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ABSTRACT 
In the Huon Valley, southern Tasmania, Australia, large volumes of pesticides are applied to the 

region's apple orchards. The broad objective of this study was to determine whether regional 

aquatic ecosystems are being adversely impacted by the use of orchard pesticides. The 

subcatchment of Mountain River was chosen as the study area, and a regional risk assessment 

was completed to gain an understanding of the environmental issues in the region. 

A Tier 1 risk assessment identified the insecticide, chlorpyrifos, as being of particular concern to 

aquatic ecosystems. The risk hypothesis for research on chlorpyrifos was that spray drift from 

chlorpyrifos applications in orchard located on river flats was resulting in aquatic ecosystems 

being exposed to potentially harmful concentrations of pesticide. 

Chlorpyrifos exposures in Mountain River were characterised using data from seasonal 

sampling and sampling at the time of spray application. Seasonal results showed intermittent, 

low-level detections of chlorpyrifos in Mountain River. Sampling at the time of spraying 

provided unique field data describing the magnitude and duration of pulse exposures at a site 

directly exposed to spray drift. The concentrations measured compared well with the spray 

drift model, AgDRIFT™. 

Chlorpyrifos effects in Mountain River were characterised using multiple lines of evidence. 

Probabilistic risk assessments using cumulative frequency distributions of exposure and effects 

data, and @Risk® software simulations of probability distributions functions fitted with 

BestFit® software showed that aquatic species were not adversely impacted by the exposures 

measured. 

Field studies validated the outcomes of the probabilistic risk assessment for fish species. In situ 

investigations on the blood chemistry and acetykholinesterase activity of rainbow trout 

(Oncorhynchus mykzss) were used to assess acute effects. A maximum aquatic concentration of 

0.163µg/L was measured soon after the commencement of spraying, but no significant changes 

in blood chemistry parameters or cholinesterase activity were detected. Body burdens and 

histology of native fish caught from localities surrounded by orchards confirmed exposure to 

pesticides but it was difficult to assess the severity of chronic effects, given the multiple stressors 

to which fish in agricultural areas are exposed. 
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THESIS FORMAT 

The thesis is composed of ten chapters divided into four sections: 

>- Project Background 

>- Preliminary Investigations and Research Background 

>- Project Work 

);;>- Thesis Synthesis 

At the start of each chapter, there is a chapter background, which details the aims and 

objectives of the work described in the chapter, and summarises the chapter content. 

Six research papers have been written in the course of this project. These papers have 

been included as thesis chapters with submission details given in the chapter 

background. To avoid repetition of some background material, some papers have been 

edited and the thesis chapter is not the submitted paper in its entirety. 
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PROJECT BACKGROUND 

CHAPTER 1. INTRODUCTION 

Chapter Background: This chapter describes the background and broad objectives of 

, the project, and introduces the history and principles of ecological risk assessment. 

BROAD OBJECTIVES OF THE PROJECT 

The Huon Valley is an intensive horticultural region in southern Tasmania, Australia, 

and has been recognised as a significant orcharding district for over 130 years. 

Currently the State produces approximately 20% of the total Australian apple crop 

(Australian Horticultural Corporation, 2000) and 60% of Australian apple exports 

(Tasmanian Apple and Pear Growers Association, 1998). Pesticides are an essential 

management option in modern apple orchards, but pollution of soil, waterways and 

groundwater has been an issue of concern in the'Huon Valley. 

Compared to the United States, Canada and Europe, there has been very limited 

monitoring of the distribution or impact of pesticides in the Australian environment. 

The majority of pesticides research in Australia has been focused on the environmental 

fate and effects of endosulfan used in the cotton industry (LWRRDC, 1998). There is a 

scarcity of field measurements available for other pesticides and other industries. An 

important component of this project was to collect pesticides field data from an 

intensive orcharding region. 

The project attempted to extend the understanding of how pesticides behave in the 

environment by placing particular emphasis on the aquatic and aerial dissipation of a 

pesticide pulse exposure. The focus of the study was on the insecticide chlorpyrifos, a 

chemical with a variety of agricultural, domestic and industrial applicati9ns. Field 

measurements of a chlorpyrifos pulse exposure from a typical orchard application have 
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not been previously undertaken. Characterisation of in situ pulse exposures is 

generally an area that has received limited attention, due to the logistical difficulties 

involved. 

The overall objective of collecting field data on chlorpyrifos was to assess the 

environmental impact of an important apple pesticide used in the Huon Valley. 

Assessment of environmental impact was not possible without a structured 

environmental decision-making framework. Ecological risk assessment was chosen as 

a decision-making framework for the purposes of understanding the extent and 

severify of chlorpyrifos impact on the Huon Valley aquatic environment. 

DEFINITION OF RISK ASSESSMENT 

Risk assessment is used to evaluate and manage the potential of unwanted 

circumstances in a large array of areas, from finance to human health. In environmental 

applications risk assessment is the process of assigning magnitudes and probabilities to 

the adverse effects of human activities or natural catastrophes (Suter, 1993a). Risk 

assessments in health and environmental fields are conducted to estimate how much 

damage or injury can be expected from exposures to a given risk agent, and to assist in 

judging whether these consequences warrant increased management or regulation 

(Arµerican Chemical Society, 1998). 

THE ORIGINS OF RISK ASSESSMENT 

A version to risk and the quest for certainty are overriding themes of human history 

(Ro~e, 1999). The ancients of all cultures consulted oracles, priests, mentors and 

prophets in an effort to know what would happen in the future. However, despite 

humanity's preoccupation with seeking certainty in the face of the unknown, it was 

only relatively recently that the potential of science and mathematics for describing the 

future was realised. In the West, it was not until the adoption of the Hindu-Arabic 

numbering systems about 800 years ago that there was a conceptual basis for 

development of the laws of probability. Mathematicians who have played pivotal roles 

in the development of modern probability and risk theory include Blaise Pascal, Pierre 

de Fermat, Jacob and Daniel Bernoulli, Abraham de Moivre, Thomas Bayes, Francis 

Galton and Harry Markowitz. The history of risk and the societal implications of its 

development are well described by Berstein (1996). 
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The formal process of risk assessment gained acceptance in banking, insurance, and 

business long before it spread to other disciplines. Applications in human health and 

safety emerged in the early decades of this century. By the 1930s, a substantial body of 

scientific evidence had been collected regarding the quantitative relationships between 

occupational exposures to hazardous substances and their effects on human health. In_ 

subsequent decades, scientific research aimed at identifying appropriate safety margins 

for human exposures has become well-established (American Chemical Society, 1998). 

ECOLOGICAL RISK ASSESSMENT 

The practice of ecological risk assessment evolved from developments in the area of 

human health risk assessment. Modern, quantitative methods of ecological risk 

assessment emerged in the mid-1970s (American Chemical Society, 1998). Since then , 

ecologic::al risk assessments have been completed for a variety of environmental issues 

e.g. effects of hypothetical oil spills on seabird populations (Samuels and Ladino, 1983); 

atrazine in North American surface waters (Soloman et al., 1996) and tributyltin 

exposures in US surface waters (Cardwell et al., 1999). 

The development of ecological risk assessment as a environmental management and 

regulatory tool has been largely driven by the United States Environmental Protection 

Agency (US BP A) which has released key documents outlining the principles and 

practice of ecological risks assessment (US EPA, 1992a; US EPA 1996; US EPA 1998). In 

the Proposed Guidelines For Ecological Risk Assessment (US EPA, 1996), ecological risk 

assessment was formally defined as 'a process for organising and analysing data, 

information, assumptions, and uncertainties to evaluate the likelihood of adverse 

ecological effects' (US EPA, 1996). 

THE CONCEPT OF UNCERTAINTY IN ENVIRONMENTAL ASSESSMENT 

The US BP A definition of ecological risk assessment highlights one of the fundamental 

premises of ecological risk assessment, that of uncertainty. Ecological risk assessment 

differs from other schools of environmental assessment in that it incorporates the 

concept of uncertainty into environmental management. 

Introduction 3 



In making scientific predictions, there are always uncertainties. Uncertainty stems from 

ignorance (lack of knowledge or incomplete understanding), fallibility (e.g. inaccuracy 

in measurements) and the stochastic (random) properties of living ecosystems (Suter, 

1993a). It is because scientists recognise the uncertainty of predicting responses in the 

field that the concept of ecological risk has supplanted environmental impact as the 

dominant assessment paradigm (Suter, 1998). 

Despite an incomplete understanding of ecological systems, society must make 

regulatory and management decisions based on imperfect scientific information (Suter, 

1993a; Ruckelhaus, 1983; Moghissi, 1984). The objective of risk-based environmental 

regulation is to balance the degree of risk to be permitted against the cost of risk 

reduction and against competing risks. It is impossibly expensive to eliminate all the 

environmental effects of human activities (Suter, 1993a) so society must be prepared to 

adopt a risk-based approach to environmental management. 

ADVANTAGES OF ECOLOGICAL RISK ASSESSMENT 

Recognition of uncertainty in prediction of ecological responses is one of the 

fundamental premises of ecological risk assessment. In ecological risk assessments, a 

conscious decision is made to estimate uncertainty rather than adopt conservative 

assumptions. The continued use of conservative assumptions in environmental 

decision-making frameworks is invalid for a number of reasons (Paustenbach, 1990). 

Firstly, it is always possible to conceive of a worse and more improbable case so "worst 

case" assumptions are inconsistent. Conservative assumptions tend to hide uncertainty 

and error from the decision-maker by burying it in the estimates of exposure and 

effects. Finally, conservatism assumes that there are no societal or environmental costs 

of regulating false positives. Regulation or remediation often results in inter-media 

transfers of h·eated pollutants or replacement of one product with another whose 

properties are not well studied (Suter, 1993a). For these reasons, conservative 

assumptions are generally not used in ecological risk assessments. The major exception 

is the use of conservative assumptions in the screening of hazards to quickly eliminate 

chemicals and routes of exposure that are clearly trivial from further assessment (Suter, 

1993a). 
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Further advantages of ecological risk assessment over other environmental decision­

making paradigms include prioritisation of risks and research aimed at 

understanding/ mitigating these risks, and generation of quantitative outcomes which 

can be objectively compared with outcomes from other assessments (Suter, 1993a). Risk 

assessments aim to separate the scientific process of estimating the magnitude and 

probability of effects (risk analysis) from the process of choosing among alternatives 

and determining acceptability of risks (risk management). The result of this separation 

is reduced likelihood of analyses that are biased to fit desired decisions and greater 

credibility for both the scientists and the policy makers (Suter, 1993a). 

STRUCTURE OF ECOLOGICAL RISK ASSESSMENT 

The structure outlined in the Framework for Ecological Risk Assessment published by the 

US EPA (1992a) is widely recognised as the basis for most risk assessment. Ecological 

risk assessments involve three main components: problem formulation, analysis and 

risk characterisation (Figure 1.1). 

Within problem formulation, important areas indude identifying goals and assessment 

endpoints, preparing the conceptual model, and developing an analysis plan. Potential 

assessment endpoints for ecological risk assessments are: abiotic (air and water quality 

standards); population (extinction, abundance, yield/production, frequent gross 

morbidity, contamination, massive mortality); community/ ecosystem (market/ sport 

value, recreational quality, change to less useful/ desired type) (Suter, 1990). 

Some of these endpoints have both biological and societal impact, for example, the 

extreme scenario of species extinction. Prevention from extinction of rare and 

endangered animals is a goal clearly understood by the public. However, a target of 

maintaining community structure in the presence of a particular environmental stressor 

is less easily understood. Choosing air and water quality standards as assessment 

endpoints means that goals are clearly defined by regulatory boundaries, but may be of 

unknown biological significance (Suter, 1990). 
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Figure 1.1 Framework for ecological risk assessment used in most formal risk 

assessments. From US EPA, 1992a. 

The risk analysis phase involves evaluating exposure to stressm:s and the relationship 

between stressor levels and ecological effects. Chemical stressors are most often 

studied, but biological and physical stressors may also be considered (Renner, 1996). 

Both laboratory and field studies (including field experiments and observational 

studies) can provide useful data for evaluating exposure to environmental stressors and 

the relationship between stressor levels and ecological effects (US EPA, 1996). 

Risk characterisation is the final stage of the process where all risk analyses are 

considered to determine whether exposure is sufficient to cause adverse effects on the 
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environment, and if so, the nature, extent and severity of the effects. Key elements of 

estimating risk are through integration of exposure and stressor-response profiles, 

describing risk by discussing lines of evidence and determining ecological adversity, 

and preparing a report. The uncertainties associated with the risk assessment are also 

considered (US EPA, 1992a; US EPA, 1996; US EPA 1998). For most assessments, 

multiple, independent lines of evidence are better than any single approach (Suter, 

1993). 

The scientific process of risk assessment concludes with risk characterisation. The 

outcomes of the scientific assessment are then considered along with economic, 

technological and legal, political and social considerations to arrive at a decision and 

decide upon a course of actio1:1 (US EPA, 1996; Suter, 1990). For risk managers to 

effectively utilise the outcomes of a scientific risk assessment it is essential that the 

character, strengths and limitations of the analytical methods are understood (US EPA, 

1996). Considerations in risk management- issues of risk acceptability, economic and· 

social consequences of achieving specific environmental objectives, and how to balance 

b·ade-offs among competing interests - are beyond the technical/ scientific;: debate 

(NRC, 1983) and have not been considered in this project. 

The final concept in risk assessment is risk communication, which is vital for conveying 

the outcomes of a scientific risk assessment and risk management process to non­

technical stakeholders and communities. Public risk perceptions can be extremely 

influential in shaping the public's reaction to a hazard - even to the point of 

overpowering scientific findings about the magnitude of the risk. _For example, 

pesticide residues in food and the operation of nuclear power plants continue to be 

very prominent public concerns - both of which scientific risk calculations indicate to 

be relatively small hazards. Although scientific findings consider high-fat diets or 

exposure to radon to be more serious public health concerns, they draw far less public 

attention (American Chemical Society, 1998). Risk communication is emerging as a 

specialist area and is beyond the scope of this project. Concepts in risk communication 

are well described by Lundgren and McMakin (1998). 
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In risk assessments for chemicals, a tiered approach is generally adopted (Figure 1.2). 

A tiered approach provides increasing refinement of the exposure and risk estimates in 

a logical, step-wise process (Oliver et al., 2000). The advantages of a tiered approach 

include cost effectiveness, reliability, flexibility and minimised completion times 

(Parkhurst et al., 1994). In Tier 1 conservative assumptions are adopted and resources 

can be prioritised to focus on the chemicals that pose the greatest dsks. In higher tiers 

research efforts can be directed at collection of site-specific and species-specific data, 

depending on the objectives of the risk assessment. 
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Figure 1.2 Tiered approach to pesticides ecological risk assessment. This approach is 

adopted so that resources are prioritised to research pesticides with the greatest 

potential for adverse ecological impacts . 

. Risk assessments may be prospective or retrospective. Prospective ecological risk 

assessments are largely employed by regulatory agencies and many of the 

developments in ecological risk assessment methodology have been in the area of 

prospective assessments. However, there has been a shift in emphasis to assessments 

of the effects of pollution that began in the past and may have ongoing consequences 

such as waste sites, acid rain and existing pesticides (Suter, 1993a). Retrospective 

ecological risk assessments evaluate the likelihood that observed ecological effects are 
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associated with previous or current exposures to stressors. Many of the same methods 

and approaches are used for both prospective and retrospective assessments. 

PESTICIDES RISK ASSESSMENT 

Ecological risk assessment has been widely adopted for pesticides risk assessment. 

Pesticides risk assessment recognises that although modern pesticides provide many 

benefits in agricultural, domestic and :illdustrial applications (e.g. Stapley 1969; Pedigo, 

1996; Ware 2000), there is also a human health and environmental risk associated with 

their use (e.g. Carson 1963; Perring and Mellanby, 1977; Snelson, 1979; OCED, 1986). 

Prospective assessments are used for pesticides that are undergoing registration. 

Measures of exposure and effects tend to be based on models, and limited laboratory 

testing. Retrospective assessments are used for pesticides that have been previously 

registered and are under review, or for pesticides which have been recognised to have 

potential for adverse effects in a particular region, industry or application. Measures of 

exposures and effects come from field monitoring programs as well as modeling, and 

there is generally more toxicological data available. 

Specific technical guidance for analysis and risk characterisation in pesticides ecological 

risk assessments has been issued by the Aquatic Risk Assessment and Mitigation 

Dialogue Group (1994). Their approach involves refining both environmental 

exposures and effect endpoints, and progressing in a tiered manner from simple 

screening methods to geographically specific, probabilistic techniques at the highest tier 

level. 

The United States leads developments in the field of pesticides risk assessment. The US 

EPA Office of Pesticides Programs (OPP) has been a driving force in the completion of 

human health, occupational exposure and ecological risk assessments for many 

pesticides registered in the United States. Under the Federal Government Food Quality 

Protection Act (1996) the OPP is charged 'to protect public health and the environment 

from the risks posed by pesticides and to promote safer means of pest control' (OPP, 

2000). The recommendations from several OPP risk assessments have had significant 

implications for agriculture and agri-business. 
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Ecological risk assessment of pesticides is also used in Europe, and is gradually gaining 

worldwide acceptance. The Australian environmental regulatory authority, 

Environment Australia, has adopted ecological risk assessment as a process for 

assessing risks from new and existing chemicals released into the environment, but at 

this stage only simplistic lower tier assessments are conducted (Holland, 1999). 

Currently there is tremendous scope to refine the use of ecological risk assessment 

methods used Australia. Formal ecological risk assessments conducted to date in 

Australia have been limited and include assessments for deltamethrin (Thomas et al., 

1999), tebuthiuron (van Dam et al., 1999), chemicals in Sydney stormwaters (Bickford et 

al., 1999) and for the management of contaminated sites (Ng et al., 1998; Ooi et al., 1999; 

Cox et al., 1999). 

ECOLOGICAL RISK ASSESSMENT IN THIS PROJECT 

In view of the limited research in the field of ecological risk assessment in Australia, the 

work presented in this thesis attempts to extend the understanding of ecological_ risk 

assessment in Australia by applying a variety of ecological risk assessment strategies to 

an issue where the outcomes were important to apple growers, local community and 

the agricultural chemical industry. 

Different ecological risk assessment approaches were used to progress from a 

preliminary regional risk assessment where assessment endpoints were developed 

using stakeholder values, to a Tier 4 geographically specific risk assessment for the 

insecticide chlorpyrifos. In this way, the project was a case study of different ecological 

risk assessment methods, based on their applicability to current understanding of 

pesticides in the Australian environment. The merits of the different ecological risk 

assessment methods used are considered in the Discussion chapter. 

Introduchon 10 



CHAPTER 2. THE MOUNTAIN RIVER CATCHMENT: 

REGIONAL DESCRIPTION 

Chapter Background: This chapter briefly describes the physical, climatic, social, 

economic and environmental characteristics of Mountain River catchment relevant to 

this project. 

PROJECT LOCATION 

Fieldwork for this project was conducted in the Mountain River catchment southern 

Tasmania, Australia (Figure 2.1). Mountain River rises in the Wellington Range and 

flows south, out of the foothills of Trestle Mountain. It is a small river, a tributary of 

the Huon River, which is one of the largest rivers in southern Tasmania. The catchment 

has been mapped in the Tasmap 1:25,000 map series Longley 5024 and Huonville 5023. 

Grove, one of the principal settlements in the catchment, is located at latitude 42 °59', 

longitude 147°06' (Figure 2.2). 

Tasmania 

Figure 2.1 Location of Mountain River catchment, southern Tasmania, Australia. 

Mountain River catchment is located within the region known generally as the Huon 

Valley. The catchment area of the Huon River covers an area of approximately 3,900 

square kilometres in southern Tasmania (Figure 2.2). The catchment incorporates four 

areas of general use. The top end of the catchment is part of the Gordon power scheme 
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comprising a dam on the Huon River at Scott's Peak. The western section of the 

catchment is part of the World Heritage Area (Southwest National Park, Hartz 

Mountains National Park, and South West Conservation Area). The central section is 

land dedicated as State Forest and managed by Forestry Tasmania, while the Eastern 

section is private land, principally in agricultural production (HHRP, 1997). 

Within the catchment there are 20 subcatchments: World Heritage/State Forest area 

(above Arve River), Little Denison River, Russell River, Judds Creek, Mountain River, 

Kellaways Creek, Agnes Rivulet, Nicholls Rivulet, Garden Island Creek, Clarkes 

Rivulet, Prices Creek, Fleurtys Creek, Castle Forbes Rivulet, Kermandie River, 

Esperance River, Lune River, D'Entrecasteaux River, Catamaran River, Huon River, 

Huon Estuary. 

Orcharding occurs within several of these subcatchments. In choosing where to 

undertake fieldwork, all of the regional 1:25,000 maps were studied. Several days were 

spent driving around the Valley investigating ease of access to sampling sites in 

different catchments. Mountain River was chosen for the following reasons: 

~ Greater intensity of orcharding activity in the Mountain River catchment compared 

with other catchments 

~ Easy public access to sampling sites along the length of the river. Access to 

waterways in other areas was through private land, and bringing field equipment 

down to the river may have been problematic. 

~ Several previous studies have been conducted on Mountain River so that there was 

a knowledge base about the river on which to draw. 

Within the Mountain River ~atchment, Grove, Ranelagh, Lucaston, Crabtree and 

Mountain River Township are the most populated areas. Huonville is the nearest 

country town. 
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Figure 2.2 The catchment of the Huon River, southern Tasmania, Australia. Mountain 

River is located to the north of Hounville, the largest town in the region. Major 

tributaries of the Huon are the Weld, Russell, Mountain, Cracraft, Picton and 

Kermandie Rivers. The Huon River becomes estuarine a little way above the principal 

settlement of Huonville, and drains to the D'Entrecasteaux Channel. 
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PHYSICAL AND CLIMATIC CHARACTERISTICS OF MOUNTAIN RIVER 

CATCHMENT 

The catchment area of Mountain River is 186 square kilometres (Davies, 1988). 

Mountain River originates in alpine heath between Collins Bonnet and Thark Ridge in 

the Wellington Range and flows for 25km (Robson, 1995) before joining the Huon River 

at Huonville. 

Hydrology 

Mountain River is a perennial fourth order tributary of the Houn River (Robson, 1995). 

Stream. flow has been monitored in the past, but is currently not being monitored. A 

bankfull discharge event occurs approximately once every fifteen years (Robson, 1995). 

Water quality in the river is generally good. Occasional low dissolved oxygen levels 

and elevated faecal coliform counts have have been recorded during periods of low 

·flow. Water quality parameters were measured as part of seasonal sampling during the 

1997 summer (Appendix 1). This water quality data was collected from five sites along 

Mountain River (locations described in Chapter 6) and these results were generally . 
. . 

indicative of good water quality along the course of Mountain River. 

Climate 

The annual mean maximum temperature measured at Grove is 16.8°C and the mean 

minimum is 5.7 °C. The average annual rainfall is 764.7mm. (Bureau of Meteorology, 

2000). Winter is the season of maximum rainfall with January, February and March 

being the driest months. 

Geology 

The floor of the Huon Valley and the lower section of the surrounding hills consist of a 

bedrock of Fermo-carboniferous mudstones and Triassic sandstones, from which the 

bulk of the cultivated soils are derived. Intrusions of diasbase and, immediately 

adjacent to the Mountain River, of basalt are found outcropping, generally in small 

areas. 

Regional Descriphon 14 



Basic igenous rock composes most of the geology (55 % ) followed by 19 % fine-grained 

sedimentary rock, 13 % medium-grained sedimentary rock and 13 % being complexes of 

other rock types (Davies, 1988). 

Soils 

Along Mountain River, alluvial soils occur· with Huon sand, and Huon loam and Huon 

silty loam occurring beyond the river flats. Some of the most productive apple growing 

soils in the Huon Valley occur within the Mountain River catchment (Taylor and 

Stephens, 1935). 

The alluvial topsoil is usually a sandy loam and occasionally a loam. The depth of 

topsoil varies between 70-120cm. Subsoils include deep sand, loam over sand and a 

deep sandy loam. The depth of subsoil varies between 4.8m and 7.2m and the subsoils 

overlie river gravel of variable texture. Due to the high sand fraction (>70% ), the 

alluvial soils tend to be well drained and suited to irrigation. The typical pH for the 

alluvial soils ranges from 6.2 to 6.8 (Stephens, 1935). 

The Huon series of soils have high clay content in the subsoils and this can restrict 

drainage in some areas. Lucaston and Grove sands are also found in the Mountain 

River catchment. They tend to be less productive apple growing soils with an 

impermeable hardpan that restricts drainage and root growth (Stephens, 1935). 

Vegetation 

The priority vegetation associations identified in Mountain River are Eucalyptus ovata 

(on any substrate), E. tenuiramis (on sedimentary substrate), E. amygdalina on sandstone 

and grassy E: globulus communities (TasVeg 2000 map series). Mountain River occurs 

within the southern ranges bioregion in the Interim Biogeographic Regionalisation of 

Australia (IBRA). Within this bioregion, E. ovata communities on sandstone are 

recognised as a priority vegetation type. E. ovata on sandstone occurs in several small 

pockets in the forested regions of the catchment. 

REGIONAL BACKGROUND 

The Huon Valley is one of Tasmania's most intensive horticultural regions. The Huon 

Valley produces approximately 65% of the Tasmanian apple crop (Tasmanian Apple 
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and Pear Growers Association, pers. comm. 1999) with a market value of around $40 

million. Other intensive horticultural operations in the Valley include cherries, berry 

fruits and floriculture. 

Other industries in the Huon Valley, which are also directly related yet impinging on 

the quality of the environment, include aquaculture, forestry and tourism. Aquaculture, 

which is entirely dependent on regional water quality, is a major industry currently 

with an annual value of $45 million (HHRP, 1997). In the upper reaches of various 

catchments, there are significant forestry actives with an annual value of $42 million. 

The annual value of tourism is currently $12 million and predicted to expand (HHRP, 

1997). The Valley has many scenic areas and is a base for many outdoor pursuits such 

as hiking, climbing and water sports. 

A regional risk assessment was conducted to put catchment issues in context and to 

gain a better understanding of social and environmental issues in the catchment. Land 

use patterns were mapped and environmental issues studied. This is described in the 

following chapter. 
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PRELIMINARY INVESTIGATIONS AND 

RESEARCH BACKGROUND 

CHAPTER 3. ENVIRONMENTAL ISSUES IN MOUNTAIN 

RIVER CATCHMENT 

Chapter Background: Regional ecological risk assessment is concerned with describing 

and estimating risks to environmental resources at the regional scale or risks resulting 

from regional-scale pollution and physical disturbance (Hunsaker et al., 1989). Regional 

risk assessment represents an unconventional form of ecological risk assessment 

because of the need to spatially and temporally integrate toxic effects with other factors 

operating in the region (Suter, 1993a). Method development for regional risk 

assessments is in its infancy due to the complexities involved in integrating spatial and 

temporal components into the assessment. One framework that has been proposed for 

regional risk assessment is the Relative Risk Model (Landis and Wiegers, 1997). 

This chapter describes a regional risk assessment using the Relative Risk Model, which 

was conducted to: 

~ Gain an overview of land use patterns within the Mountain River catchment study 

area. 

~ Gain an understanding of regional environmental issues, with an emphasis on 

orchard production systems. 

~ Gain an understanding of the processes involved in conducting a regional risk 

assessment, and assess the utility of the Relative Risk Model as a regional risk 

assessment tool. 

In this chapter, the process of utilising the Relative Risk Model as a regional risk 

assessment tool is described. A critique of the Relative Risk Model and its applicability 

to the Mountain River catchment is given in the Discussion chapter. 
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The Relative Risk Model assessment described in this chapter is to be published in the 

international journal Human and Ecological Risk Assessment with the following reference: 

Walker R Landis WG Brown PH 2001. Developing a regional risk assessment: A case 

study of a Tasmanian agricultural catchment. Human and Ecological Risk Assessment. in 

press. 

Abstract 

A regional ecological risk assessment was conducted for the Mountain River catchment 

in Tasmania, Australia. The Relative Risk Model was used in conjunction with 

geographic information systems interpretations. Stakeholder values were used to 

develop assessment endpoints, and regional stressors and habitats were identified. The 

risk hypotheses expressed in the conceptual model were that agriculture and land 

clearing for rural residential are producing multiple stressors that have potential for 

contamination of local waterbodies, eutrophication, changes in hydrology, reduction in 

the habitat of native flora and fauna, reductions in populations of beneficial insects in 

agricultural production systems, increased weed competition in pastures, and loss of 

aesthetic value in residential areas. In the risk analysis, the catchment was divided into 

risk regions based on topography and land use. Stressors were ranked on likelihood of 

occurrence, while habitats were ranked on percentage land area. Risk characterization 

showed risks to the maintenance of productive primary industries were highest across 

all risk regions, followed by maintenance of a good residential environment and 

maintenance of fish populations. Sensitivity analysis was conducted to show the 

variability in risk outcomes stemming from uncertainty about stressors and habitats. 

Outcomes from this assessment provide a basis for planning regional environmental 

monitoring programs. 

INTRODUCTION 

There are various stressors impinging on th~ quality of the environment in any 

catchment region. Without a framework, it is difficult to objectively assess the risks 

associated with multiple stressors. The Relative Risk Model as developed by Landis 

and Wiegers (1997) is a framework for ranking and comparing the risks associated with 
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multiple stressors. It is a useful tool for describing and comparing risks to valued 

resources within a catchment. 

The Relative Risk Model was developed for a regional risk assessment for the Fjord of 

Port Valdez, Alaska (Wiegers et al., 1998) and is currently being used for a large 

regional risk assessment of the Willamette and McKenzie Rivers, Oregon (Landis et al., 

in press). This paper reports on the application of the Relative Risk Model in a more 

localized region in southern Tasmania, Australia. The aim of this work was to use the 

Relative Risk Model as a tool to put catchment issues in context, and highlight issues 

that needed to be further addressed. 

Relative Risk Model methodology essentially mirrors the traditional three-phase risk 

assessment approach: problem formulation, analysis, and risk characterization, but 

requires a modification of the traditional approach. Expanding an assessment to cover a 

region requires consideration of larger scale, regional components: sources that release 

stressors, habitats where the receptor live, and impacts to the assessment endpoints. 

In the problem formulation phase of the relative risk assessment; the scope of the 

assessment is defined; at this stage, the values of regional stakeholders are influential in 

determining assessment endpoints. Generic goals for regional risk assessment include: 

explanation of observ~d regional effects, evaluation of an action with regional 

implications, and evaluation of the state of a region (Suter, 1990). Regional stressors 

and habitats are identified in the problem formulation phase. 

In the risk analysis phase the stressors and habitats are ranked based on their likelihood 

of occurrence within the risk region. The interaction between stressors and habitats is 

considered when total relative risk calculations are made for each stressor and habitat. 

In the risk characterization phase, the risks for stressors and habitats are compared. 

Sh·essors with greatest potential for ecological impact and habitats most at risk are both 

identified. This provides a basis for discussions about management of the region. 

It is particularly apparent at the regional scale that not all components of the 

environment can be measured, tested, modeled, or otherwise assessed (Suter, 1993b). 
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In addition, there is a large degree of spatial and temporal variability. On a regional 

scale, there is !'l large degree of uncertainty in a preliminary risk assessment such as 

this. However, this should not stop the assessment from proceeding. Uncertainty 

should be recognized as an inherent component of each stage of the risk assessment 

and addressed at each stage, rather than at the conclusion of the risk analysis. A 

sensitivity analysis can be performed at the conclusion of the risk analysis to determine 

how uncertainty is influencing the overall risk rankings. 

PROBLEM FORMULATION 

The Risk Region 

As noted by Suter (1993b), a catchment lends itself to being an easily defined risk region 

for aquatic borne contaminants. The catchment considered in this assessment is the 

Mountain River catchment in southern Tasmania, Australia. The Huon Valley is a 

major horticultural region. The main horticultural crops are apples, cherries, stone 

fruit, and berries. Other primary industry enterprises include beef cattle production, 

mushroom farming, herbs, honey, and cut flowers. The Huon Valley is a popular 

residential locality for urban commuters who have no financial dependence on the land 

but value the aesthetic and lifestyle benefits of living in a rural environment. 

There is a significant level of public interest and concern in the Huon Valley about 

environmental issues generally, and waterways in particular. Catchment management 

in the Huon Valley was formally instigated with the establishment of the Huon Healthy 

Rivers Project initiated in 1995 with funding provided through federal and local 

governments. The Huon Healthy Rivers Project is an ongoing project that aims to 

promote environmental awareness and provide a resource base for community projects. 

Information in this assessment was obtained from a number of sources, particularly­

publications produced by the Huon Healthy Rivers Project and personal 

communication with Huon Healthy Rivers project officers who facilitated various 

community forums. There has been no extensive or consistent environmental 

monitoring of freshwater bodies within the Valley, other than basic water quality data 

available through State agencies. 
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Defining Assessment Endpoints within the Mountain River Catchment 

Assessment endpoints represent the social values to be protected, and serve as a point 

of reference for the risk assessment. The values to be protected in a region may be 

described :in terms of characteristics of its component populations and ecosystems or in 

terms of characteristics of the region as a whole (Suter, 1993b). 

The goals of the local community were used in this regional risk assessment as a 

starting point for developing assessment endpoints. A community forum, held in 1998 

to identify water values for Mountain River as a starting point for setting 

environmental flows for the River, identified the following issues as important: 

improve water quality (particularly decreased E.coli counts), maintain/ establish water 

of drinkable and irrigable quality, maintain habitats for aquatic animals, maintain water 

in suitable volumes to sustain agriculture, maintain catchment quality for town water 

supply, maintain water for swimming, maintain water for trout fishing, maintain 

and/ or improve beauty of the river, and maintain seasonal nature of the river. 

In a 1999 catchment community forum, locals created an image of their preferred 

catchment having the following characteristics: clean water which is safe for drinking 

and swimming; sustainable landuse practices; optimum stream flow; natural vegetation 

along the riverbanks; an active and responsible community; and an attracti~e settings 

for picnics. As noted by Steel et al.. (1994), analysis of survey data should consider 

relationships between survey responses and stakeholder backgrounds. Length and 

location of residence, occupation, education, and other factors can influence 

stakeholder values. This particular "community" forum was not well attended by local 

farmers, and the values stated may not necessarily represent priorities for primary 

producers. It is vital that assessment endpoints be determined with a conscientious and 

intelligent effort to represent the values of the entire community. 

Beginning with the water body and expanding across the catchment, assessment 

endpoints were identified based on the views expressed by stakeholders, discussion 

with resource managers, and expert judgement. The assessment endpoints were 

identified as: 
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);;> Water quality parameters to meet or better Australian and New Zealand 

Guidelines for Fresh Water Quality 

);;> Maintenance of local fish populations* 

);;> Maintenance of adequate environmental stream flow § 

);;> Maintenance or increase of native streambank vegetation, and reduction of weed 

density to less than 10% groundcover cti 

);;> Maintenance of productive primary industries 

);;> Landscape aesthetics and maintenance of a good residential environment 

*Criteria are currently being established by the regulatory body, Tasmanian Inland 

Fisheries. 

§Criteria are currently being established by the regulatory body, Department of 

Primary Industries, Water and Environment. 

<I> Weeds are defined as non-native species growing' where they are not wanted. 

Suter (1990) states that good assessment endpoints should have the following· 

characteristics: social relevance, biological relevance (function of its implications for the 

next higher level of biological organization), unambiguous operational definition, 

accessible to prediction and measure~ent, and susceptible to the hazard. We 

compared the above assessment endpoints to Suter's criteria. 'Water quality parameters 

to meet or exceed Australian and New Zealand Guidelines for Fresh Water Quality 

(2001)' and 'Maintenance or increase of native streambank vegetation, and reduction of 

weed density to less than 10% gr9undcover' are currently the only assessment 

endpoints that meets all of Suter' s criteria. At the time of writing the State fisheries 

agency was in the process of establishing quantitative goals for Tasmanian brown trout 

fisheries, which is the State's most popular inland fishery. Quantitative goals have 

currently only been set for the recovery plans of the rare and endangered native 

galaxias (Crook and Sanger, 1997), none of which occur in Mountain River. Also at the 

time of writing, the State environmental agency was in the process of establishing an 

environmental flow for Mountain River. 

The assessment endpoint of maintenance of productive primary industries and 

landscape aesthetics are intuitively understood but not well defined. These endpoints 

do not meet Suter' s criteria, but clearly an imperfect definition must not exclude them; 
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'maintenance of productive primary industries' is of utmost importance in a primarily 

agricultural catchment. For the purposes of this preliminary relative risk ranking, this 

assessment endpoint is not operationally defined; instead, general knowledge of good 

soil and water management practices is applied to it. Recent work by Landis and 

McLaughlin (2000) is providing a conceptual framework for quantifying sustainability, 

although it is unlikely that an unambiguous operational definition for quantifying 

sustainable agriculture will be achieved because of the huge diversity of inputs to 

agriculture. It is possible, however, to quantify the sustainability parameters of 

individual inputs to agriculture, for example, using water quality criteria and regional 

soil databases. 

Similarly, landscape aesthetics is not operationally defined, but can be understood as 

meaning that Mountain River is a nice place to live. Other assessment endpoints 

directly impinge on this, particularly the quality of the natural environment as 

measured through water quality, water flow, weed infestation, aquatic life, and factors 

affecting agriculture such as soil stability and climate. 

Identifying Stressors in the Region 

The issues of environmental concern identified in the Huon Healthy Rivers project 

were categorized in terms of the stressor and corresponding ecosystem response 

variable (Table 3.1). With the exception of seasonal flooding, all the stressors identified 

were anthropogenic. The effects of seasonal floods can be enhanced or mitigated by 

regional land management practices. 

Out of all the stressors identified for the Huon Catchment in Table 3.1, the only 

stressors considered relevant in the risk assessment for Mountain River catchment were 

agriculture and land clearance for rural residential development. No large-scale 

forestry activities occur within the catchment, although it is possible there may be some 

paddock-scale tree plantations on individual farms. No aquaculture occurs within the 

catchment. Mountain River is too small for boating, and recreational pursuits in the 

catchment are mainly hiking, horseriding, fishing, and swimming, which were 

considered to have negligible impact. 
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Agricultural stressors in the Mountain River catchment were identified as: pesticides 

used in orchards, fertilizers (pasture, orchards and other cropping activities), pumping 

irrigation water from the river, weed infestation, and clearing of native bush for 

farmland (Table 3.1). Another stressor that could be included under the umbrella 

heading of' agriculture' is contaminated sites because of possible copper, lead, and 

arsenic residues in the soil from previous use of orchard pesticides containing these 

elements. It was decided to omit contaminated sites from this risk assessment because 

the focus is on risks associated with current agricultural practices. In addition, 

introducing contaminated sites into the risk assessment involves considerable 

uncertainty. Currently the actual extent of contamination, if any, is unknown. An 

intensive regional soil-testing program is required before contaminated sites should be 

considered as a stressor. 

Stressors resulting from land clearing for rural residential were identified as: bacteria 

from septic tank effluent, clearing of native bush for residential purposes, nutrients 

from households, pumping water from the river for garden and household use, and 

weed infestation. 

Identifying Habitats in the Region 

Human exclusion from ecosystems has been symbolic of a long held belief that 

somewhere there exists a reference, pristine ecosystem. It is more realistic to recognize 

that humans are participants in most ecosystems; indeed agricultural ecosystems are 

created and maintained by humans. It was decided in this risk assessment to recognize 

anthropogenic habitats in the same way as natural habitats. This has recently been 

considered as a valid risk assessment approach because changes in ecological systems 

result in risks to cultural resources, economic activity, and quality of life because of the 

numerous and important services of nature (Suter, 1999a). Moreover, ecological risks 

can often be considered as risks to the sustainability of the activities being assessed 

(Suter, 1999b). 
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Table 3.1 Anthropogenic stressors and ecosystem response variables identified in the 

Huon Valley. Information from the Huon Healthy Rivers Project (HHRP) (1997) was 
I 

used as a basis for this table. 

ANTHROPOGENIC 

STRESSOR 

LAND CLEARANCE 

AND RURAL 

SUBDIVISION 

INTENSIVE 

AGRICULTURE 

Fertilizers and animal 

waste 

ECOSYSTEM RESPONSE VARIABLE 

Species and habitat destruction 

Soil erosion and landslips 

Increase in frequency of erosive flood events 

Increase in environmental weeds - willows, blackberries, ragwort, gorse, 

pampass grass 

Agricultural runoff causing eutrophication of freshwater bodies 

Toxic algal blooms in the estuary affecting estuarine species 

Pesticide contamination Mortality, immunological and reproductive health of local species 

of soils and water 

through spray drift, 

spillage and runoff 

Soil and water 

management 

Contaminated Sites - it is possible that the lead, copper anµ arsenic 

sprays used earlier this century may have left residues in the soils in 

older orcharding areas. 

Soil erosion and landslips 

Soil compaction and reduction in biological diversity of the soil 

Irrigation water pumped from local waterways reducing stream flow· 

and changing hydrology affected microhabitat of aquatic species 

RURAL AND COASTAL River and coast modification altering the habitat of local species 

AREA DEVELOPMENT Wetland degradation. Reduction of the "biological filtering" capacity of 

the estuary 

Septic Tank effluent- effluents from improperly maintained septic tanks 

have contaminated waterways and ground water in various locations. 
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ANTHROPOGENIC 

STRESSOR 

ECOSYSTEM RESPONSE VARIABLE 

RURAL AND COASTAL Refuse disposal site leachate - current public sites are located at 

AREA DEVELOPMENT Huonville, Geeveston, Cygnet. Former sites were located at Glen Huon 

and Judbury. Older and former public and private sites are spread 

FORESTRY 

AQUACULTURE 

RECREATIONAL 

PURSUITS 

throughout the municipal area. Contaminants of unknown types and 

quantities discharged to waterways. 

Pumping drinking and household water from local waterways, reducing 

stream flow and changing hydrology affecting the microhabitat of 

aquatic species. 

Nutrient input from sewage. Sewage treatment plants are located at 

Ranelagh, Cygnet, Geeveston. Sewage lagoons at Huonville, Dover, 

Southport. Franklin sewage is currently discharged into the Huon River. 

Solid waste management -public landfill facilities at Geeveston and 

Cygnet. Waste transfer stations at Cygnet, Southport, Dover and 

Huonville. A private contractor provides recycling facilities at each site. 

Untreated stormwater containing unknown types and quantities of 

contaminants 

Soil erosion and landslips 

Nutrient runoff 

Road building causing siltation of waterways 

Environmental weeds 

Nutrients from fish waste, uneaten food and disposal of net wash 

effluent causing nutrient enrichment of the estuary and increasing 

probability of toxic algal blooms 

Escaping fish possibly competing with native species 

Ballast water introducing pest species 

Boat pollution (fuel, sewage waste, rubbish) 

Soil compaction or increases in soil erosion 

Contamination of waterways with exotic bacteria 
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Based on land use in the catchment, five different habitat categories were identified 

(Table 3.2). Given the diversity of stressors there is a variety of impacts that could occur 

within each habitat. 

Interaction of Stressors and Habitats - Risk Hypotheses in the Conceptual Model 

At this point in our preliminary risk assessment, stressors and habitats in the region 

have been identified. The values of various stakeholder groups have been considered 

in the formulation of assessment endpoints. A conceptual model of the region showing 

the interaction of stressors, habitats, and the potential for impacts on chosen assessment 

endpoints is given in Figure 3.1. The conceptual model describes the approach that will 

be used for the risk analysis phase. It is a graphical summary of the risk hypotheses 

being assessed within the catchment (US EPA, 1992a). Conceptual models are 

representations of the assumed relationships between sources and effects (Suter, 1999a). 

The conceptual model shown in Figure 3.1 represents assumed interactions of stressors 

and habitats within the catchment. I~ contains uncertainty; however, it is adopted as an 

operating tool in the absence of more complete knowledge. 

The risk hypotheses shown in Figure 3.1 assume that agriculture and land clearing for 

rural residential areas produce multiple stressors that have potential for contamination 

of local waterbodies, eutrophication, changes in hydrology, reduction in the habitat of 

native flora and fauna, reduc;::tions in populations of beneficial insects, increased weed 

competition in pastures, and loss of.aesthetic value in residential areas. 

Particular emphasis has been placed in this regional risk assessment on the conceptual 

model as a tool for visually interpreting the relative risk calculations. This is described 

in the Risk Analysis section. 
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Table 3.2 Habitats identified within the Mountain River catchment 

HABITAT 

Aquatic 

Native 

vegetation 

Orchard 

Residential 

DESCRIPTION MAJOR IMPACTS 

WITHIN 

All waterbodies are included in this Contamination of the 

category, although the emphasis is on larger waterbody 

waterways in the catchment, in particular 

Mountain River and Crabtree Rivulet 

This includes all native vegetation types 

mapped in the TasVeg 2000 series. The 

priority vegetation associations in the 

Mountain River catchment are Eucalyptus 

ovata, E. amygdalina, E. tenuiramis, E. globulus. 

This includes all land mapped as orchard. 

Eutrophication 

Changes in hydrology 

Reduction in the habitat 

of native flora and fauna 

Reductions in 

Major orchard crops are apples, followed by populations of beneficial 

cherries. insects 

This category includes all pastures used for 

grazing sheep, horses, goats and for cutting 

hay. There is limited crop production in 

Mountain River catchment but any 

occasional cropping that does occur is also 

included in this category. 

Weeds competing with 

orchard trees, especially 

during establishment. 

Weeds competing with 

pasture and crop species. 

Weeds can also decrease 

quality of pasture and 

decrease price of cut hay. 

This category includes the area around each Loss of aesthetic value 

residence that is actively used or maintained 

by the resident. It also includes the 

residence. 
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RISK ANALYSIS USING THE RELATIVE RISK MODEL 

Much of the input data for the risk analysis in this assessment came from land use 

patterns shown in the Tasmania 1:25,000 Series. The maps sheets used were Longley 

5024 (Edition 2, 1988) and Huonville 5023 (Edition 2, 1987). Digitized map data are 

supplied to the Australian public on a cost recovery basis and there is only a limited 

amount of digitized data available. Land use themes, including vegetation, were not 

available in digital format so it was necessary to digitize vegetation patterns from paper 

maps. The maps were scanned and on-screen digitized. Vegetation themes were 

transformed from scan unit co-ordinates to the Universal Transverse Mercator 

projection using Shape Warp 2.2. Arc View® version 3.1 (Environmental Systems 

Research Institute, Redlands, CA, USA) was the geographic information systems (GIS) 

software used in this assessment. 

Identifying Risk Areas 

The ranking criteria described below for stressors and habitats are primarily based on 

land use. Land use patterns generally change. dramatically between the upper and 

lower reaches of a catchment. It would be unrealistic and unachievable to attempt a risk 

ranking for the entire catchment. It is more practical and relevant to divide the region 

into subareas or risk regions so that stressors and habitats within a specific subarea can 

be better considered. This also allows comparison of risks from different stressors to 

specific habitats within different catchment areas. 

An incremental gradient of human activity occurs as Mountain River flows down 

through the catchment. The intensity of agriculture, orcharding, and residential 

development increases. The risk regions in Figure 3.2 were chosen to match this 

gradient of human activity as well as the natural boundaries determined by contours 

and tributaries flowing into Mountain River. Aligning risk regions with the flow of 

tributaries to Mountain River was very important. Although two tributaries may at 

some point only be separated by a few kilometers, they may flow through very 

different land use activities before they join the main channel, ultimately contributing 

very different inputs to the main chm:mel. 
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Ranking Stressors 

The most accessible data about the Mountain River catchment came from the 1:25,000 

map series. However, it was not possible to quantify the extent and severity of each 

stressor by simply studying land use maps. Some quantitative data were available for 

the Mountain River catchment, although the lack of coordination between government 

agencies made it difficult to access. Surprising gaps in the knowledge about potential 

environmental stressors were discovered. The local council did not have a database 

that could identify how many people lived within the physical catchment, nor how 

many septic tanks were installed within the catchment, although they could make 

approximations. A total of 39 household pumps are installed along the river, although 

locations of the pumps could only be estimated based on residential density along the 

river. 

To collect quantitative data about the extent and severity of each stressor in each risk 

region is a task not warranted for a preliminary risk assessment of the catchment. All 

data currently available about the catchment were collated, but no additional field data 

were collected for this preliminary risk assessment. We decided in this preliminary 

risk assessment to use expert knowledge of the region and land use maps to 

qualitatively rank stressors. The ranking criteria and points assigned were: 

6 Likely to occur 

4 Possibly could occur 

2 Unlikely to occur 

0 Very unlikely to occur 

The 'distance between' risk categories was assumed equal i.e. stressors ranked 6 were 

not by definition three times larger than those ranked 2. This also applied to the habitat 

ranking criteria given in Table 3.3. 

Uncertainty is obviously a significant consideration at this point of the risk assessment. 

However, it was planned to undertake a sensitivity analysis to determine if the stressor 

rankings had a significant effect on the relative risk ranks. In this way, the effect of an 

incorrect stressor ranking on the overall relative risk outcomes could be compared. The 

sensitivity analysis is described in the Risk Characterization section. 
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The ranking criteria and points assigned for severity of weed infestation was based on 

standard categories for mapping weed density as used in the survey conducted by the 

Huon Healthy Rivers Project. 

6 Heavy >50% groundcover 

4 Moderate 25-50% groundcover 

2 Light weeds 10-25 % groundcover 

0 Scattered weeds <10 % groundcover 

Ranking Habitats 
, 

Habitats were ranked according to the proportion of a particular habitat within a 

region. To determine the proportion of a particular habitat within a risk region, map 

themes were manipulated and planimetric areas measured using Arc View software. 

Habitat ranks and uncertainties associated with the ranking are described in Table 3.3. 

The major source of uncertainty in establishing the ranking criteria for habitats stems 

from the 1:25,000 maps. The content of these maps was determined from aerial 

photography undertaken in 1986. Obviously, there would have been changes in land 

use since that time, so the exact proportion of different vegetation and land use types 

would have changed. However, in the absence of other map data, the 1:25,000 series 

maps must be used. Since 1986, the major changes in land use in the catchment have 

been the subdivision of pasture into rural residential blocks. The number of residences, 

in the catchment is now greater than indicated on the maps, and consequently the true 

extent of pasture may have been overestimated. However, there have not been other 

significant land use changes in the catchment, and for the purposes of this preliminary 

risk assessment the 1:25,000 maps were considered adequate. 

Relative Risk Calculations Using the Conceptual Model 

Figure 3.1 is the conceptual model for this risk assessment. Visually it describes all the 

interactions between stressors and habitats being considered in this risk assessment. It 

has been produced as a spreadsheet so that it can simultaneously mathematically 

describe the risks associated with the stressors and habitats found in each risk region, 

based on the assumed interactions between stressors and habitats. These assumed 

interactions are indicated by the exposure and effects arrows. 
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Table 3.3 Ranking criteria for Mountain River habitats 

HABITAT RANK CRITERIA AND ASSIGNED UNCERTAINTY 

POINTS 

Aquatic 6 - The aquatic habitat was given a single, Assumption that a high 

high ranking because all activities that ranking is justified across 

occur within a catchment ultimately all regions 

impinge on the waterway. In addition, the 

risk regions all include a section of the 

waterway so aquatic habitat was considered 

a highly ranked habitat in all risk areas. 

Native 6 23-37% .......... of total catchment native Accuracy of 1:25,000 maps 

Vegetation 4 11-22% vegetation found within 

2 10% the risk region 

0 <1% 

Orchard 6 41-46% .......... of total catchment Accuracy of 1:25,000 maps 

4 15-40% orchards found within the 

2 1-14% risk region 

0 <1% 

Pasture 6 29-35% .......... of total catchment Accuracy of 1:25,000 maps 

4 16-28% pastures found within the Classification of pasture vs. 

2 1-15% risk region vacant land and home 

0 <1% gardens 

Residential 6 Many ratepayers (approx >5000) No localized population 

4 Not so many ratepayers (approx >3000 data available for different 

2 Few ratepayers (approx >1000) areas of the catchment. 

0 No ratepayers Assumption is that all 

residences are contributing 

equally to the source 
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There is a number above each stressor and habitat category in Figure 3.1. These 

numbers are the risk rankings for the stressor and habitat in a given risk region (the 

example reproduced here is for Risk Region 4). This number describing risk ranking is 

in a cell that is part of a spreadsheet formula. Spreadsheet formulas are used to 

calculate the risks indicated in Figure 3.1, that is, the sum of stressors within the risk 

region, sum of potential stressor exposure within the risk region, total risk to 

assessment endpoints within the risk region, and total risk to each assessment 

endpoint. Incorporating spreadsheet calculations into the conceptual model means it is 

easy to compare total risks between different risk regions and for different rankings of 

stressors and habitats. The assumed interactions between stressor and habitat remain 

constant; only the risk rankings change. 

The spreadsheet formulas used for calculating risk are: 

Sum of stressors in risk region = J;Stressors 

Sum of potential stressor exposure in risk region = I[stressor :,eh,abitat) 

for interactions where an exposure arrow indicates the stressor 

has potential to impact habitat 

Total risk to assessment endpoint= J:(stressor:,eh,abitat) 

for interactions where an exposure arrow indicates the stressor 

has potential to impact habitat AND an effects arrow indicates 

that an event in the habitat has potential to impact assessment 

endpoint. 

Total risk to assessment endpoints in risk region = I[total risk to assessment endpoint) 

The use of exposure and effects arrows serves to ensure that only realistic 

interactions are included in the conceptual model and the risk ranking. Not every 

stressor has the potential to impact every habitat, nor has every stressor the potential to 

impact every assessment endpoint. A relative risk ranking cannot simply be a sum of 

stressor * habitat; the interactions assumed in the conceptual model must be accounted 

for. These interactions are indicated by the linking arrows in Figure 3.1. 
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When Wiegers et al.. (1997) did their relative risk calculations for the Port Valdez 

regional risk assessment, they used an exposure filter and effects filter to ensure that 

only realistic interactions were included in the risk calculations. Their filtering method 

was to include 1 in the risk calculations that represented realistic interactions and 0 in 

the interactions that represented unrealistic interactions. Their method did not use the 

conceptual model as visual reference so the filtering method involved individually 

assessing each stressor /habitat/ impact interaction and questioning whether it was a 

realistic scenario. 

RISK CHARACTERIZATION 

A comparison of risks to assessment endpoints in Risk Region 4 is shown in Figure 3.3. 

This is where most agricultural and residential development in the catchment has 

occurred. Risks to productive primary industries are greatest which is not surprising 

considering the diversity of inputs to agriculture. After primary industries, risks to the 

residential environment and maintenance of fish populations are greatest. Degradation 

of water quality in the region had the greatest impact on assessment endpoints. 

Initially it was surprising that risks to native vegetation were comparatively low, given 

the development that has occurred in the region. However, this risk outcome is 

accurate because there is actually very little nafore vegetation remaining in the region 

(habitat rank is 2) so risks to this habitat type are relatively low. 

~ 

A comparison of risks to assessment endpoints in different Risk Regions is shown in 

Figure 3.4. The same general trends appear throughout the catchment with risks 

greatest to productive primary industries, followed by residential environment and 

maintenance of fish populations. Generally, risks to all assessment endpoints are 

greater in Risk Regions 3 and 4 because more agricultural and residential development 

has occurred there. 

It is important when interpreting the risk outcomes to remember that relative risks form 

the basis of the relative risk model. A risk outcome in itself has no meaning unless 

compared to other risk outcomes; in this way, risks are prioritized. One limitation of 

the relative risk model is that stressors and habitats are ranked on relative likelihood of 
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Figure 3.4 Comparison of risks to assessment endpoints between Risk Regions. The 

increased risks to assessment endpoints in Risk Region 3 and 4 reflect the increased 

level of human activity in these parts of the catchment. 

Regional risk assessment for Mountain River catchment 38 



occurrence, not on relative consequence of occurrence. Different stressors can have 

different effects with different consequences for the habitat of concern. Ranking of 

stressors based on 'consequence of occurrence' was not attempted in this preliminary 

study, due to a limited understanding of ecological processes within the catchment. 

With limited scientific data available, rankings of ecological consequence would tend to 

be value-driven, rather than factual. 

Sensitivity Analysis 

As previously mentioned the ranking of stressors is a major source of uncertainty in the 

assessment. Sensitivity analysis is a means to assess the robustness of the model - how 

would the risk outcomes change if we had new knowledge that allowed more precise 

ranking of the stressors? 

Weed infestation is a significant stressor in the catchment, particularly as it has been 

included as a stressor to agricultural and residential environments. The initial rankings 

of weed infestation came from a 1999 Huon Healthy Rivers Weeds survey. However, 

this survey was preliminary. Weed cover was only estimated along a few roads in each 

Risk Region and only c~rtain weed species were included in the survey. No survey was 

conducted along the banks of Mountain River where crack willows, blackberries, 

hawthorn, and thistles have taken over in many places. It is likely that the true extent 

of weed infestation was underestimated in the initial rankings. Weed infestation was 

given ~ higher ranking in each Risk Region, and the risks to assessment endpoints 

recalculated. The results are shown in Figure 3.5. 

Weed infestation is a stressor with considerable uncertainly. The true extent of pasture 

cover is a habitat type with considerable uncertainty. This stems from using 1987 

1:25,000 maps to calculate pasture cover. As previously mentioned, since 1987 various 

farms have been subdivided and the pasture converted to rural residential blocks. It is 

possible that the calculated land areas overestimate the true extent of pasture cover. 

Pasture cover was given a lower ranking in each Risk Region, and the risks to 

assessment endpoints recalculated (Figure 3.5). 
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Uncertainty in the ranking of weed infestation (stressor) can have considerable effect on 

the risk outcomes (Figure 3.5). If the true extent of weed infestation is actually greater 

than initially estimated, then the actual risks to several assessment endpoints are 

greater. The risks to native streambank vegetation are increased by 23% and the risks 

to maintenance of stream flow increased by nearly 14 % . This occurs because more 

weeds are competing with native vegetation and more willows are interfering with 

naturaf watercourses. 

Figure 3.5 also shows that uncertainty in the ranking of pasture cover (habitat) has 

negligible effect on the risk outcomes. If the true extent of pasture cover is actually less 

than initially estimated, the actual risks to assessment endpoints remain unchanged 

except for a 2% decrease in risk to productive primary industries. This is explained by 

the fact that pasture is an input to agriculture, and if there is less pasture cover there is 

less risk to productive agriculture. Obviously this does not account for competition 

between agricultural and residential land uses. If there is less pasture cover it may be 

that agriculture is actually at more risk because there is less viable land for farming. 

A Basis for Action 

The sensitivity analysis shows that the conceptual model is more sensitive to 

. uncertainties in some parameters than in others. An on-paper exercise such as this can 

be used to highlight the most important knowledge gaps about the catchment. In the 

example seen in Figure 6, obviously it is more important to invest time and money into 

a comprehensive weeds survey rather than precisely determining the percentage cover 

of each land use type. 

A preliminary study such as this can also provide a basis for establishment of 

environmental monitoring programs. Monitoring programs should be concentrated in 

Risk Region 3 and 4 as this is where most environmental stressors are impacting. 

Maintenance of productive primary industries is most at risk, so monitoring should 

focus on the stressors that are having an impact on this assessment endpoint. In the 

conceptual model (Figure 3.1) it is clear that changes in the aquatic habitat (water 

contamination, eutrophication, and hydology) have a major impact on this assessment 

endpoint. There is a priority to monitor the stressors that are impacting the aquatic 
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environment. Nutrient levels, bacterial counts, and pesticide residues should be 

included in routine water quality monitoring programs. 

The risk analysis can also provide information for local environmental groups who 

undertake activities in the catchment. Figure 3.1 reinforces that weed control is one of 

the most effective means for the community to achieve its environmental goals. 

DISCUSSION 

The relative risk model is a straightforward approach to risk assessment - more than 

anything it is a framework for data collection and decision-making. In a preliminary 

risk assessment such as this, perhaps the most important function is collation of 

information about the region, and focus on what stakeholders want for the region. 

Identification of assessment endpoints represents a crucial but difficult part of this 

process. Currently practical regional risk assessments are somewhat limited by the 

generalist goals that are chosen in the'absence of more specific baseline data. Minimal 

scientific and regulatory information was available for Mountain River and this greatly 

hindered the definition of concise assessment endpoints. 

The conceptual model formed the basis of the entire risk assessment. The risk 

outcomes were based entirely on the interactions between sh·essors and habitats 

assumed in this model. This particular conceptual model is unique to the Mountain 

River catchment. The conceptual model for another catchment would be different 

based on the interactions that occur in that environment. For example, soil erosion and 

salinity caused by tree removal are not considered to be environmental problems in the 

Mountain River catchment, but are significant issues in many other Australian 

catchments, therefore their inclusion would require development of an entirely 

different conceptual model. 

The model was formulated based on all available knowledge about the region, but it is 

possible that different risk assessors with a similar knowledge of the region might 

propose a different conceptual model as the basis of the risk assessment. The risk 

outcomes might be different, but the framework provided by the relative risk model 

means there is a tangible basis for discussion of regional environmental priorities. 
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The Relative Risk Model framework provided an effective utilization of time and 

resources for gaining an understanding of ecological issues within the Mountain River 

catchment. Preliminary risk assessments such as this are valuable tools in planning 

expensive fieldwork and ground truthing projects. 
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CHAPTER 4. TIER 1 RISK ASSESSMENT FOR APPLE 

PESTICIDES 

Chapter Background: Increased community awareness of environmental issues, 

expansion in rural residential population and the development of a major aquaculture 

industry in the Huon Valley have focussed attention on the impact of agricultural 

chemical use on the region's river systems. Community surveys (HHRP, 1997) and the 

regional risk assessment of Mountain River catchment (Chapter 3) have identified 

pesticides as significant environmental stressors. However, no monitoring of 

agricultural pesticides has previously been undertaken in the Huon Valley. 

Prior to undertaking any monitoring of orchard pesticides, it was necessary to gain an 

understanding of pesticide usage in Huon Valley apple orchards by asking the 

questions: 'What products were being applied, how regularly, and in what volume?' 

Local horticultural advisors and agricultural chemical sales representatives were 

interviewed, and provided information about regional pesticide usage. 

Given the limited resources available for the project it was important to have a system 

to rank the apple pesticides based on their potential environmental impact and to focus 

on those pesticides for which monitoring was a priority. Early tier risk assessments of 

chemicals provide a framework for ranking potential environmental impact. 

This chapter describes a Tier 1 risk assessment for the apple pesticides used in Huon 

Valley production systems which was conducted to: 

);;- Gain an understanding of pesticide usage in apple production systems in the Huon 

Valley. 

);;- Identify pesticides of primary ecological concern to the aquatic environment 

);;- Gain an understanding of the processes involved in conducting a Tier 1 pesticides 

risk assessment. 
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This chapter has been submitted as a paper 'Environmental risk rankings for apple 

pesticides used in Tasmania's Huon valley: Identifying contaminants of potential 

environmental concern.' to the international journal Air, Soil and Water Pollution 

authored by Walker R and Brown PH. 

Abstract 

The Huon Valley in Tasmania is one of Australia's most productive apple growing 

regions. Many of the orchards are planted on river flats and there is potential that 

pesticides used in apple production may pollute local waterways. A tiered ecological 

risk assessment approach was used to identify pesticides of potential environmental 

concern to aquatic ecosystems. The hazard quotient method was chosen as the most 

appropriate means for rating risk to aquatic species. Pesticide use patterns and 

physiochemical data were also included in the overall assessment of risk to the aquatic 

environment. Based on its hazard quotient for aquatic species, physiochemical 

properties and volume of usage in the Huon Valley, chlorpyrifos was identified as the 

orchard pesticide currently most likely to adversely impact the aquatic environment._ 

Azinphos-methyl and carbaryl are other insecticides of potential concern. The 

fungicides that had the highest risk rankings were thiram, ziram, mancozeb and 

dithianon. From an aquatic risk point of view the herbicides used in the Huon Valley 

are of little significance. Pesticides monitoring programs conducted in the Huon Valley 

should focus on these pesticides identified as being contaminants of potential 

environmental concern. 

INTRODUCTION 

This paper describes preliminary research undertaken to determine whether aquatic 

ecosystems in the Huon catchment region in Tasmania were at risk from current apple 

orchard spray practices. Contamination of waterways by pesticides is a pertinent issue 

in the Huon Valley because many commercial orchards in the Huon catchment are 

located either adjacent to or in close proximity to waterways which feed into the Huon 

estuary. The Huon estuary supports a $45 million aquaculture industry (HHRP 1997). 

Waterways of particular concern for pesticide pollution include Mountain River, 

Kermandie River, Agnes Rivulet and Nicholls Rivulet. 
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Pesticides are an essential management option in modern orchards, but one for which 

the industry faces consumer concerns over health and environmental standards. In 1992 

the Australian Apple and Pear Growers' Association signed a charter with the 

Australian Consumers' Association to reduce pesticide use by 50% by 1996 and 75% by 

the year 2001 (Apple and Pear News 1992) 

The Pesticides Charter, government regulation and market pressures have all been 

factors driving industry research and development towards sustainable production 

practices. For a decade there has been a concerted push for change in pesticide use 

patterns, but there has been little monitoring undertaken to measure the impacts that 

pesticide usage is having on the environment. It is important to document how current 

pesticide usage is impacting the environment, so that this can be used as a gauge to 

assess the environmental merits of future crop protection practices. 

The aim of this research was to identify which pesticides should be included in a 

pesticides monitoring program assessing risks to aquatic environments from current 

apple orchard spray practices. In the tiered approach to pesticides risk assessment 

recommended by the Aquatic Risk Assessment and Mitigation Dialogue Group (1994) 

screening studies such as described here are Tier 1 risk assessments. Initial screening 

risk assessments have been used previously to identify contaminants of potential 

environmental concern (COPCs), screen out other contaminants, define data 

requirements, and gain focus in a large scale risk assessment (Cook et al. 1999). Basic 

risk rankings for pesticides used in the cotton industry were conducted prfor to 

implementation of extensive field monitoring (Batley and Peterson 1992; Bowmer 1993) 

but no Tier 1 risk assessment studies have been published for intensive horticultural 

production regions; this paper provides a case study for preliminary pesticide risk 

assessments in such regions. 

METHODS 

Sources of pesticide contamination 

Tier 1 risk assessment involves analysis of potential sources of contamination within 

the system under examination. Potential sources of pesticide contamination in the 
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Huon Valley include drift contamination from orchard spraying, run-off from spray 

sheds where orchard sprayers are filled, run-off /leaching from sprayers where excess 

spray is drained off following spraying, and drainage from post-harvest fruit dips 

(including diphenyl amine, benomyl, iprodione and imazilil) in packing sheds during 

grading, packing, and storage. 

Best management practices can greatly reduce the off-target impact of pesticides. 

Throughout Australia apple growers have recognised the importance of responsible 

chemical management practices and their trade implications as evidenced by the fact 

that 80% of growers have adopted some integrated pest and disease management 

practices (HRDC 1998). In Tasmania, all growers participating in the statewide quality 

assurance scheme are required to complete farm chemical users training courses and to 

maintain spray diaries. 

Responsible handling, mixing and disposal of pesticides by qualified workers reduces 

the likelihood of spray run-off and drainage from post-harvest dips. Drift from orchard 

spraying can be minimised to some extent, but it is the form of environmental 

contamination over which even the most responsible grower has least control. In this 

risk assessment it was decided to assess risks from production practices used by 

growers implementing best management practices, and assume that run-off from filling 

stations and dips was minimal. Hence, the focus was on pesticides applied as part of 

the routine spray schedule that could cause drift contamination of nearby waterways or 

which could move to waterways via leaching or runoff after application. 

Data collection 

The starting point for identifying potential sources of spray drift contamination was to 

document pesticide usage in the region. Interviews conducted with Department of 

Primary Industries and Fisheries staff, local horticultural advisers and with the largest 

local agricultural chemicals retailer were used to gain information about pesticide 

formulations, rates, and annual usage in the Huon Valley. Responses from Primary 

Industries staff were based on local experience and data collated from twenty grower 

spray diaries, while the major local agricultural chemical retailer supplied annual sales 

figures. Due to the confidential nature of some of this information, usage rankings 
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rather than specific figures are given in this paper. Based on the interviews conducted, 

the pesticides shown in Table 4.1 were included in the risk assessment. This 

background research was conducted in 1997, and more recently released formulations 

and new chemicals are not included. 

Methods for measu_ring the environmental impact of pesticides 

Strategies to identify COPC specific to the apple industry include the Pesticide Index 

(Pemose et al., 1994), a pesticides ratings system designed for facilitating Integrated 

Fruit Production. The Index incorporates variables such as environmental impact, 

occupational health and safety, the potential for residues and the importance of the 

pesticide in a particular crop protection system. Other authors (e.g. Weber 1977; Kovach 

et al. 1992; Dushoff et al. 1994) have proposed environmental ranking systems for 

pesticides which are applicable across a variety of agricultural production systems. 

Each ranking system has a specific emphasis depending on the purpose for which it 

was designed. 

Since the aim of this work was to focus solely on risk to the aquatic environment, it was 

decided to use a less comprehensive method that did not attempt to integrate risks 

arising from worker exposure and human health considerations. The method 

considered most appropriate for the apple production systems of the Huon Valley was 

the quotient method as first developed in the United States Environmental Protection 

Authority by Urban and Cook (1986). The quotient method has been widely adopted as 

a method to estimate potential hazard to the aquatic environment (Nabholz 1991; 

Aquatic Risk Assessment and Mitigation Dialogue Group 1994; Calow 1995; Holland 

1999). An estimated environmental concentration (EEC) is calculated for the worst case 

. of direct overspray to a waterbody, and the EEC is divided by the lowest LC50 value 

obtained in ecotoxicity tests. This provides a hazard index called Q (quotient). If Q is 

less than 0.1, it means that environmental concentrations should be one-tenth or less of 

the lowest LC50 value, and it is assumed that adverse environmental effects are 

unlikely. If Q is greater than 0.1 further investigation is necessary. 

An alternative method designed to rank pesticide impacts to the aquatic environment is 

the Pesticide Impact Ranking Index (PIRI) developed in Australia by Kookana et al. 
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(1998). This system rates the impact of a pesticide on a waterbody on the basis of the 

value of the water resource threatened, the pesticide load reaching the waterbody and 

pesticide transport parameters. Because of a lack of pesticide input data PIRI has had 

limited validation (Kookana et al. 1998), although validation in vegetable production 

systems is currently being conducted. In the future PIRI may prove to be a useful tool 

for orchard production systems, but in this research PIRI was not an appropriate 

method to use for the Huon Valley because it requires a large amount of specific data 

about the quantity of pesticide applied per unit area per unit time that was not 

available. 

Using the quotient method for assessing toxicity to aquatic species 

Estimated environmental concentrations (EECs) 

The standard Australian method for estimating environmental concentration is to 

assume a body of standing water 1 ha in area with a depth of 15cm, having a volume of 

1500m3. It is assumed that there is a direct overspray of this water body at the 

maximum label rate. Estimated environmental concentrations are always calculated for 

active ingredient (Holland 1999). 

The direct overspray calculations are for aerial applications which is an unrealistic 

orchard scenario. To use the quotient method for waterbodies within orcharding 

districts it is more realistic to assume concentrations tha~ occur as a result of spray drift. 

In these scenarios, the Australian government environmental regulatory authority 

assumes that 10% spray drift is applicable (Holland 1999). In the calculations shown in 

Table 4.1, 10% spray drift is factored into the Estimated Environmental Concentrations 

shown. 

Toxicity data 

Registration of pesticides requires comprehensive ecotoxicity data, although there is 

limited toxicity data available for Australian species. For some chemicals there has been 

extensive toxicity testing, although the scientific rigour varies between tests. Toxicity 

data from the Pesticides Manual (Tomlin, 1994) and the US EPA AQUIRE database (US 

EPA 1994) were used in this study. Oncorhynchus mykiss (rainbow trout) and Daphnia 

magna (water flea) were chosen as representative aquatic species with toxicity data 
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retrieved for 96-hour LC 50 exposures and 48-hour ECSO exposures respectively. 

Because toxicity data for Australian aquatic species is currently very limited (Warne et 

al 1998) the risk assessment did not include species indigenous to the catchment region. 

Calculating hazard quotient, Q 

The Q value is calculated by dividing the Estimated Environmental Concentration 

(mg/L) by the LCSO (mg/L). Q values are shown for Oncorhynchus mykiss and Daphnia 

magna (Table 4.1). 

Bioaccumulation potential 

Another indicator of risk to aquatic organisms is the tendency for the compound to 

bioaccumulate as indicated by the octanol-water partition coefficient. The octanol-water 

partition coefficient is a physical property used extensively to describe a chemical's 

lipophilic or hydrophobic properties. It is the ratio of a chemical's concentration in the 

octanol-phase to its concentration in the aqueous phase of a two-phase system at 

equilibrium, and the logarithm (log Kow) is commonly used to characterise its value. 

Increased octanol-water partition coefficients indicate a greater propensity for the 

pesticide to bind to organic tissue, particularly fats, and to be carried through the food 

chain. 

Physiochemical properties of pesticides for assessing risk to aquatic ecosystems 

One approach to predict water pollution potential is to estimate each chemical's 

inherent tendency to undergo leaching or runoff based on its physical and chemical 

properties. The SCS/ ARS/CES pesticide properties database (Wauchope et al. 1992; 

Augustijn-Beckers et al. 1994) is one of the comprehensive pesticides databases 

available; the water solubility, half life, soil adsorption coefficients (Koc) and vapour 

pressure values given in Table 4.1 are drawn from this database. Some of the azole 

compounds are not included in the database and where possible physiochemical 

properties for these pesticides were taken from the Pesticides Manual (Tomlin, 1994) 

and the SRC environmental fate database CHEMF ATE. 

The four properties given in the SCS database have been used to estimate pesticide 

leaching, adsorbed runoff and runoff solution potential for the Huon Valley apple 

pesticides using the algorithms defined by Goss & Wauchope (1990). 
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Pesticide leaching potential algorithm: 

Large: If log (Half-life)*(4-log(Koc)) ~2.8 

Small: If log (Half-life)*(4-log(Koc)) ~1.8 

Very Small: If log (Half-life)*(4-log(Koc))<O.O or Solubility<l and Half-life::;;l 

Medium: All other values 

Pesticide adsorbed runoff potential algorithm: 

Large: If Half-life~40 and Koc ~1000 or 

Small: 

Medium: 

If Half-life~40 and Koc~SOO and solubility ::;;o.s 

If Half-life::;;l or If Half-life::;;2 and Koc::;;soo or 

If Half-life::;;4 and Koc::;;900 and solubility~0.5 or 

If Half-1ife::;;40 and Koc::;;soo and solubility~ 0.5 or 

If Half-life::;;40 and Koc::;;900 and solubility~2 

All other values 

Pesticide runoff solution potential algorithm 

Large: If solubility~l and Half-life>35 and Koc<lOOOOO or 

If solubility~10 and solubility <100 and Koc::;;700 

Small: 

Medium: 

If Koc~lOOOOOO or . 

If Koc~lOOO and Half-life::;;l or 

If solubility <0.5 and Half-life<35 

All other values 

RESULTS 

Biological risk potential Q values allow quick comparison of the aquatic risk potential 

of pesticides. The Q values for insecticides were much higher than for fungicides and 

herbicides (Table 4.1). When Oncorhynchus mykiss was used as the surrogate test 

organism for fish, chlorpyrifos was the most hazardous pesticide followed by azinphos­

methyl (Figure 4.1). Higher hazard quotients were expected for organophosphorous 

compounds due to their high acute toxicities stemming from their anti-cholinesterase 

properties. The dithiocarbamates and diathianon were the fungicides that posed the 

highest risk to fish communities. The azole fungicides posed little risk to fish, as did the 

herbicides. 
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CAS number 2921-88-2 2921-88-2 86-500-0 86-500-0 63252 298-00-0 137-26-8 137-30-4 8018017 3347-22-6 3347-22-6 66246-88-6 88671-89-0 79983-71-4 85509-19-9 61-82-5 

Maximum label rate (quant1ty/100L) 100 50 196 100 150 140 150 120 120 120 40 25 12 40 15 570 

% active ingredient la 1) 50 50 20 50 80 50 80 76 80 75 75 10 40 5 20 25 
Amount a 1 applied per hectare with an 

airblast sprayer dehverinq 2000 Uha (q) 1398 500 1190 1000 2400 1400 2400 1824 1920 1800 948 50 96 40 60 2850 

EEC(mg/L) 93 20 33.33 79.33 66 67 160 00 93 33 160 00 121 60 128.00 120 00 63.20 3.33 6.40 2.67 4 00 190 00 

Rainbow Trout 96 hr LC50 (mq/L) 0 003 0003 0 02 0 02 1 3 27 0 048 0.048 0 46 0 1* 0.1* 1.7 42 34 1 2 243 

Q value for Rainbow Trout 31067 11111 3967 3333 123 35 3333 2533 278 150* 79* 1 96 1.52 0 78 3 33 0 78 

Daohrna maqna 48 hr EC50 (mq/L) 0.0017 0 0017 0 0011 0 0011 0 006 0 0073 0 21 0 21 1 3 24 24 7 11 29 34 215 

Q value for Daohrna maqna 54824 19608 72121 60606 26667 12785 762 579 98 50 26 0.48 0 58 0.92 1 18 0 88 

Usaqe rankinq for the Huon Valley 5 2 8 5 4 7 1 3 6 5 5 5 5 8 8 5 

loQ Kow 5 11 5 11 2.96 2.96 1 59 3 1 73 1 086 0 62 3 20 3.20 3 72 294 3.9 3 74 -0 65 

Water solubility (mg/L) 0.4 04 29 29 120 55 30 65 6 05 05 73 142 17 54 280 

Half hfe (oH 7) 30 davs 30 davs 10 davs 10 days 10 davs 40 davs 15 davs 30 days 70 days 12.2 hrs 12.2 hrs v stable 25 days v stable v stable stable 

Koc(mUgl 6070 6070 1000 1000 300 5100 670 400 >2000 

Vaoour oressure (mPal 2.27 227 00267 0 0267 0 159 02 <0013 0 013 0 0 066 0.066 0 21 0213 001 0 039 0.055 

Table 4.1 Properties of apple pesticides used to idenhfy contaminants of potential concern to the aquahc environment. 

For ditluanon LCSO data for Oncorhynchus mykzss was not available so the data shown is the 96 hour LCSO for Cypnnus carpzo (common carp). EEC= estimated 

environmental concentrahon. ToxiCity values drawn from the Pesticides Manual (Tomlin 1994) and the AQUIRE toxicity database (US EPA 1994). Physiochemical 

data drawn from SCS/ ARS/CES peshcide properties database (AugushJn-Beckers et al 1994; Wauchope et al 1992), CHEMFATE database (SRC 2000), Interactive 

LogKow (SRC 2000) and Pesticides Manual (Tomlin 1994). 
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When Daphnia magna was used as the surrogate test organism for invertebrates, 

azinphos-methyl was the most hazardous pesticide, followed by chlorpyrifos (Figure 

4.2). Carbary! and parathion-methyl also had potential to adversely impact invertebrate 

populations. The risks to invertebrates from fungicide and herbicides were similar to 

those for fish. 

Octanol-water partition coefficients indicate that chlorpyrifos was the pesticide most 

likely to bioaccumulate. Following chlorpyrifos the azole fungicides were the 

pesticides most likely to bioaccumulate, however they were far less toxic to aquatic 

species than the organophosphates. 

Hazard quotients for apple pesticides: fish 
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Figure 4.1 Hazard quotient values, Q, for apple pesticides calculated using 

Oncorhynchus mykiss (rainbow trout) as the non-target aquatic organism. 
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Hazard quotients for apple pesticides: invertebrates 
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Figure 4.2 Hazard quotient values, Q for apple pesticides calculated using Daphnia 

magna (water flea) as the non-target aquatic organism. 

Pesticide movement to water based on physiochemical properties 

I 

Based on the pesticide property algorithms of Goss and Wauchope (1990) ziram had the 

greatest potential for leaching to waterways; azinphos-methyl and mancozeb had the 

greatest potential for adsorbed runoff; and azinphos-methyl, thiram and ziram had the 

greatest potential for surface runoff (Table 4.2). Koc values for some products were not 

available in all databases searched, and these products are omitted from Table 4.2. 

When vapour pressures are considered, chlorpyrifos has the greatest potential to 

volatilise (Table 4.1) indicating a tendency to move off-site as vapour drift. 
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Table 4.2. Aquatic pollution potential of selected apple pesticides 

S =small, M = medium, L =large. Parathion-methyl and ziram properties calculated 

according to the algorithms of Goss and Wauchope (1990). All other values drawn 

from Goss and Wauchope (1990). 
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Based on the outcomes of this risk assessment a number of pesticides were identified as 

contaminants of potential environmental concern in the orcharding system. The hazard 

quotients clearly indicate that a number of pesticides have potential for adverse 

biological impact, and the physiochemical properties of some pesticides indicate that 

they are likely to be partitioned to waterways. The pesticide of most concern in the 

Huon Valley was chlorpyrifos, which had potential for the greatest adverse impact on 

the aquatic environment due to its high volume of usage, toxicity, bioaccumulation 

properties and tendency to volatilise. Its physiochemical properties indicate that it is 

unlikely to pollute waterways via leaching or runoff, but the basis of this risk 

assessment was an assumption that growers were using best management practices and 

that aerial spray drift was the form of environmental contamination most difficult to 

mitigate against. 

Tier 1 Risk Assessment for Apple Pesticides 55 



Azinphos-methyl is anotl).er organophosphate which has similar aquatic risk potential 

to chlorpyrifos, however it was used in far smaller volumes in the Huon Valley. The 

relatively high estimated environmental concentrations of carbaryl when used as an 

insecticide mean it has potential to adversely impact invertebrate communities. 

The fungicides of potential environmental concern in the Huon Valley were the 

dithiocarbamates: thiram, ziram and mancozeb. Dithianon also had potential to impact 

on fish populations. From an aquatic risk point of v~ew the herbicides used in the Huon 

Valley were of little significance. 

There is no published record of regular pesticide monitoring programs in Australian 

apple-growing districts. The only ongoing monitoring of pesticides in the apple 

industry is in the National Residue Survey. Although this survey is conducted with 

human health rather than environmental standards as the focus, it is interesting to note 

that maximum residue levels (MRL) exceedences in the industry have been for 

chlorpyrifos, azinphos-methyl and dithiocarbamates (National Residue Survey 2000) 

indicating that these are chemicals for which strict adherence to best management 

practices is a necessity. 

Problems in data generation, collection and interpretation restrict the extent to which 

environmental hazard can be predicted from ecotoxicity and physiochemical data 

(Bowmer et al. 1996). Despite using the AQUIRE toxicity database and the 

SCS/ ARS/CES pesticide properties database (Augustijn-Beckers et al 1994; Wauchope 

et al 1992), both considered to be among the most comprehensive databases available, it 

was still not possible to locate consistent data for every pesticide. On a regional level it 

is also important that accurate information about pesticide usage patterns is available in 

order to assess risks. This means that agricultural chemical retailers must be prepared 

to disclose sales records, and that growers maintain and disclose spray diaries. 

The hazard quotient can only be used as an estimate to give a relative ranking of 

potential for adverse impacts. When the hazard quotient approach was developed by 

Urban and Cook (1986) they recognised the method had a number of weaknesses. 

These include: no compensation for the differences between laboratory tests and field 
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populations; no consideration for the effects of incremental dosages; the method cannot 

be used for estimating indirect effects of toxicants (e.g. food chain interactions) and 

does not account for other ecosystem effects (eg. predator-prey relationships, 

community metabolism, structural predator-prey relationships, community 

metabolism, structural shifts etc.) and the method does not quantify uncertainties. In 

addition, the tests on exotic species may not reflect toxicity to native species, recognised 

test procedures may not allow for Australian environmental conditions, and laboratory 

tests may not simulate real conditions (Curnow et al. 1993). Furthermore, the hazard 

quotient method is very conservative. No risk-benefit analysis was undertaken here, 

but in assessments for commercial industries, the risks associated with being too 

conservative should also be considered. If risks are overestimated and this 

conservatism extended to restrictive regulation of management practices, then the 

financial viability of an operation may be jeopardised. 

In a tiered risk assessment approach, measurement of field concentrations and 

comparison of these with estimated environmental concentrations provides increased 

confidence in the outcomes of the assessment. Considerable time and resources must be 

invested into field measurements of pesticides. Commercial pesticide analysis costs 

may be as much as $200 per sample, so it is essential that the decision about which 

pesticides to include in a monitoring program be based on fact rather than 

presumption. A preliminary risk assessment such as described here is a useful means of 

refining the monitoring program to focus on the priority chemicals to include in 

sampling programs. 
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CHAPTER 5. PROBLEM FORUMULATION FOR 

CHLORPYRIFOS RISK ASSESSMENT 

Chapter Background: Ideally, higher tier risk assessments would be conducted for all 

those pesticides identified as chemicals of potential environmental concern in the Tier 1 

risk assessment. However, due to the limitations of monitoring and analytical 

resources, and the literature review required, it was decided to devote project time and 

resources to one chemical which clearly had potential to adversely impact aquatic 

systems in the Huon Valley. 

This chapter presents the background research undertaken in the problem formulation 

phase for the aquatic risk assessment of chlorpyrifos used in Tasmanian apple orchards. 

The problem formulation phase of a risk assessment establishes the goals, breadth and , 

focus of the assessment (Parkhurst et al., 1994). The risk assessment proceeds according 

the facts and assumptions established in the problem formulations phase. This chapter 

comprises a general literature review of chlorpyrifos characteristics, a description of the 

conceptual model and a review of assessment endpoints conducted pridi' to selection of 

endpoints for this project. 

ENVIRONMENTAL STRESSOR CHARACTERISTICS 

Chlorpyrifos formulations 

Chlorpyrifos [0,0 -diethyl 0-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is a widely 

used, broad-spectrum organophosphorothioate pesticide that displays activity against a 

broad range of insect pests and is used in a wide variety of global markets (Giesy et al., 

1999). The chemical structure of chlorpyrifos is shown in Figure 5.1. Chlorpyrifos was 

developed in 1962, and commercial production of the chemical commenced in 1965 

(Giesy et al., 1999). The widespread use of chlorpyrifos has resulted in a large volume of 

research on its environmental fate and ecotoxicology. In 1993 Racke noted that a 

survey of the published literature on chlorpyrifos resulted in nearly 12,000 citations and 
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over 3500 proprietary research reports issued for the manufacturer, Dow AgroSciences 

(formally known as DowElanco and originally known as the Dow Chemical Company). 
I 

Chlorpyrifos has been .used in Australia for approximately two decades and there are 

currently 161 products containing chlorpyrifos are registered with the National 

Registration Authority (NRA, 2000a). Chlorpyrifos registration has recently been 

reviewed under the National Registration Authority's Existing Chemical Review 

program (NRA, 2000b). 

Chlorpyrifos is used in a formulated form as a broad-spectrum insecticide for the 

control of Coleoptera, Diptera, Homoptera and Lepidoptera in soil or on foliage in a wide 

range of crops. Crops include fruit (pome, stone and citrus fruit, strawberries, figs, 

bananas), nuts, vines, vegetables (potatoes, asparagus), grains (rice, cereals, maize, 

sorghum), cotton, mushrooms and ornamentals. Chlorpyrifos formulations are 

available as emulsifiable concentrates (EC), baits, granules, ultra-low volumes (ULV), 

liquid concentrates (LC), wettable powders (WP) and dusts (NRA, 2000b). 

Chlorpyrifos formulations used in Tasmania's apple orchards include Lorsban® 750 

WG and Chlorpyrifos 500 EC. The label for Lorsban® 750 WG is shown in Appendix 2. 

In Tasmania chlorpyrifos is regi_stered for control of light brown apple moth, and is 

used for early season butt sprays for woolly aphid. Approximately six to eight sprays 

per season are applied under a fortnightly calendar spray schedule (Department of 

Primary Industries, GregAdams, pers. comm). 

Physiochemical properties 

Persistence of chlorpyrifos in the environment has been observed to vary widely, 

depending on site specific and climatic conditions as well as application practices. 

Aquatic half-lives are usually less than a few days but have been reported up to several 

weeks,-depending on environmental conditions (Racke, 1993). Chlorpyrifos water 

solubility has been recorded as ranging from 0.4 mg/L (Wauchope et al., 1992) to 2 

mg/L (Tomlin, 1994). Chlorpyrifos is moderately hydrophobic with a partition 

coefficient of log Kow = 5.11 (Pesticides Manual, 1994). Chlorpyrifos occurs in an non­

ionised form in the environment but is strongly sorbed to soil solids and sediments and 
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has an mean sorption coefficient (Koc) of 8498 mL/ gin a variety of soils (Racke, 1993). 

Chlorpyrifos is very resistant to leaching in soil (Marshall and Roberts, 1978; Goss and 

Waucahope, 1990; Tomlin, 1994). Increased degradation of chlorpyrifos occurs with 

higher soil temperatures, lower organic content, high pH and free cupric ions (CHAST, 

1988). Although chlorpyrifos has an intermediate vapour pressure (2x10-s mm Hg at 

25°C), volatilisation has been shown to be a significant mechanism of dissipation from 

certain environmental surfaces (i.e. plant foliage, pond water), as summarised by Racke 

(1993). The rate of chlorpyrifos volatilisation observed in the environment is greatly 

influenced by the nature of the environmental matrix in which it is present and by other 

partitioning processes e.g. adsorption and absorption (Racke, 1993). The physical and 

chemical properties of chlorpyrifos are summarised in Table 5.1. 

Species sensitivity 

In laboratory tests under constant exposure conditions, chlorpyrifos exhibits significant 

acute toxicity to many aquatic organisms. This raises a concern for potential impact to 

aquatic ecosystems. An extensive database on the toxicology of chlorpyrifos to aquatic 

and terrestrial organisms has developed since product discovery. Comprehensive 

reviews of chlorpyrifos toxicology have been conducted by Marshall and Roberts (1978) 

and Barron and Woodburn (1995). Based on laboratory LC50 data, chlorpyrifos is 

acutely toxic to both freshwater and saltwater fish at concentrations between 0.5 and 

1000 µg/L. The most sensitive freshwater species tested is the freshwater bluegill 

(Lepomis macrochirus) with a 96 h LC50of1.7-10 µg/L (Barron and Woodburn, 1995). 

The most resistant freshwater species tested are the freshwater mosquito fish (Gambusia 

affinis), certain cyprinid species and the channel catfish (Ictalurus punctatus) with LC50 

values greater than 100 µg/L (Barron and Woodburn 1995). 

Mechanism of action 

The mode of action of chlorpyrifos is non-systemic. Exposure via contact, ingestion 

and/ or inhalation affects the nervous system by inhibiting the activity of the enzyme 

acetyl cholinesterase (NRA, 2000b). This enzyme is essential for the hydrolysis of 

acetylcholine, a neurotransmitter of nerve impulses. The direct toxicity of chlorpyrifos 

results from initial metabolic activation to form chlorpyrifos oxon, with the subsequent 

inactivation of acetylcholinesteratse (AChE) at neural junctions. Inactivation of AChE 

occurs by oxon phosphorylation of the enzyme 
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Table 5.1 Summary of physical and chemical properties of chlorpyrifos. 

PROPERTY 

CASnumber 

IUPACname 

Molecular weight 

Molecular formula 

Meltmgpomt 

Colour 

Odour 

Physical state 

Specific gravity 

Water solubility 

Partition coefficient (log Paw) 

Volahlity 

Mean Sorption coefficient 

Dissociation constant 

Stability 

Hydrolysis 

Aqueous photolysis 

Soil photolysis 

Aerobic soil metabolism (25 aq 

Anaerobic aquatic metabolism (25 aq 

VALUE 

2921-88-2 

0,0 -diethyl 0-(3,5,6-trichloro-2-pyndyl) phosphorothioate 

350.6 

C9H11CbN03PS 

41 to 43.SaCA 

white/ colourless crystalline sohd 

odourless 

Crystallme solid 

1.38 g/cm3 at46aCA 

2mg/L at 25 aCB 

0.4mg/L at 25 ace 

1.39mg/L at 25 aCD 

5.llB 

227mPA 

6070mL/gC 

8498mL/gD 

Chlorpyrifos does not contain any readily dissociable groups 

Chlorpyrifos is stable in arr (non-volatile) and is not sensihve to UV 

radiation. It is stable in neutral and weakly acidic solutions, but it is 

hydrolysed by strong bases. Chlorpyrifos is thermally sensitive to 

temperatures over 50 aC, and undergoes violent exothermic 

decomposition above 130 aC. A 

The rate of chlorpyrifos hydrolysis increases with both pH and 

temperature. 

At 25 aC: pH 8 t v2 = 23 days; pH 7 t v, = 35 days; pH 5 t v2 = 63 days 

At pH 7.0: 35 aC t ¥2 = 12 days; 25 ac t y, = 35 days; 15 ac t 1;, = 100 days. A 

Average t y,30d under midsummer sunlight at ~40aN latitude. E 

Wide range of values, from no observed degradation to t 1;, 17d on moist 

soil. E 

Variable, average t y2 30-60 d E 

Variable, ty2 40-50dto150d E 

ANahonal Registration Authority (2000b); BTomlm (1994); cwauchope et al., (1992) 

DRacke (1993); E Giesy et al. (1999) 
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active site and is rapidly reversible (Figure 5.1). In some fish species, AChE can become 

irreversibly inhibited through dealkylation of the phosphorylated AChE, a process that 

renders it resistant to hydrolysis (Chambers and Chambers, 1989) (Figure 5.1). AChE 

inactivation is dose- and exposure- dependent, and results in overstimulation of the 

peripheral nervous system and subsequent toxicity (Marshall and Roberts, 1978). 
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Figure 5.1 Activiation of chlorpyrifos to the oxon form, phosphorylation, and recovery 

of acetylcholinesterase (AChE). In some fish dealkylation of the phosphorylated AChE 

results in irreversible enzyme inhibition. From Giesy et al. (1999), pp 13 

Individual and species sensitivity to chlorpyrifos is related to the presence and 

sensitivity of AChE to inactivation by the chlorpyrifos oxon. Species differences in 

behaviour, feeding ecology, ecological relationships (competitor, predator effects) and 

pharmokinetics, in combination with pharmacodynamic differences, result in a greater 

than one million-fold variation in sensitivity across species (Marshall and Roberts, 

1978). 
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Metabolic fate and environmental behavior 

Chlorpyrifos will degrade by both abiotic and biotic transformation processes in 

terrestrial and aquatic environments. The metabolic fate of chlorpyrifos in soil, water, 

plants and animals is similar, with oxidative dealkylation or hydrolysis to diethyl 

phosphorothioate and 3,5,6-trichloro-2-pyridinol being the major route of 

detoxification. 3,5,6-trichloro-2-pyridinol is conjugated as they glycosides or 

glucuronides in plants and animals. De-ethylation is not a major route of detoxification 

in mammals. Activation by desulfuration to the active acetylcholinesterase inhibitor, 

chlorpyrifos oxon, occurs in both animals and plants but the compound is often not 

detected owing to its rapid hydrolysis. Dechlorination of the chlorpyrifos ring also 

occurs in the environment, principally by hydrolysis (Roberts and Hutson, 1999). 

The main route of chlorpyrifos metabolism. in plants is via cleavage of the P-0-

pyridinol function to give 3,5,6-trichloro-2-pyridinol that is then sequestered by the 

plant as glycoside conjugates. Chlorpyrifos is lost rapidly from leaf surfaces after its 

foliar application, mainly owing to volatilisation. Iwata et al. (1983) reported half-lives 

of 2.4 to 3.4 dafter chlorpyrifos was applied to citrus foliage, while Racke (1993) 

reported half-lives of <1 to 9 d. Smith et al. (1967) reported very little translocation 

within cranberry, bean and maize plants. 

The main route of chlorpyrifos metabolism. in animals is cleavage to give 3,5,6-trichloro-

2-pyridinol, which is then conjugated and excreted, principally in the urine (Roberts 

and Hutson, 1999). Proposed routes for the metabolism of chlorpyrifos in plants and 

animals are shown in Figure 5.2. The metabolic products of chlorpyrifos are more 

soluble than the parent molecule (Barron and Woodburn, 1995). Typically 

organophosphorous pesticides do not bioaccumulate to levels which exert toxicological 

effects (Ware, 2000). 

The principal degradation product of chlorpyrifos in soils is 3,5,6-trichloro-2-pyridinol 

(Thiegs, 1966) which is then broken down to C02 (Bidlack, 1977). Microbial degradation 

of 3,5,6-trichloro-2-pyridinol results in an average soil half-life of 73 days at 25°C 

(Bidlack, 1976). Hydrolysis is an important inactivating reaction in soils. Hydrolytic 

degradation of chlorpyrifos is accelerated under alkaline conditions, although in testing 
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of 37 different soils Racke et al. (1996) found that hydrolytic rate constants varied 

greatly (0.004 to 0.063 d-1). The pH and moisture content of the soil greatly influences 

the 

0 
II 

(Et0)2;P-OH 

(g) 1 
R 

(Et0)2P-O)GXN Cl I .. 
~ 

Cl Cl 
(p,i,t) 

HOnN Cl I .. 
....: 

Cl Cl 
(p,i.t,f ,r,g) 

~~O)(;XCI I ... 
....: 

Cl Cl 
(f) 

-

-

0 
II 

EtOP-(OHk 

(g) 

0 
II 

EtS-P-OnN Cl 
I I ... 
OH ~ 

Cl Cl 
(g) 

s s 
II 11 

(Et0)2P-O)f)::CI (EtO)iP-OQXCI I ... I .. 
~ /. 

c1 SMe er 

(h) t / (t) 

s 
JI 

(EtO)iP-OnN Cl I .. 
~ 

Cl Cl 

gryc)C(:I I .. 
/. 

Cl Cl 
(p.r) 

glucAOnN Cl I ... 
....: 

Cl Cl 
(f ,r) 

--- s 
II 

(EtOhP-OH 

(i,g) 

s 
II 

EtO-P-OnN Cl 
I I ... 
OH ~ 

(p,f) Cl Cl 

s 
II 

(E!OkP-O)Gr'N Cl I .. 
/. 

(t) Cl 

Figure 5.2 Proposed routes for the metabolism of chlorpyrifos in plants (p), insects (i), 

termites (t), fish (f), rats (r), goats (g) and humans (h). From Roberts and Hutson (1999), 

pp 241. 

rate of degradation of chlorpyrifos. The reported half-lives of chlorpyrifos in soil range 

from 8 to 279 d with an average of 69 days (Marshall and Roberts, 1978). Typical field 

dissipation half-lives for soil-surface and soil-incorporated applications at agricultural 

use rates range from 1to2 weeks and 4 to 8 weeks respectively (Racke, 1993). 

Hydrolysis of chlorpyrifos to 3,5,6-trichloro-2-pyridinol is the most important 

degradation reaction occurring in most compartments of aquatic systems. The 

degradation rate of chlorpyrifos in water normally follows pseudo first-order kinetics 

and can be dependent on temperature, light intensity, and the chemical composition of 
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the water. The reported half-lives of chlorpyrifos associated with hydrolysis in 

relatively pure waters range from 10 to 100 days at temperatures between 15 and 35°C 

in the pH range of 5 to 9. 

As for other organophosphates, the mechanism of hydrolysis and the nature of the 

products are pH-dependent. 0-dealkylation predominates at acid and neutral pH 

values and in alkaline solution the main mechanism is cleavage of the P-0-aryl bond. 

The mechanism for base-catalysed hydrolysis is via SN2 hydroxide attack on 

phosphorous, whereas under acid and neutral conditions the nucleophile is water and 

the rate is pH-independent with a half-life of 72.1 days and 72.9 days being reported at 

pH 5 and pH 7 respectively (Roberts and Hutson, 1999). Chlorpyrifos oxon was much 

more easily hydrolysed (Kenaga, 1971). Pathways for the hydrolytic degradation of 

chlorpyrifos in acid and base solution are shown in Figure 5.3. 
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Figure 5.3 Hydrolysis of chlorpyrifos in acidic (ac) and basic (b) solution. From 

Roberts and Hutson (1999), pp 237. 

In addition to hydrolysis, chlorpyrifos is also removed from the water column via 

hydrolysis, biodegradation, sorption to sediment, volatilisation and photodegradation. 

Dilling et al. (1984) reported that in surface water at 40DN latitude chlorpyrifos is 

degraded in the environment via photolysis with an aqueous half-life of 31 days and 

3,5,6-trichloro-2-pyridinol is degraded with an aqueous half-life of about 4 minutes. 
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In natural waters, the apparent half-life of chlorpyrifos is much shorter (Schaefer and 

Dupras, 1970). Racke (1993) reported water column half lives ranging from 0.08 to 5 

days and sediment half lives of 0.8-16.3 days from a number of field investigations. The 

more rapid decrease in concentrations under field conditions is likely caused by 

additional dissipation and degradation forces such as volatilisation and surface- and 

metal-catalysed hydrolysis that operate in natural waters and sediments and are not 

assessed under laboratory conditions (Giesy et al., 1999). 

Macalady and Wolfe (1985) found that chlorpyrifos in the sorbed state is much less 

(approximately 10-fold) susceptible to base-catalysed hydrolysis than dissolved 

chlorpyrifos. Racke et al. (1996) also found the rate of chlorpyrifos hydrolysis in most 

soils was significantly slower than that observed in water maintained at a similar pH. 

These results both indicate a general retardation of (presumably base-catalysed) 

hydrolysis of chlorpyrifos in soils due to sorption onto organic and mineral 

components in soils and sediments (Racke et al., 1996). Chlorpyrifos oxon, the highly 

toxic activation product of chlorpyrifos, is very unstable in water and unlikely to be 

encountered. 

The general conclusion from this review of the literature on environmental fate and 

metabolism is that none of the transformation products of chlorpyrifos are likely to be 

sufficiently toxic or persistent in the environment to be of toxicological concern (Giesy 

et al., 1999). 

THE CONCEPTUAL MODEL 

The conceptual model describes the approach that will be used for the risk analysis 

phase. It is a graphical summary of the risk hypotheses being assessed (US EPA, 

1992a). (Figure 5.3). It contains uncertainty, however, it is taken as an operating tool in 

the absence of more complete knowledge. 

Chlorpyrifos applied by airblast/ airshear sprayers is distributed throughout the 

orchard canopy, onto the soil and into the atmosphere. Spray landing in the orchard 

canopy is effective against target pests but also impacts on populations of beneficial 

insects. A notable exception is the predatory mite, which is resistant to 
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organophosphate sprays. Spray landing on the soil is quickly and effectively bound to 

soil and organic particles. With a mean soil sorption coefficient of 8498 mL/ g (Racke, 

1993) chlorpyrifos is relatively resistant to soil leaching, so that aquatic contamination 

via leaching to groundwater is negligible. Given its propensity for sorption, 

chlorpyrifos also would not be expected to migrate over the soil surface (runoff) with 

moving water (Racke, 1993). As described in Chapter 4, chlorpyrifos is ranked as 

having a small pesticide leaching potential, medium adsorbed runoff potential and 

medium solution runoff potential (Goss and Wauchope 1990; Wauchope et al., 1992). 
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Figure 5.4 Conceptual model for chlorpyrifos sprayed onto an orchard adjacent to 

Mountain River. The conceptual model represents assumed interactions of chlorpyrifos 

sprays in the environment 
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Because of the strong soil and organic binding properties of chlorpyrifos, and the spray 

application method, aerial drift is expected to be the most significant mechanism of off 

target cJ::Uorpyrifos transport into waterways in the Huon Valley. This pathway is 

emphasised in the conceptual model. 

REVIEW OF ASSESSMENT ENDPOINTS RELEVANT TO THIS PROJECT 

Assessment endpoints are defined as explicit expressions of the environmental value to 

be protected" (US EPA, 1992a). On some occasions, the concept of assessment endpoint 

may be difficult to understand. An alternate is to describe the situation as a hypothesis 

to be tested. For example, an assessment endpoint such as "Maintenance of fish growth 

rates in Clear Creek" could be expressed as the hypothesis "Zinc in Clear Creek affects 

fish growth rates." This approach has been adopted in the Methodology for Aquatic 

Ecological Risk Assessment used by the Water Environment Research Foundation 

(Parkhurst et al., 1994). 

The assessment endpoints represent the social values to be protected, and serve as a 

point of reference for the risk assessment. Often societal goals are presented in 

ambiguous terms such as protection of endangered species, protection of a fishery, or 

the even more vague 'preserve the structure and function of an ecosystem' (Landis and 

Yu, 1999). This is clearly demonstrated in the espoused aim of catchment management 

in the Huon Valley: "To protect the ecological balance of the Huon Catchment through 

sustainable use, development and management of natural resources." (Huon Healthy Rivers 

Project, 1997). Such a statement is best regarded as a "mission statement" for the 

catchment rather than a defined and tangible objective. To define and measure 

"ecological balance" is a scientific impossibility. "Ecological balance" is a term like 

"ecosystem health" which is ecologically umealistic (Suter, 1993b; Landis et al., 1994). 

Such conceptual anomalies in environmental assessment stem from analogies with 

human health assessment (Calow 1992; Calow 1995; Renner 1996). 

Identifying quantitative assessment endpoints from environmental "mission 

statements" is one of the challenges faced by risk assessors. The practical difficulties of 

generating quantitative assessment endpoints were all too clearly highlighted in 

Chapter 3, where only one out of six assessment endpoints could fulfil Suter' s criteria 

Problem Formulation for Chlorpyrifos Risk Assessment 68 



r 

for good assessment endpoints (Suter, 1990). As a basis for formulating assessment 

endpoints for the chlorpyrifos aquatic risk assessment, it was valuable to review 

assessment endpoints chosen for other aquatic risk assessments. 

In an ecological risk assessment of chlorpyrifos in North American aquatic 

environments, Giesy et al. (1999) chose "population persistence (function of survival, 

growth and recruitment)" as their assessment endpoint for fish populations. They 

chose a generic assessment endpoint because their assessment addressed a broad range 

of ecosystem types and exposure patterns. This assessment endpoint did not explicitly 

address ecosystem structure or function, but the implication was that ecosystem 

integrity would be protected if fish populations and invertebrate communities were 

protected. 

Giesy et al. (1999) chose "community productivity" as their assessment endpoint for 

invertebrate populations. They noted that for most invertebrates, even changes at the 

population level may not be ecologically, economically, or socially significant, except in 

the case of endangered species, if the overall productivity of the invertebrate 

community and its ability to support higher trophic levels are maintained. 

In a comprehensive site specific risk assessment for Clinch River, Tennessee, the 

assessment endpoint for the fish was "No reduction in species richness or abundance or 

increased frequency of gross pathologies in fish communities resulting from toxicity" 

(Suter et al., 1999). The risk assessors focused on the fish community as an endpoint 

entity because it was considered ecologically and socially important, susceptible to the 

hazard and on a scale appropriate to the site. The societal importance was due to 

recreational fisheries. The ecological significance came from the fact that fish are a 

major nutrient pool in temperate reservoirs. In the same study, the assessment endpoint 

for the invertebrates was "a 20% or greater reduction in species richness or abundance 

of benthic macroinvertebrate communities resulting from toxicity." (Jones et al., 1999). 

In a regional risk assessment for the Willamette and McKenzie Rivers, Oregon, USA, 

Landis et al., (in press) chose a generic assessment endpoint based on stakeholder 

values. The generic assessment endpoint was that "There are sufficient numbers of 
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desirable fish to support an active recreational fishery." In addition, specific 

quantitative assessment endpoints were set for important fish species e.g. For summer 

steelhead the assessment endpoints were: No reduction of allowable catch of sport fish; 

Population meets Department of Fish and Wildlife basin fisheries plan (maintain a 

potential sport catch of 250 in the mainstem above Willamette Falls); and maintain an 

annual catch of 1200 on the McKenzie River. 

These three studies illustrate different approaches for definition of assessment 

endpoints. Only Landis et al., (in press) put quantitative figures on the assessment 

endpoints. They were able to do this because the regional regulatory authority had 

already invested considerable time into quantifying the fishery; and this is to be 

expected as they were dealing with a popular recreational fishery with large fish 
' 

species. Landis et al., (in press) only established assessment endpoints for the fish 

species that were recognised as being important to the stakeholders. Quantitative 

criteria were not set for unfished species such as the lamprey. These species were 

ignored in the risk assessment. 

Suter et al. (1999) took a different approach. They considered all fish species as being 

important and did not establish quantitative criteria for particular species. Instead, 

they chose a level of effect on the assessment endpoint properties to provide a 

benchmark for design and interpretation of studies. A 20% or greater reduction in one 

of the endpoint properties measured in the field, or a 20% reduction in survivorship, 

growth, or reproduction in a toxicity test is considered potentially significant. This was 

a policy judgement concerning values, not science (Suter et al., 1999). 

Giesy et al. (1999) did not explicitly state any quantitative basis for their assessment 

endpoint, but in their risk analysis they constructed exceedence profiles and used the 

10th centile of species sensitivities as the assessment endpoint. Exceedence profiles 

were constructed for selected sites by combining the frequency distributions for the 

probability of a concentration being exceeded with the probability of a species being 

affected to generate a graphical expression of the percent exceedence of LC50/EC50 

values against the probability of a species being affected (Giesy et al., 1999). Giesy et al. 

(1999) state that an advantage of the probabilistic methods applied is that the analysis is 
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independent of the a priori selection of acceptable probabilities of exposure and 

response for the decision-making process. 

REVIEW OF MEASUREMENT ENDPOINTS RELEVANT TO THIS PROJECT 

Measurement endpoints are the parameters that are actually quantified as indicators of 

the effects of the stressor (US EPA, 1996). Although all risk assessments must have ' 

assessment endpoints, there may not necessarily be measurement endpoints (Suter, 

1990). In some cases, measurements may be unnecessary or impossible. For example, if 

the assessment endpoint for an assessment of a proposed power plant is the probability 
l 

of exceeding an air quality standard, then there is no environmental response to 

measure and, assuming that good local meteorologic data and source terms are 

available, models based on atmospheric theory are adequate predictors. In this case the 

assessment is based on theory and assumptions about the relationship between the 

hazard and the assessment endpoints. In the absence of measurement endpoints, the 

assessment is limited by uncertainty and can only be used to suggest areas worthy of 

study rather than actually predicting effects (Suter, 1990). 

In the chlorpyrifos risk assessment conducted by Giesy et al. (1999) LCSO data was used 

as the main source of effects data. Suter et al. (1999) also used single chemical toxicity 

data but considered four other distinct lines of evidence which were combined in a 

weight of evidence approach for the final risk conclusions. In addition to single 

chemical toxicity tests, they also considered fish community surveys, fish body 

burdens, toxicity tests of ambient waters and suborganismal bioindicators. The risk 

assessment being undertaken by Landis et al., (in press) is not yet complete. They plan 

to calculate condition factors for individuals using length and weight measurements, 

and calculate organosomatic indices for autopsied fish to identify stress-related 

symptoms. If, or how, this work will relate to the quantitative assessment endpoints 

that they have established is not clear. 

RISK ANALYSIS PLAN 

An ecological risk assessment for chlorpyrifos in Mountain River catchment is a 

retrospective risk assessment. As such, environmental exposure data forms a critical 

component of the risk analysis. Typically, risk assessments of pesticides involve the use 

of pesticide fate models to estimates environmental exposures. These models include 
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Ground Loading Effects of Agricultural Management Systems (GLEAMS), Exposure 

Analysis Modeling System (EXAMS), Leaching Estimation and Chemistry Model­

Pesticides (LEACHEM), Pesticide Root Zone Model (PRZM), and other published 

models (e.g. Jury et al., 1984; Mackay et al., 1986; Taylor and Spencer, 1990; Leonard, 

1990; Mackay 1994; Shukla, 1996). 

At the start of the project; modeling was considered as option for estimating 

environmental exposures, but it was felt that risk outcomes from real-world data rather 

than theoretical maximums could be used with greater confidence. In addition, one of 

the objectives of this project was to collect field data describing the extent of pesticide 

contamination in Huon Valley waterways. No monitoring of agricultural pesticides 

had been conducted in the Huon Valley; the only published pesticides monitoring data 

for Tasmania was for forestry areas (Barton and Davies, 1993; Davies and Cook, 1993; 

Davies et al., 1994a) and some monitoring of chlorothalonil in NE Tasmania (Davies, 

1984). 

Field monitoring of chlorpyrifos in Mountain River (Chapter 6) was undertaken with 

the premise that concentrations and temporal nature of the data would be considered in 

light of the already established toxicology of chlorpyrifos. Existing knowledge of 

chlorpyrifos toxicology was used to assess the potential for adverse impacts in 

Mountain River using probabilistic methods (Chapter 7) and site-specific field studies 

(Chapter 8). The specific assessment endpoints chosen for probabilistic and field 

assessments are described in the relevant chapters. 
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PROJECT WORK 

CHAPTER 6. CHARACTERISATION OF ENVIRONMENTAL 

EXPOSURES 

Chapter Background: This chapter describes characterisation of the environmental 

exposures of chlorpyrifos occurring in Mountain River. Seasonal and pulse exposures 

are described, and the levels measured in Mountain River compared with the spray 

drift model, AgDRIFT™ and other chlorpyrifos monitoring programs. 

In smaller tributaries such as Mountain River, the concentrations of pesticide are 

strongly skewed distributions and there is great temporal variability (Richards and 

Baker, 1993). A temporal description of the exposure profile is particularly important 

for a toxicant such as chlorpyrifos which is acutely toxic (Giesy et al., 1999). A large 

part of the fieldwork described in this chapter was devoted to characterising the 

temporal nature of chlorpyrifos d}ssipation in Mountain River. 

This chapter has been submitted as a ·paper in the international journal Environmental 

Monitoring and Assessment with the following reference: Walker R Brown PH Nowak BF 

Dorr G. in press. Chlorpyrifos aquatic concentrations in an intensive orcharding region 

- pulse, modeled and seasonal exposures. 

Abstract 

The organophosphate insecticide chlorpyrifos is commonly applied in apple orchards, 

and there is potential for spray drift from orchard sprayers to contaminate nearby 

waterways. Pulse exposure monitoring for a routine chlorpyrifos spray application in 

an adjacent orchard was conducted on two occasions in Mountain River, southern 

Tasmania, Australia. Pesticide concentrations peaked at an average of 0.147 µg/L 

approximately 10 minutes after spraying commenced. Concentrations above 0.01 µg/L 

persisted for less than 40 minutes after spraying. Three hours after spraying 

chlorpyrifos concentration at the site exposed to spray drift was 0.002 µg/L, the limit of 
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detection by GC-MS/MS. Pesticide concentrations measured downstream peaked at an 

average of 0.03 µg/L. These results have implications for ecological risk assessments 

that use toxicological parameters based on a minimum of 24 or 48-hour exposures. The 

practical logistics of pulse exposure sampling are complex and it was found that 

simulations using the spray drift modeling program, AgDRIFT™, were comparable 

with field results so that modeled pulse exposure data could justifiably be used in 

· lower tier risk assessments. Low levels of chlorpyrifos were intermittently detected 

during seasonal monitoring in Mountain River. 

INTRODUCTION 

Chlorpyrifos (0,0-diethyl 0-(3,S,6-trichlor-2-pyridyl) phosphorothioate) is an broad 

spectrum organophosphate insecticide, with a wide variety of applications for different 

pest control situations (Havens et al., 1998). Contamination of waterways by 

chlorpyrifos is potentially a serious environmental issue, given that chlorpyrifos is 

highly toxic to many aquatic species (Marshall and Roberts, 1978; US EPA, 1989; Tomlin 

1994; Barron and Woodburn, 1995). One of the greatest limitations in exposure 

assessment is the availability of empirical information on environmental concentrations 

(Giesy et al., 1999). Additional information to describe environmental exposures, 

duration of pulses, and short-term as well as seasonal variation in surface water is 

needed. 

In Tasmanian apple orchards liquid and wettable granule formulations of chlorpyrifos 

are applied for control of light brown apple moth using airblast/ airshear orchard 

sprayers. Spray drift from airblast sprayers can result in off target movement of 

pesticide. Aerial movement of chlorpyrifos is recognised as one of the main dissipation 

pathways (Racke, 1993) but chlorpyrifos spray drift onto flowing water has not been 

previously studied. Spray drift has not been included in previous risk assessments 

because of difficulties in accounting for localised factors, although it is acknowledged 

that spray drift can be important in transient exposures of aquatic organisms to 

chlorpyrifos (Giesy et al., 1999). 

Although pulsed exposures commonly occur in aquatic ecosystems, limited 

information is available for evaluating the effects of pulsed exposures relative to 
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continuous exposure (Giesy et al., 1999). Analysis of chlorpyrifos concentrations 

measured in Lake Erie, one of the largest chlorpyrifos exposure data sets available, 

found that 85% of the reported pulses lasted 48 hours or less (Giesy et al., 1999). 

Toxicity profiles observed during prolonged constant concentration exposure in the, 

laboratory may not accurately reflect toxicological responses to pulsed and rapidly 

declining concentrations in water under field conditions (Barron and Woodburn, 1995). 

The aim of this research was to measure the extent and duration of the chlorpyrifos 

pulse in a river system when an orchard block adjacent to a flowing river was sprayed, 

and to gain a better understanding of the concentration fluxes occurring in aquatic 

ecosystems in orcharding regions. As noted by many authors (e.g. Spalding and Snow, 

1989; Davies et al., 1994; Kreuger, 1995; Liess et al., 1999) exposure of stream biota to 

pesticides typical~y occurs by a combination of short-term spikes of high concentration 

following spraying and rain events, and longer term chronic exposure in streams that 

drain areas sprayed repeatedly or sprayed with more persistent materials. In addition 

to the pulse exposure monitoring, intensive seasonal monitoring was conducted in 

Mountain River over two seasons to gain an estimate of the chronic chlorpyrifos 

exposures occurring in orcharding districts. 

MATERIALS AND METHODS 

All sampling for this work was conducted in Mountain River, a small perennial river 
' 

flowing through the Huon Valley region, Tasmania, Australia. The Mountain River 

catchment is 186 square kilometres (Davies, 1988). The intensity of orcharding in this 

small catchment with many orchards located directly adjacent to the river and 

relatively low summers flow combine to make this waterway a representative 'worst 

case scenario' for chlorpyrifos contamination of waterways in orcharding districts. 

Pulse exposure sampling 

Sampling site 

Pulse exposure sampling was conducted in Mountain River at one of the largest 

commercial apple orchards in the Huon Valley. The block being sprayed was 

approximately 4.5 ha in size and planted with 4-year-old centre leader trees (Pink Lady 

and Red Delicious varieties). Spacing between rows was approximately 4.5 m, and 

trees averaged 2.5 to 3 m in height. The canopy was relatively open. 
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Sampling was conducted at sites in Mountain River, along the perimeter of the orchard 

block. A simplified schematic of the orchard block and the water sampling sites is 

shown in Figure 6.1. At the target site the edge of the orchard block was 10 m from 

midstream. 

RIVER RIGHT - - - - -
~E-;:2;--------- - .,.. SITE 1 

MOUNTAIN RIVER Upstream 
'---------... Reference ...... .,,,,.. .......... 

RIVER LEFT -... 

I 
I 

) 

I 
I 

I I 
jSITE41 • 

1oown- I 

1stream \ 4:9 
I ! 

e 
• -

-· ••• -· •• 
• ORC~D~CK '9 e 
'

PINKLADYVARIETYt e 
TREEsTO 4m 

k; :: 
••••• -----

N-+ 

Figure 6.1 Pulse exposure sampling sites in Mountain River. The schematic diagram 

shows orchard layout and sampling sites for pulse exposure sampling. 

Sampling sites were: 

Site 1 -reference site, located upstream from all sprayed blocks. The reference site was 

approximately one kilometre above Site 3 (target site). 

Site 2 - behind vegetation. Spray drift reaching this site had to pass through, over or 

around vegetation buffer. 

Site 3 - target site. Open to spray drift with no buffering from streamside vegetation. 

Represents a "worst-case scenario" for spray drift contamination of waterways in 

orcharding regions. 
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Site 4 - downstream site, located approximately 600m downstream of Site 3. (In 1999 

sampling the downstream site was located approximately 200m downstream of Site 3). 

Streamside vegetation was dense, typical of the unmanaged vegetation that grows 

along many waterways in the Huon Valley. In addition to native grasses, Acacia species 

(5-10 m) and Eucalyptus species (to 25 m), there were many weed species including 

willows (to 15 m), hawthorns (to Sm), blackberries, and introduced grasses. Adjacent to 

the river near Site 4, there was an avenue of poplars reaching up to 30 m. 

Sampling protocol 

Pulse exposure sampling was conducted twice at the site; 5January1999 and 12 

January 2000. In the first experiment, Lorsban® 500 WP was applied at the rate of 1 

kg/ha (500 g/ha active ingredient.). The sprayer was a Silvan Electromiser delivering 

250 L/ha. The following season, the formulation had been replaced with Lorsban® 750 

WG and this was applied at the rate of 660 g/ha (495 g/ha active ingredient). The 

sprayer was a Silvan Cropliner delivering 1500 L/ha. It took approximately one hour 

to spray the target block. 

Water and sediment samples were taken by assistants standing in thigh-depth water, in 

sections of typical stream flow (i.e. riffles or still eddies were not sampled). One litre 

water grab samples were collected in solvent-rinsed amber glass sampling bottles with 

teflon-lined screw tops. Bottles were filled 10 cm below the water surface. Sediment 

grab samples (approximately 100 g) were collected in glass jars with foil lined screw 

tops. After sample collection water bottles and sediment jars were stored on ice. Upon 

return to the laboratory samples were stored at 2°C prior to extraction. All samples 

were extracted with 48 hours of collection. Baseline samples were collected at all sites 

before spraying commenced. Sampling schedules at all sites commenced with the start 

of spraying (0 min). In the 1999 sampling 3 samples were collected at Site 1, 6 at Site 2, 

14 at Site 3 and 8 at Site 4 over a two hour intensive sampling period. In the 2000 

sampling 3 samples were collected at Site 1, 13 at Site 2, 22 at Site 3 and 15 at Site 4 over 

a three hour intensive sampling period. 
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A stream flow gauging was conducted immediately prior to commencement of 

spraying, and at 120 min. An Ott Meter C31 with a current meter monitor and 

calibrated wading rod was used for the gauging. Stream flow was calculated using 

Hydrol Time Series Manager Vers. 3.6.2.0 software (Hydro-Electric Corporation, 

Hobart, Tasmania, Australia). 

Local wind speed and direction were also measured throughout the course of the 

experiment. Wind speed was measured every 5 min using a handheld anemometer. 

Wind direction, as estimated by compass alignment with a wind tether, was recorded at 

the same time. 

Chlorpyrifos extraction and analysis 

Extraction from water: 1000 mL water spiked with 100 µL of Base Neutral Surrogate 

(Ultra Scientific, North Kingston, RI, US) was extracted three times using 90 mL 

pesticide grade dichloromethane, dried through Na2S04 (anhydrous) and evaporated to 

1000 µL under Nz atmosphere. Extraction recovery from water samples was greater 

than 75% (S.D.±21 %) (see Appendix IV). 

Extraction from sediment: sample was mixed thoroughly and sticks, leaves, root matter 

and rocks discarded. A sub-sample was taken to determine % dry weight of the 

sediment. Approximately 30g of sample was spiked with 100 µL of Base Neutral 

Surrogate (Ultra Scientific, North Kingston, RI, USA) mixed with Na2S04 (anhydrous) 

until freeflowing, and extracted three times using 90 mL pesticide grade pesticide grade 

dichloromethane:acetone (1:1, v /v). Between extractions samples were placed on a 

rotary shaker for 15 min. Extract was dried through Na2S04 (anhydrous) and 

evaporated to 1000 µL under Nz atmosphere. Extraction recovery from sediment 

samples was greater than46% (S.D.±14%) (see Appendix IV). 

Blank (tapwater and uncontaminated sediment) and blank recovery samples were 

extracted and analysed for every twenty samples. Two replicates of water samples 

collected in November 1999 were analysed by Analytical Services Tasmania, 

Government laboratory as a quality assurance measure. Chlorpyrifos spike for 
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recovery analysis was 10 µg per sample. Chlorpyrifos standard (99.8% purity) was 

obtained from the Australian Government Analytical Laboratory. 

Analysis for all samples was by GC-MS/MS using conditions that were optimised for 

detection of chlorpyrifos and the surrogate and the internal standard, n-pentadecane. 

Analysis was using. a Varian Saturn 4D iontrap GC-MS. Gas chromatography 

conditions were as follows: 30-m V A-5MS capillary column, 0.25mm i.d., 0.25 µm film 

thickness and helium carrier gas at a constant flow of 1.0 mL/min. The temperature 

program was as follows: injector temperature 280°C, initial temperature 40 °C, hold 20 

min, 10°C/min to 160°C, hold 9 min, 20°C/min to 2S0°C, hold 6 min. MS/MS 

conditions were: segment 1 0-14 min in electron ionisation mode and segment 214-20 

min in MS/MS mode. The ions monitored for chlorpyrifos were 314, 286, 258 m/ z. The 

method detection limit was 0.002 µg/L. 

For all chlorpyrifos quantities discussed, the results were corrected for surrogate 

recovery. Correction for recovery improves data consistenc;y and facilitates comparison 

between sites and times. The use of recovery corrected results in risk assessments gives 

greater confidence in the risk outcomes. 

For the purpose of presentation all results for water samples below the limit of 

detection (LOD) were plotted as half the LOD (0.001 µg/L). Non-detects (nd) for 

sedimen~ samples were recorded as such. 

Seasonal exposure sampling 

Sampling sites 

Five sampling sites in Mountain River were chosen for seasonal monitoring. The sites 

were chosen to match the gradient of orcharding activity in the catchment, with no 

orcharding in the upper reaches of the catchment and intensive orcharding in the lower 

reaches of the catchment (Figure 6.2). 

The sampling sites shown in Figure 6.2 are: 

1) Top Ford. No agricultural or forestry activity upstream of this site. 

2) Bridge at Sawyer's Creek. Orchard immediately adjacent to Mountain River. 
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3) Crabtree Road. Below influx of Sawyers Creek and Dip Creek. 

4) Bridge at Lucaston Road. Below influx of Parsons Creek and Fourteen Turn Creek. 

5) Bridge at Ranelagh. Below influx of unnamed natural and artificial drainages. Last 

site suitable for monitoring before Mountain River joins Huon River. 

Figure 6.2 Seasonal sampling sit-es in Mountain River. The catchment map shows 

drainage lines, seasonal eAJ>OSure sampling sites and location of orchards (shaded in 

black) in the Mountain River catchment. 

Sampling protocol 

The five sites were sampled over the 1997 /98 summer and the 1998/99 summer. Sites 

were sampled at approximately fortnightly intervals during the chlorpyrifos spray 

season (October to February). At each site 1 L water grf:ib samples were collected in 

amber glass sampling bottles with teflon-lined screw tops. Bottles were filled at 

approximately 10 cm below the water surface. Rivedevel was measured against an 

Characterisation of Environmental Exposures 80 



indicator at each site. Sediment grab samples (approximately 100 g) were collected in 

glass jars with foil lined screw tops. Crabtree and Top Ford sites had a rocky substrate 

and it was not possible to collect sediment at these sites. After sample collection water 

bottles and sediment jars were stored on ice. Upon return to the laboratory samples 

were stored at 2°C prior to extraction. 

Water quality measurements 

There was limited baseline water quality data available for Mountain River and for the 

1997 /98 summer routine water quality measurements were conducted at each site. 

Temperature, conductivity and dissolved oxygen were measured at each site using 

WTW meters. pH was measured using a Mettler pH meter. Turbidity was measured 

using a Model 2100P Turbidmeter. 

Water quality parameters were all within the acceptable range for Tasmanian streams 

and routine water quality monitoring was not continued in the 1998/99 summer. 

Chlorpyrifos extraction and analysis 

The methods used for extraction and analysis of seasonal water samples were the same 

as those described above for pulse exposure sampling. 

Pulse exposure sampling 

Surface water concentrations 

RESULTS 

In the 1999 sampling chlorpyrifos was detected in the water 2 min after spraying 

commenced (Figure 6.3). Concentrations at the target site (Site 3) peaked at 10-20 min 

after spraying commenced with a maximum concentration of 0.129 µg/L. The 

maximum concentration reached at Site 2 was 0.045 µg/L, approximately three times 

less than the maximum at Site 3. The pesticide pulse was detected downstream at 

approximately 20 min after spraying commenced, and peaked at 0.030 µg/L. 

In the 2000 sampling chlorpyrifos was detected at the upstream site throughout the 

sampling period, indicating that pesticide from upstream orchards was moving 

through the sampling area. Contamination from upstream would explain the low 
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concentrations detected immediately prior to the commencement of spraying. 

Concentrations at the target site peaked at 10 min after spraying commenced, with a 

maximum concentration of 0.164 µg/L (Figure 6.3). After 40 min, concentrations had 

dropped to 0.003 µg/L and continued close to the limit of detection for the duration of 

sampling. The maximum concentration measured at Site 2 was 0.014 µg/L, 

approximately ten times less that the maximum at Site 3. Levels at Site 2 remained 

slightly higher than at Site 3 after 40 min. Site 2 was located within a section of the 

river with less stream flow, which explains why p~sticide dissipated more quickly at 

Site 3 than at Site 2. The pesticide pulse was detected downstream at approximately 80 

min after spraying commenced. The maximum concentration of the downstream pulse 

was 0.033 µg/L measured at 140 min after spraying commenced. This was much later 

than for the 1999 downstream pulse measurement, but this was because the 

downstream sampling was moved approximately 400 m further downstream to reduce 

the risk of aerial drift contamination of the site. 

The results from the 1999 and 2000 sampling were consistent, particularly considering 

the extent of factors in the field that could influence results. All comparable results are 

of the same order of magnitude, and the timing of peak exposures was similar. Of 

particular interest was the timing of peak concentrations at Site 3 that occurred 10 min 

after spraying commenced on both sampling occasions. The maximum concentration 

measured in 1999 was 0.129 µg/L and 0.164 µg/L in 2000. It is possible that maximum 

concentrations in 1999 were similar to the 2000 levels were also reached, but they were 

not detected due.to the lower frequency of sampling. The sampling intensity was 

increased in 2000 in order to detect peak concentrations, particularly in the first 40 min 

after spraying commenced. The 2000 results emphasise the temporal nature of 

chlorpyrifos concentrations in flowing streams. Over a 2 min sampling interval 

concentrations varied by more than five-fold. 
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Figure 6.3 Chlorpyrifos surface water concentrations (µg/L) measured during pulse 

exposure sampling in 1999 and 2000. 
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Wind speed and direction 

During both experiments the prevailing wind direction was N to NE which blew spray 

drift directly onto the river. The wind speed was light (0.1-3.8 m/ s) for the duration of 

both experiments (Appendix 3). 

Stream flow 

In 1999 the mean flow velocity was 0.30 m/ sec. The distance between Site 3 and Site 4 

was approximately 200 m; water flowing directly downstream would take 

approximately 11 min to reach Site 4. In 2000 the mean flow velocity was 0.18 m/ sec. 

The distance between Site 3 and Site 4 was approximately 600 m; water flowing directly 

downstream would take approximately 55 min to reach Site 4. In reality it is difficult to 

predict downstream transport times on the basis of streamflow alone due to the effect 

of localised currents and eddies along the river. 

Sediment concentrations 

Mountain River has a rocky substrate and sediment samples were difficult to collect. 

At Site 3 the subsh·ate consisted of river rocks and it was not possible to collect enough 

sediment for analysis. The variability in the sediment results (Table 6.1) may stem from 

the fact it was difficult to collect much sediment at any of the sampling sites, and the 

samples analysed are a composite of all sediments at that locality in the river. 
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Table 6.1 Sediment concentrations (ng/ g dry wt) measured in Mountain River 

during chlorpyrifos pulse exposure sampling. 

nd=non detect. na=not sampled. aTime (min) measured from the started of spraying 

Sampling date Timea Sediment concentration of chlorpyrifos (ng/ g dry wt) 

(min) Upstream site Vegetation buffer Downstream site 

Site 1 Site 2 Site 4 

Jan5, 1999 0 nd 0.5 nd 

60 na 1 0.5 

120 na 2.4 0.1 

Jan 12, 2000 0 0.9 0.1 0.2 

60 na 0.4 0.7 

120 na 0.1 0.3 

180 na na 0.2 

Chlorpyrifos has a mean sorption coefficient (Koc) of 8498 mL/ g and is strongly 

adsorbed by soil and sediment (Racke, 1993). Sorptive equilibrium in soil-water 

systems is reached quickly, generally within 2-4 hours (Felsot and Dahm, 1979); 

adsorptive equilibrium may be reached as quickly as 15 minutes in sediment/water 

systems (Macalady and Wolfe, 1985). The results collected for Mountain River 

sediments are not adequate to describe chlorpyrifos partitioning, but when compared 

against the values for toxicity of sediments the concentrations measured in Mountain 

River are very unlikely to be of any toxicological significance (Table 6.2). 
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Table 6.2 Concenh·ation ranges for chlorpyrifos toxicity of sediments 

Source: Brown et al. (1997) cited in Giesy et al. (1999). 

Whole sediment chlorpyrifos 

concentration 

< 100 ng/g 

100 to 500 ng/ g 

> 500 ng/g 

Comparison of field data with AgDRJFTfM 

Potential for adverse effect 

Not probable 

Possible 

Probable 

Currently there is limited understanding of how pesticides dissipate instream, but it is 

an area of increasingly important research. The AgDRIFT™ model TM (Spray Drift Task 

Force. 1998. Ver 1.07. Missouri, USA) incorporates a stream assessment option for 

estimating downstream pesticide concentrations resulting from spray drift onto the 

river. This model was developed by the Spray Drift Task Force in response to a 

directive from the USEP A to conduct a series of field and laboratory studies to develop 

a database and spray drift model to assist in the regish·ation of agrochemicals. The 

Spray Drift Task Force committed some $US 20 million to the project to develop a 

model to assist regulatory authorities assess off target risks based on realistic input 

parameters instead of prescriptive threshold values. The model, AgDRIFT™, is 

primarily designed as an aerial predictive model for risk assessment purposes. 

AgDRIFT™ utilises a three-tier approach. Tier I is designed to "yield conservative 

exposure estimates for downwind deposition values ... as a preliminary screen for aerial, 

ground and orchard airblast spraying" (Teske et al., 1997). Tier II and Tier III permit 

increasing assess to more model details for aerial spraying only. Input data concerning 

application, meteorology and the environment can be included. As the level increases, 

the level of input data increases. At this stage AgDRIFT™ can only calculate Tier I 

assessments for airblast applications, and there is no facility for Tier II and Tier III 

airblast applications. 
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Tier I simulations for an airblast sprayer estimate that for a waterbody 7 m wide, 0.7 m 

deep (approximate to Mountain River average) an initial average concentration of 0.168 

µg/L for a.i. applied at 0.495 kg/ha. This value compares very well with the peak 

concentration of 0.164 µg/L recorded at Site 3. 

AgDRIFT™ has the facility to introduce a pond or wetland at various downwind 

distances to deter.mine concentrations of deposit in water bodies. There is also a stream 

assessment module for certain applications, which includes dilution and mixing effects 

in the analysis of downwind deposition. One of the limitations of AgDRIFT™ is that 

the flowing stream assessment option does not operate for airblast applications but 

estimates based on low boom spray applications are comparable if the rate of a.i. 

applied is corrected for. For a waterbody 7 m wide, 0.7 m deep and flowing at 0.18 m/ s 

AgDRIFT™ estimates a peak concentration of 0.108 µg/L at Site 3 for a.i. applied at 

0.495 kg/ha, which was also comparable to the measured concentration. 

The AgDRIFT™ simulation for downstream movement of the pesticide pulse is shown 

in Figure 6.4. AgDRIFT™ predicts a peak concentration of 0.115 µg/L at Site 4 600 m 

downstream which was slightly more than the initial peak concentration. Ag DRIFT™ 

assumes continuous input of spray drift throughout the simulation while in the 

Mountain River experiment spray drift was only being directed over the river for a 

matter of minutes when the sprayer was working in the rows closest to the river.· 
Tier I Stre11nt Assessment 

JOO -

ConccntraliPn 80 
(ug/L) 

20 

IOUO 2000 3000 41100 5000 6000 7000 8000 

Tunc(scc) 

Figure 6.4 AgDRIFT™ stream assessment simulation for pesticide movement 

downstream 
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Seasonal exposure sampling 

Seasonal chlorpyrifos concentrations 

There was considerable variability between sampling sites (Figure 6.5) and between the 

range of concenh·ations detected between seasons (Figure 6.6). Low level aquatic 

concentrations were detected intermittently throughout the spray season. There were 

more detections in the first year of sampling which was a dry year with low flows 

occurring frequently throughout the summer months. For the period 1October1997 to 

1March1998 there was a total of 249 mm rainfall recorded, while for the corresponding 

period in 98/99 there was a total of 402 mm rainfall recorded (Bureau of Meterology 

daily data for Grove Research Station, Site number 094069). Concentrations correlated 

with the area of orcharding upstream of the sampling site (Figure 6.7). 
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Figure 6.5 Box plots showing average surface water concentrations (µg/L) measured 

over two years sampling in Mountain River, Tasmania, Australia. 

Over the two years of seasonal sampling average concentrations (± S.E) measured in the 

sediment were: 0.62 ng/ g (± 0.38) at Site l; 0.52 ng/ g (± 0.17) at Site 2; and 0.15 ng/ g 

(± 0.02) at Site 4. Rocky substrates at Sites 3 and 5 precluded the collection of sediment 

at these sites. The sediment concentrations measured in the seasonal sampling were all 

below the concentrations deemed to have potential for adverse effects (Table 6.2) 

(Brown et al., 1997). 
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Figure 6.6 Breakdown of average seasonal exposures measured in Mountain River, 

Tasmania, Australia. 
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Figure 6.7 Correlation of average surface water concentrations (µg/L) measured 

over two years with area of orchard upstream of sampling site. For purposes of 

this correlation, the Mountain River catchment was broken down into 4 

subcatchments and average surface water concentrations at a site plotted against 

area of orchard in that subcatchment. Because there was minimal orcharding 

upstream of Site 3, Sites 3 and 4 were combined in this correlation. The area of 

orchard within each subcatchment was calculated using Arc View® version 3.1 

(Environmental Systems Research Institute, Redlands, CA, USA). 
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DISCUSSION 

In both experiments described here elevated chlorpyrifos levels occurred very soon 

after commencement of spraying and dissipated rapidly. This finding is in agreement 

with the work of many authors (Knuth and Heinis, 1992; Racke, 1993; Giddings et al., 

1997). Within approximately 40 min after the sprayer passed by the target site 

chlorpyrifos was only detectable in trace amounts. These results have important 

implications for ecological risk assessments, which currently use toxicological 

parameters based on 24 or 48 h exposures. The exposures which are being tested in the 

laboratory for a minimum of 24 h may actually only occur in the field for a matter of 

minutes. For example, the only endemic Australian species for which chloryprifos 

toxicity tests have been conducted is the Australian freshwater shrimp Parataya 

australiens which had a 24 hour EC50 of 0.1 µg/L (Abdullah et al., 1993). In the 2000 

sampling a concentration of 0.030 µg/L was measured at 8 min, 0.164 µg/L at 10 min 

and 0.034 µg/L at 12 min. There was less than a 4 min interval during which the water 

concentration could have exceeded the EC50 to which Parataya had been exposed for 24 

h. The same discrepancy in laboratory exposure vs. field exposure is also seen for the_ 

Australian Ceriodaphnia dubia which has a 24 h EC50 of 0.13 µg/L (Foster et al., 1998). 

These two examples are the only studies to date where chlorpyrif os has been tested on 

Australian species. 

Generating such field data is expensive and logistically complex so it is understandable 

that more studies of this type are not undertaken. However, the reality for many 

ecological risk assessments is that they should be undertaken for pulse exposures in 

flowing, rather than stationary, waterbodies. Comparisons of the Mountain River field 

data with AgDRIFT™ simulations indicate this model is a valid tool for estimating 

pulse aquatic pesticide concentrations resulting from spray drift on the waterway. 

Given the resources required for field monitoring of pulse exposures, it is useful to 

have a model that can be used for preliminary risk assessments. 

Seasonal exposures of chlorpyrifos in the U.S. Midwestern corn belt have been 

simulated using the Dow AgroSciences Geographical Assessment System (DEGAS). 

T~is simulation was for at-plant application of granular chlorpyrifos applied to corn 

(Havens et al., 1998) and is not applicable for modeling seasonal exposures resulting 
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from orchard spray drift. In the absence of a valid modeling system, field 

measurements for chronic chlorpyrifos exposures in orcharding districts are important, 

and should be conducted more frequently. The seasonal exposure results from 

Mountain River indicate that chlorpyrifos contamination of waterways in orcharding 

regions does occur, although at very low levels and the detections are infrequent. 

Chlorpyrifos has been detected in several other Australian pesticide field monitoring 

programs. Monitoring in a horticultural catchment in South Australia showed that 

chlorpyrifos exhibited a seasonal detection pattern coinciding with the growing season 

extending from October to February. The maximum concentration detected throughout 

a three year sampling program was 4.30 µg/L, and a concentration of 5.20 µg/L was 

detected following a runoff event (Thoma and Nicholson, 1989). It was concluded that 

chlorpyrifos concentrations were sufficient to adversely affect aquatic environments. In 

1996 Sydney Water Corporation conducted urban pesticide monitoring in major sewage 

overflows, sewage treatment plants and stormwaters around Sydney (Bickford et al., 

1999). Chlorpyrifos W(lS detected at concentrations ranging from 0.05 to 0.38 µg/L (A 

Lovell, personal communication) and identified as being a cause of toxicity in toxicity 

identification evaluations for discharges from sewage treatment plants (Bailey et al., 

2000). In rural New South Wales the Central and North West Regions Water Quality 

Monitoring Program (CNWRWQP) sampled 28 sites for pesticides in the Border, 

Gwydir, Namoi, M~cquarie, and Darling River catchments. Sampling was conducted 

on 23 occasions throughout 1996/97. Chlorpyrifos was detected twice throughout the 

program, in mid-summer. Concentrations measured were 1.2 µg/L and 0.4 µg/L 

(Muschal, 1997). CNWRWQP recorded a total of 10 chlorpyrifos detections in the years 

1994-1996 although concentrations were not given. Chlorpyrifos exceeded 0.001 µg/L 

on several occasions during sampling of the Murrumbidgee and Colembally Irrigation 

Areas but the concentrations measured were not reported (Korth et al., 1994). 

Overseas chlorpyrifos has been detected in a pesticide monitoring program conducted 

in the Negro River basin, Argentina in 1986 (Natale et al., 1988). A maximum 

concentration of 0.134 µg/L was measured although concentrations of 0.040 to 0.08 

µg/L were more typical. The most comprehensive monitoring for chlorpyrifos has 

been conducted in North America. Chlorpyrifos concentrations measured in surface 
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water monitoring programs in Lake Erie, the U.S. Midwest, California and various 

agricultural watersheds and urban ~atersheds sampled under the National Water 

Quality Assessment Program (NAWQA) have been extensively characterised (Giesy et 

al., 1999). The range of chlorpyrifos concentrations measured in the USA is too 

extensive to describe here but monitoring programs have generally shown infrequent 

occurrences of low levels of chlorpyrifos residues from non-point sources (Havens et al., 

1988). In Canada chlorpyrifos was measured at 4.4 µg/L in one of 19 rural ponds 

sampled in Ontario (Frank et al., 1990). This concentration caused fish kills and was the 

result of accidental spillage into the pond. Chlorpyrifos was present in only 3 samples 

out of 949 stream water samples collected from 11 agricultural watersheds in southern 

Ontario between 1975 and 1977. The maximum concentration detected was 1.6 µg/L 

(Braun and Frank, 1980). 

The results from the Mountain River seasonal monitoring and the other pesticides 

monitoring programs described demonstrate the variability associated with random 

sampling of pesticides in the environment. When environmental pulse exposures 

regularly occur, such as from orchard airblast applications, it is difficult and expensive 

to carry out a sampling program sufficiently detailed to obtain a reliable estimate of the 

average over time of the rapidly fluctuating concentrations (Richard and Baker, 1998). 

Generally it is difficult to know whether field monitoring studies are completely 

representative of the actual use of chemical within a given region (Havens et al., 1998). 

Three dimensions must be considered when estimating exposure: intensity, time and 

space (US EPA, 1996). This paper describes the intensity and duration of a pesticides 

pulse, but another aspect that requires consideration in understanding the true pulse 

exposures to which organisms are exposed to is the vertical distribution of the 

pesticide. Vertical mixing of chlorpyrifos has been measured in littoral enclosures 

dosed with an overspray of chlorpyrifos (Steffert et al., 1989). All of the chlorpyrifos 

was found in the top 7.6 cm of the water column 20 min after application, and none was 

detected near the bottom of the water column (1.1 m) until 1 h after application. The 

distribution remained constant for the next hour, and at 2 hours 55% of the chlorpyrifos 

still remained in the top 7.6cm of water, while 3.6% had reached the bottom (Steffert et 

al., 1989). 
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A further consideration is that chlorpyrifos has a low water solubility of 0.4 mg/L 

(Wauchope et al., 1992) and a log Kow (octanol:water partitioning coefficient) of 5.11 

(Tomlin, 1994) indicating that it does not readily partition to water. It would be 

expected that a percentage of chlorpyrifos spray drift landing on the water surface 

would never be incorporated into the water body but rather remain on the surface 

microlayer and dissipate through volatilisation and photolysis. In studies on 

volatilisation from pond water it was found that volatility losses from water 

represented the primary route of chlorpyrifos dissipation from water (McCall et al., 

1984). Chlorpyrifos fate in outdoor pond microcosms has been studied: for an 

overspray calculated to correspond with a nominal concentration of 0.1 µg/L the water 

concentration 2 h after spraying was 0.088 µg/L and for a nominal concentration of 0.3 

µg/L the 2 h water concentration was 0.246 µg/L (Giddings et al., 1997). An initially 

rapid loss of chlorpyrifos from water bodies is generally attributed to volatilisation 

from the_ surface water (Steffert et al., 1989; Knuth and Heinis, 1992; Rac~e, 1993). 

Physiochemical interactions at the air-water interface are complex and more detailed 

studies are needed to understand chlorpyrifos behaviour at the surface microlayer and 

subsequent incorporation into the water body, particularly for flowing waters. 

Globally there is a scarcity of data describing the pulse exposures of chlorpyrifos that 

occur following application or runoff events. Given the rapid toxic action of 

chlorpyrifos it is appropriate that pesticide monitoring programs with limited time and 

resources should focus on pulse exposure monitoring at the time of application or 

following a runoff event, rather than conduct routine monthly or quarterly sampling 

programs. In the absence of reliable chronic exposure data, pulse 'worst case' exposure 

data is needed to conduct ecological risk assessments of pesticides. This type of data is 

representative of the most toxic concentrations that actually occur in the field. 
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CHAPTER 7. PROBABILISTIC ASSESSMENT OF RISKS TO 

AQUATIC SPECIES IN MOUNTAIN RIVER 

Chapter Background: The assessment of risk involves determining the probability of 

the concentration to which organisms are exposed exceeding the concentration of 

toxicant that will cause an unwanted effect, as determined from the dose-response 

relationship (Solomon et al., 1996). 

Due to a scarcity of toxicological testing for Australian species, the chlorpyrifos dose­

response relationships for most Australian species are unknown. In this assessment, an 

international data set was used to assess risks to species in Mountain, with the 

assumption that the distribution of species sensitivity in Mountain River approximates 

the distribution of species sensitivity in exotic species. This chapter is a case study for 

similar applications in Australia where risk assessments have to be made using datasets 

for exotic species. 

Exceedence plots and simulations based on probability dish·ibutions of aquatic 

exposures were used to estimate the probability of a particular target levels being 

exceeded in Mountain River. The target levels were chosen based on a literature review 

of chlorpyrifos effects in aquatic studies. 

The merits of probabilistic risk assessment are discussed in the Discussion and 

Conclusions chapter. 

This chapter forms the basis of a paper submitted to the journal Environmental 

Toxicologtj and Assessment with the following reference: Walker R Nowak BF. 

Probabilistic risk assessment for aquatic species exposed to chlorpyrifos sprays in an 

Australian orcharding region. 
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Abstract 

In Australia, ecological risk assessment of pesticides is limited by the availability of 

exposure and effects data. With an increasing requirement to complete ecological risk 

assessments of pesticides for their Australian applications, there is a necessity to 

extrapolate from overseas toxicity data. Probabilistic risk assessment is a useful tool for 

such circumstances because it does not require direct comparison between endemic and 

exotic species. Probabilistic methods were used to assess effects of chlorpyrifos on 

aquatic species in a stream located within a region of intensive orcharding in southern 

Tasmania, Aush·alia. Risks were characterised using using exceedence plots and 

@Risk® simulations. Probabilistic outcomes indicate that fish are unlikely to show 

chronic or acute responses to seasonal or pulse chlorpyrifos exposures. There is 

potential that aquatic invertebrates will be acutely affected by exposures occurring as a 

result of spray drift deposition onto waterways at the time of spray application. 

INTRODUCTION 

In recent years a number of pesticides including atrazine (Solomon et al., 1996), 

chlorpyrifos (Giesy et al., 1999), diquat bromide (Ritter et al., 2000) and diazinon 

(Giddings et al., 2000) have undergone extensive probabilistic risk assessments for their 

applications in the United States of America. These large-scale risk assessments have 

been for generic applications and habitats. There is a growing global demand for more 

intensive ecological risk assessments applicable to the specific circumstances of 

pesticide usage within a region/ indush-y. 

In Australia, ecological risk assessment of pesticides is limited by the availability of 

exposure and effects data. There is a scarcity of laboratory and field ecotoxicology data 

available for Australian species under local conditions (Chapman et al., 1993; Pusey et 

al., 1994; Wu, 1996; Warne et al., 1998). With an increasing requirement to complete 

ecological risk assessments of chemicals for their Australian applications, there is a 

necessity to extrapolate from overseas toxicity data. Probabilistic risk assessment is a 

useful tool for such circumstances because it does not require direct comparisons 

between endemic and exotic species. Instead, an existing international data set can be 

used with the assumption that the distribution of sensitivities of exotic species 
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approximates the distribution of sensitivities of Australian species (Parkhurst et al., 

1995). To date there is not enough data to validate this assumption. However, in the 

limited research conducted for short term responses of fish to pesticide exposure, it has 

been concluded that it is not strictly necessary to determine toxicity to native Australian 

species in order to derive water quality criteria (Sunderam et al., 1992; Davies et al., 

1994). Although not ideal, the use of international toxicity data is acceptable for 

Australian applications. 

This paper is an application of probabilistic risk assessment methods to characterise the 

probability and significance of effects of chlorpyrifos on aquatic species in a stream 

located within a region of intensive orcharding in southern Tasmania, Australia. In the 

Huon Valley, southern Tasmania, Australia, chlorpyrifos is used for control of light 

brown apple moth in apple orchards. Given the toxicological properties of 

chlorpyrifos, there is potential for adverse impacts on aquatic communities in the Huon 

Valley. Spray drift from chlorpyrifos applications to apple orchards has been shown to 

result in detectable concentrations of pesticide in waterways within the region (Chapter 

6). 

Ecotoxicological research with chlorpyrifos in Australia has been very limited (Pusey et 

al., 1994). The only endemic species for which chlorpyrifos has been tested are Paratya 

australiensis (Abdullah et al., 1993; Olima et al., 1997) and Ceriodaphnia dubia (Foster et al., 

1988). Exotic species have been extensively tested for chlorpyrifos sensitivity. There is 

an comprehensive data set available through the scientific literature for chlorpyrifos 

toxicity to aquatic invertebrates which has been reviewed by several authors (Marshall 

and Roberts, 1978; Barron and Woodburn, 1995; Giesy et al., 1999). 

The objective of this risk assessment was to use probabilistic methods and international 

toxicity data to estimate the likelihood of adverse ecological effects occurring in Huon 

Valley waterways as a result of chlorpyrifos use in nearby apple orchards. The risk 

assessment is presented in the standard format: problem formulation, risk analysis, risk 

characterisation. In the risk characterisation the literature on chlorpyrifos was reviewed 

to characterise ecological relevance of the exposures. 
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PROBLEM FORMULATION 

Assessment endpoints 

Assessment endpoints are defined as explicit expressions of the environmental value to 

be protected (US EPA, 1992). Measurement endpoints are the parameters that are 

quantified as indicators of the effects of the stressor (US EPA, 1998). In this paper 

endpoints are considered in terms of fish and invertebrates found in Mountain River. 

The assessment endpoint was set as the upper limit of risk for all species. The general 

assessment endpoint was 'for aquatic species to be protected aquatic exposure must not 

exceed to the 10th centile of species sensitivity'. For the assessments based on 

cumulative frequency distributions of exposure and effects, the specific assessment 

endpoint was 'for aquatic species to be protected the lQth centile of exposure must not 

exceed to the lQth centile of species sensitivity'. The choice of a 10% level of effect is 

consistent with that recommended and used by other researchers (Aquatic Risk 

.Assessment and Mitigation Dialogue Group, 1994; Solomon et al., 1996; Solomon and 

Chappell, 1998; Giesy et al., 1999). Given the asymptotic nature of probability 

distributions, exposure concentrations would have to become infinitely small to include 

100% of all possible species (Giesy et al., 1999). No rare or endangered fish or aquatic 

invertebrates are known to occur in Mountain River but if they did then a smaller 

centile could be used as the assessment endpoint in order to make the risk estimates 

more conservative. 

In risk assessments of chemicals the most commonly used measurement endpoints are 

survival and sometimes growth or reproduction of individual organisms, as 

determined in laboratory toxicity tests and reported in the scientific literature. Acute 

toxicity (usually expressed as the LC50) is particularly relevant in a chlorpyrifos risk 

assessment because its toxic effects are rapid and exposures are of relatively short 

duration in surface waters (Giesy et al., 1999). Median effeet levels (LC50) data was used 

in this assessment because it was the only threshold value widely available in the 

literature. LC50 data is commonly used in ecological risk assessments because the level 

of uncertainty is minimised at the midpoint of the regression curve (US EPA, 1996). 
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Conceptual Model 

The conceptual model for interaction of chlorpyrifos sprays in the Mountain River 

environment was described in Chapter 5. Spray drift landing on the water surface 

either volatilises or is incorporated into the water column. The direct toxicity of 

chlorpyrifos to aquatic organisms results from initial metabolic activation to form 

chlorpyrifos axon, with the subsequent inactivation of acetylcholinesteratse (AChE) at 

neural junctions. Inactivation of AChE occurs by axon phosphorylation of the enzyme 

active site and is rapidly reversible. AChE inac;:tivation is dose- and exposure­

dependent, and results in overstimulation of the peripheral nervous system and 

subsequent toxicity (Marshall and Roberts, 1978). Only fish and aquatic invertebrates 

were included in this risk assessment. The potential exposure of amphibians, reptiles, 

birds and mammals to chlorpyrif os is small because the chemical does not biomagnify 

to a significant extent (Giesy et al., 1999). 

RISK ANALYSIS 

Characterisation of exposures 

The exposure data used in this analysis came from field data collected in Mountain 

River, southern Tasmania. Mountain River is a perennial stream flowing through an 

area of intensive orcharding in the Huon Valley apple-growing region. Water samples 

were collected for analysis of seasonal and pulse exposures (Chapter 6). 

Seasonal concentrations were measured at five sites in Mountain River on a fortnightly 

basis during the apple spray season (October to February). Over the two years of 

seasonal sampling there was considerable variability between sampling sites and 

between the range of concentrations detected between seasons. In the first year of 

sampling 42% of samples collected were below the limit of detection, 17% of samples 

greater than 0.02 µg/L and 41 % of samples in the range 0.002 to 0.019 µg/L (Figure 6.6) 

In the second year of sampling 85% of samples collected were below the limit of 

detection, 8 % of samples greater than 0.004 µg/L and 7% of samples in the range 0.002 

to 0.003 µg/L (Figure 6.6). In the second year of sampling the rainfall was 

approximately double that in the first season so it is probable that residues were diluted 

and dissipated much more quickly than in the first season of sampling (Chapter 6). 
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Pulse concentrations were measured twice in Mountain River while a routine 

chlorpyrifos spray was being applied in an orchard immediately adjacent to the river. 

Chlorpyrifos concentrations peaked at 0.163 µg/L approximately 10 minutes after 

spraying commenced. Concentrations above 0.01 µg/L persisted for less than 40 min 

after spraying. Three hours after spraying chlorpyrifos concentration was 0.002 µg/L, 

the limit of detection by GC-MS/MS (Chapter 6). 

For the purposes of the distributional analysis, concentrations reported as non-detects, 

below the limits of detection (LOD) of GC-MS/MS were assigned a value of zero 

(Solomon et al., 1996; Giesy et al., 1999). The probabilistic procedure assumes that non­

detects are distributed from the limits of detection to zero, in a continuation of the 

distribution of the detected concentrations. Assigning a value of 1h LOD to the non­

detects is common practice that was not used in this assessment because it represents 

an unrealistic occurrence and has been shown to been statistically biased (Newman et 

al., 1989). 

Characterisation of effects 

The toxicity data set used in this analysis came from a comprehensive review of 

chlorpyrifos ecotoxicology (Barron and Woodburn, 1995). LCSO values for fish ranged 

from 4.7 µg/L for bluegill (Lepomis macrochirus) to 1039 µg/L for mosquitofish 

(Gambusia affinis). LCSO values for aquatic invertebrates ranged from 0.001 µg/L for the 

mosquito (Aedes aegypti) to 141 µg/L for the ostracod (Chlamydotheca arcuata) (Figure 

7.1). In general, crustaceans and insect larvae were the most sensitive aquatic species. 

Rotifers, molluscs and annelids were generally the least sensitive aquatic invertebrates 

in both laboratory and field studies (Giesy et al., 1999). For consistency all values in the 

data set were normalised to 48 h exposures using reciprocity equations relating 

concentration and time. The normalised 48 h data used in this assessment from 

obtained from (Giesy et al., 1999). 

Two probabilistic methods were used to analyse risks to aquatic species: 1) Exceedence 

plots based on cumulative frequency distributions; 2) Assessments based on simulated 

probability distribution functions 
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Figure 7.1 Distribution of acute sensitivities of aquatic arthropods and crustaceans to 

chlorpyrifos (48 h exposures). Selected species are shown to illustrate the range of 

chlorpyrifos sensitivities of tested species. 

Exceedence plots based on cumulative frequency distributions 

Details of generating exceedence plots have been given in several publications (e.g. 

Parkhurst et al., 1995; Solomon et al., 1996; Solomon and Chappell, 1998). Both the 

exposure data and effects data were ranked and expressed as cumulative frequency 

distributions. The cumulative frequency distributions were transformed to linear axes 

to enable,regression calculations to solve for a concentration which affected a particular 

% of species, and then the % exceedence of this concentration was calculated from the 

distribution of exposure data. 

Risks were expressed as exceedence plots, which illustrate how often exposures exceed 

the LC50 for sensitive species. Mountain River chlorpyrifos concentrations exceeded 

the 1Qth centile of all freshwater species 2 % of the time during the spray season and 10 % 

of the time during a spray event (Figure 7.2). Concentrations exceeded the 1Qth centile 

of fish species 0.006 % of the time throughout the spray season and for 0.02 % of the time 
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during a spray event (Figure 7.3). When the exposure data for Mountain River was 

compared with the distribution of invertebrate sensitivities, concentrations exceed the 

lQth centile of invertebrate species 3% of the time throughout the spray season, and 19% 

of the time during a spray event (Figure 7.4) . 
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Figure 7.2 Chlorpyrifos exceedence profiles for seasonal (October-February) and 

pulse (2 h) exposures in Mountain River: All Freshwater Species. 

The exceedence plots showed that the assessment endpoint for aquatic invertebrates 

was not achieved during the pulse exposures measured in Mountain River. 

Exceedences for all freshwater species were at the level of the assessment endpoint 

(10%). Exceedences for fish species were well below the assessment endpoint. 
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Figure 7.3 Chlorpyrifos exceedence profiles for seasonal (October-February) and 

pulse (2 h) exposures in Mountain River: Fish Species. 
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Figure 7.4 Chlorpyrifos exceedence profiles for seasonal (October-February) and 

pulse (2 h) exposures in Mountain River: Aquatic Invertebrate Species. 
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Assessments based on simulated probability distribution functions 

Knowledge of the unique probability distribution function of exposure data for a 

particular locality means it is possible to conduct simulations based on what would be 

expected at that particular site. As such it is possible to assess high risk and low risk 

localities on the basis of their individual characteristics. This is a requirement of Tier 4 

risk assessments (Aquatic Risk Assessment and Mitigation Dialogue Group, 1994). 

Probability distribution functions for the Mountain River pulse exposure data were 

fitted using the commercial software package Best Fit® (Palisade Corporation, 1996). A 

total of 34 water samples were taken at the target site during pulse exposure sampling. 

The maximum value of the distribution was set at 0.168 µg/L with is the maximum 

value modeled by AgDRIFT™ for the site (Chapter 6). The maximum value measured 

at the site was 0.164 µg/L. The goodness-of-fit test used in the distribution fitting was 

the Kolmogorov-Smimov (K-S) test with p<0.1. 

The five distributions that were ranked highest by the K-S test were simulated using the 

commercial software package@Risk® (Palisade Corporation, 1996). Ten simulations 

with 1000 iterations per simulation were run. Latin Hypercube sampling was used. 

These simulation settings were based on the field scenario of a maximum of 10 sprays 

being applied throughout the season (under a chlorpyrifos calendar spraying schedule 

6-8 sprays might be applied), with 1000 pulse exposure water samples collected at each 

time of spray application. 

For each of the Mountain River pulse exposure PDFs, the probability of exceeding 

particular target water concentrations was calculated. Values from acute and chronic 

toxicity tests were used as target water concentrations. Unless otherwise stated the 

critical water concentrations used were endpoints given in the review of chlorpyrifos 

ecotoxicology (Barron and Woodburn, 1995). If several test concentrations for one 

species were given or a range of values was reported, the lowest concentration was 

always chosen as the target water concentration. 
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The@Risk simulations for all freshwater aquatic species (Table 7.1) showed that there 

was 87 to 90% probability of pulse exposures exceeding the Australian ANZECC 

environmental trigger value for chlorpyrifos (0.001 µg/L) (Australian and New Zealand 

Guidelines, 2000). There was 9 to 12% probability of exposures exceeding the US EPA 

Clean Water Act guideline for chlorpyrifos (0.083 µg/L) (US EPA, 1986). In a 

comprehensive characterisation of chlorpyrifos effects on freshwater species, the 10th 

centile of acute effects was calculated to be 0.102 µg/L (Giesy et al., 1999). A similar 

concentration of 0.1 µg/L was identified as the mesocosm NOEC, based on an extensive 

review of chlorpyrifos mesocosm studies (Giesy et al., 1999). There was a 6 to 10% 

probability that pulse exposures in Mountain River would exceed the 1Qth centile for 

freshwater species and the mesocosm NOEC. 

Table 7.1 Probability of pulse exposures of chlorpyrifos in Mountain River exceeding 

various target water concentrations: General Targets for All Freshwater Species. 

% Probability of Exceeding Target 

Species Target Concentration a 

Concentration c;'l ~ ~ I:'"' N I:'"' 
::::i "" ~ ::! ::::i ... 

~ <::" 
::! 0 ::. 0 
::::i ::: - ~ 

::l ~ 

ANZECC Guideline 0.001 µg/L 86.9 89;8 88.3 89.4 

US EPA Guideline 0.083 µg/L 9.5 11.6 9.2 12.1 

Mesocosm NOEC b 0.1 µg/L 6.6 9.2 6.6 10.1 

1Qth centile all freshwater 0.102 µg/L 6.3 9 6.5 9.9 

speciesb 

( 48 h normalised LCSO) 

aProbability distributions are for concentrations measured in Mountain River at the time of 
spray application in an orchard adjacent to the sampling site. Distributions fitted using BestFit® 
and ranked by the K-S test. Distributions simulated using @Risk®. 
bfrom (Giesy et al., 1999) 

The @Risk® simulations for fish (Table 7.2) showed that there was a 0 to 4% probability 

of pulse exposures exceeding the inhibition concentration (IC25) for bluegill (Lepomis 

macrochirus) survival and total biomass (Giddings et al., 1997). Bluegill was used in 
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microcosm studies to study the effect of chlorpyrifos on growth and survival because it 

is the most sensitive freshwater fish species chlorpyrifos (Barron and Woodburn, 1995). 

There was 0% probability that pulse exposure concentrations would exceed the 96 h 

LC50 for rainbow trout (Oncorhynchus mykiss). Risks to rainbow trout were estimated 

because it is one fish species found in Mountain River for which a chlorpyrifos toxicity 

test has been conducted. There was a 0-0.4 % probability that concentrations would 

exceed the 96 h LC50 for bluegill. The longest duration for any chronic tests with fish 

was a 200 d test with fathead minnow (Pimephales promelas). There was a 4 to 8% 

probability of pulse concentrations exceeding this value. However, the duration of the 

pulse exposure was so much shorter than this test that any interpretations were very 

limited. There was a 0 to 0.1 % probability that pulse exposures in Mountain River 

would exceed the 1Qth centile for fish species. 

The @Risk® simulations for aquatic invertebrates (Table 7.3) showed a 87 to 90% 

probability of pulse exposures exceeding the 24 h LC50 of the mosquito, Aedes aegi;pti, 

which was the most sensitive species tested for chlorpyrifos toxicity. There was a 22 to 

25% probability of aquatic concentrations exceeding the 96 hour NOEC of 0.04 µg/L for 

ParahJa australiensis (13). Significant depression in AChE activity of Paratya australiensis 

has been shown to occur at both acute levels (>1 µg/L) and at sublethal concentrations 

(0.1 µg/L) (Olima et al., 1997). The @Risk™ simulations showed a 6 to 10% probability 

of aquatic concentrations exceeding O.lµg/L. There was a 16to18% probability of 

exposures exceeding the 21 d life cycle NOEC for Daphnia magna of 0.056 µg/L. The 

Australian Ceriodaphnia dubia has a 24 h EC50 of 0.13 µg/L (Foster et al., 1998). There 

was a 3 to 8 % probability of exposures exceeding this concentration. 
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Table 7.2 Probability of pulse exposures of chlorpyrifos in Mountain River exceeding 

various target water concentrations: Targets for Fish Species. 

% Probability of Exceeding Target 

Species Target Concentration a 

Concentration c;J ~ ~ 
I:°"' N 

!:l ~ 

~ !:l ;:: 
~ -· <::" ;:: c ~ 

c 
!:l :: ~ ;:s ;:.. 

Primephales promelasb 0.12 µg/L 4.4 7.3 4.7 8.4 

(200dNOEC) 

Lepomis macrochirusc* 0.26 µg/L 0.3 2.2 0.6 3.6 

(30 d IC25 survival and 

biomass) 

Iepomis macrochirusc* 0.4 µg/L 0 1.1 0.1 2.1 

(96 h IC25 survival and 

biomass) 

Lepomis macrochirusb* 1.1 µg/L 0 0.2 0 0.4 

(96 h LCSO) 

1Qth centile fish d 5.4 µg/L 0 0 0 0.1 

(48 h normalised data) 

Oncorhynchus mykissb 7µg/L 0 0 0 0 

(96h LCSO) 

aProbability distributions are for concentrations measured in Mountain River at the time of 
spray application in an orchard adjacent to the sampling site. Distributions fitted using BestFit® 
and ranked by the K-S test. Distributions simulated using @Risk®. 
bfrom Barron and Woodburn, 1995; cfrom Giddings et al., 1997; dfrom Giesy et al., 1999. 
*Most sensitive fish species tested for chlorpyrifos toxicity. 
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Table 7.3 Probability of pulse exposures of chlorpyrifos in Mountain River exceeding 

various target water concentrations: General Targets for Aquatic Invertebrates. 

% Probability of Exceeding Target 

Species Target Concentration a 

Concentration C".l ~ ~ 
I:-< N I:-< 

::i ('> 

~ ;.:! ::i .... 
;;! (J" 

;.:! ~ 
c c 
~ ::i :: 

;'.$ ;:.. 

Aedes aegi;pti bt 0.001 µg/L 86.9 89.8 88.3 89.4 

(24h LC50) 

Paratt;a australiensis c* 0.04 µg/L 25.2 25.0 23.1 22.0 

(96hNOEC) 

lQth centile invertebrates d 0.055 µg/L 17.7 18.4 16.3 17.2 

( 48 h normalised LC50 

Daphnia magna b 0.056 µg/L 17.3 18 16.0 17.0 

(life cycle 21 d NOEC) 

Paratt;a australiensis e* 0.1 µg/L 6.6 9.2 6.6 10.1 

(24 h inhibition of AChE) 

Ceriodaphnia dubia f* 0.13 µg/L 3.5 6.5 3.9 7.8 

(24h EC50) 

Zooplankton corrununity 0.5 µg/L 0 0.7 0 1.5 

structure g* 

(NOEC in field experiment) 

aProbability distributions are for concentrations measured in Mountain River at the time of 
spray application in an orchard adjacent to the sampling site. Distributions fitted using BestFit® 
and ranked by the K-S test. Distributions simulated using @Risk®. 
bFrom Barron and Woodburn, 1995; cFrom Olima et al., 1997; dFrom Giesy et al., 1999; eFrom 
Abdullah et al., 1993; £From Foster et al., 1998; from 8Simon et al., 1995. 
*Research conducted in Australia. 
tMost sensitivity invertebrate species tested for chlorpyrifos toxicity. 
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In other Australian studies with chlorpyrifos, it has been found that chlorpyrifos doses 

above about 1 to 2 µg/L cause a marked change in zooplankton corrununity structure. 

A significant increase in rotifer numbers and a decrease in cladocerans was seen, which 

coincided with an algal bloom of Anabaena flos-aquae. Concentrations below 0.5 µg/L 

had no effect on corrununity structure (Simon et al., 1995). There was a 0 to 1.5% 

probability of exposures exceeding 0.5 µg/L. 

RISK CHARACTERISATION 

The assessment endpoint was for aquatic species to be protected exposures must not 

exceed the lQth centile of species sensitivity. The risk analysis using exceedence plots 

showed that freshwater species were considered as a composite, the assessment 

endpoint would be achieved during seasonal and pulse exposures. Risks to fish were 

always well within the assessment endpoints. Risks to invertebrates were higher, 

which is to expected because chlorpyrifos is an insecticide. During pulse exposures the 

assessment endpoint was not achieved for invertebrate species. 

The risk estimates from the @Risk® simulations were similar to those predicted from 

the exceedence plots. The assessment endpoint was not achieved for four of the target 

concentrations for invertebrates. Probabilities of Mountain River pulse exposure 

concentrations exceeding the Australian and US EPA guideline concentrations are 

relatively high, but in this paper the guidelines were not used as assessment endpoints. 

The ANZECC (1992) guideline value of 0.001 µg/L is below the method detection limit 

for all currently used methodologies. To set an assessment endpoint that 'chlorpyrifos 

levels do not exceed the environmental trigger value' is not achievable (Suter, 1990), 

given available chemical methods. 

The probabilistic risk estimates described in this paper are conservative. One of the 

largest sources of conservatism is temporal. The toxicity data used in this assessment 

was for 48 hours. Chlorpyrifos concentrations measured in Mountain River dissipated 

to levels below the limit of detection (0.002 µg/L) three hours after spraying. It is 

difficult to compare toxicities and exposures because of the different temporal scales. It 

would be unrealistic to relate the 200 d chronic test results to any exposures that occur 

in Mountain River. 
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The probabilistic outcomes indicate that risks to aquatic invertebrates are greater than 

risks to fish. However, the life histories of aquatic invertebrates are generally 

characterised by short life spans, rapid rates of intrinsic population increase, and 

resting stages. As such they are typically resilient and capable of rapid recovery from 

short-term disturbances (Woodburn, 2000). In addition, aquatic invertebrates from 

unexposed refuges can readily repopulate impacted areas (Giesy et al., 1999). 

In this application of probabilistic risk assessment, the protection of ecological 

communities was founded on protecting 90 % of the species present. This approach 

acknowledges that transient changes in the absolute or relative numbers of individuals 

in a population in the short-term can often be accommodated without altering the 

functioning of the ecosystem (Giesy et al., 1999; Solomon and Chappel, 1998). In 

practice, it would be arbitrary to choose any centile less than the 1Qth centile, because 

even the 1Qth centile of species sensitivity to chlorpyrifos is below the limits of chemical 

detection. 

Probabilistic risk assessment is only one line of evidence in a larger process (Solomon 

and Giddings, 2000). The results of probabilistic risk assessments need to be 

interpreted in the context of ecological relevance (Giesy et aZ:, 1999). 

Implications for changes in community structure 

Short-term changes in community structure have been studied in littoral enclosures 

treated with nominal chlorpyrifos concentrations of 0.5, 5.0 and 20.0 µg/L (Steffert et al., 

1989). Four days after pesticide application, the percentage of similarity between 

chlorpyrifos treated enclosures and controls declined to 74-78% (Steffert et al., 1989). 

Prior to pesticide application percentage of similarities between treatments and control 

ranged from 83 to 88%. Using the assumption that a percentage of similarity of 85% or 

higher would be expected for two stream communities that are structurally simil~r 

(Brock, 1977), the authors concluded that species composition had changed as a result 

of the chlorpyrifos application. An Australian study in artificial streams showed that a 

pulse of chlorpyrifos at 5 µg/L for 6 h caused invertebrate drift but 0.1 µg/L for the 

same time did not affect drift or community structure (Pusey et al., 1994). The 
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concentrations used in both these effective treatments far exceed those measured in 

Mountain River. 

Long term changes in community structure as a result of exposure to chlorpyrifos alone 

have not been studied. One study that is directly applicable to the Huon Valley 

orcharding district compared aquatic communities in orchard drainage ditches before 

and after intensive pesticide application on surrounding orchards (Heckman, 1981). 

Species abundance and diversity was compared to that which existed 25 years earlier, 

prior to the intensive application of pesticides in orchards. There were small reductions 

in absolute number of species of Porifera, Ectoprocta, Hirudinea, Bivalva, Copepoda, 

Branchiura, Decapoda, Emphemeroptera, Heteroptera, Neuroptera, Lepidoptera and 

larger reductions in numbers of Acari, Odonata, Trichoptera and Coleoptera. There 

were small increases in the absolute number of species of Tricladida, Araneae, 

Collembola and a large increase in the species diversity of Diptera. Generally decreases 

in the populations of individual species were infrequent. Most of the fauna either 

maintained their population densities or disappeared completely from the ecosyst~m. 

The author concluded that under continuous influence of pesticides, sublethal effects 

were no longer a factor for populations that had developed resistance. Those species 

that were susceptible to the pesticides had been completely eliminated. Elimination of 

many competitors and predators that did not successfully develop resistance to 

pesticides resulted in abundant populations of resistant organisms. The results from a 

long-term study such as this are very different to the results usually obtained during 

short-term investigations, where great fluctuations in the populations of susceptible 

species are nearly always encountered. 

In the orchard drainage ditches, the odonatans, several families of predatory beetles 

and the water mites were particularly affected by pesticides (Heckman, 1981). In 

contrast, dipterans increased in number. Habitats where agricultural chemicals have 

reduced the numbers of predatory beetles and odonatan larvae are ideal places for 

populations of flies, mosquitoes and midges to develop (Heckman, 1981). 
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Potential for secondary effects 

Suppression of zooplankton by organophosphorus pesticides has been recognised as a 

major factor contributing to the formation of algal blooms (Hulbert, 1975; Butcher et al., 

1977). The@Risk® simulations showed a very small probability of chlorpyrifos 

concentrations exceeding the algal bloom trigger level of 0.5 µg/L (Simon et al., 1995). 

Because pesticides are often more toxic to zooplankton and macroinvertebrates there is 

potential for pesticides in aquatic ecosystems to affect fish diet and subsequent growth 

(Johnson and Finley, 1980). In littoral enclosures treated with a single application of 

chlorpyrifos applied at concentrations of 0.5, 5.0 and 20.0 µg/L, growth rates of larval 

fathead minnows, Pimephales promelas were significantly reduced during a 32 d study 

period. The greatest differences between treatment groups were observed 15 d post 

treatment and corresponded with the most significant reductions in cladoceran, 

copepod, rotifer and chironomid populations. The authors concluded that reductions 

in the populations of chlorpyrifos sensitive invertebrate forage species forced dietary 

changes that led to reduced growth of minnow larvae (Brazner and Kline, 1990). The 

@Risk® simulations showed a very small probability of chlorpyrifos concentrations 

exceeding 0.5 µg/L. It is unlikely that exposures in Mountain River would result in 

reduced fish growth as a result of dietary changes. 

Implications for change in ecosystem metabolism 

Continues measurements of oxygen, pH and temperature were taken in outdoor 

experimental ditches treated with chlorpyrifos to determine if chlorpyrifos altered 

ecosystem function (Kersting and van den Brink, 1997). The main effect of chlorpyrifos 

treatment was a decrease in system respiration at a concentration of 44 µg/L that led to 

elevated oxygen concentrations and pH. A lack of statistical power made it difficult to 

conclusively demonstrate ecosystem metabolism effects at lower concentrations 

(Kersting and van den Brink, 1997). It is very unlikely that concentrations of 44 µg/L 

would be seen in agricultural environments, unless there was an accidental spillage. 

Uncertainty analysis 

Uncertainties exist at every level of the risk assessment process (Suter, 1993a; Landis et 

al., 1998). Uncertainties in the exposure data include uncertainty about the true value of 
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concentrations below the limit of detection, analytical error, temporal and spatial 

variability and field effects such as sediment absorption. In order to minimise 

uncertainties in exposure data, it is important that monitoring programs are well 

designed. Monitoring programs for chlorpyrifos should have detection limits of 0.5 

µg/L or better to be adequately indicative of potentially harmful exposures. The 

sampling schedule should match to temporal and spatial distribution of chlorpyrifos. 

In the @Risk® simulations there was uncertainty arising from the lack of knowledge 

about the true probability distribution of pulse exposures in Mountain River. Only 34 

data points were available to charac:terise the pulse exposure. It is possible that the 

probability distribution functions fitted by BestFit® do not accurately describe the pulse 

exposures. A much larger data set is needed to reduce uncertainties regarding the 

underlying probability distribution. In instances where the exposure data forms part of 

a potentially controversial risk assessment, efforts should be made to quantify the 

~xtent of uncertainty in the analytical procedure by running a number of standard , 

curves, and quantifying their variability. This v~riability should be then factored into 

the aquatic concentrations used in the distribution fitting. 

Uncertainties in the toxicity data are numerous. A major source of uncertainty is 

whether the distribution of toxicity data for the Mountain River species approximates 

that of the international data set used in the effects characterisation. However, until 

more toxicity data is available for Australian species there is no means of reducing this 

uncertainty. Another source of uncertainty is that the species tested in the international 

data set are not representative of typical ecosystems. Species used toxicity data are not 

necessarily chosen because of their environmental significance or sensitivity to 

toxicants, but more likely for their amenability to laboratory culture and handling 

(Chapman et al., 1993). The international database used in this assessment lacked data 

on dormant stages of invertebrates or for juvenile and adult amphibians (Giesy et al., 

1999). 

In addition to the uncertainties in the chlorpyrifos data set, generic uncertainties in 

toxicity testing also apply to this assessment. Laboratory toxicity tests are usually 

conducted under conditions where exposures to the toxic substance are maximised. 
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This is done by making exposure homogeneous; by excluding absorptive matrices such 

as sediment, macrophytes, or particulates that could reduce exposures; and by 

maintaining toxicant concentrations constant throughout the study (Chapman et al., 

1993). Laboratory conditions are not consistent with habitat variability in the field. The 

duration of laboratory exposures are not generally not consistent field exposures. A 

further source of variability is in the calculation of LCSO values, depending on the 

method of statistical analysis (Stephen, 1977). 

In this assessment, no consideration has been given to the toxicity of chlorpyrifos in 

sediments. Sediment residues were measured in Mountain River during seasonal and 

pulse sampling. Whole sediment concentrations of less than 100 ng/ g have been 

shown unlikely to produce adverse effects in aquatic organisms (Brown et al., 1997). All 

residues measured in Mountain River were less than 100 ng/ g and it is very unlikely 

that toxic effects would result from exposure to sediment residues (Chapter 6). 

Sensitivity analysis 

Sensitivity analysis for the assessments based on cumulative frequency distributions of 

exposure and effects data is of limited value without further characterisation of the 

uncertainties described above. However, sensitivity analysis for the @Risk® 

simulations is useful because it describes how changes ill input parameters are likely to 

affect the risk outcomes. 

Sensitivity analysis was conducted for the @Risk® simulations using the logic that 

if an input distribution does not account for much variation in the outcome, then the 

lack of data does not have that much impact, to the extent that the data were used to 

determine the input distribution. On the other hand, if the input distribution was a 

major contributor to variation in the outcome, then the lack of data implies a greater 

uncertainty in the risk outcomes (Haimes et al., 1994). 

BestFit® generated different probability distributions to describe the pulse exposures 

measured in Mountain River. The five distributions that were ranked highest by the K­

S were Gamma, Pearson VI, Weibull, Lognormal and Lognormal 2. These distributions 

and their defining parameters were used in the @Risk® simulations. 
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It is generally recognised that concentrations of environmental contaminants 

approximate a lognormal dish·ibution (Solomon et al., 1996; Solomon and Chappel, 

1998). Although lognormal was one of the distributions fitted to the Mountain River 

pulse exposure data, it was not the most appropriate according to BestFit® outputs. 

The advantage of using probability distribution software such as BestFit® is the ability 

to fit distributions to the unique parameters of a particular site, so the risk outcomes are 

site-specific. 
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Figure 7.5 Cumulative frequency distributions for five probability distribution 

functions fitted to the Mountain River pulse exposure data. 

In order to compare whether the input distribution had a significant effect on the risk 

outcomes, the simulation results for all five distributions are shown in the risk tables 

(Tables 7.1to7.3). The risk outcomes for different distributions are always within 4% of 

each other. Given the other uncertainties in the assessment, these differences are 

negligible. A plot of Mountain River pulse exposures based on the cumulative 

frequencies of the different distributions confirmed that all of the @Risk® simulations 

produced similar outputs (Figure 7.5). Descriptive parameters of the@Risk® 
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simulations showed that there was less spread in the statistical parameters describing 

the Gamma and Weibull distributions. The greatest spread was in the lognormal 

distributions (Figure 7.6). It was concluded that for the relatively small data set 

describing pulse exposures in Mountain River (34 data points), any of the five 

probability distribution functions described could be used to reasonably estimate risks 

to aquatic species. The best risk estimates would be from simulations using Gamma 

and Weibull distributions. 
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Figure 7.6 Statistical descriptions (mean, ±SD, 95% confidence intervals) for five 

probability distribution functions fitted to the Mountain River pulse exposure data. 

Real world considerations 

There are economic and practical consequences associated with overestimating 

ecological risks. Real-world mitigating factors must be considered before any 

regulatory or management decisions are made on the basis of probabilistic risk 

outcomes. In the Huon Valley there are several practical considerations which imply 

that the outcomes from the probabilistic assessment are overly conservative. Firstly, 

the exposures resulting from spray drift at the time of spray application are those with 
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greatest potential to adversely impact aquatic ecosystems. If a routine calendar spray 

schedule is being followed, chlorpyrifos sprays could be applied fortnightly. The worst 

case scenario is that every fortnight aquatic invertebrates are subject to the pulse 

exposures characterised in this study. Secondly, the pulse exposures characterised here 

were measured at a site directly exposed to spray drift from an adjacent orchard. At 

other sites, streambank vegetation reduces deposition of spray onto waterways 

(Chapter 9). Finally, many growers in the Huon Valley have adopted integrated pest 

management (IPM) strategies, and have greatly reduced their use of chlorpyrifos. Of 

those growers still using chlorpyrifos, very few are applying fortnightly sprays. 

CONCLUSIONS 

Probabilistic risk estimates indicate that fish in Mountain River are unlikely to show 

chronic or acute responses to seasonal or pulse chlorpyrifos exposures. There is 

potential that aquatic invertebrates in Mountain River will be acutely affected by 

exposures occurring as a result of spray di:ift deposition onto the waterway at the time 

of spraying. Aquatic species in Mountain River most likely to be affected by 

chlorpyrifos sprays are mites, chironomids and odonates. The risk estimates in this 

assessment are conservative be<;:ause of temporal variability between field exposures 

and laboratory tests. To fully characterise risks from chlorpyrifos in intensive 

orcharding regions, higher tier risk assessments incorporating site-specific 

investigations are necessary. 
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CHAPTER 8. SITE-SPECIFIC FIELD STUDY OF 

CHLORPYRIFOS EFFECTS ON FISH 

Chapter Background: The probabilistic risk estimates described in the previous chapter 

indicate that risks to aquatic species from chlorpyrifos sprays in the Mountain River 

catchment are small. However, probabilistic risk assessments are only one line of 

evidence (Giesy et al., 1999; Solomon and Giddings, 2000). Field studies were necessary 

to validate the outcomes of the probabilistic risk assessment, and provide increased 

confidence in the assessment outcomes. Recently it has been argued that validation of 

probabilistic risk assessment predictions is uncommon (de Vlaming, 2000). This 

chapter describes field data for fish populations that is consistent with the outcomes 

from probabilistic risk assessment discussed in the previous chapter. Field studies 

were conducted to assess acute and chronic effects of chlorpyrifos exposure in Huon 

Valley fish species. Acute effects were measured in caged fish held in Mountain River 

during spray application in an adjacent orchard (Chapter 6). Chronic effects were 

assessed in fish collected from Mountain River, and other Huon Valley waterways 

surrounded by orchards. 

This chapter forms the basis of a paper submitted to the journal Australasian Journal of 

Ecotoxicologij authored by Walker R, Nowak BF, and Powell M. The findings of a fish 

survey of Mountain River conducted by Morton (1998) are included in this chapter with 

the consent of the author. As the survey was not part of this project, only the findings 

are discussed, and the results are not presented here. 

Field Studies of Chlorpynfos Effects 117 



INTRODUCTION· 

The risk hypothesis for this study was that spray drift from chlorpyrifos applications in 

orchard located on river flats was resulting in aquatic ecosystems being exposed to 

potentially harmful concentrations of pesticide. Chlorpyrifos spray drift landing on the 

water surface either volatilises or is incorporated into the water column. Chlorpyrifos 

in water moving across the gills has the potential to exert toxic effects in fish, through 

inhibition of acetylcholinesterase. In mammals death is caused by asphyxiation 

(O'Brien, 1960; Murphy and Lutenske, 1986) but the exact mechanism of acute toxicity 

in fish is less well understood, since as long as water crosses the gills, transfer of oxygen 

occurs. Direct effects of chlorpyrifos on fish survival occur shortly after the exposure 

and are not additive with additional exposures (Giddings et al., 1997). Fish absorb, 

metabolise and eliminate chlorpyrifos rapidly. The chlorpyrifos clearc;tnce rate half-life 

is 66 hours in rainbow trout (Oncorhynchus mykiss) (Murphy and Lutenske, 1986). 

In this study the assessment endpoint used was 'for fish populations to be maintained 

there should be no reduction in species richness or ab'Uildance, or increased frequency 

of physiological and pathological abnormalities in fish communities resulting from 

chlorpyrifos exposure'. The assessment endpoint used was generic, and based on 

endpoints used in other risk assessments (Suter et al., 1999). 

Measurement endpoints were chosen to reflect the mode of action of chlorpyrifos. The 

measurement endpoints chosen as indicators of acute exposure were in-situ respiratory 

physiology and cholinesterase activity. The measurement endpoints used as indicators 

of chronic exposure were species richness and abundance, fish body burdens and 

histopathology. 

Species richness and abundance was not indicative of exposure to chlorpyrifos alone, 

but served to assess whether there were differences in fish populations between 

reference sites and sites located within areas of intensive orcharding. Histological 

condition was indicative of exposure to pesticides but could not be used to directly 

estimate the assessment endpoint (Suter et al., 1999). 
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MATERIALS AND METHODS 

Species richness and abundance in Mountain River (from Morton, 1998) 

A fish survey of Mountain River was conducted in 1998 as part of a concurrent project 

describing distribution of fish species in Huon Valley streams (Morton, 1998). Fish 

were surveyed using electrofishing and sampling sites corresponded to those used for 

seasonal sampling of chlorpyrifos aquatic concentrations (Figure 6.2, described in 

Chapter 6). 

Seasonal and pulse exposures of chlorpyrifos in Mountain River 

The environmental exposures of chlorpyrifos in Mountain River were measured 

throughout the spray season and at the time of spray application (pulse exposures). 

The sampling protocol and analysis of water samples has been previously described 

(Chapter 6). Seasonal concentrations were measured at five sites in Mountain River on 

a fortnightly basis during the apple spray season (October to February). Pulse 

concentrations measured on January 5, 2000 were those to which the fish used in the 

acute effects experiments described below were exposed. 

Experimental fish used for in-situ acute effects experiments 

Fish used in the pulse exposure experiment were 5-month-old rainbow trout 

(Oncorhynchus mykiss) cultured in the Aquatic Centre, School of Aquaculture, 

University of Tasmania. Ideally in situ biological effects would have been studied on 

native fish species but as no cultured populations were available it would ha_ye been 

necessary to collect test fish from wild populations. This was not done due to the 

variability associated with sampling from fish of unknown age and previous pesticide 

exposure. Previous work has shown a marked difference in brain cholinesterase 

activity between fish of different ages, and recommended that fish of similar age be 

used for tests involving brain cholinesterase activity (Zinkl et al., 1987). In addition, the 

small size of the native galaxids (mean fork length typically < 60 mm) made 

catheterising problematic. 

Rainbow trout used in the trial were of uniform weight (200-300g) and had never been 

exposed to any pesticides. Fish were transported to the site in a fish transporter in 

oxygenated water and held in a river cage for 24 h prior to any experimentation 
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commenced. The experimental cage in which the catheterised fish were held during 

spraying was located in a section of the river open to spray drift from the adjacent 

orchard. Previous research has shown that chlorpyrifos remains near the top of the 

water column up until several hours after deposition on the water surface (Steffert et al., 

1999). Spray deposition on the water surface close to the location of the experimental 

cage was measured using glass-fibre filter papers and water-sensitive papers (Chapter 

6). 

In-situ respiratory physiology 

The dorsal aorta of 10 rainbow trout (mean fork length 302 mm± sd 12) were 

catheterised according to the method of Soivio et al. (1975) under benzocaine 

anaesthetic (100 mg/L). Fish were recovered and maintained in black polyethylene 

tubes suspended in the current 5 cm below the water surface in the river. Water _ 

temperatures ranged from 23°C during the day to 18°C at night. Recovery at such high 

temperatures was remarkably good and of the 10 fish catheterised, 7 catheters remained 

patent. Fish were recovered for 24 h prior to exposure to chlorpyrifos. 

A 500 µL blood sample was withdrawn from the catheters and an equivalent of 

heparinis~d (100 IU / mL ammonium heparin) replaced the lost volume. Samples were 

taken prior to exposure (control baseline), after the peak over-spray onto the river 

(approximately 20 min from the commencement of the spraying) and after 6 h post­

exposure. P02 was determined using a Cameron Instrument Company (Port Aransas 

Texas) ElOl oxygen electrode maintained at ambient water temperature and calibrated 

using a 2% sodium sulphite solution (zero) and air saturated water. Arterial pH was 

determined using an Activon ACTP 336 pH probe maintained at ambient water 

temperature and calibrated with Radiometer precision buffers. Both oxygen partial 

pressure (P02) and pH readings were relayed to a Cameron Instrument Company BGM 

200 blood gas analyser. Total oxygen content was determined according to the method 

of Tucker (1967) and total C02 content was determined using a Cameron Instruments 

Capni-con 5. Unfortunately due to the malfunction of the Capni-con particularly at the 

high temperatures experienced in the field (air temperature of 36°C), reliable total C02 

measurements could not be obtained. Haematocrit was determined in microcapillary 

tubes with EDTA as the anticoagulant. Total blood haemoglobin (Hb) concentration 
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was determined using a commercial haemoglobin assay kit (Sigma Chemical 

Company). 

In-situ cholinesterase activity 

Fish were collected from the river cage prior to exposure (control baseline), and 

approximately 90 min and 180 min after the commencement of spraying. Five fish were 

collected on each sampling occasion. Fish were killed with an acute blow to the head 

and immediately dissected. All tissue was stored on dry ice before return to the 

laboratory where it was stored at -80°C. Brain cholinesterase activities of fish stored at 

-68°C are not affected for up to 55 d of storage (Zinkl et al., 1987). Cholinesterase 

activity was analysed in triplicate using commercial MPR 2 test kits (Roche Diagnostics, 

Nunawading, Australia) based on the method of Ellman et al (1961). Acetylthiocholine 

was used as the substrate so it is likely that the enzyme assayed was 

acetylcholinesterase (Sturm et al., 2000) however no other characterisation of other 

selective inhibitors was performed so the activities measured are referred to as 

cholinesterase (ChE). Quality control was using the commercially available 

Precinorm® U solution (Roche Diagnostics). All spectrophotometric analysis was done 

at 25°C and 405 nm using a temperature controlled Varian DMS 100 spectrophotometer. 

Approximately 20 mg of tissue was used for each analysis, and the enzyme activity was 

corrected for weight of tissue analysed. 

Gill and liver tissues for histology were also taken from the experimental fish. Samples 

were processed for histology using the same procedure as described below for wild 

fish. 

Fish body burdens and histopathology in regional populations 

Fish were collected by electrofishing and anaesthetised without recovery :in 100 mg/L 

benzocaine. Fish were immediately placed on ice and kept frozen until dissection for 

extraction. Fish species collected were Salmo trutta, Pseudaphritis urvillii and Anguilla 

australis. Fish were collected from an upstream reference site on Mountain River 

(upstream of all agricultural activity), and downstream sites located within orcharding 

areas on Mountain River, Nicholls Rivulet and Judd's Creek. The downstream sites 

were chosen as representative of locations in the Huon Valley orcharding district where 
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fish could be exposed to pesticides. At each site, five fish of the same species were 

collected. The species collected varied between sites. 

Tissue for histology was dissected out immediately after the fish were killed, and 

placed in 10% formalin fixative. The collected fish were transported on ice to the 

laboratory and stored at -20°C until analysis. Fish for analysis were thawed, 

composited by species and tissue type, and tissue for analysis ground in a glass mortar. 

Gill, liver and muscle tissue were analysed. Pesticide from fish tissue was extracted 

using a commercial matrix solid phase dispersion (MSPD) kit (Varian Sample 

Preparation Products, Harbor City, CA). A known weight of tissue was used for 

extraction. Mean extraction recovery (± S.E) calculated for spiked gills from fish 

collected from the upstream reference site was 54 % (±5.4 % ). Samples were analysed 

using GC-MS/MS under conditions previously described for analysis of chlorpyrifos in 

water and sediment samples (Walker et al., submitted). The results are given as 

recovery corrected based on recovery of a 100 µL spike of Base Neutral Surrogate (Ultra 

Scientific, North Kingston, RI, US) which was included in every sample. 

Samples were processed for histology using routine procedures. The tissue was· 

trimmed and blocked in paraffin wax. Five micron thick sections were cut 

using a microtome. Following staining with haematoxylin and eosin the 

sections were mounted and examined under compound microscope using 

magnification X400. One section was examined from each block. 

Statistical analysis 

Data for respiratory physiology was analysed using a repeated measures analysis of 

variance SigmaStat vers. 1.02 software (Jandel Scientific) with a significance level of 

0.05. Data for cholinesterase activity was analysed using analysis of variance SAS vers. 

6.12 software (SAS Institute Incorporated, Cary, N.C.) with a significance level of 0.05. 

RESULTS 

Respiratory physiology 

There were no significant effects of chlorpyrifos exposure on blood pH, oxygen content 

or haematocrit (Table 1). There was no significant change in the estimated 02/Hb ratio 
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even though the pre-exposure ration represented only 70% saturation of haemoglobin. 

This suggests that despite exposure to chlorpyrifos over-spray, there was no evidence 

of hypoxaemia compromised oxygen transport. 02/Hb ratios all represented between 

approximately 70 and 104% saturation. Disparities in the 02/Hb ratio are probably 

reflective in small errors in measuring haemoglobin content. However, there was a 

significant decrease in haemoglobin concentration between the pre-exposure and 6 

hours post-exposure (Table 8.1). This decrease is not likely to have been reflective of 

the effects of repeated blood sampling since blood haematocrit was not significantly 

affected over the duration of the experiment. Potential over estimations of 

haemoglobin content in the pre-exposure samples may have accounted for the 

unusually high MCHC and lower-than-expected 02/Hb ratio in the 

Table 8.1 Effects of an in situ chlorpyrifos exposure on mean (sd) arterial oxygen 

tension (Pa02), arterial pH (pHa), wh,ole blood oxygen content (Ca02), plasma total C02 

content (CaC02), haematocrit (Hct), whole blood haemoglobin concentration ((Hb)), 

estimated 02 bound to haemoglobin (02/Hb) and the mean cell haemoglobin 

concentration index (MCHC) in rainbow trout. Superscripts of different letter denote 

significant difference. 

Pre-exEosure Post-exEosure 6 hRecovery 

Pa02 (mmHg) ND ND 126.9 (14.3) 

pHa 8.026 (0.136) 7.937 (0.094) 7.861 (0.109) 

Ca02(mL 02/ dL) 11.78 (3.21) 8.70 (2.58) 8.77 (3.09) 

CaC02 (mM) ND ND ND 

Hct (%) 23.3 (4.4) 24.1 (4.1) 25.7 (6.1) 

(Hb) (g/ dL) 11.10 (1.63)a 8.93 {2.73)ab 7.19 (2.24)b 

02/Hb (mL/ g)* 0.86 (0.23) 1.04 (0.39) 1.31 (0.54) 

MCHCt 0.49 (O.lQ)a 0.36 (0.11)ab 0.28 (0.06)b 

*estimated value since does not take into account the fraction of 02 dissolved in the plasma. t 
calculated by (Hb)jHct. ND Non-determinable 

pre-exposure samples. The reasons for this are unknown but it seems unlikely that the 

disparities are due to the effects of chlorpyrifos. Due to equipment failure it was not 
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possible to determine the potential effects of chlorpyrifos exposure on plasma C02 

content. However, with no significant effects on blood pH (all of which appeared to be 

within the normal range for trout), it would seem unlikely that there would have been 

any significant effects detected. 

Cholinesterase activity 

There were no significant differences in brain ChE, pre-exposure, 90 min post exposure 

and 180 min post exposure (Table 8.2). 

Table 8.2 Brain cholinesterase activity in rainbow trout exposed to a chlorpyrifos pulse 

exposure. No significant difference between times was detected (p !5: 0.05, n=5). 

Time since fish were exposed to 

chlorpyrifos spray 

Pre-exposure 

90 min post exposure 

_ 180 min post exposure 

Fish body burdens and histology 

Mean cholinesterase activity ± SE 

(nmol/ min/ mg protein) 

183.5 ± 32.3 

254.9± 94.8 

264.4± 52.1 

Chlorpyrifos residues were detected in Salmo trutta and Pseuaphritis urvillii collected 

from all of the downstream sampling sites (Table 8.3). No residues were detected in 

Anguilla australis. The highest residue detected in Mountain River was 36 ng/ gin 

Salmo trutta gill tissue. The highest residues detected in native Pseuaphritis urvillii were 

in Nicholls Rivulet. Composite gill, liver and muscle tissue from Pseuaphritis urvillii in 

Nicholls Rivulet had respective concentrations of 7, 13, and 9 ng/ g. Two out of three 

individual Pseuaphritis urvillii from Nicholls Rivulet also had relatively high residue 

levels in the gills (20 hg/ g and 32 ng/ g). These results are not unexpected because the 

Nicholls Rivulet sampling site was immediately downstream of a very large orchard. 

No histopathological changes were detected in organs of experimental caged fish, with 

the exception of epithelial lifting and telangiectasis in the gills of fish. These changes 
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were most likely due to surgery, handling or sampling procedures and not related to 

the exposure to chlorpyrifos. 

Wild fish sampled from the Huon Valley waterways had relatively mild pathological 

changes and no pathogens could be detected using histological methods. Two of the 

Salmo trutta sampled at Mountain River had inflammation in their gills. This is a 

response to tissue injury, which could be due to gill irriation or presence of pathogens 

(Mallat, 1985). Four out of five Salmo trutta collected from Mountain River and two out 

of five Salmo trutta collected from Judds Creek showed focal hyperplasia of respiratory 

epithelium in their gills. This hyperplasia resulted in lamellar fusion in all fish in Judds 

Creek and two of the Salmo trutta from Mountain River. Lamellar fusion is a result of 

gill irritation and if extensive can affect respiration (Mallat, 1985). Two out of four 

Pseuaphritis urvillii collected from Mountain River also showed focal hyperplasia of 

respiratory epithelium. Four out of five Salmo trutta from Mountain River and four out 

of five Salmo trutta from Judds Creek had abundant black melanomacrophages present 

in their liver. This suggests that the fish were stressed in the past. Melanomacrophages 

number and pigment content increases usually in response to infection or tissue 

damage (Mallat, 1985). Most fish displayed telangiectasis and a few had lifted 

epithelium, both most likely a result of sampling or fixation delay. 
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Table 8.3. Chlorpyrifos tissue residues for fish collected from three rivers in the Huon 

Valley orcharding district. nd =non detect. 

Year and Sampling Site 

1999 Mountam River 

(upstream reference site) 

1999 Mountain River 

2000 Mountam River 

2000 Judds Creek 

2000 Nicholls Rivulet 

Field Studies of Chlorpynfos Effects 

Fish Species 

Salmo trutta composite sample 

Salmo trutta composite sample 

Pseuaphrztzs urvillzi composite sample 

Anguilla australis mdividual 

Salmo trutta composite sample 

Pseuaphritis urvzllu composite sample 

Salmo trutta mdividual #1109.0 g 

Salmo trutta mdividual #2 135.4 g 

Salmo trutta individual #3 334.4 g 

Salmo trutta composite sample 

Pseuaphrztzs uruzllu composite sample 

Pseuaphritis uruillzi individual #113.2 g 

Pseuaphrztis urvzllii individual #2 37.1 g 

Pseuaphritis uruilliz individual #112.1 g 

Chlorpyrifos 

Tissue Residue 

(ng/g) 

Gill nd 

Liver nd 

Muscle nd 

Gill 7 

Liver 1 

Muscle 1 

Gill 1 

Liver nd 

Muscle nd 

Gill nd 

Liver nd 

Muscle nd 

Gill 1 

Liver 3 

Muscle 3 

Gill 5 

Liver nd 

Muscle 5 

Gill 36 

Gill nd 

Gill 7 

Gill 1 

Liver nd 

Muscle nd 

Gill 7 

Liver 13 

Muscle 9 

Gill 20 

Gill 32 

Gill nd 
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DISCUSSION 

Species richness and abundance in Mountain River (From Morton, 1998) 

Species diversity data collected by Morton (1998) showed that the Mountain River fish 

community was similar to other Tasmanian streams. Salmo trntta (brown trout), a 

salmonid widely distributed throughout Tasmanian waterways, was the only 

introduced species found in Mountain River. Native species found in Mountain River 

were Anguilla australis (eel), Pseudaphritis urvillii (sandy), Galaxias maculatus Gollytail), 

Galaxias truttaceus (spotted galaxias), Galaxias brevipinnis (climbing galaxias), Neochanna 

cleaveri, Gadopsis marmoratus (blackfish) and Geotria australis (pouched lamprey). 

None of resident species found in Mountain River were rare or endangered. Salmo 

trntta was the only species regularly fished in the river. No chlorpyrifos toxicity tests 

have been developed for any of the native fish in Mountain River. Two of the endemic 

species found in Mountain River, Galaxias maculatus and Pseudaphritis urvillii, have been 

used in studies of sublethal responses to pesticides, however chlorpyrifos was not 

among the pesticides tested (Davies et al., 1994b). 

Species richness data indicated that Mountain River is similar to other Tasmanian 

streams, and the impact of agriculture has not reduced diversity in the fish community 

(Morton, 1998). Abundance data collected for Mountain River was difficult to interpret 

in relation to agricultural impacts, given the natural patterns of fish migration and 

distribution in Tasmanian waterways ( eg. estuarine species such as Pseuaphritis urvillii. 

found in downstream Mountain River; large numbers of Salmo trntta moving from 

upstream spawning). The limited distribution of native species made it difficult to 

consider abundance across all sampling sites on Mountain River. Although Salmo trntta 

is an introduced species, it was by far the most abundant species throughout Mountain 

River. Biomass data for Salmo trutta showed there was reduced biomass at the two 

sampling sites located within the areas of greatest orcharding intensity. However, 

these results were confounded by a number of factors, and it is likely that results are 

not solely attributable to pesticides, but to all the stressors identified in Chapter 2 as 

impacting fish communities in Mountain River catchment. 
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Respiratory physiology 

Oxygen content values fell within an acceptable range similar to reported values (Perry 

et al., 1993) and 02/Hb ratios were all consistent with that reported for rainbow trout 

arterial blood (Perry et al., 1993) suggesting no diffusive limitations to oxygen diffusion 

across the gills. While it was not possible to accurately determine P02 in the pre- and 

post-exposure samples, the blood P02 measurements made at 6 h post-exposure fall 

within the expected range for rainbow trout (Perry et al., 1993). 

Although the technical challenges of this study limited some of the variables that could 

be measured, the results indicate that chlorpyrifos spray deposition on to the water 

where the trout were being held had no detrimental effect on the respiratory or acid­

base physiology of rainbow trout. This is in contrast to previously reported research 

where trout were acutely exposed in the laboratory to chlorpyrifos (Bradbury et al., 

1993). This study represents a more realistic assessment of the effects of chlorpyrifos at 

concentrations likely to arise from recommended agricultural use. Bradbury et al. 

(1993) exposed rainbow trout to mean chlorpyrifos concentrations of 0.208 mg/L which 

resulted in death after 43.8 h of exposure. Concentrations of 0.2 mg/Lare very 

unlikely to occur in Huon Valley waterways as a result of spray drift. Such high 

concentrations would only be likely to occur as a result of accidental spillage. 

Brain cholinesterase 

Exposure to chlorpyrifos in Mountain River had no effect on brain cholinesterase 

activity in rainbow trout. In other field measurements of AChE, enzyme depression 

was seen in Fundulus heteroclitus exposed fortnightly to chlorpyrifos oversprays 

(Thirungnanam and Forgash, 1977). Enzyme depression continued throughout the 

fortnight between spray applications. In the Mountain River experiment it would have 

been desirable to continue ChE measurements for days, rather than hours, after spray 

application but logistically this was not possible. 

Variability between ChE activity of individual fish (n=5) may have confounded the 

results of this experiment. Similar problems with variability in ChE have been reported 

(Ernst and Julien, 1994). Larger sample sizes or elevated pesticide concentrations are 

required to accurately measure changes in enzyme activity. In one study using 48 h 
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exposures of high chlorpyrifos concentrations (0.1 mg/L), variability among test 

individuals was not reported although the sample size was three individuals (Boone 

and Chambers, 1996). In this study the test concentration was 67% of the LC50 for the 

test species, mosquitofish (Gambusia afftnis). In another study concentrations of 1 µg/L 

chlorpyrifos resulted in 19% inhibition of AChE when fish were exposed for 24 hours, 

however only two individual fish were tested (Thirungnanam and Forgash, 1977). Fish 

exposed to 2.1 µg/L for 24 hours showed a 100% AChE inhibition and severe toxic 

symptoms, but there was no fish mortality (Boone and Chambers, 1996). The 

relationship between AChE inhibition in brain and muscle and toxicity is not well 

understood (Boone and Chambers, 1996). Several authors (Weiss, 1961; Gil;>son et al., 

1969; Boone and Chambers, 1996) have found a lack of correlation between the in vivo 

AChE inhibition and toxicity in fish, and it has proposed that fish do not require as 

much functional AChE to sustain life as do mammals (Boone and Chambers, 1996). 

Fish body burdens and histopathology 

Although only the gills of six individual fish were analysed, those fish with 

chlorpyrifos residues all had pathological changes in the gills and liver. Correlation 

between residue level and biological effects have been shown for endosulfan where 

ultrastructural changes in the liver of catfish Tandarus tandanus were related to 

endosulfan residue levels (Nowak, 1996). Chlorpyrifos exposures of 2000 µg/L 

produced shrunken glomeruli, vacuolated blood cells, dilated renal tubules, and 

necrosis in freshwater catfish (Heteropneustes fossilis) (Srivastava et al., 1990). 

None of these signs were seen in fish collected from Mountain River. The only 

histological changes seen in Mountain River fish were minor abnormalities, which were 

consistent with exposure to pesticides. Similarly these abnormalities could be 

attributed to a number of non-chemical stressors including variable water conditions 

and pathogens. Wild fish often have some background level of pathological changes 

attributable to non-chemical stressors (Nowak, 1996). The incidence of histological 

abnormalities was higher in the larger fish suggesting that cumulative environmental 

factors were the cause of the observed abnormalities. 
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Different tissues may accumulate different levels of organic.contaminants. Rates of 

depuration vary between different tissues and are related to their relative abilities to 

metabolically transform the chemical (Nowak, 1997). Chlorpyrifos residues were 

typically higher in the gill for both Salmo trutta and Pseuaphritis urvillii. This is to be 

expected as fish exposure to chlorpyrifos is via water. 

The biological significance of xenobiotic residues in fish has been reviewed (Connell, 

1988; Nowak 1997) but to date there has been limited quantification of benchmarks for 

effects of pesticide as indicated by body burdens. McCarty and Mackay (1993) 

proposed the concept of a 'critical body residue' as an estimate of biological response. 

For acute effects of chlorpyrifos to be seen the critical body residue was estimated at 2.2 

mmol/kg. This equates to 771 mg/kg, which is an extreme body burden. It is not 

comparable with the concentrations seen in the Huon Valley fish where 36 ng/ g was 

the highest residue measured. 

In this study, the chlorpyrifos residues found in Salmo trntta and Pseuaphritis urvillii 

serve to confirm that the Mountain River sites selected for seasonal sampling (Chapter 

6) were consistent with sites where fish were exposed to chlorpyrifos. Macek et al. 

(1972) found that accumulation of chlorpyrifos residues in bluegills (Lepomis 

macrochirns) and largemouth bass (Micropterus salmoides) was a function of chemical 

concentration in the water. In US rivers measurements of chlorpyrifos residues in fish 

were correlated with concentrations measured in surface waters (US EPA, 1992b). 

Although only chlorpyrifos residues were measured in this study, wild fish often 

contain residues of different compounds. Their potential interactions include 

synergisms, potentiation, antagonisms or additvity of effects (Nowak, 1996) which all 

confound a chemical specific risk assessment. 
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CONCLUSIONS FROM MULTIPLE LINES OF EVIDENCE 

Measures of acute effects indicated that the assessment endpoint for this risk 

assessment was being achieved in Mountain River. There were no significant changes 

in respiratory physiology or brain cholinesterase activity as a result of exposure to 

chlorpyrifos. 

Measures of chronic effects were more difficult to interpret. Chlorpyrifos residues 

confirmed that fish in the Huon Valley orcharding region are exposed to chlorpyrifos in 

regional waterways. Body burdens were probably indicative of the locality from which 

fish were collected, with fish collected close to large orchards having elevated residue 

levels. The histology of fish with residues showed some signs consistent with exposure 

to pesticides, but these signs could also be attributable to natural environmental 

stressors such as temperature and fluctuations in food resources. 

Further field studies are required to confirm the chronic effects of chlorpyrifos in fish 

species in the Huon Valley orcharding district. However, given the very low risk 

estimates predicted in the probabilistic risk assessment (Chapter 7) and the inconclusive 

chronic effects observed in field studies, it is unlikely that chronic effects directly 

attributable to chlorpyrifos could be identified in the Huon Valley. MeasureS'of chronic 

effects in fish in the Huon Valley are likely to be indicative of exposure to various 

anthropogenic stressors, given the level of agricultural activity within the catchment. 
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CHAPTER 9. AERIAL MOVEMENT OF CHLORPYRIFOS AND 

POTENTIAL FOR RISK MITIGATION USING SPRAY BUFFERS 

Chapter Background: Previous chapters have described potential risk to aquatic 

organisms in orcharding districts. Although the risks are small, it is desirable for risks 

to be minimised in all situations. Given that chlorpyrifos is potentially highly toxic to 

aquatic organisms, drift mitigation must be considered if the product continues to be 

used in situation where there is potential for spray drift onto waterways. 

In this chapter aerial movement of chlorpyrifos was studied with the objectives of: 

~ Describing the typical drift profile for an orchard application 

~ Assessing the effectiveness of riparian vegetation as a spray buffer to protect 

aquatic ecosystems 

~ Comparing field measurements with the spray drift model, AgDRIFT™ 

The Aquatic Risk Assessment and Mitigation Dialogue Group (1994) recommends 

buffers as one of the most effective risk mitigation options for achieving reductions in 

off-target pesticide movement. The height, density, composition and siting of 

vegetative buffers can significantly influence their effectiveness in trapping spray 

particles. Strategies for optimising the risk mitigation properties of buffers in 

orcharding districts are discussed in this chapter. 

This chapter forms the basis of a paper submitted to the Journal of Environmental Quality 

with the following reference: Walker R Brown PH Dorr D Woods N. Chlorpyrifos 

spray drift and effect of spray buffers in orcharding districts. 

Abstract 

Off target orchard spray drift onto an adjacent waterway was measured in the Huon 

Valley, Tasmania, Australia. Measured deposits of the insecticide chlorpyrifos onto 

Mountain River were compared with estimates from water sensitive papers, estimates 

used by regulatory authorities and estimates simulated using the spray drift model 
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AgDRIFT™. Comparisons of field data from Mountain River with AgDRIFT™ indicate 

this model is a valid and useful tool for estimating aerial drift in orcharding districts. 

The effect of a vegetative buffer as a spray drift risk mitigation strategy to protect 

aquatic environments was studied using stream surface deposition measurements and 

drift tower measurements. The buffer significantly reduced spray drift, approximately 

halving the amount of drift moving offsite. In this and other studies, it has been found 

that vegetative buffers with an optical porosity of 0.2 result in approximately 50% 

reduction in off-site movement of spray. Characteristics of vegetation spray buffers 

that are most effective in minimising the impact of orchard pesticides on aquatic 

environments are considered. 

INTRODUCTION 

Pesticide application in intensive orcharding systems in Australia generally involves 

the use of airblast or airshear sprayers. Improvements in the design of spray units have 

contributed to the increased efficiency of pesticide application in apple orchards, but 

the potential for significant movement of pesticide to off-target sites under certain 

conditions has been demonstrated (e.g. Spray Drift Task Force, 2000; Ganzelmeier et al., 

1995, Ganzelmeier and Rautmann, 2000) The risk of drift contamination of the aquatic 

environment is particularly high in older orcharding districts where many orchards 

have been established adjacent to waterways on river flats. Pesticide contamination of 

waterways from apple orchards is a serious environmental issue because many of the 

insecticides used, particularly organophosphates and carbamates, are highly toxic to 

aquatic organisms (Warne et al., 1998; Davies et al., 1994b; Tomlin, 1994). 

Mitigation activities are defined as actions taken to reduce or eliminate pesticide 

concentrations in aquatic and terrestrial habitats (Aquatic Risk Assessment and 

Mitigation Dialogue Group, 1994). Despite the development of spray application 

guidelines (DPIF, 1999; CPAS, 2000) and increasing pressure on growers to adhere to 

best management practices for pesticide use, the drift mitigation potential of vegetative 

buffers in orcharding districts in Australia has received limited attention. 

The Spray Drift Task Force (SDTF) in the United States of America has been responsible 

for developing a spray drift model to assist in the registration of agrochemicals. The 
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model, known as AgDRIFT™, is designed to assist regulatory authorities assess off 

target risks based on realistic input parameters instead of prescriptive threshold values. 

AgDRIFT™ is primarily designed as an aerial predictive model for risk assessment 

purposes. Its outputs are curve-fits of data collected by the Spray Drift Task Force. To 

date its potential application in Australian orchard production systems has not been 

considered. 

The aims of this experiment were to measure the drift profile resulting from a typical 

orchard application of pesticide; assess the effectiveness of a vegetative buffer in 

reducing orchard drift; and compare field measurements with the AgDRIFT™ model. 

MATERIALS AND METHODS 

Sampling site 

An experimental site typical of a 'worst case scenario' for spray drift contamination of 

waterways in orcharding regions was chosen in the Mountain River catchment, 

southern Tasmania, Australia. The sprayed block was part of one of the largest 

commercial apple orchards in the Huon Valley and located directly adjacent to 

Mountain River. The Mountain River field site was an ideal locality for studying both 

pesticide spray drift and the effect of typical regional streamside vegetation in 

mitigating drift. Mountain River flowed around the perimeter of the block, with a 

section of the river directly open to the orchard and a section of the river buffered by 

streamside vegetation (Figure 9.1). Sampling sites were: (1) Buffered site (vegetative 

spray buffer present. Spray drift reaching the river had to pass through, over or around 

vegetative buffer), (2) Exposed site (no vegetative spray buffer present. Waterway open 

to spray drift with no buffering from streamside vegetation). 

The orchard block being sprayed was approximately 4.5 ha in size and planted with 4 

year old centre leader trees (Pink Lady and Red Delicious varieties). Spacing between 

rows was approximately 4.5 m, and trees averaged 2.5 to 3 m in height. The canopy was 

relatively open. 
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Drift towers with two replicates of 
suspended strings to measure 
vertical drift profiles 

ORCHARD BLOCK •• 

--
N '\i 

• 
Figure 9.1 A simplified schematic of the orchard block and the location of drift towers. 

Streamside vegetation was dense; in addition to native grasses, wattles (5-10 m) and 

gum trees (to 25 m), there were several weed species including willows (to 15 m), 

hawthorns (to 5 m), blackberries, and inh·oduced grasses. The average optical porosity 

of the buffer was visually estimated to be 0.2. The average width of the buffer was 

approximately 7 m. 

Sampling protocol 

Drift sampling was conducted on 12 January 2000. Lorsban® 750 WG was applied at 

the rate of 660 g/ha (495 g/ha active ingredient) using a Silvan 820 CV Cropliner (1500 

L) with air output of 87, OOO m3 /h. The nozzles were Albuz ceramic nozzles at 10 bar 

pressure. Spraying commenced at 1320 hrs. The sprayer was operating for one hour in 

the orchard. 

Drift towers were located on both sides of the river at the two sites (exposed and 

buffered), so as to compare drift differences with/without vegetation buffer (Figure 

9.2) . The drift towers were 7 m tall; above this height it was difficult to maintain 

stability in the event of windy conditions. Other Australian drift sampling in cotton­

growing districts has been up to 20 m, but purpose-built mechanised drift towers have 
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been used (Woods et al., 1998). Two 1 mm diameter untreated cotton strings were 

suspended from each tower to collect drift. The strings were anchored at ground level 

so that they remained fixed through the trial. 

After spraying each cotton string was cut at one metre intervals so that the intervals 0-1 

m, 1-2 m, 2-3 m etc. could be sampled to give a vertical drift profile. Each one metre 

length of string was wrapped in foil and placed in a labeled ziplock bag and stored at 

2°C prior to extrac::tion. At the base of each drift tower three replicates of 70 mm glass­

fibre filter papers were placed on level plywood. These were used to measure 

horizontal deposition on the streambank. 

Spray deposition on the water surface was measured with 70 mm glass-fibre filter 

papers and 76 x 52 mm Novartis® (Spraying Systems Co. Wheaton, Illinois, USA) 

water-sensitive papers pinned to foil-covered polystyrene floats, se~ to float just above 

the water surface. Spray deposition on the water surface was measured for the intervals 

0-60 min and 60-120 min. Three replicates of filter papers and three replicates of water 

sensitive papers placed on each floating platform were used for each time interval. 

Sampling schedules at all sites commenced with the start of spraying (0 min ). 

Local wind speed and direction were also measured throughout the course of the 

experiment. A fixed anemometer with automatic logging was used but due to technical 

problems the data could not be downloaded. Fortunately measurements were also 

taken with hand held instruments as backup. Wind speed was measured every 5 

minutes using a handheld anemometer. Wind direction, as estimated by compass 

alignment with a wind tether, was recorded at the same time. Throughout the 

experiment the wind was light (less than 1.5 m/ sec and blew from the northern quarter 

(Appendix 3) which directed spray across the river. The temperature range on the day _ 

of sampling was 13.2 - 29.6°C. The relative humidity was 76% (Bureau of Meterology 

Grove Station, 3pm readings). 

Chlorpyrifos extraction and analysis 

Extraction from string sections and glass fibre filter papers was achieved following 

transfer of the samples to conical flasks using tweezers. 50 mL pesticide grade 
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dichloromethane and 100 µL of base neutral surrogate (Ultra Scientific®, Smith St, North 

Kingston, RI) were added to the flask. After approximately ten minutes, the flask was 

gently shaken and the solvent dried through Na2S04 (anhydrous) and evaporated to 

1000 µL under N2 atmosphere. Extraction recovery from string sections and filter 

papers was greater than 90%. 

Analysis for all samples was by GC-MS/MS using conditions that were optimised for 

detection of chlorpyrifos, base neutral surrogate and the internal standard, n­

pentadecane. Analysis was using a Varian Saturn 4D iontrap GC-MS. Gas 

chromatography conditions were as follows: 30-m V A-5MS capillary column, 0.25 mm 

i.d., 0.25 µm film thickness and helium carrier gas at a constant flow of 1.0 mL/min. 

The temperature program was as follows: injector temperature 280°C, initial 

temperature 40 °C, hold 20 min, 10 °C/ min to 160 °C, hold 9 min, 20 °C/ min to 280 °C, 

hold 6 min. MS/MS conditions were: segment 10-14 min in electron ionisation mode 

and sediment 2 14-20 min in MS/MS mode. The ions monitored for chlorpyrifos were 

314, 286, 258 m/ z. The method detection limit was 0.002 µg. 

Water sensitive paper analysis 

Image analysis with SwathKit (Droplet Technologies,-USA 

http://www.droptech.com/) was used to analyse the water sensitive papers. The 

spread factor was based on the equation used for water landing on water sensitive 

paper, and was used in estimates for droplet size and rate. 

RESULTS 

Results from the drift towers show a clear difference in drift across the river between 

the buffered and exposed site (Figure 9.2). A paired sample t-test showed that on the 

near bank there was no significant difference between the buffered and exposed (p = 

0.13, d.f = 6). On the far bank, drift at the buffered site was significantly different (p = 

0.0003, d.f = 6) and approximately half that of the exposed site. Significant differences 

were recorded in the transmission ratios for the two sites (Figure 9.3). The transmission 

ratio is the ratio of drift measured behind a buffer to that measured in front of the 

buffer. The average transmission ratio for the buffered site was 0.15 compared to 0.27 at 

the exposed site. The transmission ratio at the buffered site was significantly different 
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to the transmission ratio at the exposed site (p = 0.004, d.f = 6) indicating that there was 

a significant reduction in spray drift due to the buffer. 
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Figure 9.2 Aerial deposit (expressed as % of applied rate a.i.) measured with drift 

towers located at the exposed site and the buffered site. Measurements are shown for 

the midpoint of each height interval. 
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Figure 9.3 Transmission ratios for the buffered and exposed sites. The transmission 

ratio is calculated as (deposit behind buffer/ deposit in front of buffer). Measurements 

are shown for the midpoint of each height interval. 

Risk Mihgahon with Spray Buffers 138 



Stream surface deposition 

Average midstream deposition at the exposed site was approximately three times 

greater than at the buffered site during the first hour and approximately double during 

the second hour (Figure 9.4). Measurable deposition occurred after spraying had ceased 

indicating that chlorpyrifos remained in the atmosphere after release. 

350 

- 0-60 minutes 
~ 60-120 minutes 

BUFFER NO BUFFER 

Figure 9.4 Mean midstream(+ SE) chlorpyrifos deposition at the buffered site and 

exposed site during the first hour (0-60 minutes) and the second hour (60-120 minutes) 

after spraying commenced. 

In addition to field measurements, there are a number of different ways to estimate 

stream surface deposition (Table 9.1). The AgDRIFT™ model (described below) can be 

used to estimate spray deposition onto the water surface. AgDRIFT™ (Spray Drift Task 

Force. 1998. Ver 1.07. Missouri, USA) predicted the midstream deposit to be about half 

of the measured deposit (Table 9.1). An estimated deposit based on a standard drift 

factor of 10% overestimated the midstream deposit by about 15 times (Table 9.1). The 

deposition estimate based on water sensitive paper underestimated the midstream 

deposit by about 117 times (Table 9.1). Underestimation with the water sensitive 

papers is to be expected because droplets less than about 50 µm will not stain the 

papers so the total deposit on the paper is not recorded (Ciba-Geigy, 1985). 
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Table 9.1 Comparison of estimated and measured chlorpyrifos deposition (µg/m2) on 

the water surface at the exposed site. Estimates based on rate of active ingredient 

applied (0.495 kg/ha). , 

Estimate Chlorpyrifos deposit on water surf ace 

µg/m2 

Estimated environmental deposit 

based on 10% spray drift 

Estimate based on AgDRIFT™ simulation 

Estimate based on water sensitive paper results 

Mean measured deposit (± SE) 

Comparisons with AgDRIFT™ simulations 

4950 

163 

2.9 

338 (± 28) 

AgDRIFT™ utilises a three-tier approach. Tier I is designed to "yield conservative 

exposure estimates for downwind deposition values ... as a preliminary screen for aerial, 

ground and orchard airblast spraying" (Teske et al, 1997). Tier II and Tier III permit 

increasing access to more model details for aerial spraying only. Input data concerning 

application, meteorology and the environment can be included. As the level increases, 

the level of input data required increases. 

For airblast applications AgDRIFT™ models three orchard scenarios with different 

canopy structures: normal (stone and pomefruit, vineyard), dense (citrus, tall trees) and 

sparse (young, dormant trees). Figure 9 .5 shows a comparison of measured ground 

deposits with AgDRIFT™ simulations for these three orchard scenarios. The deposits 

shown are the mean horizontal deposits measured on filter papers located beneath the 

drift towers. The data collected in the Huon Valley orchard correlates reasonably with 

the AgDRIFT™ simulation for pomefruit orchards (normal simulation in Figure 9.5). 

Some variation between model and field measurements would be expected because 

downwind drift profiles are influenced by the prevailing meterological conditions, 

release height, initial droplet spectra and formulation (Dorr et al., 1998). 

Risk Mitigation with Spray Buffers 140 



~ 
E-< 

~ 
~ 
es 
~ 
~ 
< 
f,;i;, 
0 
~ .. 
'-' 

E:: 
Cl.l 
0 
~ 
~ 
~ 
~ 

~ z 
0 
N s 
0 

= 

100 

10 

1 

.... .... .... .... .... .... .... ............ ...... ------ ........ .......... __ _ 

0.1 

0.01 

0.001 +-----~--------------------! 

0 20 40 60 80 100 

DOWNWIND DISTANCE (m) 

·-
0 dense 

-normal 

• • sparse 

• Buffered site 

& Exposed site 

Figure 9.5 Comparisons of measured aerial drift with AgDRIFT™ simulations. 

Further assessment of the AgDRIFT TM model in orcharding systems was undertaken 

by comparing simulations with field data collected under similar conditions. The most 

comprehensive monitoring of spray drift in orcharding has been conducted by 

Ganzelmeier et al. (1995, 2000), and the field measurements for that work correlate well 

with the pomefruit scenario modeled by AgDRIFT™ simulations (Figure 9.6). The 

downwind deposit curves from the data were closer to the sparse or dense curve than 
' 

the normal curve but these are such that 95% of the values are less than the value given 

whereas Ag DRIFT™ would be closer to the mean. 

Risk Mitigahon with Spray Buffers 141 



i 
....i 
i=.. 
i=.. 
< 
[;I;, 

0 

e 
!:: 
00 
0 
f!i 
Q 

100 

10 :<.;.:;' .. ,,, 

" ' ,, ~ --.... 
'" 

1 

'i ..... 

+-___;=--o;;;;::-------"'""··· '····~---""'~--------! 
'" '\ 

0.1 

0.01 -1--~---~--------'--------l 

1 10 100 1000 

DOWNWIND DISTANCE(m) 

~---··-orchards - early 

"" "' •Orchards - late 

--AgDRIFT Normal 

• • • ·AgDRFIT Sparse 

Figure 9.6 Comparison of AgDRIFT™ simulations with data collected by Ganzelmeier 

(1995). 

DISCUSSION 

The environmental regulatory authority in Australia currently uses a drift factor of 10% 

in their risk assessments (Holland, 1999). In Mountain River conservative drift 

estimates calculated using a standard percentage drift of 10% overestimated off-target 

deposition approximately 15 times. This has implications for any Tier 1 hazard quotient 

risk assessments conducted using a drift factor of 10%. The results from this study 

indicate that adoption of AgDRIFT™ as a tool for use in pesticides risk assessments in 

orcharding districts would generate more realistic exposure concentrations for aquatic 

organisms. 

Considerable variability in the efficiency of different drift collection techniques has 

been previously reported (e.g. Grover et al., 1978; Parkin and Merritt, 1988; Miller et al., 

1989) and the results from this experiment confirm that the results from field 

measurements must be considered in terms of the limitations of the sampling 

technique. For example, water sensitive papers have limited use for gaining 

quantitative data but they are useful for providing an estimate of droplet size. 
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Protection of aquatic environments is one of the main goals of spray drift mitigation. 

There is a range of mitigation practices from equipment specifications, meteorological 

restrictions and site modifications which can reduce spray drift from airblast 

applications, but only drift mitigation using buffer zones between the sprayed orchard 

and nearby watercourses was considered in this paper. 

The Aquatic Risk Assessment and Mitigation Dialogue Group (1994) recommends 

buffers are one of the most effective risk mitigation options for achieving a quantifiable 

reduction in off-site movement, and the data collected in this study confirmed that 

vegetation buffers can significantly reduce off-target movement of chlorpyrifos. 

The results for the drift tower deposits show that there was a statistically significant 

reduction in drift as a result of the vegetation buffer at the Huon Valley orchard site. 

The average transmission ratio for the buffered was 0.15 compared to 0.27 at the 

exposed site indicating that at this particular site the effect of the buffer was to decrease 

by half the amount of spray moving off site. These results are consistent with fieldwork 

conducted by Dorr et al. (1998) who did 26 studies measuring airborne spray 

concentration in front and behind a series of tree lines. They found that the net effect of 

the vegetative barrier was to effectively reduce the airborne spray drift by about 50%. 

The porosity of the vegetative buffers used in the~e studies ranged from 10-20%. The 

porosity of the buffer in the Huon Valley orchard was in the same range so the results 

are directly comparable. 

Recent work by Raupach et al. (2000) has found a useful correlation between the optical 

porosity of a vegetative buffer and its effectiveness in entrapping particles. The optical 

porosity is the seen fraction visible through a buffer, from a viewpoint directly facing 

the buffer. It can be easily assessed by eye in the field. The fraction of particles 

transmitted through a windbreak (transmission ratio) approximates the optical porosity, 

and the fraction entrapped by the filtration of the airflow is about (1-optical porosihj) 

(Raupach et al., 2000). 

For maximum effect the buffer must be dense enough to absorb particles efficiently, but 

sparse enough to allow some particles to flow through and be trapped. Raupach et al. 
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(2000) found an optical porosity of around 0.2 resulted in maximum total deposition 

within the buffer. The optical porosity of the Huon Valley orchard buffer was 

approximately 0.2 and this intercepted approximately 50% of spray drift. The results 

from Raupach et al. (2000) results indicate that this is about the maximum interception 

that can be expected. 

Generally tree species with fine foliage have been fourtd to be best at trapping drift 

particles. Tree species along waterways in the Huon Valley include a mixture of native 

and introduced species. Willow trees, which currently constitute a large percentage of 

streamside vegetation in the Huon Valley, make efficient spray buffers due to their 

height and fine foliage. A campaign to eradicate willows from watercourses is currently 

underway, but it is possible to replace willows with native species such as tea-tree and 

black wattle which are also effective at trapping spray drift. 

In addition to air movement through the buffer, air movement over the top of the 

buffer is also a consideration. Due to the action of turbulence on the dispersion of a 

spray cloud, a vegetative buffer must be higher than the release height of the spray. The 

greater the density of the buffer (the lower the porosity), the higher a barrier needs to 

be in relation to the spray release height (Dorr et al., 1998). Studies in wind tunnels 

have found that the minimum height of a buffer should be one and a half (1.5) times the 

release height of the spray for a 50% porosity buffer. If the porosity is reduced to 40% 

the minimum height of the barrier increases to double (2.0) the release height. For a 

solid barrier the required height approaches infinity so solid barriers are unsuitable 

(Dorr et al., 1998). 

The release height in apple orchards is the height of orchard trees. In the Pink Lady 

orchard block sprayed in this study the tree height was up to 4 m. Using the 

assumption that the minimum height of the buffer should be double the release height 

this means that a suitable buffer for this orchard block would be at least 8 m high. The 

existing buffer contains species growing at up to 25m with an approximate av~rage 

height of 10 m which is adequate according to this height specification. 
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Raupach et al. (2000) found there was a decreasing localised effect of a vegetative buffer 

with distance from the buffer. This implies that vegetative buffers should be sited 

immediately adjacent to waterways in order for maximum mitigation effectiveness. At 

some localities in the Huon Valley streamside vegetation has been cleared, and this 

trend may increase in the future with concerted efforts to remove weeds and willows 

which are choking local waterways. In these instances, even if waterways are not 

rehabilitated with native vegetation, it is still possible to reduce spray drift onto the 

waterway if there is a large open area (pasture) which can act as a buffer. Based on 

AgDRIFT™ simulations the distance required for a halving of the spray deposit to 

levels equivalent with those behind the buffer is approximately 20 m i.e. if there is no 

vegetative spray buffer an open area of ground at least 20 m is needed between the 

orchard and the waterway in order to achieve an equivalent reduction in spray drift. 

The main disadvantage of large, unvegetated buffers compared with vegetation buffers 

is the potential economic impact associated with taking land out of production. 

Recognition of the environmental benefits of vegetative buffer strips can help to reduce 

the impact of pesticides to the aquatic environment (de Snoo and de Wit, 1998). In 

some instances, the presence of a vegetative buffer may mean the 'difference between an 

acceptable and unacceptable level of risk to the aquatic environment. Monitoring of 

aquatic chlorpyrifos concentrations at the Mountain River site (Chapter 6) showed-that 

when a vegetative buffer was absent, chlorpyrifos concentrations in the water were 

high enough to pose an unacceptable risk to aquatic species in Mountain River (Figure 

9.7). When a vegetative buffer was present chlorpyrifos concentrations were less, and 

the risk to the aquatic environment was reduced to within an acceptable range. 
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Figure 9.7 Data from an ecological risk assessment for the study site illustrating how 

the presence of a vegetative buffer can reduce risk to aquatic invertebrates (sensitive to 

chlorpyrifos). With a vegetative buffer present, the risks to aquatic invertebrates from 

chlorpyrifos sprays are considered acceptable; without a vegetative buffer present 

chlorpyrifos sprays pose an unacceptable risk to aquatic invertebrates. The level of risk 

deemed acceptable is 'not more than 10% of species affected more than 10% of the 

time' . This is the risk criterion used by the Aquatic Mitigation and Dialogue Group 

(1994) . 

A vegetative buffer, with the properties described above (Figure 9.8), provides an 

economical means of mitigating against spray drift and requires no changes in spray 

application equipment or production practices. The benefits of vegetative buffers for 

drift mitigation have been recognised in the cotton industry (RIRDC, 1999), and it is 

recommended that the environmental benefits of vegetative buffers be promoted in the 

orcharding industry. 
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Figure 9.8 Schematic illustration of an effective spray buffer for protection of 

waterw ays in orcharding regions. 
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THESIS SYNTHESIS 

CHAPTER 10. DISCUSSION 

Chapter Background: This chapter corn.prises an integration of research outcomes, 

discussion on interpretation of outcomes and a critique of the different ecological risk 

assessment methods applied in this project. 

SUMMARY OF RESEARCH FINDINGS 

The objective of this project was to understand the probability and significance of 

effects of chlorpyrifos on aquatic ecosystems in the Mountain River catchment using 

ecological risk assessment methods. Given the lim.ited research that has been conducted 

with chlorpyrifos in Australia, there was no basis for judging the levels of chlorpyrifos 

contamination that could be expected in Huon Valley waterways. At the 

com.m.encem.ent of fieldwork, it was not known whether chlorpyrifos would be 

detected in any water samples collected from. Mountain River. Detections during 

seasonal sampling showed that chlorpyrifos was a pesticide of potential concern to the 

aquatic environment. This confirmed the outcomes of a Tier 1 risk assessment (Chapter 

4). Seasonal data showed that chlorpyrifos was intermittently detected in waterways in 

orcharding areas, and that the magnitude and frequency of detections was related to 

the surrounding intensity of orcharding (Chapter 6). 

Seasonal sampling was inadequate to characterise true environmental exposures 

because peak pulse concentrations were generally not measured - the maxim.um. 

concentration detected during seasonal sampling was 0.08 µg/L, while the maxim.um. 

concentration detected during pulse sampling was 0.163 µg/L. Sampling at the time of 

spraying provided unique field data describing the magnitude and duration of pulse 

exposures at a site directly exposed to spray drift. Although characterisation of pulse 

exposures in Mountain River was logistically difficult, the results obtained were central 

to the subsequent risk assessment. 
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Collection of field data specific to the application of chlorpyrifos in Huon Valley 

orchards meant that the risk outcomes were directly applicable to local production 

practices. The comprehensive risk assessment of chlorpyrifos conducted by Giesy et al. 

(1999) assumed that maximum instantaneous concentrations persisted for 48 hours. 

The fieldwork described in Chapter 6 indicated that this would have been a grossly 

conservative assumption to make for Mountain River. Characterisation of the pulse 

exposure indicated that detectable concentrations lasted for only three hours. The 

discrepancy between duration of field exposures and duration of laboratory exposures 

used in toxicity testing has been discussed by many authors (e.g. Crossland et al., 1982; 

Jarvinen et al., 1988; Siefert et al., 1989; Suter, 1993; Geisy et al., 1999;). Studies such as 

this serve to reinforce the demand for toxicity laboratory testing using exposure 

durations comparable to those occurring in the field. 

The probabilistic approach used in this study was conservative because it was based on 

the LC50/EC50 data of organisms exposed to continuous concentrations of pesticide for 

at least 48 hours. The mode of action of chlorpyrifos is by enzyme inhibition (Chapter 

5), the process is reversible, and effects are transient if exposure is short. For the 

probabilistic assessment, the 1Qth centile of fish and insect sensitivities was compared 

with exposure distributions. Probabilistic outcomes indicated that fish were unlikely to 

show chronic or acute responses to seasonal or pulse chlorpyrifos exposures. 

To validate the outcomes of the probabilistic risk assessment, field studies on acute and 

chronic effects in fish were conducted (Chapter 8). There were no significant changes in 

respiratory physiology or brain cholinesterase activity, indicating that acute effects in 

the field were unlikely. Results from tissue residues, histology and biomass data were 

difficult to interpret because of confounding factors. Chronic responses seen in fish 

were indicative of exposure to various anthropogenic stressors, not just exposure to 

chlorpyrifos. Environmental stressors impacting on fish communities in the Huon 

Valley were considered in Chapter 3. 
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Risk mitigation using riparian vegetation as a spray buffer was considered. Riparian 

vegetation at the pulse exposure sampling site was shown to reduce off-target drift by 

approximately 50% (Chapter 9). Spray buffers are recommended as a simple and 

effective mitigation option in orchards. Aquatic concentrations and drift measurements 

for orchard spray applications were consistent with maximum values predicted using 

the spray drift model Ag DRIFT™. The data collected in this study indicated that 

AgDRIFT™ is an appropriate model to use for assessments of pesticide contamination 

resulting from orchard spray drift (Chapter 6, Chapter 9). 

LIMITATIONS ON THE INTERPRETATION OF RESULTS 

Uncertainties in the characterisation of exposure and effects data have been discussed 

in preceding chapters. Many of the uncertainties encountered in this project are typical 

constraints that limit the interpretation of outcomes from all risk assessments. 

However, there are some constraints that are pertinent to this project, and these are 

outlined below. 

Lack of field studies for effects on invertebrates 

It is acknowledged that, in order to fully characterise risks to aquatic species in 

Mountain River catchment, field studies should have been undertaken for aquatic 

invertebrates as well as fish. However, due to time and resource constraints no field 

investigations of pesticide impacts on invertebrate populations were undertaken. Field 

surveys of invertebrates have been used to assess the condition of rivers in Tasmania 

(Read and Kranksi, 1998) using the AUSRIV AS approach. 

AUSRIV AS (Australian River Assessment ~ystem) is a prediction system used to assess 

macroinvertebrate communities. The AUSRIV AS model predicts the aquatic 

macroinvertebrate fauna expected to occur at a site in the absence of environmental 

stress, such as pollution or habitat degradation, to which the fauna collected at a site 

can be compared (AUSRIV AS, 1994). AUSRIV AS predictive models have been 

developed for each state and territory for the main habitat types found in Australian 

river systems, including riffle, edge, pool and bed habitats. The AUSRIV AS approach 

could be a suitable model to assess whether invertebrate populations in streams in 

orcharding/ agricultural areas differ from those in reference streams. However, it 
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should be kept in mind that the AUSRN AS approach is broad in scope, and lacks the 

resolution to detect subtle changes in populations. 

Single chemical, single stressor 

Apple pesticides are generally applied as mixes, with insecticides, fungicides and foliar 

treatments commonly mixed in the spray tank. In addition, pesticides are often applied 

at similar times within the same catchment and may be present simultaneously in local 

waterbodies. There is potential for synergistic toxic effects on aquatic organisms 

exposed to chemical mixes. In previous studies, chlorpyrifos has been shown to have 

· additive acute toxicity with the organophosphorous pesticide, diazinon, to Ceriodaphnia 

dubia. (Bailey et al., 1997). Atrazine and chlorpyrifos have been shown to have 

synergistic toxicity to larvae of the midge Chironomus tentans (Belden and Lydy, 2000). 

When toxic substances are known to act additively, it is possible to use the toxic 

equivalents or toxic unit approach (Solomon and Giddings, 2000), however research 

into synergistic effects of pesticides is limited, particularly for Australian species. If 

laboratory toxicity testing facilities were available for future research it would be 

recommended to commence a study of synergistic effects using those pesticides 

identified as contaminants of potential environmental concern in Chapter 4. Azinphos­

methy l, parathion-methyl and carbaryl are all anti-cholinesterase compounds and there 

is potential for synergistic effects with chlorpyrifos. However, it was beyond the scope 

of this project to assess risks from synergistic effects. 

Also beyond the scope of this project was the consideration of multiple stressors acting 

on aquatic ecosystems. Benson et al., (2000) note that a significant shortfall in current 

ecological risk assessment approaches is to focus simply on chemical stressors rather 

than all stressors, both chemical and non-chemical. Nutrient enrichment of waterways 

in agricultural areas may have implications for interaction with pesticide stressors. 

Cuppen et al. (1995) suggested that chlorpyrifos contamination of freshwater 

ecosystems may enhance the adverse effects of eutrophication by reducing the top­

down (consumer) control of algal biomass, at least as long as non-arthropod grazers 

permit this to occur. However, their results are based on a 35 µg/L nominal dosing of 
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chlorpyrifos, which is far higher than any concentration likely to occur in the Huon 

Valley. 

Examples of non-chemical stressors, which could adversely impact aquatic ecosystems 

in the Huon Valley, are numerous and could include changes in hydrology due to the 

presence of willows, siltation from road runoff and shading effects from willows. Non­

chemical stressors could also compound the effect of pesticides. For example, Macek et 

al (1969) found an increase of rainbow trout susceptibility to chlorpyrifos with an 

increase in water temperature. 

While it is conceivable that some non-chemical stressors may be studied individually, it 

is umealistic to imagine a study where both chemical and non-chemical stressors would 

be comprehensively assessed. The resources required for such a study are beyond those 

currently available for environmental research in Tasmania. 

ACCEPTANCE OF RISK 

The conclusion that chlorpyrifos sprays are not posing an unacceptable risk to aquatic 

environments in the Huon Valley is not absolute - it is entirely dependent on an 

individuaf s perception of risk. For example, when the project results were presented 

to community members at a Mountain River Landcare meeting, a number of 

individuals were skeptical of the outcomes and considered that any detection of 

chlorpyrifos in the aquatic environment constituted an unacceptable risk. For these 

people, the fact that there was uncertainty in the results was also unacceptable. Many 

people accept uncertainty in environmental decision-making as a realistic and valid 

approach, but critics of ecological risk assessment conclude that risk assessments are a 

tenuous basis for decision making. They believe that lack of data and knowledge 

hinders the application of risk assessment outcomes (Tai, 1997; American Chemical 

Society, 1998). 

In addition to considerations of uncertainty, some environmental managers believe that 

the very process of risk assessment is flawed because it allows some level of risk to be 

considered acceptable (i.e. that a risk-benefit balance can be found) (American 
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Chemical Society, 1998). This may be unlawful under some statutes and may be 

perceived as unethical in some circumstances (American Chemical Society, 1998). 

As noted by Baker (1998) it is necessary to build public confidence in the risk 

assessment process to narrow gaps between public perceptions of risks posed by 

pesticides and scientific perspectives of those same risks. Given the high public profile 

that pesticide contamination of the environment has received since the publication of 

Rachel Carson' s Silent Spring (1963) it is not surprising that risks from pesticides are 

generally not objectively compared with risks associated with other human inputs to 

the environment. Good risk communication is essentjal so that risks are presented in a 

clear and realistic way. 

RISKS VS. BENEFITS 

The use of biologically active chemicals in modem society poses economic and health 

benefits, as well as potential adverse effects when off-target residues reach levels that 

may impact ecosystems (Woodburn, 2000). In this study, only the environmental 

implications for pesticide use in Huon Valley orchards were considered. It was beyond 

the scope of this project to undertake a cost-benefit analysis of pesticide use in apple 

orchards. A risk trade-off analysis is difficult, but it highlights the risks associated with 

alternatives (e.g. Gray and Hammit, 2000). 

Management and regulatory decisions based on risk assessments with extreme safety 

factors and "worst-case" assumptions are of limited applicability. There are economic, 

practical and social implications for regulating false positives. This has been 

demonstrated in human health risk assessments for chlorpyrifos completed by Oliver et 

al. (2000). Their work showed that use of probabilistic methods resulted in decreased 

aggregated risk and exposure for human health risk assessments, and that probabilistic 

refinements provided more realistic indications of risk rather than using "worst-case" 

assumptions, and justifying the inherent inaccuracies as safety factors. 

In the US, chlorpyrifos and other organophosphates have been the subject of intense 

scrutiny under the US Food Quality Protection Act. The recent push by the US EPA to 

ban chlorpyrifos has been controversial (Gori, 2000). The implications for production 
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agriculture associated with the deregistration of organophosphates in USA have been 

reviewed in the horticultural industry journal, Fruit Grower (May 1998). 

In Australia, chlorpyrifos use has recently been reviewed under the National 

Registration Authority's Existing Chemical Review program. The main environmental 

outcomes of this study were that chlorpyrifos is an occasional contaminant of surface 

waters, but can reach high levels on occasion. The use pattern of main concern with 

respect to high level surface water contamination was termite protection, which 

involves generally higher rates of application than agricultural treatments. Levels of 

contamination arising from agricultural uses of chlorpyrifos were considerably lower, 

generally below 1 µg/L. Chlorpyrifos was detected in Australian surface waters on 

rare occasions. The environmental assessment identified a need to strengthen labels to 

include measures to minimise spray drift and environmental contamination (NRA, 

2000b). 

CRITIQUE OF ECOLOGICAL RISK ASSESSMENT METHODS 

USED IN THIS PROJECT 

Regional risk assessment 

In retrospect, regional risk assessment represents a complex form of ecological risk 

assessment, and its application in this project was limited. Incorporating multiple 

stressors into a risk assessment is difficult and methods are still being developed. In 

this project, the Relative Risk Model was used to rank environmental stressors in the 

Mountain River catchment (Chapter 3). Although the process of conducting a relative 

risk ranking was useful, there were limitations on the interpretation of outcomes. 

One property of the Relative Risk Model that is potentially misleading is the system for 

ranking of habitats. Habitats are ranked based on their occurrence within the region, so 

that a small area of one habitat is given a lower ranking than a large area of another. 

This system is flawed when endangered habitats form part of the region. For a rare 

habitat, it is not logical to conclude that because there is less land area of that habitat, 

the risks to it are less. 
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The major difficulty in conducting the regional risk assessment was establishing 

~successful assessment endpoints. It may be easier to set good assessment endpoints in 

highly regulated and managed catchments, but Mountain River is typical of many 

catchments in Australia for which there is limited information available. 

In conclusion, the Relative Risk Model is not recommended as a tool for catchment­

scale risk assessments. One useful component of the Relative Risk analysis that was 

used in this project was GIS, which has great potential for risk assessment applications. 

GIS interpretations are recommended to identify study areas with the highest incidence 

of environmental stressors, and to focus fieldwork on' environmental hotspots'. 

Probabilistic risk assessment 

Recently there has been debate about the application of probabilistic risk assessment 

techniques (Lee, 1999; Solomon and Giddings, 2000; de Vlaming, 2000; Benson et al., 

2000; Scholz and Collier, 2000; Woodburn, 2000). Probabilistic risk assessment has been 

criticised because it gives indirect predictions of impairments based on measurements 

of a single chemical rather than direct measurements of toxicity or biotic community 

impacts (de Vlaming, 2000). Considerations are not given to the multiple chemicals or 

stressors or to toxicant interactions and bioavailability of toxicants. Because the 

probabilistic approach is purely numerical, it cannot consider the ecological importance 

of the potentially affected organisms (Solomon and Chappel, 1998). 

Despite its shortcomings, the probabilistic approach was very useful for the Mountain 

River risk assessment. The probabilistic approach would be applicable for other single 

chemical risk assessments where there is limited toxicity data available. While there is a 

scarcity of toxicology data available for Australian species, the use of probabilistic risk 

assessment techniques is one means by which to estimate ecological impacts of 

commonly used pesticides. Another advantage of probabilistic risk assessments 

methods is that risk analysis is independent of a priori selection of acceptable 

probabilities of exposure and response for the decision-making process (Giesy et al., 

1999). This makes probabilistic methods generically applicable to many situations 

where management and regulatory guidelines for pesticide effects have not been 
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established. Probabilistic methods are highly recommended for pesticides risk 

assessments in Australia. 

The Tiered Approach 

Early tier risk assessments are based on conservative assumptions, such as maximum 

exposure and ecological sensitivity (US EPA, 1996), but they serve to highlight 

chemicals for which further investigation is important. Tier 1 risk assessment using the 

quotient method (Chapter 4) was an efficient and effective means of identifying which 

pesticides should be the focus of further investigations. Probabilistic risk assessment 

provided quantitative risk estimates that were validated using field investigations. 

The stepwise increment in resources and data requirements that typifies the tiered 

approach was very useful in this project, and the tiered approach is recommended as a 

basis for all pesticides risk assessments in Australia. 

APPLICABILITY OF ECOLOGICAL RISK ASSESSMENT 

METHODS IN AUSTRALIA 

The application of risk assessment methods in Austraha is potentially restricted by the 

availability of environmental exposure data. In this project, considerable time was 

devoted to collection of chlorpyrifos exposure data. However, availability of toxicity 

data for endemic species is the fundamental restriction limiting risk assessments for 

Australian environments. Comprehensive risk assessments will require a significant 

level of funding to generate field exposure data and toxicity data. In situations such as 

this project, where there are limited resources available, it is recommended that 

probabilistic methods be adopted. The emphasis in resource allocation should be to the 

collection of field exposure data. Although not ideal, the use of exotic toxicity data in 

probabilistic assessments is generally indicative of risks to endemic species. Given the 

growing interest in ecological risk assessment within Australia, the next few years are 

hkely to see instigation of projects designed to assess risks to endemic species in their 

natural habitats. There is tremendous potential for new and exciting research in this 

area. 
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APPENDICES 

APPENDIX I 

Water quality data for Mountain River (1997) collected from five sites. Sites are 

described in Chapter 6. 

Water temperatures In Mountain River (1997 slimmer) 
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POISON 
KEEP OUT OF REACH OF CHILDREN 

RE~D SAFETY DIRECTIONS BEFORE OPl'.NING OR USING 

."Dow AgroSd~nces 

Lorsban* 750 WG 
Insecticide 
ACTIVE CONSTITUENT: 750 g.lkg CHLORPYRIFOS (an ant!cballneslerase co1npound) 

For control of certain insect pests in FRUIT and OTHER SITUATIONS as 
sp~cified in the Directions For Use Table. 

IMPORT ANT: READ THE ATIACHED BOOKLET BEFORE USE. 

WATER SOLUBLE PACKAGING. KEEP DRY 

PRIMARY PACK CONTAINS 9 X 333g MEASURll PACl(S WHICH IT IS 
ILLEGAL TO SELL SEPARATELY 

Dow AgroSclenccs Australia Limited A.C.N. 003 m 659 
20 Rodborough Road FHENCHS FORESl' NSW 20B6 

CUSTOMER SERVICE TOLL FREE 1-800 700 096 

Net Contents: 
't111Jo:m.ut. ol ~w AgruSuou"-t:111 

NRA Approval No. 51211/0499 
GMIO 
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STORAGE AND DISPOSAL 
• Store in closed, onginal contamer In a dry, 

,cool, well·ve11bbted ar1m out of direct sunlight. 
Do not dispose of undiluted chemicals on site. 
Puncture or shred and bury empty container• 
in a local authonty landfill. If no landftll LS 
available, bury the containers btlo1v SOO mm in 
a disposal ptt speclficnUy marked and set up 
for tlus purpose dear of waterways, desirable 
vegel:dhon and LTCe roots. 
llmply cuntamer• and product should not be 
burnt. 

SMALL SPILL MANAGEMENT 
If the water soluble bag is ruptured and a spill 
occurs, wear protective equipment (See SAFETY 
DIRECTIONS). Remove granules from surfaces 
and sweep up residual material Place in a 
container thnt will p1•evenl iurthec dlspet'!l1on of 
the granules If spilled inside a building. wash 
conlaminnted surface lo deactivate the 
chlorpyrifos with a solution ol bleach (sodium 
hypocblorlte) prepared according to the bleach 
label Instructions Prevent entry of splllecl 
chemical or dantaged containers mto drams, 
dams or walerways. 
If !he liquid spcay mix Is hwol'Ved, apply 
.absorbenl materittl such as earth, sand, clay 
granules or cat Utter to the spill. Sweep up 
material wben ab•orption is completed and 
contain In a refuse vessel for disposal In the same 
manner as for ~ntaiiters {See Storage and 
D1•1'osal Section). 

SAPm"i DffiECTIONS 
• Product is poisonous ii absorbed by skin 

contact, Inhaled or swallowed. Repeated 
minor c>.posure may have a cumulative 
poisoning effect 

• Avoid conlllctwith eyes artd skin. Avoid 
lnhahng spray misl 

• When opening the container, preparint1 the 
spray or usmg the prepared spray, wear cotton 
uveralla buttoned to the neck and wnst, a 
wa•lrnble hat, elbow-length PVC gloves and a 
face shield br goggles. 

• If product on skin lmmedmtely wash area wltli 
soap and water. 

• After use and before eating, drinking or 
smo!Jng wash hands, arms and face 
U1orougbly with soap and water 

• After each day's use wash gloves, lace shield or 
goggles, conta1J1inn1ed clothing 

FIRST AID 
• If poi&oning occurs, contact a Doctor or 

Pot>ans Information Centre. (Ph.· 13 1126) 
• If swallowed, give one Atropine tablet every 5 

minutes unbl dryness of the moLtth occurs 
• 11 poLSonod by skin absorption or through 

lungs, remove any contnmintl.ted clothing, 
ww.b skh\ thoroughly and give atropine tablets 
as above. 

• Get to a doctor-Or hospital quickly. 
• If i11 eyes, hold eyes open, flood with water for 

at least 15 minutes and see a doctor. 

MATJ!RIAL SAFETY DATA SHEET 
Addilional inlormation Is listed on the Material 
Safety Data Sheet for Lorsban 750 WG Insecticide 
wluch is avadable from Dow AgroScionces on 
request. Call Customer Se1vke Toll Free on 1-800 
7001196 

' NOTICE 
Selltr Wilrt<Wllli th.:il tbe product conf0tms to iU cl111!mlcal 
l!t.-t>Lrlt'lL..:in and ls rC<1t-u1wbly fil for tltl! purpl.lscsst:are..i on llte 
lnl:rd when ~ u1 D.ccordimcc \\lllh ~c:llon:> forui..c No 
~~.u i.111ly of nteri:-hauldl•lUty or Illness fur B parilcul:u purpa!e 
express or lmplled, ex~nds kl the use of the prod11d contr;iry 
to lal:rcl IMtrucllol\5'1 or under off-1Qbel permits not endorsed 
by 01.m AgrwSd,.11 .. ld or u1iJur JU11i.iu.u.1l ~'mJ.lUQu:. 
r £MeRG£NCYRESJ'ONSE ' 

o11 ....... ~u.1.r.~1J.~i.e11 J.;.1:'.1>1.JJ. 

J~'t.R1~t~"L~ 
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ENVIRONMENTALLY HAZARDOUS 
SUBSTANCE, SOLID, N.0.5. 
(con rains Otlorpyrlfos 75%) 
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CROl' INSECT STATE RATE atrnCAL COMMENTS 
PEST ' 

Container plnnls ATgenline ants Tasonly 167g/2SL water (1 measure lo meet requirements to enter Tasmarua, tteat Ute base of plants. and the 
rutsod or other 
lno.WtnSl;mediD 

(lntfongrura lly1111Jti) pack per SOL water) sur!ace of growin& media. A. wlute depostt will rem.am. 

Gra~mc:s [Ugh thrown apple moth All States 33g/100L wote:r (1 measure Apply irubal spray JUSt after berry set Later scheduJespray should be . pack p~lOOOL water) OR madei1Srequ1red. 
333g/ha (! measure pack per 
ha) 

Kiw1fru1t Ugbt brown apple moth AllSta"" 33g{lOOL water (1 measure Apply Ute fustapphcationat green-Up, pre-blossom or post-blossom, 
pack per 1000 L water) OR after bees have been removed. The second appt1cabonshould be 14 c:h'!YS 
666g/ha (2 measure packs per thcnevery21 lo28 dnysasrequtred. Appiyatleast10daysnftcr 
ha) domlant bme"SUlphur appllation. 

l\.l&crocaqm Dunphngbug rras only 33g/100L water (1 measure Spray hedges ad1acent to orchards m late winter to f!:ltly spnng to 
h~ge-3 (NitUIA1110. ptmdahcoUlij pack per lOOOL water) OR prevent adults. cntermg the orchard. 

33'3g/ha (I measure pack-per 
ha) 

Pnsswn fnnt Queensland frwt fly NSWand BOg plus 600mL yeast AppJy30L uf :.1way mixhlre per hectare in a strip along the bottom o( U1e 
(B#ct=lryom) Qldonly hydrolysate per 30 L warer 'Irina RPpcateveryseven to tendaysdunngperiodsof fruttfly 

(1 measure pack plus 2.5 L 
suscepblnl!ef. 
AVOIDCONTACTWITHFRUIT. 

yen>t bydrolysatc per 122 L Thistreabnentis prefer.red mmtegrated pestmanagement(IPM) 
water) toru"am.tnes where U1e use of cove: c;Navs would be too disr.unhv-e. 

""""' 
Light brown apple moth NSW,SA, 33g/l00L w:iter (1 measure Cnmmendn_g a Cl et petal fnll. apply as full cover spray at intervals of two 

Tas,Vk pa.ck pt?r lOOOL v.:ater) weeks. Thi:1 rate wt!l also.suppress mealy bug populations present at 

and WA 
spraying {not in TasmruUn). 

onlv 
Stcnefrmt Light brown ..,pple'tnoth jfasand WA l.~g/lOOL water (1 measure Commt:nong after pelnl fnlL apply as full cover spray almtcrvals of two 

"nly pack per IOOOL water) weeks. ThtS rate will also suppress mealy bug popufalions present at 
smn:rinP (not fn Tasnuniat 

Queeosland lrwtHy NSWand 80g plus 600mL yeast Use 50 to lOOmL of mixture/tree a5 a stnp or patch low on the tree every 
(Badroaml iTyrntt) Qldonly hydrolysate per 30 L seven days. Use as an altemabve to cover .spr-ays~ especially as nn aid 

water (1 measure pack 
to m.tcgrnted pest management. parllcularly integrated mile control 

plus 2.5 L yeast 
AVOID CONTACT WITH FRUIT. 

hydrolysate per 122 L 
water\ 
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DIRECTION FOR USE 
Restraints: DO NOT dppl} 1£ bees are <1cttvely foraging. 

CROP INSECT STATI! RATI! CRITJCAL COMMENTS 
PEST 

Apple"' ~pple dtmpling bug NSW,QLD, 67g/100 L water (1 measure Apply up to late pink (balloon stage) Re-apply at the end of the 
SA, Vic and pack per 500 L water flowering, if necessary. DO NOT apply for a minimum of rhree days 
WAonlv before bees are actively forairln~. 

Llghl brown apple All States 33g/100L Wall?r (J. measure Commcru:mg after petal faU, apply as a full cover spray at inte=ls of 
moth pack per lOOOL warer) two weeks. This rate will also suppress mealy bug populalinns 

nrescnt at snravme: (not m Tasmania) ~ 

Avocado Queenslmtd frwt fly NS.Vand BOg plus 600mL yeast Use 50 to lOOmL of mixture/ tree as a stnp or pa!t:h low 011 the lree 
(Bgctrtx:em try01u) Q)donly hydrolysate per 30 L water every seven days 

(l measure pack plus 2.5 L AVOID CONTACTWITil FRUIT. 
yeast hydrolysate per 122 L 
wnrer\ 

Bananas 'Banana scab moth Qldonly ll67g/125L water (1 measure Apply from the fust appearance of flow.,,,; and repeat as populatrons 
pack per 250L waier) OR indicate untd finger.; are exposed. 
0.67kg or 1 33kg/ha (2 or 4 Air Blast: Use 500 to lGOOL water/ha. Use the high rate with onset 
measure rocks per ha) of wet weather and fur hl!'.h lllsect numbers. 

Banana weevil borer NSWand 333g/100L warer (J. measure Remove trash and apply 600mL of spray or 50g sand mixture as a 
Qldonly pack per lOOL water) OR 30cm band around the base of the plant Apply one appbcation at 

333g/4kg sand (1 measure maximum weevil acbvity in spring {October to November) and in 
pack per 4kg sand) autumn (March to Apnl). NOTE: Complete season's control is 

d~ndent on timelv aoolication. 
Citrus Queensland fiuit fly NSWand 80g plus 600mL yeast Use 50 to 100mL of mixt-~re/b'ee as a strip or patch low on the tree 

(Oactrocem lryom) Qldonly hydrolysate per 30 L water Use every seven to ten days during periods of crop susceptibilily. 
(1 measure pack plll> 2.5 L AVOID CONrACTWimFRUIT. 
yeast hydrolysate per 122 [. 
water) 
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PROTEC110N OF LIVESTOCK 

• Dnngerous to bees. DO NOT spray any plants in flower while bees are foraging. 

PROTECTION Ol'WILDUl'E, FISH, CRUSTACEANS, AND ENVIRONMENT 

• Dangerous to fish. 

• DO NOT contnmlnate streams, rivers'or waterways with the chemical, used containers or 
containers used for mixing or holding treated seed. 

• Only treattargetplants. DONOTallowsp1ay to drift 

PRECAU110NS 

• Grapevine leaves treated witl1 Lorsban 750 WG must not be used for human consu~1ption. 

STORAGE AND DISPOSAL 

• Store in closed, original container 111 a diy, cool, well-ventilated area out of direct sunlight 

• Do not dispose of undiluted chemicals on site. 

• Puncture or sltred and bury empty containers ma local authority lnndhlL If no lnndftllis 
available, bury the containers below 500 nun in a disposal pit specifically marked and set up for 
this purpose clear of waterways, desirable vegetation and tree roots 

• Empty containers and product should not be burnt. 

SMALL SPILL MANAGBM!!NT 

If the water soluble bag ls ruptured and a splll occurs, wear protechve equipment (See SAFETY 
DIRECTIONS). Remove granules from surfaces and sweep up residual material Place in a container 
that will prevent furU1er dispersion of the granules. If spilled UlSide a bmlding, wash contamlnnted 
surface to deacb.vate the chiorpyrifos with a solution of bleach (sod!un1 hypochlorite) prepared 
acco1·dlng to U1e bleach label instructions. Prevent entry of spilled chemical or damaged containers 
into drains, dams or wate.rways, 
If the liquid spray mix is involved, apply absorbent material such as earth, sand, clay granules or cat 
htter to the spill. Sweep 11p material when absorpbon is completed and contain in a refuse vessel for 
disposal 1.11 Ute same manner as for contai11ers (See Storage and Disposal Sechon). 

6olS 

WITHHOLDING l'ERIODS 

Apples, bananas, citrus, grape vines, kiwi fruit, passion frui~ pears, stone fruit DO NOT harvest for 
fourleen days after application. 

Avocado· DO NOT harvest for seven days after application. 

Gl!NllllAL JNS1'RUCTIONS 

MOONG: 

SPRAY MIX 

• One third fill the spray tank wiU1 water and add the required number of water soluble pre-packs 
to the stramer/ sieve. Complete filling 1llowlng Ute remai.lling water l'O run over the bags The 
bags wlll completely dissolve In a few n1iuutes. 

OR 

• Add the required number of pre-packs to a mixing buckeL and add enough water to completely 
cover the bags. Shr until Ute bags are completely dissolved and pour the pre·m!X Into the spray 
Lank. Triple rinse the bucket and stirring implement, adding the rinse water to the spray tank. 

• Agitate conbnuously lo ensure thorough ntlx.ing before and during applkab.on. Only mix 
suffident chemical for each day's work. 

• Tank mtxtures: Lor&ban 750 WG should be added to the partially full spray tank first, followed by 
0U1er dry flowables, suspension concenlrates (flowables), aqueous concentrates nnd then 
emulsifiable concentrate formulations. 

COMPATllllLITi' 

• Lorsban 750 WG tS compatible with benomyl, carbendnzim, dicofoL dinocap, dodine, (enarimol, 
mancozeb, propnrg1te, superior oils, tetradifon, thiram, lhiophannle-methyl, ziram. 

APPLICATION 

• Unless specified, it is essenlial lo apply Lorsban 750 WG In sufficient water to obtain thorough 
coverage 

• Apply through accurately calibrated equipment. 

Cl.llANJNG SPRAY EQUil'Ml!NT 

IUnsewater should be discharged onto a designated disposal area or, lf this is nnavailable onto 
unused land away from homes and water courses. 

• After using l.orsban 750 WG, empty U1e spray equipment completely and drain the whole system. 
Quarter flll the spray equipment with clean water and drculate through the pump, line, hoses and 
nozzles. Drain and repeat procedure twice. 
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SAFETY PIRECllONS 

• Product is poisooous if absorbed by skin contact, Inhaled or swallowed. Repeated minor 
-exposure may have a cumulative polsorung effect. 

• Avoid contact with eyes and skin. Avoid mlmling spray mls~ 
When opening the container, preparing the spray or using the prepared spray, wear cotton 
overalls buttoner! to the neck and wrist, a washable hat, elbow-length PVC gloves and a face 
shield or goggles. 
If product on skin immediately wash area with soap and water. 
After use and before eating, drinking or smoking wash hands, anns and face ~iorough!y with 
soap and water 

• After each day's use wash gloves, face shield or goggles, contaminated clothing 

lifilST.AJD 

• If poisoning ocC.:.rs, contact a Doctor or Poisons Information Centre (Ph.: 13 1126) 
If swallowed, give one Atropine tablet every 5 minutes until dryness of the mouth occurs. 

• lfpoisorwd by skin absorption or th1ough lungs, remove any contaminated clotbing, wash skin 
lhoroughly and give atropme tablels as above. 

• Get to a doctor or hospital quickly 
• If m eves, hold eyes open, flood with water for al least 15 mmutes and see a doctor. 
MATERIAT:SAFETY DA1'A SHEET 

Additional mfonnabonls listed on the Material Safety Dala Sheet fol'Lorsban 750 WG Inseotlcide 
which Is available from Dow AgroSc<ences on request 
C.1.11 Customer Service Toll Free on 1-800 700 096 
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APPENDIX III 

Wind data collected during orcharding spraying experiment described in Chapter 9. 

WIND SPEED (m/sec) OVER 5 min INTERVAL 
TIME (hrs) AVERAGE MAXIMUM MINIMUM DIRECTION (degrees) 

1300 0.62 1.16 0.08 70 
1305 0.10 0.73 0.00 30 
1310 0.33 0.60 0.00 60 
1315 0.11 0.73 0.00 65 

Spraying started 1320 0.02 0.22 0.00 10 
1325 0.02 0.08 0.00 355 
1330 0.23 0.64 0.00 40 
1335 0.63 1.03 0.00 360 
1340 0.03 0.22 0.00 '30 
1345 0.23 0.73 0.00 10 
1350 0.06 0.45 0.00 90 
1355 o.13 0.60 0.00 320 
1400 0.09 0.41 0.00 20 
1405 0.40 0.98 0.00 70 
1410 0.18 0.64 0.00 100 
1415 0.40 0.86 0.00 350 

Spraying finished 1420 0.22 0.94 0.00 90 
1425 0.66 1.03 0.00 330 
1430 0.01 0.04 0.00 360 
1435 0.08 0.60 0.00 40 
1440 0.00 0.04 0.00 260 
1445 0.16 0.45 0.00 340 
1450 0.01 0.08 0.00 340 
1455 0.01 0.04 0.00 290 
1500 0.02 0.08 0.00 270 

0 degrees = Magnetic North = 360 degrees 
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Appendix iv 
Chlorpyrifos extraction efficiencies for quality control (QC) spiked water samples (Chapter 6). 

Extraction efficiency from QC spiked water samples(%) 
85 

Average 
Standard Deviation 

39 
68 
93 
83 
56 
48 
105 
80 
76 
45 
102 
97 
74 

75.07 
21.42 

Extraction efficiency from QC spiked sediment samples(%) 
68 

Average 
Standard Deviation 
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35 
37 
64 
40. 

52 
37 

47.57 
13.82 
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