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SUMMARY
SECTION A

CHAPTER ONE introduces differential equations applied to the bending -
of a beam on simple supports. The solution is taken in the form of

a Fourier series, each term of which satisfies the boundary conditions
of the beam, It is shown that a solution of this form produces no
constants of integration. The more advanced problem of the beam on
»eléstic suppofts is then studiedand it is shown how the solution to
the differential equation is obtained and a table of derivatives drawn

up., Particular problems are then solved by consideration of the

boundary conditions,

CHAPTER . TWO consi&ers the .sfresses and deformations of a complete
cylindrical shell with axi-symmetric loading, The differential
equation is derived and shown to be of the same form as that for
the beam on an elastic foundation. The solution is used to explain

the anticlastic bending of a plate,

CHAPTER THREE derives the simplest form of the shell roof equation,

that due to Schorer, and introduces an improved method for obtaining

the derivatives of the solution, A direct design approach is introduced
which is suitable for teaching -an undergraduate class the design of

a roof with post tensioned edge beams,

CHAPTER FQOUR develops the membrane theory of cooling towers built up
of a numbef of conical sections. Publiéhed results of tests on a
model cooling tower are reanalysed to give better agreement with the
theory than was obtained at the time., The theory is extended in the
form of a compﬁter program to deal with hyperboloid shells, The
failures at Ferrybridge are considered and attributed to the analysis

of cone-toroid shells as hyperboloids,

CHAPTFR FIVE applies Schorer's equation to the deformation of a

complete cylindrical shell with unsymmetrical loadings. A fourth
order differential equation is derived similar to that of the axi-
symmetrically loaded case but with smaller roots., The inextensional
berding solution for open tanks is developed and used in place of the

‘particular integral in a number of problems of practical interest..

CHAPTER SIX describes a method bj which the roots of Flugge's equatidn
for complete cylindrical shells can be extracted. It is shown that '
two sets of roots are obtained, the first identical to the shell with
an axi—symmetrical load, the second identical to the shell with an

unsymmetric load,.
SECTION B

The method of chapter six is applied to Flugge'!s shell roof equation

and gives rise to a.new characteristic equation with explicit roots,
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A shell roof with post tensioned edge beams is analysed using a
Fourier series for the post-tension which converges rapidly. An

edge correction is applied to retain compatibility at the ends of the

edge beam,
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PREFACE

Since coming to the University of Tasmania in 1961 I have been
lecturing to final year students in the theory of plates and shells,
The thesis has been written in a form suitable for use in the course -
and has been derived from first principles, either in the body of the
text or in the appendices at the end of each chapter. This means that
the reader is not being referred constantly to other texts in order

to follow the reasoning.,

My interest in shell structures began eighteen years ago when

I was engaged as a cooling tower engineer by W.V. Zinn Consulting
Engineers of London, The only published material on cooling tower
shells was by A.‘Fischer who had”developed'the membrane theory of
single cones subjected to a wind load expressed as a Fourier series,
The considerable stiffening effect of the upper part of the cone was
neglected and ancther error was introduced by the differentiating of
the Fourier series, I was able to overcome both of these problems
and so entered the general study of shells feeling that I had already:
made a small contribution to the subject, On the other hand I had
taken a short war time degree course and found the mathematics
involved - in’ the theory of cylindrical sheils extremely daunting,.
The only writer in the field that I was able to foliow with any
facility was S. Timoshenko whose "Theory of Plates and Shells" I

have taken as a model in exposition, This was because Timoshenko has
assumed that his readers either did not know or had forgotten,éll but
the simplest mathematics and so was prepared to develop his mathematical

tools whenever the need for them arose.

Following'Timoshenko I have introduced fourth order differential
equations by considering the behaviour of beams on elastic foundations,

The study of circular axi-symmetric shells follows naturally from this,

The easiest shell roof equation, that of Schorer is then developed
together with a novel and simple method of obtaining the derivative of
the solution, The edge beam problem is normally beyond the capabilities
of an undergraduate class.but a direct design approach is adopted -
which enables a class to designh a sheil roof with a post tensioned
edge beam in a one hours problem class, This approach is probably not
appropriate for practical design werk as it does not yield the most
‘economical solution, but the method is accurate and shows clearly the

principles involved,

Another look has been taken at the cooling tower problem and
the test results have been reanalysed with more satisfactory correlation
between the tests and the theory, The failures of the towers at
Ferrybridge in 1965 have been studied and a suggestion for the cause

of the failures advanced,



A similar equation to Schorer's has been derived for complete
cylindrical shells.with unsymmetrical loading. This equation is a
fourth order one, similar to the axi-symmetric equation but with
smaller roots. Edgé erfects thefefore do not die away rapidly. A
cylindrical shell with one end open and the other closed can bend
without stretching under defined boundary‘conditions. This inextens-
ional solution can serve as part. of the solution in a number of | _
problems of practical interest in the same way as the membrane theory

acts as part of the solution in the case of the shell roof,

One paper that I found of great intéreSt was by N.J. Hoff which

compared_Flﬁgge's shell equation with Donnell's, This suggested to
me that the roots of Flugge's equation could be extracted and those
terms that did not contribute to the result could be dropped to
prodiuce a simplified equation,. .This was first tried in the case of
the complete cylindrical shell and resulted in two fourth order
equations, the‘first identical with the4axi-symmetric equation, the
second with the unsymmetric equation, These cowld be combined in

the general'case.

" When the same method was applied to the shell roof equation a
-new eighth order equation arose, This had explicit roots and was
' more accurate than the Donnell equation for the longer shells. It
was found that bending in the x direction could be neglected but not
the twisting moments. The effect of the twisting moment on the mem~
brane shear stresses was however negligible and the orthogonal mémbrane

shears have been taken as equal throughout,

This simplified Flugge equation has 5een applied to the case of
a shell roof with post tensioned edge beams, -An improved method of
handling the post tension is introduced which agrees well with tests
on a model shell and with a finite element analysis carried out by a
post graduate student Pham Lam, This work has been presented in &

. form suitable for independent publication in section B,

The author's publications on shell struétures are included in the

biblography.
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Castle Donnington Power Station

A group of cooling towers designed by the author when working with
W.V. Zinn and Associates, London, Built by the Mitchell Construction
Company Ltd, Peterborough,



Chapter 1.
THE BERDING OF BEAMS

The study of elastic shells is considered to de a diffiéult one
for an engineer., The subject will be introduced by first discussing
a problem which is more familiar.
A uniformly loaded simply suppofﬁed beam will be analysed by
sol%ihgjits general differential equation, a method that is also of
value in thé study of shells, '
The general‘differential-equation is obtained by combining the
statics of an element with the moment-deformation relation. Its
solution is the complete answer to the problem when the boundary
' conditions are included. The choice of a form of solution which includes
the boundary conditions may sometimes avoid having to evaluate constants

of integration. This form of solution is known as an eigenfunction.

SIMPLY SUPPORTED BEAM

Stetics of Element .

- q. Ib/ft
Resolving Vertically Qe '
AP |

EES +qdx=o0 MMtC | | DM‘F%E‘Q&%

BQ/am = -%.

Teking Moments ’ _ Qe ¢Q doa
' s

%%.dﬁ,m_ﬁdm;o-: | %X doe

SN/ dae = Q | o

Moment Deformation Relation
M = —ET dw/ 2’

QA = am/am = =EI 83@:5’/ d o3 b+ (1-19)

q% = —-256&/’aﬁx. = EX aﬁ¥UT// EPQCA% .J
The differential equation of the beam is:

3%/ 3t = 9./ BT o Glew)

Some approximations and assumptions have bezn made in the derivation
of this. equation. The deformation due to shear has been neglected and
the curvature taken as §?§§u which is orly correct if the deflections
are not too iarge. It is_assﬁmed that there aré no longitudinal forces
- in the beam with a vertical resultant. Otherwise equation (1-2) applies
to any elastic bheam with any loadingiand'any condition of support.
The particular case of the simply subpofted uniformly loaded beam of

constant flexurasl rigidity'will now be discussed.



The solution will be taken I 9
in the form of a Fourier series K A
| o=
where each term satisfies the ’“‘”‘*4 .
b N

boundary conditions which are
$a) Symmetry about the (,

(b) Zero deflection at the ends. ' -‘~‘\\;\\\\
% -

Take W = § W, COS NI %

B |
Condition (a) is satisfied by / , ' \ ,
taking only the cosine terms of ‘ : - '

the Fourier series, condition (b)

N= 1,3,5».0

by taking only the odd values of n. A //,,—-;\\

ET (w/ L) s Wy, N* cos N/ L Y

Substitution in (1-1) gives:

M

i

= 4

Nn= 2.

n= 3

Q = -ET (r/L) s 'hS‘gV\:s sin WTTe/L b...(43)

q. = ET (/L) T 0% cos nTx/L

A constant value of g can be expressed as the Fourier series: (Appendix 1)

o
j:: COS Wt ﬁc./ |
Where n= 13,8 . - _ '
Qr'-:. 4q /™ 1,3:-.;-4-1,/31: ' q% = 461,/5“

Substltutlng in the last equation of (1-3) and taklng a term by ternm

correspondence of the series gives:
4. s .5
W, = = 4q L7/ ELT W n |
Which obviously decreases very rapidly with n.

For n = 1 w = 0.01307 qL /EI at x =0

 The accurate numerical coefficient is 5/384 or 0.01302

The higher derivatives are less accurate if only the first term is used. .

- : : 2 ‘
Thus M= 4ql%/ T = 0.129 gL at x=0
Whereas the correct coefficient is 1/8 or 0,125
And Q= 4qL /W* = 0.403 qL ot x = L /2

Whereas the correct coefficient is‘ 0.5

In shell analysis it will be found that terms are integrated with -

respect fo x and the error involved in using only the first term in the

Fourier series for w 1is acceptable.



- BEAMS ON ELASTIC TFOUNDATIONS

The reaction at the base of the C T | D :;B dx
beam is taken as varying linearly ' , S %
with the deflect;on, the elastic SRR Q4+ g%o&-&
constant being F 1b/sq ft. Fuw |
Statics of Element \Iw b o

Resolve vertically

3@/ 2

e

Teke Moments

BM/ 2L = Q

Mgment—-deformation

M = <-ET 2*w/ox*
Then QA = -QEI‘asls)‘/ 39&3
And the general differential equation is:
C E w =59 S S ERY
o R4 X ET |

This has a particular solution

| W = q/ ¥
which is»the deflection of the beam under the distributed load q
without ény reactions or- other point loads. |

Thebompleméntary function is the solution of the characteristic equation

(o) ...(1-5) where 4b4' =F/ EI
poc

,..341.»9/9%4’ + Abte

i

Taking the solution in the form W = B e
and substituting in (1-5)

| P TR TN 2o _
Ap*t e + 4 BTAe” = ©

4

giving the auxiliary equation  pi+ 4 B¥ =0
then p = b“;’ A = b(+1 * i)
where ©. - i is the imaginary {1

This can be checked by direct multiplication
2. : . 2
(+1+4) =1421-1=22i; (+2i) =4

A has four complex values corresponding to the four complex roots of -

the auxiliary ecuation

e_b(u-i.)oc b= b=\ +i)y x

- A, e® - "Qx_
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Combining the imaginary parts into cosine and sine terms to get a real
- solution (Appendix 1) gives:
W= e (ct cosbx + ca Sinox.)
+ e:bm Cc? s b + Ca gin b'x.)
Differentating this expression gives:

b :
aw/‘aoc. = w = be  {(cit+cn)cosbu + (-ct+c2) smba §

~lox . : -
+ be i 5,. GC$+C4-’) cos bx. + (~C3-C4) Sin bzr_g

- which is the same expression as before but with a multiplier and
different coefficients., Tabulating the result and repeating the
manipulation enables the other derivatives to be obtained rapidly

and reduces the opportunity for error.

‘oo e—bo&

$GoY | Mol <

cosbx | sinboae | cogbx sin loac

o { i Ca. - C2 Cet
wt | b Ci +C% | —=Cl4+Cc2 | -C3+C4& | —C3—Ca
W' |2b” o -C1 - -C4 C3

W 2b% |—ctuwco | —c1-c2 C3-4Ca |—C3 4 C4

The -values of the integration constants C are found from the boundary

conditions.

v

Point Load on g Leng Beam - » ) . P '

b | . cor s :
Now €  increases rapnidly with increase of o .

£ i i .
As the effects of a point load decrease with CTTTITT777777
distance on a long beam C! and C2 must be zero. oL
Elastic Fovadalion

- ~ba ‘
At x=0 e g

. - . [} .
y CosbXx=1 sSinbx=0, Ww=0 ). -C3 + C4A = O

At x=0

LQ@=-pP/2 = -ET w"

W 2b (C3+cq) = P/2ET

. C3=ca = P/BEIb> = Pb/ZF

Maximun deflection |
: WJ, = Ca = Pb/‘ZF

Maximum bending moment 0 :

My, == 2b"EI C4 = P/4b

A similar fourth order equation arises in the study of cylindrical

shells with axi-symmetric loading.



Short Beam with Central lLoad
It is assumed that the beam does not . | ;Eﬂ
1ift off the foundation, ' V.

[ . ‘
II177 7777707757 /07777777

If the bean is short it is ' '4__—->
. - 1 L/2
not possible to take C1 = C2.= 0 :

Four boundary conditions are required to sclve for the four k&uﬁ_

T e—
/2

integration constants, They are:

(1) ra——— Q= - P/2 |
'(2) A x=0 'aw/'am = o

(3) At x=1/2 M = O

(4) At x = 12 Q= o

L}

The boundary conditions can' be expressed as simultaneous equations
that can be solved to find the constants, Putting bL /2 =k

. | Q Pb
(1) - C{ + c2 + C3 + C4 = "5 =T F
(2) C4 + Cz - C3 4 C4 = o

(3) - eRgink Cf &+ Kokl + e‘ksink C3 - efkwsk C4=o0
or Qg Ct + o.b,;c_z * G,y Cy 4+ 0,04 = O
(W —eX( wsk_ £ sinkdal + e (coskosink)dCz

+ ék C cos'k ~simk)C3 ;4— Q—K Ceosk +sink)C4 =0
or Q. Sl + 0,,C2 + OGuzC3 + Os, C4 = O

© In matrix form this can be expressed as:

[~ +| + +t [eci | _Pb/r-'j
+ | + | =1 + 1 Co — (e}
LQ“H Q42 S LN Aaa | LC4-~ 8 o _ 

This can be readily solved in a particular case and the deflection,

moments and shears calculated from equations (1-1) and Table (1-1).
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APPENDIX 1

Bending of beam —_—

subjected to a bending moment M

Consider a short length of beam j > X
J
w

and divided into plane sections

normal to the axis.

After bending the curvature must
be constant as the bending moment C'N
M

is constant. The only way the

elements can still fit together
is for plane sections to remain

plane,

\

It will be assumed that there is a horizontal plane NA which does not

change its length during bending. This is known as the neutral plane

or the neutral axis. The radius of curvature of the neutral axis will
be called R, ‘

Consider an elemental area dA

- distance 2z below the NA,

""'.'II'"I"'."
The old length is the same as a
the neutral axis which has not )

changed = R 40

The new length = ( R=2 ). df

Strain € = (R~ 2—)49."‘ Rd6 —_ %=
R 4O R
Stress & = __EZ
R
Force = __EZ 4A
The net horizontal force on the section is zero . . % S zZdA= o)

and z must be measured from the centroid of the section, ie the NA

mist pass through the centroid.

R

.o N

Taking moments - M = "'*E"‘ SZZdA = —Eﬁl‘:“

Giving the familiar engineers' formula

M _ _E - &

I R -



Now 1/ R=4d9/ ds

10.

If slopes are small
0= dw/dx "and ds = dx

.5..1/R= : _(_L_ CL(J"): LodTw
dxX\dx

Ad M= -EI d% / ax?

Fourier Series .for Constant Load

il

Let ‘ c"

Multiply both sides by a particular value of <€O0S n'Wo/L

o

> q, cos nWX /L where n hés valus 1 to o

and
integrate from O totL/2 +L/2
+i/2 . S \
Q Cos NI dx = Z‘_ S g, <03 NML COSNIX. dx
L n : | B |
_L./'z_ ' i ._1.(2_
If q is a constant the left hand side of the equation is
‘ 4L 2 : L .
(. i NITTOC - z ; n
= 2qL/~"'w i w s 1,585,909 ...
= "2;“.\-/\'\"“ l.g.. noS 3,70, ...
Considering the right hand side of the equation
S A i} .
q oS QXWX cos n'tx = O unless =
-\/2 n - ‘ - . : \
' = o L/z, i n=wn
v\
Q. = *+ 49 [nTw L o =\, 5 9.
- 4q. [/ wnwW W= BT, N
Manipulation of complex roots
ibx . .
In general e, = cos bar 1 Sin b
b (141> b » .
A, e = e ( AL cosoe  + Arisibx) -
b =1)X oo .o o
'Ale" S = e (-P\z_cosbx—-P\z.\‘sw\b'x)
Putting = C4 = AV + A2 c2 = (Ay-A2D)

. ~C - .‘ .
o = & (¢ cosbx + €2 sbx ) ...

As_'the deflection is real the constants must be real.
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Chapter 2.
BENDING IN SHELLS

Moments and forces will be taken per unit width of surface.

Consider a lamina stretched in

its own plane by stresses in two e > X

directions at right angles x and y. - GX

Taking Hooke's Law and

Ch“é-‘.

Poisson's ratio into account: ’ v %

Eey = 6y - 40y T
D = éo\l = 4 Sy - 4’?6x
B(E,+wey= (1-07) 6k

: = _ _ )

or . . G-x - —‘-:b";‘ ( e-x adps UE'-.,) Ceen (4-1)
similarly QL = '—jim=Cé + P EY)

, Yy ° \ - 2 7

Let the lamina be part of a thin shell of thickness h, with original
radius of curvature R measured to the middle surface of the shell,
The shell is bent by a distributed bending moment M 1lb in/in to radius R';
The middle surface of the plate | |
corresponding to the neutral axis
of a rectangular beam does not
stretch

Rdb = R'doe'

The strain of the lamina €
= (R'=2)d8'- (R-2yd0 _ -z (d6'- 48)
(R=ZDA8 R'46' or RdE

if 2z is small compared with R.

Hence . —Z.(’—'—E = -Z X
) - ’ L
where X 1is change of curvature E? —F—(-

Thus from £%#R% equation (2-1)

6 = 0, (x,d_v“xy)

) C‘“'4>Z) <'R)L~Y 4+ p ’><7‘T)

i

Y
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Taking moments _U'Mi'y &
& Z
= (X o+ 9 %) | 2°dz ¥ i
- G $)) faz
- b b
= _EY (x. .iox
(1 45%) (s $)
== — D ( Xx + ""x\s) L ' (9“'2')

" Where D the flexural rigidity = E\q?’/ b2 ( -%)

Similarly My = ~5 ( Ky + #Xae)
The maximimam bending stress is on the outside of the plate.
6= Gpox 2/ 05N ana M= 2fmer{giaz = GW/e
Y Omax = GM/W

_Axi;S*ﬂmnetrical Bending of Circular Cylinder by Ed;_{_e Loads

The  statics of the element

will be considered first:

From the symmetry of the 1oading
N? and M.%. are constant and

there will be no membrane shears

. e /e
(in the middle surface) nor
normal shears th . Noe and ;
the normal load q will be taken as N§

ZEeT 0,

Resolving radially and multiplying the dlwrlbuted forces per unit

length by the distance over which they are acting:

) ‘ |
A‘g%d% R'd"? + N dxdg¢ = o

e

3@.“/?% = —N¢{R

Taking moments. in the x direction:

M= dwe R _

3= Qe Rd@dx OMacf % = R, -+ (2-3)
And M Qg Coe ( 2-4)
a oot 2 sy .

The force-displacenent relations are obtained as follows:

i

€4

G¢ = E &y A as there is no stress in the x
— e B u:;"/ A : directicn.

(CR-wHAS-RAG)/ Rdp = - [ R
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N¢ = €¢ h: ) 1b/ unit length acting on the middle surface

= —Bww /R
Ko = a?'w'/ S x* as shell was straight in the x direction

X 4, = b"w/R,‘Jqs"; o as w does not vary with ¢

4—( l/(&-w)-. \/K): %?_ if w is small compared with R
a : :
Mo = ~D ( %i;{,. - p/RY)

It will be shouwn that V»P-%_ is very small compared with the first term

in the bracket,
. 2 T
. Meez =D W / %
3 3 . .
And Qaqe = =D O w/ 22¢”  from equation {2-3)

Substituting in equation (2-4)

-D 34:0'/3:!.4‘ = EBEhw/R?
or a4w/ x4 4+ g W = o
R*D '

Putfing this in the form
a4w/-'a'x,4 4 -4(-540" = O coo. (2-38)
where 4t = BN/ RYD = L (1-#t)) R R

It will be seen that we have the same characteristic equation as the
beam on an elastic foundation. The solﬁtion will therefore be the same
with (J, substituted for b, The assumption as to the relative magnitudes
of the curvatures can now be checked,

If the constants of integration are taken as being of the same

order the ratio Dtw/ dct - vl R

is _ Lpz o) RE

or | ATV y’-)/R\g\ s o) R

Taking Poisson's ratio# as 0.3 the ratio becomes  11R/ h : 1

A typical value of R/ h weuld be 100/1 so rato is 1100:1

And neglect of the second term is obviously justified,
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As the cbmplexity of the loading increzses it will be found that
the expressions become too difficult to handle if all the terms ai‘e
elﬁployed. It then becomes cf critical importance to know what terms
may be safely dropped. A general method of working this out will be

introduced in a later chapter,

Long Cylinder with edge loads

Mo= -:Dw'“ at x=0

R, = P uw™ at w0 74
. Mo &0

The complete solution to the characteristic equation is:

%, 3¢
W o= e.‘ ( < cosF;x 4+ C2 s(m{sx)

—f .
+ &P (s cos px + Casinp) ..., (2-6)
As the deflections die away with increase of x €4 and C4 are zero.

Referring to Table 1-1 we find that
Mo = —D2p"(-c4) . Ca= Mo/apg>®

Qo= -D2p*(C34ca)
s C3y = ~Q°]2‘(559—C4- = -ﬁ%é%_-b (@MO'{“QO)

Henge $§, = C‘B = —?-:‘-é}) (GMO +Q9) . e (?.-_-'l)_

And ("‘S‘O = (’D(."c% “'04‘)~=‘.- Q.:_‘@"'D (2(’3 Mo-"# Qo)"’('l"gl

- These equations enable most problems in thg axi-symmetric bending
of shells to be readily solved.
~fuoe
€ ° becomes small compared with 1 when {59&73 ie€0.05
So edge effects die away when =& '5/?; vy 2.3 JRWwW
This means that for axi-symmetric loading on a complete cylindrical
shell almost all shells can be taken as long shells.
This is not the case when unsymmetrical edge loads are applied,

the effects will then extend a considerable distance from the edgg.

Anti-Clastic Eending of o Wide Plate

When a plate is bent by a moment exerted in one direction only
it will be found thal the edges curl up in the opposite direction.
This effect can be studied by the shell theory just worked out.

First assume that the plate is bent to form Rx= R
part of & ci?rcul%r ¢ylinder radius R with no
curvature in the y direction. : VM%‘C > ) My



Mz =D( %o + #%Xy) ==D/R

™M 3:1 - D C‘Xna 4+ vV'X%) =D/ R o

Then My can be cancelled out by

appl‘}yi'ng end moment #® to the
P .
cylinder

200 '
If 4) = Q"'g (\YD = - ‘f\/ W

The shape of the bent plate can be found from equation (2-6).
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Chapter 3

SHELJ ROOFS

~

Membrane Analysis of Shell Roofs

When thg loading and edge beam conditions are appropriate a
.cylindricél circular shell roof can deflect withoﬁtAchanging its radius
of curvature, Thus no bending
moment in the Q direction will
occur and hence no shear normal
to the shell. As the curvature

in the longitudinal direction is

usually negligible the shell can

resist the applied forces with
stresses only in the direction of the

shell, This is known as membrane
action and is statically determinate ie

the stresses can be calculated by

a,
avfa‘mQ

statics alone.

A shell roof with uniform
vertical loading will be subjected- R
to a membrane analysis and the
corresponding edge loading and
deformations calculated., If the ¢K

edge conditions are not the same as the

Noz s 3&7} dx

.menbrane analysis bending will be set : da
up. This may be handled by the edge b{i“ '
load theory to be developed in the "
next section. B:iNNiﬁgsv'
Shell roofs are normally of concrete -

and Poisson's ratio is usually

taken as zero. Kot
Taking a vertical loading q' 1lb/sq ft N
as a Fourier series in the x direction - - Né‘bbj\.‘é &é’
4=t 4% cosgUX = g, oS M | w

n v "

b
Resolving in the z, ¢ , x directions

N¢/R = —0qcosd e [N
35/3% + Mg RI$ = a4 bimd

ANk [2% + 36 /R Db = o
Hence ,\w = _,%n R cc,g,ci; Cos ™oL
35/ 3% = -29 Som¢ cos mx
TNy [ = .('L(%\;R,) cos P cos mae
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The traverses are considered to be rigid in the z and ¢ directions

and to be flexible withoul restraint in the x direction,

Integrating and putting in boundary conditions S =0

at x=0
and N,= 0 at x =L /2

S = ..(’Z,.q.h/m} 5_,(M<? cos M ac
Nas =C2g, [Rom) cos g cos v

The force deformation relations are

Cx

il

) u,/ 22 Appendix 3

S/ E i ©=o0
l\l—x/E-h

d

du/R26d% = (1/EW)IMN%/R dé

eié = (.'3V7“34>n-03”)/ R = 04§ / BN

’6'%!? = bv/am + 2w Rb@
= S/Gwh
'2..‘5/ EW & w=o0

I

Then a2y | 35t a‘!’“/gaé‘am = (2/EW)as/ax.
or. | dtv/ dee* =

- (1) EWY 2 85/d% — 9Nx/R3$D
= (G /EW( -4 - 2/R*w*) Simé cosmac
Integrating and putting in boundary:conditiongd v =0 at x == i L/2

Ve (ol EnX A/m? + 2/ R m* ) sind cos moc

Now.

W = 3'9/34 - RuN$JEN

av/3¢ + (q_[EW)R*comd o5 mac

it

It

| ( Q.. /E.Jﬂ)( 4/\#\” + 2./ ARt vt o R"} cos§ Cos ML
The rotation ©O = oW/ R3$ + v/ R .

"In membrane action the shape remains circular, the rotation will be due

only to stretching in the 4) direction. This is negligible.

It is convenient to keep all quantities in terms of cos mx so that

they can be coordinated at the centre of the shell where x =0 and
cos mx is unity. Gather ng together the forces and displacements worked
out at x =0 :

‘N$ = -9 Rcos

26/d%= ~29_ sm - . (2
Nx = (2 /Rmi)cosd |
Cq_/EWY 4/ mE + %Y Riw wm¥) son b

C‘V-\/ L—.l«')(A./m + 2/ R'wF 4+ RY) Cosq)
= o

> § <
t
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Edge Load Theory for Shell Roofs |
_ f;:’horer‘s method provides the simplest form of characteristic
equation for the shell. It is accurate only for loug shells ie

~when TR /L & O:7.

The approximations are:

(1) M._.& , Qo , M*? , 4 are neglected‘.
(2) | G,«, . ?fx¢ are condidered small .
(3) Component of Q in ¢} direction is 'neglected.

' . . z ’ .
(4) M{, is taken as =D 31‘*‘/&"34> and the %,_ curvature is neglected.

'The last two are the more serious errors which are shared by the

much more complicated Donnell-Jenkins equation..

"Resolving and taking moments on element: Q¢
R ‘ D
Q¢ = aM@/p‘&q’ = | R3 3‘5’5
N _x . 2 Yy
-N¢ = £y R® 2 o4
3 _ M _ D 2w
dx © Rod = ~ R* 39S .
3No _ __ 25 Y N+
x R34 | - g +
™ 3s > P |
T T gk T RS 59 e e

Integrating and pﬁt'ting in boundary conditions & =0 at x =0
and N =0 at x = L /2

ag
Nee = — 2 %5 cos mx
. = ‘ Rs mz aé@ o

14 ks

Taking €¢ as small compared with the bending displacements
€¢ = _‘av/R‘a¢ — us/R
dv/ 3¢ = wr | :
' and 35\//'3? dae? = 2%y _ 3_‘3@4 e (3D
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Now .K"‘?:-# aw/@3¢ + év/ao;
Taking K,é as small coﬁpared with the bending displacements
dv/ox - - 2w/ R
and a"'v/aés: 3*" = .- bsu./Ra.Q‘bx"...(B-&)

€Ex = 2w/dx = Nx/EW
a“'ux
and ~ 3 U./R.a¢ a@- = “Ehp\ 3¢1ax .(3-5)
Combining equations (3-2) to (3-5) gives
' 8
dw . 128 |
a ?g | h'l. a xd' = 0O --.(3"6)
This is Schorer's charact'eristic equation, It will be noted that 't.hi/s .
is not dependent on the expression used for the deflection in the x

direction.
. . ’ - e
A solution to Schorer's equation is W= Ae Cos mxe
the indicial equation being Ps + 2R m4/ h = o
R - g : 4 _
or P 4 h - O _ where _h= 1:364 'JR/h 'JRm .. 'qu—l}
*.p has eight values from De Moivre's theorem
[ £ cos® = ismO + P + e,
'k . S = _
* cos 0,k T om0, | * 0 0o,
. _ | "
where B,z 22.8° ande.;;G'l-So Therefore in this case : | x
6= %, = o.-224 k (;3:,.:\—.—.03331(

‘ Comblnlng the 1mag1na.ry parts to produce trig terms and throwing away

the pos:Ltlve real pa.rts as the edge effects dle away from the edge
w = (C e~ Pq’(c.i Coso(‘cb - czswacq,)
+ e 9* (e emo,b Ca sinct,$)) cosmxe
(2-8)

‘This expression has to be di’ffereri'fiated successively to obtain =
the stresses as laid. out in equatlons (3—- 1). The ».general form of the

n th der1Vat1ve is:

(—k) gen‘ ((C( cos nB + c2 SW\V\G) cosdb

+ CCt Sm w8, — c2 cas\me) som b )
+ a A (( <3 cosnd, + c4 smne,,) Cos Lo

+ ((C':BSW» V\B.,_ ~ c4 Cosv\e.,_} S ok ¢.gc°5mx
| : | . - (>-9)
(sce AA‘DM:[('*‘ 3} :
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The coefficients of the shell funclions are shown in the following
Table (3-1).

[

£¢o) " R - | cos n8, | s nB, | cosnb; | Suan®,
v o ! -k | 0224 |-0.383 | 0:383 | ~0.924
W o ‘ | ! o v o

26/ ! | -k ©0:924| 0.283 | 0383 | 0.924
Mo 2 -D/ R <* 0-10T | o071 [~0T107T | o.707
Qs 3 |-D/R®| -3 | o-383| 0.924 | -0.924] 0323
Ng 4 | p/R¥ K . t o | -\

5/d% s |-p/R* -k® |_0.3¢3] 6924 ] o 924 | -6-383
N & |-P/ R k(’ —6-167]| 6107 | 6.707 | 0.707

Direct Design of Shell with Post-tensioned Edze Beams

The method to be outlined

does not lead to the most economic

design of shell or edge beam, 1t is

however a good introduction to the

use of edge load theory and reduces

the calculations to the simplest

 possible level,

e

-0-92.4- Kb

decreases rapidly

with ¢ and is negligible at the
opposite side of the shell, The

same can not be said for ¢

0-383 k¢

unless the shell is very thin,

To prevent the edge effects from

from one edge beam being carried

N

. Y.
\
'

q

N

Qy

Ry

over to the otner side and complicating. the calculations we will choose

the boundary conditions to make Cg and C4 zero. The use of a post

tensioned edge beam gives us enough control to do this,

If C3 and C4 are made zero thenat =0 =x=o0

-g'(,os) = RK (C‘! coswnh, + Cq 5{5 “8' ) + membrane effects.

The edge beam

is made narrow enough to be flexible without restraint

in the horizontal direction. It will however be fairly stiff against

torsion _and will te taken.as having no rotationii-i, .-

Then CQQSEV\C;’K-& Nq, cos ‘{)K.) s
: LA %:. [-T-%

4 PJ? (og,*K

w—
—

mewmbrane

&)
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And Re = (dw/2ép + -V):z&se.--&oad. = O

These boundary conditions enable C4 and C2 to be determined, and hence
the deflections, forces and moments in the shell. The edge beams can

then be designed to agree with the forces and deflections at the edge
of the shell, o

Efample

L = 120 ft. ’ E=3x 100 psi = 432 x 10 1b / sq ft.
R= 30 ft. v =0 . '

h = 0.25 ft; q' = 50 1b / sq ft. ( mostly dead load ).
¢K = 40° ~ Taking the first term in the Fourier series
cos 40° = 0.766 - q=4Y/w = 63.6 1b / £t sq.

sin 40° = 0.643 nf= (/L)% = 1/1460

Membrane forces and displacements ( Equations' (3-1) ).
at L.H.) edge & =-40° x = 0:
Né = -q R ceos$ = 460 b/&
3S/3% = -29 s = -+ 8L Vo/f
Noe = —~(2%g/Rm*Dc0sd = -4T30 /g

v = (gq/8WX 4-/&6"4- 2/ RE k) s = —o0.0040 &

1]

C%/.E\.JCA’/M" 4 2/ Rt 4 &'1_) cos 4» = 4 0.9C 5‘1 5

Edge Bonditions
' “ :
- k= 634 Vv R/ W JRm: = 4

D/ RP=  EW/IZRE =  26.8 Yo/
From Table 3-1 with (',3 =C, = 0 the ‘boundary conditions are:

4

Condition 1 No horizontal reaction

QéS\h q)“ = 328 Ci ¥+ I92 C2

N cosd, = ' + 4080 C2 — W@

) . 328C{ + 4812C2 - g = O
Condition 2 No rotation - '

2w/ 2% = -3.696C4 — 16§32 C2

v = —0.231 G 4 0.096 C%

Re = - 3.927Cf =~ 1.436 C2

U
0

Then Ct= -o.086Land C2L = +O-235

.The forces and dispiacements at the edge of the shell can now be



calculated and are set out in Table ( 3-2 ):

$ed | R |Cicosms, €2 Simed, Edgqelad] Mesbored Total
v -0 .28 |-0.079 -0.0%0 0.04% f-0.004 o.‘d&s
W t ~-0.086 o ~0.086 | 6.005 |~0-c8I

o2 | -4 |-0-019]| 0.090|~0-044| a-co4|-0-040
M@ - |6Beol ~0.061 | O- 166 [ ~V1050 o —lo‘Sd
Q@ 1330 -0:033 6.211{ 245 | o 24

' N4, 5320 (o) .0.7;3'5 ‘iso ;\A-coo - 2\0

3S/ex| TNO |o0.033 _o-?.\“l 1718 818 | 20
Nx ~138000 0-0G1 0.166 {~31 400 -4~"1‘$o -3&130

Design of Edee Beam weight W 1b / ft.

I
he
.

The self weight of the edge beam must be expressed as a Fourier series

term in the same way as the loading of the shell.,

!{Rvéca

Resolving horizontally: M QA M
3T/ 2% = —5 T‘G’C Sde 3\
T = - §§ 38/39c doe doc P }w’&x éé—-?
' 4
(/T 28/3% - P % | g
AJ;lowiné for pos{, tension 'wi\'\_n m= T/ ! T
R’ééo]}x“‘rj_ﬁggvertiCally : 3
2Q/3x = -(RvV+W) : T
Taking moments: _aM/am‘. = Q N. /A
» 7 A
M= (] o@/2x dxdx= (Lm) (Rv+W) & e} e
Allowing for post tension |
e

M= (P (Reaw) - Pe = —Ex Sy ot T

Stress at springing taken at the neutral axis of the edge beam in this

bl

case 6,,, = Nx/ h = _\—//\ where A=

In our example at x = O on the L.H. édge beia_m

Ry = Q¢cos_4o°; Ny simdo® = 323 Vo/4
W cos 46" — U_‘f;,ihoﬁ-o° = ~o.086 &

\5.—.-.

(L/mY 25/3x = 3Bo kips
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Cx = N;x./\f\ = —l4-A. \@Ps/i&—z ov 1000 Ppsi (o%‘)tess.lor\

The edge beam must be designed to satisfy these edge conditions if the

analysis is to be correct.

Take width b = 0.5 ft.
depth d = 5 ft.

Tendon force is P at eccentricity e fto - - . 1. S

Area A = 2,5 ft.
I=s5.2 6
W= 2.5x150 x&AC = 478 1b / Ttsmx.

(taking first term of Fourier series ),
R+ W=0.8 kips/ft.

M = (T/LY* ETy = Ce/TY ( Ry + W) - Pe
132, Kip & = nwio -~ Pe
€x = (3Ro0-P)/2.58 = —ta4 Wip /4
L = 1406 \bs
e = 1. 76 .F\.
Maximum bending stress =  Md/ax —- * 3.5 Wp/at
Maximum siress = = 2075 kip/&KT = —-\a4o0 \P.s;

The post tension should become smaller towards the end of the beam., The

variation of forces around the shell at x = o are shown below:

“E',d%e, ' %v E%e .. o 4—_

o

kipbs

-0.

T T ] . T | |

5
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ANALYSIS OF SHELL WITHOUT EDGE BEAMS

, The boundary conditions on the left hand edge are:
(a) -'\4¢ = O . ‘ ’ '62\\ b4¢
() Qp = o , \ -—‘\\j>
(c) Ne = ©O .
Ng
(d) 35/‘2x_= o

P

Each of these stresses will be due to the edge load effects from both . .-

edges ( $= O ¢ Z(ﬁ)m' ) and the membrane stresses.

The effect of the edge load on the right hand side will be added
to that of the left hand side when h is even and subtraétéd when‘ it
. i1s odd.

These calculations are tedious to attempt without a computer. To
i‘acilitate computer programming the equations will be put in matrix
‘form. 4

Expressing Table 3-1 and equations 3-1 in matrix form the stress
and deflection functions £(w) can be written:

AB.C+F ... (3-10)

where A[8:4]) ie eight rows, four columns éorresponding to the eight

values of n (-1 to 6 ) is:

RK Lcesnd smnd cosnd, smwnb,]

Matrix B is made up of the sum or difference of the effects frcm

either edge.

Putting e——{?‘i’ cos oL,<§> = ect | e sim oc,(‘) = e5( et
esS1 . ecH o o ( L.w. edqe)
o o ece —es2 - eli=2c2 =14
_ .o o es2 ec2 | esf{=esLt=o0O

B2 is of the same form with $= 24’& -when considering the L.H. edge
or ‘247“—43 elsewvhere. A,B2 is added to A.B{ for even values of n
subtracted for odd values of n,

C is the column vector {'01 C2 C3 CA.}
And F is the column vector containing the eight membrane functions

corresponding to the edge load functions, Fl2] and F[3] will of course

be zero as no bending or normal shears are produced in membranwe action.



"~ (a) als].(B1-B2).C

The four boundary conditions can then be expressed as:.

(a) Al2),(B1+B2).C = E[2].C -F[él

(v) Al3).(B1-B2).C = E{3].C QF[3]

(c) Al4).(B1+B2).C = E(4].C = -F[4]

1
1

E(5].C = -F[5)

This set of four simultaneous equations can be solved to find the values

of C1, C2, C3, C4. Then any stresses or deflections in the shell at

x=0 can be found from (3-10), by putting the appropriate value of

5 ' L 1 L -=b T T |

I-o

St

05

in the C matrix. At other values of x multiply by cos mx,
Some ingenuily is required to program this in an efficient manner,
It is suggested that the reader writes this program as an exﬁercise.'a :

It took me a full working day.

The results of the anaiysis of the shell of_thé same dimensions .
used in the previous section ie. g= 50 1b/sq ft, L= 120 ft, R= 30 ft,
(R‘ = AOoare shown below. Both the first éndsecond térm in the Fourier'-
series for loading and deformations have been taken. It will be seen
that little difference is.made by taking the second term into account.

The stresses calculated for the shell without edge beams do not fully
demonstrate thevadvantages.df and edge beam ovef a free edge.lPiaying

about with a model will show that'a free edge is exteemely flexible to

live loads and wouid tend to flap about in a gusty wind. This could

répidly destroy the shell. A shell with an edge beam however is very stiff
and can safely be designed for uniform loads.

— |lst term
—_——- 2 terws

.E5d556' .' Qu ' Echya' | _ QQ.
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Eahge. |
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 APPRNDIX 3

To obtain the derivatives of a solution

to a linear differential equation -

| : , \7“3(. : e X
The solution is. = w= A"+ ARg®* ...

 where b= -( P,-\-e.('\} P’Lr, "’(.(5—04.‘)

.then " / 3x" = A \;"‘ Q_'Plx - A bv‘ Q"_‘ﬂ
R - 'R R 1Y
Let, b = < cos @ A = |k sw G
Yol 22 ' _ .
Now = == COS ot C 4 V\ YU XX
and (kecose + Kise C?)“ = k" (cos w8 + 1 Sm n@)

from de Moivre's theorem,

Py /5" = A" (eosnd +1smn6) e P (eo wax ~ 1 5imax)

A A’LC—\\) (ecmrn® =1 gamnl) (,@ Cc‘,oa(:x—& 1 SUA LX)

~BX
(kY 2% € L A A conB + CAI-ALY Simnd gcadx
{ CA( + /\’)..) S0 - (i\l~ A'l.)l NG ’S St (X

putting A4 4 A’).. = C¢ | (N P\’L‘)\ = C2
’\\ (™Y n "{52 | - . |
Iy [ox" = («k\ e i (Ll ecrn8 +CUSmnO) CP X g

(el 3imnG -~ CLenrnB) St ol

—px | -

A 4
= (—k) [.‘Cos'\ne Son V\S’S T COS AKX SO KX ct

Sua X Copax| | C2
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Force Defomxdtion-ﬂélations for Shell

Forces in shell are expressed per unit of length.

Thus Noe = Cx b 10/ I, ; o .
Mo 1b £t/ £t or 1b. | . - .

’ . dx (A.+3—‘57’2d.o;

v &

(a) Stretching of shell

z | ]« |dx+eypdx

W gx = W docd €xdx W

d.‘x: +U~+ax

Ex= 20w/ if change of slope is small.

Sinilarly €q = 3V/ R 3¢

However if there is a radial displacement

there will be an additional strain
{(R-w)d¢$ - Rdel/Rdp = -w/R
€ = g (ov/3 ~uw)

as for lamina in equation (2-1)

. EW
N')C‘;' |_4)1 (é.x—‘-"’é#")

E_:. .
Né = Ex (€4 + » Ex)

When the shell is deformed by shear
the shearing strain KW'?—'- \6" . Xz

2w, 3V
Y= Roe T 3=

x4

The membrane shear 5

’ EWn
= 'T\n: GKL\}-_- m—).\fm‘b

The sign convention for shear
makes a positive shear extend ’

tho diagonal in the positive

direction, \
‘ x
U
(b) Bending of shell ;
X' - is change of curvature,
| 2 '
x x — 82(.3’/ a jo. o - as fOI‘ beamo

- X¢ is similarly Ju/&E 3¢ bub in addition there will be a
((" 5 -é-.- = % if w is small compared with R,
~ W -

change of curvature -



28.

Then as in equation (2-2) ‘
Mx = —D (Xy+ # Xg)

and Mg = -D (Xg + 0 K

| - - dus dw ,ﬁ_("i‘_"\d@@ |
\ | . . . - a—;( R A dx 34) dx -
| | x ] x
- Twist is change of angle in unit length at $ ' at §+dd
7% : w
= e R d v : .
4rx. ¢ ‘P y V 4+ 3V da
3¢ _ ~ ox
But there will be in addition in a
cylindrical shell a twist due to the
movement in the <b direction.® aV/ Rdae - at X +doc

1 'uy 4 ov,

——

XK+=X¢?¢ = R DCT_BCC S

Consider the displacement of a point , : - - x,W

distance z below the middle surface. : ‘ — ZKoxRdg
. a\’ ¢ +d¢’ ~Nz
U/ RO$ = -z Xgx v/ ex = -z Kb - ah‘j?

. _ _ EW
ST e -2GZ Kep = o 2 R :
The directions of the twisting moments Macg _ Kocp e
and M(Yx,mll be taken as those causing a pos:.’r:.ve ot x,.p@ > '
deflection across the positive diagonal. o N~ atx
( this is different from that used by : ~dv
Timoshenko). ' . >3
' . .. ' 4 r~y Mox
Integrating across the thickness of the shell: - z — 7
™M §h' 4 Eve X 6 - ¥ |
xd = Mébx = - 'T'Zazf-mp,)‘ . >
¢ = M¢ A L [ A™Ma | s
2 DU-NXep ] ——7
’ Vor

Collecting together the relations we have derived for a cylindrical

shell with x taken in the direction of the generator and putting

N = En/(1-4"

€x = 3u/ dx €y = g Cav/ap-w)

Nax = N(ex-g-pe_?) N¢ = N(Es & PEx)
Y = G = /R £I2= S= d (-4 Ty
CXx = s/ dxr Xe = @ ( P/ + )
Mx = -=D (X + #%) My = -D (xg + X))

RKud = Ko .-—:.- "{ C aﬂg/amap + dv/ dx.”)

Mo = Mg = Dli-w) 'X.m‘, o coe . (-1
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Chapter 4.

COOLING TOWERS

Hatural draught cooling towers form the most numerous and
economicélly important class of civil engineering shell structures.
The largest towers are over 400 feet hiéh and three hundred feet base
diameter with walls usually 6 inches thick. They are built in groups
at stéam povered électrici‘by generating stations and large chemical
plants and have to sustain their owm welght and the forces set up by
the wind.

The analysis will commence by considering the stresses set up
by wind in a shell forming the frustrum of a cone carrying on its

upper edge 2 known meridien force Nxo and shear So  both knowm

functions of angle ¢ . N’“’Z o
Yhen the shell is thin compared with S%
the radius and the tower is made up of two or o -
more cones of different angles, the deflections » Y
f —

are small and a good approximation for the

distributed forces is obtained by neglecting

the bending and twisting moments in the shell
and considering only the three membrane forces Nx ’ Nq& and S .
It is asgsumed that the wind pressure is a known function oi‘¢.

;F
>

The shell wvariables will be taken as Y and ?:.

Fron the geometry of the shell
o= v/coset dx= dr /cosol
ocd@ =‘rcy?

Adf =vdg /oc = d cosl

Resolving normal to the shell
N4 d@'o\c/cosx = —pRd¢ dr/cosct

FNg= PR = —br/Stmet .. (47)

" ' The other equations of equilibrium

Z Né+dN$

differ from a cylinder in that | NQ;\




(a) Pd? has a component in the meridian direction

r\up d.8 d\f/Co:‘)rx = Ng¢ dv oL<;>

(.b)/ The meridian S hes a component in the & direction

4 d6 dv [ coS ok == D v 4o
(¢) The lower boundary of the element is larger than the upper

boundary.

Resolving in the <ﬁ> direciion

dNg dc/coset + (D +dSYre+dr)dd + Scrdd

[ o&_Nj‘ a5

cos ot 4d + I - Ne = o
2 A6 x_ ANg

o
ViS¢ 2vS = ;w<r15) = T Zosda okct>

Swd¢

Substituting for N&from (4=1), putting ‘p‘ = d‘;/ dd and integrating

with respect to ¥

2+ ;J Y”3
rrs = - + C
D S o CoS el
where C  varies with dla ¢

Now 5 = S, when v = Yo

C = \ro'z'—5 ""-’P“fo?)/?; N ol CoS ol
S = P (v2 A1> ,
| B sivolosol - °/V D+ S, (/) - (4n

and putting \/;/\f‘ =

\ A
S - P‘(‘(\r—V\%) 4 SOV‘Z

Resolving in the meridian direction

il

(Noc + AN XV +a)dd + 45 dV“/c::éok

ANy ad d<
e M= G le N = Ne - Ty

(4 -2)

Ny vdd + Nbdrdd

Substituting from (4-1) and. (4=2¢ and integrating with respect to Y~

v Nk = —'\’>Y‘/Q»DU\AO\.

I 2 3.
P (__ _‘_@ \
SVV\ O(,CO“-LOK 2 - Y J)

- ﬁ')o \/\ /\/‘ Co<;0g e D



Wwnere I  varies with 75

Now rNX = NXO when Y = Y'o'

| . © el
! ‘ o L B Yo —_— o 'O
Yoo D = Ny ¥ AP + %%E:[xmsz‘ok( 2+ . Cos
: 2
N)(r—:- Nxo % —-——?——— ‘ - “—,‘;'
. Sl (r 1 )

- stdcof;o& %» <r—36)+ ( >g

2
Se X _ _‘@_)
+ Cosot ( * Y
substituting
V\ = \f;)/('
2
Ny = Nxo. . pyv (1—n?%) \
* Nxo . 1 R
—_ o | — AN 4 20 - oo (4-2
(oé(/vxo(cos"‘o( k ) (4=3)
-— S, (n—n*)/ cosan

For the special case of a cylindrical segment it can be shown

from the membrane theory for a cylindrical shell that:

N¢ = —\9\’"

veee(4md)
S = P‘L + Se
' !
Ny = Nxo-— b'L%/2v — SL/v
This will be left as an exgrcise. for the reacer. >

The calculation of Nxe z2nd 2o

For the topmost segment of the cooling

tower Nwxo and So  are zero as there is a
free edge. The membrane stresses at the base

can then be calculated from the equations

derived above,

. o
The membrane force Nx at the junction S
, . .. Tz ~
NO
is then resolved into
(a) Nwxo in the direction of the .lower shell. Nxo Nx

(b) H in the radial direction.



The membrane shear just above the

junction iz S and just bslow the _‘<-—§— |
junction So . H = will produce T - > TadT
| ——
a localised radial force | at the S0 |
junction.
Nxo = Nx swn (W —o)/ s d¢
= Ny Shnols/ simol - (4-5) W
. : . A . - d.T
H = Ny e (Lo==) /50 1-6\\Tj \\/ﬁ//ey b
| d¢ l Ad
2 2
, H
Resolving radislly
T dd = Hyrdd = T = Hy
Resolving in the §> airection
‘ A AT |
(S—Se)Vdd = &T S S-S =¥ g = W
o S = S—u = SNy s (- /Stas - . (46)

In 1956 two model cooling tovers of the dimensions shown below
vere tested in the pressurised wind tunnel at the National Physical
Laboratories in Teddington England at4Réynold's numbers approaching
those of. full scale towers in moderate winds. Pressure distributions
were obtained inside and outside the first tower which was robustly
constructed of sheet steel. 4 secoqd similar but more lightly
constrﬁcted brass tower was fitted with strain gauge rosettes and
used to measure strains near the base. The discussion of the
experimental results will follow the anaiysis of the tower. The
following has been machine worked but is given to only threeAdecimal

places for conciseness.

Top Section % G2s"
e \25
S S 28 = | 338" '
N = 11D no= L ARG NP = 1706
. 5.428"
-2 = _0. 706  1-3InT4+2nT = 0.0128 :

A = (RO~ 13730 Shaol = ©-2EF et KX = — O 284
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costo = o-0807] C= 5.8 Qo
' ] ees”
3.37s" /
S = p\ r(1-w»n2> 4 ? 5.425"
3 v %ol —_— _ 3.g95" \
5125
~N — _P v ( “—' ) _|“ ‘('(‘-’5~(\1+Qr?’>
¥ 2 S ot G S cog*e
= 14519—-\4—2‘5 B y
) ’ }(9'855
Second Section '
So = 4434 p-o0325¢ 4 0405 et Poges
\ " 0. 09" /
= 4.109 p' + 0-405 p _ _X
‘ i
‘.NXO = 1. 081 p — \.366 ‘o 0325\9
. H ~0-405 p
S = p‘L. D, = 7-‘1%4—99‘4- o 405 f‘ —
- L1asp
’ A
Nx = Nxo - p'tf/2y -, 1/v N -t 425p
o
= j.0917 b - 5-338 )?" - o-BOQ,PN
Third Section
0324
— Ty P"
= 0.812 wi= 0-262! N2 = OB\ A ~0-0904 F
1-n2= 0.8658% l= A 4+ 21> = O0.71a4aAa0 1.oq%
=N = 0.13719 n-n?*= 06-249q Y= 10.09" Nsto —5-93%8 \o
Nx O0-306 P
Yo = S-\29 = = 13° 22! S ot = o959
CODK == O-28>4- ozl = O.08073
H' =  o.z24 p! — 155 p! - 0.0d04 e’
Do = S-H = T oeo i + 2.159 P‘“ 4+ O.o0904 PY
. v
Nxo = ida b - 182 " - o3 '
The membrane stresses at the strain gauge level recorded more
accurately are: '
& = |2As577 '+ 053113 p" + ooz2309 pY
b oo (4~7)
Ny = — 332629 | — 20 62 \GY] P“

_ W Vi
~2.003685 p = — 0.0764-932 b

Ne = -10-55 b ‘ )
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Model Tests
The Reynold's Number of a cooling tower throat diameter one

hundred feet in a sixty mile per hour wind is:

Re = Vd/p = =2BExloo/158x10% = sex10°

At 1/100 scale Re = S-exio

Thig lies in the region where the boundary layer is changing from
a laminar to a turbulent one and the pressure distribution obtained

would not necessarily be applicable to higher Reynold's numbers,

Purthermore the stresses set'up in the model tower would have been -
too small to measure accurately. |

For these reasons it was arranged for the model to be tested i_n
the pressurised wind tunnel at the National Physical Laboratories
at Reynold's lumbers of &-8% o and -2 x10° . Ho significant
differences in pressure and stress distribution ( measured in terms

of the reference velocity head ) were obtained. between the two tests.

Pressure readings were taken both gi_
inside and outside the shell at the levels 43~4" 17
shown and have been averaged for a given 5
value of ¢ in Table :4-1. | ¢

To obtain the membrane stresses in the shell from the
analysis it is neceséary to find a curve to fit the empirical
preséure readings around the shell. As successive derivetives of
‘F> with 4: are required in the analysis it is nof poésible to
choose a Fourier Series to fit the pressure readings. A limited
Fourier Seri:es becomes inaccurate on differentiéting and an infinite
one may diverge.

A simple expreésion in the form:

b = EcOeB<§> + C

may be chosen to fit the pressure curve over the front portion of
the tower, (where P, is pressure when ¢ = o and ¢ is constant)
Then \P" _ \9 B? cog E><}> o
o . @_ . 8
\3‘\’. = +b &t cos B >
(o)
o .



“DV'V\- %¢ . . N A -ooe(lp—g)

-
il
+

Taking p as(0.916 cos 2.52¢+0.637)pr a goed fit for the pressure
curve is obtained over the front ¢ 40° . Substituting these values
in (4~7) Ny, N4’ and S are obtained and are compared with the

measured stresses in Fig. {4~1 below. The strain values and their

reduction to membrane stresses are given in Appendix ::4.

b/F Ne/ B

-8 10
©-Alk}cos 2:|52.é

GO

50 - \
40— -
30 — \

20

o : -20 l ,
0" 1e® 207 36 40° 0 1° 1w 3 400
S/k Né/ &
o (@)
-5 | - X 4
-to } g — -5
-5+ — AR DN
-20t. . . I . () J———— -io b————}
TH e.on:yj ~——0
sk o 2 e R I
®
30 -~ S—— -ig (9 ] P
~36t - ~
-40 — —~20 — = o
o° {o® 20° 30° 40° . o° %) 20° R20° 4o

FIG 4 -1
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Fourier Analveis of Model Shell

It was felt that it would be of interest to fit the theory
to the experimental results around the whole circumference of the
shell. The method adopted was as follows:

The curves of Ny, < and p can be expressed respectively

as:
2. Q. cos nd
Z b awn~ né
Z_ CV\ cCos V\#
Substituting in equations (4-7),(4~8) and (4-9)
A= —Cun (332629 - W% 20.63 168 'g eea (4=10)
+ wk 200 3685 - % c.0764322)
and : 009 (4"'11 )
5 = —Cu( Ax 121577 =nPx 0-53T13 + n°x 3.022>09 )

h ol

A Fourier series of 19 terms (every ten degrees) was fitted to
the experimental curve of My by computer to find A.. Cw was
then calculated from (4-10) and ‘o from (4-11). The curves for P
and © were then computed from the Fourier series and are plotted in
Figure 4~2 against the empirical values. The process involves the
integration of the Fourier series ard is hence permissible. '

The Fourier coefficients for the wind pressure are given in
‘Table 4-2 and may be used in design. As however the important membrane
gtresses lie between <f> = 0 and 40-° it is much easier to use the

single term expression
= - 0.2-52, 4+ .
P k:; cos ¢ 0. A6 Ph\o

where [D is the wind pressure on the front face of the tower at

the lewel under consideration.
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Computer Analysis of Hyperbtolcid Shells

" Cooling towers are not built today with
two or threes conical sections although such

. tovers were sometimes made before the Second

World War. The most usual and the most satisfactory

shape is a hyperboloid or hyperbola of reveolution

although other similar shapes are sometimes

employed.

The equation of a hyperbola is /o - W/ b 4
or r: = Az%icC

If R4 is the throat radius and Rz the radius at z=W2 then

C= R%* ad A= -(Rz=C)/NHy

Cooling tower shells are constructed with formwork that is straight
in the meridian direction. It is therefore arguable that it is correct
to take the tower as being made up of a large number of conical segnients.

Thus the analysis in the previous section can be

applied to the "hyperboloid" cooling tower

without loss of accuracy. -

The velocity of a strong wind is normally

”“i |

taken as varying with height in an exponential
' m

form V = _V4o C H/A—O) |

Mm is taken in the British c€ode of practice CP3~Chapter V as 0.13.

It would be expected that the pressure on the front face of the
tower would be pPV*/ 29 where (? is the density of the air in 1b/cu ft
and V 1is measured in fﬁ/sec. This is known as a velocity pressure.
Then el :
P =_F4° (.H/4¢j cos B¢
A'Hhere PA-o is the velocity pressure ét. forty feet above the groun‘d.
The constant suction inside the tover hes a small effect which
is taken into account in the working program but is'onl;itt‘ed?.'. here in

the interests of simplicity.



The vertical depth L. of each segment is taken as H{ divided

by a suitable integer J . This eliminates the possibility of any

segment degenerating into a cylinder, as the computation commences

at the top. The calculation. is carried out as follows.

Unkil

Z > U2

read Ri,RL,W W2 HD b

/PR 8,3

Ci= R
A= (RI-<)/ W3
L= M/T

Nx = &= 0O
B HisH2+ W3+ L/ 2
Z = —HY

Yo ' = SC&Y-\'(AZ?'%-C-.)

s < TN
1

i

Z + L

W

L= “Scy\_*‘“'t(A'Z.z-\-C.)
=/

A = arctan ( L/ -Y))
1§ VL (o Wan oki= Tt

Nxo := HMNx S(»Aca,/swa

Se i= S4 Nx B Sim (oto—el) [ S et
P = g (H/4o)™
S

-=. ——P B (l-—'- h3>/'i’>$.wxo( CosS ol

+ Ss >

Ny t= Nxo.n — Pr(\_n‘-)/’lsi’no{

4 P%z‘(" (_\-'3\'\1*\-1\!\3)/@3:/\:\0((0‘30\

+ SQBCY\-V\I\)/QOSQL
N = -—P\»/s&v\&

SV L= oA ) \"o v =, Y"

Py Z, P, ¥, N, NG S .

l B

<€
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The analysis of the truly hyperbolic tower has been carried out

by Martin and Scriven. Little difference in results is obtained

compared with the method just outlined whereas she theory and

‘prograrming are considerably more difficult. Furthermore Martin

and Scriven's method is not applicable to the cone-toroid towers

that are often built. In this case the lover part of the tover is

a ¢one while the upper part is formed of an arc of a circle or a

hyperbola rotated about the centre line. OnlyAa minor modification

in our program is necessary to make it apply to any shape of tower.

It should be noted that the membrane streeées'are -considerably

larger in a cone~toroid tower than in a hyperboloid of similar

dimensions. It was the failure on the part of the designers to

appreciate this that was the basic cause of the collapse of the

cooling towers in Ferrybridge in 1965.

Murther Discussion on Wind Pressure

The results of the tests
on the first model cooling
tower indicates that the wind.
pressures on the front of the tower
in a wind that increases from ﬁhe
© ground up are not exaétly the
velocity pressures but argﬁighéi
near the baée of the tover and
iiqﬁen:closer tb the top.
Alsobthe distribution'of pressure

around the front face is different

“Q'\5h¥ over F‘oor tnches

25

20

\%

\o

o

Ref. Pressure %)r.'S‘S“ up
Y,

’

oo b
- — — = — — — —
L - —3 - — — -
[ — e - — — =
_.___.5...__74
- , Measured
, [~ Pressure
:"'"-6—7/—-.—
N Vaocivy Pressure
e

O 02 oA 06 08 1 B
| ®

from that in a uniform wind being slightly less acute ie B= 2.45

* compared with 2.52 for a uniform wind. Thesé‘effects can be shown

to cancel out and the velocity pressure taken together with a B

value of 2-52 gives a realistic value for the membrane stresses

in am:isolated-cooling.tower. .. - .

There is a further factor to be considered. Towers are

usually built in groups and the upstream towers modify the pressure
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distribution around tﬁe'downsbréam ones giving rise to a worst
B value -of D.27. This resulv was obtained by further tésts
- carried out at the iationall Baysical Laboratories in 1962,
This chaﬁge in the ® wvalue has very little effect on
a hypefboloid cooling tower. but greatly increases the membrane

stresses in a cone~toroid.

. Ferrybridge

On 1st November 1965 a moderate gale blew in the English

Midlands. At Ferrybridge in Yorkshire the Meteorclogical Office
eétimated that the maximum wind speed lasting for one minute was
between 49 and 54 mph at AO.ft above the ground and 68-7/ mph

at 375 £t above the ground..There vere eight cooling towers newly
constructed at the power station each costing-£290 000, s£anding
375 £t high with a base diameter of 290 ft and walls five incnes .
thick. The towers had been designed forra steady wind velécity of
63 mph at 40 £t rising tb 84.3 mph at 375 £t in accordance with
an exponential value of 0.13. Nevertheless three of the eight
towers collapsed in the wind. It is the opinion of the author
that these failures were czused by designing the towers as hyperboloids

and constructing them as cone-torcids. %%——4

Reinforcement was provided in 2
' 83
the towers to carry the difference

, J}
'r%cJ o

o+
between the meridian stresses due 0

to the wind and the dead weight of @

135

cone
the shell. ~Yovord

45 N

The meridian stresses due to

the design wind on the tower as designed

and the tower"as constructed are shown
in Figure /-3. It will be seen that

for the cone-toroid the reinforcement

31S

will be stressed to 4500, of the design

for an isolated tower ie in the front

rank, and QOQ%,fér the shielded towers.
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However for the one minute velocities experienced at the site
at the time of the coliapse, tge unshislded towers would have been
stressed to about 100% of design and the shielded ones to 400%.
This is-iﬂ agreement with the failure of the towers in the rear

rank but not the front rank of the installation.

315¢
Q00 —
.3
;
l_.
o
<
93
25 u —
df 62,6
= p=101(H/40) cos B +BST
8
0 Cone-Toroidh B= 2271
a 150f— —_
£
L
)
I A
Dead Load Cone Toroid B=252
) (—Vza
Hap -~—
c-T —
15— .
»3Il Rina Beam
e )
= ]
o b— Sill Levey ‘. |< 16 o —
. | I l l \
o o 20 a0 40

N \<\‘f>‘a/ ft a¥ 9=0
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APPENDIX /

Stress—Strain Values for Model Tower

Strips were cut out of the model shell after the tests
in the wind tunnel and subjected to a tensile loading test in a
Hounsfield Tensometer. These tests gave &an E vdlue of 20 ¥ \o(’ psi

for the inside gauge and 13.06 x 10° for the outside gauge, over

“the strain fange experienced in the model tests. This difference
in E value was most likely due to the straightening of a strip
with inital curvature rather than a difference in the gauge factors

& has

of matched gauges and an average value of 16-52 x 10
been taken for the conversion of strain into stress. A poisson's
ratio of ©-3%> has been teken. The shell was made of 24 gauge brass
sheet (0,025 inches thick). Then from equations (3-11)

Nx = ER/C-d™ § Coe + £ E4% ek

The original strain readings were recorded in NPL/Aero/ 316

as % % 10°: p¥Y/2q sq £t /1b. To obtain membrane stresses

“as Nyx/ P etc where br is meesured in 1b/sq in.

N = 1653%10°%0-025 % 138 x 144. /0891 = 0.668

N(I-)/2 = o224
‘The strain rosettes consisted of three gauges at 45° My XYy Yo

The strains for the inside and outside gauges in the x end y directions

at tsév have been averaged and recorded as € and €y o The st-rains for

W4 Xy ¢

) o o
the inside xy gauge at-¢ and the outside
45°/ As
at +¢ have been averaged and recorded as } as® A5°
‘ _ . b I S
€yt o The strains for the inside ¥ oufside inside
o 4
gauge at¢ and the outside at -75 have been 3 E=
' . C—:xn‘
averaged and recorded as 'exa‘ .  Eaey
. é‘j .
From the Mohr Circle / \
C_"x‘. * 6‘3 = ,exj“‘” ex‘s‘ . /\ \ >
]
Se@x 4 ey = Co g ex\5+45 : \\

Where E' is the error assumed egual for the four gauges. -

M



Then €, = LS4 —E €y = &4-E

Cxy= Quxy+ E oy = @y + E

Yy = Cmy = Smy' = Cmy = Sy
Average pressures and strains -~ pv*/2q

0 T ,
4> b € ey Sy € xy E €y
) 1553 | oo | - 5) S 1.6 | 26.5 | -s4.8
o | 1456 | - ~ ~9. 35| - ~
20 Il 1218 4 | —415 ] -265 | 46 Tor | -44.7
30 0-362 35 - 215 ~45.5 A5 3%.¢ | =289
4o || o421 | -5 | 13 -62 A9, -29 | —4.4

S0 ||-06.004| ~34.5 .51 —¢4 -1 3| ~24.5 IS
6o ~0-386 -852 | 2 -84 -5 -5 ~56 14.
Jo ||-0-6oq| - 655 |G -40 | 65 -G48 168
20 |l -05m | o5 I'5 e | -8 || ~c4s 7
Q0 || —0235| -83.5 12 1.6 | -445 || -524 (2.
too 0.0 - 46 1S o " -46.5 -45-8
lio O-194 - 20 n.g 5.5 -3(.5 -22..1 0.4
120 0:204 9 -G s ~-{l.5 6.6 -84
13 | o1a7 30 | -148| 4 - 269 | -6
(40 0.189 2g@.5 | —I\ 6.5 -5 24.9 | =146
iso || — 26 | -5 5 .55 || a2.8 | ~1z.€
(o o183 2\ —15-5 Y -5 19.6 -16-9
170 - _ - -3 -5 - -
' 0181 3 _14 1 | 2.8 ~-13.3

N¢ = 0668 ( ey + o¥>Ex)

S =

6 224 C e_x‘_:) - e_‘x%\ )

The test data were processed on an Olivetti Programma desk

computer.




TABLE 4~2

Fourier Coefficients

45

Nx at strain gauge level =

P/

P =

v

8
> Ca cos V\c1>
o

N - QA Cn
o —\. 438 14220 « 157"
I 4+ 3.037 +1.988 x 1o ~!
2 4 32131 +6.475 ¢ to-l
3 £ V9.4 +2.599.%x o™~}
4 ~1.073 ~@.438, (0=3
g + 2.1>8 +4.(q4 y 1073
A + 0.7108 44138 ¢ (074
N ?2.2q5 —-4.416 y (o~4
+ 0-.50% +3-Q2 075
q + ©0.325 128 ¥ 0™
o —1-4272 ~2.431y (07°
[ + 0. 040 ~2:¢¢5 x 107!
12 +o;').l9_ + Ty o~
3 ~O. 109 -3.441y (071
14 -~ 0- 407 — €. 100x (o1
15 —-0-057] ~7.33¢x 108
16 +('>.04.Q.A + 2048 y 10T
19 r 0.2.65 1572 ¢ (077
I8 -0 285 —1.188 x 10”1
i@

Z. A.<osnd
o



- Chapter 5.

COMPLETE CYLINDRICAL SHELLS

_ o
. ‘ Xy . 12RS v _ o
Schorer's equation 3 &% e S

for the deformation of a cylindrical shell under the action of edge
loads was a partial differential equation with variables in both
the ¢ and s directions. This wes handled in the case of the shell

roof by taking the deformation in the o direction as a trigonometric

function, The function chosen was a term of a Fourier series which
satisfied the boundary conditions at the traverses. This reduced the
partial to an ordirary eighth order diffei-ent'ial equation with
boundaries at_the.Edges:;of::_the:;?,shell;‘ il

The .compleke shell has no boundaries in the 4: direction
so that it is appropriate to take the deformation as a trigonometric
function in the ¢ \direétior; when the loading is not uniform around
the circumference. |

Putting W= W& cosmé Schorer's equatlon becomes:

&l

4 —
o +_M_“__w=o

2. R@

o
8:»

Which is a fourth order ordinary differential equation in-the
C  direction and can be handled by the methods derived for the beam
on an elastic foundatibn. A considerable increase in accuracy |
without increase in dlfflculty in thls case is obtained by taking

8 (&3
the curvature in the ¢ - direction as :'g'» 34,—.. w.) 1nstead_
ot
R*a $* , .
QQ‘ in the c]; directicn which was *J”eviously neglected due to the

of" a@s in the Schorer method. Also the component of
necessn.ty of s:.mpllfjmg the equat:Lon can nov be taken into account.
F:Lnally the boundary cond:Lt:Lons in the ¢ direction are more
easily expressed if the equation is derived in terms of W | instead
of u . Surprisingly enough it is found that the equat:.on is not -

changed in any way by this change in var_iable.
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The sa.rnpllfylng assumptions to be made, with the exceptions mentioned
above are similar to Schorer's. They will be justified later.

They are: |

(a) 9 N¢. is oma]l compared with N .

(b) M Qx M,«@ are negligible.

(¢) €4 is small compared with deformations due to bending.

(a) Xx¢ is emall compared with deformations due *to bending.

ip the o, ¢ ‘end

Taking moments and resolving %
T

di‘rections the forces on i 1.
x
the edges of the element , ( ’
the following relations ere
obtained. _ ' - . . Avis o5
Symmelvy
_ M |
Nyt 4+ d Ny
| IR &M ,
Ng = - 58 = T Reg
: o
| | ¢ N“’ 5+d5
5 _ @ _ My _ L (M, bMé) l»& 7 Qg ey
2x ~ R R24 R* \2 aqﬁ
’ =Ny A
MNx 25 | = Mwm
a,x- _— R.a¢ . . . (g-—") .
Ny
To simplify the diagram 2N¥ dx has |
Pl gram s 5 dé
been written dNy etc. R
. ' QY + ARG
: A ENDAPYYES ‘
- Taking the radial and shear strains : N g‘é;éi\; ){T” Ng ~aN& .
as being small and putting M*V M + M
Mg = ~D (&%, o) Q
R* \ 297 -
€4 = av/aaap -/ R Yup = BV/dc + 20/RI$
dv/3d = oy v/ pxk = — du/ R
o Fv/dex = duw/ax v/ 343w = — Fu/R¥G

. or dW/dx = -—a"u./gaqf— e (8-
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We now take the final equation of statics {(5-1) in the form:

PN _ s _ PMy. , TMe
o x*® R 3¢ d* LOR? ( a‘f’ 2'::: ‘%’4 a'x)

This inc:iudes all the féur equations of statics.
Simplifying conditioh (a) leads to:

_ Cw = F4><// E W
or Nx = EH aw/ D

Combining all these relations with the equations of geometry (5-2)

the dlff‘erenhal equation of the shell is obtained.
34\,\ . D aaqy + z-‘ ERNAT )
Enh 3%+ = _E ( gt T ¢t PYSEES
D ( w4 g 2% Fu
= Rr° b4 24° >3
4 4 | 4
e w D 2Ta B w Pt
o¥ - > ..
e+ Ewwe ( e acp@ N aafff} ©

This partial differential equation is now turned into an

ordirary one by putting . W = W cos wn
. .
Then o' w cos mtg) 4 D G( A _ Q.W\Q’-\-VY\R) U, cos mcb
S Yl EWR

_ = O
Dividing through by <os™¢ and putting D= EW /12G-47)

Sh 4 4b* T =0

2 == [R G-
W —i
Where 4 _ nG-pr) R® or b= & [ —
. b h/ v 2R Vv RY3GIHY
x A (mr=1)" :
It should be noted that this root b is small compared with
@ for axi-symmetric loading, which is v 3<|~ A
b

Therefore e remains close to unity for x,or?parahvbly _Large
values of = and the effects of an unsymmetrical edge load will
not die away rapidly from the edge.

Ihe problem remains of expressing the forces, moments and
deflections of the shell in terms of the longitudinal displacements

L ¥ S

Ny  is already known. The rest are obtained from the equations

of statics,.
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( 5-4)

I

© o (8-8)

qwcv

RV
]
m
)
y ol
v,
£l

I
I
3
P
|
Q
8
W
N
(o}
A
3
-6~
3
v
/

)

2 Cos vvxc'é .- (‘5-\0)

It will be noted that integration with respect to @
produces no constent of integration as this is taken care of by

the eigenfunction.

Tank with uneven Settlement

Cylindrical tanks with open ends are often constructed upon

ground that seitles unevenly under the weight. It is of interest
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to be able to calculate the stresses that are set up in the tarxl;:
walls due to this settlément. This can be done by thebtheory Just
developed. o | |
" The se.tﬁlément Will be taken as Wy = — F cos 2.¢
which means that a poi'nt at the cj.rcumfél"ence at x=o0 and ¢ =o0

settles 4F relative to the other three quarter. points.

The lower end of the tank

- wall is prevented from moving o i %’ gf: =0
. _) ,4_‘1.‘ I W =0
radially by the floor. At the - .
N\
o | R
open end of the tank there is o F— !
e -
a free edge and there can be u'u. o
F
no sh(-*:arinrr or longitudinal Jﬁ /')k\ L E
Lo B B

stresses. These four ‘boundars v condltlong ar sufficient to enable

the constants of integration C1, CZ, C3, C4 to be evaluated.

(1) 4t == o0 G = —F

(2) & == o w =0 o Ger T& -6

(3) At oc = L S = o 3 oo ai;;_z - o

(4) At 2 =L_ \Ny = O (1‘ or a_L; l= o
’ ¢

The table of derivatives of the solution to.the shell equation

is given below. It is identical in form to Table 1-1 for the beam

on an elastic foundation with W substituted for w»

Py b= L [ 2w __
"= 2 R RO
TABLE 5-1
NN ebx -ox
~ : cosbx swmbx cosbx | subx
w | .cA4 co (e N ca
u b Ci+C2 —~C1 +C2 —-FC’:>+C-4- —-C3-C4
T IS c2. ~cA —C4 cz
- >
" [ 267 | ~ct+ca | —ct-c2| cz+cq| -c34ca




!

R _b- . .

WVhen , X =0 e}xz e £= uﬁb&:jw &mbx:03
Pytting E= e®" | c=cosblL, 5= simblL

~the set of four similtaneous equations to be solved to find the

constants of integration can be expressed in matrix form as:

i , M 1 7
| o N o §1 -F
| | | : i : c) | . o)
~SE  CE s/ -¢c/E |a3| |o
1C-9)E  (c+)E  —(3)fE (¢c-9)/E || ca o
- 0L ..4~ . -

# . When the solution is carried out by cbmputer the matrix can
be left in this form and handled by any available procedure. It is
difficul£ to get é satisfactory so;ution by slide-rule as the
constants can not be obtained with sufficient accuracy.

- A solution using a desk top computer such as the Olivetti
Programma 101 can be attempted as follows:

Qag :and O 44 are made unit:j by dividing the third line

by . CE and the fourth line by (¢~3)E

' ~2bL
Putting T = 8/Cc, U= (_c_-\-s)/(c,-s), V=& .

the matrix becomes:

- : T B '1
{ o @ o CHq -F
-\ - | (:)» c2 o
-7 - <:) TV -V c3 ——, o

- @ v - UV . V - L.C-AJ .L_o .J

. & Causs-Seidel method was at first attempted. This is

done by first setting all C 's to zero, then caleulating in turn

C» = -F-ct,

C A = C1—CQ—C35

C2 ‘= AT —C3 TV + Cav
cA = —C2.U +C3 UV — C4V

)



The proces's' was to have been repeated until the constants
cg}ni;erged to a steady value. Unforﬁunately the method which was
simple to program and did not require much storage did not work,
the sclution oscillating and diverging rapidl&.

An attempt was then made to damp down the oscillation by
lettiné the constants take up a value half way.between their

original value and the value obtained above.

Thus: - €3 = (—-F-ct +C3)/2 ;

C4:=~(.91-Q1'-Q34'C4)/2-3
(A T~C2TV + CaAN + cy/a

ct = (—C2.Uu+cCca3.UNV —CAV 4+ ci)/ 2

The solution then converged in a satisfactory fashion to

a steady value for the examples attempted.

Example

A reinforced concreté tank 100 feet diameter, with walls.
one foot_thick and 50 feet high undergoes a differential settlement
of qxa:inches. Taking E as 3 million lb/sq in and Poisson's ratio
as“zero find thé maximum vertical and beﬁding stresses and the

maximum radial deflection.

0. \BBIT1S

F=-02 { D= o

R= 50 E = 432 x10° /g |
L = so & D= 26 < 10% ib it

h = 1 Sf‘ .:_ W = 2.

b R VTR~ = o0 .ocozTz &

kK = k;KL_ : = 0.1|86

V = e—2%% = 0. 6893254

T = Yol =

v

cos k + sl _ |- 402585
Cos ‘(—'5\.’\"\'( |

52



The damped Gauss Seidel method gave the following values for

. the constants of integration:

Cli =~0.025712.
CLQ.::.— OC-codBOoLSG
CZ=-0.-1004238%
C4= +0-003BR T2

= EWRb( a+rcr-cz +cad)

\l

2,156 \<;\os [ &

W ey =l b =0

——
—

;;L %; *Z}<Gt‘(:( +.(;Q_} cx>$»L< 4 (;~CA ‘<;1:)'5;”‘L<)
bR

' ""k’f‘ A '
+ € ((carea) sk + (C3CA) sk )}
= ~0.7%9G § |

2.

M(‘P oF o = L__) d\)—:_O = 2D W ='- 32 2,00 \b

.The vertical stress at the base of the tank is not in this
instance very important amounting to only 19.1 1bs/sq in. However

the bending stresgat.the top of the wall 6My / W has the very

large value of 1330 lb/sq in. and would certainly erack the wall.

It will be showm in the next section that the neglect of the
twisting moment leads in this example to an underestimation of FJX .

_The calculated values for deformation and hﬂ*’ are however

reasonably accurate.



Inextensional Bénding of Tank

s

!

The pfoblem worked out above showed that the sfresses and

strains in the middle surface of the shell produced by the
differential settlement are small and the bending moments and
changes of curvature are large. It is therefore practicable to

solve the problem using an energy method and assuming that no

strain occurs in the middle surface.
The conditions of inextensional bending which must apply

throughout the shell can be expressed as:

€y = JOu/3d2x = O )

ey = L(ovfag-eY=0  ..l510)

\Gx‘# = 3&/\‘23# + oV/dx =0 )

As the curvature tekes place in the ¢> direction
and the wall is initially straight in the vertical direction,
the wall_mﬁst remain straight after deformation ifAstretching is
not to take place.
Taking J as linear with ¢ ard zero at > = o , and
choosing a. symmetrical Fourier serieg for the deformation in the
cP direction:

W= % 2 B, M coswmd

ov/3¢ = w V= e B swmde

There is no constant of integrationas V= O when

A=, that is it is teken care of by the eigenfunction.
du/2d = ~R 2v/3x = —R Z B smwd
w = R jz_ B cos vncb
- .

€

i

au-/B’.)c. = o

thus satisfying all of the equations of inextensional bending (5~11).
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.Coll‘ecting together the expressions for the deformaticns:

W= 2. Bm coswnd \
vV = o Z. Bm SUV\.W\4) — ~00(5-12)
w = RZ B cosmd

"

The corresponding curvatures using eguations (3-11) are:

Ny = dw/2x? = o o
i azw ) ) ) 3 L
X = PO A | % |
== '%_ Z B,m@E=1) cosme . 4

K2 -1 o 3%
- ':z Z B 1) st

For an elemént of a shell the elemental strain energy

AV = § T (% & Kg + 2% Kg) + D(-0) Xy § Rapeix

This is derived in Appendix 5. As Xx = ©

' 2
AV = DR g %G+ 20-4) Kip § &b dx
Integrating over the whole area of the shell to get the total
- strain energf \VAR
' oL

V = :EQTR' gg (?_é_ 2. B () cosm¢ )2'
o0 :

+20-2(F T B Galt) Soamd ) dédx

_ DwL N |
o 2 B, - § 3 Re +Z(t-v3§ (5-1%)
The second term in the brakket is due to the strain energy
of twisting. It will be seen that unless L%~/ 3R* is large

compared with 2 Ci-) the effect of the twisting moment can
' not be neglected. .
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In the problem worked out in the previous section

L/R=1,m=2, and ¥ = 0.

V "—‘-' Ko iy * : i - - 2 .
| 76,_9{3;-2.75 15 D B> ™
If Nx = Nows2$ and W = Bq: B, ces2d f‘r base of shell
the external energy is '
| : ’ 2T
o & @ d. N, R* 2 N
R § Nx L ({) = a Cq J .C.OS 9~4) d&

= MNoR*® /4
Equating the internal and external energies
BQ_ = R* N, / GoD

' But W = RB,/2

A
o
il

120 WD/ R® = 692 Kips/ fr

The value obtained before 2.756 kips/ft may be compared with
6492 % 1.33./ 3.32 = 2,77 kips/ft obtained by using the strain

energy of tbending only.

- | 2;81_ Cos»Q.d’ — - O.
.woJ-L./u.qwo = K6, cesak = AL/R = ©-4 &
a. .

Thus the deflection and bending moment at the top of thé shell
obtained by a characteristic equatioﬁ that neglected the twisting
monment is still accurate, whereas the value of Ny, obtained is

" not satisfactory when the shell is short.

For a long shell such as a cylindrical chimney with differentiel
settlement the characteristic equatidn provicdes a solution that is
more accurate as the strain energy of twisting is df less importance.
Furthermore the éombination of inextensional bending for carrying
loads normal to the surface'ahd.charasterist?cequation to handle
ﬁhe end loads provides a satisfactory solution ror wind loads on
a cylindrical chimney and some other prdblems of a compiete.cylindrical ’
shell. This.is analogous to the use of mcmbrane theory combined

"~ with a characteristic equation in the case of a shell roof.
Vhen Lzm—"/ 4 R* is large c’ompé;red-with 2(1-0d | the

strain energy of twisting can be neglected and

v = S weno Bl e (5-14).



Wind Pressure on Cylindrical. Chimney

The wind pressure around a circular chimney will be represented

by a Fourier series with seven terms as follows:

6

P/p = 2. om CA‘:? "¢

m=0

ov 100 P/ \oY =

22 + 33.8 cosd + 533 cos 24

+ 474 053 + 166 wshP - 66 cos 5 — 55 036
This is derived from the test results in NPL/ Aero/ 316a.

The wind pressure is assumed constant over the height of the
tower and E

a—

vill be taken as the velocity pressure

( velocity in miles per hour )2/ 400 lb/Asc‘. .

The first two terms do not cause deformeticns of the shell
out of the circle in the plen view, and hence will produce only
membrane stresses. The second term is the only one that produces

a net overturning moment on the shell.

The membrane stresses will now be derived for the benefit of

those who declined my invitation in chapter 4 to work it out for

themselves.

. It is convenient in this case to

. ' o .
measure ¢ from the top. L

Resolving radielly forces upon the element:

N? dé¢dx + p Rd#d.%

' | Wind Direction o .
s N? = e P R ) . | ¢
, . P
Resolving in the TNy

- ? direction

. -
AS Rdd + dMNypdx=o0 ' »
45 . dN¢  _ dp
dx T ORdb - d¢
4
S =’Jt.—a—::' + cownsh T\’

Nx +dNyg
At the top of the shell there is a free surface and hence no

shear stress. ie. S= 0O when C=o
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S = oo dp/d

Resolving in the 2 direction

ANL Rdp  + ASdx = O

ANy . _ 45 = b
d x T R4 R 46
- QC‘L d?-t; .
Noe = TR Tder v comntomr

Again there is no longitudiral stress at the top of the shell so

that the constant of integration is zero.
For t.he first two terms of the Fourier Series:
b= (a,+ acosd )
db/ad = —a; svmd
2 .
- d'p/dé = ~ Qi s

Hence the membrane streeses are:

N4’ = Q—(ao + O C—O‘%C?)R \

S- — — 2C Q_\ S.UV\¢ » 7-00(5"'15)
e

Ny = 35 dcesd }

It is of interest to observe the relation between the membrane

stresses just derived and those obtained by the normal engineering

formulae for bending and shear stresses. ] Tep
' : : , { A
The overturning moment on the chimney is: z
o 21 : l P

szp_wsv# Rapdz, | :

%o
= 'R.‘SSI“' z( Q,wsd + A, <s'¢) dd dz
. o0

= R, %"/ 2

The T of a ring section is T R>h rt4

' T 2R
The net shear force on the section is
x 2%
0S5 peosd Rz
° o—xm ‘ :

= 3 Sg C a, wed + Q&os"ck:)o‘«c{) .d'z_, = Rﬁq.’.'x.
oo



o . ¢ .
Ta, > 2 <.
S = Th = 'E§;-?£f;:— .g# R™W Co-’¢"*¢’
= Ck“I: 551-<#

Whiph apart from a change in sign in the expression for shear
is the same result as obtained by the'membrane theory.

The other terms in the Fourier series will be dealt with
as follows.

It will be assumed that inextensional bending occurs and that

the base 1lifts in accordance with this assumption.

'End forces are then applied to cancel out this base 1lift.
The effects of this end force are calculated using the modified E
Schorer equation (5-3).

The effects of the membrane equations for the first two

terms and inextensional bending plus end loads for the higher terms

are added to get the final stresses and deformations in the shell.

Inextensional Bending of Long Shell

The external energy is half the product of the wind pressure
and the fadial deflection integrated over the whole shell. The radial
deflection will be teken és the same. shape as the loading for each
term in the Series. If Fourier terns are cross multiplied the
integration around the shell is zero. This propefty of the éeries

is known as orthogonality. For each term considered
. _
V= 7 §-g CIW\CLﬁinhéz.OC Egh‘nn<23srnm§ FLcL4)cigg
°o

2
. o B . mMT R b
4
Equating this to the strain energy for inextensional bending~of

a long shell given in equation (5-14):

_ DuL? 2 2 Z
AV ® R MmE(mt—1) Eﬁk\

w =
LD L= )"

Substituting back in equations (5-12) to obtain the deformations:

‘
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2 Aw R* x cos A 2 ... (B-16)
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A = B RT x s mé
2 D L v (o)

S ’ 0-0(5"16)
W = 3w R° cos v
- 2, D L wmt(mi- )

If the base does not in fact 1ift the value

% Qe R°
2% DL m2(m*- \)"

can be substituted in the equations for the tank settlement and

F =

the stresses and deflections added to the inextensional bending

and membrane cases.

Example

A concrete cylinder is 50 ft. in diameter and has walls

1 ft. thick. The top is open and the base rigidly fixed. Taking
P-o-i ' .
E as. 3x10 ‘and 4 as 0.2 what are the maximum stresses set up

by a 75 mph wind? The length of the cylinder is 100 ft.
F = 14 o/ 2 D= 31.5x10° lb &
\l\ .

. The deflections at the top due to inextensional bending is:
e 2 D z  (m>-)*

= ©0.10074 p R¥/D = o.ovasg f

3 RS
22 D

QA
Mt

oMo
1l

F = w, = 9.02%4 9 R_Rg/D‘-

= 8.626x10-%

The membrane stresses at the base. at»qb =0 are:

Nx = L"'a‘/zz =(b*/s50x0.338 = a5\ b/g
_ R = (R L2/ |

S —_ —aL . = —P;_l__ wx OB = 417 lb/g, ar q,: qoo

The other stresses are calculated from edge load thedry, have

been evaluated by computer and are tabulated below.

™ F % Mé +op | Nx base | S base arsd”
-2 goexiw? | -17¢ 4290 B 30 : 45

3 4.45% 108 “q( qa4 213 YN
A 2.5lxi107% 146 1o 4 Y I 22.5

s -2.506¥%1071 -SC’. -1 G - & : 13

G -e1axwB | _ay -6 ~3 | 15
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It ﬁillAbe observed that +the 1ift at the base due to
inextensional bending is extremely small and that any tendency
| for the base not to be pukled back completely will decrease the
'b4¥  and § values due tdrthe edge loads. However the values for
M* which are caused by the difference between the deflections

due to inextensional bending and those due to the edge loads

‘v':ill increase if there is ariy net base lift with a maximum value

equal to the inextensional bending case. .

Chimney with an elastic foundation

When the boundary values of a differential equation‘depend
on a combination of derivatives such as W e Ny = EWn duw/dx:

it is convenient to express the table of derivatives 0(5-1) in a

natrix form as i‘ol;lows:

- A + | AT | ar -
w i © I o ce 5S¢ © o Ct
W b b -b b ||-5¢ ce oo [|c2
w | 7 o 26 o-2b|| o o cfespk||cs
u" -26 2b° .2&? 2b o o -sfe cle C4J

L . L 4L AL
Where ¢ = ACos\o:r_", = Sinbx, e= exp b as before.
or U= A,B.C.

The boundary condition w — K.Ew.w! = —F at x=0
may then be expressed as:

D. Bs .C = —F

.where for j = 1,2,3,4, |
DLy,)1 = AL, 1 - KIER.AL2,}]

And E)o is the matrik B filled with numbers corresponding to

x = 0. The other equa’ciohs to be used to find the vector C are:

D.B,.C = 0O
D>.B.C =0
. D~‘&|__.C_ = O
where for j = 1,2,3,4

DL2,3] = AL4y3 ) DL3,31=A03,73, PLAY)= AT,
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These last three boundary conditions are the same as thosé on page 50,
B, is the matrix B filled with numbers corresponding to x = L.
This is simple to program when there are standard computer

procedures for the multiplication and solution of matrices.

Experiﬁental Verification of Edge Load Theory

It isy difficult»to test the theory for' the éffect of wind |
loads on cylindrical chimneys, especially when a large pressurised
wind tunnel such as the one at Teddington as not avaiiable. However
the basic ideas co.uld be triéd out by loading a horizontal steel
cylinder near the open end with a point load, measuring the changes
of diameter with a large micrometer and the 1lifting of the base
with dial gauges. Strains wefe measured near the i‘ixed ends with

E.R.S. gauges.

For inextensional bending from equation £ (5-12)

. . o0
Abx=3, ¢ =0 Ww o= 'Z_Z;Ez,,\m
For a longish shell from equation (5-14)
Y _ DT (w8, P22 - Pzwm
c B = 3PZRE/DULE m (i)
Substituting in equation (5-12) -
oy = 3Pz R2 i cos ™
DR Z C(wmr—-0)*
- 1
w _ apz R4 s <o P (5-17)
] — D ‘_’_5 2 M‘I-CM‘L__\)?.

The edge loads required to reduce W at the base to zero are

handled as before. | z=aa" lp.30N |P
The dimensions'of» the steel / ﬁ‘ |
hell used for th iment /RS
shell u or rimen 4 .
sed e expe ¢—!—>
) . 7 L3
are as shown. . _; (;}‘_
‘ . 6 . . A .
E was ta.ken as 30x10~ psi L= ag"
4 as 0.3.

Fig 5-4

_ Strains were measured at four positions around the shell at A-A
spaced at 90° intervals » using Saunders~Roe foil gauges and a

Bruel and Kjoer strain meter.
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Measurements of deflections in the u direction made at the
back of the base plate' at four positibns showed that the "pull back"

of the 1ift due to inextensional bending at m = 2 was only 93.5%

effective due to the flexing of the plate. The same percentage
"pull back" was assumed for the other values of m greater than 1.
This affects the change of radii and that part of the stresses due

to edge load action.

The 'change in horizontal radius ( at <f> =90°) is mainly due
to the m = 2 term and is shom; in Fig 5-2 together with the measuredA

values. The shell was very sensitive to small pressures near the

open end and great care had to be taken wiﬁh the measurements.
Contact between the micrémeter and the stuck on buttons was judged
by sound. | | |

Stresses were measured by avefaging the strain gauge readings
on the inside and outside of the shel_l» in bofh the x and ¢> direcfions
and inserting in the appropriate equation (3-11).

The cbmputed values of Ny at six inches from the base are

as follows:

m | pott ek Cosme
loo% aA35% | o | 30° | 6o’ | a0® | 120° | 150" | 18e° | @

) 10.11q o119 1 086, | 0.5 o -0.5 [-0-866f —|
2 | 3571 | 33.44 { 6.5 |-05 | <t |-05| o5 | 1|
3 [1eos|soo |t o |oi |l o | 1+ o |
4 3.6l | 28 | ! -6 |-05| V |-0§ |-05 | |
5 | é.qa_ o 86 | -0%C6L| 05 O |-05 jogéc| |

| ‘To%-o\\'ll\\\c . 626|236 |-T1.5]|-30.06 |-9-2 | &4 1.1

These membrane stresses are plotted in. Figure 5-3 together
with the measured values. It will be observed that good agreement

is obtained.
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© APPENDIX 5

Strain Energy of Shells

(a) Pure Bending

A » : Rdd
The bending moment acting on the 3
Mg
81de of an element lengths dx |
R
and Rd¢ is M?doc 1b in,
4 +d(dd)

The change of angle in the same
direction is Rad G L-3= -X¢ Ra¢
’I‘he work done which is stored in the form of elastic straln energy

s -y Mp X¢ Rag dx__

Sm:.larly the strain energy due to bendlnc in the x dlrectlon

is —LQJ Moe Ko RoLJ? o

CBut  Max = =D (Ko + PR from equations (3-11)

And M(‘) = ‘—D (X¢ & qu(_\

o dV = S, >E A f><“, 4+ ‘Lo'x,_xd?i 'Rd4> dx
| (b) Pure Tmstlng ‘ :

The tmstlng moment antlng on the s:Lde

' ST Myx Rad
© of the elenent in the <{>°<- dlrectlon o \C\?x .
is Mg d T or ¢
is 4,1 __ _'ac.- + The cha'lge of angle A .
- _in the same direction is X#’,&p\d(!). o ' , . ‘x&i Qd(f' qy g+d

The work done wh:.ch is stored 1n the form of elastlc straln

~energy is - Mq,m Xq:-x_ P\d.+ A=

Sﬁmilarly the strain energy due to twlstlng in the :r.4> dlrectlon A
is L Moed: ‘><~,<+ Rou@ A

B M= Mg and W = . Xwd AV = Mg Xoch Rddloc

But Moc<{>.—_- DPO—+D) Kx d -from_equgtions ‘ (}-11)

dv = - DCi— ) Iy Rabpdx



66.

Chapter 6.
FLUGGE'S EQUATION FOF. CCHPLETE CYLINDRICAL SEHELLS

In the previous chapters fairly drastic simplifications
and restrictions have been made to produce equations that are

easy to handle. Complete cylindfical shells have been assumed to be

subjected to purely axi-symmetric loading with bendingl only in the "¢
direction, or to deformations that prodﬁce vending onl& in the ¢
direction.

The general case has been handled by Flugge without simplification
andvthe=charactéristic equation 1is therefore rather lengthy. He used
a non-dimensionzl form of the eigenfunction

px/R

UJ/K = A e cosS m<f>

and obtained the auxiliary equahtion
(pt- ™ )4:4- 4 KA' p4' + ‘Z.Pbgé G wm" \b4 + 2F P+ wm*(1-2m) = 0 --(6-1)

vhere | 4- w4 =. 12 {i— 2 R/ W ,
end F = e[(4-a)mE—2 4+ £
This is a quartic e‘quation in P" and as 4 K* is very
Alarge conpared with the other coefficients it can be solved'quite
readily by the algebraic method of Ferrari.
. Putting P = p* and M= > the coefficients of the

quartic can be tabulated as follows:

| —AM | oMt | —4m? M4
N -6M 2,E Mt (1-2M)
144 -
b 2, 0o b | 2< ad

In 2 typical case R = 3in. h = 0,03 in. 4. = 0.3

m=2, M= 4 . The tabulated values are then:
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p¥ P et = 4
1 1 -6 % | -256 256
06 —24 lo4a.g | —112
0% o000
4 —-15-4 10Q o142, —tist-2 144

In order t§ solve the quartic equation '
P4 4 20 P> L bPPL 2P +d =0
it will be assumed pessible to express it as the difference of
. two squares:

(P* 4+ gP s Y - (sP +E) o vee(6-2)

or p4 + 2Zg P> 4+ Gf'-i-'z‘”'"":‘z') p*
+ 2(qr -sE)P &+ (r*-t¥)
Then on comparing coefficients

g = (,‘ovz-s-lr-—s‘)———‘- b
vee{6=3)

(qrosEd = ey (PmED o ay
Eliminating ¢ and E and substituting for 94 we obtain the
cubic equaticn
2  _ %. r* + (ac-d)r o JiE A(b-a?) —c?*) = o
APutting in the figures for our typical case— |
¢® — 54536 4 400-32¥ — 2921868 = O
| This has the real root ¥ = 54535.99/ which is almost exactly the

value cf b/a ( 54536 ) and practically 2, k% ( 545000 ),

From equations (6~2) & = J<Y1—d\ = v (1= %t) binomial
and  S= Car-c)/BE = Q&— /v as E —’_}: r
Now equation (6~2) can be put in the.form:
PPy QAP 4+ v = = (=P +E)
which can be expressed as the *two quadratic‘ equations:
P> + (x+s) P 4 (r-\-b).' = o
o

P 4+ (a- sd)P + (Cr_tD) =
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Now - | v+ & = '2-\" al).d. | A+ & = 2=

as Q,V' >> Af2yv ‘apd ‘2&\ > /v

W Pt 4 20P v 2 =o . (64)

and P> + ¢ P 4+ & =o0O - (6~5)
v S 2r

'

Equation (6~4) can be solved to giiré 6ﬁe set of roots: |
pr=P = —a x J(o.’-—axj - —axi J2r as 2y 3> ot
| The imaginary part of tnis is much larger than the f‘eal,(46:1) in our
typical case,so that F can be. taken as (2,\*')|[4' (i )/\r?:
| _or K (CElxi)

The first part of the solution will then be:

K (Elxi)x
Wy = A e ® ( . cos md
p(tlx 1) x
vhere - A p* = AKS/RF = 12Q-47)/ REWE

This will be recognisable as the solution for the case of axi-symmetric
bending dealt with in Chapter 2.

The second part of the solution is obtained from equation (6-5).

Y i
P=P= -2 % J(%r}z— f'}r = ~& E1 \/‘Z\" 2s (%,.32' L T

The imaginary part of this is again much larger than the real, (50:1)

d V4 ~ /e
in our typical case,so that } can be taken as (5_‘,,-)4('1:\4:_0/02.

i)
Therefore W, = A eb( V=) CoS m4> - A
: ‘ : 2
- P MZ(M- )T A (- O h
where ) 4’b = A_KA. R4 - \Q_( o~ U”) Re

This will be recognisable as being the same as that obtained in the
case dealt with in Chapter 5 where the bending in the.a: direction
was not considered.

_Neither of the characteristic equations corresponding to the
two sets of roots contdin a term»for‘iwisting rmoment. This suggests
that the twisting moments can be neglebted unless the sﬁell is very
short. In this case an analysis by inextensional bending willAnormally

" becone possible.
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Host problems that iavolve both sets of roots can be handled
. by assuﬁing that bending noments, slépes and normal shears in the
% direction are -proberties of the'lﬁrge roots, while longitudinai
stresses and displacements, radial deflectinns and membrane shears
are properties of the small roots.
Thé integration constants of that part of the solution with
large roots will be taken as/C1, C2, G3,04 as before with displacements
in W ; The integration constants for the large roots will be taken
as B1,B2,B3,B4 with displacements in w

Example | Peosng

[]
" Consider a varying ring lcad -
t
P cosmd about the centre

[

i

. s . I
of an infinitely long cylinder - —T——

where:
P=20"T/in R=3m h= 003 u

E = 30oxto° psi =032 w=2 D= T4.075 lkn

The edge effects will die away in a very long cylinder

Hence C4 = C2, = 81 = &2 = O

Thg next boundary condition for the large roots is zero slope at

=0 giving: = dw/doc = o  eeefa)

| It will be assumed that thé‘ring load ig first carried in -

normal sheér Qx . by the large roots giving the boundary condition
Qe =._%C°5m4)@ o . .»..(B)

A boundary condition for the small roots iszero longitudinal

displacement at =0 giving w = o C eee(e)

The effect of the large root part of thé solution dies away rapidly

from the boundary as € diminishes rapidly with ac . When Qo

is zero the equilibrium of the narrow ring containiﬁg the edge load

-yields a bqﬁndary condition for the small roots:

Resolving radially

T = —PR C.osm<P

Resolving tangentally
1
P SO ] —-L. AT = — | 22’ S;V\, méa “ . -. (d}
. -
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Large roots

()}: Js(\-wv /(_L\,\ = 18.289 w™~

i

4.285 W' 2&33= I57.32.1 >

Small roots o C
A AL \’_\_

More Accurate Analvsis of Case Dealt with Above

It is recognised that the methed employed Zbove savours
somevhat of sleight of hand, and a more.thoréugh analysis is required
in order to justify it. It is inconverient in this case to employ a
different variablé for bbth sets of roots and the deflection in the
radial direction « will be used. The integration constants for the
. small roots will of course heve different vﬁlues from above and will_'
be taken as K1,K2,K3,K., |

Consideration of the moment deformation relations for the

shell together with the statics of the element, while ignoring the

- B = Ao RS = 20-\'74-‘%\0-4 o
b = A .49 <167 W' 217 - 181:228x10°° W73
Then at X = O
(a) aw/ 2 = O SR = Ca
" (b) Q. = -D. 2@3.(('_35-(:4-) = —F/2 |
| LeE= A = PSBED = o 4277 « SRR
(c) W= o . B3=o0 -
) 2
@ s =-ExRZn o - ERR o ()~ -
. B4 = —55.076x10"% "
Deflection W3 at x%o is c3— m‘B‘\—/z.bR
= 0.0006432 + ©0.08!| 1406
= 0 0824
The effect of the large roots dies away when
e.-(gx'< (=) e (s—a:= 2.3 c.;.r VW 0S4 \'»\.
The effect of the smali roots dies away when
ef"b”‘<:<o-\ | < }:q; = 2.3 oy Xx= 51
The longitudinal stress Npat <= o is =\ 2w/
| Cor Ewb B4 = — 2226 (/i) cos 24



A
twisting moments leads to the following relations:

W = & coswd

M= —DCXg + X x)

2 sy
- -3 “‘im(aa%*z+w>+-;4>3‘iz
= D§ er-Nw/rr - o o' 3

Mx = —D(xKe+ » X&)
= >3 - sV o (/) RS

Qg = Mg/ RIG = DL om(wm) C)/Q3+ AJ_@__@“E Swmmp
R
Qe = ’bh’\'x_/ dx = D i TS Ao (=) LD"/ R_LS

N<1> = ~?Q¢/ adp-_- R an/‘ax

= DY D@ st 4wV () cg“%
N R R N N

—

= P§ RSV- wawm-Dw'/R o+ N B L

as/éx = R /R — 2N/ R.2$

DY —en(wE-NG /Y 1 e "/ R*

Il

() .
4 ™ SV~ e (et=D) o/ e 4 b (vt —1) ws/ R4’S Smm#z

D ‘i ot - Qum(m"—\)’dr?(z".‘. m(m“t.\)'f‘:,—/g‘%‘s e b

8 = D§emm"s 2PmCmE) TR+ M-V T/ RAT s g

oNx/2x = -2s/R2%p
=Dy~ w/R w2 et (WD) WY/ R eV § /RS

N = O i —W\Q'VG“/R 4+ 2.0 M(C M) _‘ea‘/ R> _ vt {m™= )" SSQS’/ R° g
C, = du/dx = VENL § Nx- o N2
w o= g O SHm - e § e

L
- Bnd ~ere"™ o [orcamto-wmtleYR

b el ) /R — rmto Y (5§ w5/ RE
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Putting in values of 42 ,m,R for the problem the folloving équations

are obtained:

Qe = D( - o1 w) .
W = D/enw(-o.q w“‘«. L1223 st o-\'bs%Sw -0 \4-_\5 SH@
S =

DCan" - o cs‘;"o.o_m_').gw)sm 2L

As both sets of rootg belong to the solution of fourth order

equations of the form

’a“w—/awﬁ 4 4(3;‘%0 = O

and ?f*oq/ ot &+ a4ty =o

Then = - bs‘v/A_ (;5'4‘ or —wWV/4 %
S = LN QJA Cov -—w“‘/‘é\-b“"
§5 = —eVae® o oV as
= = mel/aet o Lutjant

Table 51, paege 50 can then be used for the integrals as well as

the derivatives.,

The 'COefficients for the matrix to be solved for the oroblem

can now be filled in. The calculations are given in full so that -

the relative importance of each factor can be assessed. In generah

the high derivatives stress the large roots and the high integrals

stress. the small rooﬁs .

Cc3 ca ' K% . K4

(o w -4 .2847 +4 .2847 -0.0444  +0O -o04aq
5y —w™ 1873210 —i57. 2210 ~0.0002 -~ O .0602
o ! ~ ©0.4285 4 o©.a9gs —0.0045 +0.0045
Qx/D -1571.9349s5 ~-15¢- €]2s ~0.00 4" +0 0043
@ -oas™ 4y .s883 4. segq -0:0002 - ©.c002
-t1223w' . 4 4.€13 - 4.8213¢ +0.0505 - o.os05
+0-1333 (& -~ 0.018t - o.0(56 -1V -.4843  _\.4g473
~O-ABIS iy — 5.p008 + ©-0005 -40%. 1574 +40% . 574
w/lp/En) - 126 -19.1% 146G - A1y ~410. \Q13  + 407 2024
) 2w B4 16420 +318.0420 406 .c00a4 4+ . cosa
-o0.5cs! + 1 7139 - l-'lquA + o .0180 -~ .0180
0-2292(ws —©.0269 -  o©.o0a31q - 2.4138  _ 9 .4,y

sS/> + 31& . 3300 +312. 3000 — 24854 _a2.44.9
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Putting in the boundary conditions
lJl—_- w = S =0 5 i Q-J:_ /:D =02.07.2,

and solving, the values of the integration constantc are obtained

C2 = G -4809 x 0% o~
C4 =‘ G - 5‘1'10 3 ,10‘4 R
K3 = ¢ 03\‘?_3 - WA
w4 = . o227 s
LW, = €3 4+ K2 = 0 081\3 o

‘ . : .
-which can be compared with o-ogltt| obtained by the approximate method.

An examination of the matrix suggests tha£ although the slope
cannot serve as & boundary condition for the small root part of the
solution, xi the small root constants cen affect the large root
constants. This should be taken into account when the approximate

method is being used and when u., is not zero.
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NOTATION

Symbols are defined when they first appear in the text. The general
notation is as follows

BEAMS
A sqft Cross-sectional area
E 1b/sqft Young's modulus
I ft4 Second moment of area of section
J ft[‘ Polar moment of area
M 1b ft ‘Bending moment
P 1b Concentrated force
q 1b/ft , Distrivuted loading
Q 1b Shearing force
W £t ' Vertical deflection
x ft Longitudinal co-ordinate
SHELLS
| s 3 2
D 1b & .5 Flexual rigidity Eh”/12(1-47)
R, L, h ft Radius, length, thickness
u, v, w ft ~ Longitudinal, circumferential, radial
| displacements | Shan
Nx’ Ng, S 1b/ft Longitudinal, circumferential, re;gi/al
. forces Shaor
€x, G_y's,_ ¥ - Longitudinal, circumferential, ra(}i'fal
) strains ‘
Mz, M4, Mowfa b Longitudinal, circumferential, twisting
: moments
Qx, Q6 1b/ft Normal shearing forces
x(ft), 95 Longitudinal, radial co-ordinates

4 - Poisson's ratio
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SECTION B

THE ANALYSIS OF CYLINDRICAL SHELL ROOFS

WITH POST TENSIONED EDGE BEAMS

by o
Raphael Foner Rish B,S.C., M,I,C.E., F.I.E. Aust,

Senior Lecturer, University of Tasmania

7. SYNOPSIS -

A new characteristic equation for cylindrical
shell roofs.is developed, together with a method

for obtaining the solution and its derivatives.

"Post tension is introduced into the edge beam
by shearing forces varying liinearly from a
maximum at the traverse to zero at the quarter
points. The Fourier series for this converges
rapidly, An edge correcfion is then made to
restore the post tension to the end of the edge
beam and obtain compatability of strain with the
shell edge. ' |

The method is compared with experimental results
on a'model shell and with the results of a finite
element program, '



NOTATION

w, o W (5
N, Ng , 3 (of&)
€x, €4, x4
Max, Mg, My (10)
Qoe, Qg C(1o/f)
V¢ (/&)
X (4, ¢ (red)
a (o)
R,L,h U
¢, (vod)
£ (o f+2)
A2

D (b))
N

vm
k8
4\<A-

P
A Cogh), T (§4)
P (1)

INTRODUCT ION

A digital computer enables the gravity loading of a cylindrical shell

longitudinal, circumferential, radial displacéments

normal shearing forces

normal force at edge

s shearing forces

s .M strains

s twisting moments

longitudinal, radial coordinates

angular rotation of shell

radius, length, thickness of shell

half angle of shell

Young's modulus

Poigson's ratio

flexural rigidity of shell E\r\'b/lQ.(s-rD") ,

F*TrEQJ'L_

parametric constants.
0 (- R/ W

, constant in Fourier series term F_ cos wa/L_

a root of -the characteristic equation

area, moment of inertia of edge beam

post tension load in edge beam

roof to be handled by using a sufficient number of terms of the Fourier

series for the loading.

When a similar attempt is made to determine the stresses due to post

tension5 the errors increase with the number of terms employed.

This difficulty is basicaily due to the assumption that the traverse

of the shell does not resist normal moVemehts, and cannot transmit any

of the post tension directly to the shell., When this assumption is

abandoned it becomes possiblé to handie the post tension in an economical

manner,

-~
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THE_CHARACTERISTIC EQUATION

Fliigge‘I has developed the differential equation for the cylindrical
shell with the - minimum of approximations. As he points out the mathematical
analysis of such a system is far from simple, The roots of the auxiliary
equation arising from his equation are difficult to extract accurately and

the force deformation relations are very complicated,

The following section shows how Fligge's equation can be simplified
without serious loss of accuracy using Ferrari's method for the solution
of a quartic, The simplified equation has explicit roots which can be

readily employed in the design of shell roofs,

The .eigenfunction for the radial deflection will be used in the non

dimensional form b
W/rR= Ae cos mx/R
-where o= NTR/L
and a1l forces and deformations in the shell appear in the form of terms in

a Fourier series in x.

The auxiliary to Flugge's equation ther. becomes

C P"-m")“' * 4wty 26° 4 FP‘” +Gp-24w =0 ... (1)
-where ‘ 4_\<4- — . C‘_4)7_) R:/ h’z.
F = 1—2(4-—0) wn?

G = GwmA_ o(2-p)w”

The auxiliary is thus a quartic in p'2 and the coefflc:Lents can be
tdbulated as follows

Table 1
8 | p°® P _p* ‘
1 ~ 4yt + 6 m* —- 4 me mE
2 1 . +F + & r £ ?
' 1 - -2 mé p
1 .o b 2.c a

Y

What happens next can best be showan by putting in numbers for a
typical case. Using the dimensions of Gibso_n‘s long shellz, R = 30 ft,
h = 0,25 ft, L = 120 £t and 47 = 0,15, and ta_king the first term of the
Fourier series N = 1, m =T(/4 and Z.,K4 168912

The table then becomes

e (S 4 2
PP | b P P \
b -2:4614- | +2:28%0 | -0.9288 +0.14.4Q
+2 | -374271 | +0-0006 |rca11384q
' —0-604
| ~0 4t | 1 - 466T ~0:9282 [+6472711-259




To solve the quartic

8

P

it will be assumed possible to express it as the difference of two squares

+ 2:&*)"4—\0\34' +Q.c:_\:>q' +d = o

(P4‘+oy.\97'4—\’)q'— (5\9"4- t)o'-.: o C @)

TP 29 p° ¢ (gP+2r s S)pt
+20qr-sb)p*® + (v*- ') = o

On comparing coefficients

9= o , c‘(z—-’z.,v“-s"‘:—. b, g

-qr- sk = ¢, -t = dy; )

Eliminating s and t and substituting for g we obfain the cubic equation

3 ‘
v’ — br* &+ (ac-d)r & “a,\'_oL(,b_o."-),_c."]—.-_ O
a4
Putting in the numbers for our typical case the cubic becomes

r3 + 0-71335 v> 4 27l.141 vV - 488892214 =0 .. .Q;)

d is much larger than .the other numbers in équation (4) and assuming that
r has a small real value it is evident from inspection that r will be very
nearly equal to ¢(b - a%) or -0.760668. Evaluating (5) on a desk computer
. for trial values of r shows that the correct value of r is -0.76067%.

Now (2) can be expressed as:

£ P4+‘ cypZ_t-v"') + ('skpz-t- £E) = o

and  ( P*+ P +r) — (sp*+ k) = o©
or p4’ + (c?_-g- s).lp"" + (Y‘"-\-E) = O -
and P* + (g - 9)p* + cﬁ-t) =0 ... (&)

Transposing (3) it is found that &k = J(v¥%Z ) = 2 wi*icZi
2 . . . . e . 4 4'K4
as v~ is negligible compared with d which is very nearly equal to <w .

S= (.cy‘(‘_. c)/t which is very small compared with g, and r? ig very
small compared with t,
The two quadratic equations in p2 (6) then reduce to:
PA' + Q,PZ ‘+ B = 0
4 X
P +- O~P = O

’ Q':: - 4 ._O_“:LA:, \
p S

* \/(%1‘ + 2wt kZi)

hence

P PP

1

bee
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'The imaginary part under the square root is much larger than the real so that

P’ = -9 £ wmiKUZT) = -H+ m2s m(EVED ... (1)

This can be compared with the roots for Schorer's equation:

pq' = wK(Ex\x1)
and with those of the widely used D.K.J. equation:
' Br= wm* + m(ELXD)
- It will be seen that for long shells, i.e, where m?%< "'5_ the roots of
Schorer's equation are more accurate than those of the D.K.J. equation,
If the factors in Table 1 that do not contribute towards (7) are

eliminated we are left with the auxiliary equation:

FBV A_M“"Pé + Q,Pc’ +.4-m4’ K4'==O

which corresponds to the dimensional characteristic equation

< < (4 4 '
3w 2 D Fw A _4 W
3¢ T MR sgaar T Zagp T AKR G = ()

Before (8) can be used in design it is necessary to find the force-deformation
relations corresponding to it. This was done by working back through
Fligge's calculations and leaving out any terms that did not lead to the
.desired characteristic equation, | |

It appeared that M_ could be neglected as in Schorer's equation but

not the twisting moment. That €4 could be considered small compared with

w /R and Y/R3¢é but that ¥ d could not be neglected when compared
with 9v/R3$ and 2/ >3 . Other approximations leading to the desired
result were the ignoring of N4 compared with N4 in the calculation of
G,x- , ‘the taking of ch\» as D%'i)-%%x and Mé as -D 7(1, . In geheral
the method leads t6 the inclusion of first and second order terms and the

neglect of higher order terms.

. _ Q@ .
’ Q = : Qut )
:; 4 J\M‘i"“’ ‘5‘;; AN
, Mxd + - _ % ) Noc +
M:B\ "‘414‘ <\ N :_\ =

" S+
Fig 1 % ¢-_‘- A o <

N+
.From the statics of the element in Fig, 1.

2 Mg _ 'BM'x.i
Qe = R 2d %
— 2Mxb
Qm = R.BC?
' LAY DR
N¢ = T3¢ - R =
* M LN



35 a N, Qo
5 = R T R
— 'BBM 2, BgM & > Mé
R 34)3 R. aq}ax R 2 ¢
N> 1 25
o> R 29
> Noc |
> > — (
_ 34M4, +L'34M o Mg
Rs 34’4 R” q’ x R® o2

The force-deformation relations are:

M‘? == - R’A—( 34)2. LO’)
D(l_u) >

Mouy —1 = 34’ Soc
3\~~ N
Cx — = = =

) QV”
C—;q, = ?( '3'3 _'05> this is considered small compared with the separate

' components on the RH. side which are due mainly to bending .., & = g—g

- 2u P g S 20+ )
Iy = e "x T awn = En O
'af'__g' — TV 20+ ) 345 _ %u
? x4 ‘ ‘a+ ’ax‘\: - Ew - a«{>a:r:.4 R24* D3
_ u - . ) 2 N
R4 EWR 242 o< ~
o _XMe L 23 M %My g
= ERR L R 3 mc\,sm- RE vde
_ _D { ( ) 20-4) P ’f
: Ew R RS écps aqf’ RE oot
) s Wy B oG RE Yt
.- - DCPQ + 2 'bq,e + 4 R* e dx? + W dxA °

This is the same equation as (8)

The radial deflection in the shell will now be taken in the form
& = W cos Mme/R = W cos Nwoe /L

‘where W is a function only of ¢

The deformations and forces at the centre of the shell where x = 0



can be expressed as derivatives of W with respect tocr The values elsewhere

can be obtained by multiplying by cos mac /R
s g = 3 W dd

.O. = "}"{ ( % 4+ 9')
AW
Me = - (G W) . »
d p——
R e '-’*0-*’)"‘13 e §
Ne = D § d*w
4’ E'!’ i I-s-$-4 L\—Q.(\-'UW“ ] oL(b"'
d.s _ dw
= ““%4%7375’“['2‘ 2= )“"144:33
N = dC,w - ] %W
N 151 + L2 —-2C—)m*] dq’d'g
Now W= Ae,w where A and p have eight complex values. Before we can

tackle the design of the shell roof we have to be able to extract W and

7o

its derivatives in terms of real constants and quantities. A simple method

of doing this will now be outlined,

TO OBTAIN THE DERIVATES OF A SOLUTION TO A LINEAR DIFFERENTIAL EQUATION

Two terms of the solution will be taken in the form:
W= A, eR? o A, R

- Then - CLHW/ d'(Fn = A\ P‘“ehq’ 4+ A?_ E_“ 6E¢

2.

where | = 4+ o = . — ol
S ¢ @ 7 @
It is always possible to express.( as KcosB and A as Ik <inB

- . , o
Now e’ d’ = coSd 4+ Tsmtd

and ( (_058' 4+ 1 50n 8)“ = kv\(_ cCosnd + 1\ 56'\9)
from DeMoivre's theorem, » ‘

LW/ dgt = A (Bt PPt Ao (pmati) PP e

= A, K" (cosnd +isimne) e®® ¢ oS A + | Dt y)

4+ Aq k™ Ccosnt — iginwned e® Ccosad —isinotd)
2 :

=,\<“6€’4’{ECA‘+A';_) cos B + CAL-AD I sonnB ] cosp(d)
T-CAI+ALY StmnB + (A=A cosnB ] 5\3\'\&(‘)

Putting A+ A= CH and ( Al-AD = C2,

L'w/de" = JePP( (et coone 1ca stmnB ) cosdd
' ‘ (-1 stvnB +ca cosnd) st
In matrix form this is conveniently put as
KL cos n®  sonwnb] e_?"" [ cosad simutd || CA

—-S\'N\oLCf (_os.ouf‘) (A
. or A.B.C,



where A depends on the order of the derivative

B the angular position in the shell and C is lthe vector containing the
constants of integration,

DEVELOPING THE PROGRAM

The roots of the simplified Flugge equation form two sets

) P = ~f4+miem £mii = RiE mKi

.
) Pt —L it KK E K = —RLE K

We shall take first the first sét with the positive imaginary part

2 . . .
l(, (05726, + i 95m '2,6,) = Ri + mKi
. Fann 20, = ™ \</ R4 o 0, = -—',3_ avrcYon (mK/R‘\)
k# cos? 20, = R
k“" S(V\,q- Q.sl = W\" \<,1'

k"A C cos? 26, + sw? '19‘3 = \<|4 = R‘?' r ot

oo l<‘ = ﬁ/(ﬂ‘z-i- W‘ILK}>
Taking now the second set with the positive imaginary part

fon 28, = —-wK/R2 . 0, = 75 (T- arctan mK/R2)
\47_ = 4\'/ Q Rt + mt \<.7->

" Then B = k, cos & oty = ks 0,
‘
(5 = \<.2 cos 97_ o(l - kZ. Siw 97_ '
2 .

The matrices for thederivations can now'be set out as follows:

A will be an 8 x 8 matrix with rows corresponding to the m values required
(-' Yo Q,) and columns having the values

k" cosn & k™ sovne, (XK Y cosnb, (—\A.)“_ S,
\47:\ coswO, etc,

B will also be an 8 x 8 matrix as follows:




&1 = e,(?¢ cos ot b Sun ot b }

|~ Smat, coS ok, &
B2 = e:@-q)' cos P f-SJVwol‘+
i S6n ol $ cos ok, $

%

2t .

C will be a 1 x 8 column matrix containing the eight constants of integration

01.0..0000000080

A new 8 x 8 matrix D is now produced,the row number corresponding to

the order of the highest derivative in the expression for the shell

displacement or stress, This is done by employing equations (9),

For j having the values 1 to 8

.D__‘:) = A_—\;)

Do:) 3 Aob

Dts = R. (. l\g + P\_\b)

Do = TR> ( Any + Aoy) ..

Dy = -2 A=y & KEARD) .

Day = +%g C Ay + . Aey) L
> .

wheve K = ) — ZCt—A)jm"

Al K2 = 2—-20-4)m"

M¢

Ve
e

A4S/ dne

Noc
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STRESSES DUE TO POST TENSIONING

The handling of the gravity loading of the shell is too well known to
2, 3

require repetition 7’ 7, However the usual method of replacing the post

tension by the Fourier series

P z __ $m Nﬂ' coa N2~ . .. (Lo)
—
N= 1,380 :

leads to serious difficulties,

This is due to the shear at the edge of the shell being proportional
to the rate of change of the force in the edge beam, or the dlfferentlai
of (10) which can be seen to oscillate with increasing number of terms.

near the centre of the shell and diverge near the traverses,

A more satisfactory series is
obtained by assuming that the past P N RN

tensicn is fed into the edge beam by / \\/

shearing forces decreasing linearly

from the traverse to the quarter
points, This produces the parabolic

distribution of post tension shown

in Fig. 2(b). _ ' I 4terms -(10)
The Fourler series for this ' ' ‘ ’
s P .EF: os T = °o Yy 1z
TR G s ) «
.(n :

Four terms of this series summed up
on a desk cbmputer showed almost
perfect agreement with the curve

chosen and can be differentiated

s
without much loss of accuracy. 4 Ferms-Cn) —
The theory was tested by the “ ° . x ¢
~ construction of a small steel model o cb) o L/Z

shell. shown in F;;iga 8.,. Tubular o 2, |

edge beams were %soldered on to the F'% :

edges of the shell. A steel rod was passed through one of the edge beams
and stressed by means. of nuts screwed on the ends. Buckling was avoided
by fixing the tendon at the centre by set screws. The variation of strain

was measured with eight pairs of Huggenberger tensometers.,

The boundary conditions for the model shell can be expressed fairly

simply.
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The B matrix is caléulated for the right hand edge. This is multipliéd
by the D matrix to give matrix E (8 x 8) which relates to the shell
displacements, moments and forces for the right hand edge when multiplied

by the C vector.

The four boundary conditions for the right hand edge can then be put

- into the first four rows of matrix F (8 x 8) and matrix G (8 x 1) as

follows: ,

1) The rotations of the shell edge and the edge beam are equal

Reference to Fig, 3(a) shows that T
AT | |
ax T (Mg abNpYeos TIE x
da T

2l g e —

Ao GJ

. o= G\'a' SS (Mq;-s-qu)c s"'“"" dox

. (%'"fc:'s (Mg & b4

ot x=o.

Then for j having values from 1 to 8 -

3 X B
| ‘ = pE+dE |
}F—'.) (ﬂﬂ' &’J (E%"'*’E‘*a) = &= R
G = O Fig 3

2)  The radial displacements w of the shell and the edge beam are equal.
Reference to Fig; B(d) shows that

7 e o e

- -m)" =

of =o0

For the edge beam

2 2 .N‘“"X.
M= —ET ‘i_g-z—:. i‘(é;?‘} V4>+hb-§ C»°$_L.._—

wo= g (5P L (T vy obST 4



12,
Fa.;)':- Eo:) + E'L (Nﬂ) 1 e 3 -t-bEsJ”S

3) The tangental displacements & of the shell and the edge beam are
equal, |

. 4 ,
AT o NI NI
ET Txs = TRy cos T

u

. L=\
Lo “_F_l(mr) Né o x=o0

Fay = E_.5 + E.'I.( 3 Ea)

.

4)  The longitudinal strains of the shell and the edge beam are equal,

e . . . E- ' ‘
The strain in the edge beam is T due to the longitudinal force,

The strain in the edge beam at the springing due to bending is
d? : S
b d’x." = 3 W aY! e =o
The strain in the shell at’ the Sprlnglng is Eh (N -/D N@)

A FAS = AE\A (Ec:;— i EA))*‘ EAQ}:)‘TD Eg Om) E°3\>
.F:‘ . |
G‘A- = - EA. -

The B matrix is then recalculated for the left hand edge. A new E matrix
is produced by multiplying B by D. The second half of the F and G matrices
can then be filled in a similar manner to the first, making allowance for
some sign differences, - R . ~

The eight simuitaneous equations'represented by FxC= G are solved
to find the inﬁegration constants C, The shell stresses and displacements
can then be calculated from D.B.C., the change in angular pos1t10n
modifying only B. '

Correction at Corners of Prestressed Shell

At regions remote from the corners the method outlined gave excellent
agreement with tests on the model, and with the results of a finite element
program developed by Phaﬁ\LamAO The boundary conditions assumed however
imply that N_is zero at the traverses.. This means that compatability of
strain cannot apply at the ends of the edge beam where the strain is the

greatest.

‘It is evident that the traverses can transmit some of the post tension

and this is allowed for in the following analysis.
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It will be supposed that the post

tension is returned to the corners of

the shell by applying shear forces S : l—+ -
to the edge beam and S2 to the shell Q, ‘ @ 8—%
edge, both varying linearly from the =t 4 _
, Deam .
quarter points to the traverse, These, “—— P
will produce the parabolic variation D She : S2 R
of longitudinal stress shown in Fig, 4 : ¥ L
. . . [ l L
and will be apportioned to retain < /4 g 4 >
compatability of strain, '
The characteristic equation of
the shell will be taken in its
simplest form:
A 4. 4 d*u ' '
auw . aw _ . ) !
L4t 4K R dipa = © (12) |
The longitudinal strain ‘:T\-:c Q@
will vary with wt P 1
X 4 /axt = o ' N
" ‘Equation (12) then reduces to 8 '
d.gu./ d#g = O
Then W | o
T2 = (ducrgucsgicnr Fig4

Assuming symmetry about the 4 ‘i%_(@) = i_‘;c (-4) and C1, C3, C5, C7
" are zero. If the traverse is fairly flexible in the = direction the
forces produced by the end correction will die away rapidly from the

edge. It is also clear that only compatability of strain with the edge -
beam is of importance, The solution to (12) will then be taken as

gi*& = c2 $° o 03
If € is the longitudinal strain at the corners of the shell
Na = E-\r\;qfe oo/ 1L = E\«\c—;ckf’ ok = L/4.
Then = P2 = qu Ny Rdd =REned. /1 |
P4 EAC -
‘Then P. = Ee(A+ R\~ c‘i’/v} .:..._(143

il

From which €, P1 and P2 can be calculated,

The edge correction has been added to the simplified Flugge solution
using four terms of the Fourier series and is compared in Fig., 5 with

the measured strains along the edge beam of the model shell,

A long shell with poét tension loading on a retangular edge beam
has also been analysed and is compared with the results of Pham Lam's

‘finite element program in Fig, 6.
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. FUTURE WORK

The edge correction method implies a departure from the usual

assumptions that the traverses do not resist longitudinal movements, A

rough analysis suggests that a reasonable design of traverse can be

obtained to satisfy the aséumptions of the edge correction, This will
be the subject of further study,
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APPENDIX
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Analysis of shell with, post tensioned rectangular edge beams (Figs. 6, 7)

P = 500 \<;\05

le= 120 &
R= 30 &
h = ©.25 L+
P = 40° = 069813 vad
d | R4
P = Ee(A+ WRY. /) Q§§J ,
= Ee( 2+ 6:0866e) N T "
A Ee % 2.086ct = 500 «,
At corner. | Fi% 7
N = EVe = Sooxo.zs/g_.oi’écq, = GO kl\y‘,/,g,.
This edge correction will diminish withr$ to the éth power of & / b
as follows ’
P/ &, 1 0.9 0.8 0.7 0.6 0.5 004
Factor 1 0.531 0.262 0.118 0,047 0.016 0,004

It will also diminish parabclically back to zero at the 3 points of the

shell,

The N,,., values obtained from (8) are as follows

N, | B owips | Nae PNk L2, |
1 604,56 ~52292 ~39.773
3 ~130,50 10,931 70572
5 28.19 —2.243 | -13,321
7 ~1.76 0.141 0.069
Sum Edge Total Sum Edge Total
Nx Fourier Correction | ¢« 3¢ Fourier Correction b = 40°
lapa/ 4 Series | Series
Traverse 0 31,860 31.860 0 60,000 60,00
17.602 144160 31,162 || 23,566 26,666 50.23
28,090 3.540 31.630 | 38,127 6,666 479
Va O, 32,487 0 32.487 | 43,020 0 43.02
33.351 0 33,351 || 43.466 0 L3446
33.22’7 0 334427 |l 43,398 0 43.39
4, 33,464 0 33.464 || 43.463 0 4346
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Figure 8
Model shell roof with post tensioned edge beams fitted with

Huggenberger tensometers,



