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ABSTRACT

The definition and computational aspects of the intermolecular
potential energy function (hereafter simply called the intermolecular
potential or the potential) are discussed. A very convenient method
of determining the intermolecular potential by direct quantum mechanical
calculation is developed and illustrated by application to the interaction
of two ground state helium atoms.

A summary is also presented of the relationship between the
intermolecular potential and the bulk properties of a gas to facilitate
the investigation of the semi-empirical method of determining the
potential. This approach is applied to the pair interactions of CH4,
CF4 and SF6 molecules.

Both the semi-empirical and quantum mechanical methods

are then applied to the question of the non-additivity of the infer-

molecular potential.
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NOTE ON NOTATION

So as not to needlessly clutter the text many symbols are not

defined in the text but the definitions of all symbols are collected

in this section. .

CHAPTER 2

P = number of nuclei

Ml< = mass of a nucleus, k

N = number of electrons

m = mass of an electron, e = charge of an electron

M = number of separated molecules

H = a Hamiltonian, ¥ = a wavefunction

X = a wavefunction which is a product of separated
molecule wavefunctions

A, B = wavefunctions of separated molecules

\% = interaction part of the Hamiltonian

Q = symmetrization operator

T., P, = operators defined by (2.4.2) and (2.4.3)

~

X = an operator

Vfr' Vh:, Sf; = matrix elements defined by

— AN
v, =X IVIXD

(vii)



E is an energy

e.tJ,

V.. =<X IVIP. X>
tr t i r
Sfr - <Xf|Pii Xr>
=AB

= ground state wavefunctions of separated molecules

Aand B

= a matrix element

= ~\
E, = <X TH 11X

_ N,
E, = <xf | Hole/

E.

CHAPTER 3
Section 3.2
Z

n

P

/u.

.th
=the i  order energy

.th .
=the i  order wavefunction
= elementary spin functions
= Hartree-Fock wavefunctions
= correlation functions
= orbitals on B

= a coefficient in a linear sum

= canonical partition function
= pressure, V =volume, T = temperature

= Chemical potential, bj = a coefficient

(viii)



(ix)

z = number density, p = density

k = Boltzmann constant, No = Avogrgdro's number
R = gas constant

B,C, D = second, third, fourth virial coefficients

U = a potential energy function

Uo = a central potential energy function ;

v = a non-central potential energy function

Fc;t; = an Ursell-Mayer function

Xl = a phase shift

D) = a wave number

I = angular momentum quantum number

s =a spin

p k1™’

Bo' Co = central, classical second and third virial coefficients,
Cadd & Cnonadd = additive and non-additive third virial coefficients
dn’ Dn = coefficients arising from angle integrations

Hn’ ln = radial integrals (both the above are involved

in C for angle dependent potentials)



(x)

Secfion 3.3

J = a flux, X =a gradient, L = a transport coefficient
o = thermal diffusion factor
t
o = reduced thermal diffusion factor

o

kf = thermal diffusion ratio

Rf = thermal separation ratio

molecular weights and

M], M2, m,, m, = masses of molecules,

Fi = an external force

F(') = ifh order distribution function

g = relative velocity of two molecules

). ¢ = angle of deflection

p = shear viscosity coefficient

>\ = thermal conductivity coefficient
D] ! = self diffusion coefficient

n = a collision integral

[,s

S(n) = the collision cross-section

Iel = the elastic collision cross-section
" = the inelastic collision cross-section

2
Xz =m0 /KT

the distance of closest approach

.‘
1l

reduced mass

3
Il



. . = internal heat conductivity (xi)
in

}yh_ = translational heat conductivity
- = internal heat capacity
Cv = heat capacity at constant volume
K = coefficient of bulk viscosity
CHAPTER 4
Section 4.2 -
C6' C8 ; Clo = dispersion coefficients
o = the zero of the potential function
< = the depth of the potential well
ry = the position of the potential minimum
u = the total potential
Uo = the central potential
v = the orientation dependent potential
Uss = the spherical shell potential
d = the size of the spherical shell
ro* = ro,/d
N = the octopole moment, @ = the hexadecapole

moment, & = the polarisability



Additional Comments and Units used

In Chapter 2 the use of B] for a general wavefunction and BCJ.
for an orbital for He should not be confused. Throughout the thesis
the symbol Vzi’s used for the gradient operator and £:=o or Z;' mean
the sum over all states excluding the ground state.

In Chapter 3 a, b, c are used to denote molecules rather than
1, 2, 3. More details of notation for Chapter 3 will be found in
Appendix C.

The units used throughout are, energies 10_5 a.u., C6’ C8’

C]O a.u. second virial coefficients cm”™/mole, third virial coefficients

cmé/molez, viscosities 10-7 poise, self diffusion coefficients cmisec.”

=34 2
octopole moments 10 = e.s.u. cm3, hexadecapole moments 10-4 e.s.u. cm

and polarizabilities 10-25 cm3.

(xii)



1. INTRODUCTION

Intermolecular potentials are of great interest and importance
1-7
in many branches of chemistry, physics and biology . For example,

they are intimately involved in the molecular interpretation of the
1,5,6,7
equilibrium and transport properties of matter, the explanation of
crystal structures, the mechanisms of chemical reactions and the
2,4
conformation of macromolecules. In short, the problem of determining
the intermolecular potential is one of the key problems which must be
solved if we are to describe the observable bulk properties of matter
1-7
in terms of its constituent molecules. The other major problem is

to relate these potential functions to the bulk properties.

Basically, the intermolecular potential may be determined in

two ‘ways
2,3,4
(a) by direct calculation using quantum mechanics, and
1,2,3,6
(b) indirectly from an analysis of the bulk properties of matter.

In the next Chapter the problem of defining and calculating the inter-
molecular potential in quantum mechanics will be discussed.

The intermolecular potential for the interaction of closed shell
systems is an extremely small quantity. This means that if the normal
variational solution of the Schrodinger equation is used fhelpofenfial

is obtained by taking the difference of two large nearly equal numbers.



Thus methods have been sought which determine the potential directly.
One such method is perturbation theory in terms of separated molecule
wavefunctions and this method is investigated in Chapter 2. Several
questions related to this theory remain to be answered, they are

(a) as the perturbation expansion is not unique can one find a
suitable expansion?

(k) as the theory is developed in terms of exact, unknown ground
state wavefunctions of the separated molecules what can be
learnt from approximate wavefunctions? and

(c) as the required exact, complete setsof excited state functions
of the separated molecules are also unknown can good second
order energies be obtained from truncated variational
approximations to this set?

After a definition of the intermolecular potential these problems
are investigated with particular reference to a widely discussed problem,
the interaction of two ground state helium atoms.

In recent years very accurate semi-empirically determined

123127
potentials have been obtained for inert gas interactions, using the
relationship between the properties of a gas and the intermolecular
potential. After a discussion of the relationship between the interaction
potential and the equilibrium and transport properties for both atoms

and molecules in Chapter 3 an attempt is made in Chapter 4 to extend



this procedure to simple polyatomic molecule interactions and some
of the additional problems encountered are discussed.

The last Chapter contains a discussion of the non-additivity
of the many-body intermolecular potential. This Chapter further
emphasises the utility of the perturbation theory of the intermolecular

potential.



2. THE INTERMOLECULAR POTENTIAL

In the introductory chapter it was pointed out that there are
two distinct parts to the problem of describing the bulk properties
of matter in terms of the constituent molecules. It is the first of
these problems, that of the intermolecular potential that will be

investigated in this Chapter.

2.1 Definition of the Intermolecular Potential

Consider a system of P nuclei of mass Mk and charge Zke and
N electrons of mass m and charge e. We define the separated system
as a system of M molecules each with a certain number of nuclei
and electrons.
The Schrodinger equation for this system using a spin-free,
4,8,9
non-relativistic Hamiltonian operator, Hf is
¥ =F ¥
Hf iL(r,R) Ef 1L(r,R) (2.1.1)
where ‘i’r is the total wavefunction and Ef the total energy of the system.
The collection of co-ordinates required to specify the electrons and
nuclei being denoted by r and R respectively.
Explicitly,
+ N K

— V24V ()Y _GRAV_R) (2.1.2)
. -I 2m | ee en nn

X
n
1
Il ™1 o
<
!
™



P, 2 1
where V. (R) =% L Z Z e IR =R, I
nn K I=1 k™1 k I
’ 2.1.3)
PN _ ]
Ven(r,R) = kf] E] ZI< e | Rk _Til
—_— I—
N
and V_(R) -1z’ e2 Ir, -r, I-]
ee . P

Equation (2.1.1) describing the combined system of all nuclei and
electrons is usually simplified since it is unnecessarily complex.

The usual definition of the intermolecular potential is based
on the assumed separation of nuclear and electronic motion which

4,8,9,10
was first suggested by Born and Oppenheimer.

2,2 Born-Oppenheimer Approximation

8,9
The Born-Oppenheimer approximation assumes that we may write

v(,R) =¥ R)¥ (r,R) (2.2.1)

where ¥ n(R) depends on R only and ¥ e(r,R) depends on r and only
parametrically on R.

Also implicit in the usual definition of the intermolecular
potential is the adiabatic approximation in the Ehrenfest sense]. 8
This states that the molecular aggregate, e.g. He2 can be characterised
by a set of quantum numbers e.g. 'Z; which do not change during the
collision. Thus for each set of these quantum numbers there is a

potential energy surface which determines the motion of the nuclei.



If we substitute (2.2.1) in (2.1.1) then

N 42 P2
+ 2 + 2
- v - z v.".+V (®)+V _(,R)+V_(RRY (R)Y (r,R
(k=] QME k i Zm i ee en nn} n e )
= E v (R) we(r,R),
P
(z VIV _()+V_(, R)}‘P (,R)Y (R)
N 42
+ 2
z +V_R)Y R)Y _(,R)
Lo )
N L2 N 42
+ 2 . +*
-¥ R) I - V.Y (R - I Y R) Vi ¢ (-,R)
" M T e k=1 "k K e
=E ¥ (R)Y _(7,R) (2.2.2)

The last two terms on the left hand side of (2.2.2) involve differentiation
of ¥ . with respect to R and must be neglected since it was assumed that

Y depends only parametrically on R. Thus (2.2.2) becomes an equation
with one term dependent on R and one on r and R and may be separated

into two equations,

H(,R) ¥ (R = E(R) ¥ (r,R) (2.2.3)
and Hn(R) ‘Pn(R) = Ef ‘{"n(R) (2.2.4)

where



2
_ b 2
He - 'Z=] Z'T] v'- + Vee(l‘) + Ven(r,R) (2.2.5)
N2 2

and the separation constant, Ee(R) is the electronic energy.

The equation (2.2.3),usually called the electronic Schrodinger
equation, describes the motion of the electrons for a fixed set of
nuclear co-ordinates and must be solved for each set of these co-ordinates.
The equation (2.2.4) for the nuclear motion contains the electronic
energy as a potential term. The nuclei thus move in an effective
potential that is the sum of the nuclear coulomb repulsion, Vnn(R) and
the potential of the average force exerted on the nuclei by the electrons,
£, R

i.e. V =Vnn(R)+Ee(R) (2.2.7)

(R)
Equation (2.2.4) is usually modified slightly by adjusting the energy

of the system so that the potential energy is zero when the molecules

g 4.
are infinitely separated, " i.e.

N w2
(- kz=1 ml& Y +AV(R)W n(R) = Ef \l’n(R) (2.2.8)
M
where AV(R) = V(R) - |_E] E.

E, being the energy of the Ifhseparafed molecule.



The Born-Oppenheimer approximation thus reduces the problem
of the intermolecular potential to that of solving (2.2.3). The
rationalization of this approximation is that the electrons are much
lighter than the nuclei and move very much more r<:|pid|y?,9 It has
been tested numerically for H:2 in the ground si'c:i'e8 and found to be
entirely adequate and should be even better for heavier systems.

More elaborate approximations to the full Schrodinger
equation involve including terms dropped from (2.1.1) by using (2.2.1)
or by including spinand relativistic terms in the Hamiltonian.

These corrections may be summarised by the following equation,

E-EE =E +E +E +E +E (2.2.9)
bo mp rej r c en

where Emp is the correction due to mass polarisation, Erel is due

to relativistic corrections, Er corresponds to the radial motion, Ec to
the centrifugal forces and Een to the coupling of electronic and
nuclear motions. These terms are all small for the type of interactions

that we shall discu558 and they will thus be neglected.

2.3 Solution of the Electronic Schrodinger Equation

To solve (2.2.3) exactly for all but the simplest systems is
prohibitively difficult and thus approximate solutions must be sought.

The most commonly used method for finding these approximate solutions



%
is by use of the variational principle and a trial wavefunction X with
) 11 . e s
adjustable parameters. The lowest energy is obtained by minimising
the expectation value of the Hamiltonian with respect to these

adjustable parameters since by the variational principle

<XTHIX>
E s =135 (2.3.1)

This method has been very successful for interactions of the chemical
bonding type e.g. H2, Li2, LiH, CO] 1,12 if a carefully chosen trial
wavefunction is used. However, only the total energy and not the
intermolecular potential is determined directly by this method. Thus

the potential for the interaction of the non-bonding type is obtained

as a very small difference between two very large numbers, as illustrated
in Table 1. Furthermore, the upper bound property of the variational

method does not apply to this energy difference.

TABLE 1
Energies for He2

R E Total E Atoms E Interaction

5.0 -5.72335531 -5.72335924 0.00000393

5.4 -5.72338912 " -0.00002988

5.5 -5.7233%9136 " -0.00003212

5.6 -5.72339231 " -0.00003307

6.0 -5.72338917 " -0.00002993

7.0 -5.723373%96 " -0.00001473

8.0 -5.72336592 " -0.00000662

9.0 -5.72336245 " -0.00000321
10.0 -5.72336090 " -0.00000166

E Total = E Atoms + E Interaction
Variationally determined, reference 71



Hence we will turn to a method which allows the intermolecular
potential to be determined directly. This is perturbation theory in
terms of separated molecule wavefunctions.

The use of simple products of separated molecule wavefunctions
and Rayleigh-Schrodinger perturbation theory has long been applied

to obtain the long range potential between two non-overlapping

molecules,

i.e. \}’ = X°+ fl;o Cf Xf (2.3.2)
H=HO+V (2.3.3)
E=E°+E]+E2+....... (2.3.4)

M
where Eo = I Eoi’ the sum of the separated molecule energies,
i=1
M
Ho = I Hoi’ the sum of the separated molecule Hamiltonians,
i=1
V = interaction part of the Hamiltonian,

M
X =1 Ar, the product of separated molecule wc:vefuncfions,Af
i=1

E, =< X IVIX>
o o

'

2
E, = f:zt:o <X°lVle> /(Eo-Et)

Here E, is the electrostatic energy and E, the second order energy of

]

induction and dispersion.

10.



However, although the potential is obtained directly by this
method the wavefunction (2.3.2) cannot satisfy (2.2.3) as it does not
have the full symmetry of He. For example, for the interaction of two
ground state helium atoms this wavefunction is not antisymmetric to
exchange of electrons between the two atoms. This incorrect symmetry
is usually called neglect of exchange or neglect of overlap. Generally,
let Q be a projection operator which projects from an arbitrary

17,25,40
wavefunction a function of the correct symmetry then
H Q = QH and a solution X of (2.2.3) must satisfy QX= X. If Q
commutes with Ho then the above R-S treatment leads to the correct
result.

However, in our case QHo:i: HoQ and Xo does not have the
correct symmetry and the R-S procedure cannot be used.

Thus a perturbation theory must be developed in terms of QXo

and{Q Xf)—which do have the correct symmetry. This leads to two

problems,
. . . 25
1. QXO is not an eigen function of Ho , and
2, although the set of simple products of excited state functions,

{Xf} is complete the set of correctly symmetrized products {QX')
is overcomplete. 14,16 The second point leads to a non-unique
expansion of the wavefunction (and thus the energy) in terms

of these functions.

1.



Many different schemes have been developed to treat this
perturbation theory problem corresponding to different choices of
. . . 14-43 .
the expansion coefficients. The energy expressions generally
give a first order term which is the Heitler-London value but differ
in higher order terms due to these different choices of expansion
coefficients. The methods used have been,

1. more or less direct extensions of the R-S procedure with a
14-16,34,3741

particular arbitrary choice of expansion coefficients,

2, methods related to degenerate perturbation fheory']8-2]

-24

. . . 2
3. schemes based on transformations of the Hamiltonian and

25-33,35,36

4. most commonly, projection operator techniques
In the first mentioned methods it is difficult to justify a
16
particular choice of expansion coefficients. The degenerate perturbation
theory methods are rather more complex than the other methods and

18b
rather hard to interpret. The third method leads to difficulties such as

the possibility of the energy not being real.” Thus we will use the

last mentioned method to study the problem.

2.4 Perturbation Theory of the Intermolecular Potential

257,31, 32

It is usual to write
\Lf =wWQ X
o

= (1+T] H) on

=Qx_+THQX (2.4.1)

12.



It may be shown that if (2.4.1) is to satisfy the Schro dinger

32

equation then,
_ -1
T] = (E - P]HP]) P]

where

P =Q-QlIX ><X 1QlX> " <x 1Q
(e} (o] (o] (o]

=W+Q
= Qw
and

w=l-IX>X 1QIX>7<X 1Q
(o] (o] (e} e}

T and P, have the following properties

T, =T, P =P, T

1 =T Py =P T =P

]Xo=o

T, =QT, =T,Q=P T, =T,P, =P TP

P] =QP] =P]Q=QP]Q
and

_ + 1
T] —(1-Row \Y )Ro P]

where

R, = | X, ><X |/ (E -E)

and

V‘=V-(E-E°)

Thus

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

13.



14.

'\:}/‘ =Q X +T, QH X (QH=HQ)
o 1 o

= QX + T HX_ Q="

1

=QX +T,H X +T,VX
o 1" oo 1"

=QX +ET.X +T,.VX (HX =E X))
o ol’o 1" 70" 0" 0 oo

=QXo +T on (T]Xo=0) (2.4.9)

1
The energy is then given by

(E-H) ¥ =0 (from 2.2.3)

Thus

<X |lE-HI¥> =0,
o
E=<X H@QX +T,VX)IX > /<X 1QIX>
o o 1" "0 o o o)
(since< X I y>=« X IQIX> )
o o o
= (<X THQX >+ X IVvQX >
o o o o o
+ X ITHT VX >+<X IVI,VIX>)/<X 1QI X >
o ol o o 1 o o o
=(E <X IQIX>4<X IVQX >
o o o o o
+E <X 1T, VX >+< X IVI,VIX >)
o o 1 70 o 1 o
+
/<X°|QIX° >(Ho = Ho)
=(E<X 1QIX>+< X 1 VQX >
o o ) o) o
+ +
+0+<X°IVT]VIXO>)/<XOIQXO>(T]—T],<X°IT]—O)

E=EFE + <X IVAX >/&< X QX >« X IVI.VIX> /<X 1QX >
o o o o o o 1 o o o
(2.4.10)



Perturbation expansions may be obtained by expanding T] in a power

series e.g. using the operator identity
T =(1-B) k =4(cT+c) + 48T + c8*) +p78" (2.4.11)

then

_ + 1, =1
T]—(l -Row V) Ro P]

1 1 + 1 i + 1 \
2(ROP] + P] Ro) + 2(Row \Y P]Ro+ ROP]v wRo) + Row \Y/ T]V w Ro
Thus

1 1 + 1 + |
T] = 2(Ro PI‘-I-P] Ro) + 2(R0VY V'w Ro__+ Row QV w R_°)

Ry VI VIWR (P =w@ = Qw)
G 1 o 1
therefore

I

s +.1 JE N
| =3(R_PLHPIR ) +R w Vg WR, T RWTVITIVIWR (2.4.12)

where

v; -3v'arav)

From P]T] P] = T]

1 1

15.

_1 + 1 + 2
Ty = 2(PyR Py + PR P+ PR WV WR P+ PR w VT, VIWR Py (P) = Py)

1 1

Therefore
T, =PRP, +PRwV wR P +PRw VT VW P (2.4.13)
1 1ol oo 'q ol 1o 1 ol T
Equation (2.4.13) is equivalent to

_ + 1. -1
T] = P](] - Row \'% P]) RoP]

B So + 1k

=P, I RWVP)REP (2.4.14)

k=0



Using (2.4.5) many other expansions of T] are possible and thus many
different perturbation expressions could be obtained.

All these schemes will be equivalent to infinite order but will not

32,33,34, 40

be; if the expansions of T] are truncated to low order.

The two most widely used schemes are the Murrel{-Shaw-Musher-

25,39,0a,b which corresponds to using (2.4.12)

14,17,31

and the Eisenschifz-London-Hirschfelder-van der Avoird formalism

Amos formalism (MS-MA)

(EL-HAV) which uses (2.4.13).

The MS<MA scheme gave good results for the energy of the

] b * and 32 * states of H2 at large separations]8 b,d and reasonable
v 25d,e o
results for the ground state of ng and Li - LiH ™~ were obtained

using approximate wavefunctions. In all cases the energy was
calculated to second order i.e. using the wavefunction to first order.

The principle disadvantage of the method is that the wavefunction
18,25,32,33
does not have the correct symmetry order by order: This means
18 b,d
that the expectation value of the Hamiltonian is poor, and the total

wavefunction cannot be used variationally, as has been shown numerically
18b,d

for H2 . This incorrect symmetry means that some terms may be missing
. 3lb .
from the energy expression. It may also mean that expectation

values of other operators are as poor as the expectation value of the

Hamiltonian.

16.



The EL-HAYV scheme does give a wavefunction of the correct
symmetry order by ordersl:uf it does not give satisfactory energies to
second order for the systems so far studied. 18 Also the long range
limit of the second order energy in this scheme, unlike the MS-MA
second order energy, does not have the correct behaviour i.e. does

18,33

not approach (2.3.4) for these systems. This is because the
third order energy is not negligible compared to the second order
energy.]8 Thus the concept of each order of perturbation being of
very much smaller magnitude than the preceeding order is lost in this
scheme. Methods to overcome this deficiency e.g. transformations

18a,33
of the Hamiltonian or calculation of the third order energy make the
method much more complex than the MS-MA scheme for results of
comparable accuracy. The use of the variational principle with the
total wavefunction is not of much help either as we then only determine
the total energy and not the intermolecular poi‘eni'icj:.3 Thus it is
preferable to develop a modification of the MS-MA scheme which
gives a wavefunction of correct symmetry order by order than to
correct the EL-HAV scheme.

This symmetrization is very easily accomplished since

Y =ax +TvX

= 1
=Q Xo+2(RoPl +P]Ro) VXO+.... (2.4.15)



But
Qv =y

= Q(QX, +T,VX )

(1) 2 _
=Q.QX_+QX,’' +...(Q =Q)
o

- (1)

—QX°+QXM +... (2.4.16)

—ax +xa

)

or alternatively the fact that

- -1
T, = QT, =z (QROP] + QP Ro) +... (2.4.17)
may be used to develop a symmetrized expansion.

Thus although the MS-MA expansion of the wavefunction,
(2.4.15) does not have the correct symmeiry order by order the expansion
(2.4.16) does since for example,
Doy M

m

and,

T =QTm(])+QTm(2)+"“ (2.4.18)

1

and in general

xn) —gx ™ (2.4.19)
m

18.
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However, since Q may be written as
Q=N (l‘+Pii) (2.4.20)
where N is chosen so that Q2 = Q and Pii is the operator which
permutes the electron co-ordinates between the two sets and combines
them in such a way as to produce a function of the correct symmetry,
it is easily seen that the above expansion does not have the correct
long range limit i.e. it does not approach ( 2, 3. 2. ) at large
distances. This is because of the exira factor N which has been
introduced upon symmetrization i.e. by multiplying (2.4.15) by Q.
This fault is easily corrected by making a Feenberg fransformafilﬁaof
the Hamiltonian which enables us to write,
E=E_+E +cEy+.... (2.4.21)
where c is an arbitrary constant. If ¢ is chosen to be, N—] then the
second order energy has the correct long range limit. A similar technique
has been used by Certain and Hirschfelde]rs:; correct the long range
behaviour in the EL-HAV scheme. However, they made an arbitrary
choice of ¢ (which gave the correct result for the systems studied) the
significance of which they were unable to explain.

The significance of the choice is probably that it cancels the

exira factor N introduced by going from (2.4.1Z) i.e. the MS-MA

scheme to (2.4.13) i.e. the EL-HAV scheme.



Before we obtain an expression for the second order energy
it may be noted that

) 0 -]

T, =0 -RwV) R P

=R P +Rw VIR P 4. (2.4.22)
o (e] o

1 1

and this expansion leads to a second order energy expression identical
to the second order MS-MA scheme, but enables the derivation of the

expression to be made more easily. Thus we use

Rw VIR P,
(o] (o]

T=R0P !

1 1

=QT]

—QR P. +QR W VIR P +.... (2.4.23)
o1 7 To. o 1

together with the Feenberg transformation (2.4.21) to obtain a wave-
function of the correct symmetry and which gives a second order energy
expression with the correct long range limit. This energy expressionsare,

Ist Order Energy

E, = <X IQVIX >/<X 1QIX >
(o] (o} (o] (o]

= <X, I N (Hpii) Vi Xo>/< X, I'N (Hpii) I Xo>

=(<X|V|X>+<XIVP..lX>)/(<X|X>+<X|P..|X)
o o o ij o o o o ij "o

=V, * Ve )/ (HS) (2.4.24)

=V _~V_Si+V. (2.4.25)
00 00 00 00

(to first order in exchange)

20.
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The expression (2.4.25) is usually divided into coulomb and

exchange parts i.e.

E =V +V (2.4.26)
coul 00 nn

E = S +V ., (2.4.27)
exch 00 00 00

where we have added the nuclear-nuclear coulomb repulsion energy, Vnn

to Voo to form the total coulomb energy of the system.

2nd Order Energy

E.=c<X IVQR P
2 o o

]leo>/< XOIQIX°>

. 2
L' Vop T VoiVae + Vorddi

1

Vo Vot + Vg Vol + Vo S B/ (E - E) (1465,1) (2.4.28)

iy 2
Tk {Vof " Vor®od T VorVér T Vor'd B
+V V1) /(E -E) (2.4.29)
(to first order in exchange)
2 2
=E o " E exch (2.4.30)
where
2 =zt 2/(E -E)
pol "t ‘ot "Yo Tt
and B2 =Tf(V Ve +V S, E - VIS V(E -E)+V_V i/ -E)}
exch 1070t ot "ot™t 1 .ot700 ‘o ot of ot ‘o t

(2.4.31)

Thus to first order in exchange the symmetrization of the MS-MA
wavefunction leads to only a minor change in the energy expression.

The extra term ’{vofvo;/(Eo - Ef) should be very small for the interaction



of closed shell systems in the region of the vanderWaals minimum,
This is because the integrals involved in the second~-order exchange
energy fall off exponentially with distance and the distances
involved are large.

Little more can be learnt from the above expansion as to the
magnitude of the various terms and the usefulness of the perturbation
approach to the calculation of the intermolecular potential unless
numerical applications to some typical systems are made. Since
not even the exact ground state wavefunctions, Ao’ Bo are known
let alone the complete set of excited state functions Af, Br the
equations presented so far appear to be of no use at all.

In the next sectionsthe problem of using the above formal

basis in numerical applications will be discussed.

2.5  Wavefunctions for Closed shell Systems and the First Order Energy

T8,37,33,34
The model systems which have been treated so far e.g. two
31a,33b
interacting spins-in a magnetic field " or H, have little in common

2

with the interaction of closed shell systems, for which the perturbation
theories were developed. Thus the success or failure of the various
methods for these systems tells us little of which formalism or formalisms

are suitable for calculating intermolecular potentials.

22.
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For electronic systems the exact wavefunction may be expanded
in terms of antisymmetric products (or Slater determinants) of a
11,49
complete set of one electron functions or orbitals, Xk' .
i

Every selection of N one electron indices, k]\/ k2< k3(. . .<kN

is called a configuration, K and the function

1
= (N)?
Y k(r) (N1)® det (XI< ’ Xk s oeeeny Xk ) (2.5.1)
1 2 N
is the normalised Slater determinant belonging to this configuration.
11,48,49

The total wavefunction is then

¥ (r)= ZkaWk (2.5.2)
e.g. for a two electron system in a singlet state

¥ () =¥, ry) (e (108(2) - a(2)8(1))/ V2

= $C X () X(r) (a(DE@ -a@ 8NV v2  (2.5.3)
k)
Where , F, s Ty are the space co-ordinates of electrons 1 and

N
2 and a, B are the elementary spin functions.

A special case of this method is the use of a single determinant,

which is the Hartree~Fock (H.F) wavefunction if the best possible single

determinant is found.” 49

In practice the individual orbitals, in are expanded in some
- 11

truncated, complete set of basis functions e.g. Slater orbitals
52
(5.T.O.'s) or Gaussian orbitals (G.T.O.'s). This enables the

determination of the parameters in the wavefunction and properties

from the wavefunction to be made analytically.



24,

Although the exact, infinite serlies (2.5.2) has never been
obtained for any system, very good approximations have been obtained
for several atoms and some simple molecules and we feel that
conclusions based on them should be valid for the complete wave-
function.

It is found that if the first determinant in (2.5.2) is the Hartree-
Fock function or a close approximation ;o itythen the first coefficient,

48 49 ,50,51
C, is very large compared to the other CI< Alfernahve ly the wave-

: : A : :
function may be transformed into a form in which the first term is

very close to the H-F function and for fhls expansion C )) C e.g.

the natural orbital transformation. 1 5]This is illustrated in Table 2.
TABLE 2 |

Multiconfiguration Wavefunctions for Some Molecules
System Cl C2 C3 C4 Reference
Ne('s)  1.5275  -0.2647  -0.3516 - 162
Ne('S)* 0.98362 .- L - - 161
Be('S)+ 0.953188 -0.29863 -0.028595 -0.020816 50
He('S)”  0.99599  -0.06160  -0.00768  -0.00165 50
He('S)"  0.995996 -0.061646 -0.03569  -0.03086 163
He('S)+ 0.99598 -0.06191 -0.06163 -0.01265 51
He('S) 0.99596 -0.05671 -b. 05010 -0.0308% 49
Hy(E *)0.99029  -0.10242  -0.04478  -0.04478 164

This table gives the largest coefficients in expansion (2.5.2)

* Other C< 0.1
+ Natural orbital (N.O. )wavefunchons, Ist N.O. avery close
approximation to H.F.



We may write the wavefunction as

=C.A + & CA. (2.5.4)
o) 11 4] i

Where A] = the dominant configuration
or

A =CA
o

+d A (2.5.5)
1

1
and similarly for B,
thus
Xo = Ao (i) B, (i)
= (Cc‘]A] (i) + chc(i) ) (Cb] B, (i) + deCSi) )
+ dbc_q]A] (1)B_Gi) +d d, A_(i)B (i) ‘ (2.5.6)

For the first order energy a general matrix element may be

represented as,

W= <A (i) B (i) | X YA ()B() > (2.5.7)

where X =V or 1,Y= Pii orl,
Ao(i) = Cq] A](i) + daA'c(i)

and Bo(i) = Cb] B] (i) +db Bc(i)

25.
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Then

B. >

2 2 <
W—Ca] C ]<A]B] IXIYA] I

b

2 P ~
+C Cb] db(<A]B]|X|YA]Bc> +<A]BCIX|YA]B]>)

al

2 2 a
+Cp C7 d (<AB IXIYAB> +<AB IXIYASB>)

N A
+Cc] Cb] dqdb( <A]B] I X1 YAch> +<Ach I X1 YACB]>

+<AB IXIYAB >+<ABIXIYA.B.>)
c | 1 ¢ cc 171
2 A A
+C.dd (<AB I XIYAB> +<AB IXIYAB >)
al "a b 1 ¢ cc cc 1%¢

A PAN
+C . d%d (<AB IXIYAB >+<AB IXIYAB>)
ab c cc cc c 1

bl

2

< AB IXIYAB > (2.5.8)
CcC C cC C

+ d2d
a

For closed shell systems, as was mentioned before Cal , Cb])) da, db

and thus only terms of first order in da and db need be considered i.e.

B. >+ (C2 C2-1)<AB IXIYA.B
(Ca1 G1 - D<A >

W=<A 18 18

]B]IXIYA

2 ~ P
+dIO Ccﬂ Cb](<A]B] IXIYA]BC >+<A]BCIXIYA]B] >)

+d C2¢C (<AB. IKXIYAB >+<AB IXIYAB >
a Ca1 1t ABy B By I XTY AB )

(2.5.9)

For the homonuclear case (2.5.9) reduces to

. _ ~ 4 ~
W=<AB IX IYAB > (CT-1)<AB IRIYAB>

A\
BC> + <A Bc I X1 YA]B] >)(2.5.10)

1

3 ~
+2d_C 7 (< AB IRIYA



_ 4 . 3
=Wy +(C =Wy, +2d CTW (2.5.11)
where

W,. =<A.B. IXIYA.B, >

1 1% 1°1

W= (<AB IRIYAB >+<AB I XIYAB>)

4 I .
The term (Ca] - 1)W” may be termed a normalisation correction and
the term Wc a correlation correction.
If Bc is expanded in a set of orthogonal,one-electron functions Bc‘
i

(as mentioned before) then for helium,

d. B_(3,4)= ?i D, B;(8) B (4) /-% (a3 (4)-8 (3) a(4)) (2.5.12)

For the coulomb energy

W= Cop 2 D A 1) A A @IV I E) B @) 8 0) 8 (4)>
i

Xs(1,2,3,4)

3

: pX D"(2<Ac1 IRbl/%_]>< E_] chi>< E IB .>

:Co e ] 1 “cj
"

<
PR IR B > By VB e By TRIB < B 1B

+2<A A  IBB.>< B, IB. >
cl'¢l ¢l ci cl cj

+2 <A A
c'¢e

1Ay 1 BB >< By 1B )

= 0, due to orthogonality

(S (1,2,3,4) = an integral over spin functions)

27.



Thus the first non-zero correction to the terms V, ; and
S_ " are of second order in d and consequently very small.
oo 00

Hence the only correction to the first order energy of order d

is the correction to Voé' For example for He2 this term is,

z
I

5 (<A1 (1) A 2) B 3) B (4) 1 VI P A (1) A, (2)B,3) B_(4) >

+< A1) A4(2) B,B) BL(4) 1V 1P A (2)B(3) B (4)>) 5(1,2,3,4)

= I D (W] +w2) (2.5.13)
Hi
where S (1,2,3,4) is an integral over spin functions,
.—-(<A|B ><A|B >kBlRlB >+</§] B>)
HA 1B < Ay 1B < B IR 1B>+<A A ]Bci>)
PR 1B 2R By TR B 2y 1B iy TRy B )

W,=- (<A 1B> AB_I1BB>+<A B IBB.>

<l ci <l cj < “cf €l Tci

+<A 1B, >< A | B kB, IR B>+ <A I BB >)
cl ci

¢l el cl a cj clcl <l

+<A 1B >< A 1B >( B IR IB_>+<AA 1BB_>))

W = I D, (2 <A 1B><A 1B, >k B, R, 1B >+ <AAy 188 >)

i)

T2 1By >< 1B < By IR 1B >+ <A A 1BB.>)

28.



e gl AR TgB o A 188)
TRy IB>< By BB >+ <Ay 1B >< AR 18,8 >)
(2.5.14)

where Ro = —2/r]c and Rb = —2/r]b

If as is usual, we approximate the ground state wavefunctions
by single determinants we shall call the result the "Single Determinant
Separated Molecule" (5.D.S.M.)result. If the best single determinant
or Hartree~-Fock function is used the result will be called the "Hartree-

Fock Separated Molecule" (H.F.S.M.) result.

+
2.6  Application to the ' Lg state of He,,

To gain more insight into the above equations for the first order
+
energy the interaction of two ground state He atoms, the 'Ig state of

He2 will be considered. The S.D.S.M. results for He2 are

E_ =@Koalbb) - 2(alR laj]+ 4/R} (2.6.1)
£ =2 (alb)? (3 (albb) - 4 (@lR, la))

- 2(a 15) ( (aalab) - 2(alR,Ib) ) - (ablab)} (2.6.2)
Where a and b are orbitals on atoms A and B respectively, R the distance

between A and B and

29.



Rb =1,0/r

b’
(@b) = fa(1)b(1)d Ty

(@IR_Ib)= fa(1) r]b-] b(1) d |

and

(@bled) = [[a(1)b(1)r,™ c(2)d (2)dT , d T,

Since the exact Hartree-Fock function is not known analytically,.
approximations in terms of a set of basis functions must be used. The
53-57
best of these approximations are the S,T.O. expansions. Murrell and
25d,e

Shaw have previously used (2.6.1.) and (2.6.2.) together with an
approximate H.F, function expanded in terms of S.7.0O.'s, however,
the function they used contained only two optimized non-linear para-
meters (orbital exponents) and thus their results may not be very close
to the H.F.S.M. result.

To establish the H.F.S.M. result the equations (2.6.1) and

(2.6.2) were solved using S.T.O. basis set of 1,2,3 and 4 functions

(called n =1,2,3,4 results respectively). The results for the coulomb,

exchange and total first order energies may be seen in Tables 3,4, and

S.

The:n =1 results are exceedingly poor but the n=2 results (particularly
53

from the function determined by Clementi) are quite close to the results

the large basis sets. In fact the n = 2 results are in better agreement with

the large basis sets results than the Murrell - Shaw results., Our n =1

30.



energies do not agree with those of Murrell and Shaw for the same

function, however, we tested all the integrals involved against
44

the tabulations of Hirschfelder and Linnett and found agreement

to at least 8 significant figures (see appendix B).

The n=3,4 results are almost identical except at very large
distances where the first order energy is only a fraction of the total
interaction energy anyway, making the differences of no importance.
It is interesting to note how closely the coulomb energies for the
n=3 and n=5 basis sets agree (the exchange energy for the n=5 basis
set was not calculated as it would have been very time consuming).
It is encouraging that the two n=3 and the two n=4 results are in
good mutual agreement. This is because the second function in each
case was determined by imposing constraints on the wavefunction
which means that less non-linear parameters had to be optimised for
the second function than for the first. This point is particularly
relevant to the study of larger systems.

Also shown in Table 6,7 and 8 are the results for 1 s G.T.O,

58

approximations to the H.F, function. These results were obtained

because,

(a) only G.T.O., wavefunctions are generally available for large,

non-atomic systems,

31.



(b) orientation dependent interactions are more easily calculated
using G.T.O, than S.T.0O. wavefunctions because of the
greater ease of calculating the multicentre integrals over

62

G.T.O.'s than S.T.O.'s, and
(c) the G.T.O. wavefunctions give less accurate electron

densities at large distances from the nuclei than do S.T.O.

26

wavefunctions.

The last point casts some doubt on the use of G.T.O. wave-
functions at the large distances involved in this type of work.

The first two points mean that if the perturbation method is
to be of use for studying many-body and non-atomic interactions
then the accuracy of G.T.O. wavefunctions must be tested for systems
where the 5.T.0O. and G.T.O. results can be compared.

The G.T.O. results for n=8,9,10 are in good mutual agreement
and in good agreement with the 5.T.O. results except at very large
distances where the exchange energy is very small and this will not
lead to large errors in the total interaction energy. The coulomb
energies for the smaller basis sets are better than the exchange energies.
To obtain a good first order energy it seems that more than twice as
many G.T.O.'sas $.T.0O.'s are needed. This means that for the inter-
action of two atoms little advantage is gained in using the more easily

integrable gaussians. However, for non-atomic and many-body

interactions the advantage of easy integrability will be very great.

32.
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As the n=3 S.T. O, results are very close to the n=4 (and n=5
results for the coulomb energy) we then used this basis set to calculate
the H.F.S.M. coulomb, exchange and first order energies over a
greater range of distances in the region of the van der Waals
minimum. These results are shown in Table 9. These results show
that the electronic contribution to the coulomb energy is cancelled
out by the coulomb repulsion of the nuclei at large distance i.e.
when the atoms do not overlap appreciably. This is to be expected
as the two separated atoms are electrically neutral. Similarly the
exchange energy is only significant when the systems overlap apprec-
iably. These points are seen by comparing Ecoul and Exch at distances
where Soé is significant to the values where So:) is almost zero.

To obtain an estimate of the error involved by approximating
Ao and Bo by single determinant wavefunctions the first order correction
to the first order energy i.e. (2.5.11) was evaluated for two functions
of the form,

Ao= N (Ahf+dAc) (4.6.3)
where N is a normalising constant,

d is a "mixing coefFicienf‘;

A, .an H.F, function and

hf

AC a "correlation" function. The correlation function allows for the



instantaneous correlations of the motions of the electrons (as opposed
to the average interactions treated by Ahf) and it may be divided
info two terms,
A=A +A ‘ (4.6.4)
c 'r 'a
the radical correlation function, Ar being expanded in terms of functions
of r only and Aa’ the angular correlation function depends on the
angular as well as the radical electronic co-ordinates. For He radial
correlation amounts to about 40% of the total correlation energy and
11

the other 60% is angular correlation.

Thus two functions were used one which obtains about 0% of

59
the radial correlation and one which obtains about 85% of the angular
63

correlation. In both cases the effects are not large as can be seen

from table 11,

2.7 Second Order Energy

Since the complete set of excited state wavefunctions is unknown

(except for hydrogen) the variational method must be used to approximate
18d

this set i.e. one solves,

(H - E )X, +Q(V-E)X =0 2.7.1)

where X, is the first order wavefunction. Besides this the hydrogenic

set needs the inclusion of continium functions to make the set complete
18d,48 18d

and this leads to slow convergence. Thus Hirschfelder et al

34,



. + 3. +

in studying the 'Z2 g and ~ Lu states of H, by different exchange

perturbation methods used a basis set of elliptic co-ordinate functions

to obtain good convergence. However, when a large basis set is used

to solve (2.7.1) the set becomes practically linearly dependent and
18b,d

makes the variational method numerically unsatisfactory.

Thus it seems preferable to use a scheme which is based on the

variational principle but does not require the use of a large basis set

and the consequent problems of near linear dependence and numerical

18b

instability . To do this the individual terms in (2.4.29) must be

considered. At large distances the second order energy in the MS-MA

scheme becomes equal to the non-exchange expression (2.3.4 ).

This second order term, usually called the second order polarisation

energy may be divided into two terms e.g. for two molecules,

E2 = Edisp + Eind (2.7.2)
1]

Edisp = zf <A0 Bo VI Afo >/(Eo - Ef)
/

Eind - E:'r <Ao Bo vl AoBf>/(Eo - Ef)

+E <AB IVIAB> /(E -E)
Thus the dispersion energy, Edisp arises from doubly excited configurations
and the induction energy, Eind arises from single excitations. The above
terms are usually calculated by expanding V in a multipole series which

13

is valid if the two systems do not overlap. The result for the dispersion

35.
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energy Is,

_ 6 8 10
Edisp—_cé/r —C8/r -C]o/r (2.7.3)
where C,, C,, C, . are constants.

6’ 78" ~10

These terms. may also be classified as dipole-dipole (Cé),

dipole—quadrupole (C8)7quadrupo|e—quadrupo|e and dipole-octopole
(CIO) because of the form of the terms which arise in the multipole

expansion of V. The constants C,, C, and C, , are usually calculated
6’ "8 10 134

by relating them to oscillator strengths, refractive index data etc.

Quantum mechanical calculations have been made for simple
‘ 13a,c
atoms using elaborate wavefunctions and the variational method.

25b,63

However, Murrell et al have shown that a small basis set of S.T,O.'s
can give good values of C6’ C8 and the quadrupole-quadrupole

part of C, . for H2 (1% error) and Cé for He2 (best calculation 4% error).

10

In each case the minimum possible number of basis functions were used.

Similar results, using a different and somewhat larger basis set has been

45 25b, 63
obtained for C6 and C8 for H2 by Hirschfelder and Lowdin. Murrell et al
do not use the variational principle directly to calculate Edisp but show
that the finite sum,

2 2 \
Ey =L, V, f/(Eo—Ef) (2.7.4)

is an upper bound to the second order polarisation energy if
(1) the basis states Xf are orthogonal to Xo and

(2) the matrix of Ho for the set X1L is diagonal. Here X’r is not

36.



necessarily an eigenfunction of Ho but X° is the ground state eigenfunction

of H,- They also show that
V /(H -E) (2.7.5)
where f)?o is an approximation to the true Xo and

~ r~
Hoo = < Xo | Ho ! Xo >, gives a very good C6 coefficient for He2

e.g. a Hartree-Fock function givies an error of only 7%.
Thus if the second order exchange terms in(2.4.29)are not
large one may use the same technique to obtain Edisp and calculate

as a correction. To test this idea we took the approximate

exch 25k

Xf which leads to C6 for He, as determined by Murrell et al and

calculated the second two terms of {2.4.31).These terms proved to be

E2

entirely neglible (see fable 12} and the other two terms in (2.4.31)

will be of similar magnitude. Thus for the second order energy we

have calculated only the polarisation energy. Induction energies

proved to be entirely negligible for an n=2 S,T.0.5.C.F. approximation
to Xo and a one term {constructed from a 2p S.T.O. ) excited state
function even at the relatively short distance of 4.0 a.u. (see Table 12).
The only remaining term is the dispersion energy. This may be calculated
very simply by using (2.7.5) and S.T.O. S.C.F. approximations to Xo'
We have calculated the Cé, C8 and quadrupole-quadrupole part of C]0

using excited states constructed from S.T.0O.'s One 5.T.O. proved
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sufficient to obtain an accurate C6 coefficient, two for the C8
coefficient and one for the C] 0 coefficient. The overlap effects
on the dispersion energy were then calculated by using the excited
states which give the best long range coefficient and evaluating
(2.7.5 ) over a range of distances around the van der Waals
minimum. [t might be argued that although these simple excited
state functions give good second order energies at large distances
this may not be true when exchange becomes significant. To test
this a two term function was used to calculate C6 and the overlap

effect then calculated, the two resulis differ little, see table.13.

An interesting conclusion drawn from this work is that the

finite sun.
2 I~ 2
E3 = Zf Vo t/ (Eo - Ef) (2.7.6)

gives a value of Cé closer to the accepted value than does (2.7.5)
For C8 the two approximations are about equal with (2.7.5) slightly
better than (2.7.6). The two approximations are once again about
equally good for Cor Only the results for the n=5 S,T,0. S.C,F.
function are shown in the tables since the results using n=2,3,4,5 are

almost identical.,



14-16
It may be seen from tables Athat the error incurred by using

the multipole expansion for V is much larger for C8 than C6 and
large for C]O than C8. However, the error in the total second order
energy is about the same as each successive term in (2.7.6. )

gives a smaller contribution to the total second order energy.

From the above study, the overlap effects on the second order
energies appear to come from the failure of the multipole expansion
of V rather than from E?exch in (2.4.29) as can be seen from tables 12-16
These tables clearly show that in the vicinity of the van der Waals
minimium the multipole expansion is excellent, even in the region
of the zero of the potential energy it is reasonable. However, in
the highly repulsive part of the potential the multipole expansion
grossly overestimates the dispersion energy. This probably explains
why joining an exponential repulsion term to the multipole dispersion
term as is done in some semi-empirical work leads to to a spurious

maximum in the potential.

2.8  Third Order Energy

Since the multipole expansion of the V is a good approximation
in the region of the van der Waals minimum we shall base our conclusions

on the third order energy calculated from this expansion. For two atoms
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the third order energy is

E3=C/r"+.... (2.8.1)
where C is a constant,

and thus will be negligible at the distances we are considering.

As the third order exchange terms depend on products of similar

integrals to the second order exchange terms they should be very small

also.
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2.9 Overall Potential Function

In this section the overall potential energy function for the

and the individual contributionsto it, will be

L+
Zg state of He2,

discussed. These may be seen in table 17.

The total first order energy, which consists of the H.F.S.M.
result, the normalisation correction and the correlation corrections
(radial and angular) is repulsive at all distances. From table 11
it may be seen that the H.F.5.M. result is by far the biggest term.

The radial correlation effect is much bigger than the angular effect

but the normalisation term, for the radial function, is larger still.

We have probably overestimated these corrections to the H.F.S. M.

result since the radial and angular effects were calculated from separate
wavefunctions. However, the error in the total potential will be small
since they are small effects. In fact, moreerror is introduced by
approximating the Hartree-Fock function by a small basis set expansion
than by approximating the exact wavefunction by a Hartree-Fock function,
see tables 3-8 and 11.

The second order energy, at various levels of approximation may
be seen in table 17 . We have used formula (2.7.6) rather than (2.7.5)
(which has been used previous|y63) since we feel that this is a more
justifiable approximation to the true second order energy. This is

because (2.7.6.) involves approximating vof by ’\7°f rather than approximating



both Vof and (Eo - Ef) as is done in equation (2.7.5). The results
shown for the second order energy in table 17 in successive columns

are Eé, E6+E8’ E6+E8+E]0 where E6 is the dipole-dipole, E8 the

dipole-quadrupole, E]O the quadrupole-quadrupole and Eio the
dipole-octopole dispersion energies respectively. E]o' was not
calculated directly as this would involve solving some very complicated
integrals over s, pand f S.T.0O."'s and thus we obfoir;%d E]O' by
scaling our E1 0 using the most accurately determined values of

the long range quadrupole-quadrupole (Clo") and dipole-octopole

dispersion coefficients (C](; )

C 1
i.e. E,.'=E 10 C,.\" (2.9.1)
107510 —, 10
10
where
Co = 117.8,
C]O =60.15
C]O"' =59.05 (our value of the quadrupole-quadrupole long

range coefficient)
This approximation will lead to a small error in the final result

as E]O and E]O' contribute little to the total potential.

As may be seen in table 17 the successive terms E6’ E8, E]OI

and E, . contribute less to the total second order energy than the

10

preceeding terms in the region of the van der Waals minimum. As
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mentioned before the error of approximating the full result by a
multipole series is successively larger for each of the above terms.
We have not calculated normalisation and correlation
corrections to the second order energy since the excellent values
of the long range coefficients imply that the second order energy is

quite accurate . The long rangecoefficients are, n fact,

C, =1.491 (1.465), Cg=13.59 (14.1), C, 5'=59.05 (60.15)

and C]O' =109.19 (117.8), the values in parenteses being the
best estimates of these coeFficienfs.]3 The total potential has
we |l depth of 3.570 x 10-5 a.u. atr=5.60 a.u. and the zero of
the potential accurs at 4.96 a.u. These values may be compared
to the values from two recently variationally determined potentials
and several recent semi-empirically determined potentials, see table 18
The agreement between all the results is good considering the difficulties
of using the variational method (see section 2.3. ) for this type of
problem and the problems of obtaining a good semi-empirical potential
(see chapter 4.)

It may be noted that the total potential using only E] + E6
is poor but the potential using E, + E6 + E8 is very close to the full
potential suggesting that at least an E8 like term must be included in a

semi-empirical potential for He2.

Although there is agreement with the variationally determined



potentials the method used here has several advantages over the

variational method,
(a) the variational wavefunctions have many more linear and

non-linear parameters to be optimised, 70,71
(b) the final energy is given as a sum of individual, physically

interpretable contributions,

(c) extreme numerical accuracy does not have to be used since

we are not taking the difference of two large numbers, and
(d) it is applicable to larger systems e.g. Ne and Ar.

The second point is very important since if the energy can
be divided up into various effects then some minor contributions
e.g. correlation corrections and higher order dispersion effects
may be calculated to a lower accuracy but will cause little inaccuracy
in the overall potential.

Furthermore, the potential being of this form is ideal for
suggesting model potentials (Chapter 4) or for use in approximate
calculations.

The method is extendable to larger systems since H.F. separated
molecule wavefunctions give good results and G.T.O. wavefunctions
are also accurate, if a sufficiently large basis set is used.

Lastly the results for one system may be related to the results

of another system since the individual terms in the energy expansion may

be compared.



2.10  Conclusions

It is apparent that perturbation theory in terms of separated
molecule wavefunctions is an ideal tool for studying and calculating
the intermolecular potential.

Accurate results are obtained for the interaction of two ground
state He atoms. The final potential function is physically interpretable

and the method is extendable to larger systems e.g. Ne, Ar interactions.
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TABLE 3

Coulomb Energy for He2, using S.T.O, S.C,F, Functions

1

R n=1 n=2.| n=22 n=23 n=34 n=34 n=4] n:45 n=5]
4.0 10.9966 28.0369 27.6181 27.5194 28.2802 28,1660 28.1435 28.1600 28.2866
5.0 0.5526 2.1927 2.1363 2.1233 2.2831 2.2454 2.2697 2,2687 2.2772
5.5 0.1206 0.6001 0.5812 0.5769 0.6395 0.6234 0.6398 0.6362 0.6366
5.7 - 0.3562 0.3442 0.3414 0.3837 0.3725 0.3858 0.3822 0.3817
6.0 0.0260 0.1624 0.1563 0.1550 0.1780 0.1717 0.1810 0.1778 0.1769
7.0 0.0012 0.0116 0.0110 0.0109 0.0136 0.0128 0.0151 0.0139 0.0135

TABLE 4
Exchange Energy for He2, using S.T.O, S.C.F Functions

R n=l' n=2 n=2" n=2> n=3" n=3" n=d' n=d® M-s°
4.0 61.6300 171.2703 168.1564 167.3953 175.2902 173.5587 174.3066 174.4773 167.33
5.0 3.3497 14,5891 14,1517 14,0519 15.6414 15.2158 15.7046 15.5920 13.92
5.5 0.7557 4.1444 3.9947 3.9606 4.5915 4.4134 4.,7013 4,6011 3.903
5.7 - 2.4952 2.3988 2.3834 2.8049 2.6821 2.9099 2.8224 -

6.0 0.3226 1.1604 1.1114 1.1004 1.3378 1.2685 1.4239 1.3584 1.074
7.0 0.0079 0.0877 0.0831 0.0822 0.1110 0.1021 0.1411 0.1196 0.0777

reference 53 ,

reference 54 ,

reference 56 ,

reference 55b, >

reference 55a,

reference 25d,e

9Y



TABLE 5

Total First Order Energies for He2, using S.T.O. S.C.F. Functions

R n=1] n=2] n=22 n=23 n=34 n=34 n=4] n=45 M-S 6
4,0 50,6334 143.2334 140.5383 139.8759 147.0100 145,3927 146.1631 146.3173 139.77
5.0 2.7971 12,3964 12.0154 11.9286 13.3583 12,9704 13.4349 13.3233 11.80
5.5 0.6351 3.5443 3.4135 3.3837 3.9520 3.7900 4,0615 3.9649 3.329
5.7 - 2.1390 2.0546 2.0420 2.4212 2.3096 2.5241 2.4402 -
6.0 0.2966 0.9980 0.9551 0.9454 1.1598 1.0968 1.2429 1.1786 0.920
7.0 0.0067 0.0761 0.0721 0.0731 0.0975 0.893 0.1260 0.1057 0.0670

TABLE 6
Coulomb Energies for He2, using G.T.O. S.C.F. Functions
R 10 9 8 7 6 5
4.0 28.380 28.349 28.183 28.737 28.322 24.769
4.5 8.129 8.152 8.093 8.281 7.671 5.870
5.0 2,352 2.329 2.299 2.304 1.949 1.292
5.5 0.702 0.663 0.653 0.616 0.478 0.266
5.7 0.407 0.348 0.363 0.304 0.221 0.107
6.0 0.234 0.190 0.189 0.160 0.105 0.043
6.5 0.115 0.092 0.056 0.042 0.023 0.009
7.0 0.060 0.025 0.021 0.004 0.010 0.001

reference 58, the number above the columns gives the number of basis functions used.

Ly



TABLE 7
Exchange Energies for He2, using G.T.0O. S.C.F. Functions

R 10 9 8 7 6 5
4.0 175.350 175.582 174,335 178.648 165.988 121.721
4.5 52.602 52.984 52.548 53.029 43.711 24,811
5.0 15.588 15.677 15.419 14.684 10.182 4,123
5.5 4,581 4.484 4.315 3.715 2.058 0.508
5.7 2.473 2,355 2.229 1.797 0.870 0.144
6.0 1.329 1.218 1.130 0.845 0.349 0.027
6.5 0.376 0.309 0.272 0.170 0.045 -0.008
7.0 0.102 0.072 0.060 0.029 0.002 -0.003

TABLE 8

Total First Order Energies for He2, using G.T.O. S.C.F. Functions

R 10 9 8 7 6 5
4.0 146.970 147.233 146.152 149.911 137.666 96.952
4.5 44 473 44,832 44,455 44,748 36.040 18.941
5.0 13.236 13.348 13.120 12.380 8.233 2.831
5.5 3.879 3.821 3.662 3.099 1.580 0.242
5.7 2.066 2,007 1.866 1.493 0.649 0.037
6.0 1.095 1.028 0.941 0.685 0.244 -0.016
6.5 0.261 0.217 0.216 0.128 0.022 -0.017
7.0 0.042 0.047 0.039 0.025 -0.08 -0.004

"8y



TABLE ¢

H.F.S.M. Results for He,, 3 Term S.T.O. S.C.F. Function

2’

R Ecoul Eéxch E]
4.0 28.2802 175.2902 147.0100
4.5 8.0817 52.7124 44,6307
4.8 3.7898 25.4654 21,6756
4.9 2.9420 19.9623 17.0203
5.0 2.2831 15.6414 13.3583
5.1 1.7711 12.2505 10.4794
5.2 1.3735 '9.5908 8.2173
5.3 1.0649 7.5055 6.4406
5.4 0.8253 5.8716 5.0463
5.5 0.6395 4,5915 3.9520
5.6 0.4954 3.5891 3.0937
5.7 0.3837 2.8049 2.4212
5.8 0.2971 2.1913 1.8942
5.9 0.2300 1.7114 1.4814
6.0 0.1780 1.1378 0.9698
6.5 0.0493 0.3861 0.3368
7.0 0.0136 0.111N 0.0975
7.5 0.0037 0.0316 0.0279

Calculated from wavefunction table 1 reference 55b



TABLE 10

S.D.S.M. Results for He., 10 Term G.T.O. S.C.F. Function

2’
R Ecoul Eexch E]
4.0 28.380 175.350 146.970
4.5 8.129 52.602 44 473
4.85 3.391 22.472 19.081
4.95 2.660 17.611 14.951
5.0 2.352 15.588 13.236
5.1 1.806 12.210 10.404
5.2 1.452 9.562 8.110
5.3 1.133 7.485 6.352
5.4 0.893 5.857 4.964
5.5 0.702 4,581 3.879
5.6 0.554 3.581 3.027
5.7 0.450 2.798 2.348
5.8 0.369 2.185 1.816
6.0 0.234 1.329 1.095
6.5 0.115 0.376 0.261
7.0 0.060 0.102 0.042
7.5 0.042 0.026 -0.016

G.T.O. wavefunction parameters from table 8  greference 58



TABLE 11 Correlation Corrections to First Order Energy

R -E ! -E 2 E 3
corr corr 1

4,0 3.7503 0.4164 147.0100
4.5 1.1450 0.1006 44,6307
4.8 0.5540 0.0429 21.6756
4.9 0.4340 0.0323 17.0203
5.0 0.3397 0.0243 13.3583
5.1 0.2656 0.0183 10.4794
5.2 0.2075 0.0137 8.2173
5.3 0.1620 0.0103 6.4406
5.4 0.1264 0.0078 5.0463
5.5 0.0985 0.0058 3.9520
5.6 0.0767 0.0044 3.0937
5.7 0.0597 0.0033 2.4212
5.8 0.0465 0.0025 1.8942
5.9 0.0361 0.0019 1.4814
6.0 0.0281 0.0014 0.9698
6.5 0.0079 0.0003 0.3368
7.0 0.0022 0. 0001 0.0975
8.0 0.0002 0.0000 0.0279
9.0 0.0000(1)

calculated from a radially correlated function, reference 59
normalisation correction to the energy = 3.1%.

calculated from an angularly correlated function, reference 63
normalisation correction to the energy = 0.8%.

3 calculated from a three term S.T.0O. S.C.F. function, reference 55b
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TABLE 12 Second Order Energy for He

2
R Edisp Ea Eb Eind
4.0 29.7702 0.0533 0.0048 0.0219
4.5 16.2600 0.0098 0.0005 -
5.0 9.1003 0.0017 0.00005 0.0028
5.5 5.2672 0.0003 0.000005 0.0003
5.7 4.2757 0.0002 0.000002 0.0001
6.0 3.1614 . 0.0001 0.000001 0.00003
7.0 1.2630 0.000003 0. 00000005 0.0000001

Calculated from a two term S.T.O. S.C.F. ground state wavefunction
and a single excited state function
E = dispersion energy

disp
=y 2 i
Ec Vof soc‘/ (Eo Et)

B = Vot 34 E,/(E,-E,)

Eind = induction energy
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TABLE 13 Second Order Dipole-Dipole Energies for He2,

comparison of one and two term excited state functions

1 7 3 )
R ~Eg ~E, -E, -E,
4.0 29.7097 31.7554 30.8309 32.9569
4.5 16.2460 16.7935 16.8590 17.4290
5.0 9.0985 9.2481 9.4418 9.5980
5.5 5.2680 5.3110 5.4668 5.5119
5.7 4,2768 4.3034 4.,4381 4,4662
6.0 3.1625 3.1760 3.2819 3.2962
6.5 1.9667 1.9716 2.0409 2.0462
7.0 1.2636 1.2658 1.3113 1.3137
8.0 0.5679 0.5685 0.5893 0.5901
9.0 0.2802 0.2805 0.2907 0.2911

Dipole-dipole second order energies using a 5 term S.T.O, S.C.F.
approximation to the ground state wavefunction

] formula ( 2.7.6), one excited state function

formula ( 2 7.5 ), two excited state function

3
4

formula (2.7.6 ), one excited state function

formula (2.7.5 ), two excited state function



TABLE 14 Second Order Dipole-Dipole Energies for He

2
1 2 3 4

R —C6 —C6 -E6 -E6

4.0 1.3007 1.3500 31.7554° 32.9569
4.5 1.3945 1.4473 16.7935 17.4290
4.8 1.42873 1.4828 11.6816 12.1236
4.9 1.4374 1.4918 10.3851 10.7780
5.0 1.4450 1.4997 9.2481 9.5980
5.1 1.4516 1.5065 8.2494 8.5616
5.2 1.4573 1.5124 7.3710 7.6499
5.3 1.4622 1.5175 6.5972 6.8468
5.4 1.4665 1.5219 5.9144 6.1382
5.5 1.4701 1.5257 5.3110 5.5119
5.6 1.4732 1.5290 4.7769 4.9576
5.7 1.4759 1.5318 4,3034 4.,4662
5.8 1.4782 1.5341 3.8830 4,0299
5.9 1.4802 1.5362 3.5091 3.6419
6.0 1.4818 1.5379 3.1760 3.2962
6.5 1.4870 1.5432 1.9716 2.0462
7.0 1.4892 1.5455 1.2658 1.3137
8.0 1.4904 1.5468 0.5685 0.5901
9.0 1.4906 1.5470 0.2805 0.2911
10.0 1.4906 1.5470 0.1491 0.1547

Second order dipole dipole energies, 5 term S.T.0O. S.C.F. around
state, 2 term excited state

Also reported are

C6 = Eér6 to show the deviation from the simple multipole result(2.7.3 ),
1, 3 formula ( 2.7.6. )

2, 4 formula ( 2.7.5. )



TABLE 15 Second Order Dipole-Quadrupole Energies for He2

1 2 3 4

R —C8 -C8 -E8 —E8

4.0 7.3551 7.6081 11.2230 11.6090
4.5 9.5706 2.8997 5.6916 5.8874
4.8 10.6332 10.9990 3.7734 3.9032
4.9 10.9384 11.3146 3.2914 3.4046
5.0 11.2193 11,6052 2.8722 2.9709
5.1 11.4768 11.8716 2.5076 2.5939
5.2 11.7118 12,1146 2.1908 2.2661
5.3 11.9252 12,3353 1.9154 1.9813
5.4 12.1183 12.5351 1.6761 1.7337
5.5 12.2923 12,7151 1.4680 1.5185
5.6 12,4486 12.8767 1.2871 1.3314
5.7 12.5884 13.0214 1.1297 1.1686
5.8 12,7132 13.1505 0.9927 1.0269
5.9 12.8242 13.2652 0.8734 0.9034
6.0 12,9225 13.3670 0.76%4 0.7958
6.5 13.2646 13.7208 0.41628 0.4306
7.0 13.4391 13.9014 0.2331 0.2411
8.0 13.5634 14.0299 0.0808 0.0836
9.0 13.5889 14.0563 0.0316 0.0327
10.0 13.5936 14,0611 0.0136 0.0141

Second Order Dipole-Quadrupole Energies, using 5 term S, T.O. S.C.F.
ground state function, and a 2 term excited state function,

1, 3 formula ( 2.7.6. )

2,4 formula ( 2.7.5.)



TABLE 16 Second Order Quadrupole-Quadrupole Energies for He2

] 2 3 4
R 'Clo S0 “Eio “E1o
4.0 15.6658 16.1637 1.4940 1.5415
4.5 25.4384 26.2468 0.7471 0.7708
4.8 31.4442 32.4435 0.4843 0.4997
4.9 33.3804 34.4412 0.4183 0.4316
5.0 35.2632 36.3839 0.3611 0.3726
5.1 37.0825 38.2610 0.3115 0.3214
5.2 38.8300 40,0639 0.2686 0.2772
5.3 40,4985 41.7856 0.2316 0.2389
5.4 42,0832 43,4206 0.1996 0.2059
5.5 43.5803 44,9652 0.1721 0.1775
5.6 44,9874 46,4171 0.1483 0.1530
5.7 46,3037 47,7752 0.1279 0.1320
5.8 47.5300 49.0400 0.1103 0.1138
5.9 48.6660 50.2125 0.0952 0.0982
6.0 49.7152 51.2951 0.0822 0.0848
6.5 53.7707 55.4795 0.0399 0.0412
7.0 56.2274 58.0143 0.0199 0.0205
8.0 58.3560 60.2105 0.0054 0.0056
9.0 58.9181 60.7904 0.0017 0.0017
10.0 59.0458 60.9222 0.0006 0.0006

Second Order quadrupole-quadmpole energies, 5 term S.T.O, S.C.F,
ground state function and a 1 term excited state function

1,3 formula (2.7.6)
2,4 formula (2.7.5)



TABLE 17 Total First Order, Second Order and Overall Potential for He

2
R E -E U]
! 1 2 2 3 4 5 6

4.0 138.3370 31.7554 42.9784 47.2505 106.5816 95.3586 91.0865
4.5 42.0170 16.7935 22,4851 24,6214 25.2235 19.5319 17.3956
4.8 20.4143 11.6816 15.4550 16.3398 8.7327 4.9593 3.5745
4.9 16.0323 10.3851 13.6765 14.8726 5.6472 2.3558 1.1597
5.0 12.5848 9.2481 12.1203 13.1529 3.3367 0.4645 -0.5681
5.1 9.8745 8.2494 10.7570 11.6477 1.6251 -0.8825 -1.7732
5.2 7.7442 7.3710 9.5618 10.3299 0.3732 -1.8176 -2,5857
5.3 6.0709 6.5972 8.5126 9.1749 -0.5263 -2.4417 -3.1040
5.4 4.7634 5.9144 7.5905 8.1613 -1.1510 -2.8271 -3.3979
5.5 3.7266 5.3110 6.7790 7.2711 -1.5844 -3.0524 -3.5451
5.6 2,9178 4.7769 6.0640 6.4880 -1.8591 -3.1462 -3.5702
5.7 2,2840 4.3034 5.4331 5.7988 -2.0194 -3. 1491 -3.5148
5.8 1.7871 3.8830 4.8751 5.1911 -2.0959 -3.0886 -3.4040
5.9 1.3979 3.5091 4.3825 4,6548 -2.1112 -2.9846 -3.2569
6.0 0.9106 3.1760 3.9374 4.1111 -2.2654 -3.0268 -3.2005
6.5 0.3183 1.9716 2.3879 2.5020 -1.6533 -2.0696 -2,1837
7.0 0.0922 1.2658 1.4989 1.5558 -1.1736 -1.4867 -1.5436
8.0 - 0.5685 0.6493 0.6647 -0.5685 -0.6493 -0.6647
9.0 - 0.2805 0.3121 0.3169 -0.2805 -0.3121 -0.3169
10.0 - 0.1491 0.1627 0.1644 -0.1491 -0.1627 -0.1644
E] = total first order energy, E2 = second order energy,

1 2 3 .

Fer Ee'Fgr E*Egig*tig

U = total potential,

4 5 6 ,
B ¥Egs "B tEgtEG, TE\FEYEGHE, oV

*LS



TABLE 18 Potential Parameters for He

Method

(a ol:) (cri ?J) f]éo_sa.u.) é(zllz) et

Variational M. C.S.C.F. wavefunction 5.037 5.659 3.321 10,48 71
Ditto, larger basis set - 5.60 3.604 11.38 71
Variational, electron-pair

wavefunction - 5.58 3.81 12.0 70
Perturbation theory 4.96 5.650 3.570 11.25 this work
Ditto 4.999 5.615 3.381 10.65 25d,e
"Beck Potential 4.985 5.612 3.284 10.36 126
*MDD-1 Potential 5.00 5.66 3.84 12.24 84
*MDD-2 Potential 5.04 5.69 3.41 10.75 84
" Lennard-Jones 12-6 Potential 4.84 5.43 3.24 10.22 84

+ . _ .
semi-empirical potentials

‘89
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3. BULK PROPERTIES AND THE INTERMOLECULAR POTENTIAL

3.1 Introduction

In the last chapter we considered the problem of computing the
intermolecular potential. The purpose of this chapter is to show how
these intermolecular potentials may be used to calculate the equilibrium
and transport properfies of a gas.

These bulk properties will be discussed and calculated by the
method of statistical mechanics, the virial equaﬁon6 being used for
equilibrium properties and the Chapman-Enskog-Boltzmann method
for the transport properties.

The other purpose of this chapter is to provide the formulae

and theoretical background for chapter 4.

3.2 Equilibrium Properties

Only the equation of state need be considered since this equation
together with one of the heat capacities as a function of temperature
determines all the equilibrium properties of a simple gcs.] Heat
capacities may be readily obtained from the equation of state and
the properties of an ideal gas.] 77

The equation of state (appropriate for a moderately dense gas)

in terms of the intermolecular potential is conveniently obtained from

. . 6 . .
the grand partition function,~ although other partition functions may

be used. 1,77,78
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)
For a pure substance
= = 3 Z_exp (nu/kT) (3.2.1)
n=o
pV =kTin =

and
_ n
Zn (Z]/V) Qn/n!
To obtain an equation of state the assumed expansion

o -
p =kT Zb‘.zl (3.2.2)
i=1

is made which from (3.2.1) leads to
pV/RT =1 +Bp+Cp2+Dp3+ e (3.2.3)
where p = 1/V is the density.
The temperature dependent coefficients, B,C,D, ... are called the
second, third, fourth, ... virial coefficients and the equation (3.2.3)
is called the virial equation of state.

The expressions for B,C,D, etc. in terms of the intermolecular
potential via Qn(or Zn) are given in references 1,6 and 77, which for

B and C are,

B =- (N_/2) (@,-Q0),
c =-(N02/3V2)(V(Q3—3Q2Q]+2Q]3)-3(Q2—Q]2)2) (3.2.4)

The results in classical mechanics are

B =(N°/2vs22) I %

i ade'(:i dt B (3.2.5)



where Fab = exp (_Udb/kT) -1,
Uab the two body,orientation dependent intermolecular potential
between molecules aand b,
Q is a normalising factor and 1t a volume element.

To obtain an expression for C the three body potential U‘:=bc
is firstly written as

U, = Uab + ch + UCQ +/—\Uc|bc (3.2.6)

abc

whereAUabc is the non-pairwise additive contribution.

Then
C =-(N2/3V§23) [[ff f . f dt_dT_dT;: (3.2.7)
add o ("t‘) ab bec ca a b é T
and
c = (N23ved) []] (expl-AU., /kT)-1)
nonadd o m_)- A\ abc

exp(~(U + U, * ch)/kT)dr 4T AT (3.2.8)

For the case of a spherically symmetric potential function i.e.
one which depends on the distance between the molecules, Ri' but
not on their relative orientations,
B =2 1N_ [ (expl- U_/kT) - 1) R R (3.2.9)
c:c:dd - -(N02/3V) I('U) fydé) i)’c fctJd Ral:;j Rbc(:i Rco
(3.2.10)

_ 2
=-(8 ("No) /3) ){[[ F<:|bi:bcfcc1R<:bRbcRct:l d Rab d Rac d Rbc
()

61.



62,

C o ogg = -(N2/3V) (f vf)f (exp (- AU, /KT)-1)

dR

exp (- (Uch + U g

+ Ucc )/kT) d RCI Cd Rca

bc b
=8({rTNY/3 ) J(ffj) exp(-aU_ /kT)-1)
AN

exp (- (Uqb + ch + Uca)/kT) Rdb Rbc R d Rclb d Rbc d ch

ca
(3.2.11)
The full quantum mechanical result for B, assuming spherically
symmetry is79
B =B

" “direct + Bexch

= AN [Ro, @ exp (-1 K /2m )k

direct
-E /kT)-
+3 (2g+1) : (exp(-E_ /T) n} (3.2.12q)
~ 3 2,2 A 2 ~
B on —F 2N s (72 [ hGR) exp (- 38 21 )k
L
+5 (-1) (22+41) = (exp(-EnQ/kT)-] )}:‘,‘No )\2/25/2(25+1)
) n
(3.2.12b)
where G + (k) =% (22+1) X (k)
2 £
A~ L ~
and G=(k)= 5(-1) 22+41)X (k)
) L
The term Bexch has been shown to be virtually zero at about 8°K for

3 79,84

4 . . .
He and He for several potential functions, and thus at higher temp-
eratures one may develop a semi-classical expression for B from Bdirecf

alone.



Although much work has been done, using a variety of techniques
e.g. Wiener integrals, Landau's transport theory, many body scattering
theory (e.g. the Faddeev equations) and the Lee and Yang binary
expansion a fully satisfactory numerical method for the evaluation
80,81
of C is not available.
82
The Wiener integral approach of Fosdick and Jordan appears
very promising, as only increased computer time is needed to improve
the results, however, it is a very time consuming method. Even for the
second virial coefficient the use of equation (3.2.12) in actual
computations can be very laborious since except for the simplest
potentials, one has to obtain the phase shifts, XC by numerical
‘ 1.6.79
integration of the radial, two-body Sch ¥ odinger equation.
This together with the fact that except for very light molecules at very
low temperatures (e.g. H_e4 around 10°K) many phase shifts contribute
significantly to Bé, makes the use of (3.2.12) very time consuming.
Fortunately, the W.K.B., semi-classical or Wigner-Kirkwood
6,83
approximation has been shown to be in excellent agreement with the
3
full quantum mechanical result for He ™ and H§4,Using several potential
o 79,84 )
functions,above about 557K . The W.K.B. results have also been
shown in excellent agreement with the Wiener integral results for C
82
for a Lennard-Jones 12-6 potential right down to 20°K. These
semi-classical results may be obtained by expanding Zn or Qn as a power

1,6,83

series in h or h
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1,6
"The results for a spherically symmetric potential are,

B =Bo+wB] +w2B2+w3B3+.... (3.2.13)

where

Bo =_.2 TrNo fow (exp(-kT) -1) r2 dr,

B] =(r N_ B 3/6) f:oexp(—U/kT) (U‘)2 r2 dr,

i = =(7N,_ 8%/6) [exp(-U/kT) U’ /10
s W50+ 9 -8 W) 72 o,
8° = (v N_8°/6) f:oexp(-U/kT){'(U"')2/140

+ 3(U")2/70 2+ (U")3 8/126 +8 (U') (u")2/30 r

3 2

+2p /315 Ao 2wy W /120 - 8%(U*/1080 ¢
-8 3(U')/360 1 +8 4(U')6/432(J}r2 dr,
m = Ml M2/(M1 + M2),
u' =dW/dr, U =d’ U/dr2, U =d° U/dr3,
8 =T, and
w =@ /2m)
The usual ideal gas contribution, Bideal which comes from
the type of statistics the molecules obey, has been omitted as it has
been shown that the above semi-classical expansion is valid for Bdir

79
in equation (3.2.12) but not for B . However, as B isa
exch exch

ect

rapidly vanishing function of temperature this expression, equation

(3.2.13) should not contain the term B,
6,83 '

For C we have

deal*
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C =Co+wC] +w2C2+.... (3.2.14)
where Co is given by (3.2.10), (3.2.11)

wo= hz/m,

m = mass of the molecule,

C =880B]+(2(1rN°)283/9)fff (A, *A TA)
(/A) C ca

dR, dR (3.2.11)

Rab Rbc Rca ab be d Rco’

and
€L
Aab - ((B Uabc/ aRabyF SUclbc/aRbc : al,chbc/aRccl)
exp (- U, = VKD =(U ") 2 exp (U /kT)

with similar expressions for A. and A
bc ac

3.2.1. Experimental and Computational Aspects of the Virial Coefficients

Much work has been done on the establishment of the convergence

of the virial equation, both fheoreticcllyéond numerically by comparing
85

numerically generated equations of state with the virial series.
This latter work has been performed with hard and soft spheres and
85
the gaussian potential showing good agreement between the numerical
and virial results in each case. However, no general convergence criteria
have been found nor have more realistic potential been treated numerically.
6

Experimental work indicates that the range of usefulness of the virial

equation as a means of representing compressibility data is up to the
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saturated vapour for temperatures below the critical temperature
(not for liquid densities, however) and above the critical temperature
it starts to fail at about the critical density (200-300 times the density
of an ideal gas at N.T.P.). If only a few terms are used in the series
the maximum density is about one half the critical density with only
useful quantitative representation to the critical density, however.

The experimental accuracy of the best B values is 1% or

6,76 6
better but C is known to much lower accuracy, at best 5-10% . In
general the higher virial coefficients are of too. low an accuracy
6

to be of much value theoretically.

Computationally the classical, central potential formula for
B, (3.2.9), gives good agreement with experimental values for most
substances at normal temperatures if the form of the potential and its

1,6

parameters are carefully chosen.

For gases consisting of light moleculese.g. He , H, , CH,,

2 4
1,6,79
Ne quantum corrections are needed, particularly at low temperatures.
The full quantum mechanical treatment appears to be necessary only
o 6,79

for H? and H2 isotopes at very low temperatures (below 50°k), however.
Non-spherical effects, shown by the difference between equations
(3.2.5) - (3.2.8) and (3.2.9)-(3.2.11), contribute markedly for
polar molecules but less so for molecules with only higher multipole

89,90,91,140

moments . Induction effects as well as these electrostatic, non-spherical effects
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89,91

are also important if high accuracy is required.

It appears that C is more sensitive to the accuracy of the two
body potential than B and also no realistic additive potential alone
can account for the experimental values indicating thet non-additivity

6,86
is important.
However, the non-central and quantum corrections have less
6,82
effect on C than B for those systems so far studied.

The integrals for B and C have been solved analytically for
only very simple potential forms and thus, in general numerical
methods must be used to evaluate them.

The non-spherical integrals are very time consuming to

87
evaluate since they are of large dimensions e.g. for an axially
symmetric polar molecule B is a 4 dimensional integral and Ca 9
dimmensional integral.

Hence these integrations are usually carried out by expanding

88-95
the exponential e.g.

B =8 - (N_/207) RTIC RN IVY

exp (—Uo/kT) d Rcb d w, d W, (3.2.16)
where
Uab

and Bo is the expression (3.2.9) for a central potential,

=U +v
o



68.

Expressions of this type have been worked out for many types
88,89,91
of orientation dependent potentials for B and to a lesser extent for
96,97,140
C.

The final results may be expressed in the form,

B* = Bo* + I dn Hn (r*,T*) (3.2.17)
n=1

and

c* = Co* + T Dn Irl (©*,T*) (3.2.18)
n=1

where

Hn(r*,T*) = ro*(n'3) l.r*(z'n) exp (_Uo/k'[) dr* (3.2.1 9)

and

h
In ) (!4{{ P (_Udb/knﬂblc F(ca Rab Rbc Rca d Rab d Rbc d RCG
(3.2.20)

A program was written to integrate (3.2.9) for B central, (3.2.13)
for the quantum corrections and (3.2.19) for the H functions. The program,
which is based on adaptive Simpson's rule procedure will work for
any potential form. It was checked against known values and found to
be accurate (see appendix A).

The three dimensional integrals required for the third virial
coefficient, (3.2.10), (3.2.11), (3.2.15) and (3.2.20) were numerically
integrated by two methods.

The firs]f4%rogrdm, adapted from one written by Spurling, Storvick

and De Rocco, is basically repeated applications of Simpson's rule

to the three dimensional integral.



Secondly, a program was written based on the multidimensional integral
formulae given by Hammer & Stroud9Ss used by Johnson and Spurling
for polar molecule third virial coefficienfs.87 This is very efficient
and gives results of comparable accuracy to the first program but in
about half the time.

These programs were tested against known values where possible

and the results are collected in appendix A.

3.3  Transport Phenomena

In the previous section the properties of a gas in equilibrium
were considered. If the system is not in equilibrium one or all of the
state variables are functions of time, gradients in physical properties
are present and transport phenomena occur as the system tends to

1,99
equilibrium. A spacial dependence of the state variables is
associated with flux of some kind.

In this section we will consider non-equilibrium systems which
can be described by the state variables and their linear derivatives,
in particular by their gradients, i.e. when the system is "close to"
equilibrium.

Thus

J=1LX (3.3.1)

where X is a gradient, J is its conjugate flux and L a proportionality

69.



constant. The rate at which the system approaches equilibrium is
determined by L which is called the transport coefficient.

More generally,
n

J.= I L, X
| k-—-] |k k

for a system of n independent gradients with Xk a generalised

(i=1,2,....,n) (3.3.2)

gradient, Ji a generalised flux and Lik a transport coefficient.
The relationship between Ji and Xk is called thermodynamic coupling.
Uncoupled transport processes are ones for which Lik= oforitke.g.
transport phenomena which arise from gradients in temperature, density
or local macroscopic velocity i.e. heat conduction, diffusion and
viscosity respectively.

Coupled transport processes arise if Likft o, the best known
phenomena is this class being thermal diffusion.

The usual quantity reported for thermal diffusion is the thermal
diffusion Fccth,af

i.e.
oy = G (my-my)/(my +my)
(3.3.3)
o =kf/x] Xiy
where m, and m,, are the masses of the molecules and kf the thermal

diffusion ratio, o the reduced thermal diffusion ratio, and x| and Xq

mole fractions.

70,
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The problem of calculating these transport coefficients has been
100

likened to an onion in that it has three layers. The first is a kinetic
theory layer which relates the transport coefficients to various
molecular collision cross-sections or collision integrals, then the
cross-section layer which is concerned with the determination of the
cross=sections from the intermolecular potential and the core problem
of determining the intermolecular potential.

The overall problem is concerned with the time evolution of
the distribution function, f(n) which gives the state of the system at
a particular time. For gases F(]) and F(Z) are all that are needed since

1,99
the system is dilute. The equations which governs the time
evolution of F(]) and F(Z) are the Boltzmann integro-differential

1,5 1,99

equation and its generalisations.

99

For a dilute monatomic gas the Boltzmann equation is sufficient

but for a dilute, polyatomic gas the Wang-Chang-Uhlenbeck-de Boer
1,101
generalised Boltzmann equation, is needed. Although a Boltzmann

equation has been derived which takes into account three body
99

collisions no use will be made of it here as it is very hard to solve.
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3.3.1 A Dilute, Monatomic Gas

The Boltzmann integro-differential equation is ’

L= —vi . Vr. fi - (Fi/mi) AN fi

+f[(fi'fl,' -RE) Tdv. (3.3.4)

where in classical mechanics

T=gbdbde (3.3.5)

and in quantum mechanics (see appendix C)

T =°<(g,X)bS sin Xd X de
and

o<(g,X) = (@/4KP) 1E | (21 +1) (exp (21 X)) - 1) P (cosX) I (3.3.6)
bs .
wherex (g, X) bs is the quantum mechanical probability of deflection,

=myy g/h. The primed quantities indicate quantities after collision, unprimed

before  collision. The equation (3.3.4) is of the form

i= afi streaming + afi collision (3.3.7)
of ot X3

where by streaming is meant the natural motion of the molecules in

absence of collisions.
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Equation (3.3.4) shows that the equations in quantum and
classical mechanics differ only in definition of the collision cross-

section, thus the same will be true of the final expressions for the

transport coefficients. The assumptions made in deriving the
1,103

Boltzmann equation irrespective of the mechanics used are,

(a) only binary collisions are important,

(b) the collisions are elastic,

(c) the potential is central,

(d) the molecules interact according to a single potential

energy curve,
(e) the mean distance between the molecules is very much greater

than the range of the intermolecular potential, and
() the assumption of "molecular chaos" i.e. the pre—ollisional

99

positions andimomenta of colliding molecules are uncorrelated.
Thus the equation strictly only applies to the interations of the inert
gases in their ground state as even other atomic interactions although
central and elastic may take place according to several possible

18d
energy curves. This latter point is easily overcome and the result
is that the Boltzmann equation is solved for each potential energy curve
180

and the resulting collision integrals averaged.

The other points will be discussed in Section 3.3.2.
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As only the macroscopic equations of transport concern us
1,99
here only the normal solutions of the Boltzmann equation need be

5
considered. These solutions, obtained by the Chapman-Enskog

method(which is a perturbation approach), lead to expressions for
1,5

the transport coefficients in terms of a set of collision integrals.

In the first approximation the results for pure substances are,

(v ) = 266.93.107 /W\T/(ozsz*?_z) (3.3.8)
-7 2 %
(A )] =1989.1.10" V' T/M(o 922) (3.3.9)
(D”)] =2.628.]0-3 /T3/M /(p 029*”) (3.3.10)
and
(k;)] = 15(2A* +5) (6C* - 5) (M] —M2)
f X1 Xy (3.3.11)
2A* (16A* - 12B* + 55) (M.I +M2)
where
Q) = Q( . 's')(T) =Y kT/21 m: fjaexp (—22) 22S +3 S(l)dz

127% (3.3.12)
and all other quantities are defined in appendix C.

The only difference between classical and quantum mechanics
is in the definition of the collision cross-section i.e.

in classical mechanics,

s Con 17 (1mcos %) bdb (3.3.13)



where the angle of deflection of )(is given by

X(g,b) =7 -2b fc:o r_2 dr F(b,r) (3.3.14)

m
where

Flb,r) = »/I—bz/r2 - 2U(r)/mg
and z2 = m92/2kT

and in quantum mechanics,

S(l) =(21r /g)fcjo(l-cosl X)a (g, X) sin)}dX (3.3.15)
where
a (g, %) bs is given by (3.3.6)

There are two schemes for higher approximations, one due
5 1
to Chapman and Cowling and one due to Kihara but in both schemes,

(X)  =f, (X) (3.3.17)

where X is a transport coefficient other than k’r and f is a correction
X

factor. The Kihara second approximations are somewhat simpler and

103
appear to be quite adequate in most common situations. These are,
2
= * *  _
f " [ +(3/49) (4 923/922 7/2)",
2
f A = +(2/21) (4 933/9’2‘2—7/2) , (3.3.18)
2
fd =1+ (6C* -5 ) /(16A* + 40)

and kt* =59 (6C* - 5)/56A*. Detailed discussions as to the convergence

of the two schemes may be found in references 103,188.
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3.3.2.
Calculation of the Transport Coefficients

The full quantum solution is very laborious, as it is for the
equilibrium properties because of the necessity of calculating many
hundreds of phase shifts. Unfortunately, unlike the case of
equilibrium properties no successful semi-classical formaliilrrégor

1,
calculating transport coefficients has been developeda.

However, for He3 and He4 above 100°K for several potentials
the fully classical treatment is in excellent agreement with the quantum

84,127,128
mechanical result.

Thus we will only use the classical mechanical solution. The
computation of the transport coefficients in this case can be summarised
by equations (3.3.12), (3.3.13) and (3.3.14). The problem of solving

105-107
these equations numerically has been treated by several authors. The

only difficulties which arise are singularities in the integrands of

(3.3.13) and (3.3.14). The program we have used was written by
105

Munn and Smith and overcomes these singularities by using Gauss-Mehler

quadrature. The program has been fully tested and was further tested

for the 12-6 spherical-shell potential against the program written by
106

Barker et al and four figure agreement was found. The program is faster

than the Barker program and probably more accurate. Also it is a simple

matter to modify to accommodate a different potential function.
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3.3.3. A Dilute Polyatomic Gas

The assumptions (b) and (c) of the last section which are used
in deriving the Boltzmann equation are not justified for a gas consisting
of polyatomic molecules. This is because the potential energy of
interaction of two polyatomic molecules depends on their orientations

3,4

as well as their separation and because of the existence of internal
degrees of freedom in the molecule. The last point means that energy
may be transferred upon collision by vibration and rotation of the
molecules as well as by changes in translational energy. It is
important to see how the treatment of the previous section must be
modified, since we wish to use transport properties to obtain an
estimation of the intermolecular potential. Thus we must find out
which transport properties may be readily related to the potential
and which properties are significantly affected by inelastic effects.
A generalised Boltzmann equation which takes these extra effects into
account has been derived by Wang-Chang and Uhlenbeck and indep-

101
endently by de Boer by freating the translational degrees of freedom
classically and the internal degrees of freedom quantum mechanically.

The equation is

ofi __ d Fi  ofi
IF Vi 9 i mp T,

¥ ;,:k,zuf(fo,i -fifide L {9, X, ¢ )sinXdXdgd v,
(3.3.22)
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Where Iin (g, X,¢ ) is the inelastic collision cross-section for a
collision of molecules initially in quantum states i and | and finally
in quantum states k and |, the magnitude of the initial asymptotic
relative velocity being g. Although further work, including fully
quantum mechanical treatments have shown that the W-C-U-B formalism
is not entirely general, it ignores spin anisotropy and internal
109
degeneracy effects, it appears to be an adequate basis for discussing
100

viscosity, diffusion and thermal conductivity.

Equation (3.3.22) may be solved in an analogous manner to

1,101,110,

the normal Boltzmann equation and the results are,

Shear Viscosity,

u -1 ={8/5 ( "ka)%-(Ri r (- €. € I.)
ikl

J( Y4 sin2)(+ ]/3 (Ae )2 - 3 (e )2 sinji )fexp(-Y 2) lin sin )(d Xd ¢dy

Relaxation Time, tand Bulk Viscosity, K

7! = @ok/C KT/ PR 7 e )
n 'kl
expl- & -e.) [ Yexp(-v%) L sinxdXdody , (3.3.24)

_ 2 2
K=1(nkT cim/cv ) (3.3.25)

Coefficient of Heat Conductivity

A=A ¢ 4+ A- (3.3.26)

tr int



Mro = W((‘75kT2/8m) X+ (15kT C, /4m) Y/XZ}

. _ 2 -1

Xint = wﬁs C.op 1/2m) 27 + (15kT C. /4m) Y/xz}
and Coefficient for the Diffusion of Internal energy, D

-1 1
D =.@P/3(wka) R, iizkt(-ei - al,)

Y 5 exp (-Y 2) Iin (T-cos X) sin Xd Xd ¢dy

where
-2
R, = (mexpl-¢))
; ,
e, = Ei/kf,
.th
Ei = energy of the i quantum state,
Ae =€, +€ -€,- E
k1 i i’
cr s 3
n = molecular density in molecules/cm”,
Cinf = internal heat capacity/molecule,
Ay = translational heat conductivity
Aot =internal heat conductivity
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(3.3.27a)

(3.3.27b)

(3.3.28)

and X, Y, and Z are complicated integrals overy , I,n etc. and are
i

-1
given in reference 110, W= (]-YZ/XZ)

3.3.4. |
Approximations to the full results

Since the dynamics of a two body, inelastic collision are extremely

complex we will discuss what can be learnt for approximate treatments.



If only elastic, central potentials are possible (3.3.23),
(3.3.27) and (3.3.28) reduce to the classical, elastic collision
110
results of section 3.2.1. In the next approximation quasi-elastic
a
collisions in which Ae is negligible compared to Y and the translational
and internal motions interact negligibly are considered. This means
that Iin may be replaced by the elastic scattering cross-section Iel
for the orientation dependent potential. Then as we are assuming
translational and internal effects are independent,
-1 % 7 7 . 3
poo=(8/5(mmkt)*) [y exp (v ) lel sin” Xd Xd ¢dy (3.3.29)
This is just the normal elastic collision expression except that
lel must be calculated for a non-central potential. These cross-
sections would still be very difficult to evaluate and thus many
110a,111,113,114
approximate models have been developed to treat this problem.
The usual approximation is to assume that the distortion of the collision
trajectories by the orientation dependent potential occurs mainly around
the distance of closest approach of the colliding molecules and that in
110a,111
this region the relative orientations can be taken as fixed.
This fixed orientation model thus reduces the problem to that of the
kinetic theory of a gas with several potential energy curves, one for
each relative orientation of the molecules.
180

It was mentioned before that this problem is easily solved.

The resulting collision integrals for each orientation are then averaged

80.



over all orientations, equal weight being given to each orientation
to obtain the final result. Reasonable results are obtained using this
110a 111
mode| for the viscosity of polar and quadrupolar gases, however,
it probably overestimates the effect of the orientation dependent
117
potential., The effect of orientation dependent terms on the central
potential parameters deduced from viscosity using this model is very
small for polar molecules and barely significant for quadrupolar
110a,111
molecules. Thus the effect of an orientation dependent potential
on the viscosity of octopolar and hexadecapolar gases will be expected
to be entirely negligible. Viscosity then provides a good means of
obtaining the central potential parameters for those types of gases.
Other models which have been proposed usually pre-average
113,114
thepotential in some way to reduce the calculation to that of a central
potential. Once again viscosity is relatively uneffected by an
orientation dependent potential.

This insensitivity is not shown by thermal conductivity, however,

since at this level of approximation,

AM/}" = (5/2) c:vi'r ¥ (PD/"' ) ginf 1115 (3.3.30)

which is just the modified Eucken correction.

The next step is to consider the full expression for /U
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u -1 =d Ri z exp (- t—:i-s:i)

iik
(jy:in2 X1 do + ,l,j(Ae Y I do - %I(Ae 2 sin X L de)
(3.3.31)

where d is a numerical factor

and d 6 = Y3 exp (-Y2)sin)( dXd¢dy

The first integral on the right hand side is approximately equal to the
normai elastic collision expression, the second term is related to T

by (3.3.24) but the term ( A€ )2 sin2 X is more difficult as it couples
the internal and translational motions. Mason and Monchick];ooik:lfed
out that if this last term is approximated by some sort of average value
the last two terms nearly cancel e.g. using the rigid sphere value of
2/3 the cancellation is exact.

The cancellation has subsequently been confirmed by two model
calculations. The first by Sfevens]:riafs the collision of two methane
molecules as the scattering of two rigid tetrahedra and the second by
Clarke and Smith Jv]hi treat the problem of polar molecule interactions
as the interaction of two rigid spheres with embedded point dipoles
at their centres.

116
Stephens finds viscosity very insensitive to inelastic effects,

self-diffusion only slightly affected but thermal diffusion strongly

dependent on these effects. He shows that self-diffusion would predict
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a well depth which is too small and isotopic thermal diffusion would
11

predict a well depth which is too large. Clark and Smith Fi7nd only
approximately a 4% effect due to the dipole potential which they
claim is an over estimation because their calculations were performed
in two dimensions only. They also show that the fixed orientation
mode| overestimates orientation dependent effects.

As thermal conductivity cannot be predicted by (3.3.30) over
a substantial temperature range the full treatment in terms of
orientation and inelastic effects is probably needed. Thus thermal
conductivity cannot be used to obtain an estimate of the intermolecular

114b

potential. Similar conclusions have been made about thermal diffusion.

It is apparent from the previous discussion that only viscosity is
suitable for the determination of potential parameters.

Stevens results indicate that self-diffusion may be of some use

but only as a check on the reasonableness of the viscosity deduced

parameters, however.

3.4  Conclusions

In this chapter we have summarised the relationship between the
intermolecular potential and the bulk properties of a gas.

From the discussion it is apparent that the second virial coefficient

and transport coefficients of a gas composed of atoms are readily calculated



from any intermolecular potential. However, for a gas composed of
molecules the relationships are not as simple. Only second virial
coefficients (when expansion (3.2.17) _is valid and rapidly
convergent) and viscosity are readily calculated.

Thus only second virial coefficients and viscosity coefficients
are useful for determining the intermolecular potential of molecules
from observed bulk properties of a gas. Third virial coefficients
although readily calculated do not depend on the two body potential

alone and are therefore not so useful.



4. SEMI-EMPIRICAL DETERMINATION OF
INTERMOLECULAR POTENTIALS

4.1 Principles

In principle one may determine the complete intermolecular
potential energy function by solving the Schrodinger equation as
discussed in Chapter 2.

This is very time consuming for systems containing many electrons
and so other strategies must be adopted to deal with these systems.

The usual strategies are

1. to approximate the exact equations by making some assumptions
26-30 177
about the wavefunction or integrals appearing in the full result, or
2, to use the exact results for simple systems to suggest a model
118-122
potential with adjustable parameters. These adjustable

parameters are then determined by comparing calculated and
]

observed bulk properties.
26-30

The first method is starting to be used more in recent years
since the formally exact theory is now known (exact in the sense
discussed in Chapter 2) and appears to be very promising. The method
is particularly useful for systems which are too complex for the use of
the full quantum mechanical method but for which there is a lack of
experimental data from which a mode! potential's parameters may be

128
determined.



118-122
The second method has been more extensively used and it is

this method that will be discussed in this chapter.

The method relies on several factors not the least of which is
having a soundly based mathematical relationship between the bulk
property and the intermolecular potential. Thus equilibrium and
transport properties of gas have been extensively exploited using the
formulae discussed in Chapter 3.

These properties have been shown to be sensitive to different

130-133
regions of the potential energy function and data in certain temperature
130
ranges is very insensitive to the overall potential form. This

coupled with the fact that there appears to be no one-one relationship
between the bulk property and the intermolecular potential means that
several accurately measured properties over a wide temperature range

123-129
are needed to determine the model potential's parameters.

If the two body potential is required then the properties used
should, strictly depend only on two body potentials. This strictly
precludes the use of condensed phase properties such as the cohesive
energy of crystals or the equation of state of liquids (as well as third
virial coefficients) which, at least in principle depend on many body

6, 122
potentials.  Indeed recent work has shown that the inclusion of three
body potential energy terms are needed to obtain good agreement between
123,124 134,135,15%a

calculated and observed crystal properties, liquid properties and third
124

virial coefficients.



4.2 Form of the Potential Function

The energy of interaction between two chemically saturated
systems is attractive at large distances and for two spherically
symmetric systems is of the form,
ue) =-E/8+ e/ Bk ) (4.2.1)
where C 6 and C8"<|J?e constants. The energy is repulsive at short
distances i.e. for two spherically symmetric systems of the form
Ur) = ;.1] Ci ri exp (-air) (4.2.2)

i=

Hence most models have been arrived at by adding these two terms

e.g. the Lennard-Jones 12-6 potential,

Ut =4€(( )"

Very simple potentials such as (4.2.3) are found to be useful for

N (4.2.3)

interpreting bulk properties only over a limited temperature range and

that a set of parameters deduced from one property e.g. second virial
1,6

coefficients, will not fit another property, e.g. viscosity.

A further illustration of the inflexibility of simple potentials

is usually about twice the accurate quantum
6,120,137

is that the coefficient C6

mechanically derived value.
Attempts to increase the flexibility of the potential form have
been made by introducing a third parameter e.g. the n-6 Lennard-Jones
133 159 139
potential, the Kihara core potential and the Morse potential.  These

potentials are much more effective but still leave something to be

87.



desired in obtaining full agreement with all the properties of simple

124

gases e.g. Ar.
118-127

Hence more elaborate potential functions have been devised
and applied to the inert gases. The reason for the emphasis on the inert
gases being that the above-mentioned potential forms strictly only
apply to atoms as the potential energy of interaction of two molecules
depends on their relative orientation. Very good results have been

118-127,135 123-125 126,127 ,84
obtained for the inert gases and in particular for Ar and He.

Hence it is of interest to extend these model potential results
to simple, almost spherical molecules e.g. CH4.

However, there are two reasons for wishing to have a simpler,
more physically interpretable potential for these molecular interactions
than one derived from a generalisation of the very complex spherically

135
symmetric potentials used for the inert gases.

These reasons are
1. the potential depends on the mutual orientation of the molecules

as well as their separation, thus making the number of potential

parameters much larger than for atomic interactions, and
2, there are less properties which may be easily related to the

intermolecular potential for molecules than for atoms as discussed

in Chapter 3.
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Thus in the next section a reasonably simple, physically interpretable

potential function will be developed and applied to CH ,CF4 and SF6'

4.3  The Interaction of Quasi-Spherical Molecules

The usual models for the interaction of polyatomic molecules
divide the potential into two ferms,é'qI
Ue, 8,¢)=U(r)+v(r, 6,9) (4.3.1)
where the central potential, Uo(r) depends only on the separation of
the molecules, r and the orientation dependent term, v(r, 8 ,¢ )

depends on r and the collection of Euler angles ( 6, ¢ ) needed to

specify the relative orientation of the two molecules.

4.3.1 The Central Potential

This is usually represented by the type of potential discussed in
Section 4.2,

However, some potentials have been devised which average
the interactions of the two molecules and obtain a central potential
’which takes into account the "size" and "shape" of the molecules and
these seem preferable.

Examples are the Kihara core model, the De Rocco and Hoover
spherical shell potential, the Homman-Lambert potential and the

6

Corner four centre model.



The Kihara model gives quite a good fit to most properties
6

but its "size" parameters are not physically meaningful and it has
140¢
the incorrect long range dispersion expression. The Homonn-

141,142
Lambert model gives good results but is very complex and can be well

approximated by a Lennard-Jones 28-7 potential. s The Corner
model is complex and more applicable to linear molecules than to
6

the type of molecules we are considering.

The De Rocco and Hoover model represents the two polyatomic
molecules as interaction sites uniformly distributed over the surface
of a sphere of diameter d. The form of the potential, averaged over
all orientations, for 12-6 Lennard-Jones interaction sites is,

e{(3r'6Po(4) + Po(33 P(9) - (9r16P°(]0) - Po(9) ) P(z)}
Vi ()=
SS r ( 9 PO(TO) Po(3) - 3 Po(9) Po(4)) r (4.3-2)

)

" P(n) = (r+d)" - 2§Fn +(r=d) ™"

where

and P () - Pn(ro)

o

This model has been extensively used to interpret the equilibrium
140,143
and transport coefficients of globular molecules, including polar
140b

and quadrupolar molecules, with considerable success.

The model gives parameters consistent with liquid densities
140a

and molecular dimensions (for most molecules) and unlike the Kihara

90.
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core potential has the correct long range form i.e. (4.2.1)
However, although the optimum shell size, d deduced from
B is in excellent agreement with the size of most molecules, (judged

from known bond lengths) this is not so for molecules containing
140
peripheral hydrogen atoms.

The small values of d for these molecules has been attributed

140b
to the "softness” of the hydrogenic repulsions. Furthermore, the

values of €/k for Kr and Xeare in poor agreement with the values
1 : 140,123
obtained from more elaborate potentials. Finally, it has been
146
claimed that the potential is unable to fit recent high temperature

viscosity data of CH4, CF4 and SF6, although it works very well at

] »
moderafe temperatures. 40e

This indicates that the choice of Lennard-Jones 12-6 potential
sites on the shell is quite arbitrary and not necessarily optimum.
Recent work on the newest equilibrium and transport coefficients for
the inert gases has shown that the n-6 Lennard-Jones potential and

133,138

n-6-8 potential with n # 12 gives quite reasonable results.

This suggests an obvious generalisation of the 12-6 Spherical
Shell Potential to allow for different peripheral atoms in the molecules,

that is a model with n-m Lennard-Jones interaction sites uniformly

distributed over a spherical shell.
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The potential then takes the form,
p (m2), 5 (m=3), (n-3) . p (n-2), 5 (m-3) (m-3)}
€ {(m—3) re P +P )P - ((0-3)rg P_ +P )P

Vel =
( (n-3) Po(n-Z)Po(m-S)_(m_3) Po(m-2)Po(n-3)) .
(4.3.3)

This is the form we shall use for the central potential.

4.3.2, The Orientation Dependent Potential

Models for the orientation dependent part of the potential are
usually obtained from the formulae for long range electrostatic and
induction forces between non-overlapping polarizable systems with

1,13,89
permanent multipole moments.
"Shape" factors or orientation dependent short range terms
88,91
have been used but the theoretical justification of these factors and
their generalisation to other simple systems is difficult and thus for the
quasi-spherical molecules considered here they will not be used.

For the orientation dependent term then we will use the leading
electrostatic and induced moment long range terms. These terms for
CH, and CF4 are the octopole-octopole and octopole-induced dipole

4 g9

terms and for SF 6 the hexadecapole-hexadecapole and hexadecapole-

induced dipole terms. Anisotropies of the dispersion forces will be

omitted since they are zero for these molecules.
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4.4 Determination of the Potential Parameters

For a spherically symmetric system (e.g. AT) viscosity coefficients,
thermal conductivity coefficients, isotopic thermal diffusion coefficients,
second virial coefficients, quantum mechanical calculations and beam
scattering measurements may all be used to help determine the
parameters of a model potential. However, for non-atomic molecules
thermal conductivity and isotopic thermal diffusion are strongly affected
by inelastic collisions(Chapter 3 ), self-diffusion coefficients
are also significantly affected and thus none of these transport properties
are reliable for obtaining potential parameters. Furthermore, quantum
mechanical calculations of the short and long range potential are
extremely difficult for molecules and beam scattering measurements

144,145
are inaccurate.  Thus the only experimental data from which we may
determine potential parameters are second virial coefficients and viscosity.
coefficients.

The only quasi-spherical molecules for which viscosity coefficients,
p and second virial coefficients, B have been measured accurately over
a sufficiently wide enough temperature range to enable a meaningful
determination of the potential parameters are CH4, CF4 and SF6'

The best viscosity measurements for CH 4 obtained by several

146-153
different workers, using a variety of techniques, agree very well except

151-152
for the very early high temperature measurements. However, the data
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obtained by these earlier workers for the inert gases has been shown by
133,146,179
several recent studies to be inaccurate and the same conclusion

probable holds for CH4. The second virial coefficients reported by

several different workers for CH , are also in good agreement except
at very low temperatures and here we have used the recommended
values from reference 76.

Similarly, p and B have been measured for CF4 by several

146
workers and good agreement exists between these results. The data

146
6 15 reasonably good but the most recent measurements of ’A

seem to be the best.

for SF

Since we showed in Chapter 3 that the viscosity is relatively
insensitive to the orientation dependent part of the potential and
to inelastic collisions it may be used to determine the central
potential parameters. These parameters together with the second virial
coefficient may then be used to obtain the only other parameter, the
first non-zero multipole moment of the molecule. These multipole
moments are themselves of great value for testing the accuracy of
approximate wavefunctions, being more sensitive to the accuracy of
the wavefunction than the total energy, see Table 12.

Thus the procedure adopted for obtaining the potential parameters
was as follows. A least mean square fit of calculated and observed

viscosity data was made for fixed n and d to find the optimume and for



Then d was changed and optimum € and r, were found for this d.

This process was repeated until the optimum d, € and r, were found

for a particular n. The same procedure was then followed for the

next n until the optimum d, eand r were found for each value of n.
The value of m was chosen to be 6 so as to obtain the correct

long range behaviour for the potentialse.,

vV =(n-3) (n-2) Ad 2@ (n ])n P)

- (m-3) (m-2) Ba%™ (m ])m {'} (4.4.1)

(m—3)(m-2)(m-1 o ¢~ ™=2
V » - Bd2(m-3) (m-2) L Bd4 3.4

SS

as r+ «,  where A and B are constants dependant on d, £ and re

if m=6,

v+ -128d ° _s0d* 0B

The whole procedure was performed on a computer using a searching

routine fo find the optimum o and € by minimising,

n
du? = Z |u . calc - u, observed I2 (4.4.2)
n-1 i=1 i i
where
n = number of data points.

These parameters were then used together with the formulae

below to obtain the multipole moments i.e.

95.
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for CH, and CF

4 4
* —Rp * * T - * T*
B Bc> +<:H]4 (ro ,T)+bH]0(ro )+ ... (4.4.3)
and for SF6’
B* = Bo* +c H] 8(ro*,T*) +g H]2 (ro*,T*) + ... (4.4.4)
where
a =_(34.25.n/7.52)sz e
2_.-2

-162.95714 Q*°T*~

_(32.24/5)9 * quTe"]

b =
=_28.8 Q% o*T+)
¢ =-(2° x3x 11 x13 x 10°/52.7%) g*21+~2
= _1.12065306.10% ¢ +27+~2
g =-(32.24.5/7)¢ * a*T*_]
—-1.028571428.1028 *o 7+~
2

/Eiif 7 <I>*= ¢2/€ r°9

3
a*=a/r°,$2*=9 L

H (ro*,T*) = ro*(k_s) f«::xp (-Uo/kT) r*_(k-z) dr*

k
a is the polarizabil ity,Q is the octopole moment and ® is the hexadecapole
moment of the molecule. These expressions were worked out from

Kielich's paper58c|9nd the first term of (4.4.3) checked by direct
evaluation.

It should be noted that the factor 11 in the coefficient was

omitted in reference 140 f and the values of Qreported there are thus in error.
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The results of these fitting procedures may be seen in Tables
1 and 2. Tables 3, 4 and 5 show the actual viscosity values and the
percentage deviation from experimental measurements. The second
virial coefficients are shown in Tables 6, 7 and 8 for the best potential
and the potential with n=12, A full breakdown of the second virial
coefficient results into classical,quantum and non-central components
may be found in appendix D.

The best potential for CH4 is the one for which n=9, it gives
the best fit to viscosity and second virial coefficients over the full
temperature range and has a shell size of 2.15A which is very close
to the shell size from structural parameters of 2.18A.

The potential with n=12 gives a very good fit to both viscosity
and second virials, being inferior to n=9 only at high temperatures and
in particular in the region of the Boyle temperature. However, it
has a shell size of only 1.59A and the self diffusion coefficient,
D” for n=12 as not as good as for n=9. From Steven's work the
elastic collision Dy should always be less than the true Dyyr which
is true for n=9 but not for n=12, These results show however, that
although self-diffusion coefficients would give a much lowere /k
than viscosity the inelastic effects on D, are on ly a few percent.

For CF, n=15 gives the best fit to viscosity coefficients and has

4

a shell size close to the physical shell size. Once again n=12 gives a



very good fit to both pand B and in this case a very reasonable shell
size also. In fact it fits B much better than the n=15 potential particularly
in the region of the Boyle temperature. The potential with n=12 gives
the best fit to p for SF6 and the best shell size .

The above results are not in agreement with the work of Dawe.et Ldié
who found that they could not fit their viscosity data for CH4, CF4 nor

SF

o spherical shell with n=12. However, we find a 1-2% error
at worst in each case using this potential. It is possible that they did
not find the optimum parameters for the potential. It must be remembered
that to obtain optimum results d must be treated as a variable parameter,
if this is not done a poorer fit is obtained especiclly for CH4 . They also
rely onthe principle  pfcorresponding states which our results indicate
does not hold for these substances since at least three parameters are
needed to fit the data. Also for CF4 the best set of parameters is
very hard to find and varies with the data used to find it. Many sets
of parameters may be found which will give an almost identical fit
to the data i.e. one may obtain local minima not the absolute minimum.
The set we show for CF 4 were arrived at after using different data and
different starting parameters in the search routine.

The results also show that a spherically symmetric potential
(of the type used here anyway) cannot be expected to fit B and viscosity
simultaneously with the same parameters because of the non-negligible
contribution to B from the non-spherical part of the potential, especially

for CF4 as can be seen from Tables 3 and 4 appendix D.

98.



The value of the octopole moment of CH4 is in reasonable
agreement with the best quantum mechanically derived result of 2.0,
which is probably low judging by the trend of the results, see table 12.

The values of the dispersion coefficient: are shown in Table 1
and for CH 4 there is only reasonable agreement between the value of
C6 and the best quantum mechanically derived value.

Previously determined values of the octopole moment of CF4
are probably too Iow]40fand the value derived in reference 140f is
in error because of the factor of 11 missing from the octopole-octopole
correction to B (see equation (4.4.3) ). Thus the value for the n=12
potential is probably the most accurately determined to date.

The hexadecapole moment of SF6 has not been determined
previously and no comment can be made about the accuracy of our
result, All that can be said is that due to experimental uncertainties
and the insensitivity of the second virial coefficient to the hexadecapole
moment it can only be said to lie in the range 26-28. This same
uncertainty is present in the octopole moment values we have determined,
a +5% change in the octopole moment would have little effect on the
second virial coefficient.

Another interesting point is that the quantum corrections to B
for CH

47

seen from tables 1 and 2 of appendix D.

which are usually neglected, are non-negligible as can be



4.5  Conclusions

We have shown that the use of a model potential containing
both central and non-central terms 'gives an excellent fit to the second
virial coefficients and viscosity coefficients of the quasi-spherical
molecules, CH4, CF4 and SF6' The worst fit is for CF4 and even here
the deviation from experiment is only 1-2% i.e. within experimental
error. Furthermore, quite reasonable results were obtained for the
self diffusion coefficients, long range coefficient, C6 and octopole
moment of CH 4

The model potential’s parameters in each case have a reasonable
physical interpretation i.e. n indicates the "softness” or otherwise of
the peripheral atom interactions and d indicates the "size" of the
molecule. The results indicate that the interaction of the peripheral
hydrogens in CH, is "softer" than the interaction of the peripheral

4
fluorines in CF, and SF,. The shell size, d for the optimum potential,

4 6
as judged by fit to viscosity is in each case (and for the n=12 potential
for GF4) in good agreement with the "size" of the molecule (judged
from known bond lengths). This last point means that if n is fixed and
d is taken from known bond lengths only two parameters, € and Yy need
to be determined from viscosity, this means that a reasonable potential

may be obtained when only a limited amount of experimental data is

available.

100.
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These potentials should prove very useful for studyipg inelastic
effects on transport properties, the properties of gas mixtures and the
properties of liquids. This last point is particularly worthy of explnation
since quite good results have been obtained for the equilibrium properties
of liquid Ar. e The potentials are ideally suited to use in the pert-
urbation theory of liquids since the non-central effects could be

134
treated as a perturbation as were three-body effects in the study of Ar.



TABLE 1. Parameters derived from viscosity

CH4 CF4 SF6
n 8 9* 12 9 12 15% 9 12* 15
d 2,32 2,15 1.59 3.2 2.72 2.66 3.42 3.06 2,70
e /k 237.2 232.0 222.8 309.5 320.9 318.8 418.3 418.6 423.4
s 3.854 3.840 3.848 4,465 4,456 4,425 5.91 5.088 5.066
Cb 102 95 113 1R 173 151 473 526 624
* best fit to viscosity,
d, y in A, ¢/kin K, C6’ ina.u.,
d from structural parameters,
CH4 2.18A, CF4 2.65A, SFé 3.16A
TABLE 2. Multipole Moments derived from B
CH4 CF4 SF6
h 9 12 12 15 12
Moment 3.0 2.9 7.9 10.0 26-28
< 26 26 40 40 62

Units, @ for CH_, CF4 10-34e.s.u. cm.3

® for SF, 10 e.s.u, cm.L*
%5 3
anda 10 cm .

‘201



TABLE 3. Viscosity of CH

4

T EXPT. CALC.'  DIF CALC.°  DIF REF.
90.39 367 384 4.6 378 3.0 148
157.45 620 621 _0.16 618 0.32 148
200. 06 776 774 0.26 774 0.26 148
246.1 939 936 0.32 935 0.45 149
293.0 1100 1092 0.73 1093 0.64 146
310.94 1163 1153 0.91 1152 1.0 149
377.6 1363 1367 ~0.29 1362 0.074 149
403.0 1439 1441 _0.14 1437 0.14 146
444.27 1560 1560 0.0 1553 0.45 149
477.6 1651 1651 0.0 1647 0.24 149
497.0 1692 1701 -0.53 1699 0.42 146
601.0 1945 1964 -0.93 1963 ~0.93 146
676.0 2113 2132 -0.90 2134 1.00 146
749.0 2268 2289 ~0.93 2297 ~1.28 146
823.0 2426 2441 ~0.62 2453 1.1 146
900.0 2578 2590 _0.47 2606 _1.09 146
1050.0 2855 2865 ~0.36 2889 1,19 146
]. n=9, 2 n=12,

DIF = ((EXPT. - CALC)/EXPT100
units for viscosity 10-7 poise.

‘€0l



TABLE 4. Viscosity of CF

T EXPT. cAlc.'  DIF. CALC.°  DIF.
293 1706 1730 _1.41 1691 0.88
323 1860 1867 -0.38 1830 1.6]
348 1988 1979 0.45 1946 2.10
373 2105 2091 0.67 2060 2.14
400 2230 2211 0.86 218] 2.19
403 2243 2224 0.85 2194 2.18
423 2333 2310 0.99 2280 2.27
450 2458 2423 1.43 2394 2.60
473 2549 2517 0.87 2489 2.35
498 2640 2617 0.87 2590 1.89
523 2737 2715 0.81 2690 1.72
566 2904 2879 0.79 2858 1.58
573 2926 2905 0.72 2885 1.40
623 3107 3088 0.61 3074 1.06
673 3274 3266 0.25 3256 0.55
723 3441 3438 0.087 3433 0.23
773 3601 3604 ~0.083 3603 ~0.056
803 3699 3701 -0.054 3701 ~0.054
823 3738 3764 ~0.7 3766 -0.75
873 3807 3918 _2.92 3922 -3.03
] n=15

2 n=12

experimental data from reference 146

‘0l



TABLE 5. Viscosity of SF

6
T EXPT. CALC.' DIE
293 1515 1532 -1.12
323 1653 1660 -0.43
348 1760 1764 -0.23
373 1869 1867 -0.17
400 1986 1976 0.50
403 1995 1988 0.35
423 2088 2069 0.91
450 2205 2178 1.22
473 2297 2270 1.18
498 2385 2369 0.67
523 2479 2465 0.57
566 2641 2626 0.57
573 2664 2651 0.49
623 2843 2831 0.42
673 3017 3006 0.36
723 3180 3178 0.63
773 3343 3345 ~0.60
803 3437 3443 -0.17
823 3491 3507 ~0.46
873 3660 3666 ~0.16

n=12

’ R ll/.
experimental values from reference 146
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TABLE 6.

Second Virial Coefficients for CH

4

T Bobs cale calc2
110 =344+ 10 -363.16 354,16
120 -284 + 8 -299.49 -294.95
130 -248+8 -253.79 -250.46
140 -217+8 -217.73 -215.92
150 -191+6 -189.16 -188.35
160 ~1696 -166.01 -165.89
180 -133+3 -130.79 -131.53
200 -107+2 -105.33 -106.56
225 -84 +2 -82.03 -83.54
250 -67 %1 -64.78 -66.46
275 53+ 1 -51.52 -53.28
300 -42 + 1 -41.02 -42.80
350 27 %1 -25.49 -27.24
400 -15.5¢1 ~-14.55 -16.28
500 - 0.5%1 - 0.16 - 1.89
523.16 1.49+0.2 2.15 0.54
548,16 3.89+0.2 4.50 2,90
573.16 5.98+0.2 6.58 5.03
598.16 7.88+0,2 8.48 6.94
600 8.5%1 8.61 7.08
623.16 9.66%0.2 10.20 8.68
] n=2, 2 n=12

Bobs’ experimental values from reference 76

‘901



TABLE 7. Second Virial Coefficients for CF

4

T Bobs Bculc] Bcclc
273.16 -111.0 =124 .44 -115.44
298.15 -88.3 -95.95 -90.82
303.15 -84.4 -91.12 -86.58
323.15 -70.4 =74 .06 -71.50
348.15 -55.7 -56.78 -55.98
373.16 -43.5 -42.78 -43.24
398.17 -33.2 -31.26 -32.60
423.18 -24 .4 -21.61 -23.58
448,20 -16.8 +13441 -15.86
473.21 -10.1 -6.36 -9.18
498.23 -4.25 -0.26 -2.36
523.25 1.0 5.11 1.85
548.26 5.6 9.81 6.43
573.27 9.8 14,02 10.51
598.28 13.6 17.76 14.20
623.29 17.05 21.14 17.51
673.16 23.6 26.93 23.25
]n=]5, 2n=12

Bobs’ experimental values from reference 76.
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TABLE 8. Second virial coefficients of SF

6

T Bobs ca Ic] ca Ic2 cale

280 =320+10 =324 .71 -334.89 -346.23
300 =277 £5 -274.59 -282.85 -292,06
325 -228+5 -225.39 231.94 -239.24
350 -190+5 -186.75 -192.05 -197.99
375 -159+5 -155,63 -160,04 -164.94
400 -135+5 -130,08 -133.79 -137.92
440 -102+3 -97.51 -100.41 -103.65
480 -76 +3 -72.26 ~74.60 ~77.22
520 =54 +3 -52.10 -54.,04 -56.19

] hexadecapole moment = 26
hexadecapole moment = 27
hexadecapole moment = 28

Bobs’ experimental values from reference 76

801
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TABLE 9. Self Diffusion Coefficient for CH4

T EXPT. catc.!  care.?
90.0 266+ 23 231 226
195.0 992+ 6 996 969
273.0 2060+ 50 1872 1878
298.2 2350% 10 2203 2138
353.6 3150% 10 3020 3152
382.6 3600+ 10 3467 3711
Th=9, Zn=12

-1
units 10~ ecm™ sec

experimental data from reference 154

TABLE 10. Long Range Coefficient, C6 for CH

4
Method Value Reference
L-J 12-6 potential parameters from B 265 137
Ditto parameters from 2 271 137
Exp-6 potential parameters from 2 214 137
London Formula no} 137
117
Slater-Kirkwood Formula 155 137
Kirkwood-Muller Formula 237 137
Refractive Index Data 150 £+10% 13
Spherical Shell Potential 95; this
parameters from H ]]33 work
102
Low Temperature Viscosity Data 150 147
Harmonic Oscillatar Model 117 H. Margenau,
Rev.Mod.
Phys.11
1 {T939)

]n=9, 2n=12, 3n=8



TABLE 11. Semiempirically determined values of J] for CH,
Method Value Reference
Dielectric Second Virial Coefficient,
L J 12-6 central potential 6 140f
Second Virial Coefficient
L J 12-6 Central potential 5 140f
Phase Transition of solid heavy methane Yi.6 140f
Second Virial Coefficient,
spherical shell central potential, n=12 *2.9 this
n= 9 *3.0 work

110,
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TABLE 12. Quantum Mechanically derived Octopole Moment- of CH4

Wavefunction N E Reference
a.u.
Single 5.3 -39.80 A.G, Turner, A.F. Saturno,
Centre S.T.O. P. Hauk and R.G. Parr,
J. Chem. Phys. 33, 22 (1960)
4_0, 1919 (1964) —
Minimum Basis 0.9354 -40,12827 R.M. Pitzer,
S.T.O. S.C.F. J. Chem. Phys. 4;6_, 4871 (1967)
Minimum Basis 2.8 -39.863 J.J. Sinai
5.T.O. S.C.F. J. Chem. Phys. 39, 1575 (1963)
40, 3596 (1964) —
$.T.0. S.C.F. 1.5 -40,1810 B.J. Woznick,
J. Chem.Phys. tﬂ, 2860 (1964)
Large Basis
G.T.O. S.C.F. 1.8 -40,166 M. Krauss,
J. Chem. Phys. 38, 564 (1 963)
Approximate 5.7 -39.592 W.T. King,
S.C.F.M. 0O, J. Chem. Phys. 39
Single Centre 4.46 -39.50 E.L. Albasiny and J.R.A. Cooper,
S.T.O. Proc. Phys. Soc. (London)
82, 289 (1963)
S.T.O. S.C.G.F.1.149 -39.607 M. Klessinger and
S.T.O. S.C.F 1.443 -39.644 R.McWeeny, J.Chem.Phys.
42, 3343 (1965)
S.T.O, S.C.F. G.P. Arrighini, C. Guidotti,
39 5.T.0O. 2.08 -40,.20409 M. Maestro, R. Moccia and
34 5.7.0. 3.06 -40,1866 O. Salvetti
27 S.T.0O. 1.79 -40,19493 J. Chem.Phys. 49 2225 (1968)
22 5.T.0, 2.595 -40.17828 T
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5. NON-ADDITIVITY OF THE INTERMOLECULAR POTENTIAL

5.1 INTRODUCTION

In the previous chapters the two body intermolecular potential
has been emphasised. However, to interpret the properties of even
moderately dense gases, not to mention the properties of the condensed
phases of matter,we need to know the potential energy of interaction
of many molecules.

The usual approximation to the N-body potential, Un is

™Mz

U.. (5.1.1)

U=li|

n I

il

where Uii is the two body potential for molecules i and j.
However, this additivity assumption has never been shown to
be valid by quantum mechanical methods and semiempirical work
on third virial coefficients and the equilibrium properties of liquids
and crystals indicates that three body non-additive effects must be
included to obtain good agreement with experiment. We will firstly
investigate the problem from a quantum mechanical viewpoint since
the abovementioned semi-empirical approach does not fully explore
the problem for three reasons,
(@) the properties used to investigate non-additivity may have
different sensitivity to different regions of the potential (as

is the case with the two body potential),
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(b) the inaccuracies in calculating the bulk properties may mask
non-additive effects, as may inaccuracies in the experimental
data, and

(c) the treatments use only approximate three body potentials.

Hdwewver,in the last section the three-body non-additivity

in CH4, CF4 and SF6 is studied by considering the third virial coefficients

to see if conclusions deduced for the inert gases hold for these quasi-

spherical molecules.

5.2 A QUANTUM MECHANICAL APPROACH TO
NON-ADDITIVITY

13,165,173-176
Three atom long range non-additivity in the absence of exchange

has been extensively studied, however, higher order non-exchange
165,175

effects have been studied by approximate models only.

Exchange or overlap three body effects have been studied by
26,168-172
methods which do not give the correct two body potential or at such

166,167
short distances as to be of little use in deciding the extent of
166,167
non-additivity at distances appropriate for determining bulk properties.
We wilh now discuss the problem using perturbation theory in terms
of separated molecule wavefunctions as discussed in Chapter 2.

The potential energy of interaction in the MS-MA scheme

may be divided info the following ferms, to third order in energy.
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(a) Ist Order Terms,
(1) Coulomb Energy, Ecoul = V + V 0
(2) Exchange Energy, Eexch VOOS oo + V
(b) 2nd Order Terms,
M) Second Order Polarisation Energy of Induction and
o 2 ¢l 2
Dispersion, Eo = Zf vol’ /(Eo-Ef)
(2) Second Order Exchange - Polarisation Energy,
2 ! .
E) 'Z; (Var Vot = 508 Vor Vor * Vor Sat Voo (EoEy
(¢)  3rd Order Terms,
(1) Third Order Polarisation Energy
3 571 11 ., 2 z
Eo - fz,jr vof vfr vor/(Eo - Ef)(Eo - Er)- E Z-T Vo f/(Eo—Ef)

(2) Third Order Exchange - Polarisation Energy

E _{/ t S .
E‘ Uotutr(UorSoo+Uor borUroo) -U-

~E)(E-E,
The terms a ), a(2) and’ b(l) are the only ones of importance

ot tr\ JO.L

for He2 and this should be true of other closed shell interactions.

\\\\\\

The coulomb energy is pairwise additive since,

- b .
(AA ARV TA A AD Y

cou i

=3
. (AiAi lvii lAiAi) +v (5.2.!)

where Ai is the ground state wavefunction of the ith molecule. .
The exchange energy has been shown to be very well approximated

by using Hartree-Fock functions for Ai . Arguments were also advd’nce_d

.y



to show that this will probably be so for other simple closed shell
systems. Thus we will discuss the non-additivity of this term using
Hartree-Fock, single determinant wavefunctions.

For an N molecule system for which each separated molecule
wavefunction is a single determinant it has been shown that,

For two molecules Aand B

Eexch e I f/eu (])rIZ ﬂ (2)dT]2
b
+Siifpii MV maly+s. e P0Vme T 6.2.2)

where

.. =a.b, - S
P||a|kZ]k||k

b
Pii =a, bI - |Z] SII bbI .

n

Zi/r]°+ igl fai2(2) r]2-] dz_2

‘™Mo

I\
—

Vi) =-

q m
-y 'y 2 -1

V) ="k 2/, + il;‘ fbi @, dT,

where molecule A has P nuclei of charge Zi and n electroﬁs, molecule

B has q nuclei of charge ZI< and m electrons, a, and b_ are spin orbitals,
{

i.e.

Ao =(n]) -%def (0102... an) (5.2.3)

For N molecules,

115.



exch Z /[f(])rlz f (2)d

pairs r,s

T S, T
* Srs (.{rs (vV-v) dl+ Srs [Prs' (v -vs) dC
where r and s are spin-orbitals on different molecules R and S and
N
TV,
i=1
In the case of three molecules,

Eexch +Eexch +Eexch -Eexch
ab ac bc

‘g—' S J @ +"b)" dT

abc

+ TS, [0 e v aT

+y sacf(pac" + )V dT (5.2.5)
ac

It can be seen from these formulae that the exchange energy is, at

most,three body non-additive.
26 .
Murrell et al showed that if the Mulliken approximation is made for

the integrals in the above formulae the exchange energy is pairwise
additive. They also used an approximate Is S.T.O. wavefunction
for He,, and showed that the non-additivity was insignificant in this

3

case also,

i
{
i

However, there are several approximations in their work,
(a) usinga Is S.T.O. for the separated atom wavefunction which

we have shown leads to a very poor two body potential,

116.
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(b) approximating the Is S.T.O. by a linear combination of Is
G.T.O.'s.
Thus the first-order exchange non-additivity for He, was

calculated using S.C.F. wavefunctions expanded, in terms of Is G.T.O.'s

The energy expression for this non-additivity is,

E = 4(alb) ( (alelc) - (ablcc))

nonadd

+4(blc) ( (alR b) - (belaa) )
+4 (alc) ( (IR _c) - (aclbb) )
-2 ((alb)? + (ble)) ( (@IR_la)
- (salee) ) - 2( (atb)? + (ale)’) ( (BIR_Ib) - (bblec) )
- @ (ble +(@le) (@R la) - (aalbb) ) (5.2.6)
,notation as in Chapter 2. Only G.T.O. wavefunctions were used as
they give excellent exchange energies for He, at all distances (compare

tables 9 and 10 of Chapter 2) and furthermore the three centre integrals

are far less time consuming for G.T.O.'s than for §.T.O.'s.

I

As with the first order energy for two He atoms the first-order
energy using the various approximations to the Hariree-Fock functions
was calculated to test the convergence of these functions to the true

Hartree-Fock value for an equilateral triangle configuration. As can



be seen from table 1 the resulis are all quite consistent.

The non-additivity was then calculated for a linear array
and for two isosceles triangle configurations for the 10 term G.T.O.
S.C.F. function and the results may be seen in table 1 and 2 .

As can be seen the non-additivity is very small in the region
of the potential which determines most of the physical properties of
the substance i.e. 4-7 a.u.

The only second order term which is important for the inter-
action of two helium atom is the dispersion energy. This has been
shown to be pairwise additive, on the assumption that V in Vot

can be expanded in a multipole series. This multipole result differs

very little from the full second order dispersion energy for H2 and He2

in the region of the van der Waals minimum and thus the conclusion,

at least for He and H interaction appears sound.

Second order induction effects may be shown to be non-additive,

however. The contribution to the inductive energy arising from the

excitation of molecule A from A0 to an excited state At is,
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[ ff’ (A, AV délz/(Eo-E,) (5.2.6)

where P (AoAf) is the transition density for the two states and Vb
is the potential field due to B. For n molecules the correseonding

contribution is

[ ff(AoAf) 4. VY dt]z/(Eo—Ef) (5.2.7)
Thus the induction energy will be non-additive since
L ind., Emd
i i n
S22 oa agviv<a T/e -£) (5.2.8)
i,isk e io it ot e

However, for non-polar molecules the induction energies
are small, as shown for He2 in Chapter 2, and thus this non‘-addiﬁve
contribution will be negligible. This may not be so for polar molecule
interactions e.g. for H20, however. The second order exchénge energy

is negligible for He, and this should be so for other closed shell

2

systems and thus its non-additivity is unimportant. The same is
probably true of the third order exchange energy. The on l); remaining
term is the third order polarisation energy which is the same term which
arises in the normal long range potential with no overlap. When

the potential is expanded in emultipole series this term Ieat:is to the
normal triple-dipole, dipole-dipole-quadrupole etc. potentials. As
the multipole result is very close to the full result for Ezo-j,?"ifhis

should be so for E36-,:. Thus we have calculated the non-additive ESDJ

74
from the formulae given by Bell.
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TABLE 1 Percentage Deviation from Additivity of Exchange

Energy of He3, G.T.O, S.C.F. results.. .

R n=1 0+ ’ n=9+ 'n'=8+ n=7+ n=10
2 5.579 5.580 5.579 5.579 -1.747
3 2.058 2.058 2.061 2.056 -0.242
4 0.604 0.603 0.602 0.606 -0.028
5 0.160 0.161 0.160 0.166 | -0.003
6 0.041 0.0001 0.003 0.044 -
7 0.010 0.008 0.010 0.031 -

n= number of basis functions in G.T.0O. S.C.F. function

15t 4 columns for an equilateral triangle configuration and last column

for a symmetric linear array.

TABLE 2 Percentage Deviation from Additivity of Exchange
Energy of He3, G.T.O. S.C.F. results.

S

(r=3) (r=5)
60 2.058 . 0.160
90 0.059 | 0.014
120 -0.006 -0.001
150 -0.022 -0.003
180 -0.242 -0.003

Results for an isosceles triangle ABC, R = Ric="r LBAC=6S

|
)
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© .TABLE 3 Comparison of Non-additive Exchange and Non-additive

Third Order Polarisation Energies

121,

R E ] E 2 E 3 E 4 E > E
na na na na na ad
2.0 2873. - 395.78 256.31 309.71 441,97 37575,
3.0 11.494 10.269 2,963 1.591, 1.009 1686,
4.0 0.3194 0.771 0.125 0.038 0.014 273.26
5.0 0.075 0.104 0.011 0.003 0.0005 -1404
6.0 0.002 0.020 0.0015 0.0002 0.00003  -9.602
Equilateral triongle configuration,
Enc] = exchange non-additive energy
En03 = triple dipole energy
Ena = dipole-dipole-quadrgpole energy
Eno4 = dipole-quadropole—quadrgpole energy
Em_‘6 = triple—quadrépole energy
Ead = total additive energy
TABLE 4 Comparison of Non-additive Energies
R E ! E ‘ E ? E 4 E > E
na na na na na ad
-559.518 =71.777 ~31.545 34.653 22,848 25141,
-8.802 -1.867 -0.365 0.178 0.052, 3127
-0.098 -0.140 -0.015 0.004 0.0Q007 181,77
-0.001 -0.019 -0.001 °  0.0002 0.00003 =1e3c
- -0.004 -0.0002 0.00002 0.000002 =6.45%
- -0.0009 -0.00003 0.000003 0.0000002-3.108

NGO AW

Explanation of table same as for table 3 , except that here we have a

symmetric linear array of He atoms.
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This may be seen in table 3,4for He and it will be seen that
it is at least an order of magnitude greater than the exchange non-
additivity over the physically significant range of the potential.

It is apparent from the above discussion that the onjly major
non-additive energy terms for helium interactions are the flirsf order
exchange energy, which is small and the third order polarisation
energy which is readily predicted.

The same conclusions probably hold for other non-piolar
interactions. However, for polar molecules e.g. H20 the 'i'nducﬁve
non-additivity may be large.

!
\

5.3 THIRD VIRIAL COEFFICIENT AND NON-ADDITIVITY

Several authors have shown that the additive third virial
coefficient calculated on the basis of an accurately determined,

semi-empirical, two-body potential gives very poor agreement with
86,124,1404, 172 ‘

experiment. Thus three-body (the third virial coefficient depends

|
on the interaction of three molecules) non-additivity has a pronounced

effect on the third virial coefficient. It has also been shown that

if the non-additive contribution to C (i.e. (3.2.8 ) ) is calculated

on the basis of the triple-dipole potential then the calculated and
86,124

experimental values are in quite good agreement.
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Thus we have calculated the third virial coefficients of

CH4, CF4 and SF6 using the formulae and programs discussed in

Chapter 3, the potentials used being those determined in Chapter 4.
The non-additive potential used was the triple-dipole potential

and the coefficient, Cubc appearing in the formula for this potential

was calculated from,

-3

where
ol is polarizability of the molecule

and C, is the coefficient of the leading term in (4.2.1 ).

6
This formula has been shown to be within a few percent of
the accurately determined value of Cabc in the case of A;.2¢he
results are shown in table 6-8and are quite good for CH4 but rather
low for CF4 and SF6' The poor agreement for these molecules is
probably due to the small value of Cé predicted by the spherical-
shell potential.which was used in (5.3.1). since for CF4 and SF6
this is the only estimate of C6 for these molecules. For CH4 the
value due to Dalgclrno]3 was used. The results for SF 6 ares however,
in better agreement with the data of Rowlinson et al than with those
76

of MacCormack and Schneider. This agreement would probably not

be destroyed by using a largerC 6 coefficient.



TABLE 5 C for CH

4
T Cudd Cnadd - co - c:od Cf c:expi'
1 2 3
131 -8589 7577 319 50 -1381 -13600 £ 90%
191 1702 2094 143 21 3632 4741 £ 10%
200 1787 1849 133 20 3478 4351 X 10%
232 1953 1204 99 19 3039 -
240 1704 1131 96 18 2721 3508 ¥ 3%
273 1519 851 76 17 2277 2670 £3% 2620 2880
373 1177 474 37 13 1601 1834 2010
448 1083 353 28 12 1396 1585
464 1082 300 27 11 1344 -
548 1042 263 23 10 1272 1385
573 1042 240 20 9 1253 1360
623 1037 221 16 2 1240 1330

Cadd = additive C, Cnadd = non-additive C, Co = octopole-octopole sorrection, Cod = octopole induced dipole correction,

Ct = total C,

] reference 181 , 2 reference 182, 3 reference 183, n =9 ’Pot' enl"dal

vel



TABLE 6 C for CF

4 .
- - 1
T c:c:dd Cnc.idd Co c:od Cr c:expf
273 4429 1134 892 120 4551 7100
373 3137 573 497 99 3114 4490
473 2776 376 311 82 2759 3660
573 2738 278 212 69 2735 3250
623 2799 221 154 59 2807 2563
1 . benkeal
,n=l olenlva
reference 182, 1212 Poten™*" L ABLE 7 C for SF,
1 2
T Cod d Cnadd Ch B Chd Cf c:expf c.:expi'
273 10,673 6071 4960 59 11,725 ) 101,130
307 11,307 4209 4033 56 11,427 19,920
323 10,955 3650 3674 54 10,877 18,710 41,015
348 10,189 2995 3191 52 9,941 15,720
370 9,479 2564 2801 51 9,191 13,910
373 9,394 2517 2790 50 9,071 23,800
404 8,526 2087 2377 47 8,189 12,390
C, = hexadecapole-hexadecapole correction
Chd= hexadecapole-induced dipole correcﬁon) ¢ = 2 xpo""'u' 0. w" ne 12 po S o ]

1 reference 184

reference 185

*GCT
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It is quite clear from the result that the additive third virial
coefficient cannot account for the experimental results for these
quasi-spherical molecules. The theoretical results for CH 4 (the most
accurate of those determined here) indicate that non-additive effects

other than the triple-dipole potential are quite small.

5.4  CONCLUSIONS

Both quantum-mechanical calculations on He and semi-empirical
work on CH4, CF4 and SF6 show that the major non-additive term
in the three-body potential is the triple-dipole effect.

From the quantum mechanical results only three-body effects

should be important which is in agreement with the results of previous

studies of third virial coefficients, liquid and crystal properties.



CHAPTER 6 - CONCLUSIONS

In this chapter some overall conclusions are drawn from the work
presented in this thesis.

The use of quantum mechanical perturbation theory, in terms
of separated molecule wavefunctions, as a method of calculating
intermolecular potentials has been investigated. The problem of finding
a suitable perturbation expansion from the multitude of possible
expansions was discussed. [t was concluded that the Murrell-Shaw-
Musher-Amos formalism is quite suitable. We showed that correcting
the main defect of this theory i.e. the lack of correct symmetry of the
first order wavefunction leads to only a minor change in the final
energy expression.

For the interaction of closed shell systems a formalism was
developed which shows that errors in the first order energy caused by
approximating the ground state wavefuncﬁon;s by Hartree-Fock functions
should be small.

The problem of calculating the second order energy was also
investigated and a method suitable for studying the interaction of closed

shell systems was suggested.
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A fairly complete solution, using the abovementioned method,

was then obtained for the interaction of two closed shell He atoms.

The results may be found in sections 2.6 to 2.10.

The overall potential agrees very well with those determined variationally
and with empirically determined potentials.

The method should be applicable to larger systems such as
Me, Ar, Kr interactions since excellent results were obtained using
Hartree-Fock separated molecule wavefunctions which are all that
are available for these larger systems. Furthermore, G.T.O. wave-
functions proved to be just as accurate as S.T.O. wavefunctions.

This is very important if application to largerynon-atomic (e.g. HZO’ N2)
systems is to be practical.

A further point (which was made in Chapter 2) is that the
perturbation method unlike the variational method of obtaining the
potential is physically interpretable and the results for one system may
be related to those for another.

The same perturbation method when applied to the problem
of non-additivity of the intermolecular potential, in Chapter 5
shows that this non-additivity is small. For three He atoms the major
non-additive term is the well known triple dipole effect. This result

agrees with the conclusions drawn from semi-empirical studies.
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We have also determined (Chapter 4) as closely as possible the
intermolecular potential for the interactions of pairs of CH4, CF4 and
SF6 molecules from an analysis of experimental viscosity and second virial
coefficient data. The model potential used contains both central and
non-central terms but still retains physical interpretability. An
excellent fit to experimental viscosity and second virial coefficients
was obtained in each case. Furthermore, reasonable values of the
self-diffusion coefficient, octopole moment and dispersion coefficient
(C6) of CH4 were also obtained. The potentials are simple enough
for use in applications such as the study of the equilibrium properties
of liquids. One such application was considered in Chapter 5 where
the third virial coefficients, C of CH4, CF4 and SF6 were calculated.
Excellent results were obtained when the triple dipole non-additive
potential was used to calculate the non-additive contribution to C for CH4.
The results for CF4 and SF6 were less satisfactory due to inaccuracy
in the determination of the three-body coefficient, Cabc' However,
the results do show that, in agreement with the work of Barker and

Pompe on Ar and the theoretical results of section 5.2 that the major

non-additive term is the triple-dipole effect.
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APPENDIX A - VIRIAL COEFFICIENT PROGRAMS

In this appendix the programs used for computing the second
and third virial coefficients are described and their accuracy is

illustrated.

1. Second Virial Coefficient Program

As mentioned in section 3.2.2 the second virial coefficients
were calculated by direct numerical integration using an adaptive
Simpson's rule procedure. Since the intergrands for the quantum
corrections and the H-functions become insignificant at large and
small r the integrations were carried out between r andr ,

max min
the distances at which the integrands become less than a specified

tolerance. A similar procedure was used for the classical central

second virial coefficient, Bo except that at small r,

g(r) =1 - exp (-U(r)/kT)+1 asr+ o (1)
and thus
B *=( /r*)k33+ I:max g(r)r2dr (2)
o min" o~ r_);'nli_‘n
3

* = =
where Bo Bo/bo’ bo 2/3 'rrNo o

ro* = ro/d Ty and d are two distances characteristic of the potential
function. The above scheme proved to be entirely satisfactory and

accurate as can be seen from Table 1, where the results for
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a Lennard-Jones 12-6 potential are compared to those obtained by
79
a series expansion method.

A listing of the program, second,mc;y be found at the end of

this appendix.

2, Third Virial Coefficient Programs

To evaluate the third virial coefficient a transformation from

the variablesr  *, r--* andru-* tor ' * x and y was made where
ab * bc ca ab ?

N]—'

1
* =gt Gy g = gt (100 +y)?

r
ac
andr. * =r.'/d
1 |
The various contributions to the third virial coefficient,

defined in Chapter 3 then becomes,

)
C*Odd= 361, f '{ fo ab Foe fea b \Idyd x drop” )

b L ‘ , 5
C* o 3613 3 b7 f% (F + 1) (B + 1) (g + 1) Fp o r oy yely dd r
@)

k '
|n* = .* ff 2[ fﬁéfbc °b+])rb ydydxdr; . (5)

and

3

-2, -1_-3 -6 (7 3¢
C'* =8B'* B°*+3d kK™ T ro*™" Jo [o?[ o (A°5+A +A.., )rb ydydrdr~

(6)

La

where f”' = exp (-U(riii YkT),
f e — €XP (- DU3/KT),

a

o =(-(-x2 )

k=n-6 and 1l=5-n



and AU3
U, 2 9 QU +

Aqb _ abc’) + yabc . abc }exp (~(U: X + Ub +U ';)/kT)
d rab d rac 0 rbe a ¢ ¢

1.2
—(Uab_ ) exp (-Uab/kT);efc.

As mentioned in section 3.2.2 two schemes were used to
evaluate these triple integrals,
a. repeated applications of Simpson's rule, and
b. multidimensional integral formulae.

The results for the 9-6 spherical shell potential may be seen
in Table 2. Also shown are the results obtained by a hundred point
non-adaptive Simpson's rule program written by Dr. J.A. Barker.
It is clear from the table that methods (a) and (b) are equally accurate
but the other program becomes inaccurate at low temperatures.

However, method (b) has several advantages over (a)

1. the number of integration points may easily be altered,

2, it is faster, and

3. it will give accurate results in a reasonable time on a small
computer.

The first point is particularly relevant since, as can be seen
from the tables’ results of about 10% accuracy may be obtained at a

reduced temperature of about 2.0 using the minimum number of integration
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points,(this takes 24 sec. on CDC 3200). Furthermore the program
is so arranged that the temperature loop is innermost and the major
computations are only performed once. Thus the time per integral
decreases as the number of integrals increases.

Also the integration is performed over @ number, n of sub-

intervals e.g.

od X1 o
C* dd = féf;z f:‘o g dydxd r*,,

= Io hdR
r2
= mln/ro*j) +W, fr in NAR+Wo [ hdR # ...
+W Imax (7)

where the W are weighting factors dependent on r ' and r and are

-1

set up in the program. This allows the number and limits of the sub-

integrals to be optimised for different potentials and different temperature

ranges. The ones shown in the listing at the end of this appendix,

are for a typical potential of the Lennard-Jones’ or spherical-shell™’

type.
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TABLE 1. B For Lennard-Jones 12-6 Potential. o =2.566A , € /k=10.22°K
0o

1K) BCy B B2, B2 B3, B3

20 -13.9839 15.6904 -8.2928 -8.2775 9.8611 9.8322
50 4.8966 3.6714 -0.5684 -0.5672 0.2549 0.2541
100 9.6254 1.4456 -0.09697  -0.096768  0,02188  0.02182
500 10,7311 0.2081 -0.00253  -0.00253 0.00013 0.00013
1000 9.8079 0.09448 -0.000590 -0.000688  0.000016  0.000016
2000 8.7015 0.04344 -0.000143  #0.000142  0.000002  0,000002

Tolerances in Simpson's rule and r limit tests, 10
N = by program SECOND (numerically)

S= by series expansion, reference 79

B in CC/mole

vel
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TABLE 2, Cadd for a 9-6 Spherical Shell Potential
1 2 3

T T Cadd Cadd Cadd
191 0.824 875 1690 1701

200 0.863 1288 1775 1787
232 1.0 1757 ‘ 1739 1746
348 1.5 1338 1240 1232
573 2.47 1045 1060 1038

e /k =232°K, r_=3.84A, d=2.15A

Barker's program,
repeated Simpson's rule,
Stroud multidimensional integral formulae with DIV=3

TABLE 3. C* for a 9-6 Spherical Shell Potential
by Stroud Method

T TIF DIV=I DIV=2 DIV=3 DIV5
191 0.824 0.4923 0.4246 0.336 0.3207
232 1.0 0.4923 0.3829 0.3423 0.3402
348 1.5 0.2950 0.2494 0.24158 0.2417
404 2.0 0.23817 0.2124 0.2099 0.2102
573 2.47 0.2222 0.2045 0.2035 -
696 3.0 0.21701 0.2045 0.2040 -

DIV controls the number of points in the multidimensional integral formulae.

TABLE 4. C*, Lennard-Jones 12-6 Potential

T* Keid C* CF
DIV=1 DIV=2 H.C.B.
1.0 0.08060 0.43315 0.42966
1.5 0.46170 0.54148 0.54339
2.0 0.40553 0.43611 0.43710
5.0 0.31923 0.31447 0.31508
10.0 0.28490 0.28631 0.28610
20.0 0.24349 0.24672 0.24643
100.0 0.14126 0.14235 0.14251

H.C.B., values from reference 1
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APPENDIX B - QUANTUM MECHANICAL INTEGRALS

In this appendix the programs used to obtain the energy of the

t
Zg+ state of H‘_e‘2 and of He3 are discussed.

1. Integrals over Gaussian lobe functions

The energy integrals over gaussian lobe functions, X (or 1,
G.T.O.'s centred anywhere in space. )
i.e.
2
X=Nexp (-ar”) (1)
where N =1, for unnormalised functions,
=( 1r/2c|)_3/ 4 for normalised functions,
are given in reference 52 .
The only complicated integral appearing is
F(z) = -l] exp (-zu2) du (2)
o o
62c
which is related to the error function and the incomplete gamma function.

Many different ways of evaluating this function have been given but

the most efficient appears fo be to use the scheme suggested by Schwartz
178
and Schaad 'i..e.

Fe) = op2) I /et ze1.0 @a)
1=0
=3 ( w/z)% erf (21/2), z> 1.0 (3b)

erf(z) =1 -(06 £+ ap zl" . +c:6 :zé)'16 (4)



or
erflz) = 1 = (ot +o,f” +agt> +a,ft + a5f5) exp (-£2) 5)
(the constants a, and t being given in reference 186)
which we will call Hastings first and second approximations respectively.
Since the series 3(03' converges rapidly for z£ 1.0 and erf(z)=1.0
to 8 figuresfor z>17.1 this method is very efficient.
The results for the series expansion 3(a) are shown in Table 1
and for the Hastings approximations in Table 2. A comparison of the
results using the ELLIOT 503 and CDC 3200 computers is given in Table 3.
As can be seen at worst an accuracy of 2 or 3 parts in 10”7 is obtained

and thus the above scheme is very satisfactory.

TABLE 1. Series Method

y
z Fo(z)] erf(z%:)] erf(zé:)2
0.001 0. 99996666 0.01128342 0.01128342
0.004 0.99986668 0.02256457 0.02256457
0.025 0.99916729 0.05637198 0.05637198
0.04 0.98682515 0.22270259 0.22270259
0.16 0.94913209 0.42839235 0.42839236
0.36 0.89192254 0.60385609 0.50385609
0.64 0.82203732 0.74210096 0.74210096
0.81 0.78471279 0.79690821 0.7960821
1.0 0.74682414 0.84270080 0.84270079

] by series expansion, ELLIOT 503

from N.B.S. compilation, ref. 75 .
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TABLE 2,

Hastings Approximations

]

z Fo(z)] Fa(z)2 erf (z%)] eri:(zi)2 eri’(z%)3
1.21 0.70914687 0.70914675 0.88020520 0.88020506 0.88020507
1.44 0.67228729 0.67228735 0.91031397 0.91031404 0.91031398
1.96 0.60281463 0.60281489 0.95228486 0.95228527 0.95228512
2.56 0.54079133 0.54079143 0.97634828 0.97634846 0.97634838
4.0 0.44104081 0.44104064 0.99532252 0.99532214 0.99532227
6.25 0.35434644 0.35434648 0.99959286 0.99959298 0.99959305
9.0 0.29540240 0.29540245 0.99997774 0.99997790 0.99997791
10.24 0.27694422 0.27694424 0.99999388 0.99999397 0.99999397
12.25 0.25320750 0.25320751 0.99999923 0.99999926 0.99999926
13.69 0.23952075 0.23952075 0.99999983 0.99999984 0.99999983
16.0 0.22155673 0.22155673 0.99999999 . 0.99999999 0.99999998

by Hastings first approximation } ELLIOT 503
n

by Hastings second approximatio

3 N.B.S. compilation, ref. 75

‘8€l



TABLE 3.

1 2

z Fo(z) Fo(z)
0.05 0.98358038 0.98358039
0.2 0.93715003 0.93715003
0.4 0.88125403 0.88125403
0.6 0.83140287 0.83140287
0.8 0.78681636 0.78681637
0.9 0.76628404 0.76628404
1.0 0.74682414 0.74682413
2.0 0.59814384 0.598143843
4.0 0.44104081 0.441040807
6.0 0.36160809 0.361608085
10.0 0.28024736 0.280247359
]ELLl OT 503
2CDC 3200

Slater Type Orbitals

The integrals required for the computation of the coulomb and

exchange energies using Hartree-Fock functions expanded in terms

60
of 1s S.T.0O.'s were all calculated using analytic formulae except

for the exchange integrals. These were calculated by the Barnett-

61,62
Coulson method using Q.C.P.E. program 23 modified slightly to

compute integrals over linear combinations of $.T.O.'s on the C.D.C,

3600 Computer. The accuracy was tested against standard results and

the convergence of the series involved was also tested for typical

integrals involved in He2 , see Table 8. Enough terms were always

included to give at least 5 figure accuracy.
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The integrals required for the calculation of the correlation
corrections and the dispersion energy calculations were performed

analytically or by use of the Miller-BrownIeSZﬁafomic integral program.



TABLE 4 , Check of 1s S,T.O. Program

R I l, Iy l, . 1*

6.0 0.047096291 0.017351265 0.166659498  0.015311456 0.166592680  0.000813980
(0.047096292)  (0.01735126) (0.16665949)  (0.015311456) (0.16659267)  (0.000814027)

8.0 0.010175760  0.003019164 0.124999873  0.002738738 0.124997956  0.0000328957
(0.0101756997)  (0.00301916365)  (0.124999873)  (0.0027387379)  (0.124997956)  (0.0000328960)

10.0  0.002012730  0.000499399 0.099999998  0.000461093 0.099999947°  0.00000113833
(0.0020127302)  (0.00049939923)  (0.099999977)  (0.00046109303) (0.0999999472)  (0.00000113835)

12,0  0.000374797  0.000079875 0.083333333  0.0000746590  0.083333332 0. 000000035482

(0.0037479694)  (0.0000798748)  (0.083333333)  (0.0000746586)  (0.083333332)

(0.0000000354839)

I] =(a lb), I2=(o I Rb | a), I3=(a I Rb 1a), |4=(c|c [ ab), |5=(aa | bb), I6=(ab | ab),
notation as in chapter 2, values in parentheses from reference 44

* 20 terms taken in the series' expansion of | 6

4
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TABLE 5 Convergence of Barnett-Coulson Method for Exchange Integrals

N INTEGRAL
2 0.000025569
7 0.000027455
15 0.000027529
25 0.000027531
29 0.000027531

N = number of terms in series, results for a linear combination of 2,1 sS.T.O.'s

at 5.5 a.l.
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APPENDIX C ~NOTE ON NOTATION FOR CHAPTER 3

In chapter 3 the role of statistics in the quantum mech-
anical calculation of B and transport coefficients has not been

emphasized and in fact only cross-sections in Boltzmann statistics

have been given .However +the Fermi-Dirac and Bose-Einstelin cases
areyeadily obtaindd from these formulae ,see reference 1.

The form of the Boltzmann equation used in chapter 3 is only
one of many ways of writing it ,however the one given there shows
quite clearly the relation between the classical ,quantum and
W-C~U~B cases.

A fuller discussion as to the dynamics of two body collisions
and the definitions of the quantities used in chapter 3 ,sections
(3+3:3) and (3.3.4) will be found 1Q references 1 ,108-110. Further-
more definitions of the integrals A B and C may be found in 1.

The units used for the transport coefficients in formulae
(3.3.8),(3.3.9) and *(3.3.10) are ,

viscosity gm.cm./sec. ,

thermal conductivity cal./cm.sec.°K and

diffusion cm.z/sec.

Finally in the formulse for the third virial coefficient
the integration ranges are ,

7? V ,all configuration space ,or
15 all triangles s.t. T b}, bo 204 T

ab>/' Tac
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APPENDIX D - SECOND VIRIAL COEFFICIENTS

In this appendix the individual contributions to the total

second virial coefficients for CH4, CF4 and SF6 are shown. Only

Bl is shown for CF4 and SF6 since BZ is negligible.



Th notation is as follows,

Bci = classical central B
B] = first quantum correction
32 = second quantum correction
Bo = total central B
oc = octopole-octopole correction
B':,c d = octopole-induced dipole correction
B, = hexadecapole-hexadecapole correction
and B = hexadecapole-induced dipole correction

hd
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TABLE 1. B for CH4, n=9

T Bcl BI BZ Bo Boc Bocd
110 =-336.97 11.72 -0.63 -325.88 ~31.65 -5.63
120 =281.11 9.68 -0.41 -272,84 -23.15 -4.50
130 -238.90 6.68 -0.28 -232.50 -17.59 -3.70
140 -205.95 5.30 -0.19 -200,84 -13.77 ~3.12
150 -179.60 4,32 -0.14 -175.42 -11.05 -2.69
160 -158.08 3.59 =0.11 -154,60 - 9.06 -2735
180 -125.07 2,60 -0.07 122,54 - 6.39 -1.86
200 -100.99 1.98 -0.04 - 99.05 - 4.75 -1.53
225 - 78.78 1.49 -0.03 - 77.32 - 3.46 -1.25
250 - 62.24 1.17 -0.02 - 61,09 - 2.63 -1.06
275 - 49.47 0.95 -0.01 - 48,53 - 2,08 -0.91
300 - 39.32 0.79 -0,01 - 38.54 - 1.68 -0.80
350 - 24.24 ¢0.58 0 - 23,66 -1.18 -0.65
400 - 13.59 0.45 0 - 13.14 - 0.87 -0.54
500 0.39 0.31 0 0.70 - 0.54 -0.42
523.16 2,74 0.29 0 3.03 - 0.49 -0.39
548.16 5.05 0.27 0 5.32 - 0.45 -0.37
573.16 7.10 0.25 0 7.35 - 0.41 -0.36
598.16 8.97 0.23 0 9.20 - 0.38 -0.34
600 9.09 0.23 0 9.32 - 0.37 -0.34
623.16 10,65 0.22 0 10.87 - 0.35 -0.32

14!



TABLE 2. B for CH4, n=12

T Bc] B] B2 Bo Boc Bocd
110 -332.33 10.08 -0.48 -322.73 -26.40 -5.03
120 -278.66 7.52 -0,31 ~271.45 -19.45 -4.,05
130 -237.85 5.82 -0.21 -232.24 -14.87 -3.35
140 £205.86 4.64 -0.15 -201.,37 -11.71 -2.84
150 -180.14 3.79 -0.11 -176.46 - 9.44 -2.45
160 -159.05 3.16 -0.08 ~155.97 -7.77 -2.15
180 -126.56 2,31 -0.05 -124.,30 - 5.52 -1.71
200 -102.75 1.77 -0.03 -101.01 - 413 -1.42
225 - 80.68 1.34 -0.02 - 79.36 - 3.02 -1.16
250 - 64.20 1.05 -0.01 - 63.16 - 2.32 -0.98
275 - 51.44 0.86 -0.01 - 50,59 -1.84 -0.85
300 - 41,27 0.72 -0.01 - 40,56 - 1.49 -0.75
350 - 26,11 0.53 0 - 25,58 -1.05 -0.61
400 - 15.39 - 0.41 0 - 14,98 - 0.78 -0.52
500 -1.28 0.28 0 - 1,0 - 0.49 -0.40
523.16 1.11 0.26 0 1.37 - 0.45 -0.38
548.16 3.43 0.24 0 3.67 - 0.41 -0.36
573.16 5.51 0.23 0 5.74 - 0.37 -0.34
598.16 7.40 0.21 0 7.61 - 0.34 -0.33
600 7.53 0.21 0 7.74 - 0.34 -0.32
623.16 9.11 0.20 0 9.31 - 0.32 -0.31

44!



TABLE 3. B for CF4, n=15

T Bcl Bl Bo Boc Bocd
273.16 -73.86 0.50 -73.36 -45.70 -5.38
298,15 -55.86 0.41 -55.45 -35.88 -4,62
303.15 -52.72 0.39 -52,33 -34.29 4.50
323.15 -41.45 0.34 41,11 -28.90 -4,05
348.15 -29.68 0.29 -29,39 -23.79 -3.60
373.16 -19.88 0.25 -19.63 -19.92 -3.23
398.17 -11.61 0.22 -11.39 -16.94 -2,93
423.18 -4 .54 0.19 -4,35 -14,58 -2.68
448.20 1.58 0.17 1.75 -12.69 -2.47
473.21 6.92 0.16 7.08 =-11.15 -2,29
498.23 11.62 0.14 11.76 -9.88 -2.14
523,25 15.79 0.13 15.92 -8.81 -2,00
548,26 19.50 0.12 19.62 -7.92 -1.89
573.27 22.84 0.11 22,95 -7.15 -1.78
598.28 25.85 0.10 25,95 -6.50 -1.69
623.29 28.57 0.10 28.67 -5.93 -1.60
673.16 33.31 0.08 33.39 -5.00 -1.46

A4l



TABLE 4. B for CF4, n=12

T Bcl B] Bo Boc Bocd
273.16 -94.11 0.44 -93.67 -18.30 =3.47
298,15 -73.83 0.36 -73.47 -14.37 -2,98
303,15 -70.30 0.34 -69.96 -13.73 -2,89
323.15 -57.62 0.30 -57.32 -11.59 -2,60
348.15 -44.39 0.25 44 .14 - 9.53 -2.31
373.16 -33.39 0.22 =33.17 -7.99 -2,08
398.17 -24.11 0.19 -23.92 - 6.80 -1.88
423,18 -16.18 0.17 -16.9 - 5.85 -1.72
448,2 - 9.32 0.15 - 9.17 - 5,10 -1.59
473,21 - 3.36 0.13 - 3.23 - 4,48 -1.47
498,23 1.92 0.12 2.04 - 4.03 -1.37
523.25 6.58 0.11 6.69 - 3.55 -1.29
548,26 10.73 0.10 10.83 - 3.19 -1.21
573.27 14.45 0.09 14,54 -.2.89 -1.14
598.28 17.81 0.09 17.90 - 2.62 -1.08
623,29 20.86 0.08 20,94 - 2,40 -1.03
673.15 26.14 0.07 26,21 - 2,02 -0,94

'8yl



TABLE 5. B for SF,, n =12

T B.1 B, B, BLg B, B g B B g

280 ~260.81 0.43 ~60.65 -3.68 _70.54 _3.97 _81.58 4,27
300 _222.59 0.36 4917 3.19 _57.18 _3.44 66.13 -3.70
325 _184.10 0.29 _38.85 2.73 45.19 -2.94 _52.26 3.17
350 -153.14 0.24 31.47 -2.38 -36.59 -2.56 42.33 2.76
375 _127.72 0.20 _26.01 2.10 _30.25 2.27 -34.98 _2.44
400 ~106.50 0.17 _21.87 _1.88 -25.43 _2.03 _29.41 2.18
440 ~78.99 0.14 _17.05 _1.6] -19.83 _1.73 -22.94 _1.86
480 -57.28 0.11 -13.69 _1.40 -15.92 _1.51 _18.42 _1.63
520 <3971 0.10 -11.25 _1.24 _13.09 -1.34 -15.14 _1.44

vl
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PROGRAM SECOND

CALCULATES THE CLASSICAL,CENTRAL SECOND VIRIA. COEFFICIENT
THE FIRST ,SECOND AND THIRD QUANTUM CORRECTIONS

AND NON=SPHERICAL CONTRIBUTIONS (VIA THE H«FUNCTION)

(9B ReRe]

INTEGER XX,YY,ZZ. VV
REAL MASS,NO P!
DIMENSION T(50),3MEGA(B0) ,KKP(50) ,HF (50)
COMMON EK,TEMP,TR;TSGR,TCUR, TFTHR,R0S; KP
EXTERNAL G,GR)FQCINT,SACINT, TQCINT UKR
DATA(BK=1,38054E=16Y ,(N0=6,02252E23)y(P153,14159265)
1, (H=6,6256FE=27)
PRINT 100
€ READ POTENTIAL PARAMETERS
READ 1 ,RO ,D#FK,MASS,NN SREAD 2 ,XX,YY,2ZZ;VV ,NT
PRINT 3 ,RO,D,EK,MASS,NN SPRINT & ,XX,YY;ZZ,VV NT
D=D#q ,F=B8%R0O=RO+1,E=8 SPRINT 150
G READ TEMPERATURES )
READ 5 p (TCIY 151 ,NTY SPRINT 6 J(TCLY, 121 ,NT)
‘C _ READ TOLERANCES FOR INTEGRATIONS
READ 1000 ,TOLR,TOLI '
TOLR=TOLR*1,E~48T0{.I=TOLI#*1,E=4 SPRINT 1001 ,TOLR,TOLI
C SET UP CONSTANTS FOR AN ARBITARY POTENTIAL FUNCTION
_ROS=R0/D $R033=(RO##3) $B0=2,#P[+NO#R033/3,0
QeH#H/(4,#P] P #MASS) #NOSR0O3I=3,/(ROS##3)
_ C1=0,25%D/(RD33#BK)$C2=1, /(DanBK>$CS c2#C32
PRINT 7 ,B0,0
C  SET up INITIAL ESTIMATES OF RMAX AND RMIN
RMINO=1,B83RMIN1L=1,88RMIN2=RMIN3=1,8
RMINO=1,5$RMIN1=1,4
RMAXO0=RMAXY=RMAX?23RMAX3220,0
C__ SET UP CONSTANTS FOR A PARTICULAR POTENTIAL FUNCTION
IF(YY,EQ,3) GOTO 15
DO 8 I=z1,NT
TEMP=T(I) ®TR=1,/TEMP$TSOR=TR4#TRETCUR= TR*TSGwmlFTHR TR#TCUR
- CONST1=C1#TCURSCONST2=TSQR#C3FSRQUANT=B15B2=R3s0,0
c CLASSICAL VALUE
_ RMING=FINDR(GR,=,1,RMINO, TOLR)
RMAXO=F INDR(G+1,0;RMAXD, TOLR)
HCL=RO3#(SIMPSONF(RMIND,ROS,TOLI,QY +SIMPSONF(RNOS,RMAX0,TOLI,G)
LeRMINQ##3/3,07 SI1F(ZZ) 9,9,10 05F
c HUANTUM CORRFCTIONS FOLLON S
) AMINT=FINDR(FQOINT,~,1,RMINL, TOLR)
RMAX1=F INDR(FQCINT,1,0,RMAX1, TOLR)
81=CONST1*(SIMPSONF(RMINl.ROS.1.Ew4oFQCXNTT
1+SIMPSONF (ROS,RMAXL,1,E~4,FACINT)) $B12QaB1 SIF(Z2Z=1) 9,9,11
11 RMIN?2=F INDR(SQCINT,»,1,RMIN2,TOLR)
RMAX2=F INDR(SQCINT,1,0,RMAX2, TOLR)
Bp=~CONST1#C2#TR#(SIMPSONF(RMIN2,R0S,1,E~4;SQCINT)
1+SIMPSONF (ROS)RMAX2,1,E=4,5QCINT)) $B2:Q#Q#B2F 1F(Z2Z=2T7 9,9,%<
T RMINZSF INDR(TQOINT 441 ,RMIN3, TOLR)
RMAX3=F INDR(TQCINT,1,0,RMAX3, TOLR) 4
B3=CONST1I#(SIMPSONF(RMIN3/ROS,TOLI#TQCINT)Y#SIFPSONF(ROS,RMAX3,
1TOLI TOCINT))
B3= a»as$83 Q#BISBI=20#B3 $B3=CONST2#B3
G SQUANT=B1+B2+B3 SBTOTAL=BCL+BQUANT _



O

IF(VV,EQ@, 1) PRINT 200 ,RMINO,RMAXO}RMIN1,RMAX1,RMIN2,RMAX2,
1RMIN3, RMAX3 SIF(XX=-1) 13,13,14
13 BCL=RO#BCLITEMP=EK*TEMP$B1=B0#B1%5R2=B2#B0%B3=83+#B0
BOQUANT=BO#BQUANTSHTOTAL=BO*RTOTAL
14 TEMP=TEMP/EK $PRINT 3006,TEMP,BCL,BQUANT,BYOTAL,B1,B2,B3
8 CONTINUE
15 IF(YY,EQ,1) GOTO 16 $PRINT 400
HerFUNCTION ROUTINE
"7 READ NUMBER OF MULTIPOLE MOMENTS AND POLARIZABILITY
READ 17 ,NOM,ALPHA § PRINT 18 ,NOM,ALPHA
READ MULTIPOLE MOMENTS
DO 19 I=1,NOM
READ 20 ,OMEGAC])SOMEGACI)=0MEGA{ 1) #1 ,E»34FPRINT 21,0MEGA(I)
19 CONTINUE
© 7 SET UP INITIAL ESTIMATE OF RMIN AND RMAX
RMINH=3 ,58RMAXH=7,0 $RO7=RO##7SALPHAS=ALPHA#L1 E=25 /(RQ#+3)
RMINHz1,65 $RMAXH=8:0
READ THE NO,0F AND TYPE OF H-FUNCTIONS REQUIRED
READ 22 s NKP SPRINT 23,NKP
no 24 [=1,NKP
READ 22 , KKP(1) SPRINT 25 ,KKP(IT
24 CONTINUE
DO 26 1=1,NT i
_ TEMP=T(I1)$TR=1,/TEMP
Do 27 IK=1,NKP
KP=KKP (1K) ) ,
RMINH=F INDR(UKR,»0,1,RMINH, TOLR)
_ RMAXH=FINDR(UKR,1,0;RMAXH,TOLR)
IF(VV,EQ.1) PRINT 500,RMINH,RMAXH SRMIN2=2,#RMINH
IF(RMAXH,GT ,RMIN2)} GOTQ 29
HFUNC=SIMPSONF (RMINH,RMAXH, TOLl ,UKR) $GOTD 30

oa

_.. 29 HFUNC=SIMPSONF (RMINH,RMIN2,; TOLT ,UKR)*SIMPSONF (RMINZ,RMAX .TOLT,

1UKR) ’
~ HFCIK) =HFUNC
30 CONTINUE
27  CONTINUE _
PRESENT VERSION FOR OCTOPOLE~OCTOPOLE AND OCTOPOLE~INDUCHD DIPOLE
CORRECTIONS
VO=HF (1) %VOD=HF(2)
TRa3EK#TR
DO 31 J=1,NOM
OMEGAS=0MEGA(JI*OMEGA(J)/ (RO7*EK#RK)
D1=0MEGAS#OMEGAS#TR#TR*B0O#14,811428#11,0
D2=28,B#TR*OMEGAS#*ALPHAS#RO
VIROCT=D1#VOSVIROID=D2#VOD
PRINT 32 ,TEMP,OMEGA(J) ,VIROGT,VIROID
31 CONTINUE
26 CONTINUE
16 CONTINUE
1 FORMAT(4F10,0;13)
2 FORMAT(513)
3 FORMAT (21H~POTENTIAL PARAMETERS,/,4H=R0=,F16,9,2X,2HD=,F16,9,4Y,
13HEK=,F16,9,5HMASS2,F16,9,/ . ,4H=-NN3,137
4 FORMAT(16H=CONTROL, NUMBERS, /,4H=XX=,13,2X;3HYY=,;13,2X;3HZZ=,13,2X
1,3HVYV=,13,/,24H=NUMBER OF TEMPERATURES=,137
5 FORMAT(F10,0)



6 FORMATIF16,9)
7 FORMAT(4H=B0=+F16,9i5X,2HQ=)E16,9)

17 FORMAT(13,F16,99)

18  FORMAT(5 H=NOMs,13,/,16H-POLARIZABILITY=,F16,9)

21  FORMAT(18H=~-MULTIPOLE MOMENT=,£16,97

20  FORMAT(F10,0)

22  FORMAT(I3)

23 FORMAT(5H=NKP=,13)

25 FORMAT(4H=KP=,13})

32  FORMAT(13H~TEMPERATURE=,F16,9,7HMOMENT= ,E1649,/
1119H~MOMENT CORRECTION=,E16,9,2X ,19HINDUCED CORRECTION=,E16,9)

100 FORMAT(34H~-SECAND VIRIAL COEFFICIENT PROGRAM,/)

150 FORMAT(13H-TEMPERATURES,/) .

200 FORMAT(27H~DISTANCES FOR INTEGRATIONS//,8F16,9)

300 FORMAT(13H~TEMPERATURE=,F16,9,2X,/i4H"B0=,F16,9,2X:9HBOUANTUM=,
1F16,9,2X,7HBT0TAL®,F16,9,/,4HRAL=,F16,9,2X,3HB22,F16,9,2X,3HB3=,
2F16,9)

400 FORMAT( 28 H-NONwSPHERICAL CONTRIRUTIONS,/¥
500 FORMAT(7H=RMINH=,F16,9,2X,6HRMAXH={F16,9)
1000 FORMAT(2F10,07

1004 FORMAT(12H-TOLERANCES , /.7H~FOR R=,E16,9,2X,17HFOR INTEGRATIONS=,

1E16,9)

END

FUNCTION G(X)

CALCULATES THE INTEGRAND FOR THE CLASSICAL,CENTRAL B [.,E,G(X)

~ COMMON EK,TEMP,TR,TSOR,TCUR,TFTHR,RQS, KP

POTENT=4,#EK#(X#a(=12) =X (=6))=TR

 G=(1,0-EXP(=-POTENT) V&XaX

END

~ FUNCTION GR(X)

FUNCTION GR{X) =zGUX)=X#X

COMMON EK,TEMP,TR,TSOR,TCUR,TFTHR,R0S, KP

POTENT=4, #*Eks(Xau(=~12)X#u(~6))*TR

GR=(1,0=EXP(=POTENTY) #X#X=Xu#X ,

END

FUNCTION FQCINT(X)

INTEGRAND FOR THE FIRST QUANTUH CORRECTION

COMMON EK,TEMP,TR,TSOR,TCUR,TFTHR,R0S, KP

POTENT=4, #EK# (Xas#{=12)~X#s(=6))=TR

Fzp4 #EK® (=2, % (Xa#(=13)¢Xaa(=7)) °

FeF*EK SFQACINT=F#F #XsX#EXP(=POTENTY

END

FUNCTION SQCINT(X)

INTEGRAND FOR THE SECOND QUANTUM CORRECTION

COMMON EK,TEMP,TR,TSOR,TCUR, TFTHR,RQS, KP

POTENT=4,#EK# (X#u(=12)=Xus(=6))#TR

Fz24,#EK# (=2, #(Xan(=13)¢X20(=7))

FeFu#FK BF2sFafF

S=24 ,#EK# (26, %X #8(=14) =7 ,#X8%(=8))

SOCINT=(0, 1% S#S +,28F2#W+0,1111111111#F2%F#TR#XR

1-0,01388888#F2#F2#TSQR)Y#EXP(-POTENT) aXeX

END

FUNCTION TACINT(X)

INTEGRAND FOR THE THIRD QUANTUM CORRECTION

COMMON EK,TEMP,TR,TSAR, TCUR, TFTHR,R0S, KP

POTENT=4, 4EK# (X#a(=12)mXs%(=6))*TR



H
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Fe24,abKu (=2, (Xnu(=13)¢X28(rm7))

Se24 ,#EK*¥ (26,4 Xun(=14)-7 ,#Xu2(~B))

Tz24,2FEK* (<364 ,#X %% (=15)+56,#X#u(~D))

FoaFaFSFazF2aF 2552=25#S5X2=X%#X8T2=1,/TEMP
TX=1,/(TEMP&#X)SX2R=1,/X2
TECINT=(0,00714286%#T*%#2+0,04285714#X2R#52+0,00793651452#5+TR
1+0,0333333333%F«S24TX +0,00634921#TX#X2R#F24F
2=0,0083333334F2#52#T72-0,00092593#FA=#T24X2R

3-0,0027777775F4uFuT24TX +0,000231480F4uF28T26T2)aX2#EXP(-POTENT

4)

END

FUNCTION UKRU{X)

INTEGRAND FOR H=FUNCTION

COMMON EK,TEMP,TR,TSAQR,TCUR, TFTHR,ROS, KP
POTENT=4, #EK# (X#u(=12)=Xn¥(=6))oTR
POTENT=FK#(CCL#PSN=CC2#PS3)#XR#TR
UKR=(ROS/X)##KPs {X#X/(ROS#RNOS#ROST)*EXPT=POTENT )
END

FUNCTION FINDRCPR,DX,RM,TOL)

FINDS THE MINIMIUM C(IF DX,LT,0) OR MAXIMIUM TUIF DX,GT,0) R

" FOR THE INTEGRANDS

X=RMEX=X=D¥X
X=X+DXSTEST=ABS(PRIX))ISIF(TEST=~TOLT 20241
RG=X '

FINDR=RG

END g
FUNCTION SIMPSONF(A,B,DELTA,FN)
_ADAPTIVE SIMPSON S RULE INTEGRATION
REAL K

X1=ARX2=8B3K=xX2=-X1
S1=FN{X1)FS0=S1=S1+FN(X2)
§2=20,%H=0,5#KSX=X1+H

$2=82+FN(X)

XeX+KGIF (X, QT . X2) 6,4

514=51+4,%52

IF(H2ABS({51=S0»S0)/ S1),LT,DELTA) 10.8
S0=S1551:=51~52=82 FK=z=HFGOTO 2
SIMPSONF=0,3333333333aH*S13END
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PROGRAM THIRD
PROGRAM TO CALCULATE THE THIRD VIRIAL COEFFICIENT

T BY EVALUATING THE TRIPLE INTEGRAL BY STROUD MULTIPLE INTEGRAL

FORMULLAE ,THIS VERSION USES N SUBDIVISION AND A 7-TH, DEGREE
FORMULA

THIS VERSION IS SET UP TO CALCULATE THE ADDITIVE AND NON-
ADDITIVE THIRD VIRIAL COEFFICIENTS FOR A LENNARD-JONES 12-6
POTENTIAL

" DIMENSION T(50),GF1(40),GF2(40),GF3 (40), WT(40),WTA(20),WTB(20) ,

1CONR1(20,10) yCONR2(20,10),CONR3(20;10T,CONR4(20,10),5uUM1(20,10)
2,5UM2(20,10),5UM3(20,10),SUMA(20,10)

REAL MASS,NO,NU

DATA (GNU=0,9258200998) ,(ETA=0,92582009987

DATA (GMU1=0,7341125288),(GMU2=0,4067031864)

" DATA (41=0,2957475995),(B1=0,0941015089)

DATA (CC1=0,2247031748),(CC2=0,41233386237%

DATA(WTA 0.UO?0625l0|25!0p2500025'0[25;0125)0|25l0|255100!1|002101
13,0,3.0)

DATA(WTB 0,005150,1325,1,551,75,2,0,2,25,2,542,75:3,0,

14,0,5,0,7, 1,10,0)

oy
22

23

24

15

DATA(PI 3, 141592653v.(N0 =6,02252E23), (BK=173805E=16)
1, (H=6, 6256E—27)

PRINT 1

FORMAT(33H=-THIRD VIRIAL COEFFICIENT PROGRAM,//)

SET UP THE WEIGHTS FOR THE INTEGRATION FORMULA

DO 21 L=1,6
WT(LY=A1

DO 22 L=7,18
WT(LY=B1

DO 23 L=19,26
WT(LY=CC1

DO 24 |.=27,34
WT(LY=CC? '
SET UP THE POINTS FOR THE INTEGRATION FORMULA

DO 15 L=1,34

GFL(L)=GF2(|L)=6GF3(LY=0,0

GFL(1)=GF2(2)=6F3(31=GNU

GF1(4)=GF2(5)=GF3(6)=-GNU
GF1(7)=GF2(7)=GF1(BY=GF2(9)=GF3(8)&GF3(9)=ETA
GF1(10)=GF1(11)=GF2(12)=-ETA

GF2(10)=GF3(11)=GF1(12)=kTA
GFL(13)=GF2(13)=GF1(14)=6GF3(14)=GF2(15T=6F3(15)=-ETA
GF1(16)=GF2(17)eGF3(18)=ETA

GF3(16)=GF3(17)36F2(18)==ETA
GF1(99)=GF2(19)=GF3(19)=GF2(20)=GF3(20Y=GF1(21)=GF1(22¥=GF2(22)
1 =GF3(21)=6MU1

GF1(20)=6F2(21)=GF3(22)==GMU1
GF1(23)=6GF2(23)=GF1(24)=GF2(25)=GF3(25Y=GF1(26)3GF2(26Y=GF3(26)
1=6GF3(24)==GMU1

GF3(23)=6F2(24)=GF1(25)=GMU1

GF1L(27)=GF2(27)=0 r (279=2GF2(28)=GF3(28Y=GF1(¢(29)=GF3(29Y=GF1(30)
1=GF2(30)=GNU2 ]

GF1(P28)=GF2(29)=GF3(30)==GM2
GF1(34)=GF2(31)=0F1(32)=GF3(32)=0F2(33Y5GF3(33)3GFL1(34Y=GF2(34)=
1GF3(34)=~GMU2

GF3(31)=GF2(32)=GF1(33)=GMU2
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115

169

125

120

110

111

READ THE POTENTIAL PARAMETERS AND THE MASS

READ 2 ,RO,DsEK,NU,MASS 3$PRINT 3 ;RO/D,EK,NU,MASS
FORMAT(5F10,0%

FORMAT(21H~POTENTIAL PARAMETERS:/.4HFR0=pF16|9ISXa2HD=oF16|9!5X!
13HEK=,F16,9,//,4H=NU=,F16,9,//,22H~MASS OF THE MOLECULE=,fF16,9,/)
RO=zRN#1,0E~-8 $D=D#*1,nE~B

READ TEMPERATURES

READ 33,NT  SPRINT 4,NT

FORMAT(13)

FORMAT(24H~NUMBER OF TEMPERATURES=;[37

PRINT 5

FORMAT(13H=TEMPERATURES, /)

DD 6 1=1,)NT

READ 7,TEMP ST(I$=TEMPSPRINT 8,T(17

FORMAT(F10,0)

FORMAT(F16,9) ]

CONTINUE

ROS=R0O/D $RO=2,#NO#*PI#(RO#+3)/3,5802=80%80 INU=NU/(EK*BK# (D##9))
Q=H#H#NQ/(4,0=P]«P1#MASS) FROSME=ROSH#%*(=6)

PRINT 115,R0S5,030,H02,Q

FORMAT(29H~-DERIVED POTENTIAL PARAMETERS,/,5H-R0S=,F16,9,5X,
13HBO=,F16,9,5X,6HB0O#B0=,F16,9,/ ' 3H2Q3,EL16,9)

READ INTEGRATION PARAMETERS

READ 9,DIV,RXyIREQL, IREWZ, NN

 FORMAT(2F10,0;313)
CWTR(1)= RX$NTA(1) 1. 0=RX

DO 169 I=1,NN

WTACI)=WTA(I)®R0OS SWTBCI)=WTR()*ROS

CONTINUE

RXX=WTR(1)#D #1;0E8 SPRINT 125,DIV,NN,RXX, IREQL, IREQ?

FORMAT (23H=INTEGRATION PARAMETERS, 4 ,5H=D1Vs,F16,9,5X,
123H NUMBER OF R DIVISIONS=,13,/,30H=LOWER LIMIT OF R INTEGRAT, ©w=
2,F16,9,/,17H=-REQUEST NUMBERS=,213)

PRINT 120

FORMAT (12H=TEMPERATURE, 8X, 2LHCLASSICAL ADDITIVE C ,15H~NON=ADD
MITIVE C,//)

NDIV=DIV $CENTRE=0,5/DIVSC=CENTRESCDEL=2,#CENTRE

DO 110 IL=1,NN §DO 110 IT=1,NT

CONR3 (1L 1T)=CONR2(IL,ITI=CONR3(IL}ITY=CONRATIL,IT)=0,0

DO 10 L=1,34 $N0 111 IL=1,NN$SDO 111 [T=1,NT

SUMLCTL, IT)=SUMR(IL, ITY=SUMB(IL, ITT=SUMATIL,1T)20,0

Ci=~CENTRE

DO 11 1=1,NDIV

 G1=C1+CDEL $X13GFL1(L)»C+C1

DO 11 IL=1,NN
ReWTA(IL) #X1+WTB(ILY $RR=1,0/RSRR2=RR#RR
RR3=zRR2#RRFRR6 =RRI#RRIFRRL2=RR6 #RRETRR5=RR2#RR3

. C3==-CENTRE

DO 11 K=1,NDIV
C3=C3+CDEL $X3=GFI(L)*C+CIFTX=zX3/2,0

OMX=21,0=X SOMXSQ=OMX#OMXSROMOSA=SART(1,0=0MXSQ)EXSQA=X#XFC2==CENTRE
DO 11 J=L,NDIV

C2=CP+CDEL $XZ2=GF2(L)#C+C28Y=X2e¢ROMOSQAEYSQ=Y*Y

R13S503RR2/(XSQ+YSQ) $RR13=1,0/SQRT(RL3SQY o
R136=R13SQ*R133QA*»R1L3SA FR1312=R136#R136 $XR13=1,0/RR13

~ R23S0=RR2/(0OMXSQ+YSQ) SRR23=1,0/SQRT(R23SQY



70

70

22
25

57
61
62

io0
11

R236=R?3SQA#R23SQA#R23S5Q $R2312=R236#R236
FACTORR=X2#(1,0=0MXSQ)/RR5

T DO 100 IT=4,NT

51

52

53

2.

TEMP=T(IT) $TR=41,0/TEMP
IFCIREQ2,NE,17 GOTO 700
IF(R,LE,1,0) GOTO 48
CONTINUE

SET UP U(R12)
POT12c4,#EKa (RRe#12=RR**#6) #TR
IF(POT12,GT,700 48,49
EFR123-1,0 $GOTD 50
ER12=EXP(=P0T12)=1,0
CONTINUE

IFCIREQ2,NE, 1) GOTO 701
IF(RR13,LE,1.0) GOTO 51
CONTINUE

SET UP U(R13)

POT13=4,%EK* (XRL3e%12=XR13##6) #TR  $IFTPOTL3,GT,700,) 51,52

ER13=-1,0 % GO TO 53
ER13=EXP(=POT13)~1,0
CONTINUE

IFCIREQ2,NE,1) GOTO 702
IF(RR23,LE.1,0) GOTO 54
CONTINUE

SET UP U(R23)

POT2324,#EK* (XR23##12-XR23##6) *TR ~ SIF(POT23,GT,700.) 54,55
‘ER23==1,0 $GOTO %6

ER23=zEXP(=PQT23)=1.,0
CONTINUE
PSUM1=ER12#ER134ER23#F ACTORR #WT (L7

S SUMLCIL,IT)YsSUMLICIL,IT)+PSUML

3

5
0N

60

0

R2=R#RFRR13SO=RR13*RR1IBRR23ISNaRRAI#RR23
IFCIREQL.LT,1) GOTO 60
IFCIREQ2,NE, 17 GOTO 703

$XR23=1,0/RR23

IF(RR13,LE,L1.,0) GOTo 225 $1F(RR23,LE,1,0Y GOTO 225

CONTINUE
C51=0,5#(R2+RR13SA=RR235Q) /(RR13#RY
CS2=0,5%(R2+RR23SQ=RR135Q) / (R*¥RR23T
£CS3=0,5%(RR13SN+RR23SA~R2)/(RRLI#RR23T
POTL23=P0T12+P0T13+PNT23

IF(POT123,GT.700) GOTO 225 3FGRHzEXP(=P0T123)

GRH=0,0 $§ GNTN 57
CONTINUE

$GOTO 2500

CDELU3=NU#(R#RR1I#RR23J)##(~3)u(4,0+3,0#CS1»CS24CS3)
DELU3=DELUJ*EK#TR $IF(DELU3,GT7700,) 57,61

ER123==-1,0 $GOTO 62
ERL23=EXP(=DELIZN=1 40

CONTINUE -

PSUM2=GRH#ER123#FACTORR #WT(L)
SUM2CTIL, ITY=SUMR2(IL; IT)Y*PSUM?
CONTINUE

CONTINUE

CONTINUE

DO 10 IT=1,NT $DO 10 lL=1,NN
CONRI(IL,IT)=CONRLCIL,ITY+SUMLCIL,IT)
CONR2CIL IT)=CONRCIL)ITI+SUMRLIL,IT)



10

58

599

65
59

CONTINUE

AAA=CDEL=##3/8,0 $CONST=~18,0#R0SMé
DO 58 I1T=4,NT $D0 58 JL=1,NN
CONR1(IL,IT)=AAA®CONRLICIL,IT)
CONR2(IL,IT)=AAA#CONR2CIL,IT)
CONTINUE

DO 59 I1T=z1,NT
CONL=CON2=CON3=C0ON420,0

DO 599 IL=1,NN
CONL=CONL+WTACIL)#CONRICIL,IT)
CONZ2=CONP+WTACIL) #CONR2CIL,IT)
CONTINUE *
CON1=CONL#CONST#0,625#WTB(1)##45#ROSM6
CON1eCON1#B0O2SCON2=CON2*BRO2%#CONST
PRINT 65,T¢IT),CON1,CON2
FORMAT(F16,947X,F1619,7X,F16,9)
CONTINUE

STOP

END



PROGRAM GAUSLORE
CALCULATES THE ENERGY INTEGRALS FOR LINEAR COMBINATIONS OF
GAUSSIAN LDBE FUNCTIONS (EITHER NORMALIZED OR UNNQRMALIZED)

aan

REAL KEIl,KEIC.NATI,NATIC,NN
DIMENSION FXCD(5,10),FYCD(5,10),FZCD(5,10),RNORMC(5,10)
1,COEF(5,10),CXCD(3),CYCD(3),C2ZCD¢3),CHARGE(3),RNORMF (5)
. 2,ALPHA(5,10)
DIMENSION TGR(200),NX(10) ,NOC(10)
DIMENSION ZETASQ(20)
COMMON FXCD,FYCD,FZCD,RNORMC,COEF,CXCD,CYCD,CZCD,CHARGE, RNORMF
1,ALPHA
COMMON TGR,NX.NQC
. PRINT 1000

1000 FORMAT (45H=ENERGY INTEGRALS FOR GAUSSIAN LOBE FUNCTIONS,//)
READ 105,N0BS

105 FORMAT(I13)
PRINT- 106 »NOBS

106 FORMAT(22H~-NUMRER OF BASIS SETS=,13)

B - 1B=0
801 CONTINUE
PRINT 1255
1255 FORMAT(15H-NEXT BASIS SET,/)
_[B=IB+1

P1226.2831853073
P175=0.423777208 $P115=5,568327996
READ 100, NQF »NON
100 _FORMAT(213)
PRINT 231,NQF.NQN

231 FORMAT(21H~NUMBER OF FUNCTIONS=,13,/, 1BH-NUMBER 0F NUCLEI=,13 /-

PRINT 4000

e 4000 FORMAT(32H-SCALING FACTOR FOR EACH ORBITAL)

DO 5000 I=1,NQOF
e READ 5001 ,ZETASQ(I) g
5001 FORMAT(F10,0)
. PRINT 5002 ,1.ZETASQ(I)
5002 FORMAT(BH~ORBITAL,13,5X,15HSCALING FACTOR=,F16.9)
5000 CONTINUE - i
DO 60 I=1,NQF
READ 987,NV
987 FORMAT(13)
NOC(]I)=NV
PRINT 978 ,I,NV
978 FORMAT(9H~FUNCTION,I3,2X,18HNO, OF COMPONENTS=,13)
60 CONTINUE
DO 70 1=1,NOF \
READ 837, NV
837 FORMAT(I3)
NX(I)=NV
IF(NV) 839,838,839
838 CONTINUE
PRINT 840, I N
840 FORMAT( 9H~FUNCTION,13,2X,34HCONSISTS OF UNNORMALIZED FUNCT]ONS)
GOTO 841
839 CONTINUE
PRINT 842 ,1
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B42

70

338

102

301
2

222

FORMAT( 9H~FUNCTION,13,2X%X,34HCONSISTS OF NORMALIZED FUNCTIONS)

CONTINUE

CONTINUE
_ PRINT 338

FORMAT (30H-BASIS FUNCTION SPECIFICATIONS,/,9H~-FUNCTION ,5X
1,9HCOMPONENT, 26X, 8HPOSITION, 17X, 8HEXPONENT,9X,1LHCOEFFICIENT)

DO 1 I=1,NOF

NK=NOCC(])

DO 1 J=1,NK

READ 101, X,Y,Z,wW,V

FORMAT(BF10.,0)

FXCDCI,Jd)=X3FYCD(I,J)=YSFZCD(I,J)=Z8ALPHA(L, J)BWSCOEF (I, J) 3V

ALPHA(T,J)=ALPHA(I,J)sZETASQC(])

Waw#ZETASQ (D) -

PRINT 200,1,J.X,Y,Z,W,V

FORMAT(I3,10X.,13,5X, 5F16:9)

CONTINUE

PRINT 355

FORMAT (23H~NUCLEAR SPECIFICATIONS./,7H-NUMBER, 30X, BHPOSITION,17X,
16HCHARGE, / /)

B0 2 I=1,NNN

READ 102,X,Y,Z,CC

FORMAT(4F10,0)

CXCD(I)=X SCYCN(I)=Y $CZCD(I1>=Z SCHARGE(I)=CC

PRINT 301:1:)()"!'12,00

FORMAT(13,5X,4F16,.9)

CONTINUE

PRINT 222 -

FORMAT(40H~-NORMALIZING CONSTANTS OF THE COMPONENTS,/,

~
L.}

. 19H~-FUNCTION,5X,9HCOMPONENT,5X, BHCONSTANT, /) . .

DO 3 I=1, NOF S®NK=NOC(I) $M=NX(]) $DO 3 J=1,NK

.. IF (M) 61,61,62 - C e e e

61

62

63

333

3

344

X=1.0 $GOTO 63 ¢
XC=ALPHA(T,J)SX=(XC+XC)*#(0,75)#pP[75
CONTINUE

RNORMC(1,J)=3Xx=C0EF(I,J)

PRINT 333,1,4,X
- FORMAT(I3,11X,13,7X,F16.9) -

CONTINUE

PRINT 344

FORMAT (39H-NORMALIZING CONSTANTS oF THE FUNCTIONS, /,
-19H-FUNCTION, 11X, BHCONSTANT /) - .

DO 4 I=1,NOF

- AU=0.3

NK=NOC (1)

DO 5 J=1,NK $ DO 5 K=1,NK !
A=ALPHA (T, J) SRzALPHA(I:K)

AX=FXCD(1,J) $RY=FXCD(I,K)

AY=FYCD(1,J) $BY=FYCD(1+K)

AZ=FZCD(1,J) $RZ=FZCD(I1)K)

APR=zA+R

ABSQ= (AX~BX)# (AX=BX) #(AY#BY)#(AY~BY)+(AZ=BZ)#(AZ~BZ)
AW=RNORMC(1,J)#RNORMC (1K) % (APB)es(~1, SY*EXP(—A!BuABSO/APB)*PIIE
AUzAU+AA

CONTINUE

XX=1,0/SORT (AU)
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326

366

52

53
54

55

. PZ=(A*AZ+BeBZ)#APB

RNORMF (T)=XX

PRINT 326,1,XX

FORMAT (I3 ,12X,F16.9)

CONTINUE

PRINT 366

FORMAT(23H-ONE ELECTRON INTEGRALS)
DO 9 I=1,N0OF §Dn 9 J=1,NOF
NN=RNORMF (I )#RNQRMF (J)
OLI=KEI=NATI=0.0

NI=NOC(I) ®NJ=NQOC(J)
TERM1=TERM2=0.0

DO 10 K=1,N] % DO 10 L=1i,NJ
CN=RNORMC(1,K)#RNORMC(J,L)
A=ALPHAC(I,K) $B=ALPHA(J,L)
APB=1.0/(A+B)

ATR=A#*3 FPAB=P115#(APR##1,5)
AX=FXCD(],K) $BXaFXCD(J,L)

AY= FYCD(I,K) $ BY=FYCD(J.L)
AZ=FZCD(1,K) 3$R7=FZCD(J. L)
ABS=(AX-BX)# (AX~-BX) +(AY-BY)#(AY-BY)+( AZ~-BZ)#(AZ-BZ)
ADR=ATR#APB $ARG=(~-ABS#ADB) BEXPARG=EXP{(ARG)
PAB=PAB*EXPARG

OVERLAP INTEGRAL CALCULATED
OLIC=CN#PAR

OLI=0OLI+OLIC

_KINETIC ENERGY INTEGRAL CALCULATED

KEIC=CN#PAR#ADB*(3,0+ARG+ARG)
KEI=KEI+KE]C

NUCLEAR ATTRACTION INTEGRALS CALCULATED
PX=(A%AX+B#RX)#APB :
PY=(A*AY+B#3Y)#APB '°

NATIC=0.0

DO 11 M=s1,NON

; CX=CXCD(M) BCY=CYCD(M)$CZ=CZCD(M>

CPS=(CX=PX)®#(CX-PX)+(CY-PY)®(CY=-PY)+(CZ~PZ)®(CZ=-PZ)
X=CPS/APB

CALCULATES THE FUNCTION

INTEGRAL OF EXP(-X#U##2)#DU FROM 0 TO0 1
FOX=1.0 .
IF(X.EQ.,0.0) GOTO 58

ERFX=1.0 $XS=SART(X)

[F(X,GT.17,1) GOTO 59

X LESS THAN OR EQUAL TO 1

IF (X.GT.1.0) GOTO 55

AR=0.5 $TERM=PT|.SUM=2,0

DO 53 JJ=2.50

ARzAR+1.0 -
TERM=TERM#*X /AR

PTLSUM=PTLSUM+TERM
IF(TERM/PTLSUM=-1.0E-7) 54,54,52

CONTINUE

FOX=0.5%#PTLSUM*EXP (=X)

GOTO 58

X GREATER THAN 1.0

CONTINUE



ERFX=1,0~ ((((((4,30638E-54#X5+2.765672E~4)aXS+1,520143E~-4,%XS
1+9,2705272E~-3)8X5+4,2282012E-2)#XS+7,0523078E-2)8XS+1,0)ww(~16)
59 FOX=ERFX#0,886226925/XS
.58 CONTINUE
NATIC=NATICO~CN#*#CHARGE (M) #APB#EXPARG#FOX
11 CONTINUE
NATI=NATI+NATIC
~10 . CONTINUE
OLI=NN#OLISKEI=NN#KEISNATI=NNe#NAT]I#P[2
PRINT 500,1,J,0L1 JKEI  /NATI
500 FORMAT(3H-FN,I3,2X,3HAND,2X,2HFN,I3,5X,8H0OVERLAP=,F16.9,
15X,14HK,E. INTEGRAL=,F16,9,5X,23HNUCL: ATTRAC, INTEGRAL=,F16.9)
9 CONTINUE
. PRINT 458 .
458 FORMAT(40H~INDIVIDUAL NUCLEAR ATTRACTION INTEGRALS,/)
DO 99 [=1,NOF$D0 99 J=1,NOF
NN=RNORMF { 1Y #RNORMF (J)
DO 999 M=1,NON e
NATIC=NATI=0.0
. . NI=NOC(I) BNJ=NQC(J) A
DO 9999 K=1,NI $NO0 9999 _=1,NJ
CN=RNORMC(I,K)#RNORMC(J,»L)
A=ALPHAC(I ,K) $B=ALPHA(J,L)
. APR=1.0/(A+8)
ATR=A®*B FPAB=PI15%(APR=#%1,5)
e AX=FXCDCI,R)Y SBX=FXCD(J,L)
AY= FYCD(I,K) % BY=FYCN(J)L)
AZ=FZCD(I1,K) $R7=FZCD(J,L) ’
ABS=(AX~BX)#(AX~BX) +(AY~BY)#(AY~-BY)+( AZ~-BZ)®#(AZ=-BZ)
ADR=ATB#*AP3 $ARG=(~ABS#ADB) SEXPARG=EXP(ARG)
PAB=PAB*EXPARG '
. PX=({A#AX+BaBX)*APB
PY=(A#AY+B#RY)*APRB
PZ=(A#AZ+B#B7)*APB
CX=CXCD(M) $CY=CYCD(M)TCZz=CZCD(M)
CPS=(CX~PX) % (CX=PX)Y+(CY~-PY)#(CY=PY)+(CZ=«PZ)®(CZ=P2)
X=CPS/APB
CALCULATES THE FUNCTION
INTEGRAL OF EXP(~Xx*U»#2)=DU FROM 0 TO 1
FOXx=1.0
IF(X.EQ.0.0) GOTO 158
ERFX=1.0 EXS=SQRT(X)
IF(X.GT«17.1) QOTO 159
X LESS THAM OR EQUAL T0 1 ~ -
IF (X,GT,1.,0) RAQTO 155
AR=0.5 $TERM=PTILSUM=2,0
DO 153 JJ=2,50
152 AR=AR+1.0
TERM=TERM#X/AR
PTLSUM=PTLSUM+TERM
IF(TERM/PTLSUM=1.0F~7) 154,154,152
153 CONTINUE
154 FOX=0.5%*PTLSUM#®EXP (=X)
GOTO 158
X GREATER THAN 1.0
155 CONTINUE

’



ERFX=1.0= ((((((4,3063BE~5#XS+2,765672FE~4)#XS+1,520143E-4)#X5
e 1%9.2705272E-3)8#X5+44,2282012E-2)#XS+7,052307BE-2)#XS*1,0)ux(-16)
159 FOX=ERFX#0,886226925/XS
_ 158 CONTINUE
NATIC=NATIC~-CN#CHARGE (M) #»APB+EXPARG#FOX
19999 CONTINUE
NATI=NATI#NATIC
_NATI=NN#PI2#NAT]I
PRINT 409 ,I,J,M,NATI
409 FORMAT(SH"I=i13-5Xn2HJ=IIS)SszHM=IIS'SXiSHNATI=DF1609)
999 CONTINUE
. .. 99  CONTINUE
PRINT 555
v .555  FORMAT(23H-=TWO ELECTRON INTEGRALS)
NI=0
DO 641 KP=1,NOF
DO 641 KR=KP,NOF $D0 641 KS=KR,NOF
NI=NI1+1
TGR(NI)=TELI(KP,KP,KR;KS)
oo .. .PRINT 150,NI,KP,KP,KR;KS, TGR(NI)
150 FORMAT (4H~NI=,15,2X,4H I[=,15,2X,4H J=z,15,2X,4H K=.15,2X-
14H  L=,15,5X,10H4 INTEGRAL=,F16,9)
641 CONTINUE
.. KPE=NOF =1
DO 22 KP=1,KPE ,
. KQS=KP+1 . S
DO 22 KQ=sKNS,NNF -
e . . DO 22 KR=KP,NOF
. IF(KP-KR) 20,18,18
....-18 . DO 19 KS1= KQ,NOQF
NI=NI+1
e - e . TARON])YSTELI(KP,KQ,KR,KS1)
PRINT 110 ,NI.KP,KO,KR,KS1,TGR(NI)

o110 FORMAT(4H-NI=,15,2%X,4H 1=,15,2X,AH J=,15,2X,44 K=,15,72 ,
15H =,15,5%X,10H4 INTEGRAL=,F16,9)

.~ .19 CONTINUE
GOTO 22

220 DO 21 KS2=KR,NOF
NIaN]+1

e TGR(NI)=TELI (KP,KQ,KR,KS2)
PRINT 1411,NI,KP,KQ,KR,KS2, TGR(NI)
111 FORMAT(4H-NI=,15,2X,44 1=,15,2X,4H J=.15,2X,4H K=,15,2X,
15H L=,15,5X,10H INTEGRAL-;Flb 9)
R~ | CONTINUE
22 CONTINUE
- IF(IB-NOBS) 801,808,805
805 CONTINUE
SToP
END
FUNCTION TELICI,J.K,L)
C CALCULATES THE TWO ELECTRON INTEGRAL (1J/KL)
. INTEGER P, N °
REAL NN
DIMENSION FXCD(%,10),FYCD(5,10),FZCD(5,10),RNORMC(5,10)
1,C0EF(5,10),CXCD(3),CYCN(3),0ZCD(3),CHARGE(3),RNORMF (5Y
2, ALPHA(S,10)



Do

10
8

13

DIMENSION TGR(200),NX(10) ,NOC(10)
COMMON FXCD,FYCD,FZCD,RNORMC,COEF,CXCD,CYCDR,CZCD, CHARGE , RNORMF
1,ALPHA

COMMON

TGR.NX,NQOC

PI25=217.493418326
NN=RNORMF (1) *RNORMF ( J)*RNORMF (K) #RNORMF ¢L)

ERI1=0.0

N1=NOC(l)$NZ2=

DO 13 M=1,N1
DO 13 P=31,N3
AX=FXCD(I, M)
AY=FYCD(T, M)
AZzFZCDC(1,M)
CX=FXCD(K,P)
CY=FYCD(K,P)
CZ=F7ZCD(K,P)
A=ALPHACL M)
C=ALPHA(K,P)

NOC(J)ENI=NOC (K> EN4=NOC(L)
% DO 13 N=1,N2
% D0 13 0=1.N4

FRAX=FXCD(JIN)

$RY=FYCD(JsN)

$B7=FZCD(J,N)
$NX=FXCD(L»Q)
$NYy=FYCD(L,Q)
$D72=FZCD(L,Q)
$ B=ALPHAC(J,N)
EN=ALPHA(L,»Q)

APR=A+BICPD=C+N KABCD=APB+CPD

RAPB=1.0/AP3 $RCPD=1,0/CPD

ABS=(AX=BX)# (AX-BXY+(AY-BY)®#(AY=-BY)+(AZ~BZ)*(AZ~B7)
CDS=(CX=DX)*#(CX-DX)+(CY-DY)*#(CY-DY)+(CZ-DZ2)#((Z~-DZ)
PX=(A#AX+BaBX )Y#RAPB $QX=(C*CX+D=DX)#RCPD
PYz(A#AY+B#BY)#RAPR. $QY=(C#CY+D#DY)=*RCPD
PZ=(AwAZ+B#R7)%RAPB $QZ3(C»C/+D%DZ)*RCPD
PAS=(PX-QX)# (PX=QX)*(PY~QY)®(PY-QY)+(PZ~QZ)#(PZ=Q27)
X=PQS#*APBaCPD/ABCD

CALCULATES THE FUNCTION

INTEGRAL OF EXP(-X#Uex2)«DU FROM Q0 TO 1

FOx=1.0

[F(X,EQ.,0.,0) GOTO 8
CERFX=1,0 3XS=SQRT(X)

IF(X.GT7.17,1) GnTO 10

X LESS THAN OR EQUAL TO 1 —

IF (X.GT7.1.,0) GOTO 5
AR=0.5 $TERM=PTLSUM=2,0
ng 3 JJ=2,540

AR=AR+1,0
TERM=TERM#X/AR
PTLSUM=PTLSUM+TERM

IF(TERM/PTLSUM-1,0E~7) 4,4,2

CONTINUE

FOX=0.,52PTLSUMSEXP (=X)

GOTO 8

X GREATER THAN 1,0

CONTINUE

ERFX=1,0= ((((((4,30638E~-5#XS+2,765672E~4)8XS+1,520143E~4)#XS

1+9,2705272R=-3)8%xS+4,2282012E-2)#XS+7,0523078E~2)#XS+1,0)##(-16
FOX=ERFX#0,886226925/XS

CONTINUE

CN=RNORMC(1,M)#RNORMC(JsN)*#RNORMC(K,P)#RNORMC(L, Q)

ERIC=(CN #RAPB#RCPD) # (EXP (~ABS*A#B#RAPB~CDS#C#D#RCRD I BFOX
1/ (SQRTCABCD))

ERIC=ERIC+ERIC

ERI=ERI +ERIC

CONTINUE

TRLI=ERIANN*PI25



