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SUMMARY 

SECTION A 

CHAPTER ONE  introduces differential equations applied to the bending 
of a beam on simple supports. The solution is taken in the form of 

a Fourier series, each term of which satisfies the boundary conditions 

of the beam. It is shown that a solution of this form produces no 

constants of integration. The more advanced problem of the beam on 

elastic supports is then studiedand it is shown how the solution to 

the differential equation is obtained and a table of derivatives drawn 

up. Particular problems are then solved by consideration of the 

boundary conditions. 

CHAPTER TWO  considers the , stresses and deformations of a complete 

cylindrical shell with axi-symmetric loading. The differential 

equation is derived and shown to be of the same form as that for 

the beam on an elastic foundation. The solution is used to explain 

the anticlastic bending of a plate, 

CHAPTER THREE derives the simpleSt form of the shell roof equation, 

that due to Scharer, and introduces an improved method for obtaining 

the derivatives of the solution. A direct design approach is introduced 

which is suitable for teaching an undergraduate class the design of 

a roof with post tensioned edge beams. 

CHAPTER FOUR  develops the membrane theory of cooling towers built up 

of a number of conical sections. Published results of tests on a 

model cooling tower are reanalysed to give better agreement with the 

theory than was atalned at the time. . The theory is extended in the 

form of a computer program to deal with hyperboloid shells. The 

failures at Ferrybridge are considered and attributed to the analysis 

of cone-toroid shells as hyperboloids. 

CHAPTER FIVE  applies Schorer'S equation to the deformation of a 

complete cylindrical shell with unsymmetrical loadings. A fourth 

order differential equation is derived similar to that of the axi-

symmetrically loaded case but with smaller roots. The inextensional 

bending solution for open tanks is developed and used in place of the 

particular integral in a number of problems of nraatical interest. 

CHAPTER SIX  describes a method by which the roots of Flugge's equation 

for complete cylindrical shells can be extracted. It is shown that 

two sets of roots are obtained, the first identical to the shell with 

an axi-symmetrical load, the second identical to the shell with an 

unsymmetric load.. 

SECTION B 

The method of chapter six is applied to Flugge's shell roof equation 

and gives rise to a new characteristic equation with explicit roots() 



iv 

A shell roof with post tensioned edge beams is analysed using a 

Fourier series for the post-tension which converges rapidly. An 

edge correction is applied to retain compatibility at the ends of the 

edge beam. 
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PREFACE 

Since coming to the University of Tasmania in 1961 I have been 

lecturing to final year students in the theory of plates and shells. 

The thesis has been written in a form suitable for use in the course 

and has been derived from first principles, either in the body of the 

text or in the appendices at the end of each chapter. This means that 

the reader is not being referred constantly to other texts in order 

to follow the reasoning. 

My interest in shell structures began eighteen years ago when 

I was engaged as a cooling tower engineer by W.V. Zinn Consulting 

Engineers of London. The only published material on cooling tower 

shells was by A. Fischer who had developed the membrane theory of 

single cones subjected to a wind load expressed as a Fourier series. 

The considerable stiffening effect of the upper part of the cone was 

neglected and another error was introduced by the differentiating of 

the Fourier series. I was able to overcome both of these problems 

and so entered the general study of shells feeling that I had already 

made a small contribution to the subject. On the other hand I had 

taken a short war time degree course and found the mathematics 

involved in the theory of cylindrical shells extremely daunting„ 

The only writer in the field that I was able to follow with any 

facility was S. Timoshenko whose "Theory of Plates and Shells" I 

have taken as a model in exposition. This was because Timoshenko has 

assumed that his readers either did not know or had forgotten all but 

the simplest mathematics and so was prepared to develop his mathematical 

tools whenever the need for them arose. 

Following Timoshenko I have introduced fourth order differential 

equations by considering the behaviour of beams on elastic foundations. 

The study of circular axi-symmetric shells follows naturally from this. 

The easiest shell roof equation, that of Schorer is then developed 

together with a novel and simple method of obtaining the derivative of 

the solution. The edge beam problem is normally beyond the capabilities 

of an undergraduate class,but a direct design approach is adopted 

which enables a class to design a shell roof with a post tensioned 

edge beam in a one hours problem class. This approach is probably not 

appropriate for practical design work as it does not yield the most 

economical solution, but the method is accurate and shows clearly the 

principles involved. 

Another look has been taken at the cooling tower problem and 

the test results have been reanalysed with more satisfactory correlation 

between the tests and the theory. The failures of the towers at 

Ferrybridge in 1965 have been studied and a suggestion for the cause 

of the failures advanced. 
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A similar equation to Schorer's has been derived for complete 

cylindrical shells_With unsymmetricn] loading. This equation is a 

fourth order one, similar to the axi-symmetric equation but with 

smaller roots. Edge effects therefore do not die away rapidly. A 

cylindrical shell with one end open and the other clOsed can bend 

without stretching under defined boundary conditions. This inextens-

ional solution can serve as part of the solution in a number of 

problems of practical interest in the same way as the membrane theory 

acts as part of the solution in the case of the shell roof. 

One paper that I found of great interest was by N.J. Hoff which 

compared Fluggels shell equation with Donnellls. This suggested to 

me that the roots of Fliiggels equation could be extracted and those 
terms that did not contribute to the result could be dropped to 

produce a simplified eqUationThis was first tried in the case of 

the complete cylindrical shell and resulted in two fourth order 

equations, the first identical with the. axi-symmetric equation, the 

second with the unsymmetric equation. These could be combined in 

the general case. 

' When the same method was applied to the shell roof equation a 

new eighth order equation arose. This had explicit roots and was 

more accurate than the Donnell equation for the longer shells. It 

was found that bending in the x direction could be neglected but not 

the twisting moments. The effect of the twisting moment on the mem- 

brane shear stresses was however negligible and the orthogonal membrane 

shears have been taken as equal throughout. 

This ziMplified FlUgge equation has been applied to the case of 

a shell roof With post tensioned edge beams. An improved method of 

handling the post tension is introduced which agrees well with tests 

on a model shell and with a - finite element analysis carried out by a 

post graduate student Pham Lam. This work has been presented in a 

form suitable for independent publication in section B. 

The author's publications on shell structures are included in the 

biblography. 
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Zinn and  Associate s , London. Built by the Mitchell Construction 

A group of  cooling towers de signed  by the author when working with 

Castle Donnington Power Station 

.
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Chapter 1. 

THE BENDING OF BEAMS 

The study of elastic shells is considered to be a difficult one 

for an engineer. The subject will be introduced by first discussing 
a problem which is more familiar. 

A uniformly loaded simply supported beam will be analysed by 

solVingits general differential ecivation, a methbd that is also of 

value in the study of shells. 

The general differential equation is obtained by combining the 

statics of an element with the moment-deformation relation. Its 
solution is the complete answer to the problem when the boundary 

conditions are included. The choice of a form -  of solution which includes 

the boundary conditions may sometimes avoid having to 'evaluate constants 

of integration. This form of solution is known as an eigenfunction. 

4. 

SIMPLY SUPPORTED BEAM 

Statics of Element 

Resolving Vertically 
aCZ anz 

aCai a tc = 
Taking Moments 

ctor, 	ettr. = 

m cirx = sal 
Moment Deformation. Relation 

ts4 == 	aky" aoc.!.  

ck 	awl 	!=  

	

--aa/a0c. = 	El ato.y/ a2c. 

The differential equation of the beam is: 

/ 	• • • 	.- 

Some approximations and assumptions have been Made in the derivation 

of thiz- equation. The deformation due to shear has been neglected and • 
4470 the curvature taken as + which is only correct if the deflections 

are not not too large. It is assumed that there are no longitudinal forces 

• in the beam with a vertical resultant. Otherwise equation (1 -2) applies 

to any elastic beam with any loading and any condition of support. 

The particular case of the simply supported uniformly loaded beam of 

constant flexural. rigidity will now be discussed. 
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YN= 

fl2 2. 

In= 3 

The solution will be taken 

in the form of a Fourier series 

where each term satisfies the 

boundary conditions which are 

ia.) Symmetry about the 

(b) Zero deflection at the ends. 

co 
Take 	CAS ..:.-..... 	Cart  cos inn pc 

Condition (a) is satisfied by 

taking only the cosine terms of 

the Fourier series, condition (b) 

by taking only the odd values of n. 

Substitution in (1-1) gives: 

EL (v/ )2-  I tor, y12-  co $ niT oc./ 

Or/ 1,..).3  S. IX" n3  sin  

E 	 cos nix' ,3c," 

POE. 

fame 
EMEEI1 

• • • C1-3) 

A constant value of q can be expressed as the Fourier series: (Appendix 1) 

Where 

9, Cos "IT "X. / L. 
fl l i3 j 5..• 

4 ct. 9r 	49r/sir 

Substituting in the last equation of (1-3) and taking a term by term 

correspondence of the series gives: 

sate  L. / 

Which, obviously decreases very rapidly with n. 

For n = 1 w = 0.01307 qL-: I 	at x = 0 

The accurate numerical coefficient is 5/384 or 0.01302 

The higher derivatives are less accurate if only the first term is used.. 

Thus 	M= 4qL2/ T1 3 	= 0.129 qL 	at x = 0 

Whereas the correct coefficient is 1/8 or 0.125 .  

And Q = 4qL,/IT I  = 0.403 qL 	at x = L /2 

Whereas the correct coefficient is 0.5 

In shell analysis it will be found that terms are integrated with • 

respect to x and the error involved in using only the.first term in the 

Fourier series for .w is . acceptable. 
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6. 

Statics of Element  

Resolve vertically 

Talce Moments 

BEAMS ON ELASTIC FOUNDATIONS 

The reaction at the base Of the 

beam is taken as varying linearly 

with the deflection, the elastic 

constant being F lb/sq ft. 

aQj 3) ex. 	IP"ca 

Moment-deformation al to/ b=2" 

Then 	al1011 	

,Puri 

And the general differential equation is: 

Z14 k4r 	 to. 
1 -II- 

P 

a ,x4 	EI 	E.I 
This has a particular solution 

 

03,  ra  / Fr 

which is the deflection of the beam under the distributed load q 

without any reactions or other point loads. 

The complementary function is the solution of the characteristic equation 

	

3414/ aoc.4  4. 4-b4 	0 
	

(1-5) where 4b4  = F / El 

Taking the solution in the form 

and substituting in (1-5) 

PA% kOAC  CZ! 	kN4-  A eYz  
giving the auxiliary equation 	p44. 4  = 0  

then p = bt[77 	= b (+ 1 + i) 

where 	i is the imaginary 

This can be checked by direct multiplication 

2- 
( 4-  1 + 1) 	= 1 +2i -1 = + 2i ; (+21) 	=-4 

A has four complex values corresponding to the four complex roots of 

the auxiliary equation 

and 
	

Ne. 
 

+ A4 	
(-I -1)0c 
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7. 

Combining the imaginary parts into cosine and .sine terms to get a real 

solution (Appendix 1) gives: 
63: 

C9. we ..  e  ( ci coG looc 

-67x. , 
+  co5 k) gC 4- C4 ivN. 

Differentating this expression gives: 

1 	• bx 
ail)/ 1Jc. 	(aS 	e  C.9-.) cos 6 ,x: • + 

b 	j GC4C4 ) co S boL 4-• C— C3 —C4-) Sliet 6x 3 
which is the same expression as before but with a multiplier -  and 

different coefficients. Tabulating the result and repeating the 

manipulation enables the other derivatives to be obtained rapidly 

and reduces the opportunity for error. 

S( 	) MA' 
ab-al , -tn .x. 	I '<- 

CO ..-> boc• vl b .a.:. cos6-)c-.  

rsl 	
111  

—
 _1) 	

_Q 
c-el. 

c i C9... C3 C4- 

= 

Ci 4-C - CI 4- Cs/ --CS 4- C4- -C.3 - C4- 

- Cl ..i- C2. -CI-Co. C3-4- C4 -C.3 .4- C4 

TABLE 1-1 

The values of the integration constants C are found from the boundary 
conditions. 

Point Load on a Long Beam 

NOW e.  increases rapidly with increase of 	. 

As the effects of a point load decrease with 

distance on a long beam Ct 
	

and. 	must be zero. 

At x - o 	 cos 	 0 u=o 	- 3 4- C.4- == 0 

Atx= O. _ 	Pif 111 

2b ( c 3 + c4) 
(14 = F18 El 63  = P b /2.,F 

Maximum deflection 
11= Cls 	FW2;F 

Maximum bending moment 

Mo -'7-• 2  b2- I C4 = .P/410  
A similar fourth order equation arises in the study of cylindrical 

shells with axi-symmetric loading. 
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— L 	-I- I [ C2_ 0 

C3 0 

cA.44 C4 0 
•••■11 

readily solved in a particular case and the deflection, 

■11. 

-.- I 

4-I 
a 3i 

This can be 

4-I 

ct 2  
Q..4. 2.  

8. 

Short Beam with Central Load 

P 

It is assumed that the beam does not 
lift off the foundation. 

7-77747/ 	////  

If the beam is short it is 

not possible to take Cl = C2 = 0 

Four boundary conditions are required to solve for the four kaux 

integration constants. They are: 

At x = 0 

At x = 0 

At x = L/2 

At x = L/2 

Q= 	P/a. 

LAY/ 3 	--- 

M = 0 

The boundary conditions can be expressed as simultaneous equations 

that can be solved to find the constants. Putting bL /2 = k 

(1) 	— CI 	4- 	C 2. 
P 6 C4. C 3 4- C4 	2,64 E1 = F 

(2) c2. 	-C3 	c 

(3) - 	 e. cost( 2- -I- e sun C.% — e c.05k C4 L.= o 

or 	°Lac C-1 	'4" 	QC.2. -fr. CA  33 	c4-C4  

(4) _ Qk  c_os k .4- s 	C.A 	C..k<  COS 	5iv%ks )C 2- 

- + -e 	c.c. s  ‘c— )C3 CCosk -k-Si'nk)C4 = 0 

or 	CA,41  Ct t c 49 	t C143  C3 4- 04,44  Cet =_- 0 

In matrix form this can be expressed as: 

moments and shears calculated from equations (1-1) and TablI (1-1). 
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APPENDIX 1 

Bending of beam 

Consider a short length of beam 

subjected to a bending moment M 

and divided into plane sections 

normal to the axis. 

After 'bending the curvature must 

be constant as the bending moment 

is constant. The only way the 

elements can still fit together 

is for plane sections to remain 

plane. 

C A,  

  

It will be assumed that there is a horizontal plane NA which does not 

change its length during bending. This is known as the neutral plane 

or the neutral axis. The radius of curvature of the neutral axis will 
be called R. 

Consider an elemental area dA 

distance z below the NA. 

The old length is the same as 

the neutral axis which has not 

changed =Rde 

The new length = ( 	z ) d9 

Strain E, 	 ) 	 cl f)  
R 

Stress 6 	rL 
Force 	== 

The net horizontal force on the section is zero 

and z must be measured from the centroid of the section, ie the NA 

must pass through the centroid. 

Taking moments S 7 1  a A 	ER' 

Giving the familiar engineers' formula 

kY1 == 	E 	6' 



S 9, cos rox-%. c.os 	 0 	t.vn1es5 

oy, t-124 
" 

v-% 

10. 

Now 1 / R = d / ds 

If slopes are small 
e = -dw / dx ' and ds = dx. 

.% I / R = ajctUT\ = • 
coe aa.1 	d. 

And M = -EI d2W dx 2-  

Fourier Series for Constant Load 

Let 	cv == 
	

coS nil X /1- where n has valus 1 to m 

Multiply both sides by a particular value of COS Yll  IT XI L and 
integrate from 0 totL/2.  +LA.  

L/2 
9, cos YILIToc 4x F:_.- r... 	9, cos vya ....,  cos n'Trx.  cloc 

L. 	 L. 	L.. - 	" 
If q is a constant the left hand side of the equation is 

4 Li 2.. 

I,  YVTI.  -1, 	7. - J-142. 	
2:._.a.i 

Y" IT 
	 Sin via- 2. 

Q 1...=. S 5in 
-1 

n'TT oc. 1 

i-rr 	iS  

—Zc.L/ ri 	 ts 	3 , , I 	• 
Considering the right hand side of the equation 

+L12. 

4- cv n'TT 

•— 	CV / -ccN 	4 Y1 =a '5, 1 	%% 	• 

ManipulaIion_21:_conmlex roots 

In general 

C.% 't 

cos 102t. 4,- 1 sin bot. 

b3c. 
e- 	AI cos No.x. 	P■ 1 	 \Co ) 

$0-x. 
cos kox. — 	cS; ,"• 

Putting c_i = 	I 4. P■ 2. 

e-6 	c‘ cos 6-3c. 	c2. siv-, 6 • • • 

As the deflection is real the constants must be real. 
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Chapter  2. 

BENDING IN SHELLS 

Moment S and forces Will be taken per unit width of surface. 

Consider a lamina stretched in 

its own plane by stresses in two 

directions at right angles x and y. 

Taking Hooke's Law and 

Poisson's ratio into account: 

aes  .... 
E ey  -..-. 	€), 

= 

or r---* 

 

.•• 

Similarly 	(r 	-- 
Y 

4- 	E.y..) 

 

.*. 

 

Let the lamina be part of a thin shell of thickness h, with original 

radius of curvature R measured to the middle surface of the shell. 
The shell is bent by a distributed bending moment M lb in/in to radius R'. 

The middle surface of the plate 

corresponding to the neutral axis 

of a rectangular beam does not 

stretch 

The strain of the lamina E; f: 
=, ( 	z)de'-(re  z)  d 9 —z. (de/ 1- este) 

( Ft + 	 Ri cil,0 1  or fc46). 
if z is small compared with R. 

as 

t 
Hence . 6= 

where ,( is change of curvature 

Thus from kiic4 equation (2-1) 

= 	Z I ■. Asc. 4— 4' 	-,f) 

GY  
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Taking moments 

z ctz. 

	

ZTTI-0-1) .X .,t  4-1 	7,1  az. 

	

ev•,3 	
_•042. 

	

L-Xx.  -4- 	"(3) 
4:0 1. 1 

== — 	(  

M = 
••••• ••■•■• 

Where D the flexural rigidity .  =, 	t17 	( 40) 

Similarly 	Lz — 3) "41 	4>X7t) 

The maximimum bending stress is on the outside of the plate. 

6. - Li'max 	0 .s 	av.d. 
	 2, 61.a..vg S 72.  d.z 

	tsh2/4 

	

eda 	te‘2'  

Axi-Symmetrical Bending of Circular Cylinder by  Edge Loads 

The statics of the element 

will be considered first: 

From the symmetry of the loading 

Wit and N are constant and 

there will be no membrane shears 

(in the middle surface) nor 

normal shears 	. INI7c, and 

the normal load q will be taken as 

zero. 

Resolving radially and multiplying the distributed forces per unit 

length by the distance over which they are acting: 

a CA% 	cit4 
• 4)7e-- 

t4oUcotct 	0 

Taking moments in the x direction.: 

c1.2c. kcs,(1) 
a 	 G  dez 	.*. 	tsA•Ki 	azz  • • • 

all,kl, 	aQ1c, And....... _  
a  

The force-displacement relations are obtained • as follows: 

+ 	C C. R.-- LT') S4 — MI. R aci) 

64, 7:1 

•••■•• 

as there is no stress in the x 

direction. 
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1:b/ unit length acting on the middle surface 

eAfN / 

flY1 104  

% ata / a x7.- as shell was straight in the x direction 

7)4: 46611411RY:,-... 0 as w does not vary with 
! 

(S 4-4 IA R.-4.5) -. R, 	-- if w is small compared I.:6.th R 

• 	Ku.  „ 	4IET 	4pLa-po.) 
a =I. 

It will be shown, that 4?-4 is very small compared with the first term 

in the the bracket. 

.*. 	Moe.. 	(31(.4.7/ xt  

And 	Gtx.  = -7 3) 2;10.1)(igc3  from equation ';(2-3) 

Substituting in equation (2-/0 

—.D. 	 uri 

or 	214(47/ 	c4-  4- a. 	(4.1-  

Putting this in the form 

bta / 7C4  + 4- ( .4.  (47 :v. 0 	. . . (2-s ) 

where 
	4 ç 4  -.---- 1/cD  

It will be seen that we have the same characteristic equation as the 

beam on an elastic foundation. The solution will therefore be the same 

with (; substituted for b. The assumption as to the relative magnitudes 

of the curvatures can now be checked. 

If the constants of integration are taken as being of the same 

order the ratio 	alga/ a 7C 	c0 R 

i s 4)/ R .1  

 

or 

 

R.2. 

Taking Poisson's ratioil as 0.3 the ratio becomes . 	11R/ h : 1 

A typical value of R/ h would be 100/1 so rato is 1100:1 

And neglect of the Second term is obviously justified. 
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As the complexity of the loading increases it will be found that 

the expressions become too difficult to handle if all the terms are 

employed. It then becomes of critical importance to know what terms 

may be safely dropped. A general method of working this out will be 

introduced in a later chapter. 

Long Cylinder with edge loads  

    

     

M0  -3> to' 	at x=0 

Ck = (.113
Ail at x=0 

o 

    

    

The complete solution to the characteristic equation is: 

1,7e 
C cl cos ibx- 	sivk e4 .)c-) 

e. 	cos pc 4 cAr pc.) • • • (2-6) 

As the deflections die away with increase of x Cl and CI are zero. 

Referring to Table 1-1 we find that 

M 0  = - 9. (62' (-c4-) 	C4 =/ 

(341 0 	2.(341)  cl c.4) 

••• C 	- 0  243 3) — C4. = 	( M 0 + (110) 
Hence 	G5■ 6, = 	= 	( 	<;20.) • • • ( 2 1) 2e 3) 

And 	CAS 0 	(1  C — C 	C 4 	 c.l tswto+ ao) - • (g.-e 

These equations enable most problems in thalaxi-symmetric bending 

of shells to be readily solved. 

_pot 
e becomes small compared with 1 when cyX73 ie(0.05 

So edge effects die away when 	,c) 3if(1.4  '2? 2..3 ltr 

This means that for axi-symmetric loading on a complete cylindrical 

shell almost all shells can be taken as long shells. 

This is not the .case when unsymmetrical edge loads are applied, 

the effects will then extend a considerable distance from the edgg. 

Anti-Clastic Bending of a Wide Plate  

When a plate is bent by a moment exerted in one direction only 

it will be found that the edges curl up in the opposite direction. 

This effect can be studied by the shell theory just .  worked out. 

First assume that the plate is bent to form 

part of a oircular cylinder radius R with no 

curvature in the y direction. 
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M 	C -2(.0  4. 4.1"x 	4.? 3)/ 

Then isAi can be cancelled out by 

apply?ing end moment tg, to the 

cylinder 

214;,3? p Mo 	Glo .) 
•

,.2. p...r)  
I:kV% 	AP  

00•1•11 	 t.R276:7,) 16) 
4,  	to% 

.5.27CA:70.) 
If le 7. Co 3 
	45; 	kfq 11  

The shape of the bent plate can be found from equation (2-6). 
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Chapter 3 

SHEWROOFS 

Membrane Analysis of Shell Roofs 

When the loading and edge beam conditions are appropriate a 

cylindrical circular shell roof can deflect without changing its radius 

of curvature. Thus no bending 
moment in the it dii-ection will 

occur and hence no shear normal 

to the shell. As the curvature 

in the longitudinal direction is 

usually negligible the shell can 

resist the applied forces with 
stresses only in the direction of the 
shell. This is known as membrane 

action and is statically determinate ie 

the stresses can be calculated by 

statics alone. 

A 'shell roof with uniform 

vertical loading will be subjected 

to a membrane analysis and the 

corresponding edge loading and 

deformations calculated. If the 

edge conditions are not the same as the 

membrane analysis bending will be set 

up. This may be handled by the edge 

load theory to be developed in the 
Ft 

next section. 

Shell roofs are normally of concrete 

and Poisson's ratio is usually 

taken as zero. 

Taking a vertical loading q' lb/sq ft 

as a Fourier series in the x direction 

= t 	cos 0111Ca1 . S virm 
'Ay 	 Vt 

Resolving in the z, 4, , x directions 

t441/ R = 	co S 

as/ agc. +  
. gm apx 4-  

24147. 

?LIS§ a) 
a+ 

Hence 	
P4 611 	c1/44 	coS 	COS rn.x. 

= - 2. chs 	(lVw. 	co1 VV% pc 

=(2CL JR.) Co S 	Cos vvvatt. 
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The traverses are considered to be rigid in the z and 	directions' 

and to be flexible without restraint in the x direction. 

Integrating and putting in boundary conditions S =0 at x = 0 

and 1,4 2i= 0 at x =tL /2 

5 	cid TY‘') s 1) cos •nNw.. 

	

R ftli• 	CoS 	CS 

The force deformation relations are 

CL 2c. 	Appendix 3 

0 

	

tNi PA/ k 	• • 

ehr  =  

r au./ ik 

_ s/ 

i& 4) 

Then 	B fit  4- e64 4/ 2t 4) a. 	E: 	?$1; if  a .0c. 

or, 	atv/ a-ac. 	=. 	E•h)( Q. a 5/a2c, 	1.1 x /Raep) 

C. (kJ 	— 4 - 2./ fki-ftml. ) sie"cp,c-crsvvv,c 
Integrating and putting in boundary: condition v =0 at x == L /2 

V 	/ v-0( 4/ me- 	R.1  of‘4 ) s et, Co5 YVA2C. 

Now (AY = 
	av/ a4  

ay/ a 1, 4- ( 	c.v.) R.L 	cos vwx., 

4/ vv:7- 	9.1 c w‘ii. 	R 	CoS CoS vbr)C. 

The rotation 
	

aux/ 	v/ 

In membrane action the shape remains circular, the rotation will be due 

onlY to stretching in the op direction. This is negligible. 

It is convenient to keep all quantities in terms of cos mx so that 

they can be coordinated at the centre of the shell where x =0 and 

cos mx is unity. Gathering together the forces and displacements worked 

out at x =0 

N+ 	cos+ 

cr = C 	E X, did vv,k2. 4- 9/ c4.1 vt44) st;1., 

	

x. 	s%4 

	

= 	(2.014.  R 00-) cos 43 
	 (3 -1 

c 	ei.:)(41 tit"?' 4- 2-/ at 4".4.  4- al') 034 

9 
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Edge Load Theory_for  Shell Roofs  

chorer's method provides the simplest form of characteristic 

equ tion for the shell.. It is accurate only for long shells ie 

when II R  

The approximations are: 

(1) M , 04 „, 4 42are• neglected. 

(2) C=..4, 	are condidered small . 

( 3) 
	

Component of Q in 4, direction is neglected. 

(4) 	tA0 is taken as 	(4/C(L.42'and the 9: curvature is neglected. 

The last two are the more serious errors which are shared by the 

much more complicated Donnell-Jenkins equation.. 

. Resolving and taking moments on element: 

,cki, 	am4/9a4 	,)401i)s 
0.171, 

J> 	ea 

_N ei) 	iaTc;? 	
ft.3  D 

6 
j) 	a 

2) 	- 	R.? 	R41  a cpG 
a olx 	 2,1.; 
A x 	 e9 

sI4x 
11.?40x. 

Integrating and putting in boundary conditions S =0 at x =0 

and r■Laeo at x = el, /2 

ata- 	s;v. revzc 
R+ wt a4 

3> 	a ur cos vv. oc. 
Rs  

Taking e l, as small compared with the bending displacements 
€4 	_ 21v/Rz4 	tzif< 
av/ Df 

and 	ass/fa it) w.4' •64e0/ 23. oc. 	. 

D. .a490- 
Rs a ep • . . 	( 3 - 2.) 



Now 	W 	a LA,/ R.24 4. 	vf 2c. 

Taking lc m4 as small compared with the bending displacements 

vi a oz. 	tAl R. a cp 

and 	bsv/ 	 b5v../fOlf 

e„ 	 1•12.c./ 

2. 	 a-4.14x and 
 

Combining equations (3-2) to (3-5) gives 

1 94 

12. 0) a4c4 
Vi al- 4 X.4  

This is Schorer's characteristic equation. It will be noted that this 

is not dependent on the expression used for the deflection in the x 

direction. 

p. 
A solution to Schorer's equation is 	A e 	cos rnac 

the indicial equation being 	+ 12, le m4/ h 

or o 	where k= 	41:  IS/Th-45-(Y-1;1 • • •(.3-1 ) 

-p has eight values from De Moivre's theorem 

cos 0, 	 0 

• -± cos 0 2. -fr. 	s 

• 

921 
4, 

1 
o g  

" 

where el = 22.s°  andez. G-t-s° • Therefore in this case 
= at 	= co • 91.4 k •  

Combining the imaginary parts to produce trig terms and throwing away 

the positive real parts as the edge effects die away from the edge 

 

41  C  C Ci cos oc,4) 	sc". 

+ e 	 Ccf, oc i.(1) -- C4. 5IA% 0‘.2.4)1) coS nVr. 
(1-8) 

This expression has to b differentiated:ilaccessively to obtain 

the stresses as laid out in equations (3-1). The general form of the 

n th derivative is: 

k r et.  c t cos re, + c.. 9,) co  

4- (CI a

• 

v8, 	cos n e,) siAN 	) 

4- 	cs cos v..9.1. 	CA Sm." n 00 Co S 0(. 1.4) 

+ a' CS sim, 	— 4 cos v.19 2. 	0( 241 C.os 

• • C 1-9) 

	

(see 	Poi,13-0...41,4 S) 
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The coefficients of the shell functions are shown in the following 

Table (3-1). 
ONO 

S'Cia) " Tz_ C- k)" Cos no, st,p. nO cos n 92. Su.% net  

V -1 I -If k 0 .c”.4. "'a' '3%3 0  • ..fs'l .o . ,57.4. 

Lof 0 I 1 t 0 1 o 

?LAIN) I I —k 0.'13'14- cs.381 o. 3 40 .97-4 

Ivit 2. -D/  o • -761 0 .10-7 - 0 :lei es 

CO 1 -IV 4Pc, - 0 0 • 33 0•924- -.0-524 -ô.33 

N4 4. D/R.3  k4  o t 0 - 1 

zsioc s —2)/ R4  -tcs  —0.393 0.S.4 o•914  
40  -Pievvti k4  - o .101 o.1°1 O.-7o1 0.101 

_ 

Direct_plagn_pf  Shell with Post-tensioned Edge Beams 

The method to be outlined 

does not lead to the most economic 

design of shell or edge beam. It is 

however a good introduction to the 

use of edge load theory and reduces 

the calculations to the simplest 

possible level. 
- (3. 92.4 kdp 

decreases rapidly 

with 0 and is negligible at the 
opposite side of the shell. The 

-0 . UM tat) same can not be said for 

unless the shell is very thin. 
tA7 To prevent the edge effects from 

from one edge beam being carried 

over to the other side and complicating, the calculations WQ will choose 

the boundary -  conditions to .  make Cband<:4zero. The use of a post 

tensioned edge beam gives us enough control to do this. 

If CI, and C4 are made zero then at 4, o2c fr. 

ECO) rt (ci cos v,o, 	ci 	,s, 	+ membrane effects. 

The edge beam is made narrow enough to be flexible without restraint 

in the horizontal direction. It will however be fairly stiff against 

torsion and will be taken as having nO,rOtation 

	

Then ( 9 si tg  4, 4- 14 41 K.) 	Ni\I4CoSck, 
0 	K- 	

(P
ecittx,k.cAk 	.nlevvtlor as/Ae. 
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And Re r. ( (Ay/ 	+ V •24.45e. toad. = 

These boundary conditions enable C.A and at to be determined, and hence 
the deflections, forces and moments in the shell. The edge beams can 

then be designed to agree with the forces and deflections at the edge .  
of the shell. 

Eiample  

L = 120 ft,. 

R= 30 ft. 

h = 0.25 ft; 

= 40°  

co. 40° = 0.766 
sin 40 °  = 0.643 

_E = 3 x 106  psi = 432 x 106 lb / sq ft. 

= 0 

q' = 50 lb / sq ft. ( mostly dead load ). 
Taking the first term in the Fourier series 

q = 4Wim 	= 63.6 lb / ft sq. 
m2=  (11/L) 2 	= 1/1460 

Membrane forces and displacements ( Equations (3-1) ). 

at L.H.) edge cip =-40 ° 	x = 0: 

144? = - €1,1Z czs 4,= 	— 	 .ct- 

aS/a-x. cs - 	rz. 	 %So/ .0 

NI= (/ 1.A7- ") cos 	- 4130 00/.4 

V 	= 	cif/ elft)( 4/ vvs aL  4 2./ 	vt".4  ) s'vv. 4 =— 0• ao 4.0 .-ct. 

Ca/L4./w 3 / '4- ev./ )(4./vAl Vikt  Wet  4. 'K2  ) cos 49  Vame ri•■•=0 4- 0•:2 0,  SI. 4 

Edge 8onditions  

k 3c,4 	 friTZ. 	4 

2.o .8 'o/ -ç 2  
From Table 3-1 with C

3 = Cie = 0 the boundary conditions are: 

Condition 1 No horizontal  reaction 

• %so,  4:4 	32e C1 	4,  7•2. C 

H4, COS 4wtc dmIl• 
	 4013o C.2. 

• 1g2-8 -  ci 	+ 4 ins c2. ••■••■• Ill 

Condition 2 No rotation  

•••■•• •=1.0 

	

Re 
	

- 3.2r CI -4. 1• 4J-Cz, C2. 	-= 

	

Then C 1 	cr• 	and 
	= 	• 2.3.S 

The forces and displacements at the edge of the shell can now be 
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calculated and are set out in Table ( 3-2 ): 

4 (ce) lz.- ,17‹ cicosrvg, C 1 1'40Na Edle. LAI M42:401 -1-,04.1 

V (.0 • 15 - o•ol - 0.0'o 0. 042. -o .t1004. o .038 

GS I -0•0436 0 -0.o86 0.005 -o•ctal 

aalbt —4 - 0.019 O.00 €2•044 0 .004 o•o4o 

McV - lobe° -0•0(01 0. IGG 1050 loGo 

Q4) 1 350 - 0 • 0 '3' d • 9.11 2.45 o 2.45 

NI, 552.0 o o .2.55 i2.50 •-•%4Coo 7-10 

71)SibX 1 t 0 0 . o 33 o.2.1 118 is1•13 26,o 

I'4x 8000 o•oGi o.1(0 114o0 - 4-130 141'0 

Design of  Edve Beam weight W lb / ft. 

The self weight of the edge beam must be expressed as a Fourier series 

term in the same way as the loading of the shell. 	IV= 

Resolving horizontally: 

all 2)% = S 

-r 	= - Sc $/a :)c 	Anc. 

	

Allowing for post tension • WiVirs 	r. 
, 

Resolring:vertica_lly : 

20112/ax. = —( RN, 4- Nov) 

Taking moments: at■Af v7. tr.z. 4;4. 

IsA SS 3,c4/21x. Gix et%  

Allowing for post tension 

tsA 

Stress at springing taken at the neutral axis of the edge 

6x 	Nx / t-N 	63\n•tre. A -= 

In our example at x = 0 on the L.H. edge beam 

Rv 	c;) cos 	s .r0° 
4 

= U C04 4.0° -... 	ç, ZAP. 40° 	940 A. 

.c Litt y- a s/ a 	= 	38 	k:v.s 

case 

beam in this 



so* 306  406 

■t[g. 

$0°  36°  40°  
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ma 
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6,4 	V-% 	—14-4 ‘i..tk•Ds /44-1  Or 	1000 p■Si Corn VoteSSiom 

The edge beam must be designed to satisfy these edge conditions if the 

analysis is to be correct. 

Take width b = 0.5 ft. 

depth d = 5 ft. 

Tendon force is P at eccentricity e 

Area A = 2.5 ft. 
I = 5.2, ft: •  

2.5 x 150 x 4/11.  = 4'78 lb / ftmq. 

(taking first term of Fourier series ). 

Rv+ W = 0.8 kips/ft. 

M 	( Tr/ 	El. Ls  
-t2. %<..\p. 	 111 	— ee_ 

Glc =r ( 330 — PV 2-6 = 	— 1 A-4-  _ P 	— 	1-1-0 kl.t., s 
e. 	. 	1.7G 4 •-• 

Maximum bending stress = Mot/ 2-1. 

Maximum stress = 	_ 	14110 / ct i 
	— 1 4,4"4 0 p 

The post tension should become smaller towards the end of the beam. The 

variation of forces around the shell at x = o are shown below: 
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ANALYSIS OF SHELL WITHOUT  EDGE BEAMS 

The boundary conditions on the left hand edge are: 

(a) _ tvit = 0 

(b)  

(c) t1/44,  = 0 
(d) DpDc. = 

Each of these stresses will be due to the edge load effects from both 	- 

edges ( 13= C) 	). and the membrane stresses. 

The effect of the edge load on the right hand side will be added 

to that of the left hand side when h is even and subtracted when it 

is odd. 

These calculations are tedious to attempt without a computer. To 

facilitate computer programming the equations will be put in matrix 

form. 

Expressing Table 3- 1 and equations 3-1 in matrix form the stress 

and deflection functions f(w) can be written: 

A.B.0 t F 	(3-10)* 

where A[8:4] ie eight rows, four columns corresponding to the eight 

values of n (-1 to 6 ) is: 

L cos Y1 $9, 	bv‘ $A 9  cols 

-44' • Putting 	e 	cos 4:4,4. vv. oc, 	= 	€.4-c 

Matrix B is made up of the sum or difference of the effects from 

either edge. 

- e.s 
e.si 	e.ct 	0 	o 

es-2.. • 

wi 	= 0 

eage,) 

eci = 	2. 

este.s 	o 
•••■••■,. 

B2 is of the same form with A)2.. cf) 	.when considering the L.H. edge 14. 

or .21414  41 elsewhere. 	A.B2 is added to A.Bi for even values of n 

subtracted for odd values of n. 

C is the column vector k C1 C2 C3 C41 

And F is the column vector containing the eight membrane functions 

corresponding to the edge load functions. F[2i and F[3] will of course 

be zero as no bending Or normal shears are produced in membran..e action. 
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The four boundary conditions can then be expressed as:. 

(a) A[210(B14.B2).0 = E[21 .0 = -K2) 
(b) A[3] .(B1-B2).0 = 3] .0 = -F[3] 

(c) .,B1+B2).0 A[4] (  = E[41.0 = 

(d) A[5].(B1-B2).0 = E[5].0 = -F[5] 

This set of four simultaneous equations can be solved to find the values 

of Cl, C2, C3, C4. Then any stresses or deflections in the shell at 

.x=0 can be found from (3-10), by putting the appropriate value of 

in the C matrix. At other values of x multiply by cos mx. 

Some ingenuity is required to program this in an efficient manner. 

It is suggested that the reader writes this program as an exercise. 

It took me a full working day. 

The results of the analysis of the shell of the same dimensions. 

used in the previous section ie. q= 50 lb/sq ft, L= 120 ft, R= 30 ft, 

Is4  = 400  are shown below. Both the first andsecond term in the Fourier 
series for loading and deformations have been taken. It will be seen 

that little difference is made by taking the second term into account. 

The stresses calculated for the shell without edge beams do not fully 

demonstrate the advantages of and edge beam over a free edge. Playing 

about with a model will show that'a free edge is extremely flexible to 

live loads and would tend to flap about in a gusty wind. This could . 

rapidly destroy the shell. A shell with an edge beam however is very stiff 

and can safely be designed for uniform loads. 

Isb term 
2, termS 

to° 	9.0° 	$0 0 	40° 	 lob 	200 	 30° 
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Force Deformation Relations for Shell 

Forces in shell are expressed per unit of length. 

Thus 	= 	V-1 . 	lb/ ft. 

NA 2c  lb ft/ ft or lb. 

(a) Stretching of shell 

Lt- _t %CA.= 4- 	+ 	 .= LA,* aoc 4 e,c.ax 

u./ 	if change of slope is small. 

Similarly 
	R, 

However if there - iS a radial displacement 

there will be an additional strain 

= -c.)-J R.  

E.,f?  =  
as for lamina in equation (2-1) 

RA-1 

N cti, = 	4) 1' 	 64,  4-  4,  elc) 

When the shell is deformed by shear

the shearing strain ICL4=  4— )(2.  

au. 	4..  ay 
• 

The membrane shear 

CIV = EA't  • "1",„4, 

The sign convention for shear 

makes a positive shear extend 

the diagonal in the positive 

direction. 

(b)Bending of shell 

27. 

is change of curvature. 

X 	7= a'4 ,-yi oc.' 	as for beam. 

4, is similarly alls/ acti but in addition there will be a 

change of curvature  	if w is small compared with 
(('.-63) 	R. 



nctri) chc rep crx a a 

ac,ut 
cpx. di 

c0-  
cCr 

4-cut 
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Then as in equation (2-2) 

and tV14 = —D ("K+ 4- 9 ) 

Twist is change of angle in unit length 

ace \ 
	

1*(3.  

But there will be in addition in a 

cylindrical shell a twist due to the 

movement in the + direction.  

X ,(4, 	PX.4,.„, 
	41'43- 	4. a...1.f. 

Consider thethe displacement of a point 

distance z below the middle surface. 

awisk.a4p 	-z. 74.2c —z -x4 
E. 
17;715 4. "cxxt,  

The directions of the twisting moments P4 , 34 

and IA txwill be taken as those causing a positive 

deflection across the positive diagonal. 

( this is different from that used by 

Timoshenko). 

Integrating across the thickness of the shell: 

Et.s3  
ts•Ax.4, 	1%4 	= 	x. 	=. 0.04,0) 

        

	?Is 
74.  

  

/mg Mxii? 

    

       

        

        

Collecting together together the relations we have derived for a cylindrical 

shell with x taken in the direction of the generator and putting 

N 

•?) 	aoc. 	€4, 	t c 
NJ 	4- 4) co 	t44= N E.,!?  

?f4, = 	a via oc. 	$=.. 	 % 

e(-Va4z  Gs) 
tA,x. 	_3) ( 	+ "X 

	
M4 = —3) ( -X4 + 	Xx.) 

SI,s/ a‘x.aep 

M 	Moe. 	D C - 4., ) 	 • 	(3-•11) 
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Chapter 4. 

COOLING TOWERS 

Natural draught cooling towers form the most numerous and 

economically important class of civil engineering shell structures. 

The largest towers are over 400 feet high and three hundred feet base 

diameter with walls usually 6 inches thick. They are built in groups 

at steam powered electricity generating stations and large chemical 

plants and have to sustain their own weight and the forces set up by 

the Wind. 

The analysis will commence by considering the stresses set up 

by wind in a shell forming the frustrum of a cone carrying on its 

upper edge a known meridian force 1`4,4° and shear So both known 

functions of angle 

When the shell is thin compared with 

the radius and the tower is made up of two or 

• more cones of different angles, the deflections 

are small and a good approximation for the 

distributed forces is obtained by neglecting 

the bending and twisting moments in the shell 

and considering only the three membrane forces 	, ts415 and c; 

It is assumed that the wind pressure is a known function off. 

The shell variables will be taken as r and 5b. 

From the geometry of the shell 

= riCOSci. dx Ar/COSo( 
vYlevick icun 

'3C-de = rc4 

c9 d#/tt cto cos ek 

Resolving normal  to the shell 

ciLs  av(05 ,k 	dylc9soc 

-VR= 

The other equations of equilibrium 

differ from a cylinder in that 
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(a) Nt has a component in the meridian direction 

C-05 04. 	1--44,  dor 0(4 

(b)('The meridian S has a component in the 4 direction 
"‘j AS ay- j c_os 	 5 og...y- 

(c) The lower boundary of the element is larger than the upper 

boundary. 

Resolving in the (I) direction  

cl.-t4d? dor/ cos 	S ot_s r 01Y) Ci(jp 	S r a 40  '7=  

ctNict)  OLS 

/ 
alr 

INLA) 
coSd. 	Ci) 

Substituting for 4from (4-1)1 

with respect to \C 
I 	3  

r15 	 r  
cx, cos 

where CI varies with db.: 

Now 25 	S 	v- 

p 	/ 3(v'L C.0S Gk. 

0 	, 1 / -2.. 	 z L r 	 . — ro pf• ) 4-- S  
3 s CA-..4. c..0‹, oc 

and putting 

5 	 3 s 	oz. COS ok, 	 0 
	 . • . C.4. -'1) 

Resolving  in the meridian  direction  

( 	4- 	M 	ar) cL4 # ctS ctv" Cr'S 	1)< rciA? 4-  i\t() citY' GUI? 

a , 	N 
or r 	1,4 	 r % ) =  dor 	 cos.4. a4,  

Substituting from (4-1) and (4-2e\i and integrating with respect to y- 

- )11 
V; — ) 
r. 

-4-- 	S c., \cc; 	\c' CoS oc 	-4– :ID 

putting 	alp/04 and integrating 
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Where 	varies with 16 

Now (NI x 	>Q..) 	when Y.' 

ii 

D  2, 3s‘t;  

N )(0 yj) 	 ) 
r 	. 

17"  
s 	costc4 	 r 

r' 	r 
substituting 

H= 	(1--V19  

2. 

5'0 " — v1 7- )/ coso; 

For the special case of a cylindrical segment it can be shown 

from the membrane theory for a cylindrical shell that: 

Nd? 	- 1pr 
S 	L 	So 

N 	Nxo — tt 1272,y-  — 

....(4-4) 

 

 

This will be left as an exp'rcibe,J for the reader. 

The calculation of hqxo and  So 

For the topmost segment of the cooling 

tower Nyo and So are zero as there is a 

free edge. The membrane stresses at the base 

can then be calculated from the equations 

derived above. 

The membrane force Nx at the junction 

is then resolved into 

(a) fti.c.0 in the direction of the lower shell. 

(b) H 	in the radial direction. 



NI X0 	H, S 'uNe■ (11-  --c:A. 0.)/ SW\ c--( 

1-*<• Sk.nr.e.1-4,/ St:re•-c>c - • • (4-5) 

svv\ (-4 0---4 )/sZ,v\-< 

_  

The membrane shear just above the 

junction is 5 and just below the 

junction So . 	will produce 

a localised radial force Tat the 

junction. 

< 	 

  

_32 . 

   

Resolving radially 

r 014  

Resolving in the 1/.  direction 

( 	So) `rok4 = etT 
Ger 

S S — c;• 	c.i 

In 1956 two model cooling towers of the dimensions shown below 

were tested in the pressurised wind tunnel at the National Physical 

Laboratories in Teddington England at Reynold's numbers approaching 

those of-full scale towers in moderate winds. Pressure distributions 

were obtained inside and outside the first tower which was robustly 

constructed of sheet steel. A second similar but more lightly 

constructed brass tower was fitted with strain gauge rosettes and 

used to measure strains near the base. The discussion of the 

experimental results will follow the analysis of the tower. The 

following has been machine worked but is given to only three decimal 

places for conciseness. 

To_p_Section 
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The membrane stresses at  the strain gauge level recorded  more 
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Model Tests 

The Reynold 's Number ofa cooling tower . throat diameter one 

hundred feet in a sixty mile per hour wind is: 

v cy,p 	x loop -sg to 	104' 

At 1/100 scale 	Re. = 5.(ox V55  

This lies in the region where the boundary layer is changing from 

a laminar to a turbulent one and the pressure distribution obtained 

would not necessarily be applicable to higher Reynold's numbers. 

Rirthermore the stresses set up in the model tower would have been 

too small to measure accurately. 

For these reasons it was arranged for the model to be tested in 

the pressurised wind tunnel at the National Physical Laboratories 

at Reynold's Numbers of 6.8x %O 	11.e>xtc. No significant 

differences in pressure and stress distribution ( measured in terms 

of the reference velocity head ) were obtained, between the two tests. 

Pressure readings were taken both 

inside and outside the shall at the levels 

Shown and have been averaged for a given 

value of 	in Table :j4,-1. 

To obtain the membrane stresses in the shell from the 

analysis it is necessary to find a curve to fib the empirical 

pressure readings around the shell. As successive derivatives of 

ID with 	are required in the analysis it is not possible to 

choose a Fourier Series to fit the pressure readings. A limited 

Fourier Series becomes inaccurate on differentiating and an infinite 

one may diverge. 

A simple exioression in the form: 

\=, cos V3.c) 4- C 

fila .5.7; be chosen to fit the pressure curve over the front portion of 

the tower. 	(where po  is pressure when ep = o and c is constant) 

Then 	\b it 	S c_os 	cl) 

) ‘Iv =,.... 	• • 	S) 

\Dv 	— 



35. 

And - to 15 	i •fl e• 
o 

- ro• 	e 	esci) 
....(4-9) 

 

 

  

Taking p as(0.916 cos 25204-0.637)4 .  a good fit for the pressure 

curve is obtained over the front 4  40 °  . Substituting these values 

in (4-7) Nix  , Nand 5 are obtained and are compared with the 

measured stresses in Fig. 4-1 below. The strain values and their 

reduction to membrane stresses are given in Appendix 4. 
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Fourier  Analysis of Model  Shell 

It was felt that it would be of interest to fit the theory 

to the experimental results around the whole circumference of the 

shell. The method adopted was as follows: 

The curves of 1-4,„ S and p can be expressed respectively 

as: 
c.05 

21 

L C. 

Substituting in equations (4-7),(4- 8 ) and (4-9) 

...(4-10) 

and 	 ..,(4-11) 
-C( v 	irni -v,3x 0- 	r,5,4 

A Fourier series of 19 terms (every ten degrees) was fitted to 

the experimental curve of t-1 ), by computer to find (L. C 	was 
then calculated from (4-10) and b from (4-11). The curves for 

and 	were then computed from the Fourier series and are plotted in 

Figure 4-2 against the empirical values. The process involves the 

integration of the Fourier series and is hence permissible. 

The Fourier coefficients for the wind pressure are given in 

Table 4-2 and may be used in design. As however the important membrane 

a, 

stresses lie between cl) = 0 and 40 °  it is much easier to use the 

single term expression 

= 	(40 6 a 5 2-4 4-  0.46 13.2,  

where 1:7,  is the wind pressure on the front face of the tower at 

the level under consideration. 

4e-Nlk 	oc) 	- y-,%(  ('.o1 Ce. 	-62 ) 
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38. 

Computer Analysis of Hyperbolcid Shells  

Cooling towers are not built today with 

two or three conical sections although such 

towers were sometimes made before the Second 

World War. The most usual and the most satisfactory 

shape is a hyperboloid or hyperbola of revolution 

although other similar shapes are sometimes 

employed. 

The equation of a hyperbola is 72/o1 — 

or 	ri 	A■ 2:2  4- C. 

If R4 is the throat radius and FL2 the radius at 2:=1.W. then 

C. =R42- 	and 	A =  

Cooling tower shells are constructed with formwork that is straight 

in the meridian direction. It is therefore arguable that it is correct 

to take the tower as being made up of a large number of conical segments. 

Thus the analysis in the previous section can be 

applied to the "hyperboloid" cooling tower 

without loss of accuracy. 

The velocity of a strong wind is normally 

taken as varying with height in an exponential 

form 	V 	V40  ( 14,4o )  

flft, is taken in the British cAtode of practice C. —Chapter V as 0.13. 

It would be expected that the pressure on the front face of the 

tower would be ev'/( 9.5 where () is the density of the air in-lb/cu ft 

and V is measured in ft/sec. This is known as a velocity pressure. 

Then 

V› 	V7 C. IV 41-ora.  cos B4 

Idhere io 	is the velocity pressure at forty feet above the ground. 

The constant suction inside the tower has a small effect which 

is taken into account in the working program but is omitted, here in 

the interests of simplicity. 
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The calculation is carried  out  as follows . 
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The analysis of the truly hyperbolic tower has been carried out 

by Martin and Scriven. Little difference in results is obtained 

compared with the method just outlined w4or.e .a.s 2i;he theory and 

programming are considerably more difficult. Furthermore Martin 

and Scriven's method is not applicable to the cone-toroid towers 

that are often built. In this case the lower part of the tower is 

a eone while the upper part is formed of an arc of a circle or a 

hyperbola rotated about the centre line. Only a minor modification 

in our program is necessary to make it apply to any shape of tower. 

It should be noted that the membrane streeses are considerably 

larger in a cone-toroid tower than in a hyperboloid of similar 

dimensions. It was the failure on the part of the designers to 

appreciate this that was the basic cause of the collapse of the 

cooling towers in Ferrybridge in 1965. 

Further Discussion on Wind Pressure  

The results of the tests 
0 
0  25 on the first model cooling 	_C 0 

tower indicates that the wind 

pressures on the front of the tower 8 

ReS.Pres5vre 	%It  ulp 

-TO? 

in a wind that increases from the 	1. 	/ 
o  / 
, 	 4 
0 ground up are not exactly the 	 . 	Measured. ).- 	t 	 . ..0 	 . 	...„......, Pfessure 

velocity pressures but art ' 	0 	 / 

	

_ —4._ ___f _ 	I ..:...c 	5 	/ 
near the base of the tower and 	/..0-,... 

/ 

rloime.  closer to the top. 

Also the distribution of pressure 	0 o.% 0-4 o.G 0-8 

around the front face is different 

from that in a uniform wind being slightly less acute ie e)-- 9...4s 

compared with 2AS2. for a uniform wind. Theseeffects can be shown 

to cancel out and the velocity pressure taken together with a 5 
value of 2•52. gives a realistic value for the membrane stresses 
in anuisolated-,cooling , tower. 

There is a further factor to be considered. Towers are 

usually built in groups and the upstream towers modify the pressure 

Vc-‘c.c-i\-`3 FVesSure.. 



41. 

distribution around the •downstream ones giving rise to a worst 

ES 	value of 1:).'2:T. This result was obtained by further tests 

• carried out at the National :Physical Laboratories in 1962. 

This change in the S value has very little effect on 

a hyperboloid cooling tower ;  but greatly increases the membrane 

stresses in a cone-toroid. 

Fe rrybridge  

On 1st November 1965 a moderate gale blew in the English 

Midlands. At Forrybridge in Yorkshire the Meteorological Office 

estimated that the maximum wind speed lasting for one minute was 

between 49 and 54 mph at 40 ft above the ground and 68-74 mph 

at 375 ft above the ground. There were eight cooling towers newly 

constructed at the power station each costing £290 000, standing 

375 ft high with a base diameter of 290 ft and walls five inches 

thick.' The towers had been designed for a steady wind velocity of 

63 mph at 40 ft rising to 84.3 mph at 375 ft in accordance with 

an exponential value of 0.13. Nevertheless three of the eight 

towers collapsed in the wind. It is the opinion of the author 

that these failures were caused by designing the towers as hyperboloids 

and constructing them as cone-toroids. 

Reinforcement was provided in 

the towers to carry the difference 

between the meridian stresses due 

to the wind and the dead weight of 

the shell. 

The meridian stresses due to 

the design wind on the tower as designed 

and the tower as constructed are shown 

in Figure 4- 3. It will be seen that 

for the cone-torcid the reinforcement 

will be stressed to450%of the design 

for an isolated tower ie in the front 

rank, and 5007,;fer the shielded towers. 

colne 
-Vbr•citck 

Vt,sp. 
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However for the one minute velocities experienced at the site 

at the time of the collapse, the unshielded towers would have been 

stressed to about 100% of design and the shielded ones to 400%. 

This is in agreement with the failure of the towers in the rear 

rank hut not the front rank of the installation. 

to 	 20 
1‹1 los/ ft- ost- cti 

1-7 1 CI 4-3 
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APPENDIX 4 

Stress-Strain Values for Model Tower 

Strips were cut out of the model shell after the tests 

in the wind tunnel and subjected to a tensile loading test in a 

Hounsfield Tensometer. These tests gave an E value of 20 x101 G  1, 51 

for the inside gauge and 13.0G x 10 (1" for the outside gauge, over 

the strain range experienced in the model tests. This difference 

in E value was most likely due to the straightening of a strip 

with inital curvature rather than a difference in the gauge factors 

of matched gauges and an average value of 1(0.53 x lo G 
	

has 

been taken for the conversion of strain into stress. A poisson's 

ratio of (5•33 has been taken. The shell was made of 24 gauge brass 

sheet (0.025 inches thick). Then from equations (3-11) 

i■1,4 	(1- 	w. 	P 

The original strain readings were recorded in NPL/Aero/316 

G. 	1.4 
as 	,g y. to -7  ev/9_c3  sq ft /lb. To obtain membrane stresses 

as Nx/ 4o etc where 	is measured in lb/sq in. 1 r  

N = IG.V5xlexo.o2.5 108  x 144-/0.69t = O.G68 

	

NI (1- P/2 	0 22r 

The strain rosettes consisted of three gauges at 45
0
x, xy, y. 

The strains for the inside and outside gauges in the x and y directions 

at '1'1) have been averaged and recorded as ex  and e,i  • The strains for 
'X%-j 	 'X 

the inside xy gauge at- ck and the outside 

at 44 have been averaged and recorded as 

. The strains for the inside outidc 

gauge at# and the outside at-0 have been 

averaged and recorded as e x,3 1 . 

From the Mohr Circle 

+ C.3 	_--,... 	4- 
	1 

e  

Where 	is the error assumed equal for the four gauges. • 



Then 	 = 
'' += 	-.Tcks  

2Cn 

Average pressures and strains •••■••■•• 

, 'S ..x...5 

1.553 100 - 

lo I .456) - _ -2. 13.5 - .. 

ao 1.2..is -74. -41. 5 -2‘..5 4(0 10.-/ -44.1 

30  0 . SC,2. 35 - 21.5 -45.5 41.6 3-6.C,, - -28.9 

40 a . 421 -1.5 -- IS -4,2 49. -19  

Lo - 0.0 oil- -. 34-6 1.5 -4.4 - 51 -34.6 1.5 

C.o -0.385 - 5g I 2 -54.6 1G . 5 -5(0 14 

To 

io 

-0. Goi 

- 0 . 6 % 

•- 65.5 

-GG..5 

I c, 

1 5 

-40 

-1G 

-6,.5 

-11.5 

-6,4-S 

-44.6 

8 

1 -1 

'To - 0-235 - 5 12 -1.G -44.5 -524 • I?›. I 

loo 0 • oil - .4-G 1.5 1 0 -4G.5.  _46.8 8 

110 •194- -2o 2 . g G. G -31.5 -29..1 0.4. 

120 0•204 5 -Co S' -11.5 (€ (0 - 8.4 

130 0 -1c1 -7 3o -14.5 4- -1 fV0.9  

140 0•121 233.6 -11 " - 24.9 -14 .4. 

(50 - 25 - IC, 5.  5 -6.5 t.2..•9 -1g•g 

(.40 o• 3 '2.1 _IS .S 5 -5 I 5 •G -(G.9 

i7o - - -s ' 	-- - 

(go o•tgl IS _14. 1 I 13.8 -13.3 

	

= o.GGB 	s + 	G-3) 
Fi 4,0 	oG8 	c 	4- 0 • 	.oc.) 

S 	 C 

The test data were processed on an Olivetti Programma desk 

computer. 
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Chapter 5. 

COMPLETE CYLINDRICAL SHELLS 

)2. 	= 0 
Schorei.'s equation 	acps 	V-12- 

for the deformation of a cylindrical shell under the action of edge 

loads was a partial differential equation with variables in both 

the and x. directions. This was handled in the case of the shell 

roof by taking the deformation in the oc. direction as a trigonometric 

function. The function chosen was a term of a Fourier series which 

satisfied the boundary conditions at the traverses. This reduced the 

partial to an ordinary eighth order differential equation with 

boundaries at the edges. of.the'shell; 

The complete shell has no boundaries in the + direction 

so that it is appropriate to take the deformation as a trigonometric 

function in the 4  direction when the loading is not uniform around 

the circumference. 

	

Putting 	La == Z71. col,rnoi) 	Schorer's equation becomes: 

2.. 	8 	__ rn 	4.7 
a rx.4 	 R 

Which is a fourth order ordinary differential equation in the 

ex. direction and can be handled by the methods derived for the beam 

on an elastic foundation. A considerable increase in accuracy 

without increase in difficulty in this case is obtained by taking 
r Az' (ix ) 

the curvature in the 	direction as 1-E16  L a 4,1.. 	instead 

a'us 
of— 	as in the Schorer method. Also the component of 

11".2'act■' 

	

(a4  in the 	direction which was -oreviously neglected due to the 

necessity of simplifying the equation can now be taken into account. 

Finally the boundary conditions in the oc direction are more 

easily expressed if the equation is derived in terms of Lk- instead 

of (As' . Surprisingly enough it is found that the equation is not 

changed in any way by this change in variable. 



1Nt)c 	ci 

5+as 
Q4, 4.(N 

Nup  

N 

tsG/ + CEP 
ACI) 11— 

P"  NA, 4-404? 
tit 	NA4, 4- a !\44, 

Qs. 

4 7 . 

The simplifying assumptions to be made with the exceptions mentioned 

above. are similar to Schorer's. They will be justified later. 

They are: 

(a) y Nitt, is small compared with N4 . 

(b). M 	1•44.are negligible. 

(c) (E4 is small compared with deformations duo to bending. 

(d) is small compared with deformations due to bending. 

Taking moments and resolving 

the 	Y > 4 and X. 

directions the forces on 

the .edges of the element 

the following relations are 

obtained. 

G24) = aL--v4K a 4, 

M4) 
R acr- 

as 	scii? _ 	I ( . L4 4. 	M c!? 
R 	c4TZI  ‘• act) 	ac17,  

x.
as  

R- al) 	• 

3 at, P.44 

To simplify the diagram 	1.4./-  d'x. has . a 
been written dNx  etc. 

Taking the radial and shear strains 

as being small and putting 

ay. 

uspz, 

'6v/a 4 	tLY 

YV/ + a 'DC. 	0/ 

+ 

a2v/ 	aNk/R.af4  

or 	3(013 	=-- 	• -  
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We now take the final equation of statics (5-1) in the form: 

'D3  Ny 	al'  5 == 
R. N, 

M  
R3 	3 1)2  x. 344  

This includes all the four equations of statics. 

Simplifying condition (a) leads to: 

or 	 au." 

Combining all these relations with the equations of geometry (5-2) 

the differential equation of the shell is obtained. 

E 
4 Lk.  

( a eaoc. 

D ,' a4 U.. 
dr+ 

3 ckT  2, 	 + 1,4 	ats 	) 

to 

a) g 

  

6 
.S3  Lk \ 

Or 	a4
U. 	 ..D 	( 	:41- (1■ 	 tx + 2, - ± -c(---e- ) ---= 0 - • . C.5--S) 2, ,x4 	E In R.6  \ b cy4- 	43 c. 

This partial differential equation is now turned into an 

ordinary one by putting _ (A. 	cc,5 ry. 

Then CO5 VY \ trnit.  - 9, sr.16  YY1 .8 	cos w.ci) 

=0 
Dividing through by c.,os0,13 and putting 	VCV v). (t- 4-P-) 

0 

 

  

6(Tril.-1)  Where 	,4_ 	= 	 4) 1 ) RG 	or b = -211  ZR 

It should be noted that this root b is small compared with 

(6 	for axi-symmetric loading,. which is 
q/ 

43(1 -  

6.7c R.  
Therefore e_ 	remains close to unity for comparatively large 

values of oc and the effects of an unsymmetrical edge load will 

not die away rapidly from the edge. 

The problem remains of expressing the forces, moments and 

deflections of the shell in terms of the longitudinal displacements 

N x  is already known. The rest are obtained from the equations 

of statics. 
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a --LL 

al-  a 
E \ft 4, 

Sur.. rvA, • 6) 

B 5 _ 
5 Vs". 

YNA '2. 

R. 
FA+ <-05  

E =. 

Co 

yn(yni-o  
v 	 5 us". Vsr■ 

r\--4 	- 	 
n\z—• I) 

J.) 	(yrj 	UT 

E R.' 
a-y . 

YY17-  C 	1 ) 7- 	6 

u.k. 

4 k74 R.. a 

Qc1) 	•=1   
Fl dp 

1r1 R2-  -3  0 u_ 
Irmo 

rn(rnz-i) 

Cl.  

• • (6- (-) 

It will be noted that integration with respect to 47,  

produces no constant of integration as this is taken care of by 

the eigenfunction. 

Tank with uneven Settlement 

Cylindrical tanks with open ends are often constructed upon 

ground that settles unevenly under the weight. It is of interest 
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to be able to calculate the stresses that are set up in the tank 

walls due to this settlement. This can be done by thebtheory just 

developed. 

' The settlement will be taken as ti. 0  = 	F: cos 24 

which means thata point at the circumference at oc.. 0 and cl) = 0 

settles .4F relative to the other three - quarter points. 

The lower end of the tank 

open end of the tank there is 	Ix 
1 a free edge and there can be  

no shearing or longitudinal 	F  	F 
F 	t 	7.- 

stresses. These four boundary conditions are sufficient to enable 

the constants of integration Cl„ 03, C4 to be evaluated. 

-h wall is prevented from moving 	 = 0 
C1, 1 	0 

radially by the floor. At the 

(1) At 	ct. 	. 

(2) - At 	oc. 	o 

(3) At 	L- 	S 

(4) At 'DC 	 ‘Ny 	0 

The table of derivatives of the solution to the shell equation 

is given below. It is identical in form to Table 1-1 for the beam 

on an elastic foundation with 	substituted for (AY . 

2, /  av,  
R .1 R4 (I- 4,-5 

TABLE 5- 1 

& ( -1) VluIV•• 

b e  --lox 
P.- 

cos !:)--,c. s"..,1.3 .x co, 6, --)c  

CA c 2. C-3 C.4- 

6 C.( +0.2. - C1 4-02. -C.. - )-1-c-4 -C3,-C4 

- C1 - C.4- C_ 3 

-CI + C2 --C.1 -02 C3 + C.4- -C3 -I-C4- 



 

-r 
0 

0 

  

•■■■ 

	

I 	0 

	

- t 	I 	I 	I 

-SE 	C, E 
(c-s) L 	(c+ s) E 	- cci-sVe (c- 5)/ el 
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Whent--- 	: 	a. 	e_. 	cos 	.1 , 	st.N. 

PuAting 	E = e.. 61- 	C == cei 5., ID L_ , S .. ...), 61_ 
) 

the set of four simultaneous equations to be solved to find the 

constants of integration can be expressed in matrix form as: 

, When the solution is carried out by computer the matrix can 

be left in this form and handled by any available procedure. It is 

difficult to get a satisfactory solution by slide-rule as the 

constants can not be obtained with sufficient accuracy. 

- A solution using a desk top computer such as the Olivetti 

Programa 101 can be attempted as follows: 

and a 	made unity by dividing the third line 

by 	CE 	and the fourth line by (=-5)1E. . 

Putting lr 	JC ) 0= (c..+sycc-s"), 	e.-126L  
the matrix becomes: 

         

         

 

0 CD 

  

0 

0 

 

- -r 

     

0 

 

V 

    

         

         

         

         

,A Gauss-Seidel method was at first attempted. This is 

done by first setting all C.'s to zero, then calculating in turn 

C 	 F — 

C.4 	 — ca. — c/3 3 

:T — C. \I 	C A-. V 

—C21.0 4- c.3. U. V — C4.V 5  



F -0 • 2_ ft- 
50 	.c-4- 

L = So 

k 

1‹, 

V 

-r 

U cos k 

E- = 4-32 ,c to' 16/ Sc 

D 	S G 	`' Ito fin  

VY1 = 

cosk. — %SAV% k.<  

The process was to have been repeated until the constants 

c9nverged to a steady value. Unfortunately the method which was 

- simple to programand did not require much storage didnot work )  

the solution oscillating and diverging rapidly. 

An attempt was then made to damp down the oscillation by 

letting the constants take up a value half way between their 

original value and the value obtained above. 

Thus:• 

C..4- : 	— 	— 	C- 4-  

: 	ci.1* 	C3.7.\/ 4- C.4 V  

C 	—C.1.0 4- 	— C4 \/ 4-  

The solution then converged in a satisfactory fashion to 

a steady value for the examples attempted. 

Examole 

A reinforced concrete tank 100 feet diameter, with walls 

one foot thick and 50 feet high undergoes a differential settlement 

of 9.(o' inches. Taking E as 3 million lb/sq in and Poisson's ratio 

as zero find the maximum vertical and bending stresses and the 

maximum radial deflection. 

52. 

5 
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The damped Gauss Seidel method gave the following values for 

. the constants of integration: 

5 1 1 2. 

o-003o2_.DQ, 

.100429S 

C 	-1-0.0038S1 2_, 

== 	o 	 ci c2 c-5 + cz3,-) 
. 2 15 	ks f 4 

02r oc L_ ) 

-e,k(Eci k (-ci -c1-) s;A- 
6 R 

e. 	C4) Ck (-05 + 	Siak 
== 	-o• -199C., 

= 	=--. 0 

The vertical stress at the base of the tank is not in this 

instance very important amounting to only 19.1 abs/sq in. However 

the bending stressat-the top of the wall 60ty has the very 

large value of 1330 lb/sq in. and would certainly crack the wall. 

It will be shown in the next section that the neglect of the 

twisting moment leads in this example to an underestimation of NA . 

The calculated values for deformation and IN are however 

reasonably accurate. 

-)4 

M cif, D 
R' 
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Inextensional Bending of Tank 

The problem worked out above showed that the stresses and 

strains in the middle surface of the shell produced by the 

differential settlement are small and the bending moments and 

changes of curvature are large. It is therefore practicable to 

solve the problem using an energy method and assuming that no 

strain occurs in the middle surface. 

The conditions of inextensional bending which must apply 

throughout the shell can be expressed as: 

o 

ect,  =  
auv Ra+ + av /a.-x 

As the curvature takes place in the 56 direction 

and the wall is initially straight in the vertical direction, 

the wall must remain straight after deformation if stretching is 

not to take place. 

Takirt La as linear with rx and zero at X <, 1  and 

choosing a symmetrical Fourier series for the deformation in the 

direction: 

45 == 	Y.. 5 Yn cos NI\ 4,  

There is no constant of integration as V == 0 	when 

that is it is taken care of by the eigenfunction, 

Zu.pt 	R 	 R L B s sat 

= R 	wv% COS Na■ 

thus satisfying all of the equations of inextensional bending (5-11). 



Collecting together the expressions for the deformations: 

55, 

(4.7 	 111 Cos vr■ (I) 

V 	 SZAN. sin+ ...(5-u2) 

.7.-- 	 R. 7_ e),n.t Coswx4) 
YV1. 

The corresponding curvatures using equations (3-11) are: 

0 

_LcS2-147  4_ u3.) 
R2.  

= — 	E 2,,,,,.ncreli__ 1)  co. 
31 /...r 

act:. 	x. 
= — 

For an element of a shell the elemental strain energy 

cl 	 "X.:1; + `X.;)( (t) 	Civ'YXJ+S Rad 

This is derived in Appendix 5. As Xx  .rz 

7. a V=- 	')(41 	z ( I- 4") '>(4 7s a,..4) d>c 

Integrating over the whole area of the shell to get the total 

strain energy 

TV L. 
DC C  3 3 	 covi.ct) )2-  

o 

7. I. "tV 	E 	 1. 	1. 	IV% Z (1-.1))1 • • • (5''M) 
g7- 

The second term in the brakket is due to the strain energy 

of twisting. It will be seen that unless LNI.-;t/51e is large 

compared with 2.(1-)o-) the effect of the twisting moment can 

not be neglected. 

V 2.. 
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In the Problem worked out in the previous section 

L/R = 1,Yn = 2, and 4) = 0. 

== "4 -'5  4- 2./ 	= 151)25;' 

If 	N = N cos9.4) and u 	Rcos21, or  bo.5•2_, Os. st., Q,11 
IL 

the external energy is 

211 No 122 	
vW 

k 5 Ntx LA' R 3/4 = 	?),_ 	(Ds' %.4) • ct+ 4 0 	 a 

NO R.2-  e32. 11/4- 

Equating the internal and external energies 

12-4  t■t e  / 6. 0 .3) 

R_ 	/ 

MO ;Lo/ R.3  = oZ k.125 / 

But 	Lte  

N 0  

The value obtained before 2.756 kips/ft may be compared with 

6.92 x 1.33 / 3.33 = 2.77 kips/ft obtained by using the strain 

energy of :bending only. 

L 2, B.2. cos 2 4)  al- 	U 	 _ 41.4 R 	0 . 4 .5- 
col>a4 

% 
Thus the deflection and .bending moment at the top of the shell 

obtained by a characteristic equation that neglected the twisting 

moment is still accurate, whereas the value of Pq,c obtained is 

not satisfactory when the shell is short. 

For a long shell such as a cylindrical chimney with differential 

settlement the characteristic equation provides a solution that is 

more accurate as the strain energy of twisting is of less importance. 

Furthermore the combination of inextensional bending for carrying 

loads normal to the surface and claarasteristic,)quation to handle 

the end loads provides a satisfactory solution Zor wind loads on 

a cylindrical chimney and some other problems of a complete cylindrical 

shell. This is analogous to the use of membrane theory combined 

with a characteristic equation in the case of a shell roof. 

When Orv111-4-P•?' is largecompared-with 	1-o.) the 

strain energy of twisting. can be neglected and 

V (5-14) 
(0. 



Wind Pressure on gylindricol Chimney 

The wind pressure around a circular chimney will be represented 

by a Fourier series with seven terms as follows: 
6 

PI Pr 	
;E: 
m 	

a._ C..4)5 rn 

o 	I 0 0 / Is; 2,2. 4- 33.9 cos 4) 4- 53•3 cos 9.• 

+41.t cos 	4- 	cos44 	•coSct,  —6.5c0s6c1) 

This is derived from the test results in NFL/ Aero/ 316a. 

The wind pressure is assumed constant over the height of the 

tower and t> will be taken as the velocity pressure = 

( velocity in miles per hour ) 2/ 400 	11,15c0'4.. 

The first two terms do not cause deformations of the shell 

out of the circle in the plan view, and hence will produce only 

membrane stresses. The second term is the only one that produces 

a net overturning moment on the shell. 

The membrane stresses will now be derived for the benefit of 

those whodeclinedry invitation in chapter 4 to work it out for 

themselves. 

. It is convenient in this case to 

measure 	from the top. 

57. 

Resolving radially forces upon the element: 

N 	1- 1=. Ra4 th , 

Resolving in the 11) 	direction 
5 

A S R. A44) 	a 1-ta?  a% =-* 0 

	

d5 	ci 	t44) 	ctit= ..,.--_ 	= 

	

ci.x. 	.R.d.+ 	a+ 
a k,  

	

, S 	= x, c---i—t— 4. co sr.  

4- a 1.4 
4 	cut) 

	

2. 	 S 4- cLS 
M x i-d 1-1 1‘ 

At the top of the shell there is a free surface and hence no 

shear stress. ie . S =--0 	when X r: 
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Resolving in the 31 direction 

cl.N % 	 cA.5 dux = 0 

 

t 4 ,. 	dLS 	rx. 	cti  
• • 	

•vc 	R. ct- 	— 	R 	(I) 

.11  

	

N 	 7- 4- 	co-.') cs.AN‘f 

Again there is no longitudinal stress at the top of the shell so 

that the constant of integration is zero. 

For the first two terms of the Fourier series: 

4- A 	CI) 

— O. S 	fri) 

— 	cos (1-1 

Hence the membrane stresses are: 

It is of interest to observe the relation between the membrane 

stresses just derived and those obtained by the normal engineering 

formulae for bending and shear stresses. 

The overturning moment on the chimney is: 

x ?Ai 

S COS 	Rs- 	0/‘ 

° 0 
141 RIS  

00 

SIT ck, 1  oc2-/ 

The I of a ling section is 11 	ft 

Is4 ==6x = 1,1 

The net shear force on the section is 

5 S 	s 	v. c4.43 
0 0 

Sc ( a cADs (A) + 	cos1.4 ) act) a 

oI coS 

R Tr 0, t  

00 
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S r 'T R 	Dc.  s 
2, h -4) 

4) 	4) 

Which apart from a change in sign in the expression for shear 

is the same result as obtained by the membrane theory. 

. The other terms in the Fourier series will be dealt with 

as follows. 

It will be assumed that inextensional bending occurs and that 

the base lifts in accordance with this assumption. 

End forces are then applied to cancel out this base lift. 

The effects of this end force are calculated using the modified 

Schorer equation (5-3). 

The effects of the membrane equations for the first two 

terms and inextensional bending plus end loads for the higher terms 

are added to get the final stresses and deformations in the shell. 

Inextensional Bending of Long Shell 

The external energy is half the product of the wind pressure 

and the radial deflection integrated over the whole shell. The radial 

deflection will be taken as the same shape as the loading for each 

term in the series. If Fourier terms are cross multiplied the 

integration around the shell is zero. This property of the series 

is known as orthogonality. For each term considered 

V = 	0.„, cos rett . 	m cosrn 41. R. GUI) 0 0  
et.„,„„ 1?›, -cr ¶ 	l 	- 41. 

Equating this to the strain energy for inextensional bending of 

a long shell given in equation (5-14): 

IT 0 rytz  
47 R. 

3 a R4  
Q1 L vn2-- t 

5, = 

Substituting back in equations (5-12) to obtain the deformations: 

Ckwl, R4  oc CDS  • • 

fLO 	l■ C V" 	Y. 	• 
6 14') 



R4 	 vv• cf,  
2, 	v"■•• ( 	 — 

3 ck. Rs co s 	ci) 
2, 3 L rY11- ( 	Y2- 

60. 

...(5-16) 

If the base does not in fact lift the value 

R5  
2, D L  

can be substituted in the equations for the tank settlement and 

the stresses and deflections added to the inextensional bending 

and membrane cases. 

Example  

A concrete cylinder is 50 ft. in diameter and has walls 

1 ft. thick. The top is open and the base rigidly fixed. Taking 

6 E as 3x10 and A) as 0.2 what are the maximum stresses set up 

	

by a 75 mph wind? 	The length of the cylinder is 100 ft. 

14-1 00/42 	i>== 3-1-5x 10'  N74;2".  

The deflections at the top due to inextensional bending is: 

3R  
,

4.  LS 	
cx 

2, 3  

	

= 	1 10 0 -7 44- D V 14*/( .3) 	0.0%4-8 .F1. 

= S a-, 
7-- 0-02'204 9 

ir 
= 	4.2c0 to-4- ci- 

The membrane stresses - at the base. at ct) =0 are: 

1%4  ')C • ••=-- Ct 	R. 	( l2/54)C 0- 338 = c151 16/4 

S 	 = v-fg_ 	-X 0. 
	 411 lb/ct. a cio° 

The other stresses are calculated from edge load theory, have 

been evaluated by computer and are tabulated below. 

P 4 M4 4-L,p M% b S bc■Se GA' ± 

't 	
`5  

1 
42..cfo 830 1 45 

4.45x to-5  --E q i cict 4 2 t 3 I 3o  
10 4 1 

1 
-2-56Y163-1   -.1 Co - G, 1 IS 
- (.0 -19 x to-13  - - 3 1 IS 
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• It will be observed that the lift at the base due to 

inextensional bending is extremely small and that any tendency 

for the base not to be pulled back completely will decrease the 

Ny  and 5, values due to the edge loads. However the values for 

N which are caused by the difference between the deflections 

due to ineitensional bending and those due to the edge loads 

will increase if there is any net base lift with a maximum value 

equal to the inextensional bending case. 

Chimney with an elastic foundation 

When the boundary values of a differential equation depend 

on a combination of derivatives such as 	EF-VN olvicioc 

it is convenient to express the table of derivatives (5-1) in a 

matrix form as follows: 

    

=Mk 

C l 

C2.. 

C3 
C.41- 

    

    

Lt. 

LL 
Lot 
LIM 

 

o 	I 

b 6 -b 6 

o 2..b1" o - 2 61" 

-2k; 2.1-1 263  21c; 

 

     

  

••■• 	 =M. 

 

   

Where c  cosk:vx- 	s sir.b= ,c 	4bc. as before. 

or U = A.B.C. 

The boundary condition Lk -- 	== -F 	at x=0 

may then be expressed as: 

I) . Bo  .(2 Fr 

where for j = 1,2,3,4. 

- K.E14-N.P.C-2,y1 

And 13  is the matrix B filled with numbers corresponding to 

x = 0. The other equations to be used to find the vector C are: 

D . Be, C 

CI == 

I) . 	 == 0 

where for j = 1,2,3,4 

-= A L3,3-3 , 	t. 4•3.13 	ti).32 



62. 

These last three boundary conditions are the same as those on page 50. 

E4_ is the matrix B filled with numbers corresponding to x = L. 

This is simple to program when there are standard computer 

. procedures for the multiplication and solution of matrices. 

Experimental Verification of Edge Load Theory 

It is difficult to test the theory for the effect of wind 

loads on cylindrical chimneys, especially when a large pressurised 

wind tunnel such as the one at Teddington Is not available. However 

the basic ideas could be tried out by loading a horizontal steel 

cylinder near the open end with a point load, measuring the changes 

of diameter with a large micrometer and the lifting of the base 

with dial gauges. Strains were measured near the fixed ends with 

E.R.S. gauges. 

For inextensional bending from equation 2 (5-12) 
00 

At x = Z, 	= 0 	tSz 	Dr% 
2. 

For a longish shell from equation (5-14) 

v 	IT L.3 	 ( 	c)1. pk. 	CD a ur = 
B R3 	

a 	= 
a ec,  

•  

Substituting in equation (5-12) 

== 3 p z R.5  0C 	COS ,r-r. 4, 
3> Tr 	2. C 	I) 

UL 	= 3 f)74 W4"  Z7 CO S .r.r%  

-Tr L:? 	2 	@vv.. _ 

The edge loads required to reduce Lk at the base to zero are 

handled as before. 

The dimensions of the steel 

shell used for the experiment 

are as shown. 

E was taken as 30x106 psi 

1) as 0.3. 

Strains were measured at four positions around the shell at 

spaced at 900  intervals, using Saunders-Roe foil gauges and a 

Bruel and Kjoer strain meter. 

p z yyt 

( 5-17 ) 
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Measurements of deflections in the u direction made at the 

back of the base plate at four positions showed that the "pull back" 

of the lift due to inextensional bending at m = 2 was only 93.5% 

effective due to the flexing of the plate. The same percentage 

"pull back" was assumed for the other values of m greater than 1. 

This affects the change of radii and that part of the stresses due 

to edge load action. 

The change in horizontal radius ( at + =90 ° ) is mainly due 

to the m = 2 term and is shown in Fig 5-2 together with the measured 

values. The shell was very sensitive to small pressures near the 

open end and great care had to be taken with the measurements. 

Contact between the micrometer and the stuck on buttons was judged 

by sound. 

Stresses were measured by averaging the strain gauge readings 

on the inside and outside of the shell in both the x and if) directions 

and inserting in the appropriate equation (3-11). 

The computed values of N x  at six inches from the base are 

as follows: 

1,YA 
N x 

>(..W 	bo.c.A.: 
(00% 93.5% 

Co 	yr.c1) 

00 300  Ge 90°  12.0°  V50°  1900  

10,--iq 10•1q I 0 .9(010 0 .5 0  -0  -5 -0.i4,6 -- i 

N
 cn 	

In
 

35 11 W3.41 1 0.6 - 0 .5 -1  -0 ''5  61;  1  

IG .05 IS•00 1 o -t o I 0 -1 

3 .61 3.28 I '''''''G - o'S -0.s -o. 1 

0  . ca 0  .86 I -o•% 04 0 -0.5 0.866. -I 

93,‘, -215 -30.(5 -9.2. 6,4 10 A 

These membrane stresses are plotted in Figure 5-3 together 

with the measured values. It will be observed that good agreement 

is obtained. 
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APPENDIX 5 

Stral-ILk1aY_SI:11122- 1s 

(a) Pure Bending 	tvI4, 	5 mt 
Kai 

The bending moment acting on the 
tAt 

side of an element lengths dx 

and Rd# is Nitax lb in. 

The change of angle in the same 

direction is R acl) 	CZetif,  

The work done which is stored in the form of elastic strain energy 

is 	tv1 4) "< ci) g'eL47. ct`x- 

Similarly the strain energy due to bending in the x direction 

is 	- M x. `Xoc_ P.. 04 ol ,x_ 

But Mx, = -3) ( 	4- X k 	from equations (3-11) 

And  

c0/ 	3, 	Ar 	4- G 

(b)Pure Twisting 

12cl.4 

The twisting moment acting on the side 

of the element in the 4) -0c direction 

is hilrc ci -ac • The change of angle 

in the same direction is  

The work done which is stored in the form of elastic strain 

energy is 	2- /VI  crX• 
	 a4 . of,  

Similarly the strain energy due to twisting in the vq,direction 

is 	.127  INA-,c4) 	Rolt 

As N443.x.... 	,cde 	and "Actrx 	Xxci. 	NA.x.4) 	01 

Rat m,c+ 3o-4)-) 
	 from equations (3-11) 

a V = 	31)( t 	„2-  

Ra+ 	co( 4) .1- (if 
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Chapter 6. 

FLUGGE'S EQUATION FOR COMPLETE CYLINDRICAL SHELLS 

In the previous chaDters fairly drastic simplifications 

and restrictions have been made to produce equations that are 

easy to handle. Complete cylindrical shells have been assumed to be 

subjected to purely axi-synmetric loading with bending only in the oc 

direction, or to deformations that produce bending only in the 

direction. 

The general case has been handled by Flagge without simplification 

and •the.characteristic equation is therefore rather lengthy. He used 

a non-dimensional form of the eigenfunction 

Wx/R- UV FL 	c 	cos rr, 

and obtained the auxiliary equation 

4;1_ v: ;14   

where 

and 

%<-4- 

• 
= vYN 1( 4- -4)) vY■L  — Z + 4) -2 

This is a quartic equation in 	and as 4 K4  is very 

large compared with the other coefficients it can be solved quite 

readily by the algebraic method of Ferrari. 

Putting 	= 1;12 and NI= rAl  the coefficients of the 

quartic can be tabulated as follows: 

P4" s P F I 

I -4-M 
2.4) 

Cc, M2  

4 K4  
- 6. tvl  

-4M3  

In a typical case R = 3m. h = 0.03 in 	4, . = 0.3 

in = 2, 11 = 4 . The tabulated values are then: 
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68. 

Now 	r 4- E.- .:-... Zr- 	and. 	CL -1r E> == .9...ozx 

as 	Q..r >> of,/ 2,r . 	.and ...  

• P2-  —4- 2,o: P 4- 2 r =-. o 	 (6-4) .. 

and 	P3-  4- c P + 01 	o 	 (6-5) r 	9.Y' 

Equation (6-4) can be solved to give one set of roots: 

( 	(2,r) =-_ —a. 	 as 

The imaginary part ofthis is much larger than the real l (46:1) in our 

typical cade t s() that r, can be takenas ( 2,r ) ( 	1 )Ja 

	

or 
	K 

The first part of the solution will then be: 

c_c) 	IrrN (1)  
63; 	elitE.(t1±1)X 

A e_ 	cos 

where 	4 4 	Kfl/ 	= 19_ 4.3 2  )/ 

This will be recognisable as the solution for the case of axi-symmetric 

bending dealt with in Chapter 2. 

The second part of the solution is obtained from equation (6-5). 

dt. 4 	 . 	as zr 	2x 	r 
The imaginary part of this is again much larger than the real, (50:1) 

g b. 	- in our typical case s  so that IF) can be taken as 	y-P (±14_-_ ■)/4.-27  

Therefore 	= 	A 
e1.-..,±.1). 

cos rr. 

• 

	

 4 A. 6  = 	 rin ( vyN7- 	7" 
where 	

ki Mic IA- 	 —  0 01- 
R C — 	G,  P.:61  

This will be recognisable as being the same as that obtained in the 

case dealt with in Chapter 5 where the bending in the oc direction 

was not considered.- 

Neither of the characteristic equations corresponding to the 

two sets of roots contain a term for twisting moment. Thid suggests 

that the twisting moments can be neglected unless the shell is'very 

short. In this case an analysis by inextensional bending will normally 

become possible. 



Example P c.0 5 

Consider a, varying ring load 

P cos 	about the centre 

of an infinitely long cylinder 	• 

where: 

X. 9 < 

4.711■I. 

• 

(a') 

69. 

Most problems that involve both sets of roots can be handled 

by assuming that bending moments, slopes and normal shears in the 

ac direction are 	properties of the large roots, while longitudinal 

stresses and displacements, radial deflections and membrane shears 

are properties of the small roots. 

The integration constants of that part of the solution with 

large roots will be taken as Cl, C2, C3 1 C4 as before with displacements 

in a . The integration constants for the large roots will be taken 

as B1 1 E2 1 E3,134 with displacements in LL . 

F' = 	..- 	0 • 0 3 

..... 	to' t?s; 	P 02. 	= 2 - 	s 16 

The edge effects will die away in a very long cylinder 

Hence ci 	cz, == 	 == 

The next boundary condition for the large roots is zero slope at 

cD 	giving: 	cio/doc 	o ...(a) 

It will be assumed that the ring load is first carried in 

normal shear Q. by the large roots giving the boundary condition 

c. =-- — P C.oS ■nrut) 	 ...(b) 
31".. 

A boundary condition for the small roots is zero longitudinal 

displacement at X=o giving 	LL == 0 	lipos ( C) 

The effect of the large root part of the solution dies away rapidly 

from the boundary as e 	diminishes rapidly with sc . When Glx 

is zero the equilibrium of the narrow ring containing the edge load 

.yields a boundary condition for the small roots: 

Resolving radially  

= 	cos v, 4, 

Resolving: tgngentally 

2.S0  R.c4 = — dc-r 
aT 
0,74 



70. 

Large roots 

t- 4,n /R..VN 	 12 -2)59 

= 4.2.85 
	2 e 	15-1.52.1 

Small roots  

4.tbc,i,..) R3  

‘ 3,-- • 4-92 %%0-'1  

Z 0 • 11 x icf4  

12 1. 2.2s %16-6  

Then at 	0C. — 0 

(a) 	Do/ 6-x.„ -. .7.. 0 	. ' . C.  

( b ) 	Q .x. = -D. 2.cb-3  (c..4-c4) =.  
_.4.. •••. c. 	. c..-4. z_-. 	=_- 	Gr, • 427 "K 10 	I.^ 

(C) 	 V- --t. C:, 	a • •  

( d  ) 	S 0 M.. 
."."' 

	_ .2 
== __ EtiNS  2.67' (-EA) 

	

rv-• 	a,  *X...2- 	 0^ 

B4 	 I V., 

Deflection uS at X.== o is 	C.3 — Yn7" [341 

o•oop 64.3 4- 0. 0 f3 1 14-G 

0. 	$39-.4- ;vs.. 

The effect of the large roots dies away when 

e. 	< c›.1 	 =-. 0-s4- 

The effect of the small roots dies away when 

e. 	0 • 

The longitudinal stress Nat 	o is 

or E 	6 e,.4- =  — 22/2_ • C., (16/ , :-....) cos 2.4 

More Accurate Analysis of Case Dealt with Above 

It is recognised that the method employed above savours 

somewhat of sleight of hand, and a more thorough analysis is required 

in order to justify it. It is inconvenient in this case to employ a 

different variable for both sets of roots and the deflection in the 

radial direction a will be used. The integration constants for the 

small roots will of course have different values from above and will 

be taken as K1,K2 1K3 1 1:4 0  

Consideration of the moment deformation relations for the 

shell together with the statics of the element, while ignoring the 
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Putting in the boundary conditions 

cz-x. / 3) 	o.2. 0 

and solving, the values of the integration constants are obtained 

C4 = a. • 37 '2.0 z 10-4 

VA,3 = 0. 0819.-3 

‘<•=i- 	o 0g221 

C),3- = c 3 4- Ne.„ 	 o 8 I B 
• . 

which can be compared with o.0814 obtained by the approximate method. 

An examination of the matrix suggests that although the slope 

cannot serve as a boundary condition for the small root part of the 

solution, ik the small root constants can affect the large root 

constants. This should be taken into account when the approximate 

method is being used and when uLe is not zero. 
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NOTATION 

Symbols are defined when they first appear in the text. The general 

notation is as follows 

BEAMS 

A 	sqft 

lb/sqft 

ft4  

ft4  

lb ft 

lb 

lb/ft 

lb 

ft 

ft 

SHELLS 

lb 

R, L, h ft 

u, v, w ft 

N 	INT,4,'S lb/ft x 	• 

mx, 	wlicq,  lb 

Qx, 4 	lb/ft 

x(ft), 95  

Cross-sectional area 

Young's modulus 

Second moment of area of section 

Polar moment of area 

Bending moment 

Concentrated force .  
Distributed loading 

Shearing force 

Vertical deflection 

Longitudinal co-ordinate 

Flexual rigidity Eh3/12(1-4) 2 ) 

Radius, length, thickness 

Longitudinal, circumferential, radial 

displacements 

Longitudinal, circumferential, radZal 

forces 	
5A.toof 

Longitudinal, circumferential, ra 'al 

strains 

Longitudinal, circumferential, twisting 

moments 

Normal shearing forces 

Longitudinal, radial co-ordinates 

4) 	 Poisson's ratio 
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SECTION B  

THE ANALYSIS OF CYLINDRICAL SHELL ROOFS 

WITH POST TENSIONED EDGE BEAMS 

by 	. 

Raphael Foner Rish B.S.C., M.I.C.E., F.I.E. Aust, 

Senior Lecturer, University of Tasmania 

SYNOPSIS  

A new characteristic equation for cylindrical 
shell roofs is developed, together with a method 

for obtaining the solution and its derivatives° 

Post tension is introduced into the edge beam 

by shearing forces varying linearly from a 

maximum at the traverse to zero at the quarter 

points. The Fourier series for this converges 

rapidly. An edge correction is then made to 

restore the post tension to the end of the edge 

beam and obtain compatability of strain with the 

shell edge. 

The method is compared with experimental results 

on a-model shell and with the results of a finite 

element program. 



longitudinal, circumferential, radial displacements 
1 1 

It 

tI 	 It 

normal shearing forces 

normal force at edge 

longitudinal, radial coordinates 

angular rotation of shell 

radius )  length, thickness of shell 

half angle of shell 

Young's modulus 

Poisson's ratio 

11 	' 

$ 	 5  shearing forces 

) 	) 	•  n 	n 	strains .  

,twisting moments 

NOTATION 

2, 

) Gs C 

C. vc. E.* '6„4 
M4,1,11,0 (lb•  

Q., Q4 ( 16/ft) 
V* (16/4) 

CY".-ci) 
vt.ct) 

113 	(,ro.cc.) 

L=  
4) 

C ■ b_cA-.) 

) 

P (Is) 

1)/ flexural rigidity of shell E 	( 

constant In Fourier series term F;„ cos NoTxp_ 

r--A 	Fk 

parametric constants. 

11)- (t- 4).') 	■-Z" • 

a root of•the characteristic equation 

area, moment of inertia of edge beam 

_ post tension load in edge beam 

INTRODUCTION 

A digital computer enables the gravity loading of a cylindrical shell 

roof to be handled by using a sufficient number of terms of the Fourier 

series for the loading. 

When a similar attempt is made to determine the stresses due to post 

tension5 the errors increase with the number of terms employed. 

This difficulty is basically due to the assumption that the traverse 

of the shell does not resist normal movements, and cannot transmit any 

of the post tension directly to the shell. When this assumption is 

abandoned it becomes possible to handle the post tension in an economical 

manner. 



THE CHARACTERISTIC E UATION 

FlUgge l  has developed the differential equation for the cylindrical 

shell with the minimum of approximations. As he points out the mathematical 

analysis of such a system is far from simple. The roots of the auxiliary 

equation arising from his equation are difficult to extract accurately and 

the force deformation relations are very complicated. 

The following section shows how Flagge 1  s equation can be simplified 

without serious loss of accuracy using Ferrari's method for the solution 

of a quartic. The simplified equation has explicit roots which can be 

readily employed in the design of shell roofs. 

The ,eigenfUnction for the radial deflection will be used in the non 

dimensional form 

	

&/r.—_ Ac.. cos vYt. 	R 
.where 	TY% 1=  IT R. / 

and all forces and deformations in the shell appear in the form of terms in 

a Fourier series in x. 

The auxiliary to FlUgge's equation then_ becomes 

( 	v`Al  )4" + 4- vviL 	+ 2 	+ Ft-)4  + 	-2iw= a . 	(1 ) 
.where 	4 < 	19.(--v7 ) 22/ 

.. 	I -- 2. ( 4 	Ym2  

CD riev4  - C -4)) 

The auxiliary auxiliary is thus a quartic in p 2 and the coefficients can be 

tabulated as follows 

Table 1 

-4 re■L 	4- 6. rel4" 	- 4 rnc.  

2 	4-F 	4- Cq 	4 4 vv-.4  k4  

- 2. rAG 4.) 

b 

What happens next can best be shown by putting in numbers for a 

typical case. Using the dimensions of Gibson's long shell 2, R = 30 ft, 

h = 0.25 ft, L = 120 ft and 4J= 0.15, and taking the first term of the 

Fourier series N = 1, m =11/4 and 4K 4  = 168912 

The table then becomes 

108 	17.‘ 	17'4. 	PI. 	■ 

I 

I 	-2.4.G-14 	4- 2.2S3o 	- 0. 93138 	-V. o• 14-4-53 

- 3.14q1 	-1-o•000(0 	4-004211.11141 

- o. 6,04 

I 	 -0-40,1¢ 	- I .4GG1 	- 0 • 4 SS 2. 	4 G4'L-II .1.59 



To solve the quartic 

1,8 	4- 2, a. \f;s4' 	b 	c \DI' 4- a. = 0 

it will be assumed possible to express it as the difference of two squares 

4. 

) 11  0 	• 	C.9- -) 

-I- 	) 

= 

( 1)4  4- or  p2" 4- 	_ ( 2
. 

or 	8 p 4- 2or  t.)6  + 	+ 2., r 

+ 2 ( cr.- E.) 1.2' 4- ( sr 2- — 

On comparing coefficients 

Eliminating s and t and substituting for q we ol4ain the cubic equation 

3 r   
•• (4) 

Putting in the numbers for our typical case the cubic becomes 

r s 
0 .1s35 C.42-11-t4-q-1 v  - 48889.22%4- o ...Cs) 

d is much larger than the other numbers in equation (4) and assuming that 

r has a small real value it is evident from inspection that r will be very 

nearly equal to i(b - a2) or -0.760668. Evaluating (5) on a desk computer 

for trial values of r shows that the correct value of r is -0.760671. 

Now (2) can be expressed as: 

4 	 Y* 2 ) 	( \22-  4- E.) —

- 

0 

+ 	 — 	s \z32* -+ 

a • 

or 

and 
( + c=) 	4- 	 o 

	

)pz + 	— L.) 	

• 

• Cc") 

Transposing (3) it is found that 
	

4( Y* 7-- o•-) 	rriz. 	i 

t 
as r2  is negligible compared with d which is very nearly equal to 4-Yln r: . 

s. (1,r- c)/E which is very small compared with q l  and r2 is very 

small compared with t. 

The two quadratic equations in p 2  (6) then reduce to: 
.. 0  

L  
4- 	‘D. — E 	o 1:)4.  

P4  
a,. A_ J C ft' 	2) 2, 

hence 



neglect of higher order terms. 

bi+= 

A 3 i 

N4, 

N vAx4,+ 

G24, IA4+ 

5. 
The imaginary part under the square root is much larger than the real so that 

102- 	571 	 Y112 	Yr% \<. 	I) • . . C-r 

This can be compared with the roots for Schorer's equation: 

	

and with those of the widely used 	equation: 

	

yleN.2.• 	r.v.s 	k  4_ ) 

It will be seen that for long shells, i.e. where r114<il the roots of 

Schorer's equation are more accurate than those of the D.K.J. equation. 

If the factors in Table 1 that do not contribute towards (7) are 

eliminated we are left with the auxiliary equation: 

V _ 	4., 2,\D(' 	Aili.rvid" K:‘ == o 

which corresponds to the dimensional characteristic equation 

8 	8 2. 0" 	4 .S41 0X 	0  . . + 	R 	 2. + • 	4, + 	K R x4  a 4)g 	3 406 -.6 nc. 

Before (8) can be used in design it is necessary to find the force-deformation 

relations corresponding to it. This was done by working back through 

Fliiggels calculations and leaving out any terms that did not lead to the 

desired characteristic equation. 

It appeared that hqcould be neglected as in Schorerta equation but 

not the twisting moment. That G.+ could be considered small compared with 

411 .R. and -a07cLa4, but that 	could not be neglected when compared 

with "Du/C2.4, and 2A•Pfax.. Other approximations leading to the desired 

result were the ignoring of 4) N cV compared with N ot  in the calculation of 
D0-0 SL4r 

the taking of h(1,....t as ----- ---- and IsAf as -I),(t. In general 
ct. 	bc1 acx.. 

the method leads to the inclusion of first and second' order terms and the 

From the statics of the element in Fig. 1. 

'b t44, 	"a INA .x4, 
CZ+ 	R. act) 	

_ x. 
Z Mx+ 

 	 _ R.  2:a  (1,2:  

a2-  r,44  n  

= 



/ 2,kr 
€-• = 	L -5—cc) — 41 ) 
components on 

this is considered small compared with the separate 
Dtr 
'Bcp 

the RM.side which are due mainly to bending .7. a= 

R.attax3  

c  
E kI  

'a 5 
b 

■•■• 

6 . 

    

 

R 	cl, 

   

34 NA$ 
 

-64 cl) 4 	4- 	R.'" 
az  M4 

rZ,3 	CO- 

The force-deformation relations are: 

I> R,( A.y )  

= 

a 

D ( _ ) 

=, 

  

Bc;  

 

( + ,V) 
E 	(1) 

-a 5  u_  
R. 2e cr 	3  oc..4  acra=.'1' 

2- 

rA40  
act.G 

--a a ( 
R5  NYR 

2 	2•4  VI cts 7 

20-.0  	? 2 	) 4  R 3  

+ -64 u1 ?AZ' (1-  4)1') RC  + 4 R - 	+ 
(a -a 

 

= 0 

     

     

  

•• 

   

       

This is the same equation as (8) 

The radial deflection in the shell Will now be taken in the form 

us == NA/ cos 

where W is a function only of 

vvvx../ c . 	 .W cas Na-TT 

The deformations and forces at the centre of the shell where x = 0 



-RS 	o17-4,4 	E. 1--  2-(t - 

ct 5 W 
- 	5 

- 	d‘w 
j;.;2 	ot—v, 	LZ-`2,(1-- 

y1,11.1 4141  

A)) yv\-2. OW 
a cp, ' 	3 

4)) YY2 
at 4,4 j 

k:,  = (3 + 

w ct. \=.27 k=4 

can be expressed as derivatives of W with respect tot.The values elsewhere 

can be obtained by multiplying by cos ry) oc./ 

cr  

ot_`Lq 
R 	act) + 

ok 45' 4- W.)  

	

qet  _ 010404 	— II 	ck:A/  HF 

Now w = 141e:14  where A and p have eight cotplex values. Before we can 
tackle the design of the shell roof we have to be able to extract W and 

its derivatives in terms of real constants and quantities. 

of doing this will now be outlined, 

= 

A simple method 

TO OBTAIN THE DERIVATES OF A SOLUTION TO A LINEAR DIFFERENTIAL EQUATION 

Two terms of the solution will be taken in the form: 

= 

7 . 

Mt 

V4) 

Ncti 

ct.x. 
•■••••• 

004 3 

. Then 

where 

It is always possible to express (3 as kcine and das 

Now 

and 

1.4.4 	
cos 04 dp 	s 

	

(1< co s& + IS W. )v1  = 
	K' (co-O 4-- 

from DeMoivrels theorem. 

a" w/ 44," 	Ai (13'4_ ck 	epci' e_pkict? 

v.-- A t  teN  cosYNEt 	 ee4  cosok4 4- 'birrs.-04) 

	

+ PNa, t<.'N  GoS 	- si yNet") e (b4  cos.4 - slYx 

lete,c4+ I -) cos ne + C At- 	s ne 	coS.4.4) 

sZtv‘b1(3 	(AI-1\2)1 c-05 ■183 t.P.."4 

Putting A %  4 P. 7.= C. 	and 

ti 	

= 

c n w/ cif% 	e.r4i 	
n 

	

Ci cosnO 	sim.ne cz•so(4) 

 c-ci sdp".e 4-C9, cosv10") St‘fv‘c./..ct,  

In matrix form this is conveniently put as 

• l.e%  [ Co5 yl 0 

or A.B.C. 

[ cosok4 
- szrv..4.1) 

(1 11 1 

CoSoct (.2 



where A depends on the order of the derivative 

B the angular.position in the shell and C is the vector containing the 

constants of integration. 

DEVELOPING THE PROGRAM 

The roots of the simplified FlUgge equation form two sets 

— — 12, 	mk 	m t 	Ri -J1 r,066 
1== 	— 2- 4- 	— vv■ K ± VV‘• 	 Vy‘ 

We shall take first the first set with the positive imaginary part 

< t - co 5-  29 1  4- i  

0 1  7-----: 4-2.  ok.roi" o-v-N (IAN W. / Ri) 

l<4  cos'l '19  % 
k14 	• "I" n 9 S I •••■• 	<- 1 	L.-T. inn. 1  K1-  
k 14  C cost  9.. 0 1  4- S 41;":4 11  t91 ) =-- 	k 4 --z.' 	Rj-  4- vv■t  Ve.  I 

• 6' 
Taking now the second set with the positive imaginary part 

FoArt, 2.. &6 = —w\</ RL  

C 	-4- 

Then 
	

4c, cos 9-, 	 0, 

rt. 	\<, 2 CO S 7- 	 k S 	t9 

The matrices for the derivations can now be set out as follows: 

A will be an 8 x 8 matrix with rows corresponding to the nvalues required 

(,) and columns having the values 

cos v‘. 61-, 	svl (9 C-V4 r co s wv 91  c_k3 5,.„,,t9, 
k 2 ' c 0 5 	 etc. 

B will also be an 8 x 8 matrix as follows 

vs t 0 0 0 

0 62. 0 0 

0 0 s  0 

0 0 34. 

8. 



D 

sm.& 

[

— SCANcA, t 4) 

Suv.. 

co S 0(. 1  t 

9. 

cos oC I  

StivN, 04., 

C will be a 1 x 8 column matrix containing the eight constants of integration 
Cl 	C8. 

A new 8 x 8 matrix D is now produced ithe row number corresponding to 

the order of the highest derivative in the expression for the shell 

displacement or stress, This is done by employing equations M. 

For j having the values 1 to 8 

3 

7.-- 	P...0 .,) 	. 

-.-- 	RI  (  

_ 
•J) 33 	= 	_ 1:-) R3 (P ..) -I- I<i AC) ) 

_D 43 

( ASS # kl  

3:>6....)  

kl =- 

K2. = 

I - 	- 

- 	v--P) nri2" Pw‘ct. 

ot.Sictrc. 

C. PNG,*.)  + 	A 4..)  



Lp2, Co-) 

STRESSES DUE TO POST TENSIONING 

The handling of the gravity loading of the shell is too well known to 
3 require repetition 2, , 	However the usual method of replacing the post 

tension by the Fourier series 

CO 

4P 	N fr CO S 	OC 
71-V . 	7-1 	 U- 

N= 

leads to serious difficulties. 

10 • - • .• • 	( 

This is due to the shear at the edge of the 'shell being proportional 

to the rate of change of the force in the edge beam, or the differential 

of (10) which can be seen to oscillate with increasing number of terms. 

near the centre of the shell and diverge near the traverses. 

A more satisfactory series is 
obtained by assuming that the past 

tension is fed into the edge beam by 

shearing forces decreasing linearly 

from the traverse to the quarter 

points. This produces the parabolic 
distribution of post tension shown 

in Fig. 2(b). 

The Fourier series for this 
• NIT Vc.. is p 	cos L- 

28 P 
( 	

NIT : NIT) KIM 
irt  — 541  741.7  

• '• .(' 1) 

Four terms of this series summed up 

on a desk computer showed almost 

perfect agreement with the curve 

chosen and can be differentiated 

without much loss of accuracy. 

 

 

4 }-erms-(u) 

The theory was tested by the 

construction of 4 small steel model 	0 	Cb) 	Lt2. 

shell shown in *g. 8.. Tubular 	 , 
Fic 2, 	• . 

edge beams were 'isoldered on to the - 

edges of the shell. A steel rod was passed through one of the edge beams 

- and stressed by means of nuts screwed on the ends. Buckling was avoided 

by fixing the tendon at the centre by set screws. The variation of strain 

was measured with eight pairs of Huggenberger tensometers. 

The boundary conditions for the model shell can be expressed fairly 

simply. 

10. 



1) The rotations of the shell edge and the edge beam are equal 

M )-r d.-r 

D 	(la) 

. 	-r 
tiot 	•az.  

(b) 

SC (M4) 4- bt,tck) cos 	cbc. 

(  j  , 
c.1-5 0\14, 4. 

Cc) 

OA 	= . 

Reference to Fig. 3(a) shows that 

ST 
otoc 	( M4) 4- b N.0c.oe ts1 tv)c. 

L. 

-El 

a7t.1/41 
tvl = -El 01, 2. 

11. 

The B matrix is calculated for the right hand edge. This is multiplied 

by the D matrix to give matrix E (8 x 8) which relates to the shell 

displacements, moments and forces for the right hand edge when multiplied 

by the C vector. 

The four boundary conditions for the right hand edge can then be put 

into the first four rows of matrix F (8 x 8) and matrix G (8 x 1) as 

follows: 

Then for j having values from 1 to 8 	 + 
417.1_ 

64. 	 

3 

(4) 

2) The radial displacements w of the shell and the edge beam are equal. 

Reference to Fig. 3(d) shows that 

r  L._ V. ciS 

	

Nor 	ot„=. 

4Dc.. 	0 

For the edge beam 

V,4) co5 
NIT oc. 

Vio 4- E.10 	cos 
 N1Tx. 

U=1.n)- 	+ Lt7;02.  :114Xel t 
e. • 
	 ^ 

El. 
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E . 	
L- 	(- 

243 	c3 	 I-4 1T ) 	g 	4- 6E 5 -3  aj  

C-I 

3) The tangental displacements kr of the shell and the edge beam are 
equal. 

a+ kr rOTOc 
LOS L- OC.,4  

WM. 
11••■• 

\A 
— tL NIT) 1•14 

F- 	-- -a) — 
t 	1-_ -N4r 

tv -rr 	■ 
0 

The longitudinal strains of the shell and the edge beam are equal. 

The strain in the edge beam is "-rat; due to the longitudinal force., 

- The strain in the edge beam at the springing due to bending is 
ot2 

	

= 	6 C t-JIT 

	

. 	y-  ut• at 	cz) 

The strain in the shell at thespringing is ezip,t  (NI --4)  

F 	
- 	2. 	4-  E-te% 	a 3 	 5L A. rat 	s 	, 

- 

The B matrix is then recalculated for the left hand edge. A new E matrix 

is produced by multiplying B by D. The second half of the F and G matrices 

can then be filled in a similar manner to the first, making allowance for 

some sign differences. 

The eight simultaneous equations represented by F,(C= C4  are solved 

to find the integration constants C. The shell stresses and displacements 

can then be calculated from D.B.C., the change in angular position 

modifying only B. 

Correction at Corners of Prestressed Shell 

At regions remote from the corners the method outlined gave excellent 

agreement with tests On the model, and with the results of a finite element 

program developed by PhamlLam4 . The boundary conditions assumed however 

imply that Nis  zero at the traverses. This means that compatability of 

strain cannot apply at the ends of the edge beam where the strain is the 

greatest. 

It is evident that the traverses can transmit some of the post tension 

and this is allowed for in the following analysis. 



13. 

It will be supposed that the post 

•tension is returned to the corners of 

the shell by applying shear forces Si 
to the edge beam and S2 to the shell 

edge, both varying linearly from the 

quarter points to the traverse. These 

will produce the parabolic variation 

of longitudinal stress shown in Fig. 4 

and will be apportioned to retain 
compatability of strain. 

The characteristic equation of 

the shell will be taken in its 

simplest form: 

COM 	 J4 
4 4 	GI t-L 

4 — 0 •• • (12) 

The longitudinal strain 4t--A 

will vary with 
..=•• 	. 

ITIOiOn (12) then reduces to 
tx. / ct4 8  

Then 
c24`)A• c 4 ei co x-1- Fis 4 

Assuming symmetry about the 41.  clatAt(A) = k(A,) and- C1, C3, C5, C7 

are zero. If the traverse is fairly flexible in the oc direction the 

forces produced by the end correction will die away rapidly from the 

edge. It is also clear that only compatability of strain with the edge 

beam is of importance. The solution to (12) will then be taken as 

2- C 	 • - • • @3) ct 

• If C.  is the longitudinal strain at the corners of the shell 

k, Li) 6e. I rX.2/1-2. 	e cV"c.r-x. 

Then P2 	 N 1c4 = R / i  
6 

Then 	P 

From which E, P1 and P2 can be calculated. 

The edge correction has been added to the simplified Flugge solution 

using four terms of the Fourier series and is compared in Fig. 5 with 
the measured strains along the edge beam of the model shell. 

A long shell with post tension loading on a retangular edge beam 

has also been analysed and is compared with the results of PhamLam's 

finite element program in Fig. 6. 
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.FUTURE WORK  

The edge correction method implies a departure from the usual 

assumptions that the traverses do not resist longitudinal movements. A 
rough analysis suggests that a reasonable design of traverse can be 

obtained to satisfy the assumptions of the edge correction. This will 

be the subject of further study. 
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APPENDIX 

Analysis of shell with, post tensioned rectangular edge beams (Figs. 6, 7) 

P = Soo 
12,0 

= 3o. 
. 	= o.25 .c.t. 

=-_.O a. 9 I? S 

F> =  

ca 	+ 

= Soo• k. 

At corner. 	 Fics 
le% =  Soo o.25/ o .R4.. = Go  

This edge correction will diminish with+ • to the 6th power -  of 91)/ 
as follows 

1 0.9 0.8 0.7 0.6 0.5 0.4 
Factor 1 0.531 0.262 0.118 0.047 0.016 0.004 

It will also diminish parabolically back to zero at the7 11.- points of the 

shell. 

The Pix, values obtained from (8) are as follows 

F.% 	klt.s 1"I *: 	4)  -  

N
-
-
 cn

 Ix
.
 C - . - 

604.56 -52.292 -39.773 

..130.50 10.931 7.572 

28.19 -2.243 -13.321 

-1.76 0.141 0.069 

h4x. 
Sum 

Fourier 

Series 

Edge 

Correction 

Total 

. 15. SC 

Sum 

Fourier 

Series 

Edge 

Correction 

Total 

(I) ,44.00 

Traverse g 31.860 31.860 0 60.000 60.00 

17.002 14.160 31.162 23.566 26:666 50.23 

28.690 ,3.540  31.630 38.127 6.666 44.79 

V4 pi: .32.487 0 32.487 43.020 0 43.021 

33.451 0 33.351 43.466 0 43.46 

33.4 27  0 33.427 43.398 0 43.39 

C 33.464 0 '  33.464 43.463 0 43.46 
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Figure 8 

Model shell roof with post tensioned edge beams fitted with 

Huggenberger tensometers. 


