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Abstract 

Unlike some other gauge choices the Fock-Schwinger gauge condition 

x .A( x) = 0 uniquely fixes the gauge potentials in terms of the Maxwell fields 

through the so-called inversion formula. Thus the Fock-Schwinger gauge po­

tentials in some simple configurations can be derived by making use of this 

formula and contrasted with the familiar Coulomb gauge potentials. Two 

important consequences are that Fock-Schwinger potentials of electrostatic 

systems are no longer static and (unlike the Lorentz gauge potentials) that 

Fock-Schwinger potentials corresponding to plane electromagnetic waves are 

not plane waves. 

To apply the Fock-Schwinger gauge to perturbation theory the gauge 

propagator is first derived by the use of two different gauge fixing to the La­

grangian mechanism. The first one corresponds to adding a gauge fixing term 

while the second makes use of auxiliary or Lagrange multiplier fields. The 

auxiliary method leads to two components of the propagator: the physical 

and the unphysical. The physical component in the second method coincides 

with the propagator in the first one. Symmetry properties of the above prop­

agators are also derived and provide considerable improvement of Kummer 

and Weiser's analysis. 

The fact that the Fock-Schwinger gauge theory is a ghost-free theory 

enables one to derive the Slavnov-Taylor identities without using the language 

of BRST transformations. Nevertheless BRST identities are also obtained. 

The main focus and content of the thesis are perturbation calculations 

in the Fock-Schwinger gauge. The most important one-loop corrections in 

electrodynamics and chromodynamics have been computed and compared 

with the more standard translation-invariant gauge choices. The on-mass­

shell equivalence of these calculations with more conventional gauge choices 

has been established in detail. 
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Chapter 1 

Introduction 

This chapter is intended as a literature review on the Fock-Schwinger gauge as 

well as to give a global perspective on how the chapters of the thesis relate to one 

other. 

1.1 Review on the Fock-Schwinger Gauge 

The less familiar gauge condition 

(x - x0 ) • A(x) = 0 (1.1) 

where x 0 is a certain space time point, that without loss of generality may be set 

to zero, has various names: the Fock-Schwinger gauge [Nov 84, Ohr 85, Kum 86, 

Zuk 86, Sch 87, Kar 87, Mod 90], the Fock gauge [Ska 85], the Schwinger gauge [Nik 

82, Niko 82, Sch 89], the complete Lorentz covariant gauge [Cro 80, Men 84, Oka 

84], the coordinate gauge [Shi 80, Dur 82, Men 84, Mod 90], the fixed-point gauge 

[Dub 81], the Constrom-Dubovikov-Smilga (CDS) gauge [Ita 81, Men 84, Hau 84], the 

Poincare gauge [Bri 82, Ska 85, Gal 89, Gal 90], the homogenous gauge [Aza 81] and 

the multipolar gauge [Koh 82, Koh 83, Ell 90]*. This gauge condition is the subject 

of the thesis. 

•The noncovariant version of the gauge, namely r·A(r) = 0, is sometimes called the radial gauge 

[Mod 90] since the radial component of the potential vanishes. 
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It is worth noting that the above mentioned gauge is only a special choice of a set 

of gauges [Jae 78, Men 84] 

f1.&(x)Aµ(x) = 0 (1.2) 

where 

(1.3) 

are conformal Killing vectors satisfying 

(1.4) 

Since the gauge condition (1.1) was originated a long time ago by V. A. Fock 

[Foe 37) and then rediscovered by J. Schwinger [Sch 70), the Fock-Schwinger gauge 

condition seems to be the best name for it and we will adopt it hereafter for x ·A( x) = 
0. 

In spite of its relative unfamiliarity the Fock-Schwinger gauge choice has some 

interesting properties that sometimes make it attractive to field theorists. It is a ghost­

free theory since, in this gauge, the Faddeev-Popov ghost action does not depend on 

the gauge fields and thus its effects can be absorbed into the normalization factor of 

the entire generating functional. As a result all Feynman diagrams involving ghost 

loops vanish. Some complications found in the axial-type gauges [Sch 89, Lei 84, 

Lei 87, Bas 89, Bass 89, Bas 90], which are also ghost-free, cause field theorists to 

look for other ghost-free gauges like the Fock-Schwinger gauge [Kum 86]. 

One of the most interesting points about the Fock-Schwinger gauge is that there 

is a unique relationship between the gauge potentials Aµ(x) and the field strength 

Fµv(x) [Hal 79, Men 84, Kum 86, Sch 87]*. Such a relation, the inversion formula 

[Ita 81, Gal 89], seems to be the most enticing feature in applications to problems in 

quantum field theory. For example, the formula allows formulations of gauge theory 

directly in terms of field strengths Fµv( x) instead of gauge potentials Aµ( x) [Hal 79, 

*Notice that another gauge, the so-called fixed axial gauge [Hal 79], with its gauge conditions 

Ao(t, :z:o, Yo, zo) = A1(t, :z:, y, zo) = A2(t, :z:o, y, zo) = A3(t, :z:, y, z) = 0 with :z:o, yo, zo fixed, also has 

an inversion formula. However the inversion formula in the Fock-Schwinger gauge is simpler. 
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Ita 81, Dur 82, Men 84, Sch 87]. It can also be employed to obtain gluonic mean 

fields in Hartree approximation where the gluonic mean field is generally generated 

by vacuum expectation values of gluonic operators [Sch 87]. Coefficients of gluon 

operators in the operator product expansions (OPE) 

(1.5) 

with r 1 and r 2 are any two Dirac matrices (I'i, r 2 = 1, /µ and uµv for scalar, vector 

and tensor amplitudes respectively) and q(x) is a quark field may be calculated by 

utilizing the inversion formula as well [Hub 82]. In addition, for r 1 =/µand f 2 = /v, 

the OPE itself can be computed by making use of the complete quark propagator up 

to first order of the inversion formula showing that the resulting function is transverse 

[Nov 84]. 

Shifman utilizes the inversion formula to consider the behaviour of the Wilson 

loop average [Shi 80]. By rewriting the Wilson loop [Wil 69] as a power series of 

gauge field strengths the series may be grouped into two sets of terms. The first set 

consists of terms with no derivatives while terms in the second set contain derivatives 

of gauge field strengths. Analysis then shows that the first set depends only on the 

area of a contour of integration and (besides its dependence on the area) the second 

set alsp depends on the shape of the contour. 

Another example, duality transformations, that change a given (original) theory 

with the coupling constant g into a (dual) theory with G) as its coupling constant and 

play an important role in discussing strong coupling theories [Sav 80, Ita 81], benefit 

from the inversion relation. After applying the inversion formula to pure Yang-Mills 

theories it is found that [Ita 81, Miz 82] the dual theory goes over the original theory in 

the weak coupling limit and vice versa in the strong coupling limit. In scalar quantum 

chromodynamics, Mizrachi has concluded that, apart from the usual Lagrangian 

in the generating functional for dual fields, there occur self interactions of gauge 

fields and extra antisymmetric tensor fields coupled to the dual gauge fields and 

scalar fields. Finally generalization of the inversion formula to supersymmetric 
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theories has been presented by Ohrndorf [Ohr 85]. Here he has shown that the gauge 

connection as well as the prepotential can be expressed in terms of the supersymmetric 

field strength. 

Although the Fock-Schwinger gauge has positive features there are disadvantages 

as well. The non-translational invariance [Nov 84, Kum 86, Sch 87, Sch 89] and the 

nonlocality of the inversion formula [Kum 86, Ell 90, Wit 62] are, perhaps, the main 

drawbacks, producing complexities in the Fock-Schwinger gauge propagator and, as 

a result, difficulties in perturbation theory calculations. Such difficulties were exhib­

ited by Kummer and Weiser [Kum 86] on their work on one-loop graphs in spinor 

quantum electrodynamics. Despite the intricacies of the computations they found the 

interesting result that up to first order the scattering matrix in the Fock-Schwinger 

gauge is equivalent, on mass-shell, to that in the Feynman gauge. The main aim of 

the thesis is to widen the application of the perturbation methods to scalar electrody­

namics and more significantly quantum chromodynamics, and specifically to calculate 

the significant one-loop graphs in those gauge theories. 

1.2 The Thesis 

The thesis consists of six chapters. The first chapter is given for introduction 

while the final chapter is devoted to conclusions. The remaining ones constitute the 

main body of the thesis. 

Inversion formulas are the main ingredient of Chapter 2. After a formal derivation 

of the formula and its necessary and sufficient conditions, we go to consider some 

simple classical systems. The Fock-Schwinger gauge potentials for these systems are 

then computed by making use of the formula. In addition, the scattering of quantized 

charged particles by the Fock-Schwinger gauge potential is calculated. 

In Chapter 3, the Fock-Schwinger gauge as well as the Lorentz and axial-type 

gauge propagators are derived by two methods or two different choices of gauge fixing 

Lagrangians. The first method is the familiar one of adding gauge fixing term while 

auxiliary or Lagrange multiplier fields are introduced in the second method. Their 
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symmetry properties are also obtained. 

Those propagators are then employed to derive the Ward-Takahashi and the BRST 

identities. Since the Fock-Schwinger gauge theory is a ghost-free theory the BRST 

identities are derived in two ways: with and without introducing ghost fields. These 

ideas are carried through in Chapter 4. 

The fifth chapter is the most substantial part of the thesis. Perturbation calcula­

tions to one-loop order in quantum electrodynamics and quantum chromodynamics 

are presented and compared with more familiar translational-invariant gauge choices. 

It is then possible to prove the on-mass-shell equivalence of the two treatments. 

The general notations used throughout the thesis and various details of calcula­

tions are contained in the Appendices. 
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Chapter 2 

Fock-Schwinger Gauge Potentials 

The main goals of this chapter are to derive the inversion formula and, by its use, 

to obtain the Fock-Schwinger potentials for some classical systems. As an illustration 

the scattering of quantized charged particles in a Fock-Schwinger (FS) potential will 

be derived and proved to be identical to the Coulomb scattering. 

2.1 Gauge Transformations 

Any theory of fundamental nature of matter must be consistent with quantum 

theory as well as relativity [Ryd 85]. Therefore we must frame the theory in its 

Lorentz covariant form. 

In electrodynamics, for example, it is necessary to reformulate the noncovariant 

form of the Maxwell equations into the covariant one by introducing field strength 

tensors Fµv(x) and four-vector potentials Aµ 

0 -E1 -E2 -E3 

E1 0 -B3 B2 
(2.1) 

E 2 B 3 0 -B1 

E 3 -B2 B 1 0 
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The four three-vector Maxwell equations combine to 

(2.2) 

and are now covariant. Here jµ = (p,J) and fi1µv = ~Eµvpa Fpa· The Lagrangian of 

electromagnetic fields then reads 

£ = -~FµvFµv 
4 

(2.3) 

which is automatically covariant. Thus the Lorentz covariance of the theory is com­

plete and explicit. 

One important consequence of introducing potentials Aµ( x) is that if one trans­

forms Aµ(x) into A~(x) according to 

(2.4) 

for some arbitrary function A(x) the Lagrangian (2.3) remains unchanged. One then 

says that the theory of electromagnetism is invariant under the transformation (2.4) 

which is then called a gauge transformation. Hence the Maxwell theory is a gauge 

invariant theory. The name gauge field is ascribed to the potential Aµ ( x) for historical 

reasons. 

In 1954 Yang and Mills [Yan 54, Mil 89) proposed a new theory for strong nuclear 

interactions, very similar to the electromagnetic theory. The difference between both 

theories is in respect of their gauge groups. This leads to somewhat different proper­

ties of the gauge fields. The gauge fields in electromagnetism are Abelian while they 

are non-Abelian in Yang-Mills theory. 

The nonuniqueness of potentials due to the gauge invariance of the theory allows us 

to choose certain conditions which make the potential unique. These are often called 

the gauge fixing conditions or simply the gauge choices. Clever choices of gauge lead 

to interesting simplifications but can also destroy manifest covariance [Itz 80). 

One of the most familiar gauges is the Lorentz gauge 8µ Aµ = 0. Although it has 

some advantages such as relativistic invariance and uniform Feynman's fr-prescription 

for the momentum space singularities of propagators [Lei 87) there are also disadvan­

tages: ghost particles should arise in non-Abelian theories which considerably com­

plicate perturbation calculations. It is also difficult to handle certain topical models 
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such as supersymmetric Yang-Mills and superstring theories in the Lorentz gauge 

[Lei 87]. Such complexities have led many theoretical physicists to examine other 

gauges like the axial-type gauges and the less familiar FS gauge. 

Some properties of the FS gauge 

(2.5) 

have been mentioned in the Introduction. The relativistic covariance of the condition 

is obvious since the dot (scalar) product between two four-vectors, in this case, xµ 

and Aµ(x), is Lorentz invariant (see for example [Jae 75]). Further, the FS gauge 

theory is ghost-free and the proof of this will be given in chapter 4. The inversion 

formula will be derived after the next section. Our immediate task is to consider the 

attainability and completeness of the FS gauge. 

2.2 Attainability and Completeness of the Fock-

Schwinger Gauge 

Consider the gauge transformations in non-Abelian theories, where U( x) refers to 

some internal group unitary change, 

A -----+ A' = u A u-1 - !._(a U)u-1 µ µ µ g µ . (2.6) 

Suppose that potential Aµ(x) does not obey the gauge condition (2.5) but A~(x) does 

satisfy it. Then one has 

_:_(xµ8µU(x )) = U(x )xµ Aw 
g 

Replacing xµ--+ axµ where a E [O, 1] is a parameter, equation (2.7) reads 

xµ8µU(ax) =ad~ U(ax) = -igU(ax)axµ Aµ(ax) 

or 

d~ U( ax) = -igU( ax )xµ Aµ( ax ). 

Hence 

U(x) = P [exp (-ig fo1 

daxµ Aµ(ax))] U(O). 

11 
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(2.8) 

(2.9) 

(2.10) 



P denotes path ordering in the variable a and U(O) is an arbitrary initial value for 

U(x). Thus the gauge condition (2.5) is attainable [Cro 80, Zuk 86, Gal 89, Gal 90] 

which means that one can always find gauge potentials satisfying condition (2.5) by 

means of some appropriate U(x) as given by (2.10). 

Let one now suppose that both A~(x) and Aµ(x) satisfy the FS gauge condition. 

Accordingly the right-hand side of equation (2. 7) vanishes 

(2.11) 

Transforming xµ--+ axµ, equation (2.11) becomes 

(2.12) 

Equations (2.11) and (2.12) allow us to conclude that 

U(x) = U(ax) =constant (2.13) 

i.e. U is a homogenous function of zeroth degree in x. Thus, apart from con­

stant gauge transformations, the gauge condition (2.5) is a complete gauge condition 

[Cro 80, Zuk 86, Gal 89, Gal 90]. The homogeneity of U (of zeroth degree) is the rea­

son, explaining why the gauge condition (2.5) is called the homogenous gauge choice 

[Aza 81]. Another name, the complete Lorentz-covariant gauge [Cro 80], refers to its 

properties: complete and Lorentz covariant. 

2.3 Inversion Formulae 

The inversion formula to which we have alluded is nothing but the expression of 

potentials Aµ(x) in terms of their field strengths Fµ 11 (x). It is called inversion since 

the familiar relationship between both is in the expression of field strengths Fµ 11(x) 

in terms of (the derivative of) potentials Aµ(x) as is seen in (2.1); inversion is the 

converse. The derivation of the inversion formula in the FS gauge goes as follows. 

Consider the electromagnetic field strength (2.1). One then has 

(2.14) 
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Replacing xµ by axµ where a E [O, 1] is a parameter and then integrating over a from 

0 to 1, equation (2.14) becomes 

fo1 

da [ (1 + x8)A11 ( ax) - ! 811axµ Aµ( ax)] 

fo
1 

da [d~aA11(ax)- !avI<(ax)]. (2.15) 

Hence 

11 11 da Aµ(x) = - da ax11 Fµ 11 (ax) + -8µI<(ax) 
o o a 

(2.16) 

where K(x) is a function of x defined by 

(2.17) 

Equation (2.16) is the inversion formula in the inhomogenous FS gauge (2.17). Setting 

I< ( x) = 0 leads one to the inversion formula 

(2.18) 

It turns out that the gauge potentials Aµ(x) at a point x not only recieve contri­

butions from the field strengths Fµ 11 at point x but also by all those points ax along a 

straight line between point x and the origin. In this sense the gauge potentials Aµ ( x) 

are nonlocal [Ber 56, Wit 62, Ell 90]. It is worth mentioning that the inversion for­

mula (2.18) may be derived by a simple geometrical argument [Dur 82] as well as by 

applying Poincare lemma* in a star shaped region in a modern differential geometry 

[Bri 82] (see Appendix D).From now on we only consider the homogenous FS gauge 

condition (2.5) and therefore the inversion formula (2.18). 

To ensure that Aµ( x) in (2.18) are really the electromagnetic potentials one should 

be able to derive the field strengths Fµ 11 from (2.18). Operating the curl on (2.18), 

one has 

- fo1 

da a[8µx,8 F11,e( ax) - 811 x,e Fµ,e( ax )] (2.19) 

- fo1 

da a[2F11µ(ax) + x,e8µF11,e(ax) - x.8811 Fµ,e(ax)]. 

*This is the reason why the gauge condition (2.5) is sometimes called the Poincare gauge [Bri 82, 

Ska 85, Gal 89, Gal 90]. 
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Now the first term on the right-hand side of (2.19) may be integrated by parts 

-2 fo1 

da aFvµ(ax) a2 Fµv(ax)l;=O - fo1 

da a2 d~ Fµv(ax) 

- Fµv(x) - fo1 

da axf38{3Fµv(ax). (2.20) 

Putting (2.20) into (2.19), equation (2.19) yields 

OµAv(x) - OvAµ(x) = Fµv(x) - fo1 

da a2xf3[8~Fµv(ax) + 8~Fvf3(ax) + 8~Ff3µ(ax)] 
(2.21) 

where{)~ = ~{)"° One now notices that Aµ(x) in (2.18) will represent the electro­

magnetic potentials with Fµv(x) as their field strength tensors provided that the last 

term of equation (2.21) vanishes, 

(2.22) 

But these are nothing but the homogenous Maxwell equations (2.2b) or the Bianchi 

identities in Abelian theories. Hence the Bianchi identities (2.22) are the necessary 

and sufficient conditions for the inversion formula (2.18) to be relations between field 

potentials Aµ(x) and their field strengths Fµ 11 (x) [Dur 82]. 

The inversion formula (2.18) also holds for non-Abelian theories 

(2.23) 

because if one multiplies x" and Fµ 11 (x) in (2.23) the commutator terms vanish and 

equation (2.14) remains unchanged due to gauge condition (2.5). However the iden­

tities (2.22) are not correct in non-Abelian theories. To obtain the right constraints 

let us go back to equation (2.21) but with Fµv(x) defined in (2.23). It turns out that 

the second term in the right-hand side of equation (2.21) does not vanish because the 

left-hand side of equation (2.21) is not equal to Fµv(x) anymore. If one adds to both 

sides of (2.21) the identity (remember x · A(x) = 0) 
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(2.24) 

one arrives at 

8µAv(x) - 8vAµ(x) - ig[Aµ(x), Av(x)] 

Fµv(x) - J~ do: o:2 x.6[D,eFµv(o:x) + DµFv,e(o:x) + DvF,eµ(o:x)] 
(2.25) 

where 

(2.26) 

Equation (2.25) allows us to conclude that the Bianchi identities 

(2.27) 

are the necessary and sufficient conditions for the inversion formula (2.18) to succeed 

in non-Abelian theories [Cro 80, Dur 82]. Notice that equation (2.18) is actually the 

general solutions of equations (2.1) and (2.23) without fixing the gauge (thus they 

hold for all gauges in the vicinity of the origin) [Itz 80]. This is obvious since around 

the origin, Xµ ~ 0, the last term on the right-hand side of equation (2.14) and the 

commutator term which appears in non-Abelian theories may be neglected. 

One important point that should be mentioned is that for Abelian theories the 

inversion formula in (2.18) is only a special case of the more general relations discov­

ered by Cornish [Cor 84], namely that the potential can be expressed in terms of the 

field strength via 

(2.28) 
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where S = S(..\, x) is a two dimensional surface with parameter..\ E [O, 1]. The proof 

is as follows. Consider a one parameter closed path in space time 

xa = wa(v) 

wa(v1) = wa(v2) 

with d:f'va is continuous. Let also define a two dimensional surface S 

xa = sa(,\, w(v)) 

which is differentiable and satisfies boundary conditions 

sa(o, wa(v)) = O; sa(l, w(v)) = wa(v). 

Now one obtains the following integral over S 

on the other hand 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

according to Stokes' theorem. By equating (2.32) and (2.33) one finally arrives at 

equation (2.28) above. Notice that formula (2.28) was derived by choosing a surface 

which belongs to a class of surfaces satisfying boundary conditions (2.31 ). Since 

the number of such surfaces is infinite there are still many degrees of freedom. One 

therefore can say that choosing a certain surface S is equivalent to choosing a certain 

gauge. By setting sa = ,\xa, for example, equations (2.28) lead to the FS gauge 

potentials (2.18)t. However not all familiar gauges, such as the Lorentz gauge, belongs 

to class of gauges (2.28) [Cor 84]. Note too that the Bianchi identities (2.22) act 

as conditions for relations (2.28) (see Appendix D). A formula similar to (2.28), 

tThe noncovariant version of the FS gauge r · A(r, t) = O is equivalent to the choice of Si = ,\xi 

and S0 = x 0
• 
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differing only in boundary conditions, was proposed for the first time by De Witt 

[Wit 62, Aha 62, Man 62] when he formulated quantum theories without potentials. 

This formula may be derived from choosing the gauge parameter [Ell 90, Wit 62, 

Aha 62, Hea 79, Bel 62, Roh 65] 

{P(x) f1 8zµ 
A(x) = - }po Aµ(z)dzµ =lo Aµ(z(,\,x)) B,\ d,\. (2.34) 

The inversion formula (2.18) can be written in the form of infinite series by Taylor­

expanding the field strength Fµ 11 ( ax) around the origin. We have 

Aµ(x) = - fo1 

da ax11 Fµ 11 (ax) (2.35) 

- -f: I( l )x11 xa1 xa2 ···xan8a1 8a2 ···8anFµ 11 (0) 
n=O n. n + 2 

:I: Because of the condition (2.5) the identity (see Appendix D) 

Xaixa2 ••• xana a ... a F (0) = Xa1 Xa2 ••• xO/nD D ... D F (0) 
a1 0t2 an µ11 a1 a2 an µ11 (2.36) 

holds, and we then come to [Shi 80, Hub 82, Nov 84, Zuk 86] 

~ l x 11xa1 xa2 • • • xanD D · · · D F (0) - LJ I ( 2) a1 a2 an µ11 
n=O n. n + 

~X11 F11µ(0) + ~X11Xa DaFvµ(O) + ~X11 XaX,B DaD,eF11µ(0) + · · · (2.37) 

i.e., the gauge condition (2.5) enables one to replace ordinary derivatives in (2.35) 

by their covariant ones. The elegant appearance of this series has attracted many 

theoretical physicists to take advantage of them, even though only the first few terms 

are usually taken. 

There is no doubt that the Coulomb and Lorentz gauges are the most well known 

gauges as one can see that almost all texts on electrodynamics are written in terms 

of those gauge choices. The reason is that at the classical level, for example, both 

gauges play an important role in simplifying some problems. It is therefore of some 

interest to calculate the FS gauge potentials fixed by the FS gauge condition for 

some simple classical systems and then compare them with the familiar ones, the 

Coulomb/Lorentz potentials. The following section is devoted to this. 

*The name multipolar gauge [Koh 82, Koh 83, Ell 90] is also given to the gauge (2.5) because 

the expression (2.35) looks like a multipole expansion. 
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2.4 Fock-Schwinger Potentials in Simple Classi­

cal Systems 

2.4.1 General Formulae 

In this section we will exploit the inversion formula (2.18) to obtain the FS gauge 

potentials for some classical systems. According to formula (2.18) the FS scalar 

potential is 
r1 r1 .... Ao(x) = - lo da a.xv Fov(ax) = - lo da ar· E(ax) (2.38) 

and the FS vector potential is 

or 

A(x) = - fo1 

da a[xoE(ax) + r x B(ax)]. (2.40) 

It turns out that the vector potential A( x) does not depend purely on the magnetic 

field B(x) but also is dependent on the electric field E(x). This additional term is 

the major difference between the vector potential in the FS gauge and that in the 

Coulomb gauge. Both formulas (2.38) and (2.40) are quite general and will be applied 

to some classical charge/ current configurations. 

2.4.2 Electrostatics 

Here the electric field is E(r), independent of time, and the magnetic field B(r) 

vanishes. The FS potentials of electrostatic systems reduce to 

r1 .... Ao(r)=- 10 daar·E(ar') (2.41) 

"""' {I """' 
A(xo, r') = - lo da ax0 E(ar'). (2.42) 

It is clear that, because of its dependence on the electric field, the vector potential 

A( x) is no longer zero. Another important fact is that it is proportional to time x0 • 

Thus, in FS terms electrostatic systems are not static, they depend on time! 
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Let us now relate the FS and the Coulomb potentials. As is well known, the 

Coulomb potential V ( i) is defined by 

E(i) = -VV(i). (2.43) 

The corresponding Fock-Schwinger potentials become 

1
1 v 

A0(i) = da ai· -V(ai) = V(i) + Vi(i) 
0 Ci 

(2.44) 

with Vi(r) = - J~ da V(ai), and 

_, 11 1 A(xo,i) = Xo daa-VV(ai) = -xoVVi(i). 
0 Ci 

(2.45) 

Thus the FS scalar potential differs from the Coulomb potential by Vi ( r) which ex­

plains how the nonvanishing FS vector potential (2.45) comes about. 

a) n point charges 

The electric field E(r) measured at the point r, due to n point charges qs at is 

where s runs from 1 ton is defined as 

(2.46) 

and the corresponding Coulomb potential reads 

1 n qs 
V(i) = -'E 

1
_. _.I +constant. 

47l"Eo s=l T - T 8 

(2.4 7) 

Hence, the FS gauge potentials are 

Ao(i) (2.48) 

(2.49) 

b) Electric dipole 

This is nothing but two point charges q and -q infinitesimally separated: 

V(i) = _q_ [ : _, _ 1 _. l '.::::'. _q_(r-Ti]. f_ 
47l"Eo Ii - r' - ll Ii - r'I 47l"Eo lr - r'l3 

(2.50) 
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Here the charges q and -q are at the points P + f and P respectively and in ~ If-PI. 
The FS gauge potentials (2.44) and (2.45) read 

Ao(r) 
q ( r - r') . f q 11 

( ar - P) . f 
-- ... --- da ... 
41l"t:o If - r'l 3 41l"t:o o lar - r'l 3 

(2.51) 

1 ... ... 

- qxo 1 da\7 ( ar - r2 . z. 
41l"t:o o la:r - r'l 3 

(2.52) 

c) Infinite line charge along z-axis 

The electric field in this case is defined by 

... .;\ jb dz' ... 
E(r) = lirn - ... (r - r') 

a,b-+oo 41l"Eo -a If - r'l 3 
(2.53) 

where .;\ is a charge density chosen to be constant. After integration over z' one has 

and accordingly 

E(r') = _.A_xz + yJ 
21l"t:o x2 + y2 

V(r) = --"'-ln(x2 + y2
) +constant. 

41l"t:o 

The FS gauge potentials are 

a constant, and 

\ 1 \ 1... 2 ... 
.., AXQ 1 2 2 2 2 AXQ X z + X J .., ... A(x0 ,r} = --- da:\7ln(a: x 1 +a x 2 ) = --- 2 2 = -x0E(r). 

41l"Eo 0 41l"t:o X1 + X2 

d) Charged ring (with z-axis as its symmetry axis) 

In this case the Coulomb gauge scalar potential is given by 

Since 

dl1 = ad</>1 

(r - ri) = (x - a cos </>1)z + (y - a sin </>1)J + zk, 
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a being the radius of the ring, one_has 

a>. 1 
V(r') = -

2 
+constant 

Eo .,/r2 + a2 
for r ~a (2.59) 

and therefore 

Ao(r') a>. { 1 - [1 da 1 } '.::::'. ~(1 - In 2r) 
2Eo .Jr2 + a2 lo .J a2r2 + a2 2rfo a (2.60) 

a>.xo r1 da\l 1 = - a>.xo r1 daa2 r 3 

2Eo lo ../ a2r2 + a2 2Eo lo ( a 2r 2 + a2) 2 

a>.x0 .... ( I 2r) £ ,...., -- r 1 - n - or r ~ a 
2r3 Eo a 

(2.61) 

2.4.3 Magnetostatics 

Since in magnetostatic systems the magnetic field B( r') is independent of time and 

the electrostatic field vanishes, the FS potentials (2.38) and (2.40) reduce to 

Ao(xo, r') 

A(r) 

0 

{I .... 
- lo da ar x B(ar'). 

(2.62) 

(2.63) 

Thus whereas in electrostatic systems both the FS scalar potential and the FS vector 

potential have different value from those in the Coulomb gauge, in systems of mag­

netostatics only the vector potentials in both gauges are different. It is worth noting 

that unlike electrostatics, the FS potentials in the magnetostatic systems are indeed 

static. 

In order to obtain the difference between the Coulomb gauge and the FS gauge 

potentials let us define a vector potential Al (r) satisfying 

(2.64) 

The superscript f is to remind one that there is an infinite number of vectors satisfying 

equation (2.64). Those vectors may be written as 

(2.65) 

21 



where the arbitrariness resides in the function J(r). The superscript c in the first term 

on the right-hand side of (2.65) will be associated with the Coulomb gauge condition 

later, but now, it is just to distinguish the potential Ai ( f') on the left-hand side of 

(2.65). Substituting (2.64) and (2.65) into (2.63) one obtains 

(2.66) 

In (2.66) A(r) is the FS gauge vector potential and Ac(r) is a vector potential which 

has not been gauge-fixed yet. Therefore if one is restricted to a certain gauge condition 

on Ac(r), equation (2.66) describes the relationship between the FS gauge vector 

potential and other-gauge vector potential. If one takes the "'other-gauge" as the FS 

gauge, the second term on the right-hand side of (2.66) vanishes and A(f') = Ac(r) as 

expected. 

Let one now choose Ac( f') as a vector potential in the Coulomb gauge and then 

calculate the FS gauge vector potential for some simple systems. 

a) Infinite steady current 

The magnetic field at point r due to a flow of steady current f along the x-axis is 

given by 

B(r) = µof 100 dx'z x (r-: P) = µ0 f -zf + yk 
47r -oo Ii - r'l3 27r y2 + z2 . 

The corresponding Coulomb gauge vector potential is 

.... µof 
Ac(r) = --z ln(y2 + z2

) + \7 f(x, y, z); 
47r 

and the FS gauge vector potential is 

A( f') = - µof z ln(y2 + z2
) + \7 J(r) + µof \7 [1 da x ln[a2(y2 + z2)] 

47r 47r lo 
- \7 r1 da r. ]:_ \7 f ( ar) 

lo a 
µof.... [ B .... B k .... ] - -
2

7r i + X zJ - X y • 

(2.67) 

(2.68) 

(2.69) 

It should be noted here that the FS gauge vector potential (2.69) is free of the 

gauge parameter f(T), whereas the Coulomb potential (2.68) is not. Another obser­

vation is that the FS vector potential is perpendicular to the magnetic field. Unless 
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one chooses f = f(r) rather than f = J(r), the Coulomb gauge vector potential and 

its associated magnetic field are not perpendicular. 

b) Steady current ring 

The vector potential of a system of a closed steady current I in the Coulomb 

gauge is of the form 

Jc(r) = µol f dlt ... . 
411" If' - r'I 

(2.70) 

It is a solution of 

(2.71) 

with jdV -+ I d""'r. For a system of a current ring of radius r', 

dlt = r'd<f/(-isin <f/ + Jcos <f/) 

the Coulomb vector potential (2. 70) reads 

Jc(r) = µol 2r' ri f: t (2n ~ 1)!! (k) (!)k ( 2 xr' 
12

)n 
411" Jr + r n=O k=O n. x r + r 

r21r Jo d<f/ ( -i sin <f/ + f cos</>') sink <f/ cos n-k <f/. (2.72) 

For r' ~ r, it becomes 

12 

Jc(;t\ µol r ( ... ;;'\ r, = 4 (r2 + r12)a/2 -yz + X]J (2.73) 

and its corresponding FS gauge vector potential is 

r ~ r'. (2.74) 

Thus the FS gauge potential and the Coulomb gauge potential are equal in the far 

region. Of course the Coulomb and the FS gauge conditions hold asymptotically, 

v . A( r) = r. A( rt) = o. (2. 75) 
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2.4.4 Constant Electromagnetic Fields 

In this system the electric and magnetic fields are constant 

E(x) = E =constant; B(x) = B =constant. 

So the FS potentials, according to (2.38) and (2.40), are 

Ao(r) - - daa r · E = --r · E 1
1 .... 1 .... 

0 2 

A(xo, r') 1
1 .... .... 1 .... .... 

- daa [x0E+rx B] = --(xoE+rx B). 
0 2 

(2.76) 

(2. 77) 

(2.78) 

Thus the scalar potentials in the FS gauge and the Coulomb gauge only differ by 

a scale; the Coulomb scalar potential is twice the FS scalar potential. The vector 

potentials, on the other hand, are different because of the extra term - ~x0E. 

2.4.5 Plane Electromagnetic Waves 

The plane electromagnetic fields have the forms 

where E0 and Bo are constant, and 

B 
.... _ f x Eo. .... .... .... .... .... .... 2 
o - , Eo · k = Bo · k = Eo · Bo = O; k = 0. 

ko 

According to general formulae (2.38) and (2.40), the FS potentials are 

i .... E .... 
A0(x) = -r · E0 daa e-ia x = --[1 - (1 + ikx )e-' x] .... 1 . k r. o "k 

o (kx) 2 

00 

.... E -ikx~ (ikxr 
r. oe 6 (n + 2)! 

n=O 

A(x) (xoEo + r x Bo) (k~)2 [1 - (1 + ikx)e-ikx] 
00 

.... .... .k ~ (ikxr 
(xoEo + r x Bo)e-

1 x 6 (n + 2)! 
n=O 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

Equations (2.81) and (2.82), describing the FS potentials in a system of plane 

waves (2.79), are no longer plane waves! Note that the zero order of equations (2.81) 

and (2.82) have a similar form to equations (2. 77) and (2. 78), the FS potentials in a 

system of constant electromagnetic fields. 
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2.5 Potential Scattering of Charged Particles 

We have calculated the FS gauge potentials for some classical electromagnetic 

systems. It was found that, in general, the FS gauge potentials and the Coulomb 

gauge potentials differ. Since both kind of potentials were derived from the same 

physical quantities, the electric and magnetic fields, the difference in their values 

cannot produce any physical effects. This also holds for quantum systems. The 

scattering of charged particles due to either the FS gauge potentials or the Coulomb 

gauge potentials must produce the same result. This last section will be used to 

derive the differential cross section of charged particles scattered by the FS gauge 

potentials. 

Consider the transition amplitude [Itz 80] between the initial state 

(2.83) 

and the final state 

(2.84) 

of an electron scattered by the FS gauge potentials (2.48) and (2.49) with I< = 
4
:eo, 

s = 1 and q8 = q 

Sfi -ie j d4 xuf..a)(PJ }'rµAµ(x)ei(PrPo)·xu 13 (pi) 

S1i( Coul) + ieI< j d4 xu(a)(PJ }'y0 fo1 

d>. l>.r ~Pi ei(PrP·)·xu(i3)(Pi) (2.85) 

-ieI< j d4 xu(a)(PJ )xo'·/8i [1 d>. ... l ... ei(prp,)·xu13(pi) 
lo !>.r - r'I 

where S1i(Coul) is the transition amplitude of the electron due to the Coulomb po­

tential V(r) = 1; with A(r) = 0. Integration over x0 in the last two terms on the 

right-hand side of equation (2.85) can be easily done. One obtains 
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where the mass-shell condition 

(2.87) 

has been used. It turns out that equation (2.86) vanishes since it is proportional to 

a a 
8(E) + E aE8(E) = aEE8(E - 0) = 0 (2.88) 

with E = E1 - Ei. Hence, the only non-zero term of equation (2.85) is S1,(Coul): 

(2.89) 

i.e., the transition amplitude of an electron scattered by the_ FS gauge potentials is 

equal to that by the Coulomb gauge potentials and likewise for differential cross-

sections. 

To summarize we have calculated potentials for some classical systems which obey 

the FS gauge condition. Even though they differ from the Coulomb/Lorentz gauge 

potentials the physical content is the same and this has been verified in scattering of 

quantized charged particles. The remaining chapters will be devoted to higher order 

corrections in the relativistic quantum theory. Here quantities such as propagators 

play a crucial role and hence the next chapter concentrates on the FS propagators. 
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Chapter 3 

Fock-Schwinger Gauge 

Propagators 

In this chapter the Lorentz, axial and FS gauge propagators will be derived in 

coordinate space by the use of two different gauge-fixing of Lagrangians £g:F1 = 

- 2\. (G·A) 2 and Lg:F2 = CG·A+~C2 where C(x) is an auxiliary or Lagrange multiplier 

field. The undoubtedly popular gauges, Lorentz and axial-type, are incorporated here 

in order to check the calculations. The FS gauge propagator will also be presented in 

momentum space and various symmetry properties will be derived. The first section 

is devoted to a brief review of generating functionals in order to introduce the basic 

theoretical idea which underlies the derivations. This review is based on Bailin and 

Love [Bai 86], Ryder [Ryd 85], Burden [Bur 90] and Nash [Nas 78]. 

3.1 Review on Generating Functionals 

The transition amplitude of a (non-relativistic) quantum system in which its state 

are lq', t' > and lq", t" > at time t' and t" > t' respectively is defined by 

< q", t"lq', t' >=< q"I exp[-iH(t" - t')]lq' > . (3.1) 

Here lq > is an eigenstate of position operator Q with its eigenvalue q in the Schro 
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clinger picture 

Qlq >= qjq >. (3.2) 

The Hamiltonian operator iI is time independent. By dividing the time interval t" -t' 

into (N + 1) interval of equal length f and putting f -t 0 (or N -too) one may write 

(3.3) 

According to equation (3.1), and when the Hamiltonian operator iI has the form 

H(Q, P) = f~ + V(Q), one has, after some algebra, 

< qj+I, ti+i lqi, ti >= J ~exp {i ft~,, dt [pj(j3 - H(qi,Pi)J} 

ex exp{iftf dt L(qj,q3 )} 

(3.4) 

for every j = 1, 2, · · ·, N. Hence, by putting q0 = q' and qN+I = q", inserting (3.4) 

into (3.3) leads to 

< q", t"lq', t' > ex j 'Dq exp { i 1.t" dt L(q, q)} (3.5) 

where the integration is over all functions q(t) with boundary conditions q(t) = q' 

and q(t") = q". 

In the presence of an external source j(t), the transition amplitude (3.5) becomes 

< q", t"lq', t' >i ex j 'Dq exp i 1, dt [L(q, q) + j(t)q] . { ~ } (3.6) 

Now if the source j(t) is non-zero only in the interval t" > ta > t > tb > t' the 

left-hand side of (3.6) can be written as 

< q", t"lq', t' >i= 'Ln,m J dqadqb < q", t"ln >< nlqa, ta >< qa, talqb, tb >i 

< qb, tblm >< mlq', t' > 

Jdqadqbt/Jo(q",t"),,P~(qa,ta) < qa,talqb,tb >j t/Jo(qb,tb)t/;~(q',t') 
(3.7) 

where In> are the energy eigenstates 

Hin>= Enln >, En> Ea (3.8) 
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and 

,,Pn(q, t) =< q, tin>= e-iEnt < qln >. (3.9) 

It turns out that in the limit it"--+ oo and it'--+ -oo, < q", t"lq', t' >3 is dominated 

by contribution from the vacuum IO >. Let one now define a functional Z[j] as follows 

ex < q", t"lq', t' >3 • (3.10) 

Thus Z[j] is nothing but the vacuum expectation value of the transition amplitude 

which can be taken in the limit where ta and -tb (hence t' and -t") --+ oo. By 

recalling (3.6), functional differentiation of (3.10) with respect to j(t) n times leads 

to 

< qa, talT[Q(t1)Q(t2) "· Q(tn)] lqb, tb > '1f;o(qb, tb) 

in< OIT[Q(t1)Q(t2)'' · Q(tn)]IO > • 
(3.11) 

This means that the vacuum expectation value of the time ordered product of any 

number of operators Q(t) can be obtained by functional differentiating the vacuum 

to vacuum amplitude Z[j]. Thus if Z(j] is known the vacuum expectation value of 

the time ordered product of operators Q(t) may be obtained. This is why Z(jJ is 

called the generating functional. 

The transition from the non-relativistic to the relativistic quantum theory is done 

just by replacing q(t) -+ <P(t,x) = <P(x) and Q(t) -+ Q(x). Therefore, e.g. ma 

quantum field theory of scalar fields, 

Z[j] = j V<P exp { i j dx [£( </J, Oµ</J) + j<jJ]} (3.12) 

8nZ[O] ·n A A A 

8j(ti)8j(t2) ... 8j(tn) = Z < OIT[Q(t1)Q(t2)' · · Q(tn)]IO >. (3.13) 

To normalise the generating functional (3.12) the condition Z[O] = 1 is added. The 

Lagrangian density C is defined from expression L = J d3xC. Now the Taylor series 
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of the generating functional Z[j] is given by 

(3.14) 

where 

inoj(t1)8j(t2) ... oj(tn) 

< OJT[Q(t1)Q(t2) · · · Q(tn)]JO > (3.15) 

is called then-point (Green's) function. Another Green's function which is called the 

connected Green's function is defined by 

snw[o] 
Tc(xi, X 2 ' ••• 'Xn) = inoj(t1)Dj(t2) · · · Oj(tn). (3.16) 

Graphically, 

(3.17) 

with 

W[j] = -lnZ[j]. (3.18) 

The relationship between the two above Green's functions is given by 

(3.19) 

Here disc. stands for disconnected diagrams, i.e., the sum over all possible partition 

Tc(xi, x2, · · ·, xn) : Tc(xi, x2)Tc(x3, · · ·, xn), Tc(xi, x2, x3)Tc(x4, · · ·, xn),etc. 

Since only the Hamiltonian of the type H = :~ + V(q) has been used in the 

derivation the (free field) Lagrangian .C(</>,8µ</>) (with V = 0) corresponds to the 

bilinear 

.C = ~ j dy<f>(x)D.-1(x,y)<f>(y) (3.20) 

where D_-1(x,y) is a differential operator. Thus, after some algebra, equation (3.20) 

brings equation (3.12) into the form 

Z[j] =exp{-~ j dxdy j(x)D.(x, y)J(y)} (3.21) 
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upon using the relation 

<f>(x) = - j f),.(x,y)j(y)dy. (3.22) 

The two point function is simply 

(3.23) 

Similarly, for vector fields A~(x), in which (3.12) becomes 

(3.24) 

one has 

iG~~(x,y) =< OJT[A~(x)A~(y)]JO > (3.25) 

and 

(3.26) 

3.2 Gauge-fixing Lagrangian Terms 

Consider now the generating functional (3.24) with j = 0 

(3.27) 

As can be seen in the Appendix F the Lagrangian £0 is invariant under the gauge 

transformation 

A'a = A(O)a = Aa + fabc()b Ac _ ~8 ea 
µ µ µ µ gµ. 

Because of this invariance the generating functional (3.27) can be written as 

Z[O] = JVA( 9) exp ifdx.C0 (A< 9),8A(9)) 

f VA(O) exp if dx.Co(A, 8A). 

(3.28) 

(3.29) 

Accordingly, integration over the gauge-transformed field A(O) in (3.29) diverges be­

cause it includes an infinite gauge freedom volume factor J Ilx,a dOa(x ). This factor 

should be factorized out before using the perturbation theory [Fad 67,Mut 87,Lei 87]; 
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otherwise it will lead to ill-defined Green's functions [Lei 87]. To eliminate this factor 

Faddeev and Popov [Fad 67] introduced a functional ~[A] via 

(3.30) 

where in the argument of the delta function we write Gµ instead of 8µ because we 

want to generalise this identity from the Lorentz gauge to other gauge choices. Here 

~[A] is gauge invariant since when we transform A into A(B) ~[A] becomes 

~[A<0>] = {! 'DB'o(G. A(BB')) }-l = {! 'D(BB')o(G. A(BB')) }-l = .6.[A] (3.31) 

where the second equality comes from the fact that exists the gauge group identity 

[Fra 70, Gil 74, Ryd 85] 

j VBJ(B) = j VBJ(BO'). (3.32) 

Now the identity (3.30) may be inserted, after replacing .6.[A] by .6.[A(8)], into the 

generating functional (3.29) 

Z[O] = j 'DB'DA(8).6.[A(8)]o(G · A(8)) exp i j dx.C0 (A(8>,aA(8)) 

= j 'DB'DA .6.[A]o(G ·A) exp i j dx.C0 (A, oA). (3.33) 

We see that this generating functional is explicitly proportional to the volume J VB. 

Therefore we can now factor out the volume and the generating functional becomes 

Z[O] = j VA .6.[A]o(G ·A) exp i j dx.C0 (A, 8A). (3.34) 

Consider now the factor o( G · A). This is nothing but the homogenous gauge 

condition G. A = 0 with GIL = aµ' nµ or xµ in the Lorentz gauge, the axial-type gauges 

or the FS gauge. It is advantageous to replace the homogenous gauge condition by 

the inhomogenous one 

G·A=B. (3.35) 

Accordingly the generating functional (3.34) becomes 

Z[O] = j VA .6.[A]o(G ·A- B) exp i j dx.C0 (A, 8A). (3.36) 
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Field translation ensures that Z[O] is independent of B( x) so one may integrate the 

right-hand side of (3.36) over B(x) with the help of a chosen weight function [Hoo 71, 

Lei 87]. The result is 

Z[O] = j VA ~[A] exp i j dx(Co + CgF) (3.37) 

where CgF is called the gauge-fixing term of the Lagrangian£,= £ 0 + CgF. Adding 

a source term in (3.37) one has 

Z[O] = j VA ~[A] exp i j dx(Co + CgF + jA). (3.38) 

This is the general form of the generating functional for Yang-Mills theories. The 

functional ~[A] will be derived in detail in the next chapter. The explicit form of the 

gauge-fixing Lagrangian CgF depends on the chosen weight function. If one chooses 

a Gaussian weight function 

(3.39) 

and integrates over B one ends up with 

(3.40) 

This Lagrangian may also be written in different form, namely in the form of auxiliary 

fields ca(x) [Nak 66, Mut 87]: 

(3.41) 

where in this formulation functional integration over ea must be added to the gener­

ating functional (3.38) 

Z[O] = j VAVC ~[A] exp i j dx(Co(A) + CgF(A, C) + jA). (3.42) 

The equivalence between the Lagrangian (3.40) and (3.41) is trivially proved by mak­

ing use of the identity 

b b2 

ax2 +bx+ c = a(x + -
2 

)2 + c- -
a 4a 

(3.43) 
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in the functional (3.42). Note that C(x) is an auxiliary field and therefore all physical 

observables should not depend on it [Fra 70]. This field is also called the Lagrange 

multiplier field [Fra 70], especially in the context of gauge-fixing Lagrangian 

£gF= CG·A (3.44) 

[Del 74, Kum 75, Kon 77, Itz 80, Cap 86, Kum 76]. In fact the Lagrangian (3.44) is 

only a special case of (3.41 ), i.e. the case when ,\ --. 0. 

The next section will be devoted to derivations of Green's functions or propaga­

tors. The derivations will be presented by recalling the bilinearity of the Lagrangian, 

equation (3.20) and (3.21), and by applying Euler-Lagrange equations and equation 

(3.26). 

3.3 Gauge Field Propagators 

The gauge field propagators depend significantly on the gauge fixing term of La­

grangian. By taking the gauge-fixing Lagrangian (3.41) into account the Lagrangian 

of the gauge fields reads 

(3.45) 

The propagator will be obtained first by deriving the fields Aaµ and ea in the form of 

their external sources via the Euler-Lagrange equations. Then, according to equation 

(3.26), the propagator emerges automatically. Using this method we ought to add 

external source terms to the Lagrangian (3.45) 

(3.46) 

where jaµ and Ka are the external sources of the fields Aaµ and ea respectively. The 

Euler-Lagrange equations 

(3.4 7) 
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lead to the field equations 

(3.48) 

(3.49) 

The (=F) factor in the second term on the left-hand side of (3.49) comes from the 

second term of (3.46): in the axial and FS gauges CGµ. Aµ. = +( Gµ.C)Aµ. while, after 

omitting surface term, CGµ. Aµ. = -( Gµ.C)Aµ. in the Lorentz gauge. Thus the upper 

sign, in this case (- ), in the last term on the left-hand side of equation (3.49) is for the 

Lorentz gauge whereas the lower sign is given for the axial and FS gauges. Note that 

equation (3.48) is nothing but the inhomogenous gauge condition. Now operating 

with D on (3.48) and 8µ. on (3.49) we obtain 

where 
fps= 1 

GµoA: + 2lps8 · Aa 

±(8. Gt1a. ja 

for the FS gauge 

0 for other (Lorentz and axial) gauges. 

(3.50) 

(3.51) 

(3.52) 

By operating with Gµ on (3.49) and using results (3.50) and (3.51) one obtains, after 

some rearrangement, 

Combination of (3.49), (3.51) and (3.53) leads to 

Aaµ(x) = -(8G- 3lps)-18µI<a - 0-1 {9µ.v - (8G- fps)- 1 (Gµ8v + 8µGv) + 

(8G - IFs)-28µG28v ± >..(8G - IFs)-1(8G + 3fps)-1 08µ.8v}j:. (3.54) 

In obtaining expression (3.54) the identities 

8G= G8+4fps 

8µ.(8G + a)±1 = (8G +a+ 1Fs)±1 8µ. 

xµ.(8G + a)±1 = (8G +a - IFs)±1xµ 
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(3.58) 

with a an arbitrary number have been employed. Finally using the definition (3.26) 

one extracts the propagators 

ab _ 8A~(x) 
Gµ.v(x,y) - - 8jbv(y) 

= 0-
1

{9µ.v - (oG - IFst1(Gµ.8v + 8µ.Gv) + (oG - IFst2oµ.G28v + 

± ).({)G - IFst1(8G + 31Fst1 Doµ.8v}8ab(x - y), (3.59) 

ab 8A~(x) 8A~(x) _1 ab 
Gµ.4(x, y) = - 8jb4(y) = - 8I<b(y) = (oG - 31Fs) 8µ.8 (x - y), (3.60) 

ab 8A~(x) 8Ca(x) _1 ab 
G4µ.(x,y) = - 8jbµ.(y) = - 8jbµ.(y) = =t=(8G) 0µ.8 (x - y), (3.61) 

ab 8A~(x) 8Ca(x) 
G44(x,y) = - 8jb4(y) = - 8I<b(y) = 0. (3.62) 

Thus we have the Lorentz, axial and FS gauge propagators 

aabµ.v ( ) L x,y - 0-1[9µ.v + (.\ - 1)0-1 aµ.av]8ab(x - y) 

Gabµ.4( ) L x,y - -G~b4µ.(x, y) = o-1aµ.8ab(x - y) (3.63) 

Gi,4(x, y) 0 

aabµ.v( ) A x,y - 0-1 [ µ.v - {)µ.nv + 8vnµ. n2 - ).O {)µ.{)v] 8ab( - ) 
9 o·n + (8·n) 2 x y 

aabµ.4( ) A x,y G'f4µ. ( x, y) = ( 8n )-1aµ.8ab ( x - y) (3.64) 

Gf44(x,y) 0 

Gabµ.v( ) 
FS x,y - 0-1 {gµ.v - (8x -1)-1 (xµ.av +{)µ.xv)+ (ox -1)-2aµ.x 2av 

- A(O:t -1)-1 (8x + 3)-1 0{)µ.{)v} 8ab(x, y) 

Gabµ.4( ) FS x,y - (ox - 3)-18µ.8ab(x - y) (3.65) 

Gab4µ( ) FS x,y - (ox)- 18µ.8ab(x - y) 

G}J'14(x, y) = 0. 
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The inverse propagator a-1abKL(x, y) where I<, L = o, ... 4 may be obtained in a 

straightforward way by recalling the bilinearity (equation (3.20)) of the Lagrangian 

(3.45): 

(3.66) 

after discarding the surface terms. Again, the upper sign in the second term is 

associated with the Lorentz gauge while the lower sign is for the axial and FS gauges. 

Hence the inverse of propagators (3.59-3.62) can be read off: 

G:f\x,y) = =FGµ.hab(x - y) 

04: ab ( x, y) = G µ. 15ab ( x - y) 

-lab( ) ab ) G 44 x, y = A.h ( x - y . 

The above inverse propagator may also be derived by the use of identity 

(3.67) 

(3.68) 

(3.69) 

(3. 70) 

(3.71) 

However such derivation is not straightforward and a few pages are needed to perform 

all the calculations (see Appendix E). 

In the limit A~ 0 we have 

and 

.CgF = C G ·A 

a:~(x,y) = 0-1 {9µ.v - (8G-1Fs)-1 (Gµ.8v + 8µ.Gv) + 

(8G - 1Fs)-28µ.G 28v}hab(x - y), 

G:~(x,y) = (8G- 31Fs)-1 8µ.hab(x -y), 

a:t(x,y) = =F(8G)-18µ.hab(x -y), 

a:!(x,y) = 0, 

and their inverse 
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G;;''b(x, y) = (Dgµv - 8µ8v)hab(x - y), 

G;fb ( x, y) = ":f G µ sab ( x - y), 

G4:ab(x, y) = Gµhab(x - y), 

G-lab( ) Q 
44 x, y = . 

In this limit the FS gauge propagator and its inverse are 

Gabµv( ) FS x,y = 0-1 {gµv - (8x - lt1(xµav + aµxv) 

+(ax - 1t2aµx 2av} sab(x - y) 

Gabµ4( ) FS x,y = (8x - 3t18µ8ab(x - y) 

Gab4µ( ) FS x,y = (8x)- 18µ8ab(x - y) 

G}PJ4(x, y) = 0 

-lab ) GFSµv(x,y = (Dgµv - 8µ8v)hab(x - y) 

-1 ab ( ) GFSµ4 x,y = -1 ab ( ) ab( ) GFs4µ x,y = xµh x-y 
-lab ( ) GFS44 x,y = 0. 

(3.77) 

(3. 78) 

(3. 79) 

(3.80) 

(3.81) 

To end this section let us compare the above propagators to those associated with 

the gauge-fixing Lagrangian £g:F1 = - 2\(G · A)2
: 

(8G - IFst28µG 2ov 

±.-\(8G - IFst1 (8G + 31Fst1 08µ8v} sab(x - y) (3.82) 

and 

(3.83) 

The derivation of these propagators can be carried out in a similar way as above (see 

Appendix E) and therefore we only show the final result here. 
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It turns out that the propagator associated with CgF1 is equal to (µ, v) components 

of the propagator associated with CoF2 • This equality is understood since both gauge­

fixing Lagrangians are equivalent in the context of generating functional. On the other 

hand, the physical components of the inverse propagator (3.67) is simpler: it is free 

from the gauge parameter A and is equal to the gauge parameter-free term of the 

inverse propagator (3.83). The appearance of extra components, cab4
µ. and cabµ.4 , 

in the propagator associated with Cg:F2 is due to the introduction of the auxiliary 

field ,C(x). However these extra components will not contribute to the scattering 

matrix and thus we may call them the unphysical components of the corresponding 

propagator but the remainder, (µ, v), are called the physical components. 

In perturbation calculations we will not use the FS gauge propagators (3.65) or 

(3.82) but because of its simplicity we will employ the FS gauge propagator and its 

inverse (3.81). 

Symmetry properties of propagators play an important role in simplifying pertur­

bation calculations and therefore we should derive them for the above propagators. 

The next section is devoted to the derivation of those symmetries. 

3.4 Properties of Gauge Field Propagators 

The symmetry properties of the propagator GJtL ( x, y) can be deduced immediately 

from identities below 

o'-1 t5(x - x') = o-1 t5(x - x') 

G~t5(x - x') = =t=Gµ.t5(x - x') 

(o'G' + a)-1 t5(x - x') = (±8G +a+ 4!Fs)-1 t5(x - x') 

(8G + a)±o-1 = o-1 (8G +a+ 2/Fs)± 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

where a is constant and G~, 8~ and D' refer to the variable x'. The proof of the above 

identities can be found in the Appendix B. By applying (3.85), (3.86) and then (3.56) 
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the unphysical components of the propagator G'ilL(x, x') have the property 

{3.89) 

Similarly, but with a few more lines of calculations, all the identities (3.84-3.88) and 

{3.55-3.58) can be applied to show that the physical components of the propagator 

obey 

a:~ ( x', x) = G~~ ( x, x'). {3.90) 

Thus we conclude that the propagators are symmetrical under interchanging both 

x +--+ x' and I< +--+ L simultaneously 

GJ; d x, x') = G[,~ { x', x), (3.91) 

as is consistent with Bose symmetry. Another symmetry 

(3.92) 

also holds for the physical components of the propagators (but it does not hold for 

the unphysical components) as is easily seen from (3.60-3.61) or (3.74-3.75). 

The physical components have another important property. If Gµ is operated on 

them the result is 

(3.93) 

Hence in the limit .X -+ 0 the physical components of the propagator G~~(x, x') are 

orthogonal to Gµ, 

GµGab (x x') = O· 
µv ' ' 

.X-+ 0. (3.94) 

3.5 Fock-Schwinger Gauge Propagators in Coor­

dinate and Momentum Spaces 

The explicit form of the physical components ot the FS gauge propagator (3.81) 

is complicated and will cause difficulties in scattering calculations. However these 

difficulties may be diminished by taking advantage of the symmetry properties of 

43 



the propagator without using its detailed form. In this section we will rewrite the 

propagator (3.81) in a more useful way. 

Let us consider the physical components of the FS gauge propagator (3.81) 

Gµ.,_,(x, x') = 0-1 {gµ.,,, - (8x -1)-1(xµ.8,,, + 8µ.x,,,) + (8x -1)-28µ.x 28,,,} 8(x - x') 

(3.95) 

where for simplicity we have dropped index F S and color indices a and b. The 

first term on the right-hand side is the Feynman gauge propagator GF,..,(x, x') and 

the remaining terms, G~,_,(x, x'), are the contributions associated with the FS gauge 

condition. In this section we only pay attention to G~,_,(x, x'). 

Gµ,_,(x, x') GF,..,(x,x') + G~Ax,x') (3.96) 

0-1 {-(ax - 1t1(xµ8,,, + 8µx,,,) + (8x - 1)-28µx 2811} 5(x - x')• 
(3. 97) 

When evaluating the scattering matrix, the fermion (or boson) propagator as well 

as the gauge field propagator play a crucial role. The intricacies of perturbation calcu­

lations depend significantly on these propagators. Since the basic form of the fermion 

propagator is an inverse of differential operator 8µ (inverse of D in the case of the 

boson propagator) the gauge field propagator will facilitate perturbation calculations 

if it contains factors of differential operators. Because of this reason we should cast 

the propagator G~,_,(x, x') into derivatives of some functions. Since Gµ,_,(x, x') is a two 

point function one may relate indicesµ and v with derivatives with respect to x and 

x' respectively. In this way one can arrive at the more useful form, 

(3.98) 

where 8~ = a:'"' and 

f1µ.(x, x') 
1 

- -D-1xµ(8x - 1)-18(x - x') + 2o-1x28µ.(8x - 1)-28(x - x') (3. 9 9) 

hµ.(x, x') 
~ 1 

- +o-1(8x - lt1xµ8(x - x') - 20-1 (8x - It28µ.x 28(x - x'] (3.100) 

Identities (3.56) and (3.57) have been used to obtain (3.100). According to the sym­

metry (3.90), or else by applying (3.55), (3.56) and (3.57) on (3.100) directly, one 
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has 

f1µ.(x, x') = hµ(x', x). (3.101) 

The momentum space form of (3.97) or (3.98) can also be obtained. Recalling the 

symmetry (3.101) and the definition (3.100 ) one has, after some algebra, 

8~/iµ(x', x) = 8~f2µ.(x, x') 

o-2 aµ.8 11 (8x - lt1h'(x - x') + txµo- 1a"G3(x',x) 

+to-1 (x~8~ + gµ. 11 )G1(x, x') + to-1 (x
12 
8~8~ + 2x~8~)H1(x, x') 

(3.102) 

where we have defined 

(8x - n)Gn(x,x') = 8(x - x') (3.103) 

(3.104) 

Gn(x, x') and Hn(x, x') may be obtained as follows. After introducing a parameter 

j3 via a replacement x ---+ j3x in equation (3.103) the operator xo in (3.103) can be 

replaced by an operator j3 d~ because xo acts on a function of j3x, viz. Gn(f3x, x'). 

Thus, equation (3.103) becomes 

[/3 d~ - (n -4)] Gn(f3x,x') = 8(j3x - x'). (3.105) 

To simplify this equation we may replace the parameter j3 by another parameter 

a= ~- After some algebra we arrive at 

d n 4G ( X ') n 1 "( ') -d a n -,x =-a ox - ax . 
a a 

(3.106) 

(Note that in deriving equation (3.106) we used a trick, namely, we multiply both­

sides of equation (3.105) by a factor an-s). Equation (3.106) yields a solution 

Accordingly, the function Hn(x, x') defined in (3.104) follows immediately 

= lim (X) da e-°'8an-1Gn(x,ax'). 
c5-++oli 
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A few simple cases are, 

G1 ( x' x') = J dk 1= da e-aS e-ik(x-ax') 

H1(x,x') = j dk 1= da e-aSlnae-ik(x-ax') 

Ga ( X' x') = J dk 1= da e-aS a2 e-ik(x-ax') 

(3.109) 

(3.110) 

(3.111) 

where dk = (27r)-4d4 k and from now on we neglect the specification lim6_+o' except 

where needed. Putting (3.109), 3.110) and (3.111) into equation (3.102) we get 

a~Jiµ.(x',x) 

- o-2aµ.av(8x -1)-1b(x - x') - ~I _J;2 fi°0 da caS iaxµ.kv e-ik(ax-x') 

+ 1 J dk loo d -as [ + . ' k + 2 . ' k 1 2 -k2 1 a e 9µ.v iaxµ. v iaxv µ. n a 

-y2kµ.kva2 ln a] e-ik(x-ax'). 

(3.112) 

This is the second term of (3.98). The first term of (3.98) can be obtained from 

(3.112) by interchanging x ~ x' and µ ~ v and the symmetry (3.101). Hence the 

propagator (3.98) reads 

G~v(x, x') 

! loo da e-aS I dk e-ik(x-ax') x 
2 1 -k2 

[9µ.v + iax~kv + ia(l + 2lna)x~kµ. - x,2 kµ.kva 2 lna] (3.113) 

+! roo da e-aS J dk e-ik(ax-x') X 
2 Jt -k2 

[9µ.11 - iax,,kµ. - ia(l + 2 ln a)xµ.k11 - x2kµ.k 11a2 ln a] 

where we have used the identity 

(3.114) 

The propagator (3.113) agrees with Kummer and Weiser [Kum 86]. In their 

derivation they did not introduce formula (3.98) but directly worked out (3.71) by 

rewriting the propagator GAB(x, x') in the form 

(3.115) 
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with 

Gµ.v(k, x') 

G4µ.(k, x') 

Agµ.v + Bkµ.kv + Cx~x~ + Dx~k,,, + Ekµ.x~ 

akµ. +bx~ (3.116) 

where the coefficients A, B, ···,a, b, · · · are functions of k2
, kx' and x 12

• They found 

that the resulting propagator does not obey the symmetry (3.91). The contradiction 

is understandable because in order to keep Gµv(x,x') symmetric Gµv(k,x') in (3.115) 

must be necessarily free from x~; it is only a function of forms like exp( ikx')Gµv(k, k'). 

However since the inverse propagator contains x~, x~ appears in Gµv(k, x') too. To 

escape the contradiction Kummer and Weiser then proposed a symmetric propagator 

Gµv(x, x'): 

Gµ.v(x, x') = ~[Gµv(x, x') + G,,,µ(x', x)] (3.117) 

after claiming that G BA ( x', x) is also a solution of (3. 71). They were then able to 

obtain (3.113). 

The propagator in momentum space (3.113) can be obtained from coordinate 

space as a Fourier transform, 

G~,,,(x, x') = j !~2 1
00 

d/3 [J,,,(,B, k, Ok, x')kµ e-i,Bkx + gµ(/3, k, Ok, x )k,,, ei,Bkx'] 

(3.118) 

although all reference to the coordinates does not go into exponential. Above, 

f µ.(/3, k, Ok, x) = !e-.88 { eikx 8%,. + 8(/3 - 1) Ji°° da eiakx x 

[ia(l + 2 ln a)xµ - a 2 ln akµ.x 2
]} 

g (/3 k 0 x) - !e-.B8{e-ikx _.2__ + 8((3 - 1) f 00 da e-iakx X 
µ ' ' k, - 2 8kl' 1 

with their properties 

Hence, 

[-ia(l + 2lna)xµ. - a 2 lnakµ.x 2]} 

fµ.(/3, k, Ok, x) = -gµ(,B, -k, -ok, x), 

fµ.(/3,k,Ok,-X) = +gµ(,8,k,Ok,X). 

G~,,,(x,x') = j !~2 1
00 

d/3 [g,,,(/3,k,ok,x')kµ.ei,Bkx + (µ +-+ v,x +-+ x')]. 
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To summarize, the physical components of the Green's function (3.81) have the 

form: 

Coordinate space 

cabµv(x, x') = cc;µv ( x' x') + oµ Jibv ( x' x') + o"' J;bµ ( x' x') 

ffbµ(x, x') = Jabµ( I ) 
2 x,x 

0-1 [-xµ(ox -1)-1 + ~x2oµ(ox - 1)-2 ]b'ab(x, x') 

ff bµ ( x, x') = Dab ff ( x, x'). 

Momentum space 

G~t ( x, x') = G'J.t., ( x, x') + I !;2 f1
00 df3 [ J;b ((3, k, ok, x') kµ e-if3kx 

+g~b({3, k, Ok, X )kv eif3kx'] 

f;b({3, k, ok, x) = -g~b({3, -k, -ok, x) 

J;b({3, k, Ok, -x) = g;b({3, k, Ok, x) 

f;b({3,k,Ok 1 X) = Dabfµ({3,k,Ok,X) 

(3.122) 

(3.123) 

where cc;µv(x, x') = 8abgµvo- 18(x- x') is the Feynman gauge propagator. Note that 

the Green functions (3.123) are not fully in momentum space because the space-time 

coordinates x and x' in (3.123) still exist. 

The propagators we have derived here will be used in the next chapter to obtain 

the Ward-Takahashi and the BRST identities. 
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Chapter 4 

Ward-Takahashi and BRST 

Identities 

The Ward-Takahashi and the BRST identities will be derived here. Since the FS 

gauge theory is a ghost-free theory its BRST identity will also be derived without 

introducing the ghost fields. Both kind of BRST identities will be compared. The 

ghost-free version of the FS gauge theory will be obtained in the first part of the 

chapter. 

4.1 Ghost-free Fock-Schwinger-Gauge Formula­

tions 

The generating functional in the Yang-Mills theory 

Z[J] = J VA .6.[A] ei f dx(.Co+.C9 .r+JA) (4.1) 

has been derived in the previous chapter. Here we will focus mainly on the func­

tional .6.[A). Its general form will be derived and its responsibility for the ap­

pearance of the nonphysical, ghost, fields will be discussed. The derivation of this 

functional will follow the work of Muta [Mut 87). 
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Let us begin with the definition of .6.[A] as given in the previous chapter 

(.6.[A])-1 = jITvsb6(G. A(s) 0

) 

b 

(4.2) 

where sa is the gauge parameter of the gauge transformation 

(4.3) 

fabc being the structure constant of the gauge group and g a coupling constant. 

The above integral may be written as 

( L'>[AJr1 - j I.IV( G" A~-l") [ .5( G;:.~l°r 5( G · A<»") 

(detMa)-1
• (4.4) 

Hence 

.6.[A] = det Ma (4.5) 

and 

(4.6) 

Since other integrands in ( 4.1) are in an exponential form it is advantagous to write 

.6.[A] in such a form. Fortunately the determinant of a matrix may be so expressed. 

For the matrix Ma one may write 

det iMa = j Vx'Dx* exp ( -i j dx j dy x*
0 

( x )M(}( x, y )l(Y)) . ( 4. 7) 

Here x and x* are two independent fictitious fields called the Faddeev-Popov ghost 

fields. They are anticommuting like fermions. The explicit derivation of the above 

expression can be seen in many textbooks (see for example [Ryd 85]) and, thus, 

no derivation is needed here. Now by inserting ( 4. 7) into ( 4.5) and then ( 4.5) into 

( 4.1) the generating functional ( 4.1) becomes, up to irrelevant factor 

Z[J, e, e*] = j 'D[Axx*] exp { i j dx [Co+ £g.1' 

- j dyx*
0

(x)Mab(x,y)l(Y)+AaJa+x*
0

ea+e*
0

xa]} (4.8) 
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where V[Axx*] = VAVxVx* for short and ea and e*0 

are the external sources for 

the ghost fields x* 0 

and xa respectively. It turns out that .6.[A) is responsible for 

the appearance of the ghost fields x* 0 

and xa. 

Let us now find the explicit form of the matrix element M(}(x, y) for some gauge 

conditions. Inserting ( 4.3) into ( 4.6) one has 

M(}(x, y) = (rbcGµ A~ - ;sabGµ8µ) 8(x - y) 

= -~GµDab8(x - y) 
g µ 

(4.9) 

where 

( 4.10) 

The expression ( 4.9) can be written as 

(4.11) 

subject to the homogenous gauge condition G · A = 0. It turns out that the 

dependence of M(/ on A~ arises through the first term of the right-hand side of 

equation (4.11). When this term vanishes the element matrix M(/ is independent of 

the gauge field A~. As a consequence integrations over x and x* in the generating 

functional ( 4.8) reduce to just a number that can be absorbed into the normalization 

factor. In that case, theories with the generating functional ( 4.8) are ghost-free. It is 

obvious that Abelian theories are ghost-free theories since rbc = 0. In non-Abelian 

theories, on the other hand, rbc is not zero in general and thus the independence of 

M(:} on the gauge field A~ hinges on the value of AcµGw Accordingly, non-Abelian 

theories in the Lorentz gauge are not ghost-free since A~Gµ = A~oµ ~O. On the 

other hand, A~xµ = xµ A~ = 0 means that the FS gauge theory is not haunted by 

ghost. 
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4.2 Local Gauge and BRST Invariances of La-

• grang1ans 

Consider the Lagrangian density of a system of quarks and massless gluons 

where 
Dµ, = 8µ, - igTaA~ 

Fµ,v = Dµ,Av - D,,Aµ, 

[Ta, Tb] = i rbcTc. 

Under the infinitesimal local gauge transformations 

with 

,,P(x)---+ ,,P'(x) = U(x),,P(x) = (1- igTaAa(x)),,P(x) 

,,P(x)---+ ,,P'(x) = ,,P(x)U*(x) = ,,P(x)(l + igTaAa(x)) 

A~(x)---+ A:(x) = A~ - D~bAb 

U(x) = e-igTaAa(x) 

nab= µ, baba"' - grbc A~ 

Aa = .!sa g 

(4.12) 

( 4.13) 

( 4.14) 

(4.15) 

the Lagrangian density £ 0 is invariant because F;,,Faµ,v, ,,P,,P and ,,PDµ,,,P are gauge 

invariant quantities. 

If we add .Cg:F = CG ·A+ ~C2 to the Lagrangian £ 0 , the new Lagrangian 

£ 0 + .Cg:F is no longer gauge invariant due to the non-gauge invariance of .Cg:F. 

Nevertheless when the Faddeev-Popov ghost Lagrangian .C:F'P = -x*a MabXb is also 

added one can find larger transformations which make the Lagrangian 

.C = .Co + .Cg:F + .C:F'P (4.16) 

invariant. These transformations consist of the local gauge transformations ( 4.14) 
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and transformations related to x' x* and c 
la xa + oxa Xa - ~gO rbcxbxc x - -
la x*a + ox*a x* - x•a + oca (4.17) 

Gia= ea+ oca ea 

where 0 is defined from 

( 4.18) 

() must be a Grassmann number since xa is an anticommuting ghost field. In order 

to keep the reality of A a, () is restricted by relations 

( 4.19) 

The local gauge trasformations ( 4.14) together with the transformations ( 4.17) 

are well-known and are called the BRST transformations following the work of 

Becchi, Rouet, Stora [Bee 74, Bee 76] and Tyutin [Tyu 75]. The detailed proof of 

the BRST invariance of the Lagrangian ( 4.16) is given in Appendix F. 

4.3 Ward-Takahashi Identities 

The invariance of a Lagrangian under certain transformations produces some 

consequences. In quantum electrodynamics the invariance of the Lagrangian £ 0 

under the gauge transformation will result in the so-called the Ward-Takahashi 

identities [War 50, Tak 57]. In this section those identities will be derived. We will 

find that the Ward-Takahashi identities will be slightly different with the gauge­

fixing Lagrangian LQF· However they all imply orthogonality of photon self-energy. 

To obtain the Ward-Takahashi identities let us consider the generating func­

tional of quantum electrodynamics 

Z[J, 17, 17, I<]= j '.D[A1f,npC] exp i j dx(Co + CgF + AJ + 1/;77 + 771/J +CJ<) (4.20) 

where £9F = CG ·A+ ~C2 is the chosen gauge fixing Lagrangian and ]{ represents 

the external source of the auxiliary or multiplier field C. Here .6.[A] described in 
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the previous chapter is just a constant and included in the normalization constant. 

The above generating functional remains unchanged under arbitrary field variables 

transformations 

Z[J,17,17,K] = j V[A'1tl1fi'C'] expi j dx(.C'o+.C(iJ:+A'J+1fi'11+171fi'+C'K). (4.21) 

If the local gauge transformations (4.14), with g the electron charge e and one 

color index, are chosen as the field transformations the generating functional ( 4.21) 

becomes 

Z[J, 17, 17, K] j V[A1/i1fiC] exp i j dx(.Co + £'g:F +A' J + 1fi'77 + 771fi' + C' K) 

j V[A1/i1fiC] exp [i j dx(£o + £g:F + AJ + 1/i77 + TitP +CK)] x 

{ 1 + i j dx [b.Cg:F + (bA) · J + (b1/i)77+17b1fi] + ·· ·}. (4.22) 

In obtaining the above expression we use the fact that the integral measure 

V[A1/i1/iC] and the Lagrangian £ 0 are gauge transformation invariant (see Appendix 

F). Equating (4.20) and (4.22) one gets 

0 = bZ[J,17,fi,K] = j V[A1/i1fiC] j dx [b£g:F+ (bA) · J + (b1/i)11 + 

Tjb1/i + (bC)K] eis 

with 

S = j dx(.Co + .Cg:F + AJ + 1/i11 + rN +CK). 

(4.23) 

(4.24) 

To rewrite the identity ( 4.23) in a more useful form let us combine the variation of 

.Cg:F and CK 

b.Cg:F + (bC)K = (bC)(K + G ·A+ >.C) + CGµbAµ = CGµbAµ = :i=(GµC)bAw 

(4.25) 

The b C term in the above expression vanishes since, according to the Euler­

Lagrange equation, 

K + G · A + >.C = 0. (4.26) 
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This also means that the action S is invariant under any transformation of C. 

Now the identity ( 4.23) becomes 

0 = j dxA(x)[::r=8µGµC + 8 · J + ie,,P17 - ie17,,P]Z[J, 77, 77, K] 

·a Gµ8Z a JZ 8Z _8Z = ±z µ 8K + . + e17 817 - e17 81( (4.27) 

This is the Ward-Takahashi identity in the functional form. The upper (lower) sign 

in the first term on the right-hand side of equation ( 4.27) is associated with the 

Lorentz gauge (the axial and FS gauges). It turns out that the Ward-Takahashi 

identities differ only slightly with gauge choices. 

As has been mentioned in the previous chapter, the generating functional 

Z[J, 17, 77, K] consist of connected and disconnected Feynman diagrams. Since only 

the connected diagrams contribute to S - 1, the nontrivial part of the scattering 

matrix S, it is advantageous to rewrite the Ward-Takahashi identity (4.27) in the 

terms of the connected generating functional W[J, TJ, 77, K]. The relation between 

both kind of functionals is given by 

Since 

8Z . 8W 
8Jµ = zZ 8Jµ; 

Z[J, TJ, 77, K] =exp iW[J, 17, 77, K]. 

8Z _ ·z8W. 
8TJ - z 8TJ ' 

the Ward-Takahashi identity ( 4.27) becomes 

·a Gµ8W ·a J 8W _8W ± z µ 8K - z • + eT/ 817 - eT/ 877 = 0. 

(4.28) 

(4.29) 

(4.30) 

It is instructive and useful to express the identity in terms of another functional 

called the effective action r[A, 'I/;, ,,P, C] which generates one-particle irreducible di­

agrams. This is defined by 

r[A, 'I/;, 'I/;, C] = W[J, TJ, 77, K] - j dx[J ·A+ 'l/JTJ + 771/i +CK] ( 4.31) 

with 

8W _ Aµ; 
8W _ 

-1/i; 8W _ ,,P; 8W c ur- Ti/- 677 - ""FK = 

&= -Jµ; 8r 8I' - 8I' - -K. 
(4.32) 

8,,P - -TJ; Fi/) - 77; m-
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Accordingly the Ward-Takahashi identity ( 4.30) changes into 

± ·a GµC ·aµ hT ·'·bf ·'·bf - 0 
i µ + i bAµ - e'f/ b,P + e'f/-;f - . (4.33) 

Equations ( 4.30) and ( 4.33) form a complete formulation of the Ward-Takahashi 

identities of quantum electrodynamics. The identity ( 4.30) is the Ward-Takahashi 

identity in the form of external sources whereas the corresponding identity given in 

the form of field variables is shown in equations ( 4.33). 

Finally consider some consequences relating to the identity ( 4.33). Functionally 

differentiating the identity with respect to 1/J(x1 ) and 1/J(x2 ) and setting A= 1/J = 

'I/; = C = 0 one gets 

Differentiating ( 4.33) with respect to Aµ(y) and then putting A = 1/J = 'I/; = 0, one 

obtains 

- 8 b2f[O] - 8 [ -t'"'( ) µv( )] 
0 - µbAµ(x)bAv(Y) - µ G x,y - II x,y . (4.35) 

This gives 

(4.36) 

because 

(4.37) 

Lastly, functionally differentiate (4.33) with respect to C(y) and take C = A = 
'I/; = 1/J = Oj we have a trivial result 

4.4 Slavnov-Tay lor Identities 

The Ward-Takahashi identities in non-Abelian theories were first derived by 

Taylor [Tay 71] and Slavnov [Sla 72]. Since then the identities often bear their 

names. The derivation of the Slavnov-Taylor identity is analogous to the derivation 
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of the Ward-Takahashi identity previously discussed. This section is devoted to the 

derivation of it. 

Instead of the generating functional ( 4.20) we begin with the generating func­

tional 

Z[J, K] = j 'D[AC] .6.[A] expi j dx(.Co + .Cg:F + AJ +CK). (4.39) 

We leave out the fermion fields because they are irrelevant to our discussion . .6.[A] 

is crucial in non-Abelian theories as it is dependent on the gauge fields Aµ and thus 

cannot be included in the normalization factor. 

Taking advantage of the gauge invariance of V[AC] and .6.p[A] the generating 

functional ( 4.39) is equivalent to 

Z[J, K] = j 'D[AC] .6.[A] expi j dx(.C0 + .C'g:F +A' J + C' I<), (4.40) 

and therefore 

0 = 8Z = j dx (8.Cg:F + J · 8A + (8C)I<)Z. ( 4.41) 

Even though its general form is similar to the identity ( 4.23) there is a difference. 

The difference between both is associated with the form of 8A. In non-Abelian 

theories, 8A is dependent on the gauge field A while in Abelian theories it is not. 

This dependence of 8A on A in (4.41) leads to difficulties in reformulating this 

identity into the way we have treated with the Ward-Takahashi identity. We show 

this difficulty below. 

Now let us define 

(4.42) 

Accordingly we have 

( 4.43) 

and 

(4.44) 
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Hence we obtain the Slavnov-Taylor identity 

_ [ 8 J bµ ) be( 8 ) -le"( . 8 )] 0 - i8J<a + dyJ (y D"' i8J M y, x, i8J Z. (4.45) 

It turns out that the appearance of M(y, x; iffJ) leads to difficulties in express­

ing the Slavnov-Taylor identity ( 4.45) compactly for one-particle irreducible func­

tions [Lee 76, Itz 80, Tho 82]. This problem was resolved by Becchi, Rouet, Stora 

[Bee 7 4, Bee 76] and Tyutin [Tyu 75] who replaced the gauge transformations with 

their extended BRST transformations. 

One important point that should be noted is that in ghost-free gauges like 

the FS gauge the quantity M is independent of 6~. In that case the Slavnov­

Taylor identity ( 4.45) may be translated easily into an identity for the one-particle 

irreducible functions. Thus reformulation of the above identity into the Ward..., 

Takahashi-like form may be carried out and is given in the last part of the next 

section. It ha.ppens to be identical to the BRST identity in the ghost-free gauges. 

4.5 BRST Identities 

The derivation of the BRST identity is similar to the derivation of the Ward­

Takahashi identity. Instead of the gauge transformation (4.14) the BRST transfor­

mations ( 4.14). and ( 4.17) are used as the symmetry of the Lagrangian. The identity 

will be more complicated compared to the Ward-Takahashi identity. However, in 

ghost-free theories such as the FS gauge theory, the ghost fields may be discarded. 

As a result the BRST transformations simplify to the local gauge transformation 

version. In this section we will derive the BRST identities in both: by keeping and 

excluding the ghost terms in the generating functional 

with 

Z[J, TJ, fj, e, C, I<] = j 'D[At/Jt/Jxx*C] exp { i j dx [c +A· J + fjt/J + tPT/ 

+x·e + Cx +CK]} 
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Since the Lagrangian .C and the integral measure V[A'!fJ'!/Jxx*C] are BRST invariant 

(see Appendix F), one has 

o - 8Z[J,.,,,11,e,c,Kl 

- j dx [8A · J + 178'!/J + (8"if)71 + (8x*)e + e·8x + K8C] Z[J, 71, 17, e, {*, K] 

- j V[A'!/J?/ixx*C] j dx [oJa" n:bxb + igfjOTaxa'!/J - igO?fiTaxa11 + ocaea 

- ~rbc{*00ixc] expiS (4.48) 

with 

s = J dx [.c +A· J + r;tfi + '!/J11 + x·e + Cx +CK]. (4.49) 

To rewrite ( 4.48) in the form of external source variations one should introduce new 

anticommuting source ua" and commuting sources va, w and w in the action S, 

( 4.50) 

This new action does not lead to different identities, i.e. the identity ( 4.48) remains 

unchanged since D~bxb, rbcxbxc, x?/i and ?/ix are BRST invariant as is checked 

in Appendix F: 

(4.51) 

Note also that under the BRST transformations the following equations hold 

(4.52) 

This means that the BRST transformations are nilpotent. Now under the new 

action (4.50) the identity (4.48) reads 

J dx [Jaµ 8 Z + 8 Z ta _ t*a 8 Z __ 8 Z + 8 Z l = O 
8uaµ 8Ka"' "' 8va 11 8w 8w 11 (4.53) 

or in the form of connected generating functional W = -i In Z 

(4.54) 
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Equations ( 4.53) and ( 4.54) are the BRST identities in the generating and connected 

generating functional forms respectively. If we define the effective action r 

r[A, .,P, .,P, x, x*, C, u, v, w, w] = W[J, 17, Tf, e, e·, K, u, v, w, w] 

- j dx[J ·A+ x·e + e·x + .,P17 + r;.,P +CK] 

(4.55) 

where 
bW Aa· bW _ -x*Q; bW _ xa; bJrrfE = JL' ~- bCa -
bW _ -.,P; bW _ .,P; bW C· Ti/- hr; - ""S'K = ' 
br -Ja· br 
~= µl bx*a = -ea; br e*a; F?= 

bT = -17; 
br _ r;; bT -K; 

bi!J Fi/) - FD= 
bW bT 1 bZ 

t = uaµ,va,w,w Tt = Tt = iZTt' 

equation (4.54) becomes 

J dx [ hr br ea br hr br hf hr + hr hf l = 0 
bA~ huaµ + hx*11 + hxa bva + b.,P hw hw b.,P · 

(4.56) 

(4.57) 

The functional derivative with respect to x*11 

may be replaced by functional deriva-

tive with respect to uaµ by the use of the ghost field equation 

(4.58) 

Hence 

J dx { hr [ hr ± Gµca] + br ~ + bf br + bf br} = o, 
huaµ hA~ bxa bva h.,P hw bw h.,P 

( 4.59) 

after performing integration by parts in the second term for the Lorentz gauge. 

The identity like ( 4.36) can be obtained by functionally differentiating equation 

(4.59) with respect to Ab11(y) and xc(z) and setting all fields to zero. We obtain, 

0 _ J d b2r[O] h2r[O] _ a rrabµv( ) _ 
- x hxc(z)buaJL(x) bA~(x)bAt(Y) - µ. x, y - O (4.60) 

after recalling ( 4.37), i.e. the self-energy remains transversal even in non-Abelian 

theories. Other identities similar to ( 4.34) may also be derived, namely by func­

tionally differentiating (4.59) with respect to xb(y), .,P(z) and .,P(t). 
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We have derived the BRST identities in the Lorentz, axial-type and FS gauges. 

In deriving the BRST identity ghost fields must be included in the Lorentz gauge. 

In ghost-free gauges such as the axial and FS gauges, on the other hand, the BRST 

identities may be derived by neglecting the ghost fields. Since this derivation has 

not been carried out the BRST identity in the FS gauge without using the ghost 

fields will now be obtained. 

By excluding the ghost terms the generating functional ( 4.46) reduces to ( 4.39). 

Since we are still working with the non-Abelian theory color indices a should be 

retained in the generating functional (4.20), but .6.[A] in (4.39) may be omitted 

in ghost-free cases. The exclusion of ghost fields effectively reduces the BRST 

transformations to the local gauge transformations (4.14). Therefore the identity 

that we are looking for is 

(4.61) 

This is nothing but the identity ( 4.41) (after including fermion terms) or the non­

Abelian version of the identity ( 4.23). Note that the term I<a8ca in ( 4.61) is 

excluded since 8Ca = 0. 

To derive the above BRST identity (and thus the Slavnov-Taylor identity) in the 

FS ghost-free gauge more explicitly, let us consider the first two terms of identity 

(4.61). According to the gauge transformation (4.14) these terms become 

8.CgF + 8Aaµ 1: = (Caxµ + 1;)8Aaµ 

Ab[8abaµ + grbc Acµ](Caxµ + l;) (4.62) 

after discarding the surface terms. Inserting ( 4.62) into ( 4.61) and recalling the 

variation of the fermion fields according to the gauge transformation (4.14) we 

obtain the BRST identity 

i8abaµx 8Z +gfabcx 82Z _ 8ab81aµz 
µ FJ(7E µ bJcbK4 µ 

µ 

+igjabclaµ!fo- gTb7l%f + gTbr;%f-. 

0= 
(4.63) 
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In terms of the connected generating functional W and the effective action r the 

BRST identity ( 4.63) is given by 

or 

i8abaµ.x 8W + gfabcx (i8W 8W + 8
2
W ) µ. F"J{7E µ. FY. FJ(rE /j J c/j Ka µ. µ. 0= 

+i8aba Jaµ.+ igrbcJaµ. 8W _ gTb71 8W + gTbr;81!:" µ. F? ., 7ii/ b¥7 

0 = i8abaµ.xµ.Ca + igrbcxµ.Acµ.ca - i8abaµ.~ 

-igjabc Acµ.~+ gTbt/i~~ _ gTbtJi~. 

(4.64) 

(4.65) 

In contrast to the BRST identity ( 4.59), the BRST identity ( 4.65) is simpler in 

the sense that the latter identity does not contain composite sources u, v, wand w. 

Their difference from the Ward-Takahashi identity ( 4.33) is due to the rbc_terms. 

Thus when we change non-Abelian theories into Abelian theories the BRST identity 

( 4.65) will reduce to the Ward-Takahashi identity ( 4.33). 

Now suppose the identity ( 4.65) is functionally differentiated with respect to 

Adv(y) and then setting all fields to zero. In that case the only term in the identity 

that survives is the third term, and it becomes 

(4.66) 

This equation is the same as the equation ( 4.60), thus it gives the same result 

(4.67) 

It is obvious that the contributions of fermion terms, such as the identity like ( 4.34 ), 

are the same as found previously. 

To end this chapter let us briefly summarize our results. We have rederived the 

Ward-Takahashi identity in quantum electrodynamics. In non-Abelian gauges the 

difficulties in expressing the Slavnov-Taylor identities (the equivalence of the Ward­

Takahashi identities) on one-particle irreducible functions leads one to introducing 

a new symmetry, the BRST symmetry. The BRST invariance of the Lagrangian 

results in the BRST identity, replacing the Slavnov-Taylor identity. The BRST 

identity in the FS gauge has been derived in two cases. The first version includes 
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the ghost fields and composite sources such as u, v, w and w. The resulting identity 

therefore consists of such sources as well as the original ones (gauge, fermion and 

ghost sources). In the second case the derivation has been carried out by excluding 

the ghost fields. As a result the identity reduces to the Slavnov-Taylor identity and 

no composite sources need be introduced; it just consists of the original sources and 

is much simpler. 
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Chapter 5 

One-Loop Graphs in the 

Fock-Schwinger Gauge 

The FS gauge propagator with the gauge parameter >. ---+ 0 will be used to 

work out all the following perturbative calculations. In scalar and spinor quantum 

electrodynamics calculations will be performed both in "momentum space" and 

coordinate space. Problems with translational invariance in quantum chromody­

namics lead to difficulties in carrying out the scattering computations in momentum 

space; In this particular case the evaluations will be done only in coordinate space. 

Throughout the chapter we only write the basic form of each diagram and its final 

form before and after putting the diagram on the mass-shell (ms) condition. Details 

of calculations which are sometimes tedious can be seen in the Appendix G. 

5.1 Feynman Rules 

The Feynman rules of spinor and scalar quantum electrodynamics and quantum 

chromodynamics stemming from the books of Itzykson and Zuber [Itz 80] and Muta 

[Mut 87] are summarized below. 
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5.1.1 Spinor Electrodynamics 

Fields 

t/J(x) x tfJ(x) x 

Vertex 

i-ie-y' 
Propagators 

,------, 
x--~--y tfJ(x)tfJ(y) = iSp(x - y) =< OITt/J(x)tfJ(y)IO > 

x,µ~,v Aµ(x)A 11(y) = iGµ 11 (x, y) =< OIT Aµ(x)Av(y)jO > 

5.1.2 Scalar Electrodynamics 

Fields 

Vertices 

_____ _I ____ _ 
Pl X P2 

Propagators 

x .. ---<-- --•y 

x,µ~,v 

Symmetry factor 

-

---~--- .... 
rjJ(x) x 

_: _:z__ 2 · 2 µv 
x ze g 

i(x)rjJl(y) = iSB(x -y) =< OjTrjJ(x)cpt(y)jO > 

,_ 
Aµ(x)Av(Y) = iGµv(x,y) =< OjTAµ(x)Av(Y)IO > 

___ Q ___ _ 
x 

1 
2! 

note: 8JL acts purely on scalar fields. 
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5.1.3 Quantum Chromodynamics 

Fields 

:r; :r; 

...•. .• <·· •...••• .......... , ..........• 
x,a x,a 

Vertices 

a{µ 

b • ·<· · .L · · <- •c · fabcGbµ x ~zg 

a,µ 

igrbcvji'pb,c)( Bx) 
c,p 

k2 b,v = igrbc[9µ11( 8£~) - 8£~) + 911p( a£~ - a£~) ks X 

+gpµ( a£~ - a£~))] 

a,µ 

_ · 2[Jeabjecd( ) - -zg 9µp911u - 9µu911p 

d,u +feacjedb ( ) 9µu911p - 9µ119pu 

+rad rbc(9µ119pu - 9µp911u )] 

c,p 
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Propagators 

J 

x y 

a~ 
x y 

a b 
···········f············ x y 

Symmetry factors 

iS(l(x - y) = i8abSB(x - y), m = 0 

(Lorentz gauge) 

~-Q 
1 

2! 
1 

2! 
1 

3! 

5.2 One-loop Corrections in Spinar Electrody-

• nam1cs 

The FS gauge propagators which have been derived in Chapter 3 can be written 

in a general form 

Gµv ( X, Y) = G'; ( X, y) + Gtµv ( X, y) (5.1) 

where G~ ( x, y) are the Feynman gauge propagators 

(5.2) 

Since calculations of scattering diagrams in the Feynman gauge can be found in 

almost all textbooks on quantum field theory, it is sufficient to only consider the 

corrections due to G'µ"(x,y) when one works diagrams which are linear in gauge 

propagators. 
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5.2.1 Calculations in Momentum Space 

Here the modification to the propagators that we use are 

1. Electron-electron scattering (Born term) 

Figure 5.1 

S' = -ie2u(p2)iµu(pI)u(q2)i"u(qI) J dx J dyG~11 (x, y)eix(PrPi)+iy(qi-qi) 

ie2 Ji°° h J !;2 J dygµ({3, k, ak, y) 

{u(p2)(p2- PI)u(pI)u(q2)iµu(qI)8(p2 - PI+ f3k)eiy(q2 -qi) (5.4) 

+u(p2)iµu(pI)u(q2)(f/2- f/I)u(qI)8(q2 - qi+ f3k)eiY(P 2 -Pd} 

ms O. 

2. Electron self-energy 

• 
P2 x,µ p y,v PI 

Figure 5.2 

S' = e2 f dpu(p2)iµ(p - m + iEtI1"u(pI) f dx f dyeix(p2-P)+iy(p-pi)G~11 (x, y) 

- e2 fi°0 h f !;2 f dy f dpgµ({3, k,ak,Y) 

ms O. 

[u(p2)(p- P2)(p- m + iEt11µu(pI)8(p2 - p + f3k)eiY(P-Pi) + 

u(p2)iµ(p - m + iEtI(PI - p)u(pI)8(p - PI + f3k )eiy(p2 -P)] 

(5.5) 

Off the mass-shell, the expressions (p- h)(p-m+iE)-11µ and 1µ(p-m+iE)- 1 

(JI- p2 ) cannot be further simplified. Also, the parameter f3 introduced in the 

FS gauge propagator does not play any role in simplifying the whole expression. 
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Accordingly, S' does not vanish off the mass-shell. On the mass-shell, however, 

(p- '2)(p - m + iE)-1 reduces to unity and leaves a factor u{P2}'y"u{p1). Such 

factor can also be obtained in the second term. In this case cancellation between 

both terms depends on the rest (exponential and delta functions) and indeed occurs: 

S'~O. (5.6) 

In most diagrams that we will come across, simplifications also happen in a 

similar way on the mass-shell. In the first order of vertex corrections, for example, 

it takes place between all three possible diagrams. This will be shown below. 

3. Vertex corrections 

P2 x, 

Figure 5.3 

s~ = e 3 I llp I llq I dx I dy I dzu(p2)"Y,..(p - m + if:)-1 fi(y)(i- m + ie)-1 x 

1vu(p1 )eiz(1J2-p)+iy(p-q)+iz(q-p1 )G~v( x, z) 

- e3 It' dg I~ I llp J Clq J dy J dzgv(/3, k, ak, z)u(p2) 

[(p- h)(p- m + iet1 fi(y)(g- m + if)-l/v 

8(p2 - p + {3k)eiy(p-q)+iz(q-p1) 

+1v(p - m + ift1 /i(y)(g- m + ift1{p1- g') 

8( q - Pi + f3k )eiy(p-q)+iz(P2-P)]u(p1) 

m.s e3 Ji°° ~I !!2 I dp I Cly I dzg,,(/3, k, ak, z)u(p2) x 

[,4.(y)(p- m + iE)-l/1.1eiY(P2-P+Pk)+iz(p-pi) 

-"'(,,(p- m + ie)-1 fi(y)eiy(p-p1+Pk)+iz(P2-P)]u(Pt)· 

• -~. y q x,µ p z, 1/ P1 

Figure 5.4 

(5.7) 

s~ = e3 I dpf dq I dx I dy I dzu(P2) fi(y)(i- m + iE)-1"Y"(p- m + iE)-1x 

7vu(Pt)ei:(q-p)+iy(112-q)+iz(p-p1)G~v{ x, z) 
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- -e3 Ji°';J ~ J ~ f dp J dq f dy J dzg,,(/3, k,ok, z)u(p2) ,4.(y)x 
eiY(J12-q)+iz(q-p1 +Pk) X 

{(i- m + if)-1 [(1'- m) - (p- m)](p- m + if.)-11"c5(q - p + f3k) 

+(i- m + if)-11"(p - m + if)-1(p- P1)c5(p - P1 + f3k)}u(p1) 

ma -e3 Ji''°1- f !Jkr J dp J dy f dzgµ(/3, k, Ok, z)u(p2) ,4.(y )(p - m + if)-1 
X 

'Y"'u(pl)ei!l(P2-P+Pk)+iz(p-pi). 

• /:), 
• l 

P2 x,µ p z,v q y P1 

Figure 5.5 

s~ = e3 J ilpf ilq J dx J dy I dzu(p2h"'(p- m + if)-11"(fi- m + if)-1 x 

;i(y )u(p1)eix(P2-P)+iy(q-pi)+iz(p-q)G~"(x, z) 

- e3 fi°0 ~ f !;2 f dpf dqfdyf dzg,,(/3,k,8k,z)u(p2)eiy(q-pi)+iz(p2 -q+J3k) 

{(p- P2)(p - m + ift 11"(g - m + ift1c5(p2 - p + f3k) 

(5.8) 

-1"(p- m + frt1[(p- m) - (ff- m)](g- m + frt 1c5(p- q + f3k)} 

,4(y)u(p1) 

ms e3 ft'~ J !f2 J dp J dy J dzgµ(/3, k, Ok, z)u(p2)/"'(p - m + ift1 
X 

,4.(y )u(pi)eiy(p-p1 +/3k)+iz(p2-p). 

q 

P2 x,µ P1 

Figure 5.6 

S~ = e3 fdpfdqfdxf dyfdzu(p2)/"'u(p1)Tr(fi-m+if)-11"x 

(p - m + if)-1 ,4(z)eix(J12-pi)+iy(p-q)+iz(q-p)G~11 (x, y) 
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- e3 f100 df3 J !;2 I Jp J dq J dy J dzgv(f3, k, ak, y)eiz(q-r» x 

{u(p2)(p1 - P2)u(p1)Tr( ff - m + if.)-1-·t(p - m + if)-1 x 

h(p2 - Pi + (3k)eiy(p-q) 

+u(p2)··tu(p1)Tr(ff- m + if)-1 [(g- m) - (p - m)](p- m + if)-1 

h(p - q + (3k)eiy(p2 -P1 )} ;1(z) 

'!!:! 0. 

We obtain 

S'-S'+ +S'7!!:!0 - 1 ••• 4 - • 

5.2.2 Calculations in Coordinate Space 

Instead of (5.3) computations in coordinate space will be based on 

(5.10) 

(5.11) 

(5.12) 

This has advantages. Firstly, when the derivative, say 8xµ, meets the Dirac matrix 

1" it is possible, for some expression, that a form like ( dx + im)SF(x - y) is 

generated on the mass-shell whereupon it will simply reduce to the Dirac delta 

function h(x-y). Another benefit comes from the functions /iµ(x, y) and hµ(x, y), 

which sometimes produce cancellations due to the symmetry property f 1µ(x, y) = 

In this section we will start with truncated diagrams, i.e. diagrams without 

external lines, and then cast them into a form such that when external lines are 

added to the diagrams one can find immediately their simple form on mass-shell. 

Truncated Diagrallls 

+- ..... 

All truncated diagrams will be written into forms like H~x + ~x)·] or 
+- ..... 

[·(~x + ~x)SF(x - y)·] where the dots are given just to recall that when we turn 

to the corresponding completed diagrams we just put external (fermion) fields on 

those dots. The usefulness of the above expressions is that on the mass-shell those 

forms will reduce to vanish or to Dirac delta functions. Here we will use notation: 

75 



+- -+ 

directed derivatives such as fJ:z: and fJx do not act on photon propagators, i.e. on 

fi11-(x,y) and h11-(x,y). 

1. Electron self-energy 

~ 
x,µ y,v 

Figure 5.7 

e-2 E'(x, y) = [·111-SF(x - y)!"·]G~11 (x, y) 
+- -+ 

- -[·(fJ:z: + fJx)SF(x - y)!µ·]f1µ(x, y) (5.13) 
+- -+ 

-[·111-SF(x -y)(fJy + fJy)·]f211-(x,y). 

2. Vertex corrections 

C\ 
x,µ z,u y,v 

Figure 5.8 

. -2r'"( ) -ie 1 x,y,z = [·111-SF(x - z)!aSF(z -y)/"·]G~11 (x,y) 
+- -+ 

-[·(fJ:z: + fJx)SF(x - z)!a SF(z - y)/ 11 ·]fi 11 (x, y) (5.14) 
+- -+ 

-[·1µ,SF(x - z)/aSF(z -y)(fJy + fJy)·]f2µ(x,y) . 

• x,µ z,u y,v 

Figure 5.9 

. -2r'"( ) -ie 2 x,y,z = [·111-SF(x - z)!a SF(z - y)/"·]G~a(x, z) 
+- -+ 

-[·(fJ:z: + fJx)SF(x - z)/11-SF(z - y)/11 ·]!1µ,(x, z) (5.15) 

-i{·1µ[8(x - z) - 8(z -y)]SF(x -y)/"·}hµ(x,z). 
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• x,µ z,u y,v 
Figure 5.10 

-ie-2r;(x, y, z) = [·1µSp(x - z)lu Sp(z - y)lv·]G~v(z, y) 

-i{·1µ[8(x- z) - 8(z -y)]Sp(x -y)lv·}f1v(z,y) (5.16) 
+- -+ 

-[·1µSp(x - z)luSp(z -y)(fjy + fjy)·]hu(z,y). 

~ 
Figure 5.11 

. -2r'"( ) -ze 4 x,y,z = [·1µTrSp(z-y)lvSp(y- z)/u·]G~v(x,y) 
+- -+ 

-HfJx + fJx)·]TrSp(z -y)lvSp(y- z)lu f1v(x,y) (5.17) 
+- -+ 

-[· h(x,y)·]TrSp(z -y)(fjy + fjy)Sp(y- z)lu. 

On-shell Diagrams 

Results in the previous section are used to evaluate the corresponding (on mass­

shell) diagrams. 

1. Electron-electron scattering (Born term) 

x,µ 

Figure 5.12 

S' = -ie2 J dx J dy'ljJ(x)lµ'ljJ(x)'ljJ(y)lv'ljJ(y)G~v(x, y) 

- ie2 f dxf dy { ('1/J(x)[(~x -im) + (~ +im)]'lj;(x)) 'lj;(y) fi(x,y)'lj;(y) 

+ 'lj;(x) h(x,y)'lj;(x) ('1/J(y)[(~y -im) + (~ +im)]'lj;(y))} 

~ 0. 

(5.18) 
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2. Electron self-energy 

. L:') . 
x,µ y, v 

Figure 5.13 

S' = J dxf dyt/J(x)E'(x,y)t!J(y) 

- -e2 f dx J dy t [t!J(x)(~ + ~)SF(x - y);µt/J(y)] f1µ(x, y) 

} 
(5.19) 

+ ?f(x);µSF(x - y)(~ + ~)t/J(y)] /2µ(x, y) 

ma O. 

3. Vertex corrections 

x,µ y,v 

Figure 5.14 

S~ = -ief dxf dyf dzt/J(x)I'~a(x,y,z)Au(z)t/J(y) 

- -e3 J dx J dy J dzAu(z) - -{[t!J(x )( fJz + fJz)SF(X - z)I" SF(Z - y)··tt/J(y)]f1v(x, y) 
+- -+[?Ji(x )1µSF(x - z)I" SF(z - y)(fJy + fJy)t/J(y)]hµ(x, y)} 

ma ie3 fdxfdyfdz{t/J(x)c(x-z) /1.(z)SF(z-y) fi(x,y)t/J(y) 

-1/J(x) h(x, y)SF(x - z) /1.(z)c(z - Y)tP(y)} . 

. C\ . 1 . 
x,µ z,u y,v 

Figure 5.15 

s~ = -ief dxf dy I dzt/J(x)r;(x,y,z)Av(Y)t/J(y) 

- -e3 J dxf dy J dzAv(Y) 

(5.20) 

- -[t/J(x)(~: + fJz)SF(X - z)lµSF(z -yhvt/J(y)]/iµ(x,z) (5.21) 

+i{t/1(x)1µ[6(x- z) - 6(z -y))SF(x -yh"!17(y)}/2µ(x,z)} 

ma ie3 Jdxf dyf dz?/)(x) f2(x,z)6(z-y)SF(x-y) /1.(y)t/1(y). 
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x,µ z, (j y,v 

Figure 5.16 

s~ = -ie J dx J dy J dz?/J(x)r;(x, y, z)Aµ.(x)?/J(y) 

- -e3 J dx J dy J dzAµ.(x) 

i{[?jJ(x)fµ.[8(x - z) - 8(z - y)]SF(x - y)f11?jJ(y)]f111(z, y) (5.22) 
+- -+ 

+[1/J(x)fµ.SF(x- z)'·(SF(z-y)(~y + ~y)?/J(y)]ha(z,y)} 
ms -ie3 fdxfdyfdz?jJ(x) ;1(x)8(x-z)Sp(z-y) /1(z,y)?/J(y). 

s~ = -ie J dx J dy J dz?fJ(x )r; (x, y, z)Aa(z)?fJ(x) 
+- -+ 

- -e3 J dx J dy J dz?jJ(x){(~x + ~x)TrSF(z - y) /1(x, y) X 

Sp(y - z)fs' (5.23) 
+- -+ 

+ h(x, y)TrSp(z - y)(~y + ~y)SF(Y - z)···t}A(z)?jJ(x) 

ms O. 

Hence we have the same result as in momentum space (obviously): 

S' = S~ + S~ + S~ + S~ ms O. (5.24) 

5.3 One-loop Corrections in Scalar Electrody-

• nam1cs 

Computations in scalar electrodynamics are basically similar to those in spinor 

electrodynamics and require little elaboration. 
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5.3.1 Calculations in Momentum Space 

1. Meson-meson scattering (Born term) 

~~~~~=I=~p~~~-
P2 x,µ P1 

Figure 5.18 

S' = -ie2 J dxdy(pt + P2)µ.(qt + q2)1'G~11(x, y)eix(v2-v1)+iy(q2-q1) 

-ie2 J !;2 Ji°° ~ J dy[( qt + q2) 11911(/3, k, fh, Y )(p~ - PD· 

b(p2 - Pt+ j3k)eiy(q2-q1) + (p +-+ q)] 

ms O. 

2. Meson self-energy 

P2 x,µ P y, v Pt 

Figure 5.19 

s~ = e2 J dx J dy J dp(p2 + p)µ.(p + Pt) 11 (p2 - m2 + it)-tG~ll(x, y) 

eix(p2-p )+iy(p-p1) 

(5.25) 

e2 J ~Ji°° d: J dy J dp(p2 - m 2 + it)-t[911(,8, k, ak, y )(p + Pt)1'(p2 - PD· 

o(p2 - p +,Bk )eiy(v-vi) + (p +-+ -p, Pt +-+ -p2)] 

ms 2e2 J !;2 Ji°° d,8 I dy911(,8, k, ak, y )kll eiy(p2-P1 +f3k). 

--4-_Q_. __ 
(5.26) 

P2 Y Pt 

Figure 5.20 

s~ = -e2 J dyeiY(PrP1)9µ.11G~ll(y,y) 

- -2e2 J !t2 Ji°od,8Jdy911(,8,k,8k,y)k11eiy(p2-P1+f3k). 
(5.27) 

We have 

S' = S~ + S~ ms 0. (5.28) 
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3. Vertex corrections J 
--p;--,,--;~-p,---

Figure 5.21 

s~ = e
3 I dx I dy I dz I 112-:!!'2+i( I q2-!92+if (p2 + p)"(p + q)'1(q + PI)v Ao-(z) 

G~v ( x, y) eix(112-11 )+iy( q-111 )+iz(11-q) 

- e
3 f !!2 fi°

0 ~ f dyf dzf 112_'!!:2+iff q2_'/:2+ifA1T(z)gv(/3,k,8k,y) 

[(P2 - PD(P + q)IT(q + PI)vh(p2 - P + /3k)eiy(q-111 )+iz(11-q) 

-(p ~ -q, PI~ -p2)] 
m.! 3 dk oo d(3 - - dp 
- e J~JI 73fdxfdyf 112_m2+ifAIT(z)gv(/3,k,8k,X) 

[(p + p2 + /3k)IT(p + PI)veix(11-p1)+iy(112-11+f3k) 

-(p +PI - f3k)'1(p + P2Yei:z:(p2-11)+iY(P-P1+f3k)]. 

--·--~ __ J ____ _ 
P2 x,µ q z,11 p y,u PI 

Figure 5.22 

(5.29) 

s~ = e
3 I dx I dy I dz I 112-~+i( I q2_:;,+i,(P2 + q)"(q + PY(P + PI)'1 AIT(y) 

G' (x z)eix(112-q)+iy(11-111)+iz(q-11) 
µv ' 

- e3 J ilk roo !Yi. J dy J dx J dp . J dq . A (y)(p + p )IT eiY(P-111) -=kl JI f3 112_m2+1f q2-m2+at: IT I 

[gv(.B, k, ak, x)(q2 - p~)(P2 + P + f3kY8(p2 - q + ,Bk)eix(P2-P+Pk>+ 

(q ~ -q, P2 ~ -p)] 
3 ilk 00 d(3 - - d 

m., e J ~ f1 73 J dx J dy J 1'2-m~+ic AIT(y )gµ(,8, k, Ok, X) 

[2,Bk"(p + P1)u eix(112-p+f3k)+iy(11-11d+ 

(p + .P2)"(p +Pi + /3k)IT eix(112-11)+iy(p-111 +Pk)]. 

(5.30) 
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--+-~-t-~-~-----P2 y,u p x,µ q z,v P1 

Figure 5.23 

S~ = e
3 f dx f dy f dz f vL!~+i! f q2-!q2+i!(P2 + p)u(p + q)µ.(q + P1) 11 Au(Y) 

G' (x z)eix(p-q)+iy(p2-v)+iz(q-p1 ) 
µ.11 ' 

ms 3 dk oo #!_ - - dp 
e f -k2 f1 /3 f dxf dyf p2-m2+i!Au(y)gµ.(/3,k,8k,x) 

[2f3kµ.(p + P2)u eix(v-P1-P+f3k)+iy(Pi-P)+ (5.31) 

-(p + Pi)µ.(p + p2 _ f3k)ueix(p-p1)+iy(p2-P+f3k)]. 

---~~--~--
P2 y,u P x,µ P1 

Figure 5.24 

S~ = -2e3 J dx J dy J v2-!~+i! (p + p1)µ. A11 (y)G~11 (x, y)eix(p-pi)+iy(Pi-P) 

-2e3 J Jy J dp J dk Joo d/3 A"( ) p2-m2+i! -k2 1 /3 Y 

[911(,8, k, ak, y)(pi- p2)8(p - P1 + ,Bk)eiy(p2-P1+/3k)+ 

/3 f dxgµ.(/3, k, 8k, x )kv(p + p1)µ.eix(p-p1)+iy(pi-p+f3k)] 

ms 2e3 JdyJ .!t2f100 1A17 (y){[gu(/3,k,8k,y)eiY(Pi-Pi+f3k) 

- J dx J dp . g (/3 k ak x)f3k (p + P1)µ.eix(v-v1)+iy(p2-p+f3k)} 
p2-m2+1! µ. ' ' ' u • 

----~---
P2 x, µ P Y, v P1 

Figure 5.25 

SI_ 
5- -2e3 f dx J dy J P2 _!12 +i! (p + P2)µ. A 11 (y )G~11 (x, y)eix(v2 -v)+iy(p-pi) 

~ 2e3 f dy f _!;2 J;,00 1Au(y) {[-gu(/3, k, 8k, y)eiY(P2-P1+f3k) 

- J dx J dp . g (,8 k 8k x),Bk (p + P2)µ.eix(v2-v)+iy(v-p1 +f3k)} 
p2-m2+1! µ. ' ' ' u • 
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__ ... J] ___ l ____ _ 
P2 x p y, u PI 

Figure 5.26 

S~ = -e3 J dx J dy J v2_:2+if(p + PI)17 Aa(y)g1wG~,,(x, x)ei:c(vrv)+iy(v-vd 

-2e3 J dx J dy J v2_</::2+if J !;2 Ji°° ~ Aa(Y )(p + PI) 17 gµ.(/3, k,[A, x )/3kµ. 

ei:c(v2-v+/3k)+iy(v-v1). 

(5.34) 

Figure 5.27 

s~ = -e3 J dx I dy I p2-=2+if(p + P2VAa(y)gµ.vG~v(x, x)e•:c(p-pi)+iY(PrP) 

-2e3 f dx J dy J P2_</::2+iE J !;2 Ji°° d: Aa(Y )(p + P2)
17 gµ.(/3, k, fA, X )/3kµ. 

ei:c(p-p1 +/3k)+iy(p2-p). 

(5.35) 

Figure 5.28 

s~ = e
3 I dx I dy I dz I p2-=2+if I q2_:;2+iE(PI + P2)µ.(q + PY(P + q) 17 Aa(z) 

G~v ( x, y )ei:c(p2-P1 )+iy(p-q)+iz(q-p) 

e3 J dy J dz J dp . J dq . J .!YE.__ 1= ~A (z)(p + q)a eiz(q-p) p2-m2+tf q2-m2+tf -k2 I {3 17 

9v(/3, k, fh, y){(p~ - PD(q + p)v8(p2 - PI+ /3k)eiy(p-q)+ 

[(q2 _ m2) _ (p2 _ m2)](pI + p2)v8(p _ q + /3k)eiy(p2-P1)} 

ms e3 J dy I dz J p2-~+if J !;2 Ji°°~ Aa(z)gv(/3, k, ak, y)(PI + P2)veiy(p2 -PI) 

[(2p + /3kVeif3kz - (2p- /3k)ae-i/3kz] 

0. 
(5.36) 
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11~_.. ..... 

---+--1'=)+--
P2 x,µ P1 

Figure 5.29 

SI_ 
9- 2e3 f dxf dyf p2-!"2+if(P1 +P2)µAv(y)G~v(x,y)eix(p2-P1 ) 

2e3 J dx J dy J p2-~+fr(p~ - p~)Av(y)fiv(x, y) 

~ 0. 

Adding S1 , S2 ,· • • Sg we obtain 

SI - S1 + + S1 "!!! 0 - 1 ••• 9 - • 

5.3.2 Calculations in Coordinate Space 

Truncated Diagrams 

(5.37) 

(5.38) 

As in spinor electrodynamics, directed derivatives do not act on f 1µ(x,y) and 

/2µ(x,y). Surface terms will be omitted and indicesµ, v and u in derivatives are 

attached to variables x, y and z respectively. Thus 8µ =Bxµ, Bv = 8yv and Bu = Bzu· 

1. Meson self-energy 

x, µ y, v 

Figure 5.30 

+-+ +-+ 

-C2 E~ ( x' y) = [. aµ s B ( x - y) av . ]G~A x' y) 

-{-[~ - Dx]SB(x - y) av ·} f1v(x, y) (5.39) 
+-+ --> +-

-{ · {)µ SB(x -y)[Dy - Dy]·}/2µ(x,y). 

0 x,y 

Figure 5.31 

-c2E~(x, y) = gµv[·h'(x - y)·]G~v(x, y) 
+-+ +-+ 

- [·aµ h'(x -y)·]hµ(x,y)- [·o(x -y) av ·]fiv(x,y). 
(5.40) 
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E'(x, y) = E~(x, y) + E~(x, y) 

e2 [·(ff.x - Dx)SB(X -y) lfv ·]fiv(x,y)+ 

e2 [· fjµ SB(x - y)(Dy - Dy)·]/2µ(x, y)+ 
...... ..... 

[·cS(x - y) 811 ·]/1v(x,y)- [· 8µ cS(x -y)·]f2µ(x,y). 

2. Vertex corrections 

----+----x,µ z,u y,v 

Figure 5.32 

+-+ +-+ +-+ 

ie-3f~"(x,y,z) = [· 8µ SB(x - z) 8(7 SB(Z -y) 811 ·]G~ll(x,y) 
+-+ +-+ 

(5.41) 

- -[·(D.x - Dx)SB(x - z) 8(7 SB(z -y) 811 ·]!1v(x,y) (5.42) 
+-+ ..... 

-[· 8µ SB(x - z) 8(7 SB(z - y)(Dy - Dy)·]hµ(x, y). 

~----. x,µ z,u y,v 

Figure 5.33 

..... +-+ +-+ 

ic3r;(x,y,z) = [· 8µ SB(x - z) 8(7 SB(z -y) 811 ·]G~a(x,z) 
+-+ +-+ 

- -[·(Dy - Dx)SB(x - z) 8(7 SB(z - y) 811 ·]!ia(x, z) (5.43) 
+-+ +-+ 

+[· 8µ SB(x - z)(Dz - Oz)SB(z - y) 811 ·]hµ(x, z). 

x,µ z,u y,v 

Figure 5.34 

+-+ +-+ +-+ 
. -3r'"( ) ie 3 x,y,z = [· 8µ SB(x - z) 8(7 SB(Z -y) 811 ·]G~v(z, y) 

...... ...... 
-[· 8µ SB(x - z) 8(7 SB(z - y)(Dy - Dy)·]ha(z, y) (5.44) 

+-+ +-+ 

-[· 8µ SB(x - z)(Dz - Dz)SB(z -y) 811 ·]/1v(z,y). 
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~o~----x,z y,v 

Figure 5.35 

+-+ 
• -3r'V( ) ie 4 x,y,z = gµu[·8(x - z)SB(z - y) av ·]G~u(x, z) 

+-+ +-+ 

[·(8µ 8(x - z))SB(z - y) av ·]f2µ(x, z) (5.45) 
+-+ +-+ 

-[·8(x - z) au SB(z - y) av ·]!1u(x, z). 

~----=0· x,µ z,y 

Figure 5.36 

+-+ 
. -3r'"( ) ie 5 x,y,z = gvu [. aµ s B ( x - z) 8 ( z - y).] G~ .,( z' y) 

+-+ +-+ 

- -[·(aµ SB(x - z))8(z - y) av ·]!1v(z, y) (5.46) 

. -3r'v( ) ie 6 x,y,z = 

. -3r'"( ) ie 7 x,y,z = 

+-+ +-+ 

+[·aµ SB(X - z) au 8(z - y)·]f2u(z, y). 

+-+ 

!'~~~ '-----Yr 
x z,y 

Figure 5.37 

2gvu [· aµ SB(x - z )8(z - y )·]G~u(x, z) 

-2gvu{·[Dx - Dx]SB(x - z)8(z-y)·}f1u(x,z) 
+-+ +- ..... 

-2gvu[· aµ SB(x - z)(au + au)8(z -y)·]hµ(x,z). 

~~v 
x,z y 

Figure 5.38 

+-+ 

2gµu[·o(x - z)SB(z - y) av ·]G~v(z, y) 

(5.47) 

-2gµu[·8(x- z)SB(z-y)(Dy - Dy)·]hu(z,y) (5.48) 
+- ..... +-+ 

-2gµu[·8(x- z)(8u + 8u)SB(z - y) av ·]fiv(z,y). 
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,_ ... :\ 
, z,u' 
'.!'"/ 
xIµ 

Figure 5.39 

+-+ +-+ 

ie-3r; (x, y, z) = [· aµ ·]G~"(x, y )[( a"SB(Y - z)) au SB(Z - y )-
+-+ 

SB(Y - z)) au a"SB(z - y)] 

[·(Dx - ~)·]f1 11(x,y)x 
+-+ +-+ 

[(a"SB(Y - z)) au SB(z - y) - SB(Y - z)) au a"SB(z - y)]. 

+-+ 

I"-' 

~;iI\ } '-"' 
x,µ 

Figure 5.40 

(5.49) 

- 2[· aµ ·]SB(Y - z)8(y- z)g"u[aµf1v(x,y) + avf2µ(x,y)] 

- 2[·(Dx - ~)·]SB(Y- z)8(y- z)g"u f1 11 (x,y)+ 
+-+ 

[·aµ ·]SB(Y - z)8(y - z)g"u8vf2µ(x,y). 
(5.50) 

On-shell Diagrams 

Examining the truncated diagrams it is obvious that each of the corresponding 

completed diagrams consists of terms containing factors like 

or 

Difficulties in simplifications off the mass-shell are caused by those factors since 

they cannot be brought into simpler forms. On the mass-shell, on the other hand, 

those factors may be simplified into Dirac delta functions. As a result cancellations 
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may and do take place in this case. A summary of the computations will be given 

below. 

1. Meson-meson scattering (Born term) 

___ y

1
,v ___ _ 

--·- ----x,µ 

Figure 5.41 

S' = ie2 J dxf dy</>t(x) !fr </>(x)</>t(y) fjv </>(y)G~v(x,y) 
- ie2 f dx J dy</>t (x) !fr </>(x)</>t(y) fjv </>(y)[oµf1v(x, y) + Ovhµ(x, y)] 

- -2ie2 f dx f dy{ <Pt (x)oµ<f>(x)</>t (y)[(Dy +m2
) - (Dy +m2 )]c/>(y)} hµ(x, y) 

ms O. 

2. Meson self-energy 

__ Cl __ _ 
x,µ y,v 

Figure 5.42 

S'-1 - f dx f dy<f>t(x)E~(x,y)</>(y) 

ms -e2 f dxf dy{-</>t(x) !fr 8(x-y)</>(y)f2µ(x,y) 

+c/>t(x)o(x -y) fjv c/>(y)f1v(x,y)}. 

___ Q __ _ 
x 

Figure 5.43 

s~ = J dx J dy<f>t (x)E~(x, y)c/>(y) 

- -e2 J dx J dy{ c/>t (x) !fr o(x - y )</>(y )f2µ(x, y) 

-</>t(x)o(x -y) fjv c/>(y)f1v(x,y)}. 
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" 

' ., 
r 

\ 

'' 

" 

•', 

S' = S~ + S~ ma 0. (5.54) 

3. Vertex corrections l 
---x~~;;;---

Figure 5.44 

. S~ = Jdxf dyf dz</>t(x)r~a(x,y,z)<f>(y)Aa(z) 
ma -ie3 J dx J dy J dzAa(z){[</>t (x)o(x - z) Ba SB(z - y) {; <f>(y)lf1v(x, y) 

-[<l>t(x);; SB(x- z);; o(z-y)<f>(y)]hµ{x,y)}. 

S'-2-

---~-+-1-+-x,µ z,a y,v 

Figure 5.45 

J dx J dy J dzef>t(x)r;(x,y, z)ef>(y)Av(Y) 

(5.55) 

ma -ie3 J dx f dy J dzAv(y){[q,t(x) ffo SB(x - z)o(z - y) fiv ef>(y)]hµ(x, z) 

-[ef>t(x) ffo 8(x - z)SB(z -y) fiv ef>(y)]f2µ(x,z) 

S'-3-

+[ef>to(x - z) au SB(z -y) {; ef>(y)]f1a(x,z)}. 

-~-1--~---x,µ z,a y,v 

Figure 5.46 

f dx J dy f dz<f>t(x)r;(x, y, z)<f>(y)Aµ(x) 

(5.56) 

ma -ie3 I dxf dy I dzAµ(x){-[<Pt(x);; o(x- z)SB(z-y);; <f>(y)]fiv(z,y) 

-[<Pt (x);; SB(x - z) au o(z - y)ef>(y)]ha(z, y) 

+[<Pt (x);; SB(x - z)o(z - y) 8v ef>(y)]f1v(z, y)}. 
(5.57) 
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___ Q __ J· __ _ 
x,z y 

Figure 5.47 

S~ = f dx f dy f dz</>t (x )r; (x, y, z)<f>(y )Av(Y) 

- -ie3 J dx J dy J dzA11(y){[</>t(x) {)µ 8(x - z))SB(z - y) Bv </>(y)]f2µ(x, z) 

SI_ 
5-

-[</>t(x)8(x - z) Bu SB(z - y) ffo </>(y)]fiu(x, z)}. 

---~L __ Q __ _ 
x z,y 

Figure 5.48 

f dx f dy f dz<f>t (x )f~ (x, y, z)<f>(y )Aµ(x) 

(5.58) 

_ -ie3 J dx J dy J dzAµ(x){-[</>t(x) fP SB(x - z))8(z - y) Bv </>(y)]f111(z, y) 

+[</>t(x) fP SB(x - z) Bu 8(z - y)<f>(y)]f2.,.(z, y)}. 

SI_ 
6-

---~-
x z,y 

Figure 5.49 

J dx J dy J dz</>t (x )r; (x, y, z)<f>(y )Av(Y) 

(5.59) 

ms -ie3 J dx J dy J dzA11 (y ){2g11.,. <f>t (x )8(x - z)8(z - y )</>(y )fi.,.(x, z)+ 

-2g11.,.[<f>t (x);; SB(x - z)(Bu + au)S(z - y)<f>(y)]hµ(x, z)}. 

SI_ 
7-

-~--x,z y 

Figure 5.50 

f dx f dy f dz</>t (x)r;(x, y, z)</>(y)Aµ(x) 

(5.60) 

ms -ie3 J dx J dy J dzAµ(x ){-2gµu ,pt (x )8(x - z)8(z - y )</>(y )f2.,.(z, y) 

-2gµu[</>t(x)8(x - z)(Bu + au)SB(z -y) Bv </>(y)fiv(z,y)}. 
(5.61) 
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.1 , ' I t 
t I '1 ... 1 
y v 

- ... -x,p:~­

Figure 5.51 

s~ = I dx J dy J dz</>t (x )r; (x, y, z)</>(y)Au(z) 
ms O. 

ms O. 

,_ -·­, µ 
Figure 5.52 

The first order of vertex corrections is then given by 

S' = -ie3 f dx f dy f dz</>t (x)</>(y) 

[f~" (x, y, z)Au(z) + r; (x, y, z)A,,(y) + r~ (x, y, z )Aµ(x) 

+r; (x, y, z)A,,(y) + f~(x, y, z)Aµ(x) + r; (x, y, z)A,,(y) 

+r~(x, y, z)Aµ(x) + r; (x, y, z)Au(z) + r; (x, y, z)Au(z)] 

- s~ + s~ + s~ + s~ + s~ + s~ + s~ + s~ + s~ 

(5.62) 

(5.63) 

ms -ie3 J dx J dy J dz{-[</>t (x) lfo SB(x - z) {ju S(z - Y )</>(y )]hµ(x, y)Au(z) 

+[</>t(x)S(x- z) {ju SB(z-y) ffo </>(y)]fi,,(x,y)Au(z) 

+[</>t(x) {; SB(x - z)S(z -y) ffo </>(y)]hµ(x, z)A,,(y) 

-[</>t(x) {; S(x - z)SB(z - y) ffo </>(y)]f1,,(z, y)Aµ(x) 

-2(</>t(x) lfo SB(x - z)(Bu + fiu)S(z-y)</>(y)]hµ(x,z)Au(Y) 

-2[</>t(x)S(x - z)(Bu + iJu)SB(z -y) ffo </>(y)]f1 11(z, y)Au(x)} ms 0. 

(5.64) 
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5.4 One-loop Corrections in Quantum Chromo­

dynamics 

The equivalence between the electron-photon vertex in quantum electrodynam­

ics and the quark-gluon vertex in quantum chromodynamics can be seen easily from 

relationship 

(5.65) 

This equivalence leads one to infer that, neglecting the group factors, the quark­

quark scattering and the quark self-energy diagrams are equivalent to the electron­

electron scattering and the electron self-energy diagrams. Hence we can conclude 

that, like in quantum electrodynamics, the correction a'abµv(x,y) gives no contri­

bution, on the mass-shell, to the quark-quark scattering and the quark self-energy. 

However the same conclusion does not apply to the sum of the four diagrams in 

the first order of the vertex corrections 

+ . Ll .l + J.w . + 

Figure 5.53 

This is because the group factors for each diagram are different due to the noncom­

mutativity of the group generators. However, these are not all of the diagrams in 

quantum chromodynamics. To first order the vertex correction require three other 

diagrams contributed by the three-gluon and four-gluon vertices. 

+ + 

Figure 5.54 
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Therefore we have to work out these seven diagrams combined and see whether the 

same conclusion of the previous calculations will also apply. These corrections to 

the vertex and the gluon self-energy are the last calculations of the thesis. 

First order corrections to the three-gluon and four-gluon vertices (see figures 

5.55 and 5.56) have not been carried out in this thesis because the calculation is 

even more formidable and needs considerably more effort. The complication arises 

from diagrams that contain three and four gluon propagators. But we are hopeful 

that the same conclusion of on-mass-shell equivalence also holds here. 

Three-gluon vertices 

+ 

Figure 5.55 

Four-gluon vertices 

++f+++-<f+lol­
y + ~+*+~ +R+ ... 

Figure 5.56 

Before we go into detailed computations for each diagram considered let us take 

notice of the Feynman rules in quantum chromodynamics. Firstly consider the 

ghost vertex. G~) in the ghost vertex equals aib) and Xµ. in the Lorentz gauge and 

the FS gauge respectively. This vertex vanishes in the FS gauge because Aaµ.Gµ. = O 

and therefore all diagrams containing ghost fields/propagators can be disregarded 

in scattering calculations involving external vectors. The second consideration is 
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about the three-gluon vertex. In the case when all three wavy lines in the three­

gluon vertex represent external gauge fields, the corresponding igfabcvJiPb,c)(f)x) in 

momentum space may be readily obtained and is just 

If one (or more) of the wavy lines is replaced by the FS gauge propagator, 

VJ:Pb,c)(k) will necessarily be more complicated. This is because unlike propagators 

in the Lorentz gauge that can be formulated as 

Gabµv(x, y) = j dkrbµv(k) exp[-ik(x - y)] (5.67) 

the general form of the FS gauge propagator is more complex, 

aabµv(x, y) = J J J dadf3dkrbµv(a., /3, x, y, k) exp[-iakx + if3ky]. (5.68) 

The amplitude rbµv is still a function of space-time coordinates and thus VJ:pb,c)(k) 

is Qfunction of k, Ok as well as integrations over a and /3. Accordingly, complications 

of Vµ<;:pb,c) ( k) in the FS gauge lead to difficulties in evaluating perturbative calcula­

tions in momentum space. We avoid such difficulties by only taking perturbative 

calculations in quantum chromodynamics in coordinate space into account (where 

the gauge condition looks more natural). We start with truncated diagrams before 

extending them to mass-shell diagrams. 

5.4.1 Truncated Diagrams 

The first four diagrams can be obtained by the use of the previous results in 

quantum electrodynamics. We have 
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.a,~,v 
(z) ~ (n) 

x z y 

Figure 5.57 

· -2rcu ( ) -ig lin x,y,z = 
c:~(x, y) 

- (F) + (TaTbTc + irbdTaTd)in 
+- -+ 

{-[-(f'x + f'x)Sp(x - z)-·tSp(z -y) /ib(x,y)·] 
+- -+ 

-[· f!ib(x, y)Sp(x - z)'Yu Sp(z - y)(f'y + f'y)·]}. 

(i)a,~u 
x z 

Figure 5.58 

(c, v) 
(n) • y 

(5.69) 

· -2rcv ( ) -ig 2inx,y,z = [·1µ(Ta)ijSQjk(x - z)'Yu(Tb)k1SQ1m(z - y)'Y11 (Tc)mn·] X 

c:~(x, z) 

+- -+ 

{-[-(f'x + f'x)Sp(x - z) f'tb(x, z)Sp(z - y)/11
·] 

-i[· f~b(x, z)[h'(x - z) - 8(y - z)]Sp(x - y)/11
·]}. 

(5.70) 

(c,µ) a,~,v 
(i) -· ___ ,,__~ __ ___. (n) 

x z y 

Figure 5.59 

· -2rcµ ( ) -zg 3in x, y, z = [·1µ(Tc)iiSQik(x - z)'Yu(Ta)k1SQ1m(z - y)'Y11 (Tb)mn·] x 

G~~(z, y) 

- (F) + (TaTbTc)in 

{-i[·1µ[8(x - z) - 8(z - y)]Sp(x - y) fib(z, y)·] 
+- -+ 

-[·1µSp(x - z) f:b(z,y)Sp(z -y)(f'y + f'y)·]}. 
(5.71) 
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· -2rc0' ( ) -ig 4in x,y,z = 

(i) a Xµ. (n) 

Figure 5.60 

[·1µ.·](Ta)inG~~ ( X, Y) 

Tr[SQ3k(z - y)l'v(Tb)k1SQ1m(Y - z)l'CT(Tc)mj] 

(F) - ~15bc(Ta)in[·(ix + ix)·] X 

TrSp(z - y) !fb(x, y)Sp(y - z)/(1] 
+- --+ 

-~(Ta)in[· /~c(x, y)·] TrSp(z - y)(f}y + f}y)SF(Y - z)l'O' 
(5.72) 

The terms ( F) in each above diagrams stand for the Feynman gauge version of the 

corresponding diagrams. Now we turn to diagrams contributed by the three-gluon 

vertex. We just transcribe the final result given in the Appendix G here. The first 

diagram is 

· -2rc0' ( ) -ig 5inx,y,z= 

(c, u) 

a,~,v 
(i) X Y (n) 

Figure 5.61 

redy(c,e,d)O'a.6( 8z)[·1µ.(Ta)iiSQ31( x - y )iv ·](Tb)1n 

G~~(x, z)G~~(z, y) 

(F) + red(TaTb)inOid+e)qf3 x (5. 73) 

{G#,sv(z,y)[· J;e(x,z)Sp(x -y)iv·] 

-[·1µ.Sp(x -y) ffb(z,y)·]G~~(x,z)} 
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+- _,. 

{Ji~(x, z)G'JP{3v(z, y)[·(~x + ~x)Sp(x - y)l'v·] 
+- _,. 

+Jf$(z,y)G:~(x,z)[·1µSp(x -y)(~y + ~y)·]} 
- red(TaTb)inOid)uf3 ft$(z, y) x 

+- _,. 

[· /~e(x, z)Sp(x - y)(~y + ~y)·] 
+ red(TaTb)in[8~ - zu(az)-181:,_)] x 

{[· f~d(x,z)Sp(x -y)l'µ·]8eb(z -y) 

+[·1µSp(x - y) ffb(z, y)·]8ae(z - x)}. 

The last diagram contributed by the three-gluon vertex is 

~ (a,µ)~(b,v) 

e, >. f' () 
Figure 5.62 

IIabµv( ) 
1 x,y = ~92 rcey(a,c,e)µp>.( ax)fbfdy(b,f,d)vou ( 8y)G~~ ( x, y )G~~( x, y) 

- (F) +(ghost) 

+~92rcep!d{o~u [v<-,c,e)µp>.(ax) (G~1(x,y)J;{(x,y) 

- G1;.u(x,y)J~;(x,y)) + O~e)µ>. fl;(x,y)J;{(x,y)] 

+O~P [-v<-,J,d)vfJu( 8y) ( G~~(x, y )!:/ (x, y) 

(5. 74) 

- G1po(x,y)ff;(x,y)) + otJ)voJ~;(x,y)J:/(x,y)] + 

+yv [v<-,c,e)µp>.(ax) (!;{(x,y)(8y)-1a~~)8cd(x -y) 

- 12;(x,y)(8y)-1a~{)8ef(x -y)) 

+2((8y)-18ef(x - y))o;1a:8cd(x - y) 

- xµ((8x)- 18cd(x - y))(8y)-18ef(x - y)] 

+xµ [v<-,J,d)vou(ay) (Jf;(x,y)(8x)-1a~~8ef(x -y) 

- J:{(x,y)(8x)-181~8cd(x -y)) 

+2((8x)-18cd(x - y))o;1a;8ef(x - y) 

- yv((8x)-18cd(x - y))(8y)-18ef(x - y)] 

+2 [2gµva~n>. - gv>.a~J)µ - g>.µa~J)v]!;{ (x, y)8cd(x - y)}. 
(5. 75) 
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Here (ghost) in II~bµv ( x, y) equals 

........... ,. 
x,µ( _;y,11 . . . . . " .... 

Figure 5.63 

(5.76) 

It is quite interesting that II~bµv(x, y) in the FS ghost-free gauge contains im­

plicitly the ghost term associated with the Feynman gauge. 

The contribution of the four-gluon vertex is 

c,p od,a 
(a,µ) x,y (b,11) 

Figure 5.64 

II2tv(x, y) = !g2 W;i~~c5(x - y)Gcdpu(x, y) 

(F) 
+92 face jbfd[-2gµvo~Q + 9v>.8~£> + 9>.µ0~V]J;f>.(x, y)ocd(x - y). 

(5.77) 

Thus we have a part (the other part is contributed by fermion loop diagram) of the 

gluon self-energy 

rrabµv ( x, y) = II~bµv ( x, y) + II~bµv ( x, y) 

where 

H cdefµ( ) _ 
lu x,y -

H cdefµ( ) _ 
2 x,y -

(F) +(ghost)+ 

!Jacefbfd[O~u H~:efµ(x,y) + o~u H~:efv(y,x) 
+yv H~defµ(x, y) + x" H~defv (y, X )] 

01e)µ>. Ji;(x, y)J;{ (x, Y) 

+ V(-,c,e)µp>.(ox)[G~~(x, y)J;{ (x, y) - G8/;..uf2~(x, y)] 

y(-,c,e)µp>.( ox)[J;{ (x, y )( oy )-1aypc5cd(x - y) 

- J2;(x, y )( oy )-10y>.8ef (x - y )] 

+2[(oy)-1oef(x - y)]o;1a:acd(x - y) 

-x"[(ox)-18cd(x - y)][(oy)-1oef(x - y)]. 
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Note that (F) +(ghost) above is nothing but the gluon selfenergy IT~µv(x, y) 

in the Feynman gauge. Finally the last two diagrams of the first order correction 

of the quark-gluon vertex are combined into 

s~~-~·!!~,v) 
z-----~~Y + 

Figure 5.65 

r~in(x,y,z) = r~~in(x,y,z) + r~~in(x,y,z) 
(F) +(ghost) + i[··t·](T8 )inOzdf;(z, X )ITabµv(x, y) 

+492 face Jbfd[··t·](Ts)inG~:(z, x) X 

[ovuHcdefµ( ) + oµuHcdefv( ) + vHcdefµ( )] 
y 1<T x,y x 1u y,x Y 2 x,y · 

(5.80) 

5.4.2 On-shell Diagrams 

Gluon self-energy 

The gluon self-energy in the FS gauge consists of three diagrams below 

Figure 5.66 

The first diagram is gauge propagator independent. It is also gauge independent 

because of transversality of its truncated diagram. This means that this diagram 

in the FS gauge is exactly equal to that in the Feynman gauge. According to the 

previous result, equation (5.78), it turns out that the last two diagrams equal the 

same diagrams in the Feynman gauge plus the ghost terms 

99 



ms { --0--+ Q -t -()-t 
Figure 5.67 

because 

A(y) · y = 0 (5.81) 

and 

(5.82) 

Since the gluon self-energy in the Feynman gauge is transverse, see for example 

[Mut 87], we conclude that the equality leads to the transversality of the gluon 

self-energy in the FS gauge, as already anticipated. 

Quark-gluon vertex corrections 

Now consider the first three diagrams depicted below 

a,µ b,v .. adu + .+ a,nv 
+ .. + • x y x z y x z y 

Figure 5.68 

It turns out that the terms in equations (5.69), (5.70) and (5.71) which each 

has factors rarbrc are proportional to equations (5.14), (5.15) and (5.16) in spinor 

quantum electrodynamics respectively. As a consequence, because the sum of those 

terms in quantum electrodynamics vanishes on the mass-shell, the only term in the 

three above diagrams that give a contribution on the mass-shell is the term in (5.69) 

which has group factors fcadrara = reararbsaesab. Accordingly 
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S1 + S2 + S3 = ig I dx I dy I dz,,Pi(x) 

[r~fn(x, y, z)A~(z) + r~in(x, y, z)At(Y) + r;fn(x, y, z)A~(x )]~J.Y) 

ms (F) + g3 (JcedTaTb)in J dx J dy J dz 

{[,,Pi(x )hae(x - z) ;\c(z )SF(Z - Y) Jfb(x, Y )1/Jn(Y )] 

-[1/Ji(x) /!;e(x,y)SF(x - z) ;\c(z)hdb(z -y)'l/Jn(y)]}. 
(5.83) 

Similarly, since the second term of r~fn(x, y, z) in (5. 72) is proportional to (5.17) 

and thus does not give any contribution to S4 on mass-shell, we have 

a µ. 

x 

Figure 5.69 

(5.84) 

Now we come to the last three diagrams. Their details of calculation can be 

seen in theAppendix G. The final results are given as follows. 
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x y 

Figure 5.70 

Ss = ig f dx f dy f dzt/Ji(x)f5in(x, y, z)A;(z)t/Jn(Y) 

The last 

ms (F) - g3 red(TaTb)in I dx I dy I dzA;(z)v(-,e,d)ua.B(az) x 

{2ijf~(x, z )G3~(z, Y )tPi(x )8(x - Y )'·tt/Jn(Y) 
-+ 

-iff~(x, z)/tE(z, y )tPi(x )( flx +im )8(x - Y )tPn(Y)} 

+g3 red(TaTb)in I dx I dy I dzA;(z)Oid)u,8 x 

2iffE(z, Y )tPi( X) /2e( x, Z )8( X - Y )tPn(Y) 

-g3 red(TaTb)in I dx I dy I dzA;(z) 

{-tPi(x) f2e(x, z)SF(x - y)··(t/Jn(y)odb(z - y) 

+t/Ji(x)'·(SF(x -y) ffb(z,y)t/Jn(y)8ae(z- x)}. 

Figure 5.71 

Ss = ig f dx f dy f dzt/Ji(z)f~in(x, y, z)At(Y)tPn(z) 

- (F) +(ghost) - ig3 red(TaTb)in I dx I dy I dzA;(z)t/Ji(x) x 

{-2V(-,e,d)ua.B(8z)8(x - y )ivG3~(z, y)f't~(x, z) 

+28(x-y)Oid)u,8 /2e(x,z)ffE(z,y) 
-+ 

_ y(-,e,d)ua.B(oz)[(f}y -im )8(x - Y )]ff~(x, z )JfE(z, Y )}tPn(Y) • 

Remember that (ghost) is the ghost contribution in the Feynman gauge: 

1 • • 
···.r·: 

• s • 
Figure 5.72 
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Summing up equations (5.83)-(5.86), we get 

S = S1 + S2 + S3 + 84 + Ss + S6 

ms (F) +(ghost). 
(5.87) 

To conclude: off the mass-shell, all QED diagrams considered in the FS gauge are 

different from those in the Feynman gauge. The correction G~v( x, y) is responsible 

for it. These correction terms, though they are quite complicated, contain helpful 

factors like 

~ ~ ~ ~ 

,,P(x)(fJx + fJx)SF(x - y) and SF(x - z)(fJz + fJz)SF(z - y) 

in spinor QED and 

</>t (x)(Dx - 0:)SB(x - y) and SB(x - z)(Dz - Oz)SB(z - y) 

in scalar QED. Such factors will reduce to Dirac delta functions on the mass-shell. 

This reduction leads to cancellations in the correction terms. As a result both the 

FS gauge and the Feynman gauge are identical on mass-shell 

(selfenergy)FS ms (selfenergy)F 

(vertex)Fs ms (vertex)F· 

The same conclusion holds for quantum chromodynamics. One interesting point 

here is that since the FS gauge is ghost-free while the Feynman gauge on the 

other hand contains ghost loops the above equality means that when one shifts 

the FS gauge into the Feynman gauge ghost terms in the Feynman gauge emerge 

automatically. Diagramatically 

103 



gluon selfenergy 

n n . .. """""· .· ms{~ ... ~ .. ~ ... F 

Fig~re 5.73 

k-gluon vertex corrections I 
quar _____D._ 

+ ~+ FS 

Figure 5.74 
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Chapter 6 

Conclusion 

6.1 Summary 

In Chapter 2 we reviewed the derivation of inversion formulas together with their 

sufficient and necessary conditions both in Abelian and non-Abelian gauge theories. 

These formulas then were employed to obtain the so-called FS gauge potentials for 

some classical configurations. We found that in electrostatics the FS vector potentials 

are nonzero whereas (like the familiar Coulomb gauge) there are no scalar potentials 

in magnetostatic systems. One important result is that since according to the inver­

sion formula the FS gauge vector potential depends on time in the language of FS 

gauge potentials electrostatic systems are-no longer static! In addition, the FS gauge 

potentials in systems of plane electromagnetic waves are not plane waves. The fact 

that scattering of charged particles due to the FS gauge potential is identical to the 

Coulomb scattering lets us conclude that the FS gauge potentials (as expected) do 

not produce any (new) physical consequences. 

Chapter_ 3 is the starting point of the discussion on quantum field theory. Green 

functions which play an important role in quantum field theory were derived in co­

ordinate space in two different gauge fixing terms of Lagrangian Lg:F1 = -
2
\_ ( G · A)2 

and Lg:F2 = C(G ·A)+ iC2 and where Gµ. = 8µ., xµ. or nµ. in the Lorentz, FS and axial 

gauges respectively and C is an auxiliary or Lagrange multiplier field. The Green's 

function derived by the use of Lg:F1 is the most familiar one. It is a 4 x 4 matrix 
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and thus it only contains (µ, v)-elements. The last Green's function is a 5 x 5 matrix. 

Besides (µ, v )-elements there are (µ, 4) and ( 4, µ)-elements. These last two elements 

are called the unphysical part of the Green's function since they are not found in 

scattering matrices. Accordingly the (µ, v )-elements are contained in the physical 

part of the Green's function. We showed that the first Green's function is equal to 

the physical part of the second Green's function. This equality is understood since in 

the generating functional Lg:F1 is effectively equal to Lg:F2 • 

The symmetry properties of the Green functions or propagators were found to be 

GAB(x, y) = GBA(Y, x). In the case when>.= 0 the physical component of the Green's 

function has another property: it is orthogonal to Gw The derivation of the physical 

part of the propagator, for >. ---+ 0, in "momentum space" from that in coordinate 

space was based on the above symmetry and therefore the resulting propagator did 

not lose its symmetry. Our derivation is a definite improvement on what Kummer 

and Weiser [Kum 86] did. They did not make use the symmetry property from the 

beginning and as a result they found that the symmetry does not obviously appear 

in their resulting propagator; this forced them to propose new propagators Gµv(x,y) 

which obey the symmetry. 

In Chapter 4 the local gauge and the BRST transformations were reviewed. The 

BRST transformations were derived by the use of Lg:F2 • Based on the local gauge and 

BRST symmetries of Lagrangians the Ward-Takahashi, Slavnov-Taylor and BRST 

identities were then derived. 

The fact that the FS gauge is a ghost-free gauge was demonstrated in the first 

section of the chapter. Since the ghost fields in ghost-free gauges like the FS gauge 

may be disregarded the BRST identities in such gauges can be simplified into the 

Slavnov-Taylor identities or the non-Abelian version of the Ward-Takahashi identities. 

However, the content of all these identities, such as the transversality of the gauge 

field self-energy, naturally remains the same. 

Investigations on up to one-loop diagrams in spinor and scalar quantum electro­

dynamics and quantum chromodynamics were done in Chapter 5. We found that 

in scalar and spinor quantum electrodynamics the extra propagator G~v ( x, y) contri-
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butions disappear on mass-shell and leaving only the terms containing the Feynman 

gauge propagator GFµ.v(x, y). Therefore as far as the mass-shell perturbation calcula­

tions are concerned, the FS gauge theory is equivalent to the Feynman gauge theory. 

This is hardly surprising. The same conclusion is also true for quantum chromo­

dynamics. Here, extra diagrams contributed by ghost fields in the Feynman gauge 

are contained in the FS gauge propagator and the transversality of the full gluon 

self-energy is in agreement with the BRST identity. 

We anticipate that the conclusion holds (on mass-shell) to all order of scattering 

matrix but highly complicated nature of FS calculations indicates that it is better to 

consider the Feynman gauge rather than the FS gauge in perturbation calculations. 

However some properties of the FS gauge such as the inversion formula may make it 

useful for certain nonperturbative computations. 

6.2 Outlook 

The conclusion obtained in Chapter 5 is based on the lowest order diagrams we 

have considered. Thus it is essential to justify whether this conclusion also well applies 

for (at least up to a few) higher order diagrams. Of course this is not an easy task. 

The easiest task is, perhaps, to examine the first order three-gluon vertex correction 

which remains to be done. 

The investigations are based on the propagator with .,\ = 0. It would be quite 

interesting if computations are carried out by making use of propagators with a 

general value of the gauge parameter A and discover what role the gauge parameter 

term plays in perturbation theories. As in the axial gauge, [Cap 82, Lei 87], the final 

results will of course be more complicated. We are confident that in the limit .,\ ~ 0 

the final result will shift to the result found in Chapter 5. 
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A General Notations 

Summation over repeated (Greek or Latin) indices is understood. Units with 

c = n = h/27r = 1 are used throughout the thesis. 

Metric tensor: 
1 0 0 0 

0 -1 0 0 
g - gµv -µ.v - -

0 0 -1 0 

0 0 0 -1 

Four-vectors: 

µ. (t ) ( 0 1 2 3) - ( 0 _,) x = 'x, y, z = x 'x 'x 'x - x 'x 

Gradient: 

Divergence and curl: 

Levi-Civita tensors: 

''k .c'3 - _,c. 'k -
'- - '-IJ -

v- (...L _E._ ...L) 
- 8xl ' 8x2 ' 8x3 

81.& = -88 = (80, -V) 
Xµ 

1 if (ijk) is an even permutation of (123) 

-1 if it is an odd permutation 

0 otherwise 

1 if (µvpu) is an even permutation of (0123) 

t:µvpu = -fµvpu -1 if it is an odd permutation 

0 otherwise 
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Electromagnetic field tensor: 

0 -E1 -E2 -E3 

pµ.v = {)P. Av - {)VAµ. = E1 0 -B3 B2 

E2 B3 0 -BI 

E3 -B2 B 1 0 

B Identities Relating to Operators 8µ and Gµ 

First we list important formulae and later we indicate their proofs. 

{ 

1 if GP. = xf.J. 
IFs = 

0 if GP. = {)P. or nµ. 

(1) 8µ.Gv = Gµ.Ov + 1Fs9µv 

(2) 8G = Go+ 41Fs 

(3) GP.({)G + a)±1 = (oG +a - lFs)±1 Gµ. 

(4) fJP.({)G + a)±1 = (oG +a+ IFs)±1 aµ. 

(5) DGP. = GP.D + 21Fs8µ 

(6) DGµGv = Gµ.GvD + 21Fs(8µ.Gv + Gµ.8v) 

(7) D(8G + a)±1 = (8G +a+ 2/p8 )±10 

(8) Gµ.0-1 = o-1Gµ. + 21Fso-2aµ. 

(9) Gµ.Gvo-1 = o-1Gµ.Gv + 2/pso-1(8µ.Gv + Gµ.8v)o-1 

(10) Gµ.Gvo- 1 = o-1Gµ.Gv + 2/pso-2(8µ.Gv + Gµ.8v) 

+8IFso-3 {)µ.8v 

(11) G20-1 = o-1G2 + 41FsG8o-2 

(12) Gµ.0- 2 = o-2Gµ. + 41Fso-3{)µ. 

(13) (8G + a)±10-1 = o-1(8G +a+ 21Fs)±1 

(14) G'Zh(x - x') = G18(x - x') 

(15) G'l'8(x - x') = +G"8(x - x') 

(16) (o'G' + a)±18(x - x') = ±(8G ±a - 41Fs)±18(x - x') 
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where the upper sign of(=F)or(±)in the coefficient of the righthand side of the last 

two equations is given for the Lorentz gauge and the lower sign is for the axial and 

Fock-Schwinger gauges. Note that a is a number. 

Proofs 

(1) and (2) obvious. 

(3) (8G +a - IFs)Gµ. (
2

) (G8 +a+ 31Fs)Gµ. 

(l) G11 (Gµ.8v + lFS9µ.11) + Gµ.(a + 31Fs) 

- Gµ.(G8 +a+ 41Fs) (2) Gµ.(8G +a). 

Multiplying both sides by (8G +a - lFs)-1 from the left and (8G + a)-1 from the 

right the above identity is converted into 

(4) 

The same multiplication as in (3) leads to 

(5) DGµ. (l) 811 (Gµ.811 + lFS9µ.11) 

(l) (Gµ.811+1Fs9µ.v)8 11 +1Fs8µ. = Gµ.D + 21Fs8w 

(6) DGµ.G11 (s) (Gµ.D + 21Fs8µ.)G11 ~ Gµ.(G11D + 21Fs8v) + 21Fs8µGv 

- Gµ.G 11 D + 21Fs(8µ.Gv + Gµ.811 ). 

(7) D(8G + a)±1 <
4
> 8µ.(8G +a+ 1Fs)±1 8µ. ~ (8G +a+ 21Fs)±1 0. 

(8) Multiplying 0-1 from both the left and right on both sides of (5) we have 

(9) Same treatment as (6). 

(10) = (9) according to (8). 
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(11) G20-1 (lo) o-1c2 + 2lpso-2 (8G + G8) + 8/pso-2 

- o-1c2 + 4lp5 0-28G <
13

> o-1c2 + 4lpsG80-2 • 

(12) G"o-2 (s) (o-1 G" + 2/p5 0-28µ)0- 1 ~ o-1 (0-1G" + 2Jp5 0-28µ) 

+2/psD-38µ = o-2c" + 4/psD-38µ. 

(13) Same treatment as in (8) for (7). 

(14) and (15) obvious. 

(16) (8'G' + a)8(x - x') <:._~ (-=F-8'G + a)8(x - x') = (-=F-G8' + a)8(x - x') 

(~) (±G8 + a)8(x - x') = (±(8G - 4/ps) +a) 

8(x - x') 

- ±(8G ±a - 4/ps)8(x - x'). 

Multiplying ±(8G ±a - 4lps)-1(8'G' + a)-1 on both sides the identity becomes 

±(8G ±a - 4lps)-18(x - x') = (8'G' + at18(x - x'). 
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C Special Unitary Group SU{N) 

The generators Ta are hermitian and traceless, a = 1, 2, 3, · · ·, N 2 - 1. They 

obey the Lie algebra 

where rbc are the antisymmetric structure constants. Other useful relations are 

Traces of product of generators: 

Jacobi identities: 

or 
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D Inversion Formulae and Their Conditions 

D.1 Derivations of identity alaf(ax) = x · 8xf(ax) 

For any function f(ax) inn dimensional space x = (x1, x2, • • ·, xn) with an arbri­

trary parameter a one has 

d dsi a . a . a 
a-d f(ax) = a-d -

8 
.f(s) = ax'-a .f(ax) = x'-a .f(ax) (1) 

a a s' a x' x' 

where s = ax and i = 1, 2, · · · , n. 

D.2 Derivations of conditions for inversion formulae in non-

Abelian theories 

We start from equation 

with 8~ = ~813. In non-Abelian gauge theories the left-hand side of the above equation 

is not equal to Fµv(x). Adding -ig[Aµ(x), A11 (x)] to both sides of the above equation 

one has 
8µA 11 (x) - 811Aµ(x) - ig[Aµ(x), A11 (x)] 

-ig[Aµ(x), A11 (x)] + Fµ 11 (x) 

- Jl daa2 x.B[8f3Fµ 11 (ax) + 8~F11.e(ax) + 8~Fpµ(ax)]. 
The commutator can be written as follows 

[Aµ(x ), Av(x )] = Jl dad: a2 [Aµ( ax ), Av( ax )] 

Jl daa{2[Aµ(ax), Av(ax)] +ad: [Aµ(ax), A11(ax)]}. 

(2) 

(3) 

By recalling the Fock-Schwinger gauge condition x · A = 0, Aµ( ax) and A11 ( ax) in 

the first term on the right-hand side can be written as 
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while, according to the identity (1), ai'a in the second term can be replaced by 

Xf30f3 = xpo'fJ. Equation (3) now reads 

[Aµ(x), A11(x)] = Jl daa2 xf3{-[o~Af3(ax), A11(ax)] - [Aµ(ax), o~Af3(ax)] 

+o{J[Aµ(ax), A11 (ax)]} 

Jl daa2xf3{-[o~Af3(ax) - o,BAµ(ax), A11(ax)] 

-[Aµ( ax ), o~Af3( ax )] - o,BA11 ( ax )]} 

f0
1 daa2xf3{[Ff3µ( ax ), A11 ( ax )] - [Aµ( ax ), F11f3( ax )]}. 

Inserting ( 4) into (2) one has 

where 

OµA11 (x) - 011 Aµ(x) - ig[Aµ(x), A11 (x)] 

Fµ 11 (x) -J~ daa2xf3{fJ,8Fµ 11(ax)- ig[Af3(ax),Fµ 11 (ax)] + o~Fvf3(ax) 
-ig[Aµ(ax), F11f3(ax)] + o~Ff3µ(ax)] - [A 11 (ax), Ff3µ(ax)]} 

- Fµ 11 (x) - Jl daa2xf3[Df3Fµ 11 + DµFv(3 + D 11Ff3µ](ax) 

Equation (5) agrees with the Bianchi identities 

D.3 Validity of Aa(x) = IJ dAFµ 11 (S) 0f; ~;: 
The inversion formula 

(4) 

(5) 

(6) 

is only for abelian theories [Cor 84]. The derivation of necessary and sufficient con­

ditions of the inversion formula (6) is as follows. Applying derivatives on Aa(x), one 

has 
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Therefore 

( 
fJ2Sµ. asv 828µ. asv)} 

Fµ.v(S) fJxf3fJ). fJxa - fJxafJ). xf3 . 

The first term on the right-hand side may be written as 

where 8~ = 8~,,. In consequence, 

This final result states once again that the Bianchi identities 

are the necessary and sufficient conditions for the inversion relation (6) to hold. 

D.4 Expansions of Aµ(x) 

The expansion formula for Aµ. ( x) follows the work of Shifman [Shi 80]. Consider 

the inversion formula 

(7) 
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Fµ 11 ( ax) in the integrand can be Taylor-expanded around x = 0 

00 an 
= Fµ 11 (0) + L: -;JXa1 

• • • Xan ( Oa1 • • • 8anFµv( X) lx=O) 
n=l • 

(8) 

where 8~1 = ~8a1 • After replacing Fµ 11 ( ax) in (7) by series (8) integration over a can 

be done easily. The formula ( 7) becomes 

The ordinary derivatives in (9) can be replaced by the covariant ones 

because in the FS gauge the identity 

holds. 

The proof of identity (10) is as follows. Consider the following expression 

The equation (11) holds automatically if expression (12) vanishes for every n. For 

n=l 

because x ·A= 0. For n = 2 expression (12) reads 

The last two terms vanish because of the gauge condition. The remaining term also 

vanishes 

(13) 
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Thus (12) is also zero for n = 2. By the use of (13) it can be easily shown that for 

n = 3 the remaining term has the form xaixa2xa30a10a2Aa3· However, this is also 

zero 

Xa1xa2xa30 a A = 
a1 a2 a3 

a1 a2 [8 a3 0 "a3 0 ]A X X a1 X a2 - V a 1 cr2 a3 

X aixa2a {) x ·A - xa1xa3 8 A - xa2xa3 {) A = 0 a1 a2 a1 a3 a2 a3 • 

(14) 

The similarity between identities (13) and (14) enables us to prove (11) for higher n 

by mathematical induction. Suppose that this expression holds for n 

Accordingly, for n + 1 

xa1xa2 ••• xanxan+1xf38 8 ... 8 8 Af3(x) 
a1 a2 O'n crn+l 

xa1xa2 ... xan+1{) a ... a (x. A) 
a1 a2 crn+l 

= 0. 

Thus expression (11) is true for all n and therefore expansion (10) is valid. 

D.5 Two other derivations of the inversion formulae 

We may derive the inversion formulae by two other ways: by employing Stokes' 

theorem [Dur 82] and by using the language of differential geometry [Bri 81]. Both 

derivations will be given below for completeness. 

D.5.1 Stokes' theorem methods 

Relationships between potentials Aµ(x) and their field strength tensors Fµ 11 (x) 

based on the Stokes' theorem are given by expression 

fa Aµdxµ = ls Fµ 11 drµ 11 

where the line integral is along a closed path C and the surface integral is over a 

surface S around C. For our purposes it is sufficient to choose a closed path C as 

depicted below 
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0 

xP+.6'X.."' 

0 < "'· ,o{:r. • ••• < 1 

ACC1 = f-c{, 

f::lo{ 2. :::. o( 1 - o( 2. 

J.,_ AX" 
q', AX.,w AX.JI 

f:j,o(3 = e(:r. - o(:5 

::icJl 4c(3 x"~"'J. 
c ~ r_l'dc(1 

cf3X"' <(1X,w q'I :t-" x.JA ...... 

Now the line integral reads 

fc Aµ(x)dxµ = Aµ(x).6.x/.L + Aµ(a 1x)xµ.6.a 1 + Aµ(a 2 x)x1-L.6.a2 + · · · 

-Aµ(x + .6.x) (x + .6.x)l-L.6.a1 - Aµ[a 1(x + .6.x)] (x + .6.x)l-L.6.o2 

subject to the gauge condition x · A(x) = 0. Note that every pair of paths such as 

AB and CD does not give any contribution to the integral because of their opposite 

directions. The final result tells us that the only path which contributes to the 

integral is the base ~x/.L. On the other hand the surface around the above closed 

path leads the surface integral into 

N 

= 2: O:i.6.0:iXµ Fµv( O'.iX ).6.x11
• 

i=l 

If we divide the surface into infinite number of trapezoids the integral becomes 

Equating both expressions one arrives at the result 
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D. 5. 2 Differential geometry 

The derivation is based on a choice of a region called a star-shaped region [Spi 65]. 

A star-shaped region SC Rn is a set of x ES with conditions ..\x E S for 0 ~ ..\ ~ 1. 

Now if w is a closed m-form on the star-shaped S, that is dw = 0, then, according to 

Poincare lemma [Spi 65], w is exact, i.e. w can be written as w = d!l with n is an 

(m - 1) form on s. In a star-shaped region n can be defined as 

fl=lw= . . L. f)-1y-1foldo:o:m-lxir 
1:511 <i2<···<im:5n r=l 

where the hat symbol over dxir indicates that it is omitted. The above expression 

can be applied to gauge field theories since in the language of differential geometry 

the gauge field strength tensors are closed (see for example [Ryd 85]): 

dF =0 

where 

and according to the Poincare lemma 

with 

In integral form 

yielding 

F=dA 

A= IF= L 11 
dao:Fµ 11 (ax) (xµdx 11 

- x 11dxµ) 
0:::;µ<11:53 ° 
1 [1 

= 2" lo dao:Fµ 11 (ax) (xµdx 11 
- x 11dxµ) 

= - fo1 

dao:Fµ 11 (ax)x 11dxµ 
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E Fock-Schwinger Gauge Propagators 

E.1 Propagators with £g:F =-±(G. A) 2 

The inverse propagators are given by 

The general form of the corresponding propagators must be 

with A, B, · · ·, E are in general functions of {}I' and Gµ. These quantities can be 

solved by the use of identities 

We get, after integration over y, 

8~8(x - z) = [Dgµv - aµav ± tGµGv][Agva + 8v8aB + GvGaC 

+8vGaD + Gv80 E]8(x - y) 

{DA8~ + DGµG0 C + DGµ80 E - 8µ8aA - 8µ8 · GG0 C 

-8µ8 · G80 E ± i[GµG 0 A + GµG · 880 B + GµG 2 G0 C 

+GµG · 8G0 D + GµG 280 E]}8(x - z) 

{DA8~ + GµG0 [DC ± i(A + G2C(8G - 3lps)D - 2lpsE)] 

+aµGa[2fpsC - (8G + fps)C] 

+Gµ80 [2fpsC +DE± i((8G - 5lps)B + G2 E)] 

+aµaa[2lpsE - A - (8G - fps)E]}8(x - z) 

where we have used identities derived in the appendix B. We conclude that 

A= 0-1 ; C= 0, 

A+ (8G-3lps)D - 2lpsE = 0, 

(D ± tG2)E ± l-(8G-5lps)B = 0, 

-A- (8G- 3lps)E = 0. 
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Recalling identities in the appendix B we have 

E = -(8G - 3/Fs)-1 0-1 = -o-1 (8G - IFs)-1, 

D = +(8G - 3/Fs)-1[-0-1 - 21Fso-1(8G - IFs)-1] 

-o-1 (8G - IFs)-2 (8G + IFs), 

B = =f,\(8G- 51Fs)-1(D ± j-G2)(-o-1)(8G- lFs)-1 

- ±,\o-1 (8G- 3/Fs)-1 [0 ± HG2 + 41Fso-18G)](8G - IFs)-1. 

Accordingly 

8µ811B = ±,\o-18µ811(8G - 3/Fs)-1 [D ± HG2 + 41Fso-18G)](8G - IFs)-1 

o-1 (8G - IFs)-1[±,\(8G + 3/Fs)-1 08µ8" + (8G - IFs)-18µG 2811]+ 

21Fso-1(8G - IFs)-2 8µG11 + 41Fso-2 (8G + IFs)-2 (8G + 21Fs)8µ811 

8µG11D = -8µG110- 1(8G - IFs)-2(8G + IFs) 

-o-1 (8G - IFs)- 18µG11 - 21Fso-1(8G - 1Fs)-28µG11 

-21Fso-2 (8G + IFst2 (8G + 31Fs)8µ811 

Gµ811E = -Gµ8110-1(8G - IFs)-1 

-o-1 (8G - 1Fs)-1Gµ811 - 21Fso-2 (8G + IFs)-18µ811. 

Finally 

aabµ"(x, y) = [Agµ"+ 8µ8 11 B + GµG"C + 8µG" D + Gµ8 11 E]8ab(x - y) 

- 0-1 {9µ" - (8G - IFst1 (8µG" + Gµ8") + (8G - IFst28µG 2811 

±,\(8G - IFs)-1(8G + 31Fs)-1 D8µ8"}8ab(x - y). 

E.2 Inverse propagators when Cg:F = CG · A + ~C2 

In this case the propagators are of the form 

Gabµ"(x, y) = 0-1{9µ 11 - (8G - IFs)-1(8µG 11 + Gµ8 11 ) + (8G - IFs)-28µG 2811 

±,\(8G - IFs)-1(8G + 31Fs)-108µ8 11 }8ab(x - y), 

Gabµ4(x, y) = (8G - 31Fs)-18µ8ab(x - y), 

Gab4µ(x, y) = =t=(8G)-18µ8ab(x - y), 

Gab44(x, y) = O. 
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In general the inverse of the corresponding propagators are 

a-1abµ11(x,y) = (Agiw + (8µQv + avGµ)B + 8µ8vC + QµQv ..Q]h'ab(x -y), 

a-1abµ\x, y) = QIL Eh'ab(x - y), 

0-1aMµ(x,y) = QILF8ab(x-y), 

a-1aM\x, y) = Hh'ab(x - y), 

where A, B, · · · , H are in general functions of Gµ and 8µ. These functions can be 

obtained by making use of identities 

with I<, L, M = 0, 1, · · · , 4. More explicitly 

h'(x-:- z) J dyG4µ(x, y)G-1"\y, z), 

0 = J dyG4µ(x,y)G- 1""(y,z), 

0 =f dy[Gµv(x, y)G-1114 (y, z) + Gµ4(x, y)G-144 (y, z)], 

8~8(x - z) = J dy[Gµv(x, y)G-111a(y, z) + Gµ4(x, y)G_1 fo(y, z)], 

where oabKL(x,y) = sabQKL(x,y). Now the first identity reads 

thus 

The second identity 

0 = =F(8G)-18µ[Agµv + (8µGv + avGµ)B + 8µ8vC + GµGv D]h'ab(x - z) 

- (8G)-1[8v(A + 8GB +DC)+ (DGv B + 8GGv D)]h'(x - z). 

The third identity 

0 = o-1{g1L" - (8G - fps)-1(8µGv + QIL8") + (8G - fps)- 2 81LG28v 

±.\(8G - fps)-1(8G + 3lps)-1oaµav}Gv Eh'(x - y) + 

(8G - 3lps)-18µHh'(x - z) 

(8G - 3lps)-18µ(H ± .\E)h'(x - z). 
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Hence 

H = ~>.E = >.. 

The last identity 

8~ = o-1 {gµv - (8G - lpst1(8µGv + Gµ8v) + (8G - lps)-28µG 28v 

±>.(8G - IFs)-1(8G + 3lps)-108µ8v}{Ag 11a + (8 11 Ga + aaG11 )B 

+avaac + G11 Ga D} + (8G - 3lps)-18µGa F 

(A+ B)o~ + GµGao(8G - lpst1 B 

+Gµ8a[B - (8G - lps)-1(A + 2lps +DC)] 

+8µGa{B - (8G - lps)-1[A- B + (8G - 3lps)B 

~>.(8G + 3Jpst1 D2 B ~).OD+ DF] 

+(8G - lpst2 [-2IFsA + G2 DB - 4lpsB 

-2lps8GB - 2Jp8 DC)} 

+aµaa{c + (8G - 3Jps)-1 [G2 B - (8G- 5lps)C + (8G - 3Jps)-1 G2 

(A+ 2lpsB +DC)± >.(8G + hs)-1 DA 

±41Fs>.(8G + lps)-1DB ± >.(oG + Jps)-1 0 2c 
±2/Fs>.D + 2/psF] 

±>..8G(8G - 5lps)-1(8G - lpst1 B}. 

Thus we have 

A=D; B=D=O; C=-1; F = 1. 

The second identity agrees with this result. 

Now we have obtained all the quantities A, B, ···,H. These lead to the inverse 

propagators (which can be read off the Lagrangian in fact) 

G-1abµv(x,y) = (Dgµv - aµav)oab(x -y), 

G-1abµ4(x,y) = ~Gµoab(x -y), 

G-1aMµ(x, y) = Gµoab(x - y), 

G-1aM4(x,y) = )..8ab(x -y). 
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E.3 Symmetry properties of propagators 

Consider ca&µ.v(x, x') 

cabµ.v(x, y) = 0-1 {9µ.v - (8G - IFs)-1(8µ.Gv + Gµ.8v) + (8G - IFs)-28µ.G 28v 

±,\(8G - IFst1(8G + 31Fs)-1 08µ.8v}8a"(x -y). 

We have 

cabµ.v(-x, -x') = cabµ.v(x, x') 

because 0-1 , (8G-1Fs)- 18µ.Gv and 8µ.G 28v are invariant under transformations 

x--+ -x and x'--+ -x'. Also 

Ga" (x' x) = o'-1 {9 - (8'G' - I )-1 (81 G' + G' 8') + (8'G' - I )-281 G12 8' vµ. ' µ.v FS 11 µ. 11 µ. FS v µ. 

Rearranging and making use of identities given in the appendix B, 

G~~(x',x) = {0
1

-

1
9µ.v - (8'G' -3/Fs)-1 [8~(G~o'-

1 

-2/FsD·-2 8~) 

+(G~D,_1 

- 2/FsD·-2 8~)8~] 

+(8'G' - 3/Fs)-28~[G12 0'-
1 

-41FsG'810'-2 ]8~ 

±,\(8'G' - 31Fs)-1(8'G' + IFst18~8~}8a"(x - x') 

0-1 {9µ.v =I= [±Gµ811 ± 8µ.G11 - 41Fso-18µ.8v]· 

(8G =I= 3/Fs - 4/Fs)-1 

+[8µ.G2811 =I= 4/Fso-18µ.8G8v](±)2(8G =I= 3/Fs - 4/Fs)-2 

±,\(8G - 31Fs)-1(8G + IFst18µ.811}8ab(x - x') 

0-1 {9µ.v - [Gµ.811+8µ.Gv=I=41Fso- 18µ.8v](8G - IFst1 

+[8µ.G28v =I= 41Fso-18µ.8G811](8G - IFs)-2 

±,\(8G - IFs)-1(8G + 31Fst1 D8µ.8v}8ab(x - x') 

- G~~(x, x'). 

Such symmetry also holds for the nonphysical propagators 

Gabµ.4 (x', x) = (8'G' - 3/Fst181
" 8a"(x - x') 

=I=(8G)-18µ.8a"(x - x') = Gab4µ.(x, x'). 
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However 

aabµ4(-x, -x') = -Gabµ4(x, x'). 

Hence we conclude that the symmetry properties of the propagators are 

GabKL(x, y) = GabLK (y, X ), 

aabµv(x, y) = +aabµv(-x, -y), 

aabµ4(x, y) = _0 abµ4(-x, -y), 

aab4µ(x,y) = _0 ab4µ(-x,-y). 

E.4 Fock-Schwinger propagators in momentum space 

The non-Feynman gauge part of the Fock-Schwinger gauge propagators in the 

case A ---+ 0 

can be written in the form of derivatives oµ and 8~ of some functions as follows: 

G~11 (x, x') = 0-1[-oµxv(ox - 1)-1 +(ox - lt1 xµo~ + !oµx 2ov(ox -1)-2 

-!(ox - lt2 oµx2o~ ]8(x - x') 

where 

+oµ[-o- 1x11 (ox -1)-18(x - x') + !o-1x2011 (ox - 1)-2 8(x - x')] 

+o~[o-1 (ox - lt1xµ8(x - x') - !o-1 (8x - lt2oµx 28(x - x')] 

oµf1v(x, x') + o~hµ(x, x') 

fiµ(x,x') = -o-1xµ(ox - lt18(x - x') + !o-1x2oµ(ox -1)-28(x - x') 

f2µ(x, x') = +o-1 (8x -1)-1xµ8(x - x') - !o-1(8x -1)-2oµx 28(x - x') 

-D
1

-1 x~(o'x' -1)-18(x- x') + !D1

-1 x12 o~(o'x' -1)-28(x- x') 

fiµ(x',x). 
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Now 

8~f1µ(x',x) = fJ~hµ(x,x') 

- ![20-1 a~x~(fJx - 1)-1 + o-1 a~x12 fJ~(fJx - 1)-2]8(x - x') 

- ![o-1 (fJ~x~ + x~fJ~ + 9µ11)(8x -1)-1 

+o-1 (x
12

fJ~fJ~ + 2x~fJ~)(fJx -1)-2]8(x- x') 

![o-1 (-xµ811 + x~fJ~ + 9µ11)(8x -1)-1 

+o-1 (x
12

fJ~fJ~ + 2x~fJ~)(fJx - lt2]8(x - x') 

![(-xµo-1 +20-28µ)811 (8x -1)-1 + o-1 (x~8~ + 9µ11)(8x -1t1 

+D-1 (x
12 
{)~{)~ + 2x~fJ~)(fJx - lt2 ]8(x - x') 

[!xµo-1a11 (8'x' - 3t1 + o-2aµ811(8x -1)-1]8(x - x') 

+!D-1 [(x~O~ + 9µ11 )(ox -1)-l + (x 12 
0~0~ + 2x~o~)(ox - lt2] 

8(x - x') 

o-20µ811(ox - l)-18(x - x') + !xµo-1011G3 (x',x) 

+!o-1 (x' o' + g )G (x x') + !o-1 (x12 
o' o' + 2x' o' )H (x x') 2 µ 11 /Lll 1 l 2 11 µ 11 µ 1 l 

where we have defined 

(ox - n)Gn(x,x') = 8(x - x') 

(8x - nt1Gn(x, x') = Hn(x, x'). 

Gn(x, x') and Hn(x, x') may be obtained as follows. First of all we rewrite operator 

(ox- n) which acts on Gn(x, x') as [xo- (n -4)]. Then we introduce a parameter 

f3 by replacing x ~ f3x. This gives 

[x8 - (n - 4)]Gn(f3x, x') = 8(f3x - x'). 

Now xo may be replaced by f3 d~ 

[/3 d~ - (n - 4)]Gn(f3x, x') = 8(f3x - x'). 

Furthermore, we can change to parameter o: = ~ 

-[add + (n - 4)]Gn( x, x') = o:48(x - ax'). 
0: 0: 

The left-hand side may be reduced to single term by multiplying o:n-5 into the 

equation 
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The last steps to obtain Gn(x, x') come by multiplying both sides by c"'6 with 

8--+ +O and then integrating over a from 1 to +oo. We have 

Hn(x, x') follows immediately 

Hn(x, x') = (8x - n)-1Gn(x, x') 

Ji°° dac"'6an-1(8x - n)-1 8(x - ax') 

Ji°° dae-"'6an-lGn(x, ax'). 

Particular n-values are 

- J dk e-•~(x-x') 
- ikx' 

H1(x,x') = fOO d -o:6G ( ') - - Joo d -cxo J d-k e-•k(x-a.:i:') 
Jl ae 1 x,ax - 1 ae io:kx' 

J dk Jioo dac"'o In a e-ik(x-cxx') 

G3(x, x') = J1
00 do:e-"'6o:28(x - o:x') = f dk Ji°0 do:e-cx6o:2 e-ik(x-cxx'). 

Now we have 

8~f2µ(x,x') = o-2aµov(8x -1)-18(x - x') 

+! J dk Joo do:e-cxoiax k e-ik(x'-cxx) 
2 -k2 1 µ II 

+ 1 J dk Joo d -cxo [ · I k + 12 k k 2 1 2 -k2 1 a e io:x µ 11 g µ11 - x v µa n a 

+2iax~kµ In a] e-ik(x-cxx') 

o-2aµ8v(8x -1)-18(x - x') 

_! J dk Joo dae-o:oiax k e-ik(cxx-x') 
2 -k2 1 µ II 

+! J !;2 Ji°° do:ccx6[gµv + io:x~kv + 2io:x~kµ Ina 

-x 12 kµkva2 In a] e-ik(x-cxx'). 

Since oµfiv(x, x') can be obtained from o~f2µ(x, x') by replacements x +-+ x' and 
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µ ~ v, the propagator G~11 ( x, x') becomes 

G~11 (x,x') = [o-28µ811(8x-1)- 1 + o'-2 8~8~(8'x' -1)-1]8(x- x') 

+! f !;2 N'° dae-°'Sgµv(e-ik(x-oix 1
) + e-ik(oix-x')) 

+! f !;2 ft' dae-°'8 [iax~k11 + ia(l + 2lna)x~kµ 
-x 12 kµkva2 ln a] e-ik(x-oix') 

+! f !;2 f100 dae-°'8[-iax 11 kµ - ia(l + 2lna)xµk 11 

-x 12 kµkva2 ln a] e-ik(oix-x'). 

The first term vanishes because of the equality 

Hence 

o'-
2 
8~8~(8'x' - It 18(x - x') = -o'-

2 8~8~(8x - 3t18(x - x') 

-(8x - 3)-1 0'-
2 8µ8118(x - x') 

-o-28µ811 (8x - 1)-18(x - x'). 

G~11 (x, x') = ! f !;2 ft dae-°'sgµv(e-ik(x-oix') + e-ik(oix-x'))+ 

! f !;2 ft dae-°'8 [iax~k11 + ia(l + 2 ln a)x~kµ 
-x 12 kµkva2 ln a] e-ik(x-oix') 

! f !;2 ft dae-°'5[-iaxvkµ -ia(l + 2lna)xµk 11 

-x 12 kµk11a2 ln a] e-ik(oix-x'). 

More neatly rewrite 

G~11 (x, x') = j d~2 fi 00 

d(J [!v(fJ, k, ak, x')kµe-if3kx + gµ((J, k, ak, x)k11 eif3kx'] 

where 

fµ({J, k, ak, X) = !e-f3S { eikx 8%,, + 8({J - 1) ft da e-oiS · 

eioikx[ia(l + 2lna)xµ - x2kµa2 lna]} 

gµ({J, k, 8k, x) = !e-f3S { cikx 8%,, + 8((3- l) ft dae-oiS. 

e-ioikx[-ia(l + 2 ln a)xµ - x2kµa2 ln a]}. 

It is readily verified that 

gµ(fJ, -k, -ak, x) = - fµ(fJ, k, ak, x) 

gµ((J,k,ak,-x) = fµ((J,k,ak,x). 
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F Local Gauge and BRST Invariances 

F .1 The local gauge invariance of Lagrangians 

The infinitesimal local gauge transformatians 

where 

t/;'(x) = t/;(x) - igTaAa(x)t/;(x) 

t/;'(x) = t/;(x) + igt/;(x)TaAa(x) 

A~(x) = Aµ(x) -Tan:bAb(x) 

- UAµU* - ~(8µU)U* 

Dµ = 8µ - igTaA~ 

nab= sab0 _ gfabc Ac µ. µ. µ. 

(1) 

lead to the field strength Fµ 11 = DµA 11 - D11 Aµ and the covariant derivative of the 

fermion field Dµ.t/; which transform into 

F' = U Fµ. 11 U* µ.1.1 

D~t/;' = UDµt/;. 

It follows that quantities such as paµ.1.1 F;
11

, t/;t/; and t/;Dµ.t/; are invariant. Accordingly 

the quark-gluon Lagrangian 

.!o = -~Faµ.1.1F;11 + t/;(i-y"Dµ - m)t/; 

is invariant under the local gauge transformations (1). 

F .2 The BRST invariance of Lagrangians 

Consider the Lagrangian 

with 
.!o = -~F;11Faµ.1.1 + t/;(i/µ. Dµ - m)t/; 

£g:F = CG · A+ ~C2 

£:F'P = -x*aGµ.n:bxb 
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We wish to prove the invariance of the above Lagrangian under infinitesimal BRST 

transformations 

Sif;(x) = igOTaxa(x )if;(x) 

Sif;(x) = -igif;( x )OTaxa( x) 

8A~(x) = OD~bxb(x) 
(3) 

oxa(x) = -~g() rbexb(x )xe(x) 

8x*
0

(x) = oca( x) 

oca(x) = _'f!:.()GµDabi 
>. µ 

where n = 0 when C is an auxiliary field, and n = 1 when 

(4) 

i.e. when .Cg:r = -A(G · A)2
• 

As a matter of fact the first three transformations are essentially the local gauge 

transformations with A = -Ox. Since .C0 is local gauge invariant it is also BRST 

invariant. Thus we need only to prove that .Cg:r + .C:rp is BRST invariant. The 

variation of .Cg:r + .C:rp under the BRST transformations is given by 

8.Cg:r + 8.C:rp = 8Ca(G · Aa +,\Ca)+ caGµoA~ - (8x* 0 )Gµ D~bxb 

-x*
0

Gµ.8(D~bxb) 

8Ca(G. Aa +,\Ca) - x*aGµo(D~bxb) 

- (n:a. Aa + noca) Gµ.D~bxb - x*aGµo(D~bxb). 

Since D~bXb is BRST invariant, namely 

o(D~bxb) = D~bsxb - grbe(oA~)i 

-~gored(Bµxe)xd - ~g()faedxeaµxd 

-gO red( 8µxd)xe + ~920 (rdb pea + 2reb pde) A~xexd 

- +gored(Bµxd)xe - gored(Bµxd)xe 

+~g2() (rdb Jbea + reb pde + rdb pee) A~xexd 
- 0 

upon remembering the Jacobi identity 
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the equation (5) becomes 

8£g:F + 8£:FP = - ( n:, G · Aa + nOCa) c11. n:bxb. (7) 

It turns out that when ea is a (auxiliary) field and is independent of A:, 8£g:F + 
8£,:F'P vanishes since in this case n = 0. The same conclusion also holds when we 

choose (4). In the latter case n must be equal to 1 in order to match 8Ca in (3) and 

8Ca derived from (4). Thus we have proved that the Lagrangian (2) is invariant 

under the BRST transformations (3). 

F .3 BRST-nilpotencies 

Other quantities which are BRST invariant are rbcxbxc, x'l/J and 'l/Jx. The proofs 

are as follows 

because 

8(Jabcxbxc) = rbc( 8xb)xC + rbcxbfJxC 

-!grbc fbde()XdXeXc _ !grbc rdexbOxdxe 

gO rbc rde Xb Xd Xe = 0 

- rbc rdexbxdxe = (rdc reb + rec rbd) xbxdxe 

- rbcrde (xbxdxe + xbxdxe) 

21abc rdexbxdxe 

8(x,,P) = ra(8xa),,p + raxa8,,p 

- !gO[Tb, Tc]xbxc'l/J - igOTaTbxaxb'l/J 

- igOTbTcxbxc,,P - ig()TbTcxbxc,,P = 0. 

The variation of 'l/Jx is similar to that of x'l/J, thus 

8(,,Px) = o. 
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Results (6-10) establish the nilpotency of the BRST transformations 

82 A~= 08(D:bxb) = 0 

82Ca = _n:QIL8(D~bXb) = 0 

s2,,p = ig08(xt/J) = o 
s2,,p = -ig08( ,,Px) = o 

82xa = -!g08(JabcXbXc) = 0 

82x* 0 = osca = 0. 

F .4 Invariance of integral measures 

Let us consider two integral measures 

(1) 1J[A,,P,,PC] 

(2) V[At/Jt/Jxx*C]. 

The former will be related to the local gauge symmetry while the latter will refer to 

the BRST transformation. To check the invariance of the above integral measures 

under their corresponding transformations we need only to prove the unity of their 

corresponding Jacobians. Recalling the infinitesimal local gauge transformations 

(1) the Jacobian related to the first integral measure is 

o(A:(x), 1i/(x), ,,P'(x), C
10

(x)) 
o(Abv(y), ,,P(y), ,,P(y), Cb(y)) 

- det {[9µ11(8ab - grbcAc)8(x-y)][(l + igA)8(x -y)]x 

[(1 - igA)8(x - y)][8ab(x - y)J} 

which is independent of A and is equal to 8(x - y). Hence 1J[A,,P,,PC] is gauge 

invariant. Similarly by recalling the BRST transformations (3) the Jacobians for 

the last integral measure is given by 

o(A: (x ), 1i/(x ), ,,P'(x ), x10 

(x ), x-'
0 

(x ), c'" (x)) 
8( Abv(y ), 1/J(y ), ,,P(y ), x(y ), x*(y ), Cb(y)) 

- det {[9µ11(8ab + grbcxc)8(x -y)][(l - igTcoxc)8(x - y)]x 

[(1 + igTc()x_c)8(x - y)][(8ab + g()rbcxc)8ab(x - y)]2[8ab(x - y)J}. 

This determinant is also unity and therefore 1J[A,,P,,Pxx*C] is BRST invariant. 
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G Som.e Details of Perturbation Calculations 

All diagrams considered in scalar and spinor quantum electrodynamics are linear 

in G,w(x, y). This linearity enables us to write each of the diagrams into two terms: 

the G Fµv ( x, y) and the G~v ( x, y) terms. Since the familiar Feynman diagram are 

assumed to have been calculated the whole propagator G µv ( x, y) will not be taken 

into account but, rather, the corrections G~v(x, y). 

In quark-gluon vertex corrections, however, the full Gµv(x, y) must be used 

rather than G~v(x, y) because diagrams contributed by the three and four-gluon 

vertices are not linear but quadratic in Gµv(x,y), producing terms which consist of 

multiplication of GFµv(x,y) and G~v(x,y) that cannot be neglected. 

Perturbation calculations in scalar and spinor quantum electrodynamics will 

be carried out in "momentum space" as well as in coordinate space. In quantum 

chromodynamics, on the other hand, we will only consider calculations in coordi­

nate space due to difficulties in combining the three-gluon momentum vertex with 

G~v(x, y). 

G.1 Scalar Quantum Electrodynamics 

G.1.1 Momentum Space 

Meson-meson scattering (Born term) (Figure 5.18) 

S' = -ie2 J dxdy(p1 + P2)µ(q1 + q2yG~)x,y)eix(p2-Pd+iy(q2 -q1 ) 

-ie2 f !!2 Ji°° d/3 f dx f dy(p1 + P2)µ( qi + q2)v[gv(/3, k, 8k, y )kµeif3kx+ 

(µ +-+ v, x +-+ y)]eix(p2-P1)+iy(q2-q1) 

- -ie2 f ~Ji''° d/3 f dy(p1 + P2)µ(q1 + q2)v[gv(/3, k, 8k, y)kµ· 

S(p2 - P1 + /3k)eiy(q2-q1) + (µ +-+ v, p +-+ q)] 

- -ie2 J !!2 Ji°0 ~ J dy[(q1 + q2Y9v(/3, k, ak, y)(Pi - PD· 

S(p2 - P1 + f3k)eiy(q 2-qi) + (p +-+ q)] 

ms O. 
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Meson self-energy (Figures 5.19-5.20) 

s~ = e2 J dx J dy J dp(p2 + p)l-'(p + pi)"(p2 - m2 + it:)-1 G~11 (x, y) 
eix(p2 -p)+iy(p-p1 ) 

- e2 J !t2 Ji°0 d/3 J dx J dy J dp(p2 + p)µ(p + P1)"(p2 - m 2 + if)-1
• 

[g11(/3, k, Ok, y)kµeif3kx + (x, µ +-+ y, v)]e'x(prp)+iy(p-p1) 

e2 J !t2 Ji°° d/3 J dy J dp(p2 + p)i.L(p + Pt)"(p2 - m2 + iE)-t[g11(/3, k, Ok, y)· 

kµ · h(p2 - p + /3k)e'Y(p-pi) + (p +-+ -p, Pt+-+ -p2, µ +-+ v)] 

e2 J !t2 Ji°0 ~ J dy J dp(p2 - m2 + iE)-1[911(/3, k, ok, y )(p + P1 )"(p2 - pn· 

h(p2 - p + /3k)eiy(p-pi) + (p +-+ -p, Pt +-+ -p2)] 

ms e2 J !t2 Ji°° d: J dy[gv(/3, k, Ok, Y )(p2 +Pt + /3k )" eiy(p2 -p1 +f3k) 

+(Pt +-+ -p2)] 

2e2 J !t2 Ji°0 d/3 J dyg11 (/3, k, Ok, y )k" eiy(p2-P1 +f3k). 

s~ = -e2 J dyeiY(PrP1)g1.L"G~v(y, y) 

-2e2 J !;2 Jioo d/3 J dygv(/3, k, Ok, y)k"eiY(PrP1+f3k) 

s' = s~ + s~ ~ o. 

Vertex corrections (Figures 5.21-5.29) 

s~ = e3 J dx J dy J dz J p2-=2+if J q2-!~+if(P2 + p)i.L(p + q)q(q +Pt)" Au(z) 

G~11 (x, y )eix(prp)+iy(q-p1)+iz(p-q) 

e
3 J dx J dy J dz J p2-=2+if J q2_:;2+if J ~ Ji°0 

df3Au(z)(p + qy 

(p2 + p)i.L(q + Pt)"[g11(/3, k, Ok, y)kµeif3kx + (x +-+ y, µ +-+ v)] 

e3 J !!2 Ji00 1 J dy J dz J p2-:2+if J q2-'!:2+if Au( z )g11(/3, k, Ok, y) 

[(p2 - pn(p + q)u(q + pi)"h(p2 - P + /3k)eiy(q-p1)+iz(p-q) 

-(p +-+ -q, Pt H -p2)] 
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m• e3 J !;2 fi°0 ~ f dyfdzf q2-!\+ifA11(z)g11(/3,k,8k,y) 

[(p2 + q + /3k)"(q + Pt)11ei11(q-pi)+iz(J12-q+Pk) - (q +-+ -q, Pt +-+ -p2)] 

- e3 f !~ ft00 ~ f dxf dyf 112-!1':J+ifAl7(z)g11(/3,k,8k,x) 

[(p + p2 + /3kY(P + Pt)11eix(p-p1)+i11(P2-P+Pk) 

-(p +Pt_ /3kY(P + p2)11eix(p2-P)+i11(P-P1+Pk)]. 

s~ = e
3 I dx J dy J dz J pL~2+•f I qL~l+i( (p2 + q )"'( q + p )" (p +Pt )17 Al7 (y) 

G' (x z)eix(p2-q)+iy(p-p1 )+iz(q-p) 
µv ' 

- e
3 I dx J dy J dz I p2-=2+if I q2_;;2+i( I ~Ji°° d/3Al7(y )(p + pi)17 

(P2 + q)"'(q + p)"(g11(/3, k, 8k, z)kµe'Pkx + (x +-+ z, µ +-+ v)] 

- e3 J ~ J00 d/3 J dy J dz J dp J dq A (y)(p + p1) 17 eiy(p-pi) 
-k" 1 p2-m2+" q2-m2+1, ., 

(p2 + q)"'(q + p)"[gv(/3, k, 81c, z)kµ8(p2 - q + j3k)eiz(q-p)+ 

(q +-+ -q, P2 +-+ -p, µ +-+ v)) 

_ e3 J die Joo d/3 J Jy J Jx J dp . J dq A (y)(p + p )17 eiy(p-p1) 
-Jc2 I /3 p2-m2+1, q2-m2+1f 17 1 

[gv(/3, k, fA, x)(q2 - p~)(p2 + p + /3k) 118(p2 - q + /3k)eix(p2 -p+/3k)+ 

(q +-+ -q, P2 +-+ -p)] 

ma e3 J !!2 f1
00 dg J dy J dx J p2-:!:'2+" J dqAl7(y )(p + P1) 17 eiy(p-pi) 

[gv(/3, k, 81c, x)(p2 + p + /3k)"8(p2 - q + /3k)eix(P2-P+f3k)+ 

gµ(/3, k, 81c, X) (q2-~~)~~~i~m2) (-p - P2 + /3k)"'8(q - p + j3k)eix(p2-p+/3k)] 

3 ilk 00 d/3 - - dp 
- e I =-;er J1 73 I dx I dy J P2-m2+j,A17(y)gµ(/3, k, ak, x) 

[2/3k"'(p + P1 )" eix(P2-P+/3k)+iy(p-pi)+ 

(p + P2)"'(p +Pi+ ,BkYeix(P2-P)+i11(P-P1+/3k)]. 

By diagram-inspection we can conclude that the diagram S~ can be obtained 

from the diagram s~ by transformations 

~ +-+ -pi, p +-+ -p, q +-+ -q, x +-+ z, µ +-+ 11, e +-+ -e]. 
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Thus calculations in S~ are very similar to those in S~. The result is 

s~ = e3 I dx I dy I dz I p2-~+if I q2_:;2+if(P2 + p)CT(p + q)µ.(q + P1Y' Au(Y) 

QI (x z)eix(p-q)+iy(p2-P)+iz(q-p1) 
µ.v ' 

e3 f !;2 Ji°0 "g J dxfdyf pL</:2+iEAu(y)9µ.(/3,k,8k,x) 

[2f3kJJ.(p + p
2
)u eix(p-p1-p+/3k)+iY(PrP)+ 

-(p+ Pi)µ.(p+ p2 _ f3k)ueix(p-p1)+iY(PrP+l3k)]. 

s~ = -2e3 J dx J dy J p2-:2+if(p +Pi)µ. A"(y)G~"(x, y)eix(p-pi)+iy(p2-p) 

-2e3 J dx J dy J p2-:2+if J !;2 Ji°° df3A"(y)(p + P1)µ.eix(p-pi)+iy(p2-P) 

[911(/3, k, Ok, y)kµ.eif3kx + (x +-+ y, µ +-+ v)] 

-2e3 J d J dp J ..!l!!_ J00 d/3 A"( ) Y p2-m2+if -k2 1 /3 Y 

[911(/3, k, Ok, y )(Pi - p2)t5(p - P1 + f3k )eiY(PrPl +Pk)+ 

/3 J dx9µ.(/3, k, Ok, x )k11 (p + pi)µ.eix(11-111)+iy(pr11+/3k)] 

~ 2e3 JdyJ !;2 Ji°° "gAu(y){[9u(/3,k,8k,y)eiy(p2- 111 +!3k) 

- J dx J P2_!'2+iE9µ.(/3, k, Ok, X )f3ku(P + P1)µ.eix(p-p1)+iy(p2-P+l3k)}. 

s~ can be obtained from s~ by replacements 

[p2 +-+ -pi, p +-+ -p, e +-+ -e]. 

We have 

SI_ 
5- -2e3 J dx J dy J P2_:2+if:(P + P2)µ. A"(y)G~11 (x, y)eix(p2 -p)+iy(p-pi) 

ms 2e3 J dy J !;2Ji°o1-Au(y) {[-9u(/3, k, Ok, y)eiy(p2-111+/3k) 

SI_ 
6-

- J dxf dp . 9 (/3 k Ok x)f3k (p+p2 )µ.eix(112-11)+iy(p-p1 +!3k)}. p2-m2+if µ. l l l CT 

-e3 J dx J dy J 112_~+iE(p + P1Y Au(y)9JJ."G~11 (x, x)eix(112-P)+iy(p-pi) 

- -e39JJ." J dx J dy J 112_~+iE f !;2 N'0 df3Au(Y)(p + P1)u eix(p2-p)+iy(p-pi) 

[9v(/3,k,8k,x)kµ.ei/3kx + (µ +-+ v)] 

- -2e3 f dx f dy f P2_::;+iE f !;2fi°0 1-Au(Y)(p + Pi)u 9µ.(/3, k, Ok, x)f3kµ. 

eix(p2-11+13k)+iy(p-p1 ). 
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Similarly S~ can be obtained from S~ as we obtained S~ from S~. 

S~ = -e3 f dx f dy f P2_:2+if(p + p2)u Au(y)gµvG~v(x, x)eix(p-pi)+iy(prp) 

-2e3 f dx f dy f p2-~+if f !;2 ft h Au(Y)(p + P2)" gµ((J, k, 8k, x)(Jkµ 
eix(p-p1 +f3k)+iy(prp). 

s~ = e3 f dx f dy f dz J p2_:2+1f J q2_!?2+if(P1 + P2)µ(q + PY(P + q)" Au(z) 

G~v(x, y )eix(p2-P1)+iy(p-q)+iz(q-p) 

e3 J dx f dy J dz J p2-:2+if J q2-!q2+if J !;2 ft'' df3Au(z)(p + q)u(P1 + P2)µ 

(q + p)v[gv(f3, k, ak, y)kµeif3kx + (x +-+ y, µ +-+ v)]eix(prpi)+iy(p-q)+iz(q-p) 

e
3 f dy f dz f p2-=2+if f q2_1!:2+if f !;2 ft d: Au(z)(p + q)"(p1 + P2)µ 

(q + pyeiz(q-p)[gv(f3, k, 8k, y)(P1 - P2)µ8(p2 - PI+ (Jk)e'Y(p-q) 

+(q +-+ P1, P +-+ p2, µ +-+ v)] 

e3 J dy J dz J dp . J dq . J dk Joo df3 A (z)(p + q)u eiz(q-p) p2-m2+1f q2-m2+u -k2 I f3 u 

9v(f3, k, ak, y){(pi - p~)(q + p)V8(p2 - PI+ (Jk)eiy(p-q)+ 

[(q2 - m2) - (p2 - m2)](PI + P2)v8(p - q + (3k)eiy(p2-P1)} 

ms e3 f dy f dz f p2-~+if f ~ fI00 h Au(z)gv(f3, k, 8k, y)(PI + P2YeiY(PrPi) 

[(2p + (3k)"e'f3kz - (2p- (3k)"e-1f3kz] 

0 

S~ = 2e3 f dx f dy f P2_:2+if(PI + P2)µ Av(y)G~v(x, y)eix(p2-P1) 

2e3 f dx f dy f P2_!12+if (PI + P2)µ Av(y) 

[8µftv(x,y) + 8vf2µ(x,y)]eix(p2-P1) 

- 2e3 f dx f dy f P2_:2+if(Pi - p~)Av(y)fiv(x, y) 

ms O 

Observe that 

S I S' S' ms 0 = 1+···+ g=. 
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G.1.2 Coordinate Space 

Notations: Directed derivatives ~' ~' ~, a and a do not act on photon 

propagators (f1µ(x,y) and hµ(x,y)). Surface terms will be discarded. Indicesµ, 

v and u in derivatives are attached to variables x, y and z respectively: Oµ = Ox,., 

Ov = Oy" and Ou = Ozu. Q = QF + Q' for any quantities Q and QF in the Fock­

Schwinger gauge and Feynman gauge respectively. 

1. Truncated Diagrams 

Meson self-energy (Figures 5.30-5.31) 

+-+ +-+ 

-e-2E~(x,y) = [· oµ SB(x -y) ov ·]G~v(x,y) 
+-+ +-+ 

[· oµ SB(x -y) oV ·][Oµflv + 8vhµ(x,y)] 
-+ +- +-+ 

- -{·[Dx - Dx]SB(x -y) Ov ·}fiv(x,y) 

-{- fjµ SB(x -y)[Dy - Dy]·}f2µ(x,y). 

-e-2E~(x,y) = gµv[·b(x-y)·]G~v(x,y) 

- gµv[·b(x - y)·][oµfiv(x, y) + Ovf2µ(x, y)] 
+-

-gµv[· oµ b(x -y). +. (oµb(x-y))·]!1v(x,y) 
-+ -+ 

-gµv[·(ov b(x - y)). +. b(x - y) ov ·]f2µ(x, y) 
+- +-

- g µ v {[- oµ b(x -y)·]f2v(x,y)- [·(b(x -y) ov)·]f1µ(x,y)} 
-+ -+ 

-gµv{-[·(oµ b(x - y))·]hv(x, y) + [·b(x - y) av ·lf1µ(x, y)} 
+-+ +-+ 

[·aµ b(x -y)·]hµ(x,y)- [·b(x -y) oV ·l!1v(x,y). 

E'(x, y) = EHx, y) + E~(x, y) 

e2 [·(0:: - Dx)SB(x -y) fjv ·]f1v(x,y)+ 

e2
[· f; SB(x -y)(Dy - Dy)·]hµ(x,y)+ 

+-+ +-+ 

[·b(x - y) oV ·l!1v(x, y) - [· oµ b(x - y)·]hµ(x, y). 
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Vertex corrections (Figures 5.32-5.40) 

+-+ +-+ +-+ 

ie-3r~" (x, y, z) = [·aµ SB(x - z) au SB(z - y) av ·]G~v(x, y) 
+-+ +-+ +-+ 

- [·aµ SB(X - z) au SB(z - y) av -][aµf1v(x, y) + avhµ(x, y)] 
+-+ +-+ 

- -[·(Dx - Dx)SB(x - z) au SB(Z - y) av ·1f1v(x, y) 

-[· {; SB(x - z) iJu SB(z -y)(Dy - Dy)·]f2µ(x,y). 

+-+ +-+ +-+ 

ie-3r;(x,y,z) = [·aµ SB(x - z) au SB(z -y) av ·]G~u(x,z) 
+-+ +-+ +-+ 

- [·aµ SB(x - z) au [SB(z -y) av .aµfiu(x,z)+ 
+-+ 

SB(z - y) av .auhµ(x, z)]. 

This form actually has the same form as E~ ( x, y) because the above expression can 

be obtained from E~ ( x, y) by changing 

SB(x - y) --+ SB(x - z) 
.... 

!1v(x, y) --+ SB(z - y) av fiu(x, z) 
.... 

f2µ(x, y) --+ SB(z - y) av hµ(x, z). 

Thus by making these replacements into E~ ( x, y) one has the final form of r~ 

.... .... 
. -3r'"( ) ie 2 x,y,z = -[·(Dy - Dx)SB(X - z) au SB(z - y) av ·]!1u(x, z)+ 

.... .... 
[·aµ SB(x - z)(Dz - Dz)SB(z - y) av ·]f2µ(x, z). 

From the diagrams we can see that r; can be deduced from r~ by hermitean 

conjugation (to change the direction of boson lines) and then by transforming 

(x, µ) ~ (y, v). We have 

..... .... ..... 
ic3r;(x, y, z) = [·aµ SB(x - z) au SB(z - y) av ·]G~v(z, y) 

- -[· {; SB(x - z) iJu SB(z - y)(Dy - Dy)·]hu(z, y)+ 
~ ~ ~ ~ 

-[·aµ SB(x - z)(Dz - Oz)SB(z -y) av ·]!1v(z,y). 
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+-+ 

iC3f: (x, y, z) = g'"'0'(-8(x - z)SB(z - y) 011 ·]G~a(x, z) 
..... 

g'"'a[·h'(x - z)SB(z - y) 011 ·][oµf1a(x, z) + 8af2µ(x, z)] 
...... +-+ 

- -g'"'a[·(o'"' 8(x - z))SB(z - y) 011 ·+ 
+- +-+ 

· o'"' 8(x - z)SB(z - y) 011 ·]f1a(x, z) 
+- +-+ 

-g'"'a[·(h'(x - z) oa)SB(z - y) 011 ·+ 
-+ +-+ 

·h'(x - z) aa SB(z - y) 811 ·]hµ(x, z) 
...... +-+ 

- g'"'a[·(81L 8(x - z))SB(z - y) 811 ·lf2a(x, z) 
...... +-+ 

-gµa[·h'(x - z) 8(1 SB(Z - y) 811 ·]f1µ(x, z) 
+- +-+ 

+g1Lt1[·8(x - z) 8(1 SB(Z - y) 811 ·]fiµ(x, z) 
+- +-+ 

-gµa[· 81L 8(x - z)SB(z - y) 811 ·]f2a(x, z) 
+-+ ..... 

- [·(8µ 8(x - z))SB(z - y) 011 ·]/2µ(x, z) 
+-+ +-+ 

-[·h'(x - z) 8(1 SB(z - y) 811 ·Jf1a(x, z). 

The process used in deriving r; from r~ may be applied to obtain r~ from r~. 

Therefore, from r~ we get 

+-+ 

ie-3f~(x, y, z) = g"O"[· 8µ SB(x - z)8(z - y)·]G~,,(z, y) 
..... +-+ 

- -[·(81L SB(x - z))8(z - y) 811 ·lf1,,(z, y) 
+-+ +-+ 

+[· 81L SB(x - z) au 8(z - y )·]hu(z, y ). 

+-+ 

ie-3r; (x, y, z) = 29110"[· 81L SB(x - z)8(z - y)·]G~u(x, z) 
+-+ 

29 110"[· 81L SB(x - z)8(z - y)·][8µfiu(x, z) + 8uf2µ(x, z)] 

- -2g"u{·[0:: - Dx]SB(x - z)8(z-y)·}f1u(x,z) 
+-+ +- -+ 

-29110"[· 81L SB(X - z)(80" + 80")8(z - y)·]hµ(x, z). 

r~ follows immediately from r~ 

..... 
. -ar'"( ) ie 7 x,y,z = 2gµu[·8(x - z)SB(z - y) 011 ·]G~11 (z, y) 

- -2gµu[·8(x - z)SB(z -y)(Dy - Dy)·]hu(z,y) 
+- -+ +-+ 

-2gµu[·8(x - z)(8u + 8u)SB(z -y) 811 ·]f111(z,y). 
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. -3r'<T( ) ze 8 x,y,z = 
+-+ +-+ 

[·aµ. ·]G~ll(x,y)[(a11SB(Y - z)) au SB(z - y)-
+-+ 

SB(Y - z)) au a11 SB(Z -y)] 
+-+ 

- [·aµ. ·]aµ.Jiv(x,y) + a11hµ.(x,y)]x 
+-+ +-+ 

[(a11 SB(Y - z)) au SB(z - y) - SB(Y - z)) au a11SB(z - y)] 

- [·(Dx +m2
) - (EJ.x +m2)·]f111(x,y)x 

+-+ +-+ 

[(a11 SB(Y - z)) au SB(z - y) - SB(Y - z)) au a11SB(z -y)] 
+-+ +-+ 

-[·aµ. ·]{[(Dy +m2)SB(Y - z)] au SB(z - y)-
+-+ -+ 

SB(Y - z)) au [(Dy +m2)SB(z - y)]}hµ.(x, y) 

- [·(Dx - EJ.x)·]f1v(x,y)x 
+-+ +-+ 

[(a11SB(Y- z)) au SB(z - y) - SB(Y - z)) au a11 SB(z - y)]. 

+-+ 

ie-3r; (x, y, z) = 2[· aµ. ·]G~ll(x, y )g11u SB(Y - z)8(y - z) 
+-+ 

- 2[· aµ. ·]SB(Y - z)8(y - z)g11u[aµ.Jiv(x, y) + 8vf2µ.(x, y)] 

- 2[·(Dx - EJ.x)·]SB(Y - z)8(y - z)g11u f1v(x, y)+ 
+-+ 

(· oµ. ·]SB(Y - z)8(y - z)g11u avf2µ.(x, y). 

2. On-shell Diagrams 

Meson-meson scattering (Born term) (Figure 5.41) 

S' = ie2 J dx J dy</J t ( x) /; <P( x )<Pt (y) lJv <P(y )G~11 ( x, y) 

- ie2 J dx J dy<P t (x) {jµ. <P(x )<Pt (y) lJv <P(y )[8µ.f111( x, y) + avhµ.(x, y )] 

- -2ie2 J dxf dy{</>t(x)oµ.</>(x)</>t(y)[(Dy +m2) - (Dy +m2)]</>(y)}f2µ.(x,y) 

'!!:.!! 0. 
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Meson self-energy (Figures 5.42-5.43) 

S'-1- J dx J dy<f> t ( x )E~ (x, y )</>(y) 

- -e2 J dx J dy{-</>t(x) fP SB(x - y)(Dy - Dy)</>(y)hµ.(x, y)+ 

-</>t(x)(O: - Dx)SB(x-y) {jv </>(y)fiv(x,y)} 

ms -e2 J dx J dy{-</>t (x) fP 8(x - y )</>(y)hµ.(x, Y )+ 

</>t(x)S(x -y) 8v </>(y)f1v(x,y)}. 

S'-2- J dx J dy<f>t(x)E~(x, y)<f>(y) 

- -e2 fdxfdy{</>t(x) ifrs(x-y)<f>(y)f2µ.(x,y) 

-<Pt (x)S(x - y) 8v </>(y)f1v(x, y)}. 

s' = s~ + s~. 

Vertex corrections (Figures 5.44-5.52) 

s~ = f dx J dy J dz</>t (x)r~" (x, y, z)<f>(y)A,(z) 

_ -ie3 J dx J dy J dzAu(z) 

{+[-</>t(x)(~ - Dx)SB(x - z) !; SB(z -y) 8v </>(y)]f1v(x,y) 

-[</>t(x) lfr SB(x- z) flu SB(z -y)(Dy - Dy)</>(y)]f2µ(x,y)} 

ms -ie3 J dx J dy J dzAu(z){[</>t(x)S(x - z) !; SB(z - y) 8v </>(y)1f1v(x, y) 

-[</>t(x) /; SB(x - z) !Y 8(z -y)<f>(y)]/2µ.(x,y)}. 

S~ = f dx f dy f dz<f>t (x )r; (x, y, z)</>(y )Av(Y) 

- -ie3 J dx J dy J dzAv(Y) 

{-[</>t(x) fP SB(x - z)[(Dz +m2
) - (Oz +m2)]SB(z - y) 8v </>(y)]/2µ.(x, z) 

-[</>t(~ - Dx)SB(X - z) flu SB(z -y) av </>(y)]f1u(x, z)} 

ms -ie3 J dx J dy J dzAv(y){[</>t(x) fP SB(x - z)S(z - y) {jv </>(y)]/2µ.(x, z) 

-[</>t(x) fP 8(x - z)SB(z -y) 8v </>(y)]f2µ.(x,z) 

+[</>t 8(x - z) flu SB(z - y) 8v </>(y)]f1u(x, z)}. 
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s~ = I dx J dy J dz</>t (x )r;(x, y, z)</>(y)Aµ(x) 

- -ie3 J dx J dy J dzAµ(x) 

{-[</>t(x) {; SB(x - z)[(Dz +m2 ) - (Oz +m2)]SB(z - y) {; </>(y)]f111(z, y) 

-[</>t(x) {; SB(x- z) 1fo SB(z -y)(Dy - Dy)</>(y)]hu(z,y) 

ms -ie3 J dx J dy J dzAµ(x){-[</>t(x) {; 8(x - z)SB(z -y) {; </>(y)]fiv(z, y) 

-[</>t(x) {; SB(x - z) 1fo 8(z-y)</>(y)]hu(z,y) 

+[</>t(x) {; SB(x - z)8(z -y) lfo </>(y)]f111(z,y)}. 

s~ = J dx f dy f dz</>t (x )r; (x, y, z)</>(y )Av(Y) 

- -ie3 f dx f dy J dzA11 (y){[</>t (x) fjµ 8(x - z))SB(z - y) lfo </>(y )]f2µ(x, z) 

-[</>t(x)8(x - z) 1fo SB(z -y) lfo </>(y)]f1u(x, z)}. 

S~ = f dxf dyf dz</>t(x)r;(x,y,z)</>(y)Aµ{x) 

- -ie3 J dx J dy J dzAµ(x){-[</>t(x) fjµ SB(x - z))8(z - y) lfo </>(y)]f111(z, y) 

+[</>t(x) {; SB(x - z) 1fo 8(z -y)</>(y)]hu(z,y)}. 

s~ = J dx I dy J dz</>t (x )r; (x, y, z)</>(y)Av(Y) 

- -ie3 J dx f dy J dzAv(Y) 

{-2g11u </>t (x)(O: - Dx)SB(x - z)8(z - y)</>(y)fiu(x, z)+ 

-2g11u[</>t(x) 8"' S8 (x - z)(fiu + "fiu)8(z -y)</>(y)]hµ(x, z)} 

ms -ie3 J dx J dy J dzA11 (y){2g11u </>t (x)8(x - z)8(z -y)</>(y)f1u(x, z)+ 

-2g11u[</>t(x) 8"' S8 (x - z)(fiu + "fiu)8(z-y)</>(y)]hµ(x,z)}. 

s~ = J dx I dy J dz</>t (x)r~(x, y, z)</>(y)Aµ(x) 

- -ie3 J dx f dy J dzAµ(x) 

{ -2gµu </>t (x )8(x - z)SB(z - y)(Dy - Dy)</>(y)f2u(z, Y) 

-2g"'u[</>t(x)8(x - z)(au + "fiu)SB(Z -y) Bv </>(y)f111(z,y)} 

ms -ie3 J dx J dy J dzAµ(x ){-2gµu </>t (x )8(x - z)8(z - y)</>(y )hu(z, y) 

-2gµu[</>t(x)8(x - z)(au + iiu)S8 (z -y) Bv </>(y)f111(z,y)}. 

146 



S~ = f dxf dyf dz<f)(x)f';(x,y,z)</>(y)Aa(z) 

ms O. 

s~ = J dx J dy J dz</>t (x )r; (x, y, z)</>(y )Aa(z) 

ms O. 

Adding s~, s~ ... s~, 

~= ~+~+~+~+~+~+~+~+~ 

ms -ie3 J dx J dy J dz 

{-[</>t(x) !)µ SB(x - z) Ba 8(z - y)</>(y)]f2µ(x, y)Aa(z) 

+[</>t(x)8(x- z) fY SB(z -y) fjv c/>(y)lf1 11 (x,y)Aa(z) 

+[</>t(x) f}µ SB(x - z)8(z - y) fjv c/>(y)lf2µ(x, z)Av(Y) 

-[</>t(x) f}µ 8(x - z)SB(z-y) fjv c/>(y)lf1v(z,y)Aµ(x) 

-2[</>t (x) f; S8 (x - z)(au + if)8(z - y)</>(y)lf2µ(x, z)Aa(Y) 

-2[</>t(x)8(x- z)(fY + fY)SB(z -y) fjv </>(y)]fi 11 (z,y)Aa(x)}. 

The last two terms can be written as (neglecting surface terms) 

2[</>t (x) !)µ SB(x - z)(fY + fY)8(z - y)</>(y)lf2µ(x, z)Aa(Y) 

- 2[</>t(x) f}µ SB(x - z) fY 8(z- y)</>(y)]f2µ(x,y)A,(z) 

-2[</>t(x) f}µ SB(x - z)8(z-y) Bv c/>(y)lf2µ(x,z)Av(Y) 

- -[</>t(x) f}µ SB(x- z) Ba 8(z-y)</>(y)]hµ(x,y)Aa(z) 

+[</>t(x) f}µ SB(x - z)8(z - y) fjv </>(y)]f2µ(x, z)Av(Y) 

2[</>t(x)8(x - z)(fY + aa)SB(z - y) fjv </>(y)lf1v(z,y)Aa(x) 

- -[</>t(x) f}µ 8(x- z)SB(z -y) fjv </>(y)]fi 11 (z,y)Aµ(x) 

+[</>t(x)8(x- z) Ba SB(z -y) {; </>(y)lf111(x,y)Aa(z). 

Thus we get 

S I S' S' ms 0 = 1+···+ 9=. 
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G.2 Spinor Quantum Electrodynamics 

G.2.1 Momentum Space 

The calculations here are very similar to the previous ones. Therefore it is 

sufficient to show their initial and final expressions. 

Electron-electron scattering (Born term) (Figure 5.1) 

S' = -ie2u(p2);µu(p1)u(q2);vu(q1) f dx f dyG~v(x, y)eix(p2-Pi)+iy(qrqi) 

- ie2 ft' dg f !Z2 f dygµ(/3, k, ak, y) 

{u(p2)(p2- .P1)u(pi)u(q2);µu(q1)8(p2 - P1 + j3k)eiy(qrqi) 

+u(p2);µu(p1)u(q2)(g2- g1)u(q1)8(q2 - q1 + j3k)eiY(PrP1)} 

~ 0. 

Electron self-energy (Figure 5.2) 

S' = e2 f dpu(p2);µ(p - m + it:)-11vu(pi) f dx f dyeix(p2-p)+iy(p-pi)G~Ax, y) 

e2 ft' d/3 f !Z2 f dpu(p2);µ(p - m + it:)-11vu(p1) f dx f dy 

eix(prp)+iy(p-p1)[gv(/3,k,8k,y)kµeif3kx+ (µ +-+ v, X +-+ y)] 

e2 N'° ~ f !Z2 fdyfdpgµ(/3,k,ak,y) 

ms O. 

[u(p2)(p- h)(p - m + it:)-11µu(p1)8(p2 - p + j3k)eiY(P-Pi) 

+u(p2);µ(p- m + it:t1(p1 - P)u(p1)8(p- p1 + j3k)eiy(p2-P)] 

Vertex corrections (Figures 5.3-5.6) 

s~ = e3 f Jp f Jq f dx f dy f dzu(p2);µ('P- m + it:)-1 t4.(y)(i- m + it:)-1 x 

Iv u (p1) eix(PrP )+iy(p-q )+iz( q-p1) G~v ( x' z) 

e3 It' d/3 J ~ J Jp J Jq J dx J dy J dzu(p2);µ(.P- m + it:)-1 t4.(y) x 

( i _ m + it:)-1111u(pi)eix(p2-P)+iy(p-q)+iz(q-p1) X 

[gv(/3, k, ak, z)kµeif3kx + (µ +-+ v, x +-+ z)] 
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- e3 Ji°° t1f I .!t2 J dp J dq J dy J dzgv(f3, k, fA, z)u(p2) 

[(p- P2)(p - m + if)-1 /'i(y)(g - m + if)-l/v 

S(p2 - P + (3k)eiy(p-q)+iz(q-p1) 

+1v(p - m + if)-1 /'i(y)(g- m + if)-1(p1- f) 

S(q - P1 + (3k)eiy(p-q)+iz(p2-P)]u(p1) 

ma e3 Ji°° t1f J .!t2 J dp J J.y J dzgµ{f3, k, ak, z)u(p2) x 

[/'i(y)(p- m + fr)-1/µeiY(PrP+Pk)+iz(p-pi) 

-/µ(p- m + fr)-1 /'i(y)eiy(p-p1+Pk)+iz(p2-p)]u(p1). 

s~ = e3 J dp J dq I dx J dy J dzu(p2) /'i(v)(fi- m + i1:)-11"'(1'- m + i1:)-1x 

1vu(pl )eix(q-p)+iy(p2-q)+iz(p-p1 )G~) x, z) 

- e3 Ji°° df3 J ~ J dp J dq J dx J dy J dzu(p2) /'i(y)(fi- m + if)-11"'·x 

(p - m + if)-1111u(p1)eix(q-p)+iy(p2-q)+iz(p-pi) X 

[gv(f3, k, 8k, z)kµeiPkx + (µ +-+ v, x +-+ z)] 

- -e3 J1
00 t1f J ~JdpJdqJdyJdzg11(f3,k,ak,z)u(p2) (1.(y)x 

eiy(p2-q)+iz(q-p1 +Pk) X 

{(g- m + if)-1 [(g- m) - (p- m)](p- m + fr)- 11 11b(q- p + (3k) 

+(g - m + it:)-11v(p- m + if)-1(p- p1)b(p- PI+ f3k)}u(p1) 

ms -e3 Ji°° dg J ~ J dpJ dy J dzgµ({3,k,ak,z)u(p2) t1.(v)(p- m + fr)-1 x 

i"'u(pl)eiy(p2-P+Pk)+iz(p-pi). 

s~ = e3 J J.p J J.q J dx J dy J dzu(p2)1"'(p- m + fr)-11 11(1- m + i1:)-1 x 

/'i(y )u(p1)eix(prp)+iy(q-pi)+iz(p-q)G~11(x, z) 

e3 Ji°° df3 I~ J dp J Jq J dx J dy J dzu(p2)1"'(p - m + it:)-11 11 x 

( g _ m + fr )-1 /'i(y )u(pi)eix(p2-p)+iy(q-p1 )+iz(p-q) X 

[gv(f3, k, 8k, z)kµeiPkx + (µ +-+ v, x +-+ z)] 

- e3 J1
00 dg J .!;2 J dp J dq J dy J dzu(p2)/"'(p - m + it:)-11v x 

(g - m + if)-1 (1.(y)u(p1)eiy(q-pi) x 

[gv(f3, k, 8k, z)(p - P2)µb(p2 - p + (3k)eiz(P2-q+Pk 

+(µ +-+ v, p +-+ -p, q +-+ -p2)] 
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- e3 Ji°° ~ J !;2 J ilp J ilq J dy I dzgv(/3, k, ak, z)u(p2)eiy(q-pi)+iz(p2 -q+f3k) 

{(p- P2)(p- m + if.)-1'·-t(i- m + if)-18(p2 - p + /3k) 

-"'t(p- m + if)-1[(p- m) - (g- m)](g- m + if)-18(p - q + /3k)} 

t1-(y )u(p1) 

~ e3 Ji°°~ I !;2 I ilp I dy I dzgµ.(/3, k, ak, z)u(p2)1µ.(zJ- m + fr)-1 x 

'1.(Y )u(pl )eiy(p-p1 +/3k)+iz(p2-p). 

S~ = e3 J dp J dq J dx J dy J dzu(p2)'yµ.u(p1)Tr(g- m + if)-1,·'(x 

(p _ m + if )-1 '1.(z )eix(PrP1)+iy(p-q)+iz(q-p)Q~11 (x, y) 

Hence 

- e3 J1
00 d/3 J !;2 J ilp J dq J dy J dzgv(/3, k, ak, y)eiz(q-p) x 

{u(p2)(p1- P2)u(p1)Tr(g - m + if)-11v(p- m + if)-1 x 

8(p2 - P1 + /3k)eiy(p-q) 

+u(p2)1vu(p1)Tr(g - m + fr)-1 [(g - m) - (p- m)](p- m + if)-1 

8(p - q + /3k)eiY(P2-P1)} t1-(z) 

ms O. 

S'- S'+ +S'~O - 1 .•. 4 - • 
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G.2.2 Coordinate Space 

The same notations as in scalar electrodynamics apply. 

1. Truncated Diagrams 

Electron self-energy (Figure 5. 7) 

e-2 I;'(x,y) = [·1µ.Sp(x -y)T"·]G~11 (x,y) 

- [·1µSp(x - y)T11 ·][8µ.fiv(x, y) + 8vf2µ(x, y)] 
+- -+ 

- -[·(~x + ~x)Sp(x -y)Tll·]f1µ.(x,y) 
+- -+ 

-[·1µSp(x -y)(~y + ~y)·]hµ.(x,y). 

Vertex corrections (Figures 5.8-5.11) 

. -2r',,.( ) -ze 1 x,y,z = [·1µ.Sp(x - z)TaSp(z -y)T11 ·]G~11 (x,y) 

- [·1µ.Sp(x - z)Ta Sp(z - y)T11 ·][8µ.f1v(x, y) + 8vf2µ(x, y)] 
+- -+ 

- -H~x + ~x)Sp(x - z)TuSp(z - y)T"·lf1v(x,y) 
+- -+ 

-[·1µ.Sp(x - z)Ta Sp(z - y)(~y + ~y)·]hµ.(x, y) . 

. -2r'"( ) -ze 2 x,y,z = [·1µ.Sp(x - z)TaSp(z -y)T"·]G~u(x,z) 

- [·1µ.Sp(x- z)TaSp(z -y)T11 ·][8µ.f1u(x,z) + 8uf2µ.(x,z)] 
+- -+ 

- -H~x + ~x)Sp(x - z)Tµ.Sp(z - y)T11 ·]f1µ.(x, z) 
+- -+ 

-{-1µ.Sp(x - z)[(~z -im) + (~z +im)]Sp(z -y)T"·} 

hµ.(x, z) 
+- -+ 

- -H~x + ~x)Sp(x - z)Tµ.Sp(z - y)T11 ·]f1µ.(x, z) 

-i{-1µ.[h"(x - z) - h"(z - y)]Sp(x - y)T"·} hµ.(x, z). 

-ie-2r;(x, y, z) = [·1µ.Sp(x - z)Ta Sp(z - y)T11 ·]G~11 (z, y) 
+- -+ 

- -{-1µ.Sp(x - z)[(~z -im) + (~z +im)]Sp(z - y)T"·} 

f1v(z, y) 
+- -+ 

-[·1µ.Sp(x - z)Ta Sp(z - y)(~y + ~y)·]ha(z, y) 

- -i{·1µ.[h(x - z)- h"(z -y)]Sp(x -y)T"·}fiv(z,y) 
+- -+ 

-[·1µ.Sp(x - z)TuSp(z -y)(~y + ~y)·lf2u(z,y). 
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. -2r'<r ( ) -ie 4 x,y,z = [·1"TrSF(z-y)l"SF(Y - z)iu·]G~11 (x,y) 
+- -+ 

- -H9Jx + 9Jx)TrSp(z -y)'Y"SF(Y - z)iu·]f1,,(x,y) 
+- -+ 

-{·1µTrSF(z -y)[(9Jy -im) + (9Jy +im)]SF(Y - z)iu·} 

hµ(x,y) 
+- -+ 

- -[·(9Jx + 9Jx)TrSF(z-y)l"Sp(y- z)iu·]f1,,(x,y). 

2. On-shell Diagrams 

Electron-electron scattering (Born term) (Figure 5.12) 

S' = -ie2 J dx J dy'lfJ(x)i"'lfJ(x)'lfJ(y)i11'1/J(y)G~11 (x, y) 

- -ie2 f dx f dy'l/J(x)i"'l/J(x)'l/J(y)i"'l/J(y)[8µf1,,(x, y) + 8,,hµ(x, y)] 

- ie2 J dx J dy { ('!/J(x)[(~x -im) + (~ +im)]'lfJ(x)) 'l/J(y) /1(x,y)'l/J(y) 

+ 'lfJ(x) h(x,y)'lfJ(x) ('!/J(y)[(~y -im) + (~ +im)]'lfJ(y))} 

ms O. 

Electron self-energy (Figure 5.13) 

S' = f dxf dy'l/J(x)z:/(x,y)'l/J(y) 

- -e2 fdxfdy{['l/J(x)(~x+ ~)SF(x-y)'Yµ'l/J(y)]f1µ.(x,y) 
+- -+ 

+['lfJ(x)lµSp(x -y)(9Jy + 9Jy)'l/J(y)]f2µ.(x,y)} 
-+ 

ms -e2 J dx J dy{['l/J(x)(9Jx +im)SF(x -y)'i'JJ.'ljJ(y)]fiµ.(x, Y) 
+-

+~(x)lµSp(x - y)(9Jy -im)'lfJ(y)]hµ.{x, y)} 

- ie2 f dx f dy{'lfJ(x)8(x - y)IJJ.'!jJ(y)f1µ.(x,y) 

-'l/J(x)IJJ.8(x - y)'lfJ(y)f2µ.{x,y)} 

= 0. 
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Vertex corrections (Figures 5.14-5.17) 

S~ = -iefdxfdyf dz?jJ(x)r~"(x,y,z)Aa(z)?jJ(y) 

- -e3 f dx f dy f dzAa(z) 
+- -

{[?fJ(x)(fJx + fJx)Sp(x - z)'Y" Sp(z - Y)'"'t?/J(y)]fiv(x, y) 
+- -

+[1/J(x)'YµSp(x - z)'Y" Sp(z - y)(f)y + f}y)?/J(y)]hµ(x, y)} 

ms ie3 J dx J dy J dz{?fJ(x)o(x - z) ;1.(z)Sp(z -y) f1(x,y)1/J(y) 

-1/J(x) h(x,y)Sp(x - z) ;1.(z)o(z -y)?jJ(y)} 

s~ = -ie J dx J dy J dz?/J(x)r; (x, y, z)Av(Y)?fJ(y) 

- -e3 J dx J dy J dzAv(Y) 
+- -

[1/J(x)(fJx + fJx)Sp(x - z)'YµSp(z - y)··(1/J(y)]f1µ(x, z) 

+i{ 1/J(x)'Yµ[o(x - z) - o(z - y)]Sp(x - y)'Yv?/J(y)} f2µ(x, z)} 

ms ie3 J dx J dy J dz?jJ(x) h(x, z)o(z - y)Sp(x - y) ;1.(y)?jJ(y) 

s~ = -ief dx J dy J dz?fJ(x)r~(x,y,z)Aµ(x)?fJ(y) 
- -e3 J dx J dy J dzAµ(x) 

i{[?fJ(x)'Yµ[o(x - z) - o(z -y)]Sp(x -y)' .. (1/J(y)]f1v(z, y) 
+- -

+[1/J(x)'YµSp(x - z)'Y" Sp(z - y)(f)y + f}y)?/J(y)]ha(z, y)} 

ms -ie3 J dx J dy J dz?jJ(x) ;1.(x)o(x - z)Sp(z - y) fi(z, y)?jJ(y). 

SI_ 
4- -ie J dx J dy J dz?jJ(x )r; (x, y, z)Aa(z )?jJ(x) 

+- -+ 

- -e3 J dx J dy J dz?jJ(x)(fJx + fJx)TrSp(z - y) fi(x, y) X 

Sp(y - z) ;1.(z)?jJ(x) 

ms O. 

Adding s~ · · · s~, 
S' = S~ + S~ + S~ + S~ ms o. 
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G.3 Quantum Chromodynamics 

Calculations on quark-quark scattering and quark self-energy are similar to those 

on electron-electron scattering and electron self-energy previously done. Here we 

will only carry out gluon self-energy diagrams and the first order correction of 

the quark-gluon vertex. The first order corrections of the three-gluon and four­

gluon vertices contain up to three and four gluon propagators and thus are very 

complicated. We do not consider such vertices in this thesis. As a starting point 

general notations presented below need to be introduced. 

G.3.1 General Notations 

In order to shorten some mathematical expressions in quark-gluon (and gluon­

gluon) vertices some notations are needed. (Directed derivatives are still assumed 

not to act on ff! and!~!-) We define Bia)µ= a:(a) as an operator 8~ that only acts 

on functions that contain index a. As an example we may write, for any functions 

pab(x), G6c(x) and Hd(x), 

aia)µpab(x)Gbc(x)Hd(x) = pab(x)Gbc(x)Hd(x)8ia)µ = pab(x)8ia)µQbc(x)Hd(x) 

- pab(x)Gbc(x)8Ja)µHd(x) = [8;'Fa 11(x)]Gbc(x)Hd(x). 

Thus Bia)µ. can be placed around functions F, G and H just like a number. We 

also define a<a+b)µ. = aCa)µ. + 8(b)µ.. By this notation we can write a<a+d)µ pababc Hd 

instead of a<a)µ. pa&abc Hd + 8(d)µ. pababc Hd or [8µ pab]Gbc Hd + pababc[aµ Hd]. Notice 

that superscripts (a) in aCa)µ. and a in pab signify different things. Unlike indices a 

there is no summation over repeated indices (a). Thus it is understood, for 

example, that oCa) = a<a>µ.aia>. Other notations: 

v,O'a/3 (8 ) = y(c,e,d)O'a/3(8 ) {c,e,d) :z: :z: 

- gO'a(aic) - aie)]l3 + gal3[8ie) - aid)]O' + gl30'[8id) - aic)]a 

V(:.7!d) ( 8:) = V(::~e-ci,e,d) ( 8:) 
_ -[2gO'aaie)J3 _ 9al3aie)O' _ gl30'8Je>a] 

+(2gl30' aid)a _ gO'a0Jd)13 _ 9aJ30~d)O'] 
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Oxa/3 = Dx9a/3 - Oxa0xf3 

O(e) - o(e)g - a<e>a(e) Xet/3 - X et/3 XCt x{J ' 

These identities follow immediately, 

V(:~~> (ox) = 
T/<7et{3 (~ )~(e) _ 
11 (-,e,d) Ux Uxa -

T ruet/3 ( ~ )o(d) v (-,e,d) Ux x/3 = 

V(~~~> (ox) = V~~~e) (ox) 
Q(e+d)u/3 _ Q(d)u/3 

x x 

-[Oie+d)uet _ Oie)uet] 

ic:.~~) ( Ox)f(c) ( x )g(e) ( x )h(d) ( x) = V('.:.~:,d) ( Ox)f(c) ( X )g(e)( X )h(d) ( X) 

+O(surface terms) 

OxauGabuf3(x, y) = 8~8ab(x - y) - Xa( ox )-1 0~8ab(x - y ). 

The last identity is derived from identities 

in the FS gauge. Notice that here Oxaa8ab(x - y) = G~;ab(x, y). 

G.3.2 Truncated Diagrams 

The first four diagrams below are similar to those in spinor quantum electrody­

namics. Therefore we can carry over the previous results to this case. The Feynman 

gauge propagator Gp11µ 11 (x,y)-terms in those diagrams will be included. (F) will 

stand for the corresponding diagrams that we are discussing but in the Feynman 

gauge. SQik(x - y) = 8jkSF(x - y) is a quark propagator.Indices i and n will refer 

to external quark fields (fi, · · · f 5 refer to Figures 5.57,· · · 5.61). 

-ig-2qin(x, y, z) = [·1µ(Ta)ijSQjk(x - z)l'u(Tc)k1SQ1m(z - y)l'11 (Tb)mn·] X 

G~~(x, y) 

(F) + (TaTbTc + irbdTaTd)in 
+-- --+ 

{-[-(iJx + P'x)SF(X - z)l'u Sp(z - y) /fb(x, y)·] 
+-- --+ 

-[· f2b(x, y)Sp(x - z)la SF(z - y)(iJy + iJy)·]}. 
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-ig-2r~in(x, y, z) = [·1µ(T 11 )i;SQ;k(x - z)lu(Tb)k1SQ1m(z - y)f'11 (Tc)mn·] X 

G~~(x, z) 

+- -+ 

{-[-(~x + ~x)SF(x - z) /fb(x, z)SF(z - y)/11 ·] 

-i(· /2b(x, z)[8(x - z) - 8(y - z)]SF(x - y)/11 ·]}. 

-ig-2r~fn(x, y, z) = [·1µ(Tc)ijSQ;k(x - z)lu(T11 )k1SQ1m(z - y)l11 (Tb)mn ·] X 

G~~(z, y) 

(F) + (T 11TbTc)in 

{-i[·11t[8(x - z) - 8(z - y)]SF(x - y) ffb(z, y)·] 

-[·1µSF(x - z) f2b(z,y)SF(z -y)(iy + iy)·]}. 

-ig-2r4in(x, y, z) = [·11t·](Ta)inG~t(x, y) 

Tr[SQjk(z - y)f'11 (Tb)k1SQ1m(Y - z)f'u(Tc)mj] 
+- -+ 

(F) - ~8bc(Ta)inH~x + ~x)·] 
TrSF(z - y) ffb(x, y)SF(Y - z)lu]. 

-ig-2qin(x, y, z) = redv(c,e,d)ua.B(oz)[·11t(Ta)i1SQ11(x - y)l11·](Tb)1n 

G~~(x, z)G~~(z, y) 

- red(TaTb)in V(-,e,d)ua.B(oz)[·11tSp(x - y)/11·] x 

[GFeµa(x, z) + o£V f1~(x, z) + oi~ f2:(x, z)] x 

[G#1311 (z, y) + o!~ ffi(z, y) + 8~~ Jf$(z, y)] 

red(TaTb)in V(-,e,d)ua.B(oz)[·11tSp(x - y)/11·] x 

[GFµa(x, z)G#,B11 (z, y)+ 

+(8£V ff~(x, z) + oi~ !2;(x, z))G#.B11(z, y) 

+G~~(x, z)(o!~ fti(z, y) + 8~~ Jf$(z, y))] 

- (F) + A~(x, y, z) + Bf~(x, y, z) 
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with 

Now 

Ai:(x, y, z) = red(TaTb)in y(-,e,d)ua.B(oz)[·1µSF(x - y)lv·] x 

[o}V f1~(x, z) + o!~ n;Cx, z)]G#,011(z, v) 

Bf!(x, y, z) = red(TaTb)in y(-,e,d)ua.B(oz)[·1µSF(x - y )Iv·] x 

[o!~ Jfi(z, y) + aw Jf$(z, y))]G~~(x, z). 

Af!(x, y, z) = red(TaTb)inG'#,011 (z, y) 

{[v(-,e,d)1ra.B(oz)o£~][· f2e(x, z)SF(x - y)lv·] 
+- -+ 

_ y(-,e,d)aa.B(oz)[·(~x + ~x)SF(x - Yhv·]f1~(x, z)} 

red(TaTb)inG'#,011 (z, y) 

{[Oid+e)a.B - Oid)a.B][. ffr(x, z)SF(x - y)/11·] 
+- -+ 

-V(-,e,d)aa.B(oz)[·(~x + ~x)SF(x - Yh11 ·]f1~(x, z)} 

red(TaTb)inG'#,o)z, y) 

{ Oid+e)a.B[. f:r(x, z)SF(x - y)lv ·] 
+- -+ 

_ y(-,e,d)aa.B(oz)[·(~x + ~x)SF(x - y)l11 ·]ff~(x, z)} 

- red(TaTb)in[G~~(z, y) - o~d) Jfi(z, y) - o~b) Jf$(z, y)] x 

Oid)a.B[. /2e(x, z)SF(x - y)/11 ·] 

red(TaTb)in{Oid+e)a.BG1fr.av(z,y)[· f2e(x,z)SF(x -y)lv·] 
+- ...... 

-V(-,e,d)aa.6(oz)fl~(x,z)G#,011 (z,y)[·(~x + ~x)SF(x -y)/11 ·] 
+- ...... 

-Oid)a,B Jt$(z, y)[· /2e(x, z)SF(x - y)(~y + ~y)·] 
-[· /2e(x, z)SF(x - y)/11 ·][8~ - z""(8zt1 a£~>]odb(z - y)} 

Bf:(x, y, z) = red(TaTb)in y(-,e,d)ua.6(8z)[·1µSF(x - y)lv·] x 

[a!~ Jfi(z, y) + aw Jf$(z, y)]G~~(x, z) 

red(TaTb)in{[V(-,e,d)ua.6(oz)8!~[·1µSF(x -y) ffb(z,y)·]x 

G~~(x,z) 
+- ...... 

_y(-,e,d)aa.6(oz)[·1µSF(x -y)(~y + ~y)·]x 

Jf$(z, y)G~~(x, z)} 
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red(TaTb)in {-O}e+d)ua[·1µSp(x - y) ffb(z, y )·]G~~(x, z) 

+ ('/µSF ( X - Y) f fb ( Z, Y) ·] X 

[8~ - z17(ozt10£VJ8ae(X - z) 
+- -+ 

_y(-,e,d)uai1(8z)[·1µSp(x -y)(f}y + f}y)·]X 

Jt$(z, y)G~~(x, z)}. 

Collecting terms we get 

-ig-2r5~n(x,y,z) = (F) + red(TaTb)inO}d+e)ui1x 

Also (see Figure 5.62) 

{G#11v(z,y)[· /fe(x,z)Sp(x -y)lv·] 

-[·1µSp(x - y) Jfb(z, y)·]G~~(x, z)} 

_ red(TaTb)m y(-,e,d)uai1( 02 ) x 
+- -+ 

{Jt~(x, z)G<j}13)z, y)[·(fJx + fJx)Sp(x - y)lv·] 

+Jt$(z,y)G~~(x,z)[·1µSp(x -y)(~y + ~)·]} 
- red(TaTb)inO}d)ui1 Jf$(z, y) x 

+- -+ 

[· /fe(x, z)Sp(x - y)(f}y + f}y)·] 

+ red(TaTb)in[8~ - zu(oz)-10£VJ x 

{[- ffd(x, z)Sp(x - y)lµ·]8eb(z - y) 

+[·1µSp(x - y) Jfb(z,y)·]8ae(z - x)}. 

9-2n~bµv(x, Y) = ~Jacey(a,c,e)µp>.( Ox)Jbfdy(b,j,d)vOu( Oy)G~~(x, y )G~~(x, y) 

~face Jbfdy(-,c,e)µp>.( Ox)V(-,f,d)vOu ( Oy) 

{G~~(x,y)[o~~J;f (x,y) + o~~>J;{(x,y)] 
+[8£~ ff~(x, y) + 8~~> f2;(x, y )JG1>.o(x, y) 

+Gct'pu(x, y)G1>.o(x, y)} 

(F) + !rce p1d { o;u [v<-,c,e)µp>.(ox) ( G~i(x, y)J;{ (x, y) 

- G1>.u(x, y)J2;(x, y)) + O~e)µ>. ff~(x, y )J;{ (x, y)] 

+O~P [-v(-,J,d)vou(oy) (G~~(x,y)J;/(x,y) 

- G1po(x, y )ff~(x, y)) + oiJ)vO 12:(x, y)J;t (x, y)] 
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+y11y(-,c,e)µpA(8:r:) [J;{(x,y) ((8y)-18~~)8cd(x _ y)) 

- J:j;(x,y) ((<Jy)-1a~{>sef(x - y))] 

+x"V(-,J,d)119u(8y) [J!;(x,y) ((8x)-18~~8ef(x -y)) 

- J;[(x,y) ((ox)-1 8}~8cd(x -y))] 
-2V(-,c,e)µ11A(8:r:)J;{ (x, y )8cd(x - y) 

+2v<-.J,d)11Aµ(8y)J;{ (x, Y )8cd(x - y) 

-2 0£n110 01c)µp !:I (x, y)J~;(x, y)}. 

The last term can be written as 

O£f)11001c)µp J:/ (x, y )J~;(x, y) 

8cdf5ef [(Q~Pf2p(x,y)) (x +-+ y, µ +-+ v)] 

8cd8ef {(D:r:9µp - 8!;8:) [D;1xp(8xt18(x - y) 

- ~0;1 a:r:px2 (8xt28(x - y)] (x +-+ y, µ +-+ v)} 
- xµy 11 [(8x)-18cd(x - y)][(8yt18ef(x - y)] 

-xµ(8x)-18cd(x - y)][o;;1a;sef(x - y)] 

-y11[(8y)-18ef(x _ y)][o;ia:;scd(x _ y)] 

+[0;1a:;scd(x -y)][o;;1a;sef(x -y)]. 

The a:;a;-term is equivalent to the ghost diagram [x <::.::.:: y] in the Lorentz gauge. 

Further, the third term from the last of II~bµ11 (x, y) can be written as 

_ y(-,c,e)µ11A(8:r:)J;{ (x, y)8cd(x -y) 

_ [(29µ11 lJ}c)A _ 911AlJ}c)µ _ 9AµlJ}c)11) _ (29AµlJ}e)11 _ 9µ11 a}e)A _ 911Aa}e)µ)] 

Therefore 

J;{(x,y)8cd(x -y) 

[-29µ11a~d)A + 911A0~d)µ + 9Aµa~d)11]!;{(x,y)8cd(x _ y) 

[-29µ11a~nA + 911Aa~nµ + 9Aµa~n11]!;{(x,y)t5cd(x _ y) 

[29µ11a~f)A _ 911Aa~f)µ _ 9A"lJ~f)11]!;{(x,y)t5cd(x -y) 

[-29Aµa~n11 + 9µ11a~nA + 911Aa~n"]!;{(x,y)t5cd(x _ y). 

_ y(-,c,e)µ11A(8:r:)J;{ (x, y )8cd(x _ y) + y(-,f,d)11Aµ(8y)f:{ (x, y )8cd(x _ y) 

_ [29µ11a~1>A _ 911Aa~n" _ 9Aµa~n11u;{(x,y)t5cd(x -y). 
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The final form of IT~bµ.11 ( x, y) is 

ITabµ.11( ) 
1 x,y = (F) +(ghost) 

+!g2 rce Jbfd { o~u [v<-,c,e)µ.p,\(ox) ( G~1(x, y)J;{ (x, y) 

- G1,\u(x, y)J2;(x, y)) +Die)µ.,\ Jf;(x, y)J;{ (x, y)] 

+O~P [-v<-,f,d)118u ( 8y) ( G~~(x, y )J;/ (x, y) 

- G1pe(x, y)J1;(x, y)) + oin118 f2;(x, y)J:/ (x, y)] 

+y11 [v<-,c,e)µ.p,\(8x) (J;{(x,y)(oy)-18~~)bcd(x -y) 

- 12;(x,y)(8y)-1 a~{>bef(x -y)) 

+2((8y)-1bef(x _ y))o_;18:bcd(x _ y) 

- xµ((8x)- 1bcd(x -y))(oy)-lbef(x - y)] 

+xµ [v<-.J,d) 118u(8y) (f1;(x,y)(8x)-18~~)bef(x - y) 

- J:/(x,y)(8x)-1fJ£~bcd(x - y)) 

+2((8x)-1bcd(x -y))o;18~bef(x -y) 

_ y11((8x)-lbcd(x -y))(8y)-lbef(x _ y)] 

+2 [2gµ 11 a~n,\ - g11,\8~f)µ - g,\11.8~n 11]!;{ ( x, y )bed( x - y)} 

where (ghost) in IT~b"'11 (x,y) equals 

...... 
x, µ-: .. .:·y, v ........ 

The contribution of the four-gluon vertex is (see Figure 5.64) 

IT~t11(x,y) = ~g2W;i~~b(x - y)Gcdpu(x,y) 

1 2 [Jeabjecd ( ) + Jeacjedb ( ~ ~~-~~ ~~-~~ 

+feadjebc( ] gµ11gpu - gµpg11u X 

[G~(x,y) + 8;Jf(x,y) + o;J;(x,y)]bcd(x -y) 

(F) + ~g2 rce jhfd[g11,\8g> + gµ,\8~£> - 2gµ.118~{> + g,,.,\8~£> 
+g11,\8~£> - 2gµ.118~{>]!;1\x, y)bcd(x - y) 

- (F) 

+g2 face Jbfd[-2g,,.118~{> + g11,\8~~> + g,\,,.8~V]J;f ,\( x, Y )bed( x - Y ). 
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Summing, 

where 

rrabµv(x,y) = II~bµv(x,y) + II~bµv(x,y) 
(F) +(ghost)+ 

Hcdefµ( ) _ 
lu x,y -

!rcefbfd[o~u H~:efµ(x,y) + o~u H~:efv(y,x) 
+yv H~defµ(x, y) + Xµ H~defv(y, x)] 

01e)µ>. Jf;(x, y)f;{ (x, y) 

+ V(-,c,e)µp>.(ox)[G~~(x, y )J;{ (x, y) - G1>.uf2;(x, y )] 

v(-,c,e)µp>.( 8x)[J;{ (x, y )( oy)-18yp8cd(x - y) 

-J2;(x, y)(oy)-18y>.8ef(x - y)] 

+2[(8y)-18ef(x - y)]o;1a:scd(x - y) 

-xµ[(ox)- 18cd(x - y)][(oy)-18ef(x - y)]. 

The term (F) +(ghost) above is nothing but the gluon self-energy II~µv(x, y) in 

the Feynman gauge. From rrabµv(x,y) we obtain (see Figure 5.65) 

I'~in(x,y,z) = r~~m(x,y,z) + r~~in(x,y,z) 
i[·"t·]G:~( z, x )ITabµv( x, y )(T8 )in 

(F) + (ghost) 

+i[·'t·](T8 )in[o£:> Jt;(z, x) + 8~~ n:(z, x )]IIabµv(x, y) 

+~g2 rce Jbfd[·1f·](Ts)inGF2fµ(z, x) x 

[O~u H~:efµ(x, y) + o~u H~:efv(y, x) 

+yv H~defµ(x, y) + Xµ H~defv(y, x)] 

(F) +(ghost)+ 

+i[·1f·](Ts)in[o£:> fi~(z, x) + ai~ J;:(z, x )]II~µv(x, y) 

+~g2 rce jbfd[·1f·](Ts)inG:~(z, x) x 

[O~u H~:efµ(x, y) + o~u H~:efv(y, x) 

+ vHcdefµ( ) + µHcdefv( )] y 2 x, y x 2 y, x 
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- (F) + (ghost)+ 

+i[··t·](T")in { Ozt:[J;;(z, x )ITabµv(x, y)] 

+oxµ[n:(z, x)IT~µ11 (x, y)] - J~:(z, x)8xµII~µ11 (x, y)} 

+~g2 face jbfd[·'"'/·](T")inG;;(z, X) X 

[O~u Hf!efµ(x, y) + o~u Hf!efv(y, x) + yv H~defµ(x, y)]. 

Since the inner vertex is represented by the x variable, the term 

is just a surface term that may be discarded. The term containing a factor 

vanishes because the gluon self-energy in the Feynman gauge is transverse. Thus 

we get 

r~in(x, y, z) = (F) +(ghost) + i[·'l·](Ts)inozdt;(z, x )IIabµ 11(x, y) 

+~g2 rce jbfd[·'t·](Ts)inG:;(z, x)x 

[O~u Hf!efµ(x, y) + o~u Hf!efv(y, x) + yv H~defµ(x, y )]. 

G.3.3 On-shell Diagrams 

Vertex corrections (Figures 5.68-5. 71) 

S1 = ig J dx J dy J dz?/Ji(x)rfin(x, y, z)A~(z)?/Jn(Y) 

(F) - g3 (TaTbTc + irbdTaTd)in J dx J dy f dz 
+- -+ 

{-[?/Ji(x)(JJx + JJx)SF(x - z) ;1.c(z)SF(z - y) /ib(x, y)?/Jn(Y)] 
+- -+ 

-Wi(x) f2b(x,y)Sp(x - z) ;1.c(z)Sp(z -y)(JJy + JJy)?/Jn(y)]} 

ms (F) - ig3 (TaTbTc + irbdTaTd)in J dx f dy f dz 

{[1/Ji(x)8(x - z) ;1.c(z)Sp(z -y) /ib(x,y)?/Jn(Y)] 

-[?/Ji(x) /2b(x, y)Sp(x - z) ;1.c(z)8(z - y)?/Jn(y)]}. 
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82 = ig f dx f dy f dz?fi(x )I''2'in(x, y, z)A~(y)t/Jn(Y) 

- (F) - g3(TaTbTc)in J dx f dy f dz 
+- -+ 

{-[1/Ji(x)(~x + ~x)8F(x - z) /ib(x,z)8F(z -y) /1.c(y)'l/Jn(Y)] 

-i[,,Pi(x) /2b(x,z)[8(x- z)-8(y- z)]8F(x -y) /1.c(y)'l/Jn(y)]} 

- (F) - ig3(TaTbTc)in J dx J dy J dz 

'l/Ji(x) /2b(x,z)8(y- z)8F(x-y) ,4c(y)'l/Jn(y). 

83 = ig f dx f dy f dz,,Pi(x)I'~fn(x, y, z)A~(x)t/Jn(Y) 

- (F) - g3(TaTbTc)in J dx J dy J dz 

{-i[,,Pi(x) /1.c(x)[8(x - z) - 8(z - y)]SF(x - y) /'tb(z, y)'l/Jn(Y)] 
+- -+ 

-[,,Pi(x) /1.c(x)8F(x - z) /2b(z, y)SF(z - y)(~y + ~y)'l/Jn(y)]} 
- (F) + ig3(TaTbTc)in J dx J dy J dz 

,,Pi(x) /1.c(x)8(x - z)8F(x - y) /ib(z, y)'l/Jn(y). 

84 = ig f dx J dy f dz,,Pi(x)I'~in(x, y, z)A~(z)t/Jn(Y) 

- (F) + !g38bc(Ta)in J dx J dy J dz 
+- -+ 

,,Pi(x)(~x + ~x)'l/Jn(y)Tr8F(z -y) /1(x,y)SF(Y - z) /1.c(z) 

- (F) + !g38bc(Ta)in J dx J dy J dz 
+- -+ 

,,Pi(x)(~x + ~x)'l/Jn(y)Tr8F(z - y) /ib(x, y)SF(Y - z) /1.c(z) 

ms (F). 

Ss = igf dxf dyf dz,,Pi(x)I'Sin(x,y,z)A~(z)t/Jn(Y) 

- (F) - g3 red(TaTb)in I dx I dy I dzA~(z)Oid+e)u{3 

{G'lfrpv(z, y),,Pi(x) /2e(x, z)SF(x -y)'·t'l/Jn(Y) 

-G~Mx,z),,Pi(x)i"'SF(x -y) ffb(z,y)'l/Jn(Y) 
+- -+ 

- fi~(x, z),,Pi(x )( ~x + ~x)SF(x - Y) ffb(z, y)'l/Jn(Y)} 
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+g3 red(TaTb)in I dx I dy I dzA~(z)v<-,e,d)<Ta.0(8z) x 
+- -+ 

{/f~(x, z )G~~(z, y )"i/)i(x )( fJ:c + fJ:c)SF( x - Y )1111/Jn(Y) 
+- -+ 

- ff~(y, z)Gi~(z, x )1/Ji(x )111 Sp(x - Y )( f}y + f}y)1/Jn(Y) 
+- -+ +- -+ 

+ff~(x,z)Jf$(z,y)1/Ji(x)(fJ:c + fJ:c)Sp(x -y)(f}y + f}y)1/Jn(y)} 

+g3 red(TaTb)in I dx I dy I dzA~(z)O~d)<T,B x 
+- -+ 

{Jf$(z, y)1/Ji(x) f2e(x, z)Sp(x - y)(f}y + f}y)1/Jn(Y) 
+- -+ 

-Jf$(z,x)1/Ji(x)(fJ:c + f'x)Sp(x-y) fr(z,y)1/Jn(y)} 

-g3 red(TaTb)in I dx I dy I dzA~(z) 
{-1/Ji(x) /2e(x, z)Sp(x - y)l171/Jn(y)8db(z - y) 

+1/Ji(x)l17 Sp(x -y) ffb(z, y)1/Jn(y)8ae(z - y)} 

+g3 red(TaTb)in I dx I dy I dzA~(z )z17 aiv 
{1/J,(x) f2d(x,z)Sp(x - y)lµ1/Jn(Y)(8z)- 18eb(z -y) 

+1/Ji(x)lµSp(x -y) ffb(z,y)1/Jn(Y)(8z)- 18ae(z - x)} 

ms (F) - g3 red(TaTb)in I dx I dy I dz{[O~<T A~(z)]Apbde(x, y, z) 

+z17 A~(z )Babde(x, y, z)} 

-g3 red(TaTb)in I dx I dy I dzA~(z)v<-,e,d)<Ta,8( Oz) x 

{2iff~( x, z )G3~(z, y )1/J,(x )8( x - y )1111/Jn(Y) 

-iff~(x, z)Jf$(z, y)1/Ji(x)(°i:c +im)8(x - y)1/Jn(y)} 

+g3 red(TaTb)in I dx I dy I dzA~(z)Oid)<T,8 x 

2iff$(z,y)1/Ji(x) f2e(x,z)8(x-y)1/Jn(Y) 

-g3 red(TaTb)in I dx I dy I dzA~(z) 
{-1/Ji(x) /2e(x, z)Sp(x - y)''t1/Jn(y)8db(z - y) 

+1/Ji(x)l17 Sp(x - y) ffb(z, y)1/Jn(y)8ae(z - x)} 
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ma (F) - g3 red(TaTb)in I dx I dy I dzA~(z)v(-,e,d)ua.B(oz) x 

{2if:~(x, z )ai:(z, y )tPi(x )t5(x - Y hvt/Jn(Y) 
-+ 

-ifi~(x,z)Jt$(z,y)1/Ji(x)(f':c +im)t5(x -y)t/Jn(y)} 

+g3 red(TaTb)in I dx I dy I dzA~(z)O}d)u,6 x 

2iff$(z,y)1/Ji(x) /2e(x,z)t5(x-y)1fln(Y) 

-g3 red(TaTb)in I dx I dy I dzA~(z) 
{-1/Ji(x) /2e(x, z)SF(x -y)''ttPn(y)t5db(z - y) 

+1/Ji(x)'·tSF(x -y) /fb(z,y)t/Jn(Y)hae(z - x)}. 

In reaching the above result, we use the free field equation 

Q~.6 A~(z) = (Dzgu.6 - a:a~)A~(z) = -Jc.B(z) - z.BC 

- -Jc.B(z) - z.6(8z)-18z · Jc(z) J=O 0 

and the gauge condition zu A~(z) = 0. Above, 

Atde(x, y, z) = { G#.av(z, Y)tPi(x) /2e(x, z)SF(X - Y)'·tt/Jn(Y) 

-G~[J(x, z)t/Ji(x)'yµSF(x - y) ffb(z, y)t/Jn(Y) 

+ifi~(x,z)1/Ji(x)t5(x-y) ffb(z,y)t/Jn(Y)} 

Babde(x, y, z) = -8£V{ tPi(x) f2d(x, z)SF(x - y )'yµt/Jn(Y )( 8z )-1t5eb(z - y) 

+1/Ji(x)'yµSF(x-y) ffb(z,y)1fln(Y)(8zt 1t5ae(z -y)}. 

86 = ig f dx f dy f dzt/Ji(z)r~in(x, y, z)A~(y)t/Jn(z) 

- (F) +(ghost)+ 

-g(T"')in J dx f dy f dz1/Ji(z)'y~1/Jn(z)At(y)x 
{ 8zdt;(z, x )rrabµv(x, y) + lg2 rce Jbfda:;(z, x) x 

[O~u H~:efµ(x,y) + o~u H~:efv(y,x) + yvH~defµ(x,y)]} 
- (F) +(ghost) - g(T8 )in J dx J dy f dz 

,_ -+ 

{[1/Ji(z )( f'z + f'z)tPn(z )]At(Y )J:;(z, x )ITabµv(x, y) 

+lg2 face jbfdtPi(z)'ttPn(z)At(y)[O~ua:;(z, x )]H~:efv(y, x)} 
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after recalling A(y) . y = 0 and o;u At J=O o. 
Now 

C' "!!:! 
v6 -

[8: + xu(8x)-18zf]88a(z - x)H~:ef11 (y,x) 

- (F) +(ghost) - !g3 rce Jbfd(T8 )in I dx I dy I dzH~:efll (y, x )At(Y) x 
+- ..... 

.,Pi(z)[1u8sa(z - x) - tPi(z)(~z + ~z)xu(8x)-18sa(z - x)]tPn(z) 

- (F) +(ghost)+ 

-!g3 face Jbfd(T8 )in J dx J dy J dz.,Pi(z)lu'l/Jn(z )At(Y )8sa(z - X) X 

{V(-,d,f)llpu( 8y)[G;~(x, y )!;{ ( x, y) - G1u>. (x, y )Ji;( x, Y )] 

+0£!)11>. J;{ (y, x )J2;(x, Y)} 

- (F) +(ghost)+ 

-!g3 rce lbfd(T8 )in I dx I dy I dz.,Pi(z )10''1/Jn(z )At(Y )8sa(z - x) x 

{V(-,d,!) 11pu( 8y)[G;~(x, y )J;{ (x, y )+ 

-(G:{(x, y) - 8i~I;{ (x, y) - a;{> J;! (x, y))fl;(x, y)] 

+0£!)11>. 1;{ (y, x)l2;(x, y)} 

- (F) +(ghost)+ 

-!g3 rce Pfd(T8 )in I dx I dy I dz{ tPi(z)IU'l/Jn(z)At(Y )8sa(z - x) x 

[V(-,d,f}llp>.(8y)( G~~(x, y )I;{ (x, y) - a:{(x, y )lf;(x, y ))+ 

-( O£d+f)11P - O£d)11P)J;£(x, y))fi;(x, y) + 0£!) 11>. 1;{ (y, x )12;(x, Y )] 

_ y(-,d,f}llp>.(8y).,Pi(z)[(ix +im)8sa(x - z)JI:{ (x, y)fi;(z, y)At(y)} 

- (F) +(ghost) - !g3 rce Pfd(T8 )in I dx I dy I dz.,Pi(z) x 

{210' A~(y )88 a(x - z)V(-,d,f)vp>.(8y)G~~(x, y )J:{ (x, y) 

+21u At(y)88a(x- z)O£d) 11Pl;!(x,y)Jf;(x,y) 

_ y(-,d,f}llp>.(8y)[(ix +im)8sa(x - z)]J;{ (x, Y )lf;(z, Y )At(Y )}.,Pn(z). 

The group factors can be combined as follows, 
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Hence 

S6 = (F) +(ghost) - ig3 Jbfd(Tarc)in J dx J dy J dzt/}i(z) x 

{2/'cr A~(y)8(x - z)v(-,d,J)vp>.(8y)G~~(x, y)J;f (x, y) 

+2/'u A~(y)8(x - z)O£d)vp J;! (x, y)Jf;(x, y) 

_ y(-,d,J)vp>.(8y)[( "ix +im)8(x - z)]J;f (x, y)Jf;(z, y)A~(y)}tPn(z) 

- (F) +(ghost) - ig3 red(TaTb)in I dx I dy I dzA~(z)t/Ji(x) x 

{-2V(-,e,d)uafi(8z)8(x - y)l'vai~(z, y)ff~(x, z) 

+28(x -y)Oid)ufi /2e(x,z)Jf$(z,y) 
--+ 

_ y(-,e,d)uafi( 8z)[( f}y -im)c5(x - y)]ff~(x, z)Jf$(z, y )}1/Jn(y). 

Thus we obtain in all 

S = S1 + S2 + 83 + 84 + Ss + S6 

ms (F) +(ghost)+ 

-ig3 (TaTbTc)in J dx J dy J dzt/Ji(x) 

{c5(x - z) ;1.c(z)SF(z -y) /fb(x,y)+ 

- /2b(x,y)SF(x - z) ;1.c(z)c5(z -y) 

+ /2b(x, z)c5(y - z)SF(x - y) ;1.c(y)+ 

- ;1.c(x)c5(x - z)SF(x -y) /fb(z,y)}t/Jn(Y) 

-g3 red(TaTb)in I dx I dy I dzt/Ji(x)A~(z) 
{-")'er SF(z - y) /fb(x, y)c5ae(x - z)+ 

+ /2e(x,y)SF(x - z)l'uc5db(z -y)+ 

+sae(x - z)l'u SF(z - y) Jfb(x, y)+ 

-2ic5(x -y)Oid)ufi /2e(x,z)Jf$(z,y)+ 

+2iV(-,e,d)uaf3( 8z)Jf~( x, z )l'vai~(z, y )8( x - y )+ 

-8db(z -y) /2e(x,z)SF(x - y)l'u+ 

+iV(-,e,d)uafi(8z)ff~(x, z)Jf$(z, y)[(f}y - im)c5(x - y )] 

-2iV(-,e,d)uaf3( 8z)c5(x - y )l'vai~(z, Y )ff~( x, z )+ 

+2ic5(x - y )Oid)ufi /2e(x, z)ft$(z, y) 
--+ 

-iV(-,e,d)uafi(8z)[(f}y -im)8(x - y)]Jf~(x, z)Jf$(z, y)}t/Jn(Y) 

- (F) +(ghost). 
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Gluon self-energy (Figure 5.67) 

S = J dx J dyA~(x)At(y)ITabµv(x, y) 

- (F) +(ghost)+ 

~g2 face Jbfd J dx J dyA~(x)At(y) 
[0~"' H~:efµ(x, y) + yv H~defµ(x, y) + (x ..._. y, µ ..._. v)] 

- (F) +(ghost). 
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