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Abstract 

Large diameter Eucalyptus obliqua decaying logs are characteristic features of wet 

eucalypt forests in Tasmania. In production coupes, however, rotation lengths of around 

80 years will eventually lead to their elimination. This thesis investigates the role of 

these features as habitat for saproxylic beetles, and thus whether their retention is 

warranted to maintain biodiversity. Large diameter (> 1 OOcm) logs derived from 

commercially over-mature trees were compared with small diameter (30-60cm) logs 

derived from trees of an age approaching commercial maturity, in two forest types: 

mature, unlogged forest; and 20-30 year logged forest that had regenerated after 

clearfelling. 

Two field studies were conducted, in which a highly species rich fauna of360 

saproxylic beetle species (representing 54 families) are first recorded. 

The first, destructive sampling study investigated whether small diameter logs follow 

similar decomposition processes to large diameter logs, and so support similar rot types 

and beetle assemblages. Eleven rot types were differentiated, each associated with a 

particular region within the log. Small diameter logs had a relatively high incidence of 

white rot towards their outer edges, probably originating from fungal colonisation after 

treefall. Large diameter logs had a higher incidence of brown rot towards their cores, 

probably originating from internal decay already present in older, living eucalypt trees 

prior to treefall. Some of the beetle species characteristic of this brown rot are possibly 

poor dispersers and may be of particular conservation concern in production forests. 

The second, log emergence trapping study examined the extent to which beetle 

assemblages differ between small and large diameter logs, and whether they respond in 

the same way to forest successional processes induced by stand level disturbance. 

Distinct suites of species were associated with large diameter logs irrespective of forest 

type, yet there were no apparent small log specialists. Assemblages differed 

significantly between the mature and logging regenerated forests; there was also 

significant variation among sites that could not be attributed to forest type. Small 

diameter logs in the logging regenerated forest lacked some apparent mature forest 

specialists that were present in large diameter logs in the same forest type. This research 

iii 



indicates that large diameter logs have unique habitat qualities for saproxylic beetles, 

and they are important in providing continuity of habitat for the re-establishment of 

certain species following stand level disturbances, whether induced by logging or by 

wildfire. 

A precautionary and multi-scaled approach towards dead wood management is 

advocated, with particular consideration of the temporal scale at which the dynamics of 

the forests operate. In line with current conservation management strategies employed 

and explored by Tasmanian forestry, retention of some trees during harvesting to 

improve stand structure complexity and future dead wood supply is strongly 

recommended as one means of mitigating potential negative impacts. The planning of 

tree retention should aim to provide sufficient oldgrowth features, and sufficient 

quantity and continuity of dead wood types, throughout successive forest regeneration 

cycles for conservation of dead wood dependent biota. At the landscape scale, managing 

the production forest matrix as a habitat mosaic through diversifying silvicultural 

regimes is also recommended. 
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1.1 GENERAL INTRODUCTION 

Habitat loss and fragmentation have been recognised in Australia, and throughout the 

world, as the greatest threats facing the conservation of biological diversity (reviewed in 

Bennett 1999; Burgman & Lindenmayer 1998). The loss, or expected loss of 'oldgrowth 

structures'; are of increasing concern world-wide in managed forests (Angelstam 1998; 

Franklin et al. 2002; Gibbons & Lindenmayer 2001; Grove 2001; Hammond et al. 

2004; Lindenmayer & McCarthy 2002; Lindenmayer & Franklin 1997; Maser & Trappe 

1984; Siitonen 2001; Spies 1998). Oldgrowth structures are stand structures that 

comprise commercially over-mature trees, stags (dead trees) and large diameter logs on 

the forest floor (Lindenmayer et al. 2000b ). Generally, as a hardwood tree ages, it 

develops rot holes, rotten heartwood, a hollow interior, dead branches of various sizes, 

and vast amounts of organic matter in form of leaf litter, fine dead wood, and coarse 

dead wood (> 1 Ocm, also known as coarse woody debris, Lo froth 1998). 

Intensively managed forests are typically planned on silviculture regimes that are 

shorter than the natural disturbance regime (see Attiwill 1994a; Lindenmayer & 

McCarthy 2002; Spies & Turner 1999). For instance, Australian montane Ash forests 

are currently planned for 50-80 year rotations by clear-fell harvest (Squire et al. 1991), 

which is considerably shorter than the catastrophic or non-catastrophic wildfires of a 

100-350 year return time interval (reviewed in Attiwill 1994b). Thus, a natural forest 

landscape of stands with high stand-structure complexity (multi-aged stands) that 

include oldgrowth structures, will shift towards a dominance of even aged younger 

stands after successive rotations (Grove et al. 2002; Lindenmayer et al. 2000b; 

Lindenmayer & Franklin 1997). In the absence of mitigation measures, oldgrowth 

structures would diminish without replacement. This has been a widespread 

phenomenon of many intensively managed forests in Northern Europe, where forest 

management has been extensive and long term (e.g. Esseen et al. 1997; Haila et al. 

1994; Kouki et al. 2001; Linder & Ostlund 1998; Syrjanen et al. 1994). In Sweden, only 

3% of the remaining forests have oldgrowth characteristics (Andersson & Ostlund 2004 
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Chapter 1 - General Introduction 

cited in Bryant et al. 1997). A more recent study demonstrated that current densities of 

old coniferous trees (>159 years) were two thirds lower compared to 80 years ago 

(Andersson & Ostlund 2004). 

In parts of Tasmania, lowland wet eucalypt forests are intensively managed largely for 

eucalypt timber and pulpwood production. These are currently planned for harvest 

under 80-100 year rotations (Whiteley 1999), harvesting by the standard 'clear-fell, 

bum and sow' (CBS, Gilbert & Cunningham 1972; Hickey et al. 2001) silviculture. 

Clearfell bum and sow silviculture entails clearing all trees in a single operation, 

burning the debris left from logging to create a receptive seedbed, and aerial sowing 

with local eucalypt seed for regeneration (Hickey & Savva 1992). Ecologically, CBS is 

a preferred harvesting method as it is considered most similar to the natural regeneration 

system of eucalypt trees after severe wildfires (Forestry Tasmania 2004; Hickey et al. 

2001). However, after successive rotations under this silviculture regime, a truncated 

forest age and simplified stand structure is projected, and this combined with extensive 

wood extraction will drastically reduce dead wood volumes (up to two-fold reduction, 

Grove et al. 2002). Without survivor trees or stags to continually supply dead wood 

throughout the rotation, dead wood recruitment processes would be disrupted (Grove et 

al. 2002; Meggs 1996). In particular, large diameter logs would diminish and this could. 

have profound consequences on the biodiversity of a group of invertebrates dependent 

on such logs - saproxylic beetles. 

Saproxylic beetles are collectively defined by their dependence on dead wood for some 

part of their life (Speight 1989). They are a functional and speciose faunal group that 

typically comprise an import~t component of the forest's biodiversity (Grove 2002b; 

Speight 1989), yet have largely been unnoticed in Australia. Saproxylic beetles 

constitute several trophic levels: species that feed directly on dead and decomposing 

wood, species feeding on micro-organisms (e.g. fungi and bacteria) that decompose 

wood, and species that predate or parasitise other saproxylics (Speight 1989). Many 

such species have key functional roles, particularly in wood decomposition and nutrient 

cycling processes (Ausmus 1977; Dajoz 2000; Gilbertson 1984; Haack & Slansky Jr 

1987; Lawrence 1989). For example, some wood boring beetles are major contributors 

to wood fragmentation processes (Ausmus 1977; Carpenter et al. 1988; Edmonds & 
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Chapter 1 - General Introduction 

Eglitis 1989; Harmon et al. 1986). Other species have intimate associations with wood 

decay fungi (basidiomycetes) - the primary decomposers of dead wood (Kaarik 1974; 

Kirk & Cowling 1984; Swift 1977). Some beetle species facilitate the entry, and make 

conditions favourable for fungi, and fungal growth (Haack & Slansky Jr 1987), while 

others are important fungal vectors (Fager 1968; Gilbertson 1984; Haack & Slansky Jr 

1987; Lawrence 1989). In addition, many species are important food sources for 

vertebrate species (Gibbons & Lindenmayer 2001; Martikainen et al. 1998; Maser & 

Trappe 1984). It is in Northern Europe and Britain where most attention to this fauna 

has been given. Anywhere between 700 and 1 OOO+ saproxylic beetle species have been 

recorded in Germany (Kohler 2000), Norway (Hanssen et al. 1997), Sweden (Siitonen 

2001), Finland (Siitonen 2001) and Britain (Alexander 2002). Kohler (2000) estimated 

that up to 56% of beetles in a forest in the Rhineland region of Germany are saproxylic. 

In Australia however, despite the ecological importance of this fauna, at the start of this 

project only a few studies had been undertaken; with a single study in Northern 

Queensland (Grove 2000), and few, mostly preliminary studies in Tasmania (Mesibov 

1988; Michaels & Bornemissza 1999; Taylor 1990). 

Dead and decomposing wood is a highly heterogenous resource for saproxylic beetle 

biodiversity (Dajoz 2000; Fager 1968; Graham 1925; Harmon et al. 1986; Speight 

1989; Wallace 1953). Several studies show that dependent species have preferences for 

different dead wood types. For example, many species have preferences in relation to 

the source of dead wood, in terms of the host tree species (Bakke 1999; Irmler et al. 

1996; Kappes & Topp 2004), tree size or age (Esaki 1996; Hammond et al. 2004; 

Kappes & Topp 2004; Siitonen & Saaristo 2000), or whether it has been derived from 

the branch, root, stump or trunk of a tree (e.g. Schiegg 2001, 2003; Speight 1989). The 

position of dead wood, that is whether the tree is standing or fallen (lrmler et al. 1996; 

Jonsell & Weslien 2003; Nilsson & Baranowski 1997), or in the sun or shade (Ahnlund 

1996; Jonsell et al. 1998; Kappes & Topp 2004; Martikainen 2001; Ranius & Jansson 

2000; Sverdrup-Thygeson & Ims 2002) are also influencing factors. Also, the effects of 

fire on dead wood can be favourable to some species (Wikars 1995, 2002). Moreover, 

as each piece of dead wood decomposes, the biological, chemical and physical 

properties of the 'wood' change in terms of decay stage and rot type, forming different 

microhabitats that support successions of different beetle species (Araya 1993; Ausmus 
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Chapter I - General Introduction 

1977; Dajoz 2000; Gilbertson 1984; Greenslade 1972; Haack & Slansky Jr 1987; 

Hammond et al. 2001; Howden & Vogt 1951; Lawrence 1989; Speight 1989). Imler et 

al. (1996) found significant saproxylic beetle, mycetophilid fly and collembola 

assemblage differences among logs and stumps of different decay stage and tree species 

in mixed broadleaved forest in northern Germany. Kaila et al. (1994) showed birch trees 

decayed by different wood decay fungi can also host distinct assemblages. 

Dead wood is an extremely dynamic component of the forest ecosystem (Edmonds & 

Marra 1999; Fridman & Walheim 2000; Grove et al. 2002; Ranius et al. 2004). For 

example, in the Douglas fir/western hemlock ecosystem in the Cascades of Oregon and 

Washington US, large high intensity stand replacing fires naturally kill large trees and 

produce large amounts of dead wood. This dead wood decomposes, but as the stand 

develops, new inputs from competition, mortality, insect attack, pathogens and wind 

tend to increase the biomass of dead wood until the next wildfire, and so the cycle 

repeats (Edmonds & Marra 1999). Natural beech forests in France exhibit dead wood 

pulses at high levels about every 200-300 years following the rapid break-up of old­

growth stands (Mountford 2002). In general, the levels and types of dead wood within 

the forest stand are considered a function of tree mortality (which is a function of 

recruitment rate) and decomposition rate; and tree mortality and the quantity and quality 

ofliving trees change as the stand ages (Fridman & Stahl 2001; Ranius et al. 2004; van 

Lear 1993). 

In Scandinavian temperate and boreal forests that have had a long history of forest use, 

one of the major factors correlated with saproxylic beetle species reductions in managed 

forests has been the reduced and discontinuous supply of dead wood, especially of large 

diameter logs (0kland et al. 1996b; Siitonen 1994a, 2001; Simila et al. 2003; Sippola et 

al. 2002; Sverdrup-Thygeson 2001; Vaisanen et al. 1993). In particular, many rare or 

threatened species, some of which were once widespread and common, now only 

subsist as residual populations restricted to the few remaining natural and semi-natural 

stands with long dead wood continuity (Jonsell & Nordlander 2002; Jonsson et al. 2001; 

Kolstrom & Lumatjarvi 2000; Martikainen et al. 2000; 0kland et al. 1996b; Siitonen & 

Saaristo 2000; Sverdrup-Thygeson 2001). In Sweden, of the disproportionately large 

number (446) of threatened (Swedish National Red-List) saproxylic beetle species, 178 
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of them are reliant on large diameter logs and a further 233 species utilise them (Jonsell 

et al. 1998). 

Dead wood discontinuity can be considered as a form of habitat fragmentation in time. 

If suitable dead wood types are not made available, either due to timber removal or 

disruptions to the dead wood recruitment process, then dependent species unable to 

subsist in alternative habitats are likely to locally diminish (Jonsell & Nordlander 2002; 

Jonsson et al. 2001; Siitonen & Saaristo 2000). The Scandinavian situation serves as an 

indication of how saproxylic beetle communities in Australian temperate forests, which 

have had a short history of intensive forest management, may respond to such long term 

effects. In Tasmania, clearfelling only began in the early 1960s and so regrowth forests 

are at most midway through their first rotation period. Consequently in these regrowth 

forests, large diameter logs are still well represented (Meggs 1996; Woldendorp et al. 

2002a). Thus, there is still time to alter forestry practices to ensure a continuous supply 

oflarge di~eter logs for conservation if warranted. 

To determine whether the long term loss oflarge diameter logs would be detrimental to 

saproxylic beetle biodiversity, there is a need to understand their specific ecological role 

in maintaining this biodiversity. Changes induced by forest management are numerable 

(reviewed in Siitonen 2001), often confounding and acting cumulatively to increase 

their impact on saproxylic beetles. For example in Central Europe, not only have large 

diameter logs diminished as a result of intensive forestry, but most managed forests 

have as little as 1 - 13m3ha-1 of dead wood, compared to natural dead wood levels of 50-

200m3ha-1 (reviewed in Vallauri et al. 2002). Such reduced densities of certain dead 

wood types can result in habitat fragmentation at the local scale (e.g. Edman & Jonsson 

2001 - wood decay fungi; Schiegg 2000b - saproxylic beetles). Included in intensive 

forest practices is fire suppression, and in fire-adapted forests, this has led to a 

significant reduction of certain micro habitats to certain aspects of the saproxylic fauna 

(Ahnlund & Lindhe 1992; Esseen et al. 1997; Kaila et al. 1997; Niemela 1999). In 

European boreal forests, many species dependent on the dead wood deciduous aspen 

trees are threatened due to management favouring commercially valuable coniferous 

trees (e.g. Kolstrom & Lumatjarvi 2000; Kouki et al. 2001; Siitonen 1994b). 
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Despite these studies, it is unclear to what extent species declines can be attributed to 

the loss oflarge diameter logs, or to the other changes associated with intensive 

forestry. It remains possible that large diameter logs in wet eucalypt forests may 

constitute redundant saproxylic beetle habitat types that may be substituted by other 

dead wood types. For instance, small diameter logs may support equivalent assemblages 

and richness levels to large diameter logs. Schiegg (2001) demonstrated that branch 

wood contributed significantly to the conservation potential of saproxylic beetles in 

managed forests. Determining the specific function oflarge diameter logs would 

provide a sound basis in discerning whether special consideration to maintain these 

features within the landscape is warranted. 

1.2 THESIS AIMS AND STRUCTURE 

The thesis investigates how clearfell burn and sow harvesting on 90-year rotations 

impacts on saproxylic beetle biodiversity conservation, particularly focusing on the 

effect that diminishing availability of large diameter logs will have over the long term. 

The thesis explores the decomposition processes in large and small diameter logs, to 

determine to what extent these processes shape log substrate quality and hence habitat 

occupancy of saproxylic beetles. The ecological role oflarge diameter logs as habitat 

for saproxylic beetles is compared with that of small diameter logs derived from trees of 

an age approaching commercial maturity. The overall study is conducted in mature­

unlogged forest and forest regenerating from clear-fell bum and sow silviculture. The 

findings will be discussed to help determine whether the retention of large diameter logs 

in Tasmanian wet eucalypt production forest is warranted, and thus, avoid potential 

detrimental impacts on the saproxylic beetle fauna as is implied from studies across 

Europe. 

The specific objectives of the thesis are: 

To document the species composition and describe the biology of saproxylic beetles 

utilising Eucalyptus obliqua in wet eucalypt forests of Southern Tasmania (Chapter 3) 

• To compare the substrate quality of logs in relation to decomposition processes 

and log size in logged and unlogged forests (Chapter 4) 

• To investigate associations between saproxylic beetles and the substrate quality 

oflarge and small diameter logs (Chapter 5) 
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• To compare saproxylic beetle populations in large and small diameter logs in 

unlogged and logging regenerated forests (Chapter 6) 

• To discuss the ecological role oflarge diameter logs for saproxylic biodiversity 

within a production forest matrix, by reviewing possible impacts of forest 

management and by making recommendations for future research and 

management (Chapter 7) 

Each chapter has been written in the format of a journal article, or journal articles in 

development, and therefore some repetition has been unavoidable. The reader is referred 

to previous chapters for information where appropriate. Study site locations and 

descriptions, and general sampling methods are given in Chapter 2 (General materials 

and methods). 
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2 GENERAL MATERIAL AND METHODS 

2.1 STUDY SYSTEM 

Tasmania has around 3.1 million hectares of native forests, 31 percent of which is 

managed for timber production (National Forest Inventory 2003). A large proportion 

(883 OOO hectares) of this is wet eucalypt forest (Forestry Tasmania 1998). Wet eucalypt 

forests are tall open forests with an overstorey of one or more species of Eucalyptus and 

either an understorey of broad-leaved shrubs and ferns or ofrainforest plants 

(Kirkpatrick et al. 1988). These are classified as wet sclerophyll forest and mixed forest 

respectively. Eucalyptus obliqua is the most widespread species of this forest type and 

trees of this species can reach an age of 400 years, heights of 75 m (Hickey et al. 2000), 

and girths over 2 m in diameter (Alcorn 2001). 

Wet eucalypt forests are the intermediate successional stage preceding climax temperate 

rainforest (Gilbert 1959). Periodic wildfire is the natural disturbance mechanism under 

which these forests regenerate (Mount 1979). Otherwise, in the absence of fire, the 

eucalypt component dies out and rainforest persists (Gilbert 1959; Gilbert 1963; 

Jackson 1968). Natural fire frequency has been estimated to occur at one in every 20-

100 years for wet sclerophyll forests, and one in every 100-400 years for mixed forest 

(Gilbert 1959; Mount 1979). Fires vary in intensity, ranging from high intensity that 

result in complete stand kill, to low intensity, where survivor trees and multi-aged 

stands persist. Preliminary survey data from this region show that natural levels of 

forest floor log volumes are wide ranging, with volume measurements between 203 and 

1235 m3 ha-1 (Meggs 1996; Woldendorp et al. 2002a) 

2.2 STUDY AREA 

The study was located in Tasmania's Southern Ranges bioregion (Cofinas & Creighton 

2001), and was conducted in State production forest), approximately 60 km south-west 

of Hobart (43° 04' S, 146° 41 ' E) (Figure 2.1). Large mountain ranges surround the area: 

Mount Weld (1338 m) in the north-west, Mount Picton (1327 m) in the south-west, and 

the Hartz Mountains (1255 m) in the south. Part of the study area falls within the Warra 

Long Term Ecological Research (LTER) site, an area established, in part, to facilitate 

8 



Chapter 2 - General Materials and Methods 

the understanding of ecological processes and the biodiversity functions of Tasmania's 

wet E. obliqua forests (Brown et al. 2001 ). The study area has a temperate maritime 

climate, with prevailing north-westerly winds. In 2001 , mean summer maximum and 

mean winter minimum temperatures were 30.9 °C and - 0.8°C respectively (Bureau of 

Meteorology). Annual rainfall averages between 1100 and 1400 mm, generally with 

winter and spring as the wetter seasons. Jurassic basic igneous rock (dolerite) underlie 

the area, with some Permian mudstone (Laffan 2001). 

llSZ] Prln ayRciad 
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!It Logging regenerated site 

Fo_rest Rese~ * Mature unlogged site 

J 

·<1 
\sJ 

Figure 2.1. Location of the study area in southern Tasmania, showing the 11 study sites, as well as the 
State forest and Forest reserve boundaries. See Table 2.1 for descriptions of the alphanumeric site codes. 
Map prepared by Forestry Tasmania. 
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Recent fire histories of the study area and its surroundings are varied (Figure 2.2). The 

Warra LTER site had major fires in 1898, 1906, 1916 and 1934 (Alcorn et al. 2001), yet 

none were hot enough to destroy all standing oldgrowth stems (Hickey et al. 1999a). 

Some forest patches had not been burnt since 1850 (Hickey et al. 1999a); some areas 

comprise three different aged cohorts (Alcorn et al. 2001; Hickey et al. 1999a). To the 

south, the Picton Valley shares a similar recent fire-history to Warra in that substantial 

areas of forest regenerated from the 1934 fires, and towards the east, substantial areas 

within the Arve Valley were more recently burnt in the 1966/67 wild fires. 

Figure 2.2. Recent wildfire history of forests in the study area and surrounding areas. Year within shaded 
areas refers to the date of the most recent wildfire. No fire history data were available for unshaded areas. 
See Table 2.1 for descriptions of the alphanumeric site codes. Map prepared by Forestry Tasmania. 
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Logging history in the general study area (Figure 2.3) comprises CBS harvested coupes 

of a young to early medium-aged(~ 30 year old) logging regeneration. Some selective 

and salvage logging occurred in the study areas prior to 1960 (Alcorn et al. 2001). 

Figure 2.3. Recent logging history of the study area and surrounding areas. Year within the hatched areas 
refers to the date of forest regeneration. See Table 2.1 for descriptions of the alphanumeric site codes. 
Map prepared by Forestry Tasmania 
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The study sites are located in lowland wet eucalypt forests dominated by tall E. obliqua 

trees, and dead and decomposing wood of this species dominate the forest floor 

structure (Meggs 1996; Woldendorp et al. 2002a). Understorey floristfos vary within the 

natural continuum of wet sclerophyll and mixed (rain forest) species, determined, in 

part, by local fire history and soil fertility (Gilbert 1959; Mount 1979). Descriptions of 

the vegetation communities are given in Corbett & Balmer (2001) and Neyland (2001). 

Two forest type 'treatments' were chosen: mature-unlogged (MU) and logging 

regenerated (LR) forests. MU forests are unharvested forest with a multi-aged stand of 

two or more eucalypt cohorts that had regenerated from one or more wildfires. The most 

recent wildfire has been listed in Table 2.1. LR forests are forest regenerating from 

single clearfell, bum and sow silviculture (CBS: Gilbert & Cunningham 1972). Since 

this practice only commenced in the 1960s, the oldest LR forest available were less than 

33 years old. 

2.3 STUDY SITES 

After an extensive search for older aged LR sites and MU within the study area, only 

five replicates of each treatment that met the requirements were found. Requirements 

were: dominated by E. obliqua trees; understorey composition characteristic of wet 

sclerophyll forest; and similar elevation, aspect and slope. Of the chosen sites, though, 

understorey floristics were still variable to some degree - dominant species for each site 

are listed in Appendix 2.1. Site names and their major attributes are listed in Table 2.1. 

The two furthest apart sites were within 10 km's of each other and the Huon and Picton 

rivers separate some sites (see Figure 2.1 ). Considering the close vicinity among sites, it 

is presumed that the LR sites prior to harvesting comprised a similar range of forest age 

classes to that of the MU sites. To trial the sampling methods, an additional LR study 

site comprising E. obliqua and some E. regnans trees, situated off Hartz Rd (designated 

site H), east of the other sites, was selected. 
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Table 2.1. Site information of the 11 study sites, showing geographic location, recent disturbance history 
and forest coupe code 

Site code and 
Access Road 

MGA Easting 
Northing 

Lalitude x 
Longitude 

s 477392. 5229974 43 0826 s x 
§o.!J!b._y.i~ld__Se_u~ 1 _________ ---- ____ ~6 7~~-i:__ __ _ 

w 477100, 5229462 43 0872 s x 

Ft Coupe code & Year of 
p1 type clearfelling 

WR006B1 
E(75)NA/1 

WR007C 
E(72)N/A1 

1975 

1975 

Year of last 
wildfire 

~ 
- ~2.J:!:i'I_ ~9. -- -- -- --- -- ----- --- --- 146 7~~~-- - ----------- ----- --- -·---

E1
•
2 479435, 5228956 43.0918 S x PC005C 1969 

.E 
"C _ _!;:dw§l_r..d~ Rj _________ ------ -----~6 7473 '=-------~~~!'.l!°"3 ------·---

PR1 474512, 5220182 43.1707 S x PC030E E(78)A/1 1978 .Jll 
~ 
Q) 
c: _ Wel>J_J=>u::to.D.B.c:I._ __________________ 146 68~~E _______________ Burnt 19~-------- __ _ 

gi, PR2 474548, 5220569 43.1672 S x PC030D 
~ West Picton Rd 146 6869 E E(76)A/1 
-~ f:I-- ---- ---- --483912.-52-21-382-431601 s x----- ---AR014c E(66)A-

.§' Hartz Rd 146.8021 E 

1976 

1966 

M 471045, 5228764 43.0933 S x 1906 

__ Mi!rill]s_f!.Bd. _ ----------- 146 6442 E E;1dER4_9_§__ _______ _ 

1ii 
~ 

WR 476645, 5228764 43 0935 S x WR001 D selectively 1914 
-~.anu.1§_~.9. ______________________ 1_46.7~~-'=------~~~R4~~-------~gge~ 1~83 __________ _ 

0 
'.;:; R1 477870, 5227678 431033 S x 1906 

~ __ _BIV~f!!JX Rd _______________ __14~~~~--E_ _____ £2d_~R4.c:!.~S----------------------- _ 
~ P01 474547, 5220624 431667 S x 1934 
7 West Picton Rd 146.6869 E E2dER2d 
~ ---------- - ---- - ------------------------------ - --- ----- - -- ------------
-al P02 475526, 5221274 431609 S x 1934 
:::? West Picton Rd 146 6989 E E2cER4d 

1Sites E, R, and PRl, correspond to sites 9, 11, and 8 in Michaels & McQuillan (1995) respectively, who 
sampled for ground and litter beetles using pitfall traps. 
2Mesibov (1988) had also surveyed site E for log dwelling invertebrates. 

Within each site, a 50 m x 50 m study plot was established. These dimensions were 

arbitrary, and were chosen to limit the forest area for searching, but also to ensure the 

successful finding of suitable logs. Study plot position within a site was in part 

determined by accessibility to the forest, gentle to moderate slope for working, and 

similar understorey cover to sites of the same forest type treatment. Study plots were 

located at least 50 m from the road to minimise likely edge effects (Bennett 1999). All 

sampling and field measurements were conducted within this study plot. 

2.4 ENVIRONMENTAL and STAND STRUCTURAL ATTRIBUTES 

Environmental attributes considered to influence saproxylic beetle assemblages were 

measured at each site. These were chosen based on a significant correlation in past 

studies. For example, In Finland, species richness was found to correlate with forest 

stand structure (Rassi et al. 1986; 1992), and standing wood volume per hectare 

(Sverdrup-Thygeson 2001; Grove 2000). In Sweden pasture woodlands, Ranius and 

Jansson (2000) found the species composition differed depending on degree of the 

degree of regrowth and sun-exposure. 

13 



Chapter 2 - General Materials and Methods 

Attributes measured in this study included canopy openness, altitude, slope, aspect, and 

dominant understorey plant species. In addition, both dead wood and stand structural 

attributes were measured for each site. These included volume of dead wood, and dead 

wood quality- in terms of size range and decay distributions, number of stags, number 

of survivor trees and stem diameter ( dbh) distributions of live eucalypt trees. These data 

have been used to help interpret and discuss the research results in this thesis. To 

improve thesis readability, the data, and methods used to collect the data are presented 

in Appendix 2.1. 

2.5 STUDY LOGS 

Saproxylic beetles were sampled from E. obliqua logs of an intermediate decomposition 

stage. This stage (also known as decay stage 3) was defined based on the classifications 

ofLindenmayer et al. (1999b) and Meggs (1996) (see Table 2.5). Such logs typically 

had no bark, soft sapwood, heartwood is solid, but with rotting heartwood in places, and 

logs still retain their cylindrical log shape. The study logs in LR sites comprised post 

harvest logging debris, while those in MU sites would have been recruited from natural 

causes of tree death (Woldendorp et al. 2002a). Although it was not possible to 

determine the date of tree fall for study logs at the MU sites, logs were still considered 

an appropriate comparison to study logs at the LR sites because they were at the same 

decompositional stage. Two log size diameter classes were chosen for study: large 

(> 1 OOcm) and small (30-60cm). These size dimensions were based on their 

representation of a commercially over-mature tree, and a tree approaching commercial 

maturity respectively. To ensure chosen small diameter logs were not derived from the 

branch of an over-mature tree, overall log shape and curvature were examined. 

2.6 SAPROXYLIC BEETLE SAMPLING METHODS 

Saproxylic beetles were sampled using two sampling methods: destructive sampling and 

emergence trapping. These methods were chosen based on specific research objectives, 

as explained in the respective chapters. The efficacies of sampling methods were also 

compared. 
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2.6.1 Destructive sampling 

Destructive sampling involved intensively searching the log and hand collecting for 

saproxylic beetle inhabitant, as well as surveying the wood rot types. This method has 

rarely been conducted before, particulary with such large diameter logs. The method 

was first trialed in a pilot study. The pilot study was conducted at site H, on three large 

and three small diameter logs, of the same size dimensions specified above. Within each 

log, a 10-m section oflog was destructively sampled using a chainsaw at lm intervals, 

for rot types and .inhabiting insects. Given the physically demanding nature of this work, 

the objectives were to determine an effective and physically feasible sampling protocol, 

while ensuring a reasonable sampling effort of the log's heterogeneity. The variability 

of insect assemblages and rot type along the log were qualitatively assessed. 

Based on results of the pilot study assessment, time constraints, and the trade-off 

between sampling intensity (number of cross-sections per log) and sample size (number 

of logs), the destructive sampling programme involved sampling from two 1-m long 

sections of each log at least 4 m apart (Figure 2.4a). The exact trunk position (e.g. 

position from tree base) from where the section was sampled could not be determined, 

especially at the LR site where logs comprised logging residue. 

For each 1-m section oflog, sampling for saproxylic beetles entailed searching the log 

surface layer, then peeling away any decomposed litter and former sapwood layer until 

solid heartwood was reached. Then a 1-m long section was removed with a chainsaw 

and cut into three parts to allow ease of handling. Each part was cut using an axe and 

mattock. Around 1 hour was allocated to destructively sample each 1-m log section. 

Because of the gross differences in volume between log size classes, for large diameter 

logs only one eighth of each 1-m long section was sampled (Figure 2.4b ). Reducing 

sample volume ensured a more comparable sampling effort between log sizes, made 

sampling such logs logistically feasible, and still allowed adequate access to the log 

interior. Log names and diameters of the study logs used for destructive sampling are 

listed in Table 2.2. Beetle collection was conducted with the aid of a head torch and 

forceps to search within the log section as it was broken up. A adult and larval beetles 

were immediately preserved in 80% ethanol. Only subsets of populations were taken 
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when multiple individuals of the same species were found. Additional samples of larvae 

with host material were taken for rearing to allow identification and observe life history. 

a) 

30-60 cm {~( ~ [ ()( (I be [ '------y---J 

1 m >4m 
~ 

sampled volume per 1 m-long 

section of small log 

b) 

>100 cm l tu·( (01· ( 
'------y---J 

1m >4m 

CITil} "m'""''"m' pe' 
1 m-long section of large log 

Figure 2.4. Schematic diagram of sampling method used to destructively sample a) small and b) large 
diameter logs 

Table 2.2. Log codes, diameters, and approximate surface area and log volume sampled of the two 1-m 
log sections used for destructive sampling. Note, only approximately 1/8 of the volume for each lm long 
log section belonging to a large log was sampled. 

Site Large log Diameter Surface area Log volume Small log Diameter Surface area Log volume 
{cm) (m2) (m3) (cm) (m2) (m3) 

EDL1 87.5 5.50 0.15 EDS1 42 2 64 0 28 

E EDL2 100 6 28 0.20 EDS2 30 1.88 014 

EDL3 99 6 22 0.19 EDS3 35 2 20 019 
-------- --- -- ----- --- --- --- --- --- --- - -- --- ---- ----------

1i) SDL1 92 578 0.17 SDS1 39 245 024 
~ s .E SDL2 95 5.97 018 SDS2 55 345 0.47 

"O 
SDL3 85 534 014 SDS3 49 3 08 ~ 0.38 

------------- -- -- -- - ------------- -- -------- -- -------
()) PR2DL1 94 5 90 0.17 PR2DS1 43 2.70 0 29 c 
()) 
Cl PR2 PR2DL2 100 6 28 0 20 PR2DS2 52 3.27 042 
~ 
Cl PR2DL3 95 5.97 018 PR2DS3 49 3 08 0 38 c 

--

°' -------- - -- ---- -- ----- -- - -------- - --- ----- - ------ -- - ---- ------- --- ---
Cl HDL1 120 754 0 28 HDS1 30 1 88 014 0 
-' ---- -- - -------- ---------------------- -- --- - -- - --------- -- ---------- ------------ ----- ---

H HDL2 105 6.59 0 22 HDS2 36 2 26 0.20 
---------- - -------------- -- ------------------- ---- ----------- - --
HDL3 90 5.65 016 HDS3 30 1 88 014 

MDL1 97.5 612 019 MDS1 32 2 01 0.16 

M MDL2 125 785 0 31 MDS2 35 2 20 0.19 
1i) MDL3 95 597 018 MDS3 46 2 89 0.33 
~ - -- - -- ----------------------- - -- -- ---- --- ---- ----- ------- ---------.E P01DL1 100 6 28 020 P01DS1 49 308 0.38 

"O 
()) 

P01 P01DL2 90 565 016 P01DS2 53 3.33 0.44 Cl 
Cl 
0 c: P01DL3 100 6.28 020 P01DS3 50 314 0 39 
::i - -- -- --------- - -- -- -- -------- ----- -------- ----- --- ----- --- - ------ -- ----------- ----
~ WRDL1 90 
::i 

565 016 WRDS1 43.5 2 73 0.30 
iii WR WRDL2 110 6 91 024 WRDS2 44 2 76 0 30 ::2 

WRDL3 105 659 0 22 WRDS3 33 2.07 017 

16 



Chapter 2 - General Materials and Methods 

2.6.2 Emergence trapping 

A modified version of the emergence traps used elsewhere at Warra and described in 

Bashford et al. (2001) was used to sample saproxylic beetles emerging from the study 

logs. Each trap (Figure 2.5a) consisted of strong netting ( <lmm fine mesh to ensure 

trapping small beetles) encasing the log. Trap length varied anywhere between 2 and 4 

metres. Dimensions of individual emergence traps are given in Table 2.3. Netting 

material was attached to the log using a staple gun and supported above the log by 15 

cm long modified wooden stakes (Figure 2.5b ). Trap design was tested for durability 

and sample effectiveness in a pilot study at site H, and had been modified accordingly. 

Trap design was kept simple so that traps could be assembled by one person. Traps 

would have had a limited lifetime of perhaps no more than 3 years - sufficient for the 

purpose of this study. 

Similar to Bashford et al. (2001), emerging beetles are captured in any of two to three 

collecting containers: one at the top to catch those that move towards the light (Figure 

2.5c), and one to two fixed containers at the base of the trap to catch beetles whose 

behaviour is to crawl off the log (Figure 2.5d). The top container consisted of an empty 

PET 2-litre fruit juice bottle connected to a piece of elbow piping, which directed 

emergent insects from the trap into the container. This top system was kept in place 

using a support bracket (Figure 2.5c) constructed from pre-cut and pre-drilled wooden 

stakes held together by flexible wire. Containers were changed more or less monthly 

during spring-summer, and every second or third month during autumn-winter. Diluted 

ethylene glycol (50-70%) was used as preserving fluid. 
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a) 

b) 

•~(--........ 11ail 

Figure 2.5. Log emergence trap showing the a) overall design, b) wooden stakes used to support material 
off log, c) top collecting container and support bracket, and d) bottom collecting container 
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Table 2.3. Log codes, diameters (at trap position), length of each log and approximate surface area and 
log volume that was sampled for each log emergence trap. 

Site Large log Diameter Trap Surface Log 
1 

Small log Diameter Trap Surface Log 
(cm) length area (m2

) volume (cm) length area (m2) volume 
-------~-~~-~c=m'-'--~--~-=m~3 .__ ~I ~~~-~~-_._,(c=m~l ____ ---'(~m~3).__ 

E 

ELET1 

ELET2 

97 

100 

450 

365 

13 71 

11.46 

ELET3 133 365 15 24 

332 

2 87 

507 

i ESET1 

ESET2 

ESET3 

40.5 

525 

63 ------ - ----- - --- -----
WLET1 95 272 8.11 1 93 WSET1 27 

W WLET2 102 285 9.13 2.33 ' WSET2 23 

_ ----- --~~ET3___ 122 ___ 292 ___ __:1_!_:.1_9 ---~:~---- ._"'.°"S~T~- ---- --~-1-
SLET1 130 368 15 02 4 88 SSET1 24 

476 6.05 0.61 

470 

454 

271 

285 

296 

265 

7.75 1.02 

8.98 

2 30 

2 06 

3 81 

2.00 

1.41 

0.16 

0.12 

0 39 

012 

S SLET2 132 269 1115 3.68 ! SSET2 32 278 2 79 0 22 

t> SLET3 92 263 7 60 1.75 SSET3 26 283 2.31 0 15 
~ -- ----------- ----------------- ------- -- - -------
.E PR1LET1 140 292 12.84 4.49 PR1SET1 64 300 6 03 0 96 
"C 

~ PR1 PR1LET2 125 284 11.15 3.48 
Ol PR1LET3 120 287 10 81 3.24 c 
Ol 
CJ 

-- -------- ---------------------- ---
!!:! 
g> PR2 

°' CJ 

.3 

PR2LET1 100 240 7.54 1.88 

PR2LET2 

PR2LET3 

187 

149 

252 

278 

14 80 

13 01 

6 92 

484 

PR1SET2 

PR1SET3 

, PR2SET1 

: PR2SET2 

PR2SET3 

59 

35 

48 

47 

465 

178 

287 

155 

260 

159 

3 30 

3.15 

2.34 

3.84 

2 32 

0 49 

028 

HLET1 

HLET2 

135 

129 

289 

294 

12 25 

11.91 

413 ' HSET1 45 

31 

33 

289 

346 

313 

408 

337 

028 

045 

0.27 

0.46 

0.26 H 

M 

MLET1 

MLET2 

MLET3 

133 

146 

127 

285 

273 

267 

11.90 

12 52 

10 65 

384 

3.96 

4.57 

3 38 

HSET2 

HSET3 

MSET1 

MSET2 

MSET3 

34 

36 

42 

280 

275 

300 

2.99 

311 

396 

0.25 

0 28 

0 42 
--------- --- ----- -------------- ----- ------ -- --- -- --- ----------

R 

RLET1 

RLET2 

100 

93 

255 

280 

8.01 

818 

2.00 

1.90 

RSET1 36 220 249 0 22 

RSET2 33 286 2.96 0 24 

t> ______ ---~~T3 -----~~--- _}66 ----~!! ___ _ 2 08 __ _ l-~~~~------~ ___ _ 380 __ 2.46 ____ _o_:_1_7 __ 
!!:! WRLET1 115 225 812 234 .E i WRSET1 35 292 3.21 0 28 
"C 
Ol 
CJ 
CJ 
0 
c 
'i' 
!!:! 
:J 
Oi 
::2 

WR WRLET2 

WRLET3 

P01LET1 

P01 P01LET2 

102 

108 

125 

121 

267 

291 

290 

293 

855 218 1 WRSET2 28 267 2.35 0 16 

987 2 66 ' WRSET3 33 200 2.07 0 17 
1------ - -- ------------------- --- - -------

11.38 356 ! P01SET1 45 270 3.82 0 43 

11.13 337 i P01SET2 64 188 3 78 0 60 

P01LET3 110 280 9.67 2 66 : P01SET3 44 272 3.76 0 41 
------ -- ------------------ ·------ ---

P02LET1 

P02 P02LET2 

P02LET3 

95 

90 

93 

290 

283 

371 

8.65 

8 00 

10.83 

2.05 

1.80 

2.52 

P02SET1 

P02SET2 

P02SET3 

42 

29 

36 

317 

265 

288 

418 

2.41 

326 

044 

017 

0 29 

2.7 BEETLE SORTING AND IDENTIFICATION 

All beetles were sorted and identified to at least family level and then to morphospecies 

using the protocols of Oliver & Beattie (1996). Morphospecies were identified to genus 

or species where feasible, by using various taxonomic keys, consulting with and 

sending vouchers to the various relevant beetle experts, and comparing vouchers with 

reference material at the Australian National Insect Collection (ANIC: CSIRO 

Entomology, Canberra) and Tasmanian Forest Insect Collection (TFIC: Forestry 

Tasmania, Hobart). Specimens have been lodged at both, but with the primary set of 

vouchers lodged at the TFIC. The taxonomic experts consulted include Mr Tom Weir 
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(ANIC - various), Dr Rolf Oberprieler (ANIC-Curculionidae), Dr Simon Grove (TFIC­

various), Dr Don Chandler (University of New Hampshire, United States-Pselaphinae), 

Dr Peter McQuillan (University of Tasmania - various), Dr Richard Leschen (Landcare, 

New Zealand - various Cucujoidea), and Dr. Chris Reid (Australian Museum, Sydney­

Chrysomelidae ). 

2.8 DATA, EXPERIMENTAL DESIGN AND STATISTICAL 

ANALYSIS 

A summary of the destructive sampling and emergence trapping data used in their 

respecitve chapters is listed in Table 2.4. While there is some degree of overlap of data 

among chapters, the aims of the chapter, and hence analysis of the data, differ. 

T bl 2 4 S a e .. ummarvo fth d t d t e a aan cvoeo fd t a a use d" h h t m eac c aper 
Sampling method Data type Chapter3 Chapter4 Chapter 5 Chapter& 

RWtypedata x x 
DESTRUCTIVE loresence/absence l 
SAMPLING Beetle data x x 

(oresence/absence) 

EMERGENCE Beetle data x x TRAPPING lsoec1es abundance) 

Different experimental designs and statistical analyses were used for each chapter, and 

so have been outlined in their respective chapters. 
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2.9 APPENDICES 

Appendix 2.1: Study site environmental and stand structural attributes -
methods and data 

Site-scale environmental and stand structural variables (Table 2.5) were measured from 

the four comers of the 50 x 50 m study plot within each site. Data from the four 

locations were pooled and the mean value calculated for each site. Stand structural 

variables included counts of total number of live and dead 'oldgrowth' trees occurring 

in the study plot. The percentage of live E. obliqua stems in each of the five diameter 

( dbh) classes was also calculated. This was based on measuring dbh of 40 trees: ten 

eucalypt trees occurring nearest to each study plot comer. 

Qualitative and quantitative assessments of the dead wood habitat were measured 

following the line intersect procedure outlined in Waddell (2002). This was considered 

the most appropriate method for plot level sampling of dead wood at the time of 

sampling. Three 33 m (total= 99m) line transects were marked out, radiating from the 

centre of the study plot at bearings of 0, 135, and 225 degrees (Figure 2.6). This 

configuration, as recommended by Waddell (2002), was chosen to minimise biases 

associated with forests with highly clumped patches of dead wood, typical of harvested 

sites (Hess 2001; Marshall et al. 2000); and non-randomly orientated logs, such as logs 

of wind fallen trees after storm events. All logs(> 12.5cm) intersecting these lines were 

measured for diameter (at point ofline intersect) and log decomposition stage was also 

visually assessed, following the classifications ofLindenmayer et al. (1999b) and 

Meggs (1996) (Table 2.6). From this, site dead wood volumes pe~ hectare were 

calculated (V=pi**/8L(d**): V =volume (m3/ha), L =length of transect (m), d =log 

diameter (cm) at the point that intersects the line: Lindenmayer et al. 1999b; Ringvall & 

Stahl 1999; van Wagner 1968). Note, after this sampling was conducted, a study 

(Woldendorp et al. 2002b) reviewing sampling methods for dead wood in Australian 

forests recommended continuous longer line transects (preferably> 1 OOm) in preference 

to sampling the same length split into shorter transects, to provide estimates with higher 

precision. Therefore, although dead wood volume estimates in this study may not 

accurately reflect absolute stand level volumes, they should still reflect relative 

differences among study sites. Table 2. 7 displays the data for environmental and stand 
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structure site attributes, and this includes dominant understorey vegetation floristics and 

dead wood quality and quantity for each site. 

Table 2.5. Description of environmental and stand structure variables recorded at study sites. 
Variable name 

Variables recorded at each corner of the study plot 

Canopy cover(%) 
Aspect 

Slope 
Percentage of trees by stem diameter 

Understorey florist1cs (%) 

Vanables recorded for 50 m x 50 m study plot 

Number of stags 
Number of survivor trees 

Description of variable 

Measured from hem1sphencal photographs 
Measured m degrees 

Measured m degrees 

From 40 trees, number of trees 1n one or four dbh classes (10-30, 
30-60, 60-90, >90cm) 

% cover of shrubs and non eucalypt trees within 10 m x 10m sub 
lot 

Variables recorded along three 33m line transects at bearings 0, 135 and 225 degrees 

Volume of dead wood (ha"1
) Calculated volumes of dead wood per hectare using the formula 

Volume per hectare= p1**/8Ld**, used in Lmdenmayer et al 
(1999b). L =length of transect, d = log diameter at point that 
intersect the line. 

Percentage of logs grouped by diameter class and 
decompos1t1on stage 

From all logs intersecting the line, number of logs m one of four 
diameter classes (10-30, 30-60, 60-90, >90cm), in one of five 
decompos1t1on stages (see Table 2.5) 

Table 2.6. Log decomposition stage (DS) classifications used to assess in this study. 
DS (Meggs 1996) Lmdenmeyer et al. (1999) 

logs that are entire, cylindrical shape, freshly down, few {<5% - 1mperfect1ons such solid log, bark intack, and log 
_____ -1!§21'11!.~tl_olE;!S etc, 11_0 fruit bodies, hard sound wood _____________ _ _ rece[l!lyfallen _________ _ 

2 presence of fungal fruiting bodies, presence of splits, cracks, wounds, decayed 
ends showing signs of rot to an overall surface area of no more than 10% may 

solid log, and no bark 

_____ __ha~~- ~-n:i_~[I amount of bark Rre~ent, retains 111u9~ s>!_!!s ongn!?! ~~§1.p_e ___ _ ___ ___ ____ ____ _ _ _ ___ _ 

3 Logs begmrnng to lose 'tree-like' appearance, containing splits, cracks etc, some decomost1on of log, soft 

4 

5 

exposing rot to an overall surface area of 11-20% of log surface area. May be sapwood and solid heartwood 
mod_e~?!ely_s_oft _ __ ____ _ _ _ _ _ _ __ _ __ _ _ _ _ _ _________ _ 

losing much of its 'log-like- appearance with often large sections of extenor wood 1soft sapwood or sapwood not 
missing Exposed rot to 21-50% of log surface area. May be moderately soft present, soft heartwood, and log 
Rotting wood roughly m the shape of a log, often only solid wood present along 'breaking-up' 
sides of log, often embedded partly in the soil >50% of surface area consisting of 
rot Usua[ly sg_f! 13_n_d ~et _ 

50 m 

advanced decompost1on of log, soft 
sapwood and heartwood (1f 
1dent1fiable) log fragmented 

Figure 2.6. a) A schematic of the study plot and line intersect layout used to assess dead wood quality and 
quantity within the study site 
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Table 2.7. Environmental and stand structure attributes for each study site. 
Logging regenerated sites Mature unlogged sites 

Site name S W E PR1 PR2 M WR R P01 P02 

Canopy cover(%)± 48 1 ± 59 9 ± 65.3 ± 61.4 ± 5.4 49 4 ± 8.7 76 6 ± 4 2 51 8 ± 82.5 ± 6.5 78 8 ± 7.4 85 9 ± 4 0 
s d 8.9 
Aspect (degrees) 

Sia e de rees 

10-30 cm 

31-60 cm 
61-90 cm 
>90cm 

105 
3 

83 3 
16 7 

0 

0 

Dominant non- P.ape 
eucalypt species p asp 

G gra 

Number of stags 9 

Number of survivor O 
trees 

10.3 61 
137 
2 

268 
13 

90 
22 

180 
9 

180 
26 

11 4 
90 

5 
Percentage of standing trees grouped by dbhob class (cm) 

57 5 57.5 92.5 95 7 7 44 7 
42.5 30 7 5 5 33 3 13.2 

0 12 5 0 0 20 5 23 7 

0 0 0 0 38 5 18.4 

G gra 
P.apt 
Amel 

6 

0 

Pape 
N.cun 
Dant 

0 

0 

Pape 
Ggra 

0 

0 

Ggra 
E.luc 
P squ 

0 

D.ant 
P.squ 
Pape 

8 

G gra 
P.ape 
A big 
Psqu 
B.rub 

9 
7 

230 
25 

10 4 
624 
11.4 
15.8 

Lian 
Ggra 

3 

21 

120 

6 

66.7 
18.2 

30 
12.1 

A.big 
E.luc 
A.gla 
P squ 

5 

36 

92 
16 

51.3 
33.3 
10.2 

52 

A.big 
P.ape 
B.rub 

2 
18 

Deadwoodvolume 276.3± 345.5± 3728± 2694± 4221± 2344± 2118± 158.2± 218.9± 1923±16.7 
± s d. (m3ha'1) 30 9 55.2 13.7 52 2 11 9 39 5 22 5 14.4 22.0 

> 90 cm, DS 1 
> 90 cm, OS 2 

> 90 cm, OS 3 

> 90 cm, OS 4 

>90 cm, OS 5 

61-90 cm, OS 1 

61-90 cm, OS 2 

61-90 cm, OS 3 
61-90 cm, OS 4 

61-90 cm, OS 5 

31-60 cm, OS 1 

31-60 cm, DS 2 

31-60 cm, OS 3 

31-60 cm, OS 4 

31-60 cm, OS 5 

10-30 cm, OS 1 

10-30 cm, OS 2 

Percentage of logs grouped by diameter class (cm) and decompos1t1on stage (OS) 

0 0 0 0 0 0 0 0 

0 

11.8 

39 

20 

0 

0 

5.9 

3.9 

0 

0 

0 

11 8 

78 

2.0 

2.0 

20 

0 

0 

22 

0 

0 

0 

6.7 
2.2 

6.7 

0 
0 

20 

4.4 

6.7 

0 

67 

0 

9.5 

4.8 

0 

0 

0 

48 
24 

24 

0 

0 

48 

14.3 

2.4 

24 

2.4 

0 

36 

7.1 

3.6 

0 

0 

7.1 
3.6 

0 
0 

0 

17 9 

71 

7.1 

0 

36 

0 

6.0 

2.0 

2.0 

0 

0 

60 

60 
0 

20 

0 

340 

60 

0 

4.0 

0 

0 

56 

0 

0 

0 

0 

11.1 
56 

0 

0 

0 

22.2 

111 
0 

0 

11.1 

0 

53 

0 

0 

0 

0 

79 
2.6 

0 

5.3 

2.6 

23.7 

5.3 

5.3 

0 

0 

4.3 

4.3 

4.3 

8.7 

0 

0 

0 

0 

0 

0 

43 
43 

87 

13 0 

0 

21 7 

0 

0 

8.0 

4.0 

4.0 

0 

0 

12.0 

4.0 
40 

0 

0 

80 
8.0 

40 

0 

80 

0 

0 

0 
5.6 

0 

0 

0 

11 1 
5.6 

0 

0 

11 1 

56 

11 1 

11 1 

56 

56 

10-30 cm, OS 3 29 4 26.7 28 6 32 1 24.0 16.7 28.9 13 0 8 0 16 7 

10-30cm,DS4 176 15.6 190 7.1 8.0 16.7 5.3 130 80 111 

10-30 cm, DS 5 O 2 2 2.4 O O O 7.9 O 20 O 

Descriptions oflog decomposition stage (DS) are described in Table 2.6. Only dead wood pieces greater 
than 1 Ocm diameter were measured. 
Species names of abbreviations are: Amel -Acacia melanoxylon; A.big -Anodopetalum biglandulosum; 
A.gla -Anopterus glandulosus; B.rub - Bauera rubioides; D.ant - Dicksonia antarctica, E.luc - Eucryphia 
lucida, G.gra - Gahnia grandis, L.lan - Leptospennum lanigerum; N.cun - Nothofagus cunninghamii; 
P.squ-Phebalium squamosum; P.asp -Phyllocladus aspleniifolius; P.ape -Pomaderris apetala. 
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3 INVENTORY AND BIOLOGY OF SAPROXYLIC 

BEETLES USING TWO SAMPLING METHODS 

ABSTRACT 

In many different regions of the world, saproxylic beetles have been recognised as a group at risk from 
intensive forestry practices. It is unknown whether similar trends are apparent in Australia, as this fauna 
has largely gone unnoticed. In wet eucalypt forest in southern Tasmania, a total of 104 Eucalyptus 
obliqua logs, at an intermediate decomposition stage, were surveyed for saproxylic beetles using two 
sampling methods, namely emergence trapping and destructive sampling. Data on biological traits of 
beetles were compiled and various aspects of the overall assemblage described. The effectiveness of the 
two sampling methods was compared. 

This field study demonstrated that decomposing Eucalyptus obliqua logs at an intermediate 
decomposition stage are an essential habitat for a rich, functionally diverse saproxylic beetle fauna that 
have a diverse range of life histories, representing 54 families and 360 species. Species included 
xylophages, mycophages, detritivores and predators. Rotten wood and the log surface/litter layer seemed 
to be the most species rich microhabitat types. Of the saproxylic beetles collected in this study, about 25% 
of species seemed to ground dispersers, and over 71 % of all species had a body length less than 4mm. 

This study also highlights the taxonomic impediments faced with studying saproxylic beetles as indicated 
by the many species (58%) not identified to a species name. Because of their relatively cryptic and 
diverse life histories, sampling this fauna is better achieved using log emergence traps than hand 
sampling. In spite of intensive sampling, the inventory of saproxylic species in these forests is still far 
from complete. The species list presented in this study is valuable base-line data for researchers and 
nature conservations undertaking study of the highly species rich group. 
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3.1 INTRODUCTION 

Systematic surveys of fauna are vital for the assessment of forest biodiversity and risks 

to this biodiversity, and baseline data from project-based surveys are important 

contributors to this knowledge (Anon 2001; e.g. Majer et al. 2002). Saproxylic beetles 

comprise a poorly studied, yet speciose functional group of forest organisms in 

Australia that warrants urgent attention (Grove & Meggs 2003). They are defined by 

their dependence on dead and decaying wood microhabitats (Speight 1989). Throughout 

many regions in Europe, saproxylic beetles are now threatened due to the effects of 

deforestation and long term forest management (e.g. Alexander 2002; Berg et al. 1995; 

Harding & Alexander 1994; Jonsell et al. 1998; Kirby & Drake 1993; Martikainen & 

Kouki 2003; Siitonen 2001; Speight 1989). In Tasmania, around 883 OOO hectares of 

native wet eucalypt forest is available for timber production (National Forest Inventory 

2003), though knowledge of the saproxylic beetle fauna in these forests is lacking, with 

only a few preliminary studies undertaken (Grove & Bashford 2003; Mesibov 1988; 

Michaels & Bomemissza 1999; Taylor 1990). 

The effectiveness of conservation planning will, in part, depend on understanding how 

species respond to changes resulting from forest practices, and identifying those species 

most susceptible to such changes (Anon 2001; Burgman & Lindenmayer 1998). Habitat 

fragmentation (spatial and temporal) brought about by decreased availability of c~rtain 

dead wood microhabitat types (includes wood decay fungi) is the main threat to 

saproxylic beetle species conservation, in northern European forests (0kland et al. 

1996a; Schiegg 2000b; Siitonen et al. 2000; Simila et al. 2003). On the basis of 

experimental field studies, several authors suggest that species with certain life history 

traits are more susceptible to fragmentation effects (Davies et al. 2000; Didham et al. 

1998; Henle et al. 2004; Schiegg 2000a). For instance, poor dispersers tend to be more 

prone to extinction (Jonsson 2003), as are occupants of rare habitat types (e.g. Golden & 

Crist 1999; Lawton et al. 1998), species naturally occurring at low abundances (e.g. 

Davies et al. 2000), predators (e.g. Davies et al. 2000; Didham et al. 1998; Komonen et 

al. 2000; Schiegg 2000a), and large-bodied species ( c.f. Davies et al. 2000; Gaston 

1996; Henle et al. 2004). Moreover, it is often the combination of certain traits that 

determines a species' susceptibility to fragmentation (Davies et al. 2004; Henle et al. 

2004). For example, low dispersal ability, coupled with poor competitiveness and 
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prolonged development can limit a species' rate of recovery from periodic disturbance 

events (Bengtsson 2002; Tscharntke et al. 2002; Wood & Pullin 2002). Poor dispersers 

that are confined to rare and specialised microhabitats are equally limited (e.g. Nilsson 

& Baranowski 1997; Tscharntke et al. 2002). Therefore, such life-history information 

would be both valuable in interpreting biologically meaningful species responses to 

forestry-induced changes in the availability of dead wood microhabitats, and in setting 

priorities for the conservation of target species. 

This chapter collates the saproxylic beetle taxonomic data from large (> 1 OOcm) and 

small (30-60cm) diameter Eucalyptus obliqua logs of an intermediate decomposition 

stage, sampled in wet eucalypt forests in Tasmania's southern bioregion. Such data 

were obtained from two separate studies (see Chapters 5, 6) that used two different 

sampling methods: emergence trapping and destructive sampling._Various biological 

traits that were considered important in understanding a species' response to forest 

practices were recorded. The overall faunal assemblage was described and discussed. In 

addition, the efficacies of both sampling methods were compared. 

3.2 METHODS 

3.2.1 Study location 

Beetles were collected from wet eucalypt forest, representing 11 study sites ( coupes ), at 

three localities in Tasmania's southern forests. Six sites were in and near the W arra 

Long Term Ecological Research (LTER) site (43°04'S, 146°41 'E); four in the Picton 

Valley, 10 km south ofWarra; and one in the Arve Valley, 10 km south-east ofWarra 

LTER site. Descriptions and maps of study sites are provided in Section 2.2. and 2.3. 

The canopy of all the sites was dominated by E. obliqua and logs of this species 

dominated the dead wood habitat. All study logs were at an intermediate decomposition 

stage (defined in Section 2.5). Six study sites were in single-aged native forest that had 

regenerated from 'clearfell, bum and sow' silviculture during the 1960s and 70s. The 

other five were in multi-aged unlogged forests that had regenerated following wildfires 

in the early 1900s. Sampled logs were of two diameter classes (>IOOcm diameter and 

30-60cm diameter). 
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3.2.2 Sampling programme and methods 

Two sampling methods were used to collect saproxylic beetles. Destructive sampling 

involves direct searching, which has advantages in gathering biological information of a 

species.Emergence trapping, a passive trapping method, collects beetles over a 

measurable period of time. 

Destructive sampling occurred in seven of the 11 sites used in this study (see Section 

2.6.1). At each site, six logs were destructively sampled. For all but logs at site H, this 

occurred between March and June 2001. Sampling at site H was conducted earlier, 

between February and May 2000 _as this was part of a pilot study that trialled destructive 

sampling methodologies (see Section 2.6.1 ). In total. 42 logs were destructively 

sampled. 

Emergence trapping occurred at all of the 11 sites. For all but site H, emergence traps 

were erected on six logs and operated for 18 months from October 2000 to May 2002 

(included two summers). At site H, five emergence traps were erected, and these 

operated for seven months from March to December 2000. Emergence-trap collecting 

jars were changed at approximately monthly intervals during the spring-summer months 

and every second or third month during the autumn-winter months. Emergence trap 

beetle data were derived from 62 log emergence traps, as data from three traps were 

excluded. These traps were mistakenly erected on non-eucalypt logs, possibly 

Phyllocladus aspleniifolius (Podocarpaceae). Data from these logs have been excluded 

from the final species list. 

3.2.2.1 Destructive sampling 

Direct searching can vary in sampling intensity, ranging from sieving and beating wood 

in order to dislodge insects (Martikainen & Kouki 2003), through to bark peeling 

(Siitonen 1994a) and prising apart logs by hand (Mesibov 1988; Taylor 1990), to 

destructively sampling an entire log using a chainsaw (Fager 1968). A variation of the 

latter method was adopted, where two 1-m long sections of log were destructively 

sampled for beetles (method is detailed in Section 2.6.1 ). This direct sampling method 

allowed information to be gained on species' microhabitat type, feeding guild, and an 

indication of its within-log population density. 
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3.2.2.2 Emergence trapping 

Emergence trapping, is a non-destructive method that samples beetles directly from a 

particular log. An emergence trap samples a known amount oflog over an extended 

period of time, thus catering for the different seasonal emergence times and 

development rates of beetles (Hammond 1997; Owen 1992). These traps have also been 

referred to as photo-eclectors (Rauh & Schmitt 1991), trunk eclectors (Schiegg 2001), 

and extraction cylinders (0l<land 1996a). The traps· were constructed from strong netting 

that encased between 2 and 4 m oflog. Trap dimensions are listed in Table 2.3. 

Collecting jars were positioned at the top and at the base of the trap to catch species that 

disperse by flying or crawling respectively. Trap design is outlined in Section 2.6.2. 

3.2.3 Beetle identifications 

All beetles were sorted and identified to at least family level and then to morphospecies 

(Oliver & Beattie 1996). Morphospecies were identified to a genus or species, where 

feasible, following the protocol outlined in Section 2. 7. Due to the taxonomic 

difficulties with identifying larvae, only results for adults are presented. 

3.2.4 Biological traits of species 

The majority of saproxylic beetles from these forests had not previously been studied. 

Therefore, many sources of information were examined to determine a species' 

biological traits. This included information from personal observations during direct 

searching; information from the various beetle experts; and records in the scientific 

literature, including some which were obscure. The main consulted references were 

Wilson (1928), Lawrence & Newton (1980), Speight (1989), Leschen (1993), Lawrence 

& Britton (1994), Lawrence & Milner (1996), Lawrence (1999), and Alexander (2002). 

As most species found within this study had not been recorded in the scientific 

literature, and some species were undescribed, information was often inferred from 

species of the same genera/sub-family/family. Information compiled for each 

morphospecies included saproxylicity, main microhabitat type, main feeding guild, 

vagility, body length and maximum emergence density. 
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3.2.4.1 "Saproxylicity" 

A beetle species was considered to be either obligately, facultatively or non-saproxylic. 

Obligate saproxylics are species dependent on dead wood, or dependent on others that 

are dead-wood dependent, for some part of their life (namely the larval stage) (0kland 

1996a; Speight 1989). Facultative saproxylics breed in dead wood, but can also breed in 

other detrital based habitats, such as fungi, fallen plant seeds, leaflitter and the 

soil/fermentation layer. Non-saproxylic species are those that shelter in, but do not 

breed or feed in, dead wood, such as overwintering chrysomelid leaf beetles (Hammond 

1997). Non-saproxylics were excluded from all species tallies. 

A conservative approach was used to determine 'saproxylicity'. Saproxylicity was 

determined, where possible, from personal observation during destructive sampling and 

rearing, personal communication with the relevant experts, published information on 

life history of the species/ genera or related taxa, and the degree to which particular 

species have been collected in other habitat types using other collecting methods. The 

wet forests in which this study was conducted had previous and concurrent research 

studies on ground and litter beetle fauna, collecting by pitfall trapping (Michaels 1999, 

Michaels and McQuillan 1995, Baker et al 2004), and saproxylic beetles, collecting by 

hand (Mesibov 1988, Taylor 1990). This allowed the comparison of species collected in 

this study with those of other studies. For example, for species with little known life 

history information, if the same species was commonly collected from pitfall traps, it 

was classed facultative. For species identified only to family level, if the larval habits of 

the family are dead wood dependent, these species were classed obligate. If a species 

dependency on dead wood was questionable, but clearly associated with dead wood or 

detritus, the species was classed facultative. 

3.2.4.2 Microhabitat type 

Microhabitat is defined as the immediate physical environment in which food is 

sourced. Because it is largely the larval stage that feeds on dead wood substrates, 

microhabitat type is effectively the larval microhabitat. Species that potentially occupy 

more than one microhabitat type were assigned to the suspected main microhabitat type 

based on the various consulted sources of information. While this was rather subjective, 
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it was the best possible option given the lack of information for these species, and was 

similar to the approach described in Grove (2002a). Microhabitats within decomposing 

Eucalyptus oqliqua logs were grouped into nine categories: the litter/log surface layer, 

bark, subcortical layer, solid wood, rotten wood, wet cavities, insect burrows in wood, 

fungal sporocarp and unknown. Each microhabitat corresponds to a particular region 

within a log (Figure 3.1). 

Litter/ surface layer consists of the thick (usually 0.5 -2.0 cm) moist layer ofleaflitter 

and mosses that respectively accumulates and grows on the log surface. Bark refers to 

the periderm tissue. This was usually absent from logs at the intermediate stage of 

decomposition used in this study. The subcortical layer refers to the sapwood layer, and 

is commonly found on the outer surfaces (1-5cm) of the log. This was usually partially 

decayed, moist, cream-coloured and fibrous. Solid wood comprises hard and usually 

discoloured wood. Rotten wood includes any decomposed wood tissue derived from the 

heartwood. Wet cavities are the water and detritus filled cavities and cracks within the 

log. Insect burrows refer to the galleries and tunnels that have been excavated by other 

insects, in particular by woodborers and termites. Fungal sporocarp microhabitat refers 

to the fruiting bodies of various fungi that occur on the surface oflogs. 
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Figure 3 .1. Visual representation of the different microhabitat types occurring within Eucalyptus obliqua 
logs at an intermediate stage of decomposition, showing their typical position and relative proportion of 
area within the cross-section. 

3.2.4.3 Feeding guild 

Saproxylic beetle larvae have a diverse range of feeding modes and strategies (Dajoz 

2000; Lawrence & Britton 1994; Speight 1989). Species were allocated to one of five 

feeding guilds: xylophagous, predatory, saprophagous, mycophagous or "other". 

Xylophagous includes beetle species that bore into dead wood, feed on solid wood, or 

feed on decomposing wood tissue. This guild includes all beetles that ingest wood, 

including those that actually derive nutriment from the microorganisms (fungi and 

bacteria) involved in wood decomposition. Predatory species prey on other beetle 

larvae, snails, flies, earthworms, termites, springtails, mites and other microarthropods. 

Saprophagous species include scavengers of dead insects and species that feed on 

detritus, or on the microorganisms associated with the detritus, such as yeasts, bacteria, 

and slime moulds. Detritus includes any loose-particle substrata of plant or animal 

tissue that has been broken down by microorganisms (Lawrence & Milner 1996). 

Mycophagous species comprise those that feed on living fungal material (sporocarp, 

hyphae and spores). Species that did not fit the above categories, such as species that 

feed on epixylic moss, were termed 'other'. 

3.2.4.4 Vagility 

Vagility is categorised according to a species' propensity to fly or crawl from the log as 

adults. Known flightless species (e.g. Lissotes spp.: Lucanidae) were categorised as 
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crawlers; as were species caught exclusively in the lower collecting jars of the 

emergence trap. However, in order to minimise chance effects the latter criterion only 

applied to species occurring in more than 5 log emergence traps. For species caught in 

fewer than 5 traps, or only collected by hand, the presence of fused elytra was used to 

determine this. All other species not fitting these criteria were categorised as flyers. 

Species where the allocation to the crawler group remained questionable were also 

regarded as flyers. 

3.2.4.5 Maximum emergence density 

Maximum emergence density reflects the potential population density and pattern of 

colonisation of a species within a log (Simandl 1993). This was only determined for 

species caught within the emergence traps. Maximum emergence density for a species is 

defined as its largest number of individuals emerging from any single log during the 

collecting period. 

3.2.4.6 Body Size 

Body length was used as an indication of body size. Body length of one individual of 

each species was measured to the nearest 0.1 mm using a stereomicroscope. Although, 

the measurement of one individual does not capture the natural variation of body size 

within a species, the measurement of one individual was deemed sufficient to provide 

an indication of the species' general body-size range. Range of body lengths of species 

was described for each feeding guild. 

3.2.5 Assemblage structure 

Assemblage structure was investigated by tallying the various biological traits (vagility, 

microhabitat type and body size) of species, and grouping them by their feeding guild. 

For species collected in emergence traps, the maximum emergence density was 

described in relation to feeding guild. 

3.2.6 Community structure 

Community structure refers to the distribution of individuals among species within the 

community. This is a mathematical description of the data that emphasizes abundance 
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while utilizing species richness information where species abundance models are used 

to describe how species 'interact' with each other, partition the available resources and 

niches. For each emergence trap, the within-log community structure was measured by 

determining which distribution model (geometric, truncated log-normal, broken-stick 

and log series model (Magurran 1988) best fitted the species abundance distribution. 

This was calculated using the computer program, Species Diversity and Richness 

(Henderson & Seaby 1998). This program uses the distribution of the abundance classes 

and x2 goodness of fit tests to test for each of these model distributions. 

3.2. 7 Comparison of sampling methods 

One-way Analysis of Variance (ANOVA) using SAS® 8 (Anon 1999) was used to 

compare sampling methods based on the number of species sampled per log. Chi-square 

tests were used to test for significant differences in occurrence of common species 

between sampling methods. Common species were defined as those occurring in over 

15 logs from either sampling method combined. 
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3.3 RESULTS 

3.3.1 Taxonomic composition 

A total of 360 morphospecies, representing 54 families, were collected (Table 3.1). The 

Curculionidae and Staphylinidae families were the most species rich, with 56 and 80 

species respectively. Many species were apparently undescribed, especially from these 

main families. A complete list of all species with their associated biological traits is 

given in Appendix 3 .1. At least three species were new to science: Enhypnon TFIC 'sp 

nov' 01 (Zopheridae ); Alloproteinus 'ANIC Thayer sp nov' 01 (Staphylinidae ); 

Tyrogetus 'sp nov' 01 (Staphylinidae: Pselaphinae). Overall, 149 morphospecies could 

be identified to a known species, a further 114 morphospecies to genus level; and a 

further 41 and 54 morphospecies to family and sub-family level respectively. Two 

species remained undetermined to family level, and life history information attributed to 

these species was unknown. 

Table 3.1. Summary of the number of saproxylic beetle families and species sampled from Eucalyptus 
obliqua logs at an intermediate decomposition stage, in wet eucalypt forest in southern Tasmania. 
Families are listed in taxonomic order. 

Famil:i No. of seec1es Fam1l:i No. of seecies Famil:i No of seec1es 

Carabidae 20 Clendae 3 Zopheridae 9 

Pbliidae 4 Melyndae 2 Ulodidae 

Leiod1dae 14 Sphindidae 2 Tenebrionidae 10 

Scydmaerndae 10 Brachyptendae Prostom1dae 2 
Staphyhrndae 80 N1tiduhdae 5 Oedemendae 2 

Lucanidae 6 Phloeost1ch1dae 1 Pyrochro1dae 2 
Scarabae1dae 3 S1lvarndae 3 Salping1dae 1 

Clamb1dae 2 Phalacndae 3 Anth1c1dae 

Scirt1dae 9 Hobartndae Adendae 

Byrrhidae 7 Cryptophag1dae 3 Scrapti1dae 2 

Eucnemidae 2 Erotyhdae Cerambycidae 4 
Throscidae 3 Cerylorndae Chrysomelidae 6 

Elateridae 14 Coccinell1dae 10 Anthnb1dae 3 

Lycidae 7 Coryloph1dae 8 Behdae 

Canthandae 4 Latridiidae 9 Attelabidae 2 
Dermestidae Archeocrypt1cidae 1 Curcuhorndae 56 

Anobiidae 4 Ciidae undetermined adults 2 

Lymexyhdae Melandryidae 7 TOTAL 360 

Troaossit1dae Mordellidae 
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3.3.2 Biological traits and assemblage structure 

3.3.2.1 Saproxylicity 

Two hundred and two species were considered obligate saproxylics, 158 facultative 

saproxylics and 16 non-saproxylics (Appendix 3.2). This figure for obligate species is 

considered conservative as species with a definite but unknown degree of saproxylicity 

were categorised as facultative. 

3.3.2.2 Microhabitat type 

Most species were associated with the rotten wood and litter/surface layer of the log 

microhabitat types (104 and 92 species respectively) (Figure 3.2). The number of 

species associated with the other microhabitats ranged between 10 and 31 species, and 

63 species had an unknown microhabitat association. 

3.3.2.3 Feeding guild 

The overall fauna was functionally diverse, represented by the four main feeding guilds 

in relatively even proportions, ranging between 16 and 28% (Figure 3 .3 ). Eleven 

percent of the fauna had an unknown feeding guild. 

3.3.2.4 Vagility 

Approximately 25% of the species were considered crawlers. Xylophages and predators 

comprised a major proportion of these, while almost all mycophages and saprophages 

where thought to disperse by flying (Figure 3.4). 

35 



Chapter 3 - Inventory and biology of saproxylic beetles 

Subco rtical layer 
9% 

Other0.1% 

28% 

Figure 3.2. Proportions of saproxylic beetle species by microhabitat type, N = 360 
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Figure 3.3. Proportions of saproxylic beetle species by feeding guild, N = 360 
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Figure 3.4. Number of saproxylic beetle species by dispersal mode and feeding guild, N = 360 
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3.3.2.5 Body size 

Of all the species, over 71 % had a body length less than 4 nun. The range of body 

lengths varied among feeding guilds (Figure 3.5). Xylophages and predators had a 

larger range of body lengths, while saprophages and mycophages had a narrower range. 

Body lengths ofxylophages ranged from 1 nun (Miocallus pygmaeus, Curculionidae) to 

41 nun (Toxeutes arcuatus, Cerambycidae), with over 63% ofxylophages less than 4 

nun. For predators, body length ranged from 0.5 nun (Protoplectus 'Tasmania 1 ', 

Staphylinidae: Pselaphinae) to 27 .5 nun (Elatichrosis exarata, Elateridae ), with 57% of 

predators less than 4 nun. In contrast, saprophages body length ranged from 1 to 8.5 

mm, with 77% less than 4 nun; and . mycophages body length ranged between 1 and 

5.3nun, with over 92% of members less than 4 mm in length - the smallest species 

being Ptilidae Yee sp 02 (1 nun). Of the saprophages, the smallest members were 

predominantly from the cucujoid complex of families, mostly latridiids. In the 

'unknown' and 'other' feeding guilds, over 73% and 88% of species respectively were 

less than 4 nun in length. 

3.3.2.6 Maximal emergence densities 

For the 18-month sampling period, over 80% of the 341 species caught in emergence 

traps had a maximum emergence density of one or two individuals per trap (Figure 3.6). 

Of the remainder, 16% of species emerged in densities of 5-20 individuals per trap, and 

these were mostly xylophages;' and 4% of species emerged with a maximum density 

greater than 20 individuals per trap. Of this 4%, six species emerged in numbers greater 

than 50 individuals per trap. These included four xylophagous species: Ancytallia 

oleariae (Curculionidae) (99 individuals per trap), Dohrnia simplex (Oedemeridae)(80), 

Decilaus nigronotatus (Curculionidae) (70), andDecilaus nr striatus/subfasciatus, 

(Curculionidae) (64); and two saprophagous species: Prionocyphon? TFIC sp 01, 

(Scirtidae) (109) Cryptamorpha TFIC sp 01 (Silvanidae) (55). Data for the maximum 

emergence densities for all species collected from emergence traps are presented in 

Appendix 3 .1. 
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3.3.3 Community structure 

Of the 341 species pooled across emergence traps, 103 were found within only one log, 

and of this number, 96 were singletons. Species abundance data showed that 266 

species were represented by 1 to 5 individuals, 105 species were represented by 5 to 50 

individuals, 15 species represented by 50 to 100 individuals, while eight species 

occurred in their hundreds (Figure 3.7). For individual traps, the majority of species­

abundance distributions resembled a truncated log-normal species abundance 

distribution (Table 3.2) (Magurran 1988). 

3.3.4 Comparison of sampling methods 

In total, three times more species (341 species) were collected from the emergence trap 

program than by destructive sampling (94 species). Per log, emergence traps caught a 

significantly higher number of species than did destructive sampling (p < 0.001, F 1, 103 = 

43.98). The lowest and highest number of species per emergence trap was 9 and 78 

respectively, with an average of26 (S.D. ± 11). For destructive sampling, this ranged 

from 2 to 28, with an average of 11 (S.D. ± 6) species per log. While it is acknowledged 

that emergence traps sampled a greater surface area and volume of habitat than 

destructive sampling (compare Table 2.3 with Table 2.2), the question was to compare 

the effectiveness of sampling method by sample unit, with the number oflogs being the 

'cost' of sampling. This interpretation was taken because it is the sample unit (number 

oflogs) that is the limiting factor in such biodiversity studies on saproxylic insects, 

rather than the amount oflog sampled. 

Seventy-nine species were common to both methods. In other words, only 15 of the 360 

morphospecies were absent from emergence traps while 272 were absent from 

destructive sampling samples. Of the 39 frequently c_ollected species (occurring in over 

15 logs), three species were sampled significantly more by destructive sampling, while 

29 species were sampled significantly more by emergence trapping (Table 3.3). For 

each species, its log occurrence by sampling method is given in Appendix 3 .1. 
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Table 3.2. Tests of the frequency distribution data for saproxylic beetles from each log emergence trap 
against the four common species distribution models. (See Section 3.2.6 for details). 
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Table 3.3. The 39 most frequently collected saproxylic beetle species (occurring in over 15 logs). 
Numbers represent the number of occupied logs as detected by Emergence Trapping (62 logs were 
sampled by this method) and Destructive Sampling ( 42 logs were sampled by this method. Species that 
differed significantly in their occurrence according to chi-square tests are annotated with a< or>. Species 
are listed in taxonomic order. 
Family Species bmom1al ET DS TOTAL 

Carab1dae St1chonotus Jeai 14 7 21 ET<DS 

Carabidae S/oaneana tasmamae 13 3 16 ET<DS 

Carab1dae Trech1morphus d1emenens1s 24 7 31 ET<DS 

Staphylirndae Aleocharinae TFIC sp 13 20 8 28 ET<DS 

Staphyhrndae Aleocharmae TFIC sp 34 11 10 21 
Lucarndae Syndesus cornutus 10 9 19 
Lucarndae Ltssotes cancro1des 21 27 48 
Lucarndae Ltssotes subcaeruleus 21 6 27 ET<DS 

Sc1rt1dae Pnonocyphon? TFIC sp 01 25 26 ET<DS 

Scirt1dae Pseudomicrocara atkmsoni? 16 5 21 ET<DS 

Throsc1dae Aulonothroscus elongatus 21 0 21 ET<DS 

Elatendae Parablax ooltektrra 23 0 23 ET<DS 

Elatendae Dent1collmae TFIC sp 01 14 5 19 ET<DS 

Canthandae Heteromast1x TFIC sp 01 25 0 25 ET<DS 

Sphmd1dae Asp1d1phorus humera/1s 20 0 20 ET<DS 

S1lvarndae Cryptamorpha TFJC sp 01 29 30 ET<DS 

S1lvarndae Cryptamorpha v1ctonae? 14 15 ET<DS 

Cerylonidae Phtlothermus tasmamcus 6 10 16 
Coryloph1dae Ho/ops1s TFIC sp 01 39 40 ET<DS 

Latndndae And1us nod1fer 23 0 23 ET<DS 

Melandry1dae Orches1a alphabetica 29 0 29 ET< OS 

Zophendae Pycnomerus TFIC sp 02 6 21 27 DS>ET 

Zophendae Enhypnon tuberculatus 37 38 ET<DS 

Tenebnorndae Brycop1a p1cta 11 15 26 
Tenebnorndae Conpera deplanata 11 25 36 DS>ET 

Prostom1dae Prostom1s atkmsom 12 25 37 DS>ET 

Oedemendae Dohrnia simplex 26 9 35 ET<DS 

Curcuhorndae Ancytta/1a o/eariae 28 0 28 ET<DS 

Curcuhorndae Ancytta/1a tarsa/1s 32 0 32 ET<DS 

Curcuhorndae Dec1/aus a/bonotatus 16 0 16 ET<DS 

Curcuhorndae Dec1/aus latera/1s 25 26 ET<DS 

Curcuhorndae Dec1/aus mgronotatus 43 0 43 ET<DS 

Curcuhorndae Decilaus nr stnatus/subfasc1atus 41 3 44 ET<DS 

Curcuhorndae Ex1th1us capucmus 18 0 18 ET<DS 

Curcuhonidae M1ocallus pygmaeus 15 0 15 ET<DS 

Curcuhonidae Roptoperus tasmamens1s 22 0 22 ET<DS 

Curcuhorndae Dryophthorus TFIC sp 01 3 16 19 DS> ET 

Curcuhonidae Exe1ratus TFIC sp 01 14 9 23 
Curcuhorndae Mandalotus muscivorus 23 0 23 ET<DS 
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3.4 DISCUSSION 

3.4.1 Richness and diversity of saproxylic beetles 

This baseline survey clearly demonstrates that the species richness and functional 

diversity of saproxylic beetles in just a small area within Tasmania's southern wet E. 

obliqua forest is high. Of the total 360 saproxylic beetle species collated from 103 logs 

of an intermediate decomposition stage within a 1 Okm2 study area of the southern 

ranges bioregion, some species were new to science (e.g. Enhypnon TFIC 'sp nov' 01: 

Zopheridae; Alloproteinus 'ANIC Thayer sp nov' 01: Staphylinidae; Tyrogetus 'sp nov' 

01: Pselaphinae, Staphylinidae) and for others~ this was their first record of occurrence 

in this bioregion, and/or state (e.g. Chalcoplectus depressus: Pselaphinae, 

Staphylinidae, only known from Victoria and ACT, Chandler pers. comm.). 

Furthermore, many species are yet to be described (e.g. Dryophthorus TFIC sp OJ, 

Dryophthorus TFIC sp 02: Curculionidae; Staphylinidae ANIC 88088; Enischnelater 

TFIC sp OJ.• Elateridae; and several members of the Pselaphinae subfamily). 

This study presents a ten-fold increase in the number of records on earlier preliminary 

studies that sampled beetle by hand-collecting (Mesibov 1988; Taylor 1990). This is 

probably due to more efficient or extensive sampling over a larger number of sites. This 

study sampled 11 forest coupes, compared to just two in the earlier studies. In this 

study, an entire log section, from log surface to log interior was destructively sampled, 

instead of just sampling log areas accessible by a crowbar. Emergence traps (not used in 

previous Tasmanian studies) were also more likely to be more proficient in sampling 

saproxylic beetles. This is further discussed in section 3.4.4. 

The species richness in this Tasmanian forest area is high relative to several northern 

temperate and boreal forests, which, in comparison to this present study, have been 

surveyed more extensively and over a longer period of time. For example, a total of 335 

species were collected from a Norwegian spruce and deciduous forest reserve over six 

years using three trapping methods (Bakke 1999). In old-growth spruce forests in 

Northern Finland, 270 saproxylic beetle species were collected by bark peeling and 

window traps, which are traps considered more efficient than emergence traps (Grove 

2000). Also, a three-year study in aspen dominated forest in Canada using rearing and 

window traps collected 257 species (Hammond 1997). 
' -
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Saproxylic beetles for the Tasmanian forests are likely to increase substantially with 

further survey. The sampling regime in this present study was limited to one 

decompositional stage (intermediate) of one host species (Eucalyptus obliqua) of two 

log diameter size classes. It has been speculated that for E. obliqua logs the period from 

tree fall through different stages of log decomposition to complete mineralisation is 

over 100 years (Grove et al. 2002; Mackensen et al. 2003)- an average of92 years for 

other eucalypt species). It is likely that the various decomposition stages and 

successions would support distinct assemblages, as has been reported for other tree 

species (Ausmus 1977; Dajoz 2000; Greenslade 1972; Howden & Vogt 1951; Speight 

1989). Among the beetles emerging from E. obliqua logs during the first stage of 

decomposition (a one year period following felling) in another recent study at Warra 

(Grove & Bashford 2003), 66 species are different from those found in the present study 

in the intermediate stage of decomposition. The number of species associated with this 

early decomposition stage is increasing with the continuation of emergence trapping 

(Grove and Bashford, pers. comm.) 

Different tree species may also host specific saproxylic beetle assemblages. Marked 

differences between the beetle assemblages of hardwood and softwood logs have been 

clearly shown in several Northern European forests (Bakke 1999; Irmler et al. 1996). 

Preliminary data collected from the three non-eucalypt logs in this study also indicates 

that a similar phenomenon of host specificity could operate in Tasmanian wet eucalypt 

forest and is a factor which will also augment saproxylic beetle richness and diversity 

(data unpublished). Moreover in this study, it was logistically impossible to specifically 

sample the log-soil interface using either sampling method, and so potential epigean and 

edaphic (Lawrence & Britton 1994) saproxylic beetles may have been missed which 

could considerably add to overall saproxylic beetle species richness. 

3.4.2 Assemblage structure of saproxylic beetles 

The high level of within log species richness reflects the multitude and heterogeneity of 

microhabitats that can occur within a log (Simandl 1993; Speight 1989). In this study, a 

single trap covering 2.67m length of a 1 m diameter log hosted 79 saproxylic beetle 

species (61 species were obligate). As a log decomposes, it undergoes a succession of 
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ecological processes. With each process the woody material is altered in certain ways to 

create a substrate that hosts a specific assemblage of interacting, colonising and 

emigrating species (Harmon et al. 1986). The overall truncated log-normal species 

abundance distribution of logs supports the idea of the existence of this type of 

community structure, which can be interpreted as niches being partitioned successively 

(Magurran 1988). 

Dead wood is an important resource for detrital based faunal communities. For many 

species, the habitat specificity for dead wood is unknown, yet it is likely that some 

species, especially mycophages, also breed in other detrital based habitats, such as 

twigs, fungal sporocarps, slime moulds, leaf litter and the soil/fermentation layer 

(Lawrence 1989; Lawrence & Britton 1994; Lawrence & Milner 1996). Irmler et al. 

(1996) compared the species assemblages in dead wood with those in neighbouring leaf 

litter in a German beech/alder forest and showed that assemblage overlap between these 

two habitat types increases as log decomposition proceeds - especially for predators and 

mycophages. In the present study, less than 60% of species could be considered 

obligately saproxylic. While this figure may vary due to misclassification of individual 

species saproxylicity, it is unlikely this figure would change dramatically. Pitfall traps 

that had operated within and near the study area (S. Baker unpublished data, Michaels 

1999) collected species common to those deemed saproxylic in this study. The degree 

of overlap between habitat types remains unknown, as while pitfall traps generally 

sample ground dwelling or litter dwelling beetles (e.g. Michaels & McQuillan 1995), 

they have the potential to sample flightless obligately saproxylic species dispersing 

between logs (e.g. Michaels & Bomemissza 1999). In any case, the rich beetle fauna 

associated with dead wood illustrates its important value as food, habitat or shelter for 

detrital based communities (Taylor 1990). More detrital habitat in these forests is 

available as dead wood than as leaflitter (e.g. 1089 t/ha to 22.2 t/ha respectively 

Turnbull & Madden 1986). 

3.4.3 Some relationships between the biological attributes of saproxylic 

beetles 

The relationship between body size and feeding guild supports the theories that body 

size and feeding guild are interrelated (reviewed in Henle et al. 2004). For example, the 
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wide range of predator body sizes can be generally explained by the diversity in prey 

size, ranging from mites (prey for scydmaenid and pselaphine beetles), larval 

cerambycids (prey for specialised elaterids) to snails (prey for large generalist carabids ). 

The large proportion of small sized mycophages (92% of species were less than 4 mm) 

can be explained by an adaptation to feeding on small food sources, such as fungal 

spores and hyphae, as well as the requirement to move between the crevices, fungal 

pores, and insect tunnels to access this substratum (Lawrence 1989; Lawrence & Milner 

1996). In contrast, xylophages had a large range in body sizes. This may be due partly 

to being less constrained by their surroundings, as their microhabitat (woody material) 

is their food source, and they create their own tunnels to move through. 

The interaction between the dispersal mode and feeding guild of species in this study 

can be explained by the relationship between species' vagility and the spatial and 

temporal dynamics of its food or habitat resource (Southwood 1977). For mycophages. 

and saprophages, the dominance of flight behaviour within these guilds may relate to 

the relatively ephemeral nature of their food, such as fungi and detritus respectively. 

The variation in dispersal mode within the xylophagous guild can be explained partly by 

species having adapted to woody habitats of varying stability, ranging from the short­

lived bark and solid wood habitats to the more long lived rotten wood microhabitats 

(Jonsell 1999). For predators, their high variation in dispersal mode may relate to the 

availability and dispersal capability of their prey. Generalist predators, such as carabid 

beetles, pselaphine and scydmaenid beetles tend to feed on prey that is relatively 

ubiquitous and flightless, such as snails and worms, mites and collembola respectively. 

The flighted predators, such as the elaterid and clerid beetles, usually prey on organisms 

that are generally flighted, such as wood boring beetles (Lawrence & Britton 1994). 

Bakke (1999) also noted that certain predatory cantharid beetles had similar flight 

behaviours to their prey_( saproxylic flies). More specific predator - prey relationship 

have been described in Kappes & Topp (2004), who observed a positive correlation 

between predatory staphylinid and xylophagous scolytid beetle emergence from dead 

wood in Germany. 
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3.4.4 Advantages and disadvantages of sampling methods 

As different methods often sample different components of the saproxylic beetle fauna 

(Bakke 1999; 0kland 1996a; Siitonen 1994a) it has been suggested that by using a 

combination of methods, a more complete inventory can be obtained (Grove 2000; 

Hammond 1997), especially ofrare species (Martikainen & Kouki 2003). However, 

results of this study suggest that as a sole sampling method, emergence traps would be 

adequate for comprehensively sampling the saproxylic beetles within a log. Of course, 

this is on the proviso that life-history information, such as microhabitat type and 

saproxylicity, gained from personal observations during destructive sampling is not 

considered necessary to the particular research being undertaken. In this study, 

emergence trapping collected over three times more species compared to the destructive 

sampling method and more than twice as many species per log. More importantly, the 

overlap between emergence traps and destructive sampling was good i.e. emergence 

traps shared a high proportion (84%) of those species that were collected by destructive 

sampling. 

The effectiveness oflog emergence traps can be explained by their ability to collect 

continuously over the different seasons. Such traps are also efficient in sampling very 

small beetles (71 % of species collected in this study were less than 4 mm in body 

length). With direct searching the probability of collecting a particular species or 

adequately sampling its population size is negatively correlated with a species' body 

size (Martikainen & Kouki 2003). Log emergence traps provide a more logistically 

feasible and environmentally friendly sampling method. Direct searching destroys the 

habitat, especially if chainsaws are used. Also, it is quite laborious, time consuming and 

costly. Furthermore, destructive sampling is relatively subjective and open to operator 

error when compared to emergence trapping methods (this study, Bakke 1999; Siitonen 

1994a). As saproxylic beetles are generally inherently cryptic, very small, and well 

hidden within their substrates, or highly vagile (mobile), finding and collecting these 

species is difficult. Moreover, destructive sampling is to some extent limited to 

sampling beetles that are present as adults at the time of sampling, and so this method 

may miss those species that occur in their larval form at the time of sampling or miss 

those only present within the log as a larva (e.g. Dohrnia simplex, Oedemeridae ). 
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Certain species were commonly detected by destructive sampling but were either absent 

from or less frequently collected by emergence traps. One explanation could be that 

emergence traps alter the microclimate and such modified conditions hinder beetle 

development, although there are no data to support this hypothesis. A more likely 

explanation for this discrepancy between the two sampling methods is that the 

emergence trapping period was not sufficient to collect species with either prolonged 

development (e.g. Toxeutes arcuatus and Enneaphyllus aeneipennis) or with lower 

dispersal rates. Field and laboratory observations suggest that some xylophagous 

feeders on rotten wood, such as Dryophthorus TFIC sp 01, Pycnomerus TFIC sp 02 and 

Prostomis atkinsoni, may undergo consecutive generations within a log before 

dispersal, and so may be under represented in emergence traps for this reason. 

Therefore, provided emergence traps are left on a log for a sufficient period of time, it is 

suggested that they seem adequate to survey the saproxylic fauna of individual logs 

greater than 30cm diameter. 

While emergence traps are not destructive of the habitat, there is one consideration 

needed when using emergence to long term monitoring. In principle, emergence traps 

make colonisation of the wood covered by the trap impossible. This will eventually lead 

to decreases in catches and prevent natural succession in the logs unless the trap is 

removed during periods or moved along the length of the log. Such has been the 

strategy adopted by Grove and Bashford (2003) for monitoring the succession of 

saproxylic insects from a decomposing log. 

Specially designed flight intercept traps, such as trunk window traps (Kaila 1993), or 

standard free-hanging window traps (0kland 1996a) have been widely adopted in 

northern Europe and can be very effective in sampling saproxylic beetles (Bakke 1999; 

0kland 1996a). Similar conclusions have also been made from studies on tropical 

saproxylic beetles in North Queensland (Grove 2000). However, these trap types catch 

all flying insects, not just saproxylic species, and are more appropriate for sampling 

species at a stand-level scale (see 0kland 1996a). Therefore, these traps were not 

appropriate for initial surveys of this fauna. For future studies though, the effectiveness 

and simplicity of window traps could contribute greatly to the study of saproxylic 

beetles in Tasmanian wet eucalypt forests, particularly if specific species or groups of 
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species are targeted. However, as up to 25% of saproxylic beetle species collected in 

this study seemed to disperse by crawling, sampling programs should consider the 

inclusion of other trapping methods that would sample species dispersing along the 

forest floor (e.g. pitfall traps, Michaels & Bomemissza 1999). 

Few studies have used the data from the various trapping methods to deduce 

information of a species life history, though Hammond (1997) considered that the 

biological information derived from different trapping methods was quite different. This 

study demonstrates that for emergence traps, provided sample size is sufficient and they 

are monitored regularly, they can provide a novel approach for gaining information 

about a species' dispersal mode (this study, Grove & Bashford 2003), emergence times 

and behaviour. Examination of when a species is caught and in what quantities it is 

caught may be indicative of its pattern of colonisation and population density. For 

example, the x:ylophagous Dohrnia simplex consistently had relatively high emergence 

densities per trap. Conspecifics aggregating during oviposition or reproductive females 

having large batches of eggs are some explanations for these observed emergence 

densities. Meanwhile, species that had emerged as singletons may possess some level of 

rarity or potentially have a lower population density relative to the more abundant 

species. Although much speculation is involved in interpreting emergence densities and 

behaviour, this type of data does provide a quick and easy method for gaining an 

indication of species biological and behavioural traits. This is particularly valuable in 

situations such as these where very little is known of the biology of this highly species 

rich fauna. 

3.5 CONCLUSIONS 

This study clearly shows that emergence traps are a suitable and efficient single method 

for sampling saproxylic beetles within an individual log provided that traps remain in 

position over a period that is of sufficient duration to permit the emergence of species 

with long generation times or low dispersal rates. 

The saproxylic beetle species records in this study are a significant increase on previous 

records (Mesibov 1988; Taylor 1990 ), and the checklist provided by this study is an 
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important contribution to the knowledge of saproxylic beetles from the wet eucalypt 

forests in southern Tasmania. This list is very much a work-in-progress, and as with 

other provisional annotated checklists (e.g. Alexander 2002), the data is by no means 

definitive, especially since over half of all species could not be identified beyond genus 

level. The biology of many of these species remain unknown or the biological 

information derived for these species was inferred from the various sources of 

information and so requires further investigation. However, the information on 

saproxylic beetles presented here is a hitherto unavailable starting point for researchers 

and nature conservationists undertaking study of this highly species rich group. Most 

importantly the records from this study serve as a baseline reference taken prior to any 

long term changes in saproxylic beetle richness and diversity which may result from the 

current intensive forestry practices in wet eucalypt forests of southern Tasmania. 
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3.6 APPENDICES 

Appendix 3 .1. List of 360 saproxylic beetles with biological traits, collected from Eucalyptus obliqua logs at an intermediate decomposition stage in wet eucalypt forest in 
southern Tasmania, using two trapping methods: emergence trapping (ET) and destructive sampling (DS). The number of logs in which species were present is also listed 
under trapping method. Abbreviations of the biological traits are OBL = obligate saproxylic, F AC = facultative saproxylic, UNK = unknown, CRAW = crawler, FLY = flyer, 
LT/SF= litter/surface layer, SUBC = subcortical layer, SOLID= solid wood, ROTT= rotten wood, WET= wet cavities, BURR= insect burrows, FUNGI= fungal 
S£Oroc!;!!E, XYLO = x~loEha~ous, PRED = Eredator, SAPRO = saEroEhagous, MYCO = mycoEha~ous. S£ecies are listed in taxonomic order. 
Fam-sub code Family-subfamily Species binomial DS ET maximum sapro-xyhc1ty dispersal m1crohab1tat feeding body length 

emergence mode type guild (mm) 
dens1t 

0017-00 Carabidae Carab1dae YEE se 21 0 1 1 FAC UNK UNK UNK UNK 

0017-09 Carab1dae-M19adoe1nae St1chonotus /ea1 7 14 9 FAC CRAW LT/SF PRED 6 

0017-12 Carab1dae-Trech1nae Sloaneana tasmamae 3 13 9 OBL FLY LT/SF PRED 4.5 
0017-12 Carab1dae-Trechmae Tasmanotrechus /ea1 0 1 1 FAC CRAW LT/SF PRED 51 
0017-12 Carabidae-Trechmae Trech1morehus d1emenens1s 7 24 7 OBL FLY LT/SF PRED 49 
0017-17 Carabidae-Broscinae ChyJnus ater 0 10 8 OBL CRAW ROTT PRED 18 
0017-17 Carab1dae-Broscmae Percosoma careno1des 0 3 1 FAC CRAW LT/SF PRED 23 
0017-17 Carab1dae-Broscmae Promecoderus tasmamcus 6 7 2 OBL CRAW SUBC PRED 9 
0017-18 Carabidae-Callistinae Lest1gnathus se nr foveatus 1 0 FAC FLY SUBC PRED 6 

0017-19 Carab1dae-Leb11nae Agonoche1/a curtula 1 0 FAC FLY LT/SF PRED 4.3 
0017-20 Carabidae-Penta9onic1nae PentafJ.omca v1tt1e,enms 0 1 1 FAC FLY LT/SF PRED 35 
0017-20 Carab1dae-Penta9ornc1nae Scopodes mtermed1us? 4 4 2 FAC FLY LT/SF PRED 4.2 
0017-21 Carab1dae-Ps~drmae Ambly_telus lonf!.1penms 0 1 1 FAC FLY LT/SF PRED 6.7 
0017-21 Carab1dae-Ps~dnnae Ambly_telus plac1dus 0 2 1 OBL FLY ROTT PRED 41 

0017-21 Carab1dae-Ps}'.drmae Ambly_telus TFIC se 01 2 4 2 FAC FLY SUBC PRED 6.8 
0017-21 Carab1dae-Ps~drmae Thepnsa convexa 2 1 2 FAC CRAW LT/SF PRED 6 
0017-22 Carab1dae-Pterost1ch1nae Notonomus e,ol1tulus 2 6 2 OBL CRAW LT/SF PRED 15 
0017-22 Carab1dae-Pterost1ch1nae Rhabdotus reflexus 2 4 1 FAC CRAW SUBC PRED 18 
0017-26 Carab1dae-Zohnae Percodermus nifJ.er 0 2 1 FAC CRAW LT/SF PRED 44 

0017-26 Carab1dae-Zohnae Pterocy_rtus tasmamcus 2 10 30 OBL CRAW ROTT PRED 4.7 

0023-00 Pbludae Pt1/11dae TFIC se 01 0 10 2 FAC FLY UNK UNK 07 

0023-00 Ptiludae Ptiludae TFIC Sf!. 03 0 3 2 FAC FLY FUNGI MYCO 1 1 

0023-00 Pt1li1dae Pt1/11dae TFIC se 04 2 9 1 FAC FLY LT/SF MYCO 1 

0023-00 Ptiliidae Pt1/iidae YEE Sf!. 02 0 2 1 FAC FLY FUNGI MYCO 

0025-00 Le1od1dae Le1od1dae TFIC Sf!. 02 0 2 1 FAC CRAW LT/SF SAPRO 1 6 

0025-01 Leiodidae-Cam1annae Agy_rtodes tasmamcus 0 1 2 FAC FLY LT/SF SAPRO 1.9 

0025-01 Le1od1dae-Cam1annae Ml(micho/eva /1gulata 0 3 5 OBL CRAW BARK SAP RO 42 

0025-01 Le1od1dae-Cam1annae Neoeeltoes TFIC se. 01 0 4 21 FAC FLY LT/SF SAPRO 2.9 
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Fam-sub code Family-subfamily Species binomial DS ET maximum sapro-xyhc1ty dispersal m1crohab1tat feeding body length 
emergence mode type guild (mm) 
densit 

0025-03 Leiod1dae-Leiodmae SorJ,dmi 'ANIC r1.en B' TFIC Sf!. 01 0 2 1 FAG FLY LT/SF SAP RO 3 

0025-05 Leiod1dae-Cholevmae Austronemadus TFIC Sf!. 01 0 6 3 FAG FLY LT/SF SAP RO 2 

0025-05 Leiod1dae-Cholevmae Austronemadus TFIC Sf!. 03 0 5 4 OBL CRAW ROTT SAP RO 3.8 

0025-05 Le1od1dae-Cholevmae Narr1.omorehus ieanne/1 1 2 1 FAG FLY LT/SF SAP RO 1 7 

0025-05 Le1od1dae-Cholev1nae NarFJ,omorehus TFIC Sf!. 01 0 5 1 FAG FLY LT/SF SAP RO 3 

0025-05 Leiod1dae-Cholevinae Narr1.omorehus TFIC Sf!. 02 1 1 2 FAC FLY LT/SF SAPRO 2.5 

0025-05 Le1od1dae-Cholev1nae Narr1.omorehus TFIC Sf!. 03 0 1 1 FAG FLY LT/SF SAP RO UNK 

0025-05 Leiod1dae-Cholevinae NarFJ,omorehus TFIC Sf!. 04 0 1 1 FAG FLY LT/SF SAP RO 2 

0025-05 Leiod1dae-Cholevinae Narf!pmore.hus TFIC se. 05 0 2 1 FAG FLY FUNGI MYCO 24 

0025-05 Le1od1dae-Cholev1nae Parafl¥_rlodes e.ercalceatus 0 6 3 OBL FLY BARK SAP RO 2 1 

0026-00 Sc~dmaemdae Scr.dmaenidae TFIC se. 03 0 2 1 FAC CRAW LT/SF PRED 1 7 

0026-00 Sc~dmaemdae Scr.dmaenidae TFIC sp 04 1 6 2 FAC CRAW ROTT PRED 1.3 

0026-00 Sc~dmaemdae Sc¥_dmaenidae TFIC Sf!. 05 0 4 2 FAG CRAW LT/SF PRED 12 

0026-00 scxdmaemdae Scr.dmaenidae TFIC sp 06 0 4 2 FAG CRAW LT/SF PRED 13 

0026-00 Sc~dmaemdae Sc"f_dmaenidae TFIC Sf!. 07 0 4 3 FAC CRAW LT/SF PRED 

0026-00 scxdmaemdae Sc¥_dmaenidae TFIC se. 08 1 1 1 FAC CRAW LT/SF PRED 1 1 

0026-00 Sc~dmaemdae Sc¥_dmaenidae TF/C se. 09 0 2 1 FAG CRAW LT/SF PRED 1 5 

0026-00 scxdmaenidae Scldmaenidae TFIC se.10 1 5 8 FAC CRAW ROTT PRED 1 2 

0026-00 Sc~dmaemdae Sc¥_dmaenidae TFIC se 11 0 5 1 FAG CRAW LT/SF PRED 15 

0026-00 scxdmaemdae Scldmaenidae YEE se. X 0 4 2 FAG FLY LT/SF PRED 

0028-00 Staehxlm1dae Staeh'iJ1nidae ANIC 88.0088 3 8 3 OBL CRAW SUBC PRED 75 

0028-00 Staeh~hmdae Stae.hr.Jm1dae YEE Sf!. 02 2 3 1 OBL FLY ROTT MYCO 3 

0028-00 Staeh:tilmdae Staeh'i}1nidae YEE se. 63 0 3 1 FAC FLY UNK UNK 

0028-00 Staeh~hmdae Staehyfm1dae YEE sp 64 0 1 1 FAC FLY UNK UNK 1.4 

0028-00 Staehxhmdae Staeh'i}midae YEE se. X 0 1 1 FAC FLY UNK UNK 

0028-03 Staph~l1n1dae-Omal11nae lschnoderma e.arallelus 0 2 1 FAC FLY BARK SAP RO 1.8 

0028-03 StaphXlin1dae-Omallinae Metacorneo/ab1um darlmFJ,toni 0 2 2 FAC FLY UNK PRED 1.2 

0028-05 Staeh~l1n1dae-Protein1nae Alloe.rotemus 'ANIC Thar.er se. nov' 0 1 15 OBL FLY BURR UNK 1 6 

0028-05 Staehxl1n1dae-Prote1mnae Aneews koebele1 0 1 1 FAC FLY UNK UNK 25 

0028-10 Staeh~l1n1dae-Pselaeh1nae Anabax1s CHANDLER 'Tt,e.e 1' 0 4 4 FAC FLY SOLID PRED 1.8 

0028-10 Staeh~limdae-Pselaehinae Aulaxus CHANDLER 'Tasmania 1' 0 2 2 FAC FLY UNK PRED 1.3 

0028-10 Staeh~l1mdae-Pselaehmae Chalcoelectus dee.ressus 0 2 2 OBL FLY SUBC PRED 2.8 

0028-10 Staehylimdae-Pselaeh1nae Chichester CHANDLER 'Tasmania 1' 0 8 2 FAC FLY UNK PRED 1 3 
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0028-10 Staphylirndae:Pselaph1nae Chichester CHANDLER 'Tasmania 2' 0 

0028-10 Staphyhn1dae-Pselaph1nae Deroplectus excisus 0 

0028-10 Staphyhrndae-Pselaph1nae Eupmella dentiventris 0 4 

0028-10 Staphylm1dae-Pselaphinae Eupme/la tarsal1s 0 

0028-10 Staphyhrndae:Pselaphinae Eupmes CHANDLER 'Tasmania 1' 0 2 

0028-10 Staphyl1n1dae-pselaph1nae Epplei;tops CHANDLER 'Tasmania 1' 0 3 

0028-10 Staphyl1rndae-Pselaph1nae Gerallus CHANDLER 'Tasmania 1' 0 

0028-10 Staphylin1dae-Pselaphinae Logasa CHANDLER 'Tasmania 1' 0 2 

0028-10 Staphyl1rndae-Pselaphinae M.acroplectusCHANDLER 'Type 1' 4 0 

0028-10 .. _Staphyl1nu:l<1e:pselaph111<1€l M<J1Jrgpl~ctusqy<Jcl.r<Jt1penn1s 0 

0028-10 Staphyl1rndae:Pselaphinae M.acroplectus tasmaniae 4 

0028-10 Staphylinidae-Pselaphinae Pa/1mbolus v1ctonae 0 7 

0028-10 Staphyhrndae-Pselaphinae Paraplectus CHANDLER 'Tasmania 1' 0 4 
0028-10 Staphylm1dae-Pselaphinae Plectusodes CHANDLER 'Tasmania 1' 0 2 

0028-10 Staphylin1dae-Pselaphinae Protop/ectus CHANDLER 'Tasmania 1' 0 2 

0028-10 Staphylinidae-Pselaphinae Pse/aphau/ax CHANDLER 'Tasmania 1' 0 5 

0028-10 Staphylin1dae-Pselaphinae Rybax1s CHANDLER 'Tasmania 1' 0 

0028-10 Staohvhrndae-Pselaohinae Rvbax1s oarvidens 0 8 

0028-10 Staphyl1rndae-Pselaphinae Rybax1s variab1/is 0 6 

0028-10 Staphyl1ri1dae-Pselaphinae §ago/a CHANDLER 'Tasmania 1' 0 

0028-10 Staphyilrndae-Pselaphinae Sago/a CHANDLER 'Tasmania 2' 0 8 

0028-10 Staphylinidae-Pselaphinae Sago/a rug1cornis 0 7 

0028-10 Staphyhrndae-Pselaphinae Startes CHANDLER 'Tasmania 1' 2 11 

0028-10 Staphyhrndae-Pselaphinae Tasmanityrus newtoni 2 

0028-10 Staphylinidae-Pselaphinae Tyrogetus CHANDLER 'Tasmania 1' 0 

0028-10 Staphylirndae-Pselaphinae Washpoo/ CHANDLER 'Tasmania 1' 0 9 

0028-13 Staphylinidae-Tachyponnae lschnosornaJFICsp 01 0 2 

0028-13 Staphyilrndae-Tachyponnae SepedopMus TFIC sp 01 2 9 

0028-16 Staphylm1dae-Aleochannae Aleochannae TFIC sp 01 0 5 

0028-16 Staphylm1dae-Aleochannae Aleocharinae TFIC sp 02 0 

0028-16 Staphyilrndae-Aleochannae Aleocharinae TFIC sp 04 0 3 

0028-16 Staphyhrndae-Aleochannae .Ale9i;f1annae]F/(;sp 10 0 6 

0028-16 Staphylirndae-Aleochannae Aleochannae TF/Gsp 13 8 20 
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Fam-sub code Family-subfamily Species b1nom1al DS ET maximum sapro-xyhc1ty dispersal m1crohab1tat feed mg body length 
emergence mode type guild (mm) 
dens1t 

0028-16 Staeh}'.l1n1dae-Aleochannae Aleocharmae TFIC se_ 14 0 12 43 FAG FLY UNK UNK 1.5 
0028-16 Staeh}'.lin1dae-Aleochannae Aleocharmae TFIC se. 15 0 4 1 FAG CRAW UNK UNK 4.3 
0028-16 Staph}'.l1n1dae-Aleochannae Aleocharmae TFIC sp 16 0 1 1 FAG FLY UNK UNK 41 

0028-16 Staeh)!lirndae-Aleochannae Aleochannae TFIC se. 25 2 0 OBL FLY ROTT MYCO 2.2 
0028-16 Staeh)!linidae-Aleocharinae Aleocharmae TFIC se. 26 0 6 2 FAG FLY UNK UNK 1.6 

0028-16 Staeh}'.l1rndae-Aleocharinae Aleocharmae TFIC se. 27 1 0 FAG FLY ROTT MYCO 2.3 

0028-16 Staeh}'.l1rndae-Aleochannae Aleocharinae TFIC se. 28 1 0 FAG FLY LT/SF MYCO 2.6 
0028-16 Staeh)!linidae-Aleocharinae Aleocharmae TFIC se. 29 0 7 2 FAG CRAW UNK UNK 3.1 

0028-16 Staeh)!l1mdae-Aleochannae Aleocharinae TFIC se 30 0 1 1 FAG FLY UNK UNK 3 

0028-16 Staeh}'.l1rndae-Aleochannae Aleochannae TFIC se. 32 0 1 1 FAG FLY UNK UNK 37 
0028-16 Staeh)!l1rndae-Aleochannae Aleochannae TFIC se. 33 0 2 1 FAG FLY UNK UNK 35 
0028-16 Staeh)!l1mdae-Aleochannae Aleocharmae TF/C Sf!. 34 10 11 3 OBL CRAW ROTT MYCO 15 
0028-16 Staph)!limdae-Aleochannae Aleocharmae TFIC Sf!. 35 0 2 1 FAG FLY UNK UNK 28 
0028-16 Staeh}'.linidae-Aleocharinae Aleocharmae TFIC sp 36 0 1 3 FAG FLY UNK UNK 0 

0028-16 Staph)!l1rndae-Aleochannae Fatarzna TFIC se 04 0 2 1 FAG CRAW UNK UNK 2.3 
0028-19 Staeh}'.lmidae-Scaehid11nae Baeocera TFIC se 01 0 6 8 FAG FLY FUNGI MYCO 1 5 
0028-19 Staeh)!l1rndae-Scaeh1d11nae Scaeh1d1um ate1colum 0 1 1 OBL FLY UNK UNK 5.2 

0028-19 Staeh)!linidae-Scaeh1d1mae Scaehidium YEE se 01 1 0 OBL FLY UNK UNK 52 
0028-19 Staeh)!l1nidae-Scaeh1diinae Scaeh1soma mdutum 0 4 2 FAG FLY FUNGI MYCO 2 
0028-19 Staeh;tl1mdae-Scaeh1d11nae Scaeh1soma TFIC se 01 0 2 1 FAG FLY FUNGI MYCO 2.5 

0028-22 Staeh)!l1rndae-Ox}'.!el1nae Anotyjus TFIC Sf!. 03 0 6 4 FAG FLY BARK SAP RO 4 

0028-22 Staeh)!l1rndae-Ox}'.!el1nae Ano~x/us TFIC Sf!. 04 0 3 2 FAG FLY BARK SAP RO 3.3 

0028-22 Staeh)!l1rndae-Ox}'.!elmae Anot_y_lus YEE Sf!. 21 0 1 1 FAG FLY BARK MYCO 

0028-22 Staeh)!l1rndae-Ox~el1nae Homalotrichus TFIC sp 01 0 1 1 FAG FLY UNK UNK 5 

0028-30 Staph)!linidae-Paedennae Hyperomma brx_oehilum 1 5 1 FAG UNK UNK UNK UNK 

0028-30 Staph)!llmdae-Paedennae Macrod1cax TFIC sp 01 0 1 1 OBL UNK UNK UNK UNK 

0028-30 Staeh)!l1nidae-Paedennae Paederinae TFIC Sf!. 03 2 0 OBL CRAW BURR PRED 5 

0028-30 Staeh)!hmdae-Paedermae Paedennae TFIC Sf!. 04 0 1 1 FAG FLY UNK UNK 2.5 

0028-30 Staeh)!l1n1dae-Paedennae Paederinae TF/C se. 05 0 1 1 OBL FLY BURR MYCO 14 

0028-31 Staeh)!lm1dae-Staeh)!hnmae Ph1/onthus TFIC Sf!. 01 0 1 1 FAG FLY UNK PRED 8 

0028-31 Staeh)!hn1dae-Staeh}'.l1n1nae Quedws TFIC Sf!. 04 1 4 2 OBL FLY LT/SF PRED 7.5 

0028-31 Staeh)!hn1dae-Staeh)!l1n1nae Staehy}mmae TFIC se 03 3 0 2 OBL CRAW BURR PRED 62 

0028-31 Staeh)!l1n1dae-Staehyl1n1nae Staehy}mmae TFIC se 08 0 2 1 FAG FLY UNK UNK 45 

53 



Fam-sub code Family-subfamily Species binomial DS ET 

0028-31 Staphyhnidae-Staphyhninae ... !$faphy/1n1n_ae.]fl9spJQ ............................. Q .... 4 

0029-00 Lucanidae-Svndesmae Svndesus cornutus 9 10 

0029-06 Lucanidae-Lucamnae Ltssotes cancroides 27 21 

0029-06 Lucamdae-Lucamnae Ltssotes curvtcorn1s 2 6 

0029-06 Lucamdae-Lucamnae Lissotes mena/cas 0 

0029-06 Lucanidae-Lucamnae Ltssgte.sr()d_v.tayi ..................... . 0 2 

0029-06 Lucamdae-Lucamnae Ltssotes subcaeruleus 6 21 

0040-01 Scarabae1dae-Aphodnnae §apr_us gnffilht 0 

0040-10 Scarabaeidae-Melolonthmae Phyl/och/aema TFIC sp 01 3 3 

0040-10 Scarabae1dae-Melolonth1nae Telura v1tticol/1s 2 2 

0043-03 Clamb1dae-Clamb1nae C/ambus bornem1ssza1 0 8 

0043-03 Clamb1dae-Clamb1nae Sphaerothorax tasmam 0 4 

0044-00 Sc1rt1dae Heterocvohon austrafis? 0 
0044-00 Sc1rt1dae Pnonocvphon? TFIC so 01 25 

0044-00 Sc1rt1dae 5 16 

0044-00 Sc1rt1dae 01 0 5 

0044-00 Sc1rt1dae 02 0 3 

0044-00 Scirtidae Sc1rt1dae YEE sp 07 0 

0044-00 Sc1rt1dae Sc1rt1dae YEE sp 11 0 2 

0044-00 Sc1rt1dae Scirtidae YEE sp 14 0 4 

0044-00 Sc1rt1dae Sc1rt1dae YEE sp 15 0 2 

0048-00 Byrrh1dae§yncalypbnae M1croc11aetes .. bryoph1/us 0 5 

0048-00 Byrrhidae~Syncalypt1nae Mtcrochaetes.hYstncosus 0 14 

0048-00 Bvrrh1dae-Svncalvpt1nae M1crochaetes scooanus 0 2 

0048-01 Byrrh1dae-Byrrhmae Pedilophorus gnffithi 8 4 

0048-01 Byrrh1dae-Byrrhmae Pedi/ophorus mult1color 0 3 

0048-01 Bvrrhidae-Bvrrhinae Pediloohorus nr ANIC so 04 0 3 

0048-01 Bvrrh1dae-Bvrrhinae Pedtfoohorus nr ANIC so 88 0313 0 

0063-00 Eucnem1dae Aderus acac1ae 0 2 

0063-00 Eucnem1dae Neochans tasmamcus 

0064-00 Throsc1dae Aulonothroscus e/onaatus 0 21 

0064-00 Throscidae Aulonothroscus YEE sp 02 0 2 

0064-00 Throscidae Aulonothroscus YEE sp 03 0 

maximum 
emergence 
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7 

14 
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17 

2 

2 

5 

109 

9 

2 

2 
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4 
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Chapter 3 - Inventory and biology of saproxylic beetles 

Fam-sub code Family-subfamily Species binomial DS ET maximum sapro-xyhc1ty dispersal m1crohab1tat feed mg body length 
emergence mode type guild (mm) 
dens1t 

0065-00 Elatendae Elatendae TFIC se 18 0 1 1 OBL FLY BARK PRED 56 

0065-00 Elatendae Elatendae TFIC se_ 22 0 2 2 OBL FLY BARK PRED 56 

0065-00 Elateridae Elateridae YEE se 06 1 0 1 OBL SUBC PRED 

0065-06 Elateridae-P1t:tobi1nae Parablax ool1ek1rra 0 23 4 OBL FLY BURR PRED 13 2 

0065-06 Elatendae-P1t}'.ob11nae Tasmanelater ee/Jonens1s 1 0 OBL FLY SUBC PRED 

0065-08 Elatendae-Ag[}'.ernnae Ag_l]'pnus TFIC se 01 1 6 3 OBL FLY BARK PRED 8 

0065-08 Elateridae-A9[}'.en1nae Conoderus australas1ae 0 3 1 OBL FLY BARK PRED 18.8 

0065-09 Elateridae-Dent1coll1nae Denticollinae TF/C se 01 5 14 3 OBL FLY BARK PRED 17 5 

0065-09 Elatendae-Dent1coll1nae Dent1col/mae TFIC se 16 2 1 2 OBL FLY BARK PRED 10 

0065-09 Elatendae-Dent1coll1nae Elat1chros1s exarata 1 1 1 OBL FLY BARK PRED 27 5 

0065-09 Elatendae-Den!icoll1nae Elat1chros1s tnsu/cata 0 1 1 OBL FLY BARK PRED 19 

0065-09 Elatendae-Denticoll1nae Enischnelater seeculans 0 4 1 OBL FLY BARK PRED 18 5 

0065-09 Elatendae-Den!icoll1nae Emschnelater TF/C se 01 4 2 1 OBL FLY UNK PRED 

0065-12 Elatendae-Elatennae Aug_enotus quadng_uttatus 1 0 OBL FLY BURR PRED 

0069-00 L}'.cidae Lypdae TFIC se 01 0 4 0 OBL FLY ROTT PRED 

0069-00 L}'.Cldae-Calochrommae Ca/ochromus scutellans 0 1 2 OBL FLY ROTT PRED 7.1 

0069-00 L}'.c1dae-Metnorrh}'.nch1nae Metnorhy_nchus ?e!J'..fhroeterus 0 4 3 OBL FLY ROTT PRED 9.5 

0069-00 L}'.c1dae-Metnorrh:tnch1nae Metnorrhy_nchus rh1e1dws 0 3 1 OBL FLY ROTT PRED 13 

0069-00 L:tc1dae-Metnorrh:tnch1nae Metnorrhy_nchus TF/C se 01 0 2 1 OBL FLY ROTT PRED 10 6 

0069-00 L}'.cidae-Metnorrh:tnch1nae Metriorrhy_nchus TFIC se 02 0 1 1 OBL FLY ROTT PRED 10 

0069-00 L:tc1dae-Metnorrh:tnch1nae Metriorrhy_nchus TFIC se 03 0 7 1 OBL FLY ROTT PRED 7.5 

0074-01 Canthandae-Cantharinae Heteromast1x nig_riees 0 8 22 OBL FLY LT/SF PRED 3.7 

0074-01 Canthandae-Canthannae Heteromast1x TFIC se 01 0 25 12 OBL FLY LT/SF PRED 39 

0074-01 Canthandae-Canthannae Heteromast1x TFIC se 02 0 1 1 OBL FLY LT/SF PRED 34 

0074-01 Canthandae-Cantharinae Heteromast1x TFIC sp 03 0 1 1 OBL FLY LT/SF PRED 3.4 

0079-00 Dermest1dae-Me9atominae Orphmus TFIC se 01 0 1 1 FAG FLY UNK SAP RO 

0082-00 Anob11dae-X}'.letin1nae Las1oderma semcorne 0 5 2 OBL FLY SOLID XYLO 

0082-02 Anobudae-Ptmmae Ptmus exulans 0 1 1 OBL FLY SOLID SAP RO 3 

0082-05 Anobildae-Anobimae Hadrobreg_mus areo/Jcol/1s 0 5 1 OBL FLY SOLID XYLO 5.8 

0082-09 Anobi1dae-Dorcatom1nae Dorcatoma TFIC se 01 0 1 1 OBL FLY SOLID XYLO 

0083-02 L:tmex}'.l1dae-L:tmex}'.l1nae Australy_me!fXJDn australe 0 2 1 OBL FLY SOLID XYLO 10.1 

0084-04 Tro9ossitidae-Rentoniinae Renton11nae TFIC se 01 0 7 2 FAC FLY LT/SF PRED 1.2 

0086-00 Clendae Clendae YEE se 02 0 1 1 OBL FLY BURR PRED 6 

55 



Chapter 3 - Inventory and biology of saproxylic beetles 

Fam-sub code Family-subfamily Species binomial DS ET maximum 
emergence 

sapro-xylicity dispersal 
mode 

m1crohab1tat 

type 

feeding 

guild 
density 

0086-01 Clendae-Phyllobaernnae Lem1d1a subaenea 0 8 3 OBL FLY BURR PRED 

0086-01 Cleridae~phyll()baenmae fcf!.f!l.!cl_1<1':(t=_Eg_§pQ?. ...... ____________ 1 1 .. _______ _1 _9BL F'~'r' __ BURR PRED 

0090-04 Mely!1dae-[)<1syt1nae P'!S.Yfl!§!f.!f§pQ1_ 0 ________ 4___ 1 OBL FLY ROTT PRED 

0090-04 Melyndae-Dasytmae pasytes? TFJC sp 03 0 1 J OBL f'.L,_Y .. ROTT PRED 

0092-00 Sph1nd1dae~Sph1nd1nae f'.s_p1ci_1pfl.CJ!YS.tlY'!1.f>tal1s_ ____________ Q_ -~Q_ ____ 18 FAC FLY LT/SF SAPRO 

0092-00 Sf'Jii11cti<!;;iei§pbil1ctirl<le. _____ No!Qs_p_fJ!!!cl_11_1j_t;JC:1Jf!.~i_____ 0 _J___ 1 FAC FLY LT/SF SAP RO 

0093-00 Brachyptendae N.otobrachypte_rusTF/Csp01____ _ Q_ 4 2 FAC FLY FUNGI MYCO 

0094-04 N1bduhdae-N1bdulmae Epuraeay1ctonens1s 0 12 ?. . OBL f'~'( BARK SAPRO 

0094-04 N1tiduhdae-N1tidulinae Tha/ycrodes cylmdncum 0 6 1 FAC CRAW FUNGI MYCO 

0094-04 N1bdulidae-N1tiduhnae Tha/ycrodes pulchrum 0 8 2 FAC FLY FUNGI MYCO 

0094-06 N1t1dul1dae-Cryptarch1nae A'!'~<!!..Ctl<3()fJS.f.Yfl.O!'L ___ ____________ Q_ ?_ ____ _!_______ __E.~9.. FLY FUNGI MYCO 

0094-06 N1t1dul1dae-Cryptarchmae ___ ___ (;!Y.P.ta~tl<3J<1e.v1g_ata 1 0 FAC FLY BARK SAP RO 

0099-00 Phloeost1ch1dae-H~mae1nae Hy_maea succm1fera 0 OBL FLY BARK SAP RO 

0100-01 S1lvarndae-Brontinae Crxptamore,ha oe,tata 0 OBL FLY LT/SF SAP RO 

0100-01 Silvanidae-Brontinae Ci:x_e,tamore,ha TFIC sp 01 1 29 55 OBL FLY LT/SF SAPRO 

0100-01 S1lvan1dae-Bronbnae Ci:x_e,tamore,ha v1ctonae? 1 14 3 OBL FLY LT/SF SAPRO 

0105-00 Phalacndae-Phalacnnae Litochrus ?a/temans 0 6 FAC FLY FUNGI MYCO 

0105-00 Phalacndae-Phalacnnae Parasemus TFIC se. 01 0 FAC FLY FUNGI MYCO 

0105-00 Phalacndae Phalacndae TFIC sp 01 0 FAC FLY FUNGI MYCO 

0106-00 Hobart11dae Hobartws eucalypti 0 4 2 FAC FLY FUNGI MYCO 

0108-00 C!}'.etoeha1;pdae Ci:x_e,toehar1.1dae TFIC se 01 0 3 FAC FLY LT/SF MYCO 

0108-02 C!}'.etoeha91dae-C!}'.etoeha9mae Ci:x_etoehar1.us se nr r1.1bb1eenms 1 4 FAC FLY LT/SF MYCO 

0108-02 C!}'.etoeha9idae-C!}'.etoeha91nae Ci:x_etoehar1.us tasmamcus 1 3 FAC FLY LT/SF MYCO 

0111-01 Erot~lidae-Dacnmae Thal/is compta 0 OBL FLY FUNGI MYCO 

0115-05 Ce!}'.lorndae-Ce!}'.loninae Ph1/othermus tasmamcus 10 6 3 OBL CRAW ROTT MYCO 

0119-02 Cocc1nell1dae-Cocc1dul1nae Rhy_zobius ale.habeticus 0 FAC FLY LT/SF MYCO 

0119-02 Cocc1nell1dae-Coccidulinae Rhy_zob1us TFIC Sf!. 05 0 5 3 FAC FLY LT/SF MYCO 

0119-02 Coccinellidae-Coccidulinae Rhy_zobws TFIC se 14 0 4 FAC FLY LT/SF MYCO 

0119-02 Cocc1nell1dae-Coccidul1nae Rhy_zobws TFIC Sf!. 15 0 14 16 FAC FLY LT/SF MYCO 

0119-02 Cocc1nellidae-Coccidulinae Rhy_zobws TFIC Sf!. 16 0 4 2 FAC FLY LT/SF MYCO 

0119-02 Cocc1nell1dae-Cocc1dul1nae Rhy_zobws TFIC se 17 0 FAC FLY LT/SF MYCO 

0119-02 Cocc1nelhdae-Cocc1dulmae Rhy_zobws TFIC se, 18 0 FAC FLY LT/SF MYCO 

0119-02 Cocc1nelhdae-Cocc1duhnae Rhyzob1us TFIC sp 19 0 FAC FLY LT/SF MYCO 

body length 

(mm) 
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Chapter 3 - Inventory and biology of saproxylic beetles 

Fam-sub code Family-subfamily Species binomial OS ET maximum 
emergence 

sapro-xyhc1ty dispersal 
mode 

m1crohab1tat 
type 

feeding 
guild 

density 

0119-02 Coccmell1dae-Coccidulinae Rhyzobius TF/Csp 20 0 2 1 FAG FLY LT/SF MYCO 

0119-02 Coccinell1dae-Cocc1dul1nae JJhyzob1us.TfJ9.!:!e?1 __ O ______ J 1 FAC FLY l.I/§F ___ MYCO 

0120-02 Corylophidae-C:oryloph1nae ..... c;_orylophoci<:J!:!'!..~-l!P_o_~ ________ 0 ___ ··· 2 13 OBL CRAW ROTT MYCO 

0120-02 C:<Jrylopb1d<1.El:C:ory]()pb1ricie _ ____ Jj_olo_p_s~fi.Tf=IC sp 01 1 39 10 OBL CRAW ROTT MYCO 

0120-02 Coryloph1dae-Corylgphinae fjolops1s Tf/9.fi.pQ?__ ............................................................ Q_ J .. _ J _ __£['.C:_ FLY LT/SF MYCO 

0120-02 C:<Jryloph1d<1.El:C:e>ryl()pb1ri<1!l ljgf()pl)lli]f=IC SE_Q1 ·································------- o _____ ? ___ 1 ...... ___ ..... ___ .Q?L. --~-L.Y.. ROTT MYCO 

0120-03 Coryloph1dci_e:§!lr1goderinae §!lT{C.CJp_,Elrus Tflf§.PQ?_ ············------ 0___ ~ ................ ___ J___ ___E['.f_ E!:Y LT/SF MYCO 

length 
(mm) 

2.2 

31 

23 

1.8 

1 7 

1.3 

1.4 

0120-03 Corylopb1d<1!l:§.El~IC:Qcl!l~lr1.Cl.El. ______ S...f!!.!r:_qc1e!US TF/C Sp 03 -- 0 1 1 --~ __________ E!:Y..__ ____ _L.I!§F ____ l\i1'!'.C:.9 ____ 1 2 

0120-03. Coryloph1dC1_!l:§!lrig()cjEl_~lr1.CIE3 ___ §13.f!(;_CJ.cf.fi!!!_S TFIC spQ5____ 1 7 1 ___ OBL FLY LT/SF MYCO 1.3 

0120-03 Coryloph1dae-§e.ricodennae .... S...fir1C()derus_TE!91iP9T _ ................................ Q__ J __ J ____E_~_g__ _E_LY LT/SF MYCO 1.1 
0121-01 Latnd11dae-Latnd11nae Ad1steniawatsom 0 1 1 FAC FLY LT/SF SAP RO 

0121-01 Latnd11dae-Latnd11nae Arid1us costatus 0 3 2 FAC FLY LT/SF SAP RO 1.7 

Latnd1idae-Latnd11nae Aridws nod1fer 0 23 9 FAC FLY LT/SF SAP RO 1.6 

Latnd11dae-Latnd11nae FAC FLY LT/SF SAPRO 1.8 

Latnd11dae-Latnd1inae Emcmus TFIC sp FAC FLY LT/SF SAPRO 1 7 

0121-01 Latnd11dae-Latnd1mae Emcmus TFIC se_ 02 0 FAC FLY LT/SF SAP RO 1 3 

0121-02 Latnd11dae-Cort1can1nae 81cava verruc1fera 0 FAC FLY LT/SF SAP RO 1 8 

0121-02 Latnd11dae-Cort1carunae Corl1carta TFIC se 02 0 2 OBL FLY SUBC SAP RO 1.3 

0121-02 Latnd11dae-Cort1canmae Corlm1cara TFIC se 02 0 14 5 OBL FLY SUBC SAP RO 11_ 
0123-00 Archeocr~et1c1dae Enneboeus ova/is 0 2 FAC UNK UNK UNK UNK 

0125-02 Ciidae-C1inae C1scervus? 0 FAC FLY FUNGI MYCO 1 1 

0127-00 Melandry1dci.e._ __M'?l<JJJsftyJ_d_ae TFIC se 04 0 10 6 OBL FLY LT/SF MYCO 26 

SOLID MYCO OBL FLY 0127-00 Melandry1dci_El:Melandry1nae ___ Mys{(j§._Y];_t;~ 01 3 -
0127-00 Melandry1dae-Melandryinae QrchesiaT~ 02 0 5 OBL FLY LT/SF MYCO 32 

0127-03 Melandry1dae-Melandry1nae Orches1a ?austrma 0 3 2 OBL CRAW LT/SF MYCO 34 

0127-03 Melandry1dae:Melandry1nae Orches1a a/phabet1ca 0 29 26 OBL CRAW LT/SF MYCO 3.4 

LT/SF MYCO OBL FLY 0 0127-03 Melandry1dae-M!llandryin.cie Orches1a eucalypt1? -
0127-03 Melandry1dae-Melandryinae Orches1a.IFIC sp 01 0 7 4 OBL CRAW LT/SF MYCO 3.3 

0128-00 Mordelhdae Morde/11dae TFIC sp 03 0 FAC FLY FUNGI MYCO 3 

0132-00 Zophendae Colydunae? YEE se 01 0 OBL FLY BURR PRED -
0132-00 Zophendae mcertae sed1s Docafts funerosus 2 OBL FLY ROTT XYLO 4 

0132-00 Zophendae mcertae sed1s Latometus d1fferens 0 5 9 OBL FLY ROTT XYLO 2.7 

0132-00 Zophendae Pe.f1lheltspa!l!!tfltnosa 3 OBL CRAW ROTT XYLO 3.7 
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0132-03 Zophendae-Pycnomennae PycnomerusTFIC sp 02 21 6 

0132-04 Zophendae-Colyd1inae Coc9nissus g1bb1col/1s 0 4 

0132-04 2'.optiendae-C:olydunae ___ _J;ri/Jypnon TFIC 'sp nov' 01 0 3 

0132-04 Zophendae:Colydunae .. R.n./Jypf)on tubercula.tus 1 37 

0132-04 Zophendae-Colydunae EnhypnonYEE sp 01 0 5 

0133-00 Ulod1dae G_a.nyme5apph1ra 0 

0137-01 Tenebriorndae-Lagrnnae Ade/Jum abbrev1atum 3 g 

0137-01_ Ienebnon1dae-Lagr11nae ............................. Me.l1u111XEEsp 07 5 0 

0137-01 Tenebnorndae-Lagriinae Brycop1a coe/Jo1des 3 7 

0137-01 Tenebnon1dae-Lagrimae ................ J3rycgp1a.hexagona 3 

0137-01 Tenebnorndae.:Lagmnae EJ'YC.()P18.P!C.f?. .................................. 15 11 

0137-01 Tenebnorndae-Lagrnnae Conpera deplanata 25 11 

0137-01 Tenebnorndae-Lagrnnae D1emenoma commoda 0 3 

0137-03 Tenebnorndae-Zolod1nmae Tany/ypa mono 0 

0137-06 Tenebnorndae-Allecul1nae Atoichus tasmamcus 0 2 

0137-06 T enebnorndae-Allecuh nae Nypsws aeneop1ceus 0 

0138-00 Prostom1dae Dryocora cephalotes 4 0 

0138-00 Prostomidae Prostom1s atkmsom 25 12 

0140-00 Oedemendae Dohrma miranda 0 5 

0140-00 Oedemendae Dohrma simplex 9 26 

0147-00 Pyrochroidae:P1l1palp1nae Bmburrum ruf1col/1s 0 

0147-02 Pyrochro1dae-P1hpalpmae Bmburrum concav1frons 0 

0148-00 Salpmg1dae Qrp/Jangtroph1u111 fng1dum 0 

0149-00 Anth1c1dae-Tomodennae Tomoderus TF/C sp 01 0 2 

0150-00 Aderidae Adendae TFIC sp 03 0 2 

0151-01 Scrapt11dae-Scrapt11nae Scrapt1a laticol/1s 0 4 

0151-01 Scraptildae-Scraptunae Scrapt1a]F/Csp 01 0 9 

0152-07 Cerambyc1dae-Pnornnae Enneaphyl/us aene1penms 9 4 

0152-07 Cerambyc1dae-Pnornnae Toxeutes arcuatus 10 3 

0152-12 Cerambyc1dae-Cerambycmae Mecynopus cothumatus 0 4 

0152-13 Cerambvc1dae-Lam11nae Dorcad1da TFIC so 01 0 2 

0155-09 Chrysomehdae-Cryptocephahnae Aporocera lagopus 0 3 

0155-09 Chrysomehdae-Cryptocephalmae Aporocera vmd1penms 0 
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Fam-sub code Family-subfamily Species bmom1al DS ET maximum sapro-xyhc1ty dispersal m1crohab1tat feed mg body length 
emergence mode type guild (mm) 
dens1t 

0155-09 Chl}'.somel1dae-Cl}'.etoceehal1nae Ae.orocera vmd1s 1 10 2 FAC FLY LT/SF SAPRO 73 

0155-09 Chl}'.somehdae-Cl}'.ptocephal1nae Ciyptocee.halmae TFIC sp 01 0 1 1 FAG FLY LT/SF SAPRO 85 

0155-09 Chl}'.somehdae-Cl}'.etoceehal1nae Ciyptocephalmae TFIC sp 02 0 6 2 FAG FLY LT/SF SAPRO 2.2 

0155-09 Chl}'.somel1dae-Cl}'.etoceehal1nae C[Xf!.locee.halmae TFIC se. 06 0 1 1 FAG FLY LT/SF SAP RO 6.4 

0157-00 Anthnb1dae Anthnb1dae TFIC Sf!. 02 0 4 6 OBL FLY ROTT XYLO 1 2 

0157-00 Anthnbidae Anthnb1dae TFIC Sf!. 03 0 1 0 OBL FLY ROTT XYLO 2.7 

0157-03 Anthnb1dae-Chora91nae xx.notroe.1s m1cans 0 14 2 OBL FLY ROTT XYLO 1.9 

0158-00 Belidae-Belinae Sf!.hinctobelus se. nr e.rr1atrus 0 1 1 OBL FLY ROTT XYLO 8 

0159-00 Attelab1dae-Rh}'.nch1t1nae Auletob1us melanocee.ha/us 0 8 8 FAG FLY UNK XYLO 1.3 

0159-00 Attelab1dae-Rh't.nch1llnae Auletobws sutura//s/varuco/lis? 0 3 1 OBL FLY ROTT XYLO 2.3 

0163-00 Curcuhorndae Curcu//omdae TFIC Sf>. 10 0 3 2 OBL FLY ROTT XYLO 2.5 

0163-00 Curcuhorndae Curcu//omdae YEE sp 31 0 1 1 OBL CRAW ROTT XYLO 

0163-00 Curcuhorndae Curcu//omdae YEE se. 49 3 0 1 OBL FLY ROTT XYLO 

0163-00 Curcuhorndae Curcu//omdae YEE sp 60 0 1 1 OBL FLY ROTT XYLO 2.2 

0163-00 Curcul1onidae-Scol}1inae Acac1cis abundans? 0 1 2 OBL FLY SUBC XYLO 3 

0163-00 Curcul1on1dae-Curculiornnae Emetes1s TFIC se. 01 0 3 1 OBL FLY ROTT XYLO 27 

0163-02 Curcuhon1dae-Curcul1on1nae Ancx.tta//a o/eanae 0 28 99 OBL FLY ROTT XYLO 4.2 

0163-02 Curculionidae-Curcul1on1nae Ancytta/ia tarsa/is 0 32 11 OBL FLY SOLID XYLO 22 

0163-02 Curculiorndae-Curcul1oninae Elleschus wellmg_tomens1s? 0 8 3 OBL FLY SUBC XYLO 1 9 

0163-02 Curcul1orndae-Curcul1ornnae Eug_nomm1 TFIC se. 08 0 1 1 OBL FLY ROTT XYLO 2.5 

0163-02 Curcul1orndae-Curcul1on1nae Eug_nomm1 TFIC Sf>. 09 0 1 1 OBL FLY ROTT XYLO 2.4 

0163-02 Curcuhorndae-Curcuhornnae Eug_nomm1 TF/C Sf!.16 0 3 1 OBL FLY ROTT XYLO 2.2 

0163-03 Curculiorndae-Cl}'.etorh't.nch1nae Cryptorh't_nchmae TFIC se 10 0 1 1 OBL FLY ROTT XYLO 23 

0163-03 Curcul1orndae-Cl}'.Ptorh't.nch1nae Ciy_e.torhlflchmae TFIC sp 11 0 2 1 OBL CRAW ROTT XYLO 2.3 

0163-03 Curcul1onidae-C!}'.etorh}'.nchinae Ciyptorh't_nchmae TFIC Sf>. 17 0 2 1 OBL CRAW ROTT XYLO 2.7 

0163-03 Curcul1onidae-C!}'.ptorh}'.nch1nae Ciyptorhy_nchmae TFIC se. 20 0 2 1 OBL CRAW ROTT XYLO 22 

0163-03 Curcul1on1dae-Cl}'.etorh}'.nch1nae Ciyptorh't_nchmae TFIC sp 21 0 1 1 OBL FLY ROTT XYLO 25 

0163-03 Curcuhonidae-C!}'.etorh}'.nchinae C[Xptorh't_nchmae TFIC se. 23 0 1 1 OBL FLY ROTT XYLO 23 

0163-03 Curcul1on1dae-C!}'.etorh}'.nch1nae C!Y,£1.lorh't_nchmae TFIC se 28 0 8 2 OBL CRAW ROTT XYLO 3 

0163-03 Curcul1on1dae-C!}'.etorh}'.nch1nae Crx.ptorh't_nchinae TFIC Sf>. 29 0 1 1 OBL CRAW ROTT XYLO 24 

0163-03 Curcuhorndae-C!}'.etorhxnchinae C!Y,£1.lorh't_nchmae TFIC se 30 0 2 1 OBL CRAW ROTT XYLO 36 

0163-03 Curculiorndae-C!}'.etorh}'.nch1nae C[Xf>.lorhy_nchmae TFIC Sf!. 31 0 10 2 OBL CRAW ROTT XYLO 1.8 

0163-03 Curcul1orndae-C!}'.etorhynch1nae Dec1/aus albonotatus 0 16 12 OBL FLY ROTT XYLO 2.9 
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Fam-sub code Family-subfamily Species binomial DS ET maximum sapro-xylicity dispersal 
mode emergence 

dens1t~ 

0163-03 Curcuhorndae-Cryptorhynchinae Dec1/aus latera/is 25 13 OBL CRAW 

43 70 -----0163-03 OBL CRAW Curcuhorndae-Cryptorhxnchinae Dec1/aus mgronotatus 

0163-03 _ Curcuhorndae-Cryptorhynchinae Deci/aus nr stnatus/subfasc1atus 

0 

3 41 64 OBL CRAW 

0163-03 ___ __Qt,Jr~_lJl!Q_n_i9~t;i::_QryptQrhynchinae Dec1/aus TFIC sp 02 0 7 5 OBL FLY 

0163-03 Curcuhorndae-Cryptorhynchinae Exith1us capucinus 0 18 5 OBL FLY 

0163-03 Curcuhorndae-Cryptorhynchinae Ex1th1us /oculiferus 0 3 7 OBL FLY 

0163-03 Curcuhorndae-Cryptortiynchinat;i fo1.1Qc;;ll/l/ilfJYfP!H?fi1Jil . __ Q_ .15 7 __ FAC FLY 

0163-03 Curcuhorndae-CryptorhynchinaE) _ __ P()rg[Jterus alboscutellans ----·-· _ --·---- _ 0 2 2 OBL FLY 

0163-03 Curcuhorndae-CryptorhynchinaE) f>.CJT(){Jterus ant1quus 1 3 J OBL CRAW 

0163-03 Curcuhorndae-CryptorhynchinaE) _ ...... __ f'gr()pte.rus TFICsp 05 0 4 3 OBL FLY 

0163-03 Curcuhorndae-CryptorhynchinaEj ___ f?.gpt()perystas172an1ens1s -------·········· ....... o... 22 J~ OBL CRAW 

0163-03 CurcuhorndaEj-CryptorhynchinaE)_._. _____ Tyrtaeosus ustulatus 1 3 8 OBL FLY 

0163-04 Curcuhorndae-Dryophthonnae . QryophthorusTffC sp 02 2 5 9 OBL CRAW 
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SUBC 

ROTT 
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ROTT 
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0163-04 Curcuhorndae-Dryophthorinae __ prygpf1.tf1grusTEICsp 01 16 3 31 OBL CRAW ROTT XYLO 

0163-05 Curcul1on1dae-Mo1yt1ri<1Ei _____ Q1r11c_f1.1J.1llEl.f!.EilJ.S. ____________ _':!__ JQ .... ___ _z _____________ QE!~ Q_Rp.W J~QIT . XYLO 

0163-05 Curcuhorndae-Molytinae f;X.Eiir.atusTFICsp 01 9 14 3 OBL CRAW ROTT XYLO 

0163-06 Curcuhonidae-Cossoninae Cossonmae TFIC sp 06 1 2 6 OBL FLY ROTT XYLO 

0163-06 Curcul1orndae-Cossornnae Cossonus s1msom 11 1 1 OBL CRAW ROTT XYLO 

0163-06 Curcul1orndae-Cossoninae Pentarthrum TFIC se. 01 2 2 1 OBL UNK UNK UNK 

0163-06 Curculionidae-Cossoninae Pentarthrum TFIC Sf!. 02 0 1 1 OBL FLY ROTT XYLO 

0163-08 Curcul1orndae-Plal):'.POd1nae Pla~eus subfl.ranosus 0 12 16 OBL FLY SOLID XYLO 

0163-09 Curcul1onidae-Ent1m1nae Mandalotus arc1ferus 0 3 1 FAC CRAW OTHER XYLO 

0163-09 Curcul1orndae-Ent1m1nae Manda/otus musc1vorus 0 23 10 OBL CRAW ROTT XYLO 

0163-09 Curcul1orndae-Ent1m1nae Mandalotus se. nr vac1/lans 0 2 2 OBL FLY ROTT XYLO 

0163-09 Curcul1onidae-Entim1nae Menmnetes TFIC se. 04 0 1 1 OBL FLY ROTT XYLO 

0163-09 Curcul1orndae-Ent1m1nae Prostomus murmus 0 1 1 OBL 

0163-17 Curculiorndae-T):'.chiinae Ty_chunae TFIC Sf!. 05 0 7 2 OBL FLY ROTT XYLO 

0163-17 Curculionidae-T):'.ch1inae Tl'._Ch11nae TFIC Sf!. 06 0 12 3 OBL FLY ROTT XYLO 

0163-17 Curculiorndae-T):'.ch1inae Ty_chunae TFIC se. 08 0 10 2 OBL FLY 

0163-17 Curcuhorndae-T):'.ch11nae Ty_chunae TFIC sp 16 0 1 1 OBL FLY ROTT XYLO 

0163-17 Curculiorndae-T):'.chilnae Ty_chunae TFIC Sf!. 22 0 12 3 OBL FLY 

0163-17 Curcuhorndae-T):'.chnnae Tl'._chunae TFIC sp 26 0 2 2 OBL FLY SUBC XYLO 

0163-17 Curcuhorndae-T):'.chnnae Ty_chiinae TFIC sp 27 0 2 1 OBL FLY ROTT XYLO 

0200-00 Coleoetera adults Co/eoe.tera unknown YEE se. 05 0 1 2 FAC UNK UNK UNK 

0200-00 Coleoptera adults Co/eoptera unknown YEE sp_ 13 0 3 2 FAC UNK UNK UNK 

body length 
(mm) 

33 

2.1 

24 

2.7 

5.7 

48 

1.1 

10 

11.5 

45 

4 

5 

4 

3.3 

10 2 

25 

22 

52 

UNK 

3 

41 

43 

34 

6.3 

23 

2.3 

27 

2.4 

14 

1 9 

60 



Chapter 3 - Inventory and biology of saproxylic beetles 

Appendix 3 .2. List of non-saproxylic beetles that were collected during the survey on Eucalyptus obliqua logs at an intermediate decomposition stage in wet eucalypt forest 
in southern Tasmania, using t\Vo trap2__4iK_lll~tl1.()cis: f:111f:l'g(!nce trap~g_{fil)_~clclf:~t:rtlc:tiye samJJling_JJ::>~)to collect saproxylic beetles. 
Fam-sub code Family-subfamily Species b1nom1al number of DS number of ET logs Dispersal mode 

lo s 

0040-10 Scarabaeidae-Melolonthinae Heteronyx pilosel/us 2 9 FLYER 

0040-10 

0155-00 

0155-06 

0155-06 

0155-06 

0155-06 

0155-07 

0155-07 

0155-07 

0155-07 

0155-07 

0155-07 

0155-09 

0155-09 

0160-06 

0155-09 

Scarabae1dae-Melolonthmae Phyllochlaema v1/losus 2 1 FLYER 

Chrysomelidae Chrysome/idae 'gen nov Reid' TF/£§R 01 0 1 FLYER 

Chrysomehdae-Chrysomelmae Chrysophtharta bimacu/ata 14 37 FLYER 

Chrysomehdae-Chrysomelmae Ch~phtharta ltgnea 1 0 FLYER 

Chrysomelidae-Chrysomelmae Paropsis rubidtpes 0 1 FLYER 

Chrysomehdae-Chrysomelmae .. Traghyrrielar119osa _ _ 2 1 FLYER 

Chrysomehdae-Galerucmae Ars1poda enchsom 0 6 FLYER 

Chrysomehdae-Galerucmae Galerucmae REID 'gen nov 01' 0 1 FLYER 

Chrysomehdae:Galeruc1nae .. MtC.[()donacta mcurva ..................................... .. 0 3 FLYER 

Chrysomelidae:Galerudnae .... __ Mfc;~()dgnaciatr11ganma 0 2 FLYER 

Chrysomelidae-Galerucinae Mof19/epta TF/Csp 01 _____ 1 5 . FLYER 

Chrysomehdae-Galerucmae Mono/eptaJF/Csp 02 0 0 FLYER 

Chrysomehdae-Cryptocephahf1'!f! ____ fJypl()Cf!PJ2?.ltf1?.f!Tflf[;pJ4 ___________ ........ JL ........ ·-··-··· 2 FLYER 

Chrysomehdae-Cryptoceph<!lmClf! ____ PICJ.IYCC!i<i[;p.!§_pubescens 0 3 FLYER 

Brent1dae-Ap1onmae .. . ... ___ f'.pwn tasmamcum? 0 13 FLYER 

Chryso_Jl1f!l1cjiie:Crypt()c;ephal1n<;1..f! Cadmus stng1/latus 0 FLYER 
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Chapter 4 - Decomposition processes and rotten wood types 

4 ROTTEN WOOD TYPES AND DECOMPOSITION 

PROCESSES IN DECOMPOSING LOGS 

ABSTRACT 

Decomposition processes in dead wood are important ecological processes in forest ecosystems. Through 

destructively sampling Eucalyptus obliqua logs of an intermediate decomposition stage, 11 Rotten Wood 

(RW) types were differentiated, based largely on the rot colour, texture, hardness, and region within the 

log. Each R W type presumably represents a different stage or path of succession of decomposition 

processes. Assemblages ofRW types were compared between large {> lOOcm) and small (30-60cm) 

diameter logs and from logs that occurred in sites of mature unlogged and logged wet eucalypt forests. 

The effects of forest type and site were also investigated. 

Significant differences were found in the type and spatial arrangement of rotten wood for all treatments. 

Large diameter logs had a higher frequency of discoloured but solid wood, and brown rotted wood within 

the log centre. Small diameter logs had more white rot on the outer regions of the log. These distinctive 

patterns of rot suggest that logs of different size follow different decomposition paths or processes. One 

explanation for this may lie in the history of the living tree before it becomes a log. Older trees have a 

higher susceptibility to internal decay than younger trees. The brown rot within the inner heartwood of 

logs may constitute a later successional stage of this internal decay. The white rot in the outer log regions 

is probably associated with decomposition that takes place after tree-fall. The findings show that rot 

patterns in large diameter logs generally differ to those in small diameter logs, and that there is also an 

indication that, whatever the log size, rot patterns within logs could potentially vary in relation to forest 

age and logging history. 
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4.1 INTRODUCTION 

The decomposition of dead wood is an important ecological process in forest 

ecosystems (Carpenter et al. 1988; Harmon et al. 1986; Kaarik 1974; Kirk & Cowling 

1984; Mackensen & Bauhus 1999; Swift 1977). Not only is it vital in nutrient cycling­

converting the nutrients bound within wood into more mineralised, and thus available 

forms to be incorporated in the growing phases of forest vegetation; but this process 

also support major components of the forest's biodiversity (Elton 1966; Fager 1968; 

Maser & Trappe 1984). Dead and decomposed wood supports a high diversity of 

organisms that are involved in its decomposition, especially bacteria (Clausen 1996), 

fungi (Rayner & Boddy 1988; Swift 1977), and invertebrates (Ausmus 1977; Haack & 

Slansky Jr 1987; Lawrence 1989; Swift 1977). Decomposing wood also provides 

habitat and shelter for a wide range of other biota, such as symbiotic bacteria, non-wood 

decay fungi, epixylic bryophytes (Andersson & Hyttebom 1991; Turner 2003), and 

saproxylic invertebrates and insectivorous vertebrates that are dependent on these 

decomposer organisms for food and shelter (Franklin et al. 1987; Gibbons & 

Lindenmayer 2001; Maser & Trappe 1984; McComb & Lindenmayer 1999). 

In Tasmanian wet eucalypt forests, the types of decomposition processes in fallen trees 

within intensively managed forests may change as successive harvesting is expected to 

truncate forest successional age, and hence alter forest conditions (Hickey 1994), 

change dead wood dynamics (Grove et al. 2002), and disrupt the natural dead wood 

recruitment processes (Grove et al. 2002). For instance, a forest landscape of stands 

with high stand structural complexity, including oldgrowth elements will shift towards a 

dominance of even aged stands of younger, mostly eucalypt trees after successive 90 

year clearfelling harvesting operations (Attiwill 1994b; Lindenmayer & McCarthy 

2002; Lindenmayer & Franklin 1997). One expected change will be the diminution of 

large diameter logs in managed forests, as the presence of ecologically mature 

Eucalyptus trees will not be perpetuated under such rotation lengths. It is unknown how 

this affects decomposing wood types in the long term, however various overseas studies 

have documented that wood decay fungal successions differ in relation to log size 

(Bader et al. 1995; Heilmann-Clausen & Christensen 2004; Renvall 1995). Sippola & 

Renvall (1999) reported that some fungal species in dead wood derived from mature­

oldgrowth Pinus trees in Finnish boreal forests seemed unable to colonise the dead 
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wood derived from logging waste. Moreover, it is often reported that large diameter 

logs can have different temperature and moisture dynamics (reviewed in Harmon et al. 

1986), which are factors that influence the community development of decomposer 

organisms (Mackensen & Bauhus 1999; Rayner & Boddy 1988). In Australia however, 

no studies aside from that of (Meggs 1996) have investigated whether the types of 

decomposition processes would differ within decomposing logs of different size 

diameters or within managed and unmanaged forests. 

Describing and categorising wood decomposing on the forest floor can be difficult, as it 

passes through a wide continuum between solid wood and material comprising humus 

that becomes incorporated into the soil. Typically, wood decay fungi have been 

considered the main decay-causing organisms, and they can be broadly categorised as 

acting as brown or white rot fungi (Kaarik 1974; Rayner & Boddy 1988). This 

categorisation is largely based on the enzymatic strategies deployed in breaking down 

wood at the cellular level, such that wood is chemically and structurally degraded in a 

specific way, thus resulting in a characteristic brown or white rot (Kaarik 1974). 

However, wood decomposing on the forest floor is usually the product of various 

processes (Mackensen & Bauhus 1999), that is, it is not exclusively the product of 

actions from wood decay fungi. Rather, these can include the decomposition actions by 

faunal communities, including wood comminution by xylophagous arthropods, 

especially wood-boring beetles and termites (Ausmus 1977; Carpenter et al. 1988; 

Greenslade 1972). Other processes may include mechanical breakage, physical 

weathering and leaching (Mackensen & Bauhus 1999); or the biochemical breakdown 

of wood cells by ascomycete fungi and bacteria (Carpenter et al. 1988; Harmon et al. 

1986; Kaarik 1974; Kirk & Cowling 1984; Mackensen & Bauhus 1999; Sollins et al. 

1987; Swift 1977). Thus, the term "Rotten Wood type" (RW type), instead of rot type, 

is herein used to refer to decomposing wood - to collectively reflect the succession of 

decomposition processes, including those mediated by faunal activities. 

Investigating the variability of decomposition processes among different logs may 

benefit from a multivariate approach to data analysis. This is because an individual log 

on the forest floor typically undergoes a series of different physical, chemical and 

biochemical processes throughout its decomposition (e.g. Brown et al. 1996; Harmon et 

al. 1986). For example, multiple variables that could be used to describe to a log's 
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decomposition state include presence of bark, cracks, decay and overall log shape, (e.g. 

Lindenmayer et al. 1999b). Generally, a log is invaded by a succession of 

microorganisms and invertebrates, attacking it at different positions of the log. 

Therefore, at any one point in time, a log can exhibit many spatially separated rot types 

of varying stages of decomposition. Each rot type may not only be the result of 

decomposer organisms observed at the time of study, but rather the product of past 

processes, and the activities of preceding decomposers (e.g. Boddy 2001; Niemela et al. 

1995; Sippola & Renvall 1999). Therefore, the difference in rot type assemblages could 

be used the determine the different decomposition processes among logs. 

Studies that have investigated wood decomposition in Eucalyptus have mostly focussed 

on fungal-mediated decomposition within living trees (reviewed in Kile & Johnson 

2000; e.g. Parkin 1942; Refshuage 1938; Tamblyn 1937; Wardlaw 1996, 2002; White 

& Kile 1993; Wilkes 1982; Wilkes 1985a), and have often taken a wood production 

rather than ecological perspective. In terms of decomposing wood on the forest floor, 

two preliminary studies have characterised the rot types of eucalypt logs within 

Tasmania_(Meggs 1996; Mesibov 1988). The rot classification developed by these 

systems were markedly different. Mesibov (1988) used five broad categories to describe 

the decomposing wood based on structural properties, and did not consider decay type. 

By contrast, Meggs (1996) outlined twice as many rotten wood type categories, using a 

larger number of descriptors (colour, structure, texture and presence of fungal hyphae ), 

however, in the field, this classification was somewhat ambiguous and difficult to apply 

objectively (pers. ohs). Therefore, a classification, that built on these past studies, of 

rotten wood types occurring in decomposing Eucalyptus obliqua logs was first objective 

of this study. This will then be used to objectively describe and document the rotten 

wood types in logs, in order to compare the decomposition processes among different 

logs. 

The aim of this study was to compare the types of decomposition processes of large and 

small diameter logs, as indicated by the different rotten wood types within logs. The 

specific objectives were to: 
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1) Develop a user friendly, objective and repeatable classification system for the Rotten 

Wood (RW) types based on the rotten wood of Eucalyptus obliqua logs at an 

intermediate stage of decomposition stage; 

2) Compare the richness and frequency of individual RW types between log size 

classes; 

3) Compare the assemblages ofRW types according to log size, forest type and site. 

4.2 METHODS 

4.2.1 Study location and experimental design 

Research was conducted at seven study sites in wet eucalypt production forests in 

southern Tasmania. Four (designated as study sites H, E, S, PR2) were 20-30 yr CBS 

logging regeneration of one harvesting event; and the other three (designated as M, WR 

and POl) were in mature unlogged forest. Study site locations and descriptions are 

detailed in Section 2.2 and 2.3. Within each study site, three pairs oflarge diameter 

(> 100 cm) and small diameter (30-60 cm) Eucalyptus obliqua logs of an intermediate 

decomposition stage (defined in Section 2.5) were sampled. The study logs in the 

logging regeneration had essentially derived from logging residue left after harvesting, 

while logs in the mature unlogged forests had naturally recruited through windfalls. 

Names and diameters of the study logs are listed in Table 2.2. 

4.2.2 Sampling method 

Two Im-long sections, at least 4 metres apart, were dissected from the log (Figure 4.1). 

The position of dissection was partly determined by safety and accessibility to the log, 

due to slope instability, and obstructions such as thick undergrowth and other fallen 

logs, though where possible, the position corresponded to the basal and mid regions of 

the log (fallen tree). A 5cm wide disc was taken from each end of a Im-long section. 

Each disc was photographed, and the rot patterns were described and drawn (Figure 

4.2a,b). For each Im-long section, samples of the different types of rotten wood 

(between 250 to 1500ml) were placed in an airtight bag, and taken for more detailed 

laboratory descriptions and chemical analysis. These samples of rotten wood were 

labelled corresponding to the map drawn of each disc. Two other components of this 

study were conducted in parallel; collection of saproxylic beetles (Chapter 5), and 

isolation ofbasidiomycete fungi (Z.Q. Yuan unpublished data) from these samples. 
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4.2.3 Developing a RW type classification 

The classification of rotten wood into distinct types was carried out in three steps. 

1) All the rotten wood samples collected were sorted into Preliminary Rotten Wood 

(PRW) types using several descriptors. These included rot colour, texture, presence of 

features such as discoloured markings or fungal tissue (hyphae or mycelium), and wood 

wetness. Colour was taken as an indication of the predominant fungal decay type (white 

or brown rot) at the time of sampling. The texture of the wood was described as blocky, 

crumbly, stringy or fibrous. The PRW types are listed in Appendix 4.1. 

2) The PRW types were then reduced to the final Rotten Wood (RW) types by grouping 

together PRW types that were assessed as variants or different decomposition stages of 

the same rot type. Two sources of information were used to match PRW types: 

• Fungal isolations from rotten wood samples (Z.Q. Yuan unpublished data). 

PR W types that had the same dominant fungal species were considered to be the 

same rotten wood type (Appendix 4.1). 

• A cluster analysis of similarity (using a Bray Curtis distance measure and 

UPGMA sorting strategy in PC-ORD, (McCune & Mefford 1999) based on how 

consistently PRW types were observed in proximity to each other within the 

same log section (Appendix 4.2). 

3) Each RW type was designated into one of five regions of the log cross-section: the 

surface, outer heartwood, inner heartwood, heartwood (both inner and outer) and 

localised pockets of rot within the heartwood region where the pocket boundaries are 

well defined (Figure 4.3). This was visually assessed and was based on the main and 

most common log region of where it had occurred 

4.2.4 Chemical measurements of RW types 

Preliminary chemical analyses of selected RW types were undertaken. These included 

measurements of moisture content, total carbon and nitrogen. However, due to money 

constraints for chemical analyses, only a limited number of rotten wood samples could 

be measured. Therefore, due to low sample size, data from the chemical and moisture 

analyses were not analysed statistically. To improve thesis readability, the data, and 

methods used to measure wood chemical content are presented in Appendix 4.5. 
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~ ~Ec----:::i)-5cm 
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Figure 4.1. Method for sampling rotten wood from two lm log-sections per fallen log in the mid and 
basal log , taking 5cm-wide discs from either side of each section. 

a) b) 

EDL1 .11 

EDL1 .12 

EDL1 .13 

EDL1.14 

EDL1 .15 

EDL1 .16 

Figure 4.2. An example of a) a photograph taken for each cross-section disc and b) the corresponding 
map drawn showing the rotten wood patterns and unique codes assigned for each sample of rotten wood 

1. SURFACE (SAPWOOD) 

5. LOCALISED POCKETS 

4. HEARTWOOD 

3. OUTER HEARTWOOD 

2. INNER HEARTWOOD 

1. SURFACE (SAPWOOD) 

Figure 4.3. Stylised Eucalyptus obliqua log cross-section showing the five main regions where rotten 
wood occurred. Regions are called 'RW region' (see Section 4.2.3 , step 3 for explanation). 
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4.2.5 Rotten wood data and statistical analyses 

Data comprised the presence and absence ofRW types within each log, pooled from the 

two lm-long sections. Analysis of Variance (ANOVA) was used to test the difference 

in the number ofRW types per log between log size classes. The frequency of 

individual RW types between large and small diameter logs were also compared using 

Chi-square analysis. 

Principle Components Analysis (PCA) was used to explore the variation among logs 

based on the similarity ofRW type assemblage, in order to find possible differences 

relating to the treatments oflog size, forest type and site. RW assemblage is based on 

the different RW types within a log, pooled from the two log discs. PCA displays the 

similaiity oflogs in multidimensional space using a smaller number of synthetic 

variables. These synthetic variables, represented as principle components axes, each 

explain a unique proportion of variation of the original data. To determine which RW 

types contribute most to any variation, R W type vectors were overlaid onto the 

ordination as a joint plot. The PCA was based on a covariance/variance matrix, using ~ 

Sorensen (Bray-Curtis) distance measure, and was conducted in PC-ORD (McCune & 

Mefford 1999). 

Multi-Response Permutation Procedures (MRPPs) were then applied to statistically test 

for RW assemblage differences among the treatments (log size, forest type and site). 

MRPP in PC-ORD is a non-parametric method that uses permutation procedures to test 

the hypothesis of no difference between two or more a priori groups based on multi­

variate data. This method provides a test statistic, T, which describes the separation 

between groups: the more negative the T, the stronger the separation. It also provides a 

p-value, which determines whether the observed difference is greater than expected by 

chance. As recommended by the program, the method was run on the Euclidean 

distance measure and used the natural group weighting of n/sum (n). 
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4.3 RESULTS 

4.3.1 RW types categorised from decomposing E. obliqua logs 

The rotten wood from decomposing E. obliqua logs were classified into 11 RW types, 

which are summarised in Table 4.1. A matrix of characters for each RW type is listed in 

Appendix 4.3, with a detailed description given in Appendix 4.4. A series of 

photographs is also provided to illustrate the characteristic features of each RW type, 

and to display the colour and texture variations ofRW types that varied in relation to 

their decomposition state (Appendix 4.4). Upon visual assessment, RW types could be 

associated to one of the five designated regions of the log cross-section.). 

Table 4.1. Classification of 11 Rotten Wood types, listed in order by RW region, from Eucalyptus 
obliqua logs in wet eucalypt forests in southern Tasmania. 

Rotten wood type Suspected main Apparent decay type RWREGION 
decomposition agent 

Fibrous surface rot Fungi Unknown Surface (sapwood) 

White jelly surface rot Fungi Unknown Surface (sapwood) 

White pocket rot Fungi White Outer heartwood 

White stnngy rot * Fungi White Outer heartwood 

Yellow dry slatey rot Fungi Unknown Outer heartwood 

Brown cubic friable rot Fungi Brown Outer heartwood 

Discoloured wood Unknown N/A Heartwood 

Wet cracks Mechanical and other N/A Localised 

Brown blocky crumbly rot Fungi Brown Inner heartwood 

Red brown blocky fibrous rot Fungi Brown Inner heartwood 

Brown mudgut rot Insects, fungi and other Brown Inner heartwood 

Incipient decomposition stage of this rotten wood type appears as dark crimson discoloured wood 

4.3.2 Comparison of RW type richness and occurrence between log size 

classes 

Large diameter logs had a significantly higher number of RW types per log than small 

ones (ANOVA: F2,41=4.51, p = 0.04), averaging five (s.e. =1.4) and four (s.e. = 1.5) 

RW types, respectively. 

While it is acknowledged that a greater wood volume is sampled from a large diameter 

log versus a small diameter log, comparing the number ofRW types was still 

considered valid. This is because RW type presence/absence and richness was 

determined using the log cross-section. The presence of a RW type represents the 
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presence of a rot/decay columns and pockets. It is unlikely RW type data would change 

if equal wood volumes oflarge and small diameter logs were compared by taking 

thinner and thicker log cross-sections respectively. 

The relative frequency ofRW types significantly differed between log sizes (x.210 = 

28.7, p = 0.001). The three inner heartwood and discoloured wood RW types were 

significantly more frequent in large diameter logs, while white stringy rot was exclusive 

to small diameter logs (Figure 4.4). White pocket rot and yellow slatey rot occurred in 

twice as many small diameter logs than in large diameter logs, however the lack of 

statistical significance is probably due to low sample size. In general, most large 

diameter logs (90%) had at least one inner heartwood RW type, where as only 33% of 

small diameter logs had an inner heartwood RW type. By contrast, most small diameter 

logs (90%) had at least one outer heartwood RW type compared to 33% oflarge 

diameter logs. 

RW region LARGE LOGS SMALL LOGS RWtype 

25 

Surface 
I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : I Fibrous surface rot 

.. _ ....... ... ..... . .... J .'. . .'. '..: .. : · : · : · :_: '. .. : .. '..: .. '.. · '.: '. : · : · .'.. · : · :_ ·.: · : _I W..~it~_Jel!Y.!.!?.~ ....... . ... ....... .... .... .. ..... . 

~;;.~;;d_~ -~---=--:·:::: .... :::: .... =:: .... =:: ..... =-. =--·1· ·1--·1: _i __ · 1:--:·1----1 ... i ... i .... i ... i .. •. _ ..................... ·i ... i ... i ....... i_i_ i ... i. ·1----·1----1---~-"w~-~~t~~~:-~~:--~~--------- .. :.:~~?.!9:~~~~- ~~~~:: 

011tPr hP,,rlwnnrf 

lnnPr hP,,rtwnnrf 

20 15 

White pocket rot 

~l~l~l~l~l~l~l~l~l~l~lj White stringyrot ** 

rl~}~}~}'r}~}~}~}~}~=-~=-~=-~=-·1 Yellow dry slatey rot 

. . ...... ~~~~~l~':.•"\~l~~~~·l .F\.rowr'! c~.~jc ~l]~~J.~ .. rot ..... . 

~=========== Red brown blocky fibrous rot* IJ Brown blocky crumbly rot* 

10 5 0 
Number of logs 

5 

Brown mudgut rot* 

10 15 20 25 

Figure 4.4. Frequency ofRW types found in 21 large (left) and 21 small (right) Eucalyptus obliqua logs 
at an intermediate decomposition stage. RW types are grouped by RW region. RW types which differed 
significantly in occurrence (p ~ 0.01, Chi-square analysis) between the two log size-classes are denoted 
by*, while those exclusive to a particular log size-class are denoted by**. 
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4.3.3 Comparison of RW assemblages among log sizes, forest types and 

sites 

4.3.3.l Log size 

The first three axes of the PCA on RW assemblages explain 51 % of the variation of the 

original data set (Figures 4.Sa,b). Axis 1 explains 24.2% of the variation among logs 

(Figure 4.Sa), and most large and small diameter logs are separate along this axis. 

Correlating with Axis 1 in the direction of the cluster oflarge diameter logs are the 

three brown inner heartwood RW types and wet cracks. The difference in RW 

assemblages between log size is significant (T= -8.22, p = 0.000003). 

Five small diameter logs (HSDl, SDSl, POlDSl, PR2DS1, and PR2DS3) had more 

similar RW assemblages to that oflarge diameter logs, four of which were in logging 

regenerated forests. A closer inspection of these five logs show that they possess at least 

one brown inner heartwood RW type. 

4.3.3.2 Forest type 

The RW assemblages oflogs in logging regenerated forest differed significantly from 

those in mature unlogged forest (T = -3.08, p = 0.01). 

Furthermore, there seems to be a log-size/forest-type interaction, as there is almost no 

overlap between large diameter logs in logging regenerated forests and small diameter 

logs in the mature-unlogged forests (Figure 4.Sa). When each log-size/forest-type 

combination is analysed as an independent treatment, the difference in RW assemblages 

amongst them was highly significant (T = -6.92, p = 0.0000001). 

4.3.3.3 Site effects 

Logs within the same site are more similar to each other than to logs of other sites 

(shown in PCA axes 2 and 3, Figure 4.Sb ), and this variation among sites is significant 

(T = -2.77, p = 0.007). 
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Figure 4.5. Principlal components analysis ordination of 42 E. obliqua logs based on 11 RW types, 
showing axes a) 1 and 2, with log size-forest type overlaid, and b) 2 and 3, with site locations overlaid. 
RW type vectors are overlaid as a joint plot. Vector scaling 100%. Only vectors with r2 value> 0.2 are 
shown. Site codes H, E, S, PR2, M, WR and POl correspond to the location map in Section 2.1. 
Alphanumeric log codes refer to logs listed in Table 2.2. A total of51 % of variation was explained in the 
first three axes (24.2, 14.0 and 12.9% respectively). 
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4.4 DISCUSSION 

4.4.1 Rotten wood classification system 

The RW classification provides an important tool with which to objectively and 

repeatably classify rotten wood that results from various decomposition processes. In 

this study of E. obliqua logs at an intermediate stage of decomposition, a total of 11 

distinct RW types were classified, each potentially representing a different array of 

physical, chemical and biological properties. The RW classification system improves 

upon past classifications (Meggs 1996; Mesibov 1988) of rot types in E. obliqua logs. 

While there is a certain degree of comparability to these previous studies (see Table 4.2 

and Table 4.3), an important feature of this new system is the use of information 

relating to the region and patterns of rot within the log, which can indicate how a 

particular rot type and log decomposition process has originated and how it develops. 

The classification also benefits by the inclusion of additional categories (e.g. 

'discoloured wood' and decomposed wood apparently created by mechanical fractures -

'wet cracks'). It should be noted that this classification is a work-in-progress, as there 

are more different RW types present in logs at a earlier or later decomposition stage, 

and logs occurring in different site locations (pers. obs.). 

4.4.2 Factors affecting the different decomposition processes in 

decomposing logs 

Decomposition processes are extremely complex (Rayner & Boddy 1988), there are a 

number of interrelated factors that may be influencing underlying rotten wood types and 

heterogeneity in decomposing logs on the forest floor. This includes the environmental 

forest conditions; the log micro climate (e.g. moisture, temperate) within the forest 

(Boddy 1999; Rayner & Boddy 1988); wood quality (e.g. presence offungitoxic 

extractives, Rayner & Boddy 1988); the species pool of decomposer organisms within 

these forests (Willig & Schlechte 1995); the effect of fire (Wikars 2002) and the 

condition of the living wood prior to tree fall (Boddy 2001; Rayner & Boddy 1988). In 

this study, aspects of the rotten wood type assemblages varied significantly among logs, 

in relation the log size, forest type and site. 
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Table 4.2. Classification of 11 Rotten Wood types from this study, compared with classifications from other studies in Tasmanian wet eucalypt forests. Rotten wood types in 
the same row are thought to be the same. 

This study, E obilqua 

_ Fi_tiro~~~u_rfa_~~ r()tj~F) 
White Jelly surface rot (SF) 

Wh1te_ eoc~e~ r:<>~ (OH) 

White ~!ringy _i:c_it (OH) 

Yello\N dry slatey rot (OH) 

__ _B~owri_cubi~ !~i~bl~-r~t (O_Hl __ 

__ D~sco~c_i~red_ wo_od (f-!) 

Wet ~!acks (~) _ 

Bro_l'."._n_blo~ky C!u_mbly :o~{l!"J) _ 

Red brown blocky fibrous rot (IH) 

Brown mudgut rot (IH) 

Meggs (1996), Eucalyptus spp. 

Soft yello_\I:'_ fibrol!s ro! __ _ 

Other (includes blue stain fungi and wet, 
jelly-llke__rQ!.) __ 

Orange/re~~brown crum_~ly_ro! 

Red blocky rot 
__ ~ed blocky_rot with white ~ungal hyphae 

Orange/ red clayey rot 

Mesibov (1988), various 

Skeletal rot 

Spongy/fibrous rot 

Friable~c~umbly rot 

Blocky rot 

Mudgut rot 

Table 4.3. Classification of 11 rotten wood types from this study, compared with fungal derived decay classifications from other studies. Rotten wood types in the same row 
are thought to be the same. 

This study Refshuage (1938) Tamblyn (1937) Parkin (1942) Kile & Johnson (2000) Wardlaw (2002) 
E. ob/1qua E. regnans E margmata E regnans Eucalyptus spp. Eucalyptus spp 

F1j:>..!_~u_s s_urface_rc:!_t 

\lyh1~_Jelly~1,.Jrf_?~ rot 
White pocket rot 

White stringy rot 

_'ll!!!_Cl_w d_I)' sla~y rot __ _ 

_ f:lroll!n cu_~1c_ff'!"!ble ro_t 

_ Q~colOl,.ll'_!ld 11:'.Q!J_d 
'f/_et crac;~s __ _ 

f:lrown bJoc;ky_ C!Um~!Y !Ot 
~ed brCJ_w_n bl9cky fi ~rous rot_ 
Brown mud gut rot (IH) 

Small white pocket rot 
Small brown pocket rot 

_____ Br,9Y!'l1. l!!a111 assom1te_d with small white poc;ket!ot 
White spongy rot 

--~arge w~1!~P..ocket rot_OJY!f~l_!e stringy tyJ?e 

Brown cubical_ rot 

__ Yellowish stririgy r:.o! 

White pocket rot White pocket rot 

White pocket rot 

Browri trunk rot _____ !3rown cub1caJ rot _ _ _____ _ BLJ.lt_rg_t_ __ 
___ Yello_w brown spongy rot 
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4.4.3 The effect of log size 

This survey provides quantitative data to show that Eucalyptus obliqua logs of the 

different classes studied do not follow the same sequence of decomposition events. This 

is demonstrated by; 

• the higher incidence of brown rot types in large diameter logs, and of white rot 

types in small diameter logs 

• a localisation of brown rot types common to large diameter logs in the central 

part of a log, and 

• a marked association of the white rot types characteristic of small diameter logs 

with the outer log regions. 

Patterns in the types of rot have been previously reported as differing between large and 

small diameter logs (e.g. Araya 1993; Edmonds & Marra 1999), however, the specific 

underlying mechanisms that determine these differences have been less understood. In 

this study, several trends relating to the age of the living tree may explain the 

differences in RW types between large and small diameter logs. Older (large diameter) 

living eucalypt trees are more susceptible to heartrot, which can originate from infection 

courts such as those caused by fire damage or by the breakage oflarge branches 

(Greaves et al. 1965; Perry 1985; Tamblyn 1937; Wardlaw 2002; Wilkes 1985a). The 

brown rotten wood frequently observed in the centre of E. obliqua large diameter logs 

would then be related to heartrot in the living tree, either by continued decomposition in 

the log by the same fungus as in the living tree (e.g. Tamblyn 193 7), or as a the result of 

succession of certain processes and organisms (Boddy 2001; Niemela et al. 1995; 

Rayner & Boddy 1988; Renvall 1995) where the original heartrot fungus is displaced 

(e.g. Tamblyn 1937). This follows similar ideas of a recent study by Heilmann-Clausen 

& Christensen (2004). They compared the decay fungi of small and large diameter logs 

in Danish beech and hypothesised that the infection history in the living tree is crucial 

for the establishment of specialist heartrot agents in the decomposing log. 

Unfortunately, there are few data on differences in successional processes between, or 

the identity of decomposer organisms in, standing and fallen E. obliqua trees. In 

conjunction with this study, fungal isolations were obtained from rotten wood types 

(ZQ Yuan unpublished data). However, isolations were usually not successful from 
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advanced stages of rot, and of the successes, the majority were difficult to identify to a 

taxonomically known fungus (ZQ Yuan unpublished data). Generally, the identification 

of fungal isolates in culture based on morphological characters is an extremely 

specialist task, and even if cultures can be identified to a morphospecies, matching them 

to cultures from known fungal fruit bodies is still required. Only recently have 

molecular methods been used to assist in the identification of fungi, where the 

molecular profile of an unknown isolate is matched to that of a known fungus (ZQ 

Yuan, unpublished data, Glen et al. 2001 ),). Yet the effectiveness of this tool is limited 

by the size of the library of known fungal molecular profiles to which to refer. Often the 

fungi of the innermost heartrot decay do not regularly produce perennial fruit bodies, 

and even if fruit bodies are seen on the log (mostly resupinate ), much of the wood decay 

fungal flora is undescribed in Australia (May & Simpson 1997). Moreover, recent 

preliminary work shows that isolating the fungi that cause the rotten wood, from rotten 

wood, may not be possible as at this stage of wood decomposition as the decay causing 

fungi are likely to have "gone" (Hopkins, A. pers. comm.) 

Younger (small diameter) trees are less likely to have heartrot, as such trees have higher 

sapwood to heartwood ratios than older trees (Florence 1996), and sapwood is integral 

in excreting antibiotic compounds that inhibit and thus restrict microbial decay (Wilkes 

1985b). Thus, it is probable that decomposition in the small diameter logs had started 

following the tree fall event. In small diameter logs, the majority of rotten wood was 

concentrated on the outer log regions, which is a type of decay pattern more typical 

after tree death (Boddy 2001). While small diameter logs have a higher incidence of 

white rot in the log outer regions, the lack of these RW types in large diameter logs may 

be may be due to wood chemistry. In old trees, the outer heartwood is rich in complex 

polyphenols (fungi toxic compounds known as extractives), and so this area is highly 

durable and decay resistant (Rudman 1963, 1965). The preponderance of discoloured 

but solid heartwood observed in the outer regions of the large diameter logs in this 

study ·supports this explanation. 

Although inner heartwood RW types were less common in small diameter logs, they did 

occur in five logs. These RW types may have been present prior to tree death, as 

relatively young trees (~30 cm diameter) with many dead branches can be susceptible to 
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heartrot. However the rot in these young living trees is typically associated with white 

rot fungi (Wardlaw 1997). Another, but not mutually exclusive explanation, relates to 

the metabolic actions induced by wood borers. Wardlaw (1994) reported that the 

activities of stem boring larvae, especially hepialid moths and cerambycid beetles are a 

common source of decay column initiation in young eucalypt trees in wet eucalypt 

forests. In the present study, found associated with the inner heartwood rot of these 

small diameter logs were either live large prionine cerambycid larvae, or remains of 

their mandibles - which they shed with each moult, and extensive amounts of frass 

material and comminuted wood. It is likely that in downed logs, the feeding activities of 

such larvae facilitate certain successional processes, or at least enhance decomposition, 

as found for wood borers in dead wood hosts elsewhere (Ausmus 1977; Carpenter et al. 

1988; Edmonds & Eglitis 1989; Fager 1968; Swift 1977). 

4.4.4 The effect of silvicultural practices, forest age, and site factors 

There was some indication that RW types differed between logs in logging regenerated 

forest and logs in mature-unlogged forests. There appeared to be a higher frequency of 

large diameter logs with 'red brown blocky fibrous rot' in the logging regenerated 

forest, and a slightly higher incidence of small diameter logs with white stringy rot in 

mature unlogged forests. While the difference between forest types was not as 

conclusive as that between log sizes, it is a point still worthy of discussion. 

Mature unlogged and logging regenerated forests are of different forest ages, and so it is 

unclear as to whether variation in RW assemblages would relate to the different forest 

age and succession, or different log types between CBS forests and mature-unlogged 

forests. Logs in logging regenerated forests are typically derived from felled trees left 

after the harvest, are burnt, and begin decomposition in the absence of a forest canopy. 

While, logs in the mature unlogged forests are recruited to the forest floor via natural 

causes, such as tree fall from wind, rot, and/or breakage from falling neighbouring trees 

(W oldendorp et al. 2002a). Logs presumably undergo decomposition under a relatively 

established forest with a closed canopy. To confidently attribute any observed RW type 

differences between forest types to a specific factor requires knowledge of the 

decomposer organisms involved in RW type formation. 
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Based on studies elsewhere, some implications relating to the effects of CBS 

silviculture can be suggested. Logs burnt after a silvicultural regeneration bum, and left 

to decompose under a open canopy are likely to undergo distinct fungal successions 

compared to logs that are naturally recruited to closed forest conditions. This is because 

the substrate quality oflogs and the pool of decomposers within the forest/site would 

differ. Generally, logs that decompose in an open environment are more prone to 

desiccation, and exposed to high levels of insolation, and greater fluctuations in 

temperature (Boddy 1983), and these factors can determine the types of decomposer 

microorganisms available for wood decomposition (Harmon et al. 1986; Rayner & 

Boddy 1988). Moreover, burnt wood is likely to influence fungal successional processes 

(e.g. Wikars 2002), 2001). In Victoria, Parkin's (1942) survey after the 1938 forest fires 

observed a higher incidence of white stringy rot on burnt Eucalyptus regnans F. Muell 

branches than unburnt ones. Various studies in Europe have shown that wood decay 

fungal assemblages can differ between disturbed and undisturbed forests (Pugh & 

Boddy 1988): UK), and between burnt and unbumt forests (Penttila & Kotiranta 2001): 

Sweden). Recent study in Tasmania showed that macrofungal communities differ 

between mature and younger logging regenerated wet eucalypt forest (Packham et al. 

2002). 

Logs left after forest harvesting are selectively left based on their economic importance, 

often based on decay severity, and this has the potential to inadvertently influence 

decomposition processes within the stand. In the present study, one of the most likely 

explanations for the higher prevalence of large diameter logs with 'red brown blocky 

fibrous rot' in logging regenerated forest is that past management history may have 

selected for these logs to be left after harvest. During the 1960's and 70's, when these 

forests were felled, only high-grade sawlogs were taken, leaving on any logs that 

showed signs of rot. Of the five small diameter logs that had this rot, four were located 

in logging regenerated forest. In the mature unlogged forests, the decomposing logs 

would have been recruited to the forest floor through natural causes, often :from a range 

of processes including wind, rot, and/ or breakage from falling neighbouring trees (see 

Woldendorp et al. 2002a). The greater range ofRW types among these logs in the 

mature unlogged forests further support this interpretation. As harvesting practices since 

the 1980's utilise logs with heartrot for pulpwood and to a less extent fuelwood (Grove 
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& Meggs 2003), these higher levels ofred brown blocky fibrous rot may not be 

apparent in more recently felled forests. 

Another outcome of this study is the variation ofRW types among sites, where logs of 

the same site had similar RW types to each other. Historical effects of past wild-fire 

events that consequently determine the succession processes of the forest offers another 

explanation for the significant assemblage variation among sites. Fire history within the 

study area is highly variable (see Section 2.2). Moreover, it seems that site-factors not 

only affect vascular plants (Corbett & Balmer 2001), litter beetles (Baker et al. 2004) 

and saproxylic beetle species (see Section 6.3.2), but also the decomposition processes 

of wood. Recent stem decay surveys conducted within the same forest locality also 

found wood decay fungi were site-affected (Wardlaw, T., pers.comm.). It is unknown 

how these communities relate, or whether the ecological processes that have determined 

this variability for rotten wood are the same processes that determined the variation for 

these other communities. Further investigation on the types of decomposer organisms 

involved in the formation ofRW types that are site-affected would be needed to 

determine the nature of this relationship. 

4.5 CONCLUSIONS 

The RW classification is a useful tool for categorising the different substrate qualities of 

wood that arise from the various decomposition processes. Application of the RW 

classification system to the collection of rot type data and the analysis of these data 

provides insights into the complexity of decomposition processes within Eucalyptus 

obliqua fallen logs. Each RW type may also represent a specific habitat type for 

saproxylic beetles. 

These study demonstrates that decomposition processes in large diameter logs differ to 

small diameter logs. However, without knowing the history of wood decomposition 

within a tree prior to or post tree fall, nor the identity or ecology of the decomposer 

organisms involved, determining the underlying mechanisms that shape these rot 

patterns is speculative. Current research projects are seeking to answer some of these 

questions (Hopkins et al. 2003). This type of knowledge would be valuable for 
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determining how to manage for changes in the substrate quality oflogs that result from 

the various effects of intensive forestry. 

Intensive forest management practices has the potential to alter log decomposition 

processes within managed forests compared to unmanaged forests. As discussed, this 

may occur by reducing the availability of large diameter logs, reducing the likelihood of 

fallen trees undergoing decomposition under closed (mature) forest conditions, or 

through selectively leaving logs based on their decay. There is a dearth of information 

on the effects of fire, forest disturbance and forest successional processes on log 

decomposition processes. It is clear, however, that research in this area of better 

understanding the ecology of wood decomposing communities (insect and fungal 

succession) warrants further attention. 
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4.6 APPENDICES 
Appendix 4.1. Reducing the number of PRW types to RW types, as highlighted by } . This was based on 
evidence from preliminary fungal data from Z.Q. Yuan (unpublished). RW region: SF= surface, OH= 
outer heartwood, H = heartwood, L = localised, IH = inner 

PRWTYPES RWREGION RWTYPES 

White jelly rot SF White jelly rot 

Fibrous soft rot SF Fibrous soft rot 

White pocket rot OH White pocket rot 

White stnngy rot 

} 
OH/H 

Dark cnmson discoloured wood OH/H 
White stringy rot 

Yellow slatey dry rot OH Yellow slatey dry rot 

Soft friable brown rot 

} 
OH 

Brown cubic fnable rot 
Brown cubic spongy rot OH 

Discoloured wood H Discoloured wood 

Wet cracks L Wet cracks 

Dark brown wet blocky crumbly rot 

} 
IH 

Light brown blocky crumbly rot IH 
Brown blocky crumbly rot 

Red brown blocky fibrous rot IH Red brown blocky fibrous rot 

Brown mudgut rot IH Brown mudgut rot 
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Appendix 4.2. UPGMA cluster analysis of PRW types within individual log sections, using a Bray Curtis 
distance measure. 

0 

White pocket rot 

~ Dark brown wet blocky crumbly rot 
~Brown mudgut rot N Soft friable brown rot 

Red brown blocky fibrous soft rot 

.---------1- Discoloured wood 

Fibrous soft rot 
Light brown blocky crumbly rot 

Wet cracks 
Dark crimson discoloured wood 

,....-------------------------~ 

White stringy rot 
.-----------------vellow slatey dry rot 

~-------< Brown cubic spongy rot 

White Jelly rot 

25 

Information Remaining 

50 75 100 

2.BE+OO 2.1E+OO 1.4E+OO 7.1E-01 3.1E-02 

Distance (Objective - .. ~ 
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Appendix 4.3. Matrix of characters of the 11 RW types. RW region: SF= surface, OH= outer heartwood, 
H =heartwood, L = localised, IH =inner heartwood. RW types have been abbreviated as WJR - white 
jelly rot, FSR- fibrous surface rot, WPR -white pocket rot, WSR- white stringy rot, BCR =brown cubic 
friable rot, YSR - yellow slatey rot, DW - discoloured wood, WC -wet cracks, RBR - red brown blocky 
fibrous rot, BBR - brown blocky crumbly rot, and BMR - brown mudgut rot. 

RWREGION SF SF OH OH OH OH H L IH IH IH 

RWTYPE WJR FSR WPR WSR YSR BCR DW we BBR RBR BMR 

BLOCKY/CUBIC x x x x x ./ x x ./ ./ ./ 
CRUMBLY x x x x x ./ x x ./ x x 

~ STRINGY/FIBROUS ./ ./ x ./ x x x x x ./ x 
:::J 

~ HARD x x ./ ./ ./ x ./ x x ./ x 

SOFT/SPONGY ./ ./ ./ ./ x ./ x x x ./ ./ 

BRITTLE x x x x ./ x x x ./ x x 

LIGHT BROWN x ./ x x ./ ./ ./ x ./ x x 

DARK BROWN x x x ./ x ./ x ./ ./ x ./ 

RED BROWN x x x x x ./ x x x ./ ./ 
~ 

:::J 
BLACK ./ 0 x x x x x x x x x x 0 

(.) 

./ ./ ./ ./ ./ ./ WHITE x x x x x 

YELLOW ./ ./ ./ x ./ x ./ x x x x 

CRIMSON x x x ./ x x x x x x x 
I/) 

WET WOOD ./ ./ x x x x x ./ x x ./ I/) ., 
~ DRY WOOD x ./ x x x ./ x x ./ x x 
I/) 

MYCELIUM ./ x ~ ./ x x x x x ./ x x 
~ ./ ./ -., POCKETS x x x x x x x x x 
u. 
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Appendix 4.4. Detailed descriptions of the 11 RW types categorised from the 
rotten wood of Eucalyptus ob/iqua decomposing logs in wet eucalypt forest in 
Southern Tasmania 

The rotten wood from decomposing E. obliqua logs was classified into 11 RW types, 

which are summarised in Table 4.1. A matrix of characters for each RW type is listed in 

Appendix 4.3. A series of photographs is also provided to illustrate the characteristic 

features of each R W type, and to display the colour and texture variations of R W types 

that varied in relation to their decomposition state. Upon visual assessment, R W types 

were strongly linked to one of the five designated regions of the log cross-section. Two 

RW types, fibrous surface rot and white jelly rot, were generally restricted to the top 1-

Scm of the log surface. It is unlikely that this layer equates to bark, as this would have 

either completely disintegrated in logs at an intermediate stage of decomposition 

(Mackensen & Bauhus 1999); or for logs within the logged forest, it would have burnt 

away in the pre-sow burn (Slijepcevic 2001 ). This surface region most likely represents 

the original sapwood, especially as there was usually an abrupt change underneath this 

layer to harder more solid wood of heartwood appearance. 

Four RW types were characteristically found in the outer heartwood of the log. These 

RW types are designated white stringy rot, white pocket rot, yellow dry slatey rot and 

brown cubic friable rot. The two white RW types are characterised by a typical and 

distinct 'white' rot appearance. The observed patterns of the two white rots indicate that 

decomposition is proceeding in a radial direction from the outer to the inner regions of 

the log (see Plates 4.3c-f, 4.4g, 4.5, 4.6d). 

The innermost regions (inner heartwood) of the log were characterised by three R W 

types with a brown appearance; brown blocky crumbly rot, red brown blocky fibrous rot 

and brown mudgut rot. Decomposition associated with these RW types appeared to 

have originated central to the log and to extend outwards in an axial and radial direction 

(see Plates 4.9c, 4.9g, 4.1 ld). 

Within many logs, substantial areas of wood were discoloured but still solid and hard. 

This type of wood is classed as discoloured wood. Cracks and fractures present in 

discoloured wood are called wet cracks. 
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WHITE JELLY ROT 
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'White jelly surface rot' occupies the top 1 - 4 cm of the log surface layer. It is 

characterised by large(> 50 mm) irregular pockets filled with white, soft, very wet, 

gelatinous material (Plates 4.1 a-c ). The pockets can also be dehydrated (Plate 4.1 c ), 

which probably represents a later decay stage. A distinguishing feature of this rotten 

wood type includes black 'zone' lines, which demarcate the pockets (Plates 4.la-c). 

Another feature is the presence of rhizomorphs, varying in colour from brownish red to 

black. Ceratocystis moniliformopsis sp nov. was also isolated from this RW type (Yuan 

& Mohammed 2002). Armillaria sp.is also considered associated with this RW type 

(Wardlaw, T. pers. comm.). This RW type can progress into the heartwood, as indicated 

by white lattice-like markings (Plate 4. lc), which further progresses into jelly pockets 

separated by areas of intact wood. 

Plate 4.1. White jelly surface rot, showing a) large dehydrated gelatinous pocket with black zone lines 
demarcating the pocket, b) gelatinous pocket on log surface, and c) a close-up view, of pocket and black 
zone line. Arrows highlight the black zone lines. 
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FIBROUS SURFACE ROT 

'Fibrous surface rot' can occupy the top 1 - 5 cm of the log surface layer. It has a soft 

stringy texture, with the colour ranging from grey, white to a deep straw, and sometimes 

brown (Plates 4.2a-e). The rotted wood seems to consist of numerous minute irregular 

pockets with soft bleached fibres speckled throughout it (Plates 4.2c-d). In comparison 

to the 'white jelly surface rot', 'white fibrous surface rot' has no black zone lines or 

rhizomorphs. This rot type appeared on occasion to extend into the outer heartwood -

often yellow in colour. 

Plate 4.2. Fibrous surface rot on log surface, showing variations in colour a) grey to white to b) straw­
yellow; and a close-up view of the c) speckled pattern of bleached white fibres . d) A close-up view of an 
earlier stage of this rotten wood type as it spreads from the log surface into the solid heartwood, and e) a 
later stage of this rotten wood type. 
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WHITE STRINGY ROT 
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' White stringy rot' is composed of continuous long spongey wool-like bleached-white 

fibres (Plate 4.3a). Crimson to dark brown coloured solid wood was always found 

adjacent to this rotten wood type (Plates 4.3b-f), and it seemed to be the incipient stage. 

The white fibres appear to spread into this crimson discoloured solid wood (Plate 4.3b­

d). The same fungal species was isolated from both white stringy and discoloured solid 

wood forms (Z.Q. Yuan unpublished data). The location of this RW type was often 

found associated with the outer heartwood, and sometimes in contact with the log 

surface. Though columns of this RW type can be seen within the inner heartwood. 

Plate 4.3. White stringy rot, showing a) a close-up view of the white long spongy wool-like fibres that 
spread b) axially and c) radially in the log. A view showing e) this rot type spreading into the log centre 
with f) dark brown discoloured heartwood or g) crimson discoloured solid wood adjacent to this rot type. 
Arrows show the direction in which the decomposition is spreading. 
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WHITE POCKET ROT 

'White pocket rot' is characterised by 5 - 20 mm regular round to elliptical pockets 

(Plate 4.4a-f). These pockets are (1) filled with white spongy gelatinous material and 

appear white (Plate 4.4b,c) (2) are empty (Plate 4.4d) (3) are lined with white or yellow 

mycelium (Plate 4.4e ). Pockets are separated by thin areas of seemingly intact wood. 

This rotten wood type mostly occurred on the outer regions of the log (Plate 4.4f,g). 

Plate 4.4. White pocket rot, showing a close-up view ofa) elliptical pockets beginning to form b) round 
pockets and c) elliptical pockets filled with white gelatinous material, d) empty pockets and e) pockets 
lined with yellow mycelium. A view showing f) the rot pockets just beneath the log surface and g) the 
decomposition spreading from the log surface towards the centre, highlighted by arrows. In (g) the 
decomposed wood patterns are marked with a black outline 
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BROWN CUBIC FRIABLE ROT 

'Brown cubic friable rot' is orange-brown coloured rotten wood that can be easily 

broken into 2cm wide cubes, and is easily crumbled to a friable mass in the hand. It was 

mostly found in patches on the undersides of logs (Plate 4.5). 

Plate 4.5. Brown cubic friable rot spreading out from the underside of the log. The decomposed wood 
patterns are marked with a black outline. 

YELLOW DRY SLATEY ROT 

'Yellow dry slatey rot' is characterised by wood that superficially appears intact, but is 

dry, lightweight, brittle, and inclined to break along the growth rings (Plates 4.6a-d). 

The grain of the wood often has sheen like appearance. This is a rather homogenous 

R W type that occurs in the outer heartwood and greater heartwood regions. 

Plate 4.6. Yellow dry slatey rot, showing the a-c) brittle texture of the wood, where it breaks along the 
growth rings, and d) pattern of decomposition spreading out from the log surface. The decomposed wood 
patterns are marked with a black outline. 
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DISCOLOURED WOOD 
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'Discoloured wood' comprises any wood that has been slightly discoloured, but still has 

the apparent physical structure of sound wood. Discolouration can vary from light pink, 

to yellow, or brown. The wood can have a grainy appearance (Plate 4.7a-c). Often 

present are insect pinhole borer galleries (2 - 3 mm wide), which are sometimes 

outlined by a black discolouration (Plate 4.7a). This possibly results from the 

mutualistic association between platypodid beetles and ambrosia fungi (Kile et al. 

1991). Discoloured wood can occur throughout the outer and inner heartwood regions. 

Plate 4.7. Discoloured wood, showing the a) black stained pinhole borer holes, and the variation in wood 
colour variation from yellow, to b) light brown and c) darker brown 
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WETCRAGIKS 

'Wet 1cradks' aire dletfi.ned as the wet 'Citacks, spUts 1or fractures within the log (!Plate 

4.8a,b), :am.Ii tlh:ese ca111 10CCUJt .alotil:g the wood grai1J:1 1or along the r:a:ys (Plate 4.8c,dl). 'These 

cracks :are prdbalbly caused lby mechaniical [processes, such :as internal stresses :arising 

from tlhe weight of tlhe log .. 'Wet 1cradks' have :a thin !film of rnoisrurie and detriit1.is that 

lines the cradk, whfucih is dark !brown to black in ·colour (Plate 4.8:a,b). 

Plate 4..8. Wet cracks, show~g ;a} !the large fra:o'tiU't'e within t'he lo,g, ~hat S'0meltimes fuas b} iblack 
discolo'lifaHon. A dose-up view ohhe wet cr,acks :$11Iowing c} and 'd} wet 1c1lettii.tus :aml mucMy materia~ that 
line the ·cra:oks. 
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Inner Heartwood type 

BROWN BLOCKY CRUMBLY ROT 

'Brown blocky crumbly rot' is characterised by wood that breaks off in regular blocks 

and can be crumbled by hand to a powder. This rotten wood type ranges between dry 

light brown blocky wood (Plate 4.9a) to a dark brown blocky wood (Plate 4.9b ). 

Distinguishing features include either sheets of mycelium resembling a chamois-like 

texture (Plates 4.9c-d), or thick cheese-like sclerotia often found growing along the 

cracks, progressing along the rays (Plates 4.9e-f). This is possibly in response to the 

fungus moving along the path of least resistance and its exposure to oxygen 

(Mohammed, C. pers. comm.). 

Plate 4.9. Brown blocky crumbly rot, showing a) the dry light brown blocks to b) wet dark brown blocks. 
A view shows c) the spread of decomposition from the log centre, with d) white mycelium growing along 
the rays. A close-up view shows thee) thick sheets ofmycelium, f) thick cheese-like sclerotia and g) 
white threads found within bore hole along the rotted wood grain. 

The latter fungal organ is known as 'poor man's bread'. Another feature is the presence 

of holes (<0.5mm diameter holes along the wood grain, which give the wood a speckled 

appearance when the wood is broken across the grain. These holes are filled with white 
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threads of an unknown substance (Plate 4.9d). These holes are possibly fungal derived 

' bore ' holes (Schwarze et al. 2000). This RW type occurs throughout the greater 

heartwood region, and but more decomposed wood occured in the central area of the 

log. 

RED-BROWN-BLOCKY FIBROUS ROT 

'Red-brown blocky fibrous rot' has a distinctive red-brown colour. It is different from 

the 'brown blocky crumbly rot' in that it breaks into irregular blocks, and maintains a 

soft fibrous, often relatively moist, texture rather than a crumbly, brittle one (Plate 

4.lOa-c). In less decomposed wood, the wood is hard yet the intact wood fibres can be 

teased apart (Plates 4.lOd-e). In more decomposed wood, the fibres are more moist and 

soft, giving the wood a spongy texture. This rotten wood type was mostly found in the 

central area of the log, but it also occurred in localised patches, and occasionally in 

areas adjacent to the 'brown blocky crumbly rot' (Plate lOf). 

Plate 4.10. Red brown blocky fibrous rot, showing a close-up view of a) the soft fibrous irregular blocks 
to b) a more decomposed state, progressing to a c) wetter and mud-like texture. A close-up view d) of this 
rot at an early stage of decomposition, where e) wood fibres can be teased from the more intact wood. A 
view oft) red brown blocky fibrous rot found adjacent to brown blocky crumbly rot 
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BROWN MUDGUT ROT 

'Brown mudgut rot' has a characteristic wet mud- to clay-like consistency, which 

appears devoid of any recognisable wood fibres (Plate 4.11 a-c ). This rotten wood type 

mostly occurred in the internal heartwood of logs (Plate 4.1 ld), sometimes associated 

with a hollow. But, it was also found in localised patches in the outer heartwood. 

'Brown mudgut rot' was often found adjacent to the 'red brown blocky fibrous rot', 

possibly indicating some kind of association or succession. 

Plate 4.11. Brown mudgut rot, showing close-up views of a) red-brown wet detrital material, ranging 
from b) mud-like to c) clay-like consistency. A view shows d) brown mud gut rot within the log centre. 
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Appendix 4.5. Methods for chemical analyses, 

Moisture content measurements of rotten wood samples were calculated by dividing the 

difference in original wet weight and dry weight, over original wet weight. Dry weight 

was measured after oven drying samples at ~80° C to a constant weight. For carbon and 

nitrogen, over 10 g of the oven-dried samples used for moisture content analyses were 

ground to a fine powder using a wood grinder (Thomas Wiley Laboratory Mill, Model 

4). Nutrient analyses involved measuring percent N and percent C. Dried wood samples 

were sent away to the Plantation Research Centre at CSIRO-Forestry and Forest 

Products in Mount Gambier, South Australia. Samples were analysed using the Dumas 

technique, using a Leco CNS2000. 

Dumas technique is as follows: for each sample, 0.200 g of wood is combusted in pure 

02. The combustion gases are collected and entrained into helium gas. All N by­

products are passed through a copper catalyst column to convert them all to N2. This is 

then quantified using a thermal conductivity cell. For carbon concentrations, the dry 

combustion gasses are passed through an Infra-red cell to measure the amount of C02. 

For these analyses, calibration was done with high purity EDTA of varying masses to 

validate the regression. 

Appendix 4.6. Moisture and chemical data for rotten wood types of Eucalyptus obliqua logs at an 
intermediate decomposition stage. NM = number of wood samples used for moisture measurements. NC 
= number of wood samples used for C and N measurements. 

ROTTEN WOOD TYPES % Moisture content NM % Carbon % Nitrogen C/N ratio NC 
(mean±SD) (mean ±SD) (mean ±SD) (mean ±SD) 

White Jelly rot 57.31 ± 10.03 31 55.15 0.0580 950.7 

Fibrous soft rot 58.99 ± 14.26 43 49.41 0.1143 432.4 
-------- -----------------------

White pocket rot 56.77 ± 14.13 14 50.39 ± 2.78 0 1057 ± 0.0411 8 
-------------- -- - - ------ - -----------

White stnngy rot 52 97± 9.31 31 47.65± 0 17 0 1373 ± 0.0052 347 ± 12 2 

Yellow slatey dry rot 4446±13 23 26 47.16±0.72 0.0318 ± 0.0104 1591 ± 455 4 

Brown cubic friable rot 64 89 ± 13 80 22 52.50 ± 1.98 0.1059 ± 0.0233 520±130 12 
------------- --- -- --- ------------------

Discoloured wood 5154±9 40 122 50.06 ± 3 30 0 1032 ± 0.0625 595 ±273 3 
-------

Wet cracks 

------
Brown blocky crumbly rot 61.73 ± 13.40 51 50 09 ± 2.44 0 0829 ± 0.0553 777 ± 321 14 

Red brown blocky fibrous rot 61.06 ± 8 26 47 48.34± 1.60 0 0825 ± 0.0517 800 ± 499 29 

Brown mudgut rot 77.09 ± 8 53 38 51.72 ± 1.91 0.1208 ± 0.0598 538±263 28 
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5 ROT TYPE HABITAT REQUIREMENTS OF 

SAPROXYLIC BEETES: THE EFFECT OF LOG SIZE 

ABSTRACT 

Studies frequently show that large diameter logs generally host saproxylic beetle assemblages different to 

that of small diameter logs. In a study in Tasmanian wet eucalypt forest, two size-classes of Eucalyptus 

obliqua logs (> 1 OOcm and 30-60cm diameter) were destructively sampled to assess their beetle fauna and 

the associations of this fauna with decomposing wood. Ninety species were collected as adults from 42 

logs; at least 19 species were also collected as larvae. The two log size-classes differed in beetle 

assemblage composition. These differences could be explained by the observation that certain beetle 

species were associated with specific successional phases of decomposing wood (rotten wood types). 

Those that were preferentially found in brown rotted heartwood, which was common in large diameter 

logs, were rare or absent in small diameter logs. This rotten wood type seems to be a relatively stable 

microhabitat and accordingly, the four most strongly associated species (in the genera Cossonus, 

Dryophthorus, Prostomis and Pycnomerus) seem likely to have low dispersal ability. Although relatively 

common in this habitat, each belongs to a genus whose European counterparts have undergone drastic 

range reductions. Our research highlights the importance of a degree of landscape level planning in 

Tasmanian forestry which would maintain sufficient large diameter logs in the landscape over the long 

term. 
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5.1 INTRODUCTION 

Saproxylic beetle assemblages have been studied in many forest ecosystems, including 

the boreal forests of Scandinavia (reviewed in Siitonen 2001) and Canada (Hammond et 

al. 2004), the temperate forests of Germany (Kleinevoss et al. 1996), and the Douglas 

fir forests of the Northwest U.S. (Edmonds & Marra 1999; Maser & Trappe 1984). 

These studies demonstrate that large diameter logs host specific saproxylic beetle 

assemblages that are different from those found in smaller sized logs. The ecological 

processes that shape these assemblages and create the differences between large and 

small diameter logs are not well understood. One possibility is that differences in the 

decomposition pathways in large and small diameter logs, resulting in differences in 

rotten wood types that potentially represent different microhabitats, may influence the 

saproxylic beetles assemblages within those logs. 

Rotten wood is defined here as wood that has undergone some degree of decomposition. 

Decomposition results from either one or a combination of biotic and abiotic agents 

(Harmon et al. 1986). These include mechanical, physical-chemical processes, and the 

physical and metabolic actions of various organisms (Kaarik 1974; Kirk & Cowling 

1984; Swift 1977). They include bacteria (Clausen 1996 ), xylophagous arthropods 

(Carpenter et al. 1988; Edmonds & Eglitis 1989), basidiomycete and ascomycete fungi, 

and micro-arthropods (Ausmus 1977; Seastedt 1984; Sollins et al. 1987; Swift 1977). 

Depending on the types of processes and organisms, the physical, chemical and 

biological wood properties change in a specific way (Rayner & Boddy). This gives rise 

to a specific rotten wood type that can be described by its wood microstructure and 

chemistry, relative density, moisture content and nutrient levels (Ausmus 1977; 

Christensen 1984; Harmon et al. 1986; Swift & Boddy 1984). To illustrate, brown 

rotted wood arises when 'brown-rot' fungi selectively remove cellulose and 

hemicellulose from the wood, leaving a residue of slightly modified lignin. By contrast, 

'white-rot' fungi utilise all components of the wood cells, removing lignin, cellulose 

and hemicellulose and leaving the wood bleached, with a spongy, stringy or laminated 

structure (Kaarik 1974). 

Investigations of the rotten wood types within decomposing Eucalyptus obliqua logs 

clearly established that large (> 100 cm diameter) and small (30-60 cm diameter) logs at 
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an intermediate decomposition stage differ in both type and spatial arrangement of 

rotten wood (Chapter 4). Eleven distinct rotten wood types have been classified within 

these logs. Although little is known of the actual decomposition processes or of the 

organisms involved, each type may results from a specific decomposition pathway and 

potentially provides a unique microhabitat for saproxylic beetles. Large diameter logs 

have a higher frequency of brown rotted heartwood occurring within the log centre. In 

small diameter logs, white rotten wood commonly occurs in the outer regions of the log. 

The presence of the different types of rotten wood demonstrates differing decay 

processes occurring in each size class oflog. In large diameter logs internal decay 

probably established when the tree was alive, as heartrot is frequent in large old trees. 

Younger (smaller diameter) trees are less likely to give rise to logs with pre-existing 

heart rot, but such logs were more frequently rotted in their outer regions. 

Many saproxylic beetles are specially adapted to and intimately associated with the 

microhabitats and microclimates that occur in rotten wood (Dajoz 2000, Gilbertson 

1984, Haack & Slansky, 1987; Lawrence 1989, Speight, 1989). For instance, in Japan 

the lucanids Ceruchus lignarius and Aesalus asiaticus occur more frequently in wood 

decomposed by brown rot fungi, whilst Platycerus acuticollis prefers wood decomposed 

by soft rot fungi (Araya 1993). Some beetle species rely on the actions of certain wood 

decay fungi to process and precondition the wood. Fungi can provide metabolic water 

and vitamins necessary for insect development, and they can produce enzymes for 

cellulose digestion that can be ingested and then taken up by insects living within the 

wood. Fungi can detoxify wood that contains toxic or repellent allelochemicals, or 

decompose the wood to a softer and more chewable resource that can be more readily 

assimilated (Hanula 1996; Swift & Boddy 1984). 

Saproxylic beetles may also be indirectly associated with one or more rot types through 

their dependence on organisms that are more intimately associated with a specific type 

of rot (Dajoz 2000; Speight 1989). For example, some elaterid beetles specifically prey 

on tipulid flies that only live in the moist wood invaded by white rot fungi (Dajoz 

2000). The European Elater ferrugineus (Elateridae) is a predator of scarabaeid beetles 

that occurs in the red rotted wood of old trees (Svensson et al. 2004). 
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This study investigates the saproxylic beetle assemblages found in large and small 

diameter logs in the wet eucalypt forest of Tasmania, with the aim to determine whether 

the differences observed in the beetle assemblages between two log diameter classes 

could be explained by associations between beetle species and rotten wood types 

specific to a log size class. 

5.2 METHODS 

5.2.1 Study location and experimental design 

Research was conducted at seven study sites in wet eucalypt production forests in 

southern Tasmania. Four (designated as study sites H, E, S, PR2) were 20-30 yr CBS 

logging regeneration of one harvesting event and the other (designated as M, WR and 

POl) were in mature unlogged forest. The influence of forest type on saproxylic beetles 

was not analysed in this study, but is reported in Chapter 6. Study site locations and 

descriptions are described in Section 2.2 and 2.3. Within each study site, three pairs of 

large diameter (>100 cm) and small diameter (30-60 cm) Eucalyptus obliqua logs of an 

intermediate decomposition stage (defined in Section 2.5) were destructively sampled. 

Names and diameters of the study logs are listed in Table 2.2. 

5.2.2 Sampling method 

Two 1 m sections were destructively sampled from each log, with one to two hours 

being spent sampling each log section. Destructive sampling involves intensively 

searching and hand collecting adult and larval saproxylic beetles inhabiting a log, as 

well as surveying the rotten wood types within the log. The method for collecting, 

sampling, and identifying beetles is described in Section 2.6.1. This included collecting 

additional samples oflarvae with host material for rearing to adulthood, to allow 

identification and to observe life history. 

The rot types present within each section were categorised into one of 11 previously 

characterised Rotten Wood (RW) types. See Table 4.1 for a summary RW types, and 

see Appendix 4.4 for detailed descriptions of each type. The classification system for 

RW types of Eucalyptus obliqua logs had been developed alongside this study (see 

Section 4.3.2), on the basis of colour, texture, hardness and 'RW region'. RW region to 

some extent indicates where decomposition may have started, for example, within the 
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log or on the log surface. This was based on the consistent spatial association of a rot 

type with one of five regions within the log cross-section, and the direction from which 

the decomposition appeared to be spreading. The five regions specified were surface 

(sapwood), outer heartwood, inner heartwood, localised pockets from which the decay 

did not appear to spread, and throughout the heartwood (see Figure 4.3). Colour was 

taken as indicative of the predominant type of fungal decay in process at the time of 

sampling: a 'white' or a 'brown' rot. 

5.2.3 Statistical analyses 

5.2.3.1 Data and general statistical technique 

Presence-absence data were used instead of abundance because it was considered more 

relevant for determining a species' association with R W type. Sampling absolute 

numbers of beetles within lm long sections of solid to rotten wood was well beyond the 

scope of the study. More importantly, using presence/absence data reduced the 

influence a species' breeding strategy and aggregative behaviour can have on the result. 

For example, species such as Prostomis atkinsoni have a gregarious/colonial life history 

with populations of over 20 individuals within a handful or rot, while elaterids are 

solitary. The presence of either species equally indicates a positive association with a 

unit RW type within a log. 

Although the amount of wood sampled varied between logs, beetle presence/absence 

data were not standardised by the amount of rot area or volume sampled as 1) it was 

considered that the confounding issues with sampling effort would be less important 

than if abundance data were used, 2) other than rarefaction techniques, which compares 

number of species standardized by sampling effort, methods to compare species 

assemblages standardised by sampling effort were unknown, and 3) because the volume 

of wood sampled for large diameter logs was limited to 1/8th of the lm long log section, 

the volume of wood sampled from large diameter logs did not grossly differ to that of 

small diameter logs (see Table 2.2.) 

Many larvae could not be identified even to family level, were seldom encountered, yet 

may be the larval stage of some sampled adult beetle species. Therefore, species 

occurring only as larvae were documented separately and excluded from statistical 
102 



Chapter 5 - Rot type habitat requirements of saproxylic beetles 

analyses. Larval elaterids and scirtids were the exception. They were included because 

for these families, only larvae inhabit the log so there was no risk of double-counting. 

Furthermore, elaterids and scirtids are a common and important component of the 

saproxylic community, and are relatively easy to identify to family and morphospecies. 

Two multivariate statistical methods were used, Non-metric Multidimensional Scaling 

(NMS) and Multi-Response Permutation Procedures (MRPP). NMS is a non-parametric 

ordination technique that relates the similarity of entities (e.g. logs or rotten wood 

samples), based on ranked distances, in multidimensional space (McCune & Grace 

2002). NMS was performed using a Sorensen (Bray-Curtis) distance measure, in PC­

ORD (McCune & Mefford 1999), choosing the 'slow and thorough autopilot' mode. 

MRPP in PC-ORD is a non-parametric method that uses permutation procedures for 

testing the hypothesis of no difference between two or more a priori groups based on 

multi-species data. This method provides a test statistic, T, which describes the 

separation between groups: the more negative the T, the stronger the separation. It also 

provides a p-value, which evaluates whether the observed difference is greater than 

expected by chance. As recommended in the program, the method was run on an 

Euclidean distance measure and used the natural group weighting ofn/sum (n). 

5.2.3.2 Comparison of beetles between log diameter classes 

The frequency of occurrence of individual beetle species was compared between large 

and small diameter logs, using Chi-square analyses. Data comprised the presence­

absence of a species within a log, pooled from all RW types from both log sections. 

Only common species (occurring in more than 25% logs) were analysed. Beetle 

assemblages in large and small diameter logs were graphically compared using NMS. 

Beetle species occurrences and R W type vectors were overlaid onto the ordination as a 

joint plot. RW type data comprised the presence-absence ofRW types within a log, 

pooled from the two 1 m-long sections. MRPP were used to test for differences in beetle 

assemblage composition between log size-classes. 
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5.2.3.3 Beetle species incidence, richness and diversity associated with RW types 

Beetle species incidence was defined as the proportion of units or rotten wood/log 

sampled in which a saproxylic beetle was found. This analysis highlights the habitat 

suitability of RW types standardised by number ofRW units sampled. 

Species richness was defined as the total number of new saproxylic beetle species 

associated with a RW type. A one-way ANOV A was used to investigate differences in 

species richness among RW types, and a follow-up multiple comparison test (Ryan­

Einot-Gabriel-Welsch Multiple Range Test: REGW test) was used to determine the 

nature of these differences. Data comprised number of species per RW type per log (i.e. 

pooled from both 1-m log sections). Data were first tested for homoscedascity and 

normality, and subsequently log-transformed to meet the assumptions of the ANOVA. 

Units of rotten wood with zero beetles were omitted from this analysis. I excluded RW 

types per log with zero beetles as beetle absence may have been a reflection of other 

factors such as proximity off the ground, rather than the RW type within the log per se. 

Species diversity was defined as the mean number of species within a unit ofRW 

type/log. 

5.2.3.4 Beetle associations with RW types/regions 

Individual beetle species and assemblages were investigated for their association with 

RW types. Data comprised the presence-absence of species within a RW type, pooled 

from both log sections. Since many species were absent from over 20% ofRW types 

per log, many standard statistical analyses, such as Chi-square analysis, would not have 

been reliable. Therefore interpretation of this aspect is limited to a discussion of 

observed trends on larval feeding and on species associations with rotten wood. NMS 

was used to determine whether RW types were characterised by similar beetle 

assemblages. MRPP were used to test whether the assemblages within rotten wood 

differed significantly among RW types. As RWregion was found to be an important 

difference between large and small diameter logs, species associations with RW region 

were also examined by overlaying RW region onto the ordination plot instead ofRW 
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type, and by testing group differences using MRPP. Beetle species vectors were also 

overlaid on the ordination plot as a joint plot. 

5.3 RESULTS 

In total, 94 species of adult beetles from 23 families were collected (Appendix 5.1). The 

most species-rich families were Staphylinidae (16 species), Curculionidae (12 species) 

and Carabidae (12 species). At least 19 of these species were also collected as larvae 

(Appendix 1 ), their identities being confirmed following successful larval rearing. Only 

14 species occurred in over 25% oflogs, and all of these were collected in both life 

stages, except Aleocharinae TFIC sp 34 (Staphylinidae) and Exeiratus TFIC sp 01 

(Curculionidae), which were only collected as adults. In total, 27 morphospecies were 

collected as larvae only (Appendix 5.2). Some of these may have represented the larval 

stages of species also collected as adults. However, those larvae identified as species in 

the families Lycidae, Cantharidae, Cleridae and Melandryidae were not represented in 

the collection as adults. However, many of these larvae were only represented as 

singletons. 

5.3.1 Comparison of beetles between log diameter classes 

Sixty-three species of adult beetles were collected from large diameter logs and 65 from 

small diameter logs, with 38 species common to both. Of the 14 species that occurred in 

over 25% oflogs, Cossonus simsoni (Curculionidae) occurred only in large diameter 

logs, and Pycnomerus TFIC sp 02 (Zopheridae) and Coripera deplanata 

(Tenebrionidae) were significantly more frequent in large diameter logs than in small 

ones (p = 0.013 and 0.0278 respectively) (Figure 5.1). Meanwhile, Enneaphyllus 

aeneipennis (Cerambycidae) only occurred in small diameter logs. 

105 



LARGE LOGS 

20 15 10 5 

Chapter 5 - Rot type habitat requirements of saproxylic beetles 

SMALL LOGS 

.. ,.;:: ': : : :-:: :·:·;-::::::: Lissotescancro1des 

Conpera deplanata * 
· : " · : .; .; .; .; " " .; " Prostom1s atkmsom ....... 

: : · " : :- : : " ·:: : : : · Elatendae TFIC sp 21 

· · · : · : : · : · Pycnomerus TFIC sp 02 * 
: .. ··.·.· ·.· .. · Sc1rt1dae YEE larva 04 

Cossonus s1msom * * 
Aleochannae TFIC sp 34 

Elatendae TFIC sp 20 

~i·~~~· ~·~·Q·~·~~Ph1lothermus tasmamcus 
!IS Exelfatus TFIC sp 01 

Enneaphyllus aene1penms * * 
0 5 10 15 20 

Number of logs 

Figure 5.1. Frequency of common(> 25% oflogs) saproxylic beetles found in 21 large (left) and 21 small 
(right) Eucalyptus obliqua logs at an intermediate decomposition stage. Species whose occurrences 
differed significantly (p<0.05) between the two log size-classes are denoted by*, while those exclusive to 
a particular log size-class are denoted by ** 

Results from the NMS (Figure 5.2a,b) and MRPP together showed that large and small 

diameter logs differed significantly in their beetle assemblages (Figure 5.2b, separation 

along Axis 3; p = 0.001, T = -4.5). Ten small diameter logs were clearly different from 

the cluster oflarge diameter logs. Overlaying the beetle species onto the ordination plot 

revealed that Enneaphyllus aeneipennis had a strong influence on this pattern, 

correlating with Axis 3 (r2 = 0.65). Several species correlated in the opposite direction: 

Prostomis atkinsoni (Prostomidae) (r2 = 0.31 ), Elateridae TFIC sp 21 (Elateridae) (r2 = 

0.24), Dryophthorus TFIC sp 01 (Curculionidae) (r2 = 0.25), Pycnomerus TFIC sp 02 

(Zopheridae) (r2 = 0.20) and Scirtidae YEE sp 04 (Scirtidae) (r2 = 0.23). Two RW types, 

'brown mudgut rot' and 'wet cracks', which are both wet RW types, also correlated 

with this axis (r2 = 0.24 and .20 respectively). 
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Figure 5.2. NMS ordination showing saproxylic beetle assemblages from 21 large (.A) and 21 small (0) 
Eucalyptus obliqua logs. (a) axes I and 2; (b) axes 2 and 3. Based on presence-absence data for 
saproxylic beetle species pooled from two Im long sections per log (single occurrences were excluded). 
Alphanumeric codes are log names. Vectors based on beetle species occurrence and rotten wood type 
(refer to Table 4.1) are overlaid as a joint plot; for greater clarity, these are displayed adjacent to the 
ordination. Stress= 0.18, p = 0.0196. Vector scaling 100%. Only vectors with r2 >0.2 are shown 
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5.3.2 Incidence, species richness and diversity of saproxylic beetles 

within RW types 

The 'brown' inner-heartwood RW types (red-brown blocky fibrous and brown mudgut 

rot) and surface/sapwood-fibrous soft rot had a high incidence of beetles (Figure 5.3). 

Saproxylic beetles were found in atleast 80% of the rotten wood units/log of fibrous 

surface rot and brown mudgut rot sampled. Furthermore, both fibrous surface rot and 

brown mudgut rot were the most species rich, with almost 50 and 40 species 

respectively associated with these RW types (Figure 5.4). Of the logs that beetles had 

colonised, brown mud gut rot had the highest diversity of beetles, with an average of 6 to 

7 species per log (Figure 5.5; F 10,104 = 2.06, p = 0.03). 

By contrast, only 40% at most of the white jelly rot, wet cracks, white pocket rot, white 

stringy rot and brown blocky rot units ofrotten wood/log sampled had a saproxylic 

beetle. The yellow slatey dry rot was the least favourable microhabitat types, having the 

lowest incidence of beetles, with only two individuals collected from this RW type. 

5.3.3 Beetle associations with RW types and regions 

The relative frequencies of individual species differed among RW types. No species 

was restricted to a single RW type but some were more common for either a RW region 

or for an amalgamation ofRW types into decay type (white or brown) (Table 5.1). For 

example, the xylophagous species Dohrnia simplex (Oedemeridae), Dryophthorus TFIC 

sp 01, Prostomis atkinsoni, Cossonus simsoni and Pycnomerus TFIC sp 02 were more 

common in the brown rotten heartwood (inner) types, whilst Enneaphyllus aeneipennis 

exclusively occurred in the white outer heartwood RW types. Two further xylophagous 

species Coripera deplanata and Lissotes cancroides (Lucanidae) were more common in 

the surface (sapwood) rotten wood than in other log regions, but their occurrence also 

extended into the brown rotted heartwood (inner). The saprophagous species Scirtidae 

YEE sp 04 (Scirtidae) was more common in the very wet RW types ('wet cracks' and 

'brown mudgut rot'). The xylophagous Syndesus cornutus (Lucanidae) was exclusive 

found in brown rot, where many larvae were found feeding within brown rotted wood 

that was either cubic or crumbly, and occurring in either inner or outer heartwood. 
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Table 5. 1. Species associated with Rotten Wood (RW) type, grouped by RW region and by apparent 
decay type. RW region is abbreviated as SF (SP) - surface (sapwood), OH - outer heartwood, IH - inner 
heartwood, H-heartwood, L- localised. RW types are abbreviated as WJR - white jelly surface rot, FSR ­
fibrous surface rot, YDR - yellow dry slatey rot, WPR - white pocket rot, WSR - white stringy rot, BSR 
- brown spongy cubic rot, BDW - brown discoloured wood, RBR - red brown soft blocky fibrous rot, 
BBR- brown blocky crumbly rot, BMR - brown mudgut rot, and WC - wet cracks. The apparent decay 
type is abbreviated as Wh- white rot, and Br- brown rot. Number within a cell represents the number of 
logs in which a species occurred. Grey cells highlight more than two occurrences. Species are listed in 
d d f 1 fr S "h fi h fi l dd ecreasmg or er o most to east equency. 1pec1es wit ewer t an our occurrences were exc u e . 
RWREGION SF (SP) OH H IH L 

RW TYPE WJR FSR YDR WPR WSR BSR BDW RBR BBR BMR we Total 

APPARENT DECAY TYPE - - - Wh Wh Br Br Br Br Br -

Lissotes cancroides wlswl l'1d 2 1 2 1 16 ~~· 37 

Prostomis atkinsoni 1 2 2 2 1"%5~!'1 . ~·~: !)" 2 36 

Coripera deplanata g 1 1 'a~. 1 33 

Elateridae TF/C sp 21 2 II' "' 2 29 
" 

Oryophthorus TFIC sp 01 1 1 ffi 1 25 

Pycnomerus TFIC sp 02 2 1 laf;; )~ 2 24 

Cossonus simsoni 1 .w, 4 1 1 llft'4;c£ •'f. "'i 22 

Scirtidae YEE sp 04 1 1 2 1 2 wti 91 22 

Diemenoma TFIC sp 01 ®i 3\1 1 1 ~ I» n~ if.' ., 2 17 
>!'•' "' = 

Aleocharinae TFIC sp 34 1 2 1 1 12 

Enneaphyl/us aeneipennis 2 2 l il! 2 1 12 

Dorhnia simplex 1 1 • 2 • 11 

Exeiratus TF/C sp 01 2 1 2 11 

Aleocharinae TFIC sp 13 1 2 2 1 1 ·~·{~ 10 

Elateridae TFIC sp 20 2 ~f;7 ~ 1 10 

Philothermus tasmanicus 1 1 1 2 *i~" 2 10 

Syndesus cornutus 1 II 1 -~lt 1 9 

Pedilophorus griffithi IN 1 ik 
'flt 1 8 

Promecoderus tasmanicus 1 !rf(fi 1 8 

Trechimorphus diemenensis 1 1 2 2 2 8 

Adelium abbreviatum 2 8 4 1 7 

Stichonotus leai 2 lrl~ 1 7 

Denticollinae TFIC sp 01 1 1 ~ 1 6 

Elateridae TFIC sp 23 2 1 2 1 6 

Dryocora cephalotes 1 1 1 2 5 

Elateridae TFIC sp 19 1 2 2 5 

Lissotes subcaeruleus 2 1 2 5 

Macroplectus CHANDLER 'Type 1' 1 1 1 1 1 5 

Scirtidae YEE sp 02 4 1 5 

Scirtidae YEE sp 08 1 2 2 5 

Scopodes intermedius 1 3 @ 1 5 

Sloaneana tasmaniae 1 2 1 1 5 

Staphylinidae ANIC 88-0088 1 2 1 1 5 

Toxeutes arcuatus 1 1 1 2 5 

Curculionidae YEE sp 49 ~~.&k 1 4 

Dinichus terreus 3"':' 1 4 

Staphylininae TFIC sp 03 1 1 2 4 
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Figure 5.6. NMS ordination of saproxylic beetle assemblages from 119 samples ofrotten wood from 42 
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Figure 5.7. Same ordination as in Figure 5.6, but with rotten wood region (symbols) overlaid. (a) axes 1 
and 2; (b) axes 2 and 3. Vectors are defined by beetle species occurrence data; for greater clarity, these 
are displayed adjacent to the ordination. Vector scaling 100%. Only vectors with r2 > 0.2 are shown. 

Except for the distinct patterns evident for two single RW types ('brown mudgut rot' 

and 'fibrous surface rot'), there were no discrete clusters of the same RW type evident 

in ordination plots based on beetle assemblages (Figure 5.6a,b). That is, no single RW 
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type had a distinct beetle assemblage. Despite this apparent lack of difference among 

single RW types, MRPP suggested that there were highly significant differences (p < 

0.000001, T = -11.4). The ordination was re-examined by overlaying the RW region on 

the ordination instead of RW type, and this showed that some RW regions formed more 

distinct clusters (Figure 5.7a,b), particularly in terms an distinct suite of beetles 

associated with the surface/sapwood RW types (Figure 5.7b). This difference among 

RW regions was significant (p < 0.000001, T = -17.6). Species that correlated with the 

ordination included those that showed an association when examining individual 

species (Table 2): Prostomis atkinsoni and Pycnomerus TFIC sp 02 were associated 

with the brown rotten heartwood (inner) types, Lissotes cancroides and Coripera 

deplanata with the surface (sapwood) RW types, and Enneaphyllus aeneipennis with 

the white rotten heartwood types. 

5.4 DISCUSSION 

The results of this study support the hypothesis that for some species, differences in 

saproxylic beetle occurrence between large and small diameter logs can in part be 

explained by the discrete decompositional processes undergone in logs of the two size 

classes, as reflected in the region or type ofrotten wood. For example, brown rotten 

heartwood occurs more frequently in large diameter logs (Chapter 4), and this study has 

described an association of two beetle species (Cossonus simsoni and Pycnomerus TFIC 

sp 02) with brown rotten heartwood. This argument was also supported by other related 

observations. Some members of the family Scirtidae apparently prefer large diameter 

logs (this study, Chapter 6, and Grove & Bashford 2003). These beetles appear to be 

associated with the wetter RW types, such as 'wet cracks' and 'brown mudgut rot', 

which were more frequent in large diameter logs (Chapter 4). Their association can be 

explained by their requirement for wet habitats, as larval scirtids have retained an 

ancestral respiratory system adapted for living in saturated environments and 

mouthparts designed for filtering wet detritus (Lawrence & Britton 1994). Meanwhile, 

the white rotten heartwood types are more frequent in small diameter logs than in large 

diameter logs (Chapter 4). 

In this study, one beetle species (Enneaphyllus aeneipennis) was restricted to this 

particular white rot type, and was only detected in small diameter logs. It is therefore 
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reasonable to imply that one explanation for a species greater occurrence in large 

diameter logs (in this study) is due to the presence of certain RW types not commonly 

found in small diameter logs. 

Log size preferences and rotten wood type associations could only be demonstrated for 

common species, as these species occurred in sufficient numbers for statistical analysis. 

In theory, rarity can be positively related to habitat specificity (Rabinowitz 1981 ), so the 

many less common species in this study could also have a preference for log size and/or 

rotten wood type. Additional sampling would be needed to gain an adequate 

understanding of the habitat preferences of naturally rare species. 

There may have been factors other than the types of rotten wood to which species may 

be responding. For example, the xylophagous Coripera deplanata was more frequent in 

large diameter logs, yet showed an association for the surface (sapwood) rotten wood 

that is common to both log sizes. It may have preferred large diameter logs because the 

sapwood layer is thicker on large diameter logs than on small logs (Brack et al. 1985). 

This is the case for the northern European sapwood feeding Pytho kolwensis (Pythidae) 

which, in a Finnish study, preferred large spruce logs over small logs for this reason 

(Siitonen & Saaristo 2000). Another interpretation is that Coripera deplanata seems to 

have relatively broad larval habitat associations, also occurring in the brown rotted 

heartwood (inner) common in large diameter logs (this study, S. Grove unpublished 

data). Additional sampling might reveal a better understanding of the mechanisms 

underlying its apparent preference for large diameter logs. 

In spite of the limitations of the present study, the results show that a high incidence, 

richness and diversity of species are associated with 'brown' rot (especially brown 

mudgut rot), and there is greater occurrence of certain beetle species in brown rot. 

Collectively these results suggest that brown rot is an important habitat feature of large 

Eucalyptus obliqua logs. Its value could lie in its relative stability as a habitat. Habitat 

stability is defined as how favourable it remains for a population over a continuous 

period of time (Southwood 1977). In general, large diameter logs of the dimensions 

studied here are considered to offer more stable habitats for saproxylic beetles than 

smaller sized logs (Grove & Meggs 2003). This is because they tend to have lower 
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decay rates (Hannon et al. 1986; Mackensen et al. 2003; Stone et al. 1998) and so 

persist longer in the landscape; maintain more optimal moisture levels (Amaranthus et 

al. 1989) that allow buffering against the effects of desiccation and temperature 

extremes; and thus provide potential refuges during disturbance events, such as wildfire 

(Meggs and Taylor 1999, Michaels & Bomemissza 1999). In the present study, brown 

rotted heartwood had probably originated in the living tree, entering through infection 

courts such as those caused by fire damage or breakage oflarge branches (Greaves et al. 

1965; Perry 1985; Tamblyn 1937; Wardlaw 2002; Wilkes 1985a). Therefore as a 

habitat, it might begin to sustain an assemblage of beetles from the time of tree-fall or 

even beforehand. The rotten wood in small diameter logs, on the other hand, almost 

certainly owed its origin to fungal and microbial colonisation since the tree-fall event. 

The apparent poor dispersal potential of species associated with the brown rotted 

heartwood also supports the notion that this rot type is a relatively stable habitat for 

saproxylic beetles. Theoretically, species dependent on stable habitats would require 

lower dispersal abilities, while those in less predictable habitats would require higher 

ones (Southwood 1977). In this study, Cossonus simsoni, Prostomis atkinsoni, 

Dryophthorus TFIC sp 01 and Pycnomerus TFIC sp 02, which were more common in 

the brown rotted heartwood, each have life history characteristics that appear to fit this 

pattern. They are small xylophagous species, often found living in aggregates, have a 

seemingly sedentary behaviour and/or were flightless, or a combination of these (pers. 

obs ). All except Prostomis atkinsoni are flightless, and flightlessness is one outcome of 

habitat stability (Lattin & Moldenke 1990; Stevens 1997). Prostomis atkinsoni, 

Dryophthorus TFIC sp 01 andPycnomerus TFIC sp 02 seem capable of undergoing 

successive generations within the same log without emerging, and this interpretation is 

supported for Prostomis atkinsoni by a recent study that found genetically similar 

individuals at very fine spatial scales (Watson 2003). Adults and larvae of Prostomis 

atkinsoni, Dryophthorus TFIC sp 01 and Pycnomerus TFIC sp 02 subsisted in the 

original host wood material for over 25 months under laboratory conditions, with both 

life stages persisting. Furthermore, these three species were collected from partially 

decomposed to well-rotted inner heartwood, thus showing their capacity to feed on a 

broad range of decomposed wood stages; and in the laboratory they seemed to re-ingest 

previously consumed wood. 
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In Northern Europe, the declines in saproxylic beetles that have resulted from centuries 

of timber harvesting and recent intensive forest management (Grove 2002b) provide 

examples of what may occur in Australian production forests if similar management 

trajectories were followed. Remarkably, each of the four species more common to the 

brown rotted heartwood (Dryophthorus TFIC sp 01, Prostomis atkinsoni, Cossonus 

simsoni, and Pycnomerus TFIC sp 02) belongs to a genus whose European 

representatives have already experienced drastic declines, with some regional 

extinctions. And yet, in this Australian (Tasmanian) study, they were among the most 

common species collected. Moreover, some of the European species appear to have 

similar rotten wood type preferences to those in this study. 

For example, Dryophthorus corticalis, which lives in the red heartwood rot of old 

standing and fallen oak (Quercus sp) trees, is threatened in Great Britain (Hyman & 

Parsons 1992), Germany (Bense 2002 ), and the Czech Republic (Strejcek 1996). 

Prostomis mandibularis, which occurs in the red-brown muddy rot of decomposing oak 

logs (personal observation), is extinct in the UK (Boswijk & Whitehouse 2002) and 

threatened with extinction in parts of Germany (Bense 2002). A number of species from 

the genus Cossonus are threatened in several European countries: Cossonus linearis in 

central Europe (Harde 1984) and the Czech Republic (Strejcek 1996); C. cylindricus in 

Finland (Martikainen 2001); and C. parallelepipedus in the Czech Republic (Strejcek 

1996) and Germany (Bense 2002). Pycnomerus terebrans, which occurs in the red 

rotten wood of old hardwood trees, has also become extinct in Britain (Buckland and 

Dinnin 1993), and is close to extinction in parts of Germany (Wenzel 2002). 

Considering the similarities found in this study with those of Northern European 

examples, it seems likely that developing an understanding of the dispersal ecology of 

these species will provide valuable information as to how to manage large diameter logs 

over appropriate spatial and temporal scales, to ensure that such major declines and 

extinctions can be avoided in Tasmania and elsewhere. 

Growing evidence in Europe suggests that certain old trees with already present heartrot 

decay have high conservation importance for saproxylic beetle biodiversity (Dudley & 

Vallauri 2004; Key & Ball 1993; Nilsson & Baranowski 1997; Nilsson et al. 2002; 

Ranius 2002; Vallauri et al. 2002). In Australia, the importance of old trees for 

116 



Chapter 5 - Rot type habitat requirements of saproxylic beetles 

conservation has been recognised for conservation of arboreal vertebrates that depend 

on heartrot decay process in mature eucalypt trees to create tree-hollow habitats 

(reviewed in Gibbons & Lindenmayer 2001). However, the importance of such decay 

processes for invertebrate biodiversity conservation is less understood. This study 

suggests that decay processes not only have implications for fauna dependent on 

standing living or dead trees, but also for saproxylic beetle assemblages dependent on 

logs on the forest floor. It was suggested that the internal heartrot decay processes 

prevalent in large diameter E. obliqua logs related to the infection history and age of the 

living tree (Chapter 4, sensu (Heilmann-Clausen & Christensen 2004) - Danish beech). 

Current research projects are investigating this issue (Yuan, Z.Q. unpublished data, 

Harrison et al. 2003; Hopkins et al. 2003). Note though, the potential impact this decay 

could have on sustainable wood yields from decay spreading into the neighbouring 

regenerating trees also warrants investigation. 

5.5 CONCLUSION 

In conclusion, large Eucalyptus obliqua logs in Tasmanian wet eucalypt forests host a 

distinct suite of beetle species found less common in small diameter logs, and one 

explanation for this is the greater prevalence of brown rotten heartwood (inner) types 

within large diameter logs. This rotten wood type probably originated in the standing 

tree, though the specific decomposer organisms or processes involved in its 

development are unknown. It seems that this rotten wood type is a relatively stable 

microhabitat, and species associated with it appear to have lower dispersal potential. 

Considering these species belong to genera whose European representatives have 

undergone serious declines, it seems they also could be susceptible to the long-term 

effects of intensive forest management and fragmentation. Determining how far these 

species disperse, whether they colonise the living tree, at which stage they colonise the 

fallen log, and for how long they remain within the log, will provide valuable 

information as to how to manage for large diameter logs over appropriate spatial and 

temporal scales. Current research projects are seeking to answer some of these questions 

(Harrison et al. 2003; Watson 2003; Nash 2004). A caveat to this study is that the 

conclusions have mostly been drawn from the commonly collected species, and so 

conservation issues relating to naturally rare species still need to be addressed. 
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5.6 APPENDICES 
Appendix 5.1. Taxonomic list of adult beetles hand collected from 42 Eucalyptus obliqua logs. *refers to 
species that were also collected in larval form. 
Fam1ly-Subfam1ly 

Carab1dae-M1gadop1nae 

Carabidae-Trechmae 

Carab1dae-Trechmae 

Carab1dae-Broscmae 

Carab1dae-Calhst1nae 

Carab1dae-Leb11nae 

Carabidae-Pentagonicmae 

Carab1dae-Psydnnae 

Carab1dae-Psydnnae 

Carab1dae-Pterost1chinae 

Carab1dae-Pterost1chinae 

Carab1dae-Zohnae 

Pt1l11dae 

Le1odidae-Cholev1nae 

Le1od1dae-Cholev1nae 

Scydmaenidae 

Scydmaerndae 

Scydmaerndae 

Staphyhnidae 

Staphylm1dae-Pselaphinae 

Staphylm1dae-Pselaph1nae 

Staphylinidae-Pselaph1nae 

Staphyl1n1dae-Pselaph1nae 

Staphyhrndae-Tachyponnae 

Staphyl1nidae-Aleochannae 

Staphyl1n1dae-Aleocharinae 

Staphyl1n1dae-Aleochannae 

Staphyl1n1dae-Aleochannae 

Staphylm1dae-Aleochannae 

Staphyl1n1dae-Scaph1di1nae 

Staphyl1n1dae-Paederinae 

Staphylm1dae-Paedennae 

Staphylm1dae-Staphylin1nae 

Staphyl1nidae-Staphyl1n1nae 

Lucarndae-Syndesmae 

Lucanidae-Lucarnnae 

Lucarndae-Lucarnnae 

Lucarndae-Lucarnnae 

Scarabae1dae-Melolonthinae 

Scarabae1dae-Melolonthinae 

Scarabae1dae-Melolonth1nae 

Scarabae1dae-Melolonthinae 

Sc1rt1dae 

Sc1rt1dae 

Species 

St1chonotus /ea1 Sloane, 1910 

S/oaneana tasmaniae (Sloane, 1915) 

Trech1morphus d1emenensis (Bates, 1878) 

*Promecoderus tasmamcus Castelnau, 1867 

Lest1gnathus sp nr foveatus Sloane, 1920 

Agonoche1/a curtula (Erichson, 1842) 

Scopodes mtermed1us Blackburn, 1894? 

Amb/yte/us TFIC sp 01 

Theprisa convexa (Sloane, 1920) 

Notonomus po/1tulus (Chaudoir, 1865) 

Rhabdotus reflexus (Chaudoir, 1865) 

Pterocyrtus tasmamcus Castelnau, 1867 

Ptiltidae TFIC sp 04 

Nargomorphus1eanneli Szymczakowski, 1963 

Nargomorphus TFIC sp 02 

Scydmaenidae TFIC sp 04 

Scydmaemdae TFIC sp 08 

Scydmaenidae TFIC sp 10 

Staphylm1dae ANIC 88-0088 

Macroplectus CHANDLER 'Type 1' 

Macrop/ectus tasmamae Raffray 

Startes CHANDLER 'Tasmania 1' 

Tasmanityrus newtom Chandler, 1987 

Sepedoph1/us TFIC sp 01 

Aleocharinae TFIC sp 13 

Aleocharmae TFIC sp 25 

Aleocharmae TFIC sp 27 

Aleocharmae TFIC sp 28 

Aleocharmae TFIC sp 34 

Scaph1dium YEE sp 01 

Hyperomma bryoph1/um Lea, 1923 

Paedermae TFIC sp 03 

Qued1us TFIC sp 04 

Staphylinmae TFIC sp 03 

*Syndesus cornutus (Fabric1us, 1801) 

*Ltssotes cancro1des (Fabricius, 1787) 

*Ltssotes curv1corms (Boisduval, 1835) 

Ltssotes subcaeruleus Bomans, 1986 

Heteronyx p1losellus Blanchard, 1850 

*Phyllochlaema TFIC sp 01 

Phyl/ochlaema villosus (Le Gwllou, 1844) 

Telura vitticol/is Enchson, 1842 

Prionocyphon? TFIC sp 01 

Pseudomicrocara atkmsom (Waterhouse, 1877)? 
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Fam1ly-Subfam1ly 

Byrrh1dae-Byrrhmae 

Byrrh1dae-Byrrhmae 

Eucnem1dae 

Elatendae-P1tyob11nae 

Elatendae-Agrypn1nae 

Elatendae-Dent1coll1nae 

Elatendae-Dent1coll1nae 

Elatendae-Dent1coll1nae 

Elatendae-Denllcolhnae 

Elatendae-Elatennae 

Clendae-Phyllobaen1nae 

N1t1dul1dae-Cryptarch1nae 

S1lvarndae-Brontmae 

S1lvarndae-Brontmae 

Cryptophag1dae-Cryptophag1nae 

Cryptophagidae-Cryptophaginae 

Cerylorndae-Cerylornnae 

Coryloph1dae-Corylophinae 

Coryloph1dae-Sencodennae 

Zophendae-Zophennae 

Zophendae-Pycnomennae 

Zopheridae-Pycnomennae 

Zophendae-Colyd11nae 

Tenebnorndae-Lagrnnae 

Tenebnorndae-Lagn1nae 

Tenebnorndae-Lagrnnae 

T enebnorndae-Lagrn nae 

T enebriorndae-Lagni nae 

T enebnorndae-Zolod1 rnnae 

Prostom1dae 

Prostom1dae 

Oedemendae 

Cerambycidae-Pnonmae 

Cerambyc1dae-Pnornnae 

Curcuhorndae 

Curcul1on1dae-Cryptorhynch1nae 

Curcul1onidae-Cryptorhynch1nae 

Curcul1on1dae-Cryptorhynch1nae 

Curcul1on1dae-Cryptorhynch1nae 

Curcul1on1dae-Dryophthonnae 

Curcul1orndae-Dryophthonnae 

Curcul1orndae-Molytinae 

Curcul1orndae-Molyt1nae 

Curcul1orndae-Cossornnae 

Curcul1orndae-Cossornnae 

Curcul1orndae-Cosson1nae 
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Species 

Ped1/ophorus gnffith1 Lea, 1907 

Ped1/ophorus nr ANIC sp 88-0313 

Neochans tasmamcus Muona, 1987 

Tasmanelater pe/ionens1s Calder, 1996 

Agrypnus TFIC sp 01 

Dent1collmae TFIC sp 01 

Denticol/mae TFIC sp 16 

Elat1chros1s exarata (Candeze, 1863) 

Enischnelater TFIC sp 01 

Augenotus quadnguttatus (Enchson, 1842) 

Lem1d1a YEE sp 02 

Cryptarcha /aevigata 

Cryptamorpha TFIC sp 01 

Cryptamorpha v1cfoflae Blackburn? 

Cryptophagus tasmamcus Blackburn, 1907 

Cryptophagus sp nr g1bb1penms Blackburn, 1892 

*Ph1/othermus tasmanicus Shpmsk1, 1988 

*Ho/ops1s TFIC sp 01 

Sef/coderus TFIC sp 05 

Doca/1s funerosus (Hope, 1845) 

Penthehspa fuligmosa Erichson, 1842 

*Pycnomerus TFIC sp 02 

Enhypnon tuberculatus 

*Adelium abbrev1atum Bo1sduval, 1835 

Brycop1a coelloides (Pascoe, 1870) 

Brycop1a hexagona Carter, 1920 

*Brycop1a p1cta (Pascoe, 1869) 

*Conpera deplanata (Bo1sduval, 1835) 

*Tany/ypa mono Pascoe, 1869 

*Dryocora cephalotes (Waterhouse) 

*Prostom1s atkmsom Waterhouse, 1877 

*Dohrma simplex Champion 

*Enneaphyl/us aene1pennis Waterhouse, 1877 

*Toxeutes arcuatus (Fabnc1us, 1787) 

Curcullonidae YEE sp 49 

Declfaus lateralis Lea, 1913 

Declfaus nr stnatus/subfasc1atus 

Poropterus ant1quus Boheman 

Tyrtaeosus ustulatus Pascoe 

Dryophthorus 'cort1ca/is' 

*Dryophthorus TFIC sp 01 

*Dm1chus terreus Pascoe, 1887 

Exelfalus TFIC sp 01 

Cossonmae TFIC sp 06 

*Cossonus s1msom Lea, 1910 

Pentarthrum TFIC sp 01 
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Appendix 5.2. Taxonomic list oflarvae hand collected from 42 Eucalyptus obliqua logs. 
Family Larval morphospec1es code· Genus 

Carab1dae CARLAR15 

Carab1dae CARLAR8 

Staphylirndae LAR5; Scaph1dium sp 

Sc1rt1dae Sc1rt1dae YEE sp 04 

Scirt1dae Sc1rt1dae YEE sp 08 

Byrrh1dae LAR29 

Eucnem1dae EUCNEM2 

Elatendae Elatendae TFIC sp 23 

Elatendae Elatendae TFIC sp 19 

Elatendae Elatendae TFIC sp 20 

Elatendae Elateridae TFIC sp 21 

Elatendae Elatendae YEE sp 06 

Elatendae LAR33 

Elatendae ELAT1 

Lyc1dae LYCIDLAR1 

Cantharidae LAR11 

Canthandae LAR3 

Clendae CLER2. Lem1d1a sp 

Melandry1dae L YMEX1: Mystes sp 

Tenebnorndae LAR10 

Tenebnorndae LAR16 

Tenebnorndae TENLAR1 

Ind et LAR30 

Ind et CURLAR2 

Ind et. CARLAR9 

Ind et. STAPHLAR1 

Ind et STAPHLAR7 
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6 EFFECTS OF CLEARFELL HARVESTING ON 

SAPROXYLIC BEETLES: EVALUATING THE 

IMPORTANCE OF LARGE DIAMETER LOGS 

6.1 INTRODUCTION 

Conservationists and forest managers increasingly accept that silviculture regimes more 

closely resembling natural disturbance regimes and promoting structural complexity are 

more likely to ensure that biodiversity is maintained (Angelstam 1998; Angelstam et al. 

1997; Bengtsson et al. 2000; Bergeron et al. 2002; Franklin et al. 2002; Haila et al. 

1994; Hansen et al. 1991; Hunter 1993; Lindenmayer 1995; Niemela 1999; Seymour et 

al. 2002; Spies & Turner 1999). This is based on the rationale that because forests 

ecosystems have partly evolved in relation to stochastic disturbance events that drive 

the regeneration and succession of the forest, then the forest biota are more likely to be 

resilient to and recover from silvicultural practices that emulate the conditions of a 

naturally disturbed forest (Attiwill 1994a; Haila 1994; Hunter 1993; Niemela 1999). 

6.1.1 How the effects of clearfelling on log recruitment processes leads 

to the loss of large diameter logs in managed forests 

In Tasmania, the common harvesting regime for lowland wet eucalypt production 

forests is standard clearfell burn and sow silviculture (CBS) on 80-100 rotations 

(Hickey et al. 2001; Whiteley 1999). This involves clearing all trees within a set area 

(generally around 50-1 OOha, Forest Practices Board 2000) in a single operation, burning 

the logging debris to create a receptive seedbed, then aerially sowing eucalypt seed from 

local sources for natural regeneration (Hickey & Savva 1992). This has been a preferred 

harvesting method as it is considered to be most similar to the natural regeneration 

system of eucalypt trees after severe wildfire (Ashton 1982; Forestry Tasmania 2004; 

Hickey et al. 2001; Jackson 1968; Mount 1979). However, after successive harvests by 

clearfelling, an altered and simplified forest structure of even-aged younger trees is 

projected (Lindenmayer & McCarthy 2002; Lindenmayer et al. 2000b). From this, dead 

wood composition and dynamics could become drastically altered (Grove et al. 2002). 

In particular, no new recruitment oflarge diameter logs (derived from mature trees) will 

121 



Chapter 6 - Effects of clearfell harvesting on saproxylic beetles 

be apparent, and future inputs will comprise an increased proportion of small diameter 

logs (derived from commercially mature trees) (Grove et al. 2002). How such long term 

predicted changes affect the conservation of saproxylic beetles (dead wood dependent, 

Speight 1989), is an important issue in the implementation of ecologically sustainable 

forestry (National Forest Policy Statement Commonwealth of Australia 1992; Grove & 

Meggs 2003; Meggs 1996; Taylor & Savva 1988). 

6.1.2 Why researchers conclude that large diameter logs are important 

for dead wood dependent communities 

In order to determine whether the loss of large diameter logs would be detrimental to 

maintaining saproxylic beetle biodiversity requires understanding the specific ecological 

role of these structures (Hammond et al. 2004). Several authors demonstr&te that large 

diameter logs host higher numbers of species than other dead wood types, and these 

species are often specialist taxa (Kolstrom & Lumatjarvi 2000). Thus, large diameter 

log abundance would significantly contribute to stand-level species richness. Kleinevoss 

et al. (1996) and Kappes & Topp (2004) in broadleaved German forests showed that 

saproxylic beetle species richness positively correlates with log diameter. This pattern is 

repeated for mycetophilid flies emerging from spruce logs in Norway (0kland 1996b), 

wood-decay fungi on spruce logs in Finland (Renvall 1995), and bryophytes on beech 

and spruce logs in Sweden (Andersson & Hytteborn 1991). More recent studies show, 

however, that validity of this diameter relationship can depend on how adequately 

sampling effort is considered, because log surface area and volume are inherently 

functions of log diameter (e.g. Grove & Bashford 2003 - beetles; Heilmann-Clausen & 

Christensen 2004 - wood decay fungi; Kruys et al. 1999 - various cryptogams; Schiegg 

2001). Also, this pattern may only be reflected be a feature of certain tree species For 

example, saproxylic beetle species richness correlated with log diameter for beech dead 

wood and less so for oak (Kappes & Topp 2004). Perhaps logs of different decay stages 

also illicit different patterns (Grove & Bashford 2003; Irmler et al. 1996). Grove & 

Bashford (2003) preliminary analysis oflarge and small diameter Eucalyptus obliqua 

logs at W arra in the first year following felling explained that the number of species 

emerging could easily be due to log volume differences. 
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Various other studies indicate that large diameter logs support unique saproxylic beetle 

assemblages (e.g. Kappes & Topp 2004; Kleinevoss et al. 1996). Thus, the loss of such 

features would be detrimental for these habitat specialists. For instance, some authors 

suggest that the increased surface area of phloem associated with larger diameter logs 

provide greater chance of survival for larvae of certain saproxylic bark beetle species 

(e.g. Esaki 1996; Haack & Slansky Jr 1987; Hughes & Hughes 1982; Siitonen & 

Saaristo 2000). In Japan, Araya (1993; Araya 1994) showed that the occurrences of soft 

rot and brown rot vary in relation to log size, and certain lucanid beetles species exhibit 

a rot type, and thus a log size, preference. Large diameter logs can also have lower 

decay rates (Harmon et al. 1986), and some authors suggest this may provide a more 

stable microclimate for species confined to such stable conditions (Grove et al. 2002; 

Vaisanen et al. 1993). 

6.1.3 Shortfalls of previous approaches to understanding the importance 

of large diameter logs 

Most studies implicating the conservation importance oflarge diameter logs, though, 

are retrospective in that they have occurred in forest regions where the availability of 

large diameter logs has already drastically reduced. Such has been seen in the United 

Kingdom (Alexander 2002; Hammond & Harding 1991; Kirby & Drake 1993), central 

Europe (e.g. Kappes & Topp 2004; reviewed in Vallauri et al. 2002) and northern 

Europe (reviewed in Siitonen 2001). Moreover, most of these studies are based on 

correlative assumptions, showing that the abundance oflarge diameter logs, or their 

reduced and discontinuous availability correlates with lower saproxylic beetle species 

richness and fewer rare or threatened species (Kolstrom & Lumatjarvi 2000; 0kland et 

al. 1996b; Siitonen 1994a; Siitonen et al. 2000; Siitonen et al. 2001; Siitonen & Saaristo 

2000; Simila et al. 2003; Vaisanen et al. 1993). Thus, the specific factors driving 

species decline are not yet fully understood. This is because, often in these regions, the 

reduced availabilities of decomposing large diameter logs, is repeatedly confounded by 

factors relating to the 'managed' forest condition, such as younger forest age, 

significantly lower dead wood volumes and lower diversity of dead wood types (e.g. 

Kruys et al. 1999; Martikainen et al. 2000; Siitonen et al. 2000; Sverdrup-Thygeson 

2002; Vaisanen et al. 1993). As an example, the threatened bark beetle Pytho kolwensis 

in Finland was considered restricted to oldgrowth forests because of the microclimate or 
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host-tree quality of such sites (Saalas 1923; Burakowski, 1962 cited in Siitonen & 

Saaristo 2000). However, recent studies demonstrated that because of its poor dispersal 

ability, its current distribution was due to its dependence on a long-term continuous 

availability of suitable host trees - which in Sweden and much of Europe, dead wood 

continuity is now only apparent in unmanaged oldgrowth forests. 

6.1.4 How the present study seeks to circumvent some of these shortfalls 

The present study investigates how currently planned 90 year CBS rotations affect 

saproxylic beetle biodiversity, with particular consideration to the effect diminishing 

availabilities oflarge diameter logs have on biodiversity over the long term. In 

Tasmania, clearfelling began in the early 1960s, and so large diameter logs are still well 

represented in these forests (Meggs 1996; Woldendorp et al. 2002a). This provides a 

valuable opportunity to investigate their habitat value prior to any long-term effects of 

forest management. That is, the present study is not retrospective. To avoid the 

confounding "sampling effort" issue associated with sampling logs of different sizes, 

saproxylic beetle species richness was standardised by sampling effort (amount of dead 

sampled), and by the number of individuals collected. 

As wet eucalypt forests are naturally dynamic systems, the "ideal" experimental design 

for assessing the effects of CBS harvesting on biodiversity conservation unconfounded 

by forest succession and age would be to compare logging regeneration with similar 

aged wildfire regenerated forest (e.g. Balcer et al. 2004; Ough 2001; Turner 2003). This 

is because comparing unlogged forests with typically younger logged forests confounds 

the effects of logging and different forest succession and ages (Attiwill 1994b; e.g. 

Chandler 1987; Hickey 1994; Taylor 1990). At this stage in Tasmanian forestry the only 

available logging regenerated forests are at most midway through their first rotation 

period. With this in consideration, research findings of this study are discussed in 

relation to forest succession and age; and in relation to the effects of CBS harvesting. 

This study aims to: 

• Compare the saproxylic beetle species richness, diversity and assemblage 

composition oflarge diameter (> lOOcm) with small diameter (30-60cm) logs, 
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comparing between naturally disturbed mature forests and forest regenerating 

from CBS silviculture 

• Identify habitat specialists of either log size or forest type combination 

• Discuss the effects of clearfell logging on saproxylic beetle populations 

• Discuss the specific ecological role oflarge diameter logs, compared to small 

diameter logs, in maintaining saproxylic beetle biodiversity 

6.2 METHODS 

6.2.1 Study location, experimental design and sampling method 

Research was conducted at ten study sites in wet eucalypt production forests in 

Southern Tasmania (see Section 2.2 and Section 2.3 for site locations and descriptions). 

Study sites are all within 1 Okms of each other. The study area and its environs 

experienced several major, but patchy, wildfires in the early 1900's (Alcorn et al. 2001; 

Hickey et al. 1999b ), see Section 2.2.for the recent fire history of study sites). Five sites 

(designated as sites E, S, W, PRl, PR2) were 20-30 yr logged forest coupes 

regenerating from clearfell bum and sow (CBS) silviculture (logging regenerated 

forest). The other five sites (designated as sites WR, M, R, POl, P02) were in mature 

unlogged forest. Environmental and stand structure attributes for each study site have 

been presented in Table 2.6. 

Saproxylic beetle populations were sampled using log emergence traps (ET) (see 

Section 2.6.2 for trap design), with traps operating for 18 months between October 2000 

- May 2002 (includes two summers). At each site, three large (> 1 OOcm) and three small 

(30-60cm) diameter Eucalyptus obliqua logs at an intermediate decomposition stage 

(defined in Section 2.5) were sampled. Alphanumeric names for logs used in this study 

are listed in Table 2.3. All beetles, including adults and larvae, were determined to 

species (or morphospecies) level following the protocol outlined in Section 2.7. Due to 

the taxonomic difficulties with identifying larvae to known species, only results for 

saproxylic adult beetles are presented here. Saproxylic beetles presented in this study 

include both obligate and facultative species, as defined in Section 3.2.4.1. 
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6.2.2 Data 

Data from four logs were excluded from analyses. A large tree fell on log WRLETl 

after the first summer collecting period, and logs with traps WSETl, WSET2 and 

SSETl were later identified as belonging to Phyllocladus aspleniifolius 

(Podocarpaceae: celery top pine) rather than E. obliqua. This respective resulted in 14 

and 15 large and small diameter logs in mature unlogged forest, and 15 and 12 large and 

small diameter logs in logging regenerated forest. Unless specified otherwise, data for 

all statistical analyses comprised species abundance data for each trap pooled across the 

sampling period. 

6.2.3 Comparing species richness 

Traps on large diameter logs inherently sample a greater surface area and volume than 

traps on small diameter logs (see Table 2.3 for trap size dimensions). To consider 

whether different sampling efforts between log sizes confound trap catches, different 

approaches were used to standardise species richness oflog samples. 

6.2.3.1 Standardising trap samples by sampled log volume and surface area 

In the first approach, an approach to data analysis similar to that of Schiegg (2001; 

Schiegg 2003) was followed. This involved standardising samples (i.e. the proportion of 

the log within the trap) based on either sampled surface area or sampled volume, 

depending of which variable best correlated with species number. Regression analyses 

were first conducted to investigate the relationship between species number and 

sampled log volume; and sampled surface area. However, unlike Schiegg (2001; 

Schiegg 2003), large and small diameter logs were analysed separately in order to 

exclude the potential 'log size' effect. 

For small diameter logs, the number of species collected per log sample was positively 

correlated with sampled surface area (r2 
= 0.36, p = 0.001, Figure 6.la) and sampled 

volume (r2 = 0.20, p = 0.02, Figure 6.1 b ). Such correlations were discernible, but were 

not significant for large diameter logs (surface area: r2 
= 0.06, p = 0.21; volume: r2 

= 

0.02, p = 0.52). As sampled surface area for small diameter logs showed a stronger 

correlation with species richness than did volume, species richness was standardised on 

the basis of surface area. 
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Figure 6.1 Scatterplot and regression lines of number of saproxylic beetle species collected per large ( •) 
or small (0) diameter log by the (a) surface area and (b) volume oflog sampled. Figures show that 
species number in small diameter logs is more strongly correlated with sampling effort than that oflarge 
diameter logs, and this correlation is stronger for surface area than for log volume. 

On average, a trap on a large diameter logs sampled just over two times more surface 

area (7.89 m 2 ± 2.2) than a trap on a small diameter log (3.64 m2 ± 0.99). Therefore, to 

compare the species richness of small diameter logs of similar sampled surface area 

with that of large diameter logs, two small diameter logs (irrespective of forest type) 

were randomly selected from the 27 small diameter logs and the number of species from 

both logs calculated. This was repeated until pairs of all small diameter logs were 

selected, and their species number calculated- resulting in 13 adjusted small diameter 

log species richness measures. This was again repeated until 29 adjusted small diameter 

log species richness measures were derived. Species richness between large and small 

diameter logs (adjusted) were then compared using a one-way analysis of variance 

(ANOVA). 

6.2.3.2 Comparing trap samples by equal log volumes and surface areas 

Species accumulation plots for small and large diameter logs grouped by forest type 

(log size/ forest type 'treatment') were calculated. This involved randomly selecting 

logs by treatment, and plotting the cumulative number of different species against 

cumulative s!iffipled volume and cumulative sampled surface area. This involved 

assigning a random number to logs by treatment, placing these logs in ascending order, 

then plotting the cumulative number of new species against cumulative samplep 

volume, and cumulative sampled surface area. 
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6.2.3.3 Comparing trap samples by equal number of individuals 

Rarefaction curves (Krebs 1989; Simberloff 1972, 1978) were used to compare species 

richness among the log size/forest type treatments. This method calculates an estimated 

species richness for any given sampling effort, or number of individuals collected, 

thereby allowing comparisons of species richness between the different treatments of 

similar sample size. This study standardises the species richness by number of 

individuals collected. This is done by repeatedly taking sub-samples of a certain size 

(by number of individuals) from the original catch. From this, average number of 

species for the different sub-samples can be obtained. Sub-samples were taken at 

intervals of 20 individuals. Three rarefaction curves by treatment were calculated: 

including all saproxylic beetles, obligate species only, and facultative species only. 

Rarefaction estimates were calculated using Internet-based software provided by 

Brzustowski (2002), and curves were plotted using Microsoft EXCEL (Microsoft 

Corporation 1997). 

6.2.4 Comparing species diversity 

Species diversity is a measure of the richness, commonness and rarity of species within 

a community. However, most diversity indices are highly sensitive to different sample 

sizes (Magurran 1988). Therefore, rank abundance diagrams, which illustrate the 

species-abundance distributions of a community, were used to visually compare the 

numerical dominance of species from logs grouped by treatment. Data were pooled 

across traps by treatment. Diagrams were generated using Microsoft EXCEL. 

6.2.5 Comparing species assemblages 

6. 2. 5.1 Unconstrained ordination 

Non-metric multidimensional scaling (NMS: Minchin 1987), an unconstrained non­

parametric ordination technique, was used to investigate the variation of beetle 

assemblages among logs. This involves ordinating the relative similarities oflogs in 

multi-dimensional space. Logs were ranked in similarity based on their beetle 

assemblages using the Sorensen (Bray-Curtis) distance measure. Species abundance 

data were log10 (x + 1) transformed to reduce the influence of abundant species relative 

to the less abundant ones (Magurran 1988). Species abundance vectors were overlaid 
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onto the ordination as a joint plot to determine which species were influencing the 

variation in beetle assemblages. NMS ordination was conducted in PC-ORD version 4 

(McCune & Mefford 1999), choosing the 'slow and thorough' auto pilot mode. For each 

log, their log size/forest type treatment is overlaid on the ordination to visually detect 

any species assemblage patterns among the treatments. As singletons contribute little to 

assessing the similarity of beetle assemblages among logs, singletons were excluded 

from all multivariate analyses. 

A semi-parametric analysis of variance (PERMANOVA: Anderson 2004b ), previously 

named NP-MANOVA (Anderson 2001) is a newly developed procedure that tests the 

hypothesis of no difference between two or more groups of entities (e.g. logs), based on 

multi-species data. PERMANOV A was used to test the significance of observed 

(unconstrained) variation in beetle assemblages among the effects of forest type, of log 

size, and of site. The interactions between forest type and log size, and between site and 

log size were also tested. This used a two-factorial model (forest type and log size) with 

a nested hierarchical factor - log size is a crossed fixed factor (Table 6.1 ). 

PERMANOV A follows a similar approach to parametric ANOV A, in that the total and 

within group variation oflogs are calculated. From this, among group variation can be 

derived (SSA= SST- SSW), thus providing the components for F-ratios (MSAiMSw). For 

PERMANOV A, this variation is based on the relative similarity oflogs defined by their 

beetle assemblages. Logs were ranked in similarity using the Bray-Curtis distance 

measure. As there is no multivariate F-statistic distribution to assess significance levels, 

a permutation test based on randomisation procedures is used to create a frequency 

distribution ofF-values, and the observed F-ratio is tested for significance against this 

distribution. For this 4999 unrestricted randomised permutations were used. 

PERMANOV A procedures were performed using computer programs provided on the 

Internet by the author, Anderson (2004b ). See both McArdle & Anderson (2001) and 

Anderson (2001) for a more complete description of the method. 
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T bl 61 T f: t . lPERMANOVA d 1 d£ th' t 1 d . a e wo- ac ona mo e use or ts expenmen a es1gn. 
Source Degrees of Freedom Construction of F ratio 

Forest-type= F 2-1=1 MSF/MSst(F) 

Sites (Forest-type) =St(F) (5-1)x2 = 8 MSst(F/MSRes 

Log size= L 2-1=1 MS J MSst(F)"L 

Fxl 1 MSst•JMSRes 

St(F)xl 8 MSst(F)"JMSRes 

Residual 20x(3-1) = 40 (36*) 

* Modified residual degrees of freedom because data from four logs were excluded from analyses. 

6.2.5.2 Constrained ordination 

Canonical analysis of principal coordinates (CAP: Anderson & Willis 2003), a 

constrained ordination technique, was used to specifically investigate assemblage 

structure correlated with treatment effects. Using a similar statistical approach to Willis 

& Anderson (2003), two canonical analyses were conducted: one to investigate the 

effect of forest type, and the other to investigate the effect oflog size. To test the 

statistical significance of these correlations, the results were tested using 9999 

unrestricted random permutations of the raw data. As both log size and forest type 

treatments are binary (that is large versus small; and mature unlogged versus logging 

regenerated), CAP ordination results in a single canonical discriminant axis for each 

treatment. Thus, similar to Willis & Anderson (2003), the resultant canonical axes 

scores (position oflogs - multivariate points on the two canonical axes) were plotted 

against each other. Species abundance vectors that correlated (I r I> 0.35) ":'ith the 

canonical discriminant axes of forest type and log size from CAP, were presented in a 

joint plot (as used in Willis & Anderson 2003). This indicates which species were 

influencing the constrained variation in beetle assemblages. CAP procedures were 

performed using a computer program that was provided on the Internet by Anderson 

(2004a). 

6.2.6 Investigating habitat preferences of individual species 

For determining the habitat preference for species, parametric ANOV A could not be 

used as data for the majority of species were zero-inflated, thus violating the assumption 

of normally distributed residuals (Sokal & Rohlf 1995). Instead, indicator species 

analysis (Dufrene & Legendre 1997) was used to investigate individual species 

associations with the log size/forest type treatments. Indicator species analysis 

calculates a value that reflects a species' indication for a particular group, measured by 
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its concentration of abundance and faithfulness of occurrence to that group (McCune & 

Mefford 1999). Indicator values are then tested for significance using randomisation 

(Monte Carlo) procedures. A cut-off value oflndVal ~ 25, p <=0.05 was used. Indicator 

species analysis however can only test one level of treatment at a time. Therefore, to 

cope with the hierarchical study design, a similar approach to Warncke (1988), cited in 

McCune & Grace (2002) was used. Five separate analyses were performed: one to 

determine species indicative of a forest type, irrespective oflog size; one for a log size, 

irrespective of forest type; two to determine species indicative of log size within each 

forest type, that only included data of that forest type; and one to determine species 

indicative of site (irrespective of forest type or log size). For the latter analysis, a more 

conservative cut-off value oflndVal ~ 40, p <= 0.01 was used. Untransformed species 

abundance data were used. 
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6.3 RESULTS 

6.3.1 Description of Faui:ta 

A total of 341 species of saproxylic beetles ( 6423 individuals) were collected as adults 

and 95 of these were singletons. The fauna comprised 51 families; Curculionidae and 

Staphylinidae were the most abundant and species rich families trapped. See Appendix 

3 .1 for a complete list of species. This also lists their biological traits, including 

apparent vagility, feeding guild and degree of dead wood dependence (obligate or 

facultative ). 

Thirty-nine species occurred in over 15% oflogs sampled, with species varying in 

occurrence and abundance among the log size/forest type treatments (Table 6.2). Of 

these, four species: Chylnus ater (Carabidae), Tychiinae TFIC sp 06 (Curculionidae), 

Tychiinae TFIC sp 08 (Curculionidae) andAncyttalia tarsalis (Curculionidae) were 

absent from small diameter logs in the logging regenerated forest, and one species -

Exeiratus TFIC sp 01 (Curculionidae) was absent from small diameter logs in mature 

unlogged forest. Four species: Decilaus nigronotatus (Curculionidae), Decilaus nr 

striatus/subfasciatus (Curculionidae), Enhypnon tuberculatus (Zopheridae), and 

Holopsis TFIC sp 01 (Corylophidae) occurred on over 50% oflogs, and these were 

relatively evenly distributed in occurrence and abundance among treatments. Not all 

frequent species occurred in high abundances. For example, Xynotropis micans 

(Anthribidae), Denticollinae TFIC sp 01 (Elateridae), Epurea victoriensis (Nitidulidae), 

Aleocharinae TFIC sp 34 (Staphylinidae), Cortinicara TFIC sp 02 (Latridiidae) and 

Cryptorhynchinae TFIC 13 (Curculionidae) were represented by just one or two 

individuals per log. 
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Table 6.2. List of frequently occurring species (present in >10 logs) that had emerged from large and 
small diameter logs in mature unlogged (MU) and clearfell sow and bum logging regenerated (LR) wet 
eucalypt forest. Number within cells represents: No. of occurrences (Total no. individuals) in treatment. 
Species in bold were considered to locally disperse by crawling. Cells shaded represent more than 5 log 
occurrences per log size/forest type treatment 

Log type 

Forest type 

SPECIES NAME 

Xynotropis micans 

Microchaetes hystricosus 

Heteromastix TFIC sp 01 

Chylnus ater 

Stichonotus leai 

Trechimorphus diemenensis 

Rhyzobius TFIC sp 15 

Holopsis TFIC sp 01 

Ancyttal ia tarsalis 

Cryptorhynchinae TFIC sp 31 

Decilaus albonotatus 

Decilaus lateralis 

Decilaus nigronotatus 

Decilaus nr striatus/subfasciatus 

Exeiratus TFIC sp 01 

Exithius capucinus 

Mandalotus muscivorus 

Miocallus pygmaeus 

Roptoperus tasmaniensis 

Tychiinae TFIC sp 06 

Tychiinae TFIC sp 08 

Denticollinae TFIC sp 01 

Aridius nodifer 

Cortinicara TFIC sp 02 

Lissotes cancroides 

Orchesia alphabetica 

Epuraea victoriensis 

Dohrnia simplex 

Platypus subgranosus 

Prionocyphon? TFIC sp 01 

Pseudomicrocara atkinsoni? 

Cryptamorpha TFIC sp 01 

Cryptamorpha victoriae? 

Aspidiphorus humeralis 

Aleocharinae TFIC sp 13 

Aleocharinae TFIC sp 14 

Aleocharinae TFIC sp 34 

Aulonothroscus elongatus 

Enhypnon tuberculatus 

FAMILY 

Anthribidae 

Byrrhidae 

Cantharidae 

Carabidae 

Carabidae 

Carabidae 

Coccinellidae 

Corylophidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Curculionidae 

Elateridae 

Latridiidae 

Latridiidae 

Lucanidae 

Melandryidae 

Nitidulidae 

Oedemeridae 

Platypodidae 

Scirtidae 

Scirtidae 

Silvanidae 

Silvanidae 

Sphindidae 

Staphylinidae 

Staphylinidae 

Staphylinidae 

Throscidae 

Zopheridae 

I 

I 
I 

I 

Large logs 

MU 

3(3) 

3(3) 

8 (18) 

6 (25) 

4 (8) 

6(19) 

3(3) 

9 (29) 

11 (56) 

3(3) 

4 (6) 

6(29) 

9 (76) 

12 (129) 

3(3) 

4(14) 

2 (2) 

7 (18) 

5(10) 

6 (8) 

7(8) 

4(9) 

4(5) 

4(5) 

4 (22) 

5 (47) 

1 (1) 

11 (133) 

3(22) 

7(66) 

6 (17) 

3 (28) 

2 (2) 

7 (19) 

4(6) 

3(3) 

2 (2) 

6 (17) 

9 (41) 

LR 

4 (8) 

6 (10) 

6(22) 

2 (2) 

4(10) 

8(27) 

1 (16) 

6(20) 

6 (18) 

3(4) 

5(16) 

8 (40) 

10 (305) 

11 (150) 

3(5) 

2 (2) 

7 (21) 

1 (1) 

6 (37) 

2 (4) 

2 (2) 

5 (10) 

5 (15) 

4(9) 

6 (16) 

11 (66) 

5(6) 

5(26) 

6 (29) 

10 (63) 

4(15) 

8 (128) 

6(9) 

4(24) 

5 (36) 

3 (62) 

2 (2) 

7(42) 

10 (25) 

Small logs 

MU LR 

4 (5) 3 (3) 

2 (4) 3 (8) 

5 (6) 3(4) 

2 (2) 

1 (1) 5 (18) 

3(3) 5(9) 

7(7) 2(4) 

10 (31) 9(15) 

12 (25) 

2 (2) 2 (3) 

4(4) 3(4) 

I 3(7) 7(24) 

8(78) 9 (149) 

7(60) 9 (201) 

- 8(9) 

I 6 (12) 3(5) 

I 1 (1) 7(20) 

4(4) 2 (3) 

6 (12) 8 (19) 

2 (2) -
1 (1) -
4(4) 1 (1) 

4(6) 6 (10) 

2 (2) 4(4) 

5 (6) 4(6) 

4(9) 3 (8) 

2 (2) 4(4) 

3(5) 5(28) 

I 1 (2) 2 (2) 

I 1 (3) 3(102) 

2 (2) 3(7) 

I 4(14) 10 (230) 

I 2 (3) 4(7) 

5 (17) 3 (8) 

1 (1) 6 (11) 

3(3) 3 (63) 

3(5) 4(6) 

3 (11) 3(15) 

8 (12) 8 (18) 

TOTAL 

14(19) 

14 (25) 

22 (50) 

10 (29) 

14 (37) 

22 (58) 

13 (30) 

34 (95) 

29 (99) 

10 (12 

16 (30) 

24 (100) 

36 (608) 

39 (540) 

14 (17) 

15 (33) 

17 (44) 

14(26) 

13(25) 

10 (14) 

10 (11) 

14 (24) 

19 (36) 

14 (20) 

19 (50) 

23 (130) 

12 (13) 

24 (192) 

12 (63) 

21 (234) 

15(41) 

25 (400) 

14(21) 

19 (68) 

16 (54) 

12 (131) 

11 (15) 

19 (85) 

35 (96) 
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6.3.2 Species richness 

6.3.2.1 Species richness - standardised by log surface area 

Species richness oflarge and small diameter logs did not differ significantly (F 1,55 = 2.9, 

p = 0.09) when comparing the adjusted richness of small diameter logs standardised by 

surface area ( 41.4 ± 17 .1 species per log) with species richness of large diameter logs 

(~33.5 ± 17.9 species per log). Note, however that the average surface area of small 

diameter logs (adjusted) (7 .3 ± 2.5m2 surface area) was still significantly less (F 1,59 = 

20.7, p < 0.001) than average surface area oflarge diameter logs (10.5 ± 2.4 m2
). 

6.3.2.2 Cumulative species richness - log volumes and surface area 

When cumulative species richness oflogs grouped by log size/forest type treatments 

was compared based on equal wood volumes, the small diameter logs show a trend for 

supporting more species than large diameter logs (Figure 6.2a). This trend was similar, 

but less distinct when comparing species richness based on equal surface areas (Figure 

6.2b). 
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Figure 6.2. Cumulative number of saproxylic beetle species plotted against increasing a) sampled log 
volume and b) sampled surface area, grouped by log size/forest type treatments 
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6.3.2.3 Cumulative species richness- number of logs 

In terms of comparing species richness based on equal numbers oflogs, large diameter 

logs clearly hosted more species than small diameter logs, with little difference between 

forest types. This can be seen in Figure 6.2, where each point is an additional log. In 

particular, a total of207 and 213 saproxylic beetle species had emerged from 14 and 15 

large diameter logs in mature unlogged and logging regenerated forests respectively, of 

which 20 and 18 species were singletons. By contrast, 159 and 154 species emerged 15 

and 12 small diameter logs in mature unlogged and logging regenerated forests 

respectively, of which of28 and 29 species occurred as singletons. 

6.3.2.4 Estimated species richness - number of individuals 

Rarefied species richness was consistently lowest for small diameter logs in logging 

regenerated forests, whether considering all species (Figure 6.3a), obligate taxa only 

(Figure 6.3b) or facultative taxa only (Figure 6.3c). They hosted around 20 obligate 

species fewer than the other treatments. Rarefaction curves based on obligate species 

show a similar trend to curves based on all species. Small diameter logs in mature­

unlogged forests had the highest estimated species richness of facultative beetles 

(Figure 6.3c). 
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Figure 6.3 Rarefaction estimates of a) all, b) obligate and c) facultative saproxylic beetles species 
collected from logs grouped by log size/ forest type 
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6.3.3 Species diversity 

Rank abundance plots from each log size/forest type treatment (Figure 6.4) generally 

revealed numerical dominance by just a few species, with a large number of uncommon 

species, and many rare species, including a high proportion of singletons. For large 

diameter logs, species abundance distributions were similar between forest types. In the 

logging regenerated forests, the logs, irrespective oflog size, supported species that 

occurred in high abundances (> 200 individuals) (Figure 6.4, Table 6.2). Small logs in 

mature unlogged forests had the fewest abundant species. 
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(.) 
c 
co 

"O 
c 
::J 
.0 
<( 

large-log/mature-unlogged 

small-log/mature-unlogged 

large-log/logging regenerated 

small-log/logging-regenerated 

• D ... 
£:::,. 

1+-~.--~--.-~--.-~--.-lliIIIIlllilIDllllIIWIIIlllIWllIIIIIIIIIIIIIII!ImIIIIIIIIJIIIIIIC .......... .. 
21 41 61 81 101 121 141 161 181 201 

Species sequence 

Figure 6.4. Rank abundance curves of saproxylic beetles from Eucalyptus obliqua logs pooled by log­
size/forest type, collected using log emergence traps in southern Tasmania. Note that the y-axis is 
logarithmic 
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6.3.4 Beetle assemblage differences among log size/forest types 

6.3.4.1 Unconstrained analyses 

According to the PERMANOV A results, beetle assemblages oflogs within mature 

unlogged forest sites differed significantly from those in the logging regenerated forest 

sites (Table 6.3). This can be seen in the NMS ordination plot, which shows a distinct, if 

incomplete, separation oflogs along axis 2 (Figures 6.5a,b ). Ancytallia tarsalis 

(Curculionidae) andAulonothroscus elongatus (Throscidae) correlated with the 

ordination (r2 > 0.20), in the direction along axis 2, which is towards logs in mature 

unlogged forests. 

Beetle assemblages differed significantly between large and small diameter logs (Table 

6.3, see Figure 6.5a along axis 1). Enneaphyllus aeneipennis (Cerambycidae) correlated 

with the ordination (r2 > 0.20) towards the cluster of small diameter logs; and 

Prionocyphon? TFIC sp 01 (Scirtidae), Aleocharinae TFIC sp 13 (Staphylinidae), and 

Decilaus striatus (Curculionidae) correlated towards the cluster of large diameter logs. 

Note, that the separation oflogs by forest type (squares versus triangle symbols) seemed 

greater than their separation by size (closed versus open symbols), as indicated by the 

overlap of log treatments (Figures 6.5a,b). 

While it is possible that the assemblage differences between large and small diameter 

logs based on log transformed species abundance may be due to confounding effect of 

greater sampling effort for large diameter logs, repeating the NMS ordination using 

presence/absence data revealed a similar pattern. Large and small diameter logs 

seperated along Axis 3 (closed versus open symbols, Figure 6.6b ). However, when 

based on presence/absence data, there appears little distinction in species composition 

between logs by forest type (Figure 6.6a,b ). 

Beetle assemblages, when based on species abundance data, varied significantly among 

sites (Table 6.3), and the effect oflog size varied significantly among sites, as indicated 

by the significant site(forest type) by log size interaction (Table 6.3). 
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Table 6.3. PERMANOVA results on the basis of Bray-Curtis dissimilarities for saproxylic beetle 
assemblages (233 species) after log10(x+ 1) transformation. Used 4999 unrestricted randomised 
permutations were used. 
Source Degrees of Sum of Squares Mean Squares F-rat10 P(perm) 

Freedom 

Forest type 1.013 1 013 1 731 0.0326 

S1te(Forest type) 8 4.6818 0.5852 2.1481 0.0001 

Log size 0.5336 0.5336 1.5714 0.0337 

Forest type x Log size 0.3382 0.3382 0.9959 0.4585 

S1te(Forest type) x Log size 8 2 7166 0.3396 1.2464 0 0058 

Residual 36* 10.8975 02724 

Total 59 20 1807 

* Modified residual degrees of freedom because data from four logs were excluded from analyses. 

6.3.4.2 Constrained analyses 

As shown in the CAP ordination, beetle assemblage structure significantly related to 

forest type, with a squared canonical correlation of 82 
= 0.68 (p = 0.0001 ). It also 

significantly related to log size (82 = 0.5, p = 0.0015) (Table 6.4). Graphing the logs on 

the canonical axes corresponding to the two main effects showed that components of the 

assemblages were distinct among the four treatments (Figure 6. 7). Logs grouped by 

forest type had a lower misclassification error than log size, as indicated by the leave­

one-out allocation success diagnostic (Table 6.4). This implies that forest type has a 

greater effect on assemblage structure than does log size. 

In terms of the joint plot of vectors of species correlating (J r J > 0.35) with the canonical 

axes for forest type and log size, this showed no species were correlating in the direction 

of small diameter (Figure 6.8) 

Table 6.4. Results of two canonical analyses of principal coordinates (CAP), examining the effects of 
forest type, and oflog size. %Var =percentage of the total variation explained by the first m principal 
coordinate axes. Allocation success =percentage of points correctly allocated into each group. 82 = 
squared canonical correlations. 

Factor m %Var --------Allocation success (% rl p 

Grou12 1 Grou12 2 Total 

Forest type 18 82.14 88 89 (logging-regenerated) 79.31 (mature-unlogged) 83.93 0.68 0.0001 
Loa size 13 48.21 68.97 (larael 77.78 !smalll 73.21 0.50 0.0015 
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6.3.5 Species habitat preferences 

Species habitat preferences were investigated using Indicator Species Analysis. Many of 

these species with a habitat preference (IndVal >25, p <0.05) had also correlated (I r I > 

0.30) with the canonical discriminant axis from CAP of the same treatment, and so this 

data is also presented with the corresponding species. 

By combining the results of the five indicator species analysis for i) forest type, ii) log 

size, iii) log size within mature unlogged forest, iv) log size within logging regenerated 

forest and v) site (Table 6.5 - 6.8), as described in Section 6.2.6, as well as checking the 

raw species abundance scores by treatment (Table 6.2), species were grouped into one 

of five categories. Raw species abundance scores by treatment are listed in Appendix 

6.1 and species with an lndVal > 25, p < 0.05 are marked in bold. The five categories 

are 1) specialists of a forest type (irrespective oflog size); 2) specialists of a log size 

class (irrespective of forest type); 3) specialists of a certain forest type (irrespective of 

log size) while being specialists oflarge diameter logs in the other forest type; 4) 

specialists oflarge diameter logs within a certain'forest type only; 5) and species that 

showed a strong affinity with a particular site. 

6.3.5.1 Specialist of a forest type 

Four species were indicative of mature unlogged forests, two of which were also 

indicative oflarge diameter logs: Ancyttalia tarsalis (Curculionidae) and Chylnus ater 

(Carabidae). 

Ancytallia tarsalis was indicative of the mature unlogged forests (Table 6.5), and this 

was indicative oflarge diameter logs when individuals were present in logging 

regenerated forests (Table 6.7) - found in six of the 15 large diameter logs in logging 

regenerated forests but absent in all small diameter logs in logging regenerated forests 

(Table 6.2). Chylnus ater (Carabidae) was also indicative of mature unlogged forest, 

and was collected from two large diameter logs in logging regenerated forest {Table 

6.2). 

Six species were indicative oflogging regenerated forests (Table 6.5). Of which, 

Cryptamorpha TFIC sp 01 (Silvanidae), Mandalotus muscivorus (Curculionidae), 
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Aleocharinae TFIC sp 13 (Staphylinidae) and Decilaus lateralis (Curculionidae) were 

common across all logging regenerated sites (See Appendix 6.1). Decilaus lateralis, 

which was also indicative oflarge diameter logs was in six large diameter logs in 

mature unlogged forests, and absent on all six small diameter logs in mature unlogged 

forest (Table 6.2, Appendix 6.1). Cryptamorpha TFIC sp OJ was also indicative of site 

E (Table 6.8). 

Table 6.5. Combined results oflndicator species analysis for the effect of forest type and corresponding 
correlation analyses based on canonical axis derived from CAP analysis for forest type. Species in bold 
h d 1 h d fi fi rti 1 1 . 1 T bl 6 5 a a so s owe pre erences or a pa cu ar og size c ass - see a e 

Species name Family Indicator species analysis Correlation coefficient 

lndVal p-value 
with canonical axis for 

•~·~~••u~a 

""C Chylnus ater Carab1dae 25.6 0.031 0.2279 ., 
Cl 
Cl Ancyttalia tarsa/is Curculiomdae 64 0.001 0.6113 
~Si 
:::J ~ Ex1thws capucmus Curcuhomdae 29.6 0032 0 3221 
~ .e 
:::J Myoca/Jes pygmaeus Curcuhomdae 31.7 0 018 0.3463 
Oi 
::! 

1ii Q{y,Qtamor{}_ha TFIC SQ 01 Cryptophag1dae 56.7 0.002 -0 5342 
~ Decilaus lateralis Curculionidae 274 0.041 -0 2518 

O>.E 
C""C Exeiratus TFIC sp 01 Curcullonidae 30 5 0.022 -0 4069 - ., O>-
Cl"' Mandalotus musc1vorus Curcullonidae 48.5 0.001 -0.4901 o~ __, ., 

c 
~ A/eocharinae TFJC sp 13 Staphylimdae 36.4 0.01 -0.3253 

~ Startes CHANDLER 'Tasmania 1' Staphylinidae Pselaphmae 27.9 0.009 -0.3791 

6.3.5.2 Specialist of a log size class 

No species were indicative of small diameter logs (Table 6.6). By contrast, nine species 

were indicative oflarge diameter logs. 

When analysing only data from the mature unlogged forests, 9 species were indicative 

oflarge diameter logs and none for small diameter logs (Table 6. 7). This included 

Lissotes subcaeruleus, which was also indicative of site M (Table 6.8). 

When only analysing data from the logging regenerated forests, 3 species were 

indicative of large diameter logs and none for small diameter logs (Table 6. 7). This 

included Ancytallia tarsalis, which when analysing all data combined, was indicative of 

the mature unlogged forest (Table 6.6). 
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Table 6.6. Combined results of oflndicator species analysis for the effect oflog size and corresponding 
correlation analyses based on canonical axis derived from CAP analysis for log size. Species in bold also 
showed preferences for a particular forest type - see Table 6.5. Species abundance data for each species is 
listed in Appendix 6.1 

Species name Family Indicator species analysis Correlation coefficient 

lndVal p value 
with canonical axis for 

log size 

Chylnus ater Carab1dae 25 6 0.038 -0 3435 
Cl) Trech1morphus diemenens1s Carab1dae 37.7 0.047 -0 3545 Ol 

..Q 
Ancyttalia tarsa/is Curcuhorndae 43 0 039 -0.3315-~ 

"* 
Deci/aus lateralis Curcuhorndae 29 9 0 012 -0.2802 E 

"' Tych1mae TFIC sp 08 Curcuhorndae -0 28 0.011 -0.3743 
Q) 

~ Orches1a alphabetica Melandry1dae 47.9 0.01 -0.4697 
"' --' Dohrma simplex Oedemendae 42.4 0.025 -0 3976 

Platypus subgranosus Platypodmae 25.9 0.043 -0 1742 

Aulonothroscus elongatus Throsc1dae 35.7 0.048 -0 4415 

Table 6.7. Results of indicator species analyses for the effect oflog size within a particular forest type. 
Species in bold also showed preference to either a certain forest type (see Table 6.5), or log size class 
irrespective of forest type - see Table 6.6. Species abundance data for each species is listed in Appendix 
6.1 

Species name Family lndVal p -value 

Large diameter logs in mature unlogged forest 

Chy/nus ater Carab1dae 39.9 0032 
Deci/aus nigronotatus Curcuhorndae 59 8 0044 

Dm1chus terreus Curcuhorndae 28.6 0.043 

Tychiinae TFIC sp 08 Curcuhorndae 448 0.013 

Austronemadus TFIC sp 03 Le1od1dae 28.6 0 048 

L1ssotes subcaeruleus Lucarndae 28.6 0 036 

Melandry1dae TFIC sp 04 Melandry1dae 28.6 0 045 

Dohrnia simplex Oedemendae 69 0 002 

Pnonocyphon? TFIC sp 01 Sc1rt1dae 48 0 01 

Large diameter logs m logging regenerated forest 

Ancyttalia tarsalis Curcuhorndae 40 0.023 
Dent1col/inae TFIC sp 01 Elatendae 33.3 0.051 

Orchesia alphabetica Melandry1dae 64 7 0 005 

6.3.5.3 Specialists of a particular study site 

Twenty-seven species were indicative of a particular study site (IndVal >= 40, 

p <= 0.01). Species and their associated sites are listed in Table 6.8. 
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Table 6.8 Results of indicator species analyses for the effect of site. Site codes refer to sites in Figure 2.1. 
Underlined species also showed preference to a certain forest type - see Table 6.5. Species abundance 
data for each species is listed in Appendix 6.1 

SITE Species name Fam1lty lndVal p- value 

E Heteromast1x mgnpes Canthandae 98.8 0.001 
Amblytelus TFIC sp 01 Carab1dae 66.7 0.001 
Dec1/aus mgronotatus Curcuhomdae 51.4 0 001 
Dryophthorus TF/C sp 02 Curcuhomdae 42.8 0012 
Metnorhynchus ?erythropterus Lycidae 41 2 0.019 
Sc1rt1dae YEE sp 14 Sc1rt1dae 43 7 0.014 
Cwtamorgha TF/C sg 01 Silvamdae 73.9 0.001 
Anoty/us TF/C sp 03 Staphylmidae 50 0 009 
Pselaphau/ax CHANDLER 'Tasmania 1 Staphyhmdae - Pselaphmae 83.3 0 001 
Euplectops CHANDLER 'Tasmania 1' Staphylimdae - Pselaphmae 66 7 0 001 
Paftmbo/us v1ctonae Staphylimdae - Pselaphmae 583 0.001 
Rybax1s vanab1/ts Staphyhnidae - Pselaphmae 80 3 0.001 
f?yba!51.S pa!:!!!dens _______________ ________ S~pl}_y!!_n~d_~E!-=:.£'~,e,.@p_f!ii:!?El-- - ___ 100 0.001 -------

M Ped1/ophorus mult1color Byrrhidae 50 0 008 
465 0005 ______ __f:,1ssof'!§..2..f!Pcaeru~y_1?__ ____________ Luc"!!lLd?_El__ _____ _ --------------------

P01 Enneaphyllus aene1penms Cerambyc1dae 

___ _ _And11!~_9sfatu_~--- ___ --------- __ ----------'=~!!l_~!l_c:I_?~----
R Anthnb1dae TFIC sp 02 

Aporocera /agopus 

Anthribidae 

Chrysomehdae 

50 0.006 

50 0.002 - - -- --------- - ---- ---------
50 0.007 
50 0.005 

___ Brtcop1a_r;oe/io1des --------------- _____ !.El_neErl().!!l_d~--- ________ '!Q_Z.. __ _ __ Q,_Q! __ _ 
S M1crochaetes scopanus Byrrh1dae 40 0.012 

----~leocha1:mae .IE.!f_§p_ 2l:I_ ___ ---------~~yhmdae __ 61.3 0 001 --------
WR Manda/otus sp nr vac1/lans Curcuhomdae 40 0 011 

Notobrachypterus TFIC sp 01 N1t1duhdae 80 0 001 
Staphylmidae YEE sp 02 Staphyhmdae 45.7 0.003 

Tenebnomdae 40 0.017 -------- - ------- ----
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6.4 DISCUSSION 

This study clearly showed that the assemblage compositions of saproxylic beetles from 

emerging logs differ significantly for each of the effects of forest type, log diameter and 

site. This chapter discusses these results, while the long term implications of this for 

conservation and management of saproxylic beetles in production forests are discussed 

in Chapter 7. 

6.4.1 CBS logging regeneration versus mature unlogged forests 

This study demonstrates that many saproxylic beetle species can successfully colonise 

Eucalyptus obliqua logging debris left from CBS silviculture after 20-30 years of forest 

regeneration. This was indicated by similar numbers of species emergipg from logs in 

the logging regenerated forest to those in mature unlogged forests though. 

However, the assemblages of beetle emerging from logs within the logging regenerated 

forests differed significantly to those within the mature unlogged forest, with some 

species showing a preference for a specific forest type. To some extent, differences in 

assemblage composition are not surprising as there are many environmental differences 

between these forest types that could affect their suitability for particular individual 

species. These differences can be grouped into factors concerning current forest 

conditions, such as forest age and succession; and factors concerning, the history of the 

decomposing log in relation to the effects of burnt wood, and insect and fungal 

successional processes. It is likely that a combination of factors is responsible for the 

resulting differences in assemblage compositions. 

6.4.1.1 The effects of forest succession and age 

In this study, the logging regenerated forests are considerably younger than mature 

unlogged forests with a difference in 'time since disturbance' of over 35 years. Not only 

are these forests of different successional stages, which is also reflected by different 

vascular plant floristics (see Section 2.9.1, Hickey 1994), but logging-regenerated 

forests are also more open. Average canopy cover in the logging regenerated sites range 

between 48.1 and 65.3% compared to 51.8 and 85.9% in the mature unlogged forest 

sites (Section 2.9.1). It is unlikely that most of the species within the logging 
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regenerated forest are still responding to the initial clearfell disturbance event. Various 

studies on the recovery of arthropods following fire show total recovery in less than six 

years (Collett 1999; Coy 1994; Michaels & McQuillan 1995; Oliver et al. 2000; York 

1994, 1999b). 

Various studies overseas have demonstrated that dead wood dependent fauna vary in 

relation to forest successional age. For example, Setala & Marshall (1994) demonstrated 

that Collembola inhabiting log stumps in Canadian Douglas Fir forest varied in relation 

to the surrounding forest successional age. More recently, Hammond et al. (2004) 

documented the succession of saproxylic beetle assemblage variation in native boreal 

aspen forests of different stand ages in western Canada; and similarly Simila et al. 

(2002) did so for sub-xeric pine forests in eastern Finland. Moretti & Barbalat (2004) 

provide a detailed description ofxylophagous saproxylic beetle successions relative to 

wildfire in deciduous forests in Switzerland. However, it is still unclear whether such 

patterns relate to the successional age of the forest per se, to the microclimatic 

conditions of the forest (Moretti & Barbalat 2004), to log microclimate, or to a 

combination of these factors. 

Species that were specific to the logging regenerated forests in this study may represent 

a fauna adapted to early successional forest, and/or possibly have a higher tolerance to 

withstanding greater insolation, and greater temperature and moisture extremes. The 

numerically dominant species Cryptamorpha TFIC sp 01 (Silvanidae) emerged in 

greater numbers and frequency from logs in the logging regenerated forests than the 

mature unlogged forest, and further was also more prevalent in the small diameter logs 

in the logging regenerated forest. This species has often been observed flying during 

sunny days in summer (pers. obs). Conversely, the apparent specialists of mature 

unlogged forests are likely to be shade-tolerant, especially for the flightless species (e.g. 

Meggs & Munks 2003; Moretti & Barbalat 2004). 

However, given the dearth of life history information of the majority of species 

collected, their limited sample size, and the relatively limited area in which this study 

was conducted, it is not possible to confidently define an individual species habitat 

preference. For example, it is unknown why the flightless species Mandalotus 

148 



Chapter 6 - Effects of cleaifell harvesting on saproxylic beetles 

muscivorus, Decilaus nr striatuslsubfasciatus and D. nigronotatus were either indicative 

or at least more abundant in logging regeneration. Though, for some species, the data 

presented, limited as it is, does support preconceived habitat requirements. For example, 

Lissotes subcaeruleus had only been collected from mature unlogged forests at site M. 

This species is a flightless obligate saproxylic species that is considered a mature forest 

specialist due to its sensitivity to environmental conditions typical of older forests, such 

as dead wood in shaded, moist forest, and is highly sensitive to high light levels 

(Bomemissza pers. comm). In this study, this species remained absent from logged 

forests after 20 years of regeneration despite sites being in close vicinity of less than one 

hundred metres away from source populations. 

6.4.1.2 The effects of clearfelling on log successional processes 

A major difference in dead wood types between forest types is that in the logging 

regenerated forests, logs are subject to a high intensity regeneration bum where insect 

and fungal succession, and thus the decomposition processes, initially occurred under 

sun-exposed conditions. By contrast, logs in unlogged forests of a mature forest age 

would be recruited by natural causes: some by tree-fall of fire-killed trees, but many 

from rot and windfalls, and most logs would have effectively began decomposition and 

succession within relatively closed forest conditions. 

It is highly probable that decomposing logs within mature unlogged forests undergo 

different initial log successions from those in the logging regenerated forests. Burnt 

wood is likely to be favourable to certain fungi and beetles that benefit from the flush of 

nutrient and food resources after fire (Coy 1994 - fungi and bacteria; Dajoz 2000; 

Esseen et al. 1997; Penttilii & Kotiranta 2001 - beetles and fungi; Wikars 1992 - beetles; 

Wikars 2001, 2002). Studies in northern Europe have demonstrated that sun-exposed 

dead wood undergoes different colonisation of insect and fungal assemblages compared 

to dead wood occurring in shaded conditions (Buisson 1999; Jonsell et al. 1998; Kaila 

et al. 1997; Lindhe 2004; Martikainen 2001; Ranius & Jansson 2000; Sverdrup­

Thygeson & Ims 2002- saproxylic beetles in stags; Lindhe et al. 2004 - wood decay 

fungi in logs and high stumps). In wet eucalypt forests that have evolved with wildfire, 

it is probably a combination of both burnt and open forest conditions that drive the 

colonisation of early successional specialists. This has been demonstrated in a Swedish 
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experimental field study (Wikars , 2002), which compared burnt and unburnt spruce and 

birch logs in burnt and open unburnt forests. 

Because the present study has only be been conducted at one point in time, it remains 

unclear as to whether past log successions can influence the occurrence of saproxylic 

beetle species decades after log decomposition was initiated. However, initial insect and 

fungus colonisers of dead wood both theoretically and empirically determine the 

subsequent succession of wood decay fungi (Boddy 2001; Rayner & Boddy 1988), 

arthropods (Swift & Boddy 1984), possible rotten wood types (see Section 4.4.4); and 

saproxylic beetles can be intimately associated with these factors (Chapter 5, e.g. Kaila 

et al. 1994). 

6.4.2 Large versus small diameter logs 

This study was particularly concerned with understanding the specific ecological roles 

oflarge diameter logs at maintaining saproxylic beetle biodiversity. In summary, this 

study showed that although small diameter logs showed an indication that they might 

support more species on the basis of equal surface area and/or equal log volumes, large 

diameter logs irrespective of forest type supported distinct assemblages of saproxylic 

beetles, with species showing a greater occurrence for small diameter logs. In addition, 

in the logging regenerated forest, there was a lack of apparent mature forest specialists 

in small diameter logs, yet such species were present in large diameter logs. 

6.4.2.1 Species richness and diversity in relation to log diameter class 

It is often considered that large diameter logs host higher number of species than small 

diameter logs (e.g. Kappes & Topp 2004; Kleinevoss et al. 1996; Kolstrom & 

Lumatjarvi 2000). In this study, species richness varied depending on whether trap 

samples were compared based on standardised surface area (Section 6.3.2.1), equal 

surface area and volume (Section 6.3.2.2), equal numbers oflogs (Section 6.3.3.3), or 

equal numbers of individuals collected (Section 6.3.3.4). It may be more important, 

however, to consider the ecological implications of these results. Combining the results 

of these analyses suggests that species richness increases more clearly with log surface 

area than with log volume, and increases more clearly with number of individual logs 

per se than with log volume. Higher animal activity occurring on the outer layers of the 
150 



Chapter 6 - Effects of clearfell harvesting on saproxylic beetles 

log is one possible explanation for this result, as has been suggested by Kappes & Topp 

(2004), who sampled beetles emerging from beech wood in a German forest. The 

litter/surface layer was found to be a productive microhabitat for saproxlic beetle 

species associated decomposing Eucalyptus obliqua logs (see Section 3.3.2.2 and 

Section 5.3.2). Such higher productivity may relate to the rich and diverse food types, 

such as fungi (Bader et al. 1995; Niemela et al. 1995), cryptogams (Andersson & 

Hyttebom 1991; Kruys et al. 1999; Turner 2003), bacteria and micro- and 

macroarthropods colonising and sheltering on the log surface, as well as this being an 

easily accessible microhabitat type for colonisers. 

The findings also indicate that small diameter logs show a trend for supporting more 

species than large diameter logs. This trend, however, should be interpreted with 

caution. rt is unknown as to what point species saturation point occurs for small 

diameter logs. Moreover, increasing the amount (volume, surface area) or number of 

small diameter logs may still not support those species that were indicative of large 

diameter logs. 

6.4.2.2 Large diameter logs support distinct suites of species 

For species indicative oflarge diameter, logs, there is a dearth of information of their 

life-histories, but it is likely that their habitat requirements vary among species. For 

some species though, log size preference can be explained by their apparent association 

for certain log decomposition processes strongly associated with a log diameter class. 

For example, members of the Scirtidae family, particularly Prionocyphon? TFIC sp OJ, 

are associated with the wet cracks, which commonly occur in large diameter logs. 

Dohrnia simplex (Oedemeridae), which was indicative oflarge diameter logs, is 

associated with red-brown blocky fibrous and discoloured wood rots, which are rots 

more prevalent in large diameter logs. 

Based on the results of Chapter 5, it was expected that the four species Cossonus 

simsoni (Curculionidae), Prostomis atkinsoni (Prostomidae), Dryophthorus TFIC sp 01 

(Curculionidae) and Pycnomerus TFIC sp 02 (Zopheridae), which are associated with 

inner brown rot would have exhibited a preference for large diameter logs based on this 

association (discussed in Section 5.4). They were however not collected in sufficient 
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numbers to confirm or reject this hypothesis. The low sample size is likely to be an 

artefact of sampling by emergence traps. From destructive sampling, they were among 

the most common species found, and field and laboratory observations suggest that 

these species have low emergence rates (see Section 5.4). Thus, the lack of observed 

habitat preference possibly reflects the limitations associated with using log emergence 

traps to sample beetles with low emergence rates or long development times (see 

Section 3.4.4). 

Interestingly, no species were indicative of small diameter logs. A similar phenomenon 

was found by Hammond et al. (2004) for Populus spp. snags of different diameters in 

boreal aspen forests in Canada. It should be noted that while Enneaphyllus aeneipennis 

(Cerambycidae) was expected to be indicative of small diameter logs as it is associated 

with white outer heartwood rots (Section 5.3.3), which are rots markedly more common 

in small diameter logs (Section 4.3.2), it had only emerged from small diameter logs. In 

general though, one may conclude that because of the lion-specificity towards small 

diameter E. obliqua decomposing logs, these logs support beetles with more general 

habitat requirements. That is, rather than supporting its own specific fauna or certain 

species at the same population levels as those found in large diameter logs. This implies 

that although small diameter logs function as important habitat for saproxylic beetles, 

retaining them alone as a means to mitigate the loss oflarge diameter logs might not 

cater for the conservation of species indicative oflarge diameter logs. 

6.4.2.3 Large diameter logs as legacy habitats - spatial and temporal stepping stones 

in disturbed forests 

Large diameter logs, and not small diameter logs, in the logging regenerated forests 

shared two species which were otherwise indicative of mature unlogged forest, 

irrespective oflog size. This could suggest that large diameter logs represent a similar 

habitat type, irrespective of forest succession or age (least after 20 years of forest 

regeneration) to some species. The flightless carabid predator Chylnus ater is 

considered a mature forest specialist (Darlington 1961; Michaels 1999; Michaels & 

McQuillan 1995). It showed a strong preference for mature-unlogged forests, 

particularly large diameter logs, but was also found in large diameter logs within the 

logging regenerated forest. Similarly, Ancytallia tarsalis showed a strong association 
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with mature-unlogged forests, occurring in 80% oflogs sampled within mature 

unlogged forests sampled. When present in the logging regenerated sites though, it only 

occurred in large diameter logs. Conversely, large diameter logs in mature unlogged 

forests shared similar species (e.g. Aleocharinae TFIC sp 13 and Decilaus lateralis) to 

those indicative oflogs in logging regenerated forest, irrespective oflog size. However, 

no explanation can be given for this phenomemon. 

Large diameter logs generally hold more moisture than smaller sized logs (Amaranthus 

et al. 1989; Harmon et al. 1986), have lower decay rates (Harmon et al. 1986 ; 

Mackensen et al. 2003; Stone et al. 1998), can be less affected by fire damage 

(Slijepcevic 2001), and have a greater potential for internal decay to be present at the 

time of their recruitment (see Section 4.4.2.1). These factors, combined with their sheer 

size infers that large diameter logs potentially provide a greater buffer against 

desiccation and extreme local climatic (temperature, light and moisture) conditions, 

which are typical of recently clearfelled forests (Florence 1996). Thus, large diameter 

logs may provide a more stable microclimate irrespective of the external forest 

conditions. This would be important for species with larvae that are sensitive to these 

extremes. Topp (1994) shows that the larval stages of many forest floor dwelling beetles 

are susceptible to desiccation and have higher survival rates in saturated habitats. 

The presence of apparent mature forest specialist in large diameter logs within logging 

regenerated forests further support the idea that log microclimate is an important 

determining factor of habitat occupancy of species, in addition to the forest condition or 

forest age per se. If so, then this suggests that large diameter logs may function as 

important spatial or temporal stepping stones (see Bennett 1999) in early to mid 

successional forests where open forest conditions prevail, especially for species limited 

by their requirements for stable (micro) climatic conditions, irrespective if such 

conditions are provided by the log, or the forest. In other words, large diameter logs 

may provide suitable habitat for species to disperse through a regenerating forest, or 

persist in one until such a stage as tree-canopy closure. However, without quantitative 

data on log temperature or moisture variability in different sized logs under different 

forest conditions, nor information on species developmental responses to fluctuating 

microclimatic conditions, this remains a hypothesis warranting further investigation. 

153 



Chapter 6 - Effects of cleaifell harvesting on saproxylic beetles 

Saproxylic beetle assemblages were more similar among logs within sites (within 50m2 

study plot) than those between sites, irrespective of forest type or log size (within this 

1 okm2 range). This possibly indicates a founder effect during colonisation events, as has 

been suggested from Swedish genetic studies on the saproxylic beetle Bolitophagus 

reticulates (e.g. Jonsson et al. 2003; cf. Knutsen et al. 2000). Wikars (2002), when 

comparing burnt and unbumt logs at three burnt sites, also found assemblage response 

to site effects more stronger than the effect of dead wood type, further implying a 

founder effect for some species. 

6.5 CONCLUSION 

The results of this study showed that many saproxylic beetle species could successfully 

colonise Eucalyptus obliqua logging debris after 20-30 years of forest regeneration in 

wet eucalypt forests. However, assemblage composition differed significantly from that 

of mature unlogged forest. There are many interrelated differences between 20-30 year 

old CBS disturbed and more mature wildfire disturbed forest stands that may explained 

this result. Viewing the forest as a regenerating system in which forest successional 

processes operate, the differences between forest types can be grouped into those 

relating to current conditions, and those relating to past conditions. The present study, 

however, reflects a snap-shot approach. As the biology and habitat requirements of most 

species collected in this study are unknown, the extent to which current and historical 

factors (relating to log decomposition processes), influence their habitat occupancy is 

unknown. 

This study clearly showed that large diameter logs play a specific ecological role, 

different from that of small diameter logs. Not only were different saproxylic beetle 

assemblages supported to that of small diameter logs, but such logs when present within 

logging regenerated forest hosted some apparent mature forest/ or stable microclimate 

specialists that remained to be absent from adjacent small diameter logs. Thus 

indicating that large diameter logs could be important in providing continuity of habitat 

for the re-establishment of certain species (such as mature forest specialists/ or stable 

microclimate specialists) following stand level disturbances, whether indicated by 

logging or by wildfire. 
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6.6 APPENDICES 
Appendix 6.1 Taxanomic list of saproxylic beetles collected from 56 Eucalyptus obliqua logs in in wet eucalypt forest in southern Tasmania using emergence trappmg. The Number 
oflogs in which species were present in, and the total number of Individuals collected [N(I)] is listed for each site by log size (SITECODE.LOGSIZE) treatment. Site codes E, S, W, 
PRI, PR2, M, POI, P02, R, and WR refer to sites in Figure 2.1. Note, sites are grouped by forest type. Log size: L =large diameter logs, S =small diameter logs. Three logs were 
sampled for each site by log size treatment. Though, for W.S group, data from only one log was analysed. For S.S group, data from only two logs were analysed, and for WR.L 
group, data from only two logs were sampled. See section 6.2.2 for explanation. Singletons have been excluded from the list. Species marked in bold were either indicative of of a 
forest type, log size, log size within forest type, or site. Species are listed in taxanomic order. 
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LOGGING REGENERATED FOREST SITES MATURE UNLOGGED FOREST SITES 
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EL ES S L S S W L W S PR1 L PR1 S PR2L PR2S ML MS P01L P01 S P02L P02 S R.L RS WRL WRS 

Scydmaenidae 

scydmaenidae 

Scydmaemdae TFIC sp 07 

Scydmaemdae TFIC sp 10 

Scydmaenidae Scydmaemdae TFIC sp 11 

scydmaenicia-e Scydmaemdae YEE Sjjx - -
--Staphylmlciae ... -AleochannaeTFICsp o{ 

Staphyhnidae- - - Aieochaniiae TFIC sp 04 

-staphyhnidae - -- Ateochaniiae TFIC sp ... 10 

Staphylinidae Aleocharinae TFIC sp 13 

Staphyhnidae Aleocharmae TFIC sp 14 

Sta'PtiYim1dae Aleochannae TFIC sii15-
-Staphyhnidae... Afeochannae TFIC sp 26 

Staphyhmdae Aleocharmae TFIC sp 29 

Staphyhrndae Aleochannae TFIC sp 33 

Staphyhniciae-- - Aleociiannae-iFIC sp 34 

Staphyhmdae -- -Aleochannae TFIC sp 35 
- -- --

Staphyl1nidae Anabax1s CHANDLER 'Type 1' 
Staphytinidae Anotylus TFIC sp 03 

Staphyhnidae Anotylus TFIC sp 04 

Stap_hyhnida~ A_u[axus fHANDL,E~ 'Tasmania 1' 
Staphyhnidae Baeocera TFIC sp 01 

--stap-hyhnidae... --- ... c"hatcopiectus depressus 

--1-

1(4) 

0(-) 

2(2) 

2(4)-

1(if-
0(-) 

0(-) 

2(14) 

2(2) 

0(-) 

1(1) 

0(-) 

0(-) 

o(:) 

0(-) 

214) 
1(1) 

1(1) 
0(-) 
2(3) 

0(-) 

0(-) 

o{:i 
1(1) 
1(1) 

0(-) 

0(-) 0(-) 0(-) 0(-) 0(-) 

0(-) - 0(:) -- -0(-) o(-> - ·-1(1) 

0(-) 

0(-) 

0(-) 

0(-) 

o<:> 
o(:) 

0(-) 0(-) 

-off --- o(-> --
0(-) - 0(:)-

0(-) 

0(-) 

0(-) 

0(-) -0(-) 1(-) 1(1) 0(-) 1(1) 

0(-) O(:j° - 0(-) 0(-) 0(-) 2(2) 

3(3) 0(-) 3(7) 1(19) 0(-) 0(-) 

2(33) 0(-) 2(13) 2(59) 0(-) 0(-) 

0(-) 0(-)- -- -0(-) 0(-) 0(-) 0(-) 

o(:) - - OH 0(-) 

0(-) 2(4) 2(2) 

0(-) 0(-) 0(-) 

1{2f 1(1) 2(2) 

1(1) 0(-) 0(-) 

af-i ___ o(-> 

0(-) 

0(-) 

1(1) 

0(-f 

0(-) 

0(-) 

0(-) 

0(-) 

0(-f - -
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

a,:; 

0(-) 

0(-) 

0(-) 

of-> 

0(-) 

0(-) 

0(-) 

0(-) 
1(1)-- --0(-)___ 0(-) 

o(-) ... -o(:l -- o(-) 
2(2) 0(-) ... -- 0(-) 

1(1) 

0(-) 

1(1) 

0(-) 

0(-) 

0(-) 

2(3) 0(-) 

0(-) 0(-) 

o(-) -- ... of->-
1(1) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

o<-> -o,:f -- - 1(1> 
1(1) -0(-) - ... -- 0(-) - -

1(2) 1(1) 

0(-) 1(8) 

0(-) 1(1) 

0(-)-- 0(-) 

0(-) 0(-) 

0(-j --0(-) 

a(-> o(:i -
0(-) 0(-) 

1(1) 1(1) 

2(2) 0(-) 

- -2(2)-- 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 1(1) 

0(-) 0(-) 

01-l 01-l 0(-) 01-l 01-) 01-l 0(-) 01-l or-l I o(-l 01-l 
2(6) 0(-) 

1(2) 0(-) 

- 9(-) _ 0(-) 
2(3) 0(-) 

0(-) 

0(-) 

Q(-) 
1(1) 

0(-) 0(-) 

0(-) 0(-) 

__ O[-) __ O[-) 
0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-L O[-) 
0(-) 0(-) 

0(-) 

0(-) 

O[-) 
0(-) 

o(-l I o<-> o(-l 
0(-) 

O[-) 
0(-) 

0(-) 0(-) 

_O(-) __ 0(-) 
0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) -0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

1(1) 0(-) 

0(-) 0(-) 

--o(T oH 
0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

1(1f- - - 0(-) 

o<-> a<:> 
0(-) 
0(-) 

0(-) 

1(1) 
0(-) 

0(-) 
0(-) 

0(-) 

0(-J 
0(-) 

1(1T°" 0(-) -- -01::1 - ·o(-) --o(-l o(-l 1(2) o(-) "o<-> o(-l 0(-) 

§ta_e.hyhnida~ _ ChtchesterC!f.'!NDLER 'Tasmama_ 1' I 1(1) 
Staphyhrndae Eupmella denttventns 0(-) 

0(-) - 1(1) 
0(-) 0(-) 

0(-) 

0(-) 
0(-) 

0(-) --- __ Q{-) 
0(-) 0(-) 

_ 0(-) __ __ O[-) 
0(-) 0(-) 

Q(;)_ -
0(-) 

0(-) 

O[-) 
0(-) 

2[2) .Q(-)_ ... - _ 0[-) 
1(1) 1(1) 0(-) 

0(-J 
0(-) 

Staphylmidae Eup/ectopsCHANDLER 'Tasmania 1' I 2(21 2(3) 01-1 01-l 
Staphyhnidae Fa/agna TFIC sp 04 I 0(-) 0(-) 0(-) 0(-) 

-Siaphyiinldae -- -ischnosoma-TFIC sp 01 

_ Staphyhnidae 
Staphyhnidae 

Staphytinidae 

Staphyhnidae 

Staphytimdae 
Staphyhnidae 

Staphylimdae 

Staphylmidae 

L,9gasa _Q_ljAND_~ER 'Tasmania 1' 
Macrop/ectus tasmamae 

Pa/1mbolus victoriae 

Protoolectus CHANDLER 'Tasmania 1' 

Pse/aphau/ax CHANDLER 'Tasmania1' 
Qued1us TFIC sp 04 

Rybaxis parv1dens 

Rybaxis variab1/is 

1(1) 

-·- 0(-) 
0(-) 

1(1) 0(-)- 0(-) 
- ------

1[1) O{-l ___ o.{-L 
0(-) 0(-) 0(-) 

1(1) 3(6) 0(-) 0(-) 

01-l 01-l 01-l 01-l 
2131 313) 01-l 01-l 
0(-) 1(1) 1(2) 0(-) 

3(6) 3(20) 0(-) 0(-) 

2(9) 3(23) 0(-) 1(1) 

01-1 01-1 
0(-) 0(-) 

0(-) 0(-) 

O[-) O[-) 
1(2) 0(-) 

0(-) 0(-) 

01-1 01-l 
01-l 01-l 
0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

OC-1 OC-1 
1(1) 1(1) 

0(-) 0(-) 

0(-) 1(1) 
0(-) 0(-) 

0(-) 0(-) 

01-1 01-l 
01-1 01-l 
0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

01-1 
0(-) 

0(-) -----

0[-) 
0(-) 

0(-) 

01-l 
01-l 
0(-) 

0(-) 

0(-) 

01-l 01-1 01-1 0(-) 01-) 
0(-) 0(-) 0(-) 0(-) 0(-) 

a~:'._ , o<->_ 
O[:) ____ 0(-J 
0(-) 0(-) 

0(:) 

0(-) 
1(1) 

o<-> I o(-l 0(-) 

01-l 01-1 01-l 
01-l 01-1 01-l 
0(-) 0(-) 0(-) 

0(-) 0(-) 0(-) 

0(-) 0(-) 0(-) 

O(:j-- - 0(-) 

0(-) 0(-J 
0(-) 0(-) 

0(-) 0(-) 

2121 01-l 
01-l 01-l 
1(1) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 

0(-) 

0(-) 

0(-f 
o(-)-
O(-) 

--0(-) 

0(-) 

0(-) 

0(:) 

6(-) 
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 
0(-) 

0(-) 

_0(-)_ 
0(-) 

-0!'::1 
0(-) 
1(1) 

0(-) 
0(-) 

0(-) 

0(-)_ 
0(-) 

0(-) 

01-l 
01-l 
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

- 0(-f 

0(-) 

0(-) 0(-) 

o(:f -1(1) 

0(-) 0(-) 

0(-) 

- 2(2) 

0(-) 

o(-i -o,-f --o,:) - o(-i- - ---o,-> ... 
0(-) 

--0(-j 

1(1) 

0(-) 

1(1) 

o{:> 

1(14) ... 1(2j 

o(-> - o(-> 
"i("i)- --0(-) 

o(-j o(-) 
0(-) i(1) - 0(-) -- 0(-i---

0(-) 0(-) 2(4) 1(1) 

1(1) 0(-) 1(1) 1(1) 
--0(-f - -0(-) o(:)- o(-) 

... o(-) - o(:f -1(2) ... 1(1) - -o(-) 

0(-) 0(-) 1(1) 0(-) 1(1) 

1(1) 0(-) 1(1) 0(-) 0(-) 
o(-)- --1(1)- 2(4)- --Ci<T ___ of.:j- -
o<-> o<->-- --o(-)-- o(-l - of-> 
0(-) 0(-) 0(-) 111) O(-) 
0(-) 0(-) 0(-) 0(-) 0(-) 

0(-) 

_mi 
0(-) 

0(-) 0(-) 0(-) 
- --- - -- -

0(-) __ O(:)_ _ O(:L 
0(-) 0(-) 1(8) 

0(-) 

_0.(-) --
0(-) 

-0(-) -- "6(-) - - 0(:) -- "il(-) - -·o(-) 

O[-L 
0(-) 

__ 0(-J 
0(-) 

0(-) 
0(-) 

0(-f ... 

.0(:) 
0(-) 

0(-) 

01-l 
01-l 
0(-) 

0(-) 

0(-) 

-- -- - --
0.(:) __ Q(-) 
0(-) 0(-) 

0(-) 0(-) 
0(-) 0(-) 

Q(:J --
0(-) 

0(-) 
0(-) 

0(-) 
0(-) 

0(-) 0(-)- 0(-) 0(-) 
--- -- - -- - ----- --
0(:)_ O[-) __ .O(:L _ .0.l:l. 
0(-) 0(-) 1(1) 0(-) 

0(-) 1(1) 0(-) 0(-) 

01-l 01-l 01-l 01-l 
01-l 01-l 01-l 0(-l 
0(-) 0(-) 1(1) 0(-) 

0(-) 0(-) 0(-) 0(-) 

0(-) 0(-) 0(-) 0(-) 

156 



Chapter 6 - Effects of clearfell harvesting on saproxylic beetles 

LOGGING REGENERATED FOREST SITES MATURE UNLOGGED FOREST SITES 
Family Species name 

EL ES SL SS WL ws PR1L PR1 S PR2L PR2.S ML MS P01 L P01 S P02L P02S RL RS WRL WRS 

Sago/a CHANDLER 
S!aphyhmgae.. .. _ 'Tasmania 2' 2{6) 1{1) O(-L 0(-) 0(-) - - 0(-) 0(-) 1{1) 0(-) 0(-) .. 0(-) .. 0(-) _o{-l ........ O{-L __ 1{1) -- _0(-) 1(3) -- 9i-) .. 0(-) --- 1{1L -
Staphyhmdae Sago/a rugicornis- .. 0(-) 2(3) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 

Stap .. hyhmdae -- .. siia(ih1soma "mdu1iim 1(1) 
- .... 

1(1) 0(-) 
-

0(-) 0(-) 0(-) 0(-) 0(-) 0(-) o(-) 0(-) 0(-) o(:l -a1:r .... 2(3) 
.... 

0(-) 
-

0(-) 
- 0(:) - "O{-) ......... o(-) .. 

-staphylimdae 
.... 

Sepedoph1/us TFl .. C sp 01 0(-) 0(-) 0(-) 
.... 

0(-) a<-r - -a-(-j 0(-f 0(-) 0(-) 0(-) 2(3j ......... 
2(8) ci"{:) 

.. .... 
1(1i----- 0(-) 0(-) 

.. .. 1(1_) __ "T(1f --;i"(4)-- o{-) 
..... - s1a{)hy11ii1dae ANIC 88-

- -- - - -- - - --- -- - - -- -- ... ..... --- --- ... ----- - -
Staoh•hmdae 0088 0(-) 1(1) 1(4) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) Q(-) 0(-) 0(-) 0(-) 0(-) 2(2) 1(2) 2(3) 0(-) 
Staphylinidae Staphylinidae YEE sp 02 0(-) 0(-) 0(-) 1(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(2) 2(2) 

Staphyhmdae Slaphylinidae YEE sp 63 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(2) 

staphylimdae Slaphylmmae TFic sp 10 1(1) 1(i)" 0(-) 0(-) 0(-)" .... 0(-) 0(-) 
...... 

1(1) 0(-) 
.. .... 

0(-) 0(-) 0(-) 
--

0(-J 0(-) 0(-f ...... 0() -oc-f .. -0(-) .. --0(-) .... 
"(f(:) 

.. .. 

Startes CHANDLER 
Staohvlimdae Tasmama 1' 213) 213) 116) 212) 01-1 111) 01-l 01-l 01-1 01-l 0(-1 OH 01-1 01-1 0(-1 01-1 0(-1 1111 0(-1 01-1 
Staphyhmdae Tasmanityrus newtoni 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 

---- ------- --waslipool CHANDLER -- ...... ----- .... 
----~- - - - ---- - - --- - -- --- - -- ---

Stap~yj1mga~- 'Tasmania 1' 0(-) 0(-l 0(-) 1{2) .... _0(-l.. 0(-) 0(-) 0(-) 0(-) Ol:J .... .. 2(3) .. 0(-) O{-) - O{-) 0(-) 0(-) 1(1) - 2HJ - 9(-L --- O(:L .. 
Lucamdae L1sSotes c8ncro1des 3(10) 1(3) 1(1) 1(1) 1(2) 0(-) 1(3) 0(-) 0(-) 2(2) 0(-) 0(-) 1(2) 1(1) 0(-) 1(1) 2(2) 1(1) 1(18) 2(3) 

Lucan1dae 
- Lissoles curv1c0rn1s 0(-) 0(-) "o(-) 0(-) 0(-) 0(-) 0(-) 0(-) 3(6) 0(-) -6(-) 0(-) 0(-) .. "1"(1j-- -

1(3) -- 0(-) o(-) -- 1(5) -0(-) 
.... o(T .. 

Lucanidae Lissotes subcaeruleus 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 3(16) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 

Lucamdae Syndesus cornulus 2(8) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 2(4) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 1(1) 

Ciambi'dae- .. ciambus borner111ssza1 
...... 

2(6) 0(-) 
.. .... 

1(1) 
--

0(-) o-(-) 
.... 

o(:r- .. 1(1) 0(-) 0(-) 0(-) 0(-) 
- .. 

0(-) 0(-) 0(-) 1(1) o(-r .... o(-) "6(-)- ..... 1(2) - -- -- 0(-) 

c1amii1Cia8 .. .. - "spiiaerolhorax 1asmani 1(1) 0(-) 
.... 

0(-) "i"(T 1(1) 0(-) -- -- 0(-) ---- a(:)-- -- - 0(-) 0(-) 0(-) 0(-) 
.... 

0(-) 0(-) o(:l o{-) 
..... 

1(1) O(:) .. o(:j .. .. - f(1) 

Prionocyphon? TFIC sp 
Scirtidae 01 31101 2(103 2171 1111 21201 01-1 21211 1(41 21111 01-l 2131 01-1 1131 01-1 3(421 1131 2(551 01-1 1(51 01-1 
Sc1rlidae Pseudom1crocara alkmsoni? 0(-) 2(5) 1(1) 0(-) 1(1) 0(-) 0(-) 1(2) 2(13) 0(-) 0(-) 0(-) 1(2) 2(2) 2(4) 0(-) 2(10) 0(-) 1(1) 0(-) 

...... 
Pseudom1crocara TFic sp 

- .. .. .. -- -- ----- -- -- --
Sc1rt1dae ... 01 1{2) - 0(-J _ _0(-) _0(-l.. .. o(-L _0(-) 0(-) 0(-l PH O{-) 0(-) - 0(-J - 2(2) 0{-J 0(-) .... 0_(-) _o(-L __ Q(-) ...... _ 1J~L .. ... 9t-J.. _ 

...... Pseudormcrocaia TFIC sp .. 
Sc1rt1dae .... -02 --- 0(-) 0(-l .. _0(-) 0(-) 1{1) .. - 0(-l. - O{-)_ _ .... 0(-) 0(-).._ ___ .. Ol-J 0(-) 0(-) ___ ..9(-) 0(-) 9(-J .. .. 9(-) 0(-) - O{:) ......... QH ... - 1(2)_ 
sciri1dae - Sciit1ciae YEE sp "11 0(-) 1(35) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 

Sc1rt1dae Scirtidae YEE sp 14 2(5) 1(2) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 

Sc1rt1dae Sc1rt1dae YEE sp 15 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 1(1) 0(-) 

Byrrh1iiae 
--- M1crochae1es bryopli11us .. 0(-) 0(-) "'0(-) 0(-) 0(-) 0(-) 0(-) 0(-) o{-) .. 0(-) 1(4) 0(-) 

-
0(-) 

-
1(1) .... a(:J 1(1) .... - .. O(:j --- 0(:) --- i(2) 

...... 
1(1)- .... 

Byrrh1dae 
..... 

M1crochaeles scopanus .... 0(-) 0(-) -2(2) 0(1) 
..... 

0(-) 0(-) 0(-) o(-l 0(-) ---oT-l 0(-) 0(-) - .. a(:) 0(-) 0(-) 0(-) o(-i - ac:J-- o(-) ..... 0(-) ___ 

"s'Y(rtiidae .. - .. M1cro .. chaetes hystncosus 2(2) 3(8) 1(2) 1(-) 1(1) 0(-) 0(-) 0(-) 2(5)- ... 0(-) ... a(:) 0(-) 
- 1(1) .. 1(1) ........ f(1) 0(-) 

- 1(1) --1(3)- Of-) .. - .. o(..) ___ 

.... Byrrii1dae M1crochaetes scopanus 0(-) 0(-) .. .. 2(2") 0(1) 0(-) 
.... 

0(-) 0(-) 0(-) 0(-) 0(-) 
--- -

0(-) 0(-) -0(-) oc-r-- .. 0(-) ---0(-) 
.... 

"o(-J - a(:) .. .. 0(:) -- 0(-) 
.... 

Byrrh1dae 
-- .. Ped1/oph0rus gnffithi .. 1(5) 0(-) ""1(3) 0(-f a(:)----- 0(-) 0(-) 0(-) 0(-) 0(-) - 0(-) 1(1) .. -0(-) "o<-l 0(-) 

---
0(-) 0(-) - "o<-> ---o(:r--- 0(:) -----

Byrrh1dae Pedilophorus multicolor 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(4) 1(6) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 

Bvrrh1dae Ped1/oohorus nr ANIC so 04 2(3) 01-l 01-1 0(-) 0(-) 0(-) 01-) 0(-\ 1(1) 01-l 01-l 01-l 0(-) Ol-l 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 
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Chapter 6 - Effects of clear/ell harvesting on saproxylic beetles 

LOGGING REGENERATED FOREST SITES MATURE UNLOGGED FOREST SITES 
Family Species name 

EL ES SL SS WL ws PR1 L PR1 S PR2.L PR2S ML MS P01 L P01 S P02L P02S RS WRL RL WRS 

Eucnem1dae Aderus acac1ae 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(2) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 

Throscidae Aulonothroscus elonaatus 31251 01-1 1141 01-1 01-1 01-1 01-1 2131 3113) 01-1 1111 2(10) 0(-) 0(-) 216) 1111 2171 0(-) 1131 01-1 
ThrQsc1dae _ _ __ ['.ul<?!J.Qlhro~qJJS Y€,~ sp 02 0(-) 0(-) - 1(1) 0(:) 0(-) 0(-) - __ g_(;J _ 1(~] - - - 0(-J_ - -- 0(-J 0(-) 0(-J - 1(1) 0(-) 0(-) _0(-) _ - o(-L _ Qi-) ____ o(-) Q(-L 
Thrgss;1dae _ _ _ AuJp12otJtroscus YEE sp 03 1(1) 0(-)_ - 1(2) 0(-) O[-) - _0[-) - 0(-J 0(-) -- - _0(-) 0(-J - 0(-) _ 0(-J - 0(-) 0(-) -- - _0(-) O[-) __ --- 0_[-) 0(-) _ O[:) 0(:) -
Elatendae Agrypnus TFIC sp 01 1(1) 0(-) 0(-) 0(-) 1(1) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(4) 0(-) 1(1) 0(-) 

Elatendae Conoderus australas1ae 0(-) 0(-) 0(-) ii(-)- 0(-) 0(-) 1(1) -- 0(-) 
-

0(-) --
o(-J 0(-) 0(-)" -- 0(-) o(-J 

-- "ii(-) --- - - --- 0(-)-- ·a1:i--0(-) 0(-) 1(1) 

Elateridae Dent1col/mae TFIC sp 01 3(7) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 1(2) 0(-) 1(3) 1(1) 1(1) 0(-) 1(2) 1(1) 1(3) 1(1) 0(-) 1(1) 

Elatendae Elatendae TFIC sp 20 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 
--Ela-tendae- - - Elatendae TFIC sp · 21 - - 2(4)"" 0(:) --

1(2) o(-j -- 0(-) 0(-) 0(-) 1(2) 0(-) --- 2(4) - 2(2) 2(4) 0(-) - -- - ""1(-iy-- a1=> -- 1(1)-- 3(4)-- 0(-) ---111r -0(-) 
-

Elatendae 
-- Eiatendae TFIC spZ3 1(1) o(-) --o(:l 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-j"" - - 0(-f ___ -

0(-) 0(-) - -6(-)- --0(-) ---- ii(-) -- -6(-)-- 1(1)" -- "il(-) -0(-) 

Elatenciae- -- En1schnelater speculans - -- ·a(-)- 0(-) - "o(-i 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 
--1(1) - - -a(:) -- 0(-) 0(-) 

-- 0(-) - -- - - - ii<-> - ·a<T 1"(1) -----0(-) 0(-) 0(-) 
-Elatendae- --- EniSchnelater TFIC sp 01 -ci(-) 0(-) 

-
0(-) 0(-) 

-- --
0(-) 0(-) 0(-) 1(1) 1(1) 

o(-) ____ -
0(-) 0(-) o(:)- - oFi -- 6(-) - 0(-)- - - --·ac:i·--0(-) 0(-) 0(-) 

Elatendae Parablax oo/1ek1rra 1(4) 2(8) 
-

0(-) 0(:) 1(1) 0(-) 1(1) 2(3) 0(-) o<-r- -- 2(4) - i(1) 
-- - a(:>·-- - 1"(i) 1(1) 

- 2(2)- 0(-) 1(2)-1(1) 1(1) 

Lvcidae Metriorhvnchus ?ervthronterus 2141 1131 01-1 01-1 1111 01-1 01-1 01-1 0(-) 01-1 0(-) 0(-) 01-l 0(-) 0(-) 01-1 01-1 01-1 01-1 01-1 
Lyc1dae Metr1orrhynchus rh1p1d1us 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 

-- -- ---- -- --- - -- - -------~- - -- - -- - - --- - - --
_ Ly~1dae _ f:!letr1or[hynchu§ 7f/C sp Q1 __ _____ 0(-) 0(-) _0(-J 0(-) --- - 0(-) 0(-) 0(-J 0(-) 1(1) - 1(1) - - 0.(-J -- 0(-J 1(1) 9.l:L 0(-) SJJ:.) - Q[-) -- _9[-)_ Q.[-) _Q.(:)_ 

Lvc1dae Metr1orrhvnchus TFIC so 03 2(2\ Ol-\ 0(-\ 0(-) 0(-\ Ol-\ 1(1) 0(-\ 1(1\ 0(-) 0(-\ 0(-1 0(-\ 0(-\ 0(-1 Ol-\ 1(1\ 1(1\ 1(1\ Ol-\ 
Cantharidae Heternmastix mgripes 3(46) 3(37) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 

Canthandae Heteromast1x TFIC sp 01 2(16) 2(3) 1(1) 1(-) 1(2) 0(-) 1(2) 1(1) 1(1) 0(-) 3(4) 0(-) 1(2) 1(1) 3(3) 2(2) 0(-) 1(1) 1(9) 1(2) 

Anob11dae Dorcatoma TAC sp-01 -- - - 1c1y-- - 0(-) 1(1) 0(-) -0(-)-- 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 
---

1(1) 1(1) o(:) 1(2)- --o<-> - - -0(-) 0(-f - 0(-) -ii(-) 

A"nab11dae - -"HaCifobregiiius-areoiiCotiis -- 1(1) 0(-) o(-f- 0(-) 0(-) - ""ci(:) --1ny -- - ·a<-> 0(-) 0(-) 0(-) ----o~y- 0(-) 0(-) 1(1") --0(-) - ·a<-f-- -0«=>-- "1(1) ---0(-) 

i"ragoss1iictae ---R.entommae-TFIC sp 01 0(-) ci(-) 0(-) 
- -

0(-) ----a<:>- --oH 0(-) 1(1y-- - 0(-) 0(-) 1(1) ·a(-) 0(-) 0(-) 0(-)"" --o(:) -- --o(-) - ·a(-)"" ---1-(1) ---a(:>-

c1eilclae --- -Lem/dta subaenea 0(-) 0(-)- - 1(1) 0(-) 0(-) 0(-)" - 1(3) 
- -

0(-) 
"1(1) ______ 

0(-) 1(1) 2(2) 0(-) 0(-) 0(-) --- -- off --- a<-> -- o(:) -0(-) 1(1) 

Meiyndae - -- -- Dasytes TF/C sp '01 1(1) 0(-) 
--

0(-) ---0(-> --- 0(-) 0(-) 0(-) --- - 0(-) 
- -

0(-) -----0(-)- 1(1) 1(1) - 0(-) -- 0(-j" 
----0(-) - Of-) -- 0(-j o(~---0(-) 1(1) 

Sphmclictae --- i.sP/d1piiows humiir811s -- 1(2) 1(1) 
-

1(1) - ---oi:) 0(-) 0(-) 0(-) -- -1(3) - 2(3) -- oF>-- 3(6) 1(4) -- ---0(-) 1(7) ----"1(1) --
1(2) --1("1) - - "1(1 j ---2(2)" -- 1(3) 

Brachvntendae Notobrachvnterus TFIC sn 01 01-1 01-1 01-1 01-1 01-1 01-1 01-1 01-1 01-1 01-1 01-\ 01-1 01-1 01-1 01-1 0(-) 0(-) 0(-) 2121 2131 
N1t1duhdae Epuraea v1ctonens1s 2(2) 2(2) 0(-) 2(1) 2(3) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 2(2) 
N1!1duhdae ___ Thalycrodes cY,inilncum 2(3) - 0(-) 

--
0(-) 0(-) -----0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 

- - --0(-) - 0(-) -- - o<:i- - 0(-) 
---- - a(:) - 1(1)-- --0(-) - ---~r-0(-) 1(1) 

- Nit1duhdae-- --- Thatycrodes putchrum ---- -- - 1(2) 0(-) o(:j 0(-) o(:r -- - o(:) --
1(1) 1(1) 1(1) 1(1) o(-) - 1(1) 0(-)" ----0(:) 0(-) 

- - ·a<=> - 0(-) --6(=)" -- --0(-) 0(-) 

Silvamdae Cnmtamomha TF/C sn 01 31661 31202 1121 21151 2141 1111 21201 31131 01-1 01-1 01-1 1131 01-1 01-1 1131 01-l 1111 1121 11241 219 
S1lvamdae Cryptamorpha v1ctonae? 2(3) 1(2) 1(2) 1(1) 2(2) 0(-) 1(2) 1(3) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 1(1) 1(2) 

--Ptialacndae - --
Lttociirus ?atternans 

-
1(1) 0(-) 0(-j - ---0(-) 0(-) 0(-) 1(1) 0(:)- --- - -1(1) 0(-) 0(-) 

- --
0(-) 1(1) 0(-) o-(-) ---0(-) 0(-)- - - o(:j --- 0(-) 0(-) 

- - -- - - -- - - -- ------ -- ---- - -- - - -- - -- - ---- --- - - - - - --- -- -
<;_ryp.!flphag1d!!_e Cryptopha91dae TFIC .§P 01 1(1) O[-) O{-) - _O[-) 0(-J 0(-) --- 9[-)_ - 0(-} _ 9(-) _O[-) - 0(-J 1[1L 0(-} O[-) - __ 0(-J - - O[-L _ _ O(:)_ _ _Q.{:) _ O[-)_ 1(1) _ 

Cryptoghag1d_a_e Q.ryetop®_g!!s sp_fl.!._g1bbpenms __ 0(-) 0(-) )(1) 0[1} 0(-) 0(-) O[:) 1[1) 0(-) - -- O[:) 0(-J ____ o(-L 0(-) O[-)__ _____ 0(-J 0(-) _Q[:) - .9{:) ____ 0(:)_ - Q{-) 
Cryptophag1dae Cryptophagus tasmamcus 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(2) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) 0(-) 
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Family Species name 

__ C_!'.rylo~1da!!_ _ _ _f'htlp.[!J.ermy§_!asmamcus 
Coccinelhdae Rhyzobtus TFIC sp 05 

EL 

1{1) 
1(1) 

ES 

0(-J 
1(1) 

-ccicc1ne11idae -- --Rhyzob1us TFIC sp 14 - - -T- i ( i) 1 ( 1} 

Coccuieiiidae --Riiyzob1us TFIC sp 15 - -

Coccinelhdae - - Rhyzobius TFIC sp 16 

Coccln8ihdae - -- - Rhyzobius TFIC sp 20 

"1(16)- -- 2(4) 

o(-} ---- ·o(-} 

1(1) 1(1) 

Cory)9p_IJ!d_ae ____ p9rylophodes YEE sp Q3 _ _ _ - 0(-J - 0(-J 
Coryloph1dae Ho/opsts TF/C sp 01 3(8) 3(8) 

-ccirYiaiih1dae- -Sencoderus TFIC-sp 02 0(-) 0(-) 

--corYfoph1dae -- -Sencoderus TFIC sp 05 

Latndildae 

Latndndae 

Latndndae 

Latn-di1C!ae 

Latnd11dae 

Melandry1dae 
Melandry1dae 

Melandryidae 

Melandryidae 

Melandryidae 

Zophendae 

Aridius costatus 

Andws nod1fer 

--- co/i/Cana TFtC-sp 02 

--- coit1mcara TFIC sp 02 - -- - -

En1cmus TFIC-sp"oi --

Me/andrvidae TFIC so 04 
Orches1a ?austrma 

Orches1a a/phabetica 

Orches1a TFIC sp 01 

-Orchesta TF/C sp 02 

-cocoiiissus g1bb1coll1s 

1(1) 
0(-) 

2(9) 

-0(:1· 

2(7) 

0(-) 

1131 
1(2) 

3(62) 

2(7) 

0(-) 

0(-) 

_fgphenda,El___ _ _ _ Enhypnon "[FLC 'sp nov' 01 _ _ Q{-) 
Zophendae Enhypnon tuberculatus 3(7) 

Zopher1dae Enhypnon YEE sp 01 -- - 0(-f 
Zopherlciae -- - i...atometus-d1fferens___ 1(1) 

Zophendae Pycnomerus TFIC sp 02- 0(-) 

Tenebnon1dae- Ade1tum-abbrev1atum 1(1) 

Tenebnonldae Brycop1a coelioides I 1(1) 

Tenebriomdae Brycop1a hexagona I 0(-) 

Tenebnorndae 

-f enebnoniciae­

Prostom1dae 

Oedemendae 

Brycopta p1cta 

- conpera deptanata 

Prostomts atkmsom 

--Doiirma mtranda-

1(2) 

1(3) 

0(-) 

of-> 

0(-) 

0(-) 

3(7) 

0(-) 

1(1) 

0(-) 

1121 
1(1) 

3(8) 

0(-) 

0(-) 

"6(-) 

0(-J 
2(4) 

1(1) 

0(-) 

0(-) 

- 2(2) 

0(-) 

0(-) 

0(-) 

0(-) 

1(4) 

of-> 

LOGGING REGENERATED FOREST SITES 

SL SS W L W S PR1 L PR1 S 

O{-) 
0(-) 

0{-} __ fl{:} 
0(-) 0(-) 

O{-} 
0(-) 

- - 1°(1) 0(-) 0(-) 0(-) 

0(-) -- - 0(-) 0(-) 0(-) 

0(-f 0(-) o(-} ____ ·oc-> 

1(1) 
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 0(-) o(-f o(-> - -- o(-} 

O{-) _ O{-) O{-} O{-} ___ O{-) 
1(1) 2(1) 1(1) 0(-) 0(-) 

0(-) 0(-) 

0(-) -Ii(-} 
o<-> - - ·a,:> -- - o(-> 
0(-) - -1(1> "" - -- -2(2) 

0(-) 0(-) 0(-) 0(-) 0(-) 

0(-) 2(1) 2(5) 0(-) 1(1) 
0(-) 0(-) -0(-)- 0(-) 1(1°) 

0(-) 1(1) 0(-) 0(-) 0(-) 

ol-> 1(-) 1(1) ____ ol-> O(-} 

01-l 0(-) 0(-) 01-1 
0(-) 0(-) 0(-) 0(-) 

2(4) 1(-) 2(5) 0(-) 

2(2) 0(-) 0(-) 0(-) 

o{-) -6(-) o{-} of-)-
O(-)- o(-j" 0(-) 0(-) 

-- O{-} 
2(3) 

O(:f 

Q(-)_ __ O{-} 
2(5) 2(7) 

0(-j 0(-) 

0{-) 
0(-) 

0(-) 

0(-j" - 0(-) 

0(-) -- --0(-) 

1(1) - ii(-) 

o{:) - - o{-) 

0(-) 0(-) 

0(-) 0(-) 

2(3) 

0(-) 

0(-) 

0(-) 

1{1j 
0(-) 

0(-) 

0(-) 

0(-) 

o(-> 
- 0(-) 

"1(4) 
1(1) 1(1) 

0(-) - - 0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

1121 
0(-) 

2(6) 

0(-) 

0-(-) 

"o(:) 

0(-) 
2(6) 

0(-) 

0(-) 

0(-) 

0(-)--

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-J 
0(-) 

0(-) 

0(-) 

0(-) 

0(-)- -

0(-)__ 
3(3) 

1(1) 
0(-) 

0(-) 

1(1) 

0(-) 

0(-) 

-- oc:f 

1111 
0(-) 

0(-) 

0(-) 

off 
0(-) 

0(-J 
2(6) 

0(-) 

0(-) 

0(-) 

0(-) 

1(1) 

0(-) 

0(-) 

1(1) 
1(1) 

0(-) 

PR2 L 

O{-} 
0(-) 

1(1) 

0(-) 

0(-) 

0(-) 

O{-} 
1(1) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

1(1) 
0(-) 

1111 
0(-) 

2(5) 

0(-) 

1(1) 

0(-) 

O{-) 
1(2) 

0(-) 

0(-) 

2(6) 

1(1) 

0(-) 

0(-) 

1(2) 

0(-f 
"1(3) 

i("i} -

PR2S 

0(-J 
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-J 
1(2) 

0(-) 

0(-) 

0(-) 

1(1) 
0(-) 

0(-) 

0(-) 

01-l 
0(-) 

1(4) 

0(-) 

--0(-) 

o(-)- -

0(-) --
1(2) 

1-(1)-

0(-) 

1(i) 

1(1) 
0(-) 

0(-) 

0(-) 

-1(1) 

0(-f 
0(-i 

Chapter 6 - Effects of clearfell harvesting on saproxylic beetles 

MATURE UNLOGGED FOREST SITES 

ML MS P01 L P01 S P02 L P02 S R L RS WRL WRS 

)(J) 
0(-) 

2(5) 
0(-) 

0(-f" 0(-) 

1(1) - -2(2} 

1(1) ---0(-}° 
o{-} o(:} __ _ 

1{13) 10} __ _ 
3(19) 3(4) 

0(-) 0(-) 

0(-) 0(-) 

1{1) 
0(-) 

0(-J 
0(-} 

O{-) 
0(-) 

0(-) 0(-) 0(-) 

0(-) 2(2} 
1(1) 0(-} 

0(-) 0(-} 

0(-) 0(-J 
0(-) 2(3} 

--0(-i ---- -0(-} 

1(1) 

0(-) 

0(-) 

0{-) 
2(2) 

o(:)-
O{-} - --- o(:) - -- "1f1) 

0(-) 0(-) 0(-) 0(-) 2(3) 

0(-) 

-0(-) 
0(-) 2(3) 

0(-) 0(-) 

0(-} 0(-) 

0(:)-- ----1(1) 

0(-l 
0(-) 

--6(.) 

2(2) 
-- 0(-f 
--- - 0(-) 

0(-J 
3(11) 

1(1) 

0(-) 

1(1) 

0(-) 

-- o(:l 

O{-) 
0(-) 

...9t-L __ o(-J ___ o(:J __ 
0(-) 0(-) 0(-) 

0(-) ·a(-)------ o(-) - o(-l - -
---1(1f-- o"c-i-----o,:) -­

oc-> - - o(-)- --1(2) - -

o[:) - -o(-> - o(-> --
- -- -- - - --

_Q{-) - 9{:) - O_(-J --
2(5) 2(13) 2(3) 

--o(-) - ·o(-> -- -o(-) 

1(i)" --

1(1)­

o(-) 

0(-) _ -
0(-) 

"6(-) 

"6(-) -- - 0(-) o(-r-- -1c1> -

0(-) 0(-) 0(-) 0(-) 

0(-) 1(1) 1(1) 3(5 
0(-)-- -0(-)-- -- 0(:)- ----- 0(:) ---

--2(2) --oT-) - o(-} 0(-} 0(-) 

0(-) o(:}- - - o(-i 0(-} 0(-) 

0(-) --- 2(3j 

0(-) 1(1) 

1(1°} 
ci(:} 

- 0(-) -- -1(1) 
0(-} --- --0(-) 

1(1) 
0(-) 

0(-) 

1(1) 
0(-) 

1(1) 

1{1) 
3(4) 

-1(°1} 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

1(1) 

1(1) 

0(-) 

1(1) 

01-l 212) 
0(-) 0(-) 

0(-) 1(9) 

0(-) 0(-) 

1(1) - - -0(-) 

0(-) 0(-) 

1(2} _0(-J 
2(3) 2(5) 

1(1} 0(-) 

--- oFl o(-> 

0(-} 0(-) 

0(-} 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-} - - -- ii(-j 

0(-} 0(-) 

01-l 0(-) 01-l 
0(-) 0(-) 0(-) 

1(3) 0(-) 1(4) 

0(-) 

0(-} 

0(-) 0(-) 

0(-) -- 0(-) 

- 0(-} 1"(2j ___ -- 0(-)-

_O(:) _____ O{-) 
1(1) 0(-) 

oc:j -- o(-) 

0(-) 0(-) 

0(-) 1(1) 

0(-} 0(-) 

0(-) 0(-) 

0(-) 0(-) 

0(-} 

0(-} 

0(-) 

0(-} 

0(-) 

0(-) 

--1(1)-

0(-j 

_0(-J 
2(5) 

0(-) 

--

0

1(1) 

-0(-) 

0(-) --

0(-) 

0(-) 

0(-) 

1(2) 

0(-) 

0(-) 

01-l 01-1 1131 0(-) 
0(-) 0(-) 0(-) 0(-) 

2(15) 0(-) 2(24) 2(2) 

0(-) 0(-) 1(2) 0(-) 

a(:> --- o-(-> - ac-r-- ·1c1>- -

--o(-) - O(-) - -of-) o{-) -

_O{-) - _Q(-L _j_{3)_ 
2(23) 

_0(-) __ _ 
2(9) 1(1) 2(2) 

0(:)-- 1(1) -oT-f -- 0(-) 

1(1) 
0(-) 

-1csr - 1ITT -- oc-> 
- of-) --- a(-> - 1f1"> 

0(-) 1<1> - 1°(5> -- - aT-f- -
2(3) 2(2) 1(1) 0(-) 

0(-) 0(-) 1(1) 1(1) 
2(5) 0(-) 0(-) 1(1) 
1c1;-- a(->-- -1-c3f -1'2> 

-2(6) i(1} ___ ---ii<-i 0(-) -

2(5)-- oc-f" -o{:}- ----o<-> 
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Family Species name 

Oedemeridae Dohrnia simplex 

Adendae Aderidae TFIC sp 03 

Scrapt1idae ---- scrapt1a 1alico111s 

Scrapt1idae -- -- - Scrapt1a TFIC sp oi --

Cerambyc1dae Dorcad1da-TFIC sp 01 

Enneaphyllus 
Cerambvc1dae aene1penms 
Cerambyc1dae Mecynopus cothurnatus 

- 'Ceranii>"YCidae- --- toxeutes arcuatus 

Chrysomehd-ae 

...9Jrysomel!(j~_e 

_Chrysomel!<J?e 
Chrysomel1dae 

-Aporocera v1rid1s - - -

Cryptocepiialmae "iFIC 

-~I! 02 -- -
Cryptocepha/mae TFIC 
sp 24___ _ 
M1crodonac1a truganma 

Chrysam8i1dae - -Monolepta iF/C sp 01 

Anthribidae Anthrib1dae TF/C sp 02 

Anthnb1dae Xynotrop1s m1cans 

- - Auletob1us - -
Attel~1dae __ mej!!_noc_ee!Jalus ___ _ 

Auletob1us 
Attelab1dae sutura//slvamcol/1s? 
curcuhan1dae- - "i\iicyitiiiia-01eanae 

Curculionidae Ancyttalia tarsalis 

Curcuhomdae Cossonmae TFIC sp 06 

--- Cryptorhynchmae TFIC 
Curcul!On!<:t~e ___ sp 17 _ 

Cryptorhynchmae TFIC 
Curcu~q!11dae _sp 28 _ 

Cryptorhynchmae TFIC 
Curcuhq!Jidae _ sp 3.9 _ _ _ 

Cryptorhynchmae TFIC 
Curc_!!1!9n!dae ___ sp .:J..1 _ __ __ _ _ 

Curcu/1omdae TFIC sp 
Curcuhomdae 10 

-Curcuhomdae -- Dec1/aus albonotatus ---- -

Curculionidae Dec1/aus lateralis 

Curcuhonidae Deci/aus nigronotatus 
Dec1/aus nr 

Curcuhomdae str1atuslsubfasc1atus 

LOGGING REGENERATED FOREST SITES 

EL ES S L S S W L W S PR1 L PR1 S PR2 L PR2S 

0(-) 

0(-) 

2(3) 

1(2) 

0(-) 

2(12) 

0(-) 

0(-) 

--0(-) 

0(-) 

1(1) 0(-) 

0(-) 0(-) 

0(-) 0(-) 
0(-) ______ 0(-) 

o(-) - - ·o(-l 

0(-) 

0(-) 

0(-) 

0(-f 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 0(-) 01-l 01-1 01-1 Ol-1 
0(-) 

0(-) 

0(-) 

10) 0(-) 0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

"1(1°j 
~ ~ 
oA- -- o(-) 

O{-) 

- 0(-) 
0(-) 

0(-) 

0(-) 

2(4) 

0(-) 

0(-) 
1(3) 

2(11) 

0(-) 

O{-) 

O{-) -
0(-) 

0(-) 

0(-) 

2(2) 

2(14) 

0(-) 
0(-) 

0(-) 

0(-) 

___ 1J1 l - -- 0(-) 

__ O{-) ____ O[-) 

_.Q[-L _ _ o(-J 

2(3) 2{:Jl 

0(-) O{-) 
2(13) 0(-) 

3(21) 3(15) 

31259\ 31461 

3(83\ 3(391 

0(-) 

O{-) 
0(-) 

- 0(-) __ 0(-) 

0(-) - 0(-) 
0(-) 0(-) 

0(-) 

0(-) 
0(-) 

0(-) 0(-) - 0(-) 0(-) 

0(-) 

2(4) 

0(-) 

0(-) 
3(3) 

2(2) 

0(-) 

0(-) 

0(-) 

- 0(-) 

0(-) 
1(1) 

0(1) 

0(-) 

0(-) 0(-) 

2(3) - 0(2) 

1(1) - 0(-) 

O{-) 1(-) _ 

0(-) 0(-) 
0(-) 0(-) 

1(7) 1(5) 

2135\ 3163\ 

3(22) 3(85) 

0(-) 0(-) 

0(-) 0(-) 

O(-L_..Q(-L 

0(-) 0(-) 
1(2) 0(-) 

0(-) 0(-) 

0(-) 0(-) 

- _0(-) 0(-) 

__ Q(-) - - 0(-) 

_..Q(:l _ 0(-) 

1_{1) - - Q(-) 

0(-) - 0(-) 
0(-) 0(-) 

1(1) 0(-) 

319\ 1151 

3(20) 1(3) 

2(23) 

0(-) 

0(-) 

2(5) 

0(-) 

01-1 
0(-) 

0(-) 

0(-) 

2(6) 

0(-) 

0(-) 

0(-) 

1(1) 

01-1 
1(2) 

0(-) 

-- "cif-)" 

2(2) 

2(5) 

0(-) 

0(-) 

0(-) 

01-1 
0(-) 

1(1) 

1(1) 

0(-) 

0(-) 

0(-) 

o(:r·--
0(:)- -

01-1 
0(-) 

0(-) 

0(-) 

- J[1) ---- 0(-) - _ 1(J) ______ 0(-) 

1(3) - - 1(1) 0(-) ___ ..Q[-) 
1(1) 0(-) 1(1) 0(-) 

0(:) -- - 0-(-) --0(-) 0(-) 

0(-) 

0(-) 

:J(14) 

9H. __ _ 
0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

0(-) 

O{-) 

O{-) 
0(-) 

1(2) 

01-l 

0(-) 

0(-) 0(-) 

0(-) 0(-) 

__ 1(7) 0(-) 

1(1) -- --- 0(-)_ ---
0(-) 0(-) 

0(-) 2(5) 

0(-) 0(-) 

0{-) 

0(-) 

0(-) 

0(-) 

- 0(-) 
1(1) 

1(1) 

O(-) 

1(34) 

0(-) 

0(-) 

0(-) 

0(-) 

1(2) 
2(2) 

2(9) 

2121 

2(7) 

0(-) 

0(-) 

0{-) 

0(-) _ 
0(-) 

0(-) 

0(-) 

0{-) 

0{-) 

0{-) 

O{-) 

1(1) 
0(-) 

1(1) 

2121 

2(27) 

Chapter 6 - Effects of clemfell harvesting on saproxylic beetles 

MATURE UNLOGGED FOREST SITES 

ML MS P01L P01 S P02 L P02 S R L RS WRL WRS 

3(19) 

0(-) 

o(:) 

0(:) 

0(-) 

01-1 

0(-) 

0(-) 

0(-) 

2(7) 

0(-) 

0(-1 

1(3) 

0(-) 

- 6{:) 
-- 0(-) 

o<:i 

01-1 

0(-) 

0(-) 

o(-f - -

o(=f" 
--- off- -

3141 

2(6) 1(1) 3(25) 1(1) 1(6) 

0(-) 0(-) 0(-) 0(-) 

0(-) 

1(1) 

0(-) 

0(-) 

1(1) 

---0(-) 
0(-) - 1(1) - 0(-) ----

0(-f -- 1(1) - - 2(3) ___ _ 

---1(1) o(-j - o(-l ·o(:) -

0(-) 0(-) 0(-) O(-) 0(-) 
0(-) 1(1) 0(-) 0(-) 0(-) 

0(-) - - 0(-) - -- 2(2) 0(-) ·o(-)--

1(3) 

0(-) 
o('.) -­

"6(-j 
0(-j 

01-) 
0(-) 

0(-) 

0(-) 

0(-) 

0(-f" 

··oc-i 

0(-) 

0(-) 

1(1) 

0(-) 

0(-) 

1(1) --- 1(1) - 0(-) -1-(2) 1(1) ___ --0(-) 

0(-) 

0(-) 

--of-) 
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Chapter 6 - Effects of clear/ell harvesting on saproxylic beetles 

LOGGING REGENERATED FOREST SITES MATURE UNLOGGED FOREST SITES 
Family Species name 

EL ES SL SS WL ws PR1 L PR1 S PR2.L PR2S ML MS P01 L P01S P02L P02S RL RS WRL WRS 

Curcuhomdae Dec1/aus TF/C sp 02 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 1(2) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 1(6) 2(4) 0(-) 0(-) 0(-) 

Curcuhomdae Dinichus terreus 1(1) 2(5) 1(3) 0(3) 0(-) O(·) O(·) O(·) 1(1) O(·) 1(1) O(·) O(·) O(·) O(·) O(·) 2(12) O(·) 1(5) O(·) 

Dryophthorus TFIC sp 
Curcuhomdae 02 1121 21111 01·1 Ol·l 01-1 01·1 01·1 01-1 01-l 01-l 111) 01-l 01·1 01-l 01·1 01-l 01-1 01-l 01·1 111) 

Dryophthorus TFIC sp 
Curcuhomdae -- 01 - - - 1(18} - 0(-) 0(-)_ O(·) __ 0(-) 0(-) - 0(-} 0(-) - Q[-) - QC-L - O(·) 0(-} -- O{-) 0(-) 1(31} - 0(-) 1(2} - _9(-)_ _0[-}_ 0(-} 

Elleschus-
c;;urcuhomgae ____ wel[pgto111ens1s? O(:) ___ _Q(-) 0(-)_ - o(-l __ o(-L O{·) 0(-} O[·) 0(-) _ 9(·L - 0(-} - O(·} J_(7} 1(1) - O(:)_ - _Q(-) -- 0(-}_ .9(-} _ 9l:L 0(-} -
Curcuhomdae Emp/es1s TFIC sp 01 0(-) 0(-) 0(-) O(·) 1(1) 0(-) O(·) 0(-) O(·) 0(-) O(·) 0(-) 1(1) 0(-) 0(-) 1(1) 0(-) 0(-) 0(-) O(·) 

- Eugnormm TFJC sp 16 0(-) 0(-) i(ii 0(-) ·o(-f O(·) 0(-) O(·) 1(1) o(T-- 2(2) O(·) 1(1) o(:) 2(2f -0(-) - 1(1) - o(:i - - ·1(2)- ---
1(1) Curcuhomdae 

Curcuhonidae ---Exelfatus TFic5"sp 01 -- 2(2) "" - 2(2) 0(-) 
-

0(-) o·(-) ---
1(1) 1(3) 2(2) 0(-) 

2(3) ___ -
2(2) 0(-) 1(1) 0(:) 0(-) 0(-) 0(-)- --- O(·) o~r- --

0(-) 
---

Curcuhomdae Exith1Us capucinus O(·) 2(2) 0(-) O(·) O(·) 0(-) 1(1) O(·) 1(1) O(·) O(·) 2(4) 1(3) 1(2) 2(4) 2(4) O(·) O(·) 1(7) 1(2) 

Curcuhomdae Ex1th1us /ocu/Jferus O(·) 0(-) 0(-) 0(-) O(·) 0(-) 1(1) 0(-) 0(-) 0(-) O(·) 0(-) 0(-) 1(6) 1(1) 0(-) 0(-) 0(-) 0(-) 0(-) 

- C:urcuhon1Ciae 
--

Mandalotus arclferus - - -- o(:> -- 0(-) 1(1) 
----

0(-) 0(-) 0(-) 0(-) O(·) 1(1) o(-)- - ---
0(-) O(·) ---of-)- 0(-)""" 0(-) -0(-) --

1(1) 
-- o(:) -- af:r ----a<-> -

Mandalotus 
Curculionidae musc1vorus 1111 2171 1191 213) 1111 01·1 2141 1171 2161 213) 01·1 Ol·l 1111 Ol·l 01·1 Ol·l 01·1 1111 1111 01-1 

Mandalotus sp nr 
Curculionidae vacil/ans Ol·l 01-l 01-l 01-l 01-l 01-l 01-l 01-l 0(-) 01-1 0(-) O(-l 0(-) 01-l 01-l 01-l 01-l 01-l 112) 111) 
Curcuhomdae M1ocal/us pygmaeus 1(1) 1(2) O(·) 0(-) 0(-) 1(1) 0(-) O(·) 0(-) O{·) 1(1) O(·) 1(3) 1(1) 2(4) 2(2) 2(3) 1(1) 1(7) 0(-) 

Curcuhomdae Platypus subgranosus 3(26) 0(-) 1(1) 1(2) 1(1) O(·) 0(-) O(·) 0(-) 0(-) 0(-) 0(-) 2(21) 0(-) 0(-) 1(2) 1(1) 0(-) O(·) 0(-) 
- -

Poropterus ---- ---- -- - - - --- - --- -- -- - - - --- - - -- - - --- -- -
Curcuhomdae a/boscutellafls _Q{-) 0(-) -- O{·) 0(-l - __ 9(-) 9(·) 0(-} _ -- ..Q[-) 0(:) - - --· _0{·) 1(2) O(·} - 0(-) O{·) _ 0(-) ____ O(:L __o{-} _ Qi:} ---- _ 1(1 )__ __ Q(-) 
Curcuhanidae Poropterus ani1quus 1(1) 0(-) O(·) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 1(1) 1(1) 0(-) 0(-) 0(-) 0(-) 

Curcuhonidae 
- -

PoroPterus TFlC sp 05 
0(-f ___ -

O(·) 0(-) - - 0(-) 
- --

0(-) 0(-) 0(-) O(·) 
-- o(:) - - · o(-) -

1(1) 0(-) ---- -0(-) 1(1) 1(1) 
-- - 1(3)" - - O(·) --6(-) --o(:)- --0<=> - -

- - -- Roptoperus ___ -- - - --- - - --- --- - ---- - - ---- - -- - ---- -- --- - ----- -
Curcuhomdae tasmamens1s -- __ 3(1~} __ 1(1) 2(19)_ 2(6) _Q(:l_ 0(-) 0(-} 1(1} _0(-) 1rn __ 1_(~ 1(3) _ _\?(:l_ - - 0(-) - ---- _Q(-) _0(-J 1(1) _2{~J_ g('!L _ 1(1) ___ 
curcuhoniCiae Tyct11inae TFIC sp 05 1(2) 2(3) O(·) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 0(-) 2(2) O(·) 0(-) 0(-) 0(-) 0(-) O(·) 1(1) 1(1) 0(-) 

curculiari1ciae-- TyChunae TFIC sp 06 
- -

O(·) 
0(-f ___ -

1(3) -- "6(-) 1(1) 
---

0(-) 0(-) 0(-) O(·) 0(-) o(-> - - 0(-) 1(1) 
---0(-) ___ 

2(2) 
-

2(2) 2(2) --- o(:) - - 1(3)" --
a(-f ___ 

Curcuhomdae Tychiinae TF/C sp 08 1(2) O(·) O(·) O(·) O(·) O(·) O(·) O(·) O(·) O(·) 2(4) 1(1) 0(-) O(·) O(·) 1(2) O(·) O(·) O(·) 1(1) 

Curcuhomdae Tychunae TFIC sp 22 O(·) 0(-) 0(-) O{·) 0(-) 0(-) 0(-) 0(-) O(·) 0(-) O(·) 0(-) 1(1) 2(3) 2(4) O(·) 0(-) 0(-) 1(2) 1(1) 

curcuhan1dae -Tychiinae TFIC-sp 26 0(-f" 0(-) O(·) 
--

0(-) - 0(-) O(·) ·01-1- -
0(-i 

-- -
0(-) 0(-) 1(1) 

0(-) ____ 
0(-) 0(-) 1(1) 

-
0(:) 0(:)-- --0(-) - - -1(1)-- --

0(-) 

Curcuhonidae - - --Tychiinae TFIC sp 27 ·or; --- 6(-) 0(-) 
-

0(-) ·a(:> 0(-) 1(1) 0(-) o(-) --
0(-) 0(-) 0(-) 

- -
O(·) 0(-) - "1(i) o(:) - -

0(-) -o,:r - of-) - --o(-l 
curcuhomdae 

---- Tyrtaeosus ustulatus o(-> - ---6(-> 1(4) 0(-) O(:j""-- 0(-) 0(-) O(·) 0(-) -·a,:1 0(-) O(·) --o(-> O{·f - ·o(:>- 0(-) ----1(6f - o(:j - O(:) - --
0(-) 

- -- - - - - -- - - - -- - ----- - --- - - --- --- -- - - -Co/eoptera unknown 
Unknown YEEsn 13 01-l 01-l Of-I Of-I Of-) Of-I Of-) Of-) Of-) 0(-) 111) 01-) 0(-) 0(-) Of-) 01-) 112) 1(1) Of-\ Of-\ 
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7 SAPROXYLIC BEETLE CONSERVATION AND 

MANAGEMENT IN WET EUCALYPT PRODUCTION 

FORESTS 

ABSTRACT 

This chapter discusses the implications of the thesis findings in inform conservation management of 

saproxylic beetles in Tasmanian wet eucalypt forests. A precautionary and multi-scaled approach towards 

dead wood management is advocated, with particular consideration of the temporal scale at which the 

dynamics of the forests operate. From a better understanding of wet eucalypt forest saproxylic beetle 

biodiversity (Chapter 3), log decomposition processes relating to log size (Chapter 4), beetle species 

associations to the resulting rotten wood types (Chapter 5), and beetle assemblage responses to forest age 

and disturbance histories (Chapter 6), the thesis findings help discuss some immediate (over one rotation) 

and potential long-term (over several rotations) conservation impacts associated with standard clearfell 

logging on 90-year rotations. In line with current conservation management paradigms, retention of some 

trees during harvesting to improve stand structure complexity and future dead wood supply is strongly 

recommended as one means of mitigating potential negative impacts. The planning of trees for retention 

should aim to provide sufficient oldgrowth features as well as regrowth to lead to sufficient quantities and 

continuity of dead wood types, throughout successive forest regeneration cycles. Given the highly 

diverse, yet localised patterns of fauna, at the landscape scale, managing the production forest matrix as a 

habitat mosaic is recommend. This would allow opportunities for adaptive management to be applied. 

Directions for future research that would assist in better understanding the ecology of saproxylic beetles 

and better ensuring their conservation in the matrix are also suggested. 
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7.1 OBJECTIVES OF THIS CHAPTER 

This thesis is the first study in Tasmania to comprehensively document the saproxylic 

beetle fauna. It provides important baseline data from which future studies can build 

upon, and thus has made a significant contribution to the previously limited knowledge 

of saproxylic beetles in Tasmania's wet eucalypt forest. The study investigated 

relationships between saproxylic beetle assemblage compositions and forest ecological 

processes (wood decomposition and forest succession), and where possible the 

biological attributes and habitat requirements of individual beetle species. The study 

however is albeit still limited given the sheer diversity of this fauna. While information 

of the biology and habitat requirements of the more common species was gained, the 

majority were either too 'cryptic'; collected in too few numbers; and/or not previously 

known to be definite about their life history and habitat requirements. Therefore, a more 

precautionary approach has been taken to interpolating the findings to inform discussion 

on the longer-term implications of standard clearfell harvesting practices on the 

conservation of saproxylic beetles. 

The intent of this chapter was to synthesise the results of the preceding chapters and 

interpret their implications for forestry within the context of current conservation 

management strategies currently adopted or explored by Tasmanian government 

agencies. This chapter has been written as a discussion paper, where by the main results 

of the thesis, and their flow-on ecological implications, are clearly stated at the 

beginning. These are then discussed with respect to: the importance of off-reserve 

conservation management; multi-scaled approach to managing the production forest 

matrix; and managing the structural components of the forest, with particular focus on a 

temporal approach to conservation planning, for the conservation of saproxylic beetles 

in wet eucalypt forests. Throughout this chapter, further research needs are identified. 

Many forests, including wet eucalypt forests in Southern Tasmania, are multiple-use 

forests managed for many values that include conservation values, which has been the 

focus of this thesis. But such forests are primarily managed for wood production. It 

should be noted that altering systems by changing CWD dynamics, or even increasing 

the amounts of dead wood to mitigate habitat loss could potentially lead to 

unprecedented increases in populations of certain wood feeding species resulting in pest 
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outbreaks. As seen in Scandinavia, declines or alterations in certain saproxylic 

invertebrates can lead to increases in bark beetle pest outbreaks (Heliovaara and 

Vaisanen 1984; Weslien and Schroeder 1999). While this has not been the scope of this 

thesis, it important to be aware of this issue when managing for the different values of 

these forests. 

7.2 SUMMARY OF THESIS RESULTS 

As written in the preceding chapters, a survey of saproxylic beetle fauna associated with 

decomposing Eucalyptus obliqua logs of an intermediate decomposition stage was 

undertaken, and the assemblage compositions between large and small diameter logs in 

mature-unlogged and logging regenerated forests compared. Assemblage relationships 

with log decomposition processes (rot types), and to some extent forest succession and 

logging disturbance processes were explored. 

The main results and ecological implications of them are: 

1. Three hundred and sixty saproxylic beetle species from 54 families were collected 

from 54 large (1 OOcm) and small (30-60cm) diameter Eucalyptus obliqua logs of an 

intermediate decompositon on stage in wet eucalypt forests (Chapter 3). Species 

occurrence and abundance varied greatly; with species being highly mobile and 

wide ranging, occurring in most study sites, to flightless, collected only from a 

particular site (Chapter 3,6). This clearly indicates that decomposing Eucalyptus 

obliqua logs at an intermediate decomposition stage are an essential habitat for an 

exceptionally species rich and functionally diverse fauna that have a diverse range 

oflife histories and dispersal capabilities. Some species are dead wood habitat 

generalists, while others have specialised habitat requirements making use of the 

range of ecological niches provided by dead wood heterogeneity. 

2. Rotten wood types formed by particular log decomposition processes significantly 

vary between logs of different sizes, and to some extent they vary between forests of 

different age/disturbance histories, and among different sites (Chapter 4). It is 

apparent that dead wood is a highly heterogeneous resource that is maintained by 

the ecological processes such as disturbance, regeneration and decomposition 

processes. The type of decomposition processes within a log seems to depend on the 
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logs' history: as a living tree, during senescence, as a dying tree, and as a log on the 

forest floor (Chapter 4). The greater prevalence of inner brown heartwood rot within 

large diameter logs probably relates to an already present butt or heartrot within the 

senescent and dying tree. 

3. Saproxylic beetle assemblages differ between large and small diameter logs 

(Chapter 5& 6), and for some species this can partly be attributed to their 

association to certain rotten wood types/log decomposition processes (Chapter 5). 

This implies that for some species, their occurrence depends in part on the types of 

decomposition processes and resultant rotten wood types present within that log at 

that point in time. 

4. Saproxylic beetle assemblages significantly differ between large and small diameter 

logs, with several species indicative oflarge diameter logs, while only one species 

Enneaphyllus aeneipennis indicative of small diameter logs (Chapter 5 & 6), 

meanwhile species richness standardized by sampling effort did not differ. This 

implies that small diameter logs can support a rich fauna of saproxylic beetles equal 

to that oflarge diameter logs, though this fauna comprises species with more 

general habitat requirements. Whereas large diameter logs have unique habitat 

qualities as reflected by exclusive or greater occurrence and abundance of certain 

species in large diameter logs. 

5. Saproxylic beetle assemblages significantly differ between forests of different 

age/disturbance histories, yet species richness does not differ between forest types 

(Chapter 6). This implies that logs left after a single clearfell, burn and sow 

harvesting event can support a rich saproxylic beetle fauna equivalent to that within 

mature unlogged forests, though some of the species are likely to be mid-early 

successional forest specialists and/or are adapted to withstand more open and 

exposed environements. 

6. Some apparent mature forest species were present in large diameter logs within 

logging regenerated forests, but were absent from small diameter logs of the same 

forest type. This suggests that some species are responding to the microclimate of 
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the log per se rather than the forest per se; and, given large diameter logs. provide a 

greater buffer against exposure and dessication, sucg logs could potentially play an 

important role in re-establishing populations of certain species, including mature 

forest specialists, to a regenerating disturbed forest (Chapter 6). 

7.3 ADEQUACY OF THE RESERVE SYSTEM FOR SAPROXYLIC 

BEETLE CONSERVATION IN TASMANIA 

Conservation of forest biodiversity in Tasmania is partially reliant on a network of 

formal and inf~rmal reserves. Large tracts of forests are protected in World Heritage 

Area, National Parks, Forest Reserves and additional reserves were established under 

the Regional Forest Agreement (RFA) (Commonwealth of Australia 1997). The RFA 

adopted the JANIS criteria to ensure the establishment of a Comprehensive Adequate 

and Representative (CAR) forest reserve system, aimed at permanently protecting 

representative areas of the various vascular plant communities, their associated 

biodiversity and natural ecological processes. Note though, the adequacy of vascular 

plant communities as surrogates for saproxylic biodiversity has yet to be assessed. 

Moreover, several studies have demonstrate a lack of congruence between the 

distributions of invertebrate species or communities and vegetation communities (e.g. 

Cranston & Trueman 1997; Oliver et al. 1998; Taylor et al. 1994; c.f. Yen 1987; York 

1999a). 

Although reserves clearly play a crucial role in biodiversity conservation, in isolation 

they are likely to be inadequate to maintain saproxylic beetle biodiversity without 

concurrent conservation efforts in areas of forest available for timber harvesting 

(Lindenmayer & Franklin 2002). This is referred to as off-reserve management, where 

the production forest matrix is managed for conservation as well as for timber and other 

forest products (Lindenmayer & Franklin 1997, 2002). 

There are two particular reasons to advocate off-reserve management for saproxylic 

beetle conservation. First, it is plausible that many of the species collected in this study 

would also have limited distribution ranges, as local endemism is typical of many 

flightless log dwelling Tasmanian invertebrate species (e.g. Mesibov 1994; Mesibov & 

Ruhberg 1991). Much of their restricted distributions would then lie outside the CAR 
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reserve system, and in areas subject to intensive forestry practices that directly threaten 

their habitat (Grove & Meggs 2003; Meggs 2003). This has already been well illustrated 

by three threatened Tasmanian saproxylic stag beetle species (Hoplogonus simsoni, 

Lissotes latidens and Lissotes menalcas) (Tasmanian Threatened Species Protection 

Act, 1995). This work involved extensive field surveys to define distribution and habitat 

requirements and modelling to predict their potential range (Meggs 2003; Meggs & 

Munks 2003; Meggs et al. 2003; Meggs & Taylor 1999). Managers are thus able to 

consider the conservation of these species when developing timber-harvesting plans. 

However, the resources required to enable this were substantial, and accurate 

determination of the distributional range for most saproxylic species is infeasible. 

From an invertebrate perspective, Tasmania comprises distinct biogeographical zones, 

separated by faunal breaks (Mesibov 1994). The topography and geology within and 

between these zones is highly variable, with high (> 1 OOOm) mountain ranges and 

intersecting rivers characterising the landscape. Considering that around 25% of 

saproxylic beetle species collected in the present study seemed to disperse by 'crawling' 

(Section 3.3.2.4), these geographical features almost certainly act as barriers to dispersal 

for many species. Furthermore, collection records of specimens held at the Australian 

National Insect Collection (CSIRO Entomology, Canberra) and Tasmanian Forest 

Insect Collection (Forestry Tasmania, Hobart) also support this inference in showing 

that some species have only been collected within the Southern Ranges bioregion. 

Therefore, if species are responding to additional factors not reflected purely by 

vegetation changes, such as fine-scale biogeographical boundaries (as illustrated by 

genetic studies of a saproxylic collembolan species in south east New South Wales 

(Garrick et al. 2004), then the reserve system alone will not cater for the full range of 

saproxylic beetle species native to the wet eucalypt forest type. 

The second reason to advocate off-reserve management for conservation of saproxylic 

beetle biodiversity relates to their apparent requirement for disturbance events such as 

wildfire to maintain habitat (see Section 7.2). Wildfire ensures the maintenance of a 

range of different forest successional stages, and their flow-on ecological processes, and, 

hence continual availability of different dead wood types in different forest conditions. 

It is currently unknown whether reserves within the existing reserve system are large 
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enough to fulfil these requirements. In any case, it is highly likely that the integrity of 

reserves would greatly benefit from a surrounding 'permeable' matrix to ensure the 

availability of source populations for recolonisation after disturbance, and to ensure 

connectivity between reserve areas and the movement of saproxylic beetles 

(Lindenmayer & Franklin 2002). With little assessment as to whether the reserve system 

is adequately conserving areas within the range of all species, or protecting the natural 

heterogeneity of dead wood necessary to maintain populations, off-reserve management 

within the logging matrix thus seems an essential element of conserving saproxylic 

beetle species. 

7.4 ADEQUACY OF STANDARD CLEARFELLING PRACTICES 

FOR SAPROXYLIC BEETLE CONSERVATION 

The most concerning potential impact of forest management practices on biodiversity 

relates to habitat loss and habitat fragmentation that disrupt species eniigration and 

colonisation processes such that localised populations of a given species become 

isolated and more prone to extinction events (Bennett 1999). For saproxylic organisms, 

habitat loss will arise from a reduced availability of suitable dead wood types, a 

phenomenon that occurs at the stand level. Because some species were associated with 

large diameter logs, or had only emerged from such logs, alpeit in low numbers, 

harvesting practices that appear inadequate for saproxylic beetle conservation include 

operations that lead to: 

the elimination of oldgrowth structures, in particular large diameter logs; 

the cumulative reduction in dead wood volumes over time; and 

disruption to dead wood recruitment processes during forest regeneration. 

7.4.1 Loss of oldgrowth structures - large diameter logs 

The study showed that large diameter logs play a specific ecological role, different from 

that of small diameter logs (see Section 6.4.2), and so the absence of these structures 

(after successive rotations) would likely affect the species that showed a preference for 

these logs and/or the rotten wood types present within such logs (see Section 5.4 and 

Section 6.2.2.2). While only tens of species were found indicative of large diameter logs 

for whichever reason, this is likely a gross underestimate given that this could only be 

determined for common species. Four beetle species (Coss onus simsoni, Dryophthorus 
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TFIC sp 01 , Pycnomerus TFIC sp 02 and Prostomis atkinsoni) were particularly 

highlighted as being of conservation importance, based not only on a rotten wood type, 

and thus large diameter log association, but also on their apparent low dispersal rates 

and because each species belongs to a genus with European representatives which were 

once common and widespread but which are now regionally threatened with extinction 

(see Section 5.4). 

The loss oflarge diameter logs could severely compromise the effectiveness oflogging 

regenerated forests as a permeable matrix, since these structures appear to be important 

natural spatial and temporal stepping stones that allow specialist species to disperse, or 

persist under the more open forest conditions prior to canopy closure (Section 6.2.2.3). 

This assertion is based on the scenario that certain species disperse through the matrix 

and need stable microclimatic conditions to successfully breed, but can do so whenever 

such conditions are provided by the log habitat, regardless of the condition of the forest. 

Reduction in numbers, or elimination, oflarge diameter logs after CBS harvesting could 

negatively affect the recolonisation or dispersal of stable microclimate specialists 

through regenerating forest. Thus, it would be important for future studies to determine 

whether apparent mature forest saproxylic beetle specialists respond to forest 

microclimate conditions, log microclimate conditions, or both. 

7.4.2 Cumulative reduction of dead wood volumes 

Predictive models indicate there will be an over two-fold reduction of dead wood 

volumes in forests successively harvested at 100-year intervals by clearfelling compared 

to stand-replacing wildfire of the same periodicity (Grove et al. 2002). Increased 

pressures may also be placed on dead wood resources should recent proposals to utilise 

them for biofuel eventuate (Grove et al. 2002). In the absence of mitigation measures, 

the cumulative effects of these practices at a local to forest regional scale would 

increase the likelihood that distance between suitable dead wood types is greater than 

the dispersal ability of dependent species, especially short-range dispersers. Thus 

leading to fragmentation effects at the local scale and subsequent local population 

species extinctions. If such practices extend throughout the matrix, the possible many 

local population extinctions would lead to a greater chance of regional extinction for a 
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given species. Species most likely to be affected by this are short-range dispersers (see 

Section 3 .1, Schiegg 2000a). 

From other studies, short dispersive movements seems a common trait of many log 

dwelling saproxylic animals; e.g. Tasmanipatus barretti -disperses up to 20m net/ year 

(Barclay, 2000 -cited in Fox et al. 2004), several saproxylic beetles species disperse 

<lOOm (Knutsen et al. 2000; Starzomski & Bondmp-Nielsen 2002; Sverdrup-Thygeson 

& Midtgaard 1998); and as indicated by the high relatively proportion of flightless taxa, 

similar traits are likely to be apparent for saproxylic beetles in wet eucaypt forests. 

Moreover, these saproxylic beetles have evolved in forest where dead wood volumes 

are naturally high (reviewed in Woldendorp et al. 2002a) and decay rates are low (Yin, 

1999 - cited in Grove et al. 2002), and thus some species would have had less selection 

pressure to evolve long inter-patch dispersal abilities. 

At this stage, no relationships between dead wood amounts (number oflogs or log 

volumes) and saproxylic beetle populations have been established in wet eucalypt 

forests. However, there are a number indications that less dead wood could be an issue 

for conservation management in the future if such a situation occurs in the absence of 

mitigation measures. These include: 

• Decreasing volumes of dead wood increases the chance of fewer dead wood 

types, especially those that are naturally rare dead wood types, thus affecting 

dependent species. 

• European forestry provides many examples that demonstrate a relationship 

between decreasing volumes of dead wood, or increasing spatial distance of 

dead wood types, with local species extinctions of saproxylic beetles ( Schiegg, 

2000- dead wood, Jonsell et al. 1999; Jonsson et al. 2003; Martikainen et al. 

2000; Siitonen 1994a; Sippola et al. 1998; Sverdrup-Thygeson & Midtgaard 

1998; Thunes et al. 2000-wood decay fungal sporocarps). 

• Several studies elsewhere (e.g. Martikainen et al. 2000; Sippola et al. 1998; 

Siitonen et al. 2000), including in the tropical forests of far North Queensland 
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(Grove 2002c), show that forest stand volumes of dead wood as a strong positive 

correlate of saproxylic beetle speces richness. 

Future autecological studies should focus on understanding the population structure of 

short-range dispersing saproxylic beetle species with high habitat specialisations (e.g. 

specific to a certain decomposition state within a decomposing log), and determine how 

they move through, and perceive the natural forest matrix and previous fire histories 

(e.g. Meggs & Munks 2003; Meggs et al. 2003; Schmuki 2003; Watson 2003; Nash 

2004) 

7.4.3 Disruption to dead wood recruitment processes 

Standard CBS silviculture disrupts the dead wood recruitment process, thus resulting in 

a discontinuity of suitable dead wood types within the stand. Clearfelling usually fells 

(and mostly removes) all trees in a forest stand in a single operation (Hickey & Savva 

1992 ). Therefore, aside from the input of self-thinned trees during forest regeneration 

(Jacobs 1955), the bulk oflarger dead wood would mostly arise from the initial 

harvesting event: severely burnt harvesting debris all of which commenced 

decomposition and log succession under similar conditions - with open exposure and 

associated extreme microclimatic conditions (see Section 4.4.4). This fundamentally 

differs from dead wood recruitment processes in naturally disturbed forests. Even after 

stand-replacing wildfire events, standing and fallen dead tree volumes are high, and 

survival of a proportion of living trees is also common (Hickey 1994; Hickey et al. 

1999b). This ensures a continual supply of dead wood for many decades (Grove et al. 

2002; Woldendorp et al. 2002a). 

Since dead wood arising from a CBS harvesting event is synchronous, with limited 

continual dead wood recruitment, a temporal discontinuity of suitable dead wood types 

can be expected to prevail: a type of fragmentation effect in time. For example, many 

species collected in this study were specialists of decomposing large diameter logs that 

contained brown inner heartwood rotten wood types (Section 5.4). As log 

decomposition proceeds, the habitat quality for these specialist species inevitably 

diminishes. If all dead wood types within the forest stand, and possibly in surrounding 

forest stands, are of the same decomposition stage, then this species must disperse 
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further to find a new supply of suitable dead wood, which for flightless species, is likely 

to be beyond their dispersal range. Disruption of dead wood recruitment processes may 

lead to a reduction in unburnt dead wood undergoing its initial stages of decomposition 

in relatively moist and closed forests, and so this may be detrimental to saproxylic 

beetles dependent on this type of dead wood. While specialists of this dead wood have 

not been the subject of this study, such dead wood most likely undergoes specific fungal 

and insect successions (Section 4.4.4), and so could potentially represent a unique dead 

wood type for subsequent successions of saproxylic beetles (see Section 6.4.1.2). 

Simply extending logging rotation periods is unlikely to be sufficient to conserve 

saproxylic beetles unless stand structures are also retained. This is evident from the 

extensively managed forests of northern Europe, where the assemblage compositions of 

saproxylic beetles and flies in mature aged managed forests differs significantly from 

similar aged semi-natural or oldgrowth forests (Martikainen et al. 2000- southern 

Finland; 0kland 1994; 0kland 1996b - Norway; Sverdrup-Thygeson 2002), and this 

difference correlates with the stand's dead wood quality and quantity (includes wood in 

all decay stages, especially large diameter logs at late stage of decay). Consequently, 

conservationists in Europe consider 'ecological continuity' (defined in Norden & 

Appleqvist 2001) as a prime criterion for the selection of forest reserves for biodiversity 

conservation (see Rolstad et al. 2002). Because ecological continuity relates to the 

history of the forest, which is difficult to discern from current conditions, identifying 

indicators of this attribute is being given increased attention (e.g. As 1993; Jonsell & 

Nordlander 2002; Sverdrup-Thygeson 2001; Sverdrup-Thygeson & Linderimayer 

2003). Identifying particular saproxylic beetle species indicative of ecological 

continuity in wet eucalypt forests is likely to become an issue for future conservation 

management. 

7.5 RECOMMENDATIONS- Implementing dead wood and tree 

retention strategies within the framework of multi-scaled 

and adaptive management 

In coupes planned for harvesting, the retention of trees and the protection of rotting logs 

is prescribed to mitigate habitat loss for several hollow-dependent and log dependent 

threatened animal species (Threatened Fauna Adviser 2001). Though, as suggested by 
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this thesis, such prescriptions need to be applied more widely and not only in response 

to threatened species conservation. This is warranted because of the exceptionally high 

and yet still unknown diversity of saproxylic beetles, the likely limited distribution 

range and dipersal ability of many species, the limited life-history information known, 

and their association with a habitat that requires decades, if not centuries to develop. 

Restoring certain dead wood types in the forests would obviously take at least the same 

length of time that was required for their development, including the successive 

processes of tree growth, heartrot decay, tree death and log decomposition (see Section 

4.4.3). If a break in habitat continuity arises, it would be at least a century before such 

dead wood types could be renewed, and even then this may not be possible as breaks in 

continuity may result in local extinction of particular wood decay fungi that are integral 

in the formation of particular rotten wood types (e.g. Bader et al. 1995; Sippola & 

Renvall 1999). 

Tree retention should include retaining both mature-age and regrowth trees when felling 

mature multi-aged forests. Mature trees are the main generators of dead wood (Grove 

2002). Retaining these structures not only ensures the presence of mature (large) 

structures, but because they continue to shed relatively large volumes of wood 

throughout their senescent years, they also better ensure that suitable dead wood types 

are in sufficient proximity (connectivity and continuity) to each other throughout the 

silvicultural cycle. Meanwhile, regrowth trees should be allowed to mature, undergo 

natural heartrot decay processes, and fall down at their own rates, thereby guaranteeing 

the persistence of mature (large) structures and their associated microhabitats within 

appropriate time frames. 

The requirements for tree retention and dead wood retention should employ a range of 

volume prescriptions, modelled on those naturally occurring under natural disturbance 

regimes (Lindenmayer & McCarthy 2002; Lindenmayer 1999). Some early data 

demonstrate that natural dead wood levels in wet eucalypt forests are high, but vary 

between 203 and 1235 m3 ha-1 (reviewed in Woldendorp et al. 2002a). This variation 

depends largely on wildfire intensity, time since last wildfire, interval times between 

previous wildfire events, and site productivity (Grove et al. 2002). While the retention 

of 'semi-natural' dead wood volumes is possible, given that high volumes oflogging 
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debris are produced from harvesting a mature forest stands (see Section 2.9), the greater 

challenge will be retaining sufficient numbers of living standing trees to ensure 

continuity of dead wood habitat over time. 

In Tasmania, a number of alternative silvicultural systems that include tree retention 

strategies are currently in development and review (Hickey et al. 2001). These have 

been developed in concordance with the similar biodiversity and conservation concerns 

in North American and Scandinavian modem forestry (Franklin et al. 1997; Kolstrom & 

Lumatjarvi 2000; Ranius et al. 2003; Sullivan et al. 2001) in terms of improved stand 

structure complexity and future dead wood supply. The alternative silvicultural systems 

are, in part, based on a growing understanding of the ecology and dynamics of the 

Tasmanian wet forest system, and most have some degree of green tree retention. 

Retained trees may be dispersed throughout the harvested area, aggregated, or 

concentrated in strips. These systems are being evaluated on their ability to allow 

continued wood production, on whether they retain oldgrowth species and structures at 

the stand level, on their associated safety and increased fire risks, and on their social 

acceptability (Forestry Tasmania 2004; Hickey et al. 2001). 

Selection of silvicultural systems and the spatial and temporal arrangement of 

harvesting coupes is a major challenge for modem forestry and biodiversity 

conservation. This challenge could be met through modelling forest dynamics and 

species biological data (e.g. Kolstrom & Lumatjarvi 2000 - Sweden). However, 

understanding how stand structure and dead wood dynamics relate to the different 

disturbance regimes (natural and silvicultural) in wet eucalypt forests is still in its 

infancy (Grove et al. 2002; Su et al. 2001). In addition, there is still a dearth of 

biological and ecological information about individual species' habitat requirements, 

habitat specificity, and dispersal abilities. The scale at which saproxylic beetles perceive 

patch heterogeneity (Mcintyre & Wiens 1999; 0kland et al. 1996b), and how they 

respond to forest conditions and ecological processes associated with disturbance events 

(e.g. wildfire), is also unknown for most individual species. Because saproxylic beetles 

have evolved to cope with forest conditions and dynamics in the absence of timber 

harvesting, it is possible that determining the dispersal ecology of a few key species of 

different life histories could help. Hopefully this approach would facilitate the 
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conservation of a wide range of dead wood dependent tax.a within the production forest 

matrix. 

Wet eucalypt forests are naturally dynamic ecosystems that occur in a landscape of 

varying geomorphology and topography. Across the landscape, the forest comprises a 

mosaic of fire-disturbed stands of different successional ages and stand structure 

complexities, and these aspects of the forest continually change over time (Hickey et al. 

1999b; Lindenmayer et al. 2000a; Lindenmayer et al. 1999a). Such changes are in 

response to interdependent ecological processes that drive forest dynamics, such as 

disturbance events, forest regeneration and succession processes at the stand-level scale; 

and tree growth, tree death and wood decomposition processes at the stand-structure 

scale. Theoretically, species that have evolved within this dynamic forest ecosystem are 

adapted to, and thus are maintained by, the spatial and temporal heterogeneity at these 

different scales (Bennett 1999; Haila 1999). 

Employing a range of the most promising silvicultural regimes seems the most 

precautionary approach to the conservation of saproxylic beetles (and many other taxa) 

within the production forest matrix (Lindenmayer & Franklin 2002). This would ensure 

a degree of forest stand structural complexity and heterogeneity over a range of spatial 

and temporal scales. This approach also spreads the risk of adopting a single 

silvicultural practice that could have unforeseen detrimental effects. It also allows forest 

management to be more adaptive (Lindenmayer & Franklin 2002; Lindenmayer et al. 

2002). Treating each stand as a replicate within a silviculture experiment enables 

managers to test various hypotheses, with adequate replication, at the scale at which 

forest operations and stand level ecological processes operate. Such hypotheses may 

include determining how saproxylic beetle assemblages in forests of similar ages 

respond to the ecological processes (e.g. forest regeneration and succession) associated 

with wildfire compared to those of the various silvicultural systems. This approach 

could provide conservation management with a tool for observing, studying, 

understanding, and feeding back ideas for developing forest practices that better meet 

the goals of ecologically sustainable forestry. 
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7.6 SUMMARY AND CONCLUSIONS 

Humans have made innumerable changes to the forest ecosystem, and they continue to 

do so as demands for wood resources increase. The effects of European forestry provide 

a striking example of how altering forest ecological processes and structural 

composition can lead to the extinction of a large, albeit cryptic, component of the 

forest's biodiversity. Production forestry in Tasmanian wet eucalypt forests is entering a 

phase in which management practices could either prevent, or if inappropriate, then 

cause, such ecological changes and associated species extinctions. However, obtaining 

knowledge of the saproxylic beetle fauna, and other dead wood dependent organisms, 

the forest's natural disturbance dynamks and how these relate to stand structural 

complexity remains an ongoing process. 

This thesis is the first comprehensive study of saproxylic beetles associated with 

Eucalyptus obliqua logs in Tasmanian wet eucalypt forests. Though the study was 

confined to Tasmania's Southern Ranges bioregion, the ecological outcomes are still 

relevant to wet eucalypt forests in other bioregions, including those in mainland 

Australia. The high diversity of saproxylic beetles occurring within a small 

geographical range (1 Okm2 area), and the high variability in species composition among 

forests of different age and disturbance histories, and in different sized logs, all support 

the need for implementing a precautionary and multi-scaled ecosystem approach to 

managing dead wood (Grove et al. 2002; Lindenmayer 1999). Based on the thesis 

findings, harvesting practices that lead to the elimination of oldgrowth structures (in 

particular large diameter logs), cumulative reductions in dead wood volumes over time, 

and disruption to dead wood recruitment processes during forest regeneration, are 

identified as key threats for saproxylic beetle conservation within the production forest 

matrix. 

At the coupe level, recommendations to management focus on retention of dead wood, 

especially large diameter logs after harvesting, and retention of living trees for provision 

of oldgrowth structures undergoing natural decay processes and natural rates of treefall. 

This would provide a continuous supply of dead wood throughout the rotation, support 

unique microhabitat (rotten wood) types necessary for specialised species, and 

potentially play an important functional role in the recolonisation of saproxylic 
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communities after stand level disturbance. At the landscape level, recommendations 

focus on employing a range of silvicultural regimes modelled on natural disturbance 

regimes to emulate the natural range of forest age, and stand structural complexity and 

heterogeneity over a range of spatial and temporal scales. These regimes should be 

employed within the :framework of adaptive management, whereby biota are monitored 

to assess how well they respond to such regimes. Results from this, the results and ideas 

of such assessments can feed into developing and refining forest practices that better 

meet the goals of ecologically sustainable forestry. 

The conservation of saproxylic beetles in wet eucalypt forests requires an increased 

awareness of saproxylic beetles among the wider community, conservationists and 

forest managers. Conservation of saproxylic beetles in Tasmanian wet eucalypt forests 

can benefit not only from the lessons learnt from the relatively dire situation in northern 

Europe, but can also benefit from newly emerging scientific-based paradigms that are 

being used to develop modem forestry in Australia and elsewhere. Hopefully the 

findings in this thesis can contribute towards meeting the goals of ecologically 

sustainable forestry, and the continued survival of Tasmania's saproxylic beetle species. 
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