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Abstract 

Adaptive filtering has gained popularity in numerous applications to help cope with 

time-variations of system parameters, and to compensate for the lack of a priori 

knowledge of statistical properties of the input data. Therefore, it is an area of research 

that has important implications for many problems in signal processing, control and 

estimation, communication and others. Over the last several decades, a wide range of 

filter structures and algorithms has been developed. Finite Impulsive Response (FIR) and 

Infinite Impulse Response (UR) transversal filters are two well-established linear models 

for adaptive filtering. However, there are several circumstances that the performances of 

these filters are unsatisfactory. Nonlinear polynomial filtering had been first considered 

by some researchers. More recently, artificial intelligent techniques such as neural 

networks and fuzzy logic have undergone rapid development and become recognized as 

powerful nonlinear approximation methods. Hence various nonlinear adaptive filtering 

techniques using multi-layer perceptron (MLP), radial basis function (RBF) and fuzzy 

logic have been developed. 

Adaptive filtering algorithm is another important topic for adaptive filtering. There are 

two well-studied algorithms for adaptive filtering: recursive least squares (RLS) and 

least mean square (LMS) algorithms. LMS algorithm attempts to minimize the mean 

square of the error signal by employing a stochastic gradient technique. It is strongly 

dependent on the input signal spectral characteristics and its convergence depends on the 

eigen-value spread of the autocorrelation matrix. In contrast, several advantages of RLS 

over LMS in terms of tracking behavior and fast convergence are well known. It is 

independent of input spectral characteristics but it is of high computational complexity. 

Furthermore, it exhibits unstable performance. Methods of avoiding instability have 

been proposed in the literature but the stability problems of adaptive filters have not 

been solved if there are some bounded input disturbances. 
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This thesis has provided a fundamental breakthrough in understanding of the Lyapunov 

stability-based adaptive filtering mechanism, yielding further conditions and solutions 

for a number of nonlinear filtering problems using Lyapunov stability theory. The first 

issue to be addressed is the mathematical foundation of Lyapunov stability theory for 

adaptive filtering systems. Linear models such as FIR and IIR transversal filters using 

Lyapunov stability theory are developed and analyzed. A new insight is given into the 

stabilization problem of the adaptive filtering algorithm. The developed Lyapunov 

stability-based adaptive filtering can provide stability and high tracking precision for 

adaptive filtering systems. It can overcome the low tracking precision and instability 

problems of conventional adaptive filtering systems. The designs of those adaptive 

filters are independent of stochastic properties of signals. The analysis and design of the 

Lyapunov sense adaptive filters are significantly simplified compared to existing 

conventional filtering algorithms. The successful outcome of the thesis will in no doubt 

make significant contributions to and impacts on research in the field of intelligent 

signal processing and communications systems. 

Further investigations presented in this thesis include the theory and design of RBF 

neural network-based nonlinear adaptive filters with Lyapunov stability, fuzzy adaptive 

filters with Lyapunov sense fuzzy rules, neural adaptive filters with the back

propagation learning rules in Lyapunov sense with guaranteed stability, polynomial 

adaptive filters with Lyapunov stability and parallel signal processing using Lyapunov 

theory. These new adaptive filtering schemes have been implemented to different 

applications. Simulation examples have been performed to investigate various 

performances such as tracking precision, stability, and robustness of the developed 

schemes. 

In summary, this thesis has provided an advanced understanding of the Lyapunov 

stability-based adaptive filtering mechanism. Several adaptive filtering schemes using 

artificial intelligent techniques and Lyapunov theory have been developed. 
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Chapter 1 

Introduction 

1.1 Motivation 

The topic of adaptive filtering has matured to the point where it now constitutes an 

important part of signal processing. Whenever there is a requirement to process 

signals that result from operation in an environment of unknown statistics, the use of 

an adaptive filter offers an attractive solution to the problem as it usually provides a 

significant improvement in performance over the use of a fixed digital filter designed 

by conventional methods. In general, adaptive filtering can be defined as performing 

some mapping from the input signal to the output signal with desired properties or 

adapting the filter response so as to make its output signal as close as possible in 

some sense to the desired response [1]-[3]. It has been successfully applied in such 

diverse fields as communications, control, radar, sonar and seismology. 

Adaptive filters generally consist of two distinct parts: a filter, whose structure is 

designed to perform a desired processing function, and an adaptive algorithm for 

adjusting the parameters of the filter. The many possible combinations of filter 

structures and the adaptive filtering algorithm governing them lead to a sometimes 

bewildering variety of adaptive filters. The adaptive filtering algorithm has a 

significant impact on the performance of the adaptive filtering. The performance of 

the adaptive algorithm is evaluated based on one or more of the following factors [3]: 

rate of convergence, stability, computational complexity, ability to track time varying 

characteristics, robustness to additive noise, numerical robustness and others. Ideally 

a low computational complexity and numerical robust adaptive filter with high rate 
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of convergence, high stability, fast tracking and robustness to additive noise 

properties is desired for many applications. 

There are different approaches to the development of adaptive filter theory. The first 

approach is the approach based on Wiener filter theory. In this approach, a tapped

delay line or transversal filter as the structural basis for implementing the adaptive 

filter is used. Linear filters with a finite impulse response (FIR) are considered. Note 

that the filter output is a linear combination of a finite number of past inputs. The 

normal equation (i.e., the matrix equation defining the optimum Wiener solution) is 

modified by the use of the method of steepest descent, a well-known technique in 

optimization theory. The resulting algorithm is widely known as the least mean 

square (LMS) algorithm. In practice, the use of LMS is wide-spread due to its 

computational simplicity. Its major limitations are a relatively slow rate of 

convergence and its sensitivity to variations in the eigenvalue spread. Indeed, 

tracking will occur provided that the input data vary slowly compared to the learning 

rate of the LMS algorithm. The algorithm itself may be unstable if the learning rate 

of the LMS is not selected properly. 

The second approach is based on Kalman filter theory. The Kalman filtering problem 

for a linear dynamic system is formulated in terms of two basic equations: the plant 

equation in terms of the state vector, and the measurement equation that describes 

measurement errors. Different recursive algorithms using the recursive solution to 

the Kalman filtering problem are deriy~d..-These algorithms can provide a faster rate 

of convergence than that attainable by the LMS algorithm and are insensitive to the 

eigenvalue-spread problem. Nevertheless, their limitation is high computational 

complexity. 

The aforementioned two approaches are based on statistical concepts. The third 

approach is based on the classical method of least squares. It differs from these 

former two in that it is deterministic in its formulation. According to the method of 

least squares, the sum of weighted error squares is minimized. Different classes of 

adaptive filtering algorithms are derived. One of the classes is recursive least

squares (RLS) algorithm. This algorithm also assumes the use of a transversal filter 

as the structure basis of the adaptive filter. The derivation of the algorithm relies on 
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the matrix-inversion lemma. RLS algorithm has faster convergence rate and better 

tracking behaviour compared with LMS algorithm. However, it has suffered from the 

same limitation of high computational complexity) as the Kalman algorithm. To 

reduce the computational complexity, various modified RLS algorithms for adaptive 

filtering have been developed in [1],[7]-[16]. There are two families of modified 

RLS algorithms, corresponding to two possible filter structures: the fast lattice 

algorithms (FLA) [1],[12],[16] and the fast transversal filter (FTF) or fast recursive 

least square (FRLS) algorithms [1],[7],[8]. Although RLS algorithms exhibit fast 

convergence properties, they exhibit unstable performance [12]-[15]. Many modified 

schemes have been developed to improve the stability property [9],[12],[16],[17] but 

the stability problem of the adaptive filters has not been solved in the presence of 

noise or if there are some bounded input disturbances. 

As aforementioned, the RLS and LMS algorithms are the popular algorithms for FIR 

filter. However, an infinite impulse response (IIR) filter can provide significantly 

better performance than a linear FIR filter having the same number of coefficients. 

This is a consequence of the output feedback that generates an infinite impulse 

response with only a finite number of parameters. A desired response can be 

approximated more effectively by the output of the IIR filter. Alternatively, to 

achieve a specified level of performance, an IIR filter generally requires considerably 

fewer coefficients. Fundamentally, there are two approaches to adaptive IIR filtering: 

equation error and output error methods. One major drawback of the output error 

IIR method is that unlike the adaptive FIR, the performance surface might not be 

hyper-paraboloid and thus has local minima to which the algorithm can converge 

[18]. Different adaptive algorithms [1]-[3],[18] based on the gradient search 

techniques in the adaptive IIR filter. However, after the cost function of the error is 

selected, the surface of the cost function in the parameter space is fixed. The search 

of the optimum parameters in the parameter space may stop at some local minimum 

because of the arbitrary initial condition of system states. Furthermore, the adaptive 

IIR filters have time varying poles and zeros, and the stability of the adaptive UR 

filters using gradient search techniques may not be guaranteed. 

Up to this point, the problems of the adaptive filtering algorithms in the adaptive 

filters have been noticed. These problems have motivated the research of new 
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adaptive algorithms that are less computational complexity, fast convergence, highly 

stability, fast tracking and robustness to additive noise. Besides adaptive filtering 

algorithms, the structure of the filter is another issue needed be considered. The 

common advantage of the adaptive FIR and UR filters with linear model is their 

inherent simplicity but there are several circumstances that the performance of these 

linear model filter is unsatisfactory [74]. Therefore the development of nonlinear 

adaptive filtering would be desirable for many applications. One of the nonlinear 

model adaptive filters is the polynomial filter that includes Volterra and Bilinear 

filters. Besides polynomial filters, artificial intelligence techniques such as neural 

networks and fi1zzy logic that have become recognized as powerful nonlinear 

approximation methods have also motivated the development of nonlinear adaptive 

filtering. 

In summary, new techniques of adaptive filtering that can enrich the signal 

processing theory as well as have significant impact on effective and efficient 

filtering strategies have motivated the development of this thesis. 

1.2 Scope 

The aim of this thesis is to develop various new techniques of adaptive filtering using 

Lyapunov stability theory as first proposed in [19]. Reference [19] has only provided 

a basis foundation work on Lyapunov filtering. This thesis provides further work and 

analysis on the technique in [19]. Artificial intelligent techniques such as neural 

networks and fuzzy logic are also incorporated into the new filter designs. In line 

with this, a review of basis adaptive filtering techniques and adaptive algorithms is 

also provided in this thesis. 

The essence of this thesis is the Lyapunov stability-based adaptive filtering (LAF) 

which introduces the Lyapunov stability theory [20] into the design of adaptive 

filters. This PHD research has established and consolidated the theoretical or 

mathematical foundation for Lyapunov stability-based adaptive filtering. The 

designed filter exhibits asymptotic convergence of the tracking error between the 

desired reference signal and the output of the adaptive filter. The filter also exhibits 

the stability and robustness with respect to the bounded disturbances such as additive 
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noises. This thesis has also provided a fundamental breakthrough in advancing the 

understanding of the stability, convergence and robustness of Lyapunov stability

based adaptive filtering algorithms. It has also pointed out that the Lyapunov 

stability-based adaptive filtering is an important subject in the area of signal 

processing. It has enriched the signal processing theory as well as has a significant 

impact on effective and efficient filtering strategies. 

Adaptive filtering with linear models such as transversal FIR and IIR adaptive filters 

are first designed and analyzed. The resulted adaptive filtering algorithm is called 

Lyapunov theory-based adaptive filtering (LAF) algorithm. Nonlinear adaptive 

filtering techniques are also developed._ These nonlinear methods include the design 

of radial basis function (RBF) neural network-based adaptive filtering with 

guaranteed Lyapunov stability. Fuzzy adaptive filters with Lyapunov sense fuzzy 

rules that allow linguistic information are also proposed. Another design of neural 

adaptive filters with Lyapunov sense backpropagation learning called Lyapunov 

stability-based adaptive backpropagation (LABP) is also developed. Both 

feedforward and recurrent neural networks are taken into account in these neural 

network designs. These nonlinear filtering schemes with neural networks and fuzzy 

logic are then followed by nonlinear polynomial filters such as Volterra, Bilinear and 

parallel cascade Volterra filters. Various adaptive filtering techniques based on the 

above methods are also developed. For example, a concurrent Lyapunov theory

based adaptive filtering (CLAF) algorithm is developed for the real-time 

implementation of large order filter when the computational time per iteration is 

critical. This is then followed by the complex Lyapunov stability-based adaptive 

filtering (Complex-LAF). A new active noise control (ANC) with a second path 

modeling scheme has been proposed. Two algorithms called Filtered-X Lyapunov 

theory-based algorithm (FXLYP), Filtered-U Lyapunov theory-based algorithm 

(FXL YP), and an overall on-line modeling techniques using the LAF are developed. 

A hybrid nonlinear filter that consists of nonlinear and linear sub-predictors are 

introduced. This predictor can be applied to several applications such as speech 

signal processing, financial time series etc. Differehce schemes for system 

identification based on the aforementioned schemes are taken into consideration in 

this thesis. Other applications that are based on the work of this thesis can be found 
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in [51],[67],[111]-[116]. A review of the contents of the thesis is given in Section 

1.3. 

1.3 Thesis Outline 

The organization of the thesis is as follows. 

Chapter 1: This chapter introduces the major thrust of the thesis, giving the 

motivation, scope and thesis outline. 

Chapter 2: This chapter constitutes mostly review material. It provides a background 

on existing techniques for adaptive filtering. An introduction of adaptive filter is 

presented. Various discussions such as the performance measures in adaptive filter 

and adaptive filtering system configurations are given subsequently. In the later part 

of the chapter, adaptive filter models such as finite impulse response (FIR) and 

infinite impulse response (IIR) are discussed. Adaptive algorithms for FIR and IIR 

filters are then reviewed. 

Chapter 3: A new adaptive filtering technique called Lyapunov Theory-based 

Adaptive Filtering (LAF) is proposed in this chapter. A Lyapunov function of the 

error between the desired signal and the filter output is defined, the weights of the 

filter are then adaptively adjusted based on Lyapunov stability theory so that the 

error can asymptotically converge to zero. Unlike many adaptive filtering schemes 

using gradient search in the parameter space, the selected Lyapunov function for a 

Lyapunov filter has a unique global minimum in the state space. By properly 

choosing the parameter update law in Lyapunov sense, the output of the adaptive 

filter can asymptotically converge to the desired reference signal. Therefore, the local 

minima problem occurred in the gradient search-based adaptive filters is avoided. 

Although the input signal of the adaptive filter is disturbed by the bounded random 

noises, only the input and the output measurements are used for the design of the 

Lyapunov filters. Therefore, the design of Lyapunov adaptive filters is independent 

of the stochastic properties of the random input disturbances. It can be seen from the 

above discussion that Lyapunov stability theory provides an optimization method in 

the state space for the design of adaptive filters. In this chapter, we have also further 
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investigated the LAF filters by exploring the error convergence rate and the error 

convergence region in order to avoid the singularities. 

Chapter 4: In this chapter, two realizations of the Lyapunov adaptive filters using 

radial basis function (RBF) neural networks are proposed. The FIR and IIR filters 

are configured as feedforward and recurrent RBF networks respectively. It is shown 

in Chapter 3 that a Lyapunov function of the error between the desired signal and the 

RBF neural network output is defined, the weights of the RBF neural filter are then 

adaptively adjusted based on the LAF in Chapter 3, so that the error can 

asymptotically converge to zero. Unlike many adaptive neural filtering schemes 

using gradient search in the parameter space, the selected Lyapunov function for the 

adaptive RBF filter has a unique global minimum in the state space. By properly 

choosing the weights update law in Lyapunov sense, the output of the adaptive RBF 

neural filter can asymptotically converge to the desired reference signal. Thus the 

local minima problem occurred in the gradient search-based adaptive filters is 

avoided,. Although the input signal of the RBF neural filter is disturbed by the 

bounded random noises, only the input and the output measurements are needed for 

the design of the RBF neural filters. Hence the proposed scheme is independent of 

the statistical properties of the input signals. 

Chapter 5: The purpose of this chapter is to develop new kinds of nonlinear adaptive 

filters, which we refer to as fuzzy adaptive filters. First, a fuzzy gain Lyapunov 

adaptive filter for nonlinear adaptive filtering is proposed. This scheme is designed 

based on the LAF and fuzzy logic is introduced to the filter design. It incorporates 

fuzzy logic to the LAF by the use of a set of Lyapunov sense fuzzy if-then rules. 

Given the input signal and its squared norm, these rules are then used to determine 

the adaptive gain to update the filter parameters so that the error converges to zero 

asymptotically. The second fuzzy adaptive filter is named LAF fuzzy adaptive filter. 

This fuzzy adaptive filter is constructed from a set of changeable fuzzy IF-THEN 

rules. The LAF is used to update the parameter of the membership functions so that 

the dynamic error between the filter output and the desired response converges to 

zero asymptotically. Therefore, the most advantage of the fuzzy filter compared to 

the conventional filters is that linguistic information from human experts (in the form 

of fuzzy IF-THEN rules) can be incorporated into the filter. If no linguistic 
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information is available, the fuzzy adaptive filters become well-defined nonlinear 

adaptive filters. 

Chapter 6: A new approach of designing a BP algorithm using Lyapunov stability 

theory is proposed in this chapter. This chapter has also extended the ideals of 

Lyapunov stability-based algorithms in Chapter 3-5 to the design of the BP algorithm 

for Time Delay Neural Network (TDNN) with feedback in particular. We call this 

new algorithm as Lyapunov Stability-based Adaptive Backpropagation (LABP) 

algorithm. The designed LABP is a non-gradient based algorithm. In our new 

scheme, a Lyapunov function is defined for the error between the desired response 

and the neural network output. The defined criterion function is the Lyapunov 

function that has only unique minimum. The weights of neural network are then 

adaptively adjusted so that the error can converge to zero asymptotically. The 

network weights updated strategy is independent of signal statistical properties 

because only the desired response and input signal are required. The stability concern 

for the LABP algorithm is guaranteed by the Lyapunov Stability Theory. 

Chapter 7: The objective of this chapter is to present one area of nonlinear signal 

processing known as polynomial signal processing using Lyapunov theory. The first 

part of this chapter presents a fast, low computation complexity and stable adaptive 

polynomial filters. We only focus on the following polynomial models: (1) Volterra 

model that the nonlinear system output signal can be related to the input signal 

through a truncated Volterra series expansion. (2) Bilinear model that involves and 

recursive nonlinear difference equation. The second part of the chapter considers 

another realization of nonlinear Volterra filter using parallel-cascade structure. 

Parallel-cascade realizations implement higher order Volterra systems as a parallel 

connection of multiplicative combinations of lower order truncated Volterra systems. 

All the proposed techniques in this chapter have excellent convergence and their 

stability are guaranteed by the Lyapunov stability theory. These schemes are 

independent of signals' stochastic properties. They have lower or comparable 

computational complexity compared to some conventional polynomial filters. 

Simulation examples have demonstrated the performance of these new designs. 
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Chapter 8: This chapter introduces other different techniques besides those proposed 

in Chapter 3-Chapter 6. These techniques include (1) A new concurrent algorithm for 

adaptive filtering called concurrent Lyapunov theory-based adaptive filtering 

(CLAF) in parallel signal processing. (2) Complex-valued Lyapunov theory-based 

adaptive filtering (Complex-LAF). (3) A new approach in feedforward active noise 

control using Lyapunov stability theory which consists two algorithms called 

Filtered-X Lyapunov theory-based algorithm (FXLYP), Filtered-U Lyapunov theory

based algorithm (FXLYP), and a overall on-line modeling techniques using the LAF. 

(4) A hybrid nonlinear neural predictor and its application to nonlinear and noisy 

time series prediction. Most of these methods are the modification of the scheme 

presented in Chapter 3-7 to suit particular applications. 
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Chapter 2 

Adaptive Filtering 

2.1 Introduction 

Filter is often used to describe a device that is applied to a set of noisy data in order 

to extract information about a prescribed quantity of interest. It can be used to 

perform three basic information-processing operations: filtering, smoothing and 

prediction [ 1]. It is linear if the filtered, smoothed or predicted quantity of interest at 

the output of the device is a linear function of the observations applied to the filter 

input. In the statistical approach to the solution of the linear filtering problems, we 

assume the availability of certain statistical parameters (i.e., mean and correlation 

functions) of the useful signal and unwanted additive noise and the requirement is to, 

design a linear filter with the noisy data as input so as to minimize the effects of 

noise at the filter output according to some statistical criterion. A useful approach to 

this filter-optimization problem is to minimize the mean square value of the error 

signal that is defined as the difference between some desired response and the actual 

filter output. For stationary inputs, the resulting solution is commonly known as the 

Wiener filter, which is said to be optimum in the mean square sense. However, the 

Wiener filter is inadequate for dealing with nonstationary signal. Furthermore, the 

design of the Wiener filter requires a priori information about the statistics of the 

data. Therefore a more efficient method is to use an adaptive filter. The general 

structure of the adaptive filter is given in Figure 2.1. 

An adaptive filter is a self-designing filter that relies for its operation on an adaptive 

algorithm, which makes it possible for the filter to perform satisfactorily in an 

environment where complete knowledge of the relevant signal characteristics is not 
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available. The algorithm starts from some predetermined set of initial conditions, 

representing complete ignorance about the environment. In a stationary environment, 

the algorithm converges to the Wiener solution in some statistical sense after 

successive iterations. In nonstationary environment, the algorithm can track time 

variations in the statistics of the input data, provided the variations are sufficiently 

slow. Therefore an adaptive filter is a nonlinear device. In another context, an 

adaptive filter is often refereed to as linear in the sense that the estimate of a quantity 

of interest is obtained adaptively (at the filter output) as a linear combination of the 

observations applied to filter input [ 1]. 

lnput x(k) Flltlr 
F(.) 

Adaptive 
Algorithm 

Output 
y(k) 1 

d;:;sired signal 

Error e(k) 

Figure 2.1: Block Diagram of the General Adaptive Filter 

2.2 Performance Measures in Adaptive Filters 

In designing an adaptive filter and its algorithm, there are a number of performance 

evaluations which are important. Thus six performance measures will be discussed in 

the following sections: convergence rate, minimum mean square error, computational 

complexity, stability, robustness, and filter length. [1]-[3] 

Convergence Rate - The convergence rate determines the rate at which the filter 

converges to its resultant state. Usually a faster convergence rate is a desired 

characteristic of an adaptive system. Convergence rate is not, however, independent 

of all of the other performance characteristics. There will be a tradeoff, for example, 
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if the convergence rate is increased, the stability characteristics will decrease, making 

the system more likely to diverge instead of converge to the proper solution. 

Minimum Mean Square Error - The minimum mean square error (MSE) is a metric 

indicating how well a system can adapt to a given solution. A small minimum MSE 

is an indication that the adaptive system has accurately modeled, predicted, adapted 

and/or converged to a solution for the system. [1] 

Computational Complexity - Computational complexity is particularly important in 

real time adaptive tilt.er applications. When a real time system is being implemented, 

there are hardware limitations that may affect the performance of the system. A 

highly complex algorithm will require much greater hardware as well as software 

resources than a simplistic algorithm. [1] 

Stability - Stability is probably the most important performance measure for the 

adaptive system. By the nature of the adaptive system, there are very few completely 

asymptotically stable systems that can be realized. In most cases the systems that are 

implemented are marginally stable, with the stability determined by the initial 

conditions, transfer function of the system and the step size of the input. [ 1] 

Robustness - The robustness of a system is directly related to the stability of a 

system. Robustness is a measure of how well the system can resist both input and 

quantization noise. [1] 

Filter Length - The filter length of the adaptive system is inherently tied to many of 

the other performance measures. The length of the filter specifies how accurate a 

given system can be modeled by the adaptive filter. In addition, the filter length 

affects the convergence rate, by increasing or decreasing computation time, it can 

affect the stability of the system, at certain step sizes, and it affects the minimum 

MSE. [1] 

In summary, ideally a low computational complexity, numerical robust adaptive 

filter with high rate of convergence, high stability, fast tracking and robustness to 

additive noise properties is desired for many applications. As in any engineering 



Chapter 2: Adaptive Filtering 13 

problem, these desirable characteristics, in most cases, are incompatible with each 

other and some kind of trade-off is needed. 

2.3 Adaptive Filtering System Configurations 

There are four major types of adaptive filtering configurations: adaptive system 

identification, adaptive noise cancellation, adaptive linear prediction, and adaptive 

inverse system. All of the above systems are similar in the implementation of the 

algorithm, but different in system configuration. [3] 

y(k) 

e(k) 

x(k) d(k) 

Figure 2.2 

Adaptive System Identification Configuration [3] - The adaptive system identification 

is primarily responsible for determining a discrete estimation of the transfer function 

for an unknown digital or analog system. The same input x(k) is applied to both the 

adaptive filter and the unknown system from which the outputs are compared 

(Figure 2.2). The output of the adaptive filter y(k) is subtracted from the output of the 

unknown system resulting in a desired signal d(k) . The resulting difference is an 

error signal e(k) used to manipulate the filter coefficients of the adaptive system 

trending towards an error signal of zero. After a number of iterations of this process 

are performed, and if the system is designed correctly, the adaptive filter's transfer 

function will converge to, or near to, the unknown system's transfer function. For 

this configuration, the error signal does not have to go to zero, although convergence 

to zero is the ideal situation, to closely approximate the given system. Additionally 

the order of the adaptive system will affect the smallest error that the system can 

obtain. 
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s(k)+No(k) 
d(k) 

y(k) 
x(k)=N1(k) 

Figure 2.3 

Adaptive Noise Cancellation Configuration [3] - In this configuration (Figure 2.3), 

the input x(k), a noise source N1(k), is compared with a desired signal d(k), which 

consists of a signal s(k) corrupted by another noise No(k). The adaptive filter 

coefficients adapt to cause the error signal to be a noiseless version of the signal s(k). 

Both of the noise signals for this configuration need to be uncorrelated to the signal 

s(k). In addition, the noise sources must be correlated to each other in some way, 

preferably equal, to get the best results. Due to the nature of the error signal , the error 

signal will never become zero. The error signal should converge to the signal s(k), 

but not converge to the exact signal. 

d(k) 

y(k) 

x(k) e(k) 

Figure 2.4 

Adaptive Linear Prediction Configuration [3]- This configuration (Figure 2.4) 

essentially performs two operations. The first operation, if the output is taken from 

the error signal e(k), is linear prediction. The adaptive filter coefficients are being 

trained to predict, from the statistics of the input signal x(k) , what the next input 

signal will be. As in the previous section, neither the linear prediction output nor the 

noise cancellation output will converge to an error of zero. This is true for the linear 

prediction output because if the error signal did converge to zero, this would mean 

that the input signal x(k) is entirely deterministic. 
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u(k) w(k) y(k) 

e(k) 

x(k) 

Figure 2.5 

Adaptive Inverse System Configuration [3] - In this configuration (Figure 2.5). The 

goal of the adaptive filter here is to model the inverse of the unknown system u(k). 

This is particularly useful in adaptive equalization where the goal of the filter is to 

eliminate any spectral changes that are caused by a prior system or transmission line. 

The way this filter works is as follows. The input x(k) is sent through the unknown 

filter u(k) and then through the adaptive filter resulting in an output y(k). The input is 

also sent through a delay to attain d(k) . As the error signal is converging to zero, the 

adaptive filter coefficients w(k) are converging to the inverse of the unknown system 

u(k). 

2.4 Adaptive Filter Models 

The FIR (finite impulse response) and IIR (infinite impulse response) are two popular 

linear models for adaptive filters. The FIR filter (also known as a tapped delay line or 

non-recursive filter), is the same as a moving average (MA) process. An infinite 

impulse response (IIR) filter has the same structure as an autoregressive moving 

average (ARMA) process. 

A finite impulse response (FIR) filter is defined by [1]-[3]: 

N- 1 

y(k) =I b;(k)x(k - i) (2.1) 
i=O 

An infinite impulse response (IIR) filter is defined by 

N-1 N -1 

y(k) = Lb;(k)x(k -i)+ L:a;(k)y(k -i) (2.2) 
1=U i=I 
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An IIR filter defined by (2.2) is referred to as having an output error model (OEM) 

where y(k-i) are past or feedback outputs. If the feedback y(k-i) is replaced by the 

desired response d(k-i), the filter is said to have an equation error criterion, that is 

N-1 N-l 

y(k) = 2),(k)x(k-i)+ "La,(k)d(k-i) (2.3) 
1=0 1=1 

The equations (2.1) and (2.3) are linear in parameters and they have a quadratic 

performance surface with a unique minimum [18]. However, the equation error 

formulation may lead to biased parameters estimates [18]. On the other hand, the 

output error model is non-linear in the parameters and consequently the performance 

surface may be non-convex [18]. Thus, convergence to a local minimum is usually 

all that can be guaranteed using gradient search-based algorithms. 

In the next section, we consider the adaptive algorithms in adaptive filters, focusing 

on least mean square (LMS) algorithm and recursive least square (RLS) algorithm 

specifically on adaptive FIR filters. 

2.5 Adaptive Algorithms for Finite Impulse Response 

Filters 

For FIR adaptive filters, the adaptive algorithms are linear-in-the-parameters, hence 

it is straightforward to find a convergent algorithm on the quadratic performance 

surface. Many algorithms exist, but we only consider the least mean square (LMS) 

and recursive least square (RLS) algorithms which are probably the most well 

known methods of adaptive algorithms. 

2.5.1 Least Mean Square (LMS) Algorithm 

Adaptive algorithms based on the gradient search or gradient descent adjust the filter 

parameters so as to move in the direction of the negative gradient of the performance 

criterion at the current point in parameter space. Gradient descent algorithms 

commonly use the mean square error performance surface (the LMS criterion) 

defined as 
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e(k) = _!_ E[e(k) 2
] 

2 

17 

(2.4) 

The method of steepest descent follows the gradient towards the minimum, but at 

any instant it is not necessarily moving in the direction of the minimum, unless the 

gradient direction is aligned with one of the parameter axes [l]-[3]. One simple 

method of gradient descent is based on estimating the performance criterion e (k) at 

sample points in the weight space. The weights are then adjusted in the direction of 

the negative gradient until the performance criteria has reached the minimum. The 

general gradient descent methods is defined by 

oe(k) 
w(k+l) = w(k)-µ-ow (2.5) 

where w(k) is the filter parameter vector at time k, andµ is the learning gain or step-

size. 

The LMS algorithm can be defined as 

w(k+ 1) = w(k) - µ e(k)x(k) (2.6) 

where e(k) is the error. [3] 

The LMS algorithm is derived by using the instantaneous squared error as an 

estimate of the performance surface [1]-[3]. Since the mean square output error 

(MSOE) surface is quadratic, gradient descent algorithms will converge to a unique 

global minimum. It has been proven that the LMS algorithm will converge to the 

optimal Wiener solution, which is defined in discrete time as the solution w0 which 

minimizes the mean square error criterion. The optimal Wiener solution is found in 

this case by solving the normal equation given by 

Rwo=p (2.7) 

where R is the correlation matrix of the input vector X == [x(k), x(k-1), ... , x(k-n)f, 

and p is the cross-correlation vector betweenX and the desired filter output d(k) [1]. 

Convergence of the LMS Adaptive Filter 

The convergence characteristics of the LMS adaptive filter is related to the 

autocorrelation of the input process as defined by 
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Rx= E[x(n)xT(n)] (2.8) 

There are two conditions that must be satisfied in order for the system to converge. 

These conditions include: 

• The autocorrelation matrix, Rx, must be positive definite. 

• 0 < µ < l!A. max·, where A. max is the largest eigenvalue of Rx. 

In addition, the rate of convergence is related to the eigenvalue spread. This is 

defined using the condition number of Rx, defined as K = A. maxlA. mm, where 'A mm is 

the minimum eigenvalue of Rx. The fastest convergence of this system occurs when 

K = 1, corresponding to white noise. This states that the fastest way to train the LMS 

adaptive system is to use white noise as the training input. As the noise becomes 

more and more coloured, the speed of the training will decrease. 

Stability of the LMS Algorithm 

It can be shown that starting with an arbitrary initial weight vector, the LMS 

algorithm will converge in the mean and will remain stable as long as the step size 

(2.6) is in the range 

2 
1 < µ < ---.---

tap - input power 

[1], which is an easy boundary to calculate. 

(2.9) 

Within that margin, the larger µ is, the faster the convergence but the less the 

stability around the minimum value. On the other hand, the smaller µ is, the slower 

the convergence but will be more stable around the optimum value. 

LMS Variants [1],[142] 

There are many variants of the LMS algorithm, some of which are very useful and 

some are of little more than academic interest. A few of the more common ones are: 
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Block LMS [1],[142]- The weight vector of the FIR filter is held constant for a few 

iterations while an improved estimate of the performance surface gradient is 

obtained. 

Variable Step Size [142] - The value ofµ is chosen large at the beginning and then is 

progressively reduced to a smaller size to iterate closer to the optimum value. 

Leaky LMS [1],[142] - This variation is addressed to systems with small wordlengths 

where round-off noise is fed back to adaptive weights and accumulates in time 

without bound leading to overflow. A small bias factor, b which is slightly less than 

one, is built in to bias each weight toward zero on each iteration counteracting the 

effect of noise build up: 

w(k+l) = bw(k)- 2µe(k)x(k) (2.10) 

Sign Error LMS [142] - The computation needed by the adaptive algorithm can be 

reduced to zero multiplications and N additions using only the sign of the error signal 

(and makingµ be a power of two): 

w(k+ 1) = w(k) - µsign [e(k)]x(k) (2.11) 

2.5.2 Recursive Least Square (RLS) Algorithm 

The quasi-Newton adaptive algorithm uses second order statistics to improve the 

convergence rate of an adaptive filter, via the Gauss-Newton method. Probably the 

best known quasi-Newton algorithm is the recursive least squares (RLS) algorithm. 

It is important to note that even with the improvement in convergence rate, the RLS 

algorithm requires great amounts of processing power, which can make it difficult to 

implement on real-time systems. 

There are a number of other quasi-Newton algorithms that have fast convergence 

rates, and that are also feasible alternatives for real time processing. See [1],[2] and 

[3] for more information. 
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That is, w(k) is filter coefficient vector and u(k) is input vector. Below are equations 

used for update of the filter coefficient vector. 

k - A-1P(k-l)X(k) 
g( )- I+ A,-ixr (k)P(k-l)X(k) 

(2.12) 

a(k) = d(k)-Wr (k)X(k) (2.13) 

W(k) = W(k- l) + g(k)a(k) (2.14) 

(2.15) 

The RLS algorithm can be summarized by above 4 equations. Those equations are 

used to update the filter coefficients. a(k) is the priori estimation error. Equation 

(2.14) describes the adaptive operation of the algorithm, whereby the tap-weight 

vector is updated by incrementing its old value by an amount equal to the a priori 

estimation error a(k) times the time-varying gain vector g(k). Equations (2.12) and 

(2.15) enable us to update the value of the gain vector itself. An important feature of 

the RLS algorithm described by these equations is that the inversion of the 

correlation matrix is replaced at each step by a simple scalar division. P(k) is the 

inverse of correlation matrix of input vector X(k). Fast versions of the recursive 

algorithms for FIR filters have been proposed in numerous papers 

[l],[7],[8],[12],[16]. 

One problem that exists with RLS algorithms is that they exhibits unstable 

performance [12]-[15]. The exponential divergence of numerical errors was 

demonstrated in [12] for one particular signal. Fmthennore, RLSs with forgetting 

also exhibit long time divergence under the impact of noise at the filter inputs [9]. 

Methods of avoiding instability have been proposed in [9],[12],[16],[17] but the 

stability problem of the adaptive filters have not been solved if there are some 

bounded input disturbances. 
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2.6 Adaptive Algorithms for Infinite Impulse Response 

Filters 

The IIR filter is known to have better modelling properties than the FIR filter due to 

its rational (pole-zero) form. In comparison with the FIR filter, the IIR filter is 

nonlinear in the parameters, and so the parameters must be found by a recursive 

process. This has been the subject of much recent ongoing research [18],[117],[118]. 

An aspect of particular interest recently is the determination of conditions under 

which the LMS error criterion will have a unique global minimum [119]. In the 

following discussion, a review is given of the current state of the art in adaptive IIR 

algorithms and their convergence properties. 

An off-line method of estimating the coefficient in an IIR filter was described by 

Steiglitz and McBride in 1965 [120]. This algorithm was analyzed by Stoica and 

Soderstrom, and an on-line version given [117]. 

Apparently the first recursive prediction error method (RPEM) for IIR adaptive 

filters was published in 1975 by White [125]. This method uses an mean square 

output error criterion and is based on finding the parameters which minimize the 

instantaneous squared error: the algorithm is described below. Consider first a direct 

form IIR filter described by 

N-1 N-1 

y(k) = ~)1 (k)x(k-i)+ ~:>1 (k)y(k-i) ' (2.16) 
1=0 1=1 

The filter may be expressed as 

(2.17) 

(2.18) 

(2.19) 

X(k) = [x(k), x(k- 1),···, x(k-N + l)f (2.20) 

- T Y(k)=[y(k-l),y(k-2),. · ·,y(k-N + 1)] (2.21) 
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(2.22) 

if.(k)=[y(k-l),y(k-2),-··,y(k-N+l),x(k), x(k 1),-··, x(k-N+l) Y (2.23) 

The algorithm developed by White uses the least mean-square error criterion 

e(k) = .!. E[e(k)]2 = .!. E[(d(k)- y(k))]2 

2 2 
(2.24) 

Since the true value e{k) is unknown, the coefficients are updated to minimize the 

1 
instantaneous estimate of the expected error, e( k) = - e( k) 2 

[ 18]. Hence the 
2 

parameters are updated according to 

ti() = -77(k)V 8 e(k) (2.25) 

where V 
9
e(k) = E[(d(k)- y(k)(- ay(k))] = -E[(d(k)-y(k) ay(k))] (2.26) ao ao 

Hence 

b, (k + 1) = b, (k) + 77e(k) aay(k) , 
b,(k) 

a,(k+l) =a,(k)+77e(k) ay(k) ' 
aa, (k) 

i = 0, 1, ... , N-1 

i = 1, ... , N-1 

where ay(k) =x(k-i)+ ~a (k)ay(k-m) 
ab, (k) m=I m ab, (k) 

ay(k) = y(k-i)+ ~a (k) ay(k-m) 
aa, (k) m=I m aa, (k) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

The simplifying assumption that b,(k-l)""b,(k-2)"" ... =b,(k-m), and 

a,(k-I)""a,(k-2)"" ... ==a,(k-m), gives the following equation (recursive in the partial 

derivatives) [18],[118]. 

oy(k) (k ') ~I (k) oy(k- m) 
---'--~=x -z +L..am 
ob,(k) m=I Ob,(k-m) 

= 1 
x(k - i) 

A(q-1) 

(2.31) 
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dy(k) =y(k-i)+ I:am(k) dy(k-m) 
da1(k) m=I da1(k-m) 

--
1
-y(k-i) 

- A(q-1) 

23 

(2.32) 

The filtering imposed by the _I_ term on the data is characteristic of the IIR filter 
A(q-1) 

algorithm. Since this filtering operation takes place for each element of the data 

vector, the amount of storage required is 0(2N2 -4N+ 2). this algorithm is also known 

as Stearns algorithm [117],[121]. 

White's algorithm requires a significant amount of storage, and so a simplified 

gradient algorithm requiring only one regressor filter was proposed by Hsia [137]. In 

this case, the gradient terms (regressors in the update equation), are filtered first (via 

the _l_) autoregressive filter) before being passed through the delays. Thus, the 
A(q-1) 

filter has ~ and ---2'.i!:L terms being delayed. This differs from White's 
A(q-1) A(q-1) 

algorithm where a separate filter is employed after each delay in the input and output 

of the model. Thus (2.31) and (2.32) are replaced by 

dy(k) = x(k)q-
1 

=x(k-i)+ Ia (k-i) dy(k-m) (2.33) 
db1(k) A(q-1) lk-i m=I 

/11 

db1(k-m) 

dy(k) = y(~?q-1 =y(k-i)+ Iam(k-i) dy(k-m) 
dal(k) A(q )lk-1 m=I dal(k-m) 

--
1
-y(k-i) 

- A(q-1) 

where A(q"1A-P is defined as 

N-1 

A(q-1) lk-p= q-p - ~>1 (q-1-p) 
1=1 

(2.34) 

(2.35) 

Hsia notes that the transient performance of the algorithm may be different to 

White's, due to the differences between B(k) and B(k-i),and this will be more 

pronounced for large i. The modified algorithm introduces by Hsia gives very similar 

result to White's algorithm in steady state, (but may deviate during the transient 
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phase of weight adaptation), with a significant reduction in memory requirements, 

and computational complexity. The storage for Hsia's algorithm is 0(3N-3), while 

the computational complexity is reduced from 0(2N2-4N+2) to O(N-1). 

Feintuch [122] presented a simplified version of the White's algorithm by 

approximating (2.31) and (2.32) as 

oy(k) = x(k- i) 
ab, (k) 

oy(k) = y(k-i) 
oa, (k) 

(2.36) 

(2.37) 

That is, ignores dependence on past data. It was shown that Feintuch's algorithm 

may not converge to any minimum on the mean square output error (MSOE) surface 

unless a strictly positive real (SPR) condition is satisfied [18],[123]. This algorithm 

is also known as a pseudo-linear regression (PLR) due to the fact that the nonlinear 

regression ignores the dependence on past parameters [18]. Another example of PLS 

is the extended least squares (ELS) algorithm discussed in [124]. 

Instrumental variable methods are not influenced by a multimodel error surface 

because the algorithm is not minimizing the instantaneous error. In a prediction error 

model (PEM) the noise is modelled, as opposed to an OEM model [126]. IVM and 

PEM tend to result in more accurate models than the OEM. The OEM can be 

regarded as a deterministic model in the sense that noise is not modelled. Friedlander 

presented a recursive maximum likelihood (RML) algorithm for IIR filter in [ 129]. 

The algorithm is not based on gradient descent, but rather depends on a least-squares 

solution. A signal model is used indirectly to estimate the filter coefficients. 

Fan and Jenkins introduced a set of algorithms for the IIR filter which are based on 

the Steglitiz-McBride method [117]. An important point t<:> note with these 

algorithms, is that they do not minimize the MSOE, and consequently are not 

affected by local minima in the surface [127]. A convergence proof for a version of 

he algorithm using stochastic methods, and relating it to an associated ordinary 

differential equation (ODE) [124], was presented in [128]. 
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Johnson developed IIR adaptive algorithm by considering the coefficient update 

procedure as a linear system with time-varying nonlinear feedback [130],[131]. This 

algorithm is known as the hyperstable adaptive recursive filter (HARF) since 

hyperstability theory was applied to derive the weight update equations. Previously 

this had been used on time-varying nonlinear control systems [132]. A linear time-

invariant system G(q) = D(q) is hyperstable, if for any input x(k), and outputy(k) 
C(q) 

'V K (k = 0) (2.38) 

This implies that the system is bounded for any input x(k). 

The HARF algorithm is dependent on an auxiliary model of the UR filter given by 

N-1 N-1 

f (k) =La, (k + l)f(k- i) + ~), (k + l)x(k- i) 
1=1 r=O 

The actual filter output is given by 

N-1 N-1 

y(k) =:La, (k)f(k-i)+ :Lb, (k)x(k-i) 
1=1 1=0 

The update equations are updated according to 

a, (k + 1) =a, (k) + µ, (k) f(k-i)v(k) 
p(k+l) 

b,(k+l)=b,(k)+ v,(k) f(k-i)v(k) 
p(k+l) 

l~i~N-l 

O~i~N-l 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

where µ1 and Vi are positive constants, p(k) is a normalization factor given by 

N-1 N-1 • 

p(k) = 1 + Lµhf 2 (k-h) + :Lvhx2 (k-h) (2.43) 
1=1 1=0 

and the regression signal v(t) is given by 

M 

v(k) = (d(k)- y(k)) +:Ls, (d(k-1)- f(k-1)) (2.44) 
/=I 

The constants M, and s1 are chosen so that G(q) is strictly positive real (SPR), where 
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1 ""M ( -/) 
G(q) = + L..1=1S1 q 

l - ""N-1 ( -/) 
L..1=1 a1 q 

(2.45) 

The SPR condition must hold for a system to be hyperstable, which implies [ 131]: 

Re[H(q)] > 0 q=e'(J (2.46) 
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Larimore et al developed a simplified HARF (SHARF) algorithm which is 

convergent for slow rates of adaptation [131]. The SHARF algorithm is equivalent to 

a filtered error algorithm [18]., and is derived by noting that when the learning rates 

µ,and v, are small, a(k+ 1) ::::: a(k), b(k+ 1) ::::: b(k), andf(k) ::::: d(k). Thus, the auxiliary 

process in (2.39) is no longer required. The regressor v(k) can be simplified to 

M 

v(k) = (d(k)- y(k)) +Is, (d(k-1)- y(k-1)) 
1=1 

(2.47) 
M 

= e(k)+ Ld1e(k-1) 
1=1 

The update equations for the weights are 

a, (k + 1) =a, (k) + µ
1 
v(k)d(k- i) (2.48) 

b, (k + 1) = b, (k) + v, v(k)x(k-i) (2.49) 

It can be seen that these update equations are the same as Feintuch's algorithm when 

M=O. 

Convergence for the SHARF algorithm will occur provided learning rates are small, 

and the SPR condition holds for ( [131] ): 

G( )- 1 
q - ""N-1 -/ 

1- L..1=1 a1 (q ) 
(2.50) 

White's algorithm is classified as a recursive predicted method (RPEM) which has a 

filtered regression vector, while HARF, SHARF, and Feintuch's algorithm are 

classed as pseudolinear regression (PLR) algorithm since the filtered regression 

vector is simplified to be the data vector [124] 

The recursive maximum likelihood (RML) and other algorithms are presented in the 

unified framework by Ljung · in [124]. Friedlander observed poor learning 
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performance of the recursive maximum likelihood estimator when modeling 

ARMAX systems given by 

B( -1) C( -1) 
y(k) =-q-u(k)+-q-v(k) 

A(q-1) A(q-1) 
(2.51) 

where the roots of the C(q-1
) polynomial are near the unit circle, where u(k) is the 

input, and v(k) is a sequence of independent random values. 

Friedlander proposed an improvement to RML methods in [134], where a prefilter is 

used, which pulls the roots further into the unit circle. Friedlander conjectured that 

the use of a prefilter which pulled the roots closer to the origin would reduce the 

response time of the parameter changes to prediction errors, hence resulting in faster 

convergence times. Simulation results confirmed this. 

Murali and Rao, applied this prefiltering scheme to Hsia's modified gradient 

algorithms [122],[135]. Similar improvements in performance were observed in this 

case also. The algorithm is modified by replacing A(q-1
) with D(q-1

) where 

(2.52) 

N 

=1- ~:>1 (k)(cq-') O~c~l (2.53) 

where c is a pulling factor. As c decreases, the roots of A(q-1) move radially inwards 

towards the origin [134]. 

Ljung gave results for the convergence of algorithms of this type [136] which 

depends on the SPR condition of the transfer function 

(2.54) 

where £1.(q-1
) is the polynomial of true parameters and determines the convergence of 

the algorithm. 
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2.6.1 Convergence and Error Surface of Adaptive Im filters 

Analysis of these algorithms in terms of convergence and transient performance is 

important in order to obtain an understanding of its behaviour. It is normally desired 

to do this theoretically, although simulations are also useful to obtain an indication of 

the practical performance. This is particularly true for algorithms with complex 

behaviour. 

Ljung has given a convergence analysis of a general recursive algorithm using the 

ODE method [124]. An important assumption that is used in his work that does not 

apply in the above algorithms is the assumption of decreasing gain. This implies that 

the convergence analyses performed by Ljung are not directly applicable here, unless 

the gains are made to approach zero. This is not desired from a real-time system 

identification point of view, because the unknown system may be time-varying, and 

therefore the algorithm should be able to track these parameter variations. 

Other convergence methods have been proposed, Including using Lyapunov 

functions [124], local linearization [2]. 

A number of researchers considered the mean square output error (MSOE) surface 

of the RPEM model, that is 

y(k) = ~~~~:~ x(k) (2.56) 

is the model, where no noise is considered, as in the prediction error model (PEM) 

[133]. 

Stearns was responsible for initially conjecturing that the error surface of an IIR filter 

would be unimodal, if the model order was sufficient, and it was fed with a white 

noise input. 

Parikth and Ahmed studied the convergence properties of Steam's algorithm. They 

showed that it converged to a local or global minimum mean-square-error value, 

depending on the initial weight values [121]. A sequential regression algorithm 
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which uses correlation information was introduced by Parikh and Ahmed and was 

observed to converge to a global minimum whereas Steam's algorithm did not [139]. 

Soderstrom and Stoica in [126] proved this for the condition that nAb ~ n. - I and the 

input is white. This was showed to be false for filters of order higher than two, ie. na 

> 2, by Fan and Nayeri [119], while for orders less than or equal to two, the 

conjecture holds regardless of whether the condition imposed by Soderstrom and 

Stoica is met. For filters of higher order, Fan and Nayeri showed that Stearns 

conjecture does not hold (that is, the surface may not be unimodal), ifthe conditions 

of Soderstrom and Stoica are not met. Note that the condition is sufficient condition 

for uniqueness of the MSOE estimate, and hence the unimodality of the MSOE 

surface for an exact order model. 

In the case where the MSOE is multimodal, convergence to a global minimum using 

gradient descent methods is not guaranteed. In this case, the starting point for the 

weights determines the convergence point of the algorithm. Other algorithms of 

reaching the global minimum have been devised which do not depend on the MSOE 

surface, and therefore it makes no difference whether the surface is multimoadel or 

not. Soderstrom and Stoica in [127] noted that because the Steiglitz-McBride Method 

(SMM) and Instrumental Variable Method (IVM) are not minimizing the MSOE, 

multimodality of the MSOE surface should not cause difficulties with either of these 

methods. Interesting results however, were shown by Fan and Nayeri on the 

convergence of the SMM, which may converge along the path of global minimum, 

but may abruptly move to converge to a different minimum point. 

An IIR algorithm which uses prefiltering to achieve convergence to the global 

minimum was developed by Fan and Jenkins [138]. This algorithm is based on the 

SMM, and a convergence proof for the algorithm was given in [117]. 

Ljung proved the convergence of a general model encompassing the model used by 

White [141] using the ODE method [124]. This approach is based on formulating a 

differential equation for recursive update equation and examining the solution 

trajectories. The difference between Ljung's algorithm and that proposed by White, 

is that Ljung used a decreasing gain, whereas White used a fixed gain. 
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2.6.2 Stability of IIR Filter 

Stability is a problem for adaptive IIR systems, since, during adaptation, if one of the 

poles of the characteristic equation A(q-1
) = 0 moves outside the unit circle, the filter 

becomes unstable. A number of methods exist to overcome these stability problems 

in IIR filters. The following stability tests are outlined in [ 18], and are described 

below. 

For low order systems, the test LI a, I< 1 will indicate whether a filter is stable. The 

problem with this method is that it is too restrictive, since clearly it will give false 

indications of instability. The modified Schur-Cohn test [140], indicates the presence 

of unstable poles without the restrictions above. It does not show which coefficients 

are responsible for the unstable pole, the polynomial needs to be factored to discover 

this. These are several methods of removing unstable poles. The first is to ignore the 

previous update step, and carry on. This may work, but there is the problem that if 

may become stuck in some way [118]. 

Another method is to factorize the A(q-1
) polynomial and use a projection method, 

the projection method involves computing the pole of the characteristic equation at 

each update, and if they fall outside the unit circle, to project them inside the unit 

circle. Performing this operation does not guarantee convergence to the desired 

parameter value, neither is there a proof that the projection will only be needed 

finitely many times [118]. A modification of this technique is to reduce the update 

step size until new parameter estimates do not become unstable [ 118]. 



Chapter 2: Adaptive Filtering 31 

2.7 Conclusion 

It is clear that there is a significant number of adaptive algorithms for FIR and IIR 

adaptive filtering. This chapter has considered the linear models and their associated 

algorithms. We have discussed several adaptive algorithms for FIR filter and their 

problems. At the same time, we have also explored there are more problems for IIR 

filter including the convergence to local minima and the filter stability. As shown, 

analysis of adaptive IIR algorithms is the subject of continuing research, aimed at 

establishing results for conditions of convergence and stability. In summary, a new 

adaptive algorithm that is less computational expensive, and numerically robust with 

high rate of convergence, high stability, fast tracking and robustness to additive noise 

properties is desired for many applications. 

Although linear models perform well in adaptive filtering including system 

identification provided the basic assumptions about the system or signal are met. If a 

system or signal has nonlinear characteristics, then poor performance may be 

expected. Due to this reason, several new schemes which are based on nonlinear 

models will be presented in the later chapters of this thesis. 





Chapter 3: Lyapunov Theory-based Adaptive Filtering 32 

Chapter3 

Lyapunov Theory-based Adaptive Filtering 

3.1 Introduction 

Adaptive filtering has a wide variety of applications in adaptive control, high

resolution spectrum estimation, echo cancellation and channel equalization, system 

identification in general, adaptive differential encoding, interference suppression, 

adaptive deconvolution, biomedical signal processing, automatic process fault 

diagnosis, and many other fields [1]-[6]. The adaptive filtering problem has been 

described in Chapter 2. One of the simplest class of filter structure is linear filters 

with a finite impulse response (FIR). A typical FIR filter implemented in transversal 

structure is depicted in the Chapter 2. 

There are two widely employed adaptive algorithms for FIR filter: Least mean 

square (LMS) [l]-[3] and Recursive least squares (RLS) algorithms [1]-[3]. The 

LMS [1]-[3] algorithms attempt to minimize a quadratic performance function by 

employing a stochastic gradient technique. This technique involves an instantaneous 

estimate of the gradient. The convergence of LMS algorithm is strongly dependent 

on the spectral characteristic of the input signal. The requirement of convergence 

imposes a bound on the gain of the LMS and this bound depends on the eigen-value 

spread of the autocorrelation matrix of the input signal. In practice, the use of LMS is 

wide-spread due to its computational simplicity. 

Recursive least squares (RLS) algorithm [1]-[3] is another much-studied algorithm 

for FIR filters. This algorithm also assumes the use of a transversal filter as the 
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structure basis of the adaptive filter. The advantages of RLS over LMS in aspects 

such as tracking behavior and fast convergence are well known. It can be shown [1] 

that the convergence behavior of the RLS is independent of the spectral 

characteristics of the input signal. On of the drawback of RLS algorithm is its high 

computat10nal complexity. For computational simplicity, various famous 

modification ofRLS algorithms for adaptive filtering have been developed in [1],[7]

[16]. Some fast RLSs have been introduced that circumvent the computational 

burden of the Riccati equation in the conventional RLS. There are two families of 

such fast algorithms, corresponding to two possible filter structures: the fast lattice 

algorithms (FLA) [1],[12],[16] and the fast transversal filter (FTF) or fast recursive 

least square (FRLS) algorithms [1],[7],[8]. Note that different RLS algorithms (in 

transversal filter form) only differ in the way they compute a certain quantity often 

called the adaptation gain in general. 

Although RLS algorithms exhibit fast convergence properties, they exhibit unstable 

performance [12]-[15]. The exponential divergence of numerical errors was 

demonstrated in [12] for one particular signal. Authors in [12] also reported the 

weighting parameter sensitive divergence on algorithm's long term. By the over

weighting of recent data at filter input, this parameter introduces algorithm's 

'forgetting' that, when once set and kept as a constant during algorithm's run, can be 

regarding as a 'blind forgetting' case. Furthermore, RLSs with forgetting also exhibit 

long time divergence under the impact of noise at the filter inputs [9]. Methods of 

avoiding instability have been proposed in [9],[12],[16],[l 7] but the stability problem 

of the adaptive filters have not been solved if there are some bounded input 

disturbances. 

Another realization of adaptive linear filter is infinite impulse response (IIR) filter. 

The IIR filter can provide significantly better performance than FIR filter having the 

same number of coefficients. This is a consequence of the output feedback that 

generates an infinite impulse response with only a finite number of parameters. 

Fundamentally, there have been two approaches to adaptive IIR filtering: equation 

error and output error methods. One major drawback of the output error method is 

that the performance surface might not be hyper-paraboloid and thus has local 

minima to which the algorithm can converge. Different adaptive algorithms [1]-
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[3],[18] based on the gradient search techniques in the adaptive IIR filter. However, 

after the cost function of the error is selected, the surface of the cost function in the 

parameter space is fixed. The search of the optimum parameters in the parameter 

space may stop at some local minimum because of the arbitrary initial condition of 

system states. Another disadvantage of IIR system is that the adaptive IIR filters 

have time varying poles and zeros, and the stability of the adaptive IIR filters using 

gradient search techniques may not be guaranteed. Furthermore, if the disturbances 

are random signals, the mathematics of stochastic processes must be used for the 

optimization and parameter design. 

While the adaptive filters are widely used for signal processing, the aforementioned 

convergence, stability, complexity and local minimum problems have been observed. 

To overcome these problems, a new adaptive filtering technique called Lyapunov 

Theory-based Adaptive Filtering (LAF) [19] is presented in this chapter. It is shown 

in [19] that a Lyapunov function of the error between the desired signal and the filter 

output is defined, the weights of the filter are then adaptively adjusted based on 

Lyapunov stability theory so that the error can asymptotically converge to zero. 

Unlike many adaptive filtering schemes using gradient search in the parameter space, 

the selected Lyapunov function for a Lyapunov filter has a unique global minimum 

in the state space. By properly choosing the parameter update law in Lyapunov 

sense, the output of the adaptive filter can asymptotically converge to the desired 

reference signal. Therefore, the local minima problem occurred in the gradient 

search-based adaptive filters can be avoided. Although the input signal of the 

adaptive filter is disturbed by the bounded random noises, only the input and the 

output measurements are used for the design of the Lyapunov filters. Therefore, the 

design of Lyapunov adaptive filters is independent of the stochastic properties of the 

random input disturbances. In addition, because the error dynamics of Lyapunov 

filters asymptotically converges to zero, the stability of both Lyapunov adaptive FIR 

and UR filters is guaranteed. It can be seen from the above discussion that Lyapunov 

stability theory provides an optimization method in the state space for the design of 

adaptive filters. 

In this chapter, we have further investigated the LAF filters by exploring the 

convergence rate of the error between the desired reference signal and the output of 
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the Lyapunov filter. We have discussed the convergence region of the error for the 

modified Lyapunov filter in order to avoid the singularities. These convergence 

properties are very useful to evaluate the performance of Lyapunov adaptive filters 

and to design the adaptive laws for practical application. A few simulation examples 

are performed to demonstrate the robustness and effectiveness of the Lyapunov FIR 

and IIR filters compared with a few gradient search-based adaptive filters. 

The chapter is organized as follows. In section 3.2, the adaptive filtering strategy 

using Lyapunov stability theory [19) is presented. In section 3.3, the design of the 

Lyapunov theory-based adaptive filtering (LAF) is presented. The convergence rate 

of the Lyapunov filters is analyzed, and the convergence region of the modified 

Lyapunov adaptive filter to avoid the singularities is obtained. These analyses are 

presented in section 3.4. Section 3.5 extends the idea of LAF to IIR filters In section 

3.6, simulation results are presented to show the good performance of the Lyapunov 

adaptive FIR and IIR filters. 

3.2 Lyapunov Theory-based Adaptive Filtering (LAF) for 

FIR Filter 

Unlike many adaptive filtering schemes using gradient search in the parameter space, 

the presented LAF algorithm uses a Lyapunov function V(k), which is positive 

definite, with a unique global minimum in the state space [19). By properly choosing 

the parameter update law in the sense that L'.IV(k) = V(k) - V(k-1) is negative, the 

output of the adaptive filter can asymptotically converge to the desired reference 

signal according to Lyapunov stability theory [20). Therefore, the local minima 

problem that occurs in the gradient search-based adaptive filters is avoided and the 

stability of the error dynamics are guaranteed at the same time. 

The basic principle of the LAF filtering can be briefly introduced as follows. If the 

adaptive filter 1s implemented using FIR structure, it can be considered as moving 

average or MA model, in which the filter has only zeros, characterized by the 

difference equation 
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N-1 
y(k) = "[,h

1 
(k)x(k-i) 

i=-0 

The difference equation in (3 .1) can be rewritten in vector form as 

y(k) = HT (k)X(k) 

where H(k) = [h0 (k), h1 (k), ... , hN-I (k)Y 

X(k) = [x(k), x(k- 1), ... , x(k-N+ 1)] r 
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(3.1) 

(3.2) 

X(k) is the input signal vector of the filter, which has been disturbed by the 

nonlinearity of the communication channel and noises. The y(k) is the output of the 

filter, and d(k), the desired response, is provided for the output of the filter to follow. 

The e(k) is the error between the desired reference signal d(k) and the output of the 

filter y(k). 

e(k) == d(k) - y(k) (3.3) 

The filter coefficient vector update equation is similar to RLS algorithm 

H(k) = H(k- 1) + g(k)a(k) (3.4) 

where g(k) is the adaptation gain and a(k) is the a priori estimation error defined as 

a(k)== d(k) - Hr (k-l)X(k) (3.5) 

The adaptation gain g(k) in (3.4) is adaptively adjusted using Lyapunov stability 

theory as (3.6) so that the error in (3.3) asymptotically converges to zero. 

k _ X(k) (i-x.-le(k-l)IJ 
g( )- II X(k) 11 2 I a(k) I (3.6) 

where 0 :::; K < 1. The circumstantial derivation and design of the LAF algorithm will 

be presented in next section 
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3.3 Design Of Lyapunov Theory-based Adaptive Filtering 

Algorithm Using Lyapunov Stability Theory 

The design of the Lyapunov FIR filter is described in the following theorem [19]: 

Theorem 3.1: For the given desired response d(k), if the weight vector H(k) of the 

filter y(k) = Hr (k)X(k) is updated as follows 

H(k) = H(k - 1) + g(k)a(k) (3.7) 

and k _ X(k) (l-Kle(k-1)1) 
g( ) - II X(k) 11 2 I a(k) I 

(3.8) 

where g(k) is the adaptation gain, a(k) is the a priori estimation error defined as 

a(k)= d(k) - Hr (k-l)X(k) 

and o:::;T<<l, 

then the error e(k) = d(k) - y(k) asymptotically converges to zero. 

Proof: Define a Lyapunov function 

V(k) = e2 (k) 

Then, we have !:.V(k) = V(k)- V(k-1) 

=e 2 (k)-e 2 (k-l) 

=(d(k)-HT(k)X(k)) 2 -e2 (k-l) 

=(d(k)-(HT (k-1) + gT (k)a(k))X(k)) 2 -e2 (k-1) 

=(d(k)-HT (k-l)X(k)- gT (k)a(k)X(k)) 2 -e2 (k-1) 

= (a ( k) - g T ( k )a ( k) X ( k )) 2 
- e 2 

( k - 1) 

Using the expressions (3.8) and (3.9) in the expression (3.12), we have 

(3.9) 

(3.10) 

(3 .11) 

(3.12) 
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LiV(k) = -(1- K 2 )e 2 (k -1) < 0 (3.13) 

According to Lyapunov stability theory [20], the error e(k) will asymptotically 

converge to zero. 

Remark 3.1: In order to avoid the singularities of the adaptive gain g(k) in the 

expression (3.8) when //X(k)// and a(k) approach zero, the following modified 

adaptive law was proposed: 

k _ X(k) (l K le(k-l)I) 
g( ) - A-,+ II X(k) 11 2 

- A2 +I a(k) I 
(3.14) 

where A.1, A.2 are small positive numbers and 0 ~ K <l. 

Remark 3.2: Section 3.3 has provided only a basic idea of the Lyapunov filtering. 

Many problems, such as the analysis of convergence rate for the adaptive filtering 

system in Theorem 3.1 and the convergence region of the adaptive filter using the 

modified adaptive gain in (3.14) have not been investigated. In the following section 

we will explore these important properties of the Lyapunov filtering systems in 

detail. 
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3.4 Convergence Analysis of Lyapunov Adaptive Filters 

The convergence rate of the Lyapunov filters is analyzed in this section. The 

convergence region of the modified Lyapunov adaptive filter to avoid the 

singularities is also presented. 

Theorem 3.2: Consider the FIR filtering system in (3.2). If the Lyapunov updated 

law in (3.7) - (3.9) is used to update the filter parameters, the error e(k) between the 

desired reference signal d(k) and the filter output y(k) can converge to zero 

exponentially. 

Proof: Using (3.3), (3.7)- (3.9), the error e(k) can be expressed as 

e(k) = d(k)- y(k) 

= d(k)-Hr(k)X(k) 

= d(k)- [Hr (k -1) +gr (k)a(k)]x(k) 

= d(k)- Hr (k - l)X(k)- gr (k)a(k)X(k) 

= a(k) - gr (k)a(k)X(k) 

= a(k)- xr (k) (1- K I e(k -1) l)a(k)X(k) 
II X(k) 11

2 
I a(k) I 

= a(k) -(1- K I e(k -1) l)a(k) 
I a(k) I 

= K a(k) I e(k -1) I 
I a(k) I 

= K I e(k- l) I sgn(a(k)) 

:. I e(k) I= 1( I e(k - 1) I 

I e(l) I = 1( I e(O) I 

I e(2) I=]( I e(l) I= K
2 I e(O) I 

(3.15) 
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I e(k) I = Kk I e(O) I (3.16) 

Remark 3.3: The expression (3.16) shows that the error e(k) converges to zero 

exponentially and the convergence rate is controlled by the positive constant K. The 

smaller K is, the faster the error converges. 

Theorem 3.3: Consider the FIR filter system in (3.2). If the filter parameters are 

updated according to the following modified adaptive law: 

H(k) = H(k - 1) + g(k)a(k) (3.17) 

(k) _ X(k) (l-K I e(k-1) I J 
g - 1li+llX(k)ll2 A.2 +la(k)[ 

(3.18) 

a(k)= d(k) - Hr (k-l)X(k) (3.19) 

where Ai, A.2 are small positive numbers and 0 ::; K < 1, then the error e(k) will 

converge to the ball at the origm of the error space with the radius 

(3.20) 

where X" is a constant discussed later. 

Proof: Define a Lyapunov function 

V(k) = e2 (k) (3.21) 

We then have 

L1V(k) = V(k)- V(k-1) 
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(3.22) 

where llX(k)ll2 <I and la(k)l<l 
A.1 A.2 

(3.23) 

Then, the following equations are obtained by using Taylor series. 

11x(k)11' 
..i, =II X(k) II'+ 0 (11 X(k) II') 

l+llX(k)ll' A., A., 

(3.24) 

A., 

and (3.25) 

where 

II X(k) II' < lx.!_= .!_ 
A- 1+llX(k)[l 2 2 2 

(3.26) 

and \o(I a(k) 1)\-1 A., 1 I a(k) II- I a(k) I' 
-A.-,- - A.,+la(k)I- +-A.,-- A.,(A.,+la(k)i) 

la(k)I ~Ix.!_=.!_ 
(A.,+la(k)i) 2 2 

(3.27) 

Then expression (3.22) can be written as 
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t-. V(k) 

= a2 (k{I -(II x~~) 11
2 
+ o( II X~) 11

2
) J( 1 _ /(I e~2 -1) I ( 1 _I ai~) I+ o(' ai~) 1) J J r 

-e 2 (k-1) 

= a2 (k)[l -( 11 x (k) 11 2 + o( 11x(k)112 )J(1 _ /(I e(k - 1) I+ /(I e(k - 1) 11 a(k) I 
A-, A-, A-2 A-2 

_ 1(1eck-1)1 0(1ai~)1)Jr-e2ck-I) 

= a 2 (k >[1 _ 11 x (k) 11 2 + /( 11 x (k) 11 2 I e(k -1) I _ /( 11 x (k) 11 2 I e(k - 1) 11 a(k) I 
A., A., A-2 A, A2 2 

+ /( II x Ck) 11 2 I e(k - 1) I o( I a(k) IJ- o( 11 x (k) 11 2 J + /( I e(k - 1) I o( 11 x (k) 11 2 J 
A, A2 A2 A, A2 A1 

_/(I e(k -1~ II a(k) I 0 (11X(k)112 J +/(I e(k -1) I o(ll X(k) 11 2 Jo(I a(k) IJ]
2 

A1 A, A2 A1 A2 
-e 2 (k-1) 

:5: a1(k)[l + K II X(k) 11 21 e(k -1) I+ K II X(k) 11 21 e(k-1) I o(I a(k) 1) 
A1 A2 A1 A2 A1 

_ 0(11X(k)112 J + K I e(k -1) I o(ll X(k) 11 2 )- K I e(k -1~ II a(k) I o(ll X(k) 11 2 J 
A1 A2 A1 A2 A1 

+ K I e(k -1) I o(ll X(k) 11
2 
Jo(I a(k) 1)]

2 

_ e1 (k - l) 
A2 A, A2 

It is noted that 

~V(k) < A-/[1+ K I e(k-1) I+ Kl e(k-1) I+_.!_+ Kl e(k-1) I 
A-2 2A-2 2 2-1 2 

+ KA1 I e(k -1) I K I e(k-1) 1]
2 

2 
2

,1, + -e (k-1) 
2 4,1,2 

= 1t/[f+K1~~2-l)lc2+1+1+/t1+±>T-e2(k-l) 

= 1t/[f+K1~~2-1)1(4±+1t,)r-e2(k-l) 

(3.28) 

(3.29) 
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andLet - I 
A.=4-+A., 

2 

!::.V(k)< ..i/[2-+ K:f le(k-1)1]

2 

-e 2 (k-l) 
2 2 A, 2 

(3.30) 

=A-/[~+ 3
K:f le(k-l)l+K

2
:f2

2 
le 2(k-l)l]

2 

-e 2(k-l) 
4 2A-2 4A,2 

= -[I - K 24;:2 } 2 ( k - I) + 3 KA2 2 :f I e ( k - I) I + : A,/ 

For the further analysis, we consider the following parabolic function: 

[ 

-2 l -- K
2 A. 2 3K2 2 A. 9 2 

!:i.V(k) =- 1--- e (k-1)+--je(k-l)j+-A.2 4 2 4 

If K: is small enough in the sense that, 

K2I2 

--<1 
4 

KA 
or--< I 

2 

!:i.V(k) in the expression (3.32) is a concave down parabolic function. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

43 

Also, for the given A, and A.2 , the small positive number K satisfies the following 

inequality 

(3.35) 

Solving the quadratic equation ~V(k) = 0, we obtain the two roots as follow: 

r, 1.2 
(3.36) 

The root re1 is considered because I e(k-1) I~ 0 



/ 

Chapter 3. Lyapunov Theorv-based Adaptive Filtering 44 

r. i 
(3.37) 

Therefore, the error le(k-1)1 should satisfy the following equality 

I e(k-1) I> YeJ (3.38) 

in order to make t:,. V ( k) < t:,. V ( k) < o . Then the error will converge to the ball center 

at the origin of the error space with radius re1 in the expression (3.20). 

Remark 3.4: It is seen, from the introduction and the analysis of the error 

convergence properties in the above, that only the input and output measurements are 

used for the design of the Lyapunov adaptive filters. Hence the stochastic properties 

of the signals do not affect the performance of the filters. The main reason is that the 

optimization technique used here is based on the Lyapunov stability theory and is not 

based on the gradient search techniques. It is known that the gradient search-based 

optimization is indeed affected by the stochastic properties of the signals. In our 

approach, if the input disturbances are bounded random processes, the adaptive 

filtering algonthm can be directly designed using the input and output measurements 

based on the Lyapunov stability theory without considering the stochastic properties 

of the signals. This point is similar to the design of Lyapunov stability based 

adaptive control systems and variable structure control systems [20]. 

Remark 3.5: The Lyapunov stability theory used for the design of adaptive filters in 

this chapter provides an optimization method in state space. However, it is different 

from the gradient search based methods. According to Lyapunov stability theory, the 

selected V(k) is a Lyapunov function if and only is LIV(k) is negative (LIV(k) < 0). 

For the Lyapunov adaptive filtering system in this chapter, whether or not LIV(k) is 

negative depends on the selection of the parameter updated law. Only when the 

parameter update Jaw of the filtering system is chosen in Lyapunov sense, is V(k) a 

Lyapunov function of the designed adaptive filtering system, which has a unique 

global minimum. Therefore, the selection of the Lyapunov function and the 

parameter updated law are not independent, the proper selection of the parameter 
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updated law can guarantee that function V(k) is a Lyapunov function of the adaptive 

filtering system with a unique global minimum in the state space. 

On the other hand, the cost function of a gradient search-based adaptive filtering 

system has a fixed structure in the parameter space after the expression of the cost 

function is chosen. The parameter update law is only a means to search for the global 

minimum. The parameter update law is independent of the cost function in the 

parameter space. 

Remark 3.6: Although the cost function and the Lyapunov function have many 

different characteristics, they are all energy-like functions. One is considered in the 

state space, and another in the parameter space. The corresponding optimization 

methods can be used to design adaptive filters with different requirements. 

3.5 Computational Complexity Analysis of LAF 

Computational complexity is another essential quantity to measure the effectiveness 

of an adaptive algorithm. The LMS algorithms have a complexity which is typically 

close to L multiplies per weight vector update (Lis the filter order). RLS techniques 

have a complexity that is proportional to L2
. The complexity of the presented LAF is 

analysed as follow: 

Multiplies Divides Adds Substrates 

a(k)= d(k) - Hr (k-l)X(k) L 1 

k X(k) (i le(k-l)IJ 2L+l L+l 1 
g( )=llX(k)ll 2 -K la(k)I 

or 

k _ X(k) (i K I e(k-1) I J 
g( )- A,+llX(k)il 2 

- A.z+la(k)\ 2L+l L+l 2 1 

H(k) = H(k- 1) + g(k)a(k) L L 

e(k) = d(k) - Hr (k)X(k) L 1 
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From the above analysis, the LAF algorithm has the computational complexity that is 

about 5L multiplies per weight vector update (oc L). Hence the computational 

requirement ofLAF (oc L) is lower than that ofRLS (oc L2
). For large filter orders, 

the adaptive algorithms that have higher computat10nal complexity can give 

difficulty in real-time implementation. Therefore, computational complexity is an 

important quantity to measure the effectiveness of an adaptive algorithm. 

3.6 Lyapunov Theory-based Adaptive Filtering (LAF) for 

IIR Filter 

Over the last several years, adaptive infinite impulse response (IIR) filtering has been 

an active area of research and it has been considered for a variety of problems in 

signal processing and communication. An adaptive IIR filter can provide 

significantly better performance than an adaptive FIR filter having the same number 

of coefficients. This is a consequence of the output feedback that generates an 

infinite impulse response with only a finite number of parameters. A desired 

response or, equivalently, its frequency response can be approximated more 

effectively by the output of a filter that has both poles and zeros compared to FIR 

that has only zeros. For example, an IIR filter with sufficient order can exactly model 

an unknown pole-zero system, whereas the FIR filter can only approximate such a 

system. Alternatively, to achieve a specified level of performance, an IIR filter 

generally requires considerably fewer coefficients than the corresponding FIR filter. 

But this has to be offset by the fact that the stability of an IIR filter can no longer be 

guaranteed. Furthermore, this also requires the expense of increased estimation 

complexity involving RLS type estimators [9],[12],[16],[17]. A full discussion of 

these properties, including methods for monitoring the parameter updates and 

resetting any unstable effects, is available in the literature [1]. 

Basically, there are two approaches to adaptive IIR filtering that correspond to 

different formulations of the error. Tliese are known as equation error and output 

error methods [18]. One of drawbacks of the output error IIR method is that unlike 

the adaptive FIR, the performance surface is not hyper-paraboloid and has local 

minima to which the algorithm can converge. If the performance criterion is based on 
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the equation error formulation then the performance surface is a hyper-paraboloid, 

but this approach can lead to the global minimum is biased away from the optimal 

solution in the presence of noise and produce erroneous solutions [18]. Another 

disadvantage of any adaptive IIR system is that if the poles move outside the unit 

circle, the IIR filter itself will become unstable in addition to the normal stability 

concerns for the adaptive algorithms such as the step size for gradient based adaptive 

algorithms. Although different approaches have been suggested to monitor the 

system poles or to use a different structure, e.g. parallel structures [21], cascade 

structures [22] or lattice structures [23],[24], additional computational complexity is 

introduced. 

The IIR filter can implemented using a pole-zero structure or ARMA-output error 

(autoregressive moving average) model that allows regressed input output term. It 

can be characterized by the difference equation (3.39) 

N-1 N-1 

y(k) = z), (k)x(k-i)+ Ia, (k)y(k-i) (3.39) 
•=I 

The recursive difference equation in (3.39) can be rewritten as 

(3.40) 

(3.41) 

B(k) = [b0 (k),b1 (k),-··,bN-I (kff (3.42) 

X(k) =[x(k), x(k - l), 00
·, x(k-N + l)f (3.43) 

Y(k)=[y(k-l),y(k-2),-··,y(k-N+l)f (3.44) 

X(k)=[x(k), x(k- I),-··, x(k-N+I),y(k-I),y(k-2),-··,y(k-N+I)f (3.46) 
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Remark 3. 7: The design principle of the Lyapunov filtering given in theorem 3 .1 can 

also be implemented ify(k), H(k) andX(k) are specified by (3.40), (3.44) and (3.45). 

It is easy to prove that, for IIR filtering system in (3.40), the error can also 

exponentially converge to zero if the adaptive law in (3.7}-(3.9) is used with 

specifiedy(k), H(k), andX(k) in (3.40), (3.44) and (3.45), respectively. 

Remark 3.8: The stability of the error dynamics between the desired reference signal 

d(k) and the filter output can be guaranteed based on the Lyapunov stability theory 

[20]. This indicates that the normal stability concerns for the adaptive algorithm is 

guaranteed by the Lyapunov Stability Theory. However, the stability of the overall 

system is only assured if the unknown system itself is stable if operating in system 

identification. 

Remark 3.9: Adaptive algorithms based on the output-error formulation are 

generally more complicated than those based on the equation error, but they do not 

lead to biased solutions. However, they may converge to a local minimum of the 

MSOE (mean square output error) surface [18] because the MSOE surface generally 

is not a paraboloid and it can have local minima. In addition, the initial conditions for 

X(k) can also influence to which minimum the algorithm will converge. It is 

obviously desirable that X(O) is near or lies on a trajectory to the global minimum. 

Design of an adaptive IIR filter using Lyapunov theory provides a viable solution to 

the sub-optimal problem. As mentioned before, unlike the gradient-descent method 

that searches for the minimum of MSOE, Lyapunov method does not perform 

searching in the error surface. The performance criterion is the Lyapunov function, 

V(k)=e2 which is a quadratic function with a single global minimum. According to 

Lyapunov theory [20], if a positive define function, V(k)=e2 is found such that its 

discrete time difference taken along a trajectory is always negative /1 V(k)<O, then as 

time k increases, V(k) will finally converge to zero and therefore the error will also 

converge to zero asymptotically. Again, whether or not L1V(k) is negative depends on 

the selection of the parameter update law. Only when the parameter update law of 

the filtering system is chosen in Lyapunov sense, is V(k) a Lyapunov function of the 

designed adaptive filtering system, which has a unique global minimum. Therefore, 

the selection of the Lyapunov function and the parameter update law are not 

independent, the proper selection of the parameter update law can guarantee that 
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function V(k) is a Lyapunov function of the adaptive filtering system with a umque 

global minimum in the state space. Hence, this approach is not sensitive to initial 

conditions for global minimum convergence in the IIR structure. 

Remark 3.10: Most existing adaptive IIR algorithms are based on gradient search 

methods such as the Gauss-Newton [3],[6] and implemented in the output-error and 

equation error formulations. The convergence rate of Gauss-Newton depends on the 

step-size. In order for it to converge, the Hessian matrix must always be positive 

definite (invertable) and the system poles must always lie inside the unit circle. In 

addition, this algorithm is computat10nally expensive due to the Hessian matrix 

updated. Recursive prediction error (PRE) algorithm [1],[18],[25] is a gradient

descent approach. It adjusts the filter coefficients to minimize the MSOE cost 

function. However, it requires significant amount of complexity and large amount of 

storage. An approximation to the gradient leads to simpler algorithm known as 

pseudolinear regression (PLR) algorithm [I 8],[25]. It is similar in form to RLS 

widely used in equation-error formulation. The computation complexity and storage 

requirements are comparable to that of RLS, and they are clearly less than that of 

RPE. Designing the adaptive UR filter using Lyapunov theory offers an alternative 

approach to the stability of IIR filter. The Lyapunov UR filter has computational 

complexity that is less than that of most exiting adaptive IIR algorithms such as 

Gaussion-Newton, RPE, PLR, RLS, and UR-QR. The overall complexity for IIR-QR 

is 0(2N2
), where N is the number of the total inputs the filter. The computational 

requirements for a simplified gradient RPE is 0(5N2
). The computational complexity 

of PLR is comparable to that of RLS, 0(4N2
), and they are clearly less than that of 

the RPE algorithm. Thus the Lyapunov IIR filter, with computational complexity 

0(5N) approximately, has less computation complexity compared to the above 

algorithms. Table 3.1 give a comparison of the cost per iteration of the 

aforementioned adaptive algorithms for UR filter. 
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Table 3.1 

Adaptive Algorithm Cost per iteration 

IIR-QR O(oc N2
) 

Simplified gradient RPE O(ocN2
) 

PLR O(ocN2
) 

RLS O(ocN2
) 

Lyapunov IIR O(ocN) 

Remark 3.11: There have been relatively few analyses of the convergence properties 

of adaptive IIR filters. Most of the results are derived from work in system 

identification where it is often assumed that the step-size in Gauss-Newton or its 

modifications decrease to zero with time. That is the adaptive algorithm eventually 

shuts off. These results are particularly useful for the system identification 

application where the unknown system is time-invariant and the signal is stationary. 

In this case, the Gauss-Newton algorithm will converge to a stable point of the ODE 

(ordinary differential equation) with probability one provided the data is 

asymptotically mean stationary and exponentially stable [18]. For time-varying and 

non-stationary signals, these algorithms converge only in probability. Furthermore, 

ODE does not prove convergence to the global minimum and provide any 

information concerning rate of convergence. In the Lyapunov IIR filter, the error 

convergence is guaranteed. The convergence analysis properties is similar to that in 

the section 3.4. 
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3.7 Simulation Examples 

In this section, four simulation examples that illustrate the performance of the 

Lyapunov Theory-based adaptive filtering (LAF) adaptive FIR and IIR filters. The 

first example demonstrates the performance of the Lyapunov FIR design when an 

additive noise is introduced at the filter input. Simulation of the same setup with RLS 

is also accomplished for comparison. The second simulation considers the round off 

error that can cause the unstable behavior of adaptive algorithm is also presented to 

show the robustness to round off error of this scheme. compared to RLS. The third 

and fourth examples illustrate the use of Lyapunov IIR filter for nonlinear system 

identification. 

Example 1: Adaptive filtering with Lyapunov F!Rfilter- additive noise 

In this example, the filter input signal shown in Figure 3.1 is corrupted with the noise 

n(k), where n(k) is a bounded random noise which satisfies the following bounded 

condition 0 ~ n(k) < 0.4. The adaptive gain is updated according to the expression 

(3.8). In the first case, the parameters A1, A2 and K in the expression (3.8) are chosen 

as follow: A1 = Az = 0.4, and K = 0.8. The result illustrated in Figure 3.2 shows the 

comparison of the reference signal d(k) and the filter output signal y(k). It is seen 

that, although the output of the adaptive filter can follow the desired reference signal 

well, but the effects of the noise are not fully eliminated because the adaptation rate 

is relatively slow (K= 0.8) and the values of the parameters Ai, Az are very large. 

In the second case, A1 = Az = 0.01, and K = 0.1 are chosen. Figure 3.3 shows the 

comparison of the reference signal d(k) and the filter output signal y(k). It can be 

seen that the effects of the input disturbance has been greatly reduced and the 

tracking performance between the desired reference signal d(k) and the output y(k) of 

the adaptive filter has been greatly improved by properly choosing parameters Ai, Az 

and K. Smaller constant K also provides faster error convergence. This result has 

verified the statement in Theorem 3.2 in the section 3.4. The square output error, 

e2 (k) of this simulation is displayed in Figure 3.4. 
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For a comparison study, simulation of a third order adaptive filter with RLS 

algorithm 1s also presented. The results in Figure 3.5 (forgetting or weighting factor, 

p= 0.2) reveal the output signal of RLS method has higher noise level compared to 

that of LAF by observing the square output error, e2 (k) in Figure 3. 6. This 1s because 

LAF has fast convergence speed, good tracking property and is highly stable. The 

RLS with larger forgetting factor, p = 0.5 gives worse output signal but the 

amplitude variation of the adaptive parameters has become small. 

Example 2: Adaptive filtering with Lyapunov FIR filter - round off error & Large 

disturbance 

Round off error can affect the performance of the filter. A comparison study of the 

round off effect for LAF and RLS is also presented. The filter coefficients are 

rounded off to 2 decimal and this should seriously affect the filter performance. 

Figure 3. 7 illustrates the corrupted input signal, x(k). The bounded noise is analogous 

to previous example except a sudden large disturbance is introduced within iterations 

500-700. Figure 3.8 and Figure 3.9 reveal the output signal, y(k) and the square 

output error, e2(k) of LAF-FIR respectively. Simulation results of RLS with 

forgetting factor and p=0.2 are depicted in Figure 3.10 and Figure 3.11. From these 

results, LAF with FIR design can tolerate the round off error and sudden disturbance 

and give better performance compared to RLS. 

Example 3: Adaptive filtering with Lyapunov FIR filter - Nonlinear System 

Identification 1 

To illustrate the performance of adaptive Lyapunov IIR filter, simulations are carried 

out for nonlinear system identification. A nonlinear SISO system is considered. For a 

comparison study, simulation with the IIR-RLS algorithm which has the generic 

form of recursive Gauss-Newton algorithm is also performed. The input signal is 

white noise with zero mean value and variance 1. 

y(k) = 0.0705 x(k)- 0.141 x(k-1)-0.0705 x(k-1) + 1.1993 e-Y
2

<k-t) y(k -1) 

- 0.5156 e-Y
2
(k- 2 ) y(k - 2) 
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The simulation results ofLyapunov IIR and IIR-RLS are shown in Figures 3.12-3.14 

and Figures 3.15-3.17 respectively. A smooth convergence of the parameter a,(k) is 

achieved by the Lyapunov IIR filter. These results indicate Lyapunov IIR has better 

adaptation in the nonlinear system identification. 

Example 4: Adaptive filtering with Lyapunov IIR filter - Nonlinear System 

Identification 2 

The fourth simulation tests the adaptation performance of these filters when the 

system poles move temporary outside the unit circle. The unknown transfer function 

has zeros at 2.4142, -0.4142 and poles at 0.1± 0.6245j inside the unit circle. Within 

iteration 1000-1500, those poles move outside the unit circle to a new location 

l±l.7321j and move back to unit circle. Simulation results with Lyapunov IIR and 

IIR-RLS are illustrated in Figure 3.18 and Figure 3.19. By observing the period for 

b,(k) of both filters to converge back to original values, Lyapunov IIR filter has high 

adaptation and tracking properties compared to the IIR-RLS. 

'" 
1 5 :: 'i; ': 

·:=~ ~~~~:-
~~~;:.: 

·;~t. 
-- d(k) .. x(k) 

•,: 

Figure 3.1: The desired response, d(k) & the corrupted input signal, x(k) 
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1 5 

-- d(k) . y(k) 

2 3 4 5 6 7 8 9 10 
1 OOO 1terations 

Figure 3.2: LAF-FIR, The desired response, d(k) & filter output, y(k) 

1 5 

-- d(k) .. y(k) 

Figure 3.3: LAF-FIR, the desired response, d(k) & filter output, y(k) 
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Figure 3.4: LAF-FIR, the square output error, e2(k) 
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-- d{k) . y{k) 
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Figure 3.5: RLS (FIR), the desired response, d(k) & filter output, y(k) 
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3.8 Conclusion 

This chapter has shown that Lyapunov stability theory has provided an efficient 

optimization method for the adaptive filter designs in the state space. We have 

discussed the convergence rate of the Lyapunov filter and the convergence region of 

the Lyapunov filter with the modified adaptive gain in order to avoid the singularity. 

Furthermore, the realizations of two adaptive filters, Lyapunov adaptive FIR and UR 

filters have been developed. The design and analysis of LAF are extremely 

simplified and the stability concerns for the adaptive algorithm is guaranteed by the 

Lyapunov stability theory. Simulation examples have demonstrated the excellent 

convergence property and robustness to additive noise based on the new filter 

designs. The further research based on this chapter is to use different Lyapunov 

functions and different adaptive laws to further improve the convergence properties 

and the robustness properties of the Lyapunov filters with respect to the bounded 

random disturbances. In conclus10n, the LAF has provided a new option to adaptive 

filtering and hopefully suggested a new research area of adaptive signal processing 

with Lyapunov stability theory. 
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Neural 

During the past decade neural networks have begun to find wide applicability in 

diverse aspects of signal processing, for example, filtering, parameter estimation, 

signal detection, system identification, pattern recognition, signal reconstruction, 

time series analysis, signal compression, and signal transmission [26]. The signals 

concerned include audio, video, speech, image, communication and others. The key 

features of neural networks involved in signal processing are their asynchronous 

parallel and distributed processing, nonlinear dynamics, global interconnection of 

network elements, self-organization and high-speed computational capability. With 

these features, neural networks can provide very powerful means for solving 

problems encountered in signal processing, especially in nonlinear adaptive filtering. 

Specific research works on neural networks for adaptive filtering can be found in 

[27]-[30]. 

While the majority of the research is directed towards a better architecture for neural 

networks, training algorithm or learning in the neural networks is another important 

research topic. In last few years, many researchers have focused their efforts on 

devising efficient algorithms, mainly based on gradient search methods. One of the 

potential problem, which is likely to affect practical applications, is that the learning 

process may be seriously plagued by the presence of stationary points in the cost 

function. In general, there is no reason to exclude the presence of stationary points 
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that may also be local minima. Obviously, this does not mean that no learning 

procedure can effectively find optimal solution, but, if the cost function has many 

local minima, devising an effective learning algorithm may be very difficult. On the 

other hand, for local minima free cost functions, simple gradient descent algorithms 

allow to discover optimal solutions with a relatively limited computational burden. 

These have motivated either the research on conditions for guaranteeing the absence 

of local minima [31 ]-[32] or the research on efficient and less computational burden 

algorithms to find the optimal solution [33]-[35]. Many authors [31]-[32] have 

analyzed the problem of optimal learning in neural networks by proposing some 

sufficient conditions which guarantee local minima free error surfaces. Some authors 

have proposed more computational complexity techniques such as genetic 

algorithms, learning automata and simulated annealing [33]-[35]. 

Recently, many researchers have used the Radial Basis Function (RBF) neural 

networks for a wide range of applications because of the distinctive properties of best 

approximation, simple network structure and training procedures. Authors in [32] 

have analyzed the problem of optimal learning in the RBF neural networks and 

proven that the attached cost function is local minima free under the assumption in 

[32]. However, the conditions that guarantee the local minima free problems in [32] 

are no longer applied when the feedback is considered in the RBF network. 

Therefore, after the cost function of the error is selected, the surface of the cost 

function in the parameter space is fixed. The search of the optimum parameters in the 

parameter space may stop at some local minimum because of the arbitrary initial 

condition of system states. Therefore the RBF neural networks with some gradient 

search-based algorithms may not give good performance. 

To overcome the above problems, we propose two realizations of the Lyapunov 

adaptive filters using RBF neural networks. The FIR (finite impulse response) and 

IIR (infinite impulse response) filters are configured as feedforward and recurrent 

RBF networks respectively. It is shown in [20] that a Lyapunov function of the error 

between the desired signal and the RBF neural network output is defined, the weights 

of the RBF neural filter are then adaptively adjusted based on the Lyapunov Theory

based adaptive filtering (LAF) in Chapter 3, so that the error can asymptotically 

converge to zero. Unlike many adaptive neural filtering schemes using gradient 
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search in the parameter space, the selected Lyapunov function for the adaptive RBF 

filter has a unique global minimum in the state space. By properly choosing the 

weights update law in Lyapunov sense, the output of the adaptive RBF neural filter 

can asymptotically converge to the desired reference signal. Thus the local minima 

problem occurred in the gradient search-based adaptive filters is avoided,. Although 

the input signal of the RBF neural filter is disturbed by the bounded random noises, 

only the input and the output measurements are needed for the design of the RBF 

neural filters. Hence the proposed scheme is independent of the statistical properties 

of the input signals. 

This chapter is organized as follows. In section 4.2, the realization of Lyapunov FIR 

filter using RBF neural network is proposed. The idea is extended to the nonlinear 

recurrent RBF IIR filter in section 4.3. The theoretical derivation is further supported 

by the simulation examples in the section 4.4. Finally, the concluding remark is 

presented in the last section of this chapter. 

4.2 The Realization of Lyapunov FIR (Finite Impulse 

Response) Filters Using Feedforward RBF Neural Networks 

Feedforward layered neural network or multilayer perceptron (MLP) has 

increasingly been used in many areas of signal processing. One of the disadvantages 

of MLP is that they are highly nonlinear in parameters. Leaming must be based on 

nonlinear optimization techniques. The parameter estimate may be trapped at a local 

minimum of the chosen optimization criterion during the learning procedure when a 

gradient descent algorithm such as backpropagation (BP) is used. Other optimization 

techniques [33]-[35] are capable of achieving a global minimum but they require 

extensive computation. An alternative choice of highly nonlinear MLP is the RBF 

neural networks. The RBF network can be regarded as a special two layer network 

which is linear in the parameters by fixing all RBF centers and nonlinearities in the 

hidden layer. The output layer then implements a linear combiner on this new space 

and the only adjustable parameters are the weights of this linear combiner. These 

parameters can therefore be determined using linear algorithms [1]-[5], which is an 

important advantage of the RBF networks. 
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A feedforward RBF Lyapunov FIR filter is shown in Figure 4.1. The output of the 

RBF FIR filter can be expressed as 

N 
y(k) =I w, (k)</i, (k) 

1=1 

or 

y(k) = WT (k)<'P(k) 

<'fJ(k) = [ </JJ(k), </Ji(k), ... , qlN(k)] T 

q)(k) is the Gaussian type of functions defined as 

i = 1, 2, 3, ... N 

and X(k) = [x(k), x(k-1), ... , x(k-N)f, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

c1 is the center vector and Oj is the width of Gaussian function. The width is 

controlled by the noise variance a/ and is usually set at Oj =2e5/ 

Using the results of theorems 3.1-3.3 in Chapter 3, we have the following 

updated law for Lyapunov RBF FIR adaptive filter: 

W(k) = W(k - 1) + g(k)a(k) (4.7) 

a(k)= d(k) - wr (k-1)<'P(k) (4.8) 

k <I>(k) (i I e(k-1) 1) 
g( )=ll<I>(k)ll 2 -1( laCk)I (4.9) 

or (4.10) 
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4.2.1 Design of the Adaptive Filter Using RBF Neural Network and 

Lyapunov Theory 

The design of the adaptive RBF neural filter is similar to the Lyapunov Theory-based 

adaptive filtering (LAF) and can be described by Theorem 4.1: 

Theorem 4.1: For the given desired response d(k), if the weight vector W(k) of the 

filter y(k) = WT (k)c'P (k) is updated as follows 

W(k) = W(k - I) + g(k)a(k) (4.11) 

(k) _ <l>(k) (l -K I e(k -1) IJ 
g -ll<I>Ck)IJ 2 ia(k)I 

(4.12) 

where a(k)= d(k) - WT (k-J)c'P(k) in the expression (4.8), 0:::; K < 1, then the error 

e(k) = d(k) - y(k) asymptotically converges to zero. 

Proof: Define a Lyapunov function 

Then, 

V(k) = e 2 (k) 

LiV(k) = V(k) - V(k -1) 

=e 2 (k)-e 2 (k-1) 

= (d(k) -WT (k)c'P(k)) 2 
- e2 (k-1) 

= (d(k)-(WT (k -1) +gr (k)a(k))c'P(k)) 2 
- e2 (k-1) 

= (d(k)-WT (k-l)c'P(k)- gT (k)a(k)c'P(k)) 2 -e 2 (k-1) 

= (a(k) - g(k)a(k)c'P(k)) 2 
- e 2 (k-1) 

Using the expression (4.12) in the expression (4.14), we have 

LiV(k) = -(1- K
2 )e 2 (k -1) < 0 

(4.13) 

(4.14) 

( 4.15) 

With reference to Lyapunov second method [20] or Chapter 3, the error e(k) will 

converge to zero asymptotically. 
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Remark 4.1: It is easy to see that the stability analysis of the error dynamics, 

convergence analysis of the Lyapunov RBF FIR adaptive filter are same as the ones 

given in Theorems 3.1, 3.1, 3.3 in Chapter 3 if we replaceX(k) by tP(k). 

Remark 4.2: The proposed adaptive algorithm has possessed the similar properties of 

the LAF in Chapter 3. The designed feedforward RBF FIR filter is independent of 

the stochastic properties of signals. Based on the observations and a collection of 

desired response, the weights of the feedforward RBF neural network are updated in 

Lyapunov sense so that the error between the desired response and the RBF neural 

filter output can asymptotically converge to zero. The stability of the cs 

~-----1~·s~~:anteed-based-on-th~ unov s ability theory [20]. The error convergence 

rate relies on the constant JC in the expression (4.12). The smaller value of 

constant JC gives faster the error convergence rate. Smaller A.1 and A.2 values 

contribute smaller error. 

Remark 4.3: For the center vectors, the simplest technique involves choosing these 

vectors randomly from a subset of the available sample vectors. However, in such a 

case the number of hidden neurons needs to be relatively large to cover the entire 

input domain, k-means clustering [30],[36],[37] algorithm based on the non

hierarchical clustering methods can be employed to update the centers. 

x(k) 

x(k-1) 
y(k) 

Xn(k-N) </>N(k) 

Figure 4.1 : Nonlinear Feedforward RBF FIR Filter 
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4.3 The Realization of Lyapunov IIR (Infinite Impulse 

Response) Filters Using Recurrent RBF Neural Networks 

Recently, recurrent neural networks have been attracting much attention because of 

their attracting capability to exhibit dynamic behavior. They represent a very 

powerful computational model, but designing proper architecture for a given problem 

and devising effective learning procedures are very challenging tasks. Various 

recurrent neural network architectures and learning algorithms have been developed 

[38],[39],[30],[31]. Extension of the backpropagation (BP) to the recurrent networks 

was first proposed in [ 40]. In general, two popular approaches exist for recurrent 

networks: Backpropagation through time (BPTT) [28],[40],[41] and real-time 

recurrent learning (RTRL) [42],[39],[28]. Different modified BPTT algorithms have 

been derived [42],[41],[28]. C. Paolo [42] developed two new gradient-based 

procedures called recursive backpropagation (RBP) and a on-line version, casual 

RBP (CRBP) for locally recurrent neural networks. Pearlmutter [38] and Williams 

[41] presented alternative methods, designed to achieve results similar to those of 

BPTT, using a different computational strategy. However, it was reported in [43] that 

the Williams-Zipser architecture typically suffers from a lack of stability, slow 

convergence and the system may converge to a local minimum in the parameter 

space. A.C Tsoi and Back AD [43]-[44] have introduced the locally recurrent 

globally feedforward (LRGF) networks architechlfe with local synapse feedback that 

they called an IIR synapse MLP. A first order learning rule minimizing a mean 

square error criterion was derived and the weight changes could be adjusted using 

simple gradient method. 

Up to this point, we may notice that the algorithms used in the aforementioned 

recurrent networks are the gradient descent methods or other gradient based 

optimization technique such as conjugate-gradient. Therefore, they have potential to 

settle in the sub-optimal solution. 

In this section, we present the realization of Lyapunov IIR Filters Using RBF neural 

networks. The nonlinear output error IIR filter is realized using a recurrent RBF 
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network. The basic structure of a recurrent RBF Lyapunov IIR filter is given in 

Figure 4.2. The output of the RBF IIR filter is written as 

N M 

y(k) = L w, (k)</J, (k)+ L WN+J (k)</JN+j (k) ( 4.16) 
1~1 

or 

( 4.17) 

<f)(k) = [ </J1(k), </J2(k), ... , </JN(k), </JN+1(k), </JN+2(k), ... , </JN+M(k)] T ( 4.19) 

X(k) = [x(k), x(k-1), ... , x(k-N),y(k-1), y(k-2), ... ,y(k-N)f. (4.20) 

and </J,(k) is defined in the expression (4.5), butX(k) in (4.20) is used instead of X(k) 

in (4.6). 

Using the results in Chapter 3 or Section 4.2 in this Chapter, the network weights can 

be updated as follows: 

W(k) = W(k- 1) + g(k)a(k) (4.21) 

a(k)= d(k) - wr (k-l)<D(k) (4.22) 

k _ <D(k) (l-K le(k-1)1) 
g( ) - II <D(k) 11 2 I a(k) I 

(4.23) 

an<l lhe modified g(k) is given by 

k <I>(k) (r je(k-l)j) 
g( )=ll<I>(k)ilz +2, -1( Az+la(k)I 

(4.24) 
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Figure 4.2: Nonlinear Recurrent RBF IIR Filter 

Remark 4.4: The advantage of the RBF IIR design compared to the RBF FIR design 

is that the use of lagged output variables reduces the number of coefficients that are 

required for an effective design. However, this is offset by the similar case in the 

output error IIR filter that the stability of the filter is no longer guaranteed. Design of 

the adaptive algorithm for RBF IIR filter can provide a solution to this problem. The 

stability of the error dynamic is guaranteed by the Lyapunov stability theory. 

Remark 4.5: The local minima free condition in [32] for the feedforward RBF 

network is also no longer assured if the feedback is considered. Therefore the 

adaptive algorithms [l]-[3] used in the feedforward RBF network may not provide a 

good performance in the recurrent RBF network. As explained in Chapter 3, a 

Lyapunov function of the error between the desired signal and the RBF neural 

network output is defined. The selected Lyapunov function for the RBF filter design 

has a unique global minimum. By properly selecting the weights update law in 
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Lyapunov sense, the output of the RBF filter can asymptotically converge to the 

desired signal. Using this method, the local minima problem occurred in the gradient 

search-based methods can be prevented. In addition, the design is independent of the 

stochastic properties of the input disturbances. 

4.4 Simulation Examples 

In this section, the following two simulation examples are presented to illustrate the 

performance of the proposed RBF Lyapunov adaptive filters. 

Example 1: Feedforward RBF FIR filter 

In this example, we will compare the proposed scheme with other existing adaptive 

filtering schemes to show the robustness and effectiveness. 

I. The feedforward RBF FIR filter with the LAF (1) algorithm (K= A.1=A.2= 0.01) 

2. The feedforward RBF FIR filter with the LAF (2) algorithm (K = A.1=A.2= 0.001) 

3. The feedforward RBF FIR filter with the LAP (3) algorithm (K = A.1=A.2= 0.0001) 

4. The feedforward RBF with the RLS algorithm (forgetting factor p = 0.9) 

5. The feedforward RBF with the RLS algorithm (forgetting factor p = 0.1) 

6. The feedforward RBF with the LMS algorithm 

7. The feedforward MLP with the BP algorithm 

The RBF neural networks used in this simulation have 3 input nodes, 3 hidden nodes 

and 1 output node. Centers for the RBF network are selected randomly from the 

input subset because of the small input domain. The MLP has the same structure, but 

the input-hidden and hidden-output layers have connection weights. 

In the first case, no additive noise is considered in the simulation. Figure 4. 3 has 

revealed the comparison of the feedforward RBF FIR filter output y(k) and the 

desired signal, d(k). The square error, e2 (k) is illustrated in Figure 4.4 and the 

weights of RBF network are plotted in Figure 4.5. Figure 4.6 shows the average 

square error of each iteration for different neural filters and their MSEs (mean square 
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error) are summarized in Table 4.1. Although the selected centers may not be optimal 

for each case, these results have illustrated the proposed RBF filter is outperform 

compared with others. 

In the second case, the signal is corrupted by a uniformly distributed white noise 

sequence, n(k) varying in the range [0,0.5] and gives SNR (signal to noise ratio) ""11 

dB approximately. The simulation results of their MSEs are tabulated in Table 4.2. 

From the simulation results, the effect of additive noise is reduced greatly in the 

proposed RBF filter. The sigmoid function in the MLP can suppress the noise effects 

by using their saturation regions, thus the MSE without noise is similar to the MSE 

with additive noise. The simulation example has verified that the smaller A-1 and A-2, 

smaller the error e(k) and the smaller constant K gives faster error convergence. The 

RBF network trained by the RLS with a smaller forgetting factor (p = 0.1) can give 

better performance compared with the RLS with a larger forgetting factor (p = 0. 9). 

However the weights have large variation in magnitude and this is not desired in 

many applications. 

In summary, the simulation results have revealed that the proposed RBF filter has 

better performance in terms of error convergence, tracking ability and resistance of 

additive noise. · 

Example 2: Recurrent RBF IIR filter 

In this example, we compare the following adaptive IIR filters 

The recurrent RBF IIR filter with the LAF (1) algorithm (K = A-1=A-2= 0.01) 

The recurrent RBF IIR filter with the LAF (2) algorithm (K = A-1=A-2= 0.001) 

The recurrent RBF IIR filter with the LAF (3) algorithm (K = A.1=A-2= 0.0001) 

The recurrent MLP with the BPTT (Backpropagation through time) algorithm 

The recurrent MLP with the RTRL (Real time recurrent learning) algorithm 

The RBF neural networks used in this simulation have 5 input nodes, 5 hidden nodes 

and a output node. A feedback is connected from the output layer to two nodes in the 

input layer. The MLP has the same number of nodes and feedback connections as the 
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RBF network. The average square error for each iteration of different neural filters 

are illustrated in Figure 4. 7 (without noise) and their MSEs are summarized in Table 

4.3 and Table 4.4. Again these simulations are intended to show the proposed 

scheme can have good performance. Because of the difference in the RBF and MLP 

architectures, it is quite difficult to find a basis for comparison. The one gives 

smaller MSE or average square error would be considered as a better method. 

Simulations of the recurrent RBF with RLS or LMS algorithms have been performed 

but the error divergence has been observed for both cases. In summary, the proposed 

RBF filter exhibits excellent performance with the relatively simple recurrent 

network architecture 
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Table 4.1: Feedforward Neural Network Filters (No Additive Noise) 

RBF-LAF RBF-LAF RBF-LAF RBF-RLS RBF-RLS RBF- MLP-

(K=A.1=A.2 (K=A1=A.2 (K=A.1=/...z (p = 0 9) (p = 0.1) 
LMS BP 

=0.01) =0.001) =0.0001) 

MSE 5.16x10·6 5.5lxl0·8 5.54xJO·IO 8.4x10·3 l.32x10·5 0.0222 0.0211 

Table 4.2: Feedforward Neural Network Filters (With Additive Noise) 

RBF-LAF RBF-LAF RBF-LAF RBF-RLS RBF-RLS RBF-LMS MLP-BP 

(K=A.1="-2 (K=A.1=/...z (K=A.1=/...z (p = 0.9) (p = 0.1) 

=0.01) =0.001) =0.0001) 

MSE 8.92x10°5 2.9x10·7 l.6lx10·8 0.0168 l.36x10·3 0.05 0.0211 

Table 4.3: Recurrent Neural Network Filters (No Additive Noise) 

RBF-LAF RBF-LAF RBF-LAF MLP-BPTT MLP-RTRL 

(K=A.1=A.2=0.0l) (K=A.1=A.2=0.00I) (K=A.1=7'.2=0.0001) 

MSE 4.63x10·6 4.9x10·8 5.0xJO-IO 0.0206 0.0171 

Table 4.4: Recurrent Neural Network Filters (With Additive Noise) 

RBF-LAF RBF-LAF RBF-LAF MLP-BPTT MLP-RTRL 

(K=A.1="-2=0.01) (K=A.1=A.2=0.001) (K=A.1=A.2=0 0001) 

MSE l.35xJ0·5 l.2xlo·7 l.2x10·9 0.0206 0.0171 
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Figure 4.3 : The feedforward RBF FIR filter outputy(k) and the desired signal d(k) 
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Figure 4.4 The square error, i(k) of the feedforward RBF FIR filter 
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Figure 4.5: The weights of the feedforward RBF FIR filter 
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4.5 Conclusion 

This chapter has indicated that Lyapunov stability theory can provide an efficient 

training method for the adaptive RBF filter designs. New nonlinear FIR and IIR filter 

realizations based on the feedforward and recurrent RBF networks have been 

introduced for nonlinear adaptive filtering problem. The LAF idea is incorporated 

into the adaptive algorithms for the nonlinear adaptive RBF FIR and IIR filters. Thus 

these adaptive algorithms possess the properties of the LAF algorithm and the RBF 

network. The local minima problem occurred in the gradient search based adaptive 

algorithm can be avoided by using the proposed scheme. The network weights 

updated strategy is independent of signal statistical properties because only the 

desired response and input observations are needed. Theoretical analysis and 

simulations have indicated the proposed method can offer good performance in terms 

of stability, tracking and convergence properties. In conclusion, the RBF networks 

based on LAF has provided a new and alternative approach to conventional adaptive 

filtering problem. Hopefully this will suggest a new future research of adaptive 

signal processing using Lyapunov theory. The further research is to use different 

Lyapunov functions and different weight laws to further improve the convergence 

properties and the robustness properties of the RBF filters with respect to- the 

bounded random disturbances. 
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Chapters 

Fuzzy Adaptive Filters Using Lyapunov 

Theory-based Adaptive Filtering 

5.1 Introduction 

Filters are information processor. In practice, information usually comes from two 

sources: sensors which provide numerical data associated with a problem, and human 

experts who provide linguistic descriptions (often in the form of fuzzy IF-THEN 

rules) about the problem. Existing filters can only processing numerical data, 

whereas existing expert systems can only make use of linguistic information. 

Therefore, their successful applications are limited to problems where either 

linguistic rules or numerical data do not play a critical role. There are, however, a 

large number of practical problems in economics, seismology, management, and so 

on, where both linguistic and numerical information are critical. 

At present, when we face such problems, we use linguistic information, consciously 

or unconsciously, in the choice among different filters, the evaluation of filter 

performance, the choice of filter orders, the interpretation of filtering results, and so 

on. There are serious limitations to use linguistic information in this way because for 

most practical problems the linguistic information (in its natural form) is not about 

what kind of filter should be chosen or what the order of the filter should be, but is in 

the form of fuzzy IF-THEN rules. 

In this situation, fuzzy logic has stirred a great deal of excitement, since it allows for 

the simple inclusion of heuristic knowledge about how to filter the noise rather than 
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requiring exact mathematical model. Furthermore, the fuzzy adaptive filter has the 

universal approximation ability in nonlinear problems [45]-[48]. The fuzzy rules 

come either from human experts or by matching input-output pairs through an 

adaptation procedure. Authors of [45] have presented a fuzzy adaptive filter that is 

constructed from a set of changeable fuzzy IF-THEN rules to minimize some 

criterion functions. These fuzzy adaptive filters parameters are updated by recursive 

least square (RLS) and least mean square (LMS) algorithms. They have mentioned 

the computation complexity involved in the RLS fuzzy filter is highly parallelizable 

and the RLS fuzzy filter might not be able to be used in some practical situations 

where the computing power is limited. In contrast, the LMS fuzzy filter has suffered 

the problem encountered in the LMS filter such as slow error convergence. 

The purpose of this chapter is to develop new kinds of nonlinear adaptive filters, 

which we refer to as fuzzy adaptive filters. First, afuzzy gain Lyapunov adaptive filter 

for nonlinear adaptive filtering is proposed. This scheme is designed based on the 

LAF [19] in Chapter 3 and fuzzy logic is introduced to the filter design. It 

incorporates fuzzy logic to the LAF by the use of a set of Lyapunov sense fuzzy if

then rules. Given the input signal and its squared norm, these rules are then used to 

determine the adaptive gain to update the filter parameters so that the error converges 

to zero asymptotically. An additional computational cost is incurred in the 

fuzzification, inference and defuzzification modules, but these operations can be 

done very efficiently in the latest range of DSP. Simulation examples of the fuzzy 

gain Lyapunov adaptive filter are performed to support the theoretical results. 

Comparisons with the numerical adaptive filters using the LAF and RLS algorithms 

are also presented. 

The second fuzzy adaptive filter is named LAF fuzzy adaptive filter. This fuzzy 

adaptive filter is constructed from a set of changeable fuzzy IF-THEN rules. The 

adaptive algorithm, Lyapunov theory-based adaptive filtering (LAF) is used to 

update the parameter of the membership functions so that the dynamic error between 

the filter output and the desired response converges to zero asymptotically. 

Therefore, the most significant advantage of the fuzzy filter compared to the 

conventional filters is that linguistic information from human experts (in the form of 

fuzzy IF-THEN rules) can be incorporated into the filter. Ifno linguistic information 
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is available, the fuzzy adaptive filters become well-defined nonlinear adaptive filters. 

The fuzzy adaptive filter has preserved the properties of LAF in Chapter 3 such as 

fast convergence, highly stable and independent of the signal's stochastic properties. 

The computational complexity involved is less than that of the RLS fuzzy filter in 

[45] . Simulation examples ofLAF fuzzy adaptive filter are performed to support the 

theoretical results. 

This chapter is organized as follows. In section 5.2, the fuzzy gain Lyapunov 

adaptive filter for nonlinear adaptive filtering is proposed. Section 5.3 presents 

design methodology of FIS (Fuzzy Inference System) of fuzzy gain Lyapunov 

adaptive filter. The theoretical derivation of the fuzzy gain Lyapunov adaptive filter 

is further supported by the simulation examples in the section 5.4. Section 5.5 

establishes the second fuzzy adaptive filter, LAF fuzzy adaptive filter. Design 

procedure of the LAF fuzzy adaptive filter and the simulation examples are presented 

in section 5.6 and section 5. 7 respectively. Finally, the concluding remark is 

presented in the last section of this chapter. 

lnputx(k.) 

Filter 

Output 
y(k) 1

Desired signal 
d(k) 

_ Error e(k) 

11-~~~~+~~~~-- ~ 

Fuzzy Gain 
Lyapunov 
Algorithm 

Figure 5.1: Fuzzy Gain Lyapunov Adaptive Filter Architecture 



Chapter 5: Fuzzy Adaptive Filters Using LAF 86 

5.2 Fuzzy Gain Lyapunov Adaptive Filter 

The advantages of the LAF scheme have been explained in Chapter 3. However, 

there are certain circumstances that adaptive filtering has to deal with many 

ambiguous situations. Therefore fuzzy logic is a useful mathematical tool for 

handling the ambiguity or uncertainty. In order to apply fuzzy theory to the adaptive 

filter, selecting the fuzzy rules and regions of membership function are fundamental 

and important tasks. The structure of the fuzzy gain Lyapunov adaptive filter is 

illustrated in Figure 5.1. Figure 5.2 shows the fuzzy inference system (FIS) of the 

proposed fuzzy filter. 

adjust the parameters 

Adaptive e(k) 
---1 ... ~ I Algorithm 

Fuzzy hlferenee System 

Figure 5.2: Adaptive Fuzzy Gain Algorithm 

x 

The expressions used to update the filter parameters are similar to the LAF in 

Chapter 3 and can be summarized as follows: 

or 

H(k) = H(k - 1) + g(k)a(k) 

a(k)= d(k) - Hr (k-l)x(k) 

k _ X(k) (i AJe(k-l)j) 
g( )-llX(k)U2 - la(k)I 

k _ X(k) (i K: I e(k -1) I ) 
g( ) - A.,+ II X(k) 11 2 - ll.2+ I a(k) I 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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where 0 ~ K < 1, and /q, A.2 are small positive numbers. 

However, the computation of the adaptation gain g(k) in (5.3) is totally a new 

approach in fuzzy gain Lyapunov adaptive filter. The adaptation gain g(k) in (5.3) is 

the crisp output of the FIS. This gain is adaptively adjusted so that error e(k) can 

converge and good performance can be achieved. In the following sections, the 

design of the fuzzy gain Lyapunov adaptive filter that the IF-THEN rules and MBFs 

in the FIS using on the LAF will be presented. 

In the design of the fuzzy gain filter based on the LAF, IF-THEN fuzzy rules can be 

derived from (5.3). Rule matrix (Table 5.1) of adaptation gain is constructed based 

on g =XIII X 11
2

• For example, IF X is Z (input signal is zero or very small) AND 

//X/;2 is Zl (its squared norm value is zero or very small) THEN g is ZERO (the gain 

is approximate zero). 

The final process of the FIS is to convert or defuzzify the aggregated fuzzy value for 

the adaptation gain into a crisp value to update the weight vector in ( 5 .1 ). The design 

detail of FIS will be discussed in the next section. By designing the IF-THEN rules 

based on the rules matrix of the adaptation gain, the error e(k) can converge and good 

filtering performance is obtained. 

5.3 Design Methodology of FIS of Fuzzy Gain Lyapunov 

Adaptive Filter 

In order to apply fuzzy theory to the filter, selecting the fuzzy rules, regions of 

membership function are very important to achieve good performance. Some of the 

parameters and techniques used to implement the FIS are as follows: the selection of 

the types of membership function (MBF), the MBF parameters, fuzzy operators used, 

implication methods, aggregation methods and defuzzification schemas. The purpose 

of this section is to introduce useful directions in designing the fuzzy gain filter. 
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X(k) NB NM NS z PS PM PB 

Negative Negative Negative Zero Positive Positive Positive 

11x 112 Big Medium SmaO Small Medium Big 

Zl z.en, 

PSI Sz z.en, S,, 

PMl M1 s.. z.en, s. Mz 

PBl So s, s. 1.ero s, s. s., 

Table 5 .1 . Rules Matrix of the adaptation gain, g(k) 

5.3.1 Determination of Fuzzy Sets For (1) The Input (X), (2) The Input Squared 

Norm (llXll2), and (3) The Output (The Adaptive Gain) 

Firstly, the input variables to the FIS (the input and its squared norm value) are 

converted to appropriate fuzzy sets via membership function (MBF). These fuzzy 

sets are used for partitioning the continuous domain of input and output variables 

into a small number of overlapping regions. These regions are labeled with linguistic 

terms such as 'Negative Big', 'Negative Medium ', 'Negative Small', 'Zero', 'Positive 

Big', 'Positive Medium', 'Positive Small' . . . etc as indicated in Figure 5.3 for X and 

//X/f respectively. The task here is to locate the positioning of universe of discourse 

of these fuzzy sets. 

The input limit for X can be obtained from observing the input numerical data. Seven 

MBFs (triangular/trapezoidal/etc) are selected to cover the entire universe of 

discourse as shown in Figure 5.3. Selection of the type of MBFs depends on the 

specific application or input signal. Then centroids for (NB ... PB) are selected. The 

bases of MBFs cover the neighboring centroid as shown in Figure 5.3. The NB, NM, 

NS are just the mirror image of the positive MBFs shown in Figure 5. 3. 
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The regions of the MBFs of the adaptation gain can be determined from observing 

the adaptation gain numerical data. Thirteen MBFs (triangular/trapezoidal/etc) are 

chosen to cover the entire universe of discourse as illustrated in Figure 5.4. Selection 

of the type of MBFs depends on the specific application or input signal again. Then 

centroids for (So, .. . , S9 , Mo , M 1 , 'Zero) are selected. The bases of MBFs cover the 

neighboring centroid as shown in Figure 5.4. 

x 
NB NM NS z PS PM PB Zl PSl IMl Oil 

0 
0 

a) input value X b) //X/f 

Figure 5.3: MBFs spread over their respective universes of discourse 

Zl!RO 

~ s. M~ s., 

Figure 5.4: MBFs of the adaptive gain spread over its bound 

5.3.2 Fuzzification of Inputs 

The FIS takes in two fuzzy inputs: X and //X// at time k. Then it determines the 

respective degree to which they belong to each of the appropriate fuzzy sets via 
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triangular/trapezoidal MBFs. The crisp numerical inputs must be limited to their 

respective universe of discourse of the input variables. The output of the fuzzification 

process is a fuzzy degree of membership between 0 and 1. 

5.3.3 Fuzzy Rule Selection 

The second step is to construct a set of fuzzy IF-THEN rules of the following form. 

This step has been metioned in the section 5.2. For example, IF input (X) is Z and 

llXJl2 is ZI then the adaptation gain is ZERO. Tables 5.1 shows the fuzzy rules for the 

adaptive fuzzy filter. These IF-THEN fuzzy rules have simply been derived from the 

adaptive gain in (5.3). The rules matrix is constructed in Table 5.1. Different weights 

can be assigned to the different rules to emphasize the importance of a particular rule 

in a specific application. 

5.3.4 Fuzzy Operators 

In the fuzzy gain Lyapunov adaptive filter algorithm, ifthere is more than one part in 

the antecedent (IF part) of the rules, a fuzzy operator must be used to combine the 

degrees of the input (X) and llX//2 into a single value. Two commonly used fuzzy 

operators, AND and OR to combine the 2 variables are examined. It has been found 

that the AND operator, which chooses the MIN tends to have better result than the 

OR operator. This is followed by applying the implication method that is defined on 

the shaping of the consequent (THEN-part) of the rule based on the antecedent. In 

this case, a min (minimum) operation that truncates the output fuzzy set for each rule 

is preferred. 

5.3.5 Aggregation and Defuzzification Process 

The next step in the fuzzy inference engine is to aggregate all the outputs of each rule 

into a single fuzzy set for the adaptive gain variable. The final process of the FIS is 

to convert or defuzzify the aggregated fuzzy value for the adaptation gain into a crisp 

value to be used by the filter parameter vector updated law (5.1). There are many 

Defuzzification methods [ 48] available and the following centroid calculation that 

returns the centre of area under the aggregated MBFs curve is being employed here: 
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J 

I g k (i)F (g k (i)) 
g (k) = -'-'=-'-I-----

1 

I F(g k (i)) 
1=1 

91 

(5.5) 

where j is the number of sections used in approximating the area under the 

aggregated MBF and F(gk(i)) is the MBF value at location, gk(i). The reason for using 

the centroid method instead of other defuzzification methods [ 48] such as the 

bisector, the middel of maximum (mom), the smallest of maximum (som) and the 

largest of maximum (lorn), is because the centroid method produces the smallest 

mean square error and lends itself well to implementing on DSP. The other 

approaches require comparison operations to be carried out which complicate the 

implementation of defuzzification in DSP. 

5.4 Simulation Examples: Fuzzy Gain Lyapunov Filter 

In this section, some preliminary simulation results of the proposed fuzzy gain 

Lyapunov adaptive filter are presented here. For a comparative study, the adaptive 

numerical filters with RLS and LAF algorithms are also accomplished. These results 

are intended to show the proposed fuzzy gain Lyapunov adaptive filter can have 

comparable performance to the numerical filters and also allow for the simple 

inclusion of heuristic knowledge. 

Example 1- Fuzzy Gain Filter 

The desired signal d(k) and the filter input signal x(k) are shown in Figure 5.5. The 

additive noise, n(k) is a bounded random noise which satisfies the following bounded 

condition: I n ( k) I~ 0 .4 . The filter parameters are adaptively updated by the crisp 

output value of defuzzification in the expression (5.5). Figure 5.6 has revealed the 

performance of the fuzzy gain filter. 
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Example 2 -Numerical filters 

For the same setup, the performance of the numerical filters with the LAF and RLS 

algorithms are revealed. Figure 5. 7 and Figure 5.8 show the LAF filter output when 

the smaller and larger A.i, A.2 and K parameters in the expression (5.4) are used 

respectively. It has been shown in Chapter 3 that the performance of the filter 

depends on the parameters, A.1, A.2, K. On the other hand, Figure 5.9 and Figure 5.10 

reveal the performance of the RLS filter depending on the forgetting factor, p 

critically. The small forgetting factor gives good filtering performance but the 

adaptive parameters tend to vary in very large magnitude. 

Mean Square error plots for example I and example 2: 

For comparison, the mean square error (MSE) from the iteration 1 to 1000 for the 

simulation examples 1 and 2 are plotted. Figures 5.11, 5.12, 5.13, 5.14 and 5.15 are 

the MSE plots of the Figures 5.6, 5.7, 5.8, 5.9 and 5.10 respectively. 

From the results, it is observed that the fuzzy gain filter without exact mathematical 

model can give equivalent performance as the numerical filters provided the fuzzy 

rules and regions of membership function are designed properly. The fuzzy gain 

filter can deal with many ambiguous or uncertain situations and the exact 

mathematical model is not required. User can also extrapolate MBFs and rules 

manually from their experience to suit different applications. 
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Figure 5.7: LAF (small A.1,A.2, K = 0.01) - the desired signal d(k) and filter output y(k) 
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Figure 5.10: RLS (small p=O.l) - the desired signal d(k) and filter outputy(k) 
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5.5 LAF Fuzzy Adaptive Filter 

In this section, another new fuzzy adaptive filter using Lyapunov stability theory is 

proposed. This fuzzy adaptive filter is constructed from a set of changeable fuzzy IF

THEN rules. The adaptive algorithm. Lyapunov theory-based adaptive filtering 

(LAF) is used to update the parameter of the membership functions so that the 

dynamic error between the filter output and the desired response converges to zero 

asymptotically. 

Our LAF fuzzy adaptive filter solves the following problem. Consider a real-valued 

input sequence [x(k)] and a real-valued desired output sequence [d(k)], where k = 0, 

1, 2, ... is the time index. At each time point k, we are given the values of x(k) and 

d(k). The problem is to determine an adaptive filter f(x(k)) such that the dynamic 

error can converge to zero asymptotically. 

Fuzzy Filter 

Input x(k) 

LAF 

Figure 5.11: The LAF Fuzzy Filter 

Desired signal 
dfk) 

There are several approaches in fuzzy adaptive filters [45],[47],[1],[49],[50]. Authors 

of [ 45] have presented a fuzzy adaptive filter that is constructed from a set of 

changeable fuzzy IF-THEN rules to minimize some criterion functions. These fuzzy 

adaptive filters parameters are updated by RLS and LMS algorithms. However, the 

computation complexity involved in RLS fuzzy filter is highly parallelizable and the 
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fuzzy RLS filter might not be able to be used in some practical situations where the 

computing power is limited [45]. Therefore another fuzzy adaptive filter that 

involves much less computation is essential. On the contrary, the LMS fuzzy filter 

[ 45] has suffered from slow error convergence. 

Before we discuss the design detail of the LAF fuzzy adaptive filter, we first give a 

brief summary of the procedure. The Lyapunov fuzzy adaptive filter is constructed 

through the following steps. First, fuzzy sets are defined in the filter input space X c 

Rn whose membership functions cover X. Then a set of fuzzy IF-THEN rules which 

either come from human experts or are determined during the adaptation procedure 

by matching input-output data pairs is constructed. A filter based on this set of rules 

is constructed and its free parameters are updated using the LAF algorithm. The 

design procedure is similar to that in [45] that the fuzzy adaptive filter using RLS 

algorithm. This scheme has less computation complexity than the RLS fuzzy filter in 

[45]. The stability of the fuzzy filter is guaranteed by Lyapunov stability theory. 

5.6 Design Procedure of the LAF Fuzzy Adaptive Filter 

The design procedure of the LAF fuzzy adaptive filter is listed as follow: 

Step 1: 

Define M fuzzy sets F/ in each interval [C,-, C/] of the input space U. The M 

membership functions µF., cover the interval [C,-, c,+] andµF:, s are fixed functions. 
I I 

For exmaple, Gaussian membership functions 

1 x -x 
[ ( )2] µF,1 (x1 )=exp - 2 ~ (5.6) 

where I= 1,2, ... , M, i = 1,2, . .. ,n, X1E [C,-, c,+], O': and x, are fixed parameters. 

Step 2: 

Construct a set ofM fuzzy IF-THEN rules in the following form: 

R1 
: IF x 1 is F/ and ... and Xn is F/, THEN y is G' (5.7) 
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where x = (x1, ... , xn)T E U, y E R, F/'s are defined in Step 1, and d•s are fuzzy sets 

defined in R which are determined as follows: if there are linguistic rules in the form 

of (5.7), set F/'s and d to be those labels of these linguistic rules; otherwise, choose 

parameter µ 01 arbitrarily. The (parameter of) membership functionsµ
0

, in these rules 

will change during the LAF adaptation procedure of Step 4. Therefore the rules 

constructed in this step are initial rules of the fuzzy adaptive filter. We incorporate 

linguistic rules into the LAF fuzzy adaptive filter by constructing the initial filter 

based on these rules. 

Step 3: 

Construct the filter Jk: U-7 R based on the M rules of Step 2 as follows: 

fk (x) = "L:~f/ ~~=1 µ r;' (x,)) 

L1=1 [L1µF,, (x,)) 
(5.8) 

where x = (x, ... , Xn) T E U, µ r:' 's are the membership functions of filter input, eg., 
I 

Gaussian membership function of (5.6), and () 1 
E R is any point at which µ 01 

achieves its maximum value. If we chose the membership functionsµ F,' ( x,) to be 

Gaussian functions which are nonzero for any x, E [C;-, C/] , the denominator of 

(5.8) is nonzero for any x E U. Therefore, the filter fi of (5.8) is well defined. In 

(5.8), the weights µF, of the fuzzy adaptive filter are fixed functions. Therefore, the 
I 

free design parameters of the fuzzy adaptive filter are the () 1• We can now rewrite 

(5.8) as 

Jk (x) = Pr c:xw * (5.9) 
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Step 4: 

Use the LAF algorithm to update the filter parameters, e I so that the error can 

converge to zero asymptotically. Let the initial eg. e 1(0) be determined in Step 2; at 

each time point k = 1,2,. .. do the following: 

B* (k) = B* (k-1) + g(k)a(k) (5.10) 

where g(k) is the adaptation gain and a(k) is a priori estimation error defined as 

a(k)= d(k) - ()*(k-J.)p(k) (5.11) 

The adaptation gain g(k) in (5.10) is adaptively adjusted using Lyapunov stability 

theory as (5.12) so that the error e(k) asymptotically converges to zero. 

k _ p(k) (r ) e(k - I) 1) 
g( ) - 11p(k)11 2 - I a(k) I (5.12) 

where 0 ~ K < 1. The deficiencies of the expression (5.12) that the values of p(k) and 

a(k) may be zero and rise singularity problem are also noticed. Therefore the 

adaptation gain may be modified as the adaptation law (5.13) to avoid singularities. 

k - p (k) (1 I e(k - I) I ) 
g( )- /!,1+llP(k)ll 2 -K 11,2+la(k)I 

(5.13) 

where Ai, A-2 are small positive numbers. 

The following remarks are some comments on the LAF fuzzy filter: 

Remark 5.1: The LAF algorithm (5.10)-(5.13) is obtained by modifying the RLS 

using Lyapunov theory. Because fi of (5.9) is linear in the parameter, the derivation 

of (5.10)-(5.13) is the same as that of the FIR adaptive filter in [18]. Therefore we 

omit the details. 

Remark 5.2: The LAF algorithm can be viewed as updated the rules in the form of 

(5.7) by changing the 'centers', e 1 of the THEN parts of these rules so that the error 

can converge to zero asymptotically. We are allowed only to change these 'centers'. 

The membership functions µ F' of the IF parts of the fules are fixed at the very 
I 
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beginning and are not allowed to change. Thus a good choice of µ F/ 's is important to 

the success of the entire filter. 

Remark 5.3: It was proven in [46] that functions in the form of (5.8) are universal 

approximators. That is, for any real continuous function q on the compact set U, 

there exists a function in the form of (5.8) such that it can uniformly approximate q 

over U to arbitrary accuracy. Consequently, the fuzzy adaptive filter is a powerful 

nonlinear adaptive filter in the sense that it has the capability of performing difficult 

nonlinear filtering operations. 

Remark 5.4: The fuzzy adaptive filter (5.9) performs a two-stage operation on the 

input, x(k). First, it performs a nonlinear transformation p(.) on x(k); then the filter 

output is obtained as a linear combination of these transformed signals. In this sense, 

the fuzzy adaptive filter is similar to the radial basis function [51],[52] approaches. 

However, the unique feature of the fuzzy filter, which is not shared by other 

nonlinear adaptive filters, is that linguistic rules can be incorporated into the filter. 

Remark 5.5: Linguistic information (in the form of the fuzzy IF-THEN rules of 

(5.7)) and numerical information (in the form of desired input-output pairs (x(k), 

d(k))) are combined into the filter in the following way. Due to Steps 2-4, linguistic 

IF-THEN rules are directly incorporated into the filter (5.8) by constructing the 

initial filter based on the linguistic rules. 

5.7 Simulation Examples: LAF Fuzzy Adaptive Filter 

In this section, some preliminary simulation results of the LAF fuzzy adaptive filter 

are presented. The advantage of the proposed filters is that linguistic information 

from human experts (in the form of fuzzy IF-THEN rules) can be incorporated into 

the filters. Detail of the linguistic information will not be included here. The LAF 

fuzzy adaptive filter can deal with many ambiguous or uncertain situations and the 

exact mathematical model is not required. A bounded additive noise: 0 < n(k) < 0.2 is 

introduced at the filter input.. Figure 5.12 illustrates the comparison of the desired 

signal, d(k) and the filter output, y(k) respectively (2000 samples). The error, e(k) 

which is the difference between d(k) and y(k) is shown in Figure 5.13. 
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Figure 5.12: LAF fuzzy filter - the desired signal, d(k) & filter output, y(k) 

5 

4 

3 

2 

-1 

Figure 5.13: LAF fuzzy filter- the error, e(k) (y-axis: xJ0-4
) 
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5.8 Conclusion 

In this chapter, we have developed two nonlinear adaptive filters based on the 

Lyapunov theory-based adaptive filtering (LAF), namely, the fuzzy gain Lyapunov 

adaptive filter and LAF fuzzy adaptive filter. The developed adaptive fuzzy gain 

filters utilize both numerical data and linguistic information expressed by fuzzy IF 

THEN rules. The IF THEN rules are designed based on the Lyapunov theory. Hence 

the fuzzy gain filter with Lyapunov sense fuzzy rules can lead to error convergence 

to zero asymptotically. Furthermore it is possible to incorporate other a priori 

knowledge into the filter design. On the other hand, the key elements of the LAF 

fuzzy adaptive filter is the fuzzy logic system, which is constructed from a set of 

fuzzy IF-THEN rules, and the LAF adaptive algorithm for updating the parameters in 

the fuzzy system. The parameters in the fuzzy system are adjusted adaptively so that 

the error convergence to zero asymptotically. The most significant advantage of the 

fuzzy adaptive filters is that linguistic information from human experts (in the form 

of fuzzy IF-THEN rules) can be incorporated into the filters. If no linguistic 

information is available, the fuzzy adaptive filters become well-defined nonlinear 

adaptive filters, similar to the polynomial, neural networks, or radial basis function 

adaptive filters. The simulation examples have verified the aforementioned 

theoretical analyses of both fuzzy filters. 
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Chapter 6 

Lyapunov Stability-Based Adaptive 

Backpropagation (LABP) For Discrete

time Dynamical System 

6.1 Introduction 

104 

Recently dynamic neural networks have been attracting much attention from 

scientific community (special issue of 1994 March, IEEE Transactions of Neural 

Networks and 1997 June, Neurocomputing) because they are useful for temporal 

processing such as digital signal processing (DSP), system identification and control. 

There are two main methods to provide a static neural network with dynamic 

behavior: the insertion of a buffer somewhere in the network, or the use of feedback. 

The first kind of dynamic network is a buffered multilayer perceptron (MLP) in 

which tapped delay lines (TDLs) of the input are used. The buffer can be applied at 

the network inputs only, keeping the network internally static as in buffered MLP's 

[53] (Figure 6.1 a), or at the input of each neuron as in MLP with FIR filter synapses 

[44] (Figure 6.1~). The structure in Figure 6.la is often called time-delay neural 

network (TDNN) in [42],[55] and adaptive time-delay neural networks in [56]-[57]. 

It is well known that the buffered MLP and FIR-MLP can be shown to be 

theoretically equivalent [54] since internal buffers can be implemented as an external 

one. The problem with implementing FIR-MLP's as buffered MLP's is that the first 

layers sub networks must be replicated (with shared weights) [43] and so the 

complexity is much higher. Therefore buffered MLP and FIR-MLP are different 



Chapter 6: Lyapunov Stability-Based Adaptive Backpropagation 105 

architectures with regard to a real implementation. In this chapter, we have merely 

considered the TDNN or the buffered MLP with TDLs. 

Examples of implementation of feedback in the recurrent neural networks are in 

[28],[44],[42],[58]-[60],[43] ,[27],[61]-[65]. The major difference among these 

methods lies in how the feedback is included in the network. The feedback can be 

included externally as the Narendra-Parthasarathy MLP [66] also know as NARX 

network, where TDL's are used for the outputs that feedback to the input of the 

network. (Figure 6.1 c ), and in the Elman 's network [ 59]. If the feedback is 

connected internally or inside each neuron, this approach is called locally recurrent 

neural networks (LRNN's) or local feedback multilayer network (LF _MLN) 

[43],[60]. In these structures, classical IIR linear filters [18], also called ARMA 

models are used either directly or with some modifications. (Figure 6.1 b with IIR 

structure). The formal structure with external feedback is considered in this chapter. 

y[k 

Multilayer Perceptron 

x[k] x[k-n] 

x[k 1----.i Tapped Delay Line 

Figure 6. la: TDNN or MLP with TDL's inputs 

____, 
FIR/IIR l~lAS 

Cl) FIR /IIR r-
:;:J +~-p.... 

~ (1-1) y (IJ m nm 

Xn(I) 

FIR /IIR 

Figure 6.1 b: FIR-MLP or IIR-MLP Local Recurrent Neural Network 
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y[k] 

q - I 

Multi Layer Perceptron 

x[k) x[k-1) . . . x[k-n) y[k-m) .. . y[k-2) y[k-1) 

Tapped Delay Line Tapped Delay Line 

Figure 6. lc: MLP with TDL's inputs and outputs, sometimes called Narendara 

Parthasarathy or NARX neural network. 

A number of gradient-based algorithms have been developed for adapting discrete

time dynamical systems [67],[42]. For the buffered MLP of Figure 6.la with only 

input buffer, the Backpraopagation (BP) can be used. BP is probably the most 

widely applied neural network learning algorithm. Extension of BP to recurrent 

networks were proposed in [6]-[7],[13],[16]. Two main gradient-based learning 

approaches exist for recurrent networks: Backpropagation through time (BPTT) 

[28],[1] ,[42],[57] and real-time recurrent learning (RTRL) [40],[38],[57]. The 

difference between BPTT and RTRL is in how the chain rule derivative expansion is 

applied. More specifically during the learning phase, in BPTT the neural network is 

computed backward both in the layer and time dimensions, whereas in RTRL it is 

calculated forward . 

As pointed out by numerous researchers, BP or its modifications may suffer from 

slow convergence and may be trapped in local minima during gradient descent 

[70],[68]. There are different optimization numerical attempts [68]-[70],[38] to solve 

these problems. Unfortunately, as for any nonlinear optimization problem, we do not 

have 'a priori', guarantees that the numerical solving scheme will approach the 

optimal solution. The main difficulty is with the 'intrinsic shape' of the cost surface 

which is normally fixed and independent of the learning algorithm. As a result any 

algorithm must deal with such a surface. Therefore there are likely to be 'easy and 

difficult' problems, depending on the shape of that surface and not on the learning 

algorithm. This does not mean that no learning procedure can effectively find 

optimal solution. However, if the cost function has many local minima, devising an 
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effective learning algorithm may be very difficult or may involve high computational 

burden. Furthermore, the stability of the weight updated algorithm itself is also a 

significant problem when training dynamic neural networks [28]. 

To overcome the above problems, a new approach of designing a BP algorithm using 

Lyapunov stability theory is proposed in this chapter. This chapter has also extended 

the ideals of Lyapunov stability-based algorithms in Chapter 3-5 to the design of the 

BP algorithm for TDNN with feedback in particular. We call this new algorithm as 

Lyapunov Stability-based Adaptive Backpropagation (LABP) algorithm. The 

designed LABP is a non-gradient based algorithm. In our new scheme, a Lyapunov 

function is defined for the error between the desired response and the neural network 

output. The defined criterion function is the Lyapunov function that has only unique 

minimum. The weights of neural network are then adaptively adjusted so that the 

error can converge to zero asymptotically. The network weights updated strategy is 

independent of signal statistical properties because only the desired response and 

input signal are required. Its computational complexity is less than the algorithms 

such as genetic algorithms, learning automata and simulated annealing [33]-[35]. The 

stability concern for the LABP algorithm is guaranteed by the Lyapunov Stability 

Theory. Simulation examples are included to demonstrate the good performance of 

the proposed scheme. 

This chapter is organized as follows. In section 6.2, the LABP for TDNN is 

presented. Section 6.3 discusses the design of the proposed LABP algorithm. Section 

6.4 reveals the extension of the LABP algorithm to the recurrent MLP with TD Ls of 

inputs and feedback outputs. The theoretical derivation is further supported by the 

simulation examples in section 6.5. Finally, section 6.6 concludes this chapter. 
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6.2 Lyapunov Stability-based Adaptive Backpropagation 

(LABP) for Buffered MLP with TDL's Inputs or TDNN 

Before we discuss our new LABP algorithm for buffered MLP with TDL's inputs, we 

first discuss the Lyapunov theory-based adaptive algorithms proposed in Chapter 3-

5. The Lyapunov stability-based adaptive algorithms used in Chapter 3-5 are the 

modification of recursive least squares (RLS) algorithm using Lyapunov stability 

theory. They are different from the gradient-based methods in the optimization 

techniques. The selected Lyapunov function for the design has a unique global 

minimum in the state space. By properly choosing the parameter or weight update 

law in Lyapunov sense, the output of the adaptive filter or RBF network can 

asymptotically converge to the desired reference signal. The so-called local minima 

problem occurred in the gradient search-based algorithm can be prevented. The 

design is independent of the stochastic properties of the input disturbances since only 

the input observations and a collection of desired response are required. These 

Lyapunov stability-based algorithms have provided new approaches in adaptive 

filtering and RBF neural filtering designs. They may give alternative solutio11 to the 

problems encountered in gradient-based methods such as standard BP for the TDNN. 

Therefore, we extend the Lyapunov theory-based ideals to the LABP for TDNN in 

this section. 

6.2.1 Architecture 

The architecture of the feedforward dynamical MLP we consider for training is 

shown in Figure 6.2. The input x(k) is a sampled signal: x(k) = {x(k), x(k-1), ... x(k

n)} or x(k) = {x1u Xk-1, ... ,Xk-n }. The output is a scalar y(k). The purpose of this neural 

network is to adjust the neural weights { W;. 1 (I. l-l) (k)} in order to achieve error 

between the network output y(k) and the desired output d(k) converge to zero 

asymptotically. l is the layer index, j the node or neuron index, i the connection 

index, S;(I) (k)the output node j in the layer l, and W;/' l-l} the ith weight related to the 

j node in the layer l with respective to the previous layer, l-1. N(l) denotes the 

number of neurons in layer l. All the neural network activation functions is sigmoid 
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function, thus the output of the jth node of the Ith layer is a function of the weighted 

sum of the outputs of the preceding layer. (Figure 6.2, note that only one 

intermediate layer has been drawn) 

(6.0) 

The network nodes are partitioned into layers measured 0 to L+ 1, where the layer 

number indicates the distance of a node from the input nodes. The lower most layer 

is the input layer numbered as layer 0, and the topmost layer is the output layer 

numbered as layer L+l. BP addresses networks for which L ;?:l, containing "hidden 

layers" numbered 1 to L. For convenience of presentation, we will assume that L = 1 

in describing the LABP algorithm, implying that there is only one hidden layer, as 

shown in Figure 6.2. The algorithm can be extended easily to the cases when L:;e 1. 

There are N "real" inputs, thus the ith real input contribution for the MLP inputs is 

x,(k) = {x,(k), x,(k-1),. .. x,(k-n)} with i=l,2 ... N. 

Input Layer Intermediate Layer, Output Layer 

x(k) l=O l=l=L 1=2=L+l 

W,(1,0) 
II 

x(k) Xk w<2.1i 
II d(k) 

...:i 
x(k-1) 

~ 
E--1 

. x(k-n) e(k) 
W(2,I) 

lj 

... t W,'.'·'·'I ! 
I LABP 

Figure 6.2: TDNN or MLP with TDL's Inputs 

The following is the scenario for the feedforward network with L = 1 and with N=l. 

Let W1/
1
•
0J (k) denote the connection weights between the i'th neuron in the input 

layer, l=O and j'th neuron in the hidden layer, /= 1 (j = 1, 2, .. .,N(l= 1) and i = 1, 2, 
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... , N(/=O)), where N(/=l) is the number of nodes in the layer I= 1 and N(/=O) is the 

number of nodes in the layer I = 0. Let S1(k) and Fi·) be the output and the 

activation function of the /th neuron in the hidden layer, respectively. w1/·
1J (k) 

denote the connection weights between the j'th neuron in the hidden layer and the 

neuron in the output layer y(k), 1=2. Then we have 

N(l=l) 

y(k) = LWi~2,1iS;(k) (6.1) 
1=1 

(6.2) 

where j = 1, 2, .. .,N(l=J) and i == 1, 2, ... , N(l=O) 

Substituting (6.2) into (6.1) gives 

N(l=l) (N(/=0) ) 
y(k) = ~ Wi~2.1i F1 ~ w)1.oi x, (k) (6.3) 

where F(•) 
1 

= 1 -a(•) +e 

Note: the subscript of W 1/2·1J (k) is 1 (one) followed by j. 'l' indicates the output 

layer has only one output node. 

6.2.2 LABP Training Algorithm 

The strategy for updating the network parameters involves adaptive and supervised 

learning. At each iteration LABP algorithm is used to update the weights of the 

neural network using Lyapunov theory [20]. The connection weights w,/1· 0J (k) and 

W 1/2·1J (k) are first initialized randomly. Then the input vector x,(k) is passed 

successively to the input layer of the feedforward neural network. The output S1(k)) 

of the hidden layer and the output y(k) are computed using (6.1)-(6.3) and the 

available input vector x,(k). This is followed by computing the error, e(k). 

e(k) == y(k) - d(k) (6.4) 
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The weights of the TDNN can be updated using the following expressions: 

w..~2,1) (k) = w..~2,1) (k-1) + b.W..~2,1) (k-1) (6.5) 

and 

(6.6) 

where 

Mt':<2
•
1>(k) =-- d(k)- "w:<2

•
1>s (k) l l [ N(M) l 

11 S1 (k) N(l = 1) 7:i 11 J 
(6.7) 

b.W(l,O)(k) = [-w(l,O)(k-1) + 1 1 g (u(k))l 
11 11 N(l=O)x1 (k) 1 

(6.8) 

u(k) -
1 1 

d(k) 
N(l = 1) WI] (k) 

(6.9) 

(6.10) 

The design detail is presented in the next section. 

Remark 6.1: According to [71], the sigmoidal activation function is one-to-one and 

this is also said to be invertible. Therefore, g/ •) has the inverse function, thus the 

inverse function, F/ ( •) exists. 

6.3 Design ofLABP Using Lyapunov Theory 

The design of the LABP for the TDNN or the MLP with TDL of inputs is described 

by Theorem 6.3.1: 

Theorem 6.3.1: For the given input x,(k), if the weights ~,/1·0J(k) and W1/2· 1J(k) of 

the neural network are updated as follows 

w..~2,1) (k) = w..~2,1) (k -1) + b.W..~2,1) (k) (6.11) 



Chapter 6: Lyapunov Stabzlitv-Based Adaptive Backpropagation 

~w.<2• 1>(k) = d(k)- '1w.<2·1Js (k) +ae(k-1) 1 1 [ N(/=1) l 
11 SJ (k) N(l = 1) 7:t 11 

J 
(6. 12) 

(6.13) 

~w<1 •0>(k)=[-w<1 •0>(k-1)+ 1 1 
g (u(k))J (6.14) 

JI JI N(l = 0) x, (k) J 

where u(k) -
1 1 

d(k) (6.15) 
N(l = 1) W11 (k) 

then the error e(k) in (6.4) converges to zero asymptotically. 

Proof: Define a Lyapunov function of error e(k) 

V(k) = e2(k) 

L1V(k) = V(k) - V(k-1) 

= e2(k) - e2(k-1) 

= (y(k)-d(k)) 2 
- e 2 (k -1) 

(6.17) 

112 
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(

N(/=l) (N(/=0) ) 
= ~ ff';~2 • 1 l (k - l)F1 ~ W1~

1 • 0l (k)x, (k) + 

N(/=I) (N(/=0) N(l=O) ) )
2 

~LiW1~2 • 1 '(k)F1 ~ W1~
1 • 0'(k-l)x,(k)+ ~LiW1~1 • 0'(k)x,(k) -d(k) 

-e2 (~-1) 

(6.18) 

Using the expressions (6.12) and (6.14) in the expression (6.18), we have 

LiV(k) = - (1-cl) e2(k-1) < 0 (6.19) 

Remark 6.2: It is well-known that BP can be trapped in local minima during gradient 

descent. There are diff erenl mudificaliuns or impruvemenls Lu lhe BP [70]. One uf 

them is the adoption of momentum term [54] that improves the convergence speed 

and helps the network from being trapped in a local minimum. Besides the variation 

of BP, there are more complicated attempts [70],[33]-[35] to solve this problem and 

find the global minimum. Unfortunately, however, as for any nonlinear optimization 

problem, we do not have 'a priori' guarantees that the numerical solving scheme will 

approach the optimal solution [68]. The main difficulty is with the 'intrinsic shape' 

of the cost surface which is normally fixed and independent of the learning 

algorithm. The LABP provide a new attempt to this so-called local minima problem. 
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It is different from the gradient search based methods. According to Lyapunov 

stability theory, the selected V(k) is a Lyapunov function if and only is LIV(k) 1s 

negative (LIV(k) < 0). Whether or not LIV(k) is negative depends on the selection of 

the weight updated laws. Only if the weight updated laws of the LABP is chosen in 

Lyapunov sense, then V(k) , the Lyapunov function has a unique global minimum. 

Therefore, the selection of the Lyapunov function and the weight update laws are 

dependent. The proper selection of the weight updated laws can guarantee that the 

function V(k) is a Lyapunov function a unique global minimum. Thus the LABP is 

different from the gradient search-based algorithms which have fixed structure after 

the cost function is chosen. Their weights updated laws are only a mean to search for 

the global minimum and are independent of the cost function. 

Remark 6.3: It can be seen, from the design procedure of the LABP in the section 

6.3, the expressions (6.11)-(6.18), that only the input and output measurements are 

used for the design of the LABP in this paper. Thus the stochastic properties of the 

signals do not affect the performance the algorithm for TDNN. The main reason is 

that the optimizat10n technique used in our paper is based on the Lyapunov stability 

theory not on the gradient search techniques. It is known that the gradient search

based optimization techniques are indeed affected by the stochastic properties of the 

signals. However, if the input disturbances are bounded random processes, the 

weight updated algorithm in TDNN can be directly designed using the input and 

output measurements based on the Lyapunov stability theory without considering the 

stochastic properties of the signals. This statement is akin to the design of Lyapunov 

stability based adaptive control systems and variable structure control systems in 

[20]. 

Remark 6.4: Stability and speed of convergence is very important in real-time 

applications, where time varying systems have to be tracked. Stability is also a 

significant problem when training dynamical neural networks. The stability of the 

weight updates BP algorithms cannot be guaranteed [28] and the instability can occur 

if the learning rate is too large. In LABP approach, the weight updated law in the 

LABP algorithm is designed based on Lyapunov stability theory. According to the 

Lyapunov theory [20], the stability of the error dynamics between the desired 

response and MLP output is guaranteed. 
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Remark 6.5: The weight updated laws ll.W1f·
0)(k), ll.W1/(k) in (6.12), and (6.14), 

and u(k) in (6.15) can be modified as follow to prevent the singularities due to zero 

values of x,(k) and t:. W1/(k) and ~(k) becomes close to zero. 

ll.w.<2
•
1l(k) = d(k)- ""w.<2

•
1ls (k) +ae(k-l) 

1 1 [ N(/;l) ] 

11 
S/k) +Ai N(l = 1) '7:t 11 1 

(6.20) 

ll.W(l,O)(k) =[-w(l,O)(k-1)+ 
1 1 g (u(k))] 

JI JI N(l = 0) x, (k)+Az J 
(6.21) 

where u(k) -
1 1 

d(k) 
N(l = 1) W11 (k) + ..:l3 

(6.22) 

The constants of A1, A-2, A3 can be selected as follow: 0 < A-1, A-2, A-3 < 1. The smaller 

values of A-1, A-2 and A-3 contribute smaller the error e(k). Introduction of the constants 

A1, f...2 and A3 may slightly limit the tracking properties of the proposed scheme when 

the LABP algorithm operates in the presence of extreme high frequency components 

or a sudden large disturbance in the system. These constants may limit the updated 

weights to become large enough to track the large changes in order to obtain an 

excellent performance. However, the extreme high frequency components or sudden 

large disturbances are not usually present and they are not desired in many 

applications. The most important issue is that the stability of the proposed scheme is 

still guaranteed with the introduction of the bounded disturbance. Simulation 

examples in the section 6.4 will further verified the effect of these constants. 

Remark 6. 6: One of other approaches is the second order type, including Newton 

method [1],[69], the Broyden-Fletcher-Golgarb-Shanno, the Levenberg-Marquardt 

[73] and others. These methods converge with much less iterations than that required 

by the conventional BP. The extended Kalman learning algorithm developed by 

Singhal and Wu [72] and Pushkorius and Feldkamp [29], and the nonlinear recursive 

least-squares learning algorithm suggested by Kollias and Anastrassious [71] also 

roughly belong to this category. However, the computational and storage burden is 

increased quadratically with the number of weights because they have to calculate 
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and store the Hessian or Jacobian matrix. By observing the weights update law in the 

LABP (6.11)-(6.16), it is noted that the computation and storage requirements of 

LABP is much less than the aforementioned methods. The main reason is that there 

is no computation of Hessian matrix. The computational complexity of the LABP is 

also less than the algorithms such as genetic algorithms, learning automata and 

simulated annealing [33]-[35]. 

6.4 Lyapunov Stability-based Adaptive Backpropagation 

(LABP) for Recurrent MLP with TDL's Inputs-outputs 

In the past few years many researches have focused their efforts on recurrent neural 

networks because of their attracting capability to exhibit dynamic behavior. They 

also represent a very powerful computational model, but designing proper 

architectures for a given problem and devising effective learning procedures is a very 

challenging task. Many researchers have recently emphasized their efforts on 

devising efficient algorithms, mainly based on optimization schemes such as gradient 

based algorithms, for learning the weights of recurrent MLP. Like for feedforward 

networks, these learning algorithms may get stuck in local minima during gradient 

descent, thus discovering sub-optimal solution. The proposed LABP in this paper 

might offer new approach for this problem encountered in the recurrent MLP. 

Figure 6.3 shows the architecture of the recurrent MLP with TDL's input-output. The 

output neuron can be expressed as (6.23) 

N(l=I) 

y(k) = Iw1~2.1isj(k) (6.23) 
J=I 

The output of the hidden layer neuron is 

(6.24) 

where j = 1, 2, ... ,N(l=J) and i =I, 2, ... , N(l=O) and gives 
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(6.25) 

The inputs, </J.{k) takes {x,(k), x,(k-1), .. .,x,(k-n), y,(k-1), y,(k-2), ... ,y,(k-m) with 

i= 1,2, ... N+M, are passed to successively to the input layer of the MLP neural 

network. 

Figure 6.3: Recurrent MLP with TDL's Inputs and Outputs 

6.4.1 LABP Recurrent Network Training Algorithm 

The strategy for updating the network parameters is similar to LABP training 

algorithm in the section 6.2.2 and can be summarized as follow: 

w;~2.1i (k) = w1~2.1i (k-1) + L1w;~2.1i (k) (6.26) 

Mv.<2
•
1i(k)=-- d(k)-- "w<2

•
1is (k) +ae(k-l) 

1 1 [ N(l=l) l 
11 SJ (k) N(l = 1) f;t 11 J 

(6.27) 
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(6.28) 

ilW(l,O)(k)=[-w<1
•
0l(k-1)+ 

1 1 
g (u(k))] 

JI JI N(l = 0) <!>1 (k) J 
(6.29) 

where u(k) -
1 1 

d(k) 
N(l = 1) WI] (k) 

(6.30) 

(6.31) 

or Mv.<2
•
1i(k)= d(k)- "w.<2

•
1is (k) +ae(k-1)(6.32) 

1 1 [ N(l~l) ] 

11 S/k) +A, N(l = 1) 'f;t 11 1 

ilW(l,O)(k)=[-w<1
•
0l(k-1)+ 

1 1 
g (u(k))] (6.33) 

JI JI N(l = 0) <!>1 (k) +Ai J 

where u(k) -
1 1 

d(k) 
N(l = 1) WI} (k) + A3 

(6.34) 

Remark 6. 7: It is easy to see that the design of the LABP recurrent training 

algorithm is the same as the one given in theorem 6.1 if we replace the input x, (k) 

with <j>,(k) in the section 6.3. 

6.5 Simulation Examples 

In this section, simulation examples that illustrate the performance of the LABP 

algorithm for adaptive filtering problem in the Chapter 2 are presented. 

Example 1: LABP for TDNN or MLP with TDL's Inputs 

The adaptive filter is implemented by a three-layer MLP. The input layer is 

composed of the TDL of the input signal, x(k). The hidden layer is composed of 3 

sigmoidal units. The output layer contained one linear unit that is connected to the 

hidden nodes. Both input-hidden and hidden-output layers have connection weights. 
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In the first case, no additive noise is considered in the simulation. Figure 6.4a has 

revealed the comparison of the output of MLP with LABP, y(k) and the desired 

signal, d(k). The square error, e2(k) is illustrated in Figure 6.4b. The weights of 

input-hidden and hidden-output layers are plotted in Figure 6.4c, Figure 6.4d, Figure 

6.4e and Figure 6.4f The resulted MSE (mean square error) is l.69x10-4. Simulation 

has also shown the MSE is smaller if smaller values A.1, A.2, A3 are used. 

For comparison, MLP trained by some first and second order gradient methods are 

performed. These methods are BP, BPM, Netwon, Guass-Netwon [70]. The results 

of BP and BPM are illustrated in Figure 6.5a, Figure 6.5b, Figure 6.6a and Figure 

6.6b. The MSEs of BP and BPM are 0.0079 and 0.0073 respectively. Simulation 

results ofNetwon, Guass-Netwon are not shown due to the ill-conditioning suffered 

by both methods during the computation. It is well-known that computing the 

Hessian matrix in Netwon method is computationally expensive and the Hessian 

matrix may not be positive definite at very point in the error surface. An alternative 

to Netwon method is Gauss-Netwon, but Gauss-Netwon may still have ill

conditioning if the matrix is close to or is singular. These problems have been 

experienced during the simulation computation in this particular example. 

In the second example, the signal is corrupted by a uniformly distributed white noise 

sequence, n(k) varying in the range [0,0.5] and gives SNR,,,,14 dB approximately. 

The corrupted signal is shown in Figure 6. 7a. The comparison of the output of MLP 

with LABP, y(k) and the desired signal, d(k) are revealed in Figure 6. 7b. Figure 6. 7c 

illustrates the square error, e2(k). From the simulation results, the effect of additive 

noise is reduced greatly using the proposed LABP. 

In the third example, the input signal has experienced a large input disturbance. 

Figure 6.8 illustrates the corrupted input signal, x(k). The bounded noise is analogous 

to previous example except a sudden large disturbance is introduced within iterations 

1000-2000. Figure 6.9a and Figure 6.9b reveal the output signal, y(k) and the square 

output error, e2(k) of the LABP. The weights of input-hidden and hidden-output 

layers when the input is subjected to the disturbance are plotted in Figure 6.9c, 

Figure 6.9d, Figure 6.9e and Figure 6.9f 



Chapter 6: Lyapunov Stability-Based Adaptive Backpropagation 120 

Simulations are also computed for the aforementioned methods for comparison, but 

we do not include these comparison results in the simulation section of the chapter 

because of the limit of the paper length. But we have addressed the good robustness 

of the LABP with respect to additive noise and large disturbance in the paper. In 

summary, the simulation results have revealed that the proposed LABP design has 

better performance in terms of error convergence, tracking ability and resistance of 

additive noise. 

Example 2: LABP for Recurrent MLP with TDL's Inputs and Outputs 

This example demonstrates the use of the LABP for the on-line recursive algorithm 

for adaptive filtering. The adaptive filter is implemented by a three layer MLP. The 

input layer is composed of the TDL of the input signal, x,(k) and feedback output 

signal, y,(k-1). The hidden layer is composed of 5 sigmoidal units. The original 

signal is corrupted by an additive noise, n(k), that is a white uniformly distributed 

random variable with a range between 0 and 1. The adaptive neural filter is first 

simulated with LABP algorithm. Figure 6.1 Oa reveals the comparison of the network 

output y(k) and the desired response, d(k). The effect of additive noise is reduced 

greatly and y(k) follow the desired response d(k) closely. MSE is indicated in Figure 

6.10b. For the same setup, the adaptive neural filter is then trained with BPTT and its 

performance is shown in Figure 6.11 a. Due to large signal to noise ratio, the additive 

noise cannot be eliminated well, thus a vivid distance between the filter output, y(k) 

and the desired response, d(k) is observed in Figure 6.11 a. Figure 6.11 b has revealed 

the MSE achieved by the BPTT. 
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6.6 Conclusion 

In conclusion, the theoretical and simulation results have suggested that Lyapunov 

stability based adaptive backpropagation (LABP) algorithm can be a new approach 

to the design of the neural network training algorithm. The proposed LABP 

algorithm is non-gradient based algorithm. Based on the Lyapunov theory, MLP's 

weights are adaptively adjusted so that the output error converges to zero 

asymptotically. This scheme is independent of stochastic properties of the signals. 

The derivation and design of the LABP is straightforward. The stability concern for 

the LABP algorithm is guaranteed by the Lyapunov Stability Theory. There are a 

number of open issues that exist with the proposed scheme. Theoretical analysis and 

further experimental work are required to further concrete the design of BP using 

Lyapunov theory. In particular, the following issues are seen as important: 1) 

theoretical and experimental works on the LABP for the MLP with more than one 

hidden layer. 2) Different Lyapunov functions and weight updated laws. The further 

research-based that can be carried out is to use different Lyapunov functions and 

different weight updated laws to further improve the convergence properties and the 

robustness properties of the LABP algorithm with respect to the bounded random 

disturbances. Therefore the LABP algorithm is an exciting and challenging area with 

a wide variety of applications, but much future work or research need to be done. 
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Chapter 7 

Polynomial Signal Processing Using 

Lyapunov Theory 

7 .1 Introduction 

The objective of this chapter is to present one area of nonlinear signal processing 

known as polynomial signal processing using Lyapunov theory. The first part of this 

chapter presents a fast, less computation complexity and stable adaptive polynomial 

filters. We only focus on the following polynomial models: (1) Volterra model that 

the nonlinear system output signal can be related to the input signal through a 

truncated Volterra series expansion. (2) Bilinear model that involves recursive 

nonlinear difference equation. The second part of the chapter considers another 

realization of nonlinear Volterra filter using parallel-cascade structure. Parallel

cascade realizations implement higher order Volterra systems as a parallel 

connection of multiplicative combinations of lower order truncated Volterra systems. 

All the proposed techniques in this chapter have excellent convergence and their 

stability are guaranteed by the Lyapunov stability theory. These schemes are 

independent of signals' stochastic properties. They have less or comparable 

computational complexity compared to some conventional polynomial filters. 

Simulation examples have demonstrated the performance of these new designs. 

Chapter 7 is structured as follows. In section 7.2, the Lyapunov adaptive Volterra 

filter (LAVF) is proposed. This is then followed by the Lyapunov adaptive Bilinear 

:filter in section 7.3. The theoretical derivation is further supported by the simulation 
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examples in the section 7.4. In section 7.5, a new computation efficient adaptive 

algorithm for parallel-cascade truncated Volterra system is presented. Lastly, the 

concluding remark is presented in section 7.6. 

x[k] y[k] 

z·• 

z·• 

Figure 7 .1: 2"d truncated Volterra system Figure 7 .2: Bilinear system, N= 3 

7.2 Lyapunov Adaptive Volterra Filters (LAVF) 

In the Chapter 3, we have proposed Lyapunov theory-based adaptive filtering (LAF) 

techniques for FIR and IIR filters. Now we consider the realization of LAF using 

polynomial structure. In this section, we merely focus on the system representations 

using a second order Volterra series expansion. In the Volterra series representation 

of systems, which is an extension of linear system theory, the output y(k) of any 

casual, discrete-time, time-invariant nonlinear system can be represented as a 

function of the input sequence x(k). Considering an SISO system, the Volterra series 

expansion is given by 

- - -
y(k) = h0 + °Lh,(m,)x(k-m,)+ L °Lh2 (m1,m2)x(k-m1)x(k-m2)+ ... 

m1 =O m, =Om2 =0 

- - -
+ L L··· L hP (mpm 2 ••• ,mP )x(k-m1)x(k-m 2 ) •• x(k-mP) +..... (7.1) 

m1=0m2 =0 mp=O 
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where hp(m1, m2, ... mp) is known as the p-th order Volterra kernel of the system. In 

filtering application, the infinite series expansion in (7 .1) is not useful, hence the 

truncated Volterra series expansions of the form (7.2) is employed. 

N-1 N-1 N-1 

y(k)= 2> 1(m 1)x(k-m 1 )+ L l:h,(m"m,)x(k-m,)x(k-m,)+. 
m1 =O m1 =Om1 =O (7.2) 

N-1 N-1 

+ L ... L hp(m"m' , mP)x(k-m 1 )x(k-m,) ... x(k-mP) 
m

1
,=0 m1=0 

Note that there are O(N) coefficients in this polynomial expansion (ie. the number 

of coefficients is proportional to N). It is well known the major drawback for the 

Volterra system model in (7 .2) is that the complexity of implementing filters using 

this model can be very large even for moderately large values of N and P. 

Consequently, most of the practical application of systems employing Volterra series 

expansions involve low-order models. Figure 7.1 shows the block diagram of an 

adaptive Volterra filter. For simplicity, a second order Volterra series expansion is 

considered. The adaptive filter tries to estimate the desired response signal, d(k) 

using a second-order truncated Volterra series expansion in the input signal x(k). 

N-1 N-1 N-1 

y(k)= .~:>1 (m 1 )x(k-m 1 )+ L Lh2 (m"m 2 )x(k-m1)x(k-m 2 ) (7.3) 
m1=0 m2 =0m1=0 

For notational simplicity as well as ease of performance analysis, it is usual to write 

the algorithm using vector notation, thus (7.3) can be rewritten as 

y(k) = HT (k)X(k) 

where H(k) = [h1(0,k), hJ(l,k), ... , hJ(N-l;k), h1(0,0;k), h2(0,l;k), ... , 

h1(0,N-l;k), hi(l,l;k), ... h1(N-l,N-l;k)f 

X(k) = [x(k), x(k- 1), ... , x(k-N+ 1), x2 (k), x(k) x(k - 1), .. . , 

x(k) x(k-
0

N+l), x2(k-1), ... x2(k-N+l)f 

(7.4) 

Using the results in Chapter 3, we have the following updated law for the LA VF 

adaptive filter: 

H(k) = H(k- 1) + g(k)a(k) (7.5) 
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a(k)= d(k) - Hr (k-l)X(k) (7.6) 

k X(k) (1 I e(k-1) 1) 
g() llX(k)ll2 -K la(k)I (7.7) 

or k X(k) (i le(k-1)1) 
g( ) = A1 +II X(k) 11 2 -K Az+ I a(k) I (7.8) 

where 0 :::; K < I. 

Remark 7.1: It is easy to notice that the stability analysis of the error dynamics, 

convergence analysis of the LA VF adaptive filter are the same as those given in 

Theorem 3.1-3.3 in Chapter 3. 

Remark 7.2: The nonlinear Volterra filtering with LMS [74] suffers from slow 

convergence due to large eigenvalues spread. The other approach RLS converges fast 

but exhibits unstable behavior and suffers from ill-conditioning. 

Remark 7.3: Due to the fact the number of kernel increases exponentially as the filter 

order increases and this leads computation complexity also increases exponentially, a 

less computation adaptation algorithm is needed. The computation complexity of 

LA VF updated algorithm is less than that of RLS O(N4
) for 2nd order Volterra 

filtering [74]. 

7.3 Lyapunov Adaptive Bilinear Filters (LABF) 

The major problem associated with Volterra series representation of nonlinear 

systems is that a large number of coefficients are required to characterize many 

nonlinear processes. Consequently it is important to search for alternative 

representations that may be more parsimonious in their use of coefficients. One such 

model is that in which the input-output relationship is governed by a recursive 

nonlinear difference equation of the type 
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M 

y(k) = LP. (y(k-1),y(k-2), ,y(k-N + 1),x(k),x(k-1), .,x(k- N + !)) (7.9) 
1=! 

The simplest of the nonlinear systems in this category is the bilinear system : 

N-1 N-1 N-1 N-1 

y(k) = ~:>,y(k-i)+ LLh,,
1
y(k-j)x(k-1)+ l:a,x(k-i) (7.10) 

1=1 l=O 1=l 1=0 

In spite of the simplicity, this is an important nonlinear model since it can be shown 

under relatively mild conditions that a large class of nonlinear systems including 

Volterra systems can be approximated with arbitrary precision using bilinear system 

models with finite number of coefficients [74]. Figure 7.2 shows the block diagram 

of a bilinear filter for the case when N=3. 

Just as linear IIR filters can model many linear systems with more parsimony than 

FIR filters, there are a large number of nonlinear systems that can be approximated 

by nonlinear feedback models using a relatively small number of parameters. In such 

situations, once can expect that the adaptive bilinear filters can be implemented with 

good computational efficiency. Another attractive feature of the bilinear system 

models is that they can be used to approximate any Volterra system with arbitrary 

precision under fairly general conditions [75]. Due to these advantages, bilinear 

system models have found various applications, including those in control system, 

signal processing, biological systems, etc. 

An overview of continuous time bilinear system models and their applications can be 

found in [76]. In spite of the potential benefits of such system models, very little 

work has been done on adaptive filters employing nonlinear feedback models. 

Among the very few published works are [78]-[79]. The results in [78]-[79] involve 

direct-form structures and employ the conventional recursive least square adaptation 

algorithm or its variations, which are computationally very complex. Fast versions of 

such algorithms will almost certainly suffer from numerical problems. Reference 

[79] contains a Kalman filter type algorithm for adaptive bilinear filtering when the 

only unknown parameters are the noise statistics. The approach in [80] performs a 

Gram-Schmidt orthogonalization of the data. However implementing using this 

method for the structure shown in (7.10) requires high computation. Paper [78] 
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discusses an algorithm involving the simpler LMS adaptive filter. Again, such 

algorithms are known for their slow and input-dependent convergence rates. Lattice 

structures are attractive because of the existance of fast and numerically stable 

adaptive algorithms. 

In this section, a stable and fast bilinear adaptive filters is presented. The proposed 

algorithm in section 7.2 can be easily applied to bilinear filter. The expression (7.10) 

with input and coefficient vectors, H*(k), X*(k)can be rewritten as 

y(k) ==H*T (k)X*(k) (7.11) 

where H*(k) == [c1(k), c2(k), ... , CN-1(k), bo.1(k), ... , bN-J,N-1(k), ao(k), ... ,aN-1(k)]T 

X*(k) == [y(k-1), y(k-2), ... , y(k-N+ 1), x(k)y(k-1), ... , 

x(k-N+ l)y(k-N+ 1), x(k), .. . , x(k-N+ 1) ]T 

Then we have the following updated law for the LAVF adaptive filter: 

H*(k) = H*(k- 1) + g(k)a(k) 

a(k)= d(k)-H*T (k-l)X*(k) 

( k) _ x * (k) ( 1 1( I e(k -1) 1) 
g - 11x*(k)11 2 

- I a(k) I 

k _ x * (k) ( 1-1(" I e(k -1) I ) 
g( )- A-,+llX*(k)ll2 A-2+la(k)I 

where A.1, A.2 are small positive numbers and 0 ~ K < 1. 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

Remark 7.4:Due to the fact that the feedback is included, the stability concerns for 

the adaptive algorithms which are gradient based is no longer guaranteed. In these 

LA VF and LABP filters, the stability is guaranteed by Lyapunov stability theory. 
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7 .4 Simulation Examples for LA VF and LABF Filters 

In this section, we present the results of several experiments that demonstrate the 

good properties of the LA VF and LABF as well as verify the theoretical analysis 

presented earlier. The first part of the simulation example demonstrates the 

performance of the LA VF and LABF when an additive noise is introduced at the 

filter input. Simulation of the same setup with RLS, LMS is also accomplished for 

comparison. The second part of the simulations illustrates the performance of LA VF 

and LABF to the nonlinear system identification. 

Example 1: Adaptive Filtering 

Adaptive filtering with Lyapunov adaptive Volterra filter (LAVF) - In this example, 

Figure 7.3a illustrates a speech signal is corrupted with the additive noise n(k), 

uniform distributed random noise { 0 1}. The adaptive gain is updated according to 

the expression (7.8) and A1 = A2 = 0.01, K= 0.001. The result illustrated in Figure 

7.3b shows the comparison of the reference signal d(k) and the filter output signal 

y(k). It is seen that the output of the LA VF can follow the desired reference signal 

closely and the effects of noise is well eliminated. Figure 7.3c reveals the square 

output error, e2(k). For a comparison study, simulations of same setup for the 

Volterra filters with RLS, LMS algorithms are also presented. The results in Figure 

7.4a (forgetting or weighting factor, p= 0.2) and Figure 7.5a reveals the output 

signal of RLS and LMS respectively. They have higher noise level compared to that 

of LAVF by observing the square output error, e2(k) in Figure 7.4b and Figure 7.5b. 

The Volterra filter with LMS tends to have weak performance in the high noise 

situation. Hence LA VF has fast convergence speed, good tracking property and is 

highly stable. 

Adaptive filtering with Lyapunov adaptive Bilinear filter (LABF) - The corrupted 

input signal, x(k) and bounded noise are analogous to previous example. Figure 7. 6a, 

7.6b reveal the output signal, y(k) and the square output error, e2(k) of LABF 

respectively. These results have shown good performance of LABF filter. 
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Example 2: Nonlinear System Identification 

This example evaluates the performance of the proposed scheme when the 

underlying system model is different from the second-order Volterra system model 

used in the development of the adaptive filter. The problem considered here is that of 

identifying a nonlinear channel using the adaptive second-order Volterra filter 

illustrated in Figure 7. 7a. The nonlinear channel is a simplified model of a digital 

transmission represents one of the most important cases of a digital communication 

employing a nonlinear channel [80]. The memoryless nonlinear device is an AM/AM 

converter whose characteristics are shown in Figure 7. 7b. 

<{ k) Butterwonh 

Low-Pass Filter 

-------11~ 

Non linear 

Device 

Adaptive Second-Order 

Volterra Fllter 

Chebyshev 

Low-Pass Filter 

Figure 7.7a: Adaptive Filter To Identify A Nonlinear Transmission System 
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Figure 7.7b: Input-Output Characteristics of The AM/AM Converter 

The transfer functions of the fourth-order low pass Butterworth and Chebyshev 

filters, denoted as Hs(z) and Hc(z) are given by 

H (z)_ (0.078+0.1559z-1 +0.078z-2 )(0.0619+0.1238z-1 +0.0619z-2
) 

8 (l-l.3209z-1 +0.6327z-2 )(1-1.0486z-1 +0.296lz-2
) 

(7.16) 

and 

H (z)= (0.4638-0.4942z-1 +0.4638z-2 )(0.183+0.1024z-1 +0.183z-2
) (

7
.1

7
) 

c (1-1.2556z-1 +0.6891z-2 )(1-0.7204z-1 +0.1888z-2
) 
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respectively. Both filters have a cutoff frequency 0.1 cycles/sample. The input signal 

x(k) is uniformly distributed on the interval [0.12 1.78] so that the AM/AM converter 

is operated at saturation region most of the time. Figure 7.8a shows the output of the 

LA VF and the output of the nonlinear system over the 5000 samples. The square 

output error is displayed in Figure 7.Bb. Compared to the simulation results in [80] 

that the steady-state MSE's "" 0.00131-0.10623 by time averaging the ensemble 

averages in the range [9000 10000], LAVF has smaller square output error"" 10-10
• 

The further smaller square output error can obtained by using the smaller A.i, A.2, K. It 

appears that the proposed algorithm works well in this situation even though the 

structure of the adaptive filter is completely different from that of the system model. 
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7.5 A New Computation Efficient Adaptive Algorithm For 

Parallel-Cascade Truncated Volterra System 

Another the realization of nonlinear Volterra filter is parallel-cascade realization 

illustrated in Figure 7.9. Parallel-cascade realizations implement higher order 

Volterra systems as a parallel connection of multiplicative combinations of lower 

order truncated Volterra systems. Each branch in the Figure 7.9 consists of lower 

order Volterra systems combined in a multiplicative manner. This structure and its 

algorithms are attractive because of the modularity of the parallel-cascade 

realizations to approximate nonlinear systems efficiently using a reduced number of 

branches. This realization and its variations have several advantages over direct-form 

realizations. It is conceptually and computationally simpler to implement lower order 

Volterra system components than higher order Volterra systems. The realization 

resulted in modular interconnections oflow-order Volterra systems enabling efficient 

implementation of higher order Volterra systems using VLSI circuits. The second 

advantage relates to efficiency of implementation obtained through approximations. 

The parallel-cascade realizations provide a systematic method of approximating 

nonlinear systems by discarding less relevant branches in the realization [81], [82]. 

Several researchers have employed parallel-cascade filter [81]-[84]. Adaptive 

parallel-cascade filters for quadratic systems models were presented in [83] and [84]. 

The structure of [83] is not constrained to result in a unique solution to the estimation 

problem and the filter exhibits relatively slow convergence behavior. The work in 

[84] constrains the filter structure to provide convergence to a unique solution but it 

requires appropriate training to select its initial settings. Recently, authors in 

[81],[82] have presented the parallel-cascade realizations and approximations of 

truncated Volterra systems and applied this concept to high order Volterra filter. 

They claimed that this filter is capable of converging to a unique solution and does 

not require the use of a training signal to initialize the algorithm. They have designed 

the LMS and NLMS adaptive parallel-cascade Volterra algorithms. In the LMS 

parallel-cascade structure, singular value, LU or LDL T decompositions are 

employed. This results in three different sets of weights update expressions for the 

time dependence components. However, the speed of convergence and the steady-
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state characteristics are controlled by the positive constant or step-size. Because of 

the nonlinearities in the system model, derivation of the stability bounds for the step-

size is a very difficult problem. The step-size selection is a simpler task for the 

NLMS parallel-cascade algorithm. However it is assumed that the level of 

measurement noise in the desired response signal and the level of nonstationary in 

the operating environment are relatively low. Furthermore authors have argued that 

the estimation error is bounded for certain choice of the step-size as long as the input 

signal and the desired response signal are bounded in some sense. There is no 

theoretical analysis on the step-size bound. 

7 .5.1 Parallel-cascade Realization of Truncated Volterra Systems 

The output of a homogenenous and casual pth order Volterra system with N -sample 

memory is related to its input as 

N-1 N-1 N-1 

y(k) = L L ... L hP(m,,m 2 ... , mP)xx(k-m,)x(k-m 2 ) ... x(k-mP) (7.18) 
m1 =Om 2 =m1 m P -=m p-\ 

where hp(m1,m2, ... , mp) represents the pth order Volterra kernal of the system. 

A pth-order Volterra system can be realized using 1-th order and (p-/)-th order 

Volterra systems as illustrated in Figure 7.1. The input-output relationship in the 

expression (7 .18) can be compactly written using matrix notation as 

y(k) = X~,I (k)H N,i,p-I (k)X N,p-I (k) (7.19) 

In the above expression, the column vector XN,p(l'l) has (N+;-1) elements and contains 

all possible pth-order product signals of the form x(k-m1)x(k-m2) ... x(k-mp), where 0 

~ m1 ~ m2 ~ ... ~ mp ~ N-1. Let x(k-m1)x(k-m2) ... x(k-mJ be the element of XN,1(k), 

and let x(k-n1)x(k-n2) ... x(k-np-1), where 0 ~ n1 ~ ni ~ ... ~ np-1 ~ N-1, be the jth 

element of XN,p-1(k). Then, HN.1.p-I is a coefficient matrix of dimension of 

(N+/- 1)x(N+~~/>- 1)such the (i,j)-th element scales x(k-m1)x(k-m2) ... x(k-m1) x(k-

n1)x(k-n2) ... x(k-np-1) in the expression (7.18). 
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Figure 7.9: Parallel-cascade realization of a pth-order truncated Volterra system 

7.5.2 The Design of The Lyapunov Theory-based Adaptive Parallel-Cascade 

Volterra Filter 

The design of the adaptive filter using Lyapunov theory is described by the following 

theorem 7 .1. 

Theorem 7.1: For the given desired response d(k), if the weight vector HN.l.p-J(k) of 

the filter y(k) = x~.I (k)H N,l,p-/(k)X N,p-1 (k) is updated as follows 

HN. 1.p-1(k) = HN.t.p-1(k- 1) + g(k)a(k) 

and k _ X N,1 (k)X~.p-t(k) (l K I e(k-1) 1) 
g( )- II X N,1(k) 11 2 11XN,p-1(k)11 2 

- I a(k) I 
(7.20) 

where o::;; K < 1, then the error e(k)= d(k) - y(k) asymptotically converges to zero. 

Proof: Define a Lyapunov function 

V(k) = e 2 {k) (7.21) 

.dV(k)= V(k)- V(k-1) 
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=(d(k) - X ~.1 (k)H N,l,p-1 (k)X N,p-1 (k))2 - e 2 (k -1) 

== (d(k) - X ~ ,1 (k)(H N,1,,_,' (k - I)+ g(k)a(k) )x N,p-I (k)) 2 
- e 2 (k - I) 

==(d(k)-X~.1 (k)H N,l,p-t (k-l)X N,p-t (k)-X~.1 (k)g(k)a(k)X(k)) 2 -e2 (k-1) 

==(a(k)- X ~. 1 (k)g(k)a(k)X N,p- 1 (k)) 2 
- e 2 (k -1) 

= a 2 (k)(l - x ~.I (k)g(k)X N,p-1 (k))2 - e2 (k -1) (7.22) 

Using the expression (7.20) in the expression (7.22), we have 

(7.23) 

Remark 7.5 The deficiency of (7.20) is that the values of XN/ (k). XN,p-1(k) or a(k) 

may be zero and rise singularities problem is also noticed. Therefore the adaptation 

gain may be modified as the expression (7.24) to avoid singularities. 

k XN,1 (k)X~,p-t(k) (l le(k-1)1) 
g( ) =II X N.1(k) 11211XN,p-1(k)11 2 +A.1 - IC I a(k) I +A. 2 

(7.24) 

where A.i, A.2 are small positive numbers, 0 :s; K < 1, then the error e(k) asymptotically 

converges. 

Remark 7.6: Due to the fact the number of kernel increases exponentially as the filter 

order increases and this leads computation complexity also increases exponentially. 

The proposed scheme computational complexity is less than that of the existing 

parallel-cascade truncated Volterra filters proposed in [81],[82]. 

Remark 7. 7: Only the preliminary simulation results of the Lyapunov theory-based 

adaptive parallel-cascade Volterra flter, p==2, l==l, for nonlinear adaptive filtering are 

presented. The parallel-cascade realization of a pth-order truncated Volterra system 

for adaptive filtering will be further researched in the future. The simulation detail 

will not included here. A bounded additive noise: 0 < n(k) < 0.2 is introduced at the 

syslt:m input. Figure 7.10 illustrates the desired signal, d(k) and the parallel-cascade 

Volterra system output, y(k) is shown in Figure 7.11. 
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Figure 7.10: The desired signal or response, d(k) 

Figure 7.11 The Lyapunov theory-based adaptive parallel-cascade 

Volterra filter output, y(k) 

7.6 Conclusion 

151 

Two efficient, less computation complexity, good tracking and stable adaptive 

nonlinear polynomial filters: Volttera and Bilinear filters designed based on 

Lyapunov theory are presented. The emphasis in the first part of the chapter is 

adaptive filter based on system models using truncated Volterra series expansions. 

This is followed by the bilinear adaptive filtering using recursive nonlinear system 

models. The theoretical analysis and simulations have indicated that the LA VF and 

LABF have fast convergence speed, highly stable compared to RLS and LMS with 

Volterra or bilinear model. The second part of the chapter has presented algorithm 

for adaptive truncated Volterra filters employing paraJJel-cascade structures. ParaJJel

cascade realizations implement higher order Volterra systems as a parallel 

connection of multiplicative combinations of lower order truncated Volterra systems. 

Only the theoretical analysis is performed for this scheme. There are several other 

issues that require further study. One is the implementation issue, such as those 

involving exploitation of parallelisms and modularities in the structure of the 

adaptive filter have not addressed in this chapter. 
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Chapter8 

Other Adaptive Filtering Techniques Using 

Lyapunov Theory And Applications 

8.1 Introduction 

This chapter introduces other different techniques besides those proposed in Chapter 

3-Chapter 6. These techniques include (1) A new concurrent algorithm for adaptive 

filtering in parallel signal processing. (2) Complex-valued Lyapunov theory-based 

adaptive filtering. (3) A new approach in feedforward active noise control using 

Lyapunov stability theory. (4) A hybrid nonlinear neural predictor and its application 

to nonlinear and noisy time series prediction. Most of these methods are the 

modification of the scheme presented in Chapter 3-6 to suit particular applications. 

This chapter is organized as follows. Section 8.2 presents a concurrent Lyapunov 

theory-based adaptive filtering (CLAF). In section 8.3, a complex concurrent 

Lyapunov theory-based adaptive filtering (Complex-LAF) is proposed. Section 8.4 

suggests two algorithms called Filtered-X Lyapunov theory-based algorithm 

(FXLYP), Filtered-U Lyapunov theory-based algorithm (FUL YP), and a overall on

line modeling techniques using Lyapunov theory-based adaptive filtering (LAF) 

presented in Chapter 3. A hybrid nonlinear filter that consists of nonlinear and linear 

sub-predictors is introduced in section 8.5. Finally, the concluding remark is 

presented in the last section of this chapter. 
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8.2 A New Concurrent Algorithm For Adaptive Filtering In 

Parallel Signal Processing 

This section introduces concurrency in Lyapunov theory-based adaptive filtering 

(CLAF) algorithm for adaptive filtering. The proposed super filter consists of 

numbers of sub-filters. The sum of all sub-filter output forms the output of the super 

filter. We refer to this algorithm as CLAF algorithm because those sub-filters can be 

run in parallel. This implementation will be particularly useful in the real-time 

implementation of large order filter when the computational time per iteration is 

critical and the LAF, RLS (recursive least square) and LMS (least mean square) 

algorithms are not suitable. This scheme operates as follow: a Lyapunov function is 

first defined for the error between the super filter output and the desired response. 

Those sub-filters weight parameters are adaptively adjusted by the CLAF algorithm 

so that the error converges to zero asymptotically. 

The emergence of stable Lyapunov theory-based adaptive filtering (LAF) algorithm 

in Chapter 3, has been a major development in the design of adaptive algorithm. The 

LAF has provided good performance for a computational cost that is of the same 

order as stochastic gradient (SG) or fast least square (FRLS) algorithms [1)-[3] that 

lie in the range of few Ns approximately, where N is the filter length. Furthermore, 

LAF also provides better stability and convergence properties. Hence it is 

necessitated to further progress in the LAF design. When the order of the filter is few 

hundreds or thousands, such as for echo cancellation in audio conferencing, 

implementation of FRLS may be infeasible in real-time applications especially for 

nonlinear filters. FRLS has higher computational complexity, while SG is not suited 

because of the slow convergence rate. LAF might provide a solution to the 

convergence and stability problems, but not the computational time saving when a 

very large filter order is implemented. Therefore the exploitation of concurrency in 

corresponding to the saving in the computational time required per iteration is 

necessary. Therefore these reasons lead to the proposed CLAF algorithm.IY" 
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8.2.1 Concurrent Lyapunov Theory-Based Adaptive Filtering (CLAF) 

Figure 8.1 illustrates the adaptive filter using CLAF algorithm. The filter is referred 

as a super filter and is decomposed into q sub-filters by partitioning X(k) and W(k) 

into q vectors each as 

X (k)=[X1(k), X2(k), ... , X,(k), ... , Xq(k}}T 

WT (k)=[W1(k), W2(k), ... , W,(k), ... , Wq(k)f 

(8.1) 

(8.2) 

X,(k) and W,(k) are the data vector and weight vector of the ith sub-filter, 
q 

respectively. The dimension of both X,(k) and is W,(k) N,xl such that I N, = N . 
l=I 

X(k)' 

Super 
Filter 

... ~ 

Figure 8.1: The proposed super filter with CLAF algorithm 

W,(k) for the ith sub-filters, are computed independently and concurrently using their 

respective data vectors. The CLAF is applied to the filter to adaptively update the 

filter coefficients so that the error converges to zero asymptotically. The desired 

response can be expressed as follow: 

d(k) = t d,(k) (8.3) 
•=I 

where d,(k) represents the component of d(k) that is contributed by the ith subsystem. 

In this case, d,(k) = d(k) for all 15"i 5"q is assumed. Ifwe know the d,(k)'s, we can 
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easily implement the super filter as q sub-filters, each operating in parallel and 

independent of each other. The output y(k) of the super filter is computed by 

summing the outputs of the sub-filters. 

q 

y(k) = L: y, (k) (8.4) 
l=I 

The sub-filters' parameters are adjusted based on the error, e(k). In other words, we 

assume e,(k) = e(k) and d,(k) = d(k) for all 15 i 5 q. The sub-filters' coefficient 

vectors are updated using the following equation: 

W,(k) = W,(k- I) + K,(k)a(k) (8.5) 

where 
q 

a(k)= d(k) - L W,(k - l)X,(k) (8.6) 
t=I 

K (k)- X,(k) (i -/3 /e(k-1)/) 
' -l/X,(k)/1 2 '/a(k)/ 

(8.7) 

or K (k)- X,(k) (I /3 /e(k-1)/ J (8.8) 
' -A.1 +1/X,(k)l/ 2 

-
1 A 2 +/a(k)/ 

where A.1, A.2 are small positive numbers and the sum of ~,(k) must be less 1 or 

osffJ,<I. 
1=1 

8.2.2 The design of the CLAF using Lyapunov theory 

The design of the CLAP can be described by the following theorem: 

Theorem 8.1: For the given desired response d(k), if the weight vectors W,(k) of the 

super-filter y(k) = f W, (k)X, (k) is updated as follows 
1=1 

W,(k) = W,(k- I) + K,(k)a(k) 

and K (k) _ X, (k) (i _ /3 I e(k -1) 1) 
' -llX,(k)ll 2 

' la(k)I 
(8.9) 

where o s f fJ, < 1 , then the error, e(k) asymptotically converges to zero. 
l=I 

Proof: Define a Lyapunov function 
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V(k) = e 2 (k) (8.10) 

Then, ilV(k) = V(k)-V(k -1) =e2 (k)-e 2 (k-1) 

q 

= (d(k) - L w/ (k)X, (k)) 2 
- e2 (k -1) 

1=1 

q 

= (d(k)- L (W, r (k- I)+ K, (k)a(k))X, (k)) 2 
- e2 (k -1) 

l=I 

= (d(k) - f, W, r (k - I)X, (k)- f, K 1 (k)a(k)X, (k)) 2 
- e2 (k -1) 

1-1 t-1 

q 

= (a(k) - L K, (k)a(k)X, (k)) 2 
- e2 (k - I) 

1-1 

(8.11) 

Using the expression (8.9) in the expression (8.11), we have 

q 

LlV(k) = -(1- L P, 2 )e 2 (k-1) < 0 (8.12) 
1-1 

Remark 8.1: The design, stability analysis of the error dynamics and convergence 

analysis are similar as those in Chapter 3 if we replace K and g(k) in Chapter 3 by 

o ~ f /3, < t and K, respectively. 
l=I 

8.2.3 Saving In Computation Time 

Before proceeding to the computational time required per iteration by CLAF, it is 

worthwhile to examine the same for LMS and RLS if their inherent concurrency is 

exploited. Authors in [85] have proposed a new family of concurrent algorithms for 

adaptive filter, these include PLMS and PRLS [85]. Here we define µ as the time 

required for one multiplication and neglect the time required for addition operations. 

For standard LMS, it requires 2Nµ time if we have just one processor. When the 

LMS algorithm is implemented concurrently, we have N+ 1 processor and allocate 

one processor for each coefficient and one (called EP) for computing e(k) . Thus we 

can observe from Table 8.1 that the total time required is about 2µ +(plus) the time 

required by the processor for accessing y,(k) + the time required for global broadcast 

of e(k) to N processor. Therefore the time required is very small and independent of 
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N. This strategy may not be advantageous for small values of N, but for high order 

filter it will offer significant saving. 

In the same way, authors in [85] allocate one processor for each sub-filter in PRLS 

and exploit its natural concurrency. When PRLS is developed around RLS, as shown 

in Table 8.2, the steps 1 to step 5 can be done concurrently for each sub-filter. The 

time required for these steps is simply the time required by the longest or highest 

order sub-filter for steps 1 to 5 +time required for global broadcast of e(k) +the time 

required by the EP to access y,(k) + the time required for global broadcast of e(k) to 

N processor. Authors in [85] mentioned that the expression for time remains 

unchanged except for the first term when PRLS is developed around any FLS 

algorithm. The time for first term is replaced by the time required by the longest sub

filter for the computation of its gain K,(k), output y,(k) and W,(k) updated. Hence the 

smaller value of the .longest sub-filter length, the greater will be the savings in 

computational time compared with the time requires by even FLS algorithm with one 

processor, especially if N is large. General expression for the computational 

complexity is not rewritten in [85] because they depend on the chosen configuration 

and the version of conventional or fast LS algorithm selected for the gain 

computation of the sub-filter. 

Table 8.3 illustrates the concurrent implement of LAF (CLAF). It is notice that the 

steps 1 to step 4 can be done concurrently for each sub-filter. The time required for 

these steps is simply the time required by the longest sub-filter for steps 1 to step 4 + 

time required for global broadcast of e(k) + the time required by the EP to access 

y,(k) + the time required for global broadcast of e(k) to N processor. If we compared 

table 8.2 and table 8.3, less step is required for CLAF compared to PRLS. The time 

required for CLAF is less than that of PRLS. However, this 'less computational time' 

is not necessary applied to all concurrent implementation of fast versions of RLS. 

Therefore, CLAF has the potential of being used in real-time applications where 

computational time required per iteration is critical. 
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Table 8.1: Concurrent Implementation of The LMS Algorithm [851 

Ste I: Do fori =l, 2, ... N 

Step 2. e(k)=d(k)- L y 1 ( k) 
/=I 

Step 3. Do for 1 =l, 2, ... N 

Table 8.2: Concurrent Implementation of The RLS Algorithm 
(Develop around RLS) [85] 

Do steps I to 5 Step I Y,(k)=A:I C,(k-l)X,(k) 
for i =l, 2, ... q k _ Y,(k) 

Step2 g,( )-l+X/(k)Y,(k) 

Step 3 C1(k)=J1:1C1(k-l)- g,(k)Y,r (k) 

Step4 W,(k)= W,(k-1)+ g,(k) e(k) 

Step 5 y,(k)=X,T (k) W,(k) 
:L 

Step 6 e(k)=d(k)- L Y, (k) 
l=I 

Table 8.3: Concurrent Implementation of The LAF Algorithm 

Do steps I to 4 Step I 
a(k)= d(k)- ! W, (k - l)X, (k) 

for I=}, 2, . q 
1•1 

Step 2 K,(k) X 1(k) (i I e(k-1) I) 
Ai+ II X,(k) 112 -/3, A.,+ I a(k) I 

Step 3 W,(k) = W,(k - 1) + K,(k)a(k) 

Step4 y,(k)=){,T (k)W,(k-1) 

Step 5 
e(k)=d(k)-t y,(k) 

1•1 

8.2.4 Simulation Examples 
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The simulation examples are performed to demonstrate the performance of CLAF 

filter. The first example demonstrates CLAF's performance when the super filter 

input signal is corrupted by the additive random noise that is bounded. A super filter 

with 5 sub-filters, q=5 is considered. The adaptive gain is updated according to the 

expression (8.8). In the first case, A.i, A.2 and p1 in (8.8) are chosen as follow: 

A.,=A.2=0.001, and P1=P2= ... =Ps=0.001. The result illustrated in Figure 8.2a that 

shows the comparison of d(k) and y(k). The square error, e2 (k) is illustrated in Figure 

8.2b. The performance of the CLAP filter can be further improved by properly 
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choosing smaller parameters A1, A2 and Pt· It has been shown in Chapter 3, the 

smaller value of these parameters, the faster the error convergence rate and the 

smaller the error is. 

Simulations of the same setup with PRLS and PLMS are also accomplished for 

comparison. The simulation of the same number of sub-filter with PRLS algorithm is 

first presented. The results in Figure 8.3a and Figure 8.3b (forgetting or weighting 

factor, p= 0.2) reveal the output signal of PRLS method has higher noise level 

compared to that of CLAP by observing the e2 (k). Thus CLAP has fast convergence 

speed, good tracking property and is highly stable. Simulation results for PLMS are 

illustrated in Figure 8.4a and Figure 8.4b. 

In summary, the section 8.2 has introduced the CLAF that has provided a new and 

alternative approach to conventional parallel or concurrent algorithms and hopefully 

suggested a new research area of adaptive parallel signal processing. 
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8.3 Complex-valued Lyapunov Theory-based Adaptive 

Filtering (Complex-LAF) 

Most available adaptive filters are real-valued and are suitable for signal processing 

in real multi-dimensional space. In some applications, however, signals are complex

valued and processing is done in complex multi-dimensional space. An example is 

the channel equalization of communication channels with complex signaling 

schemes such as quadrature amplitude modulation (QAM). For complex signal 

processing problems, many existing adaptive algorithms cannot directly be applied. 

Although for certain applications it is possible to reformulate a complex signal 

processing problem so that a real-valued adaptive algorithm can be used to solve the 

problem, it is not always feasible to do so. Furthermore it is preferred to preserve the 

concise formulation and elegant structure of complex signals. [86],[87] 

This section presents a complex-valued version of the LAF in Chapter 3. A 

Lyapunov function is first defined for the real and imaginary parts of the error 

between the desired response and the filter output. Filter real and imaginary 

coefficients are then adaptively adjusted in parallel based on Lyapunov Stability 

Theory so that the error can converge to zero asymptotically. Simulation examples 

are included to demonstrate the performance that can be achieved based on the new 

design. 

The framework of complex adaptive Lyapunov filter problem is described as 

follows: the observations {x(k)} are regarded as the complex filter inputs and d(k) is 

the complex reference signal. The complex error e(k) is denoted as: 

e(k) = d(k) - y(k) 

= Re[ e(k)] + J Im[ e(k)] = e R (k) + 1e 
1 

(k) 

where y(k) = YR(k) + j YR(k) 

=HT(k)X(k) 

(8.13) 

(8.14) 

Figure 8.5 shows two ways of representing the complex linear combiner. The 

complex input vector X(k) and complex weight vector H(k) are given by 
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(8.15) 

(8.16) 

0 

Figure 8.5: Complex adaptive linear combiner. a) In block diagram form. b) In 
schematic representation. 

8.3.1 Complex Lyapunov Theory-based Adaptive Filtering Algorithm 

The complex adaptive Lyapunov algorithm consists two parts. The first part updates 

the real part of filter coefficients while the second part updates the imaginary part of 

filter coefficients. Both coefficients are updated in parallel. The structure of this 

algorithm is illustrated in Figure 8. 6. 
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Figure 8.6: Structure of Complex LAF Algorithm 
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The following algorithms is used to update the filter real and complex parameters 

vectors: 

or 

Re[H(k)] = Re[H(k- l)] + gR(k)aR(k) 

Im[H(k)] = Im[H(k- 1)] + g1(k)a1(k) 

aR(k) = Re[d(k)] - Re[Hr (k-l)]Re[X(k)] 

a1(k) = Im[d(k)] - Im[Hr (k-1)]/m[X(k)] 

k Re[X(k)] (I jeR(k-I)j) 
gR( )-11Re[X(k)]Ji2 -rq laR(k)j 

k Im[X(k)] (l J e1(k-I) JJ 
g,( ) - 11 Im[X(k)lll2 -Kz J a1(k) J 

where A.1, A.2, A3 ,A.4 are small positive numbers. 

Note· subscript R =real and I= imaginary 

(8.l 7a) 

(8.17b) 

(8.18a) 

(8.18b) 

(8.19a) 

(8.19b) 

(8.20a) 

(8.20b) 
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8.3.2 Design of the Complex-LAF Filter 

The design of the complex adaptive filter is described by Theorem 8.2: 

Theorem 8.2: For the given d(k), if the filter parameters vector H(k) of the filter y(k) 

=HT (k)X(k) is updated as follows 

Re[H(k)] = Re[H(k- 1)] + gR(k)aR(k) 

Im[H(k)] = Im[H(k- l)] + g1(k)a1(k) 

and (8.21a) 

(8.21b) 

where 0 ~ K1 , K2 < 1, then the real and imaginary parts of the error eR(k), e1(k) 

asymptotically converges to zero. 

Proof: Define a Lyapunov function of real and imaginary parts of the error e(k) 

V(k) = e(k)e*(k)= Re[e(k)] 2 +Irn[e(k)] 2 

AV(k) = V(k)-V(k-1) 

= Re[e(k)]2 + Im[e(k -1)] 2 
- Re[e(k -1)] 2 

- Im[e(k -1)]2 

= (s R (k-d)-H / (k)X R (k)) 2 -e/ (k-1) 

+(s,(k-d)-H/(k)X1 (k)) 2 -e/(k-1) 

= (s R (k-d)-(H RT (k-1) + g RT (k)a R (k))X R (k)) 2 

(8.22) 

-e/ (k-1) +(s1 (k-d)-(H/ (k-1) + g 1 r (k)a, (k))X R (k)) 2 -e, 2 (k-1) 
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= (sR(k-d)-(H/ (k-1) + g/ (k)aR(k))XR(k))2 -e/(k-1) 

+(s,(k-d)-(H/ (k-1)+ g/ (k)a1 (k))XR(k))2 -e/(k-1) 

= (sR(k-d)-H/ (k-l)XR(k)- g/ (k)aR(k)XR(k))2-e/(k-l) 

T T 2 2 +(s1(k-d)-H1 (k-l)X1(k)-g1 (k)ai(k)X1(k)) -e1 (k-1) 

= (sR(k-d)-H/ (k-l)XR(k)- g/ (k)aR(k)XR(k))2 -eR
2
(k-l) 

+(s1(k-d)-H/ (k-l)X1(k)- g/ (k)a1 (k)X1(k))2-e/(k-l) 

= (aR(k)- gR(k)aR(k)XR(k))2 -eR
2
(k-l) 

+ (a1(k)- g 1 (k)a1 (k)X1(k))2 -e/(k-1) 

2( T )2 2 2( T )2 2 =aR (k)l-gR (k)XR(k) -eR (k-l)+a
1 

(k)l-g
1 

(k)X/k) -e
1 

(k-1) 

(8.23) 
Note: subscript R = real and I= imaginary 

Using the expression (8.21a,b) in expression (8.23), we have 

LiV(k) = -(1-K/)eR 2 (k-l)-(l-K2 2 )e/ (k-1) < 0 (8.24) 
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Remark 8.2: The error eR(k) will not converge to zero if the adaptive gains gR(k) and 

g1(k) are adjusted using expressions (4.7a, b).However, the eR(k) will converge to a 

ball centred at the origin of the real error space with radius of the ball depends on Ai 

and A-2 values, while the e1(k) will converge to a ball centred at the origin of the 

imaginary error space with radius of the ball relies on A.3 and A-4 values. As explained 

in Chapter 3, smaller these constant values contribute smaller errors, eR(k) and e1(k). 

8.3.3. Simulation Examples 

The performance of the proposed complex-LAP filter is illustrated using a complex

valued nonlinear communications channel. The transmitted signal s(k)==sR(k)+js1(k) 

and the additive noise n(k)==nR(k)+jn1(k), are complex. The nonlinear element is 

defined by 

(k) 2s(k) ( 1' I s(k) 1
2 

) u = exp J 
I+ I •(k) 1

2 3 I+ I s(k) 1
2 

(8.25) 
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This static nonlinearity is used to represent the nonlinear high power amplifier in the 

transmitter [86],[87]. Therefore this channel is characterized by nonlinear model. The 

time dispersive transmission medium is usually modeled as a finite impulse response 

(FIR) filter with a transfer function 

A(z) = (-1.0119 + j* 0.7589) +( -0.3796 + J*0.5059)"1 + (-1+J*0.5000)z·2 (8.26) 

The first simulation is to show the robustness of the complex filter to additive noise. 

where both nR(k) and n1(k) are bounded additive noise: 0 < nR(k),n1(k) < 0.4 that 

gives SNR "'18. Figure 8. 7a illustrates filter input signal, Re[x(k)], Im[x(k)], that is 

the channel output corrupted by additive noise. Figure 8. 7b reveals the comparison 

of the desired signal, Re[d(k)] = Re[s(k-1)], Im[d(k)] and the filter output Re[y(k)] 

and Im[y(k)] respectively. It can be seen that the complex-LAP filter is highly 

suitable for nonlinear channel equalization. 

The second simulation is presented to reveal the robustness of the filter to an 

unexpected large disturbance. The disturbance is indicated in Figure 8.8a. Figure 

8. 8b shows the comparison of the filter output y(k) and the desired response, d(k) for 

real and imaginary parts respectively. Effects of the additive complex noise and the 

disturbance are greatly reduced. Re[y(k)], Im[y(k)] follow the desired response, 

Re[d(k)], Im[d(k)] closely. Hence the proposed filter is robust to the additive noise 

and disturbance. 

In conclusion, the section 8.3 has provided a new approach in designing a complex 

adaptive filter using the Lyapunov Stability Theory. Simulation has revealed good 

error convergence, robustness to additive noise and large disturbance presented in the 

channel equalization. 

Fillar Input raal(><(k)J end lmagf><(k)J 

Figure 8.7a: Filter input signal, Re[x(k)], Im[x(k)] 
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Figure 8.7b: Filter output & desired signal Re[y(k)], lm[y(k)],Re[d(k)], lm[d(k)] 
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Figure 8.8a: Filter input signal, Re[x(k)], Im[x(k)] 
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Figure 8.8h: Filter output & desired signal Rel}•(/9], lm[y(k)],Re[d(k)], Im[d(k)] 
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8.4 A New Approach In Feedforward Active Noise Control 

Using Lyapunov Stability Theory 

In this section, two new and efficient algorithms for active noise control (ANC) 

system are proposed. The conventional Filtered-X LMS (least mean square) and 

Filtered-U LMS will be introduced briefly in the initial part of the section. This is 

followed by the new implementation of the proposed Filtered-X Lyapunov theory

based (FXL YP) and Filtered-U Lyapunov theory-based algorithms for ANC. Like 

FXLMS, these algorithms have included the secondary path effect. The secondary 

path effect is adaptively estimated by a new proposed overall online modeling 

technique that employs Lyapunov theory-based adaptive filtering (LAF) in Chapter 

3. Simulation examples are performed to demonstrate the performance of this 

scheme. 

8.4.1 Active Noise Control 

Noise control has become ever more important in recent years. Interest in active 

methods for the suppression of noise and vibration has grown recently, as evidenced 

by the numerous review articles and books that have appeared on the subject [88]

[95]. Although the potential for active noise and vibration control has long been 

recognized [96], successful implementations of these technique have begun to appear 

maturation of technology in three areas: 1) novel electroacoustic transducers, 2) 

advanced adaptive control algorithm, and 3) inexpensive and reliable digital signal 

processing (DSP) hardware. As advances in these areas are developed, active 

suppression of noise and vibration can be expected to find wider use in a number of 

commercial, industrial, and military applications. Specifically, ANC [88],[91] has 

been successfully applied to HV AC (Heating, ventilating and air conditioning) 

systems [89], exhaust noise and motor noise [89]. Furthermore, national and 

multinational programs and policies are being established to reduce and control 

environmental noise. 

In general, ANC is based on the principle of the destructive interference between a 

primary noise source and a secondary source, whose acoustic output is governed by a 



Chapter 8: Other Adaptive Filtering Techniques And Applications 169 

controller. [88],[92] The output of the secondary source (i.e. loudspeaker) has to be 

in exact anti-phase with the acoustic wave produced by the primary noise source. A 

typical ANC system in a duct is shown in Figure 8.9. There are two distinct 

strategies for ANC: Feedforward and feedback. The formal strategy is the one we 

considered in this paper. For feedforward control, the noise from the primary source 

travels, from left to right, as plane waves through the dust. A microphone located 

upstream from the secondary source detects the incident noise waves and supplies 

the controller with an input signal. The controller sends a signal to the secondary 

source (i.e. loudspeaker) which is in anti-phase with the disturbance. A microphone 

located downstream picks up the residuals and supplies the controller with an error 

signal. 

'" Incident : : : . . --H.+-+ pnmmy notsc 
1 
: : 

"' 

; : , Upstream 
-..- secoildary noise 

II' 

~~: Downstream 
!'Lit 

;~; sccondarynoisc+ 
, , '· primary noise 

Detect Microphone Error Microphone 

Figure 8.9: Single-channel broadband feedforward ANC system in a duct 

The most popular adaptive algorithm for active noise and vibration control is the 

Filtered-X LMS (FXLMS) algorithm [88],[97]-[104]. Its equivalent block diagram 

for single channel ANC using FXLMS is illustrated in Figure 8.10. This algorithm is 

a modification of the well known LMS algorithm, in which the reference signal is 

filtered to compensate for a filtering operation inherent to the adaptation loop. The 

introduction of the secondary path and the filtered reference signal in the system 

complicate significantly the analysis of the adaptive algorithm behavior. Analysis 

results derived for the conventional LMS algorithm do not apply to the filtered case. 

Also, simplifying assumptions that facilitate the analysis of the LMS algorithm 

cannot be easily extended to the FXLMS algorithm. This is the case of the 

independence theory. The signal correlations introduced by the filtering operations 

render the independence theory inadequate for the statistical analysis of the algorithm 
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behavior. This is a substantial drawback, since the exact analysis without the 

independence assumption becomes very cumbersome, even for the much simpler 

case of the conventional LMS algorithm. Most of the stochastic analyses of the 

FXLMS algorithm available in the literature concentrate on the stability limits of the 

algorithm. [88],[97] These results are important for the proper design of the 

algorithm. However, a more complete analytical model is ~ecessary for a better 

understanding of the algorithm's properties, including transient and steady-state 

behavior under different implementation conditions. 

In order to consider the feedback dynamics as a part of the overall plant in ANC, the 

Filtered-U LMS (FULMS) [88],[97] algorithm is derived. Figure 8.11 illustrates its 

equivalent block diagram. The simplifying assumptions in the derivation of these 

algorithms make them conservative in terms of reducing the admissible update gain 

factors. Consequently, their convergence performance is unsatisfactory. Additionally, 

since the error microphone should be located far from the secondary source to avoid 

the near-field effects of sound, there is a time delay in the secondary path dynamics. 

This represents yet another source of deterioration of the convergence behavior. 

Several modified algorithms have been proposed to improve the convergence 

behavior [88],[105]. These modifications are made either by considering the effect of 

time delay [88] or by directly applying the Lyapunov theory in the derivation of the 

algorithms [88],[20]. Both approaches yield the same solution, which here is referred 

to as stable adaptive algorithm [88]. However, it still does not guarantee stability in 

the presence of model uncertainty and disturbance. Hence, a robust stable algorithm 

is desired for ANC that includes the feedback dynamic. 

x(k) 
P(z) 

d(k) 
v2(k) 

H(z) S(z) 

S'(z) 

x'(k) 

LMS 

Figure 8.10: ANC using FXLMS algorithm 
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Figure 8.11.: ANC using FULMS algorithm 

In general, the FXLMS algorithm can be summarized as follow: 

h, (k + 1) = h, (k)- µ(k)e(k)x'(k-i) (8.27) 

where µ(k) is the algorithm step size or learning rate at time k, the filtered input 

sequence x'(k) is computed as 

M 

x'(k) =~:Sm (k)x(k - m) (8.28) 
m=I 

and M is the FIR filter length of an appropriate estimate of the plant impulse 

response. In practice, the values of sm in (8.24) and are usually obtained in a separate 

estimation procedure that is performed prior to the application of control. They are 

also estimated through the on-line modeling. 

When the effects of feedback are included in ANC, the FULMS is used. Going 

through the derivation of the IIR-LMS algorithm, taking account of the presence of 

S(z) results in the following FULMS weight update equations: 

a(k+ 1) = a(k) + µx'(k)e(k) (8.29) 

and b(k+ 1) = b(k) + µy'(k-l)e(k) (8.30) 

where x'(k) = s '(k)*x(k-1) and y'(k-1) = s'(k)*y(k-1). 

The output of the ANC controller is given by 

(8.31) 
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where H(k) = [a(k) b(k)}T, U(k) = [x(k) y(k-1)}~ 

Although FXLMS and FULMS offer simple update strategies, they require 

knowledge about the statistics of the input data in order to choose the proper step 

size, especially when on-line secondary path identification is employed. To ensure 

convergence, the step size is typically chosen to be smaller, causing the system to 

converge slowly and to exhibit poor performance. 

8.4.2 New Implementation: Filtered-X Lyapunov Theory-Based Algorithm 

Chapters 3-7 have proposed a range of Lyapunov theory-based algorithms. These 

ideas can be extended to design an adaptive algorithm in ANC controller. However, 

those results derived in Chapter 3 do not apply to the filtered case in ANC. Hence, a 

modified of LAF algorithm for ANC is proposed and it is called Filtered-X Lyapunov 

theory-based algorithm (FXL YP). To include the feedback dynamics as a part of the 

overall plant, a new Filtered-U Lyapunov theory-based algorithm (FULYP) 

algorithm is then derived in the section 8.4.3. 

x(k) 
P(z) 

d(k) v,(k) 

V1(k) 

y(k) 

H(z) S(z) 

S'(z) 

FXLYP 

Figure 8.12: ANC with FXLYP algorithm 

If the FIR filter-based controller is implemented, the output of the adaptive controller 

filter is 

N-1 

y(k) = L h, (k)x(k-i) = HT (k)X(k) (8.32) 
1=0 



Chapter 8: Other Adaptive Filtering Techniques And Applications 

where H(k) = [hk(O),hk(l), .. .,hk(N -l)jT, X(k) = [x(k), x(k- 1), ... , x(k-N+ 1)] r 

An error sensor measures the error signal as modeled by the equation 

e(k) =d(k) +s(k)*y(k) =d(k) +s(k)*HT(k)X(k) 

=d(k)+ HT(k)X'(k) (8.33) 
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where X'(k) = [x '(k), x '(k-1), ... , x '(k-N+ 1)] r is the filtered reference signal vector 

with elements x '(k)=s '(k)*x(k) and s '(k) is the impulse response of the secondary 

path S'(z). 

Now the LAF algorithm cannot be employed directly to ANC and it has been 

modified as follow to suit to the ANC scheme: 

or 

H(k) = H(k- 1) - g(k)a(k) 

a(k)= d(k) + Hr (k-l)X'(k) 

(k) _ X'(k) ( 1 I e(k -1) 1) 
g -llX'(k)ll 2 -T\ la(k)I 

(k _ X'(k) (i T\ le(k-l)I) 
g )- A.

1
+llX'(k)i1 2 

- A.
2
+la(k)I 

where A-1, A-2 are small positive numbers and 0::; K <I. 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

Remark 8.3: The secondary path model in the ANC can be obtained by offline or 

online modeling techniques. One of these techniques is overall online modeling [88] 

that has the capability to model the secondary path without using an additional 

excitation signal. It also introduces another adaptive filter to model P(z). From the 

expression (8.35) it is noticeable that the undesired signal, d(k) is needed for the 

training algorithm. If the undesired signal is not available, an estimated d(k) from the 

overall online modeling can used for the FXLYP. A new overall online modeling 

scheme based on the Lyapunov theory is presented in the later section so that it can 

be used in conjunction with the FXL YP or FUL YP to have excellent performance. 
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8.4.3 New Overall Online Modeling Using Lyapunov Stability Theory 

Current online adaptation techniques for ANC system can be divided into two 

classes, namely techniques that estimate the secondary path S(z) by using additive 

noise and overall modeling techniques without the use of additive noise. The overall 

modeling is the one we consider. 

x(k) 
P(z) d(k) Vz(k) 

e(k) 

y(k) 

y'(k) 

f(k) 

y(k) 

e(k) 

d'(k) 

LYP 

Figure 8.13: ANC system using overall modeling technique 

The residual error signal e(k) in Figure 8.13 can be expressed as 

e(k) = y'(k) + d(k) =PT (k)x(n) +ST (k)y(k) (8.38) 

where p(k) and s(k) are the impulse response of P(z) and S(z) at time k respectively. 

On the other hand, the combined output of the adaptive filter S(z) and Pcz) is 

e(k) = p (k)x(k) + s(k)y(k) = Wr(k)U*(k) (8.39) 

where the signals vector is expressed as U*(k) = [x(k) y(k)]T, and the weights vector 

is W(k) = [p (k) i (kJt 

In this system identification configuration, W(k) is adjusted to approximate S(z) and 

P(z). Now the LAF algorithm presented in Chapter 3 can be applied in this modeling 

scheme: 

W(k) = W(k- 1) + g*(k)a*(k) (8.40) 
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a*{k)= e(k) + wr {k-l)U(k) (8.41) 

*(k)- U*(k) (i-pJ/(k-l)JJ 
g -llU*(k)ll' Ja*(k)J 

(8.42) 

or * (k) _ u * (k) (i p I f(k -1) I ) 
g -r1+llU*(k)ll 2 - r2+la*(k)I 

(8.43) 

where "(1, "{2 are small positive numbers and 0:::; B <l. 

Remark 8.4: The estimated s (k) from W(k) = [p (k) s (k)f is then applied to the 

FXL YP algorithm. The estimated undesired signal, d'(k) = p (k)x(k) is used for the 

FXL YP if the primary undesired signal, d{k) is not obtainable. Again, the designed 

overall modeling algorithm preserves the same characteristics or advantages of LAF 

and FXL YP as discussion in Chapter 3 and previous section. 

Figure 8.14: ANC using FUL YP algorithm 

8.4.4 New Implementation- Filtered-U LYP Algorithm 

Figure 8.14 illustrates the ANC using the Filtered-U Lyapunov stability theory-based 

(FUL YP) algorithm. If the IIR filter-bast:d controller is implemented, the output of 

the adaptive controller filter is 

N-1 N-1 

y(k) = L, b, (k)x(k - i) + L, a, (k)y(k -i) (8.44) 

=BT (k)X(k) +AT (k)Y(k -1) = H *T (k)X * (k) 
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U(k) = [x(k) y(k-l)f =[x(k), x(k-1),···, x(k-N+ I),y(k- I),y(k-2),-·-,y(k-N +I)]' 

An error sensor measures the error signal as modeled by the equation 

e(k) =d(k) +s(k)*y(k) =d(k) +s(k)*(BT(k)X(k)+AT(k)Y(k-1)) 

(8.45) 

where U'(k) = [x'(k), x'(k-1), .. ., x'(k-N+l), y'(k-1), y'(k- 2), ... , y'(k-N+l)] r is the 

filtered reference signal vector with elements x '(k) =s '(k)*x(k) and s '(k) is the 

impulse response of the estimated secondary path. On the other hand, y '(k-1) 

=s '(k)*y(k-1). 

Now, the coefficient vector updated law can be summarized as 

or 

H*(k) = H*(k- 1) - g(k)a(k) 

a(k)= d(k) + H* r (k-l)U'(k) 

k _ U'(k) l-Kle(k-1)1 
g( ) - II U'(k) 11 2 I a(k) I 

k _ U'(k) (l K le(k-1)1) 
g( )- 21+llU'(k)ll2 - 22+la(k)I 

where A.1, A.2 are small positive numbers and 0 ::; K <l. 

(8.46) 

(8.47) 

(8.48) 

(8.49) 

Remark 8.5: Again, it is suggested that the combination of FUL YP and the on-line 

estimation of modeling the secondary paths transfer function S(z) and the primary 

plant P(z) proposed in the section 8.4.4 can give better performance. 

8.4.5 Simulation Examples 

Simulation examples illustrate the performance of the p~oposed FXL YP and FULYP. 

Segments of broadband noises used are sampled and then are applied to the input of 

the ANC system. The secondary path model used is S(z-1)=z-2(1-2z-2
) which is a 

delayed bandpass and has zero outside the unit circle. Effects of measurement noises, 

u(k) shown in Figure 8.10 is also considered. The additive noise is white normal 
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random noise {O 1 }. To compare the performance of the proposed scheme, 

simulation with FXLMS algorithm is also presented. 

ANC controller (FIR) with FXLYP vs FXLMS - The output, y'(k) of the ANC with 

FXL YP including the controller filter and secondary path transfer function is 

illustrated in Figure 8. I 5a. The residual error, e(k) is revealed in Figure 8. I 5b. For 

the same setup, simulation results for FXLMS including the secondary path 

estimation are illustrated in Figures 8. I 5c and 8. I 5d. Plots of the error, e(k) for 

FXL YP and FXLMS without additive noise are shown in Figures 8. I 6a and 8. I 6b 

Their weights are revealed in Figures 8. I 6c and 8. I 6d respectively. It is notices that 

the proposed controller with FXLYP can tolerate the additive noise, v1(k) and 

perform better than FXLMS. Thus the theoretical and simulation results have shown 

this scheme has given good performance. 

ANC controller (IIR) with FULYP vs FULM S- Figure 8.17a show the output of the 

ANC with FUL YP. The residual error, e(k) is revealed in Figure 8.17b. Those 

simulation results for FULMS including the secondary path estimation are illustrated 

in Figure 8.17c and 8.17d for comparison. Controller weights with FULYP and 

FULMS are plotted in Figure 8.17e and 8.17/when additive noise is absent. From 

these simulation results, the proposed FUL YP is guaranteed to perform better than 

FULMS for ANC with IIR structure. 
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8.5 A Hybrid Nonlinear Neural Predictor And Its 

Application To Nonlinear And Noisy Time Series Prediction 

In this section, we propose a hybrid predictor with Lyapunov theory-based adaptive 

algorithms. It consists of the following sub-predictors: (1) A nonlinear sub-predictor 

(NSP), which consists of a multilayer neural network (MLNN) with a nonlinear 

hidden layer and a linear output neuron. The algorithm used to update the weights is 

Lyapunov stability-based backpropagation algorithm (LABP) Chapter 6. (2) A linear 

sub-predictor (LSP), which is a conventionalfinite-impulse-response (FIR) filter. Its 

weights are adaptively adjusted by the LAF algorithm. The NSP that includes 

nonlinear functions can predict the nonlinearity of the input time series. However the 

actual time series contains both linear and nonlinear properties, hence the prediction 

is not complete in some cases. Therefore the NSP prediction error is further 

compensated for by employing a LSP after the NSP. 

In this section, the prediction mechanism and the role of the NSP and LSP are 

theoretically and experimentally analyzed. The role of the NSP is to predict the 

nonlinear and some part of the linear property of the time series. The LSP works to 

predict the NSP prediction error. Lyapunov functions are defined for these prediction 

errors so that they converge to zero asymptotically. The signals' stochastic properties 

are not required and the error dynamic stability is guaranteed by the Lyapunov 

Theory. The design of this hybrid predictor is simplified compared to exiting hybrid 

or cascade neural predictors [106]-[107]. It is fast convergence and less computation 

complexity. Furthermore predictability of the hybrid predictor for noisy time series is 

investigated. The sigmoidal functions used in the NSP can suppress the noise effects 

by using their saturation regions. Moreover the proposed adaptive algorithms for 

NSP and LSP are robustness to noisy time series. Computer simulations using 

nonlinear sunspot times series, real-world data and other conventional predictor 

models are demonstrated. The theoretical analysis of the predictor mechanism is 

confirmed through these simulations. 
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Figure 8.18: Structure of the hybrid predictor 

8.5.1 A Hybrid Structure of Neural Network-FIR Predictor 

Figure 8.18 illustrates the proposed hybrid predictor structure that is the cascade 

form of MLNN and FIR filter. The actual time series contains both linear and 

nonlinear properties and its amplitude is usually continuous value. For these reasons, 

we combine nonlinear and linear predictors in a cascade form. The nonlinear 

prediction problem can be described as follow: A set of the past samples x(k-

1), ... .,x(k-N) is transformed into the output, which is the prediction of the next 

coming sample x(k). Therefore we employ a MLNN called the NSP in the first stage. 

It consists of a sigmiodal hidden layer and a single output neuron. The NSP is trained 

by the supervised LABP leaning algorithm in Chapter 6. This means the NSP itself 

acts as a single nonlinear predictor. 

In reality it is rather difficult to generate the continuous amplitude and to predict 

linear property. Hence a linear predictor is employed after the NSP to compensate for 

the linear relation between the input samples and the target. A FIR filter is used for 

this purpose, which will be called LSP. The LSP is trained by the LAF. The same 

target or the desired time series is used for both NSP and the LSP. Hence the 

nonlinear and some part of linear properties of the input signal can be predicted by 

the NSP and the remaining part is predicted by the LSP. 
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8.5.2 Nonlinear Sub-Predictor (NSP) 

The architecture of the MLNN considered is shown in Figure 8.18. It consists of a 

hidden layer and a single output neuron. The input x(k) is a sampled signal: x(k)= 

{x(k-1), ... x(k-N)} or x(k) = {x1v Xk-J, ... ,Xk-N} and the output is a scalar YNsP(k). The 

purpose of this neural network is to adjust the neural weights in order to achieve 

error between the network output YNsP(k) and the desired output d(k) converge to zero 

asymptotically. Let Wj/·> (k) denote the connection weight between the i'th neuron in 

the input layer, l=O andj'th neuron in the hidden layer, /=l(for i = 1, 2, ... N;j = 1, 2, 

.. . M). Let Sj(n) and Fi·) be the output and the activation function of the j'th neuron 

in the hidden layer, respectively. W J/2> (k) denotes the connection weight between 

the j'th neuron in the hidden layer and the neuron in the output layer y(k), 1=2. Then 

we have the following system equations: 

M 

YNsP (k) = L w1~2>s1(k) 
pi 

S1(k) = F1(tw}
1
>x,(k)) 

where j = 1, 2, ... ,Mandi = 1, 2, .. ., N. 

Substituting (8.51) into (8.50) gives 

y NSP (k) = ~ ws> (k)FJ ( t WJ~I) x, (k)) 

1 
where F(•) = < > 

1 + e-a' 

The prediction error for NSP is defined as 

eNsP(k) = d(k) - YNsP(k) 

The learning algorithm for the MLNN can be summarized as: 

/:J.Wi~2 > (k) = - 1
--

1 
[d(k) - f Wi~2> s, (k)] + ae(k -1) 

S, (k) M 1~1 

(8.50) 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

(8.55) 
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L1WJ~I) (k) = [-wj~I) (k -1) +__!__l _gj (u(k))] 
N x, (k) 

I I 
where u(k) = ----d(k) 

M W11 (k) 

g 
1 

( •) = F/ ( •) and 0 < a <1 

or L1f¥i~l(k)= 1 1 
[d(k)- If¥i~2JS/k)]+ae(k-1) 

SJ (k)+A, M j=I 

L1W1~ 1 i(k) =[-w1~1i(k-I)+ 1 1 
g)u(k))l 

N x, (k)+A,2 

where u(k) -
1 1 d(k) 

M W11 (k) + /L3 
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(8.56) 

(8.57) 

(8.58) 

(8.59) 

(8.60) 

(8.61) 

(8.62) 

The circumstantial derivation and design of the LABP algorithm can be found in 

Chapter 6. 

8.5.3 linear Sub-Predictor (LSP) 

The LSP consists a conventional FIR filter. It can be characterized by the difference 

equation 

K-1 

YLSP(k) = 'L,h,(k)yNSP(k-i) (8.63) 
1=0 

or YLsP(k) = Hr (k)YNsP (k) (8.64) 

where H(k) = [hn (0), hn (l), .. ., hn (N - I)Y 

YNsP(k) = [yNsP(k), YNSP (k- 1), ... , YNSP (k-N+ 1)] T 

The LSP's coefficient vector is updated by the LAF algorithm in Chapter 3: 

H(k) = H(k- 1) + g(k)a(k) (8.65) 

a(k)= d(k) - Hr (k-1) YNsP(k) (8.66) 
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(8.67) 

(8.68) 

where A.3, A.4 are small positive numbers and 0::; K < 1, 

8.5.4 Prediction Analysis 

The role of LSP is to predict the prediction error caused by the NSP [108],[109]. It 

analysis can be summarized as follow: 

(8.69) 

Due to the LSP is the FIR structure with K taps, its output YLSP(k) can be expressed as 

By substituting the expression (8.69) into (8. 70), we get 

y lSP(k) = ho(d(k)-eNsP(k))+h1YNsP(k-I)+ ... +hK-1YNsP(k-K + 1) 
(8.71) 

= hod(k)+[-hoeNSP(k)+h1Y NSP(k-1)+ ... +hK-IY NSP(k-K + 1)] 

Let (8.72) 

With the assumption that ho"" I, the expression (8.71) can be rewritten as 

YLsP(k) = d(k)-[eNsP(k)-y*(k)] (8.73) 

Therefore the final prediction error can be expressed as 

(8.74) 

Hence, the function of LSP is to predict the prediction error resulted from the NSP. 

The eNsP(k) may include both nonlinearity and linearity. It is noticed that it cannot be 

predicted by the LSP only if the nonlinearity is dominant. Hence, a NSP is 

necessitated to predict the nonlinearity. As the result, a hybrid structure is needed. In 

this hybrid predictor, the prediction mechanism is divided into two stages, the 

nonlinear and some linear properties of the input time series are prediction by the 

NSP in the initial stage. In the later stage, the prediction error is further compensated 
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by the LSP. That is the reason why the same desired response is applied to both LSP 

and NSP as a target. 

The contribution of the NSP and the LSP in the overall performance of the proposed 

hybrid prediction can be measured by the following ratio 

(8.75) 

Where PNsP and PLsP are the power of the NSP output and LSP output respectively. 

The normalized root mean square error (NRMSE) [108],[109] is used to express the 

prediction error so that they can be used for comparison. It is calculated as 

NRMSE = ~ MSE I P.nput (8.76) 

where MSE indicates the mean squared error ofNSP or LSP. Pmput is the input signal 

power. 

8.5.5 Simulation Results Using Hybrid Model 

Example 1: Nonlinear Times Series 

Simulations have been done for a one-step ahead prediction of 2 examples: Sunspot 

data and Chaotic data. Sunspot data is used as a benchmark for many years by 

researchers. Data file of the Sunspot times series is download from [ 11 O]. It consists 

the sunspot data from the year 1700 to 1999 (300 Samples). Chaotic time series is 

used because of its high nonlinearity. Figures 8.19 and 8.20 show the plots of the 

sunspot time series and the chaotic time series respectively. Figure 8.21a illustrate 

the plot of the output of the hybrid predictor for sunspot time series (1950-1999). 

Figures 8.2lb and 8.21c show the square predictor error of NSP, eNs/(k) and LSP, 

eLs/(k) respectively. Figures 8.22a, 8.22b, 8.22c reveal the outputs, YLSP (250-300 

samples), eNs/(k) and eLs/(k) for chaotic time series. Simulation results have shown 

the hybrid predictor gives good performance. 
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Example 2: Effects of Noise in Nonlinear Prediction 

In measuring physical phenomena, data transmission and processing, noise cannot be 

neglected. Hence noise effects must be investigated in the real world application. The 

simulation is carried out using the noisy data as the input and the input and the noise

free data as the desired response. The noise used here is Gaussian white noise. The 

sigmoidal functions are used in the hidden layer of the MLNN. The noise effects can 

be suppressed if the noisy input data is distributed mainly in the saturation regions 

[108],[109]. The LABP algorithm in NSP and LAF algorithm in LSP are robust to 

additive noise or disturbance even if the noisy data is not distributed in those regions. 

Hence convergence to zero asymptotically with additive noise can be achieved by 

this proposed hybrid prediction. Figu.re 8.23a reveals the noisy input data with 

additive noise. The LSP's square error eLsl (k) and NSP's square error, eNsl (k) are 

illustrated in Figu.res 8.23b, 8.23c correspondingly. 

Example 3: Comparison With Other Models 

In this section, the prediction performance of the proposed hybrid predictor, a linear 

FIR predictor and a nonlinear MLNN predictor with a linear output neuron are 

compared for the Sunspot time series. Comparison using different kinds of predictor 

was demonstrated in [108]. The simulation results using the Sunspot time series are 

tabulated in Table 8.4. The MLNN predictor is trained with BP and same predictor 

size or parameters are with the MLNN of NSP in the proposed hybrid predictor. The 

linear predictor used in the simulation is FIR filter trained with LMS to examine the 

efficiency using LSP only. Compared to those models, the proposed hybrid predictor 

has the minimm11 prediction eITors in both cases. The linear predictor does not 

perform well due to the high nonlinearity in the time series. 

Conclusively, a hybrid nonlinear time series predictor that consists the NSP and the 

LSP combined in a cascade form is proposed. Simulations have been demonstrated 

using the linear FIR with LMS predictor, nonlinear MLNN with BP predictor and the 

hybrid predictor with combination formal MLNN and linear FIR for comparison. 

Properties of these predictors are analyzed taking the nonlinearity of the time series 
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into account. Hence the prediction mechanism and the role of the NSP and LSP of 

the hybrid predictor have been theoretically and experimentally analyzed and 

clarified. 

Figure 8.19: Sunspot Time Series from 1700 to 1999 

•ao 
c haotl a tlma •orlo • 

Figure 8.20: Chaotic Time Series used in the simulation 
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Figure 8.21 a: Predictor output waveforms for Sunspot data using the proposed hybrid 
predictor (from 1950-1999) '_original data', ' * predictor output data' 
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Figure 8.21 b: The NSP square output error, eNsr2(k) 
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Figure 8.2lc: The LSP square output error, eLsr2(k) 
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Figure 8.22a: Predictor output waveforms for Chaotic data using the proposed hybrid 
predictor (250-300 samples)'_ original data','* predictor output data' 
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Figure 8.22b: The NSP square output error, eNsP2(k) 
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Figure 8.22b: The LSP square output error, eNsP2(k) 
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Figure 8.23a: Sunspot Time Series from 1700 to 1999 + Gaussion noise 
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Figure 8.23b: The NSP square output error, eNsP2(k) 
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Figure 8.23c: The LSP square output error, eNsP2(k) 

Table 8.4: Comparison ofNRMSE among different models for sunspot data 

Model Proposed Hybrid MLNN Linear FIR predictor 
Predictor Predictor (LMS) 

(BP) 

NRMSE 4.6xlff''(NRMSE of 0.092 0.2897 
LSP) 

0.091 (NRMSE of 
NSP) 
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8.6 Conclusion 

This chapter has presented various adaptive filtering schemes that are modified based 

on the adaptive filtering techniques presented in Chapter 3-6. It has also explored the 

specific applications for these schemes. The theoretical analysis and simulation 

results have indicated the proposed methods can offer good performance. Hopefully, 

further researches to modify the proposed schemes in Chapter 3-7 can be carried out 

so that these modified methods can be applied to different applications. 
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Chapter 9 

Conclusions 

9.1 Contributions and Summary 

This thesis has provided a fundamental breakthrough in understanding of the 

Lyapunov stability-based adaptive filtering mechanism, yielding further conditions 

and solutions for a number of nonlinear filtering problems using Lyapunov stability 

theory . Further investigations include the theory and design of RBF neural network

based nonlinear adaptive filters with Lyapunov stability, fuzzy adaptive filters with 

Lyapunov sense fuzzy rules, neural adaptive filters with the back-propagation 

learning rules in Lyapunov sense with guaranteed stability, polynomial adaptive 

filters with Lyapunov stability and parallel signal processing using Lyapunov theory. 

These new adaptive filtering schemes have been tailored to different applications. 

Simulation examples have been performed to investigate various performances such 

as tracking precision, stability, and robustness of the developed schemes. The 

successful outcome of the thesis will in no doubt make significant contributions to 

and impacts on research in the field of intelligent signal processing and 

communications systems. Applications and commercial potential of this research in 

signal processing, telecommunications (both wired and wireless) and many other 

industries cannot be underestimated. 

The contributions or benefits of this thesis to signal processing theory and 

applications currently include the asymptotic error convergence as a new paradigm in 

the area of adaptive signal processing. This will greatly improve the transient 

performance between the reference signal and the output of the adaptive filters. 

Furthermore, the constructive procedures for adaptive filter designs that integrate this 
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new mechanism will permit high precision for signal processing. Unlike the design 

of conventional adaptive filters, the performance index in the weight space is not 

used. A performance index in the error space with a single global minimum is 

created based on the Lyapunov stability theory. Therefore, local minima encountered 

in traditional methods are avoided in the search of the optimal filter parameters. In 

addition, the design of adaptive filters in this thesis is independent of the stochastic 

properties of the signals because only the desired reference signal and the 

observations of the filter output are used for the design of the adaptive filters. 

Therefore, the algorithms to be developed in this thesis are suitable for both random 

processes and deterministic processes. In summary, this thesis has been mainly 

concerned with the study and improvements of adaptive filtering schemes by 

employing Lyapunov theory and artificial intelligent technologies. 

Chapter 2 of this thesis has provided a brief survey of adaptive filtering theory. It 

constitutes mostly review material. It provides a background on existing techniques 

for adaptive filtering. Introduction, the performance measures, system configurations 

of adaptive filter are presented. Adaptive filter models such as finite impulse 

response (FIR) and infinite impulse response (IIR) are discussed. 1\_daptive 

algorithms for FIR and IIR filters are then reviewed. This chapter has mainly 

concerned the linear adaptive filtering. 

Chapter 3 has contributed the mathematical foundation of adaptive filter designs 

using Lyapunov stability theory. A new adaptive filtering technique called Lyapunov 

Theory-based Adaptive Filtering (LAF) has been developed. A Lyapunov function of 

the error between the desired signal and the filter output is defined, the weights of the 

filter are then adaptively adjusted based on Lyapunov stability theory so that the 

error can asymptotically converge to zero. For conventional adaptive filter designs, a 

performance index of the error is defined first and the performance index is then 

minimized in the weight or parameter space. If the performance index is complex 

with many local minima, the optimization may stop at some local minimum for some 

initial values of the filter parameters. In such a situation, the optimal filter parameters 

cannot be obtained. In contrast, using the LAF design approach, the above difficult 

can be avoided. In this new approach, the update law of the adaptive filter is not used 

to search the global minimum of the performance index in the weight or parameter 
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space. Instead, the update law of the adaptive filter is designed where the 

performance index will have only one global minimum in the error space when the 

time tends to infinity. Because the selected Lyapunov function, V(k) is positive 

definite and the update law is designed such that the difference of V(k+ I) and V(k) is 

negative, the value of the performance index V(k) will therefore tend to zero, which 

is the global minimum of the performance in the error space. Compared with the 

traditional optimization theory [l]-[3], Lyapunov stability theory can be treated as an 

optimization method in the error space. Therefore, investigation of the optimization 

problem using Lyapunov stability theory in the error domain for adaptive IIR filter 

with local minima are presented, which are not achievable using traditional 

optimization approaches. Although the input signal of the adaptive filter is disturbed 

by the bounded random noises, only the input and the output measurements are used 

for the design of the Lyapunov filters. Therefore, the design of Lyapunov adaptive 

filters is independent of the stochastic properties of the random input disturbances. 

Further investigations that explore the convergence rate of the error of the LAP 

filters have also been developed. The convergence region for the error of the 

modified Lyapunov filter in order to avoid the singularities has been discussed. 

In chapter 4, the design of adaptive filters using radial basis Junction (RBF) neural 

networks and Lyapunov stability theory is presented. It is well known in the area of 

artificial neural networks that an RBF neural network, which consists of Gaussian 

type of nonlinear function nodes, a linear input layer, a nonlinear hidden layer and a 

linear output layer, has the ability to approximate arbitrary linear or nonlinear 

mapping through learning. In this chapter, two realizations of the Lyapunov adaptive 

filters using RBF neural networks are proposed. The FIR and IIR filters are 

configured as feedforward and recurrent RBF networks respectively. Unlike many 

adaptive neural filtering schemes using gradient search in the parameter space, the 

selected Lyapunov function for the adaptive RBF filter has a unique global minimum 

in the state space. By properly choosing the weights update law in Lyapunov sense, 

the output of the adaptive RBF neural filter can asymptotically converge to the 

desired reference signal. Thus the local minima problem occurred in the gradient 

search-based adaptive filters is avoided,. Although the input signal of the RBF neural 

filter is disturbed by the bounded random noises, only the input and the output 
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measurements are needed for the design of the RBF neural filters. Hence the 

proposed scheme is independent of the statistical properties of the input signals. 

Chapter 5 has provided the design of fuzzy adaptive filters using Lyapunov theory. 

Fuzzy adaptive filtering has received a great deal of attention recently. Fuzzy rules 

are devised by human experts, based on observations and the measurement data, in 

order to adjust the filter parameters. Then fuzzy logic technology (fuzzification, 

reasoning, and defuzzification) is used to obtain the output of the fuzzy filter. Similar 

to fuzzy control, the tracking performance, robustness, and the stability of the fuzzy 

filters are difficult to analyze. In this chapter, two types of adaptive fuzzy filters are 

developed using fuzzy logic and Lyapunov stability theory to design new adaptive 

filters to overcome the disadvantages of the previous fuzzy adaptive filters. First, a 

fuzzy gain Lyapunov adaptive jilter for nonlinear adaptive filtering has been 

proposed. It incorporates fuzzy logic to the LAF by the use of a set of Lyapunov 

sense fuzzy if-then rules. Given the input signal and its squared norm, these rules are 

then used to determine the adaptive gain to update the filter parameters. The second 

fuzzy adaptive filter is named LAF fuzzy adaptive filter. This fuzzy adaptive filter is 

constructed from a set of changeable fuzzy IF-THEN rules. The LAF is used to 

update the parameter of the membership functions so that the dynamic error between 

the filter output and the desired response converges to zero asymptotically. 

Therefore, the most significant advantage of the fuzzy filter compared to the -

conventional filters is that linguistic information from human experts (in the form of 

fuzzy IF-THEN rules) can be incorporated into the filter. 

In the chapter 6, we have developed the design of neural adaptive filters with the 

backpropagation (BP) learning rules in Lyapunov sense. The existing BP learning 

rules obtained from the optimization theory have been widely used for neural 

network-based adaptive filter designs [26],[53]. As mentioned in [26],[53], the BP 

learning rules are used to search the optimal parameters of the neural adaptive filters 

in the weight space. Because of the nonlinearity of neural networks, and the 

complexity of the performance index, the analysis on the tracking precision, stability, 

and the robustness of the neural adaptive filters cannot be carried out. In this chapter, 

Lyapunov stability theory has been used, instead of the traditional optimization 

methods, to update the weights of the neural adaptive filters. New BP learning rules 
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will be developed to improve the error precision and the stability of the closed loop 

adaptive filter systems. We call these new learning rules as Lyapunov Stability-based 

Adaptive Backpropagation (LABP) algorithm. It is expected that the LABP learning 

rules will significantly improve the performance of adaptive filters and can also be 

extended other areas. 

Chapter 7 has presented one area of nonlinear signal processing known as 

polynomial signal processing using Lyapunov theory. The first part of this chapter 

presents a fast, less computation complexity and stable adaptive polynomial filters. 

We only focus on the following polynomial models: (1) Volterra model that the 

nonlinear system output signal can be related to the input signal through a truncated 

Volterra series expansion. (2) Bilinear model that involves and recursive nonlinear 

difference equation. The second part of the chapter considers another realization of 

nonlinear Volterra filter using parallel-cascade structure. Parallel-cascade 

realizations implement higher order Volterra systems as a parallel connection of 

multiplicative combinations of lower order truncated Volterra systems. All the 

proposed techniques in this chapter have excellent convergence and their stability are 

guaranteed by the Lyapunov stability theory. These schemes are independent of 

signals' stochastic properties. They have less or comparable computational 

complexity compared to some conventional polynomial filters. 

Chapter 8 has introduced other different techniques based on those schemes proposed 

in Chapter 3-Chapter 6. These techniques include (1) A new concurrent algorithm for 

adaptive filtering called concurrent Lyapunov theory-based adaptive filtering 

(CLAP) in parallel signal processing. (2) Complex-valued Lyapunov theory-based 

adaptive filtering (Complex-LAP). (3) A new approach in feedforward active noise 

control using Lyapunov stability theory which consists two algorithms called 

Filtered-X Lyapunov theory-based algorithm (PXL YP), Filtered-U Lyapunov theory

based algorithm (PULYP), and a overall on-line modeling techniques using the LAP. 

(4) A hybrid nonlinear neural predictor and its application to nonlinear and noisy 

time series prediction. Most of these methods are the modification of the schemes 

presented in Chapter 3-7 so that they can be applied to particular applications. 
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9.2 Further Extensions And Developments 

This thesis has touched a number of different areas of research including adaptive 

filtering, neural networks, fuzzy logic, polynomial signal processing, parallel signal 

processing and different applications. In each of these areas, various techniques have 

been developed using Lyapunov theory and artificial intelligent techniques. Despite 

the good achievements obtained from some of these approaches, there is inevitably 

room for improvements and extensions within of relating to the scope of this study. 

Some areas for further research related to the thesis are: 

1. Different Lyapunov functions and weight or filter parameter updated laws. The 

further research-based that can be carried out is to use different Lyapunov 

functions and different parameter updated laws or weight learning rules to further 

improve the convergence properties and the robustness properties of the different 

schemes or algorithms proposed in Chapter 3-8 with respect to the bounded 

random disturbances or other aspects. 

2. Further Theoretical and Experimental Work on the LABP in Chapter 6 for the 

MLP with more than one hidden layer. It is well-known that multilayer 

perceptron (MLP) with one hidden layer and sufficient hidden units can 

approximate any arbitrary nonlinear function. Although MLP with two hidden 

layers or more layers may give better approximation for some specific problem, 

MLP with two hidden layers or more prone to fall into the local minima. The 

proposed LABP can provide a solution to the problem. Therefore the future 

works on the LABP for MLP with two or more hidden layers are necessary. 

3. Further Research on the LAF Fuzzy Adaptive Filter in Chapter 5 and Realization 

of Nonlinear Volterra filter using Parallel-Cascade Structure in Chapter 7. The 

results presented on LAF fuzzy adaptive filter and nonlinear filtering (parallel

cascade structure) are preliminary results. Further theoretical and experimental 

works are needed to performance to further support the proposed methods. 

4. The Real-time Implementation of the New Adaptive Filters for Audio Signal 

Processing. The new adaptive filtering methods can be laboratory tested in the 
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future hopefully. For this purpose, an audio signal processing system can be 

designed henceforth. In this audio signal processing system, an advanced 

microprocessor will be used, and the adaptive filters for narrow band noise 

cancellation can be implemented readily to improve the quality of audio signals. 

Major tasks include interfacing the adaptive filters with the computer and the 

audio signals. Major tasks include interfacing the adaptive filters with the 

computer and the audio signal processing system, computer programming, and 

the adjustment of the signal processing software and hardware. The performance 

of this new audio system will be compared with that of an audio signal 

processing system with a traditional adaptive filter using LMS algorithm 

implemented on the Texas Instrument; TMS320C30 EVM. Criteria to be used 

include stability, convergence rate, tracking precision as well as general audio 

signal quality. 

5. The Real-time Implementation of the New Adaptive Filters for Image Processing. 

Another important application area is image processing. Multi-dimensional 

adaptive filtering algorithms will be developed based on one-dimensional 

adaptive filtering schemes. The new adaptive filtering methods will be real- time 

implemented used for image processing in the future. The performance of the 

new multi-dimensional adaptive filtering techniques will be compared with that 
' 

of the existing high performance methods such as Wiener filtering and POCS 

(Projection Onto Convex Sets) in post-filtering applications to eliminate or 

reduce digital image and video coding distortions henceforward. 
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