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ABSTRACT 

Boronia is a native plant with potential as a new essential oil 

crop. Various growth and metabolic responses of boronia to N were 

investigated to improve N nutrition of boronia. 

When N was supplied to boronia at 50 or 100 kg hal , two fast-

release N sources (ammonium sulfate and calcium nitrate) caused 

toxicity while a slow-release N source (IBDU) did not cause 

toxicity. When N was supplied in a single dose in October during 

the active vegetative growth phase, highest flower yield was 

obtained and when the same amount of N was supplied in split doses 

at different phases of plant growth, the yield decreased. 

Increasing N levels from 0 to 25 mM in the nutrient solution 

increased the plant's production of nodes, lateral shoots from 

these nodes and further nodes on these lateral shoots. With the 

same level of N, production of nodes and lateral shoots was in the 

order: NH4++NO3-  > NH4+  > NOi. The increase in the number of nodes 

subsequently translated into increased number of axils initiating 

flower buds and then into fully developed flowers. However, 

increasing N levels decreased the percentage of total flower buds 

that developed to anthesis and the individual flower weight. 

Increasing N levels increased the leaf N concentration, with the 

concentration in the order: NH4+-1-NO3-  > NH4+  > NO3- . N form did not 

affect the leaf tissue concentrations of P, K, Ca and Mg. At lower 

N levels, the concentrations of these nutrients in the leaf tissue 

were higher and may have reached toxic levels and caused the 

toxicity symptoms on the leaves. At higher N levels, the 
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concentrations of these nutrients were diluted due to increased 

growth and no toxicity symptoms were produced. 

At decontrolled as well as controlled pH (4.5 and 6.5) of the 

nutrient solution, uptake of NH4+-N by the plant was higher than 

that of NO3--N. With NH4+ nutrition, concentrations of amides 

(namely, asparagine and glutamine) in plant tissues were higher 

than with NO3-  nutrition. 

When a low NO3-  level (15 mmol per plant) was given, NO 3-  entering 

the plant was reduced without any accumulation and without nitrate 

reductase (NR) activity reaching its maximum capacity. When higher 

NOi levels (25 mmol per plant) were given, NR activity increased 

- to a maximum of only ca. 500 nmol NO2  g fresh weight h both in 

the roots and leaves irrespective of 6-fold difference in the NO 3-  

supply while NO3-  continued to accumulate in proportion to the level 

of NO3-  supplied. Consequently, high levels of NO3-  accumulated in 

the plant tissue and at ca. 32 pmol NO 3-  g fresh weight, toxicity 

symptoms appeared on the leaves. The low level of NR in boronia 

was not due to limited NO3-  or electron donor availability, but it 

seems to be genetically tuned to slow growth in low NO 3-  producing 

native soils. 

These responses of boronia to N are discussed in terms of the 

plant's adaptations to survive in native soils and their 

manipulation in commercial cultivation of boronia. 



I. INTRODUCTION 

Agriculture should be enriched and diversified with new crops so 

that farmers locked into the production of a single traditional 

crop (such as wheat) can turn to the new crops and be less 

vulnerable to the price instabilities of a single crop. For 

economic reasons, those plants that yield products having 

industrial applications offer good potential as new crops. 

The fragrance and flavour industry has a sales volume of ca. $1.7 

billion and is growing at an average annual rate of 10%. Of this 

volume, raw materials account for 40-50% and of these raw 

materials, about half is natural essential oils. A growth in this 

industry then means that the increased demand for fragrance and 

flavour compounds will generate an increased demand for natural 

essential oils (Menary, 1985). Thus there exists a potential for 

expansion of agriculture into the field of essential oil crops. 

Furthermore, the products of essential oil crops have an advantage 

of high price and low volume making them suitable for distant 

markets. 

The Australian flora contain an abundance of essential oil 

bearing members which yield commercially useful and structurally 

interesting isolates (Lassak and Southwell, 1977). Boronia  

megastigma Nees (a member of the family Rutaceae; hereafter called 

boronia) is an evergreen woody shrub endemic to the southwestern 

region of Western Australia (WA). Because of its highly scented 

flowers, boronia is prized as an ornamental plant and has 

considerable demand as a cut flower. An extract of boronia flowers 

is highly priced ($3 million per tonne) and is used in high class 
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chypre and fougare perfumes. The major components of boronia flower 

extract are dodecanol, dodecyl acetate, tetradecyl •acetate and p-

ionone: the last compound being widely used in the perfumery 

(Leggett and Menary, 1980). 

In WA, flowers of boronia are collected from the plants growing 

in the natural locations. However the natural abundance of these 

plants would be restricted. Further, the natural plant populations 

are subject to disease, intensive harvesting of flowers by pickers 

and clearing for other uses of land. Beard (1984) estimated that 

54% of the original native vegetation in the southwestern portion 

of WA has already been alienated for alternate land uses. The yield 

of flowers from the wild plants would fluctuate due to the 

uncultivated conditions. All these factors affect the availability 

of essential oil of boronia. Therefore, to ensure a stable supply 

of high quality essential oil as well as cut flowers, there exists 

a commercial incentive for systematic domestication and cultivation 

of boronia. 

Successful establishment of boronia plantations depends on the 

knowledge of suitable cultural practices. There is little published 

information as to boronia's cultural requirements. Most earlier 

attempts to establish boronia plantations were not successful 

(Matheson, 1979). This stresses the need for systematic research 

to overcome the constraints and establish the conditions that will 

make boronia a commercial crop. 

Furthermore, information gained from the research on boronia may 

perhaps be applied to other Australian native plants, most of which 

are attracting much attention on the international cut flower 
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markets. 

Generally fertilizers as percentage of farm costs are one of the 

largest single expense the farmer has (23%, Ozanne, 1982). For this 

reason, plant nutrition has received considerable attention in the 

production of crops to improve the efficiency of fertilizers. 

Chapin (1980) pointed out that the rules worked out for the crop 

plants which have been selected and bred for high yield with high 

fertilization are not simply repeated by the wild plants which have 

evolved under the pressure of low nutrient supplies. 

Many Australian soils are low in essential plant nutrients such 

as N and P. Consequently a large number of the Australian flora 

can be expected to have adapted to cope with these low levels of 

nutrients. Much attention has been focussed on P as a limiting 

nutrient for Australian flora (Beadle, 1954, 1966; Specht and 

Groves, 1966), but Bowen (1981) pointed out that low N is also 

extremely common in the Australian soils. 

Of the four factors limiting plant growth, viz,  carbon, light, 

water and nitrogen, N is likely to be the first in limiting plant 

growth (Agren, 1985). In the WA jarrah forest where boronia occurs 

naturally, N is the nutrient likely to be limiting plant growth 

(Kimber in Hingston g, 1982). However, as Pate (1980) 

remarked, very little is known of the patterns of uptake and 

assimilation of N in the woody plants associated with the natural 

vegetation where N present in the soils is in very low amounts 

especially as nitrate. This knowledge is important because any 

existing constraints in the utilization of N by these plants may 

be manipulated in the production of these plants. Epstein (1983) 
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also commented that more attention should be paid to the inorganic 

nutrition of wild plants to extend the present narrow focus of 

plant nutritional knowledge in terms of the experimental material. 

The present study was conducted to form an information base on 

which N management practices for boronia could be built to improve 

N efficiency in the production of the crop. This study compared the 

effects of different levels, forms, sources and times of 

application of N on growth, flower production and physiology and 

biochemsitry of boronia. An attempt is made to understand how the 

observed effects are brought about and how they could be used in 

the N management of commercial plantations of boronia. 

- 



II. REVIEW OF LITERATURE 

There is very little information on the N nutrition of boronia (in 

fact only one paper: Thomas, 1981). There is a large body of 

literature on the N nutrition of other plants, most of which is on 

the cultivated plants for economic reasons. However this is not 

exhaustively reviewed here. Instead, from the general background 

of this literature, an approach is made to relate some aspects of 

N nutrition of other plants to the probable N requirements of 

boronia, thereby forming hypotheses for the research work on 

boronia. Wherever possible specific examples are given. 

1. N AND YIELD 

A method of establishing the importance of N in boronia production 

is by an application of N to the plant. If such an application 

results in an increase in boronia yield then it demonstrates the 

importance of N as a limiting factor in boronia production. 

There are numerous experiments that have established that plant 

generally respond to N with the increased yields, both biological 

(total plant material) and economic (those plant organs for which 

the plant is cultivated). However, biological and economic yield 

responses to N vary. In some instances N increases the biological 

yield but not the economic yield and in other instances N increases 

biological as well as economic yields. 

Thomas (1981) found that N fertilization increased the dry weight 

of boronia plant. However there is no information on the yield of 

flowers which is the economic yield in boronia. 

'-' 
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2. N AND YIELD COMPONENTS 

In boronia, flowers are produced laterally in the axils of leaves 

(i.e. at nodes). It is logical to assume that the number of nodes 

on a plant will have a bearing on the number of flowers formed on 

that plant. Thus the number of nodes is an important yield 

component in boronia. 

The relation between the number of nodes and the number of 

flowers on a plant will be the same in other axillary flowering 

plants such as apricot, peach, blackberry, guava, etc. In Pinaceae 

also, reproductive structures (cones) are borne laterally on the 

shoots. Despite the importance of the number of nodes in the 

flowering of these plants, surprisingly there have been very few 

studies that recorded the number of nodes in relation to the number 

of flowers. Only in apricot, Jackson (in Jackson and Sweet, 1972) 

showed a positive correlation between the number of nodes and the 

number of flowers produced. 

When the relationship between the number of nodes and the number 

of flowers is positive, the number of flowers on a plant can be 

increased by increasing the number of nodes. In apricot, Jackson 

(1970) further found that the number of nodes can be increased by 

N application. Sweet and Hong (1978) suggested that N may increase 

the number of sites in the crown where cones are initiated in 

Pinus. Thus if the relationship between the number of nodes and the 

number of flowers is positive in boronia, its flower yield can be 

increased through increased production of nodes by N application. 

Once nodes are produced other factors such as hormones, 

temperature, photoperiod, water stress as well as nutrition may 
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determine the number of flowers produced at each node. In apricot 

the number of flowers per node is also increased by N application 

(Jackson, 1970). 

In considering application of N to boronia, the form of N is an 

important factor as there are two major forms of N for the majority 

of plants: ammonium (NH4 + ) and nitrate (NO;) (Haynes and Goh, 1978). 

3. UTILIZATION OF NB 4 4-  AND NO BY PLANTS 

Responses of plants to NH4+  and NO; have been investigated by 

several workers. A survey of literature showed that utilization of 

NH4+  or NO3-  as a source of N by a plant involves several plant and 

environmental factors interacting in a complex way. These factors 

are considered here. 

3.1. Differences between plant species 

There are differences between plant species in the utilization of 

NH4+  or NOi. The ability of a plant to utilize NH4+  or NO; is 

related to its relative soil and environmental adaptations. 

In most arable soils the predominant form of N is considered to 

be NOi and therefore most cultivated plants grow better with NO 3- . 

NH4+  nutrition of these plants is considered to cause toxicity as 

it injures roots and tops of several plants. Some examples of the 

cultivated plants that utilize NO; better than NH4  are cited here. 

Because of the number of papers reporting this finding, the results 

are tabulated (Table 1). 



Table 1. Plants that utilize NO 3-  better than NH4+  as a source of 
N. 

Plant species 	Observation: 
	Reference 

increase in 

DWa  of leaves, stems, 
roots; leaf area 

DW of leaves, petioles, 
stems, roots 

FWb
; leaf area 

DW of whole plant 

DW of whole plant 

FW and DW of shoots 
and roots 

FW and DW of whole plant 

DW of leaves and stems 

DW of whole plant 

FW of whole plant 

DW of whole plant 

DW of whole plant 

DW of whole plant 

DW of whole plant 

FW and DW of whole plant 

FW and DW of whole plant 

FW of shoots, roots, 
tubers 

Root and shoot growth 

Woolhouse and 
Hardwick (1966) 

Kirkby and 
Mengel (1967) 

Pill and 
Lambeth (1977) 

Harada et al. 
(1968) 

Kirkby (1969) 

Wilcox et al. 
(1973) 

Magalhaes and 
Wilcox (1984) 

Kirkby (1968) 

Kirkby (1969) 

Harada et al. 
(1968) 

Kirkby (1969) 

Kirkby (1969) 

Kirkby (1969) 

Kirkby (1969) 

Barker and Maynard 
(1972) 

Barker and Maynard 
(1972) 

Polizotto et al. 
(1975) 

Davis et al. (1986) 

Tomato 

White mustard 

Sugarbeet 

Rye 

Oats 

Buckwheat 

Chenopodium 
album  

Cucumber 

Pea 

Potato 

r. 
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Observation: 
increase in 

Plant species Reference 

Observation: 
increase in 

Plant species Reference 

Cain (1952) 

Townsend (1967) 

Townsend (1966) 

Townsend (1969) 

f 

Linear growth Vaccinium 
corymbosum 
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Table 1 (continued). 

Lima bean 

Radish 

White bean 

Muskmelon 

Bean 

DW of shoots, stems, 
roots, pods 

FW of whole plant 

DW of leaves, stems, 
root; leaf area 

DW of shoots and roots; 
Shoot ht, root length, 
root surface area 

FW of whole plant 

McElhannon and 
Mills (1978) 

Goyal et al. (1982) 

MacLeod and 
Ormrod (1985) 

Elamin and 
Wilcox (1986) 

Chaillou et al. 
(1986) 

aDry weight; bfresh weight. 

Plants originating from the soils where NH4 +  is the major source 

of N utilize NH4+  in preference to NO 3- . A large number of plants 

belonging to the family Ericaceae grow predominantly in acid soils 

where NH4+  is considered to be the main source of N. These are the 

best examples of the plants showing a preference for NH 4+  (Table 2). 

Table 2. Species of Ericaceae showing a preference for NH 4 +  than 
for NO3- . 

FWa  of shoots, roots; 
no. of branches 

V. angustifolium Growth 

Shoot growth, 
Root wt 

V. macrocarpon  DW of whole plant Greidanus et al. 
(1972) 
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Table 2 (continued). 

Plant species 	Observation: 	Reference 
increase in 

V. vitis idaea 	Growth rate 

Growth rate 

V. myrtillus 	Growth rate 

V. ashei 	Shoot length 

Rhododendron 	FW of whole plant 
obtusum  

Ingestad (1973) 

Ingestad (1976) 

Ingestad (1976) 

Spiers (1978) 

Colgrove and 
Roberts (1956) 

aAbbreviations as in Table 1. 

Such favorable effects of NH 4 +  have been ascertained with some 

members of Coniferae which grow in the soils where the conditions 

are considered to be unfavorable for nitrification leading to NH 4+  

becoming the predominant form of N. Krajina et al. (1973) tested 

growth responses of four species (which grow naturally in different 

habitats) to NH4 +  or NO;. Their results show that Pinus contorta and 

Tsuga heterophylla plants supplied with NH 4+  grew larger in terms 

of dry weight than those supplied with NO;. Krajina (1969) earlier 

found that these species grow naturally in habitats where 

nitrification does not actively occur. Pseduotsuga meniessi and 

Thu'a plicata plants grow naturally where nitrification takes place 

and these species grew larger when NO; was supplied. Results of 

Bigg and Daniel (1978) also show that Pinus contorta (and Picea 

englemanni) made better growth with NH 4 +  and Pseudotsuga menziesii  

with NO;. Pinus radiata and Picea glacua showed greater growth with 

NH4+  than with NO; (McFee and Stone, 1968). Data of Ingestad (1979) 

indicate a somewhat lower growth of Pinus silvestris and Picea 
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abies  with NO3-  than with NH 4+ . 

Some species of grasses also respond according to their 

ecological distribution. Deschampsia flexuosa  and Nardus stricta  

grow naturally in the soils in which NH 4+  predominates and these 

grew better in terms of increase in dry weight when N was available 

as NH4+ . Scabiosa columbaria  and Seslaria albicans  grow naturally 

in the soils with predominating NO these grew better when NO 3-  

was available (Gigon and Rorison, 1972). Recently Atkinson (1985) 

also found that D. flexuosa,  N. stricta  and other species from the 

same habitat, viz. Festuca ovina  and Juncus squarrosus  show greater 

growth rates with NH4+  than with NO 3 - . Wiltshire (1973) found that 

climax perennial grasses yield more with NH 4+  with than with NO 3- . 

He suggested that succession in high altitude is towards plant 

species adapted to NH 4+  nutrition. 

3.1.1. NH4+  plus NO3-  as N source. Some plants grow better when 

supplied with a mixture of both NH 4+  and NO3-  than with either form 

of N separately. These plants include cultivated plants as well as 

the plants belonging to the localities where NH 4+  is predominant 

(Table 3). 

Table 3. Plants that utilize NH 4++NO3 -  better than either form of 
alone. 

Plant species 	Observation: 
	Reference 

increase in 

Sunflower 

Picea glauca  

Preference: 
NH4++NO3 ->NO3 ->NH4+  

DWb  of whole plant 

DW of whole plant 

Weissman (1964) 

van den Driessche 
(1971) 

L. 
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Table 3 (continued). 

Plant species 	Observation: 	Reference 
increase in 

Corn 	FW and DW of shoots 	Schrader et al. 
and roots 	(1972) 

FW and DW of whole 	Handa et al. (1985) 
plant 

Wheat 
	

FW of shoots and 
	

Cox and Reisenauer 
roots; leaf 
	

(1973) 
extension rate 

Spinach 

Tomato 

DW 	 Gashaw and Mugwira 
(1981) 

FW 	 Mills et al. (1976) 

FW and DW of shoots 	Ganmore-Neumann and 
and roots 	Kafkafi (1980) 

RGRa 	 Ikeda and Yamada 
(1986) 

DW of shoots and 	Hartman et al. 
roots 	(1986) 

Triticale 	DW 	 Gashaw and Mugwira 
(1981) 

Rye 	DW 	 Gashaw and Mugwira 
(1981) 

Peach 	DW of shoots and roots; Edwards and Horton 
terminal length; no. 	(1982) 
of laterals; trunk 
sectional area; 
root volume 

Asparagus 

Strawberry 

FW and DW of shoots 	Precheur and Maynard 
and roots 	(1983) 

DW of shoots and roots Ganmore-Neumann and 
Kafkafi (1985) 

NH4 ÷ +NO3- >NH4+ >NO3- 

Vaccinium 	FW of shoots and roots; Townsend (1967) 

	

corymosum 	no. of branches 

	

Psedstsuga 	DW 	 van den Driessche 

	

menziesii 
	

(1971) 
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Table 3 (continued). 

Plant species 	Observation: 	Reference 
increase in 

Picea sitchensis DW 	 van den Driessche 
(1971) 

Eucalyptus 	DW of shoots and roots; Moore and Keraitis 
agglomerata 	stem ht. 	(1971) 

E. macrohyncha 	DW of shoots and roots; Moore and Keraitis 
stem ht. 	(1971) 

Pinus contorta 	DW of shoots and roots Bigg and Daniel 
(1978) 

Picea engelmanni DW of shoots and roots Bigg and Daniel 
(1978) 

aRelative growth rate; bother abbreviations as in Table 1. 

Most of these studies employed a NH 4+ :NO3-  ratio of 1:1. 

It is evident from all the above findings that there are 

differences in the plant species in their ability to utilize NH4+  

or NOi as a source of N. As this ability is related to the soil 

environmental adaptations of the plant species, the availability 

of form of N in the soils of natural habitat of boronia is 

speculated here. 

3.2. N form in soils of natural habitat of boronia 

Boronia occurs naturally in the forest areas of Warren and Stirling 

districts of the southwestern province in Western Australia. 

Rainfall is high in these areas and thereby the sites are wet or 

seasonally wet. The soils are sandy and are slightly acidic 

(Christensen and Skinner, 1978). The availability of possible form 

of N under such conditions is considered here. 
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Runge (1983) described the major N transformations in the forest 

soils. These transformations and other steps relevant to the 

availability of N form in the natural soils of boronia are 

schematically presented in Fig. 1. 

Immobilization 	N20, N2 

1 spp.  _  Denitrification 

	

Organic N ------). NH A 	 NO2 	)  NO3  

Ammonification 
* 

Nitrification 
* II Leaching 

1 	ir  
Heterotrophic microbers 	Autotrophic microbes 

L 	 1 * 
Mineralization 

Fig. 1. N transformations in soil. 

A number of factors differently influence the ammonification and 

nitrification processes, consequently determining the supply of NH 4+  

and NOi to the plants. However, only those factors that are related 

to the natural habitat of boronia are discussed here. 

3.2.1. Moisture and aeration. In wet soils 02 availability will be 

low. By low 02, ammonification is less affected (Haynes and Goh, 

1978) but the rate of nitrification is reduced (Amer and 

Bartholomew, 1951). In wet soils, denitrification is also increased 

as Arnold (1954) showed that soils saturated with water rapidly 

release large amounts of N 20. 

3.2.2. Temperature. Wet soils are likely to be cold in the 

mediterranean-type temperatures of Western Australia. At low 

I I Nitrosomonas  spp. 	_Nitrobacter 
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temperatures, nitrification is retarded more than ammonification 

(Haynes and Goh, 1978). Thus Flint and Gersper (1974) found very 

low concentrations of NO3-  as compared to NH4 +  in a wet meadow 

tundra. 

3.2.3. Acidity. Ammonification is less sensitive to acidity (Haynes 

and Goh, 1978) but laboratory experiments used to assess 

nitrification indicated sensitivity of nitrifying bacteria to 

acidity (Wallace and Nicholus, 1969). Thus nitrification decreased 

with increasing soil pH (Nyborg and Hoyt, 1978) and was minimal 

below pH 5.0 (Haynes and Goh, 1978). Although increasing acidity 

leads to a tendency towards the predominance of NH4+ , production of 

NO3-  is not impossible in the acid soils. Runge (1974) recorded that 

NO3-  can constitute a proportion of total N in some acid forest 

soils. 

NO3-  leaches through the sandy soils when rainfall is high because 

most temperate soils possess an overall net negative charge on 

their colloids when repel NO3 -  ion (Haynes and Goh, 1978). 

Nitrification is also influenced by the type of vegetation. 

Christensen and Skinner's (1978) description of boronia sites 

indicates a climax type of plant community. In a climax type of 

plant community, Rice and Pancholy (1972) found a low quantity of 

NO3-  as compared to NH 4+  and a low number of nitrifying bacteria. 

They invoked allelopathy: that is, the plant species present in a 

climax plant community inhibit nitrification because NH4+  is 

adsorbed on to colloids in the soil and thus is not lost as easily 

as NO3 - . 

Large areas of forest in Australia occur in the soils that 
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contain low phosphate (<2 jig HCO3-extractable phosphate per g soil, 

Bowen, 1981). In P-deficient soils nitrification is restricted 

because nitrifying bacteria are sensitive to P deficiency 

(Purchase, 1974). 

Because of the dependency of N transformations on moisture and 

temperature, one would expect that seasonal variations in these 

factors will influence the transformation processes. Thus a 

combination of factors such as wet soils in winter months may 

further restrict nitrification. 

All this evidence suggests the presence of predominantly NH 4+  in 

the natural soils of boronia. However, NO 3-  may never be totally 

absent from such soils. Boronia growing under such conditions may 

adapt to some extent to NH 4+  based N nutrition. Therefore a question 

arises whether boronia prefers or even requires the particular N 

form and the possible implications of this question have to be 

considered in the N nutrition of boronia. 

Aside from the differences between the plant species, there are 

other factors that affect the utilization of NH4+  and NO3-  by the 

plants. They are also discussed here. 

3.3. N form and pH interactions 

Utilization of NH 4+  and NO3-  by a plant is affected by pH of the 

growth medium. This effect is also dependent on the plant species. 

Interaction of N form X pH in some plant species is discussed here. 

Usually the medium containing growing plants with NH 4+  drifts 

towards acidity while that with NO3 -  drifts towards alkalinity. This 

observation has been make in a variety of plants (e.g. in rough 

lemon by Wander and Sites, 1956; in rice by Karim and Vlamis, 1962 
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and by Kirkby and Hughes, 1970). However, in contrast to these 

findings, Asher (Asher and Edwards, 1983) observed a decrease in 

pH of the medium even when NO; was supplied to nonnodulated 

jackbean. Therefore, it seems that there are differences between 

plant species with regard to changes in the growth medium pH. 

Changes in pH of the growth medium generated due to NH4 +  nutrition 

of plants may be considerable. Kirkby and Hughes (1970) mentioned 

that changes of ca. 0.5 units can take place within an hour. Data 

of Gigon and Rorison (1972) show that pH of 500 ml NH 4+  nutrient 

solution containing one Rumex acetosa  plant drifted from 7.2 to 3.3 

within 48 h, but with Deschampsia flexuosa,  pH change was not so 

striking. Glass et al. (1983) reported a decrease in pH of the 

medium from 5.2 to 4.9 in 40 min during NH 4+ uptake by barley roots. 

With corn, pH may fall as low as 2.8 with NH 4+  in 14 days (Maynard 

and Barker, 1969). Because of such pH changes, monitoring and 

maintenance of growth medium pH is important in the experiments 

with boronia, as these changes in pH affect the uptake of NH 4+  and 

NO;. 

Generally NH4 +  uptake occurs more readily at lower pH whereas 

NO; uptake occurs more rapidly at higher pH. Chen (in Kirkby and 

Hughes, 1970) reported that in rice maximum NH 4+  absorption occurred 

at pH 8.0 while maximum absorption of NO occurred at pH 4.0. In 

barley, NO; absorption decreased with increasing pH (Rao and Rains, 

1976). However, it is interesting to note that pH did not influence 

the trends of NO; and NH4 +  absorption by lima bean (McElhannon and 

Mills, 1978), because 100% NO; absorption occurred with pHs ranging 

from 3.5 to 7.5 and NH4+  absorption showed different trends at 
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similar pHs. These results suggest differences between plant 

species in the uptake of NH 4+  and NO 3 - . 

When the pH of the growth medium was controlled, it sometimes 

resulted in elimination of the adverse responses shown by most 

cultivated plants that had been attributed to the utilization of 

NH 4+ . Barker et al. (1966) partially alleviated the detrimental 

effects of NH 4+  in bean by controlling the acidity which results 

from NH 4+  nutrition. Similar results were obtained with sweet corn, 

cucumber and pea (Maynard and Barker, 1969). Breteler (1973) grew 

sugarbeet by eliminating the changes in the medium pH and 

Breteler's data show that sugarbeet dry matter production between 

NH 4 +  and NO 3 -  nutrition differs by only 12%. Without the control of 

pH in other experiments, sugarbeet yielded less on NH 4 +  than on 

NO 3 - . In Pseudotsucla menziesii, Krajina et al. (1973) as well as 

Bigg and Daniel (1978) ascertained less growth with NH 4+  than with 

NO 3 - , but when van den Driessche (1978) controlled acidity, NH 4+  also 

produced good growth. 

On the other hand, Cox and Seeley (1984) found that when pH of 

the growth media was controlled, it enhances NH 4+  injury in 

poinsettia. 

The differential effects of NH4+  or NO 3 -  on the growth of different 

plant species were observed even after the control of pH in some 

plant species. Bogner (1968) observed better growth of the species 

from NH 4 +  predominant habitats on NH 4+  at low pH and poor or no 

growth at all on NO 3 -  at high pH. Results of McFee and Stone (1968) 

indicated that Pinus radiata and Picea glauca gave greater dry 

weights with NI-I 4 +  than with NO 3  at all the pHs tested, viz. 3.6, 

  

Wevr, 	 — 
..• 	 . 

 

' 
• . 

  



19 

5.0, 5.9 and 6.2. Townsend (1969) separated the effect of form of 

N from that of pH to measure the influence of each on the growth 

of Vaccinium angustifolium. This plant made better growth at pH 4.5 

than at pH 6.0 and with NH4+  than with NOi. Absence of pH X form of 

N interaction in Townsend's data suggest that the effects of pH 

and form of N were independent in this species. Quite similar 

results were reported by Gigon and Rorison (1972). Their results 

showed that the growth of Deschampsia flexuosa (which grows in NH4 +  

predominant soils) with NH4 +  was about the same at all pH levels 

viz. 4.2, 5.8 and 7.2 and was better than with NO3, with which the 

growth decreased with increasing pH. Scabiosa columbaria (which 

prefers NO3") failed to survive with NH4+  at pHs 4.2 and 5.8. 

Similarly in the study by Poilzotto et al. (1975), increasing pH 

and preventing pH changes of the growth medium showed little effect 

of preventing the detrimental effects of NH4+  on potato. 

Thus the interrelationships between N form and pH appear to be 

variable with different plant species. Therefore, an investigation 

on the role of pH in the utilization of N form by boronia is 

significant. 

3.4. N form and uptake of other ions by plants 

The form of N is known to affect the concentrations of other ions 

in plants. Generally, plants grown with NH4+  contain lower 

concentrations of inorganic cations and higher concentrations of 

organic anions than those grown with NO3 . This has been found in 

many plants (Table 4). 
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Table 4. Plants that had higher concentrations of cations and 
lower concentrations of anions when supplied with NOi 
and vice versa with NH4 + . 

Plant species 
	Ions 
	Reference 

increase (>) 
decrease (<) 
no effect ( =) 
with NOi 

Tomato > K, Ca, Mg 
< P, S, Cl 

Kirkby and Mengel 
(1967) 

> K, Ca, Mg 
< P 

> K, Ca, Mg 

> K, Ca, Mg 

> K, Ca, Mg 

• P, K, Ca, Mg 

> Ca, Mg, .1( 
< P 

> K, Ca, Mg 

White mustard 	> K, Ca, Mg 
= P, S, Cl 

Harada et al. 
(1968) 

Kirkby (1969) 

Wilcox et al. (1973) 

Wilcox et L.  (1977) 

Pill and Lambeth (1977) 

Ikeda and Yamada 
(1984) 

Hartman et al. (1986) 

Kirkby (1968) 

Sugarbeet > K, Ca, Mg 
< P 

Harada et al. 
(1968) 

> K, Ca, Mg, Na 
< P, S, Cl 

Rye 	> K, Ca, Mg 

> Ca, Mg, Mn 
< P, Fe 

Chenopodium album> K, Ca, Mg 

Corn 	> Ca, Mg 
< P, S 

Cucumber 	> K, Ca, Mg 

Sweet corn 	> K, Ca, Mg 

Breteler (1973) 
(1973) 

Kirkby (1969) 

Gashaw and Mugwira 
(1981) 

Kirkby (1969) 

Blair et al. (1970) 

Barker and Maynard 
(1972) 

Wilcox et al. (1973) 



21 

Table 4 (continued). 

Plant species 	Ions 
increase (>) 
decrease (<) 
no effect (=) 
with NO3-  

Reference 

Wheat 
	

> K, Ca, Mg, Mn, Zn Cox and Reisenauer 
< P, S 	(1973) 

> Ca, Mg, Mn 	Gashaw and Mugwira 
< P, Fe 	(1981) 

Potato 	> Ca, Mg 	Polizotto et al. 
< P 
	

(1975) 
=K 

> Ca, Mg 	Davis et al. (1986) 
=K 

Triticale 	> Ca, Mg, Mn 	Gashaw and Mugwira 
< P, Fe 	(1981) 

White bean 	> K, Ca 	MacLeod and Ormrod 
< Mg, P 	(1985) 

Muskmelon 	> K, Ca, Mg, Mn 	Elamin and Wilcox 
< P 	(1986) 

Bean 	> K, Ca, Mg, Na 	Chaillou et al. 
= P 	(1986) 

All the above findings are in the cultivated plants most of which 

generally prefer NO 3- . On the other hand, in wild plants, results of 

Gigon and Rorison (1972) show very small differences in K 

concentration between Deschampsia flexuosa plants grown with either 

NH4 +  or NO3-. D. flexuosa grows in soils where NH 4+  occurs 

predominantly. In contrast, Rumex acetosa and Scabiosa columbaria 

(which grow where NO3-  predominates) had only half the concentration 

of K with NH4+  as with NO3- . Similarly, when supplied with NH 4+ , 

Pinus contorta (which prefers NH4 + ) showed no deficiencies while 

Pseudotsuga meniesii and Thula plicata (which prefer NO 3') developed 
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Ca and Mg deficiency symptoms (Krajina et al., 1973). In cultivated 

Vaccinium ashei (which grows better with NH4+ ), Spiers (1978) found 

no difference in the concentration of K between NH4+  and NO3-  and 

that the concentrations of P, Ca and Mg were even higher with NH4 + . 

In woody ornamentals Cotoneaster dammeri, Pvracantha coccinea and 

Weigela florida, Ca, Mg and K concentrations were higher when NH4 +  

was supplied although P concentration was unaffected by N form 

(Gilliam et al., 1980). In Eucalyptus rossii, E. sideroxylon and 

E. polyanthemos, which respond better to NH4+ , Ca uptake was higher 

with NH4+  than with NOi (Moore and Keraitis, 1971). 

Therefore, it appears that some plants which normally grow where 

the conditions are unfavorable for nitrification, thus developing 

under the conditions of NH4 + nutrition, have an effective ability 

to take up cations. Otherwise, deficiency of these nutrients can 

develop because of the antagonistic effect of NH4+  on the uptake of 

other cations which occurs in most cultivated plants. 

The variability in the uptake of other ions resulting from the 

form of N can in turn affect the plant growth and productivity. 

Therefore, study of concentrations of other ions resulting from 

NH4+  or NOi nutrition of boronia is important. 

In addition to the effect on the uptake of other ions, the form 

of N seems to have an effect on the assimilation pattern of N 

itself. 

3.5. N form and amino acids in plants 

NH4+  and NOi are assimilated in plants into amino acids. Generally, 

concentrations of amino acids in the plant dncrease with NH 4+  
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nutrition compared to NO3.  nutrition. The pattern of increase seems 

to be characteristic of the plant species although the common 

increase is in the amides, glutamine and asparagine and the amino 

acids closely related to them. 

In white mustard, Kirkby (1968) found that its leaves contain 

higher concentrations of amino acids when supplied with NH4+  than 

with NO3- . Kirkby's results show that the concentrations of the 

amino acids and amide already present in the highest amounts (viz. 

aspartic acid, glutamic acid, alanine, proline and glutamine) 

increased. 

In tomato, NH4+  nutrition compared to NOi nutrition increased the 

concentrations of amides, asparagine and glutamine and amino acids, 

asparagine, glutamine, aspartic acid, glutamic acid, arginine and 

lysine (Harada et al., 1968; Hoff et al., 1974; Lorenz, 1975; 

Magalhaes and Wilcox, 1984) 

Sugarbeet supplied with NH 4  contained higher concentrations of 

amides as well as amino acids (Harada et al., 1968; Breteler, 

1973). In barley fed with NH 4+ , aspartate increased (Richter et 

al., 1975). Data from Yoneyama and Kumazawa (1975) compared to that 

from Yoneyama and Kumazawa (1975) show that rice treated with NH 4+  

contained higher levels of asparagine and glutamine than that 

treated with NO3'. 

In bean, Chaillou et al. (1976) found higher concentrations of 

amides, glutamine and asparagine and amino acid, serine with NH 4+  

nutrition than with NOi nutrition. 

All the above findings are in the plants for which NH 4+  is 

considered to be toxic. The increases in amides and amino acids in 
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NH4+  fed plants is considered to be a detoxification of NH 4+  by the 

synthesis of nontoxic amides and amino acids with organic acids as 

sources of carbon. There appear to be no information as to the 

changes in amino acids in the plants that prefer NH 4+ . 

3.6. N form and flowering 

NH4+  and NO; seem to affect flowering differentially in different 

plants. As the flower is the desirable product in boronia, 

literature on the effect of N form on flowering is considered here. 

Although the effect of N form on flowering has been reported in 

some plants, any generalizations do not seem to be possible. 

With lima bean, a preference for NO; was observed during the 

reproductive development (McElhannon and Mills, 1978) and a similar 

trend was observed with southernpea (Sasseville and Mills, 1979). 

In strawberry, Ganmore-Neumann and Kafkafi (1985) found a 

preference for NO; during flowering and fruiting. In apple, 

Grasmanis and colleagues (1967, 1974) found that NH 4+  caused 

initiation of a higher proportion of flower buds. In rabbiteye 

blueberry, Spiers (1978) observed about 4 times as many flower buds 

with NH4+  as with NO3- . 

The preference for NH4 +  or NO; seems to change between the 

initiation and the development of reproductive part. In sweet corn, 

NO; absorption was greater than NH4 +  absorption during tasseling 

whereas during ear development NH4+ uptake was higher than NO; 

uptake (Mills and McElhannon, 1972). In tomato, NO3 - :NH4+  ratio did 

not influence the number of fruits formed within each flower 

cluster but increasing NH 4 +  reduced the fruit weight (Hartman et 
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1986). 

4. APPLICATION OF N 

A major factor in considering application of N to boronia is to 

determine the amount of N to be used. The amount of N applied to 

plants depends largely on the particular crop and the prevalent 

soil conditions. Excessive amount of N may become detrimental to 

plants and may reduce their yield. 

Native habitat of plants can influence their utilization of N. 

There is little experimental information but much speculation on 

the N requirements of Australian native plants. 

Generally some popular publications recommend no N for the native 

plants (e.g. Lord, 1948). It might be based on the belief that as 

the native plants grow well in their native soil, they do not 

require any additional fertilizers and further when N was applied, 

some native plants including boronia (Fairall, 1970) died. 

An analysis of literature has shown that the native plants died 

when N was applied at the levels that are normal for cultivated 

plants. Although it is difficult to compare the levels of N applied 

in different experiments because of the differences in growing 

media and sources of fertilizer, nevertheless the experiments are 

considered here to obtain a general idea. 

Specht (1963) observed that even ca. 40 kg N (as NaNO 3) ha-1  killed 

many native plants. Higgs (1970) observed severe chlorosis in 

Grivellea rosmarinifolia within few weeks of application of ca. 20 

g N (as KNO3 ) per m3  of sand/peat media. Thomas (1979) also observed 

very severe damage and death of G. rosmarinifolia after 3 months 

after supplying the plant with more than 450 g N (from Osmocote) 
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per InP. With the same amount of N, Hakea laurina showed severe 

toxicity symptoms after 11 months. Groves and Keraitis (1976) found 

that Banksia serrata and Eucalyptus pilularis did not survive at 

250 mg N (9:1 NO3 :NH4+ ) 1 -1  solution but survived at 25 mg N 

Many Australian soils are low in N. Chemical analysis showed that 

the sandplain soils of southern half of Australia have 0.12% N on 

a dry weight basis (Groves et al., 1983). Introduced agricultural 

species are unable to grow successfully in these soils without the 

addition of N. Thus most Australian plants are adapted to grow in 

low N soils. Application of high levels of N to such plants results 

in an excess availability of N causing toxic reaction. Thus these 

plants may tolerate and respond to only low levels of N. 

More indications that to a low level supply of N, native plants 

do respond can be drawn from the literature. Beadle (1966) grew 

Angophora, Eucalyptus, Leptospermum, Melaleuca, Banksia, Hakea, 

Lambertia and Acacia in their own native soil with and without the 

addition of Hoagland (15 mM N) solution. He found that all the 

plants produced more leaves when nutrients were added. It indicates 

that nutrient deficiency occurs in the native soils although the 

native plants are well adapted to grow in such soils. Similarly, 

Moore and Tr,,,;4-4- k1700) obtained significant response from 

Grevillea robusta with increasing levels of N up to 13.5 mM. Other 

Australian shrubs Callistemon citrinus and Hakea laurina also 

showed strong responses to N from controlled release fertilizers 

(Thomas, 1982). Of course, there are differences in the N 

requirement between the species within the group of Australian 

native plants. For example, Grevillea robusta showed a high 
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requirement (120 g N per m3  per month) whereas Hakea laurina  showed 

a low need (50 g N per m3  per month) (Thomas, 1979). 

To avoid the adverse effects of excess N, a limited supply of N 

is important. Therefore, while considering the supply of N to 

boronia the source of N fertilizer is an important factor. 

4.1. Source of N fertilizer. In addition to the two sources of fast 

acting conventional fertilizers which are common in Australia, viz. 

(NH4 ) 2SO4  and Ca(NO3 ) 2 , slow release N (SRN) fertilizers have been 

commercially available for some time. SRN fertilizers release only 

small quantities of N into the soil solution. Control of the 

solubility of fertilizer materials is commonly achieved by the use 

of compounds that have limited water-solubility or by altering the 

soluble materials to reduce their nutrient release into soil 

solution. 

Allen (1984) listed theoretical benefits of SRN fertilizers 

including a lower fertilizer 

toxicity in plants by a large 

fertilizers may be reduced by 

toxicity. The danger of causing 

single application of conventional 

a single application of SRN or by 

split applications of conventional fertilizers. 

The relative cost per unit of N from SRN is higher (Allen, 1984). 

However, boronia is a high value crop and the use of high cost 

fertilizers is therefore justified. 

There are several SRN fertilizers: urea formaldehyde, 

isobytylidene diurea, Formolene and sulphur coated urea. 

Isobutylidene diurea (IBDU) is a popular SRN and is briefly 

considered here. 
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CH  NH-CO-NH 
2 3 

CH-CH 
\\\ 

CH  NH-CO-NH 
3  2 

Fig. 2. Structural formula for IBDU. 

Fig. 2 shows the structural formula for IBDU. IBDU is prepared 

by reaction of urea and isobutyraldehyde. IBDU contains 31% N. 

IBDU is very insoluble in water but once dissolution begins, 

hydrolysis proceeds rapidly with the regeneration of original 

reactants. Soil transformations of the product of IBDU hydrolysis, 

viz. urea, are identical to the transformations of urea from any 

other source (Allen, 1984). 

The determination of whether to use a SRN or a conventional 

fertilizer in single or split applications should take into 

consideration that N requirement of plants may be greater at 

certain times during their growth cycle. A restriction on N 

availability at a growth stage when the plant requires N may have 

an adverse effect on the yield. Therefore the time of application 

of N is an important factor. 

4.2. Time of N application. Greater efficiency of the utilization 

of N can be achieved by timely application of N, i.e. applying it 

when the plant needs it. In boronia, two distinct phases of growth 

and development that may be influenced by N are vegetative growth 

and flowering. The time of application of N has been found to 

affect flowering, in addition to vegetative growth, in some woody 
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plants. 

In apple, Delap (1967) found that compared to an application of 

N in spring, application in summer or autumn increased the flower 

bud production. Hill-Cottingham and Williams (1967) also noted that 

a summer application of N induced more flowers in the following 

spring and if applied in spring, N promoted shoot elongation which 

competed with the development of flower buds. Although apple is 

deciduous, similar knowledge of the influence of N on flowering in 

evergreen boronia will raise a possibility of developing methods 

for increased flower yield. 

To aid in predicting N requirements at different stages of plant 

growth, plant analysis is a useful technique. 

5. DIAGNOSIS OF N DEFICIENCY AND SUFFICIENCY 

To know if a plant is receiving an optimal supply of N, tests have 

been devised to assess the plant N status. The physiological basis 

of these tests is that if all the environmental factors except the 

supply of N are optimal, then the plant growth will be a function 

of the supply of N. Increased supply of N is accompanied by an 

increase in the uptake and concentration of N in the plant tissue 

and usually results in an increased plant growth (Bouma, 1983). 

To use plant analysis tests in assessing the N requirement of a 

plant, first a relationship between N concentration in the plant 

tissue and the yield is established and then this relationship is 

used for the comparison. The relationship between the yield and 

the N concentration in the plant tissue is often curvilinear and 

a generalized curve is shown in Fig. 3. 
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Concentration of nutrient element in plant tissue 

Fig. 3. Generalized curve showing the relationship between yield 
concentration of N in plant tissue (adapted from Bouma, 
1983). 

The concentration of N which is just sufficient or just deficient 

for maximum yield is defined as the critical concentration. 

Each crop requires an extensive study in order to establish the 

critical values of N for that crop. Critical values of N have 

been widely published for many different crops (e.g. Walsh and 

Beaton, 1973; Jones, 1985) and these values are used to assess N 

requirement of the crops. There is a need to establish the critical 

values of N for boronia. To establish the critical values of N for 

a crop, generally glasshouse or field experiments are conducted in 

which increasing levels of N are applied to the crop and the 

concentration of N in the plant tissue is determined at different 

stages of plant growth and the subsequent crop yields are related 

to these concentrations of N. 

In addition to the time of sampling (which varies with the crop), 

the plant part sampled for diagnosis of N status of the crop is 
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also important. Many plant tissues are used for diagnosis including 

roots, stem, leaves (lamina, petiole or midrib), seed and fruit. 

In general, the changes in N concentration are greater in the 

leaves than in the other organs as the leaf is the principle site 

of metabolism. Leaves are also easy to sample. 

6. N ASSIMILATION 

An application of N at 100 kg ha -1  caused toxicity in boronia 

(Menary, R. C., personal communication). Such levels of N are not 

high for agricultural plants. Toxicity due to the supply of 

moderate levels of N has been reported for other Australian native 

plants also (as discussed previously). However the physiological 

basis of this toxicity has not been examined. 

Because of the application of NO 3-  itself or oxidation of NH4+  to 

NO3-  in the cultivated soils over time even when NH4+  is applied 

(without adding nitrification inhibitors), the major form of N 

available to the plants will be NO 3- . Therefore it is important to 

understand the mechanisms of NO3-  assimilation in boronia to help 

identify the limiting factor that is involved in N toxicity. 

To gain an appreciation of the processes in NO 3-  assimilation, 

the relevant literature on higher plants is considered here. 

After absorption, utilization of NO 3-  by plant is influenced by 

NOi 
1. accumulation in roots 
2. reduction in roots 
3. transport to leaves 	 > 1. accumulation in leaves 

2. reduction in leaves 
(Huffaker and Rains, 1978). 
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The pathway for reduction of NO 3' is as follows (Beevers and 

Hageman, 1973). 
NR 	NiR 

NOi 	> NO2- 	> NH3  
NADH 	NAD 6Fd red 	6Fd0, 

The two enzymes involved are nitrate reductase (NR) and nitrite 

reductase (NiR). NR catalyzes the reduction of NO 3' to NOi by 

reduced pyridine nucleotide. NR is emphasized here, with 

differences in NO3' assimilation between plant species. 

6.1. Kinetic characteristics of NR 

One enzyme characteristic which may be of particular importance is 

enzyme-substrate affinity or K m . Kinetic properties of NR enzyme 

from many cultivated plants indicate a K m  for NO3-  of 200 )IM 

(Beevers and Hageman, 1983). 

Lee and Stewart (1978) determined the kinetic properties of NR 

from a range of plants that included those from NO3-  deficient 

habitats (e.g. Elymus arenaria, Deschampsia flexuosa)  and those 

from NOi rich habitats (e.g. Poa annua, Chenopodium album).  From 

their results it is evident that Km  values of NR from the plants 

from NOi poor habitat are not markedly different from those 

reported for other plants. They all fall in the range of 100 to 

300 ),IN. 

Thus it seems that plants from contrasting habitats possess NR 

enzyme with similar kinetic characteristics. Therefore it is likely 

that NR in boronia has similar, kinetic characteristics. 

However, the quantitative level of the enzyme is another factor 

which will determine the capacity of a plant to assimilate NO3'. 
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6.2. Level of NR activity 

There are major differences between plant species as regards the 

maximum possible level of NR activity. However a comparison of 

absolute values of NR activity can only be made with certain 

reservations, because (1) the activity is dependent on the 

experimental methods, (2) the activity is influenced by the site 

environmental factors such as temperature and light and (3) the 

enzyme is a substrate induced, so the extent of induction must be 

noted. Nevertheless the levels of NR activity in different species 

are used here for a general survey, so that the result will give 

an indication of the potential of the different plants to utilize 

NO3- . 

From the levels of NR activity, a generalized relationship can 

be made between the NR capacity of plants and the availability of 

NO; in the regime where they naturally occur. 

High levels of NR activity are found in cultivated plants such 

as barley (>7 pmol NOi (3-1  fresh weight If% Barneix et al., 1985), 

which are bred for high utilization of NO; fertilizers. 

Equally high levels of NR activity are found in plants 

characteristic of wasteland soils in which NO; supply is high. In 

these plants, levels of activity of 15 pmol NOi (3-1  fresh weight 

h-1  can be found. These plants include Chenopodium album 

(Austenfeld, 1972; Al Gharbi and Hipkin, 1984), Anthriscus  

silvestris  (Janiesch, 1973), Urtica dioica  (Havill et al., 1974; 

Al Gharbi and Hipkin, 1984), Arabidopsis thaliana, Calystegia 

sepium, Galinsoga ciliata, Solanum nigrum  (Al Gharbi and Hipkin, 

1984). 
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Very low levels of NR activity are found in some plants whose 

natural occurrence is restricted to soils with low NO3-  production. 

Typical representatives of this group are certain species of 

Ericaceae (Routley, 1972; Smirnoff et al., 1984). In several 

species (Vaccinium myrtillus,  V. vitis-idaea,  V. oxycoccos, Erica 

tetralix,  E. cinerea, Andromeda polifolia),  Havill et al. (1974) 

measured no NR activity in the field before and only negligible 

activity (<0.1 ).imol NO2-  g4  fresh weight 114 ) after supplying NO3-  to 

the plants. Plants from grassland (viz. Deschampsia flexuosa, 

Festuca ovina, Juncus squarrosus  and Nardus stricta)  where NO3-  is 

present in small quantities showed low NR activities (Atkinson, 

1985). Smirnoff et al. (1984) found consistently low NR activities 

- in Proteaceae also (generally less than 0.2 pmol NO2 g 4  fresh 

weight 114 ). These species also include Australian native plants 

viz. Banksia collina,  B. erucifolia, Grevillea alpina  and Hakea  

epiglottis. 

As the level of NR activity seems to reflect the native habitat 

of the plants, a low level of NR activity may be expected in 

boronia because the natural occurrence of boronia is on the soils 

with probably little NO3-  production (as discussed previously). 

All the above mentioned results of NR levels are for leaf tissue. 

Care should be taken in interpretation of the results on NR 

activity data for the leaf tissue alone because a low level of leaf 

NR activity by itself is not a proof of a low capacity of the plant 

to utilize NO3-  as roots might have a greater NR activity. Therefore 

the site of NO3-  reduction in plants is considered here. 
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6.3. Sites of NO3-  reduction 

Reduction of NOi can occur in both the roots and the shoots of 

plants. •NO3.  reduction has been examined in the roots and leaves of 

several species and there are differences between plants as to 

where NOi is reduced: whether in the roots or in the shoots or in 

both the roots and the shoots. Thus, three groups of plants are 

recognized. 

In some plants, NR is largely restricted to the shoot, i.e. 

leaves: Borago, Xanthium pensylvanicum  (Wallace and Pate, 1967), 

cucumber (Olday et al., 1976), cotton (Radin, 1977). Therefore, 

all these plants transport most of the absorbed NO; to the shoot. 

Most annual and perennial herbaceous plants reduce NOi both in 

their leaves and roots, e.g. barley (Aslam and Huf faker, 1982). 

Some plants have high root NR activity, e.g. Raphanus  (Pate, 

1973), Lupinus  (Atkins et al., 1979). 

Compared to the information on these herbaceous plants, only 

limited information is available about partitioning of NO3  

reduction between the roots and the leaves of woody plants (like 

boronia). In xylem sap studies on some woody plants such as apple 	
r: 

and other Rosaceous species, very little NO; was found in their 

xylem sap and therefore woody plants are considered to reduce most 

of NOi in their roots (Bollard, 1957). 

Further, almost all the studies on the distribution of NOi 

reduction between the root and the shoot have been carried out on 

cultivated plants. For plants growing under natural or seminatural 

conditions, data are available on NR activity in the leaf alone. 

In the leaves of several woody plants, Smirnoff et al. (1984) 
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measured NR activity and therefore they suggested that NO; 

reduction can occur in the leaves of woody plants also. However, 

because of the consistently low NR activities in the leaves of 

Ericaceae, Proteaceae and Gymnosperms (which occur naturally in NO; 

poor soils), Smirnoff et al.. suggested that NO; reduction may 

predominate in the roots in these plants. Therefore it is important 

to know the extent of NR activity in the roots of boronia while 

studying its NO; reduction capacity. 

Some work has shown that the extent to which the plant parts 

reduce NO; is variable and is dependent on the external NO; 

concentration. Recently Andrews (1986) correlated the predominance 

of root or shoot NO; reduction to the environment. Temperate plants 

carry out most of their NO; assimilation in the roots when growing 

in the low external NO; concentrations that are likely to occur 

under the natural conditions or in the nonagricultural soils, but 

as the external NO; concentration increases to the range found in 

the fertilized agricultural soils, shoot assimilation becomes 

important. In the case of tropical/subtropical plants, shoot is the 

major site of NO; assimilation and the partitioning between root 

and shoot remains constant regardless of the external NO; 

concentration. 

It is worth noting that most data for NR activity are available 

for external NO; applied at the concentrations of 1 to 20 mM or up 

to 40 mM (data from Andrews, 1986). In the natural soils, NO; 

commonly occurs at the concentrations of 1 mM or less (Russell, 

1973). The general agricultural practice of NO; supply is by making 

a single application of fertilizer. Under such conditions the roots 
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of plants can be exposed to NO3-  concentrations extending from 

0.00143 to 1430 mM (Clement et al., 1978). The roots experience the 

upper end of the concentration when the fertilizer is applied to 

the soil and this concentration declines over time due to plant 

uptake. 

6.4. NiR enzyme 

NiR converts the 6 electron reduction of NO2-  to NH3 . Compared to 

the work on NR, much less work has been done on NiR. NiR from the 

leaves has been extensively purified and shown to be dependent upon 

reduced ferredoxin as reductant (Beevers and Hageman, 1983). 

Measurement of NiR activity is important to see whether this enzyme 

is limiting NO3-  assimilation in boronia. It is reported that 

generally NiR is not a rate limiting enzyme and also NO2-  does not 

accumulate in the plant tissues unlike NO3-  which accumulates under 

the conditions of excess NO3- . 

7. RESPONSES TO N0 3-  EXCESS 

Application of NO3-  fertilizers to cultivated soils results in a 

temporary oversupply of NO3 -  to levels in excess of that in natural 

environments. In general, tolerance of most plants to an oversupply 

of NO3-  seems to be high. Many herbaceous plants accumulate NO3-  

without any toxic effect (Maynard and Barker, 1971). Nonetheless, 

high levels NO3-  can be toxic to the plants although the exact 

mechanism of toxicity is unknown as pointed out by Barker and Mills 

(1980). The level at which NO 3-  may become excessive depends on the 

plant species (e.g. 2 mg NO3--N e dry weight in leaf lettuce vs. 4 

mg NO3--N g-1  in spinach, Maynard and Barker, 1971). Further, in 
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contrast to herbaceous plants, no report on accumulation of NO; in 

woody plants has been found and therefore woody plants usually do 

not seem to store NO3-. 



III'. GENERAL MATERIALS AND METHODS 

The methods that are common to more than one experiment are 

described in this chapter to prevent repetition whereas the methods 

that are specific to a particular experiment are described in the 

methods section of the relevant chapter. 

CHEMICAL ANALYSES 

The analytical procedures for inorganic elements were adapted from 

Allen (1974) and AOAC Methods (1980) to suit the requirements and 

facilities on hand. The main procedures are described here. AR 

grade reagents were used in all the chemical analyses. 

pH. pH was measured by a T.P.S. Auto pH meter or a Corning pH meter 

155. 

Analysis of N in nutrient solutions 

Samples of the nutrient solutions were usually analyzed immediately 

after their collection. However, sometimes the samples were stored 

at 5 °C before the analysis. 

NH4+ . A 20 ml sample was transferred to a Tecator Kjeltec digestion 

tube and ca. 0.2 g of an alkaline reagent, MgO was added. NH 3  was 

distilled in a Tecator Kjeltec System 1002 Distilling Unit. A 50 

ml distillate was collected in a flask containing 10 ml of 4% H31303 

combined with bromocresol green-methyl red indicators and titrated 

with 0.1 N HC1 to a pale neutral end point 'using a piston burette. 

NH4+  was estimated as 1 ml 0.1 HC1 = 1.4 mg NH 4+ . 

NO3. After collecting the distillate for NH4 +  determination, ca. 

0.4 g Devarda's alloy was added to the digestion tube to reduce 

NO3-  to NH3 . NH3  was distilled and titrated in the same way as 

39 
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described for NH4+  analysis. 

Elemental analysis of plant material 

Preparation of leaf samples 

Fresh leaf samples were rinsed in distilled water to remove any 

surface contamination, dried in a forced-draft electrical oven at 

65 oC for 48 h to stop enzymatic changes and ground in a hammer mill 

to ensure greater uniformity. The ground material was placed in a 

sealed screw-capped bottle and stored in a cold room at 5 °C until 

the chemical analysis was carried out. Prior to analysis the powder 

was dried at 65 °C for 2 h to remove any moisture in it. 

Determination of N. Total N was estimated by a semimicro Kjeldahl 

method. 100 mg of dry ground sample was weighed into a Tecator 

Kjeltec digestion tube and a Kjeldahl catalyst tablet (Na2SO 4 , Se) 

and 5 ml conc. N free H 2SO4  (with salicylic acid) were added. The 

tube was placed in an Al block (similar to that of Faithful', 1969) 

and heated gently by a hot plate until frothing subsided. Then a 

Kjeldahl flask was placed neck downward in the mouth of digestion 

tube to aid the acid to reflux down the tube walls and then the 

heat was increased. The digestion was continued until the solution 

became clear and then 30 min longer. On completion of the 

digestion, the digestion tube was cooled outside the block until 

it was just warm and then diluted with 50 ml water to avoid the 

precipitation of sulphate. 

To the aliquot of the sample digest, 20 ml of 40% NaOH was added 

to make the contents strongly alkaline and NH3 in the solution was 

steam distilled in a Kjeltec System in the same way as for NH4 +  

determination in the nutrient solution samples. 
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Determination of P, K, Ca and Mg. For determination of P, K, Ca 

and Mg, plant samples were wet ashed. 

Wet ashing. For rapid analyses, small samples were wet digested in 

test tubes on Al blocks in a way similar to that of Smith and 

Johnson (1974). 0.2 g of the prepared leaf sample was weighed into 

a test tube and 7 ml of 5:1:1 mix of conc. H2SO4:70% HC104 was 

added. The tubes were placed in the holes in the Al block and after 

letting them stand overnight (to avoid excessive frothing during 

the subsequent digestion), the block was heated by a hot plate to 

oxidize the organic matter leaving the inorganic ions in the 

solution. After completion of the digestion, the tubes were removed 

from the block and cooled. The digest was diluted to 20 ml with 

water, shaken and allowed to settle overnight. 5 ml of the solution 

from the top was transferred to a test tube and diluted to 25 ml 

with water. The diluted solution was analyzed for individual 

elements as described below. 

Phosphorus. Colorimetry was used for the determination of P. A 

suitable aliquot (normally 5 ml) of the digest solution was taken 

and diluted to 15 ml, 2.5% ammonium molybdate in 28% H2SO4  was added 

to it and mixed for the formation of heteropolyphosphomolybdate 

complex. 2 ml of SnC1 2  in 2% HC1 was added, mixed for reduction of 

the complex (which gives blue color) and diluted to 25 ml. It was 

left for 30 min and the absorbance was read at 700 nm using a 

Hitachi 101 spectrophotometer fitted with a sequential sampler. The 

amount of P in the sample solution was determined from a curve made 

of the standards ranging from 0 to 30 pg P. 

Because of the low P concentration in boronia leaf tissue, the 
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molybdovanadophosphate method of P determination was found to be 

less sensitive in a preliminary determination. 

Calcium. Ca was determined by atomic absorption spectrophotometry 

using a Unicam SP1900 AAS. Normally 10 ml of the digest solution 

was diluted to 20 ml and aspirated. The dilution also included a 

releasing agent, 400 mg La in 1% H 2SO4  1 .1  to control potential P 

and Al interference. The concentration of Ca in the sample solution 

was determined from a calibration curve prepared by using standards 

from 0 to 10 mg Ca it The standards also contained same 

concentrations of La and H2SO4  as used in the sample solutions. 

Magnesium. Mg was determined by atomic absorption spectrophotometry 

in the same way as Ca determination. Usually 1 ml aliquot of the 

digest solution was diluted to 20 ml. The calibration curve was 

prepared using 0 to 500 pg Mg 1 -1  standard solutions. 

Potassium. K was determined by flame photometry using an EEL 100. 

Normally 2 ml of the digest solution was diluted to 20 ml (the 

dilution included 1% H2SO 4 ) and aspirated. A calibration curve of 

a range from 0 to 10 mg K 1 -1  was prepared to determine the 

concentration of K in the sample solution. 

Determination of NO; in plant tissue 

NO3-  in the plant tissue was determined by Woolley et al. (1960) 

procedure of using Bray's reagent in which powdered Zn reduces NO3-  

to NO2-  which reacts first with H2SO4  and then with a-naphthylamine 

subsequently forming an azo-dye, all in the same reaction mixture. 

The color was measured using a Hitachi 101 spectrophotometer. A 

standard curve from 0 to 2.5 pmol NO 3-  was made. 



43 

Determination of NO in plant tissue 

NO2-  was determined by the Griess-Ilosvay calorimetric method. To 

the suitable aliquot or a solution diluted from the aliquot 

containing a concentration within the range of calibration curve, 

1 ml of sulfanilamide (1% w/v in 1.5 HC1) was added, shaken, 1 ml 

of N-1-naphthyl ethylenediamine diHC1 (0.02% w/v) was added and 

shaken. After 30 min the absorbance of the color produced was 

measured at 540 nm using , a Hitachi 101 spectrophotometer. NOi was 

determined from a calibration curve ranging from 0 to 60 nmol 

NOi. 

Determination of protein 

Protein was determined by the Bio-Rad protein assay based on the 

principle of protein-dye binding (Bradford, 1976). Bovine plasma 

albumin was used as a protein standard and the standard assay 

procedure was used. The absorbance was measured using a Pye Unicam 

SP 8-200 UV/VIS spectrophotometer. 

STATISTICAL ANALYSES 

Statistical procedures followed were those of Steel and Torrie 

(1980) and Gomez and Gomez (1984). 



111.1. ANALYSIS OF AMINO ACIDS IN PLANT MATERIAL BY REVERSE-

PHASE HPLC 

In the course of work on N metabolism in boronia, a method for 

analysis of free amino acids became necessary. Chromatographic 

techniques are the basis of most amino acid analyses. A perusal of 

the literature on the analysis of amino acids indicated that most 

methods for analysis of amino acids involve automatic amino acid 

analyzers. 

High performance liquid chromatography (HPLC) is used to analyze 

a variety of biological compounds. However the potential of HPLC 

for the analysis of amino acids has not been exploited fully. The 

development of automatic amino acid analyzers seems to have reduced 

the significance of all other chromatographic techniques that can 

also be used for analysis of amino acids. Use of HPLC for analysis 

of amino acids is a promising approach because of the speed, 

automation and low detection limits possible with it. Therefore, 

HPLC was used in an attempt to analyze amino acids in boronia plant 

tissue. 

Initial attempts to analyze underivatized free amino acids by 

reverse-phase HPLC (as reported by Hancock et al., 1979) at a 

detection wavelength of 214 nm were unsuccessful. It was thought 

that the problem may have been caused by the low sensitivity at 

such a wavelength due to the low UV extinction coefficients of most 

amino acids. To give them higher extinction coefficients which will 

allow their detection at a higher wavelength and thus with a higher 

sensitivity, amino acids can be derivatized. The well known 

derivatizing reagents are dinitrophenyl (DNP), phenylthiohydantoin 
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(PTH), orthophthaldehyde (OPA) and dansyl chloride (DNS). Among 

derivatizations with these reagents, DNP-derivatization is 

attractive because it eliminates the step of cation exchange 

process generally required to purify the amino acids from sugars 

and salts which are also present in the amino acid extracts from 

the plants. DNP-derivatized amino acids are soluble in organic 

solvents and thus can be extracted from sugars and salts into 

ether. 

Thin-layer chromatography (TLC) was popular for separation of 

DNP-amino acids. However there have been only two reports on the 

separation of DNP-amino acids by HPLC. Zimmerman and Pisano (1977) 

separated DNP-amino acids using a Zorbax-ODS column, but the need 

to control the temperature (62 0 ) of column is a drawback in their 

method when such facilities are not available. Kozukue et al. 

(1982) separated DNP-amino acids using a LiChrosorb RP-18 column 

at room temperature, but they separated only 14 amino acids, used 

methyl benzoate as an internal standard and their chromatogram 

shows that peaks were not resolved completely from neighboring 

peaks, which will pose a problem in determining peak areas. 

Recent developments in HPLC include small columns with small 

particles to improve the resolution of compounds. In the present 

analysis of amino acids, a 5 i C 18  cartridge was used and a clear 

separation was obtained. Further, quantitation of the amino acids 

was done using calibration curves without the use of an internal 

standard. The method is described here. 

MATERIALS AND METHODS 

Extraction. Extraction of amino acids from plant tissue was based 
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on the method of Bieleski and Turner (1966). 500 mg of fresh plant 

tissue was placed in 10 ml methanol-chloroform-water mix of 12:5:3 

v/v (MCW), immersed in liquid N2 to stop enzymatic activity, 

removed and stored at -20 °C until analyzed. 

The tissue was homogenized using an Ultra-Turrax. The homogenate 

was centrifuged at 1200 X g for 10 min (MSE Super Minor) and the 

supernatant was collected. To the residue, a further 10 ml of MCW 

mix was added, mixed (on Vortex), centrifuged and the supernatant 

was added to the first supernatant. For maximum removal of amino 

acids, the residue was extracted a further 4 times in the same way 

with 10 ml portions of 80% v/v aqueous ethanol and the supernatants 

were combined. To the MCW supernatant, 5 ml chloroform and 7.5 ml 

water were added, centrifuged and the top water-alcohol fraction 

was added to the ethanol supernatants and the bottom chloroform 

fraction (of pigments and lipids) was discarded. The combined 

extract was dried under vacuum at 35 °C on a rotatory evaporator. 

Dinitrophenylation. Dinitrophenylation and extraction of DNP-amino 

acids were done in the same way as for TLC (Pataki, 1969). DNP-

amino acids decompose in the light, therefore dinitrophenylation 

was done in the absence of light and subsequently formed DNP-amino 

acids were protected from the light by wrapping their glassware 

with Al foil. 

The plant tissue extract was taken in 5 ml of carbonate buffer 

(8.4 g NaHCO 3  + 2.5 ml 1 N NaOH made up to 100 ml with H 20) and 100 

ul 2,4-Dinitroflurobenzene (DNFB, Sigma) was added, shaken at 40 °C 

for 3 h. Then the excess DNFB was removed by extracting it 5 times 

with a 10 ml portion of diethyl ether each time. 
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Extraction of DNP-amino acids. The remaining aqueous fraction was 

carefully acidified by adding 500 pl of 6 N HC1 and the DNP-amino 

acids were extracted with diethyl ether until the ether no longer 

became colored. This extraction usually required 3 to 5 X 10 ml 

portions of diethyl ether. The ,ether portions were combined and 

the ether was evaporated to dryness in vacua  at 30°C. The residue 

was taken in 5 ml methanol (LC grade) and was filtered through a 

Swinny filter using a Millipore FH type filter paper. 

A kit of DNP-amino acid standards, except glutamine and 

threonine, was obtained from Sigma. Each standard amino acid was 

prepared by dissolving 1 mg in 1 ml of methanol. DNP-glutamine and 

DNP-threonine standards, which were not in the kit, were prepared. 

10 mM of the free amino acid and 2 g of anhydrous Na2CO 3  in 40 ml 

water were mixed with 10 mM of DNFB in the form of 10% acetone 

solution. Procedures for dinitrophenylation and extraction of DNP-

amino acids were same as for the plant amino acids. The dried 

residue was taken in methanol and was diluted to obtain 1 mg m1 -1 . 

A standard mixture was prepared by mixing all the amino acids. 

Chromatography. The chromatograph used was a Waters ALC-200 Series 

equipped with two Model 6000A pumps (to generate a solvent 

gradient), a Model 440 detector and a Model U6K injector. The 

column was a 5 }.1 Nova-Pak C18 Radial-Pak cartridge, 8 mm ID X 10 

cm and radial compression was applied to the cartridge by a RCM-

100. Normally a 20 pl sample was injected with a Hamilton 

microsyringe. The mobile phase was 20% (solvent A) and 75% (solvent 

B) v/v acetonitrile in 1% v/v glacial acetic acid in water. Glacial 

acetic acid was added to the solvent because it improves the 
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separation of DNP-amino acids in TLC (Brenner et al., 1965). 

Acetonitrile and acetic acid were of LC standard and water was 

filtered through a 0.45 pm Millipore filter paper (HA type). The 

mobile phase was degassed by ultrasonication. The DNP-amino acids 

were eluted in a gradient mode with a Model 680 AGC from 100% 

solvent A to 100% solvent B over 60 min by curve No. 6 (linear 

curve) at a flow rate of 1 ml min -1 . The amino acids were detected 

at a wavelength of 254 nm. Output signal from the detector was 

recorded on a recorder (OmniScribe). The recorder sensitivity was 

0.2 and the chart speed was 20 cm 11 -1 . After 60 min the column was 

flushed with solvent B at a flow rate of 2 ml min -1  for 10 min 

followed by a reversed gradient at 1 ml min -1  for 5 min and then 

equilibrated with solvent A at 1 ml min -1  for 15 min. This 

equilibration prior to next injection was necessary, because 

otherwise it was observed that some impurities concentrated on the 

column during a run were eluted in the subsequent run. Sigma 10 B 

system was used to collect peak area data. 

RESULTS AND DISCUSSION 

DNFB reacts quantitatively with A-amino groups of amino acids to 

form DNP-amino acids. The reagent also reacts with a-amino group 

of lysine and phenolic hydroxy group of tyrosine and thus lysine 

and tyrosine are recovered as di-DNP derivatives. 

Fig. 4 shows a chromatogram obtained with standard amino acids 

mixture. The complete mixture was resolved in 60 min. All amino 

acids showed good separation except leucine'and isoleucine which 

came together. There was sufficient resolution between the amino 

acids. This resolution was a significant improvement over that of 
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Kozukue et al. (1982). This difference may be related to the column 

performance. They used a LiChrosorb column whereas in the present 

method a Nova-Pak cartridge was used. There are such examples in 

the literature as to the better column for the separation of a 

particular sample. In the separation of amino acids derivatized 

with OPA, pBondapak fatty acid analysis column gave better results 

than Altex Ultrasphere ODS column (5)1) or pBondapak C18 (Larsen and 

West, 1981). Similarly in the separation of DNS-amino acids, only 

Brownlee RP-300 (10 p) gave good separation among other columns, 

viz. Brownlee RP-8 (10 p), RP-18 (5 & 10 )1); Partisil-10 ODS-2 and 

ODS-3; Zorbax ODS and Ultrasphere-ODS (5p) (DeJong et al., 1982). 

The peaks were identified in on-line mode by peak enhancement 

technique, that is the amount of a known amino acid in the standard 

amino acid mixture was increased and that particular amino acid 

peak on the chromatogram was identified by the increased peak. 

For quantifying the amino acids, a standard curve of peak area 

vs. concentration for each amino acid was used. Linear regression 

analysis over a concentration range of 250 ng to 1 pg gave 

correlation coefficients (R2 ) of >0.93 for all amino acids except 

for methionine for which R2  was 0.75 (Table 5). 

A chromatogram of the amino acids extracted from the leaf tissue 

of boronia is shown in Fig. 5. The resolution was good for most 

amino acids in the plant sample also. There were some unknown peaks 

in the plant sample. 

This method shows that HPLC can be used for efficient analysis 

of amino acids. Because of the simplicity, analysis of DNP-amino 

acids by HPLC may gain the same popularity as TLC analysis of DNP- 
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Table 5. Correlation coefficients of linear regression of peak 
area vs. concentration of standard DNP-amino acids. 
The concentration range was 250 ng to 1 pg. 

Correlation 
Amino acid 	Coefficient (R2 ) 

Asn 	 0.97 
Gin 	 0.95 
Ser 	 0.96 
Asp 	 0.95 
Glu 	 0.95 
Thr 	 0.95 
Gly 	 0.94 
Ala 	 0.97 
Pro 	 0.94 
Met 	 0.75 
Val 	 0.93 
Cys 	 0.94 
Try 	 0.94 
Phe 	 0.93 

Leu+Iso 	0.94 
Lys 	 0.95 
Try 	 0.93 
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amino acids had in the past. This method can be adapted to analyze 

amino acids in other biological samples as well as for analyses of 

peptides and proteins. 



IV. EFFECTS OF SOURCE, RATE AND APPLICATION TIME OF NITROGEN ON 

FLOWER YIELD AND LEAF NITROGEN CONCENTRATION IN HORONIA 

An experiment was conducted to study the effects of fast-acting 

conventional fertilizers and a slow release N fertilizer on flower 

yield in boronia. N was applied at different rates either in a 

complete dose or in split doses at different stages of plant growth 

and development. Concentration of N in the leaf tissue at different 

stages of plant growth was also determined. The relationships 

between the flower yield and the concentration of N in the leaf 

tissue at different stages of plant growth were established. The 

experiment was conducted under field conditions to obtain a 

practical situation of boronia cultivation. 

MATERIALS AND METHODS 

Site. The experiment was conducted at Kingston in Tasmania 

(latitude 43 °S). The soil was sandy with a pH of 4.5 (soil:water 

1:2). Prior to the experiment, the site was occupied by eucalypti 

and heath. P at 50 kg (as rock phosphate) and K at 100 kg (as 

K2SO4 ) per ha were applied. 

Layout. The experiment layout was in a randomized block design. 

The planting rows were 1 m apart. Within each row there were 

treatment plots with 1 m between two plots and in each plot there 

were 3 plants spaced at 0.5 m. Thus there were 3 plants per m2  

equal to a density of 15,000 plants per ha -1 . A treatment was 

applied to all 3 plants in a plot but measurements were taken on 

the center plant only and the plants on either side of it were 

considered as guard plants. 

1_, k=7,=.• 
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2-yr old boronia plants were planted in September 1984. 3 clones 

HC-X, HC-3 and HC-2 were used. Each clone was assigned to a 

separate block (replication) so that clonal variation became a part 

of the block variation and thus excluded from the experimental 

error. 

Treatments. The sources of N were: two conventional fertilizers, 

(NH4 ) 2SO4  (21% N; obtained from EZ Co.) and Ca(NO 3 ) 2  (15.5% N; 

obtained from Hoechst) and a SRN fertilizer, IBDU (31% N; obtained 

from Fertool). The application rates were: 25, 50 and 100 kg ha -1 . 

The times of application were: early October (spring), mid-June 

(early winter) and mid-August (late winter) which correspond to the 

periods of vegetative growth, flower bud initiation and flower bud 

development respectively in boronia under local conditions. Each 

rate was applied either in one dose in October or split into 2 or 

3 equal doses. The two doses were applied in October and June or 

October and August. The three doses were applied in October, June 

and August. The fertilizer was placed under the canopy of each 

plant and mixed into the soil. 

Maintenance. The plants were drip irrigated with an emitter at each 

plant. The irrigation was given once a week from October 1984 to 

February 1985 and from March till September 1985, the plants were 

irrigated once a fortnight plus whenever it was a hot day. Weeds 

were controlled by wick-wiping with glyphosate and psyllids which 

were noticed on some plants were controlled with demeton-S-methyl. 

Measurements. Fully developed leaves just below the apex of the 

shoots were sarnpled in late October 1984, mid-January, mid-July 

and mid-September 1985 and their total N was determined by 
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semimicro Kjeldahl method (General Materials and Methods, p. 40). 

During the time of flowering, flowers were picked as they 

developed and their fresh weights were taken. These weights were 

combined and the yields are reported as g per plant. 

After the harvest of flowers, the plants were lightly pruned and 

the treatments were repeated in 1985-86. The maintenance and 

measurements in 1985-86 were the same as in 1984-85. However, leaf 

N concentration values in October 1985 were not obtained. 

The effects of the treatments on leaf N concentration in each 

sampled month and on flower yield were statistically analyzed using 

ANOVA and the F value was tested at P = 0.05 and 0.01. The 

differences between the treatment means were compared using the 

LSD test. Regression analysis was used to examine the relationships 

between the leaf N concentration in different months and the final 

yield. For regression analysis, the treatment means were used so 

that the variation between the replications did not enter into the 

analysis. When the R2  increment from linear to quadratic regression 

was significant, a quadratic regression was fitted. 

RESULTS 

Within a week after the application of (NH4 )2SO4  or Ca(NO3 ) 2  at 50 

or 100 kg N ha -1  in October, tips of most leaves on the plants 

became chlorotic. Compared to the plants supplied with N, plants 

not given N had sparse growth and had very few lateral shoots with 

pale green leaves. However the characteristic leaf yellowing 

symptoms of N deficiency were not observed on the plants given no 

N. 

Leaf N concentration. Leaf N concentration in different treatments 
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in various sampling months during 1984-85 is shown in Table 6. The 

leaf N concentration varied over the months, mainly due to the 

application of N. At each time of application there were various 

amounts of N, viz. 0, 8.3, 12.5, 16.7, 25, 33.3, 50 and 100 kg 

ha-1  (the last rate only in October) as a consequence of complete 

and split applications of N rates. These amounts were positively 

reflected in the leaf N concentration which was analyzed within a 

month of application (except in January). This shows that the leaf 

N concentration indicated the increased N availability in the soil. 

The trends were similar in 1985-86 (Table 7). 

In addition to the differences in leaf N concentration in each 

sampling month between treatments, the pattern of change in leaf 

N concentration over the time is also discussed. Because of the 

quantitative nature of N rate treatments and a significant 

interaction between the source X rate of N, comparisons are made 

between the sources of N applied at the same rate only. 

From 0 to 100 kg N ha -1 , the leaf N more than doubled with 

(NH4 ) 2SO4  or Ca(NO3 ) 2 whereas it increased about 1.5 times with IBDU. 

When the rates of N applied were up to 25 kg ha-1 , there were no 

significant differences in the leaf N concentration in the 

following month between the sources of N. At higher rates there 

were no significant differences between (NH4 ) 2SO4  and Ca(NO3 ) 2  but 

the leaf N with IBDU was about 1.5 times lower. Therefore, in the 

month after an application, availability of N from the conventional 

sources was higher only at rates higher than 25 kg hd l . 

The time of application also influenced the availability of N. 

When (NH4 ) 2SO4  or Ca(NO3)2 was applied in a complete dose in October, 



Table 6. Leaf N concentration in different months as 
affected by rate, time of application and source 
of N in 	1984-85. 

N applied 

Rate a 

	

1 	Time of 

	

kg ha - 	application 	Source 	Oct. 

1.47 

	

25 	Oct. 	(NH4 ) 2 SO4 	1.68 
1.82 Ca(NO3 ) 2 IBDU 	1.70 

Oct.&June 	(NHA ) 2 SO4 	1.84 
1.54 Ca(NO3 ) 2 IBDU 	1.61 

Oct.&Aug. 	(NHA ) 2 SO4 	1.87 
1.52 Ca(NO3 ) 2 IBDU 	1.68 

Oct,June&Aug. 	(NH4 ) 2 SO4 	1.52 
1.54 Ca(NO3 ) 2 IBDU 	1.52 

	

50 	Oct. 	(NH4. ) 2 SO4 	2.92 
2.57 Ca(NO3 ) 2 IBDU 	1.98 

Oct.&June 	(NHA ) 2 SO4 	1.91 
1.84 Ca(NO3 ) 2 IBDU 	1.80 

Oct.&Aug. 	(NH ) 	SO 	1.91 Caa(A032) 	4 1.94  2 IBDU 	1.75 

Oct,June&Aug. 	(NH4 ) 2 SO4 	1.66 
1.56 Ca(NO3 ) 2 IBDU 	1.70 

	

100 	Oct. 	(NHA ),S0, 	3.45 
Ca(R0-32  ) 	3.34 
IBDU 	2.59 

Oct.&June 	(NHA ),S0A 	2.96 
Ca(O;),' 	2.71 
IBDU 	1.89 

Oct.&Aug. 	(NH4 ) 2 SO4 	2.80 
Ca(O3 ) 2 

	2.66 
IBDU 	1.94 

Oct,June&Aug. 	(NH A ),SOA 	2.33 
Ca(O3 ) 2 	2.33 
IBDU 	1.91 

P = 0.05 	0.17 
0.01 0.23 

a
Each rate was applied completely and split 

kequal doses and applied 
°LSD is for comparison between sources 
same rate at the same time. 

Leaf N, 	% 

Jan. 

1.59 

1.68 
1.56 
1.73 

1.61 
1.61 
1.61 

1.61 
1.63 
1.70 

1.63 
1.61 
1.52 

2.82 
2.47 

1.68 
1.63 
1.80 

1.63 
1.56 
1.77 

1.61 
1.68 
1.87 

3.31 
3.10 
2.71 

2.68 
2.47 
2.15 

2.75 

2.47 
2.08 

2.05 
2.00 
1.91 

LSD 

dry wt. 

July 	Sept. 

1.66 	1.66 

1.66 	1.66 
1.61 	1.56 
1.56 	1.59 

1.75 	1.82 
1.70 	1.61 
1.77 	1.59 

1.66 	1.89 
1.59 	1.82 
1.49 	1.75 

1.70 	1.75 
1.73 	1.75 
1.75 	1.77 

2.26 	2.15 
2.17 	2.10 
1.96 	1.87 

2.15 	1.77 
2.15 	1.84 
2.03 	1.94 

1.70 	2.31 
1.75 	2.26 
1.94 	2.05 

2.08 	2.17 
2.22 	2.19 
2.10 	2.12 

2.68 	2.66 
2.64 	2.50 
2.52 	2.64 

3.08 	2.99 
3.15 	2.99 
2.19 	2.24 

2.12 	3.08 

2.17 	3.08 
2.10 	2.29 

3.00 	3.13 
3.13 	3.13 
13.12 	2.14 

0.14 	0.15 
0.18 	0.19 

2 and 3 

at the 

0.10 
0.14 

into 

of N applied 
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Table 7. 

Rate a - 1 kg ha 

0 

25 

50 

100 

Leaf N concentraticn in different 
affected by rate, time of application 
of N in 1985-86. 

N applied 	Leaf 

Time of 
application 	Scurce 	Jan. 

1.59 

Oct. 	(NH ) 2S 0 	1.75 
Ca(0) 4 	1.73 3 	2 IBDU 	 1.77 

Oct.&June 	(NH,) 7 S0, 	1.66 
Ca(R0- ) 	1.70 3  IBDU 	2 	1.68 

Oct.&Aug. 	(NH )2504 	1.68 
Ca(W3 ) 2  ' 	1.68 
IBDU 	 1.68 

Oct,June&Aug. 	(NH
4

) 2 SO4  
1.61 

Ca(NO 	) 	1.61 
IBDU 3 	2 	1.56 

Oct. 	(NH 	'2° 	2.85 
Ca(A02 ) 	4 	2.80 
IBDU 3 	2 	2.15 

Oct.&June 	(NH ) 	SO 	1.75 
Ca(A032 ) 2  4 	1.75 
IBDU 	 1.87 

Oct.&Aug. 	(NH ) 	SO 	1.68 
Ca(Ad1 ) 7 4 	1.75 
IBDU - 	- 	1.75 

Oct,June&Aug. 	(NH4 )
2
SO

4  
1.63 

Ca(NO) 2  1.61 
IBDU 	 1.82 

Oct. 	(NH ) 	SO 	3.24 
Ca(0) 7 4 	3.17 
IBDU 	 2.71 

Oct.&June 	(NH ) 	SO 	2.75 
Ca(k02 ) 	4 	2.73 
IBDU 

3 	2 	2.19 

Oct.&Aug. 	(NH ) 2 SO 4 	2.73 
• 	 Ca(10

3
2 )

2  4 
	2.75 

IBDU 	 2.22 

Oct,June&Aug. 	(NH ) 	SO 	2.08 
Ca (A0 21  ) 7 4 	2.08 
IBDU - 	- 	1.91 

P = 0.05 	0.13 

	

0.01 	0.17 

months 

N, 	% dry 

July 

1.63 

1.66 
1.61 
1.61 

1.80 
1.70 
1.77 

1.70 
1.63 
1.54 

1.77 
1.77 
1.80 

2.26 
2.17 
2.03 

2.29 
2.26 
2.08 

1.82 
1.77 
1.91 

2.12 
2.19 
2.08 

2.73 
2.73 
2.54 

3.08 
3.13 
2.24 

2.15 
2.19 
2.10 

3.00 
3.00 
2.19

b LSD 

and 
as 
source 

wt. 

Sept. 

1.61 

1.63 
1.56 
1.61 

1.80 
1.63 
1.63 

1.89 
1.87 
1.82 

1.87 
1.87 
1.77 

2.10 
2.10 
1.84 

1.94 
1.91 
1.96 

2.36 
2.26 
2.10 

2.17 
2.19 
2.15 

2.64 
2.50 
2.59 

2.99 
2.94 
2.19 

3.10 
3.10 
2.26 

3.17 
3.17 
2.29 

0.15 
0.19 

0.13 
0.17 

a&bSame as in Table 6. 
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the leaf N decreased in the following months while when IBDU was 

applied, the leaf N concentration increased in the earlier months 

(January) and then decreased in the later months (July and 

September). These changes were more gradual with IBDU. Also with 

split doses applied in October, the leaf N, before the application 

of next split dose, decreased with (NH4 ) 2SO4  and Ca(NO3 ) 2  but 

increased with IBDU. However, with split doses applied in June or 

August the leaf N decreased in all the following months 

irrespective of the source of N. These results suggest that when 

applied in October, availability of N from the conventional sources 

decreased over the time but its availability increased in the 

earlier months and decreased in the later months. However, when 

applied in June or August, availability of N even from IBDU 

decreased in the following months. 

When N was applied only in October without any further 

application, there were differences in the availability of N in 

the following months due to the source of N. By January, there were 

no significant differences in the leaf N concentration between the 

sources of N applied at 8.3 or 12.5 kg N ha -1  (these rates were a 

consequence of split doses). When applied at 16.7 or 25 kg N ha -1 , 

the leaf N differences were not significant. When applied at 50 or 

100 kg N ha -1  in October, however, the leaf N was higher with 

(NH4 ) 2SO4  and Ca (NO3  ) 2  in both January and July. These results 

suggest that when N was applied .up to 25 kg ha -1  in October, its 

availability later in January and July was higher from IBDU but at 
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higher rates of application, N availability was higher from the 

conventional sources. 

Flower yield. The normal flowering period in boronia is August-

September. However, the experimental plants flowered in January 

1985 probably due to low temperatures that occurred in the earlier 

month (Appendix Fig. I1.1). Nevertheless, these flowers were 

harvested and the data analyzed. By January the only treatment 

variables were different rates of different sources of N applied 

in October 1984. Regression analysis was done for each source of 

N separately. The relationships between the yield and the rates of 

N were quadratic with all sources of N (Fig. 6). However the N rate 

at which the yield was maximum differed with the source of N. It 

was about 1.5 times lower with (NH 4 ) 2SO4  and Ca(NO3 ) 2  indicating that 

at lower rates of N the yield reduction was higher with the 

conventional sources of N. 

The normal flower yield in September was affected by the source, 

rate and application time of N and there were interactions between 

source X rate, source X time and rate X time. The results of 1984- 

85 and 1985-86 experiments are shown in Figs. 7 and 8 respectively. 

The trends in both the years were similar although the yields were 

about 1.2 times higher in 1985-86 because the plants in the second 

year of the experiment were larger. Since the same rates of N were 

applied in both the years, residue of N applied in the first year 

would have contributed to the requirements of the increased plant 

growth in the second year. 

The flower yield increased with increasing N rates (Fig.7a) 



	

1 	1 	• 	i 	- 	r 	1 	• 

	

20 	40 	60 	80 	100 
- N APPUED, kg ha 1 
 

Fig. 6. Relationship between the flower yield in January 1985 and 
the rate of N from different sources applied in October 
1984. The fitted regression equations are 
(NH4 ) 2SO4 : Y = 2.23+0.061X-0.0006X2  (R2  = 0.68), 
Ca(NO3 ) 2  : Y = 2.33+0.057X-0.0005X 2  (R2  = 0.66) and 
IBDU 	: Y = 2.36+0.072X-0.0005X2  (R2  = 0.80). 
Linear and quadratic regression coefficients in each 
equation are significant at P = 0.01. R 2  for each 
equation is significant at P = 0.01. 
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Fig. 8. Yield of flowers in September 1986 as affected by 
interaction between (a) source X rate, (b) time of 
application X rate and (c) source X time of application of 
N. Other details are the same as in Fig. 7. 
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although the increase in the yield was not proportional to the rate 

of N. The yield more than doubled from 25 to 50 kg N ha the 

yield increase was only 1.5 times from 50 to 100 kg N ha -1 . The 

yields with (NH4) 2SO4  and Ca(NO3 ) 2  did not differ significantly but 

the yield with IBDU was about 1.4 times higher than that with the 

conventional sources. 

Complete doses of all N rates which were applied in October gave 

the highest yields and split doses of the same N rates applied at 

different times of the season gave lower yields (Fig. 7b). At 25 

and 50 kg ha-1  the yields with N applied in a complete dose in 

October were more than double the yields with N applied in split 

doses. Between 2 and 3 split doses there were no significant 

differences in the yields at 25 kg N ha at 50 or 100 kg N 

ha:1  the yields were significantly lower with 3 split doses than 

with 2 split doses. 

At all times of application, IBDU gave the highest yield and the 

differences in the yield between (NH 4 ) 2SO4  and Ca(NO3 ) 2  were not 

significant (Fig. 7c). The difference in the yields between the 

conventional sources of N and IBDU increased at the later 

application times. 

Relationship between yield and leaf N concentration. The January 

1985 yield was related to the leaf N concentration in October 1984 

and January 1985 and shown in Fig. 9. The relationships were 

quadratic indicating a declining yield at higher concentration of 

leaf N although the correlation coefficients (R2) were poor. The 

concentration of leaf N at which maximum yields in January 1985 

were obtained were estimated as 2.37% in October 1984 and 2.31% in 
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4 
LEAF N % IN OCT 84 

Fig. 9. Relationships between the yield of flowers in January 1985 
and the concentration of leaf N in (a) October 1984 and (b) 
January 1985. The fitted regression equations are 
October: Y = -4.91+7.63X-1.61X2  (R2  = 0.42) and 
January: Y = -6.29+9.05X-1.96X2  (R2  = 0.39). 
Linear and quadratic regression coefficients in each 
equation are significant at P = 0.01. R2  for each 
equation is significant at P = 0.01. 
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January. 

The relationships between the September yields and the 

concentration of leaf N in October, January, July and September in 

1984-85 and 1985-86 are shown in Figs. 10 and 11 respectively. The 

relationships were linear with the leaf N in October (Fig. 10a) and 

quadratic with the leaf N in January (Fig. 10b), July (Fig. 10c) 

and September (Fig. 10d). The R2 values were marginal for all the 

months except for January which was high (0.77). These 

relationships suggest that the yield increased with higher 

concentration of leaf N in October but declined with higher 

concentration of leaf N in January, July and September. 

DISCUSSION 

The characteristic leaf yellowing symptoms of N deficiency were 

absent in boronia plants given no N. As no N was applied to the 

soil even prior to the experiment, the available N in the soil may 

have been very low. The plants may have adjusted to this low N by 

reduced growth and reduced lateral branching which indeed were 

observed on the plants given no N. N deficiency symptoms vary in 

appearance with plant species (Tucker, 1984). 

It was assumed that the concentration of N in the leaf indicated 

the availability of N from the soil to the plant. Although the 

concentration of N in the leaf tissue is also subject to the plant 

growth and the factors limiting the growth, the reflection of rates 

of N in the leaf N concentration (Tables 6 and 7) supports the view 

that the assumption is valid. 

Higher leaf N in the month following the application of N from 

the conventional sources (Table 6) indicates that more N was 
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available immediately after their application. Higher leaf N in 

January than in October with IBDU indicates that the availability 

of N from IBDU was lower immediately after the application but 

increased later. It might be due to the fact that the dissolution 

of IBDU may be slow in the beginning (after application) and rapid 

later. Allen (1984) stated that once dissolution of IBDU begins, 

hydrolysis proceeds rapidly. However, absence of such an increase 

in the leaf N when IBDU was applied in June or August may be 

related to low winter soil temperatures during that period which 

may affect the dissolution of IBDU. 

The maintenance of leaf N over the season with IBDU as compared 

with other sources, without any further application, indicates 

that N from this sources was released over a longer time. At such 

rates, NO 3  conventional sources may have leached beyond the 

root zone of the plant, while N from IBDU is released slowly, 

therefore reducing the leaching losses. However, at higher rates, 

availability of N was highest from the conventional sources but 

decreased with time, while N availability from IBDU was lower due 

to the limited release of N from this source. 

N promotes the growth of foliage in boronia (Thomas, 1981). 

Thus, in axillary-flowering boronia, increasing N levels increase 

the production of axils (associated with leaves) which translate 

into an increased number of flowers. The highest flower yield with 

single doses of N rates (Fig. 7b) were therefore due to higher N 

available early in the season (during spring and summer when 

temperatures were higher, Appendix Fig. 11.1) for a greater 
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production of axils. When a rate was split, N available early in 

the season was lower resulting in a lower production of axils. In 

addition, application of N during the flowering time further 

decreased the yield. For example, the plants supplied with 50 kg 

N hal  per ha in October either as a complete dose of 50 kg N hal  or 

as a first split part of 100 kg hal  dose had the same quantity of 

N and hence should have similar number of axils until the time of 

second split part of 100 kg ha l  dose (which was during the 

flowering). However the plants supplied with 50 kg N hal  during the 

flowering as a second split dose yielded less than the plants not 

supplied with additional N (in Fig. 7b: 50 kg in October line vs. 

100 kg in October & June and October & August lines). The decreased 

in the yield due to the application of N during the flowering time 

was greater with higher rates of N (Fig. 7b) and less with IBDU 

(Fig. 7c) indicating that a higher availability of N during the 

flowering decreased the yield. This effect was relatively high when 

N was applied in August, i.e. during flower bud development, when 

compared to N applied in August, i.e. during flower bud initiation 

(Fig. lc). In Boronia heterophylla, Richards (1985) observed that 

an increase in the vegetative growth was associated with the 

abortion of flower buds. High availability of N during the 

flowering in the present experiment may have promoted the 

vegetative growth resulting in the abortion of flower buds and 

thereby decreasing the flower yields. Similarly, Gutschick (1981) 

mentioned a case of salvia which dropped flowers after an 

application of excessive levels of N. 

Although the correlations between the flower yield and the 
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concentration of leaf N in different months (except January) were 

marginal, the concentrations that maximized the yield were 

estimated from the regression equations. The values are 3.23%, 

2.83%, 2.64% and 2.65% in October, January, July and September 

1984-85 respectively; 2.74%, 2.65% and 2.67% in January, July and 

September 1985-86 respectively. Thus the values in each sampled 

month in both the years are similar. The computed leaf N 

concentration values in each month for maximum yield in 1984-85 

are graphically presented in Fig. 12. The pattern indicates that 

a declining leaf N concentration over the season was associated 

with an increased flower yield. Examination of the data from this 

point of view shows that the plants that gave higher yields had 

such a declining pattern of leaf N (compare Table 1 and Fig. 2b). 

For example, the plants that were given N rates in complete doses 

in October. 

Although, at higher N rates, the plants supplied with 

conventional sources had higher leaf N than those supplied with 

IBDU (Table 6), the flower yields with the conventional sources 

were lower than with IBDU (Fig. 6a). This may be due to luxury 

consumption when N was highly available from the conventional 

sources. Indeed the appearance of chlorotic leaf tips on the plants 

applied with 50 or 100 kg N ha -1  as (N1-14 ) 2SO4  or Ca(NO3 ) 2  in a 

complete dose may indicate the deleterious effect of luxury 

consumption affecting the plant growth. Similar symptoms were 

observed by Specht (1963) on some Australian native plants supplied 

with ca. 40 kg N ha--1 . Many Australian native plants seem to have 

adapted to assimilate only low levels of N , available under 
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naturally nutrient poor Australian soils. In boronia, high N 

fertilization levels above the assimilation capacity of the plant 

led to high concentrations of unreduced N in the leaf tissue 

causing toxicity (Chapter VIII). When total N in the leaf tissue 

was analyzed by the method used in this experiment, unreduced N 

also contributed to the total N concentration. This would give a 

high total N value in the tissue while the plant may be suffering 

from the luxury consumption and the consequent impaired growth (and 

flower yield as observed). Thus, under excess N conditions, total 

N analysis as such without the analysis of unreduced N may not be 

an accurate method of determining the critical leaf N 

concentrations in boronia. This may be a reason for the marginal 

R2 values observed for the relationships between the flower yield 

and leaf N concentration (Fig. 10). With IBDU applied at the same 

rates (50 or 100 kg N ha -I ), the toxicity did not occur because the 

N amount from IBDU solubilized and available to the plant at any 

given time would be small and thus would have been within the 

assimilation capacity of the plants. 

There were generally no significant differences between (N 1-14)2SO4 

and Ca(NO3 ) 2 . However, it is difficult to resolve the effects of 

NH4+  and NO3-  on plant growth under field conditions where 

temperature, aeration, pH and other factors affecting the 

nitrification may fluctuate during the growing season. Under these 

conditions some NH4+  would have been converted to NO3-  raising a 

possibility of a supply of NH4 +  plus NO; mixture. 

In conclusion, for boronia the availability of N should be high 

early in the season (during the active vegetative growth period) 
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and should decline as the flowering time approaches. N released 

from a single application of IBDU early in the season seems to 

maintain leaf N to meet the growth requirements of boronia without 

ay- luxury consumption. 



NH4  V. EFFECTS OF DIFFERENT LEVELS OF NITROGEN AS NH 4+ NO3  OR ui 

PLUS NO; ON VEGETATIVE GROWTH, FLOWERING AND NUTRIENT 

CONCENTRATION IN LEAF TISSUE IN BORONIA 

To study in detail the effects of different levels of different 

forms of N, viz. NH4 + , NO; and NH4+ plus NO; on vegetative growth 

and flowering in boronia, an experiment was conducted under 

greenhouse conditions. Observations were made on the plants for a 

long term (full year) to determine the differences in vegetative 

growth and flowering occurring over time as a result of the 

treatments. In addition to the observations on vegetative growth 

and flowering, concentrations of N, P, K, Ca and Mg in the leaf 

tissue were determined to study the changes in these nutrients with 

changes in the form and level of N supplied. The relationships 

between the vegetative growth, flowering, and concentrations of 

nutrients are also discussed here. 

MATERIALS AND METHODS 

Application of nutrient solutions. It has been noted (in the Review 

of Literature) that most Australian native plants are sensitive to 

high levels of N. It was therefore necessary to develop methods for 

N nutrition of boronia which would enable the plant's growth and 

development to proceed without the adverse effect. Further, as the 

experiment was to be for a long time, it was also necessary to save 

the time and labor involved in the supply of nutrient solutions to 

the plants. For these reasons, an automatic system was designed and 

operated for application of nutrient solutions to boronia plants. 
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The system is shown in Fig. 13. The essential component of the 

system was a device to elevate a platform which had reservoirs on 

it. The reservoirs held the nutrient solutions. The platform was 

lifted to above the level of plant containers which were on 

benches. This lift was achieved through two vertically mounted 

shafts connected by a chain and sprocket at their base and driven 

by a 1 HP single-phase reversible motor. Provisions existed for 

manual operation in case of a failure of electric power. The 

platform could be held in either an elevated position (above the 

benches) or a lowered position (floor level). The height in each 

case was determined by limit switches. The timing of lift was 

controlled by an electronic programmable timer capable of 1 to 4 

lifts per 24 h. 

Each of the nutrient solution reservoirs fed its own 20 mm 

(internal diameter) polytene pipe 'main' which circled the 

greenhouse. These mains were fitted with drainage outlets. Each 

main fed 8 supply hoses of 12 mm (ID), each leading to the base of 

a 9=1 plastic bucket. The bucket contained a layer of blue metal 

on which rested the plant pot. 

When activated by the timer, the platform was lifted to above 

the height of buckets (Fig. 14). Then the nutrient solution entered 

the buckets and seeped through the bottom of pots towards the 

surface of growth medium. After a chosen time, the platform was 

descended to the floor level (Fig. 15) and the nutrient solution 

drained back into its reservoir. The chosen time was ca. 10 min so 

that the plant roots were exposed to the nutrient ions for only a 

short period. The system was operated once daily in the beginning 
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Fig. 13. Diagrammatic layout of the automatic system used to supply 
nutrient solutions. 
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Fig. 14. View of automatic nutrient supply system showing the 
platform in elevated position. Plant pots are kept in 
benches. 

Fig. 15. View of automatic nutrient supply system with the platform 
in lowered position (at the floor level). 
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of the experiment and as the plants became bigger it was operated 

2-3 times daily. 

Large reservoirs were used to employ large volume of solutions 

(25 1 for 4 plants) to minimize the changes in concentration and 

pH of the solutions due to absorption by the plants. 

Plant culture. A clone designated HC-1 was used in this experiment. 

2-yr old plants were potted in 200 mm plastic shrub pots. The 

growth medium used was 2 parts composted eucalyptus bark and 1 part 

sand by volume. At the bottom of the pot, vinyl with an overlying 

layer of blue metal stones was placed to obtain free drainage and 

a layer of blue metal was spread over surface of the medium to 

reduce evaporation and to prevent algal growth. 

Growth conditions. The automatic system for application of nutrient 

solutions to the plants was set up in a greenhouse under natural 

light conditions. Maximum temperature was held at ca. 25 °C by 

evaporative coolers and temperatures below 25 °C varied which were 

slightly higher than those outside the glasshouse (the temperatures 

outside the greenhouse are shown in Appendix Figs. 111.1 and 

111.2). 

Before commencing the treatments, the growth medium was leached 

with water: daily for one week to wash out any salts in it. The 

leachate had a pH of 6.0 and contained no NH4+  or NO3- . At this time, 

plant analysis indicated a leaf N concentration of 1.54% + or - 

0.06 (n = 10). 

Composition of nutrient solutions. The nutrient solutions used were 

modified from Long Ashton solution. 3 types of N, viz.  NH4+ , NO3-  or 

NH4+  plus NO3 -  each at 5, 10, 15, 20 and 25 mM were used. To obtain 
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these treatments, combinations of salts as shown in Table 8 were 

used. 

Table 8. Composition of nutrient, solutions. 

Level of N, mM 

Salt 5 10 15 20 25 

Concentration in mM 
NH44- -type 

(M-14)2SO4 2.25 5.00 7.50 10.00 10.00 
CaC12 21120 8.27 8.23 8.20 8.27 8.33 
K2S 04 4.14 4.13 4.13 4.14 4.13 
Na2HPO4  121120 1.33 1.33 1.33 1.33 1.33 

NO3--type 
Ca(NO3) 2  1.67 3.33 5.00 6.67 8.33 
KNO3  1.67 3.33 5.00 6.67 8.33 
CaC12 21120 6.60 4.90 3.20 1.60 0 
K2S 04 3.30 2.45 1.60 0.80 0 
NaH2PO4  21120 1.33 1.33 1.33 1.33 0 

NH4++NO3--type 
NH4NO3  2.50 5.00 7.50 10.00 12.50 
CaCl2 21120 8.27 8.23 8.20 8.27 8.33 
K2S 04 4.14 4.13 4.13 4.14 4.13 
Na2HPO4  12H20 0.67 0.67 0.67 0.67 0.67 
NaH2PO4 21120 0.67 0.67 0.67 0.67 0.67 

In addition, there was a no N treatment in which 8.27 mM CaC1 2  

2H20; 4.14 mM K2SO4 ; 0.67 mM Na2HPO4 12H20 and 0.67 mM NaH2PO4  2H20 

were used. Thus, there were 16 treatments. 

The following salts were added to all the nutrient solutions at 

the concentrations stated (in mM): MgSO4 71120 1.5; MnSO 4  4H20 0.01; 

CuSO4 5H20 and ZnSO4  7H20) 0.001; H3B03  0.05; Na2Mo04  2H20 0.0005. Iron 

was supplied as a chelate Fe EDTA, Na salt at 0.05 IDE. 

The major differences in the composition of nutrient solutions 

(because a change in a given nutrient ion is necessarily 

accompanied by a change in an ion of the opposite sign) were only 
-1$4; 

in SO42- concentration. Because of the large volume of solutions 
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required, laboratory grade salts and tap water were used to prepare 

the nutrient solutions. After preparation the nutrient solutions 

were adjusted for pH 6.5 by the addition of requisite amounts of 

0.1 M H2SO4  or NaOH. The pH varied less than 0.5 units during a 

month. 

Once a month, the nutrient solutions were changed to restore the 

concentrations of depleted nutrients. At the same time, the growth 

medium in the plant pots was leached with water to wash out any 

accumulated salts. With regard to possible nitrification, NH 4+  type 

solutions were tested occasionally for the presence of NO 3-  by the 

Kjeldahl method (General Materials and Methods, p. 39) and no NOi 

was detected anytime. 

The 16 plants (treatments) were set randomly in a block and there 

were 4 blocks (replications). Once a month, plant pots in one block 

were rearranged in another block to randomize any effect of the 

position in glasshouse. 

Measurement of responses. Growth parameters were measured monthly 

as follows'. Plant stem diameter near the surface of the potting 

medium at a standard marked location was measured using Vernier 

calipers. On each plant, two shoots (termed main shoots, see Fig. 

16) were selected. On each main shoot, each month, the number of 

nodes, the number of axillary shoots (termed lateral shoots) and 

the number of nodes on these lateral shoots were counted. During 

flowering,. on both main and lateral shoots, the number of axils 

initiating flower buds, the number of flower buds and the number 

of fully developed flowers were counted. The weights of total yield 

of fully developed flowers of each plant and 10 of these fully 
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Fig. 16. Branch of Boronia megastigma  

developed flowers were taken. 

For analysis of leaf nutrient concentration (in 1984-85 

experiment only), fully developed mature leaves were taken from 

main and lateral shoots in November (a month after commencing the 

supply of nutrient solutions); in February (when growth was rapid) 

and in June (at the time of flower initiation). The samples were 

prepared (General Materials and Methods, p. 40) and analyzed for 

the nutrients. Total N was estimated by a semimicro Kjeldahl method 

(p. 40). Wet ashing was used to analyze P, K, Ca and Mg (p. 41). 

P was determined by colorimetry (p. 41), Ca and Mg were determined 

by atomic absorption spectrophotometry (p. 42) and K was determined 

by flame photometry (p.42) 

The experiment was conducted from March to September in 1984. In 

1984-85, the experiment was repeated with a new set of plants from 

September 1984 to September 1985 to obtain a full year's results. 

The primary data of measurements collected for each parameter in 
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each month were statistically analyzed. Where measurements of a 

parameter were made on two main shoots in each plant, the values 

• were averaged and the analysis performed on the means. ANOVA was 

employed to examine the effects of the treatments. When the F value 

for a treatment effect was significant at P = 0.01 or 0.05, LSD 

test was applied to determine differences between the treatment 

means. The data derived from the primary data were examined using 

regression lines. 

RESULTS 

The automatic system used in this experiment for supplying nutrient 

solutions to boronia plants proved reliable, convenient and 

effective. 

The effects of treatments on different growth parameters started 

to become apparent as time progressed and the magnitude of the 

differences between treatments increased with time. 

The plants in the 1984-85 experiment were larger as compared to 

the 1984 experimental plants, because the 1984-85 experimental 

period included the time of the year during which maximum growth 

occurred (i.e. October to April). Consequently the magnitude of 

the differences between treatments were larger in the 1984-85 

experiment than in the 1984 experiment. However, the trends were 

similar in both the experiments. Therefore, the results of the 1984 

experiment are briefly presented and the results of the 1984-85 

experiment are discussed in detail. 

General growth and morphology 

Within a month after commencing the supply of nutrient solutions, 

tips of older leaves on the plants supplied with 0, 5, and 10 mM 
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N began to become chlorotic. However, these symptoms did not 

resemble the characteristic yellowing of N deficiency. The newly 

developing leaves on these plants were normal green, though pale 

when compared to the leaves on the plants supplied with 15, 20 and 

25 mM N. 

In B. megastigma, there are normally 3 leaflets. However, in the 

1984-85 experiment the plants supplied with N produced 5 leaflets, 

more frequently at 20 and 25 mM N and during the summer months. The 

normal one central leaflet was divided into 3 leaflets (Fig. 17). 

During the experimental period the plants shed very few leaves. 

1984 experiment 

The increase in stem diameter in each month was not significantly 

affected by form of N, level of N or their interaction (Appendix 

Table 111.1). Formation of nodes on the main shoot was 

significantly affected by level of N (Appendix Table 111.2) and 

the effect of form of N on the formation of nodes showed up from 

May and that of interaction between form X level of N from August. 

The trends of these effects were similar to those in the 1984-85 

experiment (described later). During the period of the 1984 

experiment, lateral shoots were not initiated on the plants 

supplied with 0, 5 and 10 mM N. From 15 to 25 mM, increasing levels 

of N increased the initiation of lateral shoots (Appendix Table 

111.3). Form of N did not significantly affect this initiation of 

lateral shoots. Formation of nodes in each month on these lateral 

shoots increased with increasing levels of N (Appendix Table'III.4) 

and the effects of form of N and interaction between form X level 

of N became significant in September. 
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Fig. 17. Normal (left) and variation (right) in  the  number of 
leaflets. 
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Number of axils with flower buds was significantly affected by 

level and form of N (Appendix Table 111.5). The number increased 

with increasing levels of N and the plants supplied with NH 4+  plus 

NOi had the most number of axils with flower buds. Total number of 

flower buds was significantly affected by form and level of N 

(Appendix Table 111.6). The number increased up to a level of 20 

mM and then declined slightly at 25 mM. Highest number of flower 

buds were on the plants supplied with NH4+ plus NO3- . The number of 

developed flowers was significantly affected by form and level of 

N (Appendix Table 111.7). The number of developed flowers increased 

with N level up to 15 mM N and highest number of flowers were on 

the plants supplied with NH4+  plus NO3- . 

1984-85 experiment 

Stem diameter. There was no significant effect of interaction 

between level X form of N on the increase in stem diameter in any 

month, therefore the means of N levels averaged over the forms of 

N and vice versa  are shown in Fig. 18. The effect of N level was 

not significant during October to December 1984 and from January 

1985, the effect became significant (Fig. 18a). From January 1985, 

stem diameter increased with increasing levels of N and the 

magnitude of the differences in stem diameter between different 

levels of N increased with time. For example the difference in stem 

diameter between 0 and 25 mM N levels increased 2.5-fold by 

September. 

From June, the effect of N form also became significant (Fig. 

18b). Stem diameter was greatest with NH4+  plus NO3  followed by 

NH4 +  and NO3- . Generally stem diameter increased rapidly from October 
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Fig. 18. Increase in stem diameter during the year as affected by 
(a) level of N and (b) form of N. The effect of level of 
N was not significant during October to December and the 
effect of form of N was not significant up to May. LSD at 
P = 0.01. 
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to March; by March the stem diameter of 25 mM N plant was double 

that of 0 N plant. Thereafter, increase in stem diameter ceased 

with 0 N while it slowly increased in the later months with 

increasing levels of N. 

Nodes on the main shoot. Production of nodes on the main shoot 

during the year is shown in Fig. 19. The effect of level of N•

became significant within a month of supply of N solutions and from 

the next month (November), the effect of form of N became 

significant. From January, there was a significant interaction 

between level X form of N indicating that the differences between 

forms of N were not same at different levels of N. In each month, 

generally increasing levels of N increased the production of nodes 

and at the same level of N, highest number of nodes were produced 

by NH4+  plus NO; followed by NH4 +  and NO3- . As the plants grew larger 

over time, the differences between the treatments increased. By 

June (when the plants started initiating flower buds), the 

differences in the number of nodes between 0 and 25 mM N were 3.3- 

fold (higher) with NH 4+  plus NOI, 3-fold with NH4 +  and 2.8-fold with 

NO3- . 

From March (when the mean temperature reached ca. 15 °C), 0, 5 

and 15 mM N plants almost ceased producing nodes on the main shoot 

while 15, 20 and 25 mM plants continued to produce the nodes. 

Nodes (axils) produced on the main shoot are the potential sites 

for the initiation of lateral shoots. 

Lateral shoots. Fig. 20 shows the production of lateral shoots 

during the year. Form and level of N significantly affected the 

initiation of lateral shoots from the beginning of the supply of 

• 
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Fig. 19. Production of nodes on the main shoot during the year as 
affected by level and form of N. For clarity of curves all 
the treatments are not drawn in one graph. LSD at P = 
0.01. 
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N solutions and from December, there was a significant interaction 

between form X level of N. In a manner similar to that of the 

production of nodes on the main shoot, increasing levels of N 

increased the initiation of lateral shoots and at the same level 

of N, NH4 -1-  plus NO3 -  produced the maximum number of lateral shoots 

followed by NH4+ and NO3- . More than 95% of the lateral shoots were 

initiated by April. By then they were 6.2-fold higher (over 0 N) 

with 25 mM N as NH4+  plus NO3 - , 5.2-fold higher with 25 mM N as NH4 +  

and 4.7-fold higher with 25 mM N as NO3- . In the later months, 

lateral shoots did not arise even on 15, 20 and 25 mM N plants 

which continued to produce the potential sites (i.e. nodes on the 

main shoot) for the production of lateral shoots. 

As the number of axils on the main shoot largely determine the 

production of lateral shoots, the production of lateral shoots as 

related to the total number of axils on the main shoot is shown in 

Fig. 21. The percentage of axils producing the shoots increased 

rapidly in the first two months of the experiment and gradually 

thereafter up to March. From April, lateral shoots were not 

initiated despite the formation of nodes on the main shoot (on 15, 

20 and 25 mM N plants). Therefore the percentage of axils on the 

main shoot initiating lateral shoots decreased. The trends in the 

percentage of axils initiating lateral shoots in response to level 

and form of N were similar to those of the production of absolute 

number of lateral shoots. Thus N particularly NH 4 -1-  plus NO3-  enhanced 

the initiation of the lateral shoots from a higher number of 

available axils on the main shoot. 

Nodes on lateral shoots. Production of nodes on lateral shoots 



%
  A

X
IL

S
 W

IT
H

 S
H

O
O

TS
 

20 	I 	 i 	 1•1•1•1.1•1 

Oct Nov DecJan FebMarAprMayJunduly AugSep 

MONTH 

Fig. 21. Percentage of axils on the main shoot producing lateral 
shoots during the year as affected by level and form of 
N. Percentage data are derived from the ratio of number 
of lateral shoots (Fig. 20) to total number of axils on 
main shoot (Fig. 19). Results at only 15 mM are shown; 
patterns at other levels of N were similar. 
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Fig. 22. Example of effect of N on the production of nodes (sites 
for flower buds): branch from nil N plant (left) as 
compared to that from 25 mM N1144.4-NO3 -  plant (right). 
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during the year as affected by form and level of N is shown in Fig. 

23. Form and level of N significantly affected the production of 

nodes on lateral shoots even from the first month of the supply of 

N solutions and from the second month, there was a significant 

interaction between form X level of N. The trends in the production 

of nodes on lateral shoots were similar to those of the production 

of nodes on the main shoot. By April, 85% of the total number of 

nodes on 0. 5, 10 mM N plants were produced and with increasing 

levels of N, the production of nodes continued into later months 

though at a declining rate. By June, from 0 to 25 mM N the nodes 

increased 18.7-fold with NH 4+  plus NO3-, 15.8-fold with NH4+  and 

13.8-fold with NO3- . 

These results show that the potential sites for flower buds 

(axils) could be enhanced by N supply and at a similar level of N, 

NH4+  plus NO3-  was most effective followed by NH4+  and NO3- . 

Flowering 

Axils with flower buds. Flower buds began to appear in June when 

the mean monthly temperature decreased to ca. 8.5 °C and the mean 

light hours were ca. 9. Formation of flower buds continued into 

July although >95% of the axils initiated flower buds in June 

(Appendix Table 111.12). Flower buds were formed in the leaf axils 

on both lateral and main shoots including in some of those axils 

on the main shoot from which lateral shoots were initiated earlier. 

The number of axils with flower buds counted in both June and 

July was significantly affected by form, level and interaction of 

form X level of N (Appendix Table 111.12). The cumulative number 

of axils with flower buds in July is shown in Fig. 24a. The number 
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affected by level and form of N. Percentage data are 
derived from the ratio of number of axils with flower buds 
(Fig. 24a) to total number pf axils on main shoot (Fig. 
19) and lateral shoots (Fig. 23). 
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of axils with flower buds increased with increasing N level. At 5 

mM N, there were no differences between forms of N but at higher 

N levels, NH4+  plus NO3-  plants had the highest number of axils with 

flower buds. For example, at 25 mM N the number of axils with 

flower buds were 19.7-fold higher with NH 4+  plus NO3- , 17.3-fold 

higher with NH4+ and 14.3-fold higher with NO 3-  as compared to 0 N. 

Although the increase in the number of axils initiating flower 

buds was mainly due to the increased number of axils that were 

available at flowering for initiation of flower buds, not all 

available axils initiated flower buds. In general the percentage 

of axils initiating flower buds showed a curvilinear trend (Fig. 

24b). The percentage of axils initiating flower buds increased with 

the level of N up to 15 mM and began to decline at higher levels 

of N. Most of the axils that did not initiate flower buds were 

observed to be the ones towards the apical side of the shoots which 

were produced late (after May, particularly in 20 and 25 mM N 

plants, Fig. 19 and 23), although some of the axils that were 

produced early also did not have flower buds. However, though the 

axils produced in later months were more on NH4+  plus NO3-  plants 

(Figs. 19 and 23), the percentage of axils with flower buds was 

also higher on these plants (Fig. 24b). This suggests that the form 

of N may have affected the initiation of flower buds. The trends 

of NH4+  and NO3-  were not so clear as that of NH 4+  plus NO3- : there 

were sharp declines in the percentage of axils with flower buds at 

15 mM NH4 +  and at 10 mM NO3- . 

Total number of flower buds. Each axil had 0 to 4 flower buds. 85% 

of the total flower buds were initiated in June (Appendix Table 



102 

111.13). 

The trends of total number of flower buds in response to level 

and form of N (Fig. 25a) were similar to those of the number of 

axils initiating flower buds. However the actual differences in 

the total number of flower buds in July between 0 and 25 mM N were 

17.1-fold with NH 4+  plus NO3- , 15-fold with NH4+  and 12.8-fold with 

NO3- . Although the total number of flower buds increased with an 

increase in the number of axils initiating flower buds, the average 

number of flower buds in each axil increased slightly from 0 to 15 

mM and then declined at higher N levels (Fig. 25b). However, the 

trends between forms of N were not clear. 

Number of developed flowers. Flower buds developed rapidly during 

August and September. Since all flowers on a plant did not develop 

simultaneously, they were picked as they developed and combined. 

The number of developed flowers in each treatment is shown in 

Fig. 26a. The number of developed flowers was significantly 

affected by form and level of N and their interaction. With NH 4  

plus NO3-  the number of developed flowers increased up to 20 mM N 

and then declined at 25 mM N. However, with NH 4+  and NO3-  there was 

no decline. The differences between forms of N were not significant 

at 5 mM N. Because of the decline with NH4+  plus NO3-at 25 mM N, the 

difference between NH4 +  plus NO3-  and NH4+  was not significant and 

the difference between NH4 +  and NO3-  was also not significant. These 

trends were not similar to those of the total number of flower 

buds, because some of the initiated flower buds did not develop to 

anthesis and aborted. In general the percentage of flower buds that 

developed to anthesis decreased with increasing levels of N (Fig. 
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Fig. 25. (a) Number of flower buds in July as affected by level 
and form of N. N was supplied from Oct. LSD bar (P = 0.01) 
is for comparison between forms of N at the same level. 
(b) Average number of flower buds/axil in July as affected 
by level and form of N. Average data are derived from the 
ratio of number of flower buds (Fig. 25a) to total number 
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Fig. 26. (a) Number of developed flowers as affected by level and 
form of N. LSD bar (P = 0.01) is for comparison between 
forms of N at the same level. 
(b) Percentage of flower buds developing to anthesis as 
affected by level and form of N. Percentage data are 
derived from the ratio of number of developed flowers 
(Fig. 26a) to total number of flower buds (Fig. 25a). 
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26b). At 15 mM and lower levels of N the differences between forms 

of N were not clear whereas at higher levels of N the percentage 

of flower buds that did not develop to anthesis was highest with 

NH4+  plus NO3-  followed by NH4 +  and NO3- . The effect of N on this 

failure of some flower buds to develop fully may have been 

influenced by the vegetative growth (as discussed in the Discussion 

section). 

10-flower weight. It was not significantly affected by form of N 

and interaction between form and level of N. Therefore the means 

of N level averaged over the forms of N are shown in Fig. 27. The 

individual flower weight decreased with increasing levels of N up 

to 20 mM and leveled off. 

Nutrient concentration in leaves 

Nitrogen. Form of N supplied did not affect the concentration of 

N in the leaves in November but the level of N supplied 

significantly affected the concentration of N in the leaves (Fig. 

28a). Increasing the level of N supply increased the concentration 

of leaf N although the difference between two adjacent levels of 

N (except 15 and 20 mM) were not significant. 

The leaf N concentration in February increased significantly with 

an increase in each level of N (Fig. 28b). Form of N also 

significantly affected the leaf N concentration: the concentration 

was significantly higher with NH 4+  plus NO3-  (Fig. 28c). 

Form of N, level of N and their interaction significantly 

affected the leaf N concentration in June. Increased levels of N 

increased the leaf N concentration (Fig. 28d). At lower levels of 

N, viz. 5, 10 and 15 mM, the differences in the concentrations of 
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108 

leaf N between forms of N were not significant. At 20 mM the leaf 

N concentration was lower with NO 3-  than with NH4+  plus NO3-  and NH4+  

and at 25 mM N the concentration was highest with NH4+  plus NO3-  

followed by NH4+  and NO3. 

The concentration of leaf N in general was higher in February 

when the plants were actively growing and lower in June, when the 

growth was slowing down. 

While the concentration of N in the leaf tissue increased, the 

concentrations of P, K, Ca and Mg decreased (Fig. 29). 

Phosphorus. Form of N supplied did not significantly affect the 

concentration of P in the leaves in any of the months in which leaf 

tissue was sampled but the concentration of leaf P significantly 

decreased with increasing levels of N. The concentration of leaf 

P in June is shown in Fig. 29a and the trends in P concentration 

in the other months were similar (Appendix Table 111.18). The leaf 

P concentration was slightly lower in November and in the other two 

months the concentrations were almost similar. 

Potassium. Form of N did not significantly affect the concentration 

of K in the leaf in any month but level of N significantly affected 

the concentration of leaf K. The leaf K concentration decreased 

with increasing levels of N (in June, Fig. 29a). However the 

differences in the concentration between some two adjacent high N 

levels were not significant (10 & 15 and 20 & 25 in November; 15 

& 20 in February; 10 & 15 and 15 & 20 in June). The leaf K 

concentration was slightly higher in November as compared to the 

other two months (Appendix Table 111.19). 

Calcium. Form of N did not significantly affect the concentration 
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of Ca in the leaf in any month but the leaf Ca concentration 

decreased with increasing levels of N (in June, Fig. 29c). However 

the differences between 15, 20 and 25 mM were not significant. The 

concentrations of Ca were lower in November than in the other 

months (Appendix Table 111.20). 

Magnesium. Form of N did to significantly affect the concentration 

of Mg in the leaf in any month but the leaf Mg concentration 

significantly decreased with increasing levels of N (in June, Fig. 

27d). The concentration of leaf Mg was slightly lower in November 

than in the other two months (Appendix Table 111.21). 

DISCUSSION 

Boronia probably has a capacity for producing 5 leaflets. Under 

sufficient N supply when other environmental conditions 

particularly temperature (during summer) were favorable, the plant 

may have realized its full potential and formed 5 leaflets (Fig. 

17). 

In the present experiment the characteristic leaf yellowing 

symptoms of N deficiency did not appear on boronia plants even when 

N was not supplied. As the leachate of the growth medium collected 

prior to commencing the treatments contained no N, the availability 

of N to 0 N plants may have been only from any N impurity in the 

reagents that were used for preparing the solution containing the 

nutrients other than N. Beadle (1966) observed that some Australian 

native plants have the capacity to pass into a static condition 

(but not dormant) when N supply was withheld and could remain in 

this condition for even more than 2 years. In the present 

experiment there was a very small growth increment in the nil N 



111 

plants. N for this growth could have come from older leaves. In 

nature, native plants do not seem to show visible deficiency 

symptoms even in low nutrient soils. They seem to adapt to the 

changes in the levels of nutrient availability by changing their 

growth rate accordingly and remain healthy. Thus with N supply, 

growth of boronia increased according to the level of N. Therefore 

the degree of N limitation existing in a boronia plant can only be 

recognized by its growth response after N is supplied. Since there 

was no depression of vegetative growth it was apparent that boronia 

would have responded to higher levels of N than those supplied. 

The effects of treatments on different parameters showed up after 

different periods of time depending on the growth rate of each 

parameter. 

Stem diameter is a measurement of cambial growth which 

contributes to boronia shrub volume. The cambial growth was 

responsive to N (Fig. 18). The cambial growth pattern during the 

year was similar to that of shoot growth although the magnitude of 

cambial growth response was less obvious than that of shoot growth 

response. Cambial growth is largely affected by the activity of 

shoots through the downward flow of growth regulating metabolites 

(Kozlowski, 1971). Increasing levels of N increased the shoot 

activity in boronia which may have resulted in an increased 

production and flow of metabolites leading to the increased cambial 

growth. 

Shoot growth pattern is controlled by internal (genetic) and 

environmental factors. Generally, shoot growth of woody plants 

occurs in several flushes during the growing season (Kramer and 
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Kozlowski, 1979). Shoot growth pattern in boronia has not been 

investigated before. In this experiment, boronia did not show 

flushes of shoot growth as indicated by the continuous production 

of nodes and lateral shoots. Probably with continuous daily N 

supply, shoot growth' was continuous. However other environmental 

factors, viz, temperature and light period also influenced the 

shoot growth in boronia. When the mean monthly temperature reached 

ca. 15oC and the light period reached ca. 12 h (in March-April) , 

shoot growth almost ceased with low levels of N supply. In many 

woody plants, low temperatures and short days cause cessation of 

shoot growth (Kramer and Kozlowski, 1979). Growth in a variety of 

Australian woody plants was severely restricted when daily mean 

temperatures fell below 16-18 °C (Groves, 1965). Similarly, Paton 

(1978) found that a 12 h photoperiod is optimal for growth in 12 

species of Eucalyptus. However high levels of N promoted, though 

slowly, shoot growth in boronia even at low temperatures and short 

days. Temperature and light seem to have differentially affected 

the production of nodes and lateral shoots. Lower temperature and 

shorter days stopped the initiation of lateral shoots (Fig. 20) 

while only slowing the production of nodes (Figs. 19 and 23) . 

During the active growing period, increasing N levels led to 

increased number of lateral shoots (Fig. 20) and nodes (Figs. 19 

and 23) in boronia. Similarly, Jackson (1970) found that high N 

supply increased the number of branches and nodes in apricot. 

McIntyre (1977) found that increased N supply made lateral buds 

grow in flax (Linum usitatissimum). Production of lateral shoots 

and nodes is a result of the growth activity of axillary and apical 
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meristems. Thus at low levels of N the growth activity was only in 

few meristems while at high N levels, most meristems were active. 

Therefore there would have been an internal competition for N for 

growth activity in meristems and N supply reduced the competition 

and permitted the growth according to the level of N. Recently 

Trewavas (1985) suggested that the phenomenon of correlative 

influence of a growing apical mersitem inhibiting the development 

of axillary meristems is a form of competition between the growing 

leaves and the buds mediated by N. 

The stimulating effect of N on the initiation of lateral shoots 

(Figs. 20 and 21) is similar to the effect of phytohormone 

cytokinin. Richards (1985) reported that an application of 

cytokinin BAP induced lateral shoots in a related species B. 

heterophylla. N supply may have increased the endogenous cytokinins 

in boronia. N supply induced the formation of cytokinins in the 

roots and their export to the shoots in sunflower plant (Salama and 

Wareing, 1979) and in apple the increase in cytokinins was greater 

with NH4+  as compared with NOi nutrition (Buban et al., 1978). In 

boronia the stimulation of production of lateral shoots was maximum 

with NH4+  plus NO3- . 

One may anticipate that plants that inhabit similar ecological 

situation as that of boronia may show similar growth responses to 

the addition of N. Other Australian plants Grevillea robusta (Moore 

and Keraitis, 1966), Callistemon citrinus and Hakea laurina  

(Thomas, 1982) showed strong responses to 'N with increased foliage 

and dry weight. 

In boronia, increasing N supply led to a faster production of 
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more nodes (Fig. 19 and 23; see also Figs. 22 and 30) before the 

initiation of flowers and thus more sites for flower bud 

initiation. The nodes so obtained by N supply would have little 

effect on flower yield unless they produce flowers. Indeed most of 

these nodes produced flowers. 

Because of the different sizes of the 'plants in different 

treatments at the time of flowering (e.g. Fig. 30), factors (other 

than nutrients) within the plants and in the microevironment of the 

plants may have also changed and affected the flowering. In 

boronia, flowers started to appear at a time when extension growth 

markedly slowed down. Therefore it is reasonable to assume that a 

reduction in vegetative growth was associated with flowering in 

boronia. 

In boronia the percentage of axils initiating flower buds was 

low at low N levels and was diminished at high N levels (Fig. 24b). 

At low N levels, N may not have met the basic requirement of the 

initiation. At high N levels the shoots on the plants were usually 

enclosed within canopy and were subjected to a low light condition 

which may have affected the initiation of flower buds. In apricot, 

low light intensity greatly suppressed the flower bud initiation 

and decreased the number of flower buds initiated at each node 

(Jackson, 1969). 

Form of N seemed to have regulated the initiation of flower buds 

in boronia though the effects were not clear (Figs. 24b and 25b). 

Grasmanis and colleagues (1967 and 1974) showed that NH4 +  added to 

NOi promoted flower bud initiation in apple. This promotion may 

have resulted from changes in the levels of nitrogenous compounds. 
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Fig. 30. Variation in the size of plants due to the effect of N: 
nil N plant (left) and 20 mM N114++NO3 -  plant. 
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Grasmanis and Leeper (1965) recorded higher concentrations of 

asparagine and arginine in apple trees supplied with NH 4  compared 

to the trees supplied with NOi. Perhaps these or some other amino 

acids may be involved in the initiation of flower buds in boronia. 

Phytohormones play an important role in the flower bud initiation, 

therefore interactions between N nutrition and phytohormones may 

also be involved in these effects evoked by N on the initiation of 

flower buds in boronia. 

Increasing levels of N negatively affected the development of 

flower buds in boronia (Fig. 26a). With increasing levels of N the 

nodes and associated leaves continued to grow during flowering. The 

percentage of flower buds that developed to anthesis is plotted 

against the number of nodes increased during August-September (the 

time of flower bud development) (Fig. 31). It shows an inverse 

relationship. Thus the developing leaves may have competed with the 

developing flowers for similar metabolites (not necessarily only 

for N). In Bougainvillea, •Sachs and colleagues (in Kinet  

1985) showed that leaves developing at the same time as flowers act 

as competing sinks although this may also be interpreted in terms 

of production of inhibitors by the developing leaves. 

The developing leaves may have also hastened up the development 

of flower buds towards anthesis. Thus the duration of the 

development of flowers would have been shorter reducing the flower 

weight (Fig. 27). At low N levels vegetative growth did not resume 

until September, so without any competition of developing leaves 

the duration of flower development would be longer resulting in 

increased weight of flowers at anthesis. Flower weight is an 
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important trait to assess the flower quality in boronia. 

Nutrient concentration in leaves 

The ability of a plant to utilize NH 4+  or NO3 -  has been found to be 

related to its relative soil environmental adaptations (Haynes and 

Goh, 1978). The present results of increased growth by boronia with 

NH4+  plus NO3 -  followed by NH4+  and NO3 -  can be related to the natural 

habitat of boronia. Boronia naturally occurs in the areas where it 

seems ammonification is not greatly affected but nitrification is 

reduced (Chap. II. 3.2, p. 13). It leads to NH 4+  as the predominant 

form of N although not without small quantities of NO3 - . Boronia 

growing under such conditions may have adapted to mixed 

assimilation of NH4+  plus NO3 -  as well as predominantly NH4+-based N 

nutrition. Similar observations of higher growth with NH 4+  plus NO 3 -  

or NH4 +  than with NO3 -  were made on the plants that naturally occur 

where nitrification is reduced (Table 2, p. 9). 

However, higher yields of plants that prefer NO3 -  were also 

obtained with a NH 4+  plus NO3 -  mixture than with NO3 -  solely (Table 

3, p. 11). The reasons for this effect are not clear. Cox and 

Reisenauer (1973) ascribed the growth stimulation by NH 4+  plus NO3 -  

to a decreased energy requirement for the assimilation of NH 4+  

compared to the assimilation of NO 3 -  (which has to be reduced to NH 4+  

before assimilation while NH4+  is directly incorporated) in the 

plant. However if this were the case then sole NH 4 +  grown plants 

should yield higher than NH4+  plus NO 3 -  plants. 

The increased growth with NH 4 +  plus. NO 3  seems to be the result 

of an increased uptake of N. Higher concentration of N in the 
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leaves of boronia grown with NH 4  plus NO 	28c and 28d) 

showed that N uptake was higher with NH 4  plus NO3 -  than with NH 4  

or NO3 - . Results with other plants also show higher N in plants 

grown on NH4  plus NO3 -  (e.g. Schrader et al., 1972; Cox and 

Reisenauer, 1973). It may be that plants are able to absorb more 

N from NH4+  plus NO 3 -  than from either source alone. 

Since total N in the leaves increased with increasing levels of 

N supply (Fig. 28), organic N may have also increased. Organic N 

is likely to be critical in supporting the growth and development 

of shoot meristems (Elliott and Nelson, 1983). Increased total N, 

hence increased organic N may have stimulated the development of 

nodes and lateral shoots in boronia (Figs. 19, 20 and 23). 

Although there were significant differences in the growth of 

boronia with different forms of N the differences in the 

concentrations of P, K, Ca and Mg in the leaf tissue were not 

significant. This suggests that to some degree, variability in the 

growth did not affect the concentration of these ions. 

It has been ascertained in many investigations that increased 

NO3 -  uptake as opposed to NH4+  uptake led to increased uptake of 

cations while anion uptake is diminished (Table 4, p. 20). However 

the differences in the concentrations of cations K, Ca, Mg and 

anion P in boronia leaves with different forms of N were not 

significant. A hypothesis to explain the increased uptake of 

cations associated with NO 3 -  uptake is that to balance the negative 

charges takenup in the form of NO 3 - , cations are taken up along 

with NO3 -  and translocated to the leaves where NO 3 -  is reduced 

(Kirkby and Knight, 1977). The same rationale is applied to the 
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uptake of NH4 + : to maintain an electrical neutrality the uptake of 

NH4 +  would be accompanied by the uptake of an anion, e.g. H2PO4-  

(Hageman, 1984). Though with the increasing levels of N supply 

there was an increase in the uptake of NO3-  ( as indicated by an 

increase in the concentration of N in the leaves), there was no 

increase in the uptake of cations. Thus the hypothesis is probably 

true when NO3-  is reduced in the leaves. If NO3-  is reduced in the 

roots and translocated to the shoots in a reduced form such as 

amino acids, cation concentration should not increase in the 

leaves. NO3-  reduction site varies with plant species and external 

concentration of NO3-  ( Pate, 1980). In the present experiment, with 

the exposure of roots to the nutrient solutions for a short time, 

the absorbed NO3-  may have been reduced in the roots. Similarly, 

Barker and Maynard (1972) found that NH4 +  relative to NO3-  did not 

affect the cation concentration in pea shoots. The different 

behavior of plants in this respect of cation accumulation may be 

an adaptation for efficient utilization of N for growth in their 

natural habitats. 

Cox and Reisenauer (1973) attributed the decrease in cation 

uptake during NH4+  nutrition to ionic competition with NH4+  ions 

at the site of intake and the increase in cation uptake with NO3-  

nutrition to reduced competition in the absorption process. Such 

antagonistic effect of NH4 +  on the uptake of cations may lead to 

deficiency of cations in the plants growing under the conditions 

where NH4+  is the predominant form of N. Therefore, boronia and 

other plants adapted to better utilization of NH4+  may have an 

effective ability to take up cations even in the presence of NH4+. 
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Other plants adapted to NH4+  uptake did not show Ca or Mg deficiency 

when grown on NH4+  (Pinus contorta, Krajina et al., 1973) or any 

significant differences in P and K concentrations between NH 4 +  or 

NOi nutrition (Deschmpsia flexuosa, Gigon and Rorison, 1972). Moore 

and Keraitis (1971) found that in Eucalyptus rossi, E. sideroxylon  

and E. polvanthemos which grow better with NH 4+ , Ca uptake was high 

with NH4+ . Ingestad (1976) found that the cation uptake capacity of 

Vaccinium plants, which occur in localities with NH 4+  as the main 

source of N, is strong and independent of NO 3- . Such efficient ion 

uptake mechanism may be a significant property in the plants that 

are able to grow in habitats where availability of nutrient ions 

is low. 

Symptoms similar to those that occurred in boronia at lower N 

levels (chlorotic leaf tips) were observed on some Australian 

native Wallum plants by Grundon (1972) who attributed the symptoms 

to P toxicity. Nutrients other than N were supplied at similar 

levels to all boronia plants. Apparently all the plants took up 

similar amounts of other nutrients regardless of their growth 

differences. Thus at lower N levels, due to reduced growth the 

concentrations of other nutrients including P in the leaves were 

higher (Fig. 29) and may have reached toxic levels in the leaf tips 

causing the symptoms. The P content of a Wallum plant Leptospermum 

liversidgii showing slight chlorosis was 0.76% (Grundon, 1972). The 

P concentration in boronia was lower (did not exceed 0.26%). 

However, bulked shoot (leaf and stem) tissue was analyzed in L. 

liversidgii where as in boronia only the leaf tissue was analyzed 

and further, the symptoms in boronia were very slight. There may 
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also be species differences in the concentration of P causing the 

toxicity. 

With increasing N levels due to increased growth, the 

concentrations of other nutrients were diluted (Fig. 29) and no 

toxicity symptoms were produced. Negative relations between N and 

P were observed in other Australian native plants also: Acacia  

verticillata (Thomas, 1981), Hakea laurina (Thomas, 1982). Such a 

dilution by increased growth with increased N levels may eventually 

cause deficiency of other nutrients although in boronia no familiar 

deficiency symptoms of other nutrients were produced. Moore and 

Keraitis (1966) observed K deficiency symptoms on an Australian 

native plant Grevillea robusta at high N levels due to increased 

growth. 

Low concentration of other nutrients may also affect flower 

development. In tomato, P deficiency reduced the number of flowers 

that develop to anthesis (Menary and van Staden, 1976) and 

insufficient K produced smaller than normal roses (Seele, 1950). 

Practical implications 

Since N deficiency symptoms did not readily occur in boronia, care 

should be taken to identify N stress. Reduction in shoot growth and 

in the production of lateral shoots were associated with N stress. 

Although high N at the time of flowering seemed to have a negative 

effect on the development of flower buds, it was the number of 

nodes at the time of flowering that largely determined the number 

of flowers per plant. Therefore boronia should be free of N stress 

so as to produce as many nodes as possible during the early 

vegetative growth period (Sept.-Mar.). Care should be taken to time 

_ 
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N application so that it does not encourage vegetative growth at 

the time of flowering. Amount of shoot growth and branching 

determine the form of plant which is important in mechanical 

harvesting. This factor should also be considered in application 

of N as apparently branching can be controlled by N nutrition. The 

N fertilizer applied should contain both NH 4+  and NO3 -  forms. A 

positive balance of nutrients especially between N and P is 

important to avoid deficiency or toxicity of P and other nutrients. 

Overall the present results show that with careful N application 

flower yields can be improved in boronia. 



VI. EFFECTS OF NITROGEN FORM AND pH ON UPTAKE AND ASSIMILATION OF 

NITROGEN IN BORONIA 

As noted in the Review of Literature, generally rhizosphere pH 

decreases with NH 4+  nutrition and increases with NO3 -  nutrition. 

Further, maximum absorption of NH 4+  by plants occurs at higher pH 

while maximum absorption of NO 3 -  occurs at lower pH though there 

are species differences in this effect. Thus generally the effects 

of NH 4+  nutrition and NO 3 -  nutrition on rhizosphere pH have 

detrimental effects on the absorption of the respective ions. 

An experiment was conducted to study the effects of NH 4
+ and NO 3 -  

on the direction and magnitude of changes in pH of the growth 

medium and the uptake of NH 4+  and NO 3 -  by boronia under such changing 

pH conditions. Further, the uptake of NH 4+  and NO3 -  by boronia under 

the conditions where pH was held constant (at lower and higher pH) 

was also studied. In addition, assimilation pattern of NH 4+  and NO 3 -  

absorbed at low and high pH into amides and amino acids in root 

and leaf tissue was also studied. 

A water culture technique was used in this experiment to monitor 

the pH changes closely and for easy recovery of roots for the 

analysis. 

MATERIALS AND METHODS 

Plant material. 1-yr old well rooted cuttings of boronia clone HC-

1 growing in vermiculite were taken. These plants were being 

supplied with 10 rnM NH 4 +  plus NO3  type Long Ashton nutrient solution 

once a week. The vermiculite was washed off the roots gently in 

running water by a hand sprinkler and the plants were transferred 

124 
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to a solution containing 10 mM NH 4+  plus NO3-  type nutrient solution. 

Culture technique. The nutrient solution was held in a 9-1 brown 

plastic bucket wrapped with Al foil. The top of the bucket was 

covered with a white painted hardwood,(Masonite) lid in which holes 

were made. A plant was placed in a hole and wrapped with crimped 

Terylene fibre for support. In another hole a tube was inserted for 

supplying roots with 02 . Compressed air was bubbled through this 

tube into the nutrient solution (for 10 min every 30 min). This 

aeration stirred the solution which would have prevented any 

nutrient depletion at the root surface. 

Growth conditions. The plants were placed in a growth cabinet 

(Controlled Environments). Light hours were set for 15 and light 

intensity was 165 uE m-2  s the top of the plant. Day temperature 

was set at 20°C and night temperature was set at 15 °C. Such 

conditions which naturally occur locally during summer promote 

vegetative growth in boronia. 

Composition of nutrient solutions. The nutrient solutions used as 

the treatments were 10 mM NH 4+  or NO3-  type solutions as given in 

Table 8 (p. 84). The nutrient solutions were prepared with 

deionized water. During the experimental period the volume of 

nutrient solution in a bucket was kept constant by adding deionized 

water to make up the loss by evapotranspiration. 

Treatments. The treatments were: 2 N forms (NH 4+  and NO3- ) X 3 pHs 

(uncontrolled and controlled at 4.5 and 6.5). Each treatment had 

3 replications. Because of the restricted availability of space 

under growth cabinet the replications were done consecutively. The 

experimental design was factorial in a CRD. 
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The pH of nutrient solutions was adjusted by adding the required 

amounts of 0.1 M HC1 to make them acidic or 0.1 M NaOH to make them 

alkaline. Where pH was controlled daily, the acid or alkali was 

added daily. 

Measurements. The pH of nutrient solutions was recorded daily. 

Every 5 days the solutions were sampled and NH4 + or NO; in the 

respective solutions were analyzed by Kjeldahl method using MgO or 

Devarda's alloy (General Materials and Methods, p. 39). The NH4+  

solutions were analyzed for NO; and no NO; was detected anytime, 

therefore the NH4+  solutions were free of nitrification effect. 

Every 5 days on each plant on two selected shoots, the number of 

nodes produced and the number of laterals produced were counted. 

After 30 days the plants under constant pH conditions were 

harvested, roots and leaves were washed with distilled water and 

analyzed for amides and amino acids by HPLC (Chap. 111.1, p. 44). 

The data of measurements were analyzed statistically. Where the 

measurements were made on two selected shoots on each plant the 

values were averaged and the analysis performed on the means. Data 

of measurements made every 5 days were analyzed by treating the 

days as a factor and analyzing as a split-plot design. ANOVA was 

computed and when the F test for a treatment effect was significant 

at P = 0.05 or 0.01, LSD test was used for comparison of the 

treatment means. 

RESULTS 

After transferring the plants from vermiculite to the solution 

culture, roots began to become dark brown and a few leaves 

abscised. After 10-15 days, new roots began to emerge. Compared to 
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numerous, long, thin and brown old roots, the new roots were few, 

short, thick and white. Within a week after the initiation of new 

roots, shoot nodes started to elongate. The original roots 

blackened and died. The new rooting occurred on <1/3 of the plants 

that were transferred to the nutrient solutions and on the other 

2/3 of the plants the new roots were not initiated and the plants 

died. The successfully rooted plants were transferred to the 

treatment solutions and then the measurements were started (see 

Fig. 32). 

pH. When pH of the nutrient solution was controlled, the daily 

deviations were generally <0.2 unit from the desired pH values 

(Fig. 33) and thus the daily adjustment of pH was adequate to 

maintain a satisfactory stability of the pH treatments. 

The changes in pH of NH4 +  and NO3 -  solutions when pH was not 

controlled are shown in Fig. 34. With NO 3 -  solution, pH rose from 

6.5 to 7.0 while in contrast NH 4+  solution pH dropped from 6.5 to 

3.0. Thus the magnitude of change in pH was very low with NO 3 -  (only 

0.5 unit in 30 days) while the decrease in pH with NH 4+  was >0.1 

unit a day. 

N depletion from nutrient solutions. The concentration of N in the 

nutrient solutions significantly decreased over the days (Table 9) 

indicating an uptake of N by the plants. The nutrient solution pH 

did not significantly affect the uptake of N. Irrespective of pH, 

significantly more N was depleted from NH 4+  solutions than form NO 3 -  

solutions. 

Nodes. Production of nodes significantly increased over the days 

(Table 10) but the effect of N form or pH was not significant. 
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Fig. 32. New roots initiated by water culture. 
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Fig. 33 Daily variation in pH of the solutions containing NH 4+  or 
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Fig. 34. Changes in pH of the solutions containing NH 4+  or NO3 -  when 

pH was not adjusted. 
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Table 9, Depletion of N from solutions containing NH 4 +  or NO3 at different pHs. 

N in solution, mM 
Form 
of N 	pH 	Days: 0 	5 	10 	15 	20 	25 	30 	Mean 

changinga 	10.00 9.30 9.23 9.07 8.93 8.93 8.93 	9.20 
NH 	4.5 4.5 	10.00 9.57 	9.47 	9.07 	9.17 9.13 8.93 	9.33 

	

6.5 	10.00 	9.63 	9.47 	9.40 	9.23 	9.07 9.00 	9.40 
9.31 

changing 	10.00 9.63 9.47 9.20 9.13 9.13 9.13 	9.39 

	

4.5 	10.00 	9.70 	9.47 	9.57 	9.37 	9.20 9.23 	9.50 

	

6.5 	10.00 	9.57 	9.40 	9.40 	9.40 	9.20 9.30 	9.47 
9.45 

	

Mean 	10.00 9.57 9.42 9.29 	9.21 9.11 9.09 

Significance 
	

LSD 
Form of N 
	

0705  0.11 
0.01 	ns 

pH ' 	0.05 	ns 
Form of N X pH 	 0.05 	ns 
Days 	0.05 	0.17 

0.01 	0.13 
Form X Days 	0.05 	ns 
pH X Days 	0.05 	ns 
Form of N X pH X Days 	0.05 	ns 

apH adjusted only in he beginning to 6.5. 
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Table 10. Production of lateral shoots as affected by NH 4 + or NO3  
at different pHs. 

No. of nodes, cumulative 
Form 
of N 	pH 	Days: 0 	5 	20 	15 	20 	25 	30 	Mean 

changing 	0 	0.5 	1.3 	1.7 	2.0 	2.8 	3.3 	1.67 
NH 4 +  

	

4.5 	0 	0.3 	1.3 	1.7 	2.0 	2.7 	3.2 	1.60 

	

6.5 	0 	0.2 	1.0 	1.3 	1.7 	2.2 	2.7 	1.29 
1.52 

changing 	0 	0 	0.7 	1.2 	1.8 	2.5 	3.0 	1.31 
NO 3 - 	4.5 	0 	0.3 	1.2 	1.5 	1.7 	2.3 	2.8 	1.40 

	

6.5 	0 	0.3 	0.8 	1.3 	1.5 	1.8 	2.2 	1.14 
1.28 

Mean 	0 	0.28 1.06 1.45 1.78 2.39 2.87 

	

Significance 	P 	LSD _ 
Form of N 	0.05 	ns 
pH 	 0.05 	ns 
Form of N X pH 	0.05 	ns 
Days 	0.05 	0.04 

	

0.01 	0.03 

	

Form X Days 	0.05 	ns 
pH X Days 	0.05 	ns 

	

Form of N X pH X Days 	0.05 	ns 
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Lateral shoots. Lateral shoots were apparent at the nodes only 

after 25 days after the experiment began. After 5 more days there 

was a significant increase in the initiation of lateral shoots 

(Table 11) but the effect of form of N or pH was not significant. 

Amides and amino acids in plant tissues. The concentrations of 

amides and amino acids in root and leaf tissues as affected by form 

of N and pH are shown in Table 12. Form of N had a pronounced 

effect on the concentration of amides, asparagine and glutamine. 

Within the plants, concentration of asparagine was significantly 

higher in the roots than in the leaves. In both plant parts, 

concentration of asparagine was higher (3.5 times in the roots and 

2.2 times in the leaves) when supplied with NH 4+  than with NO3- . 

Concentration of glutamine was also significantly higher with NH4+  

than with NO3- ; however, there were no significant differences 

between the roots and the leaves. There was no significant effect 

of pH on the concentration of amides. There were no significant 

differences in any of the amino acids due to form of N or pH or 

plant part or their interactions. 

Generally in the decreasing order of concentration the amides 

and amino acids were: 

Asn>Pro>G1n>Thr>G1u>A1a>Ser>Asp>Gly>Val>Met>Phe>Leu+Iso>Cys>Lys. 

DISCUSSION 

The contrasting changes in the nutrient solution pH (Fig. 34) may 

be due to the excretion of 11 +  or OH -  by the plants. Raven and Smith 

(1976) proposed that when N is assimilated in the cytoplasm of 

plant root cell, one 11+  per NH4+  or one OH -  per NO3-  which are 

generated in the cytoplasm are removed to maintain a constant 



Table 

Form 

11. 	Production of lateral shoots as affected by NH4
+ 

at different pHs. 

No. of lateral shoots, cumulative 

or NO3  

of N pH 	Days: 0 5 10 15 20 25 30 Mean 

+ changing 0 0 0 0 0 0.5 0.7 0.17 
NH -4 4.5 

6.5 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0.2 
0 

0.5 
0.2 

0.10 
0.02 
0.10 

changing 0 0 0 0 0 0.2 0.3 0.07 
NO 4.54.5 0 0 0 0 0 0.2 0.3 0.07 

6.5 0 0 0 0 0 0 0.2 0.02 
0.05 

Mean 0 0 0 0 0 0.17 0.36 

Significance P LSD 
Form of N 0705 ns 
pH 0.05 ns 
Form of N X pH 0.05 ns 
Days 0.05 0.01 

0.01 0.01 
Form X Days 0.05 ns 
pH X Days 0.05 ns 
Form of N X pH X Days 0.05 ns 
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Table 12. 

Form of N 

Concentrations of free 

pH 	Plant part 

amino acids in 

Asn 	Gin 

roots 

Ser 

and 

Asp 

leaves as affected by N form at different pHs. 

Amino acid, 	nmol g
-1 	fresh wt 

Glu 	Thr 	Gly 	Ala 	Pro 	Met 	Val 	Cys 	Phe Lou+ 
Iso 

Lys 

NH4
+  

4.5 Root 16087 2691 653 585 870 1252 427 729 3361 184 307 154 169 168 138 
Leaf 9557 2610 693 608 835 1442 452 705 3954 181 350 145 175 172 138 

6.5 Root 16942 2812 708 618 850 1360 435 713 3546 178 325 148 169 172 138 
Leaf 8940 2853 678 625 852 1370 448 733 3677 178 332 148 175 170 136 

NO 3 -  4.5 Root 4695 2414 682 588 842 1307 427 697 3311 181 350 147 172 172 140 
Leaf 4306 2188 656 625 823 1268 448 725 3432 181 339 148 172 173 138 

6.5 Root 4854 2234 715 615 852 1373 448 741 3503 178 343 148 166 17') 1.10 
Leaf 4027 2110 693 665 825 1320 452 674 3666 178 350 150 178 173 138 

Significance P _ LSD 
Form of N 0.05 1445 283 

0.01 1046 205 
pH 0.05 ns ns 
Form of N X pH 0.05 ns ns 
Plant part 0.05 1445 ns The effects'were not significant with regard to all other amino acids. 

0.01 1046 
Form of N X Plant part 0.05 2042 ns 

0.01 1482 
pH X Plant part 0.05 ns ns 
Form of N X pH X Plant part 0.05 ns ns 
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cytoplasmic pH favorable for protein production. Reading the 

changes in pH of the nutrient solutions in the present experiment 

as reflections of the relative NH 4+  influx/H +  efflux and NO3-  

influx/OH -  efflux would allow a conclusion that boronia plants 

absorbed more NH4+ . However when NH4+  is assimilated, H+  is excreted 

to the external medium and when NO 3-  is assimilated, OH -  is partly 

excreted to the external medium and partly neutralized via the 

'biochemical pH stat' which restores a balance of pH by producing 

organic acids whenever the intercellular pH rises above a certain 

limit (Raven and Smith, 1976). Also, the changes in pH of the 

nutrient solutions may be caused by the difference in the uptake 

of cations and anions. 

However, the higher pH changes in NH4 + solutions corresponded 

with higher depletion of N from these solutions as compared to NOi 

solutions (Table 9). NH4 +  and NO3-  uptake by boronia was independent 

of pH: 4.5, 6.5 as well as changing pH. Generally more NH 4+  uptake 

occurs at 6.0 to 7.0 while more NO3 -  uptake occurs at 4.5 to 6.0 

(e.g. Hewitt, 1966) However, dependence of uptake of NH 4+  or NO3-  

on pH seems to be dependent on the plant species. Favorable effect 

on growth with NH4 +  at all pHs have been reported for plants that 

grow naturally in the soils where NH 4 +  occurs predominantly (Pinus 

radiata and Picea glauca, McFee and Stone, 1968; Vaccinium 

angustifolium, Townsend, 1969; Deschampsia flexuosa, Gigon and 

Rorison, 1972). The conditions that occur in the natural habitat 

of boronia indicate an availability of more NH 4+  than NO; (Chap. 

11.3.2, p. 13). Thus the plants adapted to such conditions may have 

better uptake capacity for NH 4 +  than for NO; independent of pH. 

- 



136 

Recently Atkinson (1985) found that NH 4+  uptake was higher in 4 

plants that co-exist in an upland acidic grassland, viz. 

Deschampsia flexuosa, Festuca ovina, Juncus squarrosus and Nardus  

stricta. 

The absorbed NH4+  and NO3' are assimilated to form amino acids in 

the plants. Current theory suggests GS-GOGAT system (Oaks and 

Hirel, 1985) according to which glutamine synthetase (GS) catalyzes 

incorporation of NH3 to give glutamine and glutamine synthase 

(GOGAT) catalyzes glutamine to glutamate. 

Most of the N in the tracheal sap is present as amino acids in 

citrus (Moreno and Garcia-Martinez, 1980), apple and other woody 

perennial plants (Bollard, 1957) suggesting that incoming inorganic 

N is transformed and amino acids are synthesized in the roots and 

translocated to the aerial parts under normal conditions of N 

supply in the woody perennial plants. Thus the amino acids detected 

in the leaves of boronia may have root originated and those in the 

roots may have been synthesized there itself. However whether amino 

acids are recycled in the phloem from the leaves to the roots in 

woody plants is not known. 

Each plant species seems to have a characteristic spectrum of 

the amides and amino acids, possibly as a consequence of 

differences in metabolism. In boronia, high levels of asparagine 

were found (Table 12). In citrus, Kato (1980) using 15N established 

that newly taken up N was assimilated into glutamine and then into 

glutamate followed by asparagine which became predominant. 

Asparagine is synthesized by the transfer of amide from glutamine 

to aspartate by asparagine synthetase. Moreno and Garcia-Martinez 
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(1980) reported asparagine to be the major nitrogenous compound in 

the tracheal sap of citrus. Therefore in these plants considering 

its large pool, probably asparagine acts as an amino acid storage 

pool and is the main transport form of N upward from the roots 

leading to higher asparagine in the leaves. 

Higher levels of amides were found in boronia plants supplied 

with NH4+  than NO3-  (Table 12). The pattern of NO3 -  assimilation is 

similar to that of NH4+  assimilation (Yoneyama and Kimazava, 1975) 

indicating that the incorporation of NO 3-  into amino acids takes 

place after the reduction of NO 3-  to NH4 + . Therefore, synthesis of 

amino acids in NO 3-  plants may have odcurred at a slower rate due to 

the low NO3-  reduction in boronia (Chap. VIII) resulting in lower 

levels of amino acids in NO3-  supplied plants. 

Higher levels of amino acids were found in many plants with NH4 +  

nutrition (Chap. II. 3.5, p. 22). However all these plants exhibit 

adverse effect when grown with NH 4+ . An explanation for this effect 

is that absorbed NH4 +  within the plant is rapidly detoxified by the 

synthesis of amides and amino acids. This necessitates a high level 

of demand on carbon skeletons at the expense of other necessary 

carbon compounds resulting in the reduced growth of plant. No 

adverse effect on the growth was apparent in boronia plants grown 

with NH4+ . In sclerophyllous plants such as boronia carbon is 

produced in excess (and deposited in cell walls or cuticle) 

(Schulze, 1982), therefore such plants may not be limited by the 

carbon supply. Similarly Rufty et al. (1983) observed that NH4 +  did 

not depress the growth in soybean when exposed to NH 4+  during the 

steady exponential growth during which the uptake of N was balanced 
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with the flux of carbohydrate to the roots. Therefore they 

concluded that plants can utilize NH4+  as long as a balance is 

maintained between the carbohydrate availability and acquisition 

of NH4+ . 

The differences in growth (production of nodes and lateral 

shoots) were not significant although the trend showed a higher 

growth with NH4+  than with NOi (Tables 10 and 11). The increase in 

plant growth during this experiment was low resulting in a low 

response to the treatments. A longer experimental period may have 

yielded higher growth and greater response to the treatments. 



VII. OPTIMIZATION OF ASSAY CONDITIONS FOR NITRATE REDUCTASE AND 

NITRITE REDUCTASE ENZYMES FROM BORONIA 

Nitrate reductase (NR) activity is measured in vivo  and in vitro 

(Hageman and Reed, 1980). The in vivo  assay is also carried out in 

laboratory vessels using excised plant tissue and not on intact 

tissue on plant itself. 

It is usual in the enzyme work to aim at conditions that give 

maximum activity of the enzyme being studied. Factors affecting 

the assays of NR activity have been reported for many plants (e.g. 

Havill et al., 1974; Jones and Sheard, 1977; Lillo, 1983; 

Shivshanker and Ramdasan, 1983; Davies and Ross, 1985). From these 

reports it is evident that the assay conditions that are optimal 

for one plant species are not necessarily the same for other plant 

species. Therefore it is necessary to establish optimum conditions 

for the enzyme from particular species that is being examined. 

Like NR activity, nitrite reductase (NiR) activity is also 

measured in vivo  (Vega et al., 1980). However, NiR has not been 

characterized to the same extent as NR has been. Similarly there 

are very few reports (Ferrari and Varner, 1971; Pierson and 

Elliott, 1981) and some indications (Klepper, 1974, 1975, 1976, 

1979; Finke et al., 1977) characterizing NiR activity in vivo.  It 

may be due to the fact that NiR is not considered to be a limiting 

enzyme in most plants. 

Before investigating the role of NR and NiR enzymes in N toxicity 

in boronia, a series of experiments were conducted with an 

objective of obtaining the optimal assay conditions for 

determination of: 

139 
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NR activity in vivo  in roots, 

NR activity in vivo  in leaves. 

NR activity in vitro  in leaves, 

NiR activity in vivo  in leaves and 

NiR activity in vitro  in leaves. 

MATERIALS AND METHODS 

The methods common to all the experiments are described in this 

section and any variations in these methods (for testing specific 

treatments) are given in the next section along with the Results 

and Discussion of each experiment. The optimum factor established 

in one experiment was used while testing the other factors in the 

subsequent experiments. 

Plant culture. 3-yr old plants of clone HC-1 were grown in 2:1 v/v 

composted eucalyptus bark:sand in 15-cm plastic pots. The plants 

were grown in a greenhouse under natural daylight (mean daily 

temperature ca. 22 °C). The plants were supplied with 10 rnM NH4+  type 

Long Ashton nutrient solution (Table 8) once a week and with water 

once a day. 

One day before the analyses of plant tissue, each plant was 

supplied with 25 mmol NO3-  as Ca(NO3 ) 2  and the growth medium was 

watered till it was saturated. 

NR exhibits a diurnal variation in its activity (Janiesch, 1973; 

Lillo, 1983). Therefore to reduce these light dependent 

fluctuations in NR activity, the leaves and roots were always 

sampled about noon. Fine roots and fully developed middle leaves 

on shoots were sampled. The roots and leaves were washed in 

deionized water to remove any exogenous NO3- , blotted with tissue 

I 
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and weighed. 

The basic procedures for the enzyme assays were those of Hageman 

and Reed (1980) for NR and of Vega et al. (1980) for NiR. 

NR activity in vivo  in roots and leaves. 300 mg of roots or leaves 

was placed in a vial containing 5 ml of cold (refrigerated) assay 

medium which in all the cases was composed of 100 mM K/HPO 4  buffer, 

pH 7.5. Details of NOi concentration and other additives in the 

assay medium are given in the description of each experiment in the 

next section. The vial was wrapped in Al foil to exclude light and 

incubated in an incubator at 30°C. At the end of incubation period 

(usually 1 h) an aliquot of the assay medium was tested to 

determine the NOi produced. There was a zero time control. 

NiR activity in vivo  in leaves. NiR activity in vivo  was determined 

in an assay similar to NR activity in vivo  assay but as the 

disappearance of NOi from the assay medium in a photoreduction 

method. 

300 mg of leaves were placed in a vial containing 3 ml of the 

assay medium which was composed of K/HPO4 buffer and NOi. The vial 

was then placed in a shaking water bath at 30 °C and illuminated by 

fluorescent bulbs that gave >230 pE m -2  s-1  at the leaf surface. At 

the end of incubation period (usually 1 h) an aliquot of the assay 

medium was taken for the estimation of NOi reduced by the enzyme. 

Preparation of cell-free enzyme extract from leaves. The extraction 

medium contained 100 mM K/HPO4 buffer, pH 7.5; 1 mM EDTA (to 

minimize a possibility of inhibition of the enzymes by metal ions) 

and other additives as given in the description of the experiments. 

The leaves were homogenized in the extraction medium at 0 °C at a 
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leaf tissue:extraction medium ratio of 1:6 w/v. The homogenate was 

squeezed through 4 layers of cheesecloth. The filtrate was 

centrifuged at 30,000 X g for 15 min at 0°1: (MSE High Speed 18 

centrifuge) and the supernatant was used for the assays. 

NR is very unstable (Hageman and Reed, 1980), therefore the 

extraction and assay were done at 0°C within 2 h after sampling 

the leaves. 

NR activity in vitro assay. NR activity was measured by the NOi 

formed by the enzyme. Usually the assay mixture contained 50 pmol 

(500 pl of 100 mM) K/HPO4  buffer, pH 7.5; 800 nmol (400 ).1l of 2 

mM) NADH (Serva); 20 pmol (200 pl of 100 mM) KNO3 ; the enzyme 

extract and distilled water to make a final volume of 2 ml. The 

reaction was started by adding the enzyme. The incubation was at 

o i 30 C n a water bath for a period of usually 30 min. A zero time 

was used for the control. 

Residual NADH in the assay medium at the end of reaction period 

is known to interfere in full development of color for the 

determination of NOi (Hageman and Reed, 1980) and this interference 

can be overcome by the removal of residual NADH. Residual NADH was 

precipitated with Zn salts by adding 100 pmol (100 pl of 1 M) zinc 

acetate and mixing on a Vortex. The precipitate was clarified by 

centrifugation at 5000 X g for 15 min. An aliquot of the 

supernatant was used for NOi determination. 

NiR activity in vitro assay. NiR activity was measured by the 

dithionite assay (Vega et al., 1980) which involves 'sodium 

dithionite as the reductant and an artificial substitute of 

ferredoxin, methyl viologen as the electron donor. The enzyme 
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activity was measured by the disappearance of NO2-  from the assay 

medium. 

The assay mixture consisted of 150 pmol (300 )1l of 500 mM) Tris 

HC1 buffer, pH 8.0; 15 pmol (300 pl of 5 rnM) methyl viologen 

(Aldrich); usually 400 pmol (200 ).il of 2 mM) NaNO2 ; 300 pl of fresh 

sodium dithionite solution; the enzyme extract and distilled water 

to give a final volume of 2 ml. Just prior to its use, 25 mg sodium 

dithionite was dissolved in 1 ml of 0.29 M NaHCO 3 . The reaction was 

started by the addition of sodium dithionite. After incubation at 

30()IC (usually for 20 min) in a water bath the reaction was stopped 

by mixing the test tubes on a Vortex until dithionite was oxidized 

(until the blue dye became colorless). The aliquot was diluted and 

NO2-  was determined. 

NO2-  was determined by the Griess-Ilosvay colorimetric method 

(General Materials and Methods, p. 43). The calibration curves were 

prepared in the presence of respective treatment additives. 

Protein was determined by Bio-Rad protein assay, (p. 43). 

The activity of the enzymes is expressed on a fresh weight basis 

for in vivo  assays and on both fresh weight and protein bases for 

in vitro  assays. 

For each treatment, assays were run on two samples from each of 

three plants which were supplied with NO3-  fertilizer. The values 

of two analyses were averaged. Statistical analysis to examine the 

significance of the difference between the treatments was done by 

ANOVA (and LSD) when more than two treatments were examined and by 

t-test when only two treatments were examined. 
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RESULTS AND DISCUSSION 

NR activity in vivo  assay in roots and leaves 

Effect of NO3-  concentration. The concentration of NO; in the assay 

medium was varied to determine the concentration for maximum NB 

activity in vivo  in the roots and leaves. 

For both the roots and leaves the NR activity was maximum at a 

NO; concentration of 30 mM (Fig, 35a). Without any NO in the assay 

medium, leaves did not show any NR activity while roots had a NR 

activity of 78 nmol NO2-  g-1  fresh weight 11-1 . This indicates that, 

with the given level of NO; supply to the plant (25 mmol), leaves 

did not accumulate NO; while roots accumulated NO; and reduced it 

during the assay. 

In the in vivo  assay, prior to incubation the tissue is generally 

subjected to different treatments mainly to increase the tissue 

permeability to metabolites. These treatments were tested for 

boronia tissue as below. 

Effect of slicing the tissue. Generally for in vivo  assay, leaf 

discs are punched from whole leaves with a cork borer (Jones, 

1973). However, boronia has needle-like leaves and therefore they 

were sliced. Leaves as well as roots were cut with a razor blade 

(moistened for easier cutting) into 3-4 mm fragments. 

Slicing increased the NR activity by 41% in the leaves; however 

there was no significant increase in the enzyme activity in the 

roots (Fig. 35b). The increase in NR activity due to slicing as 

compared to whole leaves shows that the cut edges would have caused 

more rapid diffusion of NO; into the tissue and NO2  out of the 

tissue. 
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Fig. 35. 'Effect of different assay conditions on NR activity in 
vivo.  
(a) NO3 -  concentration in assay medium. LSD at P = 0.01. 
(b) Slicing of tissue. Leaves and roots were cut into 3- 
4 mm fragments. Difference between treatments was 
significant in leaves at P = 0.01 and not significant in 
roots, t-test. 
(c) Propanol in assay medium (at 1% v/v). Difference 
between treatments was significant in both leaves and 
roots at P = 0.05, t-test. 
(d) Time course. After a given incubation time NO 2-  
produced was measured. LSD at P = 0.01. 
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Effect of propanol. Propanol was included in the assay medium at 

1% v/v. This inclusion of propanol enhanced the NR activity by 15% 

in the roots and by 16% in the leaves (Fig. 35c). 

As to the enhancement of NR activity by propanol, Menary and 

Jones (1972) suggested that alcohols enhance the membrane 

permeability and thus increase the availability of substrate NO 3 -  

to the enzyme. Aryan and Wallace (1983) explained the stimulatory 

effect of propanol as a result of the generation of NADH for NR 

via  alcohol dehydrogenase (ADH). Propanol may also lower the 

surface tension of the assay solution and thus increase the 

transfer of NO3 -  to the enzyme. 

Effect of anaerobiosis with air or N2 . Anaerobic conditions are 

essential for measuring NR activity in vivo  (Canvin and Woo, 1979). 

Therefore, anaerobic conditions were created for boronia tissue 

samples. The vial containing the tissue and assay medium was placed 

in a vacuum desiccator and the air was evacuated and released for 

2-3 times. By then the tissue sank in the assay medium. In the case 

of N2 treatment the gas was bubbled through the assay medium in the 

vial after the air evacuation. 

There was no significant enhancement when N2 was bubbled (Table 

13) indicating that high anaerobiosis was achieved by the vacuum 

infiltration with air only. 

Table 13. Effect of anaerobiosis of tissue with air and N2  on NR 
activity in vivo  in roots and leaves. 

NR activity,*nmol NO2 -  g-1  fresh 11 -1  

Treatment 	Leaves 	Roots 

392 
397 

322 
325 

Air 
N2 

Difference between treatments was not significant, t-test. 
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Time course of NR activity. To establish that the enzyme assays 

were linear with time, the tissue was incubated for various periods 

at 15 min intervals up to 90 min. 

NOi production was linear with time in the roots and leaves 

except during the initial 15 min period of incubation in the case 

of leaves (Fig. 35d). This lag phase may have been due to residual 

air in the leaf tissue after air evacuation which may cause low 

permeability to the movement of external NOi and internal NOi as 

suggested by Klepper et al. (1971). 

NiR activity in vivo  assay in leaves 

The treatments that increased NR activity in vivo,  viz. leaf 

slicing and propanol in the assay medium were adopted for NiR 

activity in vivo  assay also. From pilot experiments it was found 

that the NiR activity in vivo  could be measured only when both pH 

and NOi concentration in the assay medium were low. 

Effect of buffer pH. The buffer pH was varied from 4.5 to 7.5 (for 

pH 4.5, the buffer was adjusted with orthophosphoric acid). 

The NiR activity decreased with increasing pH (Fig. 36a). This 

is in agreement with the method of Ferrari and Varner (1971) for 

measuring NiR activity in barley aleurone layers. However the high 

NiR activity at low pH in boronia is in contrast to the method of 

Pierson and Elliott (1981) who used a buffer with a pH of 7.5 for 

bean leaf tissue. As NiR enzyme was active in vitro  even in pH 8.0 

buffer it is suspected that the lack of NR activity in vivo  at 

higher pH may be due to the inability of NOi to enter the boronia 

leaf tissue at higher pH. 

Effect of NOi concentration. The concentration of NOi in the assay 
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Fig. 36. Effect of different assay conditions on NR activity in 
vivo.  LSD at P = 0.01. 
(a) Assay medium pH. The buffer was 100 mM K/HPO 4 ; pH was 
adjusted to 4.5 with orthophosphoric acid. 
(b) NO2-  concentration in assay medium. 
(c) Time course. After a given incubation time NO2-  
disappeared was measured. 
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medium was varied. Six concentrations of NOi were used, viz. 20, 

40, 100, 200 124, 2 and 3 mM. 

A low concentration (20 or 40 jaM) was adequate for maximum NiR 

activity (Fig. 36b) and the enzyme activity decreased with 

increasing concentration of NOi. However the results at higher 

concentrations should be viewed with caution because at higher 

concentrations the amount of NOi disappearing from the assay 

solution would be small compared to the amount present in the 

solution and dilution factors (to bring the aliquot into the 

spectrophotometric detection range) would be extreme, thus reducing 

the sensitivity. 

Time course of NiR activity. Leaf tissue was incubated for 15, 30, 

45, 60, 75 and 90 min. The NiR activity was linear with time (Fig. 

36c). 

Preparation of cell-free enzyme extract from leaves. 

Effect of homogenization method. The leaves were homogenized in 

two ways. The leaves and extraction medium were placed in a tube 

which was immersed in ice and homogenized with an Ultra-Turrax 

homogenizer or the leaves were placed in an ice cold mortar, frozen 

with liquid N2 and rapidly ground into powder with a pestle while 

still in a frozen state. Then the ground powder was taken in the 

extraction medium. 

Compared to the homogenization by Ultra-Turrax, homogenization 

with pestle and mortar increased the NR activity by 333% on a fresh 

weight basis and by 275% on a protein basis (Fig. 37a). Very low 

NR activity by homogenization with Ultra-Turrax may be due to 

failure of the homogenizer to rupture all cells as boronia leaves 
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Fig. 37. Effect of different conditions in the preparation of cell-
free enzyme extract on NR activity in vitro  in leaves. 
(a) Homogenization method. Leaves were homogenized by an 
Ultra-Turrax or frozen with liquid N2  andground in mortar 
and pestle. Difference between treatments was significant 
on both fresh weight and protein bases at P = 0.01, t-
test. 
(b) Cysteine concentration in external medium. LSD at P 
= 0.01. 
(c) PVP in extraction medium at 1 g per g fresh weight. 
Difference between treatments was significant on both 
fresh weight and protein bases at P = 0.01, t-test. 
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are sclerophyllous with thick cell walls. Mechanical homogenization 

may have also caused some physical denaturation of the enzyme 

protein. 

Various protectants are generally added to the extraction medium 

to increase the stability of NR. They were tested for boronia NR 

as below. 

Effect of cysteine. Hageman and Reed (1980) suggested that the 

optimum concentration of cysteine in the extraction medium must be 

established for each plant species that is being examined. Cysteine 

protects NR against the oxidation of sulphydryl (-SH) groups on the 

enzyme. The concentration of cysteine (Sigma) in the extraction 

medium was varied. 

There was no NR activity without cysteine in the extraction 

medium (Fig. 37b). 1 mM cysteine gave maximum enzyme activity and 

higher concentrations lowered or inhibited the activity. 

NR activity due to the presence of cysteine suggests the 

existence of active -SH groups in boronia enzyme molecules. The 

optimum level of cysteine in the extraction medium varies from 

plant species to plant species, e.g. 1 mM for tomato (Hageman et 

al., 1962) and 10 mM for corn (Hageman and Hucklesby, 1971). Plants 

requiring a lower concentration of cysteine may have an endogenous 

substance functioning as an enzyme stabilizer instead of cysteine. 

Effect of bovine serum albumin (BSA). Addition of protein to the 

extraction medium prolongs NR activity in oat, tobacco (Schrader 

et al., 1974) and wheat (Sherrard and Dalling, 1978). It has been 

suggested that the exogenous protein protects NR from the action 

of inactivating or proteolytic enzymes during the extraction. 
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Therefore, BSA was included in the extraction medium at 1% v/v for 

boronia tissue. 

BSA did not significantly increase the NR activity in boronia 

(Table 14). Therefore, such proteolytic enzymes may not be active 

during the extraction of NR from boronia. 

Table 14. Effect of BSA in extraction medium on NR activity in 
vitro in leaves. 

NR activity, nmol NOi hA  

Treatment 	g 1  fresh wt 	mg protein 

+BSA 	 420 	33 
-BSA 	 410 	33 

Difference between treatments was not significant, t-test. 

Effect of extraction buffer system. A comparison was made between 

K/HPO4  and Tris-HC1 buffers. There was no significant difference 

in NR activity between the use of these buffers (Table 15). 

Table 15. Effect of extraction buffer on NR activity in vitro in 
leaves. 

NR activity, nmol NOi 11-1  

Buffer A  A g fresh wt 	mg protein 

K/HPO4 	 400 	34 
Tris-HC1 	 390 	33 

Differences between treatments was not significant, t-test. 

Effect of polyvinylpyrrolidone (PVP). When leaves are homogenized 

their cells are broken and phenols and other compounds from vacuole 

are mixed with the cytoplasmic matrix. Phenols inactivate NR during 

the extraction, thus leading to a failure in detecting the enzyme 

(Klepper and Hageman, 1969). Insoluble PVP (obtained from 

Calibochem or Sigma) which forms complexes with polyphenols and 
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tannins was added to the extraction medium at 1 g per 1 g of 

leaves. 

PVP was found to contain NOi. To remove this NO2 , PVP was placed 

in water, stirred on a magnetic stirrer and filtered through a 

filter paper. This procedure was repeated until the water was free 

of NOi (checked by the colorimetric method, p. 43). 

Addition of PVP to the extraction medium increased NR activity 

by 54% on a fresh weight basis and by 53% on a protein basis (Fig. 

37c) indicating that PVP complexed phenolics in boronia leaves and 

protected NR. 

NR activity in vitro  assay in leaves. 

Effect of NO3-  concentration. The concentration of NOi in the assay 

medium was varied and the enzyme was assayed. The maximum activity 

was at 100 mM NOi (Fig. 38a). 

Effect of enzyme concentration. The quantity of the enzyme extract 

was varied up to 500 pl. In each case the reaction mixture was made 

up to a final volume of 2 ml by the addition of distilled water as 

required. 

The NR activity was proportional to the quantity of the enzyme 

extract (Fig. 38b). 

Time course of NR activity. The reaction was stopped at various 

intervals of 15 min up to 1 h. The reaction was linear with time 

(Fig. 38c). 

NiR activity in vitro  in leaves 

Effect of NO2-  concentration. The concentration of NOi in the assay 

medium was varied up to 20 mM. The results showed that NOi above 5 

mM was inhibitory to the NiR activity (Fig. 39a). However, at 
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vitro in leaves. LSD at P = 0.01. 
(a) NO3 -  concentration in assay medium. 
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ml extraction medium. 
(c) Time course. After a given incubation time NO 2-  
produced was measured. 
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higher concentrations the dilution factors (as indicated for NiR 

assay in vivo)  may have affected the sensitivity of NO2 -  

measurement. 

Time course of NiR activity. The reaction was stopped at timed 

intervals up to 30 min. The reaction was linear with time (Fig. 

39b). 

CONCLUSIONS 

In general the activities of NR and NiR were higher in vitro  than 

in vivo.  Compared to the cell-free extract of an enzyme in vitro,  

in vivo  assay would be somewhat limited by the movement of 

substrate to the enzyme site. However there was close 

correspondence in the trends between in vitro  and in vivo  assays. 

From the above findings the following optimum factors were added 

to the routine procedures of NR and NiR enzyme assays for 

investigating the NO3-  reducing system in relation to N toxicity in 

boronia. 

NR activity in vivo  assay. The leaves (as well as the roots) were 

sliced into fragments. The concentration of NO 3-  in the assay medium 

was 30 mM. Propanol at 1% was included in the assay medium. 

Anaerobic conditions were created by submerging the tissue in the 

assay solution by vacuum infiltration. The incubation period was 

varied between 30-90 min (usually 60 min) to obtain sufficient NO2-  

for measurement. 

NiR activity in vivo  assay. Procedures similar to those of NR 

activity in vivo  assay were followed for NiR activity in vivo  assay 

except with the following modifications: the buffer pH was 4.5; as 

there was no significant difference between 20 and 40 pm NO2-  in the 



159 

assay medium, 20 mM was used to increase the sensitivity of NOi 

measurement. 

Preparation of cell-free enzyme extracts from leaves. Homogenate 

was prepared by freezing with liquid N2 and grinding into powder 

using a pestle and mortar. The extraction medium contained 100 mM 

K/HPO4 , pH 7.5; 1 mM cysteine and 1 g PVP. 

NR activity in vitro  assay. The concentration of 1403-  in the assay 

medium was 100 mM. The quantity of the enzyme extract and the 

reaction time were varied up to 500 pl and 1 h respectively to 

obtain sufficient NOi for measurement. 

NiR activity in vitro  assay. As there was no significant difference 

between 2 and 5 mM NO2-  in the assay medium, 2 mM was chosen for 

increased sensitivity of NO2 -  measurement. The reaction time was 

varied up to 30 min. 



VIII. NITRATE UPTAKE, REDUCTION AND ACCUMULATION IN RELATION TO 

NITRATE TOXICITY IN BORONIA 

As indicated in the Review of Literature, N fertilizer applied at 

rates considered moderate for many agricultural plants (100 kg 

ha-1 ) caused toxicity in boronia. Similar observations were made on' 

some other Australian native plants also (Specht, 1963; Higgs, 

1970; Groves and Keraitis, 1976). However the physiological basis 

of this toxicity has not been studied. 

Regardless of the form of N fertilizer applied, generally NO3-  

becomes the major form of N available for plants in normal 

cultivated soils due to nitrification. Therefore an understanding 

of the mechanism of NO3-  assimilation by the plant would allow a 

more efficient use of N fertilizer and may minimize the detrimental 

effects. 

After its uptake by plant, NO 3-  is reduced by NR to NO2-  which in 

turn is reduced by NiR to NH3. 

To understand the physiological basis of NO3 -  toxicity in boronia, 

an experiment was conducted to study the patterns of NO3-  uptake, 

reduction and accumulation in the roots and leaves with changes in 

external NO3-  levels. 

The in vivo  NR assay used for measuring NO 3-  reduction by plant 

is usually carried out with added NO 3-  in the assay medium but with 

only endogenous level of reductant in the tissue. NR activity thus 

measured in the presence of added NO 3-  is often thought to be an 

overestimated level of actual in situ  activity in the tissue. For 

example Timpo and Neyra (1983) observed substantial NR activity in 

160 
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vivo with NO3-  in the assay medium in the leaves of Phaseolus  

vulciaris plants that were grown in the absence of 140 3 . Therefore NR 

in vivo assay with added NO3-  in the assay medium is considered to 

indicate the potential capacity of the enzyme to reduce NO3-  when 

NO3-  is not limiting. 

To provide a measure of the actual reduction of 1103-  within the 

tissues of the plant, an in vivo NR assay in the absence of NO3-  in 

the assay medium was developed which relies on endogenous levels 

of both NO3-  and reductant. It is considered that this assay gives 

in situ NO3-  reduction rates in view of its close correlation to the 

actual reduced N accumulation (Radin et al., 1975; Breteler et al., 

1979; Breteler and Hanisch ten Cate, 1980). 

The in vitro NR assay is carried out with NO3-  and red.uctant NADH 

at nonlimiting (saturating) levels in the assay medium and thus it 

is considered to indicate the capacity of the enzyme when neither 

substrate nor reductant is limiting. 

In the present work, NR activity was assayed under all the three 

conditions, viz, in vivo without NO3-  in the assay medium, in vivo 

with NO3-  in the assay medium and in vitro. Any difference in NR 

activity in vivo between plus and minus NO 3-  in the assay medium 

will reveal a limitation to the enzyme activity by NOi 

availability. The in vitro NR activity will indicate the capacity 

of the enzyme when neither NO3-  nor NADH is limiting. 

MATERIALS AND METHODS 

Plant culture. Plant culture conditions were the same as those 

described in the earlier chapter on the optimization of assay 
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conditions for NR and NiR. 

Treatments. The treatments were applied in a manner that simulates 

the situation encountered by the plants in the field when 

fertilizer is applied. That is, a given level of NO3-  was surface 

applied to the growth medium and the medium was watered daily. In 

this situation the NO 3-  concentration that plant roots experience 

will be high initially when NO3 -  is applied and will decline with 

time due to uptake by the plant and due to leaching. 

From preliminary experiments, treatment levels were chosen to 

cover a range from zero to toxic level, viz.  0, 15, 25, 50, 100 

and 150 mmol NO3-  per plant. NO3-  was supplied in the form of 

Ca(NO3 ) 2 . In the preliminary experiments, it was found that KNO 3  

also caused similar toxicity symptoms. NO3-  was applied at 9:00 AM. 

Observations. In the preliminary experiments, it was found that 

while boronia leaves showed toxicity symptoms, its roots had no 

apparent injury. Further, NO3-  was found in the leaves showing the 

toxicity symptoms while healthy leaves had no NO 3-  suggesting that 

NO3-  reduction was limiting. Therefore analyses in this study were 

focussed on the leaves and NR enzyme. 

As indicated previously, NR was assayed under 3 conditions: (i) 

in vivo  without NO3-  in the assay medium, i.e. with merely 

endogenous NO3-  (termed actual activity), (ii) in vivo with added 

NO3-  in the incubation medium (termed potential activity, i.e. in 

relation to NO3-  availability) and (iii) in vitro.  

After the supply of NO3-  to the plants, fresh root and leaf 

samples were taken and analyzed at 0, 1, 5 and 10 h on day 1 and 

at noon every day 2 to day 7. 
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The samples were analyzed for the following: 

roots: NO3-  concentration 

NR activity in vivo  without and with NO 3-  in the 

assay medium 

leaves: NO3-  concentration 

NR activity in vivo  without and with NO3-  in the 

assay medium 

NR activity in vitro  

NO2-  concentration 

NiR activity in vivo  

NiR activity in vitro  

It was found that the plants sampled once were not suitable for 

another sampling, because under these conditions NO3-  accumulation 

was detected at the time of second sampling in the leaves of plants 

that were supplied with even the lowest level of NO3- . This 

accumulation of NO3-  was not found when the same plants were sampled 

directly at the second sampling time without any sampling at the 

first time. Possibly a decreased leaf area following the first 

sampling may have caused an increased NO3-  accumulation in the 

remaining leaves by the second sampling time. Therefore, each 

treatment was applied to 10 plants and a plant was used at one 

sampling time only and then discarded. A similarly treated fresh 

plant was used at the next sampling time. 

Because of the number of analyses involved at each time of 

sampling, instead of having all the replications at one time, the 

treatments were repeated five times and each time was considered 

as a replication. 
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Analyses. For NR and NiR enzyme assays the optimum conditions that 

were established previously (described in the previous chapter) 

were used. In the case of NR activity in vivo  assay without added 

NO3-  in the assay medium, the enzyme activity was obtained by 

following the procedure indicated for NR assay in vivo  but omitting 

NOi from the assay medium. 

For NOi and NOi extraction from the plant tissue, normally 1 g of 

fresh roots or leaves was rinsed, weighed and frozen in liquid N2 

in a mortar and then ground into powder. The powder was transferred 

to a test tube, hot distilled water was added and the mixture was 

stirred. The tube was placed in a boiling water bath for 10 min, 

cooled to room temperature and centrifuged at 5000 X g for 10 min. 

The supernatant was used for NOi and NOi determination. 

NOi was determined according to the procedure of Woolley et al. 

(1960). NOi was determined by Griess-Ilosvay colorimetric method. 

Protein was determined by Bio-Rad protein assay. 

The data on each measurement were statistically analyzed by 

- ANOVA. 

RESULTS 

There was no apparent increase in the growth of plants over the 

duration of experiment. The plants supplied with 15, 25 or 50 mmol 

NOi were healthy but the plants supplied with 100 or 150 mmol NO 3-  

started showing the toxicity symptoms on day 4 (see Fig. 40). 

First, chlorosis appeared at the tip of the leaf, then the 

chlorosis gradually enlarged and occupied the whole leaf. However 

during the experimental period, majority of the leaves were less 

than 3/4 chlorotic or at the most up to 1/2 chlorotic. After the 



Fig. 40. Leaves showing toxicity symptoms. 
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experiment, some of the leaves became completely chlorotic and 

abscised resulting in the death of some plants. 

NO3-  content in roots. NO; was not present in the roots (nor in the 

leaves) of boronia that was grown in the absence of NO 3- . Even when 

supplied with 15 mmol NO; also, NO; was not detected in the plants. 

Supply of higher levels of NO 3- , however, caused NO; accumulation in 

the plants. 

With higher levels (25 mmol) of NO; supply also, NO; was not 

detected in the roots in 1 h after the supply. After 1 h, NO; 

started to accumulate in the roots. The accumulation of NO; in the 

roots was earlier when supplied with higher levels of NO; (Fig. 

41): after only 1 h with 150 or 100 mmol while after 5 h with 50 

or 25 mmol NO3- . The concentration of NO; in the roots at any given 

time was a function of the level of NO; supplied. Over the time, 

the maximum concentration of NO3  in the roots was lower with lower 

levels of NO; supply. Also the concentration of NO; in the roots 

began to decline earlier with lower levels of NO; supply. Thus when 

supplied with 25 mmol NO3- , the concentration of NO; in the roots 

attained a maximum of 9 pmol NO; g-1  fresh weight on day 2 and 

returned to nil NO; in 6 days. But when supplied with higher levels 

(50 mmol) of NO 3- , although the concentration of NO; in the roots 

decreased, it was not completely depleted even up to day 7. 

N02-  in roots. NO2-  was not found in the roots in any treatment at 

any time. 

Actual NR activity in roots (in vivo  minus NO3-  assay). NR was not 

present in the roots (as well as in the leaves) of boronia when 

grown without NO3- . Supply of NO; to the plants induced NR in the 
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Fig. 41. Time course of NO 3 -  concentration in roots after supply 
of different levels of NO3-  to plants. The given level of 
NO3-  was supplied in a single application at zero hour. LSD 
bar (P = 0.01) is for comparison at the same time between 
levels of NO3-  supplied. 
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roots within an hour. With the lowest level of NO3-  (15 mmol) 

supply, NR activity increased only slightly (to a maximum of only 

126 nmol NO2-  g4  fresh weight 114  on day 2) and declined to nil 

within 4 days (Fig. 42). As the actual NR activity is generated 

with endogenous NO3- , this slight enzyme activity in the roots of 15 

mmol NO3-  plants in which NO3-  was not detected indicates that 

endogenous NO3-  was present in these roots and was reduced by the 

enzyme during the assay but the NO3-  concentration was low (beyond 

the sensitivity of the method used for NO3-  determination). 

With higher levels of NO3-  mmol) supply, the actual NR 

activity increased markedly in the beginning for 2 days. The rate 

of this increase was a function of the level of NO3-  supplied. Thus 

the actual NR activity in the roots reached a maximum level earlier 

with a higher level of NO3-  supply. However with 6 fold difference 

in NO3-  supply, the difference in the maximum levels of the enzyme 

activity was only + or - 7% (of 422 nmol NO2-  g4  fresh weight 114 ). 

Subsequent to attaining the maximum level, the actual NR activity 

in the roots of plants supplied with 25 mmol NO3-  dropped to nil in 

7 days while the activity in 50 mmol plants continued in a more or 

less steady maximum range. However in 100 and 150 mmol NO3-  plants, 

the enzyme activity began to decline from day 2. - 

Although the endogenous NO3-  content in the roots found even in 

the beginning (e.g. 5 pmol NO3-  g fresh weight, 10 h after the 

supply of 25 mmol NO3- , Fig. 41) was in excess of that required for 

the maximum NR activity observed (449 mmol NOi g 4  fresh weight 114 ), 

the pattern of increase and decrease in the actual NR activity over 

the time resembled the pattern of NO 3-  concentration in the roots 
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over the time (compare Figs, 42 and 41). Thus the increase (or 

decrease) in NR activity seems to be depended more on the NO3-  that 

was coming into the roots (and accumulating) than on the actual NO 3-  

concentration in the roots. However once NR activity reached the 

maximum level (at 13 pmol NO3-  g-1  fresh weight), further NO3-  influx 

did not cause an increase in the enzyme activity and above 20 pmol 

NO3-  g-1  fresh root weight, the enzyme activity even declined. Thus 

the relationship between NR activity and endogenous NO3-  

concentration in the roots was curvilinear (Fig. 44). 

Potential NR activity in roots (in vivo plus NO3-  assay). Even with 

added NO 3-  in the assay medium, NR was not observed in the roots and 

leaves of boronia plants that were grown without NO3- . Following the 

induction by the supply of NO3-  to the plants, however, a low NR 

activity was detected earlier with added NO3-  in the assay medium (1 

h after supplying 15 mmol NO3- , Fig. 43) than without added NO3-  in 

the assay medium. Similarly, before its decline, NR activity was 

detected for longer with added NO 3-  in the assay medium (on day 4 in 

15 mmol and on day 7 in 25 mmol NO3-  plants). These results indicate 

a potential of the enzyme to reduce NO3-  but lack of available 

endogenous NO3- . At these times, it appears that whatever low NO 3-  

that was coming into the roots was being reduced immediately 

without any accumulation. 

At other times the potential NR activity (measured with added 

NO3-  in the assay medium) was higher than the actual NR activity 

(measured without added NO 3- ) (compare Figs. 42 and 43). However 

even with nonlimiting NO3- , the potential NR activity did not reach 

the same maximum level all the time indicating different levels of 
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induction of the enzyme at different times. Thus in general the 

time course pattern of rise and fall of the potential NR activity 

was similar to the pattern of actual NR activity. However the 

extent of increase in the potential activity was large when the 

actual activity was lower. When the actual activity was higher, the 

potential activity did not increase considerably. As pointed out 

earlier, despite sufficient endogenous NO3-  for the maximum level of 

NR activity, the increase in NR activity by the addition of NO3-  to 

the assay medium indicates that some of the endogenous NO3-  was 

unavailable to the enzyme. As endogenous NO3-  increased, the 

availability of NO3-  to the enzyme also appears to have been 

increased as indicated by an •increase in its activity, which 

eventually reached the maximum level. Therefore, addition of NO3-  to 

the assay medium had least effect on the increase in the potential 

NR activity (over that of the actual NR activity) when the actual 

NR activity was higher (Fig. 44). Thus the maximum potential NR 

activity observed in the roots, 521 nmol NO2-  e fresh weight h.% 

was only 16% higher than the maximum NR activity. 

NOi content in leaves. As was in the roots, NO3-  began to accumulate 

in the leaves earlier and in higher concentrations as the level of 

NO3 -  supply increased (Fig. 45). However compared to the roots (cf. 

Fig. 41), the accumulation of NO3-  in the leaves began later (e.g. 

5 h after in the roots vs. 10 h after in the leaves after supplying 

25 mmol NO3- ). Conversely the NO3-  concentration in the plants 

supplied with 25 or 50 mmol NO3-  began to decline a day earlier in 

the leaves than in the roots (and became nil 2 d earlier in the 

leaves than in the roots of 25 mmol plants). These trends suggest 

s- 
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that as the amount of NO; absorbed by the roots increased, NO; was 

transported to the shoot and as the amount of NO; absorbed 

decreased, NO; transport to the shoot also decreased. 

However when the plants were supplied with higher levels of NO; 

(100 or 150 mmol), the NO; concentration in the leaves continued to 

increase. By this time, however, the toxicity symptoms started 

appearing on the leaves. 

On a per g fresh weight basis, the ratio of leaf:root NO3-  

concentration increased with increasing total endogenous (leaf plus 

root) NO; concentration (Fig. 46), again suggesting that as the 

influx of NO; into the root increased, a higher *proportion of it 

was transported to the shoot. 

NO in leaves. NO2-  was not found in the leaves in any treatment at 

any time. 

Actual NR activity in leaves (in vivo  minus NO; assay). When 15 

mmol NO; was supplied to boronia, NR activity could not be detected 

in the leaves without added NO; in the assay medium. Only with 

higher levels (25 mmol) of NO3-  supply the actual NR activity was 

observed in the leaves. Increasing levels of NO; supply caused 

earlier appearance and higher levels of NR activity in the leaves 

(Fig. 47). As compared to the roots (cf. Fig. 42), the time of 

appearance of NR was later in the leaves (never within an hour 

after the supply of any level of NO3- ). This was in accordance with 

the late arrival of the enzyme substrate NO; in the leaves (cf. 

Fig. 45). 

Low levels of the actual NR activity were found in the leaves 

during the initial hours after the supply. of NO; (5 h and also 10 
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h in the case of 25 mmol NO3-  plants) even when endogenous NO 3-  was 

not detected. This indicates that NO3-  was just beginning to 

accumulate in the leaves in low concentrations and this NO3-  was 

reduced during the assay. 

Similar low levels of the actual NR activity found in the leaves 

(on day 4 in 25 mmol NOi plants) before its decline also indicates 

the presence of low NO3 -  concentration beyond the sensitivity of the 

NO3-  determination method used in this experiment. 

Irrespective of 6 fold difference in the level of NO3-  supply, 

the actual NR activity in the leaves increased rapidly in the 

beginning attaining an average maximum level of 534 + or - only 7 

nmol NO2-  e fresh weight h-1  in 2 days. The maximum actual NR 

activity in the leaves (577 nmol NO2-  e fresh weight 11-1 ) was 29% 

higher than that in the .roots. As was in the roots, despite 

sufficient NO3-  concentration in the leaves in the beginning (e.g. 

I pmol NO3-  e fresh weight after 10 h in 25 mmol NO3-  plants, Fig. 

45) for the maximum level of NR activity observed, the enzyme 

activity seems to have increased depending on the further influx 

of NO3-  into the leaves (compare Figs. 47 and 45). 

The actual NR activity in the leaves of 25 mmol NO 3-  plants 

dropped to nil on day 5, that is 2 days earlier than in the roots 

(cf. Fig. 42). This was in accordance with the depletion in 

endogenous concentration of the enzyme substrate NO3- . While NR 

activity in the leaves on 50 mmol NO 3-  plants continued in the 

maximum range, the enzyme activity on 100 or 150 mmol plants began 

to decline (at >24 umol NO3-  e fresh weight). Thus the relationship 

between NR activity and endogenous NO 3-  concentration was 
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curvilinear in the leaves (Fig. 49). However the concentration of 

NO3-  at which NR activity started to decline in the leaf tissue was 

ca. 20% higher than the concentration in the root tissue. 

On a per g fresh weight basis the ratio of leaf:root NR activity 

increased with increasing total (leaf plus root) NR activity (Fig. 

50) in accordance with the partitioning of the enzyme substrate 

NO3- . 

Potential NR activity in leaves (in vivo  plus NO; assay). In the 

leaves of the plants supplied with 15 mmol NO3- , a low potential NR 

activity was observed after 1 and up to day 4 after the supply of 

NO3-  ( Fig. 48). But neither the actual NR activity nor NO3-  was 

detected in the leaves of these plants. This suggests that NO3-  

reached these leaves and induced NR but the amount of NO3-  entering 

the leaves was low and was being reduced immediately. Similar low 

potential NR activity existing in the leaves of 25 mmol NO3-  plants 

was found on day 5 just before the disappearance of the enzyme. 

The time course trends in the potential NR activity were similar 

to the trends of the actual NR activity. But as was in the roots, 

the difference between potential and actual NR activity decreased 

with increasing NO3-  content (Fig. 49). The maximum potential NR 

activity observed in the leaves was 674 nmol NO3-  g-1  fresh weight 

h'. 

NR activity in vitro  in leaves. The time course trends of NR 

activity in vitro  in the leaves were more closely related to those 

of the actual NR activity (such as not detecting the enzyme 

activity in 15 mmol NO3-  plants) than to the trends of the potential 

NR activity. Further, NR activity in vitro  could be detected only 
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when the actual NR activity was rather high (ca. 309 nmol NO2-  g4  

fresh weight 114 ). As high actual NR activity was observed at high 

endogenous NO3-  concentration and as NR is highly unstable, it may 

be possible that the endogenous NO3-  was acting as a stabilizer 

during the extraction of the enzyme for in vitro  assay. 

NR activity in vitro  was lower than in vivo  in the initial hours 

(10 h) after the supply of NO3-  to the plants but was slightly 

higher at other times. The difference between NR activity in vitro  

and NR activity in vivo  was relatively lower with the potential 

activity than with the actual activity, probably due to nonlimiting 

NOI in both in vitro  and potential activity in vivo  assays. 

However even when NO3-  as well the reducing energy NADH were not 

limiting, NR activity in vitro  did not attain the maximum level all 

the time. This suggests that the level of the enzyme synthesized 

was different at different times. 

NR activity in vitro  was greatly lower that in vivo  on days 6 

and 7 in 100 and 150 mmol NO3-  plants when the endogenous NO3-  

concentration was very high (47 jimol NO3- g4  fresh weight). As a 

decrease in NR activity was observed at high NO3-  content in the 

leaves (Fig. 47), a high endogenous NO3-  plus NO3-  in the assay 

medium may have aggravated the decrease in the enzyme activity. 

The maximum NR activity observed in vitro  (671 nmol NO2-  g4  fresh 

weight h4 ) was comparable to that of the potential activity. 

The trends in NR activity in vitro  expressed on a protein basis 

(Fig. 51b) were similar to those expressed on a fresh weight basis. 

Therefore the different levels of the enzyme observed at different 

times do not seem to be due to changes in the protein content. 
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NiR activity in leaves. NiR activity was observed in the plants 

grown without NO; (Appendix Tables VI.9, VI.10 and VI.11). Its 

activity was lower in vivo  than in vitro.  It may have been due to 

the limitation of substrate NOi entry into the tissue in the in 

vivo  assay. NiR activity did not significantly change due to the 

supply of NO; the plants. However, NiR activity in vitro  was 

considerably higher than NR activity suggesting that NOi would not 

accumulate in the leaves. This agrees with the finding that no NOi 

was found in the plants. 

DISCUSSION 

NO; was absent in boronia plants that were grown without NO3 . When 

supplied with NO3- , the rapidity with which boronia responded to NO; 

by the changes in endogenous NO; concentration and NR activity 

shows the plant's sensitivity to NO3- . 

NO; in the plant tissue will be in a dynamic state since its 

concentration in a given plant part at a given time depends on that 

part's uptake, reduction and translocation to other plant parts. 

After the supply of NO; to the plants, there was very low NO; 

concentration in the roots up to 1 h (as indicated by a low NR 

activity, Figs. 42 and 43), then followed by a marked accumulation 

(Fig. 41). Considering that NR activity was very low in the first 

hour and NO; did not reach the shoot in the first hour, the uptake 

of NO; may have been restricted during this time. This low NO; 

uptake may have been caused by a limitation to the movement of NO; 

ions through the media to the root surface or there may have been 

a limitation to the entry of NO; ions into the roots during the 
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initial period. Slow initial rates of NO; uptake have been observed 

in other plant species even when grown in solution culture and such 

an initial lag period has been interpreted (first by Jackson et 

al., 1972 and recently by Goyal and Huf faker, 1986 in wheat) as a 

period during which there would be induction of NC); transporter by 

NO; itself. 

Only following the supply of its substrate NO;, NR was induced 

in boronia plants. NR activity in the plants increased or decreased 

significantly within hours depending on the changes in endogenous 

NO; which in turn are brought about by the changes in NO3  

concentration in the growth medium. Such modulations in barley NR 

levels by NO3  are regulated by a protein synthesized de novo and 

protein degradation and not by reversible activation-inactivation 

of some inert precursor of NR (Somers et al., 1983). 

After the induction, the extent of increase in NR activity in 

boronia seemed to be dependent on the influx of NO; into the tissue 

rather than on the NO; concentration that was already in the 

tissue. Shaner and Boyer (1976) showed that NR in maize leaves is 

regulated by the influx of NO; from the roots via the transpiration 

stream than on the actual amount of NO; in the leaves. It has been 

proposed that NO; in the cell exists in two compartments: in 

vacuole as storage pool and in cytoplasm as metabolic pool (Ferrari 

et al., 1973). NR is located in the cytoplasm (Hewitt  

1976). As NO; entered into a cell, some NO; may have been 

partitioned into the vacuole and would not have been available 

immediately for NR. Thus the level of NR activity may have been 

regulated by the NO3-  in the cytoplasm. When the tissue NC); was 
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Measured, both cytoplasmic and vacuolar NOi contribute to the NOi 

value. Thus, even though the endogenous NOi concentration found at 

times was sufficient for the maximum level of NR activity, the 

level of NR activity at those times was in fact lower. 

NO3-  concentration in the tissue declined to nil before NR 

activity did. Hence it seems that as the cytoplasmic NO 3-  was 

depleted after the influx of NO3-  into the cell ceased, NO3-  from 

the vacuole readily flowed to the cytoplasm to maintain NR activity 

until NO3-  is exhausted. 

The level of NR observed in boronia was similar to the levels in 

some other Australian native plants (<0.5 ymol NOi gA  fresh weight 

h.% Smirnoff et al., 1984) and several species of Vaccinium  (e.g. 

<0.1 pmol NOi gA  fresh weight h.% Havill et al., 1974). These 

levels, however, are very low relative to those of cultivated 

plants (e.g. >4.0 ).imol NOi gA  fresh weight h-1  in sorghum, Scott and 

Neyra, 1979; >2.0 pmol NOi g-1  fresh weight hA  in tomato, Mills and 

Lips, 1984). Among the wild plants, ruderal plants have high levels 

of NR (e.g. >6.0 ).imol NOi gA  fresh weight hA  in Chenopodium album, 

Al Gharbi and Hipkin, 1986). These differences in the level of NR 

activity between the plant species seem to be related to their 

growth rates. Grundon (1972) recorded RGRs between 0.03 and 0.06 

g gA dA for the Australian native Wallum plants compared with 0.24 

for sorghum and 0.18 for tomato. Similarly Ericaceae (Vaccinium)  

species have slow growth rates and ruderal species have high growth 

rates. Rapidly growing plants require high NR activity to meet 

their metabolic requirements of reduced N. On the other hand, low 

levels of NR activity in slow growing plants may be sufficient to 



185 

sustain themselves in the soils where NO 3-  availability is low. They 

also seem to utilize NH4 +  preferentially. 

Plants differ as to where majority of NO3 -  is reduced (Pate, 

1980). The extent to which root or shoot acts as the main center 

for NO3-  reduction is influenced by the concentration of NOi in the 

root medium. With low concentrations of NO3-  that occur in the 

naturally NO3- poor soils, it is likely that all of the 110 3-  may 

normally be reduced in the roots. Thus in several species of 

Vaccinium in their natural site, Havill et al. (1974) detected no 

NR activity in the leaves. Addition of NO3 -  fertilizer increases 

the NO3-  concentration in the soil. With the increasing levels of 

NO3-  supply, a higher proportion of NO3-  was found in the leaves of 

boronia (Fig. 46) and relatively a higher level of NR activity was 

observed in the leaves (Fig. 50). 

With increasing NO3-  influx, NR activity in boronia increased up 

to a maximum level and further increase in NO 3-  influx caused a 

decrease in the enzyme activity (Fig. 44 and 49). Though NR 

repression by the substrate NO3 -  has not been reported, decreased 

NR activity at higher NO3 -  concentrations has been observed, the 

inhibiting concentration differing with plant species. Melzer et 

al. (1984) observed an inhibition of NR above ca. 500 pmol NO3 -  se 

dry weight in the leaves of Rumex obtusifolius. Woodin  

(1985) found that repeated application of high NO 3-  concentration 

led to a decline in NR activity in ombrotrophic Sphagnum species. 

Similarly a decrease in NR activity has been observed in in vivo  

assays when the NO3-  concentration in the incubation medium is 

beyond a certain level (50 mM in corn-- Klepper et al., 1971, Jones 

I. 



186 

and Sheard, 1977; 200 mM in pigweed-- Klepper et al., 1971; 50 mM 

in pea, wheat, barley, Gomphrena and 100 mM in marrow-- Jones and 

Sheard, 1977; 100 mM in wheat-- Baer and Collet, 1981; 200 mM in 

potato-- Davies and Ross, 1985; 70 mM in Raphanus7 Schulze  

1985). Thus there is a possibility of an inhibition of NR by excess 

substrate. The inhibition of NR activity at high concentration of 

NO3-  at least in boronia could not be due to an accumulation of the 

products of NO3-  reduction (NH4+  or amino acids) because the rate of 

NO3-  reduction in 50 mmol and 100 or 150 mmol NO3 -  plants was in a 

similar range before the inhibition (Fig. 47). However the 

inhibition of NR occurred only in 100 and 150 mmol NO 3-  plants in 

which NO3-  accumulation increased (cf. Fig. 45). 

Thus when a lower level (15 mmol) of NO3-  was supplied to boronia, 

the absorbed NO3-  is reduced without any accumulation and without 

even NR activity reaching its maximum capacity. When higher levels 

of NO3-  were supplied, with an increase in the NO 3-  absorption, NR 

activity increased up to a maximum level. Beyond this level, the 

increase in NO3-  uptake was not followed by an increased NR 

activity. As a consequence, NO3 -  accumulated, presumably in the 

vacuole. NO3-  accumulation in the vacuole will be limited by vacuole 

capacity. After this capacity is full, further influx of NO3 -  into 

the cell may lead to an accumulation in the cytoplasm. Because NR 

is in the cytoplasm, the excess cytoplasmic NO; may inhibit NR 

aggravating the situation of NO3-  accumulation in the cytoplasm. 

This will lead to extracellular NO3-  accumulation which may reduce 

turgor pressure and affect metabolism and growth. 

From the appearance of the toxicity symptoms, it seems that 
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excess extracellular NO 3 -  build up was in the leaf tip in the 

beginning and moved progressively inward. The leaf abscission 

observed in some plants after the experiment may be due to 

saturation of the entire leaf with NO 3 - . This leaf shedding may be 

a protective reaction of the plant to remove excess NO 3 - . 

The endogenous concentration of NO3-  at which toxicity symptoms 

started appearing on boronia leaves was 32 ymol g -1  fresh weight. 

Much higher NO 3 -  concentrations are found in herbaceous plants such 

as spinach, beet and radish without any injury to the plants (e.g. 

478 )nmol NO 3 -  g-1  fresh weight in spinach, Barker et al., 1971; 600 

ymol NO3 -  g-1  dry weight in Urtica dioica, Rosnitschek-Schimmel, 

1982). This NO3 -  accumulation is not associated with a low NR 

activity (the NR levels are indeed high in these plants, as pointed 

out earlier). These plants are characteristic of NO3 -  rich habitats 

and therefore it may be an evolutionary tendency of these plants 

to cope with high NO 3 -  availability. On the other hand, woody plants 

such as boronia that are characteristic of NO 3 -  poor habitats do not 

seem to have a large capacity for NO 3 -  storage. Ingestad (1973) also 

found that high external concentrations of NO3 -  are toxic to 

Vaccinium species which are characteristic of NO 3 -  poor habitats. 

Why does NO 3 -  uptake occurs to toxic levels in boronia? Generally 

NO 3 -  uptake is thought to be subject to negative feedback from high 

levels of endogenous NO 3 -  (in barley, Smith, 1973) or some product 

of NO 3 -  assimilation (NH 4+  or amino acids in Arabidopsis thaliana, 

Doddema et al., 1978). Such feedback processes against luxury 

consumption may be expected in the plants that grow naturally in 

NO 3 -  abundant soils. As excess NO3 -  circumstances would rarely if 
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ever occur in the native soils of boronia, its feedback controls 

may not be efficient. 

NiR was present in boronia plants that were grown without NO 3- . 

Warner et al. (1977) found that barley NR mutants still possessed 

NiR. Pierson and Elliott (1981) found that Phaseolus vulgaris 

maintained its NiR even when it lost NR. As in boronia, a higher 

activity of NR compared to that of NiR was also observed in apple 

(Klepper and Hageman, 1969) and mustard (Rajasekhar and Mohr, 

1986). NiR in boronia was not subjected to turnover even under 

toxic conditions. NiR was found to be much less sensitive to stress 

than NR (Heuer et al., 1979). The different responses of NR and NiR 

may be due to their different locations in the cell: NR is located 

in the cytoplasm and NiR is located in the chloroplast (Beevers and 

Hageman, 1983). 

The phenomenon of NO 3-  toxicity in boronia agrees well with the 

behavior of the plants from nutrient poor soils as proposed by 

Chapin (1980). He proposed that these plants have difficulty in 

growing fast under the conditions of high nutrient availability 

and therefore accumulate toxic nutrient levels. With respect to 

slow growth in boronia, the control point is low NR activity and 

the consequent low production of metabolites for growth. This low 

level of NR activity in boronia is genetically controlled and tuned 

to slow growth in low NO 3 -  producing native soils. 

Practical implications. An idea of the NO3-  reducing capacity of 

boronia can be obtained by NR activity X weight of plant tissue X 

time. Assuming that the estimated in vivo NR activity is equal to 

in situ NR activity, a gram of fresh boronia leaves can reduce ca. 
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500 nmol NO; in an hour. In addition to the leaves and roots, 

consideration should also be given to other parts of the plant as 

NR activity was observed in stems (Andrews et al., 1984), branch 

bark, inner tissues of branch and trunk xylem tissues (in Alnus  

glutinosa, Pizelle and Thierry, 1986). NR activity also depends on 

diurnal variations (Lillo, 1983). 

One way of preventing the toxic accumulation of NO; in boronia 

during its cultivation is to restrict NO; availability to the 

plants through application of fertilizers at a rate matching the 

plant's NO; reduction capacity. Indeed it was observed that boronia 

tolerates and responds well to a slow release N fertilizer, IBDU 

(Chapter IV) which perhaps simulates NO; production in the native 

soil of the plant. 



IX. GENERAL DISCUSSION 

The present study was concerned with the efficient use of N in the 

production and culture of boronia. In order to gain a better 

understanding of the various aspects of N nutrition of boronia, 

several different responses such as yield responses, morphological 

responses, physiological and enzymological responses of the plant 

to N were investigated. Results of these different investigations 

have already been elaborated in the earlier chapters. In this 

chapter an attempt is made to integrate and summarize the 

highlights of the information obtained, with consideration to their 

conceivable ecological importance and their implications in the 

cultivation of boronia. Since these processes are not fully 

understood, some speculations are made which may lead to hypotheses 

for further research. 

A point that became apparent from the present study is that, 

although some findings in boronia have close parallels to the 

findings in cultivated plants, some findings are unique to boronia. 

The nutrient traits exhibited by boronia seem to relate more to the 

traits of other plants that are also evolved under similar 

environmental conditions (infertile soils) than to the traits of 

phylogenetically related plants. Apparently these different traits 

enable the plants to survive and exploit their characteristic 

environments. Therefore N nutrition of commercial boronia 

plantations would differ from that of most cultivated plants and 

requires special attention. 

Boronia has an ability to maintain its metabolism effectively 

under N stress as indicated by the absence of characteristic N 

F: 
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deficiency symptoms when no N was supplied to the plants (Chapters 

IV and V). Such an adaptation would enable boronia to survive and 

remain healthy in the N-limited native soils. Although boronia can 

similarly remain in the field without any supplemental N when 

commercially cultivated, N stress reduces the production of nodes 

at which flowers are borne (Chapters IV and V). The production of 

nodes and in turn the production of flowers by boronia can, 

however, be increased with increased supply of N (Chapters IV and 

V). Therefore in the commercial cultivation of boronia, N should 

be supplied to the plants. 

Between NH4  and NO3-  forms of N, uptake of NH 4+  by boronia was 

higher (Chapter VI). This confirms the speculation made (in Chapter 

II, Section 3.2) that NH4+  rather than NO 3-  may be the predominant 

form of N in the native soils of boronia. Having adapted to such 

soils, boronia preferred NH 4+ . Although NH 4+  is less mobile than NO3-  

in the soil, boronia plants can enlarge their root surface through 

vesicular-arbuscular mycorrhiza (Appendix I) and thus increase 

their access to NH 4+ . Further, native soils of boronia are sandy 

with little cation-exchange capacity and therefore NH 4+  would also 

be mobile in these soils. 

Uptake of NH 4+  by boronia decreased pH of the growing medium 

(Chapter VI). A decrease in pH increases the ratio of H2PO4-  to 

HPO42-  (Soon and Miller, 1977). H 2PO4 -  is absorbed by the plants 

several times faster than HPO 42-  and HPO42-  has a tendency to 

precipitate at the root-soil surface (Miller et al., 1970). Thus 

with lowered pH, there is an increase in the availability of P from 

the soil (Riley and Barber, 1971). Therefore by absorbing NH4+, 
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boronia may be maximizing the uptake of P in the P-deficient native 

Australian soils. Under low pH conditions, high concentrations of 

Al (Huett, 1979) and Mn (Jones, 1973) which are potentially toxic 

to the plants may also exist. However, ambient NH 4+  inhibits the 

plant uptake of Al (Rorison, 1985) and Mn (McGrath and Rorison, 

1982). 

It may be seldom exclusively NH 4+  exists in the native soils of 

boronia, as nitrification which is dependent on many factors 

(Chapter II, Section 3.2) may not always be inhibited. The general 

situation would be the presence of predominant NH 4+  plus a small 

proportion of NO 3 - . Thus with NH4+  plus NO3 - , generally the growth by 

boronia was highest (Chapter V). Therefore in the commercial 

cultivation, boronia should be provided with both NH 4+  and NO3 -  forms 

of N. 

In contrast to the native soils of boronia where N is scarce, 

provision of N fertilizers to the cultivated soils would result in 

an excess availability of N to boronia. In most agricultural soils 

where nitrification occurs, NH4+  applied would be oxidized resulting 

in NO3 - . 

At low external NO3 -  concentration, NR activity in boronia leaves 

was either absent or low (Chapter VIII). Therefore, at normally low 

NO3 -  concentrations that are habitually available, boronia may 

reduce NO3 -  in the roots. Nonetheless, significant NR capacity was 

observed in the leaves of boronia. In the natural environment this 

capacity may be to utilize occasional NO3 -  flushes that occur 

seasonally or after fire. Due to the application of fertilizer NO 3 -  

also, NO3 -  reduction will occur in the leaves (Chapter VIII). 
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When the available NO 3 -  becomes too high, however, the leaf NR 

level also becomes insufficient to allow rapid reduction of NO3 - . 

Boronia lacks the ability to effectively reduce or store large 

amounts of NO3 -  (Chapter VIII). 

One possible reason. (in addition to the reason of adaptation to 

low NO3 -  soils) for a low level of NR activity in boronia may be 

the deficiency of Mo in the native Australian soils (Bowen, 1981). 

Mo is a constituent of NR enzyme (Notton and Hewitt, 1971) and Mo 

deficient plants produce aberrant NR which possesses only partial 

NR activity (Notton et al., 1974). In fact whiptail of cauliflower, 

a Mo deficiency symptom is caused by the accumulation of high 

concentrations of NO 3 -  in the leaves (Agarwala, 1952). Boronia 

plants may have adapted to cope with a low availability of Mo in 

their native soils by absorbing NH 4+  and minimizing the need for a 

high level of NR. 

Although assimilation capacity of NH4+  by boronia seems to be 

higher relative to that of NO3 - , the overall N (either form) 

assimilation capacity of boronia may still be lower when compared 

to that of crop plants. Generally plants from low nutrient habitats 

grow slowly when compared to the plants from high nutrient habitats 

(Chapin, 1980) and their nutrient requirements can be expected to 

be low. 

Plants adapted to low nutrient soils seem to absorb nutrients 

efficiently under low nutrient conditions and continue to absorb 

them efficiently under high nutrient conditions also but their 

genetically controlled slow growth leads to high and toxic levels 

of nutrients in the tissues (Chapin, 1980). Groves and Keraitis 
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(1976) observed that high levels of fertilizers such as those 

commonly used in agriculture were detrimental to some Australian 

native plants. This was also observed with boronia in the present 

study. 

The detrimental effects of excess N fertilizer on boronia and 

other Australian native plants are similar to the effects of excess 

pollutant N on the forests. R. H. Waring (personal communication, 

Oregon State University, Corvallis) pointed out that many 

coniferous forests are declining as a result of atmospheric N 

pollution. Conifers, like boronia, have a low capacity to 

synthesize NR and are unable to store excess NO 3-  leading to their 

death. 

In the cultivation of boronia, therefore, the detrimental effect 

of high levels of N should be counteracted. Ideally N should be 

supplied to a boronia plant at a rate corresponding only to the 

assimilation potential of the plant and not to the actual 

absorption potential of the plant. 

A slow release N fertilizer IBDU seems to meet the N requirements 

of boronia without causing toxicity (Chapter IV). The slow 

availability of N from this fertilizer may be emulating the native 

habitat of the plant. Similarly when the roots were exposed to N 

for a short time, the amount of N absorbed by the plants would have 

been within the assimilation capacity of the plants and thus the 

plants grew without any N toxicity (Chapter V). 

Measured in terms of vegetative growth (Chapter V), boronia is 

a late spring and summer growing species. Therefore the plants 

should be not be fertilized during early spring because such a 
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fertilization would give weeds which grow in early spring a 

competitive advantage over boronia. As extension of vegetative 

growth at the time of flowering seems to have a counteraction on 

the development of flower buds in boronia (Chapters IV and V), 

availability of high levels of N to the plants at the time of 

flowering should be avoided. 

Since N responses of a boronia plant would depend on the 

assimilatory potential of that particular plant, the amounts and 

concentrations of N used in this study should be extrapolated to 

other situations with caution. However, the information obtained 

in this study can be used to estimate the permissible N input rates 

to commercial boronia plantations (e.g. p. 188). 

In conclusion, the present study extended the previous limited 

information on the N nutrition of boronia and has explained the 

nature of the adaptations of boronia to its native environmental 

conditions and how they can be manipulated to achieve improved N 

nutrition and yields of boronia in commercial plantations. 
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Appendix 1. MYCORRHIZAL STATUS OF BORONIA 

During the course of study it was decided to determine the 

mycorrhizal status of Boronia megastiorma. 

Therefore, root samples were collected from boronia plants 

growing in Bruny Island (Tasmania) and were examined. There were 

no changes in the external root morphology. The roots were cleared 

and stained using the method of Trappe et al. (1973) and examined 

under a compound microscope. 

Arbuscules were observed, but vesicles were not seen. Gigaspora 

marginata does not form vesicles (Bonfante-Fasolo, 1984). Whether 

infection is caused by this species is to be confirmed. Lamont 

(1982) also found Boronia to be VA mycorrhizal in the native jarrah 

forest (in WA). 

After completion of the greenhouse experiments, the experimental 

plants were examined randomly. However there were no mycorrhizas. 

This absence may be due to the supply of P (a nontreatment factor) 

to the plants, as high levels of P in the growth medium are known 

to inhibit root colonization by mycorrhizal fungi (Hetrick, 1984). 
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Appendix Table 

Source 	Rate 
of N 	of N-1 kg ha 

11.1. 	Leaf N concentration in October 1984 
(data on which part of Table 6 is based). 

Leaf N, 	% dry wt. 

Time of N application 

	

Oct 	Oct&June Oct&Aug Oct 84,June 

	

84 	84 	85 	84 	85 	Aug 85 	Mean 

Appendix Table 

Source 	Rate 
of N 	of N 

kg ha -1  

11.2. 	Leaf N concentration in January 1985 
(data on which part of Table 6 	is based). 

Leaf N, 	% dry wt. 

Time of N application 

Oct 	Octi1June OctsAug Oct 84,June 
84 	84 	85 	84 	85 	Aug 85 	Mean 

0 1.47 0 1.59 
(0.07) (0.11) 

(NH)50 (NH)SO 42 4 25 1.68 1.84 1.87 1.52 1.73 424 25 1.68 1.61 1.61 1.63 1.63 
(0.07) (0.11) (0.04) (0.04) (0.07) (0.07) (0.07) (0.11) 

50 2.92 1.91 1.91 1.66 2.10 50 2.82 1.68 1.63 1.61 1.94 
(0.28) (0.18) (0.15) (0.11) (0.23) (0.07) (0.11) (0.07) 

100 3.45 2.96 2.80 2.33 2.89 100 3.31 2.68 2.75 2.05 2.70 
(0.04) (0.18) (0.14) (0.18) (0.11) (0.11) (0.11) (0.11) 

Mean 2.38 2.05 2.00 1.74 Mean 2.35 1.89 1.90 1.72 
Ca(NO 3 ) 2 

25 1.82 1.54 1.52 1.54 1.60 
Ca(NO 3 ) 2 

25 1.56 1.61 1.63 1.61 1.60 
(0.19) (0.07) (0.04) (0.07) (0.08) (0.07) (0.08) (0.07) 

50 2.57 1.84 1.94 1.56 1.98 50 2.47 1.63 1.56 1.68 1.84 
(0.15) (0.23) (0.16) (0.04) (0.11) (0.11) (0.11) (0.07) 

100 3.34 2.71 2.66 2.33 2.76 100 3.10 2.47 2.47 2.00 2.51 
(0.18) (0.18) (0.07) (0.15) (0.11) (0.08) (0.11) (0.15) 

Mean 2.30 1.89 1.90 1.73 Mean 2.18 1.83 1.81 1.72 
IBDU IBDU 

25 1.70 1.61 1.68 1.52 1.63 25 1.73 1.61 1.70 1.52 1.64 
(0.15) (0.07) (0.07) (0.11) . (0.11) (0.07) (0.15) (0.04) 

50 1.98 1.80 1.75 1.70 1.81 50 2.12 1.80 1.77 1.87 1.89 
(0.18) (0.04) (0.07) (0.04) (0.08) (0.11) (0.04) (0.11) 

100 2.59 1.89 1.94 1.91 2.08 100 2.71 2.15 2.08 1.91 2.21 
(0.25) (0.14) (0.11) (0.15) (0.18) (0.15) (0.11) (0.04) 

Mean 1.94 1.69 1.71 1.65 Mean 2.04 1.79 1.79 1.72 

Significance LSD Significance LSD 
P = 0.05 0.01 P = 0.05 0.01 

Source 	- 157N 137T6 Source 	- 15765 0.03 
Rate 0.05 0.07 Rate 0.03 0.04 
Time 0.05 0.07 Time 0.03 0.04 
Source X Rate 0.09 0.11 Source X Rate 0.05 0.07 
Source X Time 0.09 0.11 Source X Time 0.05 0.07 
Rate X Time 0.10 0.13 Rate X Time 0.06 0.08 
Source X Rate X Time 0.17 0.23 Source X Rate X Time 0.10 0.14 



Appendix Table 

Source 	Rate 
of N 	of N

1  kg ha -  

11.3. 	Leaf N concentration in July 1985 
(data on which part of Table 6 is based). 

Leaf N, 	% dry wt. 

Time of N application 

	

Oct 	OctsJune Oct&Aug Oct 84,June 

	

84 	84 	85 	84 	85 	Aug 85 	Mean 

Appendix Table 

Source 	Rate 
of N 	of N-1 

kg ha  

11.4. 	Leaf N concentration 	in September 	1985 
(data on which part of Table 6 	is based). 

Leaf N,  % dry wt. 

Time of N application 

Oct 	OctsJune Oct&Aug Oct 84,June 
84 	84 	85 	84 	85 	Aug 85 	Mean 

0 1.66 0 1.66 
(0.04) (0.11) 

(NH)50 (NH
4

)
2
SO

4 42 4 
25 1.66 1.75 1.66 1.70 1.69 25 1.66 1.82 1.89 1.75 1.78 

(0.11) (0.07) (0.08) (0.04) (0.11) (0.07) (0.07) (0.07) 
50 2.26 2.15 1.70 2.08 2.05 50 2.15 1.77 2.31 2.17 2.10 

(0.11) (0.15) (0.11) (0.15) (0.11) (0.15) (0.11) (0.15) 
100 2.68 3.08 2.12 3.00 2.72 100 2.66 2.99 3.08 3.13 2.96 

(0.28) (0.14) (0.11) (0.07) (0.21) (0.11) (0.12) (0.11) 
Mean 2.07 2.16 1.79 2.11 Mean 2.03 2.06 2.23 2.18 
Ca(NO 3 ) 2 

25 1.61 1.70 1.59 1.73 1.66 
Ca(MO

3 ) 2 25 1.56 1.61 1.82 1.75 1.69 
(0.07) (0.04) (0.04) (0.08) (0.04) (0.07) (0.07) (0.07) 

50 2.17 2.15 1.75 2.22 2.07 50 2.10 1.84 2.26 2.19 2.10 
(0.19) (0.11) (0.07) (0.08) (0.12) (0.11) (0.18) (0.18) 

100 2.64 3.15 2.17 3.13 2.77 100 2.50 2.99 3.08 3.13 2.92 
(0.25) (0.14) (0.21) (0.11) (0.18) (0.15) (0.12) (0.11) 

Mean 2.02 2.16 1.79 2.18 Mean 1.95 2.02 2.21 2.18 
IBDU IBDU 

25 1.56 1.77 1.49 1.75 1.65 25 1.59 1.59 1.75 1.77 1.67 
(0.11) (0.04) (0.08) (0.07) (0.08) (0.04) (0.07) (0.04) 

50 1.96 2.03 1.94 2.10 2.00 50 1.87 1.94 2.05 2.12 2.00 
(0.07) (0.14) (0.04) (0.14) (0.08) (0.11) (0.11) (0.11) 

100 2.52 2.19 2.10 2.12 2.23 100 2.64 2.24 2.29 2.24 2.35 
(0.25) (0.04) (0.12) (0.08) (0.11) (0.07) (0.11) (0.07) 

Mean 1.93 1.91 1.80 1.91 Mean 1.94 1.86 1.94 1.95 

Significance LSD Significance LSD 

Source 
P _ = 0.05 .01 

Source 

P = 0.05 0.01 
0.03 	-TWS 0.04 177F5 

Rate 0.04 .05 Rate 0.04 0.06 
Time 0.04 .05 Time 0.04 0.06 
Source X Rate 0.07 .09 Source X Rate 0.07 0.10 
Source X Time 0.07 .09 Source X Time 0.07 0.10 
Rate X Time 0.08 .10 Rate X Time 0.08 0.11 
Source X Rate X Time 0.14 .18 Source X Rate X Time 0.15 0.19 



Appendix 

Source 

Table 

Rate 

11.5. 	Leaf N concentration in January 1986 
(data on which part of Table 7 is based). 

Leaf N, 	% dry wt. 

Time of N application 

Appendix 

Source 

Table 

Rate 

11.6. 	Leaf N concentration 	in July 	1986 
(data on•which'part of 	Table 	7 	is 	based). 

Leaf N, 	% dry wt. 

Time of N application 

of N of N-1 kg ha 
Oct 
85 

Oct&June Oct&Aug Oct 84,June 
85 	86 	85 	86 	Aug 86 Mean 

of N of 	N-1 
kg ha 

Oct 
85 

Oct&June Oct&Aug Oct 84,June 
85 	86 	85 	86 	Aug 86 Mean 

0 1.59 0 1.63 
(0.04) (0.08) 

(NH)SO (NH)SO 424 25 1.75 1.66 1.68 1.61 1.67 42 4 25. 1.66 1.80 1.70 1.77 1.73 
(0.07) (0.04) (0.07) (0.07) (0.11) (0.11) (0.11) (0.04) 

50 2.85 1.75 1.68 1.63 1.98 50 2.26 2.29 1.82 2.12 2.12 
(0.18) (0.14) (0.14) (0.15) (0.18) (0.08) (0.07) (0.11) 

100 3.24 2.75 2.73 2.08 2.70 100 2.73 3.08 2.15 3.00 2.74 
(0.11) (0.18) (0.07) (0.11) (0.14) (0.19) (0.11) (0.14) 

Mean 2.36 1.94 1.92 1.73 Mean 2.07 2.20 1.83 2.14 
Ca(NO 3 ) 2 

25 1.73 1.70 1.68 1.61 1.68 
Ca(NO 3 ) 2 _ 

2 1.61 1.70 1.63 1.80 1.69 
(0.04) (0.11) (0.07) (0.07) (0.07) (0.11) (0.04) (0.11) 

50 2.80 1.75 1.75 1.61 1.68 50 2.17 2.26 1.77 2.19 2.10 
(0.04) (0.07) (0.14) (0.07) (0.07) (0.11) (0.04) (0.04) 

100 3.17 2.73 2.75 2.05 2.68 100 2.73 3.13 2.19 3.17 2.81 
(0.11) (0.07) (0.11) (0.15) (0.25) (0.15) (0.23) (0.11) 

Mean 2.32 1.94 1.94 1.72 Mean 2.04 2.18 1.81 2.20 
IBDU IBDU 

25 1.77 1.68 1.68 1.56 1.67 25 1.61 1.77 1.54 1.80 1.68 
(0.11) (0.12) (0.07) (0.04) (0.07) (0.04) (0.07) (0.04) 

50 2.15 1.87 1.75 1.82 1.90 50 2.03 2.08 1.91 2.08 2.02 
(0.11) (0.11) (0.07) (0.07) (0.07) (0.08) (0.08) (0.11) 

100 2.71 2.19 2.22 1.91 2.26 100 2.54 2.24 2.10 2.19 2.27 
(0.11) (0.11) (0.18) (0.15) (0.21) (0.07) (0.07) (0.04) 

Mean 2.05 1.83 1.81 1.72 Mean 1.95 1.93 1.80 1.93 

Significance LSD 
0.01 

Significance LSD 
= 0.05 = 0.05 ---0.01 

Source -67-6T Source 0.03 0.03 0.04 
Rate 0.04 0.05 Rate 0.04 0.05 
Time 0.04 0.05 Time 0.04 0.05 
Source X Rate 0.06 0.08 Source X Rate 0.06 0.08 
Source X Time 0.06 0.08 Source X Time 0.06 0.08 
Rate X Time 0.07 0.10 Rate X Time 0.07 0.10 
Source X Rate X Time 0.13 0.17 Source X Rate X Time 0.13 0.17 



	

(NH 4 ) 2 SO 4 
25 
	

1.63 
(0.04) 

	

50 	2.10 
(0.07) 

	

100 	2.64 
(0.11) 

Mean 
	

2.00 

	

Ca (NO)
.,25 
	

1.56 
(0.11) 

	

50 	2.10 
(0.07) 

	

100 	2.50 
(0.15) 

Mean 
	

1.94 
IBDU 

1.80 
(0.08) 
1.94 
(0.27) 
2.99 
(0.04) 
2.08 

1.63 
(0.04) 
1.91 
(0.11) 
2.94 
(0.14) 
2.02 

1.89 
(0.12) 
2.36 
(0.08) 
3.10 
(0.11) 
2.24 

1.87 
(0.11) 
2.26 
(0.11) 
3.10 
(0.15) 
2.21 

1.87 
(0.04) 
2.17 
(0.07) 
3.17 
(0.04) 
2.21 

1.80 
(0.04) 
2.19 
(0.11) 
3.08 
(0.12) 
2.17 

1.80 

2.14 

2.98 

1.72 

2.12 

2.91 

Appendix Table 11.7. Leaf N concentration in September 1986 
(data on which part of Table.7 is based). 

Leaf N, % dry wt. 

Time of N application 
Source 
of N 

Rate 
of N 1  

kg ha
-  

  

Oct Oct&June Oct&Aug Oct 84,June 
85 	85 	86 85 86 	Aug 86 	Mean 

0 	1.61 
(0.07) 

25 	1.61 
	

1.63 
	

1.82 
	

1.77 
	

1.71 
(0.07) 
	

(0.08) 
	

(0.07) 
	

(0.11) 
50 	1.84 

	
1.96 
	

2.10 
	

2.15 
	

2.00 
(0.11) 
	

(0.07) 
	

(0.07) 
	

(0.04) 
100 	2.59 

	
2.19 
	

2.26 
	

2.29 
	

2.33 
(0.07) 
	

(0.15) 
	

(0.11) 
	

(0.11) 
Mean 
	

1.91 
	

1.85 
	

1.95 
	

1.95 
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Significance  

Source 
Rate 
Time 
Source 
Source 
Rate X 
Source 

X Rate 
X Time 
Time 
X Rate 

LSD 
P = 0.05 ---0.01 

	

0.04 	0.05 

	

0.04 	0.06 

	

0.04 	0.06 

	

0.07 	0.10 

	

0.07 	0.10 

	

0.08 	0.11 
X Time 	0.15 	0.19 

Appendix Table II. 8. Flower yield in January 1985 
(data on which Fig. 6 is based). 

Flower yield, g fresh weight plant -I  
Amount of N 
applied in 
October_y4 a  

kg ha 

    

 

Source of N 

  

(NH 4 ) 2 SO 4 Ca(NO3 ) 2 
IBDU 

 

	

0 
	

1.97 (0.67) 

	

8.3(25/Oct,June&Aug) 2.20 (0.30) 
	

2.07 (0.15) 
	

2.83 (0.45) 
12.5(25/Oct&June) 	3.83 (0.59) 

	
3.77 (0.74) 

	
2.97 (0.32) 

(25/Oct&Aug) 	2.63 (0.78) 
	

3.07 (0.61) 
	

3.93 (0.31) 

	

16.8(50/Oct,June&Aug) 2.97 (0.35) 
	

3.17 (0.06) 
	

3.50 (0.40) 

	

25 	(25/Oct) 	3.70 (1.35) 
	

3.47 (1.58) 
	

4.00 (0.61) 
(50/Oct&June) 	3.50 (0.56) 

	
3.47 (0.90) 

	
4.10 (1.00) 

(50/Oct&Aug) 	3.73 (0.42) 
	

3.67 (0.47) 
	

3.93 (0.21) 

	

33.3(100/Oct,June&Aug)3.50 (0.70) 
	

3.63 (0.75) 
	

3.63 (0.45) 

	

50 	(50/Oct) 	3.83 (0.93) 
	

3.73 (0.76) 
	

4.07 (0.55) 
(100/Oct&June) 	3.53 (0.90) 

	
3.57 (0.86) 

	
5.20 (0.50) 

(100/Oct&Aug) 	3.53 (0.59) 
	

3.57 (0.47) 
	

4.80 (1.15) 

	

100 	(100/Oct) 	2.40 (0.36) 
	

2.67 (0.51) 
	

4.70 (0.70) 

aAs a result of complete or split application as given in 
brackets. 



Appendix Table 

- 
Source 	Rate 
of N 	of N-1 

kg ha 

11.9. 	Flower yield in September 1985 
(data on which Fig. 	7 	is based). 

Flower yield, 	g fresh weight plant-1 

Time of N application 

Oct 	Oct&June OctsAug Oct 84,June 
84 	84 	85 	84 	85 	Aug 85 	Mean 

Appendix Table 

Source 	Rate 
of N 	of N-1 

kg ha  

	

11.10. 	Flower yield 	in September 	1986 
(data on which 	Fig. 	8 	is based). 

Flower yield, 	g 	fresh weight plant -I  

Time of N application 

	

Oct 	Oct&June Oct&Aug Oct 85,June 

	

85 	85 	86 	85 	86 	Aug 86 	Mean 

0 6.3 0 9.0 
(1.5) (1.0) 

(NH)SO (NH 4 )SO 424 
25 34.7 16.3 14.7 16.0 20.4 24 

25 40.3 18.3 • 	17.0 17.3 23.3 
(7.5) (5.5) (1.5) (2.7) (8.0) (6.1) (2.7) (4.5) 

50 75.0 37.0 28.0 21.0 40.3 50 89.0 44.7 30.3 25.0 47.3 
(8.7) (8.5) (4.6) (3.6) (8.9) (8.1) (7.6) (4.4) 

100 83.0 66.0 56.7 43.0 62.2 100 96.0 75.0 66.7 51.0 72.2 
(8.5) (6.2) (7.6) (9.6) (13.5) (2.0) (11.9) (9.9) 

Mean 49.8 31.4 26.4 21.6 Mean 58.6 36.8 30.8 25.6 
Ca(NO 3 ) 2 

25 23.0 14.7 14.0 14.0 16.4 
Ca(NO 3 ) 2 

25 27.3 16.0 16.7 15.3 18.8 
(1.7) (3.1) (4.0) (4.6) (4.0) (3.0) (5.1) (5.8) 

50 71.0 27.3 22.3 21.0 35.4 50 85.0 31.0 26.3 25.0 41.8 
(9.2) (5.5) (4.5) (4.6) (10.2) (5.3) (5.5) (4.6) 

100 83.0 62.0 54.3 41.0 60.1 100 97.7 73.7 62.3 49.3 70.8 
(6.6) (5.0) (11.6) (6.6) (4.5) (5.5) (13.1) (8.1) 

Mean 45.8 27.6 24.3 20.6 Mean 54.8 32.4 28.6 24.7 
IBDU IBDU 

25 45.0 19.3 18.3 16.3 24.8 25 52.7 22.7 21.0 20.3 29.2 
(7.2) (3.1) (2.5) (4.0) (8.6) (2.1) (2.0) (6.5) 

50 88.3 51.7 50.3 41.0 57.8 50 105.7 61.0 61.3 49.7 69.4 
(15.8) (4.7) (10.5) (3.6) (19.9) (6.2) (16.0) (3.8) 

100 91.7 81.0 79.7 67.7 80.0 100 110.0 94.0 96.3 88.3 97.2 
(19.0) (11.1) (10.0) (6.0) (24.1) (12.0) (11.0) (20.1) 

Mean 57.8 39.6 38.7 32.8 Mean 69.3 46.7 46.9 41.8 

Significance LSD Significance LSD 

P = 0.05 0.01 P = 0.05 0.01 
Source TT-  Source 3.3 4.3 
Rate 2.9 3.9 Rate 3.8 5.0 
Time 2.9 3.9 Time 3.8 5.0 
Source X Rate 5.0 6.7 Source X Rate 6.5 8.6 
Source X Time 5.0 6.7 Source X Time 6.5 8.6 
Rate X Time 5.8 7.7 Rate X Time 7.5 10.0 
Source X Rate X Time ns Source X Rate X Time ns 
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Appendix Fig. 111.1. Mean daily temperature during 1984. 

6 	1.1.1 -1•1 .1.1.1 -1.1 .1.1 -1 
Sept8OctNovDedan8FebMarApMayJundulyAusSept 

MONTH 

Appendix Fig. 111.2. Mean daily temperature during 1984-85. 



Appendix Table 111.1. Stein diameter in 1984 experiment. Appendix Table 111.2. Number of nodes on main shoot in 1984 
experiment. 

Stem diameter, cm 

Form 	Level, mM Apr 	May 	June 	July Aug 	Sept 

	

0 	0 	0 	0 	0 	0 	0 
NH 4

+
+NO3

- 

	

5 	0 	0.02 	0.02 	0.02 	0.02 	0.02 

	

(0.01) 	(0.01) 	(0.01) 	(0.01) 	(0.01) 

	

10 	0 	0.03 	0.03 	0.03 	0.03 	0.03 

	

(0.01) 	(0.01) 	(0.01) 	(0.01) 	(0.01) 

	

15 	0 	0.03 	0.03 	0.03 	0.03 	0.04 

	

(0.01) (0.01) (0.01) 	(0.01) (0.01) 

	

20 	0.02 	0.04 	0.04 	0.05 	0.05 	0.06 
(0.10) 	(0) 	(0.02) (0.01) (0.01) (0.01) 

	

25 	0.03 	0.04 	0.05 	0.05 	0.05 	0.08 
(0.01) 	(0) 	(0.02) 	(0) 	(0.01) 	(0.02) 

Nil 4
+ 

	

5 	0 	0 	0 	0 	0 	0.02 
• (0.01) 

	

10 	0 	0.02 	0.02 	0.02 	0.02 	0.03 

	

(0.01) 	(0.01) 	(0.01) 	(0.01) 	(0.01) 

	

15 	0 	0.03 	0.03 	0.03 	0.03 	0.04 

	

(0.01) 	(0.01) (0.01) (0.01) (0.01) 

	

20 	0.02 	0.04 	0.04 	0.04 	0.05 	0.05 

	

(0.01) (0.01) 	(0.01) 	(0.02) 	(0.01) (0.01) 

	

25 	0.02 	0.04 	0.05 	0.05 	0.05 	0.07 

	

(0.01) (0.01) 	(0) 	(0) 	(0.01) (0.02) 
NO3

- 	5 	0 	0 	0.02 	0.02 	0.02 	0.02 
(0.01) (0.01) (0.01) (0.01) 

	

10 	0 	0.02 	0.02 	0.02 	0.02 	0.03 
(0.01) (0.01) (0.01) (0.01) (0.01) 

	

15 	0 	0.03 	0.03 	0.03 	0.03 	0.04 

	

(0.01) (0.01) (0.01) (0.01) 	(0) 

	

20 	0.02 	0.04 	0.04 	0.04 	0.04 	0.04 

	

(0.01) (0.01) (0.01) 	(0) 	(0.01) 	(0) 

	

25 	0.02 	0.04 	0.04 	0.04 	0.04 	0.06 

	

(0.01) (0.01) (0.01) (0.01) (0.01) 	(0) 

Effect of form, level and their interaction in each month 
are not significant at P = 0.05. 

No. of nodes 

Form 	Level, mM Apr 	May 	June 	July 	Aug 	Sept 

	

0 	1.0 	1.8 	1.8 	1.8 	1.8 	1.8 

	

(0.8) 	(1.3) 	(1.3) 	(1.3) 	(1.3) 	(1.3) NH 4
+
+NO 3

- 

	

5 	1.8 	3.5 	4.0 	4.0 	4.0 	4.5 

	

(0.5) 	(0.6) 	(0.8) 	(0.8) 	(0.8) 	(1.3) 

	

10 	2.8 	5.0 	6.0 	6.0 	6.0 	7.3 

	

(0.5) 	(0.8) 	(1.8) 	(0.8) 	(0.8) 	(1.0) 

	

15 	2.5 	5.3 	6.5 	6.8 	7.8 	7.8 

	

(0.6) 	(0.5) 	(0.6) 	(1.0) 	(1.5) 	(1.7) 

	

20 	3.3 	5.8 	7.8 	9.5 	9.5 	10.5 

	

(1.3) 	(1.0) 	(1.0) 	(1.3) 	(1.3) 	(1.3) 

	

25 	3.5 	5.5 	8.5 	9.3 	11.0 	13.0 

NH 4
+ 	(1.3) 	(1.3) 	(1.7) 	(1.7) 	(2.2) 	(2.2) 

	

5 	1.5 	2.8 	3.3 	3.3 	3.3 	4.0 

	

(0.6) 	(1.0) 	(1.5) 	(1.5) 	(1.5) 	(1.8) 

	

10 	2.5 	4.5 	5.3 	5.3 	5.3 	5.3 

	

(0.6) 	(1.3) 	(1.7) 	(1.7) 	(1.7) 	(1.7) 

	

15 	2.0 	4.3 	5.3 	5.3 	5.5 	6.5 

	

(0.8) 	(1.0) 	(1.7) 	(1.7) 	(2.1) 	(2.9) 

	

20 	3.0 	5.0 	7.3 	8.0 	8.0 	8.3 

	

(1.4) 	(1.6) 	(2.1) 	(2.9) 	(1.7) 	(1.7) 

	

25 	3.5 	5.8 	7.8 	9.3 	10.0 	11.5 

- 	
(1.3) 	(1.0) 	(1.0) 	(1.5) 	(1.7) 	(2.1) 

NO 	0.8 	1.5 	2.0 	2.0 	2.0 	2.3 

	

(0.5) 	(0.6) 	(1.2) 	(1.2) 	(1.2) 	(1.5) 

	

10 	2.0 	3.5 	4.0 	4.0 	4.0 	4.0 

	

(0.8) 	(1.3) 	(1.8) 	(1.8) 	(1.8) 	(1.8) 

	

15 	2.0 	3.5 	4.0 	4.3 	4.3 	4.0 

	

(0.8) 	(1.3) 	(1.8) 	(2.2) 	(2.2) 	(1.8) 

	

20 	2.5 	4.5 	6.5 	7.8 	8.5 	10.3 

	

(0.6) 	(0.6) 	(0.6) 	(1.0) 	(1.3) 	(1.5) 

	

25 	3.5 	5.5 	7.5 	8.8 	10.3 	11.3 

	

(1.3) 	(1.3) 	(1.3) 	(1.5) 	(1.7) 	(1.7) 

Significance 
P 	 LSD _ 

Form 	0.05 	ns 	0.4 	0.4 --- 0.5 	0.3 	0.5 

	

0.01 	0.5 	0.6 	0.7 	0.4 	0.7 
Level 	0.01 	0.6 	0.5 	0.6 	0.7 	0.5 	0.7 

	

0.01 	0.8 	0.7 	0.8 	1.0 	0.6 	0.9 

	

FormXLevel 0.05 	ns 	ns 	ns 	ns 	0.8 	1.2 

	

0.01 	 1.1 	1.6 
	  n.) 

1-,  
03 



Appendix Table 111.3. Number of lateral shoots as in 1984 
	

Apdendix rabic 111.4. Numbar of nodes on lateral shoots In 

Form 

+ 
NH

4 	
+NO

3 

Level, 

- 	o 
5 

10 

experiment. 

No. of lateral 

mM 	Apr 	May 	June 	July 

0 	o 	0 	o 
0 	0 	0 	0 
0 	0 	0 	0 

shoots 

Aug 

o 
0 
0 

Sept 

0 
0 
0 

Form 	Level, 

0 
r  NH 4 +NO3 	5 

10 

mM 	Apr. 

0 
0 
0 

1984 	experiment. 

No. 	of 	lateral 

May 	June 	July 

0 	0 	0 
0 	0 	0 
0 	0 	0 

shoots 

Aug. 

0 
0 
0 

Sept. 

0 
0 
0 

15 1.8 1.8 1.8 1.8 1.8 1.8 15 1.8 3.5 3.8 3.8 3.8 4.8 
(0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (1.3) (1.7) (1.7) (1.7) (1.5) 

20 2.0 2.3 2.8 2.8 2.3 2.8 20 2.8 3.3 3.3 4.3 4.5 7.8 
(0) (1.3) (1.5) (1.5) (1.5) (1.5) (1.0) (1.7) (1.7) (1.7) (1.3) (3.1) 

25 2.2 3.3 3.5 3.5 3.5 3.5 •25 3.5 4.3 4.3 5.8 7.5 12.0 
(0.5) (1.0) (1.3) (1.3) (1.3) (1.3) + (1.9) (1.7) (1.7) (1.7) (1.9) (3.9) 

+  NH 5 0 0 0 0 0 0 NH
4 

 
5 0 0 0 0 0 0 

4 
10 0 0 0 0 0 0 10 0 0 3 0 0 0 
15 1.8 1.8 1.8 1.8 1.8 1.8 15 1.8 3.0 4.0 4.3 4.3 5.3 

(0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (2.2) (1.4) (1.3) (1.3) (2.2) 
20 2.0 2.8 3.3 3.3 3.3 3.3 20 2.8 3.5 3.5 4.3 5.5 6.5 

(0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.3) (1.3) (1.7) (1.3) (1.3) 
25 2.0 3.3 3.3 3.3 3.3 3.3 25 3.3 4.3 4.3 5.3 6.8 6.8 

(0) (1.7) (1.7) (1.7) (1.7) (1.7) (9.5) (1.7) (1.7) (2.2) (2.8) (2.5) 
-  NO 5 0 0 0 0 0 0 - NO3  5 0 0 0 0 0 0 3 

10 0 0 0 0 0 0 10 0 0 0 0 0 0 
15 1.5 1.5 1.5 1.5 1.5 1.5 15 1.5 3.0 3.0 3.0 3.0 3.8 

(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (2.0) (2.0) (2.0) (2.0) (2.6) 
20 2.0 3.0 3.0 3.0 3.0 3.0 20 2.5 3.8 3.8 4.3 5.8 7.0 

(0) (0.8) (0.8) (0.8) (0.8) (0.8) (1.0) (1.3) (1.3) (1.7) (2.6) (2.9) 
25 2.0 2.5 2.5 2.5 2.5 2.5 25 2.5 3.0 4.5 5.3 5.5 6.5 

(0.8) (1.3) (1.3) (1.3) (1.3) (1.3) (0.6) (1.8) (2.1) (2.2) (1.3) (2.1) 

Significance ignificance  S 
P 

Level 	o7os 0.3 0.6 
LSD 

0.5 0.5 Form 
P 

0705 ns ns 
1.,§2 

ns ns ns 0.8 0.6  
0.01 0.4 0.7 0.8 0.8 0.7 0.7 0.01 ns  

Level 0.05 0.6 0.8 0.8 0.8 0.9 1.2 
Effects of form and form X level interaction in each month • 0.01 0.8 1.0 1.0 1.1 1.2 1.6 
were not significant at P = 0.05. FormXLevel 0.05 ns ns ns ns ns 2.1  

0.01 2.8 



Appendix Table 111.5. Nutiber of axils with floder buds in 

Form Level, 	n.1 

- 	
U 

1984 experiment. 

No. of axils 	it 	flower buds 

June 	 July 

2.5 	(1.0) 	2.5 	(1.0) 
Nh 4 +i0 

" 5 6.0 (1.6) 6.5 (1.9) 
10 10.0 (1.6) 11.5 (1.9) 
15 10.5 (3.4) 10.5 (3.4) 
20 12.5 (3.4) 12.5 (5.3) 
25 11.0 (2.6) 16.0 (4.9) 

Ns'i4+ 5 5.0 (2.6) 5.5 (3.0) 
10 8.5 (3.4) d.5 (3.4) 
15 9.0 (4.2) 9.5 (3.4) 
20 10.0 (1.6) 12.5 (2.5) 
25 10.5 (3.4) 10.5 (5.5) 

.O 3  5 3.0 (2.0) 3.0 (2.0) 
10 5.5 (3.0) 7.0 ( 3 .5) 
15 6.5 (4.4) 7.5 (6.2) 
20 11.0 (1.2) 11.0 (2.6) 
25 10.0 (1.6) 11.0 (2.6) 

Significance 
p _ LSD 

Form 0.05 1.5 1.9 
0.01 ns ns 

Level 0.05 2.1 2.7 
0.01 2.8 3.6 

FormXLevel 0.05 ns ns 

Appendix Table 111.6. Total nu.:Iber of floder buds in 1984 
experiment. 

No. of flower buds 

Form 	Level, mH June 	 July 

_ 0 2.5 (1.0) 2.5 (1.0) 4.
+NO N3 5 6.5 (1.9) 8.2 (2.4) 43 10 11.0 (1.2) 14.3 (1.7) 

15 11.8 (5.1) 18.5 (6.0) 
20 12.8 (4.6) 15.8 (4.4) 
25 13.8 (4.8) 17.8 (5.1) 

'  1414
4 5 5.0 (2.6) 6.5 (3.1) 

10 3.5 (3.4) 11.3 (3.6) 
15 11.3 (4.3) 14.5 (5.5) 
20 11.8 (3.5) 15.8 (3.5) 
25 11.5 (4.4) 15.0 (6.7) 

NO 3 -  5 3.0 (2.0) 4.5 (3.4) 
10 6.0 (3.6) 9.5 (4.5) 
15 7.5 (4.9) 11.8 (5.4) 
20 10.5 (1.3) 15.3 (2.5) 
25 11.0 (2.6) 12.3 (3.3) 

Significaace 
2 LSD 

Fora 0.05 1.4 2.0 
0.01 1.8 2.7 

Level 0.05 1.9 2.8 
0.01 2.6 3.8 

FormXLevel 0.05 ns ns 

Appendix Table 111.7. Number of developed flowers N in 1984 
experiment. 

Form 	Level, oil 	 No. of flowers 

	

0 	 2.5 (0.6) 
4 NH + +NO

3 	5 	 8.0 (2.2) '  

	

10 	 13.8 (1.7) 

	

15 	 15.8 (5.0) 

	

20 	 12.0 (2.9) 

	

25 	 11.8 (2.8) 
NH 4 	 5 	 6.3 (3.3) 

	

10 	 9.8 (3.4) 

	

15 	 13.5 (4.9) 

	

20 	 12.0 (3.7) 

	

25 	 11.8 (2.6) 
NO 3 	 5 	 4.3 (3.1) 

	

10 	 9.0 (2.9) 

	

15 	 13.8 (6.9) 

	

20 	 9.3 (3.6) 

	

25 	 10.0 (2.2) 

Sicnificance 
LSD 

Fon-. 	0.05 
	

1.4 

	

0.01 
	

2.0 
Lave: 	0.05 
	

2.2 

	

0.01 
	

2.9 

	

For:IXLevel 0.05 
	

RS 

220 



Appendix Table 

Form 	Level, 

111.8. 	Stem diameter in 

mM 	Oct 84 Nov 	Dec 

1984-85 experiment 	(data on 

Stem diameter, 

Jan 85 	Feb 	Mar 	Apr 

which Fig. 	18 

cm 

May. 	June 

is 	based). 

July 	Auc Sedt 

0 0.03 0.07 0.11 0.15 0.19 0.22 0.22 0.22 0.22 0.22 0.22 0.22 
(0.01) (0) (0.01) (0.01) (0) (0) (0) (0) (0) (0) (0) (0) 

NH 4
+
+NO 3  5 0.04 0.08 0.12 0.17 0.21 0.26 0.27 0.28 0.28 0.28 0.29 0.29 

(0.01) (0.02) (0.02) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0) (0.02) 
10 0.04 0.09 0.14 1.20 0.25 0.30 0.34 0.35 0.36 0.36 0.36 0.36 

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.04) (0,03) (0.03) (0.04) (0.03) 
15 0.06 0.13 0.19 0.25 0.31 0.36 0.41 0.41 0.41 0.43 0.46 0.48 

(0.01) (0) (0) (0.03) (0.01) (0.04) (0.02) (0) (0.04) (0.03) (0.03) (0.02) 
20 0.06 0.14 0.22 0.28 0.36 0.42 0.43 0.49 0.49 0.51 0.51 0.51 

(0.01) (0.01) (0.02) (0.04) (0.02) (0.02) (0.03) (0.03) (0.05) (0.02) (0.02) (0.06) 
25 0.07 0.16 0.24 0.28 0.37 0.49 0.49 0.54 0.54 0.54 0.61 0.61 

(0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.03) (0.04) (0.04) (0.04) (0.02) (0.02) 
NH4

+ 	
5 0.03 0.06 0.12 0.15 0.19 0.23 0.23 0.23 0.25 0.25 0.25 0.25 

(0.01) (0) (0.01) (0.02) (0) (0.02) (0.12) (0.03) (0.03) (0.04) (0.04) (0.03) 
10 0.04 0.09 0.14 0.19 0.23 0.27 0.30 0.30 0.30 0.31 0.30 0.30 

(0.01) (0) (0) (0) (0.02) (0.03) (0.02) (0) (0.02) (0.02) (0.02) (0.02) 
15 0.05 0.12 0.16 0.20 0.27 0.32 0.33 0.35 0.37 0.32 0.39 0.39 

(0) (0.05) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03) (0.02) 
20 0.07 0.11 0.20 0.26 0.32 0.39 0.41 0.47 0.47 0.47 0.47 0.48 

(0) (0.02) (0) (0) (0.03) (0.02) (0.02) (0.03) (0.05) (0.04) (0.03) (0.03) 
25 0.06 0.13 0.20 0.29 0.36 0.43 0.46 0.47 0.47 0.49 0.52 0.54 

(0.02) (0.02) (0) (0) (0.03) (0.02) (0.03) (0.03) (0.04) (0.04) (0.05) (0.05) 
NO 5 

3
-  0.03 0.05 0.12 0.15 0.19 0.22 0.22 0.23 0.23 0.23 0.23 0.24 

(0.01) (0) (0) (0.01) (0) (0.02) (0.03) (0.03) (0) (0.02) (0.03) (0) 
10 0.04 0.09 0.14 0.20 0.23 0.29 0.28 0.30 0.31 0.31 0.31 0.31 

(0.01) (0.02) (0) (0.02) (0.02) (0.03) (0.03) (0.02) (0) (0.02) (0.02) (0) 
15 0.04 0.09 0.14 0.20 0.23 0.29 3.32 0.32 0.33 0.33 0.33 0.35 

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.04) 
20 0.06 0.11 0.18 0.22 0.30 0.40 0.40 0.40 0.40 0.40 0.42 0.42 

(0) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0) (0.02) (0.03) (0.04) (0.02) 
25 0.06 0.12 0.20 0.28 0.31 0.40 0.40 0.47 0.47 0.49 0.49 0.49 

(0) (0.02) (0) (0.02) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03) (0.02) (0.02) 

Significance 
LSD -4 

Form 	0705 ns ns ns ns ns ns ns ns 0.02 0.02 0.02 0.01 
0.01 0.02 0.02 0.02 0.01 

Level 	0.05 ns ns ns 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.01 0.02 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 

FormXLevel 0.05 ns ns ns ns ns ns ns ns ns ns ns ns 



Appendix Table 

Form 	Level, 

111.9. 	Number of nodes 

mM 	Oct 84 	Nov 	Dec 

on main shoot 

Jan 85 	Feb 

in 1984-85 experiment 	(data 

No. of nodes on main shoot 

Mar 	Apr 	may 	June 

on which 	:1(j. 

July  Aug 

19 	is based). 

Sept 

0 2.8 3.8 5.0 6.0 7.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 
+ 	- (0.5) (1.0) (0.8) (0.8) (0.8) (0.8) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) 

NH4 + N0 3 	5 2.8 4.0 5.8 6.5 7.8 8.5 8.5 8.8 8.8 8.8 8.8 9.0 
(0.5) (0.8) (1.0) (1.3) (1.7) (1.3) (1.3) (1.7) (1.7) (1.7) (1.7) (2.2) 

10 3.5 5.0 7.0 8.5 10.0 11.5 11.8 12.5 12.8 13.5 13.5 14.0 
(0.6) (0.8) (0.8) (0.6) (0.8) (0.6) (1.0) (1.3) (1.7) (2.4) (2.4) (2.9) 

15 4.5 7.3 9.5 11.5 13.5 15.8 17.5 18.8 19.8 20.3 20.8 22.3 
(0.6) (0.5) (0.6) (0.6) (0.6) (1.0) (1.3) (1.7) (1.7) (1.3) (1.7) (2.8) 

20 5.0 8.5 11.5 14.0 16.3 18.5 20.5 22.5 24.5 26.5 27.5 29.0 
(0.8) (0.6) (0.6) (0.8) (1.0) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) (1.4) 

25 5.5 9.5 13.0 15.5 18.5 20.8 22.8 25.5 27.8 29.8 31.8 33.8 

• 

-,- (0.6) (0.6) (0.8) (0.6) (0.6) (1.0) (1.0) (1.3) (1.7) (1.7) (1.7) (2.2) 
NH

4 	5 2.8 3.5 5.5 6.5 7.8 8.5 8.8 9.0 9.0 9.0 9.0 9.5 
(0.5) (1.7) (0.6) (0.6) (1.0) (1.3) (1.7) (2.2) (2.2) (2.2) (2.2) (2.1) 

10 3.5 5.0 6.5 7.5 8.8 10.3 10.5 10.8 11.3 11.3 11.3 11.8 
(0.6) (0.8) (1.3) (1.3) (1.0) (1.0) (1.3) (1.7) (2.2) (2.2) (2.2) (2.8) 

15 4.3 6.5 8.0 9.5 11.5 13.0 14.3 15.3 15.3 16.5 19.0 19.8 
(0.5) (0.6) (0.8) (0.6) (0.6) (0.8) (1.7) (2.5) (3.2) (2.7) (4.7) (4.8) 

20 4.8 7.5 9.5 11.5 13.5 15.5 17.3 18.5 20.3 21.5 25.3 26.3 
(0.5) (0.6) (0.6) (0.6) (0.6) (0.6) (1.0) (1.3) (1.7) (1.3) (4.6) (4.6) 

25 5.5 9.5 12.5 14.5 17.0 19.5 21.8 23.5 25.8 27.5 32.3 34.5 
(0.6) (0.6) (0.6) (0.6) (0.8) (1.3) (1.0) (1.3) (1.7) (1.3) (7.3) (7.1) 

-  NO 3 5 3.0 3.5 4.8 5.8 7.0 8.0 8.3 8.3 8.3 8.3 8.8 9.0 
(0) (1.7) (1.3) (1.3) (0.8) (0.8) (1.0) (1.0) (1.0) (1.0) (1.7) (2.2) 

10 3.5 5.0 5.8 6.8 8.5 9.5 10.5 10.5 11.5 11.5 11.5 12.0 
(0.6) (0.8) (1.0) (1.4) (1.3) (1.3) (1.3) (1.9) (2.4) (2.4) (2.4) (2.9) 

15 3.5 6.3 7.8 9.0 10.3 11.8 13.0 14.3 14.8 15.3 15.8 16.5 
(0.6) (1.3) (1.5) (1.4) (1.3) (1.7) (1.8) (2.5) (2.8) (3.3) (2.8) (3.1) 

20 4.5 7.5 9.5 11.0 13.0 14.5 16.5 17.8 19.3 19.8 21.0 22.5 
(0.6) (0.6) (0.6) (0.8) (0.8) (1.3) (1.3) (1.0) (1.7) (1.7) (1.4) (2.1) 

25 5.5 9.0 11.0 13.5 15.0 17.3 19.3 21.8 23.8 24.5 25.5 26.3 
(0.6) (0.8) (0.8) (1.3) (0.8) (1.0) (1.3) (1.7) (1.5) (1.7) (1.3) (1.7) 

Significance 
LSD P 

Form 	0705 ns 0.4 0.4 0.5 0.5 0.4 0.6 0.7 0.8 0.6 1.5 1.8 
0.01 ns 0.5 0.6 0.7 0.6 0.8 0.9 1.0 0.8 2.0 2.4 

Level 	0.05 0.3 0.6 0.5 0.6 0.7 0.6 0.8 0.9 1.1 0.8 2.1 2.5 
0.01 0.4 0.8 0.7 0.9 0.9 0.8 1.1 1.2 1.5 1.1 2.8 3.4 

FormXLevel 0.05 ns ns ns 1.1 1.2 1.0 1.4 1.6 1.9 1.4 ns ns 
0.01 ns 1.6 1.4 1.9 2.1 2.5 1.9 



Appendix Table 

Form 	Level, 

111.10. 	Number 

mM 	Oct.84 	Nov. 

of 	lateral shoots in 

Dec. 	Jan.85 	Feb. 

1984-85experiment 	(dataon which Fig. 

No. 	oflateral 	shoots 

Mar, 	Apr 	May 	June 	July 

20 	is 

Aug 

based). 

Sept 

o 1.3 3.0 4.0 5.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 
+ _ (1.0) (0.8) (0) (0.8) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) 

NH4 +NO3 	5 1.8 3.5 5.5 7.5 8.8 10.5 10.8 11.0 11.0 11.0 11.0 11.0 
(0.5) (1.3) (1.3) (1.3) (1.0) (1.3) (1.7) (2.2) (2.2) (2.2) (2.2) (2.2) 

10 3.0 5.8 8.0 10.5 13.0 15.0 16.0 16.8 16.8 16.8 16.8 16.8 
(0.8) (1.7) (0.8) (1.3) (0.8) (0.8) (0.8) (1.7) (1.7) (1.7) (1.7) (1.7) 

15 4.5 9.3 13.0 17.0 20.0 23.5 26.5 26.8 26.8 27.3 27.3 27.3 
(1.3) (1.3) (0.8) (0.8) (0.8) (0.6) (1.3) (1.7) (1.7) (1.7) (1.7) (1.7) 

20 5.5 11.5 17.0 21.8 25.8 29.8 33.0 34.3 34.3 34.3 34.3 34.3 
(1.3) (0.6) (0.8) (1.0) (1.0) (1.0) (0.8) (1.3) (1.3) (1.3) (1.3) (1.3) 

25 6.8 14.5 20.5 26.0 31.5 35.5 40.0 41.8 42.0 42.0 42.0 42.0 
+ (1.0) (1.3) (1.3) (1.2) (1.3) (1.3) (0.8) (1.0) (0.8) (0.8) (0.8) (0.8) 

NH
4 	

5 1.8 3.0 5.0 6.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 
(0.5) (0.8) (0.8) (0.6) (0.8) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) (1.3) 

10 3.0 5.0 7.8 9.5 11.0 13.0 13.5 13.8 13.8 13.8 13.8 13.8 
(0.8) (0.8) (1.0) (0.6) (0.8) (0.8) (1.3) (1.7) (1.7) (1.7) (1.7) (1.7) 

15 3.8 8.0 10.3 13.0 15.5 18.5 20.0 20.5 20.8 21.3 21.3 21.3 
(1.0) (0.8) (1.0) (0.8) (0.6) (1.3) (1.4) (2.7) (2.8) (2.5) (2.7) (2.6) 

20 4.5 10.0 13.5 16.8 19.8 23.5 26.0 26.8 26.8 26.8 26.8 26.8 
(1.3) (0.8) (1.3) (1.0) (1.0) (1.3) (1.8) (2.5) (2.5) (2.5) (2.5) (2.5) 

25 6.5 13.5 18.8 23.0 27.0 30.5 33.5 35.3 35.3 35.3 35.3 35.3 
(1.3) (0.6) (1.0) (0.8) (0.8) (1.3) (1.0) (1.3) (1.3) (1.3) (1.4) (1.3) 

NO 3 - 	5 1.8 3.3 5.0 6.0 7.5 8.0 8.3 8.3 8.3 8.3 8.3 8.3 
(0.5) (1.0) (0.8) (0.8) (1.3) (0.8) (1.0) (1.0) (1.0) (1.0) (0.8) (0.8) 

10 2.0 4.0 6.5 8.0 9.5 11.0 11.5 11.8 11.8 11.8 11.8 11.8 
(0.8) (0.8) (0.6) (0.8) (0.6) (0.8) (1.3) (1.7) (1.7) (1.7) (1.7) (1.7) 

15 3.0 7.0 9.0 11.0 13.0 15.0 16.3 17.0 17.0 17.0 17.0 17.0 
(0.8) (0.8) (0.8) (0.8) (0.8) (1.4) (2.2) (2.6) (2.6) (2.8) (2.8) (2.6) 

20 4.3 9.5 12.5 15.5 18.3 20.5 22.5 23.5 23.5 23.5 23.5 23.5 
(1.0) (0.6) (0.6) (0.6) (0.5) (0.6) (0.6) (1.3) (1.3) (1.3) (1.3) (1.3) 

25 6.5 13.0 17.8 21.0 24.8 27.8 30.3 32.0 32.0 32.0 32.0 32.0 
(1.3) (0.8) (1.0) (0.8) (1.0) (1.0) (1.5) (1.8) (1.8) (1.8) (1.8) (1.8) 

Significance 
LiD 13  

Form 	0.05 0.4 0.4 ' 	0.4 0.4 0.5 0.6 0.6 0.8 0.7 0.8 0.9 0.8 
0.01 0.6 0.6 0.5 0.6 0.6 0.8 0.8 1.0 0.9 1.0 	• 1.2 1.1 

Level 	0.05 0.6 0.6 0.5 0.6 0.6 0.8 0.9 1.1 1.0 1.1 1.2 1.1 
0.01 0.8 0.8 0.7 0.8 0.8 1.1 1.1 1.4 1.3 1.4 1.7 1.5 

FormXLevel 0.05 ns ns 0.9 1.0 1.1 1.4 1.5 1.9 1.6 1.9 2.1 1.9 
0.01 1.2 1.4 1.5 1.8 2.0 2.5 2.2 2.5 2.9 2.6 



Appendix Table 

Form 	Level, 

111.11. 	Number 

mM 	Oct 84 	Nov 

of nodes on 	lateral 	shoots 	in 	1984-85 e:Teriment 

No. ofnodes 

Dec 	Jan 85 	Feb 	Mar 	Apr 	May 	June 

(data 

July 

	

on which eig. 	23 	is 

Aug 	Sept 

0 1.5 4.0 6.8 9.8 12.8 14.8 14.8 15.8 15.8 15.8 15.8 16.3 
(0.6) (1.5) (1.0) (1.7) (3.0) (3.0) (2.6) (3.3) (2.6) (3.0) (3.0) (3.1) 

-  + +NONH
4 5 3 2.0 5.0 10.8 17.0 22.8 30.5 35.0 35.5 36.5 38.8 36.8 38.8 

(0.8) (2.6) (4.3) (5.3) (4.9) (6.2) (8.8) (9.7) (9.0) (7.3) (9.0) (9.3) 
10 4.0 11.5 21.0 31.3 45.0 63.8 71.0 77.8 79.3 79.3 79.8 79.8 

(1.8) (5.5) (4.2) (7.2) (7.0) (6.2) (5.7) (6.5) (7.0) (4.7) (6.3) (7.6) 
15 7.3 24.8 45.5 71.8 98.8 135.8 149.3 158.0 169.3 171.0 175.8 184.3 

(3.3) (5.1) (6.6) (9.0) (12.6) (7.9) (8.2) (11.5) (9.2) (9.4) (7.5) (9.6) 
20 9.0 35.3 72.3 106.8 146.3 187.5 221.3 238.8 259.5 265.3 276.0 291.0 

(3.4) (3.3) (7.9) (8.7) (11.0) (10.7) (12.5) (14.5) (14.0) (8.3) (8.6) (12.0) 
25 13.8 56.0 95.3 144.3 191.3 220.5 253.3 268.8 295.0 303.5 319.8 330.8 

(3.5) (8.8) (12.4) (11.2) (23.0) (18.5) (20.4) (21.5) (20.3) (18.1) (22.2) (23.0) 
+  NH

4
5 1.8 4.5 9.0 13.0 19.0 23.8 27.0 27.5 27.5 29.3 29.3 29.8 

(0.5) (1.9) (2.5) (2.2) (3.7) (5.4) (5.3) (5.8) (5.3) (3.3) (5.7) (3.9) 
10 2.8 9.3 18.8 25.5 35.0 46.5 53.5 61.0 61.0 61.0 63.0 64.5 

(1.0) (2.8) (4.1) (2.4) (4.6) (5.8) (8.8) (5.9) (6.0) (5.5) (5.0) (5.7) 
15 5.3 17.5 29.3 45.3 59.5 82.0 106.3 124.3 130.5 142.5 144.8 144.8 

(2.2) (3.4) (4.1) (5.6) (3.7) (13.9) (18.7) (9.7) (12.4) (5.8) (9.2) (14.7) 
20 7.3 24.3 47.8 73.0 109.3 138.5 157.3 184.0 198.5 209.5 222.0 230.8 

(3.3) (3.6) (9.0) (8.4) (11.4) (13.5) (15.3) (16.4) (16.2) (13.9) (10.1) (11.4) 
25 12.8 42.5 77.3 114.5 151.0 186.0 217.3 229.5 250.3 270.0 281.3 291.3 

(4.0) (5.7) (9.2) (8.7) (9.9) (15.6) (13.2) (11.5) (18.6) (13.3) (13.2) (15.2) 
-  NO3

5 1.5 4.5 9.0 11.5 16.8 27.5 30.8 31.5 31.5 31.5 31.5 32.0 
(0.6) (1.9) (2.5) (2.7) (4.7) (2.4) (4.1) (4.2) (4.6) (4.2) (4.2) (4.7) 

10 2.8 7.0 11.8 16.3 24.5 33.3 39.5 42.5 44.3 45.0 45.0 45.3 
(9.0) (2.5) (1.7) (3.6) (2.4) (4.7) (6.1) (7.9) (6.3) (6.2) (6.4) (8.2) 

15 3.8 13.3 23.0 35.0 45.8 55.8 67.0 73.8 83.5 87.0 89.3 94.0 
(1.7) (3.3) (4.2) (5.6) (5.4) (9.5) (7.5) (7.6) (8.4) (9.1) (8.5) (5.9) 

20 6.3 23.8 41.0 58.0 82.3 93.0 109.8 124.8 140.8 149.8 150.5 158.0 
(2.6) (2.8) (2.9) (3.4) (4.0) (6.5) (8.4) (10.1) (7.0) (6.2) (11.2) (9.9) 

25 11.8 45.5 73.5 97.8 131.5 146.8 183.3 200.0 217.8 229.3 229.3 246.5 
(3.3) (6.4) (8.2) (8.7) (8.5) (15.5) (11.5) (12.8) (11.0) (10.3) (55.1) (16.3) 

Significance 
2 LSD 

Form 	0705 1.3 2.2 2.3 3.5 5.0 5.4 --- 5.5 4.9 6.0 4.5 8.8 5.5 
0.01 ns 2.9 3.1 4.7 6.6 7.2 7.3 6.6 8.0 6.0 11.7 7.3 

Level 	0.05 1.8 3.1 3.3 5.0 7.0 7.7 7.8 7.0 8.5 6.4 12.4 7.8 
0.01 2.4 4.1 4.4 6.7 9.4 10.2 10.4 9.3 11.3 8.5 16.6 10.4 

FormXLevel 0.05 ns 5.3 5.7 8.7 12.0 13.2 13.5 12.0 14.7 11.0 21.6 13.5 
0.01 7.1 7.6 11.5 16.2 17.7 17.9 16.0 19.6 14.7 28.7 18.0 

bosed). 



	

0 	23.3 	(4.1) 	29.0 	(5.5) 

	

5 	60.3 (14.7) 	70.8 (13.8) 

	

10 	139.3 (12.6) 	165.3 (10.1) 

	

15 	342.0 (21.3) 	355.3 	(9.6) 

	

20 	423.8 (25.7) 	453.0 (17.7) 

	

25 	457.5 (22.5) 	495.8 (15.1) 

	

5 	48.0 (10.1) 	60.0 	(7.0) 

	

10 	107.5 (12.1) 	129.8 	(8.1) 

	

15 	271.0 (25.6) 	298.8 (21.8) 

	

20 	288.5 (18.7) 	323.8 (13.0) 

	

25 	402.0 (19.2) 	434.5 (18.9) 

	

5 	45.0 	(2.9) 	49.8 	(3.3) 

	

10 	77.3 	(6.2) 	89.0 	(6.3) 

	

15 	167.3 	(9.1) 	182.8 . (11.5) 

	

20 	237.0 (16.7) 	268.0 (11.5) 

	

25 	335.8 (20.1) 	372.0 (11.1) 

LSD 

NS 4 ++NO3 -  

NH 4 

NO3 -  

Significance 

Appendix Table 111.12. Nuc,ber of axils with flower buds in 
1984-85 experiment (Fig. 24a is based 
on part of these data). 

No. of axils with flower buds 

225 

Form 	Level, mM 

0 

4 
+NO

3 5 
10 
15 
20 
25 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 

Significance 

Form 

T.,e7e1 

2or_1XLeve1 

23.8 
58.3 

123.0 
263.0 
416.3 
472.3 
47.8 
94.0 

203.3 
316.8 
401.8 
48.0 
68.3 

129.8 
219.8 
333.3 

(3.5) 
(14.1) 
(9.8) 

(17.9) 
(24.0) 
(36.6) 
(4.8) 

(12.3) 
(27.5) 
(26.6) 
(28.0) 
(7.8) 

(13.0) 
(14.9) 
(17.8) 
(19.6) 

24.5 
58.8 

123.8 
275.3 
429.0 
481.8 
47.8 
96.8 

211.3 
328.0 
424.8 
49.3 
68.3 

137.5 
230.5 
351.3 

(4.9) 
(13.7) 
(9.0) 

(18.8) 
(21.8) 
(24.8) 
(7.0) 
(7.5) 

(24.1) 
(13.8) 
(23.8) 
(7.1) 

(11.7) 
(13.3) 
(17.5) 
(23.8) 

June 65 
	

July 

NH4
+  

NO
3
-  

LSD 

	

0.05 
	

10.2 
	

9.0 

	

0.01 
	

13.6 
	

11.9 

	

0.01 
	

14.5 
	

12.7 

	

0.01 
	

19.3 
	

16.9 

	

0.05 
	

25.1 
	

21.9 

	

0.01 
	

33.4 
	

29.2 

Appendix Table 111.13. Total number of flower buds in 1984-85 
ezperiNent (Fig. 25a is based on part 
of these data). 

No. of flower buds 

Form 	Level, mM 	June 85 	July 

Form 	0.05 
	

9.3 
	

6.9 

	

0.01 
	

12.3 
	

9.2 
Level 	0.05 
	

13.1 
	

9.8 

	

0.01 
	

17.5 
	

13.0 

	

ForaXLevel 0.05 
	

22.7 
	

16.9 

	

0.01 
	

30.2 
	

22.6 



Form 	Level, mA 	10-flower fresh wt, g 

	

0 	0.12 (0.02) 

	

5 	0.39 (0.02) 

	

10 	0.38 	(0) 

	

15 	0.35 (0.01) 

	

20 	0.33 (0.01) 

	

25 	0.33 (0.01) 

	

5 	0.40 	(0) 

	

10 	0.38 (0.01) 

	

15 	0.33 	(0) 

	

20 	0.34 	(0) 

	

25 	0.33 	(0) 

	

5 	0.39 (0.01) 

	

10 	0.38 	(0) 

	

15 	0.35 (0.01) 

	

20 	0.33 	(0) 

	

25 	0.33 (0.01) 

NH
4 

+NO
3
-  

• + 
NH 4  

NO
3
-  

Significance 
LSD 

'form 	0.05 
	ns 

Level 	9.05 
	

0.01 

	

0.01 
	

0.02 

	

FormXLevel 0.05 
	ns 

Appendix Table III. 14. Number of developed flowers in 
1984-85 experiment (data on which 
(Fig. 26a is based). 

Form 	Level, all 	No. of flowers 

	

0 	24.3 	(5.3) 
NH

4
++NO

3 
- 	5 	55.0 (9.1) 

	

10 	128.8 	(6.9) 

	

15 	272.0 (15.9) 

	

20 	311.5 (24.8) 

	

25 	292.3 (40.0) 
NH4

+  

	

5 	45.0 	(8.8) 

	

10 	96.0 	(7.2) 

	

15 	204.3 (21.2) 

	

20 	231.0 (30.3) 

	

25 	276.3 (15.7) 
NO

3
- 	5 	39.3 	(3.0) 

	

10 	63.5 	(7.2) 

	

15 	139.3 	(6.8) 

	

20 	196.0 (11.8) 

	

25 	254.3 (26.0) 

Significance  
LSD 

Form 	0:05 	10.0 

	

0.01 	13.4 
Level 	0.05 	14.2 

	

0.01 	18.9 

	

FormXLevel 0.05 	25.6 

	

0.01 	32.8 

Appendix Table 111.15. 10-flower weight in 1984-85 
experiment (data on which Fig. 27 is 
based). 

226 



5  
10 
15 
20 
25 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 

	

13.3 	(2.5) 

	

48.3 	(7.0) 
113.5 (15.0) 
242.3 (17.6) 
291.3 (9.9) 
259.5 (26.6) 
45.0 (5.4) 
84.0 (12.1) 

	

185.5 	(8.5) 

	

212.5 	(8.1) 
253.5 (40.d) 

	

37.3 	(4.5) 

	

58.8 	(4.1) 
129.8 (10.8) 
192.0 (14.5) 
241.8 (16.4) 

LSD 
8.8 
11.7 
12.4 
16.6 
21.5 
28.7 

NH 4
+
+NO

3
- 

NO 3
-  

Sicnificance  

Form 	0.05 
0.01 

Level 	0.05 
0.01 

FormXLevel 0.05 
0.01 

Appendix Table 111.16. Flower yield/plant in 1984-85 
experiment. 

N. 

Form 	Level, mM Flower yield, g fresh wt/plant 

227 

Appendix Table 111.17. Leaf N concentration in 1984-85 
experiment (data on which Fig. 28 is 
based). 

N suppled 

 

Leaf N, % dry wt. 

   

Form 	Level, mm 
	

Nov. 84 
	

Feb.85 
	

June 

N.1 4  +NO 3  

NH4
+  

NO
3
-  

	

0 	1.65 (0.04) 

	

5 	1.82 (0.06) 

	

10 	2.00 (0.09) 

	

15 	2.10 (0.15) 

	

20 	2.43 (0.38) 

	

25 	2.40 (0.38) 

	

5 	1.82 (0.13) 

	

10 	1.91 (0.16) 

	

15 	2.05 (0.15) 

	

20 	2.29 (0.31) 

	

25 	2.40 (0.37) 

	

5 	1.75 (0.06) 

	

10 	1.80 (0.07) 

	

15 	2.03 (0.14) 

	

20 	2.29 (0.21) 

	

25 	2.66 (0.30) 

1.79 (0.09) 
2.00 (0.07) 
2.22 (0.09) 
2.34 (0.17) 
2.87 (0.24) 
3.24 (0.19) 
1.99 (0.04) 
2.19 (0.09) 
2.28 (0.09) 
2.96 (0.12) 
3.06 (0.12) 
1.89 (0.08) 
2.08 (0.09) 
2.22 (0.09) 
2.92 (0.09) 
3.03 (0.13) 

1.58 (0.04) 
1.75 (0.06) 
1.89 (0.06) 
2.29 (0.12) 
2.84 (0.17) 
3.31 (0.12) 
1.72 (0.04) 
1.86 (0.09) 
2.26 (0.07) 
2.87 (0.13) 
3.12 (0.04) 
1.68 (0.06) 
1.84 (0.07) 
2.17 (0.06) 
2.63 (0.22) 
2.89 (0.12) 

Significance P 
	

LSD 
Form 	0.05 

	
ns 
	

0.07 
	

0.06 

	

0.01 
	

ns 
	

0.08 
Level 	0.05 

	
0.17 
	

0.10 
	

0.08 

	

0.01 
	

0.23 
	

0.13 
	

0.11 

	

Form X Level 0.05 
	

ns 	ns 
	

0.14 

	

0.01 
	

0.19 



NH
4 
 +NO

3  

1.53 
1.28 
1.10 
1.03 
1.00 
0.90 
1.30 
1.13 
1.10 
1.03 
0.93 
1.30 
1.15 
1.10 
1.05 
0.98 

NH4
+  

NO
3
-  

1.58 
1.27 
1.08 
1.00 
1.00 
0.88 
1.30 
1.15 
1.00 
1.02 
0.90 
1.33 
1.18 
1.05 
1.02 
0.93 

0 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 

1.40 
1.13 
1.00 
0.95 
0.80 
0.80 
1.18 
1.00 
0.98 
0.83 
0.80 
1.20 
1.08 
0.98 
0.90 
0.90 

(0.10) 
(0.10) 
(0.12) 
(0.05) 
(0.08) 
(0.08) 
(0.08) 
(0.10) 
(0.12) 
(0.05) 
(0.05) 
(0.08) 
(0.13) 
(0.08) 
(0.06) 
(0.10) 

(0.14) 
(0.10) 
(0.08) 
(0.06) 
(0.08) 
(0.08) 
(0.05) 
(0.08) 
(0.10) 
(0.10) 
(0.08) 
(0.08) 
(0.10) 
(0.10) 
(0.08) 
(0.08) 

(0.10) 
(0.10) 
(0.10) 
(0.08) 
(0.14) 
(0.10) 
(0.08) 
(0.13) 
(0.08) 
(0.10) 
(0) 

(0.10) 
(0.13) 
(0.06) 
(0.10) 
(0.05) 

Appendix Table 11.18. Leaf P concentration in 1984-85 
experiment (Fig. 29a is based on part 
of these data). 
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N suppled 

 

Leaf P, % dry dt. 

   

For,: 	Level, mM 
	

2.iov.84 
	

Feb.85 
	

June 

NH
4 + +() 3 -  

NE
4

+  

-Significance ? 
Form 	0.05 
Level 	0.05 

0.01 
Form X Level 0.05 

0.23 (0.02) 
0.19 (0) 
0.18 (0.02) 
0.16 (0.01) 
0.13 (0.01) 
0.11 (0.01) 
0.19 (0) 
0.13 (0.01) 
0.15 (0) 
0.13 (0.01) 
0.11 (0.01) 
0.19 (0.01) 
0.17 (0.01) 
0.15 (0.01) 
0.13 (0) 
0.11 (0.01) 

ns 
0.01 

ns 
ns 

(0) 
(0) 

(0.01) 
(0) 

(0.01) 
(0) 

(0.01) 
(0) 

(0.01) 
(0) 

(0.01) 
(0) 

(0.01) 
(0.01) 
(0) 

(0.01) 

	

0.26 	(0) 
0.22 (0.02) 

	

0.19 	(0) 

	

0.17 	(0) 

	

0.14 	(0) 
0.12 (0.01) 
0.22 (0.02) 

	

0.19 	(0) 
0.17 (0.01) 

	

0.14 	(0) 

	

0.12 	(0) 
0.21 (0.01) 
0.18 (0.01) 

	

0.16 	(0) 

	

0.14 	(0) 
0.11 (0.01) 

ns 
0.01 

ns 
ns 

0.26 
0.22 
0.18 
0.17 
0.14 
0.12 
0.22 
0.19 
0.16 
0.14 
0.11 
0.21 
0.18 
0.16 
0.14 
0.11 

LSD 
ns 

0.01 
ns 
ns 

3 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 
5 

10 
15 
20 
25 

Appendix Table 111.19. Leaf K concentration in 1984-85 
experiment (Fig. 29b is based on 
part of these data). 

N suppled 

 

Leaf K, % dry wt. 

   

Form 	Level, mM 
	

Nov.84 
	

Feb.85 
	

June 

Significance  P 
	

LSD 
FOrM  0.05 

	
ns 	ns 	ns 

Level 	0.05 
	

0.08 
	

0.08 
	

0.06 

	

0.01 
	

0.10 
	

0.10 
	

0.08 
Form X Level 0.05 

	
ns 	ns 	ns 



Appendix Table 111.20. Leaf Ca concentration in 1984-85 
experi.lent (Fig. 29c is based on part 
of these data). 

N suppled 

 

Leaf Ca, % dry wt. 

   

Form 	Level, mM 
	

Nov.84 
	

Feb.85 
	

June 

229 

0 
- SH 4 4-NO 3 	5 

10 
15 
20 
25 
5 

10 
15 
20 
25 

5 
10 
15 
20 
25 

Sihnificance P 
For. 	0.05 
Level 	0.05 

0.01 
Zorm X Level 0.05 

0.67 (0.03) 
0.61 (0.02) 
0.59 (0.02) 
0.57 (0.01) 
0.57 (0) 
0.56 (0.01) 
0.62 (0.02) 
0.60 (0) 
0.58 (0.01) 
0.58 (0.02) 
0.56 40) 
0.63 (0.03) 
0.62 (0.01) 
0.59 (0.01) 

	

0.59 
	

(0) 

	

0.57 
	

(0) 

ns 
0.03 
0.04 

ns 

(0.06) 
(0.02) 
(0.04) 
(0.03) 
(0.02) 
(0.01) 
(0.03) 
(0.04) 
(0.05) 
(0.02) 
(0.03) 
(0.04) 
(0) 

(0.03) 
(0) 

(0.03) 

(0.03) 
(0.03) 
(0) 

(0.02) 
(0) 

(0.03) 
(0) 

(0.02) 
(0.02) 
(0.04) 
(0.03) 
(0.03) 
(0.02) 
(0.02) 
(0.01) 
(0.02) 

0.72 
0.66 
0.62 
0.59 
0.59 
0.59 
0.68 
0.64 
0.60 
0.58 
0.59 
0.71 
0.66 
0.62 
0.60 
0.61 

LSD 
ns 

0.02 
0.02 

ns 

0.74 
0.66 
0.61 
0.59 
0.59 
0.58 
0.70 
0.64 
0.60 
0.59 
0.59 
0.71 
0.65 
0.62 
0.59 
0.59 

ns 
0.02 
0.03 

ns 

NH4
+  

NO 3 -  

Appendix Table 111.21. Leaf Hg concentration in 1984-85 
experiment (Fig. 29d is based on part 
of these data). 

N suppled 

Form 	Level, mA 

 

Leaf Mg, % dry wt. 

 

Nov.84 Feb.85 June 

NH 4
+
+NO 3 

NH4
+  

NO 3 -  

	

0 	0.38 (0.02) 

	

5 	0.30 (0.01) 

	

10 	0.27 	(0) 

	

15 	0.23 	(0) 

	

20 	0.22 (0.02) 

	

25 	0.19 (0.01) 

	

5 	0.31 (0.01) 

	

10 	0.28 (0.02) 

	

15 	0.24 (0.01) 

	

20 	0.22 (0.01) 

	

25 	0.20 	(0) 

	

5 	0.32 (0.01) 

	

10 	0.28 (0.01) 

	

15 	0.25 (0.02) 

	

20 	0.22 (0.01) 

	

25 	0.21 	(0) 

0.37 
0.29 
0.25 
0.23 
0.21 
0.19 
0.31 
0.27 
0.23 
0.20 
0.20 
0.30 
0.28 
0.25 
0.21 
0.21 

(0.03) 
(0.02) 
(0.02) 
(0) 

(0.02) 
(0.02) 
(0) 
(0) 

(0.02) 
(0.01) 
(0) 
(0) 
(0) 

(0.02) 
(0.01) 
(0.03) 

0.38 
0.30 
0.27 
0.22 
0.21 
0.20 
0.31 
0.29 
0.23 
0.20 
0.20 
0.31 
0.29 
0.23 
0.21 
0.20 

(0) 
(0.01) 
(0) 

(0.01) 
(0.01) 
(0) 
(0) 
(0) 
(0) 
(0) 

(0.01) 
(0.01) 
(0.01) 
(0.01) 
(0.01) 
(0.01) 

Sichificance P 
	

LSD 
Form 	0.05 

	
ns 	ns 
	ns 

Level 	0.05 
	

0.01 
	

0.01 
	

0.01 

	

0.01 
	

0.02 
	

0.02 
	

0.01 
Form X Level 0.05 

	
ns 	ns 
	ns 



Appendix Table IV.1. pH of solutions containing NH: or NO 3  
when pH was adjusted :pack (data on 
which Fig. 33 is based). 

ptl  

Appendix Table IV.2. pH of solutions containing N1i 4 +  or NO3 -  
when pH was not adjusted (data on which 
Fig. 34 is based). 

4.5 
	 6.5 
	 pH 

         

         

Day NH 4
+ 

NO
3
-  NO 3 

 

Day NH 4 NO 
3 

 

        

         

1 
2 
3 
4 
5 
6 • 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

_ 25 
26 
27 
28 
29 
30 

4.43 (0.06) 
4.43 (0.06) 
4.37 (0.06) 
4.37 (0.15) 
4.33 (0.06) 
4.30 (0.10) 
4.33 (0.15) 
4.30 (0.10) 
4.30 (0.10) 
4.33 (0.15) 
4.30 (0.10) 
4.30 (0.10) 
4.27 (0.12) 
4.27 (0.15) 
4.27 (0.12) 
4.30 (0.10) 
4.30 (0.10) 
4.33 (0.12) 
4.27 (0.12) 
4.23 (0.15) 
4.30 (0.10) 
4.33 (0.12) 
4.40 (0.10) 
4.30 (0.10) 
4.27 (0.06) 
4.33 (0.15) 
4.33 (0.06) 
4.33 (0.06) 
4.30 (0.10) 
4.37 (0.15) 

4.57 (0.06) 
4.57 (0.06) 
4.63 (0.06) 
4.63 (0.06) 
4.50 (0.10) 
4.60 (0.10) 
4.60 (0.10) 
4.60 (0.10) 
4.60 (0.10) 
4.47 (0.06) 
4.53 (0.12) 
4.63 (0.06) 
4.50 (0.10) 
4.60 (0.10) 
4.60 (0.10) 
4.60 (0.10) 
4.63 (0.15) 
4.63 (0.15) 
4.63 (0.06) 
4.67 (0.06) 
4.60 (0.10) 
4.63 (0.06) 
4.63 (0.06) 
4.67 (0.06) 
4.53 (0.15) 
4.63 (0.12) 
4.57 (0.15) 
4.53 (0.06) 
4.60 (0.10) 
4.60 (0.10) 

6.37 (0.06) 
6.37 (0.06) 
6.33 (0.06) 
6.23 (0.15) 
6.30 (0.10) 
6.30 (0.10) 
6.33 (0.06) 
6.33 (0.15) 
6.23 (0.15) 
6.30 (0.10) 
6.33 (0.06) 
6.27 (0.21) 
6.27 (0.12) 
6.40 (0.10) 
6.37 (0.15) 
6.30 (0.10) 
6.33 (0.12) 
6.37 (0.15) 
6.33 (0.12) 
6.33 (0.12) 
6.30 (0.10) 
6.30 (0.10) 
6.33 (0.15) 
6.30 (0.10) 
6.40 (0.10) 
6.30 (0.10) 
6.37 (0.06) 
6.37 (0.06) 
6.30 (0.10) 
6.30 (0.10) 

6.57 (0.06) 
6.57 (0.06) 
6.47 (0.06) 
6.53 (0.15) 
6.60 (0.10) 
6.57 (0.15) 
6.63 (0.06) 
6.7 (0.06) 
6.57 (0.15) 
6.63 (0.06) 
6.67 (0.06) 
6.67 (0.06) 
6.67 (0.06) 
6.67 (0.06) 
6.57 (0.15) 
6.60 (0.10) 
6.70 (0.10) 
6.67 (0.06) 
6.63 (0.06) 
6.67 (0.06) 
6.63 (0.06) 
6.63 (0.06) 
6.60 (0.10) 
6.63 (0.06) 
6.57 (0.15) 
6.63 (0.06) 
6.53 (0.06) 
6.50 (0.10) 
6.60 (0.10) 
6.60 (0.10) 

6.40 (0.10) 
6.37 (0.06) 
6.13 (0.06) 
5.97 (0.12) 
5.67 (0.15) 
5.47 (0.12) 
5.37 (0.15) 
5.20 (0.10) 
5.07 (0.06) 
4.93 (0.06) 
4.80 (0.10) 
4.63 (3.12) 
4.53 (0.15) 
4.17 (0.12) 
4.03 (0.15) 
3.97 (0.06) 
3.90 (0.10) 
3.80 (0.10) 
3.67 (0.06) 
3.57 (0.06) 
3.50 (0.10) 
3.43 (0.06) 
3.40 (0.10) 
3.37 (0.06) 
3.30 (0.10) 
3.17 (0.12) 
3.13 (0.06) 
3.07 (0.06) 
3.03 (0.06) 
3.03 (0.06) 

	

6.50 	(0) 
6.47 (0.06) 
6.53 (0.15) 
6.60 (0.10) 
6.57 (0.15) 
6.57 (0.06) 
6.67 (0.06) 
6.60 (0.10) 
6.57 (0.06) 
6.67 (0.15) 
6.70 (0.10) 
6.73 (0.12) 
6.70 (0.10) 
6.80 (0) 
6.77 (0.06) 
6.77 (0.06) 
6.83 (0.06) 
6.87 (0.06) 
6.87 (0.06) 
6.87 (0.06) 
6.87 (0.06) 
6.83 (0.12) 
6.87 (0.06) 
6.90 (0.10) 
6.90 (0.10) 
6.97 (0.06) 
6.93 (0.06) 
6.97 (0.06) 
6.97 (0.06) 
6.97 (0.06) 



appendix Table IV.3. 

For:i 

N 	in solution 	(data on which Table 
is 	based). 

N in solution, mM 

9 

of N 	pH/Dais: 0 5 	10 	15 20 25 30 Mean 

Nd 4 	changing 	10.00 9.30 	9.23 	9.07 8.93 8.93 8.93 9.20 
(0) (0.36)(0.25)(0.12) (0.12) (0.12) (0.12) 

4.5 	10.00 9.57 	9.47 	9.07 9.17 9.13 8.93 9.33 
(0) (0.12)(0.25) 	(0.12) (0.35) (0.40)(0.23) 

6.5 	10.00 9.63 	9.47 	9.40 9.23 9.07 9.00 9.40 
(0) (0.12)(0.25) 	(0.36) (0.45) (0.23) (0.20) 

Mean 	10.00 9.50 	9.39 	9.18 9.11 9.04 8.96 
110 3 	changing 	10.00 9.63 	9.47 	9.20 9.13 9.13 9.13 9.39 

(0) (0.12)(0.25) 	(0) (0.12) (0.12) (0.12) 
4.5 	10.00 9.70 	9.47 	9.57 9.37 9.20 9.23 9.50 

(0) (0) 	(0.25) 	(0.12) (0.29) (0) (0.25) 
6.5 	10.00 9.57 	9.40 	9.40 9.40 9.20 9.30 9.47 

(0) (0.12)(0.36) 	(0.17) (0.17) (0) (0.17) 
mean 	10.00 9.63 	9.44 	9.39 9.30 9.18 9.22 

Significance P 	LSD 
Form of N otos  0.11 

0.01 	ns 
PH 0.03 	ns 
Fon: of N X pH 	0.05 	ns 
Days 	0.05 	0.17 

0.01 	0.13 
Form X Days 	0.05 	ns 
oH X Days 	0.05 	ns 
Form of N X pH X Days 	0.05 	ns 

Appendix Table 

Form 

IV.4. Number of nodes (data on which Table 10 
is based). 

No. of nodes 

of N 	pH/Days: 0 5 	10 	15 20 25 30 Mean 

NHchanging 0 0.5 	1.3 	1.7 2.0 2.8 3.3 1.70 4 
(0.5) 	(0.3) 	(0.3) (0.5) (0.8) (0.6) 

4.5 0 0.3 	1.3 	1.7 2.0 2.7 3.2 1.60 
(0.3) 	(0.3) 	(0.3) (0.5) (0.8) (1.3) 

6.5 0 0.2 	1.0 	1.3 1.7 2.2 2.7 1.29 
(0.3) 	(0.5) 	(0.6) (0.8) (0.3) (0.8) 

Mean 0 0.33 	1.22 	1.56 1.89 2.56 3.06 
NOchanging 0 0 	0.7 	1.2 1.8 2.5 3.0 1.31 

3 
(0.3) 	(0.8) (0.6) (0.9) (1.0) 

4.5 0 0.3 	1.2 	1.5 1.7 2.3 2.8 1:40 
(0) (0.3) 	(0.6) 	(0) (0.3) (0.6) (0.8) 

6.5 0 0.3 	0.8 	1.3 1.5 1.8 2.2 1.14 
(0) (0.3) 	(0.3) 	(0.3) (0.5) (0.6) (0.7) 

Mean 0 0.22 	0.89 	1.33 1.67 2.22 2.67 

Significance P 	LSO 
Form of N 0.05 	ns 
pH 0.05 	ns 
Form of N X pH 0.03 	ns 
Days 0.05 	0.04 

0.01 	0.03 
Form X Days 0.05 	ns 
pH X Days 0.05 	ns 
Form of N X pH X Days 	0.05 	ns 

Appendix Table IV.5. 	Number of lateral shots 	(data on which 
Table 11 is based). 

No. of lateral shoots 
Form 
of N 	pH Days: 0 	5 10 15 20 25 30 Mean 

NH4 *  changing 0 	0 0 0 0 0.5 0.7 0.17 
(0.5) (0.3) 

4.5 0 	0 0 0 0 0.2 0.5 0.10 
(0.3) (0.5) 

6.5 0 	0 0 0 0 0 0.2 0.02 
(0.3) 

- 	
Mean 0 	0 0 0 0 0.22 0.44 

NO3 changing 0 	0 0 0 0 0.2 0.3 0.07 
(0.3) (0.3) 

4.5 0 	0 0 0 0 0.2 0.3 0.07 
(0.3) (0.3) 

6.5 0 	0 0 0 0 0 0.17 0.02 
(0.29) 

Mean 0 	0 0 0 0 0.1 0.28 

Significance e 	LSD _ 
Form of N 0.05 	ns 
pH 0.05 	ns 
Form of N X pH 0.05 	ns 
Days 0.05 	0.01 

0.01 	0.01 
Form X Days 0.05 	ns 
PH X Days 0.05 	ns 
Fc -m of . N X pH X Days 0.05 	ns 

231 



Appendix Table IV.6. 	Concentrations of amino acids 	(data 	on which Table 12 	is based). 

Amino acid, 	Ug g
-1  

fresh wt 

Form of N PH Plant part Asn Gln Ser Asp Glu Thr Gly Ala 	Pro Met Val Cys Phe Leu+ Lys 
Iso 

NH4
+  

4.5 Root 4797 894 177 175 445 382 103 186 	945 58 87 88 56 100 66 
(403) (108) (21) (8) 	(21) (17) (4) (9) 	(31) (2) (5) (2) (3) (3) (2) Leaf 2850 867 188 182 427 440 109 180 	1112 57 99 83 58 102 66 

6.5 
(505) (113) (7) (18)(7) (39) (6) (12) 	(29) (2) (8) (6) (4) (6) (2) Root 5052 934 192 185 435 415 105 182 	997 56 92 85 56 102 66 
(282) (75) (3) (5) 	(6) (37) (8) (11) 	(15) (2) (6) (2) (3) (4) (2) Leaf 2666 858 184 187 	436 418 108 187 	1034 56 94 85 58 101 65 

- NO 
(620) (72) (7) (19)(9) (43) (4) (7) 	(67) (2) (4) (3) (2) (5) (1) 

3 
 4.5 Root 1400 802 185 176 	431 399 103 178 	931 57 99 84 57 102 67 

(253) (58) (10) (6) 	(33) (28) (10) (9) 	(175) (4) (7) (6) (1) (3) (2) Leaf 1284 727 178 187 	421 387 108 185 	965 57 96 85 57 103 66 
(289) (60) (4) (6) 	(2) (24) (8) (10) 	(131) (2) (1) (2) (1) (4) (1) 6.5 Root 1367 742 194 184 436 419 108 189 	985 56 97 85 55 104 67 
(115) (39) (3) (7) 	(25) (13) (1) (15) 	(130) (2) (3) (7) (1) (1) (2) Leaf 1201 701 188 199 422 403 109 172 	1031 56 99 86 59 103 66 
(23) (78) (2) (7) 	(5) (14) (6) (13) 	(108) (3) (12) (1) (0) (3) (2) 

Significance P LSD 
Form of N 0705 431 94 ns ris 	ns ns ns ns ns ns ns ns ns ns ns 

0.01 312 68 
pH 0.05 ns ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns Form of N X pH 0.05 ns ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns Plant part 0.05 431 ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns 

0.01 312 
Form of N X Plant part 0.05 609 ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns 

0.01 442 
pH X Plant part 0.05 ns ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns Form of N X pH X Plant part 0.05 ns ns ns ns 	ns ns ns ns ns ns ns ns ns ns ns 
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Appendix 	Table V.I. 

_  
NO 	concentration 	 

3 	. 

0 
10 
20 
30 
40 
50 

Significance 

NR 

Nii 

activity 	in vivo: NO3 -  concentration 

	

35a 	is 	based). 

- 	- 1 	
wol 

	

y 	fresh 	t h 1 

Roots 

78 	(18) 
231 	(13) 
234 	(9) 
250 	(8) 
236 	(7) 
225 	(8) 

19 
27 

(data 

	

on which 	Fiy. 

activity, 	nm 

Leaves 

0 
234 	(19) 
239 	(17) 
273 	(15) 
253 	(17) 
243 	(13) 

27 
37 

..0 2 

LSD 
P = 	0.05 

0.01 

Appendix Table V.2. NR activity in vivo: whole tissue vs. 
sliced tissue (data on which Fia. 35b 
is based). 

- - 	-1 UP activity, nmol NO
2 g1 fresh wt h 

Treatment 
	

Leaves 	Roots 

Whole 	239 (19) 
	

247 (31) 
Sliced 
	

338 (34) 
	

291 (25) 

Significance 
t-test 
	

P = 0.01 	ns 

Appendix Table V.3. NR activity in vivo: without propanol 
vs. with propanol (data on which 
Fig. 35c is based). 

NR activity, nmol NO2 -  g 	wt h-1  

Treatment 

- Propanol 
+ Propanol 

Significance 
t-test 

Leaves Roots 

293 (19) 
338 (21) 

0.05 

 

336 (17) 
389 (23) 

P = 0.05 

 

Appendix Table V.4. NR activity in vivo: vacuum infiltration 
by air vs. N, (data on which Table 13 
is based). 

- -1 
NR activity, noel NO 2 g 	fresh wt h

-1 

freatment 
	

Leaves 	Roots 

Air 	392 (25) 	322 (18) 
N 2 	 397 (13) 	325 	(9) 

Difference between treatments was not significant, t-test. 

Appendix Table V.5. NR activity in vivo: time course 
(data on which Fig. 35d is based). 

Incubation 
min 

0 

NR activity, 	nmol 
time 

Leaves 

0 

NO2 -  g-1  fresh wt h-1  

Roots 

0 
15 49 (17) 89 (26) 
30 163 (21) 167 (22) 
45 305 (13) 255 (21) 
60 418 (27) 350 (22) 
75 550 (8) 417 (9) 
90 705 (13) 500 (22) 

Significance LSD 
P = 	0.05 28 34 

0.01 39 47 



Fable V. o. NR activity in vivo: pH (data on 
	234 

which, Fig. 36a is based). 

N:R activity - 	-1 
n:aol 	w g 	fresh t h-1  

4.5 ,176 (15) 
5.3 107 (23) 
6.5 25 (8) 
7.5 7 (5) 

Significance 	LSD 

	

P = 0.05 	 27 

	

0.01 	 39 

Appenidix Table 7.7. NiR activity in vivo: NO 2 -  
concentration (data on wnich Fic. 36b 
is based). 

- NO
2 
	concentration 

0 

NiR activity 	
-1 

nmol NO2 	g 	fresh wt h 

0 
20 101 184 (8) 
40 185 (9) 

100 159 (21) 
200 43 (28) 

2 mM 0 
20 0 

Significance 
	

LSD 

	

P = 0.05 
	

24 

	

0.01 
	

27 

Appenidi:: Table V..8. NiR activity in Vivo: time course 
(data on which Fig. 36c is based). 

Incubation time 
min 

0 

NiR activity 	-1 
nmol NO2 - g 	fresh wt h 

0 
15 50 (21) 
30 76 (20) 
45 135 (18) 
60 155 (10) 
75 224 (10) 
90 281 (13) 

Significance 	LSD 

	

? = 0.05 	 26 

	

0.01 	 36 

Appendix Table V.9. JR activity in vitro: homogenization 
with Ultra-Turrax vs. mortar & pestle 
(data on which Fig. 37a is based). 

- - 
NR activity, nmol NO2 h1  

Treatment 
' 

g -1 fresh wt 	mg' protein 

Ultra-Turrax 
	

90 A794 
	

8 (7) 
Mortar & pestle 
	

390 (30) 
	

30 (2) 

Significance 
t- test 
	

P = 0.01 	0.01 

Appendix Table V.10. NR activity in vitro: cysteine 
concentration (data on which Fig. 37b 
is based). 

NR activity, nmol NO 2 -  h-1  
Cysteine concentration 

mM 
-1 g 	fresh wt mg

-1 
protein 

0 0 0 
1 430 (46) 34 (3) 
2 300 (60) 24 (4) 
5 120 (50) 12 (7) 

10 0 ' 

Significance LSD 
P = 	0.05 78 7 

0.01 112 10 
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Appendim Table V.11. NR activity in vitro: without BSA vs. 

with jSA (data on which Table 14 is 
nased). 

it activity, nmol NO2 -  h -1  

'PreatAent 
	

-' fresh wt 	mg-1 protein 

+BSA 
	

420 (79) 
	

33 	(4) 
-BSA 
	

410 (62) 
	

33 	(5) 

Difference between treatments was not significant, t-test. 

Appendix Table 7. 12. NR activity in vitro: K/HPO 4  buffer 
vs. Tris-HC1 buffer (data on which 
Table 15 is based). 

- - 1 NR activity, nmol NO2  h 

Buffer 	g
-1 

fresh wt 	mg
-1 

protein 

K/HPO, 
Tris-AC1 

400 (92) 
390 (90) 

34 (7) 
33 (8) 

Difference between treatments was not significant, t-test. 

Appendix Table V.13. NR activity in vitro: without PVP vs. 
with PVP (data on which Fig. 37c is 
based). 

NR activity, nmol NO 2 -  h-1  

Treatment 
	

g
-1 

fresh wt 	mg-1 protein 

- PVP 410 (75) 34 (6) 
+ PVP 630 (90) 52 (8) 

Significance 
t-test 
	

P = 0.05 	0.05 

Appendix Table V. 14. NR activity in vitro: NO3  concentration 
(data on which Fig. 38a is based). 

NO
3
-  concentration 

mM 

0 

	

NR activity, 	nmol 

-1 g 	fresh wt 

0 

NO2 -  

-1 mg 

0 

h-1  

protein 

0.1 382 (68) 30 (4)  
1 448 (50) 36 (5)  

10 568 (66) 48 (7)  
100 645 (68) 55 (8)  
200 623 (19) 52 (4) 
400 634 (66) 53 (7) 

Significance LSD 
P = 0.05 95 10 

0.01 133 13 

Appenidix Table V.15. NR activity in vitro: enzyme 
concentration (data on which Fig. 38b 
is based). 

Enzyme 
(.11/reaction 

0 
50 

NR activity_, 
tube 	nmol NO2 	h 

0 
0 

100 9 (3) 
200 25 (2) 
400 42 (6) 
500 51 (2) 

Significance 	LSD 

	

P= 0.05 	 5 

	

0.01 	 7 



Appendix Table V. :6. NR activity in vitro: time course 
(data on which Fig. 38c is based). 

Time, 	min 

NR activity, 
_1 

g 	' 	fresh wt 

0 

nmol NO 2 -  

mg-1 protein 

0 
13 186 (16) 15 (1) 
10 339 (25) 30 (3) 
45 574 (25) 48 (2) 
60 672 (25) 57 (3) 

Significance LSD 
P 	= 	0.05 38 4 

0.01 54 6 

Appendi:: Table V.17. NiR activity in vitro: 	NO, -  concentration 
(data on which Fig. 	39a it based). 

NiR activity, 	11:Aol NO 2 -  h-1  
-  NO2 
concentration -1 

g 	fresh wt -1 mg 	protein 

0 0 0 
1 17.03 (1.28) 2.86 	(0.31) 
2 18.00 (0.45) 3.15 	(0.18) 
5 18.75 (1.72) 3.28 	(0.36) 

10 6.75 (2.25) 1.17 	(0.43) 
20 2.25 (3.90) 0.37 	(0.64) 

Significance LSD 
P = 0.05 3.63 0.67 

0.01 5.10 0.94 

Appendix Table V.18. NiR activity in vitro: time course 
(data on which Fig. 39b is based). 

Time, min 

0 

NiR activity, 

g-1 fresh wt 

0 

- • 

lunol NO 2  

mg
-1 protein 

0 
5 1.00 (0.28) 0.17 (0.05) 

10 2.65 (0.23) 0.45 (0.05) 
20 5.65 (0.16) 0.95 (0.07) 
30 7.70 (0.26) 1.29 (0.03) 

Significance LSD 
P = 0.05 0:39 0.08 

0.01 0.55 0.12 
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Appendix Table VI.1. 

NO
3 - supplied 	 
mmol 	Time: 

NO3 -  concentration in roots 

0 h 	1 	h 	5 	h 

(data on which Fig. 	41 	is based). 

NO
3
-  concentration, 	nmol 	g -1 	fresh wt 

10 h 	2 d 	3 	d 	4 	d 5 d 6 d 7 d mean 

o 0 	0 0 0 0 	0 0 0 0 0 0 
15 0 	0 0 0 0 	0 0 0 0 0 0 
25 0 	0 0 5390 7155 	9239 4942 1648 0 0 2837 

(1540) (1195) 	(1524) (1019) (1614) 
50 0 	0 0 6030 8321 	13320 15542 13604 11754 9239 7781 

(1540) (1485) 	(1361) (1738) (820) (2229) (2689) 
100 0 	0 275 8044 12545 	20422 26814 30697 32197 28743 15973 

(614) (1538) (2980) 	.(2551) (3035) (2088) (1611) (1855) 
150 0 	0 709 9531 15104 	25080 31657 34629 33534 31719 18196 

(1033) (2353) (3308) 	(3909) (4282) (2903) (2350) (2509) 
Mean 0 	0 164 4833 7187 	11343 13159 13430 12914 11617 

Significance LSD 
P . 	0.05 _ --- 	0.01 

NO 1007 1364 
3 

Time 	707 930 
NO3 	X Time 	1733 2278 

Appendix Table VI.2. NR actvitiy in vivo 	(-NO3 - ) in roots (data on which Fig. 42 	is based). 

NR activity, nmol NO2 -  g -1  fresh wt h-1  
NO 3 -  supplied 	 

mmol 	Time: 0 h 	1 	h 5 h 10 h 2 d 	3 d 4 d 5 d 6 d 7 d Mean 

0 0 	0 0 0 0 	0 0 0 0 0 0 
15 0 	0 7 107 126 	14 0 0 0 0 25 

(15) (66) (89) 	(32) 
25 0 	12 83 223 320 	377 295 184 30 0 152 

(26) (59) (38) (24) 	(40) (69) (80) (43) 
50 0 	15 96 252 372 	449 421 425 430 440 290 

(33) (29) (31) (25) 	(47) (75) (48) (36) (37) 
100 0 	16 116 274 427 	370 351 354 288 299 249 

(36) (55) (37) (43) 	(24) (44) (28) (40) (25) 
150 0 	37 154 318 435 	328 	• 356 335 261 281 251 

0 	(51) (56) (21) (57) (17) (27) (26) (27) (38) 
Mean 0 	13 76 196 280 	'256 237 216 168 170 

Significance LSD 
P = 0.05 --- 0.01  _ 

NO 	17 	23 	 NJ 
Tie 	18 	23 	 V 	 V C..) 
NO3 X Time 	44 	57 	 -.4 



Appendix Table V1.3. 

NO3 -  supplied 	 
mmol 	Time: 

NR actvitiy in vivo (+NO3 	) 

NR 

5 h 

in roots (data on which 

activity, nmol 	NO 2 -  g -1  

10 h 	2 d 	3 d 

Fig. 	43 	is 	based). 

fresh wt h -1  

4d 	5 d 6d 7 d Mean Oh 	1 	h 

0 0 	0 0 0 	0 0 0 0 0 0 
15 0 	73 147 286 	431 297 127 0 0 0 136 

(29) (28) (80) 	(36) (68) (23) 
25 0 	107 214 362 	481 521 404 344 151 35 262 

(28) (61) (20) 	(71) (24) (47) (71) (87) (48) 
50 0 	130 256 390 	530 557 518 523 494 523 392 

(46) (28) (20) 	(36) (29) (35) (43) (55) (41) 
100 0 	159 349 431 	513 398 373 352 290 304 317 

(87) (40) (27) 	(19) (31) (38) (23) (28) (34) 
150 0 	160 369 455 	507 365 379 363 279 302 318 

0 	(72) (41) (28) 	(39) (32) (45) (17) (33) (48) 
Mean 0 	105 223 321 	410 356 300 264 202 194 

Significance LSD 
P = 	0.05 _ --- 	0.01 

NO 16 30 
3  

Time 	19 _ 25 
NO

3 	
X Time 	47 62 

Appendix Table VI.4. NO3 -  concentration in leaves (data onwhich Fig. 45 is based). 

mmol 
NO3 

- supplied 	 
Time:  0 h 1 	h 5 h 

NO
3
-  concentration, 

10 h 	2 d 

nmol 

3 d 

g -1 	fresh wt 

4 d 5 d 6 d 7 d mean 

o o o 0 o 0 o o 0 o 0 0 
1 5 o 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 1958 744 0 0 0 0 270 
(1286) (1020) 

50 0 0 0 1328 11089 17679 17447 16915 15927 13550 9373 
(1247) (1983) (1697) (912) (1052) (1309) (1830) 

100 0 0 0 3296 14917 23554 41054 45133 47252 51303 22650 
(857) (2098) (1911) (2588) (1807) (2268) (3085) 

150 0 0 0 5972 17130 27071 ' 	45195 50684. 54862 58659 25957 
(1295) (2719) (2347) (2184) (5092) (6064) (35G4) 

Mean 0 0 0 1766 7516 11508 17283 18789 19640 20585 

Significance LSD 
--- P = 0.05 0.01 - 

NO 	1246 	1689 
Ti6e 	659 	866 
NO3 

X Time 	1614 	2121 	
1\3 
L4 
03 



• 

Appendix Table VI.5. NR actvitiy in vivo (-NO3 - ) in leavestata on which Fig. 	47 is based). 

NR activity, - 
nmol NO

2  
-1 

g fresh wt -1 
h 

NO3 -  supplied 
	 

mmol 	Time: Oh 	1 h 5 h 10 	h 2 d 3 d 4d 5 d 6 d 7 d Mean 

0 0 0 0 0 0 0 0 o o o 0 
15 0 0 0 0 0 0 0 o o o o 
25 0 0 0 309 531 429 79 O o o o 

(56) (58) (179) (72) 
50 0 0 16 457 544 499. 506 526 479 486 351 

(35) (73) (85) (60) (56) (49) (76) (31) 
100 0 0 30 474 534 577 442 361 281 257 296 

(41) (31) (77) (66) (41) (43) (28) (31) 
150 0 0 104 510 527 546 430 339 267 258 298 

(60) (56) (99) (54) (18) (31) (12) (45) 
Mean 0 0 25 292 356 342 243 204 171 167 

Significance LSD 
P 	= 	0.05 0.01 

NO - 	25 33 
3 Time 	21 27 

NO -  X Time 	52 
3 

68 
111.. 	  

Appendix Table VI.6. NR actvitiy in vivo (+NO3 - ) in leaves (data on which Fig. 	48 is based). 

NR activity, 
- 

nmol NO
2 

-1 
g fresh wt h-1 

NO
3
-  supplied 	 
mmol 	Time: Oh 	1 h 5h 10 h 2d 3d 4d 5 d 6d 7 d Mean 

0 o 0 O. 0 0 0 0 0 0 0 0 
15 0 0 70 250 338 164 0 0 0 0 82 

(157) (255) (318) (103) 

25 0 0 122 609 674 674 425 97 0 0 260 
(146) (122) (75) (159) (248) (168) 

50 0 0 125 538 634 605 580 555 525 538 410 
(77) (91) (45) (64) (55) (35) (49) (23) 

100 0 0 199 564 566 600 475 389 298 265 336 
(62) (32) (48) (85) (25) (63) (46) (21) 

150 0 0 241 569 570 	' 587 462 324 273 243 327 
(42) (26) (114) (34) (27) (27) (22) (40) 

Merin 0 0 126 422 464 438 324 228 183 174 

Significance LSD 
0.01 _ P = 0.05 --- 

NO 41 56 
Tile 42 55 (■.) 
NO 3  X Time 102 134 (.../ 

to 



'Appendix Table VI.7. 

NO
3 - supplied 	 
mmol 	Time: 

o 

NR actvitiy 

Oh 	1 

o 

in vitro in 

o 

leaves 	(data on which Fig. 	51a 	is based). 

NR activity, 	nmol NO 2 -  g-1 	fresh wt h -1  

10 h 	2d 	3d 	4d 

0 	0 	0 	0 

5 d 

0 

6d 

0 

7d 

0 

Mean 

0 

h 	5h 

o 
15 0 0 0 0 	" 0 0 0 0 0 0 0 25 0 0 0 171 629 671 371 0 0 0 184 

(235) (53) (65) (219) 
50 0 0 0 291 638 613 610 576 526 556 381 

(268) (76) (39) (47) (41) (18) (36) 
100 0 0 0 451 645 579 529 405 196 0 280 

(260) (57) (36) (59) (37) (185) 
150 0 0 0 480 651 569 519 331 60 61 267 

(277) (52) (26) (52) (37) (134) (137) 
Mean 0 0 0 232 427 405 338 219 130 103 

Significance LSD 
P = 0.05 --- 0.01 

NO 3 	4 ---6T 
Time 	41 54 
NO 3 	X Time 	101 132 

Appendix Table VI.8. NR actvitiy in vitro in leaves 	(data on which Fig. 	51b is based). 

NR activity, - 	- 	- nmol NOmg 1 
 protein h1  2 

NO - supplied 	 
3mmol 	Time: 0 h 	1 h 	5 h 10 	h 2 d 3 d 4 d 5 d 6 d 7 d Mean 

0 0 0 	. 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 
25 0 0 0 14 56 60 30 0 0 0 16 

(20) (4) (6) (18) 
50 0 0 0 25 56 61 54 49 43 46 33 

(23) (4) (1) (3) (4) (2) (5) 
. 100 0 0 0 38 56 56 46 34 16 0 24 

(22) (4) (6) (3) (3) (15) 0 
150 0 0 0 42 58 57 45 28 5 5 24 

(24) (6) (6) (4) (3) (11) (12) 
Mean 0 0 0 20 38 39 29 19 11 9 

Significance LSD 

	

P = 0.05 	0.01 
NO 	4 
Tiffie 	4 	5 
NO

3 
X Time 	' 9 	12 



Appendix Table VI.9. 

NO 3
-  supplied 	 
mmol 	Time: 

NiR actvitiy in vivo in leaves, 

NiR activity, 

10 h 

nmol 

2d 

NO2 -  g-1  

3d 

fresh wt 

4d 

h -1  

5 d 6d 7 d Mean Oh 	1 	h 5 h 

0 182 	181 186 186 178 180 183 181 182 181 182 
(9) 	(7) (7) (7) (4) (6) (10) (6) (11) (4) 

15 177 	179 180 173 180 180 179 179 186 179 179 
(5) 	(6) (6) (14) (3) (5) (8) (7) (7) (13) 

25 179 	188 183 179 182 185 186 186 186 187 184 
(6) 	(6) (5) (3) (9) (9) (11) (7) (5) (7) 

50 187 	183 178 188 190 190 191 179 176 173 184 
(5) 	(11) (6) (13) (8) (5) (9) (7) (10) (12) 

100 177 	176 184 177 171 167 172 176 171 	. 180 175 
(5) 	(8) (14) (4) (12) (20) (13) (11) (8) (12) 

150 176 	172 177 175 178 179 175 176 174 178 176 
(5) 	(14) (15) (10) (17) (10) (8) (15) (10) (11) 

Mean 180 	180 181 180 180 180 181 179 179 180 

Appendix Table VI.10. NiR actvitiy in vitro in leaves. 

NiR activity, nmol 

	

- 	-1 

	

NO
2 	

g fresh wt h
-1 

NO 3 	
supplied 	 

mmol 	Time: . 	0 	h 	1 	h 5 h 10 	h 2d 3d 4d 5 d 6d 7 d Mean 

0 17604 	17370 17665 17856 17667 17734 17465 17146 17807 17640 17595 
(357) 	(513) (690) (380) 	' (363) (315) (424) (739) (596) (377) 

15 17280 	17595 17266 17663 17478 17630 18000 17640 16834 17240 17463 
(433) 	(582) (700) (694) (547) (646) (318) (493) (437) (459) 

25 16826 	17199 17147 16893 17573 17925 18038 18338 18445 18733 17711 
(293) 	(244) (170) (253) (658) (776) (1188) (595) (569) (1141) 

50 18483 	18140 17755 18302 18552 18813 16785 17205 16796 16750 17758 
(2019) 	(2699) (454) (926) (1423) (1775) (680) (1051) (971) (1216) 

100 	- 17025 	17017 16875 16815 16645 16785 16940 16555 16830 17710 16920 
(1137) 	(411) (574) (801) (955) (867) (1330) (1284) (824) (1722) 

150 17254 	16740 17035 16885 17063 17593 17120 16665 17175 17640 17117 
(1273) 	(988) (1057) (1168) (941) (1210) (1388) (1530) (1020) (1154) 

Mean 17412 	17343 17290 17402 17496 17747 17391 17258 17314 17619 



Appendix Table VI.11. 	NiR 

NO
3
-  supplied 	 
mmol 	Time: 	Oh 

actvitiy in 

1 	h 

vitro in 	leaves. ,  

NiR activity, 

10 h 

nmol 

2c1 

	

NO 2 -  m4-1 	protein wt h -1  

	

3d 	4d 	5 d 6 d 7 d Mean 5h 

0 2982 3039 3002 3123 3086 3072 3046 2999 3007 3003 3036 
(149) (81) (136) (208) (107) (160) (32) (73) (223) (136) 

15 2860 3012 2995 2913 3130 3079 3033 2972 2828 2920 2974 
(110) (124) (118) (258) (135) (191) (142) (221) (190) (123) 

25 2872 3038 2984 2854 2985 3069 3000 3218 3264 3230 3051 
(182) (159) (89) (171) (143) (163) (213) (83) (161) (183) 

50 2847 3046 3055 3010 2931 3147 2150 3045 2861 2951 2984 
(136) (158) (180) (285) (256) (275) (151) (106) (212) (302) 

100 2925 2935 3040 2838 2857 2807 2846 2824 3063 3111 2925 
(312) (209) (147) (161) (314) (184) (373) (249) (224) (299) 

150 2971 2962 2943 2868 3094 3013 2982 2877 2999 3014 2972 
(277) (259) (216) (285) (138) (215) (254) (188) (96) (268) 

Mean 2910 3006 3003 2934 3014 3031 2976 2989 3004 3038 
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