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Abstract 

Studying the diet of Antarctic krill (Euphausia superba Dana) is important for modelling the 

flow of energy and nutrients through the Southern Ocean food web. Previous studies have 

demonstrated that krill consume a diverse range of prey, but, have failed to detect or quantify 

the contribution of important prey groups. The aim of this thesis was to examine whether 

new DNA based methods can contribute to the analysis of krill diet. 

Initial work developed methods for preserving, extracting and analysing prey DNA derived 

from krill stomachs. These methods were shown to be capable of preserving large amounts 

of intact prey DNA and generating reproducible diet data. However, two problems with the 

method were identified. 

The first problem was the presence of a large amount of predator DNA in diet samples that 

competed with prey DNA during PCR amplification. Further work developed methods that 

removed predator DNA prior to PCR, or, blocked predator DNA amplification during PCR. 

These methods were successful when applied to a simplified test system but failed when 

applied to real field samples. 

The second problem was a discrepancy between the results obtained with DNA and 

concurrent results obtained with microscopy. This suggested the initial method suffered from 

bias that skewed results for some prey groups. Subsequent work attempted to resolve this 

problem by changing the approach from quantifying various prey within individual krill 

stomachs to quantifying the presence or absence of various prey groups in a large number 

of krill. When applied to field samples this approach correctly identified the same prey groups 

as microscopy, and, suggested that gastropods are a more important component of krill diet 

than previously recognised. However, there were still issues regarding the quantification of 

prey. 

The remaining work focused on fundamental issues related to the longevity and 

quantification of prey DNA in krill stomachs. In krill stomachs, prey DNA was found to: be 

stable for several hours after ingestion, vary in quantity over six orders of magnitude; and, 

exit the stomach faster when krill continued to engage in feeding act1v1ty. Overall the results 

were promising and the application of DNA methods to krill diet warrants further 

investigation. 
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Chapter 1 

General Introduction 

Antarctic krill (Euphausia superba) swimming in a tank at the Australian Antarctic Division 

krill facility. 

Photograph by Rob King . 



Chapter 1: General Introduction 

1.1 Overview 

The introduction is divided mto two major sections. The first section begins by reviewing the 

general biology of Antarctic krill. The section continues with a description of potential food 

sources for krill and examines previous attempts to characterise krill diet. The first section 

concludes by arguing that new methods are required to determine krill's troph1c position 

within the Southern Ocean foodweb. The second section identifies DNA diet analysis as a 

potentially valuable approach for examining krill diet. The section then describes previous 

studies that have applied DNA diet analysis to invertebrate species. 

1.2 Krill Biology 

1.2.1 The importance of krill 

The Antarctic krill (Euphausia superba) is an abundant pelagic crustacean that is central to 

the Southern Ocean ecosystem, one of the world's largest marine ecosystems. With an 

estimated biomass of 55 - 297 million tonnes (Voronina, 1998; Nicol et al., 2000a; Siegel, 

2005) krill are also one of a handful of species that dominate metazoan animal biomass on 

planet earth. Within the Southern Ocean food web krill are important both as a consumer of 

plankton and as a major food source for fish, seals, squid, whales, penguins and other sea 

birds (Hopkins, 1985; Laws, 1985). This makes krill the critical link that allows the energy 

generated by photosynthesis to be transferred to higher trophic levels. Research on krill is 

driven by their abundance and status in the Southern Ocean food web, interest in quantifying 

the flow of carbon and other nutrients through the Southern Ocean ecosystem (e.g. Treguer 

and Jacques, 1992; Froneman et al., 1996; Froneman et al., 2000), and the need to ensure 

that an active krill fishery is well managed (Croxall and Nicol, 2004). 

1.2.2 General Characteristics 

Krill are a member of the phylum Crustacea (Class· Malacostraca) with an exoskeleton and 

body plan that is similar to a shrimp or lobster. Euphausia superba are among the largest of 

the 85 krill species and range m size from eggs that are < 1 mm in diameter to adults that 

reach 60 mm in length. Krill have six pairs of thoracic appendages (thoracopods) that are 

used primarily for feeding and five pairs of abdominal appendages (pleopods) that provide 

locomotion (Mauchline and Fisher, 1969; Hamner, 1988). 
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Chapter 1: General Introduction 

1.2.3 Krill life cycle 

Krill have a long and complex lifecycle. Reproduction is via broadcast spawning and is timed 

to coincide with the seasonal pulse of algal blooms that occur during the spring and summer 

(Spiridonov, 1995, Quetin and Ross, 2003). Spawning can occur on the continental shelf but 

there is evidence that the majority of the spawning stock moves offshore from the shelf break 

to spawn in deeper water (Siegel, 1988; Lascara et al., 1999; Nicol et al., 2000b). Females 

release batches of hundreds to thousands of fertilised eggs directly into the water column in 

multiple spawning events (Cuzin-Roudy, 2000; Ross and Quetin, 2000). The eggs then sink 

to a depth of 500 - 2000 m before hatching into larvae (Hempel and Hempel, 1986). Larvae 

undergo a 'developmental ascent' passing through a series of stages (Nauplius stages I - II, 

Metanauplius, Calyptops1s I - Ill, Furcilia I - VI) as they swim back to the surface and 

commence feeding (Marr, 1962). Krill enter their first winter as furcilia larvae before 

developing into juveniles the following spring (Fraser, 1936). Juveniles progress to sexually 

mature adults in their third or fourth summer (Siegel and Loeb, 1994; Ross and Quetin, 

2000) and may have multiple breeding seasons (Quetin and Ross, 2001, 2003) during an 

estimated lifespan of 5 - 7 years (Siegel and Nicol, 2000). 

1.2.4 Krill range and distribution 

Krill have a vast circumpolar range that extends from the Antarctic coast to - 52°S (Figure 1-

1, Atkinson et al., 2004; Siegel et al., 2004). Most of their range is within the Continental 

Shelf and Seasonal Ice zones but in the Scotia Sea their range extends beyond the 

maximum extent of winter sea ice into the Permanently Open Ocean Zone (Hofmann and 

Murphy, 2004) (zones described in Treguer and Jacques, 1992). These regions experience 

large seasonal fluctuations in solar irrad1ance and ice cover which has a significant impact 

on the local biota. 

The distribution of krill within their range is heterogeneous. High densities of krill occur along 

the West Antarctic Peninsula and extend north-east into the Scotia Sea with estimates 

suggesting that these regions contain > 50% of the total Southern Ocean krill stock. Around 

the rest of the continent krill densities are generally low to moderate (Nicol et al., 2000a; 

Atkinson et al., 2004). At the regional level krill distribution is patchy. Krill tend to be 
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Chapter 1: General Introduction 

concentrated around island groups and along the continental shelf and shelf slope where 

they often aggregate into high density swarms (Marr, 1962; Nicol, 2006). 

Krill have historically been described as a species that lives in the ep1pelag1c zone (0 - 200 

m) throughout the year (e.g. Marr, 1962; Mauchline and Fisher, 1969, Miller and Hampton, 

1989). Numerous acoustic and net surveys conducted during the summer have suggested 

that krill are concentrated in the top 100 m of the water column (Siegel, 1988; Trathan et al., 

1993; Lascara et al., 1999; Pauly et al., 2000; Siegel et al., 2004). During winter, larval 

stages are associated with the underside of the sea ice and depend on the consumption of 

sea ice biota for their winter survival (Daly, 1990; 2004; Ross et al., 2004). Due to the 

d1ff1cult1es associated with sampling under the sea ice the distribution of adult krill during 

winter is less clear. Some observations suggest adults are associated with the underside of 

sea ice similar to larval stages (Marschall, 1988; O'Brien, 1988, Stretch et al., 1988). 

However, other studies have found adults distributed throughout the epipelagic zone of the 

water column (Nordhausen, 1994; Lascara et al., 1999; Lawson, 2008). Other potential 

patterns include migration onto the continental shelf combined with a shift to slightly deeper 

water (depth range -100 - 350 m) (Siegel, 1988; Lascara et al., 1999; Taki et al., 2005; 

Lawson, 2008) and migration to the sea floor (Kawaguchi et al., 1986, Quetin et al., 1996; 
( 

Ligowski, 2000). It is possible that adult krill utilise all of these strategies at various times 

depending on local conditions (Quetin et al., 1996; Lawson, 2008). 

Theories on the vertical distribution of krill may be about to undergo a paradigm shift. Recent 

observations from remotely operated vehicles during summer have provided evidence of 

adult krill associated with the sea floor on both the continental shelf (- 450 m) (Gutt and 

Siegel, 1994) and on the abyssal plains (3500 m) (Clarke and Tyler, 2008). Research effort 

focused in the epipelagic zone may have missed a substantial proportion of the krill 

population and underestimated the importance of vertical migration (Brierley, 2008; Clarke 

and Tyler, 2008). 

1.2.5 Krill diet - Potential food sources 

Knll are versatile feeders that are capable of exploiting a diverse range of food. Krill feed 

primarily by filtering particles from the water column. Particles are collected with the 

thoracopods which are lined with fine comb-like setae (Figure 1-2). The thoracopods are 
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Chapter 1. General Introduction 

extended forward and laterally to create a feeding basket and are then drawn back towards 

the mouth. As the thoracopods draw back water is extruded from the basket and the 

particles are retained by the setae (Hamner, 1988). Feeding experiments suggest that krill 

can efficiently retain particles down to approximately 6 µm in diameter (Boyd et al., 1984; 

Quetin and Ross, 1985). Krill also use their thoracopods to scrape algae from the underside 

of sea ice (Marschall, 1988, Stretch et al., 1988; Daly, 1990) and to capture and hold large 

food items including metazoan prey (> 200 µm) (Price et al., 1988). Krill are therefore 

capable of feeding on items that range in size over several orders of magnitude. The 

following sections examine potential food sources that are available to krill. 

1.2 5.1 Potential food sources for kri/1-Autotrophic protists (Algae) 

Eukaryotic algae are the primary producers that form the base of the Southern Ocean 

pelagic food web. The algal community 1s derived from a taxonomically diverse range of 

autotroph1c protists. Diatoms (Bacillariophyceae) are a key group that often dominate 

summer phytoplankton blooms. Diatom species diversity is high with more than 100 species 

described in Antarctic waters (Marchant and Scott, 2005). Important diatom genera include 

Chaetoceros, Corethron, Fragilariopsis, Proboscia, Rhizosolenia and Thalassiosira 

(Smetacek et al., 2004). Other groups of autotrophic protists with varying degrees of species 

diversity include Chrysophyceae (Golden Algae), Cryptophyceae (Cryptomonads), 

Dinophyceae (Dinoflagellates), Prasinophyceae (e.g. Pyramimonas) and Prymnes1ophyceae 

(e.g. Phaeocystis) (Marchant and Scott, 2005). These groups make significant and 

sometimes dominant contributions to summer phytoplankton assemblages (Kopczynska et 

al., 1986; Kang and Lee, 1995; Kopczynska et al., 1995; Bidigare et al., 1996; Fiala et al., 

1998, Arrigo et al., 1999; Waters et al., 2000; Rodriguez et al., 2002; Buesseler et al., 2003; 

Garibotti et al., 2003; Kopczynska et al., 2007). During winter the sea-ice algae community is 

comprised of the same taxonomic groups that occur m the water column during the summer 

but can differ with regard to the dominant species, particularly late in the season (Garrison 

and Close, 1993; Palmisano and Garrison, 1993; Lizotte, 2001 ). Autotrophic protists range in 

size from approximately 1 - 200 µm and may exist as single cells or as chains/aggregations 

of cells. A significant proportion of the algal biomass is less that 6 µm in diameter (Hewes et 

al., 1990; Detmer and Bathmann, 1997; Mengesha et al., 1998; Waters et al., 2000) and 

would not be efficiently filtered by krill thoracopods. 

5 



Chapter 1: General Introduction 

In the high latitude regions of the Southern Ocean primary production is distinctly seasonal 

(Arrigo et al., 1998; Moore and Abbott, 2000). Peak production occurs during the austral 

summer when long days and receding sea ice allow maximum light to penetrate the water 

column. This fuels a seasonal pulse of phytoplankton blooms that are most intense at the 

receding ice edge, around islands, at ocean fronts that separate large scale water masses, 

and along the continental shelf (Arrigo et al., 1998; Moore and Abbott, 2000; Boyd, 2002). 

Algal biomass during the summer is highly variable between sites ( 0.5 - 1900 mg C m-3
) but 

has average values of 25 - 150 mg C m-3 1 up to a depth of 50 m (Treguer and Jacques, 

1992; Smith and Dierssen, 1996; Wright and van den Enden, 2000; Landry et al., 2002; 

Holm-Hansen et al., 2004). During winter, short days and extensive ice cover lead to low 

levels of primary production. Algal biomass in the water column approaches zero and the 

remaining primary production is associated with the sea ice (Smetacek et al., 1990). The 

biomass of algae within sea ice can be extremely high (> 200 mg C m·3
) (Arrigo, 2003), but 

during winter the total biomass integrated over the entire epipelagic zone (0 - 200 m) is low 

compared to summer phytoplankton blooms (Arrigo and Thomas, 2004). The availability of 

algae 1s further reduced by the fact that only a proportion of the algae resides on the 

underside of the sea ice where it is available to grazers, with the remainder embedded within 

the ice or trapped within brine channels (Palmisano and Garrison, 1993; Arrigo, 2003; Arndt 

and Swadling, 2006). Algae are therefore an abundant, but seasonally variable food source. 

Animals that rely on phytoplankton blooms during the summer must find other food sources 

or use alternative strategies to survive through the winter. 

1. 2. 5. 2 Potential food sources for krill - Heterotrophic protists 

Heterotrophic protists consume bacteria, algae and other heterotrophic protists as part of the 

microbial network that recycles nutrients in the ep1pelagic zone (Azam et al., 1983; Hewes et 

al., 1985; Sherr et al., 1988; Smetacek et al., 1990). Heterotrophic protist assemblages are 

typically dominated by Dinophyceae (Dinoflagellates) and ciliates such as Oligotrichia 

(Oligotrichs) and Choreotrichia (Tintinnids). Groups such as Forammifera, Rad1olaria, and 

Choanoflagellates are also present (Burki II et al., 1995; Becquevort, 1997; Klaas, 1997, 

Becquevort et al., 2000; Waters et al., 2000; Landry et al., 2002). Sea ice assemblages 

Chlorophyll-a values converted to carbon using a chlorophyll-a carbon ratio of 50 as in Hofmann, E E 
and Lascara, C. M. (2000). Modehng the growth dynamics of Antarctic krill Euphausia superba. Modeling 
the growth dynamics of Antarctic krill Euphaus1a superba 194 219-231. 
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Chapter 1 · General Introduction 

contain the same taxonomic groups that occur in the water column but may differ with 

regards to dominant species (Garrison and Gowing, 1993; Palmisano and Garrison, 1993). 

Heterotrophic protists range in size from - 2 - 200 µm (Garrison and Gowing, 1993, 

Smetacek et al., 2004). Single cells at the smaller end of the size range would not be 

efficiently filtered by krill thoracopods. 

Heterotrophic protist biomass is correlated to phytoplankton biomass (Burkill et al., 1995) 

and ranges from 0 - 67 mg C m·3 equating to - 30 - 40 % of the summer phytoplankton 

biomass (Garrison, 1991b; Nothig et al., 1991; Burkill et al., 1995, Becquevort, 1997, Klaas, 

1997; Becquevort et al., 2000; Landry et al., 2002) and 6 - 49 % of sea-ice community 

biomass (Garrison, 1991 a). Heterotroph1c prot1sts are therefore a potentially significant food 

source for krill. 

1.2.5.3 Potential food sources for krill- Metazoan zoop/ankton 

Metazoan zooplankton are an important component of the pelagic food web that consume 

protists and other metazoan zooplankton. The metazoan zooplankton community in the 

Seasonal Ice Zone and the Scotia Sea 1s diverse. Copepods are generally the dominant 

component of the community in terms of abundance and biomass (Atkinson et al., 1996; 

Voronina, 1998, Atkinson and Sinclair, 2000; Hosie et al., 2000; Pakhomov and Froneman, 

2004a; Ward et al., 2004). Copepod species diversity 1s high with 346 species having been 

identified in Antarctic waters (Razouls et al., 2000). Generally small (< 1 mm) cyclopoid 

copepods (Oithona spp.) are the most abundant, but in terms of biomass are rivalled by 

larger (1 - 3 mm) calanoid species (Calanoides acutus, Ca/anus simillimus, Ca/anus 

propinquus, Rhincalanus gigas and Metridia ger/ache1) (Atkinson et al., 1996; Voronina, 

1998; Atkinson and Sinclair, 2000; Hosie et al., 2000; Pakhomov and Froneman, 2004a; 

Ward et al., 2004). Euphausids are also important in terms of biomass (Voronina, 1998). 

Euphausia superba reaches very high densities but Thysanoessa macrura 1s also 

widespread and abundant (Hosie et al., 2000, Lancraft et al., 2004; Pakhomov and 

Froneman, 2004a; Ward et al., 2004) and Euphausia crystallorophias becomes prevalent 

close to the Antarctic coast (Boysen-Ennen et al., 1991; Hosie and Cochran, 1994). Salps 

are more prevalent in ice-free open ocean regions but their range extends into the seasonal 

ice zone and Scotia Sea (Voronina, 1998; Hosie et al., 2000; Ward et al., 2004). Other 
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metazoan groups that can contribute up to 50 % of metazoan zooplankton biomass at some 

sites include amphipods, chaetognaths, cnidarians, ctenophores, pteropods (Gastrapoda) 

and polychaetes (Siegel et al., 1992, Schnack-Schiel and Mujica, 1994, Atkinson et al., 

1996; Chiba et al., 2000; Hosie et al., 2000; Pakhomov, 2004; Ward et al., 2004). Metazoan 

zooplankton range in size from - 0.5 - > 40 mm. The adult stages of some metazoan 

zooplankton are probably too large to be consumed by krill, but egg and larval stages are 

potentially vulnerable. The early life stages of larger mid-level predators such as fish and 

squid may also be consumed by krill. Egg and larval stages may provide a highly nutritious 

and highly seasonal food source. 

Metazoan zooplankton biomass in the Seasonal Ice Zone is typically in the range of 0 - 15 

mg C m·3 2 (Boysen-Ennen et al., 1991; Chiba et al., 2000, Pakhomov and Froneman, 

2004a). During the summer much of the metazoan zooplankton is concentrated in the 

epipelagic zone (0 - 200 m) to take advantage of the seasonal phytoplankton blooms. 

During winter mortality leads to a reduction in metazoan zooplankton biomass. Some 

species remain at the surface associated with sea-ice but others, including some biomass­

dominant copepods (Ca/anoides acutus, Ca/anus simillimus and Rhinca/anus gigas), 

descend deeper into the water column(> 400 m) where they enter diapause (Quetin et al., 

1996; Atkinson and Sinclair, 2000; Schnack-Schiel et al., 2001). Although metazoan biomass 

is less significant than other food sources it is potentially a more nutritious food source that is 

available in all seasons. 

1. 2. 5.4 Potential food sources for krill - Detritus 

Detritus is the non-living organic matter present at all depths of the water column. Detritus 1s 

composed of many items including dead organisms, faecal pellets from protozoan and 

metazoan zooplankton, crustacean exuvia, discarded polysaccharide feeding houses of 

thahaceans, and secretions from algae and bacteria. These components often aggregate 

into larger particles described as marine snow which in turn play host to a variety of living 

organisms including phytoplankton, bacteria and protozoa (Knox, 2007). 

2 Dry weight values converted to carbon using a dry weight to carbon ratio of 0.5 as in Gifford, D. and Caron, D. 

(2000) Biomass and abundance. In. R. Harns, P. Wiebe, J. Lenz, H. Skjoldal, and M. Huntley, eds ICES 

Zooplankton Methodology Manual Academic Press, pp. 83-174 
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Detritus is difficult to quantify because it is generally only measured as part of the particulate 

organic matter (POC) in filtered water samples which includes both living and dead plants 

and animals (Knox, 2007). However, the organic carbon content of detritus probably exceeds 

the combined carbon content of bacteria, prot1sts and metazoan zooplankton (Knox, 2007). 

Detritus is often recycled within the water column but in some locations sinking 

phytoplankton blooms deposit a seasonal pulse of rich organic matter on the sea bed 

(Turner and Owens, 1995; Gutt et al., 1998, Garrity et al., 2005; Lam and Bishop, 2007). 

Detritus in the water column and on the sea bed are to some extent available throughout the 

year. Although the nutritional value of detritus will vary, the large volume of material available 

makes detritus a potentially important food source. 

1.2.6 Krill diet - Previous research 

Over the past seventy years it has become clear that the summer blooms of phytoplankton 

are an important food source for krill. Evidence to support this view comes from numerous 

microscopic analyses of krill gut contents that have detected large numbers of diatom 

frustules and remnants ofother phytoplankton groups (e.g. Hart, 1934; Pavlov, 197 4, 

Genhai, 1993). Further support is provided by studies that have detected significant levels of 

the photosynthetic pigment chlorophyll-a in krill digestive tracts (gut pigment analysis) 

(Pakhomov et al., 1997; Perissinotto et al., 1997; Perissinotto et al., 2000). There is also 

evidence that the timing of krill spawning around the Antarctic continent varies in relation to 

the regional timing and intensity of phytoplankton blooms (Spiridonov, 1995). 

The major question that remains with regards to krill diet is whether krill also utilise non­

phytoplankton food sources to a significant degree. Opinions on this issue are wide-ranging 

and include the following (i) krill are predominately herbivorous and mainly feed during the 

summer (Marr, 1962; Quetin et al., 1994), (ii) krill are herbivores during the summer and 

switch to feeding on copepods and/or detritus during the winter (Boyd et al., 1984; 

Kawaguchi et al., 1986; Huntley et al., 1994), (iii) krill are omnivores that mainly utilise 

phytoplankton and heterotrophic protists (Schmidt et al., 2006), or (iv) krill are 'true' 

omnivores that consume phytoplankton, heterotrophic protists, detritus and metazoans 

throughout the year (Perissinotto et al., 2000; Pakhomov et al., 2002). Evidence to support a 
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significant heterotrophic component in krill diet comes from a diverse range of sources that 

are critically examined m the following sections. 

1.2.6.1 Evidence for omnivory- Energy budget models 

There have been several attempts to model the energy requirements of krill on a regional 

scale and relate this to the quantity of food available m the environment. The models include 

terms to describe the size of the krill population and the energy costs for activities such as 

feeding, growth and respiration. The models also include seasonally variable descriptions of 

food sources such as phytoplankton and sea-ice algae, and a large number of terms to 

describe aspects of the Antarctic environment. Analyses using these models suggest that, in 

both the West Antarctic Peninsula and the Scotia Sea, the energy requirements of the krill 

population exceeds the energy available m the form of phytoplankton and sea ice algae. This 

implies that krill require non-algal food sources to meet their energy needs (Hofmann and 

Lascara, 2000; Fach et al., 2002; Fach et al., 2006). However, the extent to which the 

models are vulnerable to error or bias is unclear. 

The estimates of krill energy requirements are thought to be conservative because they do 

not include terms for energetically expensive activities such as reproduction. This supports 

the conclusion that krill must be omnivorous. On the other hand, the accuracy of terms that 

describe the energetic cost of activities such as respiration and feeding are uncertain 

because they are based on measurements taken from krill kept in captivity where they do not 

swim, feed or respire at normal rates (Quetm et al., 1994; Ritz, 2000; Atkinson et al., 2006). 

It is unclear whether this leads to over or under estimates of energy requirements (compare 

Quetin et al., 1994; Ritz, 2000). Furthermore, it is unclear whether the phytoplankton food 

source available to krill is accurately described by regional averages (Hofmann and Lascara, 

2000), or by satellite derived Chlorophyll-a data (Fach et al., 2002; Fach et al , 2006). Krill 

may be capable of maintaining themselves in areas with higher than average phytoplankton 

density (Holm-Hansen and Huntley, 1984 ), or feeding on deep phytoplankton blooms that 

are not detected via satellite (Fach et al., 2006). In addition, these studies convert 

phytoplankton chlorophyll-a values to carbon ratios using a carbon . chlorophyll-a ratio of 50 

(Hofmann and Lascara, 2000). This value is at the low end of the range of phytoplankton 

carbon : chlorophyll-a ratios that have been measured in Antarctic waters (46-144) (Hewes 
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et al., 1990) and may underestimate the carbon ration obtained from phytoplankton 

(Atkinson et al., 1996; Pakhomov et al., 2002). Thus, computational modelling suggests that 

krill must be omnivorous, but such analyses lack power because of the uncertainty 

associated with many fundamental aspects of krill biology in the Southern Ocean. 

1.2.6.2 Evidence for omnivory- Gut pigment analysis 

Several studies have used gut pigment analysis to estimate the rate at which krill ingest 

phytoplankton and used this data to argue that krill are omnivores. Gut pigment analysis 

estimates phytoplankton ingestion rates by measuring levels of chlorophyll-a extracted from 

the gut of ind1v1dual krill (e.g. Atkinson and Snyder, 1997; Pakhomov et al., 1997; 

Perissinotto et al., 1997; Pakhomov and Froneman, 2004b). Phytoplankton ingestion rates 

were generally found to be insufficient to meet krill's basic metabolic requirements implying 

that krill require non-algal food sources to meet their energy needs (Atkinson and Snyder, 

1997; Pakhomov et al., 1997; Perissinotto et al., 1997; Pakhomov et al., 2002). Other 

indicators of omnivory derived from gut pigment analysis are: (1) evidence that egestion 

rates based on faecal pellet production are three times higher than phytoplankton ingestion 

rates, which implies that two thirds of the egested material is derived from heterotrophic 

sources (Pakhomov et al., 1997); and (2) experiments that have measured krill's total carbon 

consumption (without the ability to identify the source) and subtracted the amount of carbon 

derived from phytoplankton. The results suggest that on average 79% of krill dietary carbon 

is derived from heterotrophic sources (Perissinotto et al., 2000). 

Gut pigment analysis is an indirect method of determining that krill are omnivores, and there 

are several potential problems with this approach. Pigment studies have relied on estimates 

of krill's energy requirements that are similar to those used in energy budget models and 

therefore have the same potential flaws. Another concern is the fact that chlorophyll-a is 

rapidly degraded within the digestive system of krill. Estimates suggest that 58 - 98 % of 

chlorophyll-a pigment is not recovered (Perissinotto and Pakhomov, 1996; Pakhomov et al., 

1997, Perissinotto et al., 1997). Although gut pigment studies use average pigment 

destruction figures to correct for this problem, the estimate of the amount of phytoplankton 

consumed is very sensitive to the exact degree of pigment destruction (Atkinson and Snyder, 
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1997). If methodological problems lead to a consistent underestimation of the amount of 

phytoplankton ingested then the argument for significant omnivory is undermined. 

1.2.6.3 Evidence foromnivory-Fie/d Obse1Vations 

Several zooplankton surveys have noted that areas with high krill densities have low 

densities of other metazoan zooplankton (Hosie and Cochran, 1994; Atkinson et al., 1999; 

Hosie et al., 2000). One potential explanation that was given for these distribution patterns is 

that krill consume other metazoan zooplankton (Atkinson et al., 1999). The high energy 

demand of individual krill, the high dens1t1es of krill within aggregations and the vast size of 

some krill aggregations suggests that within aggregations very little would go uneaten (Nicol, 

2006). However, the survey studies do not provide direct evidence that favours predation 

over other explanations such as predator avoidance (Atkinson et al., 1999). 

Several observational studies have provided evidence of krill eating sea bed detritus when 

associated with the sea floor. Krill have been observed during summer at the sea floor of the 

continental shelf (- 450 m) (Gutt and Siegel, 1994) and further offshore in the abyssal plains 

(- 3500 m) (Clarke and Tyler, 2008) by remotely operated vehicles. On the abyssal plains 

krill were observed feeding on sea bed detritus (Clarke and Tyler, 2008). During winter, krill 

collected by nets and light traps near the sea-floor in shallow coastal waters were found to 

have diatoms and other material of benth1c origin in their guts (Kawaguchi et al., 1986; 

Ligowski, 2000). Feeding on sea-bed detritus has been suggested as a winter survival 

strategy (e.g. Kawaguchi et al., 1986; Ligowski, 2000). However, due to the limited number 

of observations, the extent to which krill engage in benthic feeding is unclear (Clarke and 

Tyler, 2008). 

1.2.6.4 Evidence foromnivory- Lipid Analysis 

Studies that have analysed the lipid profile of krill have suggested that the presence of 

specific lipids 1s evidence of omnivory. The lipid biomarker approach relies on the theory that 

lipids unique to particular prey groups are transferred into the predator's own lipid profile 

(Dalsgaard et al., 2003). There is increasing evidence from field studies and feeding 

experiments that krill lipid profiles are to some degree affected by diet (e.g. Alonzo et al., 

2005; Schmidt et al., 2006; Hagen et al., 2007). Much of the work has focused on lipid 

markers associated with autotrophs and few studies have examined the question of 
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omnivory. High levels of the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty 

acids (SFA) has been suggested as a indicator of carnivory. This 1s based on evidence that 

metazoans contain high levels of PUFA, and from experiments where krill that were fed 

copepods had an increase in their PUFA/SFA ratio (Cripps and Atkinson, 2000). However, 

the use of this ratio has been questioned because some diatoms and flagellates also contain 

high levels of PUFA, and the PUFA/SFA ratio varies in relation to total lipid content (Stubing 

and Hagen, 2003). 

More recently the presence of C20 and C22 monounsaturated fatty acids that are 

characteristic of copepods were detected in krill collected in the field. These results were 

supported by microscopic gut contents analysis that found evidence of copepod mandibles 

and appendages in krill collected from the same site (Atkinson et al., 2002; Schmidt et al., 

2006). While these results are potentially significant, the low amounts of lipid detected, and 

doubts about the ability of krill to assimilate these lipids (Stubing et al., 2003), suggest that 

more work is required to confirm the value of C20 and C22 monounsaturated fatty acids as 

indicators of trophic links (Schmidt et al., 2006). 

The lipids 18:4(n-3) and 22.6(n-3) have been suggested as indicators of feeding on 

"flagellates" (Stubing and Hagen, 2003; Schmidt et al., 2006), but these markers do not 

discriminate between autotrophs and heterotrophs and are therefore unsuitable as indicators 

of omnivory. This highlights a general problem with the lipid biomarker approach that the 

conservation of lipid metabolism across large groups of organisms often prevents lipids from 

differentiating between prey sources. It is also becoming clear that lipid assimilation is a 

complex process that is affected by life stage, sex, season, metabolism and de nova 

synthesis (Clarke, 1980; 1984; Virtue et al., 1996; Hagen et al., 2001; Stubing et al., 2003; 

Alonzo et al., 2005). The current understanding of how these factors influence krill lipid 

profiles 1s limited and further work is required to demonstrate that lipid profiles are useful as 

indicators of trophic links. 

Lipid analysis has been used effectively to show that adult krill generate a lipid store of 

triacylglycerols and phosphatidylcholine during the summer and utilise this store during the 

winter (Hagen et al., 1996; Falk-Petersen et al., 2000; Hagen et al., 2001; Lee et al., 2006). 

This work demonstrates that lipid storage 1s part of the krill's strategy for surviving the winter 
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when algae becomes scarce. These findings are relevant to the question of whether krill 

need to resort to omnivory during the winter. It has been suggested that winter survival is 

achieved primarily through reducing body metabolism (- 71 %) and that other strategies play 

a limited role, such as lipid stores (-11 %), body shrinkage (-4%), feeding (-1-2%), and 

unknown (-10%) (Quetin and Ross, 1991 ). other calculations have suggested that reduced 

metabolism and lipid stores may be sufficient for adult krill to survive the winter (Atkinson et 

al., 2002). An alternative view is that feeding during winter is important and that adult krill 

switch to feeding on sea-ice biota, copepods or detritus (e.g. Kawaguchi et al., 1986; 

Marschall, 1988; Huntley et al., 1994; Atkinson et al., 2002). However, the evidence for 

winter omnivory is limited to a small number of observations (Quetin and Ross, 1991 ). The 

fact that krill utilise their lipid store during winter reduces the need for them to resort to winter 

omnivory. 

1.2. 6.5 Evidence for omnivory- Isotope Analysis 

A small number of studies have used isotope ratios to estimate the trophic position of krill. 

The approach relies on the theory that metabolic processes concentrate heavier isotopes of 

nitrogen (N15 as opposed to N14
) in organisms at higher trophic levels. Trophic position (i.e. 

primary producer, herbivore, omnivore and carnivore) is determined by comparing an 

animal's isotopic ratios with atrophic baseline (e.g. particulate organic matter) and other 

zooplankton in the ecosystem. 

Early isotope studies in krill were inconsistent with some results suggesting a correlation 

between heavy isotope abundance and trophic position (Wada et al., 1987) and others 

finding no correlation (Rau et al., 1991 ). Large regional and seasonal variation in the isotope 

ratios of the particulate organic matter baseline, and the slow assimilation of dietary signals 

in knll, have been suggested as potential explanations for variable results (Schmidt et al., 

2003; Schmidt et al., 2004). More recent work has shifted from sampling whole animals to 

targeting specific tissues and amino acids that are responsible for the majority of diet related 

isotope enrichment (Schmidt et al., 2004, Schmidt et al., 2006). Using these improvements 

the isotope ratios obtained from krill collected 1n the field suggested that the krill were 

feeding omnivorously with some differentiation in isotope ratios between sites that was 

consistent with the local availability and diversity of phytoplankton (Schmidt et al., 2006). 

14 



Chapter 1: General Introduction 

Feeding trials are still required to demonstrate changes in isotope ratios occur in response to 

diet (Schmidt et al., 2006). Isotope ratios are unable to differentiate between predation on 

heterotrophic protists and metazoans (Schmidt et al., 2006). Overall the evidence for 

omnivory provided by isotope ratios remains limited. 

1.2.6.6 Evidence foromnivory- Feeding experiments 

Tank-based feeding experiments have demonstrated that krill are capable of feeding on 

heterotrophic protists and copepods at rates that are similar to, or greater than, the rate at 

which they consume phytoplankton (Price et al., 1988; Graneli et al., 1993, Atkinson and 

Snyder, 1997; Atkinson et al., 2002). These feeding experiments provide some of the 

strongest evidence that krill are omnivores. However, there are concerns about whether 

feeding experiments accurately reflect krill feeding behaviour in the field. Feeding rates can 

be affected by stress due to capture and container-effects such as wall collisions (Price et 

al., 1988; Atkinson et al., 2002). It is also difficult to generate mixed assemblages that 

accurately reflect feeding conditions in the field (Atkinson and Snyder, 1997, Atkinson et al., 

2002). One aspect of this problem is that confining copepods in tanks may limit their escape 

responses leading to unrealistically high predation rates. It has been noted that tank-based 

feeding rates on copepods far exceed field-based evidence for copepod predation (Schmidt 

et al., 2006). 

1.2.6. 7 Evidence for omnivory- Microscopic diet analysis 

Microscopic analysis of krill gut contents has provided evidence that krill are to some degree 

omnivores. Microscopic gut analysis involves the extraction of the digestive tract and the 

identification of taxonomically distinct items. Gut contents are typically examined in water 

either in glass cavity mounts or on slides with magnification ranging from 10 X - 600 X. Prey 

identification ranges from broad taxonomic categories down to species specific ident1f1cation 

and depends on what structures survive ingestion. In general microscopy is significantly 

better than pigments, lipids and isotopes for the 1dent1f1cation and differentiation of prey. 

Microscopy has provided direct field-based evidence that, in addition to phytoplankton, krill 

consume a diverse range of heterotroph1c prot1sts including choanoflagellates, 

dinoflagellates, foraminiferans and radiolarians. Evidence for the consumption of 

heterotrophic protists has been reasonably consistent over the history of microscopic diet 
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studies but their contribution remains poorly quantified (Table 1-1). Microscopy has also 

detected metazoan zooplankton groups including copepods, ostracods, polychaetes, 

coenlenterates and pteropods. In general the rates of metazoan prey detection have been 

low. The small number of studies that have reported high incidences of metazoan prey are 

balanced by studies that have analysed large samples of krill and detected very few 

metazoans (Table 1-1). 

Microscopy suffers from two methodological problems that have limited the application of this 

approach. The first 1s bias towards prey with identifiable structures that survive ingestion 

(Atkinson and Snyder, 1997; Perissinotto et al., 2000). The extent to which this hard-part 

bias has skewed perception of krill diet is unclear, but there is a range of soft-bodied 

autotrophs and heterotrophs that would not be detected with microscopy. The second 

problem is that microscopy is labour intensive (Boyd et al., 1984; Penssinotto et al., 2000) 

which has often limited microscopic studies to small sample sizes and qualitative or semi­

quantitative descriptions of the prey consumed (Table 1-1, Boyd et al., 1984; Schmidt et al., 

2006). These problems have prevented microscopy from providing quantitative data on the 

scale required to effectively answer diet related questions. 

1.2.7 Krill diet - Summary and Conclusions 

Studying the diet of Antarctic krill is important for understanding the flow of nutrients through 

the Southern Ocean ecosystem (e.g. Treguer and Jacques, 1992; Froneman et al., 1996, 

Froneman et al., 2000) and may also explain the d1stnbut1on patterns of organisms affected 

by krill predation (Smetacek et al., 2004; Smith and Lancelot, 2004). Although recent opinion 

has suggested that krill are omnivores the evidence to support this position is limited. Much 

of the evidence comes from indirect methods that need further support to verify their findings 

(1.e. modelling, zooplankton surveys, feeding experiments and gut pigment analysis). Direct 

methods applied to animals collected in the field have struggled to detect, identify and 

quantify the heterotrophic component of krill diet (i.e. lipids, isotopes and microscopy). 

Where field-based evidence for omnivory has been obtained it has been limited to small 

sample sizes and qualitative assessments. As a result, the role of heterotrophic material in 

krill diet remains unclear (Penssinotto et al., 2000). 
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The analysis of krill diet may benefit from the application of new diet analysis methods. 

Previous work provides several criteria for meaningful advances in understanding knll diet. 

New methods need to develop the capacity to detect and differentiate a broader range of 

potential prey groups, particularly heterotrophs. New methods should focus on analysing krill 

collected in the field to provide direct evidence of diet without artefacts. Finally, previous 

studies have identified that krill consume a diverse range of prey and the replication of these 

findings on small samples of krill with new methods is of little benefit. New methods need to 

develop the capacity to provide quantitative data from sample sizes that are ecologically 

relevant. 

1.3 DNA diet analysis 

DNA is an attractive option as a dietary b1omarker because: (1) it is present in all types of 

prey, (2) it enables a high degree of differentiation between prey groups, and, (3) 1t has the 

potential for high sample throughput. DNA therefore fulfils many of the criteria identified 

above as important for advancing the analysis of krill diet. DNA diet analysis is part of a 

broader field of research that involves the extraction and analysis of DNA from 

environmental samples. Most of the pioneering work in this area has been m environmental 

microbiology where DNA has been used to characterise bacterial communities from 

terrestrial and marine environments and investigate their role in driving important biological 

processes (e.g. van Hannen et al., 1999; Moon-van der Staay et al., 2001; Sogin et al., 

2006). Environmental microbiologists have developed many of the techniques used in DNA 

diet analysis and highlighted many of the pitfalls associated with these approaches (von 

Wintzingerode et al., 1997). In the analysis of ancient DNA extracted from field samples, 

researchers have grappled with the problems of amplifying small amounts of highly 

degraded DNA, and the important issue of sample contamination (Cooper and Poinar, 2000). 

DNA diet analysis has previously been applied to both vertebrate and invertebrate predators. 

All studies have used the polymerase cham reaction (PCR) to amplify prey DNA for analysis. 

The first successful application of DNA diet analysis was the PCR amplification of a 356 bp 

fragment of plant chloroplast DNA from the scat of a brown bear (Hoss et al., 1992). Since 

then work on a range of vertebrate and invertebrate predators has continued to produce 

positive results (reviewed in Symondson, 2002; Sheppard and Harwood, 2005). Studies on 
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vertebrate predators have generally focused on the development of non-invasive methods 

based on the analysis of seats. Concerns about invasive sampling generally do not extend to 

invertebrates and these studies typically extract prey DNA from intact predators or from part 

of their digestive system. In most other respects the techniques applied to vertebrates and 

invertebrates have been similar and the work on vertebrates has been reviewed elsewhere 

(Symondson, 2002; Sheppard and Harwood, 2005). 

The first successful application of DNA diet analysis to an invertebrate predator 3 described 

the detection of stone flounder in sand shrimps (Asahida et al., 1997). The experiment was a 

feeding trial where shrimp were fed pieces of flounder and then kept under starvation 

conditions. Following the feeding trial DNA was extracted from shrimp stomachs and 

assayed for the presence of flounder DNA with PCR. The PCR assays targeted the 

mitochondrial genome because it occurs in multiple copies per cell. The study developed two 

sets of PCR primers. The first primer set amplified a 2500 - 2800 base pair (bp) DNA 

fragment from a range offish. The second primer set amplified a 1460 bp fragment and was 

specific to flounder. Both primer sets detected flounder for up to 5 hours after feeding but the 

primer set that amplified the shorter DNA fragment provided more consistent detection. 

Similar feeding experiments have since been conducted on a range of terrestrial and marine 

invertebrates including beetles, copepods, mites and spiders (Table 1-2). Three common 

themes have emerged from these studies. First, all studies used PCR-based presence I 

absence detection assays that target a single prey species. Second, prey detection was 

improved by targeting genes that are present in multiple copies per cell usually the ribosomal 

genes from the nuclear genome or a variety of genes from the mitochondrial genome. Third, 

targeting short regions of DNA (generally< 400 bp) improves prey detection (e.g. Agustf et 

al., 2000; Chen et al., 2000; Hoogendoorn and Hempel, 2001). Across the studies the length 

of time that prey could be detected after feeding varied widely from 0 - 72 hours (Agustf et 

al., 1999, Zaidi et al., 1999; Cuthbertson et al., 2003). This variation probably reflects 

differences in assay systems, the lengths of DNA fragments that were targeted, and, 

differences between the predator's digestive systems. 

3 In the context of this thesis the terms predator and prey are used m the broadest sense to describe one organism 

consuming another organism. No distinction is made between animals that consume plants, fungi, protists or other 

animals. 
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Several studies have progressed from the laboratory into the field. The first field based 

application of DNA diet analysis to invertebrates examined spider predation on collembolans 

1n cereal crops (Agusti et al., 2003a). The authors developed three species specific PCR 

assays to detect three species of Collembola and used these assays to screen 50 spiders for 

the presence of collembollen prey. By comparing the frequency of collembollans detected in 

spiders with the frequency of collembolans in the field, the authors were able to show that 

the spiders had a preference for feeding on a particular collembolan species. Several studies 

have since applied DNA diet analysis to invertebrates collected in the field (Table 1-2). 

Methods of preserving and extracting prey DNA varied widely and no clear consensus on the 

best method emerges. The majority of field studies have utilised single species detection 

assays similar to the laboratory studies described earlier. 

Two studies have moved beyond single species detection assays to the detection of multiple 

prey. An innovative study on the diet of wasps applied PCR to meals brought back to the 

nest in the jaws of foraging wasps (Kasper et al., 2004). The study used 'universal' PCR 

primers that targeted the mitochondrial genome and were capable of amplifying a 500 - 600 

bp DNA fragment from a diverse range of species. PCR amplified DNA fragments were 

sequenced and then identified by matching them to sequences in the GenBank sequence 

database. This approach allowed a large range of prey to be identified including several 

orders of insects and flesh from vertebrates including chicken and kangaroo. Identifying prey 

with GenBank avoided the need to characterise all prey prior to diet analysis but relied on 

GenBank to provide coverage of consumed prey and accurate identification through BLAST 

matching (BLAST algorithm 1s described in Altschul et al., 1990). By collecting material from 

returning wasps, the study avoided the problem of having to separate out a mix of PCR 

amplicons derived from different prey. For most invertebrate predators this is not an option. 

Samples extracted from the predator and amplified with universal primers will contain DNA 

from multiple prey species that must be separated before they can be identified. The second 

study examined ground beetles consuming aphids, weevils, earthworms and slugs (Harper 

et al., 2005). The study developed several sets of PCR primers that amplified DNA from 

groups of related species (group specific primers) or were species specific, each primer set 

was labelled with a different fluorescent sequencing dye. PCR with all primers sets was 

conducted in a single multiplex PCR reaction. Amplified DNA fragments were separated on a 
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gel-based sequencing apparatus by size and dye colour and identified by comparing the 

resulting bands with known standards. This approach effectively dealt with multiple prey 

items in a system with low to moderate prey complexity. In addition, the use of automated 

sequencing technology allowed rapid sample screening. The approach required prior 

characterisation of all prey to allow accurate scoring of the results and with only four 

sequencing dyes available the method can only cope with a maximum of four prey types that 

produce DNA fragments of a similar size (Harper et al., 2005). The study did not address the 

issue of assay sensitivity or discuss the relative sensitivity of multiple PCR assays. 

In summary, studies that have examined DNA diet analysis have demonstrated that the prey 

DNA can be detected m a wide variety of invertebrate predators. To date, DNA diet studies 

have relied on PCR to amplify prey DNA fragments for analysis. Several studies have shown 

that targeting short multi-copy regions of DNA provides optimal detection. Most studies have 

focused on assays that detect a single prey species. Assay systems that detect multiple prey 

species are still in the early stages of development. 

1.4 Thesis outline 

The work in this thesis examines the application of DNA diet analysis to Antarctic krill. Much 

of the focus is on assessing whether this approach is capable of answering important 

biological questions related to krill diet. The four chapters showing results (Chapters 2-5) are 

written in the style of independent scientific papers. Chapter 2 describes a feasibility study 

which examines whether krill are amenable to DNA diet analysis. The work describes the 

practical application of DNA diet analysis to krill collected in the field and explores methods 

for preserving, extracting and analysing prey DNA through the use of DNA clone libraries. 

The amount of prey DNA extracted from krill was also determined to assess how robust the 

approach was likely to be. Finally the DNA results were compared with results from 

microscopic diet analysis to assess the accuracy of the DNA data. Chapter 3 examines an 

issue raised in Chapter 2 that relates to the presence of predator DNA in diet samples and 

problems this causes in relation to efficient processing and analysis of dietary DNA. The 

study explores potential methods of removing predator DNA or preventing predator DNA 

amplification during PCR. Chapter 4 returns to the detection of prey in krill stomachs and 

explores the use of incidence based approaches to provide quant1ative data on krill diet. The 

20 



Chapter 1: General Introduction 

study applies multiple sets of PCR primers targeting a range of protists and invertebrates 

that are potential krill prey. Comparisons with microscopic diet analysis were again utilised to 

assess whether results obtained were an accurate representation of diet. Chapter 5 

examines the stability of prey DNA in krill stomachs to verify that prey DNA extracted from 

krill stomachs was representative of feeding behaviour for a significant period of time prior to 

collection. The work describes a feeding trial where the dynamics of prey DNA accumulation 

and decay in krill stomachs was tracked through time using quantitative PCR. The study also 

identified some of the factors involved in these processes. The thesis concludes with a final 

discussion (Chapter 6) on the current state of DNA diet analysis as applied to Antarctic krill 

and outlines topics for future research. 
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Figure 1-1 Krill distribution and abundance. Fronts are the boundaries between large scale 
water masses, PF = Polar front , SACCF = Southern Antarctic Circumpolar Current Front, 
SBACC = Southern Boundary Antarctic Circumpolar Current. Figure taken from (Hofmann 
and Murphy, 2004) 



Figure 1-2 Krill feeding apparatus displaying the thoracopods lined with fine setae. 
Photograph by Rob King 



Table 1-1 Summary of studies that have examined krill diet via the microscopic examination of their gut contents 

Reference Region Season #of s Comments 
krill .!! Ill I!! I!! - Ill Ill I!! Ill Ill s Ill c a; .!! ~ ·;: '-g 0 '1:1 '1:1 G> '1:1 Ill 

en 0 a; ·c: Ill .c 0 0 Ill 0 G> 
Ill .c a. " = a. en ·e 0 :E a. a. " .c a. Ill Ill 0 G> I!! " 0 -0 ~ = :c a. c a. - ~ 

... UI c 0 I!! Ill E s 0 UI G> :::J 
0 0 -Ill c 0 0:: 0 0 D.. 

... 
0 <( 0 D.. 0 .c c u. 
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Hart as cited by ? Summer, 40 Yes Yes Yes Work unpublished. (Marr, 1962) 
(Marr, 1962) 1937-38 provided description and qualitative fist 

of groups 1dent1fied by Hart. Radiolaria 
not recorded 

Barkley, 1940 as ? ? -1550 Yes Yes Yes Study in German and was not 
cited by (Marr, 1962) available. (Marr, 1962) provided 

qualitative fist of groups 1dent1f1ed by 
Barkley. Crustaceans and 
dmoflagellates were not recorded 
(Schmidt et al., 2006) provided figure 
for number of krill analysed. 

(Pavlov, 1969) Scotia Jan-Mar, 450 2 
Sea 19?? 

(Pavlov, 1974) Atlantic Feb-Mar, -600 Yes Yes Yes 8 English translation of Russian study 
Sector 1965 published in 1971. Generally a 

qualitative description of stomach 
contents although figures for some 
groups provided. Evidence of 
cannibalism. 

(Hopkins, 1985) WAP Mar-Apr, 57 1 * 1 * 2* 1 * *-Data presented as number of krill 
1983 that contain prey group. 

(Marchant and Nash, Indian Summer, ND Yes Qualitative Description. Electron 
1986) Ocean 1981-85 Microscopy. 



Reference Region Season #of .s Comments 
krill .!! s Ill Ill I! s c -a; Ill .!! ... Ill Ill Ill Ill ... .e ·;: "C 0 "C "C Cl) "C Ill 

C'I 0 -a; ·c: Ill 0 .c 0 0 Ill 0 Cl) 
Ill .c C'I 0 .e- Q. Q. (,) .c Q. 

(,) 
;;:::: Q. 'i§ Ill Ill .c 0 Cl) I! (,) 0 -0 ~ ;;:::: =a Q. c Q. - >- ... Ill c 0 I! Ill E Cl) 0 Ill 0 .s :I 
Ill 0 c 0 a:: - 0 0 Cl.. 

... 
0 <( 0 Cl.. 0 .c c u. 
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(Hopkins and Torres, Weddell Mar, 96 49 * 39 * 2* 6* 57 * 23 * 3 3* *-Data presented as number of krill 
1989) Sea 1986 that contain prey group Sampled 

adults, iuvernles and larvae in similar 
numbers. The 30 larvae had no 
heterotophic material. 

(Daly, 1990) Scotia Jun-Aug, ND Yes Yes Yes Yes Qualitative description. Light and 
Sea 1988 Electron microscopy. Larval and 

juvenile krill 

(Lancraft et al., Scotia Jun-Aug, 30 15 * 3* 1 * 2* 1 * *-Data presented as number of krill 
1991) Sea 1988 that contain prey group. 

(Nordhausen et al , WAP Jui-Aug, ND Yes Qualitative description of finding 
1992) 1992 copepods in gut. 

(Genhai, 1993) WAP Summer, 340 Rare Rare Rare Rare Sem1-Quantitat1ve description. Groups 
1986-87 defined as absent, rare, abundant or 

very abundant Electron Microscopy. 

(Hopkins et al., Scotia Nov- 20 2* 12 * 4* 12 * 2* *-Data expressed as number of krill 
1993) Sea Dec, that contain prey items Also detected 

1983 Siphonophore (1 gut) and invertebrate 
eggs (13 guts) 

(Huntley et al., 1994) WAP Jui-Aug, ND Yes Qualitative description of find mg 
1994 copepods m gut. 
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krill .!! 

I!! 
.l!l I!! C'll C'll C'll C'll C'll C'll C'll c 

Qi .!! ~ "C ... - C'll en 0 Qi 
·;:: 0 0 "C "C CD "C CD C'll ~ 0 0 C'll 0 C'll ~ en c :§ 

c. c. c. (,) ~ c. (,) 
;;:::: c. C'll ·e :c 0 CD I!! (,) 0 .l!l 0 g ;;:::: "C c. c c. >o ... Ill c I!! - CD 0 C'll E s 0 Ill 0 :J 
C'll 0 c a:: (.) 0 - ... 
0 0 <( (.) a.. a.. (.) 
~ i5 u.. 
(.) 

(Nishina and Scotia Jui-Aug, 130 Yes Yes Yes Yes Rare Qualitative description. Specifically 
Kawamura, 1994) Sea 1993 states that copepods were rarely 

detected. 77 animals engaged m 
cannibalism. Sampled mainly adults 
and iuvemles with some larvae 

(Pakhomov et al., Scotia Feb-Mar, 28 - 6-13 0-20 - 0 -1 - - - - 0-2 - 5-13 Data presented as average abundance 
1997) Sea 1994 of food items per site derived from 3 -

5 individuals per site for 6 sites. Data 
summarised as the range of average 
item abundance across the six 
stations. The total number of food 
items ident1f1ed per krill ranged from 31 
- 99 across the six sites. 

(Perissmotto et al., Atlantic Jan, 28 - 11 - 1 -10 - - - - - - 3-6 7 -15 Data presented as average abundance 
1997) 1993 51 of food items per site derived from 3 -

5 1ndiv1duals per site for 6 sites. Data 
summarised as the range of average 
item abundance across the six 
stations. The total number of food 
items identified per krill ranged from 50 
- 167 across the six sites. 

(Hernandez-Leon et WAP Feb, ND 0-3 Data presented as crustacean 
al,2001) 1993 fragments per krill gut. Text states 

mainly appendages and implies that 
they are copepods. 
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(Atkinson et al., Laza rev Apr, 12 0-5 0- Copepod data 1s number of mandibles 
2002) Sea 1999 >10 detected. Crustacean fragments not 

described m detail. 

(Meyer et al., 2002) Laza rev Apr, 60 Diatom frustules were the only 
Sea 1999 recognizable food item. Electron 

microscopy. Larval krill only. 

(Schmidt et al., Scotia Jan-Feb, 60 0- 251- M=O- Data presented as life stage averages 
2006) Sea 2003 350 2300 2 from 5 sites. Data summarised as 

A=O- range of averages. Copepod data 
11 M=Mandibles, A=appendages. 

Heterotroph1c prot1sts significant m 
terms of volume representing 5-15% of 
total volume overall and up to 70% at 
some sites. 



Table 1-2 Summary of studies that have applied DNA diet analysis to invertebrate predators 

Predator Diet items Sample Sample DNA extraction Amount PCR Gene Marker Sample Field Reference 
detected preservation tested method of cycles size size study 

method template 
DNA 

Sand Shrimp Stone Frozen -80°C Stomach Proteinase K+SDS 10-300 ng 30 Mitochondrial 1400, 24 No (Asah1da et al., 1997) 
(Crangon Flounder contents modified to include 8M D-loop 2800 
affinis) (Karews UREA in initial buffer 

bico/oratus) 

Plant Bug Moth Eggs Frozen -20°C Whole CTAB 2.5 µI 45 Nuclear? 1100 (fail) 20 No (Agusti et al., 1999) 
(Dicyphus (He/icoverpa predator RAPD fragment 600 
tamanin11) armigera) 254 

Ground Beetle Mosquito(Cu/e Frozen?- Whole SDS lys1s 100 ng 31 Nuclear 146,263 70 No (Za1d1 et al , 1999) 
(Pferostichus x 20°C? predator buffer+homogenization multicopy 
cupreus) qumquefasciat minus estrase 

us) appendag 
es 

Plant bug Whitefly Freezing Whole CTAB 2.5 µI 45 Nuclear? 2100 (fail) 20 No (Agusti et al., 2000) 
(Dicyphus (Tna/eurodes -20°C predator RAPD fragment 310 
tamanin11) vaporanorum) 

Ladybird beetle Cereal Aphids Freezing Whole SDS lys1s 10-100 ng 35 Mitochondrial 198, 246, >100 No (Chen et al., 2000) 
& Lacewing -20°C predator buffer+homogen1zation COii 339 

Ladybird beetle Moth eggs Frozen then Whole RefBenderetal1983 2 µI 30 Nuclear rDNA 100, 220, 94 No (Hoogendoorn and 
(Coleomegilla (Ostnma 70% ethanol predator 343,463 Hempel, 2001) 
maculata) nubila/1s) at-20°C 

Linyph11d Collembola Frozen -20°C Whole DNeasy tissue kit 4 µI 35 Mitochondrial 211,216, 82 Yes (Agusti et al., 2003a) 
spiders predator (Qiagen) COi 276 

Minute pirate Pear psylla Frozen -20°C Whole DNeasy tissue kit 6 µI 35 Mitochondrial 188,271 140 No (Agusti et al., 2003b) 
bug (Cacopsylla predator (Qiagen) COi 
(Anthocoris pynco/a) 
tomentosus) 



Predator Diet items Sample Sample DNA extraction Amount PCR Gene Marker Sample Field Reference 
detected preservation tested method of cycles size size study 

method template 
DNA 

Predatory Mite Aphid Some fresh Whole high pure PCR template 1 µI 37 Mitochondrial 283 14 No (Cuthbertson et al., 
(Anystis (Rhopalosiphu some frozen - predator preparation Span ND1 & 2003) 
baccarum) m insertum) 18°C kit LrRNA 

Copepod Haptophyte Frozen -80°C Whole Ultra clean soil DNA 4-10 µg 35 Nuclear rDNA 58 45? No (Neistgaard et al., 
(Ca/anus algae predator extraction kit typo? ng? 2003) 
finmarch1cus) (Emiliania &fecal 

huxley1) pellets 

Wasps Vanous On ice then Prey Puregene DNA 1solat1on 10-100 ng 35 Mitochondrial 500- 650 71 Yes (Kasper et al., 2004) 
70% ethanol collected kit 16S 

from 
mouth 
parts 

Ladybird Beetle Moth 100% Whole QIAamp® DNA Stool 2-5 µI 30-35 Mitochondrial 140 - 170 46 No (Sheppard et al , 
(Curinus Catapillars Ethanol or predator Mini Kit (Qiagen) COi 2004) 
coeruleus) crushed and 

dried 

Bivalve and Vanous Frozen -80°C Bivalve gut DNeasy tissue kit 4 µI 40 Mitochondrial -700 6 Yes (Blankenship and 
Amph1pods and 70% and (Qiagen) COi and Yayanos, 2005) 

Ethanol Amphipod and Forensics Kit Nuclear 18S 
hindgut (MoB10) 

Ground beetle Slugs and Frozen -80°C Gut tissue QIAamp DNA stool kit 4 ul 35 Mitochondrial 109,254 35 No (Foltan et al., 2005) 
(Pterostichus Aphids (Qiagen) 12S and COi 
melanarius) 

Ground beetle Various Frozen -80°C Gut tissue DNeasy tissue kit 0.75 µI 35-40 Mitochondrial 78-242 >50 Yes (Harper et al , 2005) 
(Pterostichus (Q1agen) COi & 12S 
melanarius) 



Predator Diet items Sample Sample DNA extraction Amount PCR Gene Marker Sample Field Reference 
detected preservation tested method of cycles size size study 

method template 
DNA 

Ground beetle Scarab beetle Frozen -28°C Whole Homogenization+ 3 µI 35 Mitochondrial 175-585 >200 No (Juen and Traugott, 
larvae larvae and predator Proteinase K+SDS COi 2005) 
(Poecilus eggs +CTAB 
versico/or) (Me/olontha 

melolontha) 

Damsel bug Moth larvae Frozen -20°C Whole SDS lysis 500 ng 35 Nuclear ITS-1 275 >100 Yes (Ma et al , 2005) 
and spider (P/utel/a predator buffer+homogenizat1on 

xy/ostella) 

Ground beetle Aphids I Frozen-? Foregut QIAamp® DNA Stool 4 µI 35 Mitochondrial 110,245 >300 No (Sheppard et al., 
(Pferostichus spiders 20°C? Mini Kit (Q1agen) COi 2005) 
melanarius) (secondary 

predation) 

Cope pod Copepod Frozen -80°C Feacal None-direct use of ? Nested Mitochondrial 172 14 Yes (Vestheim et al., 
(Pareuchaeta (Ca/anus pellets feacal pellets sample in 40 then COi 2005) 
norvegica) helgolandicu) PCR 38 

Antarctic krill Various Frozen -70°C Stomach Proteinase K+SDS -10 ng 28-35 Nuclear rDNA -240 >10? Yes (Martin et al., 2006) 
(Euphausia contents 
superba) and faecal 

pellets 

Antarctic krill Diatoms Frozen 80°C Intact DNeasy tissue kit 2 µI 30 Nuclear rDNA -145 6 Yes (Passmore et al., 
(Euphausia and 80% stomachs (Qiagen) 2006) 
superba) Ethanol 

Beetle Various ? Whole ? ? 40 Mitochondrial 358 14 Yes (Pons, 2006) 
(Rivacindela predator cytochrome b 
sp.) 

Various Beetle Frozen -28°C Whole Homogenization+ 2 µI 35 Mitochondrial 291 332 Yes (Juen and Traugott, 
(Phyllopertha predator Proteinase K+SDS COi 2007) 
hort1co/a) +CTAB 



Predator Diet items Sample Sample DNA extraction Amount PCR Gene Marker Sample Field Reference 
detected preservation tested method of cycles size size study 

method template 
DNA 

Anthocorid Vanous Frozen -80°C Whole Proteinase K+SDS ? 35-45 Mitochondrial 160 - 281 -240 Yes (Harwood et al., 
(Orius predator COi 2007) 
insidiosus) 

Appendicularia Vanous algae Frozen -80°C Whole DNeasy tissue kit 50 ng 40 Nuclear rDNA 57-82 30 No (Troedsson et al., 
n predator (Q1agen) 2007) 
( 01kop/eura 
dioica) 

Various Wasp 95% Ethanol Whole Protemase K + Chelex 2 µI 35 Elongation 185 165 Yes (Chacon et al., 2008) 
(Aphid/US Predator resin Factor 1 alpha 
colemani) 

Vanous Wasp Frozen -24°C Whole Protemase K +Chelex & 1.5 µI 40 Mitochondrial 122 - 369 -140 No (Traugott and 
(Lys1phlebus Predator DNeasy blood tissue kit COi Symondson, 2008) 
testaceipes) (Qiagen) 

Ground Beetle Aphid Frozen -24°C Foregut DNeasy blood tissue kit 3 µI 40 Mitochondrial 231 -192 No (von Berg et al , 
(Pterostichus (Sitobion (Qiagen) COi 2008b) 
melanarius) avenae) 

Ground Beetle Aphid Frozen -80°C Digestive DNeasy blood tissue kit 3 µI 40 Mitochondrial 85- 383 104 No (von Berg et al., 
(Various) (Sitobion Tract (Qiagen) COi 2008a) 

avenae) 

Spiders Aphid Frozen -24°C Whole DNeasy tissue kit 4.45 µI 40 Mitochondrial 316 493 Yes (B1rkhofer et al., 
(Various) (Sitobion Predator (Q1agen) COi 2008) 

avenae) 

Rock Lobster Vanous 70% Ethanol Faeces Ultra Clean Fecal DNA 20 ng 35 Mitochondrial -150 10 No (Redd et al., 2008) 
(Jasus Kit (Mo Bio COi & Nuclear 
edwardsi1) Laboratories) rDNA 
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Chapter 2: DNA diet feasibility study 

2.1 Abstract 

The diet of Antarctic krill (Euphausia superba) has been studied using a variety of techniques 

but current methods still suffer from problems that are d1ff1cult to solve. The aim of this study 

was to examine the feasibility of using DNA as dietary biomarker for Antarctic krill. Methods 

were developed for the preservation, extraction and identification of prey DNA from krill 

collected in the field. Group specific PCR primers were developed to amplify diatom prey 

(Phylum: Bacillariophyta), a critically important food item for krill, and the results from DNA 

clone libraries were compared with m1croscop1c diet analysis. DNA analysis was superior to 

microscopy for prey detection. However, differences in prey relative abundance estimates 

between the two techniques suggested some bias in the DNA-based estimates. 

Quantification of the amount of DNA template extracted from krill stomachs showed that 

large amounts of prey DNA had been successfully preserved and extracted. Overall the 

results suggest that the application of DNA-based diet analysis to krill warrants further 

investigation, particularly for prey that are difficult to study using other methods. 

2.2 Introduction 

The Antarctic krill (Euphaus1a superba) is central to the Southern Ocean ecosystem. Krill are 

major grazers of phytoplankton and have been described as predominately herbivorous 

(Hart, 1934; Quetin and Ross, 1991 ). On the other hand there is also evidence that krill also 

consume a range of protozoa and small zooplankton (Genhai, 1993; Atkinson and Snyder, 

1997; Pakhomov et al., 1997). A recent study comparing the amounts of dietary carbon 

derived from autotroph1c and heterotrophic sources suggested that heterotroph1c carbon 

makes a significant and sometimes dominant contribution to krill diet (Penssinotto et al., 

2000). This finding implies that important components of krill diet may have gone undetected 

and has prompted a call for new diet analysis techniques (Perissinotto et al., 2000). 

Using DNA as a prey biomarker for krill is an alternative approach that warrants 

investigation. All organisms have unique DNA sequences that can be used as biomarkers for 

detection and identification and these can be used to study any prey species or group of 

interest (Symondson, 2002; Jarman et al., 2004). DNA methods also offer potential for rapid, 

high throughput screening of samples (e.g. Harper et al., 2005). 
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Prior to this work there were no studies that had applied DNA diet analysis to Antarctic krill 

although subsequently one study from another laboratory has been published (Martin et al., 

2006). The current study describes the development of methods for the preservation, 

extraction, and analysis of prey DNA from krill collected in the field. Diatoms were targeted in 

this initial work becuase they are an important food item for krill and their presence in the diet 

can be verified by microscopy. Once suitable techniques were established, three krill from 

each of two field collection sites underwent intensive diet analysis that included microscopic 

diet analysis, prey DNA clone library analysis and prey DNA quant1f1cation to determine the 

feasibility of applying DNA diet analysis to krill. Issues with the technique and potential 

improvements are discussed. 

2.3 Materials and Methods 

2.3.1 Krill collection 

Antarctic krill were collected in the Prydz bay region of the Southern Ocean during the KAOS 

voyage with the RSV Aurora Australis. Krill were collected from Site A (-66.5575, 64.0670) 

on the 18th January 2003 and from Site B (-66.5890, 69.6087) on the 121h February 2003 

during daylight hours. Schools of krill were detected with sonar and collected in targeted 

rectangular midwater trawls (RMT8, nominal mouth area of 8 m2 and mesh size of 4.5 mm) 

at a towing speed of - 1 knot. The two sites were 134 nautical miles apart and both sites 

were approximately 65 nautical miles from the Antarctic coast. 

2.3.2 Preservation of krill for DNA diet analysis 

Ship based sample collection requires sample preservation methods that are fast, simple 

and safe. In addition, the ideal method would preserve prey DNA within intact krill thereby 

avoiding the need to perform delicate and time consuming dissection procedures at sea. 

Two methods of preserving intact krill were examined, preservation in ethanol and 

preservation by freezing. The ethanol preservation method was developed based on 

recommendations from previous field studies that had successfully preserved animal tissue 

for DNA analysis (Masner, 1994; Dawson et al., 1998). Live krill were dropped into 2L plastic 

sample containers filled with 80% ethanol (v/v). Samples were further dehydrated by draining 

and replacing the original 80% ethanol twice, once 15 minutes after the initial preservation 

and a second time 24 hours later. Samples were subsequently stored at -20 °C. To maintain 
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a high concentration of ethanol, the volume of krill was not allowed to exceed a third of the 

container volume. Attempts were also made to preserve krill in 96% ethanol but this was 

abandoned because the krill tissue became too brittle for eff1c1ent dissection. For 

preservation by freezing, individual krill were simply inserted into cryotubes and frozen in a -

80 °C freezer. All samples were left in storage until the ship returned to Australia. Samples 

were stored for 6 months before analysis commenced. 

2.3.3 Krill dissection 

D1gest1ve tissue was extracted from ind1v1dual krill to increase the proportion of prey DNA in 

diet samples. Stomachs were targeted for diet analysis because trial dissections led to the 

observation that krill stomachs were large and easy to isolate compared to other organs of 

the digestive tract. Also the stomach is located close to the start of the digestive tract which 

suggested that it may contain less degraded prey DNA than other parts of the digestive tract. 

Dissections were performed using a dissecting microscope and two pairs of forceps. 

Individual krill were rinsed in fresh ethanol and gently dried on paper towel prior to dissection 

in a dry sterile Petri dish. Forceps were used to remove the carapace and expose the 

animal's stomach on the dorsal surface. Intact stomachs were then removed with forceps, 

taking care not to squeeze out the stomach contents. To prevent the transfer of 

contaminants from the external surface of the krill to the stomach tissue, care was taken not 

to make contact with the stomach during the removal of the carapace. Forceps were flame 

sterilized prior to the removal of the stomach and between each krill dissection. 

2.3.4 Extraction and separation of DNA and 'hard parts' from krill stomachs 

To facilitate a direct comparison between DNA and microscopic diet analysis a method was 

developed to extract and separate the DNA and 'hard part' components of a single krill 

stomach. Several DNA extraction methods were trialed (CTAB, Guanadinium thiocynate + 

silica beads, Proteinase K/SDS + NaAc precipitation, Qiagen plant DNAeasy columns) but 

the following method gave the best prey specific PCR amplification results (data not shown). 

DNA extraction was performed on individual krill stomachs using the DNAeasy Tissue kit 

(Qiagen) according to the manufacturer's instructions except for the following modifications. 

Prior to overnight digestion in ATL buffer+ Proteinase K the stomachs were disrupted 
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manually with a pipette tip to assist tissue digestion. Following overnight digestion, the DNA 

and hard parts were separated by centrifuging the samples at 2500 x g. The supernatant 

containing the DNA was transferred into a fresh tube and DNA extraction was continued on 

this fraction as per manufacturer's instructions. The hard part pellet was processed 

separately as described below. At the end of the DNA extraction procedure DNA samples 

were eluted in 100 µL of AE buffer and stored at 4 cc. 

Following the removal of the supernatant, the hard part pellet was treated with hydrogen 

peroxide to remove organic matter. The pellet was resuspended in 500 µL of 30% hydrogen 

peroxide and incubated at 100 cc for 30 min. Samples were then centrifuged at 2500 x g for 

1 min to repellet the sample. The hydrogen peroxide was removed and the pellet was 

washed 3 times in 500 µL of dH20. The hard part samples were then dried and stored at 

room temperature in preparation for microscopic diet analysis. It should be noted that this 

method was optimised for examining siliceous prey such as diatoms and silicoflagellates at 

high taxonomic resolution. The hydrochloric acid treatment would destroy some diet items 

which could otherwise have been identified in water mounts under low microscopic power. 

2.3.5 Microscopic analysis of krill stomachs 

Light microscopy was used to count and identify diatoms and silicoflagellates extracted in the 

'hard part' component of krill stomachs. Diatoms and silicoflagellates are highly amenable to 

microscopic diet analysis because their hard silica exoskeletons often survive ingestion 

relatively intact. Variation in the structure of the exoskeleton allows diatoms to be identified 

down to genus or species level when examined at high levels of magnification. 

The hard parts extracted from three krill at each site A and B were examined. Hard parts 

were resuspended in 500 µL of dH20 and then diluted so that approximately 1 OOO hard part 

fragments could be spotted onto a glass coverslip. Coverslips were then dried and mounted 

onto glass slides using Optical Adhesive (Norland Products). All fragments on each coverslip 

were counted and identified at 400 X or 600 X magnification using a differential interference 

contrast microscope (Zeiss). All fragments that were more than half an intact diatom valve or 

equivalent were included in the count. The proportion of the hard part sample that was 
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counted was multiplied by the total number of items counted to provide an estimate of the 

total number of items consumed by each krill. 

2.3.6 Determining the concentration of DNA extracted from krill stomachs 

DNA concentrations were determined using a Picofluor fluorometer (Turner Designs) and 

Picogreen dsDNA quantification reagent (Molecular Probes) as per manufacturer's 

instructions. Stomach DNA samples were diluted to 1 O ng µL-1 in AE buffer (Qiagen) for use 

in PCR. 

2.3.7 PCR primer design 

Identification of PCR amplicons from krill stomachs relies on matching them to a database of 

taxonomically identified DNA sequences. The small ribosomal subunit (SSU) gene was 

chosen because the current database of SSU sequences is larger and more taxonomically 

diverse than for any other DNA region. SSU 1s also a multi-copy gene (Prokopowich et al., 

2003) which improves the chances of detecting prey. Initial attempts to amplify prey DNA 

using 'universal' SSU primers (Primers 14 and 17, Hendriks et al., 1991) failed because all 

amplicons were derived from krill and not their prey (data not shown). To counter this 

problem a pair of group specific primers (Jarman et al., 2004) that target diatoms was 

developed. The primers were designed to match all available diatom SSU sequences and 

specifically exclude amplification from krill with at least one 3' end mismatch in the equivalent 

region of the krill SSU sequence. The primers were designed manually using a taxonomically 

diverse alignment of SSU sequences obtained from The Ribosomal Database Project II 

(Cole et al., 2003) and the krill SSU that was sequenced as part of this study (GenBank 

accession no. AY672801 ). Primers were checked for hybridization to non-target taxonomic 

groups using PROBE (Cole et al., 2003) and BLAST (Altschul et al., 1990). This analysis 

suggested that in addition to diatoms the primers would amplify SSU sequences from 

several stramenopile groups closely related to diatoms and a small number of species from 

more distant groups including the16S gene of some chloroplasts and bacteria. Primers were 

checked for hairpin loops and primer dimers using PRIMER 3 (Rozen and Skaletsky, 2000). 

The primers generate an amplicon of approximately 143 base pairs and their sequence is: 

forward primer ASF1630/18 5' TACACACCGCCCGTCGCA 3', reverse primer ASR1775/22 

5' CGGAAACCTTGTTACGACTTCA 3'. 
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The primers were tested empirically on DNA samples derived from seven cultures of diatoms 

(Fragilariopsis curia, Fragilariopsis kergue/ensis, Fragilariopsis sublineata, Navicu/a directa, 

Nitzschia lecointei, Phaeodactylum tricomutum, Porosira glacia/is) and four 'non-diatoms' 

(Euphausia superba - crustacean, Po/are/la sp. - dinoflagellate, Pyramimonas sp. - flagellate, 

Gemmigera cryophyllum - cryptomonad). The primers produced amphcons from all seven 

diatoms and were specific to diatoms in this assay (data not shown). 

2.3.8 PCR 

PCR for all purposes other than quantitative PCR contained the following: 20 ng of template 

DNA, 3.0 mM MgCb (Gibco), 0.125 mM dNTPs (Gibco), 0.25 uM of each primer 

(Geneworks), 1 X Bovine Serum Albumin (NEB), 0.5 U Amplitaq Gold (Gibco), 1 X 

manufacturer's PCR buffer (Gibco) and made up to 20 µL with dH20. Samples were amplified 

in a PTC-200 thermal cycler (MJ Research) using the following cycling parameters· preheat 

at 95 °C for 3 mm, 30 cycles of 95 °C for 5 s, 60 °C for 15 sand 72 °C for 15 sand a final 

extension at 72 °C for 5 min. No template and DNA extraction negative controls were run 

alongside krill stomach samples. 

2.3.9 Comparing krill preservation methods 

PCR results from krill preserved m ethanol and by freezing were compared to determine 

which preservation method was most suitable for DNA diet studies. PCR was performed on 

individual stomach DNA samples as described above and 5 µL of the PCR reactions were 

run on a 2% agarose gel stained with GelStar (Lonza). All subsequent analyses were 

performed on krill that had been preserved in 80% ethanol. 

2.3.10 Generating clone libraries from krill stomachs 

The sequence diversity of prey DNA was examined by generating a clone library of PCR 

amplicons from each krill. PCR reactions were performed on stomach extracts using the 

group specific primers ASF1630/18 and ASR1775/22 as described above. PCR reactions 

were then checked by gel electrophoresis (data not shown) prior to creating clone libraries 

with the TOPO-TA cloning kit (lnvitrogen). At least 50 DNA clones from each krill were then 

purified and sequenced using the Mini Plasmid Prep kit (Mol Bio) and CEQ2000 Genetic 

Analysis System (Beckman Coulter) as per manufacturer's instructions. 
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2.3.11 Clone identification 

DNA sequences from individual clones were grouped into 'Operational Taxonomic Units' 

(OTUs) for each geographic location, where sequences were considered to be a single OTU 

if they had < 1 % sequence divergence. OTUs were then tentatively identified by finding their 

closest match in the GenBank database using the MEGABLAST algorithm (Zhang et al., 

2000). A sequence similarity tree was then created to support the OTU identifications and 

examine the relationship between OTU and diatom SSU sequences. The tree contained the 

following collection of DNA sequences: all OTUs derived from krill stomachs; the GenBank 

database sequences that most closely matched each OTU sequence; all available diatom 

SSU sequences, and several stramenopile SSU sequences closely related diatoms or 

OTUs. Non-OTU sequences were edited down to the region between the two primer sites 

and all sequences were aligned in Clustal X (Thompson et al., 1997), with gap opening and 

gap extension parameters set to 10 and 0.5 respectively. Using this alignment a similarity 

tree was created using MEGA2 (Kumar et al., 2001). Sequence s1m1lanty was estimated 

using Tamura-Nei distances (Tamura and Ne1, 1993) and a tree constructed using the 

minimum evolution algorithm with gap handling by pairwise deletion. OTUs were identified as 

the closest named sequence within the sequence similarity tree. Following identification, 

some diatom SSU sequences that were repetitious or unrelated to OTU sequences were 

removed to simplify the tree for publication. 

Based on the available sequence data OTUs were classified into one of six categories: 

Fragilariopsis (diatom genus); Thalassiosira (diatom genus); Chaetoceros (diatom genus); 

Other Diatoms (sequences that matched a diatom sequence but did not match members of 

the previously defined groups); Dictyochophyceae (silicoflagellate class); and Other 

Stramenopiles (sequences that matched to other stramenopile sequences). For most OTU 

sequences there was complete agreement between MEGABLAST and tree-based 

identification but for OTUs with GenBank match scores < 97% there was sometimes a 

discrepancy between the two identification methods. In these cases, a conservative 

approach to identification classified these OTUs as either Other Diatoms or Other 

Stramenopiles. 
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2.3.12 Comparing relative abundance estimates from DNA and microscope 

To compare relative abundance estimates derived from the two diet analysis methods the 

microscope data were grouped into the same categories defined above for OTUs. For both 

DNA and microscopic data the relative abundance of each prey group was calculated for 

ind1v1dual krill and then averaged across krill within a site to estimate the mean relative 

abundance of consumed prey ± standard deviation (n = 3). 

2.3.13 Quantifying prey DNA extracted from krill stomachs 

Quantitative PCR was used to estimate how many copies of prey SSU DNA were extracted 

from each krill stomach. A standard for estimating prey DNA copy number was created by 

cloning a 143 base amplicon derived from the diatom Fragi/ariopsis curia into the TOPO-TA 

vector pCR2.1. The plasmid was linearised with Ncol (NEB) to remove supercoiling and then 

purified with the Qiaquick PCR purification kit (Qiagen). A series of ten-fold dilutions from 1 o-

1 ng µL-1 to 10-7 ng µL-1 (approximately 2 2 x 107 to 2.2 x 101 copies of the plasmid) was used 

to generate a standard curve for quantification of the krill stomach samples (y = -0.267x + 

10.928, r2 > 0.999). Quantitative PCR was performed using the Quant1tect SYBR Green RT­

PCR kit (Qiagen) and reactions contained the following: 20 ng of template DNA, 3 mM 

MgCb, 1X BSA (NEB), 0.25 µM of each primer (ASF1630/18 and ASR1775/22), 1X 

Quant1tect SYBR Green Master Mix and made up to 20 µL with dH20. Samples were 

amplified in a Rotor Gene 2000 thermal cycler (Corbett Research) using the following cycling 

parameters: preheat at 95 °C for 15 min, 50 cycles of 95 °C for 20 s, 60 °C for 20 s and 72 

°C for 20 s. All reactions were performed in triplicate and the results presented as an 

average of the three PCR reactions ± standard dev1at1on (n = 3). 

2.4 Results 

2.4.1 Prey DNA Preservation 

Two methods of preserving intact krill for DNA diet analysis were examined - preservation in 

ethanol and preservation by freezing. Krill that had been preserved in ethanol provided 

strong PCR amplification results using prey specific primers (Figure 2-1, lanes 1 - 5). In 

contrast, krill preserved by freezing gave poor PCR amplification results (Figure 2-1, lane 6 -

10). These results suggest that preserving krill in ethanol is superior to preservation by 

freezing for maintaining the integrity of prey DNA within intact krill. 
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2.4.2 Microscopic analysis of krill stomachs 

Microscopic diet analysis presented a simple picture of krill diet at both sites A and B (Table 

2-1). Krill from both sites had consumed a large quantity of diatoms and krill from Site A had 

also consumed a small number of the s1licoflagellate Dictyocha speculum. No other prey 

groups were identified by microscopy. At both sites the diatom component of krill diet was 

dominated by a single genus (Fragilariopsis) and there was little variation in prey 

composition or relative abundance between the three individual krill analysed within each 

site. Site A krill consumed mainly Fragi/ariopsis cylindrus (69 % of total diet) and F. curta (26 

%), with the next highest contribution from any single species contributing <1 % of the total 

diet. In contrast, the diet of krill at Site B was dominated by F. curta (85 %) followed by F. 

cylindrus (12 %). Site B krill had also consumed a small amount of the diatom genus 

Tha/assiosira (3 %). These results were consistent with previous studies that have applied 

microscopic diet analysis to krill collected during the Antarctic summer (e.g. Marr, 1962; 

Genhai, 1993; Pakhomov et al., 1997). 

2.4.3 Detection and identification of prey DNA in krill stomachs 

The diversity of prey DNA was examined by generating clone libraries of PCR amplicons 

from individual krill. Sequencing of individual clones confirmed that all OTUs generated with 

the group specific primers ASF1630/18 and ASR1775/22 were derived from organisms that 

are likely to be krill prey (Figure 2-2, Table 2-2). Most OTUs matched diatom SSU 

sequences, in accordance with the microscopic diet analysis. Several rare OTUs had poor 

percentage matches scores with GenBank sequences, reflecting the paucity of sequence 

information available for taxonomic groups likely to be prey for krill. 

DNA diet analysis detected OTUs identical to F. cy/indrus and F. curta sequences in all three 

krill at both sites A and B (Table 2-3). OTUs related to Tha/assrosira sequences were also 

detected in all three krill at site B. DNA diet analysis therefore detected all genera identified 

as more than 1 % to the total diet by microscopy (compare Table 2-1 with Table 2-3). 

DNA analysis also identified two groups that were not detected by microscope analysis. Site 

A krill produced a small number of clones from the diatom genus Chaetoceros. Site B krill 

produced clones from a non-diatom stramenopile group, possibly golden algae (Class: 

Chrysophyceae). 
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2.4.4 Comparing prey relative abundance estimates from DNA and microscope 

Prey relative abundance estimates obtained from DNA clone libraries and microscope 

analysis showed significant differences (Figure 2-3). Site 8 shows a large discrepancy in the 

relative abundance estimates for Tha/assiosira. The ratios of F. cylindrus and F. curia OTUs 

at both sites were also inconsistent with the ratios obtained by microscopic diet analysis. The 

observed bias was consistent for all three krill within a site, suggesting that sampling error 

was unlikely to be the cause of the bias. 

2.4.5 Quantifying prey DNA extracted from krill stomachs 

Quantitative PCR was used to determine how much prey DNA template was extracted from 

krill stomachs. All six knll stomachs were found to contain a large amount of prey DNA 

template that could be amplified with the group specific PCR primers (Table 2-4). All 

stomachs contained at least 100,000 copies of the intact SSU template with one stomach 

exceeding a million copies. These results suggest that DNA diet assays based on the SSU 

gene can provide robust PCR results derived from a significant amount of starting template. 

Microscopic estimates suggested the total number of diatoms consumed by each krill ranged 

from - 80,000 - 370,000 diatoms per individual (Table 2-4). The ratio of prey DNA template : 

diatoms consumed ranged from 1.0 - 4.9, indicating that copies of SSU template recovered 

per diatom consumed was reasonably high. 

2.5 Discussion 

2.5.1 Preservation of prey DNA 

A comparison of methods for preserving intact knll for DNA diet analysis suggested that 

preservation with ethanol is superior to preservation by freezing. Previous DNA diet studies 

on invertebrates have used ethanol preservation (e.g. Hoogendoorn and Hempel, 2001) but 

preservation by freezing has been the dominant method (e.g. Zaidi et al., 1999; AgusU et al., 

2003a). Given the general preference for preservation by freezing the poor result with frozen 

krill was unexpected. Previous studies did not compare preservation methods so it is unclear 

whether alternative methods would have provided better results. In addition, most studies 

have examined terrestrial insect predators which may not provide a useful precedent for 

marine organisms like krill. Problems extracting prey DNA from frozen marine invertebrates 

is not unprecedented. Ashida et al. had difficulties extracting prey DNA from frozen sand 
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shrimps (Asahida et al., 1997). This was attributed to abundant DNA endonucleases and the 

problem was solved by altering the DNA extraction buffer. Freezing does not destroy DNA 

nucleases and successful DNA extraction from frozen tissue relies on rapid inactivation of 

nucleases prior to significant defrosting of the sample (Strauss, 1998). Thus, prey DNA may 

have been successfully preserved in frozen krill at the time of collection, but subsequently 

degraded during the dissection procedure because of limited but unavoidable defrosting. Krill 

have an extremely high water content that makes it difficult 1f not impossible to dissect 

completely frozen animals in a sterile manner. It is difficult to see a way around this problem 

and preserving krill by freezing may be incompatible with sterile dissection and high yields of 

prey DNA. 

Subsequent to the work in this chapter, Martin et al. published a study that applied freezing 

preservation to krill and successfully extracted and amplified prey DNA (Martin et al., 2006). 

Dissections were performed on a cold glass plate to keep stomach samples at low 

temperature until they could be transferred into DNA extraction buffer (Martin et al., 2006). 

Prey DNA was amplified with universal primers and detected with denaturing gradient gel 

electrophoresis (DGGE). The amount of prey DNA extracted was not quantified but 

comments in the methods section suggest the amount was small. DGGE provides extremely 

sensitive detection, well beyond what can be achieved usmg agarose gels. Samples that 

require 25-30 cycles of amplification to be observed in agarose typically require only 15-20 

cycles to be observed with DGGE (personal observation). In spite of this high level of 

sensitivity, several gut samples in Martin et al.'s study required 35 cycles of PCR to be 

detected by DGGE. Therefore the results of Martin et. al may still be consistent with the 

exonuclease degradation hypothesis described above. 

In this study ethanol preservation successfully preserved prey DNA and provided animals 

that could be dissected at a leisurely pace. The superior results obtained with ethanol 

preservation could be due to the fact that ethanol permeates animal tissue and denatures 

nuclease enzymes (Flournoy et al., 1996). A potential issue with ethanol preservation is that 

live krill dropped into ethanol may react by swallowing ethanol during the preservation 

process which could introduce contamination into the diet sample. Given the large volume of 

ethanol per krill used in this study and the short time that it took for krill to expire (- 3 
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seconds) the contamination risk from this source is probably low. However, it may be 

prudent to preserve and store krill individually to further minimize contamination risk. 

This is the first study to compare preservation methods and the results suggest that 

optimising the preservation method is important. Additional work in this area could provide 

further improvements in prey DNA yield. In terms of applying these results to other animals it 

1s important to recognise that the optimal preservation method may differ for different 

predator species. Feasibility studies should consider testing multiple preservation methods. 

2.5.2 Krill dissection 

The dissection method used m this study was fast and efficient but the issue of 

contamination warrants some discussion. Contamination is a significant issue for DNA diet 

analysis because PCR can amplify from extremely small amounts of DNA template. 

Contamination must be avoided at every step in the sample processing procedure. Previous 

DNA diet studies have rarely mentioned contamination and some studies advocate 

extracting DNA from intact predators with no regard for external sources of contamination. 

For aquatic predators that literally swim in their food, potential contamination can come from 

water carried over during collection or from material attached to the exterior of the animal, 

particularly food trapped amongst swimming and feeding appendages. Extracting digestive 

tissue must be carefully handled to prevent the transfer of external contamination to the 

stomach sample. It is recommended that the dissection procedure is carefully considered in 

relation to contamination and the dissection tools are routinely sterilised. 

2.5.3 PCR assay design 

The design of PCR based prey detection assays requires careful consideration due to the 

presence of knll DNA in the diet samples. Krill DNA swamped initial attempts to amplify prey 

DNA with universal primers despite the use of dissection to increase the relative 

concentration of prey DNA. In the current study this problem was solved by designing prey 

specific PCR primers that did not amplify krill DNA. The problem with this approach is that it 

restricts the range of prey that can be detected. Recent work suggests there may be other 

ways of dealing with predator DNA (Blankenship and Yayanos, 2005) and these techniques 

are explored in more detail m Chapter 3. 
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The taxonomic resolution of DNA diet analysis is dependent on two factors: the amount of 

sequence divergence between species within the amplified DNA region and the amount of 

sequence data available across the targeted prey group. As more sequence information 

becomes-available, it will be possible to have greater confidence in the identity and 

taxonomic resolution of prey amplicons. Currently, SSU is the only gene that provides 

reasonable taxonomic coverage for knll prey groups and coverage of protist groups remains 

poor. Based on the available sequences the 143 base region targeted in this study contains 

enough sequence variation to resolve diatoms to the level of family or genus. This level of 

resolution is close to that of high-powered light microscopy and superior to pigment, isotope 

and lipid analysis. Amplifying larger DNA fragments would provide more taxonomic 

resolution but it is unclear what size range of prey DNA fragments can be recovered from 

krill stomachs. ldent1f1cation of species using DNA has been gaining popularity and broader 

issues related to identification are undergoing active debate (Meyer and Paulay, 2005; 

Steinke et al., 2005, Rubinoff et al., 2006). 

2.5.4 Comparing DNA and microscopy 

Verification of the DNA diet methods has previously been achieved using controlled feeding 

trials (e.g. Foltan et al., 2005; Juen and Traugott, 2005; Sheppard et al., 2005). This study is 

the first attempt to verify DNA diet analysis results using an independent method of diet 

analysis. 

DNA diet analysis detected the same diatom groups identified by microscopy plus two 

additional groups, the diatoms genus Chaetoceros and clones that were probably derived 

from Chrysophyceae (Golden algae). Chaetoceros has fragile, lightly sillc1fied valves that are 

unlikely to survive ingestion by krill (Marr, 1962). Chrysophyceae species generally lack hard 

parts that can be detected by light microscopy (F. Scott, pers. comm.). This probably 

accounts for their absence in the microscopic analysis. The ability to detect prey that cannot 

be identified by other methods is one of the strengths of DNA diet analysis. 

The comparison between DNA and microscopy suggested that one of the techniques was 

biased in terms of reporting the relative abundance of the diatom genera Fragi/ariopsis and 

Tha/assiosira. In general diatoms provide a good hard part signature for microscopic 

analysis but differences in size and fragility of valve structures can make some diatom 
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species easier to detect than others. This may account for a proportion of the observed 

differences between DNA and microscopy. However, Fragi/ariopsis and Tha/assiosira 

generally have large and robust valves that are easily detected with microscopy. A more 

likely explanation is that the DNA diet analysis via clone libraries suffers from biases that 

alter the ratio of clones from the true ratio of consumed prey. The potential reasons for this 

bias are many and varied. The large Thalassiosira DNA signal at Site B could be a reflection 

of the krill feeding behaviour. Krill at Site B may have consumed Thalassiosira diatoms JUSt 

prior to capture and the DNA signal may not have degraded to the same extent as the signal 

from other prey. Alternatively there could be issues with the methodology such as 

differences in SSU gene copy number between Tha/assiosira and Fragi/ariopsis species, 

PCR bias (Paiz and Cavanaugh, 1998; Suzuki et al., 1998; Becker et al., 2000) or cloning 

bias. 

Now that DNA assays that detect multiple prey species are beginning to emerge the issue of 

detection bias needs further consideration. DNA diet studies have observed differences in 

the length of time that prey species are detectable (Harper et al., 2005). Clone libraries 

derived from seats have been shown to give biased estimates of diet (Deagle et al., 2005) 

similar to the results in this study. As a general rule it is unlikely that the proportions of prey 

amplicons m clone libraries will be an accurate representation of the ratios of consumed 

prey. An alternative approach that may be more suited to DNA and its potential for high 

throughput is to determine the presence or absence of prey in a large number of predator 

individuals and use this information to assess the importance of particular prey groups. This 

approach has recently been applied to the diet of spiders (Agusti et al., 2003a) and beetles 

(Harper et al., 2005). Chapter 4 of this thesis explores the approach in more detail. 

2.5.5 Quantifying prey DNA extracted from krill stomachs 

A rarely acknowledged problem with DNA diet analysis is that PCR reactions are often 

performed on very small amounts of poor quality template DNA. Given sufficient rounds of 

PCR amplification, PCR products and clone libraries can be generated from exceedingly 

small amounts of starting template but the results are generally difficult to reproduce 

(Chandler et al., 1997) and prone to contamination issues (Cooper and Pomar, 2000). This 

study was the first attempt to quantify the amount of prey DNA template in diet samples. 
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Subsequent studies have extended the application of quantitative PCR in DNA diet analysis 

(Deagle and Tollit, 2006; Troedsson et al., 2007) and the approach is explored further in 

Chapter 5. 

The results from the current study demonstrate that a large amount of prey DNA can be 

extracted from ethanol preserved krill. This allows PCR amplification reactions to be carried 

out without excessive rounds of amphf1cat1on. The results provide additional evidence that 

the application of DNA diet analysis to Antarctic krill is likely to be a robust approach. Future 

DNA diet studies should consider quantifying the amount of prey DNA extracted from 

predators to assist with assessing the reproducibility of their work. 

2.6 Conclusions 

This study demonstrates that DNA diet analysis can be applied to Antarctic krill collected in 

the field. The study identifies several issues with DNA diet analysis that need to be 

addressed before the approach can provide reliable quantitative data about krill diet. Overall 

the results suggest that the application of DNA diet analysis to krill warrants further 

investigation, particularly for prey that are difficult to study using other methods. 
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Figure 2-1 Effect of krill preservation on the PCR amplification of prey. Agarose gel showing 

prey specific PCR products derived from krill stomach DNA samples. Lanes 1 - 5, krill 

preserved in 80% ethanol. Lanes 6-10, krill preserved by freezing at - 80 °C. Lane 11 

negative control for DNA extraction. Lane 12 no template PCR control. 
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Figure 2-2 Sequence similarity tree of krill stomach OTUs and related sequences. Note. 

OTU-89 does not appear on the tree because it 1s derived from the 16S chloroplast gene. 
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Figure 2-3 Comparison of microscope and DNA diet methods at Sites A and B. Columns 

represent site averaged estimates of consumed prey relative abundance. Error bars are SD 

(n = 3). 



Table 2-1 Microscopic diet analysis of krill stomachs showing species identified and their relative abundance. 

Site A Site B 

Krill A-1 Krill A-2 Krill A-3 Krill B-1 Krill B-2 Krill B-3 

Species/Group Identified No. % No. % No. % No. % No. % No. % 

BACILLARIOPHYTA- Diatoms 

Fragi/ariops1s cylindrus 2,017 68.9 1,368 71.9 580 77.4 9 12.0 162 11.7 267 11.6 

Fragilariopsis curia 807 27.6 490 25.8 145 19 4 648 83.4 1, 119 80.9 1,938 84.2 

Frag1/ariopsis sublineata 24 0.8 4 0.2 6 0.8 3 0.4 5 0.4 2 0.1 

Fragi/ariopsis angu/ata 10 0.3 3 0.2 1 0 1 8 1.0 18 1.3 32 1.4 

Fragi/anopsis ritscheri 4 0.1 1 0.1 0 0.0 0 0.0 3 0.2 1 0.0 

Frag1/ariopsis obliquecostata 2 0.1 1 0.1 0 0.0 0 0.0 0 0.0 3 0.1 

Fragi/ariopsis pseudonana 12 0.4 9 0.5 8 101 0 0.0 0 0.0 13 0.6 

Tha/assiosira grac11Is 4 0.1 2 0.1 0 0.0 16 2.1 57 4.1 46 2.0 

Tha/assiosira antarct1ca 0 0.0 1 0.1 0 0.0 0 0.0 0 0.0 0 0.0 

Thalassiosira lentiginosa 1 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 

Tha/assiosira o/iverana 0 0.0 0 0.0 0 0.0 3 0.4 0 0.0 0 0.0 

Asterompha/as hookeri 0 0.0 0 0.0 0 0.0 1 0.1 0 0.0 0 0.0 

Asterompha/as sp. 0 0.0 0 0.0 0 0.0 1 0.1 0 00 0 0.0 

Navicu/a sp. 0 0.0 0 0.0 0 0.0 0 0.0 1 0.1 0 0.0 

Nitzschia pseudonana 0 0.0 0 0.0 0 0.0 4 0.5 7 0.5 0 0.0 

Nitzsch1a sp 16 0.5 10 0.5 6 0.8 0 0.0 0 0.0 0 00 

Rhizosolenia sp. 7 02 2 0.1 0 0.0 0 0.0 11 0.8 1 0.0 

DICTYOCHOPHYCEAE - Silicoflagellates 

Dictyocha speculum 23 0.8 11 0.6 3 0.4 0 0.0 0 0.0 0 00 

Total hard part count 2,927 1,902 749 777 1,383 2,303 



Table 2-2 Description of OTUs isolated from krill stomachs and their closest match in the GenBank. 

Name Length OTU Nearest MEGABLAST % Match Match Identified as 
(base pairs) Accession No. Match Accession No. 

OTU-A1 143 AY672806 Frag1/ariops1s cy/indrus 100% AY672802 Frag1lanopsis 

OTU-A2 143 AY672807 Fragilariopsis curta/sublineatalkergu/ensis 100% A Y672803/AF525665/A Y672804 Frag1lariops1s 

OTU-A3 142 AY672808 Chaetoceros sp. 99% X85390 Chaetoceros 

OTU-A4 143 AY672809 Tessellaria volvocma 91% U7321 Other Stramenop1le 

OTU-81 143 AY672810 Fragi/ariopsis cylindrus 100% AY672802 Fragilanopsis 

OTU-82 143 AY672811 Frag1/ariops1s curta/sublineata/kergulensis 100% AY672803/AF525665/A Y672804 Frag1lanopsis 

OTU-83 143 AY672812 Tha/assiosira pseudonana 100% AJ535169 Thalassiosira 

OTU-84 143 AY672813 Mallomonas akrokomos 91% U73229 Other Stramenopile 

OTU-85 143 AY672814 Rhizosolenia imbricata 94% AJ535178 Other Diatom 

OTU-86 146 AY672815 Florenc1el/a parvula 86% AY254857 Other Stramenop1le 

OTU-87 143 AY672816 Thalass1osira pseudonana 98% AJ535169 Thalass1os1ra 

OTU-88 143 AY672817 Chaetoceros sp. 93% AJ535167 Other Diatom 

OTU-891 119 AY672818 Rhizoso/enia setigera 96% AJ536461 Other Diatom 

OTU-810 143 AY672819 Thalassiosira pseudonana 97% AJ535169 Thalassiosira 

1 Sequence1s from 16S chloroplast gene not SSU 



Table 2-3 Summary of DNA clone library analysis from individual krill stomachs showing the OTUs isolated and their relative abundance. 

Site A 

Krill A-1 Krill A-2 Krill A-3 

Name Identification No. % No. % No. % 

OTU-A1 Fragilanops1s 48 87.3 53 86.9 57 98.3 

OTU-A2 Fragilanops1s 4 7.3 3 4.9 1 1.7 

OTU-A3 Chaetoceros 2 3.6 5 8.2 0 0.0 

OTU-A4 Other Stramenopile 1.8 0 00 0 0.0 

Total 55 61 58 

Site B 

Krill B-1 Krill B-2 Krill B-3 

Name Identification No. % No. % No. % 

OTU-81 Fragi/ariops1s 25 47 2 10 18.9 12 22.6 

OTU-82 Frag1/ariops1s 4 7.5 4 7.5 5 9.4 

OTU-83 Tha/assios1ra 23 43.4 35 66.0 30 56.6 

OTU-84 Other Stramenop1le 1 1.9 1.9 3 5.7 

OTU-85 Other Diatom 0 0.0 1.9 0 0.0 

OTU-86 Other Stramenopile 0 0.0 1.9 0 0.0 

OTU-87 Tha/ass1osira 0 0.0 1.9 0 00 

OTU-88 Other Diatom 0 0.0 0 00 1.9 

OTU-89 Other Diatom 0 0.0 0 00 1.9 

8TU-810 Thalassiosira 0 0.0 0 0.0 1 9 

Total 53 53 53 



Table 2-4 Estimate of prey SSU molecules extracted from individual krill stomachs. 

Krill ID Concentration Copies of prey SD (n = 3) Estimate of the SD (n = 3) Number of diatom Fraction of Estimate of the Ratio of prey SSU 
of DNA ssu number of prey valves counted 'hard part' number of diatoms in molecules per 
Extracted from molecules per SSU molecules microscopically4 sample the stomach from diatom consumed 
krill stomach PCR reaction1 extracted from counted 'hard' part' analysis 
ng µI ·1 stomach2 

A-1 43 8,319 ± 1,485 1,787,987 ±319,168 2,927 1/250 36,5875 4.9 

A-2 42 4,366 ±368 916,886 ± 77,282 1,902 1/250 237,750 3.9 

A-3 25 2,713 ±294 339,172 ± 36,755 749 1/250 93,625 3.6 

8-1 44 1,142 ±80 251,304 ± 17,604 777 1/250 97,125 2.6 

8-2 47 1,194 ± 61 280,535 ± 14,332 1,383 1/125 86,438 3.2 

8-3 28 1,006 ± 133 140,898 ± 18,627 2,303 1/125 287,875 1.0 

1 Calculated with quantitative PCR using 20 ng of template DNA per PCR reaction. 
2 Copies of target DNA per µL of PCR template DNA X dilution factor from original DNA extraction to PCR template solution X total amount of original DNA extraction (100 µL). 
3 Number of valves counted X (1/ fraction of sample counted) X 1/2 (t\No valves per diatom) 
4.These estimates should be considered tentative because no replicate counting was performed. 
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Chapter 3· Overcoming predator DNA 

3.1 Abstract 

DNA diet samples are a mixture of DNA derived from prey species and the predator that 

consumed them. Predator DNA is often the largest and best preserved component of diet 

samples which can cause significant problems for PCR based DNA diet analysis. This study 

examined methods that remove predator DNA from diet samples prior to PCR amplification. 

The study applied PCR clamping and restriction digests to krill stomach diet samples. Both 

approaches led to some reduction in the amount of krill DNA that was PCR amplified but 

neither method proved completely satisfactory. 

3.2 Introduction 

Samples used in DNA diet analysis contain DNA from prey species but often predator DNA 

is the largest and best preserved component (Chapter 2, Blankenship and Yayanos, 2005; 

Martin et al., 2006; Passmore et al., 2006). Predator DNA in diet samples creates significant 

problems for DNA-based diet analysis. In studies that have used 'universal' primers where 

predator DNA is also amplified, high levels of predator DNA can out-compete prey DNA for 

either PCR amplification or subsequent amplicon detection (Martin et al., 2006; Passmore et 

al., 2006). Most DNA diet studies circumvent the problem by developing group or species 

specific PCR primers that do not amplify predator DNA. However, this approach generally 

leads to compromises in prey species coverage becuase a subset of prey has the same 

DNA sequence as the predator at priming sites that are conserved across a broad range of 

species. Clearly it would be useful to develop methods that systematically remove predator 

DNA or block predator DNA amplification during PCR. 

Two methods that deal directly with non-target DNA are PCR clamping and restriction 

digests. PCR clamping is a method that utilises a blocking probe to prevent the amplification 

of a specific non-target DNA template during PCR. Three PCR clamping strategies have 

been defined· (1) Primer exclusion, where the blocking probe competes with one of the PCR 

primers for the same binding site on the non-target DNA template, (2) Strand initiation 

interference, where the blocking probe binds specifically to the non-target template directly 

adjacent to the 3' end of one of the primers, thus preventing Taq polymerase from initiating 

strand elongation from the primer, and, (3) Elongation arrest, where the blocking probe binds 
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at a location some distance from the primer site and prevents Taq polymerase from 

progressing along the template strand (Figure 3-1, Orum et al., 1993; Orum, 2000). 

Blocking probes cannot be constructed from unmod1f1ed DNA because (1) they must not act 

as primers for PCR that can be extended by Taq polymerase, and, (2) for the strand initiation 

interference and elongation arrest strategies the blocking probes must be resistant to the 5'-

3' exonuclease activity of Taq polymerase (for descriptions of Taq's 5'-3' exonuclease see 

Longley et al., 1990; Ceska and Sayers, 1998; Lyamichev et al., 1999). In add1t1on, it is 

useful for blocking probes to have strong and specific binding affinity for the non-target 

template. To meet these criteria blocking probes have generally been constructed from a 

DNA analog known as a peptide nucleic acid (PNA) (Orum et al., 1993; Orum, 2000; von 

Wintzingerode et al., 2000; Iwamoto and Sonobe, 2004, Takiya et al., 2004). The chemical 

structure of PNA nucleotides is resistant to modif1cat1on by Taq and the binding affinity and 

specificity of PNA probes is superior to their DNA equivalent. However, PNA probes are 

expensive and they lack flexibility with regard to designing probes that have the desired 

binding affinity because it is impossible to synthesize probes that are a mixture of PNA and 

DNA nucleotides. An alternative DNA analog with attractive properties is the locked nucleic 

acid (LNA). LNA nucleotides confer increased binding affinity similar to PNA but LNA probes 

are cheaper and hybrid probes that are a mixture of LNA and DNA nucleotides can be 

synthesised (Braasch and Corey, 2001; Petersen and Wengel, 2003). LNA probes have 

recently been trialled as PCR blocking probes (Hummelshoj et al., 2005; Senescau et al., 

2005; Thiede et al., 2006). 

Restriction digests have recently been applied to DNA diet samples to remove predator DNA 

in a study on the diet of molluscs and amphipods (Blankenship and Yayanos, 2005). The diet 

samples were PCR amplified with 'universal' primers. PCR amplicons were then subjected to 

a restriction digest using an enzyme that cuts near the centre of predator amplicons. Cut 

predator amplicons were then size-separated from uncut amplicons and the uncut amplicons 

were cloned and sequenced. 

The aim of this study was to apply PCR clamping with LNA blocking probes and restriction 

digest strategies to krill stomach samples to determine whether either approach could 

improve the yield of prey amplicons in PCR reactions that utilise 'universal' primers. 
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3.3.1 Developing a detection assay 

Chapter 3: Overcoming predator DNA 

To facilitate the rapid and cost effective assessment of amplicons generated in mixed 

template PCR reactions, an assay was developed that utilised capillary gel electrophoresis 

to size separate PCR amplicons. 

A region near the centre of the SSU gene was targeted for PCR amplification because 

sequence alignments demonstrated that euphausiid species had a DNA sequence insertion 

(14 base pairs) in this region that was absent from knll prey species. This allowed for easy 

separation of predator and prey peaks on electrophoresis chromatograms. Peak heights 

provided a semi-quantitative estimate of the amount of different sized PCR amplicons 

present in the mix. The targeted region also contained a high level of sequence variation 

between prey species, including other small deletions and insertions that allow some 

additional separation of krill prey groups based on amplicon size. 

PCR primers were developed that bound either side of the 14 bp insertion region and were 

capable of generating amplicons from a broad range of species, including krill (Table 3-1). 

Forward primer ASF1194/20 was labelled with Beckman sequencing dye D4 to facilitate 

amplicon detection during capillary gel electrophoresis. Optimized PCR reactions contained: 

2 µL of template DNA, 2.5 mM MgCb (Gibco), 0.1 mM dNTPs (Gibco), 0.1 µM of each primer 

(Geneworks), 1 X Bovine Serum Albumin (NEB), 0.5 units of Amplitaq Gold (Gibco), 1 X 

manufacturer's PCR buffer (Gibco) and made up to 20 µL with dH20. Samples were amplified 

in a Tetrad thermal cycler (MJ Research) using the following cycling parameters: preheat at 

95 °C for 10 min followed by 35 cycles of 95 °C for 10 s, 62 °C for 20 s and 72 °C for 40 s. 

PCR reactions were analysed on a CEQ2000 96 well capillary sequencer (Beckman). PCR 

reactions were diluted 1 in 10 with mH20. Samples prepared for capillary electrophoresis 

contained: 2 µI of diluted PCR reaction, 25 µI of sample loading solution (Beckman) and 0.15 

µI of 70 - 420 bp DNA size standard (Beckman). Samples were analysed with standard 

fragment analysis run cond1t1ons (Frag1). 
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3.3.2 LNA blocking probe 

The LNA blocking probe was designed in conjunction with the detection assay PCR primers. 

The primer blocking PCR clamp strategy was selected because previous research 

suggested this was the most reliable blocking method (Orum, 2000) and the approach 

avoided concerns that LNA probes might be susceptible to degradation by the 5' - 3' 

exonuclease of Taq polymerase. The LNA probe was designed to bmd specifically to krill 

DNA template and to block the binding site of the reverse PCR primer. Specificity and strong 

binding affm1ty were achieved via strategic placement of the probe and positioning LNA 

bases within the blocking probe to target bases unique to krill DNA (Table 3-1). 

Thermodynamic models predicted the melting temperature of the LNA probe bound to krill 

DNA would be 67 °C (Exiqon website http://www.ex1qon.com/). This was well above the 60 

°C predicted melting temperate for the reverse primer (Exiqon website 

http://www.exiqon.com/). Binding of the LNA probe to non-krill templates were well below the 

60 °C melt temperature of the reverse primer (data not shown). The 3' end of the blocking 

probe was phosphorylated to prevent primer extension by Taq polymerase (probe supplied 

by Pro-ohgo). 

3.3.3 Plasmid test system 

A plasmid test system was developed to allow an examination of predator DNA blocking 

methods under controlled conditions. The full length SSU genes from krill and the diatom 

Fragilariopsis cylindrus were separately cloned into the plasmid vector TOPO pCR2.1. Large 

stocks of the two plasmids were generated using a plasmid purification kit (Mo Bio). To 

remove any effect from plasmid supercoihng, both plasmids were linearised with restriction 

enzyme Notl (NEB). Plasmid DNA concentration was determined using a Picofluor 

fluorometer {Turner Designs) and Picogreen dsDNA quantification reagent (Molecular 

Probes) as per manufacturer's instructions. Plasmid DNA copy number per µI was estimated 

using the formula: 

Copy number per µI = Avogadro's number (6.022 x 1023
) X Concentration (kg L-1) I 

Molecular Weight (Daltons) 

where the weight of each base pair (bp) in the plasmid was assumed to be 650 Daltons. 

Plasmid sizes were 5737 bp and 5723 bp for krill and diatom, respectively. From these 
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stocks, a set of solutions was made that contained various ratios of diatoms and krill 

plasmid. All ratio solutions were made up to a final concentration of 10,000 copies of plasmid 

per µI (diatom: krill ratios 1 :0, 0: 1, 1: 1, 1. 5, 1·10, 1 : 100, 1: 1000, and 1: 10,000). 

Ratio solutions were used as template DNA in PCR reactions and as controls when 

experiments on krill stomach samples were conducted. 

3.3.4 Krill Stomach Samples 

Five krill stomach samples were used from each of the four field collection sites (A-D) 

described in Chapter 4 (Figure 4.1 and Table 4.1 ). Samples were selected that had 

previously tested positive for either diatom or dmoflagellate DNA using group specific 

primers (Chapters 2 and 4). DNA concentration of the diet samples ranged from 11.6 - 41.0 

ng µ1-1. Dilutions of stomach samples prior to PCR (1 : 1, 1 : 5, 1 : 10, 1 : 50, 1 : 100) were 

made using AE buffer (Qiagen). 

3.3.5 Restriction enzyme digests 

Restriction enzymes capable of cutting krill DNA within the amplified region were examined 

to determine whether they would also cut the DNA from potential prey groups. A sequence 

alignment containing sequences from 1508 species from a diverse range of potential prey 

groups was generated using sequences derived from the European Ribosomal RNA 

database (http://www.psb.ugent.be/rRNA/index.html). Restriction site analysis was 

performed using Bioedit software (Hall, 1999). BamHI was found to be the most krill specific 

restriction enzyme, cutting only 10of1508 prey sequences (cut sequences were derived 

from 1sopod and amphipod sequences). The next best enzymes were: Eagl (22 / 1508), Sacl 

(824 / 1508) and Sacll (22 / 1508). 

Previous attempts to apply predator specific restriction digests to diet samples applied the 

digestion step after PCR amplification (Blankenship and Yayanos, 2005). This approach 

raised concerns that predator DNA would have already out competed prey DNA for PCR 

amplification. Therefore the decision was taken to apply restriction digests to stomach 

samples prior to PCR amplification. Restriction digests contained 1X restriction enzyme 

buffer, 1X Bovine Serum Albumin (NEB), 5-40 units of restriction enzyme (not more than 

10% final volume, BamHI, Eagl or Sacll (NEB)), 10 µI of template DNA and were made up to 

either 30 or 50 µI final volume with dH20. Digests were carried out at 37 °C with trials of both 
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4 hour and overnight incubations. Serial dilutions of krill stomach samples were tested in 

restriction digests (1 / 5, 1/10, 1/50, 1/100, 1/250, 1 / 500) and dilutions were made 

using AE buffer (Qiagen). Following incubation of the restriction digests, 2 µI of each digest 

was used directly as template in PCR reactions. 

3.4 Results 

3.4.1 LNA blocking probe titration 

The plasmid test system was used to examine whether the LNA blocking probe was capable 

of suppressing krill DNA amplification during PCR. For the diatom : krill 1 : 1 plasmid ratio 

mix (D . K 1 : 1 ), the blocking probe was capable of completely suppressing krill DNA 

amphf1cat1on across the full range of probe concentrations tested (0.5 - 8.0 µM) (Figure 3-2). 

Suppression was found to be krill DNA specific for low concentrations of LNA blocking probe 

(0.5 & 1.0 µM) but non-specific suppression of diatom DNA amplification occurred at higher 

concentrations (2.0 - 8.0 µM). Similar results occurred with the other diatom : krill plasmid 

ratio mixes (D : K 1 : 1 - D : K 1 : 10,000) (data not shown). This suggested that the blocking 

probe was functioning as expected at lower concentrations and further experiments were 

conducted with the LNA probe concentration held at 0.5 or 1.0 µM. 

3.4.2 Suppression of krill DNA amplification in the plasmid test system 

Plasmid ratio solutions were used to examine the effects of the LNA probe when different 

ratios of predator and prey DNA were present in the PCR template mix. Figure 3-3 shows 

the results obtained using 1 µM of LNA blocking probe. The blocking probe was capable of 

specifically suppressing krill DNA amplification across the full range of plasmid ratio mixes (D 

: K 1 . 1 - D: K 1 : 10,000). This caused a dramatic increase in the relative proportion of 

diatom amplicons in the amplified mix. However, suppression of krill DNA amplification did 

not give rise to an increase in the absolute number of diatom DNA amplicons. For the 1 : 

1 OOO and 1 : 10,000 ratio mixes no diatom peak was evident in the samples that contained 

the LNA probe or the control. In these PCR reactions the amount of diatom template added 

was extremely low (- 20 copies and - 2 copies respectively) and the diatom peaks probably 

fell below the detection threshold of the machine. 
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3.4.3 Krill stomach field samples 

The LNA probe was applied to krill stomach field samples to determine whether this 

approach was capable of generating prey peaks in real samples. Figure 3-4 shows the 

typical results obtained from various d1lut1ons of a krill stomach sample. The 1 · 1 dilution in 

AE buffer provides PCR conditions similar to those used in Chapters 2 & 3, where both 

diatom and dinoflagellate DNA were regularly amplified using group specific primers. Under 

these conditions 1 µM of LNA blocking probe only partially suppressed krill DNA 

amplification. In a subset of krill stomach samples diluted 1 : 1 very small peaks were 

observed down in the 260 - 270 bp range, where prey peaks were expected to be observed. 

Increasing the dilution of the krill stomach template resulted in complete suppression of krill 

DNA amplif1cat1on (dilutions range 1 : 5 -1 : 100). However, there was no evidence of prey 

DNA amplification in these samples. Increasing the concentration of LNA blocking probe (2 -

8 µM) applied to 1 : 1 template dilutions resulted in complete or almost complete suppression 

of krill DNA amphf1cat1on but again no significant prey peaks were observed (data not 

shown). 

3.4.4 Restriction enzyme digests of predator DNA 

The application of restriction enzyme digests to plasmid ratio mixes prior to PCR 

amplification eliminated krill DNA amplification as expected (data not shown). The 

application of restriction digests to krill stomach field samples prior to PCR amplification did 

not eliminate krill DNA amplification or produce prey DNA peaks for any of the field samples 

assayed (data not shown). The efficiency of the restriction digests was subsequently 

examined by agarose gel electrophoresis. These gels suggested that the failure to remove 

krill DNA was due to the partial or complete failure of the restriction enzyme BamHI to digest 

the stomach sample DNA {data not shown). Attempts to fix this problem included: (1) dilution 

of stomach sample DNA prior to digestion (1 I 5, 1 / 10, 1 I 50, 1 I 100, 1 / 250, 1 I 500), (2) 

cleaning up the DNA using phenol extraction and ethanol precipitation, (3) using alternative 

restriction enzymes (Eagl, Sacl), (4) increasing the amount of restriction enzyme (5 - 40 

units), and (5) increasing the length of time for digestion from 4 hours to overnight. While 

some of these modifications provided minor improvements in digest results, only the 1 I 250 

and 1 I 500 dilutions resulted in the elimination of krill amplicon peaks (data not shown). 
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None of the modifications produced prey peaks from any of the field samples tested (data 

not shown). 

3.5 Discussion 

3.5.1 Blocking predator DNA with LNA blocking probes 

3.5.1.1 Blocking probe design 

PCR clamping is an attractive method of dealing with predator DNA in diet samples. One of 

the main advantages is the ability to design probes that are highly specific for predator DNA. 

It is feasible to design blocking probes without using DNA analogs but such probes raise 

concerns about specificity because DNA : DNA hybrids are to some degree tolerant of base 

pair mismatches (Palumbi, 1990). DNA analogs provide superior specificity and binding 

affinity compared to DNA probes. Blocking probes constructed with DNA analogs are 

expensive but are probably highly cost effective because they save downstream processing 

of predator DNA amplicons. Another significant advantage of blocking probes is that they are 

simply added to the PCR amplification reaction and therefore do not require additional 

sample processing steps. This makes blocking probes amenable to high sample throughput 

without increasing the chances of contamination. 

Although PCR clamping was pioneered more than a decade ago the design requirements for 

blocking probes are not fully understood and developing new probes is still a process of trial 

and error. The current study utilised the primer exclusion strategy which is probably the most 

design-constrained PCR clamp assay because it requires· (1) a suitable predator specific 

DNA sequence adjacent to the primer binding site, and, (2) careful control of primer and 

probe binding affinity to ensure that the primer out-competes the blocking probe for binding 

to prey DNA template but the probe out-competes the primer for binding to predator DNA. It 

should be remembered that these requirements are in addition to the normal requirements 

for prey detection assays that include primer binding sites that are conserved across prey 

species and primer binding sites that span a region of sequence variation to allow prey 

differentiation. The primer exclusion strategy was chosen because at the time there was no 

published work on LNA blocking probes and it was unclear whether LNA probes could 

function as internal blocking probes that were capable of resisting the 5' - 3' exonuclease 

activity of Taq polymerase. 
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The 5' - 3' exonuclease activity of Taq polymerase is not fully understood but current models 

suggest the 5' end of the DNA strand ahead of the polymerase is actively displaced by Taq 

or that Taq invades the space when the two strands melt (Ceska and Sayers, 1998). The 

displaced 5' flap structure then feeds mto the exonuclease domain of the polymerase and 

cutting occurs at the point where the two strands bifurcate (Lyamichev et al., 1999). Cutting 

has been shown to occur on 5' flap structures up to 188 nucleotides in length (Lyamichev et 

al., 1993). This has important ramifications for internal blocking probes (used in strand 

initiation interference or elongation arrest) because 5' end modifications to blocking probes 

are probably insufficient for exonuclease resistance when the strand can be further displaced 

and cut beyond the modification. This suggests that successful internal probes probably 

function purely by resisting strand displacement, which relies on strong binding affinity. 

Previous experience with internal blocking probes has shown mixed success. Early work 

with an internal probe constructed of unmodified DNA substituted a shorter amplicon 

extending from the probe to a primer for the full length amplicon sequence (Lewis et al., 

1994). This strategy is really substitution of a long amplicon for a short amplicon rather than 

true blocking. Identical probes that were modified at the 3' end to prevent Taq extension 

were incapable of blocking amplification of the full length amplicon suggesting that they were 

easily displaced. The successful 'blocking' results in the study of Lewis et al. (1994) are 

difficult to reconcile with the 5' - 3' exonuclease activity of Taq and the study has not been 

repeated or cited since publication. Although PNA probes have much stronger binding 

affinities the results with internal probes have also been mixed, with some internal PNA 

probes failing to confer blocking (Orum et al., 1993; von Wintzingerode et al., 2000). 

Increasing the length of the probe improved blocking results (Orum et al., 1993), consistent 

with the theory that high binding affinity is important for internal blocking probes. 

Since this work was completed three studies have been published that have used LNA 

blocking probes to screen human patients for genetic mutations (Hummelshoj et al., 2005; 

Senescau et al., 2005; Thiede et al., 2006). One study used a probe bound adjacent to the 

primer site to prevent primer extension (Senescau et al., 2005), the other two used internal 

probes to arrested strand elongation (Hummelshoj et al., 2005; Thiede et al., 2006). Similar 

to the current study, two of the studies used a phosphate group on the 3' end of the probe to 
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prevent primer extension (Senescau et al., 2005, Thiede et al., 2006). However, Hummelshoj 

and colleagues relied on evidence that LNA probes were resistant to primer extension (Di 

Giusto and King, 2004) to design LNA probes without add1t1onal chemical modifications. In 

all three studies the internal probes were able to resist the 5' - 3' exonuclease activity of Taq 

polymerase and cause partial or complete blocking of non-target template amplification 

(Hummelshoj et al., 2005; Senescau et al., 2005; Thiede et al., 2006). The freedom to place 

internal blocking probes anywhere along the predator amplicon sequence reduces 

constraints during assay design. In summary, designing internal blocking probes with a high 

percentage of LNA nucleotides will provide the most flexibility during assay design and the 

highest chance of successful PCR blocking. 

3.5.1.2 Application of the LNA blocking probe to the plasmid test system 

Applying the blocking probe to the plasmid test system demonstrated that the probe was 

capable of specifically inhibiting the amplification of krill DNA. At low concentrations of the 

blocking probe the blocking was specific to krill DNA. At higher concentrations there was 

some non-specific inhibition of diatom amplification similar to inhibition observed elsewhere 

(Senescau et al., 2005). Blocking probe concentration must therefore be optimised to find 

the best compromise between preventing the amplification of predator DNA and inhibiting 

the amplification of prey DNA. Inhibition could be caused by non-specific competition 

between primer and probe for binding to prey DNA template even though LNA bases confer 

high levels of specificity (Petersen and Wengel, 2003). Alternatively, high concentrations of 

blocking probe may sequester MgCb within the PCR reaction. In this case increasing levels 

of MgCb may allow higher blocking probe concentrations without causing non-specific 

inhibition. 

At low concentrations (0.5 - 1.0 µM) the blocking probe functioned well in the plasmid test 

system by completely blocking krill DNA. However, this did not result in the expected 

increase in the number of diatom amplicons produced. The apparent lack of competition in 

the plasmid test system raised an interesting question about whether competition for 

amplification occurs in krill stomach field samples. It 1s possible that the total number of prey 

amplicons produced in PCR reactions is unaffected by the large excess of krill template, but 

the large proportion of krill amplicons at the end of the reaction make it difficult to detect prey 
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amplicons, which makes it appear that competition has occurred. The question about 

whether competition 1s occurring has important ramifications for choosing methods that 

remove predator DNA. If competition has a negative impact on the number of prey amphcons 

produced during PCR, then methods that remove krill DNA prior to PCR amplification would 

be preferred. In the absence of competition, methods that remove krill DNA after PCR 

amplification would be equally valid. 

3.5.1.3 Application of LNA blocking probe to field samples 

The application of the blocking probe to krill stomach field samples did not produce strong 

amplification of prey DNA. The chromatograms demonstrated that the probe could partially 

or completely block the amplification of krill genomic DNA (as opposed to plasmid template), 

depending on the sample dilution. However, this was not sufficient to generate prey peaks in 

any of the field samples that were assayed. The fact that prey DNA was successfully 

amplified from these samples with group specific primers (Chapters 2 & 4) suggests the 

undiluted or weakly diluted samples contained sufficient prey DNA for PCR amplification. 

The most likely explanation for these results 1s that the prey to predator ratio was too low for 

the blocking probe to have a useful effect. In PCR reactions that contained a large amount of 

mixed template the blocking probe could not completely suppress krill DNA amplification 

(e.g. Figure 3-4, 1 : 1 dilution). In PCR reactions where the mixed template was heavily 

diluted, the amount of prey DNA in the sample fell below detection limits (e.g. Figure 3-4, 1 : 

5 -1 : 100 dilutions). Direct comparison with other LNA blocking probe studies is 

complicated by the use of different methods, assay systems and DNA templates. However, 

in these studies target amplification and non-target blocking tended to be poor when target to 

non-target template ratios were less than - 1 : 100 (Hummelshoj et al., 2005; Senescau et 

al., 2005). Thiede and colleagues suggested their assay was suitable for target to non-target 

ratios up to 1 : 1 OOO. It is also worth noting that in these studies complete suppression of the 

non-target template does not always occur even in the 1 : 100 ratio range (Senescau et al., 

2005). If LNA blocking probe systems are restricted to situations where the prey : predator 

ratio is greater than 1 · 100 or 1 . 1 OOO then this represents a significant limitation of the 

approach. 
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3.5.1.4 Summary of LNA blocking probe 

It is possible that further experimentation with blocking probe concentration, template 

concentration, PCR reaction conditions and stomach dissection methods may have resulted 

in the successful detection of prey peaks in krill stomach field samples using the probe from 

the current study. Experiments that spiked prey DNA into real samples may also help to 

explain the current results. In combination with this work it would be valuable to determine 

the typical range of prey · predator DNA ratios that occur in krill stomach samples. This 

would assist in developing test systems for the blocking probe that are a more accurate 

representation of the PCR reaction conditions that occur with real samples. 

3.5.2 Restriction digest of predator DNA 

To date, only one study has utilised restriction enzymes to remove predator DNA 

(Blankenship and Yayanos, 2005). The approach was to PCR amplify the diet samples using 

universal primers and then apply a restriction digest to the PCR reactions with an enzyme 

that targets amplicons derived from the predator. Incorporating the restriction digest step 

after PCR amplification is problematic if the predator DNA is present in vast excess and 

competes with prey DNA for PCR amplif1cat1on. For this reason the current study attempted 

to apply the restriction digest to the diet sample prior to PCR amplification. This approach 

was unsuccessful because of the failure of the restriction enzymes to digest the krill genomic 

DNA in the diet samples. Subsequent discussions with the authors of the previous study 

revealed that they had attempted the same approach and suffered similar problems (L. 

Blankenship, pers comm). The most likely explanation for this problem 1s that the restriction 

digests were affected by an unidentified contaminant that was co-extracted with the DNA. As 

a general rule restriction digests are more sensitive to the presence of contaminants than 

PCR. While it might be possible to develop a post-PCR restriction digest protocol similar to 

the work of Blakenship and Yayanos (2005), this does not address the issue of krill DNA 

competing with prey DNA during PCR amplification. If the restriction digest approach is to be 

pursued, it would be better to focus on developing a DNA extraction protocol that allows 

restriction digests to be earned out on diet samples prior to PCR amplification. Another less 

likely possibility is a DNA mod1f1cation that makes crustacean DNA insensitive to restriction 

enzymes. The DNA modification is not the typical DNA methylation since both BamHI and 

Eagl are methylase insensitive and would therefore cut methlated DNA. However, it is 
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possible that crustaceans have a novel DNA mod1f1cation akin to methylation that makes 

their DNA insensitive to restriction digests. 

There are several other concerns with the restriction digest approach Results from the 

previous study were somewhat mixed Although samples were treated with restriction 

enzymes 57 % and 10 % of the diet sample amplicons were derived from the mollusc and 

amph1pod predators, respectively (Blankenship and Yayanos, 2005). This suggests that the 

approach was not fully optimised to remove predator DNA and that there are effects specific 

to the predator that confound this approach. Another issue is that restriction enzymes 

generally have a recognition sequence of only 6 -8 nucleotides, which limits their specificity 

for predator DNA (Blankenship and Yayanos, 2005). The restriction site analysis m the 

current study showed that BamHI had the best specificity for krill DNA, cutting only 11 out of 

1507 prey sequences that were surveyed. However, the prey species that were cut belonged 

to crustacean groups, which 1s unfortunate because krill predation on other crustaceans is of 

particular interest (Chapter 1). Smee sequence similarity is higher among related species this 

is likely to be a consistent problem. Restriction digests and gel-based fragment separation 

require additional sample processing steps that are not conducive to high throughput. 

Additional processing steps also provide additional opportunities for contamination. 

3.5.3 Other approaches to the problem of predator DNA 

There are at least four other approaches that could be applied to removing krill DNA for diet 

samples. Subsequent to the work in this study a method was published that dissected open 

krill stomachs and removed the internal contents (Martin et al., 2006). This meant that the 

stomach lining was not included in the sample which reduced, but did not eliminate, krill DNA 

from the diet sample. This approach is more complex and time consuming than the method 

used throughout this thesis. There are also questions about the consistency of this 

approach. Removing intact krill stomachs 1s a simple and consistent technique. Whether it is 

possible to consistently collect all of the internal material from krill stomachs is unclear. 

However, at this point it appears that removing the stomach lining from krill diet samples is 

an approach that is worth pursuing. 

The second approach to removing predator DNA is by affinity purification. In this approach 

predator specific probes are bound within columns or attached to beads. Samples are either 
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run through the columns or mixed with the beads and then centrifuged to pellet the beads 

and remove the predator DNA from the sample. Affinity purification with PNA probes has 

been used in a study on bacteria derived from field samples (Chandler et al., 2000). 

The third approach is headloop PCR (Rand et al., 2005), where one of the primers has an 

additional 5' end tail that spec1f1cally recognises predator sequence downstream of the 

primer binding site. Once the predator strand 1s synthesised the 5' tail loops around and 

binds to the downstream site preventing further rounds of amplification from the strand. 

Headloop PCR is attractive because 1t does not require DNA analogs or chemical 

modifications. However, similar to the blocking probe in this study, the approach requires 

predator specific sequence close to the primer binding site. 

The forth approach uses a pilot probe (Lyamichev et al., 1993) and utilises the 5'-3' 

exonuclease activity of Taq. Probes are designed to form a short hairpin loop at the 3' end 

while the 5' end of the probe binds specifically to predator DNA sequence. When these 

probes bind to predator template they form a bifurcated 5' flap structure recognised by Taq's 

exonuclease, which then cuts the predator template preventing further exponential 

amplification. This elegant option 1s attractive because pilot probes can be placed anywhere 

along the predator template. However, the idea has only been was described theoretically 

and to date there is no study that has used this approach in a PCR reaction. 

3.6 Conclusions 

This study examined approaches for removing predator DNA or preventing predator DNA 

amplification during PCR but did not provide a simple robust method for removing predator 

DNA from krill stomach samples. Both the LNA blocking probe and restriction digest 

approaches had problems that made them difficult to implement in practice. However, the 

results provide a useful starting point for developing these approaches further. The success 

with the plasmid test system but subsequent failure with field samples highlights the need for 

robust model systems that accurately simulate real samples. Of the two approaches tested, 

the LNA blocking probe approach has a number of advantages that should make this the 

preferred choice for future development. Alternative approaches including an alteration to the 

krill stomach dissection method should also be considered. 
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Table 3-1 Primers and probe used in the prey detection and LNA blocking experiments. 

Phylum Class Genus & Species Accession Forward primer region Reverse primer and blocking probe region Produc 
Number (5'-3') (5'-3') t Size 

ASF1194/20 CTTAATTTGACTCAACACGG 

ASR1473/20 GCATCACAGACCTGTTATTG 

Krill probe ATTGCTCAGTCT CTTGCG 

Arthropoda Malacostraca Euphausia superba (Krill) AY672801 -------------------- ---------------------------------- 280 

Euphausia pacifica (Krill) AY141010 -------------------- ---------------------------------- 280 

Maxillopoda Ca/anus finmarchicus (Copepod) AF367719 -------------------- ------------------------A---TG---- 260 

Rhinca/anus gigas (Copepod) AY335855 -------------------- ----------------------- - A----G---A 260 

Bacillariophyta Bacillariophyceae Fragilariopsis cylindrus (Diatom) AY485467 -------------------- ---------------------C- CTATCT- CCT- 264 

Coscinodiscophyceae Chaetoceros gracilis (Diatom) AY625895 -------------------- ---------------------C- CAATCT- CCT- 263 

Thalassiosira pseudonana (Diatom) AJ535169 -------------------- ---------------------CGCCATCT- CCTT 264 

Fragilariophyceae Fragilaria striatula (Diatom) X77704 -------------------- ----------------T----C- GTATCT - CCT- 264 

Dinoflagellata Dinophyceae Gymnodinium catenatum (Dinoflagellate) AF022193 -------------------- ---------------------CTCAAACT- CCTT 262 

Peridinium sp. (Dinoflagellate) AF022202 -------------------- ---------------------CTCAAACT - CCTT 262 

Prorocentrum micans (Dinoflagellate) AJ415519 -------------------- ---------------------CTCAAACT- CCTT 262 

Protoperidinium abei (Dinoflagellate) AB181882 -------------------- ---------------------CTCAGGCT- CCGT 262 

Haptophyta Prymnesiophyceae Phaeocystis antarctica (Haptophyte) X77480 -------------------- ---------------------CGCAAACT - CCAC 261 

Mollusca Gastropoda Aplysia californica (Sea Hare) AY039804 -------------------- ------------------------A----G--T- 261 

Foraminifera Granuloreticulosea Neog/oboquadrina pachyderma (Foram) AY453128 ----------------G--- ---------------------CGCAA- CT - CCTC 519 

Red base denotes LNA nucleotide base. - denotes nucleotides that were the same as the krill sequence. Bold sequences are those used in plasmid test system. 
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Chapter 4: Wild sample screen 

4.1 Abstract 

The Antarctic krill (Euphausia superba) is a key species in one of the largest marine 

ecosystems on the planet, the Southern Ocean. Understanding krill diet is important for 

developing accurate models of krill populations and for understanding the flow of carbon and 

other nutrients through the Southern Ocean foodweb. 

DNA has the potential to provide new insights into the diet of Antarctic krill (Euphausia 

superba) by providing better prey coverage and higher sample throughput than previous 

methods of diet analysis. This study developed a new DNA-based assay system that was 

capable of screening a large number of krill stomachs for the presence of specific metazoan 

and protist prey groups. The assay system was trialled on 216 krill collected from four field 

sites in the Indian sector of the Southern Ocean. The assay identified dinoflagellates as an 

important prey item at all four collection sites (detected in 191 of 216 krill, 88 %). Diatoms 

were prevalent at the three summer collection sites but virtually absent at the early spring 

collection site (163 of 216, 75 %). Metazoan prey groups were only detected in a few 

stomachs. Gastropods were the most frequently detected metazoan group (10 of 216, 4.6 

%). Copepod DNA was only detected in one krill (1 of 216, 0.5 %). Microscopic diet analysis 

verified that the DNA diet assay was correctly detecting important prey groups and 

similarities and differences in diet between field collection sites. However, DNA and 

microscopic data differed on the relative importance of dinoflagellates and diatoms which 

may indicate bias in DNA diet analysis. 

4.2 Introduction 

Increasingly sophisticated models suggest that the krill population is constrained by a 

complex array of factors (e.g. Fach et al., 2002; Constable et al., 2003, Nicol, 2006), and 

food availability is one of these potential constraints. To determine the importance of food as 

a population constraint, models must estimate the strength of trophic links between krill and 

potential prey groups. These estimates need to be supported by empirical diet data derived 

from krill collected in the field. 

Gathering empmcal data about krill diet is challenging because there are limited 

opportunities for sampling and significant scope for local, regional and seasonal variation in 

diet (Atkinson et al., 1999; Nicol, 2006). Three broad categories of krill 'prey' are autotrophic 
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protists, heterotrophic protists and metazoans. A variety of diet analysis techniques have 

demonstrated that krill consume a diverse range of prey (e.g. Haberman et al., 2002; Martin 

et al., 2006; Schmidt et al., 2006). However, due to problems with current diet analysis 

techniques the role of heterotrophic protists and metazoans in krill diet remains unclear 

(Chapter 1 ). 

Krill diet analysis would benefit from new techniques that can detect and differentiate troph1c 

links to a suitable level of taxonomic resolution. Improvements in sample throughput would 

help to provide data on scales that are ecologically relevant. Two recent studies have 

explored the feasibility of applying DNA diet analysis to krill (Martin et al., 2006; Passmore et 

al., 2006). Both studies used clone libraries to examine the diet of a small number of krill but 

due to variations in target gene copy number between prey species both approaches 

probably suffered from problems with bias. In one of these studies where DNA results were 

independently verified by microscopy, evidence for bias was found (Passmore et al., 2006). 

Recent DNA diet studies on terrestrial insects have used an alternative approach where 

trophic links were examined by gathering prey incidence data from a large number of 

animals (Agustf et al., 2003a; Harper et al., 2005; Juen and Traugott, 2007; Birkhofer et al., 

2008). The aim of the current study was to trial an incidence based approach on a large 

number of krill. Group specific PCR primers were developed for a range of protists and 

metazoans groups and individual krill were screened for the presence or absence of these 

groups. The results provided DNA based prey incidence profiles from krill collected at four 

field sites. The results from the DNA analysis were then compared to results obtained from 

microscopic diet analysis. The study highlights a range of methodological issues that need to 

be considered in future applications of DNA diet analysis. 

4.3 Material and Methods 

4.3.1 Sample collection 

Antarctic krill were collected in the Indian sector of the Southern Ocean on voyages with the 

RSV Aurora Australis. Krill were obtained from four sites over a two year period spanning 

Jan 2003 to Feb 2005 (Table 4-1). Krill were collected with rectangular midwater trawls 

(RMT8, nominal mouth area of 8 m2 and mesh size of 4.5 mm) towed at - 1 knot. For the 

summer collection sites (A, B, D), schools of krill were detected with sonar and collected in 
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targeted trawls. For the spring site (C), krill were collected in a non-targeted trawl of surface 

waters in the marginal ice zone. Immediately after capture krill were preserved in 80 % 

ethanol which was subsequently drained and replaced 15 minutes and 24 hours after 

capture as described previously (Passmore et al., 2006). The time taken from the start of the 

trawls to initial sample preservation was less than 30 minutes for all collection sites. Samples 

were then stored at 4 °C until the ship returned to Australia. 

4.3.2 Satellite Data 

Estimates of daily surface chlorophyll concentrations were obtained from a merged Aqua­

MODIS and SeaWiFS data set (Feldman and McClain, 2007). A composite image for each 

collection site was generated by merging daily data for 10 days up to and including the day 

of collection using Matlab software (Mathworks, Natick MA, 2007). 

4.3.3 Krill dissection and stomach DNA extraction 

Krill were dissected to obtain intact stomachs for DNA extraction. Dissections were 

performed using a dissecting microscope and two pairs of forceps. Individual krill were rinsed 

in fresh ethanol and gently dried on paper towel prior to dissection in a dry sterile Petri dish. 

Forceps were used to remove the carapace and expose the animal's stomach on the dorsal 

surface. Intact stomachs were then removed with forceps taking care not to squeeze out the 

stomach contents. To prevent the transfer of any contaminants from the external surface of 

the krill to the stomach tissue, care was taken not to make contact with the stomach during 

the removal of the carapace and the forceps were flame sterilized prior to the removal of the 

stomach and between each krill dissection. 

DNA extraction was performed on individual krill stomachs using a DNeasy Tissue kit in a 96 

well plate format (Qiagen). Samples were processed according to the manufacturer's 

instructions except for the following modifications. Prior to overnight digestion in ATL buffer+ 

Proteinase K, the stomachs were disrupted manually with a pipette tip to assist tissue 

digestion. DNA was eluted in 200 µL of AE buffer (Qiagen) and stored at 4 °C. 

4.3.4 Determining DNA concentration 

The concentration of DNA in stomach extracts was determined using a Genies microplate 

multireader (Tecan) set to read fluorescence. Picogreen reagent (Molecular Probes) was 
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diluted 1 : 200 in TE buffer (10 mM Tris-HCI, 1 mM EDTA) and 195 µL of this mixture was 

pipetted into the wells of black flat-bottomed microtitre plates. Five µL of krill stomach extract 

was added per well and fluorescence was read in the plate reader as per the manufacturer's 

instructions. Standard curves to convert fluorescence readings to DNA concentrations were 

generated using a dilution series of the DNA standard supplied with the Picogreen reagent. 

4.3.5 Pre-screening stomach extracts 

All stomach extracts were prescreened for the presence of amplifiable DNA. PCR was 

performed using a set of 'universal' eukaryot1c large ribosomal subunit primers (LSU) (Table 

4-2) capable of amplifying a 500 - 600 bp amplicon from a diverse range of eukaryotes 

including krill. PCR reaction conditions were the same as for the prey screen (see below), 

except that the PCR cycle extension step was set to 150 s to account for the greater length 

of the PCR products. Only one sample failed to generate an amplicon with the universal LSU 

primer set and this sample was omitted from subsequent analysis. 

4.3.6 Group specific primers 

Nine sets of group specific primers were used to screen stomach extracts for the presence of 

prey. Six of the primer sets had previously been developed in our laboratory (Jarman et al., 

2004; Bissett et al., 2005; Jarman et al., 2006) or were taken from the literature (Pawlowski 

et al., 2002)(Table 4-2). The other three primers sets were developed as part of this study to 

target Bacillariophyta, Tintmnida and Dinophyceae. Primers were designed manually by 

examining large sequence alignments of the nuclear small ribosomal subunit (SSU) and 

large ribosomal subunit (LSU) genes. Alignments were developed using the ARB software 

package (Ludwig et al., 2004) and were constructed by using the large alignments available 

from the ARB website (http://www.arb-home.de) and European Ribosomal RNA database 

(http://www.psb.ugent.be/rRNA/index.html) as backbone alignments. Backbone alignments 

were then augmented with additional sequences of relevant prey groups taken from NCBI 

GenBank (http·//www.ncbi.nlm.nih.gov/). 

Estimates of primer coverage were based on all available non-redundant GenBank 

sequences for targeted groups that extended across the region amplified by the primers. A 

Southern Ocean specific estimate of coverage for the dinoflagellate primer set was achieved 

by selecting the sub-set of sequences derived from all dinoflagellate families described in a 
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recent text on Antarctic protists (McMmn and Taylor, 2005). Sequences were considered 

matched when both primers exactly matched the sequence or when specific mismatches 

occurred that were allowed for during primer design. These estimates are only a rough guide 

to coverage because of the limited amount of data that are available for species m the 

Southern Ocean. 

The annealing temperatures used for these primer sets were determined empirically by 

testing them on DNA extracted from species within the target group across a range of 

temperatures (data not shown). Limited empirical testing of the primers on a small number of 

target and non-target species indicated that the primers were group specific (data not 

shown). Comprehensive testing using this approach was not feasible given the size and 

diversity of the groups involved and the fact that many species within the target groups have 

not been isolated or cultured. Primer specificity was instead proven by verifying the identity 

of ampllcons obtained from prey screening of stomach extracts (see below). 

4.3.7 PCR-based prey screening of stomach extracts 

Stomach extracts were screened for the presence of nme potential prey groups using a 

standardised PCR protocol. DNA extracted from krill stomachs was diluted 1 : 1 with AE 

buffer (Qiagen) to create a working stock for PCR. PCR reactions contained: 2 µL of diluted 

stomach extract, 2.5 mM MgCb (Gibco), 0.125 mM dNTPs (Gibco), 0.25 µM of each primer 

(Geneworks), 1 X Bovine Serum Albumin (NEB), 0.5 units of Amplitaq Gold (Gibco), 1 X 

manufacturer's PCR buffer (Gibco) and made up to 20 µL with dH20. Samples were amplified 

in a PTC-225 thermal cycler (MJ Research) using the following cycling parameters: preheat 

at 95 °C for 10 mm, 35 cycles of 95 °C for 1 Os, primer specific annealing temperature (Table 

4-2) for 20 s and 72 °C for 40 s. The fmal extension was at 72 °C for 5 mm. PCR reactions 

were visualized by running 5 µL of each PCR reaction on a 2% agarose gel stained with 

ethidium bromide. Presence or absence of PCR bands was scored by eye from examination 

of the agarose gels on a UV transilluminator. Positive controls were DNA extracts from 

cultures of prey organisms or prey individuals that belonged to targeted prey groups. 

Negative controls included no-template PCR and DNA extraction controls. 
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4.3.8 Post-screen verification of group primer specificity 

To verify that the group specific primers used in this study were amplifying from the correct 

prey group, a subset of the PCR amplicons generated during the prey screen was cloned, 

sequenced and identified. All primer sets that produced positive results in the prey screen 

were tested for specificity. When a primer set produced amplicons in less than five stomach 

extracts, then at least one clone from each sample that produced amplicons was sequenced. 

When a primer set produced amplicons in more than five stomach extracts and where all 

products appeared to be the same size, five samples were selected at random and at least 

one clone from each sample was sequenced. Alternatively, if a primer set produced different 

sized amplicons within a site, at least one clone of each size class was sequenced with a 

minimum of five clones from five samples sequenced in total. Amphcons were cloned directly 

from the prey screen PCR reaction using the TOPO-TA cloning kit (lnvitrogen). Plasmid DNA 

was prepared using the Mini Plasmid Prep kit (Mol Bio) and the plasmids were sequenced 

with the CEQ8000 Genetic Analysis System (Beckman Coulter) as per manufacturer's 

instructions. Sequences were grouped into 'Operational Taxonomic Units' (OTUs) for each 

site, where individual sequences were counted as a single OTU if they had < 1 % sequence 

divergence. All OTUs were 'identified' by comparing their sequence to sequences from the 

GenBank database using the BLAST algorithm (Altschul et al., 1990). OTUs were reported 

as 1dentif1ed if they had at least a 70 % match along their full length to a taxonomically 

identified GenBank sequence. The percentage match limit was deliberately set low to 

increase the chances of detecting false positives. Data were only allowed to contribute to the 

incidence results when all of the sequenced amplicons were identified as belonging to the 

prey group targeted by the pnmer set. Amphcon sequences were deposited in GenBank 

(Accession numbers EU249237 - 67). 

4.3.9 Microscopic examination of krill stomachs 

The stomach contents of four or five krill from each site were examined using light 

microscopy. Gut contents from each krill were rinsed into a Sedgewick-Rafter counting 

chamber and examined under a coverglass at 400 X magnification. Krill stomachs from the 

summer collection sites (A, B, D) contained thousands of prey items so a minimum of 400 

items were examined per stomach. Krill stomachs from the spring site (C) contained less 

than 400 prey items per stomach so all items were examined. Items were identified to the 
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same taxonomic resolution as the PCR primers were designed to target, with one additional 

category for items that appeared to be derived from crustaceans but could not be identified 

further. 

4.4 Results 

4.4.1 Krill collection sites 

The three summer collection sites (A, B and D) were from the Prydz Bay region, on the 

continental shelf slope, south of the southern boundary of the Antarctic circumpolar current 

(SBACC) (Figure 4-1, Table 4-1 ). Satellite data showed that there were strong and dynamic 

phytoplankton blooms in the Prydz Bay region during the 2002 I 03 and 2004 I 05 summer 

seasons but at the time of collection all three sites had low levels of surface chlorophyll (< 

0.5 mg m-3
). The spring collection site (C) was more than 1 OOO nautical miles north east of 

the other sites and situated north of the SBACC. Satellite data at the time of collection was 

limited due to ice and cloud cover (Figure 4-1) but data from October to December 2004 

suggested surface chlorophyll levels remained below 0.5 mg m-3 (data not shown). 

4.4.2 Primer Design 

Three sets of PCR primers were developed to target diatoms (Bacillariophyta), 

dinoflagellates (Dinophyceae) and tintinnids (Tintinnida). Developing group specific primers 

for protistian prey was difficult because: (1) most of these groups are large, ancient, diverse 

and often paraphyletic, (2) the abundance and diversity of species present in the Southern 

Ocean are only defined in broad terms, (3) DNA sequence data for protist groups tends to be 

sparse and unbalanced, with many of the sequences derived from a limited subset of the full 

taxonomic spectrum. It was therefore difficult to predict group specific DNA sequence motifs 

that would be shared by all or most of the potential prey species within a targeted taxonomic 

group, but not by species outside the group. To ensure a low level of false positives during 

prey screening, a conservative approach to primer design was employed with an emphasis 

on maintaining target group specificity. A consequence of this approach was that target 

group sequences were also excluded. A crude measure of group coverage suggested the 

Bacillariophyta primers matched 121 of the 148 (81 %) non-redundant diatom sequences 

that were available in GenBank. Coverage for the Tintmnida primers was similar but 

sequence data for the group were more limited (19 of 27, 70 %). The Dinophyceae primers 
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were only capable of amplifying 92 of 315 (29 %) of all dinoflagellate sequences. When the 

list of dinoflagellate sequences was restricted to dinoflagellate families that are known to 

occur in the Southern Ocean the estimate of coverage improved to 59of126 (46 %). 

4.4.3 DNA-based prey incidence and diversity 

Stomach extracts from 216 krill were assayed for the presence of DNA from nine potential 

prey groups. The three summer collection sites (A, 8 and D) showed strong similarity in their 

broad-scale prey incidence profiles (Figure 4-2, Table 4-3). Diatoms and dinoflagellates were 

both present in the majority of krill at each site. The incidence of dinoflagellates was 

consistently higher than diatom incidence across the three sites. Copepods, foraminiferans 

and gastropods were all detected at low frequencies. Most of the knll surveyed at the 

summer sites were positive for at least one prey group. Sequencing PCR amplicons derived 

from the prey screen revealed some differences in prey diversity between the three summer 

sites (Table 4-4). Site A had a more diverse mix of dinoflagellates than sites 8 and D. 

The spring collection site (C) had a prey incidence profile that was different to the summer 

collection sites. Dinoflagellates were detected in approximately half of the animals but no 

diatom DNA was detected. Gastropods were again detected in a small number of krill. 

Almost half of the krill at site C had no detectable prey DNA. 

4.4.4 Post-screen verification of primer specificity 

Sequence data derived from a subset of PCR amplicons generated in the prey screen 

showed that the primer sets were amplifying from their designated target groups (Table 4-4). 

When prey incidence was high, all amplicons selected for identification were easily matched 

to taxonomically identified GenBank sequences and were derived from the correct target 

groups. When prey incidence was extremely low, several primer sets produced a small 

number of PCR amphcons that could not be identified (Table 4-4) despite the low percentage 

match threshold used for identification. Unidentified amplicons could have been due to a lack 

of sequence data about targeted groups. Alternatively this could indicate an increased 

propensity for false positives in the absence of target group DNA. Overall the results suggest 

that despite the limited sequence data for protists, it is feasible to design specific but 

conservative primers in silica that have low false pos1t1ve rates during prey screening. Post 
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screen verification proved to be an efficient check of primer spec1f1c1ty when comprehensive 

empirical testing by other methods was not feasible. 

4.4.5 Microscopic analysis of krill stomachs 

Microscopic gut analysis produced results that were s1m1lar to the DNA diet analysis (Figure 

4-2, Table 4-5). At the summer sites (A, Band D), there were thousands of prey items in 

each stomach, indicating strong and recent feeding activity. Gut contents were dominated by 

diatoms and dinoflagellates consistent with the DNA data, but, in contrast to the DNA results, 

diatoms were the dominant prey item. At the spring site (C), there were only a few prey items 

in each stomach suggesting that the animals were in an area of low food availability or were 

not actively engaged in feeding. Dinoflagellates dominated the microscopic prey proportions, 

which was consistent with the DNA results. However, in contrast to the DNA results, 

microscopy also detected a small number of diatom frustules. A small number of 

foraminiferans and gastropods were detected at all sites and the results showed a 

reasonable correspondence with the DNA data given the size of their contribution. 

Microscopy did not find any clear evidence of krill consuming copepods but did detect a 

small number of fragments that were thought to be derived from crustacean setae and 

exoskeletons (Table 4-5). Given the size of these structures it was likely that they were 

derived from copepods but definitive identification was not possible (K. Swadling, pers 

comm). 

4.5 Discussion 

4.5.1 Ecological interpretation 

The summer collection sites (A, B and D) were in the Prydz bay region on the continental 

shelf slope. This region experiences significant phytoplankton blooms during the summer but 

the three collection sites were not in areas with high levels of surface chlorophyll. Despite 

this the stomachs of krill at all three sites were generally full. This suggests that in these 

cases surface chlorophyll was not a good indicator of strong feeding activity in krill. Given 

that the animals at these sites were collected below a depth of 20 m it is possible that they 

were feeding on phytoplankton blooms that were below the depth detected by satellite. Deep 

phytoplankton blooms are known to occur in Antarctic waters but their prevalence is unclear 

(Holm-Hansen et al., 2005). 
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Previous surveys of the protist assemblage in Prydz Bay (Kopczynska et al., 1995; Fiala et 

al., 1998; Zhu et al., 2003) and across the Indian Ocean sector (Kopczynska et al., 1986; 

Waters et al., 2000) provide a reasonably consistent picture. The assemblage 1s typically 

dominated by diatoms both in terms of cell number (54 - 84 % of total cells) (Kopczynska et 

al., 1986; Kopczynska et al., 1995; Zhu et al., 2003) and biomass (42-80 % of total carbon) 

(Kopczynska et al., 1995; Fiala et al., 1998). Often the largest diatom contribution comes 

from the genus Fragilariopsis (Kopczynska et al., 1986; Kopczynska et al., 1995; Fiala et al., 

1998, Waters et al., 2000; Zhu et al., 2003). Small flagellates(< 10 µm) are often important 

numerically (24 - 40 % of total cells) (Kopczynska et al., 1986; Kopczynska et al., 1995) but . 
make a variable contribution to biomass (5 - 24 % of total carbon) (Kopczynska et al., 1995; 

Fiala et al., 1998). Commonly occurring flagellate groups include Cryptophytes, 

Pyramimonas and Phaeocystis (Kopczynska et al., 1986; Kopczynska et al., 1995; Fiala et 

al., 1998; Waters et al., 2000). Dinoflagellates make a small contribution in terms of 

abundance (3 - 6 % of total cells) (Kopczynska et al., 1986; Kopczynska et al., 1995; Zhu et 

al., 2003) but are significant in terms of biomass (14- 33 % of total carbon) (Kopczynska et 

al., 1995, Fiala et al., 1998). Common dinoflagellate genera include Gymnodinium, 

Gyrodinium, Protoperidinium and Prorocentrum (Kopczynska et al., 1986, Kopczynska et al., 

1995; Fiala et al., 1998; Waters et al., 2000). 

In broad terms the DNA and microscopic diet analyses from the summer sites were 

consistent with previous studies of the Indian Ocean protist assemblage. The microscopic 

diet analysis was more consistent with the protist surveys because it suggested that diatoms 

were a more abundant prey item than dmoflagellates, whereas DNA analysis indicated that 

dinoflagellates were more prevalent. The reason for this discrepancy is unclear. It 1s possible 

that dinoflagellates are underrepresented in the microscopic analysis. Delicate athecate 

dinoflagellates are generally more abundant than thecate dinoflagellates but are often 

underrepresented in protozooplankton surveys due to poor preservation (Garrison and 

Gowing, 1993). For similar reasons athecate dinoflagellates are also unlikely to survive 

ingestion to be detected by m1croscop1c diet analysis. The identification of DNA clones 

provides limited support for this explanation with the majority of clones from site A derived 

from the athecate genus Gymnodinium. However, the clones from site B and D are from 

thecate genera. Alternatively the difference between DNA and microscopy may indicate that 
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DNA analysis is overestimating the role of dinoflagellates in krill diet (further discussion on 

bias in DNA analysis below). 

The spring collection site (C) was over deeper water north of the SBACC. Satellite data 

suggested that the collection site had low levels of surface chlorophyll, consistent with 

previous studies of satellite data that show this region of the Indian Ocean has low levels of 

surface chlorophyll throughout the year (Sullivan et al., 1993; Moore and Abbott, 2000; 

Meguro et al., 2004). Ship based surveys have also identified the waters north of the SBACC 

to be an area with low protist stocks (Chiba et al., 2000; Waters et al., 2000), where 

flagellates rather than diatoms are dominant (Waters et al., 2000). The microscope and DNA 

diet analyses of krill diet at site C were consistent with the view that this area had low stocks 

of protists. Microscopy revealed that there were only a small number of items that could be 

identified in krill stomachs from this site. In the krill examined less than 300 items were 

detected per krill stomach, compared to thousands of items in krill at the three summer sites. 

Furthermore, DNA diet analysis revealed that a large proportion of animals contained no 

detectable prey DNA. Not withstanding this low incidence of prey in general, both 

microscopy and DNA identified dinoflagellates as the major prey item for krill at site C. While 

microscopy detected a small number of diatom frustules, the DNA analysis did not detect the 

presence of any diatoms. Given the small number of diatom frustules that were detected by 

microscopy, it seems likely that these frustules were the remnants of a meal that was 

consumed a long time prior to capture and that diatom DNA was no longer present. 

The Indian Ocean sector contains a diverse assemblage of metazoans including significant 

contributions from krill, copepods, amphipods, gastropods and tunicates (Hosie and 

Cochran, 1994, Hosie et al., 1997; Hosie et al., 2000). There is also evidence of spatial 

separation between krill and other metazoans (Hosie and Cochran, 1994, Hosie et al., 2000) 

which may indicate krill predation on other metazoan groups (Atkinson et al., 1999). While 

copepods have often been discussed as a food source for krill the field based evidence for 

this trophic link is not strong (Chapter 1, Schmidt et al., 2006). In the current study DNA diet 

analysis only detected copepod DNA in one of the 216 krill surveyed. Microscopy did not 

provide any definitive evidence of copepod consumption (e.g. easily identified mandibles). 

These results suggest that copepods were not an important component of the krill diet at any 
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of the four collection sites. While there is sa significant body of literature examining krill 

predation on copepods, there is only one study that has detected gastropods m krill diet 

(Hopkins and Torres, 1989) and they have not been described as an important food source 

for krill. The current study provides evidence of gastropod consumption at all four collection 

sites that was limited but well in excess of copepod consumption. This suggests that 

gastropods may be a more important food source for krill than previously recognised. It is 

difficult to decide what level of prey incidence should be considered significant and this is 

especially true for metazoans. Their size and high nutritional content mean they could occur 

at low incidence but still make an important contribution (Atkinson and Snyder, 1997). If 

these low incidence trophic links are important they will only be elucidated by examining 

large numbers of krill using methods that can detect and d1fferent1ate metazoans from other 

types of prey. 

Overall the results of this study suggest that krill were mainly feeding on prot1sts, and that 

metazoans were not a dominant component of krill diet. This is similar to the conclusions of 

another recent summer field study that used other methods to examine krill diet (Schmidt et 

al., 2006). Future DNA diet studies will need to integrate DNA analysis with sampling of the 

prot1st and zooplankton assemblages at collection sites to provide a more detailed 

assessment of krill feeding behaviour. 

4.5.2 Critique of DNA methods 

DNA diet analysis has been applied to a range of vertebrate and invertebrate predator-prey 

systems and this work has been reviewed elsewhere (Chapter 1, Symondson, 2002; 

Sheppard and Harwood, 2005). Two previous studies have explored the application of DNA 

diet analysis to Antarctic krill (Martin et al., 2006; Passmore et al., 2006). Passmore et al. 

(2006) used a group primer approach similar to the current study. Martin et al. (2006) 

advocated a universal primer approach as a method that provides better prey coverage and 

less bias than group specific primers. The following discussion compares universal and 

group primer approaches in terms of prey coverage, sample throughput and bias. 

In terms of prey coverage, universal primers are attractive because they amplify sequences 

from a broad range of prey species in a single PCR reaction (Martin et al., 2006). However, it 

is important to recognise that even the best universal primers are not universal (Brunk et al., 
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1996, Marchesi et al., 1998, Diez et al., 2001 ), and that targeting short DNA fragments, to 

counter the degraded nature of diet DNA, generally leads to further compromises in prey 

species coverage. Once this has been acknowledged, the distinction between universal and 

group specific primers becomes less clear since, either way, multiple sets of primers would 

be required to provide comprehensive prey coverage. Group specific primers are best 

viewed as a directed approach for examining specific trophic links, not as a method for 

providing comprehensive prey coverage. As with universal primers there 1s inevitably some 

discrepancy between desired and actual prey coverage that will vary for different prey 

groups and primer sets. Reporting species coverage for primer sets is uncommon because 

the process is not straightforward. There are no simple rules to define what sequences 

should be included or excluded in coverage estimates, particularly when sequence data and 

information about what prey species are present in the environment are limited. Ultimately, a 

move towards reporting coverage is important to allow proper evaluation of PCR-based 

methods and the data they produce. 

In terms of sample throughput, the universal primer approach provides efficient amplification 

from a broad range of prey species. However, significant effort is then required to separate 

and 1dent1fy the PCR amplicons. Traditionally this has been achieved using clone libraries or 

with gel-based separation techniques such as denaturing gradient gel electrophoresis 

(DGGE). Clone libraries are expensive which limits their application to a small number of 

samples. DGGE is more cost effective per sample. When the universal primer/DGGE 

approach has been applied to environmental samples it tends to produce complex banding 

patterns (e.g. Diez et al., 2001, Mane et al., 2006; Martin et al., 2006). Generally, only a 

subset of these bands are cloned, sequenced and identified because of the cost and effort 

involved. In most cases the strongest bands are selected for identification based on the 

assumption that these bands represent the most important species in the sample. 

Comparing the banding profiles from different samples and matching bands across samples 

does reduce the number of bands that need to be identified but studies that use DGGE to 

comprehensively examine hundreds of samples are rare. 

For the group primer approach, significant effort is required to design high quality primers 

and to empirically test their specificity. However, once this has been achieved a large 
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number of samples can be efficiently screened for the presence of specific prey groups of 

interest. In the current study, sample throughput was sufficient to allow one person to screen 

216 stomach samples for a prey group in a single day. This could easily be extended to 

thousands of samples per day, at low cost, by changing the detection method from agarose 

gels to quantitative PCR. These samples sizes are starting to reach the point where it is 

feasible to make stat1st1cally valid conclusions about krill diet. 

In regards to bias, all methods of diet analysis are biased to some degree but how and to 

what extent DNA diet analyses are biased is not well understood. Universal primers are 

unlikely to have significant advantages over group specific primers in terms of bias. For krill 

diet the most likely source of bias 1s differences in target gene copy number and cell number 

between different prey items. Gene copy number and cell number combine to produce a 

specific amount of signal per prey item but how signal varies across different prey species 

and life stages is not known. Krill DNA diet analysis has focused on nuclear ribosomal genes 

primarily because this is the only region that provides significant amounts of sequence data 

for krill prey species. Also, ribosomal genes have several characteristics that make them 

ideal for PCR assays (Hillis and Dixon, 1991 ). The problem is that ribosomal gene copy 

number varies by five orders of magnitude across different eukaryotic species (Long and 

Dawid, 1980; Prokopowich et al., 2003; Zhu et al., 2005). This results in an unknown but 

potentially large distortion in the ratio of ribosomal genes away from true prey consumption 

ratios. 

For the universal primer I DGGE approach targeting eukaryotes, variation in ribosomal gene 

copy number invalidates the assumption that strong DGGE bands represent important 

species 1n the sample. Furthermore, the combined effects of bias caused by rDNA copy 

number variation (Farrelly et al., 1995) and from other sources (Suzuki and Giovannoni, 

1996; Chandler et al., 1997; Ishii and Fukui, 2001) call into question claims that these 

profiles represent important species in the sample. Studies that have examined the 

sensit1v1ty of universal primer I DGGE using artificial mixtures of bacterial sequences suggest 

the approach is capable of detecting sequence that contribute > 1 % of the total sequence 

mix (Muyzer et al., 1993, Murray et al., 1996). However, this is inadequate to cope with the 

five orders of magnitude variation in eukaryotic rDNA copy number. When multiple sets of 
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universal eukaryotic primers have been applied to the same sample, the overlap between 

the species lists obtained with different primer sets has been low (Diez et al., 2001; Stoeck et 

al., 2006). This suggests that the results from universal primer sets are not an unbiased 

representation of sequence diversity and abundance (Stoeck et al., 2006). It seems likely 

large differences in rDNA copy number and competition for PCR amplification will 

significantly affect results derived from universal primers. This issue has been covered in 

studies on bacteria where ribosomal gene copy number varies between - 1 and 15 (Farrelly 

et al., 1995; Chandler et al., 1997) but 1s not strongly acknowledged in work on eukaryotes 

where the differences between species is much greater. 

The group primer approach is to some extent protected from ribosomal gene copy number 

bias because group detection is independent of other prey groups that are present in the 

sample. However, variation in ribosomal gene copy number will affect group detection limits 

and comparisons between groups. In the current study this may explain the high DNA-based 

incidence of dinoflagellates compared to the results obtained via microscopy. Previous work 

has demonstrated that in some dinoflagellate species rDNA copy number is extremely high 

(Zhu et al., 2005). Despite these bias problems, the comparison of the DNA-based incidence 

results with microscopic prey proportions suggested the group primer I DNA incidence 

approach was providing a useful indication of important prey groups and accurately detecting 

changes in diet between collection sites. 

4.6 Conclusions 

Krill are a generalist predator that consumes a taxonomically diverse range of prey. This 

makes 1t extremely difficult to develop a diet analysis system that provides comprehensive 

prey coverage. While the goal of providing comprehensive prey coverage with a DNA based 

system is worthwhile and may be feasible in the future, it is clear that there are issues with 

current approaches that need to be addressed before robust ecological interpretations can 

be made. In particular, target gene copy number is likely to have a dramatic effect on results 

when targeting nuclear ribosomal genes. In the meantime, studies that focus on specific 

trophic links are easier to implement and can provide useful information. The current study 

highlights the potential of DNA to examine large numbers of samples and to detect and 

differentiate prey items that are difficult to examine using other methods. This study is also 

90 



Chapter 4: Wild sample screen 

the first attempt to provide a quantitative examination of krill diet for key prey groups using 

DNA. In assessing the relative merits of DNA diet methods it is important to keep in mind the 

final goal which is to provide quantitative diet analysis on ecologically relevant sample sizes. 
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Figure 4-1 Krill collection sites. Upper panel shows the location of collection sites in relation 
to the Antarctic coastline, Australian Antarctic bases and oceanographic features. 
Continuous grey line represents continental shelf break (1000 m bathymetry line). Black 
dotted line shows the historical position of the Southern Boundary of the Antarctic 
Circumpolar Current (SBACC) (Orsi et al. , 1995). Lower four panels show the surface 
chlorophyll levels (mg m-3} derived from satellite data for each collection site. White areas 
represent missing data resulting from clouds or sea ice. 
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Figure 4-2 DNA prey incidence and microscopic prey proportion results for four field 
collection sites. The category 'No Prey' 1s spec1f1c to the DNA data and refers to ind1v1dual 
krill that had no detectable prey DNA. The category 'Unidentified' is specific to the 
microscope data and refers to items detected but not ident1f1ed. Note that the microscopic 
diet analysis category 'Unidentified crustacean remains' (Table 4-5) was included with the 
other unidentified items. Error bars are standard dev1at1on (n = 4 or 5 see Table 4-5). 



Table 4-1 Krill collection sites. 

Site Collection Latitude Longitude Trawl depth Trawl No. of krill assayed Average krill Average Site Description 
date (decimal (decimal (m) duration using DNA length concentration 

degrees) degrees) (min)1 Total (mm±SD) of extracted 
(Male/Female/Juvenile) DNA 

(ng µL·1 ± SO) 

A 18 Jan 2003 -66.5575 64.0670 35 3 72 (12/60/0) 46.1±2.8 8.8 ±4.1 Open water site. Daytime. Targeted 
horizontal trawl through a dense swarm of 
krill 

8 12 Feb 2003 -66 5890 69.6087 23 6 58 (11/36/11) 43.0 ± 5.8 151±7.4 Open water site. Daytime. Targeted 
horizontal trawl through a dense layer of 
krill 

c 07 Nov 2004 -62.1120 117.6375 10 15 16 (9/7/0) 41.1±6.5 31 1±14.8 Retreating sea ice edge. Daytime. 
Untargeted horizontal trawl 

D 07 Feb 2005 -66 2537 74.6202 30 16 70 (34/36/0) 40.0 ± 3.4 13.6 ± 7.6 Open water site. Daytime. Targeted oblique 
trawl through a dense swarm of krill. 

1 Trawl duration refers to the amount of time from when the mouth of the net was opened until the catch arrived on deck 



Table 4-2 PCR Primers. 

Target Taxon Primer Names Primer Sequence 5'-3' Target Gene Annealing Amplicon Size Taxonomic Resolution Reference 
Temperature (base pairs) 

Amphipoda AmphNSSf1 CTGCGGTTAAAAGGCTCGTAGTTGAA ssu 51°C 204- 375 genus I species (Jarman et al., 2006) 
AmphNSSr1 ACTGCTTTRAGCACTCTGATTTAC 

Bac1llariophyta DiatomLSUf1 GGAAGCGAAGGAAACCAGTG LSU 65°C 290-364 genus I species this study 
(subset) D1atomLSUr1 AGACCGTTCTCCCGARGGAT 

Chordata ChordVf ACAYACCGCCCGTCAC MSS/MLS 52°C -370 genus I species (Jarman et al., 2004) 
ChordVr CATRATGCAAAAGGTA 

Copepoda CopF2 TGTGTGGTGGTAAACGGAG LSU 61°C -230 genus I species (Bissett et al., 2005) 
CopR1 CCGCCGACCTACTCG 

Dinophyceae DmoSSUf1 CCAGGACTTTTACTTTGAGG ssu 57°C -251 family I genus this study 
(subset) DmoSSUr1 CCCCTAACTTTCRTTCTTGATC 

Foraminifera Foram-S14F3 ACGCAMGTGTGAAACTTG ssu 50°C 350 - 600 species? (Pawlowski et al., 2002) 
Foram-817 CGGTCACGTTCGTTGC 

Gastropoda GastNLSf1 GCGGYAACGCAAACGAAGT LSU 52°C 188 -198 genus (Jarman et al., 2006) 
GastNLSr1 CGAAAWTMACACCGTCTCCG 

Ostracoda OstracodMSSf1 GTGACAAGAAGACCCTARGAG MSS 46°C 247 -252 species (Jarman et al., 2006) 
OstracodMSSr1 AATCCAACATCGAGGTCA 

Tmtmnida TintinnidSSUf2 AGGGACTTTGCAAGCAACTG ssu 65°C -343 genus? this study 
(subset) TintinnidSSUr2 GATGTGGTTTACTCGACTTTCCAA 

Universal 28Sf CCCTGTTGAGCTTGACTCTAGTCTGGC LSU 55°C 500-600 variable (Werren et al., 1995) 
Eukaryote 28Sr AAGAGCCGACATCGAAGGATC 

SSU=nuclear small ribosomal subunit. LSU=nuclear large ribosomal subunit. MSS=intragenic spacer between mitochondrial small and large ribosomal subunits. MLS=M1trochondnal 
large ribosomal subunit 



Table 4-3 DNA-based prey incident results. 

Site Amphipoda Bacillariophyta Chordata Copepoda Dinophyceae Foraminifera Gastropoda Ostracoda Tintinnida 

A 0 61 0 71 8 0 0 0 

B 0 45 0 0 52 0 4 0 0 

c 0 0 0 0 7 0 0 0 

D 0 57 0 0 61 5 0 0 



Table 4-4 Nearest blast match results for diet amplicons. 

Phylum 

Class 

Order 

Family % Match Site A Site B SiteC Site D 

Genus/Species (length) A B c D F G 0 A B c D F G 0 A B c D F G 0 A B c D F G 0 

Bacillanophyta (diatoms) 
Bac1llariophyceae 

Bacillanaceae 
Frag1/ariops1s cylindrus 100 (310) - 5 - - - - - - - - - - - - - - - - - - - - - - - - - -
Frag1/ariops1s curta 97 (311) - - - - - - - - 1 - - - - - - - - - - - - - 1 - - - - -

Coscinod1scophyceae 
Thalassiosiraceae 

Thalassiosira rotula 93 (364) - - - - - - - - 5 - - - - - - - - - - - - - 5 - - - - -
Frag1lanophyceae 

Thalass1onemataceae 
Tha/assionema frauenfeld11 72 (284) - 1 - - - - - - - - - - - - - - - - - - - - - - - - - -

Ap1complexa 
Dinophyceae 

Peridiniales 
Protoperidm1aceae 

Protoperidimum pel/ucidum 97 (248) - - - 1 - - - - - - - - - - - - - - - - - - - - - - - -
Peridmiaceae 

Peridinium po/onicum 97 (252) - - - - - - - - - - - - - - - - - - - - - - - - 1 - - -
Gymnodirnales 

Gymnod1rnaceae 
Gymnodmium sp. 96 (252) - - - 3 - - - - - - - - - - - - - - - - - - - - - - - -

Prorocentrales 
Prorocentraceae 

Prorocentrum micans 100 (252) - - - 1 - - - - - - 5 - - - - - - 4 - - - - - - 4 - - -
Prorocentrum grac1/e 88 (235) - - - - - - - - - - - - - - - - - 1 - - - - - - - - - -



Phylum 

Class 

Order 

Family % Match Site A Site B SiteC Site D 

Genus/Species (length) A B c D F G 0 A B c D F G 0 A B c D F G 0 A B c D 

Foraminifera 
Globigerirnda 

Neog/oboquadrma 
pachyderrna 91 (413) - - - - 5 - - - - - - - - - - - - - - - - - - - -
Mollusca 

Gastropoda 
Op1sthobranchia 

Aplys1idae 
Aplys1a californica 95 (195) - - - - - - - - - - - - - - - - - - - 1 - - - - -
Aplys1a califormca 93 (195) - - - - - - - - - - - - 4 - - - - - - - - - - - -

Arthropoda 
Maxillopoda 

Calanoida 
Clausocalarndae 

Drepanopus bispinosus 93 (303) - - 1 - - - - - - - - - - - - - - - - - - - - - -
Urndent1f1ed - - - - - - 1 7 - - - 2 - - - - - - - - 1 5 - - -
False Positives - - - - - - - - - - - - - - - - - - - - - - - - -

Amplicon length is in DNA base pairs. Letters indicate primer set that generated the amplicons. A = Amph1poda, B = Bacillariophyta, C = Copepoda, D = Dinophyceae, F = 
Foramirnfera, G =Gastropoda, O = Ostracoda. 

F G 0 

1 - -

- - -
- 5 -

- - -
- - -
- - -



Table 4-5 Microscopic diet analysis of knll from each of the four collection sites. Data displayed in Figure 4-1. 

Krill ID Amphipoda Bacillariophyta Chordata Copepoda Dinophyceae Foraminifera Gastropoda Ostracoda Tintinnida Crustacean Unidentifie Total items 
remains d counted 

A1 0 147 0 0 239 12 0 0 2 4 405 

A2 0 263 0 0 129 7 1 0 0 0 0 400 

A3 0 210 0 0 242 4 0 0 0 0 7 463 

A4 0 378 0 0 34 9 0 0 0 2 25 448 

A5 0 274 0 0 121 4 0 0 0 3 17 419 

81 0 371 0 0 25 2 10 0 3 0 13 424 

82 0 216 0 0 196 0 2 0 0 0 10 424 

83 0 183 0 0 217 0 0 0 0 2 3 405 

84 0 241 0 0 170 3 0 0 0 0 0 414 

85 0 145 0 0 206 4 0 0 5 362 

C1 0 18 0 0 196 2 5 0 0 3 14 238 

C2 0 37 0 0 163 0 1 0 0 0 2 203 

C3 0 49 0 0 66 0 0 0 3 119 

C4 0 26 0 0 165 1 3 0 1 0 197 

D1 0 214 0 0 183 19 0 0 2 0 8 426 

D2 0 242 0 0 147 23 0 0 0 0 16 428 

D3 0 365 0 0 25 12 0 0 0 4 28 434 

D4 0 238 0 0 133 27 3 0 0 0 11 412 
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Chapter 5: Feeding trial 

5.1 Abstract 

Using DNA as a dietary biomarker is a promising approach for studying the diet of Antarctic 

krill. PCR-based methods have proven successful at amplifying prey DNA extracted from krill 

collected in the field. However, the time period of feeding that this prey DNA represents is 

unclear. This study examined the stability of prey DNA in the stomachs of Antarctic krill 

under experimental feeding trial conditions. Krill were fed a pulse of the diatom Tha/assiosira 

antarctica and the accumulation and decay of DNA signal from this prey item was tracked 

over time with quantitative PCR. Stomach evacuation was identified as an important factor in 

determining the longevity of prey DNA signal in the stomach. After feeding for 2 hours on 

Thalassiosira antarctica, prey DNA was detectable for a further 3 hours when krill continued 

to feed on an alternative food source, and for 7 hours after feeding when krill were moved 

into starvation conditions. This demonstrates that prey DNA is reasonably stable 1n krill 

stomachs and it is therefore likely that prey DNA is representative of recent feeding 

behaviour at field collection sites. 

5.2 Introduction 

Several studies have recently shown that it is feasible to extract DNA from the stomachs of 

Antarctic krill and use PCR-based methods to amplify and identify prey DNA (Chapter 4, 

Martin et al., 2006; Passmore et al., 2006). While these initial studies are encouraging, DNA 

has not been well characterised as a dietary biomarker for krill and there are several features 

of its performance in this role that warrant careful investigation. One of these is to determine 

the stability of prey DNA in the stomach. Previous studies have been conducted on krill 

collected in the field and as a consequence the feeding history of these krill was unknown. It 

is unclear whether prey DNA extracted from krill stomachs represents feeding behaviour 

from seconds, minutes or hours prior to capture. It is also unclear what factors are 

responsible for the decay of prey DNA signal in krill stomachs. Another aspect of using prey 

DNA as a biomarker that has not been well characterised is the sensitivity of PCR based 

methods for detecting prey, either in terms of DNA molecules detected, or the number of 

prey items that these molecules represent. 

The aim of this study was to explore the dynamics and stability of prey DNA in krill stomachs 

under the controlled conditions provided by an experimental feeding trial. Krill were fed the 
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diatom Tha/assiosira antarctica and the fate of the DNA signal from this prey item was then 

tracked over time with quantitative PCR. Following the initial 'feeding pulse' krill were moved 

into new tanks where they were either starved or fed another alga, lsochrysis ga/bana, to 

examine the effect of consuming additional prey on the longevity of the T. antarctica DNA 

signal. 

5.3 Material and Methods 

5.3.1 Quantitative PCR assay for detecting Tha/assiosira antarctica 

Thalassiosira antarctica was selected as a DNA diet tracer because. (1) it is an Antarctic 

diatom with a diameter that is in the optimal range for filter feeding by krill (Boyd et al., 1984); 

(2) cultures of T. antarctica were available and culturing on a small-scale had shown that T. 

antarctica was robust and fast growing for an Antarctic species; and (3) earlier work had 

suggested that nuclear ribosomal genes were present in high copy number in diatoms from 

the genus Tha/assiosira (Armbrust et al., 2004; Zhu et al., 2005; Passmore et al., 2006), 

which is useful for providing a strong DNA signal. 

The small ribosomal subunit gene (SSU) of T. antarctica was selected as the target of the 

DNA detection assay and was cloned and sequenced (GenBank Accession Number 

EF140621). The sequence was then aligned to the sequences of other species in the 

feeding trial (Euphausia superba AY672801; Phaeodactylum tricornutum EF140622, 

/sochrysis ga/bana DQ079859) and a Taqman assay specific for T. antarctica was 

developed. The PCR primers amplify a 132 base pair region near the 3' end of the nuclear 

small subunit ribosomal DNA (SSU). Forward primer CACCTACCGATTGAATGGTCC, 

Reverse primer CGGAAACCTTGTTACGACTTCA (Proligo), Taqman probe HEX­

CGGGATTGTGGTTTGGCTCCTTCAT-BHQ-1 (Biosearch Technologies). 

PCR reactions contained: 5 µL of template DNA, 3.0 mM MgClz (G1bco), 0.125 mM dNTPs 

(Gibco), 4 µM of each primer, 2 µM of Taqman probe, 1 X Bovine Serum Albumin (NEB), 0.5 

units of Amplitaq Gold (Gibco), 1 X manufacturer's PCR buffer (Gibco) and made up to 20 µL 

with dH20. Samples were amplified in a Chromo4 thermal cycler (MJ Research) and cycling 

parameters were: preheat at 95 °C for 10 min followed by 40 cycles of 95 °C for 30 s and 58 

°C for 60 s. 

102 



Chapter 5: Feeding trial 

5.3.2 Estimating SSU copy number in Tha/assiosira antarctica 

SSU copy number per T. antarctica cell was estimated from six samples of a T. antarctica 

culture that had recently reached the plateau phase of growth. The cell density of the T. 

antarctica culture was estimated from three separate counts of over 400 cells each, using an 

Improved Neubauer chamber. DNA was then extracted from three samples of approximately 

100,000 cells and three samples of approximately 500,000 cells. Initial attempts to separate 

the cells from the culture media by centrifugation resulted in significant cell loss. Instead, 

samples were vacuum filtered onto 5 mm diameter discs of GFF-75 filter paper (Whatman). 

DNA was then extracted from the discs using a DNeasy tissue kit (Qiagen) and eluted in 200 

µL of AE buffer (Qiagen). The standard used to estimate SSU copy number was linearised 

plasmid that contained the full length SSU sequence from T. antarctica. A series of five-fold 

dilutions from 1.0 x 10-3 ng µL-1 to 3.2 x 10-1 ng µL-1 (equivalent to 160,000 to 51 copies of 

plasmid per µL) was used to generate a standard curve for quantification of culture extract 

samples (y = -0.29x + 11.56, r2 > 0.998). Quantitative PCR was performed in triplicate on 

100-fold dilutions of culture extracts. An estimate of the number of copies of SSU per T. 

antarctica cell was obtained using the formula: 

SSU copies per cell = (Copies of SSU in PCR reaction x DNA extract elution volume 

X DNA extract dilution factor) I (Volume of DNA extract used in PCR x Number of 

cells from which DNA was extracted) 

where: DNA extraction volume = 200 µL, DNA extract d1lut1on factor= 100, Volume of DNA 

extract used in PCR = 5 µL, Number of cells from which DNA was extracted = 1 x 105 or 5 x 

105 cells. 

5.3.3 Supply and culturing of algae 

Tha/assiosira antarctica culture T1 (cell diameter 10 - 25 µm) was supplied by Andrew 

Pankowski, University of Tasmania, and was one of several strains isolated from the Barents 

Sea. Phaeodactylum tricornutum (cell diameter 1 - 3 µm) was originally sourced from the 

CSIRO Collection of Living Microalgae #CS-29 and was grown at the Australian Antarctic 

Division in bulk cultures as a food supply for krill. /sochrysis galbana (cell diameter 4 - 8 µm) 

was originally sourced from the Provasoh-Gu1llard National Center for Culturing Marine 
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Phytoplankton CCMP1324 and was supplied in a concentrated liquid form called Instant 

Algae (Reed Manculture). 

Tha/assiosira antarctica and P. tricomutum were cultured in f2 medium at 4 °C under high 

light conditions with aeration. Small scale (50 ml) cultures of T. antarctica grew to densities 

above 1 x 106 cells ml-1• Cultures of T. antarctica were successfully scaled up to 15 l plastic 

carboys but increasing the culture size to 120 l polyethylene bags was unsuccessful. This is 

not uncommon when culturing algae and is thought to be because many species do not 

tolerate the violent aeration that 1s required to prevent bag cultures from settling (Chris Bolch 

pers. comm.). Carboys inoculated with 500 ml of T. antarctica culture took approximately 

four weeks to reach maximum cell density, which was typically on the order of 50,000 to 

100,000 cells ml-1
. The smaller and more robust P. tricomutum grew in 120 l bags to cell 

densities greater than 1 x 107 cells ml-1• 

5.3.4 Krill collection and maintenance 

Krill were collected in the Indian sector of the Southern Ocean (-66.2537, 74.6202) on the 71
h 

of February 2005 during a voyage with the RSV Aurora austra/is. When the ship returned to 

Australia krill were transferred to the Australian Antarctic Division's live krill facility (Hobart, 

Tasmania). Krill were kept in an 1860 l holding tank connected to a 5000 l chilled seawater 

recirculation system. Water temperature was maintained at 1 - 2 °C. Light conditions were 12 

hours of light and 12 hours of darkness with a maximum midday lux of 45. Krill were 

maintained with a daily feeding regime where the diatom P. tricomutum and the haptophyte 

I. ga/bana were supplied at high concentrations during the daylight phase of the light cycle. 

Krill were kept under these cond1t1ons for approximately one month prior to the feeding trials. 

Krill used in the feeding trial were a mixture of males and females ranging in length from 28 

to 45 mm, with an average length of 38 mm. 

5.3.5 Feeding trial 

Initial experimentation with 100 l tanks proved unsatisfactory for the feeding trial because 

the krill required long periods to acclimate to the small tanks and often collided with the walls 

of the tanks which disrupted their feeding behaviour. Feeding trials were therefore conducted 

in the large 1860 l holding tanks. The original plan for the feeding trial was to starve the krill 

for two days and then present krill with T. antarctica at low cell concentrations, similar to cell 
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concentrations observed in the field. However, following a month of daily feeding on high 

concentrations of algae, several days of starvation was insufficient to induce the krill to 

engage in active and consistent feeding behaviour on low concentrations of T. antarctica. 

The supply of T. antarctica was constrained by the diatom's poor growth in large scale 

cultures and, as an alternative to add1t1onal culturing, the feeding pulse phase of the trial was 

altered to a mix of P. tricomutum at high cell concentrations and T. antarctica at low cell 

concentrations. This feed mix successfully induced feeding behaviour in the majority of krill 

Visual observations suggested - 80 - 90 % of animals were feeding with the rest engaged in 

slow swimming activity. After the feeding trials were completed, attempts were made to 

develop a second quantitative PCR assay for the detection of P. tricomutum but they were 

unsuccessful. 

The feeding trials were conducted during the daylight phase of the hght cycle consistent with 

the feeding regime used during the maintenance period. Trials began with approximately 

1200 krill in an 1860 L tank. Knll were initially starved for two days and then cultures of P. 

tricomutum and T. antarctica were added to the tank to a final concentration of 20,000 cells 

per mL-1 and 1 O cells mL-1 respectively. Krill were then left to feed for a two hour 'feeding 

pulse'. Following the feeding pulse, two groups of approximately 50 krill were selected at 

random and transferred with aquarium nets to one of two conditions. The continuous feeding 

group was moved into an adjacent 1860 L tank that contained /. ga/bana at a concentration 

of 10,000 cells mL-1 (reduced concentration because /. galbana has larger cells than P. 

tricomutum). The starvation group were evenly distributed among three clear plastic 20 L fish 

tanks that were filled with filtered seawater and were floating almost fully submerged in the 

continuous feeding tank to maintain a constant temperature. The knll were left in these two 

conditions for another 7 hours to complete the tnal. At the time points 0 (food pulse added), 

1, 2 (food pulse terminated), 3, 4, 5, 7 and 9 hours, six animals per condition were selected 

at random and preserved in 500 ml of 80 % ethanol for DNA analysis. The entire feeding 

trial was conducted three times on three separate days in the same tanks. 

5.3.6 Krill dissection and stomach DNA extraction 

Dissections were performed using a dissecting microscope and two pairs of forceps. 

Individual knll were briefly rinsed in fresh ethanol and gently dried on paper towel prior to 
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dissection in a dry sterile Petri dish. Forceps were used to remove the carapace and expose 

the animal's stomach on the dorsal surface. Stomachs were then removed with forceps 

taking care not to squeeze out the stomach contents. To prevent the transfer of 

contaminants from the external surface of the krill to the stomach tissue, care was taken not 

to make contact with the stomach during the removal of the carapace and the forceps were 

flame sterilized prior to the removal of the stomach and between each knll d1ssect1on. 

DNA extraction was performed on individual krill stomachs using a DNeasy Tissue kit in a 96 

well plate format (Qiagen). Samples were processed according to the manufacturer's 

instructions except for the following modifications. Prior to overnight digestion in ATL buffer+ 

Proteinase K, the stomachs were disrupted manually with a pipette tip to assist tissue 

digestion. DNA was eluted in 200 µL of AE buffer (Qiagen) and stored at 4 °C. 

5.3.7 Determining DNA concentration of stomach extracts 

DNA concentrations were determined using a Genies microplate multireader (Tecan). 

Picogreen reagent (Molecular Probes) was diluted 1 : 200 in TE buffer (10 mM Tris-HCI, 1 

mM EDTA) and 195 µL aliquoted into the wells of black flat-bottomed microtitre plates. Five 

µL of knll stomach extract was added per well and fluorescence was measured in the plate 

reader as per the manufacturer's instructions. Standard curves to convert fluorescence 

readings to DNA concentrations were generated using a dilution series of the DNA standard 

supplied with the Picogreen reagent. 

5.3.8 Quantitative PCR on krill stomach extracts 

The DNA concentration of stomach extracts ranged from 3.3 to 47.8 ng µL-1• Quant1tat1ve 

PCR was performed in tnphcate on 5 fold dilutions of stomach extracts. PCR replicates were 

performed on separate plates with a separate PCR reaction master mix for each plate An 

eight point standard curve of SSU plasmid was included on each plate and ranged from 2.5 x 

10-2 to 3.2 x 10-1 ng per PCR reaction (equates to - 4 x 106 
- 50 copies of SSU plasmid). 

5.3.9 Quantitative PCR data analysis 

Raw fluorescence data generated by the quantitative PCR reaction was analysed using 

quantitative PCR software that uses a standard curve based method (Larionov et al., 2005). 

All data were processed using a standard curve that was derived from the pooled data of all 
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replicates of the plasmid standards. The software's amplitude normalisation option was not 

used because the PCR reactions were terminated before the fluorescence accumulation 

curves of all samples had reached a clear plateau, which violated the conditions for 

amplitude normalisation stipulated by the software's author. The software provided cycle 

threshold (Ct) values for all PCR reactions which were the point at which the accumulated 

fluorescence within a PCR reaction reached a threshold that was defined by the software 

based on a statistical analysis of the results from the plasmid standards. 

Data were screened to remove PCR replicates with aberrant fluorescence accumulation 

curves and samples where replicates had a Ct coefficient of variance (CV) greater than 1 %. 

Samples with little or no detectable DNA were handled in a different way. A detection 

threshold was set at a Ct value of 31.4 PCR cycles, which was equivalent to 256 copies of 

plasmid standard per PCR reaction. Knll stomach samples where all PCR replicates 

produced less fluorescence signal than the 256 copy standards were considered valid data 

points with no detectable DNA regardless of the CV between replicates. 

Ct values were converted to estimates of copy number per PCR reaction using the formula. 

copies = 1 o(slope x et+ y-intercept) (Larionov et al., 2005), where slope and intercept were derived 

from the standard curve of plasmid standards. Copies of SSU per stomach were calculated 

using the formula described above for estimating SSU copy number in T. antarctica, except. 

DNA extract dilution factor = 5. 

5.4 Results 

5.4.1 Characterisation of the Thalassiosira antarctica detection assay 

The Taqman assay developed for detecting T. antarctica showed a log-linear relationship 

between PCR cycle number and SSU copy number when applied to plasmid over a range of 

50 to 4 x 106 copies (Figure 5-1). 

The limit of sensitivity for PCR assays is difficult to define in precise terms, but in samples 

that contained the lowest concentrations of plasmid, 50 or 256 copies, there was an increase 

in the amount of variation between PCR replicates (Figure 5-1). In addition, PCR reactions 

with 50 copies of plasmid sometimes failed to produce normal fluorescence accumulation 

curves. This was probably due to the extremely low concentration of template DNA causing 
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stochastic variation as in previous studies (Morrison et al., 1998; Stenman and Orpana, 

2001, Stahlberg et al., 2004). The detection threshold of the assay was set at a more 

conservative limit that was equivalent to 256 copies of SSU per PCR reaction. When this 

detection limit was scaled up to an estimate of SSU copies per stomach it was equivalent to 

- 51,200 copies of SSU or - 12 cells of T. antarctica, based on the estimate of SSU copies 

per T. antarctica cell (see below). 

Assay precision was assessed by examining the variation between three PCR replicates for 

each feeding trial sample. Replicates were performed on different plates with different PCR 

master mixes which captures most of the variation inherent in the assay system. Quality 

control removed 17 out of 234 samples for having a Ct coefficient of variation greater than 

1 %. This places an upper limit on error estimates for the remaining valid samples. When the 

variation in Ct values was propagated through to estimates of SSU copy number, the 

coefficient of variation was below 20 % for all valid samples, with an average of 9 %. Overall 

the results were consistent with previous studies that have examined linearity, sensitivity and 

inter-run precision of Taqman assays (Kleiber et al., 2000; Schmittgen et al., 2000; Weiss et 

al., 2004). 

5.4.2 Estimating SSU copy number in Thalassiosira antarctica 

Six samples of T. antarctica culture were used to estimate SSU copy number per cell (Figure 

5-2). Variation between PCR replicates for a given sample was small compared to the 

variation between samples. This was consistent with the theory that most of the variation in 

PCR assays occurs in the sample processing steps prior to PCR amplification (Bustin, 2002; 

Zhu et al., 2005). Given that all samples were derived from a single culture, the sources of 

variation can be narrowed down to sampling error, cell filtration or DNA extraction. Using 

more sophisticated membranes and filtration methods (e.g. Zhu et al., 2005) may have 

improved the precision of rDNA copy number estimates. However, the fact that samples of 

100,000 cells and 500,000 cells gave similar estimates of SSU copy number per cell 

provided increased confidence in the accuracy of the estimate. Based on an average of the 

six samples, the estimate of SSU copy number per cell for T. antarctica was 3766 with a 

95% confidence interval of ± 888. 
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5.4.3 Feeding trial 

Krill were fed a pulse of T. antarctica and the amount of DNA signal in krill stomachs was 

tracked through time using quantitative PCR (Figure 5-3). A comparison of the results 

obtained across the three separate feeding trial days showed some variation between days 

m the total amount of T. antarctica DNA signal that accumulated during the feeding pulse. 

However, the general trends in signal accumulation and decay were consistent. T. antarctica 

DNA signal peaked at the end of the 2 hour feeding pulse, with an average signal of over 

one million copies of T. antarctica SSU (2 hour time point). In the animals that were 

subsequently moved into continuous feeding conditions on /. ga/bana, the loss of T. 

antarctica signal was quite rapid with little or no detectable DNA five hours after the feeding 

pulse (seven hour time point). Animals that were moved into starvation conditions retained 

more DNA signal although there was some evidence of signal decay seven hours after the 

feeding pulse when the feeding trial was terminated (nine hour time point). The difference 

between fed and starved krill demonstrates that feeding activity affects the longevity of prey 

DNA signal in the stomach. 

5.5 Discussion 

5.5.1 Tha/assiosira antarctica rDNA copy number 

Estimates of rDNA copy number per cell or genome are limited to a handful of species for 

most taxonomic groups (Prokopowich et al., 2003). Quantitative PCR has been used to 

estimate rDNA copy number m three diatom species, Tha/assiosira sp. - 400 copies, 

Nitzschia c/osterium - 80 copies and Tha/assiosira weissf/ogii - 20 copies (Zhu et al., 2005). 

Genome sequencing of Tha/assiosira pseudonana found - 35 copies (Armbrust et al., 2004). 

The estimate of - 3766 for Tha/assiosira antarctica is an order of magnitude above the 

estimates for other diatom species. In eukaryotes, rDNA copy number varies across five 

orders of magnitude, and, significant variation between species from the same genus is not 

unprecedented (Long and Dawid, 1980; Prokopowich et al., 2003; Zhu et al., 2005). The 

mechanisms that determine rDNA copy number within species are not fully understood, but 

correlations between rDNA copy number and cell size have been observed (Zhu et al., 

2005). Thalassiosira antarctica 1s the largest diatom species for which an rDNA copy number 

estimate has been obtained which may account for the high rDNA copy number estimate for 

T. antarctica compared to other Tha/assiosira species. 
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5.5.2 Krill feeding trial 

Previous DNA diet studies have developed PCR based presence/absence assays but have 

not explored the conditions that lead to success or failure to detect prey items in much depth. 

Several studies used feeding trials to determine how long after a feeding event that prey 

DNA could be detected (e.g. Asahida et al., 1997; Agustf et al., 1999; Zaidi et al., 1999). 

However, these studies did not determine the number of DNA molecules detected or 

consider the number of prey items that these molecules represent. Quantitative PCR has 

recently been used to determine the amount of prey DNA in DNA extracts (Deagle and Tollit, 

2006; Deagle et al., 2006; Passmore et al., 2006). The first DNA diet study to use 

quantitative PCR to characterise prey items for target gene copy number and estimate the 

number of prey items consumed has recently been published (Troedsson et al., 2007). The 

current study is the first to use quantitative PCR to track the accumulation and decay of prey 

DNA signal through time and examine the affect of additional feeding on the decay of prey 

DNA signal. 

5.5.3 Variation in prey signal between individual krill 

The amount of prey DNA signal that accumulated showed significant levels of variation 

between individual krill including between animals collected at a single time point. Since by 

all ind1cat1ons the assay system was working, this was interpreted as variation in knll feeding 

behaviour. High levels of variation in the feeding behaviour between individual krill seems to 

be a consistent feature of krill feeding trials (e.g. Antezana et al., 1982; Perissinotto and 

Pakhomov, 1996; Perissinotto et al., 1997; Haberman et al., 2003). The variation is probably 

related to the fact that krill engage in a range of behaviours other than feeding that include 

swimming, moulting and escaping from a disturbance. In the current study, variation between 

individual krill was probably exacerbated by the short time period for the feeding pulse. The 

short pulse was necessary to avoid the complete depletion of the limited supply of T. 

antarctica cells during the feeding pulse phase of the trial. It 1s likely that more consistent 

results would be achieved by using higher concentrations of prey and a longer feeding pulse. 

In addition, future trials should consider incorporating an independent measure of individual 

feeding rates to help explain individual variation. Measuring individual feeding rates would 

also allow the amount of signal detected per prey item consumed to be calculated, similar to 

the recent work of Troedsson et al., 2007. 
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5.5.4 Accumulation of prey DNA signal 

The feeding trial demonstrated that DNA is a dynamic dietary biomarker in krill. Prey DNA 

signal accumulated rapidly over the two hour feeding pulse and the maximum value from an 

individual krill was - 5 million copies of rDNA. The following calculations demonstrate that 

this figure is reasonable. Based on the estimate of 3766 copies of SSU per T. antarctica cell, 

5 million copies equates to 1327 T. antarctica cells. Using the concentration of T. antarctica 

cells at the start of the feeding trial (10 cells mL-1
), 1327 cells could be accumulated by 

filtering - 140 ml of water during the two hour feeding pulse. This filtration rate is feasible 

given that the most recent estimates of maximum filtration rates for adult krill exceed one litre 

per hour (Price et al., 1988; Miller and Hampton, 1989; Quetin et al., 1994). Given that T. 

antarctica was a minor component of the diet during the feeding pulse, and that signal was 

still accumulating at the end of two hours, 1t is unlikely that this figure represents the 

maximum amount of prey DNA signal that can occur in krill stomachs. The results 

demonstrate that the amount of prey DNA signal can vary over at least six orders of 

magnitude. Clearly, T. antarctica's high SSU copy number per cell was a significant factor in 

determining the amount of DNA signal that accumulated. As DNA diet analysis matures it will 

have to account for these large variations in prey DNA signal. For example, the sensitivity of 

the current PCR assay suggests that it is feasible to detect prey items at levels that are 

below what would be considered biologically relevant. 

5.5.5 Decay of prey DNA signal 

The decay of prey DNA signal in knll stomachs is likely to be the result of some combination 

of gut evacuation and DNA degradation within the stomach. There is a significant body of 

work examining gut evacuation in krill and most of the results suggest that this is not a 

simple process that occurs at a constant rate. Gut evacuation rates have been estimated by 

measuring the decay of field-ingested chlorophyll-a over time (Perissinotto and Pakhomov, 

1996, Atkinson and Snyder, 1997, Pakhomov et al., 1997; Perissinotto et al., 1997; 

Pakhomov and Froneman, 2004b). Estimates have also been based on visual observations 

of stomach evacuation (Antezana et al., 1982) and tracking the appearance of radioactive 

isotopes in faecal pellets (Pond et al., 1995). Passage times for the entire gut vary over a 

broad range between field sites and studies, from 0.78 hours (Pond et al., 1995) to 9.9 hours 

(Perissinotto et al., 1997) for adult krill (> 40 mm). Several studies suggest that the gut 
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evacuation rate is affected by food type, food quality and the amount of feeding activity 

(Clarke et al., 1988; Pond et al., 1995; Perissinotto and Pakhomov, 1996). There is also 

some evidence for the alternative view, that gut evacuation rate is not affected by the 

animal's feeding activity (Atkinson and Snyder, 1997). Comparing the DNA signal derived 

from starved and feeding krill over time showed that prey DNA signal decayed faster in 

feeding krill. The most likely explanation for this result is that stomach evacuation rates were 

higher in feeding krill. It could be argued that starved krill were engaged in coprophagy, 

which extended the amount of time that prey signal was detected. However, the krill were 

under observation for most of the feeding trial and there was little evidence of faecal pellet 

egestion from starved krill and no evidence the krill were feeding at the bottom of the tanks 

on faecal pellets. An additional point that also makes this explanation unlikely is that prey 

DNA in krill faecal pellets is quite degraded when compared to stomach samples (Martin et 

al., 2006). The difference in DNA signal decay between fed and starved krill supports the 

view that krill gut evacuation rates, and therefore the decay of prey DNA signal, varies with 

feeding activity. 

It is generally assumed that prey DNA is rapidly degraded in the digestive systems of living 

animals (Symondson, 2002). This view has been supported by evidence that PCR assays 

targeting short prey DNA fragments are more successful than assays targeting long DNA 

fragments, in a variety of invertebrate predator-prey systems (Agustf et al., 1999; Zaidi et al., 

1999; Agustf et al., 2000; Chen et al., 2000; Hoogendoorn and Hempel, 2001; Sheppard et 

al., 2004). The physiology of the predator's digestive system probably plays a significant role 

in determining the amount of DNA degradation that occurs, and it should be expected that 

results will vary across different predator-prey systems. Short fragments of prey DNA were 

reasonably stable in the stomachs of krill. In starved krill, prey DNA was routinely detected at 

the end of the feeding trial, 7 hours after the feeding pulse. There was some evidence of a 

decline in the amount of prey DNA signal in starved krill over time. This may have been due 

to DNA degradation but may also have been the result of stomach evacuation. This study 

cannot say definitively that DNA degradation did not occur in krill stomachs because the 

necessary parameters were not measured; i.e., the amount of signal consumed by individual 

krill, and the stomach evacuation rates. However, it does seem clear that, for krill, stomach 
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evacuation is at least as important as DNA degradation in determining the rate of decay of 

prey DNA signal. 

5.5.6 Time limits for prey DNA detection 

The two feeding trial conditions, starvation and/. ga/bana at very high cell density (10,000 

cells I ml), represent extreme ends of the food density spectrum that krill might encounter in 

the field. These conditions were chosen to provide an estimate of the detection limits for prey 

DNA in the stomach. The minimum detection limit was approximately 3 hours when krill 

continued to feed on /. ga/bana. The maximum limit was greater than 7 hours under 

starvation conditions. These results were comparable to previous estimates of gut 

evacuation rates obtained using chlorophyll-a (Perissinotto and Pakhomov, 1996, Atkinson 

and Snyder, 1997; Pakhomov et al., 1997; Perissinotto et al., 1997; Pakhomov and 

Froneman, 2004b), but they were at the higher end of the scale given that this study focused 

on the stomach not the entire digestive tract. The time limits for prey DNA detection should 

be considered tentative because prey ingestion rates were not measured, and it is unclear 

whether the krill were feeding at maximum rates when food was available. However, the 

results demonstrate that prey DNA is stable in krill stomachs for hours rather than seconds 

or minutes. This suggests that prey DNA isolated from krill collected in the field will be 

representative of feeding behaviour that has occurred several hours pnor to capture. Further 

work is required to define these limits more clearly taking into account feeding rates, different 

food sources and variation in target gene copy number between prey species. 

5.6 Conclusions 

The results from this study are encouraging for the use of DNA to examine the diet of 

Antarctic krill. Prey DNA was stable on the stomachs of krill for several hours after ingestion 

which suggests that prey DNA extracted from krill stomachs will be representative of recent 

feeding activity at field collection sites. The study also highlights the fact that underlying 

simple PCR based presence I absence detection assays there is a complex interaction 

between target gene copy number, stomach evacuation, and DNA degradation. It is 

important that these factors are considered in the design of future DNA diet assays and 

when ecological interpretations of the data are undertaken. 
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Figure 5-1 Standard curve of Tha/assiosira antarctica detection assay showing log-linear 
relationship between SSU copy number and PCR cycle. 
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Figure 5-2 Estimates of SSU copy number in Tha/assiosira antarctica based on six samples 
of cells. Error bars show 95% confidence intervals of each individual estimate based on 
three PCR replicates. 
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Figure 5-3 Feeding trial time series data showing the build up and decay of prey DNA signal 
in krill stomachs over time. Grey areas represent feeding pulse (0-2 hours). Data points in 
feeding pulse are replicated in isochrysis and starved panels for clarity. Line connects the 
mean value for each time point. 
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Chapter 6: Conclusions 

6.1 Overview of findings 

This thesis provides some foundational work in assessing whether DNA can provide useful 

information about krill diet. Prior to this work there were no studies on krill diet that had 

utilised DNA but during the course of this work one study from another laboratory was 

published (Martin et al., 2006). The thesis focused on developing DNA diet methods that are 

applicable to krill collected in the field. Strong emphasis was placed on examining whether 

DNA can provide quantitative data about krill diet, which was the key issue identified in 

Chapter 1. The major conclusions of this thesis are· 

• A large amount of prey DNA can be successfully preserved and then extracted from 

the stomachs of Antarctic krill (Chapters 2 & 5). 

• The choice of sample preservation method has a significant effect on the yield of 

prey DNA (Chapter 2). 

• The majority of DNA extracted from krill stomachs is derived from krill. This is 

problematic because krill DNA competes with prey DNA for PCR amplif1cat1on. 

However, this issue is not easily resolved by cutting krill DNA with restriction 

enzymes or by blocking the amplif1cat1on of krill DNA during PCR (Chapter 3). 

• Krill diet was mainly composed of a mix of autotrophic and heterotrophic protists with 

only a limited role for metazoan prey (Chapter 4). 

• Current DNA diet approaches that target nuclear ribosomal genes with universal or 

group specific primers are not capable of providing reliable quantitative data about 

krill diet (Chapter 2 & Chapter 4). 

• Prey DNA is stable within krill stomachs for several hours after ingestion (Chapter 5). 

• The amount of prey DNA signal within krill stomachs varies over at least six orders 

of magnitude (Chapter 5). 

• In krill, feeding activity increases the rate at which DNA signal is lost from the 

stomach (Chapter 5). 

118 



Chapter 6. Conclusions 

6.2 Problems with DNA diet analysis 

Several issues need further exploration before DNA can provide a quantitative analysis of 

krill diet. Variation in nuclear ribosomal copy number between prey species is probably the 

most significant issue. The chapters in this thesis and the other published krill DNA diet 

study (Martin et al., 2006) have targeted nuclear ribosomal genes because, for krill prey 

species, there is only limited DNA sequence data available from other regions of the nuclear, 

chloroplast or mitochondrial genomes. Nuclear ribosomal genes are problematic however 

because their copy number varies by at least five orders of magnitude between eukaryotic 

species (Prokopowich et al., 2003). This level of variation in DNA signal between prey 

species cannot be ignored if the goal 1s to obtain quantitative data about diet. 

The large variation in signal between species has ramifications for PCR assays that use 

universal primers to amplify DNA from multiple prey. Large variation in signal between 

species probably results in common DNA sequences out competing rare sequences for 

amplification, thereby giving a biased picture of diet. Evidence that universal primer methods 

detect sequences contributing more than 1 % of the total sequence mix (Muyzer et al., 1993; 

Murray et al., 1996) suggest that the approach is not capable of dealing with the orders of 

magnitude variation in DNA signal that will occur. Prey species that are consumed in large 

numbers but have low nuclear ribosomal gene copy per genome will easily fall below the 1 % 

detection threshold. Future studies that advocate a universal primer approach need to 

demonstrate that competition does not bias diet results. 

There are two ways to tackle the problem of variation in ribosomal gene copy number 

between species. The first is to characterise and account for the variation in ribosomal gene 

copy number between species. At present the data on ribosomal gene copy number for 

eukaryotic species are sparse and have been gathered using a variety of methods 

(Prokopow1ch et al., 2003). In Chapter 5 ribosomal gene copy number was estimated for the 

diatom Tha/assiosira antarctica using quantitative PCR, but this required multiple samples 

and accurate cell counts. Characterising all potential krill prey species for ribosomal gene 

copy number would be a large and difficult task, particularly when many krill prey species 

have not even been successfully grown in culture. There is a linear relationship between 

rDNA copy number and cell size (Zhu et al., 2005) or genome size (Prokopowich et al., 
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2003), but there is significant variation around the mean and 1t is unlikely that these 

relationships will provide easy and reliable predictions of ribosomal gene copy number. For 

diet studies that focus on a small subset of prey 1t is feasible to characterise ribosomal gene 

copy number. Using this approach it should be feasible to develop an understanding of 

meaningful prey detection limits and correct for variation between species. Recent diet 

studies have quantified the amount of signal derived from prey items (Chapter 5, Troedsson 

et al., 2007, Durbin et al., 2008; Nejstgaard et al., 2008). 

The second approach is to target an alternative region of the genome that has less variation 

m copy number between species. Nuclear ribosomal genes are one of the most variable 

regions in the genome in terms of copy number so m this regard most other regions would 

be an improvement. The main problem with this approach is the lack of available sequence 

data. These data are required for the design of PCR primers and for the identification of PCR 

amplicons derived from prey species. In recent years the barcode of life project (BOLD) has 

been attempting to characterise a unique DNA barcode for all species on the planet. This 

project has so far focused on the cytochrome oxidase I (COi) gene of the mitochondrial 

genome and most of the species that have been characterised are relatively large metazoan 

animals. The concept of DNA barcoding and the selection of COi as the target region has 

been controversial for a variety of reasons (Meyer and Paulay, 2005; Vences et al., 2005; 

Rubinoff et al., 2006a; b; Waugh, 2007). COi is capable of providing species spec1f1c 

identification for some animal and protist groups (Hebert et al., 2003a; Hebert et al., 2003b; 

Evans et al., 2007; Smith et al., 2008) but there are also examples where COi fails to 

correctly delineate between animal species (Meyer and Paulay, 2005; Vences et al., 2005), 

and, the region is unsuitable for plants (Rubinoff et al., 2006a; Pennisi, 2007). Work on these 

issues is ongoing and it seems likely that a mature DNA based 1dent1f1cation system will 

incorporate multiple DNA regions (Kress et al., 2005; Rubinoff et al., 2006a). In terms of 

target gene copy number, there 1s variation m the number of mitochondria per cell and in the 

number of cells per animal (Waugh, 2007), but, the tight link between mitochondria and 

metabolism suggests that there will be less variation than occurs with nuclear ribosomal 

genes and that the variation will have a reasonably consistent relationship with the size of 

the organism. A recent DNA diet study has shown that for copepod naupli1 there is a linear 

relationship between COi copy number and carbon biomass (Durbin et al., 2008). 
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Regardless of which DNA region is targeted, the effect of target gene copy number should 

be carefully considered. Overall it is recommended that COi and other DNA regions that 

emerge from large scale barcoding projects should be targeted in future DNA diet studies to 

overcome the paucity of available sequence data and potentially reduce the variation in DNA 

signal between prey species. 

The amount of prey DNA signal in krill stomachs derived from a single prey species also 

shows significant levels of variation. Prey DNA signal varied by at least six orders of 

magnitude within krill stomachs as food was consumed and then processed (Chapter 5). 

DNA diet assays must develop the capacity to handle this level of signal variation. In light of 

this variation it is interesting to consider the presence/absence detection assays commonly 

used in DNA diet studies. Under what cond1t1ons does 'presence' occur and what does this 

mean biologically. The assay developed in Chapter 5 was sensitive enough to detect the 

equivalent of twelve T. antarctica cells. This was below what would be considered 

biologically relevant since krill stomachs routinely contain tens to hundreds of thousands of 

diatom cells (Chapter 2). On the other hand, the presence of a single large metazoan such 

as a pteropod would be a significant event. DNA based assays therefore need to develop 

biologically relevant detection thresholds. In broad terms the amount of DNA signal should 

correlate with the number of cells consumed. The number of cells consumed should relate to 

the amount of nutrition derived from the prey. Focusing on the amount of DNA signal should 

therefore be a valid approach. Within a single krill there will be a range of other factors that 

will influence the amount of signal detected. The only way to counter this problem and 

establish the importance of a trophic link is to observe significant levels of DNA signal in a 

large number of krill. 

6.3 Future Research 

In krill, feeding act1v1ty increases the rate at which DNA signal is lost from the stomach 

(Chapter 5). This issue needs to be explored in more depth to gain a better understanding of 

how feeding affects DNA residence time in krill stomachs. Future feeding trials with different 

types and concentrations of prey would help to further define DNA residence time in the 

stomach under a range of conditions. This work should be a high priority because 1t is 

important to establish how much variation in signal loss occurs under different conditions. 
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High levels of variation would make it difficult or impossible to provide quantitative data on 

krill diet. An important aspect of this work would be to differentiate between the roles of 

stomach evacuation and DNA degradation in determining how DNA signal is lost from the 

stomach. It has been argued that quantitative PCR cannot provide quantitative estimates of 

diet because the amount of signal detected is the total amount of signal consumed minus the 

signal lost due to DNA degradation since the item was consumed. Since, under field 

conditions, the time since the item was consumed cannot be determined, it is impossible to 

extrapolate back to total amount of signal consumed (King et al., 2008). However, in krill, 

DNA degradation in the stomach might be negligible (Chapter 5). Therefore the amount of 

signal detected would be close to the amount of signal consumed which would allow more 

accurate quantification of prey. If DNA degradation is negligible there is still the issue of 

stomach evacuation. For stomach evacuation rates it seems likely that a relatively simple 

relationship between food concentration/volume in the water column and DNA residence 

time in the stomach will emerge. This relationship could then be used to estimate DNA 

residence time for field samples. It is important to note that in individual krill some portion of 

the DNA signal may have been evacuated from the stomach leading to an underestimate of 

prey abundance. Again the only way around this problem is to observe significant amounts 

of signal in a large number of krill. Overall it is important to determine the amount of variation 

that occurs in rates of DNA degradation and stomach evacuation and then decide whether 

this variation is within acceptable limits for providing quantitative data. 

An important aspect of future work will be to incorporate the analysis of water samples 

collected at field sites for comparison with krill diet samples. This will help to validate DNA 

diet results but may also provide evidence that krill feed selectively from the water column. 

However, comparisons between diet and water samples should be approached with caution. 

A recent krill DNA diet study compared the DNA from krill stomach samples with the DNA 

from one litre of water collected at the same site (Martin et al., 2006). The study then goes 

on to suggest that the absence of specific DNA bands in DGGE profiles from krill samples 

compared to water samples was evidence of selective feeding. However, the study does not 

provide a rationale for why comparing krill stomach samples with one litre of water is a valid 

comparison. Comparing diet and water samples on the basis of DNA requires additional 

work to determine what volumes of material represent a valid comparison. This work should 
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include replicate sampling to determine the amount of variation that occurs between 

samples. This would ensure that the observed differences between diet and water samples 

are due to selective feeding and not random variation. An approach that couples universal 

primer amplifications with DGGE gels generally shows significant levels of between sample 

variation (pers. obs, King et al., 2008) which would make it difficult to differentiate between 

selective feeding and random variation. 

What ecological questions might be profitably examined with current PCR based 

technology? With over 700 species of prot1sts and hundreds of species of metazoans, the 

task of providing a comprehensive analysis of krill diet is immense. Given the variation in 

ribosomal gene copy number and the paucity of sequence data for other DNA regions it is 

not currently feasible to quantitatively examine all or even a significant proportion of krill's 

diet. The most immediate gains will probably be made by developing single species assays 

to target specific troph1c links of high interest. Given the developments in the BOLD project it 

seems wise to target COi and examine trophic links between krill and metazoan animal prey. 

One potentially interesting and little studied trophic link identified in Chapter 4 1s krill feeding 

on pteropods. Pteropods are a significant component of the metazoan fauna and are one of 

the organisms most at risk from ocean acidification caused by global warming (Orr et al., 

2005). If pteropods are a significant component of krill diet then global warming may have 

additional impacts on krill beyond warmer sea temperatures and loss of their sea ice nursery. 

There are only a few species of pteropods in the Southern Ocean so coverage of this group 

could be achieved with single species assays. The issue of coverage is more challenging for 

spec1ose metazoan groups like copepods. However, while copepod species diversity is high, 

most of the biomass resides in relatively few species. Identifying key indicator species for 

important groups may help to narrow the required coverage to manageable levels. There 1s 

also a range of soft bodied autotrophic and heterotrophic protists that are difficult to detect 

using other methods of diet analysis. DNA methods could provide information about these 

groups but significant background work is required to characterise DNA barcodes for these 

species. A single species approach should utilise quantitative PCR, rather than 

presence/absence assays, to gain an understanding of the amount of prey signal detected. 

Given the issues discussed above it is unlikely that such an assay system would be perfect, 

but, quantitative PCR provides additional information about the amount of signal detected 
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with little add1t1onal effort. PCR 1s capable of detecting extremely small amounts of prey 

DNA. If the amount of prey DNA detected was quantified, it seems likely that ecologically 

relevant detection thresholds would be set higher than the minimum detection limits that are 

achievable with PCR. 

Looking further into the future it seems likely that DNA diet methods will change radically. 

The technology to characterise complex mixtures of DNA fragments has been evolving 

rapidly and non-PCR based approaches are starting to provide more comprehensive 

coverage without PCR-based artefacts (G1ovannoni and Stingl, 2005). The last decade has 

seen extensive development of platform and bead based microarrays that detect and 

quantify thousands of DNA fragments simultaneously (Spiro et al., 2000, Cook and Sayler, 

2003; Peplies et al., 2003, Ellison and Burton, 2005). More recently there has been a move 

towards direct sequencing approaches that are capable of characterising hundreds of 

thousands of short DNA fragments (Giovannoni and Stmgl, 2005; Tringe and Rubm, 2005; 

Goldberg et al., 2006). At present these approaches are too expensive to apply to the large 

number of samples required m ecological studies of krill diet. However, the need to 

characterise complex mixtures of DNA extends across large and well funded fields of 

research including human medical research. Therefore the current trend of rapidly 

decreasing costs per sample seems set to continue. 

6.4 Comparison with other methods of diet analysis 

While DNA is yet to make a significant contribution to the quantitative analysis of krill diet the 

approach has advantages over previous diet methods. In terms of taxonomic resolution, 

isotopes, pigment analysis and lipids are all severely limited in their ability to differentiate 

between prey groups. Isotopes attempt to place animals into the very broad trophic 

categories of herbivore, omnivore or carnivore. Current pigment studies targeting 

chlorophyll-a cannot differentiate between autotroph1c prey or detect heterotrophic prey. 

Lipids may d1stmguish between autotrophs and heterotrophs but not between heterotrophic 

protists and metazoans (Schmidt et al., 2006). On the other hand, microscopy offers 

excellent taxonomic resolution, in some cases down to species level, but fails to detect a 

broad range of soft bodied prey. In terms of taxonomic resolution, DNA is clearly superior to 

isotopes, pigments and lipids even when assays are based on highly conserved genes like 
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the nuclear ribosomal genes where there is limited variation between species. Protein coding 

genes with higher levels of sequence variation (e.g. COi) will rival microscopy by providing 

species or genus level ident1f1cation of prey. In terms of species coverage, all living 

organisms have DNA and are therefore detectable. In this respect DNA has a s1gnif1cant 

advantage over previous methods. DNA can therefore extend our knowledge of krill's prey 

guild and provide direction for more targeted studies. 

For all methods of diet analysis the diet signal represents feeding behaviour integrated over 

a period of time. Lipids and isotopes integrate signal over periods of days to weeks. This has 

been described as an advantage of these approaches because 1t provides a more holistic 

view of diet averaged over the long term (Dalsgaard et al., 2003). However, an alternative 

view is that this averaging makes it difficult to link krill diet data to the environmental 

conditions occurring at field collection sites. Microscopy, pigments and DNA are all similar 

because they detect recent feeding behaviour. Of these approaches pigments appear to be 

the most transient because of the rapid breakdown of Chi-a (Penssinotto and Pakhomov, 

1996; Perissinotto et al., 1997). Microscopy and DNA are probably similar in terms of signal 

residence time in the stomach. Given this s1milanty, microscopy is probably a useful tool for 

verifying DNA results in cases where prey has identifiable hard parts. 

6.5 Conclusion 

At this point in time there is reason to be optimistic that DNA diet analysis will provide useful 

information about krill diet. The temptation is to rush into making ecological interpretations of 

the data without understanding the underlying mechanisms that determine how the data are 

generated. However, acknowledging and dealing with the issues that effect DNA diet 

analysis will be the only way to obtain meaningful ecological results. 

125 



References 

Agustr, N., De Vicente, M. C. and Gabarra, R. (1999) Development of sequence amplified characterized region 
(SCAR) markers of Helicoverpa arm1gera: a new polymerase chain reaction-based technique for predator 
gut analysis. Mo/ Ecol 8. 1467-74. 

Agustr, N., de Vicente, M. C. and Gabarra, R. (2000). Developing SCAR markers to study predation on Tnaleurodes 
vaporariorum. Insect Mo/ 81019: 263-8. 

Agustf, N., Shayler, S P., Harwood, J. D., et al (2003a). Collembola as alternative prey sustaining spiders in arable 
ecosystems prey detection within predators using molecular markers. Mo/ Ecol 12 3467-75 

Agustr, N., Unruh, T. R and Welter, S. C. (2003b) Detecting Cacopsylla pyricola (Hemiptera Psyllidae) in predator 
guts using COi mitochondrial markers. B Entomol Res 93: 179-85. 

Alonzo, F., Virtue, P., Nicol, S and Nichols, P. D. (2005). Lipids as troph1c markers in Antarctic krill. II. Lipid 
composition of the body and d1gest1ve gland of Euphaus1a superba in controlled cond1t1ons Mar Ecol 
Prog Ser 296 65-79 

Altschul, S F., Gish, W, Miller, W, Myers, E.W. and Lipman, D. J. (1990) Basic local alignment search tool. J Mo/ 
Bio/ 215: 403-10. 

Antezana, T., Ray, K. and Melo, C. (1982). Troph1c behavior of Euphausia superba Dana in laboratory cond1t1ons. 
Polar Biol 1: 77-82 

Armbrust, E. V., Berges, J. A., Bowler, C., et al (2004). The genome of the diatom Thalass1osira pseudonana. 
Ecology, evolution, and metabolism. Science 306: 79-86. 

Arndt, C. E. and Swadling, K. M. (2006). Crustacea in Arctic and Antarctic Sea Ice D1stribut1on, Diet and Life History 
Strategies. AdvMarBio/51: 197-315. 

Arrigo, K. R (2003). Primary production in sea ice. In. D.N. Thomas and G.S. Dieckmann, eds. Sea Ice: An 
introduction to its physics, chemistry, biology and ecology. Oxford Blackwell Publishing, p. 143-83. 

Arrigo, K. R, Robinson, D. H., Worthen, D. L, et al. (1999). Phytoplankton community structure and the drawdown 
of nutrients and C02 in the Southern Ocean. Science 283: 365-7. 

Arrigo, K. R. and Thomas, D. N (2004). Large scale importance of sea ice biology in the Southern Ocean Antarct 
Sci 16· 471-86. 

Arrigo, K. R., Worthen, D, Schnell, A. and Lizotte, M. P. (1998). Primary production in Southern Ocean waters. J 
Geophys Res-Oceans 103· 15587-600. 

Asah1da, T, Yamashita, Y. and Kobayashi, T (1997). Identification of consumed stone flounder, Kareius bico/oratus 
(Basilewsky), from the stomach contents of sand shnmp, Crangon affinis (De Haan) using mitochondrial 
DNA analysis. J Exp Mar 810/ Eco/ 217: 153-63. 

Atkinson, A., Meyer, B., Stubing, D., et al. (2002). Feeding and energy budgets of Antarctic knll Euphaus1a superba 
at the onset of winter - II Juveniles and adults. Limnol Oceanogr 47 953-66. 

Atkinson, A , Shreeve, R. S., Hirst, A. G , et al. (2006). Natural growth rates in Antarctic krill (Euphaus1a superba) II. 
Predictive models based on food, temperature, body length, sex, and maturity stage. L1mnol Oceanogr 
51 973-87 

Atkinson, A., Shreeve, R S, Pakhomov, E., et al. (1996). Zooplankton response to a phytoplankton bloom near 
South Georgia, Antarctica. Mar Eco/ Prog Ser 195-210. 

Atkinson, A., Siegel, V., Pakhomov, E. and Rothery, P. (2004). Long-term decline in krill stock and increase in salps 
within the Southern Ocean. Nature 432· 100-3. 

Atkinson, A. and Sinclair, J. D. (2000). Zonal d1stribut1on and seasonal vertical m1grat1on of copepod assemblages in 
the Scotia Sea. Mar Biol 23· 46-58 

Atkinson, A and Snyder, R. (1997). Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by 
Euphausia superba. Mar Ecol Prog Ser 160· 63-76. 

Atkinson, A., Ward, P., Hill, A., Brierley, A. S. and Cripps, G. C. (1999). Krill-copepod interactions at South Georgia, 
Antarctica, II. Euphausia superba as a major control on copepod abundance. Mar Ecol Prog Ser 176 63-
79. 

Azam, F., Fenchel, T., Field, J. G., et al. (1983). The Ecological Role of Water-Column Microbes in the Sea. Mar 
Eco/ Prog Ser 10 257-63 

126 



Becker, S., Boger, P., Oehlmann, R. and Ernst, A. (2000). PCR bias m ecological analysis: A case study for 
quantitative Taq nuclease assays tn analyses of microbial communities. Appl Envtron M1crobiol 66 4945-
53. 

Becquevort, S. (1997). Nanoprotozooplankton m the Atlantic sector of the Southern Ocean during early spring· 
Biomass and feeding activ1t1es. Deep-Sea Res pt 1144 355-73. 

Becquevort, S., Menon, P and Lancelot, C. (2000). Differences of the protozoan biomass and grazing during Spring 
and Summer in the Indian sector of the Southern Ocean Polar B10123· 309-20 

B1d1gare, R. R., Iriarte, J L., Kang, S H, et al (1996). Phytoplankton· quant1tat1ve and qualttat1ve assessments. In 
RM. Ross, E.E. Hofmann, and L.B Quetm, eds Foundations foreco/og1cal research west of the 
Antarctic Peninsula. Washington: American Geophysical Union, pp. 173-98. 

Btrkhofer, K., Gav1sh-Regev, E., Endlweber, K, et al (2008). Cursorial spiders retard 1nit1al aphid population growth 
at low dens1t1es m winter wheat B Entomol Res 98· 249-55. 

Bissett, A., Gibson, J. A. E., Jarman, S N., Swadltng, K. M. and Cromer, L. (2005) Isolation, ampltfication and 
1dent1ficat1on of ancient copepod DNA from lake sediments Ltmnol Oceanogr Methods 3: 533-42. 

Blankenship, L E. and Yayanos, A. A. (2005) Universal primers and PCR of gut contents to study marine 
invertebrate diets. Mo/ Eco/ 14 891-9. 

Boyd, C. M., Heyraud, M. and Boyd, C. N. (1984). Feeding of the Antarctic krill Euphausia superba. J Crustacean 
Biol 4 123-41 

Boyd, P. W. (2002). Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38· 
844-61. 

Boysen-Ennen, E., Hagen, W., Hubold, G. and Piatkowski, U. (1991). Zooplankton biomass tn the ice-covered 
Weddell Sea. Mar Bio/ 111 227-35. 

Braasch, D. A and Corey, D.R. (2001). Locked nucleic acid (LNA) fine-tuning the recognition of DNA and RNA. 
Chem Biota· 1-7. 

Brierley, A. S. (2008). Antarctic Ecosystem Are Deep Krill Ecological Outlters or Portents of a Paradigm Shift? Cun­
Biol 18: R252-R4. 

Brunk, C. F., Avaniss-Agha1ani, E. and Brunk, C. A. (1996). A computer analysis of primer and probe hybridization 
potential with bacterial small-subunit rRNA sequences. Appl Envtron Microbio/ 62 872-9. 

Buesseler, K 0, Barber, R. T., Dickson, M L, et al (2003) The effect of marginal ice-edge dynamics on 
production and export tn the Southern Ocean along 170 degrees W. Deep Sea Res pt 1150 579-603. 

Burk1ll, P.H., Edwards, E S. and Sleigh, M.A. (1995). Microzooplankton and Their Role in Controlling 
Phytoplankton Growth in the Marginal Ice-Zone of the Bellmgshausen Sea. Deep-Sea Res pt 1142. 1277-
90. 

Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR). trends and 
problems J Mo/ Endocnnol 29 23-39. 

Ceska, T. A. and Sayers, J R. (1998). Structure-specific DNA cleavage by 5' nucleases. Trends Biochem Sci23: 
331-6. 

Chac6n, J. M., Landis, D. A and He1mpel, G. E. (2008). Potential for biotic interference of a classical b1olog1cal 

control agent of the soybean aphid. Biol Control 46 216-25. 

Chandler, D P, Fredrickson, J. K. and Brockman, F. J. (1997). Effect of PCR template concentration on the 
composition and distribution of total community 16S rDNA clone ltbraries. Mo/ Ecol 6: 475-82. 

Chandler, D. P., Stults, J R., Cebula, S., et al. (2000). Affinity purification of DNA and RNA from environmental 
samples with peptide nucleic acid clamps. Appl Environ M1crob 66 3438-45. 

Chen, Y., Giles, K. L., Payton, M. E. and Greenstone, M. H. (2000). Identifying key cereal aphid predators by 
molecular gut analysis. Mo/ Eco/ 9· 1887-98. 

Chiba, S., Htrawake, T., Ush10, S., et al (2000). An overview of the biolog1cal/oceanographic survey by the RTV 
Um1taka-Maru Ill off Adelie Land, Antarctica m January-February 1996. Deep-Sea Res pt 1147· 2589-613. 

Clarke, A (1980). The biochemical composition of knll, Euphaus1a superba Dana, from South Georgia. J Exp Mar 
Biol Ecol 43: 221-36. 

Clarke, A (1984). Lipid content and compost1on of Antartic krill, Euphausia superba Dana J Crustacean B1014: 285-
94. 

127 



Clarke, A., Quetm, L. B. and Ross, R. M. (1988). Laboratory and field estimates of the rate of fecal pellet production 
by Antarctic krill, Euphausia superba. Mar Biol 98· 557-63. 

Clarke, A. and Tyler, P. A (2008). Adult Antarctic krill feeding at abyssal depths. Gurr Biol 18: 282-5. 

Cole, J. R , Chai, B., Marsh, T. L , et al (2003). The Ribosomal Database Project (RDP-11). previewing a new 
autoaligner that allows regular updates and the new prokaryot1c taxonomy Nucleic Acids Res 31. 442-3. 

Constable, A J., Nicol, S. and Strutton, P. G. (2003). Southern Ocean product1v1ty m relation to spatial and temporal 
variation m the physical environment. J Geophys Res Oceans 108: 8079. 

Cooper, A. and Poinar, H. N. (2000). Ancient DNA Do 1t right or not at all. Science 289: 1139-. 

Cripps, G. C. and Atkinson, A. (2000). Fatty acid composition as an md1cator of carnivory m Antarctic krill, 
Euphausia superba. Can J Fish Aquat Set 57 31-7. 

Croxall, J. P. and Nicol, S. (2004) Management of Southern Ocean fisheries: global forces and future sustainability. 
Antarct Set 16 569-84. 

Cuthbertson, A. G. S., Bell, A. C. and Murchie, A. K. (2003). Impact of the predatory mite Anyst1s baccarum 
(Prost1gmata : Anyst1dae) on apple rust mite Aculus schlechtendali (Prost1gmata : Enophyidae) 
populations in Northern Ireland Bramley orchards. Ann Appl 8101142 107-14. 

Cuzm-Roudy, J (2000). Seasonal reproduction, multiple spawning, and fecundity m northern krill, Meganyct1phanes 
norveg1ca, and Antarctic krill, Euphausia superba. Can J Fish Aquat Sci 57. 6-15. 

Dalsgaard, J., St John, M., Kattner, G., Muller-Navarra, D. and Hagen, W. (2003). Fatty acid troph1c markers in the 
pelagic marine environment. Adv Mar Biol 46 225-340. 

Daly, K L (1990). Overwintering development, growth, and feeding of larval Euphaus1a superba 1n the Antarctic 
marginal ice zone. Limnol Oceanogr35. 1564-76. 

Daly, K. L. (2004). Overwintering growth and development of larval Euphaus1a superba an mterannual comparison 
under varying environmental conditions west of the Antarctic Peninsula. Deep Sea Res pt 1151: 2139-68. 

Dawson, M. N., Raskoff, K. A. and Jacobs, D. K. (1998). Field preservation of marine invertebrate tissue for DNA 
analyses. Mo/ Mar Biol B1otechnol 7 145-52. 

Deagle, B. and Tollit, D. J. (2006). Quantitative analysis of prey DNA m pinrnped faeces: potential to estimate diet 
compos1t1on? Conserv Genet 8· 743-7. 

Deagle, B. E., Eveson, J. P. and Jarman, S. N. (2006). Quant1ficat1on of damage m DNA recovered from highly 
degraded samples - a case study on DNA m faeces. Front Zoo 3: 11. 

Deagle, B. E., Tolht, D. J., Jarman, S. N., et al. (2005). Molecular scatology as a tool to study diet: analysis of prey 
DNA m seats from captive Steller sea lions. Mo/ Eco/ 14: 1831-42. 

Detmer, A. E. and Bathmann, U. V. (1997). D1stribut1on patterns of autotrophic pico- and nanoplankton and their 
relative contribution to algal biomass during spring m the Atlantic sector of the Southern Ocean. Deep­
Sea Res pt 1144. 299-320. 

D1 Giusto, D. A. and King, G. C. (2004). Strong positional preference in the 1nteract1on of LNA ohgonucleotides with 
DNA polymerase and proofreading exonuclease activities implications for genotypmg assays. Nucleic 
Acids Res 32 e32. 

Diez, B., Pedros-Alio, C., Marsh, T. L and Massana, R. (2001). Application of denaturing gradient gel 
electrophoresis (DGGE) to study the diversity of marine picoeukaryot1c assemblages and comparison of 
DGGE with other molecular techniques. Appl Environ Mtcrobio/ 67: 2942-51. 

Fach, B. A., Hofmann, E. E. and Murphy, E. J. (2002). Modehng studies of antarct1c krill Euphaus1a superba survival 
during transport across the Scotia Sea. Mar Ecol Prog Ser231: 187-203. 

Fach, B. A., Hofmann, E. E. and Murphy, E. J (2006). Transport of Antarctic krill (Euphausia superba) across the 
Scotia Sea. Part II Krill growth and survival. Deep Sea Res pt/ 53. 1011-43. 

Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A. and Sargent, J. (2000). Lipids, trophic relationships, and 
biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57· 178-91. 

Farrelly, V., Ramey, F. A. and Stackebrandt, E. (1995). Effect of Genome Size and Rrn Gene Copy Number on Per 
Amplification of 16s Ribosomal-Rna Genes from a Mixture of Bacterial Species. Appl Environ Microbial 
61: 2798-801. 

Feldman, G. C. and McClain, C. R. (2007). Ocean Colar Web, SeaW1FS and Aqua-MOD IS Reprocessing, NASA 
Goddard Space Flight Center. Eds. Kuring, N., Bailey, S. W., p. http.//oceancolor.gsfc.nasa.gov/. 

128 



Fiala, M., Semeneh, M. and Oriol, L. (1998). S1ze-fract1onated phytoplankton biomass and species composition in 
the Indian sector of the Southern Ocean during austral summer. J Manne Syst 17: 179-94. 

Flournoy, L. E., Adams, R. P. and Pandy, R. N. (1996). Interim and archival preservation of plant specimens in 
alcohols for DNA studies. 8iotechniques 20. 657-60. 

Foltan, P., Sheppard, S., Konvicka, M. and Symondson, W 0. C. (2005). The significance offacultat1ve scavenging 
in generalist predator nutrition detecting decayed prey 1n the guts of predators using PCR Mo/ Eco/ 14: 
4147-58 

Fraser, F C. (1936). On the development and d1stribut1on of the young stages of krill (Euphausia superba). Disc 
Rep 14· 1-192. 

Froneman, P. W., Pakhomov, E. A., Perissinotto, R. and McQuaid, C. D. (2000). Zooplankton structure and grazing 
m the Atlantic sector of the Southern Ocean m late austral summer 1993 - Part 2. Biochemical zonat1on. 
Deep Sea Res pt 147 1687-702. 

Froneman, P. W., Periss1notto, R and McQua1d, C. D. (1996). Dynamics of m1croplankton communities at the 1ce­
edge zone of the Lazarev Sea during a summer drogue study. J Plankton Res 18: 1455-70 

Garibott1, I. A, Vernet, M., Ferrario, M. E., et al. (2003). Phytoplankton spatial distribution patterns along the 
western Antarctic Peninsula (Southern Ocean). Mar Eco/ Prog Ser 261: 21-39 

Garrison, D. L. (1991a). The biota of Antarctic sea ice. The biota of Antarctic sea ice 31: 17-33 

Garrison, D. L. (1991 b).An overview of the abundance and role of protozooplankton in Antarctic waters. J Marine 
Syst2. 317-31. 

Garrison, D. L. and Close, A. R. (1993). Winter ecology of the sea-ice biota m Weddell sea pack ice Mar Eco/ Prog 
Ser96.17-31. 

Garrison, D. L. and Gowing, M. M. (1993). Protozooplankton. In: I. Friedmann and I. Thistle, eds. Antarctic 
Microb10/ogy. New York. Wiley-Liss, pp. 123-65. 

Garrity, C., Ramse1er, R. 0., Peinert, R., Kern, S. and Fischer, G. (2005) Water column particulate organic carbon 
modeled fluxes in the ice-frequented Southern Ocean. J Marine Syst 56: 133- 49. 

Genha1, Z. (1993) Analysis of the stomach contents of Antarctic knll, Euphausia superba Dana. Antarct Res 4 11-
20. 

Graneh, E., Graneli, W., Rabbani, M M., et al. (1993). The influence of copepod and krill grazing on the species 
composition of phytoplankton communities from the Scotia-Weddell-Sea-an experimental approach. Polar 
8io/ 13· 201-13. 

Gutt, J. and Siegel, V. (1994). Benthopelagic aggregations of krill (Euphausia superba) on the deeper shelf of the 
Weddell Sea (Antarctic). Deep Sea Res pt / 41 169-78. 

Gutt, J., Starmans, A. and Dieckmann, G. (1998). Phytodetritus deposited on the Antarctic shelf and upper slope: its 
relevance for the benthic system. J Marine Syst 17: 435-44. 

Haberman, K L., Ross, R. M. and Quetm, L. B. (2003). Diet of the Antarctic krill (Euphausia superba Dana). II. 
Selective grazing in mixed phytoplankton assemblages. J Exp Mar 810/ Eco/ 283 97-113. 

Haberman, K. L., Ross, R. M , Quet1n, L. B., et al (2002). Grazing by Antarctic krill Euphausia superba on 
Phaeocyst1s antarct1ca: an immunochem1cal approach. Mar Eco/ Prog Ser 241. 139-49. 

Hagen, W., Kattner, G., Terbruggen, A and Van Vleet, E. S. (2001). Lipid metabolism of the Antarctic krill 
Euphausia superba and its ecological imphcat1ons. Mar 8io/ 139. 95-104. 

Hagen, W., Vanvleet, E. S. and Kattner, G. (1996). Seasonal lipid storage as overwintering strategy of Antarctic 
krill. Mar Ecol Prag Ser 134: 85-9. 

Hagen, W., Yoshida, T., Virtue, P., et al. (2007). Effect of a carnivorous diet on the lipids, fatty acids and condition of 
Antarctic krill, Euphausia superba. Antarct Sci 19: 183-8 

Hall, T. A (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 
95/98/NT. Nucl Acids Symp Ser41 95-8. 

Hamner, W M. (1988). Biomecharncs of Filter Feeding in the Antarctic Krill Euphaus1a-Superba - Review of Past 
Work and New Observations. J Crustacean 810/ 8 149-63. 

Harper, G. L., King, R. A, Dodd, C. S., et al (2005) Rapid screening of invertebrate predators for multiple prey 
DNA targets. Mo/ Eco/ 14 819-27. 

129 



Hart, T. J. (1934). On the phytoplankton of the south-west Atlantic and Bellingshausen Sea, 1929-31. Disc Rep 8 1-
268. 

Harwood, J. D., Desneux, N., Yoo, H., et al. (2007). Tracking the role of alternative prey in soybean aphid predation 
by Onus ins1d1osus a molecular approach Mo/ Ecol 16· 4390-400. 

Hempel, I and Hempel, G. (1986). Field observations on the developmental ascent of larval Euphaus1a superba 
(Crustacea) PolarBio/6 121-6 

Hendriks, L., De Baere, R., Van de Peer, Y., et al. (1991). The evolutionary pos1t1on of the Rhodophyte Porphyra 
umb1/icalis and the Bas1diomycete Leucospor1dium scot11 among other eukaryotes as deduced from 
complete sequences of Small Ribosomal Subunit RNA J Mo/ Evo/ 32 167-77. 

Hernandez-Leon, S., Port1llo-Hahnefeld, A, Almeida, C., Becognee, P. and Moreno, I. (2001) Diel feeding 
behaviour of krill in the Gerlache Strait, Antarctica Mar Ecol Prog Ser 223 235-42. 

Hewes, C. D., Holm-Hansen, 0. and Sakshaug, E. (1985) Alternate carbon pathways at lower troph1c levels in the 
Antarctic food web. In-WR Siegfried, P.R. Condy, and R.M Laws, eds. Antarctic Nutrient Cycles and 
Food Webs. Berlin Springer-Verlag, pp. 277-83. 

Hewes, C. D., Sakshaug, E., Reid, F. M. H. and Holmhansen, 0. (1990). M1crob1al Autotroph1c and Heterotrophic 
Eukaryotes in Antarctic Waters - Relat1onsh1ps between Biomass and Chlorophyll, Adenosine­
Triphosphate and Particulate Organic-Carbon. Mar Ecol Prog Ser 63 27-35. 

Hillis, D. M. and Dixon, M T (1991) Ribosomal DNA molecular evolution and phylogenetic inference. Q Rev Biol 
66. 411-53. 

Hofmann, E. E and Lascara, C M (2000) Modeling the growth dynamics of Antarctic krill Euphausia superba Mar 
Ecol Prog Ser 194 219-31. 

Hofmann, E E and Murphy, E. J. (2004). Advection, krill, and Antarctic marine ecosystems. Antarct Sci 16 487-99 

Holm-Hansen, 0. and Huntley, M. (1984). Feeding requirements of krill in relation to food sources. J Crustacean 
Bio/ 4· 156-73. 

Holm-Hansen, 0., Kahru, M. and Hewes, C. D. (2005). Deep chlorophyll a maxima (DCMs) in pelagic Antarctic 
waters. II. Relation to bathymetric features and dissolved iron concentrations. Mar Eco/ Prog Ser297 71-
81 

Holm-Hansen, 0., Naganobu, M., Kawaguchi, S., et al. (2004). Factors influencing the distribut1on,b1omass,and 
productivity of phytoplankton in the Scotia Sea and adjoining waters. Deep Sea Res pt 1151 1333-50. 

Hoogendoorn, M. and Hempel, G E. (2001). PCR-based gut content analysis of insect predators: using ribosomal 
ITS-1 fragments from prey to estimate predation frequency Mo/ Eco/ 10. 2059-67. 

Hopkins, T. L. (1985). Food web of an Antarctic m1dwater ecosystem Mar 810189 197-212. 

Hopkins, T. L., Ainley, D. G., Torres, J. J. and Lancraft, T. M. (1993). Troph1c structure in open waters of the 
marginal ice zone 1n the Scotia-Weddell confluence region during spring (1983). Polar 810/ 13. 389-97. 

Hopkins, T. L. and Torres, J. J. (1989). M1dwater food web in the v1c1nity of a marginal ice zone in the western 
Weddell Sea. Deep Sea Res 36 543-60. 

Hosie, G. W. and Cochran, T. G (1994). Mesoscale Distribution Patterns of Macrozooplankton Communities in 
Prydz Bay, Antarctica January to February 1991. Mar Ecol Prog Ser 106 21-39. 

Hosie, G. W., Cochran, T. G., Pauly, T., et al (1997). The zooplankton community structure of Prydz Bay, January­
February 1993. Proc NIPR Symp Polar Biol 10. 90-133. 

Hosie, G. W, Schultz, M B , Kitchener, J A, Cochran, T G and Richards, K. (2000). Macrozooplankton 
community structure off East Antarctica (80-150 degrees E) during the Austral summer of 1995/1996. 
Deep Sea Res pt 1147. 2437-63. 

Hoss, M., Kohn, M., Paabo, S., Knauer, F. and Schroder, W (1992). Excrement Analysis by PCR. Nature 359: 199-. 

HummelshoJ, L., Ryder, L P., Madsen, H 0. and Poulsen, L K (2005). Locked nucleic acid inhibits amplification of 
contaminating DNA in real-time PCR BioTechniques 38· 605-10. 

Huntley, M. E., Nordhausen, W. and Lopez, M. D. G. (1994). Elemental Composition, Metabohc-Act1v1ty and Growth 
of Antarctic Krill Euphaus1a superba During Winter. Mar Eco/ Prog Ser 107 23-40 

Ishii, K and Fukui, M (2001). Opt1m1zat1on of annealing temperature to reduce bias caused by a primer mismatch in 
mult1template PCR. Appl Environ M1crob 67 3753-5 

130 



Iwamoto, T. and Sonobe, T. (2004) Peptide nucleic acid-mediated compet1t1ve PCR clamping for detection of 
rifampin-res1stant Mycobacterium tuberculosis Ant1microb Agents Ch 48 4023-6 

Jarman, S. N , Deagle, B. and Gales, N. J. (2004). Group-specific polymerase chain reaction for DNA-based 
analysis of species d1vers1ty and 1dent1ty in dietary samples. Mo/ Eco/ 13· 1313-22. 

Jarman, S. N , Redd, K. S. and Gales, N. J (2006). Group-specific primers for amplifying DNA sequences that 
identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, lsopoda, Ostracoda and Thorac1ca. Mo/ 
Ecol Notes 6: 268-71 

Juen, A. and Traugott, M. (2005). Detecting predation and scavenging by DNA gut-content analysis a case study 
using a soil insect predator-prey system. Oeco/og1a 142 344-52 

Juen, A. and Traugott, M. (2007). Revealing species-specific troph1c links in soil food webs· molecular identification 
of scarab predators. Mo/ Eco/ 16· 1545-57. 

Kang, S H. and Lee, S. (1995). Antarctic phytoplankton assemblage in the western Bransfield Strait region, 
February 1993.compos1t1on, biomass, and mesoscale distributions. Mar Eco/ Prog Ser 129· 253-67. 

Kasper, M. L., Reeson, A F., Cooper, S. J.B., Perry, K. D. and Austin, A. D. (2004). Assessment of prey overlap 
between a native (Polistes humi/is) and an introduced (Vespula germanica) social wasp using morphology 
and phylogenetic analyses of 16S rDNA. Mo/ Eco/ 13. 2037-48 

Kawaguchi, K , Ishikawa, S. and Matsuda, 0. (1986). The overwintering strategy of Antarctic krill (Euphaus1a 
superba Dana) under the coastal fast ice off the Ongul Islands 1n Lutzow-Holm Bay, Antarctica. Mem Natl 
Inst Polar Res 44 67-85. 

Klaas, C. (1997) M1croprotozooplankton distribution and their potential grazing impact in the Antarctic Circumpolar 
Current. Deep Sea Res pt II 44 375-93. 

Kleiber, J., Walter, T, Haberhausen, G., et al. (2000). Performance characteristics of a quant1tat1ve, homogeneous 
TaqMan RT-PCR test for HCV RNA. Journ Mo/ D1ag 2 158-66 

Knox, G. A. (2007). The biology of the Southern Ocean. Second ed1t1on, London· CRC Press 

Kopczynska, E. E., Goeyens, L, Semeneh, M. and Dehairs, F. (1995) Phytoplankton Composition and Cell Carbon 
D1stribut1on 1n Prydz Bay, Antarctica - Relation to Organic Particulate Matter and Its Delta-C-13 Values J 
Plankton Res 17. 685-707. 

Kopczynska, E. E., Savoye, N., Dehairs, F , Cardinal, D. and Elskens, M. (2007). Spring phytoplankton 
assemblages in the Southern Ocean between Australia and Antarctica. Polar Biol 31: 77-88. 

Kopczynska, E. E, Weber, L. H. and Elsayed, S. Z. (1986). Phytoplankton Species Composition and Abundance in 
the Indian Sector of the Antarctic Ocean. Polar Biol 6 161-9 

Kumar, S., Tamura, K., Jakobsen, I B. and Ne1, M. (2001). MEGA2: Molecular Evolutionary Genetics Analysis 
Software. Biomformatics 17 1244-5 

Lam, P. L. and Bishop, J. K. B. (2007). High biomass, low export regimes in the Southern Ocean. Deep Sea Res pt 
1154: 601-38. 

Lancraft, T. M, Hopkins, T. L., Torres, J. J. and Donnelly, J (1991) Oceanic m1cronektonic macrozooplanktonic 
community structure and feeding in ice covered Antarctic waters during the winter (Ameriez 1988). Polar 
Biol 11 157-67. 

Lancraft, T. M., Reisenbichler, K. R., Robison, B. H., Hopkins, T. L. and Torres, J. J. (2004). A krill-dominated 
m1cronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish 
predation. Deep Sea Res pt 1151. 2247-60. 

Landry, M. R., Selph, K E., Brown, S. L., et al. (2002). Seasonal dynamics of phytoplankton in the Antarctic Polar 
Front region at 170 degrees W. Deep Sea Res Pt 1149· 1843-65. 

Larionov, A., Krause, A. and Miller, W (2005). A standard curve based method for relative real time PCR data 
processing. BMC B1omformatics 6. e62. 

Lascara, C., Hofmann, E, Ross, R and Quetin, L. (1999). Seasonal variability in the d1stribut1on of Antarctic krill, 
Euphaus1a superba, west of the Antarctic Peninsula. Deep Sea Res Pt 146 951-84 

Laws, R. M. (1985) The Ecology of the Southern Ocean Am Sci73 26-40. 

Lawson (2008). Euphausnd distribution along the Western Antarctic Peninsula - (B) d1stribut1on of euphaus1id 
aggregations and biomass, and associations with environmental features Deep Sea Res pt II. 

Lee, R F., Hagen, W. and Kattner, G. (2006) L1p1d storage in marine zooplankton. Mar Ecol Prog Ser 307 273-
306. 

131 



Lewis, A. P., Sims, M. J., Gewert, D. R., et al. (1994). Taq DNA polymerase extension of internal primers blocks 
polymerase chain reactions allowing d1fferent1al amplification of molecules with identical 5' and 3' ends. 
Nucleic Acids Res 22· 2859-61. 

L1gowsk1, R. (2000). Benth1c feeding by krill, Euphaus1a superba Dana, in coastal waters off West Antarctica and in 
Admiralty Bay, South Shetland Islands. PolarBiol23· 619-25 

Lizotte, M. P. (2001). The contnbut1ons of sea ice algae to Antarctic manne primary production Am Zool 41: 57-73. 

Long, E. O. and Dawid, I. B. (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49 727-64. 

Longley, M. J., Bennett, S. E. and Mosbaugh, D. W. (1990). Charactenzat1on of the 5' to 3' exonuclease associated 
with Thermus aquaticus DNA polymerase Nucleic Acids Res 18 7317-22. 

Ludwig, W., Strunk, 0., Westram, R., et al. (2004). ARB. a software environment for sequence data. Nucleic Acids 
Res 32 1363-71. 

Lyam1chev, V., Brow, M.A. D. and Dahlberg, J. E (1993). Structure-Specific Endonucleolyt1c Cleavage of Nucle1c­
Ac1ds by Eubacterial DNA-Polymerases. Science 260 778-83 

Lyam1chev, V., Brow, M A. D, Varvel, V E. and Dahlberg, J.E. (1999). Comparison of the 5' nuclease activities of 
Taq DNA polymerase and its isolated nuclease domain. P Natl Acad Set USA 96 6143-8. 

Ma, J., L1, D., Keller, M , Schmidt, 0. and Feng, X. (2005) A DNA marker to 1dent1fy predation of Plutella xylostella 
(Lep., Plutellidae) by Nab1s kinbergii (Hem., Nab1dae) and Lycosa sp (Aranaea, Lycos1dae) J Appl 
Entomol 129 330-5. 

Marchant, H J. and Nash, G. V. (1986). Electron Microscopy of gut contents and faeces of Euphausia superba 
Dana. Mem Nat Inst Pol Res 40: 167-77. 

Marchant, H. J. and Scott, F J. (2005). Antarctic Manne Prot1sts. Australian Biological Resources Study, Canberra. 

Marchesi, J. R., Sato, T., Weightman, A. J., et al (1998). Design and evaluation of useful bacterium-specific PCR 
primers that amplify genes coding for bacterial 16S rRNA. Appl Environ M1crob 64 795-9. 

Marie, D., Zhu, F., Balague, V., Ras, J. and Vaulot, D. (2006). Eukaryot1c p1coplankton communities of the 
Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). Ferns 
Microbial Ecol 55 403-15. 

Marr, J. (1962). The natural history and geography of the Antarctic knll (Euphaus1a superba Dana). Disc Rep 32 33-
464. 

Marschall, H. (1988). The overwintering strategy of Antarctic Knll under the pack-ice of the Weddell Sea. Polar Biol 
9. 129-35 

Martin, D. L., Ross, R. M., Quetin, L. B. and Murray, A. E (2006) Molecular approach (PCR-DGGE) to diet analysis 
in young Antarctic knll Euphaus1a superba. Mar Ecol Prog Ser 319· 155-65. 

Masner, L. (1994). Effect of low temperature on preservation and quality of insect specimens stored in alcohol. 
Insect Collection News 9. 14-5. 

Mauchline, J. and Fisher, L. R. (1969). The biology of Euphausttds, London and New York: Academic Press 

McMinn, A. and Taylor, F. J. (2005). Dinoflagellates. In- H.J. Marchant and F J Scott, eds. Antarctic Marine Prot1sts 
Canberra· Australian B1olog1cal Resources Study, pp. 202-50. 

Meguro, H., Toba, Y., Murakami, H. and Kimura, N. (2004). Simultaneous remote sensing of chlorophyll, sea ice 
and sea surface temperature in the Antarctic waters with special reference to the primary production from 
ice algae Adv Space Res 33 1168-72 

Mengesha, S., Deha1rs, F., Fiala, M., Elskens, M. and Goeyens, L (1998). Seasonal variation of phytoplankton 
community structure and nitrogen uptake regime in the Indian Sector of the Southern Ocean. Polar Biol 
20: 259-72. 

Meyer, B., Atkinson, A., Stubing, D., et al. (2002). Feeding and energy budgets of Antarctic knll Euphausia superba 
at the onset of winter -1. Furc11ia Ill larvae. Limnol Oceanogr47 943-52. 

Meyer, C. P. and Paulay, G. (2005). DNA barcoding· Error rates based on comprehensive sampling. Plos Btol 3 
2229-38. 

Miller, D G M. and Hampton, I. (1989). Biology and Ecology of the Antarctic knll (Euphausia superba Dana): a 
review. In: BIOMASS Scientific Series (ed S.Z. El-Sayed), pp. 1-166. Scientific Commitee on Antarctic 
Research (SCAR), Cambridge. 

132 



Moon-van der Staay, S. Y., De Wachter, R. and Vaulot, D. (2001). Oceanic 18S rDNA sequences from p1coplankton 
reveal unsuspected eukaryot1c d1vers1ty. Nature 409· 607-10. 

Moore, J. K. and Abbott, M R (2000). Phytoplankton chlorophyll d1stribut1ons and primary production in the 
Southern Ocean. J Geophys Res Oceans 105: 28709 -22. 

Morrison, T. B., Weis, J. J. and Wittwer, C. T. (1998) Quant1ficat1on of low-copy transcripts by continuous SYBR (R) 
green I monitoring during amphficat1on B1otechmques 24· 954. 

Murray, A E , Hollibaugh, J T and Orrego, C. (1996). Phylogenetic compositions of bacterioplankton from two 
California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments Appl 
Environ Microb 62 2676-80. 

Muyzer, G., de Waal, E. C. and U1tterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing 
gradient gel electrophoresis analysis of polymerase chain react1on-amphfied genes coding for 16S rRNA. 
Appl Environ M1crob10/ 59. 695-700. 

Ne1stgaard, J. C., Frischer, M. E., Raule, C. L., et al (2003). Molecular detection of algal prey in copepod guts and 
fecal pellets. Ltmnol Oceanogr Meth 1. 29-38 

Nicol, S. (2006). Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56· 111-
20. 

Nicol, S., Constable, A. J. and Pauly, T (2000a). Estimates of circumpolar abundance of Antarctic krill based on 
recent acoustic density measurements. CCAMLR Set 7 87-99. 

Nicol, S., Kitchener, J , King, R , Hosie, G. and de la Mare, W. K (2000b). Population structure and cond1t1on of 
Antarctic krill (Euphaus1a superba) off East Antarctica (80-150 degrees E) during the Austral summer of 
199511996. Deep Sea Res Pt 1147: 2489-517 

Nishina, Y. and Kawamura, A. (1994). Winter gut contents of Antarctic krill (Euphaus1a superba Dana) collected in 
the South Georgia area. Proc NIPR Symp Polar 81017: 82-90. 

Nordhausen, W. (1994). Winter abundance and d1stribut1on of Euphausia superba, E. crystallorophias, and 
Thysanoessa macrura in Gerlache Strait and Crystal Sound, Antarctica. Mar Ecol Prag Ser 109 131-42. 

Nordhausen, W., Huntley, M. and Lopez, M. D G (1992) RACER: Carnivory by Euphaus1a superba during the 
antarct1c wmter. Antarct J US 27· 181-3. 

Noth1g, E. M., Vonbodungen, B. and Sui, Q B. (1991). Phytozooplankton and Protozooplankton Biomass During 
Austral Summer in Surface Waters of the Weddell Sea and V1c1nity. Polar Biot 11 · 293-304. 

O'Brien, D. P. (1988). Direct Observations of the Behavior of Euphausia superba and Euphausia crystalloroph1as 
(Crustacea: Euphaus1acea) under Pack Ice during the Antarctic Spring of 1985. J Crustacean 81017. 437-
48. 

Orsi, A. H., Whitworth, T. and Nowlin, W. D. (1995). On the Meridional Extent and Fronts of the Antarctic 
Circumpolar Current. Deep Sea Res pt 142. 641-73. 

Orum, H. (2000). PCR clamping. Gurr Issues Mo/ Biol 2: 27-30. 

Orum, H., Nielsen, P. E., Egholm, M., et al (1993). Single-base pair mutation analysis by PNA directed PCR 
clamping. Nucleic Acids Res 21: 5332-6. 

Pakhomov, E. (2004). Salplkrill interaction in the eastern Atlantic sector of the Southern Ocean. Deep Sea Res Pt II 
51: 2645-60. 

Pakhomov, E. and Froneman, P. W (2004a). Zooplankton dynamics in the eastern Atlantic sector of the Southern 
Ocean during the austral summer 199711998-Part 1: Community Structure. Deep Sea Res pt// 51 2599-
616. 

Pakhomov, E. and Froneman, P. W. (2004b). Zooplankton dynamics in the eastern Atlantic sector of the Southern 
Ocean during the austral summer 199711998-Part 2. Grazing Impact Deep Sea Res pt// 51 2617-31 

Pakhomov, E. A , Froneman, P W. and Perissinotto, R. (2002). Salp/krill interactions 1n the Southern Ocean. spatial 
segregation and implications for the carbon flux. Deep Sea Res pt/ 49: 1881-907. 

Pakhomov, E. A., Perissinotto, R., Froneman, P. W. and Miller, D. G. M. (1997). Energetics and feeding dynamics of 
Euphaus1a superba in the South Georgia region during the summer of 1994. J Plankton Res 19 399-423. 

Palmisano, A C. and Garrison, D. L. (1993). M1croorganisms in Antarctic sea ice. In. E.I. Friedman, ed Antarctic 
microbiology New York: Wiley-Liss, pp 167-218 

Palumb1, S. R. (1990). Nucleic acids JI· The polymerase chain reaction. In D M. Hillis, C. Moritz, and BK Mable, 
eds. Molecular Systematics. Sunderland, MA Sinauer Associates, pp 205-47. 

133 



Passmore, A. J., Jarman, S N , Swadling, K. M., et al (2006). DNA as a dietary biomarker 1n Antarctic knll 
Euphausia superba. Mar Biotechnol 8· 686-96. 

Pauly, T., Nicol, S., Higginbottom, I .. Hosie, G. and Kitchener, J (2000). Distribution and abundance of Antarctic krill 
(Euphaus1a superba) off East Antarctica (80-150 degrees E) during the Austral summer of 1995/1996. 
Deep Sea Res pt 1147. 2465-88. 

Pavlov, V. Y (1969). The feeding of krill and some features of its behaviour, pp 1-19 Ministry of Agriculture, 
Fisheries and Food, Lowestoft. 

Pavlov, V. Y (1974). On the quant1tat1ve composition of the food of Euphau1sa superba Dana. Fisheries research 
board of Canada Translation senes 2953: 1-19. 

Pawlowski, J., Fahrni, J. F., Brykczynska, U., Habura, A and Bowser, S S (2002). Molecular data reveal high 
taxonomic diversity of allogrom11d Foramirnfera in Explorers Cove (McMurdo Sound, Antarctica). Polar 
Biol 25 96-105. 

Perissinotto, R., Gurney, L. and Pakhomov, E. A. (2000). Contribution of heterotrophic material to diet and energy 
budget of Antarctic krill, Euphausia superba. Mar 8101136· 129-35. 

Perissinotto, R. and Pakhomov, E. A (1996). Gut evacuation rates and pigment destruction in the Antarctic krill 
Euphaus1a superba. Mar8101125 47-54. 

Perissinotto, R., Pakhomov, E. A., McQuaid, C D and Froneman, P W. (1997). In situ grazing rates and daily 
ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the 
Marginal Ice Zone. Mar Ecol Prog Ser 160: 77-91. 

Petersen, M. and Wengel, J. (2003). LNA a versatile tool for therapeutics and genom1cs. Trends Biotechnol 21 · 74-
81. 

Pelz, M. F. and Cavanaugh, C. M. (1998). Bias in template-to-product ratios in mult1template PCR. Appl Environ 
Microbiol 64: 3724-30. 

Pond, D. W, Priddle, J., Sargent, J. R. and Watkins, J. L. (1995). Laboratory studies of assim1lat1on and egest1on of 
algal lipid by Antarctic Knll - methods and 1mt1al results. J Exp Mar 810/ Ecol 187 253-68 

Pons, J. (2006) DNA-based identification of preys from non-destructive, total DNA extractions of predators using 
arthropod universal primers. Mo/ Eco/ Notes 6: 623--6. 

Price, H.J .. Boyd, K. R. and Boyd, C. M. (1988). Omnivorous feeding behav1or of the Antarctic krill Euphausia 
superba Mar Biol 97: 67-77. 

Prokopowich, C. D., Gregory, T. R. and Crease, T. J. (2003). The correlation between rDNA copy number and 
genome size in eukaryotes. Genome Res 46· 48-50. 

Quetin, L B. and Ross, R M. (1985). Feeding by Antarctic krill. Euphausia superba· Does size matter? In W.R 
Siegfried, P.R. Condy, and RM. Laws, eds Antarctic Nutrient Cycles and Food Webs. Berlin: Sprmger­
Verlag, pp 372-7 

Quetin, L.B. and Ross, R. M. (1991). Behav1oral and physiological characteristics of the Antarctic krill, Euphausia 
superba Am Zoo/ 31. 49-63. 

Quetin, L.B. and Ross, R. M. (2001). Environmental variability and its impact on the reproductive cycle of Antarctic 
krill. Am Zoo/41. 74-89. 

Quetin, L. B. and Ross, R. M. (2003). Ep1sod1c recruitment in Antarctic krill Euphaus1a superba in the Palmer L TER 
study region. Mar Eco/-Prog Ser 259. 185-200. 

Quetm, L. B., Ross, R. M and Clarke, A. (1994). Knll energetics. seasonal and environmental aspects of the 
physiology of Euphausia superba. In: S.Z. El-Sayed, ed Southern Ocean Ecology. A BIOMASS 
perspective. Cambridge: Cambridge University Press, pp. 165-84. 

Quetm, L.B., Ross, R M., Frazer, T. K. and Haberman, K. L. (1996). Factors affecting d1stribut1on and abundance 
of zooplankton, with an emphasis on Antarctic Krill, Euphausia superba In- R M Ross, E.E Hofmann, 
and L B Quetm, eds. Foundations for eco/og1cal research west of the Antarctic Peninsula. Washington 
American Geophysical Union, pp 357-71 

Rand, K. N., Ho, T., Qu, W. J .. et al (2005) Headloop suppression PCR and its application to selective 
amplification of methylated DNA sequences Nucleic Acids Res 33 e127. 

Rau, G. H., Hopkins, T. L. and Torres, J J (1991) N-15/N-14 and C-13/C-12 in Weddell Sea Invertebrates -
Implications for Feeding Diversity. Mar Eco/ Prog Ser 77: 1-6. 

Razouls, S., Razouls, C. and De Bovee, F. (2000) Biodiversity and b1ogeography of Antarctic copepods. Antarct 
Sci 12: 343-6. 

134 



Redd, K. S., Jarman, S. N., Frusher, S. D. and Johnson, C R. (2008) A molecular approach to 1dent1fy prey of the 
southern rock lobster. B Entomol Res 98· 233-8. 

Ritz, D. A (2000). Is social aggregation 1n aquatic crustaceans a strategy to conserve energy? Can J Fish Aquat Sci 
57: 59-67. 

Rodnguez, F., Varela, M and Zapata, M (2002). Phytoplankton assemblages m the Gerlache and Bransfield Straits 
(Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. 
Deep Sea Res Pf 1149. 723-47. 

Ross, R. and Quetin, L. (2000). Reproduction m Euphausiacea. In I. Everson, ed. Krill· Btology, Ecology and 
Fishenes Oxford. Blackwell Science, pp. 150-81 

Ross, R. M., Quetm, L. B., Newberger, T. and Oakes, S. A. (2004). Growth and behaviour of larvae krill (Euphausia 
superba) under the ice in late winter 2001 west of the Antarctic Peninsula. Deep Sea Res Pt II 51 · 2169-
84 

Rozen, S and Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for b1olog1st programmers. In: S. 
Krawetz and S. Misener, eds. Biomformat1cs Methods and Protocols: Methods in Molecular Biology. 
Totowa NJ: Humana Press, pp. 365-86. 

Rubinoff, D., Cameron, S. and Will, K. (2006). Are plant DNA barcodes a search for the Holy Grail? Trends Eco/ 
Evo/21 1-2 

Schmidt, K, Atkinson, A., Petzke, K., Voss, M. and Pond, D. (2006). Protozoans as a food source for Antarctic krill, 
Euphaus1a superba: Complementary insights from stomach content, fatty acids, and stable isotopes. 
Limnol Oceanogr 51: 2409-27. 

Schmidt, K., Atkinson, A., Stubmg, D., et al. (2003). Troph1c relat1onsh1ps among Southern Ocean copepods and 
krill: Some uses and limitations of a stable isotope approach Limnol Oceanogr48 277-89. 

Schmidt, K, McClelland, J. W., Mente, E., et al (2004). Troph1c-level interpretation based on N15 values 
1mplicat1ons of tissue specific fractionation and ammo acid composition. Mar Eco/ Prog Ser 266 43-8. 

Schm1ttgen, T. D., Zakrajsek, B A., Mills, A. G., et al (2000). Quantitative reverse transcription-polymerase cham 
reaction to study mRNA decay. Comparison of endpoint and real-time methods. Anal Btochem 285 194-
204. 

Schnack-Schiel, S B., Dieckmann, G. S., Gradmger, R., et al. (2001). Me1ofauna m sea ice of the Weddell Sea 
(Antarctica). Polar Biol 24: 724-8. 

Schnack-Schiel, S. B. and Mujica, A (1994). The zooplankton of the Antarctic Peninsula region. In S.Z. El-Sayed, 
ed Southern Ocean ecology: the BIOMASS perspective. New York Cambridge University Press, pp 79-
92. 

Senescau, A , Berry, A., Beno1t-V1cal, F , et al. (2005) Use of a locked-nucle1c-ac1d oligomer m the clamped-probe 
assay for detection of a minority Pfcrt K76T mutant population of Plasmodium falciparum. J Clin Microbial 
43 3304-8. 

Sheppard, S. K., Bell, J., Sunderland, K. D., et al. (2005). Detection of secondary predation by PCR analyses of the 
gut contents of invertebrate generalist predators. Mo/ Ecol 14: 4461-8. 

Sheppard, S. K. and Harwood, J. D (2005) Advances in molecular ecology tracking trophic links through predator­
prey food-webs. Funct Ecol 19· 751-62 

Sheppard, S. K., Henneman, M. L., Memmott, J. and Symondson, W. 0. C. (2004). Infiltration by alien predators 
mto invertebrate food webs m Hawa11 a molecular approach. Mo/ Eco/ 13. 2077-88. 

Sherr, B. F., Sherr, E. B. and Hopkinson, C. S. (1988). Troph1c Interactions within Pelagic Microbial Communities -
Indications of Feedback-Regulation of Carbon Flow. Hydrob10/og1a 159 19-26. 

Siegel, V. (1988). A concept of seasonal variation of krill (Euphaus1a superba) distribution and abundance west of 
the Antarctic Peninsula. In. D. Sahrhage, ed. Antarctic Ocean and resources variability. Berlin Heidelberg 
New York: Springer. 

Siegel, V. (2005). Distribution and population dynamics of Euphausia superba : summary of recent findings. Polar 
Biol 29 1-29. 

Siegel, V., Kawaguchi, S., Ward, P., et al. (2004). Krill demography and large-scale d1stnbut1on m the southwest 
Atlantic during January/February 2000. Deep Sea Res Pt 1151 1253-73. 

Siegel, V and Loeb, V. (1994) Length and age at maturity of Antarctic krill Antarct Set 6· 479-82. 

Siegel, V. and Nicol, S. (2000). Population Parameters In I. Everson, ed. Krill Btology, Ecology and Fisheries. 
Oxford Blackwell Science Ltd, pp. 103-49. 

135 



Siegel, V., Sk1bowski, A and Harm, U. (1992). Community Structure of the Epipelagic Zooplankton Community 
under the Sea-Ice of the Northern Weddell Sea. Polar 810112 15-24. 

Smetacek, V., Assmy, P. and Henjes, J. (2004). The role of grazing in structuring Southern Ocean pelagic 
ecosystems and biogeochem1cal cycles. Antarct Set 16· 541-58 

Smetacek, V., Scharek, R. and Noth1g, E. M (1990). Seasonal and regional variation in the pelagial and its 
relationship to the life history cycle of krill. In K.R Kerry and G Hempel, eds. Antarctic Ecosystems: 
Ecological Change and Conservation. Berlin Springer-Verlag, pp. 103-14. 

Smith, R C. and D1erssen, H M. (1996) Phytoplankton biomass and productivity in the Western Antarctic 
Peninsula region. In R M Ross, E.E. Hofmann, and L B. Quetin, eds. Foundations for ecolog1cal 
research west of the Antarctic Peninsula Washington American Geophysical Union, pp. 333-56. 

Smith, W. 0. and Lancelot, C. (2004) Bottom-up versus top-down control in phytoplankton of the Southern Ocean. 
Antarct Sci 16. 531-9. 

Sogin, M. L., Morrison, H. G., Huber, J. A, et al. (2006). Microbial diversity in the deep sea and the underexplored 
"rare biosphere". P Natl Acad Sci USA 103· 12115-20 

Sp1ridonov, V. (1995). Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba 
Dana). Polar 810115: 161-74. 

Stahlberg, A, Hakansson, J., X1an, X. J., Semb, H. and Kub1sta, M. (2004). Properties of the reverse transcription 
reaction in mRNA quantification. Clin Chem 50 509-15 

Steinke, D., Vences, M., Salzburger, W. and Meyer, A. (2005). Taxi· a software tool for DNA barcod1ng using 
distance methods. Philos T Roy Soc B 360: 1975-80. 

Stenman, J. and Orpana, A (2001). Accuracy in amplification Nat Biotechnol 19: 1011-2. 

Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. and Epstein, S.S. (2006). A multiple PCR-primer approach to 
access the m1croeukaryot1c d1vers1ty in environmental samples. Prot1st 157 31-43. 

Strauss, W. M. (1998). Preparation of genomic DNA from mammalian tissue. In: F.M. Ausubel, RE Brent, D D 
Kingston, J.G. Moore, J.A. Seidman, and K.S. Smith, eds. Current protocols in molecular biology. New 
York· John Wiley and Sons, pp. 2 .. 1-2 .. 3. 

Stretch, J. J., Hamner, P. P, Hamner, W. M., et al. (1988). Foraging behavior of Antarctic Krill Euphausia superba 
on sea ice m1croalgae. Mar Ecol Prog Ser44 131-9. 

Stubing, D. and Hagen, W. (2003). Fatty acid b1omarker ratios - suitable trophic indicators in Antarctic euphaus11ds? 
Polar 810126. 774-82 

Stubing, D , Hagen, W. and Schmidt, K. (2003). On the use of lipid b1omarkers in marine food web analyses An 
experimental case study on the Antarctic krill, Euphausia superba. Ltmnol Oceanogr48 1685-700 

Sullivan, C. W., Arngo, K. R., Mcclain, C.R., Comiso, J.C. and Firestone, J. (1993). D1stnbut1ons of Phytoplankton 
Blooms in the Southern-Ocean. Science 262· 1832-7 

Suzuki, M., Rappe, M. S. and G1ovannoni, S J. (1998). Kinetic bias in estimates of coastal p1coplankton community 
structure obtained by measurements of small-subunit rRNA gene PCR amphcon length heterogeneity 
Appl Envtron Microbiol 64 4522-9. 

Suzuki, M. T. and Giovannoni, S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 
16S rRNA genes by PCR Appl Environ Mtcrobiol 62 625-30. 

Symondson, W. 0. (2002) Molecular 1dent1ficat1on of prey in predator diets. Mo/ Eco/ 11 · 627-41. 

Taki, K., Hayashi, T. and Naganobu, M. (2005). Characteristics of seasonal variation in diurnal vertical migration 
and aggregation of Antarctic krill Euphaus1a superba) in the Scotia Sea, using Japanese fishery data. 
CCAMLR Sci 12 163-72. 

Tak1ya, T., Futo, S., Tsuna, M .. et al. (2004). Identification of single base-pair mutation on u1dA gene of Escherich1a 
coll 0157 H7 by peptide nucleic acids (PNA) mediated PCR clamping. 81osci 8iotech 81och 68: 360-8. 

Tamura, K. and Ne1, M. (1993). Estimation of the number of nucleotide substitutions in the control region of 
mitochondrial-DNA in humans and chimpanzees. Mo/ 810/ Evo/ 10 512-26. 

Thiede, C., Creutz1g, E., lllmer, T., et al (2006). Rapid and sensitive typing of NPM1 mutations using LNA-mediated 
PCR clamping. Leukemia 20· 1897-9. 

Thompson, J. D., Gibson, T. J., Plewrnak, F., Jeanmougin, F. and Higgins, D. G. (1997). The ClustalX windows 
interface· flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids 
Res 24· 4876-82. 

136 



Trathan, P. N., Pnddle, J., Watkins, J. L., Miller, D. G. M. and Murray, A. W A. (1993) Spatial vanab11ity of Antarctic 
knll in relation to mesoscale hydrography. Mar Ecol Prog Ser 98. 61-71. 

Traugott, M. and Symondson, W. 0. C. (2008). Molecular analysis of predation on parasit1zed hosts. B Entomol Res 
98. 223-31. 

Treguer, P. and Jacques, G. (1992). Dynamics of Nutrients and Phytoplankton, and Fluxes of Carbon, Nitrogen and 
Silicon in the Antarctic Ocean. Polar 810112 149-62. 

Troedsson, C., Fnscher, M. E , Nejstgaard, J. C. and Thompson, E. M. (2007) Molecular quantification of 
differential ingestion and particle trapping rates by the append1culanan Oikopleura d101ca as a function of 
prey size and shape Llmnol Oceanogr 52 416-27 

Turner, D. R. and Owens, N. J. P. (1995). A biogeochemical study in the Bellingshausen Sea - Overview of the 
Sterna 1992 exped1t1on Deep Sea Res pt 1142: 907-32 

van Hannen, E. J., Zwart, G., van Agterveld, M. P., et al (1999). Changes in bacterial and eukaryot1c community 
structure after mass lysis of filamentous cyanobactena associated with viruses. Appl Environ M1crob10/ 65 
795-801. 

Vestheim, H., Edvardsen, B. and Kaartvedt, S. (2005). Assessing feeding of a carnivorous copepod using spec1es­
specific PCR. Mar Bio/ 147. 381-5. 

Virtue, P., Nichols, P. D., Nicol, S. and Hosie, G. (1996). Reproductive trade off in male Antarctic krill, Euphausia 
superba. Mar Bio/ 126· 521-7. 

van Berg, K., Traugott, M., Symondson, W. 0. C. and Scheu, S. (2008a) The effects of temperature on detection of 
prey DNA in two species of carabid beetle. B Entomol Res 98 263-9. 

van Berg, K., Traugott, M., Symondson, W. 0. C. and Scheu, S (2008b) Impact of ab1ot1c factors on predator-prey 
interactions DNA-based gut content analysis in a microcosm experiment. B Entomol Res 98· 257-61. 

von W1ntzingerode, F, Gobel, U. B. and Stackebrandt, E. (1997). Determination of microbial d1vers1ty in 
environmental samples pitfalls of PCR-based rRNA analysis. FEMS M1crobiol Rev 21 213-29. 

von W1ntz1ngerode, F, Landt, O, Ehrlich, A. and Gobel, U. B (2000). Peptide nucleic acid-mediated PCR clamping 
as a useful supplement in the determination of microbial d1vers1ty Appl Environ Microb 66· 549-57 

Voronina, N. M. (1998). Comparative abundance and d1stribut1on of major filter-feeders in the Antarctic pelagic 
zone. J Manne Syst 17 375-90. 

Wada, E., Terazak1, M, Kabaya, Y and Nemoto, T. (1987). N-15 and C-13 Abundances in the Antarctic Ocean with 
Emphasis on the B1ogeochemical Structure of the Food Web. Deep Sea Res pt A 34 829-41 

Ward, P , Grant, S , Brandon, M., et al (2004). Mesozooplankton community structure in the Scotia Sea during the 
CCAMLR 2000 survey. January-February 2000. Deep Sea Res pt 1151: 1351-67. 

Waters, R. L., van den Enden, R. and Marchant, H.J. (2000). Summer microbial ecology of East Antarctica 
(80 150E) prot1stan community structure and bacterial abundance. Deep Sea Res pt 1147 2401-35. 

Weiss, J., Farrenkopf, H. W. B., Schultz, T, et al (2004) Real time TaqMan PCR detection and quantitation of HBV 
genotypes A-G with the use of an internal quant1tat1on standard. J Clm Viro/ 30: 86-93 

Werren, J. H., Windsor, D. and Guo, L. R. (1995). D1stribut1on ofWolbach1a among Neotrop1cal Arthropods. P Roy 
Soc Lond B Bio 262· 197-204. 

Wright, S. W. and van den Enden, R. L. (2000). Phytoplankton community structure and stocks in the East Antarctic 
marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC 
pigment signatures. Deep Sea Res pt 1147 2363-400. 

Zaidi, R.H., Jaal, Z., Hawkes, N. J., Hemingway, J. and Symondson, W. 0. (1999). Can multiple-copy sequences of 
prey DNA be detected amongst the gut contents of invertebrate predators? Mo/ Ecol 8 2081-7. 

Zhang, Z., Schwartz, S., Wagner, L and Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J Comp 
Biol 7 203-14. 

Zhu, F., Massana, R, Not, F., Marie, D and Vaulot, D (2005) Mapping of picoeucaryotes in marine ecosystems 
with quantitative PCR of the 18S rRNA gene. FEMS M1crobiol Ecol 52: 79-92. 

Zhu, G. H., N1ng, X. R., Cai, Y. M. and Liu, Z. L. (2003). Phytoplankton in Prydz Bay and its adjacent sea area of 
Antarctica dunng the Austral summer (1998/1999). Acta Bot Sin 45· 390-8. 

137 


