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Abstract 

The microbial communities and the physical and chemical environment of the 

Huon Estuary, Tasmania, Australia, were sampled in an 18 month program. 

Analysis of field samples, and laboratory experiments were used to examine the 

characteristics of estuarine and marine bacteria and algae, relationships between 

bacteria and algae, and their ecological roles. A multidisciplinary approach was 

used, including morphological, molecular, and chemical techniques. Five new 

algicidal bacteria strains were isolated from the estuary. The species were 

identified, based on molecular and phenotypic analyses, as a novel 

Pseudoalteromonas sp., a novel Planococcus sp., a novel Cellulophaga sp., and 

two isolates that were closely related to the species Cellulophaga lytica and 

Bacillus cereus. The bacteria exhibited a powerful lytic effect on the vegetative 

lifestage of the toxic dinoflagellate Gymnodinium catenatum, an introduced 

species that blooms intermittently causing shellfish farm closures in the estuary. 

Excystment or encystment of the cyst lifestage of G. catenatum was unaffected by 

algicidal activity. The bacteria had no observable effect on rotifer, cyanobacteria 

and diatom species tested. Algicidal ability of the bacteria varied both in culture 

and in the environment. These variations depend on environmental conditions or 

may be due to differences in species-specific modes of action. Antimicrobial 

brominated compounds, unrelated to the algicidal activity of the bacteria, were 

also identified in one Pseudoalteromonas species. A novel Shewanella species 

was isolated that contains the highest proportion of the essential fatty acids 

20:5(n-3) reported for a temperate member of this genus. These levels are close to 

those produced by psychrophilic Shewanella species. Fluorescence in situ 

hybridisation (FISH), signature lipid profiling, and morphological data obtained 

during two Gymnodiniuni catenatum blooms and one diatom bloom, demonstrate 

that algicidal bacteria can form a major part of the bacterial community. Fatty 

acid analysis differentiated between different bacterial taxa isolated in this study 

and between field samples from the estuary. Variation of the branched chain fatty 

acids (BCFA) reflected the strong association of the Cytophaga-Flavobacterium­

Bacteriodes (CFB) cluster with microbial degradation of algal blooms in the 

estuary. Results from fatty acid analyses indicated that the CFB cluster are more 
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common in the photic zone and during the chlorophyll maximum, while low 

levels of BCF A indicated that y proteobacteria may be more abundant in the 

deeper, marine influenced waters. FISH analysis also showed that the CFB 

cluster was common in the estuarine community during blooms of the 

dinoflagellate G. catenatum. Member of the genera Pseudoalteromonas­

Colwellia were a significant component during diatom blooms. Alpha (a) and 

gamma (y) proteobacteria were common in the estuary, however, beta(~) 

proteobacteria were not. Throughout the year in the Huon Estuary, dominance of 

bacterial genera varied demonstrating distinct and systematic progressions related 

to the progression of algal blooms. 
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Abbreviation 

a, B, o, y 

ACAM 

ACEM 

AHL 

ANOVA 

BCFA 

biomarker 

bloom 

CDOM 

CFB 

CFU 

chl 

cyst 

diatom 

diel 

dinoflagellate 

DMSP 

DOM 

EPA 

ESI 

eutrophic 

FAB-MS 

FAME 

FFA 

FISH 

Glossary 

Definition 

Alpha, beta, delta, and gamma (proteobacteria) 

Australian Collection of Antarctic Microorganisms 

Australian Collection of Estuarine Microorganisms 

Acetylated homoserine lactones 

Analysis of variance 

Branched chain fatty acids 

An organic compound or compounds that serve as indicators of an 
individual organism, a group of organisms, or a biochemical process 

High concentration of phytoplankton resulting from increased 
reproduction as a response to favourable conditions 

Chromophoric (coloured) dissolved organic matter 

Cytophaga-Flavobacterium-Bacteriodes cluster 

Colony forming units (bacterial isolates that form colonies on solid 
media) 

Chlorophyll 

(dinoflagellate cyst) Part of the sexual lifecycle which is dormant for 
some period of time before reforming an a.ctive planktonic cell 

A member of a diverse class of micro algae Bacillariophyceae having 
siliceous cell walls (generally unicellular) 

Involving a 2LI hour period (not diurnal which can mean recurring 
daily or occurring in the day time) 

A microalgal member of the Dinophyceae, single celled with two 
flagella 

Dimethylsulfoniopropionate 

Dissolved organic matter 

Eicosapentaenoic acid (20:5(n-3)) 

Electron spray injector 

Marine waters containing a high 'level of nutrients 

Fast atom bombardment mass spectrometry 

Fatty acid methyl ester, derivatives of fatty acids 

Free fatty acids 

Fluorescence in situ hybridisation 
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Abbreviation Definition 

GC 

GCMS 

HAB 

heterotrophs , 

HPLC 

HST 

humic 

LC 

mesotrophic 

MUFA 

NMR 

oligotrophic 

PCA 

PCR 

PFA 

POM 

PSP 

PUPA 

pycnocline 

SFA 

signature lipid 

TFA 

TG 

Gas chromatograph 

Gas chromatograph - mass spectrometer 

Harmful algal blooms 

Organism dependent upon some external source of organic 
compounds, in this thesis generally referring to copepods, tintinnids 
etc 

High performance liquid chromatography 

CSIRO Huon Estuary Study Team (2000) 

Formed or derived fro~ plants, often refers to humic acids which are 
complex organics that colour natural water. Subclasses of humic 
acids are tannins, lignins and fulvic acids. They are derived from 
peptide, aromatic, lipid, carbohydrate and other precursors. Their 
formation and digenesis is partially mediated by aquatic bacteria and 
enzymes. A substantial fraction of the humic mass is in carboxylic 
acid functional groups. A smaller fraction contains phenolic 
functional groups. Ten:estrial humic acids tend to be more aromatic 
in nature while marine humic compounds tend to be more aliphatic. 

Liquid chromatography 

Between oligotrophic and eutrophic 

Monounsaturated fatty acids 

Nuclear magnetic resonance 

Marine waters containing_ a low level of nutrients 

Principal component analysis 

Polymerase chain reaction 

Paraformaldehyde 

Particulate organic matter 

Paralytic shellfish poisoning 

Polyunsaturated fatty acids 

Density gradient; in this thesis it refers to the boundary between fresh 
and saline water masses 

Saturated fatty acids 

See biomarker 

Total fatty acids 

Triacylglycerol 
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Introduction - Chapter I 

1. Introduction: Bacterial interactions in the 

marine environment 

There are dynamic relationships of competition, predation and commensalism 

among the different trophic levels in the marine microbial loop (Calbet et al. 2001, -

Davidson 1996, Azam et al. 1983, Pomeroy 1974). Some of these relationships 

also apply within individual microbial classes. Bacteria can exist as symbionts, and 

can be predatory, commensal or competitive with higher trophic organisms. 

Bacteria also compete with, and prey on each other (Jiirgens and Sala 2000, Azam 

1998). In many marine environments, bacteria can have a major effect on the 

dynamics and physiology of microalgal and heterotrophic communities. In 

particular, they can play an important role in the development and decline of 

phytoplankton blooms. In these marine and estuarine ecosystems, heterotrophic 

microorganisms are therefore responsible for a large share of overall carbon-use in 

the respiration and regeneration of nutrients. 

1.1 Microbial relationships 

Until recently, marine bacterial studies focussed on the role of bacteria as detritus 

recyclers and nutrient regenerators. Bacteria recycle nutrients by remineralising 

phytoplankton exudates and dissolved organic matter (DOM) lost from the grazing 

chain by inefficient feeding of heterotrophs (Azam et al. 1983). More recently, this 

concept of bacteria has evolved to include a more proactive role. Bacteria recycle 

nutrients and detritus, but they can also be predatory and aggressive in their role in 

the food chain (Azam 1998). Bacterial species interact within the microbial 

community, in ways as diverse as do members of more complex higher trophic 

levels. These microbial inter- and intra-relationships oan be grouped into a number 

of categories. 
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Introduction - Chapter I 

1.1.1 Passive recyclers 

The traditional understanding of the role of bacteria in the marine environment is 

that they are relatively passive. They recycle material already dead or dying, thus 

regenerating nutrients for the benefit of future production. Bacteria produce 

growth factors that can provide a source of nutrients that are freely available for 

use within the marine food web (Grossart 1999, Keshtacher-Liebson et al. 1995). 

The contribution of these nutrients aids the production of algae and higher trophic 

levels. However, it is possible for certain groups of bacteria to discriminate and 

repress specific algal types yet supply the essential nutrients for others (Fukami et 

al. 1997, Fukami et al. 1996, Fukami et al. 1992). That is, bacteria can be -

selective in the algae that they suppress or nurture and can influence the succession 

of phytoplankton communities that predominate. 

1.1.2 Symbiosis and commensalism 

Symbiotic and commensal relationships between bacteria and plant or animal 

species are common in the marine environment. Bacteria generally reside within or 

in close proximity to these species. Species at higher trophic levels may use their 

natural bacterial community to obtain necessary nutrients required for growth or 

use specific components as methods of protection or predation. For example, 

some shellfish species have gut systems unable to obtain certain nutrients required 

for development without their endemic bacterial population (Klussmann-Kolb and 

Brodie 1999, Schneider 1998, Distel and Cavanaugh 1994). The symbiosis 

between Euprymna scolopes (squid) and the bacteria Vibrio fischerii relies on the 

exchange of signal molecules, some of which are derived from bacterial cell surface 

molecules. The squid-Vibrio symbiosis is obligate for the squid, but is not 

nutritionally based. Rather, bacteria produce light, which enables the animal to 

evade predators (Hirsch and McFall-Ngai, 2000, Ruby 1996, see also section 1.3.5 

on bacterial quorum sensing). 

There is also the possibility that some marine organisms use bacterial toxins 

produced by symbiotic bacteria as agents in their own predatory activities. 

Tetrodotoxins, which are toxins commonly formed by dinoflagellates are also 
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Introduction - Chapter 1 

produced by the symbiotic bacteria of Nemertean proboscis (marine worm). The 

w01m is thought to use the tetrodotoxins to subdue prey during capture 

(McEvoyet al. 1998). 

Bacteria also provide the nutritional attachment to a surface for most benthic algae 

and thus their growth on surfaces is the precursor to biofilm formation-(van 

Loosdrecht and Tijhuis 1996, Brisou 1995). In marine waters bacterial attachment 

to microalgae increases as algae lose viability, ho\Vever bacterial attachment to 

microalgae does not always indicate the decline of a bloom. Algal species in 

logarithmic phase can also have their growth enhanced by bacterial attachment 

(Mouget et al. 1995). Bacteria often supply algal cultures with growth promoting 

substances such as vitamins or nutrients. Th~ bacterial microflora in non-axenic 

algal cultures generally contributes to a higher degree of algal health than that 

observed in their axenic counterparts. However, the same species of bacteria can 

also cause the phytoplankton to perish due to bacterial secretion of harmful 

compounds (Delucca and McCracken 1979). 

Algae can produce specific extracellular products to stimulate growth of certain 

beneficial species, deter predators, or inhibit other species in their aquatic 

equivalent of a rhizosphere. Although the phycosphere is more diffuse and dilute 

than a rhizosphere, during algal bloom periods the excracellular compounds 

produced by algae increase in concentration and have the potential to have a 

significant impact on their surrounding environment (Lovejoy et al. 1998). 

Bacteria can therefore use these extracellular algal products as a source of carbon 

without harming the alga (Fukami et al. 1997) 

· 1.1.3 Bacterial attack: Direct predation or indirect attack 

via exudates 

The traditional "detritus recycling" role now includes bacteria that are aggressors 

and/or predators. Bacteria achieve this by three mechanisms: direct attack, 

indirect attack, or a combination of the two (Doucette et al. 1998, Imai 1997). All 

forms of attack can be beneficial to other bacterial and algal species as they cause 

the prey to "leak" with the resulting nutrients dispersing into the water column. 

3 



Introduction - Chapter I 

Bacteria using direct attack seek out and quickly swarm around the prey. This 

action can be either species specific or general (Imai et al. 1995). Bacteria may 

bypass certain species in favour of the preferred prey (Doucette et al. 1998). 

Within a short time of contact, lytic enzymes disrupt the cell wall (Imai 1997). The 

bacteria that directly attack their host generally produce no extracellular products. 

Bacteria that exude one or more extracellular algicidal compounds display indirect 

attack (Imai et al. 1995). These compounds kill the prey species by diffusing into 

the water column and lysing. the cell wall of the prey. In some cases, prey may be 

in an enclosed environment (such as an algal bloom) and then bacteria exude the 

compounds into the confined area (Imai 1997, Doucette et al. 1998). Production 

of a lytic compound into the water column in many circumstances might be 

ineffectual because of dilution. However, it has been proposed that during dense 

algal blooms when there is abundant nitrogen, this would be a realistic method of 

attack (Lovejoy et al. 1998). Higher nitrogen levels caused by dense algal blooms 

can also increase the lysing efficiency of some bacteria (Doucette et al. 1998). 

1 .1.4 Bacterial size 

The main factors underlying the size spectra of bacteria in the marine environment 

are the same as for algae; grazing and nutrient effects (!urgens and Gude 1994). 

Size selective predation is an important factor in controlling bacteria and therefore 

determines the structure of bacterial communities. Small protists select bacteria by 

size and preferentially ingest medium to large bacterial cells (Posch et al. 1999). In 

the absence of flagellate grazing, the size structure of the "bacterial population shifts 

to smaller cells (Posch et al. 1999, Gin 1996). In one study, larger cells were the 

most active and these were dominated by dividing and logarithmic bacterial cells in 

the community (0.2-0.5 µm) (Bernard et al., 2000). 

Since large cells are preferentially grazed, being small can make a species less 

attractive as prey. Bacteria can adapt to nutrient starvation by a reduction in size 

in order to increase their surface to volume ratio. In doing so, cell size can also be 

regarded as an adaptation to carbon and nutrient limitation (Jiirgens and Glide 

1994) as well as predation. Conversely, some of the bacteria found in oligotrophic 
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Introduction - Chapter 1 

environments remain small independent of nutrient availability (Schut et al. 1997). 

In winter and early spring in one study, large cells were abundant in the marine 

environment as waters were well mixed and nutrient concentrations were high (Gin 

1996). Diminishing nutrients, rising temperature and increasing stratification of the 

water column resulted in an increase in smaller cell sizes. In stratified waters, 

depth variation of the size spectra demonstrated that larger bacteria and 

phytoplankton sizes were observed in surface and very deep waters, whereas 

smallest sizes were typically seen around the thermo/halocline near or at the 

chlorophyll maximum (Gin 1996). 

1.2 Harmful algal blooms 

Occurrences of harmful algal blooms are being reported more frequently in 

Tasmania and around the world. This may be partly explained by an increase in 

water column observations by government and aquaculture authorities for public 

health requirements. The detrimental financial and health effects of toxic algal 

blooms necessitate increased monitoring as harmful algal blooms render shellfish 

unsaleable because of high toxin levels. 

During some summers, G. catenatum outbreaks in the Huon Estuary have caused 

shellfish farms to close for up to a third of the year. The size of the G. catenatwn 

bloom is not consistently related to the level of.toxin, so the abundance of 

dinoflagellates cannot always be correlated to toxin level (CSIRO Huon Estuary 

Study Team 2000 (HST 2000)). De-stratification of the water column was shown 

as the most effective means to end the blooms (HST 2000). Outbreaks of this alga 

have also been reported·in the nearby Derwent Estuary, although no shellfish farms 

are situated in this estuary (Coughanowr 1997). 

The advantage G. catenq,tuni has over other dinoflag;ellate and diatom species is 

that it is capable of rapid vertical migration. It also has a higher swimming velocity 

that would enable it to move against a river current (1.5-6.5 m/h, HST 2000). 

Diatoms do not move very quickly, so in nutrient depleted periods their blooms 

rapidly decline as they remain at similar positions in the water column. By 
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Introduction - Chapter I 

comparison, G. catenatuni has been shown to undergo large diel vertical 

· migrations to the surface for sunlight during the day before returning to the deep 

nutrient rich marine waters (20 meters) at night where they sequester bottom water 

nutrients (HST 2000, Doblin et al. 2000). This enables effective use of chlorophyll 

and nutrients. The swimming ability of G. catenatum is also thought to help the 

dinoflagellate remain in the estuary as the brackish waters flow down stream and 

the tidal push of the salt wedge keeps the alga within the estuary boundaries (HST 

2000). As the estuary has high levels of humic compounds, light penetration can 

be as little as 1 meter, giving species that are capable of movement in the water 

column a strong advantage. 

1.2.1 Bacteria associated with harmful algal blooms 

The relationship between the formation of toxins by harmful algal species and their 

associated bacteria has been reported since the 1960s (Silva 1962). However, 

research in the area increased significantly in the 1990s (Gallacher and Smith 1999, 

Gallacher et al. 1997, Franca et al. 1996, Kodama 1990). 

Prokic et al. (1998) demonstrated that the bacterium Ruegenia algicola 

(previously Roseobacter algicolas, Uchino et al. 1998) was closely associated with 

a toxic dinoflagellate (Prorocentrum Zima) that produces diarrhetic shellfish 

poison. The study reported that 83 % of the bacterial population in the 

dinoflagellate culture was R. algicola although it was unclear as to whether the 

dinoflagellate or the bacteria produced the toxin. 

Other bacteria, such as Pseudoalteromonas, have the ability to produce 

tetrodotoxins and saxitoxins (I vanova 2001, Gallacher et al. 1997, Franca et al. 

1996, Gallacher and Birkbeck 1993). Symbiotic or associated bacteria are thought 

to contribute to the toxicity of the dinoflagellate Alexandriuni (Kodama et al. 

1996, Levasseur et al. 1996). However, the relationship between the production 

of algal toxins and the role bacteria play is not yet fully understood (Doucette et al. 

1998). 
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Introduction - Chapter I 

1.3 Algicidal bacteria 

Algicidal bacteria are often associated with algal blooms and considerable research 

centres on their relationship with harmful algal blooms (Doucette et al. 1998, 

Yasumoto et al. 1996). Usually algicidal properties are limited to certain bacterial 

genera, in particular Pseudoalteronionas (Egan et al. 200la, Lovejoy et al. 1998) 

and Cellulophaga (Johansen et al. 1999, Doucette et al. 1999). Both these 

bacterial genera are motile; Pseudoalteromonas using flagella motility and 

Cellulophaga by gliding motility. 

1.3.1 Cel/ulophaga 

Cellulophaga are one of the most prolific and widely studied algicidal genera 

(Toncheva-Panova and Ivanova 2000, Kondo et al. 1999, Yoshinaga 1998, Imai et 

al. 1993, Mitsutani et al. 1992, Imai et al. 1991, Stewart and Brown 1969). They 

, are the most significant species in causing algal bloom decline and show s~arming 

and predatory abilities. Recent studies using :fluorescence in situ hybridisation 

(FISH) and more. traditional methods, indicate that Cellulophaga species and the 

Cytophaga-Flavobacterium- Bacteriodes (CFB) cluster dominate many marine 

systems. They are found throughout the water column of temperate and polar 

marine environments (Fandino et al. 2001, Cottrell and Kirchman 2000, Pinhassi 

and Hagstrom 2000, Glockner et al. 1999) and are also common in fresh water 

(Stewart and Brown 1969). They grow easily in oligotrophic conditions as they 

can utilise a variety of carbon sources for growth. Although capable of growth 

under nutrient limited conditions, they are mainly associated with marine snow and 
I 
i 

the decay of algal blooms (Crump et al. 1999, Delong et al. 1993, Riemann et al. 

2000), and thrive on nutrient rich media. Pinhassi and Hagstrom (2000) have 

shown, using whole-genome DNA hybridisation to community derived DNA, that 

CFB was the dominant cluster during a coastal phytop!ankton decline ( 43 % of 

intact cells). Another study by GlOckner et al. (1999)_demonstrated that members 

of the family Flavobacteriaceae were the most abundant group detected in a 

number of different marine systems, accounting for an average of 18 % (2 to 72 % ) 

of the 4',6-diamidino-2-phenylindole (DAPI) stained cells. Further work by these 
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researchers using FISH revealed that the CFB cluster dominated in the North Sea 

(tip to 30 % ), although species from the cluster were rarely cultured and no clone 

related to the CFB cluster was retrieved (Eilers et al. 2000). 

1.3.2 Pseudoalteromonas 

Pseudoalteronionas is a highly bioactive genus and has been the source of many 

different secondary metabolites and antibiotics. Over thirty known bioactive 

compounds have been described and some are patented for biotechnological uses 

(see review by Mikhailov and Ivanova et al. 1994). The genus is ubiquitous in the 

marine environment and is part of the"( proteobacteria subdivision. Other common 

marine genera of this subdivision include Vibrio, Shewanella, Oceanospirillum, 

and Pseudomonas. Also included in the"( proteobacteria are many types of 

symbiotic bacteria found in fish, shellfish and marine worms (Amann et al. 1995). 

Pseudoalteronionas is the second most abundant and commonly reported genus of 

algicidal bacteria after Cellulophaga (Lee et al. 2000, Lovejoy et al. 1998, Imai et 

al. 1995, Baker and Herson 1978). They have the ability to lyse cells and swarm 

using their flagella once the cells are leaking (Doucette et al. 1998, 1999, Imai et 

al. 1995). Lysing occurs through the indirect method of extracellular exudation, 

and they have also shown species-specific algicidal activity (I ,ovejoy et al. 1998). 

Their algicidal activity is more effective during periods of algal blooms and thus 

peak nutrient levels. The most highly studied species of this genus to date is P. 

tunicata which produces at least three different bioactive compounds that act 

independently: anti:fungal, inhibition of algal spore germination and antifouling 

(Egan et al. 200la, Holmstrom and Kjelleberg 1999, Holmstrom et al. 1998). 

1.3.3 Other algicidal genera 

Dakhama et al. (1993) has reported on a marine algicidqJ species that is not 

included in the Cellulophaga or Pseudoalteromonas genera and is similar to 

Pseudonwnas aeruginosa (y subdivision proteobacteria). Isolation and 

identification of antialgal substances produced by this species inhibited the growth 

of microalgae and cyanobacteria. Results showed that the inhibition of algal 
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growth was due to bacterial pigments that were thermo-resistant, low molecular 

weight compounds (Dakhama et al. 1993). These may have been phenazine 

pigments similar to those found in Pseudomonas aeruginosa like pyocyanin, 1-

hydroxy-phenazine (a product of degradation of pyocyanin), phenazine-1-

carboxylic acid and oxychloraphine (Anjaiahet al. 1998, Fernandez and Pizarro 

1997). 

Another recently identified dinoflagellate-killing bacterial species was closely 

related to the common marine genus Oceanospirillum (Kitaguchi pers. corn.). A 

species closely allied with the genus Psychroserpens ([Flavobacterium] sp. strain 

5N-3) was also reported as an algicidal species (Kondo et al. 1999). 

In freshwater, a number of algicidal genera have been isolated. Algicidal 

Lysobacter (Mitsutani et al. 1987 ), Myxobacter (8 subdivision proteobacteria) 

(Shilo 1970) and Flexibacter (Gromov et al. 1972) have been isolated from fresh 

v.zater environments. An Alcaligenes-like species was identified as biocidal 

towards a Microcystis bloom (Manage et al. 2000). However, the genus of the 

isolate was only identified phenotypically using BIOLOG. · Conversely, in the 

marine environment, a number of Alcaligenes species in a study reporting on 

algicidal species, produced substances that had a positive effect on microalgal 

growth (Fukami et al. 1997). 

1.3.4 Cell mechanics of algicidal species 

All algicidal bacteria described to date can survive low nutrient levels. However 

many can also dominate or take advantage of periods when there is increased 

nutrient availability (ie Cellulophaga· spp. and their association with marine 

particles, section 1.3.1). The cellular characteristics of many algicidal bacteria in 

liquid media provide information on their predatory behaviours. Some algicidal 

bacteria adhere to the surface of the culture vessel and produce lace-like growth 

formation (filiforms) that may be effective as a method of entrapment for algal cell 

lysis in the natural environment (Doucette et al. 1998). Adhesion to surfaces is 

thought to play a major role in the survival ability of some bacterial groups, with 

bacterial biofilms being an example of this (Costerton et al. 1995). Bacteria that 
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survive well at low nutrient levels are likely to compete well for low molecular 

weight energy substrates in the aqueous phase. Small, starved cells can therefore 

show a greater adhesive ability than normal unstarved cells (Jana et al. 2000). 

Many algicidal bacteria have flagella or use secretory gliding as their major form of 

movement. Members of the common algicidal genus, Pseudoalteromonas, use 

flagella for motility. Bacteria with gliding or flagella motility can respond to 

stimuli and may be able to move toward an algal bloom or nutrient source. The 

secretory gliding mechanism is often used as a method of algal attack for species 

belonging to the genus Cellulophaga. Glid!ng bacteria could be ah-eady attached 

to the algae or may be floating in the water column until suitable conditions arise. 

The gliding response mechanism of bacteria requires recognition of extracellular 

components that involves cell-to-cell communication (Youderian 1998). The 

molecular mechanisms of two types of gliding motility have been described and 

characterised (Hodgkin and Kaiser 1979). One is a social motility that lets cells 

hunt in packs and the other is adventurous motility that enables the bacteria to 

explore the territory of the pack. To disable gliding ability, both these genes have 

to be disrupted. This form of gliding is as genetically complex as flagella motility. 

In the marine environment the use of either flagella motility or secretory gli~ing by 

algicidal bacteria, could be a major advantage for sequestering nutrients. The 

presence of flagella and gliding motility may also benefit these bacteria when highly 

motile algal species, such as toxic dinoflagellates, predominate. 

1.3.5 Bacterial quorum sensing 

Predatory and algicidal bacteria may use quorum sensing as a means to collectively 

detect and kill prey. Bacterial communities can coordinate phenotypic behaviour 

and gene expressions through signalling molecules called autoinducers. The most 

well known group of signalling molecules are called acylated homoserine lactones 

(AHL) (Lilley and Bassler 2000, Bassler 1999, Eberl 1999). AHL accumulate in 

the external environment and individual bacteria use them to detect total bacterial 

numbers around them (quorum sensing). Based on the concentration of AHL, 

bacteria activate or inactivate different functions that can regulate antibiotic 
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production, conjugation, swarming, toxin production, biofilm formation, 

luminescence and exoprotease production (Bassler 1999, Eberl 1999). One 

example of quorum sensing occurs with the pathogenic bacteria P. aeruginosa that 

does not produce virulence factors until quorum density is achieved. Quorum 

sensing can be seen as bacteria working akin to a multi-cellular organism, enabling 

the bacteria to coordinate behaviour (Bassler 1999). 

An example of AHL in the marine environment is bioluminescence in Vibrio 

fischerii, which is under the control of three or more AHL (Bassler 1999). Vibrio 

fischerii is a marine bacterium found as planktonic cells and as a symbiont in the 

light organs of squid. In the natural marine environment, this species does not 

fluoresce as it is at low densities (101 cells/ml). However, in light organs the 

bacterial concentrations are high enough so they bioluminess to attract prey (1010 

cells/ml). In the light organs the AHL provide a feedback mechanism. When a 

threshold stimulatory concentration of AHL is achieved, it is translated into 

bioluminescence (autoinduction). Cell free stationary phase cultures induce 

bioluminescence in non-lmrunous mid-log cultures from the marine environment. 

Thus, the bacteria produce an extracellular substance that induces bioluminescence. 

1 ~4 Techniques used in microbial ecology 

It is possible to analyse algal and bacterial communities in the same sample using a 

variety of techniques. Recent advances in the field of molecular phylogeny have 

made it possible to study bacterial populations by a culture-independent approach 

(Amann and Ludwig 2000, Amann et al. 1990). Molecular techniques such as _ 

fluorescence in situ hybridisation (FISH) use flurophores attached to short DNA 

probes. Probes attach to the rRNA in the bacterial sample and classification of the 

genera or classes present is achieved using epifluoresence microscopy (Amann 

1995). 

Signature lipids can identify the physiological status and type of the marine algal 

blooms as well as identify the biomass and proportion of bacteria present in the 

same sample. Many species contain a lipid signature that can provide a fingerprint 
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to.differentiate between taxa (Meziane and Tsuchiya 2000, von Keitz et al. 1999, 

Nichols- et al. 1991, Mancuso et al. 1990, Volkman et al. 1988, White 1983). For 

example, many bacteria contain branched chain fatty acids (BCFA) that are not 

found in algae and other marine organisms. Analysis of mixed bacterial cultures 

from sediment indicate that BCFA can account for up to 70 % of the total fatty 

acids (Gillan et al. 1983). The bacterial component of field samples can therefore 

be estimated using BCF A 

Traditional techniques such as plate identification are also useful when working 

with bacteria that are not growth inhibited by the culture media or that have 

distinct morphologies. Other methods used in marine microbial ecology include: 

BIOLOG substrate utilisation profile analysis, amplified ribosomal DNA restriction 

analysis, cloning and sequencing, terminal restriction fragment length 

polymorphism analysis (T-RFLP), length heterogeneity PCR analysis (LH-PCR) 

and denaturing gradient gel electrophoresis (DGGE). 

1.5 Estuaries: A microbial perspective 

Estuaries are areas of highly variable environmental conditions in terms of 

temperature, salinity, pH and organic loading. These physical and chemical 

parameters are often the most important controlling factors of distribution and 

variability of bacteria (Painchaud et al. 1995, 1996). Estnaries are typically highly 

productive regions and are often more productive than either the ocean or the 

freshwater systems that enter them (Gayte et al. 1999, Saliot et al. 1996). Lower 

current flow, and mixing of organic matter from the fresh and marine systems leads 

to these specific nutrient and bacterial dynamics. There are complex variations 

within each estuarine system, including flushing time, tidal flow, estuary shape and 

sewerage or agricultural inputs. It is noteworthy that the study of many estuarine 

systems is prompted by a desire to understand anthropogenic contamination. 

The nature of the marine or estuarine environment is such that bacterial growth is 

limited by the availability of carbon and energy sources. The two ways in which 

bacteria can dominate and survive in these areas are: by growing efficiently in a 

low nutrient regime or, remaining dormant until a plentiful supply of nutrients 

12 



Introduction - Chapter 1 

arises. Within an estuary, bacteria can occupy these two different habitats; free­

living or attached to particles (Crump and Baross 2000, Revilla et al. 2000, 

Painchaud et al. 1995, 1996). Free-living bacteria are largely controlled by 

hydrodynamic influences and can differ in their importance between and within the 

transit of estuaries. Some studies have shown that free-living bacteria are 

responsible for the majority of bacterial productivity, although their presence can 

be unrelated to chlorophyll levels (Painchaud et al. 1995, Griffith et al. 1994). 

Attached and free-living bacteria in ?an Francisco Bay were demonstrated to be 

members of river and coastal ocean communities, with a rapid transfer between the 

two (Hollibaugh et al. 2000). In other coastal (east Mediterranean Sea), oceanic 

(North Pacific and Atlantic central ocean) and estuarine environments (Columbia 

Estuary, USA), a distinct difference was observed between the free living and 

particle-attached communities (Moeseneder et al. 2001, Crump et al. 1999, 

Delong et al. 1993). These findings indicate dissimilarity and limited community 

interchange occmTing between the free living and attached bacteria in these 

environments. 

Particle-attached bacteria in estuarine systems are generally more biologically 

active and their distribution often correlates with phytoplankton degradation 

(Grossart and Ploug 2000, Crump et al. 1999, Griffith et _al. 1994). They gain 

nourishment from the phytoplankton and supply nutrients, resulting in "new" free­

living bacteria (Friedrich et al. 1999). In contrast, the studies by Painchaud et al. 

( 1995) and Griffith et al. ( 1994) found that although attached bacteria may 

dissolve the particulate organic matter, their growth rates on particles were not 

always significantly enhanced. 

1.5.1 The Huon Estuary 

Upper reaches of many estuaries (Delaware Estuary, Hoch and Kirchman 1993), 

Chesapeake Estuary (Griffith et al. 1994), and Schelde Estuary (Goosen et al. 

1997) have shown the microbial community to be bacterially dominated, and most 

are affected by areas of urban or agricultural run off. The Huon Estuary in 

Tasmania (147°E, 43° S) by contrast, has a high natural level of humic compounds 

from native bushland and rainforest that surrounds the estuary. Land-based 
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activities and aquaculture have only a minimal localised effect, consequently the 

estuarine water is of high quality (HST 2000). 

The estuary is more productive in summer with two classes of algal blooms, 

dinoflagellates and diatoms, dominating and alternating in the spring to autumn 

period of most years (HST 2000). One of the species, Gymnodinium catenatum, is 

a toxin-producing dinoflagellate that was first introduced via ballast waters in the 

early 1970s (McMinn et al. 1997) and has since become a principal alga in the. 

estuary. 

Diatom blooms that occur in the estuary are predominantly Pseudonitzschia and 

Chaetoceros species. Background levels of small-unidentified flagellates in the 

estuary also fluctuate over the season. Peak algal biomass ranged from 1-2 mg 

chlorophyll a/m3 for diatom blooms to 20 mg chlorophyll a/m3 during 

dinoflagellate blooms (HST 2000). Only one study has reported bacterial 

concentrations in the water column of the Huon Estuary. In this study, bacterial 

numbers were around 108 cells/I for samples taken over various seasons (Lovejoy 

et al. 1998). 

The Derwent Estuary is situated parallel to the Huon Estuary and has a history of 

urban, industrial, and human impact (Coughanowr 1997). Two IJ?.ajor industries in 

the Derwent catchment have had a key influence on the water quality of the estuary 

in the past; one is a newspaper print mill and the other is a zinc refinery. 

Primary treated sewage from the Tasmanian capital city Hobart was also a major 

input into the Derwent Estuary until the mid 1990s. Unfortunately, bacterial data 

from the estuary is related only to pathogens (Coughanowr 1997) rather than total 

community estimates. Despite the human impact to the Derwent Estuary, the 

Huon and Derwent estuaries are very similar in their geography and catchment 

areas and overall, the biological systems are comparable. Tasmanian estuarine 

bacteria are therefore poorly studied both in relation to their total estimates as well 

as community variation. 
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1.6 Thesis outline 

The research outlined in this thesis was prompted after a study examined an 

endemic Huon Estuary bacterium as a nutrient source for the toxic dinoflagellate 

G. catenatwn. The bacterial strain was serendipitously found to lyse the cell wall 

of a number of toxic algae (Lovejoy et al. 1998). 

A multidisciplinary approach and analysis of the microbial community in the Huon 

-Estuary and the surrounding biological, physical and chemical oceanography of the 

estuarine sites was undertaken in order to better understand the ecology of 

algicidal species (chapter 2). 

The majority of the research in this thesis concentrates on the four algicidal species 

isolated from the Huon Estuary. These are species from the genera 

Pseudoalteronwnas and Cellulophaga. Other algicidal species from the genera 

Bacillus and Planococcus were also isolated. Taxonomic characterisations of 

these novel isolates are presented (chapter 3). 

The thesis examines in detail algicidal bacteria and aspects of their algicidal 

specificity (chapter 4). The concentrations of algicidal components required to 

lyse the algal cells and their relationship with the different lifestages of G. 

catenatuni as well as other toxic and non-toxic algal and microbial species are 

examined (chapter 4). These results led to a parallel study into the occurrence of 

algicidal bacteria in the marine environment and investigation of whether algicidal 

components are produced consistently in the natural setting or if they can be used 

to control future harmful algal blooms. 

Like most of the estuaries and river systems in Tasmania, the marine bacterial 

community of the Huon Estuary is poorly understood. Using traditional and 

modern techniques, the thesis aims to increase knowledge and thus allow a broader 

understanding of the microbial ecology of the estuary. Methods undertaken in this 

thesis include phenotypic (chapters 5 and 7) and molecular (chapter 7) techniques 

which allow analyses of the microbial community structure. Investigation of the 

relationships between algal blooms and bacteria demonstrate how these 
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communities interact when large blooms of G. catenatum or diatoms occur 

(chapters 5 arid 7). 

The thesis investigates other compounds, potentially beneficial to humans, 

produced by algicidal and non-algicidal bacteria isolated from the Huon Estuary. 

The novel non-algicidal Shewanella species produces the essential omega-3 

polyunsaturated fatty acids (chapter 6). Novel antibiotic compounds are produced 

by one of the algicidal bacteria (chapter 8). 

Bacterial interaction within the environment is far more complex than simple 

nutrient regeneration. Bacteria cannot be categorised as a singular community 

whose members make consistent and similar contributions. Further research of 

their interactions will continue to demonstrate the same degree of complexity as 

those involved between higher trophic levels. The thesis aims to examine these 

microbial interactions with particular reference to novel algicidal bacteria from the 

estuary, the compounds they produce and their relationship with harmful algal 

blooms. 
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2. Biological, chemical and physical ecology 

of the Huon Estuary 

Summary 

The Huon Estuary is an unpolluted estuary with low phosphate and nitrate 

concentrations. The brown-pigmented smface waters contain high levels of humic 

compounds that affect the biology of the estuary and are a factor in the availability 

of light to the deeper layers. A small diatom-dominated bloom occun-ed in the 

estuary from Nov. to Dec. 1998. From Dec. 1998 to Jan. 1999 the toxic 

dinoflagellate G. catenatum bloomed. A diatom bloom, dominated by the genus 

Pseudonitzschia, separated the first G. catenatum bloom and a second smaller 

bloom of G. catenatum that occurred from April to May 1999. Greatest bacterial 

diversity was observed in the estuary sediment samples. The estuary side arm 

contained higher bacterial numbers throughout the year than the main estuary. In 

the water column, higher bacterial populations occurred in summer than winter for 

all sites. Knowledge of the environmental parameters and biological ecology of the 

Huon Estuary is important for understanding the relationship of algicidal bacteria 

with algal blooms. 

Introduction 

Physical,"chemical and biological data was collected and analysed from the Huon 

Estuary for the field samples presented in this thesis (Oct. 1998 to Jan. 2000) by 

Parker (2001) and myself (this thesis). CSIRO Division of Marine Research 

undertook a larger survey involving the entire estuary from Aug. 1996 to Sept. 

1998. I was involved with some of the CSIRO surveys. In this thesis the report 

from the CSIRO study (CSIRO Huon Estuary Study Team 2000) is referred to as 

(HST 2000). 
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The Huon Estuary can be divided into three sections; upper reaches, lower reaches 

and side arm (Figure 2.1). The annual flow of the river averages 87 m3/s (summer 

months: 30-40 m3/s, winter months: 125-130 m3/s, (HST 2000)). 

Over a two-year study of the Huon Estuary, (Aug. 1996 to Sept. 1998), five 

biological stations were surveyed (HST 2000). The biological stations were part 

of a number of larger scale spatial surveys that included 35 sites throughout the 

estuary during different seasons (Figure 2.1). The biological stations were sampled 

more frequently to resolve short-term changes and algal bloom behaviour. In the 

study for this thesis, samples were taken fortnightly at three of the above 

mentioned biological stations and included sites Fl, F3 and X3 (identified as X3b 

in HST 2000) from Oct. 1998 to Jan. 2000 (Figure 2.1). 

The sites Fl, F3 and X3 are marine dominated. Two sites (Fl and F3) were 

situated in the lower-middle reaches of the estuary and one in the sidearm (X3) 

(Figure 2.1). The lower reach is a marine zone, 40 m deep at the mouth of the 

estuary and 20 km from the Southern Ocean. The side arm, although shallower, 

has a lower proportion of fresh water from the two entering rivulets when 

compared with the ivain estuary body so is still a strongly marine ecosystem. 

Chlorophyll correlations between sites Fl and F3 in the middle estuary and the 

estuary side arm (X3) were high (r2
, 0.79 to 0.86) compared with correlations 

between these sites and sites near the estuary mouth (r2, 0.52 to 0.69) (HST 2000). 

This was attributable to high algal biomass from dinoflagellate blooms in the lower 

and middle estuary. 

Limited analysis of the bacterial community in the Huon Estuary is presented in this 

chapter. Greater detail is presented in chapters 5 and 7. The objectives of this 

chapter were to: 

•!• identify characteristics of the main chemical and physical parameters of the 

estuary; 

•!• gain an ecological insight into estuarine dynamics in relation to algal blooms. 
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Figure 2.1 Sampling sites for the 1996 to 1998 study (HST 2000) highlighting site S 15 and the 
three main sites sampled from 1998 to 1999; sites, Fl , F3 and X3. 
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Methods 

2.1 Huon Estuary study sites and sampling 

The Oct. 1998 to Jan. 2000 survey completed for this thesis was confined to three 

sampling areas in the Huon Estuary on a fortnightly basis: sites Fl, F3 and X3. 

The sites were the same locations as those sampled in the CSIRO study (HST 

2000) from Aug. 1996 to Sep. 1998. 

Bacterial estimates of the water column for two surveys involving the entire 

estuary (spatial surveys) were completed during the 1998 summer and winter (see 

Figure 2.1 for site details). Water temperatures were at their respective maxin;mrn 

or minimum for these two surveys. Bacterial estimates involving the sediments of 

the entire estuary were completed during 1998. All samples taken for bacterial 

analysis from Aug. 1996 to Sept. 1998 were primarily for isolation of bacterial 

species. 

\Vater depths at the three sampling sites were site Fl, 26 m, site F3, 18 m and site 

X3, 30 m. Sites Fl and F3 were on opposite sides of the estuary, mid way down 

the main estuary (Figure 2.1). Site Fl had the greatest river flow and was situated 

on the main estuary straight. Site F3 was close to a protected cove and was the 

shallowest site with the slowest river flow. 

All three sites were situated near shellfish or finfish farms. Corner markers for 

farm boundaries were normally 50 m away from the cages. Only the estuary side­

arm contained shellfish farms and site X3 was on the corner marker of one of these 

small mussel farms. Site location near fin and shell fish farms was unimportant in 

contributing to phytoplankton growth because of the high flushing time of the 

estuary and the time scales required for phytoplankton growth (HST 2000). 

Samples taken included: surface waters, pycnocline (typically a depth of 2 rn for all 

3 sites), an integrated sample from 0 to 12 m and a 20 µm plankton net sample 

(Figure 2.2, Table 2.1). 
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I: Integrated sample, 
Lund tube, 0 - 12 m 

P: Pycnocline 
chlorophyll 
maximum 
(-2m) 

N: Net sample, 
20um plankton 
net pulled 
through 0-12 m 

Depth: site F1 26 m 
site F3 18 m 
sitP. X3 30 m 

Brackish humic - rich 
river water 

Salt water wedge from 
the Southern Ocean 

Figure 2.2 Schematic representation of the sample types taken during the field study and depths of the 
three sites. Stratification of the brackish and salt water is indicated. 

Table 2.1 Sampling methods for collection of samples from sites Fl, F3 and X3. 

Depth 
Sample 

Collection device Depth Sampling procedure 
type 

Integrated Lund tube 0-12 m Water collected in 
(weighted 2.5 cm x tube, emptied into 
12 m silicone tubing plastic container, 

- 5 I) mixed and 
subsam led 

s Surface 5 I Niskin 0 - 0.2 m Niskin inverted 3 
times 

p Pycnocline 51 Niskin 2 m or at the Niskin inverted 3 
/Mid depth pycnocline which times 

was calculated with 
a salinometer 

N Net 20 µm net 0-12 m Plankton net sampled 

(site F3 0 - 9 m) at -1 m/sec 
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2.2 Physical and chemical analyses 

Precision salinity was determined by conductivity (Cowley 1999). A Secchi disc 

was used to measure light penetration depth. Standard flow-analysis procedures 

(Plaschke 1999) were modi:9._ed slightly for the determination of the nutrients: 

nitrate, nitrite, phosphorus and silica. In this thesis, 'dissolved' refers to analysis of 

the filtrate after passing water samples though a 0.45 µm filter membrane. Nitrate 

and nitrite (or NOx) were separately determined. In other studies nitrate is 

sometimes used as an abbreviation for nitrate and nitrite. 

Phosphate and silicate were measured using the variants of the 'phospho­

Molybdenum blue' method, which are selective for orthophosphate or orthosilicic 

acid and its ionic forms and measure other reactive condensed phosphates and 

silicates (dimer only). Some organic fractions of phosphorus and some colloidal 

silicic acid may also be included in the analytical measurements (HST 2000, 

Koroleff 1983, Robards et al. 1994). 

2.3 Chlorophyll analysis 

Phytoplankton abundances were measured using two methods: microscopic 

examination with emphasis on bloom forming species and by spectraphotometric 

absorbance to measure concentrations of chlorophyll a, b and c. 

Chlorophyll a is the major pigment of all marine plants and microalgae and is 

commonly used as a routine measure of phytoplankton biomass (Jeffrey et al. 

1997). Samples for chlorophyll analysis were collected and analysed for all three 
' .. 
depths as described in the HST 2000 Supplementary Section (2000). Briefly, 

samples were transferred to clean 2 1 plastic bottles in the field and stored in the 

dark on ice. Once in the laboratory, samples were filtered though a 47 mm 

Whatman GF/F glass fibre filter and the volume of the filtrate was recorded. The 

filters were stored frozen in liquid nitrogen until analysis was undertaken. Filters 

were cut up, placed in 90% acetone, agitated ultrasonically for 5 mim;ites, stored 

overnight at -20°C and then resonicated and centrifuged. Absorbance of the 
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resulting solution was measured using a spectrophotometer with 90% aqueous 

acetone in the reference ·Seam. 

2.4 Bacterial enumeration 

Detailed analysis of bacterial numbers and classifications is presented in chapter 7. 

J:.- brief description is provided in this chapter on bacterial numbers in the water 

column throughout the estuary during the 1998 summer and winter and for site 

X3, which was studied independently from site Fl and F3 during the CSIRO study. 

Bacteria were analysed using both plate and direct counting. The fluorescent stain 

4'6'-diamidino-2-phenylindole (DAPI, Sigma) was used to compare with colony 

forming units (CPU) using the method of Lovejoy et al. (1998) at site F3 -(chapter 

7). Bacterial isolations and enumeration at the site in the estuary side arm (X3) 

were undertaken in order to isolate algicidal bacteria and ascertain their numbers. 

Integrated samples (0- J 2 m) were taken fortnightly from sites X3 and F3 

(bacterial numbers for site F3 are reported in chapter 7). 

Duplicate sediment samples (0.5 g x 2) for bacterial enumeration using DAPI were 

collected and diluted with particle-free (0.2 mm-filtered) artificial seawater 

(Sigma). Subsamples were alternately vortexed, sonicated and vortexed (1 min:l 

min: 1 min) in 10 ml of filtered autoclaved artificial seawater to help detach 

bacteria from sediment grains before staining with 5 µg/ml DAPI for 15 min. 

Enumeration of bacterial cells was completed after filtration onto 0.2 µm black 

polycarbonate filters (Millipore). The duplicate sediment suspensions (each 50 µl) 

were also cultured in duplicate (i.e. 4 plates per sample site) on Marine Agar (1 g 

Y ~ast Extract (Oxoid), 4 g Bacteriological peptone (Oxoid), and 1 1 filtered Huon 

Estuary river water adjusted to a salinity of 28 psu with artificial sea salts and 

incubated at 22 °C for 10 days). Bacterial numbers were related to wet sediment 

mas.s as these have been reported as a more consistent measure (i.e. wet volumes 

rather than dry) (Schmidt 1998). Bacterial estimates of water column samples 

were ascertained by a dilution series on the above media (see also chapter 7, 

methods). 
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2.5 Light penetration 

The Secchi disc is used as an indicator of light penetration and could not be 

observed past 1 m for some sampling dates (Figure 2.3). These dates 

corresponded to high rainfall episodes (rainfall data not shown). Site Fl, had the 

highest light penetration depth of the three sites for all four seasons 

During the summer and autumn G. catenatum blooms (Figure 2.3, section 2.8), 

there was an increase in Secchi depth at sites Fl and F3 signifying lower marine 

layers ·mixing with upper waters. This was followed by a period of stratification. 

At the end of both G. catenatum blooms, an increase in light penetration was 

observed in the water column (Figure 2.3). 

2.6 Salinity 

There·was distinct salinity stratification during episodes when influx of fresh water 

high was high (rainfall data not shown) and light penetration was low (see section 

2.5). Stratification of salinity was strongly delineated and occurred at 

approximately 2 m. The vertical distance of stratification from brackish water to 

saltwater was 5-10 cm for most of the year. Greater stratification of salinity 

between the surface samples and the pycnocline samples was noticeable for the two 

sites in the main estuary (sites Fl and F3) when compared to site X3 in the estuary 

side arm (Figure 2.3). 

2.7 Temperature 

In late summer, the brackish smface layer of the Huon Estuary reached higher 

temperatures than the lower marine layer (Figure 2.4). In winter, lowest 

temperatures were observed in the smface samples. Snowmelt contributed to river 

discharge at this time. 
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~~~~~~~~~~~~~~~~~-~~~~~~-----

Highest and lowest temperatures were recorded in the surface samples. 

Maximums were observed in Feb. and minimums in Aug. Temperatures below the 

pycnocline from May to Jan. were warmer than surface waters for all three sites. 

From April to June the reverse applied, where surface waters were warmer than 

the underlying marine layer. Temperatures were similar for both the surface and 

marine layers from Jan. to March 1999. Variation between temperatures at the 

surface and pycnocline from 1998 to 1999 was greatest at the sheltered site in the 

main estuary (site F3). 

2.8 Algal community structure 

During sampling in 1999, four major changes in algal species occurred in the 

estuary (Figure 2.5). A small diatom-dominated bloom (flagellates and 

dinoflagellates were also observed) occurred in Nov. and Dec. 1998. A large 

bloom of the diatom Pseudonitzschia spp. dominated in late summer (Feb. to 

March 1999). This bloom was largely composed of P. pseudodelicatissima species 

(Parker pers. comm.). Two blooms of G. catenatum were also observed. One 

occurred in mid-summer (Dec. 1998 to Jan. 1999) and a second smaller bloom, in 

late autumn (April to May 1999) (Figure 2.6). This repeated the sequence of G. 

catenatum blooms in 1998 where a summer bloom early in the year was followed 

by a smaller autumn bloom (Figure 2.7). 

The Pseudonitzschia spp. bloom was observed at all three sites in Feb. 1999. It 

dominated at site F3. Pseudonitzschia cells were prolific in the surface water 

samples where their highest concentrations 9ccurred and they could easily be seen 

with the naked eye. 

Species such as the dinoflagellate Ceratium. were also observed during 1998 and 

1999 and often occurred with diatoms including during the 1999 Pseudonitzschia 

spp. bloom. High proportions of Ceratium spp. and other diatoms and unidentified 

flagellates were present from Oct. to early Dec. 1998. A variety of heterotrophic 

species were also present throughout the year and were most numerous during 

algal blooms. 
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Algal biomass was not indicative of the toxicity of G. catenatum blooms (Figure 

2.8). In samples taken from Dec. 1998 to Feb. 1999 and May to June 1999, 

shellfish farms near site X3 were closed because of toxins produced by this alga. 

Site X3 displayed higher cell numbers during the summer G. catenaturr.i bloom than 

the autumn bloom (Figure 2.8). However, saxitoxin concentrations in the mussel 

tissue were lower during the summer bloom than the autumn bloom (Figure 2.8). 

Site F3 
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14 Jan 1999 
1 8E+05 

13 May 1999 

~ I 
2080 

I °1800 
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-~ 
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Figure 2.8 Variation of saxitoxins in mussel tissue during 1998 to 2000 compared to G. 
catenatum cell numbers demonstrating bloom size does not necessaiily give an indication of 
mussel toxicity (cell numbers (Parker 2001); saxitoxin data: R. Brown, Manager Tasmanian 
Shellfish Quality Assurance Program) 

2.9 Chlorophyll 

Chlorophyll concentrations highlight the two G. catenatum blooms and the 

summer Pseudonitzschia·spp. bloom (Figure 2.9). Highest chlorophyll levels were 

obsei·ved during the two G. catenatum blooms in summer and autumn. 

Chlorophyll was typically at maximum concentrations in the upper 2 m. 
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Huon Estuary Ecology - Chapter 2 

The highest chlorophyll concentration was 36 mg/land was observed at the 

pycnocline for site F3 in May. G. catenatum was blooming throughout the water 

column at site F3 and high chlorophyll concentrations were observed for both the 

surface and integrated samples (14 and 17 mg/l respectively). Sites Fl and X3 did 

not demonstrate the same high chlorophyll concentrations as site F3 at this time 

despite the presence of G. catenatum at these sites. The autumn G. catenatum 

bloom occurred earlier at site Fl in late April. Light penetration (3 m, section 2.5) 

was the same during the observed G. catenatum bloom at site Flin April as at site 

F3 in the next fortnight in May. The depth of light penetration in May at sites Fl 

and X3 was double that of site F3 (6 m). 

Site X3 contained the lowest chlorophyll concentration throughout 1999 in 

comparison with the other two sites. The highest chlorophyll levels were observed 

in the pycnocline and integrated samples at site X3 in mid Jan. 1999. Site Fl had 

the highest chlorophyll levels for the integrated and pycnocline samples during the 

Jan. bloom of G. catenatum. Surface samples by comparison had low chlorophyll 

concentrations quring the summer G. catenatwn bloom. Higher temperatures (20 

0 C) were observed for surface samples during this period when compared with the 

pycnocline samples (17-18 °C) (Figures 2.3 and 2.4). This observation can be 

seen in Figure 2.10 where the alga is present in surface waters at 16-18 °C 

however, once the surface waters reached 20 °C the majority of G. catenatum cells 

have migrated down the water column. Although this temperature difference is 

small, 20 °C is past the preferred temperature range for G. catenatum. (Hallegraeff 

et al. 1995b) and thus it may have sought cooler waters. 

Chlorophyll levels for the Pseudonitzschia spp. bloom were highest in the su;rface 

samples and at the pycnocline for all. three sites. The small cell size of this diatom 

results in lower chlorophyll concentrations than those observed for the G. 

catenatum bloom. The Pseudonitzschia spp. bloom occurred in the upper 2 m and 

did not cover the same vertical extent as the G. Catenatum bloom. 
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Figure 2.10 Time-depth sections of fluorescence, temperature and salinity at site Fl , 111-5/1198 
(HST 2000). A strong vertical diurnal migration of G. catenatum is shown in the top figure. 
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Chlorophyll levels indicated the presence of the earlier summer diatom-dominated 

bloom from Oct. to Dec. 1998 that included the genera Chaetoceros, 

Pseudonitzschia, Ceratium and unidentified flagellates. This algal bloom was 

observed throughout the water column at Sites X3 and F3 (Figures 2.5 and 2.9). 

High chlorophyll levels were observed at all three sites during this bloom, 

particularly in the pycnocline and integrated samples at site Fl. 

Chlorophyll a was highest for all depths and sites. Chlorophyll c and b were both 

relatively low in all samples (Figure 2.9). High chlorophyll concentrations, 

indicative of algal blooms, were always observed at Site Fl before they were·· 

observed at the other two sites. Algal blooms at sites X3 and F3 were slightly 

delayed in comparison to site Fl and occurred concun-ently in the following weeks 

(Figure 2.9). Algal blooms at both sites F3 and X3 although delayed, were 

prolonged. 

2.1 O Nutrients 

Increased silicate concentrations were observed during the decline of the 

Pseudonitzschia spp. bloom in Feb. 1999 (Figure 2.11). Silicate concentrations 

were also higher after the first diatom bloom and they increased in the surface 

samples of sites Fl and F3 at this time. During the summer G. catenatum bloom, 

silicate was al~o high. Salinity (Figure 2.3) was inversely proportional to silicate 

(Figure 2.11). 

The NOx totals were predominantly nitrate (Figure 2.11). Nitrate in field samples 

was often strongly depleted to near the analytical detection limit in summer and 

early autumn. In early autumn, nitrate concentrations increased to values usually 

found in marine waters (Figure 2.11). These results concur with the results and 

conclusions previously established for the estuary (HST 2000). Nitrate levels were 

low in integrated samples. This was explained by HST (2000) as being due to the 

low concentrations in the surface waters. 
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Huon Estuary Ecology - Chapter 2 

Nitrite demonstrated similar trends at lower concentrations than nitrate. Both 

nitrate and nitrite levels were higher in the lower marine dominated depths (Figure 

2.11 ). Phosphate levels were also below analytical detection limit on most 

occasions and remained very low throughout the sampling period. Phosphate 

levels were hig~est in the samples taken from the marine influenced deeper waters 

(Figure 2. 11). 

2.11 Bacteria 

Detailed analysis of bacterial numbers and classifications from 1998-1999 is 

presented in chapter 7. The following represents preliminary data taken 

independently during the CSIRO Huon Estuary study 1997 to 1998. Bacterial 

estimates at site X3 pycnocline and integrated samples from 1997 to 1999 rarely 

altered from 103
-
9 cells/I DAPI (CFU, 10 6

-
7 cells/l) (Figures 2.12 and 2.13). This 

agreed with estimates by Lovejoy et al. (1998) for the previous year. Bacterial 

numbers at site X3 from 1997 to 1998 were highest just after all four major algal 

blooms (Figures 2.13 and 2.7). Bacterial estimates in the water column were made 

at the periods of maximum and minimum water column temperature during two of 

the CSIRO surveys (Figure 2.12). Highest numbers were observed during Feb. 

1998 for all sites throughout the Huon Estuary. Winter and summer surveys sites 

in the estuary side arm contained slightly higher bacterial concentrations than for 

the main estuary (Figure 2.12). 

Colony types found in sediment samples were highly varied in comparison to the 

water column and plankton net particulate samples. The original purpose of 

sediment collection was to culture algicidal organisms from the sediments rather 

than provide total biomass estimates. Sediments collected throughout the estuary 

(Figure 2.1) during winter (July 1998) had low bacterial biomass (CFU 104-107 

ce1ls/g (ww) for all spatial survey sites, DAPI 107 cells/g for site A3; 109 cells/g 

(ww) for site S15 (Figure 2.1)). 
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_ The low CPU values result from the poor performance of this technique at 

representing and enumerating organisms from sedimentary environmen!s. Some of 

the bacteria would also be anaerobes and samples were cultured under aerobic 

conditions. A high level of background autofluorescence was observed when using 

DAPI. 

Sediments at the mouth of the estuary near sites A and B (Figure 2.1) were 

composed of ~oarse sand while sediments at sites X3, F3 and SIS (which exhibited 

the highest cell estimates) were fine mud. Bacterial estimates for sediment at sites 

X3 and FI were an order of magnitude higher than those in other areas of the 

estuary. However sediments from site F3 (section 2.1) were similar to those found 

elsewhere in the estuary despite site F3 being situated 50 m from a fish farm. 

Discussion 

The physical and chemical properties of the Huon Estuary are more characteristic 

of northern hemisphere estuaries than other Australian estuaries (HST 2000). The 

estuary was strongly stratified and nitrogen levels were largely supported by the 

contribution from coastal seawater and algal blooms. The algal blooms that 

occurred during 1998 and 1999 were dominated by the alga G. catenatum. 

Diatoms of the genus Pseitdonitzschia also formed long lasting blooms in late 

summer and early autunm of 1999. 

2.12 Physical variables 

The Huon Estuary gen~rally demonstrated strong stratification. Secchi depth was 

proportional to salinity in the surface layer as episodes of high rainfall coincided 

with an increase in fresh water and thus an increase in the humic compounds and a 

resultant decrease in light penetration. Site FJ was most influenced by tidal flow 

and thus had the highestJight penetration depth for the three sites. Sites X3 and 

F3 were slightly more protected from tidal flows and had lower light penetration. 

A fresh water influx occurred before the summer and autumn blooms of G. 

catenatwn (Jan. 1998 and May 1999). The pycnocline was measured at 
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approximately 2 m. The pycnocline is significant for the biology of the estuary as 

- most algal blooms occur in and around this region. 

The brackish surface water also has a major impact on the biology of the estuary. 

This surface layer demonstrated the greatest variability of the depths monitored in 

temperature and salinity. This was due in part to pigmented humic compounds 

decreasing light penetration and increasing heat absorption during summer. In 

winter, the surface layer also exhibited the greatest temperature reduction, 

attributable to the contribution from snowmelt. The marine layer of the estuary 

demonstrated stable temperatures and salinities throughout the year. 

2.13 Chemical variables 

The CSIRO study examined the relationship between nutrient levels, suspended 

particulate matter and algal blooms. Despite the presumption that one of these 

factors may be the cause of the G. catenatwn blooms, the study did not find any 

such correlation (HST 2000). 

_The biology of the estuary is dominated by seasonal changes rather than nutrient 

availability. Low concentrations of dissolved inorganic nitrogen (DIN) and 

phosphorus were observed in 1999 despite· the observation of the three large algal 

blooms. An increase in DIN during winter and a decrease in summer was observed 

for all years. Nitrate levels in 1997, 1998 (HST 2000) and 1999 changed in a 

seasonal cycle that was related to the algal blooms, but did not trigger them. The 

results indicate that all nitrate was used in the estuary and during summer and early 

autumn the estuary was a nitrogen sink, indicating the influence of primary 

productivity. During 1999, nitrate increased during autumn after lower levels in 

summer and was also associated with the late summer Pseudonitzschia spp. bloom. 

During the 1997, 1998 (HST 2000) and 1999 winters, nitrate values were similar 

at all stations and it was surmised that this reflects strong circulation of marine 

nitrate though the middle and lower estuary. Diatom blooms in the estuary during 

this and the CSIRO study were associated with the early spring drawdown of NOx 

(HST 2000). NOx reappeared in the water column in autumn for all years. 
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Elevated ammonia levels followed all algal blooms from 1997 to 1998, and were 

associated with drawdown of NH/ (diatoms) and NH/ and NOx (G. catenatum) 

respectively (HST 2000). Ammonia values were consistently lower at site X3 than 

at other biological stations. The cause was not clear although mussel farmers 

speculate that it may be a result of the presence of mussel farms in this arm of the 

estuary (HST 2000). NH4 was not measured from Oct. 1999 to Jan. 2000, 

however NOx values increased in 1999 after both G. catenatum blooms. 

The diel vertical migration of G. catenatwn can be explained in summer by the 

alga's requirement for nutrients. Nitrate concentrations for the pycnocline and 

surface samples were higher during the autumn G. catenatum bloom in 1999 than 

the summer bloom. Similar concentrations were observed during the autumn G. 

catenatum bloom in 1998 (HST 2000). Ammonia was low in bottom waters in 

1998 so diel migration may indicate a micronutrient limitation of an element more 

abundant in bottom waters (HST 2000). Potential micronutrients may include 

bromine, iodine or common seawater compounds not found insufficient 

concentrations in the brackish surface waters. 

Silicate was inversely proportional to salinity from Oct. 1998 to Jan. 2000 (Figure 

2.3 and Figure 2.11 ). This inverse relationship was also observed in the CSIRO 

study (HST 2000). Silicate levels demonstrated a strong positive correlation with 

the Pseudonitzschia spp. bloom and the earlier summer diatom bloom in 1999. 

In the study by HST (2000), variance of chlorophyll was analysed among samples 

within spatial surveys. For the lower and middle estuaries, variance in surface 

log( chlorophyll a) was relatively uniform across the survey locations. However, 

pycnocline log( chlorophyll a) varied widely across surveys (HST 2000). This 

demonstrates that although similarities were observed for the biological, chemical 

and physical data for sites in the middle reaches of the estuary (where the sites of 

interest in this study are located), there is some variation in the algal blooms and 

biological dynamics between them. Highest chlorophyll concentrations were noted 

from 1996 to 2000 in the middle estuary (i.e. sites F3, Fl and X3) when compared 

to lower and upper estuary sites (HST 2000 and this study). Chlorophyll 

concentrations were extremely high at site F3 during the 1999 summer G. 
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catenatum bloom. All sites exhibited higher chlorophyll concentrations during the 

summer bloom than during the smaller autumn bloom. It is possible that 

chlorophyll levels throughout the water column and cell numbers of G. catenatum 

blooms were not always truly representative of the actual bloom at the site given 

the capacity of G. catenatwn for rapid vertical migration. 

2.14 Biological variables 

Previous research and monitoring demonstrated that dinoflagellate blooms were 

interspersed. with diatom blooms and the two often co-existed (Jameson and 

Hallegraeff 1994). G. catenatum. did not bloom for three years between 1994 and 

late 1997 although large blooms occurred in 1998 (Figure 2.5, HST 2000). The 

dynamics of the estuary did not appear to differ greatly from previous years when 

major G. catenatum blooms occurred (HST 2000). During 1999 when two G. 

catenatuni blooms formed, they were interspersed with a Pseudonitzschia spp. 

diatom bloom and were preceded by a small dominated-bloom containing 

Ceratium, Chaetoceros spp. and a number of unidentified flagellate species. 

Diatoms were generally at highest concentrations in the surface samples. Fatty 

acid analysis of the 1998 to 1999 samples indicates that the unidentified flagellates 

may have been prasinophytes (chapter 5). This finding concurs with the 1997-

1998 study where similar unidentified flagellates were identified as a mixture of 

haptophytes and prasinophytes using HPLC pigment markers (HST 2000). 

Both autumn and summer G. catenatum blooms in 1999 were smaller than those 

observed in 1998. Correlations between chlorophyll and cell numbers for sites Fl, 

F3 and X3 were high during 1998 (r2
: 0.79 to 0.86) (HST 2000). This correlation 

was attributable to high biomass blooms by G. catenatum in the lower and middle 

estuaries (HST 2000). This demonstrates the similarity between these sites with 

respect to algal blqom dynamics. The extension of bloom formation at sites F3 and 

X3 in comparison to site FI.resulted from the geography and the faster water flow 

at site Fl compared to sites F3 and X3 which were located in more sheltered areas. 

The seasonal phytoplankton successions display a classic temperate seasonal cycle 

similar to that of a northern hemisphere estuary (Kennedy 1982). The majority of 
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other estuaries in Australia are 'wet and dry tropical' and subtropical systems 

(68%, Eyre 1998) and in these estuaries, phytoplanktonic succession is based on 

episodic freshwater flows. 

2.14.1 Bacteria 

Other estuarine studies report that there is a shift from a more nitrogen-associated 

metabolism (proteins) in the main body of an estuary to a carbon utilising 

community (carbohydrates) at the fresher upper reaches (Cunha et al. 2000, 

Murrell et al. .1999). This shift to a carbon-utilising bacterial community is argued 

to demonstrate the importance of autotrophic processes as a source of substrates 

during summer and daylight hours. In these upper reaches, bacteria obtain their 

organic matter mainly from the flux of dissolved organic carbon (DOC) rather than 

the decomposition of detrital particulate organic matter (POM) (Murrell et al. 

1999). Bacterial conversion of high (> 3,000 Da) and low ( < 3,000 Da) molecular 

weight dissolved organic nitrogen in another study suggested that the nitrogen-rich 

compounds were removed from the dissolved organic matter (DOM) and then 

consumed by bacteria, while the carbon skeleton was unaffected by the degradation 

processes (Kerner and Spitzy 2001). 

In the Huon Estuary, bacterial numbers in the water column were higher overall in 

the 1998-99 summer than those in winter. Numbers were.highest throughout the 

year at sites in the estuary side arm (including site X3). The study by HST (2000) 

reported that phosphate, nitrate and nitrite depletion for the estuary sidearm was 

greater than in main body of the estuary. Algal blooms in the estuary side arm 

were never sites of peak alga] biomass, although the algal species were the same as 

those in the main estuary (this study, and HST 2000). The removal of algal 

biomass by shellfish farms may be responsible for this finding (HST.2000.). 

Alternatively, it is possible that bacteria are removing the nitrogen components 

from the DOM within the estuary. However, no incorporation studies were 

completed to examine this hypothesis. 
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Humic substances and bacteria 

The presence of humic compounds (hydrophobic dissolved organic matter) in an 

estuary may also influence the type and quantity of bacteria present. The Huon 

Estuary has the highest proportion of chromophoric dissolved organic matter 

(CDOM) than any other estuary in Australia (HST 2000). In a number of studies, 

bacterial numbers and bacterial productio_n were significantly higher in estuaries 

containing humic compounds compared to those without (Esham et al. 2000, 

Bushaw-Newton and Moran 1999, Carlsson 1995). Humic substances irradiated 

with natural sunlight have also been shown to enhance bacterial growth as a result 

of increased availability of carbon and nitrogen components (Bushaw-Newton and 

Moran 1999, Carlsson et al: 1999). The study by Bushaw-Newton and Moran 

(1999) reports that the total biologically available nitrogen formed during a day­

long irradiation accounted for about 6 % of the original nitrogen associated with 

the humic compounds. They reported that that photochemical modification of 

marine humic compounds might provide a source of labile nitrogen to estuarine 

and coastal ecosystems (Bushaw-Newton and Moran 1999). 

2.14.2 Pseudonitzschia 

While toxin production by dinoflagellates and their association with toxic algal 

blooms has been recognized for at least 70 years, toxins produced by algal genera 

such as Pseudonitzschia have only been recognised for the last 14 years 

(Hallegraeff 1995a). Pseudonitzschia species are common inhabitants of many 

coastal regions and several species and strains are associated with the production 

of domoic acid. This toxin is responsible for amnesic shellfish poisoning (ASP). 

One species, Pseudonitzschia pseudodelicatissima, is common in marine and 

brackish waters and has toxic and non-toxic strains. 

The dominant bloom-forming P:seudonitzschia species in Australian coastal waters 

is reported to be P. fraudulenta (New South Wales), while P. subpacifica is also 

common (Hallegraeff 1994). In Tasmania and Victoria, P. pungensf pungens and 

P. pseudodelicatissinia are the dominant species. The species P. 

pseudodelicatissinia has been found in high-nutrient open-ocean regions (Buck and 
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Chavez 1994) and the species has also been described in a number ofrelatively 

unpolluted Australian coastal waters (Hallegraeff 1994). Pseudonitzschia species 

that bloom in the Huon Estuary are dominated by P. pseudodelicatissima and P. 

subpac(fica (HST 2000). Neither of these species are toxic (Hallegraeff 1994). 

Other Pseudonitzschia species found in the Huon Estuary are also non-toxic strains 

(HST 2000). 

In 199~, Pseudonitzschia spp. dominated all three sites for up to a month 

supporting previous identification of this species (HST 2000) as an important 

contributor to blooms in the Huon Estuary. Larger blooms of Pseudonitzschia 

spp. occurred in 1999 than were observed in the 1997-1998 or 2000. The average 

cell volume_ of Pseudonitzschia in the Huon Estuary was 200 µm3 (HST 2000) so 

although cell numbers of this alga were high the biomass was not as great as 

blooms formed by G. catenatum. High chlorophyll concentrations at all three sites 

in March were attributable to high cell densities of Pseudonitzschia spp .. 

Diatom species were generally at highest concentrations in the smface samples 

where there is enough light for photosynthesis. The process of bottom water 

mixing with surface water would be beneficial for nutrient addition to the 

Pseudonitzschia or diatom blooms. Mixing of these layers also increases the 

photic depth available because humic compounds are diluted through the water 

column. Diatoms such as Pseudonitzschia cannot move throughout the water 

column as effectively as G. catenatwn so they would benefit from the greater 

depths of increased water clarity and increased nutrients. 

2.14.3 Ceratium 

Blooms of the non-toxic dinoflagellate Ceratium. are also common in the estuary 

(HST 2000). The dominant species reported in the HST 2000 were C. furca, C. 

tripos and C. fuc,us. C. furca is typically a marine dwelling dinoflagellate. It has 

been previously reported in estuaries where it was associated with an increase in 

nitrogen and phosphorus and decreasing fresh water flow (Guerramartinez and 

Laravilla 1996). The most suitable conditions in estuarine environments in the 

study by Guerramartinez and Laravilla ( 1996) were thought to be brackish water 
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and high concentrations of inorganic phosphorus, or organic material. Although 

high concentrations of inorganic phosphorus were not contributing to blooms of 

Ceratiwn spp. in the Huon Estuary, the organic material present in the form of 

humic compounds makes the estuary a suitable environment for this species. The 

average cell volume of Ceratiuni in the Huon Estuary was 6 x 104 µm3 (HST 

2000). Large blooms of Ceratium species were not observed in the study although 

Ceratium contributed to the algal species in many samples especially during late 

1998 during the first diatom-dominated algal bloom. 

2. 14.4 Gymnodinium catenatum 

Gymnodinium catenatum is a major bloom-forming alga in the Huon Estuary and a 

species that produces paralytic shellfish toxins. In the estuary, the average cell 

volume of this alga was 1.7 x 104 µm3 (HST 2000). This large cell size results in a 

high algal biomass in the water column during blooms. 

The vertical extent of bloom formation is characteristic of this alga. It has the 

ability to survive in waters below the depth of light penetration (3-20 m) Figure 

2.10, HST 2000, Doblin et al. 2000) because it is highly motile. This motility 

enables it to move quickly between the photic and nutrient zones. The findings 

from salinity and light penetration data in this thesis supports previous observations 

that G. catenatum biomass increases with a highly stratified layer (HST 2000, 

Hallegraeff et al. 1995a). Site F3 was the site of greatest stratification and highest 

cell numbers, so stratification during the two G. catenatum blooms may have 

resulted in the higher cell numbers observed for this site. 

Site X3 contained the lowest G. catenatum biomass for both summer and autumn 

blooms in 1999 when compared to other sites, however, toxin levels from the algae 

were still sufficient to cause shell fish farms to close. Higher toxin levels observed 

in the smaller autumn bloom are believed to reflect changes in mussel physiology 

rather than variations in toxicity of G. catenatwn as during autumn mussels are 

feeding at high rates (Tas Blue Mussels, pers. comm). It was not possible to gain 

enough algal biomass to determine whether the vegetative cells themselves may 

have been more toxic in the second bloom. 
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G. catenatum has a number of lifestages most simply described as sexual -

reproduction (cyst formation) and vegetative reproduction (Blackburn et al. 1989). 

Vegetative cell division means that under certain growth conditions there can be an 

exponential increase in cell abundance. Cyst formation in G. catenatum is part of 

sexual reproduction, and is also a resting or dormant stage allowing the alga to 

survive conditions unsuitable for vegetative cells. Under suitable conditions, the 

dormant cyst stage undergoes excystment to produce the vegetative stage. 

In the Huon Estuary, all lifestages of G. catenatum can co-occur (Parker 2001). 

Cyst formation in many dinoflagellates occurs in response to a trigger such as low 

nutrient levels. Throughout the summer G. catenatuni bloom in 1999 both 

vegetative and sexual reproduction occurred which was not in response to a 

nutrient deplete period (Parker 2001). There was constant resting cyst formation 
l 

throughout both G. catenatwn bloom development and decline that had not been 

previously reported for this species (Parker 2001). 

The lifecycle of G. catenatum in the Huon Estuary is therefore dynamic and varies 

from year to year. The formation of the resting cyst during all stages of the G. 

catenatum lifecycle of is of particular importance when considering the control of 

harmful algal species by the addition of algicidal bacteria or their algicidal 

components. Consequences of this lifestyle characteristic of G. catenatwn and the 

relationships with algicidal bacteria will be described in later chapters. If the cyst 

lifestage is continually produced during bloom development, as well as during 

bloom decline, then any algicidal component will have to compromise this lifestage 

to be effective in eliminating the G. catenatwn bloom. 
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3. Taxonomic characterisation of Huon 

Estuary strains 

Summary 

Eight of the seventy-five bacteria isolated from the Huon Estuary demonstrated 

algicidal or polyunsaturated fatty acid (PUF A) producing abilities. These eight 

isolates were analyse9 in greater detail for phenotypic and phylogenetic 

characterisation. Six isolates were algicidal and two were PUPA-producing 

Shewanella strains. Phylogenetic analyses confirmed that four of the eight isolates 

were novel species. The newly identified species are from the genera Planococcus 

(ACEM 22), Pseudoalteromonas (ACEM 4), Shewanella (ACEM 6 and ACEM 9) 

and Cellulophaga (ACEM 20). Algicidal strains of Cellulophaga lytica (ACEM 

21) and Bacillus mycoides (ACEM 32) were also isolated. Phenotypic information 

was determined for the algicidal Pseudoalteronwnas ACEM 1 (Strain Y) 

previously isolated from the Huon Estuary (Lovejoy et al. 1998). This is the first 

report of gram-positive bacteria demonstrating algicidal ability (Bacillus and 

Planococcus) and one of the first reports of algicidal species from genera other 

than Cellulophaga or Pseudoalteromonas. All strains demonstrated the ability to 

grow in oligotrophic conditions on a variety of media. Fatty acid analysis of the 

eight isolates indicates that signature lipids may be useful in identifying isolates 

from the CFB cluster and the Bacillus genus in environmental samples because of 

their distinctive fatty acids. 

Introduction 

Pseudoalteromonas, and Cellulophaga are common genera that include many of 

the known algicidal bacteria (Doucette et al. 1999, Holmstrom and Kjelleberg 

1999, Kondo et al. 1999, Doucette et al. 1998). They are widespread in many 

marine environments and are easily cultured. Several of the Huon Estuary isolates 

belong in these genera. Shewanella species are also easily cultured and are a 
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common species in polar regions in sea-ice and the water column, as well as 

occurring in more temperate marine environments (Russell and Nichols 1999). 

The following paragraphs examine the evolutionary history of the genera that are 

most closely affiliated with the algicidal taxa isolated in this study. 

3.1 Cytophagales: Cytophaga-Flavobacterium-

Bacteriodes cluster 

Algicidal bacteria are thought to include bacterial groups whose phenotypic traits 

are conducive to particle interaction and decomposition (Doucette et al. 1998). 

The order Cytophagales includes bacterial species that are able to degrade many 

different biomacromolecules, are major colonisers of macrophytes (Reichenbach 

1992) and make up a major component of bacterioplanktonic biomass (GlOckner et 

al. 1999). The order Cytophagales was initially described as encompassing all 

aerobic, cellulolytic and gliding bacteria (Winogradsky 1929). Recently, this order 

has undergone dramatic changes and many of the genera have been reclassified, in 

particular the genera Cytophaga and Ffovobacterium (Nakagawa and Yamasato 

1993, Johansen et al. 1999). Most marine members of the order Cytophagales 

belong to the family Flavobacteriaceae. Cellulophaga lytica, a common marine 

species, was previously named Cytophaga lytica (Johansen et al. 1999) and is a 

member of this family. Cellulophaga lytica is an aerobic organism requiring 

elevated salt concentrations for growth and is easily cultivated from marine 

environments (Reichenbach 1989). Cellulophaga species are often found on 

marine particles after bloom periods (Crump et al. 1999) and on the smface of 

macroalgae (Johansen et al. 1999). The ability to degrade many different 

biomolecules enables C. lytica to obtain nutrients from both macro and microalgae 

(Johansen et al. 1999). Their algicidal role is enhanced by their gliding abilities. 

Other species in this genus are C. fucicola, C. algicola, C. uliginosa and C. baltica 

(Bowman 2000). 
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3.2 Pseudoalteromonas 

Various species in the genus Pseudoalteromonas have undergone reorganisation 

from the genus Pseudomonas (Buck et al. 1963) to Alteromonas (Baumann et al. 

1972), to the present classification of Pseudoalteromonas (Gauthier et al. 1995) 

The genus Pseudoalteronionas encompasses gram-negative, heterotrophic, marine, 

aerobic, rod shaped bacteria with a single polar flagellum and relatively low G+C 

(38-48 mol %) (Gauthier et al. 1995). Pseudoalteromonas species, through a 

variety of biosynthetic and catabolic reactions, produce bioactive compounds 

which include antibiotics and secondary metabolites such as tetrodotoxins and 

anticancer, fish killing and algicidal compounds (see reviews in Mikhailov and 

Ivanova 1994, Bowman and McMeekin 2001, Lee et al. 2000). These compounds 

may benefit Pseudoalteronionas in nutrient and habitat competition in the marine 

environment. However, production of exopolysaccharides by this genus can also 

have beneficial effects for other marine organisms in close proximity to the strain 

through control of bacterial attachment and in the form of nutritional benefits 

(Holmstrom and Kjelleberg 1999). 

3.3 Bacillus 

Bacillus mycoides, first described in 1886, is a gram-positive rod-shaped 

sporulating bacterium. It is in the Bacillus cereus group (Bacillus cereus, Bacillus 

niycoides, Bacillus thuringiensis and Bacillus anthracis), but is considered a 

distinct species (Nakamura and Jackson 1995). Recently, a closely related 

psychrotolerant species, Bacillus weihenstephanensis, comprising psychrotolerant 

'cereus' strains, was also proposed (Lechner et al. 1998). The B. mycoides group 

is psychrotrophic, has rhizoidal colonial morphology and lacks motility. The group 

can be distinguished from B. cereus by differences in fatty acid profiles 

(vonWintzingerode 1997) and acetanilide-producing activities (Nakamura and 

Jackson 1995). A second B. mycoides group, Bacillus pseudomycoides, exhibits 

very similar (98 % ) 16S RNA sequences to B. mycoides and has been recognised 

as a new species (Nakamura 1998). B. pseudomycoides and B. mycoides can be 
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distinguished by significant differences in the proportions of i12:0 and a13:0 in 

their whole-cell fatty acid profiles (Nakamura and Jackson 1995). 

B. niycoides has· shown bioactive properties that have been used in the agriculture 

and biomedical industries (King et al. 2000, Pruss et al. 1999, Hammad and El­

Mohandes 1999, Solujic et al. 1999) and can be the causative agent in agricultural 

infections (Grodnitskaya and Gukasyan 1999). B. cereus group produces 

extracellular compounds that include haemolysin, a soluble toxin lethal for mice, 

phospholipase C and bacterial-lytic and proteolytic enzymes, (Claus and Berkeley 

1989). 

3.4 Planococcus 

Planococcus is closely related to the Bacillus cereus group but is essentially a 

marine genus. At present, this genus contains four species: P. okeanokoites, P. 
\ 

mcmeekinii, P. citreus (type strain) and P. kocurii. Colony pigmentation is yellow 

or orange. The original two Planococcus species (P. citreus and P. kocurii) form 

spherical gram-positive cells (Kocur 1989, Hao and Komagata 1985). P. 

okeanokoites ([Flavobacterium] okeanokoites) is presently the only rod shaped 

bacterium described in the genus (Nakagawa et al. 1996), however, P. nicmeekinii 

also forms rods during log phase (Junge et al. 1998) and does not require Na+ for 

growth. Planococcus has distinct chemotaxonomic characteristics such as the 

presence of isoprenoid quinones, menaquinone 7 and menaquinone 8. Fatty acid 

composition enables differentiation between species. The concentration of Na+ in 

the growth medium affects the thickness of the cell membrane in P. citreus with 

Na+ levels above and below seawater causing a decrease in the cell membrane 

material (Kocur 1989). 

3.5 Shewanella 

The genus Shewanella can be divided into two different clusters corresponding to 

their ecophysiology and phylogeny. Psychrophilic and/or halophilic species 

include: S. gelidimarina, S. benthica, S. hanedai, S. peleana and S. woodyi. 
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Psychrotrophic and non-halophilic species include, S putrefaciens, S. frigidbnarina 

and S. oneidensis. S algae and S aniazonensis by comparison are mesophilic 

halophiles. Polyunsaturated fatty acid producing members of this genus are 

predominantly Antarctic species or barophiles from deep-sea vents and include 

species in the psychrophilic cluster: S frigidimarina, S. gelidimarina, S. benthica, 

S. peleana and S. hanedai. 

Chapter Objectives: 

Objectives of the research reported in this chapter were to: 

•!• identify and characterise the Huon Estuary strains using phylogenetic and 

phenotypic analysis; 

•!• assess the phylogenetic diversity of the algicidal isolates in comparison with 

other algicidal strains; 

•!• compare the lipid profiles of the algicidal and Shewanella species and identify 

aspects that may contribute as markers for a genus or group within the marine 

environment. 

Methods 

3.6 Isolation 

Water and sediment samples were taken from the water column (0-12 m depths) 

and surface sediment of the H~on Estuary during February 1998. Samples for 

microbiological analysis were collected in sterile Schott bottl~s. At the time of 

collection, salinity was 28-33 psu. Site details and collection methods can be 

found in chapter 2. 

Bacteria from the samples were initially cultured on modified marine agar (800 ml 

filtered estuary water; 200 ml distilled water; 5 g Bacteriological peptone (Oxoid); 

1 g Yeast extract (Oxoid)). Random colonies with differing morphologies were 

isolated and purified by streak plate technique. These colonies were then purified 
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and tested for algicidal ability by the methods described in chapters 4 and 5. PUFA 

producing abilities were ascertained by screening the fatty acid profiles of all 

purified isolates. 

3.7 Phenotypic characterisation 

Bacteria were cultured on marine agar for inoculation of biochemical and growth· 

test media. Biochemical tests were performed with API-NE test strips 

(BioMerieux-Vitek). For carbon and energy source tests, most of the test 

compounds were used at a concentration of 0.2 % (wt/vol); the exceptions were 

the carbohydrates, which were tested at a concentration of 0.5 % (wt/vol). The 

mineral salts medium used contained 2 g NH4Cl, 2 ml 1 M sodium phosphate 

buffer (pH 7), 2 ml SLlO trace element solution (10 ml HCl (25%; 7.7 M), 1.5 g 

FeCh.4H20, 70 mg ZnCh, 100 mg MnCh.4H20, 6 mg H3B03, 190 mg 

C0Ch.6H20, 2 mg CuCh.2H20, 24 mg NiCh.6H20, 36 mg Na2Mo04.2H20, 990 

ml distilled water), 1 1 of distilled water and 15 g NaCL The pH was adjusted to 

pH 7 with 1 M KOH and the medium was solidified with 1.4 % agar. Comparison 

of controls without an added carbon source with those growing on a substrate was 

used to assess carbon substrate use. ACEM 1, ACEM 4 and ACEM 32 were the 

only isolates that produced a definable pattern in BIOLOG Microplates (BIOLOG 

Microbial Identification System, Hayward, CA, USA). Additional carbon sources 

utilized by these three species on the substrates in BIOLOG plates were also 

assessed. 

3.8 Lipid analysis 
.J 

Isolates were harvested from plates for lipid analysis after 24 hours growth. Lipid 

analysis was completed using a whole cell methanolysis procedure. Samples were 

scraped off plates and placed in individual precleaned screw cap test tubes. 

Methylating reagent (5 ml of 10:1:1, MeOH:CHCb:HCL) was added and air above 

the sample evacuated with N2 gas. The sample was heated at 90 °C for 60 minutes 

to produce fatty acid methyl esters (FAME). The reaction was cooled, 4 ml H20 

was added followed by 2 ml of 4: 1 C6H 14:CHCb. After mixing, layers were left to 
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separate. The C6H 14:CHCL3 layer containing FAME was transferred to a vial in 

preparation for analysis. Fatty acid profiles were determined using a Hewlett 

Packard 5890 Gas Chromatograph (GC) equipped with a 50 m x 0.32 mm id 

cross-linked methyl silicone fused- silica _capillary column (Hewlett Packard HP5 

column) and Fisons GC-mass spectrometer (GC-MS) with conditions as described 

by Gutierrez et al. (1999). Fatty acids were identified prior to GC-MS by 

comparing retention time data with that obtained for authentic 'and laboratory 

standards. The GC data was compiled and analysed with Waters Millennium 

software. Geometry and position of the double bonds in monounsaturated fatty 

acid were confirmed using dimethyl-disulfide derivatisation and analysis using GC­

MS (Nichols et al. 1986). 

Fatty acid nomenclature: Fatty acids are designated as total number of carbon 

atoms: number of double bonds followed by the position of the double bond from 

the aliphatic end of the molecule. The prefixes i, a br and cy indicate iso, anteiso, 

branched and cyclopropyl containing fatty acids, respectively. 

3.9 Phylogenetic analysis 

Genomic DNA was extracted from cells and purified using the procedure of 

Marmur and Doty (1962). The 16S rRNA genes from these strains were amplified 

by PCR using the primers 1492r (E.coli numbering system; 5'-GGT TAC CTT 

GTT ACG ACT -3') as a reverse primer and I Of (E.coli numbering system; 5'­

GTA AGC AGC AGG CCG,GAC AA AG -3') as a forward primer_ 

Conditions used for PCR are described in Bowman et al. (1996). Briefly, each 

PCR mixture contained each deoxynucleotide at a concentration of 50 µM, 2,5 

mM MgCh, PCR buffer IV (25 mM NH4S04 , 75mM Tris-HCL [pH 9] (Sigma), 

0 01 % Tween 20 (SigmaUltra), 50 pmol of each primer, 5 % voVvol DMSO 

((CH3) 2SO), 50 to 100 g genomic DNA and 1 u of thermostable DNA polymerase 

(Advanced Biotechnologies, Surrey, UK). The PCR reactions were performed in a 

Corbett Research model FTS-960 thermocycler. The reaction parameters included 

an initial 5 minutes incubation at 94 °C, 30 cycles consisting of 94 °C for 1 minute, 

50 °C for 1 minute and 72 °C for 5 minutes. PCR products were purified with a 
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Qiaex II gel extraction kit (Qiagen Inc., Chatsworth, California, USA.). Sequences 

of the 16S rDNA insertion were then generated with an Applied Biosystems model 

3728A automated sequencer using a fluorescent dye terminator cycle sequencing 

kit (Applied Biosystems). The 16S rDNA sequences determined for the strains 

were compared to the sequences in the GenBank nucleotide database using the 

BLAST search program of the National Centre for Biotechnology Information 

(NCBI) website http://www.ncbi.nlm.nih.gov. Analyses of the 16S rDNA 

sequences datasets utilized PHYLIP version 3.57c (Felsenstein 1993). DNADIST 

was used to determine sequence similarities using the maximum-likelihood 

algorithm option. Phylogenetic trees were constructed with the neighbour-joining 

method by using the program NEIGHBOR. Bootstrap analysis was performed 

with SEQBOOT and CONSENCE using 250 resamplings of the dataset, using 

both DNADIST and NEIGHBOUR as well as the program DNAP ARS, which 

constructs trees based on the maximum-parsimony method. 

Isolates were catalogued in the Australian Collection of Estuarine Microorganisms, 

(ACEM). GenBank accession numbers of the four novel isolates investigated in 

this study are as follows: ACEM 4 (AF295592), ACEM 20 (A Y035869), ACEM 

22 (A Y035870) and ACEM 9 (AF295593). The accession number for ACEM 1 

is AF030381. 

Results 

ACEM 4 and ACEM 32 were isolated from Huon Estuary sediment while the 

remaining four algicidal isolates were isolated from.the water column (Table 3.1). 

All six algicidal bacteria occurred ih the water column although both ACEM 4 and 

ACEM 32 were more frequently evident in sediment. ACEM 4 was only isolated 

six times in water column samples taken from 1998 to 2000. A number of ACEM 

4-like strains were isolated during summer but they were not present in samples 

taken during the cooler months. 
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Table 3.1 Morphological and phenotypic characteristics of algicidal and PUPA producing ~acteria. Dk :dark 
ACEM 22, 21, 6 and 9 would not grow successfully on Biolog™ plates. 
ACEM 1 and ACEM 4 were also positive for the following Carbon Sources (BIOLOG): a-cyclodextrin, 
dextrin, glycogen, Tween 40•, Tween 80•. 
ACEM 1 was positive for the following additional carbon sources (ACEM 4 was negative), i-erythritol, D­
fructose, L-fructose, gentiobiose, m-inositol, P-methyl-D-glucoside, D-raffinose, D-trehalose, turanose, xylitol, 
mono-methyl succinate, acetic acid•, cis-aconitic acid, formic acid•, D-galacturonic acid, D gluconic acid•, 
D-glucosaminic acido, P-hydroxybutync acid, a-keto butyric acid•, a-keto glutanic acid•, D.L-lactic acid, 
malonic acid, propionic acid, quinic acid~, D-saccharic acid, succinic acid, succinamic acidt1t, alaninamide, L­
alanine, L alanyl-glycine•, L asparagines, L-aspartic acid, L-glutamic acid, glycyl-L aspartic acid, glycyl-L­
glutamic acid, hydroxy L praline, L-leucine, L-pyroglutamic acid•, L-serine•, L-threonine, D.L- carnitine, 
inosine, uridine, 2,3-butanediol •, D .L-a glycerol phosphate•, glucose-1-phosphate•. 
ACEM 32 was positive for the carbon sources above marked with • and also for the following carbon sources 
(for which ACEM 1 and ACEM 4 were negative): cellobiose, a-hydroxybutyric acid, bromosuccinic acid, D­
alanine, D-serine, y-amino butyric acid, thyrnidine, phenylethylamine, putrescine, 2-amino ethanol, glucose-6-
phophate. 

Genera Pseudoalteromonas Cellulophaga Plano- I Bacill- Shewanella 
coccus us -· - . - ., n • .._ ,. 

-~~- -· -- - ....... ...-.----~ n -•M __ ,.._ ·-· ___ .......,...._, 
"" ·-· - ~-·~ ___ .,,_... .. 

" "" ~ ·--.... --
ACEM Strain 1 4 20 21 22 32 6 9 -

... 

Isolation site m Estuary unknown . mid entrance sidearm mid mid entrance entrance 
Map position, see Chap 2 unknown DI BI SI5d Fl 76 A3 C2 
Isolate Source unknown sediment water water water sediment water water 
Sahmty at site unknown 33ppt 33ppt 28ppt 

' 
29ppt 33ppt 33ppt 33ppt 

Colony Characteristics (manne agar 20°C 48 hams growth) 
Surface smooth smooth smooth smooth smooth rough smooth smooth 
Texture butter viscous butter butter butter dry butter butter 

Form circular ClfCUJar circular ClfCUJar circular rhizoid regular. regular. 
Elevation iaised convex 1msed flat raised crusty convex convex 

Margm entire lo bate lobate lo bate I entire erase undulate undulate 
Opacity opaque opaque translucent transparent translucent opaque opaque opaque 
Pigment light or dk dk green or orange 01ange . orange white light tan light tan 

yellow purple yellow yellow 
Pigment. Oigamc yellow dk green yellow orange orange pmk pink tan 
Pigment. Water purple yellow yellow yellow brown brown 
Media pigmentation black green yellow yellow yellow 
Shape (log phase/stationary) rod rod rod rod rod/cocci rod rod rod 
Ghdmg no no yes yes no no no no 
Flagella stain + + + + 
Giam stam +/vanable + 
Sp01e forming elps/rrud 
Bactena Size (um) width, 0.1-0 5, 0 1-0.5, 0.1-0.3; 0 2-0.3, 12 1-1.5; 0.4-0.5; 0.4-0.5; 
length (log phase culture) 1 4-1 5 I 5-2 5 0.5-1 2-5 4-7 0.9-1.2 0.9-1 2 

Giowth. Temperature :j: :j: 
2 °C + + + + + + 
4°C + + + + + + 
JO °C + + + + + + 
17 °C + + + + + + 
20 °C + + + + + + 
25 °C + + + + + + 
30 °C + + + + + 
37 °C + + + + + 
45 °C + 
55 °C 

Growth. Salmity :j: :j: 
0 psu + + 
5 psu + + + 
10 psu + + + + + + 
33 psu + + + + + + 
66 psu + + + + + + 
JOO psu + 

DNAse + + + 
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Genera Pseudoalteromonas Cellulophaga Piano- Bacill- Shewanella 
" coccus us " --- -- - - - --- _ ........ _ --- . _,......,...._ - -- ----~ ----- ...... -· ... ~ --- - --- --.--........... -~ ...... ·- -- --- ·~. --- .. --·----

ACEM Strain 1 4 20 21 22 32 6 9 
Uulization of 

ad1pate - - + - - + - -
mabmose - - + - - + - -
caprate - - - - + + - -
citrate - - - - - + - -

citnc acid - - - - - - - -
DL-hydroxybutyric acid + + - - - + - + 

(NaCl salt) 
erythntol + + - + - + + + 

D-fructose + + + - + + + + 
fummicacid + + + + + + - + 
D-galactose + + + - - - + + 
gluconate - - + - - + - -

glucomc acid + + + + + + + + 
D-glucose - + + + + + - -

D-glutamic acid + + + + - + + + 
glycerol + + - - - + + + 

D-lactose - + - + - + - + 
DL-malate + - + - + + - -
mahcac1d + - + + + + + + 

Maltose + + + - - + - -
D-mannitol + - + + + + - -
D mannose + + + + - + - -
D-mehbiose + + + - + - + + 

N-acetylglucosamine + + + - + + - -
phenylacetate - - - - - + - -

L-phenylalanine + - + + I + + + + 
sodmm succmate + + + - + + - + 

D-sorbitol + - + + + + - -
stmch + + + + + + + + 

SUCIOSe + + + + + + + + 
tannic acid + + + + + + + + 

tyrosme + - + + + + - + 
Oxidase - + + - + - + -
NO,-?N02/N02-?N2 -/- -!- +!+ -!- -!- -!- -/- +!+ 
T1yptophan deammase - - - - - - - -
Glucose fermentation - - - - - + - -
Argmine dihydrolase + - + - - - - -
U1ease + + + - - - - -
Esculm hyd1olys1s + + + + I + + + + 
Gelatm hydrolysis + + + + + + + + 
J3-glactos1dase - - + + I + + - -

:j: see chapter 5 
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Shewanella isolates were also commonly cultured from samples taken from the 

water column and were often isolated from below the pycnocline in the water 

column (see chapter 7). 

The algicidal isolates ACEM 20, ACEM 21 and ACEM 22 were closely associated 

with algal blooms and these and other CFB isolates often dominated the colony 

forming units (CFU) from net samples (chapter 7). Media dependent pigment 

variation was observed in ACEM 1 and ACEM 4. All bacteria were tolerant of a 

range of temperatures and salinities and demonstrated the ability to utilize 

compounds found in the humic rich estuary water such as tannic acid, fumaric acid, 

and tyrosine (Table 3.1). 

3.10 Cellulophaga 

ACEM 20 is a novel species in the genus Cellulophaga. The nearest relative to 

ACEM 20 is C. uliginosa (Figure 3.1). ACEM 21 is closely related to C. lytica 

based on 16S rDNA sequence analysis (Figure 3.1). Both isolates have gliding 

motility. During stationary growth phase the gliding, orange-yellow colonies of 

ACEM 21 exhibit a green iridescence. ACEM 21, ACEM 20 and C. lytica require 

salt for growth (Table 3.1). Other phenotypic characteristics such as utilization of 

sucrose and optimal growth at -25°C are also in agreement with characteristics of 

this genus. Utilization of galactose and glucose is not apparent in ACEM 21 and it 

is oxidase-negative. C. lytica is normally oxidase-positive and utilizes both 

ga1actose and glucose. However, C baltica is oxidase-negative and C fucicola 

does not utilize galactose and glucose or many other carbon sources (Johansen et 

al. 1999). Interestingly, ACEM 20 is positive for many of these carbohydrates, is 

also oxidase-positive, and can denitrify. Fatty acid profiles of ACEM 20 and 

ACEM 21 are dominated by the same fatty acids that are common among other 

Cellulophaga species (Bowman et al. 2000). ACEM 20 has a similar fatty acid 

profile to ACEM 21 and C. lytica with high proportions of branched chain fatty 

acids (BCFA) in particular i15:l(n-10), il5:0 and 15:0 (Table 3.2). In comparison 

to C. lytica, ACEM 21 and ACEM 20 contain lower proportions of B-OH il 7:0. 
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Ce llulophaga algicola ACAM 630 

Cellulophaga baltica CM6 18535 

ACEM20 
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Figure 3.1 Phylogenetic affiliations based on 16S rRNA gene sequence alignment, showing the relationship of ACEM 20 and ACEM 21 to some other 
members of the genera Cellulophaga!Cytophaga. The scale represents sequence dissimilarity value. 



Table 3.2 Whole cell fatty acid composition (%of total fatty acid) of algicidal bacteria (Fatty acid profiles of 
ACEM 6 and ACEM 9 are in chapter 6) tr :::; 0.5% 

ACEM strain no. 4 22 21 20 32 
Fatty acids percentage 

Saturated 
12:0 0.8 0.8 1.2 
14.0 1.4 2.4 2.8 3.3 3.8 
15:0 5.6 1.9 4.0 11.6 11.7 1.2 
16:0 12.7 14.0 1.3 8.8 44 3.1 
17:0 8.8 1.9 4.9 tr 
18:0 24 1.1 0.6 

19·1 or cy 19:0 1.3 
SUM 34 22 11 23 19 10 

Branched chain 
il2:0 2.1 
a12:0 1.6 
I13.0 1 3 0.8 0.9 11.5 
i14:0 tr 7.5 1.2 0.9 6.0 

i 15:l(n-10) 22.5 13.6 
il5·0 2.7 7.1 25.4 17.3 15.0 
a15·0 0.8 38.0 2.0 12.2 5.5 

br 16:1 2.2 
br 16:1 3.0 
br 16:1 8.8 7.6 

i16-0 tr tr 5.0 0.6 0.8 3.0 
il 7 1 tr 1.0 0.6 8.5 
al 7·1 1.5 1.1 
117:0 tr tr 1.6 3.4 
a17.0 6.5 13.2 1.9 1.9 
il8:0 tr 1.1 
SUM 5 7 85 54 47 72 

~-hydroxy 

10:0 0.7 1.7 
11.0 2.9 1.7 

112·0 2.1 2.2 
12·0 2.7 5.0 
no 0.6 tr 

114:0 3.3 
115.0 2.4 
i16:0 tr 3.2 23 
16:0 0.4 2.5 0.8 

i17:0 tr 3.2 1.5 
SUM 9 11 tr 9 10 

Monounsaturated 
12:1 08 2.8 
15.1 1.7 1.5 

16:l(n-7) 22.1 43.8 3.4 12.6 21.8 17.2 
17:1(n-8) 19.9 tr tr 
17·l(n-6) 1.5 
18:1(n-7) 6.8 10.0 0.9 

SUM 52 60 4 13 23 17 
Di unsaturated 

16:2 05 
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ACEM 20 contains high proportions of 16: 1(n-7)c in comparison to all 

Cellulophaga species except C. algicola, which also contains approximately 20 % 

of this fatty acid. ACEM 20 contains higher relative levels of a15:0 and 16:1(n-7c) 

in comparison to ACEM 21. The placement for these two species in the 

phylogenetic tree based on 16S rRNA, reflects their close similarity to others in the 

genus and to each other (Figure 3.1). The fatty acids i15:1(n-10)1
, i15:0, a15:0, 

16:1(n-7)c, i17:1(n-7) and ~-OH i17:0 are the most useful to discriminate 

Cellulophaga species from other members of the Flavobacteriaceae (Bowman 

2000, Bowman et al. 1998b). However, in marine environmental samples the fatty 

acids i15:1, i15:o' and i17:1 would be the most likely to be detected among the 

eukaryotic biomass. 

3.11 . Pseudoalteromonas 

Both Pseudoalteromonas species (ACEM 4 and ACEM 1) were gram-negative, 

straight rods and.required Na+ for growth. Both showed great phenotypic 
' 

similarity. ACE~ 4 was oxidase-positive, which is characteristic of 

Pseudoalteromonas, however, ACEM 1 was oxidase-negative. Neither species 

reduced nitrate or produced ~-galactosidase. ACEM 1 utilized tyrosine but did not 

utilize glycerol or lactose. A nearby relative of ACEM 1, P. piscicida, also does 

not utilize glycerol or lactose. 

A phylogenetic tree based on 16S r RNA demonstrates the affiliation of ACEM 4 

and ACEM 1 to other members of the genus Pseudoalteronwnas (Figure 3.2). P. 
i 

tunicata is the sp~cies most closely related by phylogenetic characterisation to 
I 

ACEM 4. By contrast, P. tunicata did not utilize fructose, sucrose, lactos~ or 

glycerol. 

1 In the paper by Bowman (2000) i15:l(n-10)c was incorrectly called al5:l(n-10) c in the text 

body 
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Figure 3.2 Phylogenetic affiliations based on 16S rRNA gene sequence alignment, showing the relationship of ACEM I and ACEM 4 to some other members 
of the genus Pseudoalteromonas. The scale represents sequence dissimilarity value. 



Taxonomic characterisation - Chapter 3 

The fatty acid profiles of both ACEM 1 and ACEM 4 were typical of the genus 

Pseudoalteromonas. Major fatty acids were 16:0, 16: l(n-7)c and 18: l(n-7)c 

which are similar to other Pseudoalteromonas and Alteronionas species (Bowman 

2001, Svetashev et al. 1995). ACEM 1 also contained high proportions of 17:1(n-

8)c and 17:0. Unusually for a member of this genus ACEM 4 contained high 

proportions of al 7:0. Both ACEM 1 and ACEM 4 contained up to 11 % B­
hydroxy fatty acids. This proportion of hydroxy fatty acids is high for 

Pseudoalteromonas species. Pseudoalteronionas normally contain 0-3 % hydroxy 

fatty acids using either the MIDI (Microbial ID, Inc., Newark, DE, USA) system 

or the ester-linked method used in this study. 

3.12 Bacillus 

ACEM 32 has essentially the same characteristics as those of the B. cereus group 

and to B. mycoides. It is gram-positive, oxidase-negative and does not reduce 

nitrate (Table 3.1). A phylogenetic tree of several related Bacillus species is 

shown together with the relationship to. the other gram-positive/variable algicidal 

species examined in this study, Planococcus (Figure 3.3). 

ACEM 32 produces white rhiioid colonies on agar that are similar to other species 

of Bacillus, although non-motile species have been reported (vonWintzingerode 

1997). The phenotypic test which best characterises individuals in this group is 

fatty acid analysis. Differentiation between the species B. mycoides, B. 

pseudomycoides and B. cereus can be observed in the relative levels of 12:0, i12:0, 

a13:0, i15:0 and 16:0 fatty acids (Nakamura and Jackson 1995). However, fatty 

acid analyses in the Nakamura and Jackson (1995) study used the.MIDI system 

- and therefore the results are not directly comparable. Strains of B. mycoides, B. 

pseudomycoides and B. cereus all contain a13:0 however, ACEM 32 does not. 

ACEM 32 has similar proportions of i13:0, 14:0, i14:0, al 5:0, 16:0 and al 7:0 t-o 

B. cereus (B. cereus 11.5, 3.1, 5.2, 5.5, 3.9, 1.1 % respectively) but has lower· 

proportions of a15:0 (15 % compared with B. niycoides 23 %, B. pseudonrjcoides 

19 % and B. cereus 31 %) (Table 3.2). 
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Figure 3.3 Phylogenetic affiliations based on 16S rRNA gene sequence alignment, showing the relationship of ACEM 32 and ACEM 22 to some other Gram­
positive genera. The scale represents sequence dissimilarity value. 



Taxonomic characterisation - Chapter 3 

ACEM 32 contained high proportions of 16: l(n-7)c (17 % ), br16: 1 (13 % ) and 

br17:1 (9 %) which were not reported for the other species. The fatty acid profile 

bf ACEM 32 distinguishes it from these three valid species. The characteristic 

fatty acids are however, somewhat unusual (br16:1 and br17:1) and this leads to 

the possibility that the fatty acids were sufficiently atypical such that the MIDI 

system would not have identified them. Essentially, the profile indicates that 

ACEM 32 is easily identifiable as belonging to the B. cereus cluster. 

3:13 Planococcus 

Planococcus species have been isolated from marine environments and most 

species, including ACEM 22, require Na+ for growth and can grow at very high 

salt concentrations (Kocur 1989). ACEM 22 has similar morphological lifestage 

characteristics as P. nicmeekinii. It has rod shaped cells during log phase that can 

stain gram-negative and cocci shaped cells in stationary phase that stain gram­

positive. ACEM 22 utilizes glucose, succinate and N-acetyl glucosamine and · 

malate as sole carbon sources. These are also utilised by P. citreus and P. kocurii 

(Table 3.1). The most identifiable and unusual characteristic of ACEM 22 is the 

ability to use a variety of carbohydrates as a sole carbon source unlike other 

Planococcus species. Most other Planococcus do not utilise carbohydrates. 

ACEM 22 is the only species in the genus that does not ferment glucose, but can 

use fructose, sucrose and other carbohydrates as sole carbon sources. All other 

species in the genus, apart from ACEM 22 and P. okeanokoites, ferment glucose 

and do not utilize lactose or reduce nitrate. ACEM 22 and P. okeanokoites are the 

only oxidase-positive species in the genus.· The fatty acid composition of ACEM 

22 is very similar to the other Planococcus species and is dominated by BCFA. 

The principal fatty acids in ACEM 22 are a15:0 (40 %) and al 7:0 (13 %) (Table 

3.2). P. mcmeekinii, P. citreus and P. kocurii also contain al 5:0 (38, 54 and 56 % 

respectively) as their major fatty acid. P. okeanokoites contains lower levels of 

a15:0 (14 %, Junge et al. 1998). P. citreus and P. kocurii also have high 

proportions of al 7:0 (13 and 9 % respectively). ACEM 22 demonstrates greatest 

phylogenetic similarities with P. kocurii (Figure 3.3). 
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Figure 3.4 Phylogenetic affiliations based on 16S rRNA gene sequence alignment, showing the relationship of ACEM 9 to some other members of the genus 
Shewanella. The scale represents sequence dissimilarity value. 



Taxonomic characterisation - Chapter 3 

3.14 Shewanella 

ACEM 6 and 9 are phylogenetically similar based on 16S rDNA sequencing 

(Figure 3.4) and share similar phenotypic traits (Tables 3.1and3.2). Both 

required salt for growth and were psychrotolerant and oxidase-positive. Optimum 

temperature for growth was 18-22 °C. _All other Shewanella species are oxidase 

positive. Both strains were negative for the production of argiriine dihydrolase and 

fermentation of glucose. ACEM 9 reduced nitrate to nitrite but ACEM 6 did not. 

All other Shewanella species are positive for this ability although S. hanedai is 

variable. One of the closest phylogenetically related species to these two strains, S. 

baltica, also utilized sucrose and grew at 4 °C, but unlike S. baltica, ACEM 6 and 

ACEM 9 did not utilize citrate, DL-malate or maltose and contained 20:5(n-3). 

Another closely related species, S. frigidiniarina (Figure 3.4), was positive for 

utilization of glucose and sucrose and produced lower proportions of 20:5(n-3) 

than ACEM 6 and 9 (2 - 7 % at 10 °C, Bowman et al. 1997). ACEM 6 and 9 

produced up to 15 % EPA at 10 °C- chapter 6). Fatty acids and phylogenetic 

position of this species are described in greater detail in chapter 5. 

Discussion 

All algicidal isolates were phe~otypically similar to other species in their 

corresponding genera and all demonstrate the capacity to survive in an oligotrophic 

marine environment. Humic material present in the Huon Estuary includes 

proteinacious material, pl:i~nols, hydroxy acids and glycosides. Most of the 

algicidal species analysed show an ability to utilize carbon sources that would be 

found in the humics and tannins of the surface water. All species except ACEM 4 

utilized tyrosine and phenylalanine. 

The two Shewanella strains show a phenotypic profile typical of other species in 

the genus Shewanella and cluster with psychrotolerant species that normally do not 

produce high proportions of 20:5(n-3). Further analysis and discussion of these 

two strains is undertaken in chapter 5. 
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Fatty acid profiles of the Planococcus, Bacillus and Cellulophaga species were 

distinctive. It would be possible to use these profiles to differentiate their fatty 

acid contributions from those of other eukaryotes and bacteria in the marine 

environment. Identification of these bacterial species in the environment would be 

limited to recognition of classes, but with some potential to refine this to genera. 

Changes in individual fatty acids or the proportions of fatty acids would enable 

identification of bacterial community change in the estuary. 

All algicidal fsolates, except the two Pseudoalteromonas species, contained high 

proportions of BCFA (47 to 85 % of total fatty acids). This indicates that the 

presence of certain BCFA profiles in environmental samples may be indicative of 

potentially algicidal genera. In particular, the novel Planococcus species (ACEM 

22) contained high relative levels of al5:0 and al 7:0 which, although not 

uncommon for this genus, is an atypically high proportion of BCFA with respect to 

other bacteria. The dominant fatty acids in the Cellulophaga_ species were 

characteristic of that genus with high proportions of the fatty acids i15:1 and i15:0. 

Unfortunately, Pseudoalteromonas species generally contain fatty acids that are 

common in other bacteria and eukaryotes so their profiles may not allow them to 

be distinguished in environmental samples. 

The algicidal bacteria described in this study reflect a wider variety of genera than 

previously reported. This raises the possibility that algicidal bacteria are more 

common in the marine environment than previously thought. Isol.ation of new 

bacterial species that are not from "typical" algicidal genera may simply be as a 

result of increased research now occurring in this field. Many members of the CFB 

cluster and Pseudoalteronwnas are easily cultured. Therefore, it is possible that 
' . 

species less easily cultured, with the same algicidal activities, have not yet been 

identified. 

The increase in research on algicidal genera is due primarily to their potential use 
" 

for algal bloom control and the bioactive nature of most of the species. Many have 

shown bioactivity in areas other than algicidal ability. For some genera, such as 

Pseudoalteronwnas and Bacillus, algicidal activity is just one of the many 

bioactive abilities that these genera are capable of producing. It appears logical 
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that if a species is algicidal, it may have other antagonistic or complimentary 

mechanisms. This has often proven to be the case for genus such as 

Pseudoalteronwnas (Holmstrom and Kjelleberg 1999). All algicidal genera cited 

produce a range of bioactive compounds derived from different metabolic 

pathways (Mikhailov and Ivanova 1994, Holmstrom and Kjelleberg 1999, King et 

al. 2000). This demonstrates the potential of these genera to contribute 

extracell~iar exudates in the marine environment that may have a positive or 

negative effect on the surrounding biota. 

The ability to identify potentially algicidal species in the estuary using a 

combination of fatty acid analyses, fluorescence in situ hybridisation (FISH) and 

traditional morphological techniques will give a better understanding, not only of 

algicidal species, but of the marine microbial community in which they reside. 
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4. Algicidal activity of Huon Estuary bacteria 

Summary 

Seventy-five bacteria isolated from the Huon Estuary were tested for algicidal 

activity. Five isolates produced algicidal extracellular exudates. Further data is 

also presented on_ an algicidal species previously isolated from the Huon Estuary 

(Lovejoy et al. 1998). 

All seventy-five Huon Estuary isolates were deposited in the Australian Collection 

of Estuarine Microorganisms (ACEM). Catalogue names of the algicidal species 

are ACEM 1 (formally Strain y, Lovejoy et al. 1998) (Pseudoalteromonas sp.), 

ACEM 4 (Pseudoalteromonas sp.), ACEM 20 (Cellulophaga sp.), ACEM 21 

(strain of Cellulophaga lytica), ACEM 22 (Planococcus sp.) and ACEM 32 (strain 

of Bacillus niycoides). 

Algicidal supernatant produced by all five bacteria caused cell lysis and death in G. 

catenatum vegetative cells. No change, or reversible ecdysis was noted for two 

endemic dinoflagellate species. Isolate ACEM 4 also inhibited settlement of 

barnacle larvae. Resting cysts of G. catenatum and Alexandrium minutum were 

not affected by addition of algicidal supernatant. Although cysts remained viable 

and excysted, vegetative cells lysed after excystment in cultures containing ACEM 

1 supernatant. Algicidal components did not appear to control or effect 

encystment or excystment processes. 

Bacterial quo:rum sensing may play a role in algicidal or inhibitory activity, but this 

mechanism was not activated via homoserine lactones. Algicidal activity from 

isolates taken from the field suggested that algicidal activity was influenced by 

strain or environmental variation. Some species appear capable of losing or 

switching off the algicidal ability. Therefore, the presence of an algicidal species in 

the environment may not necessarily signify that they are currently algicidal. 

Concentrations of algicidal compounds required for algal lysis in laboratory 

experiments indicate that the five bacterial species can be effective against 
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vegetative cells when they dominate the bacterial population in the estuary 

particularly when they are particle attached. 

Introduction 

The Huon Estuary in Tasmania is an unpolluted waterway with low nutrient levels. 

Despite this, the estuary experiences periodic outbreaks of the toxic dinoflagellate 

G. catenatwn that are detrimental to the local shellfish industry. A two-year 

scientific study of the biology, chemistry and physics of the estuary found no 

simple answers as to why the blooms occur or how they can be controlled (HST 

2000). 

The relationship between algicidal bacteria and toxic algal blooms has been the 

subject of extensive research (Doucette et al. 1999, Lovejoy et al. 1998, Doucette 

et al. 1998, Imai et al. 1993, Stewart and Brown 1969). Very recently particular 

attention has been paid to the potential use of algicidal bacteria in bloom control 

(Nagasaki et al. 2000, Yoshinaga et al. 1999, Kim et al. 1998). However, to date 

no effective, practical use of these bacteria in the marine environment has been 

reported. 

To gain insight as to the prevalence of ot~er algicidal bacteria in the marine 

environment Antarctic sea-ice isolates were.tested for their algicidal activity. The 

microbial food web rn Antarctic is essential for the higher trophic organisms and an 

important component of this microbial web occurs in sea-ice. Large algal blooms 

occur on the ice-water interface and within the sea-ice during summer. 

Dinoflagellates commonly occur and over-winter within the sea-ice. The 

po.ssibility of b~cterial algicidal activity in this harsh environment was investigated 

in this study using an Antarctic dinoflagellate and a number of Antarctic diatom 

and flagellate species. Forty-three bacterial sea-ice isolates were also tested for 

their algicidal activity on the temperate dinoflagellate species. 

Algicidal bacteria include Pseudoalteronwnas species and various species of the 

Cytophaga-Flavobacteriwn-Bacteroides cluster (CFB) (Doucette et al. 1998, 

Nagai and Imai 1998). Algicidal species in the CFB cluster are predominantly of 
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the genus Cellulophaga. A Pseudoalteromonas species isolated from the Huon 

Estuary was found to be algicidal against G. catenatum vegetative cells as well as 

other dinoflagellates and flagellates (Lovejoy et al. 1998). Another 

Pseudoalteromonas strain isolated in the same study caused a detrimental but 

reversible effect on G.-catenatum vegetative cells (Lovejoy et al. 1998). Blooms 

of G. catenatum in the Huon Estuary are dominated by the vegetative cell lifestage 

of this alga although other lifestages regularly co-occur (Parker 2001). Many toxic 

and non-toxic dinoflagellates form resting cysts which tolerate harsher conditions 

than vegetative cells (Anderson et al. 1983, Persson 2000). Cyst formation has 

occurred during all phases of the G. catenatum bloom in the Huon Estuary (Parker 

2001). Research to date on algicidal bacteria has focussed on activity against the 

vegetative cells of many different toxic dinoflagellates. The capacity of the 

algicidal components to penetrate, kill or affect the resting cyst lifestage has not 

been previously examined nor whether algicidal bacteria cause encystment as a 

protection mechanism. 

Dinoflagellate cysts can form seedbeds (Anderson and Wall 1978, Hallegraeff et al. 

1998) or increase their geographic extent via transportation in ocean currents or 

ballast water (Hallegraeff 1998). Cyst formation allows the alga to suspend future 

lifestages until suitable conditions exist for excystment. Macronutrients have not 

been found to initiate vegetative reproduction or resting cyst formation (Parker 

2001, HST 2000). 

Due to the bioactive nature of many algicidal bacteria, other biocidal mechanisms 

have been researched independently. Species of the genus Pseudoalteronionas 

have demonstrated the ability to inhibit biofilm formation in the marine 

environment (Holmstrom and Kjelleberg 1999). The importance of bacteria as the 

initial step in marine biofilm formation has been well established (Cooksey and 

Wigglesworth-Cooksey 199 5, Holmstrom and Kjelleberg 1994). A problematic 

aspect of these microbial marine biofilms is the subsequent attachment of 

biofouling organisms such as barnacle larvae. Some marine bacteria such as 

Pseudoalter01nonas tunicata have shown anti-biofouling activity and kill or inhibit 

the settlement of larvae (Egan et al. 2000a, Holmstrom et al. 1998). Such bacteria 

often occur in a commensal relationship with seaweed and prevent biofouling of 
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the thallus (Steinberg et al. 1997). The antifungal, antialgal and anti-biofouling 

compounds in P. tunicata are all different compounds. The seemingly close 

association of algicidal activity and inhibition of marine biofilms suggest the use of 

similar regulatory expression to form these different types of extracellular 

components. 

The mechanisms bacteria activate to either produce the algicidal extracellular 

components or to commence predatory attack are largely unknown. These 

mechanisms may include bacteria reaching a certain density before algicidal 

expression occurs (quorum sensing, see chapter 1). This is typical of many 

bacteria that form biofilms. Chemicals produced by bacteria such as acetylated 

homoserinelactones (AHL) can be used to communicate between bacteria in order 

to regulate expression (Eberl 1999, Bassler et al. 1993). AHL are small hormone 

like molecules. Small AHL are freely diffusible across cell membranes while longer 

chain AHL must be actively transported across the cell membrane. They are both 

produced from intracellular intermediates, excreted during growth and accumulate 

externally (Bassler et al. 1993). At certain AHL concentrations during mid to late 

Jog phase, the receptor protein produces a phenotypic response and this is termed 

the threshold concentration. AHL induce their own production and are referred to 

as auto 'inducers (AI). The Lux-genes responsible for production of the AHL 

receptor are LuxI and LuxR. LuxR is the receptor protein, and is membrane 

associated, and Luxl contains ?-11 genes necessary for production of AHL and 

bioluminescence (Bassler et al. 1993). The ability to synthesise AHL molecules is 

not restricted to enzymes of the LuxI-type AHL synthases. Two AHL synthases, 

AinS in Vibrio fischerii and LuxM in Vibrio harveyi have been recognized that 

direct.the synthesis of two different AHL (Eberl 1999, Bassler et al. 1993, Gilson 

et al. 1995). However, many different bacterial species make a signal to which 

Vibrio harveyi responds but this signal is not yet fully understood (Bassler 1999). 

The signal molecule is not an AHL but is termed an AI-2 inducer and has only 

recently been identified by Bassler and co workers (patent pending). 

The objectives of the research reported in this chapter were to: 
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•:• identify the algicidal activity and specificity of the 5 new algicidal species 

isolated from the Huon Estuary (chapter 3) including those that did not belong 

to "typical" algicidal genera; 

•:• establish whether the vegetative and cyst lifestages of Alexandrium niinutum 

and G. catenatum were affected by algicidal bacteria or their exudates; 

•:• determine if the algicidal bacteria had other bioactive properties such as 

inhibition of biofilm formation; 

•!• explore the processes which may be responsible for algicidal activity such as 

bacterial quorum sensing; 

•!• investigate the prevalence of algicidal activity in marine environments; 

•!• determine if polar marine bacteria were capable of algicidal activity. 

Methods 

4.1 Algae 

Biocidal tests were completed on the algal and microbial species listed in Table· 

4.1. Algal cultures were maintained at 17 °C under cool white fluorescent light 

(100 µE/s/m2
, measured with a Biospherical Optics light meter) and alternate 12-

hour light/dark cycles. Algal media used either 0 2 µm filtered seawater obtained 

from off the Tasman Peninsula or autoclaved 0.7 µm filtered Huon Estuary river 

water. Salinity was adjusted to 28 psu using Milli-Q deionised filtered water or the 

addition of artificial sea salts (Sigma). Dinoflagellate species were grown in GSe 

medium (Blackburn et al. 1989). Other cultures were grown in standard media 

(Guillard and Ryther 1962) listed in Table 4.1. All algal cultures tested were non-
-

axenic, uni-algal cultures with moderate to low bacterial loads unless otherwise 

stated (104-109 cells/I). 
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Table 4.1 Taxon, media, strain and source history of species tested m biocidal assays 

Taxon Class Medium~ 

Gymnodinium catenatum Graham Dinophyceae GSe 

qyrodinium sp. Dinophyceae GSe 

Gymnoid strain 1 and 2 and Dinophyta Dinophyceae GSe 

Protoceratiwn reticulatum (Claparede &. Dinophyceae GSe 
Lachmann) Butschli 

Alexandrium minutum Halim Dinophyceae GSe 

Chattonella marina (Subrahrnanyan) Hara & Raphidophyceae GSe 
Chihara 

Skeletonema costatum (Greville) Cleve Bacillariophyceae F2 

Pseudonitzschia pseudodelitcassima Bacillariophyceae F2 

Polarella glaciacola Montresor et al. Dinophyceae F2 

Mix of Antarctic diatoms Bacillariophyceae F2 

Brachionus plicatilis Aschelminthes -

Gymnodinium catenatum Graham Dinophyceae GSe 

Alexandrium minutum Halim Dinophyceae GSe 

Thraustochytridae Cavalier-Smith et al. Chromista Unpublished 

"GSe Media (Blackburn et al. 1989) F2 (Guillard and Ruther 1962) 

Strain Strain source and history 
GCDE06; GCDE06; GCJPOl S. Blackburn; Derwent, Tasmania; Japan 

GYPA06 C. Bolch; Port Arthur, Tasmania 

GXl, GX2, GTRl M. de Salas; Triabunna, Tasmania 

DPRO N. Parker; Derwent, Tasmania 

AMAD06 J. Cannon, S Blackburn; Port River, South Australia 

CMPL02 J Marshall; Port Lincoln, South Australia 

SkeHOA C. Lovejoy; Huon, Tasrnama 

PPH03 J. Skerratt; Huon, Tasmania 

FL2B P.Thomson; Eastern Antarctica 

- .R. vanDenenden; Eastern Antarctica 

DPIWE Marine Research Labs 

Cysts N Parker; Huon, Tasmania 

Cysts N Parker; from strain AMAD 06 

ACEMA T. Lewis, South-Eastern, Tasmania 
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Most Antarctic dinoflagellates required 6 months (2 °C under cool white 

'fluorescent light and alternate 16 hour light 8 hour dark cycles) to attain suitable 

numbers for algicidal tests. Assays to test algicidal activity of Antarctica bacterial 

isolates therefore used a multifarious Antarctic diatom culture, G. catenatum and 

C. m.arina. The algicidal Huon Estuary isolates were tested on their ability to lyse 

the Antarctic dinoflagellate Polarella glaciacola .. 

4.2 Bacterial strains·studied 

Bacterial isolates were collected and purified as described in chapters 2 and 3. 

Bacteria were phylogenetically and phermtypically identified (chapter 3). 

Abundances of algicidal bacteria in the Huon Estuary are described in chapters 5 

and 6. 

Several other Pseudoalteromonas species, related to the two Huon Estuary 

Pseudoalteromonas strains (ACEM 1 and ACEM 4), were also tested for algicidal 

activity against G catenatum and C. marina. These bacteria we:e type strains from 

the National Collection oflndustrial and Marine Bacteria (NCIMB), Aberdeen, 

Scotland. The strains included P. espejiana (NCIMB 2127), P. rubra (NCIMB 

1890), P. luteoviolacea (NCIMB 1893), P. citrea (NCIMB 1889) and P. aurantia 

(NCIMB 2033) and 3 strains of P. piscicida (NCIMB 1938, 1142 and 645). 

ACEM 1 is closely.related to the species P. piscicida. Two bacterial species tested 

were obtained from the University of NSW. These species were P. tunicata 

(Strain number D2), isolated in Sweden from a tunicate (Holmstrom et al. 1998) 

and P. ulvae isolated from an Australian seaweed (Egan et al. 2001a, Egan et al. 

2000a). ACEM 4 is closely related to the species P. tunicata. 

For maintenance of bacterial cultures, isolates were grown on full strength marine 

agar (14 g agar, 5 g bac~eriological peptone (Oxoid), 1 g yeast extract (Oxoid), 

and either 28 g artificial sea salts (Sigma) and 1 I Milli-Q water or 1 I of autoclaved 

0.7 µm filtered Huon Estuary river water with salinity adjusted to 28 psu using 

artificial sea salts). For the biocidal assays, nutrient poor media was 1/1 oth strength 

of the above medium. Field algicidal experiments used 28 g sea salts and 11 Milli-
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Q water instead of Huon Estuary river water, lest compounds in the river water 

affected the biocidal ability of the bacteria. 

Forty three Antarctic sea ice isolates (Bowman et al. 1998b) were cultured in 

liquid l/lOth strength marine agar media (using 28 g sea salts and 1 1 distilled 

water) to 107
-
8 cells/I which was the equivalent biomass required for algicidal 

activity to occur for the estuarine species. At 4 °C, the sea ice bacteria generally 

took between 2 to 3 weeks to attain an equivalent biomass to the temperate 

isolates. The supernatant used for bioassays was centrifuged at 13,000 rpm and 

was not filtered for the algicidal tests with G. catenatum. 

4.3 Characterisation of algicidal compounds 

Bacterial pigments were tested for their algicidal activity. Pigments were extracted 

with acetone, methanol or dichloromethane and the extracts tested on G. 

catenatwn only. Extracted pigments also contained unidentified compounds that 

co-extracted with the above solvents. 

The heat stability of algicidal components was tested by incubating algicidal 

. supernatant in Eppendorf tubes suspended in a water bath at 38, 55, 80 or 120 °C 

(autoclave) for 30, 15, and 10 minutes respectively. 

Growth curves of the ~acterial isolates were determined to identify differences 

b~tween algicidal activity in logarithmic and stationary phase cultures. Late log 

phase cultures (1 ml) were inoculated into 200 ml side arm flasks containing 75 ml 

ot'I/10111 strength modified marine broth (0.5 g bacteriological peptone, 0.1 g yeast 

extract, 28 g sea salts, L J Milli-Q). The temperature was maintained at 17 or 22 

0 C. Flasks were placed on a shaker table and agitated at 120 rpm. Optical density 

measurements and sub-samples were taken every hour during log phase until 

stationary phase commenced. Sub-samples were then taken at 24 and 48 hours. 

All sub-samples were filter sterilised though a 0.2 µm filter and frozen at -80 °C. 

Size fractionation of algicidal compounds was determined using dialysis tubing 

(5,000 and 10,000 MU). Further separation of the algicidal compounds was 

achieved by HPLC using a Waters Alliance 2690 HPLC, coupled with a photo 
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diode array detector, a reverse phase C18 column (Nova-Pak C18 3.9 x 150 mm) 

and a Finnigan LCQ with APCI source-vaporizer 450, capillary 170, sheath gas 60, 

aux gas 15, source current 5 µamps, (or Finnigan LCQ with Electro spray source, 

capillary 200, sheath gas 90, aux gas 15, ESI needle 5KV). The scan range was 

rn/z 100 to mlz 1200 (or m/z 100 to m/z 2000 for the Electro spray source). Data­

dependent MS-MS scans were collected from the most intense ions. The elution 

gradients included a gradient of water-2 % acetic acid-methanol at 0.8 ml/minor a 

50150 methanol: water gradient at 0.8ml/min finishing with 90 % methanol at 25 

minutes. Fractions were collected and tested via assays using G. catenatwn. 

Controls were run using media blanks. 

A normal phase cyano column (Nova-Pak CN HP 3.9 x 150 mm) using a gradient 

of methanol (A), acetone (B), hexane (C) and water (D) at 0.8 ml/min (95 % A: 5 

% C for 3 minutes, then to 100 % A at 30 minutes, then to 50 % A: 50 % D at 40 

minutes, which was then held for 20 minutes) was used to separate fractions. 

Fractions were collected and tested against G. catenatum. Unfotunately, all 

algicidal components remained on the column and would have required 

derivatisation to ensure removal. Derivatisation would result in loss of algicidal 

activity and thus HPLC separated fractions could not be tested against any algae. 

In addition to HPLC, Ion exchange chromatography, Sephadex columns and an 

XAD column were also used in attempts to isolate the algicidal components but 

these were unsuccessful. Details of these procedures will therefore not be 

reported. 

4.3.1 AHL assay 

Algicidal bacteria were evaluated with an AHL bioreporter, based on the 

transcriptional activator TraR of Agrobacterium tumefaciens. TraR can respond 

to 3-oxo-AHL, 3-hydroxy-AHL, and alkanoyl-AHL with chain lengths ranging 
> • 

from C4 to C 12. The fusion reporter from the A. tumefaciens tumour inducing 

plasmid has been shown to be the single most sensitive test and versatile detector 

of all the AHL tests (Cha et al. 1998). The method used LB media (Tryptone 10 

g (Difeo), Yeast extract 5 g (Difeo), NaCl (Sigma), 5 g distilled H20 (11) and AB 

media. AB media consist of media A ((NH4)2S04 4 g, Na2HP04 4.85g, KH2P04 3 
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g, Na Cl 3 g, distilled water 100 ml) and B ( 1 M MgCh 1 ml, 0.1 M CaCh, 1 ml, 

0.01 M Fe Ch 1 ml, 1 mg/ml thiamine distilled water 900 ml). Both A and Bare 

individually autoclaved before combining the two and adding glucose and 

casaminoacids (DIFCO) to a final concentration of 0.5 %.(Clark and Maaloe 

1967). LB plates were supplemented with 4.5 µI/ml tetracycline and 50 µg/ml 

spectomycin, streaked with A. tuniefaciens strain A136 and incubated at 30 °C. 

Plates were then stored at room temperature. After 2 days, 10 ml of LB media 

supplemented with tetracycline and spectomycin_ was inoculated with a single 

colony from the above culture and incubated overnight at 30 '0 c. 50 ml of AB 

media was inoculated from 1 ml of the overnight LB A. tumefaciens culture. This 

culture was incubated at 30 °C for 24 hours. Molten AB agar media was cooled to 

48 °C and the 24 hour-A. tumefaciens culture was then added, mixed and poured 

immediately into agar plates. Wells were punched in the centre of each agar plate 

once the agar had set. 50 µl of algicidal supernatant from 24 hour and 48 hour 

cultures were added to the well. A positive control was included CV. fischerii). 

Petri dishes were incubated at room temperature for 48 hours. The induced blue 

zone (positive reaction) around the well was measured at 24 hours and 48 hours. 

4.3.2 Al-2 assay 

Protocols from Joyce et al. (2000) were used for the AI-2 assay. Confluent 

growth from 24-hour algicidal bacteria plate cultures were collected by flooding 

each plate with 5 ml of l/lOth strength Marine Agar broth followed by swabbing 

the agar surface with a sterile cotton swab. l/lOth strength marine broth was 

inoculated with the cell suspensions to a starting optical density at 600 nm of 0.1, 

and the culture was incubated at 37 °C, with vigorous shaking (200 rpm). Cell free 

culture fluids were prepared by centrifugation in an Eppendorf micro-centrifuge ( 1 

min., 13,000 rpm) followed by filtration of the supernatant through Millipore 0.2 

µm pore size filters. The supematants were stored on ice before being assayed for 

AI-2 activity. 

For the AI-2 assay, cell free culture fluids were prepared from the algicidal parental 

cultures. 10 µl of each preparation were added to wells of a 96-well microtiter 

dish (IW AKI) and assayed for AI-2 activity with strain V. harveyi BB 170 as 
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described in Surette and Bassler (1998) and Surette and Bassler (1999). For each 

· preparation, 10 µ 1 of the corresponding sterile medium was added to the wells as a 

negative control and 10 µl of V. harveyi cell-free culture was used as a positive 

control for AI-2 activity. The following conditions are known to promote maximal 

AI-2: production (Surette and Bassler 1998). V. harveyi BB170 was grown 

overnight with aeration at 30 °C in AB medium then diluted 1:5,000 in fresh AB 

medium, and 90 µl of the diluted culture was added to the wells containing the cell 

free culture fluids or medium controls. The microtiter dishes were shaken at 200 

rpm in a rotary shaker at 27°C. Light production was quantified every hour with a 

Wallace Model 1450 Microbeta Plus liquid scintillation counter. The data are 

reported as the fold stimulation of light emission by V. harveyi BB 170 over that 

obtained for the corresponding growth medium alone. Assays were performed in 

triplicate. 

4.3.3 Algal assays 

The protocol described by Lovejoy et al. (1998) was used for algicidal assays. To 

test bacterial effects on different algal species, triplicate I ml samples of algal 

culture were added to a 24 well micro-plate (Iwaki, Japan). To this, 100 µl of a 

bacterial cultur~ or filtrate or media control was added. Liquid media used for 

bacteria were 1/101
h strength marine broth and full strength marine broth. 

Duplicate media controls were run in tandem with the experiments. The plates 

were sealed with parafilm and monitored at time intervals of 0, 5, 10, 15, 30, 60, 

90, 120 and 180 minutes and then every hour for up to 6 hours. Cultures were 

then monitored daily. Most algal cultures lysed within 3 hours. A positive 

algicidal effect was considered to occur when 80 % or more algal cells were lysed. 

A dilution series of bacteria or bacterial supernatant was completed to determine 

bacterial concentrations required to produce algicidal activity. 

4.3.4 Larval assay 

Larval settlement assays were performed as described in Holmstrom et al. ( 1992) 

and de Nys et al. (1994). Assays tested the activity of the algicidal bacteria against 

the settlement of the marine invertebrate larvae Balanus aniphitrite and a hydroid 
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species. Test bacteria were inoculated into marine broth in a Petri dish and left 

overnight. Growth of the bacteria resulted in the formation of a biofilm on the 

base of the Petri dish. The broth was then poured off leaving the bacterial biofilm; 

this was washed gently with sterile seawater. 10 ml of seawater containing 

barnacle or hydroid larvae were then added. The number of settling larvae was 

determined by microscopic observation after 2 days incubation at 25 °C and 

compared with controls containing sterile filtered seawater (Egan et al. 2000a). 

4.3.5 Cyst assays 

Three algicidal species ACEM 21, ACEM 22 and ACEM 1 were chosen to test for 

their effect on the excystment and encystment of A. minutuni and G. catenatum 

cysts. Supernatants from bacterial cultures and direct addition of bacteria plus 

supernatants were tested at differing concentrations (10, 100, 500 and 1000 µl, see 

also Table 4.2). 

Table 4.2 Eqmvalent bacterial concentrations added for encystment and excystment experiments. 
ACEM 1 caused lysis of the vegetative cells if> 100 µI was added to cyst culture. 

Bacterial strain Effective no. of cells Volume of supernatant added Cells I litre 
added as supernatant to 1 O ml cyst solution (µI) 

ACEM 1 2.6x101 100 2.6 x 106 

ACEM 21 1.5x103 100 1.5 x 1Q8 

ACEM 22 6.2 x 104 100 6.2 x 109 

The choice of bacterial isolates was made to determine whether algicidal bacteria 

produce compounds that could effect encystment during periods when they were 

algicidally impotent and -potent. ACEM 1 was chosen because of the highly 

algicidal nature of this strain and to complement previous research on vegetative 

cells using this strain (Lovejoy u al. 1998). ACEM 21 was chosen due to its rapid 

swarming capability, its presumed association with the decline of algal blooms, its 

predatory ability and cytolytic potential. ACEM 22 at the time of testing was not 

producing algicidal components. It was chosen for this reason as an algicidal 
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species that is not algicidal may produce other components such as those that 

could influence encystment (e.g. antibiotic compounds, chapter 8). 

All experiments included a set of controls. Blanks included sterile bacterial liquid 

media (1/lOth strength) added at concentrations of 10, 100, 500 and 1000 µland a 

blank in which no media was added. 

Excystment assays 

A. minutum 

A. niinutum cysts attach firmly to the bottom of the culture vessels because they 

have a mucoid sheath around the cell (Bolch et al. 1991). Containers were 

emptied of their growth media, gently washed 3 times in sterile seawater (28 psu), 

and' then 1 0 ml of liquid media was added. Although cysts were washed with 

sterile seawater the resulting culture was not axenic. 1 ml aliquots of l/lOth 

strength marine broth containing the isolates ACEM 1ACEM21 and ACEM 22 

were added to the duplicate A. minutum cyst preparations. Cyst cultures were 

tested for the presence or absence of any algicidal isolates after a week, using a 

dilution series, on triplicate marine agar plates. Plates were incubated for 10 days 

before identification of bacterial isolates. 

G. catenatum 

G. catenatum cysts were produced by crossing strains GCDE08 and GCHUl 1. 

Resting cysts were isolated_individually into a sterile 24 well polystyrene tissue 

culture plate (Falcon) using a micropipette and then 5 ml of fresh GSe medium was 

added. Initial enumeration of c--yst cells was completed for unviable/viable cells in 

G. catenatum cultures (Parker 2001). The end volume was 5 ml for each culture 

and a minimum of 11 viable cysts were used per culture. On average, there were 

19 viable cysts and 9 non-viable cysts per test solution. The number of viable 

resting cysts, non-viable resting cysts (cyst wall clearly compromised and contents 

blackened), and empty resting cysts (i.e. successfully germinated) were enumerated 

after 8 and 25 days. ACEM 21, ACEM 22 and ACEM 1 were added to the 

triplicate cyst solutions at differing 0.2 µm filtered supernatant concentrations (0, 
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100, 200 µl) (Table 4.2). ACEM 1 was also added as an unfiltered bacterial 

culture (100 µl). Media controls at various dilutions (100 and 200 µl) and 

triplicate algal controls (0 µI bacterial media) were also tested. 

Encystment assays 

G. catenatum vegetative cells (strains GCDE08 and GCHUl 1) were 

preconditioned in GSe/20 for 7 days to facilitate cyst formation (Parker 2001). 2 

ml of each strain was then combined with 5 ml of GSe and the different 

concentrations of the supernatants, bacterial cells and marine broth added in 

sterilised 55 mm pre-sterilised petri dishes (approx. 330 cells/ml initial 

conc~ntration). Strain crosses were placed at 18 °C, and approximately 70 µmol 

photons PAR /m2s -on a 12: 12 light: dark cycle, and monitored for 25 days. The G. 

catenatum resting cysts were counted before addition of the supernatant and then 

were counted again after 1, 2 and 3 weeks by which time the algal controls had 

formed cysts. On day 25 a sub-sample was taken and fixed in Lugols iodine 

solution. The initial G. catenatum culture was not axenic (109 cells/l). The 

vegetative cells were tested for encystment with varying concentrations of the 

bacterial population (10, 100, 500 and 1000 µI) (Table 4.2). The lowest 

concentration (10 µl) ensured that the dinoflagellates would not lyse. 

Concentrations of 500 and 1000 µl of algicidal bacteria lysed the cells and 100 µI 

of ACEM 1 also lysed cells. Duplicate samples of algicidal supernatant were 

added to the duplicate 10 ml samples of the G. catenatwn vegetative cells. 

4.3.6 Addition of algicidal bacteria to G. catenatum cultures 

Two trials one day apart were completed to examine the consequence of adding 

bacterial cells to G. catenatum cultures. Log phase G. catenatum cultures (5 ml) 

were placed in 6 well micro-plates (lwaki, Japan) and each well was tested with 

increasing bacterial concentrations""(Table 1.2). A number of bacterial colonies 

were harvested from a culture growing on full strength marine agar (incubated 2 

days at 22 °C) and suspended in 5 ml of seawater by vortexing. The seawater 

suspensions were then added to the algal cultures. ACEM 4 and ACEM 1 (107 

cellsll) were added to the algal culture resulting in the addition of approximately 
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500 cells/I to the algal culture (both bacterial seawater suspensions were plated 

onto marine agar media to establish bacterial concentration and type). Blank 

controls were also counted. Controls consisted of algal culture alone, algal culture 

with seawater added and algal culture media with bacteria added. The bacterial­

algal culture mixes were then plated at 24 hours, 3 days, 1 week and 1 month to 

see the effect over time of this addition. The effect on G. catenatum was also. 

noted. 

4.3.7 Algicidal activity of field bacteria 

After two years of identifying culturable isolates from the Huon Estuary the 

distinct morphological characteristics allowed isolation of algicidal bacteria with 

colonial morphologies similar to algicidal bacterial isolates, before, during and after 

G. catenatum blooms. Seawater samples from the 3 field sites were plated onto 

full strength marine agar and incubated at 22 °C for a week to attain between 30 

and 300 colonies for each sampling date, site and depth (see chapter 7). The 

appropriate isolates were then selected and purified on full strength marine agar. 

In effect, colonies that were similar morphologically to ACEM 20, ACEM 21, 

ACEM 22 and ACEM 1 were treated as bacteria with algicidal potential. Also 

included in experiments was an orange mucoid colony morphotype that occurred 

regularly and also showed algicidal activity (tested against G. catenatum, data not 

shown). After 1 week incubation at 22 °C, colonies were transferred to an 

Eppendorf tube containing 111 oth strength marine broth. The cultures were 

incubated at 22 °C for 2 days. The bacterial suspensions were then centrifuged at 

13,000 rpm for 10 minutes. A 100 µl subsample of each of the supernatants was 

then tested against G . . catenatum 1::.sing the previously mentioned algicidal assay. 

Algicidal-like bacteria varied in number over the field season. A range of 16 to 89 

(average 30) isolates was tested for ~lgicidal activity for each field date. Although 

bacterial concentrations varied between sample dates similar bacterial types would 

reappear that were easily recognisable each week or each season. Algicidal activity 

was registered if cell lysis occurred within 6 hours. 
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Results 

4.4 Pigmentation and morphology 

The pigments of algicidal strains were not the algicidal component. Pigmentation 

of ACEM 1 and ACEM 4 colonies could be dramatically altered using different 

media. Under nutrient deplete conditions (e.g. 1/lOth marine agar) the majority of 

bacteria were still pigmented. ACEM 1 and ACEM 4 produced white colonies 

under these conditions that co-occurred with their respective yellow or green 

colonies. The white colonies were not a contaminant as they formed yellow and 

green colonies, respectively, if replated onto nutrient rich media. If the white 

colonies were repeatedly replated in nutrient deplete media for a number of 

generations (n=4-10) algicidal activity in ACEM 1 and ACEM 4 continued to 

occur. Replating on nutrient rich media led to the return of pigmented colonies. 

Changes in pigmentation did not appear to affect the algicidal activity (or antibiotic 

activity for ACEM 1 see chapter 8). Pigment formation in these isolates was 

therefore not essential to the algicidal activity of the isolates but all isolates 

nonetheless contained the ability to produce pigment as part of their cell 

biochemistry. 

Media with bacteriological peptone alone or nutrient poor media caused ACEM 1 

to produce orange colonies, the normal pigment on solid media was pale to dark 

yellow with a white halo. Orange pigmentation in ACEM 1 also increased if the 

culture was grown in large (500 ml) volumes. ACEM 4 had predominantly green 

colonies but pigmentation varied (purple, black, light or dark green with or without 

white halo). In nutrien( limited media or in stationary growth phase of a nutrient 

rich liquid media green, surface, lace-like, filiforms were observed for ACEM 4. 

The other algicidal species from the Huon Estuary showed little morphological 

variation with changes in media. In liquid media, ACEM 21 was highly motile and 

was distributed evenly throughout the broth. If centrifuged at high speed and then 

left undisturbed the cells would redistribute themselves throughout the media 
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within 5 minutes. Calculating the time for a majority of cells to reach the top of a 

15 cm test tube the approximate speed was 0.6 m/h. 

4.5 Growth rates 

Growth rates for the algicidal species are shown in Figure 4.1. All algicidal 

bacteria had rapid growth rates at temperatures and salinity conditions typically 

found in the estuary. The growth rate of ACEM 1 was particularly fast. This 

isolate reached log phase in 3 hours and stationary phase in 7 hours at 22 °C 

(Figure 4.1), and 4 and 11 hours respectively at 17 °C. The growth rate of ACEM 

32 in Figure 4.1 is not truly represe~tative of the growth phase of this bacterium. 

Colloidal balls formed making it difficult to gain an accurate optical density. No 

bacteria were algicidal in early log phase (Table 4.3). All bacteria were algicidal 

during mid log phase except ACEM 32. Production of algicidal components in 

ACEM 32 occurred after 20 hours. Visually it was apparent that ACEM 32 had 

reached late log phase at 12-14 hours. After 20 hours the culture was obviously in 

stationary phase, therefore ACEM 32 was only algicidal in stationary phase. 

4.6 Loss of algicidal activity 

Algicidal bacteria would occasionally lose their algicidal activity. This occurred for 

all bacteria except ACEM 21. Interestingly, the failure in algicidal activity could 

often be restored by isolation of a healthy bacterial colony into seawater for 1 or 2 

months at 20 °C. ACEM 22 often lost algicidal activity after being cryogenically 

stored. The algicidal revival method mentioned was used twice successfully for 

ACEM 22. However; for a period of over a year it would not recover algicidal 

activity. A method suggested while working at the UNSW1 re-initiated the 

algicidal activity in ACEM 22. The procedure involved the addition of the spent, 

1 Ashley Franks Department oflmmunology and Bacteriology University of New South Wales 
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F1gure 4.1 Growth curve of algicidal bacteria measured as absorbance (OD 660) at 22 °C. 
Visually gauging the growth made it feasible to ascertain when log stage had been reached. 

Table 4. 3 Comparison of bacterial growth stage and the effect of algicidal activity on G. 
catenatum. 

Algicidal ACEM 1 ACEM4 · · ACEM 20 ACEM 21 ACEM 22 ACEM 32 
_isolate 

Growth phase 

Early Log 

Mid Log 50 % cell lysis 10-30 % cell < 10 % cell 10-30 % cell 10-30 % cell 
and cell lysis. lysis and lysis. lysis. 
rounding cell 

r:pundmg 

Stationary <:: 80 % cell <:: 80 % cell 50 %lysis ;::: 80 % lysis ;::: 80 % lysis 50 % lysis 
lysis lysis and cell and cell 

rounding rounding 
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filtered supernatant of another algicidal bacteria to ACEM 22. This method was 

also tested for E. coli and other environmental strains to identify the possibility of 

initiating algicidal activity in species that were not algicidal but this did not occur. 

Algicidal activity could be lost in ACEM 1 once the culture had been continuously 

agitated for 3 to 4 days. After this period, the media would appear clear, as 

though no growth had occurred. Autolysis is a possible cause of this observation. 

The algicidal activity of this broth was severely effected and became equivalent to 

the culture in early log phase. The other algicidal isolates did not exhibit autolysis 

when grown under similar-conditions. 

4.7 Stability of algicidal components 

The bacterial filtrate for all isolates could be left for a week at room temperature 

(25 °C) or 2-3 months at 2-8 °C with algicidal activity not notice~bly affected. 

Longer periods than this showed a gradual reduction of activity. The supernatant 

could also be frozen at -20 °C for 6 months without any observable effect, 

however, after 12 months, algicidal activity had noticeably deteriorated. The 

ability of the supernatant to retain its algicidal activity after heat treatment was also 

tested. All supernatants were algicidal after 30 minutes at 38 °C, 15 minutes at 55 

°C, 10 minutes at 80 °C and 10 minutes at.120 °C (autoclave). The mode of algal 

lysis appeared to be the same as before heating (i.e. it did not appear to be a toxic 

artefact caused by heating). Overall, this indicates that the algicidal mechanism in 

each of the bacteria was not enzyrr:iatic. 

4.8 Characterisation of algicidal components 

Algicidal components of ACEM 1 and ACEM 4 were found to be less than 5,000 

MU. Analysis by HPLC-MS-MS establish'ed that the compounds were highly 

polar and of low molecular weight (214 lvfW). The algicidal compounds eluted in 

the first 2 minutes of the elution gradient (water) using the C18 reverse phase 

column. 
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HPLC analysis by means of the normal phase column resulted in the compounds 

being retained on the column. A derivatisation process would be required to elute 

the algicidal compounds. When tested, the derivatisation processes caused 

algicidal activity to be lost. Use of ion exchange chromatography, Sephadex 

columns, XAD columns also proved unsuccessful in isolating and or concentrating 

this fraction. 

4.9 Quorum sensing 

Chemicals such as acetylated homoserinelactones (AHL) are used by bacteria to 

monitor their population density and were possible mechanisms in the algicidal 

activity of the isolates. Algicidal isolates were therefore tested for the two 

different types of signal molecules that trigger luminescence in Vibrio harveyi . . 

One of these signal molecules is turned on by the production of AHL. The tests 

using Agrobacterium tuniefaciens, to determine the presence of AHL were 

negative for all algicidal species. This test is the most sensitive for 9-etection of 

AHL and therefore suggests that the typical pathway for gene regulation via AHL 

does not induce the algicidal or other bioactive mechanisms in these species. 

The second signal molecule AI-2, controls and induces the Lux gene in a similar 

way to AHL but is not yet fully understood. This pathway has a role in the 

mechanism by which these bacteria regulate functions such as quorum sensing. 

The responder has similar actions to AHL, in that it turns on the same genes, but 

differs from the gene that causes the formation of AHL. The test is difficult to 

interpret with strains other than those traditionally used because environmental 

isolates can be highly variable in behaviour. The algicidal strains all show some 

activation of the luminescence gene in comparison to the negative control (Figure 

4.2). Measurements of bioluminescence during the 2nct and 3rct hour demonstrate 

that the algicidal bacterial cultures have stabilised (Figure 4.2). In particular, 

strong signals were observed for the gram· variable and gram-positive species 
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ACEM 22 and ACEM 32 respectively; ACEM 22 at late and mid log phase and 

ACEM 32 at late log phase. ACEM 20 and ACEM 1 demonstrated good activity 

for all growth phases. The results indicate that for the algicidal species the bacteria 

appear to be using this mechanism at mid to late stage of log phase. 

4.1 O Specificity of algicidal isolates 

Algicidal supernatants were tested on a range of algal and heterotrophic species 

previously used in studies of algicidal bacteria (Table 4.4). The main algal species 

of interest was G. caten.atum as this is the only toxic alga in the Huon Estuary. 

Algicidal components in all 5 bacterial species were extracellular, although both 

ACEM 21 and ACEM 1 demonstrated the capability to attack directly (Table 4.4). 

All algicidal bacteria except ACEM 22 were also capable of predatory swarming. 

The algicidal effect occurred within 15 minutes of adding the filtered supernatant 

to the dinoflagellate culture and total lysis was usually within 2 hours. Bacterial 

numbers required for algal lysis were generally 106
-
8 cells/I (Figure 4.3). 
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Figure 4 .3 Concentration (cells/]) required for bacterial species to cause algicidal effect on G. 
catenatum within 3 hours 
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Table 4.4 Mode of attack of algicidal species D: direct attack; I: indirect attack. IR indirect 
attack with recovery, ne: no effect. (Table adapted from Doucette et al. 1998). Grey font 
indicates published results dark font indicates results undertaken in this thesis. * Indicates 
Tasmanian endemic species. 

Algicidal bacterial genera (') m ~ OJ ~ e1 ~ (!) Cii m 
~ a (!) (") 

Ci ?3 :::i c:: ~ 0 .g- 3 ?- 0- (") 

0 "' m 0 
:::i- (") (") m :::i Qi (") m 'al "' - ~- 5i 

3 

Bacterial species/stramt 1 2 3 20 21 5 15 6 1 4 32 9 10 12 22 

Host Algae 

Diatoms 

Skeletonoma costatum D 0 ne ne I ne ne ne ne r.e ne ~1a ne 

Chaetoceros d1dymum f) ne ne ' no ne ne ne ' 
Ditylum brightwelfli n" f) no qri. ;-)" ~ 

Eucampia zodiacus 0 I 

Mixed Antarctic diatoms ne ne ne ne ne no ne 

Thalass1os1ra sp f) n I ?10 '10 

Raphidophytes 

Chattonella ant1qua ne 0 D I ne '18 

Chattone//a marina D '10 I D/I l ! ne !)/! I I r,e I 

Heterosigma akash1wo D qe ne ne 0/1 ne ne ! 

F1brocapsa japonica l) ne 

Dinoflagellates 

Gymnodinium catenatum ne D :1e I D/1 I I D/1 I I ! ! l I 

G. catenatum cysts ne ne ne 

Scrippsiella ne 

Protocerat1um reticu/atum * ne ne ne ne ne ne 

Po/arg/ac10/a (polar dmoflagellate) I 0/1 I I I I 

Alexandnum catenalla l l 

Gymnodm1um sanguineum [}II 

Gyrodimum sp. * ne IR. IR IR ne ne 

Dinophyta* ne ne I I ne 

Gymnoid* I I I I I I 

Alexandnum mmutum ne I IH/I I I ne 

A. minutum cysts ne ne ne 

Pras1nophyte (Mantoniella) ne 
Crptophyte (Chroomonas) ll~' 

Cyanobacteria (Oscillatona) no 

Thraustochytrida ne ne ne ne ne 

Rotifer ne ne ne ne ne 

t 1 Mitsutani et al. (1992) 2 Imai et al. (1993) 3 Furuki et al. (1991) 20 (ACEM 20), 21 (ACEM21), 
4 (ACEM 4), 32 (ACEM 32), 22 (ACEM 22) Skerratt 5 Imai et al. (1995) 6, 10, 12 Yoshinga et al. 
(1995) 7 Lovejoy et al. (1998) 9 Fukami et al. (1991) 14 Lee et al. 2000 
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All bacterial supernatants apart from ACEM 22 lysed the vegetative forms of the 

toxic flagellates and dinoflagellates G. catenatum; Chattonella marina and 

Alexandrium minutuni. This is in contrast to the study by Lovejoy et al. ( 1998) in 

which A. minutum cells rounded but recovered after 24 hours. The variation 

between this study and the study of Lovejoy et al. (1998) may be due to the 

maintenance of bacterial cultures in this study on full strength marine agar or liquid 

media before completion of the biocidal assays at 1/lOth strength. In the 

experiment by Lovejoy et al. (1998), ACEM 1 was maintained in 1/lOth strength 

MA. ACEM 22 lysed G. catenatum and C. marina, but not A. minutum. No 

effect was observed on any of the diatoms tested, the rotifer or thraustokytrid · 

species. No effect was observed on any of the cyst stages of the life cycle of A. 

minutum or G. catenatum (see section 4.3.5 and Table 4.4). 

Algicidal activity against four endemic Tasmanian dinoflagellates was tested (Table 

4.4). The algicidal components were deleterious for two dinoflagellate species, 

however, two of these species recovered and survived after treatment. One 

endemic dinoflagellate species, Protoceratium reticulatum was almost unaffected 

and no cells lysed. 

ACEM 20 and ACEM 21 are both members of the CFB cluster and had unusual 

algicidal activity. Gliding bacteria typically use a direct rather than indirect mode 

of attack. ACEM 21, a strain of Cellulophaga lytica utilised gliding and swarming 

(ie direct attacks) and also produced exudates that were capable of lysing the 

algae. ACEM 20, the other Cellulophaga species isolated, was capable of 

swarming. It did not use obvious, direct methods of predatory attack, inducing 

algicidal lysis via extracellular exudates. ACEM 1 also used predatory methods 

although this was most apparent once the algal cells had started leaking and 

bacterial cells started to swarm. 

The mode of lysis using extracellular compounds was similar for all algicidal 

bacteria and to published data for strain ACEM 1 (Lovejoy et al. 1998). After 15 

minutes, chain-forming species such as G. catenatum would separate into single 

cells. Single cells would then start to show cell rounding and thinning of the cell 

wall (30-45 minutes) followed by lysis of the cell wall at 1.5 to 4 hours. During 
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the period of cell rounding, some cells would not become rounded for up to .an 

hour whereas others would have started to lyse. Occasionally large temporary 

cysts would form in cultures that contained algicidal bacteria ~nd these would also 

eventually lyse. In another study, temporary resting cysts formed on the addition 

of algicidal bacteria to vegetative dinoflagellate cells (Nagasaki et al. 2000). 

Figure 4.4 shows algal lysis over time. Figure 4.4a was taken before the addition 

of the supernatant. Cells appeared to remain unaffected for 2 to 10 minutes after 

supernatant addition. Figure 4.4b shows the G. catenatum cells separating. Figure 

4.4c shows a single unrounded cell of G. catenatum still unaffected by exposure to 

the algicidal component surrounded by other rounded cells. Figure 4.4d . 

demonstrates the effect of adding the algicidal bacteria to the algal culture after a 

minimum of 1.5 hours. 

When bacterial cells of ACEM 21 and ACEM· 1 are added to G. catenatum. cells, 

swarming is apparent to the degree that the algal cells are physically moved around 

the field of view. The swarming effect was not apparent if the supernatant was 

added alone, but cell lysis occurred within a similar time frame. If bacteria were 

added with the liquid media, greater disintegration of cells (not lysis) was observed 

in all cultures apart from those with ACEM 22 added. The physical breakdown of 

the algal cells appeared to enable the bacterial swarm to become more effective 

once the integrity of the algal cell wall was broken. 
'-

Of the additional Pseudoalteronwnas species tested for algicidal activity against C. 

m.arina and G. catenatuni, only 3 species lysed the two toxic algal species. These 

were P. rubra, P. tunicata and P. ulvae. 
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To determine whether the occurrence of algicidal bacteria was a comm.on 

occurrence in other marine environments, exudates of the Antarctic sea-ice 

bacteria were tested on a mixed culture of Antarctic diatoms as well as G. 

catenatwn and C. marina. No Antarctic bacterial isolates showed any algicidal 

effect, although 3 showed a detrimental but reversible effect. All algicidal bacteria 

from the Huon Estuary lysed the polar dinoflagellate Polarella glacialis no effect 

was observed in the mixed Antarctic diatom culture (Table 4.4). 

4.10.1 Excystment 

A. minutum 

A. niinutwn cysts were not affected by addition of the bacteria with supernatant. 

The cysts proved viable and excysted. In the culture containing ACEM 1, once the 

vegetative cells of A. minutum excysted they lysed and this is thought to be caused 

by the continuing presence of the algicidal exudates added from ACEM 1. 

Only white colonies (4.6 x 1012 ± 1.9 x 107/1) were present a week_ after the 

addition of ACEM 22 exudate plus cells which infers that the original bacterial 

population from the cyst culture dominated. ACEM 1 was dominant a week after 

addition to the A. minutum cysts although white colonies-were also present in high 

proportions (-50 % ). Bacterial concentrations in the cyst culture were less after a 

week in the ACEM 1 treatment than those in ACEM 22 treatment (3.2 x 107 ± 1.1 

x 107/1). 

It was difficult to estimate the presence of 17-CEM 21 due to the gliding nature of 

this isolate on plates. It was present a week after addition to the cyst culture 

although white colonies were present at higher proportions. Unlike ACEM 1 

vegetative cells of A. minutum did not lyse after excystment in the cultures with 

ACEM 21 or ACEM 22 added. 
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G. catenatum 

No major effect was noted for any of the bacterial cultures on the viability of cysts 

or a decrease in excystment of G. catenatwn (Figure 4.5). The supernatant 

demonstrated no treatment effect on the viability of cysts. 

Similar to the result of the excystment experiment with A. m.inutum, once the 

vegetative cells of G. catenatum excysted they lysed in the culture containing 

ACEM 1 cells or 200 µl supernatant. 

4.10.2 Encystment 

Promotion of encystment in G. catenatum was not observed when using 

supernatant or bacterial cultures from the algicidal strains ACEM 1, ACEM 21 and 

ACEM 22 (Figure 4.6). 

Overall, there was no positive effect on encystment of G. catenatum by the 

addition of the algicidal bacteria or by adding low levels of algicidal supernatant 

that did not kill the vegetative cells ( < 200 µl). Both ACEM 21 and ACEM 1 

killed the vegetative cells at concentrations of 100 µI. Vegetative cells were also 

negatively affected by the addition of higher concentrations of 11101
h strength 

marine broth (500 µland 1000 µl) with both sets of duplicate cultures declining 

relatively early. 
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Figure 4.5 Variation in the excystment of G. catenatum cysts after addition of various 
concentrations of the bacterial cultures: ACEM 22, ACEM 21 and ACEM 1 and bacterial media and 
algal controls 
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4.11 Larval attachment 

The algicidal species were tested for the ability to kill or inhibit barnacle and 

hydroid larval settlement (Table 4.5). Only one strain, ACEM 4, inhibited barnacle 

settlement but it did not kill the barnacle or hydroid larvae and it did not inhibit 

hydroid settlement. 

Table 4.5: Percentage settlement or germination of barnacle and hydroid larvae against a biofilm 
consisting of the algicidal bacteria 

Bacterial isolate 
used for biofilm 

ACEM 21 

ACEM 20 

ACEM 32 

ACEM 22 

ACEM 1 

ACEM4 

No b1ofilm 

Percentage settlement or germination 

(n=3) 

B?,rnacle larvae Hydroids larvae 

86.1±3.7 79.8±5.4 

82.6±9.3 70.0±10.8 

72.6±1.8 57.5±28.6 

80.6±4.5 81.8±1.9 

71.3±7.4 66.3±9.4 

3.1±4.4 80.5±7.1 

81.6±7.8 8.8±6.3 

4.12 Addition of bacterial cells to G. catenatum cultures 

ACEM 1 and ACEM 4 cells were added without their growth media and at low 

cell numbers to logarithmic phase G. catenatum. vegetative cells. Both ACEM 1 

and ACEM 4 were algicidal but bacterial cells _were added.at concentrations that 

would not immediately kill the alga (105 cells/I). The initial G. catenatum culture 

was not axenic. Before the addition of the algicidal bacteria, the bacterial 

population of the culture was 107 cells/I (Figure 4.7). All the culturable colonies 

from this algal culture were tan with a clear halo. The presence or absence of the 

added algicidal bacteria were then observed and enumerated over the following 

days through observation of morphological variation. (Figure 4.7, Table 4.6). 
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Table 4.6 Colony pigmentation variations observed for the bacteria in G. catenatum cultures over . 
time after the addition of ACEM 1 and ACEM 4 log phase cells. 

Colony Bacteria present After 24 hours After 1 week ' After 1 month 
pigmentation in G. catenatum 

culture before 
bacteria added 

G. catenatum with 100 % tan ACEM 1 90%ACEM1 50 % ACEM 1 
ACEM 1 added 10 % cream 50 % white or tan 

G. catenatum with 100 % tan 10 % tan 30 %ACEM 4 100 % white 
ACEM 4 added 50 % white 70 % white 

40 % ACEM 4 

G. catenatum with 100 % tan 100 % tan 30 % white 50 % white 
seawater added 70 % tan 50 % tan 

G. catenatum 100 % tan 100 % tan 100 % tan 100 % tan 
alone 

A day after the addition of ACEM 1 cells to the G. catenatum culture, all colonies 

were typical of ACEM 1 and at cell concentrations high enough to be algicidal 

(Figures 4.1 and 4.7). However, G. catenatum cultures were unaffected. 

Bacterial numbers in the G. catenatum culture containing ACEM 4 after one day 

were mostly white with only 10 % being the original tan pigmented colonies (Table 

4.6). The seawater control, and the G. catenatum control contained the original 

tan colonies. ACEM 1 and ACEM 4 were present throughout the study in the 

control of algal media and bacteria although many ACEM 4 colonies were white or 

light green. This infers that the G. catenatum culture with ACEM 4 added also _ 

contained ACEM 4 but it was not expressing the green pigment. The white 

colonies were not tested for algicidal activity or the ability to return back to their 

original green pigment. 

A week later the G. catenatum culture with ACEM 1 cells added contained ACEM 

1-like colonies which were dark yellow. The control containing ACEM 1 in algal 

media exhibited these same dark yellow colonies. This pigmentation was a 

common feature for ACEM 1 under nutrient stress. The G. catenatuni culture 

containing ACEM 4 and algal media control contained darker green as well as light 
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green and white colonies. The G. catenatum controls had the original tan 

pigmented morphotype. G. catenatum in all cultures remained healthy. 

A month after ACEM 1 was added to G.- catenatum culture approximately 50 % of 

CFU were ACEM J (Table 4.6). The ACEM 4 treated culture contained higher 

concentrations of bacteria than either ACEM 1 or the algal controls at this time. A 

week later all G. catenatwn cultures except the culture that contained ACEM 1 

had lost viability. The antibiotic properties of ACEM 1 (chapter 8) were not 

affected by the lack of algicidal activity and may have assisted the G. catenatum 

culture to survive longer than the controls. The experiment was completed 3 times 

increasing the bacterial cell numbers each time. The second experiment is shown in 

Figure 4.7 with initial addition of bacterial cells at 107 cells/I. The G. catenatum 

culture with ACEM 1 added was always the last to lose viability unless supernatant 

was added at concentrations that could kill the alga. 

4.13 Variation in algicidal activity of bacteria 

Algicidal activity varied dramatically for the algicidal-like colonies isolated from 

the estuary at different sampling dates. Up to 90 % of the algicidal-like isolates 

were algicidal for one date yet similar isolates in ihe following weeks showed no 

such activity (Figure 4.8). Interestingly, many algicidal-like isolates were not 

"algicidal" at the peak of a G. catenatum bloom even though they were present 

before and after the bloom declined. 

Algicidal-like isolates were present on each of the sampling dates, and although the 

proportions of the isolates changed, similar species were observed in consecutive 

weeks. These species also varied in their algicidal activity. For example, the 

spreading iridescent orange ACEM 21-like isolate was algicidal whenever present. 

In comparison, gram-positive ACEM 22-like orange isolates that occurred at the 

peak of the bloom were not algicidal at this time although similar isolates were 

algicidal ~arlier and later. It can be surmised that particular strains or 

environmental conditions are required for algicidal activity to occur. 
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Figure 4.8 Algicidal-like bacteria isolated from the field over the season showing algicidal 
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catenatum counts Parker 2001). 
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Discussion 

Many bacterial secondary metabolites, bioactive and algicidal compounds, are only 

proouced during stationary or late log phase (Fukami et al. 1992, Lovejoy et al. 

1998, Hukami et al. 1992). All algicidal species apart from ACEM 32, produced 

algicidal compounds in both late log phase and stationary phase. Previously, 

ACEM 1 was reported to produce algicidal components during log phase (17 °C, 

sample taken at 16 hours) (Lovejoy 'et al. 1998). However because of the rapid 

growth of this strain, it is probable that the majority of cells would have already 

been in stationary phase. The rapid growth rates of all the algicidal bacteria in this 

study indicate that all strains have the ability to rapidly take advantage of su~table 

conditions in the natural environment should they occur. 

This study is the first time gram-positive or gram-variable species have been 

reported as algicidal. ACEM 22 was the only species that did not show swarming 

activity. ACEM 32 only produced algicidal exudates in stationary phase. These 

two species are also unusual because most algicidal bacteria are from the CFB 

cluster or the genus Pseudoalteromonas. It is possible that descriptions of 

algicidal species to date have been influenced by bacterial culturability. Some CFB 

and many Pseudoalteronionas are easy to culture so these species are the first to 

be identified as algicidal. As research on algicidal bacteria continues, it is possible 

algicidal species will be found to be widespread and common in other bacterial 

genera. 

Morphological characteristics such as formation of biofilms or the ability to rapidly 

move throughout liquid media are effective methods of survival for algicidal 

bacteria. The swarming capacity of ACEM 1 was first observed by Lovejoy et al. 

(1998), and although not an unusual bacterial ability, the swarming attacks of 

ACEM 21 and ACEM 1 were physically aggressive in comparison with ACEM 20, 

ACEM 4 and ACEM 32. Rapid movement may enable the bacteria to more 

effectively access nutrients in the marine environment which can be a p_lace of 

patchy nutrient availability. 
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In other studies of algicidal Cellulophaga-like species, all but one have shown 

predatory mechanisms only. Interestingly, both Cellulophaga species in this study 

produced an algicidal exudate. In the case of ACEM 21, this was in addition to a 

predatory mechanism. Recently, another Cellulophaga species unrelated to the 

two described in this study (89 % 16S rDNA sequence similarity to ACEM 20) 

was also reported to use extracellular mechanisms (G. Doucette, personal 

communication). 

The results of the heating experiment do contradict previously published data on 

ACEM l that state after microwaving, algicidal activity disappeared from ACEM 1 

(Lovejoy et al. 1998). The differences between the two results can potentially be 

explained by long storage time in culture ( 4 years) affecting aspects of algicidal 

activity. It was suggested that with 15 minutes of autoclaving the chemicals would 

react and form a more potent compound that would kill the alga rather than using 

exudate-mediated lysis. Close tandem experiments with autoclaved and 

unautoclaved samples indicated no observable differences in the way the cells 

reacted. The tests at 55 °C and 80 °C support this finding and suggest that the 

lytic reaction is unchanged as a result of heating. 

Pigments were not the algicidal component as non-pigmented colonies exhibited 

algicidal activity and were shown to be capable of reverting back to their original 

pigmented state. Loss of bioactive components in relation to complete pigment 

loss has been previously observed in other bacterial studies where non-pigmented 

mutants of algicidal bacteria were studied (Egan et al. 2000b). They found that 

unpigmented cells occasionally formed that were not algicidal and that remained 

unpigmented. The results of Egan et al. (2000b) and this study infers that pigment 

formation may be associated with algicidal activity, but does not have to be 

expressed for the algicidal activity to exist. 

No algicidal bacteria showed the ability to produce AHL. Many bioactive bacteria 

do not have AHL mechanisms, instead they appear to use an alternative induction 

pathway which can activate at lower cell concentrations than required for AHL 

(Bassler 1999). This second group of transponders in gram-negative bacteria were 

recently identified as a group of furanones by researchers (B. Bassler pers. comm.) 
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but owing to patent submission, their structures have not yet been published. This 

alternative AI-2 mechanism may play a role in switching on algicidal activity for 

the gram-negative bacteria once the bacteria reaches a specific cell density. The 

results indicate moderate to good induction of this second mechanism when 

compared to the negative control. ACEM 1 demonstrated a very good response 

for early log phase and ACEM 21 for mid log phase. 

Gram-positive bacteria do not generally employ AHL as signals. They secrete 

processed peptide signalling molecules via a dedicated exporter protein (Bassler 

1999). For example in B. subtilis, two peptide signals allow the bacteria to choose 

between competence for DNA uptake and sporulation. The secretion mechanics of 

the export of the peptides has not been identified (Bassler 1999). The positive 

results in the autoinduction experiment for ACEM 32 and ACEM 22 is likely to be 

as a result of this gram-positive quorum signalling mechanism. 

Biofilms in the marine environment generally commence with bacterial attachment. 

Diatoms, oyster or barnacle larvae and other microorganisms attach to the bacterial 

biofilm using them as a nutrient source and thus producing more complex biofilms. 

B iofilm formation can be unwelcome, an example being the fouling of boat hulls. 

Some Pseudoalteronionas species can inhibit barnacle attachment as well as kill 

barnacle and hydroid larvae (P. tunicata, Holmstrom and Kjelleberg 1992 and P. 

ulvae Egan et al. 2001a and b). None of the algicidal species in this study 

demonstrated any ability to kill barnacle or hydroid larvae and only ACEM 4 

showe.d the ability to inhibit settlement. ACEM 4 is the closest relative of P. 

tunicata, a species that shows strong antifouling activity, inhibits the barnacle and 

hydroid larvae and is also toxic and kills both (Holmstrom et al. 1992). ACEM 4 

inhibits the barnacle larvae by the use of a non-toxic method and therefore the 

mode of action would appear to differ from that used by P. tunicata. P. ulvae and 

P. tunicata also possessed algicidal activity. Inhibition of larval settlement is 

therefore the result of a different mechanism than algicidal activity. 

Interestingly, both P. ulvae and P. tunicata possess the same algicidal activity 

against G. catenatwn and C. marina as ACEM 1 and ACEM 4. P. rubra was the 

only other Pseudoalteronionas species to show algicidal activity and cause algal 
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lysis. The genus Pseudoalteromonas is known for its many bioactive_ compounds 

(Mikhailov and Ivanova et al. 1994, Gauthier 1976,) so this result is not surprising. 

Other Pseudoalteromonas species tested such as P. luteoviolacea (McCarthy et al. 

1994), P. aurantia (Gauthier and Breittmayer 1979) and P. piscicida (Buck et al. 
c 

1963) have all produced antibiotic or bioactive compounds. In t}1is study they did 

not c;lemonstrate any algicidal activity. Given the nature of these algicidal 

components these results may be caused by bacterial strains in culture collections 

losing algicidal viability over time. 

Elucidation-of algal lytic compounds has been elusive for 10 years. Researchers in 

the area have put effort into attempts at their isolation, purification and 

characterisation (Doucette et al. 1998, Dakhama et al. 1993, Baker and Herson 

1978). Part of the difficulty in isolation is the highly polar nature of the 

compounds and the loss or degradation of the bioactive components when trying 

to concentrate them or form derivatives. Algicidal compounds and their 

characteristics vary markedly across the many species of algicidal bacteria 

(Doucette et al. 1998). The one similarity that appears to hold true is that all are 

highly polar which would make them readily diffusible in the marine environment. 

The compounds can be heat labile (Baker and Herson 1978) or heat tolerant 

(Dakhama et al. 1993), of a large (Lee et al. 2000) or small MW (Fukami et al. 

1992, Dakhama et al. 1993), made up of a number of compounds or only one, and 

can be species specific or non-specific in their mode of action (Doucette et al. 

1998). The algicidal compounds in ACEM 1 were a small molecular weight (<300 

MW), highly polar and heat stable. Algicidal compounds in the other 5 species 

were also heat tolerant, although all lost activity if left for an extended period of 

time. 

Understanding the association with and potential for control of toxic algal blooms 

has directed most algicidal bacteria research (Nagasaki et al. 2000, Doucette et al. 

1999., Yoshinaga et al. 1999, Holmstrom et al. 1999, Kim et al. 1998, Lovejoy et 

·az. 1998, Doucette et al. 1998, Imai et al. 1993, Stewart and Brown 1969). Very 

little is known about algicidal bacteria that affect non-toxic algal blooms. There is 

also the ques}ion of how common algicidal bacteria are and whether the algicidal 
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activity of these species occurs continuously or sporadically in the marine 

environment. 

All algicidal species investigated in this study employed indirect methods of lysing 

algal cells and two isolates also used direct attack. Achieving a bacterial density 

high enough to induce lysis of dinoflagellate vegetative cells is possible when 

algicidal bacteria dominate the bacterial population in the Huon Estuary. 

Attachment of bacteria to marine snow or algal cells also creates a zone of 

artificially high bacterial numbers and thus higher potential for more effective 

algicidal activity. 

Although research on algicidal bacteria and their effect on the vegetative life-stages 

of G. catenatwn and other cyst forming dinoflagellates has been completed 

(Lovejoy et al. 1998), no research has been published on the effects on the viability 

of the cyst life-stage. If algicidal bacteria are to be effective against toxic 

dinoflagellate blooms, it is this life-stage that would be the most valuable to 

eliminate. 

The algicidal bacteria examined in this study do not affect the encystment or 

excystment of the cyst life stage of either G. catenatum or A. niinutum. The cyst 

lifestage offers the alga a high degree of protection from environmental extremes 

and lack of nutrients as well as algicidal compounds (Anderson et al. 1984). For 

practical purposes, treatment with ethanol or H202 can destroy the cyst (Parker, 

Hallegraeff pers. corns.). Due to this excellent method of protection and the 

algicidal mechanisms described so far, it is doubtful that algicidal bacteria in the 

water column would be effective against dinoflagellate cysts. However, in the 

sediment, where cyst seedbeds form, different chemical conditions occur than those 

in the water column. Processes such as microbial fermentation and thus the 

production of ethanol or other metabolites may enable some bacterial species to be 

effective against the cyst lifestage. 

The algicidal compounds examined in this study do not appear to initiate cyst 

formation in G. catenatum. Encystment would seem a natural defence reaction of 

the alga when these compounds were present, however this was not shown to 
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occur in this study. Adachi et al. (1999) isolated a number of unidentified non­

algicidal bacteria (analysed by means of the most probable number (MPN)) during 

a bloom of Alexandrium tamarense. They reported that when these bacteria were 

added to a culture of Alexandrium catenella there was a positive correlation with 

encystment. The comparison of the A. tamarense bloom and encystment of a 

different species (A. catenalla), while of interest does not fully discount other 

possible causes of encystment in the natural environment, particularly as 

encystment was not monitored in the original bloom of A. tamarense. 

The inability of algicidal bacteria to kill or effect the cyst life stage of G catenatum 

or A. niinutum is of major significance in the potential use of algicidal bacteria in 

the marine environment as a method of controlling harmful algal blooms. The 

bacterial extracellular components or the active compound could be added to kill 

vegetative cells. However, the addition of algicidal bacteria to seed the local 

bacterial community, is less likely to be successful. For experiments with ACEM 1 

and ACEM 4 in this study, the results indicate that the bacterial strain, or the 

environment may control the algicidal mechanism. Bacteria added at low 

concentrations without their supernatant did not affect the algal culture, even 

though ACEM 1 appeared to dominate and be at concentrations high enough to 

create an algicidal effect after 24 hours. Similar results were observed with the 

algicidal isolates tested in the field. Isolates demonstrated algicidal activity on one 

sampling date yet no activity on the next indicating that there may be an· 

environmental or strain preference trigger that occurs in the natural environment. 

Algicidal bacteria appear to be common in the marine environment. Whether this 

algicidal activity is continuous remains in question. There has been a general 

assumption that these bacteria are releasing their lysing components in the natural 

ecosystem either constantly or once a certain cell density has been reached. The 

research in this thesis suggests that some algicidal bacteria may not always exude 

algicidal components, and may have periods in the natural environment in which 
~ 

they are non-algicidal. The reason for this variation may be environmental or be 

caused by strain variation. Detection of these bacteria in the marine environment 

using molecular mechanisms is therefore useful to assess a "potential" level of 

algicidal ability. Some algicidal bacteria such as those belonging to the genus 
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Pseudoalteromonas have been shown to produce many bioactive compounds that 

are not algicidal. In the marine environment, there is likely to be a greater 

metabolic benefit for these different bioactive mechanisms to be activated 

individually or as the bacteria requires, rather than simultaneously and continually. 

Acknowledgements 

The cyst experiments were completed in collaboration with N. Parker a PhD 

student at the University of Tasmania. 

109 



Lipid biomarkers - Chapter 5 ----·---

5. Identification of algal and bacterial genera 

in the Huon Estuary using lipid biomarkers 

Summary 

An examination of the lipid and fatty acid profiles of the Huon Estuary microbial 

community was undertaken for samples collected from October 1998 to June 

1999. Specifically, fatty acid analysis was used to identify changes in bacterial and 

algal communities located at different depths in the marine environment. Particular 

attention was paid to variations in microbiota and their association with blooms of 

the harmful alga Gymnodinium catenatum. 

Analysis of branched chain fatty acids (BCFA) indicated that the Cytophaga­

Flavobacterium.-Bacteriodes (CFB) cluster was significant in the microbial 

degradation of algal blooms in the estuary. Results from fatty acid analyses 

suggested that the CFB cluster was more common in the photic zone and, during 

the chlorophyll maximum. Higher bacterial numbers with lower BCFA 

concentrations indicated that 'Y proteobacteria or other bacterial species without 

BCFA may be more abundant in the deeper, marine influenced waters. The fatty 

acid profiles, particularly the occurrence and proportions of BCF A, also suggest 

periods of rapid species change in the microbial community between the major 

algal blooms. A recurring seasonal BCFA profile was observed for all sites that 

were dominated by iso-BCFA. 

Results from fatty acid analyses effectively pinpointed algal blooms at specific 

depths and dates. During the two G. catenatum blooms in 1999, estimation of 

algal abundance using total fatty acid concentrations closely agreed with 

microscopic enumeration of G. catenatum cell numbers. Lipid class analysis also 

indicated the physiological status of the three algal species during tpeir bloom 

periods. An increase in degradation and storage products was apparent once the 

bloom had declined while higher levels of membrane components occurred during 

the growth stage. 
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Fatty acid analysis differentiated between different bacterial isolates in culture and 

in the marine environment. Combined with other techniques, use of these signature 

compounds gives insight into the marine microbial community as a whole and the 

microbial relationships involved in algal blooms. 

Introduction 

Signature lipids and fatty acid profiles can act as bacterial or algal chemical 

markers, and have been used to investigate many m~rine environments such as 

deep-sea hydrothermal vents, sewage outfalls, sea-ice, water column, wetlands and 

sediments (e.g. Mergaert et al. 2001, Marteinsson et al. 1999, Boon et al. 1996, 

Skerratt et al. 1995, Green et al. 1992,.Nichols et al. 1990, White 1983). Specific 

fatty acid profiles are often used in bacterial taxonomy to identify and differentiate 

between bacterial genera and species. Although other biochemical and molecular 

methods can quantify the total bacterial biomass or bacterial community 

composition, they provide limited information about species interaction and the 

microbial popijlation as a whole. 

In the marine environment lipids are derived from many sources. Large organisms 

contain higher lipid concentrations per individual than smaller organisms, however, 

small organisms may dominate the biomass in field samples because of higher 

"numbers. Branched chain fatty acids (BCF A) are only produced by bacteria, so in 

marine waters they can be used to gain insight into the microbial community 

structure (Edwards et al. 2001, Harvey and Macko 1997, Wakeham 1995, Gillan 

et al. 19 8 3). Algal species also contain signature lipids that can differentiate 

between groups such as diatoms and dinoflagellates. 

r 

Measurement of the total lipid content and lipid class composition all?ws an 

estimate of the biomass and physiological status of algal blooms over a sampling 

period. High levels of polar lipid indicate a growth stage in the community, 

whether it is diatom or flagellate. High proportions of triacylglycerol indicate a 

community past its growing peak, where the algae are storing lipid, but the 

community is not undergoing degradation. 
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Fatty acid profiles, including the use of BCFA analysis, can identify changes in the 

bacterial community between discrete samples. Variation i;n 20:5(n-3) and 22:6(n-

3) may indicate a change in the algal community from diatoms to dinoflagellates. 

C18 PUPA can be used in conjunction with other fatty acid markers to identity 

heterotrophs or diatom species. Variation in ratios of the various fatty acids can 

also give an understanding of changes in community structure. 

Although variation in lipid profiles may occur because of significant changes in 

culture conditions, there is as yet little published evidence for such large shifts in 

nature. The use of lipid signatures has also been validated in ma.riy environmental 

studies (Edwards et al. 2001, Meziane and Tsuchiya 2000, Boon et al. 1996, 

Skerratt et al. 1995, Wakeham 1995, Mancuso et al. 1990). Culture conditions 

can vary dramatically, although the natural environment would be expected to 

restrict the survival of specific microbial strains to much narrower conditions of 

growth (White and Findlay 1988). 

Signature lipids therefore can identify and quantify species present within a marine 

or estuarine community. Analysis of a single water sample can provide a lipid 

"snapshot" of the community structure and can show the relationship between 

diatoms, dinoflagellates and bacteria. Over a time series, these signature lipid 

snapshots can be useful for understanding the influence of seasonal and 

environmental factors. 

Objectives of the research reported in this chapter were to: 

•!• identify the characteristic fatty acids of the dominant culturable bacterial 

population and group them into bacterial genera or clusters; 

•!• group algicidal bacteria within these culturable populations; 

•!• di-stinguish algal blooms and bacterial communities in the marine environment 

using fatty acid analysis; 

•!• determine seasonal changes in the physiological status of the marine 

community by examining membrane and storage lipid components; 
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•!• analyse the marine community by studying different fatty acid groups: 

polyunsaturated fatty acids (PUFA), branched chain fatty acids (BCFA), 

monounsaturated fatty acids (MUFA) and principal components analysis 

(PCA). 

Methods 

Methods details and complementary results for the same sampling sites, dates, and 

depths as described in this chapter are discussed in chapter 2 (physical, chemical 

and algal abundance), chapter 3 (morphology) and chapter 7 (field identification of 

bacterial species and fluorescence in situ hybridisation (FISH)). 

5.1 Collection and culture of individual bacterial isolates 

Water samples for bacterial isolation were collected in autoclaved 21 Schott 

bottles. Samp~es were collected from sites throughout the Huon Estuary and 

placed in the dark at ambient river water temperature for transfer to the laboratory. 

Water samples were plated onto solid marine agar_media (see Methods chapter 2) 

and incubated at 20 °C for 1 to 2 weeks. Individual bacterial colonies were 

isolated and streaked onto marine agar to obtain a bacterial monoculture. The 

purified isolates were incubated at 20 °C for one week before lipid analyses. 

Colonies were placed in test tubes for transmethylation (section 5.4). Replicate 

isolates from two Petri dishes were used for lipid analyses. Replicate fatty acid 

analyses of a field water sample plated from two duplicate field seawater samples 

was also included (Mixed plate number 1 and 2 in Figure 5 .1). 

5.2 Field samples: Water column sample collection 

Water samples for fatty acid analysis of field samples were collected from the three 

sites using a 5 l Niskin bottle for the surface and pycnocline samples and a Lund 

tube for the integrated water samples. Water depths were selected for the 

pycnocline samples were selected on the basis of salinity change. Pycnocline depth 

was generally 2 m. Samples for lipid analysis were collected in pre-cleaned glass 2 
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1 containers, placed in ice and kept in the dark, and were filtered onto premuffled 

GFF glass fibre filters. Samples were filtered, frozen and stored at -20 °C within 3 

hours of water collection. Lipid analyses were completed within a month for 

sample dates Nov 12 1998 to Feb 18 1999 and within three months for sample 

dates Mar 4 1999 to May 4 1999. Labelling of sampling dates in the figures use 

the abbreviations: a:l2/l 1/98, b:26/11/98, c:l0/12/98, d:21/12/98, e:7/01/99, 

f:l4/0l/99, g:21/0l/99', h:4/02/99, i:18/02/99,j:4/03/99, k:18/03/99, 1:31/03/99, 

m: 22/04/99, n: 13/05/99. 

5.3 Total lipid analyses 

Field net samples were extracted by the modified one-phase CHCb-MeOH-H20 

Bligh and Dyer (1959) method (White et al. 1979). After phase separation, lipids 

were recovered in the lower CHCh layer. Solvents were removed under vacuum 

and concentrated under N2. Total lipid samples were stored at -20°C in 1.5 ml 

vials until analysis the following day. 

A portion of the total lipid extract of the net samples was analysed for total lipid 

content and lipid class composition with an Iatroscan MK V ThlO TLC-FID 

analyser (Iatron Laboratories, Japan) (Volkman and Nichols 1991). Samples were 

applied to silica gel SII Chromarods using Drummond micropipettes (1 µl). 

Chrcmarods were developed in a glass tank lined with pre-extracted filter paper .. 

The solvent system used for lipid separation was C6H1J(C4H10)0/CH3COOH 

(60/17/0.2; v/v/v). After development, the Chromarods were oven dried for 10 

minutes at 80 °C and analysed immediately to minimise absorption of atmospheric 

contaminants. 

5.4 Fatty acid analyses 

Preparation of fatty acid methyl esters (FAME) involved the addition of a 10: 1: 1 

MeOH:CH2Ch:HCl solution. Samples were heated at 100 °C for 1 to 2 hours 

before extraction with 4:1 C6H14:CH2Ch. CH2Ch containing C23 FAME was 

added as an internal injection standard. Samples were treated with BSTFA (N,0-
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bis(trimethylsilyl)trifluoroactemide) to convert hydroxy fatty acids to their 0-

trimethylsilyl derivatives. Fatty acid identification was completed using GC and 

GC-MS conditions described in Bowman et al. (1998a). The location and 

configuration of the double bonds in the MUF A of the bacterial isolates was 

determined for the major peaks by GC-MS analysis of the dimethyldisulfide 

adducts as described by Nichols et al. (1986). Some fatty acids present in the field 

samples are not represented in figures displaying fatty acid data or mentioned in the 

text, as they only appeared once in the whole season (e.g. cyl 9:0 or 19: 1, 

pycnocline sample at site F3 1/12/98, 2%). Other components were at low 

concentrations during the season (e.g. 20:1, other C20 PUFA, 20:0, 21:0, i15:1, 

a15: 1, i13:0, a13:0, i14:0, other C18 PUFA). If the unrepresented components 

were BCFA, the total proportion of all BCFA for the site or depth was< 0.2% of 

the total fatty acids. If the components were PUFA, MUFA or SFA, then the total 

of all minor components for any particular sample was< 2 %. 

The cultured isolates were separated using hierarchical cluster analysis based on 

similarities in their fatty acid profiles (section 5.5). 16S rDNA sequence analysis 

was completed on algicidal bacteria, Shewanella species, ACEM 24 and ACEM 25 

similar to the Method section in Chapter 3. The genus Bacteriodes was 

characterised based on the high proportion of i14:0 and al 7: 1 which are indicative 

of this genus (Turova and Osipov 1996, Olsen 1994, Wilkinson 1988), morphotype 

charaetcristics and FISH (chapter 7). Other isolates had molecular confirmation .of 

their fatty acid classification using FISH with class and genus specific probes 

(chapter 7). 

Fatty aci~ nomenclature: Fatty acids are designated as number of carbon atoms: 

number of double bonds followed by the position of the double bond from the 

aliphatic end of the molecular. The prefixes: i, a and cy indicate iso, anteiso and 

cyclopropy,l containing fatty acids, respectively. 

5.5 Cluster analyses 

Fatty acid biomarkers can be interpreted three ways: by multivariate analyses, by 

the presence/absence of individual fatty acids (Boon et al. 1996), or by the analyses 
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of the chemical composition of the total microbial community as individuals that 

are then treated as a combination of chemical profiles (Osipov and Turova 1996). 

The first method classifies samples into groups based on overall similarity and the 

second allows an understanding of changes in the abundance of individual 

microbial taxa (Boon et al. 1996). The third method involves a higher level of 

analysis of a bacterial community. The marine environment is complicated by the 

presence of a wide range of algal and heterotrophic species and the method of 

Osipov and Turova (1996) requires less biological complexity. The method is only 

successful where high concentrations of bacterial species are present such as in 

activated sludge and soils. Only the first two methods were considered appropriate 

for this research. 

Hierarchical average cluster analysis was used to group the isolated bacteria into 

different phenotypes based on their fatty acid profiles utilising JMP (Version 4; 

SAS Institute Inc.) software. The results were expressed as a dendogram. 

Variations in fatty acid and BCFA profiles for the 273 water samples collected 

over the season were also examined with this method of analysis, as well as 

principal components analysis (PCA). The results of hierarchical cluster analysis 

were expressed as a dendogram and the different clusters were attributed a colour. 

Each colour represents a change in the fatty acid profile. 

The software used for PCA analysis was PCA CANOCO Version 3.12; ter Braak 

1998 (1990). PCA is an ordination technique used to reduce the dimensionality of 

multivariate data sets and enable graphical presentation of the relationships 

between features (ter Braak and Smilauer 1998). PCA assumes that species are 

linearly rel_ated to each other and to environmental gradients, and has been used in 

aquatic systems to simplify eco_logical data (Grimalt and Olive 1993, ter Braak 

1987). PCA was chosen over canonical correspondence analysis (CCA) and 

detrended correspondence analysis (DCA) after data was tested and found not to 

be unimodal. 

Thirty-three variables (fatty acids) were included in the analysis of 273 different 

sites and depths. Statistical analysis was also completed with ANOVA to test the 

statistical significance of the differences among the obtained means of samples 
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from the given dates and fatty acids. Two assumptions important to the use of 

ANOV A are that the data-sets are normally distributed and that there is no direct 

relationship between variances and the means (Underwood 1981). Data 

transformation methods were tested including concentration data, logarithmically 

transformed data, and ratios. The clearest results were observed after the entire 

dataset was autoscaled using the normalizing and averaging function. This method 

normalizes the data by subtracting each observation from the mean and dividing by 

the standard deviation. Normalisation was required because the concentration of 

individual compounds varied considerably between sample sites and in many cases 

the standard deviation was close to the mean for minor components. PCA was 

carried out on the normalized correlation matrices. It was necessary to discard 

(Grimalt and Olive 1993) one sample set (site F3 pycnocline, May 13) from the 

PCA as this sampling date was_ a major outlier. Two minor fatty acids were also 

removed (20: 1 and 20:3). When tested their presence in the dataset had no effect 

as their proportions were between 0-1. 5 % of the total fatty acid composition. 

Two methods were used to reduce the data set. First the database was split by 

dividing the variables into their compound subgroups (e.g. integrated surface and 

pycnocline depths). PCA was then carried out separately on each group. 

Integrated samples were analysed together and independently from the surface and 

pycnocline for the PCA, as the integrated samples contained a small component of 

the surface and pycnocline samples. 

Results 

5.6 Fatty acid composition of cultured Huon Estuary 

isolates 

The fatty acid compositions of 30 Huon Estuary bacterial isolates were analysed to 

identify the typical profiles for culturable bacteria from the estuary (Table 5.1). 

The profiles showed distinct variation between isolates. The major fatty acids were 

similar for all species and included: 15~0, i15:0, a15:0 and br15:1. Hydroxy fatty 
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Table 5.1 Total fatty acid composition(%) of culturable bacterial isolates from the Huon Estuary. 

ACEMnumber 30 26 12 29 24t 13t 4t 17 33 16 
12:1 2.8 
12:0 0.8 
~OH 12:0 2.2 
il3:0 
i14:0 
14:0 

1.1 2.5 4.2 
0.7 
5.4 2.4 

2.4 18.2 22.3 4.3 
6.2 ~8 

13.0 2.4 

11 23t 19t 34 15 14t 18t 28t 1 t St 31 t 3t 8 22 7 9 6t 27 21 t 25t 20t 32t Mix1 t Mix2t 
5.4 3.2 1 0.8 1.7 1.3 5.5 0.2 0.4 

7.8 1.6 2.6 0.8 0.8 3.1 2.6 0.5 3.4 3.9 3.6 0.1 1.2 2.8 3.3 
2.7 0.4 0.4 

2.4 9.6 9.1 0.6 0.8 0.9 11.5 
2.4 0.8 8.0 1.0 7.5 

1 0 

0.6 0.7 1.3 
0.1 2.6 2.4 4.8 7.5 3.9 1.3 0.8 1.2 1.0 0.9 6.0 1.9 

0.7 
1.0 

1.1 1.3 1.4 2.1 1.2 0.9 0.9 
5.3 5.6 

0.6 5.5 5.2 0.2 2.8 0.5 3.3 3.8 
0.7 32.0 

38.9 22.5 7.1 13.6 

0.7 
2.6 i15:1 

al5:1 
115:0 
al5:0 

14.0 14.3 46.5 37.8 75.3 78.3 27.6 27.9 59.4 43.5 59.3 4.8 2.7 0.7 
0.8 2.6 

25.3 7.1 26.4 17.2 14.1 4.2 25.4 16.7 17.3 15.0 3.7 2.4 

15:1 
15:0 
br 16:1 
i16:0 
16:1 
16:ln-7 
16:0 
~0Hi15:0 

~OH 15:0 
117:1 
a17:1 
i17:0 
a17:0 

17:1 
17:0 
~OH i17:0 
~OH 17:0 
18:1 
18:0 
20:5n-3 

Sum 

TotalBCFA 

46.0 72.3 76.3 
1.0 1.2 

10.l 
4.1 8.3 
2.3 

5.8 1.7 
13.2 2.0 1.9 1.8 1.5 

16.9 
1.6 
1.8 

0.1 19.2 
8.6 15.0 8.2 

1.6 8.1 20.0 43.8 7.5 1.6 
2.2 2.8 0.8 1.4 4.0 23.1 14.0 

17.0 
0.8 

1.3 

3.2 7.7 5.5 
8.4 

16.4 

6.5 
0.2 

2.3 2.7 0.1 

4.4 1.4 0.4 
2.0 1.1 1.9 
8.3 

4.2 0.5 24.6 
91.3 17.1 10.0 

1.6 1.1 

0.9 

4.7 

5.7 

100 100 100 100 96 98 90 100 100 100 

47 3 7 0 33 3 84 77 89 

1.6 1.1 1.4 1.9 

2.3 6.9 9.8 13 5 1.2 
3.0 7.6 16.5 10.8 9.7 2.1 
1.5 35.5 9.2 2.7 
0.9 2.0 9.4 2.3 

2.2 
1.5 
3.1 
4.8 

100 

87 

4.9 2.0 

3.4 2.3 6.3 
6.2 

0.8 3.0 1.1 
4.6 16.6 21.8 

1.6 3.9 4.7 

94 98 100 100 99 

42 53 66 78 67 

37.4 38.0 27.4 1.8 2.0 12.2 5.5 
2.8 5.0 4.8 1.6 3.6 1.5 
1.9 4.3 5.6 3.6 4.3 5.4 2.5 4.0 2.5 2.7 4.5 0.1 11.6 15.4 11.7 1.2 

8.8 1.7 7.6 
0.8 0.1 9.7 5.0 8.3 0.4 1.2 0.6 0.8 3.0 

0.9 1.0 2.3 6.4 6.5 
56.7 44.8 22.1 41.9 42.5 31.9 2.4 3.4 6.6 23.3 15.2 1.4 12.6 6.1 21.8 17.2 
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Lipid biomarkers - Chapter 5 

acids were also observed in many isolates. BCFA accounted for an average of 42 

% (std. dev. 5) of the total fatty acids. The highest proportion ofBCFA for an 

isolate was 89% (Table 5.1). 

Combined phylogenetic and phenotypic analyses of the six algicidal and four other 

bacterial isolates as well as the use of FISH oligonucleotides for bacterial classes 

and genera (chapter 7) demonstrated that the 30 isolates chosen for fatty acid 

analyses were from a broad and representative range of commonly found marine 

and estuarine bacteria. They included gram-positive and gram-negative cocci and 

rods, and members of the CFB and proteobacteria clusters. Six of the cultured 

isolates were identified using 16S rDNA sequence analysis as new species (chapter 

3 and unpublished data for ACEM 24 and ACEM 25). 

Hierarchical cluster analysis was used to group the 30 bacterial isolates based on 

similarities of their total fatty acid profiles (Figure 5.1). The bacterial isolates form 

groups similarly to phylogenetic clusters based on 16S rRNA sequences. Based on 

fatty acid profiles, the two algicidal Pseudoalteromonas, the two Shewanella and 

the two Cellulophaga isolates clustered closely to each other (Figure 5.1). The 

Planococcus species clustered with other gram-positive bacteria. The majority of 

bacteria isolated from the estuary were from the CFB and proteobacteria clusters. 

The CFB cluster accounted for 50 % of the total isolates analysed. Two main 

groups of this cluster were observed with separation occurring because of the very 

different fatty acid profiles (Figure 5.1). 

The fatty acid profiles of ACEM 16 and ACEM 34 are similar to those of the CFB 

cluster. This result is consistent with the FISH results. High proportions of i15:0 

are often associated with gliding species within the CFB and high proportions of 

anteiso-C17 fatty acids are common in genera related to Flavobacterium. 

Unusually, both isolates contain over 75% i15:0, a very high proportion for any 

genus in the CFB or gram-positive cluster. Lower proportions of this fatty acid are 

generally observed for these clusters (8-35% O'Leary and Wilkinson 1988, 

Bowman et al. 1998b, 20-55% Wilkinson 1988) 
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ACEM 26: CFB (B8cl8riodes) , 15:1 (72), a17:0 (8), i17:0 (8) 

ACEM 12: CFB (88cleriodes ), 15:1 (76), 16:1n-? (8), i17:0 (5) 

.----- ACEM 19: CFB, i15:0 (28),1 6:1n-? (17), i16:0 (10), 16:0 (9), a17: 0 (5) 

.__ ___ ACEM 17: CFB, 115:0 (47), i14:0 (18), i16:0 (19) 

AC EM 16: CFB, i15:0 (75) , 16:1n-? (8), cy17:1/17:1 (6) 

ACEM 34: CFB, i15:0 (59), a17:1 (17) 

ACEM 11 : CFB, i15:0 (78), a17:0 (5), i1 7: 0 (3) 

Mixed plate no.1 from field, 16:1n-7 (26), 18:1 (23),16:0 (17), POHFA (5) 

Mixed plate no.2 from field, 16:1n-7 (25),18:1 (23), 16:0 (17), POHFA (5) 

'-------ACEM 31: Pseudomon8s , 16:1n-7 (43), i17:0(13),1 6:0 (10) 

ACEM 21 : Cel/ulophag8, 115:0 (25), i15:1 (23), 15:0 (12),16:1n-7 (13), POHFA (11 ) 

ACEM 20: Cellulophag8, 16:1n-7 (22), i15:0 (17), i15:1 (14), a15:0 (12), POHFA (9) 

,.------- ACEM 15: Gram-pos itive, i15:0 (44), i1 6:0 (14), a17:1 (6), i17:1 (2) 

ACEM 8: Gram-pos itive, a15:0 (37), 115:0 (25), i16:0 (10), a17:1 (8) 

ACEM 7: Gram-pos itive, a15:0 (27), 115:0 (26), a17:1 (12), i1 6:0 (8), i17:1 (4) 

'--------- ACEM 22: Planococcus, a1 5:0 (38) ,a17:0 (13) , i16:1 (9),i15:0 (7) 

'-----------AC EM 23: CFB, 16:1n-7 (36), i15:0 (28), POH i15:0 (5) 

'------ACEM 5: PseudoalteromonasNibrio, 16: 1n-7 (42), 16:0 (16) , 17:1 (8), 18:1 (7), POH 15:0 (5) 

.------ACEM 3: Pseudo81teromon8sNibrio, 16:1n-7 (32), 17:1 (17), 4x12:1 (9) 

ACEM 9: Shew8nell8, 20:5n-3 (1 1),16:1n-7 (23), 115:0 (17), i13:0 (10) 

ACEM 6: Shew9nell8, 20:5n-3 (15), 16:1n-7 (15), i15:0 (14) , 113:0 (9) 

..---- ACEM 24: Cellulophag8, poH i15:0 (17), i15:0 (1 4), br15:1 (13), 15:0 {13), poH i17:0 (8) 

'----- ACEM 25: Celluloph8g8, 115:0 (17), 15:0 (15), POH i15: 0 (12), POH i17:0 (10) 

'-------------ACEM 33: Pseudomon8s , i1 5:0 (38), i14:0 (22), br16:1 (17), 16:1 (1 5), i17:0 (5) 

'-------------- AC EM 13: CFB (Fl8vobacteriurri) , POH 17:0 (25), 16:0 (23), 16:1n-7 (20), 18:1 (17) 

Figure 5.1 Bacteria isolated from Huon Estuary clustered according to fatty acid profiles. The major 
fatty acids and relative level (% of total) are shown for each species. Bacterial genera were identified 
either phylogenetically or with the use of fluorescent in situ hybridization oligonucleotides and 
phenotypically. Algicidal and Shewanella isolates are in blue. If a number of ~OH make up a 
significant proportion of the total fatty acids they are referred to as ~OHF A 16: 1 n-? indicates a 
significant 16:1 fatty acid that is not 16:ln-7 or 16:ln-5. 
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The pink ACEM 29 isolate contained a very high proportion of 18: 1 (91 % ) and 

was identified (phenotypically and through the use of FISH) as an a proteobacteria 

species~ It was the only a proteobacteria isolated. 

Fatty acid analyses of the combined colonies from the two duplicate field seawater 

samples (Mixed plate number 1and2 in Figure 5.1) showed lower levels ofBCFA 

and beta hydroxy fatty acids (~-OHFA). The profiles were more closely related to 

genera such as Pseudomonas and Pseudoalteromonas which are often reported as 

being over-represented in plate counts. Few other species possessed the same low 

relative levels of BCFA or hydroxy fatty acids as observed for the 

Pseudoalteromonas species in this study. The dominance of the genera 

Pseudoalteronionas and Pseudomonas in the mixed plate fatty acid profile was 

because they readily grow on solid media and form larger colonies than many other 

species. Their large colony size overwhelmed other bacterial colonies. However, 

other genera were present in large numbers in field samples and were easily 

cultured. Based on fatty acid analysis, only 7 Pseudoalteromonas or Pseudomonas 

species were identified from the thirty species isolated. These findings were 

supported by sequence analysis and FISH using class specific probes (chapters 3 

and 7). 

5.7 lipid class composition of field samples: 

Lipid class analysis of plankton net samples (0-12 m depth) over the season 

examines the composition of all organisms greater than 20 µm. These samples 

would include a small proportion of rnicroorganisms, such as bacteria, attached to 

larger particles. Variation in lipid class composition was similar for site Fl and 

site X3 (Figures 5.2). 

Throughout the sea.son the major lipids were polar lipids. These are cell membrane 

components and included glycolipid, phospholipid and chlorophyll. Polar lipid 
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c::::i polar lipid c==i sterols 

- 4-methyl sterols c==i triacylglycerides 

c::::i free fatty acids - hydrocarbon 

--G. catenatum (cell/I} - - diatom (schematic only) 

Figure 5.2 Variation in lipid class composition for particulates >20 µm (0-12 m depth) collected from 
the Huon River water column at sites FI and X3 during 1999-2000. 4-methyl sterols are derived 
predominantly from dinoflagellates 
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content of samples remained high during the initial stages of algal blooms as algal 

cell abundance increased. Energy demands of phytoplankton cells in growth phase 

are high so during this period triacylglycerol (TG) levels were low as storage lipids 

were rapidly utilised. 

Before the summer G. catenatum bloom, there were very high proportions (30-

35%) ofFFA (Figure 5.2). During the initial stages of this bloom, both the storage 

lipid (TG) and free fatty acids (FFA) decreased while membrane-derived 

components increased. An increase in TG was first observed at the peak of the 

summer G. catenatwn bloom. The increase in TG then intensified at both sites 

until the end of the bloom. During the autumn G. catenatwn bloom, the 

proportion of TG was lower than for the summer G. catenatum bloom. FF A were 

at relatively high levels throughout early summer and early autumn. 

Sterols were present at higher proportions during periods of diatom and 

dinoflagellate blooms. The lipid class labelled 4-methyl-sterols (Figure 5.2) has 

been identified as indicators for many dinoflagellate species (Volkman et al. 1998). 

They were present at higher proportions during both blooms of G. catenatum. 

Highest proportions of hydrocarbon were present during late spring and early 

summer (Figure 5.2). Their occurrence corresponded to the presence of the first 

small summer diatom/flagellate bloom. Hydrocarbons detected in samples from 

this study could be derived from phytoplankton or may be caused by oil 

contamination, (e.g. from the boats used for sampling). No unresolved complex 

mixture (UCM) hump (typically found in crude oil and diesel) was present in the 

GC traces hence the hydrocarbons present in the sample were not of petroleum 

origin. In addition, when the highest proportions of hydrocarbons occurred, algal 

species such as Ceratiwn and Chaetoceros were present (chapter 2, section 5.10). 
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5.8 Fatty acid composition of field samples 

5.8.1 Total fatty acids 

The three sites sampled over the field season showed variations in fatty acid 

content and composition in response to changes in the abundance and proportions 

of diatom, dinoflagellate or bacterial species present (Figure 5.3). Throughout the 

season, integrated water samples always contained the lowest TF A concentration 

(Figure 5.3) and the highest proportions of SFA (Figures 5.4 and 5.5) for all sites 

when compared with either the surface or pycnocline samples. SFA levels in 

integrated water samples were 5 to 20 % higher than other depths for all three sites 

(Figure 5.5). 

During the summer G. catenatum bloom, PUF A proportions were elevated at all 

sites and were similar to values previously observed for blooms of this species (this 

study, 33 to 37 %, Figure 5.5: Hallegraeff et al. (1991) 27-41 %). The highest 

PUF A proportions occurred on Dec 21 for sites Fl and X3 surface samples and 

Jan 7 and Jan 14 for the pycnocline samples (Figure 5.5). These coincided with the 

summer bloom of G. catenatum (chapter 2). 

Blooms of G. catenatum. have a very high biomass, as their cell size is an order of 

magnitude larger than other microalgae (chapter 2). Thus, they contribute a large 

proportion of lipid to the water column. During bloom periods, fatty acids from G. 

catenatuni would therefore exceed those of other microbial species present in the 

water column. It is possible under these conditions to estimate cell numbers of G. 

catenatum using fatty acid COI_J.Centrations. Algal cell numbers for the integrated 

sample at site X3 during the G. catenatum bloom were highest on Jan 8 at 83 

cells/ml (integrated sample, Figure 2.7, chapter 2). G. catenatum was essentially a 

mono-species bloom for this sample at this site. The TFA concentration was 89 

µg/I which results in a concentration of 1070 pg/cell TFA. This assumes that all 

TF A originated from G. catenatum cells. 
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The autumn G. catenatum bloom contained 158 cells/ml (site F3 integrated sample, 

Figure 2.7, chapter 2) and 80 µg/I TFA. Assuming the same relationship, this was 

consistent with 506 pg/cell TF A. These estimated cellular TF A concentrations are 

in agreement with literature values for pure cultures of G. catenatum (536 cells/ml 

(log phase) contained 431 µg/1 TFA giving 804 pg/cell TFA, Hallegraeff et al. 

1991). The pure cultures demonstrated less variability than observed for this field 

study (cultures: 426 pg/cell (log), 734 and 602 pg/cell (both early stationary)). 

However, the estimated cell numbers for field samples containing G. catenatum 

numbers as determined in this study were within these ranges. 

After the summer G. catenatwn bloom, the water column was dominated by the 

diatom Pseudonitzschia spp. (predominantly P. pseudodelicatissima) (Jan 21 to 

Mar 18). During the Pseudonitzschia spp. bloom, the concentration and 

proportions of PUFA again increased (Figures 5.4 and 5.5). Surface samples at 

sites F3 and Fl and pycnocline samples at site Fl contained the highest proportions 

and concentrations of PUFA on Mar 4. On the next sampling date (Mar 18), the 

pycnocline samples for sites F3 ahd X3 demonstrated a similar increase in fatty 

acids. This may have been caused by the movement or bloom of this species to 

lower in the water column. High proportions and concentrations of PUF A were 

observed at site X3 on Feb 18 indicating that the Pseudonitzschia spp. bloom 

occurred earlier at this site. The bloom on Feb 18 occurred throughout the water 

column at site X3. The bloom decreased by Mar 4, and lower PUFA proportions 

were evident. 

At the beginning of the autumn G. catenatum bloom (Apr 22), PUFA 

concentrations and proportions were very low for sites X3 and Fl and high 

proportions and concentrations of SPA were observed (Figures 5.4 and 5.5). 

Conversely, high PUFA proportions (30%) were observed at site F3 where the G. 

catenatum bloom dominated. Despite low PUP A proportions on Apr 22, the 

pycnocline sample at site Fl contained the highest TFA concentration of the season 

(Figure 5.3) as it was dominated by high concentrations of SFA (Figure 5.4). Site 

X3 samples contained lower SFA concentrations and on May 13, PUFA increased 

corresponding with the occurrence of the autumn G. catenatwn bloom. Overall, 
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the pycnocline samples contained the highest proportions and concentrations of 

PUF A for all sites and depths. 

Branched chain fatty acid (BCFA) concentrations were highest during or after 

diatom or dinoflagellate blooms and varied with depth (Figure 5.4 and 5.5 and 

section 5.8.4). The highest proportions and concentrations of BCFA were at the 

pycnocline and to a lesser extent at the surface. The gr~atest concentrations of 

BCFA therefore corresponded to the areas of highest chlorophyll a (chapter 2). 

The proportions and concentrations of BCF A for the integrated samples were 

generally lower than at the other two depths for·all three sites for most of the year 

(Figures 5.4 and 5.5). During the autumn G. catenatum bloom (May 13), BCFA 

concentrations were particularly high for the pycnocline sample at sites F3 and Fl. 

However, all sites and depths contained high proportions of BCFA. Site F3 on 

May 13 contained the highest proportion of BCFA (17%- section 5.8.4) and the 

autumn G. catenatum was observed to be in decline. Overall, site X3 had the 

lowest concentration and relative levels of BCFA throughout the season and for all 

depths. This site also contained the highest concentrations of PUFA for all sites 

and depths. 

The total fatty acid profiles indicate that the estuary was relatively homogeneo~s 
~ 

across the three sites. Differences related to variations in depth and salinity rather 

than between sites. The fatty acid groups are presented in the following sections 

separated into their individual components: PUFA (section 5.8.2), MUFA (section 

5.8.3) and BCFA (section 5.8.4). 

5.8.2 Variation of PUFA in relation to algal bloom 

High proportions of20:5(n-3), 14:0 and ahigh 16:1to16:0 ratio (>l) indicate the, 

presence of diatom species while a low 16: 1/16:0 ratio and high 22:6(n-3) indicates 

the presence of dinoflagellates and other flagellates (Figure 5.6 and 5.8). An 

elevated 18:5(n-3)/18:3(n-3) ratio has also been used as an indicator for 

dinoflagellates (Viso and Marty 1993, Nichols et al. 1984) (Figure 5.7). Site X3 

consistently had a higher 16: 1116:0 ratio indicating the dominance of diatom 
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species (Figure 5.6). Sites Fl and F3 ~ad higher levels of 18:5(n-3)/18:3(n-3) 

indicating a greater proportion of dinoflagellate species (Figure 5.7). 

G. catenatum occmTed at highest concentrations in the pycnocline sample for all 

sites and during all algal blooms (chapter 2). The summer G. catenatum bloom 

occurred at the pycnocline at all sites and showed high proportions of 22:6(n-3) 

(Figure 5.8). Relatively high levels of 20:5(n-3) (Figure 5.8) were also present at 

proportions similar to those shown for pure cultures of G. catenatum by 

Hallegraeff et al. (1991). The ratio of 22:6(n-3) to 20:5(n-3) for cultured G. 

catenatum is generally above 1.5. This ratio occurred during the peak of both G. 

catenatum blooms. Higher proportions of another PUPA produced by G. 

catenatum, 18:2(n-6) (3-5 % Hallegraeff et al. 1991), were also observed during 

both G. catenatwn blooms (Figure 5.8). This marker occurred to a lesser extent 

throughout the year and during the Pseudonitzschia spp. bloom. During the 

autumn G. catenatwn bloom the proportions and concentrations of 22:6(n-3) and 

20:5(n-3) were lower than throughout the summer bloom at most depths except 

the pycnocline and integrated samples at site F3 (Figures 5.8 and 5.9). However, 

18:2(n-6) was higher in the pycnocline samples than during the summer G. 

catenatwn bloom. 

The integrated samples for all sites had lower proportions and concentrations of 

PUPA when compared to the other depths. However, the integrated samples 

contained higher proportions and concentrations of 20:4 for all sites than either the 

surface or pycnocline samples. The integrated sample at site X3 contained a high 

level of 20:5(n-3) during the Pseudonitzschia spp. bloom on Feb 18. All other 

sites also demonstrated an increase in PUF A around this period. Although the 

bloom of Pseudonitzschia spp. occurred on Feb 18, the surface samples at sites Fl 

and F3 contained only C18 PUFA. These fatty acids are not found in 

Pseudonitzschia spp.. This phenomenon re-occurred at the next sampling date 

(Mar 4) for the pycnocline and surface samples at site X3. However, Mar 4 

samples demonstrated an increase in C16 and C20 PUFA indicating the presence of 

Pseudonitzschia spp .. Concentrations of C18 PUPA for Feb 18 were also high. 

Large numbers of Pseudonitzschia spp. (predominantly P. pseudodelicatissima) 
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were present on Feb 18 (3 x 105 cells/I; Parker 2001), while unidentified flagellates 

and heterotrophic species such a~ tintin.riids, rotifers, copepods and ciliates were 

noted in the sample. 

5.8.3 Variation of MUFA 

Over the season, the dominant MUFA was 16: l(n-7) (Figure 5.10), which is a 

common fatty acid present in many marine microorganisms. However, during the 

Pseudonitzschia spp. bloom, surface samples at sites Fland F3 contained 18:1(n-

7) at high concentrations. High proportions of 18: l(n-9) were observed during the 

autumn G. catenatum bloom. This fatty acid can be used as a marker indicative of 

bacteria or the presence of heterotrophic species (Wakeham 1995). 

Species such as Pseudoalteromonas and Vibrio do not contain BCFA, but do 

contain fatty acids such as 18: l(n-9). High concentrations of 18: l(n-9) were 

observed at site X3 throughout the year. Vaccenic acid (18:1(n-7)) has also been 

used as a bacterial signature (Derieux et al. 1998). This fatty acid is common for y 

proteobacteria, and dominated at sites Fl and F3 in the surface and pycnocline 

samples dufing the transition between the summer G. catenatum bloom and the 

Pseudonitzschia spp. bloom. 

The less common C16 MUFA 16:1(n-5)c, has been used as a marker for some 

marine gliding species in the CFB cluster although the genus Cellulophaga only 

has low proportions of this fatty acid. Concentrations of 16: 1 (n-5)c were highest 

on Feb 18 and Mar 18 in the site Fl surface sample where concentrations of 

Pseudonitzschia spp. were highest (Figure 5.11). Although levels of other BCFA 

typical of the CFB. cluster were high, the fatty acid 16:l(n-5)c was not high during 

either G. catenatum blooms or the first diatom bloom. These results suggest a 

different genus from th
1

e CFB cluster such as Cellulophaga were present in the 

microbial community during these blooms. 
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5.8.4 Variation of BCFA 

Changes in BCFA over the season and between depths reflect the variation in the 

absolute and relative abundance of different bacterial species (Figure 5.12 and 

Figure 5.13). The highest proportion of BCFA was observed for the autumn G. 

catenatum bloom on May 13. BCFA were 17% of the TFA (111 µg/l, Figure 

5.12) for the pycnocline sample at site F3 where the G. catenatum bloom was at 

highest abundance. The major fatty acids during the bloom were predominantly 

br 17: 1 fatty acids for all sites and depths. The concentration and proportion of 

BCFA was very high, particularly allowing for the high concentration of lipids 

contributed from G. catenatum in this sample. The G. catenatwn cells at site F3 

were healthy with high numbers of vegetative cells (154 cells/nu, Figure 2.7 

chapter 2). The highest cell numbers of G. catenatum occurred on'May 13 for site 

F3 and Apr 22 for sites X3 and Fl. Although algal cells were healthy on May 13 

fatty acid and lipid composition analysis (section 5. 7 and Figure 5 .13) 

demonstrated that the preceding date, (Apr 22) contained healthier cells with lower 

levels of FFA, TG and BCFA. High proportions of fatty acids from the family 

Flavobacteriaceae were observed on May 13 (BCFA particularly brl 7: 1). The 

fatty acid profile corresponded with the presence of high proportions of bacteria 

from the CFB cluster (chapter 7). 

Bacterial numbers Ui May 13 were estimated at 2.08 x 108 cells/I for the integrated 

sample at site F3. This value was calculated from the field BCFA concentration of 

5 µg/l and an approximate measure of fatty acid per bacterial cell (E. coli; 0.024 

pg/cell, Atlas and Bartha 1993). The calcuJation assumed that BCFA described 

100% of the bacterial population which was dominated at the time by CFB (83%, 

site F3, chapter 7). By comparison, microscopic examination using DAPI stained 

cells for this sample was 4.1 x 108 cells/I (chapter 7). BCFA should underestimate 

bacterial concentrations as not all bacteria contain BCFA. Bacterial species also 

exist at different growth stages and are more diverse in their size and cell volume 

than E. coli. The use of the BCF A concentration to estimate cell numbers 

accounted for 50% of the DAPI stained cells. This is consistent with results 
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indicating that the average cultured bacteria from the Huon Estuary contained 42% 

BCFA (section 5.6). This proportion would be higher for this sample as the 

microbial community on May 13 was dominated by CFB (chapter 7). The use of 

these fatty acids to estimate bacterial number has not been previously performed 

for samples from marine waters. 

Although high proportions and concentrations ofBCFA were observed at some· 

sites and on some dates, the same proportions or fatty acid types did not 

necessarily occur throughout the water column. However, BCFA profiles were 

more comparable for sample depths than sites (Figure 5.12 and 5.13). For 

example, on Feb 18, samples from all site F3 depths and the surface and integrated 

sample from site Fl were dominated by i15:0 and a15:0 (Figure 5.12). This 

indicates that the same community was present in all samples and was similar to 

bacteria found in the family Flavobacteriaceae. 

BCFA also increased at the pycnocline for site Fl on Mar 18. This was because of 

the decay of the Pseudonitzschia spp. bloom during this period. The high 

proportion of i15:0 (Figure 5.12) indicates that the bacterial community present at 

this time probably belonged to the CFB cluster. This finding agrees with the 

observation that the Pseudonitzschia spp. bloom was declining and that members 

of the CFB are generally associated with particulates. 

During the period between Feb 4 and Mar 4, all sites showed more diverse and 

complex fatty acid profiles than on other dates (Figure 5.13). This occurred when 

the summer bloom of G. catenatuni was declining and the Pseudonitzschia spp. 

bloom was commencing. Sites F3 and X3 wer~ very similar for their respective 

depths and fatty acid profiles, whereas site Fl was not as diverse. The similarities 

and respective simultaneous changes in the fatty acid profiles for sites F3 and Fl 

reflect a period of diversification in the bacterial species present. BCFA profiles 

also changed from more complex (6 BCFA) to simpler profiles (2 BCFA) during 

this period (Figure 5.13). BCFA profiles for the Feb 4, Feb 18 and March 4 

samples at sites F3 and X3 were the most complex across all depths. 
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In contrast, the greatest diversity in BCFA for site Fl was during December before 

the summer G. catenatum bloom at the pycnocline. Although fatty acids 

proportions in mid March increased and changed during the decline of 

Pseudonitzschia spp. bloom, they were not as complex as those observed for sites · 

F3 andX3. 

Over the entire sampling period, site F3 contained the highest concentrations of 

BCFA. The BCFA concentration for site X3 remained comparatively constant 

throughout the year, even during algal blooms when BCFA at the other two sites 

increased dramatically. Site X3 also contained the lowest concentrations of BCFA 

overall. Integrated depth samples for all sites also had lower proportions and 

concentrations of BCF A in comparison to the surface and pycnocline samples 

where algal blooms were most intense. 

5.8.5 Principal components analysis and hierarchical cluster 

analysis of BCFA 

Principal components analysis {PCA) of BCFA 

Principal components analysis reflected the change in BCF A for each of the sample 

sites and depths (Figure 5.14). All three depths demonstrated similar changes in 

BCFA during the season. Before the summer G. catenatum bloom, surface 

integrated and pycnoclinc samples were associated with the vectors i 17: 1, and 

a 17 :0. The sampling dates before the autumn G. catenatwn bloom had a similar 

association with these vectors, although greater correlation with the branched C15 

fatty acids was also observed. During the summer G. catenatum bloom, i15:0 was 

the dominant vector. Throughout the Pseudonitzschia spp. bloom, clustering was 

clearly evident and the major vector was primarily i15:0 and to a lesser extent 

a17:1 and a15:0. The fatty acid a17:1 was associated with the dates of the autumn 

G. catenatum. bloom decline for surface samples at sites X3 and F3. The fatty acid 

il 6:0 was associated with integrated samples for most of the season for site Fl 

indicating different communities present at the integrated and photic depths for this· 
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site. Theil 7: 1 and al 7:0 vectors correlated with samples from site F3. This was 

caused by the absence of al 7:0 in these samples and the high propo11ion of i17: 1. 

The i15:0 vector was strongly associated with samples from site X3. 

Hierarchal cluster analysis of BCFA 

Hierarchical cluster analysis grouped the individual BCFA of the three sites and 

depths based on similarities in their presence, absence and proportions in the water 

column. Trends in the fatty acid profiles of these groups clarified and 

demonstrated the temporal and spatial movement through the water column of the 

bacterial community containing BCFA (Figure 5.15). 

The dominant BCFA during the early diatom bloom and merging into the summer 

G. catenatuni bloom were i15:0, i16:0 and i17:0 which are indicative of the CFB 

cluster. For site Fl, these fatty acids occuITed at the surface on Nov 12. During 

the following four sample dates, the same fatty acid profile moved to the lower 

depths (Figure 5.15). A change in BCFA profiles for all sites and depths occuITed 

during the decline of the summer G. catenatum bloom and the start of the 

Pseudonitzschia spp. bloom (Feb 4, Feb 18, Mar 4). The BCFA profile observed 

on Feb 18 at site F3 for all depths [i15:0, a15:0], occurred between the more 

complex fatty acid profile [i15:0, i16:0, i17:1,'il7:0 and a17:0] that was observed 

for the previous and following samples Feb 4 and Mar 4. 

The autumn G. catenatum bloom (May 13) coincided with a high proportion and 

concentration of i17:1, a17:1 and i16:0. These are major fatty acids in bacteria 

from the CFB cluster. 
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5.8.6 Principal components and hierarchical cluster analysis of total 

fatty acids 

Principal components analysis 

The 33 fatty acid vectors demonstrated changes over the season with relation to 

sample depth using PCA and hierarchical cluster analysis. Figure 5 .16 represents 

PCA of the three sites and all depths. 

The integrated samples generally clustered betweeffthe two SFA vectors, 16:0 and 

18:0 (Figure 5.16). PycnocJine samples clustered with the diatom (20:5(n-3)) and 

dinoflagellate (22:6(n-3)) derived fatty acids and respectively. Surface samples 

clustered with the MUFA 16:1(n-7), 18:1(n-7), and the BCFA, i15:0 (Figure 5.16). 

Surface samples did not cluster as tightly as the integrated and pycnocline samples. 

Cluster analysis of the 33 fatty acids was performed for the individual sample 

depths and dates (Figures 5.17 and 5.18). Surface samples did not cluster with any 

one fatty acid vector and no correlation with date or site was observed for these 

samples (Figure 5 .17). These results reflect the dynamic nature of the surface 

layer. 

Pycnocline samples clustered for particular dates that were correlated with the 

occurrence of the major algal blooms (Figure 5.17). The fatty acids 20:5(n-3) and 

22:6(n-3) correlated with dates of the first diatom bloom, and the initial stages of 

summer G. catenatwn bloom respectively. Sampling dates for the pycnocline 

samples during the autumn G. catenatum bloom correlated with MUFA vectors 

18:1(n-9), 15:1 and the C 17 fatty acids. These fatty acids indicate bacterial 

influence. This does not indicate that these fatty acids were domi.nant only that 

they were influential in differentiating the autumn G. catenatuni bloom. Similar 

bacterial influence was observed for the integrated samples during the autumn G. 

catenatwn bloom (Figure 5 .18) when sampling dates correlated with the vectors 

22:6(n-3), 16:1(n-5), a17:1 and i16:0 demonstrating the associated bacterial 

species at this time. Integrated samples clustered for particular dates associated 
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with the major algal blooms (Figure 5.18). Greater correlation with the 18:0 

vector was observed for integrated samples for the period of the Pseudonitzschia 

spp. bloom. A high diversity of fatty acids correlated with the dates of the summer 

G. catenatum bloom. 

Hierarchal cluster analysis 

The distribution of the algal blooms through the water column can be observed 

using hierarchical cluster analysis. The analysis was simplified to 4 different 

clusters. In Figure 5.19, each colour represents a change in the fatty acid profile 

that involved a change in the bacterial and algal communities. The most striking 

observation for all three sites was the difference between the diatom and 

dinoflagellate blooms. The period before the autumn G. catenatum bloom 

demonstrated a greater correlation with BCFA for all sites. 

The profiles indicate that diatom fatty acids dominated for much of the year at site 

X3 while sites Fl and F3 were strongly influenced by dinoflagellate-derived fatty 

acids. The three sites show similar seasonal profiles. 
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Discussion 

5.9 Fatty acid profiles of isolates cultured from the Huon 

Estuary 

The 30 Huon Estuary isolates, represent a diverse range of bacterial classes that 

are often found in the marine environment. Analysis of their fatty acid profiles can 

be used to differentiate species in a manner similar to phylogenetic analysis. Fatty 

cid profiles also provide taxonomic information on the culturable species present. 

The profiles demonstrated sufficient contrast to separate bacterial classes to genus 

and species level for the 30 field isolates. Many culturable marine isolates contain 

predominantly BCFA (Table 5.1). This feature makes these species readily 

identifiable in environmental samples. 

Many studies describing the bacterial speeies present in the marine environment, 

including those using modern molecular techniques, have shown that the dominant 

bacteria are generally from they and a proteobacteria subdivisions, and the 

Cytophagales-Flavobacterium-Bacteriodes cluster (CFB) (Pinhassi and Hagstrom 

2000, Riemann et al. 2000, GlOckner et al. 1999, Crump et al. 1999, Delong et al. 

1993). 

Separation of the CFB within in the cluster analysis occurred because the CFB 

encompass a broad range of bacteria with distinctive fatty acid profiles. Difficulties 

are associated with separation of different genera within the CFB cluster and on 

occasions, morphological and phenotypic results do not correlate well with 

sequence analysis. The CFB cluster contains many inadequately characterised 

yellow or orange strains appearing as bacilli, filaments and other various shapes. 

This has lead to taxonomic problems resulting in CFB possessing a heterogeneous 

taxonomy (chapter 3, Jooste 1993). However, the fatty acids profiles of members 

of the CFB cluster are surprisingly similar and principally consist of either BCF A 

and/or hydroxy fatty acids (Homes et al. 1989, Reichenbach 1989). Despite their 

similarities, fatty acid profiles of members of the CFB cluster can be highly 
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distinctive to species level. The genus Flavobacterium has lower levels of i15:0 

and f30H il 7:0 than generally found in other members of the family 

Flavobacteriaceae in the CFB cluster (Bowman 2000, Bowman et al. 1998b, 

Shewan and McMeekin 1983) and fatty acid profiles within the other CFB genera 

are equally distinctive (Bowman 2000, Bowman et al. 1998b, Olsen 1994, Skerratt 

et al. 1991, Wilkinson 1988). These features enable this' common marine cluster to 

be distinguished from other marme eukaryotes and bacterial classes. Within the 

CFB cluster, differentiation between genera using fatty acid analysis is possible, 

however too few strains have been analysed to date and so patterns are not 

obvious or consistent. In addition, species validation is also poor (John Bowman 

pers. corn., Kaneda 1991). Members of the CFB cluster, as well as various gram­

positive taxa (e.g. Bacillus, Myxococcus, Arthrobacter and Streptoniycetes) 

possess high levels of BCFA. The validity of newly classified species in these 

genera can be better elucidated by examination of their BCFA profiles. The use of 

fatty acids to hierarchically group these bacteria is a complimentary method of 

separating genera and species within these difficult clusters. 

Members of the a proteobacteria cluster are often specializ~d for oligotrophic 

environments (Abraham et al. 1999) and so can be common in the marine 

environment (Pinhassi and Hagstrom, 2000). Although most commonly found in 

terrestrial environments, Sphingomonas spp. (a proteobacteria) are another 

common aquatic bacterial genus (VanCarineyt et al. 2001). They are found in 

oligotrophic environments and contain hydroxy fatty acids and other straight chain 

fatty acids in similar proportions to the CFB cluster. The isolation of an a 

proteobacteria confirms the presence of this species in the Huon Estuary. The a 

proteobacteria, ACEM 29, contained 18: 1 as 91 % of the total fatty acid 

composition. Although many a proteobacteria contain high proportions of 18: 1, it 

is unusual for a species to have such high proportions of only one fatty acid. Two 

species of Octadecabacter isolated from Antarctic and Arctic seawater and sea-ice 

both contained 18: 1 (n-7)c in excess of 70% of their fatty acids (Gosink et al. 

1997). Phylogenetic analysis demonstrated that they were members of the a 

proteobacteria and were closely related to the genus Roseobacter (Gosink et al. 

1997). Roseobacter algicola also has high proportions of 18: 1 (91 % ) (Labrenz et 
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al. 1999). Thus, based on fatty acid and FISH analysis and the pink pigrnentatio.n 

of ACEM 29 it is likely that the isolate is related to Roseobacter algicola. 

Another relatively widespread, easily culturable marine member of the a 

proteobacteria is the genus Caulobacter spp .. Caulobacter spp. contain up to 20% 

al 7:0 and possess high proportions of 18: 1 (Abraham et al. 1999). In particular, 

they produce an unusual branched 18:1(cis-11-Me-18:1(n-11);0.4-35%). The 

odd chain fatty acids 15:0, 17:0, and 17:1 are also principal components of this 

species. 

Alcaligenes spp. (~ proteobacteria) have high proportions of hydroxy fatty acids 

and/or cy17:0 and 18:1 fatty acids. ~ Proteobacteria do not generally exist in high 

numbers in marine waters. This is because N02/NH3 oxidizers belong to different 

groups in marine waters (e.g. Nitrospira group). 

Gram-positive species such as actinomycetes, although less common in marine 

environments, have. been noted in samples taken from the Huon Estuary. Their 

fatty acids are also dominated by the BCFA; br15:1, al 7:0, i15:0 and a15:0. 

Commonly cultured marine and estuarine bacteria such as they proteobacteria, 

Vibrio, Pseudoalteronwnas andAlteromonas species possess 16:0, 16:1and18:1 

as dominant fatty acids. Pseudoalteromonas spp. contain SFA and MUFA as their 

fatty acids and do not contain high proportions of branched or hydroxy fatty acids. 

This genus is difficult to detect in the marine environment using fatty acid profiles. 

SFA and MUFA are common in eukaryotes so bacterial fatty acids are easily 

overwhelmed in the considerably higher proportion of these fatty acids derived 

from algal and detrital biomass. However, many commonly found marine bacterial 

species contain a proportion of BCFA that allows their differentiation from the rest 

of the marine micro flora. 

Common fatty acids of Pseudonionadaceae are 16:0, 16: 1 and 18: 1, however, they 

also contain' hydroxy fatty acids (major hydroxy fatty acids: 12:0, 14:0, 14: 1, 16:0, 

il3:0 and i15:0) and BCFA (Wilkinson 1988). Aeromonas have similar fatty acids 

to Vibrio except they also have high proportions of BCFA (i13:0, i15:0, i15:0, 

i17:0) and hydroxy fatty acids (~0Hi17:1(n-9)c) (Wilkinson 1988). Most Vibrio 
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species contain at least 1-14 % of the total fatty acids as BCF A. The presence of 

high concentrations of 18:1(n-9) (Wakeham 1995) at site X3 may further signify 

that bacteria other than CFB dominate the community at this site (such as a or y 

proteobacteria). It may indicate greater micro-heterotrophic activity (section 5.13) 

although this was not obvious under microscopic examination. 

The diverse genera observed using morphological study of colony forming units 

(CFU), and the dominance of CFB and y proteobacteria corroborates the findings 

of other ecological studies where the presence of similar genera were demonstrated 

using molecular techniques (Hagstrom et al. 2000, Rehnstam et al. 1993, chapter 

7). The identification of characteristic fatty acids of the culturable bacterial 

population was effectively achieved. Hierarchical cluster analysis of their fatty acid 

profiles clustered the individual bacteria isolates into similar groups as those 

observed using 16S rDNA sequencing. 

5.1 O Variation in total lipid composition 

Variation in lipid class composition was similar for sites X3 and Fl. The result 

reinforces earlier findings (chapter 2) that a high level of homogeneity exists in the 

lower estuary due to similar environmental conditions prevailing at all sites. 

Total lipid class composition of the algal bloom samples over the season reflected 

the physiological status of these blooms and demonstrated how the environment 

influences cell physiology. The change in relative levels of polar lipid, TG and FFA 

reflect the physiological condition of the algae. These changes demonstrated that a 

peak in algal numbers was not necessarily the g~owth peak of the species. Despite 

the observed apparent health of the algae, the periods where algal numbers were 

highest occurred once the algae was commencing stationary phase and forming 

storage and degradation products. Polar lipid, which is the membrane component 

indicative of growth, was high in all algal blooms examined until the peak of the 

bloom. The alga then turned to storing TG. TG is generally regulated by nutrient 

availability and can also be affected by temperature. In this study, water 

temperatures were cooling (chapter 2) during the period of highest TG 

proportions. Once the algal blooms declined, an increase in FFA was observed 
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caused by breakdown of polar lipid and TG. This finding is indicative of bacterial 

recycling and degradation of the algal community. This sequence of events would 

allow the subsequent algal bloom to benefit from increased nutrient levels. During 

the commencement of the next algal bloom, polar lipid increased again to pre­

bloom conditions as algal cell numbers increased. 

Although FFA in algal cultures and field s_amples can be a sampling artefact caused 

by degradation of TG and polar lipid, it can also indicate a natural decline in an 

algal community. Logarithmic phase cultures of some algae contain up to 30% 

FFA and up to 50% TG (Dunstan et al. 1994). In previous estuarine studies, 

riverine samples contained high FFA proportions when compared to open marine 

environments (Dachs et al. 1999). Higher proportions of FFA were also observed 

in the particulate fraction collected near river mouths (Derieux et al. 1998). In 

Arctic studies, a shift from early to late bloom conditions caused a shift from polar 

to neutral lipids (TG and FFA) (Smith et al. 1993). In the Antarctic, high FFA 

proportions were present in sea-ice and pelagic phytoplankton blooms as salinity 

fell and temperature increased (Skerratt et al. 1997, Green et al. 1992). In the 

Huon Estuary, observations of particulate samples with elevated FFA are therefore 

indicative of natural algal degradation. This may be partly because of the 

temperature at which the alga blooms during summer. The water column can 

reach up to 19°C (chapter 2) which is past the optimum temperature for this alga 

(14-16 °C, Hallegraeff et al. 1995b). The high proportion ofFFA in these samples 

is unlikely to be an artifact of sample degradation. It is likely to be an indicator of 

the physiological status of the microbial community present in the water column in 

response to temperature, algal physiology, life-stage and salinity variations. As a 

result, the algae were undergoing a natural process of degradation before 

remineralisation for future algal blooms. 

Although only low proportions of TG were noted in pure cultures of G. 

catenatum, field samples of previous G. catenatum blooms have also demonstrated 

high proportions of TG and FFA (Hallegraeff et al. 1991). In the earlier study a G. 

catenatwn bloom was sampled at the peak of the bloom when it had commenced 

storing TG. In this study at the height of the autumn G. catenatwn bloom, the 
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proportions of degradation products and storage lipid were much lower than those 

observed during the summer bloom. 

Some diatom and dinoflagellate species produce hydrocarbons (Budge and Parrish 

1998). These include populations where Ceratium spp. are dominant, (Green et al. 

1992), and algal sources in marine environments including estuaries (Cooke et al. 

1998, Hayakawa et al. 1996). The lack of petrochemical markers and the presence 

of these hydrocarbon-containing algal species was consistent with the occurrence 

of natural marine source of hydrocarbons. 

Lipid analyses of the two G. catenatum blooms and the diatom blooms identified 

differences in the physiological status of each bloom during the summer and 

autumn G. catenatum blooms and Pseudonitzschia spp. bloom. The lipid 

compositional data' for both blooms, when examined with physical data, shows that 

the temperature and salinity of the water column appears to affect the physiology 

of G. catenatum. Higher temperatures and lower salinity influence the progression 

of the bloom, and subsequent formation ofTG and FFA. 

5.11 Differentiation of G. catenatum and Pseudonitzschia 

spp. algal blooms using fatty acids 

The highest fatty acid concentrations occurred ~-t the pycnocline in summer and 

autumn, during the peak bloom periods of G. catenatwn and in summer for 

Pseudonitzschia spp. (section 5.8.l). Fatty acid analyses demonstrated that algal 

blooms occurred at certain depths in the water column and moved to different 

depths at later dates. The majority of algal blooms occurred close to the 

pycnocline to maximise light requirements. At the pycnocline algae would also 

benefit from higher nutrient levels available from the deeper marine waters (chapter 

2). 

Blooms of G. catenatwn contained high concentrations of cellular lipid owing to 

the large size of this alga compared to diatom species (chapter 2). Estimates of 

algal cell numbers of G. catenatum. were obtained during mono-species blooms. 
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Variations in and changing ratios of PUF A can differentiate between dinoflagellates 

and diatoms (Volkman et al. 1998, Cripps and Hill 1998, Leveille et al. 1997, 

Skerratt et al. 1995). The fatty acids 20:5(n-3), 16:l(n-7) and C16 PUFA are 

generally indicative for diatoms and 16:0, 18:5(n-3), 20:5(n-3) and 22:6(n-3) are 

the most common fatty acids found in many dinoflagellate species. Some 

dinoflagellates and flagellates may contain relatively high proportions of 20:5(n-3). 

These flagellates can be from a number of genera and can therefore affect the 

proportions of these two main PUFA. Some prymnesiophytes such as 

coccolithophores contain similar proportions of 22:6(n-3) although they have 

higher proportions of the C18 PUFAs and lower proportions of 16:0 (Pond et al. 

1998) than most dinoflagellates. 

The major diatom bloom in the Huon Estuary during the study was 

Pseudonitzschia spp. (predominantly P. pseudodelicatissima) (chapter 2). Fatty 

acid profiles of members of the genus Pseudonitzschia are similar to each other as 

well as to those in the family Bacillariophyceae. Analyses of three 

Pseudonitzschia species indicate that they contain high proportions of 16: l(n-7) 

(32-38%) and C16 PUPA (12-21 %), moderately high proportions of 20:5(n-3) (10-

16%) and very low proportions of C18 PUPA and 22:6(n-3) (4%) (Budge and 

Parrish 1999, Zhukova et al. 1998, Whyte et al. 1996). The major difference 

between the above-mentioned Pseudonitzschia species is the variation in C 16 

PUFA; these include 16:2, 16:3 and two isomers of 16:4. Fatty acid profiles from 

the Huon Estuary samples reflected the presence of the Pseudonitzschia spp. 

bloom from Feb 18 to Mar 18 with high proportions and concentrations of 16:4 

and 20:5(n-3). The fatty acid profiles also demonstrated the presence and absence 

of the bloom at certain depths in the water column. Changes in proportions of 

specific C 16 -or C20 PUFA also allowed differentiation between diatom and 

dinoflagellate blooms. However, for most sites 22:6(n-3) was present throughout 

the Pseudonitzschia spp. bloom indicating that other species were also 

contributing. Further evidence for this observation are the high proportions of C18 

PUPA observed during the Pseudonitzschia spp. bloom. Members of the genus 

Pseudonitzschia do not contain C1 8 PUPA. This suggests other unidentified 
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flagellates such as prymnesiophytes or heterotrophic species that contain high 

proportions of C18 PUFA were also present. 

G. catenatum contains 22:6(n-3) (16-26%) as the major fatty acid as well as 

20:5(n-3) in similar proportions to Pseudonitzschia (11-15%) and 16:0 (27-33%). 

G. catenatum also has relatively high proportions of 18:2(n-6) (3-5%) (Hallegraeff 

et al. 1991). The presence of 18:2(n-6), during periods other then when G. 

catenatum. was present, suggests the presence of other unidentified sources 

including flagellates that contain this fatty acid. However, 18:2(n-6) was at highest 

concentrations during the G. catenatum blooms. Together with the high 

proportions of 22:6(n-3) and 22:5(n-3), a distinct profile for this species was 

demonstrated in samples taken during the two G. catenatuni blooms. These two 

blooms also demonstrated an increase in specific dinoflagellate-derived sterols 

(section 5.7). The lower concentrations and proportions of 22:6(n-3) and 20:5(n-

3) during the autumn G. catenatum bloom were consistent with the lower intensity 

of the autumn bloom compared to the summer G. catenatum bloom (chapter 2). 

5.12 BCFA profiles and the bacterial community 

Fatty acid indicators for specific bacterial classes or genera have been successfully 

used in many marine studies (Navarrete et al. 2000, Haack et al. 1994, Nichols et 

al. 1993). These studies showed that bacteria comain particular fatty acids or fatty 

acid profiles that enable them to be identified within their respective communities. 

The use of the total proportion of BCFA within a community has been previously 

described (e.g. Skerratt et al. 1997, Boon et al. 1996, Wakeham 1995). 

Separating bacterial populations present in environmental communities based on 

fatty acid analyses has been undertaken with soils (Okabe et al. 2000, Ibekwe and 

Kennedy 1998, Zelles et al. 1995). However, most soil studies separate bacteria 

into two categories, gram-positive species represented by BCFA and gram­

negative species represented by MUFA and hydroxy fatty acids. These categories 

are too coarsely defined for the marine environment, as many marine bacteria do 

not fit into this simplified categorisation. 
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The variation in BCFA over the season in the Huon Estuary demonstrated changes 

in the dominance of bacterial species. The occurrence of a high proportion of 

anteiso-BCFA such as a15:0, and a17:0 in some of the Huon Estuary samples 

could be from Bacillus, Planococcus and gram-positive species. The increase in 

i 15: 0 was likely to be from species in the CFB cluster. The occurrence of the 

highest propo1tion of BCFA at the pycnocline indicates that the BCFA were most 

closely associated with algal-derived particulate matter. This is because BCFA 

were at their highest concentration in the upper photic zone and at the chlorophyll 

maximum (chapter 2). 

Lower concentrations of BCFA at site X3 during periods of algal bloom, in 

comparison with the other two sites, may be due in part to the shellfish farm near 

site X3. The mussel farm may serve to filter the water in this area (Graham Jones, 

Tas Blue Mussels, pers. comm.; Ed Butler, CSIRO, pers. comm.). 

Over the season, integrated samples had the lowest concentrations and proportions 

of BCFA. The low proportions_of BCFA in the integrated samples and for the 

samples taken during the Pseudonitzschia spp. bloom indicates that the bacteria at 

these depths contain a similar profile to the particles they are degrading, a finding 

consistent with the presence of yproteobacteria (chapter 7). Bacterial numbers 

obtained through the year, using CFU and epifluoresence microscopy (chapter 2 

and chapter 7), were slightly higher for integrated samples than at the pycnocline 

and surface. However, BCFA were at higher concentrations and proportions in the 

surface and pycnocline sites. The upper photic zone therefore contained bacteria 

from the CFB cluster (evidenced by BCFA content) and were associated with algal 

blooms and detritus recycling_. 

In general, the BCFA were significant components of the lipid profile in the Huon 

Estuary considering their comparative biomass with respect to that from eukaryotic 

sources. Variations between the BCFA demonstrate bacterial species change with 

respect to algal blooms. The concentration of BCFA during a period when 

bacteria from the CFB dominated the algal community estimated bacterial cell 

numbers with a surprising degree of accuracy. 
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5. ~ 3 Fatty acid biomarkers for heterotrophic species 

Grazing by herbivorous heterotrophs removes fatty acids derived from a diatom or 

dinoflagellate diet. Heterotrophs selectively remove polyunsaturated components 

from the water column and preserving the saturated components and occasionally 

18: 1 (n-9) (Wakeham 1995, Neale et al. 1986). 

Highest SFA and 18: 1 (n-9) proportions and concentrations were observed in the 

integrated samples throughout thePseudonitzschia spp. bloom and during the 

autumn G. catenatum bloom. Although the presence of 18:1(n-9) can be indicative 

of specific bacterial groups, the concentration of this biomarker was very high in 

comparison to the expected biomass if bacteria were the primary source. These 

findings could be explained by herbivorous grazing. This interpretation is 

consistent with previous observations of the fatty acid compositions of particles in 

which SFA increased as ocean depth increased (Wakeham et al. 1995, Saliot et al. 

1982). High proportions of SPA in the integrated samples were therefore 

interpreted to be indicative of intense herbivorous grazing as the particulate matter 

passed down the water column to lower depths. PUFA and MUFA were being 

preferentially degraded by heterotrophs such as bacteria or other processes. 

Heterotrophic species such as zooplankton and bacteria may contribute greatly to 

the lipid distribution in the integrated samples by the breakdown of unsaturated 

fatty acids. The particles have had more time to be b~·oken down as they progress 

through the water column than those at the surface or pycnocline. The breakdown 

of unsaturated fatty acids within such a short depth range is indicative of a highly 

active microbial community. 

The increase in C18 PUFA after the Pseudonitzschia spp. bloom may also indicate 

the presence of heterotrophic grazing, or may be attributable to the presence of 

other algal species that contain C18 PUFA. Heterotrophs can contain lower 

proportions of 14:0, and similar or greater proportions of 18:0, 18: l(n-9) and C 18 

PUPA than many diatom and other algal species. 

Heterotrophic grazing was also a possible cause of high proportions of 20:4(n-6) in 

the integrated samples. The integrated samples contain higher proportions of SF A 
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from degraded unsaturated fatty acids. Heterotrpphs remove diatom-derived fatty 

acids, such as 20:5 from the water column by grazing. An alternative explanation 

for the presence of 20:4(n-6) in the integrated samples, is the contribution from 

species that provide direct input. Pennate diatoms can contain 20:4(n-6) (3.5-

5.6% 20:4, Dunstan et al. 1994). Red algae can also contain high proportions of 

20:4(n-6) and C 18 PUPA (Fuenteset al. 2000, Sajiki and Kakimi 1998). For the 

pycnocline and surface samples, these species may have been present on Apr 24 

during the start of the autumn G. catenatum bloom at site F3 when this fatty acid 

was present in high proportions at both these depths. However, direct contribution 

of 20:4 from these species to the integrated samples is less likely given that 80-90 

% of the integrated sample was water from below the photic zone. 

5.14 Bacterial-algal associations 

Variation in total fatty acid profiles provided an overall picture of the changes in 

algal and bacterial species. The approach can be used to observe the movement of 

these species through the water column and their occurrence at different sites over 

time. Fatty acid analysis illustrated that the microbial community was highly 

dynamic within the water column. 

The fatty acid profiles indicate that certain bacterial groups were associated with 

the degradation of algal communities. These species dlffer from those lower in the 

water column, and from those that occur before a bloom. In particular, BCFA 

profiles demonstrate that the CFB cluster is principally associated with algal 

blooms and their decline. Gliding bacteria, such as those in the CFB, can follow 

their food source more easily than other bacterial genera as gliding allows rapid 

- movement. CFB would be expected to be more abundant in the area of the water 

column that has the highest proportion of algal cells because of their predatory 

nature and association with algal blooms. 

High proportions ofBCFA during the peak of the autumn G. catenatum bloom 

indicated that these bacteria were coexisting with the alga and then benefited from 

their decline. The presence of BCFA occasionally preceded the algal blooms in the 

water column. For site Fl, this sequence occurred before the summer G. 
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catenatum bloom and again before the Pseudonitzschia spp. bloom. During the 

summer G. catenatuni bloom, BCFA were at low concentrations in comparison to 

later in the season once this bloom had declined. The second highest BCFA 

concentration occurred after the summer G. catenatum bloom finished and before 

the Pseudonitzschia spp. bloom commenced. For this period, the BCFA profile 

differed from those observed during early summer and the autumn-winter period. 

This was also the time when the greatest diversification of BCFA occurred 

(section 5.8.4, Figure 5.13), possibly indicating that a number of bacterial species 

were present simultaneously. Thus, this period was the time of greatest transition 

for both bacterial and algal communities. 

An advantage of fatty acid analysis is that it allows a large proportion of the 

community to be analysed simultaneously for the identification of bacterial and 

algal species. Information concerning bacterial community structure, the 

physiological status of species in the water column, and the ability to view the 

species composition of the entire microbial community (both bacterial and algal) 

was obtained. Signature lipid analysis acts as a complementary technique to classic 

microscopy and molecular methods. The total lipid class and fatty acid profiles 

over the sampling period provided an indication of the physiological status of the 

algal blooms and gave insight to changes in the bacterial groups present.· Lipid 

analysis proved to be an effective tool in this study. When used in conjunction 

with other methods lipid analysis can give a better understanding of community 

interactions and relationships. 
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6. Bacterial PUFA: Winter nutrient source? 

Summary 

Two novel Shewanella strains, ACEM 6 and ACEM 9, were isolated from the 

Huon Estuary. The two strains contain the highest proportions of 

eicosapentaenoic acid (EPA) yet reported for a temperate Shewanella species. 

EPA proportions for both strains were similar to Antarctic and barophilic 

polyunsaturated fatty acid (PUFA) producing bacteria. However, the Huon 

Estuary strains are capable of faster growth and equivalent EPA production at 

higher temperatures. PUFA proportions varied inversely with temperature for both 

isolates. The highest proportion of eicosapentaenoic acid (BP A) was produced by 

both ACEM 9 and ACEM 6 at 4 °C (20 % and 19 %). Growth was more vigorous 

above 10 °C (10 °C; 14 % and 15 % EPA respectively). EPA continued to be a 

significant fatty acid at higher temperatures (17 and 20 °C: l0-14 % EPA). 

Growth at differing salinities reflected the marine nature of the isolates. EPA was 

highest for ACEM 9 at 20 psu NaCl (13 % EPA) and ACEM 6 at 33 psu (14 % 

BP A). We propose that the maximum relative levels of BP A produced by these 

bacteria would occur in winter as typical winter and summer water column 

temperatures in the estuary are 10 °C and 17 °C respectively. These results are 

evidence that the presence of BP A in the genus Shewanella is not always 

assoc~ated with the level of cold adaptation. Our results indicate that temperate 

Shewanella species can produce high levels of EPA including at temperatures 

above 15 °C. Given the widespread distribution of the genus Shewanella in nature 

we suggest that these species may represent a source of PUF A in marine and 

estuarine ecosystems greater than hither to realised. 

Introduction 

Only a limited number of bacteria produce PUF A and many of the described 

species are in the genus Shewanella (Bowman 2001, Russell and Nichols 1999). 

Shewanella species that produce high proportions of BP A have been isolated from 
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marine, cold or pressurised environments (polar psychrophiles and 
~ .. ., -

barophiles)(Bowman 2001, Bowman et al. 1997, Delong and Yayanos 1986). To 

my knowledge, Flexibacter polymorphus (Johns and Perry 1977) and Shewanella 

peleana (Russell and Nichols 1999) are the only other non-barophilic or cold water 

isolates that produce relatively high levels of EPA. High proportions of EPA in 

Shewanella spp. are predominantly associated with a cold adaptation mechanism 

(Bowman et al. 1997) and are highest at the lowest growth temperatures of the 

bacteria. The review by Russell and Nichols (1999) examines the situation 

regarding PUP As and their involvement with cold adaptation. They state that 

MUPA remain fluid at temperatures below zero just as effectively as PUFA. 

However the advantage of membranes containing PUPA instead ofMUFA is that 

the packing order of molecules is more effective. 

Salinity has also been shown to have an effect on PUPA in Shewanella spp. with 

high levels of NaCl shown to reduce EPA (Russell and Nichols 1999, Nichols et al. 

2000). Estuaries can fluctuate markedly in salinity so the relative level of PUPA 

for members of the genus Shewanella may be expected to vary at differing 

salinities. 

Data presented describes two temperate PUPA producing Shewanella strains 

isolated from the Hu on Estuary, ACEM 6 and ACEM 9. Objectives of the 

research reported in this chapter were to: 

•!• determine the effects of temperature and salinity on their fatty acid profile over 

the range these strains tolerate in their estuarine environment; 

•!• assist in the taxonomy o~ these bacteria, knowledge of the fatty acid profiles 

and resultant changes with key environmental parameters; 

•!• understand their contribution to natural relative levels of PUP A in the estuary 

and in a broader context, aspects of the physiolpgy of PUPA biosynthesis. 
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Methoc;ls 

6.1 Isolation 

The Huon Estuary in Tasmania, Australia flows unregulated through a 

predominantly native forest water catchment and contains a number of finfish and 

shellfish farms. For isolation of bacterial isolates, water column samples were 

taken from below the pycnocline during Feb~ary 1998. Salinity was 28 psu at the 

time of collection. 

The water samples were initially plated onto modified marine agar (800 ml 0.2 µm 

filtered seawater; 200 ml distilled water; 5 g Bacteriological Peptone, 1 g Yeast 

extract, (Difeo Laboratories, Detroit Michigan)). Fifty random colonies with 

differing morphologies were isolated and purified by streak plate technique. Two 

isolates were chosen for this study after fatty acid analysis revealed the-presence of 

EPA (chapter 5). 

6.2 Effects of Temperature and Salinity 

Analysis of the effects of temperature used the above mentioned media. Plates 

were incubated at 2, 4, 10, 15, 20, 25, 30 and 36 °C respectively. NaCl was used 

to modify salinity and NaCl concentrations were 0, 8, 20, 33, 66 and 99 psu 

respectively. Plates were incubated at 22 °C. 

6.3 Phylogenetic analysis 

Genomic DNA was extracted and purified from cells using the procedure of 

Marmur and Doty (1962). The 16S rRNA genes from these strains were amplified 

by PCR using the primers 1492rM13r and lOF. Conditions used for PCR are 

described in chapter 3. The 16S rDNA sequences determined for the strains were 

compared to the sequences in the GenBank nucleotide database using the BLAST 

search program of the National Center for Biotechnology Information (NCBI) 

website http://www.ncbi.nlm.nih.gov. Analyses of the 16S rDNA sequences 

datasets utilized PHYLIP version 3.57c (Felsenstein 1993). DNADIST was used 

to determine sequence similarities using the maximum-likelihood algorithm option. 
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Phylogenetic trees were constructed with the neighbour-joining method by using 
' 

the program NEIGHBOR. Hootstrap analysis was performed with SEQBOOT and 

CONSENCE using 250 resamplings of the dataset, using both DNADIST and 

NEIGHBOUR as well as the program DNA? ARS, which constructs trees based on 

the maximum-parsimony method. 

6.4 Lipid analysis 

Replicate isolates were harvested for lipid analysis after 24 hours growth (10, 15, 

20, 25 °C and all salinities) or 72 hours (2, 4 °C). Lipid analysis was completed by' 

a whole cell methanolysis procedure. Samples were scraped off plates and placed 

in individual precleaned screw cap test tubes. Methylating reagent ( 5 ml of 10: 1: 1, 

MeOH:CHCb:HCL) was added and the air above the sample evacuated with N 2 

gas. The sample was placed at 90 °C for 60 minutes to produce fatty acid methyl 

esters (FAME). The test tube was cooled, 4 ml H20 was added followed by 2 ml 

of 4: 1 C6H14:CHCh. After mixing, the mix was centrifuged separating the organic 

and aqueous layers. The C6H14:CHCL3 layer containing FAME was transferred to 

a vial in preparation for analysis. Fatty acid profiles were determined using a 

Hewlett Packard 5890 Gas chromatograph (GC) equipped with a 7673a 

autosampler and 50 m x 0.32 mm i.d. crosslinked HP5 methyl silicone fused silica 

capillary column (Hewlett Packard) and Fisons GC-mass spectrometer (GC-MS) 

with conditions as described elsewhere (Gutierrez et al. 1999, Skerratt et al. 

1998). Fatty acids were identified by GC-MS analysis and by comparing retention 

time data with that obtained for authentic and laboratory standards. The GC data 

was compiled and analysed with Millennium software (Waters). 

Fatty acid nomenclature: Fatty acids are designated as number of carbon atoms: 

number of double bonds followed by the position of the double bond from the 

aliphatic end of the molecular. The prefixes, i, a and cy indicate iso, anteiso and 

cyclopropyl containing fatty acids, respectively. Abbreviations for fatty acid 

groups are: Polyunsaturated fatty acids (PUFA); monounsaturated fatty acids; 

(MUFA); saturated fatty acids (SFA); branched chain fatty acids (BCFA). 
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Results . 

Both strains form pink-tan pigmented colonies 2 to 4 mm in diameter following 1 

to 3 days incubation. Growth was observed from 2-25 °C with best growth at 20 

°C. Colony growth at 2 and 4 °C was slower (4 days) and less prolific when 

compared to plates at 10 to 25 °C. Fast growing, (1 day) numerous colonies, were 

produced by the isolates grown at 10 to 25 °C. Lipid biomass produced by both 

strains for temperatures between 10 and 25 °C were higher when compared to 

other PUFA producing Shewanella species. No growth was observed for either 

strains at 30 or 37 °C. However, weak growth was observed for ACEM 9 at 30 

°C when grown in marine agar broth. Strains required Na+ for growth and grew 

between 20-66 psu NaCl, with best growth at 20-33 psu. See chapter 3 for 

phenotypic data for the two strains. 

6.5 Total fatty acid composition 

The highest relative level of PUPA for both strains was observed at 20 psu or 33 

psu NaCl (Figure 6.1). At higher salinities, there was a drop in the proportion of 

PUFA and a rise in the relative levels of MUFA and SFA. The temperature 

changes reflected that although growth was slower at 2 and 4 °C, PUF A 

percentages were highest at these temperatures for both strains (Figure 6.2). Both 

ACEM 9 and ACEM 6 had higher PUPA at 4 than at 2 °C (Figure 6.2). The 

proportion of MUFA increased at 10 °C for ACEM 9 which corresponded to a 

drop in PUFA. Growth of the two cultures at different temperatures was shown to 

alter PUFA composition by up to 20 %. At the higher temperatures, both strains 

showed an increase in BCFA at the expense of PUFA and MUFA. 

6.6 Variation of individual fatty acid cor:nposition 

The dominant individual fatty acids of ACEM 6 and ACEM 9 were f6:0 (12-22 

%), i15:0 (7-24 %), il3:0 (6-14 %), 16:l(n-7) (12-25 %) and 20:5(n-3) (EPA) 

(2.5-20 %) (Table 6.1). Other PUFAs observed in low proportions(:::; 1.5 %) were 

20:4(n-3), 20:3(n-6) and 22:6(n-3). 
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Figure 6. 2 Variation of fatty acid composition with increasing temperature for ACEM 6 and ACEM 9 

168 



Bacterial PUPA - Chapter 6 

Table 6.1 Fatty acid compositions of Shewanella strains ACEM 6 and ACEM 9 

Fatty acids 

12·0 

13:0 

14:0 

15:0 

16.0 

17•0 

18:0 

22.0 

Sum SFA 

i13:0 

114:0 

115:0 

a15·o 

116:0 

117:0 

Sum BCFA 

13:1 

14:1 

15:1 

16:1 n-7 

17•1 

17:1 

18:1 (n-9) 

18:1 (n-7) 

20:1 

22:1 

Sum MUFA 

C18 PUFA 

20.4(n-3) 

20:5(n·3) "EPA" 

20.3(n-6) 

C20 PUFA 

22.6(n-3) "DHA" 

Sum PUFA 

· cy19:0 

ACEM6 ACEM9 

Temperature (9C} Salinity (psu) Temperature (2C} Salmlty (psu) 

2 4 10 17 20 24 20 33 66 2 4 10 17 20 24 20 33 66 

1.8 1.8 2.5 2.9 2.7 3.4 3.0 2.7 2.6 

0.8 0.6 0 8 0.8 0.9 1.~ 1.3 1.6 1.9 

3.9 2.9 4.2 3.4 3.2 3.3 3.3 3.4 2.8 

2.3 2.4 2.6 2.5 2 6 5.4 4.6 5 0 5.4 

10 10 14 16 16 12 14 13 7 

0 9 1.5 1.4 2.2 2.3 2.1 2.3 2.2 1.4 

0.9 0.7 1.3 1.8 2.1 0.7 0.8 0.7 0.5 

1.1 0 3 

2.0 2.1 2.4 2.7 3.3 4.3 3.0 2 3 2.2 

0.5 0.8 0.5 0.9 0.9 0.7 1.3 1.4 1.3 

5.6 ' 4.0 4.8 4.1 3.7 3.0 . 3.2 3.0 2.7 

2.6 2.7 1.5 2.7 2.4 2.0 4.6 4.3 3.9 

14 11 15 16 18 18 14 14 8 

0.6 0.9 0.6 1.2 1.4 1.9 2.3 1.7 1.3 

0.1 0.7 0.9 0.9 1.5 2.4 0.8 0.7 0.8 

22 20 28 30 30 29 29 28 22 25 23 25 28 31 32 29 28 21 

6 7 6 6 5 10 10 10 14 6 7 6 6 6 6 10 10 10 

0.5 0.8 0.8 1.1 13 2.4 1.3 1.8 2.1 0.8 1.0 1.1 1.0 0.9 2.6 1.3 2.0 1.1 

8 8 10 12 14 20 18 19 21 

1.4 1.2 1.2 1.9 2.3 2.7 1.5 1.7 2.6 

0.2 0.2 0.3 0.5 0.5 0.4 0.2 0.3 0.1 

4.7 0.6 0.7 1.4 2.0 1.4 1 5 1.5 1 8 

21 1 8 18 22 26 37 33 35 41 

0.1 0.1 

0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.3 

0.3 0.5 0 2 0.2 0.2 0.2 0.2 0 3 1.1 

22 25 22 20 17 12 14 13 18 

1.4 1.5 2.3 3.4 3 8 4.3 4.3 3.7 7.2 

0.8 0.8 0.6 0.6 0.3 0.3 0.7 

0.8 0.6 1.2 1.8 2.3 1.1 1.0 1.0 1.8 

8 10 8 4 6 2 3 2 3 

7 9 9 13 13 15 18 20 24 

3.4 2.9 2.7 1.8 1.9 2.9 1.5 2.0 2.7 

0 1 0.2 0.2 0.1 0.6 0.2 0.2 0.3 

0.3 0.6 0.8 1.0 1 3 2.4 1.5 1.7 2.4 

18 21 19 23 23 30 33 35 40 

0.2 0.1 0.1 0.1 

0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 

0.2 0.3 0.2 0.1 0.2 0.2 ' 0.3 0.8 

25 21 28 22 20 20 14 17 16 

1.2 1.4 1.2 2.4 2.4 2.5 4.2 3.4 2.5 

0.4 0.6 0.3 0.4 0.3 0.2 0.4 0.4 6.5 

0.7 0.6 1.5 1.5 1.9 3.2 1 .0 1.3 2.2 

6 77652 3 2 4 

0.9 0.2 0.3 0.2 0.3 0.2 0.5 0.8 0.1 0 2 0.7 0.3 0.6 0.2 2.5 

3.0 0.9 

37 38 35 30 31 21 23 21 33 35 32 39 33 30 30 24 25 34 

1.6 1.2 0.8 0.2 0.3 0.2 0.3 0.3 0.8 0.9 1.0 0.5 0.6 0.3 0.1 0.3 0.2 0.8 

0.2 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 

16 19 15 12 10 11 12 14 3 19 20 14 14 13 6 12 10 3 

0.3 0.3 0.4 0.4 0.5 0.3 0.1 0.2 0 1 0.2 0.3 0.2 0.2 0.3 0.2 0.1 0.2 

1.5 2.4 1.3 1.0 0.9 0.6 0.5 0.6 0.6 1.5 2.1 0.8 0.7, 0.7 0.5 0.5 0.5 0.4 

0.3 0 4 0.3 0.3 0.3 0.2 0.2 0.1 0.4 0.5 0.3 0.2 0.3 0.2 0.2 0.2 

20 23 18 14 12 13 13 15 4 22 24 16 16 15 7 13 11 5 

0.1 0.1 1.0 3.4 1.5 0.2 0.7 0.7 0.2 0.1 0.5 0.8 0.5 1.1 0.5 0.7 0.6 
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6.7 Effect of salinity on individual fatty acids 

For high salinities, an increase in saturated BCFA (i15:0: 18-24 % ACEM 6 and 

18-20 % ACEM 9) and MUFA (17:1,16:1(n-7)) were observed for both strains 

(Table 6.1). At the highest salinity range (66 psu), PUPA and 16:0 decreased and 

i15:0 and 17:1 increased. 'The highest proportion of EPA was noted in ACEM 6 at 

33 psu (13.6 %) (Table 6.1). Interestingly il3:0 remained the same within the 

temperature and salinity experiments but differed between the two experiments. 

6.8 Effect of temperature on individual fatty acids 

The highest overall PUFA (Figures 6.1and6.2) and EPA (18.6 % ACEM 6: 20 % 

ACEM 9) proportions were at 4 °C (Table 6.1). Growth was not as vigorous at 

this temperature for either strain. At 10, 17 and 20 °C the proportion of EPA 

remained relatively constant at 13.5 % for ACEM 9 and 10 to 15 % for ACEM 6. 

PUPA remained high for both strains even at 24 °C (11 % for both ACEM 6 and 

ACEM 9). The changes in fatty acid proportions revealed an increase in saturated 

BCFA with increasing temperature. An inverse relationship of BCFA to MUFA 

occurred (Figures 6.1and6.2). At 17 °C, cy19:0 increased to 3.4 % of the total 

fatty acids for ACEM 6. 

6.9 Phylogenetic placement 

The two Shewanella strains possessed similar 16S rRNA sequences. The strains 

are phylogenetically novel strains that form an outlying lineage with a group of 

Shewanella species that have a non-halophilic, psychrotolerant ecophysiology (S. 

frigidim.arina, S. baltica and S. oneidensis). The Huon Estuary strains are distinct 

from the cluster of psychrophilic Na+-requiring Shewanella species in which PUFA 

synthesis is a common trait (Figure 6.3). 
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....... --- Shewanella frigidimarina ACAM 591 T (U85903) 

--- Shewanella baltica LMG 2250T (AJ000214) 
95 

· Shewanel/a putrefaciens ATCC 8071 T (X82133) 

L---- She wane/la oneidensisA TCC 700550 T (AF005251) 

"---~ ·~--- ACEM 6 and 9 T 

74 

96
-- She wane/la gelidimarinaACAM 456 T (U85907) 

100 

100 

--- Shewanel/a pe/eanaATCC 700345 T (AF011335) 

-Shewanella vio/aceaJCM 10179T (021225) 

=- Shewanel/a benthicaATCC 43992T_(X82131) 

Shewanella woodyi ATCC 51908 T (AF003548) 

---- Shewanel/a hanedaiATCC 33224 T (X82132) 

.------ Shewanella a/gaeATCC 51192 T (AF005249) 

..__ ____ Shewanel/a amazonensisATCC 700329 T (AF005249) 

0.03 

Figure 6.3 Unrooted phylogenetic tree based on 16S rRNA comparisons showing the taxonomic 
positions of ACEM 6 and ACEM 9 within the genus Shewanella. The branching pattern was 
generated by the neighbour-joining method. Bar equals sequence dissimilarity. Light lines indicate 
known PUFA producing species. Black lines indicate species that do not contain PUFA (adapted 
from Bowman et al. 2001, Russell and Nichols.1999). PUFA production in S. woodyi, S. colwelliana, 
S. oneidensis is unknown. 
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Discussion 

Many Shewanella species have been isolated from sea-ice environments where they 

produce PUF A as a protection mechanism against freezing. Shewanella species 

that produce high levels of BP A have until recently only been isolated from these 

cold and/or barophilic environments. However, estuarine environments can be 

viewed as systems with similar characteristics to melting sea-ice (Nichols et al. 

1995) as they have highly variable salinity and distinct pycnoclines where salt and 

fresh water layers meet. 

Temperature variation may_ also play a role in the presence of PUFA and 

Shewanella spp. in the estuary. This is because of the changes that occur from the 

brackish to marine environments. The fresh water layer has input from mountain 

snow in winter yet can rise to 19 °C in summer due to the pigment~tion in the 

water (chapter 2). Fatty acid profiles of the two Shewanella strains indicate that 

they woi:ld contain maximum PUFA at temperature conditions commonly 

occurring in this brackish water environment. However, both strains are capable of 

high proportions of EPA production at higher temperatures (up to 25 °C). This is 

unusual when compared with other Shewanella strains studied to date. 

The importance of salinity as a factor in bacterial production of PUFA in addition 

to temperature has been raised recently (Nichols et al. 2000, Nichols et al. 1994). 

Our study on the two Shewanella strains further confirms that salinity can play a 

role in bacterial PUFA production. The Huon Estuary· typically has salt levels in 

the range where the endemic Shewanella population produces high proportions of 

PUFA. The inverse relationship between PUFA proportion and BCFA and MUFA 

with respect to salinity (Nichols et al. 2000) was also observed in this study. 

Similarities can be drawn again between sea-ice and estuaries with dramatic 

changes in salinities being a common feature of both systems. 

The two strains fall most closely into a section of the genus Shewanella which 

includes species adapted to brackish aquatic ecosystems. S. baltica, a 

psychrotrophic species which does not contain EPA (Nichols et al. 2000) and S. 

frigidiniarina which does produce low proportions of EPA (2-7 % ) (Bowman et 
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al. 1997) are close relatives of ACEM 6 and ACEM 9. Other members of the 

genus Shewanella containing high concentrations of EPA, are the barophilic or 

psychrophilic species such as S. gelidimarina (12-16 % EPA), S. benthica (16-19 

% EPA) and S. hanedai (19-22 %) (Bowman et al. 1997). The two strains from 

the Hu on Estuary are consequently capable of producing 'nearly the same 

proportions of BP A despite not requiring this for cold or pressure adaptation. 

They also produce these high PUF A proportions at higher temperatures, yet 

equivalent biomass, when compared with the barophiles and psychrophiles in the 

genus. 

Bacteria are generally considered to be minor producers of PUFA in the marine 

environment in comparison to algal species. However, during winter periods it is 

possible that when algal biomass is low, these bacteria have the ability to provide 

essential fatty acids for the higher trophic levels in this environment. It is also 

possible that the biosynthesis of high proportions of BP A capable of being 

produced at rapid growth rates and high temperatures gives this species potential 

for biotechnological exploitation. 
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7. Interactions of bacteria with algal blooms 

in the Huon Estuary using molecular and 

morphological techn.iques 

.Summary 

Bacteria were closely associated with the three main algal blooms in the Huon 

Estuary during 1999. Species from the CFB and gamma (r) proteobacteria 

clusters were most strongly associated with algal blooms and their decline. 

Algicidal bacteria were regularly observed in the estuary at all depths and sites 

sampled. Pseudoalteronwnas was a dominant genus during the Pseudonitzschia 

spp. bloom as indicated by FISH analysis. The CFB cluster was common 

throughout the water column during blooms of the dinoflagellate G. catenatum. 

Alpha (a) and r proteobacteria were widespread in the estuary but beta (f3) 

proteobacteria were not. Unidentified bacterial species we1~e present that did not 

bind with the universal bacterial probes tested. These may have been from the 

gram-positive cluster or from the Planctomycetales or may have been bacteria with 

low levels of rRNA. Between 5 and 15 colony types were present for each depth 

sampled. Variation in colony morphotype was greater between depths tha:n sites. 

Bacteria present in the integrated water column samples were characterised by 

higher numbers of white colonies at all sites. Surface and pycnocline samples were 

dominated by pigmented isolates. Changes in the dominance of different bacterial 

species or communities with respect to blooms of different algal genera were~ 

clearly observed. The microbial community was dominated by different bacterial 

species related to prevailing environmental conditions. Overall, similar microbial 

trends were observed using traditional or molecular techniques. 
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Introduction 

Advances in molecular phylogeny have enabled the study of bacterial populations 

using culture-independent approaches such as fluorescence in situ hybridisation 

(FISH) (Amann and Ludwig 2000, Amann et al. 1995, Amann 1995). The 16S 

rRNA molecule and to some extent the 23S rRNA molecule are important tools in 

molecular phylogenetic studies. Comparison of 16S rRNA sequenc~s of different 

bacteria can reveal variability indicative of evolutionary relationships between 

species. Small 20 base pair segments (probes) of either the 16S or the 23S rRNA 

molecule are generally sufficiently distinctive to allow identification of particular 

clusters, genera or species of bacteria. Flurophores are attached to these pro bes 

and using FISH, the bacterial group of interest in a sample can be identified. 

Successful use of fluorescent bacterial oligonucleotides to study sewerage, 

activated sludge and biofilms has been reported (MacDonald and Brazel 2000, 

Bond et al. 1999, Wagner et al. 1996, Amann et al. 1995). More recently, 

fluorescent probes have successfully identified bacterial conununity structure in 

marine environments (Cottrell and Kirchman 2000, Eilers et al. 2000, GlOckner et 

al. 1999, Giuliano et al. 1999, Lebaron et al. 1997, GlOckner et al. 1996). 

There are difficulties associated with using FISH in samples from estuaries, rivers 

or oceans as bacteria in these environments have a limited and variable nutrient 

supply so are unable to maintain high levels of growth and production (Amann et 

al. 1995). Low nutrient levels result in fewer copy numbers of 16S rRNA within 

the 9ell for the fluorescent probe to attach to. The probed species will thus 

fluoresce less than those found in a nutrient rich environment. Reporting on a 

laboratory study, Oda et al. (2000) noted "In habitats with growing, non-growing 

and starving bacteria, data on quantitative detection of populations based on 16S 

rRNA-targeted probing should be used with extreme caution as detection of the 

individual cells is strongly influenced by th~ir physiological history and current 

physiological state". 

175 



Microbial field study - Chapter 7 · 

In addition, the proportion of dissolved organic matter can greatly affect 

fluorescence levels in oligonucleotide probe hybridisations (Alm et al. 2000), 

which is an important factor in a humic rich estuary. This is because a decrease in 

the probe signal response occurs as humic compounds increase in the extracts. 

The humic compounds saturate the hybridisation membrane resulting in a lower 

amount of probe bound to the target rRNA in the cell (Alm et al. 2000). 

For the estuarine samples in this study, a fluorescent oligonucleotide specific for 

the genus Pseudoalteromonas was used to identify this genus given its high 

algicidal potential. The _use of a fluorescent oligonucleotide specific to the CFB 

was also of interest because of the association of this group with algal bloom 

decline and algicidal activity. 

Objectives of the research reported in this chapter were to: 

•!• examine the water column from 1998 to 1999 at sites Fl, F3 and X3 for the 

'presence of algicidal species; 

•!• examine the bacterial community and their interactions in the Huon Estuary 

using traditional morphological and molecular techniques (FISH); 

•!• identify changes in the dominant bacterial communities during the 

Pseudonitzschia spp. bloom and the summer and autumn G. catenatum 

blooms; 

•!• identify if the PUF A producing Shewanella species are dominant in the water 

column and, if so, at what depth and which part of the season; 

•!• observe changes in other distinctive bacterial morphotypes at different depths 

and sites for each date. Morphological changes over the seasons for the four 

different depths and three sites are described using principal components 

analysis (PCA); 

•!• compare morphological and molecular techniques as tools for observing 

changes in the bacterial community These two techniques complement the 

community analyses by lipid and fatty acid profiles in chapter 5. 
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Methods 

Complementary results for the same sampling sites, dates, and depths as described 

in this chapter are discussed in chapter 2 (physical, chemical and algal abundance), 

chapter 3 (morphology) and chapter 5 (identification of algal and bacterial genera 

using lipid biomarkers). 

7.1 Sample collection, growth conditions 

Bacteria were isolated from the water column and sediment of the Huon Estuary. 

Sites were Fl, F3, and X3 (chapter 2). As temperature plays a strong role in 

controlling estuarine bacterial dynamics (Shiah and Ducklow 1995), water samples 

were incubated at in situ river temperatures (12-15 °C) until they were plated onto 

media 1 to 2 hours after sampling. This was to ensure that bacterial activity was 

not stimulated or retarded relative to their natural environment (Shiah and 

Ducklow 1995). 

Subsamples (10-50 µl) from sites and depths for each date were plated and 

incubated in triplicate on modified marine agar at two different salinities (28 psu 

and 7 psu). The media contained 14 g agar, 4 g bacteriological peptone (Oxoid), 1 

g yeast extract ·(Oxoid) and 11, 0.7 µm filtered Huon Estuary river water with the 

salinity adjusted to 28 psu or 7 psu using artificial sea salts. Two salinities wer::: 

used as salinities in the estuary range from 5 psu to 35 psu. Colony pigment 

formation on media containing river water and distilled water was compared and 

pigmentation was found to be enhanced using river water. Enhanced pigmentation 

allowed easier identification of the isolates in comparison to those samples grown 

on media just using distilled water and sea salts. 

Bacterial abundance was assessed by counting colony-forming-units (CFU) for the 

3 sites and at 4 different depths (Figure 7 .1, Table 7 .1). Algicidal bacteria and 

Shewanella species had visually obvious colony morphologies and their specific 

numbers were enumerated by CFU. -
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I: Integrated sample, 
Lund tube, 0-12 m 

.... ····· ...... . ... ·:::·: .... ··;.: ... . 

i N: Net;sarnple; 
·.•· ·. 20Lim :P1ariidon 

ner pulled . 
•.. · .. through o -"' 12 r.D ·. 
······-·. -··· ..... . 

D~pth: siteiJJ 2$ m 
.·.· .· .. site F3;1s m · ·. 

site xsso rn . 

Brackish humic - rich 
river water 

Salt water wedge from 
.the Southern Ocean 

Figure 7.1 Schematic representation of the sample types taken during the field study and depths of the 
three sites. Stratification of the brackish and salt water is indicated. (Repeat of Figure 2.2) 

Table 7.1 Sampling methods for collection of samples from sites Fl, F3 and X3 . (Repeat of T?.ble 
2.1) .. 

Depth Sample type 
Collect ion 

Depth 
Sampl ing 

device erocedure 

Integrated Lund tube 0-12 m Water collected in 
(weighted 2.5 tube, emptied into 

cm x 12 m plastic container, 
sil icone tubing mixed and sub 

- 5 I) sampled 

s Surface 5 1 Niskin 0-0.2 m Niskin inverted 3 
times 

p Pycnocline 5 I Niskin 2 m or at the Niskin inverted 3 
/M id depth pycnocline which was times 

calcul ated with a 
sal inometer 

N Net/particulate 20 µm net 0 - 12 m Plankton net 
fraction (F3N 0-9 m) sampled at - 1 

m/sec 
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For most sample dates, the integrated sample (0-12 m) from site F3 was also 

analysed using the fluorescent stain 4'6'-diamidino-2-phenylindole (DAPI, Sigma) 

to identify total bacterial numbers for comparison with total CFU (section 7.4). 

Data for two years were collected from one site (X3) but only data for the second 

year is presented in this chapter (chapter 2 contains bacterial numbers for X3 

during 1997-98). Traditional morphological techniques enabled identification of 

the algicidal bacteria, which were the focus of the field study. 

Although the standard incubation method for CFU in environmental samples is 3-5 

days, many isolates in this study did not develop until 7 or more days had elapsed. 

Cultures were therefore counted after incubation at 22 °C for 10-14 days. Colony· 

groups were categorised into 41 different colony types that had been noted as 

common isolates in prior research (J. Skerratt, unpublished data). A majority of 

bacteria were categorised as appearing white-cream, this category included a 

number _of different colonial morphotypes that could not be reliably distinguished 

and as a result, this category was assumed relatively diverse in species. Colonies 

that did not fit into the 41 described morphologies were categorised "other". 

Some of the 41 identifiable morphotypes were similar to the ACEM isolates that 

were isolated from the Huon Estuary water column and sediment (chapter 5). 

7 .2 Statistical analysis 

Principal components analysis (PCA) was used to describe the results of the 

morphotypes present in the Huon Estuary samples. PCA is an ordination 

technique used to reduce the dimensionality of multivariate data sets and enable 

graphical presentation of the relationships between factors. Prior to statistical 

analysis, environmental data were screened to reject any variables where samples 

were not collected for all depths and sites. Relationships between dates and 

bacterial colonies were examined using PCA (PCA CANOCO Version 3.12; Ter 

Braak 1998, 1990). Forty morphotypes were included in the analysis of 273 

samples obtained for different sites and depths. Statistical analysis was also 
' 

completed using ANOV A (SAS) to test the statistical significance of the 

differences between the obtained means of the different bacterial morphologies 
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from the sites and depths. Statist_ical analyses of data for ANOV A were performed 

using the 'General Linear Models Procedure' of the software package 'SAS 

System for Windows v 6.12' (SAS Institute Inc. USA). Differences between 

individual means were deemed to be significant at a= 0.08. ANOVA analysis 

demonstrated that communities were less similar between depths than between 

sites throughm~t the season. 

The 41 bacterial morphotypes were separated into 11 different vectors. Separation 

and grouping of these 11 different vectors was based on correlation with initial 

PCA clustering using all 41 bacterial morphotypes, or the morphotypes interest 

value (i.e. Shewanella species). Colonies morphologically categorised as 'pinpoint 

white or cream' dominated the bacterial communities at certain depths and at 

specific times of the year rather than large pigmented or unpigmented colonies. 

These colonies were therefore grouped in their own category for the final statistical 

analysis as they clustered away from the other morphotypes in the initial PCA of 

the 41 colony morphotypes. 

ACEM 1, ACEM 21 and ACEM22 dominated colonies categorised as "algicidal". 

These three algicidal bacteria clustered together in the initial analysis of the 41 

colony morphotypes. ACEM 4 only appeared for two sampling dates during the 

season. The algicidal morphotype excluded the yellow-orange morphotype that 

may inc]ncle the algicidal species ACEM 20 and some ACEM 1 colonies, as many 

yellow-orange morphotypes were not algicidal. 

Colony morphotypes categorised as 'tan' may have included Shewanella species as 

the genus Shewanella do not always have distinctive pink-tan colonies or high 

proportions of PUF A. 

After the initial PCA of the 41 colony morphotypes categorised the morphotypes 

into general clusters, the final 11 vectors were as follows: 

1. pinpoint white or cream colonies ( < Imm) 

2. cream and white colonies (> 1 mm did not include colonies from morphotype 1) 

3. algicidal (included morphotypes typical of ACEM 1, ACEM 4, ACEM 22 and 
ACEM21) 
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4. bright or translucent orange 

5. mucoid orange, gram-negative 

6. yellow-orange, gram-negative 

7. pink 

8. tan (may include some Shewanella species) 

9. clear or with halo 

10. Shewanella-like (gram-negative tan-pink colonies) 

11. yellow gram-positive cocci. 

7.3 FISH 

7.3.1 Oligonucleotide probes 

Oligonucleotides used in this study were specific for common marine bacterial 

classes. Probe specificities were for Eubacteria, CFB cluster and the a, 13 and y 

subdivisions of proteobacteria and Pseudoalteromonas-Colwellia (Table 7 .2) 

(Amann et al. 1990, Wallner et al. 1993, Manz et al. 1992, Neef 1997, Manz et al. 

1996, Neef et al. 1998, Stahl and Amann 1991, Giuliano et al. 1999, Pukell et al. 

1999). Species detected by the Pseudoalteronwnas-Colwellia probe would be 

expected ~o_ be dominated by the genus Pseudoalteromonas given the highly 

psychrophilic nature of the genus Colwellia (Bowman et al. 1998a). Probes were 

purchased from GenSet (South Australia) and labelled with the indocarbocyanine 

fluorescent dye Cy3 (Amersham Pharmacia Biotech Ltd; Absorbance Max 552 nm 

Emission M~x 570 nm). FISH probes were prepared and stored as a concentrated 

standard (200 ng/µl) in 1 x trisEDTA (Sigma) RNAse free water (Sigma) and then 

diluted to a working standard (50 ng/µl). Hybridisation solutions were filter 

sterilised and frozen as 1.5 ml aliquots at -80 °C. 
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Table 7.2 Oligonucleotide probes used for FISH in samples from this studyt and other marine studies. 

~~= ... ---~-...-~ ... ~~-~-.....io...........,..~~~~_,_, ~ 

Probe 

tEub338 

tNon338 

tGam42a 

tBet42a 

tAipha968 

tCF319a 

Pla886 

Arch915 

t Pseudoalteromonas 

tVibrio (G V) 
40 o;Z oz 

,...... 
00 
tv 

w w 

Probe sequence (5'-3') 

gctgcctcccgtaggagt 

actcctacgggaggcagc 

gccttcccacatcgttt 

gccttcccacttcgttt 

ggtaaggttctgcgc gtt 

tggtccgtgtctcagtac 

gccttgcgaccatactccc 

gtgctcccccgccaattcct 

catcttctagcaagctagaaatg 

aggccacaacctccaagtag 
"""" ... ::: I ,,., ... ~ ..... 

Specificity 

Eubacteria 

y subclass of Proteobacteria 

J3 subclass of Proteobacteria 

a subclass of Proteobacteria 

Cytophaga-Flavobacterium cluster of CFB 

Phylum 

Planctomycetales 

Archaea 

Pseudoalteromonas and Colwellia species 

Vibrio 

- ·=-<).~ - ""~ 

% Formamide Original reference 

in buffer 

0 Amann et al. l 990 

0 Wallner et al. 1993 

35 Manz et al. 1992 

35 Manz et al. 1992 

20 Neef 1997 

30 Manz et al. 996 

35 Neef et al. 1998 

35 Stahl and Amann 

1991 

35 Pukall et al. 1999 

35 Giuliano et al. 1999 
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7.3.2 Preservation and hybridisation 

Methods for concentration and preservation varied. Generally triplicate 50-80 ml 

of water for all samples was filtered though 47 mm, 0.2 µm, black Isopore 

polycarbonate membrane Millipore filters and. preserved and hybridised using the 

methods of Alfreider et al. (1996) and GlOckner et al. (1999). Essentially, after 

water samples were filtered, filters were placed on a 4 % paraformaldehyde (PFA) 

saturated filterpad for 3 hours at 4 °C (PF A: 6 g PF A in 100 ml preheated MilliQ 

(75 °C), 2M NaOH added dropwise until the solution was Clear, 50 ml of 3 x 

phosphate buffered saline (PBS-see below for protocol) was added, cooled on ice 

and the pH adjusted to 7.2. PFA was stored at 4 °C and used within 24 hours or 

frozen in 14 ml aliquots at -20 °C). Filters were then air dried after which 2 ml of 

ice cold 50 % ethanol: 50 %.1 x PBS (130 mM NaCl, 7 mM Na2HP04, 3 rnM 

NaH2P04 pH 7. filtered through 0.2 um poly carbonate filters (Millipore) and 

autoclaved at 120 °C for 15 minutes) was passed through the filter. Filters were 

dried, folded and stored in foil at -20 °C. 

For hybridisation, filters were cut into small sections (0.5 cm2
) and placed in a 35 

mm sterilised petri dish (I waki). The hybridisation buffer was placed on top of the 

filter. Glockner et al. (1996) demonstrated that this method removes less than 10 

% of cells from the filter due to the adhesion of the cells to the polycarbonate filter 

once preserved. The hybridisation buffer stringency was specific for the probe 

(Table 7.3) and included 32 µI of the buffer (Appendix) and 4 µl (50 ng/µl) of the 

required fluorescent probe. Petri dishes were sealed with parafilm, covered in 

aluminium foil and placed at 46 °C in a water bath for i.5 hours. 

Table 7.3 Hybridisation solutions for specific bacterial oligonucleotides 

Hybridisation solution Pseudoa/teromonas, CFS, Alpha Eubacteria 

beta/gamma proteobacteria proteobacteria 

NaCl 1.04 g 1.04 g 1.04 g 

Tris HCI (0.04M, pH 7.4) 10 ml 10ml 10 ml 

10% SOS 200 µI 200 µI 200 µI 

Deionised formam1de 7ml 4ml Oml 

Milli-Q water 2.8ml 5.8ml 9.8 ml 
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To determine bacterial abundance, filter sections were washed and stained for 15 

minutes in the dark at 48 °C with the individual washing buffer specific for the 

probe (Table 7.4) and containing 2 µg/ml DAPI. Hybridisation wash solutions 

were filter sterilised and stored a +4 °C. 

Table 7.4 Wash solutions for specifi~d bacterial oligonucleotides 

Wash solutions Pseudoa/teromonas, CFB, Alpha Eubacteria 

beta/gamma proteobacteria proteobacteria 

NaCl 0.46 g 1.32 g 5.62 g 

Tris HCI (1 M, pH 7.4) 2ml 2ml 2ml 

EDTA (O.SM) pH 8.0 1 ml 1 ml 1 ml 

1 %SDS 1 ml 1 ml 1 ml 

Milli-Q water 96 ml 96 ml 96 ml 

Filters were mounted with Citifluor (Citifluor, Leicester) or Slowfade Light 

(Molecular Probes, Oregon) on glass slides and inspected with an epifluoresence 

microscope (Leica, Germany), equipped with a 50-watt HBO mercury bulb 

(Osram) and specific filter sets for DAPI and Cy3. Each microscopic field was 

first viewed with the Cy3 filters before switching to DAPI filters to avoid bleaching 

of the Cy3 probe during DAPI examination. Photobleaching (as distinct from 

quenching) of the Cy3 fluorophore occurred in less than 2 minutes (Molecular 

Probes states 100 seconds). Some problems occurred with antifade reagents as 

they reduced the total fluorescence emission. This can create a problem for marine 

samples that may not have an initial strong :fluorescence. The mounting fluids 

Slowfade Light or Citifluor were adequate under these circumstances. 

All probe specific cell counts are presented as the percentage of cells visualised by 

DAPI. This accounts for the underestimation of cell numbers using the BUB probe 

for some samples where the sum of the probes was greater than the measurement 

of BUB percentage against DAPI. The mean percentage abundances were 

estimated from counts of 15-20 random fields (20-40 for dates 13/5 and 24/5) on 

each filter section similar to the method of Lebaron et al. (1997). Samples 

analysed using FISH were run concmTently with positive and negative controls for 

the probes being used. The probes fluorescent signal for the results reported in this 

184 



Microbial field study - Chapter 7 

thesis was distinct from the unmarked cells. Samples where probe signals were 

indistinct are not shown. 

Samples from 20/11/98 to 13/5/99 employed additional protocols for FISH that 

involved different preservation and hybridisation methods. Water samples from 

surface pycnocline and integrated samples were filtered at low pressure onto white 

0.2 µmpolycarbonate filters (Millipore). Filters were immediately vortexed, briefly 

sonicated with 2mM Na-pyrophosphate (Velji and Albright 1986) and washed with 

filtered seawater into 15 ml centrifuge tubes. 

Plankton net samples include particulates from the water column greater than 20 

µm. These samples were further concentrated via centrifuging and then preserved. 

Preservation methods for the net samples and the above mentioned rinsed filter 

volumes were similar to those used for filtered samples. An equivalent volume of 

4 % PFA was added to the sample and left 3 hours before centrifuging, removal of 

the supernatant (x 2) and storage in 50:50 ethanol: 1 x PBS at -20 °C. 2 µ1 of the 

samples were then spotted onto 6, _12 or 24 well hybridisation slides, dried and 

then dehydrated using an ethanol dehydration series (50 %, 80 % and 95 % 

ethanol, 3 rnin, 3 rnin, 3 rnin) and stored at -20°C (Appendix). Preserved net 

samples were also hybridised in solution in Eppendorf tubes rather than on slides. 

7.3.3 FISH technique 

Due to the relatively recent application of FISH in marine environments, the 

problematic nature of its use in these conditions will be discussed in section 7.8.6. 

Success with FISH is often gauged by the percent of eubacterial probe against the 

DAPI stain. EUB338 labelled between 15 and 65 % ofDAPI for most samples. 

Samples where EUB338 hybridised less than 50 % of the DAPI stain for the 

majority of depths and sites at particular dates are not shown. 

It was possible to use FISH successfully for a selection of dates and sites with 

results for ~30 % of the samples collected, preserved, hybridised or counted 

presented in this thesis. 
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Impact of humic compounds on FISH in samples from the Huon Estuary. 

The levels of humic compounds in the Huon Estuary are high because of the 

extensive plains of native button grass (Gymnoschoenus sphaerocephalus) in the 

catchment. The chromophoric (or coloured) dissolved organic matter (CDOM) of 

the Huon Estuary is among the highest values recorded for Australian water bodies 

(Absorbance coefficient of the CDOM at 440 nm was 7-14 Im (HST 2000)). To 

test the impact of humic compounds on the efficiency of FISH, a short experiment 

was undertaken using two dilutions of river water from the upper reaches of the 

Huon Estuary (diluted by 2/3 with autoclaved distilled water). The samples were 

immediately analysed with the EUB338 probe and the dilution factor was taken 

into account for the enumeration of bacterial numbers. Without dilution, 59 ± 5 % 

of DAPI stained cells were labelled with the EUB338 probe. With 2/3 dilu.tion the 

result was 72 ± 8 %, indicating that the humic compounds may have affected the 

binding of probe in some of the field samples. 

The hybridisation solution in the method of Harmsen et al. (1997) was initially 

tested in order to lower interference from humic compounds. The method involves 

the addition of PolyU (Sigma) and Bovine Serum Albumin (BSA, Sigma) and was 

designed for hybridisation of soils containing humic compounds. For Huon 

Estuary water samples, no improvement was observed. 

Results 

7 .4 Bacterial cell numbers for samples sites (CFU and 

DAPI) 

Water samples from sites X3 and F3 contained higher cell numbers for all depths 

than those from site Fl. Throughout the season, cell numbers for the integrated 

samples at all sites were approximately three times higher than for the surface or 

pycnocline samples (Figure 7.2). Cell numbers for the surface and pycnocline 

samples were similar at all sites. An exception occurred for site Fl on the 21112 

sampling date before the summer G. catenatum bloom. Cell numbers for the 
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surface and pycnocline samples were the same for this date except at site Fl when 

the pycnocline sample contained higher cell numbers than the integrated sample. 

Numbers of culturable isolates were therefore higher in integrated samples that 

contained water from below the photic zone than from surface or pycnocline 

samples. Sites F3 and X3 also had higher numbers of culturable cells than site Fl. 

Bacterial cell numbers enumerated using CFU accounted for -10 % of the bacterial 

numbers detected using DAPI counts (Figure 7.3) with occasional exceptions, 

including on the 14/1 and the 24111 where CFU results accounted for up to 15 % 

of DAPI count. 

7.4.1 Variation in morphotype 

AN OVA demonstrated that maximum colony morphotype variation occurred 

within the depth profile of the samples taken for each site rather than between the 

sites. The number of different morphotypes for each date and depth across the 

season were between 5 and 12 (Figure 7.4). No site demonstrated higher 

proportions of bacterial morphotypes. Net samples taken before and during the 

initial stages of the summer 1411 G. catenatuni bloom showed only 1 or 2 

morphotypes. 

Algicidal bacteria (as defined in section 7.2) were dominant morphotypes in early 

summer (Figure 7.5) for all four depths. Most algicidal morphotypes were present 

in samples taken after the summer G. catenatum bloom, and dominated the 

colonies from the net sample. This infers that these algicidal morphotypes were 

particle associated. Samples taken from different depths for this same period 

contained the highest algicidal bacteria concentration. Algicidal bacteria in the net 

samples appeared to be dominated by the CFB-like morphotypes. 
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7.5 Principal components analysis of morphotypes (PCA) 

Although 41 colony morphotypes were identified, four vectors strongly 

contributed to the overall variation in the field samples. Surface, pycnocline and 

integrated samples at each of the sites were generally very similar. Differences 

were observed in morphotype between the depth profiles father than between sites. 

This was also observed for environmental parameters and lipid components 

(chapters 2 and 5). 

7.5.1 Cluster analysis of surface water samples 

Cluster analysis of surface samples by site 

Cluster analysis demonstrated that for the surface water samples, there was no 

relationship between site location and the occurrence of a particular morphotype 

during the season (Figure 7 .6). 

Cluster analysis of surface samples by collection dates 

Cluster analysis demonstrated that there was a relationship between morphotypes 

and the dates that the samples were taken. The surface samples for the three sites 

clustered together for dates which coincided with both G. catenatum blooms and 

the Pseudonitzschia spp. bloom (Figure 7.6). During the peak of the summer G. 

catenatum bloom, the bacterial community was categorised by the dominance of 

tan morphotypes. Cluster analysis demonstrated that after the summer G. 

catenatum bloom, algicidal bacteria were dominant. The white-cream morphotype 

correlated with dates during the autumn G. catenatum bloom Throughout this 

bloom period no correlation occurred between collection dates and the algicidal 

morphotype. Cluster analysis indicated that the presence of pinpoint white 

colonies correlated with samples taken during winter and after the autumn G. 

catenatum bloom. Throughout the November 1998 diatom bloom and during the 

Pseudonitzschia spp. bloom, the dominant vector was the algicidal morphotype. 
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7.5.2 Cluster analysis of pycnocline samples 

Cluster analysis of pycnocline samples by sites 

The algicidal morphotype was the dominant vector for the pycnocline samples for 

all sites during the November 1998 diatom bloom and before the autumn G. 

catenatum bloom (Figure 7. 7). The algicidal morphotype was the dominant vector 

at site F3 before both the summer and autumn G. catenatum blooms. 

Cluster analysis of IJYCnocline samples by collection dates 

Cluster analysis of morphotypes showed that all sites clustered together for similar 
-

dates during the sampling season (Figure 7.7). The algicidal vector was the 

dominant morphotype during the earliest diatom bloom and again throughout the 

Pseudonitzschia spp. bloom (Figure 7.7). The algicidal and white-cream vectors 

were equally dominant vectors during the dates of the autumn G. catenatum 

bloom. A broad range of morphotypes that were not related to the three strongest 

vectors were observed during dates when the summer G. catenatum bloom 

occurred. Pinpoint white morphotypes were associated with the winter dates 

sampled in July and September. 

7.5.3 Cluster analysis of Particulate (Plankton Net) samples 

Cluster analysis of particulate fraction samples by sites 

Cluster analysis, performed to detect correlations between sites and particulate 

samples, showed that there was no clear relationship. (Figure 7.8). 

Cluster analysis of particulate fraction samples by collection dates 

Clustering was distinct for the plankton net particulate samples for all dates (Figure 

7.8). Again, the algicidal morphotype demonstrated a strong association with 

sampling dates coinciding with the Pseudonitzschia spp. bloom for sites F3 and 

X3. During this same period, dates for site Fl correlated more strongly with the 

white-cream morphotype. The summer G. catenatum bloom was associated with 
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the yellow-orange morphotype for all three sites during the bloom maximum. 

White-cream and algicidal morphotypes equally dominated dates dµring the early 

1998 diatom dominated bloom. During the autumn G. catenatum bloom, the 

white-cream vector was associated with sampling dates at the peak of the bloom 

for sites Fl and F3. Conversely, algicidal bacteria morphotypes at site X3 were 

associated with dates throughout the autumn G. catenatum bloom. Algicidal 

morphotypes were associated with dates dur~g the decline of the G. catenatum 

bloom at both sites Fl and F3. 

7.5.4 Cluster analysis of Integrated Samples 

Cluster analysis of integrated samples by sites 

The integrated sample demonstrated the tightest clustering of sites when compared 

to other depths (Figure 7 .9). The algicidal vector was strongly associated with 

sites Fl and X3 for the integrated water samples. 

Cluster analysis of integrated samples by dates 

Unlike the other depths, the integrated samples did not show a relationship 

between the algicidal vector and the dates of the Pseudonitzschia spp. bloom 

(Figure 7.9). Both the yellow-orange and the white-cream morphotypes were 

associated with the dates of the Pseudonitzschia spp. bloom. The white-cream 

vector strongly clustered with the dates of the autumn G. catenatum bloom. All 

sites and dates clustered tightly for the autumn G. catenatum bloom. The dates of 

the summer G. catenatum bloom were associated with the pinpoint white colony 

morphotypes. White-cream colony morphotypes dominated the integrated samples 

for most dates during the season. The algicidal and pigmented morphotypes 

showed less association with dates. 

7.5.5 Cluster analysis of bacterial colony size by date 

Over the field season colony si~e also varied. Small colonies dominated in late 

winter (July-September) and large colonies dominated in late summer. Large 
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colonies were cultured more regularly from the pycnocline and surface samples 

and smaller colonies were cultured more regularly from the integrated samples 

(Figure 7.9). 

7.6 Shewanella species distribution in the Huon Estuary 

Isolates of the genus Shewanella were identified based on morphological 

characteristics (gram-negative, pink-tan colonies) and were confirmed at 3 points 

though the sampling period using fatty acid analyses of field colonies. Shewanella 

spp. colonies were mainly cultured from the integrated samples and dominated in 

the cooler waters (integrated and pycnocline) during summer (Figure 7.10). 

A probe previously designed for Shewanella putrefaciens (DiChristina and Delong 

1993) was modified to be less specific. The abbreviated probe sequence 

( ctgtgacgttacctacagaagaa) permitted labelling of the psychrotrophic Shewanella 

species including ACEM 6 and ACEM 9, as well as S. baltica, S. frigidimarina, S. 

putrefaciens and S. oneidensis. During trials with pure cultures of ACEM 6, 

ACEM 9, S. putrefaciens and S frigidimarina all strains demonstrated good probe 

binding efficiency with 15% formamide in the hybridisation buffer. Laboratory 

cultures of E coli and S. gelidimarina, and environmental isolates ACEM 21, 

ACEM 32 and ACEM 22 did not bind. Unfortunately according to the GenBank 

sequence database, the probe is also specific for two species of the genus 

Oceanospirillwn ( 0. niultiglobuliferum and 0. beijerinckii subspecies: pelagicum 

and beijerinckii). The original S. putrefaciens probe was also specific for 0. 

multiglobuliferum. Differences between these two species may be observable via 

microscopy as the genus Oceanospirillum is helical in shape while the genus 

Shewanella is rod-shaped. The Shewanella probe was not used in the samples 

from the Huon Estuary, but in future should allow better identification of 

psychrotrophic Shewanella_ species in the environment. 
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Figure 7.10 Variation in Shewanella species over the field season at the three different sites and 4 dept 
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7.7 Fluorescence in situ hybridisation (FISH) 

7.7.1 Field samples 

Results from FISH analysis of the different sites and depths during the 

Pseudonitzschia spp. and G. catenatum algal blooms are -shown in Figure 7.11. 

Examples of pure culture and field experiment results using FISH oligonucleotides 

can be seen in Figure 7.12. During the summer G. catenatum bloom, the dominant 

groups were CFB, a proteobacteria and "other" which may have included some 

gram-positive or Planctomycete species as these can occur in marine waters. A 

decrease in a proteobacteria and an increase in the genus Pseudoalteromonas and 

other y proteobacteria was observed during the decay of the summer G. catenatum 

bloom. During the autumn G. catenatum bloom, the proportion of 

Pseudoalteronwnas species during bloom decay was low compared to the summer 

G. catenatum and the Pseudonitzschia spp. blooms. The CFB cluster was 

dominant at all sites at the beginning of the autumn G. catenatuni bloom. At this 

time, the microbial community class profiles for sites F3 and X3 were very similar. 

The CFB cluster was still dominant at the decline of the autumn G. catenatum 

bloom at site F3, while sites FI and X3, which had lower numbers of G. 

catenatum, were dominated by a and y proteobacteria and Pseudoalteromonas. 

The genus Pseudoalteromonas was a dominant member of samples from all three 

sites at the beginning of the Pseudonitzschia spp. bloom and during the decline of 

the G. catenatum bloom. The proportion of this genus for all sites and depths was 

very high and indicates that it can numerically dominate the microbial community. 

Site X3 demonstrated the highest continuous occurrence of the genus 

Pseudoalteromonas in all samples and depths with the exception of 18/2 when 

numbers were higher at site Fl. Results from the plankton net sample show that 

during the height of the Pseudonitzschia spp. bloom the community altered and 

high proportions of r proteobacteria (excluding the genus Pseudoalteronwnas) 
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Figure 7.11 Variation in bacterial community composition using FISH during the two major G. 
catenatum blooms and the Pseudonitzschia spp. bloom. Data are presented as a proportion of DAPI 
stained particles. 
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Figure 7.12 a) Pure culture of ACEM 1 with 
Pseudoa/teromonas/Co/we//ia-Cy3 probe. 

b) DAPI stain of a). 

c) Field sample from the Huon with y 
proteobacteria-Cy3 probe. 

d) DAPI stain of c). 

e) and f) Field samples from the Huon using the 
probes gamma and EUB respectively. 
Background of e) is typical of what is observed 
when humics have interfered in the reaction. 

Pictures a)-d) were taken with a Leica digital 
camera (DC 200). Pictures e) and f) were taken 
with a Leica MPS60 camera, both were mounted 
directly to the microscope. Thanks to W alshes 
Optics for Joan of the digital camera. 
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were present at all three sites. Because of this result, many of the bacteria isolated 

from the Huon Estuary were tested for specificity using the Pseudoalteronionas 

probe (section 7.8.2). 

The CFB, EUB338, a proteobacteria and y (with B-unmarked) proteobacteria 

probes were all successful in environmental samples where nutrients were higher 

during periods of algal blooms. Both ACEM 1 and ACEM 4 cultures produced 

bright fluorescent signals with the Pseudoalteromonas probe. The Vibrio spp. 

probe was unsuccessful in field samples, but trials with V. alginolyticus and an 

environmental Vibrio sp. strain also failed repeatedly. Therefore Vibrio species 

may have been present in the estuary despite the negative result when using this 

probe. The gram-positive probe was not used as part of the community analysis 

because it was initially thought that the occurrence of these species in the marine 

environment was unlikely. It is probable that gram-positive bacteria may account 

for the "other" bacterial species that were not detected by the 5 main probes but 

were detected with the EUB338 probe. Support for the presence of gram-positive 

species is strengthened by the presence of gram-positive algicidal species and the 

occurrence of a number of common gram-positive species in the cultured isolates 

(chapters 3 and 5). Planctomycetales, or to a much lesser extent() proteobacteria, 

may also be included in this group as they have occasionally been noted in 

molecular analyses of marine samples. ThE'. B proteobacteria probe was used with 

the y proteobacteria unmarked probe for three samples but results were all under 2 

% (14/1: 0 % for all depths and sites apart fromX3 surface 0.8 %, 18/3: F3N 0.9 

%, X3N 0%, FIN 0 %, 13/5: X3N 0.5 %, F3N 0%, FI 0 %). 
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Discussion 

7.8 Culture independent techniques 

The FISH results indicated that the composition of the microbial community was 

usually similar for the three sites and throughout the water column for any one 

date. However, between dates, dramatic changes occurred. 

7.8.1 CFB 

Members of the CFB are a dominant group in marine and estuarine environments 

(see chapters 1 and 5). As genera in the CFB are recognized for their abilities to 

degrade large macromolecules, the abundance ofhumic compounds in the Huon 

Estuary would lead to a highly suitable habitat for this cluster. Other marine 

studies using FISH to identify bacterial species have found that this family can 

dominate marine bacterioplankton communities (Cottrell and Kirchman 2000). 

The CFB community played a major role in the Huon Estuary microbial 

community during the period studied. Nearly all samples analysed using FISH 

indicated the presence of this cluster. It was very strongly associated with algal 

blooms and with the particulate fraction. 

7.8.2 Gamma protea.bacteria 

y Proteobacteria are a common class of bacteria found in marine and estuarine 

environments, although their high growth efficiency on solid media is thought to 

have over-emphasised their importance in the marine environment (Eilers et al. 

2000). y Proteobacteria can dominate in river systems as nitrogen fixers (Affourtit 

et al. 2001). They were present throughout the Huon Estuary at high proportions 
' -

in many samples analysed using FISH. The results from the Pseudoalteromonas-

Colwellia specific probe in particular indicated that one genus could dominate. 

During the Pseudonitzschia spp. bloom, FISH analysis indicated that very high 

proportions of Pseudoalteromonas were present at all three sites. The binding 

efficiency of the Pseudoalteromonas probe was very high and was often more 
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fluorescent than the EUB338 probe in pure cultures. It was also highly specific for 

the genus when tested against a laboratory strain of E. coli and a number of other 

unrelated environmental bacteria from the estuary. The ease with which this genus 

can be cultured by traditional techniques indicates that an easily cultured group can 

play an important role in the microbial community. In a recent study, 

Pseudoalteronionas and Alteromonas were dominant in a temperate marine 

community during early autumn (61 %, Kelly and Chistoserdov 2001) paralleling 

the results of my research where Pseudoalteromonas species were found to be 

common in the Hu on Estuary in the same season. Kelly and Chistoserdov (2001) 

speculated that Pseudoalteromonas was involved in the observed demise of the 

toxic brown alga Aureococcus anophagefferens. 

7.8.3 Beta proteobacteria 

~ Proteobacteria can be relatively common in certain coastal and fresh water 

environments. They are generally comprised of methylotrophic bacteria (Rappe et 

al. 2000). Traditional and molecular studies to date have detected only very low 

numbers of this class in the open ocean environment (Hagstrom et al. 2000, 

Gl6ckner et al. 1999, Pinhassi et al. 1997). Members of this class are more 

commonly found in river systems (Crump et al. 1999) and can be numerically 

dominant in higher river reaches and fresh water lakes (Bockelmann et al. 2000, 

Methe et al.1998). ~ Proteobacteria (Nitrosomonas sp.) have also been observed 

as part of an estuarine bacterial community based on denaturing gradient gel 

electrophoresis (DGGE) analysis (de Bie et al. 2001). The estuary in question was 

eutrophic as it contained high levels of domestic and industrial waste products. In 

samples from the Huon Estuary study and other samples where probe efficiencies 

were poorer, very low proportions of~ proteobacteria were observed. This 

indicates that this cluster was not numerically dominant at these three marine 

dominated samples sites in the Huon Estuary. 

7 .8.4 Alpha proteobacteria 

Until the introduction of molecular techniques, a proteobacteria were not thought 

of as central marine species. This was owing to difficulties in their cultivation. 
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However, they can be a dominant bacterial class in the upper reaches of estuaries 

(Gonzalez and Moran 1997) and oceans (Pinhassi and Hagstrom 2000). Pinhassi 

and Hagstrom (2000) identified Sphingomonas and Caulobacter as the dominant 

bacteria present during summer in the Baltic Sea when bacterial production was 

low. They also found low levels of the genus Roseobacter. Gonzalez and Moran 

( 1997) found Roseobacter to be a relatively widely spread genus in the upper fresh 

water reaches of estuaries examined. In another study by the same researchers the 

genus Roseobacter represented over 20 % of the 16S rDNA in the heterotrophic 

bacterial community sampled (Gonzalez et al. 2000). An advantage that a 

proteobacteria would have in the Huon Estuary corrimunity would be their ability 

to breakdown humic compounds as some Roseobacter species produce enzymes 

that are capable of degrading aromatic ring structures (Buchan et al. 2000). The 

presence of a proteobacteria in estuaries may be as a result of the high levels of 

dissolved organic matter (DOM) in rivers containing high molecular weight 

compounds that are produced by plants. Covert et al. (1999) reported that a 

proteobacteria decrease towards the oceanic end of estuaries as a response to the 

change in the source of DOM from higher plant to marine. Other studies have 

demonstrated that in the offshore environment (North Atlantic), a proteobacteria 

can sometimes dominate during blooms of dimethylsulfoniopropionate (DMSP) 

producing algae (Gonzalez et al. 2000). Various a proteobacteria have been 

'studied with respect to DMSP degradation and the potential of this group for 

cycling organic sulphur compounds in the estuarine or marine environments 

(Ansede et al. 2001, Ledyard et al. 1993). a Proteobacteria and CFB have 

previously been associated with particulate matter and high growth rates of 

diatoms in mesocosms (Riemann et al. 2000). FISH analysis in this study clearly 

demonstrated that a proteobacteria were present in the estuary at the end of the G. 

catenatum bloom. At site Fl, a proteobacteria accounted for up to 40 % of the 

DAPI stained particles. The contention that a proteobacteria are associated with 

algal particulate matter is therefore supported. 
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7.8.5 Other bacterial groups 

The incidence of gram-positive bacteria was not investigated in this study. More 

recently, they have been shown to be an important part of the species composition 

in estuarine and oceanic environments (Crump et al. 1999, Rappe et al. 1997). In 

a study of the ability of isolated estuarine bacteria to degrade humic compounds 

and comparing enrichment cultures with the natural community, 6of18 isolates 

from the enrichment cultures were a, proteobacteria, three were y proteobacteria, 

and nine were gram-positive bacteria (Esham et al. 2000). The natural bacterial 

community showed 28 % degradation of humic compounds whereas the isolated 

bacteria only achieved 3-8 % degradation together or as single strains. Esham et 

al. (2000) suggested that the majority of the species able to degrade humic 

compounds were non-culturable (although not necessarily gram-positive). 

Planctomycetales could also have been present in the Huon Estuary samples, but 

were not included in the FISH analysis. They have been reported on river snow 

aggregates (2 % FISH, Bockelmann et al. 2000) and fresh water and ocean samples 

(< 7% FISH GlOckner et al. 1999, bacterial clones Rappe et al. 1997). 

Another bacterial cluster not included in this study was the 8 proteobacteria which 

has been observed via FISH as the dominant bacteria associated with the marine 

sponge Aplysina (Friedrich et al. 1999). Evidence from Coates et al. (1998) 

demonstrated that Geobacteraceae (8 proteobacteria) are also capable of breaking 

down humic compounds. However, in other estuarine and coastal studies these 

bacteria have so far been less frequently reported in the water column. 

Clones of Verrucomicrobiales have been found in enrichment cultures of the 

prymnesiophyte Phaeocystis and were related to the degradation of complex algal 

polymers (Janse et al. 2000). However, this division is generally most prolific in 

soils and anoxic environments and occurs infrequently in studies of the marine 

environment. 
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7.8.6 FISH techniques 

The success of the FISH technique varied. Probe binding efficiency was highest 

for samples taken during peak bloom periods of dinoflagellates and diatoms. 

Particle-attached bacteria in plankton net samples also provided good results. 

Binding efficiency of the EUB338 probe was up to 95 % of the DAPI stain for 

samples collected during algal bloom periods but was lower at other times of year. 

The low success for FISH analysis in many of the other samples may be the result 

of number of factors. Possibilities include: the cell wall was not permeable to the 

probe (i.e. gram-positive); low abundance of rRNA because of cooler or less 

productive periods; the rRNA was not accessible to the probe; some of the cells 

were Archaea; interference from hurnic compounds; high levels of 

autofluorescence from particulate matter. 

Background fluorescence, although observed occasionally was not a problem in 

samples where FISH was successful. This is due to the intensity of Cy3 

flurophores and the ability to compare between the DAPI and Cy3 filters. In a few 

samples some of the river particles fluoresced, causing the background to be more 

fluorescent than would be ideal. This generally occurred with samples taken 

during periods of high rafr1fall. 

Eriksen (2000) and Campbell et al. (1997) report that a coating effect caused by 

riverine hurnic compounds can protect cells (of salmon and algae) from the effects 

of high copper or heavy metal concentrations. Hurnic compounds in Macquarie 

Harbour, Tasmania are at lower concentrations than those found in the Huon 

Estuary. These compounds have been shown to protect fish in this environment 

from copper poisoning by coating the biological surfaces (i.e. cell walls, gill 

membranes etc) (Eriksen 2000). This prevents the copper travelling into the cells 

where they could exert an effect (Campbell et al. 1997). This coating effect may 

also have interfered with probe efficiency in the use of FISH in the Huon Estuary. 

Amplification techniques and newer, more fluorescent flurophores have assisted iri 

the use of FISH in the marine environment. A number of amplification techniques 

were trialed with the samples. The greatest increase in fluorescence was gained by 
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using the flurophore Cy3. Other flurophores such as FITIC, Rhodamine, and 

fluoresein were not as intensely fluorescent as Cy3 even when a number of probes 

for the same class were attached. It was observed that one Cy3 probe equated to 

the same fluorescence as 5 fluoresein probes specific for Eubacteria. Cy3 is also 

over 10 times more photostable than FITC (Amersham Life Science 1995, 

Wessendorf and Brelje 1992). 

Pre-boosting the field sample with an RNA amplification technique has 

demonstrated improved signal intensity (tyramide: Lebaron et al. 1997, 

chloramphenicol and/or suitable liquid media: MacDonald and Brozel 2000, 

Ouverney and Fuhrman 1997). However, some amplification compounds are large 

(e.g. tyramide linked with horseradish peroxidase), so difficulties occur in fitting a 

number of the amplified flurophores in the cell (Lebaron et al. 1997). Tyramide 

and horseradish peroxidase (Cerylid, Australia) were trialed but discarded after no 

improvement was noted. -

The Huon Estuary is generally a system with low levels of ammonium and 

nutrients. Such conditions can cause a decrease in hybridisation signals because 

cells are nutrient deprived (Konuma et al. 2001). The use of chloramphenicol 

(MacDonald and Brazel 2000, Ouverney and Fuhrman 1997) and a suitable marine 

media improves fluorescence in these oligotrophic environments by increasing 

nutrients but stopping cell division. After the field study, chloramphenicol and 

marine broth were shown to increase probe efficiency if used in combination, 

especially for samples with< 50 % of EUB338 as a proportion of DAPI. Water 

samples were filtered and overlaid with 1 ml of the 100 ng/ml chloramphenicol and 

liquid media (Huon Estuary river water media section 7.1). Use of either 

chloramphenicol (Ouverney and Fuhrman 1997) or marine broth alone was not as 

effective as combined used. Combined use increased probe efficiency by ~ 10 %, 

but more importantly, allowed easier enumeration by increasing the fluorescence 

intensity of existing labelled bacteria. Although temperate coastal waters 

demonstrated an enhancement of signal, attempts to use this amplification method 

with Antarctic water samples demonstrated no improvement. Poor results with 

Antarctic samples may be explained by the choice of media. A more suitable 
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(dilute) media may prove to be more successful. This highlights that media type is 

very important when using this amplification method. 

Ascorbic acid was found to be an effective addition to slow quenching. Ascorbic 

acid acts as a free radical scavenger that extends fluorescence emission (McBain 

Instruments 2001). It did not appear to change the signal intensity but did 

decrease th~ quenching time. Quenching differs from photo bleaching, which 

occurs by reduction (or in some cases, enhancement) of fluorescence intensity by 

competing factors such as temperature, high oxygen concentrations, and molecular 

aggregation in the presence of salts or halogenated compounds (Molecular 

Expressions 1995). Quenching occasionally occurred in some Huon Estuary 

samples, when high levels of humic compounds caused an increase in background 

fluorescence and an adverse affect on FISH probing efficiency. This has also 

occurred in other FISH studies (Alm et al. 2000). 

All techniques have weaknesses. In the Huon Estuary and in winter Antarctic 

waters (unpublished data) FISH performed relatively poorly. Greater success with 

other Tasmanian coastal water samples was achieved after the sampling period of 

this thesis, although the technique can still be highly variable. The use of 

radioactive oligonucleotides would have increased the sensitivity of the technique. 

Despite this, molecular techniques such as FISH are very powerful and show great 

potential. They have considerably advanced knowledge of the microbial 

community and are setting the standard by which other techniques are now 

gauged. 

7 .9 Culture dependent techniques 

All algicidal bacteria that were isolated possessed distinctive colonial 

morphologies. The occurrence of algicidal species in the estuary may not 

guarantee the presence of biocidal exudates, but it is possible to observe the 

algicidal potential of these genera in the water column using morphological or 

molecular means. The use of CFU to identify the algicidal bacteria was practical, 

as growth of the algicidal Pseudoalteronionas and Cellulophaga species was not 

inhibited on marine agar. 
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The summer G. catenatum bloom demonstrated that the algicidal bacteria 

morphotype was dominant just before the height of the algal bloom. This may be 

because blooms predominate in the upper 2 m and the integrated sample 

incorporates a broader depth. 

Morphotype characterisations from 1998 are not included as allotment of the 41 

different colony morphotypes was being established during this period. Species 

overlap within these 41 morphotypes is possible, as morphotype variation is not 

necessarily indicative of species. However, overall variation between the dominant 

and algicidal morphotypes (excluding ACEM 20) was readily identifiable. Bias can 

occur in favour of species such as Pseudoalteromonas and other y proteobacteria 

when using CFU (Eilers et al. 2000), but other genera were easily isolated. 

Isolation of a number of diverse morphotypes, information from chapters 4 and 5, 

and molecular analysis indicates that the method was not solely representing one or 

two genera. After three years of field observations, it was evident that a high 

number of white-cream isolates occurred for integrated samples. These isolates 

would be from genera that grow easily on plates, such as Pseudoalteromonas, 

Bacteriodes, Vibrio or Pseudomonas. Surface and py~nocline samples contained 

greater morphotype diversity and pigmented isolates were more common. 

Integrated samples also contained higher proportions of small colonies. The 

observation of colony size variation with respect to both the integrated samples 

and samples taken during colder periods may be an indication of the physiology of 

the isolates. Small colonies occurring in the surface and pycnocline depths in 

winter periods may indicate a physiological response to cooler waters. 

Morphotype variation for the different depths maybe linked to environmental 

factors. Surface waters were less saline when compared with the pycnocline and 

integrated samples which were generally at typical seawater salinities. The 

differences observed between pycnocline and integrated samples were related to 

the greater water column depth obtained by.the integrated samples. 
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7.1 O Comparison of analysis techniques 

A number of recent studies have concluded that many culturable bacteria are yet to 

be isolated, however, Hagstrom et al. (2000) established that a large proportion of 

cultured isolates are similar to environmental clones. FISH analyses of a 

picoplankton enrichment culture were dominated, in order, by y- ~- and a 

proteobacteria (Uphoff et al. 2001). Among the 410 isolates in this picoplank:ton 

study, a high degree of diversity was observed, with respect to both colony 

pigmentation and morphology and genetic diversity. Lebaron et al. (2001) 

reported that 14 % of marine bacteria were also culturable. In a study of the 

bacterial community in the Elbe River, application of specific oligonucleotide 

probes indicated that culturable populations of bacteria were dominant members 

(Bockelmann et al. 2000). Another study demonstrated that a proteobacteria were 

numerically dominant and easily cultured despite being new or unculturable isola~es 

with respect to the GenBank database in temperate coastal seawater (Gonzalez and 

Moran 1997). Pinhassi and Hagstrom (2000) demonstrated that the majority of the 

isolates from their study in the Baltic Sea had low similarity to GenBank sequences 

indicating that the bacterial diversity able to grow on marine agar was relatively 

unexplored. The lack of sequence data from bacteria in culture collections has 

been given as the reason that many clones are new, unculturable bacteria (Pinhassi 

and Hagstrom 2000, Hagstrom et al. 2000, Hagstrom et al. 1997). In chapter 4 

six new species were identified from culturable isolates using 16S rDNA 

sequencing. This supports that finding new species by the use of molecular 

techniques such as by cloned 16S rRNA sequences does not necessarily mean that 

all these new species are non-culturable. 

Studies using molecular techniques such as clone libraries and DOGE have 

revealed that a limited number of species consistently represented the majority of a 

diverse bacterial commumty and that these dominant species were present in equal 

densities in the water column (Pinhassi and Hagstrom 2000, Rehnstam et al. 1993). 

Clone libraries obtained for most marine studies have demonstrated that there are 

between 6 and 15 species present in the oceanic or marine waters at any one time. 

These figures are also similar to the number of different bacterial morphotypes that 
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were cultured at any one sampling depth or site in this study of the Huon Estuary 

(2-15). If at any one time, the number of species dominating a microbial 

community is between 5 and 15, it follows that the presence of 9 morphologically 

different isolates indicates that the majority of the species types may be culturable 

although they may not be represented in their correct proportiO!JS. In some marine 

environments, traditional morphological techniques using suitable media may 

therefore be almost as successful in determining the species present in the 

population as FISH (even if not able to correctly determine their given 

proportions). 

Isolates that form CFU are also active, even if they do not dominate the marine 

. community under normal environmental circumstances. Morphotypes are not 

necessarily indicative of different species, however this finding does support 

reports of the dominance of only a few genera or species numbers at any one time. 

Interestingly, research papers often report FISH results that classify 25-55 % of 

DAPI stained cells with the assumption that the rest of the community is similar. 

In comparison, culturable cells enumerated only 1-10 % of DAPI stained cells. 

The DGGE procedure can be used to identify microorganisms. via sequence 

analysis rather than their abundances, which it cannot quantify. Thus, the 

identification of a number of bacterial genera in the community does not 

automatically signify that they are a major or active species, only that they are 

present. FISH cannot be specific at species level but can identify the dominant 

viable populations. It cannot demonstrate activity of the cells. However where 

rRNA levels are high enough to be observed using FISH the population probably 

plays an important role in the microbial community at that particular time as cells 

contain high rRNA copy numbers. 

The ability to observe the bacterial population in the water column is of major 

ecological interest, although at present only a very small fraction of the community 

can be viewed at any one time. Microscopy typically involves a 50 ml water 

sample on a 4.5 cm filter of which 10-30 fields of view are generally counted 

providing an effective volume of 60 µl. Techniques such as DGGE convey the 

bacterial species present except they are not a quantitative measure of the bacterial 

numbers or their importance in the environment. FISH uses similar volumes to 
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microscopy and gives proportions and bacterial types in the environment based on 

this volume. Culture dependent methods involve an effective volume of 60 µI and 

only enumerate 1-15 % of the community present. Fatty acid analysis uses larger 

volumes and a larger sample of the overall population is obtained. It has the ability 

to analyse the algal and heterotrophic community coexisting with the micro bes 

although it cannot distinguish bacteria that do not have distinct fatty acid 

constituents. Therefore, all these methods have clear drawbacks. A combination 

of these methodologies will, however, create a more complete understanding of the 

community as a whole. 

7.11 Shewanella species distribution in the Huon Estuary 

Although most other bacterial isolates were closely associated with algal blooms, 

the Shewanella isolates occurred in integrated samples and their occurrence in the 

water column did not appear to be related to periods of algal blooms. The 

importance of Shewanella in the marine environment has not been fully explored 

and this genus may play a pivotal role in the nutritional ecology of the estuary 

during periods when algal blooms are absent. The presence of this genus 

throughout the winter season is of interest because of the nature of the essential 

nutrients it is capable of producing. During winter, water temperatures were 

lowest as was algal biomass (chapter 2). The presence and apparent increase of 

the genus Shewanella during cooler periods may increase the supply of the 

essential polyunsaturated fatty acid, eicosapentaenoic acid (EPA, 20:5(n-3)) to the 

water column during winter. The cooler winter water temperatures would 

maximise the EPA production in the Shewanella species (see chapter 6 and 2). 

The use of oligonucleotide probes for this genus would be worthwhile. The 

Shewanella probe, which successfully binds with the psychrotrophic species of the 

genus, would be of considerable value in understanding the role of this species in 

many marine environments. Future research of this genus would benefit by the 

design of another oligonucleotide for the psychrophilic species of the genus. 
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7.12 Comparison of morphology and FISH results 

Examipation of colony types demonstrated marked variation and change between 

depths and dates indicative of bacterial community change over the season. A key 

feature of the results was the relationship of algicidal morphotypes to diatom 

blooms rather than dinoflagellate blooms at 3 depths (excluding integrated). As 

algicidal bacteria do not kill diatom species, superficially, this would then appear to 

benefit diatoms. It could be hypothesized that the algicidal bacteria are repressing 

the dinoflagellate bloom and nurturing the diatom bloom, although this is presently 

conjectural. However, this research suggests there is a community shift between 

the two bloom periods and that algicidal morphotypes occurred throughout the 

photic depths during the Pseudonitzschia spp. bloom. 

The integrated samples were more likely to contain non-pigmented colonies, while 

isolates from the pycnocline and surface water samples were more likely to be 

pigmented morphotypes. Given that many of the CFB are coloured, and many of 

the y proteobacteria are white, this supports the findings of the fatty acid profiles 

in chapter 5. These results suggest the photic depths, where algal blooms 

occurred, had higher proportions of BCFA (and thus CFB). Conversely, 

integrated samples showed fatty acid profiles that were indicative of bacterial 

species whose fatty acids merged with the eukaryotic signature (no BCFA). That 

is, integrated samples contain higher proportions of the bacterial genera that 

contain straight chain and monounsaturated fatty acids. Supporting this argument 

is knowledge that the integrated samples also contained the highest bacterial 

numbers when compared with surface or pycnocline samples, despite having the 

lowest concentrations ofBCFA. y Proteobacteria such as Pseudoalteromonas and 

Vibrio species are non-pigmented and do not form BCFA. The morphotype results 

indicate that some of the unpigmented colonies occurring in the integrated sample 

may belong to these genera. 

Success in the use of FISH for integrated samples was generally poor. However 

during the summer G. catenatum bloom, the y proteobacteria were highest for the 

integrated samples when compared to all other depths. The morphological 

evidence supports this finding with the integrated samples being more closely 
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related to those in the white-cream morphotype. Interestingly, during both G. 

catenatum blooms, algicidal species were present but were not algicidal, and the 

dominant bacterial cluster was CFB. Conversely, during the Pseudonitzschia spp. 

bloom, algicidal morphotypes were present, Pseudoalteromonas was a dominant 

genus, and isolates of algicidal bacteria demonstrated algicidal properties at this 

time (chapter 4). This indicates that species, strain and environmental factors can 

effect the algicidal properties of a microbial community. 

Due to the complexity of ecology, comparison between diverse techniques such as 

CFO and FISH is difficult. However, generalised similarities can be seen between 

the two techniques for many the sites. During the summer G. catenatum bloom 

period, the dominant morphologies were yellow-orange and the major FISH 

classes were "other", a proteobacteria and CFB. The bacterial species that did not 

hybridise with any of the probes used may have been gram-positive species. The 

pycnocline sample at site F3, in particular for the summer G. catenatum bloom, 

was dominated by pink colonies and FISH analysis demonstrated the dominance of 

a proteobacteria. For this same date, the FI pycnocline was dominated by algicidal 

colonies and by the CFB cluster. Site X3 for the summer G. catenatum bloom was 

also dominated by the algicidal vector and contained a high proportion of CFB. 

Site X3 also contained a high proportion of eubacterial species that did not 

hybridise with any of the probes used. 

Throughout the diatom bloom, the dominant cultured morphotype at site FI 

formed white cream colonies. FISH analysis demonstrated that y proteobacteria 

and the genus Pseudoalteromonas were the major classes. The other two sites 

contained higher proportions of algicidal morphotypes, had different FISH profiles, 

and were dominated by CFB and the genus Pseudoalteronwnas. 

Between the summer G. catenatum bloom and the Pseudonitzschia spp. bloom the 

pycnocline at site Fl contained mainly white cream colonies. FISH analysis , 

indicated that this sample was dominated by Pseudoalteromonas and other y 

proteo bacteria. 
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During the autumn G. catenatum bloom, sites X3 and F3 were increasingly 

influenced by the algicidal morphotype over the bloom period. The CFB cluster 

dominated at both sites. 

The field study in the Huon Estuary over the three major blooms in 1999 showed 

that the bacterial comn1unity can be dominated by genera with algicidal properties. 

Changes were observed in q.lgicidal genera with relation to diatom and 

dinoflagellate blooms. The genus Pseudoalteromonas was demonstrated to closely 

associate with the Pseudonitzschia spp. diatom bloom. The genus Shewanella 

could be contributing to the presence of 20:5n-3 in the estuary in winter when algal 

blooms are less frequent and temperatures are suitable for higher production of this 

fatty acid. In combination, FISH fatty acid analysis and morphological techniques 

demonstrated that no one bacterial species dominated and there were seasonal 

transitions in the bacterial community composition similar to those that occur in 

the algal community. 
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8. Antibiotic compounds in 

Pseudoalteromonas 

Summary 

Antibiotic compounds - Chapter 8 

The Pseudoalteromonas isolate ACEM 1 secretes a number of structurally related, 

brominated metabolites that are not associated with the algicidal activity of the 

bacteria. These metabolites are antimicrobial and inhibit selected environmental 

and pathogenic bacteria but have no effect on others in the same genus. The 

molecular weights of these new metabolites are smaller than antimicrobial peptides, 

and larger than small antimicrobial metabolites, produced by sponges or other 

marine bacteria (including other Pseudoalteromonas species). These results 

further demonstrate the bioactive nature of compounds produced by the genus 

P seudoalteronionas. 

Introduction 

In 1936, Zobell stated that antibiotic producmg marme bacteria contributed to the 

bactericidal action of seawater (Zobell 1936). Antibiotic production was thought 

to enhance survival of bacteria under nutrient limited conditions, enabling them to 

out-compete other microbes. Proof of this nutrient limitation hypothesis includes 

the observation that many antibiotic and secondary metabolites formed by bacteria 

are produced in late log and early stationary phase when required nutrients become 

depleted. Bacteria synthesise low levels of secondary metabolites when grown 

under optimal conditions whilst greater levels are produced when they become 

growth limited. In a study by Austin (1989), antibiotic-producing marine bacteria 

were more common in winter than summer because of the cooler temperatures in 

winter causing growth limitation of the cells. 

Many of the antibiotic metabolites produced by bacteria are halogen based. Many 

antibiotic-producing bacterial species have been isolated from, sponges (Bultel-
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Ponce et al. 2000) and other invertebrates and it is thought that antibiotic 

compounds play a role in the defence mechanisms. 

The genus Pseudoalteromonas has shown a high degree of bioactivity and the 

strain ACEM 1 has demonstrated algicidal properties (chapter 4). The brominated 

metabolites produced by this genus are further indication of the bioactivity of 

Pseudoalteromonas and also an example of the seemingly multiple roles that 

bacteria can have in the marine environment. 

Objectives of this chapter were to: 

•!• investigate the anti-microbial activity of ACEM 1 on environmental and 

pathogenic bacterial species; 

•!• confirm if bactericidal compounds were the algicidal compounds; 

•!• partially elucidate the structure of the compound/s involved; 

•!• compare brominated compounds with other antimicrobial components and 

secondary metabolites of similar molecular weight produced by the genus 

Pseudoalteromonas and other marine organisms. 

Methods 

8.1 Concentration and elucidation of brominated 

compounds 

To produce biomass for antibiotic extraction, ACEM 1 was inoculated and grown 

in 1600 ml of liquid marine media (Sea salts (Sigma) 28 g Yeast extract (Difeo) 1 
' ' 

g, Bacteriological Peptone (Difeo) 4 g) in a 21 flask for 1 week at 22 °C. The 

medium was supplemented with approximately 1 g/l of KBr. Sea salts were 

replaced with 28 g/l NaCl to monitor the effect of the presence or absence 

bromine. KBr was also increased to 4 g/l to investigate the effect of additional 

bromine. 

The ACEM 1 culture was partially filtered through GFF filters (Whatman) and was 

left to extract for 12 hours with dichloromethane and occasional vigorous shaking. 
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The crude extract was rotary evaporated under vacuum at 35 °C. This extract was 

used for proton and carbon NMR and HPLC-MS and FAB-MS analysis. NMR 

analysis required milligram quantities of brominated compounds. The volume of 

culture ( 1600 ml) precluded filtration through 0.2 µm filters. A small subsample 

from this extract was useP. for HPLC-MS-MS analysis. This was centrifuged and 

filtered through 0.2 µm polycarbonate filters (Millipore) prior to analysis. 

Examination of antibiotic components was initially completed in conjunction with 

the elucidation of the algicidal compounds. An HPLC (Waters Alliance 2690) was 

coupled with a photo diode array, a reverse phase C18 column (Nova-Pak C18 3.9 x 

150 mm) and a Finnigan LCQ mass spectrometer with APCI source-vaporizer 450, 

capillary 170, sheath gas 60, aux gas 15, source current 5 µamps, (or Finnigan 

LCQ with Electrospray source, capillary 200, sheath gas 90, aux gas 15, ESI 

needle 5 KV). The scan range was m/z 100 to mlz 1200 (or m/z 100 to mlz 2000 

for the Electrospray source). Data-dependent MS/MS scans were collected from 

the most intense ions. The elution gradients included a gradient of water-2 % 

acetic acid-methanol at 0.8 ml/min or a 50:50 methanol:water gradient at 0.8 

ml/min finishing with 90 % methanol at 25 minutes. Sample fractions were 

collected every 5 minutes during the HPLC run. Later, when elution of the 

algicidal components was not required this method was altered to a 

methanol:water gradient finishing with 90% methanol. This shortened the elution 

time for the brominated compounds from 40-45 minutes to 20-25 minutes. Some 

peak definition was lost in this process, but the use of the photodiode array and 

specific mass fragmentation permitted compound and isomer separation and 

identification. 

13C ~nd 1H NMR spectra in CDCL3 were recorded at room temperature in 5 mm 

o.d. tubes on a Bruker ACF 300 or DMX 500 spectrometer using the deuterium 

signal of the solvent as the lock. The chemical shifts were read from the residual 

protonated solvent. One-dimensional 1H NMR experiments were carried out on ·a 

Bruker ACF 300 spectrometer with a spectral width of - 3500 Hz, a 45° pulse 

angle, SK data points and a repetition delay of 3 seconds. One-dimensional 13C 

NMR spectra were recorded in the pulsed Fourier transform mode ( 16K data 

points for the FID) at 298 on a Bruker ACF 300 spectrometer operating at 75.47 
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MHz or a Bruker DMX 500 spectrometer operating at 125.77 MHz (Maximilien et 

al. 1998). 

8.2 Testing of antibiotic properties 

ACEM 1 was prepared for the well diffusion assay by inoculating 15 ml of Marine 

Agar Broth with ACEM 1. This was placed on a shaker table and incubated at 24 

°C for 6 hours. 

Lawn cultures were prepared on marine agar plates with laboratory strains of 

Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Staphylococcus 

aureus and Sabnonella typhiniurium, and the environmental strains, ACEM 4, 

ACEM 20, ACEM 22, ACEM 32, ACEM 21, P. tunicata and P. ulva. Bacterial 

suspensions were spread across the plates with a bent glass rod. These were 

allowed to dry before wells were punched into each plate using a sterile 5mm 

diameter plastic drinking straw. Sub samples (50 µl) of ACEM 1 were deposited 

by sterile pipette into the wells and allowed to diffuse into the agar. The plates 

were incubated at 25 °C for 36 hours and any zones of inhibition were recorded. 

The diameter of the well and zone of inhibition were measured and the diameter of 

the annulus recorded. Zones were bactericidal if no growth occurred and 

bacteriostatic if growth was merely limited. 

Well diffusion assays were also completed with the HPLC extract fractions (48 

hour old culture) for L. monocytogenes, S. typhimurium and E. coli. 

Well diffusion assays were also completed on the environmental strains with a 

white colony isolated from ACEM 1 to determine if antibiotic activity was related 

to pigment production. 

The Pseudoalteromonas species, P. luteoviolacea and P. piscicida, were tested for 

the presence of brominated compounds. The supernatant of P. luteoviolacea was 

also assayed for well inhibition, as it was the Pseudoalteromonas species that had 

produced most of the previously described, bioactive compounds for this genus. 
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Results 

The HPLC fractions were tested for algicidal activity. The fractions containing the 

brominated compounds demonstrated no algicidal activity. The algicidally active 

compounds eluted very early in the run. In contrast, the brominated compounds 

were non-polar and eluted during the methanol gradient late in the run. Strains of 

P. luteoviolacea and P. piscicida did not contain any brominated compounds. 

8.3 Stability of brominated compounds 

Antibiotic properties of the compounds were not affected if left at room 

temperature for five days but the components did not tolerate autoclaving, or 10 

. minutes at 80 °C. The compounds were produced at substantially lower levels if 

ACEM 1 was cultured in bromine free media (with NaCl replacing sea salts) 

(Figure 8.1). Growth of ACEM 1 was slightly inhibited with 4 g/l KBr and no 

antibiotic compounds were identified. A slight increase o{the brominated 

compounds was observed using the LCMS-MS if 1 g/l KBr was added. 

8.4 Inhibition of environmental and pathogenic strains 

Inhibition zones of between 4-10 mm were observed when the ACEM 1 

compounds diffused from the wells into the lawn cultures of E. coli, L. 

monocytogenes, Staphylococcus aureus, Salmonella. typhimurium, ACEM 4, 

Pseudoalteromonas ulva, Pseudoalteromonas tunicata and ACEM 21. Slight 

inhibition or a bacteriostatic effect of the ACEM 1 compounds was observed for 

ACE:rvJ; 22 but no inhibition was apparent for ACEM 20, ACEM 32, or Bacillus 

subtilis. Interestingly, the three Pseudoalteromonas species did not express their, 
' . 

pigments in colonies surrounding the inhibitory zone (Figure 8.2). The lJrominated 

~ompounds repressed pigment production at the inhibitory zone interface, not their 

growth. The inhibition of pigment formation was not observed for other 

. ·pigmented species such as the Cellulophaga lytica strain ACEM 21. 
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Figure 8.1 HPLC chromatogram with photodiode array detector showing absorption of the 
brominated compounds in the UV region. Figures b) represents the same trace as Figure a) but 
enables a comparison with Figure c) which demonstrates the effect of the addition of NaCl alone to 
the ACEM 1 culture instead of Sea Salts (Sigma) which contain bromine. 
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Figure 8.2 Zones of inhibition for ACEM 1 (50 µI bacterial cells plus supernatant) 
when applied to selected environmental bacteria (Clockwise from top left P. ulva, 
ACEM 4, ACEM 21 (C. lytica), P. tunicata. 
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Wild type, non-pigmented ACEM 1 colonies were also used in the well diffusion 

assay to ascertain whether pigment production was related to antibiotic activity. 

Placing a non-pigmented-colony onto the culture lawn of the environmental 

cultures produced a zone of inhibition. The zones of inhibition were the same as 

those observed for the yellow-pigmented colonies. 

When ACEM 1 supernatant was added at low concentrations (20 µl) to non-axenic 

algal cultures, growth of other bacterial species was hindered (see also chapter 4). 

It is possible that the autolysis mode of action observed for ACEM 1 demonstrated 

in chapter 4 is partly due to the production and activity of these brominated 

compounds. 

Previous studies demonstrated that the brominated compounds in P. luteoviolacea 

were small molecular weights and attached to the cells (Gauthier and Flatau 1976). 

In this study, the brominated compounds were extracellular as they were present in 

the :filtered culture media. This does not preclude the presence of these 

compounds within the cells. Well inhibition assays using the type strain of P. 

luteoviolacea demonstrated no inhibitory activity. The cause may be the time in 

culture and the loss of these abilities. Other workers examining this genus have 

also found a lack of any bioactivity in many of the species, which supports this 

hypothesis (Holmstrom, C. pers. comm.). The addition of the HPLC fraction 

containing the brominated compounds to G. catenatum cultures extended the life 

of the G. catenatuni culture (addition was equivalent to 1013 cells/I of ACEM 1 

added to 100 ml of G. catenatum culture). 

8.5 Structure: FAB-MS-MS 

The brominated compounds were discovered as a result of their UV absorption 

when analysed with the photodiode array of the APCI on the LC-MS-MS. The 

UV absorption spectra of the most concentrated brominated peak is shown in 

Figure 8.3b. Several isomers of the brominated compounds were apparent (Figure 

8.4b). -Many had 2 to 4 isomers present. Compound separation on the HPLC was 

considered to be genuine isomerisation rather than an artefact of HPLC elution 

(peak splitting) as peaks eluting earlier and later had no indication of peak splitting. 
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Figure 8.3 Mass Spectral data, molecular weights, UV absorption and daughter ions (MS-MS) of the 
major brominated compound in ACEM 1. 
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Integration of the HPLC trace indicated that one particular brominated compound 

dominated (Figure 8.3), with up to 20 other similarly related compounds apparent 

at similar retention times to this peak (Figures 8.4, 8.5 and 8.6). All components 

· contained bromine with one potentially containing a chlorine ion as well (Figure 

Sb, Figure 8.6b). The 18 compounds demonstrated isomeric and structural 

variation. The major structural differences were changes in the number of bromine 

and nitrogen atoms, and variation in the number of methyl groups. However, the 

overall structure of all the brominated compounds in ACEM 1 is likely to be very 

similar. 

For mass spectral analysis, ions resulting from loss of C, H, N and 0 are usually 

small compared to those for bromine or other halogens. The presence of bromine 

ions in mass spectra is indicated by the fragmentation of the molecular weight ions. 

A compound that contains one chlorine atom will have an M+2 peak 

approximately 1;3rd the intensity of the molecular peak because of the presence of a 

molecular ion containing the 37Cl isotope (Silverstein et al. 1991). A compound 

that contains one bromine atom will have an M+2 peak almost equal in intensity to 

the molecular ion because of the presence of a molecular ion containing the 81Br 

isotope. A compound containing two bromine atoms (or one chlorine and one 

bromine) will therefore show a distinct M+4 peak in addition to the M+2 peak 

because of the presence of a molecular ion containing two atoms of the heavy 

bromine isotope. The ratio of these peaks for practical use of mass fragment 

graphs is shown in Table 1 

Table 1: Intensities of isotope peaks relative to the molecular ion for combinations of bromine 
and chlorine; adapted from Silverstein et al. (1991). 

Halogen present Approximate % Approximate % 
M+2 M+4 

Br 100 
Br2 200 100 
8r3 300 290 
Cl 33 
Cl2 66 10 
Cls 100 33 

BrCI 130 33 
Br2CI 230 160 
BrCl2 160 75 

~-
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Figure 8.4 a) LC-UV photodiode array spectral data indicating absorption of the brominated 
compounds. b) Spectral data showing isomers of the brominated compounds. c) Retention time 
of brominated compounds and the relative abundance for the major ions present for the 
brominated compounds 
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Using the information from the above ratio calculations some of the compounds in 

ACEM 1 contain two bromine atoms (Figure 8.5a) while others contain one atom 

(Figure 8. 6b). 

The dominant brominated compound contained one bromine (Figure 8.3). The 

odd-numbered molecular weight ion indicated that nitrogen was also present in the 

compound and signifies the occurrence of odd numbers of nitrogen ions. The 

molecular weights of the other brominated compounds not indicated in the figures 

are as follows: 860, 600, 522, 520. It is also possible that because of the presence 

of the M+2 ion, the major compound contains one sulphur atom (M+2 is over 10% 

abundance which may indicate the presence of sulphur or high oxygen numbers). 

8.6 Structure: NMR 

The proton and Carbon NMR of the main brominated compound again 

demonstrates the presence of halogens (identified as bromine from mass spectral 

data) aromatic rings, double bonds and oxygen (Figures 8.7 and 8.8). 
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Figure 8. 7 Proton magnetic resonance spectrum of major brominated compounds from 
ACEM 1. Solvent used was DCM. Chemical shifts of functional groups are labelled 
on the chart. 
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Figure 8.8 Decoupled 13C-spectrum of the dominant brominated compound isolated from 
ACEM 1. Solvent used was CDCh. Chemical shifts of functional groups are labelled on 
the chart. 
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Discussion 

The first antibiotic isolated and characterised from a marine bacteria was a 2,3,4-

tribromo-5(1'-hydroxy-2' ,4'-dibromophenyl) pyrrole isolated from a species of 

seagrass Thalassia (Lowell 1966). Another compound, 2-(3',5'-dibromo 

2'hydroxyphenyl)-3,4,5-tribromopyrrole, was isolated from the same species in the 

late 1970s (Faulkner 1978). Interestingly, although these bacteria were originally 

placed in the respective genera Pseudomon.as an_d Chronwbacterium, their 

taxonomy suggests they are probably Pseudoalteromon.as spp .. 

Other antibiotic producing Pseudoalteromon.as species have also been closely 

associated with macrophytes suggesting a commensal relationship between the two 

(Lemos et al. 1985). The relationship of macrophytes with Pseudoalteronionas 

also extends to the production of anti-algal and anti-biofouling compounds 

demonstrated by the species P. ulva and P. tunicata (Egan et al. 2001 b, 

Holmstrom and Kjelleberg 1999). Elucidation of the anti-algal and anti-biofouling 

compounds produced by Pseudoalteronwn.as species has proved elusive. 

Four other Pseudoalteromon.as species demonstrate antibiotic activity; P. 

luteoviolacea, P. rubra, P. citrea and P. aurantia. A study of P. luteoviolacea 

indicated that some of the antibiotic compounds, although not elucidated, were 

small-brominated secondary metabolites (MW<300) (Anderson et al. 1974). P. 

luteoviolacea (then identified as Chromobacterium marin.um.) was found to 

produce the same antibiotic determined by Faulkner (1978) as well as 

tetrabromopyrrole, hexabromo-2,2' -bipyrrole, 4-hydroxybenzladehdye and n­

propyl-4-hydroxybenzoate. Gauthier et al. (1982) observed that the small 

molecular weight compounds produced by P. luteoviolacea were similar to the 

compounds found in three other Pseudoalteromonas species; P. rubra, P. citrea 

and P. auran.tia. All of these compounds are a much lower molecular weight than 

those found in ACEM 1. 

Larger antibiotic compounds produced by P. luteoviolacea were also discovered 

(Gauthier and Flatau 1976). These high molecular weight compounds (-100,000 

MW) were found to be associated with a protein produced by the bacteria and only 
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occurred in late log to stationary phase (McCarthy et al. 1994). Consequently, the 

dominant heterocyclic antibiotics produced by Pseudoalteromonas are pyrroles. 

Pyrroles are based on a five membered nitrogen-containing compound and have an 

aromatic nature. Pyrroles are usually found in association with sponges and many 

have bioactive abilities (Rao et al. 2000, Gribble 1999). 

There are many naturally occurring brominated pyrroles in the marine environment 

as they are 1018 times more reactive than benzene to electrophilic aromatic 

bromination (Gribble 1999). Naturally occurring pyrrole derivatives are haem and 

chlorophyll. Interestingly, the structures of the marine harmful algal bloom toxins 

anatoxin (produced by freshwater cyanobacteria) and domoic acid (produced by 

marine diatoms and red algae) (Falconer 1993) are also pyrrole derivatives. It is 

therefore worthy to note that ACEM 1 was closely associated with the toxic algae 

G. catenatum. It has been suggested that bacteria either produce the compounds 

that cause paralytic shellfish toxins or their initial derivatives for species such as G. 

catenatum. This hypothesis has created much discussion (Doucette et al. 1998). 

Species from the genus Pseudoalteromonas have demonstrated the ability to 

produce tetrodotoxins (chapter 1) and paralytic shellfish toxins (chapter 1) as well 

as secondary metabolites, but there are still questions in relation to the link 

between bacterially produced bioactive compounds and algal or sponge 

metabolites. 

Brominated compounds isolated from marine animals and sponges with similar 

molecular weights as those in this study are discussed further below. The examples 

demonstrate the bioactive nature of these brominated metabolites. Many of the 

brominated compounds come from the sponge species Psamniaplysilla purea and 

P. purpurea of the family Aplysinellidae which produces 95% of their secondary 

metabolites as brominated structures (Rao et al. 2000). 
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NOH Br 
NHvAvO 

0 

Two of nine bromotyrosine derived metabolites and purpuramines from P. pwpea (Yagi et 
al. 1993. Tetrahedron, 49, 3749). All show antibacterial activity against Staphylococcus 
aureus, MW 520-636. 

ODH NH 
0 )=NH 

NH 
NH 

Br NH 

One of three indoles from the ascidian Leptoclinides dubuis which contains the rare amino 
acid enduracididine (Garcia et al. 1996. Journal of Natural Products, 59, 782), MW 393. 

NH 0 

h---t<"Me 

Br 
j 

One of four didemnimides from the ascidian (sea squirt) Didemnum conchyliatum that are potent 
feeding deterrents (Vervoort et al. 1997. Journal of Organic Chemistry, 62, 1486), MW 367. 
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OMe 

Br 

,, .. · H 
R "· 0 .,, 

~==Y~o 
Br 

NOH 

0 NH~ j-NH2 

0 NH 

Br 

R=OH: Activates myosin EDTA-ATPase at 0.3-30 µm and inhibits myosin ca+-ATPase and Na+, K+­
ATPase (Nakamura et al. 1987. European Journal of Biochemistry 167, 1), MW 934 

R= MeO: stabilizer of smooth muscle myosin filaments that modulate A TPase activity of dephosphorilated 
myosin (Takito et al. 1986. Journal of Biological Chemistry, 13, 861), MW 948. 

Both compounds were isolated from the sponge P. purpea 

Meo 

Br 

0 

Br 

Br 

R1=R2= H 
R1=Ac, R2=H 
R1=H, R2=0H 

These three compounds are anti-microbial Psamrnaplysins isolated from the sponge P. purea 
(Roll et al. 1986: Journal of the American Chemical Society, 107, 2916). Psammaplysins are 
derived from dibromotyrosine via benzene oxideoxepin intermediates, MW 710-726. 
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OH 0 

0 

0 

Br 

Tubastraine produced by stony coral Tubastraea micrantha which is avoided by the 
Crown of Thorns sea star (r~viewed in Gribble et al. 1997. Accounts of Chemical 
Research, 31,141), MW 712. 

OH 

NOH 

OH 

NOH 

One of three Psarnmaplins isolated from the sponge P. purpurea 
that has anti-microbial and mild tyrosine kinase inhibitory 
activity (Jimenez et al. 1991. Tetrahedron, 47, 2097), MW 451 

0 

NH~8's/"--,.NH~ 
0-Me 

NH~s's/'vNH 

0 

OH 

Psammaplysin isolated from the sponge Psammaplysilla (Quinoa et al. 1987. Tetrahedron 
letters, 28, 3229) MW 665.. · · 

239 

: d 



Antibiotic compounds - Chapter 8 

OMe 

A purealidin from the sponge P. purea that demonstrates antibacterial activity (Kobayashi et al. 
1991. Tetrahedron, 47, 6617), MW 747. 

NH 
=1 

0 

OH 
Br 

Br 

NH 

I 
N" 

OH 

Br 

A macro-cyclic peptide identified as a bastadin that demonstrates anti-microbial 
activity, isolated from the sponge P. purea. (Carney et al. 1993. Journal of Natural 
oroducts. 56. 153). MW 992. 
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Sponges of the genus Agelas are also chemically defended from fish predation by 

brominate~ pyrrole alkaloids (Assmann et al. 2000). Another group of sponges 

(Aplysina spp.) have demonstrated a high degree of antimicrobial activity which 

was thought to be enhanced by the associated bacteria (Hentschel et al. 2001). 

These bacteria were from the genus Pseudoalteromonas and the a proteobacteria 

class. 

The structures identified from sponge extracts demonstrate similarities to each 

other and it would be realistic to compare the MS and NMR traces of the 

brominated compounds produced by ACEM 1 to these compounds. Most of the 

compounds reported in the literature that are produced from sponges demonstrate 

anti-microbial activity. Some show anti-tumour activity but many are larger than 

the small metabolites p~oduced so far by other Pseudoalteronionas species, or are 

smaller than the bioactive polysaccharides or protein associated metabolites. To 

my knowledge antimicrobial compounds of a similar size to those found in ACEM 

1 have not been isolated from any bacteria or sponge species. Many of the larger 

molecules with a molecular weight similar to the compounds isolated in this study, 

contain 4 to 8 bromines atoms or are polysaccharides. However, it would be 

realistic to hypothesize that the structure of the brominated compounds in ACEM 

1 may have a similar structure to some of the bacteria or sponge brominated 

metabolites previously described (e.g. aerothionin, aeroplysinin, 

dibromoverongiaquinol, bromochloroverongiaquinol and heptylquinolone). 

The findings for ACEM 1 support the increasing recognition that bacteria can 

produce complex secondary metabolites or their derivatives. According to a 

leading natural product chemists the study of bacterial metabolites is yet to be fully 

realised (Faulkner 2001, 2000). It has been demonstrated that bacteria or 

cyanobacteria can play a role in the production secondary metabolites of sponges 

which are often the most concentrated sources of these compounds. Research into 

the bryozoan Amathia wilsoni isolated from Tasmanian waters indicated that it 

produced several brominated secondary metabolites. These metabolites were 

smaller than those produced by ACEM 1 and were concentrated on the surface of 

the bryozoan. The metabolites correlated with a rod shaped bacterial species that 

only occurred on the tip of the bryozoan (Walls et al. 1995). Other bryozoans 
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from the area had a less patchy distribution of bacteria and lower bacterial 

numbers. However, an Oventricosa species had the lowest bacterial numbers, but 

was still chemically defended (Walls et al. 1993), indicating the complexity of these 

interactions. Another example is a brominated compound produced by a symbiotic 

cyanobacteria rather than the resident marine sponge (Unson et al. 1994). A 

further study of the sponge demonstrated that metabolites were localised to both 

the cyano- and the symbiotic bacteria of the sponge (Bewley et al. 1996). 

Variations in the antibacterial activity of the sponge Ircinia :amosa demonstrated 

that the associated bacteria were capable of producing antibacterial metabolites 

(smaller than ACEM 1). Interestingly, the antibacterial activity originated from 

polar solvent fractions in cooler months and appeared in non-polar fractions in 

warmer months (Thakur and Anil 2000). The authors concluded that the chemical 

nature and production of antibacterial compounds produced by the sponge or its 

associated bacteria appeared to be governed by the environment. This is relevant 

for the bactericidal and algicidal features of ACEM 1. Both types of bioactive 

compounds produced by ACEM 1 have the potential to vary in the marine 

environment. The capability of switching one or other of these abilities on or off 

would make energetic sense iri a natural environment. This remains an area for 

further research. 

Future analyses using FISH may be helpful in the discovery of more of these 

animal/plant/bacterial relationships and to further understand whether or not 

bacteria are responsible for the production of secondary metabolites or their 

precursors. Studies so far have demonstrated that a diversity of species exists on 

sponges (Webster et al. 2001). Identification of these genera using FISH may help 

to rectify whether these relationships are symbiotic or merely coincidental for a 

particular species. Specific FISH probes such as those for the genus 

Pseudoalteromonas would be valuable, as this genus has already demonstrated the 

ability to produce brominated secondary metabolites. 
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9. Thesis Conclusions 

Algicidal bacteria were present in the estuary and members of their respective 

classes were often associated with algal blooms. The discovery of five algicidal 

isolates from the Huon Estuary adds to the present knowledge of this type of 

bacterial action. For the first time, two gram-positive species demonstrated 

algicidal activity. The other novel algicidal species were from the more 

traditional algicidal genera, Cellulophaga and Pseudoalteromonas. All isolates 

demonstrated similar algicidal activity against G. catenatum vegetative cells. 

Some isolates, such as the genus Cellulophaga, have the potential to be far more 

physically active in the water column which may provide a mechanism for 

nutrient sequestering. 

Isolation of such diverse genera indicates the discovery of five algicidal species is 

a positive outcome for the search for new bacterial isolates that have bioactive 

potential in the marine environment. In addition to the algicidal compounds, 

ACEM 4 produced inhibitory biofouling compounds and ACEM 1 produced 

antibacterial compounds. Discovery of these additional activities further 

demonstrates the biotechnological potential for the genus Pseudoalteromonas. 

The ability of this genus to produce a spectrum of bioactive compounds via a 

number of unrelated mechanisms demonstrates the adaptability of the genus to the 

variable conditions that occur in the marine environment. Diverse ranges of 

bioactive activities are not new to the genus Pseudoalteromonas. They are 

however interesting, when examining the ecological context of when these 

compounds are produced in their natural environment. Future work on 

understanding whether algicidal and antibiotic mechanisms switch on and off with 

different environmental triggers, would be a valuable contribution to knowledge 

of the ecology of microbial systems. The potential for systems such as quorum 

sensing shows great promise in this area with respect to activation or inactivation 

of these bioactive mechanisms. Recent advances have demonstrated that certain 

quorum sensing mechanisms can be effective at cell concentrations found in the 

marine environment. 
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The relationship of estuarine bacteria both to each other and within their 

environment can vary. The use of morphological techniques, FISH and fatty acid 

analysis identified bacterial and algal community composition changes in the 

water column over the sampling season. The bacterial community included many 

genera with seasonal transitions resulting in the dominance of a few genera at any 

one time. Changes in bacterial species were related to shifts in algal community 

composition. This indicates that any one bacterial group 'does not consistently 

dominate the composition of a marine bacterial community. These microbial 

groups, made up of a combination of different genera, have the capability to vary 

in much the same way as algal species vary over the season. 

For most of the year, apart from during the Pseudonitzschia spp. bloom, CFB and 

a proteobacteria were dominant classes in the surface and pycnocline samples. 

Identification of y proteobacteria was not possible using BCF A analysis but the 

absence of BCFA in the integrated samples despite the higher bacterial numbers 

indicate that y proteobacteria or species without BCFA were a major part of the 

community. FISH analyses also demonstrated high levels of y proteobacteria 

during the decay of the G. catenatum bloom and the commencement of the 

Pseudonitzschia spp. bloom. The photic depths where the diatom bloom occurred 

demonstrated a decrease in BCFA concentration at this time indicating a 

community shift from species with BCFA to species with less BCFA. The 

integrated water samples reflected a microbial community with a remarkable 

capacity for microbial degradation and/or heterotrophic feeding. Many of the 

fatty acids detected below the pycnocline were breakdown products of those fatty 

acids present in the upper photic layer. This finding may be explained by the 

presence of heterotrophic or bacterial sources in the deeper waters. The genus 

Shewanella may have played a part in nutrient recycling deeper in the water 

column, as they were often present in the integrated water samples in winter. The 

ability of novel temperate Shewanella isolates to produce the essential fatty acid 

BP A at similar levels to those previously found only in barophilic and 

psychrophilic niches is a unique finding. This feature may be of biotechnological 

interest. Future use of the FISH probe for the psychrotrophic section of the genus 

Shewanella may help determine if this group is present in ecologically significant 

proportions, allowing nutritional benefits to accrue to higher trophic levels. 
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The field study reported in this thesis demonstrated that it is useful to apply a 

variety of techniques to determine the microbial composition of a community. 

The research represents the first combined use in the marine environment of 

traditional morphology, fatty acid analysis, and a molecular method (FISH). It is 

also one of the first Australian studies to use FISH in an estuarine or marine 

system. There are complex variations within an estuarine system such as flushing 

time, tidal flow, estuary shape and human or agricultural inputs. The large 

amount of humic material in the Huon Estuary distinguishes it from many river 

systems and is a major factor in the biological processes that occur within the 

estuary. In addition, this aspect also has implications for research methodologies, 

as some techniques, particularly FISH, are compromised by the presence of these 

substances. 

Algicidal activity in the marine environment could be effective at bacterial 

concentrations that occur during algal blooms. Alternatively, algicidal activity 

may be artificially enhanced due to cell density on particulate matter. Potentially, 

G. catenatum vegetative cells could be affected in the natural environment by 

high numbers of algicidal bacteria either by natural means or via human 

intervention. Physical factors may mitigate this effect, such as the rapid flushing 

time of the Huon Estuary or biological factors such as the production of G. 

catenatum resting cysts which occur throughout the alga's lifecycle. Algicidal 

bacteria appear to be ineffective at harming the cyst stage so using them as a 

control method may be ineffective. The control of other toxic algal species by the 

use of algicidal bacteria, might be possible if the toxic species have no resting cyst 

or occur in an enclosed, low flow environment. In practice, many toxic algal 

blooms occur in open ocean areas and estuaries which are not easily confined. 

Fresh water systems, by contrast, are enclosed and have been successfully treated 

for algal and cyanobacterial blooms using chemical methods. Identification of 

bacterial biocides antagonistic to toxic fresh water algal species might be a 

practical research direction for the investigation of algicidal bacteria. 
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