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Abstract ii 

ABSTRACT 

Wood fibre waste (WFW) of paper mill origin and composted fish waste were 

investigated for use as media for the cultivation or carriage of biological control agents 

active against plant pathogens, with a view to producing suppressive alternatives to 

chemical fungicides. 

Potential biological control agents were isolated from crop-soil or from the 

rhizosphere and rhizoplane of plants. Some 67 bacterial isolates of more than 100 cultures 

assessed were antagonistic to one or more fungal plant pathogens in vitro. Most 

antagonists were identified as Bacillus or Pseudomonas spp. Isolates of Pseudomonas 

corrugata, Bacillus megaterium, B. thuringiensis, B. polymyxa, B. pumilus, B. mojavensis, 

and Lysobacter antibioticus showing particular potential in a pot tdal against Sclerotinia 

minor and S. sclerotiorum formed the focus of further developments as agents of 

biological control. 

The optimal growth conditions of the selected bacterial antagonists and of a fungal 

biological control Trichoderma sp. (Td22), were assessed in vitro prior to their cultivation 

in WFW- or fish waste compost, or in amended WFW without composting. All tested 

bacterial antagonists grew well at neutral pH and at temperatures between 25°C and 30°C. 

Td22 grew optimally at pH between 5.0 and 6.0 and at 25°C. This fungus had an advantage 

over the bacterial isolates of being cellulolytic, raising the possibility of its cultivation in 

cellulose-based materials, such as WFW. 

The selected antagonists were cultivated in composted WFW amended (20% w/w) 

with millet seed and enriched with ammonium nitrate-based mineral salts solution. The 

initial pH of the mix was adjusted to approximately neutral for the cultivation of the 

bacterial agents, no pH adjustment was needed for the cultivation of Td22 as the initial pH 

of the mix was around 4.5-5.0. All antagonists showed excellent growth response in this 

mix, reaching densities up to -1010 colony forming units (cfu)/g dry weight mix after 14 

days of incubation under sterile conditions. Lower population densities of between -107 

and -109 cfu/g for Td22, or of between -108 and 109 cfu/g for the bacterial antagonists 

were achieved under non-sterile conditions. 
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The efficacy of the suppressive mix in controlling S. minor was evaluated in pot 

tdals. Td22 grown in this mix consistently protected lettuce plants from attack by S. minor. 

The degree of protection was correlated with the level of the suppressive mix amendment, 

with 100% protection being observed after four weeks at an amendment rate of 20% v/v 

(compost:soil mix). Soil inoculated with S. minor only (control treatment) showed 0% 

survival after the same interval. Pre-incubation of the fungus in the compost:soil mixture 

for four or more days prior to planting appeared to improve its disease control. Long-term 

storage of the Td22 suppressive mix was also demonstrated by the protection of pyrethrum 

plants from attack by S. minor following storage of the mix at ambient temperatures for 

4.5 months. The efficacy of the selected bacterial antagonists in disease suppression was 

less consistent. Although the percentages of healthy seedlings/plants increased relative to 

controls following application of compost-grown bacterial antagonists (at a rate of 5% 

v/v), these increases were not statistically significant (p>0.05) in most cases. 

In an attempt to eliminate the need for sterilizing compost material used to 

cultivate biological control agents, the potential of utilizing the different optimal growth 

temperatures of normal compost biota at elevated temperature relative to those of 

biological control agents was investigated. Bacterial antagonists were inoculated into 

mature self-heating fish waste compost immediately following its rapid cooling from 52-

550C to ambient temperatures and supplementation with amendments favouring the 

antagonists. All antagonists reached high numbers after 14 days incubation, with two (P. 

corrugata and L. antibioticus) reaching -1010 cfu/g dry weight. In both cases most of the 

indigenous compost microbiota were excluded, the antagonists being the dominant biota 

found following isolation. In a glasshouse trial, they also significantly (p<0.05) protected 

lettuce plants from attack by S. minor, the degree of protection ranging from 40 to 50% 

relative to the control treatments. When applied at the rate of 12.1 tonnes/hectare in a field 

trial, the effectiveness of these antagonists was comparable to that of a commercially 

available biological control agent (Companion) applied as a cell suspension, but was not 

significant statistically (p>0.05) compared to control treatments. 

The effectiveness of selected antagonists (Td22, P.corrugata, and L. antibioticus, 

prepared as cell suspensions) in protecting zucchini leaves from downy mildew incidence 
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was also investigated, with a view to developing standardised 'compost teas' for the 

control of leaf pathogens. All but one antagonist (L. antibioticus) applied singly or in 

combination provided a significant (p<0.05) protection to the zucchini leaves at two 

weeks after the pathogen introduction, ranging from -22% (bacterial) to 83% (Td22) 

protection relative to the pathogen-only control. Co-inoculation of Td22 with P. corrugata, 

L. antibioticus, or a combination of Td22 with both bacteria resulted levels of control 

lower than those provided by Td22 alone. This could be attributed to the lower 

concentrations of the most active agent (Td22) and/or to the antagonism between the 

bacteria and fungus as noted in vitro. The survival or establishment of these antagonists 

on the leaf surface was very poor, resulting in declining levels of protection after two 

weeks, suggesting that re-application of these antagonists is needed to provide a reliable 

disease control. 

The molecular weights of two antimicrobial compounds produced by P. corrugata 

strain SAJ6 were determined to be 554 and 580. Other characteristics of these antibiotics 

were also elucidated, although determination of their structures was beyond the scope of 

this study. Siderophore activity by these compounds was eliminated from contention, 

since inhibition of S. minor was not affected by the presence of high levels of FeCb in 

growth medium. 
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Chapter 1 

General Introduction 

1.1 Background 

It has been well documented that long-term application of chemical pesticides to 

control plant diseases has been to the detriment of the soil and water environments. In 

developing countries where appropriate controls are often lacking, application of toxic 

compounds has been particularly excessive. This has lead to the accumulation of such 

compounds or their residues in the soil, with resultant contamination of agricultural crops, 

waterways, milk, and meat. 

Pesticides frequently kill biota beyond target pathogens including beneficial 

mycorrhizal fungi and plant growth promoting rhizobacteria (DeCeuster and Pauwels, 

1995). High pesticide usage also leads to increased pathogen resistance resulting in yet 

higher pesticide usage to kill the same pathogen (Jutsum et al., 1998; Margot, 2003; 

Beever, 2003). Chemical pollutants including pesticides have also been found to have 

adverse effects on reproduction and developmental processes in variety of animals 

including humans (Machala and Vondracek, 1998; Miyamoto and Klein, 1998; Poovala et 

al., 1998). There are other causes of concern relating to pesticide use. As an example, 

methyl bromide is widely considered to be one of the best broad spectrum pesticides, but 

has been found to be a significant greenhouse gas (Ristaino and Thomas, 1997) and is due 

to be phased out in developed countries by 2005 (De Ceuster and Hoitink, 1999). 

Alternatives have been proposed, but none appear to be as effective (De Ceuster and 

Hoitink, 1999). 

Due to these detrimental effects, reduced pesticide usage in agricultural practice 

has been championed with marked effect (Perin-Garnier, 1998; Mmochi and Mberek, 

1998). In anticipation of such future reduction, Painuly and Dev (1998) proposed some 

possible alternative control measures, such as biological control, use of pathogen-resistant 

plant varieties, and integrated pest management. 
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Many agents of microbial biological control of plant pathogens, or of plant 

growth promotion have been identified, although only a few have been successfully 

adopted into farming practices (Weller, 1988; Fravel et al., 1998; Nameth, 2002; Fravel 

and Lazarovits, 2003). In large part this is due to lack of competitiveness of potential 

agents with normal soil or root-biota under field conditions. Lack of commercial 

competitiveness against chemical pesticides has also slowed the adoption of biological 

control measures. An example of the early and successful use of integrated biological 

control is that of the application of biological control strains of Trichoderma harzianum 

after soil fumigation and prior to crop planting (De Ceuster and Pauwels, 1995). 

The use of compost as a possible substrate or a carrier for biological control 

agents has been intensively researched (e.g. see the review by Hoitink et al., 1993; 

Hoitink and Gardener, 2003). The present project was inspired by the findings of 

Vidhyasekaran et al. (1997a), Gazoni et al., (1998), and Nakasaki et al. (1998) who were 

able to grow and maintain bacterial antagonists of plant pathogens in, low-cost solid 

matrices. These reports hold considerable potential for value-adding to compost and for 

providing a low-cost biological control material to less wealthy countries. 

1.2 Aims of the project 

The main objective of this project was to assess the effectiveness of antagonists in 

controlling plant pathogens and to establish methods for their large-scale cultivation in 

low-cost materials. Substrates examined with a view to producing suppressive alternatives 

to chemical-based fungicides were composted and non-composted wood fiber waste and 

fish waste compost. The following specific aspects were explored: 

1. The screening, isolation, identification, and assessment of potential bacterial and 

fungal antagonists to plant pathogens. 

2. The in vitro determination of optimum growth conditions of specific fungal and 

bacterial antagonists, with a view to their large-scale production using low-cost 

materials available in Tasmania. 

3. The examination of wood fiber waste of paper mill origin and mature fish waste 

compost as substrates or carriers for the cultivation and storage of potential biological 

control agents. 

4. The manipulation of the cool-down phase of composting to the advantage of 

mesophilic inocula. 
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5. The evaluation of the ability of antagonists cultivated in the above low-cost substrates 

to protect lettuce plants and pyrethrum plants from attack by S. minor in glasshouse 

trials and in a field trial. 

6. The evaluation of suspensions of the antagonist to protect zucchini leaves from downy 

mildew infection, with a view to the development of designer 'compost teas'. 

7. Preliminary screening and characterization of active compounds produced by a 

selected bacterial antagonist [Pseudomonas corrugata (strain SAJ6)] with a view to 

elucidating the mechanism by which this antagonist controls the fungal pathogen (S. 

minor). 
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Losses in productivity and quality of valuable crops due to attack by pathogens are 

widely reported, often with severe effect, as reviewed by Chakraborty et al., (1998), De 

Ceuster and Hoitink (1999) and Edwards et al. (2001 ). To deal with this problem, a wide 

range of disease control measures from traditional crop rotation (Defago, 2003) to use of 

organic additives (Lazarovits et al., 2003) have been applied. 

Crop rotation is intended to lead to starvation-death of plant pathogens by 

preventing them from making contact with their host plants for an extended period (Cook, 

1990; Defago, 2003). However the benefits of crop rotation may be negated by the ability 

of many pathogens to switch hosts or to grow saprophytically, enabling their survival 

(Coley-Smith, 1979). The effectiveness of rotation may be improved by the addition of 

organic materials, particularly compost, to the soil (Nelson and Boehm, 2002; Hoitink and 

Gardener, 2003; Lazarovits et al., 2003). Various reasons have been proposed to explain 

this; the additive may improve soil thermal or water-holding properties, and improved 

nutrient levels may result in healthier, more robust plants, or may favour the competitors 

or antagonists of plant pathogens. Although crop rotation coupled with the addition of 

organic amendment is still used, these two approaches are less favoured for disease 

control in modern farming systems, their being largely replaced by integrated disease 

control to enable continuous cropping (Cook, 1990; Yamada, 2001; van Bruggen and 

Termorshuizen, 2003). 

Biological control of plant pathogens has a long history. Our understanding of 

naturally suppressive soil is well established (Schneider, 1982; Becker et al., 1997) and 

knowledge of its effectiveness has provided the stimulus for research on biological 

control, which according to Whipps (1997) and Peng et al. (1999), is attributable to a 

combination of physicochemical characteristics of the soil and the effect of antagonists. 

Negative interactions between pathogens and their antagonists (biological control agents) 

include parasitism (with or without lysis), competition, and antibiosis, as outlined in 
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Section 2.5. These negative interactions in-vitro have been widely used as indicators of 

potential biological control activity in isolation strategies. 

2.2 Plant def ense mechanisms against plant pathogens 

Plants are constantly exposed to potentially pathogenic microorganisms yet only 

occasionally do these pathogens infect the plants to cause disease (Agrios, 1997; Hirt, 

2002). This is because plants possess an array of active and passive defense mechanisms 

(e.g. Lamb et al., 1989; Dixon and Lamb, 1990; Agrios, 1997). When in contact with 

pathogenic microorganisms, a multi-component cascade of responses is triggered in 

plants, aimed at inhibiting or limiting pathogen attack. These include the production of 

inhibitors, such as phytoalexins or other chemicals, the formation of physical barriers (by 

deposition of lignin, callose, or strengthening the cell wall by increased cross-linking), the 

elicitation of the hypersensitive response, the elevated expression of hydrolytic enzymes, 

or the e~icitation of non-specific, multigenic resistance, as reviewed or reported by e.g. 

Bolwell and Wojtaszek (1997), Tuzun and Bent (2000), Belanger and Benhamou (2003), 

and Adikaram and Abayasekara (2003). These plant defence mechanisms are briefly 

described as follows: 

2.2.1 The production of inhibitors 

Phytoalexins (low molecular weight antimicrobial compounds) are common 

inhibitors produced by plants in response to pathogen attack (Paxton, 1981; Anon, 1999; 

and Adikaram and Abayasekara, 2003). Several classes of phytoalexins, such as 

isoflavanoids, sesquiterpenoids, and indolics (from legumes, potatoes, and brassicas, 

respectively) have been reviewed by Glazebrook (1996). Other compounds reported to be 

accumulated within the plant cell wall in response to infection include ~-1,3-glucan 

callose (Aist, 1983), hydroxyproline-rich glycoprotein (Benhamou et al., 1991), silicon 

oxides (Stein et al., 1993), and phenolics (Belanger and Benhamou, 2003). 

The synthesis of phytoalexins involves a series of sequential reactions: The plasma 

membrane of plant cell will respond to the chemicals released by fungal pathogens by 

producing hydrogen peroxide. This triggers a chemical message to the nucleus of the 

infected cell, resulting in the transcription of mRNA encoding the production of 

phytoalexins (Anon, 2002). The presence of these compounds in the plant tissue will 



Literature review 6 

contribute to the inhibition of further ingress by the pathogens, as reviewed by Kuc 

(1995), Hammond-Kosack and Jones (1996) and Adikaram and Abayasekara (2003). 

2.2.2 The formation of physical barriers 

The first barrier encountered by a plant pathogen is the plant cell wall, one that is 

relatively easily penetrated by most pathogens (Schafer, 1994). However the plant will 

quickly respond to such infection by cell wall modifications to make it more effective, as 

reviewed by Hammerschmidt and Nicholson (2000), Wharton (2001), and Belanger and 

Benhamou (2003). Such modifications include the lignification and deposition of phenolic 

compounds (Nicholson and Hammerschmidt, 1992; Lee et al., 2001), with the effect of 

providing a toxic bruTier having increased mechanical strength, making it less susceptible 

to the degrading enzymes (Ride, 1978; Whruton, 2001). 

2.2.3 Elicitation of the hypersensitive response 

Rapid induction of a localized hypersensitive response (HR) is an important 

mechanism by which plants resist fungal and bacterial pathogen attack (Goodman and 

Novacky, 1994; Baillieul et al., 1995; Lam, 2003). The HR is considered to be a 

component of programmed cell death, al}d is it is coordinated with other defense 

mechanisms such as deposition of antimicrobial compounds at the infection site, 

fortification of the cell walls, and expression of defense-related genes in the smTounding 

tissue (Goodman and Novacky, 1994; Hammon-Kosack and Jones, 1996). All these 

mechanisms are aimed at inhibiting further colonization of plant tissues by depriving 

pathogens of water or nutrients. 

The HR will occur in plants possessing a single-dominant gene encoding the 

production of molecules (receptors) specifically binding with counterparts produced by 

the invading pathogens (Halterman and Martin, 1997). The production of such 

compounds by pathogens is encoded by an avirulence (avr) gene (Knogge et al., 2003), 

with their binding triggering the expression of the HR (Keen, 1990). Because activati~n of 

the HR in plants requires recognition of gene expression by the pathogen, this defence 

mechanism is often referred to as a gene-for-gene relationship (Keen, 1990). If an 

invading pathogen does not carry an avr gene, the plant host will fail to activate the HR 

leading to infection, as reviewed by Hammond-Kosack and Jones (1996) and Hutcheson 
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(1998). More recently Lam (2003) reported that reactive oxygen species and caspase-like 

protease were essential components of the HR. 

2.2.4 Elevated expression of hydrolytic enzymes 

Over-expression of plant genes encoding for hydrolytic enzymes as a response to 

pathogen attack, has been reported by many workers (e.g. Ye et al., 1990; Maurhofer, 

1994a). These enzymes directly lyse the invading fungal hyphae and/or release 

oligisaccharides from the hyphae, eliciting further defense responses, as reviewed by 

Tuzun and Bent (2000). Some hydrolytic enzymes, such as chitinase and ~-1,3-glucanase 

have been reported to accumulate in plants following pathogen challenge (Pan et al., 

1992; Tang et al., 2003). Increased activity and levels of these enzymes has also been 

reported to be correlated with the induction of systemic resistance in plants (Schneider 

and Ullrich, 1994; Tang et al., 2003). Some plants, such as barley (Ignatius et al., 1994), 

tobacco (Lusso and Kuc, 1995), potato (Wegener et al., 1996), cabbage (Tuzun et al, 

1997), grape (Busam et al., 1997), and tomato (Bettini et al., 1998) have been reported to 

produce these enzymes constitutively and at higher levels in disease-resistant than in 

susceptible plants. This attribute confers a capacity to detect and respond to invading 

pathogens more quickly than can susceptible plants (Tuzun et al., 1997). 

2.2.5 Non-specific control of plant pathogens 

Where the HR is triggered by a single gene product of the pathogen, non-specific 

(horizontal) resistance responses tend to be multigenic in origin. This topic has been 

reviewed by Tuzun and Bent (2000). According to Simmonds (1991) there is a tendency 

for plants having multigenic resistance to encounter a greater variety of pathogens or 

pathogen races than those only harboring specific resistance genes. 

2.3 Definition of biological control 

Biological control has been defined in different ways in different disciplines. In 

entomology it has been defined as "the action of parasites, predators, or pathogens in 

maintaining another organism's population density at a lower average than would occur in 

their absence" (DeBach, 1964). In plant pathology we have: "the decrease of inoculum or 

the disease-producing activity of a pathogen accomplished through one or more 

organisms, including the host plants but excluding (intervention by) man" (Baker, 1987a) 
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and "the use of organisms (antagonists) to reduce disease incidence or an attack on crop 

species by certain pathogens" (Lucas, 1998). These definitions have in common the use of 

living organisms (natural antagonists of unwanted pathogens) to control the growth of 

pathogens. An extension of this definition, accepted in microbiology, extends to human 

introduction of the biological control agents into soil for the purpose of inhibiting the 

growth of indigenous pathogens. 

2.4 Isolation of biological control agents 

This topic has been the subject of numerous reviews (Baker, 1987a; Baker and 

Dunn, 1990; Campbell 1994; Utkhede, 1996; Mathre et al., 1998; Olckers, 1999; Akhtar 

and Malik, 2000; and Soytong et al., 2001). Potential biological control agents are 

frequently isolated from the rhizosphere or rhizoplane of plants, this improving the 

potential for their subsequent survival and competitive ability on re-exposure to the root 

habitat (Weller, 1988; Larkin and Fravel, 1998). 

Biological control agents have also been isolated from suppressive soils 

(Campbell, 1994; Van Loon, 1999), from a parasitized pathogen (Metcalf, 1997), or by 

accidental contamination of media (Campbell, 1994). Weller (1984) demonstrated that 

fluorescent pseudomonads isolated from wheat roots previously grown in soil suppressive 

to take-all disease, provided greater protection to plants than those isolated from non­

suppressive soil. Use of media favouring the identification of fluorescence has increased 

the rate of obtaining potential agents of biological control (Weller 1988; Lucas 1998). 

2.5 Maximizing biological control effectiveness in the field 

In order to achieve maximum effectiveness of biological control agents in the 

field, it is important to gather information on their host specificities (Kloepper, 1996) and 

on the life cycles of the pathogens (Whipps, 1997). Ideally the antagonist is isolated from 

the same plant it is targeted to protect as its ability to competitively colonize the growing 

root is then already established. Once root colonization takes place, the antagonist will 

prevent or reduce the capacity of other microorganisms (including pathogens) from 

colonizing the plant roots, leading to reduced disease incidence (Kloepper, 1996; Pieterse 

et al., 2003). In relation to optimal timing of application, antagonists will be most 

effective if applied at the appropriate stage of plant growth (usually immediately prior to 
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germination) or at the most susceptible stage of the life cycle of the pathogens (Whipps, 

1997). 

2.6 Mechanisms of biological control 

In nature, antagonists appear to control target pathogens by parasitism, cell lysis, 

antibiosis, competition and induced resistance in host plants (Schroth and Becker, 1990; 

Lievans et al., 2001). These mechanisms are briefly discussed as follows: 

2.6.1 Parasitism or lysis 

Parasitism may be defined as utilization of a host as a source of energy following 

attack by a parasite (Atlas and Bartha, 1993). The term mycoparasite is used if both the 

parasite and its host are fungi (Chet et al., 1997). Barnett and Binder (1973) divided 

mycoparasitism into destrnctive parasitism, where the parasites tend to kill the host or 

destroy components of the host in their interaction, and balanced parasitism where the 

parasites live in relative harmony with their host. Such division appears to be artificial and 

unhelpful because fungi will display a spectrnm of activities between the two extremes. 

Manocha et al. (1990) found that hydrolytic enzymes and toxins were involved in the 

killing a host fungus ( destrnctive parasitism), although the production of these compounds 

has not been demonstrated in the case of balanced parasitism (Jeffries, 1997). In such 

cases the parasites tend to produce specialized infection strnctures, which are used to 

absorb nutrients from their hosts (Manocha et al., 1990; Jeffries, 1997). Mycoparasitism 

of plant pathogens has been reviewed recently by Benhamou and Chet, (1993); Chet et 

al., (1997) and Schoeman et al., (1999). 

2.6.2 Competition 

Competition occurs when two or more species live together and strive for the same 

limited resources of nutrients, light, or space (Atlas, 1995). Species with a higher growth 

rate or greater capacity to adapt to prevailing conditions will outcompete competitors in 

the same ecological niche. Nutrient supply (including micronutrients such as iron) 

provides the greatest source of competition in the soil environment (Chet et al., 1997). 

Examples of ~iological control agents with capacity to outcompete other rnicrobiota in 

habitats having limited iron availability are given in Section 2.6.5. 
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2.6.3 Antibiosis 

Antibiosis has been variously defined as limited to the interaction of microbiota 

with antibiotics, or as a negative interaction in which the growth of one microorganism is 

inhibited by another due to the production of diffusable antibiotics, toxic molecules or 

volatiles, and lytic enzymes (Baker and Griffin, 1995). The effect on the target organisms 

may be either lethal or inhibitory to growth. Dijksterhuis et al. (1999) found the growth of 

Fusarium oxysporum was inhibited by both cell-free filtrate and by living cells of 

Paenibacillus polymyxa indicating antibiosis in this interaction. Likewise Agrobacterium 

radiobacter produces an effective antibiotic, 'agrocin 84' against its competitor A. 

tumefaciens (Penyalver and Lopez, 1999; Johnson and DiLeone, 1999). In a recent study, 

the sequence of events leading to the inhibition of Penicillium digitatum by antibiotics 

produced by Verticillium lecanii was elucidated by Benhamou and Brodeur (2000), using 

electron microscopy and gold cytochemical analysis. 

2.6.4 Induced resistance in the host plants 

Pathogenic attack on plants may trigger a range of physiological and biochemical 

protective responses as reviewed by Buell (1999), including the triggering of systemic 

signaling pathways resulting in production of hydrogen peroxide (leading to the 

hypersensitivity response) or intermediates such as salicylic acid (Delaney et al, 1994; 

Thomma et al., 1998; Bol et al., 2003), jasmonic acid (Thomma et al., 1998; 2000; 

Pieterse et al., 2003), or phytoalexins (Adikaram and Abayasekara, 2003). Signalling 

pathways may be induced artificially by exposure to compounds such as DL-~-amino 

butyric acid (BABA), dipotassium hydrogen orthophosphate (K2HP04) (Reuveni et al., 

1994, 1998; Pajot et al., 2001) or benzo(l,2,3)thiadiazoie-7-carbothioic acid-S-methyl 

ester (Bigirimana and Hofte, 2002). 

Application of plant hormones has also frequently been found to result in an 

enhanced level of resistance (Boller, 1991; Pieterse et al., 1996, 2000; Thomma et al., 

2000). The role of ethylene seems more ambiguous, in some cases it is apparently 

involved in disease development (Lund et al., 1998), in others it is associated with disease 

resistance (Knoester et al., 1998; Bol et al., 2003; Pieterse et al., 2003). 

Some rhizobacteria, such as pseudomonad species have been reported to have the 

capacity to accumulate salicylic acid on th~ root surface of plants, triggering the systemic 

acquired resistance (SAR) signalling pathway in those plants (Mayer et al., 1992; Visca et 
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al., 1993; Gupta et al., 2000). In other cases, substances such as lipopolysaccharide (from 

the outer membrane of Pseudomonas fluorescens) have also been demonstrated to play an 

important role in eliciting SAR (Leeman et al., 1995a,b; van Loon et al., 1998). Srivastava 

et al. (2001) describe the induction of SAR in chickpeas against attack by Macrophomina 

phaseolina, the protection provided by a P. fluorescens isolate when applied in 

combination with 2,6 dichloroisonicotinic and o-acetylacilic acid. 

2.6.5 Combined mechanisms of antagonism by specific biological control 

agents 

Many microorganisms display a combination attack on pathogens (Chet et al., 

1997; Lievens et al., 2001). Specific examples of microorganisms having this capacity are 

provided by representatives of the fungal genera Trichoderma and Gliocladium and by 

bacteria of the genus Pseudomonas. 

Trichoderma spp. 

Indication of parasitism by Trichodemia spp. on fungal pathogens was first 

noticed by Wiendling (1932). Since then the mechanism of parasitism by these fungi has 

been the subject of numerous investigations. Chet et al. (1981) suggested that the 

parasitic attack was initiated by the growth of hyphae towards chemical attractants 

produced by the hosts (positive chemotropism). Following contact, the fungi attach and 

bind to specific host lectins (Inbar and Chet, 1992) with subsequent penetration and 

degradation of the host cell wall, involving extracellular ~-1,3 glucanase and chitinase 

(Blad et al., 1982; Ridout et al., 1988). This results in lysis and death of the fungal host. 

Some Trichoderma spp. supplement this parasitic activity by inducing SAR in the host 

plants (Blad, 2000) and/or antibiosis against the fungal pathogen (Jaworski et al., 1999; 

Rebuffat et al., 2000; and Humphris et al., 2001). 

Gliocladium spp. 

Lewis et al. ( 1991) suggested the involvement of the enzymes ~-1,4 glucanase, 

protease, ~-1,3 glucanase, and chitinase in the destruction of the host cell by Gliocladium. 

The sequence of infection is similar to that of Trichoderma spp; with chemotrophic 

growth towards the host, followed by attachment and production of hydrolitic enzymes 

(Chet et al., 1997). The ability of some species of Gliocladium to also produce antibiotics 
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has been reported (Howell, 1982). For example, G. virens can produce gliovirin, which 

was suspected to be responsible for the growth inhibition and death of Pythium ultimum 

(Howell et al. 1993; Howell and Stipanovic, 1995). 

Pseudomonas spp. 

At least three mechanisms of disease control (induced SAR, competition and 

antibiosis) by Pseudomonas spp. have been reported. Many pseudomonads produce iron­

chelating siderophores that allow them to outcompete plant pathogens in an iron-limited 

environment (Kloepper et al., 1980a; Leong, 1986; Neilands and Leong, 1986; Schippers 

et al., 1995). Reports demonstrating the efficacy of siderophore-producing pseudomonads 

in suppressing plant pathogens include those of various antagonists of Fusarium spp. 

(Raaijmakers et al., 1995b; Leeman et al. 1996) and of Ps. fluorescens antagonistic to 

Fusarium moniliforme, F. graminearum and Macrophomina phaseolina (Pal et al., 2001). 

Antibiotics produced by Pseudomonas fluorescens include pynolnitrin [3-chloro-

4-(2' -nitro-3 '-chlorophenyl)-pynol], effective against fungi associated with cotton 

seedling disease, except that caused by Pythium ultimum (Howell and Stipanovic, 1979; 

1980), and pyoluteorin (4,5-dichloro-l H-pyrrol-2-yl-2,6-dichlorohydroxyphenyl ketone), 

produced by strain CHAO and effective against P. ultimum (Maurhofer et al., 1994). The 

role of other antibiotics, such as phenazine, has been reported by Thomashow and Weller 

(1998). The synthesis and regulation of phenazine production has been reviewed by 

Whitehead and Salmond (2000). 

2.7 Naturally suppressive soil 

Naturally suppressive soil has been widely identified and known for more than 

100 years (Homby, 1983). The occurrence of these soils is partly due to continuous 

monoculture cropping for many years (Schippers, 1992; Weller and Thomashow, 2003). 

The change in soil properties from conditions that favor pathogens to ones that naturally 

suppress them appears to be attributable to the soil microbiota (Alabouvette, 1998), 

particularly since this suppressiveness is usually lost if the long term monoculture 

cropping is interrupted or if the soil is fumigated or heat sterilized (Parke, 1995; Weller 

and Thomashow, 2003). A clear conclusion is that the suppressive effect of the soil is 

largely due to the presence of microbial antagonists in the soil, which suppress the 
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pathogens so that the ability of those pathogens to cause disease is lacking (Van Loon, 

1999; Weller and Thomashow, 2003). 

The decline of take-all disease of wheat (caused by Gaeomannomyces graminis 

var tritici) following serial planting is a classic example of the occmrence of suppressive 

soil (Parke, 1995; Weller and Thomashow, 2003). This continuous cropping has been 

speculated by Weller and Thomashow (1999; 2003) to increase population of non­

pathogenic microorganisms well adapted to growth in the wheat root rhizospere. These 

microorganisms, particularly bacterial antagonists of fungal pathogens, colonize the root 

surface (rhizoplane), utilize the root exudates, and limit the fungus in its attack (Van 

Loon, 1999; Pieterse et al., 2003). Bacteria, particularly Pseudomonas spp., (Raaijmakers 

and Weller, 1998; Weller and Thomashow, 1999; 2003) and fungi such as Phialophora 

spp.(Zriba et al., 1999) have been reported to play important roles in the suppression of 

take-all disease. According to Raaijmaker and Weller (2001) and Weller and Thomashow 

(2003) 2,4-diacetylphloroglucinol produced by a strain of Pseudomonas is responsible for 

the suppression of take-all disease by this bacterium. 

2.8 Strategies for achieving biological control 

Indirect and direct strategies have been implemented to achieve biological control 

of plant pathogens. The indirect approach relies on amendment of organic into soil to 

enhance the activity of indigenous soil microbiota, particularly beneficial antagonists 

(Lazarovits et al., 2003). This is often achieved by adding specific organic materials to the 

soil, such as chitin, which stimulates the growth of beneficial Streptomyces and 

Trichoderma (Chen et al., 1999). Alternatively the resistant responses in young plant 

seedlings (or seeds) may be stimulated by drench or surface-application of non-virulent 

strains related to the pathogenic species (Chet et al., 1997; Heil, 2001; Adikaram and 

Abayasekara, 2003) (Section 2.6.4), or of unrelated non-pathogenic rhizobacteria (Ahn et­

al., 2002), or by spraying with chemicals as indicated above (Section 2.6.4). 

In the direct approach, a potential antagonist (or a mix of antagonists) is/are 

introduced to soil, seeds or seedlings with a view to directly inhibiting or attacking the 

pathogen (Cook and Baker, 1983; Stewart, 2003). Rapid establishment and proliferation 

of the inoculated antagonist(s) in an appropriate ecological niche is required to provide 

biological control (Chet et al., 1997). Once an antagonist has become part of the dominant 
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biota in that niche, it will hopefully exclude the pathogens or prevent them from attacking 

the colonized plants. 

2.9 Obstacles in the development and application of biological control 

agents 

The application of biological control in the field has been hampered for a number 

of reasons. Difficulties include handling, packaging, and delivery (Vidhyasekaran et al, 

1997a), strict government regulation (Lucas, 1998), establishment in the field (Weller, 

J988), inconsistent performance (Weller, 1988; Lucas, 1998) and questionable 

competitiveness with commercially-available chemical agents of control (Nameth, 2001). 

These obstacles are briefly discussed below. 

2.9.1 Difficulties in handling, packaging, and delivery 

Being living organisms, the biological control agents are more difficult to handle, 

package, and deliver than chemical alternatives (Fravel and Lazarovits, 2003). This is 

because their viability may be variable following storage in their carriers or substrates 

(Drahos, 2001). They may also be genetically unstable, which may result in loss of 

potency during long-term storage (Duffy and Defago, 2000). Also problematic is the 

relative bulk of storage material where application to the soil rather than the seed is 

envisaged. This is exemplified by application rates of chemical fungicides (kg/ha) relative 

to many biological alternatives (tonnes/ha). 

2.9.2 Government regulations 

The use of biological control agents in field applications (in the USA) has been 

strictly regulated by government as reviewed by Lethbridge (1989), Lucas (1998), and 

Fravel and Lazarovits (2003). This is partly due to unknown health risks following field 

applications (Mabbayad and Watson, 2000) since some of these agents are suspected of 

producing toxins that may be harmful to animals or humans (Mabbayad and Watson, 

2000), Fusarium pallidoroseum being a specific example. Cook et al. (1996) identified 

potentially adverse non-target effects of microorganisms as biological control agents in 

the field regardless of whether they were native, naturally occurring, or genetically 

modified. These were competitive displacement of a non-target'beneficial microorganism, 

allergenicity, foxigenicity and pathogenicity to non-target organisms, particularly animals 
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or humans. The development of new strains, which may produce one or more of the above 

non-target effects as a result of horizontal gene transfer from the introduced antagonists, 

was also of concern. These potential adverse non-target effects in the field are briefly 

reviewed as follows: 

Competitive displacement 

Competitive displacement could become an issue for the introduced antagonists in 

the rhizosphere if they displace mycorrhizal fungi or rhizobia, which are important to the 

health of the colonized crop (Mathre et al., 1999). 

Allergenicity 

Fungal biological control agents can be of concern because fungal spores can be 

allergenic (Cook et al., 1996). This was identified as a worker-safety issue (not a public 

issue) by Cook et al. (1996), and the danger must contribute to the difficulties in obtaining 

registration for new commercial biological control agents. 

Toxigenicity 

As noted in Section 2.6.3, toxic compounds may be involved in the protection of 

plants from attack by pathogens, but they may also be produced following application of 

biological control agents. These compounds are normally secondary metabolites produced 

when the pathogens or their antagonists have made sufficient growth at the location where 

they are applied (Cook et al., 1996). According to Mathre et al. (1999) these compounds 

may also be toxic to non-target organisms in addition to the pathogens. In such cases the 

biological control agents may produce a negative rather than positive response by crops in 

the field. 

Pathogenicity 

Some microorganisms are opportunistic pathogens of humans and these would 

need to be excluded from commercial consideration in any screening process. Examples 

are Aspergillus ochraceus and Burkholderia cepacia, both being pathogenic to humans 

(Mathre et al., 1999; Parke, 2000). Therefore, before being approved for large-scale or for 

commercial purposes, any biological control agent should pass through a stringent testing 

procedure, such as that outlined by Paulitz and Linderman (1989), or reviewed by Walsh 

et al. (2001 ). 
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. As a result of the above stringencies or safety issues, commercial registration of a 

biological control often talces years to obtain (Templeton, 1982). An example is the 

development of Colletrotichum gloeosporioides f. sp. aeschynomene for the control of 

northern joint vetch (Aeschynomene ·virginica), which took about 13 years from its 

discovery to registration for use in the USA (Templeton, 1982; Malcowski and Mortenson, 

1992). 

2.9.3 Difficulties in establishing biological control agents in the field 

Field establishment of biological control agents has always been problematic as 

their viability is determined by complex and variable environmental factors. Most notable 

of these are adverse physical conditions (especially soil moisture and pH) and biotic 

factors (especially competition with indigenous biota, appropriate plant hosts and 

availability of soil nutrients) (Weller, 1988; Campbell, 1994; Stockwell et al., 1998). To 

function in the field, the inoculated biological control agents must not only survive, but 

also reach a significant cell density in the root rhizosphere (Bull et al., 1991; Raaijmalcers 

et al., 1995; Latour et al., 1999). Therefore many of biological control agents that show a 

good disease control in glasshouse trials fail to be effective in the field. 

2.9 .4 Inconsistent performance of biological control agents 

Inconsistent performance of biological control agents in the field is also a major 

obstacle in their development and acceptance (Balcer, 1987a; Jutsum et al., 1988; and 

Campbell, 1994; Fravel and Lazarovits, 2003). Possible reasons for this are loss of 

ecological competence (Weller, 1988; Campbell, 1994), variability in root colonization by 

the biological control agents (Weller, 1988), and the narrow spectrum of disease control 

of the antagonists (Janisiewicz, 1996). These are briefly discussed as follows: 

Loss of ecological competence 

The ability of a bacterium to compete and survive in nature has been referred to as 

its 'ecological competence' (Schroth et al., 1983). Such competence has contributions 

from a number of gene-regulated traits, loss of one or more of which may lead to reduced 

competitiveness in the rhizosphere. Schroth et al. (1983) and Caesar and Burr (1987) have 

suggested that inconsistent performance resulting from spontaneous mutations may be 

attributed to repeated sub culture in vitro where selective pressure is absent. An example 
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is provided by the reported loss of ability of Pseudomonas fluorescens to produce 

antimicrobial metabolites and extracellular enzymes resulting from mutations in single 

regulatory genes (Natsch et al. (1994). Likewise Dufy and Defago (2000) noted that 

spontaneous mutation in one of two genes of P. fluorescens responsible for regulating the 

production of secondary metabolites, resulted in a significant reduction in antimicrobial 

effectiveness. Alternative reasons for the loss of competitiveness by biological control 

agents have been suggested to be attributable to viral infection, conjugation, or 

transformation (Kloepper, 1996). Evidence for interspecies signaling that may affect the 

rhizosphere competence of a biological control agent was demonstrated by Fedi et al. 

(1997) who found that diffusable factors produced by the phytopathogen Pythium ultimum 

repressed the expression of a gene that was important for the survival of a Ps. fluorescens 

strain in the sugarbeet rhizosphere. 

Variability in root colonization ability 

Colonization of plant roots by introduced antagonists is important in achieving 

disease control of root pathogens, which will be enhanced if the antagonists can reach 

high population densities or become well established in that zone (Schroth and Baker, 

1990). This, according to Kloepper (1996) is not easy to achieve, because root 

colonization is a competitive process and is affected by the characteristics of the 

introduced antagonists and the plant hosts. 

The ability of antagonists to colonize plant roots has been reported to vary among 

species (Scher et al., 1988; Weller, 1988), from plant to plant or even from root to root on 

a given plant (Weller, 1984; Loper et al., 1985; Bahme and Schroth, 1987). For instance, 

a significant variation in the population (by a factor of 10-100) of an introduced plant 

growth promoting rhizobacteria (PGPR) was reported on the root systems of potato or 

sugarbeet seedlings (Loper et al. 1984). 

Narrow spectrum of disease control 

Root colonization by antagonists has often been found to be host specific (Schroth 

and Becker, 1990; Chanway et al, 1991; Fravel and Lazarovits, 2003), a factor that 

contributes to inconsistent performance of biological control agents in the field. Unlike 

most chemical pesticides, biological control agents generally have a relatively narrow 

spectrum of disease control (Janisiewicz, 1996). When applied singly in the presence of 

non-target or target pathogens having high genetic diversity, the biological control agent 
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may exhibit inconsistent performance or appear to be ineffective in pathogen control 

(Mazzola et al., 1995). Backman et al. (1994) found that the efficacy of a commercial 

biological control Bacillus subtilis was inconsistent (ineffective) in the presence of 

Rhizoctonia solani (the target pathogen) and Pythium ultimum (a non-target pathogen). 

Both are the causative agents of damping-off in soybeans, cotton and peanut (Backman et 

al., 1994; Dorrance et al., http://ohioline.osu.edu/ac-fact/0025.html). 

2.9.5 Questionable competitiveness with commercial chemical control 

According to Gianessi (1998), farmers in the U.S.A spend approximately US$8 

billion p.a. on synthetic chemical pesticides, as against tens of millions of dollars p.a. on 

biological products to control plant pathogens, indicating that the biological control 

market is not yet significantly competitive with chemical pesticides. Disadvantages of 

biological control agents, which may contribute to their lack competitiveness in the 

market have been described by Gianessi, 1998; Nameth (2001): 

• they are more difficult to apply than chemicals, 

• they generally have a narrower target range as discussed in Section 2.9.4, 

• their effects on the pathogens are slow, 

• they do not eradicate the pathogens or rescue the host from infection, 

• they often have a short shelf-life if not properly stored, 

GI they are more expensive and less effective than chemical pesticides, 

• field application may require specialized equipment, 

e compatibility with other chemical pesticides is lacking. 

2.10 Overcoming obstacles in the development of biological control 

agents 

Strategies to improve the success of biological control agents include improved 

methods of preparation (Kloeper and Schroth, 1981), isolation from the rhizosphere zone 

where antagonism is needed (Weller, 1988), improved bioassay methods (Rhodes et al., 

1987), the use of mixed cultures (Raupach and Kloepper., 1998), and genetic engineering 

to produce strains with a wide range of disease control (Rissler, 1991). These are briefly 

discussed as follows: 
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2.10.1 The use of improved preparation methods 

The handling, storing and delivery of liquid cell suspensions of biological control 

agents is often difficult (Kloeper and Scroth, 1981; Vidhyasekaran et al., 1997a,b) so many 

attempts have been made to improve these aspects for commercial production. In bacterial 

formulations, there is less need for concern of the viability of sporulating Bacillus spp. 

than that of other bacteria, because of their ability to survive high temperatures and low 

moisture. 

Agents utilized in formulations for assisting the longevity or application of 

biological control agents include methyl cellulose powder (Suslow, 1980), gum (Kloepper 

and Schroth, 1981), mineral soil (Chao and Alexander, 1984) and talc (Vidhyasekaran et 

al., 1997b; Gazoni et al., 1998; Amer and Utkhede, 2000). Kloeper and Schroth (1981) 

developed a formulation of talc and 20% xanthan gum able to maintain effectiveness and 

population density of plant growth promoting rhizobacteria for two months at 4°C. The 

maintenance of antagonists for five months or more in powder formulations amended 

with carboxy methyl cellulose has been reported by Vidhyasekaran et al. (1997a) and 

Vidhyasekaran et al. (1997b). De Ceuster and Hoitink (1999) demonstrated the 

effectiveness of compost formulations in maintaining biological control agents for a 

'reasonable' period of time. However, no such formulation has been produced 

commercially or in large-scale, indicating a need for further development. 

To avoid the problem of loss of ecological competence of cultures resulting from 

repeated sub-culture, freeze-drying of biological control agents in protective rehydration 

media has been reported, this allowing indefinite storage (Abadias et al, 2001) although 

the cost could be prohibitive. 

2.10.2 Focusing on the screening of potential biological control agents 

from the root rhizosphere or rhizoplane 

The root rhizosphere and rhizoplane are nutrient-rich zones that are easily 

colonised by soil microbiota. According to Schroth and Hancock (1981) and Schroth and 

Hancock (1982) about 10% of the cultivable bacteria in this zone are potential biological 

control agents. As previously discussed, isolation of biological control agents from the 

rhizosphere will increase the PC?Ssibility of screening and selecting effective biological 

control agents and the isolation of good root colonizers (Weller, 1988; Lucas, 1998). 
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2.10.3 The need for improved bioassay methods 

Following the isolation of potential biological control agents, an appropriate 

bioassay for their screening is needed. The bioassay would ideally be designed so that it 

simulates natural conditions. Until recently, screening of biological control agents has 

invariably relied on in vitro dual culture assays (Andrews, 1985; Weller, 1985; Campbell, 

1986; Campbell, 1994; Berg et al., 2000), with selection on the basis of the presence of 

inhibition zones between the antagonist candidates and the tested pathogens. According to 

Renwick et al. ( 1991) and Hebbar et al. ( 1992) the result of this assay is often misleading 

as the degree of inhibition varies with the medium used. The antagonists producing the 

greatest inhibition zones on agar plates do not necessarily perform biological control in 

the field application, because the relationship between the two results is very poor 

(Gamard and Deboer, 1995; Avis et al., 2001). However, these assays are still in use due 

to their simplicity and rapidity (Campbell, 1994; Berg et al., 2000). 

In an attempt to better match natural conditions, Rhodes et al. (1987) screened 

isolates by co-inoculating the pathogens and the antagonist on a piece of potato tuber, 

comparing the efficacy of the antagonists against appropriate controls. This assay was 

also applied by Schisler and Slininger (1994) and Elson et al. (1997) to screen antagonists 

inhibitory to Fusarium spp. and Helminthosporium solani, respectively. Similarly Cheah 

et al. (1996) successfully tested some antagonists of Botrytis cinerea from wounded 

kiwifruit on the basis of their ability to inhibit the development of lesions following their 

co-inoculation with the pathogen. These techniques can be expected to have only limited 

applicability for assessing biological control in the root rhizosphere, where different 

plant/microbial interactions are involved. 

2.10.4 The use of mixed cultures 

The narrow spectrum of disease control of biological control agents and the 

variability of their antagonism can be countered to some degree by the development and 

application of mixed cultures of antagonists (Janisiewicz, 1988). Mixtures of fungal 

agents (Paulitz et al., 1990; Budge et al., 1995; Datnoff et al., 1995), bacterial agents 

(Pierson and Weller, 1994; Raaijmaker et al., 1995; Schisler et al. 1997; Raupach and 

Kloepper, 1998) or combinations of the two (Lemanceau and Alabouvette, 1991; Duffy 

and Weller, 1995; Duffy et al., 1996) have been reported to improve the success of 

biological control in the field where more than one pathogen frequently exists. A factor 
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that must be considered in the development of mixed cultures of antagonists is potential 

incompatibility of the co-inoculants, since the antagonists may also inhibit each other in 

addition to the target pathogens (Leeman et al., 1996). 

Raupach and Kloepper (1998) suggested several strategies in the development of 

mixed cultures of compatible antagonists, including the use of mixtures having different 

plant colonization patterns, different target pathogens, different mechanism of disease 

control, or different requirements for environmental conditions. These strategies appear 

to be sensible to improve the spectrum of disease control of the antagonists, providing a 

degree of redundancy in achieving the desired outcome. 

A potential drawback of a biological control product composed of a mixture of 

antagonist strains, is that the production and registration cost of the mixed cultures may be 

more expensive than that composed of a single strain (Schisler et al., 1997). However, the 

advantages of using mixed cultures, such as a better plant colonization, better adaptation 

to the environmental changes, a larger number of pathogen-suppressive mechanisms, or a 

wider spectrum of disease control, may outweigh this drawback (Backman et al., 1997). 

2.10.5 The use of genetic engineering for the production of biological 

control agents 

Screening of microorganisms in laboratory or glasshouse scale experiments to 

protect crops from pathogens is a simple process having reasonable prospects for a 

successful outcome. However, to isolate an agent having a broad range of disease control 

and the ability to control the pathogens consistently and effectively in the field can be 

very time consuming. The use of genetic engineering techniques may provide a more 

direct route to achieving superior biological control agents, a topic that has been reviewed 

by Mathre et al (1998) and Walsh et al., (2001). The possibility of combining several 

beneficial traits in the one biological control agent has been demonstrated by a number of 

researchers, examples being: 

• the transfer of genes encoding endotoxin production from Bacillus thuringiensis 

to Pseudomonas fluorescens, the recombination strain then showing some 

toxicity to root cutworm of corn (Gorlach, 1994) 

• the modification of strains of P. putida endowing them with the ability to 

inhibit soil fungi (Thomson et al., 1995; De Leij et al., 1995). 
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qi the insertion of a gene encoding the production phenazine-1-carboxylate from 

one strain of Pseudomonas to another producing ploroglucinol, extending its 

control of take-all disease to Rhizoctonia root rot (Huang et al., 1997) 

Ii) the manipulation of Bacillus thuringiensis strains to extend their ability to 

produce more than one type of toxin (Genetic Engineering Newsletter, 2000) 

e the transformation-insertion and expression of a gene for a _cytolytic protein 

toxin (lethal to mosquito and black fly larvae) from B. thuringiensis into the 

genome of Enterobacter gergoviae (Kuzina et al., 2002). 

These examples show that genetic engineering can widen the spectrum of disease control 

of antagonists and may lead to a reduced cost of production and registration (Section 

2.10.4) for commercial use. This approach may also avoid the disadvantages of biological 

co~trol products (Section 2.9.5). A major problem relating to the use of genetic 

engineering techniques however is the inherent or perceived dangers associated with 

them, requiring major risk assessment before such strains are released to the environment 

(Hagedorn and Hagedorn, 1998). The public perception of the dangers associated with the 

use of manipulated microorganisms in food crops also needs consideration. 

2.11 Bacteria as biological control agents 

Pseudomonas spp. and Bacillus spp. have been the main focus of the studies for 

biological control development because of their association with the root rhizosphere, 

their ease of growth, their ability to control a wide range of pathogens, their frequent 

ability to promote the growth of the plant being colonized (section 2.12) and in the case of 

Bacillus spp., their ease of storage. A compilation of information relating to proposed 

biological control agents is given in Table 2.1. 

2.12 Plant growth promoting rhizobacteria (PGPR) 

Kloepper and Schroth (1978) defined the plant growth promoting rhizobacteria 

(PGPR) as rhizobacteria that colonize plant roots and exhibit beneficial effects, such as 

growth promotion. The beneficial effect to the plant can either be direct or indirect as 

reviewed by Kloepper et al. (1999) and Wall (2000). 
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Table 2-1: Bacterial biological control agents suggested as having potential for field application 

Biological control Target pathogen Infection Mechanism References 

bacterium 

Agrobacterium rhizogenes I>athogenic A. rhizogenes Galling Antibiosis McClure et at. (1998); Penyalver and 
K84 Lopez (1999) 

Pathogenic agrobacteria Crown gall Production of hydroxamate Penyalver et al. (2001) 
iron chelator 

A. radiobacter and A. vitis Tumorgenic Crown gall - Bazzi et al. (1999) 
Agrobacterium 

A. radiobacter G 12A Globodera pallida Potato disease - Hackenberg et al. (1999) 

Alcaligenes sp. MFAJ Fusarium sp. Wilt Siderophore production Yuen et al. (1985) 

F. oxysporwn f.sp. dianti Wilt Siderophore production Yuen and Schroth (1986) 

Alcaligenes sp. Plant parasite nematodes Root pathogen - Siddiqui and Mamood (1999) 

Bacillus subtilis Al3 Rhizoctonia solani Damping-off and Antibiosis & plant growth Broadbent et al. (1971) 
wire-stem promotion 

Sclerotiwn rolfsii Root pathogen Antibiosis Merriman et al. (1974) 

F. oxysporum f. sp. dianti Wilt Antibiosis Yuen et al. (1985) 

B. subtilis GB03 Rhizoctonia spp. and Damping-off Antibiosis Koch et al. (1998) 
Fusarium spp. Wilt Antibiosis 

Colletotrichum orbiculare Antrachnose Induced systemic resistance Raupach and Kloepper, 1998) 
Pseudomonas syringae Angular leaf spot Induced systemic resistance 
E1Winia tracheiphila Wilt Antibiosis 
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Table 2-1: (Continued) 

Biological control Target pathogen Infection Mechanism References 

bacterium 

B. subtilis (strain BB) Xanthomonas campestris Black rot - Wulff et al. (2002) 

B. subtilis Botrytis cinerea Lesion - Tatagiba et al., (1998) 
Rhizoctonia solani AG2-2 Large-patch in grass Antibiosis Nakasaki et al. (1998) 
Phytophthora nicotianae Root pathogen - Grosch and Grote (1998) 
Meloidogyne incognata Root galling - Hoffmannhergarten et al. (1998) 

B. cereus Rhizoctonia solani Damping-off Antibiosis Pleban et al. (1997) and Gazoni et al. 
(1998) 

Pseudomonas solanacearum Wilt Antibiosis Sunaina et al. (1997) 
Meloidogyne incognata Root galling - Jonathan et al. (2000) 

Enterobacter agglomerans Phytophthora cactorum Crown and root rot - Utkhede and Smith (1997) 

E. cloacae. Pythium ultimum. Seed rot and Damping- Competition Van Dijk and Nelson (1998; 2000) 
off 

E. cloacae S 11 Fusarium sambucinum Potato tuber dry rot - Schisler et al. (2000) 

E. cloacae WBMH-3-CMr Insect pest - Gut colonization Watanabe et al. (2000) 

E. gergoviae Mosquito & blackfly larvae - Toxin production Kuzina et al. (2002) 

Erwinia aphidicola Pea aphid - Gut infection Harada and Ishikawa (1997) 
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Table 2-1: (Continued) 

Biological control Pathogen Infection Mechanism References 

bacterium 

E. herbicola Ehl087 Erwinia amylovora Fire blight Antibiosis Kearns and Mahanty (1998) 

Botrytis cinerea Powdery mildew Lysis and competition Bryk et al. (1998) 
Penicillium expansum Powdery mildew Lysis and competition 

E. herbicola Eh1087 Erwinia amylovora Fire blight Antibiosis Kearns and Mahanty (1998) 

Botrytis cinerea Powdery mildew Lysis and competition Bryk et al. (1998) 
Penicillium expansum Powdery mildew Lysis and competition Bryk et al. (1998) 

Flavobacterium sp. Phytophthora cactorum Root Rot - Alexander and Stewart (2001) 

Pseudomonas fluorescens Fusarium udum Wilt Antibiosis Vidhyasekaran et al. (1997°) 
Erwinia carotovora Soft rot disease Antibiosis Elhendawy et al. (1998) 
Rhizoctonia solani Damping off Antibiosis Gazoni et al. (1998); Nielsen et al. 

(1998) 

Fusarium sp. Wilt - Larkin and Fravel (1998) 
Pythium ultimum Damping-off Antibiosis Nielsen et al. (1998) 

P. fluorescens WCS374 Fusarium oxysporum f.sp. Wilt Induced systemic Leeman et al. (1995a,b) 
raphani resistance 

P. fluorescens CHAO Pythium ultimun Damping-off Antibiosis Schmidlisacherer et al. (1997) 
Thielaviopsis basicola Black root rot - Troxler et al. (1997) 
Rhizoctonia solani Damping-off - Vavrac et al. (1997) 
Fusarium oxysporum Crown and root rot - Duffy and Defago (1997) 
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Table 2-1: (Continued) 

Biological control Pathogen Infection Mechanism References 

bacterium 

P.fluorescens 41 Xanthomonas malvacearum, - Antibiosis Safiyazov et al. (1995) 
Rhizoctonia solani Damping-off Antibiosis 
Fusarium vasinf ectum - Antibiosis 
Verticillium dahliae - Antibiosis 

P. fluorescens strain 220 P seudoce rcospore Ila Eyespot pathogen of Antibiosis Clarkson and lucas (1997) 
herpotrichoides cereals 

P. fluorescens strain F 113 Pythium sp. Damping-off Antibiosis Moenneloccoz et al. (1998) 

P. fluorescens strain 68-28 Fusarium oxysporumf.sp. Root rot Induced systemic Mpiga et al. (1997) 
radicislycopersici resistance 

P. fluorescens CR330D Agrobacterium tumefaciens Crown gall Antibiosis Khmel et al. (1998) 

P.fluorescens 5.014 Pythium ultimum Damping-off Antibiosis Hultberg et al. (2000) 

P. fluorescens DR54 Pythium ultimwn Damping-off Antibiosis Thrane et al. (2000) 

P. fluorescens 4-92 Macrophomina phaseolina Charcoal rot disease Induced systemic Srivastava et al. (2001) 
resistance 

P. fluorescens Pfl Cercosporidium personatum Leaf spots Antibiosis Meena et al. (2002) 
Puccinia arachidis Rust Antibiosis Meena et al. (2002) 
Fusarium oxysporwnfsp. Wilt Antibiosis Rajappan et al. (2002) 
cubense 

P.fluorescens WCS417r Fusarium sp. Wilt Induced systemic Duijff et al. (1998) 
resistance 
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Table 2-1: (Continued) 

Biological control Pathogen Infection Mechanism References 

bacterium 

P. putida S. minor and S. sclerotiorum Lettuce drop Antibiosis Oedjijono et al. (1993) 

P. putida stain 89B-27 Colletotrichum orbiculare Anthracnose Induced systemic Liu et al. (1995a.o) 
resistance 

P. putida strain V14i Pyricularia oryzae Rice Blast disease Induced systemic Krishnamurthy and Gnanamanickam (1998) 
resistance 

P. putida WCS 358 Fusarium sp. Wilt Induced systemic Leeman et al. ( 1996) 
resistance 

P. putida BTP 1 Pythium aphanidermatum Root rot Antibiosis Ongena et al. (2000) 

P. aureofaciens B-4117 Agrobacterium tumefaciens Crown gall . Antibiosis Khmel et al. (1998) 

Pasteuria penetrans Meloidogyne incognata Root gall Parasitism Weibelzahfulton et al. (1996); Duponnois et 
al. (2000); Jonathan et al. (2000); Giannakou 
et al. (2002); and Talavera et al. (2002) 

Meloidogyne javanica Root gall Parasitism Gowen et al. (1998) 
Meloidogyne sp. Root knot Parasitism Siddiqui and Mahmood (1999). 

Serratia liquifaciens Fusarium oxysporum f.sp. Wilt Lysis Sneh (1981) 
dianti 

- Botrytis cinerea Fruit rot in grapes Antibiosis Whiteman and Stewart (1998) 
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Table 2-1: (Continued) 

Biological control Pathogen Infection Mechanism References 

bacterium 

S. marcescens 90-166 F. oxysporum f.sp. Wilt Induced systemic resistance Liu et al. (1995b) 
cucumerinum 

S. marcescens 9M5 Magnaporthe poae Summer patch disease - Kobayashi et al. (1995) 
on Kentucky bluegrass 

S. marcescens Pythiwn ultimum Damping-off - Buda et al. (1996) 
Rhizoctonia solani Damping-off -
S. minor Lettuce drop chitinase & ~-1,3-glucanase El-Tarabily et al. (2000) 

production 

S. marcescens Bnl 0 Noxious insects - - Sezen et al. (2001) 

S. plymuthica Rl GC4 Pythium aphanidermatum Root rot - Mccullagh et al. (1996) 
Pytium ultimum Damping off Induced systemic resistance Benhamou et al. (2000) 

S. plymuthica Various pathogenic fungi Antibioisis, production of Kalbe et al. (1996) 
lytic enzymes, or growth 
promotion to plants 

S. plymuthica HRO-C48 Verticillium dahliae Wilt Chitinase production Kurze et al. (2001) 
Phytophthora cactorum Root rot Chitinase production Kurze et al. (2001) 

Streptomyces S. scabies Potato scab - Liu at al. (1995c) 
diastatochromo genes 
PosSSII 
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Table 2-1: (Continued) 

Biological control bacterium Pathogen Infection Mechanism References 

S. hygroscopicus Sclerotinia Dollar spot on the - Hodges et al. (1993) 
homoeocarpa phylloplane of Paa 

pratensis 
Bipolaris sorokiniana Leaf spot on the -

phylloplane of Paa 
pratensis 

S. lydicus WYEC108 Pythium ultimum Root and seed rot Antibiosis Yuan and Crowford (1995) 
Rhizoctonia solani Root and seed rot Antibiosis Yuan and Crowford (1995) 

S. scabies PonR S. scabies Potato scab antibiosis Neeno-Eckwall et al. (2001) 

Streptomyces sp. strain 93 Pythium sp. Damping-off - Jones and Samac (1996) 
Streptomyces sp. strain 385 Fusarium sp. Wilt - Singh et al. (1999) 
Streptomyces sp strain DSMZ P. ultimum Damping-off Antibiosis, siderophore Berg et al. (2001) 
12424 Rhizoctonia. solani Damping off production Berg et al. (2001) 

Streptomyces sp. Pratylenchus pe1~etrans Root lesion - Samac and Kinkel (2001) 

S. violascens Phytophthora Root rot Antibiosis Eltarabily et al. (1996) 
cinnamomi 

S. violaceusniger YCED-9 Fusarium sp. Wilt Antibiosis and hydrolytic Trejoestrada et al. (1998) 
Phytophthora spp. Root rot enzyme production 

S. violaceusniger GJO F. oxysporumf.sp. Wilt Antibiosis Getha and Vikineswary (2002) 
cubense 

S. viridodiastaticus S. minor Lettuce drop Antibiosis El-Tarabily et al. (2000) 
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Rhizobacteria facilitate direct effects by the fixation of nitrogen or the provision of 

plant growth promoting substances (Kapulnik, 1991; Wall, 2000). Alternatively, some 

strains of PGPR also have the capability to induce systemic resistance to the plant being 

colonized (Kloepper, 1993; Kloepper et al., 1999). In this mechanism, the PGPR 

stimulate the plant's defenses, which lead to a reduced level of disease due to attack by 

pathogens (Kloepper et al., 1996). 

In terms of growth promotion, the effectiveness of PGPR probably lies in their 

shortening the susceptible stage of colonized plants, for example by enhancing seedling 

germination rate, leading to a reduced period of susceptibility for pre-emergence 

damping-off (Kloepper et al., 1999). 

PGPR strains may benefit plants indirectly by attacking the plant pathogens, 

leading to the provision of protection to plants from these pathogens (Kloepper, 1991; 

Kloepper, 1996; Kloepper et al., 1999; and Wall, 2000). Many species of soil borne 

pathogens, such as Aphanomyces spp, Fusarium spp., Gaeumannomyces graminis, 

Phytophthora spp., Pythium spp., Sclerotium rolfsii, and Rhizactonia solani have been 

demonstrated to be controlled by specific strains of PGPR as reviewed by Weller (1988, 

Schippers (1988), and Kloepper (1991). The mechanisms of this control is discussed 

elsewhere. 

Bacillus subtilis strain A13 and related strains GB03 and GB07 isolated by 

Broadbent et al. (1971) were the first PGPR marketed in the USA under the trade names 

of Quantum®, Kodiak®, and Epic®, respectively. Strain GB03 was found to be effective in 

controlling cotton disease caused by Rhizoctonia spp. and Fusarium spp (Backman et al., 

1994). This strain was also found to induce growth promotion in cucumber (Koch et al., 

1998; Raupach and Kloepper, 1998). 

2.13 Fungi as biological control agents 

Many fungal species, particularly Trichoderma spp., have been known to control 

plant pathogens with various modes of action, such as parasitism, antibiosis, induced 

systemic resistance, or competition. Reported potential fungal antagonists of plant 

pathogens are shown in Table 2.2. 
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Table 2-2: Fungal biological control agents suggested as having potential for field application 

Biological control fungus Target pathogen Infection Mechanism Reference 

Ampelomyces quisqualis Oidium sp. Powdery mildew Parasitism Sztejnberg et al. (1989); Chet et al. 
Erysiphe sp. Powdery mildew Parasitism (1997); and 
Sphaerotheca sp. Powdery mildew Parasitism (http://www.nysaes.cornell.edu/ent/biol 
Podosphaera sp. Powdery mildew Parasitism ogical 
Leveillula sp. Powdery mildew Parasitism control/pathogens/ampelomyces.html) 

Coniothyrium minitans Botrytis sp. Parasitism Turner and tribe (1976) 

Pythiwn ultimum. Damping-off Parasitism Whipps, et al (1993) 

Sclerotinia minor Lettuce drop (root rot) Parasitism Turner and Tribe (1975); Whipps et al. 
(1993). 

S. sclerotiorum Wilt in sunflower or lettuce drop Parasitism Whipps (1991); Budge et al. (1995); 
(root rot) Mcquilken and Whipps (1995); 

Mclaren et al. (1996); Budge and 
Whipps (2000). 

Sclerotium cepivorum Onion white rot Parasitism McLean and Stewart (2000) 

C. minitans A69 S. minor and S. Root rot Parasitism Stewart (2003) 
sclerotiorum 

Corticium sp. Rhizoctonia solani Damping-off - Odvody et al. (1977); Lewis and 
Papavizas (1980) 

Epicoccum nigrum M onilinia laxa Twig blight Antibiosis Madrigal et al. (1994); Madrigal and 
Melgarejo (1995). 

Sclerotinia sclerotiorum White mold in bean Antibiosis Zhou et al. (1996) 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

E. purpurascens Botrytis cinerea Grey mold - Falconi and Mendgen (1994) 
M. fructigena Blossom blight - Falconi and Mendgen (1994) 
Penicillium expansum Powdery mildew - Falconi and Mendgen (1994) 
M. fructicola Blossom blight - Wittig et al. (1997) 
S. sclerotiorum White mold in bean - Huang et al. (2000) 

Fusarium graminearum S. sclerotiorum White mold in bean - Bolan and Inglis (1989) 

F. lateritium S. sclerotiorum Lettuce drop (root rot) - Sitepu and Wallace (1984) 

F. oxysporum F. oxysporum f.sp. lycopersici Wilt - Larkin and Fravel (1998) 
F. oxysporwn 101-2 F. oxysporum f.sp.batatas Wilt Induced systemic resistance Shimizu et al. (2000) 

F. pallidorosewn A range of weeds - Mycotoxin production Mabayad and Watson (2000) 

F. solani S. sclerotiorum Root rot in cauliflower - Gupta and Agarwala (1990) 

Gliocladium catenulatum S. sclerotiorum White rot, root rot Parasitism Huang (1978) 
Fusarium sp. Wilt Parasitism Huang (1978) 
Alternaria alternata Parasitism & antibiosis Turhan (1993) 

G. fimbriatum R. solani Damping-off Antibiosis (mycotoxin Weindling (1937, 1941) 
production) 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

G. roseum A. alternata - Parasitism & antibiosis Turban (1993) 
P. ultimum Damping-off Parasitism Steinmetz and Schonbeck (1994) 

Botrytis squamosa Leaf blight - James and Sutton (1996) 
Septoria tritici. Leaf blotch of wheat - Parello et al. (1997) 

G. virens Sclerotium rolfsii Damping-off, Root rot Parasitism Mukherjee et al. (1995); Harris and 
R. solani Dampip.g-off Parasitism Lumsden (1997) 

P. ultimum Damping-off Antibiosis Harris and Lumsden (1997) 

Paecilomyces lilacinus M eloido gyne javanica Root galling - Alraddad (1995); Frietas et al. 
Rhizoctonia sp. Stem rot - (1995); Siddiqui et al. (2000) 
Meloidogyne incognata Root-knot disease - Cartwright and Benson (1995) 

Mittal et al. (1995) 

P. lilacinus 251 Meloidogyne javanica Root galling (root-knot) - Holland et al. (1999) 

P. marquandii Meloidogyne hap/a Root galling - Chen et al. (2000) 

P. fumosoroseus Various species of insect, - - Vanninen and Hokkanen (1997) 
such as Argyresthia 
conjugella 

Penicillium citrinum S. minor Lettuce drop (root rot) - Akem and Melouk (1989) 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

P. frequentans Monilinia laxa Twig blight - De Cal and Sagasta (1990); Pascual 
et al. (2000) 

P. nigricans S. cepivorwn White rot in onion Parasitism Uthkede and Rahe (1980) 

Pythium carolinianwn Larvae of Culex - Parasitism Su et al. (2001) 
quinquefaciatus and Aedes 
albopictus 

P. nunnN3 Pythium ultimum Damping-off - Lifshitz (1984); Paulitz and Baker 
(1987) 

P. oligandrum P. ultimum Damping-off Parasitism Walther and Gindrat (1987); 
Abdelzaher et al. (1997); and, 
Holmes et al. (1998) 

Fusarium oxysporum f.sp. Crown and rot rot Induced systemic resistance Benhamou et al. (2001) 
radicislycopersici 

P. periplocwn B. cinerea Grey mold Parasitism Paul ( 1999)a 

P. radioswn B. cinerea Grey mold Parasitism Paul (1999)b 

Sporidesmium sclerotivorwn S. minor Lettuce drop (root rot) Parasitism Ayers and Adam (1979); Adam and 
Ayers (1981); and Mischke (1998). 

Botrytis sp. Grey mold Parasitism Mischke (1998) 
Monilinia sp. Twig blight Parasitism Mischke ( 1998) 
S. sclerotiorum Lettuce drop, white rot Parasitism del Rio (2001) 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

Talaromyces flavus Verticillium dahliae Wilt - Nagtzaam et al. (1998); Soesanto 
(2000) 

S. sclerotiorum Lettuce drop, white rot Parasitism Huang et al. (2000) 

Trichoderma hamatum Pythium spp. Damping-off Parasitism Harman et al. (1980) 
R. solani Damping off Parasitism Harman et al. (1980) 
P. ultimum Damping-off Parasitism Inglis and Kawchuk (2002) 

T. hamatum 382 Rhizoctonia sp. Damping-off Induced systemic resistance Nelson et al. (1983); Kwok et al. 
(1987); Han et al. (2000); Krause et 
al. (2001) 

T. hamatwn TMCS-3 S. sclerotiorum Lettuce drop, white rot Parasitism Gracia-Garza et al. (1997) 

T. harzianum S. rolfsii Damping-off, root rot Parasitism Wells et al. (1972); Mishra et al. 
(2000); and El-Katatny et al. (2000). 

Sclerotinia trifoliontm Parasitism Wells et al. (1972) 
B. cine re a Grey mold Parasitism Wells et al. (1972) 
S. sclerotiorum Lettuce drop, white rot Parasitism Dandurand et al. (2000) 
Fusarium oxysporum Damping-off - Mousseaux et al. (1998) 

T. harzianum TrH40 Botryodiplodia Stein end rot Antibiosis & parasitism Sivakumar et al. (2000) 
theobromae Anthracnose Antibiosis & parasitism 
Colletotrichum Brown spot Antibiosis & parasitism 
gloeosporoides 
Gliochepaloirichum 
microchlamidosporum 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

T. harzianum T39 Spane rotheca fusca Powdery mildew Induced systemic resistance Blad et al. (1998) 

B. cinerea Grey mold Induced systemic resistance Blad et al. (1998); Dik and Blad 
(1999); Diket al. (1999); Blad (2000) 

T koningii Protomycopsis phaseoli Leaf smut Parasitism Adejumo et al. (1999) 

S. rolfsii Damping-off, root rot Parasitism Tsahouridou and Thanassoulopoulo'> 
(2001) 

T. koningii T8 Pythium sp. Damping-off Parasitism Hadar et al. (1984) 

T. koningii SB Fusarium verticillioides Stalk necrosis Parasitism Danielson and Jensen (1999) 

T. koningii Tr5 S. cepivorum White rot Parasitism Metcalf and Wilson (2001) 

T. polysponun B. cine re a Grey mold Antibiosis Dennis and Webster (1977) 
G. graminis var. tritici Take-all Antibiosis Maas and Kotze (1987) 
P. cactorum Root rot Antibiosis Lederer et al. (1992) 

T pseudokoningii B. cinerea Grey mold, fmit rot AHtibiosis Dennis and Webster (1977); Tronsmo 
and Raa (1977); Tronsmo and Dennis 
(1977). 

Neovosia indica Kamal bunt of wheat Antibiosis Amer et al. (1998) 
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Table 2-2: (Continued) 

Biological control fungus Pathogen Infection Mechanism References 

T. viride Stereum purpureum Silver leaf disease - Dubos and Ricard (1974) 
Fusarium sp. Wilt - Locke et al. (1985) 
R. solani Damping-off, sheath blight Parasitism, antibiosis Locke et al. (1985); Krishnamurthy et al. 

(1999) 
S. rolfsii Damping-off-root rot -

Hoynes et al. (1999); Mathivanan et al. (2000) 
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2.14 Commercial biological control agents 

At present, at least 50 products of biological control agents (both fungal and 

bacterial) are commercially available (Fravel and Lazarovits, 2003)(Table 2.3) after more 

than six decades of intensive research in this field. Of these, less than a dozen are well 

known and applied in commercial nurseries (Nameth, 2002). 

Table 2-3: Commercially available bacterial and fungal biological control agents 

(Powell et al., 1990; Fravel et al., 1998; Nameth, 2002; Fravel and 

Lazarovits, 2003). 

Biological control Target disease/pathogens Product name 

organisms 

Ampelomyces quisqualis Powdery mildew caused by various AQ 10 

fungi 

Agrobacterium radiobacter Crown gall disease caused by A. Galltro 1-A, 

tumef aciens Norbac 84-C 

Bacillus subtilis GB03 Rhizoctonia solani, Pythium sp., and Companion and 

Fusarium sp. Kodiak® 

B. thuringiensis Various insect diseases Dipel, Gnatrol® 

Coniothyrium minitans Sclerotinia minor and S. sclerotiorum Contans WG, 
- KONI 

Candida oleophita Botrytis spp. and Penicillium spp. Aspire 

Cryptococcus albidus B. cinerea and P. expansum YieldPlus 

Gliocladium catenulatum Pythium sp., Rhizoctonia solani., Primas top 

Botrytis sp., and Diymella sp. 

Gliocladium viren strain Pythium sp. and Rhizoctonia sp. Soil Guard 

GL-21 

Peniophora (Phlebiopsis) Heterobasidium annosum PgSuspension, 

gig an tea Rot stop 

Pseudomonas fluorescens P. ultimum, Rhizoctonia solani Dagger G 

Pythium oligandrum P. ultimum Polygandron 

Streptomyces griseoviridis Fusarium sp., Alternaria sp., Mycostop 

strain K61 Phomopsis sp., Botrytis sp., Pythium 

sp., and Phytophthora sp. 
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Trichoderma harzianum Rhizoctonia solani, Pythium sp., PlantShield 

strain T-22 Fusarium sp., and Sclerotinia 

homeocarpa 

T. viride Fusarium sp., Pythium sp., Ecofit 

Rhizoctonia sp., Macrophomina 

phaseolina, and phytophthora sp. 

Mix of T. harzianum and T. Various infecting fungi Bionab-TWP 

polysporwn 

Mix of T. harzianum and T. Chondrosterum purpureum Trichodowels, 

viride Trichoject, 

Trichoseal 

Trichodenna sp. Chondrosterum purpureum BIBAB-T 

Among these, PlantShield that contains T. harzianum strain T-22 is the most 

commonly used in the greenhouse industries (Nameth, 2002), partly because of its wide 

range of disease control. 

2.15 The possible use of compost as a carrier or growth medium for 

biological control agents 

Compost is a humus-like substance produced from organic wastes by living 

organism (microorganisms or earthworms) in the process of decomposition. High 

temperature composting is the most common form utilized commercially (Hoitink et al., 

1996), but earthworm composting and mid-temperature static pile composting (Diaz et 

al., 1993) are also employed. Mature compost is rich in humic substances and microbial 

biomass (Chen and Inbar, 1993; Hoitink and Gardener, 2003). 

There have been some reports of possible use of compost as a carrier or growth 

medium for bacterial and fungal biological control agents (e.g. by Hoitink, 1990; 

Nakasaki et al., 1998; Ramona and Line, 2002). Advantages of compost as a carrier or 

growth medium are: 

• its low relative cost, (commercial synthetic media are considerably more expensive), 

• its natural antagonism to plant pathogens, particularly noted for compost extracts 

(compost teas), 
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• its provision of slow-release nutrients at rates better matching the requirements of 

plants than do inorganic fertilizers, and 

• its provision to the soil of improved water-holding capacity, improved porosity, 

improved tilth, and decreased evaporative water loss in the field. 

Suppression of plant pathogens by compost amendment has been reported by e.g. 

Cook and Baker (1983); Hoitink and Kuter (1986); Hoitink and Fahy (1986); Gorodecki 

and Radar (1990); Chung and Hoitink (1990); Radar and Gorodecki (1991); Hardy and 

Sivasithamparam (1991) Hoitink et al. (1993); Nakasaki et al. (1998); Ramona and Line 

(2002); and Hoitink and Gardener (2003). The mechanisms of compost suppression of 

plant pathogens have been reviewed by ~oitink et al. (1997) and include both biotic and 

abiotic factors. Microorganisms involved in suppressive activity include Bacillus spp., 

Pseudomonas spp., Flavobacterium spp. (Hoitink et al., 1991) or fungal antagonists, such 

as Gliocladium virens (Hoitink and Fahy, 1986) and Trichoderma spp. (Chung and 

Hoitink, 1990; Hoitink and Gardener, 2003). Biological control biota arise as 

serendipitous colonists during cool-down of maturing compost, and therefore the quality 

of suppressive effectiveness can be variable. 

Inoculation of specific antagonists into compost following peak heat has been 

slow to develop, and until recently largely unsuccessful (Hoitink, 1990). Although 

Hoitink (1990) patented a method of antagonist inoculation into matured bark composts, 

he admitted that the method cannot be applied as it stood, because 'the temperature and 

the degree of compost maturity may vary according to environmental factors, the raw 

material being composted, and the composting system used'. N akasaki et al. (1998) re­

vitalized this area of research with the demonstration of effective manipulation of grass­

clipping compost by the inoculation of a Bacillus subtilis strain at the outset of 

composting. The resultant spores were able to survive the hot stage to be present in high 

numbers in mature compost, the resultant mix being found to be consistently effective in 

the control of Rhizoctonia solani, the causative agent for the large patch in turf grass. 

2.16 Conclusions 

The potential for biological control of plant pathogens has received a major boost 

as a result of the imminent phasing out of methyl bromide, probably the most effective 
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broad-spectrum biocide. Specific problems needing attention in the area of biological 

control relate to the viability of biological control agents prior to application, the cost of 

biological formulations relative to chemical control and difficulties faced in the 

commercialization process. These difficulties have conspired in the past to limit the 

number of available biological control agents on the market. 
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Chapter 3 

Isolation, screening and identification of biological 

control agents inhibitory to plant pathogens 

3.1 Abstract 

Potential biological control agents were isolated from mature compost and from 

the rhizosphere of crop plants found at the University of Tasmania farm as well as from 

lettuce farms in Bali-Indonesia. Commercially available biological control agents plus a 

laboratory contaminant showing significant antagonism to a plant pathogen were also 

included in this study. Some 67 isolates of more than 100 cultures assessed showed 

antagonistic activity against one or more tested fungal pathogens (Sclerotinia minor, S. 

sclerotiorum, Fusarium spp., and Rhizactonia solani) in vitro. Most of these antagonist 

isolates were identified as Bacillus or Pseudomonas spp. In a non-replicated glasshouse 

screening trial, eight of these isolates (subsequently identified as Pseudomonas corrugata, 

Bacillus megaterium, B. polymyxa, B. mojavensis, B. pumilus, B. thuringiensis, 

Exiguobacterium acetylicum, and Lysobacter antibioticus) continued to show effective 

inhibition of Sclerotinia minor and S. sclerotiorum, resulting in their further study. 

3.2 Introduction 

The first stage in the development of biological control agents encompasses the 

isolation, screening and identification of agents antagonistic to plant pathogens. As 

previously noted (Chapter 2), biological control agents are abundant in the soil, 

particularly in the rhizosphere or rhizoplane of plant roots. Although only a small portion 

of microbiota present in the root region of plants and capable of inhibiting pathogens may 

be cultivable (Sorensen, 1997), this portion continues to provide a rich source of 

antagonists to plant pathogens (Weller, 1988). 

Biological control agents effective against root pathogens should ideally be 

isolated from the root or rhizosphere of the specific crop intended for protection since 

they are already closely associated with and well adapted to the prevailing environmental 

conditions (Weller, 1988; Cook, 1993; Larkin and Fravel, 1998). Several improved 
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screening methods to identify likely antagonist candidates have been reviewed in Chapter 

2. An important consideration in the selection of a screening method is that should be 

related as closely as possible to field conditions. In the present study, the isolates showing 

in vitro antagonism to selected plant pathogens were subsequently screened in a non­

replicated glasshouse pot trial prior to select the best-performing isolates. 

The primary objective of the present study was to isolate, screen, and identify 

potential bacterial antagonists to a range of fungal pathogens, including S. minor, S. 

sclerotiorum, Fusarium spp. and Rhizoctonia solani. 

3.3 Materials and Methods 

3.3.1 Sample collection and isolation of potential antagonists 

Samples of soil, or roots of lettuces, wheat, and barley were obtained from the 

University of Tasmania farm 30 km N01th of Hobart, or from other local market gardens. 

Isolations were also made from commercially available mature compost. 

Samples of soils, plant roots, or compost (5.0 g) were added to 100 mL of sterile 

saline (0.85% NaCl) in sterile plastic bags and stomached for 15 to 20 minutes. Serial 

dilutions (0.1 mL) were spread onto potato dextrose agar (PDA, Appendix IC) or 

trypticase soya agar (TSA, Appendix lB) and incubated at 25°C for 2-5 days. Colonies 

appearing on 10-4
_ 10-6 dilution plates were purified and sub-cultured on fresh TSA or 

PDA. For regular use, these isolates were stored on PDA or TSA at 4°C. For storage, 

some potential antagonists were cryo-preserved in the trypticase soya broth (TSB, 

Appendix lB minus agar) amended with glycerol (at 30% of the final concentration) at -

70°C. 

Additional cultures were isolated from lettuce farms in Bali, Indonesia, or 

obtained from the stock culture collection of the School of Agricultural Science, 

University of Tasmania. A fungal antagonist (Trichoderma sp., isolate Td22), known to be 

effective against sclerotia-forming fungal pathogens, was kindly provided by Dr. Dean A. 

Metcalf. 
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3.3.2 Fungal pathogens 

Fungal pathogens (Sclerotinia minor, S. sclerotiorum, Fusarium sp., and 

Rhizoctonia solani) were obtained from the stock culture collections of the School of 

Agricultural Science, University of Tasmania. For regular use, these pathogens were sub­

cultured on fresh PDA. For long-term storage, S. minor was grown in sterile moist millet 

seeds, S. sclerotiorum in sterile moist barley seeds, while R. solani and Fusarium sp were 

grown on PDA or in sterile distilled water. All cultures were stored at 4°C. 

3.3.3 In vitro dual culture assay for screening potential antagonists 

Isolates reported in Section 3.3.1 were spot inoculated in duplicate onto the 

periphery of PDA or TSA plates (corresponding to the medium on which they were 

isolated). Plugs (1 cm2
) of 48 hour old fungal pathogen on PDA were then placed in the 

center of the plates followed by incubation at 25°C for two to seven days, after which time 

the inhibition zones between antagonists and pathogens were measured from three 

different angles with averages recorded. Isolates producing inhibition zone were sub­

cultured on fresh PDA or TSA for further study. 

3.3.4 Pot trials for screening potential biological control agents 

Bacterial antagonists showing significant antagonistic activity against fungal 

pathogens in vitro (Section 3.3.3) were further screened against S. minor or S 

sclerotiorum in a non-replicated glasshouse trial with a view to selecting a limited number 

of potential antagonists for further study. For this trial, 48 hour-old bacterial antagonists 

were suspended in sterile 0.85% saline to give cell densities of -108 cell/mL (determined 

by OD readings at 540nm). Roots of two weeks old lettuce seedlings were washed and 

suspended in the antagonist suspensions for five minutes prior to planting the seedlings in 

15 cm diameter pots (four per pot) of steam-sterilized potting mix (Appendix lA). After 

acclimatization for one week the surface 20 mm of potting mix was inoculated with 

fungal pathogen (S. minor grown on millet seeds or S. sclerotiorum grown on barley 

seeds) at the rate of 2 g seeds/pot. Pots were maintained in the glasshouse for up to eight 

weeks until disease incidence could be assessed. Uninoculateq pots and pots inoculated 

with the pathogen served as controls. 
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3.3.5 Identification of bacterial biocontrol agent candidates 

Most bacterial antagonists reported in Section 3.3.1 were identified to genus level 

or higher on the basis of their morphological characteristic and other tests indicated in 

Bergey's Manual of Systematic Bacteriology (Krieg et al., 1984; Holt et al., 1994). Those 

showing particular potential as biological control agents were further characterised on the 

basis of 16S rDNA sequence analysis. 

3.3.5 .1 Identification of bacterial antagonists 

The following tests were performed to identify the antagonists to genus level using 

Bergey's Manual of Systematic Bacteriology (Holt et al., 1994). 

3.3.5.1.1 Gram stain and cellular morphology 

Gram staining was performed according to the method of Madigan et al. (1997), 

using 24-48 hour TSA cultures. The bacterial cells were fixed on a glass slide, stained 

with crystal violet solution for one minute, washed with water, and covered with Lugol's 

iodine solution for 30 seconds. Following this the cells were exposed to acetone-alcohol 

for several seconds, washed with water, and counterstained with safranin for one minute. 

The stained cells were washed with water, dried, and examined under oil immersion 

(xlOOO magnification). 

3.3.5.1.2 Spore stain 

Spore staining was undertaken using stationary-phase cultures of large rod shaped 

Gram-positive bacterial isolates only. A loopful of isolate was fixed smear on a slide, 

covered with a strip of filter paper and flooded with malachite green to avoid dryness over 

a boiling water bath for five minutes. The slide was then washed in a stream of gently 

running water, covered by 0.5% aqueous safranin for five minutes, washed again, and 

examined under oil immersion (xlOOO magnification). 

3.3.5.1.3 Motility 

A drop of 24 hour-old TSE culture was placed on a glass slide and covered with a 

cover -slip. Motility was examined using phase contrast microscopy (x 1000 

magnification). Bacteria were considered to be motile if one or more cells moved in a 

direction different from others. 
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3.3.5.1.4 Flagella stain 

The method of Heimbrook et al. (1989) was used. A loopful of motile bacteria (24 

hour old TSA) taken from the edge of a colony was suspended in drops of sterile saline 

solution on a glass slide, covered with a cover slip, and allowed to dry for -15 minutes. 

Several drops of flagella stain (Appendix lE) were then added through one edge of the 

cover slip and left for several minutes before examination under oil immersion (x 1000 

magnification). 

3.3.5.1.5 Oxidative/fermentative test 

A loopful of culture was stab-inoculated to the base of a tube containing Hugh and 

Liefson medium (Appendix lF) (Collins and Lyne, 1984) and incubated at 25°C for 24-48 

hours. Oxidative metabolism was indicated by either no acid being associated with 

growth, or acid production being restricted to the top third of tube, with a change of 

colour from green to yellow. Fermentative metabolism was indicated by the production of 

acid to the base of the tube. 

3.3.5.1.6 Oxidase test 

This test was performed on Gram-negative isolates only. A loopful of bacteria was 

smeared onto a piece of filter paper previously moistened with freshly prepared oxidase 

reagent (1 % aqueous NNN'N'-tetramethyl-p-phenylene diamine dihydrochloride). A 

positive test was indicated by the development of a purple color within 10-15 seconds as a 

result of oxidation of the oxidase reagent by cytochrome oxidase. 

3.3.5.1.7 Catalase test 

This test was for Gram-positive bacteria only. A loopful of 24 hour old culture 

was smeared onto a glass slide to which was added two drops of 3% H20 2. Bubbles of 

oxygen gas generated from the enzymatic degradation of H202 indicated a positive result. 

3.3.5.1.8 Casein hydrolysis 

Isolates were streak-inoculated onto skim milk agar overlaying TSA and incubated 

for 4-7 days at 25°C. A positive result was indicated by a clear zone around the growth 

(Sneath, 1986). 
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3.3.5.1.9 Starch hydrolysis 

Starch agar medium (Appendix lG) was streak-inoculated with loopfuls of the 

tested isolates, followed by incubation for 3-7 days at 25°C, after which plates were 

flooded with iodine. Hydrolysis of starch was indicated by a clear zone around the 

growth. 

3.3.5.1.10 Urease 

A loopful of culture was streaked onto urease agar (Appendix lH) and incubated 

at 25°C for 3-7 days. A colour change from colourless to pink indicated a positive result. 

3.3.5.1.11 Methyl red test 

A loopful of culture was inoculated into glucose-peptone broth and incubated at 

25°C for 24-48 hours. One or two drops of methyl red were then added to the culture. A 

positive result (produced by a pH of 4.2 or lower) was indicated by a red colour. 

3.3.5.1.12 Voges-Proskauer test 

A loopful of culture was inoculated into glucose-peptone broth and incubated at 

25°C for 24-48 hours. To the culture was added 1 ml of 40% KOH and a knife point of 

creatine. The mixture was shaken well and allowed to stand for 10 minutes. The formation 

of a pink to red colour indicated a positive result (the production of diacetyl from acetoin, 

indicative of the possession of the butylene glycol pathway) (Smibert and Krieg, 1981). 

3.3.5.1.13 Citrate utilization 

Koser's citrate broth (Appendix lU) was inoculated with a low cell-density of 

bacteria. A positive result was indicated by the development of turbidity following 

incubation at 25°C for 24-48 hours. 
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3.3.5.1.14 Indole formation 

Peptone water medium in 5-mL Bijoux bottles was inoculated with a loopful of 

culture and incubated for 24-48 hours at 25°C. A few drops of Kovac's reagent (5g of p­

dimethylaminobenzaldehyde in a mixture of 75 ml of amyl alcohol and 25 ml of 

concentrated sulphuric acid) were then added to the culture, which was briefly shaken and 

allowed to stand for 10 minutes. A positive result was indicated by the formation of a pink 

to red colour indicating the production of indole from tryptophan (Collins and Lyne, 

1984). 

3.3.5.1.15 UV fluorescence 

The test assisted the identification of Pseudomonas species. Isolates incubated for 

24-48 hours on Kings B medium were exposed to UV light. Pyocyanin production was 

indicated by a blue fluorescence; other fluorescent pigments were yellow. -

3.3.5.1.16 Levan production 

Plates of nutrient agar (Appendix 11) containing 4% sucrose were streak­

inoculated with the isolates and incubated at 25°C for 5-7 days. A positive result was 

indicated by colonies appearing highly mucoid and often dome-shaped. 

3.3.5.1.17 Gelatin hydrolysis 

The isolates were stab-inoculated into tubed nutrient gelatin medium (Appendix 

1 T), incubated for sev,en days, and examined daily. A positive result was indicated by 

liquefaction around the growth (Collins and Lyne, 1984). 

3.3.5.2 Molecular 16s rDNA sequencing for the identification of bacterial 

isolates 

Some potential bacterial antagonists were identified by sequencing components of 

their 16S rDNA and comparing these with counterparts in a clone library of known 

bacteria (http://www.ncbi.nlm.nih.gov). This method is described as follows: 

0 
"Ti 

r-
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3.3.5.2.1 DNA extraction 

Two loopfuls of cells of each isolate were suspended in 0.3 mL of saline-EDT A 

buffer (Appendix lJ) in 1.5 mL Eppendorf tubes, to which was added 30 µL 20% sodium 

dodecyl sulphate, followed by gentle mixing to lyse the cells. For Gram-positive bacteria, 

30 µL (lOmg/mL) lysozyme was also added and the mix incubated at 37°C for two hours. 

One volume of chloroform:isoamylalcohol (24: 1) was subsequently added to the lysate 

and thoroughly mixed to form a milky emulsion prior to centrifugation at 21,000 g for 

five minutes. The upper aqueous phase was removed and placed in a new 1.5 mL 

Eppendorf tube for further extraction. 

3.3.5.2.2 Prep-A-gene purification 

The aqueous extract described in Section 3.3.5.2.1 was combined with 1 mL of 

binding buffer (Appendix lK) plus 10 µL of binding matrix (Bio-Rad), and vortexed for a 

few seconds. After incubation at room temperature for 30 minutes, the extract was 

centrifuged at 21,000 g for one minute, the supernatant discarded, and 500 µL binding 

buffer added to re-suspend the pellet with vortexing. This suspension was subsequently 

re-centrifuged at 21,000 g for one minute and the supernatant discarded. 

The pellet was washed in 500 µL washing buffer (Appendix lL), centrifuged at 

21,000 g for one minute and the supernatant discarded. This was repeated twice. To re­

suspend and elute the DNA from the binding matrix, 50 µL of sterile 'milli Q' water was 

added and the mix incubated for 30 minutes at 30°C followed by centrifugation at 21,000 

g for three minutes. The supernatant (approximately 45 µL) was carefully removed and 

placed in a new 1.5 mL Eppendorf tube. This DNA sample was stored frozen at -20°C 

until use. 

3.3.5.2.3 Polymerase chain reaction using the HotStart Mastermix PCR 

kit, Qiagen 

The purified DNA (5 µL), PCR Mastermix (25 µL, Appendix lM), primer lOF 

(0.5 µL, Appendix lN), primer 1492R (0.5 µL, Appendix lN), and 'milli Q' water (19 

µL) were mixed in a PCR tube and placed in a thermocycler (PerkinElmer) equipped with 

the 'Hotstart' program. The program consisted of: an initial denaturation at 94°C for 15 

minutes; 30 cycles of denaturing at 94°C for one minute with annealing at 52°C for one 
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minute; extension at 72°C for 1.5 minutes; and final extension at 72°C for ten minutes. 

The success of the PCR reaction was checked by agarose electrophoresis at 80 V in a 1 % 

agarose gel containing lµg/mL ethidium bromide in TAE buffer (Appendix 10). Five µL 

of PCR product was mixed with 1 µL of loading dye (Appendix lP), and loaded into a 

well of agarose gel. Electrophoresis was undertaken for 30-45 minutes followed by 

visualization of bands under UV transillumination. Purification of the PCR product 

followed once bands of the correct size were visualized. 

3.3.5.2.4 Purification of PCR product 

The PCR product (Section 3.3.5.2.3) was added to 700 µL of prep-A-gene binding 

buffer plus 10 µL binding matrix followed by purification as described in Section 

3.3.5.2.2. 

3.3.5.2.5 Sequencing reactions 

An ABI Prism Big-Dye terminator cycle sequencing ready kit (Applied 

Biosystems) was used for the sequencing reaction. Purified PCR product (5 µL), primer 

lOF or 1492R (1 µL, Appendix lN), buffer (4 µL), milli Q water (6 µL), and reaction mix 

(4 µL) were mixed together in a 100 µL PCR tube, and placed in a thermocycler (DNA 

engine model PTC-200). The thermal cycling Big-Dye program (for 30 cycles) was 96°C 

for 20 seconds, 50°C for 20 seconds and 60°C for four minutes. 

3.3.5.2.6 Purification of sequencing reactions 

The product of the sequencing reaction was transferred to a 1.5 mL Eppendorf 

tube, to which was added 4 µL 3 M sodium acetate (pH 4.6) plus 60 µL of cold absolute 

ethanol and placed on ice for 15-20 minutes prior to centrifugation at 21,000 g for 30 

minutes. The supernatant was carefully removed with a pipette and the pellet was 

carefully washed by rinsing twice with 250 µL cold 70% ethanol (with centrifugation and 

decanting of the ethanol), followed by drying of the pellet in a vacuum centrifuge for ten 

minutes. The samples were analyzed by automated sequencing at the Molecular Biology 

Unit, School of Biomedical and Molecular Science, Griffith University, Queensland­

Australia. 
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3.4 Results 

3.4.1 In vitro screening of bacterial antagonists for inhibition of plant 

pathogens 

From a total of over 100 bacterial isolates tested, 67 were found to be antagonistic 

in vitro (on TSA or PDA) to one or more plant pathogens (S. minor, S. sclerotiorum, 

Fusarium sp, or R. solani). Table 3-1 shows the relative in-vitro inhibition of four 

pathogenic fungi by these isolates. 

Table 3-1: Relative inhibition of four fungal plant pathogens by bacterial antagonist 

isolates on TSA or PDA1
• 

Inhibition zone (mm diameter) after one week 

Isolate Alternative code/ incubation at 25°C 
S. minor S. sclerotiorum R. solani Fusarium sp 

no. growth medium 

1 C4 (TSA) 0.0±0.0 1.2 ± 0.2 ND ND 
2 C6 (TSA) 0.0±0.0 1.0 ±0.0 ND ND 
3 C7 (TSA) 1.0 ± 0.0 1.0 ±0.0 ND 0.0±0.0 
4 CS (TSA) 3.3 ± 0.4 3.5 ±0.2 0.0±0.0 0.0±0.0 
5 C9 (TSA) 3.3 ±0.2 1.0 ± 0.0 0.0±0.0 0.0±0.0 
6 UTl (PDA) 6.0±0.3 5.0 ± 0.4 3.5 ±0.2 3.7 ±0.2 
7 UT4 (TSA) 1.8 ± 0.2 2.7 ±0.2 0.0±0.0 0.0±0.0 
8 UTS (TSA) 0.0±0.0 1.2 ± 0.2 0.0±0.0 0.0±0.0 
9 RC ant. (TSA) 5.8 ±0.3 2.3 ±0.2 ND ND 

10 3A (TSA) 1.0 ± 0.0 3.2 ± 0.3 0.0 ±0.0 0.0±0.0 
11 SAJl(TSA) 2.2 ±0.2 4.3 ±0.2 0.0 ±0.0 0.0±0.0 
12 SAJ2 (TSA) 5.3 ± 0.4 3.0±0.3 0.0±0.0 0.0±0.0 
13 SAJ3 (TSA) 3.0 ±0.3 5.0 ±0.3 ND ND 
14 SAJS (TSA) 3.2±0.3 2.3 ±0.2 0.0 ±0.0 0.0±0.0 
15 SAJ6 (TSA/PDA) 9.7 ±0.7 4.2 ±0.3 ND 0.0±0.0 
16 SAJ9 (TSA) 2.0 ±0.0 4.0±0.0 0.0 ±0.0 0.0±0.0 
17 SAJlO (TSA) 0.0±0.0 2.7 ±0.5 0.0±0.0 0.0±0.0 
18 SAJll (TSA) 1.0 ±0.0 1.8 ± 0.2 0.0±0.0 0.0±0.0 
19 SAJ12 (TSA) 3.5 ± 0.4 1.7 ± .02 0.0±0.0 0.0±0.0 
20 SBJl (TSA) 0.0±0.0 1.8 ± 0.3 ND 0.0±0.0 
21 SBJ2 (TSA) 0.0±0.0 1.8 ± 0.3 0.0±0.0 0.0±0.0 
22 SBJ4 (TSA) 0.0 ±0.0 1.8 ± 0.2 0.0±0.0 0.0±0.0 
23 SBJS (TSA) 0.0 ±0.0 2.0±0.0 0.0±0.0 0.0±0.0 
24 SBJ7 (TSA) 6.2 ± 0.2 3.3 ±0.2 0.0±0.0 0.0±0.0 
25 RWl (TSA) 4.5 ±0.2 4.3 ±0.2 ND 0.0±0.0 
26 RW2 (TSA) 1.7±0.23 1.5±0.24 ND ND 
27 RW3 (TSA) 1.0 ± 0.0 5.5 ± 0.4 ND 0.0 ±0.0 

( 
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Table 3-1: (Continued) 

28 RW4 (TSA) 0.0 ±0.0 1.3 ± 0.2 ND 0.0±0.0 
29 RW6 (TSA) 0.0±0.0 1.0 ± 0.0 0.0±0.0 0.0±0.0 
30 RW7 (TSA) 1.0 ± 0.0 2.0±0.28 ND ND 
31 PA (PDA) 1.8 ± 0.2 5.0±0.3 ND ND 
32 TRAl (TSA) 0.0±0.0 2.2 ± 0.2 ND ND 
33 TRA2(TSA) 0.0±0.0 1.7 ± 0.2 ND ND 
34 TRA3 (TSA) 0.0±0.0 1.5 ± 0.2 ND ND 
35 TRA5 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
36 TRA7 (TSA) 0.0±0.0 2.0±0.0 ND ND 
37 TRA8 (TSA) 1.0 ± 0.0 2.7 ±0.2 ND ND 
38 TRA9 (TSA) 0.0±0.0 2.8 ±0.2 ND ND 
39 TRAlO (TSA) 0.0 ±0.0 1.8 ± 0.2 ND ND 
40 TRAll (TSA) 0.0 ±0.0 3.2±0.2 ND ND 
41 TRA12 (TSA) 0.0±0.0 2.3 ±0.2 ND ND 
42 TRA13 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
43 TRA14 (TSA) 0.0±0.0 3.2±0.2 ND ND 
44 SRAl (TSA) 0.0±0.0 1.8 ± 0.2 ND ND 
45 SRA2 (TSA) 0.0±0.0 1.8 ± 0.2 ND ND 
46 SRA3 (TSA) 0.0±0.0 2.2±0.2 ND ND 
47 SRA7 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
48 SRA9 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
49 SRAlO (TSA) 0.0±0.0 2.2±0.2 ND ND 
50 SRAll (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
51 SRA12 (TSA) 1.0 ± 0.0 2.0±0.3 ND ND 
52 SRA13 (TSA) 0.0±0.0 3.2 ± 0.2 ND ND 
53 SRA14 (TSA) 0.0±0.0 2.7 ±0.2 ND ND 
54 SRA15 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
55 SRA16 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
56 SRA17 (TSA) 0.0±0.0 1.0 ± 0.0 ND ND 
57 TSA (TSA) 0.0±0.0 2.3 ±0.2 ND ND 
58 Bali A (TSA) 0.0±0.0 3.6 ±0.2 ND ND 
59 Bali C (TSA) 2.0 ±0.3 1.0 ± 0.0 ND ND 
60 Bali E (TSA) 2.6±0.2 1.6 ± 0.6 ND ND 
61 Bali F (TSA) 2.0 ±0.4 ND ND ND 
62 Bali G (TSA) 5.6 ±0.2 6.6 ±0.2 ND ND 
63 Bali H (TSA) 1.0 ± 0.0 ND ND ND 
64 BaliJ (TSA) 2.6 ±0.2 4.6 ±0.6 ND ND 
65 BaliK (TSA) 2.0 ±0.3 0.0 ±0.0 ND ND 
66 BaliL (TSA) 1.0 ± 0.0 1.0 ± 0.0 ND ND 
67 Dipel (TSA) 1.0 ±0.0 2.0±0.0 ND ND ... 

Inh1b1tion zone was measured from the edge of bactenal colomes to the edge of the fungal pathogens. Each 
value is an average of duplicate plates, each measured from three different angles ± standard error. Some of 
these isolates are recorded elsewhere, hence the 'alternative code'. The medium used for the assay in 
brackets, column 2; PDA =Potato Dextrose Agar, TSA = Trypticase Soya Agar. 
ND = Not determined 
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As indicated in Table 3-1, the isolates varied both in the degree and in the host 

range of inhibition. Most isolates failed to inhibit R. solani or Fusarium sp. in this dual 

culture assay. In some cases, the fungi showed a colour change of the mycelial tips 

(becoming light brown instead of white around the zones of inhibition (Plate 3-lA and C). 

The most effective isolate (UTl) was the only one found to inhibit all four of the fungi 

tested. This isolate came from stored cultures of the School of Agricultural Science, 

University of Tasmania, being originally isolated from the root region of daisy plants 

(Olearia phlogopappa). 

Examples of in vitro antagonism by some of the bacterial antagonis~s and of a 

fungal biological control agent (Trichodenna sp. isolate Td22) against vaiious fungal 

pathogens are shown in Plate 3-1. 

A microscopic observation of the S. minor hyphal tips when challenged with P. 

corrugata on PDA medium is presented in Plate 3-2. Some hyphal tips of this pathogen 

appeared to become swollen when approaching the colony of P. corrugata (Plate 3-2B). 

In some cases, lysis of hyphal tips was also observed (Plate 3-2C). 

3.4.2 Screening of bacterial antagonists in a non-replicated glasshouse 

trial 

The effectiveness of some bacterial antagonists (selected from those listed in 

Table 3-1) in protecting lettuce seedlings/plants from attack by S. minor or S. 

sclerotiorum in a glasshouse trial is presented in Table 3-2 and 3-3, respectively. Under 

the conditions of the trial the pathogen (S. minor) aggressively attacked the lettuce 

seedlings, killing almost all within one week. Five of the antagonists (UTl = Bacillus 

polymyxa, SAJ6 = Pseudomonas corrugata, PA = B. mojavensis, Bali C = 
Exiguobac~erium acetylicum, and Bali G = Lysobacter antibioticus) provided protection 

of 25% to 50% relative to the control treatment for up to six days after S. minor 

inoculation (Table 3-2). 

The equivalent assay of potential antagonists against S. sclerotiorum is presented 

in Table 3-3. This pathogen was found to be less aggressive than S. minor, since disease 

symptoms were first observed two weeks after pathogen inoculation, instead of within 

days as indicated for S. minor. 
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Plate 3-1: Dual culture assays of some bacterial antagonists and of a fungal 

biological control agent (Td22) against fungal pathogens. A = Lysobacter 

antibioticus against S. sclerotiorum; B = Bacillus pumilus against S. minor; C 

= B. thuringiensis against S. sclerotiorum; D, E, F = B. polymyxa against 

Fusarium sp., R. solani, and S. minor, respectively; G = Pseudomonas 

corrugata against S. minor; H = normal growth of S. minor; and I = Td22 

(bottom plug) overgrowing S. minor (upper plug) on pectin agar. 

Arrowheads in (A) and (C) show colour changes on the mycelial tips of the 

fungal pathogens, which appear to indicate growth abnormalities. 
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Plate 3-2: Microscopic observations of the S. minor hyphal tips in proximity to a 

colony of P. corrugata on potato dextrose agar. Normal growth of S. minor 

hyphae (A); A swollen hyphal tip of S. minor (arrowhead B) in close 

proximity to the zone of inhibition surrounding the colony of P. corrugata; 

In some cases lysed hyphal tips were also observed in this in vitro interaction 

(arrowhead C). 

Table 3-2: Pot trial of to assess the effectiveness of some bacterial antagonists to 

protect lettuce seedlings from attack by S. minor1 

Percentage of healthy plants (%) 
Treatments Davs after pathogen inoculation 

4 5 6 
C7 25 0 0 

C8 50 0 0 

C9 75 25 0 

UT! 75 25 25 

UT4 25 25 0 

RC antagonist 50 0 0 

3A 50 0 0 

SAJl 50 0 0 

SAJ2 25 0 0 

SAJ3 50 0 0 

SAJ5 50 0 0 

SAJ6 100 75 50 

SAJ9 0 0 0 

SBJ7 50 25 0 

RWl 50 25 0 

PA 75 50 25 

Bali C 25 25 25 

Bali E 25 0 0 

Bali G 50 50 25 
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Bali J 0 0 0 

Dipel 25 25 0 

AOBl* 0 0 0 

AOBO~•· 100 100 100 

I. Four seedlings per pot were planted. 
*Pots inoculated with S. minor only (control treatment) 
**Nil control (neither pathogen nor antagonist was inoculated) 

Table 3-3: Pot trial to assess the effectiveness of some bacterial antagonists in 

protecting lettuce seedlings from attack by S. sclerotiorum1 

Percenta2e of healthv plants(%) 
Treatments Weeks after nathogen inoculation 

2 4 
C7 100 50 

C8 75 50 

C9 100 25 

UTl 75 25 

UT4 100 0 

UT5 50 25 

RC antagonist 100 75 

3A 50 50 

SAJl 50 25 

SAJ2 75 50 

SAJ3 50 0 

SAJ5 75 50 

SAJ6 75 50 

SBJl 75 50 

SBJ2 100 100 

SBJ4 100 50 

SBJ5 100 75 

SBJ7 75 50 

RWl 50 25 

RW3 50 50 

RW4 75 25 

RW6 75 50 

PA 100 50 

Bali A 50 0 

Bali C 75 25 

Bali E 50 25 

Bali G 100 50 

BahJ 50 25 

BaliL 25 0 

Dipel 100 50 

AOBl"' 25 0 

AOBO"" 100 100 

1Four seedlings were planted per pot. 
*Pots inoculated with S. sclerotiorum only (control treatment) 

**Nil control (neither pathogen nor antagonist was inoculated) 
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The five antagonists previously noted to be effective against S. minor (UTl = Bacillus 

polymyxa, SAJ6 = Pseudomonas corrugata, PA = B. mojavensis; Bali C = 

Exiguobacterium acetylicum, and Bali G = Lysobacter antibioticus) also protected 

between 25% and 50% of the lettuce seedlings/plants from S. sclerotiorum attack over 

eight weeks relative to the control treatment (AOB 1) (Table 3-3). These and other 

antagonists showing some degree of efficacy against S. sclerotiorum (RC antagonist = B. 

pumilus; SBJ4 = B. megaterium and the commercial strain Dipel =B. thuringiensis) were 

selected for further studies. 

3.4.3 Identification of the isolated bacterial antagonists 

Some 54 of the 67 bacterial isolates that showed antagonistic activities in vitro 

against one or more fungal pathogens (Table 3-1) were identified at to genus level or 

higher. The results are presented in Table 3-4 (a-c). 

A large portion of the bacterial antagonists was identified as either Bacillus or 

Pseudomonas spp. (Table 3-4), less frequently isolated cultures were identified as 

Acinetobacter, Flavobacterium, Moraxella, Alcaligenes, Chromobacterium, Erwinia, 

Brevibacterium or Proteus species. 

Small sub-unit ribosomal gene (16S rDNA) sequence analysis allowed a more 

definitive identification of some major antagonists (SAJ6, PA, RC antagonist, Bali C, Bali 

G, Bali J, SBJ4 and the bacterium representing the commercial product Dipel), following 

comparison with sequences held at the Gen-Bank Nucleotide Database Library using 

GAPPED BLAST on-line searches (http://www.ncbi.nml.nih.gov/blast/blast.cgi) 

(Altschul et al., 1997). Based on the results of 16S rDNA sequencing, these antagonists 

were most closely related to Pseudomonas corrugata (SAJ6), Bacillus mojavensis (PA), 

B. pumilus (RC antagonist), Lysobacter antibioticus (Bali G), Chryseobacteriwn 

indologenes (Bali J), B. thuringiensis (Dipel), and B. megaterium (SBJ4). The 

phylogenetic tree presented in Figure 3-1 shows the degree of relatedness of the 

antagonists with their corresponding type species. 
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Table 3-4a: Preliminary identification of Gram-negative bacterial antagonists. 

Code Gram O/F Motility Flagella Oxidase UV Starch Levan Gelatine Pigment Preliminary 

reaction position fluorescence hydrolysis production hydrolysis identification 

CS - 0 + polar + - + - - - Pseudomonas sp. 

UT4 - 0 + polar + - + - - - Pseudomonas sp. 

SAJl - 0 + polar + - + - + - Pseudomonas sp. 

SAJ2 - 0 + polar + - - + - - Pseudomonas sp. 

SAJ6 - 0 + polar + - - + + - Pseudomonas sp. 

SAJlO - 0 + polar + + - + + - P. fluorescens 

SAJll - 0 + polar + - + - - - Pseudomonas sp. 

RWl - 0 + polar - - -. + - - Pseudomonas sp. 

RW3 - 0 + polar + + - + + - P. fluorescens 

SRA3 - 0 + polar + - - + + - Pseudomonas sp. 

SRA9 - 0 + polar + + - + - - P. fluorescens 

SRAll - 0 + polar + - - + + - Pseudomonas sp. 

SRA14 - 0 + polar + + - - - - P. fluorescens 

SRA17 - 0 + polar + - + + + - Pseudomonas sp. 

SRA19 - 0 + polar + - + - - - Pseudomonas sp. 

SRA20 - 0 + polar + - - - - - Pseudomonas sp. 

SRA27 - 0 + polar - - + + - - Pseudomonas sp. 
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Table 3-4a: (Continued) 

Code Gram O/F Motility Flagella Oxidase UV Starch Levan Gelatine Pigment Preliminary 

reaction Position fluorescence hydrolysis production hydrolysis Identification 

SRA28 - 0 + polar + - - + + - Pseudomonas sp. 

TRA13 - 0 + polar + - + - + - Pseudomonas sp. 

TRA15 - 0 + polar - - + + + - Pseudom01zas sp. 

Bali A - 0 + polar + - + - - - Pseudomonas sp. 

BaliL - 0 + polar + + - - + - P. fluorescens 

UT5 - 0 - ND - ND - ND - - Acinetobacter 

SAJ9 - 0 - ND - ND - ND - - Acinetobacter 

SBJ7 - 0 - ND - ND - ND + - Acinetobacter 

SRA9 - 0 - ND - ND - ND - - Acinetobacter 

TRA15 - 0 - ND - ND - ND - creamy Acinetobacter 

SAJ3 - 0 - ND + ND ND ND - - Moraxella 

SBJl - 0 - ND + ND ND ND - - Moraxella 

RW4 - 0 - ND + ND ND ND - - Moraxella 

SRAl - 0 - ND + ND ND ND - - Moraxella 

TRA9 - 0 - ND + ND ND ND - - Moraxella 

SAJ12 - 0 - ND + ND - ND + yellow Flavobacterium 

SRA2 - 0 - ND + ND - ND + yellow Flavobacterium 
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Table 3-4a: (Continued) 

Code Gram 01 Motility Flagella Oxidase UV Starch Levan Gelatine . Pigment Preliminary 

reaction F Position fluorescence hydrolisis production hydrolysis Identification 

TRAll - 0 - ND - ND - ND + yellow Flavobacterium 

Bali J - 0 - ND - ND - ND + Light yellow Flavobacterium 

SAIS - F - ND + ND ND ND ND Blue/violet Chromobacterium 

SRA18 - 0 + peritrichous + ND ND ND ND Alkalige11es 
) 

TRA15 - 0 + peritrichous + ND ND ND ND Alcaligenes 

Table 3-4b: Preliminary identification of Gram-positive bacterial antagonists. 

Code Gram O/F Motility Flagella Catalase Pigment Spore Starch Urease Casein Colony Preliminary 

reaction position hydrolisis hydrolisis Identification . 

Cl + 0 + ND + - + ND ND ND dry Bacillus sp. 

C4 + 0 - ND + - + + ND ND dry Bacillus sp. 

C7 + F - ND + - + ND ND ND Bacillus sp. 

UTl + F + ND + - + + - + Bacillus sp. 

3A + F + polar + - + + - + dry Bacillus sp. 

RC antagonist + F + ND + - + - - + Bacillus sp. 

SAJ3 + 0 - ND + - + - + + Bacillus sp. 
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Table 3-4b: (Continued) 

Code Gram O/F Motility Flagella Catalase Pigment Spore Starch Urease 

reaction position hydrolysis 

SBJ4 + 0 - ND + ND + + + 

PA + 0 ND ND + - + - + 

SRA 11 + 0 + ND + - + - + 

Bali C + F + peritrichous + Yellow - + -

BaliE + F - ND + - ND ND ND 

Dipel + F - ND + - + + + 

Table 3-4c: Preliminary identification of antagonists from family Enterobacteriaceae 

Code Gram O/F Motility Flagella position Oxidase Indol Methyl red Voges-

reaction Proskauer 

C9 - F + ND - -
SBJ2 - F + peritrichous - -

Note: 
ND: not determined 
Cl, C4, C7, C8, C9: Antagonists isolated from commercially available mature compost. 
Dipel: A commercially available biological control agent. 

+ 

-

SAJ and SBJ: Antagonists isolated from (pyrethrum plant) rhizospere soils from the University of Tasmania farm. 
RW: Antagonists isolated from roots of wheat 
SRA and TRA: Antagonists isolated from root of lettuce plants resistance to streptomycin or tetracycline, respectively. 
Bali: Antagonists isolated from lettuce roots taken from market garden farms in Bali, Indonesia 
PA, 3A: Antagonists isolated from laboratory contaminants. 

-
-

61 

Casein Colony Preliminary 

hydrolisis Identification 

+ Bacillus sp. 

+ Bacillus sp. 

- Bacillus sp. 

.,... Brevibacterium 

ND ND Bacillus sp. 

+ dry Bacillus sp. 

Citrate Preliminary 

Identification 

- Proteus? 

+ Elwinia 

RC antagonist, UTl and UT5 Isolates obtained from stock culture collection of the school of Agricultural Science, University of Tasmania 
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Figure 3-1: The phylogenetic relatedness of selected antagonists with their 

corresponding type species based on 16S rDNA sequence similarity. 

The bar below indicates 0.1 % rDNA/rDNA difference in relatedness. 
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3.5 Discussion 

Bacterial antagonists to Sclerotinia minor or S. sclerotiorum were found 

abundantly in soils, particularly in the root rhizosphere. In this zone they are known to 

play a significant mutualistic role with their plant hosts (Weller, 1988). It has been 

claimed that only a few of the biological control agents that exist in the soil are culturable 

(Sorensen, 1997), however as this study shows, there still remain an abundance of 

biotypes that are culturable using conventional methodology. Soil, particularly from the 

root rhizosphere has traditionally been the preferred source of antagonists to plant 

pathogens, because it is in this habitat that they are competitive and where their continued 

antimicrobial activity is desired. As indicated in the present study, most of the antagonists 

(Table 3-1) isolated from compost and plant roots (non-rhizosphere isolates) showed no 

disease control in the glasshouse screening trial. Surprisingly however, one antagonist 

(PA, Table 3-1) isolated as a laboratory agar-plate contaminant, performed well in this 

glasshouse trial (Table 3-3), although it failed to produce consistent results in further 

studies. 

The use of dual culture (pathogen plus potential antagonist) assay for the initial 

recognition of candidate antagonists proved to be rapid and simple allowing a broad 

screening of potential biological control agents. Growth abnormalities of the S. minor 

pathogen in the presence of some antagonists in-vitro, such as colour change of hyphal 

tips, swollen hyphal tips or lysed hyphal tips, as indicated in Plates 3-1 and 3-2, have been 

reported previously. For example, Backhouse and Stewart (1989) observed swollen 

mitochondria, rupture of hyphal walls, and leakage of cytoplasm, leading to the death of 

S. sclerotiorum following its dual culture with B. subtilis. Oedjijono (1992, 1993) also 

reported a colour change of the hyphal tips of some pathogenic fungi in the vicinity of 

antagonists on various synthetic media. 

In the present study, some mycelial plugs of the pathogens taken from the edge of 

the inhibition zone were unable to recover following sub-culture onto fresh PDA (data not 

shown), demonstrating that the active compounds released by some antagonists could be 

lethal rather than simply fungistatic. Inhibition of the fungal pathogen in vitro was in 

most cases attributed to antibiosis rather than ferric siderophore activity. Antibiosis is 

widely reported to be the dominant mechanism by which antagonists control pathogens 

(Baker and Cook, 1974), with the in-vitro zone of inhibition varying according to the 

medium used for cultivation of the pathogen/antagonist (Broadbent et al., 1971; Renwick 
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et al., 1991; Hebbar et al., 1992), and not necessarily related to the size of the bacterial 

colony produced (Hebar et al., 1992). 

The correlation between the in-vitro dual culture assay and the glasshouse pot trial 

was weak, as has been noted previously by Fravel (1988). Most of the bacterial 

antagonistsof plant pathogens listed in Table 3-1 failed to control the same pathogen in a 

glasshouse trial (Table 3-2 and 3-3), with only eight isolates being found to warrant 

further study. Identification of these isolates showed that most could be assigned to 

genera or species previously described as having biological control potential (Weller, 

1988), although reports on the use of L. antibioticus as a biological control agent are 

sparse (e.g. by Hashizume et al., 2001). 

Possible reasons for the poor correlation between in-vitro assay and glasshouse 

trials were outlined by Baker and Cook (1974) as follows (with minor updating): 

1. Compounds of the synthetic medium used in the dual culture assay may induce some 

tested antagonists to ·produce substances inhibitory to plant pathogens. These 

compounds however are not produced in the soil; therefore, the biological control only 

occurs on agar medium but not in the soil. 

2. The medium used in the in vitro assay is more suitable for the antagonists than the 

pathogens, which leads to an aggressive growth of the antagonists toward the 

pathogens. 

3. In the dual culture assay, only two microorganisms are pitted against each other 

without challenge (particularly to the antagonist) by a diverse soil population. Apart 

from direct competition between the antagonist and the indigenous microbiota, the 

latter may parasitise or otherwise inhibit introduced antagonists, or counteract their 

effect on the pathogens. It is this competition that has lead to the failure of most of the 

prospective antagonists to perform disease control in subsequent trials. 

4. The environmental conditions of the agar used in the in vitro assay, such as 

temperature, pH, water potential, and nutrient are often adjusted to favor and optimize 

the growth of the antagonist and do not represent the conditions in the soil. 

5. In the dual culture assay, there is a tendency to isolate only bacterial antagonists that 

control the pathogens through antibiosis or siderophore activity, because other 

mechanisms of disease control, such as parasitism or hyperparasitism are generally 

rare on agar. This tends to give ' ... a distorted emphasis of the importance of this type 

of antagonism in soil' (Baker and Cook, 1974). 
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Added to the above factors, in-vitro screening of antagonists will fail to detect potential 

biological control organisms that actively produce inhibitory compounds only in the soil 

but not in the presence of fungal pathogens on agar. 

In this investigation more than 100 isolates were screened for antagonism to S. 

minor and S. sclerotiorum, using the dual culture assay, with eight of them showing a 

significant level of control of plant pathogens in pot trials. None has yet been assessed in 

the field. While dual culture assay appears to be appropriate for screening purposes, 

weaknesses have been reviewed e.g. by Balcer and Cook (1974) and Weller (1988). As 

Balcer and Cook (1974) noted, the chance of obtaining effective biological control agents 

is increased in propo1tion to the number of candidate organisms screened. In this regard it 

is interesting to note that of 3500 isolates isolated by Broadbent et al. (1971), 40% were 

effective in inhibiting one or more fungal pathogens in vitro, with one in ten of these 

(l.6% of the total isolates) being effective in field application. Similarly, Hebbar et al. 

(1992) needed to screen up to 500 isolates in order to obtain nine potential biological 

control agents inhibitory to Fusarium in maize. To isolate less than 100 antagonists 

inhibitory to the causative agents of talce-all disease and other plant pathogens, Campbell 

et al. (1986) and Renwick et al. (1991) screened about 2000 primary isolates, although 

Foldes et al. (2000) successfully isolated one potential antagonist to Botrytis allii and B. 

cinerea from only 25 isolates, although this antagonist was not field tested. The use of a 

non-replicated glasshouse trial to further screen and limit the number of the potential 

antagonists obtained from dual culture assays was found to be useful, although in 

retrospect a degree of replication would have helped to delineate those antagonists worthy 

of further study. 

The genera Bacillus and Pseudomonas which were most commonly represented 

among the antagonist isolates (Table 3-4) are known to be common in the soil/root 

rhizosphere habitat and are easy to isolate due to their simple growth requirements (Krieg 

and Holt, 1984; Mishagi, 1990). In addition to Bacillus and Pseudomonas, bacterial 

antagonists belonging to Flavobacterium, Moraxella, Chromobacterium, Acinetobacter, 

Alcaligenes, Erwinia, and Proteus were also identified in the present study. None was 

field-tested. 

The use of PCR methodology to examine several isolates provided a definitive 

phylogenetic placement, considerably more accurate than was possible using conventional 

methods outlined in Bergey's Manual of Systematic Bacteriology. Some bacterial 
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antagonists (Bacillus thuringiensis, B. pumilus, B. mojavensis, B. megaterium, and 

Pseudomonas corrugata) identified using the PCR method are seen to belong to the same 

species as some biological control agents frequently reported in the literature (e.g. by 

Khayami-Horani and Ateyyat, 2002; Yan et al., 2002; Bacon and Hinton, 2002; Jock et 

al., 2002; and Pandey et al, 2001, respectively), while others (Lysobacter antibioticus, 

Exiguobacterium acetylicum, and Chryseobacterium indologenes) have rarely or have 

never been reported as biological control agents. 

3.6 Conclusions 

Bacterial antagonists of Sclerotinia minor, S. sclerotiorum, Rhizactonia solani, 

and Fusarium spp. were isolated from a range of sources, viz. soil, (including that from 

the root-zone of lettuces, barley, and wheat) mature compost, or as laboratory 

contaminants. A small portion (8 out of 67) of the antagonists isolated from the dual 

culture assays showed significant disease control in a non-replicated glasshouse trial, 

indicating dual culture assay to be a useful tool for the primary selection of potential 

antagonists. The antagonists obtained by dual culture were screened further in a pot trial 

using S. minor and S. sclerotiorum as pathogens and lettuce as indicator host, leading to 

the detection of three strains wan·anting further field investigation. The application of 16S 

rDNA sequencing to the identification of some of the antagonists showed some (Bacillus 

thuringiensis, B. megaterium, B. pumilus, B. mojavensis, and Pseudomonas corrugata) to 

be related to known and frequently reported biological control agents, while others 

(Lysobacter antibioticus, Exiguobacterium acetylicum, and Chryseobacterium 

indologenes) have been rarely or never reported as biological control agents. 
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Chapter 4 

In vitro study of the optimum growth conditions for 

potential fungal and bacterial antagonists of plant 

pathogens 

4.1 Abstract 

The objective of this study was to investigate the optimum growth conditions of 

antagonists (Trichoderma sp. isolate Td22 and seven bacterial isolates) of fungal 

pathogens at differing initial pH of growth media and differing incubation temperatures 

prior to their cultivation in low-cost materials, such as wood fibre waste (WFW) or fish 

waste compost as reported in further studies. It was found that Td22 grew well in the pH 

range of 4.0 to 7.0 with an optimum between pH 5.0 and 6.0. The optimal temperature 

was 25°C, no growth was observed at 37°C or higher. This fungus was shown to utilize 

cellulose in the form of carboxy methyl cellulose raising the possibility ~or its cultivation 

in waste cellulosic-based materials, such as WFW. Most of the tested bacterial antagonists 

grew optimally between 25°C and 30°C at an initial pH of 7 .0 or 8.5, and demonstrated no 

celluloytic activity. 

4.2 Introduction 

Various environmental factors, such as temperature, pH, water activity, nutrient 

availability, C02, light or a combination of these factors may have a significant effect on 

the growth response of microorganisms (Hurlbert, 1999). The purpose of this study was to 

investigate the pH and temperature optima of Trichoderma sp. (isolate Td22) and several 

potential bacterial antagonists to plant pathogenic fungi as reported in the previous study, 

prior to their further investigation. The cellulolytic activity of Td22 and its growth 

response on pectin agar amended with antibiotics were assessed with a view to 

formulating a semi-selective medium for this fungus. 
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4.3 Materials and methods 

4.3.1 Antagonists 

Seven isolates of bacterial antagonists (Bacillus megaterium, B. polymyxa, B. 

thuringiensis, B. mojavensis, B. pumilus, Pseudomonas corrugata, and Lysobacter 

antibioticus) isolated in this investigation, and a fungal antagonist (Td22) obtained from 

Dr. Dean Metcalf, were the subject of this study. 

4.3.2 The effect of pH on the antagonist's growth 

The effect of pH on the growth of the fungal (Td22) and bacterial antagonists was 

studied on pectin agar medium (Appendix lD) and in half strength nutrient broth 

(Appendix lQ), respectively. The pH of these media was adjusted to pH 4.0, 5.0, 6.0, and 

7.0 pH units for the fungus and to pH 5.5, 7.0, and 8.5 for the bacteria by addition of 

hydrochloric acid (HCl) or sodium hydroxide (NaOH) (Metcalf, 1997). Prior to 

sterilization at 121°C for 15 minutes, 50 mL of half strength nutrient broth was dispensed 

into 125 mL side-armed flasks. The half strength nutrient broth was used because it gave 

the lowest optical density (OD) reading at 520nm, while still being sufficient for the rapid 

growth of the bacteria under study. 

In the study of fungal growth response, one cube (5 x 5 mm) of a 3-day-old Td22 

culture on pectin agar was placed in the centre of the same medium (with five replicates) 

but at varying pH values. The radial growth of mycelia was determined after incubation at 

25°C for 48 hours. 

For the bacterial antagonists, the sterile pectin medium (with four replicates) was 

inoculated with 100 µL of 24 hour-old bacterial cultures grown in the same medium (but 

full strength). The growth of the cultures at 25°C was followed over a 30 hours period by 

measuring optical density at 520nm (Spectronic 20) at time intervals. The doubling times 

and the specific growth rates of bacterial antagonists were estimated from the exponential 

growth rates (Appendix 2). 
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4.3.3 The effect of temperature on the antagonist's growth 

The same media, procedure of inoculation, and measurements as indicated in 

Section 4.3 .2 were applied. Fungal cultures were incubated at 20°C, 25°C, 37°C, and 40°C 

for 48 hours, ~ith daily data collection, while the growth of the bacterial antagonists was 

studied at 25°C, 30°C, and 35°C. 

4.3.4 Assay for the ability of Td22 to utilize carboxy methyl cellulose 

(CMC) at various pH values. 

The assay for the ability of mycelial plugs of Td22 (from pectin agar) to degrade 

carboxy methyl cellulose (CMC) was conducted at 25°C in 0.1 M citrate-phosphate buffer 

(Cruickshank et al., 1975) adjusted to pH 3.0, 4.5, 5.5, and 7.8 (four replicates of each) 

using a Wells-Brookfield microviscometer, model LVT. The initial CMC concentration 

was adjusted to give a relative viscosity reading of approximately 65 from the 

micro viscometer. Loss of viscosity of the CMC was measured at 10 minutes intervals. 

4.3.5 Assay for resistance of Td22 to antibiotics 

Assay of resistance to streptomycin or tetracycline at concentrations of 100 µg/mL 

was conducted on pectin agar (pH 5.0) as described in Section 4.3.2. Inoculated medium 

(four replicates) was incubated at 25°C for up to 72 hours with radial growth 

measurements recorded daily. 

4.3.6 Statistical analysis 

Analysis of variance (ANOV A) of data obtained from this study was carried out 

using Minitab software for Windows. The significance of differences between means was 

further tested using the least significant different (LSD) test at a p of <0.05 following 

ANOVA. 
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4.4 Results 

4.4.1 The effect of pH on the growth of antagonists 

The growth response of Td22 measured as radial growth on pectin agar at various 

pH values is presented in Figure 4-1. 
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Figure 4-1: Relative radial growth of Td22 mycelia on pectin agar at pH 4.0, 5.0, 6.0, 

and 7.0 measured after 24 hours (light bars) and 48 hours (dark bars) 

incubation. Each bar with standard error is an average obtained from five 

replicate plates with three measurements on each plate. Bars with the same 

letter are not significant statistically at p<0.05. 

The fungus grew well at all pH values, with optimal growth appearing to be in the 

range of pH 5.0 and 6.0. Radial growth at these initial pH values after 24 hours was not 

statistically significant (p>0.05) but growth on these plates was significantly different to 

that at initial pH values of 4.0 or 7 .0. 

The doubling times and the specific growth rates of the seven bacterial antagonists 

as a response to growth media set at different pH values are presented in Figure 4-2. 
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Figure 4-2: The relative doubling time (A) and specific growth rate (B) of the 

bacterial antagonists grown in a half strength nutrient broth with varying 

initial pH values. Each bar with standard error is an average of 4 

replicate assays. Bars with the same letter(s) are not significant at p<0.05 

according to the lsd test, following ANOV A. 
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The doubling time of these antagonists at pH 7.0, as measured within their exponential 

phases (after - 8-16 hours incubation), ranged from 0.54 hours to 1.63 hours (Figure 4-2). 

After 30 hours incubation, antagonists grown in either acid or alkaline media had changed 

the pH of their growth medium to approximately neutral . From the Figures it is apparent 

that three isolates have an optimal pH in the vicinity of 7.0 (B. thuringiensis, B. 

mojaviensis and L. antibioticus), two isolates indicated an optimal between pH 7 .0 and 8.5 

(B. megaterium and B. pumilus), P. corrugata showed a preference for pH 8.5, and B. 

polymyxa gave indeterminate results because of a failure to grow at pH 7.0. 

4.4.2 Effect of temperature on the growth of antagonists 

The relative radial growth of Td22 at four different temperatures after 24h and 48h 

incubation is shown in Figure 4-3. The most favorable temperature for this fungus was 

25°C, this being significantly (p<0.05) better than 20°C. No growth response was 

observed at 37°C or above. 
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Figure 4-3: The relative radial growth of Td22 mycelia incubated at four different 

temperatures measured after 24h (light bars) and 48h (dark bars) 

incubation. Each bar (± standard error) represents a mean derived from 

five replicate plates, with three measurements of radial growth on each 

plate. Bars with the same letter are not significant statistically at p<0.05. 
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An incubation temperature of 25°C and medium pH between 5.0 and 6.0 was 

found to be most suitable for the cultivation of Td22 , these conditions being significantly 

better (p<0.05) than other combinations tested (Figure 4-4). 
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Figure 4-4: The relative radial growth of Td22 in a combined treatment of pH and 

temperature, following 24h (light bars) and 48h (dark bars) incubation. 

Each bar (± standard error) is an average of five plates with three 

measurements of radial growth /plate. Bars with the same letter(s) are not 

significant statistically at p level <0.05. 

The growth responses of the bacterial antagonists measured as doubling time and 

specific growth rates at three different temperatures, and at an initial pH of 7.4, is 

presented in Figure 4-5. 
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Figure 4-5: The relative doubling time (A) and the specific growth rate (B) of the 

bacterial antagonists grown at three different temperatures and an initial 

pH of 7.4. Each bar with standard error is an average of four replicate 

determinations. Bars with the same letter(s) are not significant at p<0.05 

according to lsd test, following ANOV A. 
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L. antibioticus, B thuringiensis and B. polymyxa were found to have preferred growth 

temperatures of 25°C relative to 30°C or higher. In contrast B. megaterium, B. mojavensis 

and P. corrugata showed a preference of 35° over 30°C or lower. B. pumilus gave 

questionable results in this study (Figure 4-5). L. antibioticus and B. polymyxa were also 

found to have relatively long lag phases (of 16 hours) at 35°C. The pH of broth cultures 

increased over the 30 hours incubation period for all isolates except B. polymyxa in which 

case it decreased by about 0.7 pH units, indicating that with one exception, proteolytic 

activity (with release of ammonia) dominated fermentative metabolism over this time 

period. In view of these results the bacteria were again tested at 25°C and 30°C at pH 7 .0, 

and the result are presented in Table 4-1. 

Table 4-1: The relative doubling time and specific growth rates of bacterial isolates 

in half-strength nutrient broth at two temperatures, pH 7.0. 

Bacteria Doubling time (h)# Specific growth rate (h"1)# 

25°C 30°C 25°C 30°C 
B.megaterium 1.31±0.05 cf 1.58±0.16 cf 0.53±0.02 f 0.45±0.05 f 

(7.76±0.02) (7.89±0.02) 

P. corrugata 1.29±0.06 cf 1.08±0.11 f 0.54±0.03 f 0.66±0.07 a 

(7.7±0.02) (7.83±0.02) 

B. thuringiensis 0.72±0.04 b 1.01±0.06 af 0.98±0.06 c 0.70±0.05 ab 

(6.78±0.02) (7.07±0.06) 

B. polymyxa ND 4.25±0.06 e ND 0.17±0.01 e 

(6.55±0.03) 

B. pumilus 0.89±0.04 a 0.81±0.04 abf 0.78±0.03 ab 0.86±0.04 be 

(6.79±0.03) (6.93±0.01) 

B. mojavensis ND 1.57±0.04 c ND 0.44±0.0le 

(7.2±0.03) 

L. antibioticus 0.98±0.06 a 0.96±0.05 a 0.72±0.04 ab 0.73±0.04 ab 

(7.37±0.02) (7.22±0.02) 

ND= not determined 
#Values(± standard errors) are an average of four replicates. Values in brackets indicate the pH of the broth 
after 30 hours incubation. Values in the column of doubling time or specific growth rate followed by the 
same letter(s) are not significant at p<0.05 according to lsd test, following ANOV A 
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In this case B. pumilu~ is seen to grow preferably at 30°C relative to 25°C and B. 

nzegaterium grew preferably at 25°C relative to 30°C. Other results where they are 

evident are in line with results obtained previously, or in the case of L. antibioticus are 

indeterminate. 

4.4.3 Ability of Td22 to utilize CMC 

The ability of Td22 ·to degrade CMC in a citric phosphate buffer at various pH 

values is presented in Figure 4-6. Degradation of CMC was indicated by loss of viscosity 

as a function of time. 
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Figure 4-6: ·Degradation of CMC by Td22 in a citric phosphate buffer solution at 

variOus pH values. Each value (± standard error) is an average of four 

replicate assays. 
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The rate of CMC degradation by Td22 was significantly greater at pH 4.5 and 5.5 

than that at pH 3.0 or 7.8 (Figure 4-6), indicating an optimal pH for cellulolysis of 

between pH 4.5 and 5.5, but not necessarily the optimal pH for growth of the fungus. 

4.4.4 Antibiotic resistance of Td22 

The result of this assay is presented in Figure 4-7. 
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Figure 4-7: The relative radial growth of Td22 in pectin agar medium amended with 

streptomycin (strep.) or tetracycline (tet.) at concentrations of 100 

µg/mL medium. Each bar (± standard error) is an average of five 

replicate plates with three measurements from different sides. Bars with 

the same letter are not significant statistically at p<0.05. 

Td22 was found to grow well in the medium amended with both antibiotics 

(streptomycin or tetracycline) at concentrations of 100 µg/mL, indicating they could be 
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used in a formulation of semi selective media to suppress bacterial contaminants in the re­

isolation of this fungus from non-sterile samples. 

4.5 Discussion 

The effect of pH of the media and incubation temperatures on the growth of fungal 

and bacterial antagonists was investigated with a view to optimising these factors in the 

utilization of low-cost substrates for their cultivation. The fungus Td22 grew well in the 

range of pH 4.0 to 7.0 with an optimum growth rate between pH 5.0 and 6.0, while the 

bacteria grew optimally between pH 7.0 and 8.0 (Figure 4-1, Figure 4-2, and Figure 4-4). 

A growth temperature of 25°C was near optimal for most isolates (Figure 4-3, Figure 4-4, 

Figure 4-5, and Table 4-1). Danielson and Davey (1973) reported an optimal range of 

temperatures of Trichoderma spp. of between 22°C and 34°C; incubation temperatures of 

bacteria isolated from soil habitats of 25°C to 30°C are well established. 

A combination of 25°C and pH 5.0 and 6.0 appeared to be most suitable for the 

growth of Td22 (Figure 4-4 ), while pH levels around neutral combined with incubation 

temperatures of 25°C to 30°C appeared to be optimum for most of the tested bacterial 

antagonists (Table 4-1). The results obtained in Figures 4-2/4-5 and Table 4-1 were 

generally not statistically significant at p<0.05. 

Trichoderma spp. have been reported to produce a range of enzymes, such as 

cellulases, pectinases, and chitinases (Metcalf, 1997), with the ability of the isolate Td22 to 

utilize a cellulose-substitute (CMC) being confirmed in the present study. These 

attributes auger well for the possible cultivation of Td22 in low-cost cellulosic materials 

such as WFW, as reported in Chapter 5. 

The rate of CMC degradation appeared to be affected by the initial pH of the 

solution (Figure 4-6), as reported for fungi generally by e.g. Jay (1996). Optimal cellulase 

activity by Td22 of between 4.5 and 5.5 was consistent with its optimal growth rate in full­

nutrient medium at pH values between 5.0 and 6.0. It was found that Td22 was resistant to 

tetracycline and streptomycin at 0.1 mg/mL, although its growth rate was slightly 

inhibited when compared to that grown on pectin agar medium minus antibiotics. As a 

result of this finding, streptomycin or tetracycline as selective agents were used in media 

at concentrations of between 0.06 mg/mL and 0.1 mg/mL. Metcalf (1997) has also used 

streptomycin at the rate of 0.05 mg/mL in selective media for T. koningii. The use of 

various antibiotics, such as Nikkomycin Z in the formulation of selective media with a 
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view to suppress the growth of contaminants, has been reviewed by Tariq and Devlin 

(1996). 

4.6 Conclusions 

The effect of initial pH of the medium and incubation temperature on the growth 

of a fungal antagonist (Td22) and of several potential bacterial antagonists was assessed in 

vitro. The fungus performed best at an initial pH of the medium of between 5.0 and 6.0 

and an incubation temperature of 25°C. Its ability to utilize CMC, and therefore probably 

cellulose, as sole C source raises the possibility of its cultivation on low-cost materials 

such as WFW, which is abundantly available in Tasmania and elsewhere. The bacterial 

antagonists grew optimally at initial pH values around 7 and between 25°C and 30°C. 
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Chapter 5 

Growth and survival of a Triclioderma sp. isolate (Td22) 

in composted and non-composted wood fibre waste of 

paper mill origin under sterile and non-sterile 

conditions 

5.1 Abstract 

The growth and survival of Trichodenna sp. (isolate Td22) antagonistic to 

Sclerotinia minor and Sclerotium cepivorum was studied in raw wood fibre waste (WFW) 

of paper mill origin and in mature compost of this material, both under sterile and non­

sterile conditions. In sterilized, nutrient-amended raw and composted WFW (both 

supplemented with 20% w/w millet seed), Td22 was found to grow well and reached 

densities in the order of -1010 colony forming units (cfu)/g after 14 days incubation. In the 

former of these mixes, the bulk of the cfu density was in the form of spores. Lower 

population densities were achieved under non-sterile conditions in the compost:rnillet mix 

of between -10 7 and -109 cfu/ g after the same period of incubation, depending on pre­

treatment. These results indicate that WFW could provide an abundant low-cost growth 

medium for the large-scale cultivation of this or other biological control fungi. 

5.2 Introduction 

Problems related to the large-scale production of biological control agents in low 

cost materials including difficulties in handling, transport and storage, have been 

reviewed previously (Chapter 2). These problems have been largely overcome by 

maintenance of bacterial antagonists in carriers such as peat or vermiculite for five 

months or more (e.g. Vidhyasekaran et al. 1997a,b; Gazoni et al., 1998). Cost of the 

cultivation medium, its transport and field dispersal is a critical factor in any assessment 

of biological control relative to chemical treatments, a problem sometimes exacerbated by 

the perceived need for proprietary media fo1mulations. 
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The use of suppressive compost to control plant diseases has been extensively 

examined, with recent reviews or reports of the topic by e.g. Craft and Nelson (1996), 

Hointink, et al. (1997), Nakasaki et al. (1998), Hoitink and Gardener (2003), and 

McKellar and Nelson (2003). However, the use of compost as a growth-medium for 

specific microbial antagonists rather than a storage material or an agent of non-specific 

inhibition is recent. An indication of the potential for manipulating the microbiota of 

compost to advantage was provided by Ramamurthy et al., (1996), who demonstrated that 

composting of eucalypt sawdust inoculated with the mushroom fungus Volvariella 

resulted in a product which enhanced the growth of wheat seedlings. 

Norske-Skog Paper Mill Limited produces approximately 33,000 tonnes of WFW 

per annum, to be dumped as landfill (Ramona and Line, 2002). The potential for recycling 

the material by composting was demonstrated by Jackson and Line (1997), but this option 

has not been utilized by the company. This cellulosic waste was considered worthy of 

examination in view of its attributes of excellent water-holding and/or aeration capacity, 

its freedom from toxic elements, its free availability and its potential utilization as a 

source of energy and carbon by cellulose-utilizing fungi, such as the Trichoderma isolate 

Td22. 

The objective of the present study was to investigate the growth and survival of 

Td22 in raw WFW of paper mill origin (a product of the Norske-Skog Paper mill 

Company) and in a mature compost of this material, with a view to the possible low-cost, 

large-scale cultivation of this or other fungal antagonists. 

5.3 Materials and Methods 

5.3.1 The fungal antagonist Trichoderma sp. (Td22) 

The origin and attributes of the fungal isolate Td22 has previously been described 

(Chapter 4). The fungus was normally maintained on moist millet seed and on citrus 

pectin agar at 4°C. 

5.3.2 Composting of WFW 

The WFW is a mix of eucalypt and Pinus radiata, comprising holocellulose as its 

primary constituent, with very low levels of metal contaminants and being deficient (from 

a recycling perspective) in N and P. In concentrated form it is phytotoxic to seeds, 

although the potential for its recycling to the field following composting was 
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demonstrated by Jackson and Line (1997) and Jackson (1998). Composting followed 

amendment with superphosphate, urea and potassium nitrate to give a C:N:P:K ratio of 

35:1:0.6:0.1. Composting was for three months with monthly sample collection and assay 

for toxicity to radish seeds, before use of the product as a cultivation medium for Td22 • 

5.3.3 Inoculum preparation 

Td22 inoculum was grown m sterile citrus pectin broth medium (pH 4.5) as 

described in Appendix lD minus agar, following inoculation with plugs of the fungus 

grown on citrus pectin agar (Appendix lD). Flasks (500 mL) of inoculated medium (100 

mL) were shaken for 7 days in a water bath at 25°C. Before use, the potency of this 

inoculum, measured in cfu on pectin agar, was determined by serial dilution plating (in 

triplicate). 

5.3.4 WFW/compost preparation and inoculation (sterile conditions) 

The raw WFW and the three-month old WFW compost were air-dried in a 

glasshouse (daytime temperatures of 25-35°C) for three weeks to minimize the indigenous 

microbiota. Before use as a cultivation medium for Td22, seven variants of mixes (on a dry 

weight basis; 100°C to constant weight) were prepared as given below (Figure 5-1). 

Unless otherwise stated these mixes were brought to approximate field capacity moisture 

(amounting to - l.5L/kg for the 80:20 WFW/millet seed) with a solution containing (g/L 

distilled water): NH~03, 5.0; K2HP04, 2.0; MgS04.7H20, 0.2; CaClz.2H20, 0.01; FeCh, 

0.01. The mixes were then dispensed into 750mL flasks (lOOg each) and autoclaved at 

121°C for 30 minutes on each of two consecutive days. Initial pH values after autoclaving 

are given in Fig. 5-1. All flasks were aseptically inoculated with lOmL of Td22 

suspension described in section 5.3.3 to give an initial density of between 3.7log10 cfu/g 

and 5.5log10 cfu/g dry mix, and incubated at 25°C for four weeks with periodic assay of 

growth of the fungus following dilution plating onto Oxoid potato dextrose agar (PDA) 

(Appendix lC). 

The relative biomass of Td22 under sterile conditions was assessed using the assay 

for chitin described by Chen and Johnson (1983). Microscopic estimation of spore 

numbers in the various mixes was made using a haemocytometer. All estimates of cfu/g, 

spores/g or chitin biomass/g are given on a dry weight basis (100°C to constant weight). 
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5.3.5 WFW compost preparation and inoculation (non-sterile conditions) 

Air-dried WFW compost (dried to ambient moisture content under glasshouse 

conditions) was brought to field capacity with 2% (w/v) Phostrogen® solution 

(approximately 350 mL/litre of compost) and lOOg quantities placed into 750mL flasks. 

The compost was then either briefly autoclaved at 121°C (5 minutes) prior to inoculation 

(compost A) or directly inoculated with Td22 suspension described in Section 5.3.3 

(compost B) to give 5.4 log10 cfu/g compost. Flasks were incubated at 25°C for four 

weeks with periodic assay of cfu on PDA (Appendix lC) for Td22 and on TSA (Appendix 

lB) for bacterial microbiota. The identity of representative Td22 isolates was confirmed by 

both morphological characteristics and isoenzyme analysis of pectic enzymes as described 

by Cruickshank and Pitt (1987) (Appendix 3). 

5.3.6 Statistical analysis 

Analysis of variance (ANOV A) of data obtained from this study was carried out 

using Minitab software for Windows as described in Chapter 4. 

5.4 Results 

5.4.1 Growth of Td22 in various mixes (sterile condition) 

The Trichodenna sp. (Td22) grew well in all mixes except in 100% millet seeds (Mix E), 

in which cfu fell after 14 days of incubation (Figure 5-1). Significant increases in cfu 

generally occurred after seven days incubation, followed by moderate increases up to 14 

(mixes C and D) or 28 (mixes A, B, F and G) days. Estimated cfu of Td22 in all mixes 

except for E were between 8.7 and 9.8 log10/g at week four. The best growth response was 

observed in either raw (mix D) or composted WFW (mix C) supplemented with nutrients 

and 20% millet seed, plateauing at 14 days incubation (at 10.3 and 9.9 log10 cfu/g, 

respectively). Both results were - significantly higher than those for a nutrient 

supplemented compost control after 14 or 28 days. Likewise, nutrient-supplemented 

WFW compost containing 50% w/w millet seed or 1 % w/w starch did not improve the 

growth (cfu) of Td22 over the unamended control. Replacing the mineral nutrient 

supplements to WFW compost with 2% w/w Phostrogen® resulted in a similar growth 

response (cfu) by Td22 (Mix A cf. Mix F). This response was independent of the initial 

inoculation density of Td22 in the mix C, with a similar response resulting from an 

inoculum of 3.5 log10 or 5.5 log10 cfu/g (data not shown). 
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Mix A: 100% WFW compost 
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Type of mix 

Mix B: 50% WFW compost+ 50% millet seed (w/w) 

Mix C: 80% WFW compost+ 20% millet seed (w/w) 

Mix D: 80% raw WFW + 20% millet seed (w/w) 

Mix E: 100% millet seeds 

F 

Mix F: 100% compost re-wetted with 2% w/v Phostrogen® solution 

Mix G: 100% compost amended with 1 % w/w potato starch 

G 

Figure 5-1: Growth of Td22 in various mixes under sterile conditions. Values (with 

standard errors shown) are means of three replicate determinations. The 

initial and final pH levels of the mixes were: A = 4.6-5.4, B = 4.8-7.5, C = 

5.3-5.5, D = 5.0-5.5, E = 5.6-7 .8, F = 4.9-5.6, G = 4. 7-5.4. 

Spores of Td22 with various densities were found in all mixes, except in mix E, 

where only hyphal fragments and lysed spores were observed. The spore density of Td22 

in the mixes after 10 weeks incubation is presented in Table 5-1. 
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Table 5-1: Spore densities of Td22 in composUWFW mixes after 10 weeks of 

incubation at 25°C. 

Type of Mi£ Log10 total spore/g dw mix ** 
A 8.70 ± 0.02 a 

B 8.68 ± 0.05 a 

c 9.56± 0.02 b 

D 9.51±0.02 b 

E 0.00±0.00 c 

F 8.42 ± 0.01 d 

G 8.67 ± 0.02 a 

* The constituents of the mixes are as given in Figure 5-1. 
**Values followed by the same letter are not significantly different (at p<0.05) according to lsd test 

following the analysis of variance (ANOV A). Each value is an average of triplicate assays± standard enor. 

As was seen in the cfu assay, mixes C and D consistently produced the highest spore 

densities of 9.56 ± 0.02 and 9.51 ± 0.02 log10 spores/g, respectively. Again starch 

amendment (mix G) or replacement of mineral nutrients with Phostrogen® (Mix F) did 

not increase the number of spores in the mix. In contrast, millet seed amendment (mixes C 

and D at 20% millet) resulted in spore densities almost ten-fold higher than that in the 

non-millet seed compost (mix A) (Table 5-1), although 50% w/w amendment of millet 

seed (mix B) resulted in a significantly lower spore counts than their 20% counterparts. 

Use of 100% millet seed (mix E) was apparently inhibitory to spore formation. 

The growth of Td22 in mix D (80% raw WFW and 20% millet seed, showing the 

highest levels of cfu) was found to be consistent in a repeated experiment (Figure 5-2). 

Haemocytometer assay of spore numbers in this mix indicated these to be of the same 

order of magnitude as the cfu determined from dilution plate counts (Figure 5-2). 
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Figure 5-2: Growth of Td22 in raw WFW:millet seed (80:20 w/w) measured as cfu/g 

or spore density/g. Each value in the graph is an average of four replicate 

determinations ± standard error. 

The nett biomass of Td22 in the various mixes after prolonged incubation ( 10 

weeks), as determined from chitin contents (after deducting chitin: content in controls 

lacking Td22, this amounting to -33.2 mg/g for the millet seed control or -57.8 mg/g for 

compost control), indicated levels of approximately 50-60 mglg mix except for mixes F 

and G, which contained about 35 mg/g mix. As might be expected, the fungal biomass (as 

determined by chitin content) was not positively correlated with spore density; mix E for 

example containing no spores still contained a significant amount of chitin (53.45 mg/g), 

attributable to hyphal content. 

~.4.2 Growth of Td22 under non-sterile conditions 

The growth and survival of Td22 in compost following different pre-treatments 

was followed for 28 days. The results are presented in Figure 5-3. 
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Figure 5-3: Population density of Trichoderma spp. (isolate Td22) in three months old 

WFW compost, either briefly treated for 5 minutes at 121°C prior to 

inoculation (Compost A), or directly inoculated following re-wetting 

(Compost B). Both compost types were brought to approximately field 

capacity with 2% (w/v) Phostrogen® solution (-350 mL/L). Each value 

in the graph is an average of three replicate determinations ± standard 

error. 

Significant increases in cfu of Td22 in steam-treated or untreated composts were 

observed in the first seven days, after which time the populations remained relatively 

constant at about 8.5 log10 cfu/g dw in compost A or about 7.0 log10 cfu/g dw in compost 

B. The growth in non-sterile, steam-treated or air-dried compost was equivalent in other 

respects to mix F (Figure 5-1). The identity of Td22 in these non-sterile conditions was 

confirmed by both morphological characteristics and isozyme profile. The pectolytic 

enzyme profiles produced by the fungal reference (Td22) and by those fungi re-isolated 

from non-sterile compost are shown in Plate 5-1 
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Plate 5-1: Contact print following polyacrylamide-gel electrophoresis to confirm 

survival of Td22 in three-month old WFW compost. Dark bands indicate 

polygalacturonase and light bands indicate pectinesterase. Wells 1, and 9 -

14 contained the control reference, Td22, while wells 2 - 8 contained re­

isolated fungi from compost B on day 7 of sample collection. 

The populations of mesophilic bacteria in composts A (treated for five minutes at 

121°C) and B (dried, untreated)(Figure 5-3) over 28 days are presented in Figure 5-4. The 

initial bacterial populations in the mixes depended on the method of preparation. The 

population of the mesophilic bacteria in compost A was approximately one order of 

magnitude lower than that in compost B after two weeks incubation. However after two 

weeks the growth rate in compost A exceeded that of compost B, to result in a population 

of 9.3 log10 cfu/g indigenous mesophilic bacteria after 28 days, in comparison with 8.5 

log10 cfu/g in compost B (Figure 5-4). 
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Figure 5-4: Population density of mesophilic bacteria in the compost after briefly 

steaming for 5 minutes at 121°C prior to inoculation (compost A), or 

directly inoculated after re-wetting (compost B).Each value in the graph 

is an average of triplicate determinations ± standard error. 

5.5 Discussion 

This investigation has demonstrated the potential use of WFW as a growth medium 

for the large-scale cultivation of a biological control fungus, Trichodenna sp. Td22, which 

is known to be particularly effective against sclerotia-forming fungi, such as Sclerotinia 

minor and Sclerotium cepivorum. Td22 was found to grow well in nutrient-supplemented 

three-month old compost of WFW to reach cell densities of approximately 1010 cfu/g in 

14 days. Three months of composting was used because in a preliminary study this time 

was required to eliminate toxicity for radish seedling germination and growth using a 

standard potting mixture as control (data not shown). Raw WFW and WFW-composts 

up to two months old were in contrast shown to be toxic in this regard. Likewise Jackson 
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(1998) reported that at least three months composting was required to eliminate most 

toxic compounds present in the raw eucalypt WFW to acceptable levels for potting media. 

According to Hoitink et al. (1996) decomposition of woody materials including toxic 

compounds by microorganisms occurs in all stages of composting, although the highest 

rate of degradation normally occurs in the second stage of the thermal composting where 

the temperature may reach 65°C or more. Work relevant to the degradation of toxic 

compounds in composts has been reviewed by Diaz et al. (1993) and Grebus et al. (1994). 

Analysis of the three-month old WFW compost before nutrient amendment 

indicated a C:N ratio of -40. Amendment of nutrient solution (NH4N03-salts) into this 

compost, plus millet seed supplement was aimed at decreasing this ratio to -30. Such 

amendment was seen to be suitable for the growth of Td22 as indicated in Figures 5-1 and 

5-3. Barkdoll et al. (1991) has stated that an initial C:N ratio of -50 or less in a compost 

matrix is ideal, although generally a C:N ratio of between 25-30 gives a faster rate of 

cellulosic decay (Diaz et al., 1993). The achievement of very high cfu levels after 2-4 

weeks (Figure 5-1) indicated that nutrient supplementation was sufficient to meet the 

Td22-fungal requirements. 

For the purpose of Td22 cultivation, composting the WFW was initially thought to 

be advantageous by removing toxic components. However it appears to be unnecessary as 

nutrient-amended, raw WFW-Td22 culture after 14 days gave comparable fungal cfu to 

that of the composted equivalent and subsequent assessment of this culture after 14 days 

incubation at the rate of 20% v/v amendment of potting mix showed it to have no residual 

toxicity to radish seed. This suggests that plant-toxic compounds of the WFW were 

degraded by Td22 during incubation. 

That Td22 in the raw WFW medium appeared to be largely in the form of spores 

following 14-28 days incubation auguring well for its long-term survival (e.g. in 

commercial preparations) prior to application. 

Assay of chitin content of growth medium provides a useful indicator of fungal 

biomass, because chitin is a specific component of fungal cell walls (Cousin, 1994 and 

Atlas, 1995). That the chitin content of the mix was not related to the number of spores 

(or cfu) after 10 weeks is curious, indicating either that the chitin content of spores is low, 

or more probably, that the cfu/biomass ratio of spores is much higher than that of fungal 

hyphae. Mix E for example, was not observed to contain spores, yet contained a 

significant amount of chitin (fungal hyphal biomass). From a production viewpoint, the 
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cfu produced in different mixes after 14 to 28 days is of more interest than fungal biomass 

(chitin content). 

Air drying compost in the glasshouse for three weeks or brief steam-treatment 

(rather than sterilizing) (Nakasaki et al., 1998) with a view to minimizing the indigenous 

micro biota prior to inoculation with Td22, gave encouraging results. The cfu of this fungus 

cultured under non-sterile conditions were found to increase by two to three orders of 

magnitude, although they were always lower than those obtained under sterile conditions 

(Figure 5-3). The cfu were found to be higher in the briefly autoclaved compost (compost 

A) than those in the directly inoculated compost (compost B) following re-wetting. 

Application of heat treatment to the WFW compost (by briefly autoclaving at 121°C) may 

have changed its composition, but the most probable reason for the better growth of Td22 

in this medium was the near-elimination of competition by mesophilic bacterial survivors 

in compost A relative to compost B. Similar results were also demonstrated by N akasaki 

et al. (1998) who found a reduced growth rate of a strain of Bacillus subtilis following 

inoculation of this antagonist into non-sterile (as compared with sterile), but freshly-cut 

grass clipping compost. This reinforces the notion that competition between the 

indigenous microbiota and the inoculated antagonists is important in the directed 

establishment of such antagonists in a compost matrix. 

The ability of Trichoderma spp. to produce cellulase and pectolytic enzymes as 

demonstrated in Figure 4-4 and Plate 5-1 has been reported previously by Metcalf (1997), 

Oksanen et al. (2000), Domingues et al. (2000), and Lee et al. (2000). These and other 

enzymes are imp01iant in the degradation of complex carbon sources contained in WFW 

and the ability to produce them is advantageous when in competition for available major 

energy sources. 

Assay of isoenzyme profiles (e.g. pectolytic enzyme profiles as undertaken in the 

present study) of fungal isolates provided a very convenient tool to differentiate Td22 from 

other isolates of Trichodenna spp following re-isolation from non-sterile samples. This 

assay has been applied by many workers (e.g. Neate et al., 1988; Leone, 1990; Metcalf 

and Wilson, 1999) to distinguish their fungal isolates from other related fungi based on 

isozymeRf 

Millet seed amendment (at the rate of 20% w/w as applied in the present study) 

appeared to be important to induce the growth of Td22 in the raw or composted WFW 

(Figures 5-1 and 5-2) as it provided the fungus with relatively simple compounds such as 

starch and pectin. However, it was noticed that excessive amendment of this seed into the 
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W'FW compost (mix B where 50% w/w millet seed was added and mix E where 100% 

millet seed was used) (Figure 5-1) tended to result in the late sporulation of this fungus 

coupled with lower cfu or chitin-biomass assays. Fungal sporulation normally occurs as a 

response to the environmental stress, such as nutrient depletion, which induce their 

'intrinsic signals' to complete life cycle (Adams et al., 1998). Perhaps the relatively low 

cfu assays observed in mix E (100% millet seed) after 28 days relative to say mix D with 

20% millet (Table 5-1) simply reflects the different levels of sporulation of the two 

cultures at this time; the cfu being dominated by fungal hyphae in mix E and spores in 

mix D. 

Metcalf (1997) reported the growth and maintenance of Td22 in 100% millet, 

however this study showed that the fungus could be grown to comparable or better cfu 

and spore numbers in compositions of e.g. 80% W'FW and 20% millet seed. This 

provides considerable potential for the low-cost and large-scale production of this and 

possibly other fungal antagonists. Since this work was completed, the commercial 

potential using compost material has been realized by the provider of the Td22 culture. 

5.6 Conclusions 

Raw and three-month old compost of W'FW were found to provide excellent 

substrates for the growth of Td22 to largely replace the relatively expensive millet seed 

used previously. The utility of W'FW for this purpose is due in large part to the ability of 

Td22 to degrade complex polysaccharides, the millet then providing the fungus with a 

supplement of relatively simple compounds dominated by starch and pectin. The presence 

of indigenous microbiota in W'FW compost was shown to be detrimental to the growth of 

Td22, most probably due to their competition for nutrients. To achieve good growth rate 

and high cfu/ g of Td22, minimization of such indigenous micro biota by steam-treatment or 

air-drying was advantageous. Other methods aimed at the low-cost minimisation of the 

indigenous microbiota are addressed in Chapter 7. 
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Chapter SA 

A study on the growth response of bacterial antagonists 

in a mix of composted wood fibre waste and millet seed 

under sterile and non-sterile conditions 

SA.1 Abstract 

The potential use of composted WFW for the cultivation of bacterial antagonists 

of S. minor was examined with the result that a mix of millet seed (20% w/w) and WFW, 

suitably amended with nutrients, proved to be an ideal matrix for the growth of some of 

these bacteria. Densities in terms of cfu's ranged from 8.5 log10 cfu/g dw to 10.5 log10 

cfu/g dw) under sterile conditions after 14 days incubation. Lower population densities of 

the antagonists were achieved under non-sterile conditions in the compost:millet mix of 

between 7.9-9.3 log10 cfu/g dry weight over the same period of time. However, when 

applied in a pot (glasshouse) trial to protect against S. minor, the millet seed appeared to 

stimulate the growth of this pathogen resulting in a high incidence of attack of lettuce 

plants after 2-3 weeks. Although the percentage of healthy seedlings increased following 

application of compost mix grown antagonists (at a rate of 5% v/v) when compared to the 

control treatment, these values were not statistically significant (p>0.05) in most cases. 

SA.2 Introduction 

Attempted manipulation of composting conditions or of mature compost for the 

cultivation of desired microorganisms has been slow to develop; particularly difficult is 

manipulation of non-sterile compost due to the high biological buffering provided by a 

diverse microbiota, combined with the problems posed by a microbial succession as 

temperatures change from mesophilic to thermophilic and back again, as occurs in the 

compost habitat. As described in chapter 5, one of the first successful demonstrations of 

the directed cultivation of bacteria in compost followed the inoculation of pasteurized 

grass clippings with a Bacillus subtilis strain known to be an agent of biological control 
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(Nakasaki et al., 1998). The bacterium grew to concentrations of 108 cfu/g dw before 

sporulating, the spores surviving subsequent high temperature composting to inhibit 

Rhizactonia large patch disease of grass. Compost that was not inoculated showed no 

disease suppressive effects. Other less successful reports of bacterial inoculation of 

mature composts, particularly for the suppression of R. solani, have been made by Phae et 

al., (1990), Kok et al., (1996), Hoitink et al., (1997) and Ryckeboer et al., (1998). 

A mix of composted or raw material of WFW and millet seed in the ratio of 80:20 

(w/w) was previously reported to be most favorable for growth of Trichoderma sp. (Td22) 

(Chapter 5), with peak cfu and biomass (chitin-content) being reached after 14 days 

incubation (Ramona and Line, 2002). The efficacy of the Td22 grown in this mix in 

protecting lettuces against S. minor attack in a series of glasshouse trials is described in 

Chapter 6. 

The present study investigated the use of composted WFW and millet seed as a 

possible carrier or substrate for the cultivation of selected bacterial antagonists previous! y 

isolated from the rhizosphere of crop plants (Chapter 3). 

SA.3 Materials and methods 

SA.3.1 Bacterial antagonists 

Several bacterial antagonists, such as Pseudomonas corrugata, Bacillus polymyxa, 

B. megaterium, B. thuringiensis, B. mojavensis, and Lysobacter antibioticus, isolated from 

various sources as described in Chapter 3, were investigated for growth response in the 

mix of composted WFW and millet seed (80:20 w/w). For long-term storage, these 

bacterial antagonists were cryo-preserved at -70°C in TSB medium supplemented with 

30% glycerol as described in Section 3.3.1(Chapter3). 

SA.3.2 Fungal antagonist (S. minor) 

The origin, method of cultivation, and storage of S. minor has been previously 

described in Chapter 3. 

SA.3.3 WFW compost production 

The origin and the method of composting of raw WFW have been described in 

Chapter 5. 
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SA.3.4 lnoculum preparation 

Selected bacterial antagonists were grown in a sterile trypticase soya broth (TSB) 

medium (Appendix lB minus agar) following inoculation with loopfuls of 24-48 hour old 

TSA cultures. Flasks (500mL capacity) of inoculated medium (lOOmL) were incubated at 

25°C under static conditions for 24-48 hours, until turbidity was achieved. Before use, the 

bacterial numbers were estimated by serial dilution plating (in triplicate) on TSA 

(Appendix lB). 

SA.3.5 Carrier preparation and inoculation under sterile conditions 

Preparation of the composted WFW and millet seed (80:20 w/w) mix has been 

described in Chapter 5. Prior to sterilization, the pH of the nutrient-amended mix was 

adjusted to approximately neutral by addition of CaC03. On cooling, the mix was 

inoculated with suspensions of the antagonistic bacteria as described in Section 5A.3.4 at 

the rate of 10% (v/w) to give an initial density in the mix of between 5.9 log10 cfu/g dw 

and 8.0 log10 cfu/g dw. Flasks were incubated at 25°C with periodic assay for growth of 

the bacterial antagonists following dilution plating onto TSA (Appendix lB). 

SA.3.6 Carrier preparation and inoculation under non-sterile conditions 

The preparation of the mix was the same as that described in Section 5A.3.5, 

however prior to inoculation the mix was pre-incubated at 60°C for one week (to simulate 

hot-composting conditions) with a view to minimize the density of indigenous mesophilic 

microbiota. On cooling, the mix was inoculated with suspensions of bacterial antagonists 

as described in section 5A.3.5. The inoculated mix was incubated at 25°C under static 

condition with periodic assay for growth of the bacterial antagonists following dilution 

plating onto TSA. The identity of the antagonists following re-isolation was confirmed on 

the basis of their colony morphologies. When necessary, determination of cellular 

morphology by Gram staining and of biochemical reactions, such as the ability to 

hydrolyse casein or starch, was also undertaken. 

SA.3. 7 Glasshouse trial 

A glasshouse trial was conducted to investigate the efficacy of the bacterial 

antagonists grown under ste1:ile conditions in a mix of composted WFW and millet seed 

(80:20 w/w) in suppressing challenge by S. minor. Soil (sampled from NW Tasmania) 
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was mixed with 5% (v/v) suppressive WFW mix, dispensed into pots of 1.5 L capacity, 

and inoculated with S. niinor cultured on millet seeds, placed at 20mm below the surface 

of the mix at the rate of 2g millet-inoculum per pot. Pots inoculated with S. minor only 

and pots without S. minor inoculation but containing suppressive compost amendment 

served as controls. All pots were left under irrigated conditions in a shade house for one 

week prior to sowing. Ten lettuce seeds were sown per pot with four replicates per 

treatment. After sowing, the pots were maintained in the shade house for four weeks. The 

numbers of germinated seeds were recorded one week after sowing, prior to thinning to 

five seedlings per pot. Numbers of healthy seedlings were recorded at weekly intervals 

thereafter. 

SA.3.8 Statistical analysis 

Statistical analysis of data was conducted using the analysis of variance (ANOVA) 

as described in Chapter 4. 

5A.4 Results 

SA.4.1 Growth of bacterial antagonists in the mix of composted WFW 

and millet seed (80:20 w/w) under sterile conditions 

The results of the bacterial growth response in the mix of composted Wf<W and 

millet seed under sterile conditions are presented in Figure 5A-1. All tested bacterial 

antagonists were found to grow well in the WFW mix with increases of between 2.5 and 

4.4 orders of magnitude (depending on the bacterial species) in density generally 

occurring in the first 14 days. Following prolonged incubation (up to 56 days), the 

population density of these antagonists plateaued between 8.4 log10 cfu/g and 10.1 log10 

cfu/g (Figure 5A-l). 
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Figure SA-1: Growth response of six bacterial antagonists in a mix of 80% 

composted WFW and 20% millet seed under sterile conditions. Each 

value shown is an average from four replicate mixes± standard error. 

5A.4.2 Growth of bacterial antagonists in the mix of composted WFW 

and millet seed (80:20 w/w) under non-sterile conditions 

The growth of the bacterial antagonists in a mix of WFW and millet (80:20) under 

non-sterile conditions is shown in figure 5A-2. 
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Figure SA-2: Growth of six bacterial antagonists in a mix of 80% composted WFW 

and 20% millet seed under non-sterile conditions. Each value shown is 

an average from four replicate mixes± standard error. 

The growth rate of these bacterial antagonists appeared to be suppressed when grown 

under non-sterile conditions, indicated by a lower cfu, when compared to that recorded 

under sterile conditions (Figure SA-2). In some cases, the cfu of the antagonist fell by 

more than one order of magnitude over the same period of incubation time. The L. 

antibioticus consistently showed the best growth response in this mix (both under sterile 

and non-sterile conditions), although its growth was somewhat suppressed when grown 

under non-sterile condition over the same period of time (Figure 5A-1 and SA-2). All the 

tested antagonists however, reached a density of more than 7 log10 cfu/g dw in the mix 

under these conditions after 28 days incubation. 
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SA.4.3 Glasshouse trial 

The efficacy of the suppressive mixes to protect lettuce seedlings/plants from 

attack by S. minor is shown in Table 5A-l. 

Table SA-1: Germination rate of lettuce seedlings in suppressive mixes, and the 

effectiveness of the mix-grown antagonists in protecting against S. 

minor. Each value is an average obtained from four replicate pots ± 

standard error. 

Treatments* Germination rate i Healthy seedlings ( % )¥ 

Week2 Week4 

AOBO 92.5 ± 2.2 100±0.0a 100 ± 0.0 a 

AOBl 90 ± 3.7 15 ± 5.0 b 5 ± 5.0 be 

AlBl 92.5 ±2.2 20 ± 8.2 be 15 ± 5.0 b 

A2Bl 92.5 ±2.2 35 ± 5.0 c 15 ± 9.6 be 

A3Bl 87.5 ± 2.2 35 ± 9.6 be 10 ± 5.6 be 

A4Bl 95 ± 2.6 25 ±5.0bc 0 ± 0.0 c 

A5Bl 92.5 ±4.3 40 ± 8.2 c 20 ± 8.2 b 

A6Bl 87.5 ± 2.2 20 ±8.2 be 10 ± 5.8 be 
7The germination rate of lettuce seed was not statistically different at p<0.05 in all treatments. 
*AOBO: nil control (neither pathogen nor antagonist were inoculated). 
AOBl: pots inoculated with S. minor only (control treatment) 
AlBl, A2Bl, A3Bl, A4Bl, A5Bl, and A6Bl: Pots inoculated with both pathogen (S. minor) and B. 
polymyxa, L. antibioticus, B. megaterium., B. thuringiensis, P. corrugata, or B. mojavensis, respectively. 
¥Values in the same column followed by the same letter are not significant statistically at p<0.05 

The germination rate of the lettuce seeds in pots containing the antagonist, pathogen, or a 

combination of antagonist and pathogen-treated pots was high (ranging from 87 .5 to 

92.5% ). Germination rates were not significantly different (p>0.05) when compared to the 

nil control (AOBO) showing 92.5% germination (Table 5A-1). Generally, the percentage 

of healthy seedlings in the pots treated with mix-grown antagonists was relatively higher 

than that in the control treatment pots (AOBl), although in most cases the results were not 

statistically significant (p>0.05) (Table 5A-1). Lysobacter antibioticus (A2Bl) and 

Pseudomonas corrugata (A5Bl) significantly protected the seedlings up to week two, 

with 35% and 40% healthy seedlings respectively, while only 15% survival was found in 

the control treatment (Table 5A-1). As more plants became infected with prolonged 
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incubation differences in the percentage of healthy plants between treatments and the 

control became statistically insignificant (p>0.05) (week 4, Table 5A-1). It would appear 

from this trial that the growth of the pathogen (S. minor) was stimulated in the soil by the 

millet seed of the mix, resulting in a more aggressive attack by the pathogen on the lettuce 

plants than would otherwise be the case. 

SA.5 Discussion 

The growth of the selected bacterial antagonists in three-month old WFW compost 

amended only with 0.5% w/w Phostrogen® was very poor (results not shown). A 

modification on this compost [amending it with 20% millet seed, re-wetting it with 

nutrient solution (N~N03-BMS) to approximately field capacity, and adjusting the pH to 

approximately neutral] resulted in excellent growth responses of the antagonists (Figure 

5A-1). In some cases, the cfu-density reached by the bacterial antagonists under sterile 

conditions was comparable to that reached by the Td22 in the same mix (Chapter 5). This 

indicated that the mix of composted WFW and millet seed in the ratio of 80:20 (w/w) was 

also suitable for the cultivation of bacterial biological control agents. The presence of 

millet seed in the mix appeared to provide a ready source of available carbon and 

nitrogen, particularly in the initial stages of bacterial growth. WFW alone, which mostly 

consists of cellulose, remained largely undegraded by the inoculated antagonists, none of 

which was cellulolytic. The C:N ratio ofraw WFW is approximately 218 (Jackson, 1998), 

however, following three months composting with appropriate nitrogenous amendment 

the C:N ratio was determined to be approximately 40, as described in section 5.5. Millet 

seed has been estimated to contain 1.7% w/w N, (Morrison, 1959). Hence its combination 

with WFW at the rate of 20% (w/w) would contribute further (if low) nitrogen 

suppleme!).tation for the growth of the bacterial antagonists. 

As described in Chapter 4 the bacterial antagonists grew best at around neutral 

pH, this being achieved by addition of CaC03 to the otherwise acidic mix (pH 4.0-5.0) 

prior to inoculation. 

The growth of bacterial antagonists under non-sterile conditions was somewhat 

reduced in terms of cfu/g mix when compared with that recorded under sterile conditions 

(Figure 5A-1 and 5A-2). A similar or greater effect of using non-sterile conditions was 

observed for the fungal agent Td22 (Chapter 5), with cfu/g mix falling by one to two 

orders of magnitude under non-sterile conditions. A similar reduction in cell numbers 
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under non-sterile conditions was also reported by Nakasaki et al. (1998) who reported the 

diminished growth of a B. subtilis strain in the presence of indigenous contaminants in a 

grass clipping compost substrate. Therefore, minimizing the density and/or diversity of 

indigenous microbiota prior to inoculation with antagonists is seen to be advantageous in 

achieving maximal numbers of inoculated antagonists. 

Pre-treatment of the mix at 60°C for seven days (simulating hot-compost 

conditions) was found to reduce the diversity of the isolated indigenous bacteria, although 

the density of the total bacterial loading ( cfu on TSA at 60°C) was not significantly 

reduced. This was not of concern, since the biota would be strongly dominated by 

thermophiles, which would be expected to compete poorly against the -mesophilic 

biological control inoculants at temperatures of - 20°C. 

As previously noted in section 5A.4.3, the millet seed used in the cultivation of the 

bacterial antagonists also appeared to stimulate the growth of the fungal pathogen (S. 

minor) in the pot trial. Apparently the complex carbohydrate-components of the millet 

were either beyond the metabolic capacity of the biological control bacteria to degrade, or 

(more likely) in excess of requirements over the period of antagonist-cultivation, leaving 

these components as substrates for the fungal pathogens. Therefore the use of millet seed 

as a nutrient supplement for the bacterial antagonists cultivation, to be subsequently used 

to control fungal pathogens in the field, cannot be recommended. 

The finding that the use of millet/cellulose-medium (containing Td22) as 10% or 

20% inocula of potting media was antagonistic to the growth of S. minor is in qualified 

agreement (bearing in mind the above comment) with a report by Metcalf (1997) that S. 

cepivorum was suppressed by Trichoderma koningii in a composition of 100% millet 

seed. The use of other carbon sources rather than millet seeds, such as casein or starch for 

the cultivation of bacterial biological control agents is reported in Chapter 7. 

SA.6 Conclusions 

Modification of WFW compost, by amending with millet seed and adjusting the 

pH to neutral made it suitable as a growth medium for inoculated bacterial antagonists. 

However such amendment also appeared to provide an excellent nutrient source for the 

fungal pathogen (S. minor) on soil application. Therefore, the use of millet seed as a 

nutrient source for the bacterial antagonists is precluded. Although pre-treatment of the 

mix at 60°C for one week successfully eliminated most of the mesophilic bacteria, the 
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residual microbiota was still capable of some degree of suppression of the growth of 

inoculated bacterial antagonists relative to sterile counterparts following incubation at 

mesophilic temperatures. The possibility remains for the use of radical temperature shift 

(60°C to 25°C) to minimize the indigenous competition with desired inoculated biota on 

subsequent cultivation in bulk media. 
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Chapter 6 

Assessment of composted wood fibre waste -grown Td22 

for the protection of lettuce and pyrethrum from attack 

by Sclerotinia minor 

6.1 Abstract 

The effectiveness of Td22 grown in a mix of 20% millet seed and 80% WFW 

compost in protecting lettuce and pyrethrum plants from attack by S. minor was assessed. 

In pot trials, this suppressive mix was found to consistently protect these plants from S. 

minor attack. The degree of protection provided to lettuce plants was approximately 

proportional to the rate of suppressive mix amendment.' Protection of 100% was recorded 

when soil was amended with Td22-compost at the rate of 20% (v/v) four weeks after 

sowing. Mortality of controls at this time was 100%. Allowing a period of equilibration of 

the mix and pathogen in the glasshouse of at least four days prior to sowing significantly 

improved the biological control of S. minor by Td22. To some degree, the effectiveness of 

Td22 may have been affected by the mode of application. Application of Td22 as a spore 

suspension or as spores in compost consistently and significantly provided protection to 

lettuce plants, while mycelial application was found to be less effective. The biological 

control fungus was re-isolated from root segments or soil samples at a frequency of 

between 80-90%, indicating it to have ecological competence in a competitive soil 

environment. Td22 was also found to be compatible with a commercially available foliar 

fungicide (Sumisclex®). 

Good survival of Td22 in the mix of 20% millet seed and 80% wood fiber waste 

was demonstrated up to 4.5 months at ambient temperature. 

The cost per hectare to incorporate this suppressive mix at the rate of 20% (v/v) 

into a growing mixture medium for nursery lettuces was estimated to be AU$91.47. By 

contrast, control S. minor in the field (field application instead of nursery application) 

using chemical fungicides currently costs AU$18 l.80/hectare. In view of this, application 

of suppressive compost as the formulation described to control S. minor must compare 

poorly with that of chemical fungicides. If the millet seed can be replaced by less 
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expensiv~ materials, such as barley combs or cracked barley (by products of beer 

manufacture), this or an equivalent suppressive mix could provide an environmentally 

compatible, economically viable alternative for disease control in farming practices. 

6.2 Introduction 

Sclerotinia spp cause diseases in a wide range of host plants (Singleton et al., 

1992). Lettuce drop, for example, caused by Sclerotinia minor and S. sclerotiorum has 

been reported in many lettuce-growing countries having cool and moist climates such as 

Australia, Canada, the Netherlands, New Zealand, United Kingdom, United States, and 

Venezuela. Both fungi may attack lettuce plants at any stage of their growth, particularly 

during maturity, and the disease incidence is often severe (Davis et al, 1997). Until 

recently, control of these fungi has relied on fungicides, but with the move away from 

chemical treatments attention has focussed on biological method of control, where cost 

competitiveness becomes important. 

Due to difficulties in handling, storage, and delivery of liquid preparation of 

fungal biological control agents, solid or semi solid preparations are considered to be 

preferable (Radar et al, 1979). Millet seed has previously been investigated as a medium 

to support the growth of a biological control fungus Trichoderma koningii (Metcalf, 

1997). The price of the seed, however has made the large scale production of this agent 

impracticable. Therefore research on alternative media is warranted, with the specific aim 

of cost minimisation. 

As previously described (Chapter 5), Trichodenna spp. Td22 active against S. 

minor and S sclerotiorum showed an excellent growth response in composted and raw 

WfiW supplemented with 20% w/w millet seed, with spore numbers reaching -1010 per 

gram dry weight compost after 14 days incubation (Ramona and Line, 2002). 

In the present study, Td22 grown in the mixture described above was assessed for 

its ability to protect lettuce and pyrethrum seedlings/plants from attack by S. minor in 

glasshouse trials. Specific objectives of this study were to investigate: 

1. The effect of the amount of compost:millet mix-grown Td22 amendment on the level 

of protection provided to lettuce seedlings/plants from S. minor attack. 

2. The effect of pre-incubation time of the Td22 medium prior to sowing on the level of 

protection provided to lettuce seedlings/plants. 
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3. The effect of storage of the Td22 medium on the level of protection provided to lettuce 

seedlings/plants. 

4. The relative effectiveness and compatibility of WFW compost: millet seed-grown Td22 

with a fungicide (Sumisclex®) in protecting lettuce seedlings/plants against S. niinor 

attack. 

5. The ability of Td22 cultured in various other media to suppress disease in lettuce 

seedlings/plants caused by S. minor. 

6. The ability of Td22 grown in compost:millet mix to protect pyrethrum plants from 

attack by S. minor. 

7. The ability of Td22 to colonize lettuce and pyrethrum roots and soil. 

6.3 Materials and Methods 

6.3.1 Microorganisms 

The origin, method of cultivation and storage of Trichodenna spp. (isolate Td22) 

and the S. minor have been previously described in Chapter 5. 

6.3.2 Lettuce seeds and soil 

Lettuce seeds were purchased from Roberts Limited, Australia. A red laterite soil 

on which both lettuces and pyrethmm are grown was obtained from northwest Tasmania. 

The soil was sieved through a 5 mm mesh and steam pasteurized for 45 minutes at 60°C 

before use. 

6.3.3 Compost production 

Wf<W compost was produced according to the method described in Chapter 5. The 

three-month old compost was air dried in a glasshouse for several weeks and stored in 

vinyl bags. 

6.3.4 Preparation of Td22 inoculum 

The preparation of Td22 inoculum has been previously described in Chapter 5. 
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6.3.5 Preparation of S. minor inoculum 

Dry millet seed (500g) was soaked in 400mLof0.2% (w/v) Phostrogen® (a NPK­

minerals formulation produced by Phostrogen Ltd, Australia) solution in distilled water 

and autoclaved for 30 minutes at 121°C on each of two consecutive days. On cooling, 

several plugs of S. minor on potato dextrose agar (PDA) were aseptically inoculated into 

the seed medium and incubated at 25°C for four weeks by which time sclerotia had 

formed. Prior to use in the glasshouse trials, this S. minor inoculum was air dried at room 

temperature. 

6.3.6 Production of suppressive compost 

Dried WFW compost was mixed with millet seed in the ratio of 80:20 w/w (d.w.) 

and brought to field capacity (- 1.5L/kg dry mix) with a solution containing (gL-1 distilled 

water): ~03, 5.0; K2HP04, 2.0; MgS04.7H20 0.2; CaC1z.2H20, 0.01; and FeCh, 

0.01, and autoclaved for 30 minutes on each of two consecutive days. The resultant pH of 

the mix was 4.3 and.water content (mean of triplicate measurements) was 56.7%. The mix 

was inoculated with 10% (v/dw mix) of Td22 described above to give an initial cell 

density of 5.03 log10 cfu/g dry mix and incubated at 25°C for two to four weeks, when 

heavy spomlation was evident. 

6.3.7 Glasshouse experiments 

6.3.7.1 Assessment of compost concentration on disease control 

Lettuce seeds were sown in pots containing field soil amended with suppressive 

compost at levels of 2.5, 5.0, 10 and 20% v/v. The spore density of the antagonist (Td22) 

in the compost was 1.62 x 109 spores/g ww. Lettuce pathogen (S. niinor) grown on millet 

seed was evenly inoculated approximately 20 mm below the soil surface at rate of 2.0 g 

inoculum per pot. Soil without compost amendment, amended with pathogen only, or 

without pathogen inoculation served as controls. Five replicate pots per treatment, each 

containing five seeds were maintained for four to six weeks in a shade house. Pots were 

irrigated as required and the germinated seeds counted one week after sowing. Disease 

incidence on the lettuce seedlings was recorded from two weeks after sowing. 
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6.3.7.2 Assessment of pre-incubation on disease control 

Pots of 1.5 L capacity were prepared with compost as described above (Section 

6.3.7.1) and inoculated with dried S. niinor on millet seeds, placed 20 mm below the 

surface of the mix at the rate of 2.0 g millet-inoculum per pot. Pots wit?out S. minor 

inoculation or without suppressive compost amendment served as controls. All pots were 

placed in the shade house for at least four days prior to sowing. The time interval between 

the preparation and sowing time is referred to as pre incubation time by Steinmetz and 

Schonbeck (1994). During this time, the pots were irrigated as required to keep the mix 

moist. Five, two-weeks old lettuce seedlings were sown per pot with five replicates per 

treatment. After sowing, the pots were maintained in the shade house for ten weeks. The 

number of healthy plants was recorded at weekly intervals. 

6.3.7.3 Assessment of compost age on disease control 

Td22-inoculated compost of three different ages (15, 30, and 60 days old) was 

assessed for effectiveness in protecting lettuce seedlings/plants from attack by S. minor in 

the shade house. The experiment was conducted in 1.5 L pots using 5% v/v compositions 

of Td2z-inoculated compost. The inoculation of S. minor was the same as described in 

section 6.3.7.1. Ten seeds were sown per pot (to be later thinned to five seedlings per pot), 

with five replicates per treatment. The experiment was maintained for four weeks in the 

shade house, with the number of healthy seedlings/plants being recorded at weekly 

intervals, starting two weeks after sowing. 

6.3.7.4 Assessment of the relative effectiveness of Trichoderma­

inoculated compost with a fungicide 

The effectiveness of Td2z-inoculated WFW compost (as a 5% constituent of the 

potting mixture) in protecting lettuce plants from attack by S. minor was compared with a 

fungicide (Sumisclex®) commonly used in lettuce farms. Sumisclex® at the recommended 

concentration of 10.5 mL/10 L, was applied as drench at the rate of 20 rnL per pot four 

days before planting. S. minor application was as described previously (Section 6.3.7.1). 

Five, two-weeks old lettuce seedlings were sown in each pot with eight replicate pots per 

treatment. The pots were maintained in a shade house for eight weeks and the number of 

healthy seedlings/plants was recorded at weekly intervals, starting two weeks after 

sowing. 
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6.3.7.5 Evaluation of application. 1nethods 

The effectiveness of three Td22 preparations for the protection of lettuce 

seedlings/plants from attack by S. minor was evaluated in a pot trial using field soil as the 

growth medium. The preparation comprised a Td22 spore suspension in saline, one week­

old of fresh Td22 mycelial suspension in pectin broth medium, and Td22 grown in a mix of 

80% WFW compost and 20% millet seed (dry weight basis). Five mL of either a spore 

suspension (7 .7±0.07 log10 spores of Td22/mL) or mycelial suspension (6.3±0.56 log10 cfu 

Td22/mL) was mixed into surface layers of the potting medium; comparison being made 

with growth/challenge in pots containing 5% (v/v) Td22-grown compost (2 weeks old) in 

field soil and with appropriate controls. The S. minor pathogen was inoculated as 

described in Section 6.3.7.1. Ten seeds (later thinned to five) were sown in each pot with 

five replicate pots per treatment. Pots were m~ntained in a shade house for six weeks 

with assessment of plant mortality at weekly intervals. 

6.3.7.6 Root colonization studies and establishment of Td22 in the soil 

The establishment of Td22 both in the soil (Td22-amended pots) and on the root 

surface of plants was assessed at the end of the pot trial reported in Section 6.3.7.3. For 

this, lettuce plants from each treatment (including the nil control) were uprooted, rinsed in 

water, and segments cut from the top (approximately 0.5 cm) of each root sample (with 20 

segments cut from each treatment, except the control treatment, where four root segments 

were plated from two surviving lettuce plants) and aseptically placed on pectin agar 

medium amended with 60 µg/mL tetracycline. Also at the termination of the trial the 

establishment of Td22 in the soil at different depths was assessed by randomly collecting 

15 soil samples adhering to roots surf aces at depths of 2 cm, 5 cm, and 10 cm, and plating 

one drop of a l/51
h dilution of these samples in sterile saline on pectin agar medium 

amended with 60 µg/mL tetracycline. All inoculated plates were incubated at 25°C for 4-7 

days until fungal growth was observed. For purposes of morphological comparison, 

fungal growth on each plate was sub-cultured on the same medium as a Td22 culture after 

followed by incubation for one week when conidial development was observed. A plug of 

hyphae from each plate was also sub-cultured into pectin broth medium for pectic enzyme 

assay. The identity of Td22 isolates from soils and root segments was confirmed on the 

basis of morphologically appearance (Metcalf, 1997) and pectic enzyme profiles 

(Cruickshank and Pitt, 1987) (Appendix 3). 
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6.3.7.7 Effectiveness of Td2z-grown con1post in protecting pyrethrun1 

plants from attack by S. minor 

A pot tlial was undertaken using 0.5 L capacity pots containing field soil amended 

with 5% v/v compositions of a suppressive compost inoculated with Td22 4.5 months 

previously. S. minor was inoculated as described in Section 6.3.7.1. Four, three-week old 

pyretlm1m seedlings were sown' per pot following pre-incubation of the soil mixture in a 

shade house for four days, with eight replicates per treatment. The experiment was 

maintained for seven weeks in the shade house, with the number of healthy 

seedlings/plants being recorded at weekly intervals, starting one week after sowing. The 

trials were destructively sampled at week eight. All surviving plant tops were harvested, 

dried at 65°C and subjected to dry weight determinations. The sclerotia of the pathogen 

(S. minor) in pots inoculated with either S. minor alone (AOBl) or with S. niinor and Td2r 

grown compost (AlBl) were retrieved according to the method specified by Metcalf 

(1997) using a 0.5 mm sieve. Twenty retrieved S. minor sclerotia were randomly sampled 

and plated onto pectin agar amended with 60 µg/mL tetracycline to assess the 

effectiveness of Td22 parasitization. The identity of Td22 colonies growing from S. minor 

sclerotia was confirmed on the basis of their morphological characteristics and pectolytic 

enzyme profiles (Cruickshank and Pitt, 1987). The ability of Td22 to colonize pyrethrum 

roots was assessed using the method described in Section 6.3.7.6. 

6.3. 7 .8 Statistical analysis 

The data was analysed using the MINIT AB software for windows as described in 

Chapter 4. 

6.4 Results 

6.4.1 Effect of suppressive compost amendment on the protection of 

lettuce seedlings from attack by S. minor 

The effect of Td22-grown compost amendment on the germination rate of lettuce 

seed and on the protection of lettuce seedlings/plants from attack by S. niinor is presented 

in Table 6-1. 
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Table 6-1: Germination rate of lettuce seeds and protection of lettuce 

seedlings/plants following varying Td22-grown compost amendments 

of potting medium. 

Treatments* Percentage seed Percentage of healthy seedlings/plants1 

germination Week 3 after sowing Week 4 after sowing 

AOBO 92 ± 4.9 a 92 ± 4.9 ab 92 ±4.9 ab 

AOBl 96 ± 4.0 a 4 ±4.0 d 0 ±0.0 d 

A2.5BO 96 ± 4.9 a 88 ±4.9 b 88 ±4.9 b 

A2.5Bl 92±4.9a 32 ± 8.0 c 32 ± 8.0 c 

ASBO 96 ± 4.0 a 92 ±4.9 ab 92 ±4.9 ab 

ASBl 100 ± 0.0 a 48 ±4.9 c 44 ±4.0 c 

AlOBO 96 ± 4.0 a 96 ±4.0 ab 96 ±4.0 ab 

AlOBl 100 ± 0.0 a 92 ±4.9 ab 92 ±4.9 ab 

A20BO 88 ± 4.9 a 88 ±4.9 b 88±4.9b 

A20Bl 100 ± 0.0 a 100 ± 0.0 a 100 ± 0.0 a 

TEach value is an average of five replicates ± standard error. Values in the same column followed by the 
same letter(s) are not significantly different at p<0.05. 
*AOBO: Neither pathogen nor antagonist was inoculated (nil control); A2.5BO, A5BO, AlOBO, and A20BO: 
Pots amended with 2.5%, 5%, 10%, and 20% (v/v) compost-grown Td22, respectively, in the absence of S. 
minor; A2.5Bl, A5Bl, AlOBl, and A20Bl: pots amended with 2.5%, 5%, 10%, and 20% (v/v) compost­
grown Td22, respectively in the presence of S. minor; AOB 1: Pots inoculated with pathogen (S. minor) only 
(control treatment). 
Td22 grown for two weeks in the millet seed:WFW compost mixture was used in this trial. 

Between 88-100% of the lettuce seeds germinated in soil amended with 5-20% (v/v) 

compost-grown Td22 one week after sowing (Table 6-1). No inhibition of seed 

germination was evident at the higher application rate of Td22-compost. No significant 

difference (at p<0.05) in the germination rate of the lettuce seeds was noted following 

compost-grown Td22 amendment of up to 20% (v/v), a result which is consistent with that 

reported in Chapter 5 of a high rate of radish seed germination in three-month old WFW 

compost. 

As indicated in Table 6-1, the rate of amendment of the compost/fungus was 

proportional to disease control, ranging from 32% provided by 2.5% (v/v) amendment to 

100% protection provided by 20% (v/v) amendment four weeks after sowing. This was 
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statistically significant at p<0.05 when compared to the control treatment (AOB 1) where 

100% mortality was observed at four weeks after sowing. 

6.4.2 The effect pre-incubation of the biological control agent and 

pathogen on the disease control in lettuces 

The protection provided to lettuces following pre-incubation of Td22 plus pathogen 

in the soil milieu prior to planting is presented in Table 6-2. 

Table 6-2: Effect of pre-incubation on the efficacy of Td22-grown compost to protect 

lettuce seedlings/plants from S. minor attack. 

Treatmentsy Percentage of healthy seedlings/plants* 

Week4 Week7 Week 10 

AOBO 100±0.0 a 100±0.0 a 100±0.0 ad 

(AlBl)O 48±13.6 b 36±16.0 be 36±16.0 bee 

(AOBl)O 4±4.0 c 4±4.0 c 4±4.0 b 

(A1B1)4 100±0.0 a 92±8.0 a 92±8.0 ad 

(AOB1)4 48±13.6 b ( 48±13.6 b 48±13.6 ce 

(A1B1)7 100±0.0 a 100±0.0 a 100±0.0 ad 

(AOB1)7 92±4.9 a 92±4.9 a 44±11.7 ce 

(AlBl)lO 100±0.0 a 96±4.0 a 96±4.0 ad 

(AOBl)lO 92±4.9 a 92±4.9 a 52±8.0 ce 

(A1B1)14 100±0.0 a 84±16.7 a 84±16.7 d 

(AOB1)14 96±4.0 a 96±4.0 a 56±7.5 e 

*Each value is an average of five replicates ±standard error. Values in the same column followed by the 
same letter(s) are not significantly different at p<0.05 according to lsd test following ANOVA. 
rAOBO: Neither pathogen nor antagonist were inoculated (nil control); (AOBl)O, (AOB1)4, (AOB1)7, 
(AOBl)lO, and (AOB1)14: pots amended with pathogen (S. minor) only (control treatment) and pre­
incubated for 0, 4, 7, 10, and 14 days, respectively prior to sowing; (AlBl)O, (A1B1)4, (AIB'1)7, 
(AlBl)lO, and (A1B1)14: pots amended with 5% suppressive compost and pathogen (S. minor) and pre­
incubated for 0, 4, 7, 10, and 14 days, respectively prior to sowing. 

Pre-incubation prior to sowing significantly affected the efficacy of Td22-grown compost 

(p<0.05). At four weeks after sowing and in the absence of a 'pre-incubation' pdor to 

pathogen challenge, the Td22-grown compost (suppressive compost) significantly 
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(p<0.05) protected the lettuce plants fro.m attack by S. minor [treatment (AlBl)O relative 

to the control treatment (AOBl)O], a result consistent with its counterpart (treatment 

AOBl) reported in Table 6-1. However, the efficacy of the suppressive compost in 

(AOBl)O treatments became non-significant statistically (p>0.05) compared to the control 

treatment [(AOBl)O] following prolonged incubation (Table 6-2). By contrast, in all cases 

of pre-incubation of the pathogen/antagonist in potting media for four or more days prior 

to planting, significant protection (p<0.05) was provided to the plants by the suppressive 

compost for the full period of the trial, up to 10 weeks after sowing. 

6.4.3 Effect of suppressive compost storage on disease control 

The effect of storage on the efficacy of the compost-grown Td22 to protect lettuce 

seedlings/plants from attack by S. minor is reported in Table 6-3. 

Table 6-3: Effect of storage of compost-grown Td22 on the protection of lettuce 

against S. minor attack 

Treatment'" % of healthy seedlings/plants t 

2 weeks after sowing 3 weeks after sowing 4 weeks after sowing 

AOBO 100 ±0.0 a 100±0.0a 100± 0.0 a 

AOBl 44 ± 7.5 d 8 ± 4.9 e 8 ± 4.9 d 

(A1B1)2 wks 84 ±4.0 be 52 ±14.9 b 44 ± 13.3 c 

(A1B1)4 wks 88 ±4.9 e 80 ± 6.3 b 80± 6.3 b 

(A1B1)8 wks 96 ±4.0 abe 64 ±11.7 b 56 ± 9.8 be 

• AOBO: Neither pathogen or antagonist was inoculated (nil control); (AIB1)2 wks, (AIB 1)4 wks, and 
(AIB 1)8 wks: pots were inoculated with 2g/pot pathogen culture and 5% (v/v) compost-grown Td22 after 
2, 4, and 8 weeks of storage, respectively; AOB 1: pots inoculated with pathogen (S. minor) alone (control 
treatment). 

tEach values± standard error is an average of five replicates. Values in the same column followed by the 
same letter(s) are not significant statistically at P<0.05, according to Jsd test following ANOV A. 

It was apparent from Table 6-3 that the Td2z-grown compost, as assessed at week 

two after planting, did not lose its efficacy to protect lettuce seedlings/plants after 8 weeks 

of storage at room temperature (approx. 20°C), the survival for which is not significant (at 

p<0.05) from that of its equivalent non-stored counterpart indicated in Table 6-1. 

Likewise, there was no significant loss of efficacy (following 2, 4 or 8 week's storage) of 

the compost-antagonist as dete1mined at three and four weeks after planting. 
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6.4.4 Comparative effectiveness and compatibility of Td2rinoculated 

compost with the fungicide Sumisclex® 

The efficacy of Td22-inoculated WFW compost:millet seed in protecting lettuces 

against S. niinor was compared with the fungicide Sumisclex®. A combined application of 

this suppressive mix with this chemical fungicide was also included to assess their 

compatibility. The results are presented in Table 6.4. 

Table 6-4: Comparative effectiveness and compatibility of Td22-inoculated mix with 

Sumisclex® 

Treatments¥ Percentage of healthy plants at week 7'' 

AOBO 100 ± 0.0 a 

AOBl 70±10.7 b 

AlBl 100 ± 0.0 a 

A2Bl 100 ± 0.0 a 

A3Bl 100 ± 0.0 a 

¥ AOBO: nil control (neither pathogen nor antagonist was inoculated); AOB 1: control treatment (pots 
inoculated with pathogen only); AlB I, pots inoculated with suppressive mix and pathogen, A2B I, pots 
inoculated with Sumisclex® and pathogen, and A3B 1, pots inoculated with a combination of suppressive 
mix, Sumisclex® and pathogen. 
'Each value is an average of 8 replicate pots. Values followed by the same letter are not significant 
statistically at p<0.05. 

Although the level of pathogen attack after seven weeks was low, it was sufficient 

to demonstrate the effectiveness of the biological control agent and Sumisclex® (P<0.05). 

No comparison of these two treatments however was possible in this trial. The biological 

control fungus Td22 was re-isolated at a very high frequency on the root segments of 

lettuce (95% of the root segment samples) sampled from treatment A3B 1 (pots inoculated 

with a combination of suppressive mix and Sumisclex® plus pathogen), indicating that 

this fungus was compatible with the fungicide at the concentration applied in this trial. 
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6A.5 Effectiveness of Td22 in various formulations 

The efficacy of Td22 applied in various preparations in protecting lettuce 

seedlings/plants from attack by S. minor in a pot tdal is presented in Table 6-5. 

Table 6-5: Efficacy of Td22 against S. minor applied in various formulations 

Treatment*** Percentage healthy plants* 

Week3 Week4 Week5 Week6 

AOBO 100 ± 0.0 ab 100 ±0.0 a 100 ±0.0 a 100 ± 0.0 a 

(AlBl)sporet 92 ±4.9 bed 92 ±4.9 a 92 ±4.9 a 92 ±4.9 a 

(AlBl)mycelia** 88 ±4.9 cd 84 ± 7.5 ab 84 ± 7.5 ab 84 ±7.8 ab 

(AlBl)compost• 100 ± 0.0 ab 96 ±4.0 a 96 ±4.0 a 96 ±4.0 a 

AOBl 84 ±4.0 d 76±4.0b 68 ±4.9 b 64 ± 7.5 b 

*Each value is an average of 5 replicates± standard error. Values in the same column followed by the same 
letter (s) are not statistically significant according to lsd test at p<0.05 following ANOV A. 
**Mycelia of Td22 was produced by inoculating plugs of 3 day-old pectin agar-grown Td22 into the same 
medium minus agar. The flask was incubated for one week until sufficient mycelia were obtained. Some 
spores were also observed in this mycelial culture. 
***AOBO: nil control; AlBl: pots inoculated with S. minor and suppressive compost; AOBl: pots 
inoculated with S. minor only (control treatment). 
•Two week-old compost was applied in this trial. 
tSpores of Td22 were harvested from 10 day-old cultures of Td22 grown on pectin agar and suspended in 
saline. 

The effectiveness of Td22 in protecting against S. minor in this trial appeared to be 

affected by the mode of application, with the spore suspension and Td2z-grown compost 

application providing possibly better (but not significant at p<0.05) protection of lettuce 

seedlings than mycelial application (Table 6-5). When compared to treatments at different 

times, the efficacy of the suppressive mix applied at 5% (v/v in soil) consistently and 

significantly (p<0.05) protected lettuce seedlings/plants from attack by S. minor (see 

Table 6-1, 6-3, and 6-5). 

In all trials where the soil was supplemented with compost-grown Td22 the growth 

rate of lettuce plants appeared to be significantly improved relative to controls as 

indicated in Plate 6-1. 
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Plate 6-1: Growth improvement on lettuce plants as a result of compost-grown Td22 

amendment. Pots on the left containing soil were amended with 5 % v/v 

compost-grown Td22, while the pots on the right were not (soil only). 

6.4.6 Effectiveness of Td22 in colonising lettuce roots and soil 

Td22 was reisolated from 85% to 90% of the root segments of lettuce plants 

inTd22-inoculated pots, using pectin agar medium amended with 60µg/mL tetracycline 

(Table 6-6). A surprising finding was that 2/4 root segments from two surviving seedlings 

of pathogen-only (AOB 1) control plants and from 4/20 root segments inoculated with 

neither antagonist nor pathogen (AOBO) were colonized by the Td22. The presence of Td22 

in these treatments was presumably attributable to cross-contamination from Td22-

inoculated pots, perhaps due to splashing during watering. 
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Table 6-6: Colonization of lettuce roots by Td22 

Treatment* No. of root segmentst No. of samples colonised by Td22 % segments 

colonised 

(A1B1)2 20 17 85 

(A1B1)4 20 17 85 

(A1B1)8 20 18 90 

AOBl 4 2 50 

AOBO 20 4 20 

* AOBO: Uninoculated pots (nil control); (AlB 1)2, (AlB 1)4, and (AlB 1)8: pots inoculated with pathogen 
and compost-grown Td22 after 2, 4, and 8 weeks of storage, respectively; AOBl: pots inoculated with 
pathogen alone (control treatment). 

tRoot samples (reaching approximately 10 cm depth) were collected from randomly 10 survive plants on 
week 5 and shaken free of soil. Two root segments each of approximately 5.0 mm length from each plant 
were plated on tetracycline semi-selective medium for colonization determinations. 
Pots were amended with 5% (v/v) compost-grown Td22 and 2g/pot of S. minor in millet seeds, where 
indicated. 

After five weeks, soil samples (approximately 2g each) were taken from non-root 

regions and at different depths of the Td2i-inoculated pots to assess the distribution of this 

fungus. Td22 was re-isolated from 12115 (80%) samples at 2cm depth, from 13/15 (87%) 

samples at 5cm depth, and from 10/15 (67%) samples at lOcm depth. It was also isolated 

from 2115 (13%) samples taken from the smface to approximately 2 cm depth of 

uninoculated pots, suggesting that some degree of cross contamination had occurred as 

indicated abo_ve. The identity of Td22 isolated from root segments or soil samples based on 

morphological characteristics was confirmed in specific instances by pectolytic enzyme 

profiles. 

6.4.7 Effectiveness of compost-grown Td22 in protecting pyrethru.m 

plants from S. minor attack 

The effectiveness of 4.5-month old compost-grown Td22 (unspent suppressive 

compost from the lettuce trials) to protect pyrethrum seedlings/plants from S. minor 

infection is indicated in Table 6-7. 
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Table 6-7: Effectiveness of Td22-grown compost in protecting pyrethrum against S. 

minor attack. 

Treatments* Percentage of healthy seedlings/plants1 

Weekl Week2 Week4 Week7 

AOBO 100±0.0 a 100±0.0 a 100±0.0 a 100±0.0 a 

AOBl 56±6.3 b 28.3±5.7 b 21.9±5.7 b 21.9±5.7 b 

Al BO 100±0.0 a 100±0.0 a 100±0.0 a 100±0.0 a' 

AlBl 100±0.0 a 100±0.0 a 100±0.0 a 100±0.0 a 

*AOBO: Uninoculated pots (nil control); AOBl: pots inoculated with pathogen only (control treatment), 
AlBO: posts inoculated with Td2z-grown compost only, and AlBl: pots inoculated with both S. minor and 
Td2rgrown compost. 
rEach value is an average of 8 replicates pots with 4 pyrethrum seedlings/plants per pot. Values ± standard 
error followed by the same letter in the same column are not significant statistically at p<0.05, according to 
lsd test following ANOV A. 

The effectiveness of suppressive compost in the total suppression of S. minor attack of 

pyrethrum seedlings/plants over a seven-week period, following its storage for 4.5 

months, was demonstrated in this trial. This was in contrast to the S. minor control, which 

showed 78% mortality over this period. 

The trial indicated both that the Td22 was not pathogenic to pyrethrum (plants 

grown with compost-grow Td22 in the absence of the pathogen showed 100% survival) 

and that it was versatile in its protective capacity [it was also known to protect onions 

(Metcalf, 1997) and lettuces from attack by S. minor]. 

Plate 6-2 shows pyrethrum plants in the pot trial at week 8, before harvesting for 

dry weight determination. 

Dry weight determinations of the pyrethrum plants at week 8 are presented in 

Table 6-8. The average dry weight per plant in the S. minor control treatment (AOB 1) was 

significantly lower (p<0.05) than that in Td22 amended treatments AlBO and AlBl. 

However, the dry weight of the plant in this control treatment (AlBO) was not statistically 

significant (p>0.05) from that recorded in the nil-pathogen, nil-Td22 control (AOBO). 
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Plate 6-2: Pyrethrum plants in the pot trial at week 8 before harvesting for dry 

weight determinations. From left to right are pots inoculated with S. 

minor only (AOBl), pots co-inoculated with S. minor and compost-grown 

Td22 (AlBl), nil control (AOBO), and pots inoculated with compost-grown 

Td22 only (AlBO). 

Table 6-8: The relative average dry weight of pyrethrum plants eight weeks after 

sowing. 

Treatments* Average dry weight per plant (g)** 

AOBO 1.08 ± 0.1 ab 

AOBl 0.7 ± 0.12 b 

AlBl 1.13 ± 0.07 a 

Al BO 1.10 ± 0.12 a 

*AOBO: uninoculated control (nil control); AOB 1: pots inoculated with S. minor only (pathogen control); 
A lBl: pots inoculated with both S. minor and compost-grown Td22; Al BO: pots inoculated with cornpost­
grown Td22 only. 
**Each value is an average of 8 replicates ± standard error, except AOB 1 (average of 5 replicates, wi th 
plants in other pots having died). Values followed by the same letter(s) are not significant statistically at 
p<0.05 using the lsd test followi ng ANOV A. 
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At week eight, S. minor sclerotia in the control treatment pots (AOB 1) and in the pots 

inoculated with both S. minor and compost-grown Td22 were retrieved using a 0.5mm 

mesh sieve. The relative sclerotial density per pot is presented in Table 6-9. 

Table 6-9: Relative density of S. minor sclerotia after eight weeks (trial termination). 

Treatments* Number of S. minor sclerotia per pot** 

AOBO ND 

AOBl 108 ± 11.74 a 

AlBl 58.3 ± 8.58 b 

Al BO ND 

* AOBO: uninoculated control (nil control), AOB 1: pots inoculated with S. minor only (pathogen control), 
AlB 1: pots inoculated with both S. minor and compost-grown Td22, AlBO: pots inoculated with compost­
grown Td22 only. All pots were inoculated equally with pathogen at the start of the trial. 
** Each value is an average of 8 replicates ± standard eJTor. Values followed by the same letter are not 
significant statistically using the lsd test following ANOV A. 
ND: not determined 

The density of S. minor sclerotia in the control treatment (AOB 1) was significantly higher 

(almost double) that in pots where S. minor and compost grown Td22 were co-inoculated 

(AlB 1) (Table 6-9), suggesting inhibition of growth or sclerotial development of the 

pathogen, or parasitism and death of the sclerotia. The latter possibility was supported by 

the finding that 92.5% of the sclerotia retrieved from the pathogenffd22 treatment (AlB 1) 

were parasitised by Td22, even though 15.6% of those retrieved from the pathogen-only 

treatment (AOBl) were also found to be parasitised by the fungus (this probably 

attributable to splash contamination). The non-infected sclerotia retrieved in this trial were 

found to be capable of causing root-rot disease of lettuces. 

As indicated for lettuces, Td22 was effective in colonizing roots of pyrethrum 

plants with 83% of the root segments collected from pots co-inoculated with S. minor and 

Td22, and 80% of the segments collected from pots inoculated only with compost-grown 

Td22 being colonized by this antagonist. Td22 was also noticed at an average incidence of 

42% from root segments of surviving plants in the S. minor control treatment (AOBl), and 

of 32.5% from root segments of the nil control (AOBO), this again being attributable to 

splash transport. The effectiveness of Td22 . to colonize pyrethrum following pot 

inoculation was comparable to that found in lettuce plants (as described in Section 6.4.6). 
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6.4.8 Economic analysis of WFW compost-grown Td22 application 

relative to chemical fungicides 

The relative costs associated with the use of suppressive compost (WFW compost­

grown Td22) and chemical fungici~es to control S. minor in the field application are 

important considerations for growers. 

The cost to produce WFW compost is estimated to be AU$9.26 per m3 of raw 

material (Jackson, 1998) and the volume of the raw material is estimated to decrease by 

45-50% during composting. Therefore, the cost of 1 m3 of finished compost increases to 

between AU$16.84 and AU$18.5. Assuming 1 m3 of wet WFW compost with 

approximately 40% moisture content weighs to 0.56 tonnes, the dry weight of this 1 m3 

compost will be 336 kg. The original formulation for the cultivation of Td22 provided by 

Dr D. Metcalf (who demonstrated the effectiveness of this strain to control root-rot in 

onion) was of 100% millet. This was reduced to 20% in the work reported here, 

amounting to 84 kg millet/m3
• The current retail price of the millet seed is -AU$0.90 per 

kg; the total cost to produce 1 m3 of medium for fungal antagonist, which consists of 80% 

WFW compost and 20% millet seed, will therefore be approximately AU$93.28. 

Assuming the cost of inoculation is AU$2.00 or -US$1.00 as estimated by Granatstein 

(1998), the total cost of 1 m3 of this suppressive compost (dw) will be approximately 

AU$95.28. This is comparable with the cost of producing 1 m3 of growing medium 

consisting of 90% WFW compost and 10% perlite, reported at AU$92.15 (Jackson, 

1998). It also compares well with the cost of other commercially available bark-based 

media produced for small-scale home or nursery use, of between AU$5 to AU$10 per 20 

L bag or AU$250 to AU$500 per m3 (Jackson, 1998), but is hardly economic for large­

scale use by market gardeners at the anticipated application rate of 20-40% v/v. 

It was apparent that most of the cost of producing suppressive compost production 

was attributable to the millet seed amendment, amounting to - 80% of the total 

expenditure. Assuming that 4 L growing medium is required to grow 100 seedlings, and 

120,000 seedlings are needed per hectare (A. Houston, pers. comm.), 4.8 m3 of growing 

medium is required per hectare, amounting to 0.96 - 1.92 m3 suppressive compost 

(compost-grown Td22) per hectare incorporated into the growing medium. Therefore, if 

treatment of the nursery bed soil was sufficient to control S. minor in the field (currently 

an unproven possibility), the cost per hectare to control S. minor using compost-grown 

biological control agents would be -AU$91.47 to AU$182.94. By comparison, control S. 
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niinor using an application of the fungicide Amistar® at the rate of 0.3 kg per hectare (the 

current price of this fungicide is AU$361/kg) plus Score® at the rate of 0.5 L/ha (the 

current price is AU$147/L) currently costs AU$181.80/ha (Geoffrey Cook, personal 

communication). It must be emphasised however that these treatments are for the field 

rather than the nursery bed soil, and in view of this, application of suppressive compost as 

the formulation described to control S. minor compares poorly in economic terms with 

that of chemical fungicides. 

In view of these results, further work needs to be undertaken to examine other 

options for the cultivation of the Td22 antagonist, replacing expensive grain supplements 

entirely with waste materials such as barley combs or cracked barley (the by-products of 

beer manufacture) to reduce production costs. 

6.5 Discussion 

The effectiveness of Trichodenna sp. (Td22) grown in a mix of millet seed and 

wood fibre waste compost (20:80 w/w) to protect against S. minor has been clearly 

demonstrated in a series of glasshouse trials in the present study. Application of compost­

grown Td22 at rates up to 20% (v/v) was non-toxic (relative to controls) to lettuce seed in 

all treatments (Table 6-1). 

The utilization of composted WFW and millet seed as described in the present 

study could be achieved in large scale at moderate cost while avoiding the problems of 

liquid cultures as outlined by and Hadar et al (1979). Application of compost-grown Td22 

after allowing growth for two weeks or more appeared to be advantageous, because as 

described in Chapter 5 the growth of Td22 following at least two weeks incubation was 

mostly in the form of spores. This reduces concerns relating to viability in the field (if 

raising others relating to allergens), because fungal spores will be relatively more resistant 

than mycelia to environmental stress (Tronsmo, 1996). 

A good disease control of the suppressive mix after 8 weeks of storage in the 

lettuce trial, or after 4.5 months of storage in the pyrethrum plant trial, was demonstrated 

(Table 6-3 and Table 6-7), and increasing the propmiion of Td22-compost from 5% to 

10% or 20% was seen to be advantageous (Table 6-1). Similar results for fungal 

biological control agents in compost have been repo1ied by Nelson and Hoitink (1982), 

Kuter et al. (1988) (who also reported a storage-related effect on the control of 

Rhizoctonia damping-off), and by Huang and Huang (2000). The survival of a strain of 



The efficacy of composted wood fibre waste-grown Td22 to protect lettuce and pyrethrum from attack by S. minor 122 

Trichodenna koningii in a mixture of ryegrass seed and cornmeal for 30 weeks has also 

been reported by Warren et al. (2001). 

Pre-incubation of pots inoculated with pathogen and biological control agent prior 

to planting seedlings, significantly affected the efficacy of the compost grown Td22 in 

protecting lettuce plants from attack by S. niinor (Table 6-2). Pre-incubation for at least 

four days prior to planting appeared to be important to avoid early contact between the 

pathogen (S. minor) with its plant host (lettuce or pyrethrum in this study). In the absence 

of plant host, non-germinated sclerotia would remain dormant until the host was detected, 

allowing colonization of the growing root prior to antagonist attack and allowing the 

possibility of sclerotial parasitization before or after its germination. The latter possibility 

is supported by Table 6-2, where fewer plants became infected in the pots co-inoculated 

with S. minor and compost-grown Td22 if pre-incubation was prolonged, suggesting that 

the pathogen was parasitized during this period. The same effect of pre-incubation prior to 

sowing on the control of Pythium ultimum by Trichoderma harzianum and Gliocladium 

roseum has been reported by Steinmetz and Schonbeck (1993). 

Notably, the efficacy of 5% v/v WFW compost-grown Td22 amendment for the 

control of S. minor infection of lettuces was comparable with Sumisclex® (at the 

recommended concentration of 10.5g/10 L) applied at 20 mL per pot, both treatments 

providing full protection (100% survival) to lettuce plants up to 7 weeks after planting 

(Table 6-4). No further conclusion can be drawn from the 100% protection provided by 

the combination of Sumisclex® and 5% WFW compost-grown Td22, since the fungicide 

alone 1.s seen to be fully effective in control of the pathogen. The presence of Td22 at a 

very high frequency (95% of the root segments sampled) on root segments of surviving 

plants sampled from this combined application indicated its compatibility with the 

Sumisclex®, opening the possibility for reduced dependence (lower application rates) on 

the chemical component. Biological control Trichodenna spp. have been reported to be 

compatible with a number of fungicides (e.g. McLean et al., 2001 and 

http://www.bioworksbiologicalcontrol.com/rootshield/pdf/techsheets/CompatibilityChart. 

llili). 

It was found in this study that application of mycelial suspension of Td22 to protect 

lettuce from attack by S. minor resulted in levels of protection that were lower, but not 

significantly so, than those resulting from application of spore suspensions (Table 6-5). 

It has been reported that organic amendment generally improves soil properties, 

such as bulk density, water holding capacity, and cation exchange capacity (Herrick and 
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Wander, 1997). Improvement in soil fertility following compost an1endment has also been 

reported by Steffen et al (1995). The growth improvement of plants indicated in plates 6-1 

and 6-2 following compost-grown Td22 amendment was perhaps partly due to this effect, 

although the availability of nutrient residues in compost would als~ help in this regard. 

Alternatively, the Td22 promoted the plant growth directly in the absence of a pathogen, 

although this possibility was not supported by the observation (Section 6.4.4) of no 

growth improvement in the pots of lettuces treated with spore suspension or mycelial 

suspension in the absence of compost. The findings in,this study support the reports of 

Hoitink et al. (1991) and Maynard (1997) of an improved growth rate or yield of plants as 

a result of suppressive compost amendment. 

It was perhaps significant that re-isolation of Td22 from root segments (Table 6-5) 

indicated that less than 100% of the segments were apparently colonized by the 

antagonist, reinforcing the probability that the increased incidence of disease noted for 5% 

compost-inoculum relative to 20% (Table 6-1) was attributable to a poorer colonization 

by the antagonist inoculum at the lower level of amendment. 

The cost associated with the production of WFW compost-grown Td22 was still 

found to be high (-AU$95.28 per m3). Since 1 tonne ww is approximately equal to 2 m3
, 

application of this product in the field to control plant pathogens at the rate of 89 tonnes 

per hectare as specified by US EPA (1997) and Granatstein (1998) is unrealistically 

expensive. Taking an alternative pathway, an application rate of 20% (v/v), 0-10 cm depth 

amounts to 125 tonnes/ha, which again is unrealistically high. Therefore, application of 

this suppressive compost can presently only be considered at the nursery level by 

amending the growing medium at the rate of 20 to 40% (v/v) so that root colonization by 

the antagonist (Td22) is effective prior to field planting. The cost associated with the 

growing medium preparation will increase by -AU$91.47 (20% amendment) to 

AU$182.94 (40% amendment) ha-1, a cost comparable with that of chemical fungicide 

application in the field to control S. minor as discussed above, at approximately 

AU$181.80 ha-1 (Geoffrey Cook, personal communication). -

Although the application costs of this suppressive compost/biological control 

agents are higher than those of chemical pesticides, they provides several long-term 

advantages (Nameth, 2001). These include: 

1. In most cases they are safer to use than chemical-based fungicides. 

2. Biological control helps reduce the loading of chemical-based fungicides. 



The efficacy of composted wood fibre waste-grown Td22 to protect lettuce and pyrethrum from attack by S. minor 124 

3. Biological control helps reduce the risk of developing pathogen resistance to 

traditional chemicals. 

4. In most cases, biological control is less phytotoxic. 

5. In most cases, biological control results in lower restricted interval times than 

chemical-based pesticides. 

To this list we can add, in the case of compost-grown biological control agents, the 

attributes provided by the compost of improved water holding capacity, improved tilth, 

improved nutrient status and improved biological buffering capacity. Depending on 

perspective, these considerations might outweigh the added expense associated with 

biological control. It seems probable that biological control will become increasingly 

competitive with chemical-based fungicides in farming practices, particularly if the costs 

of production of the biological control agents can be further reduced. 

6.6 Conclusions 

Compost-grown Td22 consistently provided protection to lettuce or pyrethmm 

plants with the degree of protection related to the rate of its amendment. No toxicity was 

evident to lettuce seed germination at high rate (up to 20% v/v) application of the 

compost-grown Trichoderma. Pre-incubation of the suppressive compost-amended 

growing medium for at least four days prior lead to an improved biological control of S. 

minor by the Td22. The efficacy of the Td22 in protecting against S. minor attack may have 

been affected to some degree by the mode of its application, with spore application 

appearing to be more consistent than mycelial suspension application. 

Effective storage of the Td22 spores in a mixture of WFW compost and millet seed 

at the ratio of 80:20 without loss of efficacy against S. minor has been demonstrated for a 

period of 4.5 months. The ability of Td22 to protect lettuce and pyrethmm plants from 

attack by this pathogen, coupled with its known effective colonisation of onion roots 

(Metcalf, 1997) implies that it might have the capacity to protect a spectrum of plants 

from attack by S. minor. The Td22 culture has clearly maintained excellent ecological 

competence despite its extended sub-culture over several years in the laboratory, as 

demonstrated by its competitive colonisation of plant roots following inoculation. 

The estimated cost per hectare to control S. minor using suppressive mix produced 

in this study was in the range of AU$91.47 to AU$182.94 depending on the rate of its 

amendment. Millet seed was identified as a target for replacement by less expensive 
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materials, such as waste barley combs or cracked barley (by-products of beer 

manufacture). Such replacement would significantly reduce production costs of the 

biological control product, possibly making it an attractive alternative to chemical 

treatments. 

/ 
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Chapter i 

Potential of self-heating compost for minimizing 

indigenous microbiota prior to inoculation with 

bacterial antagonists. 

7 .1 Abstract 

The objective of this study was to investigate the potential of utilizing the self­

heating capacity of compost to minimize the indigenous mesophilic microbiota prior to 

inoculation and cultivation of specific mesophilic antagonists at 25°C. It was 

demonstrated that all inoculated bacterial antagonists reached high densities in cooled, 

inoculated matured fish waste compost, with two antagonists (Pseudomonas corrugata 

and Lysobacter antibioticus) reaching cell. densities of -1010 cfu/g dw after 14 days 

incubation at 25°C. These two antagonists appeared to exclude most indigenous 

microbiota to become the dominant cultivable bacteria in these composts. In a glasshouse 

trial the L. antibioticus or P. corrugata-inoculated fish waste compost significantly 

(p<0.05) protected lettuce plants from attack by S. minor with the degree of protection 

ranging from 40 to 55%, relative to the control treatment. The efficacy of this suppressive 

fish waste compost in a field trial (applied at the rate of 12.1 tonnes ha-1
) was comparable 

to a commercially available biological control agent (Companion®) applied as drench. The 

percentages of healthy plants in field plots treated with L. antibioticus or P. corrugata­

inoculated fish waste compost at 5 or 8 weeks after planting was -15-18 % greater than 

those in control treatments plots, but not significant statistically (p>0.05). 

The estimated production cost of the suppressive fish waste compost was 

AU$44.52 or AU$51.52 per m3 depending on the N sources used in its enrichment. The 

cost per hectare to incorporate this product into a growing medium at the rate of 20% v/v 

for nursery lettuces to control S. minor was estimated to be AU$42.74 - AU$49.46, 

approximately 50% being less expensive than WFW-millet seed-based suppressive 

compost. This however must still compare poorly with that of chemical fungicides 

application, currently cost AU$181.80/hectare (field application instead of nursery 

application) (Chapter 6). 
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7.2 Introduction 

As described in Chapter 5 that the use of compost-inoculated antagonists to reduce 

disease incidence in valuable crops has been reported or reviewed by many workers, such 

as, Hoitink and Fahy (1986), Logsdon (1993), Nelson et al. (1994), Craft and Nelson 

(1996), De Cuester and Hoitink (1999), and Lievens et al. (2001). In addition, application 

of compost teas (e.g. Mcquilken et al., 1994; Blad and Shtienberg, 1994) as an alternative 

method of disease control has also been rep011ed, although results have been variable and 

the science is often lacking. 

Until recently, much of the work on biological control has focused on the 

mechanisms by which the inoculated antagonists control the pathogens. Only a few (Phae 

et al., 1990; Hoitink, 1990, and Nakasaki et al., 1998) have been related to low-cost 

suppressive compost production. 

Costs associated with sterilization remain a major obstacle to the low-cost mass 

production of microbially-manipulated suppressive compost. Autoclaving at this scale of 

production is not practicable, and fumigation has problems of penetration to depth and of 

subsequent residual toxicity. As previously reviewed, the method developed by Nakasaki 

et al. (1998) appeared to open the way to exploring methods for minimizing or 

eliminating the indigenous microbiota in the compost prior to inoculation with specific 

antagonists, without resorting to sterilization. A key finding of the work of Nakaski et al. 

(1998) was that inoculation of compost substrate when the diversity and density of the 

indigenous microbiota was at the lowest (freshly cut grass) resulted in the proliferation of 

the desired bacterium, which survived subsequent thermophilic temperatures as spores, 

which germinated to provide effective biological control following soil application. This 

method however, is only applicable to the production of suppressive compost with spore­

forming bacterial antagonists, because the temperatures of the thermophilic phase (of 

about 80°C) are lethal to vegetative bacteria and fungi, including fungal spores 

(Granatstein, 1998; Diver, 1998). 

In the present study, the low diversity of microbiota found in the late thermophilic 

stage of fish waste compost was selected as a target for microbial manipulation. The 

method combined several facets that favoured the growth of inoculated biota over the 

indigenous (mainly thermophilic) biota. The compost was rapidly cooled to ambient 

temperatures, it was enriched with nutrients not found in the compost and known to be 

utilized by the desired bacteria, and it was heavily inoculated with active cultures of these 
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bacteria, growing on the 'novel' energy sources added to the compost, and in sufficient 

numbers to give them a numerical dominance over the residual native mesophilic 

microbiota. The advantage of following this avenue was that it allowed the cultivation of 

both spore-forming and non spore-forming bacterial biological control agents in the 

compost. 

The objective of this study was to investigate the potential of self-heating compost 

for minimizing or eliminating indigenous microbiota prior to inoculation with specific 

antagonists, with a view to developing a method for the large-scale production of low-cost 

compost which was consistently inhibitory to plant pathogens. 

7 .3 Materials and methods 

7 .3.1 Fish waste compost 

Hot fish waste compost (maturity stage) was kindly provided by Hazell Brothers 

Ltd. For this experiment samples from a fish-wood waste compost at the late-thermophilic 

stage were taken from a large-scale pile at the depth of -30 cm from th~ pile surface, 

where temperatures were between 52-55°C. 

7 .3.2 Bacterial antagonists 

Five bacterial antagonists of plant pathogens (Pseudomonas corrugata, Lysobacter 

antibioticus, Bacillus thuringiensis, B. pumilus, and B. mojavensis) isolated from various 

sources as described in Chapter 3 were used in this study. The long-term storage and 

maintenance of these isolates has been described in Chapter 3. 

7 .3.3 Preliminary study on the ability of bacterial antagonists to utilize 

various C and N sources 

The ability of the five antagonists of plant pathogens to utilize various C sources 

(starch and casein) and N sources (ammonium nitrate and urea) was investigated in a 

preliminary study. The tests for casein, starch, and urea utilization were conducted using 

methods described in Sections 3.3.5.1.8, 3.3.5.1.9, and 3.3.5.1.10 (Chapter 3), 

respectively. Following these tests, the antagonists were investigated for growth response 

in a liquid basic mineral salt (BMS) medium (Appendix lS) supplemented with a 

combination of C and N sources described above. Depending on the ability of isolates to 

utilize the above C and N sources, one loopfull of each was inoculated into 50 mL of 
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BMS medium plus starch (0.5% w/v) and urea (0.1 % w/v); BMS medium plus NH4N03 

(0.5% w/v) and milk as a source of casein (5% milk v/v); or BMS medium plus urea 

(0.1 % w/v) and milk as source of casein (5% v/v). All inoculated flasks were incubated 

under static condition at 25°C for three days and the samples were subjected to cfu assay 

on TSA (Appendix lB) using the dilution plating method. The presence in milk of a 

variety of carbon and energy sources other than casein is acknowledged, as indicated in 

Appendix 4. 

7.3.4 Inoculum preparation 

The bacterial antagonists to be used in the production of suppressive fish waste 

compost were grown in a BMS medium supplemented with: NH4N03 and milk (for the L. 

antibioticus and B. pumilus), urea and starch (for the B. thuringiensis), or milk and urea 

(for the P. corrugata and B. mojavensis). The choice of substrates was based on the 

results obtained in Section 7 .3.3. The concentration of those materials in the medium was 

as described above. Yeast extract was added to the BMS medium at the rate of 0.1 % (w/v) 

in this preparation to enhance the cell density of the antagonists. The initial pH of the 

media prior to inoculation was between 7 .1 - 7 .2. The inoculated flasks were incubated 

under static condition at 25°C for three days when high cell densities were reached. Prior 

to use, the cell densities of these inocula were determined using serial dilution and plating 

on TSA. 

7 .3.5 Inoculation of fish waste compost and counting of antagonists 

Fresh, hot, fish waste compost material was allowed to cool to room temperature 

(taking approximately one hour) and replicate lOOg samples aseptically transferred to 

plastic bags. The samples (in triplicate) were then saturated for 15 minutes with inocula, 

previously diluted with the san1e fresh medium in a ratio of 1:4 (as in Section 7.3.4), 

drained, and incubated at 25°C for one month. The samples were assessed at weekly 

intervals for cfu on TSA and water content. The identities of the antagonists in these non­

sterile composts were confirmed by comparing colony morphologies on TSA with those 

of the corresponding antagonists. If necessary, Gram staining or testing of biochemical 

reactions, such as their ability to utilize casein, urea, or starch was also unde1iaken. To 

investigate whether the inoculated Bacillus isolates sporulated throughout the experiment, 
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the dilutions were heated in a water bath at 80°C for 30 minutes, plated on TSA, and 

incubated at 25°C for two to seven days. 

7 .3.6 Glasshouse trial 

The unspent suppressive fish waste compost (after cfu and water content 

determinations) as described in Section 7.3.5 was tested for its efficacy in protecting 

lettuce seedlings/plants from attack by S. minor in a shade-house experiment. The 

compost was mixed with soil to give a final concentration of 5% w/w (dry weight basis) 

(Nakasaki et al., 1998), and dispensed into 0.5 L capacity pots. The pathogen (S. minor) 

(prepared as in Section 6.3.5, Chapter 6) was evenly spread approximately 20 mm from 

the mix surface at the rate of lg/pot. Pots with no pathogen and suppressive compost 

amendment served as a nil control, while those inoculated with the pathogen only served 

as the control treatment. Following addition of the pathogen but prior to sowing, all pots 

were pre-incubated in the shade house for four days. Each treatment consisted of five 

replicate pots with four x two-week-old lettuce seedlings per pot. Healthy seedlings/plants 

were scored at weekly intervals up to four weeks after planting. The trial was terminated 

after eight weeks and the antagonists were re-isolated and enumerated from healthy plant 

roots following dilution plating on TSA. 

7.3.7 Field trial 

The efficacy of the suppressive fish waste compost in protecting lettuces against S. 

minor was assessed in a field trial at a lettuce farm (Houston's) at Cambridge (30 km from 

Hobart), in March 2002, where a severe S. minor attack or infection on lettuce plants has 

been previously observed. The suppressive fish waste compost modified by the directed 

growth of either P. corrugata or L. antibioticus (prepared as in Section 7.3.4), was applied 

at the rate of 12.1 tonnes/ha. Direct addition of cell suspensions (approximately 107 

cfu/mL) of these antagonists and of B. polyniyxa (a stock culture of the school of 

Agriculture, the University of Tasmania-Australia) was also assessed. A commercially 

available biological control agent (Companion®, known to contain a B. subtilis strain) and 

a combination of Companion with a chemical fungicide (Sumisclex®) were also included 

in the trial. 

The suppressive fish waste compost was applied at one week before planting, 

while the other preparations were drenched to the plant roots just before planting. A 
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randomised block design was employed using 1.0 nl plots on raised beds with five 

replicate plots per treatment. Twelve x two-week-old lettuce seedlings were planted per 

plot. The percentage of healthy plants in each plot was assessed at five and eight weeks 

after planting. The treatments for this field trial are summarized in Table 7-1. 

Table 7-1: Treatment list of the Cambridge field trial. 

No. Treatment Rate Application method 

1 Untreated control NIA· NIA 

2 Pseudomonas corrugata in 12.1 tons/ha Applied at one week before 

compost 
planting 

3 Lysobacter antibioticus in 12.1 tons/ha Applied at one week before 

compost 
planting 

4 B. polymyxa suspension 10' cfulmL Drenched just before planting 

(2L/plota) 

5 P. corrugata suspension 10' cfulmL Drenched just before planting 

(2L/plota) 

6 L. antibioticus suspension 101 cfulmL Drenched just before planting 

(2L/plota) 

7 Companion® 10.SmUlOL Drenched just before planting 

(2L/plota) 

--
8 Sumisclex® +Companion® (SOmL+ Drenched just before planting 

10.SmL)/lOL 
(2L/plota) 

9 U ninoculated fish waste 12.1 tons/ha Applied at one week before 

compost. 
planting 

"Equivalent to 20 tonnes drench/ha 

7 .3.8 Statistical analysis 

Analysis of variance CANOVA) of data obtained in this study was conducted using 

Minitab for windows software as described in Chapter 4. 
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7.4 Results 

7.4.1 Preliminary investigations on the utilization of various C and N 

sources by microbial antagonists of plant pathogens. 

A preliminary investigation was undertaken to determine which potential 

substrates could be utilized by the antagonists of S. minor. The results are presented in 

Table 7-2. B. thuringiensis was found to utilize both starch and casein as C sources and 

urea as an N source. All isolates metabolised casein as a C source, while three of the five 

isolates utilized urea as a N source. 

Table 7-2: Utilization of starch, casein, or urea by bacterial antagonists. 

Antagonists Starch Casein Urea 

Lysobacter antibioticus - + -

Pseudomonas corrugata - + + 

Bacillus thuringiensis + + + 

B. pumilus - + -

B. mojavensis - + + 

For isolates incapable of utilizing urea as an N source, BMS medium was 

amended with N~N03 . The results are presented in Table 7-3. 

Table 7-3: The relative density of the antagonists in various modified BMS medium. 

Antagonists Initial density Density after 72 h Media 
Log10 cfu/mL (log10 cfu/mL) 

L. antibioticus 5.3 ± 0.01 9.2 ± 0.06 BMS+NH4N03+milk 

P. corrugata 5.3 ± 0.15 8.4 ± 0.04 BMS+urea+milk 

B. thuringiensis 5.1±005 7.3 ± 0.06 BMS+urea+starch 

B. pumilus 5.7 ± 0.01 9.3 ± 0.02 BMS+~03+milk 

B. mojavensis 4.8 ± 0.10 7.7 ± 0.01 BMS+urea+milk 

¥Each value is an average of duplicate ± standard e1Tor. 
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As indicated in Table 7-3, the antagonists grew to high densities ( 10 7 -109 cells/mL) in a 

liquid BMS medium amended with appropriate C and N sources after three days 

incubation at 25°C. 

The growth rate of B. thuringiensis in BMS medium containing urea and milk or 

of P. corrugata in BMS medium containing NH~03 and milk was found to be lower 

than that shown in Table 7-3 (data not shown). Based on these results, the BMS medium 

amended with C and N sources as described in Table 7-3 was used in the preparation of 

inocula for the production of suppressive fish waste compost in fmther studies. 

7.4.2 Growth responses of the bacterial antagonists in amended fish 

waste compost under non-sterile conditions 

The growth of the antagonists and of the mesophilic indigenous bacteria in fish 

waste compost at 25°C are presented in Figure 7-1. All isolates grew well in this compost 

and reached densities of between 7.7 log10 cfu/g dw and 9.5 log10 cfu/g dw after one 

month of incubation (Figure 7-lA). Two antagonists (P. corrugata and L. antibioticus) 

showed the best growth response in the compost, reaching -1010 cfu/g dw after 14 days 

incubation to the exclusion of most of the indigenous microbiota. By the end of the 

exper~ment they were present as apparent monocultures in the compost, since no 

background indigenous microbiota were observed on serial dilution TSA plates of 

compost samples. The population densities of the background of the indigenous 

microbiota in uninoculated compost ranged from 8.0 log10 cfu/g dw to 9.6 log10 cfu/g dw, 

tending to decrease from peaks reached after14 days as the incubation progressed (Figure 

7-lB). 

In vitro inhibition of some culturable indigenous mesophilic bacteria by L. 

antibioticus or P. corrugata on TSA, which probably caused their exclusion from the 

compost, is demonstrated in Plate7-l. 

All but one isolate were inhibited by diffusible inhibitors produced by these 

antagonists. A cell free extract of P. corrugata was also demonstrated to be inhibitory in 

vitro to S. minor as well as to a an indigenous bacterium of fish waste compost (Plate 7-

2). However the cell free extract of the L. antibioticus was not inhibitmy to the same 

tested microorganisms, possibly due to their loss by evaporation on extraction. 
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Figure 7-1: The growth response of the bacterial antagonist (A) and of the 

background indigenous mesophilic bacteria (B) in non-sterile fish waste 

composts. Each value is an average of triplicates± standard error. 
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Plate 7-1: Antagonism of L. antibioticus (vertical streak left photo) or P. corrugata 

(vertical streak right photo) against some dominant cultivable aerobic 

bacterial isolates (horizontal streaks) from fish waste compost. The growth 

medium is TSA incubation was for seven days. Arrowheads show the 

growth inhibition of the culturable indigenous bacteria by the antagonists. 

Plate 7-2: Inhibition on the growth of S. minor (A) and of a bacterium (B) isolated 

from fish waste compost, by the cell-free extract of P. corrugata on PDA 

and on TSA, respectively. Black arrowheads show inhibition zone of the 

fungus and of the bacterium following application of cell-free extract of P. 

corrugata. No inhibition was observed when solvent only (control) was 

deposited on either fungal or bacterial lawn (white arrow head). 
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All of the Bacillus spp. (B. thuringiensis, B. pumilus, and B. mojavensis) were 

found to sporulate in the fish waste compost with spore densities ranging from 95% to 

99% of their total count (Figure 7-1) following 14-28 days incubation. 

7.4.3 Glasshouse trial 

The effectiveness of the suppressive fish waste compost in protecting lettuce 

seedlings/plants from attack by Sclerotinia minor at four weeks after sowing is shown in 

Figure 7-2. 
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1. Neither pathogen nor antagonist were inoculated (nil control) 
2. Pots amended with S. minor only (control treatment) 
3. Pots amended with 5% compost (with no antagonist) and S. minor 
4. Pots amended with 5% compost-grown B. thuringiensis and S. minor 
5. Pots amended with 5% compost-grown B mojavensis and S. minor 
6. Pots amended with 5% compost-grown P. corrugata. and S. minor 
7. Pots amended with 5% compost-grown L. antibioticus and S. minor 
8. Pots amended with 5% compost-grown B. pumilus and S. minor 

Figure 7-2: Protection of lettuce seedlings/plants from attack by S. minor by various 

bacterial biological control agents grown in fish waste compost four 

weeks after sowing. Each value ± standard error is an average of five 

replicate pots, each containing four seedlings/plants. Bars with the same 

letter(s) are not significantly different (p>0.05) according to the lsd test 

following ANOV A. 
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A significant (p<0.05 relative to controls) protection against fungal attack was provided 

by L. antibioticus and P. corrugata composts four weeks after sowing (Figure 7-2, Plate 

7-3). Between 95% and 100% mortality was observed in control treatments after four 

weeks, compared with 45% and 60% mortality in pots amended with P. corrugata and L. 

antibioticus composts. The effectiveness of the compost-grown P. corrugata or L. 

antibioticus in protecting lettuce plants from S. minor attack, was better than that reported 

for these bacteria cultivated in composted WFW and millet seed of 15-20% (Chapter SA), 

making fish-waste compost the prefelTed substrate for the cultivation of these bacteria, 

from the perspectives of both cost and effectiveness. 

Plate 7-3: The relative protection of lettuce plants in a trial of bacterial-amended 

fish-waste compost (5% w/w) at seven weeks after planting. S. minor 

inoculum (1.0g/pot) was evenly spread at 20 mm from the mix surface four 

days before planting. Pots in rows from left to right are amended with: 

compost-grown B. mojavensis and S. minor; compost-grown B. thuringiensis 

and S. minor; compost control and S. minor; nil compost control and S. 

minor (nil control); S. minor only (control treatment); compost-grown B. 

pumilus and S. minor; compost-grown L. antibioticus and S. minor; and 

compost-grown P. corrugata and S. minor . 

In a repeated pot trial (data not shown), addition of compost-grown L. antibioticus 

or P. corrugata consistently improved the survival percentage of healthy plants compared 

with the S. niinor control (pots inoculated with S. minor only), but (in contrast to the 

above experiment) this protection was not significantly different to the protection 

provided by fish-waste compost in the absence of bacterial amendment. A combined 
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application of compost-grown L. antibioticus and P. corrugata at the same rate (2.5% 

w/w each) did not improve the resultant protection provided (data not shown). 

Re-isolation of the antagonists from surviving plants eight weeks after planting 

showed significant numbers of some of the antagonists colonizing root segments (Figure 

7-3), indicating that they possessed ecological competences in the rhizoplane of lettuce 

plants. 
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Figure 7-3: The relative abundance of some bacterial antagonists re-isolated from 

root segments of surviving lettuce plants eight weeks after planting. Each 

bar value is an average of three (B. pumilus) or five (B. thuringiensis, P. 

corrugata, and L. antibioticus) replicates ± standard error (depending on 

the number of surviving plants). 
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P. corrugata, B. thuringiensis, and B. pumilus appeared at densities on lettuce roots 

ranging from 4.7 - 5.6 log10 cfu/g root material at eight weeks after planting (Figure 7-2). 

No evidence of L. antibioticus survival was observed (Figure 7-2) at this time. 

7 .4.4 Assessment of the biological control of S. minor infection of lettuces 

in a field trial. 

The relative survival of healthy plants in plots treated with various biological 

control agents was assessed at five and eight weeks after planting is presented in Table 7-

4. 

Table 7-4: The survival of healthy plants at five and eight weeks after planting. 

Percentage of healthy plants¥ 
Treatment 

Weeks Week8 

Untreated control 75.0 ± 7.5 a 60.0 ± 11.3 ab 

P. corrugata in compost 88.3 ± 4.3 ab 78.3 ± 2.0 b 

L. antibioticus in compost 88.3 ±4.3 ab 75.3 ± 8.3 abc 

B. polymyxa suspension 79.7 ± 7.7 a 65.8 ± 10.6 ab 

P. corrugata suspension 78.3 ± 6.8 a 68.3 ± 8.1 ab 

L. antibioticus suspension 76.7 ± 3.1 a 70.0 ± 3.3 a 

Companion® 83.3 ± 7.5 ab 68.3 ± 6.7 a 

Sumisclex® +Companion® 98.3 ± 1.7 b 93.3 ± 3.1 c 

Un-inoculated fish waste compost. 76.7 ± 3.1 a 60.0 ±4.9 a 
¥. 
Each value is an average of five replicates± standard error. Values m the same column followed by the 

same letter(s) are not significant statistically at p<0.05, according to lsd test following ANOV A. 

From Table 7-4 it is apparent that only the treatment of Sumisclex® plus 

Companion® was significantly (p<0.05) better at protecting against S. minor infection 

than the control treatments at 5 and 8 weeks after sowing. 
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7.4.5 Economic analysis of suppressive fish waste compost application 

compared to chemical fungicides 

The cmTent cost of producing 1 m3 of mature fish waste compost was estimated at 

AU$35.00 (Mike Pilcher, personal communication). Assuming 1 m3 of mature fish waste 

compost with 40% moisture content weights -0.5 tonnes and the same nutrient 

an1endments are made as described above, then one m3 fish waste compost for e.g. P. 

corrugata amendment will contain -0.4 kg urea and -19 L of milk. Assuming the costs of 

the amendment of mineral elements (e.g. crude of FeCh, K2HP04, KH2P04, MgS04, and 

CaCh) and milk waste product amounts to AU$4.83 (Simon Hills, Personal 

communication) and -AU$2.53 (Reynolds, 2002), respectively, and the cun-ent price of 

the urea is AU$0.40 per kg (http://www.in-i.org!Troprice/Ecomonics.htm), the total cost 

to produce 1 m3 of enriched fish waste compost to be used for the cultivation of this 

antagonist will be -AU$42.52. If the cost of inoculation is the same as that described in 

Chapter 6, the cost of 1 m3 suppressive compost (fish waste compost-grown bacteiial 

antagonist) rises to AU$44.52. This is less than half as expensive as that of WFW and 

millet-based suppressive compost production reported in Chapter 6. 

If ammonium nitrate (N~03) solution (0.5% w/v) is used to enrich the compost, 

the production cost will increase by -AU$7.00 per m3. This is because -2 kg of NH~03 

(35% N) per m3 compost is needed. The cunent price of the NH4N03 (in bulk) is 

AU$3.52 per kg (http://www.gilgames.com.au/offers/AmmoniumNitrate.html). This 

however, is still -47% less expensive than WFW and millet seed-based suppressive 

compost production (Chapter 6). Application of modified suppressive fish waste compost 

at the nursery level (as described in Chapter 6) to control S. ·niinor would reduce the cost 

by the same margins. 

If antagonist suspensions (of equivalent density) in trypticase soya broth (TSB) at 

the rate of 10% (v/v) are used to inoculate the lettuce growing media, 480 L antagonist 

suspension will be required, as 4.8 m3 growing media are needed to produce lettuce 

seedlings to be planted in 1 ha area (as described in Chapter 6). Assume 0.5% w/v TSB 

(normally used to grow bacteria in vitro) is used to prepare the antagonist suspension, 2.4 

kg TSB will be needed. Therefore, the cost to apply the microbes as a TSB culture is 

several folds more expensive than the application of microbes grown in fish waste 

compost, as the current price of the TSB is AU$90/500g (Sigma®). 
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7 .5 Discussion 

A variety of factors contributed to the directed microbial growth of the desired 

bacterial antagonists in non-sterile compost; 

i) The indigenous biota was subjected to temperature shock, with a rapid shift from 

thermophilic (58°C) to mesophilic (25°C) conditions, resulting in a low abundance 

of biota capable of competitive growth at the lower temperature. The cool-down 

phase of composting has been recognized as a prime target for inoculation, when 

competition by indigenous microbiota is lowest (Hoitink et al., 1996; Granatstein, 

1998; and Nakasaki et al., 1998). 

ii) The provision of low-cost C-sources not found in traditional compost, such as 

starch or casein, known to be utilized by the antagonists. 

iii) The provision of low-cost nitrogenous amendments particularly urea to limit the 

growth of indigenous biota lacking urease enzymes. 

iv) The provision of heavy inocula of actively growing antagonists, primed to utilize 

the 'novel' substrates that have been added to the compost mix. 

These strategies \Yere found to improve the establishment of the inoculated 

antagonists in the fish waste compost (Figure 7-lA), some of which reached high cell 

densities in near monoculture conditions after 14 days or more incubation. Enrichment of 

compost prior to inoculation with specific antagonists has also been reported by workers 

such as Hoitink (1990), Steinmetz and Schonbeck (1994), and Ramona and Line (2002). 

In most publications, a significant growth improvement of the inoculated antagonists was 

reported following this nutrient amendment into compost (or in agreement with the results 

reported in the present study). This indicates that nutrient amendment into compost prior 

to inoculation with specific antagonists is one of the most important factors that determine 

the successfulness of the antagonist establishment in such compost. 

As discussed in Chapters 5 and SA, minimizing the indigenous microbiota in 

compost prior to inoculation with potential antagonists is also crucial to achieving high 

numbers of the inoculum culture. A number of researchers have resorted to compost 

sterilization prior to inoculation (Hoitink et al., 1997). This includes the use of gamma 

radiation by Phae and Shoda (1990) prior to inoculation with high density of antagonist 

inoculum, although they finally failed to grow their antagonists in that compost. 
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There have been a few reports (of mixed success) describing the cultivation of 

desired microorganisms in compost under non-sterile conditions as outlined in Chapter 2. 

Hoitink (1990) manufactured suppressive compost by inoculating 44-week old compost 

during the cool-down phase, although he admitted to limitations of this method, 

pruticularly as being impracticable for commercial operations. Ramammiy et al. (1996) 

reported that composting of eucalypt sawdust for 3-4 months at 25-45°C following 

inoculation with the mushroom fungus Volvariella resulted in an enhanced growth of 

wheat seedlings, although the cause of growth promotion was not determined. In a more 

recent study Nakasaki et al. (1998) achieved an outstanding method for a suppressive 

compost production using a B. subtilis strain as the biological control agent, but this 

method is only applicable for the cultivation of spore-forming bacterial biological control 

agents, the spores surviving the thermal phase of composting. In contrast, the method 

developed in the present study allowed the cultivation of both spore and non-spore 

forming bacterial antagonists to high densities and at moderate cost. 

The in vitro demonstration of the production of inhibitory compounds by L. 

antibioticus and P. corrugata (Plate 7-1) might explain their ability to exclude most 

indigenous microbiota and become the predominant biota in the compost (Figure 7-1). 

Inhibition of S. minor and a compost bacterium by a cell free extract of the P. corrugata 

(plate 7-2) indicated antibiosis to be the most likely mechanism involved. P. corrugata 

was also found to inhibit S. minor in vitro both on the FeCb-amended TSA (at the 

concentration of 100 µMand 1000 µM) and on TSA without FeCb amendment (data not 

shown), indicating that siderophores did not play any role in this biological control 

mechanism. The isolation and screening of active compounds produced by P. corrugata is 

reported in Chapter 8. In the case of L. antibioticus, isolation of its active compound was 

unsuccessful. However, the viable cells of this antagonist was found to inhibit S. minor 

when challenged in vitro both on the FeCb-amended TSA (at the concentration of 100 

µM and 1000 µM) and on TSA without FeCh amendment, indicating that the mechanism 

of disease control by this antagonist was probably similar to that by the P. corrugata. The 

ability of P. corrugata and Lysobacter spp. to produce active compounds inhibitory to 

fungal or bacterial pathogens have also been reported by Chun (2000) and Hashizume et 

al. (2001), respectively. They used these antagonists to control plant pathogens, but the 

compounds involved in the biological control were not reported. 
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In a glasshouse trial, some antagonists found to be effective against S. minor in a 

non-replicated pot trial (Chapter 3), failed to produce positive results in this trial (Figure 

7-2). B. mojavensis for example failed to protect against S. minor in this trial (bar 5 Figure 

7-2), although its density in the fish waste compost was high (Figure 7-1). One possible 

reason for this inconsistent result is that this antagonist lost antibiotic production and 

competitiveness following subculture on nutrient medium (Weller, 1988), as described in 

Chapter 2. Also, since -98% of the B. mojavensis population consisted of spores (dormant 

form) in the compost inoculum, a delay in their germination may have allowed sufficient 

time for the S. minor to become pathogenic. 

The ability of some antagonists to colonise plant roots (being re-isolated from this 

source eight weeks after planting) indicated their potential as biological control agents. In 

the case of L. antibioticus where there was no evidence of root colonisation eight weeks 

after planting, the mechanism of protection is less clear. It is established that this 

bacterium produced antimicrobial compounds, which are normally only effective in the 

microenvironment of the root surface; hence an alternative to be considered is that the 

antagonist may have induced systemic acquired resistance to the plant. 

Application of fish waste compost-grown L. antibioticus or P. corrugata at the 

rate of 12.1 tonnes/ha in the field tiial gave .encouraging results, with a relatively lower 

disease incidence when compared to the control treatment at five and eight weeks after 

planting. It was observed that the percentage of healthy plants in the plots treated with 

either fish waste compost-grown L. antibioticus or P. corrugata was 15 to 18% higher 

than that in the control treatment plots eight weeks after planting (Table 7-2), but not 

significantly different statistically (P>0.05). The amount of the suppressive compost 

applied in this field trial may have been too low to give a good disease control in view of 

the levels reported by the US environmental protection agency (US EPA, 1997) and 

Granatstein (1998) of between 89 and 178 tonnes/ha of composted solid waste used to 

combat Rhizoctonia-related disease. However application of the suppressive compost at 

these rates appears to be economically untenable relative to chemical fungicide 

application. Similar to the Td22-grown WFW compost as described in Chapter 6, a niche 

for this product may be found at the nursery level where amendments up to 60% (v/v) in 

the growing medium are practicable. The establishment of protective biota in the root 

region of nursery plants could possibly provide residual protection over a critical pedod in 

the field. 
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7.6 Conclusions 

It has been demonstrated that a combination of strategies has enabled a shift of 

balance away from indigenous compost rnicrobiota towards rnicrobiota of practicable 

utility to agriculturalists. Although previous researchers have achieved this in specific 

cases (particularly sparing Bacillus spp.), the current study has extended the range of 

desirable organisms that can be so cultivated, opening the way for wide-ranging 

developments. The production cost of suppressive fish waste compost was estimated to be 

AU$44.52 or AU$51.52 per m3 depending on the N source used. Direct application of this 

product in the field to control plant pathogen (S. minor) at rates recommended by US EPA 

(1997) and Granatstein (1998) were economically impracticable, but they may have 

application at the nursery level, providing important residual biological control following 

transplantation to the field. 
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Chapter 7A 

Assessment of the biological control of a foliar mildew 

disease in zucchini plants with suspensions of biological 

control agents 

7A.1 Abstract 

The objective of this study was to investigate the effectiveness of some biological 

control agents prepared as cell suspensions in trypticase soya broth (TSB) for the bacterial 

agents Lysobacter antibioticus and Pseudomonas corrugata, or in saline solution (0.85% 

w/v NaCl) for the fungus Trichoderma spp, isolate Td22 for controlling a foliar mildew 

disease (tentatively identified as downy mildew) in zucchini plants. If successful this 

would provide an advance on the traditional use of 'compost teas' for foliar disease 

control, since the primary compost would contain known antimicrobial biota rather than 

an unknown biota. It was found that between 22 and 83% protection (p<005) was 

provided by different antagonists following pathogen challenge relative to the pathogen 

control treatments after two weeks. However, the level of protection declined as the trial 

progressed, with between 46% and 60% of all leaves being infected regardless of 

treatment five weeks after the pathogen challenge. Application of Td22 (the best­

performing antagonist) in combination with L. antibioticus or P. corrugata (or with both 

bacterial antagonists together) only reduced the nett effectiveness of the fungus. 

The survival of the biological control agents on the smface of the leaves was very 

poor, although other reports have shown that survival need not be necessary to lasting 

control. The effect of these biota on the induction of systemic acquired resistance in target 

crops (such as grapes and poppies) has yet to be determined. If biological control 

treatments were to be implemented in commercial crops regular application may be 

required to maintain protection against this mildew. The best of these antagonists, Td22, 

gave a level of protection which, according to literature reports, was equivalent to that 

provided by chemical treatments. 
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7 A.2 Introduction 

Downy mildew is a common foliar disease of plants, such as cucumber, grapes, 

cantaloupe, and all plants in the group of cucurbits. The disease is caused by fungi 

including Plasmopara viticola (Partridge, 1997; Kiefer et al., 2002; Cohen et al., 2003), 

Peronospora trifoliorum. (Obert et al., 2000; VanDyk, 2002), P. viciae (Pung and Cross, 

2003), P. destructor (Gilles and Kennedy (2003), or Pseudoperonospora cubensis 

(Kuepper, 2000; Ishii, 2003). The pathogens attack all green parts of the plants, 

particularly the leaves. Downy mildew is characterized by pale-green, yellowish to 

brownish areas of irregular size and shape (oval to cylindrical) on the surface of infected 

leaves (Kuepper, 2000). The disease spreads rapidly via water splash or wind, and in 

some cases it may result in defoliation, stunted growth, or poor fruit development in the 

infected plants and severely infected plants may be killed (Kucharek, 1994). 

Rep01ted control of downy mildew disease has been provided by the use of crop 

rotation (Watson and Napier, 2001), chemical fungicides (Ries, 1996; Kuepper, 2000), 

irrigation management (Kuepper, 2002), or the use of resistant plant varieties (Watson and 

Napier, 2001; Kuepper, 2000). Kucharek (1994) and Kuepper (2000) have reported that 

the use of resistant plants in combination with fungicide application has been the favoured 

method of control in recent years. With the move away from the chemical fungicide 

application, the use of biological alternatives (e.g. 'compost teas') has received increased 

attention for the control of foliar diseases including downy mildew (Weltzein, 1991; 

Diver, 1998a). The efficacy of the 'compost teas' in controlling foliar pathogens is largely 

attributable to the presence of microbial antagonists (Brinton, 1995), although Diver 

(l 998a) and Hoitink and Gardener (2003) have noted that its effectiveness and consistency 

in controlling foliar pathogens can be enhanced by inoculation with specific beneficial 

antagonists. 

In the present study, the effectiveness of bacterial suspensions of Lysobacter 

antibioticus and Pseudomonas corrugata in TSB, and of a fungal spore suspension of 

Td22 in saline was assessed for the control of mildew, tentatively identified as downy 

mildew, in zucchini plants. The aim of this study is the development of 'compost teas' or 

their equivalents using microbial antagonists such as those described above as the active 

agents for the treatment of important Tasmanian commercial crops such as poppies and 
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grapes. The antagonists used in this study were found to grow well and reach high 

densities in the W"FW or fish waste compost as reported in Chapter 5, SA, and 7. 

7 A.3 Materials and methods 

7 A.3.1 Biological control agents 

Two bacterial antagonists (L. antibioticus and P. corrugata) and the fungal 

antagonist Td22, found to be effective to control S. minor in lettuce plants (Chapters 6 and 

7), were investigated for effectiveness in controlling a foliar mildew disease (possibly 

downy mildew) in zucchini plants. The origin an~ maintenance of these antagonists has 

been described in Chapter 3. 

7 A.3.2 Foliar pathogen 

The pathogen was obtained from infected leaves of grape, collected from the 

horticultural research centre (HRC), University of Tasmania, Australia. It was tentatively 

identified as downy mildew on the basis of characteristic leaf lesions, although according 

to one expert, zucchini plants should not be susceptible to downy mildew, as was found in 

this study. Confirmation of the disease is pending, however it will be refeITed to as downy 

mildew in subsequent text. Because the causative agents of downy mildew are obligate 

parasites, the infected leaves were collected immediately prior to the preparation of 

pathogen suspension in saline solution. 

7 A.3.3 Zucchini seeds 

Zucchini seeds 'Blackjack' (Yates®) was purchased from Robe1is Limited, 

Australia. 

7 A.3.4 Preparation of antagonist suspensions 

The bacterial antagonists mentioned above were grown in 0.5% (w/v) trypticase 

soya broth (Appendix lB minus agar) for 48 hours at 25°C under static condition. At this 

time the cell density of these antagonist was -108 cells/mL. The spores of the Td22 were 

harvested from W"FW compost-grown Td22 (unspent compost from lettuce or pyrethrum 

trials) by shaking this compost in saline solution (1: 10 w/v) for -10 minutes prior to use. 
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7 A.3.5 Preparation of pathogen suspension 

Infected grape leaves (-10 g) were added to 200 mL of sterile saline (0.85% NaCl) 

and shaken vigorously to release the pathogen. 

7 A.3.6 Pot trial 

Zucchini seeds were sown in 1.5 L pots containing steam-sterilised standard 

potting mixture (Appendix lA). After 14 days, the leaves of the seedlings were spray 

inoculated with antagonist suspensions prepared above (Section 7 A.3.4). Combinations of 

L. antibioticus + P. corrugata, L. antibioticus + Td22, P. corrugata + Td22, and L. 

antibioticus + P. corrugata + Td22 (in equal mix) were also included in the trial. The 

pathogen suspension (Section 7 A.3.4) was sprayed on plant leaves three days after the 

antagonist application. Each treatment consisted of five replicate pots with one plant (at 

approximately 10 cm height) in each pot. Plants sprayed with pathogen only or with saline 

solution only (pathogen and antagonist free) served as controls. Pots were maintained in a 

shade house for eight weeks with assessment of infection at two and five weeks after the 

pathogen introduction. To avoid cross contamination, the nil control pots (AOBO) were 

placed away from those sprayed with the pathogen. The disease severity index of the 

infected leaves was also rated on a scale of 0 to 5 (Nakasaki et al., 1988), where 0 is 

asymptomatic, 1 = 1 to ::;:; 20% leaf area being symptomatic, 2 = 21 to ::;:; 40% leaf area 

being symptomatic, 3 = 41 to::;:; 60% leaf area being symptomatic, 4 = 61 to::;:; 80% leaf 

area being symptomatic, and 5 = 81 to 100% leaf area being symptomatic. 

7 A.3. 7 Establishment of the biological control agents on the leaves 

The trial was terminated after six weeks (six weeks after the pathogen 

introduction) for attempted re-isolation of the antagonists from randomly-selected 

uninfected leaves. To assess the establishment of bacterial antagonists, 10 g of leaves 

from each pot were added to 90 mL of saline solution and stomached for 3-5 minutes. 

Samples were assessed for cfu on TSA (Appendix lB) following dilution plating and 

incubation at 25°C for 2-5 days. The identities of the bacterial antagonists were confirmed 

by comparing colony morphologies on TSA with those of the corresponding antagonists. 

If necessary, some biochemical tests as indicated in Section 7.3.5 were also undertaken. 

To assess Td22 establishment, 20 randomly-selected plugs (-3x3 mm) of leaves per 

treatment were aseptically removed, placed on pectin agar medium amended with 60 
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µg/mL tetracycline, and incubated at 25°C for 4-7 days until fungal growth was observed. 

Fungal growth on each plate was subsequently subcultured for morphological comparison 

with that of a Td22 stock culture grown on the same medium and incubated for one week 

until conidial development was observed. 

7 A.3.8 Statistical analysis 

The data was analysed using the MINITAB software for windows as described in 

Chapter4. 

7 A.4 Results 

The effectiveness of the selected antagonists to protect zucchini' s leaves from 

downy mildew infection (assessed as percentage of infected leaves and disease severity 

index) is presented in Table 7A-l. 

Table 7A-1: Effectiveness of selected antagonists in protecting zucchini plants from 

downy mildew. 

Treatments¥ Percentage of infected leaves ( % ) and disease severity index* 

2 weeks after pathogen introduction 5 weeks after pathogen introduction 

AOBO 3.33±3.33 d,e (0.20±0.20 c) 35.21±1.68 a (1.70±0.44 a) 

AOBl 61.67±3.03 c (1.70±0.37 b) 59.85±3.92 b (2.00±0.35 a) 

AlBl 34.29±5.76 a (1.00±0.00 a) 54.81±4.79 b (1.40±0.24 a) 

A2Bl 47.90±5.94 a,c (1.40±0.24 a) 46.67±2.04 b (1.90±0.29 a) 

A3Bl 10.24±5.50 e (0.50±0.26 c) 56.36±4.89 b (1.25±0.13 a) 

A4Bl 26.43±4.05 a,e (1.00±0.00 a) 52.88±5.16 b (1.10±0.10 a) 

A5Bl 26.67±8.99 a,e (1.00±0.00 a) 52.55±5.89 b (1.00±0.00 a) 

A6Bl 18.81±4.67 a,e (1.00±0.00 a) 47.92±2.50 b (1.13±0.11 a) 

A7Bl 37.86±4.74 a (1.50±0.32 a,b) 60.00±6.50 b (1.60±0.29 a) 

*Percentage of infected leaves= (number of infected leaves/total leaves) x 100%. 
*Each value is an average of five replicates± standard error. Values with the same letter(s) in the same column are not 
significant statistically at p<0.05. Values in bracket indicate the rating of disease severity index of the infected leaves 
(scale details are given in Section 7 A.3.6), rated according to Nakasaki et al. (1998). 
¥AOBO, nil control (neither antagonist nor pathogen were inoculated), AOBl, control treatment (pathogen only was 
inoculated), AlBl, plants inoculated with P. corrugata and pathogen, A2Bl, plants inoculated with L. antibioticus and 
pathogen, A3B 1, plants inoculated with Td22 and pathogen, A4B 1, plants inoculated with a combination of L. 
antibioticus, P. corrugata and pathogen, A5B 1, plants inoculated with a combination of L. antibioticus, Td22 and 
pathogen, A6B 1, plants inoculated with a combination of P. corrugata, Td22 and pathogen, A 7B I, plants inoculated 
with a combination of all three antagonists and pathogen. 
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In all cases except A2B 1 (plants inoculated with L. antibioticus and pathogen), the 

application of antagonists significantly (p<0.05) reduced the disease incidence when 

compared to the control treatment (AOB 1) two weeks after pathogen introduction (Table 

7 A-1 ). The best disease control was seen for the fungus Td22, (A3B 1) at this time with 

83% protection provided relative to the untreated-pathogen control. This however 

decreased to insignificant protection after five weeks. There appears to be some synergy 

(although n.s. at p <0.05) between L. antibioticus and P. corrugata applied as a mixed 

culture (treatment A4Bl) relative to separate applications of each (AlBl, A2Bl), the 

combination giving 57% protection relative to the untreated-pathogen control. The co­

inoculation of Td22 in any combination with the bacterial isolates only led to a reduction 

in effectivity, a result that might be attributed to the reduced concentration of the most 

effective biocidal agent added to leaf surfaces. The lack of observed synergy between the 

bacteria and fungus however may in part be attributable to antagonism between the 

antagonists, since in vitro dual culture showed both bacterial antagonists produced zones 

of inhibition against Td22 (Plate 7 A-1). 

Plate 7A-1: In vitro dual culture assay between L. antibioticus and Td22 (left) and 

between P. corrugata and Td22 (right) on TSA plate following incubation 

at 25°C for three days. 
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The degree of protection provided by the antagonists against downy mildew 

became non significant statistically (p>0.05) against the control treatment after five 

weeks, when 60% of control plant leaves were infected. 

The survival of the inoculated agents on the leaf surface was (as expected) poor. 

Td22 was re-isolated from two of 20 leaf samples taken after 5 weeks from treatment 

A5Bl, (plants co-inoculated with L. antibioticus plus Td22 and pathogen), and from none 

of 20 leaves sampled from other treatments. Likewise, neither of the bacterial agents 

sprayed on the leaf surfaces was re-isolated after five weeks from any treatment. 

7 A.5 Discussion 

Bacterial or fungal antagonist suspensions applied singly or in combination to 

control foliar diseases (e.g. downy mildew) in zucchini plants gave encouraging results 

with statistically significant reductions (p<0.05) in disease incidence relative to controls 

two weeks after the pathogen introduction (Table 7A-1). This may open the way to the 

manipulation of compost for the production of designer 'compost teas' to control foliar 

pathogens, or to the direct cultivation of one or more biological control agents for this 

purpose. All antagonists applied in the present study have been shown to grow well in 

compost (WFW compost or fish waste compost) (Chapter 5, SA, and 7), and their mass 

production in such composts will be significantly less expensive than cultivation in 

synthetic media. 

It was notable that the best result was obtained for the fungus Td22, which had 

been grown in a mix of WFW compost and millet seed (80:20 w/w) and stored at ambient 

temperature ( - 20°C) for -10 months before harvest and use in this experiment. The 

effectiveness of both fungal and bacterial antagonists could be expected to be improved 

by use of chelating agents and detergents in the formulation composition, as described in 

work reported subsequent to this experiment (van der Wolf and Birnbaum, 2003). 

The demonstrated incompatibility of the bacterial and fungal antagonists has 

previously been noted in a similar study by Dandurand and Knudsen (1993). These 

workers reported that application of Trichoderma harzianum in combination with a 

biological control bacterium, Pseudomonas fluorescens, reduced the effectiveness of the 

fungus to control Aphanomyces euteiches, the causative agent of root rot on pea. In 

contrast, Raupach and Kloepper (1998) reported that application of mixed cultures of 

antagonists generally improved the disease control, suggesting that assessment of 
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compatibility of antagonists used in formulations is essential to improved disease control. 

The ability of Td22 to protect a range of plants from attack by a variety of fungi as 

demonstrated by this and other studies indicates that this fungus has a broad spectrum of 

disease control. The level of protection provided to zucchinis against downy mildew (83% 

after two weeks as shown in the present study) is comparable with that provided by 

chemical treatments, although regular re-application is field use. Notably, a similar 

conclusion has been reported in the case of fungicide treatment of downy mildew, with re­

application at 10-14 day intervals recommended for reliable control (Ellis, 2001). 

The development of mildew symptoms in nil-pathogen controls (AOBO) at five 

weeks (Table 7 A-1) possibly resulted from natural infection (the disease was in a nearby 

vineyard) or from accidental human-mediated transfer. Such infection however was low 

in comparison with the inoculated plants and did not affect the outcome of this trial. The 

poor establishment of the biological control agents on the leaf surface was expected, and 

attributable to the combined effects of low water activity, high UV exposure and washing 

of leaf surfaces during overhead irrigation. 

The mechanism of disease control by Td22 has not formed part of this 

investigation, but has been addressed at least for sclerotial infections of onions by Metcalf 

(2002). 

7 A.6 Conclusions 

All but one (L. antibioticus) of the biological control agents assessed in the present 

study were found to be significantly (p<0.05) effective in protecting zucchini leaves from 

downy mildew for up to two weeks period in a glasshouse trial. This raises the potential 

use of one or more of these organisms for foliar disease control, especially if such control 

can be enhanced by use of surfactants/chelating agents. As currently assessed, protection 

beyond 14 days would require re-application of the biocontrol agents. The fungus Td22 

was incompatible with both L. antibioticus and P. corrugata, while the combination of L. 

antibioticus and P. corrugata appeared to be compatible but without providing significant 

improvement in biocontrol relative to P. corrugata alone. The survival of these three 

antagonists on the leaf surface of zucchini plants was very poor. 
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Chapter 8 

Preliminary screening and elucidation of active 

con1pounds produced by Pseudomonas corrugata 

(Strain SAJ6) 

8.1 Abstract 

153 

Active compounds produced by P. corrugata (strain SAJ6) were examined with a 

view to determining the mechanism by which this antagonist controlled S. minor as 

described in Chapter 7. This bacterium was found to produce active compounds 

(molecular weights of 554 and 580) that were inhibitory to S. minor, a range of Gram­

positive bacteria and some bacterial pathogens, such as Pseudomonas aeruginosa and 

Listeria monocytogenes. No inhibition was evident against Candida albicans, Lysobacter 

antibioticus, or Staphylococcus aureus. The role of siderophores in this antagonism was 

excluded from contention, since the inhibition of S. minor was not affected by the 

presence of high level of FeCb in growth medium. It was therefore concluded that 

antibiosis was the most probable mechanism of disease control by this antagonist. 

Although the structure of the inhibitory compounds have not been elucidated, the data 

obtained in the present study provides information which could serve as a starting point 

for further study on their characterisation. 

8.2 Introduction 

A strain of P. corrugata isolated from the University of Tasmania farm in the 

course of this study showed strong in vitro antagonism to a range of fungal pathogens, 

including S. minor and S. sclerotiorum. This bacterium was also effective in controlling 

S. minor in glasshouse trials and in a field trial (Chapter 7). Strains of P. corrugata have 

been reported to cause pith necrosis disease in tomatoes and in a few cultivars of pepper 

(http://wsare.usu.edu/sare2000/071.htm). Its ability to produce active compounds 

inhibitory to a range of plant pathogens has also been reported by workers including 
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Emanuele et al. (1998) and Chun (2000). It has been used to control Gaeumannomyces 

graminis var. tritici, the causative agent of take-all disease in wheat 

(http://www.bspp.org.uk/icpp98/2.2/35.htrnl), Clavibacter michiganensis subsp. 

sepedonicus, the causative agent of ring rot disease in potato stems, and 

Helminthosporium solani, the causative agent of silver scarf disease in potato (Chun, 

2000). 

Some characteristics of the active compounds produced by a strain of P. corrugata 

(SAJ6) were elucidated in the present study. 

8.3 Materials and methods 

8.3.1 P. corrugata, S. minor, and other microbes sensitive to P. corrugata 

active compounds 

Sources of P. corrugata and S. minor have been described previously (Chapter 7). 

A bacterium sensitive to the compounds of P. corrugata was isolated from a commercial 

fish waste compost (Hazel Brothers Inc.); other isolates were obtained from the culture 

collection of the School of Agricultural Science, University of Tasmania. 

8.3.2 Isolation of active inhibitory compounds 

The isolation of active compounds from P. corrugata was undertaken using the 

method of Howell and Stipanovic (1979) with slight modification. Plates (20) of PDA 

were streak-inoculated with the antagonist, incubated at 25°C for 10 days, cut into -1-cm 

squares and extracted with approximately the same volume of 80% aqueous acetone for 

one hour. The extracts were filtered through cheesecloth to remove debris and centrifuged 

at 9000 g (Beckman model 12-21) for 15 minutes to remove other particulates. 

Supematants were partially evaporated under a reduced pressure at 40°C (Buchi rotavapor 

R) to remove the acetone, followed by addition of 5.0 g NaCl to each 100 ml aqueous 

concentrate and three extractions with approximately matching volumes of chloroform. 

Chloroform extracts were combined and evaporated to dryness at 40°C. The residues were 

then dissolved in 5.0 mL methanol, checked for activity against S. minor or a sensitive 

bacterium, and stored at -70°C until required. 
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8.3.3 Fractionation and preliminary elucidation of active compounds 

Crude extracts obtained as described above (8.3.2) were fractionated using a 

reverse phase Sep_Pak® C18 caiiridge (Waters). Active compounds were eluted from 

these cartridges using a range of solvents: methanol, isopropanol, dichloromethane, or 

50%:50% hexane:isopropanol. These fractions were assessed for activity against a 

sensitive bacterium using the disc diffusion antibiotic susceptibility method of Kirby and 

Bauer (1966). Fractions showing antimicrobial activity were analysed further using high 

performance liquid chromatography (HPLC) with both UV-Vis and mass spectrometric 

(MS) detection. An HPLC (Waters alliance 2690) was coupled to a Waters 996 photo 

diode array detector, using a reverse phase C18 column (Waters Nova-Pak C1s 3.9 x 150 

mm with Alltech Econosphere C18 5 micron guard cartridge); the eluant from the diode 

array was passed on to a Finnigan LCQ mass spectrometer fitted with an atmospheric 

pressure chemical ionisation (APCI) source. The mass spectrometer conditions were as 

follows; capillary temperature was 180°C; APCI vaporizer temperature was 480°C; source 

voltage was 6.00 kV; source current was 5.00 µA; sheath gas flow was 60 mL min-1
; aux 

gas flow was 15 mL min-1
; capillary voltage was 5.5 V; and tube lens offset was 5.5 V. 

The elution gradients included a gradient of 50% solvent A (2% acetic acid in 

methanol):50% solvent B (0.1 M ammonium acetate) to 100% solvent A at 15 minutes 

then to 80% solvent A:20% solvent C (hexane) at 25 minutes and held at this for a further 

10 minutes. The flow rate was at 0.8 mL nnn-1
• Re-equilibration was back to 100% 

methanol for 4 minutes then to staiiing conditions, which were held for 15 minutes prior 

to the next injection. For this analytical purpose, 20 µL of sample was injected. The diode 

array detector was monitored from 2 IOnm to 450nm. Sample spectra were recorded once 

per second. The MS scan range was from m/z 150 to m/z 2000, with data-dependent 

MS/MS production scans alternating with normal scans. For data-dependent MS/MS scan, 

the isolation width was 3 daltons and the collision energy 30%. For semi preparative mn, 

40 µL sample was injected. Fractions collected were evaporated in vacua at 40°C then 

dissolved in methanol for testing against the bacterium mentioned above. The MS data 

was analysed using Finnigan Navigator software. 
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8.3.4 Assay for antimicrobial activity 

Antifungal activity of samples was assayed by depositing 20 µL of the sample (in 

methanol) onto the periphery of PDA plates (with appropriate methanol controls) 

followed by drying in a laminar flow cabinet. Plugs (1 cm2
) of 48 hour-old S. niinor on 

PDA were placed in the centre of the plates, which were incubated at 25°C for 3-7 days. 

Antifungal activities were indicated by zones of inhibition around areas where the 

samples were deposited. 

Antibacterial activity was determined using the method of Kirby and Bauer 

(1966). Alternatively, 15-20 µL methanol extracts (or methanol-only controls) were 

deposited into agar wells on a TSA plate previously seeded with a bacterial lawn. 

Antibacterial activity of the sample was indicated by clear zones around the filter paper 

disc or around wells where the active compounds were deposited. The HPLC fractions 

were also tested for bactericidal activity. Prior to assay, the fractions were evaporated in 

vacua at 40°C, re-suspended in methanol, and assayed as above. 

The crude methanol extract (after fractionation through a Sep_Pak® C18 cartridge) 

was also investigated for inhibition against several bacterial cultures, such as Listeria 

monocytogenes, Lysobacter antibioticus, Pseudomonas aeruginosa, Staphylococcus 

aureus, Escherichia coli, Bacillus cereus. B. thuringiensis, B. mojavensis, B. pumilus, B. 

subtilis, B. plymyxa, B. megaterium, and the yeast Candida albicans. 

8.3.5 The effect of temperature on the stabilities of the active compounds 

The effect of heat on the stability of the active compounds was examined by 

exposing the crude extract to room temperature for 5 days, 80°C for 10 minutes, or 

autoclaving it at 121°C for 5 minutes, according to the method described by Skerratt 

(2002). Following this, the samples were subjected to bioassay as described in Section 

8.3.4. 

8.4 Results 

The presence of active compounds inhibitory to fungal or bacterial indicators was 

indicated by the formation of clear zones of inhibition surrounding filter paper discs, 

HPLC fractions, or spots of crude extract (Plate 8-1). 
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Plate 8-1: Inhibition zones produced by crude extract of P. corrugata against S. 

minor (Left Photo) and a sensitive bacterium isolated from fish waste 

compost (Right Photo). The blank is a filter paper disc treated with 

methanol only. 

The crude extract of P. corrucata (following fractionation) was inhibitory 

to a range of bacterial species (Table 8-1 ). In general Bacillus spp. were more sensitive 

than other isolates to the crude extract of this antagonist (Table 8-1 ). The crude extract did 

not inhibit C. albicans, L. antibioticus, or S. aureus. 

P. corrugata produces a yellow non-fluorescent pigment when grown on PDA, but 

not on other media, such as TSA or King's B. This pigment is soluble in water and 

particularly so in aqueous acetone (80% acetone in water) . When shaken with chloroform 

following acetone evaporation, the pigment was retained in the water extract, indicating it 

to be a polar compound. The HPLC-UV analysis of the extract containing the pigment (at 

400nm) showed a sharp peak eluting very early in a reversed-phase HPLC separation with 

some acetic acid in the aqueous phase (Figure 8- lA). This gave strong absorbance at 

249nm and 397nm (the latter peak being equated with the yellow pigment) (Figure 8-lB). 

The non-pigmented bioactive compounds were largely soluble in chloroform and 

methanol, indicating them to be relatively non-polar. Antibiotic activity of these 

compounds was stable after storing at room temperature for 5 days, autoclaving for 5 

minutes, or heating in a water bath at 80°C for 10 minutes, indicating that they were not 

enzymes or other related proteins, which are normally inactivated at high temperatures. 
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The APCI HPLC total ion chromatogram of the active methanol extract showed 

obvious peaks that were absent from the PDA control methanol extract (Figure 8-2). The 

largest peak from the active extract eluted at approximately 14 minutes (Figure 8-2A). 

HPLC liquid secondary ion mass spectral analysis of this peak on a Kratos concept ISQ 

indicated a compound of MW 554 (strong ions at [M+Ht 555 and [M+Nat 577). Two 

peaks (of MW 580 and 582) that appear closely related to the main peak compound were 

also observed. 

Table 8-1: Antimicrobial spectrum of the crude extract of P. corrugata. 

Indicator microorganisms Qualitative inhibition* 

Pseudo11wnas aeruginosa + 

Escherichia coli + 

Listeria nwnocytogenes + 

Staphylococcus aureus -

Bacillus cereus ++ 

B. subtilis ++ 

B. polyniyxa + 

B. mojavensis ++ 

B. pumilus ++ 

B. thuringiensis ++ 

B. megaterium ++ 

Lysobacter antibioticus -

Candida albicans -

*+ = inhibition zone :::; 0.2 mm from the edge of the well to the edge of the bacterial lawn. 
++ = inhibition zone> 0.2 mm from the edge of the well to the edge of the bacterial lawn. 
- = no inhibition zone 
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Figure 8-1: HPLC-UV analysis of the extract containing the non-fluorescent yellow 

pigment, produced by P. corrugata on PDA medium. (A) Yellow fraction 

UV chromatogram at 400nm. (B) UV spectrum of yellow compound. 

Details of the procedure are provided in Methods 
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Figure 8-2: APCI HPLC MS total ion chromatogram of the active methanol extract 

(A) and PDA control methanol extract (B). 
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Two fractions from the total ion chromatograph (MW 554 and 580) were found to inhibit 

the indicator bacterium. No inhibition was observed for a fraction of MW 582. 

The APCI mass spectmm of the main peak (MW 554) produced three distinct ions 

(Figure 8-3), two of those (111/z 409 and the [M+Ht ion at m/z 555) had the same retention 

time, indicating that they were probably from the same compound. The peak in the middle 

(arrow head, Figure 8-3) was apparently from a different compound, as it eluted at 

different retention time with the two peaks mentioned before. This compound almost co­

eluted with the main peak. 
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Figure 8-3: APCI mass spectrum of main peak (Mol wt. 554). The peak pointed by 

the arrow head is a different compound to that with the molecular weight 

of 554 as it eluted at a different retention time to the two other ions (mlz 

409 and the [M+Ht ion at mlz 555). 

Data-dependent MS/MS scans from the most intense ion in Figure 8-3 (m/z 409) is shown 

in Figure 8-4. 
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Figure 8-4: MS/MS product ions from the mlz 409 ion derived from the main 

molecular weight 554 compound. 

A HPLC-UV trace at 254nm of the active methanol fraction showed the peaks of 

active compounds indicated in Figure 8-2 had the same retention times in this analysis 

(Figure 8.5A). The UV absorption spectrum of the most abundance peak (MW 554) is 

shown in Figure 8-5B. This compound absorbed UV strongly at 253.3nm, indicating an 

aromatic ring structure. 
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Figure 8-5: HPLC-UV trace at 254mn of active methanol fraction (A) and UV 

spectrum of the main peak (B). 
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8.5 Discussion 

The present study demonstrated that P. corrugata strain SAJ6 produced active 

compounds inhibitory to fungal plant pathogens, such as S. niinor and S. sclerotiorum. 

The crude extract of this antagonist was also found to be inhibitory to a range of bacterial 

pathogens, including P. aeruginosa, and L. monocytogenes and Bacillus spp. supporting 

the potential of these isolates for the control of a range of plant pathogens. The two 

compounds from strain SAJ6 having molecular weights of 554 and 580 were both 

inhibitory to an indicator bacterium isolated from fish waste compost. Such compounds 

produced by P. corrugata have previously been reported by Emanuele et al., (1998) and 

Chun (2000), with the latter author recording inhibition against the bacterial pathogen 

Clavibacter michiganensis subsp. spedonicus and a fungal pathogen, Helminthosporium 

solani, the respective causative agents of ring rot and silver scarf disease in potatoes. The 

strain isolated by Chun (2000) has been patented in the USA (U.S. Patent 6,156,560) for 

its ability to protect against take-all and damping-off diseases in addition to those 

mentioned above. The unidentified active compounds have also been claimed to have 

medical application (http://www.irf. uro. uidaho.edu/T AFL/plantbiotech.htm). 

There has been no report of active compounds produced by P. corrugata having 

molecular weights of 554 or 580, but since the molecular weights of the active 

compounds previously reported were not given, it is not known whether the compounds 

isolated in this study are different or new. The conclusion that the mode of action by 

strain SAJ6 was antibiosis is in agreement with the report by Emanuele et al (1998) who 

found that bioactive lipodepsipeptides were responsible for the growth inhibition of B. 

megaterium. 

Pseudomonad species have been well documented for production of bioactive 

compounds (e.g. Coppoc, 1996; Bonsal et al., 1997; Kerr, 2000), pyrrolnitrin or 3-chloro-

4-[2'-nitro-chlorophenyl]-pyrrole (Rowel and Stipanovic, 1979) phenazine-1,6-

dicarboxylic acid (Kerr, 2000), 2,4-diacetylphloroglucinol and pyoluteorin (De La Fuente 

et al., http://www.ag.aubum.edu/argentina/pdfmanuscripts/delafuente.pdf) being the most 

commonly reported. In terms of molecular weight, these compounds are far too small to 

match the active compounds produced by strain SAJ6. Furthermore, unlike pyoluteorin or 

pyrrolnitrin, the active compounds of SAJ6 (MW 554 and MW 580) do not contain any 

chlorine atoms, as they do not produce the very diagnostic chlorine 'isotope pattern' in 

their mass spectrum (Davies, personal communication). The compounds produced by 
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strain SAJ6 also appeared to be heat stable, indicating them to be also different from the 

generally heat labile compounds rep01ted by Leary and Chun (1984) or Emanuele et al. 

(1998). 

The compound isolated in tqe present study of MW 554 absorbed light primarily 

at the wavelength of 253.3nm (Figure 8-5B), remarkably close to that of an antibiotic-like 

compound from a strain of fluorescent pseudomonad of 254nm (Shanahan, et al., 1992). 

However this compound was subsequently identified as 2,4-diacetylphloroglucinol (MW 

210). Similarly, Rovera et al. (2000) reported a compound produced by a strain of 

Pseudomonas spp. that showed UV-visible absorption spectmm at the wavelength of 

260nm characteristic of aromatic-ring compounds (Davies, pers, comm.; Rovera et al., 

2000). 

The mass spectrum data did not allow any interpretation of the structure of the 

active compounds produced by the strain SAJ6 from first principles. In order to determine 

this stmcture NMR spectral analysis (1HNMR and 13CNMR analysis) is needed, requiring 

several mg of pure compound, a task which is beyond the scope of this study. 

The strain SAJ6 was also found to produce non-fluorescent yellow pigment when 

grown on PDA but not on TSA or King's B medium. It was highly soluble in water, 

indicating a polar molecule. This pigment absorbed strongly at 249nm and 397nm and it 

was not inhibitory to a tested bacterium in an in vitro assay. The ability of P. corrugata to 

produce diffusible, non-fluorescent yellow pigment is very common, although it is not 

necessarily correlated with the production of active compounds (Krieg and Holt, 1984). 

This is in contrast to the orange pigment produced by an isolate identified as P. 

aurantiaca, which was claimed to be antimicrobial (Rovera et al., 2000). 

A compound different to that having a MW of 554 almost co-eluted with the main 

peak, as indicated in Figure 8-3. This was of some concern as the inhibition zone 

produced by in vitro assay of the MW 554 fraction could have been due to this compound. 

This needs to be elucidated by fmther study. 

8.6 Conclusions 

P. corrugata strain SAJ6 (effective against S. minor and S. sclerotiorum, both in­

vitro and in pot trials), produces two active antimicrobial compounds inhibitory to S. 

minor, a range of Gram-positive bacteria, as well as some bacterial pathogens of animals, 

such as Pseudonwnas aeruginosa and Listeria monocytogenes of medical importance. 



Elucidation of active compounds inhibitory to S. minor produced by P. corrugata (SAJ6) 166 

The active compounds were chloroform or methanol soluble and found to have molecular 

weights of 554 and 580, which were too high to match any commonly produced by 

pseudomonad species, such as pyrrolnitrin, pyoluteorin, 3-chloro-4-[2' -nitro­

chloroph~nyl]-pyrrole, phenazine-1,6-dicarboxylic acid, or 2,4-diacetylphloroglucinol. 
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The main objective of the study was to assess the effectiveness of antagonists in 

controlling plant pathogens and establish methods for their large-scale cultivation in low­

cost materials. The use of WFW of paper mill origin and composted fish waste as media 

for the cultivation or carriage of antagonists of plant pathogens has been examined with a 

view to producing suppressive alternatives to chemical-based fungicides. These wastes 

are produced abundantly in Tasmania and elsewhere. In the present study, they were 

modified (enriched with ammonium nitrate-based mineral salt solution) to maximise the 

growth of the antagonists, this also having beneficial nutrient effect on field plants. 

The study began with isolation and screening of agents that may have potential in 

the biological control of plant pathogens (Chapter 3). A total of 67 bacteria showing in­

vitro antagonism to Sclerotinia minor or S. sclerotiorum were isolated in dual culture 

assays, the isolates originating particularly from the rhizosphere or rhizoplane of 

agricultural plants. In conformity with other reports, representatives of the genera 

Pseudomonas and Bacillus were the most frequently isolated inhibitory bacteria (Chapter 

3), other antagonists belonging to the genera Lysobacter, Acinetobacter, Flavobacterium, 

Alcaligenes, Chromobacterium, Moraxella, Proteus and Erwinia. These cultures were 

further screened for protection of lettuces against S. minor attack in a non-replicated 

glasshouse trial, with five of the 21 isolates (those showing highest levels of inhibition in­

vitro) providing 25-50% protection relative to controls over a six day period. This was in 

contrast to the S. minor controls, which showed 100% mortality in these time periods 

(Chapter 3). 

A selected few of these isolates were subsequently assessed in a replicated 

glasshouse trial as described in Chapter 5A and 7, resulting in the identification of two 

isolates (Lysobacter antibioticus and Pseudomonas corrugata) as capable of consistently 

protecting lettuce seedlings/plants from S. minor attack. These two cultures were used 
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(together with a known biological control fungus provided from other research) in a later 

study of the low-cost cultivation of potential biological control agents in compost. 

The effect of temperature and pH on the growth of selected antagonists, plus 

others supplied from elsewhere, was examined as described in Chapter 4, with a view to 

optimising these factors in the utilization of low-cost substrates for their cultivation. A 

temperature of 25°C and a pH range between 5.0 and 6.0 was most favourable for the 

growth of a biological control Trichoderma sp. (Td22), while 25°C to 30°C pH coupled 

with ~neutral pH combined was optimum for most of the bacterial isolates. 

As a further measure to favour the growth of the selected agents in a compost 

matrix, an examination of various low-cost carbon and nitrogen sources that might be 

utilized by them was unde1taken with a view to seeding the compost with one or more of 

these materials. The fungus Td22 was seen to utilize carboxy methyl cellulose (utilization 

of crystalline cellulose was probable, but unable to be confirmed in this work) while the 

selected bacterial antagonists were found to utilize starch, casein, urea, and ~03 

sources (Chapter 7). The ability of the selected bacterial antagonists to utilize starch or 

casein (as C sources) and urea (as an N source) made it possible to enrich the fish waste 

compost with a combination of those materials, favouring the inoculated biota relative to 

indigenous compost biota that either cannot utilize these substrates, or will take additional 

time (relative to pre-induced inocula) for the induction of degrading enzymes. 

Following the determination of the optimal pH and temperature of the microbial 

antagonists as described above, the growth and survival of Td22 (Chapter 5) and of 

bacterial antagonists (Chapter SA) in composted WFW both under sterile and non-sterile 

condition were assessed. The objective of this study was to investigate whether WFW 

compost could be used as a substrate or carrier for the selected biological control agents, 

with a view to the possible large-scale cultivation of these agents in this material. The 

advantage, if successful, would be that of low relative cost to mass-produce the 

suppressive agents. The WFW compost used for this purpose was produced according to 

the method of Jackson (1998). As the C:N ratio of the WFW was very high (-218 as 

reported by Jackson, 1998), a substantial amount of nitrogen supplementation was 

needed. Composting of the WFW for three months following an1endment of urea, 

potassium nitrate, and super phosphate (to give an initial C:N:P:K ratio of 35:1:06:01) 
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resulted in a product with a C:N ratio of - 40 and without phytotoxicity to radish seed 

germination or growth. 

The growth of Td22 was assessed in vaiiants of WFW compost and millet seed 

mixes at pH values of 4-S (Chapter S); millet seed being the medium of choice in previous 

research (Metcalf, 1997). Td22 showed excellence growth responses in all variants of the 

mixes, the best being in a, mix of 80% W"FW compost and 20% millet seed where 

densities of -1010 cfu/g were reached (Chapter S). The inclusion of a component of millet 

seed in formulations for cultivation of Td22 was beneficial because it provided a ready 

supply of simple cai·bohydrates relative to the cellulosic WFW and because the protein­

nitrogen content of the millet seed helped to bring the C:N ratio of the compost closer to 

the ideal ratio for microbial growth. The growth response of Td22 in the 80% WFW 

compost 20% millet seed opens the way for the large-scale and low cost cultivation of this 

and other potential fungal biological control agents. The 80:20 WFW:millet seed 

formulation adjusted to neutral pH levels was subsequently used to investigate the growth 

response of several bacterial antagonists (Chapter SA), and for the cultivation of Td22 to 

assess its protective efficacy using lettuces challenged with S. minor (Chapter 6). 

A costing of the process (Chapter 6) indicated an 80% savings could be made in 

the cultivation of Td22 as compared with its cultivation in 100% millet seed (Metcalf, 

1997). However the use of millet for the cultivation of bacterial antagonists in the 80:20 

WFW compost:millet seed mix might need reconsidering. Although high densities of the 

bacterial antagonists were achieved in this mix, pot trials indicated that the growth S. 

minor was stimulated in this mix (Chapter SA), to subsequently result in a more severe 

infection than would otherwise occur. Starch and casein were investigated as alternative 

cai·bon sources to replace millet seed (Chapter 7) in fish waste compost media prior to 

antagonist inoculation. Both supplements, combined with appropriate sources of N, 

favoured the growth of the inoculated bacterial antagonists (known to utilize these 

supplements) in these media relative to non-utilizing native biota (Chapter 7). 

Composting of WFW prior to use as a growth medium of Td22 was initially 

thought to be advantageous. However this was found to be unnecessai·y as the fungus 

showed excellent growth response and reached comparable cell densities in non­

composted WFW following 14 days incubation (Chapter S). The phytotoxicity of this 
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Td22-cultivated raw WFW was absent when used at the rate of 20% (v/v) in soil mixture 

to germinate radish seeds, indicating the elimination of phytotoxic compounds by Td22 

within the 14 days incubation period. This was highly advantageous because of time and 

labour savings resulting from the elimination of a composting step. Sieving the WFW raw 

material through a 1.0 cm mesh was useful in this study for maintaining consistency of 

the 'fungal and bacterial cultures (Chapter S and SA). However for large scale culture the 

step could probably be eliminated. 

That the antagonists grown under sterile conditions always achieved significantly 

higher densities than that grown under non-sterile conditions (Chapter S and SA) was not 

surprising, indicating the competitive role of the indigenous biota in non-sterile material. 

This underscored the importance of minimising the impact of the native microbiota to 

achieve maximal growth of the inoculated organisms, as was undertaken in this study. 

Efforts to decrease the indigenous microbial loading prior to inoculation with the 

biological control agents including air-drying or briefly steam treating the compost prior 

to inoculation (Chapter SA) were seen to improve the relative growth of the inoculated 

antagonists. However such methods are probably impracticable in large-scale operations 

and were superseded in this investigation by the use of other methods. 

Solarization is an environmentally safe method that has been widely applied to 

eliminate harmful soil-borne organisms, but its effectiveness is highly dependent on the 

prevailing conditions of air temperature and solar insolation. It is particularly applicable 

and effective in tropical countries where daily air temperatures and radiative insolation are 

high throughout the year. Solarization of both raw and composted Wf'W during summer 

in Tasmania was also attempted, but the temperature of the material covered with black 

vinyl at a few cm from its surface peaked at less than 4S°C (data not shown). This was 

insufficient to significantly reduce the indigenous mesophilic microbiota, resulting in a 

subsequent detrimental effect on the growth of the introduced biota. The practicality of 

solarization for this purpose at Tasmanian latitudes was concluded to be marginal. 

Simulation of self-heating compost by exposing an enriched 'compost' (nutrient 

and millet-amended WFW compost) to 60°C for one week prior to inoculation with 

potential antagonists was assessed as described in Chapter SA. This resulted in only 

minority populations of spore-forming Bacillus spp. and fungi surviving to subsequently 
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compete at 28°C against the inoculated biota. Their resultant growth of these inoculated 

antagonists was excellent, particularly of the bacteria P. corrugata and L. antibioticus, 

opening the way for the low-cost production of microbially-manipulated suppressive 

compost (Chapter SA). 

Following the above simulation, the potential of a commercially produced self­

heating fish waste compost (55°C at a depth of 30 cm in cool-down phase) to reduce the 

diversity and population densities of indigenous compost microbiota capable of 

competing at mesophilic temperatures was evaluated (Chapter 7). As expected, diversity 

and population densities in the compost immediately after cool-down and which were 

capable of growth at 20-25°C were low, with some of the inoculated microorganisms 

becoming the dominant, or the only-cultivable biota, following further incubation at these 

temperatures. 

In this study, two bacterial antagonists (P. corrugata and L. antibioticus) were 

seen to become the dominant cultivable biota in fish waste compost after 14 days 

incubation, to the exclusion of almost all indigenous compost microbiota (Chapter 7). 

This was paitly attributed to their production of compounds inhibitory to other 

microbiota. Inhibition of S. minor or compost microbiota was also evident following 

exposure to cell-free extracts of P. corrugata (Chapter 7 and Chapter 8). Attempted 

isolation of the active compound(s) of L. antibioticus was unsuccessful, probably because 

of the volatility of these compounds, which tended to disappear during extraction. The 

possible role of siderophores in these two cases was eliminated from contention, since in 

vitro inhibition of S. minor and selected fish waste compost microbiota also occmTed in 

the presence of high level of FeCh in growth medium. 

The molecular weight and some characteristics of the antimicrobial compounds 

produced by P. corrugata strain SAJ6 were elucidated (Chapter 8). Two active 

compounds having moleculai· weights of 554 and 580 showed inhibition of S. minor and 

of selected fish waste compost microbiota. These compounds were also found inhibitory 

to some human pathogens, including Pseudomonas d.eruginosa and Listeria 

monocytogenes (Chapter 8), implying that they may have some medical applications. 

Elucidation of the structure of these compounds was beyond the scope of this study 
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although the present report could serve as a starting point for their characterisation, 

possibly leading to synthetic production of new biocides or their analogues. 

The efficacy of composted WFW-grown Td22 in inhibiting S. minor attack of 

lettuce and pyrethmm plants was investigated in pot trials (Chapter 6). The degree of 

protection of lettuce plants was positively- correlated with the level of composted WFW­

grown Td22 amendment, with an amendment rate of 20% v/v giving 100% protection at 

four weeks after sowing relative tol00% mortality in of controls. No toxicity was evident 

at this rate of amendment. The efficacy of composted WFW-grown Td22 (applied at the 

rate of 5% v/v) for the protection of plants against S. minor was consistently significant in 

glasshouse trials (Chapter 6). Td22 also survived in the enriched WFW compost without 

losing its effectiveness against S. minor over a period of 4.5 months (a period 

subsequently extended to ten months in a subsequent trial), indicating that long-term 

storage of this fungus in solid low-cost waste materials is possible (Chapter 6). Td22 was 

also found to have the ability to colonise the growing roots of lettuce or pyrethmm plants, 

an important feature for the provision of protection by a biological control agent. 

Pre-incubation of Td22 (grown in WFW compost:millet seed mixture) in a potting 

mix prior to sowing was generally found to improve the biological control of S. niinor 

attack of lettuces (Chapter 6). Growth promotion of lettuce plants following application of 

composted WFW-grown Td22 was observed in a pot trials (Plate 6-1), but the cause 

appears to be related to the release of plant nutrients from the compost as it did not 

happen when Td22 was applied as a spore suspension or mycelial suspension (Chapter 6). 

The efficacy of most of the bacterial biological control agents studied was of a 

lower order than that provided by Td22 (Chapter 7). Although these bacteria showed good 

disease controls in a non-replicated pot trial (Chapter 3), most failed to perform well in 

further pot-trial assay against S. minor (Chapter 7). Loss of biological control 

competence, particularly in bacteria, is reported to be common (Weller, 1988) and is 

attributable to a variety of causes as outlined previously. 

A field trial of the use of fish waste compost-cultures (modified by the directed 

cultivation of Lysobacter antibioticus or Pseudomonas corrugata) gave encouraging 

results (Chapter 7). Application of suppressive composts at the rate of 12.1 tonnes per 
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hectare one week before planting improved the percentage of healthy plants at 5 and 8 

weeks after planting, although this improvement was not statistically significant (p>0.05) 

when compared to the control treatment. The suppressive composts were however 

comparable in effectiveness to the protection provided by a commercially available 

biological control agent (Companion®) applied as drench at the rate of 2 L/m2 (equivalent 

to 20 tonnes drench/ha). Possibly an increased rate of application of the compost-cultures 

would have provided significant protection to lettuce plants in this trial. 

Costing of a WFW-millet based suppressive compost product (either inoculated 

with Td22 or bacterial antagonists) indicated production costs amounting to -AU$95/m3 

(Chapter 6). The most expensive component of t~s compost was millet seed amendment, 

comprising - 80% of the total production cost. This lead to a search for alternatives to the 

millet, including by-products of beer manufacture costed at -l/5th that of millet seed. The 

outcome was an effective alternative fish waste/malt-combings medium, at an estimated 

cost of less than half that of the WFW-millet-seed based compost (Chapter 7). 

Based on the above estimation, and ignoring considerations of nutrient/soil 

benefits of compost amendment, direct application of these products in the field to control 

plant pathogens remains uncompetitive with chemical-based fungicides. In view of this, 

the use of microbially-manipulated compost as currently formulated may only be 

appropriate for use by organic growers or at the nursery level. The cost of such products 

applied at the nursery level was estimated to be several-fold less expensive than that of an 

antagonist suspension of equivalent cell density in 0.5% (w/v) TSB applied at the rate of 

10% (v/v). The estimated cost of producing suppressive fish-waste compost or WFW 

medium at AU$42-95/m3 compared well with that of commercially available bark-based 

potting media retailing in smaller quantities of 20L, at an equivalent of AU$250/m3 in 

Tasmania. 

In contrast to the use of suppressive compost, application of traditional 

alternatives such as bark-based materials (discussed above) have been reported to give 

variable results in the suppression of plant pathogens. Although chemical fungicide 

control of plant pathogens remains the most cost-effective agent for broad-field 

application, its effectiveness against many major pathogens is known to be decreasing, 
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leading to increasing application rates with associated increasing monetary and 

environmental cost. Therefore while the use of suppressive compost (as produced in the 

present study) may be presently restricted to small-scale use, its wider application can be 

predicted following selection of better biological control agents and the demonstration of 

their consistent effectiveness in low-cost compost matrices. 

The ability of suspensions of antagonists of plant pathogens (the fungus Td22 and 

the bacteria P. corrugata, and L. antibioticus) to control mildew in zucchini plants was 

determined (Chapter 7 A), the level of protection ranging from -22% to 83% two weeks 

following pathogen challenge. The effectiveness rapidly declined as the trial progressed 

indicating that regular application of these antagonists would be required to provide 

reliable protection. The use of combined culture-applications did not improve the 

effectiveness of the better agents, and some antagonism between the antagonists was also 

observed. This work raises the possibility of developing 'compost teas' for the control of 

foliar diseases of agricultural crops having known and consistently high levels of 

effectiveness. 

In conclusion, this study has successfully demonstrated the potential of the 

composted and non-composted Wf'W as well as fish waste compost as possible substrates 

or carriers for potential antagonists of plant pathogens. Enrichment of these materials with 

nutrient solutions (ammonium nitrate-EMS solution coupled with millet seed for the 

Wf'W enrichment, or ammonium nitrate or urea-BMS solution plus casein or starch for 

fish waste compost enrichment) was effective in improving the quality of these substrates 

or carriers for specific antagonists. The growth of the inoculated antagonists in the 

enriched media was significantly affected by the presence of indigenous mesophilic 

microbiota, with their reduction being crucial to achieving high populations of the desired 

microbiota. The use of commercial compost taken from the (still thermophilic) cool-down 

stage, coupled with other means for reducing competition by indigenous compost 

microbiota, provided a promising low-cost method for the large-scale production of 

biological control agents effective against plant pathogens. 

This work builds on that of others, particularly Nakasaki et al, (1998) who 
' 

achieved the cultivation of a biological control Bacillus spp. to high populations in 

freshly-cut grass clipping compost, their depending on the survival of spores of their 
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inoculated bacteria to survive the hot-phase. The developments that were utilized in this 

study, as previously described, greatly extend the range of desirable organisms that can be 

so cultivated and opens the way for wide-ranging applications of microbially-manipulated 

composts. 
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Appendix 1 

In vitro media, planting media, and reagents 

A. Standard potting mix 

Each 50 L of potting mix media contains 35 L pine bark, 10 L sand, 5 L peat moss, 25 g 

FeS04, 90 g limil, and 300 g Osmocote slow-release fertilizer. All the components except 

the Osmocote were mixed in a concrete mixer and steam sterilized at 71 °C for 45 

minutes. On cooling the Osmocote fertilizer was added to the mix. 

B. Trypticase soya agar (TSA) 

TSA contains /L (distilled water); 3 g Trypticase soya broth (Oxoid), lg yeast extract 

(Oxoid) and 15 g Davis agar. All components were dispersed in distilled water, 

autoclaved for 15 minutes at 121°C and on cooling, dispensed into sterile petri plates. 

C. Potato dextrose agar (PDA) 

This medium containing 39 g powdered PDA (Oxoid) was dispersed in 1 L distilled 

water. The medium was autoclaved for 15 minu~es at 121°C and on cooling, dispensed 

into sterile petri plates. 

D. Pectin Agar 

Pectin agar medium contains /L distilled water; 0.9 g NILiH2P04, 2 g (N~)zHP04, 0.1 g 

MgS04.7H20, 0.5 g KCl, 10 g pectin, and 30 g Davis agar. All components were 

dispersed in distilled water and the pH was adjusted to 4.5 prior to sterilization at 121°C 

for 15 minutes and dispensing into sterile petri plates. An antibiotic, such as tetracycline 

or streptomycin was added as necessary. 

E. Flagella stain 

This stain is composed of two solutions; solution A contains 10 mL of 5% phenol, 2 g 

tannic acid, and 10 mL of saturated K.Al(S04)z.12H20; solution B contains 12 g crystal 

violet in lOOml of 95% ethanol. To make 22ml of this stain, 2 mL of solution B and 20 
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mL of solution A were mixed, filtered through Whatman filter paper and stored at 4°C in 

a syringe. 

F. Oxidative/Fermentative medium 

This medium contains /L distilled water; 2 g peptone, 5g NaCl, 0.3g KH2P04, 3mL of 

1 % bromothymol blue, and 3 g Davis agar. All components were dissolved in distilled 

water and sterilized at 121°C for 15 minutes. On cooling (at - 50°C), a 10% filter­

sterilized glucose solution was added to give a final concentration of 1 % in the medium, 

prior to dispensing into sterile capped tubes. 

G. Starch agar medium 

This medium was prepared by overlaying sterile TSA in petri plates with steiile medium 

comprising 0.2% starch, 1.5% agar. 

H. Urease medium 

This medium contains g/L distilled water; 1 g peptone, 5 g NaCl, 2 g KH2P04, 1 g 

glucose, and 20 g Davis agar. All components were dissolved in distilled water and the 

pH was adjusted to 6.8 prior to sterilization at 115°C for 20 minutes. On cooling, 100 mL 

of 20% filter sterilized urea were added and the medium dispensed into sterile petri plates. 

I. Nutrient agar 

Each 23 g of nutrient agar powder (Oxoid), contains 3 g beef extract, 5g peptone, and 15 g 

agar. This quantity was dissolved in 1 L of distilled water and autoclaved at 121°C for 15 

minutes prior to cooling and dispensing into sterile petri plates. 

J. Saline-EDT A buffer 

This buffer consisted of 0.lM NaCl and O.lM di-sodium EDTA, pH 8.1. 

K. Binding buff er 

This buffer was made of 6M sodium perchlorate, 50mM Tris-HCl, lOmM di-sodium 

EDTA and the pH adjusted to 8.0. 
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L. Wa~hing buffer 

This buffer was made of 20mM Tris-HCl, 2 mM di-sodium EDTA, and 0.8M NaCl in 

50% v/v absolute ethanol. The pH was adjusted to 7.6. 

M. PCR mastermix 

This reagent contains PCR buffer, MgCh, deoxynucleotides dATP, dCTP, dGTP, and 

dTTP), and taq polymerase. 

N. Primer lOF and Primer 1492R 

Primer lOF is 5'-AGTTGATCCTGGCTCAG-3' and pnmer 1492R is 5'­

TACGGYTACCTTGTTACGACTT-3 '. 

0. TAE buffer 

This buffer contains 40mM Tris, 40mM glacial acetic acid, lmM disodiurh EDT A, with 

the pH adjusted to 8.0. 

P. Loading dye 

The loading dye contains 0.25% bromophenol blue and 0.25% xylene cyclanol FF in 40% 

sucrose. 

Q. Nutrient broth 

Nutrient broth contains /L distilled water; 1.0 g Lab-Lemco powder, 2.0 g yeast extract 

(Oxoid), 5.0 g peptone, and 5.0 g NaCL All components were dissolved in distilled water, 

dispensed in 10 mL aliquots into 30 mL McCartney bottles and autoclaved for 15 minutes 

at 121°C. 

R. Casein agar 

This medium was prepared by overlaying sterilized TSA (Appendix lB) with autoclave­

sterilized medium containing 1.5% agar and 3% milk. The milk was steam-sterilized for 5 

minutes before mixing with autoclaved 1.5% agar when the temperature of the agar 

medium was ~ 50°C. 
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S. Basal mineral salt (BMS) medium 

BMS medium contains /L distilled water; 2.0 g K2HP04, 0.2 g MgS04.7H20, 0.01 g 

CaCh.2H20, 0.01 g FeC13, and 0.5 KH2P04. All components were dissolved, dispensed 

into 100 mL bottles and autoclaved for 15 minutes at 121°C. 

T. Nutrient gelatin medium 

Gelatin was added to molten nutrient agar to give 5% w/v and autoclaved at 121°C for 15 

minutes prior to dispensing into sterile petri plates. 

U. Citrate medium 

Koser's citrate medium contains /L distilled water; 3.0 g sodium citrate, 1.5 g 

N~NaHP04.4H20, 1.0 g KH2P04, and 0.2 g MgS04.7H20. All components were 

dissolved, dispensed into Bijoux bottles, and autoclaved at 121°C for 15 minutes. 

V. Phostrogen® Food and Tonic (Phostrogen Australia Pty) 

N:P: Kratio of the mixture is given as 15:4.4:12.5. 

Nitrogen present as: 

Potassium nitrate 4.4% 

Monoammoniumphosphate 2.0% 

Ammonium sulphate 8.4% 

Total water soluble phosphorus (P) present as: 

Monoammoniumphosphate 4.4% 

Total water soluble potassium (K) present as: 

Potassium nitrate 12.5% 

Magnesium (Mg) present as: 

Magnesium sulphate 

l\1anganese (Mn) present as: 

Manganese sulphate 

Iron (Fe) present as: 

EDT A chelate 

Sulphur (S) present as: 

Mixed sulphates 

1.5% 

0.03% 

0.26% 

12% 
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Appendix2 

Estimation of the doubling times and the specific growth 

rate of the bacterial antagonists 

The doubling time and the specific growth rate of the bacterial antagonists were 

estimated from the log phase of their growth curve (Stanbury and Whitaker, 1984). The 

bacterial growth at this phase can be mathematically described as follows: 

dx/dt = µx 

x is the bacterial cell concentration 

t is time 

µ is specific growth rate 

If the equation ( 1) is rearranged and integrated, it will result in: 

X2 t2 

Jdx/x = µ Jdt 
XJ t1 

This equal to: 

In x2 - In x1 = µ (t2-t1) or In xz/x1 = µ (t2-ti) 

Consider x2 = 2 x1 and (t2 - t1) = td, the equation (3) will become: 

ln2=µ.td 

(1), where: 

(2). 

(3) 

(4) 

The specific growth' rate(µ) can then be estimated using the following equation: 

µ=In 2/td (5) 

The value of the td (doubling time) is estimated from the log phase of bacterial growth 

curve. The following curve is an example of doubling time (td) estimation from growth 

curve of B. thuringiensis grown at 30°C in half strength nutrient broth. 
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In the curve above, the value of x2 is chosen 0.04 (within the exponential growth), which 

is twice as much as x1 (0.02). The estimated doubling time (td) of this bacterium is 

approximately 1.07 hour. 
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Appendix 3 

!so-enzyme profile determination 

Sample preparation 

225 

A cube (5 x 5 mm) was cut aseptically from a 5 day-old growth of the fungus Td22 

on pectin agar medium (appendix lD) and inoculated into 2 ml of pectinase medium 

(Appendix lD minus agar) in 5 mL bijoux bottles followed by incubation at 25°C for 10 

days under static condition. 

Polyacrylamide gel preparation 

Polyacrylamide gel was prepared by dissolving 0.1 g of citrus pectin, 10 g of 

acrylamide, 0.25g N,N'methylenebisacrylarnide, and 0.1 mL 

N,N,N'N'tetramethylenediamide in 100 mL of gel buffer, comprising (g/L distilled water); 

Tris(hydroxymethyl)aminomethane, 4.598; and citric acid monohydrate, 0.525. The pH of 

the buffer was 8.7. Just prior to pouring, 0.1 g ammonium persulphate crystals were 

dissolved in the mixture. Gel moulds were held obliquely during initial filling to avoid air 

bubbles from being trapped in the gel moulds. The mixture was sufficient for three gels, 

which normally polymerize in about 10 minutes. Prior to electrophoresis, the upper 

perspex plates were removed leaving the gels supported on glass plates. 

Gel electrophoresis for pectolytic and amylolytic enzymes detection 

Ten micro liters of ten-day-old fungal cultures in pectinase medium in bijou 

bottles were loaded into wells of polyacrylamide gel. The electrophoresis was carried out 

at 2-4°C. The glass plate containing polyacrylamide gel was placed on copper plate that 

had been coated with several drops of kerosene to allow uniform heat conduction from the 

gel. The copper plate was suspended approximately 7 cm above the tank floor and each 

tank contained 500 mL of borate buffer pH 8.7, which consisted of (g/L distilled water); 

boric acid, 7.22 and sodium tetraborate decahydrate, 15.75. A platinum wire electrode 

was immersed across each tank adjacent to the central partition. Hospital lint wicks was 

used to facilitate electrical contact and applied to the gel ends. A small spot of 0.05% 

bromophenol blue in gel buffer was applied to the cathodic end of the gel immediately 
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prior to the application of 12 rnA of constant current at an initial potential difference of 60 

V per gel. 

1.2.4 Gel staining and result recording 

After electrophoresis, the polyacrylamide gel was soaked in 0.1 M malic acid for 1 

hour at room temperature then stained overnight with 0.01 % (w/v) ruthenium red at 4°C. 

To increase the contrast of the bands for the characterization of pectolytic enzyme, gels 

were immersed for about two minutes in 0.1 % (w/v) ammonium persulphate solution. 

A permanent record of results was prepared by direct photographic printing onto 

high contrast photographic paper in which the gels functioned as the negative 

(Cruickshank and Pitt, 1987). 
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!water 

I Lactose 

Protein 
Casein 
Lactalbumin 

Appendix 4 

Milk composition 

lls1.s% 

114.9% 
3.2% 
2.9% 
0.52% 

Lactoglobulin 0.20% 

I Fat 113.7% 
Minerals 0.72% 

Calcium 0.12% 
Phosphorus 1.01% 
Chlorine 0.11% 

I 
I 

I 

Source: http://davidm.umecit.maine.edu/avs346/Lec4Milk compostion.htm 
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Potential for the Large-Scale Production 
Of a Biocontrol Fungus 

In Raw and Composted Paper Mill 1Naste 

Yan Ramona and Martin A. Line 
School of Agriculhual Science, University 0£ Tasmania, Hobart, Australia 

The growth and sUIVJ.val of a Tnchoderma spp (Td22) antagonistic to Sclerotmia mznor 
Jagger and Sclerotzum cep1vornm Berk was studied rn raw wood fibre waste (WFW) of 
paper null ongm and m mature compost of this material In nutrient-amended, ster­
ilized WFW or WFVV compost (both supplemented with 20% w /w millet 8eed), the 
b1ocontrol fungus reached densities m the order at 1010 colony fomnng un.tts (cfu)/ g 
after 14 days mcubation Lower population densities of Td22 were adueved under 
non-sterile conditions in the compost.millet rrux of between 107-10~ cfu/g after 28 
days, depending on pretreatment. Viable spore density of Td22 m raw WFW amend­
ed with nutrients and 20% w I w millet seed reaw.1-ied approximately 1010 cells I g after 
14 days mcubatlon. This srudy mdicates that cellulos1c paper null waste could pro­
vide an abundant low-cost growth medhun for the large-scale culture of this or oth­
er bwcontrol fungi. 

Intmduction 

Problems of storage of microbial antagomsts to plant pathogens have been large­
ly overcome with the demonstrated maintenance of bacterial antagonists m matrices 
such as peat and vermiculite for 5 months or more (e.g. Vidhyasekaran et al. 1997; 
Gazoni et al. 1998). However the large-scale grovvth of these antagonists can be prob­
lematic because 0£ the lugh cost of growth media, particularly where a large moculum 
of biocontrol agent is needed. Cost of the cultivation medium is presently a critical fac­
tor in any assessment of merit relative to chemical treatments, a problem sometimes 
exacerbated by the perceived need for proprietary media formulations. t_ 

The use of compost to suppress plant diseases has been extensively e:xammed, with 
recent reviews of the topic by e.g. Craft & Nelson (1996) and Hoitmk, et al. (1997). Use 
of compost as a growth-medium for microb{al antagonists rather than a storage mate­
rial or an agent of non-specific mhib1t10n, is however, very recent. An indicab.on of the 
potential for marupulating the m1crob10ta of compost to advantage was provided by 
Ramamurthy et al. (1996), who demonstrated that composting of eucalypt sawdust m­
oculated with the mushroom fungus Volvarzella resulted in a product which enhanced 
the growth of wheat seedlings. Likewise Nakasaki et al. (1998) successfully cultivated 
a biocontrol B. subtihs to high populat10n levels in composted grass clippmgs, with 
subsequent demonstration of the effectiveness 0£ the modified compost against Rhi­
zoctonia large patch disease of turf grass. 

A crucial factor for the large-scale production of microbial antagonists in compost 
or other growth media, is their cultivation and survival in cell densities suffiaent for 
end-use effectiveness, with Kodiak® (containing Bacillus subtilzs effective against Rhi­
zoctonia spp. and Fusanum spp. m cotton) being one of the few such products marketed 
in the USA (Brannen and Kenedy 1997). 

Td22 (Metcalf, 1997a) is a Trichoderma sp. isolate known to give excellent field con­
trol of Sclerotmza minor Jagger and Sclerotium cepzvorum Berk, the causative agents of 
letruce drop and white-rot of onions respectively. Td22 is normally cultivated on auto-
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claved moist millet seeds or on atrus pechn agar. Although its efficacy m field exper­
lIDents has been amply demonstrated, its large-scale culhvahon for agricultural appli­
cation has been limited by cost considerahons. 

In the present study, raw and composted WFW was investigated for possible use 
as a base medium for Tdz2 cultivation and carriage. Cellulosic waste was considered 
worthy of exarrunation in view of its attributes of good water-holding/ aerat10n ca­
pacity and its potential utilization as a source of energy and carbon by Td22• 

Niate1-ials and Methods 

Fletcher Challenge Mill 11\lFW 

Norske Skog Paper Mills Lmuted, Tasmania, landfills approximately 33,000 
tonnes of WFW p.a. The material ls of rru:xed eucalypt and Pinus radzata ongm, com­
prismg holocellulose as its primary conshtuent, with very lm·v levels of metal contam­
mants and bemg deficient (from a recycling perspechve) in N and P. In concentrated 
form it is phytotoxic to seeds, although the, potential for its recycling to the fteld fol­
lowing composting was demonstrated by Jackson and Line (1997). 

A compost was produced from this material by amending mill waste with single­
superphosphate, urea and KN03 to give a C.N:P:K rat10 of 35·1.0.6:0.l. This mn: was 
composted at ambient temperatures for three months, at which time no residual tox1-
c1ty was apparent to radish seed germmat10n and growth. 

Growth of Td22 Inoculum 

Td?? inoculum was grown in stenle citrus pechn broth medium (pH 4 5) compris­
ing (gL:1 distilled water): NH4H~P04' 0.9; (NH4hHP04' 2.0, MgSO./H20, 0.1, KCl, 0.5, 
citrus pecnn, 10.0 (Metcalf, 1997b). Flasks (500mL) of inoculated medium (100 mL) 
were shaken for 7 days in a water bat.11. at 2s~c. Before use the potency of this mocu­
lum, measured in cfu on pectm agar (the above medium solidified with 1.5% w ! v 
agar), was determined by serial dilution platmg (m triplicate). 

Assessment of Growth of Tdn Under Sterile Conditions 

Growth of Td22 was assessed in raw WFW, vVFW composted for 3 months, millet 
seed, as well as mixes of WFW plus millet seed and composted WFW amended with 
either potato starch or Phostrogen® (a NPK-minerals formulat10n produced by 
Phostrogen Ltd, Australia). Unless stated otherwise these materials (lOOg in 750mL 
flasks, 3 replicates I treatment) were brought to field capacity (amonnhng to approxi­
mately 1.51/kg for the 80:20 WFW /millet mix) with a solution containing (gL-1 dis­
tilled water): NH4N03, 5.0; K2HP041 2.0; MgS04.7H20, 0.2; CaC12.2H20, 0.01; FeC13, 

0.01, and autoclaved at 121°C for 30 minutes on each of two consecutive days. All flasks 
were inoculated with lOmL of Td22 suspension described above to give an initial den­
sity of between 3.7-5.5 log10 cfu/ g dry mix. Inoculated mixes were incubated at 25°C 
for 4 weeks with periodic assay of growth of Td22 following dilution plating onto Ox­
oid Potato Dextrose Agar (PDA). 

The relative biomass of Td22 under sterile conditions was assessed using the assay 
for chitin described by Chen and Johnson, 1983. Microscopic estimation of spore num­
bers in the various mixes was made using a haemocytorneter. All estimates of cfu/ g, 
spores/ g or chitin biomass/ g are given on a dry weight basis (100°C to constant weight). 
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Assessment of the Growth of Td22 Under Nonsterile Condztzons 

Air-dried WFW compost ( dned to ambient moisture content under glasshouse 
conditions) was brought to field capacity with 2% w Iv Phostrogen® soluhon and lOOg 
quantities placed into 750mL flasks. The compost was then either autoclaved at 121°C 
for 5 mmutes pnor to inoculation/ or directly inoculated with Td22 suspens10n de­
scnbed above to give 5.4 log10 cfu/ g compost. Flasks were incubated at 25°C for 4 
weeks with periodic assay of du on PDA for Td22 and on Tryphcase Soy Agar (TSA) 
for bacteria [TSA compnsing (gL·1 distilled water): Ox01d Trypticase Soy Broth Pow­
der1 3.0; Ox01d yeast extract 1.0; Davis agar/ 15.0]. The identity of representative Td22 
colonies was confirmed by isoenzyme analysis of pectic enzymes as descnbed by 
Cruickshank and Pitt, 1987. 

Glasshouse Assay of Effectzveness of T/v'FW-Grown Td 0 ? 
; ~-

Effecnveness of the 14-day culture of Td'22 man 80:20 w I w WFW compost:millet 
seed rrux in protecting agamst Sclerotmza mznor challenge was assessed in a por-tnal. 
Treatments of 10% and 20% v Iv culture in soil were used with appropriate controls. 
Each treatment comprised five replicate pots. 5. mznor inocuium. was mixed 20mm be­
neath the soil surface pnor to addmg 5 lettuce seeds per pot. Plants were assessed for 
health at weekly intervals for 4 weeks. 

Statistical Analysis 

Analysis of variance (ANOV A) of data obtained from this study was carried out 
usmg Mirutab software for Windows. The significance of differences betvveen means 
(p <0.05 in all cases where significance is reported) was tested using the least sigrufi­
cant difference (LSD) test followmg ANOVA. 

Results 

Growth of Td22 111 Various Mixes under Sterile Conditzons 

Td22 grew well in all mixes tested except in 100% millet seeds1 m which du fell ai­
ter 14 days of mcubation (Figure 1). The best growth response was observed in either 
raw or composted VVFW supplemented with nutrients and 20% (w I w) millet seed1 

plateaumg at 14 days incubation (at 10.3 and 9.9 log10 du/ g respectively). Both results 
were significantly higher than those for a nutrient supplemented compost control af­
ter 14 or 28 days. Likewise, nuh·ient-supplemented WFW compost containmg 50% 
w /w millet seed or 1 % w /w starch did not improve the growth (cfu) of Td22 over the 
unamended control. Replacing the nuneral nutrient supplements to WFW compost 
with 2% w / v Phostrogen® resulted in a very similar growth response (cfu) by Td22 

(mix A d. Mix F). 
Haemocytometer assay of spore numbers in the raw 80%WFW:20% millet seed 

mix (showing the best growth of Td22) indicated these to be of the same order of mag­
nitude as the du determined from dilution plate counts (Figure 2). Total estimated 
spore numbers in other IDlXes were significantly lower than the du. 
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Figure 1 Growm of Td22 in various rruxes under sterile condit10ns Each value lS an average of 3 replicates= standard error 
Imhal and final pH levels (respectively) are indicated m brackets 
Mix A· WFW compost (4.6-5 4) 
MIA B 50% Vv'FW compost+ 50% millet seed w /w (4 8-7 S) 
ML'< C 80% WFW compost+ 20% millet seed w I w (5 3-5 5) 
Mix D. 80% Raw WFW

0 

+ 20% millet seed w /w (S.0-5 SJ 
tvfu E Millet seed (5 6-7 8) 
Mix F WFW compost re-wetted w1th2% w/v Phostrogen® solution (4 9-5 6) 
ML'< G WFW compost amended with 1% w/w potato starch (4 7-5 4). 

Biomass of Td2: m the various rruxes after prolonged incubahon (10 weeks) as de­
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cept for rruxes F and G, which contained about 35 mg I g mix. 
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Figure 2. Growth of Td22 m raw WFW·mrllet (8020%w1w)rruxmeasured as ctu/ g or spore density/ g Each value 1s an 
average ot 4 replicates ±standard error 

Growth of Td22 in Nonsterile Compost 

The growth of Td22 was followed for 28 days in non-sterile, steam-treated or air­
dried composts, equivalent in other respects to mix F (Figure 1), after which time 8.6 
log10 du/ g and 7.l log10 du/ g were recorded m the respective mixes. The identity of 
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0 

Td22 in the air-dried compost was confirmed by both morphological characteristics 
and isoenzyme profile. Over the same period the populations of mesophilic bactena 
m the mixes reached 9.3 and 8.5 log10 cfu/ g respectively. 

Glasshouse Assay of Effectiveness of Vv'FW-Grown Td22 

No toxicity to the germinahon (100%) or growth of lettuce seedling was observed 
in mixes of 10% or 20% v/v of composted WFW-millet culture mixed with soil. Chal­
lenge with Sclerotinza minor resulted in 100% mortality m sou-only pots after 4 weeks, 
compared with 8% mortality in the 10% v Iv WFW-cultme:soil mix and 0% mortality 
in the 20% v Iv WFW-culture:soil mix. 

Discussion 

Tlus mveshgarion has demonstrated the potential use of WFW as a growth medi­
um for the large-scale cultivation of spores of a biocomrol fungus, Td??r known to be 
particulariy effective against Sclerotinza mznor and Sclerotium cepzvorum,-:;,1th cfu reach­
ing 1010 I g culture m 14 days. Compostmg the WFW was initially thought to be ad­
vantageous to avoid deletenous effects on plant seeds (the o'rigi.nai matenal was tox­
ic to radish seedlings) and to provide nutrient balance. However it appears to be 
urmecessary for the purpose described: nutrient-amended, raw WFW-Td:.2 culture af­
ter 14 days gave comparable cfu to that of the composted equivalent with no toxicity 
to radish seed germmation e·ndent at a high rate of applicat10n (20% v Iv}. After 14 
days mcubation the biocontrol agent m the raw WFW medium appeared to be large­
ly converted to spores, auguring well for long-term survival in cultivanon medmm 
pTior to applicat10n. 

Except for mixes F and G, s1IDilar clutin contents were found in all mLxes after 10 
weeks incubat10n mdicating similar hyphal abundance at this tune, with presumably 
srmilar pmential for spore production. From a production potenhal however the cfo 
produced m the different mixes after 14 to 28 days is of greater mterest. 

_Air drying compost in the glasshouse for 3 weeks or brief steam-treatment (rather 
than stenllzmg) (Nakasal<i et al. 1998) with a view to mmim1zmg the md1genous bio­
ta prior to inoculation with Td22 gave encouragmg results, Wlth two to three orders of 
magnitude increase in cfu Possibly better altemat1ves such as solarisahon (McLean et 
al 2001) knmvn to be effechve for ehrnmahng pathogens m glasshouse so~l have yet 
to be examined. 
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