example, that O0©) = 6(“)“3‘(‘“). Other notations:

Ve (0:) = Vieedoi(a,)
= g7[00) — A +g°010 — A" + g™ [0l — e

VZha@:) = V2l .82
. __[2gaaa£e)ﬁ _ gaﬁage)a - gﬁaage)a]

+[29°° 90> — g7l — g*P o]
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Ozaﬁ = D:z:gaﬂ - axaaa:ﬂ
0y = OPgeg — 805,

These identities follow immediately,
V) = V04 (9:)

Viany (0:) = Vi (9:) = Vigin (02)
aaﬁ (a )a(e) — O£e+d)aﬁ _ Ogd)aﬂ

—6,d)
‘:.afd) (a ) _[O£e+d)aa _ O:(De)aa]

BRI = V(B e
+0(surface terms)

OzaocG?P(z,y) = 686°(z — y) — x,(02)71026%(z — y).

The last identity is derived from identities
/ dyGoX" (z,y)GPFO(t, 2) = 606°(z — z)

in the FS gauge. Notice that here O,4,6%(z — y) = G2 (z, ).

G.3.2 Truncated Diagrams

The first four diagrams below are similar to those in spinor quantum electrody-
namics. Therefore we can carry over the previous results to this case. The Feynman
gauge propagator G%,,(z,y)-terms in those diagrams will be included. (F) will
stand for the corresponding diagrams that we are discussing but in the Feynman
gauge. Sgjr(z —y) = 6;:Sr(z — y) is a quark propagator.Indices 7 and n will refer

to external quark fields (I'y, - - - I's refer to Figures 5.57,-- - 5.61).

—ig (2, y,2) = [Y*(T*)i;Seie(z — 2)7° (T)uSqim(z — )7 (T ma] X
G% (z,y)
— (F) + (TaTch + ibedTaTd),'n
{~[(Pe + B)Sr(z — 2)7°Sp(z — y) [4(z,9)]
[ £34(=,4)Sr(z — 27 Sr(z — ¥)(Dy + B) 1}
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—ig g (2, y,2) =  [*(T?)iSqir(z — 2)7° (TP uSqim (2 — )7 (T%)mn] X
Gf};(m, 2)
= (F)+(T°T*T°)n
{~[(P= + P2)Sr(z — 2) fi(z,2)Sr(z — y)7*
—i[- f3%(z,2)[8(z — 2) — 6(y — 2)]SF(z — y)1*]}.

—ig 5 (2, 9,2) = [7*(T°)i;Sqir(x — 2)7° (T Sqim(z — ¥)7" (T*)mn-] ¥
G2 (z,y)
= (F)+ (TaTch)in
{—i[-4*[6(z — 2) — 8(z — ¥)]Sk(x — y) fi*(z,)]
~[4#Sp(z — 2) f$4(2,4)Sr(z ~ 9)( By + B)}-

—ig T (2,y,2) = [Y*](T*)inGii (2, y)
Tr[Soix(z — ¥)7" (T)uiSqim(y — 2)7°(T)m;]
= (F)— 3"(T)nl-(% + 7))
TrSr(z —y) ff°(z,y)Sr(y — 2)7°).

—ig TG, (z,y,2) = [tV EedoeB(§ ) .4*(T*);,Sou(z — y)7v"1(T*)m
G (2,2)GE (2,y)
= e TOTY), Ve (9,) [y Sr(e — y )y ]
[G%,0(2, 2) + 89 f2<(w, 2) + B fie(, 2)] X
(Ghs, (2,) + 08 FiB(2,y) + 0P f34(2, )]
= fed(ToT?)i V-eDB(3,)[-*Sr(z — y)y"]
[GF,a(z, 2)GH, (2, 9)+
O fi(z, 2) + 0 f55 (2, 2)) Ga, (2, Y)
+Gos (2,2)(8%9 (2, y) + 00 fb(2,v))]
= (F)+ AZ(z,y,2) + BZ(z,y, 2)
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with
AZ(z,y, z) = fced(TaTb)inV(—'e'd)aaﬁ(62)['7“SF(‘” - y)')'y'] X

[0 fee(z, 2) + B9 fae(x, 2)]GEs, (2, y)
B (z,y,2) = [ (TT?)inV e DoP(8,)[-4*Sp(z — y)v" ] X
[0 F(2,y) + OY) fib(2,9))| G2, 2).

Now

AZ(z,y,2) = feUTT*)inGHs,(2,9)
{[VedeeB(5,)00N] fee(z,z)Sk(z — y)7*]
—VedoaB ()7, + ) Se(z — y)m 1 feE(z, 2))
— fced(T“Tb)inG#g,,(Z,y)
{[0@+978 — 0P fo(z,2)Sp(z — y)v""]
—V (DB (3B, + Ba)Sr(z — y)v" ) f(z, 2)}
= feTT*)inGE,, (2,y)
{O@+9°P- f2(z,2)Sp(z — y)v"]
— Ve DoB(Q) (B + Bo)Sr(z — y)7*1fis(e, 2)}
— T Tl G, (2,y) — 85" Fib(z,9) — B F3h (2, 9))
OWBL. fo(z,2)Sp(z — y)r*]
= feUTT)in{ OFIPGR, (2,9) f3%(z,2)SF(z — y)7”]
—Vioedod(8,) fox(z, 2) G, (2, 9)[ (P + Po)Sr(z — y)v*]
—OWP (2, ) f25(z,2)Sr(z — y)( By + By)]
[ f5%(2,2)Sr(z — y)r-1[6; — 2°(02)0D)6%(2 — y)}

B (z,y,2) = foHT°T)inV DB (0,)[-4*Sp(z — y)y"-] X
[0 £2(2,y) + 02 fib(,9))Gos (=, 2)
= [T T in{ (VoD (8,)00 [ Sp(z — y) £(2,y)]x
G (z,2)
—VedaB () g Sp(z — y)( By + By)]x
8(z,9)G2(z, 2)}
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_ fced(TaTb)in{__Oge'*'d)"a[-"y”‘SF(:l) —y) f&(z, y)-]GZE(-’L‘, z)
+[7#Sr(z — y) fi*(z,y)]x
(67 — 2°(82) 7106 (z - 2)
—V(=ed)oab(§ N[44 Sp(z — y)(?ﬁ_y + é;,)-]x
Fip(z,¥)Goa(=, 2)}-

Collecting terms we get

—ig™ T, (z,y,2) = (F)+ f(TT?) O+ x
{GEs.(z,9) f35(z,2)SF(z — y)v*"]
~[v*Sr(z — y) fP(2,9)]G%(x, 2)}
__fced(TaTb)mv(—-,e,d)aaﬁ(az) %
{f22(2,2)G8s,(2,9)[(Pe + Pe)Srlz — y)v"]
+ 135 (2, y)Gos(z, 2) [ Sr(z — y)( Py + Py)]}
_fced(TaTb)inogd)aﬁféig(z’ y) %
[ £25(z,2)Sr(z —v)( By + B,)]
+f°ed(T°T"),~n[6Z — zv(az)—lagg] X
{[- f2%=,2)Sr(z — y)¥y*]16%(z — y)
+[v#Sr(z — y) (2, ¥)-)6%(z — z)}.

Also (see Figure 5.62)

gIP (z,y) = LfeceVeoaued(g,) fordy Bt dvée (5 )G (2, y)G5h(z, )
— %facefbfdv(—,c,e);.l,p/\(az)v(—,f,d)uea(ay)
{Ge2 (z,9)[09 £ (z,v) + 8D 5 (z, )]
+[0%9) iz, y) + 0D £52(=, ¥)]Gho(, v)
+G,, (2,9)Gho(z,9)}
= (F)+3fee 12 {0y [V (3,) (G (e, v) f3 (2,9)
= G, (2,9)f(z,y)) + OO fi(z, ) f5{ (2, v)]
+0e [~V 5D (8,) (G (2, ) f] (=, y)
= GHu(2,9)f(=,y)) + O f52(z, ) fi1 (2, y)]

158



+y VO Q,) [ £ (2, y) ((By) 05D65%(z — v))
— f2(=,y) ((0y) 86 (= — )]

+H VI8, [fi2(2,9) ((92) 056 (= ~ v))
— fil(z,) ((92) 896 (z — y))]

—2V=e(8,) il (z,y)6%(z — )

2Vt Dn(,) e (a,4)8(z — y)

—2 000w £ (2,y) f5i(=,y) } -

The last term can be written as

O 0L £l (z,y) f5i(z, y)
= §46S[(0% fop(2,9)) (z = 9, 1 V)]
= §°6¢7 {(Oy9*° — 0202) [0 2,(9z) " 8(z ~ )

— 10718,,5%(02) %6(z — y)| (z = v, 4o v)}

= a#y*[(0z) 716 (z — y)][(0y) "¢/ (z — )]

—z#(0z) 716z — y)][0;10y6 (z — y)]

—y*[(0y) 6% (z — y)][O; 1046 (z — y)]

+[O;1948%%(z — y)][0; 3y 6 (= — )]

""" »y] in the Lorentz gauge.

The 040, -term is equivalent to the ghost diagram [z :

Further, the third term from the last of II3%*(z, y) can be written as

—VeX () 3] (2, 9)6%%(x — y)
— [(2guua£c))\ _ guz\a:gc)u _ g/\ua:gc)u) _ (29)\;131(:e)u _ g;wa:ge))\ _ guz\aa(:e)u)]
(2, 9)8%z — )
= [-2g"0D* + g20(Dk + P3| fH (2,9)6%z — y)
[—2g# 8 + g2 + g 0| fi{ (z,y)8%z — y)
[2g" 3 — g o — eIV o (2, y)b(z — y)
[—20*8("> + g 0™ + g9 £ (2,9)6°(z — ).

Therefore

— Ve, fol (z,9)6%z — y) + VEFDM() fi (2, y) 6%z — y)
= [2g#0" — g8k — PRIV fil (2, )6z — y).
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The final form of 115 (z, y) is

3" (z,y) = (F)+ (ghost)
+1gfoee o {0re [VEeomr(,) (G (2, ) f5 (2, y)
— G (2,9)f2(z,1)) + OO fd(z,9) 5] (2, v)]
+Ore [Vt (5,) (Ged (2, 9) f] (2, )
— G (2,9 fs(z,)) + 0P f5(2,) Fid (2,v)]
+y* [V (@,) (f3 (2, y)(By) 1008 (= — y)
— f5i(z,y)(0y) 1 0L6 (z — y))
+2((9y) 16 (z — y))B; 046z — y)
— z#((92)716%%(z — 4))(9y) 16 (z — y))
o VS0 () (fi2(,y)(92) 1096 (= — y)
— fil(z,9)(82)1096%(z — y))
+2((02)716°(x — )07 046 (z — y)
— y*((0z) 6%z — y))(By) 16 (z — y)]
+2 [2g# 0N — g8k — oD 3l (2, )8z — y) }

where (ghost) in TI3**"(z,y) equals
(ghost) = g*fo= f¥[O71028%(x — y)][05 0,6 (z — y)

= z"u'::‘... _._.-"y,u

The contribution of the four-gluon vertex is (see Figure 5.64)

03k, (z,y) = 39°Wineeb(z — y)G“%(z,y)
= 381 (GuoGvo — Guo9vo) + FF* (GuoGuo — GuwGoo
+1 f(GuuGpo — GupGuo) X
[GF (z,y) + 02f] (2,y) + 07 f3 (2, 9)]6°(z — y)
= (F)+ 30°1*= 19,20 + 9:20) — 29,0 + 9,20
+9,30) — 29,0157 (z,9)6"(= — v)
= (F)

+g2 £ f1~29,,0 + 9,0 + 92, 0D1 5 (2, 9)8% (= — ).

160



Summing,

e (z,y) = M3 (z,y) + 03" (2, )
= (F)+ (ghost)+
e POy Hig ™ (2, y) + O Hig " (y, 2)
+y  Hy " (2,y) + a* Hy*'" (y, )]

where

HE (5 y) = O fed(z,9) f (2, y)
+V (e (§,) (G (, y) (T, y) — G}f,\afgﬁ(x,y)]
HZI (g, y) = VoemoN@,)[ (2, y)(8y)~10,,6%(z — y)
—f53(z, y)(0y) 10yx6% (z — y)]
+2[(8y)~16% (z — y)]|D;1946%(z — y)
—a#((82)18(o ~ Y)[(3) 163 (2 — )]

The term (F) + (ghost) above is nothing but the gluon self-energy II3**(z,y) in
the Feynman gauge. From I1%***(z,y) we obtain (see Figure 5.65)

L& (z,y,2) = Tg.(2,9,2) + T&u(2,9,2)
= i[1%]G%(z, )1 (z,y)(T*)in
= (F)+ (ghost)
Fi[ ) (T2)inl0F f32 (2, ) + B2 f32 (2, 2) | I** ()
+3g2foce Py ) (T)in G (2, T) X
(022 HiZ# 1% (2, y) + 0% Hys (y, )
+y Hy ' (2, y) + a# Hy*/" (y, z)]
= (F)+ (ghost)+
+i[)(T*)in[0 Fi2(2, @) + 8L f32(2, 2)ME* (2, y)
+362 foo FI e [(T2)inGeo(2, ) X
[0y Hig" " (z,y) + O Hig* (y, z)
+y” Hy M (2, y) + 2# H " (y, )]
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= (F)+ (ghost)+
i) (T)in {Oucl £12(2, )T (2, )]
+8ul f32(2, D) I3 (2,4)] — £32(2, )0 lI5* (2, )}
+ig2foe Py )(T*)in G2 (2, 7) X
(02 Hi ¥ (z,y) + 0% Hip " (y, 2) + y* Hy*'*(z, ).

Since the inner vertex is represented by the z variable, the term
Bl f32 (2, 2)F*(2,9)]
is just a surface term that may be discarded. The term containing a factor
azuHaF?w(xa y)

vanishes because the gluon self-energy in the Feynman gauge is transverse. Thus

we get

Toin(z,y,2) = (F) + (ghost) + i[-v)(T*)inOacSfia(2, 2)1* (2, y)
+597 o fI e J(T#)in Gop (2, 2)
Oy Hig ¥ (z,y) + 0% Hig™* (y, 2) + y* B (2, ).

G.3.3 On-shell Diagrams

Vertex corrections (Figures 5.68-5.71)

S1= igfdz [dy [dzvp,(z)[5%,(2,y, 2)AS(2)¥n(y)
= (F)- gs(T“T"Tc + ifcde“Td),-n fdz [dy [dz
{~[F:(2)(P= + Bo)Sr(z — 2) A%2)SE(z —y) £, y)ta(y)]
~[Bi(2) £2(=,y)SF(z — 2) A2)Sr(z — )Py + By)ba(v)]}
ms (F) - z'ga(T“Tch + ifC"dT“T"),-nfdxfdyfdz
{[Bi(2)8(z — 2) A(2)Sr(z —y) [z, y)ba(y)]
—[Fi(a) 2=, y)Sr(z — 2) A2)8(z — y)ba(w)]}-
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= ig[dz [ dy [ dzip;(2)T5 (2, ¥, 2) AL (y)¥n(y)

(F) = g(T°T*T");o [ dz [ dy [ dz
{~[Bi(=)(: + :)Sr(z — 2) f£(2,2)SF(z — ¥) AW)Pa(¥)]
—~i[fi(z) [2(z,2)[6(x — 2) — 6(y — 2)]Sk(z — ¥) AW)ba(¥)]}
(F) = ig*(T*T*T*)in [ dz [ dy [ dz
Pi(x) f3%(z,2)6(y — 2)Sr(z — y) A(Y)¥n(y)-

= ig [dz [dy [ dzp(z)T5, (7, y, 2) AS(x)¥n(y)

(F) — ¢*(T°T*T®);r [ dz [ dy [ dz
{=i[fi(2) A(a)[6(z — 2) — 8(z — 9)ISr(z — y) F(z ¥ )¥uly)]
—[Bi(z) A=)Sr(z — 2) £52(2,9)Sr(z — y)( By + D))}
(F) +ig*(T°T*T%);, [ dz [ dy f dz
¥i(z) A%(z)8(z — 2)Sr(z —y) F2(2,9)¥a(y).

= ig [dz [dy [ dzp,(z)T,(,y, 2) AZ(2)Pn(y)

(F) + 1g%6%(T*)n f dz [ dy f d=

Bi(2)(Ps + Bo)ba(y)TeSr(z — y) fule,y)Sely — 2) A%(=)
(F) + 1°8%(T®)in [ da [ dy | dz

Bi(2)( Pz + Po)bu(y)TeSr(z — y) F(2,9)SF(y — 2) A%(2)
(F).

ig [ dz [ dy [ dztp,(2)TE, (2, y, 2) A5(2)$n(y)

(F) — g3 fe4(T°T*);y, [ dz [ dy [ dzAS(2)0+e)7B
{G%5.(2,9)i(2) £5°(2,2)Sr(z — y)1"%a(y)
—G55(z, 2)by(z )y Sr(z — y) F%(2,9)%n(y)
— f15(2, 2)Bu(2)(Pe + Pe)Sr(z — ) S 9)n(v)}
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+g fU(TT")in [ dz [ dy [ d2zAS(2)V (- D72B(8,)
{fe(, 2)GL(2,9)F:(2)( Pz + Po)Sr(z — y)7"%n(y)
— fes(y, 2)GL (2, 2)Bi(2)v Se (e — y)( By + Py)oa(y)
+£25(2, 2) f(2,9)8:(2) (B + B)Sr(@ — 9)( By + Buln())
+g° Fe(T°T®)in [ dz [ dy [ dzAZ(2)OD7P x
{F84(2,9)P:(2) f25(z, 2)Sp(e — 4)(By + Py)uly)
— 182, )B:(2) (B + Po)Sr(z —y) F2°(2,9)$a(y))
—g3feed(T°T?);, f dz [ dy [ dzAS(2)
{—¥i(z) f3°(z,2)Sr(z — ¥)1 Pn(y)6%(z — y)
+0i(z)7° Sr(e —y) fi%(29)¥a(y)67°(2 — y)}
+ g3 o< ToT) f d [ dy [ dzAZ(2) 2709
{4,(z) f24=,2)Sr(z — y)1*9n(y)(82) 6% (2 — y)
+9;(z)v*Sr(z — y) f2(z,y)¢n(y)(02)716%(z — z)}

T (F) = g*fUTT?)in [ d [ dy  dz{[05° AL (2)| A$*(z,y, 2)
+27 A3 (2) B**(z,y, 2)}

— g2 fe(TT®)iy, f dz [ dy [ dzAS(2)V(5eD72B(5,) x
{2ifi2(, 2)GE (2, y)u(2)8(z — y)7"Paly)
—i f32(2, 2) F38(2, ) Bi(2) (Be +im)8(z — y)(y))

+g3 fe4(T°T*);y, f dz [ dy [ dzAS(2)O(HP x
2i f55(2,y)bi(z) f35(2,2)8(z ~ y)¥a(y)

— @ foed(TT®);,, f dz [ dy [ dzAS(2)
{—%i(2) £55(z,2)Sr(z — y)1 ¥a(y)6%(2 — y)
+9:(2)7 Sr(z — y) £1°(2,9)¥n(y)8%(2 — 2)}
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T (F) — g3 fd(ToT"), [ da [ dy [ dzAS(2)V(—ed)oeB(§,) x

{2if3(, 2)G5 (2, y)bi(2)6(z — y) 7" ¥nly)
—i£35(2, 2) F3(2, )P 2)(Be +im)8(z — ¥)alv)}

+g3 (T T®)n, f dx [ dy [ dzAS(2)O0F x
2 f35(2,y)bi(2) f3°(z,2)8(z — y)¥n(y)

—g* fHT°T")in [ dz [ dy [ dzA5(2)
{—¥i(z) f3°(z,2)Sr(z — ¥)1 ¥u(¥)6%(2 — y)
+,(2)7" Sr(z — y) £i°(2,9)¥n(y)é6°(z — 2)}.

In reaching the above result, we use the free field equation

07PAg(z) = (O.97° — 0700)A;(2) = —J¥(2) — 2°C
= —JB(2) — 2P(02)728, - J(z) =" 0

and the gauge condition z? AS(2) = 0. Above,

AZ*(z,y,2) = {GFs(2,9)P:(2) f3°(z,2)Sr(z — y)7v"¥u(y)
~Gi5(, 2)bi(z )" Sr(z — y) £%(2,9)¥a(y)
+ifis(z, 2)i(2)6(z — y) (2, 9)¥n(y)}
B*¥e(z,y,2) = —E{Wi(2) f534(z,2)Sr(z — y)1*9a(y)(02) 16 (2 — y)
+;(2)7*Sr(z — y) [1°(2,9)¥a(y)(02) 7 6°°(z — y)}.

Se = ig[dz [dy [ dzip;(2)T%,(z,y, 2) Ab(y)¥n(2)
= (F)+ (ghost)+
—g(T?)in [ dz [ dy § dzP,(2)7*tbu(2) AL (y) %
{0uef32(z, @)1 (2, y) + 192 f2o fI4Gea (2, z) x
(027 H{ (2, y) + 02 HEH (y, 2) + y” H5™* (2, )]}
= (F)+ (ghost) — g(T*)in f dz [ dy [ d=
{@i(2) (P + B)bu(AL ) Fia (2, )1 (2, y)
392 o FIU(2) v tbn(2) AL (y)[O% Goa (2, =)  Hig ™ (y, )}
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after recalling A(y) -y =0 and O}° A} =0 0.

Now

Ss™ (F)+ (ghost) — 1g°f* f4(T*)in [ da [ dy [ dzp;(2)yhn(2) AL(y)
(87 + 2°(92)10:.]6* (= — z) Hi2¥ (y, 2)
= (F)+ (ghost) — 1g° o fo14(T);, [ dz [ dy [ dzHi3"" (y, =) Ab(y)
Fi(2)176(z — 2) = Bi(2) (B + B:)z7(92) 16" (2 — 2)]ebu(2)
= (F)+ (ghost)+
—1g? foce poSA(T )., [ da [ dy [ dei(2)7"a(2) Ab(y)6%(2 — ©) %
(Vi=bD2(8,)[G (2, y) fil (2, y) — GEoa (e, v) Fi(z,v)]
+OA £l (y, 2) f5(z,y)}
= (F)+ (ghost)+
—Lg® o TS\, [ da [ dy  dzBi(2)7"$a(2) AL()6"(z — z) X
{V=dDvee(5))[G (,y) £ (z, v)+
~(G(z,y) — 89 f5{ (2, y) — 8 f52 (2, 1)) fi(z, v)]
+O ] (v, ) 52, y)}
= (F)+ (ghost)+
18 foce fS4(Te),, [ da [ dy [ dz{Fi(=)y"n(2) AL (y)6(z — )
[VEADN8,) (G (2, v) fil (2,y) — G4 (@, v) fid(z, v))+
—(O+Nve — Ol fid (2, y)) fe¥(z,y) + O f51 (, ) f52(2, y)]
—VEBNNB,)B(2) (B +im)6*(z ~ 25 (2,9) Fi2(z, 1) AL(w)}

= (F)+ (ghost) — 36°f* f1(T*)in [ dz [ dy [ dzt);(2) %
{27° AL (y)6*(z — 2)V - DX(5,) G (2,y) fii (2, y)
+277 Ab(y)8%(z — 2)04M f31 (2, y) fid(e, y)
— VDN, [(F, +im)6(z — 2)] £ (2, 4) 52z, ¥) AL () }bu(2).

The group factors can be combined as follows,

facefbdes6sa6cd56f — 2iTeTCfbfd6cd6‘ef — 2iTachbfd6Cd6af.
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Hence

Se = (F)+ (ghost) —ig® f4T*T)n f dz [ dy [ dzthi(2) %
{277 A8 (y)é(z — 2)V-4NPX(9,) G (2, y) fi (2, )
+29° Ab(y)8(z — 2)0P f31 (2, y) F3(2, )
—VEdIAD[(F, +im)b(z — 2)|f (, y) (2, y) AL (4) }bu(2)

= (F)+ (ghost) — ig? fe(T°T®);s f dz [ dy [ dzAS(2);(z) x
{—2v=edoeb(8,)é(z — y)v* GF (2, y) fia(z, 2)
+26(z — y)OLI7? f3e(z,2) f5(2,y)
—V=edoeb(3,)[( B, ~im)b(z — vl fis(z, 2) F55(z, 8) Fbu(y)-

Thus we obtain in all

S= S1+ S+ S3+ 5S4+ S5+ Se
= (F)+ (ghost)+
—ig3(T°T*T*)in { dz f dy [ dz3p;(z)
{8(z — 2) A(2)SFr(2 —y) fi*(z,y)+
— [3%(z,y)Sr(z — 2) A%(2)é(2 —y)
+ f3%(z,2)6(y — 2)Sr(z — y) A(y)+
— A%(2)8(z — 2)Sr(z — y) £7%(2,9)}¥n(y)
—g3 feH(TT ) in [ dz [ dy [ dzip;(z) AS(2)
{—7"Sr(z —y) f(z,9)8%(z — 2)+
+ f3°(2,9)Sr(z — 2)776%(z — y)+
+6°(z — 2)7°Sr(z —y) f{*(z,y)+
—2i8(z — y)ON7P f3(z,2) f3p(z,y)+
+2iV Db (8,) fie (2, 2)7* G5, (2, ¥)6(z — y)+
—6%(z — y) f3°(z,2)Sr(z — y)1°+
+iV(oedloob(g,) foc(z, 2) fi5 (2, y) (B, — im)6(z — y)]
—2:V=eDoB(5.)6(z — y)y* GE (2, 9) fis(e, 2)+
+2i8(z — y)OLNP fie(z,2) f34(2,y)
—iV (o098 (3,)[(§, —im)b(z — y)] Fi(e, 2) F3(2 4) 1on(v)
= (F)+ (ghost).
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Gluon self-energy (Figure 5.67)

S=[dz[dyAj(z)A}(y)1**(z,y)
= (F)+ (ghost)+
1g2feee fo14 [ da [ dy As(z) AL(y)
[0y Hiz /" (z,y) + y* Hy*™(z,y) + (z = y, p o V)]
= (F)+ (ghost).
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