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ABSTRACT 

 

It is widely accepted that insulin increases total blood flow to muscle. This lab has 
demonstrated in a number of studies that insulin also recruits capillary flow in muscle by 
an unknown mechanism. This hemodynamic response to insulin is linked to its metabolic 
effects as it increases the access of glucose and insulin to muscle cells. It is possible that 
insulin may act on endothelial or vascular smooth muscle cells to release a vasodilator 
(NO, adenosine, prostaglandins or endothelium-dependent hyperpolarizing factor) 
causing capillary recruitment. 

 
 The aim of this thesis was to look at possible mechanisms underlying insulin’s 

hemodynamic and metabolic action in muscle. This was examined during 
hyperinsulinemic euglycemic clamps in anesthetized rats. To test the agents affecting 
insulin action at the local muscle level, a novel technique was developed wherein the 
epigastric artery (a branch of the femoral artery) was cannulated and test substances were 
infused into one leg to avoid any systemic effects; the contralateral leg served as control. 
Femoral artery blood flow and metabolism of exogenously infused 1-methylxanthine (1-
MX) as an index of capillary recruitment were measured in both legs for comparison.  

 
There is some evidence that insulin’s hemodynamic action on muscle is mediated by 

nitric oxide-cGMP pathway. T-1032, a phosphodiesterase-5 inhibitor, was infused 
systemically, to see whether NO-dependent insulin-mediated capillary recruitment in 
muscle could be enhanced by inhibiting cyclic GMP degradation. T-1032, however, 
produced an acute insulin resistance. In addition, NO production was enhanced using two 
endothelium-dependent nitro-vasodilators methacholine and bradykinin. Methacholine 
infused systemically caused MAP to fall and blood glucose to rise, resulting in a lower 
GIR. Local infusion of methacholine but not bradykinin in one leg significantly increased 
capillary recruitment and insulin-mediated glucose uptake.  

 
Furthermore, a NOS inhibitor, L-NAME, infused locally in one leg had no effect on 

insulin action in muscle. Systemic L-NAME infusion partially blocked the insulin-
mediated capillary recruitment without any effect on insulin-mediated glucose uptake. On 
the other hand, local infusion of calcium-dependent potassium channel (KCa) blocker TEA 
in one leg, almost completely blocked insulin’s effects on capillary recruitment and 
attenuated insulin-mediated glucose uptake.  

 
Collectively these findings indicate that the action of insulin on muscle is the net 

result of a combination of effects. There is evidence for involvement of systemic NO and 
local KCa channels in insulin-mediated capillary recruitment. Hence, modulation of either 
of these components could potentially alter the hemodynamics and metabolism in muscle.  
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CHAPTER 1 

 
INTRODUCTION 

 

 

It is well established that insulin has an overall effect to promote cellular uptake and 

storage of metabolic fuels, but it is the recognition of the key role that insulin plays in 

vascular physiology and pathophysiology, which has spurred an explosion of 

investigation of its vascular effects during the past 15 years. There has been an enormous 

interest in insulin action in muscle due to the fact that it is impaired in diabetes. There is a 

marked decrease in insulin-mediated glucose uptake in obesity, type II diabetes and in 

patients with essential hypertension [1].  

 

Interest in the vascular actions of insulin was stimulated by the seminal research of 

Alain Baron and coworkers which focused on insulin, its effects on total flow and glucose 

uptake in skeletal muscle. Their observations have been extended by Rattigan and Clark 

[2] with emphasis on insulin’s microvascular action in muscle.  

 

1.1 Importance of microvascular blood flow in muscle 

 

 Skeletal muscle comprises 40% of total body mass in man [3] and represents the 

largest vascular bed of the body- one of the most important hemodynamic circuits in the 

systemic circulation [4].  

 

The distribution of flow within the capillary network of muscle has been assumed to 

be regulated by pre-capillary sphincters, whose all-or-none behaviour determines the 

functional surface area [5]. Lindbom [6] examined the microvasculature of rabbit 

tenuissimus muscle by intravital microscopy and demonstrated that stepwise reduction of 

perfusion pressure during exposure to the low oxygen environment resulted in marked 

compensatory arteriolar dilatation. They suggested that the flow to the muscle capillaries 

was controlled by the terminal arterioles, although it was also dependent on the resistance 
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of the more proximal arteriolar segments [6]. The terminal arterioles are reported to have 

the highest tone in vivo [7], have dense sympathetic innervations [8] and can readily close 

their lumen [7, 9]. 

 

Locally, the vasorelaxant substances synthesized by vascular endothelium are 

endothelium-derived nitric oxide, endothelium-derived hyperpolarizing factor and 

prostacyclin as well as the potent vasoconstrictors, angiotensin II and endothelin [10]. 

Imbalance between endothelial mediators has been implicated in type II diabetes, 

hypertension and atherosclerosis [11]. 

 

1.2 Effects of insulin on skeletal muscle blood flow 

 

It is well accepted that insulin causes GLUT4 translocation, thus increasing the 

facilitated diffusion of glucose into the myocytes. Since this process is the rate limiting 

step for insulin-stimulated glucose uptake into the muscle cell, it is important that insulin 

and glucose must be delivered to muscle cells for insulin to interact with insulin receptor 

on plasma membrane and to increase glucose uptake. To accomplish this, it has been 

suggested that insulin increases the blood flow to muscle thus improving the substrate 

delivery (of glucose) as well as increasing its own access. Recent data from Vincent et al 

[12] suggest that insulin has two separate hemodynamic actions, first, to cause capillary 

recruitment, and second, to increase the total blood flow to muscle. The increase in 

capillary recruitment is independent of total flow [13] (discussed in section 1.4). 

 

Baron and his colleagues [14-19] pioneered the concept that insulin acts as a 

vasodilator and can thereby control access of glucose as well as insulin to skeletal muscle. 

The total flow increase by insulin was demonstrated in lean, obese and type II diabetics 

by Baron and coworkers [20]. The dose response curve for insulin action to increase leg 

blood flow in insulin resistant obese patients showed a marked right shift, with a 2 to 3-

fold rise in EC50 (140μU/ml) as compared to leans. A 17-fold rise (700μU/ml) was 

required to double the leg blood flow in type II diabetic patients. They have shown that 

insulin decreases vascular resistance in skeletal muscle, that this vasomodulating action is 
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skeletal muscle-specific, occurs at physiological [insulin] and is impaired in obese, type II 

diabetic and hypertensive patients.  

 

The effect of glucose on insulin-mediated increases in blood flow in muscle has also 

been investigated [21]. Vasodilatation was reported to be greater when glucose infusion 

was given with insulin rather than with insulin alone [22]. In a separate study, Baron et al 

[23] demonstrated that this change in blood flow is not the effect of hyperglycemia per se. 

By inducing a state of insulinopenia with somatostatin infusion in subjects after an 

overnight fast, and clamping the glucose concentration at different levels, they 

demonstrated that hyperglycemia per se does not affect the blood flow. In contrast, Veen 

et al [24] have reported that glucose has a dose-dependent vasodilating effect in forearm, 

that is probably via a direct action of glucose and is not modified by local 

hyperinsulinemia. 

 

Other researchers have also shown varying increases in blood flow in response to 

insulin stimulation [21, 25-27]. This insulin-mediated increase in blood flow has been 

shown both in humans as well as rats in various experimental situations. However, some 

groups failed to find a change in flow in response to insulin [28-30].  The mode of 

infusion may have been important as vasodilatation is greater with systemic than with 

local infusion of insulin. Cardillo et al 1998 [31], demonstrated in humans that systemic, 

but not local hyperinsulinemia induced vasodilation in the forearm.  

 

Since the hemodynamic effects of insulin are most pronounced at supra-

physiological concentrations of insulin or with physiological insulin administered over 

extended periods, the relevance of total blood flow increase by physiological insulin in 

skeletal muscle has remained controversial. It remains to be proved whether this increase 

in total blood flow has any physiological significance in the context of an increase in 

muscle glucose uptake. Thus skepticism has remained regarding the importance of blood 

flow reductions per se mediating insulin resistance in vivo. 
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1.3 Insulin-mediated blood flow and glucose uptake 

 

How might total flow affect glucose uptake?  

 

It has been hypothesized that insulin’s vasodilatory and metabolic actions are 

functionally coupled [32]. Glucose uptake is limited either by cellular permeability to 

glucose or flow, as glucose uptake is calculated based on Fick principle which takes into 

account both the arterio-venous glucose difference (extraction) and total limb blood flow. 

As stated by Baron [18] in the fixed capillary area model, in the absence of a permeability 

barrier, the extraction of glucose will be 100%, with the limiting factor being the flow, 

meaning that an increase in flow could increase the glucose uptake. If, however, the 

permeability is low, an increase in the flow will have no effect on the rate of glucose 

uptake. The true physiological situation is probably intermediate between these two 

extreme situations. It is apparent that an increase in blood flow increases the velocity (of 

blood flow), thereby decreasing the transit time of glucose through capillaries so in effect, 

the extraction of glucose from capillaries to muscle cells is decreased, therefore, an 

increase in flow will result in a very small increase in glucose uptake.  

 

In vitro studies in isolated perfused rat hindleg have reported glucose delivery to be 

an important determinant of muscle glucose uptake. Schultz et al [33] demonstrated that 

increase in glucose uptake occurred both with an increase in blood flow at constant 

glucose concentrations and with an increase in glucose delivery at constant blood flow. 

Their study looked at the basal glucose uptake more from delivery point of view as there 

was no insulin added to the perfusate. Grubb and Snarr [34] demonstrated in perfused rat 

muscle preparations that both the glucose concentration and the flow rate have influence 

on the glucose uptake by skeletal muscle at a fixed insulin concentration which gave 

muscle a near maximal glucose permeability. They have shown that increasing the flow 

beyond the in vivo resting flow at constant arterial glucose resulted in a hyperbolic 

relationship between blood flow and glucose uptake.  
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Also in some in vivo studies an increase in glucose uptake was found with an 

increase in flow [35-37]. Buchanan et al [36] reported that the increase in blood flow led 

to an increase in glucose uptake when angiotensin II (AII) infusion was superimposed on 

a hyperinsulinemic euglycemic clamp (physiological and supra-physiological insulin 

concentration) although the insulin concentration was significantly higher in the AII + 

insulin group than in the insulin or AII group alone.  

 

In contrast to the aforementioned studies, others have observed no association 

between insulin-mediated increases in total flow and glucose uptake. Yki-Jarvinen and 

Utriainen [29, 38] showed that insulin-mediated increases in total flow correlated poorly 

with muscle glucose uptake at different insulin doses. Furthermore, Scherrer [39] also 

reported a dissociation of the hemodynamic and metabolic actions of insulin. They 

demonstrated that nitric oxide synthase inhibition with L-NMMA prevented the insulin-

induced (1 mU/kg/min) calf vasodilation but had no effect on whole body insulin-

stimulated glucose uptake. This dissociation was also observed in studies by 

Vollenweider et al [40]. They found that an acute reduction in insulin sensitivity induced 

by fat infusion did not alter the vascular response to insulin (86 μU/min/kg).  

 

Thus it seemed that the increase in blood flow per se was not responsible for the 

increase in glucose uptake in vivo.  

 

This is further supported by a number of studies showing that vasodilators that 

augment total limb blood flow do not enhance insulin action nor do they overcome insulin 

resistance. For example, it was found that intra-arterial infusion of sodium nitroprusside, 

an endothelium independent vasodilator, did not increase glucose uptake in either normal 

or insulin resistant, hypertensive patients despite causing similar increases in blood flow 

[41, 42]. Similarly, a significant increase in blood flow stimulated by bradykinin had no 

effect on glucose uptake in either normal or obese patients [21, 43, 44]. Adenosine, 

another vasodilator that increases limb blood flow, had no effect on glucose uptake in 

patients with essential hypertension [45]. 
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Despite these contrary reports, Baron and others [46-51] maintain that defects in 

insulin-mediated increases in blood flow were coupled with impaired glucose uptake in 

obesity, hypertension, aging, type I and type II diabetes. Baron et al conclude that a defect 

in insulin-mediated increase in blood flow was responsible for part of the insulin 

resistance in muscle of type II diabetics [52, 53].  

 

Baron and coworkers [54] reported that an intra-arterial infusion of N-monomethyl-

L-arginine (L-NMMA, which blocks NO synthesis in endothelial cells), during a 

hyperinsulinemic euglycemic clamp (120 or 300 mU/m2/min) resulted in 50% decrease in 

leg blood flow and a 21% decrease in glucose uptake vs. steady state hyperinsulinemia 

[54]. On the other hand, superimposed intra-femoral infusion of endothelial-dependent 

vasodilator methacholine, increased the blood flow by 105% and increased the glucose 

uptake by 49%. 

 

Sarabi et al [55] demonstrated using intra-brachial infusion of methacholine, a 

significant increase in blood flow and glucose uptake in hypertensive insulin resistant 

patients. This increase in glucose uptake was not seen with sodium nitroprusside, which is 

an endothelium independent vasodilator though it increased the blood flow to same extent 

as methacholine.  

 

Overall it is clear that not all the vasoactive agents which result in an increase in total 

blood flow have effects on glucose uptake. Apart from methacholine, other vasodilators 

are ineffective despite the fact that they increase blood flow to muscle. An increase in 

total blood flow, as occurred with sodium nitroprusside, adenosine or bradykinin was not 

sufficient to lead to an increase in glucose uptake. So, why has the increase in blood flow 

not affected the glucose uptake? Is it the selective distribution of blood flow between 

metabolically active myocytes and rather quiescent connective tissue and adipose tissue, 

which is important, or in other words might methacholine dilate vessels in such a way that 

blood flow is directed towards the more metabolically active skeletal muscle tissue 

resulting in glucose uptake? 
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These published discrepancies may be resolved if redistribution of blood flow occurs 

between the nutritive and non-nutritive routes under the influence of agents such as 

insulin and methacholine.  

 

1.4 Dissociation of total flow and microvascular recruitment - insulin-mediated 

capillary recruitment  

 

All the studies quoted above measured the changes in total blood flow but did not 

assess flow distribution within muscle. At any given time all the capillaries in the muscle 

are neither closed nor open. Precapillary arterioles undergo vasomotion [56] presumably 

to prevent an anaerobic state from occurring [18]. By causing capillary recruitment, 

insulin can increase the volume of distribution for itself and for glucose. Insulin can 

achieve this by decreasing pre-capillary arteriolar tone, and redistributing blood flow 

from non-nutritive to nutritive vessels, resulting in more homogenous perfusion by 

opening previously quiescent capillaries, a process termed “functional capillary 

recruitment”.  

 

Evidence for such capillary recruitment has been demonstrated in a study by Rattigan 

et al [57]. Blood flow distribution within muscle was determined by measuring the 

metabolism of blood-borne 1-methylxanthine (1-MX), an exogenous substrate for 

xanthine oxidase (XO) found in the capillaries. Use of this exogenous reporter substrate, 

1-MX as a marker of capillary flow through skeletal muscle in vivo is novel.  Immuno-

histochemical techniques have demonstrated that in rodent and human skeletal muscle, 

XO is mainly concentrated in capillary endothelial cells, with much less in the 

endothelium of large arteries, vascular smooth muscle and skeletal myocytes [58, 59]. 1-

MX is converted to a single product 1-methylurate (1-MU). The merits of using 1-MX 

are: it is not vasoactive and does not alter the hemodynamics, is solely metabolized by 

xanthine oxidase, and, both 1-MX and 1-MU can be readily detected by HPLC [60].  

 

It was shown by utilizing this 1-MX method that insulin (10 mU/min/kg) in addition 

to increasing blood flow, acted to recruit new capillaries (significantly increased l-MX 
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metabolism as compared to saline). However, when total blood flow was similarly 

increased by epinephrine infusion it did not significantly alter l-MX metabolism as 

compared to saline. Thus the results suggested [57] that it is possible to have increased 

total blood flow without capillary recruitment.  

 

The dissociation between total flow and capillary recruitment may help to explain the 

data from human studies quoted in the previous section where a number of vasodilators 

similarly increased the flow but differentially affected the glucose uptake. The total flow 

increase in these circumstances would have occurred preferentially in the non-nutritive 

route. Thus, both total flow and flow distribution need to be quantitated in studies to 

determine the effects of a vasoactive agent on insulin action. 

 

Other methods which have subsequently been employed to measure capillary 

recruitment are contrast-enhanced ultrasound and laser Doppler flowmetry. Contrast-

enhanced ultrasound, (CEU) is a less invasive method (than the 1-MX method) in which 

labeled albumin containing microbubbles are infused systemically to identify perfusion 

through insulin-sensitive muscle tissue. These microbubbles are detected by an ultrasound 

probe which is positioned over the area of interest. A signal is recorded when a pulse of 

high-frequency ultrasound waves destroy all the bubbles within the probe field. The 

signal emitted from their destruction is recorded as video intensity. The area is then 

replenished with microbubbles from the systemic circulation until the next pulse of 

ultrasound. The interval between these pulses is progressively prolonged to allow more 

extensive replenishment of the microbubbles in the microcirculation [61, 62]. The 

contribution from larger vessels can be eliminated by subtracting the signal obtained at 

early time points when only the large vessels have re-filled. The residual video intensity 

is the measure of the microvascular blood volume or capillary perfusion. Using both l-

MX and CEU techniques, capillary recruitment by insulin has been demonstrated [63]. 
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1.5 Effect of insulin-mediated capillary recruitment on glucose uptake 

 

By causing capillary recruitment, insulin boosts its own delivery to target tissues and 

plays an integral part in its main action, the promotion of glucose disposal. Insulin 

maximizes the glucose uptake by the most efficient coupling of capillary blood flow, 

myocyte permeability (GLUT4 translocation) and capillary surface area [64].  

 

Studies where insulin-mediated capillary recruitment has been found to be impaired 

in conjunction with impaired muscle glucose uptake have been documented by our lab. 

Rattigan and colleagues have shown that α-methyl serotonin, a vasoconstrictor that 

inhibits insulin-mediated increases in both total flow and capillary recruitment in vivo 

impairs ~50% of insulin-mediated glucose uptake in the same hindlimb muscles [65]. 

Moreover, tumor necrosis factor-α (TNF-α), which is elevated in various insulin resistant 

states, completely blocks both the hemodynamic actions of insulin, and approximately 

50% of the insulin-mediated glucose uptake [66]. Another such situation is following 

acute administration of Intralipid® and heparin to raise circulating free fatty acids which 

has a similar effect [67]. Based on these studies it can be concluded that insulin-mediated 

capillary recruitment as measured by 1-MX metabolism correlates well with insulin-

mediated glucose uptake but shows no significant correlation with total limb flow [65]. 

These findings support the hypothesis that microvascular action of insulin enhances 

perfusion of muscle, by redistribution of blood flow from the non-nutritive to nutritive 

route independently of changes in total flow.  

 

The increase in glucose uptake that takes place is secondary to insulin-induced 

capillary recruitment. This is supported by the study which used CEU and 1-MX 

metabolism to show that at physiological insulin concentrations, insulin-mediated 

capillary recruitment occurs within 10 min and increases tissue perfusion, prior to 

increases in total blood flow [68]. In addition, [12] insulin-mediated capillary recruitment 

(5 minutes) preceded insulin’s effect to increase glucose uptake.  
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Thus, the microvascular action of insulin by vasodilatation of preterminal arterioles 

appears to be important for its metabolic action.  

 

1.6 Nutritive vs. non nutritive routes  

 

Dissociation of total flow from capillary recruitment can possibly occur if we address 

the notion of two flow routes in muscle.  

 

Work using the isolated, pump-perfused rat hindlimb supports the idea that there are 

two flow routes in muscle [69-73]. One is termed nutritive because it has the highest 

potential for nutritive exchange with muscle cells, and may consist of long tortuous 

capillaries in direct contact with myocytes. The other one is termed non-nutritive for 

muscle but nourishes the tendon, septa and possibly adjoining adipocytes, and may 

consist of slightly wider, but shorter capillaries although the exact anatomy of the two 

beds is unknown [74]. It has been proposed that the non-nutritive route acts as a reservoir 

which can rapidly redistribute flow to the nutritive route during periods of high metabolic 

demand, such as exercise and also after insulin stimulation following a meal, where 

glucose storage can occur in muscle without the need for an immediate increase in bulk 

blood flow [20]. 

 

The agents which increase metabolism in the constant-flow pump-perfused skeletal 

muscle by vasoconstriction have been termed type A and they include low dose 

norepinephrine, angiotensin II, vasopressin and low frequency sympathetic nerve 

stimulation. They are thought to constrict non-nutritive feed arterioles, redirecting flow to 

the nutritive route and increasing the oxygen consumption. Type A vasoconstrictors 

require extracellular calcium for their action and can be blocked by calcium channel 

blockers. In contrast, another group of vasoconstrictors termed Type B, decrease the 

metabolism by decreasing perfusion of the nutritive route. They include serotonin, high 

dose norepinephrine and the high frequency sympathetic nervous system [69, 75]. 

 



 11

The presence of the non-nutritive flow route may explain why certain vasodilators 

(adenosine, bradykinin, sodium nitroprusside) increase blood flow without affecting 

insulin-mediated glucose uptake.  

 

1.7 Possible mechanisms of insulin-mediated capillary recruitment  

 

The mechanism of insulin-mediated capillary recruitment remains unresolved to date. 

Dilation of fourth order arterioles in response to insulin has been reported [76]. McKay et 

al [77] have reported an increase in insulin sensitivity (vasodilatation) with decreasing 

vessel size. There are number of possible mechanisms by which insulin can cause 

vasodilatation in small arterioles.  

 

First, insulin may act directly on vascular smooth muscle cells (VSMC) to cause 

vasodilatation via an endothelium independent mechanism. Insulin has been shown to 

relax the isolated carotid arteries, whether the endothelium is present or not [78]. Insulin 

can act directly on smooth muscle causing hyperpolarization as described in section 1.12b 

and decrease cytosolic calcium concentration in aortic smooth muscle cells [79-83]. In 

patients with insulin resistance increased intracellular calcium has been reported in 

platelets and vascular smooth muscle cells [84].  

Second, it can involve production of another vasoactive molecule possibly NO, 

which can act in a paracrine manner [85-88]. The source could be endothelial cells, 

VSMC or skeletal muscle, since all 3 have insulin receptors and a capacity for 

synthesising NO because NOS is present in all 3 tissues [89-92]. Adenosine may also be 

involved as Abbink demonstrated [93] in human forearm that insulin-induced 

vasodilation was mediated by the release of adenosine. Increased production of 

prostacyclin may also play a role in vascular effects of insulin [94-96]. 

Third, insulin may cause cellular hyperpolarization by increasing calcium 

concentration in endothelial cells leading to endothelium-dependent hyperpolarization of 

underlying smooth muscle cells, inhibiting voltage-activated calcium channels and 

vasorelaxation. 
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 Fourth, it may result from metabolic vasodilatation [97, 98], analogous to exercise-

induced capillary recruitment where increased oxygen demand in muscle myocytes  

facilitates local blood flow, by releasing molecules such as adenosine, H+, K+ or lactate to 

cause vasodilatation. Here, insulin-mediated glucose uptake might lead to synthesis of a 

vasodilator.  

Fifth, insulin can also cause direct or indirect antagonism of vasoconstrictors 

produced in endothelium [99, 100]. 

Sixth, insulin has also been suggested to act by an α−, β-adrenergic mechanism [101, 

102]. 

 

1.8 Role of Nitric oxide in insulin’s action  

 

Nitric oxide (NO) is now accepted to be a major mediator of insulin action to cause 

arterial smooth muscle relaxation [52, 103, 104]. NO is identified as an endothelium-

derived relaxing factor because of the similarities in physical, chemical and physiological 

characteristics between the endogenous substance and authentic NO [105], and also from 

the evidence derived from the use of arginine analogues that act as competitive inhibitors 

of NOS, and from gene-deletion studies [86, 87]. Within muscle, NOS is present in both 

myocytes (nNOSμ, a variant of nNOS) [106-108] and endothelium (eNOS). However, 

Zeng [109, 110] demonstrated that insulin receptors are present on endothelial cells and 

that insulin stimulates phosphorylation and activation of protein kinase B (Akt), which 

then phosphorylates and activates eNOS [111, 112]. It is still unknown which NOS 

mediates insulin’s action in muscle since both nNOS and eNOS deficient mice are 

insulin-resistant [113, 114]. However, it is difficult to assess the results of gene-deletion 

studies since gene-deletion may lead to compensatory developmental changes.  

 

 Numerous in vitro studies have indicated the involvement of NO in insulin action in 

different cells. While insulin acts directly on endothelium [109, 110], human VSMC have 

also been demonstrated to express constitutive NOS, which is activated by insulin to 

increase cGMP, an effect blocked by L-NMMA [115]. In first order arterioles isolated 

from rat cremaster muscle, removal of endothelium or NG-nitro-L-arginine (L-NNA, 
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inhibitor of NOS) treatment completely abolished insulin-mediated vasodilation [116]. 

Bertuglia [117] observed that the increase in arteriolar diameter by insulin in hamster 

cheek pouch microcirculation was significantly reduced by L-NMMA. It has been 

suggested that insulin can inhibit vascular contraction by acting on vascular endothelium 

increasing the endothelial calcium and releasing nitric oxide, which decreases smooth 

muscle calcium [118].  

 

It has been observed that insulin (100nM) stimulation of glucose uptake in human 

vascular smooth muscle cells was abolished by L-NAME, a NOS inhibitor and by 1H-

[1,2,4]oxadiazolo[4,3-a]quinozalin-1-one (ODQ), a selective soluble guanylate cyclase 

inhibitor [119]. On the other hand, Balon et al reported that NOS inhibition did not 

diminish 2-DG transport in rat skeletal muscle even by maximally stimulating 

concentrations of insulin in vitro [90].  

 

There is also significant evidence available from in vivo studies that insulin’s 

vasodilatory action in muscle is NO-dependent. Steinberg et al [52, 53] demonstrated that 

acute local NOS inhibition by L-NMMA (16 mg/min) during a euglycemic 

hyperinsulinemic clamp in healthy humans completely inhibited insulin-mediated 

vasodilatation and diminished insulin-mediated leg glucose uptake by ~25%. Another 

group of workers [120] found that systemic L-NAME infusion (30 mg/min/kg) during an 

insulin clamp (64 mU/kg/min) in rats significantly blunted whole body glucose disposal (-

16%) and muscle 2-DG uptake (-30%) but L-NAME had no effect on basal or insulin-

stimulated glucose uptake in isolated muscles.  

 

Vincent and coworkers [63] using both 1-MX and contrast enhanced ultrasound 

reported that acute systemic infusion of L-NAME (50 μg/min/kg) in rats completely 

inhibited insulin-mediated capillary recruitment and diminished insulin-mediated glucose 

uptake (insulin clamp- 10 mU/min/kg).  

 

A novel study by Shankar et al [121] demonstrated the effect of acute central 

inhibition of nitric oxide inhibition by intracerebroventricular infusion of L-NMMA in 
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rats which induced hyperglycemia, insulin resistance, defective insulin secretion and 

hypertension. Central L-NMMA reduced the glucose disposal rates by 22% during an 

insulin clamp (12 mU/min/kg). 

 

In contrast to the above-mentioned studies several other workers did not observe a 

significant decrease in insulin sensitivity in muscle after NOS inhibition. It was observed 

by Scherrer et al [39] that in humans the insulin-induced increase in blood flow (1 

mU/min/kg) could be abolished by inhibiting NOS synthesis using local infusion of L-

NMMA (8µmol/min) without affecting the insulin-mediated glucose uptake. Sartori et al 

[122] demonstrated that infusion of L-NMMA (50 μg/min/kg) in denervated limb 

abolished the insulin-mediated vasodilatation, but did not have any detectable effect on 

whole body glucose uptake (insulin clamp- 1 mU/min/kg). Kohlman [123] found that 

acute systemic NOS inhibition by L-NAME (200 µg/min/kg) had no effect on glucose 

disposal during hyperinsulinemic euglycemic clamp in rats. Cardillo et al [31], also did 

not observe a significant decrease in insulin-mediated forearm glucose uptake (insulin 

clamp 120 mU/m2/min) after NOS inhibition by local L-NMMA (1 mg/min). 

 

It has been demonstrated that L-NMMA infusion into human forearm abolished the 

NO-dependent increase in blood flow in response to local insulin-like growth factor I 

(IGF-I) without affecting the insulin-like metabolic response of skeletal muscle tissue to 

IGF-I [124]. 

 

On the other hand L-NMMA can also increase insulin sensitivity as acute systemic 

administration of L-NMMA (3 mg/hr/kg) in humans increased the calf blood flow and 

increased the whole body glucose uptake thereby increasing insulin sensitivity (1.5 

mU/min/kg) [125]. 

  

 The effect of NOS inhibition has also been addressed in chronic studies [126, 127]. 

Balon et al [126] reported that chronic NOS inhibition increased peripheral insulin-

mediated glucose uptake but blunted the insulin secretion in response to oral and 
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intravenous glucose tolerance tests. Swislocki et al [127]) did not notice insulin resistance 

after chronic NOS inhibition. 

 

Thus, the aforementioned studies suggest that the hemodynamic actions of insulin are 

NO-dependent. On the other hand, an effect of NOS inhibition on insulin-stimulated 

glucose uptake is debatable. The published studies vary in terms of methodology such as 

route of administration, type, dose and duration of NOS inhibitor used. Thus, one of the 

aims of this thesis was to determine whether the systemic and local infusion of L-NAME 

during an insulin clamp affects insulin’s hemodynamic and metabolic actions in muscle 

and whether they differ. 

 

1.9 Insulin-mediated capillary recruitment by nitric oxide pathway 

  

It has been speculated [39, 115] that the signaling cascade causing capillary 

recruitment and vasodilatation starts with stimulation of insulin receptors on the surface 

of endothelial cells of terminal arterioles. This stimulates an intracellular cascade 

including IRS1/2, PI3 kinase, PKB and phosphorylation of eNOS, which forms NO [128]. 

Arginine is converted to citrulline when NO is formed [129]. The reaction requires 

cofactors including tetrahydrobiopterin, calcium calmodulin, flavin adenine nucleotide 

(FAD), flavin mononucleotide (FMN), molecular O2 and nicotinamide adenine 

dinucleotide phosphate (NADPH) as co-substrates (Fig. 1, page 17). 

 

NO thus formed diffuses to neighbouring VSMC [130] to stimulate soluble guanylate 

cyclase (GC) by interacting with its haem group. GC then catalyzes the synthesis of 

cGMP from GTP [131]. It has been hypothesized that formation of cGMP leads to a fall 

in cytoplasmic calcium concentration, by decreasing the calcium influx (this can occur by 

inhibition of inositol 1,4,5 triphosphate formation, inhibition of protein kinase C activity, 

activation of myosin light chain phosphatase pathway [132]) or by stimulating protein 

kinase G which results in phosphorylation of the calcium channel shifting the calcium 

inside endoplasmic reticulum/sarcoplasmic reticulum or by eliciting membrane 

hyperpolarization. Some workers have suggested that cGMP may cause a substantial part 
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of its effect via mechanisms that are independent of changes in calcium concentrations, 

probably involving endothelium-derived hyperpolarizing factor [118]. How this leads to 

smooth muscle relaxation is not completely understood [133, 134]. Rybalkin et al [135] 

have proposed that reduced cytoplasmic calcium leads to dissociation of calcium from 

calmodulin which in turn dissociates from myosin light chain kinase (MLCK) thus 

inactivating it. With MLCK inactivated, de-phosphorylated myosin light chain inhibits 

binding of myosin to actin leading to smooth muscle relaxation [136-138].  

 

cGMP thus formed is hydrolyzed by a specific class of enzymes called 

phosphodiesterases (PDE) [139].  
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NITRIC OXIDE –MEDIATED VASODILATION 
 

 

 

Fig. 1. Proposed mechanism of insulin-mediated vasodilatation. 

Insulin binds to insulin receptors on endothelial cells and stimulates an intracellular 

cascade involving IRS1/2, PI3 kinase, PKB and phosphorylation of eNOS, which forms 

NO.  NO thus formed permeates to neighboring VSMC to stimulate soluble guanylate 

cyclase (GC). GC then catalyzes the synthesis of cGMP from GTP. cGMP formation 

leads to a fall in intracellular calcium concentrations causing vasorelaxation and 

vasodilatation. Also shown is bradykinin (BK) which binds to B2 receptors, and 

methacholine (MC) which binds to M3 receptors [140] on the endothelial cell, both 

leading to activation of nitric oxide synthase. 

 

INSULIN   
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1.10 cGMP Phosphodiesterases 

 

Phosphodiesterases (PDEs) are considered to be the negative regulators of cyclic 

nucleotide signaling cascades. The major function of PDEs in the cell is to act as 

homeostatic regulators. They terminate the cyclic nucleotide 2nd messenger signal and 

therefore regulate the steady state levels of cAMP and cGMP.  

 

PDEs are metallo phospho-hydrolases which specifically cleave 3΄, 5΄-cyclic 

phosphate moiety of cAMP and/or cGMP to produce the corresponding nucleotide, 

AMP/GMP which is converted back to GTP by a kinase. There are ≥ 80 PDE isoforms 

discovered so far which complicates the issue as to which PDEs are involved in the 

breakdown of cGMP in smooth muscle of terminal arterioles of skeletal muscle [141]. 

Out of 11 gene families described, some are specific for cAMP, some for cGMP and 

some can hydrolyze both. Since only cGMP and not cAMP is the effector molecule in NO 

pathway and because it is thought that capillary recruitment is mediated by NO-cGMP 

pathway, an inhibitor which aims at the cGMP hydrolyzing PDEs is likely to enhance 

insulin action. One of my aims was to see whether the systemic administration of a 

selective cGMP phosphodiesterase 5 inhibitor, T-1032 enhances insulin action.  

 

1.10a PDE Families 

 

Sequence analysis and low stringency probing has led to the identification of 11 

different families of PDE based on amino acid sequence, substrate specificity, 

endogenous and exogenous regulators and pharmacological properties.  The nomenclature 

of various PDE family members is indicated as follows: 
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In this new, more systematic nomenclature, a PDE isoform is indicated by an Arabic 

numeral followed by a capital letter indicating the gene within the family and a 2nd Arabic 

numeral indicating the splice variant derived from a single gene [142, 143]. Out of the 11 

classes of PDEs, PDE5 is specific for cGMP and is considered as the sole cGMP 

hydrolyzing PDE present in VSMC [144, 145]. 

 

1.10b PDE5 family 

 

This family has 2 genes with 3 splice variants each.  This family has been called the 

cGMP binding cGMP-specific family.  Both the allosteric and catalytic sites are highly 

specific for cGMP (Km 1–5 μM).  PDE5A1 is abundant in lung, platelets, VSMC, kidney 

and skeletal muscle. It has been suggested that PDE5 isozymes contain 2 or more tightly 

bound Zn2+ that are involved in catalysis [142].  PDE5 contains 2 homologous allosteric 

cGMP binding sites which are required for phosphorylation of a serine residue. This 

phosphorylation by cGMP-dependent protein kinase may cause an increase in catalytic 

activity of enzyme.  PDE5 has been seen as a regulator of cGMP function.  It has been 

suggested that it plays an important part in regulation of pulmonary vascular tone [143].  

Dipyridamole and T-1032 (PDE5 antagonists) have been suggested as particularly 

efficient in decreasing pulmonary vascular resistance [143, 146, 147]. It was suggested by 

some workers [145] that PDE5 is almost exclusively responsible for hydrolyzing cGMP 

in rat VSMC and this is the only cGMP-selective PDE in VSMC, but this may be an 

overstatement. In another study by Mercapite et al, [144] selective inhibition of PDE5 by 

zaprinast in porcine aortic smooth muscle cells, did not potentiate sodium 

nitroprusside/atrial natriuretic peptide-induced rise of cGMP. This questioned the 

widespread opinion that PDE5 exclusively accounts for cGMP hydrolysis in VSMC. In 

contrast, IBMX at concentrations inhibiting both PDE1 and 5 isozymes, potentiated the 

rise in cGMP compared with zaprinast alone.  The authors suggest that PDE5 is not 

responsible for all the cGMP hydrolysis in VSMC. 

 

Tables I and II provide a description of all the PDE isoforms (pages 20, 21).  
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Family name  

Known genes  

Splice variants  

PDE1 

1A   1B   1C 

9      1      5 

PDE2 

2A    

3         

PDE3 

3A   3B 

3      1 

PDE4 

4A4B4C4D 

2    2   2   2 

PDE5 

5A  5B 

3     3 

Descriptive name  
 
 
 
Structural 
information  

Ca/CAM- 
stimulated  
 
 
535aa 
PDE1A3 
 

cGMP-
stimulated 
 
 
941aa 
PDE2A3 
 

cGMP-inhibited 
 
 
 
1141aa 
PDE3A1 
 

cAMP-specific 
 
 
647aa 
PDE4A1 
 

cGMP- 
binding  
 
 
874aa 
PDE5A1 
 

Regulators 
 
Substrate  

Ca/CAM 
Phosphorylation 

cAMP & cGMP 

cGMP 

cAMP & 
cGMP 

cGMP 
insulin 

cAMP & 
cGMP  

PKA 

cAMP- 
specific 

PKG 

cGMP 

Tissue Expression  

SKM 

VSM 

Others  

 

Y 

Y 

Brain, heart, 
olfactory cilia  

 

Y 

Y 

Adrenal cortex 
CNS  

 

Y, 3B 

Y 

Platelets, heart  
Adipose tissue  
Pancreas 

 

Y 

Y 

Wide 

distribution  

 

Y 

Y 

Lungs, 
Platelets  
Corpus 
callosum  

Selective 
inhibitors  
 
(non-selective,  
mixed, highly 
selective)  

Vinpocetin  

Phenothiazines  

MMPX 

EHNA Cilostamide 

Cilostazol 

Milrinone 

Siguazodan 

Zardaverine 

Rolipram 

Ro-201724 

Etazolate 

Zardaverine 

T-1032 
Sildenafil 
Zaprinast 
Dipyridam-
ole 
MBCQ 
MY5445 
 

Role of inhibitors  VSM relaxation 

central actions  

Augment 

inhibition 

of platelet 

aggregation 

Inotropic  

Smooth muscle 
relaxation  
 
Platelet 
aggregation  

Airway SM 

relaxation  

Inhibition of 

inflammatory 

response  

Inhibition 

of  platelet 

aggregation 

Viagra® 

 

 

Table I showing the tabulated summary of phosphodiesterase classes. 
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Family name 

Known genes 

Splice variants 

PDE6 

6A   6B 

1       1 

PDE7 

7A   7B 

1        1 

PDE8 

8A   8B 

1       1 

PDE9 

9A 

20 

PDE10 

10A 

14 

PDE11 

11A 

4 

Descriptive name 

 

 
Structural 
information 

Photorecept

or PDE 

 

860aa 
PDE6A1 
 

cAMP-
specific 
 
 
482aa 
PDE7A1 
 

cAMP- 
specific 
 
 
713aa 
PDE8A1 
 

High affinity 
cGMP- 
specific 
 
593aa 
PDE9A1 
 

Dual 
specificity 
 
 
779aa 
PDE10A1 
 

Dual 
specificity 
 
 
490aa 
PDE11A1 
 

Regulators 

Substrate 

Light 

cGMP 

? 

cAMP 

? 

cAMP 

? 

cGMP 

? 

both 

? 

both 

Tissue Expression 

SKM 

VSM 

Others 

 

N 

N 

Rod cone 
photorecept
ors 

 

Y 

? 

T-cells 

 

Y 

? 

Testis, 
Liver, 
thyroid 

 

Y 

? 

Kidney 

 

? 

? 

Testis, 
Brain 

 

Y 

? 

Prostate 

Selective 
inhibitors 
 
(non-selective, 
mixed, highly 
selective) 

Zaprinast 

Dipyrida-

mole 

? 

Zaprinast 

Dipyrida- 

mole 

Zaprinast 

SCH151866 

Zaprinast 

Dipyridamole 

SCH151866 

Sildenafil 

Zaprinast 

Dipyrid-

amole 

Role of inhibitors Modulation 

of signal 

transduction 

? ? ? ? ? 

 

 

 

Table II showing the phosphodiesterase classes. 
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From tables I and II it is clear that there are more than 80 PDE isoforms described.  If 

capillary recruitment is mediated by NO-cGMP pathway, only the specific inhibitors of 

cGMP hydrolyzing PDE isozymes will be of special interest.  The cGMP hydrolyzing 

PDE families include 1,2,5,6,9,10 and 11.  Out of these PDE6 is found exclusively in eye, 

which cuts down the PDE isoforms of interest to ~60.  Interestingly, PDE families show 

tissue-specific distribution as reported by Wallis et al [148] with regards to cardiovascular 

system. The major PDE activity in human cardiac ventricle has been shown to be PDE1 

with no detectable PDE5.  In contrast human saphenous vein contains PDEs 1, 4 and 5 

and human mesenteric artery contains PDEs 1–5. Human pulmonary artery has been 

shown to contain a high level of PDE5 activity compared to PDE1, while in canine aorta 

PDE1 activity is more abundant than PDE5.  VSMC contains PDEs 1,3,4 and 5 and 

endothelial cells contain PDEs 2 and 4 [146, 149]. 

 

1.10c Vascular effects of cGMP PDE inhibitors  

 

Non-selective PDE inhibitors include theophylline, papaverine, caffeine, IBMX and 

pentoxifylline that produce vasodilatation by increasing cAMP and cGMP levels. 

Selective PDE3 inhibitors which are being used are amrinone and milrinone. They are 

potent vasodilators, and good inotropes. Relatively selective PDE5 inhibitors are 

sildenafil, zaprinast, dipyridamole and a selective PDE5 inhibitor is T-1032.  Sildenafil 

citrate (Viagra®) has certainly been useful in the treatment of erectile dysfunction. We 

know that nitrergic nerves innervating the corpus callosum mediate erection through 

increased cGMP levels and sildenafil elevates cGMP signal by inhibiting its degradation, 

thus increasing the erectile response to sexual stimulation. Another relatively selective 

PDE5 inhibitor is zaprinast. It has been used extensively by researchers, is not selective 

for any particular isoform but it most potently inhibits PDE5 and also 1,3,6,9,10 and 11 

[150]. Zaprinast has been reported to promote vasorelaxation in vitro by increasing cGMP 

in VSMC and decrease peripheral vascular resistance and blood pressure in vivo [150, 

151]. It causes pulmonary vasodilatation in rats and dogs and also has venodilator 

properties in anesthetized rats [152]. 
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1.10d The PDE5 inhibitors  

 

PDE5 has been implicated as the predominant cGMP-specific isozyme present in 

VSMC [144, 145] and its mRNA has been located in mRNA harvested from skeletal 

muscle which contains endothelial cells, VSMC, myocytes and neural cells [153]. Other 

PDEs associated with cGMP degradation in VSMC are 1,2,9,10 and 11 [146]. Zaprinast 

and sildenafil are relatively selective inhibitors of PDE5 while T-1032 is highly selective 

[147].  Table III (page 24) gives the IC-50 (μM) values for T-1032, sildenafil and 

zaprinast [147, 154-156].   

 

Fig. 2 (page 25) depicts the structure of T-1032 along with cGMP, zaprinast and 

sildenafil. It is not clear why T-1032 is more selective for PDE5 than sildenafil and 

zaprinast, considering that the structure of T-1032 is quite different from that of cGMP 

whereas the other two are structurally related to cGMP.   
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Table III  

 

 

 

Compound  

 

PDE5 

 

5A1 

 

5A2 

 

PDE1

 

PDE2

 

PDE3 

 

PDE4 

 

PDE6

 

T-1032 

 

0.001 

 

0.003 

 

0.002 

 

3.0 

 

9.7 

 

7100 

 

3.3 

 

0.028 

 

 

Sildenafil  

 

0.0036 

 

 

0.005 

 

0.0045

 

0.27 

 

43 

 

7100 

 

11 

 

0.029 

 

Zaprinast  

 

0.76 

 

 

  

45 

    

0.15 

 

 

 

 

Table III depicts the IC50 (μM) values. PDE1, 4, and 5 were isolated from canine 

lung, PDE3 from canine heart, PDE2 from canine adrenal gland and PDE6 was from 

canine retina [147, 154-156]. 
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Fig. 2. This shows the structures of T-1032, cGMP, sildenafil and zaprinast. T-1032  

is methyl-2-(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5-

trimethoxyphenyl)-3-isoquinoline carboxylate sulphate [147].  
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1.11 Metabolic vasodilatation in capillary recruitment 

 

It has been observed by Cleland et al [157] that local insulin-mediated vasodilatation 

is significantly augmented by co-infusion of D-glucose. They suggested that insulin-

mediated glucose uptake may determine skeletal muscle blood flow via cross talk with 

NO pathway at an endothelial level. For example, glucose-induced changes in the 

intracellular environment (changes in pH by aerobic glycolysis) and increase in ATP 

production could activate ion pumps (eg, Na-K-ATPase) resulting in hyperpolarization 

and changes in fluxes in both endothelium and VSMC. 

 

Interestingly, McKay et al [77] have demonstrated impaired insulin-mediated 

vasodilatation in hamster cremaster muscle, with adenosine receptor antagonism and 

blockade of ATP-sensitive potassium channels. They visualized the 1st, 2nd, 3rd, and 4th 

order arterioles under the microscope. In this preparation, NOS inhibition had no effect 

on insulin-mediated vasodilatation at the level of 3rd and 4th order arterioles, but had some 

inhibition on 1st and 2nd order arterioles. They have suggested that NO-like vasoactive 

molecules regulate vasodilatation at the level of larger 1st and 2nd order arterioles which 

control the blood flow to muscle, while smaller 3rd and 4th order arterioles which are more 

involved with the redistribution of blood flow within muscle are regulated by local tissue 

metabolism. 

 

1.12 Role of hyperpolarizing phenomenon in insulin-mediated capillary 

recruitment 

 

The existence of endothelium-dependent hyperpolarization factor (EDHF) has been 

presumed to play a role in vasodilatation by the apparent failure of NOS inhibitors to 

completely block endothelium-dependent vasodilation by acetylcholine, first described by 

Bolton and coworkers in 1984 [158]. EDHF is defined as that potassium channel opening 

factor which produces vascular smooth muscle hyperpolarization and which cannot be 

explained by NO or by a cyclooxygenase product such as prostacyclin [159]. Evidence 

for involvement of EDHF in insulin-mediated responses is discussed in section 1.12e. 
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The important thing is that hyperpolarization is a phenomenon that has been 

measured only in in vitro preparations. Both in human and animal arteries, the 

contribution of EDHF to endothelium-dependent relaxations elicited by acetylcholine 

[160, 161] or bradykinin [162, 163] appears to be significantly greater in small than in 

large arteries [77, 164-170]. The various candidates that have been suggested to mediate 

EDHF responses in animal and human blood vessels include: (a) potassium ions in rat 

mesenteric and femoral arteries and in human interlobar renal arteries [169, 171-175]; (b) 

epoxyeicosatrienoic acid derived from cytochrome P450 monooxygenases in coronary, 

internal mammary and subcutaneous arteries [176-181]; (c) myo-endothelial gap junction 

communication in animals and human subcutaneous arteries [182-185]; (d) hydrogen 

peroxide in coronary and mesenteric circulation [178, 186-191]; (e) anandamide 

(arachidonylethanolamide) an endogenous ligand at cannabinoid receptors in rat 

mesenteric arteries [192-194]. Not only are there species- [167] and vessel-related 

differences but also gender differences have been found in animals in EDHF response; 

the EDHF responses are greater in females [195].  

 

1.12a Role of endothelial Ca2+-dependent K+ channels in insulin action  

 

Insulin may stimulate hyperpolarization by stimulating transient increases in 

intracellular calcium in the endothelial cell via non-selective cation channels and via 

release of calcium from intracellular stores causing endothelial hyperpolarization [196-

199]. The term “EDHF-mediated responses” reflects the mechanism by which this 

endothelial hyperpolarization is transferred to vascular smooth muscle cells [200, 201]. 

The endothelial hyperpolarization could then either spread to the adjacent smooth muscle 

cells through myo-endothelial gap junctions [184, 185] and/or the efflux of potassium 

through the endothelial SKCa [202] and IKCa [169, 203] channels (calcium-dependent 

small conductance potassium channels and calcium-dependent intermediate conductance 

potassium channels) [172, 200, 204, 205]. This elicits the hyperpolarization of 

surrounding vascular smooth muscle by activating the Na/K-ATPase, [1, 169, 172, 206] 

and/or increases the conductance of inward-rectifying potassium channels (KIR) [169]. 

This leads to closure of voltage-dependent calcium channels, a decrease in intracellular 
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calcium and vessel dilatation. The reduction in intracellular sodium which results from an 

increase in the activity of the Na+/K+-ATPase may stimulate the Na+/Ca2+ exchanger, 

leading to a further reduction in intracellular calcium [200, 207, 208].  

 

1.12b Role of vascular smooth muscle Ca2+-dependent K+ channels in insulin 

action 

 

Insulin may act directly on VSMC to initiate hyperpolarization phenomenon. It has 

been reported that insulin activates sodium potassium ATPase in VSMC by stimulating 

the translocation of this to the plasma membrane [209]. This leads to hyperpolarization of 

VSMC, blocking voltage-dependent calcium channels, and a decrease in the calcium 

influx resulting in relaxation [210]. It has been reported that insulin decreases calcium 

concentration directly by increasing calcium efflux through activation of calcium 

ATPase. Ouabain, a sodium potassium ATPase inhibitor, significantly inhibited the 

increase in forearm blood flow in humans [118]. 

 

On the other hand, insulin may activate calcium-dependent potassium channels in 

VSMC leading to potassium efflux, which hyperpolarizes VSMC (Fig. 4, page 35). This 

closes the voltage–dependent calcium channels reducing the calcium influx. A decrease in 

intracellular calcium may lead to vasorelaxation and capillary recruitment (as explained 

in section 1.9, page 15).  

 

1.12c Inhibitors of Ca2+-dependent K+ channels 

 

Not many pharmacological agents have been used to block these channels [211]. A 

non-specific inhibitor is tetrabutylammonium (TBA) [175, 212, 213] which blocks all 

types of potassium channels. More specific ones than TBA include, tetraethylammonium 

chloride (TEA), 1-EBIO, TRAM 34 and TRAM 39 as blockers of IKCa [169, 181, 214], 

toxins such as apamin to block SKCa [202], iberiotoxin, a blocker of large conductance 

calcium-dependent potassium channels (BKCa) [215], charybdotoxin which blocks both 

IKCa, BKCa and also voltage-sensitive potassium channels [216], and scyllatoxin, a 
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structurally distinct SKCa inhibitor [217-220]. It was first observed by Garland’s group 

that EDHF-mediated response can be abolished by combination of apamin plus 

charybdotoxin [221, 222]. 

 

1.12d Tetraethylammonium chloride (TEA) 

 

Tetraethylammonium chloride (TEA) has been known to pharmacologists as an 

autonomic ganglion blocker (0.5 mg/min/kg) [223]. At doses of 10 mM it also acts as a 

weak nicotinic acetylcholine receptor agonist and a muscarinic acetylcholine receptor 

antagonist [224]. But the action which has gained much importance is the blockade of 

calcium-dependent large conductance potassium channels (BKCa) [225-227]. A 

concentration of TEA between 0.2 and 3 mM selectively blocks calcium-dependent 

potassium channels in smooth muscle cells in vitro [202, 228, 229] (Fig. 4, page 35) 

while higher concentrations (>5 mM) can inhibit both ATP and voltage-dependent K+ 

channels [230].  

 

1.12e Hyperpolarization-mediated insulin response in blood vessels 

 

In vitro evidence  

 

A number of in vitro studies point towards the role of EDHF in insulin-mediated 

hemodynamic effects. Insulin-induced relaxation of rat mesenteric artery was abolished 

by charybdotoxin and endothelial denudation but not by L-NAME suggesting a role of 

large-conductance Ca2+-activated potassium channels and EDHF [231]. Iida and 

coworkers [231] also showed that clotrimazole, an inhibitor of cytochrome P450 inhibited 

insulin-induced vasodilatation as effectively as the blockers of Ca2+-activated potassium 

channels, as it has been suggested that EDHF activity may reflect the action of 

cytochrome P450-derived arachidonic acid metabolites (EETs). However, an endothelium 

independent, nitric oxide independent vasorelaxation of rings from human internal 

mammary artery and saphenous vein in response to both insulin and IGF-I, through a 

mechanism involving activation of potassium channels has also been described [232]. 
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Relaxation was not affected by the removal of the endothelium and by inhibition of the 

production of nitric oxide, but the vascular relaxation caused by insulin and IGF-I was 

completely abolished by KCl, and was attenuated by the potassium channel blocker 

tetraethylammonium (TEA) indicating that activation of potassium channels is involved 

in cellular action of insulin [232].  However the high dose of TEA (10 mM) used in this 

study reflected a non-specific antagonism of all potassium channels.  

 

Five studies have been published using resistance arteries. An endothelium-

dependent vasodilatation in small (≈112 μm) dog coronary arteries demonstrated that 

insulin-induced vasodilatation could be inhibited by KCl or tetrabutylammonium chloride 

(TBA) but not by L-NNA, indomethacin, TEA, glibenclamide or charybdotoxin plus 

apamin [168]. Inhibition by TBA, a non-specific potassium channel blocker but not by 

specific potassium channel blockers suggested that hyperpolarization via some other KCa 

channels is probably involved in insulin-induced vasodilatation. On the other hand, 

insulin-induced vasodilatation was inhibited by indomethacin, glibenclamide and 

potassium chloride but was resistant to L-NNA, charybdotoxin plus apamin in fourth 

order branches (≈211μm) of rat superior mesenteric artery [94]. Thus, the role of specific 

calcium-dependent potassium channels in the vascular response to insulin was not found. 

Conversely, Chen and Messina [116] showed that insulin-induced vasodilatation in 

isolated rat skeletal muscle arterioles (≈80μm) could be completely inhibited by the nitric 

oxide synthase inhibitor L-NNA. The differences in these studies could be either species- 

or vascular bed-dependent because similar concentrations of insulin and of inhibitors 

were used in all 3 experiments. Hyperpolarization in one way or another seems to play a 

role in insulin-mediated vasodilatation as McKay et al [77] have also shown that insulin-

induced dilatation in hamster cremaster arterioles is NO-dependent in second order but 

not in third-or fourth-order arterioles while blockade of ATP-sensitive potassium 

channels by glibenclamide prevented insulin-induced dilatation in both second and 

fourth-order arterioles. Oliveira and coworkers [233] induced diabetes in rats and then 

looked at the potentiation of bradykinin relaxation by angiotensin-(1-7) in A2 resistance 

arterioles (15-25μm). They demonstrated that the potentiating effect of angiotensin-(1-7) 

on bradykinin-induced vasodilatation restored in diabetic rats by chronic insulin, 
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disappeared in the presence of TEA while L-NAME did not interfere with the restoring 

effect of insulin on the potentiation. Their finding reinforced the contribution of 

hyperpolarization on the alteration of microvascular reactivity in diabetic rats.  

 

Nitric oxide is also capable of hyperpolarizing smooth muscle. It has been suggested 

that activation of calcium-dependent potassium channels plays an important role in 

mediating the vasorelaxation caused by NO [81, 201, 234-236].  

 

Attenuated EDHF-mediated responses have been noticed with no or minor alteration 

in NO-dependent responses in the fructose-fed rat, the leptin deficient, genetically obese 

and mildly hypertensive Zucker rat and the Otsuka Long-Evans Tokushima fatty rat [237-

241]. 

 

In vivo evidence  

 

In the intact animal, the involvement of hyperpolarization in the vasodilator response 

to insulin is difficult to assess and very few studies have been designed specifically to 

address this issue. EDRF as well as the EDHF response induced by acetylcholine in the 

presence of indomethacin and L-NNA was significantly attenuated in the type II diabetic 

rats [237]. There is only one in vivo study to date in which the role of potassium (KCa and 

KATP) channels in insulin-induced increase in total flow and glucose uptake has been 

demonstrated using TEA and glibenclamide [242]. This study argues against a role for 

calcium- and ATP-dependent potassium channels in insulin action in humans in vivo. One 

of the aims of this thesis is to deduce the role of calcium-dependent potassium channels in 

insulin’s action in muscle in vivo using TEA during euglycemic hyperinsulinemic clamp. 

The other potassium channel antagonists (the toxins) are probably too toxic for in vivo use 

[243].  
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1.13 The present study- summary of aims 

 

The work presented in this thesis was designed to investigate the mechanisms 

operating behind hemodynamic (with special emphasis on capillary recruitment) and 

metabolic (glucose uptake) changes in muscle. Insulin has been shown to stimulate both 

the capillary recruitment and glucose uptake in muscle. Insulin has two hemodynamic 

actions in muscle: it increases total flow to the muscle, which was measured using 

Transonic® flow probes and, it also increases the capillary perfusion by causing flow 

distribution (capillary recruitment) which was measured using the 1-MX technique. To 

measure the metabolic effect of insulin in muscle, 2-deoxy glucose uptake was measured 

as an index of insulin-mediated glucose uptake. The technique used for this purpose was 

euglycemic hyperinsulinemic clamp.  

 

Since systemic infusion of vasoactive agents can affect systemic hemodynamics, 

leading to activation of homeostatic mechanisms and compensatory changes which can 

mislead the interpretation of results, my aim was therefore to develop a technique so that 

the test agents could be given locally in only the regional circulation of hindleg. 

 

 The nitric oxide-cGMP pathway has been thought to play a role in insulin’s action in 

muscle. Three different sets of experiments were designed to explore the role of such a 

pathway in insulin’s action (Fig. 3, page 34).  

 

First, since cGMP is thought to be the downstream effector molecule which mediates 

NO action in muscle, it was thought a phosphodiesterase inhibitor would elevate cGMP 

levels and potentiate insulin action.  

Second, NO production was enhanced by using local infusion of methacholine, an 

endothelium-dependent nitro-vasodilator during an insulin clamp. Blood flow was 

increased similarly by using another endothelium-dependent nitro-vasodilator bradykinin, 

to detect whether the effects seen were methacholine-specific or related to increase in NO 

production. Possible correlation of glucose uptake with total flow and/or capillary 

recruitment was also investigated.  
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Third, the effect of NOS inhibition by L-NAME was observed by using both the 

systemic and local infusion of the inhibitor during an insulin clamp. Thus, the aim was 

both to perturb and amplify the NO-cGMP axis and to determine their effects on insulin-

mediated capillary recruitment and glucose uptake (Fig. 3, page 34). 

 

Alternatively, insulin action in muscle may not be controlled by a single mechanism. 

It might be the net result of the combination of effects with several agents involved each 

playing its own part. Some recent in vitro reports have suggested the role of calcium-

dependent potassium channels in insulin action. The effect of blocking calcium-sensitive 

potassium channels in vascular smooth muscle cells by TEA was assessed during an 

insulin clamp (Fig. 4, page 35).  

 

To summarize, the overall aim of this study was to elucidate the possible 

mechanisms in muscle microvasculature leading to capillary recruitment and glucose 

uptake. Since a reduction in insulin-mediated hemodynamic action in muscle might 

contribute to a decreased glucose uptake, it was important to explore the mechanisms. 

Mechanisms involved in capillary recruitment may thus constitute new targets for the 

treatment of insulin resistance.  
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Fig. 3. Experimental strategies to investigate if insulin action in muscle is nitric oxide 

dependent. 

 1. Increase cGMP action with T-1032, a specific PDE5 inhibitor 

 2. Increase NO production using methacholine (MC) and bradykinin (BK) 

 3. Decrease NO synthesis using nitric oxide synthase inhibitor, L-NAME. 

 

1

 

INSULIN   
IR 

GMP PDE 

Smooth muscle cell 

2

3 

Endothelial cell 
M3 B2



 35

         

 
      

 

Fig. 4. Proposed mechanism of insulin-mediated vasodilatation by activation of 

calcium-dependent potassium channels [244]. KCa – calcium-dependent potassium 

channels and TEA – tetraethylammonium chloride. 
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CHAPTER 2 

 

 

MATERIALS AND METHODS 

 

2.1 Animal care  

 

Male Hooded Wistar rats (240-350 grams) were raised on a commercial diet 

(Gibsons, Hobart) containing 21.4% protein, 4.6% lipid, 68% carbohydrate, and 6% crude 

fiber with added vitamins and minerals together with water ad libitum. Rats were housed 

at a constant temperature of 21 ± 1°C in a 12 h/12 h light-dark cycle. All procedures 

adopted and experiments undertaken were approved by the University of Tasmania, 

Animal Ethics Committee in accordance with the Australian Code of Practice for the Care 

and Use of Animals for Scientific Purposes (1990). 

 

2.2 Surgery 

 

The rats were fasted overnight (12 h) and then anesthetized using pentobarbital 

sodium (50 mg/kg body weight). Polyethylene cannulas (PE-50, Intramedic®) were 

surgically implanted into the carotid artery, for arterial sampling and measurement of 

mean arterial pressure (pressure transducer Transpac IV, Abbott Critical Systems). Both 

jugular veins were cannulated for continuous infusion of anesthetic and other intravenous 

infusions. A tracheotomy tube was inserted, and the animal was allowed to breathe room 

air spontaneously throughout the course of the experiment. Small incisions (1.5 cm) were 

made in the skin overlaying the femoral vessels of each leg, and the femoral artery was 

separated from the femoral vein and saphenous nerve. The epigastric vessels were then 

ligated, and an ultrasonic flow probe (Transonic Systems, VB series 0.5 mm) was 

positioned around the femoral artery of the right leg just distal to the rectus abdominus 

muscle. The cavity in the leg surrounding the probe was filled with lubrication jelly (H-R, 

Mohawk Medical Supply, Utica, NY) to provide acoustic coupling to the probe. The 

probe was then connected to the flow meter (Model T106 ultrasonic volume flow meter, 



 37

Transonic Systems). This was in turn interfaced with an IBM compatible PC computer 

which acquired the data at a sampling frequency of 100 Hz for femoral blood flow (FBF), 

heart rate (HR) and mean arterial pressure (MAP) using WINDAQ data acquisition 

software (DATAQ Instruments). Most studies of the hemodynamic effects of insulin have 

been made in humans or large animals, where repetitive measurement of skeletal muscle 

blood flow is relatively easy. With the miniaturized flow probe used in this study, it is 

possible to make continual measurements in a small animal such as the rat, where until 

recently, flow measurement were limited to a few measurements using microspheres or 

indirect methods [245-248]. The surgical procedure generally lasted approximately 30 

min and then the animals were maintained under anesthesia for the duration of the 

experiment using a continual infusion of pentobarbital sodium (0.6 mg/min/kg). The 

femoral vein of the left leg was used for venous sampling, using an insulin syringe with 

an attached 29G needle (Becton Dickinson). A duplicate venous sample (V) was taken 

only on completion of the experiment to prevent alteration of the blood flow from the 

hindlimb due to sampling, and to minimize the effects of blood loss. The total blood 

volume withdrawn from the animals before the final arterial and venous samples did not 

exceed 1.5 ml and was easily compensated by the volume of fluid infused. The body 

temperature was maintained at 37˚C using a water-jacketed platform and a heating lamp 

positioned above the rat. The rat was sacrificed using an intra-cardiac injection of 

Nembutal and both left and right hindleg muscles were collected as described later. 

 

2.3 Cannulation of epigastric artery  

 

A new technique was developed (figure 1, page 43) to infuse the test substances 

locally in one leg. If vasoactive substances are given systemically, they have a profound 

effect on the blood pressure which activates counter-regulatory reflex mechanisms. Some 

have generalized side effects, for example, methacholine. To avoid the systemic effects of 

a test substance, the epigastric artery was cannulated, which is a branch of the femoral 

artery, in the middle part of thigh. The cannula was used to infuse the test substances 

methacholine, bradykinin, L-NAME and tetraethylammonium. Another advantage of this 

technique was that the opposite leg served as a control. Only the substances which were 
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rapidly metabolized could be used by this technique. Since all the substances used were 

vasoactive, any effect on blood pressure and heart rate were taken as an indication that the 

substance had appeared in the systemic circulation. An effect on femoral blood flow in 

the test leg was taken as definitive indicator of the substance being infused and to 

calculate the optimum dose to be used. Transonic flow probes were placed on the femoral 

artery of both legs to measure the femoral blood flow simultaneously; the contralateral 

leg served as control. At the end of the experiment, after taking the arterial sample (200 

μl), the venous sample (150 μl) was taken from the femoral veins of control and test legs.  

 

2.4 Euglycemic hyperinsulinemic clamp 

 

Once the surgery was completed, a 60-min equilibration period was allowed so that 

leg blood flow and blood pressure could become stable and constant. Details of 

experimental protocols are given in individual chapters. An arterial blood sample was 

taken at the end of equilibration for glucose analysis. During the hyperinsulinemic clamp 

blood glucose was maintained at this level with the infusion of a 30% w/v solution of 

glucose. In the control groups, saline infusion was matched to the volumes of insulin 

(Humilin®, Eli Lilly and Co.) and glucose administered.  

 

2.5 1-MX infusion and analytical method 

 

A previously established method utilizing the metabolism of exogenously added I-

MX (Sigma-Aldrich Inc.) was used to assess the perfused capillary surface area. 1-MX 

infusion (0.5 mg/min/kg, dissolved in saline) was commenced at 60 min prior to the end 

of the experiment. Since 1-MX clearance was very rapid, it was necessary to partially 

inhibit the endogenous xanthine oxidase activity in non-muscle tissues [57, 249]. We 

have performed allopurinol dose-response curves in the rat in vivo (data not shown) and 

found that 10 µmol/kg partially inhibited the xanthine oxidase, lowered the Km for 1-MX, 

and allowed steady-state systemic levels of 1-MX to be obtained [249].  

To do this, a bolus injection of a specific xanthine oxidase inhibitor, allopurinol [250] 

(10 µmol/kg) was administered 5 minutes prior to commencing the 1-MX infusion. This 
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allowed constant saturating arterial concentrations of 1-MX to be maintained throughout 

the experiment. 

 

Duplicate arterial (A) and venous (V) samples (300µl) were taken at the end of the 

experiment and placed on ice. These blood samples were immediately centrifuged. 1-MX 

measurement involved protein precipitation of plasma using perchloric acid. The PCA 

treated samples were then stored at -20°C until assayed for 1-MX. When required, 

samples were thawed on ice, centrifuged for 10 min and the supernatant used to 

determine 1-MX, l-methylurate and oxypurinol concentrations by reverse-phase HPLC as 

described previously [251, 252]. The rest of the plasma was used for glucose, insulin and 

other analyses. 

 

2.6 2-Deoxyglucose injection and analytical method 

   

In experiments (insulin clamps and saline controls) measuring glucose uptake into 

individual muscles, a 100 µCi bolus of 2-deoxy-D-[2,6-14C]glucose or 50 μCi of 2-deoxy-

D-[2,6-3H] glucose (2-DG; specific activity-44.0 Ci/mmol, Amersham Life Science) in 

saline was administrated at 45 min prior to the completion of the experiment. Plasma 

samples (25 µl) were collected at 5, 10, 15, 30 and 45 min after the 2-DG injection to 

determine the plasma radioactivity decay or time course.  

 

A modified technique for 2-DG uptake 

 

A new technique was developed where instead of measuring the plasma decay curve, the 

averaged plasma specific activity of [3H]2-DG was obtained by continuous arterial 

sampling after giving 2-DG bolus. This enabled (i), to decrease the labeling period from 

45 min to 10 min and (ii), to see the effect of vasoactive agents during insulin clamps 

over short periods (1 h). This technique has been used in local L-NAME and TEA studies 

(chapters 5 and 6). R’g assessed in insulin treated rats over 10 min with continuous blood 

sampling was approximately twice the value obtained from 45 min labeling with decay 

curve estimation (data not shown). However, insulin stimulated a 2-fold increase in R’g 
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as measured by either technique. Because continuous sampling also includes the initial 5 

min period that decay curve sampling misses, the former is likely to more accurately 

represent the entire plasma glucose specific activity measured by the muscle. Plasma 2-

DG specific activity is likely to be the highest in this initial 5 min period, when muscle is 

taking up most radioactivity. 

 

At the conclusion of the experiment, the soleus, plantaris, red gastrocnemius (RG), 

white gastrocnemius (WG), extensor digitorum longus (EDL) and tibialis muscle were 

removed, freeze clamped in liquid nitrogen and stored at –20°C until assayed for 2-DG 

radioactivity. The frozen muscles were ground under liquid nitrogen and homogenized 

using an Ultra Turrax™. Free and phosphorylated 2-DG were separated by ion exchange 

chromatography using an anion exchange resin (AG1-X8) [253, 254]. Scintillant (16ml; 

Biodegradable Counting Scintillant-BCA, Amersham USA) was added to each 

radioactive sample and radioactive counts (disintegrations per minute, dpm) were 

determined using a scintillation counter (Beckman LS3810, USA). From this 

measurement and a knowledge of plasma glucose and the time course of plasma 2-DG 

disappearance, R’g, which reflects glucose uptake into the muscle, was calculated as 

previously described in detail by others [253, 254] and is expressed as µg/min/g wet 

weight of muscle [253]. 

 

2.7 Glucose assay 

 

A glucose analyzer (Model 2300 Stat plus, Yellow Springs Instruments, Yellow 

Springs OH) was used to determine whole blood glucose and plasma glucose (by the 

glucose oxidase method) during and at the conclusion of the insulin clamp. A sample 

volume of 25 µl was required for each determination. Insulin levels at the beginning and 

the end of the experiment were determined from arterial plasma samples by ELISA assay 

(Mercodia AB, Sweden). 
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2.8 Reproducibility of techniques  

 

The hyperinsulinemic euglycemic clamp, along with the infusion of 2-DG is a widely 

used technique which gives a reliable and accurate measure of insulin sensitivity. Whilst 

the methods used to assess both total flow (transonic flow probe) and capillary flow (l-

MX metabolism) were only recently established, they have now been utilized in a number 

of studies and have yielded consistent results. Unfortunately, the nature of experiments 

does not allow comparison of day-to-day variation using the same animal. Nevertheless, 

measurements of total flow are continuous and show very little drift over a 2-hour saline 

infusion. Furthermore, the values of both basal and insulin-stimulated blood flow have 

been comparable in previous studies and in the work presented herein. In addition, when 

flow is measured simultaneously on both legs, the values show little difference.  

 

2.9 Data analysis 

 

All data are expressed as means ± SEM. Mean femoral blood flow, mean heart rate 

and mean arterial pressure were calculated from 5 second subsamples of the data, 

representing approximately 500 flow and pressure measurements every 15 min. Vascular 

resistance in the hindleg was calculated as mean arterial pressure in millimeters of 

mercury divided by femoral blood flow and expressed as resistance units (R.U.). Glucose 

uptake in the hindlimb was calculated (chapter 3) from A-V glucose difference and 

multiplied by femoral blood flow and expressed as µmol/min. R’g for the combined 

muscle was calculated from the sum of R’g of each individual muscle times the dry 

weight of the individual muscle and divided by the sum of each individual muscle dry 

weight. The 1-MX metabolism was calculated from A-V plasma 1-MX difference and 

multiplied by femoral blood flow (corrected for the volume accessible to 1-MX, 0.871, 

determined from plasma concentrations obtained after additions of standard 1-MX to 

whole blood) and expressed as nmol/min. 
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2.10 Statistical analysis 

 

Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood pressure, 

heart rate, vascular resistance, 1-MX, and oxypurinol concentrations throughout the time 

course. When a significant difference (P < 0.05) was found, pair wise comparisons by the 

Student-Newman-Keuls test were used to determine at which individual times the 

differences were significant. Statistical differences between the treatments for arterial 

glucose and 1-MX, hindleg glucose extraction and uptake, and hindleg 1-MX extraction 

and disappearance were determined by one way ANOVA. These tests were performed 

using the SigmaStatTM statistical program (Jandel Software, version 2.03).  
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Figure 1: A schematic diagram of Epigastric technique for local infusion of test 

agents in the rat.  

The agent is confined to the test leg (no systemic effects). The contralateral leg serves 

as the control.  
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CHAPTER 3 

 

 

EFFECT OF CYCLIC GMP PHOSPHODIESTERASE-5 INHIBITOR T-1032 ON 

INSULIN-MEDIATED MUSCLE HEMODYNAMIC EFFECTS AND GLUCOSE 

UPTAKE IN VIVO 

 

 

3.1 INTRODUCTION 

 

It has been proposed by Baron et al that insulin increases glucose uptake by muscle 

causing vasodilatation, described as functional capillary recruitment within the muscle, 

and in doing so, increases its own access and that of glucose by increasing blood 

distribution within the muscle [57]. This process of insulin-mediated vasodilatation has 

been proposed [39, 115] to involve production of nitric oxide which then migrates to 

neighbouring vascular smooth cells activating guanylate cyclase to produce cyclic GMP 

which thereby leads to a decrease of intracellular calcium with vasodilatation.  

 

cGMP is degraded to GMP by class of enzymes called phosphodiesterases. Agents 

which prolong the survival of cGMP by inhibiting the PDEs in vascular smooth muscle in 

terminal arterioles controlling the entry to nutritive bed have the potential for increasing 

capillary recruitment and enhancing insulin action. PDEs are substrate- and tissue-

specific enzymes and are divided in 11 classes; each class has a number of isoenzymes 

(Tables I and II, pages 20, 21) [141]. The property of PDE inhibitors to increase cGMP 

has been exploited before. The PDE5 inhibitor sildenafil (Viagra®) is one such example 

which has dominant effects on the vasculature of the corpus cavernosum and has been 

used to increase penile tumescence. Since NO signaling involves activation of the soluble 

form of guanylate cyclase to produce cGMP, the relationship between NO, cGMP, and 

muscle glucose uptake has been explored. 
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3.1.1 Recent reports on T-1032 

 

Shortly after its discovery by Kotera et al in April 2000 [156], it was reported that the 

PDE inhibitor, T-1032 dose dependently enhanced the penile tumescence induced by 

pelvic nerve stimulation with the same potency as sildenafil in the corpus cavernosum of 

anesthetised dogs [255]. In an in vitro study, Takagi et al [256] compared the effects of T-

1032 in isolated rabbit corpus cavernosum and rat aorta. They concluded that the 

influence of T-1032 was more profound on cardiovascular than on penile tissue in 

anesthetised rats, since T-1032 produced more marked relaxation in the rat aorta than in 

the rabbit corpus cavernosum.  

 

So far it has been believed that T-1032 and sildenafil have similar vasorelaxant 

properties. But Mochida et al [257] demonstrated that sildenafil produced a more potent 

vasorelaxation at higher concentration than T-1032 in endothelial denuded aortic rings 

and in the presence of L-NAME. They concluded that sildenafil at high concentration has 

an additional vasorelaxant property, other than PDE5 inhibition in isolated rat aorta, 

probably the calcium channel antagonism. Since T-1032 did not show an additional 

vasorelaxant property, T-1032 should be considered to be the better tool as a selective 

PDE5 inhibitor. 

 

Studies by Yano et al [244] and Inoue et al [258] in pulmonary hypertensive dogs 

and rats respectively, suggested T-1032 as a useful drug for the treatment of pulmonary 

hypertension as it potently and selectively dilated pulmonary vessels. Another study by 

Inoue and coworkers [259, 260] indicated that T-1032 may have therapeutic potential for 

the treatment of chronic heart failure. 

 

3.1.2 Aim of the study 

 

As discussed in the first chapter, cGMP hydrolyzing PDEs are involved in regulation 

of vascular tone with type 5 likely to be the most important cGMP hydrolyzing enzyme 

present in VSMC [144, 145]. Thus it was hypothesized that a specific inhibition of cGMP 
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PDE specifically expressed in the terminal arteriolar VSMC controlling blood flow entry 

to the capillaries would improve insulin action to recruit capillary flow and skeletal 

muscle glucose uptake and may therefore help in ameliorating insulin resistance. The aim 

of this study was to investigate the effect of the highly selective cGMP hydrolyzing PDE 

inhibitor T-1032 on insulin-mediated capillary recruitment and skeletal muscle glucose 

uptake, to see if T-1032 amplifies the effects of insulin in vivo.  

 

3.2 RESEARCH DESIGN AND METHODS  

 

3.2.1 Animals 

 

Rats were raised as described in section 2.1. 

 

3.2.2 In vivo experiments 

 

Hyperinsulinemic euglycemic clamps were performed in fasted anesthetized rats as 

described in section 2.2. Once the surgery was completed, a 60-min equilibration period 

was allowed so that leg blood flow and blood pressure could become stable and constant. 

Femoral blood flow in one leg was continuously measured from a Transonic® flow probe 

positioned around the femoral artery. Rats were then allocated into either control (saline), 

T-1032 or euglycemic insulin clamp (insulin alone or T-1032 + insulin) group (n = 5-7 in 

each group). Glucose (30% w/v solution) was infused to maintain blood glucose levels at 

or above basal whilst infusing insulin for a period of 120 min. T-1032 was dissolved in 1 

mM HCl in saline. At the end of the experiment samples were taken from the femoral 

artery and vein. Hindleg glucose uptake and 1-MX metabolism were calculated from the 

arterio-venous difference multiplied by the flow. 1-MX metabolism was an indicator of 

perfused capillary surface area. At 45 min prior to the completion of the experiment, a 

100 µCi bolus of [14C]2-DG was administrated. Plasma samples (25µl) were collected at 

5, 10, 15, 30 and 45 min after the 2-DG injection to determine the time course for plasma 

radioactivity decay. At the conclusion of the experiment, the muscles were removed, 
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freeze clamped in liquid nitrogen and stored at –20°C until assayed for 2-DG 

radioactivity as described in section 2.6. 

 

3.2.3 Experimental protocols 

 

Completion of the surgical procedures was followed by a 60-min equilibration period 

to allow leg blood flow and blood pressure to become constant. Rats were then subjected 

to Protocol A or B (Fig. 1), where they were infused with saline or T-1032 for 3 h (some 

received T-1032 for only 2 h starting at 0) and underwent euglycemic insulin clamp (3 

mU/kg/min, Humulin R, Eli Lilly and Co., Indianapolis), or saline alone for the final 2 h. 

T-1032 was infused at 1 μg/min/kg in protocol A1 and at 10 μg/min/kg in protocol A2 

and B. T-1032 was also infused 1h prior to insulin clamp (protocol B). 
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Study design. Fig. 1. Arterial and venous samples were collected at times indicated as 

A-V for HPLC analysis and plasma glucose determination. Arterial blood glucose were 

determined at time . Venous infusion periods are indicated by bars. Bolus infusion 

periods are indicated by . T-1032 was infused at a dose of 1 μg/min/kg in protocol A1 

and at a dose of 10 μg/min/kg in protocol A2 and B. n = 5-7. 
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3.2.4 Plasma T-1032 assay                                                                                    

        

A novel assay was developed for the measurement of plasma T-1032 by reverse-

phase HPLC using 5 µm C-18 reverse-phase column (Luna) with 64% methanol in 50 

mM NH4H2PO4 buffer as the mobile phase at a flow rate of 1.2 ml/min. 1 ml of plasma 

was mixed with 3 ml of ethanol to precipitate the proteins and centrifuged at 3500 rpm for 

15 minutes. To the 3.4 ml of supernatant 10.2 ml chloroform was added, mixed and 

briefly centrifuged (30 sec). The lower chloroform layer was then air dried at 60°C, the 

residue re-dissolved in HPLC buffer (100 μl) and an aliquot (50 μl) injected into the 

HPLC system to measure the plasma concentration of T-1032. A standard curve was 

constructed using different concentrations of spiked plasma samples that were treated in 

the same manner as above.   

 

3.2.5 Plasma insulin assay 

 

Rat insulin levels at the end of the euglycemic insulin clamp (and other groups) were 

determined from arterial plasma samples by ELISA assay (Mercodia rat insulin ELISA) 

using rat insulin standards.  

 

3.2.6 Muscle cGMP assay 

 

Muscle cGMP levels (soleus) were determined using a Biotrak cGMP enzyme 

immunoassay kit (Amersham Pharmacia Biochem., UK) on trichloroacetic acid extracts 

of muscle according  to the instructions provided. 

 

3.2.7 Plasma free fatty acid assay 

 

Plasma free fatty acid were determined using an enzymatic colorimetric assay kit 

(Wako Pure Chemical Industries Ltd). 
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3.2.8 Muscle glucose-6-phosphate 

 

Muscle glucose-6-phosphate was determined enzymatically in the neutralized 

perchlorate extracts of muscle. Extracted muscle glucose-6-phosphate was treated with 

glucose-6-phosphate dehydrogenase in the presence of NADP+. Change in absorbance at 

340 nM after formation of NADPH+ was proportional to the levels of glucose-6-

phosphate. 

 

3.2.9 Data analysis 

 

All data are expressed as means ± SEM. Data-analysis was done as described in 

section 2.9. 

 

3.2.10 Statistical analysis  

 

Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood pressure, 

heart rate, vascular resistance, 1-MX, and oxypurinol concentrations throughout the time 

course. When a significant difference (P < 0.05) was found, pair wise comparisons by the 

Student-Newman-Keuls test were used to determine at which individual times the 

differences were significant. Statistical differences between the treatments for arterial 

glucose and 1-MX, hindleg glucose extraction and uptake, and hindleg 1-MX extraction 

and disappearance were determined by one way ANOVA. These tests were performed 

using the SigmaStatTM statistical program (Jandel Software, version 2.03).  
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 3.3 RESULTS 

 

3.3.1 EFFECT OF LOW DOSE T-1032 (1 μg/min/kg) ON PHYSIOLOGIC 

INSULIN (3 mU/min/kg) (Protocol A1) 

 

3.3.1a Hemodynamic effects 

 

Fig. 2 A and B show the MAP and heart rate during saline control, T-1032 1 

µg/min/kg (hereafter referred as 1 µg), euglycemic 3 mU/min/kg (hereafter referred to as 

3mU insulin) insulin clamp and T-1032 1 µg + 3 mU insulin clamps. There were no 

significant differences observed in MAP and heart rate among the 4 groups. 

 

Fig. 2 C and D show the changes in FBF and vascular resistance. Saline and 1 μg T-

1032 (2 h) infusion alone had no effect on either FBF or vascular resistance. Insulin 

infusion alone caused a significant increase in FBF when compared with saline towards 

the end of the clamp (from 0.7 ± 0.1 to 1.0 ± 0.1 ml/min, an increase of 33%). Co-

infusion of 1 µg T-1032 did not have any significant effect on the insulin-mediated 

increase in FBF (0.8 ± 0.1 to 1.0 ± 0.1 ml/min). The vascular resistance did not 

significantly decrease at the 120min time point in the insulin group nor did the co-

infusion of T-1032 affected vascular resistance (from 155.6 ± 18.3 to 120.0 ± 20.0 R.U.). 

 

3.3.1b Glucose metabolism 

 

There were no differences in arterial glucose or lactate concentrations between any of 

the groups during the course of the experiments (Fig. 3 A and B). During the insulin 

clamp, blood glucose was maintained at or above this level. Fig. 3C shows the GIR 

during the insulin clamp with and without T-1032 infusion. In order to maintain this basal 

blood glucose level, glucose was infused at a significantly higher rate in the insulin group. 

In contrast, co-infusion of T-1032 with insulin led to a significant decrease in GIR (42%) 

in the last 30 minutes (insulin 12.8 ± 0.5, insulin + T-1032 7.4 ± 0.8 mg/min/kg); after an 
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initial rise, GIR started to decrease after 40 minutes and showed a steady decline until the 

end of the experiment. 

 

Hindleg glucose uptake (Fig. 4A) calculated from the A-V difference (glucose 

extraction) multiplied by the FBF showed a significant elevation in insulin group (saline 

0.1 ± 0.01 to insulin 0.4 ± 0.05 μmol/min) while the insulin + T-1032 group showed a 

significant 39% decrease in insulin-mediated glucose uptake (0.25 ± 0.04 μmol/min). 

Glucose extraction showed the same changes as hindleg glucose uptake (Fig. 4B).  

 

  3.3.1c [14C] 2-DG uptake 

          

R’g or 2-deoxyglucose uptake for combined muscles (Fig. 4C) showed a significant 

66% increase with insulin infusion (saline 3.6 ± 0.4, insulin 10.7 ± 1.1 μg/g/min). Insulin 

infusion alone increased the R’g for soleus (2.3 fold), plantaris (2.1 fold), red 

gastrocnemius (3.1 fold), white gastrocnemius (1.5 fold), EDL (4.9 fold) and tibialis (5.3 

fold) when compared with saline controls (Fig. 4D). When combined, the increase 

represented 2.9-fold basal. T-1032 infusion did not show a significant difference from 

saline. The co-infusion of T-1032 with insulin partly inhibited (∼20%) the insulin-

mediated increase in 2-DG uptake (8.5 ± 0.9 μg/g/min). 

 

3.3.1d 1-MX metabolism 

 

1-MX infusion was started at 60 min before the end of the experiment. A bolus 

injection of allopurinol was given via the carotid artery 5 min before 1-MX infusion. 

Allopurinol is converted to oxypurinol, the major inhibitor of the enzyme xanthine 

oxidase. The arterial levels of oxypurinol did not show significant differences between 

the various treatment groups, indicating that xanthine oxidase was inhibited to the same 

extent in all the groups (saline 6.8 ± 0.8, insulin 5.6 ± 0.8, T-1032 7.3 ± 0.7, ins + T-1032 

6.6 ± 1.2 μM). No significant difference was found between the treatment groups in 

arterial 1-MX concentrations (saline 26.2 ± 2.5, insulin 44.2 ± 10.0, T-1032 32.6 ± 2.9, T-
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1032 + insulin 25.4 ± 1.7 μM). 1-MX metabolism (Fig. 5) was significantly elevated by 

insulin, with a 1.6 fold increase in 1-MX metabolism compared to saline. In the insulin + 

T-1032 group, however, the 1-MX metabolism was not significantly different from 

insulin alone although it did show a 15% decrease in 1-MX metabolism (saline 6.2 ± 0.5, 

insulin 9.9 ± 1.4 and insulin + T-1032 8.5 ± 1.0 nmol/min). 
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Fig. 2. Mean arterial pressure (A), heart rate (B), changes in femoral blood flow (C) 

and vascular resistance (D) for saline, 1µg T-1032, 3mU insulin, insulin + 1µg T-1032 

treated rats (Protocol A1). Data were collected from 5s sub-samples each 15 minutes. 

Values are means ± SEM. Significant values from saline are indicated by *, P < 0.05. 
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 Fig. 3. Blood glucose (A) and blood lactate (B) concentration for saline, 1 µg T-

1032, 3mU insulin, insulin + 1 µg T-1032 treated rats (Protocol A1). It also shows 

glucose infusion rate (C) to maintain blood glucose level at or above basal level during 

insulin and insulin + 1 µg T-1032 infusions. Values are means ± SEM. Significant values 

from insulin are indicated by *, P < 0.001. 



 56

 

 

Fig. 4. Hindleg glucose uptake (A), glucose extraction (A-V difference) (B) and R’g 

calculated from [14C]2-DG uptake  for the combination of 6 muscles (C) and for 

individual muscles  (D) (Protocol A1). Different treatment groups were saline, 1 µg T-

1032, 3 mU insulin, insulin + 1 µg T-1032. Values are means ± SEM. Significant values 

from saline are indicated by *, P < 0.001. # Indicates that insulin + T-1032 is significantly 

different from insulin, P < 0.001. 
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Fig. 5. Hindleg 1-MX metabolism values for saline, 1 µg T-1032, 3mU insulin, 

insulin + 1 µg T-1032 treated rats (Protocol A1). Values are mean ± SEM. Significant 

differences from saline are indicated by *, P < 0.001. 
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3.3.2 EFFECTS OF T-1032 (10 μg/min/kg) ON PHYSIOLOGIC INSULIN 

(Protocol A2) 

 

3.3.2a Hemodynamic effects 

 

There were no significant differences observed in MAP and heart rate between the 4 

groups (Fig. 6 A and B) of saline control, T-1032 10 µg/min/kg (hereafter referred as 

10µg), euglycemic 3 mU/min/kg insulin clamp and T-1032 10 µg + 3 mU insulin clamps. 

Saline and 10 µg T-1032 2 h infusion alone had no effect on either FBF or vascular 

resistance (Fig. 6 C and D). Insulin infusion alone caused a significant increase in FBF 

when compared with saline towards the end of the clamp (from 0.7 ± 0.1 to 1.0 ± 0.1 

ml/min), an increase of 33%. Co-infusion of 10 μg T-1032 did not have any significant 

effect on insulin-mediated increase in FBF but the magnitude of insulin-mediated 

increase in FBF was decreased from 33 to 20% (0.85 ±. 0.05 at basal to 1.1 ± 0.1 ml/min 

at 120min). The vascular resistance did not significantly decrease at the end of the 

experiment in the insulin group and nor did the co-infusion of T-1032 have any effect 

(from 134.5 ± 7.5 to 103.4 ± 10.7 R.U., co-infusion group). 

 

3.3.2b Glucose metabolism 

 

There were no differences in arterial glucose concentrations between any of the 

groups during the course of the experiments (Fig. 7A). During the insulin clamp, blood 

glucose was maintained at or above this level. Fig. 7B also shows the GIR during insulin 

clamp with and without T-1032 infusion. In order to maintain this basal blood glucose 

level, glucose was infused at a significantly higher rate in the insulin group. In contrast, 

co-infusion of T-1032 with insulin led to a significant (64%) decrease in GIR at 120 min 

(insulin 12.6 ± 0.5, insulin + T-1032 4.6 ± 0.9 mg/min/kg). GIR did not rise as in the 

insulin group and showed a steady decline. The insulin + T-1032 1 µg group has been 

included for comparison. 
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Hindleg glucose uptake, (Fig. 8A) calculated from the extraction multiplied by the 

FBF, showed a significant elevation in the insulin group (saline 0.1 ± 0.01 to insulin 0.4 ± 

0.05 µmol/min). The insulin + T-1032 group showed a significant 70% decrease in 

hindleg glucose uptake (0.1 ± 0.04 µmol/min). Glucose extraction showed similar 

changes as hindleg glucose uptake (Fig. 8B). 

 

3.3.2c [14C] 2-DG uptake 

 

R’g or 2-deoxyglucose uptake (Fig. 8 C and D) showed a significant increase with 

insulin infusion (saline 3.6 ± 0.4, insulin 10.7 ± 1.1 µg/g/min). 10 µg (2 h) T-1032 

infusion did not show a significant difference from saline. The co-infusion of 10 µg T-

1032 with insulin resulted in a trend indicative of a 20% inhibition (8.5 ± 1.0 µg/g/min, 

but this was not significant, P = 0.101) of insulin-mediated 2-DG uptake in combined 

muscles. Insulin + 1 µg T-1032 group showed a similar trend. 

 

3.3.2d Capillary recruitment  

 

1-MX metabolism, indicative of capillary recruitment (Fig. 9) was significantly 

elevated by insulin, with 1.6 fold significant increase in 1-MX metabolism when 

compared with saline. In the insulin + 10 µg T-1032 group, however, the 1-MX 

metabolism was not significantly different from saline, i.e., insulin-mediated capillary 

recruitment was completely inhibited by T-1032 (saline, 6.2 ± 0.5; insulin, 10.0 ± 1.4; and 

insulin + 10 µg T-1032, 6.1 ± 1.1 nmol/min).  In contrast, 1-MX metabolism in insulin + 

1 µg T-1032 group did not differ significantly from insulin. 
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Fig. 6. Mean arterial pressure (A), heart rate (B) and changes in femoral blood flow 

(C) and vascular resistance (D) for saline, 10 µg/min/kg T-1032, 3 mU/min/kg insulin, 

and insulin + 10 µg T-1032 treated rats (Protocol A2). Data were collected from 5s sub-

samples each 15 minutes. Values are means ± SEM. Significant values from saline are 

indicated by *, P < 0.001. 
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Fig. 7. Arterial blood glucose (A) and glucose infusion rate (B) for saline, 10 µg T-

1032, 3 mU insulin, and insulin + 10 µg T-1032 treated rats (Protocol A2). Data from 1 

µg T-1032 (protocol A1) is added for comparison. Values are mean ± SEM. Significant 

values from insulin are indicated by *, P < 0.001. 
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Fig. 8. Hindleg glucose uptake (A), glucose extraction (B) and [14C]2-DG uptake 

values for combination of 6 muscles (D) and for individual muscles (C). Different 

treatment groups were for saline, 10 µg T-1032, 3 mU insulin, and insulin + 10 µg T-

1032 (Protocol A2). Values are mean ± SEM. Significant values from saline are indicated 

by *, P < 0.001. # indicates that insulin + T-1032 is significantly different from insulin, P 

< 0.001. 
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Fig. 9. Hindleg 1-MX metabolism values for saline, 10 µg T-1032, 3 mU insulin, and 

insulin + 10 µg T-1032 treated rats (Protocol A2). Values are mean ± SEM. Significant 

values from saline are indicated by *, P < 0.001, and from insulin by #, P < 0.001. 
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3.3.3 EFFECTS OF HIGH DOSE OF T-1032 10 µg/min/kg STARTED 1 h 

BEFORE AND CONTINUED THROUGHOUT THE PHYSIOLOGIC INSULIN 

CLAMP (Protocol B) 

 

In this group T-1032 10 µg/min/kg was commenced 1 h before 3 mU insulin clamp 

and then continued with insulin. Thus T-1032 was given for the duration of 3 h. It is 

obvious from the results obtained so far that co-infusion of T-1032 with insulin did not 

lead to a significant inhibition of 2-DG uptake, while hindleg glucose uptake was almost 

completely inhibited. The 2-DG uptake method is more precise since it is measured in 6 

individual hindleg muscles, and it indicates an average glucose uptake over a period of 45 

minutes, while hindleg glucose uptake is based on single time point measurement at the 

end of the experiment. Individual GIR values indicated that rats showed variable levels of 

inhibition, with maximum inhibition at the completion of the experiment, since the 

decrease in GIR occurred at different time points in different rats, and did not correlate 

perfectly with 2-DG uptake. One explanation is that inhibition of insulin-mediated 

glucose uptake by T-1032 is cumulative and exerts its maximum effect at the completion 

of the experiment when it is indicated by hindleg glucose uptake. 

To confirm whether T-1032 results in complete inhibition of insulin-mediated 

glucose uptake, infusion of T-1032 was commenced 1 h before and during insulin clamp.  

 

3.3.3a Hemodynamic effects 

 

Fig. 10 A and B show the MAP and heart rate during saline control, T-1032 10 

µg/min/kg (hereafter referred as 10 µg), euglycemic 3 mU/min/kg (hereafter referred to as 

3 mU insulin) insulin clamp and T-1032 10 µg + 3 mU insulin clamps. There were no 

significant differences observed in MAP and heart rate between the 4 groups. 

 

Saline and 10 µg T-1032 3 h infusion alone had no effect on either FBF or vascular 

resistance (Fig. 11 A and B). Insulin infusion alone caused a significant increase in FBF 

over saline towards the end of the clamp (from 0.7 ± 0.1 to 1.0 ± 0.1 ml/min). Infusion of 

10 µg T-1032 for 1 h before commencing insulin did not have any effect on FBF and it 
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completely abrogated the insulin-mediated increase in FBF (1.0 ± 0.1 to 0.9 ± 0.1 

ml/min). The vascular resistance did not show any significant change in T-1032 + insulin 

group (from 112.4 ± 11.6 R.U. basal to 118.1 ± 10.2 R.U. at the end of the experiment). 

 

3.3.3b Glucose metabolism 

 

There were no differences in arterial glucose concentrations between any of the 

groups during the course of the experiment (Fig. 12A). During the insulin clamp, blood 

glucose was maintained at or above this level. Fig. 12B shows the GIR during insulin 

clamp with and without T-1032 infusion. In order to maintain this basal blood glucose, 

glucose was infused at a significantly higher rate in insulin group. In contrast, pre-

infusion and co-infusion of T-1032 with insulin led to significant decreases in GIR from 

the beginning and glucose infusion was completely stopped by ∼30min after starting the 

insulin in all animals (insulin 12.6 ± 0.5 at 120 min) in the pre-infusion group.  

 

Hindleg glucose uptake, (Fig. 13A) exhibited a significant elevation in the insulin 

group (saline 0.1 ± 0.01 to insulin 0.4 ± 0.05 µmol/min). T-1032 completely inhibited the 

insulin effect reducing the hindleg glucose uptake to 0.1 ± 0.02 µmol/min. Glucose 

extraction showed the same changes as hindleg glucose uptake (Fig.  13B). 

 

3.3.3c [14C] 2-DG uptake 

 

R’g or 2-deoxyglucose uptake (Fig. 13 C and D) showed a significant 66% increase 

with insulin infusion (saline 3.6 ± 0.4, insulin 10.7 ± 1.1 µg/g/min). 10 µg T-1032 (3 h) 

infusion did not show a significant difference from saline. The 1 h pre-infusion and co-

infusion of T-1032 with insulin resulted in a significant 40% inhibition (6.4 ± 0.6 

µg/g/min, P < 0.05) of insulin-mediated 2-DG uptake in combined muscles. Insulin-

mediated 2-DG uptake was inhibited in soleus by 34%, plantaris 20%, red gastrocnemius 

47%, white gastrocnemius 7%, EDL 49% and tibialis by 54%. 
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3.3.3d 1-MX metabolism 

 

The 1-MX metabolism (Fig. 14) was significantly elevated by insulin. Pre-infusion of 

T-1032 in the insulin + T-1032 group, however, completely inhibited the insulin-

mediated increase in 1-MX metabolism (saline 6.2 ± 0.5, insulin 10.0 ± 1.4 and insulin + 

T-1032 5.7 ± 0.7 nmol/min). 

For the purpose of comparison, 10 µg T-1032 + insulin group has been included for 

GIR, hindleg glucose uptake, R’g and 1-MX metabolism.  

 

3.3.3e Plasma T-1032 assay 

 

To determine whether T-1032 achieved significant, pharmacologically active 

concentration in plasma, HPLC analysis of extracted plasma was carried out. Plasma T-

1032 levels were measured in the pre-infusion 3 h 10 µg/min/kg T-1032 group by HPLC. 

The plasma concentration of T-1032 was 0.22 ± 0.003 µM (n = 3, separate animals) at the 

end of the experiment. 

 

3.3.3f Muscle cGMP assay 

 

A cGMP assay was performed on soleus muscle extracts from saline, insulin, T-1032 

10 µg 3 h and T-1032 10 µg 1 h before and during insulin (pre-infusion) groups to see if 

T-1032 infusion resulted in significant PDE inhibition. Muscle cGMP levels of various 

treatment groups were (fmol/mg wet wt), saline 38 ± 8.0, T-1032 90 ± 18, insulin 31 ± 

4.9 and insulin + T-1032 90 ± 11 (Fig. 15A). T-1032 significantly increased the muscle 

cGMP levels compared to saline or insulin alone, and was unaffected by insulin co-

infusion. 
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3.3.3g Plasma insulin assay 

It is possible that the inhibitory effect of T-1032 on insulin action is due to the 

suppression of endogenous insulin production. Therefore plasma insulin levels were 

monitored. Plasma insulin levels (pM) were, saline 143 ± 11, T-1032 10 µg/min/kg × 3 h 

159 ± 22, 3 mU insulin 592 ± 91, T-1032 10 µg before and during insulin 518 ± 58 (Fig. 

15B). The insulin levels did not differ between insulin and insulin + T-1032 groups. 

 

3.3.3h Plasma FFA assay 

 

To see if T-1032 resulted in a Randle type defect (in which excess FFA would be 

expected to increase glucose-6-phosphate levels secondary to inhibition of pyruvate 

oxidation), both plasma FFA and muscle glucose-6-phosphate assay were done. The 

colorimetric plasma FFA assay did not differ significantly between the various treatment 

groups. The FFA levels were (meq/L), saline 1.0 ± 0.12, T-1032 10 µg 3 h 1.2 ± 0.16, 3 

mU insulin 1.0 ± 0.1 and T-1032 10 µg 1 h before and during insulin 1.0 ± 0.2 (Fig. 16B). 

 

3.3.3i Muscle glucose-6-phosphate assay 

 

Muscle (tibialis) glucose-6-phosphate levels are shown in figure 16A. Muscle content 

of glucose 6-phosphate was 0.95 ± 0.10 (saline), 0.6 ± 0.09 (insulin), 0.10 ± 0.04 (T-

1032) and 0.1 ± 0.05 for T-1032 + insulin (pre-infusion) µmol/g wet weight. Thus T-1032 

significantly decreased (P < 0.05) glucose 6-phosphate levels with or without insulin. 
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Fig. 10. Mean arterial pressure (A) and heart rate (B) for saline, 10 µg T-1032 × 3 h, 

3 mU insulin, insulin + 10 µg T-1032 and (10 µg T-1032 1 h before and during insulin) 

treated rats (Protocol B). Data were collected from 5s sub-samples each 15 minutes. 

Values are means ± SEM. Co-infusion values (Protocol A2) are shown for comparison. 
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Fig. 11. Changes in femoral blood flow (A) and vascular resistance (B) for saline, 10 

µg T-1032 × 3 h, 3 mU insulin, insulin + 10 µg T-1032 and (10 µg T-1032 1 h before and 

during insulin) treated rats (Protocol B). Co-infusion values (Protocol A2) are shown for 

comparison. Values are means ± SEM. Significant values from saline are indicated by *, 

P < 0.001. # indicates that insulin + T-1032 pre-infusion is significantly different from 

insulin, P < 0.001. 
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Fig. 12. Arterial blood glucose (A) and glucose infusion rate (B) for saline, 10 µg T-

1032 × 3 h, 3 mU insulin, insulin + 10 µg T-1032 and (10 µg T-1032 1 h before and 

during insulin) treated rats (Protocol B). Co-infusion values (Protocol A2) are shown for 

comparison. Values are mean ± SEM. Significant values from insulin are indicated by *, 

P < 0.001. 
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Fig. 13. Hindleg glucose uptake (A), glucose extraction (B) and [14C]2-DG uptake 

values for combination of 6 muscles (C) and for individual muscles (D). Different 

treatment groups were saline, 10 µg T-1032 × 3 h, 3 mU insulin, insulin + 10 µg T-1032 

and (10 µg T-1032 1 h before and during insulin) treated rats (Protocol B). Co-infusion 

values (Protocol A2) are shown for comparison. Significant differences from saline are 

indicated by *, P < 0.001. # indicates that insulin + T-1032 is significantly different from 

insulin, P < 0.001. 
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Fig. 14. Hindleg 1-MX metabolism values for saline, 10 µg T-1032 × 3 h, 3 mU 

insulin, insulin + 10 µg T-1032 and (10 µg T-1032 1 h before and during insulin) treated 

rats (Protocol B). Co-infusion values (Protocol A2) are shown for comparison. Values are 

mean ± SEM. Significant differences from saline are indicated by *, P < 0.001, and from 

insulin by #, P < 0.001. 
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Fig. 15. Muscle cGMP (A) and plasma insulin (B) concentrations for saline, T-1032 

10 µg × 3 h, 3 mU insulin, and (T-1032 10 µg 1 h before and during insulin) treated rats 

(Protocol B). Values are mean ± SEM. Significant differences from saline are indicated 

by *, P < 0.001. 
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Fig. 16. Muscle glucose-6-phosphate (A) and plasma FFA (B) values for saline, T-

1032 10 µg × 3 h, 3 mU insulin, and (T-1032 10 µg 1 h before and during insulin) treated 

rats (Protocol B). Values are mean ± SEM. Significant differences from saline and insulin 

are indicated by *, P < 0.001. 
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3.4 DISCUSSION 

 

This study was undertaken to see if the cGMP-PDE5 inhibitor T-1032, potentiates 

insulin-mediated capillary recruitment and skeletal muscle glucose uptake. The main 

finding emerging from this study was that T-1032, a specific PDE-5 inhibitor, was 

antagonistic of insulin’s vascular and metabolic actions. The current data presented here 

indicate that acute infusion of T-1032 induced a state of insulin resistance in vivo.  

 

The study examined four treatment groups, (i), low dose T-1032 (1 μg/min/kg) with 

or without 3 mU/min/kg (hereafter referred as 3 mU) hyperinsulinemic euglycemic 

clamp; (ii), high dose T-1032, (10 μg/min/kg) with or without 3mU insulin; (iii), high 

dose T-1032 (10 μg/min/kg) commenced 1 hour before and during 3 mU insulin clamp 

and 3 h T-1032 infusion with saline; (iv), saline control.    

 

An insulin clamp (3 mU) alone did not affect blood pressure/heart rate, but a 

significant increase in femoral blood flow was apparent from 60 minutes onwards when 

compared with saline. Whole body GIR, hindleg glucose uptake, R’g and 1-MX 

metabolism (an index of capillary recruitment) were significantly elevated in the insulin 

group. T-1032 alone did not show any significant effects on any of measured parameters. 

High dose T-1032 for 1 h preceding and during insulin almost completely inhibited 

insulin action. It was noted that T-1032 completely blocked GIR by 1 h, hindleg glucose 

uptake and capillary recruitment at the end of experiment and R’g at the end by 50%. In 

contrast, both the low and high doses of T-1032 co-infused with insulin showed only 

partial blocking activity against insulin with almost complete inhibition of insulin-

mediated increases in FBF, capillary recruitment and hindleg glucose uptake, while the 

insulin-mediated stimulation of 2-deoxyglucose uptake was blocked by 25%.  

 

The doses used in this study were based on previous studies by other investigators 

[259]. Nevertheless, preliminary studies showed that infusion of T-1032 resulted in a 

temporary fall in mean arterial pressure by 6-8 mmHg for 5-10 minutes. Also the co-

infusion of T-1032 1 μg/min/kg with 3 mU/min/kg insulin significantly decreased the 
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GIR. It is difficult to compare the hemodynamic response to T-1032 observed in this 

study with other studies, since this is the first time T-1032 has been infused for 3 hours in 

an in vivo setting in Hooded Wistar rats. However, T-1032 infusion alone did not affect 

the heart rate during the 2-3 h infusion. 

 

The results obtained in this study were unexpected because it was speculated that a 

cGMP-PDE5 inhibitor would cause vasorelaxation by increasing cGMP levels in terminal 

arterioles of skeletal muscle thereby potentiating insulin-mediated capillary recruitment 

and skeletal muscle glucose uptake. NO of endothelial origin is thought to act as a 

paracrine signal [103, 130] and after entering nearby vascular smooth muscle cells of the 

terminal arterioles that control blood flow entry to further capillary networks, activates 

guanylate cyclase to produce cGMP. Cyclic GMP so formed activates a phosphorylation 

cascade to lower intracellular calcium ions and relax the smooth muscle. Cyclic GMP is 

destroyed by a number of isoforms of PDE that can be expressed in a tissue-specific 

manner. NO could also be formed in the muscle under the impetus of insulin. NO donors 

and cGMP analogues have been demonstrated to stimulate glucose transport and the rates 

of lactate release and glucose oxidation in isolated incubated rat skeletal muscle 

preparations [111]. Whereas the effector mechanism used by NO to stimulate glucose 

metabolism in this tissue is yet to be defined, the neuronal form of nitric oxide synthase is 

expressed in the myocytes. Zaprinast has been reported to have such activity in vitro. 

Thus, it has been demonstrated by Young et al that zaprinast stimulated cGMP formation 

and indices of increased glucose metabolism by isolated incubated muscle of lean Zucker 

rats [261].  

 

Also, PDE5 has been shown as the most important cGMP hydrolyzing isoform in 

VSMC [144, 145]. Vasorelaxation by PDE5 inhibition has previously been demonstrated 

using other PDE5 inhibitors such as zaprinast [151, 152], sildenafil [144] and 

dipyridamole [143] in a number of studies. Moreover, T-1032 has been shown to produce 

vasorelaxation by several groups of workers [244, 257-260]. Taken together, there are 

enough data available to suggest that PDE5 inhibitors act as vasorelaxants and it could 

reasonably be expected that T-1032 administered to anaesthetized rats as in the present 
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study would have vascular effects in the hindlimb consistent with vasodilation. In fact, 

apart from a transient lowering of pressure that quickly reversed, this did not occur either 

for T-1032 administered alone or when administered with insulin.   

 

There are no previous studies reporting a possible direct effect of T-1032 on insulin 

action or muscle metabolism. It is clear from the present study that T-1032 adversely 

affected the insulin-mediated increase in capillary recruitment and skeletal muscle 

glucose uptake. T-1032 infusion alone had no effect on hindlimb glucose uptake but 

markedly inhibited the insulin stimulation of glucose uptake and was associated with 

decreased glucose infusion rates to maintain euglycemia. In conjunction with this, the 

insulin-mediated increase in FBF and decrease in vascular resistance was prevented. In 

addition, the effects of this agent were time- and dose-dependent. Exposure for 2 h to T-

1032 infused at 10 µg/min/kg produced inhibitory effects that were considerably less than 

exposure for 3 h and a dose of 1 µg/min/kg for 2 h had an even milder effect. 

 

This study has been the first of its kind, looking at the effect of a specific PDE5 

inhibitor, T-1032 on insulin action in vivo. The question arises as to what could be the 

probable causes of T-1032-induced inhibition of insulin-mediated increase in GIR and 

glucose uptake.  

 

The main cause of inhibition of insulin-mediated 2-DG uptake induced by acute in-

vivo infusion of T-1032 appears to be hemodynamic i.e., complete inhibition of insulin-

mediated capillary recruitment leads to partial attenuation of insulin-mediated glucose 

uptake. It is probable that T-1032 has negatively affected insulin’s action at the 

endothelium. Thus the complete blockade of capillary recruitment in the present study 

may account for the partial inhibition of lower leg R’g and some of the inhibition of 

hindleg glucose uptake. In addition, since T-1032 also inhibited the insulin-mediated 

increase in FBF, the effect of the PDE inhibitor was not restricted to the 

microvasculature. Thus a general inhibitory effect of T-1032 targeted at insulin-mediated 

signaling in endothelial cells of both small vessels (affecting capillary recruitment) and 

large vessels (affecting bulk blood flow) is likely. 
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T-1032 might also be redistributing the blood flow to the non-nutritive capillaries, in 

effect denying access of glucose and insulin to metabolically active tissue, (nutritive 

route), and thus might be responsible for the inhibition of insulin action.  However, a 

direct cellular action of T-1032 to inhibit insulin signaling on glucose uptake, analogous 

to TNF-α, cannot be ruled out. It is possible that an inhibitory effect of T-1032 has 

developed over time to reduce insulin-mediated glucose uptake within the skeletal muscle 

cells. Inhibition of insulin-mediated capillary recruitment very likely would only account 

for about 50% of the hindleg glucose uptake and R’g. Thus complete inhibition of hindleg 

glucose uptake assessed by AV glucose difference at the end of the clamp would indicate 

that the inhibitory effects of T-1032 have become manifest in the myocytes. This time-

dependent effect of T-1032, evident from the GIR results, might also explain why R’g 

values only reflected partial inhibition, as R’g values represent the average over the last 

45 min of the clamp, whereas hindleg glucose uptake is determined from blood samples 

at the end of the clamp.  

 

Another possibility is that T-1032 may inhibit metabolic vasodilatation, i.e., it may 

inhibit the effect of a vasodilator substance produced as a result of insulin stimulation of 

glucose uptake since T-1032 infusion prevented insulin-mediated increase in FBF. Thus a 

general inhibitory effect of T-1032 targeted at insulin-mediated signaling in endothelial 

cells of both small vessels (affecting capillary recruitment) and large vessels (affecting 

bulk blood flow) is likely. 

 

This lab was the first to report and measure insulin’s direct effect on capillary 

recruitment within skeletal muscle in rat hindleg after 2 h of hyperinsulinemic euglycemic 

clamp [57]. The technique uses 1-MX metabolism as a marker for capillary recruitment 

(nutritive flow) in muscle. 1-MX is metabolized by a capillary-endothelial enzyme, 

xanthine oxidase (XO) to 1-methylurate. The infusion of physiological levels of insulin, 

by recruiting nutritive capillaries, increases the skeletal muscle capillary endothelial XO 

and leads to enhanced metabolism of 1-MX. Inhibitory changes in capillary flow 

modulates 1-MX metabolism, and this has been demonstrated in vivo in studies with 
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alpha methyl serotonin, TNF-α and Intralipid® heparin infusion [65-67]. It has been 

reported that hindleg glucose uptake and capillary recruitment are functionally coupled 

and show parallel adjustments. In fact, the T-1032 results from this study are similar to 

those obtained with TNF-α and to some extent with α-methyl serotonin. It has been 

suggested that inhibition of 1-MX metabolism by α-methyl serotonin involves 

redistribution of blood flow preferentially to the non-nutritive route, preventing insulin-

mediated capillary recruitment. Acute infusion of α-methyl serotonin, results in inhibition 

of insulin-mediated capillary recruitment and glucose uptake, probably by constricting 

arterioles supplying nutritive capillaries. Thus, this study along with TNF-α and α-methyl 

serotonin studies, indicates that when capillary recruitment by insulin is blocked in vivo, 

an acute state of insulin resistance is induced.  

 

It is possible that the PDE5 isoform inhibited by T-1032 is not present in terminal 

arterioles regulating the blood flow to nutritive capillaries in skeletal muscles or is not the 

one involved in insulin-mediated capillary recruitment and glucose uptake. It is also 

possible that PDE5 is not present in the terminal arterioles of skeletal muscle. Previous 

studies done in our lab using zaprinast, which is an inhibitor of multiple PDEs including 

PDEs 2, 5, 7, 9, 10 and 11 [148, 262] showed that zaprinast augmented the insulin-

mediated glucose uptake and capillary recruitment but this elevation did not reach 

statistically significant levels. Keeping this in mind and the finding that T-1032 has been 

reported to be highly selective for PDE5 [156], it is possible that PDE isoforms other than 

PDE5 are involved in the NO-cGMP pathway in terminal arterioles of skeletal muscle. In 

support of this notion, it has been demonstrated that PDE families show tissue-specific 

distribution in cardiovascular system. PDE 1, 4 and 5 have been detected in saphenous 

vein while human mesenteric artery showed the presence of PDEs 1-5 [148]. Human 

pulmonary artery showed a high level of PDE5 activity; canine aorta contained higher 

activity of PDE1 than of PDE5 [146, 149].  

 

Muscle cGMP levels were significantly elevated in response to T-1032 (10 

µg/min/kg) with or without insulin. It does not, however, indicate the source of cGMP, 

which could be in the myocytes, smooth muscle cells, or both. However, it is likely that 
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the increase in cGMP is largely attributable to an inhibition of cGMP PDE in the 

myocytes. A build up of cGMP in vascular smooth muscle would be expected to cause 

vasodilatation and in this respect others have reported that T-1032 at 10 µg/min/kg 

lowered MAP by 16.8% in mecamylamine- and noradrenaline-treated anaesthetized rats 

[259]. In the present study, although a similar dose of T-1032 transiently lowered the 

MAP during the first 5 min, the effect was not sustained. Insulin infusion alone did not 

exhibit a detectable increase in cGMP levels. 

 

Attempts were made to investigate other possible causes of T-1032-induced insulin 

resistance. It was thought that it could be a direct or indirect cellular effect of T-1032 to 

inhibit glucose uptake, a Randle type defect (in which excess FFA would be expected to 

increase glucose-6-phosphate levels secondary to inhibition of pyruvate oxidation). 

Increased triglyceride content in muscle increases the long chain acyl-CoA species which 

disrupts the insulin signaling cascade leading to attenuated GLUT4 transport [263, 264].  

Artificial elevation of plasma FFA levels has been demonstrated in healthy humans to 

reduce insulin-mediated glucose uptake starting at 1.5 h [265]. It has been suggested that 

complete attenuation of insulin-mediated capillary recruitment will impair the clearance 

of triglyceride rich particles, thus creating a state of fat-induced insulin resistance [99].  

 

It is also possible that T-1032 raises the levels of muscle cAMP inducing 

glycogenolysis thus increasing glucose-6-phosphate levels. Therefore, plasma FFA and 

muscle glucose-6-phosphate assays were done. Plasma FFA levels did not show any 

significant differences between the various treatment groups, thus ruling out the 

involvement of elevated FFA levels. This could happen if T-1032 elevated the cAMP 

levels in tissues such as adipocytes. T-1032 also significantly decreased muscle glucose-

6-phosphate levels with or without insulin.  

 

In the present study, no attempt was made to assess the relative contribution of the 

effects of T-1032 to muscle and liver glucose metabolism. Yet, since GIR was completely 

inhibited by T-1032 after 3 h and the combined muscle R’g was only inhibited by 50%, 

an effect of the PDE5 inhibitor to block insulin-mediated inhibition of hepatic glucose 
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output would seem likely. Clearly, this warrants further investigation. Finally, the 

possibility that T-1032 may have interacted with other pathways unrelated to cGMP 

cannot be ruled out. Such ‘non-specific’ interaction could account for the present findings 

and result from the particular chemistry of T-1032. For example, in preliminary studies 

(unpublished) using another PDE5 inhibitor, zaprinast, which differs in structure from T-

1032, we found insulin-mediated glucose uptake by muscle in vivo not to be inhibited, 

even though it increased lactate release, as reported by others [261]. Clearly, additional 

members of this class of PDE5 inhibitors will need to be tested before a general 

conclusion can be made regarding the potential diabetogenic nature of these substances. 

However, HPLC analysis of the T-1032 revealed only one component, and thus the 

inhibitory effects reported herein are unlikely to be attributable to a contaminant. 

 

It has been reported that PDEs play an important role in regulating the pool of 

pancreatic β-cell cyclic AMP and in the modulation of glucose-induced insulin secretion 

[266]. PDE inhibitors which elevate pancreatic β-cell cAMP potentiate glucose-

stimulated insulin release, with no effect on basal insulin release. Although PDE5 has not 

been reported in pancreatic beta cells and T-1032 has not been found to raise cAMP 

levels, plasma insulin assay was done to rule out this possibility. Plasma insulin levels 

were not significantly affected by T-1032. 

 

Thus, this study clearly indicates the unfavorable effects of the PDE5 inhibitor T-

1032 on insulin sensitivity. In the lieu of studies being carried out by other groups with T-

1032, emphasizing its role as a potential tool for pulmonary hypertension (T-1032 has 

been reported to specifically and potently dilate pulmonary vessels [244, 258]), this study 

clearly suggests that acute infusion of T-1032 induces insulin resistance in rats, thus 

highlighting the potential danger of using T-1032 in patients with diabetes mellitus.  

 

In conclusion, the results show that the acute infusion of T-1032 in anesthetized rats 

in vivo led to insulin resistance in rats, uncovering the diabetogenic effect of T-1032. 

Administration of T-1032 before and during hyperinsulinemic euglycemic clamp 

prevented insulin action to increase skeletal muscle blood flow, capillary recruitment and 
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glucose uptake (50%). Although a direct or indirect effect of T-1032 on glucose uptake in 

muscle cannot be ruled out, the data presented in this study suggest that the complete 

inhibition of insulin-mediated capillary recruitment by T-1032 may account for the 50% 

inhibition of insulin-mediated glucose uptake, thus reinforcing the view that insulin-

mediated capillary recruitment makes a hemodynamic contribution to glucose uptake. 

However, the mechanism by which T-1032 appears to block insulin action remains 

elusive. 
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CHAPTER 4 

 

 

DIFFERENTIAL EFFECT OF VASODILATORS ON INSULIN-MEDIATED 

GLUCOSE UPTAKE AND CAPILLARY RECRUITMENT IN MUSCLE USING 

THE TECHNIQUE OF LOCAL INFUSION 

 

 

4.1 INTRODUCTION 

 

 

Recent evidence suggests that insulin-mediated increases in bulk blood flow [32] and 

capillary recruitment [57] are NO-dependent [52, 63]. When nitro-vasodilators such as 

bradykinin [44], nitroprusside [41] are infused, bulk flow is markedly augmented without 

an effect on insulin action. These results suggest that bulk blood flow changes are not 

necessary for insulin’s metabolic actions in muscle. One exception is the vasodilator 

methacholine (MC), which increased total flow, and has been reported by two groups to 

enhance insulin action. In 1994 Baron et al [32] reported that methacholine augmented 

insulin-mediated glucose uptake across the leg of young healthy subjects. Similarly, 

Sarabi et al [55] reported that methacholine but not sodium nitroprusside increased 

forearm glucose uptake of hypertensive insulin resistant subjects. Thus it is puzzling why 

various vasoactive agents that act via NO-dependent vasodilatation have such different 

metabolic outcomes when insulin’s hemodynamic actions are also NO-dependent. Baron 

et al [32] have proposed that the difference in vasodilator metabolic action may relate to 

the specific sites within the vasculature that are affected.  

 

4.1.1 Aim of the study 

 

In the present study using a novel approach of local infusion in the rat leg in vivo, the 

effects of enhancing NO production by using endothelium-dependent nitro-vasodilators 

methacholine and bradykinin on physiologic insulin in terms of macro- and microvascular 
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hemodynamic changes were compared. Methacholine was also infused systemically in a 

separate group of rats with or without insulin to see its effect on insulin-mediated 

capillary recruitment and glucose uptake. The systemic infusion had a profound effect on 

systemic hemodynamics, which led to the development of a local technique in which the 

epigastric artery, a branch of femoral artery, was cannulated to infuse the vasodilators 

methacholine and bradykinin. The data show that while both endothelium-dependent 

nitro-vasodilators infused locally increase leg blood flow to similar levels, only the one 

that augments capillary recruitment is able to enhance insulin’s stimulation of glucose 

uptake. 

 

4.2 RESEARCH DESIGN AND METHODS  

 

4.2.1 Animals 

 

 Male Hooded Wistar rats weighing 286 ± 3 were raised on a commercial diet as 

described in chapter 2.1. 

 

4.2.2 Surgical preparation 

 

The intention was to conduct a hyperinsulinemic euglycemic clamp in rats, so that 

the effects of a local infusion of the vasodilators methacholine and bradykinin could be 

assessed in the absence of systemic perturbations. Particular focus was on effects imposed 

on the hemodynamic effects of insulin. Details were as essentially described previously in 

chapter 2.2. In these rats epigastric cannulation was done as described in section 2.3. A 

schematic drawing showing the positioning of cannulae and flow probes is given in 

chapter 2 (Fig. 1, page 43). Once the surgery was completed, a 45-60 min equilibration 

period was allowed so that leg blood flow and mean arterial pressure could become stable 

and constant.  Rats were then subjected to the protocol (Fig. 1) where they were infused 

systemically with saline or insulin (as a euglycemic insulin clamp with 3 mU/kg/min) 

from t = 0 for 2 h, and locally (epigastric artery) into the test leg with methacholine or 

bradykinin for the last 45 min. Preliminary experiments were conducted to determine the 
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dose of methacholine or bradykinin that would produce the maximum increase in FBF 

without effects on MAP or heart rate. Some initial experiments involved systemic 

infusions of methacholine intravenously for the final 20 min of either saline (n = 5) or 

insulin clamp (3 mU/kg/min; n = 5). 

 

4.2.3 Blood samples 

  

Arterial samples were taken at the times indicated (Fig. 1) for blood glucose 

measurements. The femoral vein of each leg was used for venous sampling, using a 29G 

insulin syringe (Becton Dickinson).  Duplicate venous samples (300µl) were taken only 

on completion of the experiment (total time 120 min) to prevent alteration of the blood 

flow from the hindlimb due to sampling, and to minimize the effects of blood loss.  

 

4.2.4 Capillary recruitment 

 

    Plasma (20µl) from arterial and leg venous blood samples taken at the end of the 

experiment was mixed with 80µl of 0.42 M perchloric acid and centrifuged for 10 min. 

The supernatant was used to determine 1-MX, allopurinol and oxypurinol concentrations 

by reverse-phase HPLC as previously described in section 2.4. Capillary recruitment, 

expressed as 1-MX metabolism was calculated from arterio-venous plasma 1-MX 

difference and multiplied by femoral blood flow. 

   

At 45 min prior to the completion of each experiment (Fig. 1), a 50 μCi bolus of 

[3H]2-DG was administered.  At the conclusion of the experiment, the soleus, plantaris, 

gastrocnemius white, gastrocnemius red, EDL and tibialis muscles were removed, clamp 

frozen in liquid nitrogen and stored at -20°C to be assayed for 2-DG uptake as described 

in section 2.6. A glucose analyzer was used to determine whole blood glucose (by the 

glucose oxidase method) during the insulin clamp.  
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4.2.5 Plasma insulin assay 

 

Rat insulin levels at the end of the euglycemic insulin clamp (and other groups) were 

determined from arterial plasma samples by ELISA assay (Mercodia rat insulin ELISA) 

using rat insulin standards.  

 

4.2.6 Expression of results 

 

   All data are expressed as means ± SEM.  Mean femoral blood flow, mean heart rate 

and mean arterial pressure were calculated from 5 second sub-samples of the data, 

representing approximately 500 flow and pressure measurements every 15 minutes.  

Vascular resistance in the hindleg was calculated as mean arterial pressure in millimetres 

of mercury divided by femoral blood flow in millilitres per minute and expressed as 

resistance units (RUs).   

 

4.2.7 Statistical analysis   

 

Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood pressure, 

heart rate, vascular resistance, 1-MX, R’g and GIR concentrations throughout the time 

course. When a significant difference (P < 0.05) was found, pair wise comparisons by the 

Student-Newman-Keuls test were used to determine at which individual times the 

differences were significant. All tests were performed using the SigmaStat™ statistical 

program (Jandel Software Corp.). 
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4.3 RESULTS 

 

4.3.1 RESULTS: SYSTEMIC INFUSION OF METHACHOLINE 

 

Systemic infusion of methacholine (Fig. 1) caused MAP to fall and blood glucose to 

rise, resulting in a nil GIR at a dose that achieved a small increase in FBF.  

 

4.3.1a Hemodynamic effects 

 

Methacholine infusion was given intravenously with saline or superimposed on the 

insulin clamp for the last 20 minutes (protocol, Fig. 1A). The beginning of infusion 

caused an immediate fall in mean arterial pressure in both methacholine and insulin + 

methacholine groups (MC 106 ± 4 to 83 ± 7 and insulin + MC 108 ± 2 to 84 ± 2 mmHg, P 

< 0.05, Fig. 1B). This decrease in MAP was accompanied by a significant decrease in 

heart rate (MC 378 ± 7 to 355 ± 4 and insulin + MC 360 ± 0.0 to 348 ± 2 mmHg, P < 0.05 

Fig. 1C). The systemic infusion of methacholine also led to an increase in FBF, but even 

a modest increase of 0.42 ± 0.09 ml/min for the methacholine group and 0.4 ± 0.12 in 

insulin + MC group, (Fig. 2C) was accompanied by a decrease in MAP. Vascular 

resistance decreased as a result of infusion of methacholine (a decrease of 32 ± 7 in MC 

and 33 ± 8 R.U. in insulin + MC group, Fig. 2D). 

 

4.3.1b Glucose and 1-MX metabolism  

 

The decrease in MAP led to a counter-regulatory response with an increase in blood 

glucose (MC 4.5 ± 0.2 to 6.6 ± 0.3 and insulin + MC 4.1 ± 0.05 to 6.9 ± 0.3 mM, Fig. 2A) 

as well as a decrease in GIR (insulin 12.6 ± 1.8 at end while insulin + MC nil at end, Fig. 

2B). 1-MX metabolism (Fig. 3) was increased in methacholine group as compared with 

saline (saline 5.1 ± 0.6, MC 9.8 ± 0.9 nmol/min).  

 

Although methacholine infusion potentiated the insulin-mediated effects on 1-MX 

metabolism, (insulin 8.3 ± 1.2, ins + MC 10.7 ± 0.97 nmol/min) it was thought that the 
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interpretation of a study of this kind was complicated as the drug was likely to have 

secondary effects on glucose uptake such as those resulting from changes in systemic 

hemodynamics and accompanying counter-regulatory responses.  

 

4.3.2 RESULTS: LOCAL EPIGASTRIC INFUSION OF METHACHOLINE 

AND BRADYKININ 

 

The systemic infusion of methacholine affected the whole body causing a significant 

fall in blood pressure and rise in blood glucose. To avoid this, a novel technique was 

developed where the vasodilator was infused only (Fig. 4) in the regional milieu of one 

leg. This had the advantage that the systemic effects of each vasodilator were kept to a 

minimum, due to the infusion being local, and the short biological half-lives of the agents. 

The fact that the systemic hemodynamics did not change after the infusion of vasodilators 

and that the femoral blood flow did not change in the contralateral leg reflected that there 

was little overflow into the systemic circulation. 

 

4.3.2a Hemodynamic effects 

 

The dose of methacholine infused was determined from preliminary experiments 

(data not shown), to produce maximal increases in FBF in the test leg without changes in 

FBF in the contralateral control leg or systemic changes in heart rate or MAP. Fig. 5 

shows the mean arterial pressure and heart rate. Fig. 6 shows the change in FBF and 

vascular resistance for two different combinations based on details of Fig. 4, where 

methacholine or bradykinin was infused locally via the epigastric artery of the test leg and 

measurements were made in both legs, while animals were receiving saline infusion 

systemically or were under hyperinsulinemic euglycemic clamps at 3 mU/kg/min. 

Methacholine increased FBF with or without insulin only in the test leg (Fig. 6A) and the 

dose used, as estimated from femoral arterial flow and infusion rate, was 0.31 ± 0.03 μM. 

The values for MAP before commencement of methacholine infusion were 110 ± 3 

(saline) and 112 ± 2 mmHg (insulin). At 45 min after methacholine infusion there were 

no significant changes and the values were 104 ± 3 (saline) and 109 ± 2 mmHg (insulin). 
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Consequently, the calculated vascular resistance in the leg receiving methacholine was 

found to decrease whether or not insulin was infused (Fig. 6B). Bradykinin infusion, like 

that for methacholine was also adjusted in preliminary experiments to produce maximal 

increase in FBF without systemic effects of changes in MAP or heart rate. The dose used 

was estimated to be 0.07 ± 0.01 μM and the maximal increase in FBF was slightly lower 

than that produced by methacholine; higher doses had systemic effects and thus were 

unsuitable. At this dose, bradykinin increased FBF only in the test leg (Fig. 6C). This 

occurred whether or not insulin was infused systemically. The values for MAP before 

commencement of bradykinin infusion were 106 ± 4 (saline) and 109 ± 3 mmHg 

(insulin). At 45 min after bradykinin infusion these were 117 ± 4 (saline) and 116 ± 4 

mmHg (insulin). Thus, the calculated vascular resistance in the leg receiving bradykinin 

was found to decrease whether or not insulin was infused (Fig. 6D).  

 

4.3.2b Glucose metabolism 

 

 Blood glucose levels for the four groups involving local methacholine or bradykinin 

infusion with saline or insulin infused systemically were constant. For methacholine the 

blood glucose values (Fig. 7A) at 0 min were 4.5 ± 0.2 (saline) and 4.4 ± 0.1 mM 

(insulin) and at 120 min, 5.3 ± 0.2 (saline), 5.6 ± 0.3 mM (insulin). The glucose infusion 

rate (Fig. 7B) required to maintain euglycemia during insulin with local methacholine 

infusions reached a plateau at 8.7 ± 0.9 mg/kg/min. For bradykinin the blood glucose 

values (Fig. 7C) at 0 min were 4.4 ± 0.2 (saline), 4.0 ± 0.2 mM (insulin) and at 120 min, 

4.7 ± 0.2 (saline), 4.8 ± 0.3 mM (insulin). Glucose infusion rate to maintain euglycemia 

when clamps were conducted during local bradykinin infusions reached a plateau at 9.4 ± 

0.6 mg/kg/min (Fig. 7D).  

 

Fig. 8 shows data for R’g of individual muscles of the lower leg. Methacholine had 

no effect on R’g of any of the muscles from the leg into which it was infused. However, 

methacholine when infused locally on a background of systemically infused insulin 

augmented the insulin-mediated increase in R’g for soleus, plantaris, red gastrocnemius, 

extensor digitorum longus and tibialis muscles (Fig. 8A). For the muscle combination, 
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insulin increased R’g ~3-fold from 3.0 ± 0.2 to 9.8 ± 0.8 μg/g/min and this was further 

increased to 12.5 ± 0.8 μg/g/min by methacholine (P < 0.001) (Fig. 8B). Bradykinin alone 

(saline background) had no effect on R’g of any of the muscles from the leg into which it 

was infused (Fig. 8C). Bradykinin (insulin clamp background), unlike methacholine, did 

not affect the insulin-mediated increase in R’g of any of the individual muscles (Fig. 8C) 

or of the combined group (Fig. 8D), of the leg into which it was infused.  

 

4.3.2c Capillary recruitment 

 

 No significant differences were found between the two experimental groups in 

arterial plasma concentrations of 1-MX (saline ± local MC, 16 ± 1.4 μmol/l; insulin ± 

local MC, 20 ± 3 μmol/l) or oxypurinol, the metabolite of allopurinol and inhibitor of 

xanthine oxidase (saline ± local MC, 3.5 ± 0.5 μmol/l; insulin ± MC, 4.0 ± 1.2 μmol/l).  

Local infusion of methacholine increased capillary recruitment from 5.3 ± 0.7 to 8.4 ± 0.8 

nmol/min (P < 0.05) in the test leg as judged from 1-MX metabolism. This increase was 

significant when compared to the contralateral control leg (P < 0.05). Systemic insulin 

infusion also increased 1-MX metabolism. This was significant when control legs were 

compared (P < 0.05; Fig. 9A). 1-MX was further increased from 8.8 ± 0.9 to 15.5 ± 1.2 

nmol/min (P < 0.008) in the test leg when methacholine was infused locally on a 

background of insulin clamp (Fig. 9A). Bradykinin alone (saline background) did not 

increase 1-MX metabolism and did not further modify the stimulation due to systemic 

insulin infusion (Fig. 9B).  

 

4.3.2d Plasma insulin assay 

 

Plasma insulin levels were measured to see if the effects of methacholine or 

bradykinin on insulin action were due to the alteration of endogenous insulin production. 

Plasma insulin concentrations (pM) at –5 and 120 min were 382 ± 117 and 428 ± 37 

(methacholine), 325 ± 134 and 819 ± 104 (insulin + methacholine), 352 ± 59 and 393 ± 

87 (bradykinin), and 312 ± 51 and 756 ± 69 (insulin + bradykinin) (Fig. 10).
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Fig. 1. This figure shows the protocol (A) used for systemic infusion of methacholine 

(MC) with or without hyperinsulinemic euglycemic clamp. It also depicts the effect of 

systemic infusion of MC on mean arterial pressure (B) and heart rate (B). * indicates a 

significant difference from the zero time point (P < 0.05). Saline n=9, 3 mU/min/kg 

insulin n=7, MC n=5, ins + MC n=5. 
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Fig. 2. Blood glucose (A), glucose infusion rate (B), change in FBF (C) and vascular 

resistance (D) after systemic infusion of methacholine (MC, last 20 minutes), saline, 

insulin and MC + insulin. NB: GIR was zero at 105 and 120 min for insulin + MC. *, 

indicates a significant difference from the saline (P < 0.05). 
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Fig. 3. 1-MX metabolism at the end of systemic infusion of methacholine (MC), 

saline, insulin and MC + insulin. *, Significantly different (P < 0.05) from the saline.  
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Study design. The protocol involved the euglycemic clamp at 3 mU/kg/min 

insulin commencing at time = 0 min and either saline, MC (1 μg/kg/min) or BK (2 

μg/kg/min) infused into the epigastric artery of the test leg for the last 45 min. Duplicate 

arterial and femoral venous plasma samples from each hindleg (test and contralateral 

control) were collected at 120 min, for HPLC analysis, and plasma glucose 

determinations. Systemic venous infusions are indicated by the bars. Bolus systemic 

injections of allopurinol or 2-DG were made as indicated. Arterial samples for glucose 

determinations are indicated by .  Muscle samples were taken at 120 min for 2-DG. The 

numbers of animals in each group were saline ± MC, n = 5; insulin ± MC, n = 6; and, 

saline ± BK, n = 6; insulin ± BK, n = 6. 
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. MAP and HR as a result of local infusion of MC or BK via the epigastric 

artery into one leg with or without systemic infusion of insulin. Details are given in Fig. 

4.  Symbols are: , insulin treated; , saline treated. 
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 
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Fig. 6. Change in FBF and VR as a result of local infusion of MC (A, B) or BK (C, 

D) via the epigastric artery into one leg with or without systemic infusion of insulin. 

Details are given in Fig. 4.  Symbols are: , control leg saline treated; , test leg saline 

treated; , control leg insulin treated; , test leg insulin treated. *, Significantly 

different from control leg (P < 0.05).  
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 

 

 

 

 

Fig. 7. Blood glucose and glucose infusion rate as a result of local infusion of MC 

(A, B) or BK (C, D) via the epigastric artery into one leg with systemic infusion of insulin 

or without (saline group).  
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 LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 
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Fig. 8. Effect of local one-leg infusion of MC or BK on 2-deoxyglucose uptake (R’g) 

by lower leg muscles. MC or BK was infused only in the test leg; saline or insulin was 

infused systemically. From left to right: control leg saline treated; test leg saline treated; 

control leg insulin treated; test leg insulin treated. Other details are given in Fig. 4. *, 

Significantly different (P < 0.05) from the corresponding control leg (saline); #, 

significantly different (P < 0.001) from the corresponding control leg (insulin).  
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 

 

 

Fig. 9. Effect of local one-leg infusion of MC (A) or BK (B) on 1-MX metabolism. 

MC or BK was infused only in the test leg; saline or insulin was infused systemically. 

From left to right: control leg saline treated; test leg saline treated; control leg insulin 

treated; test leg insulin treated. Other details are given in Fig. 4. *, Significantly different 

(P < 0.05) from control leg (saline); #, significantly different (P < 0.01) from the 

corresponding control leg (insulin); †, significantly different from test leg without insulin.   
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LOCAL INFUSION OF METHACHOLINE AND BRADYKININ IN ONE LEG 

 

 

 

 

 

 

 

Fig. 10. Effect of local one-leg infusion of MC or BK on plasma insulin levels. MC 

or BK was infused only in the test leg; saline or insulin was infused systemically. Other 

details are given in Fig. 4. *, Significantly different (P < 0.05) from saline. 
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4.4 DISCUSSION 

 

The striking finding from this study was that of the two vasodilators, methacholine 

and bradykinin, only methacholine enhanced insulin-mediated glucose uptake by muscle 

in vivo and that this effect of methacholine was associated with a marked augmentation of 

capillary recruitment. Thus each vasodilator when infused locally into one leg markedly 

enhanced bulk flow, but despite this increase, only one of these vasodilators enhanced 

both capillary recruitment and muscle glucose uptake in the presence of physiologic 

insulin. Neither vasodilator was able to increase muscle glucose uptake as assessed by 2-

DG when infused alone. Thus three important issues emerge from this study. First, it 

would seem unlikely that bulk flow with or without added insulin controls muscle glucose 

uptake. Second, enhancement of capillary recruitment by methacholine alone without an 

accompanying increase in glucose uptake would suggest that capillary recruitment alone 

is not itself a stimulator of glucose uptake (a corollary herein is that methacholine itself is 

not a stimulator of muscle glucose uptake). Third, augmentation of capillary recruitment 

and muscle glucose uptake by methacholine when added with systemic insulin, suggests 

that capillary recruitment is rate limiting even for physiologic insulin. Thus any 

intervention that augments capillary recruitment in the presence of elevated insulin (i.e. 

above basal), will enhance insulin-mediated glucose uptake. Such interventions may 

include exercise. 

 

There is considerable evidence that the increase in limb blood flow due to insulin is 

NO-dependent in human subjects [39, 52]. However, attempts to stimulate muscle 

glucose uptake by increasing limb blood flow with NO-dependent and independent 

vasodilators has been notably unsuccessful. Thus sodium nitroprusside [41], adenosine 

[45], and bradykinin [44] which markedly increase limb blood flow, do not increase 

muscle glucose uptake when infused locally in humans [41]. Similarly when epinephrine 

[57] is infused systemically in rats in vivo,  there is no increase in glucose uptake despite 

increased total flow. In addition, sodium nitroprusside [41] and adenosine [45] fail to 

ameliorate insulin resistance in insulin resistant patients even though many of these 

patients show a marked loss of NO-dependent insulin- [267] and cholinergic-mediated 
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[268] vasodilation. An exception to the general rule that nitro-vasodilators do not increase 

muscle glucose uptake appears to be the acetylcholine congener, methacholine. Two 

laboratories have now reported that this agent increases muscle glucose uptake; one to 

augment insulin in a range of variably responsive individuals [54], the other to increase 

glucose uptake in insulin resistant hypertensive patients [55] even though nitroprusside in 

the same patients did not [55]. An explanation for this apparent contradiction may lie with 

the effect that each vasodilator has on the muscle microvascular blood flow pattern [32]. 

In rats, insulin and exercise have each been shown to increase capillary recruitment [62], 

a process that is independent of changes in limb blood flow [13]. Capillary recruitment 

increases insulin and glucose access to muscle fibers by increasing the proportion of 

nutritive blood flow. The present study shows that of the two vasodilators, methacholine 

and bradykinin, only methacholine increases capillary recruitment and augments insulin-

mediated glucose uptake. 

 

The findings reported in the present study have only been possible by the use of a 

novel procedure in the rat whereby local infusion of the vasodilator was made via a 

catheter placed in the epigastric artery of the test leg (Fig. 1, page 43). To our knowledge 

this approach has not been used before in rats and has allowed assessment of local effects 

of the vasodilator either on a background of saline or a hyperinsulinemic euglycemic 

clamp. The particular advantage of this technique is that systemic effects of each 

vasodilator were kept to a minimum as a result of the infusion being local and the 

relatively short biological half-life of the agents. Evidence that systemic effects were 

minimal can be seen from the unchanged mean arterial pressure and the absence of an 

effect to increase FBF in the contralateral leg. In contrast, systemic infusion of 

methacholine at a dose that achieved a lower increase in FBF than that from local 

infusion caused MAP to fall and blood glucose to rise, resulting in a lower GIR. Thus 

systemic effects of methacholine have interacted with homeostatic processes and have 

overridden the local metabolic and hemodynamic effects of methacholine in the muscle. 

 

Clearly an explanation as to why methacholine and not bradykinin has increased 

capillary recruitment and glucose uptake must focus on the specific site(s) in the 
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microvasculature at which each acts to decrease hindlimb vascular resistance. As already 

pointed out by Baron et al. [32] the action of methacholine to vasodilate in large part is 

through release of the endogenous vasodilator nitric oxide from arterial endothelial cells 

[269] and its effects are likely to occur at the level of the high resistance small 

precapillary arteries. This is presumably because of the specific location of receptors for 

methacholine. The failure of bradykinin to achieve the same outcome as methacholine 

suggests that the receptors for bradykinin are not located at the level of the high-

resistance small precapillary arteries, but rather, at levels where flow that is essentially 

non-nutritive can be accommodated. There is already evidence that vasodilators such as 

bradykinin, acetylcholine, histamine and isoproterenol can depress contractile force of 

exercising muscle perfused at constant flow [270]. The authors of that study concluded 

that the vasodilators diverted blood flow to connective tissue away from the contracting 

fibers [270]. The fact that acetylcholine was one of the vasodilators that reduced 

contractile force suggests that despite the close structural properties with methacholine, 

the latter reacts with a specific subset of receptors controlling nutritive capillary 

recruitment and is therefore in this respect similar to insulin [57]. 

  

In the present study methacholine alone increased capillary recruitment but did not 

increase R’g thereby suggesting that capillary recruitment alone is not sufficient to 

augment the basal insulin effects on muscle R’g. This is consistent with our recent data 

where we report that capillary recruitment is markedly more sensitive than R’g to insulin 

[13]. However, in the present study when methacholine was infused on a background of 

the insulin clamp the increase in R’g due to insulin was augmented. More importantly, 

methacholine further increased capillary recruitment due to insulin. These findings 

suggest that the methacholine effect to stimulate capillary recruitment is independent and 

additive to that of insulin, but as pointed out above, likely to be engaging receptors in the 

same locality of the microvasculature. It is perhaps pertinent to note that voluntary 

exercise-training of our rats also augmented insulin-mediated capillary recruitment and 

insulin-mediated glucose uptake by muscle [271]. 
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Finally, the present findings separate limb blood flow from muscle glucose uptake. 

Thus both of the vasodilators increased FBF but only methacholine augmented insulin-

mediated increase in R’g. This to some degree clarifies the on-going controversy where 

the role of bulk blood flow as an independent modulator of glucose uptake has been 

disputed [19, 29, 272] , particularly in relation to vasodilators [41]. Clearly then, the key 

hemodynamic aspect that controls insulin-mediated glucose uptake by muscle is capillary 

surface area. Only vasodilators that act to recruit nutritive capillaries can potentiate 

insulin action to increase glucose uptake. It remains to be further investigated whether 

flow can independently increase glucose uptake once capillary recruitment is maximal as 

predicted elsewhere [2].   



 105

CHAPTER 5 

 

 

EFFECT OF NITRIC OXIDE SYNTHASE INHIBITION ON INSULIN-

MEDIATED EFFECTS IN MUSCLE 

 

 

5.1 INTRODUCTION  

 

The results described in the previous two chapters failed to provide direct evidence 

for the role of NO in insulin action. However, it has been demonstrated by Steinberg and 

Scherrer that infusion of a nitric oxide synthase inhibitor can completely eliminate 

insulin-induced increases in total flow to muscle [39, 52]. Effect of NOS inhibition on 

insulin-mediated glucose uptake is less conclusive. It must be acknowledged that two 

studies reporting an involvement of nitric oxide in insulin-mediated glucose uptake in rat 

skeletal muscle have used systemic infusion of L-NAME during a hyperinsulinemic 

clamp [63, 120]. Shankar and coworkers [121] suggested that central NOS-dependent 

pathways may control peripheral insulin action and secretion. In humans local infusion of 

a NOS inhibitor, while abolishing insulin-induced vasodilatation to increase total flow, 

does not decrease the insulin sensitivity in muscle in most studies [31, 39, 123, 124] with 

the exception of a study by Steinberg and coworkers [53]. The effect of local infusion of 

L-NAME on insulin action in muscle in rats has not been assessed. 

 

The present study explores the effect of both local (intra-arterial infusion into one 

leg) and systemic NOS inhibition on insulin-mediated capillary recruitment and glucose 

uptake measured by [3H]2-deoxyglucose technique.  
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5.2 RESEARCH DESIGN AND METHODS  

 

5.2.1 Animals 

 

Male Hooded Wistar rats weighing 280 ± 3 g were raised on a commercial diet as 

described in chapter 2.1. 

 

5.2.2 Surgical preparation 

 

 Details were as essentially described previously in chapter 2.2. In some rats 

epigastric cannulation was done as described in section 2.3. A schematic diagram is given 

in chapter 2 (page 43). Once the surgery was completed, a 45-60 min equilibration period 

was allowed so that leg blood flow and mean arterial pressure could become stable and 

constant.  Rats were then subjected to the protocol A (Fig. 1) or B (Fig. 7). 

 

5.2.3 Experimental protocols 

 

5.2.3a PROTOCOL A: SYSTEMIC INFUSION OF L-NAME  

 

These studies were performed to determine the effect of inhibition of systemic NOS 

on insulin action in muscle microvasculature. Rats were infused intravenously for two 

hours with either insulin (3 mU/min/kg), L-NAME (3 mg/kg bolus followed by a 

continuous infusion of 50 μg/min/kg) or insulin + L-NAME (Fig. 1). Infusion of L-

NAME was started 5 min before the insulin clamp. This dose of L-NAME has been found 

to elevate and maintain a mean arterial pressure of 20-30 mmHg above basal [63]. L-

NAME decreases NO production mainly by inhibiting eNOS and nNOS forms [273]. The 

dose of insulin used in all protocols (3 mU/min/kg) produces plasma insulin 

concentrations in the normal to high physiological range, and stimulates capillary 

recruitment with no significant increase in total flow.  
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5.2.3b PROTOCOL B: LOCAL EPIGASTRIC INFUSION OF L-NAME  

 

Protocol B1: Effects of L-NAME on muscle vasculature and glucose uptake 

after 1 h of hyperinsulinemic euglycemic clamp 

 

In these experiments L-NAME (Sigma chemicals) infusion (Fig. 7, protocol B1: 

systemic insulin + local L-NAME) was given locally via the epigastric artery into the test 

leg for the last hour during a two-hour 3 mU/min/kg insulin clamp. Preliminary 

experiments were conducted to determine the dose of L-NAME that would produce a 

decrease in FBF without effects on MAP or heart rate. Some rats received L-NAME 

alone for an hour. 
 

Protocol B2: Effects of L-NAME on muscle vasculature and glucose uptake 

before and during hyperinsulinemic euglycemic clamp 

 

Protocol B1 showed that L-NAME had effects on its own and it did not suppress 

insulin-induced glucose uptake. Therefore, the aim of this protocol was to ensure that the 

effects of L-NAME occurred prior to insulin-induced vasodilatation and capillary 

recruitment. L-NAME infusion was started (Fig. 7, protocol B2: local L-NAME + 

systemic insulin) locally (epigastric artery) into the test leg 15 min before and continued 

throughout the systemic infusion of insulin for an hour (as a euglycemic insulin clamp 

with 3 mU/kg/min). Some rats in this protocol received L-NAME alone. The dose of L-

NAME used was same as in protocol B1 and it was found that it could be infused for 75 

min without any systemic effects. 

 

5.2.4 Blood samples 

  

Arterial samples were taken at the times indicated (Fig. 1 and 7) for blood glucose 

measurements. The femoral vein of each leg was used for venous sampling, using a 29G 

insulin syringe (Becton Dickinson).  Duplicate venous samples (300 μl) were taken only 
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on completion of the experiment to prevent alteration of the blood flow in the hindlimb 

due to sampling, and to minimize the effects of blood loss.  

 

5.2.5 Capillary recruitment 

 

 Capillary recruitment was determined by measuring the metabolism of infused 1-

MX. Plasma (20 μl) from arterial and leg venous blood samples taken at the end of the 

experiment was mixed with 80 μl of 0.42M perchloric acid and centrifuged for 10 min. 

The supernatant was used to determine 1-MX, allopurinol and oxypurinol concentrations 

by reverse-phase HPLC as previously described in section 2.4. Capillary recruitment, 

indicated by 1-MX metabolism was calculated from arterio-venous plasma 1-MX 

difference and multiplied by femoral blood flow [57]. 

 

5.2.6 A modified technique developed for 2-deoxyglucose uptake 

 

In protocol B2, insulin clamps were performed for 1 h instead of 2 h and this required 

2-DG uptake to be measured over a shorter time period. A modified 2-DG technique was 

developed where instead of measuring the plasma decay curve, the averaged plasma 

specific activity of [3H]2-DG was obtained by continuous arterial sampling after giving 2-

DG bolus. This enabled (i), a decrease in the labeling period from 45 min to 10 min and 

(ii), to determine the effect of L-NAME during insulin clamps over short periods (1 h). 

Thus in protocol A and protocol B1, 50 μCi bolus of [3H]2-DG was administered 45 min 

prior to the completion of each experiment, (Fig. 1 and 7), while in protocol B2, (Fig. 7), 

the same bolus of [3H]2-DG was administered 10 min prior to the completion of each 

experiment. In the modified 2-DG technique glucose uptake was measured over a period 

of 10 min at the end of the one-hour insulin clamp. At the conclusion of the experiment in 

both protocols, the soleus, plantaris, gastrocnemius white, gastrocnemius red, EDL and 

tibialis muscles were removed, clamp frozen in liquid nitrogen and stored at -20°C to be 

assayed for 2-DG uptake as described in section 2.6. A glucose analyzer (Model 2300 

Stat plus, Yellow Springs Instruments, Yellow Springs OH) was used to determine whole 

blood glucose (by the glucose oxidase method) during the insulin clamp.  
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5.2.7 Data analysis 

 

All data are expressed as means ± SEM. Data analysis was done as described in 

section 2.9. 

 

5.2.8 Statistical analysis   

 

 Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood pressure, 

heart rate, vascular resistance, 1-MX, R’g and GIR concentrations throughout the time 

course. When a significant difference (P < 0.05) was found, pair wise comparisons by the 

Student-Newman-Keuls test were used to determine at which individual times the 

differences were significant. All tests were performed using the SigmaStat™ statistical 

program (Jandel Software Corp.). 

 

5.3 RESULTS 

 

5.3.1 RESULTS: SYSTEMIC INFUSION OF L-NAME 

 

5.3.1a Hemodynamic effects 

 

Systemic L-NAME infusion was given by itself with saline or with insulin clamp at 3 

mU/min/kg (protocol A, Fig. 1). Infusion caused an immediate increase in mean arterial 

pressure in both L-NAME and insulin + L-NAME groups (L-NAME, 112 ± 3.0 to 156 ± 

3 and insulin + L-NAME, 111 ± 2.0 to 129 ± 7.0 mmHg, P < 0.05, Fig. 2A). This increase 

in MAP was accompanied by no change in heart rate (L-NAME, 360 ± 17 to 340 ± 20 

and insulin + L-NAME, 354 ± 17 to 300 ± 33 beats/min, Fig. 2B). The systemic infusion 

of L-NAME had no effect on FBF (L-NAME, 1.4 ± 0.2 to 0.9 ± 0.2 and insulin + L-

NAME, 1.0 ± 0.2 to 1.0 ± 0.1 ml/min, Fig. 3A). Vascular resistance increased as a result 

of infusion of L-NAME (L-NAME, 88 ± 20 to 146 ± 13 and insulin + L-NAME, 121 ± 20 

to 146 ± 24 R.U., Fig. 3B). Insulin infusion by itself did not have any significant effect on 



 110

MAP and heart rate. Insulin infusion alone increased the FBF and decreased the vascular 

resistance towards the end (not significant). (Elsewhere in this thesis (chapter 3) insulin 

infusion caused a significant increase in total flow. This may have resulted from the rats 

being fasted in that study (chapter 3) while being fed in this study. The dose of insulin 

used in both studies was physiological and it showed variable effects on total flow).  

 

5.3.1b Glucose metabolism 

 

 Blood glucose levels in the all the groups were constant (Fig. 4A). The blood 

glucose values at 0 min were 4.8 ± 0.5 (L-NAME), 4.5 ± 0.2 (insulin) and 4.0 ± 0.3 mM 

(insulin + L-NAME) and at 120 min, 5.0 ± 0.4 (L-NAME), 5.6 ± 0.1 (insulin), and 4.3 ± 

0.1 mM (insulin + L-NAME). The glucose infusion rate (Fig. 4B) required to maintain 

euglycemia during insulin + L-NAME reached a plateau at 14.6 ± 1.8 mg/min/kg which 

was not significantly different from insulin infused alone (12.6 ± 1.8 mg/min/kg). 

 

Fig. 5B shows combined data for R’g or 2-deoxyglucose uptake for six individual 

muscles of the lower leg. There was an increase with insulin infusion (L-NAME 4.0 ± 

0.3, insulin 8.3 ± 0.9 μg/g/min). L-NAME + insulin did not affect the insulin-mediated 

increase in R’g of any of the individual muscles (Fig. 5A) or of the combined group (9.8 

± 1.7 μg/g/min).   

 

5.3.1c Capillary recruitment 

 

 No significant differences were found between the experimental groups in arterial 

plasma concentrations of 1-MX (L-NAME, 25 ± 1.0 μM; insulin, 22 ± 2.0 μM; insulin ± 

L-NAME, 22 ± 1.7 μM) or oxypurinol, the metabolite of allopurinol and inhibitor of 

xanthine oxidase (L-NAME, 4.5 ± 0.4 μM; insulin, 4.8 ± 0.6 μM; insulin ± L-NAME, 4.9 

± 0.3 μM).  Insulin infusion significantly increased capillary recruitment from 5.0 ± 0.5 

(L-NAME), to 9.4 ± 0.8 nmol/min (P < 0.05) as judged from 1-MX metabolism (Fig. 6). 

1-MX metabolism was decreased to 7.2 ± 0.7 nmol/min when L-NAME was infused with 

insulin (Fig. 6). This decrease was not statistically significant from insulin alone (n.s., P = 
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0.17) or L-NAME alone (n.s., P = 0.27) suggesting that the presence of L-NAME caused 

a partial inhibitory effect on insulin-mediated capillary recruitment. L-NAME had no 

effect on 1-MX metabolism as compared to saline (saline 5.1 ± 0.6 from non-fasted rats, 

data not shown in graph). 

 

5.3.2 RESULTS: LOCAL EPIGASTRIC INFUSION OF L-NAME 

 

Local L-NAME infusion in both B1 (systemic insulin + local L-NAME) and B2 

(local L-NAME + systemic insulin) protocols (Fig. 7) produced essentially the same 

effects on hyperinsulinemic euglycemic clamps with the effects being stronger with L-

NAME pre-infusion (protocol B2). Therefore, though both protocols are included in most 

graphs, in the text local infusion of L-NAME refers to the local L-NAME + systemic 

insulin (protocol B2) unless stated otherwise. 

 

5.3.2a Hemodynamic effects 

 

The dose of L-NAME infused was determined in preliminary experiments (data not 

shown) that would decrease FBF in the test leg without changes in FBF in the 

contralateral control leg, heart rate or MAP. Fig. 8 shows the mean arterial pressure and 

heart rate. Fig. 9 shows the change in FBF and vascular resistance for both control and 

test legs in saline and insulin groups where L-NAME was infused locally via the 

epigastric artery of the test leg and measurements were made in both legs, while animals 

were receiving saline infusion systemically or were under hyperinsulinemic euglycemic 

clamps at 3 mU/kg/min. L-NAME decreased FBF with or without insulin only in the test 

leg (P < 0.05, Fig. 9A). The values for MAP (Fig. 8A) before commencement of L-

NAME infusion were 101 ± 2.0 (saline) and 104 ± 2.0 mmHg (insulin). After 75 min of 

L-NAME infusion there was no significant change in MAP and the values were 107 ± 3.5 

(saline) and 103 ± 2.0 mmHg (insulin). Consequently, the calculated vascular resistance 

in the leg receiving L-NAME was found to increase (Fig. 9B).  
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5.3.2b Glucose metabolism 

 

 Blood glucose levels for the two groups involving L-NAME infusion with saline or 

insulin infused systemically were constant (Fig. 10A). The blood glucose values at 0 min 

were 4.3 ± 0.3 (saline) and 4.5 ± 0.4 mM (insulin) and at 75 min, 4.2 ± 0.3 (saline), 4.8 ± 

0.4 mM (insulin). The glucose infusion rate (Fig. 10B) required to maintain euglycemia 

during insulin reached a plateau at 14.9 ± 1.6 mg/kg/min. 

 

Figure 11 shows data for R’g of individual muscles of the lower leg. L-NAME alone 

(saline background) had no effect on R’g of any of the muscles from the leg into which it 

was infused (control leg, 5.9 ± 1.0 and test leg 5.5 ± 0.7μg/g/min, Fig. 12A). L-NAME 

(insulin clamp background), did not affect the insulin-mediated increase in R’g of any of 

the individual muscles (Fig. 11) or of the combined group (control leg, 15.3 ± 1.3 and test 

leg, 16.6 ± 1.5 μg/g/min, Fig. 12A) of the leg into which it was infused. For the muscle 

combination, insulin increased R’g ~ 2.5-fold from 5.9 ± 1.0 to 15.3 ± 1.3 μg/g/min (Fig. 

12A). 

 

5.3.2c Capillary recruitment 

 

 No significant difference was found between the two experimental groups (saline 

and insulin) in arterial plasma concentrations of 1-MX (saline ± local L-NAME, 19 ± 1.0 

μM; insulin ± local L-NAME, 19 ± 1.0 μM) or oxypurinol, the metabolite of allopurinol 

and inhibitor of xanthine oxidase (saline ± local L-NAME, 6.0 ± 0.8 μM; insulin ± L-

NAME, 6.0 ± 1.0 μM). Systemic insulin infusion increased 1-MX metabolism. This was 

significant when the legs were compared between saline and insulin groups (control legs- 

P < 0.02, test legs- P < 0.02; Fig. 12B). Local infusion of L-NAME led to similar 

decreases in 1-MX metabolism in test legs in saline infused (6.3 ± 0.3 control leg; 4.6 ± 

0.5 nmol/min test leg, P = 0.057; Fig. 12B) and insulin infused rats (9.5 ± 1.0 control leg; 

7.8 ± 0.8 nmol/min test leg, P = 0.053; Fig. 12B). Infusing L-NAME before or after 

insulin did not affect the resulting 1-MX metabolism indicating that the presence of L-

NAME did not prevent insulin to recruit capillaries.  
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L-NAME 3mg/kg bolus and 0.5mg/min/kg infusion or saline

Systemic insulin (3mU/min/kg) clamp or saline

A-V

PROTOCOL A: Systemic insulin + Systemic L-NAME
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Fig. 1. Study design for systemic infusion of L-NAME with systemic insulin. Arterial 

and venous samples were collected at times indicated as A-V for HPLC analysis and 

plasma glucose determination. Arterial blood glucose were determined at time . Venous 

infusion periods are indicated by bars. Bolus infusion periods are indicated by . Ins + L-

NAME, n = 5; L-NAME n= 3; and insulin n = 7. 
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                                           Systemic L-NAME + Systemic Insulin  
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Fig. 2. Mean arterial pressure (A) and heart rate (B) for L-NAME, insulin, insulin + 

L-NAME treated rats. Data were collected from 5s sub-samples each 15 minutes. Values 

are means ± SEM. Significant values from insulin are indicated by *, P < 0.05. 
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                                     Systemic L-NAME + Systemic Insulin 

 

                                                  

Fig. 3. Femoral blood flow (A) and vascular resistance (B) for L-NAME, insulin, 

insulin + L-NAME treated rats. Values are means ± SEM.  
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                                     Systemic L-NAME + Systemic Insulin 

 

 

   Fig. 4. Blood glucose (A) and GIR (B) for L-NAME, insulin, insulin + L-NAME 

treated rats. 
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Systemic L-NAME + Systemic Insulin 
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       Fig. 5.  Individual muscles (A) and combined (B) muscle 2-deoxyglucose uptake 

as a result of systemic infusion of saline, L-NAME, insulin, insulin + L-NAME treated 

rats. Significant values from L-NAME are indicated by *, P < 0.05. 
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                                 Systemic L-NAME + Systemic Insulin 

 

 

                   

 

 

       

  

Fig. 6. 1-MX metabolism as a result of systemic infusion of L-NAME, insulin, 

insulin + L-NAME treated rats. Significant values from L-NAME are indicated by *, P < 

0.05. 
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                          Local L-NAME in one leg with systemic insulin 
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Fig. 7. Study design for protocol B1 (local L-NAME + systemic insulin) and B2 

(systemic insulin + local L-NAME). Arterial and venous samples were collected at times 

indicated as A-V for HPLC analysis and plasma glucose determination. Arterial blood 

glucose were determined at time . Venous infusion periods are indicated by bars. Bolus 

infusion periods are indicated by .   n = 5-7. 
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                               Local L-NAME in one leg with systemic insulin 

 

 

Fig. 8. MAP (A) and HR (B) as a result of local infusion of L-NAME via the 

epigastric artery into one leg before and after systemic infusion of insulin.  
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                          Local L-NAME in one leg with systemic insulin 
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Fig. 9. Change in FBF (A) and VR (B) as a result of local infusion of L-NAME via 

the epigastric artery into one leg before systemic infusion of insulin. *, Significantly 

different from control leg (P < 0.05).  
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Fig. 10. Blood glucose (A) and glucose infusion rate (B) as a result of local infusion 

of L-NAME via the epigastric artery into one leg before systemic infusion of insulin. 
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                                 Local L-NAME in one leg with systemic insulin 
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Fig. 11. R’g calculated from [3H]2-DG uptake for the 6 individual muscles ( soleus, 

plantaris, red gastrocnemius, white gastrocnemius, EDL and tibialis) as a result of local 

infusion of L-NAME via the epigastric artery into one leg (test leg) before (L-NAME, 

ins) and after (ins, L-NAME) systemic infusion of insulin. 
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                        Local L-NAME in one leg with systemic insulin 
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Fig. 12. Combined muscle 2-deoxyglucose uptake (A) and 1-MX metabolism (B) as 

a result of local one-leg infusion of L-NAME via the epigastric artery into one leg before 

(L-NAME, ins) and after (ins, L-NAME) systemic infusion of insulin. *, Significantly 

different (P < 0.05) from corresponding leg in saline group. 
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5.4 DISCUSSION  

 

The present study found no evidence for involvement of NO in mediating insulin-

mediated skeletal muscle glucose uptake in rats in vivo. This conclusion is based on 

findings that neither local nor systemic acute infusion of NOS inhibitor L-NAME reduced 

insulin-mediated glucose uptake measured by 2-deoxyglucose method. Another important 

finding was that while local infusion of L-NAME in one leg did not prevent insulin-

mediated capillary recruitment in muscle, systemic infusion may have partially inhibited 

it.  

 

When given locally in one leg the systemic effects of L-NAME were kept to a 

minimum, which facilitated observation of the direct local NOS inhibitory effect of L-

NAME on insulin action. Evidence that systemic effects were minimal can be seen from 

the unchanged blood pressure, heart rate and the absence of an effect to decrease FBF in 

the contralateral leg. In contrast, systemic infusion of L-NAME with or without insulin, at 

a dose that did not achieve a decrease in FBF similar to local infusion, induced a pressor 

response causing acute hypertension. This suggested that the NOS inhibitory action of 

systemic L-NAME may be related to mechanisms that are not affected during local L-

NAME infusion.  

 

It is almost seventy years since the first reports of insulin increasing the total flow in 

skeletal muscle [274]. Since then, a number of studies have substantiated this action of 

insulin and demonstrated that NO-dependent mechanisms contribute to it [39, 52, 120]. In 

the present study, a physiologic dose of insulin was used which displayed a trend to 

increase FBF (not significant). Local L-NAME by itself decreased the FBF significantly 

while systemic L-NAME did not have any effect of FBF.  

 

It has been reported previously that insulin also acts on muscle microvasculature 

causing capillary recruitment which contributes to muscle glucose uptake by increasing 

the delivery of nutrients and of insulin itself to the muscle [57]; that this action of insulin 

correlates more closely than glucose uptake [57]; and that insulin recruits capillaries prior 
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to any effect on blood flow in the human forearm [68]. In the current study, it was found 

that insulin at physiological doses recruited capillaries as indicated by l-MX metabolism. 

Local infusion of L-NAME reduced the capillary recruitment in the test leg compared to 

the control leg, in both saline and insulin groups. An important observation here was that 

the insulin was still able to significantly recruit capillaries when the two test legs (L-

NAME) were compared between saline and insulin groups. Thus, local infusion of L-

NAME did not prevent insulin action on rat muscle microvasculature. On the other hand, 

while systemic infusion of L-NAME alone had no effect on 1-MX metabolism (as 

compared to saline), L-NAME infused systemically during euglycemic insulin clamp 

partially blocked insulin’s effect on capillary recruitment. This indicates that the 

additional mechanisms activated during systemic L-NAME contribute importantly to its 

inhibitory effect on insulin. Unfortunately, the lack of widespread use of methods to 

measure microvascular recruitment in anesthetized rats limits the number of studies 

available for comparison. The only study where the effect of NOS inhibition has been 

studied on insulin action on muscle microvasculature is by Vincent et al [63]. They have 

reported that L-NAME infusion completely abolished insulin-mediated (10mU/min/kg) 

capillary recruitment. The comparison between this and Vincent’s study [63] is drawn 

later.  

 

It has been suggested by Lautt and coworkers [275] that NOS inhibition by L-NAME 

blocks the release of a hepatic hormone in response to insulin. This putative hepatic 

insulin sensitizing substance (HISS) is thought to amplify the skeletal muscle response to 

insulin [276]. They have demonstrated using a rapid insulin sensitivity test that low doses 

(1 mg/kg) of intraportal but not intravenous L-NAME produced insulin resistance. This 

was reversed by intraportal (but not intravenous) administration of NO donors, indicating 

that the site of NO action controlling insulin sensitivity is hepatic [277]. It is possible that 

in the present study, the partial inhibitory effect of systemic L-NAME on insulin-

mediated capillary recruitment is due to inhibition of HISS-dependent effect of insulin. 

The hepatic effect of L-NAME may have played a role in the current study of systemic L-

NAME. 
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Another mechanism activated by systemic L-NAME that could potentially contribute 

to its effect on capillary recruitment is the sympathetic nervous system [278]. It has been 

suggested that the pressor response of L-NAME is not due entirely to the inhibition of 

endogenous endothelial NO synthesis [279]. L-NAME may stimulate release of 

epinephrine from adrenal medulla [280, 281] which could oppose insulin’s effect to 

recruit nutritive capillaries. It has been demonstrated previously that epinephrine 

increases non-nutritive flow [57]. However, in the present study epinephrine 

concentrations were not measured. Alternatively, it has been suggested that central NOS-

dependent pathways may control peripheral insulin action [121]. Regardless of the 

mechanism, NO at least in part indirectly contributes to insulin’s microvascular effect in 

muscle. 

 

Blood glucose concentrations remained stable throughout the course of the 

experiment in all the groups. In the insulin group, blood glucose concentration was 

maintained at or around basal by infusing a 30% glucose solution. Systemic L-NAME did 

not affect the GIR when infused with the insulin clamp indicating that NOS inhibition had 

no effect on whole body insulin sensitivity.  

 

Another important finding, which this study highlights, is that neither local nor 

systemic infusion of L-NAME affected insulin-mediated skeletal muscle 2-DG uptake. 

This is the only study where the effect of local NOS inhibition is studied on insulin action 

in rats. Effects of local NOS inhibition have been studied solely in humans and the 

majority of the workers report that NOS inhibition had no effect on the insulin sensitivity 

(muscle glucose uptake or GIR). It is important to note, however, that in the only study in 

humans reporting an inhibitory effect of a NOS inhibitor (L-NMMA) on insulin-mediated 

glucose uptake, by Steinberg and coworkers [53], the degree of the observed inhibition 

was mild (~25%) and the dose of L-NMMA used was much higher than another study 

published at the same time by Scherrer et al [39], who did not observe any inhibition of 

insulin-mediated glucose uptake. It is worth mentioning that the dose of local intra-

arterial L-NMMA used by Scherrer and coworkers [39] abolished insulin-induced 

vasodilatation, not only in the infused, but also in the contralateral forearm, suggesting 
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that L-NMMA had systemic effects. In the present study, the local infusion of L-NAME 

did not affect the blood flow in contralateral hindlimb.  

 

The results of the local infusion of L-NAME are in agreement with two other groups 

[31, 122] reporting that acute local NOS inhibition had no effect on glucose disposal 

during hyperinsulinemic euglycemic clamp in humans. None of the aforementioned 

studies looked at the radioactive 2-DG uptake during insulin clamps.  

 

In the present study, L-NAME was infused both prior to and during the insulin clamp 

to find out whether reversing the order of infusion affected the results. However, both the 

protocols showed the same results indicating that NO is not involved in the induction or 

maintenance of capillary recruitment. 

 

The finding that systemic infusion of L-NAME had no effect on insulin-mediated 

muscle 2-DG uptake was unexpected and surprising because Vincent et al [63] have 

previously reported that systemic L-NAME did reduce the insulin-mediated glucose 

uptake although they measured this from FBF and arterio-venous difference rather than 

the 2-DG method [63]. Another study by Roy et al [120] found that systemic L-NAME 

infusion during an insulin clamp in rats significantly blunted the whole body glucose 

disposal (-16%) and muscle 2-DG uptake (-30%). Strain-, methodological- and dose-

related differences could have accounted for the discrepancy observed between the 

studies. Vincent’s study reported a complete inhibition of insulin-mediated capillary 

recruitment with partial inhibition of insulin-mediated glucose uptake. In comparison, the 

present study demonstrates partial inhibition of insulin-mediated capillary recruitment 

with no inhibition of insulin-mediated glucose uptake. 

 

Strain differences between these experiments could have implications on the results 

as differences in insulin sensitivity between two different strain of rats has been reported 

[282]. The studies done by Vincent [63] and Roy et al [120] utilized Sprague-Dawley rats 

while in the present study Hooded Wistar rats were used. 
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In addition, the present study measured glucose uptake by the radioactive 2-

deoxyglucose uptake method which includes measurement from six individual hindleg 

muscles and is thus speculated to be more accurate. Hindleg glucose uptake is the product 

of FBF and plasma arterio-venous glucose difference. Given that the glucose extraction is 

only around 5% across the leg, an error in either would be potentiated significantly. 

Another difference between the two methods is that whereas 2-DG is measured only in 

lower leg muscles, hindleg glucose uptake is measured across the whole leg. Also, a 

higher dose of insulin (10 mU/min/kg) was used in the study by Vincent et al [63].  

 

A dose- and time-dependent effect of L-NAME on insulin sensitivity has been 

reported by Lautt and coworkers [277]. They showed by using a rapid insulin sensitivity 

test in Sprague-Dawley rats, that high (2.5-5 mg/kg) but not lower (1 mg/kg) doses of 

intravenous L-NAME produced a significant insulin resistance. Effect of high dose (2.5 

mg/kg) lasted 2 h whereas the low dose (1 mg/kg) effect wore off in 1 h. It is difficult to 

draw a comparison between their study and the present study because of different 

methodology and strains of rats used.  

 

In accordance with our findings, another group demonstrated [123] that acute 

systemic NOS inhibition by L-NAME had no effect on glucose disposal during a 

hyperinsulinemic euglycemic clamp in rats. Moreover, oral ingestion of L-NAME has 

been reported to produce hypertension but no alteration in oral glucose tolerance [127]. 

The only previous report [125] of acute systemic NOS inhibition in humans found an 

increase in insulin sensitivity (whole body glucose uptake) after L-NMMA administration 

at a much lower dose as compared with others [53] but a dose that still produced 

hypertension and bradycardia.  

 

Thus, by comparing local and systemic effects of L-NAME on insulin action it 

appears that nitric oxide inhibition by L-NAME is not solely due to a direct inhibitory 

effect of L-NAME but involves additional mechanisms acting only during systemic L-

NAME infusion. Local intra-arterial L-NAME infusion at the dose used in this study had 

purely local effects, because, vasoconstrictor effects were limited to the infused leg, and 
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effects on mean arterial pressure or heart rate were lacking. Local L-NAME infusion 

alone caused a profound vasoconstriction and reduced the capillary perfusion.  

 

The only NO-dependent insulin effect on muscle microvasculature noticed in the 

current study was a partial inhibition of insulin-mediated capillary recruitment by 

systemic L-NAME, while local infusion of L-NAME did not block insulin-mediated 

capillary recruitment or glucose uptake. It is possible that the microvascular action of 

insulin is not mediated locally in the muscle, but perhaps by systemic (hepatic) or central 

neural factors. Cardillo et al, and others [31, 101, 283-285] have demonstrated a 

vasodilatory response to systemic but not to local hyperinsulinemia in the human forearm. 

This indicates that mechanisms other than NO are likely to play a role in insulin’s action 

on muscle microvasculature and glucose uptake. It seems that insulin-mediated 

vasodilatation (increase in total flow as reported by [39, 52, 120]) is NO-dependent but 

insulin-mediated microvascular effects are not. An impaired vascular responsiveness to 

insulin may contribute to insulin resistance. Thus, a knowledge of other mechanisms 

underlying insulin-mediated capillary recruitment could be helpful in treating insulin 

resistance. 
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CHAPTER 6 

 

 

EFFECT OF LOCAL BLOCKADE OF ENDOTHELIUM-DEPENDENT 

HYPERPOLARIZATION FACTOR ON INSULIN ACTION IN MUSCLE USING 

TETRAETHYLAMMMONIUM 

 

 

6.1 INTRODUCTION  

 

  

 A number of in vivo studies have investigated the mechanism of insulin-induced 

vasodilation. Combined results from chapters 3, 4 and 5 indicate that NO is not directly 

involved in insulin-mediated action in muscle microvasculature. However, there is 

evidence for the participation of adenosine [93] and prostacyclin [94-96]. Moreover, 

some evidence supports the hypothesis of an additional pathway resistant to NOS and 

cyclooxygenase inhibition which results in vascular smooth muscle relaxation mediated 

by a possible endothelium-derived hyperpolarization factor [105, 200]. Although the 

precise nature of EDHF still remains controversial, a common element is its role in the 

activation of calcium-dependent potassium (KCa) channels which can be inhibited by 

tetraethylammonium (TEA), charybdotoxin, iberiotoxin and apamin [168, 169, 172]. 

  

It is not possible to measure hyperpolarization directly in in vivo [286]. An indirect 

involvement of a hyperpolarizing factor can be obtained by using the above mentioned 

potassium channel antagonists. A role of potassium channels in insulin-induced 

vasodilatation has been explored in few studies in vitro in which vascular 

hyperpolarization can be directly measured. Recent in vitro experiments have 

demonstrated that blockade of KCa channels by charybdotoxin blunts insulin-induced 

vasodilatation in rat mesenteric arteries [231]. Blockade of KCa channels by TEA 

attenuated the insulin-mediated vasodilatation of human vessels [232]. However, the data 

from in vitro studies using resistance arterioles is conflicting though hyperpolarization in 
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one way or another seems to play a role in insulin-mediated vasodilatation [77, 94, 116, 

168]. Opening of KCa channels causes potassium efflux and hyperpolarization of vascular 

smooth muscle cells. This in turn leads to closure of voltage-dependent calcium channels, 
resulting in reduction of calcium influx and vasodilatation [171, 200, 208]. Nitric oxide is 

also capable of hyperpolarizing smooth muscle. It has been suggested that activation of 

calcium-dependent potassium channels plays an important role in mediating the 

vasorelaxation caused by NO [171, 234, 235]. Attenuated EDHF-mediated responses 

have been noticed with no or minor alteration in NO-dependent responses in insulin 

resistant rats [237-241]. 

 

The only one in vivo study reported so far using TEA argues against a role for 

calcium-dependent potassium channels in insulin-mediated increase in total flow and 

glucose uptake in humans in vivo [242]. The role of KCa channels in the macro and 

microvascular response to insulin has not been investigated in rats in vivo. The present 

study was undertaken to see whether these channels contributes to insulin-mediated 

capillary recruitment and glucose uptake in muscle.  

 

6.2 RESEARCH DESIGN AND METHODS  

 

6.2.1 Animals 

 

Male Hooded Wistar rats weighing 280 ± 3 were raised on a commercial diet as 

described in chapter 2.1. 

 

6.2.2 Surgical preparation 

 

 Details were as essentially described previously in chapter 2.2. In these rats 

epigastric cannulation was done as described in section 2.3. A schematic diagram is given 

in chapter 2 (page 43). Once the surgery was completed, a 45-60 min equilibration period 

was allowed so that leg blood flow and mean arterial pressure could become stable and 

constant.  Rats were then subjected to the protocol (Fig. 1) where they were infused 
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locally (epigastric artery) into the test leg with tetraethylammonium chloride starting 15 

minutes before and continued with systemic saline or insulin (as a euglycemic insulin 

clamp with 3 mU/kg/min) for 1 h. Preliminary experiments were conducted to determine 

the dose of TEA that would produce a decrease in FBF without effects on MAP or heart 

rate. TEA was administered at an infusion rate of 10 μl/min, calculated to lead to a local 

plasma concentration of 0.5 mM. Low dose TEA (0.2-3 mM) selectively blocks KCa 

channels in vitro [202, 228, 229], whereas TEA loses its specificity at high doses (>5 

mM) [230] and can inhibit potassium-, ATP-, and voltage-dependent channels [287].  

 

6.2.3 Blood samples 

  

Arterial samples were taken at the times indicated (Fig. 1) for blood glucose 

measurements. The femoral vein of each leg was used for venous sampling, using a 29G 

insulin syringe (Becton Dickinson).  Duplicate venous samples (300 μl) were taken only 

on completion of the experiment (total time 75 min) to prevent alteration of the blood 

flow from the hindlimb due to sampling, and to minimize the effects of blood loss.  

 

6.2.4 Capillary recruitment 

 

 Capillary recruitment was determined by measuring the metabolism of infused 1-

MX.  

 

Plasma (20 μl) from arterial and leg venous blood samples taken at the end of the 

experiment was mixed with 80 μl of 0.42M perchloric acid and centrifuged for 10 min. 

The supernatant was used to determine 1-MX, allopurinol and oxypurinol concentrations 

by reverse-phase HPLC as previously described in section 2.4. Capillary recruitment, 

expressed as 1-MX metabolism was calculated from arterio-venous plasma 1-MX 

difference and multiplied by femoral blood flow. 

 

Ten min prior to the completion of each experiment, 50 μCi bolus of [3H]2-DG was 

administered (Fig. 1). At the conclusion of the experiment in both protocols, the soleus, 
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plantaris, gastrocnemius white, gastrocnemius red, EDL and tibialis muscles were 

removed, clamp frozen in liquid nitrogen and stored at -20°C to be assayed for 2-DG 

uptake as described in section 2.6. A glucose analyzer was used to determine whole blood 

glucose (by the glucose oxidase method) during the insulin clamp. 

 

6.2.5 Expression of results 

 

   All data are expressed as means ± SEM.  Mean femoral blood flow, mean heart rate 

and mean arterial pressure were calculated from 5 second sub-samples of the data, 

representing approximately 500 flow and pressure measurements every 15 minutes.  

Vascular resistance in the hindleg was calculated as mean arterial pressure in millimetres 

of mercury divided by femoral blood flow in millilitres per minute and expressed as 

resistance units (RUs).   

 

6.2.6 Statistical analysis   

 

 Repeated measures two-way analysis of variance was used to test the hypothesis that 

there was no difference among treatment groups for femoral blood flow, blood pressure, 

heart rate, vascular resistance, 1-MX, R’g and GIR concentrations throughout the time 

course. When a significant difference (P < 0.05) was found, pair wise comparisons by the 

Student-Newman-Keuls test were used to determine at which individual times the 

differences were significant. All tests were performed using the SigmaStat™ statistical 

program (Jandel Software Corp.). 
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6.3 RESULTS: EFFECTS OF LOCAL EPIGASTRIC INFUSION OF TEA 

 

6.3.1 Hemodynamic effects 

 

The dose of TEA infused was previously determined to decrease FBF in the test leg 

without changing FBF in the contralateral control leg, heart rate or MAP. Figure 2 shows 

the blood pressure and heart rate. Figure 3 shows the change in FBF and vascular 

resistance for both control and test legs in saline and insulin groups where TEA was 

infused locally via the epigastric artery of the test leg and measurements were made in 

both legs, while animals were receiving saline infusion systemically or were under 

hyperinsulinemic euglycemic clamps at 3 mU/kg/min. Insulin infusion did not increase 

the FBF significantly when the two control legs were compared between saline and 

insulin groups (P = 0.07). TEA decreased FBF in both saline and insulin groups only in 

the test leg (test leg significantly different in insulin group from control leg at 45 and 60 

min P < 0.05, Fig. 3A). The values for MAP (Fig. 2A) before commencement of TEA 

infusion were 103 ± 4 (saline) and 108 ± 2 mmHg (insulin). At 75 min after TEA infusion 

there were no significant changes and the values were 107 ± 3 (saline) and 110 ± 1 mmHg 

(insulin). Consequently, the calculated vascular resistance in the leg receiving TEA was 

found to increase (Fig. 3B).  

 

6.3.2 Glucose metabolism 

 

 Blood glucose levels for the two groups involving TEA infusion with saline or 

insulin infused systemically were constant (Fig. 4A). The blood glucose values at 0 min 

were 3.9 ± 0.3 (saline) and 4.4 ± 0.2 mM (insulin) and at 75 min, 4.5 ± 0.2 (saline), 4.8 ± 

0.2 mM (insulin). Glucose infusion rate (Fig. 4B) to maintain euglycemia during insulin 

reached a plateau at 14.4 ± 0.6 mg/kg/min.  

 

Figure 5A shows data for R’g of individual muscles of the lower leg. TEA alone 

(saline background) had no effect on R’g of any of the muscles from the leg into which it 

was infused (Fig. 5). TEA (insulin clamp background), attenuated the insulin-mediated 
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increase in R’g in white gastrocnemius and tibialis muscles (P < 0.05) (Fig. 5A) of the leg 

into which it was infused. For the muscle combination, insulin increased R’g ~ 1.8-fold 

from 7.8 ± 0.4 to 14.0 ± 1.6 μg/g/min (Fig. 5B). Infusion of TEA in the test leg (insulin 

group) decreased the glucose uptake to 11.4 ± 1.0 (Fig. 5B).  

 

6.3.3 Capillary recruitment 

 

 No significant difference was found between the two experimental groups in arterial 

plasma concentrations of 1-MX (saline ± local TEA, 20 ± 1.0 μM; insulin ± local TEA, 

20 ± 3.0 μM) or oxypurinol, the metabolite of allopurinol and inhibitor of xanthine 

oxidase (saline ± local TEA, 6.0 ± 0.5 μM; insulin ± TEA, 6.1 ± 0.4 μM).  Local infusion 

of TEA had no effect on capillary recruitment, 5.0 ± 0.8 to 4.5 ± 0.8 nmol/min in the test 

leg as judged from 1-MX metabolism. Systemic insulin infusion increased 1-MX 

metabolism. This was significant when control legs were compared (P < 0.05; Fig. 6). 1-

MX was decreased from 11.3 ± 0.8 to 6.6 ± 1.3 nmol/min (P < 0.05) in the test leg when 

TEA was infused locally on a background of insulin clamp (Fig. 6) indicating a complete 

inhibition of insulin-mediated capillary recruitment.  
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Fig. 1. Study design. The protocol involved the euglycemic clamp at 3 mU/kg/min 

insulin commencing at time = 0 min and TEA infused into the epigastric artery of the test 

leg (0.5 mM). Duplicate arterial and femoral venous plasma samples from each hindleg 

(test and contralateral control) were collected at the end of experiment, for HPLC 

analysis, and plasma glucose determinations. Systemic venous infusions are indicated by 

the bars. Bolus systemic injections of allopurinol or 2-DG were made as indicated. 

Arterial samples for glucose determinations are indicated by .  Muscle samples were 

taken at the end of the experiment for 2-DG. saline ± TEA, n = 5; insulin ± TEA, n = 7. 
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Fig. 2. Mean arterial pressure (A) and heart rate (B) as a result of local infusion of 

TEA via epigastric artery in one leg with or without systemic insulin. Values are means ± 

SEM. 
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   Fig. 3. Change in FBF (A) and VR (B) as a result of local infusion of TEA via the 

epigastric artery into one leg with or without systemic infusion of insulin. Details are 

given in Fig. 1. * indicates that insulin-TEA leg is significantly different from insulin- 

control leg, P < 0.05. # indicates that saline-TEA leg is significantly different from saline- 

control leg, P < 0.05. 
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Fig. 4. Blood glucose (A) for saline and insulin treated rats. It also shows glucose 

infusion rate (B) to maintain blood glucose level at or above basal level during insulin 

infusion. Values are means ± SEM. 
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Fig. 5. Effect of local one-leg infusion of TEA on 2-deoxyglucose uptake (R’g) by 

lower leg muscles. TEA was infused only in the test leg; saline or insulin was infused 

systemically. *, Significantly different from the control leg (saline); #, significantly 

different from the contralateral leg (P < 0.05). Values are means ± SEM. 
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Fig. 6. I-MX metabolism as a result of local infusion of TEA via the epigastric artery 

into one leg with or without systemic infusion of insulin. Details are given in Fig. 1.  *, 

Significantly different from the control leg (saline); #, significantly different from the 

contralateral leg (P < 0.05). Values are means ± SEM. 
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6.4 DISCUSSION  

 

The present study explores the role of calcium-dependent potassium (KCa) channels 

in insulin-mediated hemodynamic (microvascular) and metabolic effects (glucose uptake) 

in muscle in vivo. Local intra-arterial infusion of a blocker of vascular smooth muscle KCa 

channels almost completely blocked capillary recruitment while partially blocking 

insulin-mediated glucose uptake. 

 

In this study, a hyperinsulinemic euglycemic clamp was combined with local intra-

arterial infusion of tetraethylammonium (TEA) in one leg at a dose which decreased the 

femoral blood flow only in the test leg. TEA antagonizes different types of channels with 

varying degrees of potency [288] but the low dose used in this study selectively blocks 

vascular KCa channels [228, 243, 289]. TEA was infused intra-arterially to obtain local 

effective concentrations (0.5 mM) in the test hindleg without interference from systemic 

effects.  

 

There is some evidence indicating the contribution of NO, prostacyclin [94-96] and 

adenosine [93] to insulin-induced vasodilatation. Other authors have suggested that the 

relative contribution of these mechanisms to insulin-induced vasodilatation probably 

depends on the vessel size [77, 168, 290]. The contribution of NO and EDHF to insulin-

mediated effects can vary with vessel diameter, with EDHF being more prominent in 

smaller muscular arteries and arterioles than in larger muscular or conduit vessels [77, 

168]. In the present study, TEA blocked the insulin effect on muscle microvasculature. 

The dose of insulin used did not have a significant effect on total blood flow and thus the 

effect of TEA on insulin-mediated increase in total flow could not be assessed.  

 

A role for EDHF in insulin-mediated hemodynamic effects has been suggested 

mainly from studies using isolated vessels. Insulin-induced relaxation of rat mesenteric 

artery can be abolished by charybdotoxin, (a blocker of large and intermediate KCa 

channels) and endothelial denudation but not by L-NAME suggesting a role for large-

conductance KCa channels and EDHF [212, 231]. Izhar and coworkers [232] described an 
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endothelium independent, nitric oxide independent vasorelaxation of rings from human 

internal mammary artery and saphenous vein in response to insulin that was attenuated by 

the potassium channel blocker TEA. However, the high dose of TEA (10 mM) used in 

their study [232] reflected a non-specific antagonism of all potassium channels [230]. In 

the current study, a low dose of TEA has been used which selectively blocks large 

conductance KCa channels in smooth muscle cells in vitro [228, 229, 291] while higher 

concentrations (>5 mM) can inhibit both ATP and voltage-dependent potassium channels 

[230]. 

 

Three studies report conflicting results in resistance arteries, all using similar 

concentrations of insulin and of inhibitors. Miller [94] and Chen [116] in separate studies 

could not find a role for calcium-dependent potassium channels in the vascular response 

to insulin using TEA, charybdotoxin, and apamin (a blocker of small conductance KCa 

channels). In contrast, insulin-induced vasodilatation could be inhibited by 

tetrabutylammonium chloride, a non-specific potassium channel blocker but not by 

specific potassium channel blockers (TEA, charybdotoxin, and apamin) suggesting that 

hyperpolarization via some other KCa channels is probably involved [168]. McKay et al 

[77] have also shown that insulin-induced dilatation in hamster cremaster arterioles is 

NO-dependent in second order but not in third- or fourth-order arterioles while blockade 

of ATP-sensitive potassium channels by glibenclamide prevented insulin-induced 

dilatation in both second and fourth-order arterioles. Thus, hyperpolarization in one way 

or another seems to play a role in insulin-mediated vasodilatation. 

 

In the intact animal, the involvement of KCa channels in the vasodilator response to 

insulin is difficult to assess and very few studies have been designed specifically to 

address this issue. There is only one in vivo study (Abbink et al) [242] to date using TEA 

and glibenclamide, which argues against a role for calcium- and ATP-dependent 

potassium channels in insulin-mediated increase in total flow and glucose uptake in 

humans. In contrast, in the present study low dose TEA totally abolished insulin-mediated 

capillary recruitment and partially blunted insulin-mediated glucose uptake. Dose-, 

species- and methodological differences could account for the observed differences 
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between the current study and the study by Abbink et al [242]. The use of specific 

potassium channel blockers (the toxins- charybdotoxin, iberiotoxin and apamin) is 

restricted as they are too toxic for in vivo use [243]. TEA did not have any significant 

effect on capillary recruitment or glucose uptake on its own.  

 

This study is the first of its kind pointing towards the role of KCa channels in insulin-

mediated effects in muscle microvasculature in vivo. The mechanism of insulin-mediated 

capillary recruitment in skeletal muscle is still unresolved. A separate study in this thesis 

(chapter 5) demonstrates that nitric oxide is responsible, in part, for insulin-mediated 

capillary recruitment. Lack of availability of methods to measure capillary recruitment 

limits the number of available studies but evidence available from the studies looking at 

insulin-mediated increase in total flow suggests that NO participates in endothelium-

dependent relaxation by insulin. The second mechanism is independent of NO-cGMP and 

may be mediated by hyperpolarization of vascular smooth muscle cell membrane [292, 

293]. This study provides evidence for the involvement of KCa channels in insulin-

mediated capillary recruitment. There is some evidence that potassium is a non-nitric 

oxide, non-prostanoid endothelium-derived relaxing factor in rat femoral arteries [171, 

294].  

 

The current study also looked specifically at the relationship between hemodynamic 

and metabolic actions of insulin. Significant inhibition of insulin-mediated capillary 

recruitment and simultaneous attenuation of insulin-mediated glucose uptake confirms the 

previously observed relationship between capillary recruitment and glucose uptake. This 

dual inhibition may indicate blood flow redistribution from the nutritive to the 

nonnutritive network. It has been demonstrated previously that α-methylserotonin [65], 

TNF-α [66] and T-1032 [295] (chapter 3) completely abolished insulin-mediated 

increases in capillary recruitment and attenuated ~50% of insulin-mediated glucose 

uptake. Insulin resistant models including genetically obese Zucker rats [66, 296] and 

acute administration of Intralipid® and heparin to raise circulating free fatty acids have 

been shown to have a similar effect [67].  
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It is important to mention that out of 6 hindleg muscles TEA significantly attenuated 

insulin-mediated glucose uptake only in the white gastrocnemius and tibialis muscles. 

White gastrocnemius is made up of white fibers while tibialis is composed of both white 

and red fibers [297, 298]. As the TEA effect on these muscles does not seem to be fiber-

specific, there is no apparent explanation why other muscles did not show an attenuation 

of insulin-mediated glucose uptake with TEA. Together, the two muscles make the bulk 

of the hindleg muscles (70%) collected for 2-DG analysis. Inhibition of insulin-mediated 

capillary recruitment by TEA could also have occurred predominantly in these muscles. 

The 1-MX method measures capillary recruitment across the whole hindleg. There is no 

known method to specifically measure capillary recruitment in individual muscles. 

 

TEA decreased the FBF only in the test leg in both the insulin and saline groups. To 

determine whether the flow effects were responsible for the decrease in glucose uptake in 

the insulin group, some experiments were done where the FBF was manually reduced (by 

applying a suture around femoral artery) by 45% only in one leg during systemic insulin 

clamp. This intervention did not have any effect on 2-DG uptake, as both the legs showed 

similar 2-DG uptakes (data not shown). 

 

Attenuated EDHF-mediated responses have been reported in various insulin resistant 

rat models including the fructose-fed rat, the leptin deficient, genetically obese and mildly 

hypertensive Zucker rat and the Otsuka Long-Evans Tokushima fatty rat [85-87, 138, 

159]. Oliveira and coworkers [233] confirmed the contribution of EDHF to the alteration 

of microvascular reactivity in diabetic rats.  

 

It is concluded that acute local intra-arterial administration of the potassium channel 

blocker, TEA, induced a state of insulin resistance at microvascular level in muscle. It is 

proposed that activation of potassium channels on vascular smooth muscle may play a 

role in insulin-mediated capillary recruitment, and that activation of these channels 

increases potassium efflux, producing hyperpolarization of smooth muscle cells. This 

would reduce intracellular calcium and lead to vasorelaxation. Inhibition of KCa channels 

by TEA inhibits vascular smooth muscle hyperpolarization. Thus, this study highlights 
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the importance of KCa channels in insulin-mediated hemodynamic effects in muscle 

capillary recruitment. This effect was simultaneously associated with blunting of insulin’s 

metabolic effect. Further investigation into the role of potassium channels will increase 

our understanding of normal physiology of insulin action and may have important 

therapeutic implications. 
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CHAPTER 7 

 

 

GENERAL DISCUSSION 

 

 

7.1 Key findings  

 

The work presented in this thesis explored the role of NO and calcium-dependent 

potassium channels (KCa) on insulin-mediated capillary recruitment and glucose uptake in 

muscle. This was examined by infusing test agents systemically or locally during 

hyperinsulinemic euglycemic clamps in anesthetized rats. A novel technique was 

successfully developed for this purpose wherein the epigastric artery (a branch of 

femoral) was cannulated and test substances were infused locally in one leg to avoid any 

systemic effects. Unexpectedly, inhibiting the degradation of cGMP using systemic 

infusion of a type 5 phosphodiesterase inhibitor, T-1032, did not potentiate insulin action. 

On the other hand, enhancing the production of NO and doubling the total flow with local 

infusion of methacholine (but not bradykinin) in one leg increased the microvascular 

recruitment and led to potentiation of insulin-mediated glucose uptake. However, both 

local and systemic infusion of L-NAME had no effect on insulin-mediated glucose uptake 

while only the systemic L-NAME blunted the insulin-mediated capillary recruitment. 

Furthermore, local intra-arterial infusion of the KCa blocker, TEA, significantly reduced 

insulin-mediated capillary recruitment and attenuated insulin-mediated glucose uptake. 

Collectively, these findings suggest that other than insulin, methacholine can also induce 

capillary recruitment and that both systemic NO and local KCa channels seem to 

contribute to insulin-mediated capillary recruitment. Moreover, the results further 

corroborate the previous reports regarding the important contribution of microvascular 

blood flow to glucose uptake [65-67, 296]. 
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7.2 Insulin mediated capillary recruitment and its effect on glucose uptake 

 

There is substantial evidence from previous studies for the existence of two vascular 

routes within muscle [69, 70, 73]. One is nutritive, made up of long tortuous capillaries 

and other is non-nutritive, made up of shorter slightly wider capillaries. Insulin probably 

distributes the flow from non-nutritive to nutritive areas in skeletal muscle, thus 

facilitating the access of insulin and glucose to muscle cells. To accomplish this, insulin 

may have to constrict the terminal arterioles preceding non-nutritive vessels while 

relaxing the arterioles supplying nutritive vessels. Thus insulin, possibly by a dual 

vascular action, increases capillary recruitment. 

 

A correlation between capillary recruitment and glucose uptake has been shown [65-

67]. In a separate set of studies - α-methyl serotonin, TNF-α and lipid infusion inhibited 

insulin-mediated increases in total flow and capillary recruitment in vivo and impaired 

~50% of insulin-mediated glucose uptake. The same correlation was observed in this 

thesis with T-1032 and TEA studies (chapters 3 and 6). Also, methacholine potentiated 

insulin-mediated capillary recruitment accompanied by an increase in insulin-mediated 

glucose uptake (chapter 4).  

 

7.3 Mechanism of insulin action in muscle  

 

Thus, there is evidence that factors affecting insulin-mediated capillary recruitment 

will alter glucose uptake. Despite an enormous amount of research into the vascular 

actions of insulin, the mechanism of action of insulin-mediated capillary recruitment is 

still not certain. 

 

Insulin-mediated capillary recruitment could be the result of a mediator released from 

endothelial cells, VSMC or myocytes. There is evidence for the involvement of NO [52, 

115, 120], hyperpolarization factor [231, 232], adenosine [93] and prostacyclin [94-96]. 

Insulin may also have direct effect on endothelial cells, VSMC or myocytes. The direct 

effect of insulin on myocytes could also be important as MIRKO mice (muscle-specific 
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insulin receptor knockout) [299, 300] exhibited an impaired isolated insulin-mediated 

glucose uptake despite normal whole body glucose disposal. On the other hand, a direct 

neural effect of insulin cannot be ruled out. 

 

7.4.1 Local NOS inhibition: no effect on insulin action 

 

 It has been raised by a number of workers [85, 86, 126] that nitric oxide (NO) may 

play a role in muscle glucose uptake under basal conditions, and also during exercise. 

Most of these researchers regard the effects as direct on muscle and not involving 

vascular actions. Arguments in favour of such a relationship have been based on findings 

that NO donors such as sodium nitroprusside increase 2-deoxyglucose (2-DG) uptake in a 

dose-dependent manner in isolated incubated soleus [301] and EDL [89, 90, 302] 

muscles. In addition, sodium nitroprusside has been shown to increase the rate of glucose 

oxidation in incubated soleus muscles [261]. 

  

By employing three different strategies- enhancing cGMP levels in muscle or NO 

production or inhibiting NOS in muscle (chapter 3, 4 and 5) during an insulin clamp we 

have shown that NO is not involved locally in insulin action in muscle. A striking finding 

(chapter 4) was that methacholine infusion in one leg enhanced insulin-mediated glucose 

uptake by muscle in vivo and that this effect of methacholine was associated with a 

marked augmentation of capillary recruitment. This was not solely related to enhanced 

NO production as another nitro-vasodilator, bradykinin neither increased capillary 

recruitment nor glucose uptake (chapter 4). 

 

Thus, NO-cGMP pathway does not appear to play a direct role in insulin-mediated 

capillary recruitment and glucose uptake locally in muscle (Fig. 1, page 151).  
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Fig. 1. Results: insulin action on muscle microvasculature is not nitric oxide-

dependent locally. 

1. Increased muscle cGMP action with T-1032: inhibition of insulin action 
 
2. Increased NO production using methacholine and bradykinin: non-specific increase in            
      insulin action with methacholine only 

3. Decreased NO synthesis using nitric oxide synthase inhibitor: no effect on insulin                       

      action locally in muscle. 
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7.4.2 Systemic NOS inhibition: partially blocks insulin-mediated capillary 

recruitment  

 

The results of gene-deletion studies however, indicate that NO is indirectly involved 

in insulin action. Both eNOS and nNOS knockout mice were insulin resistant [113, 114]. 

It has also been reported by Vincent et al that when NO production is blocked by 

systemic infusion of an inhibitor of NO synthase, insulin-stimulated capillary recruitment 

is totally blocked and insulin-mediated glucose uptake by muscle is inhibited by 

approximately 50% [63].   

 

However, results from chapter 5 indicate that systemic NOS inhibition partially 

inhibits insulin-mediated capillary recruitment and does not block insulin-mediated 

glucose uptake. This suggests that NOS involvement possibly in tissues other than muscle 

plays some role in insulin action. Central effects of L-NAME during systemic infusion 

could have accounted for the partial inhibitory effect on insulin-induced capillary 

recruitment since local NOS inhibition had no effect on insulin action. Shankar et al [121] 

reported that central NOS–dependent pathways may control peripheral insulin action and 

secretion. Intracerebroventricular (ICV) administration of L-NMMA caused 

hyperglycemia via the induction of defects in insulin secretion and insulin action. They 

[121] and others [303] have suggested that perhaps one of the efferent signals triggered 

by insulin in the CNS may be nitrergic in nature. Oboci [304, 305] demonstrated that ICV 

infusion of insulin suppressed glucose production (impaired by central antagonism of 

insulin signaling) in the absence of increased circulatory levels of insulin. Increased 

glycogen synthesis in response to ICV infusion of insulin has also been reported [306]. 

Thus there is some evidence for the central NO-dependent efferent pathways and for the 

role of central nervous system in peripheral action of insulin.  

 

On the other hand, Lautt and coworkers [276] raised the hypothesis that insulin 

initiates a parasympathetic reflex in liver that releases acetylcholine, leading to generation 

of nitric oxide and subsequently to release of a hormone, hepatic insulin sensitizing 

substance (HISS) which sensitizes the skeletal muscle response to insulin (or has a direct 
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insulin-like action). They demonstrated [275] that NOS antagonism by L-NAME is 

caused by blockade of this hepatic parasympathetic reflex that is released in response to 

insulin. It is possible that the hepatic effect of L-NAME might have played a role in 

systemic study (chapter 5) but whether this also plays a role in insulin-mediated capillary 

recruitment remains speculative. 

 

Thus it seems NO is involved in insulin action, but elsewhere, not in the muscle 

microvasculature. Results from previous studies [39, 52, 120] indicate that NO is 

responsible for insulin-mediated increases in total flow. This could not be assessed in the 

current study as the physiological dose of insulin used did not have significant effect on 

total flow. 

 

7.5 Another mediator involved in insulin action on muscle microvasculature  

 

It has been reported that the effect of insulin on muscle microvasculature is a more 

sensitive and quicker event than its effect on total blood flow. It was found in the present 

study (chapters 5 and 6) that physiological insulin (3 mU/min/kg) induced capillary 

recruitment at 60 minutes, without inducing a significant increase in total flow. This 

indicates that microvascular recruitment is an early event and more sensitive than total 

flow at one hour of insulin clamp. Previous reports using contrast enhanced ultrasound 

[68] demonstrated that while insulin required 120 min to augment total flow, it increased 

microvascular volume within 30 min in skeletal muscle. This indicates that smaller (3rd to 

5th order) arterioles respond quicker to insulin than the larger resistance vessels. It is also 

reported that capillary recruitment is markedly more sensitive than R’g to insulin [13]. 

Thus the effect of insulin on microvasculature seems to be more important [307]. 

 

Muscle microvasculature may have different sensitivity to mediators such as NO and 

potassium. It has been suggested that the relative contribution of NO [308] and EDHF 

[165] to agonist-induced vasodilatation depends on the vascular bed and on the vessel 

diameter [165]. EDHF plays a more prominent role in smaller muscular arteries and 

arterioles than in larger muscular or conduit vessels in vivo [165, 166] and in vitro [1, 
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164, 166]. Oltman [168] and McKay et al [77] have reported that in microvessels, 

relaxation to insulin is not mediated by NOS pathways but rather through potassium-

dependent mechanisms. McKay et al [77] have reported an increase in insulin sensitivity 

(vasodilatation) with decreasing vessel size. 

 

The current study (chapter 6) supports the role for calcium-dependent potassium 

channels (KCa) in insulin action locally in muscle microvasculature. Infusion of a blocker 

of KCa channels tetraethylammonium (TEA) in one leg greatly reduced insulin-mediated 

capillary recruitment and attenuated insulin-mediated glucose uptake. A low dose of TEA 

was used which selectively blocks large conductance calcium-dependent potassium 

channels VSMC in vitro [228, 229, 291]. However, the specificity of pharmacological 

blockade is based on published in vitro studies, as the specific effects of the potassium 

channel blockers during in vivo studies are incompletely identified [309]. 

 

Recently, a number of in vitro studies [94, 116, 168, 212, 231, 232] have indicated 

the role of potassium in insulin-mediated hemodynamic effects. Conversely, the only in 

vivo study reported so far to examine the role of potassium (KCa and KATP) channels in 

insulin action using TEA and glibenclamide did not find a role for calcium-dependent 

potassium channels in insulin-mediated increase in total flow and glucose uptake in 

humans [242]. This study however, used a different methodology compared to the study 

in chapter 6 and was done in humans.  

 

Thus, results from this thesis indicate that insulin action in muscle is not the result of 

a single mediator. This thesis provides evidence for involvement of systemic NO and 

local KCa channels in insulin-mediated capillary recruitment. 

 

7.6 Insulin action: role of endothelial cells and/or VSMC 

 

Insulin may stimulate endothelial-dependent hyperpolarization of VSMC by 

stimulating transient increases in intracellular calcium in the endothelial cell via non-

selective cation channels and release of calcium from intracellular stores causing 
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endothelial hyperpolarization [196-199]. The endothelial hyperpolarization induces efflux 

of K+ through the endothelial SKCa and IKCa channels (calcium-dependent small 

conductance potassium channels and calcium-dependent intermediate conductance 

potassium channels). This increases extracellular potassium and causes endothelium-

dependent hyperpolarization of underlying smooth muscle cells, inhibiting voltage-

activated calcium channels which results in vasorelaxation.  

 

There is some evidence that insulin might not act directly on endothelial cell to cause 

capillary recruitment. The observations that vascular endothelial cell insulin receptor 

knock-out (VENIRKO) mice [310] had normal fasting glucose and insulin levels and 

were not insulin resistant argues against the origin of a dilator from endothelial cells 

[310], though glucose uptake and effect of insulin on blood flow was not measured in 

these mice. Furthermore, the results from chapters 3, 4 and 5 also do not support the 

endothelial origin of NO as a mediator involved in insulin action locally.  

 

However, results from the VENIRKO [310] studies should be interpreted with 

caution. It is difficult to assess the results of gene-deletion studies since gene-deletion 

may lead to compensatory developmental changes. Theoretically, if endothelial cells are 

involved in capillary recruitment, VENIRKO mice [310] will show a total loss of insulin-

mediated capillary recruitment and will result in 50% loss of glucose uptake. This should 

not result in whole body insulin resistance because MIRKO mice [299, 300] with almost 

total loss of glucose uptake do not result in whole body insulin resistance.  

 

If endothelial cells are not involved then it is possible that insulin acts directly on 

VSMC to cause vasodilatation via an endothelium independent mechanism. Direct action 

of insulin on smooth muscle and a decrease in cytosolic calcium concentration in aortic 

smooth muscle cells in response to insulin has been demonstrated in several studies [79-

81, 83]. It has been reported that insulin may activate and translocate sodium potassium 

ATPase in VSMC leading to hyperpolarization of VSMC [210]. Alternatively, insulin 

may activate calcium-dependent potassium channels present on VSMC inducing 

potassium efflux and membrane hyperpolarization [242]. This may reduce the influx from 



 156

voltage-dependent calcium channels, decreasing intracellular calcium leading to 

vasorelaxation (Fig. 4, page 35). In patients with insulin resistance increased intracellular 

calcium has been reported in VSMC [84]. 

 

Thus insulin may not necessarily act via the endothelium. Potassium channels in 

VSMC may be involved in insulin action. 

 

7.7 Another way of inducing capillary recruitment: Methacholine  

 

Previously, exercise and then insulin have been identified as mediators of capillary 

recruitment. A striking finding that has come out of this study (chapter 4) is that 

methacholine can also cause capillary recruitment. Mechanism of methacholine-mediated 

capillary recruitment could be different from other two, probably involving muscarinic 

receptors. Methacholine further increased capillary recruitment due to insulin suggesting 

that the methacholine effect to stimulate capillary recruitment is independent and additive 

to that of insulin, likely to be engaging receptors in the same locality of the 

microvasculature.  

 

7.8 Other mechanisms of insulin mediated capillary recruitment? 

 

This study has highlighted that other than NO, potassium movements could also be 

involved in insulin-mediated capillary recruitment and has opened up a new field to be 

explored in relation to insulin action. Role of more specific potassium channels in 

insulin’s action in muscle need to be investigated by using specific antagonists viz, 1-

EBIO, TRAM 34 or TRAM 39 as blockers of IKCa [169, 181, 214], and toxins such as 

apamin to block SKCa [202], iberiotoxin, a blocker of large conductance calcium-

dependent potassium channels (BKCa) [215], charybdotoxin which blocks both IKCa, BKCa 

and also voltage-sensitive potassium channels [216], and scyllatoxin, a structurally 

distinct SKCa inhibitor [217-220]. However, use of these toxins is limited as they are toxic 

for in vivo use. Moreover, role of adenosine and prostacyclin in insulin-mediated capillary 

recruitment needs to be examined. Thus, there is a possibility that capillary recruitment 
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mediated by insulin can be modulated by various factors. Since this study also highlights 

that methacholine could also cause capillary recruitment, the possibility that other 

muscarinic agonists (such as bethanechol, carbachol) can influence insulin action could 

be explored. ICV infusion of insulin and effect of ICV NOS and potassium channel 

antagonism could also be tried.  

 

7.9 Conclusion 

 

In conclusion, the work presented in this thesis explored a number of possible 

mechanisms of insulin action in muscle. A novel technique was developed to test the 

agents locally in the leg and to examine their effects on microvascular action of insulin 

and its relation with glucose uptake.  

 

Insulin-mediated capillary recruitment is unlikely to involve local NO production. It 

is possible that nitrergic signals generated by insulin in the brain or other sites (liver) 

remotely stimulate capillary recruitment.  

 

Capillary recruitment in muscle may involve calcium-dependent potassium channels. 

This might be via EDHF or insulin could act directly on VSMC.  

 

It was found that capillary recruitment can also be induced by an endothelium-

dependent nitro-vasodilator methacholine, which also potentiated insulin-mediated 

glucose uptake. 

 

This study has opened up new areas for further investigation. It is stressed that a 

reduction in insulin-mediated hemodynamic action in muscle might contribute to insulin 

resistance. It is anticipated that a better understanding of mechanisms involved in 

capillary recruitment will be helpful in designing new targets for the treatment of insulin 

resistance.  
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