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ABSTRACT 

This work presents a series of investigations into the use of chromatographic and 

electromigrative techniques for the analysis of gold thiosulfate leach solutions. 

The focus of the project was determination of the gold thiosulfate complex 

(Au(S203)23
-), thiosulfate (S2ol-) , the polythionates (Sxoi-, x = 3 to 5) and 

sulfate (Sol-) in these liquors. 

The fundamental behaviour of the gold thiosulfate complex was studied in an ion­

interaction chromatographic system. Partial dissociation or decomposition of the 

gold complex occurred on-column in standards, although this was minimised 

through adding thiosulfate to the eluent. Addition of the matrix ions, thiosulfate, 

trithionate, tetrathionate or the leach matrix to gold thiosulfate samples further 

complicated the chromatography, with the gold peak area dependent on the 

concentrations of these species in solution. Broadening of the gold peak occurred 

in solutions containing high concentrations of thiosulfate or the leach matrix that 

was in part attributed to a self-elution effect. Other mechanisms were also thought 

to affect the chromatography, such as the type of stationary phase. These 

problems prevented the successful determination of gold thiosulfate in the leach 

matrix. 

Ion-interaction chromatography was successfully applied to the determination of 

trithionate, tetrathionate, and pentathionate in undiluted leach liquors. A total 

analysis time of 18 min was required for the developed method using a Dionex 

NS 1-5 µ column with guard and an eluent comprising an acetonitrile step gradient 

at injection from 15% to 28% vlv, 3 mM tetrabutylammonium hydroxide and 

2.5 mM sodium carbonate. Detection limits for polythionates using a 10 µL 

Vlll 



injection volume ranged between 5-23 µM for conductivity and 4-68 µM for UV 

detection based on a signal to noise ratio of 2. 

The electromigrative methods, capillary electrophoresis, isotachophoresis and 

mixed mode isotachophoresis/capillary electrophoresis were also investigated for 

their applicability to the determination of sulfur-oxygen species in thiosulfate 

leach liquors. Using capillary electrophoresis a method was developed that 

allowed the separation of thiosulfate, polythionates and the gold thiosulfate 

complex. The method separated the five species in under 3 min with a total 

analysis time of 8 min, using an electrolyte containing 25 mM bis-tris adjusted to 

pH 6.0 with sulfuric acid and an applied voltage of-30 kV. Quantification of the 

gold thiosulfate complex was not possible by this technique due to inconsistent 

peak areas and peak splitting effects induced by the presence of other sulfur­

oxygen species in the sample. Detection limits of the method ranged between 0.5-

2 µM. The teclmique was applied successfully to a thiosulfate leach liquor diluted 

1:100. 

Using isotachophoresis, simultaneous determination of thiosulfate and sulfate, in 

less than 30 minutes, was possible for a synthetic thiosulfate leach liquor 

requiring a dilution factor of only 2:5. Detection limits of the developed method 

were 1.3 mM for sulfate and 2.1 mM for thiosulfate. The method also showed 

promise for the simultaneous determination of thiosulfate, sulfate, trithionate and 

tetrathionate in these leach solutions. The concept of single capillary 

isotachophoresis/capillary electrophoresis for these sulfur ions was also 

demonstrated, however problems with reproducible quantitation prevented· the 

development of a working method. 
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1.1 Introduction 

Chapter 1 

Literature Review 

Gold has been treasured by the human race for millennia, having been valued by 

some of the earliest known civilisations in Sumeria and Egypt at least 3,000 years 

before Christ [1,2]. Its unique bright yellow colouring, malleability and ductility 

have seen it used for jewellery and decoration for thousands of years. It has also 

been used widely as currency, and is associated with wealth, royalty and religion 

[1,2]. The desire to possess gold has become an obsession for many, with Pindar, 

as early as the 5th century BC, describing it as "a child of Zeus, neither moth or 

rust devoureth it, but the mind of man is devoured by this supreme possession" 

[3]. The thousands that flocked to the gold fields in the rushes of the nineteenth 

and early twentieth centuries in the (usually futile) search for their fortune is an 

example of this. It inspired world exploration in the search for further goldfields 

and also" discoveries, for example the alchemists attempts to tum base metals into 

gold became the beginnings of modem chemistry. Conversely, the greed 

generated by wealth and power gold can often bring, has led to much bloodshed 

and violence over the centuries [2]. 

Gold has been known since antiquity primarily through its low reactivity, which 

resulted in the existence of the native metal in the environment [l]. Until the late 

nineteenth century, the primary means of gold extraction was through the use of 

various gravity concentration procedures, relying on its high density (specific 

gravity of -19.3 [4]). By 1400 AD, amalgamation with mercury was also used 
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widely in Europe [1], a process still utilised today in parts of the world to the 

detriment of its practitioners. 

1.2 Cyanide Extraction 

Despite significant improvements, gravity and amalgamation processes were 

found to be unsuitable for extracting fine gold or where the gold was associated 

with sulfide minerals, and this led to the search for alternative methodologies [I]. 

Between 1887 and 1888, the extraction of gold was revolutionised by MacArthur 

and the Forrest brothers through their patenting of what became known as the 

cyanide process [I]. Their method involved the dissolution of gold in an aerated 

alkaline cyanide solution, with extraction of the leached gold from solution by 

cementation with zinc. The ability to dissolve gold in cyanide solutions was not 

new, and had been reported as early as 1783 by Scheele [I]. Elsner in 1846 [5] 

investigated the dissolution of gold in aerated cyanide solutions and reported the 

reaction equation given in Eqn 1.1 which bears his name. 

(I.I) 

This equation, while stoichiometrically correct, does not indicate the mechanism 

of the reaction which in more recent studies was been found to be more complex 

[1]. 

The achievement of MacArthur and the Forrest brothers was turning this 

chemistry into a workable hydrometallurgical process. The first plant to use the 

new technology was 'Crown Mine' in New Zealand which opened in 1889 [I], 

and the technique quickly established itself as the primary method for extracting 

2 
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gold from its ores. The process has been significantly improved since its inception 

with for example, improvements in gold cementation using the Merrill-Crowe 

process, far greater understanding of the reaction mechanisms and since the 

1970's, the replacement in many cases of cementation with carbon-based 

adsorbents for the extracted gold [1,6,7]. This has all resulted in the ability to 

economically mine far lower grades of gold than would ever have been thought 

possible 120 years ago. 

1.3 Problems with Cyanide-Based Gold Leaching 

While cyanide leaching of gold has been proven to be a robust and highly 

successful technique, as is evident by its widespread use, there are two main 

problems that have led to investigations into alternative leaching technology, the 

first being refractory ores and the second the toxicity of cyanide. 

1.3.1 Refractory Ores 

Cyanide does not handle certain types of ores particularly well, and these are 

described as 'refractory'. Such ores prevent economic cyanidation through one (or 

more) of three mechanisms [1,8,9]. The gold can be partially or wholly 

encapsulated in the host mineral which even fine grinding will not liberate, 

preventing surface contact between the gold and cyanide and therefore effective 

leaching. This occurs for example with some pyritic ores. Leaching can be 

ineffective or uneconomic for ores containing high concentrations of what are 

known as 'cyanicides', other substances in the ore that react with cyanide, such as 

copper, and some sulfide minerals. These substances result in unsustainably high 

cyanide consumption. The third mechanism involves carbonaceous ores, in which 

3 



Chapter I Literature Review 

the gold will leach effectively, however the gold cyanide complex will then 

absorb onto the carbonaceous material in the ore and be lost to tailings, in a 

process known as 'preg-robbing'. Development of pre-treatment procedures such 

as bio-oxidation, roasting, pressure oxidation and chemical oxidation have 

however been effective in making some of these ores amenable to economic 

cyanide leaching [1,8]. 

1.3.2 The Toxicity of Cyanide 

The other problem that has dogged cyanide leaching in recent years is concerns 

over the well-known toxicity of this material. The adult lethal dose of sodium 

cyanide has been reported to be less than 250 mg [10], while a concentration of 

270 ppm of hydrogen cyanide gas (generated by contact of cyanide salts with 

acid) in air is "immediately fatal" to humans [11]. The hazards associated with the 

use of cyanide in the mining industry received major world attention in 2000 with 

a tailings dam spillage at a gold mine in Baia Mare, Romania. Over 100,000 m3 of 

cyanide laced water spilt into the Tisza River apd eventually reached the Danube, 

killing tonnes of fish and poisoning the drinking water of over 2 million 

Hungarians [12]. The accident was labelled ''the biggest environmental disaster in 

Europe since Chernobyl" [13]. 

While this has been the accident that has received the most publicity, there have 

been numerous cyanide-related accidents from gold mines over the years, of 

varying severity. Other post-1990 examples of spills that have occurred through 

tailing dam breaches, include the Summitville Gold Mine, Colorado, USA, in 

1992 where a 25 km stretch of the neighbouring river was poisoned, leaving a 

clean-up bill in excess ofUS$100 million [14,15], and secondly at the Omai Gold 

4 
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Mine, Guyana, in which 4.2 million m3 of cyanide contaminated water was spilt 

into the Essequibo River causing a small fish kill and resulting in an 80 km stretch 

being labelled an "environmental disaster zone", although the actual lasting 

impact appears to have been minor [12]. Accidents have also occurred involving 

the transportation of cyanide to mining sites, such as in Papua New Guinea during 

2000 where a helicopter lost a pallet containing ~ 1 tonne of sodium cyanide in the 

jungle in transit to the Tolkuma Gold Mine [16]. Numerous bird kills have also 

been reported, caused by poisoning from gold mine tailing dams. A highly 

publicised kill occurred in 1995 when 2,700 birds were poisoned at the 

Northparkes Gold Mine in New South Wales, due to inadequate monitoring of 

weak acid dissociable metal cyanide complexes in the tailings dam [11]. 

Because of the concern over cyanide usage, many governments are introducing 

legislation to restrict such processes, and in some cases ban its use altogether. The 

use of cyanide for gold leaching was banned by the state of Montana in 1998 after 

a public referendum, and several other states of the USA are reported to be 

considering similar legislation [ 6, 16]. Communities near the ancient city of 

Pergamon, Turkey have been preventing the establishment of a gold mine nearby 

through protest and legal action for several years. Turkish courts in 1997 

invalidated permits granted to the mining company involved, ruling that the use of 

cyanide contravened the country's constitutional guarantee to a healthy and intact 

environment in a case launched by these communities [17]. 

5 



Chapter 1 Literature Review 

1.4 The Search for Alternatives 

Because of the difficulties discussed in the previous section much time and effort 

has been spent examining alternative systems for leaching gold. The lixiviant 

systems that have been investigated include: 

• Ammonia • Malononitrile and other nitriles 

• Bisulfite • Sulfide 

• Bromine • Thiocyanate 

• Chlorine • Thiosulfate 

• Iodine • Thiourea 

A more comprehensive list can be found in reference [18]. For some time thiourea 

was considered the most promising alternative but many process problems, 

primarily the poor stability, and suspected carcinogenicity of thiourea (highlighted 

by its addition to the California list of carcinogens during 1988). This has 

significantly reduced interest in this leaching system. A recent examination of 

alternative lixiviant systems for gold stated that this property of thiourea meant it 

should not be considered further for gold leaching [6]. At the present time 

leaching using thiosulfate is considered the most likely to provide a viable less­

toxic alternative to cyanide [6]. 

1.5 Thiosulfate Leaching 

1.5.1 Introduction 

Interest in thiosulfate as a lixiviant for precious metals was initially centred 

around its ability to leach silver, and was known as the Patera process after von 

Patera who was the first to leach silver ores with sodium thiosulfate after a 

chloridising roast during the mid-nineteenth century. The process was also utilised 

6 
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in South America in the first half of the twentieth century [19-21]. The ability of 

thiosulfate to dissolve go~d under alkaline or near neutral conditions, in the 

presence of a mild oxidant, was reported in 1905 by White [18,21]. During 1978 

interest in thiosulfate leaching was revived with Berezowsky, Sefton and Gormely 

[22] claiming a patent on the thiosulfate leaching of gold from the residues of an 

ammoniacal oxidation leach of sulfidic copper concentrates. Since then there have 

been numerous papers and patents published on the subject, recently review.ed by 

Aylmore and Muir [21]. 

Thiosulfate is considered a non-toxic material, the ammonium salt of which has 

been used as fertiliser and is a "generally recognised as safe", indirect and direct 

human food ingredient [23,24]. Whilst the process is significantly more 

environmentally :friendly than cyanide-based leaching (although this has been 

disputed for example in [7, 18]) this is not to say it is completely benign because 

of problems that may be generated by the other two reagents required for 

successful leaching, namely ammonia (volatile and corrosive at high 

concentrations) and copper(II) (toxic). Under certain environmental conditions 

thiosulfate can also be oxidised by sulfur oxidising bacteria, which can result in 

the generation of sulfuric acid, potentially causing problems in the case of a 

significant spillage [25-27]. 

Apart from its lower environmental impact, the thiosulfate process also has some 

properties that potentially offer advantages over cyanide for certain refractory ore 

types. Some examples of this are lower interference from unwanted base metal 

cations [21], and low adsorbitivity of the gold thiosulfate complex onto activated 

7 
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carbon, making it less prone to preg-robbing in carbonaceous ores [21,28,29]. It is 

also considered potentially advantageous for high copper ores since the ore will 

provide the catalyst for leaching [19] 

1.5.2 The Thiosulfate Leach Reaction 

Modem thiosulfate leaching occurs in an ammoniacal solution containing 

copper(II) as catalyst, since the reaction using oxygen as oxidant is too slow under 

normal atmospheric conditions. The mechanism of the reaction is thought to 

proceed as shown in Equations 1.2 and 1.3 [21]. 

• Anodic Reaction: 

Au+2S20~- ~Au(S203 )~- +e­

• Cathodic Reaction: 

Cu(NHJ~+ +3S20;- +e- ~ Cu(S20 3 );- +4NH3 

(1.2) 

(1.3) 

Some researchers argue that the gold actually enters solution as a gold ammine 

complex (Au(NH3)2 l, which thereafter converts to the more stable thiosulfate 

complex [30-32]. The copper catalyst is then regenerated through Eqn 1.4: 

4Cu(S20 3 );- +02 +16NH3 +2H20~ 4Cu(NHJ~+ +12S20;- +40H- (1.4) 

From this, the overall leaching reaction can be represented by Eqn 1.5: 

(1.5) 

A broad range of reagent concentrations has been used with a recent review 

reporting extremes in the literature of 0.1-2 M for thiosulfate, 0.1-6 M for 

ammonia and 0.001-0.1 M for copper [21]. 

Since this abovementioned review, a patent has appeared which outlines a process 

for the reaction requiring little or no copper(II) and ammonia, instead using above 
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atmospheric concentrations of oxygen in the leaching vessel to increase the rate of 

gold dissolution [33]. The ramifications of this patent on the direction of research 

into thiosulfate leaching remain to be seen. 

1.5.3 Problems Hindering Commercial Development of the Process 

Despite its promise, and the large amounts of effort that has been spent 

researching the process, there are still several problems that are currently 

preventing it from being an economic alternative to cyanide. The leach chemistry 

is far more complicated than the cyanide system, is not as well understood and 

can show uneconomically high thiosulfate consumption. One problem with the 

leach is that the copper(II) catalyst reacts with the thiosulfate in the simplified 

reaction given in Eqn. 1.6 [21,34] 

(1.6). 

The process is more complex in the presence of oxygen [35,36]. Tetrathionate can 

also then decompose via the reaction pathways given in Eqns. 1. 7 to 1.9 

[21,34,3 5]. 

S40~- +S20~- ~ S50~- +so~­

S40~- +so~- ~S30~- +S20~­

S50~- +30H- ~ %S20~- + YzH20 

(1.7) 

(1.8) 

(1.9) 

Sulfate formation can also occur through copper(II) catalysed oxidation through 

for example Eqn 1.10 [35,37]. 

(1.10) 

Other metal ions such as iron(Ill) and some minerals are also known to catalyse 

the oxidation of thiosulfate, for example pyrite, most often to tetrathionate, 

[24,37-39] 
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Much has been attempted to minimise the thiosulfate consumption. The addition 

of sulfite [40,41] or sulfate [42,43] to the leach has been proposed, with the 

former subsequently used by a number of other researchers [23,44-50]. However, 

the utility of these techniques, and the use of sulfate in particular, has more 

recently been questioned [21]. The recent review of the gold thiosulfate literature 

stated that a build-up of sulfate was detrimental to the leach, while sulfite will 

lower the Eh of the solution and reduce copper(II), itself being oxidised to sulfate 

and/or dithionate [21]. 

Extraction of the leached gold from the system is also a more difficult proposition. 

The gold thiosulfate complex does not absorb well onto activated carbon [6,21,29] 

which although an advantage for carbonaceous ores, prevents the use of carbon-

in-pulp technology employed in cyanide leaching. Cementation is also quite 

complex relative to cyanide leaching [6] and although described as "relatively 

successful on clarified liquors" [21] it would seem to be not an ideal recovery 

technique. Ion-exchange resins are considered the most promising means of 

extraction from thiosulfate leach liquors [37]. However, there are still difficulties 
I 

with the use of these materials. One of the major problems is that the 

polythionates generated in the leach through thiosulfate oxidation can compete 

with the gold thiosulfate complex for sites on the resin [49,51], highlighted by a 

recent patent on the use of these ions for gold elution in thiosulfate systems [52]. 

1.5.4 Species Present in a Typical Leach 

From the preceding discussion the important species in gold thiosulfate leach 

solutions are as follows: 

10 



Chapter 1 Literature Review 

• Thiosulfate. 

• Ammonia. 

• Polythionates, predominantly trithionate (S30l-) and tetrathionate (S40l), 

generated from the oxidation of thiosulfate. 

• Sulfate, generated by oxidation of thiosulfate and possibly also added as a 

starting reagent. 

• Sulfite, if added as a starting material. 

• Copper(!) and copper(II). 

• Gold(I). 

• Other leachable components of the ore. 

Eh-pH diagrams relevant to the gold thiosulfate system have been constructed in 

an attempt to further understand the speciation of these solutions [19,21,52a]. 

However, the thiosulfate system is thermodynamically unstable, which combined 

with the complexity of the leach solutions makes it difficult to construct diagrams 

that reflect the actual speciation. For this reason Eh-pH diagrams have not been 

included in this review, and the reader is directed to the cited references for 

further detail of these investigations. 

The actual speciation of the metals in solution is not lmown, although work to 

date suggests that Au(S20 3)z3- (log~=26-28 [21,53]) is the_ dominant, if not only, 

gold species present. Au(S20 3r is lmown to exist but this is less stable than the bis 

complex [54], and no thermodynamic data could be found for this species. 

Suggestions, based on thermodynamic studies, that the gold(I) diammine complex 

Au(NH3)/ (log~ between 13-26 having been reported [21]) will predominate in 

solutions at pH values higher than 8.5 with an ammonia concentration higher than 
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0.1 M have not agreed with experimental data [21]. Another paper [19] has 

recently also questioned the accuracy of the earlier thermodynamic calculations, 

finding no stability region for the ammine complex with the difference in Eh-pH 

diagrams attributable to the use of a different free energy of formation value for 

thiosulfate. The possibility of gold(I) hydroxide complex formation in leach 

liquors has not been considered, although there is a reference to the existence of 

Au(OH)2- (logp - 25.0) in aqueous solutions [54a]. 

The chemistry of the copper in solution is complicated due to the 

copper(l)/copper(II) redox couple and the fact that copper(I) forms both 

significantly stable thiosulfate and ammonia complexes [21,37]. The copper(II) 

chemistry is dominated by the well known copper tetraammine (Cu(NH3)/+) 

complex, although the triammine species has been suggested as being be the 

primary oxidising species [35,37]. The main copper thiosulfate species in solution 

is thought to be Cu(S20 3)3
5
- but at lower thiosulfate concentrations (<0.05 M), 

Cu(S203)i3- is expected to predominate [37]. Mixed thiosulfate-ammonia copper 

complexes may also exist in the leach solutions but have not been reported in the 

literature to date [37]. The copper(I) monothiosulfate complex is insoluble in 

water [55], while high copper concentrations in solution can result in precipitation 

of mixed copper-ammonia-thiosulfate salts [21]. 

Several other metals are known to have appreciably stable complexes with 

thiosulfate and/or ammonia, [37], although it has been stated that in general 

thiosulfate allows a decreased interference from foreign cations in comparison 

with cyanidation [21]. Dissolution of iron has been identified as a problem at pH 
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values < 8 [ 45], and a comparison of several lixiviant systems for leaching of gold 

from an almost fully oxidised low grade ore noted the presence of a significant 

quantity of nickel in the waste thiosulfate liquor [7]. 

Some studies demonstrate the capability of thiosulfate leaching to decompose 

some sulfide minerals such as chalcopyrite, pyrrhotite, arsenopyrite and to a lesser 

degree pyrite [39,42], although contrary to this it has also been reported that pyrite 

is not leached significantly by these leach solutions [56]. Copper sulfide minerals 

other than chalcopyrite are readily dissolved in thiosulfate leach solutions [21]. 

There is a subsequent need for a detailed investigation into the analytical 

chemistry of gold thiosulfate leach solutions. The following section will evaluate 

the current state of the art of sulfur-oxygen species analysis 

1.6 The Analytical Chemistry of the Sulfur and Sulfur­

Oxygen Species 

1.6.1 Introduction 

Aqueous mixtures of sulfur and sulfur-oxygen species have traditionally been a 

difficult group of compounds to analyse. The chemistry that occurs in such 

solutions is quite complex since certain species can react with each other, 

decompose or become oxidised by air [57-60]. Sample storage can result in the 

occurrence of compositional changes which may produce erroneous results in the 

subsequent analysis [61,62]. Sometimes the analytical technique used may itself 

perturb the composition of the mixture [63,64]. 
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Many analytical techniques have been used to determine sulfur ions. Wet 

chemical methods exist for most of the sulfur-oxygen species [58,59,65] and some 

sulfur speciation studies using these techniques have been reported [26,27,66-68]. 

The main disadvantage of wet chemical methods is that they are time-consuming 

and generally only applicable to the determination of one analyte ion at a time. 

UV-visible spectroscopy has also been applied, [58,59] often attaining detection 

limits in the 1 o-6 M range, although methods using this technique suffer similar 

problems to wet chemistry, particularly the restriction of being applicable to one 

analyte at a time. Speciation studies by UV-visible spectroscopy [69-75] are 

generally specific to samples containing only certain sulfur anions and this limits 

their application. Electrochemical techniques such as polarography and 

voltammetry can determine two or three species in a single scan [76-85], but even 

here multiple analyses are again usually required for detailed speciation studies. 

Very low detection limits (for example 10-8 M) are possible for some species 

using these methods, with the main application being the study of sulfur 

compounds (particularly sulfides) in natural waters. Fourier transform infra-red 

(FTIR) spectroscopy [86], attenuated total reflectance (ATR) FTIR spectroscopy 

[87] and Raman [63,88] spectroscopy can be used for the simultaneous 

determination of a greater number of sulfur species in solution. Generally the 

disadvantage of these methods is their detection limits, typically in the range 1 o-4 -

10-2 M, which are much higher than for most other instrumental techniques. 

Finally, flow injection systems have also been utilised for sulfur speciation 

[89,90] although detection limits were again reasonably high, falling in the 10-5 
_ 

10-4 M range. 
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Separation techniques such as ion-chromatography (IC) and capillary 

electrophoresis (CB) can be used to determine more sulfur species in a single 

analysis than is possible by most other analytical procedures, with detection 

sensitivity generally between 10-1-10-5 M. Separation is particularly important for 

the polythionates (Sxoi-), which have similar chemical properties and are 

therefore inherently difficult to determine in mixtures. 

This review will therefore concentrate on the separation science literature for the 

determination of elemental sulfur (S8, also denoted S0
), sulfide (S2-), polysulfides 

(S/-, x;:::: 2), sulfite (SO/-), sulfate (SO/), thiosulfate (S20/-), dithionate (S20i­

), the polythionates (SxOl, x ;:::: 3) and the metal-thiosulfate complexes 

CMmx+(S20 3)/mx-2y)) in aqueous solutions. The focus _is on sulfur speciation 

(separations of three or more sulfur anions), rather than the determination of a 

single sulfur or sulfur-oxygen ion. A brief description of the separation techniques 

used in this project, namely ion-chromatography, capillary electrophoresis and 

isotachophoresis is also given. 

1.6.2 Chemistry of Su/fur Species Influencing their Analysis 

The chemistry of sulfur species in aqueous mixtures can be very complex, with 

many species readily taking part in redox and nucleophilic displacement reactions 

resulting in compositional changes over time [57,60,91,92]. These factors can 

create difficulties in accurately quantifying all sulfur species in solution, 

regardless of the method used. Separation science techniques are no exception 

and for this reason a summary of the major reactions and problems that can affect 

the determination of these anions is outlined. 
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Accurate determination of sulfite in aqueous solution has been problematic due to 

the ease with which it is oxidised by air to sulfate. This oxidation is mediated by 

free radicals and catalysed by redox-sensitive transition metal ions, such as 

iron(III) and copper(II), and occurs most rapidly in acidic solutions [57,91,93]. 

Purging solutions with nitrogen or argon does not completely prevent sulfite 

oxidation [94] and oxidation has been reported to occur during a chromatographic 

separation due to oxygen permeating through the PTFE tubing used in the 

system [95]. In this study the fraction of sulfite oxidised was also found to be 

dependent on such factors as the retention time, the amount of iron(III) or 

copper(II) present in the sample, the chromatographic column, and even on the 

concentration of sulfite in the sample. To prevent sulfite oxidation, pre-analysis 

derivatization methods have been developed, with the most widely reported 

technique being the addition of formaldehyde [57,93-99], which reacts with sulfite 

via the reactions [57]: 

Formaldehyde dihydroxyrnethane 
(1.11) 

(1.12) 
hydroxyrnethanesulfonate 

The addition product, hydroxymethanesulfonate, formed in reaction (1.12) 

dissociates in alkaline media, which makes this approach ineffective for basic 

samples. However, it can be used to prevent, or at least reduce, sulfite oxidation 

in acidic samples, prior to injection into an alkaline eluent. The time in which 

sulfite is reported to be stable in the presence of formaldehyde varies widely from 

90 min [96,98] to. 2 weeks [93]. This may be attributable to differences in 

experimental conditions, such as formaldehyde concentration and solution pH. If 
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the eluent used has a pH of less than 10. 7 the sulfite present will at least partially 

exist as hydroxymethanesulfonate. This has a significantly lower retention time 

than sulfite in IC [93,100-102], and can result in co-elution problems with other 

monovalent anions such as chloride. For capillary electrophoretic systems, the 

mobility of the addition product is significantly lower than for sulfite [103]. The , 

formaldehyde method has also been questioned by some authors, since it has been 

demonstrated that the peak area obtained is dependent on the formaldehyde/sulfite 

ratio [96, 100]. 

Sulfite stabilising agents other than formaldehyde have also been investigated and 

include other aldehydes and ketones such as acetone [93, 100, 103], formic acid 

[102], isopropanol [94,100,104], methanol [93], ethanol [93,1_03], propanol [103], 

glycerine [105], glycerol [93,94,100,103,106], ethylene glycol [103], fructose 

[94,100,103], glucose [100] and mannose [100]. Ethanol, glycerol, propan-2-ol, 

glucose and fructose have been identified as being ineffective as stabilisers 

[93,94,100] while methanol and acetone do not preserve sulfite in solutions 

containing iron(III), manganese(Il) or copper(Il) ions [93]. De Carvalho and 

Schwedt found propanol to be superior to formaldehyde and a variety of other 

stabilisation agents in their study of sulfite oxidation [103]. Hassan [107] has 

reported that the addition of EDTA and L-ascorbic acid to the chromatographic 

eluent reduces on-column sulfite oxidation to negligible levels. The addition of 

these reagents prevents the metal ions present in the solution from catalysing the 

oxidation reaction. Stock solutions prepared in such an eluent were reported as 

being stable to oxidation over a one-month period. 
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Sulfide is another species that will rapidly undergo oxidation in air, particularly in 

the presence of heavy metals or on exposure to light, with the dominant product 

being elemental sulfur, although oxyanions such as sulfate may also be produced 

in smaller quantities [91]. Oxidation can be minimised by purging oxygen from 

solutions containing sulfide. The anti-oxidants mannitol and ascorbic acid, as 

well as organic solvents such as acetonitrile and 2-propanol have been examined 

as stabilising agents for sulfide in Kraft process liquor samples, although all were 

found to be ineffective [62]. This result contradicts earlier work [106] in which 

successful stabilisation of sul:fide in these liquors with ascorbic acid was reported. 

Freezing of samples for storage prior to analysis also failed to prevent oxidation, 

although this was attributed in part to interactions between the sulfide and lignin 

in the Kraft liquor samples under investigation that precipitated during :freezing 

[62]. 

Another difficulty associated with the determination of sulfide is that it can be 

readily converted to hydrogen sulfide (H2S) in acidic soiutions and can then be 

lost to the atmosphere. This results in low sulfide recoveries, particularly if the 

solution is being purged of oxygen by displacement with an inert gas. Storage of 

samples in alkaline solution is therefore recommended for this anion, with some 

methods adding carbqnate to solutions containing s2- to prevent 

volatilisation [96,98]. Sulfide forms precipitates with many metals, which can 

also hinder quantitative analysis. Hissner et al. [102] observed problems with the 

sulfide peak area reproducibility during ion-chromatographic analysis, obtaining 

low results for the first few injections of a sample run. This was partly due to 

precipitation of sulfide with heavy metal ions accumulated on the head of the 
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column from metallic components of the chromatographic system. A resultant 

black layer of sulfide precipitate was observed at the head of the column after 

several injections. Reproducibility was improved by injecting a high 

concentration sulfide solution twice prior to sample analysis, which precipitated 

any heavy metals present in the system. 

Thiosulfate oxidation to sulfate (via tetrathionate) is slow, except in the presence 

of oxidants such as copper(II), iron(III) or iodine (I2) [57]. A reduction in 

thiosulfate oxidation catalysed by transition metals has been observed with the 

addition of Na-Amberlite CG-120 cation-exchange resin to samples [57]. A 

refrigerated 100 µM thiosulfate/1 mM iron(III) solution lost 12.5 µM thiosulfate 

over 6 weeks in the presence of the cation-exchange material, compared to almost 

complete loss in 1 week if formaldehyde was added to the solution with no cation 

exchange resin and 95% loss in 4 h if no treatment was applied. Thiosulfate 

additionally decomposes to sulfite and elemental sulfur in weakly acidic solutions 

[57,91] through a nucleophilic displacement reaction:· 

(1.13) 

The products of the decomposition nre different in solutions of high or moderate 

acidity and can include polythionates, sulfate, sulfide and sulfur-containing oils 

[60,91]. 

Polythionates, thiosulfate and sulfite interact in aqueous solutions through the 

equilibrium: 

(1.14) 
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which proceeds via nucleophilic displacement reactions [57,60,91,92]. This 

equilibrium is pH dependent and at neutral pH favours the left-hand side of the 

equation. The lower polythionates also react with sul:fide as follows [59,108,109]: 

(1.15) 

The extent to which this reaction occurs is again dependent on the pH of the 

solution. 

The stability of the polythionates (x = 4 to 6) in acidic solutions (pH 0-2) has been 

studied [61] and storage conditions were found to exert some influence on the rate 

of polythionate decomposition, such as the type of bottle used and the storage 

temperature. Formaldehyde, oxalaldehyde and hydroxylamine hydrochloride 

(HAH) were examined as stabilising reagents. Formaldehyde and oxalaldehyde 

were found to disturb the polythionate speciation of solutions by shifting the 

equilibrium given in equation 1.14 to the right through complexation with the 

sulfite. Concentrations of formaldehyde higher than -0.4% were also found to 

accelerate the decomposition of tetrathionate, but HAH enhanced the stability of 

tetrathionate, pentathionate and hexathionate, maintaining the initial distribution 

of these ions for three weeks even in the presence of oxygen. The iron(III)­

catalysed oxidation of thiosulfate was found to increase the rate at which 

polythionate speciation was altered, favouring lower chain lengths. This process 

was detectable after 60 h. 

Polythionates with four or more sulfur atoms are unstable under alkaline 

conditions [60,91,92,110,111], although the reaction products are again dependent 

upon solution conditions. An investigation by Zou et al. [112] examined the 
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stability of polythionates (x = 3 to 5) in a neutral to slightly alkaline ion­

interaction chromatography eluent (24:76 acetonitrile (ACN)-water containing 3 

mM tetrabutylammonium hydroxide (TBAOH) and 0.5 mM Na2C03). 

Trithionate was stable in this eluent at pH 8, whilst the tetra and pentathionate 

concentrations decreased significantly within a few hours due to decomposition, 

with the decomposition rate increasing with pH. Despite these observations, the 

possible decomposition or change in speciation over the course of a 

chromatographic or electrophoretic run has not yet been investigated. 

The preceding paragraphs highlight the problems inherent in storing solutions 

containing sulfur species prior to analysis. There appears to be no guaranteed 

method of ensuring that the initial sulfur speciation of a sample will be preserved 

on storage. The use of stabilisers reduces the reaction of individual sulfur species 

in solution, although the stabilisers themselves can perturb the concentrations of 

other ions. Results in the literature suggest that there is no substitute for 

immediate analysis of samples containing mixtures of sulfur species. 

1.6.3 Ion-Chromatographic Determination of Su/fur Species 

1.6.3.1 Introduction [113, 114) 

IC, is a physico-chemical separation technique that utilises differences in the 

distribution of ionic solutes between a mobile and stationary phase. Using the 

modem version of the technique, a sample mixture of ionic solutes is injected into 

a liquid flow stream known as the eluent which is then passed through a 

"column", usually a metal or plastic cylinder packed with uniform, small-diameter 

(e.g. 5 µm) particles. The cylinder itself is usually between 5-30 cm long with an 

internal diameter of between 2-9 mm., and the particles are held stationary inside 
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by means of porous frits at both ends. A high pressure pump is required to drive 

the solution through the column, and a flow through detector is placed at the far 

side to detect the components as they elute from the column. A typical 

configuration for an ion-chromatograph is shown in Fig. 1.1. 

The mechanism of separation is dependent on the branch of IC used. In ion-

exchange chromatography, the column packing is a resin, which can be inorganic 

or a polymeric organic material that contains fixed charged groups on its surface. 

Where the fixed charge is positive, the resin is said to be an anion-exchanger, for 

fixed negative charges it is said to be a cation-exchanger. Associated with the 

fixed charge are counter-ions of opposite charge to render the resin neutral. The 

process of ion-exchange will be illustrated by considering an anion-exchange 

resin. Consider a resin in water with fixed positive charge (R+) and counter ion 

(K). If another counter ion (A) comes in contact with the resin an equilibrium is 

established as shown in Eqn 1.16. 

(1.16) 

This process is stoichiometric and can be generalised to ions with charge > 1. The 

equilibrium constant for the process is known as the selectivity coefficient which 

can be expressed as shown in Eqn 1.1 7: 

(1.17) 

where x and y denote the charge on A and E, the parentheses indicate the activity 

Eluent 
Reservoir 

Pump Injector Column Detector 

Fig. 1.1 Essential features of an ion-chromatographic system. 

Data 
Acquisition 
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of each species and R and M refer to the resin and mobile phases respectively. In 

anion-exchange chromatography, separation between two anions A- and ff occurs 

via the use of the eluent, which consists of an ionic solution with anion (K). The 

separation of the two solute ions occurs as a result of the different selectivity co­

efficients that exist between the eluent anion and each sample anion. The 

mechanism for cation-exchange materials is analogous. 

Another branch of IC is ion-interaction chromatography, for which the 

mechanism is more complex. The instrumentation is identical, but a reverse-phase 

HPLC column is used and the eluent contains what is known as an "ion­

interaction" or "ion-pair" reagent, which in the case of anion analysis is usually a 

strong base cation such as a tetraalkylammonium ion. Three models have been 

proposed for the mechanism of separation in ion-interaction chromatography, but 

only the "ion-interaction" model, that considered to best represent the observed 

experimental data, will be discussed here. 

According to this model (represented in Fig 1.2), the hydrophobic ion-interaction 

reagent absorbs onto the stationary phase surface in a dynamic equilibrium with 

the eluent, in tum inducing formation of an electrical double-layer. In the case of 

anion analysis, an evenly spaced positively charged primary layer at the stationary 

phase surface is the result, followed by a second, diffuse layer of counter-ions. 

Analyte ions (anions will be considered here), can compete with sites in the 

negatively charged secondary layer, and once inside electrostatic attraction and 

also possibly solvophobic (reverse phase chromatography) effects will usually 

result in it moving into the primary layer. This disrupts the electroneutrality of 
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(a} 

~ Bulk Eluent 

1-~--~~~ 
f!e!!~ 

(b} 

~ 

Fig. 1.2 Illustration of the ion-interaction mechanism. (a) Equilibrium of ion­
interaction reagent onto stationary phase (b) Retention mechanism of a solute 
anion. Extracted from [ 113]. 
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the layer, and therefore another ion-interaction cation is drawn into the primary 

layer, meaning that the retention process involves a pair of ions. Separation 

occurs as a result of competition between the different analyte anions and the 

counter-ion of the ion-interaction reagent (the eluent anion in this system) for sites 

in the double layer. 

IC methods have become very popular for the determination of many sulfur 

amons. In the literature up to 1988 sulfate was the second most frequently 

analysed amon by such methods, surpassed only by chloride. Sulfite and 

thiosulfate were the ninth and tenth most frequently analysed anions respectively 

and sulfide was in the top 20 [113]. Documentation of every paper and 

application note on the deterniination of sulfur species such as sulfate and sulfite 

is not feasible due to the large number of references involved. The reader is 

therefore directed to books on IC [113] and the catalogues and information sheets 

produced by column manufacturers, for example [115], to obtain more detailed 

information on the separation of common ions such as sulfate. In this review the 

primary focus will be on separations involving multiple sulfur and sulfur-oxygen 

species. 

1.6.3.2 Early (C/assicalj Jon-Exchange Methods 

Prior to the development of the instrumentation discussed in the previous section, 

IC was performed using larger resin particles packed in vertical glass columns. 

The eluent moved through the column under the force of gravity and left the 

column through a stopcock that was used to regulate the flow rate. The eluate was 

collected in a series of containers, which were analysed using wet chemical or 
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other techniques. The first reported separation methods for sulfur-oxygen ions 

used such methodology. 

Iguchi [116] separated dithionate and the polythionates (trithionate, tetrathionate, 

pentathionate) on Dowex 1-X2 anion-exchange resin using progressively higher 

hydrochloric acid concentrations (between 1 and 9 M). In a separate study [117] 

sulfate, sulfite, thiosulfate and sulfide were separated on Mitsubishi Kasei Diaion 

SA 100, a strongly basic quaternary ammonium polymer resin. Three ammonium 

nitrate eluents, a 0.1 M solution of 30:70 acetone-water adjusted to pH 9 with 

ammonia, an aqueous 0.1 M solution and an aqueous 1 M solution were required 

to complete the separation. Pollard et al. [118] attempted to separate sulfite, 

thiosulfate, trithionate, tetrathionate, pentathionate and hexathionate using De­

Acidite FF resin cross-linked with 2% divinylbenzene (DVB). Sulfite and 

thiosulfate . were eluted using 2 M potassium hydrogenphthalate, although a 

complete separation was not achieved. The polythionates were separated using 

3 to 9 M hydrochloric acid. Schmidt and Sand [119] also separated the same 

mixture using sodium chloride in conjunction with hydrochloric acid eluents, 

however hexathionate could not be separated due to on-column decomposition. 

Thiosulfate has been used as an eluent in classical ion-exchange chromatography 

to separate ~etal ions by utilising the formation of metal-thiosulfate complexes. 

One of the earliest papers by Vasil'ev et al. [120] reported the separation of 

copper(II)/zinc(II) and copper(II)/cadmium(II) binary mixtures on Wofatit P resin 

in the sodium form. In later papers [121,122] the retention of several metal ions 

on Amberlite IR-120 cation-exchange resin in the sodium form was studied. 
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Majumdar and Mitra [122] absorbed metal ions onto the head of the column and 

then eluted these by stepwise increments of sodium thiosulfate concentration 

ranging from 0.02 M to 0.5 M. Metal ions that formed significant anionic 

complexes with· thiosulfate were eluted much earlier than other metal ions. 

Eusebius et al. [123] performed a similar but more detailed study using Dowex 

50W-X8 cation-exchange resin in the H+ form. Distribution coefficients of the 

metals in alkaline sodium thiosulfate solutions were determined over the 

concentration range 0.02 to 0.28 M. The same group had earlier examined the use 

of s_odium thiosulfate eluents on Dowex 1-X8 anion exchange resin in the chloride 

form [124]. Those metal ions that showed significant formation of anionic 

complexes with thiosulfate, such as lead(II), copper(II) and silver(!) were eluted 

later than the remainder. The authors. noted precipitation of copper(II), lead(II) 

and silver(!) sulfide in mixtures of these metals containing relatively low levels of 

thiosulfate. 

The above procedures for the separation of metallo-thiosulfate complexes were 

only able to seP_arate at best five complexes in any one analysis [122]. The ability 

of more modem instrumental chromatographic techniques and stationary phases 

to separate metallo-thiosulfate complexes is unknown since there are no published 

papers on the subject to date. 

1.6.3.3 Modem Ion-Chromatography 

Modem anion-exchange and ion-interaction chromatographic methods have been 

the most extensively applied separation techniques for the determination of sulfur 

anions, with selection of the particular technique being dependent on the nature of 
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~ Table 1.1 Anion-exchange chromatographic methods for the determination of sulfur species. ·-~ 

Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

s2-. so/-. so/- Standards D1onex HPIC-AS4 and 14.7 mM ethylenediamine, 10 mM Suppressed Low ppb (sub [125] 
AG4guard NaH2803, 1 mM Na2C03. conductivity and µM) 

amperometry 

s 2·, so32·• so/· Kraft process Dilution, filtration through a Waters IC Pak A 5.0 mM H3P04 (pH 6.5 with l10H) Non-suppressed [106] 
(Green ) liquors M1llex filter, addition of conductivity 

antioxidants ascorbic acid and 
glycerol. 

s 2-. sol·. s20/" Hot spring water Degassed water and CQ32· to Dionex HPIC-AS4A 5mM Na2C03 PCR, UV (330 1.8-3.5 µM [96] 
stabilise s 2· and formaldehyde with AG4A guard nm) 
to stabilise sol- • filtration and 
dilution. 

s 2-, S032-. S2032· Human serum Various pretreatments to Macherey-Nagel 3:13 ACN:CH3COOH (pH 3) Fluorescence 20-40 nM [126] 
reduce matnx followed by Nucleosil 5N(CH3)2 with containing 25 mM NaCIQ4 
derivatisatfon with MBB. For Nucleosil 100-5 C1e 
serum samples sot and s 2- guard 
analysis separate to S20/°. 

s 2·• S032-. S2032· Molten caustic Degassed water for s 2· and Dionex HPIC-AS3 50-200 mM KN03, 5-10 mM NaOH. Sampled DC [127] 
desulfunsed coal polysulfide standards. Flow rate gradient. polarography 
process solutions 

s 2-, S032-, S20/" Hot spring water Degassed water and C032- in Tosoh TSKgel IC- 15:85 ACN:H20 containing 6.0 mM PCR, indirect 2.8-48 µg/l [98] 
standards to stabilise s 2· and anion-PW Na2C03. UV (350nm) (29-600 nM) 
S2032-. formaldehyde to 
stabilise S032· •• d1lullon . 

....... 
s 2·, S032-. S2032- Bacterial sulfur Filtration, stabilisation of sot Alltech Durasep A-2 5:95 MeOH:H20 containing 2.9 mM [102] lo.. Pulsed 0.02-0.3 mg/L 

~ degradation with formaldehyde, standards Na2C03, 2.6 mM NaHC03, 1.3 mM amperometry (not specified §< solutions degassed. p-cyanophenol (different for S032") 
6 concentrations of components used (0.2-9.4 µM) 

for analysis of samples) 

s 2
-, sot. s2ot Waste water TSK gel IC-anion-PW 0.1 M NaH2P04-H3P04 (pH 2.30) Amperometry [128] 
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Species Detected Sample Sample Preparation Column Eluent Detection Detection Ref. 
Limit 

s 2-, sol, s2ot semi-lean MDEA Filtration and dilution Dionex AG9-SC and 1.8 mM Na2COa, 1.7 mM NaHCOa Suppressed [129] 
used for gas AS9-SC in series Conductivity 
treatment 

so/-. so/-. s20/- Dithionite Waters IC-PAK 10:90 ACN- 0.02 mM (1,3,6 or 7)- Indirect UV (280 [130] 
decomposition sodium NTS nm) 
solution 

so/-. so/-. s20/- Standards Glass column packed 25:30:45 Acetone:EtOH:H20 PCR, UV (335 -0.05-0.1 mM [131] 
with Bio-Rad Bio-Rex 5 containing 0.1 M NaB02 and 0.1 M nm) 
resin. Guard used. NaNOa (pH 8.0). To elute so/· and 

S20/- 0.1 M NaB02, 0.2 M NaNOa in 
H2o was used (pH 9.0). 

sot. so/-. s2ot Standards Dionex HPIC-AS5 and 2.8 mM NaHCOa, 2.2 mM Na2COa, Suppressed Low ppb (sub [125] 
AG4 guard 100 mg/L p-cyanophenol conductiv.ity µM) 

so/-. sol. s2032- Standards Dionex AS-4A and 0.75 mM NaHC03, 2 mM Na2C03 Suppressed 15-75 µg/L (132] 
AG4A guard conductivity (0.16-0.94 

µM) 

so/-. so/-, s2ot Standards Stabilisation of so/- using Vydac 302 or 300 IC 1-3 mM phthalic acid (pH 5-6 with Indirect UV (290 10-250 µM [94] 
formaldehyde. NaOH) nm) or refractive 

index 

SO/", so/-, S20t Na2S203 Unknown 1-5mM glutamic acid (pH 9-11) or Non-suppressed 0.01-1 mg/L [133] 
5.6 mM Na2C03 and 4 mM NaOH. conductivity (0.1-9 µM) 

sot. so/-, s2ot Bacterial sulfur Filtration, stabilisation of SO/- Vydac 302IC4.5 3 mM phthalate (pH 4.0) Non-suppressed 0.6-3 mg/L [102] 
degradation with formaldehyde, standards conductivity (6.2-27 µM) 

........ solutions degassed . 

~ sot, sol. s2ot Standards Two Dionex AG1 guard NaHCOa, Na2C03 step gradient Suppressed [134] 
§< columns conductivity 

c5 sot. so/-. s2ot Refinery Wescan 269001 anion 5 mM phthalate (pH 3.8) Non-suppressed (135] 
accumulated conductivity 
water 
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Species Detected Sample ~ample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

so/-, sol-. s2ot Simulated Filtration and dilution D1onex AG17 and 1 to 40 mM KOH gradient Suppressed [136] 
industrial waste AS17 in series conductivity 
water 

sot. sot. s2ot Kraft black liquor Dionex AS11 40:60 MeOH:H20 with a 30 to 60 Suppressed [137] 
mM NaOH gradient conductivity 

so/·. sol-. s20/- Kraft process Dilution with degassed water, DionexAS-3 3.0 mM NaHC03, 2.4 mM Na2C03 Suppressed [138] 
(black) liquors filtration, stabilisation of so/- conductivity and 

with formaldehyde. amperometry 

s2ot. so/-, sol Kraft process Dilution, stabilisation of SO/- OmniPax-100 with 1.3 mM Na2C03, 6 mM NaOH, 1.58 Suppressed [104,1 
liquors in standards by isopropanol. guard mM p-cyanophenol conductivity 39] 

(a) s 2· Kraft liquors (a) Metal ion removing Dionex (a) HPIC-AS2, (a) 0.25 mM Na2C03, 5 mM NaOH, (a) UV (215 nm) [140,1 

(b) sol-. sol-. precolumn. (b) - AS3, AS4A or ASS with 1.5 mM ethylenediamine or pulsed 41] 
AG4 guard (b) HPIC- amperometry 

S2032" AS-5 and HPIC-AG4 (b) 1 mM Na2C03, 5 mM NaOH, 0.8 

guard mM p-cyanophenol. (b) Suppressed 
conductivity 

sol·1sol· 1co- Coal plant Dilution Glass column packed Phosphate gradient with (A) H20 PCR, UV(335 -0.05-0.1 mM [131] 
elute), S203 -. s 2· process samples with VYDAC SAX and (B) 1 mM Na2HP04 nm) 

resin. Guard used. 

s 2·, sot. sol-. Oil-shale retort Stabilisation of sol- with Bio-Rad Bio-Gel TSK 12:88 ACN:1.2 mM potassium Non-suppressed [101] 
S20t by-product and formaldehyde, degassing and IC-anion-PW resin gluconate, 1.3 mM sodium borate, conductivity, 

other waste dilution. based ion exchanger 40 mM boric acid, 54.2 mM direct (254 nm), ....... 
waters with TSK hydrophilic glycerol, 0.02 mM EDTA (pH 7.2-7.6 or indirect UV lo. 

~ guard with HNOJ or KOH) (265 nm) and/or 
t} amperometry 

CS s 2·. so/-. sol. Sediment Centrifugation and filtration Waters IC-Pak A with 0.5:2:12:85.5 glycerol:n- UV (227 nm), -1-200 µg/L [107] 
S20t samples spiked guard butanol:ACN:Borate-gluconate conductivity (for (10.4 nM-2.5 

with sulfide buffer (pH 8.5) containing 0.05 mM SO/) µM) 
EDTA and L-ascorbic acid 
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Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

s 2-. sot, sol. Standards Dionex 'fast-run' Gradient elution using various Amperometric (142] 
S2032- column. mixtures of NaHCOJ, Na2C03 and 

Na OH 

s 2-. sot, sol. Kraft process Dilution Dionex Anion 3.0 mM NaHCOJ, 2.4 mM N~C03 Suppressed (143-
S20t (black) liquors Separator conductivity and 146] 

amperometry 

s 2-. sol-. so/-. Standards Dionex AS 12A with Step gradient from 60 mM to 100 ICP-MS 35-270 µg/L [147] 
S2ol- AG12Aguard mM NaOH (1.1-2.5 µM) 

sot. s 2-. sol-. Standards Oka-1 resin packed 5 mM Na2C03 Suppressed 0.01-0.05 (148] 
S2ol- column conductivity and mg/L (not 

PCR indirect specified for 
visible (522 nm) SO/) (0.32-

0.62 µM) 

s 2- (indirectly), Tannery Storage in NaOH (pH13), D1onex AG4A-SC and 2.4 mM Na2CO:v'2.2 mM NaHC03 Suppressed 0.75-1.1 µM (149] 
sol-. sol. s2ol- Wastewater dilution and filtration. Portion of AS4A-SC in series conductivity 

sample treated with NH:v'H202 
solution and analysed 
separately for totals as sol. 
Sulfide standards as per [98]. 

sot. s 2-. s2ot. Blast furnace slag S/ reacted to form s 2- and Unknown anion- Two eluents (a) 0.5 M NaNOJ Controlled (150] 
....., s/- (as s 2- and leach solution S20t with sol- on-column. exchange resin followed by (b)100 mg/L So/· potential ... S20t) coulometic 
-::! 
§- s 2-, sot. sot. Polysulfide Cyanolysis of polysulfide to s 2- TSKgel IC-Anion-PW 0.5:3:12:84.5 glycerin:n- Suppressed 4.9-68 µM (151] 

CS S20t, S/- (as s 2- solutions and SCN-. Butanol:ACN:1.3 mM potassium conductivity, UV 
and SCN-) gluconate, 1.3 mM boric acid, 1.3 (220 nm) 

mM sodium tetraborate (pH 8.5). 
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Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

so/-, s2ot. s4oa2" rDNA protein Filtration Hamilton PRP-X100 10:90 ACN:H20 with NaCI04 UV (214 nm) [152] 
process solutions PS-DVB (10 µm gradient. ACN was not added if 

30-50 µg/l particles) with Waters sot not determined. 
C18 Guard-PAK guard (0.22-0.27 

µM) 

so/·, S20/·, S40a2· rDNA protein Filtration Alltech Universal Anion 10-150mM NaCI04 gradient UV (214 nm) [152] 
process solutions (10 µm particles) with 

Waters C18 Guard-
PAK guard 

So/·, S20/", S20a2· Hot spring water Dionex HPIC-AG4A 0.2 mM phthalate eluent (pH 5.7) Suppressed 1.8-15 µM [153] 
conductivity 

so/-. S20/·, S20a2· Standards Hamilton PRPx100 PS- 0.5 mM 2,5-dihydroxy 1,4- Indirect UV (335 < 1 mg/l (<6 [154] 
DVB with guard benzenedisulfornc acid nm) µM) 

so/-. s2032-. s3oa2" Standards Shodex 524A PS-DVB 2.5 mM p-hydroxybenzoate (pH 9.7) Non-suppressed [155] 
, S40e2· conductivity 

sol, S20/", total Hydrothermal S20/°: 1 ml 1 M ZnCl2, amber 2 x Dionex AG4A NaHCO:JNa2C03 eluents Suppressed 0.1-0.5 µM [156] 
S,oe2· x :<: 4 as SCN- waters bottle. guard columns in Conductivity 
and S20/". 

S,Oe 2·: As above + 1 ml 1 M 
series. 

NaOH 1 ml 1 M KCN. Dionex AS4A (SO/ 
only) 

(a) S20/", total . Standards (a) Filtration, addition of cation- Dionex l-20 anion (a) 3.0mM Na2C03, O. 75mM p- Suppressed (a) 4.14-5.33 [57] 
S40/ ,SsOe2°, SeOs2° exchange resin, phosphate separator (a) 95 mm cyanophenol (pH 11.8) conductivity µM ..... as SCN-. buffer (pH 7.4) added, (b) 75 mm 

~ 
(b) so/-. so/· 

cyanolysis. (b) 0.75 mM N~C03, 0.75 mM p- (b) 4.58-5.44 .... cyanophenol (pH 11.4) µM §- (b) Addition of formaldehyde 
cs. and cation-exchange resin. 
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Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

(a) S20/", S30l, Carbonate Separon (a) HEMA (a) 25 mM NaCI04 and 5 mM (a) UV (205 nm) (a) 0.6-3.3 [157,1 
S40a2°, SsOs2° leaching solutions 1 OOO epoxidized phosphate buffer (pH 6.0) 

(b) Indirect UV 
mg/L (2.7-17 58](a) 

(b) sol. s2ot 
copolymer modified µM) only 
with DEtA (b) 0.05 mM Sulfosalicylic acid (pH (254 nm) 

6.0 with NaOH) (b) 8-40 mg/L 
(b) H300 DEAE in (83-357 µM) 
glass column 

S40a2-. S3oa2-. Sediment slurnes Centrifugation and filtration Sykam LCA A08 10:20:70 MeOH:H20:ACN UV (216 nm) 0.03-2 µM [159] 
S20/- and enrichment polymer coated silica containing 200 mM NaCl 

cultures based anion exchange 

S20/-, S30a2-, Standards Stainless steel column Gradient (A) 0.5:99.5 THF:H~ UV (254 nm) 3.7-360 mg/L [160] 
S40l, Ssoa2- packed with 200 to 270 containing 11 g/L Na2HP04 (14 µM- 3.2 

mesh Darco Red label (adjusted to pH 10), (8) 50:50 mM) 
activated carbon THF:(A) 

S20l°, S30a2°, Mining Extraction with CHCb followed Dupont Permaphase Step gradient from 20 µM to 1.2 mM PCR, -0.3 mg/L [161,1 
S40l, Ssoa2- wastewater and by analysis of diluted H20 AAX sodium citrate in H20 fluorescence (1.2-2.7 µM) 62] 

environmental layer. 
samples 

S20/°, S30l/S40l Standards 5 µm Applied Science 1 mM sodium citrate (pH 5.0) UV (218 nm) [163] 
, SsOs2°, SaOl SAX and off-line post-

column 
polarography 

S30a2-, S4oa2-. Standards Dionex HPIC-AG4A 5 mM phthalate eluent (pH 5. 7) Suppressed 8.7-36 µM [153] 
SsOl conductivity 

....... s3ot. s4ol . Coal plant Dilution Glass column packed H20 - 0.25 M NaCI04, 0.1 M Na802 PCR, UV(335 -20-40 µM [131] ;... 
~ SsOs2°, SaOl process samples with VYDAC SAX (pH 2_5) gradient nm) 

, 
§< resin. Guard used. 

(j 
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Table 1.2 Ion-interaction chromatographic methods for the determination of sulfur species . . -::; 
>-4 

Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

s
2
·• sot. s2ot Standards Chrompack cyano- 40:60 MeOH-H20 containing 0.1 M UV (215 nm) -2 µM (S203) (164] 

bonded silica Sil 60-D Na2HPOJ0.1 M KH2POJ0.1 % (wlv) 
10-CN CTABr 

SO{/SO/", S20/· Standards Dionex MPIC-NS1 15:85 ACN-2 mM TBAOH/0.88 mM Suppressed (132] 
Na2C03 conductivity 

SQ32·• S2ol·. S/" Petroleum Derivatisation using DTNP Alltech Absorbosphere 50 mM Na00CCH:J7.5 mM UV (320 nm) -0.1 µM (Sx [165, 166] 
(x = 2 to 4) production effluent HS C1e with Applied TBAHS04 (pH 3.5 with HCI) -ACN species not 

Biosystems Spheri-5 gradient system quantified) 
RP-18 guard 5µm 
particle size 

s 2·• so/·. s2ot. Commercial Degassed water used Hamilton PRP-1 5 µm 15:85 vlv ACN-H20 containing 1 mM UV (215 nm) 0.01-0.02 wt% [167,168] 
st sodium sulfide particles or Polymer Na2C03 and 2 mM TBAOH (pH -11) (2-5 µM) 

Labs. PLPR-S, 8 µm 
particles 

s
2
·• s2ot. s4ot Gold cyanide leach Dionex MPIC-NS1 23:2:75 vlv ACN:0.1 M TBAOH in 2- UV (240nm) (169] 

solutions PrOH/MeOH:H20 containing 
0.46mM Na2C03'0.56 mM NaHC03 

SOJSO/°, S20a2° Manganese leach Stabilisation of so/· with Dionex MPIC-NG1 20 wt% ACN-1 mM Na2C03 and 2 Suppressed [97] 
solutions formaldehyde, dilution. mMTBAOH conductivity 

so/·. s2ot. Gold extract Dilution Dionex MPIC-NG1 and 10:90 ACN-H20 containing 2.0 mM Suppressed 0.01-0.04 [112,170] 
S20a2° solutions NS1 TBAOH and 2.0 mM Na2C03 conductivity mg/L (89 nM-

0.25 µM 

sot.sot. Standards Merck LiChrospher- 14:86 ACN-1 mM TBAOH /7.5 mM Suppressed 10-70 µg/L [132) 
-. S20/·, S20a2°, 100CH H3B03 conductivity (0.1-0.3 µM) 

:.... S40a2· 
~ 
§- so/·. s2ot. Standards Superspher RP-18 4 4:96 vlv ACN- 0.3 mM TBAOH/20 UV (215 nm) 0.25-3 mg/L [171] 
6 s2ot. s4ot µm particle size mM H3B03 (pH 7.9) and suppressed (3-13.4 µM) 

conductivity 
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Species Detected Sample Sample Preparation Column Eluent Detection Detection Ref. 

Limit 

(a) SO/, S2oa2·. Hot spring water Dilution Tokyo Kasei, (a) 10:90 or (b) 20:80 vlv ACN-H20 Suppressed 0.03-0.29 [172] 
S20s2°, SaOe2° Kaseisorb LC ODS containing 0.2 mM phthalate and 7 conductivity mg/L (1.4-9.3 

(b) SO/" /S20/°, 
super mM TPAOH (pH 5.0 with µM) 

S2oa2·. SaOl, CH3COOH) 

S40a2°, SsOa2°, 
s6oa2· 

SOJS2oa2·, S20a2·, Gold extract Dilution Dionex MPIC-NG1 and 26:74 ACN-H20 containing 3.0 mM Suppressed 0.04-0.3 mg/L [112,170) 
SaOa2°, S40l, solutions NS1 TBAOH and 2.0 mM Na2C03 conductivity (0.25-1.3 µM) 
SsOa2° 

s2oa2·, s2oa2-. Standards Dionex MPIC-NG1 and 20:80 ACN-2 mM TBAOH and 1 mM Suppressed [125] 
S40a2· NS1 Na2COa conductivity 

S20a2", S20a2° Standards Hamilton PRP-1 8:92 ACN-H20 containing 5 mM Non-suppressed 0.42-34 mg/L [173] 
/SO/, S30a2°, reverse phase (PS- TBABr conductivity (2.55-133 µM) 
S40a2", SsOl DVB) 10 µm particles 

S2oa2-, Saoa2-. Standards Chrompack glass 30:70 ACN-H20 containing 1mM UV (215 nm) [174] 
8405 2", Ssoa2· column containing CP Na2COa and 2 mM TBAH2P04 

SpherC1a (pH -7) 

S20/°, SaOa2°, Standards Chrompack cyano- 55:45 MeOH-H20 containing 0.1 M UV (215 nm) 1.8-34 µM [164] 
S40s2", SsOa2° bonded silica Sil 60-D Na2HPOJ0.1 M KH2POJ0.1 % (wlv) 

10-CN CTABr 

S20/°, SaOa2°, Standards Dionex MPIC-NS1 4:27:69 MeOH-ACN-H20 containing UV (254 nm) [174) 
S40a2", Ss0a2°, 1 mM Na2C0a and 2 mM TBAOH 
SaOa2· 

....... S20/°, SaOl°, Hot spring waters A Shinwa Ultoron VX 20:80 v/v ACN-H20 containing 6 mM UV (230 nm) 10-30 nM (not [175) 

~ S40l, SsOa2°, ODS TPAOH, (pH 5.0 with CH3COOH) specified for 

§- Saoa2· SaOa2°) 

6 S2oa2·. SaOl, Dithionite or Derivatisat1on of dithionite to Polymer labs. PRLP-S 25:75 v/v ACN-H20 containing 1 mM UV (215nm) [168, 
S4oa2·. SsOl, Rongalite Rongallte 8 µm particles with Na2COa and 2mM TBAH2P04 (pH 176,177] 
Sa0a2· (HOCH2S02") Knauer PRP-100 guard 7.7) 

standards 
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Species Detected Sample Sample Preparation Column Eluent Detection 
Detection 

Ref. 
Limit 

S20a2", S30t, Hot spring water Refrigeration of standards. Tosoh TSK gel ODS- 20:80 ACN-H20 3mM TPAOH and 6 PCRwith 0.001-4.3 µM [178) 
S40a2·, Ss0a2·, C03 

2· to stabilise thiosulfate Ts5µm mM CH3COOH (pH 5.0) indirect UV at 
SeOa2° standard. 350nm 

S20t, s,ot (x = NS Dionex lonPac NS 1 ACN-H20 containing TBAOH and UV (254 nm) [141) 
3 to 11) (two Na2C03 
separations 
required) 

S30a2°, S40t, Sea water Pre-concentration, chloride Hamilton PRP-1 (10 25:75 ACN:H20 containing 10 mM UV (205 nm) -0.3-1 nM [179] 
SsOs2° minimisation µm) with Brownlee Waters low-UV PIC-A/1 mM 

PRP-1 guard cartridge Na2C03'1 mM NaHC03'30 mM 
NaCl/3 mM NaCI04. 

s3oa2·. s4ot. Crater lake water Removal of Cl", So/·, S2oa2· Showa Denko IC 1-613 3.3:96.7 THF-H20 containing 1 mM Non-suppressed [61, 180] 
Ssoa2· polystyrene gel Phthalic acid 0.5 mM TBAOH (pH conductivity 

3.5) 

s,ot, (x = 4 to Crater lake water Addition of HAH, or exclusion Spherisorb S30D2S ACN-H20 containing 0.1 M KH2P04 UV (220 nm) 0.7-52 µM [61,180,181] 
10) of 02 [61]. Refrigeration [181]. ODS 3 µm + various concentrations of TBAOH (quantitation 

to pH 3.5 with HJP04. limits, no 
value for 

s.ot. x> 6) 

s,ot (x = 4 to 18) Thiobacil/us Centrifugation Octadecylsilane (C18) 30:70 vlv ACN-H20 with linear UV (215 nm) [182] 
ferrooxidans Brand not specified gradient of Na2C03 (2 mM) and 
cultures TBAH2P04 (1 mM) to zero 

s,ot (x=5 to 11) Reaction Mixture Dionex MPIC-NS1 40:60 ACN-H20 containing 1 mM UV (254 nm) [174] 
Na2C03 and 2 mM TBAOH 

....... 
S,Oa2· (x = 5 to at Synthetic Keystone Scientific 50:50 24 mM TBAH2P04 (pH 3.6-I.. UV (254 nm) [183] 

Ill least 32), S0 polythionate Partisil 5 µm ODS-3 4.0)-ACN. ACN gradients also used. -§< solutions reverse-phase 

Cl s,ot (x = 9 to 22) Thiobacil/us Centrifugation Octadecylsilane (C18) 40:60 v/v ACN-H20 with linear UV (215 nm) [182] 
ferrooxidans Brand not specified gradient of Na2C03 and TBAH2P04 
cultures (initially both 2 mM) to zero 
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the analytes. For example, polythionate separations are easier to achieve using 

ion-interaction methods since retention on anion-exchange resins can be 

extremely high as the value of x in Sxoi- increases. Tables 1.1 and 1.2 list the 

anion-exchange and ion-interaction methods currently available for sulfur species 

analysis, with the separated analytes being listed in order of their elution. Some 

methods have additionally separated other anions, for example chloride, however 

only the relevant sulfur anions have been listed. Co-elution of analytes has been 

indicated by a '/' between the two relevant ions, whilst similar methods have been 

grouped together as one entry in the table. The information shown for a particular 

entry in the table refers to the first reference listed. 

1.6.3.4 Resolution and Selectivity by Anion-Exchange and /on-Interaction 

Chromatography 

The separation selectivity of sulfur species in both anion-exchange and 1on­

interaction chromatography generally results in the following elution order: 

(1.18) 

The metallo-thiosulfates and polysulfides (S/) are not included m this list 

because the retention behaviour of these species has not been sufficiently 

characterised. The separation of polysulfides has been examined in a variety of 

papers [150,165,167], but with only limited success as will be discussed later, but 

they have been shown to be eluted after thiosulfate. No methods for the 

separation of the metallo-thiosulfates were identified, possibly due to there 

previously being no requirement to quantify these ions. Elemental sulfur, being 

both neutral and insoluble in water, has also been omitted from consideration 

since it is not amenable to determination by IC. However, Kupchella [183] has 

37 
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noted that elemental sulfur could be eluted using ion-interaction chromatography 

in the presence of long chain length polythionates. This was explained in terms of 

micelle formation of the polythionates which enabled solubilisation of elemental 

sulfur. 

Some variations to the selectivity order given in 1.18 have been reported. A 

Sykam LCA A08 polymer-coated silica-based anion-exchange column used with 

an eluent of 10:20:80 MeOH-H20~ACN containing 200 mM sodium chloride was 

able to separate thiosulfate, trithionate and tetrathionate in the reverse order to that 

given in Eqn. 1.18 [159]. The selectivity of this column was the same in a purely 

aqueous eluent containing 100 or 50 mM sodium chloride, however the use of a 

5:60:35 MeOH:H20:ACN with 200 mM eluent gave an elution order of 

trithionate, thiosulfate and tetrathionate. Thiosulfate has been eluted prior to 

sulfite and sulfate using a mid-run column-switching technique, with thiosulfate 

passing through the guard column only before reaching the detector [104,139]. 

Story [131] and Ono [150] have both been able to alter the selectivity of sulfide, 

with the former study achieving elution of sulfide after thiosulfate, and the latter 

the elution of sulfide after sulfite, but no explanation was provided as to the 

reason for the change in selectivity. Story did note that on the VYDAC-SAX 

column, when used in the phosphate form, sulfite and sulfate were unretained. It 

has also been i;eported, again with no explanation, that sulfate can be eluted prior 

to sulfide using a carbonate eluent and an Oka-1 resin [148]. 

The difference in retention behaviour between the earliest (sulfide) and the latest 

(higher polythionates) eluted species is extremely large and has prevented any 
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separation of all sulfur species in one run. However, it is improbable that any 

sample would contain all the sulfur anions considered in this review because such 

a mixture would be unstable due to reactions between the various species [58]. 

Retention behaviour is the result of a number factors, particularly the charge on 

the analyte anion. This can be illustrated by the retention behaviour of sulfide, 

which in an alkaline eluent exists predominantly in the form HS- (pKaz=13.9 

[184]) and in acidic eluents as non-ionic H2S (pKa1 = 7.02 [184]). It therefore has 

a lower retention than the other more highly charged sulfur species. Sulfite exists 

as HS03- (pKaz = 7.18 [184]) in acidic eluent, which will reduce retention of this 

species, again on the basis of charge. Specific information on the separation 

mechanisms for the remaining sulfur ions is limited, although it is possible that 

hydrophobic interactions could form a significant role for the polythionates as the 

value of x in Sxoi- increases. A general discussion of factors that determine ion­

exchange selectivity can be found elsewhere [113]. 

Separations of sulfur anions generally fall into one of two main categories - those 

containing some or all of the less strongly retained species (sulfide, sulfite, sulfate 

and thiosulfate) and those of thiosulfate and the polythionates. Dithionate 

separations usually include sulfate and/or thiosulfate and occasionally 

polythionates as additional analytes. Different chromatographic techniques are 

preferred for the separation of each of the two main groups. While sulfide, 

thiosulfate, sulfate and sulfite have been determined by both anion-exchange and 

ion-interaction chromatography, they are most commonly chromatographed using 

the former technique. The generally stronger retention observed with anion­

exchange resins is more suited to the separation of these comparatively weakly 
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retained ions. On the other hand, ion-interaction techniques have found more 

:frequent application to the separation of the polythionates due to the generally 

weaker analyte-stationary phase interactions possible with this separation method 

when compared with anion-exchange resins. There does not appear to be any 

literature reference to the use of IC for the separation of higher polythionates 

(Sxoi-, x >6), other than by ion-interaction techniques. 

There are many methods in Tables 1.1 and 1.2 used to separate three of four ions 

from sulfide, sulfite, sulfate and thiosulfate, but only a few determine all four 

simultaneously [101,107,142,143,147,148,l51]. Even fewer of these actually 

provide a chromatogram to allow assessment of the resolution between the various 

peak pairs. In some cases multiple detectors [143,148,151] were used in order to 

enable detection of all four species. Divjak and Goessler [147] were able to 

separate these four sulfur anions in ~ 17 .5 min on a Dionex AS 12A column with 

AG12A guard using a sodium hydroxide step gradient. The success of the 

separation was dependent on the use of the element-specific MS detector since 

chloride was co-eluted with sulfide, which would cause problems if a universal 

detection method, such as conductivity, was used. 

An alternative technique for sulfite, sulfate and thiosulfate sulfide (and 

thiocyanate) determination was recently described by Jekakumar et al. [149], 

using a Dionex AS4A-SC column with carbonate/bicarbonate eluent and 

suppressed conductivity. In this method sulfide was determined indirectly by 

injecting two aliquots of each sample, one of which had been treated with an 

ammoniacal peroxide solution to convert all the sulfur species present to sulfate. 
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From the untreated solution the equivalent sulfate concentration of all the sulfur 

anions under direct investigation was calculated and compared with the treated 

solution to determine the sulfide by difference. However, this method is only 

applicable in the absence of further sulfur compounds. 

Separation of thiosulfate and the lower polythionates (x = 3 to 6) has been 

achieved by a number of authors, as is apparent in Table 1.2. Those using UV_ 

detection clearly demonstrate the relatively poor detection limits attainable for 

trithionate by this methodology. Kupchella [183] obtained good resolution of the 

polythionates S50l to S320l- in 46 min on a Keystone scientific Partisil- 5 µm 

ODS-3 column with a gradient between (A) a solution of 24 mM TBAH2P04 (pH 

4) and (B) ACN. This represents the most comprehensive polythionate separation 

reported to date. 

The determination of polysulfides by IC has been problematic 

[127,150,151,165,167] with accurate results and adequate separation being 

difficult to obtain. Uddin et al. [127] concluded that with the~ anion-exchange 

method polysulfides broke down to sulfide and elemental sul:fur on the column. 

Other anion-exchange methods have involved derivatisation of the polysulfides, 

either prior to the separation using cyanolysis to form thiocyanate and sulfide 

[151] or during the separation using sulfitolysis to form thiosulfate and sulfide 

[150]. Ion-interaction HPLC techniques have been the most successful for direct 

separation of polysulfides [167] from other sulfur anions, but even here only a 

single peak for the unresolved polysulfides was observed. The inability of such 

methods to separate individual polysulfides is caused by the rapid equilibria 
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existing between the different members of the series. Witter et al. [165] has 

provided the best separation of polysulfide species and in this study derivatisation 

of thiosulfate and sulfite was achieved with 2,2' -dithiobis( 5-nitropyridine) 

(DTNP). In the subsequent chromatographic separation, peaks were observed in 

the chromatogram that were attributable to derivatives of a 90% S4 
2

- sample 

known to be contaminated with other polysulfides. 

Reports on the separation of sulfur species with non-commercial columns are few. 

Chapman and Beard [160], used a column packed with activated carbon to 

separate thiosulfate and the polythionates. Baseline resolution was not achieved 

between the thiosulfate-trithionate and tetrathionate-pentathionate peak pairs. No 

subsequent papers have appeared using this technique, a possible reason given by 

Story [131] being that it is difficult to prepare reproducible columns. Vlacil and 

Vins [157,158], functionalised Separon hydroxyethyl methacrylate (HEMA) 

epoxidised copolymers with diethanolamino groups and used the resin to resolve 

thiosulfate and polythionates (x = 3 to 5). The separations obtained in both papers 

can be bettered on commercial resin materials, as can be seen in Tables 1.1 and 

1.2. 

1.6.3.5 Su/fur Jon Detection in Jon-Chromatography 

A broad range of detection techniques has been used in conjunction with the IC 

methods, with by far the most popular being UV spectrophotometry and 

conductivity. Most of the sulfur species covered in this review have at least some 

absorbance in the UV region 200-254 nm, with the main exceptions being sulfate 

and dithionate [113,185]. Trithionate absorbs relatively weakly compared with 

the other polythionates [186] and as a result detection limits for this ion using UV 
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detection are relatively high, as noted by a number of workers [159,160,164,175]. 

Indirect UV detection has been used as an alternative for separations of non-UV 

absorbing analyte anions, such as sulfate [94,130,154,157]. 

Conductivity detection in both the suppressed and non-suppressed forms has also 

found wide application (see Tables 1 and 2). This technique is more universal 

than direct UV detection and while this means that it can detect all ionic sulfur 

species, it will also detect any interfering ions in the sample matrix. Sulfide 

cannot be determined sensitively and reliably in suppressed systems since the 

suppressor converts this ion to the non-conductive species H2S [102,113,187]. 

Of the electrochemical detection techniques other than conductivity, the most 

frequently reported have been DC and pulsed amperometry for detection of 

sulfide, sulfite and/or thiosulfate [102,125,128,140,142]. The electro-inactive 

sulfate ion has also been determined by indirect amperometry in a suppressed IC 

system ·[142], where the detection electrode was used to measure the change in 

eluent pH that occurred with the elution of strong acid anions in suppressed IC 

[113]. In some papers [102,125] a dual detection system was used incorporating 

amperometry and conductivity in order to improve the detection limits of ions 

such as sulfide and thiosulfate. Amperometry has the problem of electrode 

poisoning, as noticed in the detection of sulfide by Poulson and Borg [101] using 

DC amperometry with a silver electrode. These authors postulated that organic 

materials in the samples fouled the detection electrode. A gradual increase in the 

signal for sulfide from a clean silver electrode over the first few injections prior to 

attaining consistent results has also been reported [102]. This effect has been 

attributed to the formation of a layer of silver sulfide on the electrode, enhancing 
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the electrode reaction. The layer also enhanced the detection of other sulfur 

species, notably thiosulfate and sulfite. 

Literature also exists for techniques involving polarographic detection. Sulfide, 

sulfite and thiosulfate have been detected using sampled DC polarography [127] 

and a method has been developed for thiosulfate and the polythionates (x = 3 to 6) 

[163] where fractions of the column effluent were collected and analysed 

polarographically. The chromatographic method was unable to separate tri- and 

tetrathionates, and the concentrations of these could only be determined through 

calculation after the polarographic experiments were completed. No detection 

limits were specified in either case. 

Inductively coupled plasma-mass spectrometry (ICP-MS) has recently been 

demonstrated as a further detection method for sulfur species [147]. A suppressed 

IC method developed using this detector has been applied to the separation of 

sulfide, sulfite, sulfate, and thiosulfate using a NaOH eluent, with detection of 

these ions being effected as 32S160+ m/z = 48. This particular species was chosen 

due to high background at the two main sulfur isotope m/z ratios of 32 and 34. 

Carbonate eluents could not be used since carbon suppressed the ICP-MS signal 

for 32S160+ and chemical suppression of the eluent was also required to remove 

sodium ions which would otheiwise salt out and block the detector interface. 

Separation of matrix ions from the sulfur species of interest is usually not 

required, but high concentrations of ions such as chloride that are co-eluted with 

sulfide under the chromatographic conditions used will suppress the signal 

obtained for sulfide. Detection limits were between 35-270 µg/L (1.1-2.5 µM) 
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which, although being low, are still about an order of magnitude higher than for 

some suppressed conductivity, UV and post-column reaction (PCR) methods. 

However, an advantage oflCP-MS is its selectivity for sulfur species. 

Wolkoff and Larose [161,162] employed a PCR system whereby the 

polythionates (x = 3 to 6) were reacted with hydroxide to form thiosulfate and 

sulfite. These products were oxidised with cerium(IV) to produce cerium(III) 

through the following reactions: 

SzO~- +8Ce4+ +5H20~2so~- +8Ce3+ +lOH+ 

SO~- +2Ce4+ +H20~SO~- +2H+ +2Ce3+ 

(1.19) 

(1.20) 

The cerium(III) generated in this way was then detected usmg fluorimetry. 

Problems with the technique were that the reactions respond to any oxidisable 

material in the sample, leading to possible interferences, and there was no 

response to · sulfate. The procedure outlined in this paper has become somewhat 

outdated, in that similar or improved detection limits have been reported for 

methods utilising suppressed conductivity detection [112,172]. A new method 

using the technique has recently appeared for sulfite and thiosulfate [188] and 

demonstrates sub-µM detection limits. Story [131] developed a method that 

utilised bromine to convert sulfide, sulfite, thiosulfate and the polythionates (x = 3 

to 6) to sulfate. The reaction for thiosulfate is: 

(1.21) 

The resultant sulfate was detected as Fe(S04t by UV spectroscopy at 335 nm 

after the introduction of iron(III). This is the most universal PCR system that has 
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been developed for sulfur species and has detection limits in the range 20-100 

µM, showing that it is less sensitive than many of the other detection methods 

available. 

PCR detection systems that determine a small number of sulfur anions also exist. 

Sulfide, thiosulfate and the polythionates (SxO/-, 3 ~ x ~ 6) have all been 

determined through their ability to catalyse the reaction of iodine with azide 

(1.22) 

This PCR was followed by indirect detection of the excess iodine as tri-iodide at 

350 nm [98,178]. An alternative method has used a similar approach for sulfide, 

sulfite and thiosulfate, except in this case the catalysed reaction was the 

degradation of potassium bromate in hydrochloric acid, with detection at 522 nm 

[148]. Other methods [96,98] have used the following iodometric reactions as the 

basis for a PCR system to detect sulfide, sulfite and thiosulfate 

2820~- +12 ~840~- +21-

s~- + 12 ~s
0 + 21-

so~- + 12 + H2o~so~- + 2r + 2H+ 

(1.23) 

(1.24) 

(1.25) 

The iodine was stabilised in solution as the tri-iodide ion and detection was 

achieved by measuring the reduction in the absorbance of tri-iodide. All of the 

above techniques provide very low (sub µM) detection limits, particularly those 

involving catalysis. 

1.6.3.6 Pre-Chromatographic Derivatization and Preconcentration 

Pre-analysis derivatization of sulfur anions has been used to obtain low detection 

limits and to prevent degradation of these ions prior to analysis. The compound 
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(a) 

0 2N () 5-S ~ ) N02 

(b) 

Fig. 1.3 Chemical structures of (a) monobromobimane (b) DTNP. 
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2-2'-dithiobis(5-nitropyridine) (DTNP), illustrated in Fig. l.3(a), is a typical 

derivatisation reagent which has been used for the determination of thiosulfate and 

sulfite [165,166], after conversion, via a displacement reaction, to disulfide 

derivatives. A by-product of the reaction is 2-mercapto-5-nitropyridine. The 

reagent also reacts with polysulfide species but quantitative detection was not 

possible because of a lack of standards for identification of individual 

polysulfides. Detection limits in the mid-nM range were attained in conjunction 

with preconcentration of the derivatives on Sep-Pak C18 cartridges. The 

derivatives were found to be stable on the cartridges for two weeks if kept 

refrigerated at <5°C. The technique has been applied to seawater [166] and 

effluent from petroleum production [165]. One problem with the method was that 

derivatisation was found to perturb sulfur speciation [165], since results by this 

method were on average 33% higher than those observed for the same samples 

using differential pulse polarography. 

A second derivatization reagent, monobromobimane (MBB, shown in Fig. l .3(b )) 

has been applied to sample matrices such as human serum [126] for the 

determination of sulfide, sulfite and thiosulfate, through their conversion to 

fluorescent derivatives formed by displacement of bromide in the molecule by the 

sulfur containing ion. These derivatives have also been separated using reverse 

phase HPLC [189-192]. No substantial comparative studies have been conducted 

with this reagent so possible perturbation effects on the equilibrium speciation of 

sulfur caused by pre-treatment are unknown. The bimane derivatives formed 

from seawater samples were found to be stable for several months if kept frozen at 
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-20°C [190]. Detection limits in the mid-nM range were achieved with this 

system. 

Preconcentration of the polythionates (x = 3 to 5) on a Waters IC-PAK anion­

exchange pre-column followed by separation by ion-interaction chromatography 

on a Hamilton reversed phase column was reported by Weir et al. [179]. Using 

this technique extremely low detection limits for these ions of between ,...,Q.3-1 nM 

were attainable (0.08 -0.2 µg/L). One problem with the preconcentration method 

was that under the conditions required for elution from the pre-column and 

separation, thiosulfate was eluted with the solvent front and therefore could not be 

determined accurately. 

1.6.4 Determination of Su/fur Species using Capillary 

Electrophoresis 

1.6.4.1 Introduction [193, 194] 

CE is an electromigrative separation technique in which the separation mechanism 

is effected by the differing rates of migration (electrophoretic mobilities) of the 

analyte ions in an electric field. In this technique separations are carried out in a 

nanow bore capillary (I.D. typically 20-100 µm O.D. 375 µm) usually made of 

fused-silica coated with polyimide, the latter used to overcome the fragile nature 

of the silica. A CE instrument configuration is shown Fig. 1.4. The capillary is 

filled with, and each end immersed in, an ionic-solution at the desired pH known 

as the "background electrolyte (BGE)". An electrode from a high-voltage power 

supply is also placed in each of the electrolyte reservoirs. Samples are injected 

into the capillary by replacing the inlet electrolyte reservoir for' a time with the 
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Capillary 

Inlet Buffer/ 
Sample Injection 

High Voltage 
Supply 

Data Collection 

Outlet Buffer 

Fig. 1.4 Diagram of a typical capillary-electrophoretic system. Adapted from 
[194]. 
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sample solution. Injection is usually facilitated by the use of hydrodynamic (a 

difference in height between the inlet and outlet of the capillary), pressure driven, 

or electrokinetic (applied voltage) means. After this process is completed, the inlet 

BGE is returned and separation is effected by applying a high voltage across the 

capillary, typically up to ±30 kV. This limits the size of the capillary that can be 

used since otherwise the heating, known as Joule heating, generated by the flow of 

a current in a conducting medium, would not be adequately dissipated and the 

liquid would boil. On application of the voltage the ions then separate according 

to differences in their electrophoretic mobilities. Near the outlet of the capillary, 

detection is effected, most commonly through the use of UV spectrophotometry. 

Which ions migrate towards the detector in a CE analysis depends on the polarity 

of the applied voltage, the effective mobility of the ions under investigation, and 

also the strength of the electro-osmotic flow (EOF). EOF is a phenomenon caused 

by the negative charge of ionised silanol groups on the wall of the fused-silica 

capillary, which results in the formation of an electrical double layer. That closest 

to the stationary silanol groups is essentially immobile (Stem Layer), however the 

adjacent, more diffuse zone (Outer Helmholtz Plane), is not. Under an electric 

field the cations in this second zone migrate towards the cathode, along with their 

waters of hydration. The hydrogen-bonding properties of water cause this effect to 

continue on to the bulk solution in the capillary, with the result that the entire 

electrolyte solution being drawn towards the cathode. As a result the observed 

mobility of an ion in a CE system is the vector sum of the electrophoretic mobility 

of the ion, and the EOF that exists in the capillary. EOF is dependent on a number 

of factors, notably pH, and can also be influenced or reversed by the use of 

various modifiers in capillary pre-flushing solutions and/or the electrolyte. 
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The advantages of CE over IC are that it gives faster, more efficient separations, 

while the disadvantages are that the technique is not as robust, reproducible and 

generally shows higher limits of detection. 

1.6.4.2 Separation and Selectivity for Su/fur Anions by Capillary 

Electrophoresis 

CE is a less developed technique in comparison to IC for the analysis of inorganic 

ions [195] but there have been many separations reported that include one or two 

sulfur anions [196]. These will not be covered here, as further information can be 

obtained in the review by Kaniansky et al. [196]. Table 1.3 outlines the 

separation of sulfur species that have been performed using CE. Some of the 

methods shown have also included the separation of other anions but only the 

relevant sulfur anions have been listed. As with the chromatography tables, co­

elution of analytes has been indicated by a '/' between the two relevant ions and 

similar methods have been grouped together as one entry. The information shown 

for a particular entry again refers to the first reference listed. Analytes are listed 

in migration order. 

Most research into the separation of sulfur anions by CE has focused on sulfide, 

thiosulfate, sulfite and sulfate, with separation generally being achieved with co­

electro-osmotic flow (EOF) through. the addition of an EOF modifier to the 

background electrolyte (BGE). In this separation mode the migration order is 

generally: 

(1.26) 

Separations of other sulfur anions are too few in number to warrant inclusion of 

their migration order in the above series, although the two papers that have 
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-~ Table 1.3 Capillary electrophoretic methods for the determination of sulfur species. 
~ 

Species Detected Sample Sample Preparation Electrolyte composition (pH, voltage applied) Detection 
Detection Ref. 

Limits 

s2ot. s 2-, sot Standards 0.1 M Tris/HCI buffer (pH 8.75, -7 kV) UV (200 nm) (197] 

s2ot. s 2-, sot Photographic waste Dilution. On-capillary 20 mM tris-HCI (pH 8.5, -30 kV) Direct UV (214 nm) of 0.5-2 µM [198] 
solutions reaction with '2 to form r. iodide formed from 

S03 2- standards in 02 derivatisation. 
free water, s 2- standards 
by [98]. 

(a) s2ot. sot. s 2- Stainless steel corrosion (a) used for high er (a) 25 mM NaCl, 4 mM Waters OFM Anion-BT in Direct UV (214 nm) [199) 

s20/-. s 2-, so/-
solutions samples, (b) used for OH form (-20 kV) 

(b) high so/- samples. 
(b) 1.5 mM Na2S04, 2 mM OFM Anion BT in OH 
form (pH 10.5, -20 kV) 

s20/-. sol-. so/- Standards Formaldehyde to 5 mM Na2Cr04, 20 µM CTABr (pH 10, -20 kV) Indirect and direct UV 0.17-0.50 [99] 
stabilise so/-. and (214, 254 nm) mg/L (1.5-6.2 
degassed water to 
stabilise s 2- standards 

µM) 

s2032-, sol. so/- Standards, studying 5% PrOH added as 9.5 mM K2Cr201, 1 mM DETA, 5 % v/v PrOH (pH Indirect UV (254 nm) 3-7 µM [103] 
oxidation of sol stabiliser for sot. 10.3, -25 kV). 

s2ot. sot, s2·1sot Standards On-line dialysis 6 mM Na2Cr04, 32 µM CTABr, 3 mM H3B03 Indirect UV (372 nm) [200) 
adjusted to (pH 8.0, -25 kV) 

s2ot, s 2-, sol. sot Kraft black liquor Dilution with degassed 32:68 ACN:5 mM chromate, O.OQ1 % HDB wlv (pH Indirect UV (185 nm) 0.5-1 mg/L (5- [62] 
water 10.8, -30 kV) 31 µM) 

s2ot. sol. s 2-. sot Kraft process liquors Dilution 5 mM Na2Cr04, 3.45 µM H2S04, 0.5 mM Waters Direct and indirect UV (201] 
NICE-Pak OFM Anion-BT (-20 kV) (185, 214 or 254 nm) 

-., 
s20/-, sot. s 2-, so/· Kraft process liquors On-line dilution 3.5 mM K2Cr04, 30 µM CTABr (pH 11, -25 kV) Indirect UV (372 nm) [202] i... 

~ 
s20/-, sol. s 2-, so32· Filtration., formaldehyde !} Open-pit mining lake 50 mM CHES, 35 mM LiOH, 0.03% Tnton X-100, Conductivity 8-50 µg/L (83 (99) 

,:::: water to stabilise sol-. and pre injection rinse of 1 mM CTABr (-25 kV) nM-1.6 µM) 
Cj degassed water to 

stabilise s 2· standards 

s20/-. sol-. s 2·, so/· Kraft process liquors Dilution 5 mM Na2Cr04, 0.5 mM Waters Nice-Pak OFM Indirect and direct UV (203] 
Anion-BT (pH 10.6, -20 kV) (214, 254 nm) 
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Species Detected Sample Sample Preparation Electrolyte composition (pH, voltage applied) Detection Detection Ref. 
Limits 

s2ot. sot. s 2-, so/· Kraft process liquors Dilution and helium 2.25 mM PMA, 6.5 mM NaOH, 0.75 mM PDA (350/50 nm) -1 mg/L (9-31 [204] 
degassing. hexamethonium hydroxide, 1.6 mM TrEA (pH µM) 

11.2, -18 kV) 

s2ot. so/·, s 2·, sot Kraft process liquors Dilution with NaOH (pH 20:80 ACN:5 mM Na2Cr04, 0.001 % w/v HDB (pH Direct and indirect UV [205,206] 
11) and degassing 11.0, -15 kV). (185, 214, 254 nm) 

s2ol·. so/·. s 2·• so32· Standards, beverages 6 mM K2Cr04, 3 mM boric acid, 23 µM of CTABr Indirect UV (372 nm) [207] 
and vinegar (pH 8. 75, -25 kV) 

S20a2·, S2032·, so/· Standards 2.5 mM PMA, 6.5 mM NaOH , 0. 75 mM Indirect UV (250 nm) [208] 
hexamethonium hydroxide, 1.6 mM TrEA (pH 7.7, 
-30 kV) 

s2ot. so/·, s2ol", s40{ Standards 3 mM NTS, 2 mM DETA, 100 mM H3B03, 5 mM Indirect UV (284 nm) -BO µg/L for [209] 
Na2B401 (pH 8, -30 kV) so/· co.8 

µM) 

s2ol·. so/·. s4oa2· Natural clayey water 10 mM TRIS, 1.5 mM PMA, 0.5 mM DETA (pH 8, Indirect UV (214 nm) 3-20 µM [64] 
(injected separately) ' s 2· -20 kV) 

s2ot. so/·, so/·, s4oa2· Photographic waste Dilution 5 mM H2Cr04, 1 mM hexamethonium hydroxide Indirect UV (254 nm) 0.8-8.4 µM [210] 
solutions (pH 8.0 with TrEA, -30kV) (Not specified 

for S40/") 

s20/·, so/·. s3ot. sol·. Standards for salt purity 2 mM sulfosalicylic acid-0.5 Waters OFM-OH (pH Indirect UV (214 nm) 1.5-10 µM [211] 
s40/·, s 2· and solutions studying 7.0 with bis-tris, -25 kV) 

reaction of sol· with 
S40a2·. 

....... S20/·, S40{, SsOa2°, Th1osulfate electrolytic Dilution 5 mM KH2P04, 5 mM (NH4)2S04 (pH 5.0, -30 kV) Direct UV (214 nm) 0.8-8.4 µM [210] 
i.. SaOa2° oxidation solutions 
~ 
§- S2ol·. S40a2°, SsOa2". Photographic waste Dilution 5 mM TBAAc, 5 mM (NH4)2S04 (pH 5.0, -30 kV) Direct UV (214 nm) 0.8-8.4 µM [210] 

C5 Sa0a2· solutions 
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considered polythionates [210,211] suggest that these ions migrate in order of 

increasing sulfur number with trithionate slower than sulfate. Deviations from the 

order given above have been reported with the most notable being sulfide 

migrating more slowly than sulfite [199] and sulfide migrating between 

thiosulfate and sulfate [62]. In· the former case the change in selectivity was 

achieved through 
. . 
mcreasmg the EOF modifier (OFM anion-BT 

(hexamethonium)) in the BGE from 2 mM to 4 mM. The change was attributed to 

a relatively strong reduction in sulfide mobility caused by the hydrophobicity of 

the ion and the formation of ion-pairs between sulfide and the EOF modifier. 

These ion-pairs could be formed with free modifier ions and/or micelles that form 

at this concentration. The faster migration of sulfide over sulfate was achieved by 

adding acetonitrile to the electrolyte [62]. This addition reduced the mobility of 

all the anions investigated, but the rate of decrease with increasing percentage of 

acetonitrile (ACN) was higher for sulfate than sulfide, resulting in a change in 

separation selectivity when the electrolyte contained ;;::25% v/v ACN. These 

changes were attributed to solvation effects and to a lesser extent also to changes 

in the pH of the BGE caused by addition of the organic solvent. 

The work in the literature to date demonstrates two advantages of CE over IC, 

these being shorter analysis times and greater separation efficiency [195]. This is 

highlighted by the research of Volgger et al. [62] who reported separations of 

thiosulfate, sulfate, sulfide, sulfite and other ions in less than 1 min in Kraft 

pulping liquors. 
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Separations including dithionate [208,209], trithionate [211] and/or tetrathionate 

[64,209-211] have been reported. In one case [64] tetrathionate had to be injected 

separately since precipitation occurred on mixing with the other three sulfur 

anions being examined (thiosulfate, sulfate and sulfide), probably through the 

sulfidolysis reaction (1.15). There are only two publications on the detennination 

of thiosulfate and multiple polythionate ions [210,211]. The first examined 

thiosulfate and polythionates (x = 4_ to 6) in photographic waste solutions, using 

direct UV detection. The BGE in this case consisted of 5 mM 

tetrabutylammonium (TBA) acetate and 5 mM ammonium sulfate at pH 5. 

Migration occurred in order of increasing sulfur number. In developing the 

separation method, it was found that the EOF modifier, 

tetradecyltrimethylammonium hydroxide (TTAOH), caused peak broadening of 

the polythionates, while a second modifier, hexamethonium hydroxide caused a 

broad hexathionate peak, both presumably due to ion-pair formation. As a result, 

the two BGEs developed in this work contained either no EOF modifier or a 

modifier of relatively low hydrophobicity (TBAOH), which was used to increase 

resolution between thiosulfate and bromide. Separation in both cases was 

counter-BOP, which had no significant effect on the separation since the EOF 

mobility was very low at the pH used. The second paper [211] employed indirect 

UV detection at 214 nm with an electrolyte containing 2 mM sulfosalicylic acid 

and 0.5 mM Waters OFM-OH EOF modifier, adjusted to pH 7.00 with bis-tris, 

and was able to separate sulfide, sulfite, sulfate, thiosulfate, trithionate and 

tetrathionate (and peroxodisulfate, S20s2} It is the most comprehensive method 

for sul:fur anions to date and the only one to have considered the trithionate ion by 
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CB. There are no CB separations in the literature to date which include, the higher 

polythionates (x >6), the polysulfides or the metallo-thiosulfates. 

1. 6.4.3 Sample Preparation, Preconcentration and Injection 

Kuban and Karlberg [200,202,207] have developed coupled flow injection 

analysis FIA-CB systems designed to reduce or remove the need for off-line 

sample pre-treatment and to enable automated analysis. These FIA-CB systems 

have been used to dilute Kraft process liquor samples on-line prior to the CB 

separation of thiosulfate, sulfate, sul:fide and sulfite [202] and also for on-line 

dialysis [200] and gas diffusion [207] pre-treatment methods. A range of anions 

were examined including sulfate, sulfide, thiosulfate and sulfite. Dialysis 

transport efficiencies were found to be quite low for the sulfur anions, ranging 

from between 7-10%, which reduced the analytical sensitivity for these ions. The 

gas dialysis process was only suitable for sulfide and sulfite since thiosulfate 

decomposed to give sulfur dioxide (which interfered in the quantification of 

sulfite) and elemental sulfur (which fouled the gas/liquid separation membrane). 

Electrokinetic injection has been used to enhance the analytical sensitivity for 

thiosulfate, sulfate, sulfite sulfide and thiocyanate [99]. This process reduced 

detection limits for these ions to sub-µM levels, representing at least a twenty-fold 

improvement over standard hydrodynamic injection, giving some of the lowest 

detection limits observed in sulfur speciation studies by CB. The major problem 

with this approach (which occurs with any electrokinetic injection method) was a 

strong dependence of peak areas on sample composition, especially for highly 

conductive samples which gave low enrichment factors. External calibration 

curves were also non-linear as a result of this conductivity dependence, so 
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standard addition methods were suggested as an alternative method for 

quantifying analytes. However, care needed to be taken to ensure the standard 

addition did not significantly affect the conductivity of the sample. For further 

information on the advantages and disadvantages of electrokinetic injection 

readers are referred to a recent review by Krivacsy et al. [212]. Other reports 

have utilised electrokinetic injection for the determination of sulfur species 

[197,200,202,207] although no mention was made of detection limits, linearity or 

the dependence of sample conductivity on the amount of sample injected. 

1. 6.4.4 Detection of Su/fur Anions 

Indirect UV detection is the most commonly used technique in CE for the 

detection of sulfur species, as is the case for most inorganic anions [196], although 

direct and mixed indirect/direct detection have also been used. The primary 

reason for the popularity of indirect UV detection is that many inorganic anions, 

such as sulfate, show little direct UV absorbance. Tue most common indirect 

detection ''probe" (i.e. the UV-absorbing co-anion used to visualise analyte 

anions) employed in sulfur speciation studies has been chromate (see Table 1.3). 

Indirect detection can be problematic if some of the analytes absorb at the 

detection wavelength, leading either to reduced detection sensitivity or even 

complete failure to detect some analytes, as was observed by Padarauskas et al. 

for penta- and hexathionate at 254 nm using chromate or Tiron as the probe [210]. 

CB with conductivity detection was recently used for the determination of 

thiosulfate, sulfate, sulfide and sulfite [99], although detection limits when 

hydrodynamic injection was used were generally higher than for UV detection 

techniques. 
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Recently, a novel in-capillary derivatisation method was reported for the 

determination of thiosulfate, sulfide and sulfite [198]. In this technique a plug of 

an iodine solution was injected at the detection end of the capillary immediately 

prior to the start of the analysis. On application of the separation voltage the 

analyte ions migrated towards the anode, while the non-ionic iodine solution 

migrated towards the cathode with the EOF. During the analysis the iodine zone 

passed through each of the analyte zones, reacting to form iodide as one of the 

products. The generated iodide was then detected by direct UV at 214 nm. The 

main advantages of the method were that it improved the separation efficiency 

and shortened the analysis time. The authors also note that such an approach could 

be used for the simultaneous separation of UV and non-UV absorbing anions in a 

single run with direct UV detection. 

One of the main disadvantages of CE for inorganic ions are the limited number of 

detection methods available, and relatively poor detection limits in comparison 

with IC [195]. CE with UV detection for sulfur speciation is no exception, with 

minimum detection limits achieved being approximately 1-10 µM for most ions. 

Only the use of electrokinetic injection as a preconcentration tool has enabled 

lower detection limits of sulfur ions by CE [99]. IC methods that attain 

significantly lower detection limits are available and these can also be used for a 

wider variety of sulfur anions than CE, as indicated in Tables 1.1 and 1.2. 

1.6.5 Determination of Su/fur Species by /sotachophoresis 

1.6.5.1 Introduction [213,214] 

Like CE, capillary isotachophoresis (ITP), is an electromigrative technique, and 

therefore also uses the differing electrophoretic mobilities of ions as a means of 
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their separation. ITP is actually an older technique for the determination of ionic 

species than CE. The apparatus required is similar to CE (a standard CE 

instrument can be used), however there are a large number of differences between 

the two methods. Unlike CE, the use of much wider capillaries is possible, as is 

the use of segmented capillaries with different internal diameters. The wider bore 

capillaries also make possible the use of chromatographic-type injection valves. 

The electrolyte system used is discontinuous, with the buffer used initially to fill 

the capillary or "leading electrolyte" different to that used after injection, known 

as the "terminating electrolyte". In the case of anion separations, the leading 

electrolyte contains an anion of mobility higher than those of the analytes of 

interest in the sample, while the terminating electrolyte contains an anion of lower 

mobility than those in the sample. Unlike CE universal detectors such as 

conductivity are more commonly used than UV. 

Separation of ions in isotachophoresis is based on the "regulating function" first 

described by Kohlrausch, which bears his name. The value of the function is 

independent of time and at a given point in the migration path is dependent only 

on what ions are present in the capillary prior to the application of the electric 

current. For strong, monovalent electrolytes, and assumptions of negligible 

diffusion and constant ionic mobilities, once a current is applied the function can, 

for any given point in the capillary, be expressed as shown in Eqn 1.27. 

(1.27) 

This function holds for a any given point m the capillary, wh,ere c, and 

c~ represent the concentration of component i at a given moment in time, and prior 
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Fig. 1.5 Illustration of an isotachophoretic separation of anions A B C with 
leading anion L and terminating anion T, and the conditions that 
uL>uA>us>nc>uT. (a) Initial state in the capillary after sample injection. (b) 
Situation at some time (t1) after application of driving current. The sample zone 
has changed to adapt to the leading electrolyte, however the ions present have not 
completely separated, with mixed zones still present. ( c) Complete separation of 
the three species is achieved at some time (t2>t1). Adapted from [213]. 
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to the application of an electric current respectively, and Ui is the electrophoretic 

mobility of component i. Whilst in general the system is more complex than this, 

the basic principles are the same. 

Descriptively, once a current is applied across the capillary, the ions in the sample 

start to separate into individual zones in order of decreasing electrophoretic 

mobility. This is illustrated for an anionic system in Fig. 1.5 with anions A-, ff, 

and C- leading ion L- and terminating ion T, with the property that 

uL>uA>ua>Uc>UT. After some time, this process will be complete and there 

will be three zones with sharp boundaries between the leading and terminating 

electrolytes, as shown in Fig. l.5(c). The cations of the system move in the 

opposite direction. Under constant current conditions (note the difference between 

this and CE where a constant voltage is usually applied), these bands continue to 

migrate through the capillary with a constant velocity, hence the name 

"isotachophoresis". In addition, the zone length of each sample component is 

proportional to its concentration in solution. This contrasts greatly with 

chromatographic and CE methods where each analyte appears as a peak, and it is 

the area or height of this peak which provides the quantitative data. In 

isotachophoresis, EOF is usually considered an undesirable phenomenon, and is 

suppressed, for example, through additives to the leading electrolyte. 

1. 6. 5. 2 Separation of Su/fur Species by /sotachophoresis 

ITP does not enjoy the same popularity as IC and CE, with its use as a distinct 

analytical technique receding [215], although it currently has a niche as a pre­

treatment or pre-concentration tool for other methods [216]. This is reflected in 

the lower number of references for the determination of sulfur-oxygen species by 
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this method. Sulfite, sulfate and thiosulfate have been determined in sodium 

sulfide solutions by ITP [105], using a leading electrolyte of 1:1 water-acetone 

containing 5 mM hydrochloric acid and 10 mM L-histidine, whilst the terminating 

electrolyte was 10 mM sodium acetate. Oxidation of sulfide and sulfite in the 

standards was prevented by using degassed solutions containing 5% glycerine. A 

further method using 1: 1 water-acetone containing 10 mM sodium hydroxide and 

0.1% Triton X-100 as the leading electrolyte and 0.01 hexanoic acid as the 

terminating electrolyte was shown to be suitable for the simultaneous 

determination of dithionate, tetrathionate and sulfate in addition to other sulfur­

oxygen species not considered in this review (peroxodisulfate, s2og2-, and 

disulfate, S20l) [217]. This method was used in a study of the decomposition of 

S20s2-. 

Lucansky et al. [218] developed isotachophoretic methodology for the 

determination of a variety of compounds, including thiosulfate, sulfate and sulfite, 

m reaction solutions from the preparation of N-morpholino-2-

benzothiazolesulphenamide. A variety of leading and terminating electrolyte 

systems was examined, with the optimal system containing calcium as an additive 

to separate the chloride and thiosulfate zones. A method also exists for the 

determination ofthiosulfate, sulfate and sulfite in sulfite pulping liquors [219]. 

ITP has also been used to study oxidation of reduced sulfur compounds by 

Thiobacillus ferrooxidans bacteria [220]. Two methods were required to 

determine sulfate (first method), thiosulfate and tetrathionate (second method). 

Both methods used a leading electrolyte containing ~-alanine/hydrochloride with 
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calcium chloride as an additive. The terminating electrolytes were citric acid for 

the analysis of sulfate and capronic acid for the analysis of thiosulfate. When 

using the thiosulfate method some unidentified ions were also detected and it was 

suspected that these were other polythionates present in the sample matrix. 

Detection limits of 4 and 7 µM were attainable for sulfate and thiosulfate, 

respectively. 

1.6.6 Other Separation Techniques 

Various other separation techniques have been used for sulfur speciation, although 

with the possible exception of ITP, to a much lesser extent than those already 

discussed. These are discussed briefly below. 

1.6.6.1 Planar Chromatographic Techniques 

Early research involved the use of paper chromatography and paper ionophoresis 

to separate sulfur species, particularly the polythionates. These methods have not 

received significant attention for some years. For further information the reader 

should consult reviews by Blasius et al. [65], Roy and Trudinger [91] or Szekeres 

[58]. Interestingly, there is one report which describes the use of paper and thin 

layer chromatography (TLC) [221] to study the gold thiosulfate complex, 

although the techniques were not used to quantify this ion. 

1.6.6.2 Ion-Exclusion Chromatography 

Separations using ion-exclusion chromatography (IEC) are few and are mostly 

concerned with the determination of a single analyte ion, usually sulfite [222-224] 

or sulfide [225], which are ideally suited to this technique. IEC methods for 

sulfite have been most commonly applied to foodstuffs and beverages, although 

the separation of sulfite, sulfide and thiosulfate (in that order) on a mixed 
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cation/anion exchange resin (Dionex CG5 and CS5 columns in series) using an 

ion-exclusion eluent [226] has been reported. An iodometric PCR detection 

method, similar to that already discussed in Section 1.6.3.5, was used [96]. 

Detection limits were in the range 1.2-6.8 µM. 

1.6.6.3 Reversed-Phase-High Performance Liquid Chromatography 

The use of reversed-phase HPLC for the separation of ionic sulfur species is 

uncommon, but sulfite, thiosulfate and sulfide have been determined as their 

monobromobimane derivatives [189-192]. A peak attributable to polysulfide 

could also be detected by this method [189], but as with the DTNP derivatisation 

discussed in Section 3.2.3, this peak could not be quantified. 

Reversed-phase HPLC has been used widely for the determination of elemental 

sulfur precipitate in various aqueous solutions such as seawater [189,192], 

wastewater [191], solutions of sulfur oxidising bacteria [176,227,228] process 

waters from a heavy-water plant [229] and sodium thiosulfate injection solutions 

[230]. Extraction of the sulfur from aqueous solutions with a suitable organic 

solvent such as methanol [192,227], carbon disul:fide [176] or chloroform 

[189,191,228,229], or cyclohexane [230] is required for the analysis. Henshaw et 

al. [228] examined various parameters for their effect on extraction efficiency, 

such as agitation time, settling time and the sample matrix. It was observed that 

extraction of elemental sulfur could be reduced if the sample contained sul:fide, as 

a result of polysulfide formation. This problem was resolved by adding acid to 

the aqueous solution at the time of extraction to remove the sul:fide as H2S gas. 

The bio-reactor sample matrix examined was found to cause a negative bias on the 

results compared to those from elemental sulfur standards. It was hypothesised 
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that some of the enzymes from the bacteria in the bio-reactor were oxidising a 

portion of the elemental sulfur, although this was not investigated further. 

Separation of the various constituent sulfur homocycles (Sx) has also been studied 

[176]. All these methods used predominantly organic solvent mobile phases to 

determine elemental sulfur, with the most popular choice being methanol, while 

UV absorbance was generally used for detection. Detection limits of the methods 

have ranged between 0.2 µM [230] and 33 µM [191]. 

1.6.6.4 Gas Chromatography 

The use of gas chromatography (GC) for the determination of sulfur anions or 

elemental sulfur in aqueous solutions has been minimal. The only report using 

GC involyed the determination of elemental and/or polysulfidic sulfur in Kraft 

pulping liquors [231]. In this method the elemental sulfur was reacted with 

triphenylphosphine at pH 11.5 and the resulting triphenylphosphine sulfide 

separated by GC with a flame ionisation detector. Total polysulfide and elemental 

sulfur was determined in a similar fashion, except that the derivatisation reaction 

was performed at pH 5.5 where the polysulfide was first converted to elemental 

sulfur. No detection limit for the method was indicated. 

1. 6. 6. 5 Capillary Electrochromatography 

Fundamental studies using capillary electrochromatography (CEC) have involved 

the separation of sulfite, sulfate and thiosulfate [232,233]. Kitagawa et al. [232]" 

demonstrated that the elution order for sulfate and sulfite could be reversed by 

using different applied voltages. The authors performed the separation on a 

capillary column packed with TSK IC-Anion-SW resin with an eluting electrolyte 

consisting of 10% methanol and 90% of an aqueous solution containing 5 mM 
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phthalic acid, 5 mM hexamethylenediamine and 0.15% HEPES (N-2-

hydroxyethylpiperazine-N-ethanesulfonic acid). 

1.6.7 Analysis of Gold Thiosulfate Leach Solutions 

For a significant portion of the literature, the analysis of gold thiosulfate leach 

solutions has simply involved determining the total leached gold concentration. 

This is usually found by either atomic absorption spectroscopy (AAS), inductively 

coupled plasma optical emission spectroscopy (ICP-OES) or indirectly through 

fire assay. Thiosulfate has been the most common sulfur anion monitored, with 

determinations reported using titration [39,48,234-236], FIA [ 44], and IC. 

Determinations of sulfide (not-detected) [237], sulfite [23,237,238] (not-detected 

in [237]), sulfate [19,23,56,112,237,238] and polythionates [19,112,237,238] have 

been performed predominantly using IC methods. Note that the paper by Zou et 

al. [112] did not determine tetrathionate in leach solutions, while Wan [237] did 

not consider trithionate. At the time of commencement of this project these were 

the only papers readily available in the literature that considered polythionates in 

thiosulfate leach liquors. 

One problem with some of the existing literature, particularly where IC is used, 

has been a lack of detail in the experimental methodology making replication of 

the technique difficult if not impossible. For this reason many of the papers listed 

in this section are not contained in Tables 1.1 or 1.2. For the papers involving the 

analysis of polythionates only Zou et al. [112] and Molleman and Dreisinger [19] 

provide any detail at all, and in the latter case a copy of the 1998 Masters thesis 

referenced in this work would be required for the complete methodology used. 
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However, more detail of what is presumed to be the same method was given in 

another recent paper from the same research group [239]. 

To date, no detailed method has been reported that can simultaneously determine 

sulfite sulfate, thiosulfate and the polythionates in the leach. 

1. 7 Aims of Project. 

This review has shown that there is much that can be done to improve the existing 

methodology for analysis of gold thiosulfate leach liquors in order to assist in the 

provision of essential information to better understand and develop the thiosulfate 

leaching process for gold ores. It would appear that significant .dilution of samples 

is required for many of the techniques used for analysis of the sulfur-oxygen 

anions which may to some extent compromise the accuracy of the results. There is 

no reported methodology that can simultaneously determine all the sulfur-oxygen 

anions of interest in leach solutions while a capability to perform faster analyses 

would also be advantageous. No evidence exists of investigations into the utility 

of CE or ITP for gold thiosulfate leach solutions and it would appear that the 

analysis of metal thiosulfate complexes by any separation technique has largely 

been ignored altogether. 

Therefore the general aim of this work was to develop chromatographic and 

electromigrative methods for the separation of sulfur anions and complexes 

pertinent to gold thiosulfate leach solutions. Specific aims of the project were to: 

• Investigate the ion-chromatographic and electrophoretic behaviour of the gold 

thiosulfate complex. 
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• Develop improved ion-chromatographic methodology for the determination of 

sulfur-oxygen species in leach solutions. 

• Investigate the utility of electromigrative methods for the gold thiosulfate and 

sulfur-oxygen anions. 

69 



Chapter 1 Literature Review 

1.8 References 

[1] J. Marsde~, 'I. House, The Chemistry of Gold Extraction, Ellis Horwood, 

New York, 1992. 

[2] B. Kettell, Gold, Graham and Trotman Ltd., London, 1982. 

[3] P. L. Bernstein, The Power of Gold: The History of an Obsession, John 

Wiley and Sons Inc., New York, 2000. 

[4] CRC Handbook of Chemistry and Physics; 74th Edition; D.R. Lide (Ed.), 

CRC Press, Boca Raton, 1993. 

[5] L. Elsner, Jnl.f Prak Chem. 37 (1846) 441. 

[6] I. M. Ritchie, M. J. Nicol, W. P. Staunton, in C. A. Young, L. G. 

Twidwell, C. B. Anderson (Eds.), Cyanide: Social, Industrial and 

Economic Aspects. Proceedings of a Symposium held at the Annual 

Meeting of TMS, New Orleans, LA, USA, Feb. 12-15 2001, The Minerals, 

Metals & Materials Society, Warrendale, PA, USA, p. 427. 

[7] T. McNulty, Min. Mag. (2001) 256. 

[8] R. B. Bhappu, In Gold: Advances in Precious Metal Recovery; N. Arbiter, 

K. N. H~ (Eds.), Gordon and Breach Science Publishers, New York, 

1990, p. 66. 

[9] P.A. Fagan, PhD Thesis, University of Tasmania, 1998. 

[10] Sodium cyanide MSDS, issue date 28th September 2001, Chemwatch 2002 

CD-ROM, version 4, Chemwatch, Caufield North, Vic., Australia,, 2001. 

[11] Cyanide Management, Environment Australia, Canberra, 1998. 

[12] Mineral Resoruces Forum - Environment Section, 27th Feb. 2002, -

Cyanide Spill Incidents, 

70 



Chapter 1 Literature Review 

<http://www.mineralsresourcesforum.org/incidents/cn _ accidents.htrn>, accessed 31 st 

Dec. 2002 

[13] The Weekend Australian, 12th Feb. 2000, p. 8. 

[14] Greenpeace, 2000, Mining Accidents, 

<http://archive.greenpeace.org/-toxics/htrnl/content/toxacc_mininglist.htrnl>, accessed 

31 st Dec. 2002. 

[15] The Australian, 6th Oct. 1995, p. 23. 

[16] M. Jeffrey, Chem. Aust. 69 (2002) 6. 

[17] The Australian, 20th Nov. 2000, p. 41. 

[18] G. J. Sparrow, J. T. Woodcock, Miner. Process. Extr. Metall. Rev. 14 

(1995) 193. 

[19] E. Molleman, D. Dreisinger, Hydrometallurgy 66 (2002) 1. 

[20] The Metallurgy of the Non-Ferrous Metals.; 4th Edition, W. Gowland, 

(Ed.), Charles Griffin & Co., London, 1930, Vol. 1. 

[21] M. G. Aylmore, D. M. Muir, Miner. Eng. 14 (2001) 135. 

[22] R. M. Genik-Sas-Berezowsky, V. B. Sefton, L. S. Gormely, Recovery of 

Precious Metals from Metal Sul.fides., US Patent No. 4,070,182, Sherritt 

Gordon Mines Ltd., Toronto, Canada., 1978. 

[23] J. W. J. Langhans, K. P. V. Lei, T. G. Carnahan, Hydrometallurgy 29 

(1992) 191. 

[24] S. L. Bean, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th 

Edition, J. I. Kroschwitz (Ed.), John Wiley and Sons, New York, 1997, 

Vol. 24, p. 51. 

[25] M. G. Ryon, A. J. Stewart, L. A. Kszos, T. L. Phipps, Water, Air, Soil 

Pollut. 136 (2002) 255. 

71 



Chapter 1 Literature Review 

[26] R. Makhija, A. Hitchen, Talanta 25 (1978) 79. 

[27] R. Makhija, A. Hitchen, Anal. Chim. Acta 105 (1979) 375. 

[28] N. P. Gallagher, J. L. Hendrix, E. B. Milosavljevic, J. H. Nelson, L. 

Solujic, Hydrometallurgy 25 (1990) 305. 

[29] N. P. Gallagher, MSc. Thesis, University ofNevada, 1987. 

[30] T. Jiang, S. Xu, J. Chen, in , Proceedings of the First International 

Conference on Modern Process Mineralogy and Mineral Processing, 

1992, p. 648. 

[31] T. Jiang, J. Chen, S. Xu, in Proceedings of XVIII International Mineral 

Processing Congress, Sydney, Australia, 23-28 May 1993, Australian 

Institute of Mining and Metallurg, Parkville, Vic., 1141. 

[32] J. Chen, T. Deng, G. Zhu, J. Zhao, Trans. Indian Inst. Met. 49 (1996) 841. 

[33] J. Ji, C. A. Fleming, P. G. West-Selis, R. P. Hackl, Method for Thiosulfate 

Leaching of Precious-Metal Containing Materials., WO Patent No. 

01/88212 A2, Placer Dome Technical Services Ltd., Canada, 2001. 

[34] J. A. Byerley, S. A. Foucia, G. L. Rempel, J. Chem. Soc., Dalton Trans. 

(1973) 889. 

[35] J. A. Byerley, S. A. Fouda, G. L. Rempel, J. Chem. Soc., Dalton Trans. 

(1975) 1329. 

[36] J. A. Byerley, S. A. Fouda, G. L. Rempel, Inorg. Nucl. Chem. Letters 

9 (1973) 879. 

[37] A. C. Grosse, G. W. Dicinoski, M. J. Shaw, P. R. Haddad, 

Hydrometal/urgy, in press. 

[38] Y. -Xu, M.A. A. Schoonen, Geochim. Cosmochim. Acta 59 (1995) 4605. 

[39] D. Feng, J. S. J. Van Deventer, Hydrometallurgy 63 (2002) 189. 

72 



Chapter 1 Literature Review 

[40] B. J. J. Kerley, Recovery of Precious Metals from Difficult Ores., US 

Patent No. 4,269,622, Kerley Industries, 1981. 

[41] B. J. J. Kerley, Recovery of Precious Metals from Difficult Ores., US 

Patent No. 4,369,061, Kerley Industries, 1983. 

[42] Q. Gong, J. Hu, C. Cao, Trans. Nonferrous Met. Soc. China 3 (1993) 30. 

[43] J. Hu, Q. Gong, in Proceedings of Randol Gold Forum, Cairns, 

Queensland., 16-19 April, 1991, Randol International Ltd., USA, p. 333. 

[44] M. Hemmati, J. L. Hendrix, J. H. Nelson, E. B. Milosavljevic, in 

Proceedings of Extraction Metallurgy '89, London, UK, July 10-13 1989, 

Institution of Mining and Metallurgy, London, UK, p. 665. 

[ 45] A. E. Perez, H. D. Galaviz, Method for Recovery of Precious Metals from 

Difficult Ores with Copper-Ammonium Thiosulfate., US Patent No. 

4654078 A, 1987. 

[46] K. G. Thomas, C. Fleming, A. R. Marchbank, D. Dreisinger, Gold 

Recovery from Refractory Carbonaceous Ores by Pressure Oxidation, 

Thiosulfate Leaching and Resin-In-Pulp Adsorption., US Patent No. 

5,785,736, Barrick Gold Corporation, Toronto, Canada, 1998. 

[47] A. R. Marchbank, K. G. Thomas, D. Dreisinger, C. Fleming, Gold 

Recovery from Refractory Ores by Pressure Oxidation and Thiosulfate 

Leaching., US Patent No. 5,536,297, Barrick Gold Corporation, Toronto, 

Canada, 1996. 

[48] S. N. Groudev, I. I. Spasova, I. M. Ivanov, Miner. Eng. 9 (1996) 707. 

[49] G. P. O'Malley, M. J. Nicol, in C. A. Young, L. G. Twidwell, C. B. 

Anderson (Eds.), Cyanide: Social, Industrial and Economic Aspects. 

73 



Chapter I Literature Review 

Proceedings of a Symposium held at the Annual Meeting of TMS, New 

Orleans, LA, February 12-15th 2001, TMS, Warrendale, PA, USA, p. 469. 

[50] P. A. Schmitz, S. Duyvesteyn, W. P. Johnson, L. Enloe, J. McMullen, 

Hydrometallurgy 60 (2001) 25. 

[51] C. A. Fleming, J. McMullen, K. G. Thomas, J. A. Wells, in Proceedings of 

SME General Meeting 2001, Process Mineralogy II- Precious Metals, 

Denver, CO, USA, February 26-28th 2001, pre-print. 

[52] C. A. Fleming, J. Wells, K. G. Thomas, Gold Recovery from Ihiosulfate 

Leach Solutions and Slurries Using Jon-Exchange Resin Eluted with 

Polythionate, US Patent No. 6344068, Barrick Gold Corporation, Canada, 

2002. 

[52a] J. Li, J. D. Miller, R. Y. Wan, M. Le Vier, in Proceedings of the 19th 

International Mineral Processing Congress, San Francisco, CA, USA, 

1995, SME, Littleton, CO, Chap. 7. 

[53] J. Pouradier, M.-C. Gadet, J. Chim. Phys. Phys.-Chim. Biol. 66 (1969) 

109. 

[54] B. F. G. Johnson, R. Davis, in Comprehensive Inorganic Chemistry; A. F. 

Trotman-Dickenson (Ed.), Pergamon Press, Oxford, 1973; Vol. 3, 

Chapter 29. 

[54a] B. I. Peshchevitskii, V. I. Belevantsev, S. V. Zemskov, Izv. Sib. Otd. Akad. 

Nauk., 2 (1976) 24-45. 

[55] D. S. Flett, R. Derry, J. C. Wilson, Trans. Instn. Min. Metal/. (Sect. C: 

Mineral Process. Extr. Metal/.) 92 (1983) 216. 

[56] M. G. Aylmore, Miner. Eng. 14 (2001) 615. 

[57] C. 0. Moses, D. K. Nordstrom, A. L. Mills, Talanta 31 (1984) 331. 

74 



Chapter 1 Literature Revzew 

[58] L. Szekeres, Talanta 21 (1974) 1. 

[59] T. Koh, Anal. Sci. 6 (1990) 3. 

[60] D. Lyons, G. Nickless, In Inorganic Sulphur Chemistry; G. Nickless (Ed.), 

Elsevier, Amsterdam, 1968. 

[61] B. Takano, K. Watanuki, Talanta 35 (1988) 847. 

[62] D. Volgger, A. Zemann, G. Bonn, J. High. Resol. Chromatogr. 21 (1998) 

3. 

[63] B. Meyer, M. Ospina, L.B. Peter, Anal. Chim. Acta 117 (1980) 301. 

[64] S. Motellier, K. Gurdale, H. Pitsch, J. Chromatogr. A 770 (1997) 311. 

[65] E. Blasius, G. Hom, A. Knochel, J. Munch, H. Wagner, in Inorganic 

Sulphur Chemistry; G. Nickless (Ed.), Elsevier, Amsterdam, 1968, p 199. 

[66] J. Boulegue, J.-P. Ciabrini, C. Fouillac, G. Michard, q. Ouzounian, Chem. 

Geol. 25 (1979) 19. 

[67] P.A. Siskos, E. P. Diamandis, E. Gillieron, Talanta 30 (1983) 980. 

[68] H. Satake, T. Hisano, S. Ikeda, Bull. Chem. Soc. Jpn. 54 (1981) 1968. 

[69] T. Koh, K. Taniguchi, Anal. Chem. 45 (1973) 2018. 

[70] T. Koh, Y. Miura, Anal. Sci. 3 (1987) 543. 

[71] B. Badri, Analyst 113 (1988) 351. 

[72] T. Koh, Y. Miura, M. Ishimore, N. Yamamuro, Anal. Sci. 5 (1989) 79. 

[73] Y. Miura, T. Koh, Anal. Sci. 6 (1990) 695. 

[74] T. Koh, K. Okabe, Y. Miura, Analyst 118 (1993) 669. 

[75] T. Koh, K. Okabe, Analyst 119 (1994) 2457. 

[76] J. J. Renard, G. Kubes, H. I. Bolker, Anal. Chem. 47 (1975) 1347. 

[77] G. W. Luther ill, A. E. Giblin, R. Varsolona, Limnol. Oceanogr. 30 (1985) 

727. 

75 



Chapter 1 Literature Review 

[78] J. Jordan, J. Talbott, J. Yakupkovic, Anal. Lett. 22 (1989) 1537. 

[79] G. W. Luther III, T. M. Church, D. Powell, Deep-Sea Res. 38 (1991) 

Sl121. 

[80] T. F. Rozan, S. M. Theberge, G. Luther III, Anal. Chim. Acta 415 (2000) 

175. 

[81] I. Ciglenecki, B. Cosovic, Electroanal. 9 (1997) 775. 

[82] N. Batina, I. Ciglenecki, B. Cosovic, Anal. Chim. Acta. 267 (1992) 157. 

[83] M. J. Madureira, C. Vale, M. L. Simoes Goncalves, Mar. Chem. 58 (1997) 

27. 

[84] L. M. de Carvalho, G. Schwedt, Anal. Chim. Acta 436 (2001) 293. 

[85] G. W. Luther III, B. T. Glazer, L. Hohmann, P. J. I., M. Taillefert, T. F. 

Rozan, P. J. Brendel, S. M. Theberge, B. Nuzzio, J Environ. Monit. 3 

(2001) 61. 

[86] J. Bandekar, R. Sethna, M. Kirschner, Appl. Spectra. 49 (1995) 1577. 

[87] D. A. Holman, A. W. Thompson, D. W. Dennett, J. D. Otvos, Anal. Chem. 

66 (1994) 1378. 

[88] S. Milicev, A. Stergarsek, Spectrochim. Acta 45A (1989) 225. 

[89] J. L. Burguera, M. Burguera, Anal. Chim. Acta 157 (1984) 177. 

[90] K. Sonne, P. K. Dasgupta, Anal. Chem. 63 (1991) 427. 

[91] A. B. Roy, P.A. Trudinger, The Biochemistry of Inorganic Compounds of 

Sulfur, Cambridge University Press, Cambridge, 1970. 

[92] M. Schmidt, in Sulfur in Organic and Inorganic Chemistry; A. Senning 

(Ed.), Marcel Dekker Inc., New Yo:r:k, 1972, p. 71. 

[93] Y. Michigami, K. Ueda, J Chromatogr. A 663 (1994) 225. 

[94] A. Beveridge, W. F. Pickering, J. Slavek, Talanta 35 (1988) 307. 

76 



Chapter 1 Literature Review 

[95] D. Hansen, B. E. Richter, D. K. Rollins, J. D. Lamb, D. J. Eatough, Anal. 

Chem. 51 (1979) 633. 

[96] Y. Miura, M. Tsubamoto, T. Koh, Anal. Sci. 10 (1994) 595. 

[97] L. M. Petrie, M. E. Jakel, R. L. Brandvig, J. G. Kroening, Anal. Chem. 65 

(1993) 952. 

[98] Y. Miura, K. Fukasawa, T. Koh, J. Chromatogr. A 804 (1998) 143. 

[99] F. Hissner, J. Mattusch, K. Henig, J. Chromatogr. A 848 (1999) 503. 

[100] M. Lindgren, A. Cedergren, J. Lindberg, Anal. Chim. Acta 141(1982)279. 

[101] R. E. Poulson, H. M. Borg, J. Chromatogr. Sci. 25 (1987) 409. 

[102] F. Hissner, J. Mattusch, K. Henig, Fresenius' J Anal. Chem. 365 (1999) 

647. 

[103] L. de Carvalho, G. Schwedt, Fresenius' J. Anal. Chem. 368 (2000) 208. 

[104] S. Utzman, J. Chromatgr. 640 (1993) 287. 

[105] T. Yagi, K. Kojima, T. Haruki, J. Chromatogr. 292 (1984) 273. 

[106] D. Cox, P. Jandik, W. Jones, Pulp Pap. Can. 88 (1987) T318. 

[107] S. M. Hassan, Chemosphere 29 (1994) 2555. 

[108] T. Koh, Y. Miura, M. Suzuki, Anal. Sci. 4 (1988) 267. 

[109] T. Koh, Y. Miura, M. Suzuki, Analyst 113 (1988) 949. 

[110] M. Schmidt, W. Siebert, K. W. Bagnall, in Comprehensive Inorganic 

Chemistry, Pergamon Press, Oxford, 1975; Vol. Chapter 23, p. 795. 

[111] E. Rolia, C. L. Chakrabarti, Environ. Sci. Technol. 16 (1982) 852. 

[112] H. F. Zou, Z. J. Jia, Y. K. Zhang, P. C. Lu, Anal. Chim. Acta 284 (1993) 

59. 

[113] P. R. Haddad, P. E. Jackson, Ion Chromatography: Principles and 

Applications, Elsevier, Amsterdam, 1990. 

77 



Chapter 1 Literature Review 

[114] J. Weiss, Ion-Chromatography; 2nd Edition Ed., VCH Publishers, 

Weinheim, 1995. 

[115] Dionex Product Selection Guide, Dionex Corporation, Sunnyvale, CA, 

USA, 1997. 

[116] A. lguchi, Bull. Chem. Soc. Jpn. 31 (1958) 597. 

[117] A. lguchi, Bull. Chem. Soc. Jpn. 31 (1958) 600. 

[118] F. H. Pollard, G. Nickless, R. B. Glover, J. Chromatogr. 15 (1964) 533. 

[119] · M. Schmidt, T. Sand, Z. Anorg. Allge. Chem. 330 (1964) 188. 

[120] A. Vasil'ev, V. F. Toropova, A. A. Busygina, Uch. Zap. Kazansk. Un-ta. 

113 (1953) 91. 

[121] T. Katsura, Buseki Kagaku 11 (1962) 769. 

[122] A. K. Majumdar, B. K. Mitra, Fresenius' Z. Anal. Chem. 223 (1966) 108. 

[123] C. Lalit, L. C. T. Eusebius, A. K. Ghose, A. K. Dey, Analyst 106 (1981) 

529. 

[124] C. Lalit, L. C. T. Eusebius, A. K. Ghose, A. Mahan, A. K. Dey, Analyst 

105 (1980) 52. 

[125] J. Weiss, M. Gobl, Fresenius' Z. Anal. Chem. 320 (1985) 439. 

[126] T. Togawa, M. Ogawa, M. Nawata, Y. Ogasawara, K. Kawanabe, S. 

Tanabe, Chem. Phann. Bull. 40 (1992) 3000. 

[127] Z. Uddin, R. Markuszewski, D. C. Johnson, Anal. Chim. Acta 200 (1987) 

115. 

[128] T. Okutani, K. Yamakawa, A. Sakuragawa, R. Gotoh, Anal. Sci. 9 (1993) 

731. 

[129] R. Kadnar, J. Rieder, J. Chromatogr. A 706 (1995) 339. 

[130] S. A. Maki, N. D. Danielson, Anal. Chem. 63 (1991) 699. 

78 



Chapter I Literature Review 

[131] J. N. Story, J. Chromatogr. Sci. 21(1983)272. 

[132] M. Weidenauer, P. Hoffinann, K. H. Lieser, Fresenius' Z. Anal. Chem. 331 

(1988) 372. 

[133] 0. A. Shpigun, 0. N. Obrezkov, J. Funk, G. Werner, Y. Zolotov, Vestn. 

Mask. Univ. Ser. 2: Khim 30 (1989) 273. 

_ [134] T. Sunden, M. Lindgren, A. Cedergren, D. D. Siemer, Anal. Chem. 55 

(1983) 2. 

[135] P. Behrend, M. Kirschner, J. Behnert, LaborPraxis 9 (1985) 324. 

[136] Installation Instructions and Troubleshooting Guide for the Ionpac AG17 

Guard Column and Jonpac ASJ 7 Analytical Column, Dionex Corporation, 

Sunnyvale, CA, USA, 1999. 

[137] S. Rabin, J. Stillian, J. Chromatogr. A 671 (1994) 63. 

[138] D. B. Easty, M. L. Borchardt, A. A. Webb, Pap. Puu 67 (1985) 501. 

[139] S. Utzman, D. Campbell, LC-GC 9 (1991) 300. 

[140] Determination of Su/far Compounds and Oxalate in Kraft Liquors Using 

Ion Chromatography, Application Note 30R, Dionex Corporation, 

Sunnyvale, CA, USA, 1984. 

[141] IonPac Columns: The Polymeric Advantage (brochure), Dionex 

Corporation, Sunnyvale, CA, USA, p. 11. 

[142] J. G. Tartar, Anal. Chem. 56 (1984) 1264. 

[143] G. 0. Franklin, Proc. TAPP! Pulping Conference (1981) 255. 

[144] G. 0. Franklin, Tappi 65 (1982) 107. 

[145] G. 0. Franklin, A. W. Fitchett, Pulp Pap. Can. 83 (1982) 40. 

[146] G. Franklin, Pulp Pap. 56 (1982) 91. 

[147] B. Divjak, W. Goessler, J. Chromatogr. A 844 (1999) 161. 

79 



Chapter 1 Literature Review 

[148] 0. N. Obrezkov, 0. A. Shpigun, Y. A. Zolotov, V. I. Shlyamin, J. 

Chromatogr. 558 (1991) 209. 

[149] S. Jeyakumar, R. K. Rastogi, N. K. Chaudhuri, K. L. Ramakumar, Anal. 

Lett. 35 (2002) 383. 

[150] A. Ono, Bunseki Kagaku 35 (1986) 476. 

[151] S. Ikeda, H. Satake, H. Segawa, Nippon Kagaku Kaishi 9 (1985) 1704. 

[152] M.A. Strege, A. L. Lagu, LC-GC 11 (1993) 874. 

[153] Y. Miura, Y. Yonemura, T. Koh, Nippon Kagaku Kaishi 8 (1991) 1083. 

[154] M. C. Mehra, M. Kandil, Analusis 24 (1996) 17. 

[155] D. J. Cox, in Advances in Ion Chromatography; P. Jandik, R. M. Cassidy 

(Eds.), Century International Inc., Franklin MA, 1990; Vol. 2, p 234. 

[156] Y. Xu, M.A. A. Schoonen, D. K. Nordstrom, K. M. Cunningham, J. W. 

Ball, J. Volcano!. Geotherm. Res. 97 (2000) 407. 

[157] I. Vins, L. Kabrt, Collect. Czechoslovak Chem. Commun. 52 (1987) 1167. 

[158] F. Vlacil, I. Vins, J. Coupek, J. Chromatogr. 391 (1987) 119. 

[159] F. Bak, A. Schuhmann, K.-H. Jansen, FEMS Microbial. Ecol. 12 (1993) 

257." 

[160] J. N. Chapman, H. R. Beard, Anal. Chem. 45 (1973) 2268. 

[161] A. W. Wolkoff, R.H. Larose, Anal. Chem. 47 (1975) 1003. 

[162] A. W. Wolkoff, R.H. Larose, J. Chrom. Sci. 14 (1976) 353. 

[163] B. Takano, M.A. McKibben, H. L. Barnes, Anal. Chem. 56 (1984) 1594. 

[164] R. N. Reeve, J. Chromatogr. 177 (1979) 393. 

[165] A. E. Witter, A. D. Jones, Environ. Toxicol. Chem. 17 (1998) 2176. 

[166] A. Vairavamurthy, K. Mopper, Environ. Sci. Tech. 24 (1990) 333. 

[167] R. Steudel, G. Holdt, T. Gobel,.!. Chromatogr. 475 (1989) 442. 

80 



Chapter 1 Literature Review 

[168] R. Steudel, V. Munchow, J. Chromatogr. 623 (1992) 174. 

[169] C. Pohlandt-Watson, M. J. Hemmings, D. E. Barnes, G. W. Pansi, The 

Determination, by Ion-Interaction Chromatography, of Su/fur Species in 

Cyanide Solutions: Laboratory Method No. 16130, Mintek, 1988. 

[170] J. Zhongjiang, Y. Zhongquan, Fenxi Huaxue 18 (1990) 628. 

[171] M. Weidenauer, P. Hoffi:nan, K. H. .Lieser, Fresenius' J. Anal. Chem. 342 

(1992) 333. 

[172] Y. Miura, A. Saitoh, T. Koh, J. Chromatogr. 770 (1997) 157. 

[173] S. B. Rabin, D. M. Stanbury, Anal. Chem. 57 (1985) 1130. 

[174] R. Steudel, G. Holdt, J. Chromatogr. 361 (1986) 379. 

[175] Y. Miura, A. Kawaoi, J. Chromatogr. A 884 (2000) 81. 

[176] S. Wentzien, W. Sand, A. Albertsen, R. Steudel, Arch. Microbial. 161 

(1994) 116. 

[177] V. Munchow, R. Steudel, Z. Anorg. Allge. Chem. 620 (1994) 121. 

[178] Y. Miura, M. Watanabe, J. Chromatogr. A 920 (2001) 163. 

[179] S. I. Weir, E. C. V. Butler, P.R. Haddad, J. Chromatogr. 671 (1994) 197. 

[180] B. Takano, Science 235 (1987) 1633. 

[181] B. Takano, S. Ohsawa, R. B. Glover, J. Volcano!. Geotherm. Res. 60 

(1994) 29. 

[182] R. Steudel, G. Holdt, T. Gobel, W. Hazeu, Angew. Chem. lnt. Ed. Engl. 26 

(1987) 151. 

.[183] L. Kupchella, PhD. Thesis, The Pennsylvannia State University, 1991. 

[184] R. M. Smith, A. E. Martell, Critical Stability Constants. Volume 4: 

Inorganic Ligands, Plenum Press, London, 1976, Vol. 4. 

[185] H. Ley, E. Konig, Z. Physik. Chem. B41 (1938) 365. 

81 



Chapter I Literature Review 

[186] M. Schmidt, T. Sand,.! Inorg. Nuc/. Chem. 26 (1964) 1173. 

[187] D. K. Rollins, E. L. Johnson, Anal. Chem. 55 (1983) 4. 

[188] Y. Miura, M. Hatak:eyama, T. Hosino, P. R. Haddad, J. Chromatogr. A 

956 (2002) 77. 

[189] J. Rethmeier, A. Rabenstein, M. Langer, U. Fischer, J. Chromatogr. A 760 

(1997) 295. 

[190] C. Gru, P. M. Sarradin, H. Legoff, S. Narcon, J.-C. Caprais, H. Lallier, 

Analyst 123 (1998) 1289. 

[191] T. J. Hurse, W. P. P. Abeydeera, J. Chromatogr. A 942 (2001) 201. 

[192] J. Zopfi, T. G. Ferdelman, B. B. Jorgensen, A. Teske, B. Thamdrup, Mar. 

Chem. 74 (2001) 29. 

[193] P. Jandik, G. Bonn, Capillary Electrophoressis of Small Molecules and 

Ions, VCH Publishers, Inc., New York, 1993. 

[194] R. P. Oda, J.P. Landers, in Handbook of Capillary Electrophoresis, 2nd 

ed.; J.P. Landers (Ed.), CRC Press, BocaRaton, 1997, p. 1. 

[195] P.R. Haddad,J. Chromatogr. A 770 (1997) 281. 

[196] D. Kaniansky, M. Masar, J. Marak, R. Bodor, J. Chromatogr. A 834 

(1999) 133. 

[197] J. Harms, L. Dunemann, G. Schwedt, Mikrochim. Acta 108 (1992) 251. 

[198] Z. Daunoravicius, A. Padarauskas, Electrophoresis 23 (2002) 2439. 

[199] R. G. Kelly, C. S. Brossia, K. R. Cooper, J. Krol, J. Chromatogr. A 739 

(1996) 191. 

[200] P. Kuban, B. Karlberg, Anal. Chem. 69 (1997) 1169. 

[201] D.R. Salomon, J.P. Romano, Process Control Qua/. 3 (1992) 219. 

[202] P. Kuban, B. Karlberg, Anal. Chim. Acta 404 (2000) 19. 

82 



Chapter 1 Literature Review 

[203] D.R. Salomon, J. Romano, J. Chromatogr. 602 (1992) 219. 

[204] M. Serwe, Analysis of Su/fur Anions in Kraft Liquors Using Capillary 

Electrophoresis, Publication 12-5968-3306E, Hewlett-Packard, Palo Alto, 

CA, USA, 1998. 

[205] S. M. Masselter, A. J. Zemann, G. K. Bonn, J. High Resol. Chromatogr. 

19 (1996) 131. 

[206] A. J. Zemann, J. Chromatogr. A 787 (1997) 243. 

[207] P. Kuban, B. Karlberg, Talanta 45 (1998) 477. 

[208] M. P. Harrold, M. J. Wojtusik, J. Rivello, P. Henson, J. Chromatogr. 640 

(1993) 463. 

[209] S. A. Shamsi, N. D. Danielson, Anal. Chem. 66 (1994) 3757. 

[210] A. Padarauskas, V. Paliulionyte, R. Ragauskas, A. Dikcius, J. 

Chromatogr. A 879 (2000) 235. 

[211] S. Motellier, M. Descostes, J. Chromatogr. A 907 (2001) 329. 

[212] Z. Krivacsy, A. Gelencser, J. Hlavay, G. Kiss, Z. Sarvari, J. Chromatogr. 

A 834 (1999) 21. 

[213] F. M. Everaerts, J. L. Beckers, T. P. E. M. V erheggen, Isotachophoresis: 

Theory, Instrumentation, and Applications, Journal of Chromatography 

Library Vol. 6, Elsevier, New York, 1976. 

[214] P. Bocek, M. Demi, P. Gebauer, V. Dolnik, Analytical Isotachophoresis, 

VCH, Weinheim, 1988. 

[215] I. Valaskova, E. Havranek, J. Chromatogr. A 836 (1999) 201. 

[216] L. Krivankova, P. Bocek, Electrophoresis 21 (2000) Editorial. 

[217] K. Fukushi, G. Kondoh, K. Hiiro, T. Tanaka, A. Kawahara, S. Wakida, 

Bunseki Kagaku 32 (1983) 362. 

83 



Chapter 1 Literature Review 

[218] D. Lucansky, E. Komanova, J. Marak, A. Pukacova, J. Chromatogr. 390 

(1987) 147. 

[219] M. Vrskova, Z. Viera, Vyskumne Prace z Odboru Papiera a Celulozy 35 

(1990) V32. _ 

[220] 0. Janiczek, M. Mandi, P. Ceskova, J. Biotechnol. 61 (1998) 225. 

[221] M. Lederer, J. Chromatogr. 153 (1978) 302. 

[222] H.J. Kim, J. Assoc. Off Anal. Chem. 73 (1990) 216. 

[223] H.-J. Kim, Y.-K. Kim, J. Food Sci. 51 (1986) 1360. 

[224] H.P. Wagner, J. Am. Soc. Brew. Chem. 53 (1995) 82. 

[225] D. T. Gjerde, H. Mehra, in Advances in Ion Chromatography; P. Jandik, 

R. M. Cassidy (Eds.), Century International, Medrield, MA, 1989; Vol. 1. 

[226] Y. Miura, T. Maruyama, T. Koh, Anal. Sci. 11(1995)617. 

[227] R. Steudel, G. Holdt, P. T. Visscher, H. van Gemerden, Arch. Microbial. 

153 (1990) 432. 

[228] P. F. Henshaw, J. K. Bewtra, N. Biswas,Anal. Chem. 69 (1997) 3119. 

[229] R. M. Cassidy, J. Chromatogr. 117 (1976) 71. 

[230] G. Miethe, J.P. Surmann, Pharmazie 56 (2001) 542. 

[231] L. G. Borchardt, D. B. Easty,J. Chromatogr. 299 (1984) 471. 

[232] S. Kitagawa, A. Tsuji, H. Watanabe, M. Nakashima, T. Tsuda, J. Micro 

Sep. 9 (1997) 34 7. 

[233] T. Tsuda, Bunseki 4 (1999) 335. 

[234] W. T. Yen, H. Guo, G. Deschenes, in B. Mishra (Ed.), Proceedings of 

EPD Congress 1999, San Diego, CA, USA, 28th February-4th March 

1999, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 

p. 441. 

84 



Chapter 1 Literature Review 

[235] R. Y. Wan, J. A. Brierley, Min. Eng. -Littleton 49 (1997) 76. 

[236] D. Zipperian, S. Raghavan, J.P. Wilson, Hydrometallurgy 19 (1988) 361. 

[237] R. Y. Wan, in , Proceedings of World Gold '97 Conference, Singapore, 

lst-3rd September 1997, Australasian Institute of Mining and Metallurgy, 

Carlton, Vic., 159 

[238] C. A. Fleming, J. McMullen, K. G. Thomas, J. A. Wells, to be published 

by SME, 2002. 

[239] H. G. Zhang, D. B. Dreisinger, Hydrometallurgy 66 (2002) 59. 

85 



Chapter 2 

General Experimental 

This section describes the chemicals and procedures that were used throughout 

this work. Because the project involved three distinct analytical techniques, the 

instrumental and other details pertaining to each of these methodologies are 

described in the relevant chapters. 

2.1 Reagents 

2. 1. 1 Commercially Available Compounds 

The chemicals used are listed in Table 2.1 and were of analytical reagent grade 

unless otherwise specified. 

2.1.2 Polythionate Synthesis and Purification 

Potassium trithionate (K.2S30 6) and potassium pentathionate sesquihydrate 

(K2S506. l .5H20) were not available commercially. Quantities of these salts were 

generously provided by Professor Yasuyuki Miura of Tokai University, Japan. 

Postassium trithionate was prepared according to the methods of Stamm et al. [1] 

and recrystallised after arrival in Tasmania from water initially at 35°C, via 

cooling in an ice-bath. The resulting crystals were filtered off and washed with 

acetone. Potassium pentathionate (K.2S50 6.1.5H20) was prepared according to the 

method of Goehring and Feldmann [2], and was recrystallised twice from 2 M 

hydrochloric acid initially at 60°C. 

The commercial sodium tetrathionate (Na2S40 6.2H20, 98%, Aldrich) required 

further purification to remove insoluble elemental sulfur. This was achieved 
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Table 2.1 Chemicals utilised in this project. 

Compound 

Acetylene 

2,2-bis(hydroxymethyl)-2,2' ,2"­
nitrilotriethanol 

4-(2-pyridylazo )resorcinol 
monosodium salt hydrate 

Acetone 

Acetonitrile (HPLC Grade) 

Ammonia (28% w/w) 

Ammonium sulfate 

Ammonium thiosulfate 

Copper sulfate pentathydrate 

Ethanol 

Formic acid 

Glacial acetic acid 

Gold (99.99%) 

Hydrochloric acid (36% w/w) 

Hydroxypropylmethylcellulose 

Average Mn ea. 12,000. 21 wt. 
% methoxy, 5 wt.% propylene 
oxide. 

Methanol (HPLC Grade) 

Nitric acid (69% w/w) 

Nitrogen 

Formula 

HC=CH 

(lN=N-P-ON• ...,a 
HO 

HCOOH 

Au 

HCI 

ROH2C RO OR 

R0,.{·~·"0-t.-R 
RO OR CH,OR 

OH 
I 

R= -CH,CH CHa' CH3 or H 

General Experimental 

Supplier 

BOC Gases, 
Chatswood, NSW, 
Australia. 

Aldrich Chemicals, 
Milwaukee, WI, USA. 

Aldrich 

Chem-Supply, 
Gillman, SA, Australia. 

BDH Chemicals, 
Kilsyth, Vic., Australia. 

APS Chemicals, 
Auburn, NSW, 
Australia. 

BDH Chemicals 

Reidel-de-Haen, 
Seelze, Germany. 

BDH Chemicals 

BDH Chemicals 

Prolabo, Paris, France. 

BDH Chemicals 

The Perth Mint, WA, 
Australia. 

BDH Chemicals 

Aldrich 

BDH Chemicals 

BDH Chemicals 

BOC Gases 
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Table 2.1 (Cont.) 

Compound Formula Supplier 

Phosphoric Acid (88% w/w) H3P04 BDH Chemicals 

Potassium dihydrogen 
KH2P04 BDH Chemicals 

phosphate 

Potassium sulfate K2S04 BDH Chemicals 

Sodium acetate NaOOCCH3 APS Chemicals 

Sodium carbonate Na2C03 BDH Chemicals 

May and Baker, West 
Sodium chloride NaCl Footscray, Vic., 

Australia. 

Sodium formate NaOOCH APS Chemicals 

Sodium gold thiosulfate 
Na~u(S203h.2H20 

Alfa Aesar, Ward Hill, 
di hydrate MA, USA. 

Sodium hydroxide NaOH APS Chemicals 

Sodium Iodide Nal Aldrich 

Sodium perchlorate NaCI04 Aldrich 

Sodium sulfate Na2S04 Prolabo 

Sodium thiocyanate NaSCN Aldrich 

Sodium thiosulfate pentahydrate Na2S203.SH20 BDH Chemicals 

Sulfuric acid (98% w/w) H2S04 APS Chemicals 

Tetrabutylammonium chloride 
[CH3(CH2h)4NCl.xH20 Aldrich 

hydrate 

Tetrabutylammonium hydroxide 
[CH3(CH2h)4NOH Aldrich 

(40% w/w solution) 

Waters PIC-A low UV Reagent 
{Tetrabutylammonium hydrogen 

[CH3(CH2h)4NHS04 Waters 
sulfate in water-methanol 
mixture) 
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by dissolving a portion of the salt in a minimal amount of water, filtering the 

solution (0.45 µm, Gelman Scientific, Lane Cove, NSW, Australia, and then re­

precipitating the salt through the addition of ethanol. 

All polythionates used were dried at room temperature (if required) and thereafter 

stored below -5°C. 

2. 1.3 Sodium Gold Thiosulfate Dihydrate 

Some of the work described in Chapter 3, which was conducted prior to the 

acquisition of a commercial standard, used sodium gold thiosulfate prepared in­

house. Three methods were attempted [3-5], for the synthesis of this compound, 

with the tetrachloroauric acid precursor also being prepared according to literature 

methods [6]. Out of these techniques the best purity obtained was through 

methodology based on that of Tavernier and de Meyer [4] from which a crop of 

crystals was obtained and analysed to be ~89% pure based on gold content by 

ICP-OES. The main impurity was determined to be sodium thiosulfate. The 

compound was stored below 4°C. 

2.1.4 Gold Ore Samples 

The sulfidic (approximate gold concentration of 50 ppm) and oxide (approximate 

gold concentration of 220 ppm) ore/concentrates used in this project were 

supplied by Osleach Pty. Ltd. (Currumbin, Qld., Australia). 
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2.2 Procedures 

2.2.1 General Eluent, Electrolyte and Standard Preparation 

Procedures 

All sample solutions, eluents and electrolytes were prepared in water purified 

using a Millipore Milli-Q (Bedford, MA, USA) purification system. All IC eluents 

and bulk electrolyte solutions for the CB replenishment system were filtered 

through a nylon 0.45 µm filter (Alltech Associates Pty. Ltd., Baulkham Hills, 

NSW, Australia), prior to use. All other CB electrolytes were filtered through a 

0.45 µm syringe filter (Gelman Scientific, Lane Cove, NSW, Australia). 

2.2.2 Leaching Experiments 

Leaching of gold bearing ores was conducted in a 1000 mL, 3-neck, flat-bottomed 

flask. A sample (100 g) of the ore under investigation was slurried in water and 

added to the flask, followed by 6.24 g of copper sulfate and 69 mL of 

concentrated aqueous ammonia. The solution was made to a volume of -4 70 mL 

with distilled water, heated to 50±3°C and mechanically agitated with an overhead 

stirrer at -140 rev/min (for test of IC method) or -120 rev/min (for test of CB 

method). The stirring arm used was glass with Teflon paddles. A condenser was 

fitted to the flask to minimise evaporation. When the solution reached the 

required leach temperature, 37.05 g of ammonium thiosulfate was added with the 

aid of distilled water to give a final volume of 500 mL. The time at which the 

thiosulfate was added to the leach was denoted zero time. 

For sampling, the condenser was removed and approximately 6 mL (IC method) 

or 3 mL (CE method) samples were removed from the leach solution with stirring 
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still in progress. The solid present in the sample was removed by filtration 

through a 0.45 µm nylon syringe filter, and the samples analysed immediately. 

2.2.3 Calculations 

For IC, retention data are often reported as the retention factor (k'), which for a 

solute is defined as, 

(2.1) 

where tR is the retention time of the solute, and to is the time taken for an 

unretained solute to pass through the same system to the detector. 

For CB, the effective mobility (µeff) for a given solute was calculated according to 

Eqn 2.2, 

(2.2) 

where LT is the length of the capillary in metres, Lo the length the capillary to the 

detector in metres, V is the applied voltage in volts, and tM is the migration time 

of the solute in seconds. 
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Chapter 3 

I 

Fundamental Behaviour of the Gold Thiosulfate Complex 

in an Ion-Chromatographic System 

3.1 Introduction 

Knowledge of the concentration of gold in solution during and after a leach is of 

critical importance in the assessment and monitoring of any hydrometallurgical 

process for extraction of this metal. As noted in Chapter 1, for a significant 

portion of the literature on the thiosulfate process the only leach parameter 

determined was the gold concentration in solution or percentage gold extracted. 

The techniques used for this determination, namely, AAS, ICP-OES and fire 

assay, do not allow identification of the gold species present in solution, nor the 

concentrations of the other critical species in the leach, such as thiosulfate, the 

polythionates and sulfate. The effectivei:iess of chromatographic methods to 

quantify the gold present in these solutions has not previously been examined. 

As also noted in the literature review, the predominant if not only, gold species in 

the leach solutions is thought to be the bis-thiosulfate complex (Au(S20 3) 2
3
} The 

lack of previous information on the behaviour of this ion in chromatographic 

systems and the above-mentioned importance of gold monitoring to the leach 

process made a fundamental chromatographic study of this species an important 

part of the project. Ion-interaction chromatography was chosen as the focus for 

this work because of its previous use for the determination of gold and other metal· 

cyanide species in gold cyanide leach solutions [1-4]. Additionally, the technique 

is the method of choice for determination of the polythionate ions, which as 
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previously noted will also require quantification in leach liquors. The use of the 

same technique for the gold complex was therefore desirable as it provides the 

most likely means of allowing simultaneous analysis. The choice of the main 

column (Dionex NSl) and eluent system (acetonitrile-water/tetrabuytlammonium 

hydroxide (TBAOH)/Na2C03) was also made on the basis that this system has 

been used widely for the determination of polythionate ions. 

This chapter outlines the results of this fundamental study into the 

chromatographic behaviour of the gold thiosulfate complex. 

3.2 Experimental 

3.2. 1 Chromatographic Instrumentation 

The ion-chromatograph used in this investigation was a Dionex DX-500 

(Sunnyvale, CA, USA) system consisting of a GP50 gradient pump, AS50 

autosampler with thermal compartment, CD20 conductivity detector, AD20 ultra­

violet/visible (UVNIS) absorbance detector and/or a Waters (Milford, MA, USA) 

486 UV detector, the latter connected to the data system via a Dionex UI20 

universal interface. A pump flow rate of 1.0 mL/min, column oven temperature of 

35°C and a 100 µL injection loop were used unless otherwise specified. For UV 

detection a wavelength of 215 nm was used, whilst conductivity detection was 

performed with suppression provided by a Dionex ASRS-Ultra operated in the 

chemical suppression mode. The regenerant (usually 5 mM sulfuric acid) was 

delivered by a Waters 510 high performance liquid chromatography (HPLC) 

pump at a flow rate of 4.0 mL/min, again unless otherwise specified. All 

chromatographic data were collected using Dionex PeakNet software version 5.1. 
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For the anion-exchange work (Section 3.3.1.1), a Dionex EG40 eluent generator 

module with a potassium hydroxide EluGen cartridge was fitted to the instrument 

to generate the hydroxide based eluents required. 

For photodiode array (PDA) detection of the gold thiosulfate complex (Section 

3.3.1.1), a Waters Alliance 2690 HPLC instrument was used, fitted with a Waters 

996 PDA detector. The chromatograms obtained were scanned between 200-600 

nm at 1.2 nm intervals, with the data collected using Waters Millennium software 

(version 3.05.01). 

The research using a matrix elimination pre-column was facilitated by the use of 

two Valeo Chemlnert 6-port, 2-position switching valves with electronic actuators 

(V alco Instrument Co. Inc., Houston, TX, USA). Programming actuation of each 

valve from the PeakNet software was achieved with two relay switches on either 

the CD20 or GP50 instrument modules. The configuration of the valves was based 

on a system previously described by Haddad and Rochester [5], with the main 

modification to include the autosampler, which removed the need for the sample 

to pass through the chromatographic pump. The modified system is illustrated 

graphically in Fig. 3.1, and the program required to execute the matrix-elimination 

procedure is shown in Table 3.1. 

3.2.2 Columns and E/uents 

Several different columns were used through the course of this investigation. The 

majority of the experiments were carried out on a Dionex NGl ( 4 x 50 mm) and 
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Fig. 3.1 Diagram showing switching valve configuration and associated tubing, 
for the matrix-removal pre-column procedure. All valves shown in position "A". 
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NSl (4 x 250 mm) in series, although in some cases a NSl-5 µ (4x 150 mm) 

column was employed in place of the NS 1. Other columns examined were the 

Dionex AG16 guard (4 x 50 mm), Waters NovaPak C1s (3.9 x 150 mm) and the 

Zirchrom DiamondBond C18 (4.6 x 100 mm, Zirchrom Separations Inc., Anoka, 

MN, USA). 

For the majority of experiments the ion-interaction eluents were prepared 

manually, without on-line mixing. Mixing stock solutions on-line to generate the 

eluents was simpler, but the disadvantage of this was a significantly higher 

baseline noise. Solvent degassing during mixing and/or noise from the gradient 

pump was the suspected cause of this problem. Off-line mixed eluents gave lower 

noise, but there was sometimes significant variation in retention times between 

batches of eluent, suspected to occur through irreprodudble loss of acetonitrile 

during vacuum filtering. 

Three main column/eluent configurations were used in this work and in this 

chapter they will be abbreviated I, II or III as follows: 

I Dionex NG 1 + NS 1 in series with eluent containing 28% vlv acetonitrile, 

3 mM TBAOH and 2 mM Na2C03. 

II As above, except with 40 µM thiosulfate added to the eluent. 

ill Dionex NGl + NSl-5µ in series with eluent containing 28% vlv 

acetonitrile, 3 mM TBAOH and 2 mM Na2C03. 

The eluent program used for the anion-exchange work had an initial concentration 

of 5 mM KOH stepping to 90 mM KOH at 4.0 rnin and returning to 5 mM KOH 
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at 9 min. Seven minutes were allowed for re-equilibration prior to injection of the 

next sample. 

3.2.3 Spectroscopic Instrumentation 

The AAS used for all fraction collection studies was a Varian SpectrAA-800 

(Varian, Mulgrave, Vic., Australia), equipped with a GTA-100 graphite furnace 

accessory. A variety of conditions was used for the studies employing the graphite 

furnace instrument, all based on the default program for gold [6]. Most 

modifications involved slower sample addition, a lower initial ·furnace 

temperature, and/or a significantly slower drying stage. These attempted to 

prevent sample losses from occurring as a result of the high sample acetonitrile 

content. Gold absorbance was measured at 242.8 or 267.6 nm using a Photron 

(Photron, Narre Warren, Vic., Australia) gold hollow cathode lamp. 

Experiments using the flame AAS mode were conducted using an air (13.68 

L/min)-acetylene (1.93 L/min, BOC Gases, Chatswood, NSW, Australia) flame. 

The gold signal was measured at 242.8 nm, with the implied concentrations 

calculated using standards (2-30 µM) prepared in the chromatographic eluent. The 

column fractions taken in these experiment were 0-4, 4-8, 8-12 and 12-16 mins. 

3.2.4 Column Digest Procedure (Adapted from [7]) 

The column digest (Section 3.3.1.4) was performed by first removing the packing 

from Qi.e column and drying at 100°C for 50 min. Approximately 12 mL of 

concentrated (98%) H2S04 was added to the resin and charred by boiling the 

solution (~200°C). After this the te~perature was reduced to ~150°C, 17 mL of 

concentrated (70%) HN03 was added dropwise and then the solution boiled again, 
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until clear. After cooling to ~ 50°C 10 mL of concentrated (32%) HCl was added 

dropwise to the digest. After cooling, the solution was diluted to a final volume of 

50.00 mL with milli-Q water and analysed for gold by AAS. 

3.3 Results and Discussion 

3.3. 1 Investigation into the Ion-Chromatographic Behaviour of the 

Gold Thiosulfate Complex in the Absence of Other Matrix Ions 

3.3.1.1 Preliminary Investigations 

The behaviour of the gold thiosulfate complex was first investigated without the 

presence of other matrix ions, using an ion-interaction system consisting of 

Dionex NG 1 and NS 1 columns in series, and eluents comprising acetomtrile­

water mixtures containing TBAOH and Na2C03. The standards used were 

prepared simply by dissolving a portion of sodium gold thiosulfate dihydrate 

(Na3Au(S203)2.2H20) in milli-Q water. A typical chromatogram for such a 

standard is shown in Fig. 3.2(a). It can clearly be observed that there is a 

thiosulfate peak and a raised baseline joining it to a second much more strongly 

retained peak. A similar chromatogram was observed regardless of whether 

conductivity or UV detection was used. An anion-exchange system was also 

found to demonstrate the same behaviour (Fig. 3.2(b)), although UV detection 

was not investigated in this case. Column fractions from injections of the gold 

complex were analysed using graphite furnace atomic absorption spectroscopy 

(GF-AAS) and this confirmed qualitatively (Fig. 3.2(a)) that the main plug of gold 

eluted in the zone corresponding to the second peak, which was therefore 

attributed to the gold thiosulfate complex. Results also suggested that there was a 

small amount of gold in the latter half of the raised baseline region, and also after 
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Fig. 3.2 (a) (i) Injection of gold thiosulfate solution conta1mng 0.914 mM 
(180 mg/L) Au(I), prepared from - 89% pure sodium gold thiosulfate dihydrate 
prepared in house. Conditions: (I), with suppressed conductivity detection, and 25 
µL injection volume. (ii) Results of column fraction analysis of this injection for 
gold at 242.8 nm by GF-AAS (b), Gold solution prepared from the same standard 
containing 0.094 mM (18.5 mg/L) Au(I). Conditions: 2 x Dionex AG 16 guard 
columns, with hydroxide eluent program as described in Section 3.2.2, suppressed 
conductivity detection (external water mode) with current of 300 mA, regenerant 
flow rate of - 2 mL/min, provided by headpressure and a 10 µL injection volume. 
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the gold peak, as is also evident from Fig. 3.2 (a). Note that the impure gold 

standard used for this preliminary work would have cqntained a small amount of 

thiosulfate impurity. However, as will be described later in the chapter this 

affected the gold peak area, but not the observed shape of the chromatogram. 

Quantification was not possible since recoveries were extremely high, for reasons 

that could not be determined. With the location of the main gold peak verified its 

spectrum was obtained between 200 and 600 nm to determine the optimum 

wavelength of detection, with the result given in Fig. 3.3. No spectrum for the 

complex could be found in the literature. Whilst detection of the complex seems 

more sensitive at wavelengths around 200 ·nm, 215 nm continued to be used as a 

compromise between maximising the sensitivity of the gold thiosulfate 

chromophore and minimising the background noise of the eluent. 

The appearance of the raised baseline suggested that there was some form of 

partial dissociation or decomposition of the complex on the column. This 

immediately raised questions about the cause(s) of this effect and its influence on 

quantification of the gold complex by this technique. The detection limit and 

linearity of the gold peak were therefore investigated to assess the effect on 

quantification. The detection limit of the gold thiosulfate complex appeared not to 

be a function of the detection sensitivity. Instead, a critical concentration of the 

co:rµplex had to be injected before a portion would traverse the entire column in its 

original form and this determined the lowest detectable concentration. This effect 

is demonstrated in Fig. 3.4, showing an overlay of a series of progressively 
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Fig. 3.3 UV~visible spectra of the gold thiosulfate complex (blue line) obtained 
from an injection of a 0.196 mM (38.6 mg/L) solution (as gold), with a spectra of 
the raised baseline region (red line) and after the gold peak (green line) shown for 
comparison. Inset shows chromatogram (215 nm) indicating where the spectra 
were extracted. Conditions (I), no eluent suppression was used. 
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Fig. 3.4 Conductivity chromatograms from injection of a series of gold thiosulfate 
solutions prepared from ~89% pure sodium gold thiosulfate dihydrate, containing 
the indicated concentrations of gold (mg/L ). Conditions: (I). UV results at 215 nm 
were similar. 
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increasing concentration gold standards. The length of the raised baseline 

increased with increasing gold concentration, until finally enough was injected for 

the gold peak retention time to be reached. The injection of gold thiosulfate at 

concentrations between 0.046 and 0.228 mM (9 and 45 mg/L) as Au(I) showed 

non-linear behaviour, with a quadratic curve more accurately describing the shape 

of the graph. 

3.3. 1.2 Addition of Thiosu/fate to the Eluent 

The first hypothesis proposed to explain the cause of the thiosulfate peak and 

raised baseline was dissociation of the gold thiosulfate complex in solution and 

during the transition of the complex through the column, for example: 

(3.1) 

The raised baseline started immediately after the elution of the thiosulfate peak, 

suggesting that thiosulfate contributed to this effect, which was consistent with 

this hypothesis. If this was the cause, the rate at which this occurred must be 

relatively slow compared to the speed of separation, as fast kinetics would result 

in a single peak representing the average form of the associated and dissociated 

complexes. Also, the addition of a small amount of thiosulfate to the eluent should 

hinder dissociation and therefore prevent the formation of the raised baseline. A 

similar approach has been successfully employed for copper(!) cyanide 

complexes, in which cyanide was added to the eluent to reduce dissociation and 

improve the peak shape [2,4]. 

Accordingly, the behaviour of the gold complex was examined in a series of 

eluents of the same composition, apart from changes in the thiosulfate 
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concentration present. An overlay of the resultant chromatograms is provided in 

Fig. 3.5, demonstrating that the addition reduced but did not completely resolve 

the raised baseline problem. It should be noted that the presence of thiosulfate in 

the eluent increased the baseline noise for both conductivity and UV detection, as 

the species cannot be suppressed in this system and absorbs at the wavelength 

used for UV detection. The detection limit experiment previously shown in 

Fig. 3.4 was repeated, but in this instance the eluent contained 40 µM thiosulfate, 

and ,showed similar behaviour to that observed without the thiosulfate addition. 

However, it was not possible to determine whether the free thiosulfate peak 

observed previously in gold thiosulfate samples had disappeared. The addition of 

thiosulfate to the eluent caused a system peak at the retention time of thiosulfate 

that prevented such an assessment. 

It was also apparent that adding thiosulfate to the eluent markedly increased the 

gold thiosulfate peak area, induced linear gold calibration curves (Fig. 3.6(a)) and 

improved the peak area reproducibility (Fig. 3.6(b)). Fig. 3.6(a) also demonstrates 

that there appeared to be an optimum concentration of thiosulfate with the 

addition of 100 µM giving slightly lower peak areas at higher gold concentrations 

than the 40 µM eluent. From Fig. 3.6(b) it is clear that even the presence of only 

10 µM thiosulfate in the eluent significantly improved the %RSD values for the 

gold peak area. 

Finally, linearity was tested over a greater range corresponding to an Au(I) 

concentration of0.0508-0.508 mM (10 to 100 mg/L) using IC conditions (ill). 
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Fig. 3.5 Effect of the eluent thiosulfate concentration on the raised baseline from 
injections of matrix free gold thiosulfate solutions containing 0.139 mM (27.4 
mg/L) Au(I). Conditions: (I), except for thiosulfate content of eluent. 
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Linear calibration was observed (R2 >0.9995) for both conductivity and UV 

detection over this range. 

Investigations into the use of thiosulfate-containing eluents suggested that whilst 

complex dissociation may be significant on the column and be reduced by the 

addition of thiosulfate to the eluent, this was not the only mechanism at work, as 

shown by the continued observation of a raised baseline. Further investigation was 

therefore warranted. 

3.3.1.3 Use of a Silica C18 Column 

Another hypothesis considered was that the stationary phase, in this instance the 

polymer based backbone of the Dionex NS-1 column, may have catalysed the 

decomposition of the gold complex in some manner. To investigate this it was 

decided to try a Waters NovaPak C18 column and a 25% vlv acetonitrile-water 

mixture containing 5mM Waters low-UV PIC-A (TBAHS04), as eluent. This 

method has previously been used for determination of the gold cyanide complex 

(Au(CN)2") in cyanide leach solutions [8]. TBAOH/Na2C03 based eluents, 

described in the preceding sections, were not used in this study because of the 

instability of silica-based columns in alkaline solutions. Results for this column, 

obtained without thiosulfate in the eluent, are illustrated in Fig. 3.7. Retention was 

lower in this system, however the same problems were evident. In contrast to the 

polymer column, the raised baseline continued past the gold peak. Trithionate and 

tetrathionate could not be responsible for forming this raised zone, since 

trithionate was eluted between thiosulfate and the gold complex, whilst 

tetrathionate co-eluted with the gold. Sulfate and sulfite should show lower 

retention than thiosulfate, whilst the formation of higher polythionates was 
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Fig. 3.7 Effect of using a silica based C18 column and corresponding eluent, on the 
chromatography of the gold thiosulfate complex, shown here for a solution 
containing 0.707 mM (139.3 mg/L) gold, prepared from ~89% pure sodium gold 
thiosulfate dihydrate. Conditions: Waters NovaPak C18 column with 
corresponding guard inserted in a Waters Guard-PAK module, eluent consisting 
of 25% v/v acetonitrile containing 5 mM Waters low-UV PIC-A reagent (5 mM 
TBAHS04), 25 µL injection volume and UV detection at 215 nm. 
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unlikely. One hypothesis that may explain the result was that the raised baseline 

following the main gold peak was caused by the gold monothiosulfate complex, 

although spectroscopic studies were not conducted to determine where the gold 

was eluted. Also, the lack of information on this species in the literature, other 

than that it exists [9], makes it difficult to assess whether the complex would be 

formed or would survive long enough, to be observed in the chromatogram. 

Using the same eluent on the Dionex NS-1 column produced similar results to 

those observed with the TBAOH/Na2C03 eluent. 

3.3.1.4 The Possibility of Gold Precipitation on the Column 

The above investigation provided no satisfactory explanation of why the raised 

baseline continued to be present even after the addition of thiosulfate to the eluent. 

Another possible mechanism would be that a portion of the gold actually 

precipitated on-column and the residual raised baseline was due to the soluble 

component of the complex remaining after this had occurred. 

To test this hypothesis, an old guard column that had been used extensively in the 

work for this chapter was digested in acid and the resulting solution analysed by 

AAS. The results were negative, but this in itself did not eliminate the theory from 

further consideration since it was possible that the gold was remobilised by other 

solutions, such as thiosulfate leachates, which had passed through the column. 

During experiments examining the gold content of column fractions by flame 

AAS, the primary results of which will be discussed in greater detail later in the 

thesis, evidence of on-column gold precipitation was observed. In column 
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fractions resulting from the injection of a synthetic leach sample containing, 0.5 

M (N&)2S20 3, 2 M NH3, 0.05 M CuS04 and 0.508 mM (100 mg/L Au(I)) added 

as the thiosulfate complex, the gold recovery was 235% (IC conditions (III) were 

used in this study). Because of the inaccuracies inherent in the analytical method 

used, recoveries of between 110-120% were routinely observed for injections of 

gold standards. Even taking this into consideration the observed recovery value 

was nearly twice that of any other sample investigated. An examination of the 

column history indicated that prior to this sa,rnple, a large number of injections of 

gold thiosulfate standards containing either no or only low concentrations of other 

matrix ions had occurred. Further leach solution injections made two days later 

gave gold recoveries much closer (118-126%) to those obtained for the gold 

standard alone (111-120%). The only difference in this second set of injections 

was that a much lower mass of gold in standards containing no or low 

concentrations of matrix ions had passed through the IC system prior to the leach 

sample. These results therefore supported the theory that there was a significant 

amount of gold already on the column in the first experiment and this had been 

mobilised by the injection of a leach solution. 

3.3.1.5 Effect of /on-Interaction Eluent Acetonitri/e Purity on Gold 

Thiosulfate Chromatography 

During one experiment, the brand of acetonitrile used was changed from BDH 

Chemicals HighPerSolv far UV-grade, purity 99.9% (Product No. 15251) to APS 

Chemicals 210 nm Grade, Unichrom, purity 99.7% (Product No. 2316). This 

change was also found to have a major impact on the chromatography, with 

retention time of the gold thiosulfate complex decreasing and the raised baseline 

between the thiosulfate and gold thiosulfate increasing. Switching back to the 
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BDH acetonitrile resolved the problem, indicating that some interaction between 

the gold and an impurity in the APS acetonitrile had occurred. However, the 

identity of this compound was not established. Nitriles, such as malononitrile, 

have been investigated as alternative lixiviants for gold [10] so it should not be 

surprising that impurities in acetonitrile could form an alternative complex with 

the gold present. 

3.3.1.6 Conclusions from the Investigation of Gold Thiosu/fate Solutions 

Not Containing Matrix Ions. 

The analysis of gold thiosulfate solutions in the absence of other matrix ions 

showed the· presence of a raised baseline of unknown composition, although 

thiosulfate was suspected to be one of the components. This behaviour was at 

least in part attributable to dissociation of the gold thiosulfate complex on column, 

and could be minimised by the use of thiosulfate in the eluent. However, this 

addition did not completely remove the raised baseline. This led to the 

consideration that some of the gold precipitated on the column, a hypothesis that 

was supported by the observation that injection of a synthetic thiosulfate leach 

solution after a large number of gold thiosulfate standards gave over a 200% gold 

recovery in column fraction analysis by AAS. The use of a silica based C 18 

column did not offer any improvement over the polymer material used for the 

majority of this work. 

Regardless of the mechanism(s) at work, when thiosulfate was present in the 

eluent the processes involved were quite reproducible and the detection of the 

gold thiosulfate complex gave linear calibrations at least between 0.0508-0.508 

mM (10 and 100 mg/L) Au(I). The final point to note was the importance of using 
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high grade acetonitrile, since impurities can affect the chromatographic behaviour 

of the gold. 

3.3.2 Behaviour of the Gold Thiosulfate Complex in the Presence of 

Additional Sample Thiosulfate 

The next step in this study was to examine the effect of matrix ions on the 

behaviour of gold thiosulfate, in particular those ions that are expected to be 

present in the leach solutions at appreciable concentrations. Firstly, the effect of 

thiosulfate, which has already been shown to influence the gold complex when 

added to the eluent, was examined in detail. 

3.3.2.1 Preliminary Experiments 

Preliminary studies of thiosulfate matrices indicated a significant variation in the 

observed gold peak area with the concentration of thiosulfate in the sample. This 

was examined systematically by injecting a series of gold thiosulfate standards, all 

containing the same amount of gold, but differing amounts of thiosulfate. The 

results for thiosulfate concentrations between 0-5 mM in an eluent not containing 

thiosulfate are detailed in Fig. 3.8 (a). The addition of small amounts of 

thiosulfate to the sample seemed to exert a similar effect to adding it to the eluent, 

in that the gold peak area increased concomitantly with thiosulfate concentration 

in the sample, although a plateau was reached at ~0.5 mM. Note the anomalous 

result observed for the sample containing 0.1 mM thiosulfate, which was 

significantly outside the trend observed for the remainder. The injections of this 

sample followed the injection of a gold check standard containing no matrix ions. 

This result suggested that a matrix memory effect occurred. Further evidence for 
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Fig. 3.8 Effect of sample thiosulfate concentration on the gold thiosulfate peak 
area for a 0.101 mM (19.9mg/L) Au(I) solution, (a) between 0-5 mM in an eluent 
containing no thiosulfate (using (I)) and (b) between 0-100 mM using conditions 
(II). 
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this was that replicate injections of standards containing no or very low levels 

(< 10 µM) ofthiosulfate showed progressively larger peak areas. 

To further test this memory effect theory, triplicate gold standard injections (no 

matrix ions) were made with single or duplicate injections of water or 1 mM 

thiosulfate between each gold sample (chromatographic system (I) used). Higher, 

more reproducible peak areas were obtained for the 3 gold injections when 1 mM 

thiosulfate was used, adding further weight to the existence of a memory effect. 

Considering these results, the effect of thiosulfate concentration in the sample on 

the gold peak was re-examined, with thiosulfate added to the eluent in this 

instance, to assess whether this improved the robustness of the gold peak area. For 

this experiment, much higher concentrations of thiosulfate in the sample (up to 

100 mM) were also investigated. The results of this study using an eluent 

containing 40 µM thiosulfate are shown in Fig. 3.8(b). For samples containing 

low thiosulfate concentrations, a major improvement in peak area reproducibility 

was observed between solution~ containing different concentrations of thiosulfate. 

In contrast, for samples containing high concentrations of thiosulfate (> ~5mM) 

the gold peak area dropped off markedly, with quantitation in the 100 mM 

thiosulfate standard not being possible since only a raised baseline was observed, 

as shown in Fig. ·3.9. The trend was the same for both conductivity and UV 

detection. This was obviously of great concern, since leach thiosulfate 

concentrations are likely to be in the range 0.05-0.5 M, which from the above 

results may preclude the determination of gold by this technique. Dilution will 

usually not be possible since this would normally decrease the concentration of 
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Fig. 3.9 Influence of sample thiosulfate on the gold thiosulfate peak shape. Gold 
concentration of samples: 0.101 mM (19.9 mg/L). Conditions: (II). 
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the gold in the sample below the method detection limit, which was determined to 

be 0.036 mM (7 mg/L as Au(I)), with no additional thiosulfate added to the 

sample, IC conditions (II)). Even if detection was possible, the actual measured 

gold concentration would be dependent .on the sample thiosulfate concentration. It 

was therefore important to further investigate the effect of matrices containing 

high thiosulfate concentrations. 

3.3.2.2 High Thiosu/fate Matrices 

A logical explanation for the reduction m the gold peak area for samples 

containing high thiosulfate concentrations is the presence of a self-elution effect 

caused by the ionic strength of this matrix. For such a situation, an experiment 

keeping the mass of gold injected constant, but with increasing thiosulfate would 

be expected to demonstrate some peak broadening, and decreased retention of the 

gold complex. This was tested by injecting a series of standards, all with the same 

thiosulfate concentration but each with a different gold concentration, with the 

injection volume set so that the same number of moles of gold would be injected 

each time. The results (Fig. 3.10) show that broadening of the gold peak did occur 

as the injection volume increased, but the end of the gold peak occurred at the 

same time in the chromatogram regardless of the moles of thiosulfate present in 

the sample. However, comparison with the results from the investigation detailed 

in Fig. 3.9 showed that the retention factor for the end of the gold peak was not 

independent of the thiosulfate concentration in the sample. This can be observed 

by comparing the 100 µL injection of Fig. 3.10 (green chromatogram) to the 0.1 

M thiosulfate containing injection in Fig. 3.9 (green chromatogram). In the latter 

chromatogram the end of the gold peak occurs at a substantially lower retention 

time than for the other samples in the same experiment.. The only differences 
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Fig. 3.10 Effect of injecting the same number of moles of gold thiosulfate 
( 5.1 x10-8 moles), using the specified injection volumes, in standards also 
containing 0.1 M thiosulfate, on the gold thiosulfate peak shape. Conditions: (I). 
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between the two chromatograms is that the results in Fig. 3.10 were obtained 

without the presence of 40 µM thiosulfate in the eluent, and the gold 

concentration was approximately five times higher than that in Fig. 3.9. This 

result suggested that the concentration ratio between thiosulfate and gold 

thiosulfate was important in determining the extent of the broadening effect. 

The above results supported the existence of a self-elution effect similar to that 

described previously by Novic et al. [11], for an anion-exchange system 

employing a sulfate eluent, and samples of nitrate and nitrite containing sulfate as 

a matrix ion. As the sulfate concentration in the sample was increased, the nitrate 

and nitrite peaks were observed to broaden towards lower retention times, but the 

end of the peak did not move. This was attributed to a "sample-induced micro­

gradient" in which the higher concentration of the eluting ion in the sample plug 

caused a lower retention factor for analyte ions contained in that plug, with the 

effect decreasing from the front to the rear of the sample band, resulting in the 

observed peak shape. 

The results illustrated in Fig. 3 .10 were somewhat similar to those described in the 

above-mentioned work, except the situation here was more complicated. The 

separation system involved ion-interaction not ion-exchange, the primary matrix 

ion was different to that contained in the eluent, and the charge on the analyte (-3) 

was larger in magnitude than that of the eluent (approximately -2). 

To understand how the self-elution hypothesis may apply to these samples, 

consider a sample plug of gold thiosulfate in a matrix consisting of a high 
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concentration of thiosulfate. Immediately after injection onto the column and 

before any dispersion of the bands has occurred the band will appear as shown in 

Fig. 3.ll(a). As the plug begins to move down the column the thiosulfate band 

will start to separate from the gold and a small portion of the gold thiosulfate will 

be free of the sample plug (b).As the bands continue to move through the column, 

self-elution from the matrix makes it progressively more difficult for further gold 

to "escape" the sample band, resulting in broadening of this part of the peak ( c ), 

which ceases once the thiosulfate band has completely separated from the gold 

( d). The end of the peak will always be in the same place according to this 

mechanism, unless the ionic strength of the matrix is so high that even gold at the 

end of the band is not immediately free from the sample plug. In addition if 

position ( d) is not reached by the end of the column, some of the sample will be 

eluted with the matrix ion, as was observed in Fig. 3.10, in the case of the 100 and 

200 µL injections. This hypothesis is simplistic with regard to the final shape of 

the eluted band since the peak shapes observed here are different to those shown 

in the earlier work by Novic et al. [ll] However, as noted before the 

chromatographic system used here was more complicated. 

3.3.2.3 Addition of Gold Thiosulfate to the Eluent 

As a further assessment of this possible self-elution effect, and also in an attempt 

to improve the stability of the gold complex on-column, the effect of adding a 

small amount of the gold thiosulfate complex to the eluent was investigated. IC 

conditions (II), except with approximately -0.01 mM Au(I) added as the 

thiosulfate complex ( -2 mg/L Au(I)), were used in this work. There was a 

substantial increase in peak area corresponding to a gold standard injected in a 

1 mM thiosulfate matrix. However, in a sample containing the same gold 
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(a) (b) 
/Matrix 

(c) (d) 

Fig. 3.11 Representation of sample-induced micro-elution hypothesis (a) initial 
state after sample injection (b) the gold thiosulfate contained at the end of the 
sample band "escapes" the sample plug, (c) self-elution effects caused by the 
sample thiosulfate matrix significantly slows the rate at which the remaining gold 
thiosulfate leaves the sample plug region resulting in significant peak distortion 
(d) gold thiosulfate is completely separated from the sample plug. The plots show 
how the gold thiosulfate band would appear in the chromatogram at that point 
(ignoring signal from the matrix). 
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concentration but 0.1 M thiosulfate, the gold thiosulfate equilibrium in the column 

was significantly disturbed. A major dip in the baseline (of magnitude~ 10 µSin 

the conductivity trace) was observed from the end of the thiosulfate peak until the 

retention time of the gold thiosulfate complex, where a small peak was observed 

followed by the recovered baseline. The apparent stripping of the gold thiosulfate 

complex from the column by the high thiosulfate Jilatrix was consistent with the 

sample-induced micro-gradient effect. This was because the gold on the column 

passed by the thiosulfate plug during its passage through the column would 

experience the same degree of self-elution as the frontmost portion of gold in the 

original sample plug. 

3.3.2.4 Effect of Adding TBA OH to the Sample 

Interesting results were obtained when the eluent ion-pair reagent, TBAOH, was 

added to the sample at a level equal to that contained in the eluent. Samples 

containing high thiosulfate showed a partial recovery of the gold thiosulfate peak, 

as illustrated in Fig. 3.12. Samples containing 0.1 M thiosulfate and 3 mM 

TBAOH produced a peak area for 0.102 mM (~20 mg/L) Au(I) standards which 

was 85-90% of that for similar standards containing 1 mM thiosulfate. Adding 

excess TBAOH produced peak area recoveries that were inconsistent between the 

conductivity and UV detectors (displayed in Fig. 3.13 (a)), the cause of which was 

unknown. Overall, the results suggested little further improvement in recovery 

compared to addition of stoichiometric amounts of TBAOH, even for a sample 

containing the gold thiosulfate complex, 0.1 M thiosulfate and 50 mM TBAOH 

(over 16 times the level contained in the eluent). The addition of TBA OH to 

samples containing a low thiosulfate concentration did not significantly influence 

the gold thiosulfate peak area. 
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Fig. 3.12 Influence of sample matrix on the gold thiosulfate peak shape. Solutions 
all contain 0.101 mM (20 mg/L) gold. The peak "recovery" effect of adding 
TBAOH to the sample can be clearly observed in the presence of a high 
thiosulfate matrix. Conditions: (II). 
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Fig. 3.13 (a) Gold thiosulfate peak area recovery as a function of sample TBAOH 
concentration, for solutions containing gold at a concentration of 0.103 mM (20.2 
mg/L ). Recovery based on that obtained for a solution containing 1 mM 
thiosulfate matrix with no TBAOH present. (b) Effect of sample thiosulfate 
concentration on the gold thiosulfate peak area for solutions containing 0.102 mM 
(20. 0 mg/L) gold and 5 mM TBAOH. Conditions for both (a) and (b): (II). 
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The behaviour of the gold complex in the presence of sample TBAOH was 

considered to be a possible means by which the gold thiosulfate chromatography 

could be stabilised, even if the recovery of the complex through the column was 

not 100%. Unfortunately a further experiment showed that even with TBA OH 

present in the sample, the gold thiosulfate peak area decreased with increasing 

thiosulfate concentration as demonstrated in Fig. 3.13(b ), thus preventing the use 

of this approach. 

Despite the above-mentioned problems, the effect of adding the TBAOH to the 

eluent did provide a further insight into the chromatography of the gold complex 

in the presence of a high concentration of thiosulfate. The results indicated that 

the problem with the gold peak was, at least in part, caused by some kind of 

equilibrium disturbance that occurred with the injection of high-ionic strength 

samples in the absence ofTBAOH. 

The reason for the continued loss of some gold peak area even in the presence of 

TBAOH is unknown, but may in some way still relate to the mechanism 

hypothesised in the preceding section. 

3.3.2.5 Pre-Column Matrix Elimination 

Another approach investigated to overcome the problems induced by the 

thiosulfate matrix utilised methodology similar to that of Haddad and 

Rochester [5]. This method was an on-line technique utilising a pre-column to 

remove matrix components and concentrate the gold cyanide complex from 

cyanide leach liquor waste streams. The main difference was that instead of 

preconcentration, the aim of the present study was to use the technique to remove 
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the thiosulfate matrix from the sample, ideally leaving only the gold complex 

absorbed on the pre-column. The adapted instrumental configuration is described 

in the experimental section of this chapter. To maximise the difference in 

retention between thiosulfate and gold thiosulfate, the acetonitrile concentration of 

the eluent was reduced during the loading step. Preliminary work with a Dionex 

NGl column used in the direct injection mode indicated that for an eluent 

containing 17.5% acetonitrile, 3 mM TBAOH, 2 mM sodium carbonate and 40 

µM sodium thiosulfate, a broad gold peak, was eluted at ~20 min, whilst 

thiosulfate was eluted at ~1.5 min. Unfortunately, experiments in the same 

configuration using samples containing 0.1 M thiosulfate gave lower peak areas 

for the gold. 

It was of interest to determine if the backflush mode discussed by Haddad and 

Rochester [5] would recover this gold. For this investigation, a second NGl 

column was used as the "analytical" column, to minimise the separation time. A 

peak for a 0.102 mM (20 mg/L) gold solution was observed in both 1 mM and 

0.1 M thiosulfate samples, but in the latter matrix the peak was broad and 

misshapen, as illustrated in Fig. 3.14(a), (ii). The results are still an improvement 

over the direct mode, since in this configuration for a sample containing 0.1 M 

thiosulfate and 0.102 mM (20 mg/L) gold, only the raised baseline was visible. 

The poor peak shape in the high thiosulfate matrix was also consistent with the 

previously stated sample-induced micro-gradient hypothesis, since such an effect 

would have broadened the gold peak on the pre-column during the loading step, 

producing results similar to those observed in Fig. 3.14(a) (ii). In the back-flush 

step the gold that had moved the greatest extent through the pre-column because 
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Fig. 3.14 (a) Results of study into the use of a matrix elimination pre-column 
procedure (i) Water Blank (ii) 0.101 mM (19.9 mg/L) Au(I) (as thiosulfate) in 
matrix of 0.1 M thiosulfate (iii) 0.101 mM Au(I) (as thiosulfate) in matrix of 1 
mM thiosulfate and 3mM TBAOH (iv) O.lOlmM Au(D in matrix of 0.1 M 
thiosulfate and 3 mM TBAOH. (b) Effect of sample matrix on resulting gold 
thiosulfate peak when using a matrix elimination pre-column system, with all 
samples containing 3 mM TBAOH. Instrumental set-up and program for both (a) 
and (b) given in experimental section. Matrix elimination step eluent: 17.5% v/v 
acetonitrile containing 3 mM TBAOH 2 mM Na2C03, backflush and analytical 
eluent: 28% v/v acetonitrile containing 3 mM TBAOH 2 mM Na2C03. 
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of the matrix, although in contact with the stronger analytical eluent first, would 

still take significantly longer to reach the detector than the portion of the gold 

absorbed at the head of the column. 

The addition of TBAOH to the sample solved this problem, with gold thiosulfate 

peak area recoveries of between 90-95%, compared to that of a similar sample 

containing only 1 mM thiosulfate injected in the same system (Fig. 3.14 (a), (iii) 

and (iv)). The higher recovery may indicate an improvement over the direct 

injection technique or could also relate to the much shorter column used, which 

would minimise the effects of any other possible sources of loss of gold in the 

system. 

As a further test, the effect of the matrix ions sulfate, thiosulfate and iodide were 

compared in this system with TBAOH added to the sample. The eluting strength 

of these ions is sulfate < thiosulfate < iodide. If the self-elution effect was the 

cause of the remaining loss in gold thiosulfate peak area, then samples prepared in 

these matrices should show increasing reduction in the gold peak area with 

increasing eluting strength of the matrix ion. This was not observed, with iodide 

showing greater recoveries than thiosulfate, (Fig. 3.14(b)). This result suggested 

that the remaining loss in gold peak area was not through a self-elution effect, 

although the high irreproducibility of the data presented a problem for drawing 

any firm conclusions from these experiments. 

3.3.2.6 Investigation of a Zirconia-Based Column 

To further assess the role (if any) of the stationary phase substrate on the 

chromatography of the gold thiosulfate complex, an investigation was conducted 
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using a zirconia-based column. The advantage of this column over the silica-based 

material discussed in Section 3.3.1.3 was that the column is stable over a wider 

pH range, enabling the use of an eluent system similar to that possible on 

polymer-based columns. 

The column used was a ZirChrom Diamond bond C1s with 3 µm particle and 

300A pore size. Initial testing indicated that to attain significant retention a lower 

acetonitrile concentration (15% versus 28% vlv) in the eluent was required. The 

results obtained on this column contrasted markedly with the polymer column, 

with no significant raised baseline observed by conductivity, and a much reduced 

raised baseline observed on the UV detector. However, the peak for the gold 

thiosulfate complex was tailed and/or split, even though thiosulfate was added to 

the eluent. This behaviour is demonstrated in Fig. 3.15 (a) and (b).Peak area was 

still influenced by. the thiosulfate concentration of the sample, although this effect 

was not as strong as on the polymer column. For example, a peak was observed 

for gold in a 0.102 mM (20 mg/L) Au(I) (as thiosulfate) standard containing 

0.2 M thiosulfate (Fig. 3.15(b)(iii)), even without TBAOH in the sample. The 

addition ofTBAOH to the sample was actually detrimental to the chromatography 

of the gold, resulting in smaller peak areas in samples containing high levels of 

thiosulfate. The retention time of the gold complex also decreased with increasing 

thiosulfate, although the peak shape of the gold actually improved in a high 

thiosulfate matrix. The baseline on this column was also more sensitive to high 

thiosulfate matrices, as is evident from the baseline drift after the thiosulfate peak 

in Fig. 3.15(b). 
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Fig. 3.15 Results from investigations on a Zirchrom Diamond.Bond C 18 zirconia 
based column (a) (i) Water Blank (ii) 0.102 mM (20.0 mg/L) Au(I) as thiosulfate 
complex in lmM thiosulfate matrix (b) (i) 0.1 M thiosulfate blank (ii) 0.102 mM 
Au(I) as thiosulfate complex in 0.1 M thiosulfate (iii) 0.102 mM Au(I) as 
thiosulfate complex in 0.2 M thiosulfate (iv) 0.509 mM (100.3 mg/L) Au(I) as 
thiosulfate complex in 0.1 M thiosulfate. Eluent: 15 % v/v acetonitrile containing 
3 mM TBAOH 2 mM NaC03 40 µM Na2S203. 
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The detection limit for the gold thiosulfate complex in a 0.1 M thiosulfate matrix 

was 4 µM (0.7 mg/L Au) by conductivity using this method based on a signal 

three times the baseline noise, significantly lower than was observed with the 

polymer-column. fu the same matrix, calibration plots between 0.0508 and 

0.508 mM (10 and 100 mg/L) Au(I) were linear (R2> 0.998) for both conductivity 

and UV detection systems. 

Because of the tailed peak shapes and peak splitting effects, this column was not 

considered further. The markedly different chromatographic behaviour of the gold 

complex on this column would indicate that the stationary phase does have some 

role in the separation. 

3.3.2. 7 Experiments to Determine the Fate of the Gold in High Thiosu/fate 

Matrices 

Efforts were made to determine spectroscopically the fate of the gold in samples 

containing high levels of thiosulfate. The observed change in the area of the gold 

peak implied that one or more of the following had occurred in the presence of the 

high thiosulfate matrix: 

(a) Precipitation of gold in the sample due to the high thiosulfate matrix prior to 

chromatographic analysis. This was considered unlikely since there was no 

visible solid observed in samples and there is no information in the literature 

indicating limited solubility of the gold in a thiosulfate matrix. 

(b) Gold was eluted earlier in the chromatogram than the main gold peak due to a 

self-elution or other effect. Significant evidence has already been presented to 
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suggest that this may be a significant factor in the chromatography of gold 

thiosulfate. 

(c) Some of the gold was eluted later than the gold peak due to formation of more 

highly retained complexes. For example it may be possible that Au(S203)35
-

was formed in the high thiosulfate matrix. 

( d) Gold was precipitated on the column. 

( e) The elution behaviour of the gold was the same as in the absence of matrix 

ions, but the detected form has changed. This theory seems unlikely since the 

retention time of the gold peak remains unchanged, and the loss in peak area 

in the presence of high levels of thiosulfate was similar for both the 

conductivity and UV traces, suggesting that the detected species was the same 

in both situations. 

To test theory (a), solutions containing 0.203 rnM (40.1 mg/L) of the.gold 

complex were analysed by flame AAS in a matrix of 1 mM thiosulfate and 0.5 M 

thiosulfate. The results indicated no significant difference in absorptivities, 

although dilution (1 :5) of the 0.5 M thiosulfate solution was required since the 

high ionic strength of the matrix caused some suppression of the gold signal. The 

results suggested that pre-chromatographic precipitation was not a source for loss 

of the gold. 

To investigate mechanisms (b)-(e), column fractions collected from injections of 

various gold thiosulfate solutions, using IC conditions (II), were analysed by GF­

AAS. As noted earlier in this chapter, there were significant difficulties in 

obtaining quantitative results by this technique. A range of conditions were used 
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for the GF-AAS determination, mainly to overcome problems caused by the high 

acetonitrile content of the column eluate which often resulted in a portion of the 

sample "creeping" up the sides and out of the top of the furnace. It proved 

necessary to dilute the solutions containing 28% acetonitrile with water (1 :2), to 

reliably prevent this effect. Whilst linear calibration curves were attained for both 

gold chloride AAS standards and for gold thiosulfate standards prepared in the 

eluent matrix, quantitation of the collected fractions was not possible since all 

experiments produced extremely high recoveries. To ensure this effect was not 

related to the presence of gold on the column that was remobilised in later 

injections, fractions from the first injection of the gold complex on a new column 

were analysed, but again high recoveries were obtained. Similar results were 

observed on the same column after 22 injections of a ~0.102 mM (~20 mg/L) 

Au(I) solution in 0.1 M thiosulfate and 3 mM TBAOH. As a result, all these 

investigations were inconclusive. 

In view of the inconsistencies observed using GP-AAS, flame methodology was 

also examined. Recoveries determined using this technique were also high, with 

injections of a 0.508 mM (100 mg/L) gold standard in the absence of any matrix 

ions (using IC method (III)) producing gold recoveries typically between 110-

120%. However, this error was considered to be within the accuracy limitations of 

the experimental methodology. Injections of a 0.508 mM gold standard in a 0.5 M 

thiosulfate matrix (no TBAOH added) showed the presence of some gold in the 

fraction eluted immediately before that containing the main gold peak 

(Fig.3.16(a)), which was not observed for a 0.508 mM gold standard without the 

matrix ion (Fig. 3.16(b)). It should be noted that this behaviour was also evident in 
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Fig. 3.16 Influence of matrix thiosulfate on the gold distribution in corresponding 
separations, determined by flame AAS. Samples: (a) 0.508 mM Au(I) (as 
thiosulfate complex) with 0.5 M thiosulfate present (b). 0.508 mM (100 mg/L) 
Au(I) (as thiosulfate complex) with no matrix. For each Fig. (i) is the 
chromatogram resulting from injection of the relevant sample and (ii) is the gold 
concentration found in each fraction collected. Conditions: (III). 
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the corresponding chromatograms, with broadening of the gold peak in samples 

containing high levels of thiosulfate. These observations were consistent with the 

sample-induced micro-gradient mechanism discussed previously. 

3.3.3 Chromatography of the Gold Thiosulfate Complex in the 

Presence of Matrix Ions other than Thiosulfate 

3.3.3.1 Ammonia 

The concentration of ammonia in thiosulfate leach solutions is often very high and 

extremes between 0.1-6 M have been reported [12]. In the absence of additional 

thiosulfate it was also hypothesised that the gold thiosulfate complex could 

convert to the gold ammine (Au(NH3)2 l species. As a result, the effect of a 1 M 

ammonia matrix on the chromatography of the gold thiosulfate complex was 

investigated. There was no significant change in the chromatographic behaviour 

from a similar standard containing no ammonia. This result provided further 

evidence that the degree of formation of the gold ammine complex is insignificant 

under gold thiosulfate leach conditions. 

3.3.3.2 Polythionates 

The only polythionates that are likely to be in the leach at an appreciable 

concentration are trithionate and tetrathionate. The presence of these ions in the 

sample matrix had a detrimental effect on the chromatography of the gold, as 

evidenced by Fig. 3.17(a), (ii) and (iii). In this system the separation selectivity 

had been adjusted so that the gold peak was eluted later than tri-, tetra- and 

pentathionate. Flame AAS investigations on standards containing 0.508 mM (100 

mg/L) gold and 2 mM of either trithionate or tetrathionate (using IC system (III)) 

showed a lower gold recovery in the case of trithionate (~ 100% compared with 

136 



Chapter 3 Fundamental Behaviour of the Gold Thiosuljate Complex in IC 

0.30 Au(S20 3)2
3-

(a) 
' 

A 
N I \ ... 

0.25 0 .., 
en 

5 0.20 
<( -Cl) 

g 0.15 
ftS .a .... 
0 
.! 0.10 
<( 

0.05 

0.00 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 

Retention Time (mins) 

120 

(b) 
100 

(iii) 

(ii' 80 
:i. -.a-
·:; 60 

.... ..:, 
(ii) c ... e 0 ... u.. en .... c 

+: 
() 
:J 
"D 
c 40 
0 
0 

.! 
"D 

20 l! 
C> 

(i) 
0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Retention Time (mins) 

Fig. 3.17 Influence of polythionates on the behaviour of the gold thiosulfate peak. 
(a) (i) 0.203 mM (40 mg/L) Au(I) (as thiosulfate complex) (ii) 0.203 mM Au(I) 
(as thiosulfate complex) + 2 mM S30i- (iii) 0.203 mM Au(I) (as thiosulfate 
complex)+ 2 mM S40l-. Conditions: Dionex NGl+NSl-5µ in series 30% v/v 
acetonitrile 3 mM TBAOH 0.5 mMNa2C03 40 µMNa2S203, UV detection at 215 
nm. Conditions chosen so that the gold eluted after the polythionate ions. S20{ 
(b) Chromatogram identities the same as (a) except this time with 0.506 mM (99.7 
mg/L) Au(I) in each sample. Conditions: (111). 
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110-120% for standards in the absence of matrix ions), whilst the recovery was 

unchanged in the tetrathionate solution. However, there was significant 

broadening of the gold peak, in the tetrathionate matrix (Fig. 3. l 7(b) (iii)). The 

specific cause of the results is unknown, although it may relate to the equilibrium 

between thiosulfate and the polythionates shown in Eqn. 1.14 (Section 1.6.2), or 

alternatively to the sample-induced micro-gradient effect discussed earlier. The 

latter theory is possible since it would be expected that much lower concentrations 

of these ions would be required than thiosulfate for self-elution to ~ccur, because 

of their higher ion-exchange affinities. As noted in Chapter 1, polythionates 

present a problem for gold thiosulfate leaching because of their ability to elute 

gold from ion-exchange recovery systems [13,14]. 

These results all demonstrated that major impediments existed in the 

determination of the gold. For example, even if a successful matrix elimination 

system as discussed in Section 3.3.2.5, was developed to remove thiosulfate from 

the sample, removal of polythionates (especially tetrathionate) from the system 

would be difficult due to the similarities of their ion-exchange affinities to that of 

the gold complex. 

3.4 Conclusions 

This study on the ion-chromatographic behaviour of the gold thiosulfate complex, 

primarily using the Dionex NS 1 stationary phase dynamically coated with 

TBAOH as ion-interaction reagent, has revealed many problems that hinder the 

determination of this species. In solutions containing no matrix ions, a raised 

baseline was observed which was partially attributed to on-column dissociation of 

the complex. This effect could be minimised (but not eliminated) by adding a 

138 



Chapter] Fundamental Behaviour of the Gold Thiosulfate Complex in JC 

small amount of thiosulfate to the eluent. Other mechanisms that could explain 

this behaviour were not elucidated, but some investigations suggested that on­

column precipitation of a portion of the gold occurred during the separation. The 

purity of the acetonitrile used for the chromatographic analysis was also 

significant 

Addition of other matrix ions, such as thiosulfate or polythionates, introduced 

further problems in the chromatographic determination of the gold complex. The 

area of the gold peak was highly dependent on the thiosulfate concentration in the 

sample and memory effects were significant. For samples containing low-levels of 

thiosulfate, peak area reproducibility and dependence on thiosulfate concentration 

could be minimised by the addition ofthiosulfate to the eluent. This approach was 

not successful for samples containing high concentrations of thiosulfate, for which 

the gold peak area was reduced, and a peak broadening effect was often observed. 

The results suggested that these problems were at least in part due to a sample­

induced micro-gradient effect, for which further evidence was observed in 

experiments using a matrix-elimination pre-column with back-flush procedure. 

Spectroscopic studies were also consistent with a self-elution effect. 

Adding TBAOH to the sample at a concentration equal to that of the eluent was 

found to improve significantly the recovery of the gold thiosulfate peak for 

samples containing high concentrations of thiosulfate. The result indicated that at 

least a significant portion of the problems observed in the high thiosulfate matrix 

were caused by disturbances to the equilibrium on the column in the region of the 

sample plug. 
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The self-elution effects might not be the only mechanism at work since the 

chromatographic behaviour of the gold complex was somewhat different on a 

zirconia-based stationary phase. With this stationary phase, no peak broadening 

effects were observed and the addition of TBAOH to the sample was detrimental 

to the chromatography in the presence of a high thiosulfate matrix. 

The negligible change in behaviour of the gold complex in the presence or 

absence of a high ammonia matrix adds further weight to other experimental data 

in the literature [12] that the gold ammine complex, Au(NH3) 2 +, will not be a 

significant species in leach solutions, at least at room temperature. 

The results outlined in this chapter demonstrate the complexity of applying IC to 

the quantification of the gold thiosulfate complex. Chapter 4 will continue this 

investigation, optimising the separation of the gold complex and the polythionates 

and observing the behaviour of the gold complex in the presence of synthetic 

leach matrices. 
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Chapter 4 

Separation of Polythionates and the Gold Thiosulf ate 

Complex in Gold Thiosulfate Leach Solutions by 

Ion-Interaction Chromatography 

4.1 Introduction 

As discussed in Chapter 1, the polythionates are important species in thiosulfate 

leach solutions, with monitoring being required to both aid in understanding and 

optimisation of the leaching process, and because of their role as competing ions 

in ion-exchange gold recovery systems. Existing literature on determination of 

these ions in leach solutions is quite limited, with only four papers [1-4] referring 

to determinations of at least one polythionate in leach solutions, of which only 

two provide any experimental detail. Both of these determine thiosulfate 

simultaneously with the polythionate ions which suggests that a significant 

dilution factor is required prior to analysis. As noted previously this may induce 

speciation changes in the mixture. Because of this, a system which requires no, or 

at most minimal, dilution would be an advantage. 

This chapter describes the development of an ion-interaction method for the 

determination of polythionates in gold thiosulfate leach solutions, with the system 

being optimised for the separation of the first three polythionates (Sx06 
2

- x =3 to 

5) and the gold thiosulfate complex. Also, investigations into the behaviour of the 

gold thiosulfate complex begun in the previous chapter are concluded, with 

experiments being conducted on the effect of the leach matrix on the 
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chromatography of this ion. Finally, the effectiveness of the developed 

methodology for the determination of polythionates in undiluted leach solutions is 

investigated. 

4.2 Experimental 

4.2.1 Instrumentation and Reagents 

The ion-chromatograph and AAS used in this work was as described in the 

relevant sections of Chapter 3 (Sections 3.2.1 and 3.2.3). For the study of copper 

. 
elution in the optimised system, a post column reaction (PCR) system was added. 

A Model 350 HPLC pump (Scientific Systems Inc., State College, PA, USA) was 

used to deliver the PCR reagent at a flow rate of 1 mL/min. The reagent was 

based on that used by Shaw et al.[5] and contained 0.5 mM 4-(2-

pyridylazo)resorcinol monosodium salt hydrate (PAR), 2.6 M ammonia and 0.85 

M ammonium nitrate. A Teflon mixing tea followed by a reaction coil (150 cm x 

0.3 mm I. D.) between the column and the detector connected the PCR system to 

the flow path of the IC. A detection wavelength of 510 nm was used to detect the 

copper-PAR complex. 

The columns used throughout this work were a Dionex NGl and NS1-5µm in 

series unless otherwise specified. Peak identifications were determined from the 

injection of standards of each analyte. 

4.3 Results and Discussion 

4.3. 1 Optimisation of Separation Conditions 

The literature review showed that one of the most common IC systems employed 

for the separation of polythionates is the use of ion-interaction chromatography 
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employing a reversed phase Dionex NSl column (with NGl guard), 

tetrabutylammonium hydroxide (TBAOH) as the ion-interaction reagent, sodium 

carbonate as the primary eluting ion, and acetonitrile as the organic modifier. It 

may seem surprising that such an alkaline eluent has been used since it is well 

documented [6-8] that tetrathionate and pentathionate are unstable at alkaline pH 

through reaction with the hydroxide ion. However, the rate of decomposition 

appears to be slow enough to prevent it from hindering the analysis. It can be 

expected that the use of an alkaline eluent would cause decomposition of a small 

portion of the injected polythionate as a continuous process on the column, 

thereby slightly increasing the detection limit. However, this eluent does have the 

advantage in that it is compatible with both suppressed conductivity and UV 

detection modes, which is useful since trithionate has a weak UV 

chromophore [9] and is more suited to detection by conductivity, while UV 

detection is more sensitive for tetra- and pentathionate [9]. 

Preliminary work, combined with evaluation of the previous literature, suggested 

that the dominant factors in the separation process were the acetonitrile and 

carbonate concentrations of the eluent. It was therefore decided to optimise the 

eluent using these parameters, keeping the TBAOH concentration of the eluent 

constant at 3 mM, since this was found suitable to maintain a stable dynamic 

loading on the column. In addition, it was found that when using isocratic 

eluents, the trithionate appeared as a split peak under conditions for which the 

other ions of interest were eluted quickly. To resolve this problem it was 

necessary to insert an acetonitrile step gradient from 15% to the higher 

"separation" concentration during the analysis, which will be discussed later. 
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The UV spectra of the polythionates are known, with Amax values of< 200 nm for 

trithionate and between 210-220 nm for tetra- and pentathionate [9]. The 

absorption spectrum (over the region 200-600 nm) of the gold thiosulfate 

complex, as discussed in Chapter 3, (Section 3.3.1.1, Fig. 3.3), showed an 

absorbance maximum at ~205 nm, although in view of the additional baseline 

noise observed at this and lower wavelengths, 215 nm was used for this work to 

achieve an improved signal to noise ratio. 

Figs. 4.l(a) and (b) demonstrate the effect of acetonitrile and carbonate 

concentrations on the separation. _Acetonitrile provides no means of changing the 

separation selectivity, but affects the analyte retention by influencing the amount 

of adsorbed TBAOH on the stationary phase. On the other hand, the carbonate 

concentration strongly influences the selectivity for the gold thiosulfate complex 

with retention orders of Au(S203)l- > Ss062- > S4062-> S30i- being observed 

when no carbonate is present and Ssoi- > S40i- > Au(S203)23- > S30i- at 

10 mM carbonate. This effect can be explained by the higher charge (-3) on the 

gold thiosulfate complex compared to the polythionates (-2), indicating that the 

gold thiosulfate complex will be more strongly influenced by eluent concentration 

[10]. This ability to move the gold thiosulfate peak relative to the peaks for the 

polythionates is advantageous since it can be used to decrease ~terferences when 

required. 

Based on the results from this study, and with the gradient step time set to occur at 

injection, the optimum eluent was determined to consist of an acetonitrile step 
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Fig. 4.1 Effect of (a) acetonitrile and (b) carbonate concentrations in the eluent on 
retention and separation of polythionates and the gold thiosulfate complex. Eluent 
compositions: (a) 3mM TBAOH, 2.2mM sodium carbonate, acetonitrile step 
gradient at 2.5 mins from 15% vlv to the indicated final composition, (b) 3mM 
TBAOH, acetonitrile step gradient at 2.5 mins from 15% vlv to 30% vlv. For 
remaining conditions, see Sections 3.2.1 and 4.2.1. 

146 



Chapter4 Separation of Polythionates and the Gold Thiosulfate Complex by !IC 

gradient from 15% to 28% v/v, with 3 mM TBAOH and 2.5 mM sodium 

carbonate maintained in the eluent at all times. After 14 min, the acetonitrile 

concentration was reduced to 15% and held for a period of 4 min, yielding a total 

analysis time of 18 minutes, including the time required to re-equilibrate the 

column with the initial conditions. The separation attained using this eluent is 

illustrated in Fig. 4.2 as recorded by both the conductivity and UV detectors. 

These conditions were chosen so that the gold thiosulfate eluted between tetra­

and pentathionate, since the gold thiosulfate peak became extremely tailed with 

increasing residence time on the column. 

4.3.2 Analysis of Synthetic Leach Solutions 

A wide range of thiosulfate leach conditions have been reported in the 

literature [11], varying between the extremes of 0.1-2 M for thiosulfate, 0.1-6 M 

for ammonia and 0.001-0.1 M for copper. Based on a recent review [11] and our 

own experience it was concluded that approximately 70% of leaching regimes use 

~ 0.5 M thiosulfate, ~ 2 M ammonia and~ 50 mM copper. In order to ensure the 

chromatographic method was able to separate species present under realistic leach 

conditions a synthetic leach solution containing the above concentrations of these 

species was used. While it is unlikely that these extreme conditions would be 

used widely in any real leach solution, they provide a very challenging matrix in 

which to evaluate the method. 

4.3.2.1 Gold Thiosu/fate Complex Behaviour in the Leach Matrix 

From the results discussed in Chapter 3, it was anticipated that the determination 

of the gold thiosulfate complex would prove difficult. To investigate the effect of 

such samples, injections of two 0.508 mM (100 mg/L) gold(!) solutions (present 
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Fig. 4.2 (a) Conductivity and (b) UV chromatograms of optimised separation for 
the polythionates and gold thiosulfate. Optimum eluent composition, acetonitrile 
step gradient at 0.0 min from 15% vlv to 28% vlv, 3 mM TBAOH, 2.5 mM 
sodium carbonate. Sample composition, (0.18 mM (20 mg/L) thiosulfate, 0.21 
mM (40 mg/L) trithionate, 0.094 mM (21 mg/L) tetrathionate, 0.10 mM (20 
mg/L) gold (as thiosulfate complex), 0.082 mM (21 mg/L) pentathionate. 
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as the thiosulfate complex) were made in the optimised system, one containing 

and the other free of the leach matrix. The results of the study are shown in 

Fig. 4.3, with Fig. 4.3(a) detailing chromatograms resulting from 100 µL 

injections of the (A) leach containing and (B) leach free solutions. Fig 4.3(b) 

shows another injection of the leach containing sample, except using only a 10 µL 

injection volume. Note, that for this work (and all other separations discussed in 

this section), 40 µM thiosulfate was added to the optimised eluent, since earlier 

work (refer to Chapter 3, Sections 3.3.1.2 and 3.3.2.1) indicated that such an 

addition assisted in stabilisation of the gold thiosulfate complex. As was 

previously observed, this caused an increase in baseline noise for both detectors, 

but did not significantly affect the separation between the gold thiosulfate 

complex and the polythionates. 

Fig 4.3(a) highlights that the gold thiosulfate peak is greatly reduced in leach 

liquors compared with standards. Results using both the NSl (lOµm) and NSl-5µ 

columns employing eluents similar to the optimised system described in the 

previous section (containing no acetonitrile step gradient, and using different 

carbonate concentrations), showed that adding TBAOH to such samples did not 

seem to offer the same gold peak recovery properties observed for solutions 

containing only high thiosulfate (refer to Chapter 3, Section 3.3.2.4). 

As a first step in establishing the fate of the gold, the possibility of gold 

precipitation in the leach solutions prior to chromatographic analysis was 

considered. A comparison of flame AAS absorbance values obtained for 

0.204 mM (40.1 mg/L) of gold(D in the leach matrix described earlier (also 

149 



Chapter4 Separation of Polythionates and the Gold Thiosulfate Complex by IIC 

1.0 
(a) "" x "' -·c M 

0.8 +""' 0 ro "' 
E Cl) 

........... 
0:. 

"' :::J 
"'C 0 <( c 0:. 0.6 ro "' "' 

0 Cf) 
0:. 

M 
.., 

0 Cf) 

"' 
0.4 en 

0.2 
(8) 

U) 
~ 0.0 c 
::> 
(J) 
0 (b) c: 
ro ..c 

~ i.... 

0 x et! 
U) Q) 
..c 0.4 

·c c.. +""' 
<( et! 

E "'O 
Q) 

"'O 0:. ti= 

"' 
:;::; c 0 c 

"" ro Q) "' M -0:. en 32 M 
M 0 

0.2 0 c "' "' :::J en en ........... 
:::J 
<( 

0.0 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 
Retention Time (mins) 

Fig. 4.3 (a) Overlay of UV chromatograms for (A) an artificial leach solution 
containing 0.5 M ammonium thiosulfate, 2 M ammonia, 0.05 M copper sulfate 
and 0.508 mM (100 mg/L) gold (as thiosulfate complex) and (B), a 0.508 mM 
(100 mg/L) gold standard (as thiosulfate complex), using the optimised separation 
conditions. Injection volume 100 µL. (b) UV chromatogram of the artificial leach 
solution under the same conditions except using a 10 µL injection volume. The 
conductivity chromatograms were similar. 
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containing 3 mM TBAOH from a stock solution that had been adjusted to pH 7 

with phosphoric acid) diluted 1 :5, was approximately 95% the value obtained in a 

similarly prepared solution containing only 1 mM thiosulfate (plus the same TBA+ 

matrix). The difference is thought to be attributable to signal suppression caused 

by the high ionic strength matrix. In contrast, analysis of the leach containing 

sample at the same time by IC, using a 30% vlv acetonitrile 3mM TBAOH, 

0.5 mM Na2C03 40 µM Na2S20 3 eluent (chosen so that the gold was eluted after 

pentathionate), resulted in no observable gold peak. These results indicated that 

most, if not all, the gold chromatography problems occur during the 

chromatographic process. 

To determine the fate of the gold on-column, column fractions were collected 

during the IC analysis of samples containing 0.508 mM (100 mg/L) gold(I) (as the 

thiosulfate complex) with and without the presence of the leach matrix, using the 

optimised separation conditions. For each analysis four fractions were collected, 

corresponding to the 0-4, 4-8, 8-12 and 12-16 min intervals, where t = 0 was the 

injection time, with the gold concentration determined by AAS. The results of 

this study are provided in Table 4.1, which shows the average concentration of 

gold in each fraction and the total average gold recovery for each injection. 

Theoretically, all the gold should be contained in the 8-12 min :fraction (see 

Fig. 4.3(a)) with a concentration of 12.7 µM (2.5 mg/L Au). Average total gold 

recovery was high for both the standard (115%) and leach (122%) solutions. As 

noted for similar studies discussed in Chapter 3 (Section 3.3.2.7), these recoveries 

are probably within the uncertainty of the experiment. For the leach sample, it 

appears that the gold was spread across the first three :fractions collected, 
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Table 4.1 Average gold concentrations observed in IC column fractions, and total 
gold recovery for 100 µL injections of 0.508 mM (100 mg/L) gold thiosulfate 
standard and artificial leach solutions containing 0.508 mM gold as thiosulfate, 
measured by AAS [n =number ofreplicates]. 

[Au] (µM) 
Ayerage total 

Sample 
0-4 4-8 8-12 12-16 

gold recovery 

min min min min 
(%) 

0.508 mM gold standard (as thiosulfate 
0.2 0.2 14.1 0.3 115 complex) [n = 2] 

Artificial leach spiked with 0.508 mM gold (as 
2.9 5.23 7.06 0.2 122 

thiosulfate complex) [n = 3] 
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consistent with the self-elution effect discussed previously. These results 

demonstrated that gold thiosulfate cannot be determined in the leach solutions by 

this method and the species was therefore not considered further. As a result, 

thiosulfate was not added to the eluent in the remainder of the work discussed in 

this chapter. 

4.3.2.2 Po/ythionate Chromatography in the Leach Matrix 

The only difficulty that the leach matrix provided for the polythionate 

determination is the unknown shoulder peak on the front of the tetrathionate peak 

(Fig. 4.3(b )). To determine whether this peak was caused by an anionic copper 

species, such as Cu(S203)23- or Cu(S20 3)3
5

-, the elution of copper in the system 

was also examined. A post column reaction system using PAR, followed by 

visible detection at 510 nm, was used to monitor copper elution in further 

injections of the artificial leach solution. The results are shown in Fig. 4.4. The 

retention of copper varied according to the injection volume, with different results 

being obtained for injections of 10 and 100 µL. In both cases there was a 

significant peak in the reg;ion of the void volume, presumably corresponding to 

cationic complexes of copper, such as the tetra-ammine copper(II) complex, 

Cu(NH3)/+. However, there was also a diffuse peak observed for the 10 µL 

injection (Fig. 4(a)) between 3.4-5.0 min, and a small peak at 3.3 min, followed 

by a large poorly shaped peak between 4.0-5.8 min for the 100 µL injection 

(Fig. 4.4(b )). These may correspond to the copper thiosulfate species mentioned 

earlier. Recoveries were not quantitative, since after many injections of leach 

solutions, flushing the column with 0.5 M ammonia produced a major response 

from the PCR system, which took some hours to dissipate. For both injection 

volumes no copper was observed in the region of the shoulder peak and this 
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Fig. 4.4 (a) Chromatogram obtained at 510 nm for the artificial leach solution (0.5 
M ammonium thiosulfate, 2 M ammonia 0.05 M copper sulfate, 0.508 mM (100 
mg/L) gold(I) (as thiosulfate) using the optimised separation conditions, with 
PAR as post-column reagent. (b) Identical chromatogram of the same solution 
using a 100 µL injection volume. (c) UV chromatogram of the same leach 
solution for comparison (10 µL injection volume). 
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remains unidentified. Another possibility that was not investigated is that the 

shoulder actually corresponds to further tetrathionate, generated on-column 

through reaction of copper(II) and thiosulfate prior to their resolution. 

4.3.3 Linearity and Detection Limits 

The detection limits for the polythionates usmg the optimised method were 

determined using a 10 µL injection volume, with the limit taken as the 

concentration of analyte registering a peak two times the peak to peak baseline 

noise. Linearity was tested from the detection limit to 10.4 mM (2000 mg/L) for 

trithionate, 8.92 mM (2000 mg/L) for tetrathionate and 9.75 mM (2500 mg/L) for 

pentathionate. Least squares lines of best fit for the data yielded R2 values of 

>0.999, for both conductivity and UV detection. Closer investigation of the 

calibration plots indicated that the data points deviated significantly from the line 

for the low concentration polythionate solutions. It was therefore more accurate 

in most cases to define two lines of best fit, one for low and another for high 

concentrations. Detection limit and linearity data (without the presence of 

thiosulfate in the eluent) are summarised in Table 4.2. Before the linearity and 

detection data were determined, it was deemed necessary to ensure that the 

polythionates did not interact with one another on the column, which would have 

affected quantification. This was investigated by preparing a solution containing 

1.06 mM (203 mg/L) trithionate, 0.896 mM (201 mg/L) tetrathionate and 

1.16 mM (298 mg/L) pentathionate and comparing the peak area obtained against 

standards of the same concentration injected individually. No significant 

differences were observed, thus it was concluded that there was no significant 

interaction between these ions. 

155 



Chapter4 Separation of Polythionates and the Gold Thiosulfate Complex by !IC 

Table 4.2 Polythionate detection limit and linear range data for the optimised 
method by both conductivity and UV detection. 

Detection Limit, µM (mg/L) Linear range, mM (R2 values) 
Analyte 

Conductivity UV Conductivity UV 

0.026-0.52 (0.9998) 0.26-10.4 (0.9999) 
Trithionate 5(1) 68 (13) 

0.26-10.4 (0.9999) 

0.045-0.89 (0.9998) 0.022-5.4 (0.9999) 
Tetrathionate 13 (3) 4 (0.8) 

0.45-8.9(0.9994) 0.22-8.9 (0.9999) 

0.098-2.0 (0.9999) 0.023-2.0 (0.9999) 
Pentathionate 23 (6) 4 (1) 

2.0-9.75 (0.9995) 2.0-9.75 (0.9992) 
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Reproducibility data was calculated from triplicate 10 µL injections of the 

linearity standards. Using conductivity detection polythionate concentrations of 

;;:: 0.10 (20) (S3ol·),;;:: 0.45 (100) (S40l") and;;:: 0.49 (125) (Ssol·) mM (mg/L) 

all yielded peak area reproducibility values of < 2% RSD. The equivalent 

concentrations for UV detection were 4.2 (800), 0.22 (50) and 0.39 (100) mM 

(mg/L). The high concentration for trithionate when using UV detection reflects 

the comparatively high detection limit for this ion. 

If required, the detection limits could be reduced by using a larger injection 

volume. This may be necessary for the determination of pentathionate, which is 

present in much lower concentrations than the tri- and tetrathionate in the leach 

solutions. Equally, if polythionate concentrations increased above the tested 

range, a smaller injection volume or dilution may be required. 

In view of the complex nature of the leach solution, it would be normal to 

consider matrix matching between the standards and samples. This is 

inappropriate here since the matrix contains the species under examination and for 

reasons discussed in the introduction, the concentrations present change with time, 

prohibiting any use of a standard addition method. Matrix matching the 

thiosulfate content of the leach was also not possible due to Eqns. 1.7-1.9 (Section 

1.5.3) whereby the thiosulfate will catalyse decomposition of the polythionates. 

For these reasons, all standards were prepared in Milli-Q water only. 
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4.3.4 Analysis of an Actual Leach Solution 

Fig. 4.5 shows UV chromatograms from thiosulfate leach liquors of (a) oxide and 

(b) sulfide gold ore concentrates with the sample in each case taken five hours 

after leaching was commenced. Fig. 4.6 demonstrates the variation of 

polythionate concentrations in the sulfide ore leach over a five-hour period, 

determined using the optimised methodology. Polythionate concentrations were 

determined by comparison to three point calibration curves. The chromatograms 

indicate that the method was able to handle the leach conditions and both ore 

types reasonably well, although the shoulder peak previously noticed in the 

artificial leach solutions was still present, in addition to another unknown peak at 

5.25 min. This second peak does not interfere with the analysis and was not 

identified. Using the PCR system described previously, no peak corresponding to 

the retention time of this unknown peak was observed, indicating that it was not a 

copper complex or that of any other metal that reacts with PAR. 

Fig. 4.6 shows that the maximum values for tetra- and pentathionate occurred at 

the start of the leach, and then dropped slowly with time, possibly moving 

towards an equilibrium or steady state concentration. The comparatively high 

pentathionate concentration at the start of the leach was probably a result of 

equilibrium disturbances (see Eqn. 1.14, Section 1.6.2) caused by the rapid 

generation of tetrathionate. As the rate of tetrathionate formation decreased the 

formation of pentathionate would have also slowed. It is likely then that 

eventually alkaline decomposition of pentathionate occurred at a faster rate than 

the formation reaction, resulting in the observed decline in pentathionate 

concentration as the leach progressed. 
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Fig. 4.5 UV chromatograms from gold thiosulfate leach solutions of (a) an oxide 
and (b) a sulfide ore concentrate, obtained from samples extracted 5 h after 
leaching was commenced. For leach conditions refer to Chapter 2 Section 2.2.2. 
Optimised analytical conditions used. The concentrations of polythionates in the 
oxide ore were 3.5 mM (792 mg/L) for tetrathionate and 0.074 mM (19 mg/L) 
pentathionate with the trithionate concentration above the tested linear range. The 
corresponding values for the sulfide ore were 8.9 mM (1716 mg/L) trithionate, 3.7 
mM (822 mg/L) tetrathionate and 0.043 mM (11 mg/L) pentathionate. 
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Fig. 4.6 Plot of polythionate concentrations as a function of leach time, taken 
from the results of a thiosulfate leach of a sulfidic gold ore concentrate. Analytical 
and leach methodology as per Fig. 4.5. 
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In contrast to the other polythionates, the trithionate concentration increased 

throughout the monitored period, initially lower than tetrathionate, increasing to 

twice the concentration of this ion by the end of the five hours. This was most 

likely generated through tetrathionate decomposition (Eqns. 1.7.-1.9, 

Section 1.5.3). The build-up in concentration of this species over the entire 

leaching period probably related to the comparative stability of trithionate in 

alkaline solutions. 

4.4 Conclusions 

A method for the successful determination of polythionates in complex leach 

liquors with good sensitivity and selectivity has been developed. While the 

method also demonstrated the first reported chromatographic separation of gold 

thiosulfate in standard solutions, the results for leach solutions were disappointing 

and a self-elution effect prohibited successful analysis by this technique. 
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Chapter 5 

Separation of Thiosulf ate, Polythionates and the Gold 

Thiosulfate Complex in Gold Thiosulfate Leach Solutions 

by Capillary Electrophoresis 

5.1 Introduction 

Th~ preceding investigations into the ion-interaction chromatography of the gold 

thiosulfate complex demonstrated many problems, which prevented its 

determination by this technique in leach solutions. Two factors that were 

hypothesised to cause, or at least contribute to this were a self-elution effect and 

decomposition induced by the stationary phase packing of the column. Both relate 

to the chromatographic methodology itself, and therefore a significant 

improvement in gold peak stability should be observed if the separation could be 

facilitated by means other than through interaction with a surface; that is, not 

requiring a stationary phase. CE is such a technique (described in Section 1.6.4.1 ), 

since open tubular capillaries are used, and the mode of separation is completely 

different to IC. The negative charges on the only surface present in the capillary, 

that of the fused silica wall, should actually repel the gold complex. CE may also 

offer some other advantages over the IC method demonstrated in Chapter 4, 

particularly in terms of the much faster and efficient separations achievable, 

which would be advantageous in a process-monitoring situation. 
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This chapter therefore describes investigations into the capability of this technique 

in the separation and determination of thiosulfate, polythionates and the gold 

thiosulfate complex in simple mixtures and gold thiosulfate leach solutions. 

5.2 Experimental 

5.2. 1 Instrumentation 

All CE experiments were performed on an Agilent Technologies 3°CE 

(Waldbronn, Germany), equipped with a photodiode array detector. Fused silica 

capillaries (Polymicro Technologies, Phoenix, AZ, USA), of effective length 

40 cm, total length 48.5 cm and a 75 µm internal diameter, were used throughout. 

A..11 experiments were performed at a capillary oven temperature of 30°C with an 

applied voltage of -30kV unless otherwise specified. Injection was made using a 

pressure of 50 mbar applied for 3 s. Data were collected usmg Agilent 

Technologies 3°CE ChemStation software. 

For pH adjustments, an Activon (Thomleigh, NSW, Australia) Model 210 pH 

meter was used. 

5.2.2 Procedures 

For pH adjustment (where necessary) sulfuric acid was used unless otherwise 

specified. Sodium hydroxide solutions were prepared from a -50% w/w stock 

solution. 

At the beginning of each day the capillary was flushed with 1 M sodium 

hydroxide for 15 min, water for 15 min and electrolyte for 10 min. Between each 
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run the capillary was flushed with 1 M sodium hydroxide for 1 min, and twice for 

1 min with electrolyte (from separate vials). 

Details of the methodology used to conduct the leaching experiment has already 

been provided in Chapter 2, although note samples were diluted as well as filtered 

prior to analysis. 

5.3 Results and Discussion 

5.3.1 Preliminary Investigations 

As a starting point, the two methods outlined by Padarauskas et al. [ 1] for the 

analysis of thiosulfate, tetrathionate, pentathionate and hexathionate were 

examined for their capability to also simultaneously determine trithionate and the 

gold thiosulfate complex. Neither method was suitable, with the first electrolyte 

(5 mM potassium dihydrogen phosphate, 5 mM ammonium sulfate at pH ~5) 

being unable to provide baseline resolution of gold thiosulfate from trithionate 

peaks, whilst the second electrolyte (5 mM tetrabutylammonium acetate, 5 mM 

ammonium sulfate pH 5.0) resulted in co-migration of trithionate and the gold 

thiosulfate complex. Varying the oven temperature in the range 25-40°C and 

increasing the TBA+ concentration in the electrolyte also gave unsatisfactory 

separations. 

Several restrictions had to be considered in selecting an alternate electrolyte 

system. The electrolyte pH needed to be greater than 5 since thiosulfate is known 

to be unstable at lower pH values [1,2], and the electrolyte should also be buffered 

in order to minimise migration time irreproducibility [3]. Padarauskas [1] noted 
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problems with the use of tetradecyltrimethyl ammonium hydroxide as an electro­

osmotic flow (EOF) modifier, causing broad, poorly shaped peaks for the 

polythionates, while the use of 1,6-bis(trimethylammonium)hexane hydroxide, 

was found to cause similar problems for hexathionate only. Although 

hexathionate was not under consideration as an analyte in the present study, it was 

decided to keep the electrolyte free of EOF modifier. This prevented the use of 

alkaline electrolytes since this would result in high EOF values and unacceptably 

long migration times. Other requirements were that the electrolyte did not absorb 

significantly at the UV detection wavelength, and the mobility of the electrolyte 

co-anion needed to be close to those of the analytes to prevent poor peak shapes. 

Based on these criteria bis-tris sulfate (pKa of 6.46 [4]) at pH 6.0 was chosen as 

the electrolyte. 

5.3.2 Optimisation of Electrolyte Composition 

Fig. 5.1 shows the effect of the concentration of bis-tris in the electrolyte on the 

mobility of the analytes (relative to thiosulfate). With increasing electrolyte 

concentration the relative mobilities of the polythionates increased marginally, 

while that for the gold thiosulfate complex decreased substantially. The 

behaviour of the gold complex can be attributed to ion-association with bis-tris 

[5], due to the triple negative charge of the complex. An effect not apparent in 

Fig. 5.1 is that the effective mobilities of all anions increased with increasing bis­

tris concentration due to a reduction in the EOF as a result of increased ionic 

strength of the electrolyte. The optimal electrolyte composition was 25 mM bis­

tris adjusted to pH 6.0 with sulfuric acid and Fig. 5.2 shows the separation of the 

analytes under these conditions, with detection at 195 run. 
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Fig. 5.1 Mobilities of gold thiosulfate and the polythionates relative to thiosulfate, 
as a function of electrolyte bis-tris concentration. All electrolytes were adjusted to 
pH 6.0 with sulfuric acid. For other conditions see Section 5.2. 
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Fig. 5.2 Separation of 0.1 mM thiosulfate and 0.08 mM each of trithionate, 
tetrathionate, pentathionate and the gold thiosulfate complex using the optimum 
electrolyte conditions. Electrolyte contained 25 mM bis-tris adjusted to pH 6.0 
with H2S04, and a detection wavelength of 195 nm was used. For other conditions 
see Section 5.2. 

168 



Chapter5 Separation of Thiosulfate, Polythionates and the Gold Thiosulfate Complex by CE 

During the preliminary experiments and optimisation it was found that the 

hydroxide concentration of the flush solution markedly influenced the effective 

mobilities of the analytes, with concentrations weaker than that specified in the 

experimental section resulting in significantly longer migration times. This was 

attributed to decreased EOF. Under the optimal conditions all the species of 

interest could be separated in less than 3 min, with a total analysis time (including 

capillary pre-flushing) of 8 min. 

5.3.3 Behaviour of the Gold Thiosulfate Complex 

As discussed in Chapters 3 and 4, the gold thiosulfate complex was found to be 

indeterminable in leach matrices by IC, mainly through what was attributed to a 

self-elution effect. One of the aims of this work was to investigate whether CE, 

would permit simultaneous determination of this complex and the polythionates. 

Unfortunately, the behaviour of the gold thiosulfate in the CE system was not 

straightforward. 

When standard solutions of the gold complex exceeding -0.05 mM (-10 mg/L 

Au) were injected, a section of raised baseline immediately following the gold 

thiosulfate peak was usually observed (Fig. 5.3(a)). In the presence of relatively 

high concentrations of some sulfur-oxygen matrix ions, particularly thiosulfate, 

peak splitting occurred until eventually three peaks could be discerned. Typical 

shapes of the gold peak in the presence of 1 mM thiosulfate, trithionate and 

tetrathionate and 5 mM thiosulfate are illustrated in Fig. 5.3(b) and (c) 

respectively. Low concentrations of thiosulfate and/or polythionates in samples 

did not affect the gold peak significantly, as evidenced by the electropherogram in 

Fig. 5.2. PeaIC II exhibited an UV spectrum similar to that for the main gold 
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0.6 mins). Separation conditions as per Fig. 5.2. 
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thiosulfate peak, while that of peak III was similar to those of thiosulfate and 

tetrathionate, however positive identification was not possible. A related problem 

was that the behaviour of the gold peak was related to the injection history of the 

capillary, with peak area being increased after injection of high thiosulfate 

matrices. 

The appearance of multiple peaks could be due to an equilibrium between the 

mono- (Au(S20 3n and bis- thiosulfate (Au(S203)z3-) complexes. It would be 

expected that mobility of the mono-thiosulfate complex would be considerably 

lower than that of the bis-complex. This equilibrium would also be sensitive to 

thiosulfate, the presence of which in the system would result in the equilibrium 

shifting to favour formation of the bis-complex. Whilst no thermodynamic data 

for the gold mono-thiosulfate complex could be located, there are literature 

references to the labile nature of the gold thiosulfate complex [6]. 

Due to the inconsistencies observed for peak area and shape of the gold 

thiosulfate complex, particularly for samples containing high thiosulfate matrices, 

it was not possible to quantify this species by CE under the conditions used in this 

work. 

5.3.4 Linearity and Detection Limits 

The detection limits and linearity ranges for the optimised method are given in 

Table 5.1. Linearity was tested from the detection limit to 8 mM for thiosulfate, 

and to 2 mM for trithionate, tetrathionate and pentathionate. A detection limit for 

the gold thiosulfate complex was also calculated. Because of the different UV 

absorbance maxima of the analytes the results for thiosulfate, tetrathionate and 
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Table 5.1 Thiosulfate, gold thiosulfate and polythionate detection limit and linear 
range data using the optimised CE method with UV detection at the specified 
wavelengths. 

Detection 
Analyte Wavelength 

(nm) 

Thiosulfate (S20/-) 214 

Gold Thiosulfate (Au(S20 3h3
-} 195 

Trithionate (S3os2-) 195 

T etrath ion ate ( S4 0 6 
2
-) 214 

Pentathionate (S5os2-) 214 

Detection 
Limit (µM) 

(SIN= 3) 

2 

0.5 

1 

1 

0.5 

Linear Range (µM) 
(R2 value) 

40-8000 (0.9989) 

10-2000 (0.9998) 

10-2000 (0.9998) 

5-2000 (0.9998) 
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pentathionate were determined at 214 run, while for trithionate and gold 

thiosulfate 195 nm was used. The limits were determined as the concentration of 

each species giving a signal to noise ratio of 3: 1. Thiosulfate was prepared as 

separate standards because of the risk of interactions with the polythionates, as 

shown previously in Eqns 1.7 to 1.9 (Section 1.5.3). 

Reproducibility of the method was determined usmg a solution of 0.1 mM 

thiosulfate and 0.08 mM each of trithionate, tetrathionate and pentathionate. 

Migration time reproducibility was < 1 % RSD and reproducibilities of normalised 

peak areas were< 3% RSD for all four ions based on 12 replicate injections. 

5.3.5 Analysis of Leach Solutions 

A wide range of leach conditions can be found in the literature, with a recent 

review reporting extremes of0.1-2 M for thiosulfate, 0.1-6 M ammonia and 0.001 

- 0.1 M copper(II) [7]. Based on this source and our own experience, we estimate 

that 70% of reported leaching regimes use conditions containing ~ 0.5 M 

thiosulfate, ~ 2 M ammonia and ~ 0.05 M copper(II). For the purposes of this 

study a leaching regime consisting of 0.5 M (NI4)2S203, 2 M NH3 and 0.05 M 

CuS04 was chosen to evaluate the developed CE method. 

The copper in the leach solutions can exist in a variety of forms including amine 

and thiosulfate complexes. The thiosulfate complexes most likely to occur are the 

bis- (Cu(S20 3)z3) and tris- (Cu(S203)/") forms which could potentially migrate in 

a similar region to the anions of interest. However, solutions containing 16 mM 

thiosulfate and 1 mM copper(II) (dissolved as sulfate) showed no copper peak, 

perhaps due to precipitation as an insoluble mono-thiosulfate cuprous complex or 
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the formation of a positively charged complex with bis-tris. The presence of 

ammonia in the leach solution could be further expected to reduce the amount of 

negatively charged copper-thiosulfate complexes. For these reasons, no 

interference effects from copper or its complexes were observed. 

A well known problem with CE is its difficulty in handling samples of high ionic 

strength [8]. In order to obtain acceptable peak profiles, samples should have an 

ionic strength less than one third that of the electrolyte solution [9]. This 

necessitated that the leach solution be diluted prior to analysis and for the leaching 

regime chosen, a dilution factor of 1 in 100 was appropriate. This dilution step 

resulted in higher effective detection limits for the sample and also increased the 

sample handling time prior to analysis which provides a longer time during which 

changes in the sample speciation could occur. It was therefore imperative that the 

samples were analysed as soon as possible after sampling. 

Fig. 5.4 shows the UV electropherogram obtained from the injection of a sample 

obtained from a leach of a sulfidic gold ore concentrate. Fig. 5.5 shows the results 

of monitoring the leach over a period of nearly 6.5 h. The concentrations were 

evaluated against a three-point calibration curve for each of the analyte ions. 

Pentathionate was present in high enough conc~ntrations to be observed initially 

in the leach solution, but its concentration diminished over time to below the 

effective quantitation limit of 0.5 mM. Overall, the trends apparent for all the 

polythionates in Fig. 5.5 are consistent with those from the corresponding study in 

Chapter 4 that used IC (Fig. 4.6). 
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Fig. 5.4 Electropherogram of a 1: 100 diluted thiosulfate leach solution of a 
sulfidic gold ore 1 h after leaching was commenced. Conditions as per Fig. 5.2. 
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Fig. 5.5 Plot of thiosulfate and polythionate concentrations as a function of time, 
taken from the thiosulfate leach of a sulfidic gold ore concentrate. Analytical 
methodology as per Fig. 5.2, except detection wavelength of 195 nm was used 
only for trithionate, with the remainder detected at 214 nm. For leach conditions 
refer to Chapter 2, Section 2.2.2. 
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5.4 Conclusions 

The utility of CE for the rapid determination of thiosulfate and polythionates in 

gold thiosulfate leach liquors has been demonstrated. While the first 

electrophoretic separation of the gold thiosulfate complex has also been shown, 

inconsistencies in the peak area and shape caused primarily through the presence 

of significant quantities of sulfur-oxygen anions in the sample matrix, prevented 

quantification of the gold complex. 
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Chapter 6 

Isotachophoretic and Mixed-Mode Electrophoretic 

Separations of Su/fur-Oxygen Anions in Gold Thiosulfate 

Leach Solutions 

6.1 Introduction 

Concern over the dilution factor required in order to facilitate analysis of the gold 

thiosulfate leach solutions by CE prompted an investigation into the use of ITP, 

and mixed-mode ITP/CE methodologies. One advantage of ITP over other 

separation techniques such as IC and CE is its greater capability to handle high 

ionic strength matrices, minimising the need for dilution and potentially making it 

a favourable alternative for the analysis of the gold thiosulfate leach matrix. The 

technique may also enable the simultaneous analysis of four key sulfur anions, 

namely, thiosulfate, sulfate, trithionate and tetrathionate in leach solutions, which 

has not been previously achieved. 

Therefore, this chapter outlines a preliminary investigation into the utility of ITP 

for the separation and analysis of sulfur anions in gold thiosulfate leach liquors. 

The developed method is applied to the determination of thiosulfate and sulfate in 

these solutions. Also examined is the use of a mixed-mode ITP/CE separation to 

determine whether this approach has any advantages over the developed CE and 

ITP methodology. 
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6.2 Experimental 

6.2. 1 Instrumentation 

All capillary electrophoretic experiments were performed on an Agilent 

Technologies 3°CE (Waldbronn, Germany), equipped with a photodiode array 

(PDA) detector. Separations were conducted in coupled fused silica capillaries 

(Polymicro Technologies, Phoenix, AZ, USA), consisting of a 20 cm 250 µm l.D. 

segment joined to a 28.5 cm 75 µm l.D. segment by means of a Teflon sleeve 

( ~ 1 cm). The effective length of the capillary was 40 cm with the detection 

window in the 7 5 µm segment. All separations were performed at a capillary 

oven temperature of 30°C using a variety of different driving currents, some 

involving a simple step gradient. Injection was performed using a pressure of 50 

mbar applied for 3 s. Data collection was performed using Agilent Technologies 

3°CE ChemStation software, with a data acquisition rate of 10 Hz unless 

otherwise specified. 

The mixed-mode ITP/CE work was conducted on similar instrumentation with 

similar conditions to the pure ITP method, except using only 75 µm l.D. 

capillaries of 40 cm effective and 48.5 cm total length unless otherwise specified. 

For pH adjustments, an Activon (Thomleigh, NSW, Australia) Model 210 pH 

meter was used. 
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6.2.2 Procedures 

The bis-tris buffer solutions were adjusted to the required pH using the acid of the 

anion required for the electrolyte. Sodium hydroxide solutions were prepared 

from a ~50% wlw stock solution. 

Capillary flushing procedures were the same as described in Chapter 5. For 

calibration purposes injections of each standard were made at least in duplicate. 

To minimise carry-over problems the tenninating electrolyte solution was 

replaced after each analysis, and the outside of the capillary inlet was cleaned by 

cycling the instrument through 3 electrolyte vials containing milli-Q water 

between each analysis. 

The synthetic leach solution used to assess the utility of the technique for this 

matrix was prepared in a beaker that was thereafter covered with a watchglass. 

The solution was left at room temperature with slow mechanical stirring. 

The, locations of the zone boundaries were determined from the derivative plot of 

each phcrogram. 

6.3 Results and Discussion 

6.3.1 Preliminary Investigations and Development of the ITP System 

Thiosulfate has the highest mobility of the ions under consideration in this work, 

and is actually of higher mobility than most anions used commonly as the leading 

ion in ITP systems. It is therefore difficult to find a suitable leading ion without 

adding a modifier to the buffer to selectively reduce the effective mobility of 
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thiosulfate. In the existing literature this has been achieved in one of two ways, 

through the preparation of the leading electrolyte in a 1: 1 mixture of acetone and 

water [l], or the addition of calcium(II) as an ion-association reagent [2,3]. Either 

method enabled chloride to be used as the leading electrolyte anion. Because of 

concern that components of the leach matrix may precipitate as a result of either 

the high proportion of organic solvent in the former system or the possibility of 

calcium sulfate precipitation in the latter, neither systems could be utilised in this 

study. Earlier research undertaken in our laboratory using CE [ 4] have 

determined that electrolytes containing bis-tris (pKa = 6.46 [5]) as a cationic 

buffering reagent decreased the effective mobility of thiosulfate and the 

polythionates relative to the monovalent ions bromide, iodide and nitrate, 

presumably through an ionic-strength and/or an ion-association mechanism. It 

was therefore expected that the use of a sufficient concentration of this ion in the 

leading electrolyte could potentially provide the basis for an electrolyte system 

where thiosulfate had an effective mobility lower than that of chloride. Initially, a 

leading electrolyte containing 60 mM bis-tris was used, (adjusted to pH 6.4 with 

hydrochloric acid), since this had previously been found to reduce the effective 

mobility ofthiosulfate in a CE system to below that of bromide [4]. To suppress 

the electro-osmotic flow (EOF) in the capillary, the EOF suppressant 

hydroxypropylmethylcellulose (HPMC) was used at a concentration of 0.05% wlv 

in combination with the comparatively high ionic-strength of the leading 

electrolyte. The terminating electrolyte used was initially 10 mM sodium 

formate. The initial current settings were -90 µA changing to -20 µA at 11 min. 

The non-UV-absorbing analyte sulfate was identified by the presence of a low 

absorbance band between two zones of UV-absorbing analytes. The remaining 
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zone identifications were made via the use of the PDA spectra. Testing was 

performed using a solution theoretically containing 50 mM thiosulfate, 20 mM 

sulfate and 5 mM trithionate. The term "theoretically" is used since tetrathionate 

is formed in the sample through mixing oftrithionate and thiosulfate. 

Using the initial system, the sulfur anions were found to migrate in the order 

thiosulfate < trithionate < sulfate < tetrathionate, but the boundary between 

trithionate and sulfate was poorly defined due to incomplete zone separation. 

There was also a poorly defined boundary between the zones for the chloride 

leading electrolyte and thiosulfate. Further testing indicated that the presence of 

significant chloride concentrations in the sample matrix influenced the zone 

length of the thiosulfate band, which impeded quantification. 

In order to solve these problems, a further ion-pair reagent, tetrabutylammonium 

chloride (TBA +er), was also added to the leading electrolyte. The concentration 

of TBA+ was found to influence the separation of trithionate and sulfate, actually 

reversing the migration order of these species. A TBA+ concentration of 10 mM 

added to the 60 mM bis-tris containing leading electrolyte, was found to give a 

satisfactory separation of sulfate, trithionate and tetrathionate ions, but did not 

however improve the definition of the chloride/thiosulfate boundary. A bis-tris 

concentration of 120 mM (adjusted to pH 6.4 with hydrochloric acid, also 

containing 10 mM TBA +er and 0.05% wlv HPMe) was observed to improve the 

boundary between chloride and thiosulfate markedly, but also resulted in 

incomplete separation of the sulfate and trithionate zones. Increasing the TBA+ 

concentration of the leading electrolyte to 20 mM rectified this problem with only 
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a slight decrease in the sharpness of the. chloride/thiosulfate boundary. Finally, 

the hold up time was found to be more reproducible when a buffered terminating 

electrolyte was used and for this reason a terminating electrolyte containing 

20 mM bis-tris adjusted to pH 6.4 with formic acid was adopted. The optimised 

ITP system employed was a leading electrolyte comprising120 mM bis-tris, 20 

mM TBACl, 0.05% HPMC adjusted to pH 6.4 with hydrochloric acid, a 

terminating electrolyte comprising 20 mM bis-tris, adjusted to pH 6.4 with formic 

acid, and an operating current of -110 µA. All other conditions were as specified 

in Section 6.2.1. With this electrolyte system, the analysis time including 

capillary pre-flushing procedures was less than 30 min, which is unfortunately 

significantly longer than the IC and CE methods described previously. 

Due to time constraints it was not possible to thoroughly investigate the method 

for its capability to simultaneously determine all four of the sulfur anions 

discussed in the introduction to this chapter, namely, thiosulfate, sulfate, 

trithionate and tetrathionate. As a result it was decided at this point to focus on the 

determination of thiosulfate and sulfate, and leave the polythionates for future 

work. 

6.3.2 Linearity, Detection Limits and Reproducibility 

Problems were encountered with the reproducibility of the injection volume and it 

was therefore necessary to use an internal standard. Thiocyanate, used at a 

concentration of 40 mM, was chosen for this role since it has an effective mobility 

between trithionate and tetrathionate in this system. To confirm that there was no 

interference between thiocyanate and either of the polythionates a solution 

containing ~20 mM each of tri- and tetrathionate in addition to 40 mM 
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thiocyanate was injected. There were no mixed zones evident between these 

species in this solution and the boundaries were sharp. It was therefore concluded 

that no interferences existed. 

Detection limits for the method were 2.1 mM for thiosulfate and 1.3 mM for 

sulfate, determined as three times the standard deviation observed for triplicate 

injections of a standard mixture containing 4 mM thiosulfate, 1.4 mM sulfate and 

the internal standard. Calibration linearity using normalised peak areas was 

satisfactory in the range 4-200 mM for thiosulfate (R2 = 0.9999) and 1.4-68 mM 

for sulfate (R2 
= 0.9989). It should however be noted that the linear range for both 

thiosulfate and sulfate was determined from a single set of mixed standards, in 

which the highest concentration solutions contained >200 mM thiosulfate, which 

could be expected to have affected the observed linear range for sulfate. Linearity 

was poor when calculated from the absolute zone lengths, with the calibration 

curves exhibiting behaviour that could not be explained by poor injection volume 

reproducibility alone. This may relate to the sample ionic strength, and requires 

further investigation. 

Reproducibility of the method was tested using a solution containing 80 mM 

thiosulfate, 27 .2 mM sulfate and 40 mM of thiocyanate and the reproducibility of 

the normalised zone length was <3% RSD for both species, based on 6 injections. 

6.3.3 Analysis of Synthetic Leach Solutions 

For the pwposes of testing the methodology, a synthetic leachate using the same 

concentrations of the starting reagents as with the IC and CE work, specifically, 

0.5 M (N!Li)2S203, 2 M NH3 and 0.05 M CuS04 was chosen to test the developed 
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method. Dilution of this sample by a factor of at least 2:5 was required to ensure 

the concentration of thiosulfate and sulfate were within the linear range. Fig. 6.1 

demonstrates an example pherogram from the synthetic leach solution diluted 2:5, 

obtained after the leach had been in progress for 7.25 hours. The implied. 

concentrations of thiosulfate and sulfate in this sample are 0.415 M and 55 mM 

respectively, calculated against 3 point calibration curves. Bands for trithionate 

and tetrathionate in this sample are also visible, offering further evidence that the 

technique will be useful for simultaneous determination of these anions in leach 

solutions. The detection limits for these species are expected to be in the low 

millimolar range, and may therefore not be sufficient for all leach processes and 

conditions, an effect compounded by any dilution required. For example, small­

scale resin-in-pulp leach investigations by Nicol and O'Malley [6] determined that 

the polythionate concentrations generated in their leachate (20 mg/L or 0.1 mM 

S30l-, 0.09 mM S40l) limited the achievable gold loading (~3g/L Au) onto the 

commercial resin (Amberjet® 4200) used for gold recovery. This indicates a 

situation where polythionate concentrations need to be monitored at the sub­

millimolar level. This potential problem needs to be investigated in future work. 

The cause of the tailing of the tetrathionate zone should also be investigated, in 

case it indicates incomplete separation between tetrathionate and the terminating 

electrolyte. 

An investigation was performed into 1 :20 dilutions of the synthetic leach solution 

in order to assess the method for much more dilute solutions. For such injections, 

the results were complicated by the very short polythionate zones. These were 

often not long enough for reliable quantification, with the start and end of the 
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Fig. 6.1. Isotachopherogram of a 2:5 diluted synthetic leach solution sampled 
7 .25 hours after commencement, with analysis occurring as soon as possible after 
sampling. Leading electrolyte was 120 mM bis-tris, 20 mM TBACl and 
0.05% wlv HPMC adjusted to pH 6.4 with HCl, terminating electrolyte was 
20 mM bis-tris, adjusted to pH 6.4 with HCOOH. Current was -110 µA and 
detection was effected at 214 run. Thiocyanate was added as an internal standard. 
For remaining conditions see Section 6.2. Note that the y-axis of the figure has no 
absolute meaning for the derivative plot. 
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band being too close together to allow resolution between the corresponding 

derivative peaks. However, these bands were sometimes sizeable enough to 

introduce an inaccuracy in the measurement of adjacent bands. This problem 

could be solved for trithionate interference by using both the pherograms recorded 

at 195 nm and 214 nm. To accurately determine the end of the sulfate band, the 

195 nm wavelength was used since the disparity in absorbtivity between sulfate 

and trithionate is much greater at this wavelength, giving a correspondingly 

sharper and clearer derivative peak. For similar reasons, the start of the 

thiocyanate band is calculated using the derivative of the 214 nm pherogram. This 

approach was not as successful in overcoming the interference from the 

tetrathionate and the best means of removing this problem was to increase the 

dilution factor so that the tetrathionate was not detectable. 

6.3.4 Investigation into the use of Mixed-Mode ITPICE Separations 

Preliminary investigations into mixed-mode ITP/CE separations were also 

performed, as it was hoped this would overcome the problems observed with the 

conventional CE (ionic-strength intolerance) and ITP (analysis time) techniques. 

Due to a lack of specialised instrumentation it was not possible to use coupled­

capillary ITP/CE techniques such as those described previously [7,8]. Single­

capillary ITP/CE [9] with a pressure-generated counterflow was also not 

considered since it would be difficult to implement for a simultaneous 

determination of all the sulfur-oxygen ions of interest in the leach. Instead, a 

discontinuous buffer system in a single CE capillary was used, in which only the 

macrocomponents are separated in the ITP mode (thiosulfate and depending on 

the concentrations present sulfate and trithionate), with the remaining (lower 

mobility) anions being separated via a CE mechanism. There does not appear to 
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be any reference in the literature to the use of such a system, the closest being ITP 

superimposed on CB, which has been used only as a means of improving 

detection limits in simple matrices [I O]. 

Initial experiments were conducted using a standard 75 µm capillary with bis­

tris/TBA + chloride-based leading and sodium perchlorate terminating electrolytes. 

The aim was to determine thiosulfate, sulfate and trithionate via an ITP 

mechanism with tetrathionate and possibly pentathionate quantified by CB. 

Unfortunately, significant baseline problems were observed and it became 

apparent that simultaneous determination of sulfate could not be achieved since 

the zone length for this ion was too short. Therefore, the aim shifted to the 

analysis of thiosulfate and the polythionates only, with thiosulfate separated in the 

ITP mode, and the polythionates by CB. The optimised leading electrolyte from 

the earlier ITP work was adopted, while a bis-tris sulfate terminating electrolyte 

(pH adjusted to 6.0 or 6.4) was used. 

Injection of a neat synthetic leach solution (0.5 M <N"H4)2S203, 2 M NH3, 0.05 M 

CuS04) gave extremely poor results, however a I :5 diluted portion of this solution 

produced a pherogram with a· clear zone for thiosulfate, followed by separate 

trithionate and tetrathionate peaks, despite their poor shape. This separation is 

illustrated in Fig. 6.2(a). 

Improvements to the separation for the components migrating in the CB mode 

were attained by spiking the sample with a low mobility anion such as acetate to 

act as a transient terminating electrolyte. However this also caused a significant 
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Fig 6.2 (a) 1:5 diluted leach solution initially containing 0.5 M (~)28203 , 2 M 
NH3 0.05 M CuS04 and 0.4 mM Na3Au(S20 3)2. (b) As for (a) except spiked with 
---0.6M CH3COONa. Leading electrolyte 120 mM bis-tris 20 mM TBACl 
+0.05% wlv HPMC adjusted to pH 6.4 with HCl, terminating electrolyte 25 mM 
bis-tris + 0.05 wlv HPMC adjusted to pH 6.4 with H2S04. Driving current - 125 
µA. For other conditions see Section 6.2. Unknown peak is suspected to be an 
EOF disturbance coming from the detection side of the capillary. 
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reduction in the observed peak areas, including those for the thiosulfate zone. The 

difference in the separations is demonstrated in Fig. 6.2(b ). There were also 

significant peak area reproducibility problems observed throughout this work, 

particularly for solutions spiked with the transient terminating electrolyte. 

Investigations employing a simpler matrix containing 0.3 M NaCl and 

approximately 5 mM each of K1S306 and K2S406 were unable to isolate the cause 

of this problem, although it is almost certainly related to the high ionic strength of 

the matrices under investigation. It is likely that further dilution of the samples 

and the use of lower transient terminating electrolyte concentrations is required. 

As a result of these problems this work was not considered further. 

6.4 Conclusions 

The utility of isotachophoresis for the determination of thiosulfate and sulfate has 

been demonstrated in a synthetic leach sample with minimal dilution. Further 

optimisation of the methodology is required, in order to obtain lower detection 

limits and allow application of the method to a wider variety of leach regimes. 

The capabilities of the method for the simultaneous determination of tri- and 

tetrathionate also need to be assessed. Ways of decreasing the analysis time and 

improving the reproducibility of the method to remove the need for an internal 

standard also require investigation. 

The concept of single-capillary ITP/CE, without counter-flow, has also been 

demonstrated for these leach samples. Further work is needed to establish the 

upper tolerable limit of sample ionic strength (with and without spiking with a 

transient terminating electroly1;e), and also means of improving the reproducibility 

of the technique. 
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General Conclusions 

The following conclusions can be drawn from this study into the chromatographic 

and electromigrative determination of sulfur-oxygen anions in gold thiosulfate 

leach solutions. 

The chromatographic behaviour of the gold thiosulfate complex in ion-interaction 

systems was problematic. Matrix-free solutions demonstrated partial dissociation 

and/or decomposition of the gold complex on-column. This effect could be 

minimised, but not completely solved, through the addition of thiosulfate to the 

chromatographic eluent. There was evidence that some of the gold present in such 

standards precipitated on-column, even in the presence of eluent thiosulfate, 

although the mechanism or mechanisms involved have not been determined. 

However, the decomposition of the gold in such standards was reproducible, such 

that the generation of linear calibration curves for the gold was possible provided 

that the eluent contained thiosulfate. 

The matrix ions, thiosulfate, trithionate and/or tetrathionate in gold thiosulfate 

samples had a detrimental effect on the chromatography of this complex. Samples 

containing thiosulfate caused a memory effect in the chromatographic system, 

with the thiosulfate content of the preceding sample influencing the gold peak 

area of the next injection. Low concentrations of thiosulfate in the sample caused 

increased but irreproducible gold thiosulfate peak areas. These difficulties again 

could be minimised by the addition of thiosulfate to the eluent. In contrast, the 
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presence of high (> 10 mM) sample thiosulfate concentrations caused a sharp 

decrease in the gold peak area. This matrix induced a broadening effect with the 

retention factor of part, if not the entire quantity of the gold complex in the 

injected sample reduced. The collected experimental data suggested that this was, 

in part, attributable to a "sample-induced micro-gradient" self-elution effect. 

Partial recovery of the peak, achieved through adding the eluent ion-interaction 

reagent to the sample, indicated that the disturbance of the column equilibrium by 

samples containing high matrix ion concentrations also played some role in the 

poor chromatographic properties observed for the gold complex. Markedly 

different results observed when using a polymer-based, compared to a zirconia­

based, column for the separation suggested the stationary phase itself may also 

contribute to these problems. 

Low millimolar concentrations of trithionate and tetrathionate in the sample 

resulted in splitting or broadening of the gold thiosulfate species in the 

chromatogram. The cause of this has not been determined, but may rel.ate to 

equilibria between thiosulfate and the polythionates, or could also be caused by 

the micro-gradient self-elution effect mentioned earlier. In contrast, the addition 

of 1 M ammonia to gold thiosulfate standards had no significant effect on its 

chromatography, presenting further evidence that the gold diammine complex is 

not formed significantly in gold leach solutions. 

Separation of the polythionates and the gold thiosulfate complex can be 

accomplished by the use of a system consisting of a Dionex NGl and NSl-5µ 

column in series and an eluent containing 15% v/v acetonitrile, 3 mM TBAOH 
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and 2.5 mM sodium carbonate, with the acetonitrile concentration stepping to 

28% vlv at injection. Varying the carbonate concentration of the eluent altered the 

selectivity of the gold thiosulfate peak relative to the polythionates. However, 

determination of gold thiosulfate in leach solutions was not possible by this 

technique, which was attributed primarily to the self-elution effect described 

previously for high thiosulfate containing solutions. The polythionates (Sxoi-, x = 

3 to 5) can be determined using the optimised methodology in a leachate 

containing 0.5 M (NJL)2S203, 2 M NH3 and 0.05 M CuS04, without dilution. The 

chromatography of copper in this system was complicated, with results 

demonstrating that some on-column precipitation occurred, whilst the fraction 

remaining in solution appeared to be divided between labile complexes, presumed 

to contain ammonia and/or thiosulfate as ligands that produced poorly shaped 

chromatographic peaks. 

Thiosulfate, the polythionates (Sxoi-, x = 3 to 5), and the gold thiosulfate 

complex could be separated in standards by CE employing 75 µma fused-silica 

capillary, a -30 kV applied voltage and an optimised electrolyte containing 

25 mM bis-tris adjusted to pH 6.0 with H2S04. The presence of low millimolar 

concentrations of thiosulfate and the polythionates in the sample was detrimental 

to gold thiosulfate migration, with irreproducible peak areas and shape resulting, 

along with peak splitting. This behaviour prevented determination of the gold in 

leach solutions using this method. However, the CE procedure did provide a rapid 

alternative methodology for the determination of thiosulfate and the polythionates 

in leach solutions, although significant dilution of the sample was required prior 

to injection. 
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ITP provided an alternative electromigrative technique for the determination of 

thiosulfate and sulfate in gold thiosulfate leach solutions, with a significantly 

lower dilution being required than for CE. Using a leading electrolyte of 120 mM 

bis tris, 20 mM TBACl, 0.05% w/v HPMC, adjusted to pH 6.4 with hydrochloric 

acid, and a terminating electrolyte of 20 rnM bis-tris, adjusted to pH 6.4 with 

formic acid, determination of thiosulfate concentrations up to 0.2 M and sulfate 

concentrations up to 68 mM was possible in synthetic leach solutions. Detection 

limits were 2.1 mM for thiosulfate and 1.3 rnM for sulfate. To obtain acceptable 

reproducibility an internal standard (thiocyanate) was required. The developed 

method also indicated potential for the first simultaneous analysis of the four 

important non-metal sulfur-oxygen anions in gold thiosulfate leach solutions, 

namely, sulfate, thiosulfate, trithionate and tetrathionate. The concept of using a 

singe-capillary mixed ITP/CE system without counterflow for the separation of 

thiosulfate and the polythionates was demonstrated. Significant difficulties with 

reproducibility must be overcome before this technique can be used for the 

determination of anions in high ionic strength matrices, such as thiosulfate leach 

solutions. 

Finally, it should be noted that further work is required in the following areas: 

The effect of dilution and any other sample pre-treatment methods on the 

speciation of the leachate needs to be quantified accurately to establish formally if 

these procedures introduce any significant inaccuracies into the collected data. 
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Problems preventing successful chromatographic and electrophoretic 

determination of the gold thiosulfate are yet to be overcome. Future experiments 

should focus on developing further understanding of the mechanisms affecting the 

behaviour of this species. Such work may provide the way forward in developing 

a technique that can simultaneously determine the gold complex and the other 

sulfur-oxygen species important to the leach process. The speciation of the other 

metals, for example copper and silver, that may be present in leach solutions also 

requires investigation, although work conducted in the present study on the 

behaviour of the copper complexes suggests that this will be an even more 

challenging undertaking than the determination of the gold complex. 

For the ion-interaction methodology developed for polythionate analysis, the 

cause of the shoulder on the tetrathionate in leach samples needs to be determined. 

Finding a means for decreasing the analysis time, without sacrificing the 

capability to inject undiluted samples, or compromise the detection capabilities of 

the method, would also be an advantage. 

Further method development by CE should focus on shortening the total analysis 

time and finding ways of reducing the pre-analysis dilution required for the leach 

samples. The latter problem is however one of the limitations inherent in the use 

of CE, although development of the single capillary ITP ICE system, demonstrated 

conceptually in Chapter 6, may offer some advantages for leach samples. An 

investigation relating to the determination of the gold thiosulfate complex by CE 

would be to examine the effect of adding thiosulfate to the electrolyte, in a similar 

fashion to the approach used in the ion-interaction work. 
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Chapter 7 General Conclusions 

The utility of ITP for gold thiosulfate leach solutions warrants further 

investigation. The developed method may allow simultaneous determination of 

the key non-metal sulfur-oxygen species in leach solutions, with the additional 

advantage that minimal dilution would be required prior to analysis. The use of 

instrumentation specifically designed for ITP may also result in improvements to 

the method outlined in Chapter 6, potentially removing the need for an internal 

standard in the samples. Coupled capillary techniques, particularly ITP-CE, 

should also be examined in detail for their applicability to leach matrices . 
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