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SUMMARY 

Alzheimer' s disease (AD) is the most common form of dementia. The pathological 

hallmarks of AD include ~-amyloid (A~) plaques, dystrophic neurites (DNs) and 

neurofibrillary tangles (NFfs). All of these pathological hallmarks involve abnormal 

insoluble proteinaceous aggregates that have the capacity to disturb normal cellular 

functioning. However, there is disagreement within the AD literature as to whether it is 

A~ plaques, soluble A~ or NFTs that are the primary causative agent of AD. 

Irrespective of the initial cause of AD, the burden of A~ plaques and NFfs increases as 

AD progresses, eventually resulting in substantial brain atrophy, which is at least 

partially due to overt neuronal degeneration and death. Thus, a better understanding of 

the aetiology and progression of AD will enable more efficient therapeutics to be 

developed. 

This thesis investigates the role of apoptosis in AD with the aim of ascertaining whether 

apoptosis is involved in disease staging or progression or is a causative agent of AD. No 

increase in immunohistochemical labelling, or change in localisation that distinguished 

between control, preclinical AD and AD cases were present for a range of apoptosis

related proteins. In addition, mRNA levels of apoptosis-related proteins differed little 

between control, preclinical AD and AD cases when analysed by real time reverse 

transcriptase polymerase chain reaction. There was no difference in the percentage of 

apoptotic-like nuclei in the neocortex between control, preclinical AD and AD cases and 

very few of the nuclei associated with A~ plaques or NFfs were abnormal. Cytochrome 

c (cyto c)-labelling was punctate in cortical neurons, including a subset of NFf-bearing 

neurons, but a subset of DNs demonstrated cytoplasmic cyto c-labelling. These data 

suggest that apoptosis may not play a major role in the pathogenesis or progression of 

AD and that activation of apoptotic pathways can occur in the absence of extensive 

terminal appptosis in the brain. 
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As post-mortem human AD tissue provides only random time points in the dynamic 

process of disease progression, transgenic mouse models of AD are invaluable tools for 

investigating aspects of age-associated disease progression and also for testing potential 

therapeutics for AD. Although, for animal models to be used effectively, a detailed 

understanding of the pathology and disease processes that they model is required. 

Therefore, the AP plaque-associated neuronal pathology in two transgenic AD mouse 

models was investigated to determine whether the neuronal pathology in these mice 

more closely resembles human preclinical AD cases or clinically evident AD cases. 

Using immunohistochemistry the morphology and neurochemistry of the AP plaque

associated DNs present in the two lines of transgenic AD mice was demonstrated to be 

strikingly similar to that in human preclinical AD cases, but not AD cases. Importantly, 

quantitation demonstrated that the AP plaques in these transgenic AD mice were highly 

axonopathic, and were also associated with displaced or clipped apical dendrites in both 

transgenic mouse models. The results suggest that these mice represent an accurate and 

valuable model of preclinical AD that can be utilised as a platform for testing potential 

therapeutic agents for AD, to be administered prior to extensive neuronal loss. 

Finally, as current treatments for AD only treat the symptoms of the disease and do not 

slow or stop its progression, the potential of a novel therapeutic agent with zinc binding, 

neuroprotective and anti-oxidant properties, metallothionein isoform IIA (MTIIA), was 

investigated. Utilising immunohistochemistry, the A~ and thioflavine s plaque loads 

and the A~ plaque-associated neuronal pathology in 13 and 15 month old Tg2576 mice 

was investigated after three months of metallothionein IIA treatment. Although this 

pilot study did not produce any statistically significant results, there was a trend towards 

lower A~ and thioflavine s plaque loads in MTIIA treated Tg2576 mice. Thus, MTIIA 

warrants further investigation as a potential therapeutic for AD in the future. 

The research in this thesis provides valuable new data on the staging of AD, with 

particular regard to the role of apoptosis in AD and A~ plaque-associated neuronal 

pathology in transgenic AD mice and human AD. The current study indicates that 
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apoptosis does not play a seminal role in the genesis or progression of AD pathology. 

This works has also clarified how two widely studied transgenic AD mice compare to 

the schema of disease progression that occurs in human AD, and strongly suggests that 

these transgenic AD mice mimic human preclinical AD. Finally, a pilot study of MTIIA 

administration to transgenic AD mice did not result in significant differences between 

the treatment and control groups. 
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Chapter 1 - Introduction 

1 INTRODUCTION 

1.1 THE PATHOLOGICAL HALLMARKS OF AD 

Alzheimer's disease (AD) is the most common neurodegenerative disease (Bossy

Wetzel et al.,_ 2004) and is likely to become an increasing problem as the world's 

population ages (Vickers et al., 2000). The main pathological characteristics of AD are 

B-amyloid CAB) plaques, dystrophic neurites (DNs), neurofibrillary tangles (NFTs) and 

neuropil threads (Braak and Braak, 1991). All of these pathological hallmarks consist of 

abnormal accumulations of proteins within the brain. Plaques are comprised of AB 
protein that undergoes an abnormal conformational change to form insoluble fibrils that 

aggregate into extracellular masses. B-amyloid protein is derived from the B-amyloid 

precursor protein (APP) and is normally synthesised and secreted by neuronal and non

neuronal cells (Busciglio et al., 1993; Fraser et al., 1993; Haass and Selkoe, 1993; 

Martin et al., 1994; Hartmann et al., 1997; Mesulam, 1999). There are two main 

processing pathways for APP (Reid et al., 2007). The pathway that results in the 

production of Al) begins with the cleavage of APP by 13-secretase, which is usually the 

13-site APP-cleaving transmembrane aspartic protease 1 (BACEl), to produce APPs!), 

the remaining C-terminal fragment is then cleaved by the y-secretase complex to 

produce Al) and the APP intracellular domain (Zheng and Koo, 2006; Reid et al., 2007). 

The y-secretase complex consists of presenilin, nicastrin, anterior pharynx-defective-I 

and presenilin-enhancer-2 in a stable complex (DeStrooper, 2003) and 'Can cleave APP at 

heterogenous sites between 38-43 amino acids to produce the numerous Al) peptides 

(Reid et al., 2007). In the second cleavage pathway APP is cleaved by a-secretase, one 

of several members of the disintegrin and metalloprotease enzyme family, within the Al) 

domain to produce APPsa, and the C-terminal fragment is then cleaved by the y

secretase complex to yield a 3kDa product and the APP intracellular domain (Zheng and 

Koo, 2006; Reid et al., 2007). B-amyloid plaques are present within the brains of AD 

patients and mildly demented elderly (lwatsubo et al., 1994; Morris et al., 1996; Braak 

and Braak, 1997; Price and Morris, 1999) and can be morphologically characterised into 
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Chapter 1 - Introduction 

three varieties: diffuse, fibrillar and dense cored (Dickson et al., 1988; Armstrong, 1998; 

Dickson and Vickers, 2001). In contrast to AB plaques, DNs, NFfs and neuropil threads 

all involve abnormal intraneuronal filamentous (neurofibrillary) accumulations of 

altered cytoskeletal proteins. Dystrophic neurites are aberrantly shaped neuronal 

processes, likely of axonal origin, with aberrant accumulations of cytoskeletal proteins 

and cytoskeletal-associated proteins, which are specifically associated with AB plaques. 

However, not all AB plaques are associated with DNs, and the subset of AB plaques that 

are associated with DNs are referred to as neuritic AB plaques. Neurofibrillary tangles 

are intraperikaryal inclusions, principally comprised of altered tau proteins that occur 

within specific subsets of neurons in the cerebral cortex and selected subcortical nuclei. 

Similarly, neuropil threads are also accumulations of abnormal tau proteins that 

principally occur in the dendrites of NFf-bearing nerve cells (Braak and Braak, 1988; 

Braak et al., 1996). 

1.1.1 Controversial pathogenic role of AP in AD 

The 'amyloid cascade hypothesis' asserts that the primary cause of AD is AP protein. In 

this regard, it is proposed that AP plaques may be toxic to nerve cells and their 

processes, which is supported by in vitro studies that demonstrate that aggregated AP is 

particularly toxic to neurons (Pike et al., 1993; Lorenzo and Yanker, 1994; Ivins et al., 

1998; Lambert et al., 1998; Hartley et al., 1999). However, other proponents of the AP 

cascade hypothesis state that it is soluble AP oligomers or protofibrils that are toxic to 

neurons and ultimately result in neurodegeneration (Lambert et al., 1998; Hartley et al., 

1999; Wang et al., 2002; Lanz et al., 2003). Recent research suggests that oligomeric 

AP in particular, affects synaptic transmission (Huang et al., 2006; Lacor et al., 2007; 

Matsuyama et al., 2007). It is also possible that both soluble and aggregated fibrillar AP 

have neurotoxic properties. 

Alternatively, there is the opposing view that AP is not the primary causative agent of 

AD (Martin et al., 1994; Terry, 1996; Joseph et al., 2001). In this respect, 

neurofibrillary changes are emphasised as having a more central pathological role in 
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Chapter 1 - Introduction 

AD. Thus, there is disagreement as to which pathological hallmark of AD is best linked 

to the dementia phenotype. While the load of neuritic AP plaques in an individual has 

been reported to be the best indicator of the degree of dementia (Cummings and Cotman, 

1995) others have shown that NFTs (McKee et al., 1991; Arriagada et al., 1992; Bierer 

et al., 1995; Mesulam, 1999; Gold et al., 2001; Giannakopoulos et al., 2003), DNs 

(McKee et al., 1991) the density of synaptophysin-labelled synapses (Terry et al., 1991) 

or neuron loss (Bussiere et al., 2003; Giannakopoulos et al., 2003) more reliably 

correlate with cognitive deterioration in AD. However, it is possible that neuritic AP 

plaques, NFTs and synaptic and neuronal cell loss all contribute to the cognitive decline 

in AD. In addition, the temporal and spatial pattern of AP plaque deposition is different 

to that of NFTs (Arriagada et al., 1992; Lue et al., 1996; Knowles et al., 1998; Price et 

al., 1999) making it difficult to ascertain whether one pathology causes or is linked to 

the other. 

Genetic studies, the production of transgenic APP mice and the analysis of human brain 

material all provide general support for the amyloid cascade hypothesis. For example, 

APP, presenilin 1 (PS 1) and presenilin 2 (PS2) gene mutations have been linked to 

familial forms of AD and it has been proposed that all of these gene defects ultimately 

affect the metabolism of APP (Beyreuther and Masters, 1997; Hardy et al., 1998), 

although the precise role of the PS 1 and PS2 gene products in AD pathology is 

controversial. 'Normal' APP processing results in a heterogeneous mixture of proteins, 

including AP (Haas and Selkoe, 1993). However, the presence of such AD-causing 

mutations results in the production of proportionally more of the hydrophobic AP 

protein that is likely to precipitate insoluble AP plaques (for review see Sandbrink and 

Beyreutheris, 1996; Selkoe, 1996; Bossy-Wetzel et al., 2004). Further genetic support 

for the AP cascade hypothesis comes from the study of Downs syndrome. Individuals 

with Downs syndrome have an extra copy of the APP gene and as a result develop AP 

plaques at a very early age, followed by other neuropathological features of AD (Brion, 

1996; Lemere et al., 1996). This implies a staging of AD, with APP abnormalities and 

AP plaque formation preceding, and possibly causing, neurofibrillary degeneration. 

Furthermore, numerous transgenic mouse models of AD expressing a variety of 
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Chapter 1 - Introduction 

combinations of human APP, PS 1 and PS2 proteins harbouring mutations associated 

with familial AD exhibit AD-associated pathology with aging, including AP plaques, 

DNs, astrogliosis, microgliosis and neurodegeneration, however, these mice do not, 

demonstrate neurofibrillary pathology or extensive neuronal death (Games et al., 1995; 

Hsiao et al., 1996; Borchelt et al., 1997; Sturchler-Pierrat et al., 1997; Holcomb et al., 

1998; Moechars et al., 1999; Janus et al., 2000; Mucke et al., 2000; Chishti et al., 2001; 

Blanchard et al., 2003; Higgins and Jacobsen, 2003; Richards et al., 2003; Cheng et al., 

2004; Kawasumi et al., 2004; Oakley et al., 2006). 

Despite this wealth of information on genetically linked AD, it is important to note that 

the majority of AD cases are sporadic, with genetically linked forms accounting for less 

than 5% of all AD cases (van Leeuwen et al., 1998), however, genetically linked and 

sporadic AD cases may share a common final pathophysiological pathway (Lippa et al., 

1996). For example, when two genetically linked AD cases were compared to sporadic 

cases there was no difference in the pattern of distribution of neuronal loss, AP plaques, 

neuritic AP plaques and NFTs, or in the ratio of neuronal loss to neuritic AP plaques or 

NFTs (Lippa et al., 1996). However, a recent study utilising in vivo imaging techniques 

suggests that human subjects carrying PS 1 mutations that lead to early-onset AD 

demonstrate a different regional pattern of AP plaque deposition to that in sporadic cases 

(Klunk et al., 2007). It has been suggested that sporadic AD cases begin with an 

increase in production of Ap or a decrease in the clearance of Ap, particularly with 

regard to the hydrophobic AP protein (Selkoe et al., 1996), resulting in the aggregation 

of AP into insoluble AP plaques and the onset of degeneration. In support of this 

proposition, the activity of the APP cleaving enzyme P-secretase significantly increases 

with aging (Fukumoto et al., 2004), while the E4 allele of apoplipoprotein E (ApoE), 

which is a major risk factor for sporadic AD, promotes AP precipitation into insoluble 

AP plaques (Mesulam, 1999). 

It has been suggested that low levels of free testosterone may also be a risk factor for 

developing AD, with low levels of testosterone correlating with cognitive dysfunction, 
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Chapter I - Introduction 

including in subjects with mild cognitive impairment and AD (Hogervorst et al., 2004; 

Beauchet, 2006). Furthermore, gonadectomized male 3xTg-AD mice exhibited increased 

accumulation of A~ and deficits in hippocampal function that were attenuated by 

dihydrotestosterone treatment (Rosario et al., 2006). However, other population studies 

have suggested that there was no association between oestrogen or testosterone levels in 

men and the risk of developing AD (Ravaglia et al., 2007). In comparison, the role of 

oestrogen and progesterone as risk factors for women developing AD and as factors that 

influence the pathogenesis of AD are controversial. Some studies suggest that oestrogen 

and progesterone are neuroprotective and decrease the risk of AD (Yue et al., 2005; 

Carroll et al., 2007), while other investigations indicate that increased exposure to 

oestrogen and progesterone increase the risk of developing AD in women (Shumaker et 

al., 2003; Shumaker et al., 2004; Colucci et al., 2006; Ravaglia et al., 2007). 

1.1.2 A "mass effect" variant of the amyloid cascade hypothesis 

Following findings that indicate that DNs, particularly in the earliest stages of AD, 

exhibit morphological and biochemical features that are strikingly similar to the axonal 

response to structural injury (Masliah et al., 1993; Meller et al., 1994; De Witt and Silver, 

1996; Su et al., 1996a; Vickers et al., 1996; Christman et al., 1997; King et al., 1997; 

Nakamura et al., 1997; Dickson et al., 2000; King et al., 2001; Chuckowree and Vickers, 

2003; Dickson et al., 2005) a variant of the amyloid cascade hypothesis was proposed 

(reviewed in Vickers, 1997; King et al., 2000, Vickers et al., 2000). Thus, it is 

hypothesised that AP plaque formation, particularly the more dense AP plaques, causes 

physical deformation and injury to axons, resulting in a cascade of cytoskeletal changes 

that lead to DN formation (King et al., 1997; Vickers, 1997; Dickson et al., 1999, 

Vickers et al., 2000; Dickson et al., 2005). Indeed, only non-neuritic AP plaques are 

present in young transgenic AD mice, while AP plaque-associated DNs do not appear 

until several months later (Mucke et al., 2000). Additionally, fewer dendrites, axons and 

neuronal somata are present within the areas inhabited by AP plaques in human AD 

(DeWitt and Silver, 1996; Knowles et al., 1998; Tomikodoro et al., 2001; Adlard and 

Vickers, 2002), supporting the proposal that AP plaques can be considered as space-
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Chapter 1 - Introduction 

consuming entities that push other structures aside and/or compress neural elements. 

Thus, individual AB plaques may create a localised "mass effect" within the neuropil. 

However, experimental models of injury generally involve acute axonal injury, after 

which the damaged axons undergo reactive and regenerative changes and the injury is 

eventually resolved. As dense AB plaques are considered to be relatively stable entities 

(Christie et al., 2001; Spires et al., 2005), the physical trauma inflicted upon neurites in 

AD is chronic and may interfere with the "normal" response to axonal irtjury. Thus, it is 

postulated that chronic stimulation of the neuronal reaction to injury by AB plaques, 

perhaps over many years, may cause changes in cytoskeletal elements such as 

neurofilaments (NFs) and tau that lead to the formation of the abnormal insoluble 

filamentous structures, such as those in NFTs (Vickers et al., 1996; Dickson et al., 1999; 

Metsaars et al., 2003). To elaborate on the data leading to the formation of this mass 

effect hypothesis, the following sections of this review focus on the early neuronal 

changes that are specifically associated with AB plaque pathology, and how the staging 

of neuronal alterations provides clues to the pattern of neural degeneration that underlies 

dementia. 

1.2 CYTOSKELETAL PATHOLOGY IN AD 

Neurofibrillary pathology involves specific abnormal alterations in neuronal cytoskeletal 

proteins. The cytoskeleton is a rigid yet dynamic framework of protein polymers that 

determines neuronal morphology and intracellular structure and also plays an important 

role in axonal transport. The cytoskeleton is made up of three classes of protein 

polymers; the microtubules, NFs and microfilaments. The NFs are intermediate 

neuronal filaments that include specific protein classes such as the NF triplet proteins, 

peripherin and a-internexin. The NF triplet proteins include NFL, NFM and NFH (low, 

medium and high molecular weight subunits), which normally co-assemble to form 

intermediate filaments (Smith et al., 2003). Recent research shows that a-intemexin 

also acts as a fourth subunit that co-assembles with the NF triplet proteins in the mature 

central nervous system (CNS) (Yuan et al., 2006). Neurofilament triplet proteins and a-
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Chapter 1 - Introduction 

intemexin are present in specific subsets of neurons, with NF triplet proteins being 

richly expressed in large neurons especially those with long axonal processes (Su et al., 

1996a; Kirkcaldie et al., 2002; Dickson et al., 2005). In contrast, a-intemexin is more 

widely distributed amongst cortical cell types (Dickson et al., 2005) and is present in a 

substantial proportion of human and rat neocortical cells that are not labelled for the NF 

triplet proteins. As discussed below, alterations in NF proteins, particularly in DNs, may 

provide important insight into the deleterious effects of Af3 plaque formation on the 

neuropil. In addition, there is on-going and substantial interest in the role of the 

microtubule-associated protein, tau, in neuronal degeneration in AD. The normal 

biological role of tau is to promote the assembly of tubulin into microtubules and aid 

microtubule stability, and this is regulated by the phosphorylation state of tau 

(Trojanowski and Lee, 1994; Hardy et al., 1998; Iqbal et al., 2005). Abnormal 

hyperphosphorylation of tau results in the loss of normal tau function, increases. the 

ability of tau to aggregate with itself and other microtubule associated proteins in 

insoluble aggregates, and precedes the accumulation of tau into insoluble masses in AD 

(as reviewed in Iqbal et al., 2005). Abnormal accumulations of tau are found in DNs, 

NFTs and neuropil threads (Trojanowski and Lee, 1994; Johnson and Jenkins, 1999). 

Neurofibrillary tangles can be classified according to their sequential changes in 

morphology (Braak et al., 1994). · Group one or pre-NFT neurons do not exhibit 

established NFTs, but do contain paired helical filament (PHF) tau (Braak et al., 1994). 

Group two and three neurons progressively accumulate intracellular NFTs, and group 

four and five NFTs are present in the extracellular space following the death of the NFT

bearing neurons (Braak et al., 1994). However, the abnormally phosphorylated form of 

tau that NFTs and neuropil threads are principally comprised of is different to the form 

of tau that is present in DNs (Onorato et al., 1989; Trojanowski and Lee, 1994; Johnson 

and Jenkins, 1999). 

1.3 DYSTROPHIC NEURITE PATHOLOGY IN AD 

Dystrophic neurites are aberrant neuronal processes that can be immunoreactive for both 

phosphorylated and dephosphorylated Nf triplet proteins, APP, ubiquitin, a-intemexin 
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Chapter 1 - Introduction 

and/or tau (Dickson et al., 1988; Cras et al., 1991; Benzing et al., 1993; Masliah et al., 

1993; Su et al., 1996a; Vickers et al., 1996; King et al., 1997; Nakamura et al., 1997; Su 

et al., 1998; Thal et al., 1998; Dickson et al., 1999; Dickson and Vickers, 2001; Dickson 

et al., 2005). Morphologically, DNs appear as swollen tortuous neurites 10-60µm in 

diameter with a range of shapes that are invariably associated with AP plaques (Benzing 

et al., 1993; Masliah et al., ·1993; Su et al., 1996a; Vickers et al., 1996; King et al., 1997; 

Su et al., 1998; Dickson et al., 1999; Dickson and Vickers, 2001; Dickson et al., 2005). 

Dystrophic neurites immunolabelled for NF triplet proteins and a-intemexin can be 

categorised as bulb- or ring-like structures based on the morphology oflabelled elements 

(Masliah et al., 1993; Su et al., 1996a; Vickers et al., 1996; Su et al., 1998; Dickson et 

al., 1999; Dickson and Vickers, 2001). Bulb-like DNs appear as bulbar swellings 

whereas ring-like DNs are generally smaller and appear as spherical structures with a 

hollow core (Dickson et al., 1999; Dickson and Vickers, 2001). Both ring- and bulb-like 

DNs may either be continuous with an axon or appear as isolated structures (Dickson et 

al., 1999; Dickson and Vickers, 2001). The morphological and biochemical properties 

of DNs differ between the early and late stages of AD (Benzing et al., 199~; Masliah et 

al., 1993; Su et al., 1996a; Vickers et al., 1996; Su et al., 1998; Dickson et al., 1999; 

Dickson and Vickers, 2001; Dickson et al., 2005). 

1.3.1 Characteristics of DNs in preclinical AD 

Defining the key cellular processes involved in AD has been difficult due to the complex 

brain pathology of this degenerative condition (Benzing et al., 1993). However, cases 

with mild dementia exhibit significantly more NFTs and neuritic AP plaques than non

demented elderly brains (Morris et al., 1996; Price and Morris, 1999). As there is strong 

evidence that AD begins many years before the clinical symptoms are evident, a 

'pathologically aged' or 'preclinical phase' of AD has been defined in which the initial 

signs of the pathological hallmarks of AD are present in the cortices typically associated 

with minor cognitive deficits that may represent incipient AD dementia (Morris et al., 

1996; Price and Morris, 1999; Vickers et ·al., 2000). This 'pathological aging' is 

characterised by the emergence of widespread extracellular AP plaques within the 
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cerebral cortex but no overt nerve cell degeneration or neurofibrillary changes. Thus, 

non-demented or mildly demented elderly brains with numerous AP plaques are studied 

as a potential preclinical stage of AD, and may provide important clues to the initiation 

of neuronal pathology (Benzing et al., 1993; Lue et al., 1996; Vickers et al., 1996; 

Dickson et al., 1999; Dickson and Vickers, 2001). In preclinical AD cases AP plaque

associated DNs are frequently labelled with antibodies to APP, NF triplet proteins and 

a-intemexin, but not for the abnormal tau protein that characterises neurofibrillary 

pathology in established and end-stage AD (Cras et al., 1991; Benzing et al., 1993; 

Vickers et al., 1996; Su et al., 1998; Dickson et al., 1999; Dickson and Vickers, 2001; 

Dickson et al., 2005). The DNs in preclinical AD cases include ring- and bulb-like 

structures, which are labelled for both a-intemexin and NF triplet proteins (Dickson et 

al., 1999; Dickson et al., 2005). 

1.3.2 Characteristics of DNs in AD 

In contrast, tau-labelled DNs in AD cases are abundant and typically appear as angular, 

elongated structures (Dickson et al., 1999). Interestingly, NF triplet protein and a

intemexin-labelled bulbous and 'sprouting' DNs are also abundant, but NF triplet 

protein-labelled ring-like dystrophic neurites are rare, while a-intemexin-labelled ring

like DNs are numerous (Dickson et al., 1999; Dickson et al., 2005). A substantial subset 

of the NF triplet protein and a-intemexin DNs in AD cases exhibit a core of tau 

immunoreactivity (Su et al., 1998; Dickson et al., 1999; Dickson et al., 2005). This 

suggests that DNs may "mature" from NF triplet protein and a-internexin 

immunoreactive DNs into DNs that label for tau only (Su et al., 1998; Dickson et al., 

1999; Dickson et al., 2005). In support of this proposition, two different AD mouse 

models exhibit DNs that are immunoreactive for phosphorylated NF triplet protein 

epitopes several months before phosphorylated tau-labelled DNs appear (Masliah et al., 

2001; Blanchard et al., 2003). Thus, DNs may begin as the NF triplet protein- and a

intemexin-immunoreactive DNs found in preclinical AD and then develop a core of 

altered tau filaments (Su et al., 1998; Dickson et al., 1999; Dickson et al., 2005). 

Finally, the tau-immunolabelled elements within the DN may develop and expand, 
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eventually replacing all normal cytoskeletal proteins in these axonal segments (Su et al., 

1998; Dickson et al., 1999; Dickson et al., 2005). 

1.3.3 Morphological and biochemical changes in DNs are identical to reactive 

axonal alterations following axonal injury 

Many in vivo and in vitro models of axonal injury produce reactive axonal structures that 

are neurochemically and morphologically similar to the neurofilamentous DN pathology 

in AD. Both phosphorylated and dephosphorylated NF triplet proteins and a.-internexin

labelled ring- and bulb-like structures similar to those in AD brains are observed 

following axonal injury (Masliah et al., 1993; Meller et al., 1994; DeWitt and Silver, 

1996; Su et al., 1996a; Vickers et al., 1996; Christman et al., 1997; King et al., 1997; 

Nakamura et al., 1997; Dickson et al., 2000; King et al., 2001; Chuckowree and Vickers, 

2003; Dickson et al., 2005; Table 1.1). The presence of dephosphorylated NF triplet 

protein in DNs is particularly interesting as these proteins are normally located in the 

somatodendritic neuronal domain (Rosenfeld et al., 1~87), but are abnormally present in 

axons following physical trauma (Meller et al., 1994; King et al., 1997; Dickson et al., 

1999; King et al., 2001). 

Previous studies have demonstrated that ring- and bulb-like structures immunolabelled 

for NF triplet protein and/or a.-internexin represent a stereotypical reactive response of 

axons to damage in both a model of structural injury to adult rat neocortex as well as 
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Table 1.1 The morphology and neurochemistry of DNs in AD are strikingly similar to 

the to the reactive axonal alterations that occur following axonal injury. 

Neurochemical profile of 

DNs in AD 

NF triplet proteins Benzing et al., 1993 

Masliah et al., 1993 

a-internexin 

Tau 

GAP43 

Su et al., 1996a 

Kinget al., 1997 

Su et al., 1998 

Nakamura et al., 1999 

Dickson et al., 1999 

Dickson and Vickers, 2001 

Dickson et al., 2005 

Dickson et al., 2005 

Su et al., l 996a 

Dickson et al., 1999 

Dickson and Vickers, 2001 

Masliah et al., 1991 

Masliah et al., l 992b 

GAP43, growth associated protein 43 

Neurochemical profile of injured axons 

In vitro In vivo 

Dickson et al., 2000 Meller et al., 1994 

Chuckowree and Vickers, 2003 King et al., 1997 

Dickson et al., 2005 

Dickson et al., 2005 

Dickson et al., 2000 
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King et al., 2001 

Dickson et al., 2005 

Dickson et al., 2005 

Meller et al., 1993 

Li et al., 1996 

Christman et al., 1997 

Hou et al., 1998 

Schmitt et al., 1999 

King et al., 2001 



Chapter 1 - Introduction 

following axotomy of cortical neurons maintained in long-term culture (Dickson et al., 

2000; King et al., 2001; Chuckowree and Vickers, 2003; Dickson et al., 2005). In both 

models of axonal injury, the appearance of ring-like neurofilamentous structures 

precedes the appearance of bulb-like structures (Dickson et al., 2000; Chuckowree and 

Vickers, 2003). The proportion of NF triplet protein and a-intemexin immunoreactive 

ring-like structures is relatively constant prior to their disappearance (Dickson et al., 

2005). Thus, the continued presence of a-intemexin ring-like DNs in end-stage AD 

may indicate a distinct subset of neurons that are damaged relatively late in AD 

progression (Dickson et al., 2005), whereas the subset of neurons immunoreactive for 

both a-intemexin and the NF triplet protein may be affected relatively earlier. This 

potential staging of disease progression may explain why the neurons that selectively 

express NF triplet proteins are particularly susceptible to NFT formation (Bussiere et al., 

-2003), as they are also the neurons initially compelled to respond to the damaging 

effects of A~ plaque formation (Vickers et al., 2000). Alternatively, the NF triplet 

protein-labelled neurons may possess a specific cytoskeletal profile that contributes 

towards susceptibility to NFT formation, whereas those neurons that labelled only with 

a-intemexin may degenerate more rapidly without developing classical intraperikaryal 

neurofibrillary pathology. 

The bulbous and swollen processes labelled for NF triplet proteins after axotomy in vivo 

are strikingly similar to those observed associated with A~ plaques in AD (King et al., 

2001). The presence of axonal clubs following trauma in humans and experimental 

models of axonal injury has been well documented since early last century (for review 

see Sahuquillo and Poca, 2002). As axoplasmic flow continues following axotomy, 

these axonal clubs consist of accumulated organelles (see Sahuquillo and Poca, 2002), 

such as vesicular and multi-lamellar bodies and mitochondria (King et al., 2001). 

Ultrastructural analysis of A~ plaque-associated DNs in AD cases found that they 

contain clear vesicles, abundant mitochondria, multivesicular and lamellar bodies and 

filaments, which are characteristic of reactive, regenerative and dystrophic axonal 

changes in response to injury (Masliah et al., 1993). Meanwhile, other DNs show 

ultrastructural changes consistent with degenerating neurons (Masliah et al., 1993). 
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1.4 fl-AMYLOID PLAQUES DISRUPT THE NEUROPIL 

1.4.1 More compact/fibrous Ap plaques are associated with neuritic pathology 

The different morphological types of AP plaques in AD arise independently and affect 

the surrounding neurites to varying degrees (Dickson et al., 1988; Armstrong, 1998; 

Dickson and Vickers, 2001). P-amyloid plaques can be categorised as 'spherical 

diffuse', 'fibrillar' or 'dense-cored' depending on their three dimensional structure and 

packing density of AP fibrils (Dickson and Vickers, 2001). In vivo imaging provides 

evidence that AP plaques in Tg2576 mice (Table 1.2) are reasonably stable structures 

(Christie et al., 2001; Spires et al., 2005). Over extended periods of time, the vast 

majority of AP plaques do not change in size, however, new AP plaques do sometimes 

appear and rare AP plaques grow or shrink (Christie et al., 2001). The proportion of 

diffuse, fibrillar and dense-core AP plaques is different in preclinical AD and AD cases 

(Fukumoto et al., 1996; Dickson and Vickers, 2001). There is a lower proportion of 

diffuse and dense-core AP plaques in AD cases compar~d to preclinical AD cases, 

whereas the proportion of fibrillar AP plaques is increased in AD cases (Dickson and 

Vickers, 2001). In addition, the percentages of diffuse and fibrillar AP plaques 

associated with DN s are lower in preclinical stages as compared to the later stages of 

AD (13-24% and 47-82%, respectively), while the percentage of dense-core AP plaques 

that are neuritic is slightly decreased in AD compared to preclinical AD cases (82-76%; 

Dickson and Vickers, 2001). Overall, AD brains contain a higher relative proportion of 

fibrillar and dense-core AP plaques than preclinical AD cases, and it is these AP plaque 

types that are more regularly associated with DNs both in human brains and in 

transgenic mouse models of AD (Dickson et al., 1988; Fukumoto et al., 1996; Su et al., 

1996a, Dickson and Vickers, 2001; Brendza et al., 2003; Noda-Saita et al., 2004; 

Dickson et al., 2005). Similarly, in vitro experiments show that fibrillar, but not 

amorphous Ap, results in DN formation, somatic shrinkage and significant synaptic and 

neuron loss in hippocampal cultures (Pike et al., 1993; Lorenzo and Yanker, 1994; Ivins 

et al., 1998). These data are consistent with the hypothesis that it is the more densely 

packed, highly fibrillar AP plaques that are likely to cause the displacing and 
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Table 1.2 Transgene expression and genetic background of mouse models of AD. 

Type Name Transgene/ promoter Genetic Background Primary reference 

APP Tg2576 human APP695 With Swedish (K670N/M671L) C57BL/6 APPsw Hsiao et al , 1996 

mutation/ hamster pnon protem gene promoter xB6SJL FI 

PDAPPLine human APP m1mgene with Indiana (V717F) C57B6xDBA2 Games et al, 1995 

109 mutation/ platelet denved growth factor-P FI hybnd 

APP23 human APP751 With Swedish (K670N/M671L) C57BL/6J Sturchler-P1errat et 

mutation/ Thy! 2 promoter al, I997 

TgCRNDS human APP With Swedish (K670N/M671L) and Indiana HybndC3H/ Ch1sht1 et al , 2001 

(V717F) mutations/ Synan hamster pnon promoter He-C57BL/6 

APP Lon human APP770 With Swedish (K670N/M671L) and FVB and C57Bl/6 Moechars et al , 

London (V717I) mutauon/ munne Thy! promoter 1999 

PDAPPSwe/ hAPP with Swedish (K670N/M671L) and Indiana C57BL/6 x DBN2 FI Mucke et al , 2000 

Ind (J20) (V717F) mutat10ns/ platelet denved growth factor p promoter 

APPSw/Ind human APP with Swedish (K670N/M671L), Indiana (V717F) C57BL/6J Cheng et al , 2004 

/Arc and Arctic (E22G) mutat10ns/ platelet denved growth factor 

P promoter 

Tau rTg (tauP301 human 4R tau with (P301L) mutat10n/ calcmm calmodulm 129S6, FVB/N Santacruz et al , 

L) 4510 kmase promoter system With a tetracyclme-operon 2005 

Double PS APP Tg2576xPSl Lme5 l (Duffetal, !996),humanAPP695 (C57BL/6 APPsw Holcomb et al, 1998 

with Swedish (K670N/M671 L) mutat10n x human PS 1 x B6SJL FI) 

(M146L)/ hamster pnon protem gene promoter and x (Swiss Webster 

platelet denved growth factor p2, respectively xB6D2FI) 

APPSwe/ Tg2576 mice (Hsiao et al , 1996) x human 4R tau With (C57BL6xSJL) x Perez et al , 2005 

Tauv/w mutat10ns (G272V, P301L, R406W) I hamster pnon (C57BL6xCBA) 

promoter 

TAPP Tg2576 mice (Hsiao et al , 1996) x human tau With mutat10n (C57BL/6 APPsw x Lewis et al , 200 I 

(P30 I L) JNPL3 (LeWJs et al , 2000)/ hamster pnon B6SJL FI) 

protem promoter, munne pnon promoter, respectively x C57BL/DBA2/SW 

Triple 3xTg-AD human APP695 With Swedish (K670N/M671L) mutat10n, 129/C57BL6 Oddo et al , 2003a 

human four repeat tau with the P30 I L mutallon and 
PSI Ml46V/ Thy-I 2 promoter 
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compressive forces sufficient to damage axons. 

There is a decrease in the density of axons and dendrites within AP plaques compared to 

the surrounding neuropil (De Witt and Silver, 1996; Knowles et al., 1998; Le et al., 2001; 

Tomidokoro et al., 2001; Adlard and Vickers, 2002; Moolman et al., 2004; Tsai et al., 

2004). Specific types of AP plaques, defined by their morphology and packing density, 

affect normal axons and dendrites differentially (Le et al., 2001; Adlard and Vickers, 

2002). Diffuse AP plaques do not affect the density of dendritic labelling in either AD 

or preclinical AD brains (Knowles et al., 1998; Adlard and Vickers, 2002). However, 

more fibrillar AP plaques exhibit significantly decreased dendrite labelling within the 

AP plaque area in comparison to the surrounding neuropil (Le et al., 2001; Adlard and 

Vickers, 2002). Interestingly, the density of dendrites within fibrillar AP plaques is not 

significantly decreased in preclinical AD cases (Adlard and Vickers, 2002). 

Specifically, the dendrites that remain within fibrillar and dense core AP plaques exhibit 

decreasing calibre, spine density, and deflect around the AP plaque and while other 

dendrites terminate (appear to be 'clipped') at the AP plaque margins (Adlard and 

Vickers, 2002; Grutzendler et al., 2007). Additionally, dendrites within AP plaques that 

are free of NFTs and neuropil threads have dramatically and significantly increased 

curvature (Knowles et al., 1999b ). Furthermore, observations of the deflection of 

dendrites around dense and fibrillar AP plaques supports the concept that densely packed 

AP plaques act as space-forming lesions (Adlard and Vickers, 2002). 

In vivo imaging of A~ plaques in combination with neuronal processes in Tg2576, 

PDAPP and PSAPP transgenic AD mice models (Table 1.2) shows that diffuse A~ 

plaques subtly change neurite geometry, while fibrillar A~ plaques dramatically alter 

neurite trajectories and result in dendritic spine loss, shaft atrophy and axonal 

variscosities (Le et al., 2001; D'Amore et al., 2003; Stem et al., 2004; Tsai et al., 2004; 

Spires et al., 2005; Garcia-Alloza et al., 2006; Grutzendler et al., 2007). All dendrites 

that pass through fibrillar A~ plaques in PSAPP mice exhibit spine loss and reduced 

shaft diameter, and a significantly higher percentage of dendrites terminate in the 

vicinity of fibrillar A~ plaques than further away (Tsai et al., 2004). This reduction in 
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the number of dendrites passing through fibrillar A~ plaques in PSAPP mice is age

dependent and led to neurite breakage and the permanent disruption of neuronal 

connections in PSAPP mice (Tsai et al., 2004). Interestingly, even though the average 

thioflavine s-stained plaque radius in PDAPP mice is lOµm there appears to be an 

approximately 40-SOµm zone surrounding the plaques in PDAPP and PSAPP mice in 

which nearly half of the neuronal processes are disrupted (D' Amore et al., 2003; 

Grutzendler et al., 2007). The presence of A~ plaques and the alterations in geometry of 

A~ plaque-associated neurites results in an impairment of the magnitude and precision 

of the evoked synaptic response of neurons to transcallosal stimuli in Tg2576 mice in 

comparison to wild type age-matched controls (Stern et al., 2004). As the data also 

suggests that A~ plaques do not affect the overall levels of synaptic innervation, these 

results indicate that A~ plaques disrupt the synchrony of convergent inputs and reduce 

the ability of neurons to successfully integrate and propagate information (Stern et al., 

2004). However, a recent study asserts that the density of synaptophysin-labelled 

boutons is significantly decreased within 200µm of fibrillar A~ plaques in Tg2576 mice 

(Dong et al., 2007). In addition, other investigators report that dendritic spine density is 

significantly decreased in Tg2576 compared to age-matched wild type controls prior to 

the deposition of A~ plaques, suggesting that expression of the APP transgene may also 

contribute to dendritic spine loss independently of A~ plaque formation (Jacobsen et al., 

2006). 

1.4.2 P-amyloid plaques associated with familial AD cases 

There are two additional AP plaque types observed in hereditary AD cases that are 

associated with mutations in PS 1, namely "inflammatory" and "cotton wool" AP 

plaques. Inflammatory AP plaques have recently been described in PS 1 AD cases, and 

have dense cresyl violet-, silver- and thioflavine s-stained cores that are not 

immunoreactive for Ap, tau, ApoE and PSI, and are also associated with reactive 

microglia and astrocytes (Shepherd et al., 2005). "Cotton wool" AP plaques are 

numerous large rounded diffuse AP plaques in the frontal cortex of AD cases with PS 1 

mutations, and are relatively free of tau-labelled neuritic and glial components, despite 
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the presence of many NFTs and neuropil threads in nearby neuropil (Boulden et al, 

2000; Mann et al., 2001; Steiner et al., 2001; Kwok et al., 2003). However, fine neurites 

labelled with hyperphosphorylated tau (Steiner et al., 2001; Shepherd et al., 2004) and 

globular DNs labelled for non-hyperphosphorylated tau are associated with cotton wool 

AJ3 plaques (Takao et al., 2002; Shepherd et al., 2004). Cotton wool AJ3 plaque 

pathology is potentially related to abnormally high production of AJ31-42 (Houlden et 

al., 2000; Steiner et al., 2001), which is mainly due to the PSl mutations, and in many 

cases amyloid fibrils within these AJ3 plaques are rare (reviewed in Tabira et al., 2002). 

However, not all cases with hereditary AD caused by PS 1 mutations exhibit cotton wool 

AP plaques (Janssen et al., 2001) and cotton wool AP plaques are also present in 

sporadic AD cases (Le et al., 2001 ). 

1.4.3 Biochemical characteristics of neuritic and non-neuritic AP plaques 

Recent research suggests that there may be biochemical differences in different AJ3 

plaque types, and between neuritic AJ3 plaques and non-neuritic AJ3 plaques. For 

instance, Apx-40 immunoreactivity is mainly restricted to cored Ap plaques, while 

diffuse AJ3 plaques and cored AJ3 plaques demonstrate immunoreactivity for AJ3x-42 

(Jimenez-Huete et al., 1998; R.abano et al., 2005). However, labelling with a novel 

antibody suggests that the principal component of diffuse AP plaques might be APx-17 

peptides (Rabano et al., 2005). Interestingly, when transgenic mice that selectively 

express high levels of APl-40 are crossed with mice selectively expressing AJ31-42 or 

Tg2576 mice, the double transgenic mice show 60-90% decreases in AP plaque 

deposition, suggesting that APl-40 inhibits AJ3 deposition (Kim et al., 2007). In 

addition, an antibody that detects the internal residues AJ311-16 specifically labels 

vascular amyloid and neuritic AJ3 plaques in AD cases (Rabano et al., 2005). An 

antibody that specifically recognises the oligomeric Ap structure has also relatively 

recently become commercially available, and should provide some interesting 

information regarding which species of AJ3 is detrimental to neuronal health. 
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1.5 ABERRANT REGENERATION IN AD MAY BE RELATED TO THE 

STEREOTYPICAL RESPONSE OF NEURONS TO INJURY 

Following axonal injury, a regenerative sprouting response is observed both in vitro and 

in vivo that is characterised by the presence of neurites expressing growth associated 

protein 43 (GAP43), APP and ApoE that share similarities with DNs in AD (Masliah et 

al., 1991; Otsuka et al., 1991; Masliah et al., 1992a, Masliah et al., 1992b; Benzing and 

Mufson, 1995; Li et al., 1996; Christman et al., 1997; Dickson et al., 1997; Thal et al., 

1997; Hou et al., 1998; Dickson et al., 2000; Gomez-Ramos, et al., 2001; King et al., 

2001; Chung et al., 2003; Sabo et al., 2003; Dickson et al., 2005) albeit, the DNs in AD 

have aberrant morphology. Accordingly, neurodegeneration in AD may be linked to 

abnormal stimulation of regenerative changes in neurons, leading to a re-expression of 

proteins and pathways linked to early neuronal and neurite development. Thus, 

neurodegeneration in AD may be closely linked to aberrant cellular plasticity. 

1.5.1 Dystrophic neurites in AD are labelled for GAP43 

In this regard, GAP43 has been widely used as a marker for neuritic outgrowth, 

including the regeneration of axons following injury (Masliah et al., 1992b; Li et al., 

1996; Christman et al., 1997; Hou et al., 1998; Dickson et al., 2000; King et al., 2001). 

Sprouting neurites labelled with GAP43 and NF triplet protein are present following 

transection of axonal bundles in vitro (Dickson et al., 2000; King et al., 2001; 

Chuckowree and Vickers, 2003) and GAP43 messenger ribonucleic acid (mRNA) is 

upregualted in neurons in Clarke's nucleus following axotomy in vivo, even if they are 

destined to degenerate (Schmitt et al., 1999). GAP43-labelled A~ plaque-associated 

DNs and GAP43 immunoreactive fine caliber neurites are also present in AD cases 

(Masliah et al., 1991; Masliah et al., 1992b), with approximately 50% of thioflavin s

stained plaques in AD cases containing GAP43-labelled neurites (Masliah et al., 1991). 

This sprouting response appears to be more prominent in the hippocampus of AD 

patients than in the neocortex as approximately 80% of thioflavine s-stained plaques in 

the hippocampus are associated with GAP43-labelled neurites (Masliah et al., 1991). 
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Additionally, fine fibrillar staining for GAP43 is increased in the neuropil in the AD 

hippocampus; especially in areas with decreased synaptophysin-labelling (Masliah et al., 

1991) suggesting a sprouting response to AP plaques is associated with dendritic loss 

(Adlard and Vickers, 2002). 

1.5.2 P-amyloid precursor protein is present in DNs in AD 

The presence of APP in AD brains may also indicate the occurrence of post-injury 

regenerative processes. The APP is thought to play an important role in neurite 

outgrowth in development and following injury, with evidence suggesting that a

secretase cleaved APP and the APP intracellular domain may be neuroprotective and 

improve memory and long-term potentiation (Goodman and Mattson, 1994; Furukawa et 

al., 1996; Stein et al., 2004; Ma et al., 2007a; Ring et al., 2007). P-amyloid precursor 

protein immunoreactive spherical and club-like axonal swellings are widely used as a 

marker for axonal injury following various models of traumatic brain injury (Stone et al., 

2001). For example, APP is present in neurons following a weight-drop model of 

traumatic brain injury (Lewen et al., 1995), in axons following an impact-acceleration 

head injury model of diffuse traumatic brain injury (Marmarou et al., 2005), and in 

axons and dystrophic axonal swellings after needle stab injuries in the rat brain (Otsuka 

et al., 1991). The co-localisation of GAP43, NF triplet protein and APP in a 

subpopulation of outgrowing neurites in the neonatal rat (Masliah et al., 1991; Masliah 

et al., 1992a) and the concentration of an APP complex that is likely to have a role in 

membrane motility regulation in the growth cones of neurons (Sabo et al., 2003), both 

suggest a role for APP in neuritic outgrowth. p-amyloid precursor protein 

immunoreactive Ap plaque-associated DNs and pyramidal cell bodies are also present in 

AD (Masliah et al., 1992b). In AD over half of the DNs associated with AP plaques are 

intensely immunoreactive for APP and APP-labelling is also more intense in pyramidal 

neurons in the frontal cortex of AD patients than in control brains (Masliah et al., 

1992b). Additionally, the increase in APP levels that occur in aged rat motor neurons 

following axonal injury (Sola et al., 1993; Xie et al., 2003) is associated with increased 

survival of these cells (Xie et al., 2003). As pyramidal cells appear to be selectively 
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vulnerable to degeneration in AD (Morrison et al., 1987; Hof, 1997; Vickers et al., 1997; 

Bussiere et al., 2003), increased APP in pyramidal neurons in AD may indicate an 

increase in regenerative neuritic plasticity in this vulnerable cell population. 

1.5.3 Apolipoprotein E is associated with several of the pathological hallmarks 

of AD 

There is also evidence to suggest that ApoE has an important role in the development 

and regeneration of the nervous system (Poirier, 1994; Masliah et al., 1995; Strittmatter 

and Roses, 1995; Masliah et al., 1996a), however, the role of ApoE in AD is still 

unclear. ApoE plays important roles in the development, regeneration and aging 

processes of the nervous system (for review see Masliah et al., 1996a) probably due to 

its involvement in cholesterol uptake and redistribution and its putative role in the 

stabilisation of microtubules (Strittmatter and Roses, 1995). In vitro ApoE alleles apos2 

and £3, but not e4, bind to the microtubule binding domains of microtubule associated 

protein-2 (MAP2) and tau, and may stabilise the interactions of these two microtubule 

associated proteins with tubulin (Strittmatter and Roses, 1995). In support of this, the 

neurite outgrowth of a neuronal cell line was increased by the presence of apos3 but not 

by apo~4 (Holtzman et al., 1995), and apos3, but not apos4, expression fully restored 

mossy fibre sprouting in ApoE knockout hippocampal slice cultures (Teter et al., 1999) 

and increased post-injury sprouting in the entorhinal cortex (White et al., 2001). 

Meanwhile, the delayed reinnervation of the dentate molecular layer after perforant 

pathway interruption in ApoE knock out mice strongly suggests a specific role for ApoE 

in regeneration following injury (Masliah et al., 1994). Furthermore, a neuroprotective 

role for ApoE has also been intimated, as the expression of human apos3, but not apos4, 

in Apoff1- mice protects neurons from excitotoxic damage and age-dependent 

neurodegeneration (Buttini et al., 1999). 

ApoE-labelled AP plaques, NFT-bearing neurons and possibly DNs are also present in 

AD (Benzing and Mufson, 1995; Dickson et al., 1997; Thal et al., 1997; Gomez-Ramos, 

et al., 2001). ApoE is present in all neuritic AP plaques in AD and preclinical AD cases 

20 



Chapter 1 - Introduction 

and some AB plaques that are not associated with DNs, suggesting that either ApoE 

enhances the ability of certain AB plaques to damage the surrounding neuropil or that 

ApoE is deposited in certain AB plaques after axonal injury during the process of 

attempted neurite regeneration (Dickson et al., 1997). As no fibrillar AB plaques or 

neuritic degeneration is observed in the brains of knockout ApoE mice expressing 

mutated human APP it is more likely that ApoE facilitates the formation of fibrillar AB 
plaques and the associated neuritic pathology (Holtzman et al., 2000). Indeed, 

intracerebral administration of lentiviral vectors expressing apoE4 and apoE2 in PDAPP 

mice increases and decreases hippocampal A~ burdens, respectively (Dodart et al., 

2005). ApoE-labelled DN-like structures that are not immunoreactive for tau, ubiquitin 

or NF triplet proteins are also observed in AD and preclinical AD cases (Dickson et al., 

1997). While one study reports that nearly all ApoE-labelled cells in the nucleus basalis 

of Meynert and layer II of the entorhinal cortex of AD are co-localised with PHFs of tau 

(Benzing and Muf son, 1995), other studies found that ApoE is only occasionally co

localised with pre-NFT PHFs and intracellular NFTs (Dickson et al., 1997; G6mez

Ramos, et al., 2001). This suggests that ApoE mainly binds to NFTs once they are in the 

extracellular space, perhaps in a comparable way to the binding of ApoE to extracellular 

A~ plaques (Gomez-Ramos et al., 2001). However, mice expressing apoE4 under the 

neuron specific enolase promoter develop intraneuronal inclusions of phosphorylated tau 

that are barely detectable in mice expressing apoa3 under the same promoter (Bretch et 

al., 2004). 

1.5.4 Chronic aberrant piasticity may result in neurofibrillary pathology 

A high phosphorylation state of tau is thought to be crucially involved in the formation 

of PHFs, which are the major constituents of NFTs and neuropil threads (Arendt, 

2003a). Interestingly, a highly phosphorylated form of tau similar to PHF-tau is present 

distinctly in association with synaptic plasticity. This PHF-like tau is increased in 

animals during hibernation and arousal in association with the regression and re

establishment of synaptic contacts of mossy fibres with hippocampal comu ammonis 3 

(CA3) apical dendrites (Arendt et' al., 2003). Foetal tau also exists in a similar 
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phosphorylation state to PHF-tau (Trojanowski and Lee, 1994). These findings point 

towards a high phosphorylation state of tau being a physiologically normal event that is 

associated with neuronal plasticity (Trojanowski and Lee, 1994; Arendt et al., 2003). 

Perhaps the chronic stimulation of regenerative processes that require neuronal plasticity 

and place the neuron under metabolic stress in the AD brain result in the formation of an 

abnormally phosphorylated form of tau that leads to the formation of PHFs and 

consequently NFTs. Multiple kinases including activated microtubule-associated 

protein kinase, microtubule affinity regulating kinase, glycogen synthase kinase 3P 

(GSK3P), cyclin-dependent kinase 5 (cdk5) and cdc2/cyclin Bl kinase co-localise with 

PHF-tau suggesting that these kinases may be responsible for the abnormal 

phosphorylation of tau (Yamaguchi et al., 1996; Vincent et al., 1997; Knowles et al., 

1999a; Chin et al., 2000; Noble et al., 2003). There is growing evidence that the 

dysregulation of cdk5 activation contributes to the abnormal phosphorylation of tau and 

perhaps the production of AP in AD, with an emerging role for cdk5 in APP processing 

(as reviewed in Lau and Ahlijanian, 2003; Cruz and Tsai, 2004). Ischemic or oxidative 

damage, AP treatment and other neurotoxic stimuli can elevate intracellular calcium and 

activate calpain (Cruz and Tsai, 2004), which can cleave cdk5 activator p35 into a p25 

cleavage product that causes prolonged activation of cdk5 (Tseng et al., 2002) due to its 

longer half life (Cruz and Tsai, 2004). The ratio of p25 to p35 is higher in the AD 

hippocampus, frontal, inferior and parietal cortices than in control brains (Tseng et al., 

2002). Furthermore transgenic mice overexpressing cdk5 activator p25 and mutant 

human tau accumulate significantly more aggregated tau and NFTs than tau-only 

transgenic mice, along with tau hyperphosphorylation at several sites (Noble et al., 

2003). Additionally, data suggests that stress activated protein kinases, which may be 

activated in AP plaque-associated neurites in AD, are a likely candidate for the 

pathological phosphorylation of tau proteins (Buee et al., 2000). 
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1.5.5 Chronic neuronal plasticity may also result in loss of differentiation 

control and cell cycle re-activation in AD 

It has also been proposed that the continuous need for neuronal plasticity and re

organisation in AD results in aberrant neuritic outgrowth (Arendt, 2003). For example, 

many GAP43-labelled ectopic entorhinal boutons associated with AP plaques are 

observed in the hippocampus, thalamus and white matter tracts of aged APP23 mice 

(Table 1.2; Phinney et al., 1999). It has further been postulated that this is due to de

differentiation of neurons in AD and the re-expression of developmental proteins in 

neurons that are involved in morphoregulation (Arendt, 2001; Arendt, 2003). There is 

accumulating evidence that proteins associated with AD such as APP, ApoE and the 

presenilins play an important role in the regulations of neuronal morphology (Arendt, 

2003; Ji et al., 2003). Furthermore, loss of differentiation control, progressive 

morphodysregulation and cell cycle re-activation have all been linked to cell death in 

AD (Arendt, 2001). Cell cycle regulatory molecules including cdc2, cdk4, proliferating 

cell nuclear antigen, cyclin B and cyclin D, are re-expressed in neurons in AD but are 

rarely observed or not observed at all in control brains (McShea et al., 1997; Vincent et 

al., 1997; Busser et al., 1998; Ogawa et al., 2003; Yang et al., 2003). Specifically, 

cyclin B and cdc2 co-localise with each other and their M-phase specific tau

phosphoepitopes in hippocampal neurons with NFTs and neurons susceptible to NFT 

formation in AD cases (Vincent et al., 1997; Busser et al., 1998). Additionally, aged 

mice expressing non-mutant human tau in the absence of mouse tau develop NFTs and 

are labelled for cyclin D1, ki67 and proliferating cell nuclear antigen, while the brains 

from age-matched wild type controls are negative for NFTs and these cell-cycle 

regulating proteins (Andorfer et al., 2005). Of interest is a recently developed transgenic 

mouse that conditionally expresses the simian virus 40 large T antigen oncogene, which 

forces cell cycle activation in post-mitotic neurons (Park et al., 2007). These mice 

exhibit tau phosphorylation, pre-tangles, diffuse AP plaque deposition, although a small 

number of fibrillar AP plaques, neurodegeneration and cell cycle changes similar to 

those in human AD supporting the suggestion that aberrant cell cycle activation may 

generate AD pathology (Park et al., 2007). 
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With respect to the underlying hypothesis that AP plaques cause structural injury to 

axons, the cell-wide response of neurons to damage involves sprouting and regenerative 

changes (Vickers et al., 2000). The persistence of the AP plaque structure and its 

interference with a 'normal' regenerative response may all contribute to 'pushing' 

neurons into an aberrant regenerative state, leading to profound cytoskeletal changes, 

characteristic tau modifications and, ultimately, neuronal degeneration. 

1.6 ACCUMULATION OF AD-ASSOCIATED PATHOLOGY AND CELL 

DEATH IN AD 

AD-associated hallmarks tend to appear first in the limbic and basal areas in the frontal, 

temporal and occipital cortices, and subsequently spread to the remaining areas of the 

cerebral cortex (Braak and Braak, 1991). However, the temporal and spat~al pattern of 

NFT and neuropil thread distribution is different to that of AP plaque deposition (Braak 

and Braak, 1991; Lue et al., 1996; Knowles et al., 1998; Price et al., 1999). 

Neurofibrillary tangles and neuropil threads first appear in the entorhinal cortex and 

hippocampus, followed by an inferior to superior spread of pathology throughout the 

association cortices, and subsequently throughout the primary cortical areas (Pearson et 

al., 1985; Lewis et al., 1987; Arnold et al., 1991; Braak and Braak, 1991). Additionally, 

NFTs are mainly localised to neocortical layers III and V (Pearson et al., 1985; Lewis et 

al., 1987; Arnold et al., 1991; Arriagada et al., 1992; Hof et al., 1992). In comparison, 

AP plaque deposition is first observed in the basal portions of the frontal, temporal and 

occipital lobes, and as AD progresses deposition occurs in the hippocampus and all 

isocortical areas, with the primary cortices being affected last (Braak and Braak, 1991). 

P-amyloid plaques are deposited mostly in layer II, III, VI and the adjacent portion of 

layer V (Braak and Braak, 1991). Neuritic AP plaques also show a different pattern of 

distribution from that of NFTs, neuropil threads and AP plaques (as reviewed in Braak 

and Braak, 1997), and are predominantly localised to neocortical layers II, III, IV and V 

(Pearson et al., 1985; Lewis et al., 1987; Arnold et al., 1991). Interestingly, the patterns 

of neurofibrillary pathology and AP plaque distribution indicate that the populations of 

neurons that develop NFTs have neuronal processes that extend into the areas inhabited 
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by AP plaques (Hof, 1997). As the density of AD-associated pathology increases with 

disease progression, the limbic and basal isocortical areas in which pathological 

hallmarks first appear are the most severely affected in end-stage disease. However, 

there is still much debate as to whether it is the AP plaques or neurofibrillary pathology 

that initiates neuronal damage and degeneration in AD. 

Overt neuronal loss occurs in the entorhinal cortex, hippocampus and neocortex of AD 

cases compared to control cases (Hof et al., 1990; Lippa et al., 1992; West et al., 1994; 

Fukutani et al., 1995; Gomez-Isla et al., 1996; Kril et al., 2002; Kril et al., 2004). In the 

entorhinal cortex, an area severely affected by AD pathology, a decrease of 45-75% in 

neuronal numbers occurs in AD cases compared to control cases, which show no age

related neuron loss (Lippa et al., 1992; Fukutani et al., 1995; Gomez-Isla et al., 1996). 

Similarly, a different pattern of neuron loss is detectable in the hippocampal subfields of 

AD cases compared to aged control cases, with the CAl zone of the hippocampus being 

most severely affected (West et al., 1994; Kril et al., 2002; Kril et al., 2004). Some 

studies have stated that the degree of neuron loss in AD is equivalent to the extent of 

NFT formation (Hof et al., 1990; Cras et al., 1995; Fukutani et al., 1995; Cullen and 

Halliday, 1998), suggesting that NFT-formation may cause cell death. For instance, the 

overall loss of neurons in the entorhinal cortex is reported to correlate with the density of 

NFTs and neuritic AP plaques in some studies, while the dramatic loss of neurons in 

layer II and IV of the entorhinal cortex paralleled the specific accumulation of NFTs in 

these entorhinal laminae (Lippa et al., 1992; Gomez-Isla et al., 1996). In contrast, others 

assert that NFTs only account for 38-55% of variability in neuronal numbers in 

hippocampal areas in AD (Von Gunten et al., 2006). Additionally, when the numbers of 

intracellular and extracellular NFTs are assessed in the hippocampal CAl and the 

superior frontal gyrus (SFG) and inferior temporal gyrus (ITG) of the neocortex, NFT 

formation seems likely to account for only a small proportion of neuron loss (Gomez

Isla et al., 1997; Kril et al., 2002; Vickers et al., 2003). In addition, Salehi and 

colleagues (1998) report that while neuronal density in areas surrounding ,neuritic AP 

plaques in the CAl is 16-19% lower than in the unaffected neuropil, this would only 
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account for 2.6% of the neuronal loss that occurs in the CAI region. Thus, A~ plaques 

and NFTs may both contribute the neuronal cell death that occurs in AD. 

1.6.1 Neurons that express NF triplet proteins are selectively vulnerable to 

degeneration in AD 

The neuronal loss observed in AD affects certain sub-populations of neurons. Pyramidal 

neurons, especially those labelled with NF triplet proteins, are selectively vulnerable to 

degeneration in AD (Morrison et al., 1987; Hof et al., 1990; Vickers et al., 1992; 1994a; 

Hof, 1997; Vickers et al., 1997; Bussiere et al., 2003). In comparison non-pyramidal 

cortical neurons, typically intemeurons, expressing calcium-binding proteins such as 

parvalbumin, calretinin and calbindin are relatively resistant to AD pathology (Hof et al., 

1990; Ferrer et al., 1991; Hof et al., 1991a; Hof et al., 199lb; Hof et al., 1993; Sampson 

et al., 1997; Leuba et al., 1998). Originally it was assumed that calcium binding proteins 

were neuroprotective, but the discovery of a subset of calretinin-labelled neurons that are 

also labelled for NF triplet proteins and are susceptible to NFT formation, lead to the 

suggestion that NF triplet protein alterations may enable or be necessary for NFT 

formation and/or degeneration (Vickers et al., 1992; Vickers et al., 1994; Vickers et al., 

1996; Sampson et al., 1997). 

1.7 MECHANISM OF CELL DEATH IN AD 

Despite evidence of neuron loss in the AD brain, there are numerous, varied and 

opposing views regarding exactly how these neurons die. The most prominent premise 

is that neuronal death occurs via apoptosis. The next section of this review details the 

characteristics of apoptosis and the in vitro and in vivo data regarding neuronal apoptosis 

in AD. In addition, the data regarding neuronal apoptosis in AD is not at odds with the 

"mass effect" hypothesis, as apoptotic changes have also been observed in neurons 

following neurite injury (Berkelaar et al., 1994; Pravdenkova et al., 1996; Hou et al., 
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1998; Springer et al., 1999; Bilki et al., 2000; Smith et al., 2000; Wingrave et al., 2003; 

DeRidder et al., 2006). 

1. 7.1 The morphological and biochemical characteristics of apoptosis 

Programmed cell death has been described and defined by many overlapping schemas; 

as apoptotic, autophagic, necrotic, energy-dependent and energy-independent, active and 

passive. While apoptotic, autophagic and necrotic cell death were once thought of as 

being separate and defined cell death programs, there is now increasing evidence that 

these cell death programs are not mutually exclusive, but may occur as a continuum and 

even co-exist in the same cell (as reviewed in Bursch, 2004; Stefanis, 2005). 

Morphologically and biochemically apoptosis involves cytoplasmic shrinkage, 

chromatin condensation, deoxyribose nucleic acid (DNA) fragmentation, early 

dissolution of the nucleolus, alterations of cell membrane composition, membrane 

blebbing, the formation of apoptotic bodies (Su et al., 1996b; Bratton et al., 2000) and 

caspase-activation (Stefanis, 2005). Caspases are a family of cysteine proteases that are 

activated in a cascade-like fashion and cleave key cellular proteins that result in 

apoptotic cell death. Two pathways activate the apical caspases of this cascade: the 

intrinsic or mitochondrial pathway and the extrinsic or death receptor pathway (Figure 

1.1). 

In the intrinsic apoptotic pathway cytochrome c ( cyto c) is released from the 

mitochondria and associates with Apaf-1, dATP and caspase-9 to form the cytoplasmic 

apoptosome complex. Formation of the apoptosome complex then results in the 

activation of caspase-9 and the subsequent activation of effector caspases such as 

caspase-3. Release of cyto c from the mitochondria is regulated by the Bcl-2 family of 

proteins, which includes both pro-apoptotic (Bax, Bad, Bak, Bid) and anti-apoptotic 

(Bcl-2, Bcl-xL) members. In turn, the Bcl-2 family is regulated by cytokines and other 

death-survival signals such as the p53-mediated damage response (as reviewed in 

Adams and Cory, 2001). Anti-apoptotic Bcl-2 and Bcl-x1 inhibit the release of cyto c by 

blocking the opening of the mitochondrial permeability transition pore, whereas pro-
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Figure 1.1 

Apoptosis can be initiated through the activation of either the intrinsic or extrinsic 

apoptotic pathways. The intrinsic or mitochondrial apoptotic pathway is regulated by 

the relative levels of pro- (eg. Bax) and anti-apoptotic (eg. Blc-2) proteins, which are 

members of the Bcl-2 protein family. In turn, the Bcl-2 family of proteins are regulated 

by cytokines and other death-survival signals. Pro-apoptotic Blc-2 family members 

inhibit the opening of the mitochondrial permeability transition pore, while pro

apoptotic Bcl-2 family members induce the opening of mitochondrial membrane pores. 

If pores in the mitochondrial membrane are opened cyto c is released from the 

mitochondria and associates with Apaf-1, dATP and caspase-9, which results in the 

activation of caspase-9, and the subsequent activation of effector caspases such as 

caspase-3. 

The death receptor or extrinsic apoptotic pathway involves extracellular ligands binding 

to death receptors in the cell membrane (eg. Fas, Tumour necrosis factor receptor 1, 

TNFRl). Ligands binding to death receptors cause conformational changes in the 

receptors, resulting in the recruitment of various adaptor proteins to form several death 

receptor complexes. Different death receptor complexes recruit and activate different 

apical caspases, which then activate effector caspases such as caspase-3. For instance, 

the activated TNFRl recruits TNF receptor-associated death domain (TRADD), which 

can recruit Fas associated death domain (FADD) and caspase-8, resulting in the 

activation of caspase-8. 
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apoptotic Bcl-2 family members induce the opening of pores in the mitochondrial 

membrane including the permeability transition pore (as reviewed in Jordan et al., 2003; 

Tatton et al., 2003). Bel-XL may also bind to Apaf-1 and prevent it from activating 

caspase-9 (Adams and Cory, 2001). Thus, the balance of pro-apoptotic and anti

apoptotic Bcl-2 family members may be critical to the survival of an individual cell 

(Shimohama, 2000). 

Activation of the death receptor or extrinsic pathway involves the binding of 

extracellular ligands to death receptors in the cell membrane, which cause 

conformational changes in the receptors and the formation of intracellular death protein 

complexes. These death protein complexes then recruit and activate caspase-8, which 

subsequently activates effector caspases. Death receptors are members of the tumour 

necrosis factor receptor (TNFR) superfamily and include Fas, TNFRl/2 and TNF-related 

apoptosis-inducing ligand-receptors 112 (Bratton et al., 2000). Different receptors 

recruit different adaptor proteins and form different death receptor complexes that can 

recruit and activate different caspases. For instance, the ligand bound Fas receptor can 

recruit Fas associated death domain (F ADD) proteins that associate with caspase-8 

(Muzio et al., 1998). Whereas the activated TNFRl can recruit TNF receptor-associated 

death domain (TRADD), which recruits FADD and caspase-8, or TRADD can bind 

receptor-interacting protein, which recruits receptor-interacting protein-associated ICH-

1/CED-3 homologous protein with a death domain/caspase receptor-interacting protein 

with a death domain and then caspase-2 (Duan et al., 1997). There is also some cross 

talk between the intrinsic and extrinsic apoptotic pathways in some cell types, as 

activated caspase-8 can cleave and activate Bcl-2 family member Bid, which 

translocates to the mitochondria and induces cyto c release (Stefanis, 2005). 

1.7.2 Apoptosis in neurons 

Neurons predominantly use the intrinsic pathway of apoptosis, but in some cases 

neurons can use the extrinsic pathway or undergo autophagy, caspase-independent non

apoptotic cell death involving other proteases (eg. calpains), mitochondrial alterations 
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( eg. energy depletion) or the generation of free radicals and permeability transition pore 
( 

opening that releases cytotoxic proteins (as reviewed in Stefanis, 2005). Apoptotic 

pathways may also differ depending on the death stimulus and cell type, so that the 

presence of caspase-activation or the morphological features of apoptosis do not always 

equate to cell death (Stefanis, 2005). Interestingly, there is also increasing evidence that 

caspases may have apoptosis-independent roles in proliferation, cell cycle regulation, 

differentiation and other cellular processes, perhaps by cleaving a limited number of 

selected substrates (as reviewed by Schwerk and Schulze-Osthoff, 2003). 

1. 7.3 P-amyloid-induced neuronal apoptosis in vitro 

Many in vitro models have shown that treating primary neuronal cultures and cell lines 

with fibrillar or soluble AP or fragments of AP result in apoptotic cell death (Y anker et 

al., 1990; Forloni et al., 1993; Loo et al., 1993; Pike et al., 1993; Lambert et al., 1994; 

Gschwind and Huber, 1995; Pike et al., 1995; Paradis et al., 1996; Estus et al., 1997; 

Lambert et al., 1998; Ivins et al., 1999; Pillot et al., 1999; Selznick et al., 2000; 

Morishima et al., 2001; Jang and Surh, 2002; Wei et al., 2002; Cantarella et al., 2003; 

Hoshi et al., 2003; Lu et al., 2003; Sola et al., 2003; Sponne et al., 2003; Gestwicki et 

al., 2004; Movsesyan et al., 2004; Paradisi et al., 2004; Bloom et al., 2005; Caraci et al., 

2005; Jang and Surh, 2005; Millet et al., 2005; Ohyagi et al., 2005; Ramirez et al., 2005; 

Yao et al., 2005; St John, 2007). Some studies indicate that AP induces apoptosis via 

the intrinsic pathway (Paradis et al., 1996; Selznick et al., 2000; Sola et al., 2003; Keil et 

al., 2004; Movsesyan et al., 2004; Caraci et al., 2005; Jang and Suhr, 2005; Ohyagi et 

al., 2005; Yao et al., 2005; Biswas et al., 2007), while other studies present evidence that 

it acts via the extrinsic apoptotic pathway (Ivins et al., 1999; Wei et al., 2002; Cantarella 

et al., 2003; Lu et al., 2003; Su et al., 2003; Suen et al., 2003). There is also 

disagreement as to whether it is soluble oligomeric/protofibrillar (Roher et al., 1996; 

Lambert et al., 1998; Hartley et al., 1999; Pillot et al., 1999; Hoshi et al., 2003; 

Blanchard et al., 2004; Barghom et al., 2005; Piccini et al., 2005; Walsh et al., 2005; 

Whalen et al., 2005), or aggregated/fibrillar (Forloni et al., 1993; Loo et al., 1993; Pike 

et al., 1993; Lorenzo and Yanker, 1994; Howlett et al., 1995; Pike et al., 1995; Paradis et 

29 



Chapter 1 - Introduction 

al., 1996; Estus et al., 1997; Walsh et al., 1999; Gestwicki et al., 2004; Paradisi et al., 

2004; St John, 2007) AP that is the neurotoxic species of Ap. 

Although data suggests that AP causes neuronal apoptosis in vitro this may not be 

representative of the in vivo milieu. Jn vitro models are often not representative of the in 

vivo environment due to the use of supra-physiological concentrations of Ap, the lack of 

glia-neuron interactions and the use of relatively immature neurons. The concentration 

of synthetic AP or AP fragments used to treat neurons in vitro is typically around 20-

30µM (Pike et al., 1992; Lorenzo and Yanker, 1994; Estus et al., 1997; Pillot et al., 

1999; Paradisi et al., 2004; Caraci et al., 2005; Whalen et al., 2005; Yao et al., 2005), 

however, the level of AP present in the CSF of humans is 4nM (Paradis et al., 1996; 

Marques et al., 2003). Additionally, treating primary human neuronal cultures with 

lOOnM fibrillar APl-40 or APl-42 results in little neuronal apoptosis (Paradis et al., 

1996). Although, nanomolar concentrations of soluble AP oligomers can 'kill neurons 

(Lambert et al., 1998). Furthermore, most AP toxicity models do not account for the 

complex interactions between neurons and glia that occur in vivo. The rate of neuronal 

death differs following AP treatment when· neurons are cultured alone compared to when 

they are co-cultured with astrocytes or microglia (Roher et al., 1996; Paradisi et al., 

2004; Caraci et al., 2005; Ramirez et al., 2005). Many in vitro models also utilise 

primary neurons that are cultured for up to one day (Pike et al., 1992; Pike et al., 1993; 

Pike et al., 1995; Gestwicki et al., 2004), two to six days (Yanker et al., 1990; Loo et al., 

1993; Lorenzo and Yanker, 1994; Ivins et al., 1999; Sponne et al., 2003; Paradisi et al., 

2004; Whalen et al., 2005; Yao et al., 2005) or seven to 10 days (Paradis et al., 1996; 

Pillot et al., 1999; Sponne et al., 2003; Ramirez et al., 2005; Whalen et al., 2005) in vitro 

before the AP treatment is initiated. Recent results indicate that primary neuron cultures 
\ 

develop a more mature phenotype when they have spent 21 days in vitro (King et al., 

2006). Treating primary neuron cultures with concentrations of AP that are more similar 

to those in vivo and aging neuron cultures for at least 21 days in vitro may provide a 

more accurate model in which to assess the toxic effects of AP on neurons. 
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1.7.4 Apoptosis in AD 

The final pathway to cell death in AD may involve NFT formation, cell cycle or 

plasticity dysregulation, apoptosis or cell death that is neither classical necrosis nor 

apoptosis (reviewed in Vickers et al., 2000; Jellinger and Stadelmann, 2001). To 

ascertain whether apoptosis is involved in AD-associated degeneration studies have 

focused on the presence of DNA fragmentation, frank apoptotic morphology, changed 

levels of pro- and anti-apoptotic proteins, caspases and caspase-cleavage products. 

1. 7.4.1 DNA fragmentation and apoptotic nuclear morphology in AD 

Many studies report increased DNA fragmentation in the hippocampal formation, 

frontal, temporal, parahippocampal and entothinal cortices of AD cases compared to 

controls (Su et al., 1994a; Dragunow et al., 1995; Smale et al., 1995; Cotman and Su, 

1996; Lassmann, 1996; Troncoso et al., 1996; Lucassen et al., 1997; Sugaya et al., 1997; 

Masliah et al., 1998; Sheng et al., 1998; Stadelmann et al., 1998; Overmyer et al., 2000; 

Pompi et al., 2003). However, other studies observe similar levels of DNA 

fragmentation in the AD and control temporal cortex and variable levels in the occipital 

cortex (Lucassen et al., 1997). Meanwhile, classical apoptotic morphology is observed 

rarely or not at all in AD (Lassmann et al., 1995; Troncoso et al., 1996: Lucassen et al., 

1997; Tompkins et al., 1997; Stadelmann et al., 1998; Stadelmann et al., 1999; 

Nurtomura and Chiba, 2000; Jellinger and Stadelmann, 2000; Jellinger and Stadelmann, 

2001; Raina et al., 2001; Raina et al., 2003). However, both DNA fragmentation and 

classical apoptotic morphology can occur independent!~ of apoptosis (Kaasik et al., 

1999; Raina et al., 2003; Tatton et al., 2003). 

1. 7.4.2 Apoptotic-related proteins in AD 

Similar contrasting and conflicting results are also reported when the levels/and or the 

number of cells containing Bcl-2, Bax, active and inactive caspase-3, -8 and -9 are 

analysed in AD and control brains (Table 1.3). Interestingly, one study found no Bax in 

the membranous fraction of the temporal co~ex of AD brains (Kitamura et al., 1998), 
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Table 1.3 Summary of the levels of apoptotic-related proteins present m AD brains 

compared to control brains. 

Apoptotsis Change Cerebral area Method Reference 
marker AD vs control 

caspase-9 Increased entorhmal cortex mRNAprobe Pompi et al , 2003 

Decreased cerebellum WB, 1mmunolabellmg Eg1dawork et al , 200 I 

No difference frontal cortex WB, 1mmunolabellmg Eg1dawork et al, 2001 

nucleus basal1s ofMeynert 1mmunolabelhng Wu et al , 2005 

active caspase-9 Increased frontal cortex WB Lu et al , 2000 
h1ppocampus 1mmunolabellmg Rohn et al , 2002 

caspase-8 Increased entorhmal cortex mRNAprobe Pompi et al , 2003 

Decreased frontal cortex, cerebellum Immunolabelhng Eg1dawork et al., 2001 

No difference frontal cortex, cerebellum WB Egidawork et al., 200 I 

nucleus basal1s of Meynert Immunolabellmg Wu et al., 2005 

active caspase-8 Increased h1ppocampus Immunolabelhng Rohn et al, 2001a 

caspase-3 Increased neurons m frontal cortex Immunolabelhng Mashah et al , 1998 

h1ppocampal neruons Immunolabelhng Jellmger & Stadelmann, 2001 

entorhmal cortex mRNAprobe Pompi et al , 2003 

Decreased frontal cortex, cerebellum WB, 1mmunolabelhng Egidawork et al, 2001 

No d1 fference medial temporal lobe Immunolabelhng Rama et al , 2001 

nucleus basal1s ofMeynert Immunolabellmg Wu et al , 2005 

active caspase-3 Increased h1ppocampus, sub1culum, temporal immunolabellmg Stadelmann et al , 1999 
1socortex 
h1ppocampus, entorhmal cortex, WB Zhao et al , 2003a 
temporal cortex 
h1ppocampus, entorhmal cortex, WB, 1mmunolabelhng Zhao et al , 2003b 
SFG 

mcreased m cells of the cortex Immunolabellmg Kang et al , 2005 
No difference entorhinal cortex, hippocampus, 1mmunolabelhng, mass Gastard et al , 2003 

subiculum spectroscopy 

Bax Increased hippocampus, subiculum, dentate immunolabelhng Nagy and Esm, 1997 
gyrus 

hippocampal fonnation 1mmunolabelhng Su et al., 1997 
NFf-free neurons in the 1mmunolabelhng ' 
h1ppocampal fonnal!on, G1annakopo1ous et al., 1999 

SFGand ITG immunolabelling Blanchard et al., 2003 

No difference Hippocampal dentate granule cells 1mmunolabellmg MacGibbon et al., 1997 

frontal cortex semi-quant RT-PCR Desjardins and Ledoux, 1998 

cystolic fraction of temporal cortex WB Kitamura et al., 1998 

nucleus basalis of Meynert immunolabelhng Wuetal.,2005 

Bcl-2 Increased entorhmal cortex, sub1culum, immunolabelling Satou et al., 1995 
h1ppocampus 

hippocampal fonnation immunolabelhng Su et al., 1996b 
membranous fraction, temporal WB Kitamura et al , 1998 
cortex 

h1ppocampal fonnation immunolabellmg Su et al , 1997 

neurons in frontal cortex immunolabelhng Masliah et al., 1998 
No difference hippocampus, sub1culum dentate immunolabelling Nagy and Esiri, 1997 

"' rus 
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Bcl-2 

TRADD 

WB, western blottmg 

Change AD vs Cerebral area 
Control 

No difference frontal cortex 

CA I, subhcular/entorhinal regions 

Increased h1ppocampus, entorhmal cortex, 
SFG 
hippo campus 
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suggesting that Bax had not been translocated to the mitochondrial membrane. Increases 

in other less frequently studied apoptosis-associated proteins such as Bel-XL (Nagy and 

Esiri, 1997; Kitamura et al., 1998), Blc-x~, (Kitamura et al., 1998), Bak (Kitamura et al., 

1998), Bad (Kitamura et al., 1998), p53 (De la Monte et al., 1997), Fas/FasL (De la 

Monte et al., 1997; Su et al., 2003), TRADD (Zhao et al., 2003b; Del Villar and Miller, 

2004), cyto c (Blanchard et al., 2003), X-inhibitors of apoptosis protein (IAP) (Christie 

et al., 2007), caspase-cleaved APP (Zhao et al., 2003a), caspase-cleaved fodrin (Rohn et 

al., 2001b), active caspase-6 (Guo et al., 2004) and caspase-1, -2L, -5, -6 and-7 mRNA 

(Pompi et al., 2003) are reported in AD or APP-overexpressing mice compared to 

control brains. However, other studies report that Bel-XL (Giannakopoulos et al., 1999), 

Bcl-x (Desjardins and Ledoux, 1998; Wu et al., 2005), Apaf-1 (Engidawork et al., 

2001), cyto c (Engidawork et al., 2001), caspase-1 (Masliah et al., 1998), -6 and -7 

(Raina et al., 2001), NIAP (Christie et al., 2007), cIAP-2 (Christie et al., 2007), and 

Fas/FasL (Ferrer et el., 2001; Wu et al., 2005) levels are unchanged or decreased. 

Additionally, when preclinical or early AD cases are compared to control cases increases 

in DNA fragmentation (Troncoso et al., 1996), levels of Bax (Nagy and Esiri, 1997: Su 

et al., 1997), Bcl-2 (Satou et al., 1995; Su et al., 1997), active-caspase-3 (aC3; Gastard et 

al., 2003; Zhao et al., 2003a) and caspase-1 and -7 mRNA (Pompi et al., 2003) and 

similar levels of TRADD (Zhao et al., 2003b) and NAIP (Christie et al., 2007) are 

detected. 

It is also important to note that the presence of apoptotic markers in AD brains may not 

necessarily equate to apoptosis. For instance, ifthe presence of pro-apoptotic proteins or 

DNA fragmentation resulted in apoptosis, a substantial neuronal loss would occur within 

a short period of time (Perry et al., 1998). Thus, it is plausible that apoptotic pathways 

are activated in the cells exhibiting apoptotic changes but do not proceed to completion 

(Raina et al., 2001; Raina et al., 2003; Wu et al., 2005) due to sublethal activation of 

apoptotic pathways (as reviewed in Cotman, 1998) including a lack of apoptotic signal 

propagation to downstream effector caspases (Raina et al., 2001; Raina et al., 2003), or 

cells mounting an effective defence against apoptotic cell' death (Perry et al., 1998; 

Raina et al., 2003). For instance, long-term survival of neurons labelled for activated 
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caspases is not unheard of. In a model of long-term experimental diabetes, sensory 

neurons express aC3, but show -no signs of ongoing apoptosis in terms of DNA 

fragmentation, nuclear morphology or cell loss (Cheng and Zochodne, 2003). Finally, 

there is also evidence that aberrantly activated caspases can be present in neurons 

uncommitted to apoptosis, which over long periods, may lead to aberrant processing of 

proteins (LeBlanc et al., 1999) such as tau (Gamblin et al., 2003; Rissman et al., 2004; 

Kang et al., 2005) and APP (as reviewed in Tanzi, 1999). 

1. 7.4.3 Association between apoptosis-related changes and AD pathology 

Investigations into the association of apoptotic-related changes with the pathological 

hallmarks of AD also yield variable results. Numerous studies have investigated the co

localisation of NFTs with apoptotic markers. A subset of NFT-bearing neurons also 

exhibit DNA fragmentation (Su et al., 1994a, Lassmann et al., 1995; Sugaya et al., 1997; 

Sheng et al., 1998; Broe et al., 2001; Jellinger and Stadelmann, 2001), apoptotic nuclear 

morphology (Su et al., 1994a), Fas/FasL (Ferrer et al., 2001), Bax (Giannakopolous et 

al., 1999; Blanchard et al., 2003), Bcl-2 (Tortosa et al., 1998), Bcl-xL (Giannakopolous 

et al., 1999), FADD (Wu et al., 2005), caspase-cleaved tau (Guo et al., 2004), caspase-8 

and -9 (Raina et al., 2001) and active caspase-3 (aC3, Gastard et al., 2003; Kang et al., 

2005), -6 (Guo et al., 2004; Albrecht et al., 2007) and -8 (Rohn et al., 2001a; Su et al., 

2002). However, DNA fragmentation (Su et al., 1994a; Lassmann et al., 1995; Sheng et 

al., 1998), apoptotic nuclear morphology (Su et al., 1994a), FADD (Wu et al., 2005), 

Fas/FasL (Ferrer et al., 2001), Bcl-2 (Tortosa et al., 1998) and aC3 (Gastard et al., 2003) 

are also present in a subset of the NFT-free neurons in AD. Caspase-8, -9 (Raina et al., 

2001) and Bax-labelling (MacGibbon et al., 1997) is reportedly strong in NFT-bearing 

and weak in NFT free neurons. In contrast other studies assert that NFT-bearing 

neurons exhibit reduced or no labelling for Bax (Nagy and Esiri, 1997; Su et al., 1997), 

Bcl-2 (Satou et al., 1995; Su et al., 1996b), p53 (De la Monte et al., 1997) and TRADD 

(Del Villar and Miller, 2004), while pre-NFTs demonstrate strong labelling for Bax (Su 

et al., 1997) and weak labelling of Bcl-2 (Su et al., 1996b) and p53 (De la Monte et al., 

1997). Yet other studies observe no difference between NFT-bearing and NFT-free 
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neurons for Bax and Bcl-2-labelling (Tortosa et al., 1998; Kobayashi et al., 2004). 

Additionally, co-localisation of NFTs and caspase-cleaved fodrin, APP and tau are also 

observed (Rohn et al., 2001b; Rohn et al., 2002; Zhao et al., 2003a; Rissman et al., 2004; 

Kang et al., 2005). Interestingly, it has been hypothesised that caspase activation may 

link AP and neurofibrillary pathology in AD, with AP activating caspases, which then 

cleave tau and initiate or potentiate NFT formation (see Jellinger, 2006). 

The distribution of AP plaques is not correlated with DNA fragmentation and apoptotic

like nuclei (Lassmann et al., 1995; Lucassen et al., 1997; Broe et al., 2001), but DNA 

fragmentation is positively correlated with AP plaque load (Jellinger and Stadelmann, 

2001). Bax-labelling is highly variable adjacent to AP plaques (Nagy and Esiri, 1997), 

although some studies describe Bax-labelled glia in association with AP plaques 

(MacGibbon et al., 1997; Su et al., 1997; Giannakopolous et al., 2001). Additionally, 

the number of Bcl-2-labelled neurons or intensity of Bcl-2-labelling present in the AD 

brain correlates with AP plaque load (Satou et al., 1995; Kobayashi et al., 2004). Bax, 

Bel-XL, cyto c, p53, FasL, FADD, caspase cleaved tau and active caspases-8 and-9 are 

also observed in a subset of DNs in AD (De la Monte et al., 1997; MacGibbon et al., 

1997; Nagy and Esiri et al., 1997; Tortosa et al., 1998; Giannakopolous et al., 2001; 

Rohn et al., 2002; Su et al., 2002; Blanchard et al., 2003; Su et al., 2003; Guo et al., 

2004; Wu et al., 2005; Albrecht et al., 2007). 

The variability, discrepancies and contradictions present in the current literature 

regarding apoptosis in AD may be' due to the different cerebral areas and cell 

populations analysed, the different techniques and/or antibodies used and even 

differences between fixation methods or the cohort of brain cases analysed ( eg. Table 

1.3). Although evidence supporting a direct role for apoptosis in AD degeneration has 

accumulated it remains difficult to draw conclusions from the current literature (Roth, 

2001; Raina et al., 2003). A comprehensive analysis of several apoptotic-related 

proteins and apoptotic morphology in the same cohort of cases and their association with 

the pathological hallmarks of AD may shed light on this contentious area of AD 

research. 
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1.8 ANIMAL MODELS OF AD 

Animal models present the opportunity to examine the effects of overexpression of 

disease associated genes and genetic mutations, disease progression and provide models 

in which potential therapeutics can be screened and tested. Now that initial difficulties 

in producing AD mouse models that closely resemble AD-pathological features 

(reviewed in Vickers et al., 2001) have been overcome, numerous mouse models of AD 

have been developed and many are now commercially available. Transgenic mouse 

models of AD express a variety of combinations of human APP alone or in combination 

with PS 1/PS2 and/or tau proteins harbouring mutations associated with familial AD, and 

demonstrate diffuse and dense AP plaques, DNs, gliosis and neurodegeneration that are 

not observed in wild type littermates, but not neurofibrillary pathology or extensive 

neuronal death (Games et al., 1995; Hsiao et al., 1996; Borchelt et al., 1997; Sturchler

Pierrat et al., 1997; Holcomb et al., 1998; Moechars et al., 1999; Janus et al., 2000; 

Mucke et al., 2000; Chishti et al., 2001; Blanchard et al., 2003; Higgins and Jacobsen, 

2003; Richards et al., 2003; Cheng et al., 2004; Kawasumi et al., 2004; Oakley et al., 

2006). Transgenic tau mice have also been developed that express human tau 

harbouring mutations associated with hereditary parkinsonism and frontotemporal 

dementia (Lewis et al., 2000; Gotz et al., 2001; Zhang et al., 2004a; Santacruz et al., 

2005; Terwel et al., 2005). The most widely used mouse models of AD have differing 

characteristics and, thus, there are advantages and disadvantages associated with each 

mouse model. 

1.8.1 P-amyloid precursor protein transgenic mouse models 

There are many widely utilised mouse models of AD that express human APP with 

various familial associated mutations under the control of differing promoters (Table 

1.2). The most frequently used APP-expressing AD mouse models include Tg2576 

(APPSwe), PDAPP, APP23 and TgCRND8 mice. The expression of various familial 

associated APP mutations and the different levels and localisation of transgene 
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expression in AD mouse models result in variability in the temporal and region specific 

pattern of AD-associated pathology. However, differences between transgenic AD 

mouse models can be attributed not only to the different promoters and transgenes with 

varying disease-associated mutations, but the genetic background of the mouse in which 

the transgene is expressed also affects the phenotype (Ali et al., I 996; Carlson et al., 

I997). 

1.8.1.1 Tg2576 transgenic AD mice 

Tg2576 mice were one of the first successful transgenic AD mouse models (Hsiao et al., 

I996; Higgins and Jacobsen, 2003). Tg2576 mice develop age-dependent AJ3 plaque 

deposition beginning at seven months of age, which progressively increases and is 

severe by 23 months of age (Kawarabayashi et al., 200I; Noda-Saita et al., 2004). 

Compared to other APP transgenic mice, Tg2576 mice accumulate pathology over a 

relatively long period of time, providing a mouse model that more closely resembles the 

chronic time course of human AD. J3-amyloid plaques are present in the hippocampal 

formation and entorhinal cortex, cerebral cortex, cerebellum and cerebral vasculature of 

Tg2576 mice, with rare AJ3 plaque deposition in the internal capsule and basal ganglia 

(Hsiao et al., I996; Irizarry et al., I997; Frautshcy et al., I998; Kawarabayashi et al., 

200I; Le et al., 200I; Tomidokoro et al., 200I). J3-amyloid plaques in Tg2576 mice are 

associated with tau- (with variable phosphorylation), PHF-tau-, NF triplet protein-, 

MAP2-, dephosphorylated NF triplet protein-, APP-, PSI-, synaptophysin-, a-synuclein

and ubiquitin-labelled DNs (Irizarry et al., I997; Le et al., 200I; Tomidokoro et al., 

200I; Motoi et al., 2004; Noda-Saita et al., 2004), reactive astrocytes (Hsiao et al., I996; 

Irizarry et al., I997; Motoi et al., 2004) and microglia (Frautschy et al., I998; Sasaki et 

al., 2002). No neuropil threads or NFTs are present in the Tg2576 mouse model (Noda

Saita et al., 2004). Results regarding neuron loss in Tg2576 mice are contradictory. 

One study reports no neuronal loss in the hippocampal CAI (Irizarry et al., 1997), yet 

another study detects a significant decrease of neuronal numbers in areas containing 

dense cored AJ3 plaques compared with the corresponding areas in wild type control 

mice (Tomidokoro et al., 200I). Although memory deficits in Tg2576 mice were 
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originally reported to commence at nine months of age (Hsiao et al., 1996), more recent 

studies detected age-related memory deficits in Tg2576 mice at six-nine months of age, 

which does not correlate with the initiation of AP plaque deposition, but may be 

associated with AP assemblies within the brain (Kotilinek et al., 2002; Westerman et al., 

2002; Arendash et al., 2004a; Jacobsen et al., 2006; Middei et al., 2006). 

1.8.1.2 PDAPP and APP23 transgenic AD mice 

Two comparable and .widely used mouse models of AD that develop age-related AD

like pathology earlier than Tg2576 mice are the PDAPP and APP23 mouse models of 

AD. P-amyloid plaque deposition initiates at approximately six months of age in both 

PDAPP and APP23 mice (Games et al., 1995; Irizarry et al., 1997; Sturchler-Pierrat et 

al., 1997). In PDAPP mice AP plaques are present in the hippocampal formation, corpus 

callosum and cerebral cortex (Games et al., 1995; Masliah et al., 1996b; Reilly et al., 
I 

2003; Bussiere et al., 2004), while APP23 mice exhibit AP plaques in the hippocampus, 

cerebral cortex and cerebral vasculature and also in the thalamus, olfactory nucleus and 

caudate putamen in older mice (Sturchler-Pierrat et al., 1997; Calhoun et al., 1998; Kuo 

et al., 2001; Bondolfi et al., 2002). PDAPP and APP23 mice develop AP plaque

associated DNs that are immunoreactive for a variety of epitopes including APP, 

synaptophysin, phosphorylated tau, PHF-tau and NF triplet protein (Games et al., 1995; 

Masliah et al., 1996b; Irizarry et al., 1997; Diez et al., 2003; Bussiere et al., 2004; 

Schwab et al., 2004). P-amyloid plaques are also associated with astrogliosis and 

microgliosis in both mouse models (Games et al., 1995; Masliah et al., 1996b; Irizarry et 

al., 1997; Sturchler-Pierrat et al., 1997; Bornemann et al., 2001; Schwab et al., 2004). 

As in Tg2576 mice, no neurofibrillary pathology is observed in PDAPP or APP23 mice 

(Games et al., 1995; Masliah et al., 2001; Schwab et al., 2004). Neuron loss is observed 

in the hippocampus and neocortex of APP23 mice, and is inversely correlated with AP 

plaque load (Calhoun et al., 1998; Bondolfi et al., 2002). In contrast, no overt neuronal 

loss is present in the entorhinal or cingulate cortex or the hippocampus in PDAPP mice 

up to 18 months of age (Irizarry et al., 1997). Both PDAPP and APP23 mice develop · 

memory deficits beginning at three months of age, prior to AP plaque deposition (Dodart 
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et al., 1999; Kelly et al., 2003; Van Dam et al., 2003; Hartman et al., 2005). However, 

the extent of navigation impairment in the Morris water maze does correlate with AP 

plaque load in APP23 mice (Sykova et al., 2005), and PDAPP mice show an age

dependent decrease in spontaneous object-recognition that is more severe at ages when 

AP plaque deposition is known to occur (Dodart et al., 1999). 

1.8.1.3 TgCRND8 transgenic AD mice 

TgCRND8 AD mice accumulate AD-associated pathology much more rapidly than 

Tg2576, PDAPP and APP23 mice. P-amyloid plaques are present in TgCRND8 by 

three months of age, AP plaque deposition increases with age, and dense-cored AP 

plaques and neuritic pathology are evident at five months of age (Chishti et al., 2001; 

Dudal et al., 2004). TgCRND8 mice exhibit AP plaques in the amygdala, hippocampal 

formation and neocortex, then the thalamus, cerebral vasculature, striatum, cerebellum 

and brainstem, consecutively (Chishti et al., 2001; Dudal et al., 2004). Although the 

rapid accumulation of pathology in this AD mouse model does not necessarily resemble 

the slow increase of pathology of most human AD cases, it does provide researchers 

with an AD mouse model that develops pathology quickly, which is ideal to fast-track 

pilot studies or for testing potential therapeutics. P-amyloid plaques in TgCRND8 mice 

are also associated with NFH-, hyperphosphorylated-tau-, synaptophysin- and ubiquitin

labelled DNs (Chishti et al., 2001), astrogliosis and microgliosis (Chishti et al., 2001; 

Dudal et al., 2004; Bellucci et al., 2007). Memory deficits are observed in TgCRND8 

mice beginning at three months of age, and are associated with high levels of AP42 

production and the onset of AP plaque deposition (Janus et al., 2000; Chishti et al., 2001, 

Hyde et al., 2005; Lovasic et al., 2005). 

1.8.1.4 Other widely used transgenic APP AD mice 

Other widely used APP-expressing AD mouse models include the APPLon, 

PDAPPSwe/Ind and APPSwe/Ind/ Arc models (Table 1.2). Pathology first appears in 

APPLon mice at 10-12 months of age, including AP plaques and AP plaque-associated 

DNs, astrogliosis and microgliosis in the hippocampus, cortex, thalamus, external 
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capsule, pontine nuclei and white matter (Moechars et al., 1999). PDAPPSwe/lnd mice 

develop Ap plaque pathology that begins at five to seven months of age in the dentate 

gyrus and neocortex, AP plaque pathology increases with aging, and AP plaque

associated DNs are also observed in adult mice (Mucke et al., 2000; Descarries et al., 

2005). Finally, the relatively new APPSwe/lnd/Arc AD mouse model expresses APP 

harbouring the familial Swedish, Indiana and Arctic mutations (Cheng et al., 2004). The 

Arctic APP mutation results in AP more easily forming protofibrils in vitro (Lord et al., 

2006). Thus, AP plaque deposition in APPSwe/lnd/Arc mice occurs earlier, at two to 

three months of age, and is more extensive than in APPSwe/Ind mice (Cheng et al., 

2004). 

1.8.2 Double transgenic mouse models of AD 

Double transgenic AD mouse models generally entail mice expressing human APP 

harbouring mutations associated with familial AD in combination with mutant or non

mutant human PS or tau. 

1.8.2.1 PS/APP double transgenic AD mice 

There are many APP and PS 1 or PS2 double transgenic mice, which generally develop 

AD-like pathology earlier and more extensively than APP transgenic mice (Holcomb et 

al., 1998; Chishti et al., 2001; Lee et al., 2001; Wirths et al., 2001; Blanchard et al., 

2003; Richards et al., 2003; Wang et al., 2003a; Savonenko et al., 2005). In comparison, 

mice overexpressing only human mutant PS 1, but not wild type PS 1, demonstrate 

increased AP42/43, do not develop AP plaques and exhibit no behavioural abnormalities 

(Duff et al., 1996; Guo et al., 1999; Sadowski et al., 2004). However, mice expressing 

human mutant or wild type PS2 exhibit behavioural dysfunction and immolabelling for 

APl-42 and human PS2 that is not present in age-matched non-transgenic control mice 

(Hwang et al., 2002). While other transgenic mice expressing wild type PS2 exhibit no 

increase in APl-42 and APl-40 production, but mice expressing familial AD mutant 

PS2 support robust production of APl-42 (Mastrangelo et al., 2005). 
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Perhaps the most commonly used APP/PS double transgenic mouse is the PSAPP AD 

mouse model (Table 1.2). P-amyloid plaque deposition initiates at 10 weeks of age in 

PSAPP mice compared to seven months of age in Tg2576 mice, probably due to 

increased levels of APl-40 and APl-42 in PSAPP mice compared to Tg2576 mice 

(Holcomb et al., 1998; McGowan et al., 1999; Takeuchi et al., 2000; Howlett et al., 

2004). Additionally, PSAPP mice develop larger numbers of fibrillar AP plaques than 

Tg2576 mice (Holcomb et al., 1998; Le et al., 2001). The localisation of AP plaques in 

PSAPP mice is similar to that of Tg2576 mice, with AP plaque deposition in the 

hippocampal formation, cerebral cortex, corpus callosum and cerebral vasculature 

(Holcomb et al., 1998; McGowan et al., 1999; Takeuchi et al., 2000; Kurt et al., 2003; 

Howlett et al., 2004). PSAPP mice also exhibit AP plaque-associated DNs (Lee et al., 

2001; Kurt et al., 2003) and astrogliosis (McGowan et al., 1999), but no NFTs or overt 

neuronal loss in the hippocampus and cortices (Takeuchi et al., 2000; Sadowski et al., 

2004). Although one study reports that PSAPP mice exhibit no impairments in spatial 

navigation at six to nine months of age (Holcomb et al., 1999), other studies detect 

memory deficits in six to 10 month old PSAPP mice (Howlett et al., 2004; Sadowski et 

al., 2004; Trinchese et al., 2004). These memory deficits do not match initiation of AP 

plaque deposition in PSAPP mice, but do correspond with increased AP plaque burden 

and the formation of DNs and gliosis (Howlett et al., 2004; Trinchese et al., 2004), 

suggesting that cognitive impairments in PSAPP mice are not simply related to AP 

deposition but may result from the disruption of neural connectivity (Howlett et al., 

2004). In addition, abnormal long-term potentiation is observed in PSAPP mice at three 

months of age, paralleling the appearance of AP plaques in this mouse model (Trinchese 

et al., 2004). 

1.8.2.2 Tau/APP double transgenic AD mice 

Transgenic tau mice have been developed that overexpress various isoforms of human 

tau with or without mutations associated with hereditary frontotemporal dementia and 

parkinsonism (Lewis et al., 2000; Gotz et al., 2001; Zhang et al., 2004a; Santacruz et al., 

2005; Terwel et al., 2005). Overexpression of non-mutant human tau results in axonal 
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dilations and spheroids and normal survival in transgenic mice (Terwel et al., 2005), but 

the overexpression of mutant tau, which potentially reduced the binding of tau to 

microtubules, results in the development of intra-neuronal NFTs and reduction in life 

span (Lewis et al., 2000; Gotz et al., 2001; Zhang et al., 2004a; Terwel et al., 2005). In 

addition, when the expression of mutant tau is repressed in two and a half month old 

transgenic tau mice (rTg(tauP301L) 4510; Table 1.2) pathological progression stops, but 

when expression of the transgene is suppressed in mice that are four and half months of 

age or older, NFTs continued to accumulate (Santacruz et al., 2005). Interestingly, in 

rTg(tauP301L) 4510 mice in which transgene expression is suppressed at two and half 

months of age, memory function improves despite ongoing accumulation of NFTs, 

suggesting that NFT formation does not disrupt cognitive function (Santacruz et al., 

2005). However, the cognitive deficits in rTg(tauP301L) 4510 mice are associated with 

the presence of oligomeric aggregates of tau, which are also present in JNPL3 mice and 

human AD (Berger et al., 2007). 

Two APP/tau double transgenic mouse models currently exist, namely APPSw/Tau/v/w 

and TAPP mice (Table 1.2). APPSw/Tau/v/w mice develop enhanced Ap plaque 

deposition in combination with neurofibrillary pathology and overt neuron loss in limbic 

areas (Ribe et al., 2005). Similarly, TAPP mice exhibit AP plaques at the same age as 

Tg2576 mice, but also produce enhanced NFT pathology and pre-NFTs in the limbic 

system and olfactory cortex, areas that rarely contain NFTs in JNPL3 mice (Lewis et al., 

2001). The data from these two transgenic mice suggest that reciprocal interactions 

occur in vivo between APP or AP and tau (Lewis et al., 2001; Ribe et al., 2005). 

1.8.3 Triple transgenic AD mice 

Finally, the 3xTg-AD mouse model combines the expression of mutated human APP, 

PS 1 and tau (Table 1.2). 3xTg-AD mice exhibit AP plaque and neurofibrillary 

pathology in a very similar regional and temporal pattern to human AD (Oddo et al., 

2003a). Tau pathology begins in the hippocampus of 3xTg-AD mice and progresses 

into the cortex, whereas AP plaques are first observed in the cortex and then in the 
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hippocampus (Oddo et al., 2003b ). A subset of AP plaques in 3xTg-AD mice are also 

associated with astrogliosis (Oddo et al., 2003b) and tau-labelled DNs (Oddo et al., 

2003a). Homozygous 3xTg-AD mice first develop AP plaques at six months of age, 

prior to the presence ofNFTs despite equivalent expression of both transgenes (Oddo et 

al., 2003a; Oddo et al., 2003b ). In addition, increasing the tau expression levels in 

3xTg-AD mice has no effect on the initiation or progression of AP expression or 

deposition in these mice (Oddo et al., 2007). Thus, 3xTg-AD mice provide further 

support for the amyloid cascade hypothesis (Oddo et al., 2003b; Oddo et al., 2007). A 

memory deficit can be detected in 3xTg-AD mice at four months of age, a time point at 

which AP plaques and NFTs are not observed, but intraneuronal AP is present in the 

hippocampus and amygdala (Billings et al., 2005). Furthermore, this cognitive deficit is 

rescued when intraneuronal AP is cleared by immunotherapy, suggesting that 

intraneuronal AP may also have a role in the inception of cognitive dysfunction (Billings 

et al., 2005). However, a further study found that immunisation protocols that reduce 

soluble AB and tau ameliorate cognitive deficits in 3xTg-AD mice, but immunisation 

that reduces soluble AB alone does not (Oddo et al., 2006). 

1.9 THERAPEUTIC INTERVENTIONS FOR AD 

There are presently no effective treatments to slow down the progression or to decrease 

the symptoms of AD (Parnetti et al., 1997). Currently, the therapies most commonly 

available for AD patients are cholinesterase inhibitors, which enhance cholinergic 

neurotransmission (Brion, 1996; Brodaty et al., 2001) and N-methyl-D-aspartate 

(NMDA) glutamate receptor antagonists (Livingston and Katona, 2004). However, 

current research suggests that some cholinesterase inhibitors may have other 

pharmacological modes of action. For example, Huperzine A is a potent acetyl

cholinesterase inhibitor that is in Phase II clinical trials in China and the United States, 

which may also protect neurons by upregulating nerve growth factor (NGF), binding to 

NMDA receptors, interfering with APP processing to increase soluble APP levels, 

reducing glutamate-induced excitotoxicity and improving long-term potentiation, 

(Gordon et al., 2001; Jiang et al., 2003; Zhang et al., 2004b; Wang et al., 2006). 
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However, the currently available cholinesterase inhibitors and N.l\.IDA antagonist 

therapeutics for AD only decrease the clinical manifestation of AD in subset of patients, 

and this reprieve is usually only temporary, as these therapeutics do not affect disease 

progression (Parnetti et al., 1997). Thus, there is dire need for therapeutic interventions 

that either slow or stop the progression of AD. 

Assuming that AB plaques are the primary etiological agent of AD, two possible 

approaches to treating AD exist: to prevent AB plaque formation or to protect neurons 

against the damaging effects of AB (Vickers et al., 2000). Therapeutics that aim to 

protect neurons from the damaging effects of AD pathology include anti-inflammatory 

drugs, dietary supplements and antioxidants, growth factor therapy and cytoskeletal 

stabilising drugs. While therapeutic interventions with the goal of preventing or 

reducing AB levels and AB plaque formation include drugs that modulate APP 

processing, AB aggregation inhibitors, and therapeutics that increase AB clearance or 

degradation. The following part of this review highlights the many avenues of research 

into discovering and developing new therapeutics for AD that slow or halt disease 

progression. 

1.9.1 Anti-inflammatory drugs 

Anti-inflammatory drugs initially became the focus of AD research due to epidemiology 

studies, which suggest that the use of anti-inflammatory drugs reduced the risk of 

developing AD. Indeed, recent research does suggest that several nonsteroidal anti

inflammatory medications (NSAIDs) lower AB levels in cultured cells and the brains of 

Tg2576 mice, by targeting the y-secretase complex that cleaves APP (Weggen et al., 

2001; Eriksen et al., 2003). However, studies assessing the effectiveness of anti

inflammatory treatment of AD in humans, mostly concerning NSAIDs or NSAID related 

compounds, failed to show any benefit to the subjects in the study (as reviewed in 

Rozemuller et al., 2005). In addition, a large trail of NSAIDs (the AD anti

inflammatory prevention trial) was undertaken by the United States National Institute on 

Aging, but was halted in 2004, as there was evidence of an increased risk of 
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cardiovascular events in the NSAID treatment group (Lyketsos et al., 2007). 

Furthermore, initial follow up studies of the AD anti-inflammatory prevention trial does 

not show that NSAIDs prevented AD (Lyketsos et al., 2007). 

1.9.2 Dietary supplements and antioxidants 

There is increasing evidence to suggest that diet may affect the risk of developing AD 

(Engelhart et al., 2002; Luchsinger et al., 2002; Morris et al., 2002; Luchsinger et al., 

2003; Luchsinger et al., 2007). In particular, foods high in antioxidants may slow the 

progression of AD by combating the effects of damaging free radicals (Markesbery and 

Carney, 1999; Engelhart et al., 2002). For example, there is evidence that the 

antioxidants Ginkgo biloba, curcumin, resveratrol, polyphenols and vitamin E all reduce 

AB pathology or AB plaque-associated oxidative stress in transgenic AD mouse models 

(Sung et al., 2004; Marambaud et al., 2005; Rezai-Zadeh et al., 2005; Garcia-Alloza et 

al., 2006; Hartman et al., 2006). Specifically, pomegranate juice, which contains high 

levels of polyphenols, significantly decreases soluble AB levels and AB plaque loads and 

improves behaviour in Tg2576 AD mice (Hartman et al., 2006). Similarly, green tea 
-

pholephenoic flavonoid (-)-epigallocatechin-3-gallate also decreases AB levels and AB -
plaque deposition in Tg2576 mice in association with the promotion of the a-secretase 

APP proteolytic pathway (Rezai-Zadeh et al., 2005). However, resveratrol, strongly 

requced AB levels in cell lines expressing wild type or Swedish mutant APP by 

promoting AB degradation via the proteasome (Marambaud et al., 2005). Both Ginkgo 

biloba and vitamin E also reduce the AB plaque-associated oxidative stress in vivo in 

double APP/PS 1 transgenic mice (Garcia-Alloza et al., 2006). Interestingly, AB plaque 

size is not significantly changed by Ginkgo biloba or vitamin E, but the curvature of AB 
plaque-associated DN s is significantly reduced in Ginkgo biloba treated transgenic AD 

mice and shows a similar, but not significant, trend in the vitamin E treated transgenic 

AD mice (Garcia-Alloza et al., 2006). Furthermore, chronic dietary supplementation 

with vitamin E reduces AB deposits in Tg2576 mice (Sung et al., 2004). In human 

epidemiology studies vitamin E from food and vitamin E supplements are both 
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correlated with lower incidence of Alzheimer's disease (Morris et al., 2002; Morris et 

al., 2005). 

In addition, supplementing diets with nutrients essential for efficient neuronal 

functioning are also being investigated. One such nutrient is docosahexaenoic acid 

(DHA), which is an omega-3 polyunsaturated fatty acid that is a major constituent of 

synaptic plasma membranes and has roles in membrane flexibility, signal transduction 

and neurotransmission (as reviewed in Horrocks and Farooqui, 2004; Marszalek and 

Lodish, 2005). Epidemiological studies have suggested that people with high plasma 

phosphatidylcholine DHA levels have a significantly reduced risk of developing 

dementia (Schaefer et al., 2006). Additionally, DHA supplementation in Tg2576 and 

3xTg-AD mice significantly reduces AP levels and AP pathology, and corrects synaptic 

deficits and cognitive function (Lim et al., 2005; Cole and Frautschy, 2006; Green et al., 

2007), which is attributed to decreases in presenilin 1 levels and not alterations in a- or 

P-secretase activity (Green et al., 2007). In addition, a clinical trial of omega-3 fatty 

acid in 174 mild to moderate AD subjects shows a significant reduction in cognitive 

decline in a subset of 32 subjects with very mild cognitive dysfunction, but no difference 

in the moderate AD subjects (Freund-Levi et al., 2006). 

1.9.3 Growth factor treatment 

The potential for NGF and brain derived neurotrophic factor (BDNF) to prevent or slow 

nerve cell loss in AD and other neurodegenerative diseases has been investigated for 

several decades. The therapeutic delivery of NGF and BDNF is problematic as neither 

crosses the blood brain barrier (BBB) and broad growth factor application to the brain 

has adverse effects, however, pharmacologically increasing endogenous growth factor 

expression, or administration of growth factors locally through autologous cells 

modified to produce growth factors, or by viral vectors are providing promising results 

(as reviewed in Fumgalli et al., 2006; Tuszynski, 2007). Although it should be noted 

that even if growth factors can be successfully administered to AD subjects it is unlikely 
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that growth factor therapy will "cure" AD, as so far there is no evidence that growth 

factors are able to slow the progression of AD (Tuszynski et al., 2005; Tuszynski, 2007). 

A recent Phase I trial of implanting autologous fibroblasts, genetically modified with a 

retroviral vector to express human NGF, into the forebrain of eight mild AD subjects 

shows that such therapy may be viable (Tuszynski et al., 2005). No long-term adverse 

reactions to the fibroblast implantation were present in the follow up of six subjects 

(Tuszynski et al., 2005). Cognitive function results are also promising, with three of the 

six subjects showing improved or stable cognitive function and two subjects showing 

decreased cognitive decline (Tuszynski et al., 2005). In addition, a robust cholinergic 

axonal sprouting response is observed into the site of NGF delivery, and the 

establishment of new connections may at least partially explain the positive changes 

observed in cognition (Tuszynski et al., 2005). 

Other therapeutics are also being investigated that induce the endogenous expression of 

growth factors (eg. Neotrofin, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor modulators), or mimic growth factor activities (eg. Cerebrolysin). For example, 

Neotrofin (AIT-082, NeoTherapeutics Inc.) activates a second messenger system that 

results in the production of mRNA for neurotrophins. Phase I trials with Neotrofin are 

complete (Grundman et al., 2003), and Neotrofin is now in Phase 11/111 clinical trials. 

The advantage of Neotrofin is that it is orally active, penetrates the blood-brain barrier 

and induces the production of multiple growth factors within the CNS. Furthermore, 

cerebrolysin (Ebewe Pharmaceutical) is an injectable neuroprotective, neurotrophic 

protein with NFG-like activity that has undergone human clinical trials (Ruther et al., 

2000; Panisset et al., 2002; Ruether et al., 2002; Alvarez et al., 2006). In addition to its 

neuroprotective and neurotrophic ability, cerebrolysin decreases the production of full 

length APP, and C terminal APP fragments probably by regulating the maturation of the 

APP and its transport to cellular sites where A~ is generated (Rockenstein et al., 2006). 

Thus, cerebrolysin treatment in transgenic AD mice results in decreased A~ plaque 

deposition and synaptic pathology, and ameliorates learning and memory deficits 

(Rockenstein et al., 2003; Rockenstein et al., 2006). Finally, human clinical trials show 

that cerebrolysin improves cognitive and behavioural outcomes in humans AD subjects, 
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which are still detectable up to six months after a four week treatment course of 

cerebrolysin (Ruther et al., 2000; Panisett et al., 2002; Ruether et al., 2002, Alvarez et 

al., 2006). 

1.9.4 Cytoskeletal stabilising drugs 

The hyperphosphorylated tau that is present in NFfs, pre-NFfs, DNs and neuropil 

threads in AD, is less able to bind to and stabilise microtubules. Thus, several 

microtubule stabilising drugs, aimed to substitute for the tau . sequestered into the 

inclusions in tauopathies (Zhang et al., 2004c), are being investigated for use as potential 

AD therapeutics. Paclitaxel (Taxol®, Bristol-Myers Squibb Company) is a pro

apoptotic Bcl-2 binding and microtubule stabilising drug that is widely used to treat 

cancer that can protect neurons against various toxic stimuli including AB peptides and 

reactive oxygen species (Rodi et al., 1999; Michaelis et al., 1998; Sponne et al., 2003). 

However, Paclitaxel cannot cross the BBB so a search for novel microtubule stabilising 

drugs with neuroprotective properties that could also cross the BBB was undertaken 

(Michaelis, 2006). Thus, Taxotere, UK 100, GS164 and Tx67 were discovered, which 

all also significantly increase the percentage of surviving neurons following treatment 

with aggregated AB (Michaelis et al., 2002). The effects of two of these novel taxanes, 

namely Tx67 and KU-237, in transgenic tau mice are currently being investigated as 

potential therapeutics for AD (Michaelis, 2006). In addition, Paxceed™ (Angiotech 

Pharmaceuticals, Inc.), which is Paclitaxel in a micelle vehicle, was also developed. Tau 

transgenic mice treated with Paxceed™ exhibit ameliorated motor impairments 

compared to sham treated mice, which is associated with restored fast axonal transport 

and increased numbers of microtubules and stable tubulins (Zhang et al., 2004c). These 

results support a potential therapeutic role for microtubule stabilising drugs in the 

treatment of neurodegenerative tauopathies (Zhang et al., 2004c). 
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1.9.5 fl-amyloid precursor protein processing modifying drugs 

Therapy aimed to modify APP processing to produce less AP includes P-secretase and y

secretase inhibitors, statins, heparins, and antibodies against the B-secretase cleavage site 

of APP, as well therapeutics that increase AB clearance through the upregulation of AB 
degrading enzymes. 

Inhibition of B-secretase and y-secretase reduces the production of AB, with the aim of 

stopping or slowing the progression of AB deposition and/or toxicity. Few human 

clinical trials have been undertaken for B-secretase and y-secretase inhibitors so far. 

However, experiments in which PDAPP mice are crossed with APP-cleaving B-secretase 

BACE-1 knock out mice provide proof of concept, as PDAPP/BACE-1-1
- mice do not 

produce AB, AB plaques or have synaptic deficits (McConlogue et al., 2007). In 

addition, PDAPP/BACE-1 +i- mice initially exhibit only a 12% decrease in AB levels, but 

this is enough of a reduction to result in a dramatic decrease in AB plaque deposition, 

DN burden and synaptic deficits in the aged mice (McConlogue et al., 2007). 

GSK188909 is a relatively new selective peptide BACE-1 inhibitor, which inhibits B
cleavage of APP and reduces secreted and intracellular AB in an APP expressing cell 

line (Hussain et al., 2007). Additionally, GSK188909 can lower brain AB levels 

following oral administration in APP/PSI transgenic AD mice (Hussain et al., 2007), but 

no clinical trials for GSK188909 are underway as yet. In contrast, Ly450139 dihydrate 

is a y-secretase inhibitor that is currently in Phase II clinical trials. Although initial 

results in transgenic PDAPP mice show a reduction of AB levels and AB plaque burden 

(Ness et al., 2004 presented at the 8th International Montreal/Springfield Symposium on 

Advances in Alzheimer Therapy), human clinical trials report that plasma AB is only 

lowered for six hours following Ly450139 dihydrate administration in human subjects, 

and that cerebrospinal fluid AB is unchanged (Siemers et al., 2005; Siemers et al., 2006). 

Another y-secretase inhibitor that is in human clinical trials is Flurizan™ (r

flurbiprofen). Flurizan™ does not inhibit cyclooxygenase, but does lower ABl-42 levels 

and AB plaque deposition by selectively modulating y-secretase activity (Eriksen et al., 

2003). In transgenic AD mice Flurizan™ reduces AB levels, and AB plaque load and 
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results in decreased memory and learning deficits (Kukar et _al., 2007), and in human 

trials Flurizan TM significantly improves cognitive function in mild AD subjects (Wilcock 

et al., 2005 presented at Alzheimer's Association International Conference on Prevention 

of Dementia). Two Ppase III clinical trials for Flurizan™ are now underway. Finally, 

ongoing research aimed at discovering or designing new more efficient secretase 

inhibitors is also providing some promising results in transgenic AD mice (Best et al., 

2007; Prasad et al., 2007). 

Statins are HMG Co-A reductase inhibitors that decrease de novo cholesterol synthesis, 

and are currently used to lower elevated low-density lipoprotein cholesterol levels. 

Epidemiology studies suggest that statins may also reduce the risk of dementia (Jick et 

al., 2000). Thus, several statins are currently in Phase II/III clinical trials for AD 

including atorvastatin, verivastatin, fluvastatin, lovastatin, pravastatin and simvastatin, 

and are thought to act by altering APP metabolism to reduce the production of A~ 

(Simons et al., 2002; Hoglund et al. 2005; Sparks et al., 2005). For example, simvastatin 

is hydrolysed in vivo to produce a metabolite that competes with HMG-CoA, which is a 

rate limiting enzyme for cholesterol synthesis, and simvastatin also inhibits both a- and 

~-secretase in the brain (Simons et al., 2002; Sjogren et al., 2003). However, Tg2576 

mice treated with simvastatin exhibit improvements in learning and memory, but no 

changes in the level of A~, or A~ plaques within their brains (Li et al., 2006). In 

addition, treating 19 human AD subjects with doses of simvastatin, which affects 

cholesterol metabolism in the CNS, for 12 months, did not significantly change 

cerebrospinal fluid A~ levels or cognition compared to untreated controls subjects 

(Hoglund et al. 2005). While a shorter term simvastatin treatment trial in human AD 

patients found no significant decrease in cerebrospinal fluid A~ levels overall, a subset 

of subjects with mild AD demonstrate a significant reduction in cerebrospinal fluid A~ 1-

40 levels (Simons et al., 2002). Similarly, heparins are generally utilised as anti

coagulant agents, but heparins and related heparin oligosaccharides also inhibit 

proteoglycan assembly and have anti-inflammatory properties that may have beneficial 

effects in AD subjects (Ma et al., 2007b). For example, enozaparin, a low molecular 

weight heparin, significantly reduces A~ plaque load, and A~ 1-40 levels and the number 
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of activated astrocytes adjacent to AB plaques in transgenic AD mice (Bergamaschini et 

al., 2004). Finally, lithium is another therapeutic agent, commonly used for treatment of 

bipolar disorder, which is also currently under investigation for use as an AD 

therapeutic. Lithium reduces the activity of GSK3, which plays a role in tau 

phosphorylation and the regulation of APP processing (Engel et al., 2006; Caccamo et 

al., 2007; Rockenstein et al., 2007). Transgenic AD mice expressing mutated APP 

treated with lithium chloride display reduced GSK3B activity, APP phosphorylation and 

AB production, improved learning and memory, preserved dendritic structure and 

decreased tau hyperphosphorylation (Rockenstein et al., 2007). This study also suggests 

that lithium chloride may exert some of these positive effects by reducing GSK3B 

activity, which in turn modulates the processing of APP (Rockenstein et al., 2007). 

However, lithium administration to 3xTg-AD mice reduces tau phosphorylation, but 

does not reduce A~ plaque loads or improve memory function (Caccamo et al., 2007). 

In addition, early lithium administration to a tau-only transgenic mouse model can 

prevent NFT formation, but lithium treatment cannot alter existing NFTs (Engel et al., 

2006). 

1.9.6 Aggregation inhibitors 

Many approaches to A~ plaque prevention or removal are under investigation (Vickers 

et al., 2000; Ono et al., 2006). In fact, two AB aggregation inhibitors, AZD-103 

(Transition Therapeutics) and Alzhemed™ (Neurochem Inc.), are currently in Phase 1 

and Phase 3 human trials, respectively. Alzhemed™ is an orally bioavailable organic 

molecule that interferes with the association between glycosaminoglycans and Ap, can 

prevent the formation and deposition of fibrillar AP and also binds to soluble Ap. 

Other AP aggregation inhibitors are copper and zinc chelators. P-amyloid has both high 

and low affinity copper and zinc binding sites that affect its reversible precipitation into 

insoluble masses (Bush et al., 1994; Huang et al., 1997; Atwood et al., 1998) and the 

production of hydrogen peroxide that is mediated by redox-active metal ion and AP 

interactions (Cherny et al., 1999; Huang et al., ~999; Opazo et al., 2002). Two copper 
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and zinc chelators that inhibit zinc and copper induced Ap aggregation are now in 

clinical trails (Ritchie et al., 2003; PranaBiotechnology Limited). One such metal 

chelator is clioquinol (5-chloro-7-iodo-8-hydroxyquinoline), which significantly 

decreases AP plaque deposition in Tg2576 mice (Cherny et al., 2001). In addition, a 

small pilot Phase II clinical trial of clioquinol showed decreases in plasma AP 1-42 levels 

in the clioquinol treatment group compared to the placebo treated group, but a 

significant improvement in cognitive decline was only detected in severe AD subjects 

treated with clioquinol compared to severe AD placebo treated subjects (Ritchie et al., 

2003). Another metal chelator that is also currently in Phase II clinical trials is PBT2 

(Prana Biotechnology Ltd.). PBT2 is a small orally effective molecule that was 

designed to inhibit catalytic redox reactions by preventing AP from abnormally binding 

to copper, and the subsequent generation of hydrogen peroxide. Thus, PBT2 inhibits the 

redox-dependent formation of oligomeric Ap, prevents AP plaque deposition, improves 

cognitive performance in Tg2576 and APP/PS 1 mice and may promote normal copper 

and zinc homeostasis within the brain (Adlard et al., 2007 presented at the International 

Brain Research Organisation World Congress of Neuroscience; Finkelstein et al., 2007 

presented at the International Brain Research Organisation World Congress of 

Neuroscience). 

However, as other in vitro and in viva studies (Lambert et al., 1998; Hartley et al., 1999; 

Huang et al., 2006; Chauhan, 2007; Lacor et al., 2007; Matsayama et al., 2007) suggest 

that it is soluble AP assemblies that are toxic and cause behavioural deficits in AD, 

accelerating AP fibrilisation may be an alternative therapeutic intervention. Recent 

research suggests that increasing Ap fibrilisation reduces soluble AP levels and 

behavioural impairments in transgenic mice expressing human APP harbouring the 

Arctic mutation (Cheng et al., 2007). Additionally, if soluble AP is the toxic species of 

Ap, therapeutics that disaggregate and solubilise AP plaques on a large scale may have 

detrimental effects. For example, AD subjects in the clinical AN-1792 immunisation 

trial exhibit decreased parenchymal Ap plaques, but increases in soluble AP levels and 

vascular AP deposits compared to non-immunised AD subjects, suggesting that 
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immunisation disrupts AP plaques but vascular capture of AP prevented large scale 

removal of soluble AP from the brain (Patton et al., 2006). 

1.9. 7 Therapeutics that increase the clearance of AP 

Interest in immunotherapy for AD was ignited in 1999 when a paper by Schenk and 

colleagues was published, reporting the success of an active immunisation protocol in a 

mouse model of AD. In this study PD APP mice were immunised with A~ 1-42 and 

adjuvant at 11 months of age, when neuropathology is well established, resulting in a 

significant reduction in A~ burden, astrogliosis and neuritic pathology (Schenk et al., 

1999). A reduction of A~ levels, clearance or prevention of A~ plaques and associated 

neuritic dystrophy, astrogliosis and microgliosis have been replicated with varying 

degrees of success in many different AD mouse models (Table 1.2) using both active 

(Schenk et al., 1999; Janus et al., 2000; Sigurdsson et al., 2001; Bard et al., 2003; Das et 

al., 2003; Lemere et al., 2003; Zhang et al., 2003; Hara et al., 2004; Kim et al., 2004; 

Schultz et al., 2004; Bowers et al., 2005; Buttini et al., 2005; Frenkel et al., 2005) and 

passive (Bard et al., 2000; Bacskai et al., 2002; Chauhan and Siegel, 2003; Lombardo et 

al., 2003; Wilcock et al., 2003; Bussiere et al., 2004; Horikoshi et al., 2004; Oddo et al., 

2004; Wilcock et al., 2004; Brendza et al., 2005; Chauhan and Siegel, 2005; Hartman et 

al., 2005; Yamamoto et al., 2005; Levites et al., 2006) immunisation protocols. The 

memory and learning deficits associated with many transgenic mouse models of AD are 

also ameliorated by immunotherapy (Janus et al., 2000; Morgan et al., 2001; Dodart et 

al., 2002; Kotilinek et al., 2002; Wilcock et al., 2004; Billings et al., 2005; Hartman et 

al., 2005; Jensen et al., 2005; Lee et al., 2006). Interestingly, these documented 

improvements in functional memory may be due to the recovery of cellular dynamics 

and normal morphology in DNs following A~ plaque clearance (Lombardo et al., 2003; 

Oddo et al., 2004; Bussiere et al., 2004; Brendza et al., 2005). 

The success of A~ immunisation in terms of reduced A~ plaque burden, neurite 

dystrophism, reactive astrogliosis and microgliosis and positive functional outcomes in 

many different mouse models of AD captured corporate interest and Elan Corporation 

54 



Chapter 1 - Introduction 

and collaborators Wyeth-Ayerst initiated human trials with AN 1792, an aggregated 

human ABl-42 peptide, with QS-21 adjuvant. Although Phase 1 trials reported no ill 

effects of active immunisation with AN1792 (ABl-42 and QS-21 adjuvant) (Check, 

2002), the Phase 2A trial for therapy effectiveness was terminated when six percent of 

patients (18 of 298 treated with AN1792) developed aseptic meningoencephalitis 

(Orgogozo et al., 2003; Gilman et al., 2005). 

Despite this adverse reaction to active immunisation with AB in the human population, 

post-mortem analysis of three subjects from the AN1792 trial (two suffered 

meningoencephalitis) reveals widespread clearance of AB plaques and astrocyte clusters, 

variable clearance of tau-labelled DNs and amyloid angiopathy, but no reduction of 

NFfs or neuropil threads (Nicoll et al., 2003; Ferrer et al., 2004; Nicoll et al., 2006 

Bombois et al., 2007). Long-term follow-up studies on the AN1792 trial also show 

significantly lower cognitive decline and significantly higher quality of life scores in 

antibody responders (Hock et al., 2003; Gilman et al., 2005). Thus, interest in alternate 

active and passive immunisation regimes continues. 

The time-course of immunisation, route of administration and the antigen or antibody 

used for immunisation will all affect the immunological outcome. Interest in passive 

immunisation regimes continue with clinical trials currently in progress for several new 

therapeutic protocols including a 3D6-based antibody (Elan Pharmaceuticals/Wyeth), 

LY206430 the humanised version of m266 antibody that recognises AB16-23 (Eli Lilly 

and Co.) and !Vig, a mixture of purified polyclonal antibodies from blood donors 

(Baxter Bioscience; Dodel et al., 2004). Investigations into utilising shorter AB peptide 

immunogens or DNA encoding AB as an active immunogen are already underway and 

show promising results (Qu et al., 2004; Schultz et al., 2004; He et al., 2005; Maier et 

al., 2006; Okura et al., 2006). Additionally, immunising transgenic AD mice with viral 

vectors expressing AB peptides successfully decreases levels of AB plaque deposition in 

the brain and improves cognition function (Zhang et al., 2003; Hara et al., 2004; Kim et 

al., 2004; Bowers et al., 2005). Active immunotherapies including CAD106 

(Novartis/Cytos Biotechnology) and ACC-001 (Elan Pharmaceuticals/Wyeth) are also 
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currently undergoing human trials. CAD106 consists of the first six N-terminal amino 

acids of AB attached to a virus-like particle. Similarly, ACC-001 consists of an AB 
fragment attached to a conjugate carrier protein to aid the induction of an antibody 

response to AB. Immunotherapy undoubtedly results in the clearance of cerebral AB 
plaques and reductions in the AB plaque-associated neuritic dystrophy, astrogliosis, 

microgliosis and improved cognitive performance in transgenic mouse models of AD. 

However, the conversion of immunotherapy protocols that are effective in mice for 

human use may not be as simple as initially hoped. Therefore, it is important to keep 

exploring alternative interventions as AD therapeutics. 

Finally, therapeutics other than immunisation protocols that increase the clearance of AB 
are also being investigated (Leissring et al., 2003; Risner et al., 2006; Riddell et al., 

2007). Transgenic APP mice that also overexpress insulin-degrading enzyme or 

neprilysin, both of which degrade AB, exhibit reduced AB levels and AB plaque 

deposition (Leissring et al., 2003), providing proof of concept for therapeutics aimed at 

increasing endogenous enzymatic AB degradation. One such agent is T09013 l 7 is a 

liver X receptor agonist that is being investigated for its potential to increase AB 
clearance through the induction of genes involved in intracellular lipid transport and 

efflux (Riddell et al., 2007). T0901317 treatment decreases ABl-42 levels and memory 

deficits in Tg2576 mice, with no effects on the levels of full length APP, ABl-40 or 

other APP processing products, suggesting that T0901317 specifically increases AB 1-42 

clearance (Riddell et al., 2007). Finally, as there is an increased risk of developing AD 

in type 2 diabetes patients (Arvanitakis et al., 2004), and diet-induced insulin resistance 

in Tg2576 mice decreases insulin-degrading enzyme activity, increases y-secretase 

activity, memory deficits, AB levels and plaque load (Ho et al., 2004), rosiglitazone 

maleate, a nuclear hormone receptor peroxisome proliferator-activated receptor gamma 

agonist that is usually used to reduce blood glucose levels and hyperinsulineamia in 

diabetics, is currently in Phase III trails for use in AD subjects (GlaxoSmithKline). 

Rosaglitazone treatment in Tg2576 mice improves learning and memory, ameliorates 

reduced insulin-degrading enzyme activity, and decreases brain A~ levels without 

affecting AB plaque load (Pedersen et al., 2006). In humans rosaglitazone improves 
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cognition in a subset of human mild-moderate AD subjects that are apoe4 allele carriers 

(Risner et al., 2006). 

A better understanding of the link between A~ deposition and the neuronal pathology 

apparent in AD will lead to more effective treatment of the disease. Reducing the classic 

reactive changes of injured neurons, or inhibiting or encouraging the resolution of the 

regenerative responses exhibited by injured neurons may also be an approach that will 

reduce neurodegeneration in AD. However, successful application of such therapeutics 

in clinical settings would need to occur early in the disease process before substantial 

neuronal degeneration has occurred. The accurate diagnosis of preclinical AD cases 

prior to the clinical diagnosis of AD utilising a combined biomarker/imaging approach 

may soon be possible (as reviewed in Borroni et al., 2007; de Leon et al., 2007), due to 

improved technology, imaging techniques, the discovery of biomarkers, and the 

development of new labels for A~ and tau that can be used in vivo (Shoghi-Jadid et al., 

2002; Klunk et al., 2004; Mintun et al., 2006; Small et al., 2006; Klunk et al., 2007; 

Wierenga and Bondi, 2007). 
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1.10 PROJECT AIMS 

While the pathological hallmarks of AD and cellular pathways involved in the 

production, processing and functions of A~ and tau have been extensively investigated, 

the primary causative agent or mechanisms of AD are still unknown. In addition, the 

exact cellular pathways that link the development of A~ plaques, DNs, NFTs and 

neuropil threads to one another and to the neurodegeneration and neuronal loss 

characteristic of AD have not yet been elucidated. Examining the cellular and 

biochemical mechanisms that underlie the initiation and progression of AD is vital, not 

only for a complete understanding of the disease process, but also for the identification 

of targets for the development of effective treatments to stop or slow AD progression. 

Therefore, this thesis will investigate several aspects of the pathological changes leading 

to neuronal degep.eration in AD. 

Aiml 

To investigate the role of apoptosis in AD 

To date, the literature regarding the role of apoptosis in AD provides evidence both for 

and against apoptosis playing a major role in the progression and neurodegeneration that 

occurs in AD. Therefore, to clarify this contentious area of AD research, apoptotic 

nuclear morphology and a comprehensive set of apoptotic-related proteins will be 

examined via immunohistochemistry in human AD, preclinical AD and control cases. 

In addition, the levels of mRNA for apoptosis-related proteins will also be quantified in 

the same cohorts of cases. 

Aim2 

To examine the relationship between cytochrome c release and the pathological 

hallmarks of AD 

The release of cyto c from the mitochondria into the cytoplasm is indicative of the 

activation of apoptosis and/or mitochondrial damage or dysfunction. Although, cyto c 

has been previously reported to be present in a subset of DNs, the association of cyto c 

with the pathological hallmarks of AD, and its cellular localisation in this regard, 
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remains to be determined. Utilising immunohistochemical techniques the relationship 

between cyto c, including its cellular localisation, with AP plaques, DNs and NFTs will 

be assessed. In addition, cyto c localisation in relation to the staging of AD pathology 

will also be investigated. 

Aim3 

To determine whether the AP plaque-associated neuronal pathology in two transgenic 

AD mouse models more closely resembles that of human preclinical AD or AD cases 

The AP plaque-associated neuronal pathology in human preclinical AD cases differs 

from that in AD cases, suggesting that this neuronal pathology matures or develops as 

AD progresses. These experiments will seek to assess whether the AP plaque-associated 

neuronal pathology in two widely utilised transgenic AD mouse models, namely 

TgCRND8 and Tg2576 mice, mimic the pathology present in human preclinical AD or 

AD cases. Utilising immunohistochemistry, the percentage of neuritic AP plaques, the 

morphology of AP plaque-associated dendrites and the morphology and neurochemistry 

of DNs will be compared to that present in human preclinical AD and AD cases. 

Aim4 

To assess metallothionein isoform IIA as a potential therapeutic agent/or AD 

utilising a mouse model of AD 

The final aim of this thesis is to investigate the potential of metallothionein isoform IIA 

(MTIIA) as a therapeutic intervention of AD. Currently available therapeutics for the 

treatment of AD only address the disease's symptoms and do not affect disease 

progression. Thus, research into new therapeutic agents with potential modes of action 

that will inhibit or halt AD pathology is imperative. Metallothionein IIA is a small 

protein with neuroprotective, metal chelating and antioxidant properties that has 

previously improved outcomes in experimental models of CNS injury, multiple sclerosis 

and Parkinson' s disease. In these experiments MTIIA or saline solution will be 

administered to Tg2576 mice and the AP-labelled and thioflavine s-stained plaque loads 

and AP plaque-associated neuronal pathology will subsequently be assessed. 
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2 MATERIALS AND METHODS 

2.1 HUMAN BRAIN TISSUE SOURCES AND PROCESSING 

Human brain tissue was obtained from multiple sources: National Tissue Resource 

Centre, University of Melbourne (Australia), Sun Health Research Institute (Arizona, 

USA), National Health and Medical Research Council Brain Bank (Adelaide, Australia) 

and the Department of Pathology, University of Sydney (Australia), as previously 

described (Saunders et al., 1998; Dickson et al., 1999). Permission for brain autopsy and 

use for research were obtained by the original tissue sources, and the Tasmanian Human 

Research Ethics Committee approved all research. Blocks of cerebral cortex were 

immersion-fixed in paraformaldehyde or 10% buffered formalin or the brains were 

perfusion-fixed with either 2% picric acid or 4% paraformaldehyde. Blocks of cerebral 

cortex were cryoprotected in 18.0%, then 30.0% sucrose solution, embedded in Shandon 

cryomatrix tissue compound (Thermo Scientific, Runcorn, UK) and 40 micron sections 

of SFG and ITG were sectioned on a cryostat. 

Throughout this thesis a total of 20 AD cases, 11 preclinical AD cases and nine control 

cases were analysed (Table 2.1 ). No AD associated pathology was present in the control 

cases, which were of similar ages to AD and preclinical AD cases. The AD cases 

conform to the CERAD criteria, and demonstrate Braak stages V and VI pathology 

(Braak and Braak, 1991; Mirra et al., 1991). A subset of non-demented cases exist that 

exhibit signs of pathological aging that include widespread neocortical A~ plaques, but 

no 'classical' neurofibrillary pathology or overt nerve cell degeneration (Price and 

Morris, 1999; Vickers et al., 2000). Such pathologically aged cases correspond to Braak 

stage III pathology, and may represent a preclinical stage of AD. The preclinical AD 

cases do not conform to the CERAD criteria for the diagnosis of clinical AD, but exhibit 

Braak stage III pathology including widespread non-neuritic (based on thioflavin S or 

PHF-tau-labelling) A~ immunolabelled plaques in the neocortex and neurofibrillary 

pathology in the entorhinal formation and hippocampus (Braak and Braak, 1991; 

Vickers et al., 1996; Saunders et al., 1998). 
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Table 2.1 Human brain cases utilised for immunohistochemistry and analysis. 

Type Age Gender Postmortem Conical Pathological Source F1xat10n 
(~ears) mterval (h) re!l1on diall!!OSIS 

AD 60 M 64 5 ITG COAD NTRC 4%Para• 

AD 65 M 3 SFG,ITG AD NHMRC bram bank 2% p1cnc acid* 

AD 67 M 31 ITG Respiratory failure NTRC 4%Para* 

AD 67 M 61 ITG AD NHMRC bram bank 2% p1cnc acid• 

AD 71 F 13 SFG,ITG AD NHMRCbrambank 2% p1cnc acid* 

AD 72 F 4 SFG, ITG AD SHRI 4% Para• 

AD 73 M 65 SFG,ITG AD NHMRC bram bank 2%p1cnc acid* 

AD 73 M 35 ITG Pneumoma NHMRC bram bank 2% p1cnc acid* 

AD 74 F 2 SFG, ITG Pneumoma SHRI 4% Para* 

AD 74 M 2 75 SFG Respiratory failure, AD SHRI 4% Para* 

AD 76 F 26 SFG,ITG AD NHMRC bram bank 2% p1cnc acid* 

AD 79 M 24 ITG Respiratory failure NTRC 4% Para* 

AD 81 M 23 5 ITG Cardiac fatlure NTRC 4% Para• 

AD 83 M 2 83 SFG,ITG Dementia SHRI 4% Para* 

AD 83 F 5 ITG AD NHMRC bram bank 2% p1cnc acid* 

AD 84 F 3 SFG,ITG AD SHRI 4%Para• 

AD 84 F 16 5 lTG Cardiac failure NHMRC bram bank 2% p1cnc acid• 

AD 88 M 7 SFG,ITG Dementia SHRI 4%Para* 

AD 91 F 64 ITG Mahgnant mesothehoma NTRC 4%Para* 

AD 92 F 2 25 ITG Pneumoma SHRI 4%Para• 

Prechmcal AD 71 M 32 5 SFG Cardiac arrhythmia Um of Sydney 15% fonnalm* 

Prechmcal AD 74 M 31 5 ITG Cardiac fatlure NTRC 4%Para• 

Prechmcal AD 74 M 68 ITG Cardiac failure NTRC 4%Para* 
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Type Age Gender Postmortem Contcal Pathological Source F1xat10n 
{years) mterval (h) region dla!l!!OSIS 

Prechmcal AD 78 M 2 25 SFG Postoperative SHRI 4%Para• 

Prechmcal AD 81 F 3 SFG Cardiac arrest SHRI 4%Para• 

Prechmcal AD 82 M 48 5 ITG Cardiac mfarc!lon NTRC 4% Para• 

Prechmcal AD 82 M 50 ITG Cardiac fallure NTRC 4% Para• 

Prechmcal AD 84 M 3 SFG Card10puhnonary arrest SHRI 4% Para* 

Prechmcal AD 90 M 2 16 SFG Respiratory arrest SHRI 4%Para• 

Prechmcal AD 91 M 3 SFG Cardiac failure SHRI 4%Para• 

Prechmcal AD 91 M 48 ITG Renal fallure NTRC 4%Para• 

Control 47 M 27 5 SFG Cardiac mfarctton Um of Sydney 15% fonnalm* 

Control 51 M 23 3 SFG Pulmonary embolus Um of Sydney 15% fonnalm* 

Control 58 M 27 SFG Coronal}' disease Um of Sydney 15% fonnahn* 

Control 58 F 30 ITG Asthma NTRC 4% Para• 

Control 65 M 16 SFG Cardiac mfarctton Um of Sydney 15%fonnalm* 

Control 73 F 26 5 ITG Pulmonary Embohsm NTRC 4%Para* 

Control 77 M 53 5 ITG Cardiac fatlure NTRC 4%Para• 

Control 79 M 57 ITG Respiratory fallure NTRC 4%Para* 

Control 84 M 55 Cardiac mfarction NTRC 4%Para* 

NTRC, National Tissue Resource Centre, SHRI, Sun Health Research Instttute, Um of Sydney, Umvers1ty of Sydney, 4% para*, Immers10n fixed m 

4% parafonnaldehyde, 2% p1cnc acid, perfus10n fixed m 2% p1cnc acid, 10% fonnahn*, Immers10n fixed in 10% fonnahn 
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2.2 HISTOLOGICAL STAINS 

2.2.1 Thioflavine s-staining 

The tissue sections were placed in 0.0125% thioflavine s (Sigma, St Louis, MO) 

dissolved in 60% O.OlM phosphate buffered saline (PBS) and 40% ethanol for three 

minutes in the dark on an orbital shaker at room temperature (RT). Following 

differentiation: in two one minute incubations in 50:50 PBS:ethanol at RT in the dark, the 

tissue sections were washed three times with O.OIM PBS at RT in the dark on an orbital 

shaker. Thioflavine s stains a subset of plaques that contain fibrillar aggregates. 

2.2.2 Nuclear yellow-staining 

Tissue sections were incubated in 0.001% Nuclear Yellow (Sigma) in PBS for 30 

minutes in the dark at RT, on an orbital shaker. Tissue sections were then washed three 

times with O.OIM PBS for 10 minutes each, at RT on an orbital shaker. 

2.3 IMMUNOIDSTOCHEMISTRY 

2.3.1 Formic acid epitope exposure 

Tissue sections were incubated in 90% formic acid (Sigma) for 20 minutes at RT on an 

orbital shaker. Brain sections were then washed seven times with O.OIM PBS for 10 

minutes each, at RT on an orbital shaker. 

2.3.2 Autofluorescence quenching 

Brain sections were destained in 0.25% potassium permanganate for 20 minutes at RT 

on an orbital shaker and washed twice in O.OlM PBS for two minutes at RT. Brain 

sections were then de-labelled in 1.0% pot-metabisulphite and oxalic acid for one to two 

minutes. Tissue sections were then washed three times with O.OlM PBS for 10 minutes 

each, at RT on an orbital shaker. 
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2.3.3 Indirect fluorescent immunohistochemistry 

Brain tissue sections were incubated in primary antibody solutions for 16-72 hours at RT 

or at 4 °C (Table 2.2). Optimal antibody concentrations were individually determined for 

each antibody, and omitting primary antibodies eliminated all immunoreactivity. After 

three washes with O.OlM PBS for 10 minutes, each at RT on an orbital shaker, primary 

antibodies were exposed to Alexa Fluor goat anti-mouse/rabbit secondary antibodies for 

two hours at RT, on an orbital shaker in the dark (Table 2.3). All antibodies were 

diluted in 3.0% triton-X (Sigma) in O.OlM PBS to permeabilise the cell membranes. 

Tissue sections were then washed three times with O.OlM PBS for 10 minutes each at 

RT on an orbital shaker, and mounted onto microscope slides and coverslipped with 

permafluor aqueous mounting medium (Immunotech, Marseille, France). 

2.3.4 Antigen retrieval 

Brain sections were loaded into tissue cassettes, placed in O. lM citrate buffer (pH 6.0) 

and heated on high for 10 minutes in a conventional microwave oven (LG MS-314SCE, 

1000 watts). The tissue sections were then heated on high power for a further two and a 

half minutes and six minutes on medium power under pressure in a microwave tender 

cooker (Nordic ware, Minneapolis). The specimens were cooled to RT in citrate buffer 

before being transferred back into O.OlM PBS. Tissue sections were then removed from 

the tissue cassettes and washed three times with O.OlM PBS for 10 minutes each at RT 

on an orbital shaker. 

2.3.5 Indirect immunoperoxidase immunohistochemistry 

Brain sections were incubated in 1.0% hydrogen peroxide diluted in methanol for 15 

minutes at RT on an orbital shaker, washed three times with O.OlM PBS for 10 minutes 

each, at RT on an orbital shaker, then incubated in primary antibody solutions for two 

hours at RT on an orbital shaker, and then overnight at 4°C. The sections were then 

washed three times with O.OlM PBS for 10 minutes each, at RT on an orbital shaker, and 

incubated in goat anti-mouse/rabbit immunoglobulin horse-radish peroxidase 
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Table 2.2 Primary antibodies used for immunohistochemistry. 

Antibody name Type Immunoreactivity Dilution Sonrce 

anll-acltve caspase-3 R Pepllde from the p 18 fragment of I 250/ Promega (Madison, WI) 

of cleaved procaspase-3 I 500 

an11-act1ve caspase-8 M N-termmal region ofplO subumt I 100 Oncogene Research Products (San Diego, CA) 

of cleaved procaspase-8 

ant1-acllve caspase-9 R N-termmal reg10n of I OkDa I 200 B1osource Jnt (Camanllo, CA) 

fragment of autoacavated procaspase-9 

antt-a-mternexm M C-termmal of a-mternexm I 500 Chem1con (Temecula, CA) 

antt-a-mternexm R Whole a-mternexm protem I 500 Novus B1olog1cals (L11tleton, CO) 

anll-Bax R N-termmus of Bax I 200 Santa Cruz B1otechnology (Santa Cruz, CA) 

anti-Bcl-2 R N-termmus ofBcl-2 I 200 Santa Cruz B1otechnology (Santa Cruz, CA) 

an1t-NCL-p-arnyl01d M A site on P-arnylo1d peptlde I 500 Novocastra (Newcastle, UK) 

an1t-pan-P-arnyl01d R All P-amyl01d pepttdes I 1000 B1osource Int (Camanllo, CA) 

anll-calretnm R Calcmm-bound and unbound I 1000 Biosource lnt (Camartllo, CA) 

conformattons of calretnm 

ant1-chromogranm A R Large synapttc vesicles I 500 DAKO (Carpmtena, CA) 

antt-cytochrome c M CYtochrome c I 500 BD B10sc1ences Pharm1gen (Franklin Lakes, NJ) 

antl-femtm R Humanfemlln 1 2000 DAKO (Carpmtena, CA) 

anti-GFAP M Gita! fibnllary ac1d1c protem I 500 Chem1con lnt (Temecula, CA) 

ant1-MTI/JJ M MTiandMTII I 500 DAKO (Carpmtena, CA) 

ant1-MAP2 M M1crotubule associated protem 2 I 250 Chem1con Int (Temecula, CA) 

anti-ohgodendrocyte M Myelm/Ohgodendrocyte specific protein I 500 Chemicon Int (Temecula, CA) 

antt-SMI32 M Dephosphorylated NFM and NFH I 2000 Sternberger Monoclonals Inc (Lutherv1Jle, MD) 

anti-SMI312 M Phosphorylated NFM and NFH I 3000 Sternberger Monoclonals Inc (Lutherv1Jle, MD) 
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Antibody name 

antt-hyperphosphorylated 

-tau 

anu-hwnan tau 

ant1-TRADD 

Type Immunoreactivity 

M Phosphorylated Ser202fThr205, S~r202/ 

Ser205 or Ser205/Ser208 of PHF-tau (ATS) 

R Phosphorylauon mdependent tau 

M C-termmal half ofTRADD 

M, mouse monoclonal anttbody, R, rabbit polyclonal anubody, MT, metallotluonem 
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Dilution Source 

I 500 Endogen (Wobum, MA) 

I 4000 DAKO (Carpmtena, CA) 

I 250 BD B10sc1ences Pharm1gen (Franklm Lakes, NJ) 
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Table 2.3 Fluorescent secondary antibodies utilised for indirect fluorescent 

immunohistochemistry. 

Emission (nm) Reactivity Species Dilution Supplier 

488 mouse lgG goat 1:500 Molecular Probes (Eugene, OR) 

594 mouse lgG goat 1:500 Molecular Probes (Eugene, OR) 

488 rabbit goat 1:500 Molecular Probes (Eugene, OR) 

594 rabbit goat 1:500 Molecular Probes (Eugene, OR) 
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(1 :200, DAKO) for one and a half hours at RT on an orbital shaker, followed by three 

washes with O.OlM PBS for 10 minutes each, at RT on an orbital shaker. All antibodies 

were diluted in 3.0% triton-X in O.OlM PBS to permeabilise the cell membranes. The 

Vectastain ABC Kit (Vector Laboratories, Burlingame, CA) was used for amplification 

via avidin/biotin according to manufacturers instructions. The primary antibody 

complex was visualised by a two to three minute incubation in Sigma Fast™ 3,3'

Diaminobenzidine tablet set (Sigma) diluted in Milli-Q® water. The tissue sections were 

washed three times with O.OlM PBS for 10 minutes each, at RT on an orbital shaker 

mounted and left to dry overnight at RT. The mounted sections were then incubated in 

Milli-Q® water for 20 minutes at RT followed by three minute incubations in 70%, 90% 

and 100% ethanol. After 30 minutes in xylene at RT the tissue sections were 

coverslipped with pertex (Medite, Burgdorf, Germany). 

2.4 MICROSCOPY AND ANALYSIS 

Immunolabelled specimens were examined using a Leica DM LB2 immunofluorescence 

microscope or a Leica DMB IRB inverted fluorescence microscope. Images were 

acquired using a cooled CCD Magnafire (Optronics) digital camera and Magnafire 

(version 1.0) software. Image analysis, such as area quantitation, was performed using 

NIH ImageJ (version l.34s) software. Statistical analysis was performed in Microsoft 

Excel (Mac Os X) and Graphpad Prism4® software, with p values less than 0.05 (Cl 

95%) being considered statistically significant. Means were reported ± standard error of 

the mean (SEM). Graphs were prepared in Microsoft Excel or Prism (version 4.0c). 

Images for figures were prepared using Adobe Photoshop (version 9.0). 

All solutions are provided in full in Appendix 1. , 
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3 NO DIFFERENCE IN EXPRESSION OF APOPTOSIS-RELATED 

PROTEINS AND APOPTOTIC MORPHOLOGY IN CONTROL, 

PRECLINICAL ALZHEIMER'S DISEASE AND ALZHEIMER'S 

DISEASE CASES 

3.1 INTRODUCTION 

Apoptosis is a form of programmed cell death, which involves several pathways that 

result in the activation of caspases, and eventually cell death characterised by chromatin 

condensation, nuclear shrinkage, DNA fragmentation, cytoplasm condensation and 

disintegration. The search for signs of apoptosis including DNA fragmentation, frank 

apoptotic morphology, activated caspases, caspase cleavage products and changed levels 

of pro- and anti-apoptotic molecules in AD brains has produced contrasting and often 

conflicting results. The frequency of DNA fragmentation has been assessed in AD and 

control brains with reports of similar levels of DNA fragmentation in AD and control 

brains (Lucassen et al., 1997) or increased DNA fragmentation in AD brains (Smale et 

al., 1995; Cotman and Su, 1996; Lassmann, 1996; Troncoso et al., 1996; Lucassen et al., 

1997; Sugaya et al., 1997; Masliah et al., 1998; Stadelmann et al., 1998). Despite these 

reports of increased DNA fragmentation in AD brains, classical apoptotic morphology is 

seldom observed or not observed at all in AD (Lassmann et al., 1995; Troncoso et al., 

1996; Lucassen et al., 1997; Stadelmann et al., 1998; Jellinger and Stadelmann, 2000; 

Nunomura and Chiba, 2000; Raina et al., 2001; Raina et al., 2003). Such studies are 

further complicated by the fact that both DNA fragmentation and classical apoptotic 

morphology can occur independently of apoptosis (Raina et al., 2003; Tatton et al., 

2003). Additionally, many studies have reported an increase in the levels and/or 

numbers of cells containing anti-apoptotic Bcl-2 (Satou et al., 1995; Su et al., 1996b; 

Kitamura et al., 1998), pro-apoptotic Bax (Nagy and Esiri, 1997? Su et al., 1997; 

Giannakopolous et al., 1999), active caspase-3 (Stadelmann et al., 1999; Zhao et al., 

2003b), inactive and active caspase-8 (aC8, Rohn et al., 2001a; Pompl et al., 2003) and 

inactive and active caspase-9 (aC9, Rohn et al., 2002; Pompl et al., 2003) in AD brains 

compared to control brains, while others have not found increases in these proteins in 
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AD brains (MacGibbon et al., 1997; Nagy and Esiri, 1997; Kitamura et al., 1998; 

Stadelmann et al., 1998; Engidawork et al., 2001). 

To investigate whether apoptosis plays a major role in the pathological process of AD 

the presence of apoptotic-like nuclei and a comprehensive array of apoptosis-related 

proteins from both the death receptor and mitochondrial apoptotic pathways were 

assessed. Using immunohistochemistry and real time reverse transcriptase polymerase 

chain reaction (RT-PCR), both the SFG and ITG of AD and control brains were 

analysed. In addition to control and AD cases, apoptosis-related changes were also 

investigated in preclinical AD cases, as such preclinical cases may provide important 

clues to the initiation and progression of neuronal pathology (Benzing et al., 1993; Lue 

et al., 1996; Vickers et al., 1996). So far, few studies have investigated apoptosis in such 

preclinical and early AD cases (Su et al., 1997; Gastard et al., 2003; Zhao et al., 2003a; 

Zhao et al., 2003b; Albrecht et al., 2007; Christie et al., 2007). 
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3.2 MATERIALS AND METHODS 

3.2.1 Human brain tissue source and processing 

Human brain tissue was obtained from multiple sources: National Tissue Resource 

Centre, Sun Health Research Institute, National Health and Medical Research Council 

Brain Bank and the Department of Pathology, University of Sydney, as previously 

described (Section 2.1 ). 

3.2.2 Immunohistochemistry and analysis of apoptotic-like nuclei 

Fourteen AD cases (average age, age range; average postmortem interval, postmortem 

interval range 76.8, 65-92 years; 10.7, 2-61 hours; Table 3.1), six preclinical AD cases 

(82.5, 71-91 years; 7.7; 2.25-32.5 hours; Table 3.1) and four control cases (55.3, 47-65 

years; 23.5, 16-27.5 hours; Table 3.1) were stained with thioflavine s (Section 2.2.1) and 

Nuclear Yellow (Section 2.2.2). Cases were age and PMI matched as closely as 

possible, however, the age and PMI of control cases was significantly different when 

compared to AD cases, and the age of the control cases ~as also significantly different 

lower than preclinical cases (p <0.05). It was not possible to gender match between 

case types· due to the difficulty in obtaining appropriately fixed human brain tissue. 

Although there was no robust association between sex and the percentage of apoptotic 

nuclei, an interaction between these two factors cannot be discounted nor could it be 

statistically analysed with this sample of cases. Thioflavine s stains plaques that contain 

fibrillar aggregates. Additionally, the SFG neocortex of five AD, five preclinical AD 

and four control cases and the ITG of five AD cases were quenched (as per Section 

2.3.2), stained with thioflavine s (Section 2.2.1) and Nuclear Yellow (Section 2.2.2) and 

then immunolabelling for astrocytes ( anti-glial fibrillary acidic protein, GF AP), 

oligodendrocytes (anti-oligodendrocyte/myelin specific protein), microglia (anti

ferritin), calretinin-labelled neurons or dephosphorylated NF triplet protein-labelled 

neurons (a pyramidal cell marker, see Kirkcaldie et al., 2002) and tau (Table 2.2) was 

performed as previously described (Section 2.3.3). Several AD brain tissue sections 

were also treated with 90% formic acid (Section 2.3.1) and labelled with rabbit anti-Af3 

(Table 2.2) instead of thioflavine s-staining to more clearly assess the association of 

nuclei with Af3 plaques. 
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Table 3.1 Human cases used for cell type specific apoptotic-like nuclei analysis 

Type Age Gender Postmortem Cortical Pathological 
(years) interval (h) region diagnosis 

AD 65 M 3 SFG, ITG AD 

AD 67 M 61 ITG AD 

AD 71 F 13 SFG, ITG AD 

AD 72 F 4 SFG, ITG AD 

AD 73 M 6.5 SFG, ITG AD 

AD 73 M 35 ITG Pneumonia 

AD 74 F 2 SFG, ITG Pneumonia 

AD 74 M 2.75 SFG Respiratory failure, AD 

AD 76 F 2.6 SFG, ITG AD 

AD 83 M 2.83 SFG, ITG Dementia 

AD 83 F 5 ITG AD 

AD 84 F 3 SFG, ITG AD 

AD 88 M 7 SFG, ITG Dementia 

AD 92 F 2.25 ITG Pneumonia 

Preclinical AD 71 M 32.5 SFG Cardiac arrhythmia 

Preclinical AD 78 M 2.25 SFG Postoperative 

Preclinical AD 81 F 3 SFG Cardiac arrest 

Preclinical AD 84 M 3 SFG Cardiopulmonary arrest 
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Type Age Gender Postmortem Cortical Pathological 
(years) interval (h) region diagnosis 

Preclinical AD 90 M 2.16 SFG Respiratory arrest 

Preclinical AD 91 M 3 SFG Cardiac failure 

Control 51 M 23.3 SFG Pulmonary embolus 

Control 58 M 27 SFG Coronary disease 

Control 65 M 16 SFG Cardiac infarction 

Control 47 M 27.5 SFG Cardiac infarction 
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To determine the percentage of abnormal nuclei present in pathology-rich cortical areas, 

images of five random fields of view in cortical layer III were captured at 40x in the 

SFG of six preclinical AD, six AD and four control cases and in the ITG of six AD, five 

preclinical AD and three control cases. Cases were selected based on optimal fixation 

conditions for Nuclear Yellow-staining. Normal and abnormal nuclei were counted, with 

apoptotic-like nuclei being defined as brightly fluorescent (indicating condensed 

chromatin), rounded, shrunken and/or fragmented nuclei (Tompkins et al., 1997; 

Verdageur et al., 2002; Conti et al., 2003; Roy and Sapolsky, 2003). To provide an 

indication of the severity of AD pathology, NFTs were counted in 10 randomly chosen 

fields of view in neocortical layer III of each case. Linear regression analysis was 

performed on the apoptotic nuclei, NFT load and postmortem interval data sets and no 

significant correlations were present. The nuclei of all tau-immunoreactive intracellular 

NFTs co-localised with dephosphorylated NF triplet protein-labelled neurons were also 

examined in the SFG and ITG of five AD cases. 

Additionally, blinded to case type, 100 astrocytes, microglia, calretinin- and 

dephosphorylated NF triplet protein-labelled neurons were counted in each case and any 

co-localisation with apoptotic nuclei was recorded. As oligodendrocyte-specific

protein-labelling was often very dense in the outer neocortical layers quantitation of this 

cell type was not possible. 

3.2.3 Immunohistochemistry and analysis of apoptosis-related proteins 

To ascertain whether apoptotic pathways were activated in AD, sections from five AD 

(average age, age range, average postmortem interval, postmortem interval range; 76, 

60-91 years; 41, 23.5-64.5 hours), five preclinical AD (81, 74-91 years; 49, 31.5-68 

hours) and five control cases (74, 58-84 years; 44, 26.5-57 hours) underwent antigen 

retrieval (Section 2.3.4) and then immunohistochemistry for aC3, aC8, aC9, Bcl-2, Bax 

or TRADD (Table 2.2) using standard immunoperoxidase labelling techniques (Section 

2.3.5). The ages and PMis of control, preclinical AD and AD cases were not 

significantly different. It was not possible to gender match between case types due to 
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the difficulty in obtaining human brain tissue. Although there was no robust association 

between sex and the percentage of the levels of apoptotic-related proteins and real time 

RT-PCR analysis, an interaction between these two factors cannot be discounted. 

However, such an interaction could not be statistically analysed with the sample of cases 

used in the current study. To determine the identity of the aC3-labelled cells the SFG 

neocortex of five AD, five preclinical AD and four control cases and the ITG of five AD 

cases were also double labelled with aC3 and GF AP, using standard immunofluorescent 

labelling techniques (Section 2.3.2) and stained with Nuclear Yellow (Section 2.2.2). 

Whilst blinded to case type, each case was given a rating of 1-3 according to the amount 

of aC3-, aC8-, aC9-, Bcl-2-, Bax- or TRADD-labelling that was present in the neocortex 

in a similar way to previous studies (Lucassen et al., 1997; Stadelmann et al., 1998; Su 

et al., 2003). The tissue sections were then grouped into control, preclinical AD and AD 

cases and analysed by a one-way ANOV A with a Bonferroni post-hoe analysis. 

Following this, the brain sections were analysed for any change in the distribution of 

labelling for each apoptotic marker. 

3.2.4 RNA extraction and purification 

RNA was extracted from the frozen unfixed ITG neocortex of the same five AD 

(average age, age range, average postmortem interval, postmortem interval range; 76, 

60-91 years; 41, 23.5-64.5 hours), five preclinical AD (81, 74-91 years; 49, 31.5-68 

hours) and five control cases (74, 58-84 years; 44, 26.5-57 hours) that were 

immunolabelled for apoptotic related-proteins (Section 3.1.3). A thin slice of neocortex 

(0.04-0. lg) was taken from each case and the white matter and meninges were removed. 

RNA was extracted from the tissue samples using TRizol® reagent (lnvitrogen, Calsbad, 

CA) and then DNase treated with the DNA-free™ Kit (Ambicon, Austin, Texis) 

according to manufacturers instructions and stored at -80°C. The concentration and 

purity of the RNA solutions were determined by reading the optical density at 260 and 

280nm of each sample diluted in TE buffer (pH 8.0). When RNA was extracted twice 

from the same cerebellum sample and analysed by RT-PCR less than five percent 

variation was present in the Cr value. 
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3.2.5 Oligonucleotide primers 

The primer sequences used were as follows: Bax forward 5'

ATCCAGGATCGAGCAGGGCG-3' and reverse 5'-ACTCGCTCAGCTTCTTGGTG-

3' (Billbault et al., 2004); Bcl-2 forward 5'-TGTGGCCTTCTTTGAGTTCG-3' and 

reverse 5'-GAAATCAAACAGAGGCCGCATG-3' (Sawa et al., 1997), TRADD 

forward 5'-CGGCTCCGGGATGAAGA-3'and reverse 5'

GAGCCGCACTTCAGATTTCG- 3' (Lund et al., 2003); GAPDH forward 5'

TTCATTGACCTCAACTAC-3 'and reverse 5' -GTGGCAGTGATGGCATGGAC-3' 

(designed on Primer Express Software; Applied Biosystems Inc. Foster City, CA) 

3.2.6 Real time RT-PCR 

Real time quantitative RT-PCR reactions were carried out using the Quantitect® SYBR® 

Green RT-PCR kit (Qiagen; Applied Biosystems Inc. Foster City, CA) in a 1 Oµl volume 

on a Rotor-gene 2000 (Corbett Research, Mortlake, NSW, Australia). All reactions were 

performed in duplicate with a no template control. The RT-PCR conditions for GAPDH 

and TRADD were 50°C for 30 min, 95°C for 15 min, followed by 40 cycles of 94°C for 

15s, 55°C for 20s and 72°C for 20s. Whereas, the RT-PCR conditions for Bcl-2 and 

Bax were 50°C for 30 min, 95°C for 15 min followed by 40 cycles of 94°C for 15s, 

50°C for 20s and 72°C for 20s. The fluorescence was recorded during the elongation 

phase of each PCR cycle. A melt curve from 65-95°C was also performed at the end of 

each RT-PCR run to ensure that no primer dimers were present in the reaction products. 

A standard curve was prepared using real time RT-PCR products derived from cDNA 

for each primer set to ensure that the reaction was efficient over the range of 

concentrations present in the RNA samples. Briefly, real time RT-PCR products were 

run on a 2.5% agarose gel with a lOObp DNA Ladder (New England Biolabs, Herts, 

UK). The bands were photographed and excised under a UV transilluminator and 

cDNA was extracted with a QIAquick® gel extraction kit (Qiagen, Clifford Hill, 

Victoria, Australia) according to the manufacturer's protocol. A serial dilution of the 
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extracted cDNA was prepared for each primer set to create a RT-PCR cDNA standard 

curve. A standard curve was also prepared for each primer set using serial dilutions of 

brain RNA to ensure that the amount of RNA added to each RT-PCR reaction was not 

inhibiting the efficiency of the RT-PCR reaction. 

The CT values of all samples for the Bax, Bcl-2 and TRADD primer sets were 

normalised to GAPDH by dividing the CT value of the gene of interest by the CT value 

of GAPDH for each sample. GAPDH was used as the housekeeping gene as it was 

similarly expressed in control and AD brains (Gutala and Reddy, 2004). The GAPDH 

normalised CT values for each gene of interest in preclinical AD- and AD-samples were 

then divided by the average CT value of the control samples and expressed as a 

percentage of the average control value. The data was analysed using a one-way 

ANOV A with a Bonferroni post-hoe analysis. When linear regression analysis was 

performed no significant correlation was present between postmortem interval and Bax, 

Bcl-2 and TRADD mRNA levels. In addition, no real time RT-PCR for caspases-3, -8 

and -9 was performed as they are constitutively present as zymogens within cells, and as 

there was no qualitative correlation with amount of active caspase-3, -8 and -9 

immunolabelling with case types, the unfixed frozen human brain tissue, which was a 

highly limited resource, was not utilised to determine caspase activity levels. 
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3.3 RESULTS 

3.3.1 Apoptotic-like nuclei and cell type in AD, preclinical AD and control 

brains 

To assess the rate of apoptosis in AD, preclinical AD and control brains the percentage 

of apoptotic-like nuclei in neocortical layer III was investigated (Figure 3.lA). 

Statistical analysis demonstrated similar levels of apoptotic-like nuclei in neocortical 

layer III of the ITG in control and preclinical AD brains with significantly more 

abnormal nuclei in control cases than AD cases (p = < 0.05; Figure 3.lA). Additionally, 

the AD and preclinical AD cases had a significantly higher percentage of abnormal 

nuclei in cortical layer III in the SFG than in the ITG (p = < 0.05). In layer III of the 

ITG the percentages of cells with apoptotic-like nuclei in AD, preclinical AD and 

control cases were 4.72% ± 0.28, 5.20% ± 0.69 and 6.72% ± 0.59, respectively (Figure 

3.lA). In layer III of the SFG 7.35% ± 0.69, 8.02% ± 0.49 and 8.13% ± 0.69 of cells 

were apoptotic-like in AD, preclinical AD and control cases, respectively (Figure 3. lA). 

The percentages of apoptotic nuclei in neocortical areas did not correlate with the 

postmortem intervals or age of the analysed cases (p > 0.05), and was not associated 

with particular modes or causes of death. 

With specific reference to the hallmarks of AD, there was a significant negative 

correlation between the average number of NFTs in neocortical layer III and the 

percentage of apoptotic-like nuclei present (p = < 0.05, Figure 3.lB). In addition none 

of the dephosphorylated NF triplet protein-labelled NFT-bearing neurons (n=142) 

observed in the SFG and ITG of five AD cases had apoptotic-like nuclei, indicating that 

NFT-bearing neurons do not account for a high proportion of cells with apoptotic-like 

nuclei (Figure 3.lC-H). Nuclei observed adjacent to AP plaques and nuclei enveloped 

within AP plaque's fibrils were almost always non-apoptotic (Figure 3.11-J). 

To determine what type of cell exhibited apoptotic-like nuclei, GF AP, ferritin, calretinin, 

dephosphorylated NF triplet protein, and oligodendrocyte/myelin specific protein-
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Figure 3.1 

The percentage of apoptotic-like nuclei were not significantly different in neocortical 

layer III of the SFG in AD, preclinical AD and control cases or in the ITG of control and 

preclinical AD cases. Bar graph showing the percentage of apoptotic-like nuclei in 

neocortical layer III of the ITG and SFG of control, preclinical AD and AD cases (A:* p 

<0.001 ** p <0.01; error bars indicate SEM). Line graph demonstrating the significant 

negative correlation that was present when the average number of NFTs present per field 

of view in neocortical layer III of the SFG and ITG of each AD case were plotted against 

the average percentage of apoptotic-like nuclei present in neocortical layer III of each 

AD case (B p = <0.001; R2 = 0.7058). Panels C-H show typical NFT-bearing neurons. 

None of the Nuclear Yellow-stained nuclei (arrows, C, F) of dephosphorylated NF 

triplet protein-labelled neurons (D, G) bearing tau-labelled intracellular NFTs (E, H) 

were apoptotic-like. I and J show Nuclear Yellow-stained nuclei (arrows, I) relative to a 

A~-labelled plaque (J), such nuclei almost always had normal morphology. Scale bar: 

C-H = 20µm; I-J = lOµm. 
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Chapter 3 - Results 

labelling was undertaken in conjunction with Nuclear Yellow-staining to identify 

astrocytes, microglia, calretinin-labelled neurons, dephosphorylated NF triplet protein

labelled neurons and oligodendrocytes, respectively (Figure 3.2). Frank nuclear 

apoptotic changes were largely restricted to astrocytes and microglia rather than 

calretinin- and dephosphorylated NF triplet protein-labelled neurons in AD, preclinical 

AD and control cases (Table 3.2). Apoptotic-like nuclei were consistently associated 

with abnormal cellular morphology (Figure 3.2). 

3.3.2 Active-caspase-3-, active caspase-8-, active caspase-9-, Bax-, Bcl-2- and 

TRADD-labelling in AD, preclinical AD and control brains 

The labelling of several apoptotic markers across AD, preclinical AD and control cases 

was also investigated. No increased labelling of any marker or different cortical or 

cellular labelling pattern that distinguished between case categories was present. When 

analysed blind to case type, there was no difference in the frequency of TRADD-, pro

apoptotic aC3-, aC8-, aC9- and Bax- and anti-apoptotic Bcl-2-labelling between control, 

preclinical AD or AD cases (Table 3.3). There was also no association between 

increased labelling of these apoptotic markers and the postmortem interval of each case 

(Table 3.3). Bax, Bcl-2, aC8, aC9 and TRADD immunohistochemical labelling were 

present in the soma of both pyramidal and non-pyramidal cells and were cytoplasmic 

apart from the granular labelling of TRADD (Figure 3.3). Bax, Bcl-2 aC8, aC9 and 

TRADD immunostaining was present in the proximal region of the apical dendrites of 

some pyramidal cells and aC9-, Bax- and TRADD-labelling also extended into the basal 

dendrites of some pyramidal cells (Figure 3.3). Active caspase-3-labelling was also 

cytoplasmic, but in contrast to the other apoptotic-related proteins, aC3-labelled the 

soma of glial cells (Figure 3.4). Active caspase-3-labelling co-localised with GFAP 

(Figure 3.4). Additionally, co-staining with Nuclear Yellow demonstrated that the 

nuclei of> 95% of aC3-labelled cells were not apoptotic-like. 

Active caspase-9-labelling was observed throughout neocortical layers II-VI with an 

increased number of labelled cells in layers III and V in all cases. Similarly, Bcl-2 
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Figure 3.2 

There was no significant difference in the percentage of astrocytes, microglia and 

neuronal subsets with apoptotic-like nuclei in the neocortex of control, preclinical AD 

and AD cases. Apoptotic-like nuclei were defined as brightly fluorescent, rounded, 

shrunken (arrow, C) and/or fragmented (arrow, D) nuclei. All of the dephosphorylated 

NF triplet protein-labelled neurons (A) and most of the ferritin-labelled microglia (E), 

GF AP-labelled astrocytes (I), oligodendrocytes (M) and calretinin-labelled neurons (Q) 

had normal nuclei (arrows, B, F, J, N, R, respectively) and cellular morphology (A, E, I, 

M, Q, respectively) in the neocortex. The small percentage of microglia, astrocytes, 

oligodendrocytes and calretinin-labelled neurons with apoptotic-like nuclei (arrows, H, 

L, P, T, respectively) also exhibited abnormal cellular morphology (G, K, O, S, 

respectively) characterised by cytoplasmic shrinkage. Scale bar: A-B = 5µm; C-T = 

lOµm. 





Figure 3.3 

No robust changes in the labelling of apoptotic-markers were present in the neocortex of 

control, preclinical AD and AD cases. Labelling for TRADD (A), aC8 (B), aC9 (C), 

Bax (D) and Bcl-2 (E) in neocortical layer III of all case types was somatic and present 

in both pyramidal and non-pyramidal cells. Labelling of all the apoptotic markers often 

extended into the proximal apical dendrites (arrows) of pyramidal cells. While TRADD-, 

aC9- and Bax-labelling was also observed to extend into the basal dendrites (arrow 

heads) of pyramidal cells. The laminar distribution of TRADD (F), aC9, Bax and Bcl-2 

were similar in most of the cases examined, and exhibited an increased density of 

labelling in neocortical layers III and V. Scale bar: A-E = 45µm; F = lOOµm. 





Figure 3.4 

Labelling for aC3 in neocortical layer III of all case types was cytoplasmic (A) and 

present in glial cells (arrows). Active caspase-3-labelling (B) co-localised with GFAP 

(C) and extended into the processes (arrows) of most aC3-labelled cells. The laminar 

distribution of aC3-labelling was homologous (D) throughout neocortical layers I-VI in 

most cases. WM= white matter Scale bar: A= l 70µm; B-C = 25µm; D = 330µm. 
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Table 3.2 The percentage of astrocytes, microglia and neurons labelled with calretinin 

or dephosphorylated NF triplet proteins with apoptotic like-nuclei in layer III of the 

neocortex. 

Astrocytes Microglia Neurons Neurons 

(GFAP-labelled) (ferritin-Iabelled) (calretinin-labelled) (dephosphorylated NF 

tri(!let (!rotein-labelled} 

ADSFG 0.6 ± 0.4 0.8±0.6 0.0±0.0 0.0±0.0 

Preclinical AD SFG 1.2 ±0.7 0.2±0.2 0.0±0.0 0.0±0.0 

Control SFG 0.75 ± 0.5 0.5 ± 0.3 0.3 ±0.2 0.0±0.0 

ADITG 1.0 ±0.3 1.4±0.6 0.0±0.0 0.0±0.0 
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Table 3.3 

extraction. 

Human brain cases used for analysis of apoptotic markers and RNA 

Type Age Gender PMI Pathological Immunohistochemical staining for: 

(years) (h) Diagnosis Active caspase-8 Active caspase-9 Active caspase-3 Bax Bcl-2 TRADD 

AD 60 M 645 COAD + + ++ + ++ +++ 

AD 67 M 31 Resptrat01y failure +++ ++ +++ + + + 

AD 79 M 24 Resptratory fatlure ++ +++ +++ +++ + + 

AD 81 M 235 Cardrnc failure +++ ++ + +++ ++ +++ 

AD 91 F 64 Malignant mesothehoma + +++ +++ + +++ + 

Prechrucal AD 74 M 31 5 Cardiac fatlure + ++ ++ + +++ ++ 

Prechrucal AD 74 M 68 Cardiac failure ++ + ++ ++ ++ ++ 

Prechmcal AD 82 M 485 Cardiac mfarctton +++ +++ + + + +++ 

Prechrucal AD 82 M 50 Cardiac frulure + +++ +++ ++ + +++ 

Prechruca! AD 91 M 48 Renal fatlure ++ ++ + +++ + + 

Control 58 F 30 Asthma +++ ++ ++ ++ + ++ 

Control 73 F 265 Pulmonary Embolism +++ + ++ + ++ +++ 

Control 77 M 53 5 Cardiac failure +++ ++ + +++ +++ +++ 

Control 79 M 57 Resptratory fatlure + + +++ ++ +++ ++ 

Control 84 M 55 Cardiac mfarct1on ++ +++ + ++ ++ + 

PM!, postmortem mterval 
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labelling was present in neocortical layers I-VI and the density of labelled cells was 

increased in layers III and V in most cases. Bax immunoreactivity was distributed 

throughout neocortical layers II-VI with an increased density of labelled cells in 

neocortical layer III in most cases. TRADD immunoreactivity was also observed in 

neocortical layers II-VI and an increase in the number of TRADD-labelled cells was 

present in layers III and V in some cases (Figure 3.3F). In contrast, aC8-labelling was 

homologous throughout neocortical layers III-VI in all cases, while aC3-labelling was 

homologous throughout layers I-VI in most cases. The density of Bcl-2, aC9 and 

TRADD-labelling in neocortical layers III and V was variable, being higher in layer III 

than in layer V in some cases and higher in layer V than in layer III in others .. 

3.3.3 Real time RT-PCR analysis of Bax, Bcl-2 and TRADD in AD, preclinical 

AD, and control cases 

To confirm the immunohistochemical observations of apoptotic markers in the 

preclinical AD, AD and control brains, the mRNA levels of Bax, Bcl-2 and TRADD 

were analysed in the same set of cases. No dramatic changes in the expression of these 

three genes were found, although there was a trend of reduced expression of each gene 

(relative to GAPDH) in AD brains compared to control brains that attained statistical 

significance in the case of Bcl-2 (Figure 3.5). No difference in Bcl-2 mRNA levels were 

present between control and preclinical AD cases, but there was a small but significant 

decrease in Bcl-2 mRNA in AD cases to 92.4% of control levels when control and 

preclinical AD cases were compared to AD cases (Figure 3.5, p = < 0.05). 

When analysed by real time RT-PCR, the mRNA levels of Bax were decreased to 98.4 ± 

2.6% and 94.9 ± 1.3% of control Bax levels in preclinical AD and AD cases, 

respectively (Figure 3.5). The levels of Bcl-2 mRNA was decreased to 92.4 ± 1.8% of 

control levels in AD cases, while the level of Bcl-2 mRNA in preclinical AD cases was 

increased to 100.1 ± 1. 7% of control Bcl-2 levels. TRADD mR_NA levels were 

decreased to 98.0 ± 3.0% and 93.3 ± 2.3% of control TRADD levels in preclinical AD 

and AD cases, respectively (Figure 3.5). 
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Figure 3.5 

There was little difference between Bax, Blc-2 and TRADD mRNA levels in control, 

preclinical AD and AD cases. Bar graph showing the percentage change of Bax, Bcl-2 

and TRADD mRNA extracted from the ITG neocortex in preclinical AD and AD cases 

compared to the control cases.* p<0.05. Error bars indicate SEM. 
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3.4 DISCUSSION 

Using a combination of immunohistochemical and molecular techniques, the degree of 

apoptosis in AD, preclinical AD, and contra.I brains was investigated. Overall there were 

no robust changes in the presence of apoptotic-related proteins or in the percentage of 

apoptotic nuclei between control and AD cases. Analysis of the preclinical cohort of 

cases also showed no obvious increases or decreases in apoptotic markers or apoptotic

like nuclei. These results suggest that there is no staging of apoptotic changes in AD 

and that apoptosis does not play a major role in AD pathogenesis, although apoptosis 

may still be involved in AD-associated neurodegeneration. 

Unlike previous studies (Satou et al., 1995; MacGibbon et al., 1997; Nagy and Esiri, 

1997; Su et al., 1997; Kitamura et al., 1998; Giannakopolous et al., 1999; Rohn et al., 

2001a; Rohn et al., 2002; Zhao et al., 2003b; Del Villar and Miller, 2004), the current 

investigation assessed a wide range of apoptotic-markers including aC3, aC8, aC9, Bax, 

Bcl-2 and TRADD in the same set of control, AD and preclinical AD cases and 

observed no consistent alterations in the frequency, or cortical and cellular localisation 

of labelling between case types. Although, a few research groups have reported similar 

levels of Bax (Kitamura et al., 1998) and Bcl-2 (Nagy and Esiri, 1997; Stadelmann et al., 

1998) in AD and control brains. Additionally, the unique ability to analyse the same 

cohort of control, preclinical AD and AD cases by real time RT-PCR provided data that 

supported the immunohistochemical results. No major change in the expression of Bax, 

Bcl-2 and TRADD mRNA levels were detected apart from significant small decrease of 

Bcl-2 mRNA to 92.4% of control levels. The importance of the small decrease in Bcl-2 

mRNA is difficult to assess as these results represent a contribution from all expressing 

cells in the neocortex and are influenced by the progressive neuronal loss and increasing 

numbers of reactive astrocytes and activated microglia in the cortex in AD (Schechter et 

al., 1981; Hof et al., 1990; Szpak et al., 2001). 

Abnormal nuclei were distributed amongst glial cell types and the calretinin-labelled 

subset of neurons (Sampson et al., 1997), and labelling for aC8, aC9, Bax, Bcl-2 and 

TRADD were also present in glia and neurons in all case types. However, there were no 
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significant differences in apoptotic marker labelling or the rate of apoptosis of 

astrocytes, microglia and calretinin- and dephosphorylated NF triplet protein-labelled 

neurons between AD, preclinical AD and control cases. These results elaborate on 

previous reports of DNA fragmentation (Smale et al., 1995; Troncoso et al., 1996; 

Lucassen et al., 1997; Sugaya et al., 1997; Masliah et al., 1998; Jellinger and 

Stadelmann, 2001; Kobayashi et al., 2002; Kobayashi et al., 2004) and apoptotic-related 

proteins (MacGibbon et al., 1997; Nagy and Esiri, 1997; Su et al., 1997; Kitamura et al., 

1998; Masliah et al., 1998; Stadelmann et al., 1999; Su et al., 2002; Zhao et al., 2003a; 

Zhao et al., 2003b) localised in glia and neurons in control and AD cases. The cellular 

and cortical localisation and clear labelling of pyramidal cells in neocortical layers III 

and V observed for Bax, Bcl-2, aC8, aC9 and TRADD was similar to reports in previous 

studies (MacGibbon et al., 1997; Su et al., 1997; Masliah et al., 1998; Rohn et al., 

200la; Rohn et al., 2002; Su et al., 2002; Zhao et al., 2003a), and may indicate that the 

pyramidal subset of neurons are especially vulnerable to molecular and mechanical 

insults. However, despite pyramidal neurons being selectively vulnerable to 

degeneration in AD (Hof et al., 1990; Hof, 1997) and clearly immunolabelled for 

apoptotic-related proteins, both dephosphorylated NF triplet protein-labelled pyramidal 

cells and calretinin-labelled intemeurons rarely co-localised with apoptotic-like nuclei in 

any case type. Stadelmann et al. (1999) have previously documented aC3-labelling in 
' 

approximately 1 in 1100 to 5000 neurons in the hippocampal formation of AD cases but 

not controls cases. Similarly, using the same antibody as the present study, Gastard et 

al. (2003) described aC3-labelling in the entorhinal cortex and the hippocampus. In 

contrast, the current study determined that aC3-labelling in two neocortical areas was 

associated with glial cells and not neurons, with glial cells similarly demonstrating a 

higher percentage of apoptotic-like nuclei than the calretinin- and dephosphorylated NF 

triplet protein-labelled neurons in all case types. Indeed, no pyramidal or non-pyramidal 

neurons were detected in the neocortex labelled with these markers with frank nuclear 

changes indicative of apoptosis in any AD or preclinical AD cases, indicating a 

frequency of apoptosis much less in the neocortex than in the hippocampal formation 

(Stadelmann et al., 1999). This may reflect a differential staging of the disease between 

84 



Chapter 3 - Results 

these brain regions, with the hippocampal formation and entorhinal cortex demonstrating 

substantial pathology much earlier than the neocortex (reviewed in Vickers et al. 2000). 

The low percentage of apoptotic nuclei present in neocortical layer III of the ITG and 

SFG in control, preclinical AD and AD cases confirms previous qualitative reports of 

classic apoptotic morphology being seldom observed in AD brains (Lassmann et al., 

1995; Troncoso et al., 1996; Lucassen et al., 1997; Stadelmann et al., 1998; Jellinger and 

Stadelmann, 2000; Nunomura and Chiba, 2000; Raina et al., 2003). The percentage of 

apoptotic nuclei in each case demonstrated no relationship with postmortem intervals. 

Unexpectedly, the percentage of apoptotic-like nuclei was significantly increased by 

2.0% in control cases compared to AD cases in the ITG. Statistical analysis also showed 

that the SFG of AD and preclinical AD cases had a significantly higher percentage of 

abnormal nuclei in cortical layer III than the ITG. Additionally, there was also an 

inverse correlation between NFT quantity and apoptotic nuclei. This result was 

unanticipated as the ITG typically has more NFT-bearing neurons than the SFG (Braak 

and Braak, 1991; Vickers et al., 2003). Finally, there was no clear association between 

the apoptotic profile of cases relative to the mode or cause of death. However, it cannot 

be ruled out definitively as to whether variance in premortem illness or agonal state may 

underlie the small differences between control brains and cases showing AD-related 

pathology. Cardiac and respiratory failures were relatively more common in the control 

cases, raising the possibility of brain ischemia contributing to these differences. 

Conversely, given that the frank apoptotic pathology is restricted to glial cell types, these 

data may indicate a lower degree of normal turnover of these cells in response to active 

neurodegeneration in AD cases. 

The lack of any specific co-localisation of apoptotic-like nuclei with pathological 

hallmarks of AD such as NFTs or AP plaques is a striking finding (Troncoso et al., 

1996; Lucassen et al., 1997; Sugaya et al., 1997; Broe et al., 2001). The paucity of 

apoptotic-like nuclei within or adjacent to AP plaques provides some in vivo evidence 

against the proposition that AP plaques are toxic to surrounding neurons. Surprisingly 

early- (Figure 3.lC-E) and late-stage (Figure 3.lF-H) NFTs were not co-localised with 
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apoptotic-like nuclei. In conjunction with reports that most neocortical NFTs in AD are 

intracellular (Sampson et al., 1997; Vickers et al., 2003) and recent evidence that NFTs 

in experimental models do not directly correlate with neuronal loss (Andorfer et al., 

2005; Santacruz et al., 2005), these findings suggest that affected neurons may be able 

to withstand NFT formation for long periods of time before frank degeneration occurs 

(as reviewed by Jellinger and Stadelmann, 2001). However, one apoptosis related 

protein, cyto c, has been observed in a subset of neurons that exhibit pre-NFTs and a 

subset of AP plaque-associated DNs in AD cases (Blanchard et al., 2003). 

The variability, discrepancies and contradictions present in the literature, including the 

data generated in the current study, regarding apoptotic nuclear morphology, DNA 

fragmentation and the level of apoptotic markers in AD and healthy control brains may 

be the result of different cerebral areas and cell populations being analysed, the different 

molecular and immunohistochemical techniques and/or antibodies used and even 

differences between fixation methods or the exact cohort of brain cases analysed ( eg. 

Table 1.3). Thus, this comprehensive analysis of several apoptotic-related proteins via 

immunohistochemistry and real time RT-PCR, apoptotic morphology and the 

association of apoptotic morphology with the pathological hallmarks of AD in a 

substantial sample of control, preclinical AD aild AD cases has notably contributed to 

this contentious area of AD research. 

In summary, there were no significant differences in the incidence of apoptotic nuclear 

morphology and apoptotic markers at the cellular and gene expression level, present in 

control, preclinical AD and AD brains. These data suggest apoptosis may not play a 

major role in the pathogenesis or widespread neuronal loss that occurs in AD. 

c Furthermore, as the underlying cause of neuronal loss and the final pathway to cell death 

in AD are yet to be fully elucidated, expanding our knowledge of the cellular processes 

involved in AD progression that ultimately lead to the dysfunction and loss of nerve 

cells may be vital for the discovery or design of effective therapeutic agents for AD and 

other neurodegenerative diseases. 
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4 CYTOPLASMIC CYTOCHROME C IMMUNOLABELLING IN 

DYSTROPHIC NEURITES IN ALZHEIMER'S DISEASE 

4.1 INTRODUCTION 

Cytochrome c has a well-established role in electron transfer and as a mediator of 

apoptotic cell death. The release of cyto c occurs upon activation of the intrinsic 

apoptotic pathway, which is regulated by cytokines and other death-survival signals (as 

reviewed in Adams and Cory, 2001). Although cyto c release is indicative of the 

activation of the intrinsic apoptotic pathway, it may also indicate mitochondrial damage 

or dysfunction. Additionally, such cyto c release from mitochondria correlates with 

disease progression in transgenic mouse models of Huntington's disease and 

amyotrophic lateral sclerosis (Zhu et al., 2002; Wang et al., 2003b). Following release 

into the cytoplasm, cyto c is able to interact with Apaf-1, dA TP and caspase-9 to form 

the apoptosome complex, which results in the activation of caspase-9 and the subsequent 

activation of effector caspases. In addition to cyto c playing a role in apoptosis, 

increased cyto c levels and the release of cyto c from mitochondria are also associated 

with mitochondrial damage and dysfunction, both of which may occur in association 

with oxidative stress in normal aging and AD progression (Gibson et al., 2000; Hirai et 

al., 2001; Pollack et al., 2002; Manczak et al., 2005; Sullivan and Brown, 2005; 

Manczak et al., 2006). 

Thus, the correlation between cyto c-labelling and AD staging including the pathological 

hallmarks of AD has been further investigated, with particular reference to the 

intracellular localisation of cyto c. Using double-label fluorescence 

immunohistochemistry, the location of cyto c relative to the specific pathological 

hallmarks of AD, such as NFTs, DNs and A~ plaques, were investigated in human 

control, preclinical AD and AD cases. 
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4.2 MATERIALS AND METHODS 

4.2.1 Tissue source and processing 

Human brain tissue was acquired from two sources: the Sun Health Research Institute 

and the University of Sydney, as previously described (Section 2.1 ). These samples 

included sections of the SFG from four control cases (average age, age range, average 

postmortem interval, postmortem interval range; 55.25, 47-65, 23.45, 16-27.5; Table 

4.1), six preclinical AD cases (82.5, 71-91, 3-32.5, 7.65; Table 4.1) and six AD cases 

(82.5, 74-92, 3.3, 2.0-7.0; Table 4.1 ). The control cases exhibited significantly different 
~ 

ages and PMis when compared to the preclnical AD and AD cases, largely due to the 

rarity of healthy aged brain material. It was also not possible to gender match between 

case types due to the difficulty in obtaining human brain tissue. Although there was no 

robust association between sex and the number of cytochrome c-labelled cells in the 

neocortex, an interaction between these two factors cannot be discounted nor could it be 

statistically analysed with this sample of cases. 

4.2.2 Immunohistochemistry 

The SFG of six AD cases, six preclinical AD cases and four control cases were double

immunolabelled for cyto c and human-tau, A~, NFM or chromogranin A (CgA) (Table 

2.2) as previously described (Section 2.3.3). All cases were selected based on optimal 

fixation conditions for cyto c and NFM or CgA-labelling. Tissue sections were viewed 

on a Leica DMLB2 microscope with images captured on an Optronics Magnafire cooled 

CCD camera, as well as an Optiscan F900e krypton/argon confocal scanning system 

attached to an Olympus BX50 epifluorescence microscope. 
' 

4.2.3 Qualitative, quantitative and statistical analysis 

Alzheimer's disease, preclinical AD and control tissue sections were analysed for any 

change in the cellular or neocortical distribution of cyto c-labelling. To determine the 

density of cyto c-labelled cells, images of 10 non-overlapping random fields of view in 

neocortical layer V were captured at 20x. For quantitation of the coexistence of 
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Table 4.1 Human cases used for cyto c double-labelling immunohistochemistry. 

Type Age Gender Postmortem Pathological 
(years) interval (h) Diagnosis 

AD 74 F 2 Pneumonia 

AD 74 M 2.75 Respiratory failure, AD 

AD 83 M 2.83 Dementia 

AD 84 F 3 AD 

AD 88 M 7 Dementia 

AD 92 F 2.25 Pneumonia 

Preclinical AD 71 M 32.5 Cardiac arrhythmia 

Preclinical AD 78 M 2.25 Postoperative 

Preclinical AD 81 F 3 Cardiac arrest 

Preclinical AD 84 M 3 Cardiopulmonary arrest 

Preclinical AD 90 M 2.16 Respiratory arrest 

Preclinical AD 91 M 3 Cardiac failure 

Control 47 M 27.5 Cardiac infarction 

Control 51 M 23.3 Pulmonary embolus 

Control 58 M 27 Coronary disease 

Control 65 M 16 Cardiac infarction 
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cytoskeletal and synaptic elements and cyto c in DNs 100 Ap plaques were analysed in 

the SFG of six AD cases and five preclinical AD cases. However, due to the presence of 

limited AP plaque numbers in some preclinical AD cases, 85 AP plaques were analysed 

for the co-localisation of CgA and cyto 'c in DNs across preclinical AD cases. Co

localisation of cyto c immunoreactivity and NFTs was also assessed by analysing 100 

NFTs in the SFG of AD cases. The percentage of NFM, tau and CgA DNs, as well as 

NFTs, that co-localised with cyto c immunolabelling were calculated and all quantitative 

data was analysed by a two tailed t-test (two sample unequal variance) or a one-way 

ANOV A with a Bonferroni post-hoe analysis. Linear regression analysis was performed 

on the average number of cyto c-labelled cells, age and postmortem interval data and no 

significant correlations were present. 
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4.3 RESULTS 

4.3.1 Cellular and neocortical distribution of cyto c 

There were no changes in the cellular and neocortical localisation of cyto c between AD, 

preclinical AD and control cases examined in this study (Figure 4.1). In control, 

preclinical AD and AD cases cytochrome c-labelling was present in cells in neocortical 

layers II-VI, with a robust increase in the density of labelled cells in layers III and V 

(Figure 4. lA,B). In neocortical layers III and V, high levels of cyto c-labelling were 

present in a subset of pyramidal neurons in all case types (Figure 4.1 ). Clusters of cyto 

c-labelled pyramidal neurons (Figure 4.lC) were present in numerous cases across all 

case types, but were not specifically associated with AP plaques in preclinical AD and 

AD cases (Figure 4. lD). Cytochrome c immunolabelling was punctate and somatic, 

with labelling observed in the proximal portion of many cellular processes and 

extending into the distal regions of several processes in control, preclinical AD and AD 

cases (Figure 4. lE). Importantly, when cyto c-labelling was investigated utilising 

confocal microscopy across all case types, none of the cyto c-labelled cells observed 

exhibited non-punctate cytoplasmic staining, indicating that cyto c had not been released 

from mitochondria. The density of cyto c-labelled cells in neocortical layer V of the 

SFG did not differ significantly (p > 0.05) between case types (Figure 4. lF). The 

average number of cyto c-labelled cells did not correlate with the age or postmortem 

intervals (p > 0.05) or the particular modes or causes of death of the analysed cases. 

4.3.2 Co-localisation of cyto c and AD-associated pathology 

Analysis of cyto c immunoreactivity in relation to the pathological hallmarks of AD 

resulted in the detection of subsets of cyto c-labelled NFTs and DNs. The percentage of 

NFT-bearing neurons that were immunoreactive for cyto c in the neocortex of the SFG 

of AD cases was 6.7 ± 1.4% (Figure 4.2A). Moreover, cyto c-labelling was punctate in 

NFT-bearing neurons (Figure 4.2B,C) when assessed by scanning confocal microscopy. 

Similarly, a small percentage of tau-, NFM- and CgA-labelled DNs were also 

immunoreactive for cyto c in AD and preclinical AD cases (Figure 4.3, Table 4:2). In 
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Figure 4.1 

The cortical and cellular distribution of cyto c-labelling was not substantially different 

between control, preclinical AD and AD cases. Cytochrome c-labelled cells were 

present at an increased density in layers III and V (A, layer III shown here). 

Cytochrome c-labelled cells were present at a lower density in other neocortical layers, 

such as layer II (B). Clusters of intensely labelled pyramidal neurons (arrows) in layer 

V of an AD case (C). Such clusters of cyto c-labelled neurons were evident in layers III 

and V of the neocortex in several cases. These clusters of intensely cyto c-labelled 

(green) pyramidal neurons (D, arrows) were not specifically associated with A~ plaques 

(red, arrow heads). High magnification confocal microscopy confirmed that the cyto c

labelling present in neocortical cells was punctate (E). Bar graph demonstrating the 

average number of cytochrome-c-labelled cells per sample field of view in layer V 

across case types (F). There was no significant difference between the average number 

of cyto c-labelled cells in layer V of the SFG in control, AD or preclinical AD cases. 

Error bars indicate SEM. Scale bar: A, B, D = 40µm, C = 200µm, E = 14µm. 
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Figure 4.2 

In AD cases cyto c immunolabelling was present in a subset ofNFT-bearing neurons. A 

low percentage of tau-labelled NFTs (A, red, arrowheads) co-localised with cyto c

immunoreactivity (green, arrow). When observed with high magnification confocal 
' 

microscopy NFT-bearing neurons (arrows) exhibited punctate cyto c-labelling (B, C). 

Scale bar: A= lOµm, B, C = lµm. 





Figure 4.3 

The cyto c-immunoreactivity present in DNs was often diffuse and co-localised with a 

subset of tau-, NFM- and CgA-labelled DNs. Cytochrome c-labelled DNs (A, arrows) 

were seldom co-localised with the tau-labelled DNs (B, arrow heads), when 

representative images were overlayed (C). Cytochrome c-labelling (D) was observed in 

a small percentage of NFM-labelled DNs (E, arrows), including some NFM-labelled 

DNs with a cyto c-immunoreactive central core (F, arrow head). Some cyto c

immunoreactivity (G) present within DNs (arrows) was punctate and also co-localised 

with a subset of CgA-labelled DNs (H, arrows), when representative images were 

overlayed (1). Scale bar = 11 µm. 
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AD cases, an appreciably lower 'percentage of tau-labelled DNs co-localised with cyto c 

compared to NFM- and CgA-labelled DNs (Table 4.2). There was also a trend towards 

a lower percentage ofNFM- and OgA-labelled DNs co-localising with cyto c in the SFG 

of AD cases compared to preclinical AD cases (Table 4.2). Tau-immunoreactive DNs 

were not present in the preclinical AD cases. Cytochrome c-labelled DNs were present 

in a subset of DN clusters and exhibited two generalised morphological variants. In AD 

and preclinical AD cases, bulbar cyto c-labelled DNs of variable sizes were observed 

most frequently, while elongated cyto c-labelled DNs were seldom observed (Figure 

4.3). Additionally, NFM-labelled DNs with extensive cyto c-labelled central elements 

or caps of cyto c immunoreactivity were also present (Figure 4.3B). Strikingly, when 

cyto c-labelled DNs were examined using confocal scanning microscopy the labelling 

present was frequently cytoplasmic and not punctate (Figure 4.3). 
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Table 4.2 Co-localisation between cytoskeletal and synaptic markers and cyto c in AP 
plaque-associated DNs. 

Labelling 

Tau with cyto c 

NFM with cyto c 

CgA with cyto c 

mean % co-localisation± SEM 

Preclinical AD 

3.63 ± 0.67 

4.87 ± 0.55 

93 

AD 

1.44 ± 0.36 

2.66 ± 0.76 

2.55 ± 0.36 
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4.4 DISCUSSION 

Cytochrome c-labelling was substantial in a subset of cortical neurons, with no 

difference in the cortical labelling pattern or the density of cyto c-labelled cells observed 

in control, preclinical AD and AD cases. Similar levels of cyto c have also been 

documented in the frontal cortex of AD and control cases using molecular methods 

(Engidawork et al., 2001), although one recent study reported increased cyto c 

immunolabelling within cortical neurons in AD compared to control cases (Blanchard et 

al., 2003). In this and previous studies, punctate cyto c immunoreactivity was observed 

in a subset of cortical cells (Blanchard et al., 2003; Manczak et al., 2005). However, the 

subset of robustly cyto c-labelled pyramidal neurons in neocortical layers Ill and V are 

described in the current study for the first time. These intensely labelled pyramidal 

neurons often occurred in clusters in layers III and V of the neocortex in all case types, 

and were independent of the presence of A~ plaques. Similar clustering of pyramidal 

neurons labelled with NF triplet protein is observed in the cortex of monkeys, and may 

represent functional modules of neurons whose axons are bundled together (Peters and 

Sethares, 1996; Peters et al., 1997). Thus, cyto c-labelling may prove to be a useful 

neurochemical marker for layer V pyramidal neurons or a particular subset of clustered 

pyramidal neurons (Molnar and Cheung, 2006). 

Punctate cellular cyto c-labelling was observed in a subset of cortical neurons including 

both intensely labelled pyramidal neurons and NFf -bearing neurons. Given that 62-

74% of NFfs in the SFG are intracellular (Vickers et al., 2003), the cyto c-labelled 

neurons bearing NFfs represent a small minority of the total proportion of intracellular 

NFfs. Furthermore, the cyto c-labelling that co-localised with NFfs was punctate, 

indicating that NFf formation does not induce cyto c release and that NFf s may be only 

mildly detrimental to the health of NFf-bearing neurons. Thus, cyto c may label a 

subset of pyramidal neurons that demonstrate some capacity for NFf formation, but are 

relatively resistant to degeneration once NFf formation has initiated. Additionally, 

increased levels of cyto c are present in the neuronal soma and proximal processes 

following a variety of in vivo experimental insults (Martin and Liu, 2002; Benjelloun et 
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al., 2003; Page et al., 2003), suggesting that cyto c may be upregulated in compromised 

neurons as a sequela of AD associated pathology, possibly prior to NFf formation. 

Cytochrome c immunolabelling was also frequently cytoplasmic within DNs in both 

preclinical AD and AD cases. Cytochrome c immunoreactivity is typically punctate and 

represents localisation to the mitochondria. Thus, evenly distributed cytoplasmic 

labelling may be indicative of cyto c release. Such cyto c release is present in CNS 

neurons in vivo following ischaemia, axotomy, contusion and traumatic axonal injury 

(Springer et al., 1999; Biiki et al., 2000; Martin and Liu, 2002; Benjelloun et al., 2003; 

Cheung et al., 2003; Wingrave et al., 2003; Domaiiksa-Janik et al., 2004; Zhao et al., 

2005). Additionally, the cyto c release in DNs indicates the possible activation of 

apoptotic pathways. Although Bax, aC8 and aC9 immunoreactivity are also present in 

DNs (MacGibbon et al., 1997; Nagy and Esiri, 1997; Tortosa et al., 1998; Rohn et al., 

2002; Blanchard et al., 2003), aC3 has not been observed in DNs in AD cases to date, 

further supporting the proposition that activation of proteins with a role in apoptotic 

pathways does not necessarily translate into the execution of apoptosis (as discussed in 

Section 3.3). Furthermore, the presence of diffuse cyto c-labelling in DNs, but not in 

neuronal perikaryon in this study may imply discrete activation of apoptotic pathways 

that is reminiscent of the cyto c release observed in axonal segments, but not in the 

corresponding cell bodies, following axonal injury (Biiki et al., 2000). 

Many overlapping subsets of DNs are described that exhibit immunoreactivity for NF 

triplet proteins, a-intemexin, APP, CgA and tau (Masliah et al., 1993; Su et al., 1996a; 

Vickers et al., 1996; Su et al., 1998; Dickson et al., 1999; Dickson et al., 2005). 

Differences in the complement of epitopes in DN s in preclinical AD cases compared to 

AD cases has lead to the suggestion that DNs mature; developing from APP, NF triplet 

protein- and a-intemexin-labelled DNs into tau-labelled DNs (Su et al., 1996a; Su et al., 

1998; Dickson et al., 1999; Dickson et al., 2005). In contrast to APP and NF triplet 

proteins, CgA is rarely co-localised with tau or NF triplet protein epitopes in DNs and 

may represent a form of reactive sprouting and synaptogenesis in these neurites 

(Dickson et al., 1999). Although cyto c-labelled DNs have previously been observed in 
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a subset of A~ plaques in the human neocortex and the hippocampus and neocortex of 

various AD mouse models (Blanchard et al., 2003), there was no data on the co

localisation of cyto c with other DN markers. As NFM, CgA and tau label three 

predominant but overlapping subgroups of DN s (Su et al., 1998; Dickson et al., 1999), 

the co-localisation of these three DN markers and cyto c immunoreactivity was assessed. 

Cytochrome c-labelling co-localised with a reasonably low percentage of tau-, NFM

and CgA-labelled DNs, indicating that cyto c was present within DNs at various stages 

of maturation, including the potentially reactively sprouting CgA-labelled DNs (Dickson 

et al., 1999). However, as cyto c immunoreactivity co-localised with a considerably 

lower percentage of tau-labelled DNs than with NFM- and CgA-labelled DNs, and a 

higher percentage of CgA- and NFM-labelled DNs were co-localised with cyto c in the 

preclinical AD cases compared to AD cases, cyto c-labelling may be a relatively early 

and transient alteration in DN maturation. Similarly, in transgenic mouse models of AD 

the density of cyto c-labelled DNs increases progressively with age until the later stages 

of disease progression, at which point the density of cyto c immunoreactive DN s decline 

(Blanchard et al., 2003). Continuing to study disease progression is crucial for attaining 

a better understanding of the pathological processes that occur in AD, and may lead to 

the discovery of novel therapeutic targets. 

Thus, the punctate cyto c-labelling observed in a subset ofneocortical neurons and NFTs 

suggests that cyto c may label a subset of neurons susceptible to NFT formation, but 

resistant to subsequent degeneration. Cytochrome c may well be a transient marker of 

early DNs, while the release of cyto c in a subset ofDNs may be a sign of mitochondrial 

damage or dysfunction that could potentially activate apoptotic pathways. 
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5 13-AMYLOID PLAQUE-INDUCED AXONAL PATHOLOGY IN 

TRANSGENIC MICE EXPRESSING HUMAN MUTANT 13-AMYLOID 

PRECURSOR PROTEIN GENES REPLICATES THE DYSTROPHIC 

NEURITE CHARACTERISTICS OF PRECLINICAL ALZHEIMER'S 

DISEASE 

5.1 INTRODUCTION 

Investigating the key pathological changes that occur as AD develops in order to identify 

primary causative factors has been difficult as postmortem human brain material 

provides only snap shots of disease progression. However, the use of transgenic mouse 

models of AD enables both potential therapeutics for AD, and aspects of age-associated 

disease progression to be investigated. 

Transgenic mouse models of AD expressing human APP alone or in combination with 

PS1/PS2 harbouring mutations associated with familial AD, exhibit AP plaques and 

DNs, but not NFT pathology or extensive neuronal death (Games et al., 1995; Hsiao et 

al., 1996; Sturchler-Pierrat et al., 1997; Mucke et al., 2000; Chishti et al., 2001; Richards 

et al., 2003; Cheng et al., 2004). Tg2576 and TgCRND8 mice are two widely utilised 

mouse models of AD. Tg2576 mice exhibit AP plaque deposition beginning at seven 

months of age that progressively increases until severe pathology is present at 23 months 

of age (Hsiao et al., 1996; Kawarabayashi et al., 2001; Noda-Saita et al., 2004), while 

TgCRND8 demonstrate AP plaques at three months of age and DNs at five months of 

age ( Chishti et al., 2001; Duda! et al., 2004). 

The morphological and biochemical characteristics of DNs differ between preclinical 

AD and AD cases. Preclinical AD cases exhibit tortuous DNs as well as ring- and bulb

like DNs, which label with antibodies to NF triplet proteins and a-intemexin, but are 

rarely labelled for abnormal tau protein (Cras et al., 1991; Benzing et al., 1993; Masliah 

et al., 1993; Su et al., 1996a; Vickers et al., 1996; Su et al., 1998; Dickson et al., 1999; 
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Dickson and Vickers, 2001; Dickson et al., 2005). Whereas, AD cases demonstrate 

bulb-like DNs that are immunolabelled for NF triplet proteins and a-intemexin, 

numerous a-intemexin immunoreactive ring-like DNs and classical elongated tau

labelled DNs (Dickson et al., 1999; Dickson et al., 2005). 

Animal models are an invaluable tool for assessing the aging-related progression of 

diseases such as AD, and also for testing potential therapeutics for human disease. 

However, for animal models to be used effectively, a clear understanding of the 

pathological processes that they model is needed. In the current study, AP plaque

associated neuronal pathology in Tg2576 and TgCRND8 mice was investigated with a 

specific focus on the morphological and neurochemical phenotype of AP plaque

associated DNs. Specifically, the neuronal pathology associated with AP plaques in the 

transgenic AD mouse models was strikingly similar to that present in preclinical AD 

cases. The current investigation also indicates that the earliest AP plaque-associated 

neuronal alterations were the perturbation of NF triplet proteins and a-intemexin in 

DNs. The results of this study suggest that transgenic AD mice represent an accurate 

and valuable model of the early pathological changes present in human AD. 
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5.2 MATERIALS AND METHODS 

5.2.1 Tissue source and processing 

As previously described (Section 2.1 ), human brain tissue was acquired from the Sun 

Health Research Institute and the National Health and Medical Research Council Brain 

Bank. Human cases include the ITG of seven AD cases (average age, age range; 

average postmortem interval, postmortem interval range: 79.5, 71-88 years; 7.5, 2.0-16.5 

hours; Table 5.1) and the ITG of five preclinical AD cases (84.8, 78-91 years; 2.7, 2.3-

3.0 hours; Table 5.1). There was no significant difference between the ages of the 

preclinical AD and AD cases, but the PMls of the preclinical AD cases were 

significantly lower than those of the AD cases. It was not possible to gender match 

between case types due to the difficulty in obtaining precious human brain tissue. There 

was no robust association between sex and the percentage of neuritic plaques and there 

was no difference in DN phenotype between male and female cases, however, an 

interaction between sex and these two factors cannot be discounted nor could it be 

statistically analysed with this sample of cases. 

A young cohort of 10 TgCRND8 mice expressing human APP695 harbouring the 

Swedish (KM670/671NL) and Indiana (V717F) mutations under the control of the 

Syrian hamster prion promoter on a hybrid C3H/He-C57BL/6 background (Chishti et al., 

2001) and eleven age-matched wild type control mice were sacrificed at an early

pathology time point of 1.86-2.94 months of age. Similarly, an aged cohort consisting 

of eleven TgCRND8 mice and nine age-matched wild type controls were sacrificed at 

7.5-8.91 months of age, a time point at which extensive pathology had developed. 

TgCRND8 mice were anaesthetised with 140mg/kg sodium pentobarbitone (Virbac, 

Peakhurst, Australia) and transcardially perfused (cold O.OlM PBS) and the left 

hemispheres were immersion-fixed in 4.0% paraformaldehyde. In addition, six 13 

month-old Tg2576 mice expressing human APP695 harbouring the Swedish 

(KM670/671NL) familial AD mutation on a C57BL/6 and SJL hybrid background 

(Hsiao et al., 1996) and five age-matched wild type control mice were anaesthetised with 

sodium pentobarbitone and transcardially perfused (4% paraformaldehyde/O.OlM PBS) 
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Table 5.1 Human cases used for immunohistochemistry and DN analysis. 

Type Age Gender Postmortem Pathological 
(years) interval (h) Diagnosis 

Preclinical AD 78 M 2.25 Post-operative 

Preclinical AD 81 F 3 Cardiac arrest 

Preclinical AD 84 M 3 Cardiopulmonary arrest 

Preclinical AD 90 M 2.16 Respiratory arrest 

Preclinical AD 91 M 3 Cardiac failure 

AD 71 F 13 AD 

AD 73 M 6.5 AD 

AD 74 F 2 Pneumonia 

AD 83 M 2.83 AD 

AD 83 F 5 AD 

AD 84 F 16.5 Cardiac failure 

AD 88 M 7 Cardiac failure 
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at 13 months-of-age. Only a 13 month old cohort of Tg2576 mice was studied due to 

restrictions with mouse numbers, a time point at which substantial pathology is present 

in this mouse model (Kawarabayashi et al., 2001). The University of Tasmania Animal 

Research Ethics Committee approved all animal research included in this thesis. 

Following cryoprotection, (Section 2.1) 40µm coronal sections were cut on a cryostat. 

5.2.2 Immunohistochemistry and analysis 

To investigate the pathology present in the two transgenic mouse models of AD in 

comparison to human AD, the percentage of AB plaques that were neuritic was assessed. 

Thus, the ITG of five preclinical AD and five AD cases, all TgCRND8 and Tg2576 mice 

and their age-matched wild type control mouse cases were treated with formic acid 

(Section 2.3.1) and double labelled with antibodies to AB and a-intemexin (Table 2.2). 

In addition, the aged TgCRND8 mice and human preclinical AD and AD cases were 

also stained with thioflavine s (Section 2.2.1) and labelled for a-intemexin. Double 

labelling fluorescent immunohistochemistry was performed as previously described 

(Section 2.3.3), except that secondary fluorescent antibodies were used at a dilution of 

1:1000. One hundred neocortical Aj)-labelled and 100 thioflavine s-stained plaques per 

case/animal were analysed for the presence of a-intemexin-labelled dystrophic neurite 

clusters in the neocortex of aged TgCRND8 mice, and in the neocortex of the ITG of 

five human preclinical AD and five AD cases. The human ITG was selected for analysis 

of AB plaque deposition due to the abundance of plaques in this region in both 

preclinical AD and end-stage AD cases. The whole of the neocortex was used for mouse 

studies, as there was no predilection of AB plaques to particular cortical sub-regions in 

these animals, as compared to human cases. P-amyloid plaques were selected for 

analysis by examining non-overlapping vertical strips of neocortex from the pia to the 

white matter, up to a total of 100 plaques per case/animal. Analysis was performed for 

both AB immunolabelling and thioflavine s-staining as they label two subsets of plaques; 

specifically thioflavine s stains fibrillar aggregates within plaques, whereas the anti-AB 

antibody labels both fibrillar and non-fibrillar Ap. Alpha-intemexin was utilised as a 

DN marker for this analysis as a-intemexin-labelled DNs are present in most DN 
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clusters (Dickson et al., 2005). No quantitative analysis was performed on the Tg2576 

mouse tissue due to the low AP plaque load present. All quantitative data was analysed 

by a one-way ANOV A with a Bonferroni post-hoe analysis. 

To compare the morphological and neurochemical characteristics of DNs in the 

transgenic AD mice with the human disease, the Tg2576 mice, aged TgCRND8 mice 

and human cases were also double labelled with combinations of mouse anti-a

intemexin, -dephosphorylated NF triplet protein, -phosphorylated NF triplet protein, and 

-hyperphosphorylated-tau (phosphorylation at either Ser202/Thr205, Ser202/Ser205 or 

Ser205/Ser208) for axons, dendritic anti-MAP2 and rabbit anti-Ap, as well as rabbit anti 

-a-intemexin and -NFM antibodies (Table 2.2). Sections from the young cohort of 

TgCRND8 mice were also double labelled with a-intemexin and dephosphorylated NF 

triplet protein. P-amyloid plaques were examined for the presence of bulb- and ring-like 

immunolabelled DNs throughout the neocortical laminae in the ITG of human cases, and 

throughout the neocortical laminae and hippocampus of the transgenic mice. With 

respect to neurofilament and a-intemexin immunolabelling, bulb-like DNs are bulbar 

axonal swellings whereas ring-like DNs are spherical structures with an unlabelled 

hollow core (Dickson et al., 1999). 
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5.3 RESULTS 

5.3.1 P-amyloid deposition and DN distribution in Tg2576 and TgCRND8 

mice 

As previously reported (Hsiao et al., 1996; Irizarry et al., 1997; Chishti et al., 2001; 

Kawarabayashi et al., 2001; Le et al., 2001; Tomidokoro et al., Dudal et al., 2004), both 

transgenic lines of AD mice exhibited AP plaques and DNs throughout the 

hippocampus, cortex, corpus callosum, and also in the striatum of TgCRND8 mice. 

Approximately 80-98% of AP plaques in aged TgCRND8 mice and Tg2576 mice were 

associated with clusters of dephosphorylated NF triplet protein-, phosphorylated NF 

triplet protein-, NFM-, and a-intemexin-labelled DNs (Figure 5.1 ). The non-neuritic AP 

plaques in aged TgCRND8 mice were generally small and not fibrillar. In Tg2576 mice, 

few non-neuritic AP plaques were observed. There were also occasional clusters of 

NFM-, phosphorylated NF triplet protein-, and a-intemexin-labelled DNs present in the 

absence of AP-labelling in aged TgCRND8 mice, but none were observed in Tg2576 

mice. 

Additionally, nine of the eleven young TgCRND8 mice demonstrated AP plaques, 

including a wide range of AP plaque deposition, with AP plaques being observed within 

the hippocampus and cerebral cortex, but rarely in the striatum. A few of the young 

TgCRND8 mice exhibited AP plaque deposition that was approximately equivalent to 

that in some 13 month old Tg2576 mice, however, the AP plaque deposition in 13 month 

old Tg2576 mice generally fell between that present in the young and aged TgCRND8 

mice. Approximately 80-98% of AP plaques in the young TgCRND8 mice were 

associated with a-intemexin- and dephosphorylated NF triplet protein-labelled DNs. 

None of the age-matched wild type controls for the Tg2576 or TgCRND8 mice 

exhibited AP immunoreactivity or DN clusters labelled for a-intemexin. 

All aged TgCRND8 mice demonstrated amyloid angiopathy, which was occasionally 

associated with thickened and bulb-like a-intemexin-labelled DNs (Figure 5.2A). 
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Figure 5.1 

Approximately 80-98% of A~ plaques in both transgenic mouse models were associated 

with clusters of NFM-, and a-internexin-labelled DNs. Images of the TgCRND8 (A) 

and Tg2576 (B) neocortex double-labelled for A~ (red, A, B) and a-internexin (green, 

A) or NFM (green, B) show numerous A~ plaques co-localised with DN clusters 

(arrows). Some amyloid angiopathy (arrow heads) was also present that was not 

associated with DNs. Scale bar= SOµm. 





Figure 5.2 

B-amyloid plaques caused neuropil disruption in both TgCRND8 and Tg2576 transgenic 

mice. Alpha-internexin-labelled DNs (green, arrows) were associated with B-amyloid

labelled amyloid angiopathy (red) in both aged TgCRND8 (A) and Tg2576 (B) mice. 

MAP2-labelled dendrites (green) appeared to bend (arrows) around AB plaques (red, C) 

and a-internexin-labelled DN clusters (red, D) in both Tg2576 (C) and TgCRND8 (D) 

mice. In addition, MAP-2-labelled dendrites (green) often appeared to terminate 

(arrows) at the margins of AB plaques (red, E) and a-internexin-labelled DN clusters 

(red, F) in both Tg2576 (E) and TgCRND8 (F) mice. Scale bar: A,B = 5µm, C-F = 

lOµm. 
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Similarly, all Tg2576 mice exhibited amyloid angiopathy that was regularly associated 

with a-intemexin-labelled DNs (Figure 5.2B). Additionally, consistent with previous 

confocal investigations-in the neocortex of human AD cases (Adlard and Vickers, 2002), 

MAP2-labelled dendrites were also observed to deflect around or terminate at the 

margins of AP plaques in the Tg2576 mice and the aged TgCRND8 mice (Figure 5.2C

F). 

5.3.2 Percentage of neuritic AP plaques in TgCRND8 mice and human AD 

cases 

To determine how disruptive A~ plaques were to the axons (axonopathic) in the adjacent 

neuropil in transgenic AD mice relative to A~ plaques in human preclinical AD and AD, 

the percentage of A~ plaques associated with a-internexin-labelled DNs was assessed in 

the cortex of aged TgCRND8 and the ITG of human preclinical AD and AD cases. The 

percentage of AP plaques associated with a-intemexin-labelled DNs in aged TgCRND8 

mice was similar to the percentage of neuritic AP plaques present in human AD cases, 

but significantly different from the percentage of neuritic AP plaques observed in 

preclinical AD cases (Figure 5.3A; p < 0.05). In the aged TgCRND8 mice, 83.2 ± 2.3% 

(average± SEM) of AP plaques were associated with a-intemexin-labelled DNs, while 

the percentage of AP plaques associated with a-intemexin-labelled DNs in human AD 

and preclinical AD cases were 82.0 ± 1.6% and 67.2 ± 3.2%, respectively. 

In contrast, the percentage of fibrillar thioflavine s-stained plaques associated with a

intemexin-labelled DNs in the aged TgCRND8 mice and human preclinical AD and AD 

cases were all significantly different (Figure 5.3B; p < 0.05). In aged TgCRND8 mice, 

the percentage of thioflavine s-stained plaques that co-localised with a-intemexin

labelled DNs was 97.0 ± 0.5%. Whereas, in human AD and preclinical AD cases, the 

percentage of thioflavine s-stained plaques associated with a-intemexin-labelled DNs 

were 92.4 ± 1.4% and 86.0 ± 2.2%, respectively. 
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Figure 5.3 

P-amyloid-labelled and thioflavine s-stained plaques were highly axonopathic in aged 

TgCRND8 mice. The percentage of AP-labelled (A) and thioflavine s-stained (B) 

plaques in aged TgCRND8 mice that were associated with a-internexin-labelled DNs 

was significantly higher than the percentage of neuritic plaque present in human 

preclinical AD. The percentage of thioflavine s-stained plaques associated with a

internexin-labelled DNs in aged TgCRND8 mice was significantly higher than that 

present in AD. Error bars indicate SEM. * p < 0.05 
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5.3.3 Morphology and neurochemistry of DNs 

Dystrophic neurites have been categorised as aberrant tortuous neurites with variable 

diameters, and as ring- and bulb-like based on the morphology of the labelled elements 

(Benzing et al., 1993; Masliah et al., 1993; Su et al., 1996a; Vickers et al., 1996; Su et 

al., 1998; Dickson et al., 1999; Dickson and Vickers, 2001; Dickson et al., 2005). Both 

Tg2576 and aged TgCRND8 mice exhibited dephosphorylated NF triplet protein-, 

phosphorylated NF triplet protein-, a-internexin- and NFM-labelled ring- and bulb-like 

DNs (Figure 5.4), along with A~ plaque-associated non-classical punctate and fine

thread-like hyperphosphorylated-tau-labelling (Figure 5.5B,C). Interestingly, although 

the young cohort of TgCRND8 mice demonstrated dephosphorylated NF triplet protein

and a-internexin-labelled DNs, no hyperphosphorylated-tau-labelling was associated 

with A~ plaques at this early pathology time point (Figure 5.5A). In comparison, human 

preclinical AD cases exhibited a-internexin-, dephosphorylated NF triplet protein-, 

phosphorylated NF triplet protein- and NFM-labelled ring- and bulb-like DNs (Figure 

5.4), and A~ plaque-associated punctate and fine-thread-like hyperphosphorylated-tau

labelling (Figure 5.5D). Although, occasional classical hyperphosphorylated-tau DNs 

were present in a subset of preclinical AD cases. In contrast, the human AD cases 

exhibited abundant classical hyperphosphorylated-tau-labelled DNs (Figure 5.5), 

numerous a-internexin, phosphorylated NF triplet protein-, dephosphorylated NF triplet 

protein- and NFM-labelled bulbous DNs, along with numerous a-internexin-labelled, 

but only rare NF triplet protein-labelled ring-like DNs (Figure 5.4). 

Hyperphosphorylated-tau-labelling was not specifically co-localised with NFM- or a

intemexin-labelled DNs in both TgCRND8 and Tg2576 mice (Figure 5.6A-F). 

However, labelling for dephosphorylated and phosphorylated NF triplet proteins often 

co-localised with labelling for NFM (phosphorylation independent) and/or a-internexin 

within DNs in both transgenic mouse models (Figure 5.6G-L). In addition, 

hyperphosphorylated-tau-labelled DNs were observed to co-localise with a-intemexin

and NFM-labelled DNs in AD cases (Dickson et al., 1999; Dickson et al., 2005). 
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Figure 5.4 

The DN pathology present in TgCRND8 mice (A-D) and Tg2576 mice (E-H) was 

identical to that observed in human preclinical AD (1-L), but not AD (M-P). 

Representative images were acquired after double immunohistochemistry for AP (A-P) 

with a-intemexin (A, E, I, M), NFM, (B, F, J, N) dephosphorylated NF triplet protein 

(C, G, K, 0) or phosphorylated NF triplet protein (D, H, L, P). P-amyloid plaques (red) 

were associated with numerous bulb- (arrows) and ring-like (arrow heads) a-intemexin-, 

NFM-, dephosphorylated NF triplet protein- and phosphorylated NF triplet protein

labelled DNs (green) in both transgenic mouse models and human preclinical AD. 

However, in human AD AP plaques were associated with abundant bulb-like DNs, and 

only a-intemexin-labelled ring-like DNs. Scale bar= lOµm. 
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Figure 5.5 

Abundant classical elongated hyperphosphorylated-tau-labelled DNs were observed in 

human AD, but not human preclinical AD cases or transgenic AD mice. No 

hyperphosphorylated-tau-labelling (green) was observed in association with A~ plaques 

(red) in the young TgCRND8 mice (A). Punctate (arrows) and fine thread-like (arrow 

head) labelling for hyperphosphorylated-tau (green) were observed in associated with 

A~ plaques (red) in aged TgCRND8 (B) and Tg2576 (C) mice. While human preclinical 

AD cases (D) exhibited punctate (arrows), fine thread-like (arrow head) and 

hyperphosphorylated-tau-labelling (green) associated with A~ plaques (red), and 

occasional classic elongated hyperphosphorylated-tau-labelled DNs (large arrow head). 

Numerous classic angular and elongated (large arrow heads) hyperphosphorylated-tau

labelled DNs (green) were present in association with A~ plaques (red) in human AD 

(E). In human AD cases (F) a-intemexin-labelled (red) and hyperphosphorylated-tau

labelled (green) DNs co-localised (arrows). Scale bar= lOµm. 





Figure 5.6 

Hyperphosphorylated-tau-labelling did not specifically co-localise with a-internexin- or 

NFM-labelled DNs. When images of a-internexin-labelled (A, D, arrows, red) DNs and 

punctate and fine-thread-like hyperphosphorylated-tau-labelling (B, E, arrow heads, 

green) in aged TgCRND8 mice (A-C) and Tg2576 mice (D-F) were overlayed (C, F) no 

specific co-localisation between these two subsets of DNs was observed. In comparison, 

when images of a-internexin-labelled DNs (G, J, red) and phosphorylated NF triplet 

protein-(H, green) or NFM-labelled (K, green) DNs in TgCRND8 (G-1) and Tg2576 (J

L) mice were overlayed (I, L), the cytoskeletal markers co-localised within the majority 

of DNs (arrows), although some DNs were immunolabelled with a-internexin, 

phosphorylated NF triplet protein or NFM alone (arrow heads). Scale bar= lOµm. 
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5.4 DISCUSSION 

Notably, the current study has shown that two widely utilised transgenic AD mouse 

models exhibit DN pathology that is morphologically and neurochemically identical to 

that of human preclinical AD cases, but not AD cases. B-amyloid plaque deposition, as 

well as amyloid angiopathy, was observed to disrupt the surrounding neuropil in both 

TgCRND8 and Tg2576 mice. Specifically, AB plaque formation was highly axonopathic 

in aged TgCRND8 mice, and dendrites adjacent to AB plaques were also disrupted in 

both transgenic mouse models. Additionally, as AB plaque-associated 

hyperphosphorylated-tau-labelling was observed in the aged TgCRND8 mice, but not in 

the young cohort of TgCNRD8 mice, the current study supports the proposition that the 

phenotype of DNs matures as AD progresses from NF triplet protein and a-internexin

abundant forms through to hyperphosphorylated-tau-labelled DNs. 

Both amyloid angiopathy and AP plaques were associated with abnormal neuronal 

processes in both transgenic mouse models, suggesting that AP plaque deposition locally 

disrupts adjacent neuropil. Amyloid angiopathy was observed in association with a

intemexin-labelled DN structures in both Tg2576 and TgCRND8 mice. In addition, AP 

plaques caused both dendritic and axonal disruption, although the reaction of axons and 

dendrites to damage was different. Dystrophic neurites of axonal origin have been 

observed in association with AP plaques in Tg2576 and TgCRND8 mice in this, and 

previous studies (Irizarry et al., 1997; Chishti et al., 2001; Tomidokoro et al., 2001; 

Motoi et al., 2004; Noda-Saita et al., 2004; Delatour et al., 2004). Interestingly, 

anterograde tracer studies in transgenic AD mice that express human mutant APP and 

PS 1 describes similar axonal pathology largely restricted to cortico-cortical connections 

(Delatour et al., 2004) indicating a specific disruptive and localised effect of AP plaque 

formation. In addition, MAP2-labelled dendrites were observed to "bend" around AP 
\ ' 

plaques and were also "clipped" at AP plaque margins in the TgCRND8 and Tg2576 

mice. Similarly, AP plaques also affect the structure and organisation of adjacent 

dendrites in human AD (Knowles et al., 1998; Adlard and Vickers, 2002; Grutzendler et 

al., 2007) and other transgenic AD mouse models (Le et al., 2001; Schwab et al., 2004; 
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Grutzendler et al., 2007), supporting the idea that AP plaque formation may have a 

localised compressing effect on the neuropil. 

The percentage of neuritic AB-labelled plaques in aged TgCRND8 mice was not 

significantly different from that in AD cases, while the percentage of neuritic thioflavine 

s-stained plaques was significantly higher in aged TgCRND8 mice than in AD cases. 

Additionally, the vast majority of AP plaques in aged TgCRND8 mice and Tg2576 mice 

were observed to be associated with dephosphorylated NF triplet protein-, 

phosphorylated NF triplet protein- and NFM-labelled DNs. These data suggest that the 

AB plaques present in aged TgCRND8 mice are highly axonopathic relative to human 

preclinical AD and AD cases. The current data also corroborates previous reports 

(Dickson and Vickers, '2001 ), of the percentage of neuritic AP plaques in human AD 

being significantly higher than the percentage of neuritic AP plaques in preclinical AD 

cases (Figure 5.3A; p < 0.05). Furthermore, a higher percentage of thioflavine s-stained 

amyloid plaques were associated with DNs compared to AP-labelled plaques for aged 

TgCRND8, AD and preclinical AD cases. These data support previous in vitro reports 

of fibrillar AP being more detrimental to cell health than amorphous AP (Pike et al., 

1993; Lorenzo and Yanker, 1994; Ivins et al., 1998), and evidence from in vivo studies 

that fibrillar AP plaques are associated with increased damage to the surrounding 

neuropil in comparison to diffuse AP plaques (Dickson et al., 1988; Fukumoto et al., 

1996; Su et al., 1996a; Knowles et al., 1998; Dickson and Vickers, 2001; Le et al., 2001; 

Adlard and Vickers, 2002; D' Amore et al., 2003; Noda-Saita et al., 2004; Brendza et al., 

2005; Dickson et al., 2005). 

Dystrophic neurites labelled for tau (with variable phosphorylation), NF triplet proteins, 

MAP2, APP, PSI, synaptophysin, a-synuclein and ubiquitin are present in various 

transgenic mouse models of AD (Games et al., 1995; Masliah et al., 1996b; Irizarry et 

al., 1997; Sturchler-Pierrat et al, 1997; Chishti et al., 2001; Rockenstein et al., 2001 

Tomidokoro et al., 2001; Diez et al., 2003; Kurt et al., 2003; Boutajangout et al., 2004; 

Bussiere et al., 2004; Motoi et al., 2004; Noda-Saita et al., 2004 Schwab et al., 2004; 

Bellucci et al., 2007). However, the current investigation is the first to report that the 
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DN pathology in transgenic AD mice was morphologically and neurochemically 

identical to the DNs in human preclinical AD, but not AD (Table 5.2). 

The presence of abundant NF triplet protein and a-intemexin-labelled ring- and bulb

like DNs and the lack of classical phosphorylated tau-labelled DNs in Tg2576 and 

TgCRND8 mice is characteristic of human preclinical AD, but not AD cases (Table 5.2). 

In contrast, human AD cases demonstrate numerous angular and elongated tau-labelled 

DNs, but only rare AP plaque-associated NF triplet protein-labelled ring-like DNs 

(Dickson et al., 1999; Dickson et al., 2005; Table 5.2). Conversely, the transgenic AD 

mice exhibited punctate and fine thread-like hyperphosphorylated-tau-labelling that was 

strikingly similar to the punctate and fine thread-like hyperphosphorylated-tau-labelling 

in human preclinical AD (Table 5.2). However, it should be noted that a subset of 

preclinical AD cases do demonstrate occasional hyperphosphorylated-tau DNs with 

classical elongated morphology. 

The evidence that the DN pathology present in Tg2576 and TgCRND8 mice resembles 

human preclinical AD more closely than AD cases has important implications for the 

experimental use of these, and perhaps other, mouse models. While an increasing 

number of studies utilise transgenic mouse models of AD for testing potential 

therapeutic agents (Schenk et al., 1999; Janus et al., 2000; Sigurdsson et al., 2001; 

Leissring et al., 2003; Bergamaschini et al., 2004; Chauhan et al., 2004; Arbel et al., 

2005; Singer and Marr, 2005; Asai et al., 2006; McLaurin et al., 2006), the beneficial 

effects seen in such animal models have not always translated to the human condition. 

For example immunotherapy treatment that was effective in several transgenic mouse 

models of AD, proved to be detrimental to the health of subjects in human Phase IIA 

clinical trials (Orgogozo et al., 2003). This may be because such therapeutics are able to 

efficiently reverse the early pathological changes in AD (Oddo et al., 2004), such as 

those present in transgenic mouse models of AD and human preclinical AD, but may be 

inefficient for treating AD in which neurofibrillary pathology is well established and 

overt neuronal loss has already occurred (Vickers et al., 2000; Nicoll et al., 2003; Ferrer 

et al., 2004). In support of this proposition, Oddo and colleagues (2004) discovered that 
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Table 5.2 Summary of the DN types present in aged TgCRND8 and Tg2576 transgenic 

mice, and human preclinical AD and AD cases. 

Dystrophic neurite type Transgenic AD mice Preclinical AD AD 

Bulb-like NF triplet protein-labelled + + + 

Bulb-like a.-internexin-labelled + + + 

Ring-like a.-internexin-labelled + + + 

Ring-like NF triplet protein-labelled + + 

Elongated hyperphosphorylated-tau-labelled + 
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Aj3 immunotherapy could reverse the early, but not the late stages of pathological tau 

hyperphosphorylation in a transgenic AD mouse model. In addition, two human AD 

subjects that received Aj3 immunotherapy exhibited extensive neocortical areas with 

very few Aj3 plaques and DNs, but no reduction of NFfs or neuropil threads (Nicoll et 

al., 2003; Ferrer et al., 2004). This is particularly important, as clinical trials for 

potential therapeutics involve human AD subjects, and there is currently no effective 

way to diagnose preclinical AD in humans. However, the accurate diagnosis of early AD 

cases prior to a clinical diagnosis utilising a combined biomarker/MRI imaging approach 

may soon be possible (as reviewed in Borroni et al., 2007; de Leon et al., 2007). 

Aged TgCRND8 mice demonstrated a-internexin- and NF triplet protein-labelled DNs 

and hyperphosphorylated-tau-labelling, conversely the young cohort of TgCRND8 mice 

exhibited a-intemexin- and NF triplet protein-labelled DNs, but no 

hyperphosphorylated-tau-labelling. Neurofilament-labelled DNs are also observed 

several months before phosphorylated tau-labelled DNs in TgCRND8 and other 

transgenic AD mouse models (Masliah et al., 2001; Blanchard et al., 2003; Boutajangout 

et al., 2004; Bellucci et al., 2007). These data suggest that NF triplet protein- and a

intemexin-labelled DNs may be the earliest neuritic pathology to appear in association 

with Ap plaques, while the presence of phosphorylated tau in DNs occurs at a later time 

point (Su et al., 1998; Dickson et al., 1999; Masliah et al., 2001; Dickson et al., 2005; 

Bellucci et al., 2007). Similarly, it has been proposed that in human AD, DNs may first 

appear in preclinical AD labelled for NF triplet proteins and a-intemexin, then develop a 
I 

core of altered tau filaments before they become the elongated tau-only DNs observed in 

AD (Su et al., 1998; Dickson et al., 1999; Dickson et al., 2005). Additionally, these 

findings also suggest that tau hyperphosphorylation occurs as a secondary event to AP 

plaque deposition, which is supported by evidence that the presence of AP results in an 

increase in tau hyperphosphorylation in vitro (Busciglio et al., 1995; Ferreira et al., 

1997; De Felice et al., 2007). 

The hyperphosphorylated-tau antibody used in this study detects the 

hyperphosphorylation of tau at either Ser202/Thr205, Ser202/Ser205 or Ser205/Ser208 
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(Porzig et al., 2007). In particular, hyperphosphorylation of tau at Ser202 is a relatively 

early phosphorylation event in AD tau pathology and is an epitope associated with the 

presence of abnormal PHF-tau (Braak et al., 1994; Su et al., 1994b). In human AD this 

abnormal PHF-tau is present in both DNs and somatic NFTs. Thus, it has been 

postulated that the punctate and fine-thread-like hyperphosphorylated-tau-labelling in 

transgenic mice may be equivalent to the PHF-tau-labelled DNs of human AD, but that 

mice do not have a long enough lifespan to allow NFTs to develop (Masliah et al., 2001; 

Kurt et al., 2003). However, although DNs that exhibit phosphorylated tau epitopes are 

present in transgenic AD mice, no PHFs have been observed at the ultrastructural level 

in DNs in these animals (Lewis et al., 2001; Masliah et al., 2001; Sasaki et al., 2002; 

Kurt et al., 2003), despite mouse tau being almost homologous to human tau. The lack 

of PHFs in DNs in transgenic mouse models despite the presence of PHF-associated 

hyperphosphorylated-tau epitopes supports the proposition that transgenic AD mice 

represent an incomplete model of AD, but more comparably model early or preclinical 

AD (Phinney et al., 1999; Masliah et al., 2001; Vickers et al., 2001; Schwab et al., 

2004). 

In summary, the AB plaque-associated neuritic pathology present in Tg2576 and 

TgCRND8 mice was morphologically and biochemically identical to the cytoskeletal 

pathology of DNs present in preclinical AD, but not AD. Thus, these mice provide 

important opportunities to examine the early sequence of cellular changes that lead to 

the development of AD pathology, and the mechanisms by which the pathological 

process progresses and affects cellular function and health. Moreover, transgenic AD 

mouse models will serve as a vital platform for examining new therapeutic approaches 

that can be administered before extensive neuronal degeneration occurs. 
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6 METALLOTHIONEIN ISOFORM HA AS A POTENTIAL 

THERAPEUTIC FOR THE TREATMENT OF ALZHEIMER'S DISEASE 

6.1 INTRODUCTION 

Currently, AD patients are commonly treated with cholinesterase inhibitors (Brion, 

1996; Brodaty et al., 2001) or NMDA glutamate receptor antagonists (Livingston and 

Katona, 2004), but these therapeutics are only effective in a subset of AD patients, and 

do not affect AD progression (Parnetti et al., 1997). Thus, many research groups are 

searching for more effective therapeutic interventions for AD, and numerous potential 

therapeutic agents are currently in human clinical trials (Ruther et al., 2000; Simons et 

al., 2002; Jiang et al., 2003; Ritchie et al., 2003; Dodel et al., 2004; Sparks et al., 2005; 

Siemers et al., 2006). Assuming that AB plaques are the primary causative agent of AD, 

there are two potential approaches to slow or prevent AD: inhibit or stop AB plaque 

formation by modulating APP processing, inhibiting AB aggregation or increasing AB 
clearance, or protect neurons against the damaging effects of AB with anti-inflammatory 

drugs, antioxidants or growth factors (Vickers et al., 2000). Thus, an effective treatment 

strategy for AD would be to simultaneously inhibit AB plaque formation and to protect 

neurons against AB induced damage. Indeed, an increasing number of therapeutic 

agents with multiple modes of action are currently being investigated including 

NSAIDs, atorvastatin, verivastatin, fluvastatin, lovastatin, pravastatin, simvastatin, 

cerebrolysin and Huperzine A (Weggen et al., 2001; Simons et al., 2002; Sjogren et al., 

2003; Zhang et al., 2004b; Rockenstein et al., 2006; Wang et al., 2006). 

One such potential therapeutic agent for treating AD is metallothionein (MT) isoforms I 

and II (MTl/11), which has neuroprotective and antioxidant properties, and may also 

inhibit AB aggregation through its metal chelating ability (Maret, 1995; Aschner et al., 

1997; Adlard et al., 1998; Penkowa et al., 1999; Giralt et al., 2002; Chung et al., 2003). 

Metallothioneins are small (6-7 kDa), cysteine rich proteins that are present in most cells 

in the body including some cell types in the CNS (Hidalgo et al., 2001). Metallothionein 

isoform III (MTIII) is a growth inhibitory MT isoform that is present in neurons within 
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the hippocampus, amygdala and cerebellum in the healthy brain (Masters et al., 1994), 

but there are contradictory reports of MTIII expression in AD brains, including 

downregulation (Uchida et al., 1991; Yu et al., 2001), no change (Amoureux et al., 

1997) and upregulation of MTIII (Carrasco et al., 1999). Metallothionein isoforms I and 

II are expressed throughout the brain, predominantly by astrocytes, with a vast body of 

evidence demonstrating that MTI/11 protects the brain against damage, excess heavy 

metals and oxidative and inflammatory stress (reviewed in Hidalgo et al., 2001). In 

addition, MTI/11 are significantly upregulated in several transgenic mouse models of AD 

(Carrasco et al., 2006) and in human AD (Duguid et al., 1989; Adlard et al., 1998; 

Zambenedetti et al., 1998). Metallothioneins were considered to be strictly intracellular 

proteins, but recent studies have demonstrated an extracellular role for MTI/II (reviewed 

in Chung and West, 2004). Administration of exogenous MTl/II is highly efficacious in 

animal models of CNS injury, multiple sclerosis and Parkinson's disease (Giralt et al., 

2002; Chung et al., 2003; Penkowa and Hidalgo, 2003; Xie et al, 2004). 

Metallothionein isoforms I and II have a neuroprotective role following axonal injury in 

vitro and several types of CNS injury in vivo (Penkowa et al., 1999; Giralt et al., 2002; 

Chung et al., 2003; Chung and West, 2004). Additionally, MTI/11 null mice exhibit 

increased damage and poor recovery following physical or inflammatory injury to the 

CNS when compared to mice with endogenous MT (Penkowa et al., 1999; Giralt et al., 

2002). In this respect, the upregulation of MTI/11 in AD may, in part, be due to the 

localised mechanical injury caused by AB plaques. Metallothioneins are also powerful 

chelators and have a role in sequestering heavy metals and regulating the availability of 

metals for enzymes and transcription factors (Adlard et al., 1998). Each MT molecule is 

able to bind seven Zn2+ or 10 Cu+ metal ions, and through its metal binding properties 

MT may maintain metal homeostasis. Metal homeostasis is altered in AD with 

increased levels of extracellular metals and decreased bioavailability of metals within 

the cell, which is consistent with the dysregulation of APP processing, increased tau 

hyperphosphorylation, AB aggregation and increased oxidative stress present in AD (as 

reviewed in Adlard and Bush, 2006; Crouch et al., 2007). In addition, MTI/II may 

influence a wide variety of cellular processes via its metal chelating abilities, including 

113 



Chapter 6 - Results 

Af3 aggregation and A~ associated free radical production. P-amyloid has copper and 

zinc binding sites that affect the reversible precipitation of A~ into insoluble masses 

(Bush et al., 1994; Huang et al., 1997; Atwood et al., 1998) and the production of 

hydrogen peroxide that is mediated by redox-active metal ion and AP interactions 

(Cherny et al., 1999; Huang et al., 1999; Opazo et al., 2002). Regardless of the 

mechanism, free radicals are increased in AD brains (Smith et al., 1996; Smith et al., 

1997). Thus, by preventing the accumulation of redox active metals and free radical

mediated cellular damage, MTI/II may have an important role as an antioxidant (Maret, 

1995; Aschner et al., 1997). Indeed, in mouse models of amyotrophic lateral sclerosis 

and multiple sclerosis (experimental autoimmune encephalomyelitis) MTI/11 deficiency 

resulted in increased oxidative stress and disease symptoms (Nangano et al., 2001; 

Puttaparthi et al., 2002; Penkowa et al., 2003). 

In light of the success of MTI/II administration to animal models of CNS injury and 

neurodegenerative diseases, and the biology of MTl/11 as a free radical scavenger, zinc 

and copper sink and neurotrophic factor, a pilot study for the treatment of transgenic 

Tg2576 AD mice with exogenous MTIIA was undertaken. 
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6.2 MATERIALS AND METHODS 

6.2.1 Metallothionein HA administration 

Nine Tg2576 mice expressing human APP695 harbouring the Swedish (KM670/671NL) 

familial AD mutation on a C57BL/6 and SJL hybrid background (Hsiao et al., 1996) and 

five age-matched wild type mice were injected intraperitoneally with lµg of sterile Zn

MTIIA/g body weight (7.0 mol Zn equivalent; Bestenbalt LLC, Tallinn, Estonia) three 

times a week for 12 weeks beginning at 10 months of age. A dose of 1 µg of sterile Zn

MTIIA/g body weight was chosen as previous studies have chr,onically injected mice 

with MTIIA intraperitonaelly with this dose daily for a maximum of seven days and 

observed neuroprotection following focal brain injury (Giralt et al., 2002). A higher 

dose of MTIIA was not utilised as previously published studies have only administered 

MTIIA daily for a maximum of seven days in mice (Giralt et al., 2002) and any possible 

detrimental effects of chronic administration of higher doses of MTIIA have yet to be 

determined. MTIIA has been successfully administered by intraperitoneal injection in 

previous studies that involved animal models of CNS disease or injury with definite or 

potential disruption of the BBB (Giralt et al., 2002; Penkowa and Hidalgo, 2003; Xie et 

al., 2004). Thus, MTIIA was administered intraperitoneally in Tg2576 mice as the BBB 

is compromised in these mice (Ujiie et al., 2003; Kumar-Singh et al., 2005; Dickenstein 

et al., 2006). Tg2576 mice were utilised for this pilot study as they are a widely utilised 

transgenic AD mouse model that have been used to test many potential therapeutic 

compounds (Weggen et al., 2001; Sung et al., 2004; Rezai-Zadeh et al., 2005; Hartman 

et al., 2006; Li et al., 2006). Metallothionein isoform IIA was chosen for this study as it 

has been shown to be efficacious in animal models of CNS injury and previously 

published literature indicates that MT-II functions are unlikely to be different from those 

of MT-I (Giralt et al., 2002; Chung et al., 2003; Penkowa and Hidalgo, 2003; Xie et al, 

2004). Metallothionein isoform IIA protein was administered as the zinc thionein form 

as mammalian MTs are predominantly bound to zinc in vivo (Vasak, 2005). Six control 

Tg2576 mice and five age-matched wild type mice were also injected intraperitoneally 
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with 20µ1 of sterile O.OlM PBS three times a week for 12 weeks starting at 10 months of 

age. 

To investigate whether a higher AB plaque load at the end point of the treatment regimes 

would more clearly delineate the potential therapeutic effects of MTIIA, a second cohort 

of older Tg2576 mice were also treated. Six Tg2576 mice and five age-matched wild 

type mice were injected intraperitoneally with lµg of sterile Zn-MTIIA/g body weight 

three times a week for 12 weeks beginning at twelve months of age. Four control 

Tg2576 mice and five age-matched wild type mice were also injected intraperitoneally 

with 20µ1 of sterile O.OlM PBS three times a week for 12 weeks starting at 12 months of 

age. All mice treated were weighed at the beginning, middle and end of the treatment 

program. 

6.2.2 Tissue pro~essing 

At the end of the treatment regimes, Tg2576 and wild type control mice were 

anaesthetised with 140mg/kg sodium pentobarbitone and transcardially perfused (4% 

paraformaldehyde/O.OlM PBS). The brain tissue was cryoprotected (Section 2.1) and 

40µm coronal sections were cut on a cryostat. 

6.2.3 Immunohistochemistry and analysis 

To examine the AB plaque load in the Tg2576 mice at the end of their treatment regime, 

the percentage area occupied by AB plaques, or 'amyloid load', was assessed in five 

tissue sections from each Tg2576 mouse. The five coronal sections per animal were 

spaced 800-1200µm apart, and the middle section of the five was situated at mid

hippocampal level. All sections were treated with formic acid (Section 2.3.1) and 

double immunolabelled with rabbit anti-pan-AB and mouse anti-a-intemexin antibodies 

(Table 2.2). Double labelling fluorescent immunohistochemistry was performed as 

previously described (Section 2.3.3), except that secondary fluorescent antibodies were 

used at a dilution of 1:1000. Additionally, another five sections per Tg2576 mouse were 
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stained with thioflavine s (Section 2.2.1) and labelled for a-intemexin. The A~ plaque 

and thioflavine s-stained plaque loads were determined for all of the neocortex superior 

to the rhinal fissure, and the hippocampus (when present) in one hemisphere of each 

section of tissue. Specifically, low magnification images (25x) were obtained to 

determine the total area of cortex and hippocampus present in each tissue section, while 

higher magnification images ( 400x) were utilised to assess the total A~ plaque area for 

each tissue section. All image collection and area quantitation was performed blinded to 

case type. Quantitative data was analysed utilising a two tailed t-test (two sample 

unequal variance). 

To assess other possible effects of MTIIA administration sections from each Tg2576 

mouse were also immunolabelled with antibodies to A~ and a-internexin, NFM, 

hyperphosphorylated-tau, MAP2, GFAP or MTI/II (Table 2.2). In addition, age

matched wild type mice were double immunolabelled with rabbit anti-pan-A~ and 

mouse anti-a-internexin antibodies. The presence of A~ plaque-associated DNs, 

dendritic alterations, gliosis and MTI/II-labelling was investigated. 
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6.3 RESULTS 

6.3.1 (l-amyloid and thioflavine s plaque loads following MTIIA treatment of 

Tg2576 mice 

To assess the effects of MTIIA administration on the pathology present in Tg2576 mice 

the A~ and thioflavine s plaque loads were determined following 12 weeks of treatment 

with either MTIIA or PBS beginning at either 10 or 12 months of age. There was no 

significant difference in the percentage area occupied by A~ or thioflavine s plaques in 

the cortex or hippocampus of Tg2576 mice treated with MTIIA compared to Tg2576 

mice treated with PBS, for both treatment regimes (Figure 6.1). There was, however, a 

trend towards the Tg2576 mice treated with MTIIA exhibiting lower A~ and thioflavine 

s plaque loads than Tg2576 mice treated with PBS (Figure 6.lA,B). In addition, no A~

labelling or abnormal a-internexin-labelling was present in the age-matched control wild 

type mice injected intraperitoneally with MTIIA or PBS. 

6.3.2 (l-amyloid plaque-associated neuronal pathology and MTI/11 

immunolabelling in Tg2576 mice following MTIIA treatment 

The presence of A~ plaque-associated neuronal pathology and MTIIA immunolabelling 

in Tg2576 mice were also qualitatively analysed following 12 weeks of MTIIA or PBS 

administration, initiated at either 10 or 12 months of age. All PBS and MTIIA treated 

Tg2576 mice demonstrated a-internexin- and NFM-labelled ring- and bulb-like DNs, 

along with A~ plaque-associated non-classical punctate and fine-thread-like 

hyperphosphorylated-tau-labelling (Figure 6.2). In addition, both MTIIA and PBS 

treated mice exhibited MAP2-labelled dendrites that deflected around or terminated at 

the margins of A~ plaques (as shown in Figure 5.2C-F). Finally, there were no robust 

differences in the levels of MTI/11 and GF AP immunolabelling between PBS and 

MTIIA treated mice for both treatment regimes (Figure 6.3). 
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Figure 6.1 

There were no significant differences between the Ap or thioflavine s plaque loads in the 

hippocampus or c.ortex of Tg2576 mice treated with MTIIA compared to the control 

PBS treated mice. When the percentage area of cortex occupied by AP-labelled plaques 

(A) or thioflavine s-stained plaques (B) for each animal (black circles) treated with 

MTIIA from 10-13 months of age were compared to control PBS treated Tg2576 mice, 

the average plaque loads (black lines) for the MTIIA and PBS treatment groups were not 

significantly different. Similarly, when Tg2576 mice were administered either MTIIA 

or PBS from 12-15 months of age, the average cortical area (black lines) occupied by 

AP-labelled plaques (C) or thioflavine s-stained plaques (D) were not significantly 

different. 
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Figure 6.2 

All MTIIA and PBS treated Tg2576 mice exhibited similar AB plaque-associated 

neuronal pathology. Tg2576 mice treated with either MTIIA (A) or PBS (B) from 12-15 

months of age demonstrated AB plaque (red) associated a-intemexin-labelled (green) 

bulb- (arrows) and ring-like (arrow heads) DNs. Similarly, both bulb- (arrows) and ring

like (arrow heads) NFM-labelled (green) DNs were associated with AB plaques (red) in 

Tg2576 mice that were administered either MTIIA (C) or PBS (D) from 12-15 months 

of age. Additionally, non-classical punctate hyperphosphorylated-tau-labelling (green, 

arrows) was also associated with AB plaques (red) in Tg2576 mice that were treated with 

either MTIIA (E) or PBS (F) from 12-15 months of age. Scale bar= 1 Oµm. 





Figure 6.3 

There was no robust difference in the levels of MTI/II or GF AP immunolabelling 

between Tg2576 mice treated with MTIIA compared to PBS treated control mice for 

either treatment regime. Metallothinein I/II-labelling (green) was not robustly increased 

or decreased when Tg2576 mice treated with PBS (A) from 12-15 months of age were 

compared to comparable MTIIA treated Tg2576 mice (B). Metallothionein I/II-labelled 

astrocytes (arrows) were not specifically associated with AP-labelled (red) plaques 

(arrow heads) in Tg2576 mice. Similarly, levels of GFAP (green) immunolabelling 

were comparable in Tg2576 mice that were treated with PBS (C) and MTIIA (D) from 

12-~5 months of age. Glial fibrillary acidic protein-labelled astrocytes (arrows) were 

often specifically associated with AP-labelled (red) plaques (arrow heads). Scale bar: 

A,B =70µm, C,D = 90µm. 
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6.4 DISCUSSION 

This pilot study did not find significant changes in the A~ or thioflavine s plaque loads 

of Tg2576 mice treated with MTIIA, compared to control Tg2576 mice treated with 

PBS. However, there was a non-significant trend towards MTIIA treated transgenic 

mice exhibiting lower A~ and thioflavine s plaque loads than PBS treated Tg2576 mice. 

In addition, no changes in MTI/II or GF AP immunolabelling, AB plaque-associated DNs 

or dendrites were present when MTIIA treated Tg2576 mice were compared to PBS 

treated Tg2576 mice. Although this pilot study has not established any significant 

differences between the MTIIA and PBS treated Tg2576 mice, the administration of 

MTIIA to Tg2576 mice warrants further investigation. 

Many facets of the therapeutic administration of MTIIA to Tg2576 mice may be 

modified for future studies, including the number of animals used, route of MTIIA 

administration, dose of MTIIA utilised, age at which MTIIA treatment is initiated and 

the length of the treatment regime. The current pilot study was undertaken with a 

limited number of Tg2576 animals available, so no mice were treated with zinc to 

control for the zinc chelated to the administered MTIIA. Had the results of this pilot 

study yielded statistically significant results, a zinc only Tg2576 treatment group would 

have been added to the data set. Ideally, an increased number of Tg2576 mice in both 

the MTIIA and PBS treatment groups would also give future studies more power to 

determine whether MTIIA is having a beneficial effect on AB plaques, DNs and gliosjs. 

The range of AB and thioflavine s plaque loads present in the control PBS treated 

Tg2576 mice (Figure 6) show that the plaque load is highly variable from animal to 

animal in this transgenic mouse model. Therefore, it is likely that a higher number of 

mice need to be included in the current pilot study for any potential effects of MTIIA to 

be detected above the normal variability in AB or thioflavine s plaque load. 

Alternatively, it is also possible that MTIIA is not an efficient therapeutic agent for the 

treatment of transgenic AD mouse models and human AD. Although BBB disruption 

and leakage have been reported in both Tg2576 mice (Ujiie et al., 2003; Kumar-Singh et 

al., 2005; Dickenstein et al., 2006) and human AD (Algotsson and Winblad, 2007; 
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Bowman et al., 2007; Matsumoto et al., 2007; Zipser et al., 2007), it is possible that the 

disruption of the BBB in Tg2576 mice is not sufficient for therapeutic levels of 

intraperitoneally administered MTIIA to enter the CNS. Thus, future studies in Tg2576 

·mice may investigate the administration ofMTIIA intracerebrally or increase the dose of 

MTIIA delivered by intraperitoneal injection. Indeed, other studies that have shown 

successful outcomes following intraperitoneal injection of MTII have used doses of 1-

3 .3 µg/g body weight daily (Giralt et al., 2002; Penkowa and Hidalgo, 2003). In 

addition, the time at which MTIIA administration. is initiated and the length of the 

treatment regime could also affect the outcomes of this and future studies. The current 

investigation initially treated Tg2576 mice with MTIIA or PBS for 12 weeks beginning 

at 10 months of age. As Tg2576 mice first demonstrate AB plaque and AB plaque

associated pathology at seven months of age, which progressively increases (Hsiao et al., 

1996; Kawarabayashi et al., 2001; Noda-Saita et al., 2004), and the current pilot study 

began a 12 week treatment course at either 10 or 12 months of age, future studies may 

investigate the prophylactic application of MTIIA to Tg2576 mice by beginning MTIIA 

treatment prior to the appearance of AB plaque pathology. Especially, as it is currently 

unknown whether MTIIA is able to aid in the disassembly and clearance of existing AB 
plaques. It is also possible that treating Tg2576 mice with MTIIA for longer periods of 

time would be more beneficial and result in a significant reduction in pathology. 

The current study has not shown any significant difference in AB or thioflavine s plaque 

loads, or AB plaque-associated pathology between MTIIA and PBS treated Tg2576 

mice. However, this investigation was a necessary pilot study, which provides a basis 

for future further investigation of the potential for MTIIA to be utilised as a therapeutic 

for AD. 
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7 DISCUSSION 

Alzheimer's disease is the most common form of dementia, and currently represents a 

significant social and economic burden that is likely to become an increasing problem as 

the world's population ages (Vickers et al., 2000). The characteristic pathological 

hallmarks of AD include AP plaques, DNs, NFTs and neuropil threads, and all involve 

abnormal insoluble aggregates of proteins. The proteins involved in these pathological 

proteinaceous aggregates include Ap, cytoskeletal neurofilaments and the microtubule 

associated protein tau, and all have regular physiological roles in the healthy aged brain. 

Thus, aberrant protein processing, folding, degradation and phosphorylation have all 

been implicated in the ability of Ap, neurofilaments and tau to aggregate abnormally (as 

reviewed in Miller et al., 2002; Chaudhuri and Paul, 2006; Mi and Johnson, 2006; 

Stockley and O'Neill, 2007), but the exact event or set of events that instigates the 

development of AD pathology is currently unknown. Many genetic and environmental 

factors have been associated with AD, but age is still the greatest risk factor for the 

development of this disease. Although cellular biochemical pathways have been 

proposed to link the formation of extracellular AP plaques and abnormal intracellular 

processing of the APP with the intracellular accumulation of cytoskeletal and 

cytoskeletal associated proteins in NFTs and DNs (Mandelkow et al., 1992; Ferreira et 

al., 1997; Lau and Ahlijanian, 2003; Ryder et al., 2003; De Felice et al., 2007), the 

primary cause of AD and the exact mechanisms by which AD progresses and neurons 

degenerate and die have not yet been determined. Therefore, the central aim of this 

thesis was to investigate the cellular mechanisms involved in the progression of AD that 

lead to cellular dysfunction and death. A more complete understanding of the aetiology 

and progression of AD are vital for the development of more efficient therapeutics for 

AD as current treatments for AD only relieve symptoms, and do not slow or stop its 

progression. 

Studying AD with the aim of identifying the primary causative agent or the specific 

cellular mechanisms and pathways involved in disease progression has been difficult: 
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the brain pathology associated with AD is complex, and postmortem human tissue 

provides only uncontrolled and variable time points in the dynamic process of disease 

progression. Thus, some key questions in the field of AD research still need to be 

resolved, including: 1) What is the primary causative agent of AD? 2) How does AD 

progress, and how are the pathological characteristics of AD related to one another? 3) 

What causes cells to die in AD and how? 

It has been suggested that the final pathway to cell death in AD involves NFT formation, 

cell cycle or plasticity dysregulation, apoptosis or cell death that is neither classical 

necrosis or apoptosis (reviewed in Vickers et al., 2000; Jellinger and Stadelmann, 2001). 

As highlighted in Chapter One, the literature regarding apoptosis in AD is often 

con.founding and contradictory. Numerous studies report both increased levels of DNA 

fragmentation and apoptosis-related proteins in AD brains compared to control brains 

(Su et al., 1994a; Dragunow et al., 1995; Satou et al., 1995; Smale et al., 1995; Cotman 

and Su, 1996; Lassmann, 1996; Troncoso et al., 1996; Kitamura et al., 1997; Lucassen et 

al., 1997; Nagy and Esiri, 1997; Su et al., 1997; Sugaya et al., 1997; Masliah et al., 

1998; Sheng et al., 1998; Stadelmann et al., 1998; Giannakopolous et al., 1999; 

Stadelmann et al., 1999; Lu et al., 2000; Ovennyer et al., 2000; Rohn et al., 2001a, Rohn 

et al., 2002; Blanchard et al., 2003; Pompl et al., 2003; Zhao et al., 2003a; Zhao et al., 

2003b; Del Villar and Miller, 2004; Kang et al., 2005), whereas many investigations find 

that the levels of the same apoptosis-related proteins and DNA fragmentation are similar 

or decreased in AD brains compared to healthy aged brains (Lucassen et al., 1997; 

MacGibbon et al., 1997; Nagy and Esiri, 1997; Desjardins and Ledoux, 1998; Kitamura 

et al., 1998; Stadelmann et al., 1998; Engidawork et al., 2001; Raina et al., 2001; 

Gastard et al., 2003; Wu et al., 2005). Similar discrepancies arise when the association 

of apoptotic-related proteins and DNA fragmentation with AP plaques and NFTs is 

examined (Su et al., 1994a; Lassmann et al., 1995; De la Monte et al., 1997; MacGibbon 

et al., 1997; Su et al., 1997; Tortosa et al., 1998; Broe et al., 2001; Ferrer et al., 2001; 

Giannakopolous et al., 2001; Jellinger and Stadelmann, 2001; Rohn et al., 2001 b; 

Gastard et al., 2003; Guo et al., 2004; Kobayashi et al., 2004; Wu et al., 2005). Thus, it 

is difficult to deduce the importance of apoptosis in the AD process from the existing 
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data (Roth, 2001; Raina et al., 2003). To clarify this contentious area of AD research the 

current study investigated the presence of apoptotic-like nuclei and the levels of a 

comprehensive range of apoptosis-related proteins from the intrinsic and extrinsic 

apoptotic pathways in control, preclinical AD and AD cases. There were no robust 

changes in the level of apoptotic nuclei or immunolabelling for aC3, aC8, aC9, Bax, 

Bcl-2, cyto c or TRADD that distinguished between case types. In addition, there were 

no substantial changes in the levels of Bax, Bcl-2 and TRADD mRNA extracted from 

the same set of cases that, were immunolabelled for apoptotic-related proteins. These 

results challenge the proposition that apoptosis plays a major role in the progression or 

pathogenesis of AD, and imply that apoptosis may merely represent a terminal pathway 

of cell death for neurons unable to withstand the ravages of AD pathology any longer. 

Due to the chronic nature of AD and the short period of time it takes a cell to undergo 

apoptosis, the number of apoptotic cells present within AD brains at any time should be 

very low (Perry et al., 1998; Jellinger and Stadelmann, 2000). Therefore, even though 

apoptotic morphol,ogy and apoptotic-related proteins were significantly elevated in AD 

and preclinical AD brains compared to control brains, it is still possible that the terminal 

degenerative pathway of neurons in AD is apoptotic, but that the number of cells 

undergoing apoptosis at any one time is so low that they are not discernable above the 

background level of apoptosis present in the normal aged brain. 

In agreement with other studies, this investigation found that apoptotic markers can be 

present in AD brains (Su et al., 1996b; MacGibbon et al., 1997; Nagy and Esiri, 1997; 

Su et al., 1997; Kitamura et al., 1998; Stadelmann et al., 1998; Tortosa et al., 1998; 

Giannakopolous et al., 1999; Raina et al., 2001; Rohn et al., 2001b; Rohn et al., 2002; 

Su et al., 2002; Gastard et al., 2003; Pompl et al., 2003; Zhao et al., 2003b; Del Villar 

and Miller, 2004), but still not result in extensive apoptosis. If all the cells expressing 

pro-apoptotic proteins completed apoptosis, a substantial neuronal loss would occur 

within a short period of time (Perry et al., 1998) in all case types. This suggests that 

apoptotic pathways are activated in these cells but do not proceed to completion. 

Avoidance of extensive apoptosis in AD brains (Troncoso et al., 1996; Lucassen et al., 

1997; Perry et al., 1998; Stadelmann et al., 1998; Jellinger and Stadelmann, 2000; Raina 
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et al., 2001; Raina et al., 2003) despite the presence of apoptotic markers (Satou et al., 

1995; Lucassen et al., 1997; Nagy and Esiri, 1997; Su et al., 1997; Sugaya et al., 1997 

Kitamura et al., 1998; Stadelmann et al., 1998; Stadelmann et al., 1999; Rohn et al., 

2001a; Rohn et al., 2002; Blanchard et al., 2003; Zhao et al., 2003b), may be due to sub

lethal activation of apoptotic pathways, perhaps caused by the excitotoxins, oxidative 

stress, decreased glucose metabolism and/or A~ accumulation observed in AD and 

healthy aging (as reviewed in Cotman, 1998), or neurons may mount an effective 

defence against apoptotic cell death (Perry et al., 1998; Raina et al., 2001; Raina et al., 

2003). As neurons are post-mitotic and do not readily regenerate (reviewed in 

Chuckowree et al., 2004; Harel and Strittmatter, 2006), it is reasonable to expect that 

evolution has provided some in-built defense or safe guard against widespread neuronal 

apoptosis. The exact mechanisms that may enable neurons to withstand apoptotic 

stimuli have yet to be determined. 

In addition, it is also possible that discrete activation of apoptotic pathways occur. For 

example, in the current investigation cytoplasmic cyto c, indicating cyto c release from 

the mitochondria and the potential activation of the intrinsic apoptotic pathway, was 

present in a subset of DNs, while cyto c-labelling in the perikaryon of cortical cells was 

punctate. Similar release of cyto c has been reported in injured axonal segments, but 

was not present in the corresponding cell bodies (Btiki et al., 2000). However, it should 

be noted that, in addition to ipdicating the activation of the mitochondrial apoptotic 

pathway, cyto c release can also signify mitochondrial damage or dysfunction. 

Furthermore, increasing evidence suggests that caspases may be activated for cellular 

processes other than apoptosis, potentially by discrete activation within cellular 

compartments and/or the cleavage of limited select substrates (as reviewed by Schwerk 

and Schulze-Osthoff, 2003). 

The lack of any specific co-localisation of apoptotic-like nuclei with pathological 

hallmarks of AD such as NFTs or A~ plaques in the current study and others (Troncoso 

et al., 1996; Lucassen et al., 1997; Sugaya et al., 1997; Broe et al., 2001) is a striking 
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finding. The scarcity of apoptotic-like nuclei associated with AP plaques does not 

support the proposition that AP plaques are directly toxic to surrounding neurons. In 
'' 

addition, early- and late-stage NFTs were also not co-localised with apoptotic-like nuclei 

or cytoplasmic cyto c immunolabelling. In contrast to NFTs in the entorhinal cortex 

(Vickers et al., 1992), most neocortical NFTs in AD are intracellular (Sampson et al., 

1997; Vickers et al., 2003), suggesting that NFT-bearing neurons may be able to survive 

NFT formation for long periods of time before neurodegeneration and cell death occurs 

(as reviewed by Jellinger and Stadelmann, 2001). The notion that NFT formation is 

detrimental to cell health is being increasingly challenged, with growing evidence 

suggesting that tau phosphorylation and subsequent NFT formation may be by-products 

of protective compensatory mechanisms that protect neurons against oxidative stress 

(Lee et al., 2005). Specifically, neuronal loss does not directly correlate with NFT 

development in mouse models of AD (Andorfer et al., 2005; Santacruz et al., 2005), 

while modelling ofNFT formation and neuronal degeneration in the CAI of the human 

hippocampus has suggested that NFT-bearing neurons survive for approximately 20 

years (Morsch et al., 1999). In addition, recent research suggests that tau 

phosphorylation may protect neurons against apoptosis (Li et al., 2007). Cells 

overexpressing tau are resistant to various apoptotic stimuli, which instead induce tau 

hyperphosphorylation, GSK3 activation and decreases in B-catenin phosphorylation in 

tau expressing cells (Li et al., 2007). These data suggest an anti-apoptotic function of 

tau hyperphosphorylation, potentially by tau competitively inhibiting the 

phosphorylation, and subsequent activation, of B-catenin by GSK3 (Li et al., 2007). 

However, it has also recently been reported that reducing endogenous tau levels in 

transgenic mice expressing APP did not alter AB levels, but did ameliorate behavioural 

deficits (Roberson et al., 2007). In addition, reduced tau levels also protected transgenic 

and wild type mice from excitotoxicity (Roberson et al., 2007). 

Examining the pathology present in human AD brain tissue has provided a wealth of 

information and clues as to which proteins and cellular pathways may be fundamentally 

involved in AD, but it is difficult to assess disease progression, the potential links 

125 



Chapter 7 - Discussion 

between the pathological hallmarks of AD and the cellular/molecular pathways that lead 

the loss of nerve cell function and cell death in the snap shots that postmortem human 

tissue supplies. Consequently, studying preclinical AD cases or transgenic mouse 

models of AD may provide important insights into the initiation, staging and maturation 

of AD-associated pathology (Benzing et al., 1993; Lue et al., 1996; Vickers et al., 1996; 

Dickson et al., 1999; Dickson and Vickers, 2001; Vickers, 2001). Preclinical AD cases 

are typically associated with minor cognitive deficits, and are defined as a subset of non

demented cases exhibiting widespread non-neuritic AB plaques (based on thioflavine s 

or tau-immunolabelling) in the neocortex, neurofibrillary pathology that is mostly 

restricted to the entorhinal formation and hippocampus, and no overt neuronal 

degeneration or loss (Morris et al., 1996; Price and Morris, 1999; Vickers et al., 2000). 

To date the study of preclinical AD cases has provided valuable information regarding 

AD initiation and progression. Preclinical AD cases demonstrate AB plaques and DNs 

with morphological and biochemical characteristics that differ from those in AD cases, 

but no tauopathy, which includes NFfs, neuropil threads and tau-labelled DNs (Morris 

et al., 1996; Price and Morris, 1998; Vickers et al., 2000). This suggests that AB plaques 

and DNs containing neurofilaments and APP, but not tau, are some of the earliest 

pathology to develop in human AD, and provides support for the AB cascade hypothesis. 

Transgenic mouse models of AD represent additional tools for researchers examining 

AD progression, as a range of pre- and post-pathology time points can be assessed with 

the added facet that the disease process can be actively and readily, interfered with. 

Although transgenic mouse models of AD have been extremely useful, aspects of the 

way in which transgenic AD mouse models fit into or compare to the schema of disease 

staging that occurs in human AD have been under appreciated. 

Transgenic mice overexpressmg APP harbouring familial AD mutations reliably 

produce AP plaques, AP plaque-associated gliosis and DNs, but do not develop NFTs 

and neuropil threads or exhibit the dramatic neuronal loss equivalent to that in human 

AD cases (Games et al., 1995; Hsiao et al., 1996; Borchelt et al., 1997; Sturchler-Pierrat 

et al., 1997; Holcomb et al., 1998; Moechars et al., 1999; Janus et al., 2000; Mucke et 

al., 2000; Chishti et al., 2001; Blanchard et al., 2003; Higgins and Jacobsen, 2003; 
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Richards et al., 2003; Cheng et al., 2004; Kawasumi et al., 2004; Oakley et al., 2006). 

Overt neurodegeneration and neuron loss has only been unequivocally demonstrated in 

APP23 mice (Calhoun et al., 1998; Higgins and Jacobsen, 2003). The similarities 

between the pathology exhibited in APP transgenic AD mice and that of preclinical AD 

cases, namely Af3 plaques, DNs and gliosis, but no overt neurofibrillary pathology and 

neuron loss, suggests that transgenic AD mice may more closely model the early 

preclinical stages of human AD. However, no thorough analysis of Af3 plaque

associated neuronal pathology in APP transgenic AD mice had been conducted. The 

current investigation addressed this deficit by analysing DNs in two widely utilised APP 

transgenic AD mouse models, TgCRND8 and Tg2576 mice. This study determined that 

the biochemical and morphological characteristics ofDNs in the TgCRND8 and Tg2576 

mice were strikingly similar to that in human preclinical AD cases, but not AD cases. 

Specifically, both lines of transgenic AD mice and human preclinical AD cases 

demonstrated abundant NF triplet protein- and a-intemexin-immunolabelled bulb- and 

ring-like DNs and AP plaque-associated punctate and fine thread-like 

hyperphosphorylated-tau labelling, whereas human AD cases exhibited numerous 

classical hyperphpsphorylated-tau-labelled DNs, a-intemexin-labelled bulb- and ring

like DNs and NF triplet protein-labelled bulb-like DNs (as depicted in Figure 7.1). 

Importantly, quantitation demonstrated that the AP plaques in TgCRND8 mice were 

highly axonopathic, as the percentage of AP-labelled or thioflavine s-stained plaques in 

· TgCRND8 mice associated with DNs was equivalent to or in excess of that in human 

AD cases. These results indicate that the AP plaque-associated neuronal pathology in 

these mice more accurately models the early or preclinical brain changes that occur in 

human AD, representing a valuable model for understanding and developing treatments 

for preclinical AD. 

With respect to the different transgenic AD mice it is important to note that the 

overexpression of APP harbouring familial AD mutations has resulted in the presence of 

Aj3 plaques, DNs, astrocytosis, microgliosis and no neurofibrillary pathology on a 

variety of different genetic backgrounds (Games et al., 1995; Hsiao et al., 1996; 

Sturchler-Pierrat et al., 1997; Moechars et al., 1999; Mucke et al., 2000; Chishti et al., 
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Figure 7.1 

The morphological and neurochemical characteristics of A~ plaques associated with 

DNs in TgCRND8 and Tg2576 mice are identical to those in human preclinical AD, but 

not AD cases. The transgenic ..f\D mice, preclinical AD and AD cases exhibit NF- and 

a-intemexin-labelled bulb-like DNs, and a-intemexin-labelled ring-like DNs. NF

labelled ring-like DNs are abundant in TgCRND8 and Tg2576 mice and preclinical AD 

cases, but rare in AD cases. While AD cases demonstrate numerous classical angular 

elongated tau-labelled DNs, which are rarely observed in the transgenic AD mice and 

preclinical AD cases. However, preclinical AD cases and TgCRND8 and Tg2576 mice 

do exhibit punctate and fine-thread like tau-labelling associated with A~ plaques. In 

addition, a subset of NF- and a-intemexin-labelled DNs with a core of tau 

immunolabelling are observed in AD cases. 
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2001; Higgins and Jacobsen, 2003). The development of such AD-like pathology in 

transgenic AD mice with different genetic backgrounds provides strong evidence that 

the overexpression of mutant APP results in Aj3 deposition and the subsequent 

development of Aj3 plaque associated DNs and gliosis. Thus, investigating DN 

phenotype in two mouse models of AD that overexpress different APP mutants of 

different genetic backgrounds also indicates that the preclinical AD DN phenotype 

exhibited by Tg2576 and TgCRND8 mice is robust and likely applies to other transgenic 

AD mouse models. Ideally future studies may investigate the DN phenotype and other 

AD pathology present in not only Tg2576 and TgCRND8 mice, which represent 

relatively slow and fast pathology acquisition, but also in PSAPP, TAPP and 3xTg-AD 

mice to determine whether the expression of mutant PSI and/or tau alters DN 

characteristics and the development of AD-like pathology over time. Finally, ~th 

regards to utilising transgenic AD mice as platforms to test potential 

pharmacotherapeutics, transgenic AD mice that overexpress mutant APP and PS 1 that 

rapidly develop AD pathology, such as the TgCRND8 and probably PSAPP mice, would 

be effective for testing therapeutics to be administered to the preclinical or early stages 

of human AD, before overt cell loss and neurofibrillary pathology has developed. 

Although, therapeutics for the treatment of end stage human AD should be tested in 

transgenic AD mice with established neurofibrillary pathology such as the TAPP or 

3xTg-AD mice. 

Having characterised the neuronal pathology of two widely used transgenic AD mouse 

models, the final aim of this thesis was to investigate the potential of MTIIA as a 

therapeutic intervention for AD. Although the results of this study were not statistically 

significant, there was a trend towards lower AB-labelled and thioflavine s-stained plaque 

loads in the MTIIA treated Tg2576 mice compared to the PBS treated control mice. 

Tg2576 mice are currently being bred and aged to further investigate alternate MTIIA 

treatment regimes including different doses, initiation time points and length of the 

treatment and differing routes of administration, all with higher numbers of animals in 

the treatment groups. 
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With respect to the cellular mechanisms of disease progression, it is intriguing that 

despite exhibiting AP plaques and DNs, transgenic APP AD mice do not develop the full 

spectrum of AD pathology, as the AP cascade hypothesis would predict. Why PHFs, 

NFTs, neuropil threads and classical tau-labelled DNs do not develop in transgenic APP 

AD mice is currently unknown (McGowan et al., 2006). Mouse tau is almost 

homologous to human tau and is able to form filaments in vitro (Kampers et al., 1999), 

and NFTs are produced in vivo in mice when human mutant tau harbouring mutations 

associated with hereditary frontotemporal dementia and parkinsonism, are overexpressed 

(Lewis et al., 2000; Gatz et al., 2001; Zhang et al., 2004a; Terwel et al., 2005). 

However, mice overexpressing all six human tau isoforms but not endogenous mouse 

tau develop PHFs and pathological accumulations of PHF-tau in the soma and dendrites 

of neurons (Andorfer et fil., 2003), but when the entire human wild type tau gene is 

overexpressed. in mice with endogenous tau expression, no obvious histopathological 

phenotype develops (Duff et al., 2000), suggesting that endogenous mouse tau is 

inhibitory to the formation of tau filaments (Gatz et al., 2004). It is also possible that 

other factors or cellular pathways required for the development of tauopathy are missing 

or are limited in the mouse brain (Phinney et al., 2003). Furthermore, the lack of 

extensive neuronal loss in transgenic APP AD mice may be due to the lack of 

neurofibrillary pathology, if this pathology specifically causes neurons to degenerate and 

die. Alternatively, perhaps the relatively fast development of AP plaques in transgenic 

AD mouse models and the short life span of mice does not allow enough time for AP 

plaques to cause chronic stress and damage that may result in neuronal loss. In this 

respect, it has been shown that the AP in human Aj3 plaques is chemically modified, 

including N-terminal truncation, crosslinking and isomerisation, whereas equiv~lent Aj3 

modifications are not present in transgenic AD mice (Kuo et al., 2001). The deposition 

· · of various other proteins, cations and lipids in AP plaques that occurs in human AD may 

also differ in transgenic AD mouse models (Maynard et al., 2002). Although the 

biological significance of co-deposited molecules and the chemical modification of AP 

within AP plaques are unclear (Phinney et al., 2003), it may influence the toxicity of AP 

plaques (Higgins and Jacobsen, 2003). In addition, the development of different Aj3 

plaque types in transgenic AD mouse models does not precisely mimic the progression 
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of AP plaque types exhibited in human AD. For example, 70% of AP plaques in 18-

month old Tg2576 mice were diffuse (Tomidokoro et al., 2001; Sasaki et al., 2002), 

while in APP23 mice more than 90% of AP plaques were dense-cored and diffuse AP 

plaques were predominantly exhibited in mice with high AP plaque loads (Calhoun et 

al., 1998). Instead, human AD cases exhibit a higher relative proportion of fibrillar and 

dense-core AP plaques than preclinical AD cases (Dickson and Vickers, 2001 ). 

A variant of the amyloid cascade hypothesis has been proposed, in which AP plaque 

formation causes compression of the neuropil and sufficient structural injury to initiate 

axonal cytoskeletal changes, resulting in DN formation, and potentially the subsequent 

development of neurofibrillary pathology, neurodegeneration and cell death over the 

chronic time course of this disease (as previously reviewed in Vickers, 1997; Vickers et 

al., 2000). In support of the proposition that AP plaque formation structurally displaces 

the neuropil, fewer dendrites, axons and neuronal cell bodies are located within the area 

occupied by AP plaques in human AD and transgenic AD mouse models (De Witt and 

Silver, 1996; Knowles et al., 1998; Le et al., 2001; Tomikodoro et al., 2001; Adlard and 

Vickers, 2002; Moolman et al., 2004; Tsai et al., 2004). In addition, the NF triplet 

protein and a-intemexin-labelled ring- and bulb-like DNs observed following in vitro 

and in vivo axonal injury are strikingly similar to those seen in AD brains and, as 

described in this study, transgenic AD mice (Masliah et al., 1993; Meller et al., 1994; 

DeWitt and Silver, 1996; Masliah et al., 1996b; Su et al., 1996a; Vickers et al., 1996; 

Christman et al., 1997; Irizarry et al., 1997; King et al., 1997; Nakamura et al., 1997; 

Dickson et al., 2000; Chishti et al., 2001; King et al., 2001; Le et al., 2001; Chuckowree 

and Vickers, 2003; Bussiere et al., 2004; Dickson et al., 2005). Furthermore, 

dephosphorylated NF triplet proteins are abnormally present in axons following physical 

trauma and within the axonopathic changes in human AD and transgenic AD mice 

(Masliah et al., 1993; Meller et al., 1994; DeWitt and Silver, 1996; Su et al., 1996a; 

Vickers et al., 1996; Christman et al., 1997; King et al., 1997; Nakamura et al., 1997; 

Dickson et al., 2000; King et al., 2001; Le et al., 2001; Chuckowree and Vickers, 2003; 

Dickson et al., 2005). Apoptotic-related proteins including activated caspases and 

cytoplasmic cyto c were evident in DN s in transgenic AD mice and in human AD in the 
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current investigation and others (De la Monte et al., 1997; MacGibbon et al., 1997; Nagy 

and Esiri et al., 1997; Tortosa et al., 1998; Giannakopolous et al., 2001; Rohn et al., 

2002; Su et al., 2002; Blanchard et al., 2003; Su et al., 2003; Guo et al., 2004; Wu et al., 

2005; Albrecht et al., 2007), and are also present in axons following axonal injury or 

disruption (Springer et al., 1999; BUki et al., 2000; Wingrave et al., 2003; DeRidder et 

al., 2006). This expanding body of evidence supports the mass effect variant of the 

amyloid cascade hypothesis and strongly suggests that AP plaque induced neuronal 

injury may play an important role in the initiation of DN pathology in AD and in AD 

progression. 

This thesis has substantially contributed to our growing' understanding of the staging of 

the pathological changes that underlie AD, clarifying the role of apoptosis in AD and 

strongly suggesting that transgenic APP AD mouse models accurately mimic the AP 

plaque-associated neuronal pathology of human preclinical AD. Furthermore, the 

reported pilot study of the effect of MTIIA will lead to further investigation of this 

potential therapeutic approach in the future. 

7.1 CONCLUSIONS 

• There is no difference in the levels of apoptosis-related proteins and apoptotic 

nuclear morphology between preclinical AD, AD and control cases, suggesting 

that apoptosis does not play a major role in the progression of AD or the 

pathogenesis of the pathological hallmarks of AD or neuronal degeneration. 

• Activation of apoptotic pathways can occur without extensive terminal 

apoptosis within the brain. 

• As indicated by the lack of apoptotic nuclei and the presence of punctate cyto 

c-lahelling in the soma of NFT-hearing neurons, NFTs may not he as severely 

detrimental to neuronal health as previously suggested. 
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• Cytochrome c may be a transient and early marker in AP plaque-associated 

DNs, and its presence in the cytoplasm of DNs may indicate activation of 

apoptotic pathways and/or mitochondrial dysfunction. 

• Neurofilament triplet protein and a-intemexin containing DNs precede the 

appearance of hyperphosphorylated-tau-labelled DNs, suggesting that DNs 

may mature from NP-labelled DNs to tau-labelled DNs as AD progresses. 

• The neurochemistry and morphology of DNs in two widely used transgenic 

mouse models of AD recapitulates the DN pathology present in preclinical AD 

cases, but not AD cases, indicating that transgenic APP AD mouse models 

more accurately model the preclinical stages of AD and early AP plaque

associated neuronal pathology. 

7.2 FUTURE DIRECTIONS 

• Future studies could further investigate both the DN phenotype and other AD 

pathology present in PSAPP, TAPP and 3xTg-AD mice to determine whether 

the expression of mutant PSI and/or tau alters DN characteristics and the 

development of AD-like pathology over time. 

• It would also he of interest to build upon the data regarding apoptosis in AD, 

by investigating apoptosis in transgenic mouse models of AD including 

Tg2576, PSAPP and 3xTg-AD mice, with respect to apoptotic nuclear 

morphology and the levels of apoptotic-related proteins to compare to that 

present in human AD tissue. 

• To further increase our understanding of disease progression in AD, a set of 

hereditary AD cases expressing PSI harbouring familial mutations that exhibit 

accelerated AD progression could he examined for DN phenotype and the load 
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and distribution pattern of AfJ plaques and NFTs in comparison to a cohort of 

sporadic preclinical AD and AD cases. 

• As discussed in the current study, select subsets of neurons, notably those that 

express NF triplet proteins, are selectively vulnerable to degeneration in AD. 

To investigate the cellular basis of this select neuronal vulnerability, NFL 

knock out mice could be crossed with transgenic APPIPSJ mice to ascertain 

the importance of the NF triplet proteins to the local response of neurites to 

axonal injury in vitro, and AfJ plaque induced damage in vivo. 

• The current investigation, along with numerous other studies, highlights the 

damaging effects of AfJ plaques on the surrounding neuropil, but exactly how 

the earliest disruption of the cortical network by AfJ plaque formation 

co"elates with cognitive deficits remains unknown. Thus, yellow fluorescent 

protein transgenic mice could be crossed with APPIPSJ mice and the response 

of fluorescent neurites to AfJ plaques could be assessed in fu:ed tissue and by 

two-photon scanning laser microscopy in conjunction with behavioural testing 

at several time points. 

• Although the cu"ent pilot study did not result in any significant differences 

between MT/IA and PBS treated Tg2576 mice, the use of MTIIA as a potential 

prophylactic therapeutic agent could still be investigated. Future studies could 

utilise APP/PSJ transgenic AD mice, involve a higher number of animals per 

treatment group~ and administer a higher dose of MTIIAfrom six to twelve 

months of age. 
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9-Appendix 

9 APPENDIX - SOLUTIONS 

O.OlM PBS, pH 7.4 

1 OOmL 9% NaCl (90g of NaCl (Sigma) per lL Milli-Q® water) 

40mL Na2HP04 (BDH Laboratory supplies, Poole, UK) (28.4g per lL Milli-Q® 

water) 

lOmL 

850mL 

NaH2P04.2H20 (Sigma) (3 l.2g per lL Milli-Q® water) 

Milli-Q® water 

18.0% Sucrose Solution 

180g Sucrose (Sigma) dissolved in lL O.OlM PBS 

30.0% Sucrose Solution 

300g Sucrose (Sigma) dissolved in lL O.OlM PBS 

Tissue Storage Solution 

O.OlMPBS 

0.1 % Sodium azide (Sigma) 

IMMUNOHISTOTOCHEMISTRY SOLUTIONS 

0.25% Potassium permanganate 

0.125g KMn04 (BDH) in SOmL O.OlM PBS 

1.0% Pot-metabisulphite and oxalic acid 

O.Sg K1S20s (BDH) 

O.Sg Oxalic acid (Analytic Univar Reagents, Victoria, Australia) 

Dissolve in SOmL O.OlM PBS 

0.0125% thioflavine s 

0.00625g thioflavine s (Sigma) in SOmL O.OlM PBS 
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0.3% Triton/PBS 

600µL 

200mL 

Triton X (Sigma) 

O.OlMPBS 

O.OlM Citrate Buffer 

2.94g Trisodium citrate (Sigma) in 800mL Milli-Q® water 

9-Appendix 

Dissolve and adjust to pH 6 with O. lM citric acid, then make up to lL with Milli-Q® 

water. 

O.lM Citric acid 

10.Sg Citric acid (Sigma) in 400mL Milli-Q® water 

Dissolve and adjust to pH 6.0 with 2M NaOH, then make up to lL with Milli-Q® water. 

2M Sodium Hydroxide 

40.0g NaOH (Sigma) dissolved in lL Milli-Q® water 

4% Paraformaldehyde (PFA) 

40g PFA (Sigma) 

40g 

lOOmL 

400mL 

500mL 

Sucrose (Sigma) 

9% NaCl 

Na2HP04 

NaH2P04.2H20 

Heat while stirring until dissolved in a fume hood. 

1.0% Hydrogen peroxide in methanol 

lmL 30.0% H20 2 (Sigma) diluted in 30mL methanol 

50XTAE 

242g 

57.lmL 

Tris Base (Sigma) 

glacial acetic acid 
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lOOmL 0.5MEDTApH8.0 (BDH) 

Make up to lL with Milli-Q® water 

TE Buffer, pH 8.0 

l .6g Tris base 

0.5g EDTA (Sigma) 

Dissolve and adjust to pH 8.0 with 2M NaOH, then make up to lL with Milli-Q® water. 

5X Running Buffer, pH 8.3 

9g Tris base 

43.2g Glycine (Bio-Rad) 

3g SDS 

Combine and add 600mL ofMilli-Q® water. Store at 4°C. Prior to use combine lOOmL 

Running Buffer with 400mL Milli-Q® water. 

2.5% Agarose Gel 

1.25g Agarose (Invitrogen) 

lmL 50xTAE 

50mL Milli-Q® water 

Microwave for two minutes. Add 4µ1 ofEthidium Bromide swirl, pour. Run gel in lx 

TAE. 
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