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Abstract 

This study investigated the diet and patterns in occurrence of haul-out sites of Weddell 

seals along the Mawson coast of East Antarctica. 

Seats of Weddell seals (n = 303) were collected from 139 seal haul-out sites along 250 

km of coast between Fold Island (Kemp Land coast - 66.83°S, 58.79°E) and Auster 

Islands (MacRobertson Land coast - 67°25'S, 63°50'E) during 1998 to 2000. 

Identification of species-specific hard parts from the seats found eighteen species of fish, 

two species of octopod, two species of squid, and four species of crustaceans. 

Randomisation analyses were used to determine associations between abundance of 

primary prey species and year, season, geographic location and water depth at the sample 

collection site. No significant interannual variation was found, but the diet varied 

seasonally, as the squid Psychroteuthis glacialis featured more in the diet in the early 

summer months compared to winter. Larger beaks of this squid were found in seats 

collected from ice over deeper waters. The diet of Weddell seals along the Mawson coast 

is therefore more diverse than reported for other parts of Antarctica and the diet also 

varies seasonally and with changing bathymetry. The diversity in diet may be attributed 

to the complex seafloor topography along the coast, allowing seals to forage within a 

wide range of habitats at different depths. 

For the investigation into patterns in occurrence of haul-out sites, three study areas were 

established in 2000 at different locations along the Mawson coast. One study area 

(Macey) had a high concentration of icebergs and islands, another area (Mawson) had 

islands near the coast and fewer icebergs, and the third area (Colbeck) had very few 

icebergs and no islands. Within each study area, there were two transects (1500m wide, 

1500m apart) extending 20km north over the sea ice from the coast. Each study area was 

surveyed three times - in winter (late July), late winter (mid September) and spring (mid

October). Non-parametric tests were used to examine variation in density of haul-out 

sites and density of seals with respect to distance to coast, between areas and between 

survey periods. During the 3 surveys, 349 seals were observed amongst 165 sites across 
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all 3 areas. Friedman tests found no significant association of number of seal sites or 

number of seals with distance to coast. Kruskall-Wallis tests found significant variation 

between the three areas within each survey period; Macey consistently had more sites 

than the other two areas. Friedman tests tested for temporal variation within each area, 

however no significant changes in number of seal sites or number of individual seals 

were detected. Although not formally tested due to small sample sizes, there appeared to 

be no. spatial separation of sexes. Weddell seal holes were also used by emperor penguins 

in the Macey and Colbeck areas and by crabeater seals in the Macey area. 

This study implies that haul-out sites are not randomly distributed at the local scale (with 

differences shown between different areas along the coast, ie, regional scale) and that 

number of sites and number of seals hauled out on ice or seen in holes increases from 

winter into the breeding season. The results suggest that density of seal sites in the fast 

ice areas off the MacRobertson Land coast is affected by environmental factors such as 

bathymetry and presence of icebergs. 

This study suggests that local bathymetric features have an important influence on the 

biology of Weddell seals in the Mawson area. Changing bathymetry is associated with 

variation in diet. Water depth can also influence grounding of icebergs and ocean 

currents that affect the physical structure and cracking of the sea ice, enabling Weddell 

seals to access the ice surface to breathe and to haul-out for resting and pupping. 
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Chapter 1: General Introduction 

Weddell seals are higher-order, air-breathing, marine predators and an unknown 

proportion of individuals reside throughout the year in the fast-ice regions of Antarctica. 

The ecology of these Weddell seals is therefore intimately linked to the fast-ice and the 

seafloor topography. The ice cover affects the productivity of the underlying water 

column through sediment fallout (Eicken 1992) and variable sea depths provide seals 

with a range of habitats in which to forage. Seafloor topography forces water movements 

which creates pressure points where fast-ice fractures, providing seals with access to the 

air for breathing and to the ice surface for resting and pupping. 

The presence of sea ice profoundly influences the marine environment in Antarctica. Sea 

ice provides the productivity engine for the ice-affected regions (covering 20 x 106 km2 

of waters surrounding Antarctica during winter from 4 x 106 km2 in summer) of the 

Southern Ocean (McMinn 2003). The Antarctic marine food web begins with ice algae 

that cling to the underside of the ice pack all winter and are transported into brine 

channels throughout the ice layer (Hempel 1991, Eicken 1992, Tynan 1998). As the ice 

melts, a phytoplankton bloom develops in the water directly beneath the ice, providing 

food for krill and other zooplankton, which in tum provide the main food source for 

higher trophic levels (Tynan and DeMaster 1997, McMinn 2003). Benthic communities 

that feed on particles settling out of the water column are also affected by the ice cover; 

the benthos receives little to no sedimentation of organic material during winter and then 

experiences a massive input of organic matter as the ice melts and the phytoplankton 

bloom occurs (Hempel 1991, Eicken 1992). 

The sea-ice region of Antarctica can be divided into zones, each with distinctly different 

characteristics (Worby et al. 1998). Landfast sea ice, or fast-ice, is the relatively 

immobile zone of sea-ice adjacent to the coastline (Flato and Brown 1996). Fast-ice is 

immobile in that it is attached to the land and held in place by offshore islands, and is not 

subject to drift as the pack-ice region is (Worby et al. 1998). 
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The fast-ice in different sectors around Antarctica exhibits significantly different 

characteristics (Worby et al. 1998). These differences are partly as a result of variation in 

seafloor topography at different regions around the coast and this variation directly 

influences water movements such as upwelling and horizontal current flow (Heil et al. 

1996). Though immobile, fast-ice is not unbreakable, and when tidal movements or 

oceanic swell penetration occur, seafloor topography defines the pressure points where 

fractures in the fast-ice will occur. These cracks, as a rule, take off near the protruding 

seaward capes, sea-bottom elevations, near islands and also between the islands. Icebergs 

grounded on the seafloor act as islands and tide cracks form around and between them. 

In this thesis, I investigated two separate aspects of the ecology of Weddell seals: diet 

and haul-out site distribution. Understanding these aspects is fundamental for defining 

the ecological niche of Weddell seals, ie, where they sit in trophic webs and interactions 

with other species. Such information contributes to understanding the basic relationships 

between the dynamics of Antarctic marine biological populations and changes in the 

physical environment, which will be critical for predicting the regional effects of climate 

change (Nicol et al. 2000). 

The region of interest for this study was the Mawson area of the East Antarctic coastline, 

a site where Weddell seals had not been studied before. Though previous studies have 

included samples (stomach contents and seats of Weddell seals) collected in the area (eg, 

Green and Burton 1987, Lake et al. 2003), this was the first study examining Weddell 

seals in situ. Given the local variations in topography around the Antarctic coastline, it is 

important to conduct studies at a variety of locations, rather than making generalisations 

about the ecology of seals from just one area. 

Mawson (67°36'S, 62°52'E), on the MacRobertson Land coastline in East Antarctica, is a 

very different site compared to the other locations where most Weddell seal research has 

been conducted. It differs in its coastal topography and its sea ice in comparison to 

McMurdo Sound (77°30'S, 165°00'E) and the Vestfold Hills in Prydz Bay (68°35'S, 

77°58'E), both areas where long-term Weddell seal research programs have occurred 
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(Testa and Siniff 1987, Green et al. 1995). Mawson is on a relatively open coastline, with 

no large embayments that could create gyres in the coastal seas. A few clusters of islands 

within 20 km of the coast help hold the fast-ice in place until very late in the summer. 

The fast-ice is extensive and in the year 2000 it extended more than 90 km from the 

coastal ice cliffs. The coastal waters at Mawson are much deeper than at the Vestfold 

Hills (hundreds of metres compared to tens of meters), and while the main current flow is 

westwards, deep submarine troughs running north-south create channels for injection of 

Antarctic bottom water to the coast from the continental shelf break (Heil et al. 1996). 

Mawson is also at lower latitude than McMurdo or the Vestfold Hills. Latitude affects 

the timing of the breeding season of the Weddell seals (Siniff 1991), with pupping 

starting in early October at Mawson, compared to mid-October in the Vestfold Hills (S. 

Lake, personal communication) and late October/early November in McMurdo Sound 

(Siniff 1991). 

The aim of this thesis is to describe two aspects of the ecology of Weddell seals, diet and 

patterns in occurrence of haul-out sites, and investigate how they relate to physical 

characteristics such as bathymetry of the local region. The first objective was to identify 

the suite of prey consumed by Weddell seals in the Mawson area and then to determine 

the temporal and spatial variation in the abundance of prey species of Weddell seals. The 

second objective was to conduct preliminary surveys for haul-out sites over the fast-ice 

to elucidate patterns in haul-out site occurrence of Weddell seals in winter and early 

summer. 

This chapter sets the stage for the chapters that follow and includes a brief description of 

the biology of the Weddell seal and an outline of the thesis structure. A systematic 

review of the literature will not be included in this introduction as the relevant literature 

is cited extensively in the appropriate sections. 
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1.1 Biology of Weddell Seals 

Weddell seals have a circumpolar breeding distribution, occurring as far south as 

McMurdo Sound and as far north as South Georgia Island (54.5° S, 37° W). In 1958, 

Scheffer estimated the total population of Weddell seals to be between 200,000 and 

500,000. However, Laws (1953) estimated 800,000 seals in the Antarctic Peninsula area 

alone and Stirling (1969a) estimated the population in the Western Ross Sea to be about 

50,000. No systematic census has been conducted to determine the true world-wide 

population size, though currently it is reported to be stable with approximately 800,000 

seals (Siniff 1991). Though the species is widespread around coastal Antarctica, sub

populations are subject to local environmental variation. Therefore multiple censuses 

need to be conducted at many different sites, rather than generalising total population 

size from one site. 

Underwater vocalisation studies and genetics studies suggest that sub-populations are 

reproductively isolated from one another (Davis et al. 2000, Abgrall et al. 2003). Females 

return annually to the same pupping site, whilst young animals disperse away from their 

birth colonies and probably spend the first four to five years of their lives in the pack-ice 

regions (Siniff 1991). 

Weddell seals are amongst the deepest divers and largest of the seals (leopard and 

elephant seals are larger, and elephant seals dive deeper than Weddell seals), with adults 

generally measuring about 3m and weighing 400-450 kg in early spring (Kooyman 

1981). Females are slightly larger than males (Stirling 1971b). They can dive deeper than 

720 m (Testa 1994) and the maximum measured time of submersion is 73 minutes 

(Kooyman 1981). The diving capability of Weddell seals means they can feed in benthic 

habitats even in quite deep waters. 

The dentition of Weddell seals allows them to ream the ice around holes in order to make 

them larger so they can get their head through or fully haul out onto the ice. Rather than 

creating a new hole through thick fast-ice (over l.5m thick at Mawson in August 2000; 
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P. Heil, personal communication) they break through thin ice in tide cracks by hitting the 

ice with their head, then use their teeth to make the hole bigger. The incisors and canines 

are very robust and project forwards, and the snout is small and narrow (Kooyman 1981). 

When seals reach a hole they blow hard out of their nostrils to clear the hole of ice 

crystals. The steam from the seals' breath creates a hummock of ice around the hole, 

making them easy to detect for observers on the surface. Ice-reaming behaviour has been 

observed in pups at about 6 weeks old (personal observation), however whether this 

behaviour is instinctive or learned from the mother is not known. 

Copulation and conception occur mainly in December but implantation of the blastocyst 

(fertilised egg) is delayed until mid-January to mid-February. Foetal development 

progresses during the winter to result in birth in October (Bertram 1940). After giving 

birth to a single pup (Stirling 1971a), females stay with their pup constantly for about 2 

weeks. The female then spends increasingly more time in the water, to mate and perhaps 

to thermoregulate and feed (Thomas and DeMaster 1983). Pups are generally weaned 

within 50 days of birth. At 6-7 wks old pups can remain submerged for 5 minutes and 

dive to lOOm (Kooyman 1981). Pups weigh approximately 25 kg at birth, and over 100 

kg by the time they are weaned (Bertram 1940). 

1.2 Thesis structure 

This thesis reports on two separate aspects of Weddell seal ecology. Chapter 2 is an 

investigation into variation of diet of Weddell seals at different temporal and spatial 

scales. Chapter 3 details the findings of surveys conducted over the fast ice to elucidate 

patterns in haul-out site density. General conclusions are then discussed in Chapter 4. 
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Chapter 2: Variation in the diet of Weddell seals along the 
Mawson coast, East Antarctica 

2.1 Introduction 

Knowing what Weddell seals (Leptonychotes weddellii) eat and how their diet varies 

over space and time is of fundamental importance in understanding how the species 

interacts with its environment. Weddell seals are one of few high-level predators 

foraging in the Antarctic coastal ecosystems and are the only mammal species to over

winter in the fast ice regions of Antarctica. 

Large-scale spatial variation in the diet of Weddell seals has been reported (Lake et al. 

2003). In McMurdo Sound, Antarctic silverfish (Pleuragramma antarcticum) makes up 

the bulk of the seals' diet, along with small fish belonging to the genus Trematomus 

(Bums et al. 1998). Along the coastline of the Vestfold Hills, seals prey upon prawns, P. 

antarcticum and a variety of mysids and benthic fish (Green and BUI1on 1987, Lake et al. 

2003). In the Weddell Sea, the fishes Chionodraco myersi and P. antarcticum and squid 

are the most important prey ~pecies of Weddell seals (PlOtz et al. 1991, PlOtz et al. 2001). 

Seasonal variation in Weddell seal diet has been reported at the Vestfold Hills, with seals 

switching from eating prawns and benthic fish in the austral summer to pelagic fish and 

squid in the winter (Green and Burton 1987). There also appears to be interannual 

variation in seal diet in the Weddell Sea region, with P. antarcticum the predominant 

prey in 1983 and 1985, but C. myersi dominating in 1986 (PlOtz 1986, PlOtz et al. 1991). 

Seasonal variation has also been previously reported at Mawson, based on seats collected 

along the Mawson coast during the austral winters of 1996 and 1997, seal diet varied 

seasonally (Lake et al. 2003). However, that study found no spatial variation between 

seats collected from different areas along the coast within each year. Preliminary work 

with satellite telemetrx has indicated that some Weddell seals forage within a confined 

range during winter (Testa 1994, Lake et al. 2005a). The waters along the Mawson 

15 



coastline show some dramatic variation in depth with a trough descending to >500m 

north of Mawson and a large submerged shelf, the Storegg Bank, to the east of Mawson 

that is around 100 m deep. Given the potentially limited foraging range of Weddell seals 

at least during winter and even more so during the summer for breeding seals, any 

variation in the diet between sites might be associated with variable water depths in this 

area. 

The main objectives of this study were 1) to identify the species consumed by seals 

within the study area, 2) to determine if the diet of Weddell seals varied seasonally and 

interannually, and 3) to determine if any spatial variation was associated with depth or 

coastal location. 

2.2 Materials and Methods 

2.2.1 Study area 

The study area included portions of the MacRobertson Land and Kemp Land coasts up to 

200 km west and 60km east of Mawson Station (67°36'S, 62°52'E). The coastline where 

seats were collected was divided into zones that incorporated the major island groups 

along the coast, which are roughly 50 km apart. Zone 1 includes the Robinson Group of 

islands, the Auster Islands, and further eastwards; Zone 2 includes the islands 

surrounding Mawson Station; Zone 3 incorporates the Stanton Group; and Zone 4 

includes the Colbeck Archipelago and further west (see Figure 2.1). Depth classes were 

taken from a map of the Mawson coastline obtained from the Antarctic Division Data 

Centre (Figure 2.1). Depth class 1 incorporated depths 0-100 m, class 2 100-250 m, class 

3250-450 m, class 4 450-1000 m and class 5 included depths 1000-2500 m. A sixth class 

included those samples that were collected at sites where there is no available depth 

information, these samples were not included in any analysis comparing scat composition 

between different depth classes. 
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2.2.2 Collection of samples 

A total of 303 seats were collected from 139 sites along the M acRobertson Land and 

Kemp Land coast over three summer periods and three winter periods from January 1998 

to November 2000 (Table 2.1 ). Summer included the months October to March when the 

seals are pupping, mating and moulting. Winter included the months April to September, 

and covered the time of maximum sea-ice extent and the darkest time of the year when 

biological productivity is at its lowest (El-Sayed 1971 , Eicken 1992). 

Kemp 
Land MacRobertson 

Land 

30 60 Ktlometers 
~~iiiiiiiiiii~~~~iiiiiiiiiii----~ 

0 30 

Bathymetiy d asses (m) 
00- 100 
D 100 . 250 

250 . 450 
- 450 - 1000 
- 1000 - 2250 

N Coastline Sa'°"'les collected in year 
Q 1998 
0 1999 
0 2000 

Figure 2. 1 Map of the Mawson coast! ine showing the sites of sample co llection in the three years 
of the stud y. The map a l o inc ludes the study zones along the coast (note, zones I and 4 extend 
ea twards and westwards respectively) and shows the bathymetry as is current ly avai lable from 
the Austra lian Antarctic Divi ion Data Centre. 

Table 2. 1 Number of samples co llected and per iod of co llection in each year. 

Year Co llection 2eriod Sea on Nwnber ofsam2les 

1998 January to Summer 9 
October Winter 17 

May to 
1999 Se2tember Winter 139 
2000 May to Summer 45 

November Winter 93 
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In all years, seats were collected during the period of safe ice travel for vehicles. Seal 

haul-out sites (holes through the ice where the seals accessed the ice surface for resting) 

were sighted whilst driving over the sea ice, and seats were collected from the ice 

surrounding these sites. Only Weddell seals and emperor penguins (Aptenodytes forsteri) 

used these holes during winter, and the seats left by Weddell seals were easily 

distinguished from those left by emperor penguins by their colour, volume, consistency, 

and scent. 

Seats were extracted from the ice in their entirety by digging and/or chipping with a 

shovel and ice-axe, and placing the whole sample into a labelled bag. Due to limited 

storage space at the station, maximally one fifth and minimally one of the available seats 

were collected at a site. The remaining seats were chipped up and destroyed so that old 

seats were not collected during subsequent visits to the site. 

2.2.3 Processing of seats 

Seats were placed in separate 4um mesh bags with waterproof labels. Up to 8 bags were 

placed in a washing machine and the samples were allowed to thaw in the water before 

the washing machine was started on a regular wash cycle which was allowed to continue 

for 10 minutes. This broke up the samples, separated flesh from the hard parts and 

removed the flocculent material. 

After washing, the bags were removed one-by-one from the washing machine, rinsed in 

cleaned water, turned inside out and the contents of the bag hosed into a large tray. The 

tray was then emptied into a sieve (250 µm pore size) to remove the rocky dirt, and the 

remains then tipped into a shallow, black, circular sorting dish. Black was found to be the 

best colour for the dish (white and green dishes were also tried) because otoliths showed 

up virtually luminescent against the black when under a light source. 

Hard parts were removed and fish vertebrae and jaw bones, cephalopod beaks and 

crustacean carapaces were separated and stored in 70% ethanol. Fish otoliths were stored 

dry in plastic bags. The presence of seaweed, sand and stones was noted, as well as a 
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count of the number of nematodes in the sample. The retained hard parts were then 

examined under a dissecting microscope and identified to the lowest taxonomic level. 

Otoliths were identified using Williams and McEldowney (1990). Otoliths were 

classified on a scale of an scale of 1-5: 1 being a rounded disc with absolutely no 

distinguishing features, and 5 being a perfectly intact otolith (there were no "5s" 

obtained, but we had "perfect otoliths" to compare them to in Williams and 

McEldowney, 1990). Otoliths with a classification of 3 or above were measured (length 

and width) using digital analysis software (Optimas 6) and determined as coming from 

the left or right side. Number of fish per sample was calculated by counting all otoliths 

per left or right side per sample, then determining that the side with the most otoliths 

equalled the minimum number of fish. 

Cephalopod beaks were divided into upper and lower beaks, and lower beaks were used 

for identification. Number of individuals per sample was based on the number of lower 

beaks. Identification of squid lower beaks was based on Clarke (1986) and by comparing 

with beaks in collections at the University of Tasmania. Octopus beaks were compared 

with Daly and Rodhouse (1994), Lu and Stranks (1994) and Allcock et al. (2001). Lower 

rostral lengths (LRL) and crest lengths were measured on squid and octopus beaks that 

were not too chipped or broken. Prawn identification was determined using Kirkwood 

(1984); amphipods and isopods were identified using O'Sullivan and Hosie (1985). 

2.2.4 Data Analysis 

Relative frequency of occurrence (%FOO) was determined as a measure of the rate at 

which prey types were targeted and the number of individuals of each species was 

recorded (when possible) for additional information about the relative proportions of 

prey in the diet (Lake et al. 2003). Statistical analyses were based on matrices of 

abundance of each prey species per scat. The dependent variable was the abundance of 

prey species within each sample, and mdependent variables were year, season, coastal 

zone and water depth. Due to the unbalanced sample design, these variables were 

combined in several different tests in an effort to reduce variation (see Table 2.2). 
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Table 2.2 Combinations of the independent variables tested by randomisation analysis. These 
combinations were put together to test for temporal and spatial variation, minimising the error 
introduced by the unbalanced sample design. 

Test Years Seasons Zones Depths n 
t 1999 winter 1,2,3,4 1, 2, 3, 4 139 
tt 2000 summer, winter 1, 2, 3 1, 2, 3 138 
ttt 1998, 1999 winter 1 1, 2, 3 17, 139 

zv 1999,2000 winter 2,3 1, 2, 3 139, 93 

v 1998,2000 summer, winter 1, 2 1 9, 17, 45, 93 

Vt 1998, 1999,2000 winter 1, 2 1 17, 139, 93 

Diet composition was compared using randomization methods (Manly 1997; S. 

Wotherspoon, personal communication). Multi-variate analysis of variance (MANOVA) 

was used to test for interactions between the main effects (Sokal and Rohlf 1995, George 

and Mallery 2001). All means are given ±lSD; significance levels were set at p=0.05 

unless stated otherwise. 

To reduce the number of zeros in the analysis, species that occurred in less than 5% of 

the cumulative FOO were not included in the MANOV A or randomisation analyses. This 

removed the rarer species whilst retaining at least one species from each of the prey 

orders that were represented. 

Randomisation tests were performed because they are non-parametric and make no 

assumptions about the data's distribution (Manly, 1997). However, they do not test for 

interaction effects (S. Wotherspoon, personal communication). Randomisation tests 

bound the columns (prey species) while randomising the rows (see Lake et al. 2003). 

Two-way randomisation tests were conducted as separate one-way analyses, where one 

factor was held constant (eg, season) while the other factor (eg, zone) was randomised, 

and vice versa. Under the null hypothesis, the randomised factor was not significant in 

determining the diet. The steps to randomisation were: (a) calculating the F-statistic for 

observed data, (b) randomising the labels 5000 times to calculate the distribution of the 

F-statistic under the null hypothesis, and (c) comparing the F-statistic of the observed 

difference with the distribution of F under the null hypothesis. If the null hypothesis were 

20 



true, then the observed value of Fis within the distribution of 95% of the Fs calculated 

from random allocation (Lake et al. 2003). 

2.3 Results 

2.3.1 Diet composition 

From the 303 Weddell seal seats collected, 235 had identifiable prey remains and 3082 

identifiable prey items were recovered. Pleuragramma antarcticum was the most 

abundant species with at least 1575 individuals recovered from seats and also the most 

frequently occurring (43.9 % FOO) prey species across the entire collection of Weddell 

seal seats (see Table 2.3). The next most frequent species were the octopus Pareledone 

sp. 1 (27.7 % FOO), gammarid amphipods (17.8 % FOO), the notothen Trematomus 

newnesi (16.8 % FOO), the squid Psychroteuthis glacialis (7.6 % FOO) and the prawn 

Chorismus antarcticus (5.0 % FOO). At least 21 other species were identified but did not 

occur in more than 5 % of all samples. Sixty-seven of the 303 seats (22.1 % FOO) 

contained sand, and 93 seats (30.7 % FOO) contained stones. Many seats (85.5 % FOO) 

contained large numbers of nematode worms. These were not identified further nor 

included in statistical analyses as they are internal parasites either in the seals' gastro

intestinal tract or in that of their prey, and are not prey items. 

The size frequency distributions of the primary prey species with measurable hard parts 

(otoliths or beaks) are shown in Figure 2.2. Otolith lengths and lower rostral lengths of 

squid were converted into body lengths using equations in Williams and McEldowney 

(1990) and Groger et al. (2000). The mean length of P. antarcticum individuals retrieved 

from seats was 105.55 mm ± 11.92, and the mean length of T. newnesi individuals was 

131.40 mm ± 25.80. The mean mantle length of P. glacialis across all samples was 

210.21mm±77.06. 
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Table 2.3 Diet of Weddell seals described by frequency of occurrence (% FOO), minimum 
number of individuals and relative number of individuals(% of identifiable individuals exc luding 
nematodes) of each species extracted from the 303 Weddell seal seats collected in 1998, 1999 
and 2000. 

#of relative 
Prey species Habitat %FOO individuals nuni>er(%) 

Fish 55.78 

Pleuragramma antarcticwn * pelagic; 0..800m t 43.89 1575 51.10 

Dissostichus mawsoni bentho-pelagic; shelf and upper slope; l ()().. l 600m :t: 0.33 I 0.03 

Trematomus bemacchi inshore benthic; sublittoral to 700rn, though not over the 
continental shelf and most commonly in upper 200m* t,:j: 3.30 16 0.52 

T. borchgrevinki cryopelagic (under-surface of sea ice); O..SOm t 0.33 l 0.03 

T. centronotus benthic; inshore to 680rn t 0.33 3 0.10 

T. eulepidotus benthic from nearshore to continental shelf; mostly 
]()()..500rn t.+ 0.66 2 0.06 

T. hansoni nearshore benthic; 20.. l OOm, though can occur to 550rn t.+ 0.33 l 0.03 

T. loelll!bergi bentho-pelagic; 65-832m, mostly at depths > 300rn t .+ 0.33 2 0.06 

T. newnesi * benthic; 0-400m t.:t: 16.83 191 6.20 

T. nicolai benthic; 0-420m t,:j: 0.99 3 0.10 

T. scotti benthic from nearshore to continental shelf; 20.. 793m t.+ 0.66 2 0.06 

Trematomus sp. 5.61 26 0.84 

Chaenodraco wifa·oni bentho-pelagic on continental shelf; 300-450m t l.32 7 0.23 

Chionodraco hamaius bentl1ic; 4-600m t.+ 0.66 2 0.06 

Chionodraco myersi benthic; 2()()..800rn tJ 0.33 2 0.06 

C. wilsoni sub-group 2.64 8 0.26 

Dacodraco humeri bentl10-pelagic; 350..850mt 0.33 l 0.03 

Pagetopsis nuu:ropterus bentho-pelagic; 5-655m t ,:j: 0.33 l 0.06 

Prionodraco evansii benthic;70..550, rnostly above 450m t,:j: 0.33 l 0.03 

VomerUJen.s infuscipiluiis deeper waters of continental shelf; 4 l 9-8 l 3m t ,:j: 0.33 l 0.03 

unidentified fish/ otoliths too eroded 33.33 

Cephalopods 43.89 

Pareledone sp I. * benthic over continental shelf; 25-680rn ¥ 27.72 3% 12.85 

Pareledone sp 2. benthic over continental shelf; 25-680m ¥ l.65 7 0.23 

unidentified octopus 3.% 16 0.52 

Psychroteuthis glacialis* 7.59 44 1.43 

Gonatus antarcticus 0.33 l 0.03 

unidentified squid 1.65 5 0.16 

Crustaceans 42.57 

Chorismus antarcticus * inshore benthic; 15-300111 § 5.00 22 0.71 

Notocrangon antarcticus derrersal; 15-1320m, mostly 300..600m § 3.30 15 0.49 

unidentified prawns 

Mysida£ l.32 

Gammarid amohioods £ * 17.82 133 4.32 

Hvoeriid amphioods £ l.98 7 0.23 

Poriferans benthic 3.96 

Nematodes GIT parasite 85.48 >6500 

References t Williams and McEldowney, 1990 

:j: Gon and Hee1Jl5tra, 1990 

§ Kirkwood, I 984 

£O'Sullivan and Hosie, 1985 

¥ Lu and Stranks, 1994 

*prey species included in statistical analysis 
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Figure 2.2 Standard length frequency distributions of otoliths and cephalopod beaks of primary 
prey species across all samples. 

2.3.2 Interannual variation 

A comparison of all three years (test vi, see Table 2.2) showed no significant variation in 

abundance of primary prey species between the years (F12, 106 = 0.901, p = 0.530). Also, 

the abundance of primary prey species was compared between 1998 and 1999 (test iii), 

and 1998 and 2000 (test v) and showed no significant variation. However, dropping data 

from 1998 from the analysis and comparing diets from 1999 and 2000 (test iv) showed 

significant variation in the abundance of all primary prey species combined between the 

two years (F6, 109 = 0.893, p = 0.044), influenced by gammarid amphipods (F6, 109= 5.527, 

p = 0.019). The mean number of gammarids per scat in 1999 was 0.15 ± 0.51 (n = 33) 

and in 2000 it was 1.10 ± 2.30 (n = 77). 

2.3.3 Seasonal Variation 

Comparisons were made within the year 2000 (test ii), and combining the data for 1998 

and 2000 (test v). Within the year 2000, seasonal variation in the abundance of prey 

items was significant (F6, 136 = 0.903, p = 0.025). The squid P. glacialis accounted for 

most of the variation (F6, 136 = 9.147, p = 0.002). The mean number of P. glacialis 
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individuals per scat was 0.27 ± 0.75 (n = 45, 15 %FOO) in summer and 0.020 ± 0.146 (n 

= 93, 2 %FOO) in winter. 

With the 1998 and 2000 data combined (test v), there was no variation across the prey 

species overall (F6, 104 = 0.912, p = 0.149), yet P. glacialis varied significantly (F6• 104 = 
6.555, p = 0.021) when the species were tested individually. No other species showed a 

seasonal pattern in their abundance in the seats. 

A size frequency histogram for P. glacialis shows a bimodal distribution of lower rostral 

lengths across all samples (see Figure 2.2d). The larger size classes (6.01-8.00mm LRL) 

were more abundant than the smaller sizes (2.01-3.00mm LRL). It was found that the 

larger squid occurred mostly in September and the smaller sized squid occurred mostly in 

August. P. glacialis individuals from seats collected in September (mean = 253.64mm ± 

48.52, n = 22) were significantly larger than those from August (mean = 171.72 mm ± 

57.84, n = 6; F = 12.43, p = 0.002), though the results must be treated with caution given 

the unequal sample sizes. 

2.3.4 Variation along the coast 

Tests i and ii compared all of the zones (1-4 and 1-3 respectively) within different years 

(1999 and 2000 respectively), and tests iv and vi compared zones 2 and 3, and zones 1 

and 2 respectively. 

Randomisation results for test i showed significant variation in abundance of prey species 

between all of the zones (F18, 138 = 0.645, p = 0.004), influenced mainly by Pareledone sp. 

1 (F11 • 138 = 3.845, p = 0.01). Pareledone sp. 1 was most abundant in zone 2 (mean = 1.08 

± 2.95 individuals/scat, n = 24 ), and least abundant in zone 4 (mean = 0.17 ± .069 

individuals/scat, n = 4). 

Randomisation showed no significant variation between the zones (F12, 136 = 0.868, p = 
0.108). MANOV A reported a significant interaction effect between depth and zone on 

the abundance of P. glacialis individuals in seats (F2• 240 = 5.601, p = 0.005). P. glacialis 
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individuals were more abundant in zone 3 (mean = 0.330 individuals/scat ± 1.047, n = 

15) and did not occur in any samples in zone 1 (n = 25). 

Comparison between zones 1 and 2 across all years of the study (test vi) showed no 

significant difference in abundance of primary prey species (F6, 109 = 0.799, p = 0.101). 

Also, there was no significant difference between zones 2 and 3 when data from years 

1999 and 2000 was combined (test iv; Fs, 109 = 0.920, p = 0.211). 

2.3.5 Effect ofbathymetry 

Comparison between bathymetry classes 1 to 4, across all of the zones within 1999 (test 

i, see Table 2.2), showed there was significant variation in the abundance of individuals 

of the primary prey species (F24, 138 = 0.727, p = 0.029). Individual tests of the primary 

prey species showed significant variation in the abundance of P. glacialis individuals 

between different depth classes (F24, 138 = 4.990, p = 0.011). P. glacialis was most 

abundant in samples collected over depths between 450 and lOOOm (depth class 4, mean 

= 1.830 individuals/scat ± 4.021, n = 6) and occurred least in samples collected over 

depths between 100 and 250m (depth class 2, mean= 0.060 individuals/scat± 0.250, n = 

16). There was no significant interaction effect between depth and zone in this test (F30, 

466 = 1.387, p = 0.086). 

Test iv (see Table 2.2) revealed no significant variation in abundance of all primary prey 

species between depth classes (F12, 109 = 0.799, p = 0.101), but there was significant 

variation in the abundance of P. glacialis individuals between different depth classes (F12, 

109 = 9.543, p = 0.028). In this case, P. glacialis individuals occurred most abundantly in 

samples collected from ice over depths between 250 and 450m (depth class 3, mean = 

0.600 individuals/scat ± 1.342, n = 5). P. glacialis individuals had a low level of 

abundance in waters 0-lOOm deep (depth class 1, mean= 0.030 individuals/scat± 0.168, 

n = 70), and did not occur in any samples collected over waters of 100-250m depth (n = 

36). 
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Comparisons of mantle lengths of P. glacialis individuals by ANOV A showed 

significant variation (F = 5.41, p = 0.002, df = 4, n= 37) between depths, with P. glacialis 

collected over waters between 0 and lOOm deep averaging 153.79mm ± 78.14 (n = 16) 

and those collected over waters 450-lOOOm deep averaging 264.39mm ± 40.89 (n = 11). 

2.4 Discussion 

2.4.1 Diet composition 

The diet of Weddell seals along the Mawson coastline was variable over both space and 

time. In this area, the seals consumed a wider range of fish and invertebrate species (see 

Table 2.3), with 27 species of prey (18 fish, 4 cephalopods and 5 crustaceans identified 

from 303 seats) as compared to 18 species (13 fish, 2 cephalopods and 3 crustaceans 

from 586 seats) from an equivalent study at the Vestfold Hills area (68°35'S, 77°58'E) 

(Lake et al. 2003). This suggests that the prey fauna is more diverse along the deeper 

waters of the Mawson coast compared to the shallower waters off the Vestfold Hills. 

As found in previous studies, Antarctic silverfish was found to be the most important 

prey species in the diet of Weddell seals at Mawson (Green and Burton 1987, Lake et al. 

2003). The importance of P. antarcticum in the High-Antarctic Zone has been compared 

to that of Euphausia superba in the Seasonal Pack-Ice Zone (Kock 1992). It is described 

as the dominant pelagic fish of the shelf waters around the Antarctic continent (Gon and 

Heemstra 1990) and is a major constituent of the diet of virtually every large predator 

feeding over the East Antarctic continental shelf (Williams and McEldowney 1990). 

Emperor penguins (Aptenodytes forsteri) and Adelie penguins (Pygoscelis adeliae), 

which both occur in large breeding colonies along the Mawson coast, also include P. 

antarcticum in their diet (Robertson 1995, Wienecke and Robertson 1997, J. Clarke, 

personal communication). However, inter-specific competition is minimized by temporal 

and geographic differences in foraging habitats (Wienecke and Robertson 1997, Clarke et 

al. 1998, Bums and Kooyman 2001), as well as by different prey preferences: emperor 

penguins take more squid and Adelie penguins take more krill (Robertson 1995, Clarke 

et al. 1998). Satellite telemetry studies have shown that Emperor penguins and female 
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Adelie penguins forage in the pack-ice over the continental shelf edge (Wienecke and 

Robertson 1997, Clarke et al. 1998). Weddell seals tend to prefer foraging under fast-ice 

and heavy pack-ice within 50-100 km of their summer breeding colonies (Testa 1994). 

Differences in breeding chronology of the three species also means that the penguin and 

seal populations are concentrated at different times and therefore the local predation 

pressure may be spread throughout the year. The potential issue of competition between 

Weddell seals and the penguins affecting the survival of either species warrants further 

investigation, especially given that P. antarcticum was explored as a target species for a 

commercial fishery by Russia in the late 1980s (Kock 1992), and also because the 

potential for a krill fishery exists off the continental shelf north of Mawson (Clarke et al. 

1998). Knowing the trophic relationships that exist in the Mawson area would assist with 

determining the impact of any commercial fisheries. 

In terms of frequency of occurrence, the next most frequently targeted prey species in the 

diet of Weddell seals at Mawson were the octopod Pareledone sp. 1, gammarid 

amphipods, the fish Trematomus newnesi, the squid Psychroteuthis glacialis and the 

natant decapod Chorismus antarcticus. Remains of individuals of species that were 

discovered in seats collected for this study, but not in samples studied by Green and 

Burton (1987) or Lake et al. (2003), included the fish species Dissostichus mawsoni, T. 

centronotus, T. hansoni, T. nicolai, Dacodraco hunteri, Pagetopsis macropterus, 

Prionodraco evansii, Vomeridens infuscipinnis and the squid Gonatus antarcticus. D. 

mawsoni were likely underrepresented in seats because Weddell seals consume the body 

but discard the head (Pierce and Boyle 1991, Lake et al. 2003; R. Williams, personal 

communication). The species identified by Lake et al. (2003) as occurring in seal diet at 

Mawson, but not found in this study, included the fish Aethotaxis mitopteryx, Notothenia 

coriiceps, Lepidonotothen kempi and T. pennelii. Trawl sampling, such as that conducted 

in the Weddell Sea (PlOtz 1986, PlOtz et al. 1991, PlOtz et al. 2001), would provide useful 

information to help determine if these species are regularly present in the waters off the 

Mawson coastline, or if they are irregular visitors, which in turn would help determine 

why the species are rare in the diet of Weddell seals. 
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Estimating the size of the fish from the lengths of otoliths found in seats reveals that the 

seals are feeding on P. antarcticum juveniles and sub-adults approaching sexual maturity 

(Gon and Heemstra 1990). These age classes are thought to occur in the mid-upper 

pelagic waters with older larger adults occurring deeper than 400m, near the bottom over 

the shelf (Hubold and Ekau 1987). The depths that the adults inhabit do not put them 

beyond the diving range of Weddell seals, however it is possible that the adults of P. 

antarcticum occurred further offshore than the foraging range of the seals that would 

have been sampled in this study. Additionally, Weddell seals may find more 

energetically profitable prey at depths >400m than P. antarcticum, such as octopus and 

larger nototheneid fish such as T. newnesi. 

2.4.2 Interannual variation 

The only significant interannual difference in the diet of Weddell seals was in the 

numbers of gammarid amphipods. The low sample size from 1998 (n = 13) and high 

standard deviations about the mean number of amphipods per sample (0.23 ± 3.00) 

contributed to the low power of the test comparing all three years together. However, 

upon removing the 1998 data, a significant difference was found between 1999 and 2000 

in the number of gammarids per scat, with more amphipods occurring in 2000. The year 

of lower gammarid (1999) abundance in the seal diet coincided with a year of low 

breeding success for Adelie penguins (0.50 chicks per nest in the 1999-2000 summer, 

unpublished CEMP data held at Australian Antarctic Division). In the 2000-01 summer, 

the breeding success of the Adelie penguins was higher (0.81 chicks/nest). This increase 

in breeding success corresponded with an increase in the proportion of krill and a 

decrease in the proportion of amphipods retrieved from stomach flushing samples 

(Clarke 2001; unpublished CEMP data held at AAD). Thus processes acting upon krill 

abundance may influence gammarid abundance. In years of increased krill abundance, 

gammarid abundance may also increase, meaning more gammarids are available for 

Weddell seals to eat. However, the fluctuations in gammarid numbers may not have any 

effect on the Weddell seals beyond a simple lessening in the diet because the seals 

consume such a wide variety of other prey that they can easily make up any shortfall. 
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It has been proposed that the relationship between breeding success, sea-ice extent, 

foraging trip duration and diet for Adelie penguins is associated with the large-scale 

climactic processes that drive the Antarctic Circumpolar Wave (ACW; Clarke et al. 

2002). White and Peterson (1996) proposed that climate and oceanography cycles around 

the Southern Ocean have a -4-6 year periodicity, and it is likely that Weddell seals are 

also affected in some way, as the local Adelie penguin population is. Given that it is 

likely that whatever oceanographic processes influence timing of the fast-ice breakout 

would probably also affect the availability of prey in the Mawson region (Clarke et al. 

2002), it is possible that diet studies need to be conducted over time periods longer than 6 

years in order to determine if Weddell seal diet fluctuations are associated with the 

ACW. 

2.4.3 Seasonal variation 

It seems reasonable to expect that, of all the independent factors included in the analysis, 

the different seasons would explain a significant proportion of the variation in the diet of 

Weddell seals. This could be expected because the different seasons are associated with 

changes in the sea-ice which affect the productivity of the waters beneath the ice. During 

winter the ice gradually thickens and productivity virtually ceases; then with the onset of 

summer there is sub-surface erosion of the sea ice, with a subsequent complete thaw in 

late summer (Eicken 1992). 

However, only numbers of P. glacialis were solely responsible for the variation m 

abundance of primary prey species between winter and summer, despite the relatively 

low %FOO compared to the other primary prey species. P. glacialis has a circumpolar 

distribution and individuals may aggregate on or near the sea floor close to the edge of 

the continental shelf (Lu and Williams 1994). P. glacialis individuals might change 

habitat during development, with small and young individuals living at shallow depths 

and larger older individuals living on or near the bottom (Jackson and Lu 1994, Lu and 

Williams 1994). This scheme is consistent with the pattern of the diet of Weddell seals in 

the present study as it was found that the remains of larger squids were found in seats 
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collected on ice over deep water (450 - lOOOm) and remains of smaller squids were 

found in seats collected over shallower waters (<lOOm). 

There are several reasons for the increasing abundance and then cessation of occurrence 

of larger squid in the diet of seals, including changes in seal foraging distribution, 

depletion of squid stock by predators, or senescence of squid after a protracted spawning 

period in late winter or early spring (Lu and Williams 1994, Lake et al. 2003). The data 

from this study does not illustrate changes in the abundance of the other primary prey 

species (which range in habitat from benthic to pelagic in all months) in the Mawson 

area. Therefore it is not evident that the seals have altered their foraging patterns to 

exploit the squid. Moreover, diving behaviours would have to be examined concurrently 

with diet analysis to assess this possibility. Another possibility is that the squid migrate 

elsewhere and move out of the seals' foraging area. More information on the biology of 

P. glacialis would help answer this question, as it could be an energetically important 

prey item in the seals' diet. P. glacialis individuals are described as muscular squids 

(Fischer and Hureau 1985), typically consisting of 80% muscle (O'Dor and Webber 

1986). Thus this species could provide a high energy meal for a seal, especially coming 

into the breeding season. It would also be useful to determine if P. glacialis is an even 

more important diet component for Weddell seals that haul out on ice further offshore 

than were able to be sampled in this study. 

2.4.4 Spatial variation 

Spatial variability in diet was more influenced by bathymetry compared to longitudinal 

positions of seats collected along the coast. The Mawson coastal profile is relatively 

smooth with few inlets or promontories to disturb horizontal water flow (see Figure 2.1). 

Depth, on the other hand, could be expected to explain more variation, especially in the 

Mawson region, where dramatically different depths are available to be exploited by 

seals. The continental shelf off MacRobertson Land is characterised by relatively deep 

channels shoreward of the outer shelf break, providing access for coastal waters to the 

deep sea (Smith and Treguer 1994). 
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The interaction between depth and zone on the abundance of P. glacialis in this study is 

not surprising, but cannot be dismissed as simply due to unbalanced sample design. The 

coastal zones that were arbitrarily assigned do not have an equal distribution of water 

depths; the water depth gradually increases as you move west and north from the Auster 

Islands. Most samples were collected within 20km of the coast. 

P. glacialis was more abundant in seats collected at haul-out sites over deeper waters 

than shallow waters, and hence more abundant in the Zones 3 and 4 (characterized by 

deeper waters) than in Zones 1 and 2. (mostly 0-lOOm deep). P. glacialis individuals 

found in seats collected over deeper waters tended to be larger than those found in seats 

collected over shallow waters. As explained earlier, P. glacialis may exhibit ontogenetic 

shifts in habitat (Lu and Williams 1994), and this might mean that Weddell seals feed on 

larger adult squid in deep water and small young squid in shallow waters. 

2.4.5 Conclusion 

A major conclusion of this study is that the diet of Weddell seals along the Mawson coast 

is more diverse than reported from other parts of Antarctica. Variation between years, 

seasons and depths was found. Further study on competition for resources between 

Weddell seals, Emperor penguins and Adelie penguins is warranted. Also, investigation 

into the influence of environmental parameters such as the ACW and sea ice extent on 

Weddell seal diet variability would increase our understanding of the Antarctic marine 

ecosystem. 
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Chapter 3: Patterns in occurrence of haul-out sites of Weddell 
seals along the Mawson coastline, East Antarctica 

3.1 Introduction 

The Weddell seal is the only mammal to over-winter and rear its young in the fast-ice 

regions of Antarctica. Although it is the most widely studied of the Antarctic seal 

species, very little work has been done regarding its association with the ice substrate 

under which it dives for food and upon which it rests and bears its young. Sea ice is not 

simply an inert covering of the ocean surface around Antarctica, covering up to 20 x 106 

km2 of the waters surrounding Antarctica during winter-time and receding to less than 4 

x 106 km
2 

in the austral summer (Zwally et al. 1983). Sea ice also structures Antarctic 

marine ecosystems because its growth, drift and decay through space and time influences 

the interactions between different groups of organisms and their environment (Eicken 

1992). It is therefore important to understand the basic relationship between seals and sea 

ice in order to be able to determine the effect of variation in ice characteristics such as 

maximal ice extent and maximum ice thickness on the population processes of Weddell 

seals, such as breeding success. This is especially important given the growing concerns 

regarding climate change and the need to obtain baseline biological data in order to 

determine the effects of large-scale climatic changes on Antarctic marine ecosystems 

(Weimerskirch et al. 2003). 

The majority of Weddell seal studies have been conducted at McMurdo Sound in the 

Ross Sea, the Weddell Sea and at the Vestfold Hills at the eastern edge of Prydz Bay (eg, 

Smith 1965, Stirling 1971a, Testa 1994, Green et al. 1995, Bester et al. 2002, Lake et al. 

2005b ). The sea ice in different sectors of the Antarctic coast exhibits quite different 

characteristics (Worby et al. 1998), which may exert different influences on local 

Weddell seal populations; therefore it is important that surveys are conducted at locations 

all around Antarctica and local associations between seals and ice be quantified. Prydz 

Bay, like the Weddell and Ross Sea regions, is a large embayment with cyclonic ocean 
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currents influencing the drift and distribution of the ice in a different way to the rest of 

the East Antarctic region (Smith and Treguer 1994, Worby et al. 1998). The ice along the 

majority of the East Antarctic coastline, such as the MacRobertson Land coastline (where 

Mawson station is located), consists of a narrow and highly mobile band of sea ice 

(Worby et al. 1998). The land-fast ice band is immobile and extends in a continuous 

sheet northward from the continent, with maximum ice extent at Mawson exceeding 

80km offshore (Worby et al. 1998). Each year, the fast ice typically maintains a slow 

thermodynamic growth from March to late September, with surface ablation and bottom 

melt occurring before the ice breaks out between December and February (Heil et al. 

1996). 

Only one other study, conducted at the Vestfold Hills region in Prydz Bay (Lake et al. 

2005b), has attempted to quantify the relationship between occurrences of sites where 

Weddell seals haul-out and environmental factors associated with fast-ice habitat. Lake et 

al. (2005b) hypothesized that haul-out site occurrence is associated with factors that 

increase the likelihood of the ice cracking, namely distance to coast and distance to fast

ice edge. Lake et al. (2005b) predicted that by surveying transects across the gradient of 

haul-out site distribution the point at which there is sufficient distance from the land for 

fast-ice to move freely could be determined. 

At a finer scale, it is possible that there may be some spatial segregation between sexes 

or breeding/non-breeding groups. Adult females hauling out to pup prefer stable inshore 

fast-ice (Siniff et al. 1977), and the polygynous mating system may mean that non

breeding males are excluded from these areas (Kooyman 1981). These patterns may 

show up as "zones" with female only and male only sites. As no difference in ice

abrading ability between males and females has been reported, i.e., ability to create and 

maintain a hole through the ice, we could surmise that spatial segregation could be due to 

social behaviours, and may have an effect on the foraging range or areas of different 

components of the population. 
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The main aim of this study was to conduct surveys of Weddell seal haul-out sites (herein 

referred to as "sites") over the fast-ice along the MacRobertson Land coast-east and west 

of Mawson Station to elucidate the patterns in distribution of hauled-out Weddell seals. 

In particular, the number of sites and the number of seals were compared between 

different areas along the coast, and also compared over time as the winter progressed into 

the summer breeding period. Furthermore, the sex and age composition of groups hauled 

out on the ice was also observed in order to determine if there was any segregation 

between different elements of the population. An associated aim was to determine if the 

results of this study support Lake et al's (2005b) hypothesis that occurrence of Weddell 

seal sites is associated with factors that contribute to formation of cracks in the fast ice. 

3.2 Methods 

3.2.1 Survey design and data collection 

From July to October 2000, three fast-ice areas off the MacRobertson Land coastline 

were surveyed for Weddell seal sign such as seats, imprints and ice holes (see Figure 

3.1). The three areas were positioned around Mawson Station (67.60°S, 62.87°E), Macey 

Islands (-50 km east of Mawson at 67.43°S, 63.83°E) and at the Colbeck Archipelago 

(-100 km west of Mawson at 67.43°S, 60.73°E). Within each area, two transects were 

traversed, searching for any seal sign and ice holes that serve as breathing holes or where 

seals can haul out onto the ice surface. A cluster of seal sign around a hole was regarded 

as one encounter site, as it was not possible to determine the number of seals from the 

sign. Small breathing holes could be distinguished from the surrounding ice by the ice 

mound that developed around the hole, and many sites were located by the presence of 

seats and/or the imprints left behind by a warm seal melting into the ice. The sex of the 

seal that left an imprint was inferred from the position of urine stains on the ice if visible 

- imprints left by females have a stain around the hind flippers, and those left by males 

have a stain about halfway along the abdomen. 
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Figure 3.1 Map of Mawson coastline showing positions of transects and bathymetry . 

Table 3.1 Geographic coordin ates (in decimal degrees) of midpoints of the southern end of each 
transect. 

Area Transect Latitude Longitude 

Mawson I 67.6234°S 62.8080°E 

2 67.5739°S 62.8915°E 

Macey l 67.5171 °S 63.7962°E 

2 67.5168°S 63.8645°E 

Colbeck 67.4207°S 60.7081 °E 

2 67.4337°S 60.7755°E 

Each area was surveyed three times with transects in the same area being surveyed on the 

same day when possible. Survey periods were 31 July - 10 August (deep winter) , 15 - 23 

September (late winter) and 16 - 20 October (spring) . The transects in each area were 1.5 

km wide and separated by 1.5 km and extended 20 km from the coastal ice cliffs 

(continental edge). The coordinates for the midpoint of the southern end of each transect 

(t/ ) are shown in Tab le 3.1. 

Surveys were started by using a global positioning system (GPS) in trument to position a 

Hagglunds (a tracked over-snow vehicle) at the southern end of one of the transects 

within an area. When the vehicle was in position, two 4-wheeled motorbikes (quads) 

were driven directly east and west from the Hagglunds for 750 rn , the drivers registering 

that longitude as the edge of the transect. Each quad was fitted with a heated box 
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mounted on the handlebars that held a Garmin 12XL OPS, powered from the quad. The 

Hagglunds was then driven directly North (0° by the compass) over the fast ice at a pace 

equal to the quads. The quads zigzagged over the ice from the edge of the transect to the 

centre line. A pilot survey had determined that seal breathing holes could be detected up 

to 500 m away, haul-out sites were visible from the same distance, and seals resting on 

the ice surface could be seen from over a kilometre away. 

The quad GPSs were set to traclog, registering the quad's position every 2.5 minutes. 

Whenever a seal site was encountered, the quad driver marked the position into the OPS 

as a waypoint and then used VHF radio to relay information about the site to the 

Hagglunds. The following information was collected: 

Latitude/longitude (in decimal degrees) 

Ice conditions, ~g, tide cracks and rafted ice 

Proximity of site to islands/icebergs 

Size of hole (large haul-out, small haul-out, head breathing, nose 

breathing, or no hole found) 

Number and sex of seals hauled out on surface 

Number and sex of imprints on the ice around holes 

Any evidence of other species using the holes 

When the Hagglunds reached the northern end of the transect, the quads returned to the 

centre line, GPSs turned off and the three vehicles travelled to the centre line of the next 

transect which was surveyed in the same manner but in a N-S (180° by the compass) 

direction. 

3.2.2 Data analysis 

Waypoints and track coordinates were downloaded from the OPS using OziExplorer 

software(© Des and Lorraine Newman), which converted the data to a format that could 

be imported into MS Excel. Using Arc View post-survey, the transects were overlaid with 

a grid pattern to subdivide each transect into lxl.5 km2 rectangles. The sighting data for 

each area within each survey period were then expressed as the number of encounter sites 

and the number of seals per grid segment. Number of seals per grid segment did not 
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include counts of pups, as counting these would provide a confounding inflation of seal 

numbers at pupping sites. However, it was assumed that one pup equalled one female 

seal when less adult females than pups were observed at sites with pups. Number of sites 

and number of seals per transect grid were the dependent variables for analysis, and 

independent variables were distance to coast, area and survey period. All significance 

values were set at p :'.S 0.05. 

The two transects in each area were treated as replicates. A probability plot of the 

distribution of number of encounters and number of seals per grid showed poor 

conformity to normality that could not be resolved with transformation, therefore non

parametric tests were used. Transects within each area and each survey period were 

compared for differences in the dependent variables using Kolmogorov-Smirnov tests. 

Association of haul-out sites and number of seals hauled out on ice with distance to coast 

was examined by performing Friedman tests to compare the dependent variables along 

transects whilst holding the possible covariate of area constant (Dalgaard 2002; M. 

Hindell, personal communication). Differences in the dependent variables between the 

different areas were examined using Kruskall-Wallis one-way analysis of variance, 

testing the null hypothesis that the dependent samples come from the same population or 

from identical populations with respect to averages (Siegel 1956, Sokal and Rohlf 1995). 

Differences in dependent variables between the three survey periods were analysed with 

Friedman tests, comparing survey periods for each area separately. 

Post-survey, ArcView (Version 3.2, © ESRI Inc. 1992-1999) was used to map the 

position of sites that had males only, females only or a mix of males and females. Single 

sex sites meant that seals seen and imprints in the ice seen at the site were distinguished 

as being of the same sex. It is not known how long imprints of seals remain visible. 

Given the low densities of seals that were found during the surveys, no statistics were 

conducted, but a basic description of the group compositions is provided. 
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3.3 Results 

3.3.l Site description 

During the winter of 2000, the fast ice extended >93 km out from the MacRobertson 

Land coast (AVHRR images obtained from NOAA website http://www.natice.noaa.gov). 

The sea ice set in April 2000 and started breaking out to the west of Mawson station from 

October and to the east from November of the same year. 

The ice in the area that extended north of Mawson station (see Figure 3.1) was mostly 

smooth ice blown clear of the snow. Approximately 16-18 km from the coast the ice was 

characterised by eroded sastrugi (ridges of snow created by wind) of medium height (30-

50 cm) and medium rafting (where the ice cracks and the ice pieces ridge up against and 

on top of each other). 

The fast-ice in the Macey area, -50 km east of Mawson, was mostly smooth, the main 

feature of the area being the many large (> 100 m2
) icebergs grounded on the sea-bed 

(water depth < lOOm, see Figure 3.1). These large icebergs hemmed in smaller non

grounded bergs. Approximately 18-19 km from the coast, the smooth ice became ridged 

into medium sastrugi. 

In the Colbeck area, - lOOkm west of Mawson, the sea ice was characterised by sastrugi 

and low-medium rafting and there were 10 icebergs in the transects. The sea ice was 

covered with a thick layer of snow that was ridged into medium and heavy sastrugi 

throughout the transect area. Within lkm of the coast the ice was covered with low 

sastrugi (<10 cm) over smooth ice. 

3.3.2 Seal counts 

During the three surveys, 349 seals (including pups) were observed amongst 165 sites 

across all three areas (see Figure 3.2). No seals were sighted at Colbeck or Macey during 

the first survey, although at Macey there were 8 sites with evidence of seals. Of all the 

sites encountered during the three survey periods, only two sites were consistently 
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encountered in all three survey periods and both of these occurred in the Macey area. 

Nineteen of the 46 sites encountered at Macey in September were re-encountered in 

October. At Mawson, 1 site from July was re-encountered again in October but was not 

observed in September, and 3 sites from the 10 encountered in September were re

encountered in October. At Colbeck, there were 5 sites encountered in September but 

none of these were re-encountered in October, however 6 new sites were encountered in 

October. 

Mawson Macey Colbeck Mawson Macey Colbeck Mawson Macey Colbeck 

2 3 

Suneyperiod 

Figure 3.2 Total number of seal sites encountered and number of seals seen at each area during 
each of the survey periods. The y-axis is cut short so the smaller values are more clearly shown; 
total number of seals encountered at Macey during survey period 3 is shown in brackets. 

3.3.3 Group composition 

At Colbeck in Survey 3 (the time when most seals were seen in this area) there were 13 

seals sighted and of these 6 were males, 1 was female and 6 were unsexed juveniles (see 

Figure 3.3). At Mawson in Survey 3, there were 3 males (1 adult and 2 sub-adults) and 5 

females (3 adults and 2 sub-adults), and in Survey 2 two unsexed adults plus 1 dead pup 

were observed. A dead pup was also observed at Macey in Survey 2, along with 27 

female and 33 male seals. In Survey 3 at Macey, there were many more females (108) 

than males (41), and 88 pups were observed as well. 
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Positions of male only and female only sites had no discernable pattern throughout the 

transects in all three areas. The number of single sex sites was lower than the number of 

sites with both sexes present (see Figure 3.4). In the Mawson area, no sites with females 

only appeared until Survey 3. In the Macey area, the number of sites increased, but the 

relative proportions of male only, female only and mixed sex sites appeared relatively 

constant. Pupping sites also occurred throughout the transects in the Macey area. No 

pupping sites occurred in the transects in the other areas, but in the Colbeck area there 

were two large (>30 mother-pup pairs) aggregations sighted east of the transects and in 

the Mawson area a small pupping colony (10 mother-pup pairs) was located 

approximately 18 km NNW of Mawson station at Sawert Rocks . 
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Figure 3.3 Number of males, females , unsexed seals and pups observed at each area withjn each 
survey period. The y-axis is cut short so the smaller values are more clearly shown; the number 
of pups observed at Macey during survey period 3 is shown in brackets. 
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Figure 3.4 Number of sites at each area during each survey period that had evidence of only male 
and only female Weddell seals (either from imprints or actual seals). 

3.3.4 Spatial variation 

Kolmogorov-Smirnov tests found no significant difference between transects in any of 

the areas at the different survey times (p > 0.10 for all tests). Thus transect data was 

combined for subsequent analysis . 

No significant variation was found in number of encounters or number of seals between 

grid segments within areas during each survey period, using Friedman tests (see Table 

3.1 ). Therefore, no association with distance to coast was detected. 

Comparing the different areas for number of encounters and number of seals found 

significant differences between the three areas during each of the survey periods (see 

Figure 3.5), except that number of seals per area was not significant in Survey 1 (see 

Table 3.2) , due to no seals being seen at Macey or Colbeck. In each survey period, 

Macey had the greatest number of encounters and Colbeck had the least (see Figure 3.5). 
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Table 3.1 Results of Friedman tests comparing grids within transects within each area during 
each survey period. 

Survey period Area Number of encounters Number of seals 

Mawson H19,40 = 17.92, p = 0.53 H19.40 = 19.00, p = 0.46 

1 Macey H19,40 = 16.08, p = 0.65 

Colbeck 

Mawson H19,40 = 14.67, p = 0.74 H19,40 = 18.47, p = 0.49 

2 Macey H 19,4o = 24.10, p = 0.19 H19,40 = 21.81, p = 0.29 

Colbeck H19,40 = 17.34, p = 0.57 H19.40 = 19.00, p = 0.46 

Mawson H19,40 = 20.12, p = 0.39 H19,40 = 16.73, p = 0.61 

3 Macey H19,40 = 25.05, p = 0.16 H19,40 = 18.41, p = 0.50 

Colbeck H19,40 = 21.77, p = 0.30 H 19.40 = 16.73, p = 0.61 
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Figure 3.5 Mean number of encounters (a) and mean number of seals (b) ±1 SD per grid segment 
in each area during each survey period. 

Table 3.2 Results ofKruskall-Wallis tests comparing areas within each survey period 

Survey period 

1 

2 

3 

Number of encounters 

H2,120 = 6.53, p= 0.04 

H2,120 = 32.36, p<0.01 

H2.120 = 68.47, p<0.01 

Number of seals 

H2.120 = 2.00, p = 0.37 

H2,120 = 40.72, p<0.01 

H2.120 = 64.30, p<0.01 
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3.3.5 Temporal variation 

Given the significant spatial variation, each area was investigated separately for 

differences in number of encounters and number of seals (excluding pups) between the 

three survey periods. Friedman tests found no significant differences between the survey 

periods for each of the dependent variables (see Table 3.3 and Figure 3.5). 

Table 3.3 Results of Friedman tests comparing survey periods within each area. 

Area 
Mawson 
Macey 

Colbeck 

Number of encounters 
2 x = 3.00, p = 0.08 
2 x = 0.33, p = 0.56 
2 x = 1.00, p = 0.32 

3.3.6 Other species 

Number of seals 
2 x = 3.00, p = 0.08 
2 x = 2.00, p = 0.16 
2 x = 0.00, p = 1.00 

Only Weddell seals were sighted during survey 1. There were four other species sighted 

during surveys 2 and 3 - crabeater seals Lobodon carcinophagus, emperor penguins 

Aptenodytes forsteri, south polar skuas Catharacta macconnicki and Adelie penguins 

Pygoscelis adeliae. Crabeater seals were sighted at Macey during Survey 2 (1 unsexed 

adult at one site) and again in Survey 3 (2 adults, 1 male and 1 female, at 2 sites). 

Emperor penguins were sighted at Colbeck in Surveys 2 and 3 (at 2 and 5 sites 

respectively), and at Macey during Surveys 2 and 3 (at 14 and 9 sites respectively). 

Skuas were sighted at 3 sites in the Macey area during Survey 3. Adelie penguins were 

sighted during the survey of the transects in the Mawson and Macey areas during Survey 

3, but were not associated with any Weddell seal sites. 

3.4 Discussion 

This study represents the first survey of Weddell seals along the MacRobertson Land 

coast. It gives preliminary results that will contribute to understanding how the haul-out 

site occurrence of Weddell seals distribution is linked to environmental variation, 

particularly in the fast-ice circling Antarctica. 

44 



3.4.1 Seal counts and group composition 

There were very few Weddell seal haul-out sites that were open in all three of the 

surveys, but more (30% at Mawson and 41 % at Macey) were open in both the September 

and October surveys. The implications of this are unclear, as there are not enough data to 

be able to correlate long-term use of sites with particular environmental factors such as 

bathymetry and ice characteristics. It does indicate however, that the fast ice in this 

region is a dynamic environment, and that seals make opportunistic use of tide cracks or 

areas of thinner ice rather than expend energy continually maintaining a hole in the one 

location. 

Prior to these surveys, it was suspected that there may be some spatial separation of sexes 

and/or ages of seals, especially in the breeding season. Differences in haul-out between 

sexes between winter and summer may indicate that seals utilise different foraging areas, 

or it may be due to some sort of social hierarchy. Patterns like this were not detected in 

the population in the Macey area, but low density of seals may have made it difficult to 

determine such patterns. There were sites encountered where the seals seen on the 

surface and seal imprints were either all male or all female, however this does not mean 

that there were not seals of the other sex using that hole, just that they had not hauled out 

at that time. 

3.4.2 Spatial and temporal variation 

There were consistently more seal sites encountered in the Macey area in each of the 

survey periods. During the second and third survey periods, Macey also had the most 

seals sighted, with 75 seals at 46 sites in September and 248 seals at 77 sites (not 

including pups) in October. The density of seal sites is likely to be affected by 

environmental factors, such as bathymetry and number of icebergs (Lake et al. 2005b). 

Seals use tide-cracks that form in association with land and icebergs where the ice 

fractures because the land or grounded iceberg constrains the movement of the ice (Lake 

et al 2005b). At Macey there is a submarine shelf (Storegg Bank) where the waters are 

<100m deep (see Figure 3.1), and many of the icebergs in the area are large enough to be 

grounded. In the other areas, the waters tend to be much deeper, varying from 250-
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lOOOm deep at Colbeck and <100-lOOOm deep at Mawson (the Mawson transects were 

over a submarine trough extending into the coastline from the north), and there are less 

icebergs, possibly because the water is too deep for icebergs to become grounded. There 

are more seals in the Macey area than in the other areas due to the increased propensity 

for the sea ice to crack and allow for more haul-out sites to be created and/or maintained. 

The different areas showed no differences temporally in the number of encounters or the 

number of seals. This can be attributed to a lack of power within the non-parametric 

tests, for the data was not able to be transformed therefore more powerful generalised 

linear modelling could not be performed. It was expected that number of sites and 

number of seals would increase over time, for several reasons: 1) seals aggregating in the 

area as the breeding season approaches (Siniff et al 1977, Kooyman 1981); 2) variation 

in environmental factors such as light levels, ice thickness and ocean currents, 

contributing to the seals' ability to create/maintain holes, and 3) warmer temperatures 

and increased radiation in summer making surface conditions more preferable for haul

out (Lake 1997). 

3.4.3 Other species 

Other species appear to benefit from the Weddell seals' ability to keep ice holes open. 

The patterns in sightings of different species at different times and different areas can be 

associated with the location of breeding sites and timing of breeding seasons, and 

illustrates the shared influence of sea ice on the air-breathing animals occurring in the 

fast-ice zone. The presence of penguins at Weddell seal sites is explained by the breeding 

colonies of Emperor penguins in the Macey and Colbeck areas and Adelie penguins at 

many islands along the MacRobertson Land coast. Emperor penguins breed during the 

winter, and were in the Macey and Colbeck areas during all three surveys. However, no 

birds were sighted in Survey 1 because there is limited movement by birds over the fast

ice at that time of year, as it coincided with the time that females are brooding their 

newly-hatched young and the males have departed to feed after a long fast (Robertson 

1995). More Emperor penguins were seen during subsequent surveys as there is more 

movement in and out of colonies as the males and females swap chick care and foraging 
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(Robertson 1995). It appears that Emperor penguins make use of Weddell seal holes, 

either as breathing holes en-route to offshore foraging areas, or as entry points for 

foraging under the fast ice. 

Adelie penguins spend the winter foraging amongst the pack-ice over the continental 

shelf break (Kerry et al. 1995, Davis et al. 1996, Clarke et al. 2003). They return to their 

island-based breeding colonies in mid-October, earlier at lower latitudes (personal 

observation). Therefore they were not seen during the first two surveys and during the 

survey of the Colbeck area during period 3 because they had not yet arrived (the Colbeck 

area was surveyed just prior to the arrival time of the Adelie penguins in that year, 

officially noted as October 18; personal observation and unpublished CEMP data, 

Australian Antarctic Division). Adelie penguins were only ever sighted walking over the 

ice, ignoring possible access points to the water including tide cracks and seal holes. 

Crabeater seals have been recorded in winter as preferring to haul-out in regions of dense 

pack-ice with open leads m areas of high productivity such as near polynyas (McMahon 

et al. 2002, Bums et al. 2004). As well as being sighted within the transects during 

surveys 2 and 3, crabeater seals were also regularly sighted at other haul-out sites in the 

Macey area from late August, usually in conjunction with Weddell seals and emperor 

penguins. It was not known whether they were foraging under the fast-ice or travelling to 

other areas with more open water. It seems unlikely that they would be foraging under 

the ice for krill, their primary food, as krill rarely occurs under ice >50 cm thick (Hempel 

1991). This is the first report of crabeater seals occurring in fast-ice areas during winter. 

Skuas arrive in early summer as pupping begins (personal observation) and were 

observed in association with Weddell seal pupping sites, scavenging on discarded 

placentae and dead pups (Stirling 1977). As Weddell seals were the only air-breathing 

species observed on the ice surface during Survey 1, I conclude they were the only top

level predator diving under the ice around this time. 
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3.4.4 Conclusion 

This study supports the hypothesis that Weddell seal haul-out sites are associated with 

factors that contribute to cracking the fast ice and therefore enabling access for the seals 

(Lake et al. 2005b). However, the results did not determine the point at which there is 

sufficient distance from land for fast-ice to move freely, and nor was the relationship 

with distance to ice edge tested for comparison with Lake et al.'s (2005b) findings. 

Future studies will need to incorporate environmental data collected independently but in 

conjunction with surveys of Weddell seal haul-out sites. Variables that could be 

measured are light levels, ice thickness, water depth and oceanography parameters such 

as current flow beneath the ice. Satellite images can also give information such as 

distance to coast, ice edge, islands and icebergs that can be used to determine the nature 

of the association between haul-out site occurrence and tendency for ice to crack. These 

characteristics can then be used to model the predicted distribution of seals in more in 

areas of the Antarctic that are inaccessible for surveying. Ground/ice surveys are limited 

by logistical constraints such as carrying enough fuel for vehicles and safety 

considerations, but are also useful in that a finer level of detail can be recorded than in an 

aerial survey. 

Whilst this study provides only preliminary results regarding the relationship between 

Weddell seals and their fast-ice environment, it confirms that haul-out sites are not 

randomly distributed at the local scale, with differences between different areas along the 

coast, and that the number of sites and number of seals increases from winter into the 

breeding season. Longer-term studies of Weddell seal distributions are required in order 

to determine influence of interannual variations in parameters such as fast-ice extent and 

ice thickness on the population. 
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Section of a pupping group in the Macey area, October 2000 
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Chapter 4: General Discussion 

As coastal animals that inhabit the fast-ice and feed over the continental shelf at locations 

all around Antarctica, Weddell seals experience considerable local variation in fast-ice 

characteristics and sea-floor topography. For example, water depths around the Vestfold 

Hills and offshore islands are much shallower than around Mawson, where deep 

submarine canyons allow penetration of most of the shelf water column to the coastline 

(Smith and Treguer 1994, Heil et al. 1996). Differences in bathymetry influence 

movements of water-masses such as circumpolar deep water and bottom water (Heil et 

al. 1996), which in turn affects the productivity of the waters (Hempel 1985), ice 

formation (Heil et al. 1996) and the location of pressure points where ice fractures. 

Fractured ice lets in light that influences the productivity of the waters underlying the 

fast-ice sheet (Eicken 1992); whilst water currents and salinities vary with depth which 

influences the faunal structure. 

Given the extent of the fast-ice at Mawson and assuming that most adult seals stay within 

50-100 km of their summer breeding colonies throughout the year (Testa 1994, Lake et 

al. 2005a), we can presume that many of the seals in the Mawson area will be almost 

exclusively foraging under fast-ice during the winter and not foraging under both fast-ice 

and heavy pack-ice as they do at McMurdo Sound (Testa 1994) or off the Vestfold Hills 

(Lake et al. 2005a). This means that the Mawson population of Weddell seals experience 

environmental conditions very different from seals in other locations around Antarctica, 

especially in terms of light penetrating the waters. At Mawson, the seals would be 

foraging in severely restricted light conditions until the fast-ice melts in January (Eicken 

1992). 
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4.1 Variation in diet of Weddell seals at Mawson 

) 

In general terms, the range of prey species found in the diet of Weddell seals at Mawson 

was more diverse than for other populations previously studied (eg, see Lake et al. 2003). 

Squid (P. glacialis) were particularly abundant in early summer but less so in winter. 

Although the biology of P. glacialis is not well documented, individuals are thought to 

undergo ontogenetic downward migration (Jackson and Lu 1994). Despite the relatively 

low %FOO of squid in seats, a significant relationship between size of squid and water 

depth was found, with larger individuals coming from deeper waters near the bottom and 

smaller individuals coming from shallower waters, showing that Weddell seals may feed 

upon individuals at different life stages at their corresponding depths. 

Interannual variation was detected in Weddell seal diet, primarily in terms of gammarid 

abundance. Lower abundance of gammarids in seal seats coincided with low krill 

abundance in the diet of Adelie penguins, which was purported to contribute to poor 

breeding success of Adelie penguins for that season. Although the direct processes are 

beyond the scope of this study, it is known that sea ice cover profoundly influences krill 

(through trapping of larvae within the ice lattice and also because krill feed on sea-ice 

algae; Hempel 1991) and the benthos (habitat of garnmarids) through fallout of organic 

sediment (Eicken 1992). It is possible that seats of Weddell seals can be used as an 

indicator of changes in lower-order trophic levels; but that the seals themselves have a 

broad enough diet to be buffered against changes in one prey type. 

The diet of Weddell seals at Mawson shows some differences to other locations. At 

McMurdo Sound, Pleuragramma antarcticum dominates the marine fauna and this is 

reflected in the diet of seals (Dearborn 1965, Castellini 1992). In the shallow waters of 

the Vestfold Hills, Weddell seal diet features higher abundances of prawns (Green and 

Burton 1987, Lake et al. 2003). At Mawson, the diversity of prey species in the diet is 

attributed to the variety of depths available to the seals in which to forage, from 

submarine canyons >300 m deep to banks creating shallow waters <100 m. Very little 

research has been done into determining the influence of the physical environment on 
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availability of resources to seals and how this changes around the continent. This is an 

important step to fully understanding the niche of Weddell seals in the ecosystem and 

how they survive in the fast-ice regions throughout the winter. 

4.2 Variation in occurrence of haul-out sites along the Mawson coast 

Density of Weddell seal haul-out sites was non-randomly distributed at the regional scale 

on the Mawson coast. This pattern is possibly associated with differences in ice 

characteristics, affected by bathymetry (and therefore number of icebergs), which 

influences fracturing of the fast-ice and thus enables access for seals. Lake et al (2005b) 

determined that distance to coast was an important determining factor for haul-out sites 

of Weddell seals in the Vestfold Hills; however, in the Mawson area this factor was not 

an important determinant of density of haul-out sites. Mawson fast-ice is more stable and 

does not break out easily because it is held in place by offshore islands along the coast. 

Several factors were identified as possible determinants of haul-out site locations and 

density, such as bathymetry, density of icebergs, fast-ice extent, ice thickness and 

number of tide-cracks. To really understand the relationship between seal-haul out sites 

and the physical environment, future surveys should incorporate independent assessment 

of these factors whilst at the same time quantifying the d1stnbution of seal sites. The aim 

for any future work could be the development of models for predicting distribution of 

Weddell seals in areas where ground or air surveys are logistically unfeasible, and 

ultimately work towards a systematic determination of population size. 

4.3 Conclusion 

This study of Weddell seals has shown that a key environmental feature influencing both 

the diet and haul-out distribution of Weddell seals is sea-floor topography. This affects 

the direction of water movements and creates pressure points where ice fractures, 

enabling Weddell seals' access to air and to the ice surface for resting and pupping. The 
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diversity of prey species in the diet of Weddell seals is a reflection of the variety of 

habitats at different depths available to the seals for foraging. 

The Mawson site is very different to other sites where Weddell seal research has been 

concentrated, and this thesis has highlighted the need to conduct research at different 

sites where Weddell seals occur, especially those with unique bathymetric or ice 

characteristics. I have shown that generalisation of Weddell seal ecological processes, 

such as trophic interactions, cannot be made from single sites. 
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